
Building Trust in Smart Legal Contracts

Alessandro Parenti and Marco Billi

Introduction

Since its birth, the interest around blockchain technologies has experien­
ced a continuous growth. Especially in the last 2–3 years, this sector re­
ceived high fundings by many venture capital firms and other investors
(23 billion in 2021 for the whole sector).1 We can mention two domains
above all that gained the most success worldwide: the NFTs market, where
the new interest for digitalized ownership drew investments in the milli­
ons for many projects,2 and Decentralized Finance (DeFi).

Both technologies, like many others within the blockchain sector, are
built upon software running a distributed ledger, a distributed, immutable
database, on which information can be registered, such as smart contracts.

The term “smart contract” was originally coined by computer scientist
and cryptographer Nick Szabo in 1994 as “a computerized transaction pro­
tocol that executes the terms of a contract”.3 He explains his idea by
bringing forward the example of a vending machine: the vending machine
is programmed to automatically perform (dispense the product) when cer­
tain conditions are met (a coin is inserted). This mechanism has the advan­
tages of removing the need for intermediaries thus reducing transaction
costs and making breaches of contract expensive or non-convenient (the
cost of breaching the machine would likely be higher than the amount in
the till). As we can notice also from the wording, Szabo’s idea of smart
contract was closely related to the legal domain.

After the 90s, the term smart contract remained unused for more than
15 years, also because of the lack of technologies capable of fully realizing
this theoretical idea in all its features. In 2014, however, Vitalik Buterin

A.

1 Team Blockdata, The 10 biggest funding rounds in blockchain / crypto ever, 2021,
available at https://www.blockdata.tech/blog/general/top-10-funding-rounds-in-blo
ckchain-crypto

2 Although lately is has seen a decline in interest (last access: 05.09.2022).
3 N. Szabo, Smart Contracts, 1994, available at https://www.fon.hum.uva.nl/rob/Cou

rses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.v
wh.net/smart.contracts.html (last access: 05.09.2022).

95

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://www.blockdata.tech/blog/general/top-10-funding-rounds-in-blockchain-crypto
https://www.blockdata.tech/blog/general/top-10-funding-rounds-in-blockchain-crypto
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.blockdata.tech/blog/general/top-10-funding-rounds-in-blockchain-crypto
https://www.blockdata.tech/blog/general/top-10-funding-rounds-in-blockchain-crypto
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

used Szabo’s idea when he published Ethereum’s whitepaper. One of the
main innovative features of Buterin’s blockchain enabled the implementa­
tion of smart contracts on it.

The concept that originated from Ethereum smart contracts, however,
diverges from Szabo’s original idea in that it loses the link with the legal
field. Buterin refers to smart contracts as “cryptographic ‘boxes’ that con­
tain value and only unlock it if certain conditions are met”.4 Therefore,
for today's understanding, we need to bear in mind Stark’s5 distinction
between a smart contract (code), which simply refers to a piece of software
running on a blockchain that self-executes its code once certain conditi­
ons (pre-defined inside it) get satisfied; and a smart legal contract, i.e., a
smart contract used to represent and automatically execute an agreement
enforceable by law.

As we will explain throughout the present paper, a smart legal contract,
given its intrinsic features, raises an explainability issue, especially because
of the potential impact that such a tool could directly have on people’s
personal legal sphere.

Traditionally, as far as the field of xAI (explainable AI (Artificial Intelli­
gence)) is concerned, the focus is on providing the user with a rationale
behind the outcome of AI system, often seen in decision support systems
and other user-oriented applications. There are two main ideas in this
research field. The first focuses on building additional systems that mimic
the original, showing to which extent the model and/or its predictions
are human understandable.6 The two most common methods to achieve
this are (1) by either creating a second model that provides a global expla­
nation to the opaque system, achieving transparency and interpretability,
(2) explaining only the reason for the prediction on a specific instance, ba­
sically providing a justification for the outcome of the black box conside­
ring a pair of input and decision.7 The second research current, instead of

4 V. Buterin, Ethereum: A Next-Generation Smart Contract and Decentralized Appli­
cation Platform, 2014, available at https://ethereum.org/en/whitepaper/ (last access:
05.09.2022).

5 J. Stark, Making Sense of Blockchain Smart Contracts, Coindesk.Com, 2016, avail­
able at https://www.coindesk.com/making-sense-smart-contracts (last access:
05.09.2022).

6 R. Guidotti/A. Monreale/ S. Ruggieri/ F. Turini/ F. Giannotti/ D. Pedreschi, A Survey of
Methods for Explaining Black Box Models, in ACM Computing Surveys 2019, 1 (1
et seqq.).

7 H. Prakken/R. Ratsma, Case-based argumentation for explanation: formalisation
and experiments, Argument and Computation 2021.

