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1 RECHNEN – MOTOR DER WISSENSCHAFT  

UND TECHNIK 

„It took me the best part of six weeks to draw up the computing forms and to 

work out the new distribution in two vertical columns for the first time. My 

office was a heap of hay in a cold rest billet. With practice the work of an 

average computer might go perhaps ten times faster. [...] If the coordinate 

chequer were 200 km square in plan, there would be 3200 columns on the 

complete map of the globe. In the tropics, the weather is often foreknown, so 

that we may say 2000 active columns, so that 32x2000 = 64,000 computers 

would be needed to race the weather for the whole globe. That is a staggering 

figure“ (Richardson 1922: 219). 

 

Als Lewis Fry Richardson 1922 in seinem Buch Weather Prediction by 

Numerical Process einen Parallelcomputer entwarf, um das Wetter der 

nächsten Tage zu simulieren, ging er von menschlichen Computern aus: 

Jeweils ein Rechner sollte für die Kalkulationen eines Punktes des Be-

rechnungsgitters zuständig sein. In seiner Wettervorhersagefabrik sollten 

64.000 menschliche Computer per Hand die globale Wetterentwicklung 

berechnen, in der Hoffnung, dass sie nicht nur schneller rechnen als das 

tatsächliche Wetter sich entwickeln würde, sondern dass die Anzahl der 

menschlichen Rechner genügen würde, um eine ausreichend hohe Dich-

te an Berechnungen für aussagekräftige Prognosen zu erzielen. Denn je 

feiner das Berechnungsgitter einer solchen numerischen Simulation ist, 

desto genauer sind ihre Resultate. Eine höhere Auflösung des Berech-

nungsgitters geht jedoch mit einer enormen Erhöhung der dafür nötigen 

Berechnungen einher. Selbst mit 64.000 menschlichen Rechnern hätte 

Richardson seine Idee, das Wetter der nächsten Tage zu simulieren, wie 

es uns heute aus jedem Wetterbericht vertraut ist, nicht realisieren kön-
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nen. Erst seit den 1970er Jahren, als die Computer entsprechend leis-
tungsfähig wurden, sind solche numerischen Prognosen möglich. Diese 
Leistungsfähigkeit der Rechner, die aktuell bei Billionen von Operatio-
nen pro Sekunde liegt, erzeugt mittlerweile eine Dichte an Berechnun-
gen, die ausreicht, um den Computer als digitales Labor für Experimente 
zu nutzen. Heutige Supercomputer halten nicht nur Schritt mit dem rea-
len Wetter, sie berechnen die Klimaentwicklung über einen Zeitraum 
von Jahrzehnten innerhalb weniger Tage, sie designen neue Moleküle 
und Materialien, lassen Flugzeuge und Autos crashen. Mit diesen auto-
matisierten Rechenmaschinen blicken Forscher in die Zukunft und opti-
mieren die Natur. Sie machen bislang unsichtbare Welten sichtbar und 
führen eine neue Logik und Praktik des Forschens in Wissenschaft und 
Technik ein. In diesem Sinne war Richardsons Idee visionär, denn mit 
seiner Wettervorhersagefabrik entwarf er – basierend auf numerischen 
Simulationen, parallel arbeitenden Recheneinheiten und berechneten 
Vorhersagen – ein modernes Wissenschaftsszenario, wie es heute in vie-
len mathematisierten Natur- und Ingenieurswissenschaften, den so ge-
nannten Computational Sciences, zu finden ist. 

 
 
Rechnen a ls  Kulturtechnik 
 
Grundlage dieses modernen Wissenschaftsszenarios ist die Erfindung 
der Zahl und des Rechnens. Die Entwicklung bis hin zu den numeri-
schen Simulationen von heute macht deutlich, dass das Rechnen eine der 
einflussreichsten Kulturtechniken des Menschen ist.1 Zahlen spielen seit 
Jahrtausenden in jeder Kultur eine wichtige Rolle, sei es zum Registrie-
ren von Waren, zur Bestimmung astronomischer Ereignisse oder zur 
Dokumentation klimatischer Regelmäßigkeiten. Um Vorräte und andere 
Wirtschaftsgüter zu registrieren, wurden anfangs Zählsteine oder Zähl-

                                              
1  „Kulturtechnik befördert die Leistungen der Intelligenz durch Versinnli-

chung und exteriorisierende Operationalisierungen des Denkens. […] Kul-
turtechniken sind (1) operative Verfahren zum Umgang mit Dingen und 
Symbolen, welche (2) auf einer Dissoziierung des impliziten ‚Wissens 
wie‘ vom expliziten ‚Wissen, dass‘ beruhen, somit (3) als ein körperlich 
habitualisiertes und routiniertes Können aufzufassen sind, das in alltägli-
chen, fluiden Praktiken wirksam wird, zugleich (4) aber auch die aistheti-
sche, material-technische Basis wissenschaftlicher Innovation und neu-
artiger theoretischer Gegenstände abgeben kann. Die (5) mit dem Wandel 
von Kulturtechniken verbundenen Medieninnovationen sind situiert in 
einem Wechselverhältnis von Schrift, Bild, Ton und Zahl, das (6) neue 
Spielräume für Wahrnehmung, Kommunikation und Kognition eröffnet“ 
(Bredekamp, Krämer 2003: 18). 
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kugeln verwendet, die in Lederbeuteln und später in versiegelten Tonge-
fäßen aufbewahrt wurden. Als man begann, auf die Außenseite der Ton-
gefäße Zeichen für die Anzahl der Kugeln in den Gefäßen zu ritzen, hat-
te man die Zahlen als symbolische Darstellungen von Einheiten erfun-
den. Diese Abstraktionsleistung – materiale Äquivalente für Wirt-
schaftsgüter (Zählsteine und -kugeln) in symbolische Notationen zu 
übersetzen – stellte vor gut achttausend Jahren nicht nur eine Medien-
wende vom Materialen zum Symbolischen dar, sondern den Ursprung 
von Schrift generell. Denn nachdem sich „die Verfahren des Zählens 
und des Referierens graphisch voneinander emanzipiert haben, spricht 
jetzt in der Tat nichts mehr dagegen, Referenten, die nicht gezählt wer-
den sollen, – außerhalb des pragmatischen Zwecks der Registrierung – 
graphisch zu symbolisieren, also graphische Symbole für immer mehr 
pragmatische Zwecke und für immer mehr sprachliche Zeichen zu ent-
wickeln“ (Koch 1997: 56). 
 
Der nächste fundamentale Schritt bestand dann in der Erfindung der 
Zählreihen. Indem einzelne Zeichen (Ziffern) aneinandergereiht wurden, 
ließen sich auf diese Weise neue Zahlen erzeugen.2 Ziffernsysteme, wie 
das römische, das sich in Europa im 5. Jahrhundert v. Chr. etablierte, 
dokumentieren eindrucksvoll diese neue Möglichkeit, mit Symbolen 
operativ zu hantieren: Mit wenigen Ziffern lässt sich eine große Menge 
an Zahlen erzeugen. Der Zahlenraum, der sich dadurch eröffnete, über-
stieg nicht nur die Anzahl alltäglicher Güter. Er dehnte als Idee der 
Konstruierbarkeit unendlich vieler Zahlen das menschliche Denken in 
neue und abstrakte Bereiche aus, die in ihrer Unendlichkeit bis dahin 
allein dem mythischen Denken vorbehalten waren. Diese Ausdehnung 
ins Abstrakte, als das dem Gegenständlichen nicht Verhaftete und daher 
ins Unendliche Verlängerbare, konstituiert bis heute den Objektbereich 
der Mathematik.  
 Ziffernsysteme ermöglichen jedoch nicht nur die Konstruktion be-
liebig vieler Zahlen, sie animieren auch dazu, Anzahlen zu addieren oder 
zu subtrahieren, also einfache Berechnungen durchzuführen. Dabei zeig-
te sich bald die Unhandlichkeit des römischen Ziffernsystems, dessen 

