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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Möglichkeiten der neuesten KI-Modelle in der Produktion 

Multimodale Foundation-
 Modelle in der Produktion

H. Behnen, J.-H. Woltersmann, D. Wolfschläger, R. H. Schmitt

Z U S A M M E N FA S S U N G  Aktuelle Herausforderungen in 
der Produktion, etwa der Fachkräftemangel, erhöhen die Not-
wendigkeit, Prozesse zu automatisieren und die Produktivität 
zu erhöhen. Multimodale Foundation-Modelle bieten diese 
Möglichkeit für eine Vielzahl an Anwendungen, indem sie aus 
heterogenen Informationsquellen Entscheidungen ableiten. 
Anwendungen um diese Technologie sind zurzeit jedoch rar. 
Dieser Beitrag gibt daher einen Überblick über die Potenziale 
und Herausforderungen dieser Modelle in der Produktion.

Possibilities of the Latest AI Models  
in Production – Multi-Modal Foundation 
Models in Production
A B ST R A C T  Current challenges in production, such as 
 shortage of skilled workers, increase the need to automate 
 processes and increase productivity. Multi-modal foundation 
models address this automation demand for a variety of 
 applications by deriving decisions based on heterogeneous 
 information sources. However, applications around this 
 technology are  currently rare. This article therefore provides  
an overview of the potential and challenges of these models  
in production.

1 Einleitung

Unter dem Stichwort Industrie 4.0 wird seit den frühen 
2010er Jahren in der Industrie zunehmend untersucht, durch den 
Einsatz von Internet- und Kommunikationstechnologie in 
 Produktionsanlagen sowie die Integration diverser Sensoren 
 sogenannte cyber-physische Systeme (CPS) zu bilden, um diese 
für die Optimierung von Produktionssystemen zu nutzen und so 
letztlich nachhaltiger, resilienter und wettbewerbsfähiger zu pro-
duzieren [1]. Dieses Potenzial basiert wesentlich darauf, dass gro-
ße Mengen an Daten unterschiedlichen Formats und unterschied-
licher Messgrößen erfasst werden, diese im Digitalen Zwilling 
 bereitgestellt werden und dort die Grundlage für intelligente Ent-
scheidungsalgorithmen bilden. Diese intelligenten Verarbeitungs-
systeme müssen in der Lage sein, die gesammelten Daten zu pro-
zessieren und Wissen aus ihnen abzuleiten. Seit einigen Jahren 
wird hierzu bereits der Einsatz Künstlicher Intelligenz (KI), 
meistens durch Modelle des Maschinellen Lernens (ML), unter-
sucht. Typische Anwendungsfälle sind etwa der Einsatz von 
 KI-Modellen zur Vorhersage Qualitäts-relevanter Merkmale (Pre-
dictive Quality) auf Basis prozessparallel erfasster Sensordaten, 
die ansonsten nur durch aufwendige nachgelagerte, zum Teil zer-
störende, Prüfverfahren gemessen werden konnten [2]. Ein wei-
teres Beispiel ist der Einsatz von KI-Modellen zur Optimierung 
von Bewegungspfaden auf Basis von Reinforcement Learning, was 
zum Beispiel für Logistikanwendungen eingesetzt werden kann 
[3]. Obwohl der Nutzung von KI in der Produktion ein großes 
Potenzial zugesprochen wird, ist ihr Verbreitungsgrad im Produk-
tivbereich, insbesondere bei kleinen und mittleren Unternehmen, 
noch sehr gering [2, 4]. Das ist aus folgenden Gründen der Fall:

• Geringe Generalisierungsqualität und Leistungsfähigkeit: Auch 
wenn KI-Modelle während des Trainings oder unter Simulati-
onsbedingungen gute Genauigkeiten erzielen, ist ihre Perfor-
manz in realen, dynamischen, unstrukturierten Umgebungen 
oder bei Prozessänderungen oftmals stark limitiert [5].

• Begrenzte Transferfähigkeit und Aufgabenspezifität: Typischer-
weise werden KI-Modelle für eine spezifische Aufgabe, etwa 
die Detektion einer bestimmten Objektklasse, trainiert. Ändern 
sich die Anforderungen an die Aufgabe, muss ein neues Modell 
entwickelt werden. Dies ist gerade vor dem Hintergrund vari-
antenreicher oder komplexer Produktportfolios mit erhebli-
chem Aufwand verbunden [6].

