1 RECHNEN — MOTOR DER WISSENSCHAFT
UND TECHNIK

,,It took me the best part of six weeks to draw up the computing forms and to
work out the new distribution in two vertical columns for the first time. My
office was a heap of hay in a cold rest billet. With practice the work of an
average computer might go perhaps ten times faster. [...] If the coordinate
chequer were 200 km square in plan, there would be 3200 columns on the
complete map of the globe. In the tropics, the weather is often foreknown, so
that we may say 2000 active columns, so that 32x2000 = 64,000 computers
would be needed to race the weather for the whole globe. That is a staggering
figure* (Richardson 1922: 219).

Als Lewis Fry Richardson 1922 in seinem Buch Weather Prediction by
Numerical Process einen Parallelcomputer entwarf, um das Wetter der
nédchsten Tage zu simulieren, ging er von menschlichen Computern aus:
Jeweils ein Rechner sollte fiir die Kalkulationen eines Punktes des Be-
rechnungsgitters zusténdig sein. In seiner Wettervorhersagefabrik sollten
64.000 menschliche Computer per Hand die globale Wetterentwicklung
berechnen, in der Hoffnung, dass sie nicht nur schneller rechnen als das
tatsichliche Wetter sich entwickeln wiirde, sondern dass die Anzahl der
menschlichen Rechner gentigen wiirde, um eine ausreichend hohe Dich-
te an Berechnungen fiir aussagekriftige Prognosen zu erzielen. Denn je
feiner das Berechnungsgitter einer solchen numerischen Simulation ist,
desto genauer sind ihre Resultate. Eine hohere Auflosung des Berech-
nungsgitters geht jedoch mit einer enormen Erhéhung der dafiir notigen
Berechnungen einher. Selbst mit 64.000 menschlichen Rechnern hitte
Richardson seine Idee, das Wetter der nachsten Tage zu simulieren, wie
es uns heute aus jedem Wetterbericht vertraut ist, nicht realisieren kon-
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nen. Erst seit den 1970er Jahren, als die Computer entsprechend leis-
tungsfihig wurden, sind solche numerischen Prognosen moglich. Diese
Leistungsféhigkeit der Rechner, die aktuell bei Billionen von Operatio-
nen pro Sekunde liegt, erzeugt mittlerweile eine Dichte an Berechnun-
gen, die ausreicht, um den Computer als digitales Labor fiir Experimente
zu nutzen. Heutige Supercomputer halten nicht nur Schritt mit dem rea-
len Wetter, sie berechnen die Klimaentwicklung iiber einen Zeitraum
von Jahrzehnten innerhalb weniger Tage, sie designen neue Molekiile
und Materialien, lassen Flugzeuge und Autos crashen. Mit diesen auto-
matisierten Rechenmaschinen blicken Forscher in die Zukunft und opti-
mieren die Natur. Sie machen bislang unsichtbare Welten sichtbar und
fiihren eine neue Logik und Praktik des Forschens in Wissenschaft und
Technik ein. In diesem Sinne war Richardsons Idee visiondr, denn mit
seiner Wettervorhersagefabrik entwarf er — basierend auf numerischen
Simulationen, parallel arbeitenden Recheneinheiten und berechneten
Vorhersagen — ein modernes Wissenschaftsszenario, wie es heute in vie-
len mathematisierten Natur- und Ingenieurswissenschaften, den so ge-
nannten Computational Sciences, zu finden ist.

Rechnen als Kulturtechnik

Grundlage dieses modernen Wissenschaftsszenarios ist die Erfindung
der Zahl und des Rechnens. Die Entwicklung bis hin zu den numeri-
schen Simulationen von heute macht deutlich, dass das Rechnen cine der
einflussreichsten Kulturtechniken des Menschen ist." Zahlen spielen seit
Jahrtausenden in jeder Kultur eine wichtige Rolle, sei es zum Registrie-
ren von Waren, zur Bestimmung astronomischer Ereignisse oder zur
Dokumentation klimatischer RegelmdBigkeiten. Um Vorréte und andere
Wirtschaftsgiiter zu registrieren, wurden anfangs Zéhlsteine oder Zhl-

1, Kulturtechnik befordert die Leistungen der Intelligenz durch Versinnli-
chung und exteriorisierende Operationalisierungen des Denkens. [...] Kul-
turtechniken sind (1) operative Verfahren zum Umgang mit Dingen und
Symbolen, welche (2) auf einer Dissoziierung des impliziten ,Wissens
wie‘ vom expliziten ,Wissen, dass‘ beruhen, somit (3) als ein kérperlich
habitualisiertes und routiniertes Konnen aufzufassen sind, das in alltagli-
chen, fluiden Praktiken wirksam wird, zugleich (4) aber auch die aistheti-
sche, material-technische Basis wissenschaftlicher Innovation und neu-
artiger theoretischer Gegenstidnde abgeben kann. Die (5) mit dem Wandel
von Kulturtechniken verbundenen Medieninnovationen sind situiert in
einem Wechselverhiltnis von Schrift, Bild, Ton und Zahl, das (6) neue
Spielrdume fur Wahrnehmung, Kommunikation und Kognition eréffnet™
(Bredekamp, Kramer 2003: 18).
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kugeln verwendet, die in Lederbeuteln und spéter in versiegelten Tonge-
faBen aufbewahrt wurden. Als man begann, auf die Aullenseite der Ton-
gefédfle Zeichen fiir die Anzahl der Kugeln in den Gefiflen zu ritzen, hat-
te man die Zahlen als symbolische Darstellungen von Einheiten erfun-
den. Diese Abstraktionsleistung — materiale Aquivalente fiir Wirt-
schaftsgiiter (Zahlsteine und -kugeln) in symbolische Notationen zu
uibersetzen — stellte vor gut achttausend Jahren nicht nur eine Medien-
wende vom Materialen zum Symbolischen dar, sondern den Ursprung
von Schrift generell. Denn nachdem sich ,,die Verfahren des Zihlens
und des Referierens graphisch voneinander emanzipiert haben, spricht
jetzt in der Tat nichts mehr dagegen, Referenten, die nicht gezihlt wer-
den sollen, — auBlerhalb des pragmatischen Zwecks der Registrierung —
graphisch zu symbolisieren, also graphische Symbole fiir immer mehr
pragmatische Zwecke und fiir immer mehr sprachliche Zeichen zu ent-
wickeln“ (Koch 1997: 56).

Der ndchste fundamentale Schritt bestand dann in der Erfindung der
Zahlreihen. Indem einzelne Zeichen (Ziffern) aneinandergereiht wurden,
lieBen sich auf diese Weise neue Zahlen erzeugen.” Ziffernsysteme, wie
das romische, das sich in Europa im 5. Jahrhundert v. Chr. etablierte,
dokumentieren eindrucksvoll diese neue Moglichkeit, mit Symbolen
operativ zu hantieren: Mit wenigen Ziffern lésst sich eine grole Menge
an Zahlen erzeugen. Der Zahlenraum, der sich dadurch erdffnete, tiber-
stieg nicht nur die Anzahl alltdglicher Giiter. Er dehnte als Idee der
Konstruierbarkeit unendlich vieler Zahlen das menschliche Denken in
neue und abstrakte Bereiche aus, die in ihrer Unendlichkeit bis dahin
allein dem mythischen Denken vorbehalten waren. Diese Ausdehnung
ins Abstrakte, als das dem Gegenstéindlichen nicht Verhaftete und daher
ins Unendliche Verldngerbare, konstituiert bis heute den Objektbereich
der Mathematik.

