

Fortschritt-Berichte VDI

Dipl.-Inform. Tina Mersch,
Verl

Nr. 1261

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

Regelbasierte Modell-
transformation in
prozessleittechnischen
Laufzeitumgebungen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Regelbasierte Modelltransformation in
prozessleittechnischen Laufzeitumgebungen

Von der Fakultät für Georessourcen und Materialtechnik

der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Inform.

Tina Mersch

aus Sömmerda

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple

Univ.-Prof. Dr. rer. nat. Andy Schürr

Tag der mündlichen Prüfung: 08.Dezember 2017

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

II

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Fortschritt-Berichte VDI

Regelbasierte Modell-
transformation in
prozessleittechnischen
Laufzeitumgebungen

Dipl .-Inform. Tina Mersch,
Verl

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1261

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

D82 (Diss. RWTH Aachen University, 2017)

© VDI Verlag GmbH · Düsseldorf 2018
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-526108-1

Mersch, Tina
Regelbasierte Modelltransformation in prozessleittechnischen
Laufzeitumgebungen
Fortschr.-Ber. VDI Reihe 08 Nr. 1261. Düsseldorf: VDI Verlag 2018.
160 Seiten, 54 Bilder, 0 Tabellen.
ISBN 978-3-18-526108-1 ISSN 0178-9546,
¤ 57,00/VDI-Mitgliederpreis ¤ 51,30.
Für die Dokumentation: Modelltransformation – Automatisierungstechnik – Durchgängiges
Engineering – Triple-Graph Grammatiken – TGG – Modellbasiertes Engineering – Regelbasier-
tes Engineering – Anlagenneutrale Automatisierungsfunktion – Automatisierung der Automatisie-
rung

Der aus der Informatik stammende Ansatz der Modelltransformation mittels Triple-Graph-Gram-
matiken wird in die Welt der IEC61131-Sprachen überführt. Das dadurch entstandene Frame-
work bietet die Grundlage für anlagenneutrale Automatisierungsfunktionen, die als Serienpro-
dukt verkauft und per Modelltransformation anhand der Planungsdaten an die konkrete Anlage
und die aktuellen Anforderungen angepasst werden können. Durch den Einsatz von Triple-
Graph-Grammatiken ist es zudem möglich, Änderungen in der Automatisierungsfunktion in die
Planungsdaten zurück zu spielen und somit zu dokumentiert. Das vorgestellte Konzept macht
sich die starke Korrelation zwischen verschiedenen Modellen der Anlagenautomatisierung zu
Nutze, indem es die Zusammenhänge und nicht das Modell selbst in den Fokus rückt. Das
Wissen über diese Zusammenhänge wird dabei, abgelegt als Regeln, nutzbar für eine ganze
Serie von Anlagen.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit am Lehrstuhl für Prozessleit-

technik der RWTH Aachen University. Ich möchte mich an dieser Stelle bei allen bedanken, die

geholfen haben diese Arbeit erfolgreich abzuschließen. Mein besonderer Dank gilt dabei Herrn

Professor Dr.-Ing. Ulrich Epple, der in seiner Rolle als Doktorvater und Chef durch spannende

Diskussionen, neue Denkanstöße und durch die vielfältigen Möglichkeiten zum Austausch mit

anderen Wissenschaftlern maßgeblich zum Gelingen dieser Arbeit beigetragen hat.

Aus der ursprünglich wagen Idee Modelltransformation in die Automatisierungstechnik zu brin-

gen, hat sich insbesondere durch die langen und fachlich sehr lehrreichen Gespräche mit Herrn

Professor Dr. rer. nat. Andy Schürr ein tragfähiges und wirklich spannendes Konzept entwickelt.

Für die dabei aufgebrachte Geduld, die Nachsicht in vielen Dingen und nicht zuletzt für die

Übernahme der Rolle des Zweitgutachters möchte ich mich bei ihm herzlich bedanken.

Auch den vielen Wegbegleitern sei ein Dank ausgesprochen. Besonders erwähnen möchte ich

dabei Stefan Schmitz, dessen Ideen und Ansätze die Grundlage dieser Arbeit lieferten und

Gustavo Quirós, der gerade in den ersten Phasen viele gute Ideen und Anwendungsmöglich-

keiten für eine Modelltransformation in der Automatisierungstechnik beigetragen hat und mich

dadurch motiviert hat, das Thema zu vertiefen. Auch möchte ich mich bei Marius Lauder be-

danken, der mir in Gesprächen und gemeinsamen Arbeiten Einblicke in die Funktionsweise von

TGGen gewährt und mir die Faszination dieses Ansatzes nähergebracht hat.

Ein besonderer Dank gilt meiner Familie. Angefangen bei meinen Eltern, die mir durch ihre

Unterstützung auch bei ungewöhnlichen Ausbildungswünschen erst ermöglicht haben, diesen

Werdegang einzuschlagen und bei meinen Kindern Liam und Tjard, die gerade in den heißen

Phasen der Arbeit oft zurückstecken mussten, die mir aber auch immer wieder durch kleine

Gesten über die unzähligen Tiefpunkte hinweggeholfen haben. Der größte Dank gilt jedoch

meinem Mann Henning, der unendlich viel Geduld während der Entstehung der Arbeit aufge-

bracht hat und mich immer wieder motiviert hat, nicht aufzugeben.

Verl, im Oktober 2018 Tina Mersch

III

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Most of the fundamental ideas of science are essentially simple,

and may, as a rule, be expressed in a language comprehensible to

everyone.

Albert Einstein

IV

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . 1

1.2 Zielsetzung . 2

1.3 Gliederung . 6

2 Formale Modellierung 8
2.1 Allgemeine Begriffsbestimmung . 8

2.2 Darstellungsformen . 10

2.2.1 Deskriptiv vs. Konstruktiv . 12

2.2.2 Textuell vs. Graphisch . 13

2.3 Formalisierungsgrad . 14

2.4 Formale Modellierung . 16

2.4.1 Deskriptive, grafische Modellierung . 16

2.4.2 Konstruktive, textuelle Modellierung . 17

2.4.3 Deskriptive, textuelle Modellierung . 21

2.4.4 Konstruktive, grafische Modellierung . 21

2.5 Fazit . 23

3 Modelle in der Automatisierungstechnik 24
3.1 Stand der Technik . 24

3.2 Bewertung der Modelle . 27

3.2.1 Fließschemata für verfahrenstechnische Anlagen 27

3.2.2 CAEX . 28

3.2.3 PandIX . 29

3.2.4 Sprachen für die SPS-Programmierung 30

3.2.5 AutomationML . 31

3.2.6 ACPLT-Modelle . 32

3.3 Gewonnene Erkenntnisse . 33

4 Modelltransformation in der Automatisierungstechnik 36
4.1 Allgemeine Begriffsbestimmung . 36

4.2 Besondere Herausforderungen in der Automatisierungstechnik 38

4.3 Stand der Technik . 40

5 Modelltransformation 44
5.1 Tripel-Graph-Grammatiken . 44

5.1.1 Operationale Regeln . 51

V

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Inhaltsverzeichnis

5.1.2 Kontrollalgorithmus . 52

5.1.3 Modelltransformation zur Laufzeit . 53

5.2 Alternative Ansätze . 54

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik 56
6.1 Grundlegende Design-Entscheidungen . 56

6.2 Deklarative Ebene . 60

6.3 Kommandostruktur . 66

6.4 Operationale Ebene . 68

6.4.1 MT-Objekt . 70

6.4.2 Modifikatoren . 71

6.4.3 Korrespondenzgraph . 73

6.5 Kontrollalgorithmus . 73

6.6 Referenzimplementierung . 74

6.6.1 Taskingkonzept . 75

6.6.2 ACPLT/MT-Framework im Laufzeitsystem 77

6.6.3 MT_Element . 79

6.6.4 MT_Object . 82

6.6.5 Metavariablen, Variablen und Links . 85

6.7 IEC 61131 basierte Modelltransformation . 86

7 Validierung 89
7.1 S0 – Bereitstellung von Planungsdaten im Laufzeitsystem 89

7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt 90

7.3 S2 – Entwicklungsbegleitende Modelltransformation 94

7.4 S3 – Konsistenzanalyse und Modellreparatur . 97

7.5 Anforderungen an eine bidirektionale Modelltransformation 98

7.6 Anforderungen an eine Modelltransformation für die Automatisierungstechnik . . 100

8 Zusammenfassung und Ausblick 102
8.1 Modelltransformation für prozessleittechnische Laufzeitumgebungen 102

8.2 Erweiterte Einsatzszenarien und mögliche Spracherweiterungen 104

Anhang A ACPLT/MT-Schema-Definition 107

Anhang B TGG der Anwendungsszenarien 116

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel 128

Literaturverzeichnis 144

Normen und Richtlinien 151

VI

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Kurzfassung

Eine Umfrage unter 1800 Mitgliedern des Verbands Deutscher Maschinen- und Anlagenbauer

(VDMA) [Sch12] zeigte, dass sich schon heute 61% der befragten Entwicklungs- und Konstruk-

tionsingenieure den Herausforderungen bei der Entwicklung neuer Maschinen und Anlagen

nicht mehr in vollem Umfang gewachsen fühlen. Mehr als die Hälfte der Befragten erwarten so-

gar, dass „die Technik, die für die Erstellung effizienter, leistungsfähiger und flexibler Maschinen

benötigt wird, immer aufwendiger wird“. Zudem „nehmen Kompetenz und Qualifikation auf der

Anwender- und Bedienerseite ab“. Dieses Zusammentreffen von steigender Komplexität und

sinkendem Fachwissen verlangen nach neuen Methoden im Engineering von Anlagen. Anne

Schneller, die diese Umfragen im Rahmen des VDI-Artikels vorstellte, schlägt vor, dass der

Weg der Automatisierungstechnik in Richtung „Parametrieren statt Implementieren“ zu lenken

ist, um diesen Herausforderungen auch in Zukunft gewachsen zu sein. Die vorliegende Arbeit

leistet einen Beitrag dazu, dieses Paradigma auch für komplexe Automatisierungsfunktionen

zugänglich zu machen.

Das in dieser Arbeit vorgestellte Konzept macht sich die starke Korrelation zwischen verschie-

denen Modellen der Anlagenautomatisierung zu Nutze, indem es die Zusammenhänge und

nicht das Modell selbst in den Fokus rückt. Die Verwendung von Modelltransformation als Basis

einer anlagenneutralen Realisierung der Automatisierungsfunktion ermöglicht die Anpassung

der Funktionalität an den konkreten Anlagenkontext durch Parametrieren mit den anlagenspe-

zifischen Planungsdaten. Das Fachwissen wird dabei, abgelegt als Regeln, nutzbar für eine

ganze Serie von Anlagen.

Die Methode der regelbasierten Modelltransformation hat ihren Ursprung in der Informatik, wo

die entwickelten Ansätze bereits beachtliche Ergebnisse in den für sie geschaffenen Modell-

welten erzielen. Trotz der langjährigen, erfolgreichen Entwicklung auf dem Gebiet der Modell-

transformation stellt das Anwendungsgebiet der Automatisierungstechnik bisher eine besonde-

re Herausforderung dar. Insbesondere semiformale Modellbeschreibungen, die Vielfalt der Mo-

delle, erlaubte Varianzen in der Modellierung und multiple Quellmodelle erschweren den Ein-

satz von Standardverfahren oder machen ihn unmöglich. Nicht nur die hohen Anforderungen

der Informatik an den Formalisierungsgrad und die Passgenauigkeit der beteiligten Modelle

stellen eine Hürde bei der Zusammenführung der beiden Disziplinen dar, auch die konservati-

ve Einstellung der Automatisierungstechnik bringen besondere Herausforderung mit sich. Das

in der Arbeit vorgestellte Konzept realisiert einen der erfolgversprechendsten Ansätze aus der

Informatik und gliedert diesen nahtlos in für die Automatisierungstechnik übliche Programmier-

sprachen ein. Dem Applikateur bieten sich dadurch alle Freiheiten der kooperativen Nutzung

von Modelltransformation und Standardprogrammierung.

VII

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Abstract

A survey of 1800 members of the German engineering association VDMA [Sch12] showed

that 61% of development and design engineers surveyed don’t feel up to the challenges in

the development of new machines and equipment. More than one half of the respondents

expect that the development of efficient, powerful and flexible machines will become even more

complex in future. In addition, they predict that users and operators will become less qualified.

This concurrence of increasing complexity and decreasing knowledge demands new methods

in the engineering of plants. Anne Schneller, author of the VDI article about the survey, suggests

that automation technology has to progress toward "parameterization instead implementation"

to cope with these challenges. The work at hand aims to contribute to make this paradigm

applicable for complex automation functions.

The approach presented in this work takes advantage of the strong correlation between diffe-

rent models of plants. It uses model transformation as the basis of a system-neutral develop-

ment of automation functions. Those automation functions can be parametrized with the plant-

specific planning data without further coding costs. The knowledge about the model correlations

is stored once as rules, available for a large set of plants.

The method of rule-based model transformation has its roots in computer science, where the

approaches already developed achieved significant results in the model worlds created for

them. Despite of many years of progress in the field of model transformation, automation tech-

nology presents special challenges for adoption. In particular, semiformal model descriptions

and the variances in modeling as well as multiple source models make the use of standard

methods impossible. Not only are the high demands of computer science on formalization and

the fit of the participating models a hurdle in merging the two disciplines but the conservative

attitude of automation technology brings particular challenges with it as well. One requirement

for the acceptance of these approaches in automation technology is the smooth integration of

the concepts in the application domain without ignoring the domain experts. The concept pre-

sented realizes one of the most promising approaches from computer science and integrates

it seamlessly into automation programming. With this approach the installation technician can

combine model transformation and standard programming in accordance with his purposes.

VIII

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1 Einleitung

Die steigende Komplexität bei der Automatisierung von Anlagen und der erwartete Fachkräfte-

mangel werden insbesondere bei der Erstellung der Software ihre Auswirkung entfalten. Dies

liegt daran, dass alleine 10% des Gesamtaufwandes beim Bau einer Anlage in der Erstel-

lung der Software stecken. Darüber hinaus ist es schwierig, die Fehleranfälligkeit weiter zu

minimieren und die Korrektheit der implementierten Funktionalität zu verifizieren [NA35]. Eine

anlagenneutrale, modularisierte Softwarelösung, die durch Parametrierung an den konkreten

Kontext angepasst wird, hat positive Auswirkungen auf die Projektierungszeit und Fehleranfäl-

ligkeit. Zudem ergeben sich Synergieeffekte für alle Phasen des Lebenszykluses einer Anlage.

Das zu erwartende Potential eines solchen Ansatzes sowie die Zielsetzung der Arbeit werden

in den folgenden Abschnitten konkretisiert.

1.1 Motivation

Applikationen zur Ansteuerung verfahrenstechnischer Anlagen sind in den meisten Fällen so

individuell wie die anzusteuernde Anlage selbst. Doch auch wenn jede Applikation anlagenspe-

zifisch erstellt werden muss, bilden branchenspezifische Basisfunktionen wie Einzelsteuerun-

gen für die Aktorik/Sensorik, Verriegelungslogiken, Flusswegkontrolle etc. die Grundlage der

Programmierung. Diese müssen bei gegebenem Anlagentyp immer in gleicher oder ähnlicher

Form realisiert werden. Auch wenn die Umsetzung dieser Basisfunktionen mit Hilfe von Biblio-

theken erfolgt, deren Bausteine „nur“ in die Applikation übernommen und parametriert werden

müssen, sind die Basisfunktionen für den Applikateur meist reine Fließbandarbeit mit wenig

kreativer Eigenleistung, „langweilig“ und „stupide“. Hinzu kommt, dass auf Grund des reinen

Umfangs an Basisfunktionen viel Zeit in deren Umsetzung fließt. Für die Realisierung der anla-

genspezifischen Applikationskomponenten, die spezielles Fachwissen und einen hohen Grad

an Individualleistung vom Applikateur erfordern, steht entsprechend weniger Zeit zur Verfü-

gung. Und das, obwohl gerade hier die Kernkompetenzen eines gut ausgebildeten Applikateurs

liegen.

Auf der anderen Seite sind die Erhöhung der Flexibilität, der Skalierbarkeit und der Ausfall-

sicherheit nicht erst seit den Arbeiten im Rahmen der Initiative Industrie 4.0 [I4.0] Themen,

mit denen sich Anlagenbauer und Applikateuer konfrontiert sehen. Dennoch erhöht die unter

Leitung des Bundesministeriums für Bildung und Forschung (BMBF) und des Bundesministe-

riums für Wirtschaft und Energie (BMWi) laufende Initiative den Druck auf die Anlagenbauer,

diese Anforderungen verstärkt zu berücksichtigen. Hinzu kommen neue Themen für die Rea-

lisierung zukunftsfähiger Anlagen wie die Ad-hoc-Anpassung der Produktion an veränderte

1

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1 Einleitung

Marktanforderungen, die auftragsorientierte Vernetzung der Produktionsstätten, dynamische

Anlagenstrukturen und damit einhergehend eine verstärkte Modularisierung der Anlagen.

Während bei der Modularisierung der Hardware auf die Erfahrungen der Fertigungstechnik

zurückgegriffen werden kann, fehlt es bei der Entwicklung der passenden Softwaresysteme

zur Automatisierung von modularen Anlagen noch an Erfahrungen [Mer+11]. Zwei grundlegen-

de Ansätze sind hierbei denkbar. Der modulbasierte Ansatz, wie er in der Fertigungstechnik

üblich ist, automatisiert jedes Hardwaremodul für sich. Dieser Ansatz hat den Vorteil, dass

die Automatisierungssoftware optimal auf das Hardwaremodul abgestimmt und mit diesem als

eine automatisierungstechnische Komponente ausgeliefert werden kann. Für den Bereich der

Prozessautomatisierung ist diese Herangehensweise allerdings ungeeignet, da für gewöhn-

lich eine anlagenweite Automatisierung über die Modulgrenzen hinweg benötigt wird. Hier

bietet sich der Einsatz modellbasierter Entwicklung an. Wenn es gelingt, Automatisierungs-

lösungen anlagenneutral auf Basis der zugrundeliegenden Modelle zu implementieren, kann

bei einer Hardwarerekonfiguration einer modularen Anlage die Automatisierungssoftware mit

Hilfe des neuen Anlagenmodells automatisch angepasst werden. Dies erfordert jedoch einen

grundlegenden Paradigmenwechsel in der Planung und Realisierung von Anlagen weg von

der instanzgetriebenen hin zur modellgetriebenen Entwicklung. Auch Anlagen in herkömmli-

cher, nicht-modularer Bauweise können von einem solchen Paradigmenwechsel profitieren.

Standardisierte Automatisierungsfunktionen könnten als Serienprodukt erworben, mit den An-

lagenplanungsdaten konfiguriert und in Betrieb genommen werden. Neben der deutlichen Kos-

tenreduktion, den verkürzten Entwicklungszeiten und dem Qualitätsgewinn durch Einsatz von

Standardkomponenten, sind auch verkürzte Abnahme- und Prüfverfahren zu erwarten. Zwar

bietet das Umfeld der Automatisierungstechnik gute Voraussetzungen für den Einsatz modell-

basierter Entwicklung, das Potential bleibt zurzeit jedoch aus mehreren Gründen ungenutzt.

So stehen für viele Abschnitte des Engineeringprozesses genormte bzw. standardisierte Mo-

delle (z.B. [PandIX], [IEC61131]) zur Verfügung. Im Planungsprozess werden die Daten be-

reits modellübergreifend genutzt (z.B. [ST10]) oder zwischen den Modellen ausgetauscht (z.B.

[IEC62424]). Statt die Implementierung von Leitsystemfunktionen aber unter Einbezug der vor-

handenen Modellinformationen zu machen, werden durch explizites Ausprogrammieren der

Funktion Insellösungen für konkrete Anlagen generiert.

1.2 Zielsetzung

Ziel dieser Arbeit ist es, den Applikateur entsprechend seiner Kernkompetenzen einzusetzen

und ihn von der Umsetzung der Standardfunktionen zu entbinden. Dabei wird ausgenutzt, dass

in der Automatisierungstechnik nicht nur die Anlagenplanung mit Hilfe von standardisierten Mo-

dellen erfolgt, sondern häufig auch die Implementierung. Neben explizit formulierten Modellen

wie dem HMI [Sch10] oder der Prozessführung [SME05], liegen die Modelle häufig implizit über

Engineeringregeln vor. Diese Engineeringregeln beschreiben die Zusammenhänge zwischen

Planungsdaten und den zu erstellenden Objektstrukturen in der Implementationsphase.

In dieser Arbeit wird ein Konzept vorgestellt, das basierend auf regelbasierter Modelltransfor-

mation die bereits etablierte Arbeits- und Denkweise anhand von Engineeringregeln unterstützt.

2

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1.2 Zielsetzung

Anlagenspezifische
Automatisierungs-

Funktion

Engineering
Regeln

Planungsdaten

(a) Instanzbasiert

Modellbasierte
Automatisierungs-

Funktion

Engineering
Regeln

Planungsdaten

(b) Modellbasiert

Abbildung 1.1: Engineering einer Automatisierungsfunktion

Statt wie bisher die Engineeringregeln zu nutzen um von Hand die Planungsdaten in eine Im-

plementierung zu überführen (vgl. Abbildung 1.1a), arbeitet der Applikateur auf Modellebene

und beschreibt einmalig die Modellzusammenhänge in Form von Regeln (vgl. Abbildung 1.1b).

Diese anlagenneutrale Herangehensweise über die Formulierung der zugrunde liegenden En-

gineeringregeln ermöglicht eine Verwendung der Automatisierungsfunktion als Serienprodukt,

das anschließend mit den Planungsdaten für die Verwendung an der konkreten Anlage para-

metriert wird. Die Arbeit der wiederkehrenden, einfachen Regeln folgenden Instanziierung und

Programmierung durch den Applikateur kann dadurch signifikant reduziert werden.

Hauptziel der Arbeit ist die Bereitstellung von kompletten Automatisierungsfunktionen als

Serienprodukte. Abbildung 1.2 skizziert das angestrebte Vorgehen bei der Automatisierung

einer verfahrenstechnischen Anlage. Die Umsetzung der Basisfunktionen soll mit Hilfe anla-

genneutraler Automatisierungslösungen erfolgen. Diese sollen auf Grundlage von Planungs-

daten und dem aktuellen Zustand der Anlage mittels regelbasierter Modelltransformation die

eigentlichen Basisfunktionen anlagenspezifisch bereitstellen. Instanzen der anlagenneutra-

len Automatisierungslösungen, die realisierten Basisfunktionen und die anlagenspezifischen

Applikationskomponenten müssen parallel zueinander in einem Laufzeitsystem ausgeführt

werden können. Nur durch diese Integration ist es dem Applikateur möglich, die gesam-

te Anlagenautomatisierung auf einer Hardware zu realisieren und auf die Ergebnisse der

modellbasiert erstellten Automatisierungsfunktionen zuzugreifen, um sie in seinen eigenen

Lösungsstrategien nutzen zu können. Das in dieser Arbeit bereitgestellte Konzept muss daher

eine vollständige Integration der Modelltransformation in die automatisierungstechnische Lauf-

zeitumgebung ermöglichen. Unter dem Begriff Laufzeitumgebung/Laufzeitsystem wird dabei

eine Speicherprogrammierbare Steuerung (SPS, engl. programmable logic controller, PLC)

verstanden. Ist die Modelltransformation Teil der auf der SPS ausgeführten Applikation und

wird somit während der Bearbeitung des Applikationscodes durchgeführt, so wird in dieser

Arbeit von „Modelltransformation zur Laufzeit“ gesprochen.

Neben der Bereitstellung kompletter Automatisierungsfunktionen als anlagenneutrale Serien-

produkte kommen aber auch andere Szenarien für den Einsatz regelbasierter Modelltransfor-

3

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1 Einleitung

Anlagen-
automatisierung

Abbildung 1.2: Konfigurieren statt Implementieren

mation in der Automatisierungstechnik in Frage. Einen kurzen Überblick über forcierte Einsatz-

möglichkeiten sowie deren besondere Anforderungen an das zu entwickelnde Konzept geben

die folgenden potentiellen Anwendungsszenarien.

S1. Einzelne Automatisierungsfunktion als Serienprodukt
Eine in sich abgeschlossene Funktionalität, die anlagenneutral formuliert werden kann,

ist das Detektieren von Leckagestellen sowie unerwünschter Vermischungen verschiede-

ner Medien in einer verfahrenstechnischen Anlage mit Hilfe der Flussweganalyse [Qui11;

GWE14]. Basierend auf der Anlagenstruktur und dem aktuellen Zustand der Aktoren (z.B.

Öffnungszustand von Ventilen) wird das Bedienbild mit entsprechenden Informationen

angereichert. Drei Teilszenarien sind hier von prinzipiellem Interesse:

(a) Bei diesem Szenario soll der Anlagenfahrer eine Anfrage stellen können, welche Be-

reiche der Anlage durch das Öffnen eines konkreten Ventils oder durch das Anschal-

ten einer Pumpe betroffen sind. Die Rohrleitungen, die ausgehend von diesem Aktor

durch geöffnete Ventile und angeschaltete Pumpen miteinander verbunden sind, wer-

den im Bedienbild farbig markiert.

(b) In verfahrenstechnischen Anlagen findet das Mischen von verschiedenen Medien im

Allgemeinen in Reaktoren statt. Mischen in Rohren durch gleichzeitiges Einpumpen

verschiedener Medien ist eher unüblich. Gleiches gilt für den Medienablass über

die Systemgrenzen hinaus, sofern sich dort kein definierter Auffangpunkt (z.B. ein

Tanklaster) befindet. Beide ungewollten Zustände sollen durch Warnungen im Be-

dienbild kenntlich gemacht werden.

4

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1.2 Zielsetzung

(c) Das Mischen von verschiedenen Medien außerhalb der dafür vorgesehenen Reakto-

ren kann durch das Sperren der Anlage gegen unerwünschte Aktorbedienung verhin-

dert werden. Dazu wird bei Aktoranfrage ein entsprechend Szenario S1.b) konfigu-

rierter Suchlauf gestartet und ergebnisabhängig der Aktor freigegeben oder gesperrt.

Alle drei Teilszenarien lassen sich nach einfachen Regeln aus der Anlagenstruktur und

dem aktuellen Anlagenzustand realisieren. Einmal implementiert kann die Flusswegana-

lyse daher „von der Stange“ für jede Anlage eingesetzt werden. Für eine dynamisch um-

rüstbare Anlage, deren Struktur sich ständig ändert (z.B. M4P.AC), eignet sich der Einsatz

des modellbasierten Ansatzes besonders gut. Statt einer Reprojektierung erfolgt lediglich

eine Rekonfiguration anhand der neuen Strukturdaten der Anlage.

Ziel ist es, diese Funktionalitäten als eigenständige Serienprodukte bereitzustellen.

S2. Entwicklungsbegleitende Modelltransformation
Das Bedienbild einer konventionellen Anlage ist nur ein Beispiel für extrem spezialisier-

te Automatisierungsfunktionen. Die benötigten Anzeigen, Detailbilder und ähnliches sind

zum Teil einzigartig und folgen keinen festen Regeln, nach denen sie aus den Planungs-

daten erstellt werden können. Zwar gibt es bereits Ansätze, auch hier modellbasiert kom-

plette Bedienbilder durch Anreicherung der Planungsdaten zu erstellen [UOS12], an die-

ser Stelle soll jedoch die Integration von modellbasierter Entwicklung in die konventionelle

Bedienbilddarstellung im Vordergrund stehen.

Das Szenario sieht die modellbasierte Erstellung eines einfachen Bedienbildes vor, auf

dem für jeden Sensor und jeden Aktor in den Planungsdaten ein repräsentierendes Sym-

bol sowie eine Detailansicht für das Ablesen von Sensorwerten bzw. das Absetzen von

Befehlen im Bedienbild erstellt wird. Eine anschließende Anpassung durch den Appli-

kateur an die anlagenspezifischen Gegebenheiten muss dabei möglich bleiben. Inkre-

mentelle Änderungen an den Planungsdaten müssen in das möglicherweise geänderte

Bedienbild übertragen werden können.

S3. Konsistenzanalyse und Modellreparatur
Die Realisierung der Basisautomatisierung ist zumeist so anlagenspezifisch, dass eine

regelbasierte Generierung nicht zielführend ist. Dennoch kann der Applikateur auch bei

diesen Aufgaben durch eine regelbasierte Modelltransformation unterstützt werden, zum

einen durch eine Konsistenzanalyse des fertigen Bedienbildes mit den zugehörigen An-

steuerbausteinen der Prozessführung und zum anderen durch eine regelbasierte Mo-

dellreparatur für den Fall, dass Inkonsistenzen zwischen Bedienbild und Prozessführung

erkannt wurden.

Ausgangspunkt der drei Anwendungsszenarien ist das Anlagenstrukturmodell PandIX [PandIX]

(vgl. Abbildung 1.3). PandIX ist ein Modell zur XML-basierten Repräsentation der für die Auto-

matisierungstechnik relevanten Informationen des Rohrleitungs- und Instrumentenfließbildes

(Abk. R&I-Fließbild) [DIN10628] einer verfahrenstechnischen Anlage. Neben der plattformun-

abhängigen Version nach [PandIX] kommt bei den Anwendungsszenarien auch die plattformab-

hängige Version ACPLT/PandIX für die ACPLT-Modellwelt zum Einsatz sowie dessen Instanz

im Laufzeitsystem. Die ACPLT-Modellwelt (kurz ACPLT) ist die Modellierungsumgebung des

5

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1 Einleitung

ACPLT/ PandIX

PandIX

ACPLT/ PandIX
im Laufzeitsystem

R&I-Fließbild Export

Aktivierung

Flussweganalyse Bedienbild

Planungs-
Werkzeug

ACPLT-Laufzeitsystem

S1. S2./ S3.

Dateisystem

S0.

A
C

P
LT

-M
od

el
lw

el
t

Abbildung 1.3: Anwendungsszenarien

Lehrstuhls für Prozessleittechnik der RWTH Aachen University. Sie besteht aus einem Satz

vielfältiger prozessleittechnischer Modelle und ihrer Realisierung in einer Laufzeitumgebung.

Die aufgeführten Anwendungsszenarien basieren auf der Annahme, dass die zur Parametrie-

rung benötigten Planungsdaten bereits im System vorliegen. In der Regel ist jedoch das Lauf-

zeitsystem disjunkt vom Engineeringwerkzeug für die Planungsdaten. Ein viertes Anwendungs-

szenario des modellbasierten Ansatzes ist der Parametrierung von fertigen Softwaremodulen

aus Anlagenplanungsdaten daher vorgeschaltet:

S0. Bereitstellung von Planungsdaten im Laufzeitsystem
Es wird ein bidirektionaler Datenaustausch zwischen den mit Hilfe von Planungswerkzeu-

gen erstellen Dokumenten und einem erkundbaren Abbild der Planungsdaten im Lauf-

zeitsystem bereitgestellt. Exemplarisch soll in diesem Anwendungsszenario das Anla-

genstrukturmodell für die Weiterverarbeitung in S1, S2 und S3 aufbereitet werden.

1.3 Gliederung

Die Struktur der Arbeit (vgl. Abbildung 1.4) trägt der Interdisziplinarität des Themas Rechnung,

indem zunächst der Stand der Technik beider Disziplinen erörtert und zueinander in Relation

gesetzt wird. Aufbauend darauf erfolgt im Hauptteil der Arbeit die Entwicklung eines Modells,

das die Methoden der Informatik für die Automatisierungstechnik zugänglich macht. In Kapitel

2 wird zunächst ein gemeinsames Verständnis für die Begriffe Modell, Modellhierarchie und

formale Modellbeschreibung geschaffen. Es wird zudem eine Metrik entwickelt anhand derer

sich Modelle bezüglich ihres Formalisierungsgrades einordnen lassen.

Durch seine zentrale Rolle in den Anwendungsszenarien bieten sich PandIX als Grundlage für

die Verdeutlichung verschiedener Sachverhalte dieser Arbeit an. Es wird daher in den Beispie-

len regelmäßig aufgegriffen. Einen detaillierten Einblick in PandIX sowie in die übrigen, für die

Anwendungsszenarien relevanten Modelle bietet Kapitel 3. Es werden bestehende Probleme

bei der Modellierung aufgezeigt und Hinweise für die Entwicklung zukünfiger Modelle gege-

6

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

1.3 Gliederung

Ka
pi

te
l1

Ka
pi

te
l8

Zusammenfassung/Ausblick

Einleitung

Modelle in der AT

Ka
pi

te
l3

Formale Modellierung

Kapitel2

Modelltransformation in der AT
Ka

pi
te

l4

Modelltransformation

Kapitel5

ACPLT/MT

Ka
pi

te
l6

Validierung

Ka
pi

te
l7

AT-Praxis Technologie

St
an

d
de

r T
ec

hn
ik

M
od

el
lie

ru
ng

Abbildung 1.4: Struktur der Arbeit

ben. Modellzusammenhänge in der Automatisierungstechnik sowie der Stand der Technik bei

der automatisierten Verarbeitung dieser Zusammenhänge werden in Kapitel 4 näher beleuch-

tet. Die dabei identifizierten Herausforderungen, denen sich eine Modelltransformation in der

Automatisierungstechnik stellen muss dienen als Richtschnur für die Einführung des aus der

Informatik stammenden Konzeptes der Tripel-Graph-Grammatiken in Kapitel 5. Kapitel 6 stellt

ein Konzept für die Nutzung von Tripel-Graph-Grammatiken in der Anlagenautomatisierung

vor, welches in Kapitel 7 anhand der zuvor identifizierten Szenarien und Anforderungen vali-

diert wird. Kapitel 8 gibt eine Zusammenfassung der Arbeit sowie einen kurzen Ausblick auf

potentielle neue Einsatzszenarien sowie sinnvolle Erweiterungen des vorgestellten Konzeptes.

7

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Der Fokus der vorliegenden Arbeit liegt auf dem Einsatz modellgetriebener Entwicklungsme-

thoden aus dem Bereich der Informatik in der Anwendungsdomäne der Ingenieurswissenschaf-

ten. Eine der größten Herausforderungen dabei stellt die unterschiedliche Herangehensweise

dieser beiden Disziplinen an die Modellierung dar. Während in der Informatik die automati-

sche Auswertbarkeit und somit die Modellierung nach klar definierten Regeln im Vordergrund

steht, beschreiben Ingenieure die zu modellierenden Systeme meist mit Hilfe der beobachte-

ten oder der erwünschten Systemeigenschaften. Typische Aussagen beim Aufeinandertreffen

dieser beiden Herangehensweisen sind von Seiten der Informatiker: „Das ist nicht eindeutig

modelliert“ und „es wird eine starke Typisierung benötigt“. Von den Ingenieuren kommen da-

bei Anforderungen wie: „Es sollen nicht alle Sonderfälle, sondern nur die grundlegende Idee

modelliert werden“ oder „das Modell soll nach Bedarf später verfeinert werden“.

Disziplinübergreifende Arbeiten haben insbesondere drei Aspekte der Modellierung abzuwä-

gen:

• deskriptiv vs. konstruktiv

• grafisch vs. textuell

• informal vs. formal

Dieses Kapitel sensibilisiert den Leser für die unterschiedlichen Modellierungsmethoden. Dazu

werden zunächst die grundlegenden Begriffe eingeführt. Ausgehend vom zentralen Begriff des

Modells stehen dabei insbesondere die formale Modellbeschreibung und die modellgetriebene

Softwareentwicklung im Vordergrund.

Am Ende des Kapitels steht ein Bewertungsschema zur Verfügung, das dem Leser die Ein-

ordnung von Modellen hinsichtlich ihrer Eignung für die modellgetriebene Softwareentwicklung

erlaubt. Zudem werden Hinweise für die Entwicklung neuer Modelle unter diesem Gesichts-

punkt bereitgestellt.

2.1 Allgemeine Begriffsbestimmung

Auch wenn heute oftmals die von der Object Management Group (OMG) herausgegebenen

Standards als Basis für modellgetriebenen Softwareentwicklung verwendet werden, so kommt

man bei dem Thema Modelle nicht um den Modellbegriff von Stachowiak umher. In seinem

Buch Allgemeine Modelltheorie [Sta73] definiert er Modelle wie folgt:

8

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.1 Allgemeine Begriffsbestimmung

Definition 2.1 (Modell) Modelle sind „Abbildungen [...] natürlicher oder künstlicher Originale“

(Abbildungsmerkmal), die unter Zuhilfenahme von Abstraktion (Verkürzungsmerkmal), die

Attribute des Originals beleuchten, die „für bestimmte [...] Subjekte“ und einen bestimmten

Zweck „innerhalb bestimmter Zeitintervalle“ von Interesse sind (Pragmatisches Merkmal).

Viele von den 1973 von Stachowiak formulierten Ideen und Zusammenhänge finden sich heute

unter anderem in den von der OMG veröffentlichten Standards so, oder in leicht veränderter

Form wieder. Interessanter Grundgedanke beim Modellbegriff von Stachowiak ist die Betrach-

tung von Original und Modell als „Attributklassen“, also rein durch ihre Eigenschaften und Re-

lationen beschriebene Objekte. Stachowiak unterteilt Modelle bzw. die für sie herangezogenen

Attribute in unterschiedliche Stufen. Attribute, die ein Original beschreiben, ordnet er der null-

ten Stufe zu. Diesen nur in der realen Welt existierenden „uneigentlichen“ Attributen stellt er

Eigenschaften von Individuen und Relationen zwischen Individuen als Attribute erster Stufe

entgegen. Attribute zweiter Stufe beschreiben Eigenschaften von Attributen erster Stufe und

Relationen zwischen Attributen erster Stufe.

Diese Idee wird ähnlich auch in den Standards der OMG aufgegriffen. Anders als bei Stachowi-

ak beschränkt die OMG die Hierarchie jedoch auf eine Instanz- und drei Modellebenen. Modelle

im Sinne von Definition 2.1 finden sich bei der OMG in der M1-Ebene. In dieser Schicht sind

auch das Anlagenstrukturmodell PandIX sowie die meisten anderen Modelle aus dem Bereich

der Automatisierungstechnik einzuordnen. Die Abbildung einer konkreten Anlagenstruktur mit

Hilfe von PandIX wird als Laufzeitinstanz bezeichnet und ist in der Ebene M0 einzuordnen.

Zur Beschreibung von M1 Modellen kommen die Modellierungssprachen aus der M2-Ebene

zum Einsatz. Die OMG schlägt hierfür eine einheitliche domänenübergreifende Modellierungs-

sprache (engl. Unified Modelling Language, UML) [UML] vor. Diese hat insbesondere in der

Informatik und den Ingenieurswissenschaften mittlerweile einen hohen Durchdringungsgrad

bei der Modellierung erlangt. Diese Meta-Modell-Ebene wiederum wird mit Hilfe der Modell-

beschreibungssprachen aus der Meta-Meta-Modell-Ebene M3 definiert. Die OMG sieht die

Meta-Object-Facility [MOF] als einziges M3-Modell vor, mit deren Hilfe UML definiert wird. Da

von der OMG keine weiteren Meta-Ebenen vorgesehen sind, sind Modelle der M3-Ebene im

Allgemeinen selbstbeschreibend.

Definition 2.2 (Modellierung - Modellbeschreibung - Modellbildung) In dieser Arbeit wird

der Begriff Modellierung für die Erstellung eines M1-Modells und der Begriff Modellbeschrei-

bung für die eines M2-Modells verwendet. Bei der Verwendung des Begriffs Modellbildung wird

von der konkreten Modellebene abstrahiert.

Definition 2.3 (Selbstbeschreibung - Introspektion) Ein Modell ist selbstbeschreibend/in-

trospektiv, wenn für die Modellierung nur Elemente des Modells selbst zum Einsatz kommen.

Neben den von der OMG vorgeschlagenen Kombination aus MOF und UML sind auch wei-

tere Meta-(Meta-)Modelle denkbar. Dabei ist eine Zuordnung von Modellen zu einer der vier

Ebenen nicht immer eindeutig möglich, wie die beispielhafte Abbildung der Modellhierarchien

für die Modellierung von verfahrenstechnischen Anlagen mit Hilfe von PandIX in Abbildung 2.1

zeigt. Um die Vorteile einer domänenübergreifenden Modellierungssprache nutzen zu können

ohne sich auf ihre Beschreibungsmittel einschränken zu müssen, können für ein Modell auch

9

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

M3

M2ACPLT/OV

M1ACPLT/ PandIX

M0
ACPLT/ PandIX

im Laufzeitsystem

PandIX

modelliert mithilfeUML

MOFNat. Sprache

VT-Anlage

repräsentiert

Nat. Sprache

Abbildung 2.1: Einordnung von PandIX in die Modellhierarchie

mehrere Modellierungssprachen zum Einsatz kommen. So wird für die Beschreibung von Syn-

tax und Semantik des PandIX-Modells aus Abbildung 2.1 sowohl UML als auch die natürliche

Sprache eingesetzt. Auch wenn die natürliche Sprache im Allgemeinen in solchen Modellhier-

archien außer Acht gelassen wird, so ist sie doch eine Meta-(Meta-)Sprache, die insbesondere

in den Ingenieurswissenschaften oft zur Modellierung eingesetzt wird.

Definition 2.4 (Modellwelt) Eine Menge aufeinander aufbauender bzw. harmonisierender Mo-

delle bilden eine Modellwelt.

Beispiel 2.1 Ein Beispiel für eine recht umfangreiche Modellwelt für die Domäne der Prozess-

leittechnik bildet die ACPLT-Modellwelt. Sie besteht aus einem Satz vielfältiger prozessleittech-

nischer Modelle und ihrer Realisierung in der ACPLT-Laufzeitumgebung. Das M3-Modell und

damit die Basis der ACPLT-Modellwelt bildet das Objektverwaltungssystem ACPLT/OV.

2.2 Darstellungsformen

Modellierung kommt in den unterschiedlichsten Domänen zum Einsatz, um komplexe Zusam-

menhänge für einen spezifischen Anwendungsfall aufzubereiten. Die Heterogenität der da-

bei zu beschreibenden Modelle bedingt die Entwicklung ebenso heterogener Sprachen für die

Darstellung der Modelle. Diese oft hochspezialisierten domänenspezifischen Sprachen (engl.

domain-specific languages, DSL) sind für einen beschränkten Anwendungsbereich ausgelegt

und in ihrer Symbolik optimal an die Domäne angepasst.

Die Hierarchie und die Architektur der Modelle macht eine Aussage darüber, WAS modelliert

wird. Stachowiak [Sta73] macht bei der Formulierung des Pragmatischen Merkmals seines Mo-

dellbegriffs deutlich, dass auch das FÜR WEN, WANN und WOZU eine zentrale Rolle bei der

Modellbildung spielen. In diesem Zusammenhang kommen zwei weitere Aspekte der Modellie-

rung ins Spiel, zum einen die Form der Darstellung, zum anderen der Grad der Formalisierung.

Diese beiden Aspekte sollen in den nächsten Abschnitten näher beleuchtet werden.

10

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.2 Darstellungsformen

Definition 2.5 (Darstellungsform) Die Darstellungsform eines Modells wird bestimmt durch

die verwendeten Symbole (Diagramme, Fließtext, . . .) und die verwendete Beschreibungsme-

thode. Die Beschreibungsmethoden lassen sich unterteilen in deskriptive und konstruktive Be-

schreibung.

M
od

el
le

Graphische
Modell

Bildmodelle

Darstellungs-
modelle

Diagramme

Darstellungs-
graphen

Fluidogramme

Flussdiagramme

Schaltbilder

Technische
Modelle

Semantische
Modelle

Interne Modelle

Emotionale
Modelle

Kognitive Modelle Narritiv-Klasse

Szientifisches
Modell Formales Modell

Nicht-
Szientifisches

Modell

Externe Modelle

2. Semantische
Stufe

Gesprochene
Sprache

3. Semantische
Stufe Schriftsprache

Abbildung 2.2: Ausschnitt aus den Modellkategorien nach Stachowiak [Sta73]

Auch Stachowiak geht in seiner Allgemeinen Modelltheorie auf verschiedene Darstellungsfor-

men ein. Er kategorisiert die Modelle dabei nur nach der verwendeten Symbolik (vgl. Abbildung

2.2). Den Aspekt der Beschreibungsmethoden lässt er dabei außen vor. Durch seine Sicht auf

Modelle als „Attributklassen“ schränkt er sich sogar auf die beschreibende/deskriptive Modellie-

rung ein. Dies ist insofern nicht weiter verwunderlich, da seine Arbeit den Bereich der Soziolo-

gie fokussiert. Die eher aus den Sprachwissenschaften stammende Methode der konstruktiven

Modellierung ist für die Anwendung in der Soziologie zu formal und daher wenig geeignet.

In der Informatik unterscheidet man in diesem Zusammenhang zwischen der abstrakten und

der konkreten Syntax eines Modells respektive einer Sprache.

Definition 2.6 (Syntax) Die Syntax beschreibt die erlaubten Symbole (das Alphabet) eines

Modells sowie die daraus generierbaren erlaubten Modellinstanzen (Wörter). Die Abstrakte

Syntax stellt die Konzepte zur Verfügung, die durch das Modell abgebildet werden sollen. Die

konkrete Syntax beschreibt die Darstellungsform, die für die Erstellung von Modellinstanzen

zur Verfügung steht. Es können mehrere konkrete Syntaxen zu einem Modell existieren.

Beispiel 2.2 Die in Abbildung 2.1 verwendete Assoziation „repräsentiert“ besagt nichts ande-

res, als dass hier der gleiche Aspekt mit Hilfe mehrere konkreter Syntaxen modelliert werden

kann. Modellierungswerkzeuge verwenden intern ggf. eine ganz andere Darstellung der Mo-

delleigenschaften z.B. in Form von C-Funktionen oder Arrays. Dies ist die jeweilige abstrakte

Syntax.

In diesem Abschnitt stehen die konkrete Syntax, ihre möglichen Ausprägungen und die damit

einhergehenden Vor- und Nachteile im Fokus der Betrachtung.

11

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

2.2.1 Deskriptiv vs. Konstruktiv

Bei der deskriptiven Modellierung steht die Beschreibung von Objekten und Eigenschaften im

Vordergrund unter einem konkreten Aspekt (z.B. Vererbungshierarchie, Interaktion zwischen

Objekten, etc.) im Vordergrund. Diese, auch der UML zu Grunde liegende Modellierung findet

insbesondere in der Beschreibung von (technischen) Systemen ihren Einsatz. Der deskripti-

ven Modellierung steht die konstruktive Modellierung entgegen, die auf einem Alphabet und

Konstruktionsregeln basiert. Ein typischer Vertreter konstruktiver Modellierung sind Gramma-

tiken. Ausgehend von einer initialen Konstruktionsregel, die das zu beschreibende Modell als

Ganzes wiedergibt, kann durch wiederholte Anwendung der Konstruktionsregeln der gesamte

Raum der möglichen Modellinstanzen konstruiert werden.

Zwar gilt auch für die konstruktive Modellierung, dass nur ein Ausschnitt aus der Realität mo-

delliert wird, für konstruktive Modelle gilt aber im Allgemeinen die Annahme, dass Objekte, Ei-

genschaften und Strukturen, die nicht durch die Konstruktionsregeln hergeleitet werden können

auch nicht Teil eines validen Modells sein können. Anders verhält es sich bei den deskriptiven

Modellen, bei denen diese Weltabgeschlossenheit (engl. Closed world assumption) explizit for-

muliert werden muss. Der beschreibende Charakter der deskriptiven Modellierung fokussiert

eher die lockere Spezifikation (engl. Loose specification), bei der nur einzelne Aspekte valider

Modelle spezifiziert sind.

PLT-Stelle

Sensorstelle

Aktorstelle

Regelstelle

Kombistelle

Handeingabe-
stelle

(a) deskriptiv

PLT-Stelle Sensorstelle

Aktorstelle

Regelstelle

:= oder

oder

(b) konstruktiv

Abbildung 2.3: Modellierung einer PLT-Stelle

Beispiel 2.3 Abbildung 2.3a [PandIX] beschreibt die Eigenschaft „ist eine PLT-Stelle“ der drei

Modellelemente „Sensorstelle“, „Aktorstelle“ und „Regelstelle“ und die Eigenschaft „ist keine

PLT-Stelle“ der Modellelemente „Kombi-Stelle“ und „Handeingabestelle“. Ob eine „Pumpe“ die

Eigenschaft „ist eine PLT-Stelle“ oder die Eigenschaft „ist keine PLT-Stelle“ besitzt, lässt sich

anhand dieser Modellierung nicht eindeutig klären. Abbildung 2.3b hingegen leitet aus dem

Vorhandensein einer PLT-Stelle in der Modellinstanz ab, dass diese entweder eine „Sensorstel-

le“, „Aktorstelle“ oder „Regelstelle“ sein kann. Die Frage, ob eine „Pumpe“ eine PLT-Stelle ist,

lässt sich eindeutig klären. Da die Konstruktionsregel für PLT-Stelle keine Möglichkeit bietet,

nach „Pumpe“ aufzulösen, ist „Pumpe“ keine PLT-Stelle.

12

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.2 Darstellungsformen

2.2.2 Textuell vs. Graphisch

Bei der Modellierung der PLT-Stelle aus Beispiel 2.3 wurde eine graphische Repräsentation

gewählt. Die wohl bekannteste grafische Modellierungssprache ist die UML. Neben Klassen-

diagrammen (vgl. Abbildung 2.3a) stellt die UML auch grafische Modellierungselemente für

Abläufe, Zustände und vieles mehr zur Verfügung. Eine besondere Herausforderung bei der

Verwendung grafischer Sprachen stellt deren flexible Interpretierbarkeit dar. Schüller und Epple

[SE12] identifizieren insbesondere drei Aspekte bei der Verwendung von Grafiken zur Model-

lierung als kritisch, die hier nicht unerwähnt bleiben sollen:

Vollständigkeit Insbesondere manuell erstellte Grafikmodelle enthalten teilweise implizite

über das Modell hinausgehende Informationen. So werden Farben, Positionierungen

von Objekten zueinander und Kommentare genutzt, um Aspekte abzubilden, die das

Modell nicht vorsieht. Für eine automatisierte Verarbeitung der grafischen Modelle soll-

ten alle verwendeten informationstragenden Elemente möglichst vollständig im Modell

dokumentiert sein.