•  Verfügbarkeit von Datensätzen: Insbesondere im industriellen 
Kontext sind für die Modellierungsaufgaben passende Daten-
sätze häufig nicht öffentlich verfügbar. Gründe sind die hohe 
Vielfalt möglicher Produkte und hohe Hürden beim Daten-
schutz [7]. Häufig müssen daher zu beginn von KI-Entwick-
lungsprozessen aufwendige Versuchsreihen aufgenommen wer-
den, um eine vielfältige Datengrundlage für die Entwicklung 
von KI-Ansätzen zu generieren [6]. Dabei reicht es in der Re-
gel nicht aus, lediglich Rohdaten zu erfassen und diese für das 
Training von KI-Modellen zu nutzen, sondern zusätzlich müs-
sen diese Rohdaten mit Annotationen versehen werden, was 
meist mit großem manuellen Arbeitsaufwand einhergeht [8].

•  Mangelnde Interpretierbarkeit: KI-Modelle sind meist Black-
Box-Modelle, die eine Entscheidung treffen, ohne dass die 
 Faktoren, die zu dieser Entscheidung führen, bekannt sind.  
Die Gründe für eine bestimmte Entscheidung sind damit nicht 
 ohne Weiteres nachvollziehbar und können nicht direkt inter-
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pretiert und damit im Sinne einer Optimierung des 
 Produktionssystems angepasst werden [9].

• Unimodalität: KI-Modelle werden typischerweise lediglich auf 
einem Typ von Daten, etwa Bilddaten, trainiert [10]. Andere 
zur Verfügung stehende Datenmodalitäten werden für die 
 Modellierung nicht einbezogen, sodass in vielen Szenarien nur 
ein Teil der zur Verfügung stehenden Information über das 
Produktionssystem und seine Umgebung genutzt wird.

Mit dem Auftreten großer Sprachmodelle (LLMs) hat sich spä-
testens seit der Entwicklung von GPT-3 [11] ein Paradigmen-
wechsel im Bereich KI ergeben. Auf Basis moderner Modellarchi-
tekturen wurde bei der Entwicklung festgestellt, dass Modelle mit 
steigender Menge an Trainingsdaten, Rechenzeit und Modellpara-
metern emergente Eigenschaften zeigen, das heißt., Fähigkeiten 
für die Durchführung von Aufgaben entstanden sind, die außer-
halb der Trainingsverteilung liegen [12]. Dies hat zum großen 
KI-Hype in den letzten Jahren und der Entwicklung immer grö-
ßerer und leistungsstärkerer Modelle geführt. Diese Modelle, die 
auf solch großen Datenmengen trainiert wurden und sich durch 
geringe Anpassungen zur Erfüllung unterschiedlicher Aufgaben 
nutzen lassen, werden Foundation-Modelle genannt. Sie besitzen 
das Potenzial die obengenannten Mängel klassischer KI-Verfahren 
zu adressieren. Als ein aktuell stark wachsendes Forschungsfeld 
bietet insbesondere der Einsatz multimodaler Foundation-Model-
le, d.h., Modelle, die verschiedene Datentypen aus unterschiedli-
chen Quellen verarbeiten und gemeinsame Repräsentationen die-
ser Daten erstellen können, die Möglichkeit, die heterogenen 
Daten, die im Zuge von Industrie 4.0 in Unternehmen erhoben 
werden, für verschiedene Zwecke zu verarbeiten und neue Er-
kenntnisse abzuleiten. Diese Vorteile werden auch bereits in In-
dustrieunternehmen erkannt, wie etwa eine vom KI-Bundesver-
band im Rahmen des LEAM-Projekts durchgeführte Umfrage 
zeigt, wonach 71,4 % der befragten kleinen und mittleren Unter-
nehmen Sprachmodelle und bereits 37,5 % multimodale Modelle 
als eine relevante Technologie für ihre Prozesse sehen [13]. Ins-
besondere in der Produktion gibt es aber aktuell noch wenige 
Anwendungsfälle für diese Technologie [14].

Ziel dieses Beitrags ist es daher, einen Überblick über die 
Möglichkeiten multimodaler Foundation-Modelle zu liefern, be-
stehende Ansätze in der Produktion vorzustellen und zu erläu-
tern, welchen Mehrwert diese Modelle für bestimmte Industrie-
zweige und Anwendungsfälle bieten können. In diesem Kontext 
wird das vom Bundesministerium für Bildung und Forschung als 
eines von vier deutschen KI-Servicezentren geförderte Projekt 
„WestAI“ vorgestellt und ausgearbeitet, welche Rolle dies beim 
Erschließen dieser Potenziale bieten kann [15]. Abschließend 
werden neue Herausforderungen dieser Modelle sowie mögliche 
Lösungsmaßnahmen dargestellt.

