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The defection of moving objects in aerial video sequences is a common application in safety
and environmental monitoring. The challenge is the non-static camera, which is moving together
with an aerial vehicle. To defect local changes due to movement of ground objects in such a
scenario, the displacements of image pixels resulting from the motion of the camera need to be
compensated. The most common method is fo use a projective fransformation and assume the
observed scene to be planar. However, this is only valid for very high altitudes. It fails otherwise
and results in falsely detected local motion. This work addresses the problem in two ways. After
analyzing the error resulting from motion parallax, two defectors E)r moving objects in non-
planar scenes are presented. One is based on a motion parallax model and one on a smooth
optical flow approach. Following this, a motion compensation method for non-planar scenes is
presented, allowing the use of image differences based methods for non-planar scenes.
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Block Matching Algorithm

Charge-Coupled Device

Complementary Metal-Oxide Semiconductor
Corner Response Function

Field Of View

GLObalnaja NAwigazionnaja Sputnikowaja Sistema
Global Positioning System

Inertial Measurement Unit

Inertial Navigation System
Kanade-Lucas-Tomasi feature tracker

Micro Air Vehicle

Motion Parallax Predictor classifier

Pan, Tilt and Zoom camera system
RANdom SAmple Consensus

Regions of Interest

Scale-Invariant Feature Transform
Speed-Up Robust Features

Unmanned Aerial Vehicle

angle of aperture of the camera

pan, roll, and tilt angle of the camera

parameter of a line equation

Eigenvalues of M

parameters of the triangle plane equation

affine matrix of size 2 x 2

binarized image intensity differences of the frame k&
principal point offset

C(C,,C,,C.)T position of the camera in world coordinates

Cy
AC

position of the camera in the frame k
vector between two camera centers
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motion parallax of the ground plane in image plane coordinates
diameter of the camera lens

distance of scene point P to the triangle surface

minimum feature distance

image intensity differences of the frame &

displacement vector

displacement of the ith feature

estimate of d

position of an epipole

binarized image intensity differences of the frame & after erosion
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focal length
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fundamental matrix of size 3 x 3

holds the temporal derivatives of I

height of a scene point above the ground plane
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homography matrix of size 3 x 3

image intensity at the position n

image intensities of the frame k

partial derivatives of

frame index

Harris weighting factor

number of frames between the source and destination frame used for
feature tracking and motion compensation

camera calibration matrix of size 3 x 3

epipolar line

Harris corner matrix

mesh node positions of a triangle in world coordinates
mesh node positions of a triangle on the image plane
number of features

amount of sensor elements in x- and y-direction

point in image coordinates

normal vector and unit normal vector of a triangle surface
position of the nadir in world coordinates

relief displacement and motion displacement in pel
projection of the image plane origin onto the ground plane
point on the image plane
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displaced position of the point p

point on the image plane with lens distortions

point on the image plane of camera Cy,

estimate of p, through affine motion compensation
projection of P{ onto the image plane of camera Cj,
projection of Py onto the image plane of camera Cy,
point in world coordinates

point in camera coordinates

point on the ground plane in world coordinates

point on the ground plane in camera coordinates

point on an object width height / in world coordinates
point on an object width height h in camera coordinates
relief displacement of p

motion parallax of p

relief displacement projected to the ground plane

motion parallax projected to the ground plane

projective components of the homography

radii of p and p to the center of distortion

frame rate

the elements of R

camera orientation matrix of size 3 x 3

pixel-wise motion detection results of the frame &

relief displacement in radial direction

relief displacement projected to the ground plane in radial direction
width and height of the camera sensor

thresholds of the cluster filter

binarization and erosion thresholds of the noise filter
distance threshold of the motion parallax outlier detector
set referencing the mesh nodes of the triangle ¢ in the frame k
matrix containing the nodes of the triangle i in the frame &
translation vector component of a homography

arbitrary feature indexes and positions

Vplane = (Uw7uy)T velocity and flight direction of aircraft

Vthresh

W
Az,
AX,

minimal object speed needed for detection

search window set of pixels

relief displacement in x direction

relief displacement projected to the ground plane in x direction

- 1P 216.73.216.36, am 18.01.2026, 19:26:38. © Inhal.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186847102-I