Alessandro Parenti and Marco Billi

96

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://ethereum.org/en/whitepaper
https://www.coindesk.com/making-sense-smart-contracts
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://ethereum.org/en/whitepaper
https://www.coindesk.com/making-sense-smart-contracts

an ex-post explanation, tries to embed in the original system a symbolic re­
presentation of the knowledge-base.

With regard to smart contracts, we depart from this distinction, as
explainability may be replaced with intelligibility. The parties of a contract
may not require, strictly speaking, an “explanation” behind what the con­
tract does, instead the focus shifts to describing, in computable and human
terms, what the contract states. The step of contract creation can be quite
unclear for non-software developers as it occurs in a programming lan­
guage, aiming at guaranteeing the automated execution of the contract.8

This paper aims at providing a solution to help these contracting parties
communicate in a common language, understandable to both users and
programmers alike.

In Smart Legal Contract research, there are two main currents that try
to solve these issues from different points of view. The most classical hybrid
approach is Ricardian Contract,9 which places all information from the
legal document in a format that can be executed by software. The code and
the legal prose are then connected through the use of parameters, keeping
the two separate and connected at the same time.

Our contribution aims to move beyond this approach, through the
so-called standalone approach, using a sole source to represent both the
contract and the code. Particularly, we shall focus on (1) what legal con­
cepts can be successfully represented using a domain-specific language and
(2) whether it is possible to isomorphically translate a legal contract into
code using a general-purpose language.

Smart Legal Contracts

As we mentioned above, when we use smart contract technology for the
purposes of representing legal agreements between two or more parties
enforceable by law, we refer to Smart Legal Contracts. For purposes of
completeness, we shall also say that, just like any other contract, they
must satisfy a certain number of conditions that are usually laid down by
the relevant legal provisions, in order to be considered valid by the legal
system and thus to be enforceable before a court of law.

B.

8 P. Qin/W. Tan/J. Guo/B. Shen, Intelligible Description Language Contract (IDLC)
– A Novel Smart Contract Model, Information Systems Frontiers 2021, available
at https://link.springer.com/article/10.1007/s10796-021-10138-4 (last access:
13.10.2022).

9 I. Grigg, 2004; I. Grigg, 2017.

Building Trust in Smart Legal Contracts

97

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://link.springer.com/article/10.1007/s10796-021-10138-4
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://link.springer.com/article/10.1007/s10796-021-10138-4

In literature we can find different approaches to the use of this techno­
logy. First, we shall highlight the distinction defined by the ISDA-Link­
laters Whitepaper10 between external and internal model of smart contract.
In the former, code is not part of the legal contract and is employed
simply as a means for the execution of some parts of it. The latter refers
to a “legal contract rewritten in a more formal representation than the current
natural human language form. A computer would then take that more formal
representation and execute the conditional logic automatically.” In this model
the code is a necessary part of the contract, as agreed and signed by the
parties.

Furthermore, we can distinguish three ways to implement internal mo­
dels of smart contracts, taking into account the approaches identified by
Clack.11 First, it is possible to link the written contract with its associa­
ted code through the use of markup languages, which have the task of
annotating certain parts of the code and the text, providing a direct link
between the two. This approach is represented by the concept of Ricardian
Contracts12 introduced by Grigg in 1996 and by all the evolutions that
stemmed from it. These include Smart Contract Templates,13 Intelligible
Contracts14 and the Accord Project.15 We will not go into further detail, as
this approach falls outside the scope of this contribution.

The other two approaches are (1) domain specific programming langua­
ges and (2) controlled natural language. The former helps towards the
creation of a single artefact expressing both the contractual obligations and
the computer code (in the light of the concept of Computable Contracts).16

Moreover, thanks to its specificity, it is better suited for expressing and
identifying aspects (e.g., payments, assets, and logic) that are proper to
the legal domain of smart legal contracts, thus facilitating the activity of
contract drafting. This approach was particularly explored for the financial

10 ISDA/Linklaters, Whitepaper: Smart Contracts and Distributed Ledger-A Legal
Perspective, 2017, available at https://www.isda.org/2017/08/03/smart-contracts-an
d-distributed-ledger-a-legal-perspective/ (last access: 05.09.2022).

11 C. D. Clack, Languages for Smart and Computable Contracts, 2021.
12 I. Grigg, The Ricardian Contract, 2021, available at https://iang.org/papers/ricardia

n_contract.html (last access: 05.09.2022).
13 H. Haapio/J. Hazard, Wise contracts: smart contracts that work for people and

machines, in: Trends and communities of legal informatics. Proceedings of the
20th international legal informatics symposium IRIS, 2017, 425 (425 et seqq.).

14 L. Cervone/M. Palmirani/F. Vitali, Intelligible Contracts, 53rd Hawaii International
Conference on System Sciences, 2020, 1780 (1780 et seqq).

