
Ein Intelligentes Tutorensystem

für Rekursive Programmierung

Fehlkonzepte identifizieren für zielgerichtetes Feedback

Sonja Niemann, Anna M. Thaler, Ute Schmid

Abstract: Im Beitrag wird ein Intelligentes Tutorensystem (ITS) vorgestellt, das Program-

mierfehlern zugrundeliegende Fehlkonzepte identifizieren kann. Das hier vorgestellte ITS ist

für den Bereich der rekursiven Programmierung in Python entwickelt. Kern des ITS ist eine

Methode, bei der diagnostische Tests auf dem von Studierenden eingegebenen Programmcode

durchgeführt werden. Fehlerhafte Testfälle sind spezifischen Fehlkonzepten, die für diesen

Fehler ursächlich sind, zugeordnet. Dabei wird eine in der Informatikdidaktik entwickelte

Taxonomie von Fehlkonzepten beim rekursiven Programmieren genutzt (Hamouda et al.,

2017). In einem nächsten Schritt werden die identifizierten Fehlkonzepte genutzt, um Rück-

meldungen zu generieren, die so spezifisch und so individuell wie möglich auf die Lernenden

abgestimmt sind.

In this contribution, we present an intelligent tutor system (ITS) that can identify misconcep-

tions based on programming errors. The ITS has been developed to teach recursive program-

ming in Python. Core of the ITS is a method based on diagnostic tests for program code of

students. Erroneous test cases are mapped to specific misconceptions underlying the observed

errors. The mapping is based on a taxonomy of typical misconceptions of recursion identified

in programming education (Hamouda et al., 2017). In a next step, the identification of mis-

conceptions can be used to tailor the feedback as precisely and individually as possible to the

students.

Keywords: Intelligentes Tutorensystem; Rekursion; Python; Fehlkonzepte; Testbasierte Dia-

gnose; individualisierte Rückmeldungen; intelligent tutor system; recursion; python; miscon-

ceptions; test-based diagnosis; targeted feedback

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


122 II. Bedingungen: KI, Blended Learning, Interdisziplinarität

1. Einleitung

ZuBeginn jedes Informatikstudiumsmüssen grundlegendeProgrammierfertigkei-

ten erlernt werden. Eine dieser Fertigkeiten ist das rekursive Lösen von Problemen.

Dies stellt jedoch oft eine große Herausforderung für Programmieranfängerinnen

und -anfänger dar. Es gibt zahlreiche Untersuchungen dazu, welche Probleme Stu-

dierende haben,wenn sie lernen Probleme rekursiv zu lösen (Götschi et al., 2003;

Hamouda et al., 2017; Sanders & Scholtz, 2012). Diese Erkenntnisse können von Tu-

torinnen und Tutoren aber nur dann genutzt werden, wenn sie genug Zeit haben,

um alle Studierenden individuell zu betreuen. Um die Lehrpersonen zu entlasten,

wurde ein Intelligentes Tutorensystem (ITS) entwickelt, das den Studierenden hel-

fen kann, rekursive Funktionen zu programmieren. ITS sind seit den 1970ern Be-

standteil der Forschung von KI in der Lehre (Carbonell,1970). Sie bestehen klassisch

aus vierModulen: demExperten/Domänen-Modul, demPädagogisches/Tutor-Mo-

dul, demStudierenden-Modul und dem Interface-Modul (Nwana, 1990; Raza, 2020;

Rus et al., 2013). Der Fokus des vorgestellten ITS liegt darauf, dass die Studieren-

den ihre Funktionen selbst programmieren und im Vergleich zu bestehenden Pro-

grammier-ITS keine Lücken füllen oder Multiple-Choice-Aufgaben lösen müssen.

Es werden keine Syntaxfehler korrigiert, sondern zugrundeliegende Fehlkonzepte

identifiziert, damit Studierende konkret Hilfe für die Bereiche bekommen können,

die sie noch nicht richtig verstanden haben.Die Nutzung setzt voraus, dass Studie-

rende bereits grundlegende Kenntnisse in Python sowie Rekursionen haben.

2. Intelligente Tutorensysteme und Rekursion

2.1 Rekursion

Rekursion spielt in vielen Disziplinen eine entscheidende Rolle. So betrachtet man

in der Theory of Mind die Fähigkeit zum rekursiven Denken. Es geht darum, wann

Menschen in ihrer Entwicklung die Fähigkeit erlernen, sich in andere Menschen

hineinzuversetzen und Annahmen darüber zu machen, was diese denken (Valle et

al., 2015). In der Informatik werden rekursive Funktionen dadurch beschrieben,

dass sie sich selbst mit einem kleineren Teilproblem aufrufen. Die Aufrufe werden

so lange ausgeführt, bis ein definierter Basecase erreicht ist (Becker, 2023). Als

Anfangsaufgabe in dem ITS wurde das Berechnen einer Summenfolge von einer

Zahl n gewählt. Dabei wird n mit all seinen Vorgängern aufsummiert. Für n = 4

würde dies so berechnen: 4 + 3 + 2 + 1 + 0 = 10. Der Rekursive Ansatz sieht vor,

dass die Funktion sum(n) sich selbst aufruft, aber n mit jedem Aufruf verkleinert.