                                              
2  „Seit dem 3. Jahrtausend v. Chr. sind uns Dokumente überliefert, aus 

denen zu schließen ist, daß verschiedene antike Hochkulturen unabhängig 
voneinander Zählreihen durch Zählsysteme bildeten, in denen nicht nur 
ein und dasselbe Zeichen fortlaufend aneinandergefügt, sondern Zeichen-
gruppen gebildet und diese durch Individualzeichen ersetzt wurden: die 
Zählreihe ist mit Hilfe von Ziffern gebildet“ (Krämer 1988: 9). 
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Zählreihen sehr lang und daher unübersichtlich werden konnten.3 Um 
mit römischen Ziffern rechnen zu können, musste auf Hilfsmittel wie 
Rechensteine, Rechenkugeln oder Rechenbretter zurückgegriffen wer-
den. Diese Unhandlichkeit machte das Rechnen zu einer Kunst, die eine 
entsprechende Ausbildung voraussetzte und die damit das Rechnen für 
lange Zeit einer gebildeten Elite vorbehielt. Doch gesellschaftliche Ver-
änderungen im frühen Mittelalter, insbesondere militärische und öko-
nomische Entwicklungen, führten zu einem wachsenden Bedarf an Be-
rechnungen und ließen das Rechnen mit römischen Ziffern an seine 
Grenzen stoßen. Es bedurfte eines neuen Ziffernsystems, um das Rech-
nen effizienter und einfacher zu gestalten. Als Leonardo Fibonacci 1209 
in seiner Schrift Liber Abaci das indisch-arabische Ziffernsystem in 
Europa bekannt machte, führte er damit nicht nur ein neues Zeichensys-
tem ein, sondern transformierte das Rechnen vom Materialen ins Sym-
bolische. Aufgrund seiner Besonderheit mit nur wenigen Ziffern auszu-
kommen, erlaubte es das indisch-arabische Ziffernsystem, Berechnun-
gen im Medium der Ziffern selbst, also auf Papier auszuführen und 
machte dadurch Rechenbretter oder Rechensteine überflüssig. Damit 
war die erste Medienwende vom Materialen zum Symbolischen – die 
Jahrtausende zuvor mit der Ablösung von Zählkugeln durch Zahlzeichen 
begonnen hatte – abgeschlossen. Die zweite Medienwende, vom Papier 
zum Computer, sollte gut achthundert Jahre später stattfinden. 
 Doch obwohl Fibonacci das indisch-arabische Ziffernsystem und das 
Rechnen auf Papier bereits 1209 beschrieben hatte, dauerte es weitere 
dreihundert Jahre, bis sich diese neue Kulturtechnik in Europa vollstän-
dig durchgesetzt hatte. Ein Grund dafür war die Ziffer Null, die dem 
römischen Ziffernsystem unbekannt war.4 Die Null wurde in Indien be-
reits im 9. Jahrhundert als die Symbolisierung des Nichts eingeführt und 
ermöglichte es, die bis heute gültigen Rechenregeln der vier Grundre-
chenarten zu entwickeln. Das indisch-arabische Ziffernsystem konnte 
dank der Null ein neues Prinzip der Konstruktion von Zahlen entwi-

                                              
3  Um die römischen Zahlen nicht beliebig lang werden zu lassen, mussten 

Zahlen immer wieder zu Individualzeichen zusammengefasst werden: I 
(1), V (5), X (10), L (50), C (100), D (500), M (1.000), etc. 

4  Die Null symbolisiert das Nichts, das in Indien mit dem Nirwana gleich-
gesetzt eine positive Konnotation hatte, im christlichen Europa des Mittel-
alters jedoch negativ besetzt war. Trotz des heftigen Kampfes der katholi-
schen Kirche gegen die neue Rechenkunst gewannen das indisch-
arabische Zahlensystem und das Rechnen auf Papier aufgrund seiner Prak-
tikabilität zunehmend an Bedeutung. Populäre Rechenbücher wie Rech-
nung auff der linihen von Adam Ries aus dem Jahr 1518 und Rechenschu-
len brachten die neue Kunst des Rechnens unter das Volk (vgl. Folkerts 
1997; Menninger 1958). 
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ckeln: das Stellenwertprinzip.5 Dieses Prinzip besteht nicht in der endlo-
sen Aneinanderreihung von Zahlzeichen, die schließlich zu enorm lan-
gen Zahlendarstellungen führten wie mit römischen Ziffern. Das Stel-
lenwertprinzip basiert lediglich auf zehn Individualzeichen (0 bis 9), 
wobei die Position der Zeichen – als Einer, Zehner, Hunderter, etc. – den 
Wert einer Zahl erzeugt. Anstatt Zeichen aneinanderzureihen wird nun 
die Konstruktion von Zahlen mit Hilfe eines Alphabets einiger weniger 
Ziffern formalisierbar. Formalisierung ist immer dann gegeben, wenn 
auf Basis endlich vieler Zeichen und expliziter Regeln beliebig viele 
neue Zeichen hergestellt werden können, ohne dazu das Alphabet ver-
größern zu müssen. Das römische Ziffernsystem basierte zwar auf einer 
expliziten Regel, das Aneinanderreihen von Einheiten, aber die Indivi-
dualzeichen müssen erweitert werden, will man größere Zahlen konstru-
ieren. Im Unterschied dazu funktioniert das indisch-arabische Ziffern-
system, dank der Null und dem Stellenwertprinzip, wie eine ‚symboli-
sche Maschine‘ (vgl. Krämer 1988, 1991), die aus wenigen Komponen-
ten beliebig viele Variationen herstellen kann. Dies ist die Vorausset-
zung, um auch das Rechnen auf Papier formalisieren zu können.6 Dazu 
muss jedoch die Fläche des Papiers genutzt werden, indem man die zu 
addierenden oder zu subtrahierenden Zahlen untereinander schreibt und 
bei der senkrechten Spalte der Einer beginnend, von rechts nach links, 
die Zahlenwerte zusammenzählt oder voneinander abzieht. Diese Re-
chentechnik, heute jedem Schulkind vertraut, wurde 1209 von Fibonacci 
erstmals in Europa demonstriert und später – als Rechnen auf der Linie 
bezeichnet – durch Rechenmeister wie Adam Ries verbreitet (vgl. Ries 
1518). Fibonacci selbst nutzte das neue Ziffernsystem, um die Folge der 
so genannten Fibonacci-Zahlen zu studieren. Diese Folge entsteht, wenn 
man eine Zahl mit der jeweils vorausgehenden Zahl addiert: 0, 1, 1, 2, 3, 
5, 8, 13, 21, 34, 55, 89, usf. 
 Das Rechnen mit natürlichen Zahlen führte jedoch schnell zu neuen 
Zahlen. Bereits die Subtraktion einer größeren von einer kleineren Zahl 
sprengt den Raum natürlicher Zahlen und dehnt ihn jenseits der Null in 

                                              
5  „The world suffered long for lack of positional numeration, and for a 

symbol for zero. Neither of these were invented by formalists. Both were 
the product of instrumental analysis. They came as the direct and inevita-
ble result of the use of the abacus. [...] The mechanical fact that it [Aba-
kus] is convenient to mount rods or wires parallel to one another in a fra-
me produced the idea of positional numeration, and the necessity for no-
ting down complete absence of counters under such circumstances gave us 
the zero” (Bush 1936: 650). 

