Ein Intelligentes Tutorensystem
fiir Rekursive Programmierung
Fehlkonzepte identifizieren fir zielgerichtetes Feedback

Sonja Niemann, Anna M. Thaler, Ute Schmid

Abstract: Im Beitrag wird ein Intelligentes Tutorensystem (ITS) vorgestellt, das Program-
mierfehlern zugrundeliegende Fehlkonzepte identifizieren kann. Das hier vorgestellte ITS ist
fiir den Bereich der rekursiven Programmierung in Python entwickelt. Kern des ITS ist eine
Methode, bei der diagnostische Tests auf dem von Studierenden eingegebenen Programmcode
durchgefiihrt werden. Fehlerhafte Testfille sind spezifischen Fehlkonzepten, die fiir diesen
Fehler ursichlich sind, zugeordnet. Dabei wird eine in der Informatikdidaktik entwickelte
Taxonomie von Fehlkonzepten beim rekursiven Programmieren genutzt (Hamouda et al.,
2017). In einem ndchsten Schritt werden die identifizierten Fehlkonzepte genutzt, um Riick-
meldungen zu generieren, die so spezifisch und so individuell wie maglich auf die Lernenden
abgestimmt sind.

In this contribution, we present an intelligent tutor system (ITS) that can identify misconcep-
tions based on programming errors. The ITS has been developed to teach recursive program-
ming in Python. Core of the ITS is a method based on diagnostic tests for program code of
students. Erroneous test cases are mapped to specific misconceptions underlying the observed
errors. The mapping is based on a taxonomy of typical misconceptions of recursion identified
in programming education (Hamouda et al., 2017). In a next step, the identification of mis-
conceptions can be used to tailor the feedback as precisely and individually as possible to the
students.

Keywords: Intelligentes Tutorensystem; Rekursion; Python; Fehlkonzepte; Testbasierte Dia-
gnose; individualisierte Riickmeldungen; intelligent tutor system; recursion; python; miscon-
ceptions; test-based diagnosis; targeted feedback

13.02.2026, 08:24:17.

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

122

I. Bedingungen: KI, Blended Learning, Interdisziplinaritat

1. Einleitung

Zu Beginn jedes Informatikstudiums miissen grundlegende Programmierfertigkei-
ten erlernt werden. Eine dieser Fertigkeiten ist das rekursive Losen von Problemen.
Dies stellt jedoch oft eine grofde Herausforderung fiir Programmieranfingerinnen
und -anfinger dar. Es gibt zahlreiche Untersuchungen dazu, welche Probleme Stu-
dierende haben,wenn sie lernen Probleme rekursiv zu loésen (Gotschi et al., 2003;
Hamouda et al., 2017; Sanders & Scholtz, 2012). Diese Erkenntnisse konnen von Tu-
torinnen und Tutoren aber nur dann genutzt werden, wenn sie genug Zeit haben,
um alle Studierenden individuell zu betreuen. Um die Lehrpersonen zu entlasten,
wurde ein Intelligentes Tutorensystem (ITS) entwickelt, das den Studierenden hel-
fen kann, rekursive Funktionen zu programmieren. ITS sind seit den 1970ern Be-
standteil der Forschung von KI in der Lehre (Carbonell,1970). Sie bestehen klassisch
aus vier Modulen: dem Experten/Domanen-Modul, dem Pidagogisches/Tutor-Mo-
dul, dem Studierenden-Modul und dem Interface-Modul (Nwana, 1990; Raza, 2020;
Rus et al., 2013). Der Fokus des vorgestellten ITS liegt darauf, dass die Studieren-
den ihre Funktionen selbst programmieren und im Vergleich zu bestehenden Pro-
grammier-ITS keine Liicken fiillen oder Multiple-Choice-Aufgaben l6sen miissen.
Es werden keine Syntaxfehler korrigiert, sondern zugrundeliegende Fehlkonzepte
identifiziert, damit Studierende konkret Hilfe fiir die Bereiche bekommen kénnen,
die sie noch nicht richtig verstanden haben. Die Nutzung setzt voraus, dass Studie-
rende bereits grundlegende Kenntnisse in Python sowie Rekursionen haben.