Die Summenfolge von 4 ist nicht bekannt, daher wird das Problem vereinfacht und

als 4 + sum(3) dargestellt. Das Problem wird so lange vereinfacht, bis der definierte

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Niemann/Thaler/Schmid: Ein Intelligentes Tutorensystem für Rekursive Programmierung 123

Basecase erreicht ist, in diesemBeispiel n = 0. Für den Fall von n = 0 ist das Ergebnis

definiert, dieser wird nun im passiven flow an die Aufrufe zurückgegeben, sodass

wir rückwirkend alle Summen berechnen können.

2.2 Fehlkonzepte

Ziel des ITS ist es Fehlkonzepte zu identifizieren, dazu müssen diese zunächst de-

finiert werden. Welche Probleme und Schwierigkeiten Studierende beim Erlernen

von Rekursionen haben, wurde bereits ausführlich erforscht (Götschi et al., 2003;

Hamouda et al., 2017; Sanders & Scholtz, 2012). Um das ITS so zumodellieren, dass

es identifizieren kann auf welche Aspekte Programmierfehler genau zurückzufüh-

ren sind, ist eine Art Kategorisierung notwendig. Hamouda et al. (2017) haben ty-

pische Fehler von Studierenden zugrundeliegenden Fehlkonzepten zugeordnet. Sie

definieren Fehlkonzepte als eine falsche Idee oder Annahme, die auf dem Missver-

ständnis von etwas beruht. Das Ziel des ITS ist es genau dieses grundliegende Kon-

zept zu finden, dasmissverstanden wurde, z.B. welche Fehler passieren, wenn Stu-

dierende nicht genau verstanden haben, wie der aktive Flow abläuft. Hamouda et

al. (2017) haben 5 Kategorien identifiziert, in denen 12 Fehlkonzepte definiert wur-

den. Dadurch kann genau beschrieben werden, was Studierende nicht verstanden

haben. Das resultierende Concept Inventory beinhaltet Aufgaben, sowie ergänzend

typische falsche Antworten von Studierenden, die den zugrundeliegenden Fehlkon-

zepten zugeordnet werden (Hamouda et al., 2017). Diese Form von Zuordnung von

falschen Lösungen zu Fehlkonzepten hat die Überlegung angestoßen ein ähnliches

Vorgehen zu wählen, bei dem Studierende jedoch selbst Programmieren können.

3. Testpipeline

3.1 Mapping

Das Vorgehen von Hamouda et al. (2017) musste auf die neue Aufgabenstellung an-

gepasst werden. Die Aufgaben aus dem Concept Inventory eignen sich leider nicht

als Programmieraufgaben,da sie in keine erkennbare logische Funktion haben, also

nur als Tracing-Aufgaben verwendbar sind.Da sich das ITS an Programmieranfän-

gerinnen und Anfängern richtet wurden passende Aufgaben von Inf-Schule (»inf-

schule.de«, 2023) ausgewählt, die Seite wurde von Informatik-Lehrenden gestaltet.

Die beschriebenen Fehlkonzepte aus demConcept Inventory (Hamouda et al., 2017)

wurden dazu herangezogen, um eine Fehlerdatenbank zu erstellen.

In Abb. 1 ist ein Beispiel für das Fehlkonzept BCEvaluation, das Fehlkonzept

zeichnet sich dadurch aus, dass die Ergebnisse jeweils um 1 zu groß oder zu klein

sind. Hamouda et al. (2017) führen dies darauf zurück, dass Studierende nicht

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


124 II. Bedingungen: KI, Blended Learning, Interdisziplinarität

verstanden haben, wie oft der rekursive Aufruf durchgeführt wird. Um ein Fehl-

konzept zu identifizieren, müssen mehrere Tests durchgeführt werden, bis ein

charakteristisches Muster gefunden wurde. Der Auszug aus der Fehlertaxonomie

in Abb. 1. verdeutlicht, wie verzweigt die Testpipeline sein muss ummöglichst viele

Fehlkonzepte abzudecken.Mit diesemVorgehen können bereits 7 der 12 imConcept

Inventory definierten Fehlkonzepte identifiziert werden.

Abb. 1: Mappingprozess anhand einer Beispielaufgabe (links) mit Auszug aus der Fehlerta-

xonomie (rechts).

