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Moglichkeiten der neuesten KI-Modelle in der Produktion

Multimodale Foundation-
Modelle in der Produktion

H. Behnen, |.-H. Woltersmann, D. Wolfschldger, R. H. Schmitt

ZUSAMMENFASSUNG Aktuelle Herausforderungen in
der Produktion, etwa der Fachkraftemangel, erhohen die Not-
wendigkeit, Prozesse zu automatisieren und die Produktivitat
zu erhohen. Multimodale Foundation-Modelle bieten diese
Maoglichkeit fiir eine Vielzahl an Anwendungen, indem sie aus
heterogenen Informationsquellen Entscheidungen ableiten.
Anwendungen um diese Technologie sind zurzeit jedoch rar.
Dieser Beitrag gibt daher einen Uberblick iiber die Potenziale
und Herausforderungen dieser Modelle in der Produktion.

STICHWORTER

Produktionstechnik, Kiinstliche Intelligenz (KIl), Industrie 4.0

1 Einleitung

Unter dem Stichwort Industrie 4.0 wird seit den frithen
2010er Jahren in der Industrie zunehmend untersucht, durch den
Einsatz von Internet- und Kommunikationstechnologie in
Produktionsanlagen sowie die Integration diverser Sensoren
sogenannte cyber-physische Systeme (CPS) zu bilden, um diese
fiir die Optimierung von Produktionssystemen zu nutzen und so
letztlich nachhaltiger, resilienter und wettbewerbsfahiger zu pro-
duzieren [1]. Dieses Potenzial basiert wesentlich darauf, dass gro-
fe Mengen an Daten unterschiedlichen Formats und unterschied-
licher Messgroflen erfasst werden, diese im Digitalen Zwilling
bereitgestellt werden und dort die Grundlage fiir intelligente Ent-
scheidungsalgorithmen bilden. Diese intelligenten Verarbeitungs-
systeme miissen in der Lage sein, die gesammelten Daten zu pro-
zessieren und Wissen aus ihnen abzuleiten. Seit einigen Jahren
wird hierzu bereits der Einsatz Kiinstlicher Intelligenz (KI),
meistens durch Modelle des Maschinellen Lernens (ML), unter-
sucht. Typische Anwendungsfille sind etwa der Einsatz von
KI-Modellen zur Vorhersage Qualitits-relevanter Merkmale (Pre-
dictive Quality) auf Basis prozessparallel erfasster Sensordaten,
die ansonsten nur durch aufwendige nachgelagerte, zum Teil zer-
storende, Priifverfahren gemessen werden konnten [2] Ein wei-
teres Beispiel ist der Einsatz von KI-Modellen zur Optimierung
von Bewegungspfaden auf Basis von Reinforcement Learning, was
zum Beispiel fiir Logistikanwendungen eingesetzt werden kann
[3]- Obwohl der Nutzung von KI in der Produktion ein grofes
Potenzial zugesprochen wird, ist ihr Verbreitungsgrad im Produk-
tivbereich, insbesondere bei kleinen und mittleren Unternehmen,
noch sehr gering [2, 4]. Das ist aus folgenden Griinden der Fall:
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ABSTRACT Current challenges in production, such as
shortage of skilled workers, increase the need to automate
processes and increase productivity. Multi-modal foundation
models address this automation demand for a variety of
applications by deriving decisions based on heterogeneous
information sources. However, applications around this
technology are currently rare. This article therefore provides
an overview of the potential and challenges of these models
in production.

+ Geringe Generalisierungsqualitit und Leistungsfihigkeit: Auch
wenn KI-Modelle wihrend des Trainings oder unter Simulati-
onsbedingungen gute Genauigkeiten erzielen, ist ihre Perfor-
manz in realen, dynamischen, unstrukturierten Umgebungen
oder bei Prozessinderungen oftmals stark limitiert [5].

+ Begrenzte Transferfahigkeit und Aufgabenspezifitat: Typischer-
weise werden KI-Modelle fiir eine spezifische Aufgabe, etwa
die Detektion einer bestimmten Objektklasse, trainiert. Andern
sich die Anforderungen an die Aufgabe, muss ein neues Modell
entwickelt werden. Dies ist gerade vor dem Hintergrund vari-
antenreicher oder komplexer Produktportfolios mit erhebli-
chem Aufwand verbunden [6].

» Verfiigbarkeit von Datensitzen: Insbesondere im industriellen
Kontext sind fiir die Modellierungsaufgaben passende Daten-
sitze hiufig nicht 6ffentlich verfiigbar. Griinde sind die hohe
Vielfalt moglicher Produkte und hohe Hiirden beim Daten-
schutz [7]. Haufig miissen daher zu beginn von KI-Entwick-
lungsprozessen aufwendige Versuchsreihen aufgenommen wer-
den, um eine vielfiltige Datengrundlage fiir die Entwicklung
von KI-Ansitzen zu generieren [6]. Dabei reicht es in der Re-
gel nicht aus, lediglich Rohdaten zu erfassen und diese fiir das
Training von KI-Modellen zu nutzen, sondern zusitzlich miis-
sen diese Rohdaten mit Annotationen versehen werden, was
meist mit grofem manuellen Arbeitsaufwand einhergeht [8].