2 Multimodale Foundation-Modelle

Foundation-Modelle lassen sich als Untermenge des Deep 
Learnings interpretieren, also als Untermenge tiefer, künstlicher 
neuronaler Netze. Diese neuronalen Netze werden seit vielen Jah-
ren für Modellierungsaufgaben untersucht. Verglichen mit tradi-
tionellen Deep-Learning-Modellen unterscheiden sich Foundati-
on-Modelle im Wesentlichen durch vier Faktoren: ihre Größe, ih-
re Fähigkeit des In-Context-Learnings, das bedeutet, sich über 
Beschreibungen auf neue Aufgaben übertragen zu lassen, ihre Ar-
chitektur basierend auf Transformer-Modulen und ihre Trai-
ningsmethode des self-supervised Learnings. Diese vier Merkmale 
kombiniert mit dem Vortraining auf großen, multimodalen Da-
tensätzen führen zu Modellen, die in der Lage sind, verschiedene 
Datentypen zu verarbeiten und dieses verarbeitete Wissen auf 
 eine Vielzahl an nachgelagerten Aufgaben zu überführen [12], 
Bild 1.

Der wesentliche Befähiger von Foundation-Modellen ist ihre 
Größe. Die Größe beziehungsweise die Skala bezieht sich dabei 
auf die drei in der Einleitung beschriebenen Merkmale der 
 Anzahl der Modellparameter, der Größe der Trainingsdatensätze 
sowie der Menge an Rechenleistung, mit der diese Modelle trai-
niert werden. Die Skala eines Modells ist zurzeit der wesentliche 
Treiber für die Weiterentwicklungen großer KI-Modelle. Hinter-
grund sind Zusammenhänge, die zwischen Modellqualitäten und 
ihrer Größe identifiziert werden können. Ab gewissen Modell -

Bild 1. Prinzipbild multimodaler Foundation-Modelle. Grafik: WZL | RWTH Aachen University in Anlehnung an [12]
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größen wird über eine Reihe an Modellierungsaufgaben das in 
der Einleitung beschriebene emergente Verhalten festgestellt, 
 welches sich mit einer Vergrößerung einer der drei genannten 
Faktoren kontinuierlich verbessert und über sogenannte Skalen-
gesetze vorhergesagt werden kann [16]. Das emergente Verhalten 
drückt sich dabei in der Regel dadurch aus, dass sich die Modelle 
ohne weiteres Training (Zero-Shot) oder durch den Einsatz einer 
geringen Menge an Beispieldaten (Few-Shot) auf neue Aufgaben 
anwenden lassen. Diese Eigenschaft macht Foundation-Modelle 
für viele Anwendungen interessant, denn häufig ist das Bereitstel-
len einer hinreichend großen Datenmenge für das Training eines 
Modells der limitierende Faktor bei KI-Entwicklungsprojekten. 
Bei LLMs ist es beispielsweise möglich, das Modell durch eine 
textuelle Beschreibung der Aufgabe, auch Prompt genannt, auf 
 eine neue Aufgabe zu adaptieren. Diese Eigenschaft beschreibt 
 einen zweiten Befähiger der Foundation-Modelle, das In-Con-
text-Learning. In-Context-Learning beschreibt die Flexibilität 
 eines Foundation-Modells. Im Gegensatz zu traditionellen KI-
Modellen lassen sich diese Modelle durch Beschreibungen, für 
 gewöhnlich in textueller Form, auf eine Vielzahl von Aufgaben 
übertragen. Für Modelle, die keine unmittelbare Anwendbarkeit 
zeigen, besteht darüber hinaus die Möglichkeit, im sogenannten 
Fine-Tuning die vortrainierten Foundation-Basismodelle mit eige-
nen Trainingsdaten für spezifische Aufgaben zu optimieren [13]. 
Um die Rechenaufwände dabei zu verringern, können Methoden 
des parametereffizienten Fine-Tuning wie LoRA eingesetzt wer-
den [17].

Dritter Befähiger von Foundation-Modellen ist ihre Modellar-
chitektur, die heutzutage nahezu ausschließlich auf Transformer-
Modulen basiert. Vor diesem Hintergrund wird häufig von der 
Homogenisierung der Modellarchitekturen gesprochen, denn 
_waren es vor einigen Jahren noch häufig Änderungen an den 
Modellarchitekturen, die zu signifikanten Leistungssteigerungen 
von KI-Modellen geführt haben, wurde die Transformer-Archi-
tektur seit ihrer Einführung im Jahr 2017 nicht wesentlich 
 weiterentwickelt [12]. Ein Transformer-Modell überführt die Be-
deutung von Informationseinheiten, den „Token“, zum Beispiel 
Buchstabengruppen in der Sprachverarbeitung, über Embedding-
Modelle zu numerischen Repräsentationen, die dann über den 
 sogenannten Aufmerksamkeits- beziehungsweise Attention-
 Mechanismus im Kontext der gesamten Eingangsgrößen interpre-
tiert werden. Dieser Attention-Mechanismus bildet den wesentli-

chen Bestandteil eines Transformer-Modells und ermöglicht so, 
auch komplexe Beziehungen zwischen Eingangsdaten zu model-
lieren [18]. Obwohl dieses Vorgehen für die Sprachverarbeitung 
entwickelt wurde, hat sich gezeigt, dass es auch sehr effektiv für 
Bilder, Audio und weitere Modalitäten adaptiert werden kann.