6  Beim Medienwechsel vom Papier zum Computer werden sich die zehn 
Zeichen des indisch-arabischen Ziffernsystems (0 bis 9) auf zwei Zustände 
(0, 1 materialisiert als on/off) reduzieren.  
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den Bereich negativer Zahlen aus. Dieser Ausdehnungsprozess setzt sich 
mit der Division fort und spaltet die ganzen Zahlen in Teile auf, die sich 
in einer neuen Unendlichkeit – zwischen zwei ganzen Zahlen eingebettet 
(z.B. 1:3 = 0,33333…) – verlieren.7 Was mit dem Registrieren von Wa-
rengütern und Rechenkugeln im Konkreten begann, entwickelte sich ab 
dem Mittelalter zu einer Kulturtechnik, welche die Zahlen und das 
Rechnen von realweltlichen Bezügen ablöste. Das Rechnen verselbstän-
digt sich zu einem rein formalen Prinzip und erhält dadurch eine Auto-
nomie, welche die Mathematik bis heute in die Lage versetzt, die Zahlen 
und Rechenoperationen in neue und immer abstraktere Bereiche zu er-
weitern. Dabei gelangt die Mathematik von den natürlichen zu den gan-
zen Zahlen, von den rationalen und den reellen zu den komplexen Zah-
len, von Quaternionen und den hyperreellen zu den surrealen Zahlen 
(vgl. Landau 1984).  
 Diese Autonomie der Zahlen und des Rechnens findet einen ersten 
Höhepunkt bei Francois Vieta, der im 16. Jahrhundert die Algebra – das 
Rechnen mit Buchstaben und Formeln – entwickelte (vgl. Klein 1992). 
Gefolgt von René Descartes, der im 17. Jahrhundert Algebra und Geo-
metrie miteinander verknüpfte, indem er ein Koordinatensystem in die 
Geometrie einführte. Durch diese Metrisierung wurden die geometri-
schen Objekte berechenbar. In der Geometrie schrieb Descartes 1637: 
„Und ich werde mich nicht scheuen, diese der Arithmetik entnommenen 
Ausdrücke in die Geometrie einzuführen, um mich dadurch verständli-
cher zu machen“ (Descartes 1637/1981: 1). Mit dieser Algebraisierung 
der Geometrie bereitete Descartes sowohl der Anschaulichkeit der Geo-
metrie ein Ende, als auch ihrer Beweiskraft basierend auf der geometri-
schen Konstruktion. Der Beweis durch Konstruktion hatte seit Euklids 
Werk Die Elemente 325 v. Chr. als Wissenschaftsideal gegolten, das bis 
weit ins Mittelalter vorherrschte. Die griechische Mathematik, die auf 
einem geometrischen Zahlenverständnis und der axiomatisch-dedukti-
ven Methode der Beweisführung basierte, stellte Zahlen grafisch als 
Strecken dar. Die Entdeckung der Inkommensurabilität zweier Strecken 
als Verhältnis einer Seite zur Diagonale eines Quadrats und die Folge-
rung, dass sich beide Strecken nicht wie rationale Zahlen zueinander 
verhalten, stärkte die Vorrangstellung der Geometrie gegenüber der 
Arithmetik. Nichts Geometrisches durfte, so das Dogma der griechi-

                                              
7  „Im 16. und z.T. im 17. Jh. haben sich nicht nur die Brüche und irrationa-

len Zahlen, sondern auch die Null, die negativen und die komplexen Zah-
len in der Algebra durchgesetzt, und sie werden auch alle als Zahlen be-
handelt, d.h. man führt mit ihnen die üblichen Rechenoperationen durch“ 
(Gericke 1970: 68).  
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schen Mathematik, durch die Arithmetik bewiesen werden.8 Dies 
schränkte jedoch den Bereich der Algebra erheblich ein, da Ausdrücke 
wie a4, die sich geometrisch nicht konstruieren ließen, nicht zulässig 
waren. Descartes analytische Geometrie hingegen erlaubte Ausdrücke 
wie a4, die den dreidimensionalen Anschauungsraum sprengten und die 
Konstruierbarkeit geometrischer Objekte durch ihre Berechenbarkeit 
ersetzte. Damit sicherte er im Europa des 17. Jahrhunderts dem Rechnen 
gegenüber der Geometrie die Vorherrschaft. Für die Entwicklung der 
neuzeitlichen und modernen Wissenschaft war diese Vorherrschaft der 
Algebra von entscheidender Bedeutung. 
 
 
Handwerk des Rechnens 
 
1623 behauptete Galileo Galilei in seiner Schrift Saggiatore, dass das 
Buch der Natur in der Sprache der Mathematik geschrieben sei. Doch 
um dieses Buch entschlüsseln zu können, bedurfte es langwieriger Be-
rechnungen per Hand. „It is this,“ konstatierte der Philosoph und 
Mathematiker Gottfried Wilhelm Leibniz, „that deters them from com-
puting or correcting tables, from the construction of Ephemerides, from 
working on hypotheses, and from discussions of observations with each 
other. For it is unworthy of excellent men to lose hours like slaves in the 
labour of calculation which could safely be relegated to anyone else if 
machines were used“ (Leibniz 1685, übersetzt in: Goldstine 1993: 8). 
Von daher verwundert es nicht, dass ein Kollege Keplers, der Astronom 
Wilhelm Schickard 1623 die erste mechanische Rechenmaschine kons-
truierte, die alle vier Rechenarten ausführen konnte, wie er euphorisch in 
Briefen an Kepler schrieb (vgl. Seck 1978). Allerdings wurde Schi-
ckards Maschine bei einem Feuer zerstört, so dass nur Konstruktions-
zeichnungen erhalten sind. Daher ist es die 1642 von Blaise Pascal ge-
baute Pascaline, die als erste funktionstüchtige Rechenmaschine in die 
Geschichte einging, auch wenn sie nur die Addition und Subtraktion 
beherrschte. Obwohl die Idee, mechanische Rechenmaschinen zu bauen, 
seit dem 17. Jahrhundert die Wissenschaft beherrschte, konnte der 
Traum vom mechanischen Rechnen bis ins 20. Jahrhundert nur für die 
Grundrechenarten verwirklicht werden.9 Da solche Rechenmaschinen in 

                                              
8  Dieser griechische Denkstil wird jedoch nicht strikt eingehalten und von 

Mathematikern wie Diophant von Alexandrien durchbrochen.  
9  Leibniz entwarf eine Rechenmaschine basierend auf einer Staffelwalze, 

mit der alle vier Grundrechenarten ausgeführt werden konnten. Er präsen-
tierte seine Maschine, die heute im Landesmuseum Hannover ausgestellt 
ist, 1675 der Pariser Académie Royale des Sciences. Später stellte er Re-
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der Regel Einzelstücke waren, musste sich die Mehrheit der Forscher 
mit anderen Hilfsmitteln zufrieden geben. Um jedoch den ständig zu-
nehmenden Bedarf an Berechnungen, der allein auf Papier nicht mehr 
effizient durchführbar war, zu bewältigen, wurde seit dem Mittelalter 
eine Vielzahl von mathematischen Hilfsmitteln entwickelt. Sie basieren 
auf zwei Traditionen des Rechnens: Der numerischen Berechnung auf 
Basis des indisch-arabischen Ziffernsystems und auf der grafischen 
Konstruktion von Zahlen basierend auf geometrischen Verfahren.  
 