+ Mangelnde Interpretierbarkeit: KI-Modelle sind meist Black-
Box-Modelle, die eine Entscheidung treffen, ohne dass die
Faktoren, die zu dieser Entscheidung fiihren, bekannt sind.
Die Griinde fiir eine bestimmte Entscheidung sind damit nicht
ohne Weiteres nachvollziehbar und kénnen nicht direkt inter-
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Bild 1. Prinzipbild multimodaler Foundation-Modelle. Grafik: WZL | RWTH Aachen University in Anlehnung an [12]

pretiert und damit im Sinne einer Optimierung des
Produktionssystems angepasst werden [9].

Unimodalitit: KI-Modelle werden typischerweise lediglich auf
einem Typ von Daten, etwa Bilddaten, trainiert [10]. Andere
zur Verfiigung stehende Datenmodalititen werden fiir die
Modellierung nicht einbezogen, sodass in vielen Szenarien nur
ein Teil der zur Verfiigung stehenden Information tiber das
Produktionssystem und seine Umgebung genutzt wird.

Mit dem Auftreten grofer Sprachmodelle (LLMs) hat sich spa-
testens seit der Entwicklung von GPT-3 [11] ein Paradigmen-
wechsel im Bereich KI ergeben. Auf Basis moderner Modellarchi-
tekturen wurde bei der Entwicklung festgestellt, dass Modelle mit
steigender Menge an Trainingsdaten, Rechenzeit und Modellpara-
metern emergente Eigenschaften zeigen, das heifdt., Fihigkeiten
fiir die Durchfithrung von Aufgaben entstanden sind, die aufler-
halb der Trainingsverteilung liegen [12]. Dies hat zum grofen
KI-Hype in den letzten Jahren und der Entwicklung immer gro-
Rerer und leistungsstirkerer Modelle gefiihrt. Diese Modelle, die
auf solch groflen Datenmengen trainiert wurden und sich durch
geringe Anpassungen zur Erfiillung unterschiedlicher Aufgaben
nutzen lassen, werden Foundation-Modelle genannt. Sie besitzen
das Potenzial die obengenannten Mingel klassischer KI-Verfahren
zu adressieren. Als ein aktuell stark wachsendes Forschungsfeld
bietet insbesondere der Einsatz multimodaler Foundation-Model-
le, d.h., Modelle, die verschiedene Datentypen aus unterschiedli-
chen Quellen verarbeiten und gemeinsame Reprisentationen die-
ser Daten erstellen konnen, die Moglichkeit, die heterogenen
Daten, die im Zuge von Industrie 4.0 in Unternehmen erhoben
werden, fiir verschiedene Zwecke zu verarbeiten und neue Er-
kenntnisse abzuleiten. Diese Vorteile werden auch bereits in In-
dustrieunternehmen erkannt, wie etwa eine vom KI-Bundesver-
band im Rahmen des LEAM-Projekts durchgefithrte Umfrage
zeigt, wonach 71,4 % der befragten kleinen und mittleren Unter-
nehmen Sprachmodelle und bereits 37,5 % multimodale Modelle
als eine relevante Technologie fiir ihre Prozesse sehen [13]. Ins-
besondere in der Produktion gibt es aber aktuell noch wenige
Anwendungsfille fiir diese Technologie [14].
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Ziel dieses Beitrags ist es daher, einen Uberblick iiber die
Moglichkeiten multimodaler Foundation-Modelle zu liefern, be-
stehende Ansitze in der Produktion vorzustellen und zu erldu-
tern, welchen Mehrwert diese Modelle fiir bestimmte Industrie-
zweige und Anwendungsfille bieten koénnen. In diesem Kontext
wird das vom Bundesministerium fiir Bildung und Forschung als
eines von vier deutschen KI-Servicezentren geférderte Projekt
WestAl“ vorgestellt und ausgearbeitet, welche Rolle dies beim
Erschliefen dieser Potenziale bieten kann [15]. Abschliefend
werden neue Herausforderungen dieser Modelle sowie mdogliche
Losungsmafinahmen dargestellt.

2 Multimodale Foundation-Modelle

Foundation-Modelle lassen sich als Untermenge des Deep
Learnings interpretieren, also als Untermenge tiefer, kiinstlicher
neuronaler Netze. Diese neuronalen Netze werden seit vielen Jah-
ren fir Modellierungsaufgaben untersucht. Verglichen mit tradi-
tionellen Deep-Learning-Modellen unterscheiden sich Foundati-
on-Modelle im Wesentlichen durch vier Faktoren: ihre Grofe, ih-
re Fiahigkeit des In-Context-Learnings, das bedeutet, sich iiber
Beschreibungen auf neue Aufgaben iibertragen zu lassen, ihre Ar-
chitektur basierend auf Transformer-Modulen und ihre Trai-
ningsmethode des self-supervised Learnings. Diese vier Merkmale
kombiniert mit dem Vortraining auf groflen, multimodalen Da-
tensitzen fithren zu Modellen, die in der Lage sind, verschiedene
Datentypen zu verarbeiten und dieses verarbeitete Wissen auf
eine Vielzahl an nachgelagerten Aufgaben zu tiberfiihren [12],
Bild 1.