Verschiedenartigkeit Das Aussehen einzelner Modellelemente kann durch die Verwendung

verschiedener Stile von Implementierung zu Implementierung variieren ohne das Modell

zu verletzen.

Komplexität Grafiken vereinigen oft mehrere zu modellierende Aspekte in kompakter Form.

Die Betrachtung einer Modellinstanz unter einem konkreten Aspekt erfordert in diesen

Fällen eine stark selektive Betrachtung der Grafik.

Bei den textuellen Modellierungssprachen ist die erweiterte Auszeichnungssprache (engl. ex-

tended markup language, XML) der am weitesten verbreitete Modellierungsansatz. Mit Hilfe

von XML-Schemata lassen sich Hierarchien von XML-basierten Modellen erstellen und für die

rechnergestützte Validierung nutzbar machen.

Zu einer abstrakten Syntax können parallel mehrere grafische als auch textuelle konkrete Syn-

taxen vorliegen. Dies kommt unter anderem bei der Bereitstellung von XML-basierten Aus-

tauschformaten für grafische Modelle zum Tragen.

Beispiel 2.4 In Abbildung 2.4 ist ein Ventil mit einer entsprechenden PLT-Stelle grafisch als

R&I-Symbol nach [DIN10628] und textuell nach [PandIX] dargestellt. In diesem Fall sind die ent-

haltenen Informationen nahezu identisch, da PandIX als Austauschformat für R&I-Fließbilder

definiert wurde. In der textuellen Repräsentation ist eine zusätzliche Information über den

sicheren Zustand (SafeState) enthalten, die nicht in der grafischen Repräsentation abgebildet

werden kann.

Die von Schüller und Epple erwähnten Aspekte grafischer Modellierung stellen insbesondere

bei der Umwandlung einer grafischen Modellinstanz in ein textuelles Modell und umgekehrt

eine besondere Hürde dar. Allgemein gilt jedoch, je formaler (im Sinne von eindeutig interpre-

tierbar) die beiden Modelle beschrieben sind, desto effektiver kann ein Informationsaustausch

zwischen den Instanzen der Modelle erfolgen. Im Folgenden soll daher auf die Bewertung von

Modellen anhand ihres Formalisierungsgrades eingegangen werden.

13

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

<InternalElement Name="Y24"> % PLT-Stelle
<Attribute Name="FunctionCode">

<Value>Y</Value>
</Attribute>
<Attribute Name="SignalCode">

<Value>O</Value>
</Attribute>
<RoleRequirements
RefBaseRoleClassPath="PCE@ActuatorRequest"/>

</InternalElement>
<InternalElement Name="Valve24"> % Ventil

<Attribute Name="Position">
<Value>S01P2|1.30</Value>

</Attribute>
<Attribute Name="SafeState">

<Value>close</Value>
</Attribute>
<RoleRequirements
RefBaseRoleClassPath="PPE@ValveRequest"/>

</InternalElement>
<InternalLink Name="Valve24_Y24" % Verbindung

RefPartnerSideA="Valve24:Y"
RefPartnerSideB="Y24:P"/>

(a) Textuell nach PandIX

Y24:ActuatorRequest

+ FunctionCode = Y
+ SignalCode = O

Y:ActuatorInputPoint

Valve24:ValveRequest

P:ActuatorProcessInterface

In
te

rn
al

Li
nk

(b) UML-Darstellung

YO
Y24

(c) Grafisch

nach DIN

10628

Abbildung 2.4: Modellierung eines Ventils und zugehöriger PLT-Stelle

2.3 Formalisierungsgrad

In seiner Kategorisierung der Darstellungsformen (vgl. Abbildung 2.2) ordnet Stachowiak die

formalen Modelle als eine Unterkategorie den Semantischen Modellen zu. Doch schon durch

“Eidetik” (bereits zur Pragmatik gehörend)

“Nouetik” (oder Semantik im weiteren Sinne) 5. Vorstellung

Semantik (im engeren Sinne) 4. Sinn

Die durch das Zeichen
hervorgerufen wird

Syntaktik 3. Bedeutung

Der durch das Zeichen
ausgedrückt wird

2. Zeichen

Die durch das Zeichen
bezeichnet wird

1. Zeichenträger

(Zeichenverbindung,
Ausdruck) das Zeichen
für etwas ist

(Signal): Materielles
Substrat, energetischer
Zustand

Zunehmende Subjektabhängigkeit

Abbildung 2.5: Die Kategorien der Bedeutung und des Sinnes nach G. Frege [Fre92] verein-

fachte Form der Darstellung von Stachowiak [Sta73]

14

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.3 Formalisierungsgrad

seine an Frege [Fre92] angelehnte „Kategorien von Sinn und Bedeutung“ (vgl. Abbildung 2.5)

deutet er an, dass der Grad der Formalisierung (als Umkehr des Grades der Subjektivität) or-

thogonal zur Darstellungsform ist. Auch die in den vorangegangenen Abschnitten aufgeführten

Beispiele legen nahe, dass die Eigenschaft „Formales Modell“ nicht in Korrelation mit der Wahl

der Symbolik steht.

Beispiel 2.5 Die in Abbildung 2.3b aufgeführte Modellierung einer PLT-Stelle ist zwar grafisch

formuliert, aber sehr formal beschrieben. Auch die in Abbildung 2.4 aufgeführten Modelle sind

unabhängig von der Darstellungsart als formale Modelle einzuordnen.

Woran lässt sich nun aber messen, ob ein Modell formal beschrieben ist oder nicht? Um dieser

Frage auf den Grund zu gehen, soll zunächst eine informelle Definition des Begriffs erfolgen,

der im Laufe des Abschnitts verfeinert und formalisiert wird:

Definition 2.7 (Formale Modellbeschreibung) Angelehnt an die „Kategorien von Sinn und

Bedeutung“ [Sta73] ist eine Sprache umso formaler, je weniger subjektabhängig sie interpretiert

werden kann, d.h. je eindeutiger ihre Semantik beschrieben ist.

Definition 2.8 (Semantik) Die Semantik ordnet einzelnen Symbolen oder Symbolgruppen ei-

ne Bedeutung zu. Je nach syntaktischem Aufbau bzw. Kontext kann der gleichen Gruppe von

Symbolen auch unterschiedliche Semantik zugeordnet sein.

Beispiel 2.6 Die Semantik beschreibt, dass die Symbole aus Abbildung 2.4c ein Ventil in der

Anlage und seine Anknüpfung an die Informationswelt des Leitsystems darstellen.

Der Verein Deutscher Ingenieure (VDI) verwendet in seiner Richtlinie zum Thema „Einordnung

und Bewertung von Beschreibungsmitteln aus der Automatisierungstechnik“ [VDI3681] eine

ähnlich Definition von formal:

• Formales Beschreibungsmittel

Besitzt eine mathematische Basis und eine präzise und vollständige Syntaxdefinition so-

wie eine eindeutige semantische Interpretation.

• Semiformales Beschreibungsmittel

Besitzt eine definierte vollständige Syntax sowie eine eindeutige semantische Interpreta-

tion aber keine mathematische Basis.

• Informales Beschreibungsmittel

Besitzt eine Syntax, die nicht grundsätzlich vollständig definiert ist, sowie eine Semantik,

die nicht eindeutig sein muss.

In der Informatik erfolgt die Einordnung nach etwas anderen Maßstäben. So wird UML all-

gemein als semi-formal eingestuft, obwohl nicht in allen Details eine eindeutige semantische

Interpretation vorliegt. Die OMG geht daher einen anderen Weg. Statt zu definieren, was „For-

mal“ bedeutet, werden in [UML] fünf Eigenschaften aufgeführt, die durch eine möglichst formale

Beschreibung forciert werden sollen:

15

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Korrektheit Bei dieser Eigenschaft steht die Validierbarkeit des zu beschreibenden Modells

im Vordergrund. Voraussetzung dafür ist, dass das Modell so aufgebaut ist, dass nur

korrekte Modellinstanzen aus den Regeln herleitbar sind.

Präzision Doppeldeutigkeiten in der Beschreibung der Syntax oder der Semantik sind zu ver-

meiden. Die OMG erlaubt dabei jedoch explizit beschriebene alternative semantische

Auslegungen.

Konsistenz Das Modell muss so formuliert sein, dass es keine Widersprüchlichkeiten enthält.

Prägnanz Es sind nur die Eigenschaften des Modells zu modellieren, die wirklich von Interesse

sind. Überflüssige Ergänzungen sind wegzulassen.

Verständlichkeit Das Modell muss so gestaltet sein, dass es leicht lesbar und leicht zu ver-

stehen ist.

Die Eigenschaften Prägnanz und Verständlichkeit sind wichtige Bewertungskriterien für die

Einordnung von Modellen nach ihrer Anwendbarkeit. Sie sollen hier aber nicht weiter als Ei-

genschaften formaler Modelle verwendet werden, da sie zum einen subjektiver Einschätzung

unterliegen und im allgemeinen Verständnis von „formal“ nicht zum Tragen kommen, wie das

folgende Beispiel zeigt:

Beispiel 2.7 Ein strikt formales Modell wird nicht dadurch weniger formal, dass ihm redundante

Informationen hinzugefügt werden. Ein komplexes mathematisches Modell ist für den Experten

trivial, während es für einen Laien völlig unverständlich ist. Es wird dadurch nicht formaler oder

weniger formal für die einzelnen Personengruppen.

Im letzten Abschnitt dieses Kapitels werden Modellierungsverfahren vorgestellt, die die Erstel-

lung formaler Modelle unterstützen.

2.4 Formale Modellierung

Im vorangegangenen Abschnitt sind einige Bewertungskriterien für den Grad der Formalisie-

rung aufgestellt worden. Um dem Leser geeignete Mittel für die Erstellung formaler Enginee-

ringmodelle an die Hand zu geben, werden in diesem Abschnitt konkrete Herangehensweisen

für die formale Modellierung vorgestellt. Insbesondere sollen die Ideen der formalen Sprachen

und formaler Grammatiken im Vordergrund stehen. Zuvor wird jedoch die für die deskriptive

Modellierung maßgebliche Sprache UML und ihre Grundlagen skizziert.

2.4.1 Deskriptive, grafische Modellierung

UML ist die bekannteste deskriptive Modellierungssprache, die auch außerhalb der Software-

entwicklung weite Verbreitung findet. Dies liegt zum einen daran, dass UML intuitiv verständlich

und auf der anderen Seite mächtig genug ist, um komplexe Zusammenhänge zu beschreiben.

Zudem wird durch den objektorientierten Grundgedanken der UML eine „natürliche“ und wie-

derum intuitive Strukturierung des Modells ermöglicht. Die von der OMG als Standard heraus-

16

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

gegebene aktuelle Modellbeschreibung von UML - UML 2.4.1 [UML; UML2], ist mit Hilfe der

M3-Sprache MOF spezifiziert.

Als diagrammorientierte Modellierungssprache stellt UML eine Reihe von Sprachelemente für

unterschiedliche Modellierungsanforderungen zur Verfügung. An dieser Stelle wird jedoch nur

auf die Elemente eingegangen, die für das Verständnis der weiteren Kapitel von Interesse

sind (Abbildung 2.6). Klassen von Objekten mit gleichen Eigenschaften werden in UML durch

Auto
+ Typ: String

+ fahren ()

Besitzer

(a) Klassen

Carl: Corsa

(b) Instanz

Auto
assoziiert

1 1 Fahrgestellnummer

(c) Assoziation

Auto Rad4

(d) Aggregation

Auto Fahrgestell-
nummer

(e) Komposition

Auto Corsa

(f) Generalisierung

Corsa Carl

(g) Instanziierung

Abbildung 2.6: UML Sprachelemente

Rechtecke abgebildet (Abbildung 2.6a). Besitzt eine Klasse Attribute oder Operationen, so wer-

den diese separiert unter dem Klassennamen angegeben. Die Kurzschreibweise einer Klasse

beinhaltet nur den Klassennamen. Instanzen einer Klasse werden durch Angabe des Instanz-

namens und des Klassennamen getrennt durch ein „:“ beschrieben (Abbildung 2.6b). Instanzen

können konkrete Ausprägungen der Attribute besitzen, diese werden äquivalent zur Darstellung

in Klassen angegeben. Zwischen Klassen können Assoziationen gekennzeichnet werden (Ab-

bildung 2.6c). Assoziationen können optional eine Richtung, einen Namen sowie Angaben zur

Multiplizität besitzen. Ersteres dient der näheren Beschreibung der Assoziation, letzteres gibt

an wie viele Instanzen der beiden Klassen jeweils miteinander durch die Assoziation verlinkt

werden. Die Generalisierung ist eine spezielle «ist ein»-Assoziation (Abbildung 2.6f), die den

Zusammenhang zwischen einer Klasse und ihrer Verallgemeinerung darstellt. Die «besteht

aus»-Assoziation wird auch als Aggregation bezeichnet und durch eine leere Raute gekenn-

zeichnet (Abbildung 2.6d). Die Komposition oder auch starke Aggregation ist eine spezielle

Aggregation, bei der die Einzelteile ohne das Ganze nicht existieren. Zudem ist die Anzahl

der Elternteile auf eins beschränkt. Die Komposition wird durch eine ausgefüllte Raute ge-

kennzeichnet (Abbildung 2.6e). Die Instanziierung bzw. «Instanz von»-Assoziation (Abbildung

2.6g), erbt UML von MOF. Diese Assoziation kann unter anderem zwischen Klassen und von

„Klasse“ abgeleiteten Modellelementen wie zum Beispiel Modellen und Instanzen verwendet

werden [MOF].

2.4.2 Konstruktive, textuelle Modellierung

Der Bereich der konstruktiven Modellierung wurde maßgeblich durch die Arbeiten von Noam

Chomsky [Cho65] geprägt. Sein Ziel war es, eine mathematisch präzise Modellierung natür-

licher Sprache zu formulieren. Dies ist zwar bis heute nicht gelungen, aber seine Ideen zu

formalen Grammatiken und formalen Sprachen bilden die Grundlage zur Modellierung vieler

17

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

heutiger künstlicher, maschinenauswertbarer Sprachen. Der Exkurs in die Welt der formalen

Grammatiken und Sprachen scheint zunächst etwas weit ab vom Thema der formalen Model-

lierung. Doch wenn man genauer hinschaut, so finden sich eine Reihe von Modellierungen,

die auf eben diesen formalen Grammatiken basieren. Auch die, der Arbeit zugrunde liegenden

Tripel-Graph-Grammatiken (Kapitel 5.1) basieren auf den formale Sprachen nach Chomsky.

Die Grundidee von Chomsky ist dieselbe, wie sie bei der Beschreibung natürlicher Sprachen

auch zum Einsatz kommt. Eine Grammatik, die Regeln bereitstellt, nach denen sich syntaktisch

korrekte Zeichenfolgen der Sprache bilden lassen. Eine gute und allgemeinverständliche Ein-

führung in formale Grammatiken und formale Sprachen nach Chomsky bietet das „Skript zur

Vorlesung Formale Sprachen und Berechenbarkeit“ von Prof. Dr. Georg Schnitger [Sch11]. Das

besondere an Schnitgers Skript ist, dass er XML-basierte Sprachen bzw. die sie erzeugenden

XML-Grammatiken in den Kontext der formalen Sprachen einordnet. Die Wichtigkeit von XML

in der Automatisierungstechnik, sowie der bereits erwähnte Zusammenhang mit Tripple Graph

Grammatiken, bedingen eine kurze Zusammenfassung der im Skript eingeführten Ideen und

Definitionen.

Definition 2.9 (Alphabet, Worte, Sprachen [Sch11])

(a) Ein Alphabet Σ ist eine endliche, nicht-leere Menge. Die Elemente von Σ werden Buch-

staben genannt.

(b) Σn = {(a1, . . . , an)| ai ∈ Σ} ist die Menge aller Worte der Länge n über Σ. Wir werden im

folgenden a1 · · · an statt (a1, . . . , an) schreiben. [. . .]

(d) Σ∗ =
∞⋃

n=0
Σn ist die Menge aller Worte über dem Alphabet Σ. [. . .]

(f) Für w ∈ Σ∗ bezeichnet |w| die Länge von w, also die Anzahl der Buchstaben von w.

(g) Eine (formale) Sprache L (über Σ) ist eine Teilmenge von Σ∗.

Eine formale Sprache ist somit eine Menge Zeichenketten endlicher Länge, die sich aus den

Buchstaben eines Alphabets, den sogenannten Terminalen erzeugen lassen (Wörter). Im All-

gemeinen sind allerdings nur Sprachen von Interesse, deren Wörter bestimmten Regeln folgen.

Formale Sprachen bedienen sich bei der Beschreibung dieser Regeln sogenannter Termerset-

zungssysteme (oder Semi-Thue-Systeme).

Definition 2.10 (Termersetzungssysteme (TES)) Ein Termersetzungssystem hat die folgen-

den Komponenten:

• ein endliches Alphabet Σ,

• eine endliche Menge P von Produktionen mit P ⊆ Σ∗ × Σ∗

Produktionen werden auch Konstruktionsregeln genannt. Sie sind Tupel (LHS, RHS) aus Zei-

chenketten. Eine Produktion kann angewendet werden, wenn in einem Wort eine der beiden

Zeichenketten LHS oder RHS vorkommt. Diese kann dann durch die andere Seite der Produk-

tion ersetzt werden, um ein neues gültiges Wort zu erzeugen.

18

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

Einen Spezialfall der Termersetzungssysteme bilden Grammatiken. Bei ihnen erfolgt die Er-

setzung immer von LHS nach RHS (monotone TES). Zudem besitzen Grammatiken neben

dem Alphabet (von Terminalsymbolen) eine Menge von Variablen (Nichtterminale). Nichtter-

minale dienen als Platzhalter komplexerer Terme. Als gültige Worte der durch die Grammatik

erzeugten Sprache gelten nur solche, die keine Nichtterminale mehr enthalten. Produktionen

von Grammatiken haben auf der linken Seite immer mindestens ein Nichtterminal. Diese Nicht-

terminale werden durch die Produktion ersetzt.

Eine formale Grammatik ist definiert als:

Definition 2.11 (Grammatik [Sch11]) Eine Grammatik G hat die folgenden Komponenten:

• ein endliches Alphabet Σ,

• eine endliche Menge V von [...] Nichtterminalen [...] mit Σ ∩ V = ∅,

• das Startsymbol S ∈ V und

• eine endliche Menge P von Produktionen

Definition 2.12 (Produktion) Seien LHS (engl. left-hand side) und RHS (engl. right-hand side)

zwei Zeichenketten. Produktionen sind Tupel (LHS,RHS) für die gilt:

RHS ∈ (V ∪ Σ)∗ und

LHS = xyz mit x, z ∈ (V ∪ Σ)∗ und y ∈ V

Ausgehend von einer Zeichenkette aus Terminalen und Nichtterminalen können durch Anwen-

dung der Produktionen neue Zeichenketten abgeleitet werden.

Definition 2.13 (Ableitung) Sei (LHS,RHS) eine Produktion von G und w1, w2 ∈ (V ∪Σ)∗ zwei

Zeichenketten. Dann gilt w1 → w2 genau dann, wenn w2 durch die einmalige Ersetzung von

LHS durch RHS in w1 erzeugt wird.1

Gibt es eine Sequenz von Zeichenketten w1, w2, . . . , wn mit n ∈ N, so dass gilt

w1 → w2 → · · · → wn,

dann ist wn eine Ableitung von w1 (kurz w1
∗−→ wn).

Definition 2.14 (Erzeugte Sprache) Sei G = (Σ, V, S, P) eine Grammatik. Die Menge aller

vom Startsymbol S ableitbaren Worte

{w ∈ Σ∗| S ∗−→ w}

ist die durch G erzeugte Sprache L(G).

Im folgenden Abschnitt soll beispielhaft anhand von XML gezeigt werden, wie die Definition von

Modellierungssprachen mit Hilfe formaler Sprachen aussieht.

1Im Weiteren wird dem Skript folgend diese Schreibweise auch für die Produktionen selbst genutzt (LHS → RHS).

19

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

2.4.2.1 XML-Grammatiken

Die erweiterbare Auszeichnungssprache (engl. eXtensible Markup Language, XML) ist die Ba-

sis einer ganzen Reihe von Modellierungssprachen. XML-basierte Sprachen werden häufig

dazu verwendet, grafische Modelle textuell abzubilden. Insbesondere Modelle, die in UML

beschrieben sind, besitzen oftmals auch eine textuelle Repräsentation in Form eines XML-

Dokuments. Auch in der Automatisierungstechnik sind verschiedene XML-basierte Sprachen

als Modellaustauschsprachen im Einsatz.

Die so beschriebenen Sprachen bestehen aus geschachtelten Elementen, wie sie aus HTML

oder PandIX [PandIX] bekannt sind:

% Element mit Name "InternalElement und Attribut mit Name "Name"
<InternalElement Name="Y24">

<Attribute Name="FunctionCode"> % Element mit Name "Attribute"
<Value>Y</Value> % Element mit Name "Value" ohne Attribut

</Attribute>
<Attribute Name="SignalCode">
<Value>O</Value>

</Attribute>
<RoleRequirements RefBaseRoleClassPath="PCE@ActuatorRequest"/>

</InternalElement>

Aufbauend auf der Basisdefinition für XML bilden die XML-basierten Sprachen durch schritt-

weise Verfeinerung der Syntax eine Hierarchie von Sprachen. Während die Basisgrammatik

allgemein beschreibt, dass Elemente der Sprache aus eine Starttag (ggf. mit Attributen), Inhalt

und einem dem Starttag zugehörigen Endtag bestehen, schränken die darauf aufbauenden

Sprachen die erlaubten Tags und Attribute mit Hilfe von XML-Grammatiken entsprechend ihren

Anforderungen ein. Für die Beschreibung von XML-Grammatiken gibt es verschiedene Mög-

lichkeiten. Abbildung 2.7 zeigt zum Beispiel einen Ausschnitt einer Grammatik für PandIX, der

dem Ausschnitt aus der XML-Schema-Definition aus Abbildung 2.8 entspricht.

Σ = (A..Z, a..z, 0..9, =, :, ") % Sequenz aus Σ durch
% ’’ gekennzeichnet

V = (CAEXdoc, IEType, AType, RRType, RPType, Name, Value, String, AnyType)
S = CAEXdoc

P = { CAEXdoc ::= {IEType} % EBNF-Notation: beliebilg viele
% EBNF-Notation: optional RRType

IEType ::= ’<InternalElement’ Name ’>’ {AType} [RRType] ’</InternalElement>’
AType ::= ’<Attribute ’ Name ’>’ {Value} ’</Attribute>’
RRType ::= ’<RoleRequirements ’ [RPType] ’/>’
RPType ::= ’RefBaseRoleClassPath = "’ String ’"’

Name ::= ’Name = "’ String ’"’ % String definiert in XML
Value ::= ’Value = "’ AnyType ’"’ % AnyType definiert in XML
}

Abbildung 2.7: Grammatik für PandIX

20

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

2.4.3 Deskriptive, textuelle Modellierung

Im Allgemeinen sind für die Beschreibung XML-basierter Sprachen jedoch deskriptive Metho-

den im Einsatz. Zudem können durch die Hierarchie der XML-basierten Sprachen Produktio-

nen aus der allgemeineren Modellbeschreibung in die spezielle übernommen werden. Eine

der gebräuchlichsten Formen sind XML-Schema-Definitionen (kurz XSD). Abbildung 2.8 zeigt

eine stark verkürzte Variante der XML-Schema-Definition für CAEX, die der Grammatik aus

Abbildung 2.7 entspricht.

...
<xs:complexType name="AttributeType">

<xs:attribute name="Name" type="xs:string" use="required">
<xs:element name="Value" type="xs:anyType" minOccurs="0"/>

</xs:complexType>

<xs:complexType name="InternalElementType">
<xs:attribute name="Name" type="xs:string" use="required">
<xs:element name="Attribute" type="AttributeType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="RoleRequirements" minOccurs="0">
<xs:attribute name="RefBaseRoleClassPath" type="xs:string" use="optional"/>

</xs:element>
</xs:complexType>

<xs:element name="InternalElement" type="InternalElementType" minOccurs="0"
maxOccurs="unbounded"/>

...

Abbildung 2.8: XSD für PandIX

2.4.4 Konstruktive, grafische Modellierung

In den ersten beiden Abschnitten wurde zum einen die deskriptive, graphische Sprache UML

und zum anderen die konstruktive textuelle Herangehensweise an Sprachen über Grammatiken

vorgestellt. Während die grafischen Sprachen meist eingänglicher sind, besitzt die konstruktive

Herangehensweise den Vorteil einer impliziten Weltabgeschlossenheit (vgl. Abschnitt 2.2.1). In

diesem Abschnitt sollen nun die Vorteile beider in einer konstruktiven, grafischen Modellierung,

den sogenannten Graph-Grammatiken zusammengeführt werden. Zunächst werden jedoch die

Begriffe Graph und Teilgraph eingeführt.

Definition 2.15 (Graph) Ein Graph G ist ein Quadrupel (V,E, targets, label) von Knoten V

(engl. vertex), Kanten E (engl. edges) mit E ⊂ V × V und den darauf definierten Funktionen

targets und label über den Labelalphabeten ΩE und ΩV ∪ ΩN . Die durch eine Kante e ∈ E

miteinander verbundenen Knoten v1, v2 ∈ V können mit Hilfe der Funktion targets ermittelt

werden:

∀e ∈ E. targets(e) = (v1, v2)

21

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Die Funktion label liefert zu jedem Knoten und jeder Kante die Knoten- respektive Kantenbe-

schriftung

∀e ∈ E. label(e) = ωe ∈ ΩE

∀v ∈ V. label(v) = ωv ∈ ΩV ∪ ΩN

Abkürzend gelte außerdem die folgende Schreibweise für Knoten und Kanten in G

∀e ∈ E. e ∈ G

∀v ∈ V. v ∈ G

Definition 2.16 (Teilgraph) Sei G = (V, E, targets, label) ein Graph. Eine Menge von Knoten

V’, eine Menge von Kanten E’ und die Funktionen targets’ und label’ mit

targets′ = targets | E′

label′ = label | V ′ ∪ E′

bilden einen Teilgraph G’ = (V’, E’, targets’, label’) von G (G ⊆ G′), wenn folgendes gilt:

• V’ ist eine Teilmenge von V

• E’ ist eine Teilmenge von E

Für jede Kante e aus E’ gilt, dass auch die beiden Knoten, die sie verbindet in V’ sind.

Definition 2.17 (Graph-Grammatik) Eine Graph-Grammatik GG = (ΩE ,ΩV ,ΩN , S,GP) hat

die folgenden Komponenten:

• ein endliches Alphabet ΩE terminaler Kantenbeschriftungen

• ein endliches Alphabet ΩV terminaler Knotenbeschriftungen

• eine endliche Menge Knotenbeschriftungen ΩN (Nichtterminalen) mit ΩV ∩ ΩN = ∅,

• das Startsymbol S ∈ ΩN und

• eine endliche Menge GP von graphbasierten Produktionen

Knoten, die mit Elementen aus ΩV beschriftet sind, heißen Terminal-Knoten; solche, die mit

Elementen aus ΩN beschriftet sind Nichtterminal-Knoten.

Definition 2.18 (Kanten-/Knotenbeschriftung) verschoben nach Definition 2.15

Definition 2.19 (Graphbasierte Produktion) Sei GG = (ΩE ,ΩV ,ΩN , S,GP) eine Graph-

Grammatik und LHSG = (VL, EL, targets, label), RHSG = (VR, ER, targets, label) zwei Graphen

mit

∀v ∈ VL ∪ VR : label(v) ∈ ΩV ∪ ΩN

∀e ∈ EL ∪ ER : label(e) ∈ ΩE

Graphbasierte Produktionen sind Tupel (LHSG, RHSG). Für (LHSG, RHSG) kommt als alternati-

ve Schreibweise auch LHSG ::= RHSG zum Einsatz.

22

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

2.5 Fazit

Beispiel 2.8 Abbildung 2.3b zeigt eine graphbasierte Produktion basierend auf dem Alphabet

ΩV = „Sensorstelle“, „Aktorstelle“, „Regelstelle“, ΩE = ∅, ΩN = „PLT-Stelle“.

Bei der Anwendung einer graphbasierten Produktion wird ähnlich wie bei einer Produktion

zunächst ein Vorkommen von LHSG im zu transformierenden Graph (Match) gesucht. Ist ein

Match gefunden, wird der gemeinsame Teilgraph (auch Klebegraph) K von LHSG und RHSG

bestimmt. Die Anwendung der graphbasierten Produktion erfolgt dann durch Löschen all je-

ner Knoten und Kanten des Matches, die zwar in LHSG aber nicht in RHSG enthalten sind

(LHSG−K). Anschließend werden alle Knoten und Kanten, die nur in RHSG nicht aber in LHSG

enthalten sind (RHSG −K) hinzugefügt. Eine Anwendung der graphbasierten Produktion darf

jedoch nur durchgeführt werden, wenn sowohl die Kontakt- als auch die Identifikationsbedin-

gung erfüllt sind. Erstere besagt, dass beim Anwenden der Regel keine hängenden Kanten

entstehen dürfen, also Kanten deren Quelle oder Ziel gelöscht wurden. Die Identifikationsbe-

dingung schränkt die Wahl des Matches ein. Ein Match darf einen Knoten in G prinzipiell auch

mehreren Knoten von LHSG zuordnen. Dabei muss allerdings gewährleistet sein, dass dies

nicht LHSG-Knoten betrifft, von denen einer inK und der andere in LHSG−K liegt, da ansons-

ten der zugeordnete Knoten in G sowohl gelöscht als auch nicht gelöscht werden müsste.

2.5 Fazit

Während Modelle noch vor wenigen Jahren insbesondere für die Kommunikation zwischen

Menschen entwickelt wurden, bedarf die fortschreitende maschinelle Auswertung Anpassun-

gen an den gewählten Modellierungsmethoden. Wie in den vergangenen Abschnitten deutlich

wurde, ist dabei neben der Darstellungsform auch der gewählte Grad der Formalisierung aus-

schlaggebend. Ersteres sollte so gestaltet sein, dass es dem natürlichen Sprachgebrauch der

Domänenexperten entgegenkommt. Die Analyse der verschiedenen Darstellungsformen hat

gezeigt, dass eine generelle Festlegung auf eine optimale Form nicht möglich ist. Hier muss

fallspezifisch zwischen grafisch/textuell und deskriptiv/konstruktiv entschieden werden. Für ei-

ne geplante maschinelle Auswertung sollte, unabhängig von der Wahl der Darstellungsform,

auf ein möglichst formales Modell gesetzt werden.

Zwar besitzen konstruktive Modelle den Vorteil der Weltabgeschlossenheit, einem wichtigen

Kriterium bei der Bewertung des Formalisierungsgrades, aber auch ein deskriptives Modell

kann durch explizit formulierte Abgeschlossenheit dieses Kriterium erfüllen. So werden de-

skriptive Modelle in Form von XML-Schema-Definitionen als vollständig angesehen. Nicht im

Schema formulierte Zusammenhänge werden damit auch als nicht valide angesehen. Da in die-

ser Arbeit die maschinelle Auswertung von Modellen eine zentrale Rolle spielt, soll im nächsten

Kapitel der Formalisierungsgrad vorhandener Modelle aus der Anwendungsdomäne der Auto-

matisierungstechnik im Fokus stehen.

23

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

Alleine in der deutschen Gesellschaft für Mess- und Automatisierungstechnik (GMA) des VDI

beschäftigen sich Experten in 75 Fachausschüssen damit, ein gemeinsames Verständnis für

Fragen der Automatisierungstechnik zu erarbeiten. Im Jahr 2011 resultierte dies in über 50

VDI/VDE-Richtlinien [New12]. Auch die NAMUR, das DIN und der DKE beschäftigen sich mit

Modellen für die deutschsprachige Automatisierungsbranche. International sind unter ande-

rem Normungsgremien wie ISO, IEC und ANSI damit beschäftigt, die Modellvorstellungen in

weltweit standardisierter Form bereitzustellen. Diese enorme Anzahl an Gremien und daraus

resultierenden Normen, Standards und Richtlinien verdeutlicht, welchen Stellenwert Modelle in

der Automatisierungstechnik einnehmen.

Die Gleichsetzung von normativen Schriften (Normen, Standards und Richtlinien) mit Modellen

ist angelehnt an die Definitionen aus Kapitel 2.1. So beschäftigen sich alle normativen Schriften

damit, einen dem Titel der Schrift entsprechenden Teil der Realität zu beschreiben (Abbildungs-

merkmal). Es wird dabei jeweils nur auf die Eigenschaften des Originals eingegangen, die für

die Schrift von Interesse sind (Verkürzungsmerkmal). Zudem sind normative Schriften nicht

per se für alle Zeit gültig. Vielmehr muss eine regelmäßige Überprüfung stattfinden, ob die

Schrift dem Original noch gerecht wird. Neben den normativen Schriften finden sich insbeson-

dere die Modelle aus dem wissenschaftlichen Bereich auch als Zeitschriften-Artikel [ERD11],

Konferenzbeiträge [Yu+12] und Bücher [Mey02; Sch10; Qui11] oder anderen, nicht-normativen

Veröffentlichungen wieder. Auch hier wird der geneigte Leser im Allgemeinen die drei Merkmale

von Modellen wiederfinden können.

Im Folgenden soll beispielhaft gezeigt werden, welche Anforderungen die Automatisierungs-

technik an Modelle stellt und welche Probleme bei der aktuell gewählten Beschreibung auftre-

ten. Mit den hier beispielhaft aufgeführten Modellen ist die Modellwelt der Automatisierungs-

technik bei weitem nicht vollständig repräsentiert, die typischen Probleme lassen sich aber gut

erkennen.

3.1 Stand der Technik

Einen umfassenden und detaillierten Überblick über Anwendungsmodelle, also M1-Modelle,

in der Automatisierungstechnik bietet Meyer in [Mey02]. Meyer konzentriert sich dabei auf die

Modelle, deren konkrete Maßnahmen unmittelbare Auswirkungen auf einen Prozess haben.

Dies schließt alle reinen Planungsmodelle aus. Ergänzend zu der Arbeit von Meyer empfiehlt

sich für einen umfassenden Einblick die VDI/VDE 3681 - „Einordnung und Bewertung von Be-

schreibungsmitteln aus der Automatisierungstechnik“ [VDI3681], die eine Auflistung gängiger

24

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.1 Stand der Technik

Beschreibungsmodelle (M2- bzw. M3-Modelle) der Automatisierungstechnik liefert und eine

Bewertung nach Kriterien wie „Formalisierung“, „Determinismus“ und „Darstellungsart“ gibt.

Wie einleitend erwähnt, soll an dieser Stelle keine vollständige Analyse der Modellwelt der Au-

tomatisierungstechnik durchgeführt werden, sondern beispielhaft die Modelle der in Abschnitt

1.2 identifizierten Anwendungsszenarien und ihrer potentiellen Realisierung in der ACPLT-

Modellwelt untersucht werden.

Bei der Aufarbeitung von Planungsdaten zur Weiterverarbeitung im Laufzeitsystem (Szenario

S0) sind folgende Modelle von besonderem Interesse:

R&I-Fließbild Das Rohrleitungs- und Instrumentenfließbild [DIN10628; DIN19227] dient zur

Darstellung der Instrumentierung und Verrohrung einer verfahrenstechnischen Anlage.

Dabei steht die funktionale Struktur mit Flusswegen, Reaktionsorten, Stell- und Messge-

räten im Vordergrund. Rückschlüsse auf die Lage der Elemente im Raum lassen sich aus

dem Modell nicht ableiten.

CAEX Das XML-basierte Austauschformat CAEX [IEC62424] ist zum Austausch hierarchi-

scher Strukturen konzipiert worden. Im Laufe der Zeit haben sich verschiedene Speziali-

sierungen entwickelt, um konkrete Strukturen besser beschreiben zu können.

PandIX Viele Informationen für die Basisautomatisierung verfahrenstechnischer Anlagen las-

sen sich direkt aus dem R&I-Fließbild ableiten. Um diesen Informationsgewinn zu unter-

stützen, wurde das Austauschformat PandIX [PandIX] entwickelt. Basierend auf CAEX

können damit die funktionalen Zusammenhänge, die in einem R&I-Fließbild beschrieben

sind, in die Implementierung übernommen werden.

ACPLT/PandIX ACPLT/PandIX [SE13] ist eine Realisierung von PandIX auf Basis der Objekt-

verwaltung ACPLT/OV. Sie ermöglicht es, die Struktur einer Anlage im Laufzeitsystem als

erkundbare Objekte und Assoziationen zwischen diesen Objekten bereitzustellen.

AutomationML Basierend auf CAEX als strukturbeschreibendes Kernstück ermöglicht Auto-

mationML [AML1; AML2; AML3; AML4] die Einbettung domänenspezifischer Modelle und

Verlinkungen zwischen den Modellinstanzen. Dadurch lassen sich verschiedene Facetten

einer Anlage wie die Struktur (PandIX), die Geometrie und Kinematik (COLADA) und das

Verhalten (PLCopen XML) in einem Modell zusammenfassen.

Neben den für S0 aufgeführten Modellen sind für die Analyse von Flusswegen in verfahrens-

technischen Anlagen (Szenario S1) insbesondere Modelle von Interesse, die sich mit der Mo-

dellierung der Anlagenstruktur und dem Anlagenzustand befassen. Zudem benötigt die Prä-

sentation der Analyseergebnisse entsprechende Darstellungsmodelle. Diese Arbeit fokussiert

auf die am Lehrstuhl für Prozessleittechnik der RWTH Aachen University entwickelten Modelle

aus diesen Bereichen, da diese auch in der Referenzimplementierung zum Einsatz kommen:

ACPLT/FlowPath Das Flusswegmodell ACPLT/FlowPath [Qui11] ermöglicht die Überwa-

chung von Stoffströmen in einer verfahrenstechnischen Anlage. Basierend auf der als

ACPLT/PandIX vorliegende Anlagenstruktur sowie dem Wissen über den Aktualzustand

der Anlageteile (Ventilstellungen, etc.) werden Leckagen erkannt oder Auswirkungen von

Aktorsteuerungen vorhergesagt.

ACPLT/csHMI Das ClientSide HMI [JE12; Sch10] ist ein Meta-Modell für Benutzerschnittstel-

len, deren Realisierung ausführbare, erkundbare Objekte in der ACPLT-Laufzeitumgebung

25

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

sind. Es basiert auf der Idee, dass für die grafische Darstellung komplexer Inhalte ledig-

lich eine kleine, klar definierte Menge an Basiselementen wie Linien, Kreise und Text

notwendig sind. Diese werden durch spezielle ACPLT/OV-Objekte repräsentiert, die ent-

sprechend ihrer grafischen Ausprägung SVG- bzw. HTML-Code erzeugen. Ein Server

stellt diese grafischen Repräsentationen zur Ansicht mit beliebigem Browser zur Ver-

fügung. Aufbauend auf den Basiselementen lassen sich Templates definieren, die eine

vordefinierte Kombination an Basiselementen zur Wiederverwendung bereitstellen. So

stellen die Template-Datenbanken ACPLT/csHMIPF und APCLT/csHMIR&I grafische Ele-

mente für die Prozessführung respektive für die Darstellung eines R&I-Fließbildes zur

Verfügung.

ACPLT/PF Die Kaskadierung der Prozessführung durch eine Einzelsteuerebene und eine

oder mehrere Gruppensteuerebenen ist eine gängige Methode, um komplexe Prozess-

ansteuerungen zu strukturieren. In [Ens01; WE15] wird mit der kommandoorientierten

Prozessführungen ein Konzept vorgestellt, dass diese Art der kaskadierten Prozess-

führung in der Funktionsbausteintechnik zugänglich macht. Dies bildet die Basis von

ACPLT/PF, einer Funktionsbausteinbibliothek für die Einzelsteuerebene mit Ansteuerbau-

steinen für prozessleittechnische Aktoren. Die Bausteine der ACPLT/PF stellen neben

der eigentlichen Ansteuerfunktionalität auch die Handhabung des Belegungszustandes

(Hand, Automatik, . . .) sowie eine Fehlerüberwachung zur Verfügung. ACPLT/PF ist nur

durch lehrstuhlinterne Technologiepapiere auf informeller Ebene dokumentiert.

Für die Generierung des Bedienbildes (Szenario S2) sowie für die Konsistenzanalyse zwi-

schen Bedienbild und Prozessführung und die darauf aufbauende Modellreparatur (Szenario

S3) kommen die bereits genannten Modelle ACPLT/csHMI und ACPLT/PF zum Einsatz. Neben

den genannten M1-Modellen sollen zudem die folgenden M2- bzw. M3-Modelle näher betrach-

tet werden:

SPS-Sprachen Die IEC 61131 [IEC61131] beschreibt den Aufbau, die Programmierung und

die Kommunikation Speicherprogrammierbarer Steuerungen. Von besonderem Interesse

für diese Arbeit ist dabei der dritte Teil der Norm, der sich mit den Programmiersprachen

der Automatisierungstechnik beschäftigt. Neben den textuellen Sprachen Instruktions-

liste (IL) und Strukturierter Text (ST) werden drei grafische Sprachen beschrieben. Der

Kontaktplan (LD) orientiert sich in seiner Darstellung an Stromlaufplänen und eignet sich

besonders, um Informationsflüsse zu beschreiben. Eine spezielle Art von Zustandsauto-

maten bietet die Ablaufsprache (SFC) und die Funktionsblock-Diagramme (FBD) fokus-

sieren auf der Darstellung von Funktionsschnittstellen mit Parametern und Rückgabewer-

ten. Mit der dritten Fassung der Norm erhielten die Sprachen 2013 eine objektorientierte

Erweiterung.

ACPLT/OV Die ACPLT-Modellwelt umfasst eine Reihe von Modellen zu verschiedenen auto-

matisierungstechnischen Fragestellungen. Das MOF-ähnliche Modell ACPLT/OV bildet

den objektorientierten Kern aller ACPLT-Modelle. Eine elementare Eigenschaft dieses

Objekt-Modells ist die Introspektion. Leitgedanke aller ACPLT-Modelle ist die Bereitstel-

lung des Modells in drei Facetten:

1. ein Implementierungsunabhängiges Modell,

2. ein auf ACPLT/OV und davon abgeleiteten Modellen basierendes M1-Modell und

26

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

3. die eigentliche Realisierung als M0-Modell

Die ACPLT-Grundidee, alle Modelle mit einer objektorientierten, ausführbaren Repräsen-

tation zu versehen, macht die auf ACPLT/OV aufbauenden Modelle so interessant für

diese Arbeit.

ACPLT/FB ACPLT/FB ist ein objektorientiertes Bausteinsystem auf Basis von ACPLT/OV.

Funktionsbausteinklassen kapseln Basisfunktionalität und die dazugehörigen Daten. Der

Datenaustausch erfolgt dediziert über Bausteingänge und -ausgänge (Ports). Durch In-

stanziierung und Verknüpfung der Bausteininstanzen können komplexe Funktionalitäten

realisiert werden. Die Bearbeitung der Bausteininstanzen erfolgt zyklisch. Die Reihen-

folge der Abarbeitung ist dabei festgelegt durch die Reihenfolge der Bausteine in der

Taskliste.

Die für diese Arbeit betrachtete Hierarchie der Modelle ist in Abbildung 3.1 dargestellt. Ausge-

graute Modelle werden dabei nicht weiter auf ihre formalen Eigenschaften hin untersucht. Sie

dienen lediglich der Einordnung der anderen Modelle in das Gesamtbild.

M3

M2

ACPLT/OV

IEC 61131-3

M1ACPLT/ PandIXACPLT/csHMIR&I ACPLT/ FlowPath

M0
ACPLT/ PandIX

im Laufzeitsystem
ACPLT/csHMIR&I

Im Laufzeitsystem
ACPLT/ FlowPath
Im Laufzeitsystem

PandIX

modelliert mithilfe

UML

Nat. Sprache MOF

Nat. Sprache

VT-Anlage

R&I
Fließbild

repräsentiert

R&I-Fließbild im
Planungswerkzeug

ACPLT/FB

ACPLT – Modellwelt

ACPLT/csHMI

Abbildung 3.1: Modellhierarchie der Anwendungsszenarien

3.2 Bewertung der Modelle

Für die Bewertung der Modelle werden die Kriterien aus Abschnitt 2.3 zu Grunde gelegt. Zu-

sätzlich werden die Modelle dahingehend untersucht, ob das Modell eine maschinenlesbare

Syntax besitzt.

3.2.1 Fließschemata für verfahrenstechnische Anlagen

Die DIN EN 10628 [DIN10628] stellt eine Empfehlungen für die Erstellung verschiedener ver-

fahrenstechnischer Fließbilder bereit. Das Grundfließbild dient zur Strukturierung von verfah-

renstechnischen Anlagen oder Verfahren mit Hilfe von „besteht aus“- Beziehungen, während

27

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

das Verfahrensfließbild die Zerlegung eines Verfahrens in einzelne Verfahrensschritte illustriert.

Von besonderem Interesse für diese Arbeit ist allerdings das dritte Fließbild, das R&I-Fließbild.

Es stellt eingebaute Aktoren, Sensoren, Verrohrungen und andere für die Automatisierung der

Anlage interessante Bauteile grafisch dar. Zudem sind Regelungs- und Steuerungsaufgaben

gekennzeichnet.

Der Fokus der Norm liegt jedoch nicht auf der durch die Fließbilder abgebildeten Struktur,

sondern auf der Bereitstellung der Grafikelemente. Der normative Teil befasst sich insbeson-

dere mit Layout-Hinweisen wie Linienstärken oder Mindestabständen. Diese sind explizit als

Vorschläge formuliert und beinhalten viele Freiheitsgrade. So lassen Aussagen wie, dass die

„Hauptfließrichtung [...] im allgemeinen von links nach rechts und von oben nach unten“ ver-

läuft, keine Rückschlüsse über die tatsächliche Fließrichtung ziehen. Auch die Verortung der

Elemente lässt sich aus dem R&I-Fließbild nicht ableiten. So ist ein Temperatursensor, der am

oberen Ende eines Behälters eingezeichnet ist nicht zwangsweise auch im oberen Bereich des

Behälters verbaut.

Den bei weiten größten Teil der Norm bilden die nicht-normativen Anhänge mit Beispielen für

Fließbilder. Auch die Symbole für die R&I-Fließbilder werden erst im Anhang C eingeführt.

Die Darstellung der Symbole ist zwar mittlerweile Quasi-Standard, Hinweise wie der, dass die

Spitze des Pumpensymbols in Förderrichtung zeigt, finden jedoch nicht zwingend Anwendung.

Eine eingehende Analyse der Norm bieten Schmitz et al. [SSE08].

Zusammenfassend lässt sich feststellen, dass insbesondere die fehlende Präzision und Vali-

dierbarkeit eine maschinelle Modellauswertung auf Basis dieser Norm unmöglich macht. Der

Fokus der Norm liegt klar bei der Interpretierbarkeit durch den Menschen und nicht durch eine

Maschine. In ihrem Rahmen ist sie verständlich und konsistent. Symbole und ihre Bedeutung

können allerdings unterschiedliche implementierungsspezifische Ausprägungen besitzen. Um

Fließschemata für die Modelltransformation nutzbar machen zu können, wird eine ergänzende

formale Beschreibung der strukturellen Zusammenhänge benötigt.

3.2.2 CAEX

Die DIN EN 62424 [DIN62424] widmet sich der Aufgabe, zumindest einen Teil der DIN EN

10628, die dargestellten Steuerungs- und Regelungsaufgaben eines R&I-Fließbildes für die

maschinelle Verarbeitung aufzuarbeiten. Die Norm stellt zunächst eine normierte grafische

Darstellung von prozessleittechnischen Funktionen in Form von PLT-Stellen zur Verfügung. Der

Kern der Norm ist jedoch das XML-basierte Meta-Modell CAEX für den Austausch von objek-

torientierten Strukturdaten. CAEX erweitert die, für objektorientierte Sprachen typischen Ele-

mente Klasse und Schnittstelle durch Rollenklassen. Während Schnittstellen syntaktische An-

forderungen an eine Instanz beschreiben, enthalten Rollenklassen semantische Festlegungen

wie z.B. Mindestdurchsätze einer Pumpe. Die drei Elemente lassen sich jeweils zu Klassen-,

Instanz- und Rollen-Bibliotheken zusammenfassen und zusammen mit der Instanzhierarchie

in einem CAEX-Dokument abbilden. Der Natur eines Meta-Modells entsprechend ist CAEX

für sich erstmal nicht für den Datenaustausch anwendbar. Hierzu müssen konkrete CAEX-

Bibliotheken entworfen werden.

28

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

Ein dritter Aspekt der Norm ist daher die Abbildung der für den Austausch mit der Prozess-

leittechnik relevanten Daten des R&I-Fließbildes auf die CAEX-Elemente, im Folgenden PLT-

CAEX genannt. Zu diesen Daten gehören Signal-, Prozess- und Produktverbindungen sowie

Steuerungsfunktionen und zusätzliche physikalische Prozessparameter. Mechanische Zusam-

menhänge sowie Angaben zu Betriebsmitteln und grafische Attribute werden hingegen nicht

abgebildet. Die Norm beschreibt, mit Hilfe welcher CAEX-Elemente einzelne Aspekte der gra-

fischen Darstellung abgebildet werden müssen. Eine konkrete Umsetzung erfolgt jedoch nur

beispielhaft.

Da die drei Aspekte der Norm grundverschiedene Zielsetzungen und Einsatzgebiete verfolgen,

wird an dieser Stelle eine getrennte Bewertung anhand der Kriterien formaler Modellierung

vorgenommen.

PLT-Stelle Die Beschreibung der grafischen Repräsentation ist zumeist prägnant und leicht

verständlich. Das Modell ist konsistent und eindeutig beschrieben, jedoch auf Grund sei-

ner grafischen Natur nur schwer maschinenauswertbar.

