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Preface

It was a day in the winter of 2010, when my colleague, Dr. Ping Li, invited
Prof. Halang to visit our lab, where I got to know Prof. Halang. After that
meeting, I got a wonderful opportunity to study for Ph.D. in Germany, a country
famous for its rigor and diligence, where I joined the team led by Prof. Wolfgang
A. Halang and Prof. Zhong Li, and began to work on a practical topic since
August 2012: applying chaos to reduce electromagnetic interference (EMI) in
commercial electrical products.

Switching mode power supply (SMPS), with the features of high energy conver-
sion efficiency and small size, is increasingly widely used in modern electronic
equipments. However, severe EMI is caused by high-frequency switching ac-
tion of semiconductor devices, which threatens the functions of other electric
and electronic devices and health of human beings in the environment, and thus
poses a big challenge for scientists and engineers to fight EMI. Traditionally, fil-
tering and shielding techniques have been well deployed in various devices, but
they have many drawbacks in cost, size, and efficiency, and new solutions are
always desired. Owing to the pseudo-randomness and the continuous spectrum
features of chaos, chaotic carrier frequency modulation (CCFM) technique can
be well employed to fight EMI on the emission source by spreading the spectra
of input and output signals over the entire frequency band. Thus, it has attracted
great research interest in the past two decades.

Although there have been a lot of the theoretical and experimental research done
on the application of CCFM for EMI reduction, commercial SMPSs with chaotic
modulation have not yet been seen on the market. Hence, schemes to imple-
ment CCFM in the commercial power supplies are of great practical significance.
Then, the mathematical analysis and the experimental research on the schemes
have been carried out in the framework of this dissertation.

This dissertation agglomerates painstaking efforts of many persons. Without
their help, I would not have been able to complete this dissertation.

First, a great appreciation is due to my supervisor, Prof. Zhong Li, for his in-
struction with patience. In the meantime, thanks for the concern and consider-
ation of Prof. Li’s family members, his wife, Mrs. Juan Mei, and his son, Yifan.
With the warm help of Prof. Li and his family both in my work and daily life, I
could live and work without worries behind. Additionally, it is worth learning
from Prof. Li’s humor, the attitude to life and good intention toward others.
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for their kind help. Thanks also go to my colleagues: Mrs. Yuhong Song, Dr.
Guidong Zhang, and Mrs. Jutta During, and my friends around: Mr. Ditter
Dannet, Mrs. Ulrike Danner, Mr. Ulrisch Fisher, Mrs. Ulrike Fisher, Mrs. Bing
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Abstract

Due to its high efficiency, a switching mode power supply (SMPS) has been in-
creasingly widely applied in electric industry. However, rapid switching action
of semiconductor devices, which results in high change rates of voltage and cur-
rent, leads to severe electromagnetic interference (EMI) problems.

Many engineering techniques have been proposed to suppress EMI of SMPS by
taking measurements on interference sources, victims or EMI coupling paths,
respectively. The conventional techniques for EMI reduction are shielding and
filtering, which are methods to cut off the coupling path and enhance the in-
terference immunity of the victim. However, they have the disadvantage of
increasing size and cost of the products, which restrains their application, espe-
cially in portable equipments. Moreover, those methods, just fighting the gen-
erated interference, can’t prevent the generation of EMI at the source. Hence,
more efficient and economic techniques are desired.

In recent years, the spread-spectrum technique, which can reduce EMI at the
source by spreading the spectra of input and output signals over a wide fre-
quency band without changing the total energy, has received great research
interest. Periodic carrier frequency modulation, randomized carrier frequency
modulation and chaotic carrier frequency modulation (CCFM) are commonly
used spread-spectrum techniques. The chaotic and randomized modulation
techniques are more effective for EMI suppression than the periodic one. More-
over, as a nonlinear deterministic system to generate pseudo-random signals,
a chaotic system is easier to control and manufacture than a random system,
posing promising potentials in industrial applications. So far, the study on
CCFM was focused on theoretical analyses, simulations, and experimental ver-
ifications, lacking of a practical consideration of applying CCFM in real power
supplies, which will be main concern of this dissertation.

First, for power supplies with standard PWM ICs, a CCFM module is proposed
to serve as a plug-in component for suppressing EMI, without changing the
original circuit, thus, saving the development process and cost caused by the re-
design of the product. The module is used to modulate the switching frequency
of the standard PWM ICs by providing a chaotically dithering current for the
frequency setting component. It is noted that the CCFM module is adjustable
via its parameters to reach a trade-off between EMI suppression and ripples
caused by chaotic modulation.

Vil
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Abstract

Secondly, for designing a chaotic frequency PWM IC, it is necessary to integrate
a chaotic frequency oscillator into the standard PWM IC, which is to be realized
both in analogue and digital manners for various practical applications. The
oscillator of the traditional analogue PWM ICs is normally implemented by a
sawtooth generator, of which the produced signal circularly vibrates between
two threshold voltages. Therefore, an analogue chaotic driver of a PWM IC
is designed to dither either of the threshold voltages chaotically. The digital
PWM IC sets the switching frequency by a counter, which counts from 0 to
a pre-assigned value at a certain rate during each switching period. Hence,
a chaotic switching period counter is designed for the digital CCFM IC by
modulating the pre-assigned value chaotically. Chaotic frequency PWM ICs
provide an efficient and economical solution for EMI suppression in power
supplies, and enable real industrial applications.

Keywords: Chaotic Carrier Frequency Modulation Module, Electromagnetic
Interference, Switching Mode Power Supply, Chaotic Frequency Pulse-Width
Modulation Integrated Circuit

VIII
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1 Introduction

1.1 Power Supply

A power supply plays an important role in electrical and electronic devices, be-
cause it outputs the demanded electrical energy and affects the reliability, per-
formance and cost of associated electronic equipments.

The pass transistor Vo

§R1
T, % Lo, -_—C;

e Sk

VREF

Figure. 1.1: The diagram of a linear power supply

There are two basic power supply configurations [1]: linear and switching-mode
power supplies (SMPS). As shown in Fig.1.1, a pass transistor, which operates
in a linear region, regulates the input power to a stable output voltage in the
linear power supply. In contrary, the transistor in the switching-mode power
supply (see Fig.1.2), namely a power switch, which is rapidly switched, works
in the saturation region when it is on and in the cut-off region when it is off.
Then the input electric energy of the power supply is transferred to the out-
put device through the switching converter at a high frequency. Because the
transistor working in the linear region takes more power consumption from the
supply’s input power than that working in a switching state, the input and out-
put energy efficiency, a key index of the power supply quality, is higher in the
SMPS. Additionally, compared with the linear supply, the SMPS has many ad-
vantages, including smaller size, lighter weight and the ability to boost output
voltage above input voltage. As a result, SMPS has been applied growingly
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widely, especially in the field of household electrical and electronic appliances,
communication equipments and industrial electronics.

12
S ‘ cOUT—— !
C> =L The transistor ,
—p— Switching
LAMJ \ driving pulse —
vacQ) Ci UTY\ / “’03 =

.d -

Figure. 1.2: The diagram of a typical SMPS

™~

On the other side of the coin, the high-frequency switching action of the tran-
sistor, however, leads to high change rates of voltage and current and makes
SMPS to generate unwanted electromagnetic interference (EMI), which is not
such severe in the linear power supply. The generated EMI causes interference
and possible operating faults to other equipments, and thus makes it difficult to
satisfy the increasingly stringent international standards [2], restraining the ap-
plication of SMPS. Even more, some sensitive devices have to adopts the linear
power supply with a loss of energy efficiency. Consequently, the suppression of
EMI is one of the most difficult challenges in the design of SMPS products.

1.2 EMI and EMC

EMI [3] is a disturbance caused by an electromagnetic field, which impedes the
performance of an electrical device. As shown in Fig.1.3, an interference is gen-
erated by a source emitter and detected by a susceptible victim via a coupling
path. In terms of the frequency bands, EMI is categorized into the conducted
EMI (frequency band: 150kHz ~ 30MHz) and the radiated EMI (frequency
band: 30MHz ~ 300MHz). The conducted EMI is caused by physical contact of
the conductors. In contrary, the radiated EMI for higher frequencies is caused
by induction (without physical contact of the conductors).
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1.2 EMI and EMC

Normally, EMI can be estimated by measuring the power spectral density (PSD)
[4], which describes how the power of a signal or time series is distributed with
frequency. For example, the switching voltage, namely the voltage on the drain
electrode of the transistor, and its spectrum are illustrated in Fig.1.4. Obviously,
the transistor in SMPS always works with rapidly changing electrical current
and voltage, and there are large spectrum peaks locating at the multiples of the
fundamental frequency. The harmonic components of input and output sig-
nals may corrupt the power source and interfere with the operation of other
equipments. As a result, the switching converter becomes interference source
of SMPS. Generally, only conducted EMI is concerned in practice, because the
transistors usually operate in the low and middle frequency band. Once the
frequency of transistor operation exceeds 1GHz, radiated EMI should be taken
into account.

Radiated EMI
Source —< ) ) Victim

_w—llnductlve * Capacitive

coupling T coupling

Conductlve EMI

Figure. 1.3: EMI coupling modes

Because of the generation of unwanted EMI, it becomes a serious problem for
the engineers to improve the electromagnetic compatibility (EMC) of SMPSs.
The goal of EMC is to ensure the correct operation of different equipments in
a common electromagnetic environment [5]. EMC requirements concern two
basic concepts: emissions and susceptibility. Emission is the generation of elec-
tromagnetic disturbances by some sources, which may influence other electri-
cal products. EMC is concerned with the unwanted emission and its reduction
countermeasures. Susceptibility or immunity issue, in contrast, refers to the
correct operation of electrical equipments (victims) in the presence of EML In
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a word, EMC is to suppress EMI and improve EMI immunity of electronic and
electrical products, so that they can work as intended in its environment and
the generated electromagnetic disturbances will not influence other devices. To
define the specific EMC requirements that products must meet, EMC standards
are established in many countries. For example, the electronic and electrical
products sold to European Union (EU) countries have to meet the standard of
EN550XX series, while the standards of Federal Communications Commission
(FCC) Part 15 are employed in America. And EMC standards formulated by
International Special Committee on Radio Interference (CISPR) are adopted in
many countries [6].

80

T
Z 60
e
@ 50
40
3c- L+ L = | = - Lt fer hoer®
420 440 460 480 500 520
time/uSecs 20uSecs/div
(a) Waveform of the switching voltage
40
o 20
& 0 { J
<)
= -2
=
g 40
a
W
601
-0 0.2 0.4 0.6 0.8 1
Frequency/MHertz 200kHertz/div

(b) Spectrum of the switching voltage

Figure. 1.4: The switching voltage and its spectrum
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1.3 EMI Suppression Techniques

1.3 EMI Suppression Techniques

EMI can be suppressed by taking measurements on interference source, victim
and the coupling path. The most commonly used methods are shielding and
EMI filtering, which are mainly to cut off the coupling path and enhance the
interference immunity victim [2]. However, they only reduce the generated dis-
turbance, and their applications have to rely on the experience of the designer
without the standard solutions for various products. Conversely, the EMI re-
duction techniques working on the interference source, such as the techniques
of soft switching, spectrum-spread and optimizing the gate circuitry, became
popular in recent years. These methods will be briefly reviewed as following.

EMI filter

Input
) —_—
Switching
_[ converter
T

Figure. 1.5: EMI filter

(1)Shielding

Electromagnetic shielding [7, 8] is to reduce the electromagnetic field in a space
by blocking the field with barriers made of conductive or magnetic materi-
als. Shielding is typically applied to enclosures, separating electrical devices
from the “outside world”, and to cables, separating wires from its environment.
Hence, shielding, which is noninvasive and does not affect high-speed opera-
tion, works for both emissions and susceptibility. It is also important to note
that shielding usually can be installed after the design is completed. In contrast,
the other suppression techniques generally can’t be added easily once the device
has gone beyond the prototype stage.

However, it is worth to notice that electromagnetic shielding is an expensive
solution, which needs extra material, e.g. stripline, enclosure, and cable shield.
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1 Introduction

In addition, there may exist many leak sources, such as intake, display window,
socket in real shield, degrading the effectiveness of EMI reduction.

(2)EMI Filtering

EMI filtering [9] is the most popular approach. As shown in Fig.1.5, the filters
are normally appended at the input side of the converter to filter the noise either
coming from or flowing to the power grid. Each EMI filter is only designed for
a special narrow frequency band, so that it takes a lot of time to tune multiple
discrete filters to reduce the noise on the whole frequency band. Moreover, not
only the noise but also the useful signals may be suppressed. Hence, EMI filter-
ing has the disadvantages of large size, high cost and long design process.

(3)Gate Circuitry Optimization

Gate circuitry optimization is to alter the voltage and current changing rates of
the transistor, and a convenient way is to increase the equivalent gate driver
resistance [10]. Additionally, the changing rates of voltage and current can be
decreased by multi-step control and intelligent control on the switching action
[11-14]. Owing to the increasing switching loss and its realization with digital
processor, optimizing the gate circuitry is not suitable for the commonly used
analogue SMPSs.

(4)Soft Switching

The main goal of soft switching technique is to reduce the switching loss when
converters operate at high frequencies by turning the transistor on and off at
zero current or zero voltage [15]. Consequently, the high change rates of voltage
and current of the transistor are alleviated, thus EMI can be reduced.