Der wesentliche Befihiger von Foundation-Modellen ist ihre
Grofe. Die Grole beziehungsweise die Skala bezieht sich dabei
auf die drei in der Einleitung beschriebenen Merkmale der
Anzahl der Modellparameter, der Grofle der Trainingsdatensitze
sowie der Menge an Rechenleistung, mit der diese Modelle trai-
niert werden. Die Skala eines Modells ist zurzeit der wesentliche
Treiber fiir die Weiterentwicklungen grofler KI-Modelle. Hinter-
grund sind Zusammenhinge, die zwischen Modellqualititen und
ihrer Grofe identifiziert werden konnen. Ab gewissen Modell-
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Bild 2. Anwendungsbereiche kiinstlicher Intelligenz in der Produktion. Grafik: WZL | RWTH Aachen University

groflen wird iiber eine Reihe an Modellierungsaufgaben das in
der Einleitung beschriebene emergente Verhalten festgestellt,
welches sich mit einer Vergroferung einer der drei genannten
Faktoren kontinuierlich verbessert und iiber sogenannte Skalen-
gesetze vorhergesagt werden kann [16]. Das emergente Verhalten
driickt sich dabei in der Regel dadurch aus, dass sich die Modelle
ohne weiteres Training (Zero-Shot) oder durch den Einsatz einer
geringen Menge an Beispieldaten (Few-Shot) auf neue Aufgaben
anwenden lassen. Diese Eigenschaft macht Foundation-Modelle
fiir viele Anwendungen interessant, denn hiufig ist das Bereitstel-
len einer hinreichend groffen Datenmenge fiir das Training eines
Modells der limitierende Faktor bei KI-Entwicklungsprojekten.
Bei LLMs ist es beispielsweise moglich, das Modell durch eine
textuelle Beschreibung der Aufgabe, auch Prompt genannt, auf
eine neue Aufgabe zu adaptieren. Diese Eigenschaft beschreibt
einen zweiten Befihiger der Foundation-Modelle, das In-Con-
text-Learning. In-Context-Learning beschreibt die Flexibilitat
eines Foundation-Modells. Im Gegensatz zu traditionellen KI-
Modellen lassen sich diese Modelle durch Beschreibungen, fiir
gewohnlich in textueller Form, auf eine Vielzahl von Aufgaben
ibertragen. Fir Modelle, die keine unmittelbare Anwendbarkeit
zeigen, besteht dariiber hinaus die Mdoglichkeit, im sogenannten
Fine-Tuning die vortrainierten Foundation-Basismodelle mit eige-
nen Trainingsdaten fiir spezifische Aufgaben zu optimieren [13].
Um die Rechenaufwinde dabei zu verringern, kénnen Methoden
des parametereffizienten Fine-Tuning wie LoRA eingesetzt wer-
den [17].

Dritter Befihiger von Foundation-Modellen ist ihre Modellar-
chitektur, die heutzutage nahezu ausschliefllich auf Transformer-
Modulen basiert. Vor diesem Hintergrund wird hiufig von der
Homogenisierung der Modellarchitekturen gesprochen, denn
_waren es vor einigen Jahren noch hiufig Anderungen an den
Modellarchitekturen, die zu signifikanten Leistungssteigerungen
von KI-Modellen gefiihrt haben, wurde die Transformer-Archi-
tektur seit ihrer Einfithrung im Jahr 2017 nicht wesentlich
weiterentwickelt [12]. Ein Transformer-Modell tiberfiihrt die Be-
deutung von Informationseinheiten, den ,Token®, zum Beispiel
Buchstabengruppen in der Sprachverarbeitung, iiber Embedding-
Modelle zu numerischen Reprisentationen, die dann iiber den
sogenannten Aufmerksamkeits- beziehungsweise
Mechanismus im Kontext der gesamten Eingangsgroflen interpre-
tiert werden. Dieser Attention-Mechanismus bildet den wesentli-

Attention-
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chen Bestandteil eines Transformer-Modells und ermdéglicht so,
auch komplexe Beziehungen zwischen Eingangsdaten zu model-
lieren [18]. Obwohl dieses Vorgehen fiir die Sprachverarbeitung
entwickelt wurde, hat sich gezeigt, dass es auch sehr effektiv fiir
Bilder, Audio und weitere Modalititen adaptiert werden kann.