CAEX Die Modellbeschreibung von CAEX erfolgt in drei Stufen. Zunächst wird eine auf Ver-

ständnis und Semantik ausgerichtete Beschreibung durch Fließtext, hinterlegt mit Bei-

spielen, gegeben. In einem zweiten Schritt werden die einzelnen Elemente der XML-

Grammatik in knapper Form dargestellt und ihre Bedeutung zusammengefasst. Ergänzt

wird dies durch eine XML-Schema-Definition. Es werden alle Anforderungen an eine for-

male Modellierung erfüllt. Kleinere Inkonsistenzen in den gelieferten Beispielen wie die

Benennung der External Interfaces [DIN62424, S. 51] haben keinen Einfluss auf die Kon-

sistenz des eigentlichen Modells.

PLT-CAEX In der Norm wird bereits auf die semiformale Natur der Modellbeschreibung hin-

gewiesen. Diese Einschätzung kann hier durchaus unterstützt werden. Auch wenn der

Name der Norm sowie die einleitenden Worte vermuten lassen, dass dieser Aspekt den

Kern der Norm darstellt, ist das Modell weder vollständig noch eindeutig beschrieben.

Es dient vielmehr beispielhaft zur Verdeutlichung der CAEX-Sprachelemente. Eine wei-

terführende Analyse der daraus entstehenden Probleme und möglicher Lösungsansätze

bieten Theurich et. al [The+14].

Die drei sehr unterschiedlichen Facetten der Norm, grafische Repräsentation von Prozess-

leittechnischen Informationen, Austauschformat für Strukturdaten und Abbildung der R&I-

Informationen in das Austauschformat, machen die Norm unnötig komplex. Eine klare Fokus-

sierung auf CAEX und die Referenzierung vorhandener Normen sowie die Ergänzung durch

nicht-normative Veröffentlichungen hätten hier für ein insgesamt kompakteres und formaleres

Modell gesorgt.

3.2.3 PandIX

PandIX greift den fehlenden formalen Aspekt der DIN EN 62424 bei der Abbildung von PLT-

Stellen in CAEX auf. Die PandIX-Modellbeschreibung liegt als, mit UML-Diagrammen ange-

reicherter Fließtext, vor. Dieser benennt und formalisiert die für die Automatisierungstechnik

relevanten Informationen, die in R&I-Fließbildern enthalten sind, in einer objektorientierten Be-

29

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

trachtungsweise. Die darauf aufbauende CAEX-Repräsentation umfasst sowohl eine Klassen-,

eine Schnittstellen- sowie eine Rollenbibliothek, so dass Syntax und Semantik von PLT-Stellen

in einer austauschbaren Form beschrieben werden.

Die Modellbeschreibung für PandIX wird ergänzt durch eine CAEX-Musterbibliothek, die wei-

terführende CAEX-Klassen bereitstellt. Während der Fokus bei PandIX auf Informationsflüssen

liegt, erweitert die Musterbibliothek das Repertoire auf die Elemente des Materialflusses.

Die Top-Down Betrachtungsweise von den Objekten der Anlagenwelt bis hinunter zum Aufbau

einer Sensorstelle macht die Idee und den Grundaufbau allgemein verständlich. Kleinere In-

konsistenzen bzw. missverständliche UML-Diagramme bieten jedoch bei einer konkreten Reali-

sierung viel Interpretationsfreiraum. So lassen die - nicht ganz UML-konformen - Darstellungen

in Abbildung 3.2 zwei widersprüchliche Interpretationsmöglichkeiten offen. SH* und SL* können

entweder Klassen sein [PandIX, S. 26] oder Instanznamen [PandIX, S. 11] von Objekten der

Klasse Switch. Die CAEX-Repräsentation beantwortet diese Frage ebenfalls nicht eindeutig,

da SH* und SL* in ihr nicht definiert sind. Das Vorhandensein der Klasse Switch und ihre Be-

schaffenheit lassen aber vermuten, dass die Interpretation als Instanzen gemeint ist. Auch die

wechselnde Verwendung englischer und deutscher Begriffe ohne explizite Zuordnung zuein-

ander (z.B. Prozessanlagenelement →PPERequest) erschweren die eindeutige Interpretation

und vor allem die Validierbarkeit von PandIX-Modellen.

SignalSource

SH*, SL*

SignalInterface

(a) S.11: SH*, SL* als Klassen

SensorRequest

SH*

SL*

Interface type: Switch

Interface type: Switch

*

*

(b) S.25: SH*, SL* als Instanzen der Klasse „Switch“

Abbildung 3.2: Mehrdeutige Repräsentation von Elementen in [PandIX]

Eine weitere Herausforderung bei der rechnergestützten Auswertung von PandIX-Modellen ist

die fehlende Vollständigkeit der Modellbeschreibung. Die Musterbibliothek stellt nur eine der

möglichen Erweiterungen dar. Die letztendlich anzuwendende Modellbeschreibung kann von

Implementierung zu Implementierung oder im schlimmsten Fall innerhalb einer Implementie-

rung gar von Modell zu Modell variieren.

3.2.4 Sprachen für die SPS-Programmierung

Die Beschreibung von Programmiersprachen für die SPS-Programmierung steht im Fokus

des dritten Teils der IEC 61131-3 [IEC61131]. Die Norm fokussiert bei der Sprachbeschrei-

bung zunächst den Strukturierten Text (ST). Der Hauptteil der Norm entwickelt schrittweise

die Grammatik der Sprache und reichert diese anhand von Beispielen mit Semantik an. An-

nex B bietet anschließend nochmal die formale Spezifikation der Syntax in kompakter Form.

Die Instruktionsliste (IL) wird ähnlich formal, bedingt durch ihren deutlich geringeren Umfang

30

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

aber in knapperer Form beschrieben. Auch die grafischen Sprachen werden, soweit möglich,

formal beschrieben. So wird für die Funktionsblock-Diagramme (FBD) festgelegt, dass als Dar-

stellung ein Rechteck mit Namen des Bausteins im oberen Teil gewählt werden soll. Zudem

werden Position, Verbindungsmöglichkeiten und die Darstellung von Negation von Baustein-

parametern beschrieben. Hier bleibt es natürlich nicht aus, dass ein gewisser Freiheitsgrad

in der Darstellung besteht. Die Semantik der einzelnen in FBD vorhandenen Bausteine wird

zumeist in ST beschrieben oder ergibt sich aus den zugehörigen logischen Operatoren. Die

Norm lässt, bis auf kleine Ausnahmen in der grafischen Darstellung, keinen Platz für Dop-

peldeutigkeiten oder Widersprüchlichkeiten. Auch für mögliche implementierungsspezifische

Erweiterungen der Norm wird klar geregelt, wie diese sich konsistent, prägnant und korrekt in

das Gesamtbild einbetten lassen.

3.2.5 AutomationML

Die Modellbeschreibung von AutomationML (kurz AML) ist aufgeteilt in das Kernmodell [AML1],

vorgefertigten Rollenbibliotheken [AML2] und Einbindungsvorschriften für gängige Modelle

[AML3; AML4]. Allen drei Komponenten der Modellbeschreibung ist die starke Verquickung

von Semantik- und Syntaxbeschreibung gemein. Dies macht die Modellbeschreibung unnötig

komplex.

Bei der Beschreibung des Kernmodells wird zunächst eine Beschreibung auf Basis von Bei-

spielen geliefert. Dies sollte an sich hilfreich sein, um die Grundgedanken des Modells dem

Leser näher zu bringen. Im Fall von AML fehlt allerdings die Referenz auf die konkrete Syntax,

so dass der Abgleich der beispielhaften Beschreibung mit der formalen Beschreibung schwer

fällt. Auch der formalere gehaltene Teil der Modellbeschreibung mischt Syntax und Semantik

und erschwert zusätzlich durch widersprüchliche Formulierungen die eindeutige Interpretati-

on. Ein Beispiel hierfür ist die Interface-Klasse „Order“. Sie dient als Basisklasse für alle Arten

von sortierten Listen. Das enthaltene Attribut „Direction“ gibt dabei die Sortierreihenfolge an.

Als valide Werte für „Order“ werden allerdings nur „In“, „Out“ und „InOut“ angegeben, was der

semantischen Beschreibung widerspricht, die „Descending“ als Möglichkeit vorsieht.

The interface class “Order” is an abstract class that shall be used for the description

of orders, e.g. a successor or a predecessor. [. . .] The attribute “Direction” shall be

used in order to specify the direction. Permitted values are “In”, “Out” or “InOut”.

[AML1, S. 29]

Auch die mitgelieferte CAEX-Repräsentation liefert an dieser und anderen Stellen keine Kon-

kretisierung sondern noch mehr Flexibilität. Hier müssen vorgefertigte Modellinstanzen zu Rate

gezogen werden, um die beabsichtigte Interpretation zu erkennen.

AutomationML ist explizit nicht vollständig beschrieben, sondern offen für die Einbettung belie-

biger Teilmodelle. Es eignet sich daher als Basis von SpeedStandardisierung [Sch+15; Mer16],

die darauf setzt, dass das Grundgerüst standardisiert ist, einzelnen Facetten aber als Pseudo-

Standard oder Request for Comment schnell und unkompliziert umgesetzt werden können.

31

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

Das Kernmodell von AML besitzt eine starke Typisierung und eine für die maschinelle Auswer-

tung optimierte Darstellung. Mögliche Einbettungen müssen getrennt bewertet werden.

3.2.6 ACPLT-Modelle

Der Formalisierungsgrad der ACPLT-Modelle ist sehr heterogen. Für die Kernmodelle existiert

eine formale Spezifikation in Form einer Grammatik [Alb97b; Mey02] sowie ausführliche be-

schreibende Dokumentation [Alb96; Alb97a]. Anders sieht es bei den Anwendungsmodellen

aus. Sie basieren zwar meist auch auf einer formalen Beschreibung, diese ist aber auf Grund

ihrer Natur als Forschungsmodelle meist nur in Auszügen veröffentlicht. Nur vereinzelt sind die

M1-Modelle bis zur formalen Reife vorangetrieben. Neben einem implementierungsunabhän-

gigen Modell besitzen ACPLT-Modelle ein auf ACPLT/OV basierendes M1-Modell und eine Re-

präsentation in der automatisierungstechnischen Laufzeitumgebung. Dank dieser drei Facetten

bieten die ACPLT-Modelle eine optimale Grundlage für die rechnergestützte Verarbeitung mo-

dellierter Zusammenhänge.

Im Einzelnen ergibt sich für die ACPLT-Modelle folgendes Bild:

ACPLT/OV Das Basismodell der ACPLT-Modellwelt ist umfassend spezifiziert und dokumen-

tiert [Mey02]. Auszüge aus der Arbeit fassen die Kernpunkte in Form von Technologie-

papieren zusammen. Das für diese Arbeit interessante Technologiepapier 3 [Alb97b]

beschreibt eine vollständige Grammatik von ACPLT/OV. Ergänzt wird es durch weitere

Technologiepapiere [Alb96; Alb97a], die verschiedene Facetten des Modells beleuchten

und mit Hilfe von UML-Diagrammen und Fließtext mit Semantik versehen. Die Trennung

von Grammatik und Semantik ermöglicht ein kompaktes, konsistentes, validierbares und

leicht verständliches Modell.

ACPLT/FB Das Funktionsbausteinsystem ACPLT/FB ist umfänglich, wenn auch nicht vollstän-

dig, in der Softwaredokumentation zum Tool iFBspro [NN04] beschrieben. Des Weite-

ren existieren Veröffentlichungen, die das Konzept und einige Details näher erläutern

[GKE12; Yu+12]. Die vollständige Syntax liegt in Form einer nichtöffentlichen ACPLT/OV-

Modelldatei (.ovm) sowie einer zugehörigen ACPLT/OV-Funktionsdatei (.ovf) vor. Alles in

allem treffen für ACPLT/FB die gleichen Eigenschaften wie für ACPLT/OV zu: kompakt,

konsistent, validierbar und leicht verständlich.

ACPLT/PandIX Da es sich bei ACPLT/PandIX weitestgehend um eine 1-zu-1 Übertragung

der XML-Elemente aus PandIX in Funktionsbausteine und Verknüpfungen handelt

(vgl. Abbildung 4.2a), leiten sich die meisten Punkte aus der Bewertung der PandIX-

Modellbeschreibung ab. In den Punkten „Konsistenz“ und „Präzision“ wurde bei der

Implementierung eine mögliche Interpretation umgesetzt bzw. bei Inkonsistenzen eine

Variante gewählt.

ACPLT/FlowPath Eine vollständige Grammatik sowie eine formale Semantik lassen bei die-

sem Modell keine Interpretationsfreiheit zu. Eine vorliegende Implementierung sowie um-

fangreiche Dokumentation [Qui11] ergänzen die formale Modellierung.

ACPLT/csHMI Das Modell ist durch eine vollständige, aber unveröffentlichte Modellierung als

lehrstuhlinternes Technologiepapier definiert. Auszüge aus dem Modell wurden in wis-

senschaftlichen Arbeiten und auf einschlägigen Fachtagungen präsentiert [Sch10; JE13;

32

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.3 Gewonnene Erkenntnisse

JE12]. Die Basis bildet ein Klassendiagramm, das alle erlaubten Klassen beinhaltet.

Ausgehend davon werden die einzelnen Klassen und ihre Parameter beleuchtet. Dies

geschieht in einer semiformalen Kombination aus UML und Fließtext. Der Forschungs-

charakter dieses Modells kommt hier stark zum Tragen. Die niedergeschriebene Modell-

beschreibung lässt viel Interpretationsspielraum zum Beispiel bei der Umsetzung von

Nutzerinteraktionen. Umfangreich vorhandene Beispielanwendungen zeigen aber, wel-

che Umsetzung der Autor im Sinn hatte.

Auf Grund seiner auf Basiselemente fokussierten Art eignet sich das Modell als Grundla-

ge für grafische Modellierung verschiedenster Art [SE13]. Aufbauend auf ACPLT/csHMI

ist eine Reihe von Template-Bibliotheken entstanden. Nicht in allen Fällen besitzen die-

se ein vollständig niedergeschriebenes Modell. Hierzu gehören das Bedienmodell zur

Prozessführung ACPLT/csHMIPF . In [JE12] führt Jeromin Teile von ACPLT/csHMIPF als

Bestandteil des Meta-Modells ACPLT/csHMI auf. An dieser Stelle soll es jedoch als ei-

genständiges Modell gesehen werden, da es nicht wie ACPLT/csHMI grundlegende HMI-

Primitiva modelliert, sondern Anlagenstrukturen. Da für ACPLT/csHMIPF keine weiter Do-

kumentation besteht, kann eine Einordnung hierzu nicht stattfinden.

ACPLT/PF In [WE15] beschreiben die Autoren die Grundidee sowie abstrakte und drei konkre-

te Syntaxen für ACPLT/PF. Basis dazu bildet die kommandoorientierte Prozessführung,

die umfassend und formal fundiert in [Ens01] vorgestellt wird.

3.3 Gewonnene Erkenntnisse

In dieser Arbeit wird nicht weiter auf die Optimierung des Formalisierungsgrades vorhandener

Normen, Richtlinien oder nicht-normativer Modellbeschreibungen eingegangen. Dies ist Auf-

gabe entsprechender Gremien und Arbeitskreise. Ein Aufruf zur formalen Beschreibung von

Modellen soll an dieser Stelle trotzdem nicht fehlen, da sie nicht nur der automatisierten Mo-

delltransformation zugutekommt, sondern auch den eigentlichen Hintergrund der Modellierung

fördert, eine einheitliche Verwendung der Modelle.

In den vorgestellten Modellen wird vielfach auf mehrdeutigen Fließtext zurückgegriffen. Ob die-

se Mehrdeutigkeit politisch beabsichtigt ist, um allen an der Erstellung beteiligten Parteien ge-

recht zu werden, oder weil das Bewusstsein für die Mehrdeutigkeit nicht vorhanden ist, sei an

dieser Stelle dahin gestellt. Fest steht, dass dies unweigerlich zu unterschiedlichen Interpreta-

tionen und Implementierungen führt, was den Zweck eines Modells ad absurdum führt. Für die

zukünftige Beschreibung von Automatisierungsmodellen wird an dieser Stellen daher folgende

Empfehlung gegeben:

Trennung von Syntax und Semantik Bei der Analyse der verschiedenen automatisierungs-

technischen Modelle hat sich gezeigt, dass eine getrennte Beschreibung von Syntax und

Semantik ein wesentliches Kennzeichen der formal beschriebenen Modelle darstellte.

Insbesondere die dadurch entstandene Kompaktheit der Syntax vereinfacht die Entwick-

lung konsistenter und vollständiger Modelle.

Semi-Formale Semantik Der Einsatz von formalen Semantiken in der Automatisierungstech-

nik als Alternative zur natürlichsprachlichen Beschreibung ist von Fall zu Fall abzuwä-

33

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

gen. Der formale Aspekt steht hierbei der allgemeinen Verständlichkeit entgegen. Bei der

Verwendung der natürlichsprachlichen Beschreibung muss diese genauestens auf miss-

verständliche oder zweideutige Formulierungen untersucht werden. Verwendete Bilder

müssen im Text genau beschrieben werden, da gerade unkommentierte Bilder viel Inter-

pretationsspielraum zulassen. Für die Beschreibung der Semantik empfiehlt sich zudem

UML als unterstützendes Werkzeug. UML hat sich mittlerweile in vielen Domänen als

Quasistandard zur Modellierung herauskristallisiert und wird daher auch von Domänen-

fremden leichter verstanden.

Abstrakte Syntax Unabhängig von der Syntax, die der Entwickler später für die Modell-

entwicklung nutzt, empfiehlt sich, zunächst die Konzepte des Modells allgemein ver-

ständlich mittels einer abstrakten Syntax zu beschreiben. Es empfiehlt sich ein UML-

Klassendiagramm zur Beschreibung des Modellalphabets und weitere Klassendiagram-

me zur Beschreibung der modellinternen Zusammenhänge bereitzustellen:

Alphabet Zur Auflistung der vorhandenen Modellelemente inklusive aller modellspezifi-

schen Assoziationen, empfiehlt sich ein Klassendiagramm, das lediglich die Genera-

lisierung als Assoziation erlaubt. Auch Variablen und Methoden der Modellelemente

sollten in diesem Diagramm außer Acht gelassen werden. Durch eine solche Auflis-

tung entsteht ein erster, umfassender Überblick über das Alphabet des Modells.

Konstruktionsregeln Weitere Assoziationen zwischen Modellelementen, wie „Besteht-

Aus“ und die Verwendung modellspezifischer Assoziationen, sowie wichtige Metho-

den und Variablen sollten in davon unabhängigen Klassendiagrammen beschrieben

werden. Jedes dieser Klassendiagramme sollte einen klar umrissenen und im Text

ausführlich erläuterten Aspekt des Modells abbilden. Bei der Verwendung der Asso-

ziationen sollte jeweils die Multiplizität angegeben werden.

Die Modellbeschreibung sollte abschließend formuliert sein. Dadurch wird eindeutig fest-

gelegt, welche Konstrukte ein valides Modell bilden und welche nicht erlaubt sind. Ist

eine flexible Erweiterbarkeit des Modells unabdingbar, so sollte dies an klar definierten

Schnittstellen im Modell erfolgen.

Konkrete Syntax Für den Entwickler von Modellen stellt die konkrete Syntax das Handwerks-

zeug dar. Die konkrete Syntax hat daher weniger die allgemeine Verständlichkeit als Ziel,

sondern vielmehr die Eignung für die konkrete Modellerstellung. Die konkrete Syntax

muss unabhängig von der gewählten Darstellungsform konsistent zur abstrakten Syntax

sein. Für graphische/diagrammartige Modelle bietet sich die Syntaxdefinition mittels Me-

tamodellierung auf Basis von UML (bzw. MOF) an, für textuelle Sprachen eignet sich hin-

gegen eher eine EBNF-basierte Grammatik. Ist ein Datenaustausch oder eine textuelle

Repräsentation des Modells das Ziel, empfiehlt sich die Erstellung einer XML-Schema-

Definition.

Starke vs. schwache Typisierung [SK12] Von starker Typisierung spricht man, wenn Objek-

te mit unterschiedlichen Eigenschaften auch unterschiedlichen Klassen zugeordnet sind,

bei der schwachen Typisierung werden diese Eigenschaften durch Attribute einer ge-

meinsamen Klasse repräsentiert. Die Verwendung von Attributen zur Unterscheidung

von Elementen verschiedenen Typs hat durchaus seine Vorteile, da das Modell zunächst

weniger Klassen besitzt. So wird im PandIX nur die Klasse „ActuatorRequest“ benötigt,

um Pumpen, Ventile und elektrische Aktuatoren abzubilden. Eine Unterscheidung erfolgt

anhand des Attributs „FunctionCode“. Trotzdem sollte diese schwache Typisierung sehr

34

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

3.3 Gewonnene Erkenntnisse

sparsam und bewusst eingesetzt werden, da nur die starke Typisierung eine typgerechte

Verwendung und Parametrierung eines Objektes garantieren kann. Insbesondere beim

Austausch von Modelldaten zwischen verschiedenen Werkzeugen kann die schwache

Typisierung zu Fehlinterpretationen führen.

Dieses Vorgehen ist sicher nicht für alle Modelle der Automatisierungstechnik vollständig um-

setzbar, für viele bietet es aber eine einfach zu realisierende und nachvollziehbare Möglichkeit

der Beschreibung. Zudem ermöglicht dieses Vorgehen ein frühzeitiges Erkennen von potentiel-

len Missverständnissen oder Widersprüchen in den Modellen und stellt eine solide Grundlage

für die maschinelle Auswertung der Modelle dar.

35

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der
Automatisierungstechnik

Während des gesamten Lebenszyklus einer verfahrenstechnischen Anlage ist eine Vielzahl

von Modellen im Einsatz. Dabei können die meisten beteiligten Modelle nicht losgelöst be-

trachtet werden. Eine Änderung in einem Modell erzeugt oftmals eine Kaskade von Modellan-

passungen. Diese starke Korrelation sowie die mit der langen Lebensdauer einer verfahrens-

technischen Anlage einhergehende Dynamik der Modelle bedürfen eines gut funktionierenden

Änderungsmanagements. Hier ist das größte Potential für den Einsatz rechnergestützter Mo-

delltransformation in der Automatisierungstechnik zu sehen: der Abgleich von Modelländerun-

gen über alle beteiligten Modelle hinweg. Dies kann zum einen durch das Erzeugen und Än-

dern von Modellen erfolgen, zum anderen sind auch Konsistenzprüfungen denkbar. Weiteres

Potential bieten die starken Regularien bei der Planung und dem Bau einer verfahrenstechni-

schen Anlage. Neben umfangreichen Dokumentationspflichten und Sicherheitsbestimmungen

bieten auch Zertifizierungsvorschriften Einsatzmöglichkeiten für rechnergestützte Modelltrans-

formationen. So kann ein Teil der Dokumentation anhand der Planungsdaten generiert, das

Vorhandensein von sicherheitsrelevanten Programmteilen überprüft oder die Zertifizierung der

resultierenden Automatisierungsfunktion durch einmalige Zertifizierung der Transformation ver-

einfacht oder vollständig ersetzt werden. Nicht zuletzt bietet der in dieser Arbeit angestrebt Weg

hin zu Automatisierungsfunktionen als Serienprodukt die Möglichkeit, auf Änderungen in den

Planungsdaten so flexibel wie nie zuvor reagieren zu können. Zur Realisierung dieses Ansat-

zes bedarf es einer anlagenneutralen Beschreibung der Modellzusammenhänge. Zur Laufzeit

erfolgt eine Auswertung der aktuell gültigen Planungsdaten mittels Modelltransformation und

als direkte Folge davon die Bereitstellung der Automatisierungsfunktion.

In diesem Kapitel werden zunächst die aus der Informatik stammenden Grundbegriffe der Mo-

delltransformation eingeführt und bisherige Ansätze aus dem Bereich der Automatisierungs-

technik vorgestellt, Modellgrenzen für die enthaltenen Informationen durchlässig zu machen.

Um eine Einordnung dieser Ansätze vornehmen zu können, erfolgt im Vorfeld eine Analyse der

durch die Automatisierungstechnik gestellten Anforderungen.

4.1 Allgemeine Begriffsbestimmung

Wir sprechen von korrelierenden Modellen, wenn ein Zusammenhang zwischen den Daten

oder Strukturen zweier (oder mehrerer) Modelle besteht und daher eine widerspruchsfreie Mo-

dellierung der jeweiligen Modellinstanzen beachtet werden muss. Traditionell haben Modell-

transformationen zum Ziel, diese Widerspruchsfreiheit (Konsistenz) zu gewährleisten, in dem

36

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4.1 Allgemeine Begriffsbestimmung

sie automatisiert die Instanz eines Quellmodells in eine Instanz des korrelierenden Zielmodells

überführen. Das Quellmodell einer Modelltransformation ist jenes, aus dem die Daten gewon-

nen werden, das Zielmodell ist das Modell, welches erstellt bzw. verändert wird.

Basis einer Modelltransformation ist ein Satz an Transformationsregeln und ein Kontrollalgo-

rithmus. Transformationsregeln beschreiben, wie Strukturen eines Quellmodells in Strukturen

eines Zielmodells abzubilden sind [KWB03]. Der Kontrollalgorithmus ist für die Auswahl und

Anwendung geeigneter Regeln zuständig.

Die in den folgenden Kapiteln verwendeten Beispiele basieren auf dem in Kapitel 1.2 vorgestell-

ten Szenario S2, der Erstellung eines Bedienbildes anhand der PandIX-Daten. Der vollständi-

ge Regelsatz zu diesem Szenario findet sich in Anhang B. Für die beispielhafte Demonstration

der vorgestellten Ideen beschränken wir uns an dieser Stelle zunächst auf die Regeln, die die

Abbildung eines Ventils und der zugehörigen PLT-Stelle beschreiben. Abbildung 4.1verdeutli-

chen den Zusammenhang zwischen der PandIX-Darstellung von Ventil und PLT-Stelle und der

grafischen Repräsentation. Die angestrebte Modelltransformation findet zwischen den entspre-

chenden ACPLT-Modellen ACPLT/PandIX und ACPLT/csHMI statt (vgl. Abbildung 4.2).

YO
Y24

Abbildung 4.1: Korrelation zwischen PandIX-Modell einer Anlage und zugehörigem Bedienbild1

Dieses Szenario beinhaltet typischer Weise folgende Aktionen:

1. Entwurf der Anlage mit Hilfe eines CAD-Werkzeugs

2. Generieren eines Grobentwurfs für das Bedienbild anhand der CAD-Daten

3. Nachträgliche Änderungen am Entwurf im CAD-System

4. Manuelle Anpassungen am Bedienbild

Dadurch ergeben sich vielfältige Aufgaben für den Einsatz von Modelltransformationen:

1Die PandIX-Darstellung ist der Übersichtlichkeit halber leicht vereinfacht. Unter anderem wurden die Value-Tags

der Attribute entfernt und die Pfadangabe für die Basisklassen ist in verkürzter Form angegeben.

37

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

V24: ValveRequest

Y: ActuatorInputPoint

TU1: SystemUnitClass

P: ActuatorProcessInterface

Y24: ActuatorRequest

+ FunctionCode = Y
+ SignalCode = O

<
<

en
th

äl
t>

>

<
<

ve
rli

nk
t>

>

(a) Abbildung eines PandIX-Modells nach ACPLT/PandIX

YO
Y24

Y24: ActuatorTemplate

R: RemoteTemplate

+ FunctionCode = Y
+ SignalCode = O
+ aName = Y24

Valve24 :ValveTemplate

L: Line

(b) Abbildung eines grafischen

Elements in ACPLT/csHMI

Abbildung 4.2: ACPLT-Repräsentationen von PandIX und Bedienoberfläche

Initiale Batch-Transformation Der bestehende CAD-Entwurf wird als PandIX-Modell bereit-

gestellt und daraus das zugehörige Bedienbild „in einem Rutsch“ automatisch erzeugt.

Inkrementelles Update Änderungen am CAD-Entwurf werden inkrementell in das zuvor

schon erstellte Bedienbild nachgezogen.

Zurückpropagieren Änderungen am Bedienbild werden (soweit relevant) in den CAD-Entwurf

übertragen. Dies kann zum Beispiel Bezeichner oder verwendete Sensor-/Aktortypen be-

treffen.

Bei den genannten drei Transformationen handelt es sich jeweils umOutplace-Transformationen,

bei denen Quell- und Zielmodell disjunkt sind. Dabei bleibt das Quellmodell unverändert. Im

Gegensatz dazu sind bei der Inplace-Transformation Quell- und Zielmodell identisch. Szenario

S1 ist (je nach Implementierung) ein Kandidat für eine solche Inplace-Transformation, da das

Einfärben von Rohleitungen anhand des aktuellen Anlagenzustandes das Bedienbild sowohl

als Quell- als auch als Zielmodell benötigt.

4.2 Besondere Herausforderungen in der
Automatisierungstechnik

Die Akzeptanz einer rechnergestützten Modelltransformation zur modellgetriebenen Entwick-

lung von Automatisierungsfunktionen ist nur zu erwarten, wenn folgende Grundeigenschaften

zugesichert werden können:

Unidirektionale Batch-Transformation Aus einem oder mehreren Planungsmodellen muss

per Batch-Transformation das Zielmodell generiert werden. Anpassungen des Zielm-

odells müssen durch den Applikateur in gewohnter Weise vorgenommen werden können.

Inkrementelle Änderungen Die Anforderungen an eine Anlage können sich über die Zeit än-

dern. Es muss daher möglich sein, Änderungen an den Planungsdaten vorzunehmen und

die geänderten Informationen per Modelltransformation in die Implementierung zu über-

nehmen. Vom Applikateur vorgenommene Anpassungen des Zielmodells müssen, soweit

nicht direkt von der inkrementellen Änderung betroffen, dabei unberührt bleiben.

38

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4.2 Besondere Herausforderungen in der Automatisierungstechnik

Bidirektionale Auswertbarkeit Die Lehre des ordnungsgemäßen Baus und Betriebs einer

Anlage [Pol94] postuliert, dass Änderungen immer zunächst in den Planungsdaten und

danach in der Implementierung eingepflegt werden. Die Realität sieht jedoch meist an-

ders aus. Es wird daher ein Mechanismus benötigt, der nicht nur die Informationsüber-

nahme aus den Planungsmodellen in die Implementierung ermöglicht, sondern auch den

umgekehrten Weg unterstützt. Dadurch können Änderungen in der Implementierung au-

tomatisiert in den Planungsdaten „dokumentiert“ werden.

Konsistenzüberprüfung Ergänzend zur bidirektionalen Auswertbarkeit muss ein Mechanis-

mus vorhanden sein, der die Widerspruchsfreiheit (Konsistenz) von Instanzen prüft, ohne

Änderungen vorzunehmen. Dies ist insbesondere dann von Interesse, wenn die verfah-

renstechnische Anlage bereits in Betrieb ist. Automatisierte Änderungen an den beteilig-

ten Automatisierungsfunktionen sind dann nur noch in festgelegten Wartungszeiträumen

möglich. Eine passive Überprüfung kann aber jederzeit durchgeführt werden.

Modellreparatur Inkonsistente Modelle müssen wieder in einen konsistenten Zustand über-

führt werden. Da Inkonsistenzen sowohl durch Änderungen im Quell- als auch im Zielm-

odell entstehen können, muss der Nutzer aktiv in den Reparaturprozess eingebunden

werden. Alternativ müssen frühere Modellzustände in den Reparaturprozess einbezogen

werden, um identifizieren zu können, ob die Inkonsistenz durch Änderungen am Quell-

oder Zielmodell verursacht wurden.

Nachvollziehbarkeit Die Transformation muss nachvollziehbar durchgeführt und dokumen-

tiert werden. Dazu gehört auch, dass die Transformation deterministisch ist und die ein-

zelnen Transformationsschritte dokumentiert werden.

Freie Werkzeugwahl In der Planungs- und Betriebsphase einer verfahrenstechnischen Anla-

ge ist eine ganze Reihe hochspezialisierter Werkzeuge im Einsatz. Die Wahl dieser Werk-

zeuge soll aus zweierlei Gründen nicht eingeschränkt werden. Auf der einen Seite haben

Planungsingenieure und Applikateure nicht immer Einfluss auf die Wahl des Werkzeugs.

Dies ist insbesondere der Fall, wenn Planungsdaten von extern eingekauft werden oder

wenn die Implementierung an ein Subunternehmen vergeben wird. Auf der anderen Seite

sollen Planungsingenieure und Applikateure sich nicht an ein Werkzeug binden müssen,

sondern das Werkzeug wählen können, das ihren Ansprüchen am besten genügt.

Wartbare, nachvollziehbare Regeln Für einen nachhaltigen Ansatz ist es wichtig, dass die

formulierten Regeln über Jahrzehnte und von verschiedenen Anwendern leicht nachzu-

vollziehen und anzupassen sind. Komplexe, auf speziellen Sprachen basierende Regeln

können daher nicht zum Einsatz kommen. Vielmehr muss die Formulierung der Zusam-

menhänge möglichst durch einfache Verknüpfung der beteiligten und somit bekannten

Modelle erfolgen. Diese sollten minimalistisch angereichert werden mit entsprechenden

Elementen für die Modelltransformation.

Hinweise auf weitere Anforderungen bieten die zuvor definierten Anwendungsszenarien.

S1. Einzelne Automatisierungsfunktion als Serienprodukt Das Besondere an diesem An-

wendungsbeispiel ist die Verwendung von Informationen aus zwei Quellen. Zum einen

wird das Anlagenstrukturmodell benötigt, um Zusammenhänge zwischen Aktoren und

Rohrleitungen zu identifizieren, auf der anderen Seite wird der aktuelle Zustand der Pro-

zessführung für die Auswertung der offenen Flusswege benötigt. Neben der Verwendung

39

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

zweier Quellmodelle ist auch die Transformation innerhalb der automatisierungstechni-

schen Laufzeitumgebung ausschlaggebend für dieses Szenario.

S2. Entwicklungsbegleitende Modelltransformation Das Bedienbild wird in diesem Szena-

rio als R&I-Fließbild dargestellt. Die entsprechenden Abbildungsvorschriften sowie die

Positionierung werden aus dem PandIX übernommen. Die Anforderungen an ein Bedien-

bild erfordern aber im Normalfall eine angepasste Positionierung und Darstellung. Das

Bedienbild muss daher nach der Erstellung vom Applikateur änderbar sein. Es muss wei-

terhin möglich sein, spätere inkrementelle Änderungen durch erneute Transformation aus

dem PandIX vorzunehmen. Bereits vorgenommene Parametrierungen oder Ergänzungen

im Bedienbild müssen davon unberührt bleiben, sofern sie nicht direkt von den Änderun-

gen betroffen sind.

S3. b) Modellreparatur bei aufgetretenen Inkonsistenzen Für die Realisierung dieses Sze-

narios muss eine Interaktion mit dem Benutzer möglich sein, da Inkonsistenzen nicht

automatisiert in die eine oder andere Richtung aufgelöst werden können.

4.3 Stand der Technik

Ein erster Schritt zur Nutzung der Planungsdaten im weiteren Lebenszyklus der Anlage sind

Austauschmodelle. Diese spielen insbesondere bei der Anforderung der freien Werkzeugwahl

eine große Rolle. Nahezu alle gängigen Engineeringwerkzeuge bieten heutzutage einen Ex-

port/Import ihrer Daten als XML-Datei oder in einem anderen digitalen Format an. Die Modell-

transformation zwischen Transportmodell und dem Datenmodell des Werkzeugs erfolgt hier-

bei bei der Interpretation bzw. der Generierung der Austauschformate durch die Import/Ex-

port Schnittstelle der Werkzeuge. Herstellerspezifische Modelle haben den Vorteil, dass sie die

Daten eines Werkzeugs optimal abbilden können. Durch die Vielzahl an auf dem Markt be-

findlichen Werkzeugen impliziert dieser Ansatz einen erheblichen Implementierungsaufwand.

Allein das Planungswerkzeug ePLAN P8 bietet Schnittstellen zu zehn verschiedenen Automa-

tisierungssystemen sowie weitere ePLAN-spezifische Austauschformate an. Wie in Kapitel 3

gezeigt, gibt es auch in Normungsgremien und Interessensverbänden große Anstrengungen,

Transportmodelle wie CAEX [IEC62424], PandIX [PandIX] oder AutomationML [AML1] herstel-

lerneutral bereitzustellen. Solche Modelle kommen der Vielfalt der Werkzeuge auf dem Markt

entgegen. Auch kleinere Hersteller können sich durch die Umsetzung eines solchen normierten

Formates in die Werkzeuglandschaft integrieren. Bei dem Ansatz der Austausch- und Trans-

portmodelle stellen inkrementelle Änderungen und der Abgleich nach dem initialen Datenaus-

tausch noch immer eine große Herausforderung dar.

In [BS09] stellen die Autoren einen Ansatz vor, bei dem sich herstellerneutral Werkzeuge durch

die Bereitstellung einer entsprechenden Schnittstelle an eine gemeinsame Datenbasis, dem

Engineering Servicebus (ESB) ankoppeln können. Das Wissen über die im ESB vorhandenen

Daten und ihre Semantik muss, wie bei den Austauschformaten, wieder jedes Tool für sich

mitbringen. Erschwerend kommt hinzu, dass jedes Werkzeug seine Daten in werkzeugspezifi-

scher Art ablegen kann. Eine Verknüpfung der Daten oder eine Interpretation der Daten durch

andere Werkzeuge ist daher nur schwer zu realisieren. Dieser Ansatz des integrierten Engi-

neerings, bei dem alle Gewerke auf einen gemeinsamen Datenhaushalt zugreifen, ist vermehrt

40

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4.3 Stand der Technik

auch bei den großen auf dem Markt befindlichen Werkzeugherstellern zu finden. So hat Sie-

mens im Jahr 2008 mit der Übernahme der Firma innotec GmbH sein Produktportfolio um die

Planungswerkzeuge der Comos-Produktgruppe erweitert [Div08]. Eine gemeinsame Datenba-

sis, das Siemens Teamcenter, bildet nun die Grundlage für die Planung der Elektroverkabelung

sowie der Mess-, Steuer- und Regelungstechnik mit Hilfe von Comos und die Programmie-

rung der Automatisierung sowie die Erstellung von Anlagensimulationen. Auch namenhafte

Hersteller von Planungswerkzeugen erweitern ihr Produktportfolio, um die Daten durchgängig

für alle Gewerke bereitstellen zu können. Im Jahr 2013 übernimmt die Friedhelm Loh Group,

Muttergesellschaft der Eplan Software und Service AG, den Hersteller mechanischer CAD-

Systeme Kuttig [EPL13] und den Autodesk-Hersteller Cideon [Pre13]. Über die unterlagerte

ePLAN-Plattform werden somit neben R&I-Daten, Daten zur Elektroplanung, Daten für die

Mess-, Steuerungs- und Regelungsplanung, der virtuelle Schaltschrankbau und nun auch me-

chanische Planungsdaten aufeinander abgebildet. Der Vorteil des integrierten Engineering ist,

dass im Hintergrund eine gemeinsame Datenbasis die Daten aller Gewerke akkumuliert und

in gewerkespezifischen Sichten zur Bearbeitung bereitstellt. Änderungen werden dadurch au-

tomatisch über alle Gewerke hinweg publiziert. Der große Nachteil dieses Ansatzes ist, dass

es kleine und mittelständische Unternehmen aus dem Markt drängt, da diese keine durchgän-

gige Werkzeugkette bieten können. Der Anforderung nach freier Werkzeugwahl wird hier nicht

Genüge getan.

Ein überwiegend im universitären Umfeld im Einsatz befindlicher Ansatz für die Nutzung der

Planungsdaten im weiteren Lebenszyklus der Anlage ist die Automatisierung der Automatisie-

rung [SSE09]. Unter diesem Begriff lassen sich all jene Arbeiten zusammenfassen, die sich mit

der teil- oder vollautomatisierten Durchführung des Engineeringworkflows beschäftigen. Hier-

zu gehören unter anderem der Einsatz von Wissensbasierten Systemen, das Regelbasierte

Engineering und agentengestützte Ansätze. Schon 1998 beschäftigten sich Viswanathan et al.

[Vis+98a; Vis+98b] mit dem Einsatz Wissensbasierter Systeme für die automatische Gene-

rierung von Steuerungscode für Batch-Prozesse. Anlagenneutrale Verfahrensrezepte werden

dabei mit Informationen aus der Anlagenplanung zu Steuerungsrezepten verfeinert. Anlage

und Rezept besitzen innerhalb des Wissensbasierten Systems eine spezielle objektorientierte

Repräsentation in Grafchart. Ebenfalls auf der Basis eines Wissensbasierten Systems wird in

[Güt09] die Generierung von SPS-Programmen aus den Planungsdaten beschrieben. Ausge-

hend von der Voraussetzung, dass strukturbezogene Code-Schnipsel als Klassen bereits im

Engineeringsystem vorliegen, wird anhand der Planungsdaten der benötigte Steuerungscode

durch entsprechendes Instanziieren erstellt und verknüpft. Dieser Ansatz ist insbesondere für

Serienanlagen oder Anlagen mit sehr ähnlichem Equipment und Verhalten konzipiert. Es wird

allerdings ein angepasster Planungsprozess verlangt, da viele Informationen aus der Formali-

sierten Prozessbeschreibung nach [VDI3682] gewonnen werden. Diese kommt in ihrer reinen

Form aber in realen Planungsprozessen von prozesstechnischen Anlagen heutzutage selten

zum Einsatz. Eine automatische Parametrierung von Bedienbildern wird in [UOS12] vorge-

schlagen. Basierend auf den Informationen des R&I-Fließbildes werden vorgefertigte, standar-

disierte Bedienbilder mit Instanznamen, Einheiten, Grenzwerten und weiteren anlagenspezifi-

schen Daten parametriert. Auch können in Abhängigkeit des im Fließbild angegebenen Sensor-

oder Aktortyps spezifische Bedienfelder aktiviert werden. Allen gemein ist die 1-zu-1 Transfor-

mation von Daten von einem Modell in genau ein anderes Modell. Zudem sind die Ansätze

41

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

inflexibel gegenüber Änderungen in den Planungsdokumenten. Die generierten Daten müssen

erneut erzeugt werden und ggf. gemachte händische Änderungen oder Erweiterungen gehen

verloren.

Grüner [GE14; GWE14] schlägt ein Regelbasiertes Engineering auf Basis von Graphabfragen

vor. Dieses ist deutlich flexibler im Einsatz verschiedener Modelle. Wie bei Güttel [Güt09] wird

bei diesem Ansatz das Expertenwissens in einer domänenfremden Sprache als Regeln ab-

gelegt, was zu zusätzlichen Barrieren bei der Formulierung der Zusammenhänge führt. Einen

agentenbasierten Ansatz verfolgt Wagner [Wag08] mit seiner aktiven Unterstützung des Appli-

kateurs im Engineeringprozess. Die Agenten analysieren während des Engineeringprozesses

fortlaufend Abhängigkeiten zwischen den vom Applikateur eingegebenen Modelländerungen

und anderen Modellen. Durch Interaktion mit dem Applikateur können die eingesetzten Agen-

ten aufgetretene Inkonsistenzen auch dann behoben werden, wenn sie sich nicht direkt aus den

in den Agenten verankerten Regeln lösen lassen. Durch die Ansätze von Grüner und Wagner

wird das Spektrum der Betrachtung auf eine m-zu-n-Beziehung zwischen Modellen erweitert

und ein über den initialen Modellabgleich hinausgehende Modelltransformation ermöglicht. Die

Liste von Ansätzen zum modellbasierten Engineering ließe sich beliebig fortführen. Die in die-

ser Arbeit betrachteten Automatisierungsfunktionen als Serienprodukte können von diesen An-

sätzen allerdings nicht profitieren, da die Engineeringphase bereits vollständig abgeschlossen

ist, wenn das auszuwertende Modell vorliegt.

Das von Schmitz [SE06; SE08] vorgestellte Regelbasierte System bietet die Basis für ein

anlagenneutrales Engineering. Die WENN-DANN-Regeln des Regelsystems sind bei diesem

Ansatz Objektstrukturen im Laufzeitsystem und können vorhandene Modelle auswerten und

manipulieren. Das von Schmitz vorgestellte Konzept beschränkt sich jedoch auf die Formu-

lierung von unidirektionalen Regeln. Eine Konsistenzprüfung oder gar eine Rückführung von

Informationen in das Ausgangsmodell ist daher nicht möglich. Ein weiteres Problem stellt die

konzeptbedingte rechenzeitintensive Bearbeitung des Regelsatzes dar. Das in dieser Arbeit

vorgestellte Konzept stellt eine Weiterentwicklung der Vorarbeiten von Schmitz [SE06; SE08]

dar und ergänzt diese unter anderem um eine formale Basis und die Möglichkeit der bidirek-

tionalen Auswertung. Als einen weiteren Ansatz für das anlagenneutrale Engineering schlägt

Mersch [Mer16] die Realisierung von Automatisierungsfunktionen als Dienste vor, die auf einer

gemeinsamen Modellarchitektur operieren. Die vorgeschlagenen Dienste bearbeiten konkrete

Anfragen selbständig durch Erkundung und Verändern der in der Laufzeitumgebung vorlie-

genden Modelle. Zur ressourcenschonenden Erhaltung der systemweiten Konsistenz wird eine

Beobachterschnittstelle für die einzelnen Modellinstanzen vorgeschlagen. Abhängige Modelle

können sich bei einem Quellmodell registrieren und werden anschließend bei Änderungen in-

formiert. Entsprechende Dienste können dann mit Hilfe des überlagerten Relationsmodells Ab-

hängigkeiten zwischen den Modellen erkennen und Anpassungen am Zielmodell vornehmen.

Durch die Verwendung von Diensten wird der Ansatz insbesondere für verteilte Automatisie-

rungssysteme interessant. Auf die Realisierung der einzelnen Dienste geht Mersch nicht weiter

ein.

Einen weiteren anlagenneutralen Ansatz verfolgt Quirós [Qui11] mit der Flussweganalyse. Auf

Basis der im R&I-Fließbild bzw. im zugehörigen PandIX-Modell enthaltenen Daten und dem

aktuellen Anlagenzustand werden Vorhersagen zu Auswirkungen von Aktorsteuerungen und

42

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

4.3 Stand der Technik

Warnungen bei unerlaubten Zuständen oder bei Leckage generiert. Hier ist die Modelltransfor-

mation zwar anlagenneutral formuliert, allerdings ist sie auf genau ein Quell- und ein Zielmodell

beschränkt.

Einen ganz anderen Ansatz verfolgt Schlereth [Sch14]. Ausgehend von einer plattformunab-

hängigen Beschreibung der Modellzusammenhänge werden plattformspezifische Modelltrans-

formationen z.B. zur Ausführung in automatisierungstechnischen Laufzeitumgebungen durch

Higher-Order-Transformation erzeugt. Dieser Ansatz ist in Domänen interessant, wo plattforms-

pezifisch unterschiedliche Programmiersprachen zum Einsatz kommen. Für den Einsatz in der

Automatisierungstechnik ist er allerdings weniger geeignet, da alle gängigen SPSen die Spra-

chen der IEC 61131 und das dazugehörige Austauschformat PLCOpen XML unterstützen. Ei-

ne plattform- und sprachunabhänge Beschreibung der Modellzusammenhänge bedeutet daher

einen unnötigen Mehraufwand bei der Spezifikation. Ein durchaus auch für die vorliegende Ar-

beit interessanter Aspekt des von Schlereth vorgestellten Ansatzes ist, das für die IEC 61131

Sprache ST beschriebene Konzept der Modelltransformation zur Laufzeit. Wie bei Schmitz

[SE06; SE08] wird dabei auf unidirektional auswertbare Bausteine gesetzt, die einzelne Ob-

jekte des Quellmodells bearbeiten. Die bei Schlereth beschriebenen Regeln sind allerdings so

komplex, dass sie nicht mehr durch den Domänenexperten handhabbar sind. So muss für jede

Klasse des Quellmodells und jede Klasse des Zielmodells ein eigener Baustein im Transfor-

mationsmodell bereitgestellt werden. Bei einer automatischen Generierung der plattformspe-

zifischen Transformationsregeln mag dies hinnehmbar sein, eine Wartung oder Erweiterung

der Regeln ist aber nur durch Anpassung des plattformunabhängigen Transformationsmodells

möglich.

Zusammenfassend lässt sich feststellen, dass bereits eine ganze Reihe von Ansätzen Modell-

zusammenhänge in der Automatisierungstechnik und die automatische Auflösung der daraus

resultierenden Abhängigkeiten bei Modelländerungen adressieren. Der Großteil der Ansätze

beschränkt sich dabei jedoch alleine auf die Modelle zur Engineeringzeit. Oftmals sind die

Transformationen beschränkt auf ein spezifisches Quell- und Zielmodell. Eine bidirektionale

Auswertung von Modellzusammenhängen verfolgt keiner der bisherigen Ansätze. Die Wahl

spezieller Regelsprachen für die Beschreibung der Modellzusammenhänge stört bei vielen An-

sätzen die Integration in den bisherigen Engineeringprozessen, da die Domänenexperten neue

Sprachen und Werkzeuge erlernen müssen. Eine Lösung für die zuvor identifizierten Anforde-

rungen an Modelltransformationen in der Automatisierungstechnik kann keiner der bisherigen

Ansätze liefern.

Im Folgenden werden vielversprechende Ansätze aus der Informatik vorgestellt und anschlie-

ßend in Kapitel 6 gezeigt, wie diese sich nutzen lassen, um die bisherigen Beschränkungen

aufzuheben und eine effiziente, bidirektional auswertbare Modelltransformation für die Lauf-

zeitsysteme der Automatisierungstechnik zur Verfügung zu stellen.