Ziffernsysteme ermoglichen jedoch nicht nur die Konstruktion be-
liebig vieler Zahlen, sie animieren auch dazu, Anzahlen zu addieren oder
zu subtrahieren, also einfache Berechnungen durchzufiihren. Dabei zeig-
te sich bald die Unhandlichkeit des romischen Ziffernsystems, dessen

2 ,Seit dem 3. Jahrtausend v. Chr. sind uns Dokumente iiberliefert, aus
denen zu schlielen ist, daf verschiedene antike Hochkulturen unabhingig
voneinander Zdhlreihen durch Zihlsysteme bildeten, in denen nicht nur
ein und dasselbe Zeichen fortlaufend aneinandergefiigt, sondern Zeichen-
gruppen gebildet und diese durch Individualzeichen ersetzt wurden: die
Zihlreihe ist mit Hilfe von Ziffern gebildet™ (Krdmer 1988: 9).

19

httpe://dol.org/014361/9783839409862-001 - am 13.02.2026, 20:48:15. /de/s Access - [ IEmED



https://doi.org/10.14361/9783839409862-001
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

| HISTORISCHER KONTEXT

Zihlreihen sehr lang und daher uniibersichtlich werden konnten.” Um
mit romischen Ziffern rechnen zu kénnen, musste auf Hilfsmittel wie
Rechensteine, Rechenkugeln oder Rechenbretter zuriickgegriffen wer-
den. Diese Unhandlichkeit machte das Rechnen zu einer Kunst, die eine
entsprechende Ausbildung voraussetzte und die damit das Rechnen fiir
lange Zeit einer gebildeten Elite vorbehielt. Doch gesellschaftliche Ver-
anderungen im frithen Mittelalter, insbesondere militérische und 6ko-
nomische Entwicklungen, fithrten zu einem wachsenden Bedarf an Be-
rechnungen und lieBen das Rechnen mit rémischen Ziffern an seine
Grenzen stoen. Es bedurfte eines neuen Ziffernsystems, um das Rech-
nen effizienter und einfacher zu gestalten. Als Leonardo Fibonacci 1209
in seiner Schrift Liber Abaci das indisch-arabische Ziffernsystem in
Europa bekannt machte, fithrte er damit nicht nur ein neues Zeichensys-
tem ein, sondern transformierte das Rechnen vom Materialen ins Sym-
bolische. Aufgrund seiner Besonderheit mit nur wenigen Ziffern auszu-
kommen, erlaubte es das indisch-arabische Ziffernsystem, Berechnun-
gen im Medium der Ziffern selbst, also auf Papier auszufiihren und
machte dadurch Rechenbretter oder Rechensteine iiberfliissig. Damit
war die erste Medienwende vom Materialen zum Symbolischen — die
Jahrtausende zuvor mit der Ablosung von Zihlkugeln durch Zahlzeichen
begonnen hatte — abgeschlossen. Die zweite Medienwende, vom Papier
zum Computer, sollte gut achthundert Jahre spéter stattfinden.

Doch obwohl Fibonacci das indisch-arabische Ziffernsystem und das
Rechnen auf Papier bereits 1209 beschrieben hatte, dauerte es weitere
dreihundert Jahre, bis sich diese neue Kulturtechnik in Europa vollstin-
dig durchgesetzt hatte. Ein Grund dafiir war die Ziffer Null, die dem
romischen Ziffernsystem unbekannt war.! Die Null wurde in Indien be-
reits im 9. Jahrhundert als die Symbolisierung des Nichts eingefiihrt und
ermoglichte es, die bis heute giiltigen Rechenregeln der vier Grundre-
chenarten zu entwickeln. Das indisch-arabische Ziffernsystem konnte
dank der Null ein neues Prinzip der Konstruktion von Zahlen entwi-

3 Um die romischen Zahlen nicht beliebig lang werden zu lassen, mussten
Zahlen immer wieder zu Individualzeichen zusammengefasst werden: I
(1), V (5), X (10), L (50), C (100), D (500), M (1.000), etc.

4 Die Null symbolisiert das Nichts, das in Indien mit dem Nirwana gleich-
gesetzt eine positive Konnotation hatte, im christlichen Europa des Mittel-
alters jedoch negativ besetzt war. Trotz des heftigen Kampfes der katholi-
schen Kirche gegen die neue Rechenkunst gewannen das indisch-
arabische Zahlensystem und das Rechnen auf Papier aufgrund seiner Prak-
tikabilitdt zunehmend an Bedeutung. Populdre Rechenbiicher wie Rech-
nung auff der linihen von Adam Ries aus dem Jahr 1518 und Rechenschu-
len brachten die neue Kunst des Rechnens unter das Volk (vgl. Folkerts
1997; Menninger 1958).
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ckeln: das Stellenwertprinzip.® Dieses Prinzip besteht nicht in der endlo-
sen Aneinanderreihung von Zahlzeichen, die schlieBlich zu enorm lan-
gen Zahlendarstellungen fithrten wie mit romischen Ziffern. Das Stel-
lenwertprinzip basiert lediglich auf zehn Individualzeichen (0 bis 9),
wobei die Position der Zeichen — als Einer, Zehner, Hunderter, etc. — den
Wert einer Zahl erzeugt. Anstatt Zeichen aneinanderzureihen wird nun
die Konstruktion von Zahlen mit Hilfe eines Alphabets einiger weniger
Ziffern formalisierbar. Formalisierung ist immer dann gegeben, wenn
auf Basis endlich vieler Zeichen und expliziter Regeln beliebig viele
neue Zeichen hergestellt werden konnen, ohne dazu das Alphabet ver-
groflern zu miissen. Das romische Ziffernsystem basierte zwar auf einer
expliziten Regel, das Aneinanderreihen von Einheiten, aber die Indivi-
dualzeichen miissen erweitert werden, will man gréBere Zahlen konstru-
ieren. Im Unterschied dazu funktioniert das indisch-arabische Ziffern-
system, dank der Null und dem Stellenwertprinzip, wie eine ,symboli-
sche Maschine® (vgl. Krdmer 1988, 1991), die aus wenigen Komponen-
ten beliebig viele Variationen herstellen kann. Dies ist die Vorausset-
zung, um auch das Rechnen auf Papier formalisieren zu konnen.’ Dazu
muss jedoch die Flache des Papiers genutzt werden, indem man die zu
addierenden oder zu subtrahierenden Zahlen untereinander schreibt und
bei der senkrechten Spalte der Einer beginnend, von rechts nach links,
die Zahlenwerte zusammenzahlt oder voneinander abzieht. Diese Re-
chentechnik, heute jedem Schulkind vertraut, wurde 1209 von Fibonacci
erstmals in Europa demonstriert und spéter — als Rechnen auf der Linie
bezeichnet — durch Rechenmeister wie Adam Ries verbreitet (vgl. Ries
1518). Fibonacci selbst nutzte das neue Ziffernsystem, um die Folge der
so genannten Fibonacci-Zahlen zu studieren. Diese Folge entsteht, wenn
man eine Zahl mit der jeweils vorausgehenden Zahl addiert: 0, 1, 1, 2, 3,
5,8,13,21, 34, 55, 89, usf.

Das Rechnen mit natiirlichen Zahlen fiihrte jedoch schnell zu neuen
Zahlen. Bereits die Subtraktion einer grofleren von einer kleineren Zahl
sprengt den Raum natiirlicher Zahlen und dehnt ihn jenseits der Null in

5 ,,The world suffered long for lack of positional numeration, and for a
symbol for zero. Neither of these were invented by formalists. Both were
the product of instrumental analysis. They came as the direct and inevita-
ble result of the use of the abacus. [...] The mechanical fact that it [Aba-
kus] is convenient to mount rods or wires parallel to one another in a fra-
me produced the idea of positional numeration, and the necessity for no-
ting down complete absence of counters under such circumstances gave us
the zero” (Bush 1936: 650).