Soft switching technique has its own limitations in improving EMC. Firstly, the
effect to reduce EMI focuses on the frequency band 150kHz - 30MHz, but it al-
most does not work on the frequency band 10kHz - 150kHz. Secondly, more
components are needed, such as resonant inductors, resonant capacitors, aux-
iliary diodes and even auxiliary switches. Moreover, when the converters are
designed with some topologies, the EMI of the soft switching converters may be
more severe than that of the hard switching ones [16, 17].

(5)Spread-Spectrum

As shown in Fig.1.6 [4], spread-spectrum technique was proposed to fight EMI
by spreading the biggish spectrum peaks at the switching frequency and its mul-
tiples over a wide frequency band. Spread-spectrum can be implemented just
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1.4 Spread-Spectrum Techniques

by attaching a modulation circuit for the PWM controlled circuit, without con-
sidering other issues such as the supply’s power rate, the transistor’s working
characteristics, the converter topology, etc. Hence, the spread-spectrum tech-
nique, an approach not only high-efficient but also convenient [18, 19], became
a hot issue in recent years. The state-of-the-art of the spread-spectrum technique
will be discussed in the following section.

Af i} Af
Amplitude Amplitude
hefore after
modulation modulation

g

P

Figure. 1.6: The principle of the spread-spectrum technique

1.4 Spread-Spectrum Techniques

Periodic modulation, randomized modulation and chaotic modulation are com-
monly used spread-spectrum techniques.

1.4.1 Periodic Carrier Frequency Modulation

The periodic carrier frequency modulation is to modulate the switching fre-
quency with periodic signals [20-22]. For example, the frequency modulated
by a sinusoidal wave can be expressed as

f = fo+ Afscos(27 fmt), (1.1)

where f. is a fixed reference switching frequency, fn is the frequency of the
modulation signal and Af is the frequency modulation range.
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4 Frequency/Hz
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Figure. 1.7: The principle of the frequency jitter

Among the frequency modulation techniques, only frequency jitter, which is one
of the periodic carrier frequency modulation techniques, has been witnessed in
the commercial products [23]. As shown in Fig.1.7, under the control of fre-
quency jitter [24], the switching frequency is modulated between fyn and fyvax
periodically. For example, TOPGX series are the PWM ICs with an internal fre-
quency jitter module [24], which make the switching frequency changing from
128kHz to 136kHz at a speed of 4ms.

The original discrete spectrum peaks of the switching voltage can be reduced
by using the periodic carrier frequency modulation, but are still discrete and
distributed on certain frequency band [20, 21, 25]. Because the effectiveness of
frequency modulation technique on EMI suppression is limited by the statistical
characteristics of the modulation signal [25], the modulation signal should be
non-periodic, in order to obtain a better EMI suppression effect. Consequently,
randomized and chaotic modulation have been proposed.

1.4.2 Randomized Carrier Frequency Modulation

Randomized modulation is to modulate the switching frequency with random
signal. Hence, the discrete harmonic power that usually exists in classical PWM
schemes becomes continuous and is spread over a wide frequency range, result-
ing in EMI reduction. Randomized modulation was used to modulate PWM
signal for DC/AC converters in [26] firstly. The same idea was pursued in a
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1.4 Spread-Spectrum Techniques

DC/DC converter in [27]. Thereafter, randomized modulation has been widely
studied [28-36].

q(t

- O e t

fk Tk §k+1

Figure. 1.8: The switching function g(t)

Randomized modulation schemes can be implemented in various ways [37]. As
shown in Fig.1.8, the switching scheme for the transistor in a power converter
can be described as a switching function ¢(t), which is equal to 1 when the
transistor is turned on, otherwise 0. { is the instant, at which the k-th switching
cycle starts, Ty is the duration of the k-th cycle, a; is the duration of the on-
state and ¢ is the delay to the turn-on within the cycle. Note that the duty
ratio is dy = ay/Ty. In general, ¢, dy and T can be dithered individually or
simultaneously. The commonly used methods are as follows:

1) randomized pulse position modulation (RPPM): g, changes;
2) randomized pulse width modulation (RPWM): a; changes; e = 0;

3) randomized carrier frequency modulation with variable duty cycle
(RCEMVD) [38]: Tj changes;

4) randomized carrier frequency modulation with fixed duty cycle (RCFMFD)
[27]: Ty changes; ¢; = 0.

Among the four methods, RCFMFD is regarded as the best one for EMI suppres-
sion [39, 40], because the harmonic peaks of the switching voltage can be sharply
reduced and the ripple increment of the output voltage is the smallest.

Compared with the periodic one, the randomized carrier frequency modulation
is not only more effective for EMI reduction, but also more flexible to set the
modulation range due to the variable randomness [25, 41-43]. The application
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of the randomized carrier frequency modulation, however, is restrained by its
disadvantages, such as circuit complexity, debugging difficulty, high manufac-
ture cost, and the generation of low frequency noise [42-45].

1.4.3 Chaotic Carrier Frequency Modulation

Chaotic system [46] is a deterministic system governed by the nonlinear rule,
which can generate pseudo-random signal. The system has no “noise”, random-
ness, or probabilities involved, and the apparent disorder arises from an extreme
sensitivity to initial conditions. Therefore, owing to the features of pseudo-
randomness and continuous spectrum, chaotic modulation can take place of
randomized modulation. Furthermore, many benefits are brought by making
use of CCFM. First of all, compared with the randomized one, the chaotic signal
generator is more practical, because it is lower in circuitry complexity, debug-
ging difficulty and manufacture cost [44, 45]. Besides, the utilization of CCFM
can avoid the risk of inducing low frequency noise, which exists under random-
ized modulation [42, 43]. Hence, chaotic carrier frequency modulation tech-
nique has attracted more and more interest.

Plenty of work [47-52] based on the idealized and simplified models has been
done to propose chaotic modulation schemes for EMI reduction, and even more,
some of the latest research has proposed CCFM solutions to reduce EMI in a few
of commercial power supplies [53-57]. As a result, it has been proven, over and
over again, that CCFM is a superior technique for EMI suppression. For ex-
ample, the spectra of the switching voltage under the traditional PWM control,
periodic carrier frequency modulation and chaotic carrier frequency modula-
tion are shown in Fig.1.9 [20], respectively. The spectrum under the traditional
PWM control (see Fig.1.9a) is discrete, and then with periodic carrier frequency
modulation, the harmonic peaks are reduced but the spectrum is still discrete
(Fig.1.9b). The peaks are further spread to a continuous spectrum with CCFM
as shown in Fig.1.9c¢.

Unfortunately, the previously proposed CCFM schemes have never been seen in
commercial products, owing to the drawbacks of design complexity, high cost,
and non-universality. Actually, in practice, only a fraction of commercial power
supplies adopt the spread-spectrum technique to reduce EMI by employing the
frequency jitter based IC to modulate the switching frequency periodically. Even
only a tiny part of the dedicated PWM ICs have integrated the frequency jitter
so far, and most of PWM ICs, the “normal” ones, drive the transistor operating
at a fixed switching frequency, leading to severe EMI problem. Undoubtedly,
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1.5 Motivations and Innovations

there is a broad prospect to apply CCFM for EMI reduction in the commercial
SMPS, so that the dissertation is to propose the CCFM schemes, which can solve
the EMI problem to real products.

" &

(a) Traditional PWM control (b) PWM control with peri-(c) PWM control with chaotic
odic carrier frequency modu-carrier frequency modulation
lation

Figure. 1.9: Power spectra of the switching voltage

1.5 Motivations and Innovations

Owing to the continuous spectrum feature of chaos, chaotic carrier frequency
modulation is quite effective to reduce EMI by spreading the harmonics of the
input and output signals over the whole frequency band. The power supply
with chaotic modulation, however, has not yet been seen on the market, so that
the thesis is concerned with the application of chaos to suppress EMI in com-
mercial SMPSs.

Real products, which have to satisfy the demands of low cost, system stabil-
ity and low circuit complexity, always make use of an IC, instead of a circuit
composed of separate components, to control the system. Hence, the key point
to implement CCFM on commercial SMPS is to integrate chaotic modulation
into PWM IC. A PWM IC can be divided into a fixed switching frequency IC
and a switching frequency programmable IC. In the fixed switching frequency
IC, the clock circuit, namely the oscillator, which is to generate the clock signal
determining the switching frequency, is completely integrated inside IC, and
the switching frequency can’t be modulated by the peripheral circuit any more.
Conversely, for the frequency programmable IC, the switching frequency can
be set by an external timing capacitor. The timing capacitor is charged and dis-
charged periodically and its charging time plus discharging time are defined as

11
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a switching period. Consequently, once a chaotic modulation signal dithers the
charging current of the timing capacitor, CCFM is realized.

AC Input Rectifier Switch Transformer Rectifier DC Output

o= Hre Hz H e H=

Primary Secondary

Ground Ground
PYWM Diver Optoisolator Error Amp

\'IL)D =

CORM | <& - PwM ey

- B r v

Module! |~ 1 'Zﬂr#l

S GND Lol B

Chaotic Frequency

o L

Figure. 1.10: The application of CCFM module in SMPS

Thus, as shown in Fig.1.10, a module circuit is designed to implement CCFM
on various products, for which the only requirement is that they should be con-
trolled by the frequency programmable PWM ICs without considering any other
issues such as the supply’s power range, the transistor’s working characteristics,
the converter topology, etc. The CCFM module, working on the interference
source to suppress EMI, is more efficient than the conventional EMI filtering
and electromagnetic shielding. Meanwhile, due to the features of low cost, eas-
ily debugging and universality to the SMPSs controlled by standard PWM ICs,
the module overcomes the disadvantages of the previous CCFM schemes, and
is potential in real applications. Moreover, it is a “plug-in” device, because the
module can be easily installed on an end product. Most importantly, EMI re-
duction effectiveness can be estimated and improved by mathematical analysis,
whereas most of the other techniques are to optimize EMC performance relying
on the experts’ experience.

Furthermore, analogue chaotic frequency PWM IC will be designed to facilitate
the application of chaotic modulation. An analogue chaotic driver of a PWM
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1.5 Motivations and Innovations

IC is designed to implement chaotic modulation on SMPS for EMI suppression,
and it can be used widely in all kinds of PWM ICs. As shown in Fig.1.11, by

using chaotic frequency PWM IC, CCFM will be realized without modifying the
original circuit.

it

CCFM 1C

| e TULL |

AC Input Rectifier Switch Transformer Rectifier DC Output
[:lI_l_*‘ — ‘ —|H } 2; L] | Db | |-
' i i N
Primary Secondary J_
Ground Ground
PW M Driver Optoisolator Error Amp

J=5 M| &

Figure. 1.11: Analogue chaotic frequency PWM IC controlled SMPS
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Figure. 1.12: Digital chaotic frequency PWM IC controlled SMPS
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Most of the research on frequency modulation so far is carried on analogue
SMPS, which is much more commonly used than the digital one, because the
application of digital SMPS is limited by some constraints, such as high cost and
slow response time caused by the discrete feature of the digital signal. However,
with the development of electronic technique, the problems mentioned will be
solved step by step. Moreover, owing to the features of the digital-control tech-
niques, such as programmability, robustness and options for more advanced
controls [58, 59], the digital system can satisfy the increasing demand for flex-
ibility, multi-function, high portability, and intellectuality. Therefore, the digi-
tally controlled SMPS will become more and more popular, and it is significant
to develop digital chaotic frequency PWM IC for EMI suppression in digital
systems. Fig.1.12 illustrates the SMPS controlled by a digital chaotic frequency
PWM IC, whose design is based on a Field Programmable Gate Array (FPGA),
and thus the CCEM scheme on the digitally controlled SMPS can be realized
by chaotically dithering the pre-assigned value of the switching period counter.
Simulations and experiments will be conducted to verify the effectiveness of the
proposed method on EMI suppression in the digitally controlled SMPS.

Design and

parameter calculation
Design of The(pow‘er spectrum
CCFM module analysls ?f CCFM-based,|
Analogously switching converter

controlled SMPS

Design of analogue chaotic LED Drivers based
Applying CCFM in frequency PWM IC experimental research
commercial SMPSs
Digitally Design of digital chaotic
controlled SMPS frequency PWM IC

Figure. 1.13: Content of the dissertation

Hence, the dissertation is concerned with the application of CCEM to suppress
EMI in commercial power supplies, which will be implemented both in ana-
logue and digital ways, as illustrated in Fig.1.13.
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1.6 About the Dissertation

1.6 About the Dissertation

The dissertation is sketched out as following:

In chapter 1, the research background, motivations, innovations and the content
of the thesis are stated.

Chapter 2 is to propose a CCFM module with the features of low cost, simple
connection ports, flexibility, and universality, aiming for commercial applica-
tions. Because the commercial SMPSs are normally controlled by a PWM IC,
to make the module universal, it is designed to chaotically dither the switching
frequency of the frequency programmable PWM IC. To make the module prac-
ticable, the circuit complexity of the module is low with just three connection
ports, with one connecting to the timing capacitor while the others serving as
the inputs of the power supply and ground wire, respectively. Furthermore, to
improve the flexibility of the module, the switching frequency can be modulated
within a desired range by a resistor.

In chapter 3, to investigate the EMI suppression effectiveness of chaotic carrier
frequency modulation, the power spectral characteristics of a switching con-
verter with CCFM will be studied. EMI is estimated by formulating and ana-
lyzing the power spectral density of the switching signals with CCFM, and it is
found that the effectiveness on EMI reduction depends on the probability den-
sity function (PDF) and the modulation degree of the switching period. Con-
sequently, EMI reduction effectiveness of the module can be improved in the
instruction of mathematical analysis.