43

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Bei der Konzeptentwicklung für eine Modelltransformation in prozessleittechnischen Laufzeit-

umgebungen stand die Suche nach einem geeigneten, gut erforschten und fundierten Ansatz

aus dem Bereich der Informatik als Basismodell im Vordergrund. Bei dieser Suche stellten

sich die bidirektionale Auswertbarkeit der Regeln sowie die inkrementelle Anwendbarkeit und

die freie Werkzeugwahl schnell als Schlüsselkriterien heraus. Während diese Eigenschaften

tief im Transformationsmodell verankert sind, lassen sich andere Anforderungen wie eine gu-

te Nachvollziehbarkeit durch Protokollierung der Transformationsschritte oder die Wiederver-

wendbarkeit von Regeln und Regelteilen vergleichsweise einfach nachrüsten.

Das Forschungsgebiet der Modelltransformation bietet ein breites Spektrum an potentiellen

Basismodellen. Eine umfangreiche und gut strukturierte Übersicht zu diesem Thema bieten

Czarnecki und Helsen [CH06]. Schlussendlich kristallisierten sich Tripel-Graph-Grammatiken

als geeigneter Kandidat heraus. Nicht zuletzt durch das umfangreiche Erweiterungspotential

[Kön08; Kla12; Lau12; Leb+15; Leb+16, . . .], erste Ansätze für eine Modelltransformation zur

Laufzeit [Vog+09a; Vog+09b; VG13] und Regeln, die auf den domänenspezifischen Sprachen

der korrelierenden Modelle aufbauen konnte der Ansatz überzeugen. Dieses Kapitel widmet

sich daher hauptsächlich den Triple-Graph-Grammatiken und darauf aufbauenden Forschungs-

ansätzen.

Da Triple-Graph-Grammatiken jedoch nicht für die Modelltransformation in leittechnischen Lauf-

zeitumgebungen entwickelt wurden, liegt es in der Natur der Dinge, dass nicht alle gestellten

Anforderungen in Gänze mit diesem Ansatz erfüllt werden können. Ein kleiner Einblick in wei-

tere Transformationsmodelle, die diese offenen Punkte thematisieren, schließt das Kapitel ab.

5.1 Tripel-Graph-Grammatiken

Die von Schürr entwickelten Tripel-Graph-Grammatiken (TGG) [Sch95], sind eine Weiterent-

wicklung der Paar-Grammatiken nach Pratt [Pra71]. Beide Ansätze gehen davon aus, dass für

zwei konsistente Modellinstanzen M1 und M2 korrelierender Modelle gilt:

• für jede valide Änderung von M1 gibt es mindestens eine valide Änderung von M2, die

die beiden Modellinstanzen konsistent hält

• für jede valide Änderung von M2 gibt es mindestens eine entsprechende konsistenzer-

haltende Änderung in M1

44

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Regeln der beiden Ansätze beschreiben solche konsistenzerhaltenden simultanen Ände-

rungen von Modellen. Pratt erzeugt in seinem Ansatz zwei, mittels kontextfreier Grammatiken

beschriebene, konsistente Modelle. Seine Regeln für die Modelltransformation setzen Paare

von Produktionen in Beziehung (vgl. Abbildung 5.1). Jeder Zwischenschritt erzeugt durch Re-

gelanwendung parallel zwei Graphen; einen in der linken und einen in der rechten Domäne.

Diese enthalten Nichterminalsymbole, die miteinander über eine 1-zu-1 Nichtterminal-Paarung

verbunden sind. Durch die Anwendung einer Regel wird beim simultanen Auffinden des LHS-

Nichterminalsymbols im jeweiligen Modell dieses durch das entsprechende RHS-Pattern er-

setzt. Die beiden Modelle werden dadurch simultan erzeugt. Jeder Zwischenschritt ersetzt ge-

nau ein Nichtterminal-Paar. Das finale Graphen-Paar enthält keine Nichtterminale und somit

auch keine Nichtterminal-Paarungen mehr.

Ein Hauptproblem bei dieser Art der Regeln ist die fehlende Nachvollziehbarkeit. Nur zum

Zeitpunkt der Transformation ist klar, welche Teile der beiden Modelle durch simultanes Erzeu-

gen einander zuzuordnen sind. Eine inkrementelle Änderung von Modellen ist daher mit Paar-

Grammatiken schwierig. Durch die Verwendung von kontextfreien Sprachen wird dieser Effekt

noch verstärkt, da die LHS ihrer Produktionen jeweils Nichtterminale sind. Ein bestehendes

valides Modell-Paar enthält aber keine Nichtterminale mehr, die durch die Produktionen ersetzt

werden können. Eine starke Einschränkung für den Einsatz von Paar-Grammatiken stellen die

1-zu-1-Beziehungen zwischen den Nichtterminalen dar.

PandIX_VR

PandIX_AR

csHMI_ValvePandIX_Valve

Rechte ProduktionLinke Produktion

LHS

RHS

csHMI_VT

csHMI_AT

(a) Initiale Ventil-Regel

csHMI_ATPandIX_AR

rt:RemoteTemplate

at: ActuatorTemplate

P: ActuatorProcessInterface

ar: ActuatorRequest

(b) Aktuator-Regel

csHMI_VTPandIX_VR

vt: ValveTemplate

Y: ActuatorInputPoint

vr: ValveRequest

(c) Ventil-Regel

Abbildung 5.1: Paar-Grammatik zur simultanen Erstellung von PandIX und csHIM

Beispiel 5.1 Die Regeln aus Abbildung 5.1 bilden einen Ausschnitt aus der Paar-Grammatik

für die simultane Erstellung eines PandIX-Modells und einer Bedienoberfläche mittels ACPLT/cs-

HMI. Nichtterminal-Paare sind durch gestrichelte Linien gekennzeichnet. Bei Anwendung der

Regeln werden die Nichtterminale der LHS im Graph der jeweiligen Domäne gesucht und

durch RHS ersetzt. Die starre 1-zu-1 Beziehung bei den Nichtterminal-Paaren führt dazu, dass

Erweiterungen, die nur eine der beiden Modelle betreffen schwieriger zu realisieren sind. So

muss eine Erweiterung der Bedienoberfläche um ein Detailbild entweder mit der Ersetzung in

45

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

5.1c erfolgen oder in der initialen Ventil-Regel muss auf beiden Seiten ein weiterer Nichttermi-

nalknoten erzeugt werden. Wobei bei der Auswertung dieses Nichtterminal-Paares nur auf der

ACPLT/csHMI-Seite Elemente erzeugt werden.

Drei Erweiterungen sind daher nötig, die Verwendung von kontextsensitiven Sprachen, die

Protokollierung der Modellbeziehungen über den Transformationsprozess hinaus und die Er-

weiterung auf n-zu-m-Beziehungen zwischen den beiden Domänen. Mit der Weiterentwicklung

von Paar-Grammatiken zu Tripel-Graph-Grammatiken konnte Schürr diese Aufgaben erfolg-

reich lösen. Zum einen führt Schürr einen dritten, ebenfalls simultan erzeugten Korrespon-

denzgraph ein. Die Knoten dieses Graphs dokumentieren den Transformationsverlauf für den

gesamten Lebenszyklus der beiden Modellinstanzen. Zudem verwendet Schürr als Basis sei-

ner Regeln kontextsensitive Graph-Grammatiken. Diese erlauben die Referenz auf terminale

Kontext-Elemente und ermöglichen so eine einfachere inkrementelle Modellentwicklung.

Durch Tripel-Graph-Grammatiken werden immer drei Teilgraphen parallel entwickelt: das

Quellmodell, das Zielmodell und der Korrespondenzgraph. Abbildung 5.2 zeigt beispielhaft

g: Groupmn1: MN

mn2: MN

g: Groupsu: SystemUnitClass mn1:MN

Korrespondenz-
Domäne Rechte DomäneLinke Domäne

LHS
(Kontext-Graph)

RHS

ar: ActuatorRequest

P:ActuatorProcessInterface

su: SystemUnitClass

rt: RemoteTemplate

at: ActuatorTemplate

mt1: MT

Abbildung 5.2: TGG-Regel zur simultanen Erstellung von PandIX und csHIM

ein TGG-Produktion für das Hinzufügen einer PLT-Stelle. Die Relation zwischen Elementen

der linken und der rechten Domäne werden dabei mit Hilfe sogenannter Korrespondenzlinks

beschrieben:

Definition 5.1 (Korrespondenzlink) Seien ΩVR,ΩVL,ΩVK drei endliche Alphabete terminaler

Knotenbeschriftung und ΩER,ΩEL zwei Alphabete terminaler Kantenbeschriftungen. Seien au-

ßerdem LD, KD, RD Graphen mit Knoten- und Kantenbeschriftungen aus den entsprechenden

Domänen. Es gelte daher für alle Knoten v und alle Kanten e:

∀v ∈ LD : label(v) ∈ ΩVL

∀e ∈ LD : label(e) ∈ ΩEL

∀v ∈ RD : label(v) ∈ ΩVR

∀e ∈ RD : label(e) ∈ ΩER

∀v ∈ KD : label(v) ∈ ΩVK

Außerdem gelte:

�e ∈ KD

46

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Knoten von KD werden Korrespondenzknoten genannt. Die Funktion map(vK) liefert zu

jedem Korrespondenzknoten vK ∈ KD ein Tupel (γl, γr), wobei γl eine nichtleere Menge an

Knoten und Kanten aus LD und γr eine nichtleere Menge an Knoten und Kanten aus RD sind.

Eine Menge {LKD|LKD = (γl, vK , γr),map(vK) = (γl, γr)} mit folgenden Eigenschaften:

x ∈ γl ⇒ x ∈ LD

x ∈ γr ⇒ x ∈ RD

wird Korrespondenzlinks zwischen LD und RD genannt.

Die Definition zeigt, dass Korrespondenzlinks sowohl Kanten als auch Knoten der beiden

Grammatiken miteinander in Relation setzten können. Korrespondenzlinks beschreiben das

Mapping zwischen linker und rechter Domäne durch die Formulierung von Bedingungen (vgl.

Abbildung 5.3). Zudem erzeugen sie durch Anlegen der entsprechenden Objekte aus der Kor-

respondenzdomäne eine Dokumentation des Transformationsverlaufes. Sie sind zentraler Be-

standteil der TGG-Produktionen, deren genereller Aufbau in Abbildung 5.4 dargestellt ist.

ObjLHS.name ObjRHS.nameMN

ObjLHS.name ObjRHS.name
ObjLHS.SignalCode ObjRHS.SignalCode

ObjLHS.FunctionCode ObjRHS.FunctionCode

MT

Abbildung 5.3: Korrespondenzobjekte der TGG-Produktion aus Abbildung 5.2

LHSLD LHSRDLHSKD

RHSLD RHSRDRHSKD

Korrespondenz-
Domäne

Rechte DomäneLinke Domäne

LHS
(Kontext-Graph)

RHS

Abbildung 5.4: Aufbau einer TGG-Produktion

Definition 5.2 (Tripel-Graph-Grammatik)
Eine Tripel-Graph-Grammatik TGG = (ΩE ,ΩV ,ΩN , S, PTGG,map) ist eine Graph-Grammatik mit

folgenden speziellen Eigenschaften:

• drei endliche Alphabete ΩVR,ΩVL,ΩVK terminaler Knotenbeschriftungen mit

ΩVR ∪ ΩVL ∪ ΩVK = ΩV

• zwei endliche Alphabete ΩER,ΩEL terminaler Kantenbeschriftungen mit

ΩER ∪ ΩEL = ΩE

• dem Startsymbol S = ∅
• eine endliche Menge von TGG-Produktionen PTGG

47

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Definition 5.3 (TGG-Produktion) Seien ΩVR,ΩVL,ΩVK drei disjunkte endliche Alphabete ter-

minaler Knotenbeschriftung und ΩER,ΩEL zwei disjunkte endliche Alphabete terminaler Kan-

tenbeschriftungen. Seien außerdem LHSLD, RHSLD, LHSRD, RHSRD Graphen mit Knoten- und

Kantenbeschriftungen aus den entsprechenden Domänen:

∀v ∈ LHSLD ∪RHSLD : label(v) ∈ ΩVL

∀e ∈ LHSLD ∪RHSLD : label(e) ∈ ΩEL

∀v ∈ LHSRD ∪RHSRD : label(v) ∈ ΩVR

∀e ∈ LHSRD ∪RHSRD : label(e) ∈ ΩER

∀v ∈ LHSKD ∪RHSKD : label(v) ∈ ΩVK

�e ∈ LHSKD ∪RHSKD

Eine TGG-Produktion PTGG = (LHS,RHS,LK) ist eine graphbasierte Produktion (LHS,RHS)

für die gilt:

LHS = LHSLD ∪ LHSKD ∪ LHSRD

RHS = RHSLD ∪RHSKD ∪RHSRD

LHSLD ⊆ RHSLD

LHSKD ⊆ RHSKD

LHSRD ⊆ RHSRD.

Für die Menge LK von Korrespondenzlinks gelte zudem:

∀vK ∈ LHSKD.∀l ∈ LK .l = (ωl, vK , ωr). x ∈ ωl ⇒ x ∈ LHSLD ∧
x ∈ ωr ⇒ x ∈ LHSRD

∀vK ∈ RHSKD.∀l ∈ LK .l = (ωl, vK , ωr). x ∈ ωl ⇒ x ∈ RHSLD ∧
x ∈ ωr ⇒ x ∈ RHSRD

Die Teilgraphen LHSLD, LHSKD, LHSRD, RHSLD, RHSKD, RHSRD werden im Folgenden als Pat-

tern der TGG-Produktion bezeichnet, die in drei Teilproduktionen

LHSLD := RHSLD

LHSKD := RHSKD und

LHSRD := RHSRD

organisiert sind.

Königs [Kön08] führt in seinen Arbeiten eine verkürzte Schreibweise der TGG-Produktion ein,

die auch in dieser Arbeit Verwendung findet. Dabei werden die Pattern der LHS und RHS auf-

einander abgebildet. Elemente, die durch die Regel hinzugefügt werden, also nur in der RHS

vorkommen, werden mit „++“ gekennzeichnet. Abbildung 5.5a stellt die verkürzte Form der

Regel aus Abbildung 5.2 dar. Abbildung 5.5b demonstriert, wie durch die Verwendung von

Kontextelementen und durch die Einführung des Korrespondenzgraphen der Aktor jeweils zur

48

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

entsprechenden Instanz der PLT-Stelle hinzugefügt werden kann. Selbiges gilt für die Positio-

nierung der Elemente in Abbildung 5.5c. Die LHS der Regeln (helle Elemente) bilden nicht

nur die bereits erstellte Elemente ab, sondern auch die zuvor angelegten und nun erwarteten

Modellzusammenhänge. Das den Produktionen einer TGG zu Grunde liegende Transforma-

tionsmodell für zwei korrelierende Modelle wird kompakt durch ein TGG-Schema abgebildet.

Dieses beschreibt die Zusammenhänge der beiden Modelle als Ganzes. Abbildung 5.5d zeigt

den Ausschnitt aus dem TGG-Schema für das Beispielszenario.

mn1: MN

mn2: MNar: ActuatorRequest

P:ActuatorProcessInterface

su: SystemUnitClass

++

++

++

++

++
++

++

rt: RemoteTemplate

at: ActuatorTemplate

mt1: MT
++ ++ ++

g: Group

(a) Anlegen der PLT-Stelle

g: Groupmn1: MN

mn2: MN

mn3: MN++

++

++ ++

++

++

++
vr:ValveRequest

Y: ActuatorInputPoint

su: SystemUnitClass

l1: L
P: ActuatorProcessInterface ++

++

++ ++

ar: ActuatorRequest

rt: RemoteTemplate

vt: ValveTemplate

l: Line

at: ActuatorTemplate

(b) Hinzufügen des Aktors

g: Groupmn1: MN

mn2: MN

vr: ValveRequest
+ Position

Y: ActuatorInputPoint

su: SystemUnitClass

P: ActuatorProcessInterface

ar: ActuatorRequest at: ActuatorTemplate
+ Position

mp1: MP
++

(c) Positionieren der Elemente

GroupMN

MN

ValveRequest

+ Position

ActuatorInputPoint

SystemUnitClass

ActuatorProcessInterface

ActuatorRequest

MN

RemoteTemplate

ValveTemplate

Line

MP

ActuatorTemplate

+ Position
MT

L

(d) Ausschnitt aus dem TGG-Schema

Abbildung 5.5: TGG-Produktionen und TGG-Schemata

Um die zu suchenden oder zu erstellenden Strukturen noch feingranularer beschreiben zu kön-

nen, führt Königs [Kön08] die Attributwertweitergabe ein. Dadurch können Elemente mit Attri-

buten versehen werden, die wiederum Attribute der Klassen und Assoziationen in den Modellen

repräsentieren. Für das Anwendungsszenario ermöglicht dies unter anderem die Übertragung

49

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

der Position vom Quellmodell in das Zielmodell (vgl. Abbildung 5.5c)1. Auch Informationen aus

schwach typisierten Modellen können somit für die Modelltransformation nutzbar gemacht wer-

den.

Neben der Attributwertweitergabe beschreibt Königs in seiner Arbeit eine Reihe weiterer Er-

weiterungen von Tripel-Graph-Grammatiken, die auch für diese Arbeit von Interesse sind:

NACs Soll ein bestimmtes Element explizit nicht vorhanden sein, so kann dies durch soge-

nannte NACs (engl. negativ application condition) beschrieben werden. Ein solches Ele-

ment wird durch ein Kreuz gekennzeichnet.

Optionale Elemente Optionale Elemente oder Teilgraphen dienen dazu, zwei Regeln zusam-

menzufassen, die bis auf das Vorhandensein des optionalen Elements/Teilgraphen iden-

tisch sind.

Optionale Erstellung Insbesondere für inkrementelle Modellentwicklung kann es wichtig sein,

Elemente anzulegen, wenn sie noch nicht im Zielmodell vorhanden sind und unverändert

zu lassen, wenn sie schon existieren. Dies ist wiederum eine Verschmelzung zweier se-

parater Regeln, die das Vorhandensein des Elements als Kontext haben oder nicht.

Neuere Arbeiten zu Tripel-Graph-Grammatiken liefern weitere Ansätze zur Verbesserung der

Les- und Wartbarkeit von TGG-Produktionen. So ermöglicht das Vererbungskonzept von An-

jorin, [Anj14; Anj+15] Teile der Produktion durch Dekomposition als wiederverwendbare Ober-

klasse auszugliedern. Abbildung 5.6 zeigt die Dekomposition der Produktion aus Abbildung

5.5b. Die so geschaffene Oberklasse lässt sich für die Positionierung der Elemente aus Abbil-

dung 5.5c wiederverwenden.

g: Groupg: Groupmn1: MNmn1: MN

mn2: MNmn2: MN

su: SystemUnitClasssu: SystemUnitClass

P: ActuatorProcessInterfaceP: ActuatorProcessInterface

ar: ActuatorRequestar: ActuatorRequest

rt: RemoteTemplatert: RemoteTemplate

at: ActuatorTemplateat: ActuatorTemplate

l: Line

mn3: MN++

++

++

++

++
++

++
vr:ValveRequest

Y: ActuatorInputPoint

su: SystemUnitClass

l1: L
P: ActuatorProcessInterface ++

++++

++

vt: ValveTemplate

at: ActuatorTemplatear: ActuatorRequest

Abbildung 5.6: Vererbungskonzept für Tripel-Graph-Grammatiken

1Vereinfachend wird an dieser Stelle davon abstrahiert, dass Quell- und Zielmodell unterschiedliche Darstellungen

der Positionsangaben verwenden.

50

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Anwendung von Tripel-Graph-Grammatiken auf nicht-bijektive Modellzusammenhänge

steht bei der Amalgamierung [Leb+15; Leb+16] sowie dem Einsatz von Leerlauf-Regeln

[Leb+16] im Vordergrund. Die Amalgamierung erlaubt, 1-zu-n Zusammenhänge zwischen

Elementen des Quell- und Zielmodells zu beschreiben. So können zum Beispiel unterschied-

lich detaillierte Ansichten einer Anlage (Ansicht je Reaktor, Übersicht Teilanlage, Übersicht

gesamte Anlage, . . .) im HMI existieren. Wird die Erstellung der einzelnen Ansichten optional

bzw. durch einen Parameter in den Planungsdokumenten festgelegt, ist zum Zeitpunkt der Re-

gelbeschreibung nicht klar, wie viele Ansichten bei der späteren Regelanwendung existieren.

Dennoch soll in jeder Ansicht ein Navigationselement zu den jeweilig anderen Ansichten gene-

riert werden. Um diese 1-zu-n Beziehung beschreiben zu können, werden mehrere konkrete

TGG-Regeln zusammengefasst und auf Basis einer Kern-Regel beschrieben. Im aktuellen Bei-

spiel umfasst die Kern-Regel zunächst die Erstellung einer Ansicht ohne Navigationselemente.

Die Multi-Regeln erweitern diesen Kern um das Vorhandensein keiner/einer/zwei/. . . weiterer

Ansichten zu denen Navigationselemente erstellt werden müssen. Die Kern-Regel enthält den

Kontext-Teil, den alle zusammengefassten Regeln gemeinsam haben. Zusammen mit den

Multi-Regeln, die die unterschiedlichen Kombinationen beschreiben, ergibt die Kern-Regel

ein Interaktions-Schema. Die konkrete für ein Quell-/Zielmodell resultierende TGG-Produktion

wird multiamalgamierte TGG-Regel genannt. Für ein konkretes Planungsdokument mit drei

parametrierten Ansichten erstellt die multiamalgamierte TGG-Regel diese drei Ansichten mit

jeweils zwei Navigationselementen zu den anderen beiden Ansichten.

Leerlaufregeln erlauben Modelländerungen im Quell- oder Zielmodell, die keinen Einfluss auf

das jeweils andere Modell haben. So hat ein Kommentar im PandIX keine Entsprechung im HMI

und Hintergrundbilder oder Markierungspfeile des HMIs finden sich nicht im PandIX wieder.

Quell-Leerlauf-Regeln besitzen daher nur eine LD-Teilproduktion, Ziel-Leerlauf-Regeln nur eine

RD-Teilproduktion.

5.1.1 Operationale Regeln

Die im vorangegangenen Abschnitt vorgestellten bidirektionalen deklarativen TGG-Produktionen

können dafür genutzt werden, zwei Modelle simultan zu erstellen. Ein Blick auf die in Kapitel

4.2 identifizierten Anforderungen zeigt, dass dies nicht den Kern der Modelltransformation in

der Automatisierungstechnik trifft. Schürr [Sch95] führt dazu eine Übersetzung der bidirektio-

nalen deklarativen Regeln zu operationalen Regeln ein. Je nach Anwendungsfall werden dabei

unidirektionale vorwärts- oder rückwärtsgerichtete Regeln erzeugt. Vorwärtsgerichtete Regeln

werden genutzt, um Informationen aus dem Quellmodell in das Zielmodell zu übertragen. Auf

der anderen Seite können die Informationen aus dem Zielmodell mittels rückwärtsgerichteten

Regeln in das Quellmodell zurückpropagiert werden. Bei der Untersuchung von Quell- und

Zielmodell auf Widerspruchsfreiheit werden bidirektionale Korrespondenzregeln eingesetzt.

Die Darstellung der operationalen Regeln ist an die der TGG-Produktionen angelehnt. Wie

bei Lauder [Lau12] werden Elemente, die im Quellmodell hinzugekommen sind mit � →��
gekennzeichnet und Elemente, die bereits als Kontext bestanden mit ��→��.

Die plattformunabhängigen operationalen Regeln werden in einem weiteren Schritt kompiliert

und dadurch in plattformspezifische imperative Anweisungen zur Modelltransformation über-

51

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

g: Groupmn1: MN

mn2: MNar: ActuatorRequest

P:ActuatorProcessInterface

su: SystemUnitClass

rt: RemoteTemplate

at: ActuatorTemplate

mt1: MT

++

++++

++
++

++

(a) Vorwärtsgerichtete Regel

g: Groupmn1: MN

mn2: MNar: ActuatorRequest

P:ActuatorProcessInterface

su: SystemUnitClass

rt: RemoteTemplate

at: ActuatorTemplate

mt1: MT

++

++

++

++ ++

++

(b) Rückwärtsgerichtete Regel

g: Groupmn1: MN

mn2: MNar: ActuatorRequest

P:ActuatorProcessInterface

su: SystemUnitClass

++

rt: RemoteTemplate

at: ActuatorTemplate

mt1: MT

++

(c) Korrespondenzregel

Abbildung 5.7: Aus Abbildung 5.5a abgeleitete operationale Regeln

setzt. Dieser Ansatz ermöglicht es, bei der Übersetzung zu optimieren und eine effiziente

Modelltransformation bereitzustellen. Einen alternativen Ansatz bietet der TGG-Interpreter

[KW07; GK07]. Hierbei werden keine operationalen Regeln erzeugt und es erfolgt auch kei-

ne Übersetzung in imperative Anweisungen. Stattdessen bildet der TGG-Interpreter die platt-

formspezifische zentrale Einheit, die die bidirektionalen TGG-Regeln auswertet und anwendet.

Eine Optimierung der Modelltransformation ist durch den fehlenden Übersetzungsschritt bei

diesem Ansatz nur sehr eingeschränkt möglich.

Beiden Ansätzen gemein ist, dass bei einer Vorwärtstransformation2 eine Regel nur dann an-

gewendet werden kann, wenn eine Entsprechung für RHSLD in der linken Domäne gefunden

wurde und alle Kontextelemente bereits übersetzt wurden. Zudemmuss in der rechten Domäne

eine Entsprechung für LHSRD zu finden sein. Sind all diese Anforderungen erfüllt, so können

die neuen Elemente in der rechten Domäne erzeugt werden. Die Objekte der linken Domäne,

die durch die Regel auf Nicht-Kontextelemente abgebildet wurden, werden anschließend als

übersetzt markiert und können für weitere Regelanwendungen als Kontextelemente genutzt

werden. Sie dürfen jedoch im weiteren Verlauf der Transformation nicht durch eine weitere Re-

gel als Nicht-Kontextelemente verwendet werden, da jedes Objekt nur einmal übersetzt werden

darf.

5.1.2 Kontrollalgorithmus

Die Regeln dienen als Basis für den TGG-Kontrollalgorithmus. Königs unterscheidet beim Kon-

trollalgorithmus zwischen der Strategie und dem Scheduling. Während die Strategie den Teil

2Äquivalentes gilt für eine Rückwärtstransformation sowie eine Konsistenzalanyse.

52

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

des Modells identifiziert, auf den eine Regel als nächstes angewendet werden soll, beschreibt

das Scheduling in welcher Reihenfolge die Regeln ausgewertet werden. Die Bestimmung der

Reihenfolge kann unabhängig vom Nutzer geschehen (implizites Scheduling) oder unter Ein-

flussnahme des Nutzers (explizites Scheduling). Zweiteres kann zum Beispiel durch die Verga-

be von Prioritäten oder durch direktes Einbeziehen des Nutzers in den Übersetzungsprozess

geschehen. Sind Kontrollstrukturen und Regeln strikt voneinander getrennt, spricht man von

externem Scheduling. Im Gegensatz dazu kann beim internen Scheduling die Auswertung von

Regeln auch durch andere Regeln angestoßen werden.

5.1.3 Modelltransformation zur Laufzeit

Unter dem Begriff models@runtime untersuchen Wissenschaftler seit einigen Jahren die Mög-

lichkeit, Modelltransformation nicht nur im Engineering-Prozess sondern auch im Laufzeitsys-

tem anwendbar zu machen. An dieser Stelle sollen insbesondere die Arbeiten von Vogel et al.

[Vog+09a; Vog+09b; VG13] Erwähnung finden, da sie sich bei der Umsetzung der Modelltrans-

formation auf die in dieser Arbeit fokussierten Tripel-Graph-Grammatiken stützen (vgl. Abbil-

dung 5.8). Die Modelltransformation findet bei diesem Ansatz außerhalb der automatisierungs-

technischen Laufzeitumgebung statt. Zudem sind Laufzeitsystem und Engineeringsystem strikt

voneinander getrennt. Dies hat zur Folge, dass ein aufwändiger Synchronisationsmechanismus

zwischen Engineering-, Transformations- und Laufzeitsystem implementiert werden muss. Das

Quellmodell wird dabei um eine Sensor-/Effektor-Schnittstelle erweitert. Über Sensoren werden

Änderungen am Quellmodell nach außen bekanntgegeben. Änderungen am Zielmodell kön-

nen über Effektoren in das Quellmodell zurückgespielt werden. Insbesondere die Quellmodelle

müssen dazu speziell angepasst und um die Sensor-/Effektor-Schnittstelle erweitert werden.

Um Änderungen effizient erkennen zu können, schlagen Vogel et al. einen Ereignismechanis-

mus vor. Beim Auftreten eines Ereignisses, also einer Änderung am Quell- oder Zielmodell wird

zunächst überprüft, ob die Modelle weiterhin konsistent sind. Ist dies nicht der Fall, wird eine

Modellanpassung vorgenommen.

Engineeringsystem

EffektorenSensoren

Autonomer Manager

Zielmodell Metamodell

Quellmodell

Modelltransformation

Zielmodell

Laufzeitsystem

Metamodell

MetamodellTGG Produktionen

Metamodell

Architekturelement
Modell
Lesen/ schreiben
Definiert durch

Abbildung 5.8: Architektur von models@runtime nach [Vog+09b]

53

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Unabhängig vom konkreten Ansatz beschreiben Bencomo et al. [Aßm+14] die Fähigkeit zur

Introspektion und Selbstmodifikation als einen Kernpunkt beim Einsatz von Modellen für die

Modelltransformation zur Laufzeit.

5.2 Alternative Ansätze

In vorangegangenen Untersuchungen [KQ11; SK12; Kra+12] hat sich gezeigt, dass Tripel-

Graph-Grammatiken eine gute Grundlage für die Modelltransformation in der Automatisie-

rungstechnik bieten. Insbesondere die Verwendung von Graphen als Basis für die Produk-

tionen kommt dem Einsatz in der Automatisierungstechnik sehr entgegen. Die oftmals als

UML-Diagramme und/oder Grammatiken vorliegenden Automatisierungsmodelle können durch

ein Tripel-Graph-Schema direkt miteinander in Beziehung gesetzt werden. Die daraus abge-

leiteten Produktionen sind für den Automatisierungstechniker gut verständlich. Auch die in

Kapitel 4 identifizierten Anforderungen an Modelltransformationen für die Automatisierungs-

technik können durch Tripel-Graph-Grammatiken bereits weitestgehend erfüllt werden. So

kommt der TGG-Ansatz ohne Anpassungen an den Quell- und Zielmodellen aus. Dies ist eine

wichtige Voraussetzung dafür, dass die im Lebenszyklus der Anlage verwendeten Werkzeuge

ohne nennenswerte Einschränkungen frei gewählt werden können, sofern sie ihre Daten in

einem allgemein lesbaren Austauschformat zur Verfügung stellen. Zudem stellen Tripel-Graph-

Grammatiken basierend auf einem Regelsatz ein breites Spektrum von Einsatzmöglichkeiten

von Batch-Transformation über Rückwärtspropagieren, Konsistenzanalyse und inkrementelle

Modelländerungen zur Verfügung.

An anderen Stellen zeigen sich jedoch auch die Schwächen des TGG-Ansatzes. Mit dem De-

kompositionsansatz von Anjorin ist zwar ein erstes Konzept zur Wiederverwendung von Regel-

bestandteilen geschaffen, weiterführende Möglichkeiten der Wiederverwendung stehen jedoch

noch nicht zur Verfügung. Auch ist die Mächtigkeit von Tripel-Graph-Grammatiken gegenüber

anderen Ansätzen noch verhältnismäßig eingeschränkt. Die Abbildbarkeit von nicht-bijektiven

Zusammenhängen mittels Leerlauf-Regeln und multiamalgamierten Regeln bieten zwar auch

hier schon eine gute Basis, allerdings fehlen unter anderem praktikable Ansätze für die Mo-

delltransformation zwischen mehrere Quell- und Zielmodellen. Wiederverwendbarkeit von Re-

gelteilen und multiple Quell- und Zielmodelle sind wichtige Voraussetzungen, um Tripel-Graph-

Grammatiken fit für reale Einsatzszenarien zu machen. Im Folgenden sollen zwei Transfor-

mationsansätze angerissen werden, die in ihrem Rahmen Lösungen für diese offenen Punkte

anbieten.

Das VIsual Automated model TRAnsformations Framework - kurz VIATRA [Ber+15; RL07] ist

eine Graftransformationserweiterung für Eclipse. Es ermöglicht eine ereignisgetriebene Mo-

delltransformation, die auf Änderungen im Modell direkt reagiert. Zwei Arten von Ereignissen

werden dabei unterschieden; explizite Aufrufe der Regelbearbeitung, sogenannte kontrollierte

Ereignisse und beobachtete Ereignisse wie zum Beispiel Modelländerungen. VIATRA bietet ein

breites Spektrum an Wiederverwendungskonzepten bei der Gestaltung der Regeln. So können

Regeln die Bearbeitung anderer Regeln anstoßen. Dies ermöglicht ein Kaskadieren von Re-

geln und ein Auslagern mehrfach benötigter Regelbestandteile in separate Regeln. Eine Regel

54

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

5.2 Alternative Ansätze

kann dabei nicht nur andere Regeln sondern auch die eigene Bearbeitung anstoßen, wodurch

eine rekursive Regelbeschreibung ermöglicht wird. Auch erlaubt VIATRA die Definition von al-

ternativen Regelbestandteilen, die auf Basis einer booleschen Bedingung nach dem Schema

WENN-DANN-SONST angewendet werden. Hierdurch lassen sich, ähnlich einer Amalgamie-

rung von TGG-Produktionen, zwei nahezu identische Regeln zu einer zusammenfassen. Ne-

ben der reinen Wiederverwendbarkeit spielt hier auch die Zeitersparnis bei der Regelauswer-

tung eine große Rolle, da der Regelteil vor der Alternative nur einmal gebunden werden muss

und anschließen sowohl für die WENN-Variante als auch für die SONST-Variante zur Verfügung

steht. Die Bereitstellung von Graphmustern stellt eine weitere Möglichkeit zur Wiederverwen-

dung dar. Graphmuster sind prototypische Ausschnitte aus einem Instanzmodell, die bei der

Regelanwendung injektiv auf Modellstrukturen abgebildet werden, d.h. die Elemente des Mus-

ters werden auf disjunkte Elemente im Modell abgebildet. Ist eine solche Abbildung erfolgreich,

werden die Modellobjekte für die Regelanwendung gebunden und es kann innerhalb der Regel

darauf zugegriffen werden. Besonders effizient sind die Graphmuster, wenn sie in mehreren

Regeln zur Anwendung kommen oder wenn sie als Teile in anderen Mustern angewendet wer-

den. Auch bei der Beschreibung von Mustern sind Rekursion und Alternativen erlaubt.

Auch die OMG stellt mit der sogenannten QVT - Query/View/Control Sprachen für die Modell-

transformation zur Verfügung [MOF-QVC]. QVT besteht aus den deklarativen Sprachen QVT-

Relations und QVT-Core, sowie der imperativen Sprache QVT-Operational. QVT-Core stellt

einen kleinen, sehr kompakten Sprachumfang für die Beschreibung von Modellzusammenhän-

gen zur Verfügung. Der verringerte Sprachumfang vereinfacht die spezifikationsgetreue Rea-

lisierung von QVT-Core. Dies geschieht jedoch zu Lasten der Benutzerfreundlichkeit, da die

Beschreibung von Modellzusammenhängen vergleichsweise kompliziert ist. Für den Entwick-

ler einer QVT-basierten Modelltransformation spielt QVT-Relations mit seinem benutzerfreund-

licheren Sprachumfang die größer Rolle. Hiermit lassen sich Relationen zwischen Modellen be-

schreiben. Diese können mit imperativen Elemente aus QVT-Operational angereicht werden.

Für die Anwendung einer Modelltransformation, werden die mit Hilfe von QVT-Relations be-

schriebenen Modellzusammenhänge zunächst in QVT-Core übersetzt. QVT-Core bildet daher

den „Bytecode“ für die „Hochsprache“ QVT-Relations. Für diese Arbeit von besonderem Inter-

esse sind die Unterstützung von multiplen Quell- und Zielmodellen, sowie die Möglichkeit der

Inplace-Transformation. Im Bereich der Wiederverwendbarkeit sticht insbesondere das Templa-

tekonzept von QVT hervor. Templates beschreiben einfache oder komplexe Muster im Quell-

oder Zielmodell und versehen diese mit einem Namen. Dadurch lassen sich diese Muster in

verschiedenen Relationen über das Schlüsselwort „Domain“ und den Namen des Templates

wiederverwenden.

Beide Ansätze, sowohl VIATRA als auch QVT erlauben das Löschen von Modellelementen.

Dies ist bisher bei Tripel-Graph-Grammatiken noch nicht in zufriedenstellender Weise möglich.

Zwar laufen hierzu erste Untersuchungen, jedoch sind die bisher dazu veröffentlichten Ergeb-

nisse noch sehr vage [KW07], es fehlen Beweise zum Erhalt der formalen Eigenschaft von

Tripel-Graph-Grammatiken und es kommt zu Performanceproblemen [GPR11].

55

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die
Automatisierungstechnik

In den vorangegangenen Kapiteln wurden das Potential sowie die Voraussetzungen für ei-

ne Modelltransformation in der Automatisierungstechnik beleuchtet und gezeigt, dass Tripel-

Graph-Grammatiken den an eine solche Transformation gestellten Anforderungen besonders

gut gerecht werden. Um Tripel-Graph-Grammatiken innerhalb prozessleittechnischen Laufzeit-

umgebungen nutzbar zu machen, bedarf es allerdings einer Integration in die gängigen Spra-

chen der Automatisierungstechnik. Die ACPLT-Modelltransformation (ACPLT/MT) bietet diese

Integration. In diesem Kapitel wird zunächst ein Überblick über die getroffenen Designentschei-

dungen gegeben, die die Entwicklung von ACPLT/MT beeinflusst haben. Das daraus entstan-

dene plattformunabhängige Modell sowie seine plattformspezifische Realisierung auf Basis von

ACPLT/FB werden anschließend näher beleuchtet.

6.1 Grundlegende Design-Entscheidungen

In der Automatisierung von Anlagen kommen meist Speicherprogrammierbare Steuerungen

(kurz SPS) zum Einsatz. Diese zeichnen sich durch vergleichsweise niedrige Speicher- und

Performance-Werte aus. Zudem stehen zur Programmierung von SPSen ausschließlich die

Sprachen der IEC 61131-3 [IEC61131] zur Verfügung. Insbesondere die streng zyklische Be-

arbeitung einzelner Softwarekomponenten unterscheiden diese Sprachen von gängigen Pro-

grammiersprachen. Taktzyklen von 10ms bis runter zu 10μs (in der Fertigungstechnik) so-

wie die von SPSen erwartete Echtzeitfähigkeit erfordern eine modulare und unterbrechbare

Programmierung. Um die zu realisierende Automatisierungsfunktion auf einer SPS zur Verfü-

gung zu stellen, muss das zu entwickelnde Konzept daher eine Portierung von Tripel-Graph-

Grammatiken in die Welt der IEC 61131-3 beinhalten.

Der gravierendste Unterschied von ACPLT/MT zu anderen TGG-Ansätzen zeigt sich im Aufbau

und der Anwendung der TGG-Produktionen. Neben der Verwendung der verkürzten Schreib-

weise von Tripel-Graph-Grammatiken setzt ACPLT/MT auf sogenannte aktivierbare Regeln.

Diese werden, weder wie beim Standardansatz in operationale Regeln übersetzt, noch wer-

den die Produktionen mittels Interpreter ausgewertet. Stattdessen sind die einzelnen Elemente

einer ACPLT/MT-Regel Objekte in der SPS und enthalten imperativen Code, der sie befähigt

bestimmte Teilaufgaben der Transformation wie das Suchen oder Erstellen von Objekten und

Links selbstständig durchzuführen. Um dies realisieren zu können, sind die Elemente der lin-

ken und rechten Domäne, anders als bei Tripel-Graph-Grammatiken üblich, keine Elemente

aus den jeweiligen domänenspezifischen Sprachen, sondern modellneutrale Repräsentanten,

56

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.1 Grundlegende Design-Entscheidungen

Deklarative Ebene

Kommandostruktur

Operationale Ebene

Abbildung 6.1: Funktionsebenen eines ACPLT/MT-Pattern

die mit den erwarteten Eigenschaften, wie Klasse, vorhandene Attribute oder Verlinkungen pa-

rametriert werden können. Diese schwache Typisierung über Repräsentanten ermöglicht es,

dass die Repräsentanten Code zur Durchführung der Modelltransformation enthalten.

ACPLT/MT-Regeln liegen zunächst als passive Objektstrukturen vor, werden also nicht zyklisch

ausgeführt. In diesem passiven Zustand werden die enthaltenen imperativen Anweisungen

nicht ausgeführt und die MT-Regel steht als bidirektionale deklarative Regel zur Verfügung.

Wird eine ACPLT/MT-Regel aktiviert, wird sie in die zyklische Bearbeitung eingebunden und

dadurch zur operativen Regel. Dieses Design hat den Vorteil, dass keine operationalen Kopien

der deklarativen Regeln erstellt werden müssen. Auch ein Interpreter wird hierbei nicht benö-

tigt. Die Aktivierung einer Regel erfolgt durch Übergabe eines Richtungsparameters und eines

Aktivierungskommandos. Ersteres legt fest, ob ein Vergleich, eine Vorwärts- oder eine Rück-

wärtstransformation der beiden Modelle durchgeführt werden soll. Das Aktivierungskommando

versetzt die Objekte der ACPLT/MT-Regel in den aktiven Zustand und löst die Bearbeitung der

imperativen Anweisungen aus. Hierbei werden jedoch nicht alle Objekte einer Regel gleich-

zeitig aktiviert. Vielmehr sind die einzelnen Objekte über zusätzliche Assoziationen zu einer

Kommandostruktur miteinander verknüpft. Zur Laufzeit werden zunächst die Objekte angesto-

ßen, die in der Kommandostruktur führend sind. Diese bearbeiten ihre interne Logik und stoßen

anschließend die Objekte an, die ihnen in der Kommandostruktur untergeordnet sind. Wir spre-

chen im weiteren Verlauf von einer Auftraggeber-Auftragnehmer-Beziehung, in der das Objekt,

das in der Kommandostruktur übergeordnet ist als Auftraggeber und das untergeordnete Ob-

jekt als Auftragnehmer bezeichnet wird. Eine ACPLT/MT-Regel besitzt daher drei verschiedene

Funktionsebenen (vgl. Abbildung 6.1). Neben der Repräsentation der Modellzusammenhänge

zwischen linker und rechter Domäne, der deklarativen Ebene, repräsentieren die gleichen Ele-

mente auch die Ausführungslogik in Form der operationalen Regel sowie die Kommandostruk-

tur.

Neben den Anpassungen aus Platz- und Performancegründen, spielen aber auch strukturel-

le Besonderheiten eine große Rolle für die Integration von Tripel-Graph-Grammatiken in die

prozessleittechnische Laufzeitumgebung. Da innerhalb der SPS alle Modelle in einer baumar-

tigen Struktur mit gemeinsamen Wurzelknoten organisiert sind, ist jede Transformation zwi-

schen zwei dieser Modelle per se erstmal eine potentielle Inplace-Transformation. Ein weiteres

Problem stellt die Anforderung der Automatisierungstechnik nach Transformationen zwischen

mehreren Quell- und Zielmodellen dar. Im Anwendungsszenario S1 treten beide Problemfälle

zu Tage.

57

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Beispiel 6.1 Anwendungsszenario S1 benötigt für die Auswertung des Anlagenzustandes die

Struktur der Anlage und den aktuellen Anlagenzustand. Ersteres wird durch PandIX, zweiteres

durch die Prozessführung, in unserem Fall ACPLT/PF, bereitgestellt. Der Stand dieser beiden

Modellinstanzen wird abgeglichen mit der Anzeige auf der Bedienoberfläche und in Szenario

S1.c) zusätzlich mit der Prozessführung selbst zum Sperren oder Freigeben eines Aktors.

Sowohl Inplace-Transformationen als auch multiple Quell- und Zielmodelle sind mit Tripel-

Graph-Grammatiken zunächst nicht zu vereinbaren. Um die Integration von Tripel-Graph-

Grammatiken in die Welt der Automatisierungstechnik zu ermöglichen, bedarf es einer ge-

naueren Analyse, unter welchen Bedingungen Tripel-Graph-Grammatiken trotzdem zum Ein-

satz kommen können und wo die Grenzen der Einsatzfähigkeit erreicht sind. So muss der

gemeinsame Wurzelknoten äquivalent zum leeren Modell behandelt werden. Er ist nicht Teil

der einzelnen Modelle und darf als Kontextelement in allen drei Domänen verwendet werden.

Es darf jedoch keine TGG-Produktion geben, die den Wurzelknoten erzeugt. Zudem müssen

die Modelle zusätzliche Eigenschaften erfüllen, um Inplace-Transformationen zu vermeiden.

Definition 6.1 (Klassendisjunkte Modelle) Zwei objektorientierte Modelle MM1 und MM2

sind klassendisjunkt, wenn die Menge der Klassennamen disjunkt sind. Klassendisjunkte Mo-

delle können zum Beispiel durch die Angabe von vollständig qualifizierte Klassennamen forciert

werden.

Um Tripel-Graph-Grammatiken auf Modelle anzuwenden, die unter einem gemeinsamen Wur-

zelknoten organisiert sind, müssen die Modelle klassendisjunkt sein. Neben der Verwendung

von klassendisjunkten Modellen muss verhindert werden, dass Verlinkungen zwischen den

beiden Modellen erzeugt werden. Assoziationen sollen allerdings nicht dahingehend einge-

schränkt sein, dass die Assoziationsnamen der beiden Modelle disjunkt sind. Dadurch würden

zwar Querverbindungen unterbunden, allerdings wären elementare Assoziationen wie „enthält“

oder auch Verbindungen zwischen Aus- und Eingangsvariablen der Funktionsbausteine nicht

mehr domänenübergreifend einsetzbar. Um Links zwischen den beiden Modellen dennoch un-

terbinden zu können, wird die Verwendung von Assoziationen in den TGG-Produktionen da-

hingegen eingeschränkt, dass sie nur gemeinsam mit allen durch sie verbundenen Klassen

verwendet werden dürfen. Mit dieser Einschränkung kann folgende Eigenschaft zugesichert

werden:

Behauptung 6.1 Eine Transformation mittels Tripel-Graph-Grammatiken zwischen zwei Mo-

dellen klassendisjunkter Modelle kann als Outplace-Transformation behandelt werden, auch

wenn die Modelle über einen gemeinsamen modellexternen Wurzelknoten verfügen.

Anders ausgedrückt heißt das, dass Objekte und Links, die durch Pattern der linken Seite

erzeugt werden, weder durch Pattern der rechten Seite erzeugt werden können noch als Kon-

textelemente des rechten Patterns gefunden werden können. Das Gleiche gilt sinngemäß für

Objekte und Links, die durch Pattern der rechten Seite erzeugt werden.

58

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.1 Grundlegende Design-Entscheidungen

Beweis 6.1 Angenommen, es gibt eine Objekt O, das sowohl durch die linke Teilproduktion ei-

ner TGG-Produktion als auch durch die rechte Teilproduktion der gleichen oder einer anderen

TGG-Produktion gefunden oder erzeugt werden kann. Da die linke Teilproduktion nur Klassen

des Modells der linken Domäne enthalten, muss O eine Instanz einer solchen Klasse sein.

Mit der gleichen Begründung muss es aber auch Instanz einer Klasse des Modells der rech-

ten Domäne sein. Da die Menge der Klassennamen der linken und rechten Domäne jedoch

klassendisjunkt sein sollen, kann ein solches Objekt O nicht existieren.

Angenommen, es gibt einen Link L, der sowohl durch eine linke Teilproduktion einer TGG-

Produktion als auch durch eine rechte Teilproduktion derselben oder einer anderen TGG-

Produktion gefunden oder erzeugt werden kann. Da eine Assoziation immer im Zusammen-

hang mit den durch sie verknüpften Klassen in einer TGG-Produktion verwendet werden muss,

müssen die durch den Link verbundenen Objekte O1, O2 Instanzen der entsprechenden Klas-

sen sein. Der obigen Argumentation folgend können O1 und O2 aber nur entweder durch linke

oder rechte Teilproduktionen gefunden oder erzeugt werden. Auch wenn der Link an sich in

beiden Domänen gefunden oder erzeugt werden könnte, in Kombination mit den verlinkten

Objekten ist er eindeutig einer Domäne zuzuordnen. Ein solcher Link L kann daher nicht exis-

tieren.

Auch Querverbindungen zwischen den Modellen sind dadurch ausgeschlossen, da eine Quer-

verbindung Objekte verbinden würde, von denen eines eine Instanz einer Klasse des linken

Modells wäre und das andere eine Instanz einer Klasse des rechten Modells. Angenommen

ein solcher Link würde durch eine rechte Teilproduktion erzeugt. Dann müsste diese auch ei-

ne Klasse enthalten, die das Objekt erzeugt oder findet, das zum linken Modell gehört. Dies

ist aber nicht möglich, da die Modelle klassendisjunkt sind. Gleiches gilt sinngemäß für das

Erzeugen des Links in einer linken Teilproduktion.

Für den Nachweis, dass Tripel-Graph-Grammatiken unter bestimmten Umständen auch für n-

zu-m Transformationen zum Einsatz kommen können, werden sogenannte Kombinationsmo-

delle eingeführt:

Definition 6.2 (Kombinationsmodell) Seien M1 . . . Mn Modelle mit den durch sie erzeug-

baren Modellinstanzen m1.1. . . m1.a, . . . , mn.1. . . mn.b. Ein Kombinationsmodell KM1..n ist ein

Modell, das alle Kombinationen von Modellinstanzen der kombinierten Modelle erzeugen kann.