Trotz aller dieser drei bisher genannten Befihiger wire das
Training vieler heutiger Foundation-Modelle nicht ohne ihre
Trainingsmethode, das self-supervised-Learning moglich. Hinter-
grund ist, dass KI-Modelle typischerweise im Rahmen eines Opti-
mierungsprozesses, dem Training, auf Ein- und Ausgangsdaten
optimiert werden und so den funktionalen Zusammenhang iiber
das Bestimmen von Kosten- beziehungsweise Maximierungsfunk-
tionen der Ein- und Ausgangsgroflen approximieren. Das Erzeu-
gen dieser Ausgangsgroflen beziehungsweise Label oder Annota-
tionen ist in der Praxis jedoch hiufig mit groflen Aufwinden ver-
bunden. An dieser Stelle bietet das self-supervised Learning eine
Losungsansatz, denn es basiert darauf, dass aus ungelabelten
Daten iiber bestimmte Verarbeitungsschritte automatisiert Anno-
tationen erzeugt werden. Dies geschieht im Bereich der Sprach-
verarbeitung etwa durch das Maskieren bestimmter Satzteile, die
das Modell wihrend des Vortrainings pridizieren muss oder die
Aufgabe, zu bestimmen, ob ein bestimmter Satz vom Kontext her
auf einen vorherigen folgen kann. Self-supervised Learning macht
es so moglich, Modelle auf groflen, nicht annotierten Datenmen-
gen zu trainieren [12].

Multimodale Foundation-Modelle basieren auf den gleichen
Prinzipien, wenden diese jedoch entsprechend auf verschiedene
Datentypen an, wie Bild 1 zeigt. Daten verschiedener Modalitdten
werden in der Regel tiber verschiedene Embedding-Modelle in
einen gemeinsamen Reprisentationsraum {iberfiihrt, der es dann
ermoglicht, Beziehungen zwischen verschiedenen Datentypen
leicht zu beriicksichtigen. Auf Basis dieser gemeinsamen Repri-
sentationen lassen sich so fiir viele Modellierungsaufgaben hohere
Genauigkeiten erzielen [19].

3 Identifikation von Anwendungsfallen
und Potenzialen

Grundsitzlich gibt es fiir den Einsatz von KI in der Produkti-
on typische Anwendungsbereiche, die sich iiber die gesamte Pro-
duktion erstrecken, Bild 2. In der Produktplanung und -entwick-
lung werden KI-Modelle etwa in der Sprachverarbeitung fiir das
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Anforderungsmanagement eingesetzt, um den Kontext von Anfor-
derungsdokumenten auf gewisse Schliisselbegriffe zu kontrahie-
ren, die dann nachgelagert verarbeitet werden kénnen [20]. Ein
weiteres Beispiel ist der Bereich des generativen Designs, bei
welchem generative KI-Modelle eingesetzt werden, um zum Bei-
spiel eine Vielzahl innovativer 3D-Konzeptentwiirfe in sehr kur-
zer Zeitspanne zu erzeugen und damit etwa mechanische Eigen-
schaften optimieren [21]. In der Beschaffung und Produktions-
planung werden KI-Ansitze zum Beispiel fiir die Bedarfsprognose
eingesetzt. [22] analysieren etwa verschiedene KI-Modelle, um
den Bedarf nach bestimmten Rohmaterialien auf Basis histori-
scher Daten vorherzusagen, so passgenaue Bestellungen durchzu-
filhren und Kosten einzusparen [22]. Im Bereich Fertigung exis-
tiert eine Vielzahl an Anwendungen zur Montageplanung und
-simulation. Reinforcement-Learning-basierte KI-Ansitze konnen
hier unter anderem verwendet werden, um das Scheduling von
Montagesequenzen hinsichtlich verschiedener Kriterien, zum Bei-
spiel Durchlaufzeiten, zu optimieren [23]. Eines der wohl
bekanntesten Anwendungsfelder von kiinstlicher Intelligenz in
der Produktion lidsst sich mit der Defektdetektion der Qualitits-
sicherung zuweisen. Hier ermoglichen etwa bildbasierte Ansitze
die prozessparallele Uberwachung von Qualititsmerkmalen und
substituieren so teure nachgelagerte, zum Teil zerstérende, Mess-
verfahren. Ein Beispiel hierzu ist das bei der Firma Trumpf unter-
suchte System zur Schitzung von Qualititsmerkmalen wie der
Oberflachenrauheit beim Laserschneiden durch den Einsatz von
Convolutional Neural Networks [24]. Auch in den Fertigung und
Qualititssicherung nachgelagerten Schritten wie Lagerung und
Vertrieb oder Wartung und Support sind KI-Ansitze etwa fiir Lo-
gistik oder die vorausschauende Wartung (Predictive Maintenan-
ce) bekannt [25, 26].