To investigate the feasibility of applying CCEM in SMPS, an experimental re-
search on the CCFM module, taking two LED drivers as examples, will be car-
ried out in chapter 4. Because the flyback topology is most commonly used in
medium-low power SMPS, a flyback converter based LED driver, which is con-
trolled by a typical current control mode (CCM) IC (UC3842), is chosen as one
example. Meanwhile, the push-pull converter, which is often applied in a high
power (more than 100W) LED driver, is selected as the other example, and it
is controlled by TL494, the most commonly used IC of voltage control mode
(VCM). EMI test, output voltage ripple measurement and efficiency measure-
ment have been conducted on the CCFM-based SMPSs, leaving the influence
of chaotic modulation on the whole system performance to be further inves-
tigated. For this purpose, the tests on the electrical characteristic, the key el-
ement’s working condition and EMC performance of the LED drivers will be
carried out.
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To facilitate the design of chaos-modulated SMPS, an analogue chaotic fre-
quency PWM IC will be designed in chapter 5. Chaotic frequency oscillator
will be designed with Chua’s circuit and integrated inside the analogue PWM
IC, so that CCFM is realized without modifying the original circuit of a power
supply. A CCM IC and a VCM&CCM IC will be taken as examples, which are
used to control a flyback converter and a shift-phased full bridge converter, re-
spectively. Simulations will be done to verify the effectiveness of the proposed
method on EMI reduction.

Chapter 6 is to design a chaotic digital PWM (CDPWM) IC to reduce EMI of
the digitally controlled power supplies, which are in a rapidly growing need.
To realize CCEM on the digital systems, the emphasis is focused on the design
of a chaotic switching period counter, and Logistic map, Shift map and Tent
map are used to modulate the switching frequency of digitally controlled SMPS,
respectively. The simulations and experiments will be conducted to investigate
the effect of CCFM on the EMI reduction and output voltage ripple. Meanwhile,
the comparison of the effect under various chaotic maps will be provided, so
that the optimization decision can be made for different situations.

Chapter 7 is to summarize this dissertation, outline the contributions and point
out the further research directions.
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2 Chaotic Carrier Frequency Modulation Module

Although a lot of chaotic modulation schemes have been proposed to sup-
press EMI of SMPS, their drawbacks of design complexity, high cost, and non-
universality prevent them from being marketable. Consequently, a CCFM mod-
ule, which overcomes the mentioned disadvantages and can reduce EMI of the
commercial power supplies controlled by standard PWM ICs, will be proposed
in this chapter.

2.1 Introduction

Plenty of efforts have been given to apply chaotic carrier frequency modulation
technique for EMI suppression in SMPS, but the SMPS with chaotic modulation
has not yet been seen on the market.

On one hand, most of the work on CCFM was focused on theoretical study
[4, 25, 47-52], and utilized idealized and simplified models, instead of the more
complicated commercial products. To implement CCFM, the whole control cir-
cuit containing chaotic modulation circuit was designed with separate compo-
nents. However, to meet the requirements of low cost, system stability and low
circuit complexity, the control circuit of the actual products should be composed
of a control IC and its peripheral circuit.

Chaotic carrier +——w— UC3825
Vv, y _—I Vee

ef M — TRV VREF \
% NI vee
y 1
C.ha"?t EAO OUTB
circui = CK Ve
Ry

RT PGND [
o—o— > e cT OUTA

Power Switching
switch converter

Ramp GND
1 l Soft Start ILIM/SD%_

Sampling
circuit

Figure. 2.1: The circuit design of CCFM scheme based on PWM IC
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2 Chaotic Carrier Frequency Modulation Module

On the other hand, some of the latest research, combining chaotic modualtion
with some PWM ICs, has proposed solutions to apply CCFM in a few of com-
mercial power supplies [53-57]. Most of the schemes adopt the same PWM IC,
i.e. UC3825, and are designed in the same circuit structure. As shown in Fig.2.1,
the chaotic carrier is composed of a sampling circuit, an auxiliary circuit and a
chaos circuit. Under the control of the sampling circuit, v1, which is a chaotic
voltage generated by the chaos circuit, is conducted to the auxiliary circuit at the
beginning of each switching period. And then v, added to a reference voltage v,
is equal to v.. v, supplies a chaotic charging current to the timing capacitor Cr,
dithering the switching frequency chaotically. Those solutions can be adopted
by some commercial products, but the designed circuit is complex and only
works on the PWM ICs with a programmable resistor, lacking of universality.

In general, owing to the drawbacks of design complexity, high cost, and non-
universality, the previously proposed chaotic modulation solutions have rarely
been seen in the commercial products. A CCFM module, which overcomes the
mentioned disadvantages, is designed in this chapter to fill the gap. The module
can work on SMPSs, which are controlled by the frequency programmable PWM
ICs, and its application is so universal that it is unnecessary to consider any
other issues such as the supply’s power range, the transistor’s working char-
acteristics, the converter topology. The simulations are conducted to verify the
effectiveness of the designed circuit on EMI reduction.

2.2 Oscillator of PWM IC

Generally, the oscillator of frequency programmable PWM IC makes use of an
external timing capacitor and an external timing resistor (or only a timing ca-
pacitor) to set the switching frequency. As shown in Fig.2.2, a typical oscillator,
used in UC3842 [60], is composed of the internal circuit (inside the dotted line)
and the peripheral components, Cr and Rr. Initially, the voltage of Ct (v¢) is
zero and vc < Vg < Vypp. Then, the switch S is turned off, the oscillator is
equivalent to the circuit in Fig.2.3a, and Ct will be charged by a reference volt-
age Vggr through Rr. Once vc arrives at or exceeds Vypp, S is turned on, the
oscillator is equivalent to Fig.2.3b, and Cr begins to be discharged through a cur-
rent source Igischarge until vc < Vygy,. Thereafter, Cr is charged and discharged
circularly between V4, and Vypp.

Hence, vc exhibits the periodic sawtooth wave, and the period of the oscillator
is the summation of the charging time f. and the discharging time t4 of Ct. As
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2.2 Oscillator of PWM IC

shown in Fig.2.3, since the charging and discharging circuit are both the first
order circuit [61], f; and t4 can be calculated as

View = V
te = RTCTIHU

, 2.1)
Vupp — VREF

Vupp + RTIdischarge — VREF

td = RTCTII’I (22)

View + RTIdischarge - VREF.

Because the discharging current ljjscharge is normally much larger than the
charging one, the discharging time is approximately 0. Therefore, the oscilla-
tor’s period, namely the switching period of the converter, can be expressed
as

T =ttty =~ te. (2.3)

Figure. 2.2: Oscillator of PWM IC
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2 Chaotic Carrier Frequency Modulation Module

Idischarge

O oLl

(a) The charging circuit (b) The discharging circuit

Figure. 2.3: The charging and discharging circuit of the timing capacitor
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Figure. 2.4: The chaotic frequency oscillator

2.3 Implementation of CCFM

2.3.1 Operation Principle of CCFM

The frequency of the oscillator can be modulated by making the charging cur-
rent of Ct changing chaotically. As shown in Fig.2.4, CCEM can be implemented
by inducing a chaotic charging current to Cy, which is provided by a chaotic
voltage Ucpaos through Repaes. Consequently, as shown in Fig.2.5, the chaotic
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2.3 Implementation of CCFM

carrier can be designed as a module with three ports, which are a power port
(VDD), the ground port, and CT, the only one direct connection between the
chaotic carrier and the control circuit. As a result, it is convenient to connect the
module to the target products.

VDD

o

CCFM
module PWM IC

o1
. ichaos

Figure. 2.5: Interface of the CCFM module

2.3.2 Chua’s Circuit

Figure. 2.6: Chua’s Circuit

Chua’s circuit [62] is used to generate the chaotic voltage. Fig.2.6 illustrates
the famous Chua’s circuit, which consistes of Chua’s diode N, an inductor L,
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2 Chaotic Carrier Frequency Modulation Module

a resistor R, and the capacitors C; and C,. iy, is the current through Ng, the
voltages of C; and C; are vy, v, and iy, Vs v; satisfies the relationship shown
in Fig.2.7. Hence, Chua’s circuit can operate in three regions, namely, region
"D_41” forv; < —E , region "Dy” for —E < v; < E, and region "D;” for v; > E.
In each region, the admittance of Nr is Gy, Ga and Gy, respectively, so that iy,
can be described by three sets of state equations:

iNR = f(vl) = Gavlz —E S 01 S E/ (24)
Gpv1 + (Ga — Gp)E, v1 > E.

iNR
A
| |
| |
| |
| |
G $ :
| I E Vi o
| |
| |
| Gy
| |
D, | D, ! D,

Figure. 2.7: Typical iy, -v1 characteristics of Chua’s diode

The practical circuit of Ny is shown in Fig.2.8, where Vpp is the power supply
of the operational amplifiers U; and Uj, and R;-R5 are the resistors. Hence, G,,
Gyp, and E are expressed as

Ry Rs
Ga=—5F 55
RiRs  R4Rg
Gy= R 2.5)
Rs  R4Re
E_ VDR
Ri+Ry
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220
*— M —
Re VDD

VDD

N
U>-e
vd

220

22k Ry

VEE

Figure. 2.8: The schematic of Chua’s diode

(a) Equilibrium, R = 2.1kQ (b) Period-1 limit cycle, R = 2.03kQ)

R

(e) Spiral chaos, R = 1.98kQ) (f) Double-scroll chaos, R = 1.9k

Figure. 2.9: Waveforms and the phase portraits of v; — v,

Then Chua’s circuit is described as
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2 Chaotic Carrier Frequency Modulation Module

d‘()l 1

ar a[(vz —0v1)G — f(v1)],

dU2 1

B — i (2.6)
i CZ[(01 v2)G + i3],

dis 1

R A

here G = —.
where R

As L = 23mH, C; = 100nF, and C, = 10nF, v1 and v, exhibit the waveforms of
Fig.2.9, and the phase portraits of v; — v, show that Chua’s circuit works under
various dynamical behaviors with different values of R.

Chaotic voltage

Chua’s circuit Amplitude limiting circuit

CCFM module

1
|
|
|
Chaotic voltagein certainrange |
|
|
|

Currentlimiting resistor

Chaotic charging current

Timing capacitor

Figure. 2.10: The diagram of the CCFM module

2.3.3 CCFM Module

Because Chua’s circuit only outputs the chaotic voltage, the generated chaotic
voltage should be processed further to get the desired chaotic current. There-
fore, the chaotic carrier is designed as Fig.2.10, which is composed of Chua’s cir-
cuit, an amplitude-limiting circuit and a current-limiting resistor. The schematic
of the CCFM module is given by Fig.2.11. The amplitude-limiting circuit is
composed of Ri-R4 and the amplifier U;, and Ry is the current-limiting re-
sistor. First of all, a chaotic voltage, v, is generated by Chua’s circuit, and
vy € [0, VDD]. Second, because the chaotic voltage for charging the timing ca-
pacitor Ct, namely vcnq0s, should be larger than the high threshold voltage of
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2.3 Implementation of CCFM

Ct, Vupp, the amplitude-limiting circuit linearlly transforms v; to chaes. Thus
Uchaos Can be expressed as

(R3 + R4)Ryv7

= 2.7
Uchaos (Rl + Rz)Rg, ( )

By adjusting Rq-R4, Uchaos is set to above Vypp, and thus provides a chaotic
charging current to Cy through R;.

The amplitude limiting circuit
AN R CT
0 U > — W
/ = The current
RS R R, L :
Rs limiting resistor
Ry 220
*+——/ W
& VDD

U; >-¢
/ i
Ry 220
2.2k
Chua’ s circuit R, 4% 1k GND
e © I||

Figure. 2.11: The schematic of the CCFM module

Consequently, once the module shown in Fig.2.11 is used to drive the oscillator
of PWM IC (see Fig.2.4), the k-th switching period can be expressed as
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2 Chaotic Carrier Frequency Modulation Module

. RIVREF + RTUchaos

V,
RtRy low Rt + R
Tic(Vehaoss R1) = te, (Vchaoss R1) = Crln T . (28
k( chaos I) Ck( chaos I) RT+RI T } RIVREF+RTUchaos ( )
PP Rt + Rp

The switching frequency of power supplies is also related to v.p,0s and Ry, and
can be calculated by

1 1
f(vchaosr RI) = T

= . (2.9)
k (Uchaosr RI) tck (Uchaosr RI)

The frequency of the oscillator can be fixed, periodically modulated and chaot-
ically modulated respectively, corresponding to that v .0 is constant, periodic
and chaotic.

Denote vpyin and vmax as the minimum and maximum of v,,,s- Then the switch-
ing frequency is minimized to f(Umin, R1) and maximized to f(vmax, R), and its
range from the minimum to the maximum is AF = f(vmax, R1) — f(Umin, R1)-
Therefore, % is the modulation ratio of the oscillator frequency, defined by

g . f(vmax/ RI) - f(vmin/ RI)
F N f(vmin/ RI)

(2.10)

Hence, it is deduced that the modulation range of the switching frequency can
be set by Rj.

Here, take the oscillator of UC3842 as an example, and assume Viypp = 2.8V,
Vlow = 1.2V, VREF = 5V, RT = 30kQ, CT = 1nF, and 4.5V < OUchaos < 5.5V.
% with different values of Ry is shown in Fig.2.12, and it is observed that ATF

becomes larger as R; decreasing.