15 Available at https://www.accordproject.org/ (last access: 05.09.2022).
16 H. Surden, Computable Contracts, UC Davis Law Review 2012, 629 (626 et seqq.).

Alessandro Parenti and Marco Billi

98

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://www.isda.org/2017/08/03/smart-contracts-and-distributed-ledger-a-legal-perspective
https://www.isda.org/2017/08/03/smart-contracts-and-distributed-ledger-a-legal-perspective
https://iang.org/papers/ricardian_contract.html
https://iang.org/papers/ricardian_contract.html
https://www.accordproject.org
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.isda.org/2017/08/03/smart-contracts-and-distributed-ledger-a-legal-perspective
https://www.isda.org/2017/08/03/smart-contracts-and-distributed-ledger-a-legal-perspective
https://iang.org/papers/ricardian_contract.html
https://iang.org/papers/ricardian_contract.html
https://www.accordproject.org

sector: we can mention the Marlowe17 language for the Cardano block­
chain and Goodenough et. al.18 with a state-transition system to represent a
financial contract.

The controlled natural language approach aims at making lawyers,
and non-technical people in general, comfortable in the use of the pro­
gramming language, thus contributing to the creation of the smart con­
tract code directly, or at least in their ability to understand the written
contract. Furthermore, this would help remove the error-prone step of ma­
nual conversion from natural language to a specification or programming
language. An example of this approach is the Lexon language.19

Intelligibility

The concept of Smart Legal Contracts necessarily raises questions on whe­
ther it could fit in the current contract law framework. The main issue is
represented by the language in which these are written, i.e., code, unintel­
ligible for non-experts, aka those without a background in computing or
logic.

On the one hand, we must say that current contract law (from a Euro­
pean point of view) is firmly based on the principle of freedom of form.
This means that a contract, as a general rule, is not subject to any formal
requirement.20 National laws can then require a specific form for particu­
lar types of contracts, both ad substantiam and ad probationem. Moreover,
the EU Blockchain Observatory & Forum has affirmed that blockchains
fall under the scope of the e-IDAS regulation as an electronic document
and that, consequently, “the data, including smart contracts, contained

C.

17 P. Lamela Seija/S. Thompson. Marlowe: Financial contracts on blockchain. In In­
ternational Symposium on Leveraging Applications of Formal Methods, Cham
2018, p. 356 (356 et seqq.).

18 M. D. Flood/O. R. Goodenough. Contract as Automaton: The Computational Re­
presentation of Financial Agreements (Office of Financial Research Working
Paper), 2021. Although recently Goodenough has tried the logic programming
approach.

19 F. Idelberger, Merging Traditional Contracts (or Law) and (Smart) e-Contracts –
a Novel Approach, in: Proceedings the 1st Workshop on Models of Legal Reason­
ing, 2020, available at https://lawgorithm.com.br/wp-content/uploads/2020/09/M
LR2020-Florian-Idelberger.pdf (last access: 05.09.2022).

20 PECL 2:101 (2); DCFR II – 1:106; UNIDROIT 1.2.

Building Trust in Smart Legal Contracts

99

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://lawgorithm.com.br/wp-content/uploads/2020/09/MLR2020-Florian-Idelberger.pdf
https://lawgorithm.com.br/wp-content/uploads/2020/09/MLR2020-Florian-Idelberger.pdf
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://lawgorithm.com.br/wp-content/uploads/2020/09/MLR2020-Florian-Idelberger.pdf
https://lawgorithm.com.br/wp-content/uploads/2020/09/MLR2020-Florian-Idelberger.pdf

therein cannot be denied legal force solely because of their electronic
nature”.21

On the other hand, the fact that a contract is expressed in a language
that is inaccessible to the average person may affect the correct formation
of contractual intent that, together with a sufficient agreement, represents
the only necessary requirements.22 In fact, the difficulty in ascertaining
the mutual expression of the intention to be legally bound is highlighted
when the parties cannot read or understand their obligations.23 A solution
was found by assimilating smart contracts to adhesion contracts, for which
the expression of the intention to be bound was undoubtably recognized,
and by applying the relative discipline to it. This means requiring the
drafting party to take reasonable steps to bring terms not individually
negotiated or imposed by one party to the other party’s attention, before
or when the contract is concluded.24 The EU Directive of Unfair Contract
Terms states that the consumer should have a ‘real opportunity of becom­
ing acquainted’ with the terms in order for those not to be considered
unfair.25 This provision has been considered satisfied for wrap contracts
(Click-wrap or browse-wrap),26 where the expression of consent has been
recognized just by using a website where the terms and conditions are
accessible through hyperlinks. The EU directive on consumer rights takes
one more step by also providing that, in order for the consumer to be
bound by a contract falling under the scope of the directive (B2C relati­
onships), the trader shall provide certain information to the consumer “in
a clear and comprehensible manner”.27

21 EU blockchain Observatory & Forum, REPORT – Blockchain and digital Identity,
2018.

22 G. Christandl, Art 2:101 (1): Conditions for the Conclusion of a Contract, in:
N. Jansen/R.Zimmermann (eds.), Commentaries on European Contract Laws,
Oxford 2018, p. 236 (236 et seqq.).