Auch wenn diese Auflistung zeigt, dass es fiir KI-Anwendun-
gen bereits eine Vielzahl moglicher Anwendungen im Produkti-
onskontext gibt, ist der Bedarf nach weiterfithrenden und besse-
ren Ansitzen gegeben. Dieser Bedarf entsteht aus den aktuellen
Anforderungen und Herausforderungen in der Produktionstech-
nik, etwa durch Faktoren wie die zunehmende Individualisierung
von Produkten und den damit einhergehenden erhdhten Flexibili-
tdtsanforderungen [27], kiirzeren beziehungsweise zirkuldren
Produktlebenszyklen, die durch das erhohte Nachhaltigkeitsbe-
wusstsein immer prasenter werden [28], dem sich anbahnenden
Fachkriftemangel in Industrienationen wie Deutschland [28]
oder den geopolitischen Krisen der letzten Jahre und den damit
verbundenen Schwierigkeiten, bestehende Lieferketten aufrecht-
zuerhalten [28]. In Kombination mit den in der Einleitung he-
rausgestellten Defiziten traditioneller KI-Modelle und den Mog-
lichkeiten multimodaler Foundation-Modelle, die im vorherge-
henden Kapitel erldutert wurden, zeigt sich, dass letztere einen
groflen Beitrag fiir die Zukunft der Produktion liefern kénnen.

Eine primire Charakteristik multimodaler Foundation-Model-
le, die hier eine wichtige Rolle spielt, ist die einfache Ubertrag-
barkeit dieser Modelle auf verschiedene Aufgaben. Wihrend klas-
sische KI-Modelle fiir jede neue Aufgabe auf Basis von Daten, die
hiufig in aufwendigen Versuchen aufgenommen werden, neu trai-
niert werden miissen, lassen sich multimodale Foundation-Mo-
delle deutlich einfacher anpassen, da sie als Basismodell bereits
auf einer so groflen Datenmenge trainiert wurden, dass sie ein
implizites Verstindnis einer Reihe an Objekten und Assoziationen
gelernt haben [12]. Diese Charakteristik wird durch das soge-
nannte Grounding verstirkt, das heifft dem Lernen von Assozia-
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tionen von Objekten zur physischen Welt, welches iber verschie-
dene Modalititen hinweg gute Ergebnisse erzielt [19]. Dies wird
etwa fiir Perzeptionsmodelle fiir Roboter-Greifaufgaben in diver-
sen Arbeiten untersucht [29, 30]. Die grundsitzliche Idee in die-
sen Anwendungen ist es, die Reprisentationen von reinen Bild-
sequenzen um textuelle Sprache zu erweitern, um dem Roboter
so mehr Kontext und ein besseres Verstindnis zu vermitteln. Ein
Beispiel fiir ein solches Modell ist das von der Open X-Embodi-
ment Collaboration vorgeschlagene RT-2-X-Modell, welches In-
struktionen in natiirlicher Sprache in Kombination mit Bilddaten
verarbeitet und Handlungsempfehlungen fiir die Robotersteue-
rung in natiirlicher Sprache ausgibt [31, 32]. Durch das Training
dieses Modells auf Bild-Sprache-Paaren wird das Szenenverstind-
nis maflgeblich verbessert, sodass der Roboter in der Lage ist,
auch komplexe Anweisungen zu interpretieren und korrekt zu
verarbeiten, Bild 3. Das Modell zeigt dabei eine starke Ubertrag-
barkeit auf neue Anwendungen und kann diese einfach durch
neue Instruktionen mit neuen textuellen Eingangsgroflen verar-
beiten [31]. Die Moglichkeit, ein Basismodell ohne jegliches Trai-
ning und damit Datenaufwinde auf eigene individuelle Anwen-
dungen allein durch das Setzen von textuellen Randbedingungen
zu ibertragen, stellt einen wesentlichen Vorteil multimodaler
Foundation-Modelle dar [19]. Dies kann auch fiir Anomaliede-
tektionen im Bereich der Qualititssicherung genutzt werden. Der
Einsatz verschiedener Prompt-Templates fiir Bild-Sprache-Model-
le wurde so etwa in [33] auf einer Reihe von Benchmark-Daten-
sitzen, etwa dem MVTec AD-Datensatz [34], einem Datensatz
speziell fiir die industrielle Qualititssicherung ausgewertet. Dort
wurde festgestellt, dass Anomalien iiber gewisse Prompt-Templa-
tes bereits hochgenau detektiert werden konnen, unter der
Voraussetzung, dass ein Referenzbild eines Gutteils ebenfalls in
das Modell eingegeben wird [33], Bild 3.