There are different oscillators in various frequency programmable PWM ICs,
of which, however, almost all adopt the timing capacitor to set the switching
frequency. They are to circularly charge and discharge the timing capacitor, and
the sum of its charging and discharging time is the switching frequency. The
only major difference for the oscillators is the ultilization of various charging
circuits. Some ICs charge the timing capacitor by a reference voltage through
an external resistor (see Fig.2.2), and some [63-65] do by an internal current
source. Nevertheless, the module can be attached to almost all the frequency
programmable PWM ICs to dither the switching frequency chaotically.
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01f

AFF

0.08f

0.06F

0.04F

0s 1 15 2 25
R/ w10

Figure. 2.12: The oscillator frequency modulation range vs R

VDD
VDD UC3842
R
L Refv Vp
Osc
—] Vib Vout|—
Cr

CCFM Comp
module — Sense. 4

Figure. 2.13: The CCFM module used to drive UC3842

2.4 Simulations

2.4.1 Implementation of UC3842-based CCFM

The CCFM module shown in Fig.2.11 is used to drive UC3842, whose oscillator
is the same as that in Fig.2.2 and makes use of a timing capacitor (Ct) and a
timing resistor (Rt) to set the switching frequency. As illustrated in Fig.2.13,
the charging current of Cr is dithered by the module, resulting in the switching
frequency modulated chaotically.

Both the periodic and chaotic carrier frequency modulations are to be realized.
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2 Chaotic Carrier Frequency Modulation Module

The spectra of the timing capacitor’s voltage are given by Fig.2.14, where the
spectrum with fixed frequency is drawn in red and otherwise in blue. It is ob-
vious that there are harmonic peaks in the spectrum as the switching frequency
is fixed, resulting in severe EMI. As shown in Fig.2.14a, under periodic modula-
tion, the harmonic peaks are spread, but still concentrated on certain frequency
band. The harmonic peaks under CCFM (see Fig.2.14b) are further spread and
become continuous, indicating that the spread-spectrum effect of chaotic mod-
ulation is much better than that of periodic modulation.

Spectrum(v,,,..)/ dB

&0

60 +

40

20

o

¢] 50 100 150 200 250 300
Frequency/kHz

(a) Blue: periodic carrier frequency modulation, red: fixed frequency

Spectrum(v,, ..}/ dB

&0

60

40

S M

] 50 100 150 200 250 300
Frequency/kHz

(b) Blue: chaotic carrier frequency modulation, red: fixed frequency

Figure. 2.14: Spectra of the switching voltage

The spectra of the switching voltage under chaotic modulation with various Ry
are given by Fig.2.15, and Tab.2.1 shows the detailed reduction values of the
harmonic peak. It is remarked that the harmonic peaks, especially those on
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2.4 Simulations

the high-frequency band, are reduced more obviously with the decrease of Ry,
resulting in EMI suppression.

GSpectru M{Veyiter) | dB

GGII X |

1] 100 200 300 400 500
Frequency/kHz

(a) Ry = 140kQ) (green: with CCFM, red: without CCFM)

Spect <witen) | AB
 Spectium(vs, )

N |

60

1. I I l | |

0 100 200 300 400 500
Frequency/kHz

(b) Ry = 100k} (green: with CCFM, red: without CCFM)

SGSpectru M(Vayier) | dB

LU
4 ! | |
2
1y
20
i} 100 200 300 400 500

Frequency/kHz
(¢) Ry = 60kQ) (green: with CCFM, red: without CCFM)

Figure. 2.15: Spectra of the switching voltage driven by UC3842
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2 Chaotic Carrier Frequency Modulation Module

Table 2.1: The harmonics peak reduction of the switching voltage driven by
uC3842

Harmonic order 1 2 3 4 5 6 7 8 9 |10
Ri=140kQ| 0| 1|2 |3 |3|5|5|8]|7]|38
Reduction(dB) | R;=100kQ | 1 | 1 | 2 | 3|5 |7 |7 |9 ]9 |10
Ri=60kQ) | 2 | 6 | 8| 2|10]10| 6 |11|12]13
R U; UCC3895 VDD
.
VDD RT VDD |
T L 1fi|_._' CcT  ouTA[—
C.| — sync outBf
CCFEM I | rawP outc|
_| EAouToOuTD[__
module | eap REF [
—_1 EAN GND
l 1 cs aps [V
1 ss
PGND

Figure. 2.16: The CCFM module used to drive UCC3895

VDD
T U; NCL 30051
c| v HBOOST]—
CCFM 0sc HDRVHI |
module GND HVS |
| VREF  HDRvLO |_
l | prB PDRV | _
| pPcs pGN\D | VDD
1 pPzcp vee _|
| PconNTROL PCT|_

Figure. 2.17: The CCFM module used to drive NCL30051

2.4.2 Implementation of UCC3895 and NCL30001 based CCFM

The CCFM module can work on all the frequency programmable PWM ICs,
which adopt the timing capacitor to set the oscillator frequency. For example,
the module is used to drive UCC3895 [66], a phase-shift full bridge PWM IC,
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2.4 Simulations

which makes use of a different oscillator from that of UC3842. As shown in
Fig.2.16, for UCC3895, the timing capacitor Cr is charged by an internal current
which is determined by a resistor connected with the RT pin. As the CCFM
module is linked to Cr, both the internal current and the extra chaotic current
charge the capacitor, so that the switching frequency is modulated chaotically.
Further more, the modulation range of the switching frequency can be set by
adjusting the current limiting resistor R;. The spectra of the switching voltage
under CCFM with various values of Ry are given by Fig.2.18, and the reduction
of the harmonic peak is given by Tab.2.2. The simulations show that the module
is effective to reduce EMI of the UCC3895-based SMPS.

Table 2.2: The harmonics peak reduction of the switch voltage driven by
UCC3895

Harmonic order 1 2 3 4 5 6 7 8 9 |10

Ry = 200kQ)
Reduction (dB) | R; = 150k

o | O | O
—_
o
—
—
N
(e8]
S~
[6;]
[o)}

Ry = 80kQ)

Table 2.3: The harmonics peak reduction of the switch voltage driven by
NCL30051

Harmonic order 1123|456 |7]|8]9 /10
Ri=200kQY | 0 | 0| 0|0 |2 |3 |4]| 4] 4|4

Reduction(dB) [ R;=150kQ | 0 | 2 | 1 |4 |6 | 7 |8 |8 |7 |7
Ri=80kQ | 1| 4|6 |6 101012 12|12 |12

As another example, the module is employed to drive NCL30051 [64] (see
Fig.2.17), which uses only one timing capacitor to set the switching frequency.
The spectra of the switching voltage and the reduction of the harmonic peak,
provided in Fig.2.18 and Tab.2.2, vertify that the proposed module can work on
various PWM ICs to reduce EMI.
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Spectrum(Vsyien) / dB
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30
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0 100 200 300 400 500
Frequency/kHz

(a) Ry = 200k} (green: with CCFM, red: without CCFM)

Spectrum({vg, ) [ dB

40
30
20
107

(] 100 0 00 400 500
Frequency/kHz

(b) Ry = 150kQ) (green: with CCFM, red: without CCFM)

Spectrum(v, i) [ dB
40
30
prat )

2 00
Frequency/kHz

(c) Ry = 80kQ) (green: with CCFM, red: without CCFM)

Figure. 2.18: Spectra of the switching voltage driven by UCC3895
2.5 Summary

This chapter is concerned with a chaotic modulation module, which works on
standard PWM IC to implement CCFM on commercial SMPSs. The module,
containing three connection ports, is composed of the standard components. It
can set the switching frequency modulation range with an adjustable resistor,
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2.5 Summary

and is suit to all the frequency programmable PWM ICs. In terms of the simu-
lations, the CCFM module is effective to spread the spectrum of the switching
voltage of SMPS. As a result, the module, with the features of low cost, low cir-
cuit complexity, flexibility and universality, can be well applied in real products
for EMI suppression.

Spectrum(v., i)/ dB
40
U f
| I I L | !
!}
10
y
-1
-2
-30, 100 200 300 i e
Frequency/kHz

(a) R; = 200kQ) (green: with CCFM, red: without CCFM)

Spectrum(vey i) / dB

Frequency/kHz
(b) Ry = 150k} (green: with CCFM, red: without CCFM)

Spectrum(Vey i) / dB
40 I
U 4
| | ! | '
A}
101
o
-1
-2
-30, 100 200 300 400 soo

Frequency/kHz
(¢) Ry = 80kQ) (green: with CCFM, red: without CCFM)

Figure. 2.19: Spectra of the switching voltage driven by NCL30051
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3 Power Spectral Characteristics of CCFM-based
Switching Converters

Since EMI can be estimated by measuring the PSD of the switching signal in the
converter, the power spectral characteristics of the chaotic frequency PWM sig-
nal will be studied in this chapter to investigate the effectiveness of the proposed
CCFM module on EMI suppression of SMPS. As a result, it is revealed that the
effectiveness of EMI reduction depends on the PDF and the randomness, called
modulation degree, of the switching period, which both can be set by adjusting
certain parameters of the module.

3.1 Introduction

The power spectral density describes how the power of a signal or time series
is distributed with frequency [4], so that PSD of the PWM signal (namely the
switching sequence or pulse) that controls the switching actions of the transistor
of power supplies, can be used to estimate EMI of SMPS [67].

The power spectral characteristics of the CCFM-based switching converter has
been studied in [18, 43, 55, 68, 69], which were normally based on the basic theo-
retical analysis for the randomized controlled switching converter described in
[67]. Based on the previous research, the mathematical analysis on the PSD of
switching pulses will be carried out to verify the effectiveness of the designed
module on EMI reduction.

Firstly, the probability density function (PDF) of the chaotically changed switch-
ing period will be discussed in detail. It is found that the modulated switching
period follows different probability distributions, when Chua’s circuit operates
in various state. Secondly, by analyzing the power spectral characteristics of
the CCFM-based switching signal, it is revealed that the modulation degree and
PDF of the switching period determine the effectiveness of chaotic modulation
on EMI suppression. Coincided with the calculation results, the simulations
show that increasing the modulation degree or using the uniform distribution
will improve the effectiveness of EMI reduction. The study in this chapter pro-
vides a guideline for the product design and can be used to optimize the circuit
parameters of the CCFM module.
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Figure. 3.1: Histogram of the switching period
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3 Power Spectral Characteristics of CCFM-based Switching Converters

3.2 Statistical Characteristics of Switching Period

In [18, 43, 70], the chaotic signal generated by Chua’s circuit was used to modu-
late the switching period, which was treated as a triangular distributed stochas-
tic variable. However, it is observed that the switching period obeys different
distributions, when Chua’s circuit works under different conditions.

A p(T)

Ty

0 >
E[T,](1-0.5%) E[T]  E[T(1+0.5%)

(a) Inverted triangle distribution

4 (T
"

Tk
O B701-0.5%) E[TL(140.5%)

(b) Uniform distribution

A (T
i

T
0

E[T(1-05%) E[T]  E[T(1+0.5%)
(c) Triangle distribution

Figure. 3.2: Probability distributions of the switching period

As the CCFM module discussed in Chapter 2 is employed to modulate the
switching frequency, the statistical histograms of the k-th switching period Tj
with different values of R (see Fig.2.6) are illustrated as Fig.3.1. As R = 1.988k(},
the values are distributed on the both sides. With the decrease of R, the values
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3.2 Statistical Characteristics of Switching Period

are gradually distributed towards the mean value. In this dissertation, Tj is re-
garded to follow the inverted triangle, the uniform and the triangle distribution,
respectively.

Therefore, the PDFs of Ty, called p(Ty), are illustrated Fig.3.2a, Fig.3.2b and
Fig.3.2c, where E [e] is the expectation operator, and the maximum of Ty, namely
Tmax, is expressed as E [Ty] (1 + R), and the minimum of Ty, namely Tpin, is ex-
pressed as E [Ty (1 — ). Here, to study the effect of the variation range of Ty on
w, is defined
as the modulation degree (called the randomness in [43]) of T;. As Tj obeys
inverted triangle distribution,

the spread-spectrum performance, t, which is equal to

4
p(T}) = |@(Tk —E[T])|, E[Ti](1-05R) < Tp < E[Ti] (1+0.5%),
0, otherwise.
@3.1)

While T}, follows uniform distribution,

E[T{ (1—05R) < Ty < E[Tid] (14 0.5R),

1
p(Ti) = RE[T] (3.2)

0, otherwise.

As Ty obeys triangle distribution,

p(Tk) — |%(Tk —E [Tk] + 05?}%)‘, E [Tk] (1 — 05%) <Ty<E [Tk] (1 + 05%),

0, otherwise.
(3.3)

As using the designed CCFM module (Fig.2.11) to modulate switching period,
its modulation degree is adjustable, because the variation range of the switching
period can be set by R; (see Equ.(2.9)). Hence, ;& can be expressed as

Tk(vmin/ RI) - Tk(vmax/ RI)
Tk(vmin/ RI) + Tk(vmaXr RI).