2. Intelligente Tutorensysteme und Rekursion
2.1 Rekursion

Rekursion spielt in vielen Disziplinen eine entscheidende Rolle. So betrachtet man
in der Theory of Mind die Fahigkeit zum rekursiven Denken. Es geht darum, wann
Menschen in ihrer Entwicklung die Fihigkeit erlernen, sich in andere Menschen
hineinzuversetzen und Annahmen dariiber zu machen, was diese denken (Valle et
al., 2015). In der Informatik werden rekursive Funktionen dadurch beschrieben,
dass sie sich selbst mit einem kleineren Teilproblem aufrufen. Die Aufrufe werden
so lange ausgefiihrt, bis ein definierter Basecase erreicht ist (Becker, 2023). Als
Anfangsaufgabe in dem ITS wurde das Berechnen einer Summenfolge von einer
Zahl n gewihlt. Dabei wird n mit all seinen Vorgingern aufsummiert. Fiir n = 4
wiirde dies so berechnen: 4 4+ 3 + 2 + 1 + 0 = 10. Der Rekursive Ansatz sieht vor,
dass die Funktion sum(n) sich selbst aufruft, aber n mit jedem Aufruf verkleinert.
Die Summenfolge von 4 ist nicht bekannt, daher wird das Problem vereinfacht und
als 4 + sum(3) dargestellt. Das Problem wird so lange vereinfacht, bis der definierte

13.02.2026, 08:24:17.

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Niemann/Thaler/Schmid: Ein Intelligentes Tutorensystem fiir Rekursive Programmierung

Basecase erreichtist, in diesem Beispiel n=o0. Fiir den Fall von n =0 ist das Ergebnis
definiert, dieser wird nun im passiven flow an die Aufrufe zuriickgegeben, sodass
wir riickwirkend alle Summen berechnen kénnen.

2.2 Fehlkonzepte

Ziel des ITS ist es Fehlkonzepte zu identifizieren, dazu miissen diese zunichst de-
finiert werden. Welche Probleme und Schwierigkeiten Studierende beim Erlernen
von Rekursionen haben, wurde bereits ausfiihrlich erforscht (Gotschi et al., 2003;
Hamouda et al., 2017; Sanders & Scholtz, 2012). Um das ITS so zu modellieren, dass
es identifizieren kann auf welche Aspekte Programmierfehler genau zuriickzufith-
ren sind, ist eine Art Kategorisierung notwendig. Hamouda et al. (2017) haben ty-
pische Fehler von Studierenden zugrundeliegenden Fehlkonzepten zugeordnet. Sie
definieren Fehlkonzepte als eine falsche Idee oder Annahme, die auf dem Missver-
stindnis von etwas beruht. Das Ziel des ITS ist es genau dieses grundliegende Kon-
zept zu finden, das missverstanden wurde, z.B. welche Fehler passieren, wenn Stu-
dierende nicht genau verstanden haben, wie der aktive Flow abliuft. Hamouda et
al. (2017) haben 5 Kategorien identifiziert, in denen 12 Fehlkonzepte definiert wur-
den. Dadurch kann genau beschrieben werden, was Studierende nicht verstanden
haben. Das resultierende Concept Inventory beinhaltet Aufgaben, sowie erginzend
typische falsche Antworten von Studierenden, die den zugrundeliegenden Fehlkon-
zepten zugeordnet werden (Hamouda et al., 2017). Diese Form von Zuordnung von
falschen Lésungen zu Fehlkonzepten hat die Uberlegung angestof3en ein dhnliches
Vorgehen zu wihlen, bei dem Studierende jedoch selbst Programmieren konnen.