Anhand des letzten Anwendungsfalls lisst sich eines der weite-
ren Potenziale multimodaler Foundation-Modelle erkennen. Die
Anomalien werden in dem gegebenen Setup nicht nur detektiert,
sondern das Modell liefert Erklirungen, warum das gegebene
Modell einen Defekt enthalt oder nicht. Diese Charakteristik der
Erklarbarkeit der Modellausginge kann fiir viele Anwendungsfil-
le relevant sein. Am Werkzeugmaschinenlabor der RWTH Aachen
wird daran geforscht, den Einsatz solcher Bild-Sprache-Modelle
fir die Interpretation von Computertomographie- (CT-)Bilddaten
heranzuziehen. Aufgrund zahlreicher Einflussfaktoren auf die
CT-Bildgebung ist die Detektion in diesen Bildern oftmals
herausfordernd und die Differentiation von CT-Artefakten und
tatsichlichen Defekten fiir KI-Modelle und menschliche Entschei-
der schwierig. Textuelle Modellausginge, die als Unterscheidungs-
stiitzung fiir menschliche Operatoren dienen, kénnen hier einen
groflen Mehrwert bieten und die Entscheidungsqualitit bei der
CT-Priifung erheblich verbessern.

Auch im Bereich des betrieblichen Wissensmanagements
bieten die Bild-Sprache-Kopplung beziehungsweise multimodale
Reprisentationen im Allgemeinen Potenziale. Hier wird bereits in
vielen Unternehmen der Einsatz von LLM-Chatbot-Losungen
untersucht, die an Datenbanken angebunden sind, welche in vek-
torisierter Form Reprisentationen des betriebsinternen, textuellen
Wissens enthalten [35]. Dadurch werden Chatbot-Systeme in die
Lage gebracht, fundierte Antworten zu unternehmensinternen
Fragestellungen zu beantworten, auch wenn die Sprachmodelle
selbst nicht auf dieser Datengrundlage trainiert wurden, indem
stattdessen semantische Ahnlichkeiten zwischen Nutzerfragen
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Das erste Bild zeigt einen Transistor
im Normalzustand. Bitte bestimme,
ob das zweite Bild des Transistors
Anomalien oder Defekte beinhaltet.
Falls ja, gib einen Grund an.
Normalerweise sollte das Bild einen
klaren und sichtbaren Transistor
beinhalten. Dieser kann Defekte wie
gebrochene Teile oder
Verunreinigungen besitzen.

Der Transistor im zweiten Bild weist deutliche Schéden
auf: Eine Kerbe an der Oberseite und stark verbogene
Pins, [...]. Die Oberfléche wirkt rauer als im ersten Bild.
Diese  Anomalien  deuten  auf  mechanische
Beschddigungen hin, die die Funktionsfdhigkeit
beeintrachtigen kénnten.

Bewege den
Apfel zwischen
die Dose und die
Orange.

Kamerabild 3D-Detektion

Bild 3. Ubersicht verschiedener Anwendungsmaéglichkeiten multimodaler Foundation-Modelle in der Produktion. Links oben: RT-2-X-Modell zur automati-
sierten Robotersteuerung bei komplexen Handlungsinstruktionen. Oben rechts: Anomaliedetektion lber Bild-Sprache-Modelle durch Prompttemplates. Un-
ten links: Cross-Modal-Retrieval zum innerbetrieblichen Wissensmanagement. Unten rechts: DeepFusion-Ansatz zur 3D-Objektdetektion von Objekten im
Kontext des autonomen Fahrens. Grafik: WZL | RWTH Aachen University auf Basis von [31, 33, 34, 37, 38]

und Dokumenten gesucht werden und diese dem Sprachmodell
fir die Antwortgeneration bereitgestellt werden (Retrieval Aug-
mented Generation) [36]. Die Erweiterung auf semantische Su-
chen in multimodalen Datenquellen, das sogenannte Cross-Modal
Retrieval, kann die Potenziale dieser Technologie nochmals ver-
bessern, denn hiufig ist betriebsinternes Wissen nicht nur in Tex-
ten natiirlicher Sprache enthalten, sondern auch in Bildern oder
Bildsequenzen [37]. Das Suchen nach passenden Informationen
in multimodalen Datenquellen kann so etwa das Training und die
Einarbeitung fiir neues Personal verbessern, den Kundensupport
entlasten, indem Kunden eine Reihe von Problemen bereits
selbststindig diagnostizieren konnen oder die Planung von Priif-
versuchen erleichtern, indem automatisiert in Datenbanken nach
Parametereinstellungen fiir bereits verprobte Bauteile etwa an-
hand von Ahnlichkeiten von CAD-Modellen gesucht wird, Bild 3.

Die bisher vorgestellten Anwendungsbereiche beziehen sich
primir auf die Kopplung von Bild und Sprache. Im Kontext von
Industrie 4.0 sind jedoch auch vor allem Modelle interessant, die
neben diesen beiden Modalititen Sensordaten mit in die Model-

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 11-12

lierung aufnehmen. Ein Beispiel ist die von Google und der Johns
Hopkins University vorgestellte ,DeepFusion“-Modellserie, die
die Fusion von Kameradaten und Lidar-Sensoren zur 3D-Objekt-
detektion im Bereich des autonomen Fahrens untersucht [38].
Die Nutzung multimodaler Eingangsgrofen fithrt zu erhohten
Genauigkeiten und erhohter Robustheit der Ansitze. Dies wird so
auch im Bereich der mobilen Robotik beziehungsweise Industrie-
robotik untersucht und soll die Detektionsmoglichkeiten von
sogenannten Open-Set-Modellen, das heifdt, Modellen, die Instan-
zen beliebiger Objektklassen detektieren konnen, verbessern
[39, 40], Bild 3.