Bei der Verwendung von Graph-Grammatiken wird ein Kombinationsmodell durch die Ver-

schmelzung der einzelnen Grammatiken zu einer gemeinsamen Grammatik erzeugt. Diese

Verschmelzung umfasst folgende Punkte

• die Menge der Knoten-/Kantenbeschriftungen der kombinierten Grammatik ist die Verei-

nigung der Knoten-/Kantenbeschriftungen aller verschmolzenen Grammatiken

• die Menge der Produktionen der kombinierten Grammatik ist die Vereinigung der Produk-

tionen aller verschmolzenen Grammatiken

Mit Hilfe dieser Kombinationsmodelle lässt sich zeigen, dass unter der Voraussetzung der klas-

sendisjunkten Modelle für die linke und rechte Domäne Tripel-Graph-Grammatiken auch auf

n-zu-m Transformationen angewendet werden können:

59

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Behauptung 6.2 Tripel-Graph-Grammatiken können auf n-zu-m Transformationen angewen-

det werden, wenn die Modelle der linken und der rechten Domäne klassendisjunkt sind.

Beweis 6.2 Die Modelle der linken, respektive rechten Domäne können zu Kombinationsmo-

dellen KML und KMR verschmolzen werden. Dadurch kann die Transformation auf eine 1-zu-1

Transformation abgebildet werden. Durch die klassendisjunkten Modelle können unerwünschte

Inplace-Transformationen auch im Setting der SPS ausgeschlossen werden.

Sind die Modelle der linken und der rechten Domäne klassendisjunkt, bleiben daher auch

bei einem gemeinsamem Wurzelknoten oder der n-zu-m Transformation alle für Tripel-Graph-

Grammatiken zugesicherten Eigenschaften erhalten.

Schwieriger gestaltet sich die Situation, wenn Modelle domänenübergreifend verwendet wer-

den. Dies bringt nicht absehbare Probleme mit sich und ist mit Tripel-Graph-Grammatiken nicht

realisierbar. Bei ACPLT/MT wird jedoch auch die Beschränkung auf klassendisjunkte Model-

le nicht per se gefordert. Stattdessen wird bei der domänenübergreifenden Verwendung von

Modellen eine Warnung an den Benutzer ausgegeben. Diesem steht es dann frei, bewusst

die Welt der Tripel-Graph-Grammatiken zu verlassen und die damit verbundenen Risiken ein-

zugehen. Das Sperren und Freigeben eines Aktors aus dem Anwendungsszenario S1 ist ein

solcher Fall, bei dem die Modelle der linken und rechten Domäne nicht klassendisjunkt sind,

da ACPLT/PF in beiden Domänen zum Einsatz kommt. Der Rest des Szenarios hingegen kann

mittels Tripel-Graph-Grammatiken realisiert werden.

Die Amalgamierung wurde nicht realisiert, da sich diese nur schwer mit dem Konzept der akti-

vierbaren Tripel-Graph-Grammatiken vereinbaren lässt.

Abbildung 6.2 zeigt eine Übersicht über die Struktur des ACPLT/MT-Frameworks und den zur

Verfügung stehenden Klassen. Hier zeigt sich eine weitere Besonderheit von ACPLT/MT. Zu-

sätzlich zu den drei üblichen Teilproduktionen für die linke, die rechte und die Korrespondenz-

domäne besitzen ACPLT/MT-Regeln noch ein weiteres, sehr kompaktes Triggerpattern. Dieses

erzeugt bei der Ausführung keinerlei Objekte. Es dient dazu, ähnlich wie bei VIATRA, die Be-

arbeitung einer Regel gezielt anzustoßen oder auf ein Ereignis zu reagieren. Dieses Design

verringert die Anzahl der aktiven Objekte, die in der SPS bearbeitet werden müssen. Zudem

kann so zugesichert werden, dass zu einem beliebigen Zeitpunkt immer nur eine Regel ak-

tiv ist. So werden zwar alle Triggerpattern parallel ausgewertet, schlägt aber ein Trigger an,

wird die Triggerauswertung unterbrochen und die zum Trigger gehörige Regel angewendet. Im

Abschnitt 6.5 wird auf das Konzept der Triggerpattern nochmals im Detail eingegangen.

Die Klassen von ACPLT/MT sowie ihre Ausprägung in der deklarativen Ebene, der operationa-

len Ebene und der Kommandostruktur werden im Folgenden im Detail vorgestellt.

6.2 Deklarative Ebene

ACPLT/MT-Regeln orientieren sich in ihrem Grundaufbau an der verkürzten Schreibweise

von TGG-Produktionen, die jeweils ein Pattern für die linke und rechte Domäne sowie ein

60

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

MT-Pattern

1ACPLT/MT
Template

Datenbank

Regelbasis

stösst an
Scheduling-
Komponente

* MT-KopfelementMT-Regel

4

11

1

* MT-Template MT-Pattern1

MT-Element*

(a) Struktur des ACPLT/MT-Frameworks

ModifikatorMT-LinkQuelle

Ziel

MT-Kopfelement

MT-Variable

MT-MetaVar MT-Platzhalter MT-Verzweigung MT-Logik

MT-Wahr MT-Nicht

MT-Element

+Kontext: Bool
+RepKlasse: String

MT-Objekt
+ ObjName: String

MT-CLinkV2V E2E

(b) ACPLT/MT-Elemente

Abbildung 6.2: ACPLT/MT-Komponenten im Überblick

Pattern für die Korrespondenzdomäne besitzen. So lange ACPLT/MT als Realisierung von

Tripel-Graph-Grammatiken zum Einsatz kommen, wird synonym zum Begriff Pattern der Be-

griff Teilproduktion verwendet. Wie auch beim zu Grunde liegende Konzept der Tripel-Graph-

Grammatiken, sind die Pattern Graphen, die die Strukturen der korrelierenden Modelle sowie

die der Korrespondenzdomäne abbilden. Wie in Abbildung 6.2b ersichtlich, stehen spezielle

ACPLT/MT-Elemente für die Repräsentation von Objekten, Links und Variablen zur Verfü-

gung. Abbildung 6.3 zeigt, wie diese genutzt werden, um Suchmuster zu beschreiben. Die

gesuchten Modellobjekte sind in diesem Fall zwei geschachtelte Funktionsbausteine N1 und P

(vgl. Abbildung 6.3a), wobei für N1 verlangt wird, dass es zum einen eine Instanz der Klasse

ActuatorRequest ist und zum anderen mindestens zwei Eingangsvariablen SignalCode

und FunctionCode zur Verfügung stellt. Typ und Wert dieser Variablen sind in diesem Bei-

spiel nicht von Interesse. Das gesuchte Modellobjekt P muss in N1 eingebettet und eine

Instanz der Klasse ActuatorProcessInterface sein. Für die Musterbeschreibung stehen

in ACPLT/MT drei Darstellungen zur Verfügung, die an die übliche Darstellung der deklarativen

TGG-Produktionen angelehnte Objektdarstellung, die an FBDs angelehnte Funktionsblock-

darstellung und die gemischte Darstellung, in der Elementen der Objektdarstellung und der

Funktionsblockdarstellung gemeinsam verwendet werden. In der Objektdarstellung werden

MT-Links zur besseren Lesbarkeit durch Pfeile repräsentiert, die mit dem Namen der Assozia-

tion beschriftet sind. Ist kein Name angegeben, so handelt es sich implizit um eine enthält-

Beziehungen (RepKlasse="contains"). Falls ein entsprechender Link durch die Regel im

Modell erzeugt wird, ist der Pfeil mit einem „+“markiert. Quelle und Ziel des repräsentierten

Links sind durch die Pfeilrichtung gekennzeichnet.

61

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

N1: ActuatorRequest

SignalCode

FunctionCode

P: ActuatorP…

(a) Gesuchte Modellobjekte

ar: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorRequest”

p: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorProcessInterface”
+ ObjName = “P”

ObjName: MT-MetaVar

SignalCode: MT-Variable

FunctionCode: MT-Variable

+

+

+

+

(b) Objektdarstellung

Kontext

RepKlasse

ObjName

SignalCode

FunctionCode

ar: MT-Objekt

false

Act..

*

*

*
Kontext

RepKlasse

ObjName

p: MT-Objekt

false

Act..

P

(c) Funktionsblockdarstellung

Abbildung 6.3: Verwendung von MT-Objekt und MT-Variable zur Musterbeschreibung

MT-Variablen dienen zur Repräsentation von Variablen im Modell. Eine Ausnahme stellt die MT-

Variable ObjName dar, die den Namen des Modellobjektes repräsentiert. MT-Variablen können

in der Objektdarstellung entweder als eigenständiges Objekt oder als Variable des übergeord-

neten MT-Objektes dargestellt werden. Gleiches gilt auch für die Metavariablen, wie Kontext

und RepKlasse. Metavariablen besitzen keine Entsprechung in den zu durchsuchenden Mo-

dellen, sondern dienen der Parametrierung der MT-Elemente. So bedingt die Verwendung von

speziellen MT-Elementen an Stelle von Elementen aus den domänenspezifischen Sprachen

eine schwache Typisierung über die Metavariable RepKlasse. Für die Kennzeichnung von

Kontextelementen bzw. Elementen, die durch die Regel erzeugt werden, steht die Metavaria-

ble Kontext zur Verfügung, wobei Kontext=false der Markierung „++“ entspricht. Bei MT-

Variablen wird zudem über die Metavariable Typ, der erwartete Datentyp und über die Metava-

riable Value der erwartete Variablenwerte angegeben. Für Metavariablen ist eine Parametrie-

rung mit Jokerzeichen möglich, um eine entsprechende Variabilität zu kennzeichnen (vgl. Abbil-

dung 6.3c: ObjName, SignalCode und FunctionCode). Die Parametrierung einer Metavaria-

blen durch ein Asterisk kann in beiden Darstellungen auch durch Weglassen der entsprechen-

den Metavariablen verdeutlicht werden. Auf MT-Variablen und Metavariablen kann innerhalb

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ar: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorRequest”

p: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”

g: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt

+ Kontext = false
+ RepKlasse = “RemoteTemplate”

mn2: V2V

+ Kontext = false

ObjName: MT-Variable

SignalCode: MT-Variable

FunctionCode: MT-Variable

SignalCode: MT-Variable

FunctionCode: MT-Variable

mt1: V2V

+ Kontext = false

mt2: V2V

+ Kontext = false

ObjName: MT-Variable

+

+

+

+

+

+

+

+

DSL1 DSL2

mn1: V2V

Kontextfalse

Abbildung 6.4: ACPLT/MT-Regel für das Anlegen einer PLT-Stelle

der Regel zugegriffen werden. Dies wird durch einfache Linien gekennzeichnet. Abbildung 6.4

verdeutlicht dies anhand der Einbettung des vorgestellten Suchmusters im Gesamtzusammen-

hang einer ACPLT/MT-Regel. Die Abbildung zeigt beispielhaft die ACPLT/MT-Repräsentation

der TGG-Produktion aus Abbildung 5.5a, bei der unter anderem das Objekt mn2 sicherstellt,

62

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

dass der ActuatorRequest im Modell der linken Domäne den gleichen Namen hat, wie das

ActuatorTemplate der rechten Domäne. Dazu wird entlang der Korrespondenzlinks eine

Weitergabe des Objektnamens in Richtung der Regelauswertung realisiert. Zudem kommen in

der Teilproduktion für die Korrespondenzdomäne spezielle Unterklassen von MT-Objekt zum

Einsatz, die mit je mindestens einem MT-Element aus der Quell- und aus der Zieldomäne über

spezielle MT-Links assoziiert sind. Anders als bei Tripel-Graph-Grammatiken üblich, sind im

Basismodell von ACPLT/MT genau zwei Klassen für die MT-Objekte der Korrespondenzdomä-

ne, E2E und V2V vorgesehen. Ersteres verbindet Elemente der beiden Domänen miteinander

ohne Einschränkungen zu Klasse, Elementname oder Typ des Elements. Existiert das durch

das Korrespondenzobjekt verlinkte Objekt in der linken Domäne, so muss eine Entsprechung

für das MT-Objekt in der rechten Domäne gefunden bzw. erstellt werden. Korrespondenzobjek-

te vom Typ V2V verbinden zwei MT-Variablen miteinander, die den gleichen Datentyp und den

gleichen Wert besitzen. In der Objektdarstellung ist auch eine Verknüpfung zweier MT-Objekte

mittels V2V möglich. Dies bezieht sich jeweils auf die MT-Variable ObjName, die aus Platzgrün-

den und zur besseren Lesbarkeit nicht immer einzeln aufgeführt wird. Die Beschränkung auf

die beiden Klassen von Korrespondenzobjekten E2E und V2V ermöglicht den flexiblen, model-

lunabhängigen Einsatz von ACPLT/MT.

Wie am Anfang des Kapitels erwähnt, ist ACPLT/MT auf Performance und Platzoptimierung

ausgelegt. Die bisher vorgestellten Elemente wirken durch ihre Granularität diesem Ziel jedoch

eher entgegen. Während zum Beispiel in der TGG-Produktion für PLT-Stellen (Abbildung 5.5a)

ein Korrespondenzobjekt vom Typ MT1 reichte, benötigt die ACPLT/MT-Variante drei Korrespon-

denzobjekte und entsprechend viele Links, um die gleiche Relation darzustellen. Zusätzlich zu

den Repräsentanten für Objekte, Links und Variablen gibt es daher noch eine Reihe weiterer

MT-Elemente, die unter dem Begriff MT-Modifikatoren zusammengefasst werden. Diese haben

keinen direkten Bezug zum Quell- oder Zielmodell. Stattdessen modifizieren sie die Abarbei-

tung der Regel. Einer dieser Modifikatoren, die Metavariablen (MT-MetaVar) wurden bereits

vorgestellt.

Auch die Wiederverwendung von Regelteilen (MT-Platzhalter) und Verzweigungen in den de-

klarativen Regeln (MT-Verzweigung) werden mit Hilfe von Modifikatoren realisiert. Diese beiden

Konzepte stellen eine Erweiterung der bisherigen Tripel-Graph-Grammatik-Ansätze dar. Platz-

halter beschreiben, ebenso wie QVT-Templates, komplexe Objektnetzwerke, die in verschiede-

nen Regeln oder in einer Regel mehrfach verwendet werden können. Sie werden während der

Ausführung der Transformation durch die entsprechenden Objektnetzwerke ersetzt, so dass

zum Ausführungszeitpunkt zeitweise die komplette Regel im System vorliegt. Dies ermöglicht

eine TGG-konforme Verwendung von Platzhaltern. Verzweigungen ermöglichen in deklarati-

ven ACPLT/MT-Regeln die Beschreibung von mehreren alternativen Regelvarianten. Dadurch

können Regeln mit gemeinsamer Oberklasse zusammengeführt und Anjorins Vererbungskon-

zept umgesetzt werden. Verzweigungen werden dabei immer paarweise verwendet, eine in der

linken und eine in der rechten Domäne. Paare von Verzweigungen sind jeweils gleichgeschal-

tet, d.h. wenn in der Verzweigung der linken Teilproduktion die erste Alternative zum Einsatz

kommt, so muss dies auch für die Verzweigung in der rechten Teilproduktion gelten. Zum Zeit-

punkt der Transformation ist immer maximal ein Paar an Alternativen aktiviert und es liegt so-

mit eine TGG-konforme Regel vor. Beide Erweiterungen, die Einführung von Platzhaltern und

63

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

temp1: MT-Template

DSL1 DSL2

v1: V2V

DSL1 DSL2

v2: V2V

DSL1 DSL2

v3: V2V

(a) temp1-Template

mn1: V2V

+ Kontext = true

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ar: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorRequest”

p: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”

g: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt

+ Kontext = false
+ RepKlasse = “RemoteTemplate”

ObjName: MT-Variable

SignalCode: MT-Variable

FunctionCode: MT-Variable

SignalCode: MT-Variable

FunctionCode: MT-Variable

ObjName: MT-Variable

+

+

+

+

+

+

+

+

p: MT-Platzhalter

TemplateName

v1.DSL1 v1.DSL2

v2.DSL1 v2.DSL2

v3.DSL1 v3.DSL2

temp1

(b) Regel mit temp1-Platzhalter

Abbildung 6.5: Template-/Platzhalterkonzept von ACPLT/MT

die Verwendung von Verzweigungen dienen neben der Effizienzsteigerung auch der besseren

Nachvollziehbarkeit und Wartbarkeit der Regeln.

Platzhalter Beim Einsatz von ACPLT/MT konnte immer wieder beobachtet werden, dass Teil-

muster sich in verschiedenen Regel wiederholen. Das Auslagern von Teilmustern in Tem-

plates und die spätere Referenzierung mittels Platzhaltern ist in anderen Modell- bzw.

Graphtransformationsansätzen wie VIATRA und QVT längst Standard. Bei Tripel-Graph-

Grammatiken kommt ein solches Konzept bisher nicht zum Einsatz. Zwar erlaubt das

Vererbungskonzept von Anjorin, Teile der Regel wiederzuverwenden, die Vererbung ist je-

doch auf eine Oberklasse beschränkt. Platzhalter lassen sich in ACPLT/MT für beliebige

Teile einer TGG-Regel erstellen. Abbildung 6.5a zeigt die Kapselung dreier V2V-Objekte

in einem Template. Templates müssen alle später in der Regel benötigten Anknüpfungs-

punkte für Links nach außen als Ein- bzw. Ausgänge sichtbar machen. Die Möglichkeit

der Wiederverwendung von Templates und die erhöhte Lesbarkeit der Regeln durch Ver-

wendung aussagekräftiger Templatenamen machen das Template-/Platzhalterkonzept zu

einem äußert sinnvollen Hilfsmittel bei der Gestaltung von Regeln. Für Anbieter von Au-

tomatisierungssoftware bietet das Template-/Platzhalterkonzept zudem die Möglichkeit

vorgefertigte Regelbestandteile als Template-Datenbank bereitzustellen und Applikateu-

ren dadurch die Erstellung der Regeln weiter zu vereinfachen.

Verzweigung Eine ACPLT-MT Umsetzung des Vererbungskonzeptes von Anjorin ist die Ver-

wendung von MT-Verzweigungen. Anstatt Klassen zu bilden, werden hierbei jedoch alle

Unterklassen in eine gemeinsame Regel abgebildet. Dies ist nötig, um dem Konzept der

aktivierbaren Regeln gerecht zu werden. MT-Verzweigungen basieren auf der Beschrei-

64

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

g: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt
+ Kontext = true
+ RepKlasse = “RemoteTemplate”

mn2: V2V
+ Kontext = true

mn3: V2V
+ Kontext = false

mn1: V2V
+ Kontext = true

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

vr: MT-Objekt
+ Kontext = false
+ repKlasse = “ValveRequest”

p: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”

Y: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “Y”

vt: MT-Objekt
+ Kontext = false
+ RepKlasse = “ValveTemplate”

lo1: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

l1: E2E
+ Kontext = false

<<
lin

k>
>

+

+
+

+ +

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

(a) ACPLT/MT-Regel zum Anlegen eines Ventils

g: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt
+ Kontext = true
+ RepKlasse = “RemoteTemplate”

mn2: V2V
+ Kontext = true

mn3: V2V
+ Kontext = false

mn1: V2V
+ Kontext = true

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

pr: MT-Objekt
+ Kontext = false
+ repKlasse = “PumpRequest”

p: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”

N: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “N”

pt: MT-Objekt
+ Kontext = false
+ RepKlasse = “PumpTemplate”

lo2: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

l1: E2E
+ Kontext = false

<<
lin

k>
>

+

+
+

+ +

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

(b) ACPLT/MT-Regel zum Anlegen einer Pumpe

g: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt
+ Kontext = true
+ RepKlasse = “RemoteTemplate”

mn2: V2V
+ Kontext = true

mn3: V2V
+ Kontext = false

mn1: V2V
+ Kontext = true

mn4: V2V
+ Kontext = false

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

vr: MT-Objekt
+ Kontext = false
+ repKlasse = “ValveRequest”

p: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorProcessI…”
+ ObjName = “P”

pr: MT-Objekt
+ Kontext = false
+ repKlasse = “PumpRequest”

Y: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “Y”

N: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “N”

vt: MT-Objekt
+ Kontext = false
+ RepKlasse = “ValveTemplate”

lo1: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

lo2: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

pt: MT-Objekt
+ Kontext = false
+ RepKlasse = “PumpTemplate”

l1: E2E
+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

<<
lin

k>
>

<<
lin

k>
>

l2: E2E
+ Kontext = false

+

+

+

+

+

+

+

+

+
+

+

+

sel1: A2A
+ Kontext = false

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

v2:MT-Verzweigung

ALT1 ALT2

(c) Kombinierte Regel

Abbildung 6.6: Zusammenführung zweier ähnlicher Regeln mittels MT-Verzweigung

65

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

bung von alternativen Regelvarianten mit der Besonderheit, dass MT-Verzweigungen im-

mer paarweise in der linken und rechten Teilproduktion auftreten. Die Wahl der Alternative

ist bei Paaren von MT-Verzweigungen gleichgeschaltet. Dies wird durch eine Korrespon-

denzobjekt vom Typ A2A zugesichert. Abbildung 6.6c zeigt, wie die beiden Einzelregeln

zur Erstellung eines Ventils in ACPLT/HMI und ACPLT/PF aus Abbildung 6.6a und der

in Abbildung6.6b gezeigten Erstellung einer Pumpe in den beiden Domänen mittels MT-

Verzweigung zusammengeführt werden können. Der ausgegraute Teil der Regeln ent-

spricht der Anjorins Oberklasse und ist in allen drei Regeln gleich.

Da die MT-Verzweigung eine Unterklasse von MT-Objekt ist, unterbricht sie einen MT-

Link. Ausschlaggebend bei der Anwendung der Regel sind die Metavariablen des von

der MT-Verzweigung in die jeweilige Alternative führenden MT-Links. MT-Links, die Quelle

oder Ziel innerhalb einer Alternativen besitzen, gehören zu dieser Alternative, MT-Links

zwischen zwei Alternativen sind nicht erlaubt. Auch die Verwendung der Korrespondenz-

objekte ist eingeschränkt. Sie können nur Elemente von einander zugeordneten Alterna-

tiven der linken und rechten Teilproduktion miteinander verbinden.

Die gemeinsame Nutzung einer „Oberklasse“ ermöglicht deutliche Einsparungen von

Ressourcen sowohl in Bezug auf den Platzbedarf als auch beim Zeitbedarf während

der Transformation. Zudem ergibt sich ein deutlicher Zugewinn für die Wartbarkeit der

Regeln.

Logische Operatoren Für die Realisierung der NACs, wie sie von Königs [Kön08] vorgeschla-

gen wurden, wird der Operator NICHT eingeführt. Er negiert das Vorhandensein der ihm

nachgeschalteten Struktur. NICHT-Elemente dürfen nur im Kontext einer Regel zum Ein-

satz kommen, um Interpretationsprobleme in den operationalen Regeln zu vermeiden.

Der Operator Wahr wird bei der Einführung von Triggern im Abschnitt 6.5 genauer erläu-

tert. Er erlaubt keine nachgeschalteten Kontrollstrukturen.

Kopfelement In der deklarativen ACPLT/MT-Regel dient das Kopfelement als gemeinsames

Wurzelelement für die Pattern der Regel. Zudem ist das Kopfelement der Einstiegspunkt

für die Bearbeitung der operationalen MT-Regel.

Metavariablen Daten, die zur Parametrierung von ACPLT/MT benötigt werden, werden in Me-

tavariablen (MT-MetaVar) abgelegt. Diese sind wie MT-Variablen Ein-/Ausgänge oder lo-

kale Variablen der MT-Objekte. Beispiele für Metavariablen sind Kontext, RepKlasse

und die für die operationale Ebene und den Kontrollalgorithmus benötigten Daten.

6.3 Kommandostruktur

Jedes MT-Element besitzt eine eigene interne Logik, die bestimmte Teilaufgaben bei der An-

wendung einer MT-Regel übernimmt. Die Bearbeitung der einzelnen Teilaufgaben wird über

die Kommandostruktur zu einer operationalen Regel verknüpft. Abbildung 6.7 zeigt beispielhaft

die Kommandostruktur der linken Teilproduktion für das Anlegen eines Ventils, sowie die Klas-

se MT-Element mit den für die Kommandostruktur relevanten Metavariablen. Die MT-Elemente

agieren während der Regelbearbeitung entlang der Kommandostruktur als Hierarchie von Auf-

traggebern und Auftragnehmern. Für die Weitergabe benötigter Daten und Aufträge entlang

dieser Hierarchie stehen verschiedene Metavariablen zur Verfügung. Über die Metavariable

66

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.3 Kommandostruktur

ANKommando: MT-Parameter

ANStatus: MT-Parameter

Kommando: MT-Parameter

Status: MT-Parameter

ANKommando: MT-Parameter

ANStatus: MT-Parameter

Kommando: MT-Parameter

Status: MT-Parameter

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”
+ Relationsklasse = “Contains”
+ Relationsrolle = TARGET

ar: MT-Objekt

+ Kontext = false
+ RepKlasse = “ActuatorRequest”
+ Relationsklasse = “Contains”
+ Relationsrolle = TARGET

p: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”
+ Relationsklasse = “Contains”
+ Relationsrolle = TARGET

p: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorProcessInterface”
+ ObjName = “P”
+ Relationsklasse = “Contains”
+ Relationsrolle = TARGET

ObjPfad: MT-Parameter

Pfad: MT-Parameter

ObjPfad: MT-Parameter

Pfad: MT-Parameter

(a) Ausschnitt Kommandostruktur der MT-Regel für PLT-Stellen

MT-Element

Kommando
ANStatus

Relationsklasse
Relationsrolle
Pfad
Quellmodell

ANKommando
Status

ObjPfad

(b) Metavariablen des MT-Element für

die Kommandostruktur (kursiv) und

für die operationale Ebene

„enthält“-Beziehung

Parametrierung des Suchraumes

Kommandostruktur

Rückmeldestruktur

Abbildung 6.7: Kommandostruktur und operationale Ebene

Kommando erhält ein MT-Element Kommandos von seinem Auftraggeber. Neben dem Kom-

mando START, das einen Auftragnehmer veranlasst, seine interne Logik zu bearbeiten, gibt

es außerdem die Kommandos RÜCKGÄNGIG, ZURÜCKSETZEN und HALTEN. Ersteres kommt

nur bei MT-Objekten zum Tragen, die Elemente in der Zieldomäne anlegen. Das zuletzt an-

gelegte Objekt wird beim Befehl RÜCKGÄNGIG wieder gelöscht oder in den Ursprungszustand

zurückversetzt, falls sich nur die Variablen geändert haben. Das Kommando ZURÜCKSETZEN

wird genutzt, um die Werte der ausgehenden Metavariablen zu löschen und die Regel wieder

in ihren Ursprungszustand zurück zu versetzen.

Während die Auftragnehmer ihre Logik bearbeiten, befindet sich der Auftraggeber im Zustand

ARBEITEND.Das Kommando HALTEN unterbricht die Auswertung der internen Logik. Dies ist

insbesondere dann von Interesse, wenn ein MT-Objekt ein Objekt der entsprechenden Do-

mäne gefunden oder angelegt hat und mit der Suche bzw. dem Anlegen weiterer Objekte im

Suchraum warten soll, bis die gesamte Regel abgearbeitet wurde. Durch die zyklische Be-

arbeitung wird die interne Logik von MT-Objekten in der Quelldomäne sonst ggf. die Suche

fortsetzen bevor eine Auswertung durch die MT-Elemente der Zieldomäne stattgefunden hat.

67

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Das Kommando HALTEN erzeugt nach Rückmeldung der Auftragnehmer einen Statuswechsel

zu HALTEND.

Kommandostruktur und die deklarative Ebene überlagern sich in weiten Teilen. Zudem erfolgt

die Verarbeitung der Informationen über einen MT-Link immer am Auftragnehmer. Diese beiden

Eigenschaften ermöglichen es, Kommandostruktur und deklarative Ebene aufeinander abzubil-

den. Zu diesem Zweck erhalten MT-Elemente zusätzlich die Metavariablen Relationsklasse

und Relationsrolle, um die Bedeutung des amKommando-Eingang anliegenden eingehen-

den Links für die deklarative Regel anzugeben. Beide Metavariablen erlauben die Verwendung

von WildCards, um unbestimmte Relationen oder Relationsrollen abzubilden. Der in Abbildung

6.7a dargestellte „enthält“-Link zwischen den MT-Objekten dient lediglich der strukturierten Da-

tenhaltung. Sie hat keine Bedeutung für die Logik der MT-Regel.

Ausnahme von der Überlagerung der Kommandostruktur und der deklarativen Ebene bilden

die Links zwischen zwei MT-Variablen. Wird die Kommandostruktur entlang einer solchen Ver-

bindung weitergeführt, ergeben sich dadurch Probleme beim Anlegen der Zielvariablen, da

das Elternobjekt noch nicht gefunden bzw. erstellt ist. Links zwischen MT-Variablen werden

daher von beiden MT-Objekten, deren Variablen miteinander verbunden sind, bearbeitet. Die

MT-Objekte überprüfen dazu, ob das über den Link verbundene MT-Objekt bereits bearbeitet

wurde. Ist dies der Fall, so kann die Verbindung überprüft bzw. angelegt werden, ansonsten

wird die Verbindung zunächst ignoriert.

Parallel zur Kommandostruktur existiert eine Rückmeldestruktur, über die der Auftragnehmer

dem Auftraggeber seinen aktuellen Zustand mitteilen kann.

6.4 Operationale Ebene

Die Regelanwendung erfolgt in ACPLT/MT durch Bearbeitung des in den MT-Elementen ent-

halten Codes. Ausgangspunkt für die Regelbearbeitung ist das gemeinsame Wurzelelement

der drei Teilproduktionen, das Kopfelement (vgl. Abbildung 6.8). Dieses wird mit der Richtung

der Transformation (Vorwärts/Rückwärts/Konsistenz) sowie mit den Pfaden zum Wurzelkno-

ten der beteiligten Modelle parametriert und stößt nacheinander die Bearbeitung der Teilpro-

duktionen an. Wird ein Kopfelement aktiviert, stößt es zunächst die Kommandostruktur der

Quelldomäne an und wartet auf Rückmeldung. Erfolgt eine positive Rückmeldung, so wird die

Kommandostruktur der Zieldomäne angestoßen. Erfolgt auch durch diese eine positive Rück-

meldung, so werden nacheinander die Elemente der Korrespondenzdomäne angestoßen, um

die Transformation zu dokumentieren. Zudem werden alle durch ein Nicht-Kontext-Element des

Quellmodell-Pattern gebundenen Objekte in einem zentralen Datenbankobjekt registriert und

sind somit als übersetzt markiert. Dies erlaubt die Verwendung dieser Objekte als Kontextele-

mente in weiteren Regelanwendungen.

Dieser Vorgang wiederholt sich so lange, bis das Pattern der Quelldomäne ein NICHT_GEFUNDEN

zurückliefert. In diesem Fall sind alle durch das Pattern repräsentierten Strukturen im Quellm-

odell übersetzt. Tritt während der Bearbeitung der drei Pattern ein Fehler auf, so wird an die

68

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.4 Operationale Ebene

bereits ausgeführten Regelbestandteile das Kommando RÜCKGÄNGIG geschickt, wodurch die

MT-Objekte ihren letzten Schritt rückgängig machen. An dieser Stelle sei auf Anhang C ver-

wiesen, in dem anhand der Regel aus Abbildung 6.6c die Übersetzung eines Modells in ein

anderes mit Hilfe von ACPLT/MT Schritt für Schritt erläutert wird.

head: MT-Kopfelement

+ Richtung = FWT
+ LHSPfad = “./PandIX”
+ CDPfad = “./ACPLT_MT/CD”
+ RHSPfad = “./HMI”

…

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”
+ Quellmodell = true

LHS: Domain

…

mn1: V2V

+ Kontext = true

CD: Domain

g: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”
+ Quellmodell = false

RHS: Domain

…

Abbildung 6.8: Operationale ACPLT/MT-Regel für die Vorwärtstransformation

Für die operationale Ebene stehen MT-Elementen die Eingangs-Metavariablen Quellmodell,

Relationsklasse, Relationsrolle und Pfad sowie der Ausgang ObjPfad zur Verfü-

gung (vgl. Abbildung 6.7b), auf die im Folgenden genauer eingegangen werden soll.

Während bei operationalen TGG-Produktionen für jedes Element individuell durch �→�� bzw.

��→�� angegeben wird, wie es zu interpretieren ist, bleibt bei den operationalen MT-Regeln die

Metavariable Kontext unverändert und gibt in Kombination mit der ergänzenden Metavaria-

blen Quellmodell (true|false) an, ob ein entsprechendes Objekt im Modell gesucht oder

erstellt werden soll. Dieses Design bringt insbesondere unter dem Gesichtspunkt der Integra-

tion in die IEC 61131 - Sprachen enorme Vorteile bei der Handhabung mit sich. Der Wert der

Metavariablen Quellmodell ist für alle MT-Elemente eines Patterns identisch und kann daher

ausgehend vom Kopfelement der MT-Regel durch Verbindungen zwischen den Variablen in alle

MT-Elemente des Patterns propagiert werden. Der Wert der Metavariablen Kontext bleibt so

für weitere Regelausführungen unverändert erhalten.

Wird die Regel zur Konsistenzanalyse eingesetzt, so werden sowohl die MT-Elemente der lin-

ken als auch die der rechten Domäne mit Quellmodell = true parametriert. Dies bewirkt,

dass sie unabhängig davon, ob sie Teil des Kontext sind oder nicht nach passenden Modellob-

jekten suchen und keine Modellobjekte erstellen. Beim Starten einer Regel zur Konsistenzana-

69

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

lyse stößt das Kopfelement zunächst die Kommandostruktur der linken Domäne an. Für jede

positive Rückmeldung der linken Domäne stößt sie die Kommandostruktur der rechten Domä-

ne und anschließend der Korrespondenzobjekte an. Gibt es von der rechten Domäne oder von

den Korrespondenzobjekten eine negative Rückmeldung, so wird der Fehler gemeldet. Feh-

lende Korrespondenzobjekte werden dabei nicht als Fehler sondern als Warnung ausgegeben.

Es steht dem Anwender frei, die gemeldete Inkonsistenz zu beheben oder sie zu ignorieren.

Gibt die Kommandostruktur der linken Domäne eine negative Rückmeldung, so werden die

MT-Elemente der Regel zurückgesetzt und anschließend der gesamte Vorgang für die rechte

Domäne wiederholt. Eine automatische Korrektur der Inkonsistenzen ist bisher nicht vorgese-

hen. Der Anwender hat nach einer Konsistenzanalyse jedoch die Möglichkeit, eine inkremen-

telle Vorwärts- oder Rückwärtstransformation anzustoßen oder die Inkonsistenzen manuell zu

beheben.

6.4.1 MT-Objekt

Wird ein MT-Objekt während der Laufzeit durch einen Auftraggeber aktiviert, so sucht es inner-

halb eines vorgegebenen Suchraums selbstständig ein der Parametrierung entsprechendes

Modellelement oder legt es - je nach Richtung der Regel - an. Der Suchraum wird über die

Metavariable Pfad festgelegt. Eine Parametrierung des Suchpfads mit Hilfe von Jokerzeichen

erlaubt eine flexible Suche zum Beispiel im gesamten Modell oder nur in bestimmten Teilstruk-

turen. Die Metavariablen Relationsklasse und Relationsrolle geben an, über welche

Assoziation das zu suchende Objekt mit dem durch den Auftraggeber gebundene Objekt ver-

knüpft ist. Beide Metavariablen können wiederum mit Jokerzeichen parametriert werden, um

beliebige Assoziationen zuzulassen.

War die Suche oder das Anlegen erfolgreich, wird der Auftragnehmer selbst zum Auftragge-

ber und stößt weitere Elemente der Regel an, ihrerseits passende Objekte zu suchen oder

anzulegen. Haben alle angestoßenen Elemente ihre Aufgabe erfolgreich erledigt, wird eine

Rückmeldung an den Auftraggeber erzeugt. Beim Auftreten eines Fehlers wird eine Fehlermel-

dung an den Auftraggeber zurückgeliefert und gegebenenfalls durchgeführte Änderungen am

Zielmodell rückgängig gemacht. Zusammenfassend besteht die interne Logik der MT-Objekte

aus folgenden Schritten:

Starten der Bearbeitung Zunächst wird die Metavariable Status auf ARBEITEND gesetzt,

um dem Auftraggeber eine Rückmeldung über den Erhalt des Kommandos zu geben.

Zudem wird anhand der Metavariablen Kontext und Quellmodell ausgewertet, ob

sich das MT-Objekt im Modus SUCHEN, VERGLEICHEN oder ANLEGEN befindet.

Suchen/Erstellen eines Objektes Es wird ein Objekt entsprechend der Parametrierung unter

Berücksichtigung des Modus, des Suchraumes (Pfad) und der von da ausgehenden As-

soziation (Relationsklasse, Relationsrolle) gesucht oder erstellt. Nacheinander

werden bei jedem Regeldurchlauf alle auf die Beschreibung zutreffende Objekte gefun-

den/erstellt. Hierbei kommt, wie von Königs [Kön08] vorgeschlagen, das optionale Erstel-

len zum Einsatz. Objekte die bereits im Zielmodell vorhanden sind werden dabei erkannt

und nicht erneut angelegt.

70

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.4 Operationale Ebene

Auswerten der MT-Variablen In Abhängigkeit des Modus werden alle MT-Variablen des MT-

Objektes auf Typ und Wert überprüft (SUCHEN, VERGLEICHEN) oder die Werte der Varia-

blen werden über den Korrespondenzgraph vom MT-Element im Quellmodell geholt und

am Zielobjekt gesetzt (ANLEGEN).

Auswerten von Verbindungen Alle Verbindungen zwischen MT-Variablen werden dahinge-

hend untersucht, ob das verbundene MT-Objekt bereits bearbeitet wurde. Ist dies der

Fall, so wird das Vorhandensein der Verbindung überprüft (SUCHEN/VERGLEICHEN) oder

die Verbindung wird angelegt (ANLEGEN).

Setzen des Objektnamens Der Pfad des gefundenen/erstellten Objektes wird in der Metava-

riablen ObjPfad gespeichert und dem Kopfelement bekanntgegeben.

Anstoßen der Auftragnehmer Über die Metavariable ANKommando wird der Befehl START

abgesetzt und somit die Auftragnehmer angestoßen, ihre Logik abzuarbeiten. Diese su-

chen oder erstellen ihrerseits einen Teil der durch die Regel beschriebenen Struktur.

Warten auf Rückmeldung Das MT-Objekt wartet auf eine Rückmeldung von den angestoße-

nen Auftragnehmern.

Rückmeldung an den Auftraggeber Über die Metavariable Status wird eine Rückmeldung

an den Auftraggeber abgesetzt. War die Bearbeitung erfolgreich und die eigenen Auftrag-

nehmer haben eine positive Rückmeldung gegeben, wird der Status OK zurückgegeben.

Bei aufgetretenen Fehlern können ein allgemeiner Fehler oder spezielle Fehlermeldun-

gen wie NICHT_GEFUNDEN oder im Modus VERGLEICHEN der Fehler INKONSISTENT

bei fehlenden Objekten oder inkonsistenten Variablenwerten zurückgegeben werden.

6.4.2 Modifikatoren

Die Modifikatoren besitzen eine angepasste Ausführungslogik, die ebenfalls die komplette Be-

arbeitung der für das Element benötigten Funktionalität umfasst.

Platzhalter/Template Wird ein Platzhalters aktiviert, erstellt er eine lokale Kopie des referen-

zierten Templates und verknüpft diese mit den eigenen Ein- und Ausgängen (vgl. Abbil-

dung 6.9). Diese temporäre Instanziierung des Template ist notwendig, da Templates

mehrfach in der Regel referenziert werden können. Bedingt durch die zyklische Bearbei-

tung in der SPS, muss jede Instanz ihre Ein- und Ausgänge über mehrere Zyklen halten.

Eine bloße Verlinkung zum Template und somit eine Mehrfachbenutzung der templa-

teinternen MT-Elemente würde ein Überschreiben der Variablenwerte zur Folge haben.

Nach dem Anlegen der lokalen Kopie des Templates stößt das Platzhalterobjekt die im

Template enthaltene Struktur zur Bearbeitung ihrer Logik an. Rückmeldungen von der

Kommandostruktur der lokalen Kopie werden direkt an den Auftraggeber weitergereicht.

Erhält der Platzhalter das Kommando ZURÜCKSETZEN, wird die lokale Kopie des Templa-

tes wieder gelöscht und der Speicherplatz freigegeben.

Verzweigungen Die Verzweigung bedingt eine doppelte Kommandostruktur und somit jeweils

zwei Metavariablen ANKommando und ANStatus. Der ObjPfad kann für beide Alterna-

tiven verwendet werden. Wird eine Verzweigung im Modus SUCHEN aktiviert, so stößt sie

zunächst die Bearbeitung der ersten Alternative an. Erst wenn diese die Rückmeldung

NICHT_GEFUNDEN zurückliefert, erhält die nächste Alternative das Kommando zur Be-

71

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

mn1: V2V
+ Kontext = true

ass”

orRequest”

bjekt

+ Kontext
+ RepKlasse

+ Kontext
+ RepKlass
“ActuatorTe

+ Kon
+ Rep
“Remo

e

Variable

T-Variable

+

+

+

p: MT-Platzhalter

temp1: MT-Template

DSL1 DSL2

v1: V2V

v2: V2V

DSL1 DSL2

v3: V2V

DSL1 DSL2

Abbildung 6.9: Eingesetztes Template für den in Abbildung 6.5b gezeigten Platzhalter

arbeitung ihrer Logik. Über eine zusätzliche Metavariable zeigt die MT-Verzweigung an,

welche Alternative gerade aktiv ist. In den Modi VERGLEICHEN und ANLEGEN wird die

aktive Alternative des Partners ausgelesen und nur die entsprechende eigene Alternative

zur Bearbeitung angestoßen. Durch die gemeinsame Nutzung von Regelbestandteilen

halbiert sich die Anzahl der Suchvorgänge für diesen gemeinsamen Teil. Dadurch kann

mit der Verwendung von Verzweigungen eine verringerte Systembelastung bei gleicher

Wirkung erzielt werden.

Die mit dem Einsatz von MT-Verzweigungen einhergehende Verzweigung der Kontroll-

struktur wird zudem genutzt, wenn ein Pattern aus zwei nicht miteinander verbunde-

nen Teilgraphen besteht. Dies kann insbesondere bei der Verwendung von multiplen

Quellmodellen auftreten. Um die Kontrollstruktur trotzdem abbilden zu können wird die

MT-Verzweigung in diesem Fall als UND statt als ODER genutzt. Hierzu wird eine weite-

re Metavariable eingeführt, die eine entsprechende Umschaltung zwischen den beiden

Varianten ermöglicht. Ein passender Korrespondenzknoten vom Typ V2V synchronisiert

diese Wahl zwischen linker und rechter Teilproduktion. Wird eine als UND parametrierte

Verzweigung durch seinen Auftraggeber angestoßen, so gibt er diesen Auftrag direkt an

alle Alternativen weiter. Erst wenn alle Alternativen eine positive Rückmeldung liefern,

wird dies an den Auftraggeber weitergeleitet. Als UND parametrierte MT-Verzweigungen

werden ungepaart verwendet. Sie benötigen daher kein Gegenstück in der anderen Do-

mäne.

Logik-Operatoren Der NICHT-Operator liefert eine positive Rückmeldung, wenn der nachge-

schaltete Auftragnehmer ein NICHT_GEFUNDEN meldet und umgekehrt. Fehlermeldun-

gen von den Auftragnehmern werden entlang der Kommandostruktur nach oben durch-

gereicht. Der Operator Wahr liefert immer ein GEFUNDEN zurück, sobald er angestoßen

wird.

72

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.5 Kontrollalgorithmus

6.4.3 Korrespondenzgraph

Die MT-Elemente des Korrespondenzgraphen haben zwei Aufgaben. Zum einen dienen sie da-

zu, durch Verlinkung der repräsentierenden MT-Elemente eine Verknüpfung zwischen den MT-

Objekten, MT-Links und MT-Variablen der linken und der rechten Teilproduktion herzustellen.

Die Auswertung dieser Verlinkung erfolgt in den verlinkten MT-Elementen. So überprüft jede

MT-Variable entlang der mit ihr verknüpften Korrespondenzobjekte V2V, ob die Gegenseite be-

reits gebunden ist. Ist dies der Fall, so passt es seine Metavariablen Type und Value an, um

die Gleichheit von Wert und Typ zuzusichern. Die zweite Aufgabe der Korrespondenzobjekte ist

die Dokumentation der Transformation. Hierzu sind verschiedene Realisierungen denkbar. So

können, wie bei Tripel-Graph-Grammatiken üblich, Objekte angelegt werden. Dies widerspricht

aber dem Ansatz, einer ressourcenschonende Implementierung. Eine weitere Möglichkeit ist

die Speicherung in einem Datenbankobjekt, so dass jede Instanziierung eines Korresponden-

zobjektes ein Datenbankeintrag erzeugt, der unter anderem Daten über die durch das Korre-

spondenzobjekt verlinkten Modellelemente sowie die Richtung und den Zeitpunkt der Trans-

formation enthält. Durch diesen Ansatz können auch die korrelierenden Modelle unverändert

bleiben, da kein Anknüpfungspunkt für den Link zum Korrespondenzobjekt benötigt wird.

6.5 Kontrollalgorithmus

Der Kontrollalgorithmus besteht aus zwei Komponenten, der Strategie und dem Scheduling.

Die Strategiekomponente ist in den MT-Regeln enthalten. Insbesondere MT-Objekte und die

Modifikatoren besitzen eine eigene Logik, die zur Laufzeit die Funktionalität des entsprechen-

den Elements selbständig bearbeitet. Das Scheduling dient als übergeordnete Steuerungs-

komponente für die Bearbeitung der verschiedenen MT-Regeln.

Durch die beschränkten Ressourcen in einer SPS wäre ein fortlaufendes Ausführen aller in der

Regelbasis enthaltenen Regeln eine enorme Belastung für das Gesamtsystem. Erfahrungs-

gemäß sind es aber bestimmte Ereignisse, wie das Speichern eines Modells nach erfolgter

Modellanpassung oder die nutzergesteuerte Anforderung eines Zustandswechsels bei einem

Ventil, die einem benötigten Modellabgleich vorausgehen. Aus diesem Grund eignet sich eine

ereignisgesteuerte Regelaktivierung wie bei VIATRA besonders gut für eine Modelltransfor-

mation in prozessleittechnischen Laufzeitumgebungen. Zur Ereignisüberwachung kommt ein

viertes relativ kompaktes Pattern, das Triggerpattern zum Einsatz. Anders als die übrigen Pat-

tern der MT-Regel müssen Trigger ihre gesamte Logik innerhalb eines Zyklus bearbeiten, da

ansonsten Ereignisse, die nur einen Zyklus lang vorliegen, verloren gehen können. Zudem darf

es keine zusätzlichen Zyklen benötigen, um die Trigger zurückzusetzen. Zu diesem Zweck wird

ein weiteres Kommando TRIGGER eingeführt. Dieses veranlasst das angestoßene MT-Objekt

zustandslos zu arbeiten und in jedem Zyklus nur in Abhängigkeit von den Eingängen und nicht

auf Basis von Ergebnissen vorheriger Zyklen zu arbeiten.

Die Schedulingkomponente nutzt die Trigger, um die Regel zum richtigen Zeitpunkt anzusto-

ßen. Folgende Schritte werden dabei durchlaufen:

73

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Aktivieren aller Trigger Die Schedulingkomponente aktiviert zunächst die Trigger aller MT-

Regeln der Regelbasis und überprüft anschließend zyklisch ihren Status.

Regel-Bearbeitung Hat mindestens ein Trigger eine positive Rückmeldung erzeugt, so wird

die zugehörige Regel aktiviert. Haben mehrere Trigger eine positive Rückmeldung er-

zeugt, so werden ihre Regeln nacheinander aktiviert, so dass zu jedem Zeitpunkt maximal

eine aktive Regel ihren Teil der Modelltransformation durchführt. Ist eine Regel einmal ak-

tiviert, ermittelt sie nacheinander alle relevanten Modellstrukturen und führt entsprechend

oft eine Transformation durch. Dieser sehr einfache Ansatz ist sicher zunächst nicht sehr

performant. Die Suche nach einem optimalen Algorithmus kann Ausgangspunkt von wei-

terführenden Forschungen sein, soll an dieser Stelle aber nicht weiter thematisiert wer-

den. Der Status der Regel wird zyklisch von der Schedulingkomponente überwacht.

Trigger Zurücksetzen Meldet die aktivierte Regel zurück, dass sie ihre Transformationsschrit-

te abgeschlossen hat, so wird ihr Trigger sowie alle zuvor in einen Fehlerzustand gerate-

nen Trigger zurückgesetzt.

Trigger aktivieren Anschließend wird die zuvor angehaltene Bearbeitung der Trigger weiter-

geführt. Trigger die vor dem Anhalten bereits eine positive Rückmeldung geliefert haben,

werden direkt erkannt und Schritt 2 wird ausgelöst.

Trigger können unter anderem auch durch die erfolgreiche Abarbeitung einer anderen MT-

Regel anschlagen. Dadurch können Transformationsschritte gezielt nacheinander ausgeführt

werden. Auch ein simples Prioritäten-Konzept lässt sich durch die Trigger abbilden, indem die

Schedulingkomponente jeweils die höchstpriore MT-Regel mit positivem Trigger zur Bearbei-

tung anstößt. Sollen bestimmte Regeln dauerhaft aktiv sein, so kann ein Trigger realisiert wer-

den, der nur ein Wahr-Objekt enthält und somit immer positive Rückmeldung liefert.

Für die Aktorregel aus Abbildung 6.6c bietet sich ein Trigger an, der die Regel zur Übersetzung

der SystemUnitClass auf erfolgreiche Bearbeitung überwacht. Schlägt dieser Trigger an,

hängt die Schedulingkomponente die Regel zusammen mit allen anderen Regeln deren Trig-

ger angeschlagen haben in eine Warteschlage. Anschließend wird die erste Regel der Warte-

schlange aktiviert, d.h. ihre MT-Elemente werden in das Tasking der SPS eingehängt und somit

ihre interne Logik zur Ausführung gebracht.