Für das Rechnen mit Zahlen wurden seit der Antike Hilfsmittel wie der 
Abakus, Rechensteine und Rechentücher benutzt. Als John Napier 1614 
eine neue Rechentechnik, die er Logarithmus nannte, in Europa einführ-
te, vereinfachte er damit das Rechnen mit Zahlen ganz entscheidend. 
Der Logarithmus ist die Umkehrung der Exponentialfunktion und er-
möglicht es, die Division auf Subtraktion und die Multiplikation auf 
Addition zurückzuführen.10 Bereits drei Jahre später veröffentlichte der 
Mathematiker Henry Briggs die ersten logarithmischen Tabellen, die er 
mit Hilfe von Napiers Rechenstäbchen berechnet hatte. Diese Tabellen 
ersparten die Mühe des Ausrechnens für einfachere Anwendungen und 
entwickelten sich zu weit verbreiteten Hilfsmitteln, die bereits hundert 
Jahre später zu Nachschlagewerken mit Millionen von Zahlen ange-
wachsen waren. Beispielsweise enthielt der Thesaurus Logarithmorum 
Completus von Juri Vega Mitte des 18. Jahrhunderts bereits mehr als 
zwei Millionen Zahlen (vgl. Whittaker, Robinson 1967). Zehn Jahre 
nach Napires Einführung des Logarithmus entwickelte der Mathemati-
ker Edmund Gunter eine logarithmisch angeordnete Skala, die auf einen 
Stab übertragen den bis dahin einfachen Rechenschieber als mechani-
sches Hilfsmittel weiter- entwickelte. Dabei wurden zwei Skalen auf 
zwei Stäben so angeordnet, dass man sie gegeneinander verschieben und 
Berechnungen ausführen konnte (vgl. Gunter 1624, Mayer 1908). Loga-
                                                                                                                       

chenregeln für die Kalkulation mit Binärzahlen auf und entwarf einen me-
chanischen Digitalcomputer, den er jedoch nie baute (vgl. Leibniz 1703). 

10  Darüber hinaus sind Logarithmen geeignet, um Integrale und Gleichungen 
mit unbekannten Exponenten zu berechnen. 1614 publizierte John Napier 
seine Schrift Mirifici logarithmorum canonis descriptio ejusque usus in 
utraque trigonometria etc. und führte damit das Rechnen mit Logarithmen 
ein. Hilfsmittel wie Napiers Rechenstäbchen erleichterten das Rechnen per 
Hand erheblich (vgl. Bryden 1992; Gladstone-Millar 2003). Ohne diese 
neue Rechentechnik hätte Johannes Kepler seine Berechnungen des Mar-
sorbits, für die er vier Jahre benötigte, kaum zu seinen Lebzeiten schaffen 
können. Allerdings basierten Keplers Kenntnisse auf den Logarithmenta-
feln von Jost Bürgi, der diese parallel zu Napier entwickelt hatte. Kepler 
selbst schrieb 1611 ein Lehrbuch mit Tafeln, das 1624 unter dem Titel 
Chilias logarithmorum veröffentlicht wurde. 
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rithmische Tabellen und Rechenschieber gehörten bis Mitte des 20. 
Jahrhunderts zu den weit verbreitetsten mathematischen Hilfsmitteln, die 
in jedem Laboratorium und Ingenieurbüro zu finden waren, bevor elek-
tronische Computer und Taschenrechner die Vielfalt der Rechenmetho-
den und -instrumente eliminierte. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Abbildung 1: Logarithmische Spirale, logarithmischer Zirkel und 
logarithmischer Rechenschieber (Mayer 1908: 99, 102, 22)11 

 
Eine ganz andere Methode, Berechnungen per Hand auszuführen, war das 
grafische Rechnen. Mit Zirkel, Lineal, Maßstab und anderen Zeichengerä-
ten wurden reelle Zahlengrößen durch Strecken dargestellt. Neben der 
geometrischen Addition, Subtraktion, Multiplikation und Division ließen 
sich grafisch auch das Potenzieren und Radizieren ausführen. Im Laufe 
der Zeit entwickelten sich immer komplexere mechanische Apparate, um 
anspruchsvollere Rechenoperationen zu lösen. Es entstanden ästhetische 
Konstruktionen wie die logarithmische Spirale (s. Abbildung 1), die zum 
Radizieren von Quadratwurzeln diente und bereits von René Descartes 
und Jakob Bernouli untersucht wurde (vgl. Archibald 1918). Das grafi-

                                              
11  Das Deutsche Museum in München verfügt über eine der umfangreichsten 

Sammlungen mathematischer Instrumente weltweit. 
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sche Rechnen basierte auf der Verschmelzung von Geometrie und Alge-
bra durch Descartes und brachte faszinierende Bilder hervor, welche die 
Ästhetik mathematischer Strukturen sichtbar machte. Diese Ästhetik der 
Mathematik hat bis heute nichts von ihrer Faszination verloren.  
 Trotz der Vielzahl verschiedener Methoden ließ sich das Rechnen 
bis Mitte des 20. Jahrhunderts nur teilweise an Maschinen und Hilfsmit-
tel delegieren. Nichtsdestotrotz wurden Berechnungen zum Motor wis-
senschaftlicher und technischer Entwicklung, seit die Astronomen des 
Mittelalters mathematische Strukturen auf Naturvorgänge übertragen 
hatten. Allerdings widerspricht die damals angewandte Mechanik des 
Rechnens unserem heutigen Verständnis von Exaktheit. Grafische und 
logarithmische Rechenmethoden waren Näherungsverfahren. Die Ex-
aktheit der Berechnungen war durch die Rechenmethoden, die Mechanik 
der Hilfsmittel und die Erfahrung des rechnenden Wissenschaftlers oder 
Ingenieurs begrenzt. Rechnen war ein Handwerk, dessen Güte an die 
taktile Geschicklichkeit und sinnliche Wahrnehmung gebunden war. 
„Die Benutzung des Rechenschiebers erfordert die richtige Schätzung 
von Abständen und da bildet ein Abstand von 0,1 mm etwa die Grenze 
des mit bloßem Auge Erkennbaren. Beim Einstellen oder Ablesen einer 
Zahl wird also ein mittlerer Längenfehler von 0,1 mm zu erwarten sein“ 
(Runge/König 1924: 11).12 Allerdings ließen sich „bei großer Übung 
und langsamerem Rechnen […] die Genauigkeitsergebnisse selbstredend 
bedeutend steigern. […] Andererseits muß sich der weniger Geübte mit 
schlechteren Resultaten begnügen“ (Mayer 1908: 34). Die fortschreiten-
de Entwicklung in Wissenschaft und Technik ließ jedoch nicht nur den 
Bedarf an Rechenpersonal immens steigen, sie erforderte auch immer 
exaktere Berechnungen. Daher lag die Idee einer Maschine in der Luft, 
die „[exact] algebraic patterns, just as the Jacquard-loom weaves flowers 
and leaves“ (Lovelace 1842) erzeugen konnte, als Charles Babbage 1822 
die Konstruktion seiner Difference Engine und später der komplexeren 
Analytical Engine begann. Motiviert wurde er durch die hohe Fehler-
quote in den logarithmischen Tabellen. „I am thinking that all these ta-
bles (pointing to the logarithms) might be calculated by machinery“ 
(Babbage 1989: 30, 31). Sein Konzept kam dabei den Entwürfen moder-
ner Computer erstaunlich nahe: Babbage konzipierte mit der Analytical 
Machine einen frei programmierbaren Rechner, der zwischen Daten und 
Programm unterschied, und der über die 1805 von Joseph-Marie Jac-
quard für Webstühle entwickelten Lochkarten programmiert werden 

                                              
12  Die Genauigkeit der graphischen Methoden basierte auf der Erkennbarkeit 

der markierten Koordinaten. Die Exaktheit der Logarithmen wurde durch 
die Länge der Rechenschieber begrenzt, der durchschnittlich siebenund-
zwanzig Zentimetern lang war und zu einem Fehler von 1/1250 führte.  
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sollte, wie es für die Digitalrechner bis in die 1960er Jahre üblich war. 
1843 schrieb Ada Lovelace den ersten maschinentauglichen Algorith-
mus für Babbages Rechner. Aufgrund der Begrenzungen der Feinme-
chanik seiner Zeit konnte Babbage die Analytical Machine jedoch nie 
bauen und es gelang ihm auch nur drei Exemplare der Difference Engine 
zu realisieren, die jedoch alle nicht funktionstüchtig waren.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Abbildung 2: Werbung für eine Rechenmaschine, 
um 1900 (Mayer 1908: Anhang) 