23 B. Carron/ V. Botteron. "How smart can a contract be?" Blockchains, Smart Con­
tracts, Decentralized Autonomous Organizations and the Law, Cheltenham 2019,
p. 128.

24 N. Jansen, Art 2:104: Terms not Individually Negotiated, in: N. Jansen/R. Zim­
mermann (eds.), Commentaries (n. 23), p. 272 (272 et seqq.).

25 Directive 1993/13/EC, annex 1(i).
26 “Wrap contracts” are adhesion contracts concluded online. The most common

are “click-wrap” and “browse-wrap” agreements. In the former the user accepts
the terms by clicking on an “I agree button”, while in the latter, he does so by
simply continuing using the website. C. Bomprezzi/G. Finocchiaro, A legal Analysis
of the use of blockchain technology for the formation of smart legal contracts,
mediaLAWS 2020, 122.

27 Directive 2011/83/EU, Art. 5–6.

Alessandro Parenti and Marco Billi

100

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Under such legal framework, the most commonly proposed solution, at
least in B2C relationships, entails accompanying the smart contract code
with a natural language translation of the contract.28 In B2B relationships
such need does not arise since the parties are deemed to have equal con­
tracting power. The legislator assumes that they had enough resources
to understand the contents of the agreement, without having to directly
intervene in order to protect the weak party.

The present contribution follows instead the abovementioned standalo­
ne approach, where the whole agreement is expressed directly in the smart
contract code. By using programming languages whose understandability
level is far higher than usual smart contract languages the goal is to build
trust in the source code for both the end user and for the legal professio­
nal.

It is argued that with a hybrid smart contract there is no way to determi­
ne whether the code behaves according to what is written in the natural
language section of the document (i.e.t, the original contract).29 Such a
situation can occur both because of intentional deceit by the drafting
party, who taking advantage of the other, or just because of a translation
mistake made by the programmer. In fact, where two parties decided to
conclude an agreement in the form of a smart contract, they would need,
other than a lawyer to lay out the contract terms, also a programmer to
write the agreement into computer code. This new level of intermediation
increases both the transaction costs and the risk of errors. Not having a
legal background, a programmer could be unaware of the different mea­
nings a term can have and thus implement code that is slightly different in
its legal effect.

For all the above-mentioned reasons, we believe that approaching trust
in the system by using human readable code could empower both the
user to be more aware of the behavior of the program, and the legal profes­
sionals to build or understand the content of contracts on their own. In
case of B2C relationships intelligibility of the source code is necessary for
a standalone smart contract to be compliant with EU provisions on consu­
mer rights, according to which “Before the consumer is bound by […], or
any corresponding offer, the trader shall provide the consumer with the
following information in a clear and comprehensible manner…”. This
principle can and should be applied also outside the B2C field, rather in

28 C. Bomprezzi, Implications of Blockchain-Based Smart Contracts on Contract
Law, Baden-Baden 2021, p. 140.

29 F. Idelberger, Merging Traditional Contracts (n. 22).

Building Trust in Smart Legal Contracts

101

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

all cases in which intelligibility of the code could foster trust between the
parties, as well as in the contract itself.

In order to properly reach our goal, it would be important to transpose
in the smart contract code the whole agreement, at least to the extent
permitted by the programming language. This means having a smart
contract representation in an intelligible form both legal and non-legal
elements, i.e., the parts exclusively necessary for the execution of the code
and that would not be mentioned in a traditional contract; as well as
elements that do not affect the execution of the transactions, but that
are nonetheless part of the contract, such as the header or the competent
forum. By doing so, one can acknowledge all the distinct aspects of the
agreement in relation to the execution of the obligations.

In the following sections we employ two newly developed pro­
gramming languages for the purpose of testing our approach to smart
legal contract drafting. We will start with a simple contract example and
evaluate its transpositions in both languages explaining their functioning.

Example

For the purpose of displaying the effect of the two methods we will ana­
lyse throughout this paper, we must first present the running example,
taken from Governatori et al.30 and readapted to better show what we are
proposing. The contract concerns a license agreement between two parties.
The licensor is willing to grant the licensee a temporary license to test the
product, only under the conditions that the licensee pays the full fee in
advance. From the moment he receives the temporary license, the licensee
has a limited amount of time (called evaluation period) to test the product
and either send confirmation of his intention to buy the full version or let
the evaluation period expire and get reimbursed.

Below, the contract in full:
1. Licensor is willing to grant to the Licensee a License to use the Product

for the term and specific purpose set forth in this Agreement, subject to
the terms and conditions set out in this Agreement.