6.6 Referenzimplementierung

Die Referenzimplementierung von ACPLT/MT erfolgte auf Basis von ACPLT/FB-Funktions-

bausteinen (kurz FB) [NN04]. Als Laufzeitsystem kam iFBspro [NN04] zum Einsatz. Durch

Ähnlichkeit von ACPLT/FB-Funktionsbausteinen zu den Funktionsblockdiagrammen der IEC

61131 und die für ACPLT-Modelle typischen Eigenschaften der Introspektion und Selbstmani-

pulation bieten FBs eine geeignete Basis für die Umsetzung von ACPLT/MT. Analog zu den

Funktionsblockdiagrammen der IEC 61131 wird die interne Logik der FBs mit einer textuellen

Sprache, in diesem Fall C, programmiert. Einzelne FBs werden über ihre Ein- und Ausgänge

miteinander verknüpft und stellen dadurch komplexere Automatisierungsfunktionen zur Verfü-

gung.

74

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Um die Echtzeitfähigkeit der Automatisierungsfunktionen gewährleisten zu können, wird die

Bearbeitung des gesamten Programmcodes in Zyklen mit fester Zykluszeit durchgeführt. Das

Tasking der einzelnen FBs erfolgt dabei anhand einer Taskliste, die pro Zyklus einmal durch-

laufen wird und jedem FB die Möglichkeit gibt, einen Teil seiner Logik zu bearbeiten. FBs mit

zeitaufwändiger Funktionalität müssen diese in Teilaufgaben zerlegen, um die Echtzeitfähig-

keit des Systems nicht zu gefährden. Die Teilaufgaben müssen dabei so gestaltet sein, dass

eine Unterbrechung und eine Bearbeitung der anderen FBs der Taskliste keine ungewollten

Seiteneffekte auf die Gesamtfunktionalität haben.

MT_Link MT_Connection

fb/variable

MT_Variable

fb/connection

MT_ElementScheduler

MT_Trigger

MT_Placeholder MT_True MT_BranchMT_Object

fb/funktionblock

MT_RuleExecutionControlCD_Object

E2EV2V

ov/domain

MT_DomainMT_MetaVar

Abbildung 6.10: Klassendiagramm ACPLT/MT

Die Referenzimplementierung von ACPLT/MT umfasst die in Abbildung 6.10 aufgeführten Klas-

sen. Die Klassen MT_Element und MT_Link sind als Funktionsblöcke realisiert. Variablen

dieser beiden Klassen können daher als Ein-/Ausgänge oder lokale Variablen (fb/variable)

deklariert werden, so dass sie vom iFBspro als miteinander verknüpfbare Ports dargestellt

werden. Es bietet sich daher an MT-Variablen und Metavariablen als Ports zu implementie-

ren. Um eine besser Unterscheidung während der Regelbearbeitung zu ermöglichen wird hier

eine starke Typisierung mittels eigener Unterklassen vorgenommen. Auch für die Verbindung

zwischen zwei Ports (fb/connection) wird eine spezielle Unterklasse bereitgestellt um si-

cherzustellen, dass nur jeweils zwei Objekte von Typ MT_Variable oder zwei Objekte vom

Typ MT_MetaVar über sie miteinander verbunden werden können. Zudem wurde eine Klasse

Trigger eingefügt, die eine Unterklasse von MT_Objekt bildet. Sie erlaubt keine Kaskadie-

rung und sichert eine zustandslose Ausführung der internen Logik zu. Zur besseren Strukturie-

rung des ACPLT/MT-Frameworks im Laufzeitsystem wird die Klasse MT_Domain bereitgestellt.

Sie dient als „Ordner“ in der Baumstruktur und besitzt keine eigene Logik.

Bevor die einzelnen Klassen und ihre Funktionsweise im Detail vorgestellt werden, soll zu-

nächst auf die Limitierungen von ACPLT/FB und die Auflösung dieser Limitierung eingegangen

werden.

6.6.1 Taskingkonzept

Anders als bei FBDs ist es in ACPLT/FB nicht möglich, Bausteine in die Ausführungslogik eines

anderen Bausteins einzubetten, so dass dieser vor- und nachher eigenen Code ausführen

kann. Stattdessen werden alle FBs baumartig in eine Taskliste eingehängt und erhalten pro

Zyklus genau einmal die Kontrolle.

75

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

fb3: FB

In1 Out1

In2 Out2

In3 Out3

fb1: FB

In1

Out1

fb2: FB

In1

Out1

Out2

1

2

2

1

1

1

1

2

2

1

3

1

3

1

1

1

(a) Globales Tasking

fb1: MT-Element

fb2: MT-Element

fb3: MTE…

1

1

1

1

1

1

1

1

1

1

1

In1 Out1

In2 Out2

In3 Out3

Out1

Out2

Out1In1

In1

(b) Bausteininternes Tasking

Abbildung 6.11: Tasking ohne und mit bausteininternem Tasking

Erhält ein FB einen Zeitslot zum Bearbeiten seiner internen Logik, so wird zunächst das Pro-

zessabbild der Eingangsvariablen mit Daten versorgt, anschließend wird die Bausteinlogik ab-

gearbeitet und die Werte ins Prozessabbild der Ausgangsvariablen geschrieben. Dies bringt

insbesondere bei kaskadierten FBs zeitliche Verzögerungen mit sich. Abbildung 6.11a zeigt

eine solche Kaskadierung. Die interne Logik der dargestellten Bausteine sei der Einfachheit

halber so implementiert, dass die Daten der Eingänge unverändert an die jeweiligen Ausgänge

weitergegeben werden. Während die Daten von fb1 über fb2 nach fb3 innerhalb des ersten

Zyklus durchgereicht werden, benötigt die Datenweitergabe in die andere Richtung drei Zyklen.

Im ersten Zyklus stehen die Werte für den zweiten und dritten Eingang von fb2 noch nicht zur

Verfügung, da fb3 noch nicht ausgeführt wurde und somit die Werte noch nicht bereitstellen

konnte. Erst im zweiten Zyklus kann fb2 auf diese Werte zugreifen und sie als Ausgänge zur

Verfügung stellen. Da zum Zeitpunkt der Bearbeitung von fb2 der Baustein fb1 jedoch schon

bearbeitet wurde, stehen ihm diese Daten erst im dritten Zyklus zur Verfügung. Pro Verbindung

zwischen FBs entgegen der Reihenfolge in der Taskliste werden die Daten somit um einen

Zyklus verzögert. Dies kann gewollt sein, wenn zum Beispiel ein Speicher implementiert wer-

den soll, bei der Weitergabe von Stati wie sie für ACPLT/MT benötigt wird, geht eine solche

Verzögerung jedoch deutlich zu Lasten der Performance.

Als Alternative steht in vielen Leitsystemen die Möglichkeit der Schachtelung von Funktions-

bausteinen zur Verfügung (vgl. Abbildung 6.11b). Erhält nun fb1 einen Zeitslot zur Bearbeitung

seiner internen Logik, so wird wiederum zunächst das Prozessabbild der Eingangsvariablen mit

Daten versorgt und anschließend wird die Bausteinlogik, genauer gesagt das PreTasking ab-

gearbeitet. Bevor jedoch das Prozessabbild der Ausgangsvariablen geschrieben wird, wird die

Kontrolle an fb2 abgegeben, der seinerseits seine Logik abarbeiten kann. Erhält fb1 die Kon-

trolle von fb2 zurück, kann weiterer fb1-Code, das PostTasking ausgeführt werden, bevor

abschließend das Prozessbild der Ausgänge geschrieben wird. Durch diese Unterbrechung in

der Ausführung der Bausteinlogik können Daten von außen nach innen und von innen nach

außen innerhalb eines Zyklus weitergegeben werden.

Um gekapselte Funktionsbausteine auch für ACPLT/MT einsetzen zu können, wurde das Tas-

kingkonzept von ACPLT/FB in der Unterklasse MT_Element überschrieben. Jedes MT_Element

erhält eine eigene interne Taskliste und ein eigens rudimentäres Scheduling, dass nach der

76

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Bearbeitung des internen Codes die Teilnehmer der Taskliste nacheinander zur Ausführung

bringt. Außerdem wurde die Tatsache ausgenutzt, dass sowohl die Taskliste als auch die Kas-

kadierung von FBs mit Hilfe von Links realisiert sind. Wird ein neues MT_Element in einer

Kaskade angelegt, so löscht der Konstruktor den Link zur globalen Taskliste und erstellt einen

neuen Link zur Taskliste des in der Kaskade vorgelagerten MT_Element-Objektes. Eine Kaska-

de von MT_Element-Objekten wird dadurch automatisch in geschachtelte FBs umgewandelt.

Beispiel 6.2 Abbildung 6.11b zeigt das bei ACPLT/MT realisierte interne Tasking. Beim An-

legen von fb3 löscht dieser selbstständig seine Zuordnung zur globalen Taskliste und hängt

sich in die Taskliste von fb2 ein. Während der Bearbeitung von fb2 versorgt dieser im Pre-

Tasking unter anderem die Eingänge von fb3 mit Daten. Anschließend wird die Kontrolle an

fb3 übergeben und nach dessen Bearbeitung werden die Ausgänge von fb3 im PostTasking

verarbeitet und ggf. die Werte an die Ausgänge von fb2 weitergereicht.

Die in dieser Arbeit gewonnenen Erfahrungen mit der Kapselung von Funktionsbausteinen sind

in die Entwicklung von ACPLT/FC und ACPLT/SCC eingeflossen. Mit diesen Modellen stehen

mittlerweile auch in der ACPLT-Modellwelt schachtelbare Funktionsblockdiagramme und Se-

quenzdiagramme für das Engineering zur Verfügung.

6.6.2 ACPLT/MT-Framework im Laufzeitsystem

Abbildung 6.12 zeigt die Umsetzung des ACPLT/MT-Framework im iFBSpro. Generell erlaubt

ACPLT/MT parallel mehrere Modelltransformationen im Laufzeitsystem, von denen aber maxi-

mal eine gleichzeitig aktiv sein darf.

Jede Modelltransformation besteht aus einer Regelbasis, der Template-Datenbank und einem

Satz an Werkzeugen, wie zum Beispiel Funktionsbausteine für das Anlegen und Löschen von

Objekten bzw. Links. Außerdem besitzt jede Modelltransformation ihre eigene Schedulingkom-

ponente und eine zugehörige Visualisierung, die den Zustand des Schedulers in Form eines

Sequenzdiagramms zugänglich machen (vgl. Abbildung 6.13). Schlussendlich stehen noch

zwei getrennte Tasklisten für die Trigger und die operationalen Regeln zur Verfügung. Den ein-

zelnen Komponenten übergeordnet ist das Datenbankobjekt (vgl. PandIX_csHMI bzw. MT2 in

Abbildung 6.12a), das unter anderem die Datenbankeinträge zu den Korrespondenzobjekten

enthält. Diese Informationen können auch zwischen verschiedenen Transformationen ausge-

tauscht werden, so dass aufeinander aufbauende Transformationen entstehen. Ein Beispiel

dafür ist Anwendungsszenario S1, das Einfärben der Rohrleitungen, die von einer Aktorbedie-

nung betroffen sind. Die dazu gehörige Modelltransformation findet zwischen ACPLT/PandIX

und dem ACPLT/csHMI statt. Diese werden durch die Transformation aus Anwendungssze-

nario S2 erstellt und durch Korrespondenzobjekte dokumentiert. Anwendungsszenario S1 ist

daher auf die Informationen aus Anwendungsszenario S2 angewiesen.

Die Regelbasis von ACPLT/MT enthält alle MT-Regeln der Transformation. Abbildung 6.12b

zeigt den Aufbau einer solchen Regel im Laufzeitsystem. Das Kopfelement wird durch ein Ob-

jekt vom Typ RuleExecutionControl (kurz REC) realisiert. Dieses ist während der Regel-

ausführung dafür zuständig, die Teilproduktionen mit Daten zu versorgen und ihre Bearbeitung

77

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

+

+

+

RuleBase

HMI

PandIX_csHMI

+ Scheduler

Tools

MT

+ MT2

TriggerMemory+

WorkingMemory+

+ Templates

(a) Domainstruktur ACPLT/MT

LD

RD

RuleBase

REC1

+ REC2

CD

mn1

mt1

mt2

g+

su+

Trigger

buttonPressed+

(b) MT-Regel: PLT-Stelle anlegen

Abbildung 6.12: ACPLT/MT im Laufzeitsystem

INIT_TRIG_MEM

RESET_TRIG_MEM

START_TRIG_MEM

WAITING

RESET_RULE

START_RULE

RESET_NEG_TRIG

RESET_TRIG

START_IDLE_TRIG

CMD_SFC_START

ALL_TRIG_INITIALIZED

ALL_TRIG_RESTARTED

ALL_TRIG_STARTED

POSITIV_TRIGGER

RULE_RESETED

RULE_COMPLETED

TRIGGER_RESETED

NEG_TRIGGER_RESETED

IDLE_TRIGGER_STARTED

CMD_SFC_RESET

RESET_SFC

MT_Scheduler

SFC_RESETED

DEL_ACTIVE_RULE

RULE_DELETED

Abbildung 6.13: ACPLT/MT-Scheduling

78

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

anzustoßen. Zudem registrieren alle MT-Elemente der Regel die Pfade zu gebundenen oder

erstellten Modellobjekten beim REC. Wurde ein Übersetzungsschritt erfolgreich durchgeführt,

meldet der REC anhand der registrierten Modellobjekte dem Datenbankobjekt die neu über-

setzten Objekte.

Zunächst liegen die MT-Regeln jedoch als inaktive Objektnetzwerke im System vor, d.h. sie

hängen in keiner Taskliste und ihre interne Logik kommt nicht zur Ausführung. Wird eine Trans-

formation durch das Setzen des Kommandos CMD_SFC_START am Kommandoeingang des

Scheduler aktiviert, so hängt dieser die Triggerobjekte aller Regeln der Regelbasis in die Tas-

kliste WorkingMemory, setzt die Eingänge der Trigger zurück und aktiviert die zyklische Be-

arbeitung der Trigger über deren Kommandoeingang (vgl. Abbildung 6.13). Sobald ein Trigger

eine positive Rückmeldung liefert, wird der zugehörige REC in die Taskliste WorkingMemory

eingehängt und erhält vom Scheduler den Befehl CMD_RESET. Dieser wird weitergereicht an al-

le MT_Elemente der Regel und bewirkt das Rücksetzen aller Ausgangsvariablen auf ihren Ur-

sprungswert. Anschließend wird die Bearbeitung der Regel durch das Kommando CMD_START

gestartet. Ist die Regel vollständig abgearbeitet, gibt der REC die Rückmeldung Ready. Dar-

aufhin kann der Scheduler die Regel aus dem WorkingMemory löschen. Außerdem wird der

zugehörige Trigger im TriggerMemory zurückgesetzt und mit einer neuen Überwachung be-

auftragt. Auch Trigger, die zuvor einen Fehler zurückgegeben haben, werden zurückgesetzt

und neu gestartet.

Wird zu einem beliebigen Zeitpunkt ein Zurücksetzen der Transformation (CMD_SFC_RESET)

angefordert, werden zunächst das TriggerMemory sowie das WorkingMemory geleert und

anschließend die Modelltransformation wieder deaktiviert.

6.6.3 MT_Element

Um die in Abschnitt 6.6.1 thematisierte unverzögerte Rückmeldung realisieren zu können, wur-

de die zyklisch aufgerufenen Methode typemethode der Basisklasse fb/functioblock

wie in Abbildung 6.14 gezeigt erweitert. Die eigentliche Bausteinfunktionalität wird in Pre- und

Posttasking-Funktionalität unterteilt und in die Methoden mtLib_MTElement_preintask

und mtLib_MTElement_postintask ausgelagert. Dadurch können das Pre- und Posttas-

king in abgeleiteten Klassen gezielt überschrieben werden. Zwischen den beiden Methoden-

aufrufen erfolgt die Bearbeitung der internen Taskliste, die die eingebetteten Funktionsbaustei-

ne enthält.

Die eigentliche Funktionalität von MT_Element und davon abgeleiteter Klassen wird mit Hil-

fe eines Sequenzdiagramms realisiert. Einen ausführlichen Einblick in die Funktionalität von

MT_Element und davon abgeleiteten Klassen sowie eine Schritt-für-Schritt-Erläuterung die-

ses Sequenzdiagramms bietet Anhang C.

Da die ACPLT-Modellwelt zum Implementierungszeitpunkt von ACPLT/MT noch keine Reali-

sierung für Sequenzdiagramme besaß, wurde die interne Logik mittels CASE-Anweisung in C

implementiert und aufbauend darauf mit ACPLT/csHMI eine Visualisierung als SFCs erstellt

(vgl. Abbildung 6.15). Die einzelnen Schritte und Transitionen wurde jeweils als eigene Metho-

79

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

OV_DLLFNCEXPORT void mtLib_MTElement_typemethod
(OV_INSTPTR_fb_functionblock pfb, OV_TIME * pltc)
{

...

/* Execute own logic */
mtLib_MTElement_preintask(pfb,pltc);

/* Execute internal tasks */
Ov_Call1 (fb_task, intask, execute, pltc);

/* Execute another part of own logic */
mtLib_MTElement_postintask(pfb,pltc);

...
}

Abbildung 6.14: Realisierung geschachtelter FBs

ST_BASIC

ST_RUN

ST_NEG

true

CMD_RUN

Any.Chbk = ST_NEG

CMD_RESET

ST_RESET

MT_Element

All.Chbk = BASIC

ST_POS

All.Chbk = ST_POS

ST_HOLD

CMD_NONE

ST_ERROR

Any.Chbk = ST_ERRORCMD_NONE

Legende: Any.Chbk – Mindestens ein Auftragnehmer liefert diese Rückmeldung
All.Chbk – Alle Auftragnehmer liefern diese Rückmeldung

Abbildung 6.15: SFC des MT-Element

den realisiert, um sie in abgeleiteten Klassen gezielt überschreiben zu können. Die Bearbeitung

der Schritte, sowie der Transitionen, die sich auf Kommandos beziehen erfolgt im PreTasking

und die Auswertung der Transitionen die sich auf Rückmeldungen von Auftragnehmer beziehen

im PostTasking. Dadurch können innerhalb eines Zyklus Rückmeldungen von Auftragneh-

mern direkt im PostTasking und somit in der Auswertung der Transitionen berücksichtigt

werden. Wird die Bedingung einer Transition erfüllt, so führt dies direkt zu einem Schrittwech-

sel, was sich in der Metavariablen State widerspiegelt. Dadurch können Rückmeldungen von

den eingebetteten Auftragnehmern noch im gleichen Zyklus an den eigenen Auftraggeber wei-

tergereicht werden.

Insgesamt besteht die Funktionalität der Basisklassen MT_Element aus sieben Schritten. Im

Basisschritt wird keine Logik ausgeführt, der Baustein ruht und wartet auf eingehende Kom-

80

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

mandos von Auftraggeber. Kommt der Befehl CMD_RUN wird mit der Bearbeitung der eigent-

lichen Bausteinfunktionalität begonnen. Die abgeleitete Klasse MT_Object führt in diesem

Schritt zum Beispiel das Suchen bzw. Erstellen von Objekten durch. Im Normalfall wird die Lo-

gik des ST_RUN innerhalb eines Zyklus abgearbeitet. In den nachfolgenden Zyklen wird ledig-

lich auf die Rückmeldung von eingebetteten Auftragnehmern oder das Eintreffen eines neuen

Kommandos vom Auftraggeber gewartet. Erfolgt ersteres, dann wird je nach Art der Rückmel-

dung in die Schritte ST_POS, ST_NEG oder ST_ERROR gewechselt, was dem eigenen Auftrag-

nehmer in Form der Metavariablen Status als Rückmeldung weitergegeben wird. Kommt vom

Auftraggeber das Kommando CMD_NONE wird in den Schritt ST_HOLD gewechselt, der den

aktuellen Zustand des MT_Element einfriert bis entweder erneut ein CMD_RUN oder ein Kom-

mando zum Zurücksetzen vom Auftraggeber eingeht. Im Schritt ST_RESET, der jederzeit durch

das Kommando CMD_RESET ausgelöst werden kann, werden alle Ein- und Ausgänge wieder

auf den Ursprungszustand zurückgesetzt. Sobald auch alle eingebetteten Auftragnehmer ihre

Werte zurückgesetzt haben, wird in den Basiszustand gewechselt.

Im Detail besitzen die Zustände folgende Ausführungslogik:

PreTasking PostTasking

ST_BASIC Alle Ausgänge sind zurückgesetzt,

der Baustein befindet sich im Basis-

zustand. Beim Aktivieren dieses Zu-

stands wird an die nachfolgenden

MT_Elemente der Befehl CMD_NONE

gesendet. In den weiteren Zyklen wird

auf einen Befehl vom Auftraggeber

gewartet.

Der Zustand wird verlassen, so-

bald der Befehl CMD_RUN vom Auf-

traggeber kommt.

ST_RUN In diesem Zustand wird die eigent-

liche Funktionalität des MT_Element

ausgeführt. Es werden je nach Para-

metrierung Objekte in den Modellen

gesucht oder erstellt. Anschließend

erhalten die Auftragsnehmer ebenfalls

das Kommando CMD_RUN.

In diesem Zustand wird verblie-

ben, bis die Auftragsnehmer eine

Rückmeldung über den Verlauf ih-

rer Bearbeitung liefern. Der rück-

gemeldete Zustand wird direkt an

den eigenen Auftraggeber weiter-

gereicht.

ST_POS Alle Ausgänge bleiben in diesem Zu-

stand unverändert. Beim Aktivieren

dieses Zustands wird an die ein-

gebetteten MT_Element der Befehl

CMD_NONE gesendet. In den weiteren

Zyklen wird auf einen Befehl vom Auf-

traggeber gewartet.

Der Zustand kann nur durch

den Befehl CMD_RESET oder

CMD_HOLD verlassen werden.

81

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Any.Chbk = ST_NEG

ST_CREATE

ST_CHILDS

MODE=SEARCH &
(Any.Chbk = ST_NEG |

ActNode = EMPTY)

ST_SEARCH

sonst

ST_RUN

MODE=CREATE

Legende: Any.Chbk – Mindestens ein Auftragnehmer liefert diese Rückmeldung
All.Chbk – Alle Auftragnehmer liefern diese Rückmeldung

MODE=SEARCH &
(Any.Chbk != ST_NEG &

ActNode != EMPTY)

ActNode = EMPTY

All.Chbk = ST_POS

pObj = NULL

sonst

ST_HOLDST_ERROR ST_NEG ST_POS

Abbildung 6.16: Verfeinerter SFC des Schrittes ST_RUN im MT_Object

PreTasking PostTasking

ST_HOLD Die Bearbeitung des Bausteins wird

unterbrochen. Die historischen Daten

bleiben jedoch erhalten. Die einge-

betteten Auftragnehmer bekommen

den Auftrag CMD_NONE und gehen

dadurch ebenfalls in den Zustand

ST_HOLD.

Bekommt der Baustein den Befehl

CMD_RUN so wird in den Zustand

ST_RUN gewechselt und im nächs-

ten Zyklus die Bearbeitung unter

Berücksichtigung der historischen

Daten wieder aufgenommen.

ST_NEG siehe ST_POS Der Zustand kann nur über den

Befehl CMD_RESET verlassen wer-

den.

ST_ER-

ROR

siehe ST_POS siehe ST_NEG

ST_RESET Die Bearbeitung des Bausteins wird

unterbrochen. Die historischen Daten

des Bausteins werden zurückgesetzt.

Eine erneute Suche startet wieder am

Anfang des Suchraums. Alle Auftrag-

nehmer erhalten ebenfalls den Befehl

CMD_RESET.

Wurden alle Auftragnehmer erfolg-

reich zurückgesetzt, wird in den

Ausgangszustand ST_BASIC ge-

wechselt.

6.6.4 MT_Object

Die Klasse MT_Object überschreibt den Schritt ST_RUN der Basisklasse und unterteilt ihn

in drei Teilschritte (vgl. Abbildung 6.16). Im Schritt ST_SEARCH wird nach einem passenden

Modellobjekt gesucht. Die Suche ist dabei als Tiefensuche implementiert. Den Startpunkt der

Suche erhält das MT_Object über die Metavariable Pfad. Diese stellt einen absoluten Pfad zu

einem Modellobjekt als Zeichenkette bereit und wird dazu genutzt, einen Link auf das entspre-

82

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

chende Objekt zu generieren. Anschließend wird das Modellobjekt dahingehend untersucht,

ob es entsprechend dem Wert der Metavariable Assoc verlinkt ist. Gefundene Links dieses

Typs werden verfolgt und das über das Ziel bzw. die Quelle des Links als potentieller Kandidat

für die aktuelle Suche in Betracht gezogen. Stimmen Klasse und Objektname mit den Werten

der Metavariablen RepClass und ObjName überein und können auch die MT_Variable vom

Typ und Wert her auf die Variablen des potentiellen Kandidaten abgebildet werden, so muss

abschließend noch überprüft werden, ob das gefundene Objekt schon übersetzt wurde. Dies

erfolgt durch eine Abfrage beim Datenbankobjekt, das alle bereits übersetzten Modellobjekte

nachhält. Der Metavariablen-Ausgang ActNode wird mit dem Pfad des gefundenen Objektes

belegt und dient damit aus Startpunkt für eingebettete MT_Object. Liefern diese eine positive

Rückmeldung, so wurde eine Entsprechung im Modell gefunden. Da weitere Modellstrukturen

auf die eingebetteten Objekte passen können, werden sie mit gleicher Parametrierung erneut

mit der Bearbeitung ihrer internen Logik beauftragt. Erst wenn die eingebetteten Objekte eine

negative Rückmeldung geben, kann keine weitere Objektstruktur im Modell gefunden werden

und es wird der nächste potentielle Kandidat für das lokale MT_Object gesucht. Die Meta-

variable ActNode dient dabei als Speicher, welches Modellobjekt als letztes gefunden wurde

und die Suche nach weiteren über RepAssoc verbundenen potentiellen Kandidaten kann fort-

geführt werden. Dabei wird ausgenutzt, dass Links in ACPLT als geordnete Listen an den

verlinkten Objekten, also auch an dem durch Pfad referenzierten Modellobjekt zur Verfügung

stehen.

Im Schritt ST_CREATE wird zunächst wie im Schritt ST_SEARCH nach einem passenden Model-

lobjekt gesucht. Ist ein solches Objekt vorhanden, werden nur ggf. abweichende Variablenwerte

angepasst. Ist ein solches Modellobjekt nicht vorhanden, wird ein Objekt der Klasse RepClass

angelegt und mit Hilfe eines Links vom Typ RepAssoc mit dem Modellobjekt verknüpft, das

über die Metavariable Pfad referenziert wird. Außerdem werden die Variablen mit den Werten

entsprechend der MT_Variablen des MT_Object belegt. Gehen vom aktuellen MT_Object

oder dessen MT_Variablen Links aus, so wird überprüft, ob das Gegenstück des Links be-

reits gebunden wurde. Ist dies der Fall, so wird ein Link entsprechend der Parametrierung im

Modell angelegt. Auch im Schritt ST_CREATE gibt die Metavariable ActNode Informationen

über das gebundene Modellobjekt.

War die Suche bzw. das Erstellen erfolgreich, so werden die eingebetteten MT_Object im

Zustand ST_CHILDS bearbeitet und auf Rückmeldung von ihnen gewartet.

Zusammenfassend besitzen die Schritte und Transitionen des MT_Object folgende Logik:

PreTasking PostTasking

ST_RUN Anhand der Metavariablen

Context und SourceDom wird

der Modus des MT_Object auf

suchend (SEARCH) oder erstellend

(CREATE) gesetzt.

Je nach aktuellem Modus wird

in den Zustand ST_CREATE oder

ST_SEARCH gewechselt

83

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

PreTasking PostTasking

ST_CREATE Das durch die Metavariable Path

referenziere Objekt wird als Start-

punkt für die Suche nach einem ent-

sprechend der AssocClass ver-

linkten Modellobjekt genutzt, das

den Anforderungen nach Klasse

(RepClass), Variablentypen und

Variablenwerten entspricht. Kann

ein solches Modellobjekt nicht ge-

funden werden, so wird es angelegt,

der Wert der Variablen gesetzt und

ggf. benötigte Verbindungen erstellt.

Trat bei der Erstellung ein Fehler

auf, wird in den Zustand ST_ERROR

gewechselt. Ansonsten wird der

Auftrag an die Auftragnehmer wei-

tergeleitet und in den Zustand

ST_CHILDS gewechselt.

ST_SEARCH Ausgehend von dem durch den Pa-

rameter Path referenzierten Ob-

jekt wird die nächste, noch nicht

bearbeitete Instanz der Assoziation

AssocClass gesucht und ihr Ge-

genpart dahingehend überprüft, ob

er dem repräsentierten Objekt ent-

spricht. Wurde ein passendes Ob-

jekt gefunden, wird es beim REC

überprüft und registriert, um zu

vermeiden, dass ein Objekt dop-

pelt gebunden wird. Der Ausgang

ActNode wird mit dem Pfad des ge-

fundenen Objektes belegt.

War die Suche erfolglos und der

Ausgang ActNode enthält keinen

Objektpfad, wird in ST_NEG ge-

wechselt, wird in den Zustand

ST_CHILDS gewechselt.

ST_CHILDS An alle Auftragnehmer wird der Be-

fehl CMD_RUN geschickt, um ihre

Bearbeitung anzustoßen.

Kommt eine negative Rückmeldung

vom Auftragnehmer, wird die Bear-

beitung unterbrochen. Eine positive

Rückmeldung erlaubt einen Wech-

sel in den Zustand ST_POS.

ST_RESET Zusätzlich zu der Funktionalität aus

der Basisklasse wird bei gesetz-

tem ActNode das Objekt noch beim

REC de-registriert.

keine Änderung zur Basisklasse

Die Logik der übrigen Bausteine hält sich weitestgehend an die der Basisklasse MT_Element.

True Erhält der Baustein in den Schritten ST_BASIC oder ST_HOLD den Befehl CMD_RUN,

so wird direkt in ST_POS gewechselt. Der negative Fall sowie der Fehlerfall können bei

diesem Baustein nie erreicht werden.

Not Erfolgt durch den Auftragnehmer die Rückmeldung ST_POS, so liefert der Baustein an

seinen eigenen Auftraggeber die Rückmeldung ST_NEG und umgekehrt. Alle anderen

Schritte und Transitionen bleiben unberührt.

84

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Placeholder Im Schritt ST_RUNwird eine Kopie des referenzierten Templates aus der Template-

Datenbank der Modelltransformation als eingebetteter Funktionsbaustein des Platzhal-

ters erstellt und die Ein- und Ausgänge verknüpft. Da die Ersetzung eines Platzhalters

erst erfolgt, wenn der Kontrollfluss den entsprechenden Modifikator aktiviert, gibt es Platz-

halter, die während einer Regelbearbeitung nie ersetzt werden. Dies ist zum Beispiel der

Fall, wenn vor Erreichen des Platzhalters ein Fehler auftritt oder wenn bei einer Ver-

zweigung sich der Platzhalter in der inaktiven Alternative befindet. Diese Lazy-Evaluation

verringert die Anzahl der Objekte und Kopiervorgänge im Laufzeitsystem und ist daher

platz- sowie ressourcensparend. Dies kommt dem Gesamtkonzept in doppelter Hinsicht

entgegen.

Im Zustand ST_RESET wird die Kopie des Templates wieder gelöscht.

Trigger Statt dem Zustandswechsel nach ST_NEG werden die Ausgänge direkt gelöscht und

im Zustand ST_RUN verblieben. Dies erlaubt die Erkennung von einmaligen Events, da

kein Zyklus durch das Zurücksetzten des Bausteins verloren geht. Alle anderen Schritte

und Transitionen werden unverändert von MT_Object übernommen.

Branch Die Verzweigung kann sowohl als ODER als auch als UND fungieren. Die Parametrie-

rung nach ODER/UND muss in Quell- und Zieldomäne identisch sein. Bei einer ODER-

Verzweigung erfolgt die Tiefensuche zunächst in der ersten Alternative und erst wenn

diese eine negative Rückmeldung liefert, in der zweiten Alternative. Es wird daher zu-

nächst der Auftragnehmer in der ersten Alternative angestoßen. Liefert dieser ST_NEG

zurück, so erhält der Auftragnehmer in der zweiten Alternative den Befehl CMD_RUN. Erst

wenn auch dieser eine negative Rückmeldung gibt, wechselt die Verzweigung in den

Schritt ST_NEG. Fehlermeldungen werden weiterhin direkt an den eigenen Auftraggeber

weitergereicht. In der Zieldomäne erhält die ODER-Verzweigung mit Hilfe des Korrespon-

denzgraphs Auskunft über die in der Quelldomäne aktive Alternative und stößt seinerseits

nur die Bearbeitung des entsprechenden Auftragnehmers an. Unabhängig von der Domä-

ne werden bei einer UND-Verzweigung beide Alternativen gleichzeitig angestoßen. In den

Zustand ST_POS wird erst gewechselt, wenn beide Auftragnehmer diese Rückmeldung

geben. Für den Wechsel in ST_NEG reicht die entsprechende Rückmeldung einer der

beiden Auftragnehmer.

CD_Object Die Klasse für die Korrespondenzobjekte schreibt im Zustand ST_RUN die Trans-

formationsdaten in ein Array des Kopfelements. Dabei werden neben den gebundenen

Objekten der Quell- und Zieldomäne auch den Korrespondenztyp (E2E/V2V) sowie der

Zeitstempel protokolliert. Nach erfolgreicher Bearbeitung eines kompletten Transformati-

onsschrittes, werden diese Daten vom Kopfelement in das Datenbankobjekt übertragen,

wo sie dauerhaft nachgehalten werden.

6.6.5 Metavariablen, Variablen und Links

Die Ports von ACPLT/FB-Funktionsbausteinen sind eigenständige Objekte und erfüllen alle An-

forderungen an die Realisierung von Metavariablen. Aus diesem Grund werden Metavariablen

direkt durch Ports realisiert und sind daher in der Signatur von MT_Element sichtbar (vgl.

Abbildung 6.17). Die Verwendung von Ports zur Realisierung von MT-Parametern bringt eine

85

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

CLASS MT_Object : CLASS mtLib/MT_Element IS_INSTANTIABLE;
COMMENT = "Represents an object of any domain in an ACPLT/MT-Pattern";
VARIABLES

RepLib : STRING HAS_ACCESSORS FLAGS = "i"
COMMENT = "Represented Library Element"
INITIALVALUE = "*";

RepClass : STRING HAS_ACCESSORS FLAGS = "i"
COMMENT = "Represented Class Element"
INITIALVALUE = "*";

RepIdent : STRING HAS_ACCESSORS FLAGS = "i"
COMMENT = "Represented Class Element"
INITIALVALUE = "*";

AssocLib : STRING HAS_ACCESSORS FLAGS = "i"
COMMENT = "Lib of connection from principal"
INITIALVALUE = "ov";

AssocClass : STRING HAS_ACCESSORS FLAGS = "i"
COMMENT = "Class of connection from principal"
INITIALVALUE = "containment";

AssocRole : UINT HAS_ACCESSORS FLAGS = "i"
COMMENT = "Role of current Object 1 = Child, 2 = Parent, 3 = *"
INITIALVALUE = 1;

...
END_VARIABLES;

...
END_CLASS;

Abbildung 6.17: Signatur der Klasse MT_Element

übersichtliche Darstellung aller Metavariablen als Ein- und Ausgänge eines MT_Element in

iFBspro mit sich.

Im Vergleich zu Metavariablen benötigen MT_Variablen weitergehende Parametrierungs-

möglichkeiten für den Datentyp und den erwarteten Wert der repräsentierten Variablen. Aus

diesem Grund wurde für MT_Variablen eine entsprechende Erweiterung auf Basis der

ACPLT/FB-Ports vorgenommen und eine spezielle Assoziation MT_Connection bereitge-

stellt, mit Hilfe derer man zwei MT_Variablen gerichtet miteinander verbinden kann. Eine

MT_Connection repräsentiert eine entsprechende Verbindung zwischen Variablen.

Assoziationen, die entlang der Kommandostruktur verlaufen, werden wie in Abbildung 6.17

zu sehen ist, über die Metavariablen AssocLib, AssocClass und AssocRole repräsentiert.

Alle anderen Assoziationen, die nicht durch die Kommandostruktur abgedeckt sind, werden mit

Hilfe eines MT_Assoc-Objektes repräsentiert. Mittels einer speziellen Assoziation werden die

MT_Assoc-Objekte mit den entsprechenden MT-Objekten verknüpft.

6.7 IEC 61131 basierte Modelltransformation

Die Sprachen der IEC 61131 sind imperative Sprachen, deren Funktionalität in zyklisch aufge-

rufenen Programmblöcken (engl. program organization unit, POU) gekapselt wird. Die interne

Logik von POUs wird mit Hilfe der in der IEC 61131 beschriebenen Sprachen realisiert. In

dieser Arbeit kommen dabei insbesondere die pascalähnliche Sprache des Strukturierten Text

(engl. Structured Text, ST), die an Zustandsautomaten angelehnten Sequenzdiagramme (engl.

86

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6.7 IEC 61131 basierte Modelltransformation

fb1: FBD

In1 Out1

In2 Out2

In3 Out3

fb2: SORT

In1 Sum

In2 Min

In3 Max

In1 Out

In2

In3

fb1: ADD 1

2

(a) FBD vs. ST

Init

Schritt1

Schritt2

true

Bedingung1

Bedingung2

Schritt3

Sonst

Bedingung3

(b) SFC vs. ST

Abbildung 6.18: Sprachen der IEC 61131 im Vergleich

Sequential Function Chart, SFC) und die Funktionsblockdiagramme (engl. Function Block Dia-

gram, FBD) zum Einsatz. In Abbildung 6.18 sind die grafischen Sprachen der entsprechenden

ST-Umsetzung gegenübergestellt. Die Darstellung in ST in Abbildung 6.18a zeigt, dass vor und

nach dem Aufruf der internen POUs weitere Bearbeitungsschritte erlaubt sind. Zudem ist in ST

die Reihenfolge der Aufrufe klar ersichtlich. Diese Reihenfolge muss auch bei FBDs beachtet

werden. Wird fb2 vor fb1 aufgerufen werden, so kann das Ergebnis von fb1 erst einen Zy-

klus später durch fb2 ausgewertet und in diesem Fall mit den neuen Werten der Eingänge

In2 und In3 verglichen werden. Die Sprachen der IEC 61131 können gemeinsam in einem

Programm eingesetzt werden. So kann, unabhängig von der aufrufenden POU, zur Realisie-

rung der Funktionalität von ADD und SORT in Abbildung 6.18a, eine beliebige Sprache der IEC

61131 genutzt werden. In der IEC 61131 gibt es nur Verbindungen zwischen Variablen als As-

soziationen. Andere Assoziationen müssen durch Zeigertypen realisiert werden. Verbindungen

zwischen Variablen wirken wie Zuweisungen.

87

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik

Für die direkte Realisierung von ACPLT/MT in den Sprachen der IEC 61131 fehlen diesen

Sprachen zwei elementare Eigenschaften. Zum einen ist in der IEC 61131 keine Introspektion

vorgesehen, so dass zur Laufzeit Modelle nicht durch MT-Elemente erkundet werden können.

Zudem stellt die IEC 61131 keine dynamische Speicherverwaltung zur Verfügung. Das Anle-

gen von Objekten in der Zieldomäne lässt sich dadurch nicht realisieren. Auch wenn die Norm

diese beiden Eigenschaften nicht vorsieht, so werden sie von immer mehr Automatisierungs-

systemen bereitgestellt. Insbesondere die Introspektion wird zurzeit durch einen anderen Trend

geradezu forciert. Immer mehr Automatisierungssysteme setzen auf OPC/UA als Kommuni-

kationsschnittstelle zwischen dem Automatisierungssystem und Komponenten außerhalb der

Echtzeitumgebung. OPC/UA basiert aber auf dem Grundgedanken, dass ein Laufzeitsystem

erkundbar ist. Eine Konsistenzanalyse auf Basis von ACPLT/MT lässt sich auf solchen Syste-

men bereits realisieren. Ein Ansatz für die Realisierung der Selbsterkundbarkeit ist die Ablage

der Strukturinformationen als erkundbare Datei [TC3]. Alternativ können Bausteine mit einem

Interface versehen werden, das eine Referenz auf den instanziierenden Baustein sowie Me-

thoden zur Abfrage der eigenen Struktur beinhalten. Dieser interfacebasierte Ansatz lässt sich

auch in Systemen realisieren, die sich strikt an die Vorgaben der IEC 61131 halten. Auch das

dynamische Ändern und Anlegen von Funktionsbausteininstanzen zur Laufzeit wird von den

ersten Automatisierungssystemen bereits angeboten [TC3]. Es ist also zu erwarten, dass sich

die beschriebenen Konzepte in naher Zukunft in allen gängigen Automatisierungssystemen

umsetzen lassen, auch wenn dies nicht explizit durch die IEC 61131 unterstützt wird.

Bei der Umsetzung von ACPLT/MT mittels eines IEC 61131 basierten Automatisierungssys-

tems mit entsprechenden Möglichkeiten kann die interne Logik der MT-Elemente und der

Scheduling-Komponente durch einen SFC realisiert werden. Oftmals wird jedoch auch eine

CASE-Anweisung in ST für solche Zwecke genutzt (vgl. Abbildung 6.18b). Für die Beschrei-

bung der MT-Regeln bietet sich ein Funktionsblockdiagramm an. Dies ist nur möglich, da

die Sprachen der IEC 61131 frei gemischt werden können und so die interne SFC oder ST-

Realisierung nach außen als ein FBD repräsentiert werden können. Das kommt auch zum

Tragen bei der Realisierung der einzelnen Schritte und Transitionen der erstellten SFC. Hier

bietet sich wiederum die Umsetzung in ST an.

88

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

ACPLT/MT wurde bereits in mehreren Projekten zur Anwendung gebracht und konnte dabei gu-

te Ergebnisse vorweisen. Insbesondere bei der Realisierung von Automatisierungsfunktionen

für die Praktikumsanlage des Lehrstuhl für Prozessleittechnik der RWTH Aachen University

und der Automatisierung eines modularen Elektro-Reduktionsofen (MERF) wurden verschie-

denen Einsatzszenarien realisiert. Die dabei entstandenen Modelltransformationen spiegeln

sich in den Anwendungsszenarien aus Kapitel 1.2 wieder. Im Folgenden soll erläutert wer-

den, wieweit sich ACPLT/MT zur Realisierung der verschiedenen Szenarien eignete und an

welchen Stellen das Konzept an seine Grenzen gestoßen ist. Anschließend wird die Passge-

nauigkeit von ACPLT/MT entlang der zuvor identifizierten informationstechnischen und auto-

matisierungstechnischen Anforderungen an eine Modelltransformation analysiert.

7.1 S0 – Bereitstellung von Planungsdaten im Laufzeitsystem

Anwendungsszenario S0 realisiert den Datenabgleich zwischen den XML-basierten Planungs-

daten und der ACPLT-Modellwelt. Als korrelierende Modelle kommen hierbei PandIX [PandIX]

und ACPLT/PandIX zum Einsatz. Neben der bidirektionalen Auswertung von ACPLT/MT-Regel

steht dabei die Anwendbarkeit auf Modelle im Vordergrund, die nicht in der ACPLT-Modellwelt

beheimatet sind.

Die Verwendung von ACPLT/MT anstelle einer in das Automatisierungssystem integrierten

Import-/Exportlösung bringt insbesondere bei nachträglichen Anpassungen der beteiligten Mo-

delle sowie bei Erweiterungen der Funktionalität auf weitere Austauschmodelle signifikante Vor-

teile mit sich. Eine integrierte Import-/Exportfunktion bedingt bei Änderungen am Modell eine

Anpassung des Laufzeitsystems und somit einen zeitweisen Ausfall der Anlage. In einer Anla-

ge im Produktiveinsatz ist dies nicht realisierbar. Bei der Verwendung von ACPLT/MT müssen

lediglich die Regeln angepasst werden. Dies kann ohne Unterbrechung der Basisfunktionali-

tät und somit ohne Ausfallzeiten erfolgen. Die Performance-Nachteile gegenüber integrierten

Import-/Exportfunktionen sind hingegen vernachlässigbar. Dies liegt insbesondere daran, dass

ein Datenimport respektive -export vergleichsweise selten durchgeführt wird. Zudem ist die

Bearbeitung eines solchen Datenaustauschs im Regelfall zeitunkritisch.

Durch die Fokussierung von ACPLT/MT-Elementen auf die Repräsentation von Objektnetzwer-

ken war dieses Szenario nicht mit dem vorgestellten Basismodell realisierbar. Zur Umsetzung

des Datenimports wurden daher spezielle ACPLT/MT-Objekte und ACPLT/MT-Variablen ent-

wickelt, die den Inhalt von XML-Tags bzw. XML-Attributen je nach Transformationsrichtung

auswerten oder schreiben. Die angepassten ACPLT/MT-Objekte erhalten als Eingabe einen

89

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

XML-Baum und suchen entsprechend ihrer Parametrierung darin Elemente mit den passen-

den Eigenschaften. Die identifizierten Teilbäume werden zur Weiterverarbeitung an die Auftrag-

nehmer weitergereicht. Umgekehrt verläuft bei der erstellenden Abarbeitung die Generierung

eines XML-Baums, der durch den eigenen Auftraggeber in eine größere XML-Struktur einge-

bettet wird. MT-Assoziationen und MT-Verbindungen kommen bei der Repräsentation von XML-

Kontexten nicht zum Einsatz. Die vollständige TGG für dieses Anwendungsszenario findet sich

in Anhang B. Es hat sich gezeigt, dass durch diese Erweiterung der ACPLT/MT-Bausteine be-

liebige XML-basierte Modelle in ACPLT/MT verarbeitet werden können. Durch die Verwendung

weiterer modellspezifischen MT-Elemente kann auch eine generelle Unabhängigkeit von den

verwendeten Planungswerkzeugen und den darin verwendeten domänenspezifischen Spra-

chen realisiert werden.

Trotz der nötigen Anpassungen an den MT-Objekten ist dieses Szenario prädestiniert für den

vorgestellten Transformationsansatz mittels Tripel-Graph-Grammatiken. Änderungen in den

Planungsdaten konnten zeitnah in die prozessleittechnische Laufzeitumgebung weitergegeben

werden, Änderungen im Laufzeitsystem konnten in den Planungsdaten dokumentiert werden.

7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt

Bei Anwendungsszenario S1 steht die Realisierung einer Flusswegkontrolle auf Basis der

PandIX-Daten im Vordergrund. In einem ersten Teilszenario werden die Auswirkungen einer

Aktorbedienung auf der Bedienoberfläche für den Anwender durch Einfärben der betroffenen

Rohrleitungen sichtbar gemacht. So werde in der Anlage aus Abbildung 7.1a alle in Abbildung

7.1b gestrichelt gezeichneten Rohrleitungen eingefärbt, da sie beim Öffnen des durch den An-

wender angefragten Ventils Y1 betroffen wären. Dieses Teilszenario stellt einen Sonderfall dar,

B2

B1

YO
Y1

YO
Y2

NO
N1

NO
N1

(a) Beispielanlage mit geöffnetem Ventil Y2

B2

B1

YO
Y1

YO
Y2

NO
N1

NO
N1

(b) Auswirkungen der Aktorsteuerung an Y1

Abbildung 7.1: Auswirkungen einer Aktorsteuerung

da die Modelltransformation dauerhaft aktiv bleibt und selbst Teil der Automatisierungsfunktion

ist. Es verwendet daher das Prinzip „Parametrieren statt Implementieren“ [Sch12] in idealisier-

ter Form. Dadurch verlässt dieses Teilszenario allerdings gleich aus mehreren Gründen die

Welt der Tripel-Graph-Grammatiken. Zum einen handelt es sich hierbei nicht um einen einmali-

90

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt

gen Übersetzungsprozess. Wird die Produktion S1-R0 angewendet, so wird der Link zwischen

den beiden Flanschen (Connector) als übersetzt markiert. Ein Entfärben bzw. Schwärzen der

Rohrleitung oder gar ein erneutes Färben sind mit einer TGG nicht realisierbar.

S1-R0: Einfärben

vr: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveRequest”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

v: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveTemplate”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = false
+ Value = “Green”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

sa1: E2E

+ Kontext = false
si: MT-Variable

+ Kontext = true
+ RepKlasse = “SelectedItem”

+

Um das Anwendungsszenario dennoch umsetzen zu können, kann das vorgestellte Framework

ACPLT/MT jedoch auch als Basis für eine „herkömmliche“ unidirektionale Modelltransformation

genutzt werden. Die MT-Elemente des linken Pattern sind dabei alle mit Kontext = true und

Quellmodell = true parametriert. Die Regel lässt sich dann wie eine WENN-DANN-Regel

lesen. Hierbei entfällt die Überprüfung, ob ein Objekt bereits übersetzt wurde. Anders als bei

Leerlaufregeln kann dabei jedoch auf Informationen aus dem Quellmodell zugegriffen wer-

den. Dies bringt natürlich neue Probleme mit sich. So steht eine bidirektionale Auswertbarkeit

für solche Regelsätze nicht mehr zur Verfügung. Durch die erlaubte mehrfache Anwendung

der Regel auf die gleichen Modellelemente entfällt zudem die Zusicherung, dass die Trans-

formation terminiert. Wird beispielsweise in der Regel S1-R0 der Link im Pattern der linken

Domäne als Kontext markiert und somit in eine WENN-DANN-Regel verwandelt, so wird sie im-

mer und immer wieder ausgeführt werden, auch wenn die Rohrleitung bereits grün gefärbt ist.

WENN-DANN-Regeln müssen daher so formuliert sein, dass sie dennoch ressourcenschonend

ausgewertet werden können. Dies kann entweder durch einen geeigneten Trigger oder durch

gezielte Abfrage des Aktualzustandes geschehen. Im aktuellen Beispiel schlägt der Trigger

einmalig an, sobald eine Anfrage vom Benutzer erfolgt.