 
Es waren also nach wie vor einfachere Rechenmaschinen, wie in Abbil-
dung 2 dargestellt, die für den alltäglichen Rechenbedarf an Grundre-
chenarten eingesetzt wurden. Im 18. Jahrhundert noch als Einzelexem-
plare in Handwerksbetrieben gebaut, entwickelte sich im 19. Jahrhundert 
eine blühende Industrie für mathematische Geräte. Beispielsweise pro-
duzierten die Thomas Werkstätten in Colmar mit dem Arithmometer den 
ersten mechanischen Tischrechner in Serie und lieferten bis 1878 welt-
weit mehr als 1.500 Stück davon aus. Damit versorgten sie die wachsen-
den Armeen menschlicher Rechner in den Rechensälen des Militärs, der 
Forschung und der Wirtschaft. Der Beruf des Computers war nicht nur 
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ein Handwerksberuf. Das Rechnen war als arbeitsteilige Tätigkeit ein 
mechanischer Vorgang geworden, ähnlich der Fließbandarbeit eines 
Arbeiters in den aufkommenden Fabriken. „One eighteenth-century 
computer remarked that calculation required nothing more than ‚p serv-
ing industry and attention, which are not precisely the qualifications a 
mathematician is most anxious to be thought to posses’. It might be best 
described as ‚blue-collar science’“ (Grier 2005: 4, 5). Heute sind vor 
allem die weiblichen Computer der Moore School of Engineering der 
Universität von Pennsylvania bekannt, die während des Zweiten Welt-
kriegs Tabellen für Raketenbahnen berechneten. An eben demselben Ort 
wurde 1946 ENIAC Electronic Numerical Integrator and Computer, 
einer der ersten elektronischen Computer, gebaut. Nicht nur der steigen-
de Rechenbedarf oder die Absicht, den Menschen die eintönige Arbeit 
des Rechnens abzunehmen, waren ausschlaggebend für die forcierten 
Bemühungen, Computer zu bauen. Es waren ökonomische Gründe, die 
für eine Automatisierung sprachen:  
 
“It seems that the [SSEC Self-Sequencing Electronic Computer von IBM] 
machine could be rented this fall for several weeks,“ schrieb der Computerpi-
onier John von Neumann 1948. “The price is likely to be $300-$400 per hour 
of actual computing time. Regarding this price the following should be said: 
The machine multiplies (two 14 decimal digit numbers) in 20 msec. In parallel 
with this, it consumes 20 msec in sensing and obeying any kind of order. My 
judgment is that it takes 3 to 4 orders to ‚administer’ a multiplication. Hence it 
is reasonable to allow about 70 msec, or with checking 140 msec per multipli-
cation. This amounts to 7 multiplications per second, that is, 25.000 per hour. 
At $350 per hour, this is 1.4 cents per multiplication. In a human computing 
group a (10 decimal digit) multiplication (with a ‚Friden’ or ‚Merchant’) takes 
about 10 sec. […] Allowing $50 per computer-week and a factor 2 for general 
overheads, this gives 12.5 cents per multiplication. Hence, the SSEC is, at 
these prices, 12.5/1.4 = 9 times cheaper than a human computer group“ (von 
Neumann 1948/1963: 665).13 
 
Es ist diese Automatisierung des Rechnens, die den Anfang vom Ende 
des Rechnens per Hand, des Berufs des Computers und einer Fülle alter-
nativer Rechenmethoden und Hilfsmittel markierte. 
 
 
 
                                              
13  Die Friden wurde in den 1930er Jahren von Carl M. Friden entwickelt und 

von der Friden Calculating Machine Co., Inc. in den USA vertrieben. Die 
Marchant war ein Tischrechner der Marchant Calculating Machine Com-
pany, der 1911 erstmals vertrieben wurde. 

re
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Automat isierung des Rechnens 
 
Die Entwicklungen des 17. Jahrhunderts hatten einen wachsenden Ein-
fluss der Formalisierung und Mechanisierung auf Wissenschaft, Technik 
und Alltag zur Folge. Algorithmen, Kalküle, mechanische Instrumente, 
aber auch die Idee der industriellen, arbeitsteiligen Produktion stehen im 
Zeichen der regelbasierten Ordnung von Aktivitäten.14 Ohne Formalisie-
rung ist Mechanisierung nicht denkbar (vgl. Krämer 1988, 1991). Be-
reits 1637 stellte René Descartes in seiner Schrift Von der Methode des 
richtigen Vernunftgebrauchs und der wissenschaftlichen Forschung da-
für die Regeln auf: „Niemals eine Sache als wahr anzuerkennen, von der 
ich nicht evidentermaßen erkenne, dass sie wahr ist […] Jedes Problem, 
das ich untersuchen würde, in so viele Teile zu teilen, wie es angeht und 
wie es nötig ist, um es leichter zu lösen […] Mit den einfachsten und am 
leichtesten zu durchschauenden Dingen zu beginnen, um so nach und 
nach, gleichsam über Stufen, bis zur Erkenntnis der zusammengesetztes-
ten aufzusteigen, ja selbst in Dinge Ordnung zu bringen, die natürli-
cherweise nicht aufeinander folgen […] Überall so vollständige Aufzäh-
lungen und so allgemeine Übersichten auszustellen, daß ich versichert 
wäre, nichts zu vergessen“ (Descartes 1637/1960: 15, 16). Damit skiz-
zierte Descartes das Vorgehen der neuzeitlichen Wissenschaft, indem sie 
in analytischer Weise alle Probleme in Teilprobleme und alle Lösungen 
in Lösungsschritte zerlegt. Das derart gewonnene und dargestellte Wis-
sen, so die Hoffnung Descartes, würde für jedermann nachvollziehbar, 
wiederholbar und überprüfbar sein. Mit seiner Methode, die er der geo-
metrischen Beweisführung entlehnte, sollten alle geometrischen und 
algebraischen Probleme lösbar seien, solange man diesen Regeln folgte. 
Jedes Kind könne, falls es die Regeln befolge, solche Probleme lösen: 
Warum nicht auch eine Maschine? 
 Descartes Methode basierte zwar auf einem mechanisierbarem Kon-
zept des Problemlösens und damit auch des Rechnens, tatsächlich aber 
war die praktikable Delegation einer breiten Fülle von Problemlösungen 
an Maschinen mit dem damaligen Verständnis von algorithmischem, 
also regelbasiertem Problemlösen nicht möglich. Descartes Vorschlag 
erinnert heute eher an vage Kochrezepte als an maschinentaugliche Al-
gorithmen. Tatsächlich dauerte es weitere zweihundert Jahre bis die Ma-
thematikerin Ada Lovelace eine erste Maschinenanweisung für die von 

                                              
14  Beispielsweise wäre Adam Smiths Werk The Wealth of Nations von 1776 

ohne die Formalisierung und Mechanisierung von Abläufen nicht denkbar. 
Im 18. und 19. Jahrhundert kommt es zu einer regelrechten Normierungs- 
und Quantifizierungswut, die bis heute anhält (vgl. Porter 1988, 1996; 
Poovey 1998; Star, Bowker 2000). 
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Charles Babagge konzipierte, aber niemals gebaute Analytical Engine 
formulierte. 1843 schrieb sie: „I want to put in something about Ber-
noullis Numbers [...] as an example of how an implicit function may be 
worked out by the engine, without having been worked out by human 
head and hand“ (Lovelace 1843). Bis zum Beginn des 20. Jahrhunderts 
blieben Rechenmaschinen jedoch rein mechanische Geräte. Ihre Mecha-
nik war mit den Operationen, die sie ausführen konnten, identisch. Oder 
in anderen Worten: Die Hardware war zugleich die Software. Beispiels-
weise basierte der Arithmometer auf einer Staffelwalze, die bereits 1627 
von Leibniz erfunden worden war (vgl. Leibniz 1703). Die Verteilung 
der Zähne auf der Staffelwalze entsprach den mathematischen Operatio-
nen, welche die Maschine ausführen konnte. Doch über die vier Grund-
rechenarten kamen diese mechanischen Rechenmaschinen nie hinaus.15 
Daher bedurfte es anderer Hilfsmittel, um komplexe Operationen wie 
das Wurzelziehen oder das Lösen anspruchsvoller Gleichungen in einer 
einzigen Maschine zu automatisieren.  
 