Trotz aller dieser drei bisher genannten Befähiger wäre das 
Training vieler heutiger Foundation-Modelle nicht ohne ihre 
Trainingsmethode, das self-supervised-Learning möglich. Hinter-
grund ist, dass KI-Modelle typischerweise im Rahmen eines Opti-
mierungsprozesses, dem Training, auf Ein- und Ausgangsdaten 
optimiert werden und so den funktionalen Zusammenhang über 
das Bestimmen von Kosten- beziehungsweise Maximierungsfunk-
tionen der Ein- und Ausgangsgrößen approximieren. Das Erzeu-
gen dieser Ausgangsgrößen beziehungsweise Label oder Annota-
tionen ist in der Praxis jedoch häufig mit großen Aufwänden ver-
bunden. An dieser Stelle bietet das self-supervised Learning eine 
Lösungsansatz, denn es basiert darauf, dass aus ungelabelten 
 Daten über bestimmte Verarbeitungsschritte automatisiert Anno-
tationen erzeugt werden. Dies geschieht im Bereich der Sprach-
verarbeitung etwa durch das Maskieren bestimmter Satzteile, die 
das Modell während des Vortrainings prädizieren muss oder die 
Aufgabe, zu bestimmen, ob ein bestimmter Satz vom Kontext her 
auf einen vorherigen folgen kann. Self-supervised Learning macht 
es so möglich, Modelle auf großen, nicht annotierten Datenmen-
gen zu trainieren [12].

Multimodale Foundation-Modelle basieren auf den gleichen 
Prinzipien, wenden diese jedoch entsprechend auf verschiedene 
Datentypen an, wie Bild 1 zeigt. Daten verschiedener Modalitäten 
werden in der Regel über verschiedene Embedding-Modelle in 
 einen gemeinsamen Repräsentationsraum überführt, der es dann 
ermöglicht, Beziehungen zwischen verschiedenen Datentypen 
leicht zu berücksichtigen. Auf Basis dieser gemeinsamen Reprä-
sentationen lassen sich so für viele Modellierungsaufgaben höhere 
Genauigkeiten erzielen [19]. 

3 Identifikation von Anwendungsfällen  
 und Potenzialen

Grundsätzlich gibt es für den Einsatz von KI in der Produkti-
on typische Anwendungsbereiche, die sich über die gesamte Pro-
duktion erstrecken, Bild 2. In der Produktplanung und -entwick-
lung werden KI-Modelle etwa in der Sprachverarbeitung für das 

Bild 2. Anwendungsbereiche künstlicher Intelligenz in der Produktion. Grafik: WZL | RWTH Aachen University
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Anforderungsmanagement eingesetzt, um den Kontext von Anfor-
derungsdokumenten auf gewisse Schlüsselbegriffe zu kontrahie-
ren, die dann nachgelagert verarbeitet werden können [20]. Ein 
weiteres Beispiel ist der Bereich des generativen Designs, bei 
 welchem generative KI-Modelle eingesetzt werden, um zum Bei-
spiel eine Vielzahl innovativer 3D-Konzeptentwürfe in sehr kur-
zer Zeitspanne zu erzeugen und damit etwa mechanische Eigen-
schaften optimieren [21]. In der Beschaffung und Produktions-
planung werden KI-Ansätze zum Beispiel für die Bedarfsprognose 
eingesetzt. [22] analysieren etwa verschiedene KI-Modelle, um 
den Bedarf nach bestimmten Rohmaterialien auf Basis histori-
scher Daten vorherzusagen, so passgenaue Bestellungen durchzu-
führen und Kosten einzusparen [22]. Im Bereich Fertigung exis-
tiert eine Vielzahl an Anwendungen zur Montageplanung und 
 -simulation. Reinforcement-Learning-basierte KI-Ansätze können 
hier unter anderem verwendet werden, um das Scheduling von 
Montagesequenzen hinsichtlich verschiedener Kriterien, zum Bei-
spiel Durchlaufzeiten, zu optimieren [23]. Eines der wohl 
 bekanntesten Anwendungsfelder von künstlicher Intelligenz in 
der Produktion lässt sich mit der Defektdetektion der Qualitäts -
sicherung zuweisen. Hier ermöglichen etwa bildbasierte Ansätze 
die prozessparallele Überwachung von Qualitätsmerkmalen und 
substituieren so teure nachgelagerte, zum Teil zerstörende, Mess-
verfahren. Ein Beispiel hierzu ist das bei der Firma Trumpf unter-
suchte System zur Schätzung von Qualitätsmerkmalen wie der 
Oberflächenrauheit beim Laserschneiden durch den Einsatz von 
Convolutional Neural Networks [24]. Auch in den Fertigung und 
Qualitätssicherung nachgelagerten Schritten wie Lagerung und 
Vertrieb oder Wartung und Support sind KI-Ansätze etwa für Lo-
gistik oder die vorausschauende Wartung (Predictive Maintenan-
ce) bekannt [25, 26].