IX

Abstract

The detection and segmentation of moving objects in aerial video sequences is a
common application in safety and environmental monitoring. The challenge hereby
is the non-static camera which is attached to and moves together with an aerial
vehicle. To be able to detect local changes due to movement of ground objects in
such a scenario, the displacements of the image pixels resulting from the motion of
the camera need to be compensated between the frames of the recorded sequence.
For this purpose, the motion of the camera as well as the structure of the recorded
scene needs to be known to compensate the global motion without errors. While
the motion of the camera can be measured accurately enough by external sensors
or can even be estimated from the video feed itself, the structure of the observed
scene is commonly unknown. Therefore, easy to compute universal approximations
of the scene structure are made instead. The most common method is to model the
global motion of the pixels by a projective transformation using a homography, in
which the observed scene is assumed to be planar. While this might be accurate
enough for high altitudes, small focal lengths, and vertically downwards oriented
cameras, the approximation fails for scenes with high buildings or low altitudes due
to motion parallax effects. As a result, the global motion for large areas of the frame
is estimated and compensated incorrectly, which leads to lots of falsely detected local
motion for such scenarios. In this work, the problem is addressed in two ways: first,
the approximation errors made by the projective transformation for scenes with
high buildings, low altitudes, and tilted or sideways looking cameras are analyzed
mathematically. From the resulting aberration equations, a predictor for the motion
parallax of image pixels is created and used as an outlier and moving object detector.
It is called motion parallax predictor classifier is this work and able to distinguish
between global motion of the background, displacements resulting from the motion
parallax of static objects such as buildings, and local motion of individual objects
in the scene. In contrast to similar methods, e.g. the elementary or fundamental
matrix conformance test, only a small range on the epipolar line is determined as
a valid representation of the possible motion parallax of static scene objects. This
allows the detection of local moving objects moving along the epipolar line, which is
not possible with epipolar geometry alone. However, the predictor has restrictions
when it comes to objects moving along the epipolar line in the direction of the
motion parallax: only objects with a displacement larger than the motion parallax
are detectable. Moreover, the intrinsic and extrinsic camera parameters must be
known, which requires external sensors and calibrated cameras. For this reason, an
additional detector based on the clustering of frame to frame displacements of feature
points (cluster filter) is developed in this work. It uses similarity constraints to join
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the estimated displacement into clusters of equal motion. This allows the detection
of local moving objects without explicit knowledge of the flight altitude, camera
parameters and motion, or the scene geometry. Compared to the homography and
fundamental matrix based methods used as references, the cluster filter as well as
the motion parallax predictor classifier were able to classify up to 100% of the
moving objects correctly. Moreover, the negative predictive value is increased from
30 to over 90% at the same time. The second way of addressing the problem is the
global motion compensation of image pixels for the use in an image differences based
system. As the investigated scenario does not conform with the single planar model
of the homography, a multi-planar approach using a mesh of locally adaptive triangle
patches is presented. In contrast to the homography, the mesh is able to adapt to
objects sticking out of the ground plane by using an individual affine mapping for
each triangle, e.g. the wall of a building and the roof. This allows the compensation
of the global motion nearly error free, leaving only the newly occurring background
as a possible source of false detections. Compared to the single planar model, the
multi-planar approach was able to reduce the amount of falsely classified pixels in
the experiments by a factor of 4.

Keywords: aerial surveillance, motion detection, motion segmentation, non-planar
motion compensation
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Kurzfassung