3. Testpipeline
3.1 Mapping

Das Vorgehen von Hamouda et al. (2017) musste auf die neue Aufgabenstellung an-
gepasst werden. Die Aufgaben aus dem Concept Inventory eignen sich leider nicht
als Programmieraufgaben, da sie in keine erkennbare logische Funktion haben, also
nur als Tracing-Aufgaben verwendbar sind. Da sich das ITS an Programmieranfin-
gerinnen und Anfingern richtet wurden passende Aufgaben von Inf-Schule (»inf-
schule.de«, 2023) ausgewahlt, die Seite wurde von Informatik-Lehrenden gestaltet.
Die beschriebenen Fehlkonzepte aus dem Concept Inventory (Hamouda et al., 2017)
wurden dazu herangezogen, um eine Fehlerdatenbank zu erstellen.

In Abb. 1 ist ein Beispiel fir das Fehlkonzept BCEvaluation, das Fehlkonzept
zeichnet sich dadurch aus, dass die Ergebnisse jeweils um 1 zu grof3 oder zu klein
sind. Hamouda et al. (2017) fithren dies darauf zuriick, dass Studierende nicht

13.02.2026, 08:24:17.

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

124

I. Bedingungen: KI, Blended Learning, Interdisziplinaritat

verstanden haben, wie oft der rekursive Aufruf durchgefithrt wird. Um ein Fehl-
konzept zu identifizieren, miissen mehrere Tests durchgefithrt werden, bis ein
charakteristisches Muster gefunden wurde. Der Auszug aus der Fehlertaxonomie
in Abb. 1. verdeutlicht, wie verzweigt die Testpipeline sein muss um méglichst viele
Fehlkonzepte abzudecken. Mit diesem Vorgehen konnen bereits 7 der 12 im Concept
Inventory definierten Fehlkonzepte identifiziert werden.

Abb. 1: Mappingprozess anhand einer Beispielaufgabe (links) mit Auszug aus der Fehlerta-
xonomie (rechts).

def sum(n):
ifn==0:
(BaseCase Test)
else:
return n|+ sum(n-1) . —/ \\
Runtime Error False Correct None
Tests ‘ ‘ |
erwartet - erhalten {:22) (Tests) () ()]
0>1
i BOWri /n(r '-\1 : N AST
10 56 rite Jvaluation (AS)\
Definition: BCEvaluation InfiniteRecursion ~ RCWrite

Rekursiver-Aufruf entweder einmal zu oft oder zu wenig
Erkennbar an:
— Basecase korrekt gesetzt (griin umrandet)
— Return Wert inkorrekt (rot umrandet)
— Charakteristisches Muster in Tests (mittlere Box)

3.2 Testarten

Das ITS verwendet zwei verschiedene Testarten um moglichst viele Fehlkonzepte
identifizieren zu konnen. Wie in Abb. 1 dargestellt, besteht die erste Option darin,
einfache Testwerte zur Uberpriifung zu verwenden. Fiir jede Aufgabe wird der Base-
case sowie drei weitere Inputvariablen hinterlegt. Kénnen mehrere Fehlkonzepte
fir eine Fehlermeldung verantwortlich sein ist es notwendig eine weitere Testform
hinzuzuziehen. Um eine genaue Unterscheidung méglich zu machen, kann das ITS
die Abstract Syntax Trees (AST) des Studierenden Codes auf bestimmte Fehlkonzep-
te untersuchen. AST ist das Zwischenprodukt des Compilers, bevor der Code in ma-
schinenlesbare Form iibersetzt wird. Zeichen werden dabei zu Tokens gruppiert, die
einen logischen Zusammenhang haben, Zeichen die einen rein syntaktischen Nut-
zen haben, sind nicht mehr reprisentiert (Noonan, 1985). Liegt der Code in dieser
Form vor, kann nach verallgemeinerten Operationen gefiltert werden. Anstatt nach
dem Ausdruck sum(n-1) zu suchen, der nur fir die Aufgabe sum() gilt, konnen ASTs
allgemein nach rekursiven Aufrufen durchsucht werden. In einem zweiten Schritt
wird zum Beispiel iberpriift, ob die Inputvariablen reduziert werden, also ob (n-1)
geschrieben wurde.

13.02.2026, 08:24:17.