R =2 (3.4)

Furthermore, R vs Ry can be described as Fig.3.3.
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Figure. 3.3: R vs Ry

3.3 Power Spectrum of Switching Signal with Chaotic Frequency

gt
T

DT}

Tk

Figure. 3.4: Switching function

Fig.3.4 shows the waveform of the switching function g(#). g(t) has two discrete
levels, which is 1 as the switch is on, and 0 as the switch is off. The k-th switching
cycle gx(t — tx) can be expressed as

1, t <t< DT+,
t—t) = 3.5
8k( K { 0, otherwise, (3.5

where D is the duty cycle, DT is the duration of on-state, and f;, is the beginning
time of the k-th switching period.
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3.3 Power Spectrum of Switching Signal with Chaotic Frequency

Hence, g(t) can be expressed as

= lim ng (t — t). (3.6)

N—)oo

Then, the autocorrelation of g(t) [43] is defined as

Rg(T) {Tlﬂ?ﬂ/g (F+0)d

By using Wiener-Khintchine theorem [71], the PSD of g(t), namely S¢(f), is the
fourier transform of its autocorrelation, so it can be expressed by

(3.7)

[e9]

Se(f) = /Rg(r)e_fZ”deT. (3.8

—00

To follow the methodology in [72-74], as Re(e) is the real part of the operation
and (e)* is the complex conjugate of the operation, S¢(f) can be described as

E |G(f)e™Tk| E[G*
sg<f>,gfm{E[|c<f>|2]+2Re( | (f lE[eiz]nﬁE] v ”)}, (9)

where

DTy .
G = [ et = nif(e—ﬂ”f DT 1), (3.10)

For the simplification of the calculation, it is assumed that DE [T] is constant
and E [Ty] = 1, and then G(f) [75] can be rewritten as

D .
GUf) = [t = ool PP ), (3.11)
0

1+%
As P(f) = / p(Ti)e? fTkdTy, Sq(f) can be rewritten as

1—

Nl

sin?(7tfD)

Sg(f)* (7Tf)

(3.12)

{1 +2Re <P<f>>} .

P(f)
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PSD/dB

PSCvdBE

W

S i
e

PsDidB

(c) Triangle distribution

Figure. 3.5: PSDs of chaotic frequency PWM signal

3.4 Evaluation of EMI Reduction

According to Equ.(3.12), it is remarked that S¢(f) is determined by P(f), which
is related to the PDF and the modulation degree of the switching period.
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3.4 Evaluation of EMI Reduction

(a) Inverted triangle distribution,(b) Uniform distribution, D =(c) Triangle distribution, D =
D=01 0.1 0.1

il m

(d) Inverted triangle distribution,(e) Uniform distribution, D =(f) Triangle distribution, D =
D =015 0.15 0.15

‘\nw Jl“u.”l

e
—

(g) Inverted triangle distribution,(h) Uniform distribution, D =(i) Triangle distribution, D =
D =025 0.25 0.25

Figure. 3.6: PSDs of chaotic frequency PWM signal

3.4.1 Effect of Switching Period’s Modulation Degree on EMI Reduction

Fig.3.5 shows the calculated PSDs of g(t), as Ty obeys different distributions
with various modulation degree. Under the traditional PWM, there are power
spectrum peaks (the blue point) at the switching frequency and its multiplica-
tions, resulting in a discrete spectrum. Those peaks, becoming continuous, are
spread over a wide frequency band under CCFM.

The detailed PSDs of g(t) with i are given by Fig.3.6. It is obvious that the
reduction of spectrum peak becomes larger and larger as i increases. However,
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3 Power Spectral Characteristics of CCFM-based Switching Converters

itis not right to set a large randomness in practice, because the large randomness
leads to the large output ripple [18].

Spectrum(v,) / dB Spectrumiv,) / dB Spectrumiwv,) / dB
30 30 30
oH-H! ot-Hi o
| I | I I o |
p [T I I | Wl
5 2 5
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Frequency/kHz Frequency/kHz

(a) Inverted triangle distribution,(b) Inverted triangle distribution,(c) Inverted triangle distribution,

R=01 R =0.06 R =0.03
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30 ae
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]. 1 |].
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i I
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Frequency/kHz
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(g) Triangle distribution, & = 0.1(h) Triangle distribution, R =(i) Triangle distribution, ® = 0.03
0.06

Figure. 3.7: As D = 0.1, spectra of the switching voltage (green: with CCFM,
red: without CCFM)

3.4.2 Effect of Switching Period’s PDF on EMI Reduction

As Ty obeys the triangle distribution, the effectiveness of EMI reduction is worst.
The overall effects under uniform distribution and under inverted triangle dis-
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3.5 Simulations

tribution are equal roughly. However, there are extra power spectrum ledges
on the high frequency band under inverted triangle distribution, resulting in a
poorer result compared with that under uniform distribution.

3.5 Simulations

A flyback converter controlled by UC3842 is used as the test bed, and its switch-
ing period is modulated by the CCFM module. The spectra of the switching
voltage are given by Fig.3.7 (D = 0.1) and Fig.3.8 (D = 0.25), and the reduction
of the harmonic peak is shown in Tab.3.1. To make a comparison, the spectrum
under the traditional PWM is drawn in red, and the spectrum under CCFM in
green. The reduction of the harmonic peak becomes larger with the increase of
the modulation degree of the switching period. The best effect of EMI suppres-
sion is achieved as using the uniform distribution, while the worst is obtained
as the switching period follows the triangle distribution. The simulation results
accord with the mathematical analysis in substance.

Table 3.1: The harmonics peak reduction of the switching voltage

Harmonid D=01R= D=025%N=
order Inverted triangle Uniform Triangle Inverted triangle Uniform Triangle
distribution distribution distribution distribution distribution distribution
0.03| 0.06| 0.1 0.03| 0.06| 0.1 | 0.03] 0.06] 0.1 | 0.03| 0.06| 0.1 0.03| 0.06| 0.1 | 0.03] 0.06| 0.1
1 0 -1 2 1 0 7 0 -1 2 1 1 2 3 2 2 0 0 -2
2 1 2 7 -1 |5 |10 | -1 1| 3 0 0 3 0 0 5 0 0 0
3 2 10 | 12 2 7 13 2 1 6 2 3 1 3 3 2 0 0 -2
4 3 12 | 14 4 14 | 15 3 4 8 2 5 12 3 10 | 12 1 2 1
5 4 10 | 15 7 12 | 16 3 4 8 3 0 3 3 0 2 -2 1 0
6 6 | 12 | 16 9 |13 18 | 4 3 8 2 9 | 14 5 11|15 ] 1 5 4
7 8 | 13 | 19 12 117 | 19 | 4 5110 2 0 5 3 2 7 0 2 0
8 11 14 | 20 14 | 15 | 20 4 7 11 5 12 | 18 12 | 14 | 20 4 8 5
9 11 16 | 19 13 | 16 | 20 4 8 11 1 3 7 4 0 6 0 4 0
10 12 | 17 | 18 13 119 | 20 5 8 10 9 11 | 18 13| 14 | 19 4 10 8
3.6 Summary

By analyzing the power spectral characteristics of the CCFM-based switching
converter, it is found that the effectiveness of chaotic modualtion on EMI reduc-
tion is related to the PDF and the modulation degree of the switching period.
According to the calculations and simulations, a superior effectiveness of EMI
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3 Power Spectral Characteristics of CCFM-based Switching Converters

reduction is obtained by increasing the modulation degree and using the uni-
form distribution. As the module proposed in Chapter 2 is used to modulate
the switching frequency, both the PDF and the modulation degree of the switch-
ing period are adjustable via certain circuit parameters. Above all, the mathe-
matic analysis, by which EMI reduction effect can be estimated and improved,
provides a guideline for the design of the practical CCFM module.
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Figure. 3.8: As D = 0.25, spectra of the switching voltage (green: with CCFM,
red: without CCFM)
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4 Application of CCFM in LED Drivers

The commercial SMPS has to meet some basic requirements, which include 1)
providing stable voltage or current for the output load, 2) satisfying EMC stan-
dards and 3) still operating stably after a long time of work. Until now, a lot of
experimental research has been done on 1) and 2). Nevertheless, few work was
done on 3) to investigate the impact of CCFM on the operating condition of the
whole system. Therefore, to investigate the influence of the CCFM module on
the whole system performance, the tests on the electrical characteristic, working
condition and EMC performance of SMPS are carried out in this chapter. The ex-
perimental research verifies that the application of chaotic modulation in SMPS
can reduce EMI without weakening the system performance.

4.1 Introduction

A lot of experimental research has been done to study the effect of chaotic mod-
ulation on the performance of SMPS. For example, the spectra of the switch-
ing voltage [25, 76, 77] and the conducted interference [51] with and without
CCEFM are compared to verify the effectiveness of chaotic modulation on EMI
reduction. Furthermore, the comparison of the output voltage ripple with and
without CCEFM, which has been done in [40, 55, 56], indicates that the output rip-
ple is increased slightly by chaotic modulation. More measurements, including
the output characteristics, conducted interference, and input output power effi-
ciency have been made in [45], which show that chaotic modulation technique
is not only effective to suppress EMI but also of little influence on the overall
electrical characteristics of the system.

However, whether chaotic modulation affects the operating condition of the sys-
tem or not remains a question. The working condition of power supply is de-
termined by the key elements, namely the transistor and the high-frequency
transformer, which usually heat up as operating. Once their temperatures ex-
ceed the safe range, they may be out of order, resulting in a breakdown system.
Hence, it is necessary to make the thermal test of the key elements, which has
never been done before.

In this chapter, the feasibility of applying CCFM in SMPS will be investigated.
The CCFM module is manufactured and applied in two typical LED drivers,
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4 Application of CCFM in LED Drivers

CCM IC (UC3842) controlled flyback converter (20W) and VCM IC (TL494) con-
trolled push-pull converter (150W). The tests on EMC, electrical characteristics
and working condition will be done on the two power supplies, respectively.

According to the experimental research, the application of the CCFM module is
effective to reduce the conducted interference and of little impact on the overall
performance of power supplies. The experiments are significant for the marke-
tization of the proposed module.
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Figure. 4.1: The schematic of chaotic carrier frequency modulation module
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4.2 Implementation of CCFM Module

'D[U_O_Qg.ﬂcaoo )

(oLl el ov e b WL

GND
VCC(12V)

Output: chaotic

signal Setting PDF of the switching period

Setting the modulation degree

Figure. 4.3: The entity of the CCFM module

4.2 Implementation of CCFM Module

The schematic of the CCFM module is given by Fig.4.1, where the inductor in
Chua’s circuit is replaced by the circuit composed of C;, Ry, R3, R4, Rs, Usp
and Uja. Therein, CON1, the interface connected to PWM IC, has three pins,
which are the power supply input port (the pin 1), ground port (the pin 2) and
the pin 3 providing the chaotic charging current for the timing capacitor. Then,
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4 Application of CCFM in LED Drivers

the printed circuit board (PCB), which is only 2.5cm long and 3.5cm wide, is
designed as Fig.4.2. As shown in Fig.4.3, the entity circuit is composed of the
standard components, and makes use of two adjustable resistors to set the mod-
ulation degree and the PDF of the switching frequency.

The rectifying circuit 5 D,
- : . The flyback converter

Rz

Vsamp

R4 Q. :
C; | UC 3842 —’W—‘ H | R
L Vfbs 1 sene W
Cs = Rz “Gn CGL Rs R i} Vi2
93
Co qu:__
PWM control circuit = = o I
|—|| i
R3: C: D, The feedback circuit
IVCC
Rs Ci4
The power supply
to PWM IC

Figure. 4.4: The schematic of the flyback converter based LED driver

4.3 Flyback Converter-Based LED Driver

4.3.1 Working Principle

Due to the feature of low cost, the flyback converter is a mostly used choice in
medium-low power (no more than 100W) supplies, so that a flyback based LED
driver is chosen as an example. The LED driver, supplied by AC power of 220V
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4.3 Flyback Converter-Based LED Driver

and 50Hz, is a constant current source, of which the output current is 1A and
the maximum rated power is 20W.

Supply regulating circuit of
CCFM module

Flyback converter

CCFM module

Figure. 4.6: Test environment
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4 Application of CCFM in LED Drivers

MNH | I :

....m,f\"iJ i .

) Without CCFM

MHz

AVE: —

(b) With CCFM

Figure. 4.7: The EMI measurement results (blue: the peak value, pink: the aver-
age)

As shown in Fig.4.4, the rectifying circuit converts the alternating current (AC)
input power to the direct current (DC) voltage of about 300V, which is periodi-
cally conducted to the primary side of TX;. When the transistor Q; is turned on
by PWM control circuit, the primary of the transformer is directly connected to
the input voltage source. The primary current and magnetic flux in the trans-
former increase, storing energy in the transformer. The voltage induced in the
secondary winding is negative, so the diode Dy with a reverse voltage is off, and
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4.3 Flyback Converter-Based LED Driver

thus the capacitor C; supplies energy to the load. When the transistor is turned
off, the primary current and magnetic flux drop. The secondary voltage is pos-
itive, turning on Dg, allowing current to flow from the transformer. The energy
through the transformer core recharges C; and supplies the load. The output
current is sampled, processed, sent to the PWM IC (UC3842) by the feedback
circuit, and regulated to keep constant.

The CCFM module is attached to the LED driver, and the entity circuit is shown
in Fig.4.5. Once a simple power processing circuit is attached to the module for
its stable power supplying, CCFM is implemented. What follows is to investi-
gate the influence of chaotic modualtion to electrical characteristics, EMC and
the key elements working temperature of the LED driver. Except the EMC test
which should be done in specific situation, the tests are done in the environment
shown in Fig.4.6, a imitation of the real work environment.