D.

30 G. Governatori/F. Idelberger/Z. Milosevic/R. Riveret/G. Sartor/X. Xu., On legal con­
tracts, imperative and declarative smart contracts and blockchain system, Artifici­
al Intelligence and Law 2018, 377 (377 et seqq.).

Alessandro Parenti and Marco Billi

102

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

2. Licensor grants Licensee a temporary license to evaluate the Product
and fixes (i) the evaluation period – in 10 days – and (ii) the cost of the
Product – in 1000 Euros -, in case the Licensee will buy the Product.

3. In consideration of the License Product described in Clause 1 of this
License Agreement, Licensee shall pay in advance the License fee as
stated in Clause 2 of the Agreement.

4. The licensee can decide to purchase the permanent version of the licen­
se by sending an explicit communication to this end to the licensor,
within the end date of the evaluation period.

5. This Agreement and the License granted herein commences upon the
moment the payment has been received by the Licensor.

6. This Agreement shall terminate upon (a) the moment of purchase or,
in any case, (b) once the evaluation period has expired.

7. Once the evaluation period has expired, the Licensee will be reimbur­
sed if the Product has not been bought.

TECHNOLOGIES – Stipula

The first approach we present is represented by a domain-specific pro­
gramming language, Stipula. It was recently developed by professors Co­
simo Laneve31 and Silvia Crafa32 in collaboration with Giovanni Sartor33,
designed for the creation of Smart Legal Contracts. Stipula’s distinctive
characteristic is that it was built starting from a small set of abstractions
aimed at capturing the main concepts of contract law. These include ele­
ments such as permission, prohibition, obligation, agreement or alea: basic pat­
terns that can be found in any legal contract. Each of these are represented
in code with a specific primitive. The idea is that such a structure would
make the code more understandable and, especially, easier to handle for
legal professionals when drafting smart legal contracts. Moreover, Stipula
is based on a relatively straightforward syntax, consisting of terms that
recall their commonly understood meaning.

In the next sections we put forward the implementation of our example
using Stipula. We will explain the meaning of the different elements con­
stituting the language while describing the various steps of the contract
execution.

I.

31 cosimo.laneve@unibo.it
32 silvia.crafa@unipd.it
33 giovanni.sartor@unibo.it

Building Trust in Smart Legal Contracts

103

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Agreement

Every Stipula contract begins with the execution of the Agreement con­
structor. This represents the moment in which the parties have reached a
consensus on the contents of the arrangement they want to create, such as
the end of negotiation.

At this stage, each party is asked to either set and/or accept certain
values of the contract terms. In Stipula, these values are called fields, and
in our example, these are the cost, the deadline for the activation of the
contract and the deadline of the evaluation period.

stipula License {

asset balance, token

field t_start, t_limit, cost, code

init Inactive

agreement (Licensor, Licensee)(t_start, t_limit, cost){

Licensor , Licensee : t_start, t_limit, cost

} ==> @Inactive

Contract header and agreement constructor in Stipula’s code.
Asset values and agreement constructor are highlighted.

Stipula’s interface during the execution of the agreement constructor.

1.

Fig. 1.

Fig. 2:

Alessandro Parenti and Marco Billi

104

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

As you can see from the contract header, field values must be distinguished
from asset values, which refer to the actual goods managed by the smart
contract like a currency or a token representing a good or a right. Such
resources have to preserve a total supply in the context of the program:
"the sender of the asset must always relinquish the control of the transfer­
red asset”.34 This feature implements, by design, a safety against the risks
of double-spending, accidental loss, or lock-in assets, since there is a finite
predetermined amount that can be exchanged.

In the license agreement, the assets are the Balance (money sent to the
contract) and a token representing the permanent license. Note how only
fields, and not assets, are part of the agreement constructor.

Offer

An offer is an expression to another party or to the community at large, to
be bound by the stated terms. The deployment of smart contract code on
a distributed ledger is generally deemed to correspond to an offer, at least
for those individuals who are allowed to interact with the smart contract.35

When any participant in the network can interact with it and conclude the
agreement, then the uploading represents an offer to the public. In order
to be valid, an offer must contain all the terms of the agreement (essentialia
negotii).

After the agreement, the contract’s state is set to “Inactive”. The first
action can be taken by the licensor by calling the “offerLicense” function,
through which he or she is asked to send the token representing the
license to the smart contract. By doing so, where the licensee accepted, the
contract could automate the licensor’s performance of granting the license.

2.

34 S. Crafa/C. Laneve/G. Sartor, Pacta sunt servanda: smart legal contracts in Stipula,
2021 available at https://arxiv.org/abs/2110.11069 (last access: 13.10.2022).

35 M. Durovic/A. Janssen, The Formation of Blockchain-based Smart Contracts in the
Light of Contract Law. European Review of Private Law 2019, 753 (753 et seqq.).