Diese Revolution des maschinellen Rechnens begann mit einem Gedan-
kenexperiment des Mathematikers Alan Turing zur Frage, was ein Algo-
rithmus denn genau sei. Turing gab keine Definition eines Algorithmus, 
sondern er konzipierte 1936 eine ideelle Maschine, die den Prozess des 
Schreibens selbst mechanisierte (vgl. Turing 1936; Church 1936). „Tu-
ring greift dazu auf seine Schulzeit zurück und beschreibt den Vorgang 
des Rechnens als Notieren von Zahlen nach festen Regeln in den Re-
chenkästchen karierter Schulhefte. Dies ist ein völlig mechanischer Pro-
zeß, und Turing beschreibt ihn deshalb angemessen im Modell einer 
programmierten Maschine, der Turing-Maschine“ (Coy 1994: 71). Die 
Turing-Maschine sollte Zeichen schreiben, lesen und löschen können, 
indem sie sich nach den Anweisungen eines Programms entlang eines 
Papierbandes von einem Feld zum nächsten bewegte. Jede Anweisung 
musste derart formuliert sein, dass sie schrittweise ausgeführt werden 
konnte. Dabei war das Ziel, eine Ausgangskonfiguration von Zeichen in 
endlich vielen Feldern in eine neue Konfiguration zu überführen. „If at 
each stage the motion of a machine [...] is completely determined by the 
configuration, we shall call the machine an ‚automatic machine’ (a-
machine)“ (Turing 1936/1964: 118). Turing behauptete, dass jeder Algo-

                                              
15  Eine Ausnahme bilden mechanische Rechenmaschinen, die eine bestimm-

te Gleichung lösen konnten, beispielsweise zur Berechnung der Gezeiten. 
Als einzige frei programmierbare, mechanische Rechenmaschine kann 
Vannevar Bushs Differential Analyzer gelten, den er zwischen 1928 und 
1932 am Massachusetts Institute of Technology entwickelte (vgl. Bush 
1936). 
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rithmus, der diesen Regeln folgt, berechenbar und daher von einer frei 
programmierbaren Maschine ausführbar sei. Mit dem Konzept der Tu-
ring-Maschine spezifizierte er Descartes Regeln von 1637, wie ein Pro-
blem zu analysieren und zu lösen sei, und er verschob die Problematik, 
eine frei programmierbare Rechenmaschine zu bauen, von der Hardware 
auf die Software. Die Hardware musste lediglich in der Lage sein, in 
normierter Weise mit Symbolen umzugehen und diese gemäß einem 
Programm regelbasiert zu manipulieren. Doch Turings Idee einer a-
Machine und Babbages Analytical Engine existierten lediglich auf dem 
Papier. Solange kein geeignetes Medium für die Ausführung unter-
schiedlichster Symboloperationen gefunden war, ließen sich diese 
Papiermaschinen nicht in die Realität umsetzen. Erst als die Mechanik 
durch Elektrik und später Elektronik ersetzt wurde, gelang es, solche frei 
programmierbaren Maschinen zu bauen. Führte die erste Medienwende 
von der Räumlichkeit der Zähl- und Rechenobjekte auf die Ebene des 
Papiers, so transformierte die zweite Medienwende die Statik des 
Papiers in das fluide Medium des Stroms. Der Computer als symbolver-
arbeitende Maschine simuliert dabei den Prozess des Schreibens selbst. 
Was geschrieben wird, hängt vom Programm ab. Doch erst in den 
1940er Jahren begann die Geschichte der tatsächlich gebauten Computer 
mit Rechnern, die so groß waren, dass sie Maschinenhallen füllten: 1938 
stellte Konrad Zuse seine Z1 und 1941 seine Z3 fertig, 1942 bauten John 
Atanasoff und Clifford Berry den ABC Computer sowie Howard H. 
Aiken Mark I, gefolgt von Tommy Flowers Colossus 1944, John 
Mauchlys und Presper Eckerts ENIAC 1946 und dem SSEC Rechner 
von IBM 1948 (vgl. Campbell-Kelly/Aspray 1996; Ceruzzi 1998; Ifrah 
2001). Diese ersten Großrechner kamen ohne Software, Bildschirme 
oder Drucker aus. Sie konnten jedoch mehrere Operationen pro Sekunde 
ausführen, weshalb sie bald als Elektronengehirne bezeichnet wurden. 
Die Programmierung dieser Großrechner war schweißtreibende Arbeit. 
Für ENIAC beispielsweise, der aus 18.000 Vakuumröhren bestand, 
mussten Tausende von Steckverbindungen verkabelt werden. „Setting 
up the ENIAC meant plugging and unplugging a maze of cables and 
setting arrays of switches. In effect, the machine had to be rebuilt for 
each new problem it was to solve“ (Ceruzzi 1998: 21). Die Programmie-
rer befanden sich buchstäblich in Mitten der Computer, die nicht annä-
hernd die Leistungsfähigkeit eines heutigen Mikrochips hatten. Auch 
Computerbugs waren noch echte Käfer, die Kurzschlüsse verursachten. 
Grace Hopper, die erste Programmiererin des Harvard Computers Mark 
I, fand im September 1945 eine Motte in einer der Vakuumröhren und 
schrieb in das Entwicklungslogbuch: “First actual case of bug being 
found“ (Hopper 1945). Doch im Laufe der Jahre wurden die Rechner 
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nicht nur schneller und einfacher in ihrer Bedienung, ihre Verbreitung 
nahm rapide zu. Bereits in den frühen 1960er Jahren waren weltweit 
Computer im Wert von rund 100 Millionen Dollar installiert. Automati-
sierung, Planung und Prognose industrieller Prozesse beanspruchten da-
bei die meiste Rechenzeit. 1969 eroberte die NASA mit einem IBM Sys-
tem/360 Großrechner, der 10.000 Operationen pro Sekunde ausführte, 
den Mond, und 2001 entschlüsselten Supercomputer das menschliche 
Genom. Die Supercomputer der TOP-500 Liste der weltweit schnellsten 
Rechner okkupieren nach wie vor hallengroße Gebäude und haben eige-
ne Namen wie BlueGene/L‚ Earth Simulator, Red Storm, Frontier, Mare 
Nostrum oder Thunderbird (vgl. TOP-500 2008). Diese Number Crun-
cher führen Billionen von Operationen pro Sekunde aus und stoßen mitt-
lerweile an ihre physikalischen Grenzen. Ein Vergleich zwischen frühen 
und aktuellen Computern zeigt: Wofür der Earth Simulator, von Juni 
2002 bis Juni 2004 schnellster Rechner der Welt, sechs Tage Berech-
nungszeit benötigt, hätte einen Cray-1 Computer, schnellster Rechner 
des Jahres 1978, mehr als sieben Millionen Jahre beschäftigt. Menschli-
che Rechner müssten dafür bis in alle Ewigkeit rechnen. Diese Rechen-
kapazitäten werden heute nicht nur für die Automatisierung, die Planung 
oder den Betrieb von Benutzersoftware benötigt, sie werden hauptsäch-
lich für die Ausführung numerischer Simulationen gebraucht. Neben 
allen Veränderungen, die der Computer für Wissenschaft und Technik in 
der Vergangenheit mit sich brachte, ist es die Entwicklung und Nutzung 
numerischer Simulationen, die Wissenschaft und Technik aktuell grund-
legend revolutionieren. Numerische Simulationen erlauben es, auf Basis 
von Berechnungen Computerexperimente durchzuführen, in die Zukunft 
zu prognostizieren und die Natur zu optimieren – vorausgesetzt die Na-
tur verhält sich wie die berechenbare Mechanik eines exakten Uhrwerks. 