4.3.2 EMI Test

The conducted interference of the LED driver is tested with Rohde&Schwarz
instrument according to the standard of CISPR PUB.22 CLASS B. As shown in
Fig.4.7, the upper red line is the quasi-peak (QP) limiting curve, and the green
is the average value (AV) limiting curve.

By comparing Fig.4.7a with Fig.4.7b, it is obvious that both QP and AV peaks
existing under the traditional PWM control are spread by chaotic modulation.

4.3.3 Electrical Characteristics Measurements

Firstly, the basic requirement for power supply is to provide the stable output
voltage or output current for the load, so that the output voltage ripple is mea-
sured. Owing to the utilization of the linear load, the voltage ripple measure-
ment can replace the current one, and is tested as the power operates with the
max rate output voltage of 20V. As the LED driver works under the traditional
PWM control, the ripple is 68mV. The ripple with chaotic modulation, increas-
ing slightly, is 97mV, 78mV and 69mV, when R; is 100k(2, 150kQ2 and 200k,
respectively. The ripple increment becomes larger as the modulation degree
(Ry) decreases, but is still acceptable.

Secondly, the waveform and the spectrum of the switching voltage are tested.
On one hand, the transistor, working at the turned-off state, is needed to endure
the huge switching voltage, which is not allowed to exceed the rating to make
sure the transistor not damaged. Therefore, its waveform is measured to detect
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4 Application of CCFM in LED Drivers

whether there is an overvoltage on the transistor or not. On the other hand, be-
cause the switching action of the transistor is the underlying cause of EMI, the
spectrum of the switching voltage is measured to observe the spread-spectrum
effectiveness of the CCFM module. Hence, as shown in Fig.4.8, there is no obvi-
ous distinction between the switching voltage waveform with fixed frequency
and that with chaotic frequency. Its harmonics peaks existing under the tradi-
tional PWM control are spread by chaotic modulation, and the EMI suppression
effect is improved with a smaller R;.

RIGOL T°D - 4 F B . 3@ ] STOP .

T

F B 9600

CHi= 18.@. Time [l CH1=  1@,.60

(a) Without CCFM (b) With CCFM, Ry = 200k}

Ea G.e00) BRIGIL STOP 4 F -

T

CH1= 1@.@l Time Bus -2 CHi= 1@.@l Time S8 .AEUS

(c) With CCFM, Ry = 150kQ) (d) With CCFM, R; = 100kQ)

Figure. 4.8: Waveforms and spectra of the switching voltage

Finally, the other indexes are given by Tab.4.1, while tests on CCFM-based
power supply are carried out as Ry = 100kQ). The tests of the output stability
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4.3 Flyback Converter-Based LED Driver

indices, including input regulation rate, the load regulation rate and the output
voltage star-up waveform, show that the power supply with CCFM can supply
the load as stably as that without CCFM. The tests of power factor and the in-
put and output power ratio are to survey the working efficiency of the SMPS.
Because the LED driver supplies not only the original load but also the extra
CCFM module, the supply’s efficiency is impaired very slightly.

Table 4.1: The electrical characteristics measurments

Index Parameter Without CCFM With CCEM
The Input voltage (V) 180 220 260 180 220 260
voltage Input current (A) 0.208 0.189 0.179 0.215 0.193 0.181
regulation | Output voltage (V) 20 20 20 20 20 20
Output current (A) 1 ] 1 1 1 1
Power factor Power factor 0.65 0.61 158 0.64 0.6 0.57
Input Power (W) 24.8 254 26.5 25.1 25.6 26.8
Efficiency (%)  Output Power 20 20 20 20 20 20
Efficiency (%) 80.6 78.7 754 79.7 78.1 74.6
Load Resistor load () 20 15 10 20 15 10
regulation | Output current (A) 1 1 1 1 1 1
Waveform of
Start-up
output voltage

4.3.4 Test of Key Elements’ Temperature

The transistor and high-frequency transformer, the necessary elements for
SMPS, always work with a large current, resulting in the thermal problem. On
one hand, the high-frequency transformer should work below 80°C, otherwise
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4 Application of CCFM in LED Drivers

its saturation magnetic flux density falls to 70% of that at the normal tempera-
ture. It falls even more as the temperature increases, and thus the current and
the power consumption of the transformer will rise sharply. Consequently, the
overheat problem is exacerbated, resulting in a vicious circle, until the around
elements are damaged by a huge current. On the other hand, the overheat of
the transistor may impact the reliability of the switching action, leading to a
breakdown system.
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Figure. 4.9: The thermal curve of the transformer
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Figure. 4.10: The thermal curve of the transistor
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4.3 Flyback Converter-Based LED Driver

Hence, it is necessary to perform thermal tests on the transistor and high-
frequency transformer of SMPS. The thermal curves under the two situations
given by Fig.4.9 show that the transformer’s temperature under CCFM arises at
a faster speed, and is about 4°C higher than that with fixed frequency. However,
it is still within the safe range. As shown in Fig.4.10, the comparison of the tran-
sistor’s thermal curves indicates that the transistor’s temperature under CCFM
is 4°C lower than that under the traditional PWM control.
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Figure. 4.11: The measurement results of input current harmonic
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4 Application of CCFM in LED Drivers

4.3.5 Harmonics Current Measurement

The harmonic current of the electronic equipment may disturb the power grid,
disorder the other devices on the grid, and even cause the grid overload and
block the power transmission. Therefore, the standards, such as GB 17625.1
and IEC61000-3-2, are evolved to restrain the harmonic current. The harmonic
current measurement is carried out, and the result under chaotic modulation
(Fig.4.11b) is just as that under the traditional PWM control (Fig.4.11a).

PWM control circuit The push-pull converter TX4
1|' d o Vout
vee :
: CR :u(c U i
et qet D,
( I‘——‘ R g aedsana) /SL
ean_a e2
et
R i vref
[ |comp
j and
25 1 R,
VCC
L CCFM Ris ?
M Module _||' The feedback circuit l
L e power supply
to PWM IC

Figure. 4.12: The schematic of the push-pull converter based LED driver

4.4 Push-pull Converter-Based LED Driver

4.4.1 Working Principle
Because it is a good choice in the low voltage and large current situation, the

push-pull topology is often applied in the high power (more than 100W) LED
driver. Hence, a push-pull based LED driver is taken as the other example.
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4.4 Push-pull Converter-Based LED Driver

The LED drive, controlled by another typical PWM IC TL494, is also a constant
current source, of which the output current is 3A and the maximum rated power
is 150W. The schematic is shown in Fig.4.12. The transistors, Q; and Q», are
alternately turned on and off, periodically reverse the current in the primary
side of the transformer TX;, and thus an AC voltage is coupled on the secondary
side. Then, the voltage of the secondary side is rectified and filtered to the DC
output voltage Voyut. By the feedback circuit, the output current is regulated to
keep constant.

The CCFM module is connected to the push-pull based LED driver, and the
entity circuit is shown in Fig.4.13.

CCFM module

<———— Supply regulating circuit of
CCFM module

Figure. 4.13: The entity of the push-pull converter based LED driver with CCFM
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4 Application of CCFM in LED Drivers
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Figure. 4.14: The EMI measurement results (blue: the peak value, pink: the
average)

4.4.2 EMI Test

As shown in Fig.4.14, the conducted interference test under CCFM is much bet-
ter than that under the traditional PWM control, just as same as the test result of
the flyback converter based LED driver. It is verified that chaotic modulation is
effective to reduce EMI of SMPS.
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4.4 Push-pull Converter-Based LED Driver
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Figure. 4.15: Waveforms and spectra of the switching voltage
4.4.3 Electrical Characteristics Measurements

The ripple of the output voltage is tested, when the power supply operates
with the max rate output voltage of 48V. As the LED driver works with a fixed
switching frequency, the ripple is 203mV. The ripple under chaotic modulation
is 328mV, 225mV and 208mV, as Ry is 100k}, 150k(2 and 200k(Q2 respectively.
With the increase of the modulation degree, the ripple becomes larger, but still
within the acceptable range.

As shown in Fig.4.15, the switching voltage waveform with chaotic frequency
is just as that with fixed frequency, and the peaks on the spectrum with fixed
frequency are spread under chaotic modulation, and the EMI suppression effect
is improved with a smaller Rj.
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4 Application of CCFM in LED Drivers

Table 4.2: The electrical characteristics measurments

Index Parameter Without CCFM With CCEM
The Input voltage (V) : 180 220 260 180 220 260
voltage Input current (A) 1.45 1.27 1 1.51 1:2 1
regulation | Output voltage (V) | 48 48 48 48 48 48
QOulput current (A) 3 3 . 3 3 3 3
Power factor Power factor 0.61 0.58 0.64 0.6 0.61 0.63

Input Power (W) 165 164 168 166 165 169

Efficiency (%) Output Power | 144 144 144 144 144 144
Efficiency (%) 87.7 87.8 . 85.7 86.7 87.3 85.2
Load Resistor load (1) . 16 10 4 16 10 4
regulation | Oulput current (A) | 3 3 . 3 3 3 3

Waveform of
Start-up
output voltage

The other electrical characteristics measurements are given by Tab.4.2. The only
caveat is that a slight decrease of the efficiency of SMPS is caused by the utiliza-
tion of the CCFM module.

4.4.4 Test of Key Elements’ Temperature

As shown in Fig.4.16, the transformer’s temperature under chaotic modulation
is about 5°C higher than that under the traditional PWM control, but it does not
affect the operation of the system. As illustrated in Fig.4.17, the transistor’s tem-
perature under chaotic modulation rises faster than that under the traditional
PWM control, but there lies no difference in both cases as the working condition
tends to be stable.
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4.5 Summary
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Figure. 4.16: The thermal curve of the transformer
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Figure. 4.17: The thermal curve of the transistor

4.4.5 Harmonics Current Measurement

The harmonic current measurements with and without CCFM, which are given
by Fig.4.11, show that the application of CCFM does not impact the harmonic
current, just as similar as that of the flyback-based supply.

4.5 Summary
To investigate the effect of chaotic modulation on the system performance, the
CCFM module is applied in a flyback and a push-pull based LED drivers, and

the tests of electrical characteristic, working condition and EMC performance
are carried out.
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4 Application of CCFM in LED Drivers

First of all, the EMC test verifies that chaotic modulation is effective to reduce
EMI of SPMS. Secondly, the electrical characteristics test shows that only the
output ripple under CCFM will be increased slightly without any other different
indexes from those under the conventional PWM control. Thirdly, the thermal
test of the key elements indicates that the temperature of the high-frequency
transformer increases several degrees under chaotic modulation, but it doesn’t
disturb the operation of the system.

The CCFM module designed in Chapter 2 can be applied in SMPSs controlled
by standard PWM ICs to reduce the conducted interference, without weakening
the overall performance of the power supplies. To sum up, it is feasible to apply
CCFEM in commercial SMPSs, and the experimental research lays the foundation
of marketization of the proposed module.
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Figure. 4.18: The measurement results of input current harmonic
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5 Analogue Chaotic Frequency PWM IC

Owing to the lack of the chaotic frequency PWM IC, it is necessary to attach an
auxiliary modulation circuit to the original product for implementing CCFM on
SMPS, leading to the cost increase and inconvenience for production. Therefore,
chaotic frequency PWM ICs will provide an efficient and economic solution for
EMI suppression in power supplies. In this chapter, the analogue chaotic fre-
quency PWM IC will be designed to facilitate the application of chaotic mod-
ulation, so that CCFM can be realized on SMPS for EMI suppression, without
modifying the original circuit of power supplies.

5.1 Introduction

There are some restrictions in the application of the CCFM module. First, the
chaotic modulation circuit has to be attached to PWM IC as a peripheral de-
vice, which is inconvenient for the development and the production of SMPS.
Besides, the module can only work on the frequency programmable IC, while
there are a lot of SMPSs controlled by the fixed frequency PWM ICs, of which
the switching frequency can not be modulated. Hence, PWM IC with an inter-
nal chaotic frequency oscillator can facilitate the design of CCFM-based SMPS,
providing an efficient and economic solution for EMI reduction.

A PWM IC can be divided into the analogue and digital PWM IC respectively.
The analogue PWM ICs are more commonly used than the digital ones, due to
its advantages of low cost, mature scheme, and most importantly, fast response
time. For the analogously controlled SMPS, once the output voltage exceeds
a reference voltage, the transistor is turned off immediately, resulting in a fast
reaction system, whereas the digitally controlled SMPS is to sample the output
voltage, quantify it, calculate the on-state duration of the transistor, and finally
output the switching signal on the transistor.

Nevertheless, the analogue PWM IC has some disadvantages, such as fewer
functions, more components, temperature sensitivity, and the lack of versatility
and portability. In contrary, the digital IC has the attractive advantages such as
programmability, robustness and options for more advanced control [58, 59, 78,
79]. Hence, for now, the analogue IC is much more commonly used, especially in
the low-cost or fast-response applications, and the digital one, will become more
and more popular for the increasing demand for flexibility, multi-function, high
portability, and intellectuality.
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5.2 Analogue PWM IC

Until now, there has been no chaotic frequency PWM IC of both the control
mode on the market. Therefore, in this chapter, the analogue chaotic frequency
PWM IC will be designed, and then the design of the digital one will be dis-
cussed in the next chapter. A chaotic frequency oscillator will be designed and
embedded in analogue PWM ICs to implement chaotic modulation on SMPS for
EMI suppression. A UC3842-based CCM and a UCC3895-based VCM&CCM IC
with CCFM will be taken as two examples to control a flyback converter and a
shift-phased full bridge converter, respectively. The simulations is conducted to
verify the effectiveness of the proposed approach.