6 Beim Medienwechsel vom Papier zum Computer werden sich die zehn
Zeichen des indisch-arabischen Ziffernsystems (0 bis 9) auf zwei Zustiande
(0, 1 materialisiert als on/off) reduzieren.
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den Bereich negativer Zahlen aus. Dieser Ausdehnungsprozess setzt sich
mit der Division fort und spaltet die ganzen Zahlen in Teile auf, die sich
in einer neuen Unendlichkeit — zwischen zwei ganzen Zahlen eingebettet
(z.B. 1:3 = 0,33333...) — verlieren.” Was mit dem Registrieren von Wa-
rengiitern und Rechenkugeln im Konkreten begann, entwickelte sich ab
dem Mittelalter zu einer Kulturtechnik, welche die Zahlen und das
Rechnen von realweltlichen Beziigen ablgste. Das Rechnen verselbstéin-
digt sich zu einem rein formalen Prinzip und erhilt dadurch eine Auto-
nomie, welche die Mathematik bis heute in die Lage versetzt, die Zahlen
und Rechenoperationen in neue und immer abstraktere Bereiche zu er-
weitern. Dabei gelangt die Mathematik von den natiirlichen zu den gan-
zen Zahlen, von den rationalen und den reellen zu den komplexen Zah-
len, von Quaternionen und den hyperreellen zu den surrealen Zahlen
(vgl. Landau 1984).

Diese Autonomie der Zahlen und des Rechnens findet einen ersten
Hohepunkt bei Francois Vieta, der im 16. Jahrhundert die Algebra — das
Rechnen mit Buchstaben und Formeln — entwickelte (vgl. Klein 1992).
Gefolgt von René Descartes, der im 17. Jahrhundert Algebra und Geo-
metrie miteinander verkniipfte, indem er ein Koordinatensystem in die
Geometrie einfiihrte. Durch diese Metrisierung wurden die geometri-
schen Objekte berechenbar. In der Geometrie schrieb Descartes 1637:
,,und ich werde mich nicht scheuen, diese der Arithmetik entnommenen
Ausdriicke in die Geometrie einzufithren, um mich dadurch verstdndli-
cher zu machen® (Descartes 1637/1981: 1). Mit dieser Algebraisierung
der Geometrie bereitete Descartes sowohl der Anschaulichkeit der Geo-
metrie ein Ende, als auch ihrer Beweiskraft basierend auf der geometri-
schen Konstruktion. Der Beweis durch Konstruktion hatte seit Euklids
Werk Die Elemente 325 v. Chr. als Wissenschaftsideal gegolten, das bis
weit ins Mittelalter vorherrschte. Die griechische Mathematik, die auf
einem geometrischen Zahlenverstindnis und der axiomatisch-dedukti-
ven Methode der Beweisfithrung basierte, stellte Zahlen grafisch als
Strecken dar. Die Entdeckung der Inkommensurabilitdt zweier Strecken
als Verhiltnis einer Seite zur Diagonale eines Quadrats und die Folge-
rung, dass sich beide Strecken nicht wie rationale Zahlen zueinander
verhalten, stirkte die Vorrangstellung der Geometrie gegeniiber der
Arithmetik. Nichts Geometrisches durfte, so das Dogma der griechi-

7 ,JIm 16.und z.T. im 17. Jh. haben sich nicht nur die Briiche und irrationa-
len Zahlen, sondern auch die Null, die negativen und die komplexen Zah-
len in der Algebra durchgesetzt, und sie werden auch alle als Zahlen be-
handelt, d.h. man fiihrt mit ihnen die iiblichen Rechenoperationen durch*
(Gericke 1970: 68).
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schen Mathematik, durch die Arithmetik bewiesen werden.® Dies
schriankte jedoch den Bereich der Algebra erheblich ein, da Ausdriicke
wie a', die sich geometrisch nicht konstruieren lieBen, nicht zulissig
waren. Descartes analytische Geometrie hingegen erlaubte Ausdriicke
wie a*, die den dreidimensionalen Anschauungsraum sprengten und die
Konstruierbarkeit geometrischer Objekte durch ihre Berechenbarkeit
ersetzte. Damit sicherte er im Europa des 17. Jahrhunderts dem Rechnen
gegeniiber der Geometrie die Vorherrschaft. Fiir die Entwicklung der
neuzeitlichen und modernen Wissenschaft war diese Vorherrschaft der
Algebra von entscheidender Bedeutung.

Handwerk des Rechnens

1623 behauptete Galileo Galilei in seiner Schrift Saggiatore, dass das
Buch der Natur in der Sprache der Mathematik geschrieben sei. Doch
um dieses Buch entschliisseln zu konnen, bedurfte es langwieriger Be-
rechnungen per Hand. ,It is this,” konstatierte der Philosoph und
Mathematiker Gottfried Wilhelm Leibniz, ,.that deters them from com-
puting or correcting tables, from the construction of Ephemerides, from
working on hypotheses, and from discussions of observations with each
other. For it is unworthy of excellent men to lose hours like slaves in the
labour of calculation which could safely be relegated to anyone else if
machines were used” (Leibniz 1685, iibersetzt in: Goldstine 1993: 8).
Von daher verwundert es nicht, dass ein Kollege Keplers, der Astronom
Wilhelm Schickard 1623 die erste mechanische Rechenmaschine kons-
truierte, die alle vier Rechenarten ausfiihren konnte, wie er euphorisch in
Briefen an Kepler schrieb (vgl. Seck 1978). Allerdings wurde Schi-
ckards Maschine bei einem Feuer zerstort, so dass nur Konstruktions-
zeichnungen erhalten sind. Daher ist es die 1642 von Blaise Pascal ge-
baute Pascaline, die als erste funktionstiichtige Rechenmaschine in die
Geschichte einging, auch wenn sie nur die Addition und Subtraktion
beherrschte. Obwohl die Idee, mechanische Rechenmaschinen zu bauen,
seit dem 17. Jahrhundert die Wissenschaft beherrschte, konnte der
Traum vom mechanischen Rechnen bis ins 20. Jahrhundert nur fiir die
Grundrechenarten verwirklicht werden.’ Da solche Rechenmaschinen in

8 Dieser griechische Denkstil wird jedoch nicht strikt eingehalten und von
Mathematikern wie Diophant von Alexandrien durchbrochen.

9 Leibniz entwarf eine Rechenmaschine basierend auf einer Staffelwalze,
mit der alle vier Grundrechenarten ausgefiihrt werden konnten. Er présen-
tierte seine Maschine, die heute im Landesmuseum Hannover ausgestellt
ist, 1675 der Pariser Académie Royale des Sciences. Spiter stellte er Re-
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der Regel Einzelstiicke waren, musste sich die Mehrheit der Forscher
mit anderen Hilfsmitteln zufrieden geben. Um jedoch den stindig zu-
nehmenden Bedarf an Berechnungen, der allein auf Papier nicht mehr
effizient durchfithrbar war, zu bewiltigen, wurde seit dem Mittelalter
eine Vielzahl von mathematischen Hilfsmitteln entwickelt. Sie basieren
auf zwei Traditionen des Rechnens: Der numerischen Berechnung auf
Basis des indisch-arabischen Ziffernsystems und auf der grafischen
Konstruktion von Zahlen basierend auf geometrischen Verfahren.