Auch wenn diese Auflistung zeigt, dass es für KI-Anwendun-
gen bereits eine Vielzahl möglicher Anwendungen im Produkti-
onskontext gibt, ist der Bedarf nach weiterführenden und besse-
ren Ansätzen gegeben. Dieser Bedarf entsteht aus den aktuellen 
Anforderungen und Herausforderungen in der Produktionstech-
nik, etwa durch Faktoren wie die zunehmende Individualisierung 
von Produkten und den damit einhergehenden erhöhten Flexibili-
tätsanforderungen [27], kürzeren beziehungsweise zirkulären 
Produktlebenszyklen, die durch das erhöhte Nachhaltigkeitsbe-
wusstsein immer präsenter werden [28], dem sich anbahnenden 
Fachkräftemangel in Industrienationen wie Deutschland [28] 
oder den geopolitischen Krisen der letzten Jahre und den damit 
verbundenen Schwierigkeiten, bestehende Lieferketten aufrecht-
zuerhalten [28]. In Kombination mit den in der Einleitung he-
rausgestellten Defiziten traditioneller KI-Modelle und den Mög-
lichkeiten multimodaler Foundation-Modelle, die im vorherge-
henden Kapitel erläutert wurden, zeigt sich, dass letztere einen 
großen Beitrag für die Zukunft der Produktion liefern können.

Eine primäre Charakteristik multimodaler Foundation-Model-
le, die hier eine wichtige Rolle spielt, ist die einfache Übertrag-
barkeit dieser Modelle auf verschiedene Aufgaben. Während klas-
sische KI-Modelle für jede neue Aufgabe auf Basis von Daten, die 
häufig in aufwendigen Versuchen aufgenommen werden, neu trai-
niert werden müssen, lassen sich multimodale Foundation-Mo-
delle deutlich einfacher anpassen, da sie als Basismodell bereits 
auf einer so großen Datenmenge trainiert wurden, dass sie ein 
implizites Verständnis einer Reihe an Objekten und Assoziationen 
gelernt haben [12]. Diese Charakteristik wird durch das soge-
nannte Grounding verstärkt, das heißt dem Lernen von Assozia-

tionen von Objekten zur physischen Welt, welches über verschie-
dene Modalitäten hinweg gute Ergebnisse erzielt [19]. Dies wird 
etwa für Perzeptionsmodelle für Roboter-Greifaufgaben in diver-
sen Arbeiten untersucht [29, 30]. Die grundsätzliche Idee in die-
sen Anwendungen ist es, die Repräsentationen von reinen Bild -
sequenzen um textuelle Sprache zu erweitern, um dem Roboter 
so mehr Kontext und ein besseres Verständnis zu vermitteln. Ein 
Beispiel für ein solches Modell ist das von der Open X-Embodi-
ment Collaboration vorgeschlagene RT-2-X-Modell, welches In-
struktionen in natürlicher Sprache in Kombination mit Bilddaten 
verarbeitet und Handlungsempfehlungen für die Robotersteue-
rung in natürlicher Sprache ausgibt [31, 32]. Durch das Training 
dieses Modells auf Bild-Sprache-Paaren wird das Szenenverständ-
nis maßgeblich verbessert, sodass der Roboter in der Lage ist, 
auch komplexe Anweisungen zu interpretieren und korrekt zu 
verarbeiten, Bild 3. Das Modell zeigt dabei eine starke Übertrag-
barkeit auf neue Anwendungen und kann diese einfach durch 
neue Instruktionen mit neuen textuellen Eingangsgrößen verar-
beiten [31]. Die Möglichkeit, ein Basismodell ohne jegliches Trai-
ning und damit Datenaufwände auf eigene individuelle Anwen-
dungen allein durch das Setzen von textuellen Randbedingungen 
zu übertragen, stellt einen wesentlichen Vorteil multimodaler 
Foundation-Modelle dar [19]. Dies kann auch für Anomaliede-
tektionen im Bereich der Qualitätssicherung genutzt werden. Der 
Einsatz verschiedener Prompt-Templates für Bild-Sprache-Model-
le wurde so etwa in [33] auf einer Reihe von Benchmark-Daten-
sätzen, etwa dem MVTec AD-Datensatz [34], einem Datensatz 
speziell für die industrielle Qualitätssicherung ausgewertet. Dort 
wurde festgestellt, dass Anomalien über gewisse Prompt-Templa-
tes bereits hochgenau detektiert werden können, unter der 
 Voraussetzung, dass ein Referenzbild eines Gutteils ebenfalls in 
das Modell eingegeben wird [33], Bild 3.