ACPLT/MT bietet für dieses Szenario noch weitere über die Mächtigkeit von Tripel-Graph-

Grammatiken hinausreichende Möglichkeiten für die Realisierung an. Durch die Überprüfung

des ausgewählten HMI-Objektes in der linken Domäne (SelectedItem) ist die Regel S1-R0

insgesamt sehr ineffizient, da das linke Pattern alle Kombinationen von Ventilen und Rohrleitun-

gen findet und erst ganz zuletzt bei der Auswertung der rechten Domäne ein Vergleich mit dem

eigentlich selektierten Element stattfindet. Um den Regelsatz effizienter zu gestalten, wurde

die Regel umgestellt und eine Inplace-Transformation mit multiplen Quellmodellen formuliert.

Dadurch wird die Welt der Tripel-Graph-Grammatiken endgültig verlassen.

Die resultierende Regel S1-R1 verwendet für die Umsetzung multipler Quellmodelle die als

UND parametrierte MT-Verzweigung. Sie dient damit lediglich als Multiplikator für die Komman-

dostruktur und stößt die MT-Elemente der ersten und der zweiten Alternative parallel an. Da die

91

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

MT-Elemente der ersten Alternativen in der Taskliste vor denen der zweiten eingeordnet sind,

wird zunächst das SelectedItem ausgewertet und in der zweiten Alternative nur das Ventil

gefunden, das vom Anwender ausgewählt wurde.

Das massive Verlassen der TGG-Welt bringt eine Reihe von Problemen und Gefahren mit sich,

für die im Einzelfall eine Kosten-Nutzen-Abwägung durchgeführt werden muss. So besteht die

Gefahr eines nicht terminierenden Regelsatzes durch Inplace-Transformation und mehrfache

„Übersetzung“ ein und desselben Objektes. Zudem fehlt die formale Zusicherung, dass die

Regelanwendungen konsistenzerhaltend wirken. Die Mächtigkeit der Ausdruckskraft geht an

dieser Stelle auf Kosten der Zusicherbarkeit von formalen Eigenschaften. Der Anwender muss

daher jeden Regelsatz, der außerhalb der TGG-Spezifikation läuft, explizit auf die benötigten

Eigenschaften hin überprüfen.

S1-R1: Auswirkung eines Stellbefehls am Ventil

vr: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveRequest”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

v: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveTemplate”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = false
+ Value = “Green”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

sa1: E2E

+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

si: MT-Variable
+ Kontext = true
+ RepKlasse = “SelectedItem”

Auf Basis dieser flexibleren nicht TGG-konformen Anwendung von ACPLT/MT färbt der in

[KQ11; Kra+12] vorgestellte Regelsatz die im HMI dargestellten Rohrleitungen, schrittweise

ausgehend vom angewählten Aktor, ein bis ein geschlossenes Ventil, eine ausgeschaltete

Pumpe oder ein Reaktor erreicht ist. Die Anzahl der für die Einfärbung benötigten Zyklen ent-

spricht der maximalen Anzahl der Rohrabschnitte in den gefundenen aktiven Flusswegen. Bei

einer für die Prozessindustrie üblichen Zykluszeit von 10ms ist dieses Vorgehen auch für große

Anlagen mit bis zu 40 oder 50 Rohrabschnitten bis zum nächsten Reaktor ausreichend schnell.

Die fünf für das Teilszenario benötigten Regeln werden in Anhang B als ACPLT/MT-Regeln de-

tailliert aufgeführt. An dieser Stelle soll die schon in [Kra+12] verwendete beschreibende Form

verwendet werden, um die Grundidee zu illustrieren. Die Regeln beschreiben den Zusammen-

hang von Ventil- (V), Pumpenzuständen (P), Vorhandensein von Kreuzungspunkte (K) und

92

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt

der Färbung der angeschlossenen Rohrleitungen (R). Indizes geben an, ob es sich um das

entsprechende Objekt in der Domäne ACPLT/csHMI (HMI) und ACPLT/PandIX (R&I) handelt.

R1. WENN V 1HMI angefragt wurde UND

V 1HMI entspricht V 1R&I UND

V 1R&I verbunden ist durch R1R&I UND

DANN überprüfe R1R&I entspricht R1HMI UND

färbe R1HMI ein.

R2. äquivalente Regel für Pumpen P1HMI bzw. P1R&I

R3. WENN R1HMI eingefärbt ist UND

R1R&I verbunden ist mit V 1R&I UND

V 1R&I offen ist UND

V 1R&I verbunden ist durch R2R&I

DANN wird R2HMI eingefärbt

R4. äquivalente Regel für Pumpen P1HMI bzw. P1R&I

R5. WENN R1HMI eingefärbt ist UND

R1R&I verbunden ist mit K1R&I UND

K1R&I verbunden ist durch R2R&I

DANN wird R2HMI eingefärbt

Während das erste Teilszenario inkrementelle Änderungen, multiple Quellmodelle und eine

Inplace-Transformation fokussiert, steht bei der Erkennung von Leckagen und unerwünsch-

ter Vermischung von Medien die Umsetzung einer unidirektionalen Batch-Transformation im

Vordergrund. Daher erlaubt sich an dieser Stelle die Frage, ob hier die Verwendung von Tripel-

Graph-Grammatiken nicht über das Ziel hinausschießt. Da jedoch die Gefahr besteht, dass ein

Anwender die Bausteinnetzwerke für die Flussweganalyse beabsichtigt oder unbeabsichtigt

verändert und auch die Anlagenstruktur über die Zeit ggf. angepasst wird, ist die Möglichkeit

zur Konsistenzanalyse und zum inkrementellen Update generell wünschenswert.

Als Basis für die Teilszenarien b) und c) dient die von Quirós [Qui11] formulierte Logik zur

Analyse von Flusswegen in einer verfahrenstechnischen Anlage. Quirós beschreibt darin alle

möglichen Flusswegproblematiken in Form von Funktionsbausteinnetzen. Abbildung 7.3 zeigt

die anlagenspezifischen Bausteinnetze zur Realisierung der Flussweganalyse von Behälter B1

nach Behälter B2 über die Pumpe N1. Für die in Abbildung 7.3a gezeigte Anlage existieren zwei

Flusswege von Behälter B1 nach B2 (vgl. Abbildungen 7.2b und 7.2c). Ein Vermischen kann

potentiell dann auftreten, wenn ein Medium über das an den Flussweg angrenzende Ventil Y2

zufließt. Ein offenes Ventil Y2 bedeutet aber ebenso ein potentielles Leck.

Zur Auswertung dieser ungewünschten Zustände stehen entsprechende Bausteinnetze zur

Überwachung von geöffneten Flusswegen 7.3c, die Erkennung von Leckagen 7.3d und die

93

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

B2

B1

YO
Y1

YO
Y2

NO
N1

NO
N1

(a) Beispielanlage

B2

B1

NO
N1

(b) 1. Flussweg von B1 nach B2

B2

B1

YO
Y1

(c) 2. Flussweg von B1 nach B2

Abbildung 7.2: Beispielanlage für die Flusswegkontrolle

Erkennung von unerwünschtem Mischen von Medien 7.3e zur Verfügung. Wird eine Leckage

oder ein Mischen außerhalb der dafür vorgesehenen Reaktoren identifiziert, so wird der Nutzer

darüber informiert 7.3f. Die zu realisierenden Bausteinnetzwerke sind anlagenspezifisch reali-

siert. Bei flexiblen Anlagen wie M4P.AC [M4P] ist eine Flussweganalyse daher nur einsetzbar,

wenn die entsprechenden Bausteinnetze automatisiert anhand der aktuellen Anlagenstruktur

erstellt werden.

Bei der Realisierung dieser beiden Teilszenarien stößt das vorgestellte Konzept schnell an sei-

ne Grenzen. Zwar lässt sich die Darstellung der Anlage mittels ACPLT/Flowpath-Objekten noch

relativ einfach in ACPLT/MT realisieren, doch schon die Suche nach möglichen Flusswegen ist

nicht mehr möglich. Ursache hierfür ist die fehlende Möglichkeit, rekursive Zusammenhänge zu

beschreiben. Die Suche nach einem Flussweg kann generell ähnlich angegangen werden wie

das Einfärben der Rohrleitungen im ersten Teilszenario, sogar ohne die Verwendung von multi-

plen Quellmodellen, Inplace-Transformation und wiederholtem „Übersetzen“ ein und desselben

Objektes. Anders als beim ersten Teilszenario reicht es aber nicht, Elemente die sich mehrere

Flusswege teilen einmalig zu bearbeiten. Die Kreuzungspunkte verhindern daher den Einsatz

von ACPLT/MT zur Realisierung des Szenarios. Beim Erreichen eines solchen Kreuzungs-

punktes müsste der bis dahin generierte Flussweg vervielfältigt werden. Dies ist mit ACPLT/MT

jedoch nicht möglich. Die gleiche Problematik tritt auch bei der Generierung der übrigen Bau-

steinnetzwerke auf.

An diesem Anwendungsszenario wurde ersichtlich, dass das vorgestellte Konzept von ACPLT/MT

zum einen flexibel genug ist, auch Modelltransformationen abzubilden, die über die Mächtigkeit

von Tripel-Graph-Grammatiken hinaus gehen. Dennoch gibt es zunächst einfach anmutende

Modellzusammenhänge, die nicht durch ACPLT/MT realisiert werden können.

7.3 S2 – Entwicklungsbegleitende Modelltransformation

Das R&I-Fließbild enthält grafische Elemente für alle Sensoren und Aktoren und stellt die An-

lagenstruktur in einer für den Menschen interpretierbaren Form dar. Eine 1-zu-1 Transforma-

tion in entsprechende Elemente des ACPLT/csHMI kann daher als ein erster Entwurf für die

Bedienoberfläche angesehen werden. Neben der Abbildung entsprechender Symbole und der

94

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.3 S2 – Entwicklungsbegleitende Modelltransformation

P1: Plant

B1: PlantUnit

Z1: PlantUnit

N1: PlantUnit

Y1: PlantUnit

Z2: PlantUnit

Y2: PlantUnit

B2: PlantUnit

N2: PlantUnit

Con1: Connector

Con2: Connector

Con1: Connector

Con2: Connector

Con3: Connector

Con1: Connector

Con2: Connector

Con1: Connector

Con2: Connector

Con1: Connector

Con2: Connector

Con3: Connector

Con4: Connector

Con1: Connector

Con2: Connector

Con1: Connector

Con2: Connector

Con1: Connector

Con2: Connector

(a) ACPLT/Flowpath Darstellung der An-

lage

B1: Source

Z2: Elem

Z1: Elem

N1: Elem

B2: Target

FR1: FlowRoute

(b) 1. Flussweg

and1:AND

1
B1_Con2

and6:AND

and2:AND

Z1_Con1
Z1_Con3

and3:AND

N1_Con1
N1_Con2

and4:AND

Z2_Con1
Z2_Con3

and5:AND

B2_Con1
1

FR1_Open

(c) Flussweganalyse für den ersten Flussweg

and1:AND

1
Z2_Con4

and2:AND

Y2_Con1
Y2_Con2

and3:AND

FR1_LEAK

(d) Erkennen von Leckage

and1:AND

Y2_Con2
Y2_Con1

and2:AND

Z2_Con4
1

and3:AND

FR1_MIX

(e) Erkennen von Vermischung

FR1_Open

or1:OR

FR1_LEAK
FR1_MIX

and1:AND

FR1_ALERT

(f) Generieren einer Warnung

Abbildung 7.3: Bausteinnetze zur Realisierung der Flussweganalyse nach [Qui11]

95

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

Verwendung der Struktur- und Positionsinformationen können auch angepasste Detailansich-

ten zur Verfügung gestellt werden. So werden für analoge Aktoren Schieberegler oder Prozen-

tangaben in der Detailansicht benötigt, für digitale Aktoren werden Schalter eingesetzt. Auch

die Beschriftung innerhalb der Detailansichten ist abhängig vom Aktortyp. Bei digitalen Ventilen

werden die Schalter mit „auf/zu“ beschriftet, bei Pumpen mit „an/aus“.

In [KQ11; Kra+12] sowie in den vorangegangenen Kapitel dieser Arbeit wurde bereits mehr-

fach auf den Regelsatz für die Realisierung einer solchen Transformation eingegangen. Der

ausführliche TGG-Regelsatz findet sich in Anhang B und umfasst folgende Regeln:

R1. - Anlegen einer Domäne Das Axiom legt eine ov/domain als Wurzelelement für das

PandIX bzw. das HMI an. Die HMI-Domäne erhält zudem zusätzliche strukturierende Ele-

mente.

R2. - Anlage Für jede Anlage wird ein eigens R&I-Fließbild (PlantScheme) im PandIX angelegt

bzw. eine Bedienoberfläche im ACPLT/csHMI.

R3. - Teilanlage Auch für Teilanlagen werden eigene Ansichten im ACPLT/csHMI bereitge-

stellt. Dies ermöglicht die spätere Umschaltung zwischen einem Gesamtüberblick und

einer feineren Auflösung für eine Teilanlage.

R4. - Aktor Jeder Aktor ist im HMI durch ein Oval mit spezifischer Beschriftung gekennzeich-

net. Diese entsprechen den ActuatorRequest im PandIX-Modell.

R5. - Ventile/Pumpen Pumpen und Ventile im PandIX erzeugen entsprechende Symbole in

der Gesamtansicht.

R6. - Behälter Äquivalent zu R5 erstellt diese Regel Symbole für Behälter.

R7. - Rohrleitungen Äquivalent zu R6. erstellt diese Regel Rohrleitungen. Das Routing und

somit den genauen Verlauf der Rohrleitungen werden durch das ACPLT/csHMI automa-

tisch berechnet. Rohrleitungen erhalten lediglich ein Anfangs- und ein Endelement mit

dem sie verknüpft sind. Dies sind die Flansche der Aktoren, Kreuzungspunkte und Be-

hälter.

Mit diesem Anwendungsszenario konnte gezeigt werden, dass das entwickelte Konzept für

den Einsatz praxisrelevanter Automatisierungsfunktionen geeignet ist. Anpassungen an der

Anlagenstruktur können schnell und konsistent in die Bedienoberfläche übernommen werden.

Zuvor bereits vorhandenen Aktoren, Behälter und Rohrleitungen bleiben bei einem solchen in-

krementellen Updaten unverändert und behalten ihre durch den Apllikateur ggf. angepassten

Grafikeigenschaften, wie die Position von Grafikelementen bei. Softsensoren und Gruppen-

steuerungen, die eine Kaskade von Aktoren ansteuert, können in der Bedienoberfläche erstellt

und in die Planungsdaten rückdokumentiert werden. Auch die regelmäßige Konsistenzanaly-

se von Planungsdaten und HMI stellt während der Projektierung einer Anlage eine enorme

Arbeitserleichterung dar und kann abschließend zur Zertifizierung des HMI genutzt werden.

Dieses Anwendungsszenario hat jedoch auch gezeigt, dass die TGG-Regeln selbst bei einfa-

chen Modellzusammenhängen schnell sehr umfangreich und komplex werden.

96

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.4 S3 – Konsistenzanalyse und Modellreparatur

7.4 S3 – Konsistenzanalyse und Modellreparatur

Die Konsistenzanalyse und eine bidirektionale Auswertung der Regeln zur Modellreparatur sind

Kernthemen des letzten Anwendungsszenarios. Im ersten Teilszenario soll die Konsistenz zwi-

schen den in der Bedienoberfläche dargestellten Aktoren und der Prozessführung sowie das

Vorhandensein der entsprechenden Verknüpfung überprüft werden.

Die Prozessführung ist im Allgemeinen zu komplex, um sie automatisiert aus den Planungsda-

ten generieren zu können [KSY10]. Dennoch sind bestimmte Teile, wie die Verriegelungslogik

von Pumpen und Ventilen, immer ähnlich. Wird die Verriegelungslogik vergessen oder kann

ein aktives Element wegen einer fehlenden Verknüpfung zur Prozessführung nicht wie erwar-

tet über die Bedienoberfläche angesteuert werden, so kann dies schwerwiegende Folgen für

Mensch, Maschine und Umwelt nach sich ziehen. In diesem Szenario steht deshalb die Aufga-

be im Vordergrund, zu jedem in der Bedienoberfläche vorhandenen Aktor eine entsprechende

Prozessführungskomponente zu identifizieren und umgekehrt. Hierbei können einzelne Akto-

ren auch mehrfach in der Bedienoberfläche repräsentiert sein. Außerdem muss überprüft wer-

den, ob die Prozessführungskomponenten mit den zugehörigen Bedienkomponenten verknüpft

sind, da nur so die Aktoren angesteuert werden können.

Eine direkte Umsetzung dieses Szenarios als TGG ist nicht möglich, da die Überprüfung von

Verknüpfungen zwischen Bedienoberfläche und Prozessführung einer Inplace-Transformation

bedürfen. Hierzu werden die Transformation aus Anwendungsszenario S2 um die Komponen-

ten der Prozessführung und die Verlinkungen zwischen Bedienbild und Prozessführung erwei-

tert.

Zur Realisierung der Konsistenzanalyse wurde eine Vorwärts- und anschließende Rückwärts-

transformation durchgeführt. Statt allerdings Objekte in der jeweiligen Zieldomäne anzulegen,

wird bei der Anwendung einer Regel im Modus Konsistenzüberprüfung lediglich untersucht, ob

Objekte existieren, die den MT-Elementen des Patterns der Zieldomäne entsprechen. Ist dies

der Fall, so werden die Objekte der Quelldomäne wie gehabt als übersetzt markiert und falls

nicht vorhanden die Korrespondenzlinks zwischen Quell- und Zieldomäne erzeugt. Nach voll-

ständig durchlaufener „Transformation“ wird die Existenz nicht übersetzter Objekte der Quell-

domäne untersucht und ggf. protokolliert.

Die Modellreparatur konnte nicht realisiert werden. Angedacht, war eine Interaktion mit dem

Anwender, der für die einzelnen, bei der Konsistenzanalyse aufgetretenen Inkonsistenzen ent-

scheidet, in welcher Richtung die Änderung propagiert wird. Dieser naive Ansatz hatte jedoch

gleich mehrere Schwachstellen. Wird eine einzelne Inkonsistenz behoben, so kann dies Aus-

wirkungen auf weitere zuvor bestehende Inkonsistenzen haben, da diese ggf. im gleichen Zug

mit behoben werden. Um solche Wechselwirkungen aufdecken zu können, müsste nach jeder

Änderung erneut eine Konsistenzanalyse durchgeführt werden. Dieses Vorgehen belastet das

System jedoch unverhältnismäßig stark. Auch muss der Regelsatz erneut nach passenden Re-

geln für die Übersetzung der konkreten Inkonsistenz durchsucht werden, was die Performance

weiter herabsetzt.

97

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

7.5 Anforderungen an eine bidirektionale Modelltransformation

Die drei Anwendungsszenarien bieten einen ersten Einblick, bei welchen Problemstellungen

ACPLT/MT zur Realisierung eingesetzt werden kann und wo die Grenzen des Ansatzes liegen.

Im Folgenden soll die Passgenauigkeit von ACPLT/MT auf die in den Kapiteln 4.2 identifizierten

generellen Anforderungen an eine Modelltransformation für die Automatisierungstechnik ana-

lysiert werden sowie ein Abgleich mit den von Klar [Kla12] beschriebenen Anforderungen an

eine bidirektionale Modelltransformation erfolgen.

Gerade bei der informationstechnischen Sicht auf ACPLT/MT muss dabei klar zwischen dem

Modell an sich und der Realisierung einer TGG mit Hilfe von ACPLT/MT unterschieden wer-

den, da hier große Unterschiede in Bezug auf die Mächtigkeit auf der einen Seite und der

Zusicherung formaler Eigenschaften auf der anderen Seite zu erwarten sind. Bei der Analyse

der von Klar aufgestellten Kriterien steht daher ein kritischer Blick auf die mit der gewonnenen

Flexibilität einhergehenden Risiken und Probleme im Vordergrund.

Flexibel einsetzbar Tripel-Graph-Grammatiken sind für die Beschreibung von Modellzusam-

menhängen zwischen zwei graphbasierten Modellen entwickelt worden. Durch die Be-

reitstellung von MT-Elementen zur Interpretation von XML-Bäumen ist das Anwendungs-

spektrum nochmals erweitert worden. Diese Bandbreite an möglichen Modellen steht

sowohl in ACPLT/MT allgemein als auch bei der Realisierung einer TGG auf Basis von

ACPLT/MT zur Verfügung.

Eindeutige Semantik Die vorliegende Arbeit konzentriert sich auf die Konzeptentwicklung für

eine Modelltransformation in prozessleittechnischen Laufzeitumgebungen. Eine umfang-

reiche Einführung in die Semantik von ACPLT/MT finden sich in Kapitel 6. Weiterführende

Arbeiten sind jedoch noch notwendig, um eine detaillierte eindeutige Semantik zur Verfü-

gung zu stellen.

Mächtigkeit Die Mächtigkeit von Tripel-Graph-Grammatiken ist im Vergleich zu anderen Mo-

delltransformationssprachen wie QVT und VIATRA zu Gunsten der zugesicherten forma-

len Eigenschaften deutlich eingeschränkt. Durch die Beschränkung auf ein Quell- und ein

Zielmodell, auf Outplace-Transformation und nichtrekursive Modellzusammenhänge sind

viele Anwendungsszenarien nicht mit Tripel-Graph-Grammatiken realisierbar. ACPLT/MT

hebt zwar einige dieser Beschränkungen auf, gerät aber zum Beispiel bei den rekursi-

ven Problemen ebenso an seine Grenzen. Wie an den Anwendungsszenarien zu sehen

war, lässt sich trotz der eingeschränkten Mächtigkeit ein breites Feld an praxisrelevan-

ten Anwendungen mit ACPLT/MT und vielfach auch mit einer darauf aufbauenden TGG

realisieren.

Bijektivität Wie in Abschnitt 7.2 ersichtlich wird, unterstützt ACPLT/MT die Beschreibung

nicht-bijektiver Modellzusammenhänge. Zum einen stehen dafür die WENN-DANN-Regeln

zur Verfügung, zum anderen bieten Leerlaufregeln eine TGG-konforme Möglichkeit, eines

der beiden Modelle zu modifizieren ohne das andere anzupassen. Um Leerlaufregeln

in ACPLT/MT zu nutzen, wird das Pattern für das unveränderte Modell mit Hilfe eines

MT-True-Objektes realisiert. Dieses gibt immer eine positive Rückmeldung, so dass die

Regel effektiv nur aus einem Pattern besteht.

98

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.5 Anforderungen an eine bidirektionale Modelltransformation

Wiederverwendbarkeit Die Verwendung von Template-Datenbanken ermöglicht es, beliebig

komplexe Regelbestandteile für die Mehrfachverwendung bereitzustellen. Zudem bie-

ten Verzweigungen die Möglichkeit, mehrere Regeln zusammenzufassen und so ge-

meinsam genutzte Regelbestandteile wiederzuverwenden. Beide Wiederverwendungs-

konzepte sind auch beim Einsatz von ACPLT/MT als Basis einer TGG nutzbar.

Terminierung Diese Eigenschaft kann für den Kontrollalgorithmus nicht generell zugesichert

werden. Sie ist abhängig von den formulierten Regeln. Insbesondere bei Inplace-

Transformationen kann es zu Zyklen in der Bearbeitung kommen, wenn zum Beispiel

durch eine Regel die RHS jeweils ein Element hinzufügt wird, das durch die LHS gesucht

wird. In diesem Fall wird in jedem Schritt ein neues Element angelegt und im nächsten

Schritt als neu angelegt gefunden. Auch bei Transformationen mit disjunkten Quell- und

Zielmodellen kann es zu nicht-terminierenden Regelsätzen kommen. Eine Transforma-

tion, die den Zustand einer zyklisch blinkenden Lampe aus der Prozessführung in eine

Anzeige der Bedienoberfläche überführt, kann bei ungünstiger Wahl der Abbruchbedin-

gung bei der Bearbeitung der Regeln zu nicht-terminierendem Verhalten führen. Wie

in diesem Beispiel ersichtlich ist, kann dies aber durchaus gewollt sein. Terminierung

kann lediglich für einzelne, auf ein während der Regelbearbeitung stabiles, endliches

Quellmodell angewendet, zugesichert werden. Die Einschränkung bei der Verwendung

von Templates auf Zyklenfreiheit sowie die verwendete Tiefensuche mit Backtracking

verhindert hier ein nichtterminierendes Festhängen in Zyklen oder toten Enden.

Wird ACPLT/MT jedoch als Basis für eine TGG genutzt und auf ein Quellmodell angewen-

det, das über den Zeitraum der Transformation unverändert bleibt, so kann eine Terminie-

rung zugesichert werden, da jedes Element nur einmal übersetzt wird und anschließend

nur noch im Kontext von Regeln zum Einsatz kommt.

Inkrementelle Änderungen Das vorgestellte Konzept eignet sich auch für inkrementelle Mo-

delländerungen, da die Zusammenhänge zwischen Quell- und Zielmodell dauerhaft nach-

gehalten und auch für spätere Durchläufe der Transformation zur Verfügung stehen. Re-

gelsätze können auch explizit als inkrementelle Regelsätze konzipiert werden, indem sie

auf die Ergebnisse und Korrespondenzobjekte vorangegangener Transformationen auf-

bauen.

Wie aus der Analyse des Konzeptes entlang der von Klar aufgestellten Anforderungen deut-

lich wird, sind einige Punkte nicht generell für das vorgestellte Konzept gültig. Dieser Verzicht

auf die formalen Rahmenbedingungen ist bewusster Bestandteil des Konzeptes. Dadurch ist

es möglich, Modelltransformation auch für Anwendungsszenarien zur Verfügung zu stellen,

die den formalen Eigenschaften nicht gerecht werden. Diese erhöhte Flexibilität geht jedoch

immer mit der Gefahr einher, die positiven Eigenschaften, die bei der Verwendung von Tripel-

Graph-Grammatiken zugesichert werden können zu verlieren. Das vorgestellte Konzept soll-

te daher immer im Zusammenhang mit den theoretischen Vorarbeiten aus dem Bereich der

Tripel-Graph-Grammatiken gesehen werden. Insbesondere die Arbeiten von Königs [Kön08],

Klar [Kla12] und Lauder [Lau12] beschreiben und beweisen die formalen Eigenschaften von

Tripel-Graph-Grammatiken. Zudem bieten sie eine Fülle von Optimierungsvorschlägen für die

Regelbeschreibung und -verarbeitung von denen nur ein kleiner Teil in dieser Arbeit Beachtung

gefunden hat.

99

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7 Validierung

7.6 Anforderungen an eine Modelltransformation für die
Automatisierungstechnik

Bei der Übertagung von Konzepten aus der Informatik in eine Anwendungsdomäne müssen

immer die Bedürfnisse und Kenntnisse der Domänenexperten in die Konzeptentwicklung ein-

bezogen werden. Ein Ansatz, der den üblichen Arbeitsfluss auf Dauer eher behindert als ihn

zu unterstützen, kann noch so innovativ sein, er wird keine Anwendung finden.

Auch das vorgestellte Konzept muss sich daher an den Maßstäben aus Kapitel 4.2 messen

lassen:

Unidirektionale Batch-Transformation Nicht alle mit ACPLT/MT realisierbaren Regelsätze

sind zur Ausführung als unidirektionale Batch-Transformation geeignet. Insbesondere

solche, die auf WENN-DANN-Regeln basieren sind für die kontinuierliche inkrementelle

Modelländerung ausgelegt. Generell stellen unidirektionale Batchtransformationen aller-

dings schon das Hauptanwendungsgebiet von ACPLT/MT dar, insbesondere wenn die

Realisierung mit Hilfe von Tripel-Graph-Grammatiken auf Basis von ACPLT/MT erfolgt.

Inkrementelle Änderungen Wie bereits im vorangegangenen Abschnitt erläutert, eignet sich

ACPLT/MT auch für das Propagieren inkrementeller Modelländerungen und ermöglicht

des Weiteren rein inkrementelle Regelsätze.

Bidirektionale Auswertbarkeit Eine Zusicherung dieser Eigenschaft kann nur erfolgen, wenn

die Transformation als TGG auf Basis von ACPLT/MT realisiert wurde. Durch Setzen des

entsprechenden Parameters des REC lassen sich ACPLT/MT-Regeln in beliebiger Rich-

tung zur Modelltransformation anwenden. Die einmal formulierten Modellzusammenhän-

ge lassen sich dadurch entweder zur Realisierung der Automatisierungsfunktion anhand

der Planungsdaten oder zur Rückdokumentation von Änderungen an der Automatisie-

rungsfunktion nutzen. Eine Anpassung der Regel ist dazu nicht notwendig.

Konsistenzprüfung Auch die Konsistenzprüfung erfolgt durch Parametrierung der bidirektio-

nal formulierten MT-Regeln. In diesem Fall produzieren die Objekte der Korrespondenz-

domäne eine entsprechende Dokumentation der erfolgten Analyse.

Modellreparatur Das bisher vorgestellte Konzept ermöglicht noch keine effiziente Modellre-

paratur. Ein erster naiver Ansatz ermöglichte zwar eine generelle Identifikation der In-

konsistenzen und deren Behebung, belastet jedoch das System in einem nicht tragbaren

Umfang. Zudem erfordert die aktuelle zustandsbasierte Ausrichtung von ACPLT/MT, die

nur den aktuellen Zustand der Modelle betrachtet, den aktiven Einbezug des Anwenders

bei der Auflösung von Inkonsistenzen.

Nachvollziehbarkeit Ob diese Anforderung erfüllt ist, hängt stark von den formulierten MT-

Regeln ab. Die Dokumentation und Nachvollziehbarkeit der Transformationsschritte muss

durch die Logik der Korrespondenzobjekte abgedeckt werden. Auch kann mit dem bishe-

rigen Konzept noch keine deterministische Auswertung zugesichert werden. Hierzu müs-

sen die Regeln so gestaltet sein, dass die Reihenfolge der Auswertung irrelevant für das

Ergebnis ist oder es muss eine feste Auswertungsreihenfolge vorgeschrieben werden.

Jeder Regelsatz muss explizit auf Determinismus hin untersucht werden.

Freie Werkzeugwahl Das Konzept ist unabhängig von den für die Erstellung der Modelle ver-

wendeten Werkzeugen. Es stellt lediglich an die verwendeten Modelle die Anforderung,

100

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

7.6 Anforderungen an eine Modelltransformation für die Automatisierungstechnik

dass sie in einer objektorientierten, rechnerauswertbaren Form vorliegen und in das Ziel-

system in Form von Objektnetzwerken importiert werden können. Dies ist bei vielen Pla-

nungsmodellen in der einen oder anderen Form mittlerweile der Fall.

Wartbare, nachvollziehbare Regeln ACPLT/MT-Regeln setzen Objektnetzwerke der korrelie-

renden Modelle in Beziehung und ermöglichen so Regeln, die für den Domänenexperten

einfach nachvollziehbar sind. Durch die Wiederverwendung von Regelteilen mit Hilfe des

Platzhalter/Template-Konzeptes kann die Lesbarkeit von Regeln weiter verbessert wer-

den. Hierzu ist es ratsam, für die Templates sprechende Namen zu verwenden. Auch die

Wartbarkeit der Regel profitiert von der Verwendung der Templates, da Anpassungen nur

an einer Stelle durchgeführt werden müssen und anschließend an allen Platzhaltern di-

rekt zur Verfügung stehen. Die Verwendung von Verzweigungen reduziert die Anzahl der

redundanten Regelteile weiter und trägt ihren Teil zur besseren Wartbarkeit bei.

101

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

Traditionell werden verfahrenstechnische Anlagen einmal geplant, errichtet und über Jahrzehn-

te nahezu unverändert betrieben. Diese traditionellen Anlagen werden in Zukunft immer häufi-

ger durch flexible Anlagen ergänzt, die auftragsbezogen rekonfiguriert und kombiniert werden

können. Eine solche Flexibilität verlangt aber nicht nur ein Umdenken beim Bau von verfahrens-

technischen Anlagen sondern auch bei ihrer Automatisierung. Nur die Kombination aus modu-

laren Anlagen und effizienter Anpassung der benötigten Automatisierungsfunktionen können

die Anlagen der Zukunft fit machen für die mit Industrie 4.0 einhergehenden Anforderungen.

Das erklärte Ziel dieser Arbeit war die Bereitstellung von anlagenneutralen Automatisierungs-

funktionen, die als Serienprodukt verkauft und per Modelltransformation anhand der Planungs-

daten an die konkrete Anlage und an aktuelle Anforderungen angepasst werden können. Zu-

dem sollen Änderungen in der Automatisierungsfunktion in die Planungsdaten zurückgespielt

und somit dokumentiert werden können. Dieses Kapitel fasst das zu diesem Zweck entwickelte

Konzept in Kürze zusammen, reflektiert, inwieweit die gesetzten Ziele erreicht werden konnten

und gibt einen Ausblick auf die zukünftig Entwicklung von ACPLT/MT.

8.1 Modelltransformation für prozessleittechnische
Laufzeitumgebungen

Die angestrebte Problemstellung und ein Einblick in das Potential einer Modelltransformati-

on in prozessleittechnischen Laufzeitumgebungen wurden dem Leser in Kapitel 1 näher ge-

bracht. Zudem wurden drei ganz konkrete aus der Praxis stammende Anwendungsszenarien

vorgestellt, die im Verlauf der Arbeit unter anderem zur Veranschaulichung der beschriebenen

Inhalte und zur Verdeutlichung konkreter Problemstellungen herangezogen wurden. Die Basis-

begriffe aus dem Bereich der Modellierung sowie verschiedene Modellierungsarten wurden in

Kapitel 2 angerissen. Kapitel 3 analysiert eine Reihe von Modellen aus dem Bereich der Au-

tomatisierungstechnik hinsichtlich ihrer Eignung für eine Modelltransformation. Dabei dienten

die zuvor bereitgestellten Anwendungsszenarien als Leitfaden für die Auswahl der betrachte-

ten Modelle. Die bei der Analyse gewonnenen Erfahrungen flossen ein in eine Empfehlung

für die Entwicklung künftiger Automatisierungsmodelle am Ende des Kapitels. Als Basis für

die angestrebte Konzeptentwicklung für eine Modelltransformation in prozessleittechnischen

Laufzeitumgebungen wurden in Kapitel 4 und 5 Anforderungen an eine solche Modelltransfor-

mation formuliert und relevante Ansätze aus der Automatisierungstechnik und der Informatik

vorgestellt und auf ihre Eignung hin untersucht. Ein besonderer Fokus lag dabei auf den Tripel-

Graph-Grammatiken.

102

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

8.1 Modelltransformation für prozessleittechnische Laufzeitumgebungen

Der aus der Informatik stammende Ansatz der Modelltransformation mittels Tripel-Graph-

Grammatiken wurde in Kapitel 6 in die Sprachen der IEC 61131 überführt. Das dadurch

entstandene Framework ACPLT/MT für eine Modelltransformation in prozessleittechnischen

Laufzeitumgebungen bietet die Grundlage für die Bereitstellung von parametrierbaren anla-

genneutralen Automatisierungsfunktionen und ermöglicht eine Anpassung der Anlagenauto-

matisierung an neue Gegebenheiten ohne erneuten Implementierungsaufwand. Die Integra-

tion von Tripel-Graph-Grammatiken in die Sprachen der IEC 61131 gewährleistet, dass sich

Automatisierungsfunktionen, die mit ACPLT/MT realisiert werden, nahtlos in die automatisie-

rungstechnische Laufzeitumgebung einbinden lassen. Zudem ermöglicht die Umsetzung in

den domänenspezifischen Sprachen eine erhöhte Akzeptanz, da die Applikateure keine neue

Sprache für die Regelerstellung erlernen müssen. Ergänzend zur Vorstellung des Konzeptes

wurde die Referenzimplementierung auf Basis der ACPLT-Modellwelt im Detail erläutert. Im

Fokus standen dabei insbesondere die benötigten Anpassung am Tasking-Konzept sowie die

Umsetzung in den an die IEC 61131-3 angelehnten Sprachen SFC und ACPLT/FB. Anders als

bei bisherigen TGG-Ansätzen wurde dabei sowohl auf eine explizite Übersetzung in operatio-

nale Regeln als auch auf einen Interpreter verzichtet. Stattdessen kamen aktivierbare Regeln

zum Einsatz, die zunächst als passive Objektnetzwerke die deklarativen TGG-Produktionen

repräsentieren. Zum Zeitpunkt der Regelanwendung werden die Objekte in die zyklische Be-

arbeitung eingebunden und agieren daher als operationale Regeln.

Anhand von umfangreichen Testszenarien konnte in Kapitel 7 gezeigt werden, dass sich das

vorgestellte Konzept in der Praxis bewährt und auch komplexere parametrierbare Automati-

sierungsfunktionen ermöglicht. Als eine besondere Herausforderung bei der Realisierung der

Anwendungsszenarien stellte sich die Komplexität der Modelle und Modellzusammenhänge

heraus. Insbesondere die Einschränkung von Tripel-Graph-Grammatiken, dass jedes Modell-

element nur einmal übersetzt werden darf, führte dabei schnell zu sehr komplexen und unüber-

sichtlichen Regeln. Zwar kann durch Leerlaufregeln schon ein Teil der Problematik abgefangen

werden, diese lassen jedoch keine Wiederverwendung von Objektnamen oder Variablenwerte

aus dem Kontext für die Generierung der neuen Objekte zu. Auch an anderen Stellen erschwert

die eingeschränkte Mächtigkeit von Tripel-Graph-Grammatiken die Realisierbarkeit von auto-

matisierungstechnischen Problemstellungen. So schränken die fehlende Rekursivität und die

fehlende Möglichkeit zum Löschen die beschreibbaren Modellzusammenhänge merklich ein.

Zwar bietet ACPLT/MT zum Teil die Möglichkeit, auf die flexibleren WENN-DANN-Regeln aus-

zuweichen, dies geht aber zu Lasten der zugesicherten formalen Eigenschaften, die bei der

Verwendung TGG-konformer Regeln gelten. Die spezifischen Handschriften der Planungsin-

genieure und Applikateure sowie domänenspezifische Benennungen von korrelierenden Mo-

dellelementen stellen eine weitere Herausforderung für das Konzept der regelbasierten Mo-

delltransformation zur Realisierung von anlagenneutralen Automatisierungsfunktion dar. Dies

kommt verstärkt an den Stellen zum Tragen, bei denen die Anlage aus einem anderen Blick-

winkel betrachtet wird. So sieht der Elektrokonstrukteur die Anlage aus Sicht der verbauten

Remote I/O und der durch sie zur Verfügung gestellten Anschlusspunkte für die Hardware im

Feld, bei der Erstellung eines R&I-Fließbildes steht hingegen die funktionale Sicht auf die An-

lage im Fokus. Dementsprechend fällt die Benennung der Aktoren und Sensoren zwischen der

Elektroplanung und einem R&I-Fließbild unterschiedlich aus.

103

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

Trotz all dieser Unwägbarkeiten hat sich gezeigt, dass auch praxisrelevante Problemstellun-

gen mit ACPLT/MT realisiert werden können. Die einmal beschriebenen Regeln können anla-

genneutral bereitgestellt werden, um die anlagenspezifischen Funktionen zu generieren, oder

selbst als Automatisierungsfunktion zu agieren. Mit ACPLT/MT steht daher ein umfangrei-

ches Framework zur Realisierung von Modelltransformationen in der prozessleittechnischen

Laufzeitumgebung zur Verfügung. Durch die Fokussierung von ACPLT/MT auf Tripel-Graph-

Grammatiken als Basis steht dem Anwender eine fundierte, gut erforschte Transformationss-

prache mit umfangreichen formalen Zusicherungen zur Verfügung. Zukünftige Anpassungen

am vorgestellten Konzept bieten das Potential, ACPLT/MT noch anwenderfreundlicher und ro-

buster zu gestalten und das Anwendungsspektrum von ACPLT/MT zu erweitern. Einige dieser

Erweiterungsmöglichkeiten werden im Folgenden vorgestellt.

8.2 Erweiterte Einsatzszenarien und mögliche
Spracherweiterungen

Möchte sich ein Anwender die durch Tripel-Graph-Grammatiken bereitgestellten Eigenschaften

in ACPLT/MT zu Nutze machen, unterliegt er strengen Regularien bei der Erstellung der Re-

geln. Gerade bei komplexen Regeln und umfangreichen Regelsätzen ist dies für den Anwender

ohne unterstützende Werkzeuge nur schwer zu realisieren. Die Bereitstellung entsprechender

Werkzeuge bietet daher großes Potential, die Anwendbarkeit von ACPLT/MT in der Praxis vor-

anzutreiben. Ein erster Schritt zur Unterstützung des Anwenders ist die Einführung eines Vali-

dierungswerkzeuges, das vom Anwender entwickelte Regelsätze auf Konformität zu den TGG-

Regularien überprüft. Um schon bei der Erstellung der Regeln Fehler zu vermeiden, bedarf

es jedoch eines Entwicklungswerkzeuges, das die Beschreibung von Modellzusammenhängen

unterstützt und dabei auf Wunsch auf TGG-konforme Möglichkeiten einschränkt. Auch die Re-

gelauswertung bietet noch umfangreiches Erweiterungspotential. So ist die Bereitstellung einer

weitgehend automatisierten Modellreparatur für die Automatisierungstechnik von besonderem

Interesse. Nur so lassen sich Anlagenzustand und Anlagendokumentation auf Dauer konsistent

halten. Hierbei kann auf Arbeiten aus dem Forschungsbereich der Tripel-Graph-Grammatiken

zurückgegriffen werden, die nicht nur den aktuellen Modellzustand sondern die zeitliche Ent-

wicklung und damit die vorangegangenen Modellzustände mit in die Betrachtung einbeziehen.

Dadurch ist es bei auftretenden Inkonsistenzen in vielen Fällen möglich, zu entscheiden wel-

che Modelländerung für die Inkonsistenz verantwortlich ist und die ursächliche Änderung in das

andere Modell zu übernehmen. Ein weiterer Ansatzpunkt aus dem Bereich der Regelauswer-

tung ist die Laufzeitoptimierung durch parallele Bearbeitung mehrerer Modelltransformationen

oder mehrerer Regeln einer Transformation. Hierbei empfiehlt sich eine Art Sandkastensystem,

bei dem jeder in Ausführung befindlichen Regel ein klar definierter Modellteil zum Lesen und

Ändern bereitgestellt wird. Ein überlagerter Kontrollmechanismus muss sicherstellen, dass die

Modellteile, die von parallel aktiven Regeln genutzt werden sich nicht überschneiden. Neben

der Modellreparatur und paralleler Regelbearbeitung bietet das Forschungsgebiet der Tripel-

Graph-Grammatiken generell ein breites Spektrum bisher noch nicht in Betracht gezogener

Erweiterungen. So kann unter anderem die Realisierung von Löschungen [Lau12], Amalga-

104

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

8.2 Erweiterte Einsatzszenarien und mögliche Spracherweiterungen

mierung [Leb+15; Leb+16] und Vererbung [Anj14] den Einsatzhorizont von ACPLT/MT deutlich

erweitern.

Bei der Realisierung der Anwendungsszenarien und im Gespräch mit Kollegen und Mitstreitern

ergaben sich weitere vielversprechende Anregungen zur Weiterentwicklung von ACPLT/MT. So

wurde bereits in [KME12] die Einbettung von ACPLT/MT in eine verteilte Automatisierungs-

landschaft untersucht. Die Verteilung von Funktionalität auf verschiedene Rechner und Steue-

rungssysteme ist ein Grundprinzip heutiger Automatisierungssysteme. Der Trend geht immer

weiter in Richtung autark agierender Einzelkomponenten, die sich benötigte Informationen über

den Anlagenzustand eigenständig über das angeschlossene Netzwerk besorgen. Ein populä-

rer Ansatz auf diesem Gebiet ist der Gedanke der Service-Orientierten Architektur, kurz SOA.

Dabei wird gezielt auf kleine Softwarekomponenten mit dedizierter Aufgabe und klar definierter

Schnittstelle gesetzt. Die einzelnen Softwarekomponenten, die so genannten Services, kapseln

die durch sie bereitgestellte Funktionalität und stellen sie bei Dienstaufrufen zur Verfügung.

Durch den losen Verbund der einzelnen Softwarekomponenten in verteilten Systemen ist ein

zentrales Änderungsmanagement aller Komponenten schwer zu realisieren. Anpassungen an

einer Komponente können daher nicht kalkulierbare Auswirkungen auf andere Komponenten

haben. Jede Softwarekomponente muss für sich entscheiden, ob eine im Gesamtsystem auf-

getretene Anpassung Auswirkungen auf die lokalen Modelle hat. Hierzu schlagen [KME12]

vor, die durch eine Softwarekomponente bereitgestellte Automatisierungsfunktion (z.B. den Er-

kundungsservice, vgl. Abbildung 8.1) in eine Servicegruppe einzubetten. Diese beobachtet das

Gesamtsystem und passt ggf. die Automatisierungsfunktion mittels Modelltransformation an die

Systemänderungen an. Hierzu stehen zwei lokale Dienste zur Verfügung, der Änderungs- und

der Engineeringservice. Wird eine Automatisierungsfunktion geändert, so stellt der Änderungs-

service Informationen über Art der Änderung und Änderungszeitpunkt als Änderungsnachricht

für andere Servicegruppen bereit. Zudem registriert sich der Änderungsservice bei relevanten

anderen Servicegruppen, um so Informationen über Änderungen an deren Automatisierungs-

funktion mittels Änderungsnachricht informiert zu werden. Der Engineeringservice wiederum

reagiert auf die einkommenden Änderungsnachrichten und passt das lokale Modell via Modell-

transformation an die Änderungen der anderen Automatisierungsfunktionen an. Erste Erwei-

terungen des Konzeptes der Servicegruppen von Grüner et. al [GWE14] erlauben sogar den

Einsatz über die Prozessleittechnik hinaus in die Fertigungstechnik.

In eine ähnliche Richtung geht der potentielle Einsatz von ACPLT/MT in Self-X-Systemen.

Die Modelltransformation kann beispielsweise dazu genutzt werden, Automatisierungsfunktio-

nen in ein vorher unbekanntes Gesamtsystem per Plug-and-Play einzubinden. Anders als in

dieser Arbeit betrachtet erfolgt dabei allerdings keine Parametrierung mit Hilfe der Planungs-

daten. Vielmehr erkundet die Modelltransformation, unterstützt durch Services, selbstständig

das bestehende Gesamtsystem und passt die Automatisierungsfunktion per Selbstkonfigurati-

on entsprechend an. Auch selbstheilende Systeme sind denkbar, die Inkonsistenzen erkennen

und - sofern möglich - beheben. Die dritte vielversprechende Self-X Eigenschaft, die durch

ACPLT/MT realisiert werden kann ist die Selbstoptimierung. Anhand aktueller Performanceda-

ten der Anlage kann die Prozessführung angepasst und über die Zeit optimiert werden. Der

Einsatz von ACPLT/MT in Self-X-Systemen jeglicher Art bedarf jedoch einer Situationsanalyse

der konkreten Einsatzszenarien und umfangreicher Weiterentwicklungen am hier vorgestellten

Konzept.

105

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

T AF
ServiceEngineering

Service
Änderungs-

Service
Modell

Transformation

Änderungsnachricht

A’

Erkundungs-
Service

A’ A

AND

AND

AND

Abbildung 8.1: Automatisierungsfunktion als Service-Gruppe [KME12]

Auch zur Unterstützung des traditionellen Engineeringprozesses kann der Einsatz von ACPLT/MT

sinnvoll sein. Werden die Ein- und Ausgänge eines Funktionsbausteins im Engineeringsystem

verändert, so muss das Laufzeitsystem für gewöhnlich angehalten werden um den Baustein

zu ersetzen und anschließen das Laufzeitsystem wieder zu starten. Diese Unterbrechung ist

eine besondere Herausforderung für Applikateure, da die Anlage komplett leer gefahren wer-

den muss, um nicht ungesteuert Produkte in der Anlage zu halten. Durch den Einsatz von

ACPLT/MT können Funktionsbausteine im laufenden System ersetzt werden. Dazu muss zu-

nächst ein Baustein mit den neuen Eigenschaften angelegt und mit den Eingängen des alten

Bausteins verbunden werden. Sobald der neue Baustein sich in seinem Verhalten eingependelt

hat, können die Ausgänge stoßfrei vom alten Baustein auf den neuen verlinkt werden.

Neben den noch nicht erschlossenen Anwendungsfeldern von ACPLT/MT bieten sich auch

Weiterentwicklungsmöglichkeiten zur optimierten Verwendung in automatisierungstechnischen

Laufzeitumgebungen. Mersch et al. [ME11] schlagen in ihren Arbeiten die Auslagerung von

Komponenten für die Selbstkonfiguration, zu denen ACPLT/MT zu zählen ist, aus dem Echt-

zeitkontext vor. Dies ist dann möglich, wenn die Automatisierung mit einem Industrie-PC statt

mit einer herkömmlichen SPS realisiert wird. Je nach Anwendungsszenario kann zur Entlas-

tung der Echtzeit alternativ auch die Ausführung von ACPLT/MT in einem langsameren, nie-

derprioren Task in Betracht gezogen werden. Beim Einsatz von Industrie-PCs mit Multi- oder

ManyCore-Technologie ermöglicht ein separater ACPLT/MT-Task zudem die Auslagerung auf

einen oder mehrere eigene Kerne.

106

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

ModifikatorMT-LinkQuelle

Ziel

MT-Kopfelement

MT-Variable

MT-MetaVar MT-Platzhalter MT-Verzweigung MT-Logik

MT-Wahr MT-Nicht

MT-Element

+Kontext: Bool
+RepKlasse: String

MT-Objekt
+ ObjName: String

MT-CLinkV2V E2E

Abbildung A.1: ACPLT/MT-Elemente

Dem Konzept von ACPLT/MT folgend, sollten ACPLT/MT-Regelsätze nicht spezifisch für ei-

ne SPS entwickelt werden, sondern anhand von „Planungsdaten“ regelbasiert erstellt werden.