 
 

Numerische Simulat ion unbekannter  Lösungen 
 
Als Isaac Newton und Gottfried Wilhelm Leibniz Ende des 17. Jahrhun-
derts die Differentialrechnung erfanden und damit das Rechnen mit Un-
endlichkeiten operationalisierten, hatten sie sich sicherlich keine Vor-
stellung davon, welchen gewaltigen Einfluss ihre Entwicklung auf Wis-
senschaft, Technik und Alltag haben würde.16 War die Beherrschung des 
Nichts die herausragende intellektuelle Leistung des frühen Mittelalters, 
so stellte die Beherrschung des Unendlichen die maßgebliche Leistung 
                                              
16  Eine ausführliche Darstellung der Entwicklung des Differentialkalküls 

wird im nächsten Kapitel im Abschnitt Mathematisierung und Momentum 
gegeben. 
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am Übergang zur Neuzeit dar. Die Operationalisierung beider Konzepte 
mit Hilfe von Symbolen und Rechenregeln erlaubt es Wissenschaftlern 
und Ingenieuren, die Entwicklung von Prozessen in Raum und Zeit ma-
thematisch zu beschreiben. Das Differentialkalkül ist dabei die maßgeb-
liche Methode, um die Bewegung und Dynamik eines Geschehens dar-
zustellen. Es nimmt Bezug auf die neuzeitliche Idee einer Welt, die wie 
die Mechanik eines exakten Uhrwerks funktioniert. 1814 formulierte 
Pierre-Simon de Laplace optimistisch: „Wir müssen also den gegenwär-
tigen Zustand des Weltalls als die Wirkung seines früheren Zustandes 
und andererseits als die Ursache dessen, der folgen wird, betrachten. 
Eine Intelligenz, welche für einen gegebenen Augenblick alle Kräfte, 
von denen die Natur belebt ist, sowie die gegenseitige Lage der Wesen, 
die sie zusammen setzen, kennen würde, und überdies umfassend genug 
wäre, um diese gegebenen Grössen einer Analyse zu unterwerfen, würde 
in derselben Formel die Bewegungen der grössten Weltkörper wie die 
des leichtesten Atoms ausdrücken: nichts würde für sie ungewiss sein 
und Zukunft wie Vergangenheit ihr offen vor Augen liegen. Der 
menschliche Geist bietet in der Vollendung, die er der Astronomie zu 
geben gewusst hat, ein schwaches Bild dieser Intelligenz“ (de Laplace 
1814: Einleitung).  
 Das deterministische Wissenschaftsverständnis, wie es Laplace tref-
fend beschrieb, resultierte aus der Entdeckung der Naturgesetze durch 
Galileo, Kepler und Newton: 1590 hatte Galileo das Gesetz der fallen-
den Körper formuliert, 1609 beschrieb Kepler das Gesetz der Planeten-
bewegung und 1687 verfasste Newton die drei fundamentalen Gesetze 
der Bewegung.17 Basierend auf diesen Gesetzen wurde für die Wissen-
schaft das Verhalten der Natur in Form von Bewegungsgleichungen be-
schreibbar, und damit berechenbar und vorhersagbar. Im Kontext dieser 
mechanistischen Auffassung wurde Bewegung als Änderungsrate von 
Quantitäten im Verhältnis zu anderen Quantitäten artikuliert (dx/dy). 
Diese Verhältnisse lassen sich mit Differentialen auf Papier schreiben 
oder als Kurven grafisch darstellen. Zahlreiche mathematische Modelle 
wissenschaftlicher Sachverhalte basieren seither auf Differentialglei-
chungen. Um diese Modelle zu berechnen, müssen aus den Gleichungen 
Lösungsfunktionen analytisch abgeleitet werden, die dann das Verhalten 
des realweltlichen Systems für jeden Moment beschreiben. Berechnen 
ist hier algebraisch, als Umformung von Gleichungen in allgemein gül-
tige exakte, d.h. für alle Raum- und Zeitpunkte geltende Lösungsfunk-

                                              
17  Galileo formulierte 1590 in De motu antiquiora die Fallgesetze, Kepler 

beschrieb 1609 in Astronomia Nova die Bewegung der Planeten auf elipti-
schen Bahnen und Netwon postulierte 1687 in seinem Werk Philosophiae 
Naturalis Principia Mathematica die Bewegungsgesetze.  
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tionen, zu verstehen. Indem Zahlwerte in die Lösungsfunktion eingesetzt 
werden, lassen sich diese dann für konkrete Problemstellungen nume-
risch berechnen und in die Zukunft extrapolieren. Auf diese Weise wer-
den die Umlaufbahnen von Planeten, die ballistischen Kurven von Ka-
nonenkugeln oder der Landeanflug einer Marssonde berechen- und vor-
hersagbar. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbildung 3: Berechnungsgitter für die numerische Simulation der 

Strömung um ein Flugzeu, (SCAI Report 1998: 16) 
 
Eines der wichtigsten Differentialgleichungssysteme der Wissenschaft 
sind die Navier-Stokes-Gleichungen, die in Form nicht-linearer Diffe-
rentialgleichungen zweiter Ordnung das Strömungsverhalten von Flüs-
sigkeiten und Gasen beschreiben. Diese Gleichungen der Strömungsme-
chanik finden in der Meteorologie, der Physik und der Technik eine 
breite Anwendung und gehen auf die Arbeiten der Physiker Claude-
Louis Navier und George Gabriel Stokes Mitte des 19. Jahrhunderts zu-
rück (vgl. Navier 1822, Stokes 1845). Das Problem der Strömungsdy-
namik ist jedoch, dass diese Gleichungen nur für stark idealisierte Rand-
bedingungen analytisch lösbar sind, beispielsweise für langsam fließen-
de Flüssigkeiten in einem geraden Rohr ohne Reibung und Hindernisse. 
Soll jedoch die Strömung für realistischere Randbedingungen wie Hin-
dernisse in der Strömung, raue Oberflächen oder geknickte Rohre be-
rechnet werden, dann werden die Gleichungen zu komplex, um sie ana-
lytisch lösen zu können. Dies bedeutet, dass sich keine Lösungsfunktion 
aus den Gleichungen ableiten lässt, dass man die exakte Lösung also 
nicht kennt. Diese komplexen, aber analytisch unlösbaren Gleichungen 
sind jedoch für viele Bereiche der Wissenschaft und Technik unver-
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zichtbar, soll das Wetter von Morgen, die Klimaentwicklung der nächs-
ten Jahrzehnte oder die Strömung um einen Flugzeugflügel berechnet 
werden.  