Anhand des letzten Anwendungsfalls lässt sich eines der weite-
ren Potenziale multimodaler Foundation-Modelle erkennen. Die 
Anomalien werden in dem gegebenen Setup nicht nur detektiert, 
sondern das Modell liefert Erklärungen, warum das gegebene 
Modell einen Defekt enthält oder nicht. Diese Charakteristik der 
Erklärbarkeit der Modellausgänge kann für viele Anwendungsfäl-
le relevant sein. Am Werkzeugmaschinenlabor der RWTH Aachen 
wird daran geforscht, den Einsatz solcher Bild-Sprache-Modelle 
für die Interpretation von Computertomographie-(CT-)Bilddaten 
heranzuziehen. Aufgrund zahlreicher Einflussfaktoren auf die 
CT-Bildgebung ist die Detektion in diesen Bildern oftmals 
 herausfordernd und die Differentiation von CT-Artefakten und 
tatsächlichen Defekten für KI-Modelle und menschliche Entschei-
der schwierig. Textuelle Modellausgänge, die als Unterscheidungs-
stützung für menschliche Operatoren dienen, können hier einen 
großen Mehrwert bieten und die Entscheidungsqualität bei der 
CT-Prüfung erheblich verbessern.

Auch im Bereich des betrieblichen Wissensmanagements 
 bieten die Bild-Sprache-Kopplung beziehungsweise multimodale 
Repräsentationen im Allgemeinen Potenziale. Hier wird bereits in 
vielen Unternehmen der Einsatz von LLM-Chatbot-Lösungen 
 untersucht, die an Datenbanken angebunden sind, welche in vek-
torisierter Form Repräsentationen des betriebsinternen, textuellen 
Wissens enthalten [35]. Dadurch werden Chatbot-Systeme in die 
Lage gebracht, fundierte Antworten zu unternehmensinternen 
Fragestellungen zu beantworten, auch wenn die Sprachmodelle 
selbst nicht auf dieser Datengrundlage trainiert wurden, indem 
stattdessen semantische Ähnlichkeiten zwischen Nutzerfragen 
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und Dokumenten gesucht werden und diese dem Sprachmodell 
für die Antwortgeneration bereitgestellt werden (Retrieval Aug-
mented Generation) [36]. Die Erweiterung auf semantische Su-
chen in multimodalen Datenquellen, das sogenannte Cross-Modal 
Retrieval, kann die Potenziale dieser Technologie nochmals ver-
bessern, denn häufig ist betriebsinternes Wissen nicht nur in Tex-
ten natürlicher Sprache enthalten, sondern auch in Bildern oder 
Bildsequenzen [37]. Das Suchen nach passenden Informationen 
in multimodalen Datenquellen kann so etwa das Training und die 
Einarbeitung für neues Personal verbessern, den Kundensupport 
entlasten, indem Kunden eine Reihe von Problemen bereits 
selbstständig diagnostizieren können oder die Planung von Prüf-
versuchen erleichtern, indem automatisiert in Datenbanken nach 
Parametereinstellungen für bereits verprobte Bauteile etwa an-
hand von Ähnlichkeiten von CAD-Modellen gesucht wird, Bild 3.

Die bisher vorgestellten Anwendungsbereiche beziehen sich 
primär auf die Kopplung von Bild und Sprache. Im Kontext von 
Industrie 4.0 sind jedoch auch vor allem Modelle interessant, die 
neben diesen beiden Modalitäten Sensordaten mit in die Model-

lierung aufnehmen. Ein Beispiel ist die von Google und der Johns 
Hopkins University vorgestellte „DeepFusion“-Modellserie, die 
die Fusion von Kameradaten und Lidar-Sensoren zur 3D-Objekt-
detektion im Bereich des autonomen Fahrens untersucht [38]. 
Die Nutzung multimodaler Eingangsgrößen führt zu erhöhten 
Genauigkeiten und erhöhter Robustheit der Ansätze. Dies wird so 
auch im Bereich der mobilen Robotik beziehungsweise Industrie-
robotik untersucht und soll die Detektionsmöglichkeiten von 
 sogenannten Open-Set-Modellen, das heißt, Modellen, die Instan-
zen beliebiger Objektklassen detektieren können, verbessern 
[39, 40], Bild 3.

Die Übersicht zeigt, dass im Bereich multimodaler Foundati-
on-Modelle primär der Einsatz von Bild-Sprache-Modellen un-
tersucht wird, sowie Anwendungen mit Ausnahme der Robotik-
domäne rar sind. Vorteile multimodaler Foundation-Modelle wer-
den vor allem in den Bereichen einfache Übertragbarkeit, etwa 
dem Ermöglichen von Open-Set-Detektionen ohne die aufwendi-
ge Aufnahme von Trainingsdaten, der erhöhten Robustheit und 
Generalisierbarkeit sowie der verbesserten Erklärbarkeit gesehen. 