Die Ubersicht zeigt, dass im Bereich multimodaler Foundati-
on-Modelle primar der Einsatz von Bild-Sprache-Modellen un-
tersucht wird, sowie Anwendungen mit Ausnahme der Robotik-
doméine rar sind. Vorteile multimodaler Foundation-Modelle wer-
den vor allem in den Bereichen einfache Ubertragbarkeit, etwa
dem Ermoglichen von Open-Set-Detektionen ohne die aufwendi-
ge Aufnahme von Trainingsdaten, der erhohten Robustheit und
Generalisierbarkeit sowie der verbesserten Erkldrbarkeit gesehen.

751

43 - am 25.01.2026, 00:07:48.



https://doi.org/10.37544/1436-4980-2024-11-12-43
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

TITELTHEMA - FACHAUFSATZ

Diese Charakteristiken konnen prinzipiell fiir eine Vielzahl der in
Bild 2 dargestellten Anwendungsbereiche genutzt werden und
dort zu verbesserten Prozessen fithren. Aktuell mangelt es hier
aber noch an konkreten Anwendungsfillen. Um eine weitere
Verbreitung zu erreichen und Anwendungsfille zu identifizieren,
bieten die vom BMBF geforderten KI-Servicezentren kostenlose
Informationen und Erstgespriche an und stellen unter bestimm-
ten Voraussetzungen entsprechende Rechenressourcen oder ver-
tiefende Ausarbeitungen von Ideen iiber Forschungskooperatio-
nen zur Verfligung.

4 Herausforderungen fiir den Einsatz
multimodaler Foundation-Modelle

Obwohl multimodale Foundation-Modelle grofles Potenzial
fiir verschiedene Aufgaben versprechen, nutzen, wie die Ubersicht
aus dem vorangegangenen Abschnitt zeigt, produzierende Unter-
nehmen diese Technologie aktuell kaum. Dies ist primar auf die
folgenden Herausforderungen zuriickzuftihren [6, 12, 13]:

+ Dominenliicke zwischen Trainingsdaten bestehender multi-
modaler Foundation-Modelle und industriellen Datensitzen

« Geringe Verfligbarkeit 6ffentlicher industrieller Trainings- und
Benchmarkdatensitze

 Unterreprisentiertheit bestimmter Datenmodalititen

« Verfiigbarkeit von Rechen- und Dateninfrastruktur

« Geringe oder nicht vorhandene KI-Kompetenz

« Bedenken zur Sicherheit und Verlisslichkeit

Wesentliches Defizit fiir den Einsatz multimodaler Foundation-

Modelle in der Produktion sind Daten. Insbesondere stellt die

Verfiigbarkeit grofler, brancheniibergreifender, offener Datensitze

ein Problem dar. Dies hat zur Folge, dass nahezu alle groffen Mo-

delle auf Datensitzen vortrainiert werden, die tiber eine ausge-

sprochene Dominenliicke zu produktionsnahen Daten verfiigen.

Diese vortrainierten Modelle lassen sich so hiufig nur mit grofen

Leistungseinbuflen auf die meist speziellen industriellen Proble-

me, etwa spezielles industrielles Vokabular, iiberfithren oder miis-

sen durch Fine-Tuning auf die spezifischen Problemstellungen an-

gepasst werden [41]. Erste Open

X-Embodiment Collaboration stellen solche Datensitze zur Ver-

Initiativen wie die

fiigung, allerdings fehlt es im Allgemeinen weiterhin an branchen-
tibergreifenden Datensitzen [32]. Herausforderungen im Kontext
der Daten beziehen sich dariiber hinaus auch auf die Unterrepri-
sentiertheit bestimmter Modalititen, die in Produktionsumgebun-
gen besonders relevant sind. Fiir Zeitreihen- oder 3D-Punktewol-
kendaten von Sensoren etwa sind kaum Modelle verfiigbar und
ihre Leistungsfihigkeit zusitzlich eingeschrinkt [12]. Die Verfiig-
barkeit von Datensitzen bezieht sich dabei nicht nur auf Daten-
sitze, die zur Entwicklung derartiger Modelle vorhanden sein
miissen, sondern auch auf Benchmarks, die einen fairen Vergleich
verschiedener Modelle ermdglichen und Entwickler bei der Aus-
wahl geeigneter Basismodelle unterstiitzen sollen [42].