3.2 Testarten

Das ITS verwendet zwei verschiedene Testarten um möglichst viele Fehlkonzepte

identifizieren zu können. Wie in Abb. 1 dargestellt, besteht die erste Option darin,

einfacheTestwerte zurÜberprüfung zu verwenden.Für jedeAufgabewirdderBase-

case sowie drei weitere Inputvariablen hinterlegt. Können mehrere Fehlkonzepte

für eine Fehlermeldung verantwortlich sein ist es notwendig eine weitere Testform

hinzuzuziehen.Um eine genaue Unterscheidungmöglich zumachen, kann das ITS

die Abstract Syntax Trees (AST) des StudierendenCodes auf bestimmte Fehlkonzep-

te untersuchen.AST ist das Zwischenprodukt des Compilers, bevor der Code inma-

schinenlesbare Formübersetztwird.Zeichenwerdendabei zuTokens gruppiert,die

einen logischen Zusammenhang haben, Zeichen die einen rein syntaktischen Nut-

zen haben, sind nicht mehr repräsentiert (Noonan, 1985). Liegt der Code in dieser

Form vor, kann nach verallgemeinerten Operationen gefiltert werden. Anstatt nach

dem Ausdruck sum(n-1) zu suchen, der nur für die Aufgabe sum() gilt, können ASTs

allgemein nach rekursiven Aufrufen durchsucht werden. In einem zweiten Schritt

wird zum Beispiel überprüft, ob die Inputvariablen reduziert werden, also ob (n-1)

geschrieben wurde.

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Niemann/Thaler/Schmid: Ein Intelligentes Tutorensystem für Rekursive Programmierung 125

4. Implementierung

Studierende können sich mit einemNutzernamen und Passwort bei derWebappli-

kation anmelden und ein Profil erstellen, in dem auch ihr Lernfortschritt gespei-

chert werden. Es wurden 6 Aufgaben in aufsteigender Schwierigkeitmit dazugehö-

riger Lösung und Angaben für die Testpipeline in dem ITS integriert. Alle Informa-

tionen zu Aufgaben, Studierenden und ihren Lösungen sind in einer Datenbank ge-

speichert. Wurde ein Fehlkonzept identifiziert haben Studierende die Möglichkeit

die Aufgabe erneut zu lösen, jedoch nicht mit der nächsten Aufgabe weiterzuma-

chen. Die nächstschwierigere Aufgabe wird erst angezeigt, wenn die voran gegan-

gene richtig gelöst wurde.

5. Zusammenfassung und Ausblick

Die Grundlage für hilfreiches Feedback wurde mit dem aktuellen Stand des ITSs

gegeben. Das Feedback Modul sollte in einem nächsten Schritt dahin erweitert

werden, dass die Information über das identifizierte Fehlkonzept genutzt wird, um

Studierende bestmöglich zu unterstützen.Es ist denkbar strukturanaloge Beispiele

zu generieren, oder den Ablauf der Rekursion zu visualisieren, damit Studierende

besser erkennen, anwelcher Stelle sie einen Fehlermachen. Ist das FeedbackModul

ausgereift müsste eine experimentelle Studie zeigen, inwieweit Studierenden vom

dem ITS profitieren.

Falsche Lösungen von Studierenden zu Fehlkonzepten zuzuordnen könnte eine

interessante Herangehensweise für weitere schwer formalisierbare Konzepte sein,

setzt jedoch eine ausführliche Ausarbeitung der Fehlkonzepte voraus.

Förderhinweis:DerBeitrag ist imRahmendesProjekts »DigitaleKulturenderLehre

entwickeln« entstanden, gefördert durch die Stiftung Innovation in derHochschullehre.

Literaturverzeichnis

Carbonell, J. R. (1970). AI in CAI: An Artificial-Intelligence Approach to Computer-

Assisted Instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190–202.

https://doi.org/10.1109/TMMS. 1970.299942

Götschi, T., Sanders, I.,&Galpin, V. (2003).MentalModels of Recursion.Proceedings

of the 34th SIGCSE Technical Symposium on Computer Science Education, 346–350.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., & Shaffer, C. A. (2017).

A Basic Recursion Concept Inventory.Computer Science Education, 27(2), 121–148.

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS
https://doi.org/10.1109/TMMS


126 II. Bedingungen: KI, Blended Learning, Interdisziplinarität

Noonan, R. E. (1985). An Algorithm for Generating Abstract Syntax Trees. Computer

Languages, 10(3–4), 225–236.

Nwana, H. (1990). Intelligent Tutoring Systems: AnOverview.

Station – Rekursion. (2023, 05. Oktober). inf-schule. https://www.inf-schule.de/

(Abgerufen am 28.04.2024)

Raza, A. (2020). Intelligent Tutoring Systems and Metacognitive Learning Strate-

gies: A Survey.Muhammad ZAYYAD, 47.

Rus,V.,D’Mello, S.,Hu,X.,&Graesser,A. (2013).Recent Advances inConversational

Intelligent Tutoring Systems. AIMagazine, 34(3), 42–54.

Sanders, I., & Scholtz, T. (2012). First Year Students’ Understanding of the Flow of

Control in Recursive Algorithms.African Journal of Research inMathematics, Science

and Technology Education, 16(3), 348–362.

Valle, A., Massaro, D., Castelli, I., & Marchetti, A. (2015). Theory of Mind Develop-

ment inAdolescence andEarly Adulthood:TheGrowingComplexity ofRecursive

Thinking Ability. Europe’s Journal of Psychology, 11(1), 112.

https://doi.org/10.14361/9783839471203-012 - am 13.02.2026, 09:24:17. https://www.inlibra.com/de/agb - Open Access - 

https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://doi.org/10.14361/9783839471203-012
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/
https://www.inf-schule.de/