Bild 3. Übersicht verschiedener Anwendungsmöglichkeiten multimodaler Foundation-Modelle in der Produktion. Links oben: RT-2-X-Modell zur automati-
sierten Robotersteuerung bei komplexen Handlungsinstruktionen. Oben rechts: Anomaliedetektion über Bild-Sprache-Modelle durch Prompttemplates. Un-
ten links: Cross-Modal-Retrieval zum innerbetrieblichen Wissensmanagement. Unten rechts: DeepFusion-Ansatz zur 3D-Objektdetektion von Objekten im 
Kontext des autonomen Fahrens. Grafik: WZL | RWTH Aachen University auf Basis von [31, 33, 34, 37, 38]
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Diese Charakteristiken können prinzipiell für eine Vielzahl der in 
Bild 2 dargestellten Anwendungsbereiche genutzt werden und 
dort zu verbesserten Prozessen führen. Aktuell mangelt es hier 
aber noch an konkreten Anwendungsfällen. Um eine weitere 
 Verbreitung zu erreichen und Anwendungsfälle zu identifizieren, 
bieten die vom BMBF geförderten KI-Servicezentren kostenlose 
Informationen und Erstgespräche an und stellen unter bestimm-
ten Voraussetzungen entsprechende Rechenressourcen oder ver-
tiefende Ausarbeitungen von Ideen über Forschungskooperatio-
nen zur Verfügung.

4 Herausforderungen für den Einsatz  
 multimodaler Foundation-Modelle

Obwohl multimodale Foundation-Modelle großes Potenzial 
für verschiedene Aufgaben versprechen, nutzen, wie die Übersicht 
aus dem vorangegangenen Abschnitt zeigt, produzierende Unter-
nehmen diese Technologie aktuell kaum. Dies ist primär auf die 
folgenden Herausforderungen zurückzuführen [6, 12, 13]:
• Domänenlücke zwischen Trainingsdaten bestehender multi -

modaler Foundation-Modelle und industriellen Datensätzen
•  Geringe Verfügbarkeit öffentlicher industrieller Trainings- und 

Benchmarkdatensätze
• Unterrepräsentiertheit bestimmter Datenmodalitäten
• Verfügbarkeit von Rechen- und Dateninfrastruktur
• Geringe oder nicht vorhandene KI-Kompetenz
•  Bedenken zur Sicherheit und Verlässlichkeit
Wesentliches Defizit für den Einsatz multimodaler Foundation-
Modelle in der Produktion sind Daten. Insbesondere stellt die 
Verfügbarkeit großer, branchenübergreifender, offener Datensätze 
ein Problem dar. Dies hat zur Folge, dass nahezu alle großen Mo-
delle auf Datensätzen vortrainiert werden, die über eine ausge-
sprochene Domänenlücke zu produktionsnahen Daten verfügen. 
Diese vortrainierten Modelle lassen sich so häufig nur mit großen 
Leistungseinbußen auf die meist speziellen industriellen Proble-
me, etwa spezielles industrielles Vokabular, überführen oder müs-
sen durch Fine-Tuning auf die spezifischen Problemstellungen an-
gepasst werden [41]. Erste Initiativen wie die Open 
X-Embodiment Collaboration stellen solche Datensätze zur Ver-
fügung, allerdings fehlt es im Allgemeinen weiterhin an branchen-
übergreifenden Datensätzen [32]. Herausforderungen im Kontext 
der Daten beziehen sich darüber hinaus auch auf die Unterreprä-
sentiertheit bestimmter Modalitäten, die in Produktionsumgebun-
gen besonders relevant sind. Für Zeitreihen- oder 3D-Punktewol-
kendaten von Sensoren etwa sind kaum Modelle verfügbar und 
ihre Leistungsfähigkeit zusätzlich eingeschränkt [12]. Die Verfüg-
barkeit von Datensätzen bezieht sich dabei nicht nur auf Daten-
sätze, die zur Entwicklung derartiger Modelle vorhanden sein 
müssen, sondern auch auf Benchmarks, die einen fairen Vergleich 
verschiedener Modelle ermöglichen und Entwickler bei der Aus-
wahl geeigneter Basismodelle unterstützen sollen [42].