Das Erkennen bewegter Objekte in Luftbildsequenzen ist eine héufige Aufgabe in
der Luftiiberwachung. Die Herausforderung liegt hierbei in der Unterscheidung
der globalen Verschiebung der Pixel zwischen den Bildern, hervorgerufen durch die
Bewegung der Kamera, und lokalen Bewegungen durch die zu erkennenden Ob-
jekte. Um diese trennen zu koénnen, muss die globale Bewegung kompensiert wer-
den. Hierfiir muss sowohl die Bewegung der Kamera als auch die Geometrie der
iiberwachten Szene bekannt sein. Wahrend sich die Bewegung der Kamera mit-
tels externer Sensoren oder aus der Bildsequenz selbst heraus ermitteln l&sst, ist
die iiberflogene Szene meist unbekannt und wird daher unter Verwendung eines
einfach zu bestimmenden Modells approximiert. Das meist genutzte Modell ist hier-
bei die Homographie, welche die iiberflogene Szene durch einer Ebene annéhert.
Diese Approximation gilt allerdings nur fiir grofe Flughdhen, kleine Brennweiten
und lotrechte Aufnahmen. Entspricht die Landschaft nicht diesem Modell, z.B.
wegen hoher Gebédude, niedriger Flughohe, etc., fiihren die unterschiedlichen Be-
wegungsparallaxen zwischen der Oberfliche und Gebduden zu Fehldetektionen in
groken Bereichen des Bildes. In dieser Arbeit wird das Problem auf zweierlei
Arten angegangen. In der ersten Methode wird zunéchst der Approximationsfehler
des Homographiemodells mathematisch bestimmt. Aus den sich ergebenen Fehler-
gleichungen wird ein Préadiktor erstellt, der die Bewegungsparallaxen von statischen
Objekten bis zu einer vorgegebenen Maximalhohe voraussagt. Der in dieser Ar-
beit Bewegungsparallaxeklassifizierer genannte Detektor erlaubt die Unterscheidung
zwischen einer Bild-zu-Bild Verschiebung aufgrund statischer Objekte wie Hinter-
grund oder Gebéduden und einer lokalen Verschiebung durch ein sich bewegendes Ob-
jekt anhand des Abstandes zu einem pradizierten Epipolarliniensegment. Im Gegen-
satz zu Verfahren, die auf der Elementar- oder der Fundamentalmatrix basieren,
erlaubt dieser Ansatz auch die Detektion von Bewegungen entlang der Epipolar-
linie. Allerdings werden Objekte, welche sich in Richtung der Bewegungsparallaxe
bewegen, nur erkannt, wenn die Eigengeschwindigkeit ausreichend hoch ist. Aufser-
dem miissen fiir dieses Verfahren die intrinsischen und extrinsischen Kamerapa-
rameter bekannt sein. Aus diesen Griinden wurde ein zweiter Detektor entwickelt,
welcher auf dem Clustern von Bewegungsvektoren basiert und als Clusterfilter beze-
ichnet wird. Das Vektorfeld wird hierbei anhand von Ahnlichkeitsbedingungen in
Bereiche gleicher Bewegung eingeteilt, wobei innerhalb der Bereiche eine sanfte An-
derung der Bewegungsrichtung erlaubt wird. Hierdurch wird eine Erkennung von
Objekten unabhéngig von der Bewegungsrichtung und ohne zwingende Kenntniss
der Flughthe oder der Kameraparameter ermoglicht. Sowohl der Bewegungsparal-
laxeklassifizierer als auch das Clusterfilter erreichen dabei eine Erkennungsrate be-
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wegter Objekte auch fiir nicht planare Sequenzen von bis zu 100%, bei gleichzeitig
niedrigerer Fehlalarmrate als das Referenzverfahren. Die zweite Methode hat als
Ziel die Verbesserung der globalen Bewegungskompensation, welche z.B. fiir Detek-
toren notwendig ist, die auf Bilddifferenzen arbeiten. Im vorgestellten Verfahren
wird hierbei das Einzelebenenmodell der Homografie durch ein Multiebenenmodell
auf Basis von stiickweise planaren Dreiecksnetzen ersetzt, in dem jedes Dreieck eine
individuelle Ebene darstellt. Hierdurch ist es méglich, auch Objekte abzubilden, die
aus der Grundebene herausstehen, in dem z.B. die Bewegung der Wand oder des
Daches eines Gebéudes individuell bewegungskompensiert wird. Im Gegensatz zum
Referenzverfahren lésst sich hierdurch die Anzahl der falschlicherweise als bewegt
erkannten Pixel dramatisch reduzieren, so dass Fehldetektionen nur noch an neu auf-
tauchendem Hintergrund auftreten. Im Experiment liefsen sich die Fehldetektionen
um den Faktor 4 reduzieren.

Schlagworte: Luftbildiiberwachung, Bewegungserkennung, Bewegungssegmentierung,
nicht-planare Bewegungskompensation
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