Fiir das Rechnen mit Zahlen wurden seit der Antike Hilfsmittel wie der
Abakus, Rechensteine und Rechentiicher benutzt. Als John Napier 1614
eine neue Rechentechnik, die er Logarithmus nannte, in Europa einfiihr-
te, vereinfachte er damit das Rechnen mit Zahlen ganz entscheidend.
Der Logarithmus ist die Umkehrung der Exponentialfunktion und er-
moglicht es, die Division auf Subtraktion und die Multiplikation auf
Addition zuriickzufiihren.'® Bereits drei Jahre spiter veroffentlichte der
Mathematiker Henry Briggs die ersten logarithmischen Tabellen, die er
mit Hilfe von Napiers Rechenstidbchen berechnet hatte. Diese Tabellen
ersparten die Mithe des Ausrechnens fiir einfachere Anwendungen und
entwickelten sich zu weit verbreiteten Hilfsmitteln, die bereits hundert
Jahre spdter zu Nachschlagewerken mit Millionen von Zahlen ange-
wachsen waren. Beispielsweise enthielt der Thesaurus Logarithmorum
Completus von Juri Vega Mitte des 18. Jahrhunderts bereits mehr als
zwei Millionen Zahlen (vgl. Whittaker, Robinson 1967). Zehn Jahre
nach Napires Einfithrung des Logarithmus entwickelte der Mathemati-
ker Edmund Gunter eine logarithmisch angeordnete Skala, die auf einen
Stab iibertragen den bis dahin einfachen Rechenschieber als mechani-
sches Hilfsmittel weiter- entwickelte. Dabei wurden zwei Skalen auf
zwei Stiben so angeordnet, dass man sie gegeneinander verschieben und
Berechnungen ausfiihren konnte (vgl. Gunter 1624, Mayer 1908). Loga-

chenregeln fiir die Kalkulation mit Binérzahlen auf und entwarf einen me-
chanischen Digitalcomputer, den er jedoch nie baute (vgl. Leibniz 1703).

10 Dariiber hinaus sind Logarithmen geeignet, um Integrale und Gleichungen
mit unbekannten Exponenten zu berechnen. 1614 publizierte John Napier
seine Schrift Mirifici logarithmorum canonis descriptio ejusque usus in
utraque trigonometria etc. und fithrte damit das Rechnen mit Logarithmen
ein. Hilfsmittel wie Napiers Rechenstidbchen erleichterten das Rechnen per
Hand erheblich (vgl. Bryden 1992; Gladstone-Millar 2003). Ohne diese
neue Rechentechnik hitte Johannes Kepler seine Berechnungen des Mar-
sorbits, flir die er vier Jahre benétigte, kaum zu seinen Lebzeiten schaffen
konnen. Allerdings basierten Keplers Kenntnisse auf den Logarithmenta-
feln von Jost Biirgi, der diese parallel zu Napier entwickelt hatte. Kepler
selbst schrieb 1611 ein Lehrbuch mit Tafeln, das 1624 unter dem Titel
Chilias logarithmorum veroffentlicht wurde.
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rithmische Tabellen und Rechenschieber gehorten bis Mitte des 20.
Jahrhunderts zu den weit verbreitetsten mathematischen Hilfsmitteln, die
in jedem Laboratorium und Ingenieurbiiro zu finden waren, bevor elek-
tronische Computer und Taschenrechner die Vielfalt der Rechenmetho-
den und -instrumente eliminierte.

Abbildung 1: Logarithmische Spirale, logarithmischer Zirkel und
logarithmischer Rechenschieber (Mayer 1908: 99, 102, 22)"!

Eine ganz andere Methode, Berechnungen per Hand auszufiihren, war das
grafische Rechnen. Mit Zirkel, Lineal, Maf3stab und anderen Zeichengeré-
ten wurden reelle Zahlengréen durch Strecken dargestellt. Neben der
geometrischen Addition, Subtraktion, Multiplikation und Division lieBen
sich grafisch auch das Potenzieren und Radizieren ausfithren. Im Laufe
der Zeit entwickelten sich immer komplexere mechanische Apparate, um
anspruchsvollere Rechenoperationen zu 16sen. Es entstanden dsthetische
Konstruktionen wie die logarithmische Spirale (s. Abbildung 1), die zum
Radizieren von Quadratwurzeln diente und bereits von René Descartes
und Jakob Bernouli untersucht wurde (vgl. Archibald 1918). Das grafi-

11 Das Deutsche Museum in Miinchen verfiigt iiber eine der umfangreichsten
Sammlungen mathematischer Instrumente weltweit.
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sche Rechnen basierte auf der Verschmelzung von Geometrie und Alge-
bra durch Descartes und brachte faszinierende Bilder hervor, welche die
Asthetik mathematischer Strukturen sichtbar machte. Diese Asthetik der
Mathematik hat bis heute nichts von ihrer Faszination verloren.

Trotz der Vielzahl verschiedener Methoden lie sich das Rechnen
bis Mitte des 20. Jahrhunderts nur teilweise an Maschinen und Hilfsmit-
tel delegieren. Nichtsdestotrotz wurden Berechnungen zum Motor wis-
senschaftlicher und technischer Entwicklung, seit die Astronomen des
Mittelalters mathematische Strukturen auf Naturvorginge iibertragen
hatten. Allerdings widerspricht die damals angewandte Mechanik des
Rechnens unserem heutigen Verstindnis von Exaktheit. Grafische und
logarithmische Rechenmethoden waren Niaherungsverfahren. Die Ex-
aktheit der Berechnungen war durch die Rechenmethoden, die Mechanik
der Hilfsmittel und die Erfahrung des rechnenden Wissenschaftlers oder
Ingenieurs begrenzt. Rechnen war ein Handwerk, dessen Giite an die
taktile Geschicklichkeit und sinnliche Wahrnehmung gebunden war.
,Die Benutzung des Rechenschiebers erfordert die richtige Schétzung
von Abstinden und da bildet ein Abstand von 0,1 mm etwa die Grenze
des mit bloBem Auge Erkennbaren. Beim Einstellen oder Ablesen einer
Zahl wird also ein mittlerer Léangenfehler von 0,1 mm zu erwarten sein‘
(Runge/Konig 1924: 11)." Allerdings lieBen sich ,bei groBer Ubung
und langsamerem Rechnen [...] die Genauigkeitsergebnisse selbstredend
bedeutend steigern. [...] Andererseits muf} sich der weniger Geiibte mit
schlechteren Resultaten begniigen* (Mayer 1908: 34). Die fortschreiten-
de Entwicklung in Wissenschaft und Technik liel jedoch nicht nur den
Bedarf an Rechenpersonal immens steigen, sie erforderte auch immer
exaktere Berechnungen. Daher lag die Idee einer Maschine in der Luft,
die ,,[exact] algebraic patterns, just as the Jacquard-loom weaves flowers
and leaves® (Lovelace 1842) erzeugen konnte, als Charles Babbage 1822
die Konstruktion seiner Difference Engine und spéter der komplexeren
Analytical Engine begann. Motiviert wurde er durch die hohe Fehler-
quote in den logarithmischen Tabellen. ,,I am thinking that all these ta-
bles (pointing to the logarithms) might be calculated by machinery*
(Babbage 1989: 30, 31). Sein Konzept kam dabei den Entwiirfen moder-
ner Computer erstaunlich nahe: Babbage konzipierte mit der Analytical
Machine einen frei programmierbaren Rechner, der zwischen Daten und
Programm unterschied, und der iiber die 1805 von Joseph-Marie Jac-
quard fiir Webstiihle entwickelten Lochkarten programmiert werden

12 Die Genauigkeit der graphischen Methoden basierte auf der Erkennbarkeit
der markierten Koordinaten. Die Exaktheit der Logarithmen wurde durch
die Lange der Rechenschieber begrenzt, der durchschnittlich siebenund-
zwanzig Zentimetern lang war und zu einem Fehler von 1/1250 fiihrte.
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sollte, wie es fiir die Digitalrechner bis in die 1960er Jahre iiblich war.
1843 schrieb Ada Lovelace den ersten maschinentauglichen Algorith-
mus fir Babbages Rechner. Aufgrund der Begrenzungen der Feinme-
chanik seiner Zeit konnte Babbage die Analytical Machine jedoch nie
bauen und es gelang ihm auch nur drei Exemplare der Difference Engine
zu realisieren, die jedoch alle nicht funktionstiichtig waren.