5.2 Analogue PWM IC

Pulse-width modulation is a commonly used SMPS controlled technique, which
modulates the transistor’s on-state duration during a switching period to regu-
late the output voltage or current. There are two PWM control modes of SMPS,
namely current control mode (CCM) and voltage control mode (VCM), which
adopt the sampling of the transistor’s or transformer’s current and the sam-
pling of output voltage respectively to determine the duty cycle of the switching
pulses. Correspondingly, there are CCM PWM IC (UC3842) [63], VCM PWM IC
(TL494) [65] and CCM & VCM PWM IC [66].

Vs

Rsense

LATCH
OUTPUT

Figure. 5.1: The principle of voltage controlled mode
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5 Analogue Chaotic Frequency PWM IC

The schematic of the VCM PWM IC and its working principle are shown in
Fig.5.1. At the beginning of each switching period, the transistor is turned on.
Then, the output error voltage ve, to which the sampling of output voltage vout
reduces a reference voltage, is compared with a sawtooth signal vg. Once vg
exceeds ve, the transistor is turned off until the end of the switching period.

CLOCK

REFERENCE

€

v
ERROR S
Vour AMP R Q
LATCH

CLOCK_l_l_l_
g
Vr

LATCH _ LI 1 [
OUTPUT

Figure. 5.2: The principle of current control mode

The schematic of the CCM PWM IC and its working principle are shown in
Fig.5.2, where v, is compared with the sampling of the transistor’s or trans-
former’s current to control the switching actions of the transistor.

No matter which control mode the PWM IC is, the sawtooth generator consti-
tutes the oscillator and its frequency is exactly the switching frequency. The
oscillator of PWM IC (see Fig.2.2), which has been analyzed in Chapter 2, is to
periodically charge and discharge the timing capacitor between a low threshold
voltage and a high threshold voltage. Therefore, the chaotic frequency PWM IC
can be designed in the way of making either the charging current of the timing
capacitor or the threshold voltage of the sawtooth changing chaotically.

A chaotic voltage generator and a current limiting resistor are necessary for the
approach of dithering the charging current of the timing capacitor, which has
been done in Chapter 2. Nevertheless, only a chaotic voltage generator is needed
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5.2 Analogue PWM IC

for the method of dithering the threshold voltage of the sawtooth, which will be
studied in this chapter.

VREF

s o
> Us
Rar O

Vehaos
v/V —

(b) Chaotic Vioy

Figure. 5.3: The chaotic frequency oscillator
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5 Analogue Chaotic Frequency PWM IC

5.3 Design of CCFM-Based Oscillator

5.3.1 System Design

As shown in Fig.5.3, Cr is periodically charged and discharged between Vi,
and Vypp, and the switching period is equal to the sum of the charging and the
discharging time. Thus, the switching frequency can be chaotically modulated
by replacing Vi, or Vypp with a chaotic voltage.

5.3.2 Chaotic Threshold Voltage

The chaotic threshold voltage can be generated by the schematic in Fig.5.4,
where vy, a chaotic voltage produced by Chua’s circuit, is set to 0,05 Within
the certain range by the amplifying circuit. Then, vy ,05 can be calculated as

VeceR4(Rs +Rg)  v1R1Rg

Rs+Ry  Ri+R
Uchaos = 2 4R5 ! 2/ (5.1)

where V¢ is the power supply of the chaos circuit, R;-Rg are resistors.

vCC R4 —_
R;

Vi Vipp

Ry U,

Re

Figure. 5.4: Amplifying circuit for setting the chaotic threshold voltage
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5.3 Design of CCFM-Based Oscillator

400 400
L L8,
o 200 o 200
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1] 0. 0.02 o 0.m 0.0z
A FiF A FF
1800
4400
o 1600 o
= =, 4200
® 1400 o
4000
1200
1] 0. 0.02 o 0.m 0.0z
A FiF A FF
(a) Chaotic Vigy, (b) Chaotic Vypp

Figure. 5.5: % vs the resistor parameter of the circuit

As the maximum and the minimum of v,,05 are ¥imax aNd V1min, Vchaos 1S Max-
imized to Uchaosmax and minimized to U paosmin Severally. Hence, the variation
range of Uchaos, Av, and its average value, Uchaosavg, €an be expressed as

_ R1R6(01max — vlmin)

Av = , 5.2
R5(R1 + Ry) 52
2VccR U1min + © RiR
(RS JFRG) R CCR4 . ( 1mmR 11’111;X) 186
; _ 3+ Ry 1+ R2 (5.3)
chaosavg 2R5 : :

Therefore, Av can be set by Ri, meanwhile, 0,505 can be adjusted by Ry. If Vipp
is replaced by v¢pa0s to realize chaotic modulation, the charging and discharging
time are expressed as [61]

View — V
te(Vchaos) = RrCrin low VREF'r (5.4)
Uchaos — VREF
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70
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Figure. 5.6: Spectra of the Ct voltage
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5.4 Simulations

Because the discharging current Ljjscharge is generally far larger than the charging
current, the discharging time t4 is approximately 0. Therefore the switching
period T (Uenaos) and frequency f(vchaos) are

T(Uchaos) ~ tC(vchaos)r (5~6)
1
f(vchaos) = m~ (5.7)

According to Equ.(5.6) and Equ.(5.7), T(Uchaos) € [T(Vchaosmax)s T(Vchaosmin)]
and
f (Uchaos) € [f (Vchaosmin)s f (Vchaosmax )], S0 that the variation range of f(Uchaos),
AF = f(Vchaosmax) — f(Uchaosmin), and the frequency modulation ratio can be
described as
lnvchaosmax — VREF
E _ __Ychaosmin — VREF (5.8)
F Viow — VREF

In
Vchaosavg - VREF

f (vchaosmax) + f (vchaosmin)
5 X

To sum up, F and AF can be adjusted by R; and R4, thus, CCEM with a pro-
grammable frequency modulation range is realized.

where F is the average value, namely

Assume that F = 24kHz, V; € [5.5,6.5], R, = 10kQ), Rz = 30kQ), R5 = 30kQ),
Rg = 30kQ), Vypp = 1.2V and Vypp = 2.8V. % vs Ry and % vs R4 are shown
in Fig.5.5a, while V), is chaotic. When Vyy,, is chaotic, % vs Ry and % vs Ry
are shown in Fig.5.5b. In case that Vypyp, is changed chaotically, the spectra of the
timing capacitor’s voltage are shown in Fig.5.6. The harmonics peaks under the
traditional PWM control are spread within a wide frequency range obviously
by CCEM. Moreover, the better effect of spread-spectrum can be obtained by
increasing the modulation ratio of the switching frequency.

5.4 Simulations

5.4.1 Chaotic Frequency PWM IC Controlled Flyback Converter

As shown in Fig.5.7, a chaotic frequency PWM IC, which employs UC3842 as
the prototype, is used to control a flyback-based constant current supply. The
diagram of the PWM IC is shown in Fig.5.8. Under chaotic modulation, the clock
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Figure. 5.8: The diagram of PWM IC with chaotic frequency
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5.4 Simulations

signals, such as the frequency of the sawtooth and the switching PWM signal,
are chaotically modulated as shown in Fig.5.9.

‘S’ pin of PWM latch || || || || II I
Output compensation:
coM -
= I N | —1__—1 1
Current detction: CS —
‘Q’ pin of PWM latch || II I || || ||

Output

Figure. 5.9: The signals” waveforms with CCFM

The output current is 0.9A and the load is 10Q). The output ripple is 85.21mYV,
86.33mV, 86.43mV, 86.87mV, as 5F = 0%, 545 = 0.5%, 5f = 1% and §F =
2%, respectively. The output ripple is slightly increased under CCFM, which is
acceptable. As shown in Fig.5.10, the spectra of the switching voltage show that
the harmonic peaks existing under the traditional PWM control are spread by
the application of the chaotic frequency PWM IC, and EMI reduction becomes
larger with the increase of the modulation ratio of the switching frequency. The

detailed reduction values of the harmonic peak are given by Tab.5.1.

Table 5.1: The harmonics peak reduction of the switching voltage in flyback
converter

Harmonic order 1 2134|567 8|9 10
Ri=60kQ | 1 | 0| 2|23 |2 |3|4|6]S8

Reduction (dB) | Ry =100kQ | 1 | 0 | 2 | 3 |2 |3 |4 |7 |99
Ri=140kQ | 1 |0 |23 |33 [7]|9]9 |12
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Figure. 5.10: The switching voltage spectra of the flyback converter

5.4.2 Chaotic Frequency PWM IC Controlled Shift-Phased Full Bridge
Converter

A VCM& CCM PWM IC, UCC3895, is adopted as the other example to control a
shift-phased full bridge converter as shown in Fig.5.12. The designed diagram
of the PWM IC is given by Fig.5.12, and the waveforms of the chaotically mod-
ulated clock signals are shown in Fig.5.13.
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5.4 Simulations
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Figure. 5.11: The phase-shifted full bridge converter
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Figure. 5.12: The diagram of chaotic frequency PWM IC
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Figure. 5.13: The signals’ waveforms with CCFM

The spectra of the switching voltage and the reduction values of the harmonic
peak, which are given by Fig.5.14 and Tab.5.2, show that the CCFM IC is ef-
fective to reduce EMI of SMPS. The output ripple is 71.07mV, 86.43mV, 100mYV,

and 124mV as% = 0%, % = 0.5%, % = 1% and % = 2%, respectively. In

general, the designed chaotic frequency oscillator can be integrated in various

PWM ICs.

Table 5.2: The harmonics peak reduction of the switching voltage in shift-phased

full bridge converter

Harmonic order 112345678910

Ri=60kQ | 1|6 |6 |7 |6|7]|6|6]|7]|9

Reduction (dB) | Ry =100kQY | 4 | 9 | 9 | 7 | 9 |10| 10| 12|10 |11
Ri=140kQ | 7 | 9 |12 |12 | 9 |14 |13 |14 | 14 | 114

5.5 Summary

An analogue chaotic driver of a PWM IC is designed to implement chaotic mod-
ulation on SMPS for EMI suppression. A CCM IC (UC3842) and a VCM&CCM
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5.5 Summary

IC (UCC3895), which are taken as examples, are used to control a flyback con-
verter and a shift-phased full bridge converter respectively, and effectiveness of
the proposed method on EMI reduction is verified by the simulations. Since the
oscillators inside IC are similar in the construct, the designed CCFM oscillator
can be used widely in all kinds of PWM ICs. Therefore, the application prospect
of chaotic modulation is further expanded.

Spectrum(vs) / dB

g ! WA eI Y LT 1]

o] 0.2 0.4 0.8 0.8 FrequencyMHz

(a) % = 0.5% (green: with CCFM, red: without CCFM)

Spectrumivs) / dB
50

40
30

0 0.2 0.4 08 0.8 FrequencyMHz

(b) % = 1% (green: with CCFM, red: without CCFM)

Spectrum(vs) / dB
50

A0
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20 | l | .

5 | NI

A
20 0.2 0.4 0.6 0.8 FrequencyMHz

(c) % = 2% (green: with CCFM, red: without CCFM)
Figure. 5.14: The switching voltage spectra of the shift-phased full bridge con-
verter

77

https://dol. 1P 216.73.216.60, am 24.01.2026, 03:53:31. geschlltzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186851109

6 Digital Chaotic Frequency PWM IC

With the features of flexibility, multi-function, high portability, and intellectual-
ity, the digitally controlled power supplies are in a rapidly growing need. To re-
duce EMI in the digital systems, a chaotic digital PWM (CDPWM) IC is designed
based on FPGA, and its effect on EMI reduction and output voltage ripple will
be investigated by simulations and experiments.

6.1 Introduction

With the development of electronic technique, the disadvantages of the digital
processor such as high cost and slow response time will be solved step by step.
Meanwhile, owing to the advantages of digital system, such as programmabil-
ity, robustness and options for more advanced control, the digitally controlled
SMPS becomes more and more popular.

It is noted that the CCFM solutions applied in the analogue system can not be
extended to the digital one at all, because the control strategies for both the sys-
tems are totally different, which has been explained in Sec.5.1. Hence, this chap-
ter is concerned with the application of CCFM in digital system. The CDPWM
controller can be manufactured with DSP, MCU, MPU and FPGA, among which
FPGA is selected as the control core in this dissertation due to the lower cost
than DSP and MPU, the faster processing speed than MCU, and most impor-
tantly, its unique ability to design application specific integrated circuit (ASIC).
To realize chaotic modulation on the digital systems, the emphasis is focused
on the design of a chaotic switching period counter, and Logistic map, Shift
map and Tent map are used to generate the pre-assigned value of the counter,
respectively. The comparisons will be made on the effectiveness of CCFM on
EMI suppression and output voltage ripple with the three chaotic maps to help
the designer to optimize the product. The simulations and experiments on a
buck converter are conducted to verify the effectiveness of CDPWM IC on EMI
reduction in the digitally controlled SMPS.

6.2 Digitally Controlled SMPS

6.2.1 Diagram of Digitally Controlled SMPS

As shown in Fig.6.1 [80], the diagram of a typical digitally controlled SMPS is
as similar as the analogue one, except the feedback and PWM control section,
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6.2 Digitally Controlled SMPS

where the output voltage is sampled, converted from an analogue signal to a
digital signal and sent to a PID operator to generate the switching signal.