Building Trust in Smart Legal Contracts

105

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://arxiv.org/abs/2110.11069
https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2110.11069

@Inactive Licensor : offerLicense (x)[n]{

n o token

x > code;

now + t_start >> @Proposal{

token o Licensor

} ==> @End

} ==> @Proposal

offer function in the Stipula’s syntax. The 'state’ is highlighted

Fig. 2: Stipula’s interface during the execution of the agreement constructor.

As you can see from the contract header, field values must be distinguished from asset values, which refer

to the actual goods managed by the smart contract like a currency or a token representing a good or a

right. Such resources have to preserve a total supply in the context of the program: "the sender of the

asset must always relinquish the control of the transferred asset”.34 This feature implements, by design,

a safety against the risks of double-spending, accidental loss, or lock-in assets, since there is a finite

predetermined amount that can be exchanged.

In the license agreement, the assets are the Balance (money sent to the contract) and a token representing

the permanent license. Note how only fields, and not assets, are part of the agreement constructor.

2. Offer

An offer is an expression to another party or to the community at large, to be bound by the stated terms.

The deployment of smart contract code on a distributed ledger is generally deemed to correspond to an

offer, at least for those individuals who are allowed to interact with the smart contract.35 When any

participant in the network can interact with it and conclude the agreement, then the uploading represents

an offer to the public. In order to be valid, an offer must contain all the terms of the agreement (essentialia

negotii).

After the agreement, the contract’s state is set to “Inactive”. The first action can be taken by the licensor

by calling the “offerLicense” function, through which he or she is asked to send the token representing

the license to the smart contract. By doing so, where the licensee accepted, the contract could automate

the licensor’s performance of granting the license.

@Inactive Licensor : offerLicense (x)[n]{

 n ‐‐o token

 x ‐‐> code;

 now + t_start >> @Proposal{

 token ‐‐o Licensor

 } ==> @End

 } ==> @Proposal

Fig.3: offer function in the Stipula’s syntax. The 'state’ is highlighted

Fig. 4. Stipula’s interface during the execution: Offer.

34 S. Crafa/C. Laneve/G. Sartor, Pacta sunt servanda: smart legal contracts in Stipula, 2021 available at
https://arxiv.org/abs/2110.11069 (last access: 13.10.2022).
35 M. Durovic/A. Janssen, The Formation of Blockchain-based Smart Contracts in the Light of Contract Law.

European Review of Private Law 2019, 753 (753 et. seqq.).

Stipula’s interface during the execution: Offer.

After the offer the contract’s state switches to “Proposal”. States are another
basic feature of Stipula. They can be seen as the various stages of a con­
tract’s lifecycle and the transition between one another is triggered by the
occurrence of an event (external or produced by one party). Events are
indicated in the source code with an “@”.

From the legal standpoint, States are used to implement the concepts
of prohibition or permission. In every state, certain actions (i.e., functions
call) are allowed, while others are precluded. As an example, in the license
agreement, the Licensee is allowed to buy the license only in the “@Trial”
state and not before.

Acceptance

An acceptance is a form of statement or conduct that indicates assent
to the offer. In a smart contract, parties express acceptance by signing a
transaction with their cryptographic keys and by sending it to the contract
address. As it was noted, the majority of today’s smart contracts represent
unilateral contracts, stating, for example, that if X happens, I will give

Fig. 3:

Fig. 4.

3.

Alessandro Parenti and Marco Billi

106

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

you Y.36 With these types of contracts, acceptance always comes through
the act of performance. The transaction expressing consent will likely
represent the transfer of control over a digital asset to the smart contracts
as, for example, money, cryptocurrency, or digital token representing a
material good.

In our example, after the licensor’s proposal, the licensee can accept
it by calling the function “activateLicense”. He or she receives a usecode
which grants a temporary access to the software. At the same time, the
licensee is required to send to the contract the price necessary to buy
the permanent license. This money will be credited automatically to the
licensor if the licensee buys the permanent license by calling the relative
function (in another version of the same contract, the upfront escrow
can be used to issue a penalty where the licensee infringed some contract
terms). Should the licensee not buy the permanent license within the
evaluation period, the money will automatically be sent back to him and
the token back to the licensor.

@Proposal Licensee: activateLicense()[b] (b == cost) {

b o balance

code > Licensee;

now + t_limit >> @Trial {

balance o Licensee

token o Licensor

} ==> @End

} ==> @Trial

the acceptance function in Stipula’s syntax. The ‘event’ is highlighted.