Abbildung 2: Werbung fiir eine Rechenmaschine,
um 1900 (Mayer 1908: Anhang)

Es waren also nach wie vor einfachere Rechenmaschinen, wie in Abbil-
dung 2 dargestellt, die fiir den alltiglichen Rechenbedarf an Grundre-
chenarten eingesetzt wurden. Im 18. Jahrhundert noch als Einzelexem-
plare in Handwerksbetrieben gebaut, entwickelte sich im 19. Jahrhundert
eine blithende Industrie fir mathematische Geréte. Beispielsweise pro-
duzierten die Thomas Werkstétten in Colmar mit dem Arithmometer den
ersten mechanischen Tischrechner in Serie und lieferten bis 1878 welt-
weit mehr als 1.500 Stiick davon aus. Damit versorgten sie die wachsen-
den Armeen menschlicher Rechner in den Rechensilen des Militérs, der
Forschung und der Wirtschaft. Der Beruf des Computers war nicht nur

27

httpe://dol.org/014361/9783839409862-001 - am 13.02.2026, 20:48:15. /de/s Access - [ IEmED



https://doi.org/10.14361/9783839409862-001
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

| HISTORISCHER KONTEXT

ein Handwerksberuf. Das Rechnen war als arbeitsteilige Tatigkeit ein
mechanischer Vorgang geworden, #hnlich der FlieBbandarbeit eines
Arbeiters in den aufkommenden Fabriken. ,,One eighteenth-century
computer remarked that calculation required nothing more than ,preserv-
ing industry and attention, which are not precisely the qualifications a
mathematician is most anxious to be thought to posses’. It might be best
described as ,blue-collar science’ (Grier 2005: 4, 5). Heute sind vor
allem die weiblichen Computer der Moore School of Engineering der
Universitdt von Pennsylvania bekannt, die wihrend des Zweiten Welt-
kriegs Tabellen fiir Raketenbahnen berechneten. An eben demselben Ort
wurde 1946 ENIAC Electronic Numerical Integrator and Computer,
einer der ersten elektronischen Computer, gebaut. Nicht nur der steigen-
de Rechenbedarf oder die Absicht, den Menschen die eintdnige Arbeit
des Rechnens abzunehmen, waren ausschlaggebend fiir die forcierten
Bemiihungen, Computer zu bauen. Es waren 6konomische Griinde, die
fiir eine Automatisierung sprachen:

“It seems that the [SSEC Self-Sequencing Electronic Computer von IBM]
machine could be rented this fall for several weeks,” schrieb der Computerpi-
onier John von Neumann 1948. “The price is likely to be $300-$400 per hour
of actual computing time. Regarding this price the following should be said:
The machine multiplies (two 14 decimal digit numbers) in 20 msec. In parallel
with this, it consumes 20 msec in sensing and obeying any kind of order. My
judgment is that it takes 3 to 4 orders to ,administer’ a multiplication. Hence it
is reasonable to allow about 70 msec, or with checking 140 msec per multipli-
cation. This amounts to 7 multiplications per second, that is, 25.000 per hour.
At $350 per hour, this is 1.4 cents per multiplication. In a human computing
group a (10 decimal digit) multiplication (with a ,Friden’ or ,Merchant’) takes
about 10 sec. [...] Allowing $50 per computer-week and a factor 2 for general
overheads, this gives 12.5 cents per multiplication. Hence, the SSEC is, at
these prices, 12.5/1.4 = 9 times cheaper than a human computer group* (von
Neumann 1948/1963: 665)."

Es ist diese Automatisierung des Rechnens, die den Anfang vom Ende
des Rechnens per Hand, des Berufs des Computers und einer Fiille alter-
nativer Rechenmethoden und Hilfsmittel markierte.

13 Die Friden wurde in den 1930er Jahren von Carl M. Friden entwickelt und
von der Friden Calculating Machine Co., Inc. in den USA vertrieben. Die
Marchant war ein Tischrechner der Marchant Calculating Machine Com-
pany, der 1911 erstmals vertrieben wurde.
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Automatisierung des Rechnens

Die Entwicklungen des 17. Jahrhunderts hatten einen wachsenden Ein-
fluss der Formalisierung und Mechanisierung auf Wissenschaft, Technik
und Alltag zur Folge. Algorithmen, Kalkiile, mechanische Instrumente,
aber auch die Idee der industriellen, arbeitsteiligen Produktion stehen im
Zeichen der regelbasierten Ordnung von Aktivititen.'* Ohne Formalisie-
rung ist Mechanisierung nicht denkbar (vgl. Krdmer 1988, 1991). Be-
reits 1637 stellte René Descartes in seiner Schrift Von der Methode des
richtigen Vernunfigebrauchs und der wissenschaftlichen Forschung da-
fur die Regeln auf: ,,Niemals eine Sache als wahr anzuerkennen, von der
ich nicht evidentermalfien erkenne, dass sie wahr ist [...] Jedes Problem,
das ich untersuchen wiirde, in so viele Teile zu teilen, wie es angeht und
wie es nétig ist, um es leichter zu 16sen [...] Mit den einfachsten und am
leichtesten zu durchschauenden Dingen zu beginnen, um so nach und
nach, gleichsam {iber Stufen, bis zur Erkenntnis der zusammengesetztes-
ten aufzusteigen, ja selbst in Dinge Ordnung zu bringen, die natiirli-
cherweise nicht aufeinander folgen [...] Uberall so vollstindige Aufzih-
lungen und so allgemeine Ubersichten auszustellen, daB ich versichert
wire, nichts zu vergessen™ (Descartes 1637/1960: 15, 16). Damit skiz-
zierte Descartes das Vorgehen der neuzeitlichen Wissenschaft, indem sie
in analytischer Weise alle Probleme in Teilprobleme und alle Lésungen
in Losungsschritte zerlegt. Das derart gewonnene und dargestellte Wis-
sen, so die Hoffnung Descartes, wiirde fiir jedermann nachvollziehbar,
wiederholbar und tiberpriifbar sein. Mit seiner Methode, die er der geo-
metrischen Beweisfiihrung entlehnte, sollten alle geometrischen und
algebraischen Probleme 16sbar seien, solange man diesen Regeln folgte.
Jedes Kind konne, falls es die Regeln befolge, solche Probleme 1§sen:
Warum nicht auch eine Maschine?

Descartes Methode basierte zwar auf einem mechanisierbarem Kon-
zept des Problemlosens und damit auch des Rechnens, tatsdchlich aber
war die praktikable Delegation einer breiten Fiille von Problemldsungen
an Maschinen mit dem damaligen Verstindnis von algorithmischem,
also regelbasiertem Problemldsen nicht moglich. Descartes Vorschlag
erinnert heute eher an vage Kochrezepte als an maschinentaugliche Al-
gorithmen. Tatsidchlich dauerte es weitere zweihundert Jahre bis die Ma-
thematikerin Ada Lovelace eine erste Maschinenanweisung fiir die von

14 Beispielsweise wiare Adam Smiths Werk The Wealth of Nations von 1776
ohne die Formalisierung und Mechanisierung von Abldufen nicht denkbar.
Im 18. und 19. Jahrhundert kommt es zu einer regelrechten Normierungs-
und Quantifizierungswut, die bis heute anhilt (vgl. Porter 1988, 1996;
Poovey 1998; Star, Bowker 2000).
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Charles Babagge konzipierte, aber niemals gebaute Analytical Engine
formulierte. 1843 schrieb sie: ,,I want to put in something about Ber-
noullis Numbers [...] as an example of how an implicit function may be
worked out by the engine, without having been worked out by human
head and hand“ (Lovelace 1843). Bis zum Beginn des 20. Jahrhunderts
blieben Rechenmaschinen jedoch rein mechanische Geréte. Thre Mecha-
nik war mit den Operationen, die sie ausfiihren konnten, identisch. Oder
in anderen Worten: Die Hardware war zugleich die Software. Beispiels-
weise basierte der Arithmometer auf einer Staffelwalze, die bereits 1627
von Leibniz erfunden worden war (vgl. Leibniz 1703). Die Verteilung
der Zahne auf der Staffelwalze entsprach den mathematischen Operatio-
nen, welche die Maschine ausfiithren konnte. Doch iiber die vier Grund-
rechenarten kamen diese mechanischen Rechenmaschinen nie hinaus."
Daher bedurfte es anderer Hilfsmittel, um komplexe Operationen wie
das Wurzelziehen oder das Losen anspruchsvoller Gleichungen in einer
einzigen Maschine zu automatisieren.