 Die mathematische Alternative zur analytischen Lösung ist nun die 
numerische Simulation der Gleichungen. Dabei wird keine exakte Lö-
sungsfunktion algebraisch abgeleitet, sondern die Variablen der Glei-
chung werden numerisch berechnet. Möglich wird dies, indem die Glei-
chungen mit numerischen Werten – Zahlenwerte, die meist aus Messun-
gen stammen – initialisiert und von Zeitschritt zu Zeitschritt für einzelne 
Berechnungspunkte, wie in Abbildung 3 dargestellt, berechnet werden. 
Dabei liegt der numerischen Simulation die Idee zugrunde, dass je höher 
die Auflösung der raum-zeitlichen Berechnungen ist – also je dichter das 
Netz an Berechnungspunkten und die Anzahl der Zeitschritte wird – des-
to mehr nähert sich die approximierte Lösung der exakten, aber unbe-
kannten Lösung an. Die Simulation simuliert so zusagen numerisch die 
unbekannte algebraische Lösung. Simulationen sind daher immer nur 
Näherungsverfahren und sie gelten nur für den berechneten Raum-Zeit-
Ausschnitt auf Basis der gewählten Anfangswerte, mit welchen sie ini-
tialisiert wurden. Solche numerischen Simulationen können zwar für 
sehr grobe Berechnungsgitter und sehr einfache Gleichungen prinzipiell 
per Hand berechnet werden, so wie dies Lewis Fry Richardson in den 
1920er Jahren versuchte. Angesichts des enormen Rechenaufwandes für 
etwas komplexere Gleichungen und Randbedingungen sowie höhere 
Auflösungen bedarf es jedoch leistungsfähiger automatischer Rechen-
maschinen. Denn je feiner die Auflösung, aber auch je mehr Variablen 
und realitätsnahe Annahmen berücksichtigt werden, desto höher ist der 
Rechenaufwand. Beispielsweise werden heutige Klimamodelle global 
gerechnet, mit einer Auflösung von hundert Kilometern. Die Simulatio-
nen durchlaufen für diese Berechnungen allein für einen Zeitschritt be-
reits Millionen von Rechenoperationen. Selbst heutige Supercomputer 
benötigen einen ganzen Tag, um die Klimaentwicklung für drei Jahre zu 
simulieren, denn pro simuliertem Jahr müssen einige Quadrillionen Be-
rechnungen durchgeführt werden. Daher verwundert es nicht, dass es die 
neue Rechentechnik der Simulation ist, die von Beginn an die Compu-
terentwicklung angetrieben hat und dies bis heute tut. Anfangs aus mili-
tärischen Notwendigkeiten des zweiten Weltkrieges, aber bald danach 
aufgrund wissenschaftlicher, technischer und industrieller Erfordernisse. 
Was mit der Revolution des Rechnens und den mechanischen Rechen-
instrumenten im Mittelalter begann, hat sich mittlerweile zu komplexen 
Berechnungen auf Basis umfangreicher Simulationsmodelle und Num-
ber Crunchern enormen Ausmaßes entwickelt. Ziel dieser Berechnungen 
ist nichts weniger als die Natur in Form numerischer Computerexperi-
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mente zu optimieren und die Zukunft vorherzusagen. Doch diese Com-
puterexperimente bergen ein Problem in sich.  
 
Blickt man auf die historische Entwicklung des Rechnens zurück, so 
enthüllt sich der mechanistische und deterministische Blick der Wissen-
schaften auf die Welt. Dieser Blick wurde spätestens mit Newtons Werk 
Philosophiae Naturalis Principia Mathematica von 1687 in seinem vol-
len Ausmaß deutlich. Mit dieser Schrift verankerte er die Idee, nach der 
alles, was berechenbar ist, auch wissenschaftlich wahr ist. Motiviert 
wurde er dabei von Keplers Berechnung und erfolgreicher Vorhersage 
der Bahn zweier Planeten. Doch was als Newtons Traum von einem de-
terministischen und komplett berechenbaren Universums begann, wan-
delte sich zweihundert Jahre später in einen Alptraum. Der Mathemati-
ker Henri Ponicaré konnte 1889 in seiner Antwort auf die Preisfrage von 
Schwedens König Oskar II nach der Stabilität des Sonnensystems nach-
weisen, dass sich bereits ein Drei-Körper-System instabil und chaotisch 
verhalten kann und dass das Sonnensystem als Mehr-Körper-System 
irgendwann kollabieren würde (vgl. Poincaré 1891). 
 
„Würden wir die Gesetze der Natur und den Zustand des Universums für einen 
gewissen Zeitpunkt genau kennen, so könnten wir den Zustand dieses Univer-
sums für irgendeinen späteren Zeitpunkt genau voraussagen. Aber selbst wenn 
die Naturgesetze für uns kein Geheimnis mehr enthielten, können wir doch 
den Anfangszustand immer nur näherungsweise kennen. Wenn wir dadurch in 
den Stand gesetzt werden, den späteren Zeitpunkt mit dem selben Näherungs-
grade vorauszusagen, so ist das alles, was man verlangen kann; wir sagen 
dann: die Erscheinung wurde vorausgesagt, sie wird durch die Gesetze be-
stimmt. Aber es ist nicht immer so; es kann der Fall eintreten, dass kleine 
Unterschiede in den Anfangsbedingungen große Unterschiede in den späteren 
Erscheinungen bedingen; ein kleiner Irrtum in den ersteren kann einen außer-
ordentlich großen Irrtum für die letzteren nach sich ziehen. Die Vorhersage 
wird unmöglich und wir haben eine ‚zufällige Erscheinung’“ (Poincaré 
1908/1973: 56-57). 
 
Die Vorstellung eines instabilen Sonnensystems schockierte Poincarés 
Zeitgenossen zutiefst. Der strenge Determinismus Newtons, ein Univer-
sum, in dem sich alle Objekte in vorhersagbaren Bahnen bewegen, löste 
sich vor ihren Augen in Chaos auf und damit der Traum neuzeitlicher 
Wissenschaft, die Welt exakt berechnen und prognostizieren zu können. 
Wenn selbst kleine Unterschiede in den Anfangsbedingungen große 
Unterschiede in den späteren Erscheinungen bedingen konnten, so ließ 
das ungenaue Wissen über die Naturgesetze und Anfangszustände es 
nicht zu auf den Endzustand zu schließen. Dies stand konträr zur deter-
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ministischen Doktrin linearer Systeme, in welcher kleine Unterschiede 
in den Anfangsbedingungen ebenso kleine und vor allem genau bere-
chenbare Unterschiede in den späteren Erscheinungen bedingen. Das 
idealisierte Zwei-Körper-System mit perfekten Kugelplaneten, wie es 
Kepler für seine Planetenbahn berechnet hatte, verhielt sich linear, so-
lange es keinen störenden Einfluss gab. Ein Drei-Körper-System verhält 
sich durch den Einfluss des dritten Körpers bereits nicht mehr linear und 
damit, unter bestimmten Umständen, chaotisch. Exakte und damit siche-
re Prognosen sind für Drei-Körper-Systeme nicht möglich, da bereits 
jede Messung Ungenauigkeiten in sich birgt. Die Simulation des Wet-
ters, des Klimas oder von Molekülen beschreibt Systeme, die um ein 
Vielfaches komplexer sind. Die moderne Wissenschaft muss sich daher 
von der Idee einer exakt berechenbaren und vorhersagbaren Welt verab-
schieden, unabhängig davon wie leistungsfähig die Computer sind oder 
in Zukunft noch werden. Daraus folgt, dass Prognosen für komplexe 
Systeme prinzipiell von Unsicherheiten gekennzeichnet sind. Selbst 
wenn sich die Welt gemäß des strengen Determinismus eines Newton 
oder Laplace verhalten würde, die Wissenschaft könnte sie mit ihren 
mathematischen Modellen und schnellen Computern niemals exakt be-
rechnen.  
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