Such a procedure is implemented through an event, another Stipula’s pri­
mitive. Events are employed to schedule the execution of future operations
if specific preconditions are met. Usually, preconditions are represented
by the different states defined in the contract. From the legal perspec­
tive, events are used to enforce contractual obligations. They consist of a
timeout (timer), which is initiated when the function is called, a precon­

Fig. 5:

36 M. Durovic, A. Janssen, 2019 (n. 33).

Building Trust in Smart Legal Contracts

107

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

dition (state) and the consequential operation that may be triggered (a
statement). According to an event, if the timer expires and the contract sta­
te is still “@X”, then the contract executes a certain operation such as ter­
minating the contract, issue an automatic penalty etc. In our example, the
event is used to invalidate the temporary usecode for the software at the
expiration of the evaluation period and, as already mentioned, to send the
resources managed by the contract to the respective owner.

Purchase

The licensee can decide to purchase the permanent license by calling
the “Buy” function. The money previously escrowed by the contract is sent
to the licensor address and the licensee receives the token representing the
permanent license. By receiving the token, the licensee acquires a full right
on the license which cannot be limited by other actors.

@Trial Licensee : buy ()[]{

balance o Licensor

token o Licensee;

The buy function in Stipula’s Syntax. The lollypop operator
is highlighted.

This particular kind of transfer is indicated by a special operator, the
lollypop (⊸). This operator is used for the movement of assets. This means
that the location previously holding the asset is emptied and it loses con­
trol over it. On the legal side, this represents the translative effect of a
previously existing right.

TECHNOLOGIES – Logical English

Logical English is a controlled natural-language interface that provides
syntactic sugar for logic programming languages (namely Prolog and
sCASP). It enables the user to write logic rules in quasi-natural language
form, which is then translated internally in Prolog, evaluated, and the
solution presented to the user in natural language form. This language,

4.

Fig. 6.

II.

Alessandro Parenti and Marco Billi

108

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

developed by Robert Kowalski in 2020,37 is aimed at providing the ability
to understand the code and what it represents even to non-programmers,
thus virtually giving everyone access to the underlying logic of a program.
This language differs from Stipula, as while the latter excels at inferring
legal meaning and concepts from the syntax, this approach is focused on
representing the source code as faithfully as possible to the contract as
written in natural language.

We will now present a brief overview of the technical aspects of this
language.

A LE (Logical English) document consists of a knowledge base of facts
and rules, scenarios, queries, and templates. The templates are declarations
of the predicates contained in the knowledge base and scenarios, such as

“according to clause1 *a licensee* and *a licensor* conclude *a contract* for
a product”

A template identifies a sentence and the variables contained in it. The
arguments are identified by a being surrounded by asterisks and starting
with an indefinite article “a” or “an”. The predicate itself is represented by
the rest of the template. The templates are used to identify instances of the
predicates in the knowledge base and elsewhere. For example, the template
above can be used to identify a sentence such as

“according to clause1 Ale and Marco conclude Contract1 for licenseNFT"
as an instance of a predicate, which is translated into Prolog or s(CASP)
resulting in the symbolic representation:

“according_to_clause1_and_conclude_for(‘Ale’, ‘Marco’, ‘Contract1’, ‘licen­
seNFT’)”.

The translation can be then processed by any standard Prolog interpreter.
This next section will focus on the conversion process, e.g., how to

translate the natural language text into Logical English. In legal logic
programming one of the key conditions for the representation of legal
rules in code is isomorphism, defined as one-to-one correspondence be­
tween norms in the formal model and natural language. Each concept or
condition must be accurately translated, not only the automated process
that is the foundation of a smart legal contract, but also the surrounding

37 R. Kowalski, Logical English A position paper prepared for Logic and Practice of
Programming 2020.

Building Trust in Smart Legal Contracts

109

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

information that the parties decide is useful to better interpret the contract
itself.

For example, let us take a look at clause 1 of this hypothetical contract
(Figure 6).

the logical transposition of clause 1.

The representation of this clause exemplifies the process behind it. First,
we must recall Article 1321 of the Italian Civil Code, which states that
a contract is an agreement between two or more people, to establish,
regulate or terminate a patrimonial legal relationship.

After having established the minimum requirements behind the defini­
tion of a contract, it becomes easier to visualize the purpose of the clause.
The LE representation, as seen in Figure 6, clearly identifies the conditions
behind the applicability of the clause and therefore of the contract. The
parties have been identified as 1) the licensor and 2) the licensee. Further­
more, the parties have agreed to the contract. Finally, the object of the con­
tract is the license to use the product, here referred to as simply “product”,
which has monetary value and establishes a legal relationship between the
two parties.

The same process applies to all other contract clauses. We shall take
a slightly deeper look at clause 6, which states that the Agreement shall
terminate upon (a) the moment of purchase or, in any case, (b) once the
evaluation period has expired.

the logical transposition of clause 6.