Diese Revolution des maschinellen Rechnens begann mit einem Gedan-
kenexperiment des Mathematikers Alan Turing zur Frage, was ein Algo-
rithmus denn genau sei. Turing gab keine Definition eines Algorithmus,
sondern er konzipierte 1936 eine ideelle Maschine, die den Prozess des
Schreibens selbst mechanisierte (vgl. Turing 1936; Church 1936). ,,Tu-
ring greift dazu auf seine Schulzeit zuriick und beschreibt den Vorgang
des Rechnens als Notieren von Zahlen nach festen Regeln in den Re-
chenkistchen karierter Schulhefte. Dies ist ein v6llig mechanischer Pro-
zeB, und Turing beschreibt ihn deshalb angemessen im Modell einer
programmierten Maschine, der Turing-Maschine® (Coy 1994: 71). Die
Turing-Maschine sollte Zeichen schreiben, lesen und 16schen kénnen,
indem sie sich nach den Anweisungen eines Programms entlang eines
Papierbandes von einem Feld zum nichsten bewegte. Jede Anweisung
musste derart formuliert sein, dass sie schrittweise ausgefiihrt werden
konnte. Dabei war das Ziel, eine Ausgangskonfiguration von Zeichen in
endlich vielen Feldern in eine neue Konfiguration zu tiberfithren. ,,If at
each stage the motion of a machine [...] is completely determined by the
configuration, we shall call the machine an ,automatic machine’ (a-
machine)“ (Turing 1936/1964: 118). Turing behauptete, dass jeder Algo-

15 Eine Ausnahme bilden mechanische Rechenmaschinen, die eine bestimm-
te Gleichung 16sen konnten, beispielsweise zur Berechnung der Gezeiten.
Als einzige frei programmierbare, mechanische Rechenmaschine kann
Vannevar Bushs Differential Analyzer gelten, den er zwischen 1928 und
1932 am Massachusetts Institute of Technology entwickelte (vgl. Bush
1936).
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rithmus, der diesen Regeln folgt, berechenbar und daher von einer frei
programmierbaren Maschine ausfiihrbar sei. Mit dem Konzept der Tu-
ring-Maschine spezifizierte er Descartes Regeln von 1637, wie ein Pro-
blem zu analysieren und zu 16sen sei, und er verschob die Problematik,
eine frei programmierbare Rechenmaschine zu bauen, von der Hardware
auf die Software. Die Hardware musste lediglich in der Lage sein, in
normierter Weise mit Symbolen umzugehen und diese gemiB einem
Programm regelbasiert zu manipulieren. Doch Turings Idee einer a-
Machine und Babbages Analytical Engine existierten lediglich auf dem
Papier. Solange kein geeignetes Medium fiir die Ausfithrung unter-
schiedlichster Symboloperationen gefunden war, lieen sich diese
Papiermaschinen nicht in die Realitdt umsetzen. Erst als die Mechanik
durch Elektrik und spéter Elektronik ersetzt wurde, gelang es, solche frei
programmierbaren Maschinen zu bauen. Fiihrte die erste Medienwende
von der Rdumlichkeit der Zdhl- und Rechenobjekte auf die Ebene des
Papiers, so transformierte die zweite Medienwende die Statik des
Papiers in das fluide Medium des Stroms. Der Computer als symbolver-
arbeitende Maschine simuliert dabei den Prozess des Schreibens selbst.
Was geschrieben wird, hingt vom Programm ab. Doch erst in den
1940er Jahren begann die Geschichte der tatsdchlich gebauten Computer
mit Rechnern, die so grofl waren, dass sie Maschinenhallen fiillten: 1938
stellte Konrad Zuse seine Z1 und 1941 seine Z3 fertig, 1942 bauten John
Atanasoff und Clifford Berry den ABC Computer sowie Howard H.
Aiken Mark I, gefolgt von Tommy Flowers Colossus 1944, John
Mauchlys und Presper Eckerts ENIAC 1946 und dem SSEC Rechner
von IBM 1948 (vgl. Campbell-Kelly/Aspray 1996; Ceruzzi 1998; Ifrah
2001). Diese ersten GroBrechner kamen ohne Software, Bildschirme
oder Drucker aus. Sie konnten jedoch mehrere Operationen pro Sekunde
ausfithren, weshalb sie bald als Elektronengehirne bezeichnet wurden.
Die Programmierung dieser Grofrechner war schweifitreibende Arbeit.
Fir ENIAC beispielsweise, der aus 18.000 Vakuumréhren bestand,
mussten Tausende von Steckverbindungen verkabelt werden. ,,Setting
up the ENIAC meant plugging and unplugging a maze of cables and
setting arrays of switches. In effect, the machine had to be rebuilt for
each new problem it was to solve” (Ceruzzi 1998: 21). Die Programmie-
rer befanden sich buchstéblich in Mitten der Computer, die nicht anné-
hernd die Leistungsfihigkeit eines heutigen Mikrochips hatten. Auch
Computerbugs waren noch echte Kéfer, die Kurzschliisse verursachten.
Grace Hopper, die erste Programmiererin des Harvard Computers Mark
I, fand im September 1945 eine Motte in einer der Vakuumrohren und
schrieb in das Entwicklungslogbuch: “First actual case of bug being
found* (Hopper 1945). Doch im Laufe der Jahre wurden die Rechner
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nicht nur schneller und einfacher in ihrer Bedienung, ihre Verbreitung
nahm rapide zu. Bereits in den frithen 1960er Jahren waren weltweit
Computer im Wert von rund 100 Millionen Dollar installiert. Automati-
sierung, Planung und Prognose industrieller Prozesse beanspruchten da-
bei die meiste Rechenzeit. 1969 eroberte die NASA mit einem IBM Sys-
tem/360 Grofirechner, der 10.000 Operationen pro Sekunde ausfiihrte,
den Mond, und 2001 entschliisselten Supercomputer das menschliche
Genom. Die Supercomputer der TOP-500 Liste der weltweit schnellsten
Rechner okkupieren nach wie vor hallengrofle Gebdude und haben eige-
ne Namen wie BlueGene/L, Earth Simulator, Red Storm, Frontier, Mare
Nostrum oder Thunderbird (vgl. TOP-500 2008). Diese Number Crun-
cher fithren Billionen von Operationen pro Sekunde aus und stofen mitt-
lerweile an ihre physikalischen Grenzen. Ein Vergleich zwischen frithen
und aktuellen Computern zeigt: Wofiir der Earth Simulator, von Juni
2002 bis Juni 2004 schnellster Rechner der Welt, sechs Tage Berech-
nungszeit benotigt, hitte einen Cray-1 Computer, schnellster Rechner
des Jahres 1978, mehr als sieben Millionen Jahre beschiftigt. Menschli-
che Rechner miissten dafiir bis in alle Ewigkeit rechnen. Diese Rechen-
kapazititen werden heute nicht nur fiir die Automatisierung, die Planung
oder den Betrieb von Benutzersoftware benétigt, sie werden hauptsich-
lich fiir die Ausfithrung numerischer Simulationen gebraucht. Neben
allen Verdnderungen, die der Computer fiir Wissenschaft und Technik in
der Vergangenheit mit sich brachte, ist es die Entwicklung und Nutzung
numerischer Simulationen, die Wissenschaft und Technik aktuell grund-
legend revolutionieren. Numerische Simulationen erlauben es, auf Basis
von Berechnungen Computerexperimente durchzufiihren, in die Zukunft
zu prognostizieren und die Natur zu optimieren — vorausgesetzt die Na-
tur verhilt sich wie die berechenbare Mechanik eines exakten Uhrwerks.