Neben Herausforderungen im Kontext Daten erschweren ins-
besondere auch die notwendigen Anforderungen an Daten- und
Recheninfrastruktur die Nutzung grofer, multimodaler KI-Mo-
delle [13]. Dies ist mehr noch als bei traditionellen Modellen fiir
grofle, multimodale KI-Modelle eine Herausforderung. Zum einen
miissen fiir multimodale Modelle Daten aus verschiedenen Quel-
len fusioniert werden, was ebenfalls mit Mehraufwinden in Ent-
wicklung und Betrieb verbunden ist [43]. Zum anderen iiberstei-
gen die erforderlichen Rechenressourcen beim Hosting von Foun-
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dation-Modellen die der klassischen KI-Modelle um ein Vielfa-
ches [13]. Gleiches gilt fir das Fine-Tuning dieser Modelle. Fiir
die Nutzung dieser Technologie wird somit aufgrund der Homo-
genisierung der Modellarchitekturen neben der KI-Expertise
mehr und mehr die Expertise im Bereich des Hochleistungsrech-
nens relevant. Cloudanbieter und andere kommerzielle Dienste
bieten die benotigte Hardware und ermdglichen so, die hohen
Rechenanforderungen zu bewiltigen. Hier bestehen jedoch haufig
bei Industrieunternehmen Bedenken zur Datensicherheit und
Verlasslichkeit, weswegen sich die Auswahlmenge an Anbietern
haufig stark verringert [13].

Viele der genannten Herausforderungen sind aktuell stark
fokussierte Forschungsbereiche. Insbesondere die Verfiigbarkeit
an Daten und Modellen fiir bestimmte Dominen wird aktuell in
vielen, auch europidischen oder deutschen, Forschungsinitiativen
wie ,LAION“ untersucht [42]. WestAl bietet an dieser Stelle
_Unternehmen und Forschenden Hilfe, in diesem dynamischen
Umfeld den Uberblick durch das Angebot von Beratungs- und
Schulungsleistungen zugeschnitten auf die Bediirfnisse bei der
Nutzung grofler KI-Modelle zu bekommen. Zusitzlich werden im
Rahmen des Projekts kostenfrei Rechenressourcen von bis zu
10000 GPU-Stunden auf moderner Hochleistungsrecheninfra-
struktur bereitgestellt. WestAl kann so dazu beitragen, Herausfor-
derungen beim Technologietransfer multimodaler Foundation-
Modelle aufzuheben.

5 Fazit und Ausblick

Traditionelle KI-Ansitze stoffen vor dem Hintergrund aktuel-
ler Anforderungen an Flexibilitdt und Robustheit in der Produkti-
on an ihre Grenzen. Der Einsatz multimodaler Foundation-
Modelle verspricht, diese Limitierungen aufzuheben und fiir eine
Vielzahl moglicher Anwendungen eingesetzt zu werden. Primire
Vorteile dieser Technologie liegen in der besseren Ubertragbarkeit
auf verschiedene Aufgaben, der verbesserten Genauigkeit und
Robustheit dieser Modelle sowie in der Nutzung textueller Aus-
gangsgroffen zur Erklirung von Modellentscheidungen. Diese
Eigenschaften bieten das Potenzial auch traditionell schwierig zu
automatisierende Aufgaben in der Produktion, etwa die Montage,
zu automatisieren. Aktuelle Anwendungen im Produktionsbereich
sind jedoch noch die grofle Ausnahme. Lediglich in der Robotik-
domine werden diese Modelle bereits in Anwendungen einge-
setzt, zum Beispiel zur automatisierten Generierung von Hand-
lungsanweisungen fiir die Robotersteuerung bei Greifaufgaben.
Eine Herausforderung im Bereich der multimodalen Foundation-
Modelle ist die Ubertragung vortrainierter Basismodelle auf die
industrielle Domine, die in klassischen Datensitzen, mit denen
diese Modelle vortrainiert sind, kaum enthalten ist, sodass
Methoden des Modelltransfers, etwa Fine-Tuning, angewendet
werden miissen. Fiir diesen Modelltransfer beziehungsweise die
Nutzung grofler KI-Modelle ist zusitzlich eine leistungsfahige Re-
cheninfrastruktur notwendig, die insbesondere fiir kleine und
mittlere Unternehmen nicht leicht verfiigbar ist. Das Forschungs-
projekt WestAl bietet interessierten Unternehmen und Forschen-
den an dieser Stelle die Moglichkeit, diese Rechenressourcen in
einem gewissen Rahmen fiir Forschungsfragestellungen kostenfrei
zu nutzen sowie konkrete industrielle Anwendungsfille zu be-
sprechen und gemeinsam im Rahmen von Forschungskooperatio-
nen Losungen zu entwickeln.
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Weiterer Forschungsbedarf im Bereich multimodaler Founda-
tion-Modelle liegt unter anderem in der Erweiterung offener
Datensitze auf zusitzliche Modalititen sowie dem Benchmarking
von Modellen auf industriellen Datensitzen. Dariiber hinaus sind
insbesondere fiir industrielle Anwendungen Projekte mit Leucht-
turmcharakter erforderlich, die den Nutzen und die Transferier-
barkeit dieser Modelle an realen Anwendungen zeigen.
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