Since clause 6 introduces two moments in time related to the termination
of the contract, we have decided to divide this rule into two. The first
is related to the moment of purchase, while the second relates to the

Fig. 7:

Fig. 8:

Alessandro Parenti and Marco Billi

110

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

expiration date. It is interesting to introduce at this point one of the logical
features of LE, which is negation as failure, and is written as “it is not the
case that”, followed by the negated literal. Through negation as failure,
just like traditional Prolog programs, it is possible to write exceptions to
norms as defeasible rules.

For this clause, we have stated that in all cases where the contract has
not terminated with the purchase of the product by the licensee, it shall
terminate by expiration of the trial period.

Execution

Now that the contract has been represented into computational language,
the next step concerns telling the systems which steps must be taken to
execute the contract itself. Basically, how to go from “what the contract
states” to “what the contract does”?

the transposition of the execution rules.

Each goal originates from the same template – “*a contract* sends *a thing*
to *an agent* on *a date*” – which is being recalled, providing a trace of
all token movements. Furthermore, it can be observed that each action is
linked to the computable representation of the legal prose. Particularly,
each transaction can be directly connected to an article being applied in
the current case.

For example, the first rule in Figure 8, lines 86–88, states that a contract
sends a temporary use code to the licensee if clauses 1 and 2 of the contract
are positively instantiated. Each executable step is triggered by the satisfac­
tory outcome of a clause in the contract.

1.

Fig. 9:

Building Trust in Smart Legal Contracts

111

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Explaining the contract

the results of the execution.

In figure 9 we can visualize one of the advantages provided by mixing
declarative programming with quasi-natural language translation. It is pos­
sible to query the system regarding the actions taken by the contract, as
well as whether any clause applies in the present case. The system looks
through all known facts, inserted by the user, as well as any inferences that
can be made based on the applicable rules.

Based on the information which has been given as input, the system
runs through the available options, checking which articles can be applied
in the current situation, and by tracing the executable steps, gives a com­
plete overview of the relevant clauses and the actions that can be taken.
For example, by looking at Figure 9, we can visualize that the contract has
sent the price of the contract back to the licensee (Ale) on a date since 1) a
contract was successfully concluded (clause 1 was correctly applied) and
2) the licensee is supposed to be refunded the price on this date (clause 7
was correctly applied). Each of these clauses has sub-conditions for their
applicability, and it is possible to verify each step of the reasoning process.

Each indentation reflects a goal that shall be satisfied by the conditions
in the next indentation level. The system also returns negative conditions,
highlighted in red, which tell the user which requirements were not met.

Therefore, by approaching smart legal contracts from a declarative-iso­
morphic point of view, it is possible to both provide the user with a trace
of the movement of tokens from and to the contract, as well as enable the
parties to interact with the contract directly, asking questions regarding

2.

Fig. 10:

Alessandro Parenti and Marco Billi

112

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

the applicability of certain clauses, their effect on the overall validity of the
contract, and the conditions that must be satisfied or not satisfied.

Conclusion & discussion

In this paper we have presented Stipula, a domain specific language aimed
at supporting lawyers in the drafting of smart legal contracts, by capturing
the essential concepts of contract law and transposing them into an easy-
to-use programming language. We highlighted certain concepts, such as
what constitutes an agreement, an offer or the acceptance of the contract,
and the way Stipula conveys such information to the user.

Furthermore, we experimented with Logical English, a logic pro­
gramming language. Transposing a contract by maintaining the same
structure and syntax sacrifices certain semantic and contextual definiti­
ons in order to provide non-IT experts with the ability to read the code and
understand the logical steps required in order to fulfill the obligations of
the contract.

We believe that these solutions could greatly contribute to the transpa­
rency of this innovative technology, thus fostering people’s trust in it.
Moreover, these can become useful for legal practitioners, them to either
draft smart legal contracts directly, or to validate the program written by a
programmer.

An observation that stemmed out from our work, particularly from the
implementation of Logical English, is that the translation of a contract
in logic form is facilitated when the original contract has been written
computable logic in mind. With regard to execution steps, certain logical
structures must be present in the text in order to facilitate the transpo­
sition. Generally, having a clear distinction between goals (the actions
that must be automatically executed) and requirements (which conditions
must apply) is essential to write a precise isomorphic representation of the
contract clauses.

These two solutions can help contracting parties communicate in a
common language, available to both users and programmers alike, and the
use case shown supports, at least preliminarily, this conclusion.

E.

Building Trust in Smart Legal Contracts

113

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.5771/9783748936060-95 - am 24.01.2026, 21:27:37. https://www.inlibra.com/de/agb - Open Access -

https://doi.org/10.5771/9783748936060-95
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	A. Introduction
	B. Smart Legal Contracts
	C. Intelligibility
	D. Example
	I. TECHNOLOGIES – Stipula
	1. Agreement
	2. Offer
	3. Acceptance
	4. Purchase

	II. TECHNOLOGIES – Logical English
	1. Execution
	2. Explaining the contract

	E. Conclusion & discussion