Numerische Simulation unbekannter Lé6sungen

Als Isaac Newton und Gottfried Wilhelm Leibniz Ende des 17. Jahrhun-
derts die Differentialrechnung erfanden und damit das Rechnen mit Un-
endlichkeiten operationalisierten, hatten sie sich sicherlich keine Vor-
stellung davon, welchen gewaltigen Einfluss ihre Entwicklung auf Wis-
senschaft, Technik und Alltag haben wiirde.'® War die Beherrschung des
Nichts die herausragende intellektuelle Leistung des frithen Mittelalters,
so stellte die Beherrschung des Unendlichen die mafgebliche Leistung

16 Eine ausfiihrliche Darstellung der Entwicklung des Differentialkalkiils
wird im néchsten Kapitel im Abschnitt Mathematisierung und Momentum
gegeben.
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am Ubergang zur Neuzeit dar. Die Operationalisierung beider Konzepte
mit Hilfe von Symbolen und Rechenregeln erlaubt es Wissenschaftlern
und Ingenieuren, die Entwicklung von Prozessen in Raum und Zeit ma-
thematisch zu beschreiben. Das Differentialkalkiil ist dabei die mafigeb-
liche Methode, um die Bewegung und Dynamik eines Geschehens dar-
zustellen. Es nimmt Bezug auf die neuzeitliche Idee einer Welt, die wie
die Mechanik eines exakten Uhrwerks funktioniert. 1814 formulierte
Pierre-Simon de Laplace optimistisch: ,,Wir miissen also den gegenwiér-
tigen Zustand des Weltalls als die Wirkung seines fritheren Zustandes
und andererseits als die Ursache dessen, der folgen wird, betrachten.
Eine Intelligenz, welche fiir einen gegebenen Augenblick alle Krifte,
von denen die Natur belebt ist, sowie die gegenseitige Lage der Wesen,
die sie zusammen setzen, kennen wiirde, und tiberdies umfassend genug
wire, um diese gegebenen Grossen einer Analyse zu unterwerfen, wiirde
in derselben Formel die Bewegungen der grossten Weltk6rper wie die
des leichtesten Atoms ausdriicken: nichts wiirde fiir sie ungewiss sein
und Zukunft wie Vergangenheit ihr offen vor Augen liegen. Der
menschliche Geist bietet in der Vollendung, die er der Astronomie zu
geben gewusst hat, ein schwaches Bild dieser Intelligenz“ (de Laplace
1814: Einleitung).

Das deterministische Wissenschaftsverstindnis, wie es Laplace tref-
fend beschrieb, resultierte aus der Entdeckung der Naturgesetze durch
Galileo, Kepler und Newton: 1590 hatte Galileo das Gesetz der fallen-
den Korper formuliert, 1609 beschrieb Kepler das Gesetz der Planeten-
bewegung und 1687 verfasste Newton die drei fundamentalen Gesetze
der Bewegung.'” Basierend auf diesen Gesetzen wurde fiir die Wissen-
schaft das Verhalten der Natur in Form von Bewegungsgleichungen be-
schreibbar, und damit berechenbar und vorhersagbar. Im Kontext dieser
mechanistischen Auffassung wurde Bewegung als Anderungsrate von
Quantititen im Verhiltnis zu anderen Quantititen artikuliert (dx/dy).
Diese Verhiltnisse lassen sich mit Differentialen auf Papier schreiben
oder als Kurven grafisch darstellen. Zahlreiche mathematische Modelle
wissenschaftlicher Sachverhalte basieren seither auf Differentialglei-
chungen. Um diese Modelle zu berechnen, miissen aus den Gleichungen
Losungsfunktionen analytisch abgeleitet werden, die dann das Verhalten
des realweltlichen Systems fiir jeden Moment beschreiben. Berechnen
ist hier algebraisch, als Umformung von Gleichungen in allgemein giil-
tige exakte, d.h. fur alle Raum- und Zeitpunkte geltende Losungsfunk-

17 Galileo formulierte 1590 in De motu antiquiora die Fallgesetze, Kepler
beschrieb 1609 in Astronomia Nova die Bewegung der Planeten auf elipti-
schen Bahnen und Netwon postulierte 1687 in seinem Werk Philosophiae
Naturalis Principia Mathematica die Bewegungsgesetze.

33

httpe://dol.org/014361/9783839409862-001 - am 13.02.2026, 20:48:15. /de/s Access - [ IEmED



https://doi.org/10.14361/9783839409862-001
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

| HISTORISCHER KONTEXT

tionen, zu verstehen. Indem Zahlwerte in die Lésungsfunktion eingesetzt
werden, lassen sich diese dann fiir konkrete Problemstellungen nume-
risch berechnen und in die Zukunft extrapolieren. Auf diese Weise wer-
den die Umlaufbahnen von Planeten, die ballistischen Kurven von Ka-
nonenkugeln oder der Landeanflug einer Marssonde berechen- und vor-
hersagbar.

Abbildung 3: Berechnungsgitter fiir die numerische Simulation der
Stromung um ein Flugzeu, (SCAI Report 1998: 16)

Eines der wichtigsten Differentialgleichungssysteme der Wissenschaft
sind die Navier-Stokes-Gleichungen, die in Form nicht-linearer Diffe-
rentialgleichungen zweiter Ordnung das Stromungsverhalten von Fliis-
sigkeiten und Gasen beschreiben. Diese Gleichungen der Stromungsme-
chanik finden in der Meteorologie, der Physik und der Technik eine
breite Anwendung und gehen auf die Arbeiten der Physiker Claude-
Louis Navier und George Gabriel Stokes Mitte des 19. Jahrhunderts zu-
riick (vgl. Navier 1822, Stokes 1845). Das Problem der Strdmungsdy-
namik ist jedoch, dass diese Gleichungen nur fiir stark idealisierte Rand-
bedingungen analytisch 16sbar sind, beispielsweise fiir langsam flieBen-
de Fliissigkeiten in einem geraden Rohr ohne Reibung und Hindernisse.
Soll jedoch die Stromung fiir realistischere Randbedingungen wie Hin-
dernisse in der Stromung, raue Oberfldchen oder geknickte Rohre be-
rechnet werden, dann werden die Gleichungen zu komplex, um sie ana-
lytisch 16sen zu kénnen. Dies bedeutet, dass sich keine Losungsfunktion
aus den Gleichungen ableiten lédsst, dass man die exakte Losung also
nicht kennt. Diese komplexen, aber analytisch unlgsbaren Gleichungen
sind jedoch fiir viele Bereiche der Wissenschaft und Technik unver-
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zichtbar, soll das Wetter von Morgen, die Klimaentwicklung der néchs-
ten Jahrzehnte oder die Stromung um einen Flugzeugfliigel berechnet
werden.