Neben Herausforderungen im Kontext Daten erschweren ins-
besondere auch die notwendigen Anforderungen an Daten- und 
Recheninfrastruktur die Nutzung großer, multimodaler KI-Mo-
delle [13]. Dies ist mehr noch als bei traditionellen Modellen für 
große, multimodale KI-Modelle eine Herausforderung. Zum einen 
müssen für multimodale Modelle Daten aus verschiedenen Quel-
len fusioniert werden, was ebenfalls mit Mehraufwänden in Ent-
wicklung und Betrieb verbunden ist [43]. Zum anderen überstei-
gen die erforderlichen Rechenressourcen beim Hosting von Foun-

dation-Modellen die der klassischen KI-Modelle um ein Vielfa-
ches [13]. Gleiches gilt für das Fine-Tuning dieser Modelle. Für 
die Nutzung dieser Technologie wird somit aufgrund der Homo-
genisierung der Modellarchitekturen neben der KI-Expertise 
mehr und mehr die Expertise im Bereich des Hochleistungsrech-
nens relevant. Cloudanbieter und andere kommerzielle Dienste 
bieten die benötigte Hardware und ermöglichen so, die hohen 
 Rechenanforderungen zu bewältigen. Hier bestehen jedoch häufig 
bei Industrieunternehmen Bedenken zur Datensicherheit und 
Verlässlichkeit, weswegen sich die Auswahlmenge an Anbietern 
häufig stark verringert [13].

Viele der genannten Herausforderungen sind aktuell stark 
 fokussierte Forschungsbereiche. Insbesondere die Verfügbarkeit 
an Daten und Modellen für bestimmte Domänen wird aktuell in 
vielen, auch europäischen oder deutschen, Forschungsinitiativen 
wie „LAION“ untersucht [42]. WestAI bietet an dieser Stelle 
_Unternehmen und Forschenden Hilfe, in diesem dynamischen 
Umfeld den Überblick durch das Angebot von Beratungs- und 
Schulungsleistungen zugeschnitten auf die Bedürfnisse bei der 
Nutzung großer KI-Modelle zu bekommen. Zusätzlich werden im 
Rahmen des Projekts kostenfrei Rechenressourcen von bis zu 
10 000 GPU-Stunden auf moderner Hochleistungsrecheninfra-
struktur bereitgestellt. WestAI kann so dazu beitragen, Herausfor-
derungen beim Technologietransfer multimodaler Foundation-
Modelle aufzuheben.

5 Fazit und Ausblick

Traditionelle KI-Ansätze stoßen vor dem Hintergrund aktuel-
ler Anforderungen an Flexibilität und Robustheit in der Produkti-
on an ihre Grenzen. Der Einsatz multimodaler Foundation-
 Modelle verspricht, diese Limitierungen aufzuheben und für eine 
Vielzahl möglicher Anwendungen eingesetzt zu werden. Primäre 
Vorteile dieser Technologie liegen in der besseren Übertragbarkeit 
auf verschiedene Aufgaben, der verbesserten Genauigkeit und 
 Robustheit dieser Modelle sowie in der Nutzung textueller Aus-
gangsgrößen zur Erklärung von Modellentscheidungen. Diese 
 Eigenschaften bieten das Potenzial auch traditionell schwierig zu 
automatisierende Aufgaben in der Produktion, etwa die Montage, 
zu automatisieren. Aktuelle Anwendungen im Produktionsbereich 
sind jedoch noch die große Ausnahme. Lediglich in der Robotik-
domäne werden diese Modelle bereits in Anwendungen einge-
setzt, zum Beispiel zur automatisierten Generierung von Hand-
lungsanweisungen für die Robotersteuerung bei Greifaufgaben. 
Eine Herausforderung im Bereich der multimodalen Foundation-
Modelle ist die Übertragung vortrainierter Basismodelle auf die 
industrielle Domäne, die in klassischen Datensätzen, mit denen 
diese Modelle vortrainiert sind, kaum enthalten ist, sodass 
 Methoden des Modelltransfers, etwa Fine-Tuning, angewendet 
werden müssen. Für diesen Modelltransfer beziehungsweise die 
Nutzung großer KI-Modelle ist zusätzlich eine leistungsfähige Re-
cheninfrastruktur notwendig, die insbesondere für kleine und 
mittlere Unternehmen nicht leicht verfügbar ist. Das Forschungs-
projekt WestAI bietet interessierten Unternehmen und Forschen-
den an dieser Stelle die Möglichkeit, diese Rechenressourcen in 
einem gewissen Rahmen für Forschungsfragestellungen kostenfrei 
zu nutzen sowie konkrete industrielle Anwendungsfälle zu be-
sprechen und gemeinsam im Rahmen von Forschungskooperatio-
nen Lösungen zu entwickeln.
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Weiterer Forschungsbedarf im Bereich multimodaler Founda-
tion-Modelle liegt unter anderem in der Erweiterung offener 
 Datensätze auf zusätzliche Modalitäten sowie dem Benchmarking 
von Modellen auf industriellen Datensätzen. Darüber hinaus sind 
insbesondere für industrielle Anwendungen Projekte mit Leucht-
turmcharakter erforderlich, die den Nutzen und die Transferier-
barkeit dieser Modelle an realen Anwendungen zeigen.
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