Input Rectifier Transistor Transformer Rectifier Output

— I>l_:tl_* s -IH —> %g L | Db | |
: T )
Primary Secondary
Ground Ground

DPWM signal

DPWM Controller

_ PlDoperator  Analog-digital  Feedbackand

converter sampling

Figure. 6.1: The diagram of digitally controlled SMPS

6.2.2 DPWM

The working principle of DPWM is illustrated in Fig.6.2. First of all, a counter,
C, whose pre-assigned value is N, is employed to calculate the switching pe-
riod, called T. During one switching period, C counts from 0 to N at a counting

1
frequency fo, that is to say, C increases by 1 per — second. Then the switching

fo

N+ 1
period can be expressed as T = ———, and thus f = T is the switching fre-

quency. By the digital PID operator,othe output sampled voltage is converted
to the on-state duration of a switching period, defined as D (D < N +1). At
the beginning of the switching period, the transistor is turned on. As soon as
C > D, the transistor is turned off and lasts until the end of the switching pe-
riod. Consequently, the schematic of DPWM is described in Fig.6.3.
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Figure. 6.2: The principle of DPWM
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Figure. 6.3: The schematic of DPWM

6.3 DPWM with Chaotic Frequency

6.3.1 Working Principle of COPWM

Normally, the switching period of the digital system is constant, leading to EMI
problem. However, as shown in Fig.6.4, the switching period can be modulated
by replacing the pre-assigned value of the switching period counter (N) with
a chaotic sequence N. In the following sections, Logistics map, Tent map and
Shift map will be used to generate N, respectively.
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6.3 DPWM with Chaotic Frequency
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Figure. 6.4: The principle of chaotic frequency DPWM

6.3.2 Logistic Map Based Digital Chaotic Signal Generator

The chaotic sequence x, 1 of Logistic map [81] is defined as

Xpi1 = pxn(l—x,)(0 < x, < 1), (6.1)

where y is the fractal parameter, and x,, 1 is chaotic as 3.5699456... < u < 4.

The schematic of Logistics map is illustrated in Fig.6.5. On the beginning of each
switching period, a new chaotic number x,,,1 will be generated and outputted,
and the output chaotic sequence is shown in Fig.6.6.

L

L—»

https://dol.

sel(0:0)
0 MUX | ’
! >

[
[ >

Input: the trigger signal

Output: chaotic
sequence

Figure. 6.5: The digital circuit of Logistic map
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Figure. 6.6: Waveform of Logistic map sequence

6.3.3 Tent Map Based Digital Chaotic Signal Generator

»(0 MUX b
o>

Input: the trigger signal

Output: chaotic
sequence

Figure. 6.7: The digital circuit of Tent map

Tent map [82] belongs to one-dimensional piecewise linear map, and is de-
scribed as

Xn
7 ngngﬂ/

=4 " . 6.2)
1_]/[/ V<xn§1/

where i € (0,1), and x,,41 is chaoticas x1 € (0,1).
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6.3 DPWM with Chaotic Frequency
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Figure. 6.8: Waveform of Tent map sequence

Its schematic is illustrated as Fig.6.7, and the output chaotic sequence is shown
in Fig.6.8.

6.3.4 Shift Map Based Digital Chaotic Signal Generator

Input: the trigger signal

Output: chaotic
sequence

Figure. 6.9: The digital circuit of Shift map

Shift map is expressed as

1 1
Xpp1 = { (0 i) +1 i (6.3)

where y = 1.8, and x,,;1 is chaotic as x; € (0,1).

The schematic of Shift map is shown as Fig.6.9, and the chaotic sequence is
shown in Fig.6.10.
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Figure. 6.10: Waveform of Shift map sequence

The chaotic signal switch

N,
(G
Output: chaotic

preset value

CO—> e

Input: chaotic sequence

Figure. 6.11: The generation of PWM period counter pre-assigned value N,

6.3.5 Circuit Design of CDPWM

Because x, € (0,1), x;; should be further processed to get the integer N.. A pre-
assigned value processing circuit is designed as Fig.6.11. As the chaotic signal
switch, S, is turned off, the switching period is fixed, and N, = N’ + N, where
both N and N’ are constant. Otherwise, as S is turned on, the switching period
is modulated by x,,, and N; = x,Re 4+ N. Here Re is defined as the modulation
degree to transform the decimal x, to an integer N, within the desired range.

Therefore, N, is maximized to Re + N and minimized to N. Assume that the
switching frequency is fc, f. € (F— ATf, F+ ATf), where F is the desired mean fre-
quency, and Af is its desired range from the minimum to the maximum, then

fo = Af
Re+N+1’F 27 ©4)
foo o Af
N+1_F+ 5 (6.5)
And for demanded F and Af, N and Re can be calculated as
N = fOAf_1, 6.6)
F+ 5
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Figure. 6.12: Statistical histograms of of the switching period
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__Afh

To make sure that the mean frequency under chaotic modulation is the same as
that under the traditional PWM control, it is obtained that

N = Re_ _20ffy
2 P24+ AfF

(6.8)
With different chaotic map, the distribution of the switching period differs. As
shown in Fig.6.12, the statistical histogram of the switching period with Logistic
map is concentrated upon certain areas. Then, it tends to obey the uniform
distribution with Tent map. And it is distributed around the expectation with
Shift map.

In general, because both the modulation degree and the distribution of the
switching period can be adjusted, it is possible to optimize chaotic modulation
circuit to improve the effectiveness of EMI reduction.

YN
14T ="
R L
Q R4
+
o
T C ZRLOAD
Ro
D:ZX
= L 3
copwM] [, o1 =
controller

Figure. 6.13: The DPWM controlled buck converter
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6.4 Simulations

6.4 Simulations

CDPWM is adopted to control a buck converter shown in Fig.6.13, where Ry oap
is the load of the power supply. The analogue partial voltage of R; is converted
to the digital signal and feedback to CDPWM controller to regulate the out-
put voltage to a stable DC of 12V. CDPWM controller is designed as shown in
Fig.6.3, and the chaotic integer N, is generated by the circuit of Fig.6.11.

The spectra of the switching voltage with the three maps and different values of
Re are exhibited in Fig.6.15, and the detailed reduction values of the harmonic
peak are given by Tab.6.1. It is observed that EMI can be reduced no matter
which chaotic map is used to modulate the switching frequency. And the effect
of EMI suppression is improved with the increase of Re, however, the output
voltage ripple is also increased (see Fig.6.15). Consequently, the value of Re is
determined by the requirement for the output ripple.

Table 6.1: The harmonics peak reduction of the switching pulses

Harmonic | Logistic map, Re = | Tent map, Re = Shift map, Re =
order 10 20 30 10 20 30 10 20 30
1 0 1 1 0 1 1 0 1 2

2 1 3 2 1 2 2 1 3 3

3 2 2 4 3 3 4 4 6 6

4 1 3 4 2 4 3 3 5 7

5 1 5 6 2 4 6 3 5 9

6 2 4 6 3 3 7 5 7 9

7 4 7 9 3 3 9 5 9 10

8 3 7 8 4 6 9 6 10 10

9 3 8 9 2 7 8 6 9 11
10 3 8 10 4 8 8 6 9 11
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Figure. 6.14: Spectra of the switching voltage

The effectiveness of EMI reduction with Shift map is best, while the ripple is
largest. In contrary, the output ripple with Logistics map is lowest. Among the
three maps, the Tent map is not worthy of application, because there are extra
ledges on the high-frequency band and the output ripple is larger than that of
Logistics map. To sum up, the Logistics map is fit for the systems with stringent

requirement for the output ripple, and Shift map should be adopted by power
supplies with severe EML
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Figure. 6.15: Waveforms of output voltage

6.5 Experiments

The experiments on the power supply shown in Fig.6.13 are also carried out.
The spectra of the switching voltage (see Fig.6.16) show that increasing the mod-
ulation degree can suppress EMI more effectively, and the best effect of EMI
reduction is obtained by using Shift map.

The waveforms of the output voltage are given by Fig.6.17, and the ripple un-
der the traditional DPWM control is 440mV. It is obvious that the output rip-
ple becomes larger as the modulation degree increases. As Re is 10, 20 and 30
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separately, the ripples with Logistics map are 440mV, 480mV and 560mV, those
with Tent map are 440mV, 480mV and 600mV, and those with Shift map are
480mV, 520mV and 640mV. The ripple is the lowest as using Logistic map, and
the largest as using Shift map.

The experimental results are consistent with the simulations, and it is verified
that the designed CDPWM IC is effective to reduce EMI of digitally controlled
power supplies.

(a) Traditional DPWM

(b) Logistic map, Re =10 (c) Logistic map, Re =20 (d) Logistic map, Re = 30

(e) Tent map, Re =10 (f) Tent map, Re =20 (g) Tent map, Re =30

(h) Shift map, Re =10 (i) Shift map, Re =10 (j) Shift map, Re = 30

Figure. 6.16: Spectra of the switching voltage
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6.6 Summary

(h) Shift map, Re =10 (i) Shift map, Re = 10 (j) Shift map, Re = 30

Figure. 6.17: Waveforms of output voltage

6.6 Summary

CCFM scheme for the digitally controlled SMPS can be realized by making the
pre-assigned value of the switching period counter changing chaotically. There-
fore, the CDPWM IC is designed, and different chaotic maps, namely Logistics
map, Shift map and Rent map, are used to modulate the switching frequency. A
buck converter controlled by digital PID algorithm is employed as an example.
According to simulations and experiments, EMI is suppressed more efficiently
with the increase of the frequency modulation degree, while the output ripple
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is increased slightly in an acceptable range. With shift map, EMI is reduced
most, but the output voltage ripple is increased most. Conversely, the ripple
increment is lowest when using Logistic map. Hence, the Logistics map can
be employed by the systems with stringent requirement for the output ripple,
and Shift map is useful for the products with severe EMI problem. The digital
chaotic frequency PWM IC will facilitate the application of chaotic modulation
in the digitally controlled SMPSs.
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7 Conclusion

The highly unpredictable and random-like features of chaotic signals are very
useful for engineering applications. One of the successful applications is chaotic
carrier frequency modulation technique, which has been utilized in EMI sup-
pression of SMPS. By chaotically dithering the switching frequency around the
nominal value, the discrete harmonic power that usually exists in classical PWM
scheme becomes continuous and can be spread over a wide frequency range. Al-
though CCFM has been proved effective to reduce EMI of SMPS, there has been
no commercial CCFM-based power supply. Therefore, this dissertation is con-
centrated on the application of chaos in real products for EMI reduction. The
contributions of the dissertation are as follows:

(1) With the advantages of low cost, low design complexity, flexibility and uni-
versality to the frequency programmable PWM IC, a chaotic carrier frequency
modulation module has been designed to reduce EMI of commercial SMPSs.

(2) The power spectral characteristics of the switching converter with CCFM
shows that the effectiveness of EMI suppression is determined by the probability
distribution and the randomness of the switching period. When the proposed
module is used to modulate the switching frequency, it is found that both the
PDF and the randomness of the switching period can be set by adjusting certain
circuit parameters. Therefore, the EMI reduction effectiveness can be estimated
and improved basing on the power spectrum analysis.

(3) The electrical characteristics test, working condition test and EMC test have
been done on two typical LED drivers. The test results show that the output rip-
ple is increased a little and the temperature of the high-frequency transformer
increases several degrees when working under chaotic modulation. However,
that does not disturb the operation of the power system. As a conclusion, the
CCFM module improves the EMC of SMPS without weakening the overall sys-
tem performance, and the feasibility of applying the chaotic carrier frequency
modulation in SMPSs is verified.

(4) The analogue chaotic frequency PWM IC was designed. CCFM was realized
by making the certain parameter of the IC’s oscillator changing chaotically. The
designed oscillator can be employed in all kinds of PWM IC to improve EMC
of SMPS without modifying the original circuit of power supply, providing an
efficient and economic EMI reduction solution.
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7 Conclusion

(5) The digital chaotic frequency PWM IC was designed. The switching fre-
quency can be modulated by dithering the switching period counter chaotically.
Tent map, Shift map and Logistic map have been used to generate the mod-
ulation signal, respectively. From the simulations and experimental results, it
was found that EMI can be suppressed by CDPWM and the output ripple is
increased slightly. With shift map, EMI is reduced most, whereas the output
voltage ripple is increased most also. In addition, the ripple increment is least
when using Logistic map. The designers can make an optimized choice based
on the comparisons.

Although great efforts have been made on the application of chaotic modula-
tion in real products, there are still some issues to be addressed in the future.
Detailed as follows:

(1) The present theoretical study on the system stability under CCFM is not
enough to guide the application of chaotic modulation. Consequently, the study
on the SMPS stability with CCFM will be carried on, since the product’s perfor-
mance is determined by the system stability.

(2) Only Chua’s circuit has been used to modulate the switching frequency of
power supply so far. The other chaos oscillators will be adopted to generate
the modulation signal. And the complexity of the circuit, the EMI suppression
result and the effect of chaotic modulation on the system performance will be
compared individually when using different chaos circuit. And then the CCFM
module will be optimized.

(3) Chaotic frequency PWM IC will be made by Field Programmable Analog Ar-
ray (FPAA) and FPGA. And the experimental research on the chaotic frequency
PWM IC will be carried out to optimize the scheme and verify the effectiveness
of the designed IC on EMI reduction.

(4) Chaotic modulation will be applied in other commercial switching systems,
such as transverter and inverter.
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