Die mathematische Alternative zur analytischen Losung ist nun die
numerische Simulation der Gleichungen. Dabei wird keine exakte Lo-
sungsfunktion algebraisch abgeleitet, sondern die Variablen der Glei-
chung werden numerisch berechnet. Moglich wird dies, indem die Glei-
chungen mit numerischen Werten — Zahlenwerte, die meist aus Messun-
gen stammen — initialisiert und von Zeitschritt zu Zeitschritt fiir einzelne
Berechnungspunkte, wie in Abbildung 3 dargestellt, berechnet werden.
Dabei liegt der numerischen Simulation die Idee zugrunde, dass je héher
die Auflosung der raum-zeitlichen Berechnungen ist — also je dichter das
Netz an Berechnungspunkten und die Anzahl der Zeitschritte wird — des-
to mehr néhert sich die approximierte Losung der exakten, aber unbe-
kannten Losung an. Die Simulation simuliert so zusagen numerisch die
unbekannte algebraische Losung. Simulationen sind daher immer nur
Naherungsverfahren und sie gelten nur fiir den berechneten Raum-Zeit-
Ausschnitt auf Basis der gewdhlten Anfangswerte, mit welchen sie ini-
tialisiert wurden. Solche numerischen Simulationen kénnen zwar fiir
sehr grobe Berechnungsgitter und sehr einfache Gleichungen prinzipiell
per Hand berechnet werden, so wie dies Lewis Fry Richardson in den
1920er Jahren versuchte. Angesichts des enormen Rechenaufwandes fiir
etwas komplexere Gleichungen und Randbedingungen sowie héhere
Auflgsungen bedarf es jedoch leistungsfihiger automatischer Rechen-
maschinen. Denn je feiner die Auflosung, aber auch je mehr Variablen
und realitidtsnahe Annahmen beriicksichtigt werden, desto hoher ist der
Rechenaufwand. Beispielsweise werden heutige Klimamodelle global
gerechnet, mit einer Auflosung von hundert Kilometern. Die Simulatio-
nen durchlaufen fiir diese Berechnungen allein fiir einen Zeitschritt be-
reits Millionen von Rechenoperationen. Selbst heutige Supercomputer
benotigen einen ganzen Tag, um die Klimaentwicklung fiir drei Jahre zu
simulieren, denn pro simuliertem Jahr miissen einige Quadrillionen Be-
rechnungen durchgefiihrt werden. Daher verwundert es nicht, dass es die
neue Rechentechnik der Simulation ist, die von Beginn an die Compu-
terentwicklung angetrieben hat und dies bis heute tut. Anfangs aus mili-
tarischen Notwendigkeiten des zweiten Weltkrieges, aber bald danach
aufgrund wissenschaftlicher, technischer und industrieller Erfordernisse.
Was mit der Revolution des Rechnens und den mechanischen Rechen-
instrumenten im Mittelalter begann, hat sich mittlerweile zu komplexen
Berechnungen auf Basis umfangreicher Simulationsmodelle und Num-
ber Crunchern enormen Ausmalles entwickelt. Ziel dieser Berechnungen
ist nichts weniger als die Natur in Form numerischer Computerexperi-
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mente zu optimieren und die Zukunft vorherzusagen. Doch diese Com-
puterexperimente bergen ein Problem in sich.

Blickt man auf die historische Entwicklung des Rechnens zuriick, so
enthiillt sich der mechanistische und deterministische Blick der Wissen-
schaften auf die Welt. Dieser Blick wurde spétestens mit Newtons Werk
Philosophiae Naturalis Principia Mathematica von 1687 in seinem vol-
len AusmalB deutlich. Mit dieser Schrift verankerte er die Idee, nach der
alles, was berechenbar ist, auch wissenschaftlich wahr ist. Motiviert
wurde er dabei von Keplers Berechnung und erfolgreicher Vorhersage
der Bahn zweier Planeten. Doch was als Newtons Traum von einem de-
terministischen und komplett berechenbaren Universums begann, wan-
delte sich zweihundert Jahre spéter in einen Alptraum. Der Mathemati-
ker Henri Ponicaré konnte 1889 in seiner Antwort auf die Preisfrage von
Schwedens Ko6nig Oskar II nach der Stabilitdt des Sonnensystems nach-
weisen, dass sich bereits ein Drei-Korper-System instabil und chaotisch
verhalten kann und dass das Sonnensystem als Mehr-Korper-System
irgendwann kollabieren wiirde (vgl. Poincaré 1891).

,»Wiirden wir die Gesetze der Natur und den Zustand des Universums fiir einen
gewissen Zeitpunkt genau kennen, so konnten wir den Zustand dieses Univer-
sums fiir irgendeinen spiteren Zeitpunkt genau voraussagen. Aber selbst wenn
die Naturgesetze fiir uns kein Geheimnis mehr enthielten, kénnen wir doch
den Anfangszustand immer nur ndherungsweise kennen. Wenn wir dadurch in
den Stand gesetzt werden, den spéteren Zeitpunkt mit dem selben Niherungs-
grade vorauszusagen, so ist das alles, was man verlangen kann; wir sagen
dann: die Erscheinung wurde vorausgesagt, sie wird durch die Gesetze be-
stimmt. Aber es ist nicht immer so; es kann der Fall eintreten, dass kleine
Unterschiede in den Anfangsbedingungen groe Unterschiede in den spiteren
Erscheinungen bedingen; ein kleiner Irrtum in den ersteren kann einen auf3er-
ordentlich grofen Irrtum fiir die letzteren nach sich ziehen. Die Vorhersage
wird unmoglich und wir haben eine ,zufillige Erscheinung’* (Poincaré
1908/1973: 56-57).

Die Vorstellung eines instabilen Sonnensystems schockierte Poincarés
Zeitgenossen zutiefst. Der strenge Determinismus Newtons, ein Univer-
sum, in dem sich alle Objekte in vorhersagbaren Bahnen bewegen, 16ste
sich vor ihren Augen in Chaos auf und damit der Traum neuzeitlicher
Wissenschaft, die Welt exakt berechnen und prognostizieren zu kénnen.
Wenn selbst kleine Unterschiede in den Anfangsbedingungen grof3e
Unterschiede in den spéteren Erscheinungen bedingen konnten, so liefl
das ungenaue Wissen iiber die Naturgesetze und Anfangszustinde es
nicht zu auf den Endzustand zu schlieen. Dies stand kontrér zur deter-
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ministischen Doktrin linearer Systeme, in welcher kleine Unterschiede
in den Anfangsbedingungen ebenso kleine und vor allem genau bere-
chenbare Unterschiede in den spiteren Erscheinungen bedingen. Das
idealisierte Zwei-Korper-System mit perfekten Kugelplaneten, wie es
Kepler fiir seine Planetenbahn berechnet hatte, verhielt sich linear, so-
lange es keinen storenden Einfluss gab. Ein Drei-Korper-System verhélt
sich durch den Einfluss des dritten Korpers bereits nicht mehr linear und
damit, unter bestimmten Umstinden, chaotisch. Exakte und damit siche-
re Prognosen sind fiir Drei-Korper-Systeme nicht moglich, da bereits
jede Messung Ungenauigkeiten in sich birgt. Die Simulation des Wet-
ters, des Klimas oder von Molekiilen beschreibt Systeme, die um ein
Vielfaches komplexer sind. Die moderne Wissenschaft muss sich daher
von der Idee einer exakt berechenbaren und vorhersagbaren Welt verab-
schieden, unabhéngig davon wie leistungsfihig die Computer sind oder
in Zukunft noch werden. Daraus folgt, dass Prognosen fiir komplexe
Systeme prinzipiell von Unsicherheiten gekennzeichnet sind. Selbst
wenn sich die Welt gemil des strengen Determinismus eines Newton
oder Laplace verhalten wiirde, die Wissenschaft koénnte sie mit ihren
mathematischen Modellen und schnellen Computern niemals exakt be-
rechnen.
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