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Niemann/Thaler/Schmid: Ein Intelligentes Tutorensystem fiir Rekursive Programmierung

4. Implementierung

Studierende konnen sich mit einem Nutzernamen und Passwort bei der Webappli-
kation anmelden und ein Profil erstellen, in dem auch ihr Lernfortschritt gespei-
chert werden. Es wurden 6 Aufgaben in aufsteigender Schwierigkeit mit dazugeho-
riger Losung und Angaben fiir die Testpipeline in dem ITS integriert. Alle Informa-
tionen zu Aufgaben, Studierenden und ihren Lésungen sind in einer Datenbank ge-
speichert. Wurde ein Fehlkonzept identifiziert haben Studierende die Moglichkeit
die Aufgabe erneut zu l6sen, jedoch nicht mit der nichsten Aufgabe weiterzuma-
chen. Die nichstschwierigere Aufgabe wird erst angezeigt, wenn die voran gegan-
gene richtig gelost wurde.

5. Zusammenfassung und Ausblick

Die Grundlage fiir hilfreiches Feedback wurde mit dem aktuellen Stand des ITSs
gegeben. Das Feedback Modul sollte in einem nichsten Schritt dahin erweitert
werden, dass die Information iiber das identifizierte Fehlkonzept genutzt wird, um
Studierende bestméglich zu unterstiitzen. Es ist denkbar strukturanaloge Beispiele
zu generieren, oder den Ablauf der Rekursion zu visualisieren, damit Studierende
besser erkennen, an welcher Stelle sie einen Fehler machen. Ist das Feedback Modul
ausgereift miisste eine experimentelle Studie zeigen, inwieweit Studierenden vom
dem ITS profitieren.

Falsche Losungen von Studierenden zu Fehlkonzepten zuzuordnen konnte eine
interessante Herangehensweise fiir weitere schwer formalisierbare Konzepte sein,
setzt jedoch eine ausfithrliche Ausarbeitung der Fehlkonzepte voraus.

Forderhinweis: Der Beitrag istim Rahmen des Projekts »Digitale Kulturen der Lehre
entwickeln« entstanden, geférdert durch die Stiftung Innovation in der Hochschullehre.

Literaturverzeichnis

Carbonell, J. R. (1970). Al in CAI: An Artificial-Intelligence Approach to Computer-
Assisted Instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190—202..
https://doi.org/10.1109/TMMS. 1970.299942

Gotschi, T., Sanders, 1., & Galpin, V. (2003). Mental Models of Recursion. Proceedings
of the 34th SIGCSE Technical Symposium on Computer Science Education, 346—350.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst,]. V., & Shaffer, C. A. (2017).
A Basic Recursion Concept Inventory. Computer Science Education, 27(2), 121-148.

13.02.2026, 08:24:17.

https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS

126

I. Bedingungen: KI, Blended Learning, Interdisziplinaritat

Noonan, R. E. (1985). An Algorithm for Generating Abstract Syntax Trees. Computer
Languages, 10(3—4), 225-236.

Nwana, H. (1990). Intelligent Tutoring Systems: An Overview.

Station — Rekursion. (2023, 05. Oktober). inf-schule. https://www.inf-schule.de/
(Abgerufen am 28.04.2024)

Raza, A. (2020). Intelligent Tutoring Systems and Metacognitive Learning Strate-
gies: A Survey. Muhammad ZAYYAD, 47.

Rus, V., D'Mello, S., Hu, X., & Graesser, A. (2013). Recent Advances in Conversational
Intelligent Tutoring Systems. AI Magazine, 34(3), 42—54.

Sanders, L., & Scholtz, T. (2012). First Year Students’ Understanding of the Flow of
Control in Recursive Algorithms. African Journal of Research in Mathematics, Science
and Technology Education, 16(3), 348—362..

Valle, A., Massaro, D., Castelli, 1., & Marchetti, A. (2015). Theory of Mind Develop-
ment in Adolescence and Early Adulthood: The Growing Complexity of Recursive
Thinking Ability. Europe’s Journal of Psychology, 11(1), 112.

13.02.2026, 08:24:17.

https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/