Hierzu bietet sich an, bei der Bereitstellung von ACPLT/MT auf einer SPS einen initialen Regel-

satz mitzuliefern, der ähnlich wie der Regelsatz für Anwendungsszenario S0 eine XML-Datei

einlesen und daraus ACPLT/MT-Regeln erzeugen bzw. Änderungen an den Regeln zurückspie-

len kann. Das aktuelle Kapitel stellt zu diesem Zweck ein Austauschformat für ACPLT/MT als

XSD bereit.

ACPLT/MT-Klassen

Abbildung A.1 zeigt nochmals die ACPLT/MT-Klassen aus Abbildung 6.2b im Überblick. In ei-

nem ersten Schritt werden Elemente für diese Klassen bereitgestellt.

107

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Die Basisklasse MT_Element wird im XML mit

einer ID versehen. Diese ist notwendig, um

eine eindeutige Referenz für Korrespondenz-

links und MT-Links zu ermöglichen. Das Attri-

but ObjName gibt den Namen des MT-Elements

im Laufzeitsystem an. Ob das MT-Element zum

Kontext des jeweiligen Patterns gehört oder

nicht wird über das Unterelement Context

übermittelt.

RepClass gibt die Klasse an, die das MT-Element in der jeweiligen Domäne repräsentiert.

Für die Unterklasse MT-Modification wird dieses Feld genutzt, um den Typ der Modifikation

kenntlich zu machen. Die in der Regel verankerte Kommandostruktur wird über eingebettete

MT-Elemente repräsentiert.

Für die Repräsentation von Modellobjekten,

ergänzt das MT-Objekt die Struktur von MT-

Element um Felder für den Namen des re-

präsentierten Objektes (RepIdent), um Anga-

ben zur Assoziation über die das repräsen-

tierte Objekt mit dem durch den Auftraggeber

gebundene Objekt verlinkt ist (AssocClass,

AssocRole) und um MT-Variablen.

Ein MT-Link repräsentiert Links im Modell, die

nicht entlang der Kommandostruktur verlau-

fen. Die Elemente Source und Target ent-

halten zu diesem Zweck Referenzen auf die

MT-Elemente, die die Quelle bzw. das Ziel re-

präsentieren. MT-Link selbst besitzt keine Auf-

tragnehmer und daher auch keine eingebette-

ten MT-Elemente.

108

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

MT-Variablen repräsentieren eine Variablen im

Modell und benötigen dazu Angaben zum Typ

und ggf. zum Wert der jeweiligen Variablen.

Metavariablen besitzen keine Entsprechung in

den korrelierenden Modellen. Sie dienen ledig-

lich zur Parametrierung der Modelltransformati-

on. Aus diesem Grund kann bei ihnen auf die

Typangabe verzichtet werden.

Platzhalter besitzen keine Auftragnehmer und

daher auch keine eingebetteten MT-Elemente.

Zudem ist die RepClass festgelegt auf den

Wert „Placeholder“, um zu kennzeichnen, dass

dieses MT-Element einen Platzhalter darstellt.

Über das zusätzliche Element RepIdent wird

der Name des Templates angegeben, für das

der Platzhalter steht.

Auch die Verzweigung wird über einen festen

Wert für RepClass identifiziert. Zudem ist die

Anzahl der eingebetteten MT-Elemente auf ge-

nau zwei eingeschränkt, eines als Wurzelele-

ment für die erste und eines als Wurzelelement

für die zweite Alternative.

109

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Der Modifikator MT-True ermöglicht die Umset-

zung von Leerlaufregeln, indem sie als einziges

MT-Element der linken oder rechten Domäne

eingesetzt werden. MT-True besitzt keine ein-

gebetteten MT-Elemente.

Der Modifikator MT-Not negiert die Rückmel-

dungen seiner Auftraggeber.

Das Kopfelement wird im Austauschformat ver-

einfacht repräsentiert, da lediglich die Parame-

trierung der drei Suchpfade für den Datenaus-

tausch relevant ist.

Für die Elemente der Korrespondenzdomäne

ist es wichtig, dass sie jeweils mindestens

einen Link zu MT-Elementen der linken und

der rechte Domäne besitzen. Um dies beim

Datenaustausch zuzusichern, werden die MT-

Elemente der Korrespondenzdomäne geson-

dert definiert.

110

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

ACPLT/MT

MT-Pattern

1ACPLT/MT
Template

Datenbank

Regelbasis

stösst an
Scheduling-
Komponente

* MT-KopfelementMT-Regel

4

11

1

* MT-Template MT-Pattern1

MT-Element*

Abbildung A.2: Struktur des ACPLT/MT-Frameworks

Nun kann das Gesamtgebilde aufgebaut werden. Hierzu werden strukturierende Elemente hin-

zugefügt, die im Laufzeitsystem durch OV-Domänen realisiert sind und keine eigene Logik

beinhalten. Abbildung A.2 zeigt nochmals die Gesamtstruktur des ACPLT/MT-Frameworks aus

Abbildung 6.2a. Für den Austausch von Modelltransformationen zwischen zwei Systemen mit

ACPLT/MT werden nicht alle Komponenten benötigt. Insbesondere der Scheduler besitzt keine

Parametrierungsmöglichkeit und muss daher auch nicht in einem Austauschformat bereitge-

stellt werden.

111

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Vollständige XSD für ACPLT/MT

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vc="http://www.w3.org/2007/

XMLSchema-versioning" elementFormDefault="qualified" attributeFormDefault="unqualified"
vc:minVersion="1.1">

<xs:element name="ACPLT-MT">
<xs:complexType>

<xs:sequence>
<xs:element name="TemplateDB">

<xs:complexType>
<xs:sequence>
<xs:element name="MT-Template" type="MT-Pattern" minOccurs="0" maxOccurs="

unbounded">
<xs:annotation>

<xs:documentation>Der Name des MT-Element ist gleichzeitig der Name des
Templates, der durch die Platzhalter referenziert wird.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Rulebase">

<xs:complexType>
<xs:sequence>
<xs:element name="MT-Rule" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="Header" type="MT-Head" minOccurs="1" maxOccurs="1">

<xs:annotation>
<xs:documentation>Kopfelement der Regel mit Angaben zu Suchpfaden.
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Trigger" type="MT-Pattern" minOccurs="1" maxOccurs="1">

<xs:annotation>
<xs:documentation>MT-Objekt, das die Regelbearbeitung anstößt.</xs:

documentation>
</xs:annotation>

</xs:element>
<xs:element name="LHS" type="MT-Pattern" minOccurs="1" maxOccurs="1">

<xs:annotation>
<xs:documentation>Pattern der linken Domäne.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="CG">

<xs:annotation>
<xs:documentation>Pattern der Korrespondenzdomäne.</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="CObject" type="CObject" minOccurs="0" maxOccurs="

unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="RHS" type="MT-Pattern" minOccurs="1" maxOccurs="1">

<xs:annotation>
<xs:documentation>Pattern der rechten Domäne.</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>

112

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<!-- Typen -->
<xs:complexType name="MT-Pattern" abstract="true">

<xs:sequence>
<xs:element name="MT-Element" type="MT-Element" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="CObject">

<xs:sequence>
<xs:element name="Name" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Type" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RefRHS" type="xs:IDREF" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="RefLHS" type="xs:IDREF" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="MT-Head">

<xs:sequence>
<xs:element name="LHSPath" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="CDPath" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="RHSPath" type="xs:string" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>
<!-- MT-Element -->
<xs:complexType name="MT-Element" abstract="true">

<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>Markiert, ob ein MT-Element Teil des Kontextes ist oder nicht.
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="RepClass" type="xs:string" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>Klasse, die das MT-Element in der jeweiligen Domäne repräsentiert.

Für die Erweiterung MT-Modification wird dieses Feld genutzt, um den Typ der
Modifikation kenntlich zu machen.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Eingebettete MT-Elemente. Diese Schachtelung bildet die

Kommandostruktur ab. </xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="ID" type="xs:ID" use="required"/>
<xs:attribute name="ObjName" use="required"/>

</xs:complexType>
<xs:annotation>

<xs:documentation>Definition der verschiedenen Sub-Typen von MT-Element</xs:documentation>
</xs:annotation>
<xs:complexType name="MT-Variable">

<xs:sequence>
<xs:element name="Type" type="xs:string" default="String" minOccurs="0" maxOccurs="1"/>
<xs:element name="Value" type="xs:string" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="ObjName" use="required"/>

</xs:complexType>

113

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

<xs:complexType name="MT-Object">
<xs:complexContent>

<xs:extension base="MT-Element">
<xs:sequence>

<xs:element name="RepIdent" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="AssocClass" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="AssocRole" minOccurs="1" maxOccurs="1">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="parent"/>
<xs:enumeration value="child"/>
<xs:enumeration value="*"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="Variable" type="MT-Variable" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-LinkBasic">

<xs:complexContent>
<xs:restriction base="MT-Element">
<xs:sequence>

<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RepClass" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="0"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Link">

<xs:complexContent>
<xs:extension base="MT-LinkBasic">
<xs:sequence>

<xs:element name="Source" type="xs:IDREF" minOccurs="1" maxOccurs="1"/>
<xs:element name="Target" type="xs:IDREF" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!-- MT-Modifikatoren -->
<xs:complexType name="MT-Modification" abstract="true">

<xs:complexContent>
<xs:extension base="MT-Element"/>

</xs:complexContent>
</xs:complexType>
<xs:annotation>

<xs:documentation>Definition der verschiedenen Sub-Typen von MT-Modification</xs:
documentation>

</xs:annotation>
<xs:complexType name="MT-MetaVar">

<xs:complexContent>
<xs:restriction base="MT-Variable">
<xs:sequence>

<xs:element name="Type" type="xs:string" default="String" minOccurs="0" maxOccurs="0
"/>

<xs:element name="Value" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>

</xs:restriction>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="MT-PlaceholderBasic">

<xs:complexContent>
<xs:restriction base="MT-Modification">

114

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RepClass" type="xs:string" fixed="Placeholder" minOccurs="1"

maxOccurs="1"/>
<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="0"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Placeholder">

<xs:complexContent>
<xs:extension base="MT-PlaceholderBasic">
<xs:sequence>
<xs:element name="RepIdent" type="xs:string" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Branch">

<xs:complexContent>
<xs:restriction base="MT-Modification">
<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RepClass" type="xs:string" fixed="Branch" minOccurs="1" maxOccurs=

"1"/>
<xs:element name="Element" type="MT-Element" minOccurs="2" maxOccurs="2"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Logic">

<xs:complexContent>
<xs:extension base="MT-Modification"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-True">

<xs:complexContent>
<xs:restriction base="MT-Logic">
<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RepClass" type="xs:string" fixed="True" minOccurs="1" maxOccurs="1

"/>
<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="0"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Not">

<xs:complexContent>
<xs:restriction base="MT-Logic">
<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
<xs:element name="RepClass" type="xs:string" fixed="Not" minOccurs="1" maxOccurs="1"

/>
<xs:element name="Element" type="MT-Element" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:schema>

115

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

Die in Kapitel 1.2 definierten Anwendungsszenarien wurden im Rahmen mehrere Veröffent-

lichungen mit Hilfe des vorgestellten Ansatzes realisiert. Die benötigten Regelsätze werden

soweit möglich in diesem Kapitel bereitgestellt und detailliert beschrieben. Der Umfang der

Modelle wurde dabei zunächst auf die für die Beispielanlage aus Abbildung B.1 benötigten Ele-

mente reduziert, da eine Erweiterung auf die vollständigen Modelle den Rahmen dieser Arbeit

sprengt. Die dafür benötigten Regeln folgen im Allgemeinen jedoch dem gleichen Schema wie

die bereitgestellten Regeln und können so im Bedarfsfall einfach ergänzt werden.

B2

B1

YO
Y1

YO
Y2

NO
N1

NO
N1

Abbildung B.1: R&I-Fließbild der Beispielanlage

S0 – Bereitstellung von Planungsdaten im Laufzeitsystem

In diesem Anwendungsszenario steht der bidirektionale Datenaustausch zwischen den Pla-

nungstools und der prozessleittechnischen Laufzeitumgebung im Vordergrund. Es stellt damit

einen Sonderfall für die Anwendung des vorgestellten Konzeptes dar, da das Modell der linken

Domäne nicht auf den Basismodellen der Laufzeitumgebung – ACPLT/OV oder im allgemeinen

Fall IEC 61131 – beruht sondern ein textuelles XML-basiertes Modell ist. Um diesen Anfor-

derungen gerecht zu werden, wurden die Klasse MT_Object so erweitert, dass sie auch in

XML-Bäumen nach Modellelementen sucht. Dabei wird nicht wie üblich die Metavariable Pfad

zur Referenzierung des Suchraumes genutzt, sondern über die Metavariable Input ein XML-

Baum übergeben. Innerhalb dieses Baumes wird nach entsprechenden Modellelementen ge-

sucht oder es werden entsprechende Modellelemente angelegt. Bei erfolgreicher Suche wird

ein Teilbaum des ursprünglichen XML als Suchraum für den Auftragnehmer zurückgeliefert,

beim Anlegen entsprechend das neu generierte XML.

116

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Abbildung B.2: PandIX-XML der Beispielanlage

Abbildung B.2 zeigt das PandIX-XML für die Beispielanlage. In einem ersten Schritt wird mit

Hilfe der Regel S0-R1 die Rahmenstruktur in Form einer ov/domain und den für eine Anlage

benötigten ACPLT/PandIX-Objekten angelegt. Die Hardwarekomponenten wie Pumpen, Ven-

tile, Behälter, Verzweigungen und Rohleitungen werden alle auf die gleiche Weise generiert.

Es wäre durchaus legitim dies mit Hilfe einer verschachtelten MT-Verzweigung in einer Regel

abzubilden. Zur besseren Lesbarkeit wurde jedoch auf die Schachtelung verzichtet und drei

getrennte Regeln S0-R2 für Pumpen und Ventile, S0-R3 für Verzweigungen und Behälter und

S0-R4 für Rohrleitungen mit jeweils maximal einer Verzweigung genutzt. Mit Hilfe von Regel

S0-R5 werden die Flansche und Anschlussstellen für die PLT-Stellen bereitgestellt. Die Aus-

wertung der InternalLinks, die die Verknüpfung der Aktoren mit den PLT-Stellen und die

Rohrleitungen symbolisieren erfolgt nach Typ getrennt. Zunächst erfolgt mit der Regel S0-R6

die Auswertung, der Verbindungslinien zwischen Aktoren und PLT-Stellen. In einem weiteren

Schritt werden mit Hilfe der Regel S0-R7 die Rohleitungen über die entsprechenden Flansche

mit den Aktoren, Verzweigungen und Behältern verbunden.

117

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S0-R1: Rahmenstruktur

su1: MT-Objekt

+ Kontext = false
+ RepKlasse = “SystemUnitClass”
+ ObjName = *

mn: V2V

+ Kontext = false

+

dom: MT-Objekt

+ Kontext = false
+ RepKlasse = “ov/domain”
+ ObjName = PandIX

tu: MT-Objekt

+ Kontext = false
+ RepKlasse = “TechUnit”
+ ObjName = TU

+

ps: MT-Objekt

+ Kontext = false
+ RepKlasse = “PlantScheme”
+ ObjName = Plant

su2: MT-Objekt

+ Kontext = false
+ RepKlasse = “SystemUnitClass”

+

S0-R2: Pumpen und Ventile

sel: A2A

+ Kontext = false

mn1: V2V

+ Kontext = true

vr1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefBaseRoleC…”
+ Value = “ValveRequest”

vr2: MT-Objekt
+ Kontext = false
+ repKlasse = “ValveRequest”

pr2: MT-Objekt
+ Kontext = false
+ repKlasse = “PumpRequest”

v1:MT-Verzweigung

ALT1 ALT2
+

+

+

su2: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

v1:MT-Verzweigung

ALT1 ALT2

su1: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ie: MT-Objekt
+ Kontext = false
+ RepKlasse = “InternalElement”

pr1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefBaseRoleC…”
+ Value = “PumpRequest”

+

+

+

+

mn2: V2V

+ Kontext = false

mn3: V2V

+ Kontext = false

S0-R3: Verzweigungen und Behälter

sel1: A2A

+ Kontext = false

mn1: V2V

+ Kontext = true

vr1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefBaseRoleC…”
+ Value = “VesselRequest”

vr2: MT-Objekt
+ Kontext = false
+ repKlasse = “VesselRequest”

pjr2: MT-Objekt
+ Kontext = false
+ repKlasse = “PipeJunctionRe…”

v1:MT-Verzweigung

ALT1 ALT2
+

+

+

su2: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

v1:MT-Verzweigung

ALT1 ALT2

su1: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ie: MT-Objekt
+ Kontext = false
+ RepKlasse = “InternalElement”

pjr1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefBaseRoleC…”
+ Value = “PipeJunctionRe…”

+

+

+

+

mn2: V2V

+ Kontext = false

mn3: V2V

+ Kontext = false

118

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

S0-R4: Rohrleitungen

mn1: V2V

+ Kontext = true

pr1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefBaseRoleC…”
+ Value = “PipeRequest”

pr2: MT-Objekt
+ Kontext = false
+ repKlasse = “PipeRequest”

+

su2: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

su1: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ie: MT-Objekt
+ Kontext = false
+ RepKlasse = “InternalElement”

+
e1: E2E

+ Kontext = false

+

S0-R5: Flansche und Anschlussstellen

mn1: V2V

+ Kontext = true

req1: MT-Variable

+ Kontext = true
+ RepKlasse = “RefBaseRoleC…”
+ Value = “*Request”

r:eq2 MT-Objekt
+ Kontext = true
+ repKlasse = “*Request”

+ aip1: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”

aip1: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”

mn2: V2V

+ Kontext = false

ie: MT-Objekt
+ Kontext = true
+ RepKlasse = “InternalElement”

++ pcp1: MT-Objekt
+ Kontext = false
+ repKlasse = “ProductConnectionP…”

pcp2: MT-Objekt
+ Kontext = false
+ repKlasse = “Connector”

mn3: V2V

+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2
+ v1:MT-Verzweigung

ALT1 ALT2

+

+

sel1: A2A

+ Kontext = false

S0-R6: Zuordnung der PLT-Stellen

mn1: V2V

+ Kontext = true

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

r: MT-Objekt
+ Kontext = true
+ repKlasse = “*Request”

con3: MT-Objekt
+ Kontext = true
+ repKlasse = “Connector”

con4: MT-Objekt
+ Kontext = true
+ repKlasse = “Connector”

<
<

lin
k>

>

+

su2: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

su1: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ie1: MT-Objekt
+ Kontext = true
+ RepKlasse = “InternalElement”

+
ei1: MT-Objekt

+ Kontext = true
+ RepKlasse = “ExternalInterface”

pcp1: MT-Variable

+ Kontext = true
+ RepKlasse = “RefBaseClassPath”
+ Value = “ProductConnection…”

mn2: V2V

+ Kontext = true

ie2: MT-Objekt
+ Kontext = true
+ RepKlasse = “InternalElement”

ei2: MT-Objekt

+ Kontext = true
+ RepKlasse = “ExternalInterface”

pcp12: MT-Variable

+ Kontext = true
+ RepKlasse = “RefBaseClassPath”
+ Value = “ProductConnection…”

il: MT-Objekt
+ Kontext = false
+ RepKlasse = “InternalLink”

con1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefPartnerSideA”

+

+

con2: MT-Variable

+ Kontext = false
+ RepKlasse = “RefPartnerSideB”

mn4: V2V

+ Kontext = true

mn5: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

link: E2E

+ Kontext = true

+

119

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S0-R7: Verknüpfung der Rohrleitungen

mn1: V2V

+ Kontext = true

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

req: MT-Objekt
+ Kontext = true
+ repKlasse = “*Request”

api3: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorProcessI…”

aip4: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorInputPoint

<
<

lin
k>

>

+

su2: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

su1: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

ie1: MT-Objekt
+ Kontext = true
+ RepKlasse = “InternalElement”

+
ei1: MT-Objekt

+ Kontext = true
+ RepKlasse = “ExternalInterface”

api1: MT-Variable

+ Kontext = true
+ RepKlasse = “RefBaseClassPath”
+ Value = “ActuatorProcessI…”

mn2: V2V

+ Kontext = true

ie2: MT-Objekt
+ Kontext = true
+ RepKlasse = “InternalElement”

ei2: MT-Objekt

+ Kontext = true
+ RepKlasse = “ExternalInterface”

api2: MT-Variable

+ Kontext = true
+ RepKlasse = “RefBaseClassPath”
+ Value = “ActuatorInputPoint”

il: MT-Objekt
+ Kontext = false
+ RepKlasse = “InternalLink”

con1: MT-Variable

+ Kontext = false
+ RepKlasse = “RefPartnerSideA”

+

+

con2: MT-Variable

+ Kontext = false
+ RepKlasse = “RefPartnerSideB”

mn4: V2V

+ Kontext = true

mn5: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

link: E2E

+ Kontext = false

+

S1 – Einzelne Automatisierungsfunktion als Serienprodukt

Bei diesem Szenario soll der Anlagenfahrer eine Anfrage stellen können, welche Bereiche der

Anlage durch das Öffnen eines konkreten Ventils oder durch das Anschalten einer Pumpe

betroffen sind. Die Rohrleitungen, die ausgehend von diesem Aktor durch geöffnete Ventile

und angeschaltete Pumpen miteinander verbunden sind, werden im Bedienbild farbig markiert.

Dieses Szenario kann nicht auf Basis von einer TGG realisiert werden. Stattdessen wer-

den die ACPLT/MT-Regel so parametriert, dass die Regeln als WENN-DANN-Regeln agie-

ren. Die Regel S1-R1 liest sich daher wie folgt: Wenn ein Link zwischen zwei Flanschen

(Connector) existiert, dann färbe das zugehörige Rohrleitungssymbol im ACPLT/csHMI grün

ein. Die MT-Objekte agieren dabei wie gewohnt und suchen bzw. erstellen die repräsentierten

Modellobjekte oder setzten Variablenwerte. An dieser Regel wird deutlich, dass ACPLT/MT-

Transformationen in gegenseitiger Abhängigkeit zueinander stehen können. So sind die im

Kontext verwendeten MT-Objekte noch durch keine andere Regel des Regelsatzes übersetzt

worden. Hier wird auf die Ergebnisse der Transformation aus Anwendungsszenario S2 zu-

rückgegriffen, die eine TGG zwischen ACPLT/PandIX und ACPLT/csHMI beschreibt. Diese

Korrelation von ACPLT/MT-Transformationen ermöglicht es, verschiedene Anwendungen auf

ein und demselben Modellpaar aufzusetzen. Möchte man in der Welt der reinen Tripel-Graph-

Grammatiken bleiben, so müssen die Regeln aus Anwendungsszenario S2 mit in den Regel-

satz von S1 kopiert werden. Eine weitere TGG zwischen ACPLT/PandIX und ACPLT/csHMI

120

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

müsste ebenfalls eine Kopie der Regeln aus S2 beinhalten. Bei ein Vorwärtstransformation auf

Basis dieser TGG würde dann allerdings eine neues ACPLT/csHMI-Modell erzeugt werden.

Der alternative Ansatz, alle ACPLT/MT-Transformationen, die auf einer konkreten prozesslei-

ttechnischen Laufzeitumgebung zur Verfügung stehen in einer großen TGG zu vereinigen ist

sehr inflexibel bezüglich Erweiterungen. Dennoch, im Großen gesehen funktioniert der Ansatz

wie eine komplexe TGG, deren Regeln jedoch immer nur zu definierten Zeitslots – nämlich

wenn die zugehörige ACPLT/MT-Transformation aktiv ist – angewendet werden können.

S1-R1: Auswirkung Stellbefehl Ventil als WENN-DANN-Regel

vr: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveRequest”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

v: MT-Objekt

+ Kontext = true
+ RepKlasse = “ValveTemplate”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = false
+ Value = “Green”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

sa1: E2E

+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

si: MT-Variable
+ Kontext = true
+ RepKlasse = “SelectedItem”

Der Anlagenfahrer kann jedoch nicht nur die Auswirkungen eines Fahrbefehls für ein Ventil

abfragen, sondern auch für eine Pumpe. Die dazu gehörige Regel sieht wie folgt aus:

121

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S1-R2: Auswirkung Stellbefehl Pumpe

pr: MT-Objekt

+ Kontext = true
+ RepKlasse = “PumpRequest”

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

pt: MT-Objekt

+ Kontext = true
+ RepKlasse = “PumpTemplate”

g2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = false
+ Value = “Green”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

sa1: E2E

+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

g1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

si: MT-Variable
+ Kontext = true
+ RepKlasse = “SelectedItem”

Die beiden Regeln S1-R1 und S1-R2 ließen sich in eine gemeinsame Regel überführen, in-

dem die Metavariablen RepKlasse der MT-Objekte vr der linken Domäne und v der rechten

Domäne mit einem Asterisk parametriert werden.

Im nächsten Schritt werden, ausgehend von einer grün gefärbten Rohrleitung, weitere Rohrlei-

tungen eingefärbt, die durch geöffnete Ventile, laufende Pumpen oder einfache Verzweigungen

angebunden sind. Geöffnete Ventile oder laufende Pumpen können anhand ihrer grünen Farbe

im HMI identifiziert werden. Die Regel S1-R3 zum Einfärben lautet daher: Wenn die Flansche

eines Aktors über entsprechende Links mit zwei Rohrleitungen verbunden sind, dann überprü-

fe, ob für die entsprechenden Symbole der Rohrleitung im HMI eine der beiden Rohrleitungen

bereits grün eingefärbt ist und färbe ggf. die andere ebenfalls grün ein.

122

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

S1-R3: Geöffnetes Ventil/ Gestartete Pumpe

any1: MT-Objekt

+ Kontext = true
+ RepKlasse = *

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con3: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

any2: MT-Objekt

+ Kontext = true
+ RepKlasse = *

g: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = true
+ Value = “Green”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = true

sa1: E2E

+ Kontext = false

con2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

con4: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

Color: MT-Variable

+ Kontext = true
+ Value = “Green”

p3: MT-Objekt

+ Kontext = true
+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext = false
+ Value = “Green”sa2: E2E

+ Kontext = false

mn4: V2V

+ Kontext = true

S2 – Modularisierte Teilfunktion

Das Szenario sieht die modellbasierte Erstellung eines einfachen Bedienbildes vor, auf dem

für jeden Sensor und jeden Aktor im ACPLT/PandIX-Modell der Anlage ein repräsentierendes

Symbol sowie eine Detailansicht für das Ablesen von Sensorwerten bzw. das Absetzen von Be-

fehlen im Bedienbild erstellt wird. Eine anschließende Anpassung an die anlagenspezifischen

Gegebenheiten durch den Applikateur muss dabei möglich bleiben.

In einem ersten Schritt werden mit Hilfe von Regel S2-R1 für die beiden Modelle eigene

ov/domain-Objekte angelegt, die als Wurzelelement für alle weiteren Modellelemente dienen.

Eine durch Regel S2-R2 erzeugte Gesamtübersicht zeigt das R&I-Fließbild (PlantScheme) als

Ganzes. Hier können im Betrieb aufgetretene Fehler farblich markiert werden und somit ei-

ne schnelleren Problemlösung unterstützt werden. Für jede Teilanlage, die im R&I enthalten

ist (TechUnit) wird durch Regel S2-R3 eine zusätzliche Ansicht im HMI erstellt, die die zuge-

hörigen Modellobjekte kapselt und im ACPLT/csHMI-Modell den entsprechenden Ausschnitt

anzeigt. Somit wird ein Hineinzoomen in einzelne Teilanlagen möglich. Zudem wird ein Objekt

SelectedItem im ACPLT/csHMI-Modell angelegt, welches später Informationen über das ak-

tuell selektierte Grafikobjekt einer Gruppe liefert. Diese Information wird für den aufbauenden

Regelsatz aus Anwendungsszenario S1 benötigt.

123

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S2-R1: Axiom

dom1: MT-Objekt

+ Kontext = false
+ RepKlasse = “ov/domain”
+ ObjName = “PandIX“

dom2: MT-Objekt

+ Kontext = false
+ RepKlasse = “ov/domain”
+ ObjName = “HMI“

c1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Component”
+ ObjName = “PandIX“

s1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Switch”
+ ObjName = “InfoBoxes“

mn1: E2E

+ Kontext = false

+

+

s2: MT-Objekt

+ Kontext = false
+ RepKlasse = “Switch”
+ ObjName = “Workspaces“

+

S2-R2: Anlage

ps1: MT-Objekt

+ Kontext = false
+ RepKlasse = “PlantScheme”
+ ObjName = *

+

dom1: MT-Objekt

+ Kontext = true
+ RepKlasse = “ov/domain”
+ ObjName = PandIX

s1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Switch”
+ ObjName = “Workspace“

c1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Case”
+ ObjName = *

mn2: V2V

+ Kontext = false

+

mn1: E2E

+ Kontext = true

g: MT-Objekt

+ Kontext = false
+ RepKlasse = “Group”

+

si: MT-Variable
+ Kontext = false
+ RepKlasse = “SelectedItem”

+

S2-R3: Teilanlage

tu1: MT-Objekt

+ Kontext = false
+ RepKlasse = “TechUnit”
+ ObjName = *

+

ps: MT-Objekt

+ Kontext = true
+ RepKlasse = “PlantScheme”
+ ObjName = *

s: MT-Objekt

+ Kontext = true
+ RepKlasse = “Switch”
+ ObjName = “Workspace“

c1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Case”
+ ObjName = *

mn1: V2V

+ Kontext = true

c2: MT-Objekt

+ Kontext = false
+ RepKlasse = “Case”
+ ObjName = *

+

mn2: V2V

+ Kontext = false

g: MT-Objekt

+ Kontext = false
+ RepKlasse = “Group”

mn3: V2V

+ Kontext = false

su: MT-Objekt

+ Kontext = false
+ RepKlasse = “SystemUnitClass”

+

+

si: MT-Variable
+ Kontext = false
+ RepKlasse = “SelectedItem”

+

124

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Aktoren (und auch Sensoren) werden im R&I durch eine PLT-Stelle – einem Oval mit entspre-

chenden Indizes – gekennzeichnet. Regel S2-R4 erzeugt entsprechende Darstellungen für die

PLT-Stellen in der Gesamtansicht der Anlage und der Ansicht für die Teilanlage. Zudem wird

ein Bedienbild zur Ansteuerung des Aktors in den Infoboxen generiert.

S2-R4: Aktor

+

dom1: MT-Objekt
+ Kontext = true
+ RepKlasse = “ov/domain”
+ ObjName = “PandIX“

dom2: MT-Objekt
+ Kontext = true
+ RepKlasse = “ov/domain”
+ ObjName = “HMI“

c1: MT-Objekt
+ Kontext = true
+ RepKlasse = “Component”
+ ObjName = “PandIX“

s1: MT-Objekt
+ Kontext = true
+ RepKlasse = “Switch”
+ ObjName = “InfoBoxes“

mn1: E2E
+ Kontext = true

+

s2: MT-Objekt
+ Kontext = true
+ RepKlasse = “Switch”
+ ObjName = “Workspaces“

ps1: MT-Objekt
+ Kontext = true
+ RepKlasse = “PlantScheme”
+ ObjName = *

c1: MT-Objekt
+ Kontext = true
+ RepKlasse = “Case”
+ ObjName = *

mn2: V2V
+ Kontext = true

g1: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

tu1: MT-Objekt
+ Kontext = true
+ RepKlasse = “TechUnit”
+ ObjName = *

c2: MT-Objekt
+ Kontext = true
+ RepKlasse = “Case”
+ ObjName = *

mn2: V2V
+ Kontext = true

g2: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

mn3: V2V
+ Kontext = false

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

+

at2: MT-Objekt
+ Kontext = false
+ RepKlasse = “ActuatorTemplate”

rt2: MT-Objekt
+ Kontext = false
+ RepKlasse = “RemoteTemplate”

mn2: V2V
+ Kontext = false

ar: MT-Objekt
+ Kontext = false
+ RepKlasse = “ActuatorRequest”

api: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorProcessI…”
+ ObjName = “P”

+

+

+

at1: MT-Objekt
+ Kontext = false
+ RepKlasse = “ActuatorTemplate”

rt1: MT-Objekt
+ Kontext = false
+ RepKlasse = “RemoteTemplate”

+

+

af: MT-Objekt
+ Kontext = false
+ RepKlasse = “ActuatorFaceplate”

Zusätzlich zu den PLT-Stellen und dem Bedienbild besitzen Aktoren noch ein Icon, das den

Typ repräsentiert. Dieses wird durch Regel S2-R5 erzeugt. Die Regel zur Bereitstellung der

Icons für Pumpen und Ventile aus Abbildung 6.6c enthielt zur besseren Lesbarkeit noch keine

Flansche. Diese sind jedoch für die anschließende Verrohrung elementar. Die Regel S2-R5 er-

weitert daher die ursprünglich Version um eben diese Flansche (Connector). Auf der anderen

Seite wurde auf die Generierung der Icons in der Gesamtdarstellung der Anlage verzichtet.

Durch die Regel S2-R6 werden die Behälter und durch Regel S2-R7 die Rohleitungen erzeugt.

Auch hierbei wurde auf die Generierung der entsprechenden Symbole in der Gesamtansicht

der Anlage verzichtet. Im ACPLT/PandIX sind Rohleitungen durch Links zwischen Flanschen

gekennzeichnet. Diese müssen im ACPLT/csHMI durch entsprechende Rohrleittungssymbole

gekennzeichnet werden.

125

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S2-R5: Pumpe/Ventil

<
<

lin
k>

>

mn3: V2V
+ Kontext = false

g: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt
+ Kontext = true
+ RepKlasse = “RemoteTemplate”

mn2: V2V
+ Kontext = true

mn1: V2V
+ Kontext = true

mn4: V2V
+ Kontext = false

ar: MT-Objekt
+ Kontext = true
+ RepKlasse = “ActuatorRequest”

vr: MT-Objekt
+ Kontext = false
+ repKlasse = “ValveRequest”

p: MT-Objekt
+ Kontext = true
+ repKlasse = “ActuatorProcessI…”
+ ObjName = “P”

pr: MT-Objekt
+ Kontext = false
+ repKlasse = “PumpRequest”

Y: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “Y”

N: MT-Objekt
+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “N”

vt: MT-Objekt
+ Kontext = false
+ RepKlasse = “ValveTemplate”

lo1: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

lo2: MT-Objekt
+ Kontext = false
+ RepKlasse = “Line”

pt: MT-Objekt
+ Kontext = false
+ RepKlasse = “PumpTemplate”

l1: E2E
+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

<
<

lin
k>

>

l2: E2E
+ Kontext = false

+

+

+

+

+

+

+

+

+

+

+

sel1: A2A
+ Kontext = false

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

v2:MT-Verzweigung

ALT1 ALT2

con1: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con1”

con2: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con2”

con3: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con1”

con4: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con2”

+

+

+

+

+

S2-R6: Behälter

mn2: V2V
+ Kontext = false

g: MT-Objekt
+ Kontext = true
+ RepKlasse = “Group”

mn1: V2V
+ Kontext = true

vr: MT-Objekt
+ Kontext = false
+ repKlasse = “VesselRequest”

vt: MT-Objekt
+ Kontext = false
+ RepKlasse = “VesselTemplate”

su: MT-Objekt
+ Kontext = true
+ RepKlasse = “SystemUnitClass”

+
+

con1: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con1”

con2: MT-Objekt
+ Kontext = false
+ RepKlasse = “Connector”
+ ObjName = “Con2”

+

+

126

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

S2-R7: Rohleitung

r: MT-Objekt

+ Kontext = true
+ RepKlasse = *

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

con1: MT-Objekt

+ Kontext = true
+ RepKlasse = “Connector”

p1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext = false
+ RepKlasse = “Connector” +

v: MT-Objekt

+ Kontext = true
+ RepKlasse = *

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

p1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Pipe”

mn1: V2V

+ Kontext = true

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = false

+

+

+

127

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung
einer ACPLT/MT-Regel

Dieses Kapitel beleuchtet beispielhaft die Anwendung der Regel aus Abbildung C.1a auf die in

Abbildung C.1b gezeigte Modellsituation. Dabei sollen drei Detailstufen im Fokus stehen. Zu-

nächst wird tief in die Regel hineingezoomt und die Funktionalität und Arbeitsweise einzelner

MT-Elemente genauer betrachtet. Da die Umsetzung dieser Detailstufe stark implentierungs-

abhängig ist, beziehen sich die Erklärungen hierbei auf die Referenzimplementierung. In einem

zweiten Schritt, wird das Zusammenspiel von MT-Elementen auf Basis der Kommandostruktur

im Vordergrund stehen. Abschließend wird noch eine Stufe weiter herausgezoomt und die ein-

zelne Regelanwendung im Gesamtbild der ACPLT/MT-Modelltransformation betrachtet. Dabei

steht insbesondere das Schedulingverhalten im Fokus.

Bei der Beispielanwendung wird davon ausgegangen, dass durch vorangegangene Regelan-

wendungen der Kontext bereits vom ACPLT/PF-Modell (linke Domäne) in das ACPLT/csHMI-

Modell (rechte Domäne) übersetzt wurde.

Funktionsweise MT_Element

Die Bearbeitung von MT-Elementen wird beispielhaft an zwei MT-Objekten demonstriert. Das

erste ist so parametriert, dass es ein entsprechendes Modellobjekt sucht, das zweite so, dass

es ein Modellobjekt erstellt. Außerdem wird die Anwendung einer MT-Verzweigung detailliert

beleuchtet. Dabei wird unterschieden zwischen der Anwendung einer Verzweigung in der

Quelldomäne und einer Verzweigung in der Zieldomäne.

Zunächst soll jedoch die Bedeutung der einzelnen Metavariablen zusammengefasst werden:

Objektname - ObjName
Gibt an, wie das gesuchte Modellobjekt heißen muss, damit es als potentieller Kandidat

in Frage kommt. Ist der Name irrelevant, so kann diese Metavariable mit Jokerzeichen

parametriert werden.

Klasse - RepClass
Gibt an, von welcher Klasse das gesuchte Modellobjekt sein soll. Auch hier ist eine Para-

metrierung mit Jokerzeichen möglich.

Kontext - Context
Wenn das aktuelle MT-Objekt im Kontext der Regel steht, so ist diese Metavariable true.

128

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

g: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

at: MT-Objekt

+ Kontext = true
+ RepKlasse = “ActuatorTemplate”

rt: MT-Objekt

+ Kontext = true
+ RepKlasse = “RemoteTemplate”

mn2: V2V

+ Kontext = true

mn3: V2V

+ Kontext = false

mn1: V2V

+ Kontext = true

mn4: V2V

+ Kontext = false

ar: MT-Objekt

+ Kontext = true
+ RepKlasse = “ActuatorRequest”

vr: MT-Objekt

+ Kontext = false
+ repKlasse = “ValveRequest”

p: MT-Objekt

+ Kontext = true
+ repKlasse = “ActuatorProcessI…”
+ ObjName = “P”

pr: MT-Objekt

+ Kontext = false
+ repKlasse = “PumpRequest”

Y: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “Y”

N: MT-Objekt

+ Kontext = false
+ repKlasse = “ActuatorInputPoint”
+ ObjName = “N”

vt: MT-Objekt

+ Kontext = false
+ RepKlasse = “ValveTemplate”

lo1: MT-Objekt

+ Kontext = false
+ RepKlasse = “Line”

lo2: MT-Objekt

+ Kontext = false
+ RepKlasse = “Line”

pt: MT-Objekt

+ Kontext = false
+ RepKlasse = “PumpTemplate”

l1: E2E

+ Kontext = false

v1:MT-Verzweigung

ALT1 ALT2

<
<

lin
k>

>

<
<

lin
k>

>

l2: E2E

+ Kontext = false

+

+

+

+

+

+

+

+

+
+

+

+

sel1: A2A

+ Kontext = false

su: MT-Objekt

+ Kontext = true
+ RepKlasse = “SystemUnitClass”

v2:MT-Verzweigung

ALT1 ALT2

(a) Kombinierte Regel aus Abbildung 6.6c

V24: ValveRequest

Y: ActuatorInputPoint

TU1: SystemUnitClass

P: ActuatorProcessInterface

<
<

en
th

äl
t>

>

<
<

ve
rli

nk
t>

>

Y24: ActuatorRequest

+ FunctionCode = Y
+ SignalCode = O

P13: PumpRequest

N: ActuatorInputPoint

P: ActuatorProcessInterface

<
<

ve
rli

nk
t>

>

N13: ActuatorRequest

+ FunctionCode = N
+ SignalCode = O

TU1: GroupC1: V2V

Y: RemoteTemplate

Y24: ActuatorTemplate
<<enthält>>

C2: V2V

N: RemoteTemplate

N13: ActuatorTemplate

C3: V2V

(b) Zustand der Modelle zum Aktivierungszeitpunkt der Regel

Abbildung C.1: Schritt-für-Schritt-Beispiel

Assoziation - Assoc
Gibt an, über welche Assoziation das gesuchte Modellobjekt mit dem über Path referen-

zierten Objekt verknüpft ist.

129

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

Rolle - AssocRole
Gibt an, ob das gesuchte Modellobjekt in der Rolle der Quelle oder des Ziels der durch

Assoc bestimmten Assoziation auftritt.

Quellmodell - SourceDom
Ist das MT-Objekt in der Teilproduktion des Quellmodells, so ist diese Metavariable

true. Das Quellmodell ist jenes Modell, von dem aus die Übersetzung stattfinden soll.

Bei einer Rückwärtstransformation sind daher die MT-Objekte des linken Teilpattern mit

SourceDom = true parametriert.

Pfad - Path
Die Metavariable Path gibt den Startpunkt der Suche an, von dem aus ein Link vom Typ

Assoc und ein darüber verknüpftes Modellobjekt der Klasse RepClass gesucht wird.

Kommando - Command
Über diese Metavariable erhält das MT-Objekt seine Kommandos vom Auftraggeber.

ANStatus - ChbkState
Die Rückmeldung nachgeschalteter Auftragnehmer kann über die Metavariable ANStatus

bzw. in der Referenzimplementierung ChbkState zugegriffen werden. Zum Zeitpunkt der

ersten Ausführung eines MT-Objektes sind die Auftragnehmer noch im Zustand ST_IDLE.

Die Metavariablen-Ausgänge haben folgende Semantik:

ANKommando - SendCommand
Das Kommando für den Auftragnehmer wird mit Hilfe der Metavariablen ANKommando

bzw. in der Referenzimplementierung SendCommand bereitgestellt. Dieser Ausgang ist

mit dem Eingang Command des Auftragnehmers verknüpft.

Status - State
Gibt den Schritt zurück, indem sich das MT-Objekt befindet. Dies dient als Rückmeldung

an den eigenen Auftraggeber.

Objektkennung - ActIdent
Wurde ein passendes Modellobjekt gefunden oder erstellt, so gibt diese Metavariable den

Namen dieses Modellobjekt an.

Objektpfad - ActPath
Diese Metavariable gibt den Pfad zum gefundenen Modellobjekt an. Der Pfad dient für

nachgeschalteten Auftragnehmern als Startpunkt für die Suche und wird daher mit der

Metavariable Path der Auftragnehmer verknüpft.

MT_Object - Suche eines Modellobjekts

Die Suche eines Modellobjekts wird anhand des MT-Objekts ar aus der linken Domäne der

Regel in Abbildung C.1a gezeigt. Dieses bekommt von seinem Auftraggeber su als Suchpfad

„/TU1“ übergeben und erkundet ausgehend von dem dazugehörigen Modellobjekt TU1 die Mo-

dellinstanz nach Objekten, die vom Typ ActuatorRequest sind und per ov/containment

mit TU1 verlinkt sind.

130

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

MT_Object

Abbildung C.2: SFC des MT_Object

MT_OBJECT - SUCHE EINES MODELLOBJEKTS

ar: MT_Object

Belegung der Metavariablen (Eingänge)

Deklarative Ebene Operationale Ebene

ObjName = * Assoc = „ov/containment“

RepClass = „ActuatorRequest“ AssocRole = CHILD

Context = true SourceDom = true

Path = „/TU1“

Kommandostruktur

Command = CMD_RUN

ChbkState = ST_IDLE

Belegung der Metavariablen (Ausgänge)

Kommandostruktur Operationale Ebene

SendCommand = CMD_RUN ActIdent = „Y24“

State = ST_RUN ActPath = „/TU1/Y24“

Der SFC eines MT_Objekt ist in Abbildung C.2 nochmals dargestellt. Im ersten Zyklus befin-

det sich ar im Schritt ST_IDLE. Das anliegende Kommando CMD_RUN führt jedoch zu einem

131

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

Schrittwechsel nach ST_RUN.1 In diesem Schritt wird anhand der Metavariablen Context und

SourceDom festgestellt, ob ein Modellobjekt gesucht oder erstellt werden soll und die lokale

Variable Modus des MT-Objektes entsprechend auf SEARCH oder CREATE gesetzt wird. Im ak-

tuellen Beispiel ist ar Teil des Kontextes des Quellmodells, d.h. der Modus wird auf SEARCH

gesetzt. Dies wiederum führt zu einem erneuten Schrittwechsel nach ST_SEARCH. Im Schritt

ST_SEARCH wird zunächst ein Zeiger auf das durch die Metavariable Path referenzierte Ob-

jekt generiert. Existiert das Objekt nicht, so wird unmittelbar in den Schritt ST_NEG gewechselt.

Das durch Path referenzierte Modellobjekt wird nach Links untersucht, die vom Typ her der

Parametrierung der Metavariablen Assoc entsprechen. Diese Links sind in einer geordneten

Liste organisiert. Das durch den ersten Link verknüpfte Modellobjekt ist ein erster potentieller

Kandidat.

Im konkreten Beispiel wird zunächst ein Zeiger auf das Objekt TU1 erstellt. Dessen Linkliste

für die Assoziation ov/containment enthält vier potentielle Kandidaten: Y24, N13, V24,

P13. Diese werden nun nacheinander überprüft. Y24 erfüllt direkt die übrigen Bedingungen,

da es eine Instanz der Klasse ActuatorRequest ist und Ziel bzw. CHILD des Links zu TU1

ist. Da keine weiteren Anforderungen an das Modellobjekt beschrieben sind, kann Y24 an ar

gebunden werden und die Metavariablen ActIdent und ActPath von ar werden auf „Y24“

bzw. „/TU1/Y24“ gesetzt. Anschließend wird das Kopfelemente durch ar über diese Bindung

informiert. Außerdem wird über die Metavariable SendCommand das Kommando CMD_RUN an

den Auftragnehmer, in diesem Fall an das MT-Objekt p, gesendet. Da p auf das Modellobjekt

P angewendet werden kann und selbst keine Auftragnehmer nachgeschaltet hat, meldet es

einen positiven Verlauf (State = ST_POS) und gibt die Kontrolle an ar zurück. Dieser über-

prüft die Metavariablen-Ausgänge aller Auftragnehmer, also aller MT-Elemente, die per Link

mit der Metavariablen SendCommand verknüpft sind und bildet daraus zusammenfassend eine

Rückmeldung aller Auftragnehmer (ChbkState). Befindet sich mindestens ein Auftragnehmer

im Schritt ST_ERROR, so wird auch der ChbkState = ST_ERROR gesetzt. Die zweithöchste

Priorität hat die Rückmeldung ST_NEG, gefolgt von ST_BASIC. Nur wenn alle Auftragnehmer

ST_POS melden, wird auch ChbkState auf ST_POS gesetzt. Durch die positive Rückmeldung

von p erfolgt erneut ein Schrittwechsel über ST_CHILDS nach ST_POS.

Im zweiten Zyklus erhält das MT-Objekt ar erneut das Kommando CMD_RUN. Da die Suche

im vorangegangenen Zyklus positiv verlaufen ist, erhält der Auftragnehmer p den Auftrag, nach

weiteren potentiellen Kandidaten zu suchen. Da neben P jedoch kein weiteres Modellobjekt die

Bedingungen des MT-Objektes p erfüllen kann, gibt es in diesem Zyklus eine negative Rück-

meldung (ST_NEG) vom Auftragnehmer. Das MT-Objekt ar wechselt daraufhin in den Schritt

ST_HOLD. Dieser Zwischenschritt ist notwendig, da die Auftragnehmer nur einmal pro Zyklus

bearbeitet werden dürfen, um die Echtzeitfähigkeit nicht zu gefährden.

Im dritten Zyklus liegt wiederum das Kommando ST_RUN an. Es erfolgt ein Schrittwech-

sel über ST_RUN nach ST_SEARCH. Dadurch werden weitere potentielle Kandidaten gesucht,

die die Anforderungen von ar erfüllen. Das Modellobjekt N13 erzeugt zusammen mit sei-

1Zur Erinnerung: Die Bearbeitung der internen Logik der Schritte, sowie die Auswertung der Transitionen, die

sich auf Kommandos beziehen erfolgt im PreTasking. Die Auswertung der Transitionen die sich auf Rückmel-

dungen von Auftragnehmer beziehen im PostTasking. Es können daher mehrere Schritte im gleichen Zyklus

durchlaufen werden.

132

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

nem ActuatorProcessInterface erneut eine positive Rückmeldung und anschließend im

vierten Zyklus ein ST_HOLD.

Auch im fünften Zyklus liegt das Kommando CMD_RUN an. Das MT-Objekt ar kann jedoch

keinen weiteren potentiellen Kandidaten finden, da V24 und P13 nicht den Anforderungen ent-

sprechen. Es wird daher in den Schritt ST_NEG gewechselt, der nur durch das Kommando

CMD_RESET wieder verlassen werden kann. Kommt ein solcher Befehl zum Zurücksetzten,

wird es zum einem an die Auftragnehmer weitergeleiten und auf der anderen Seite werden

ActIdent und ActPath zurückgesetzt. Dies bewirkt, dass beim nächsten Mal, wenn der

Schritt ST_SEARCH durchlaufen wird, wieder am Anfang der Linksliste mit der Suche nach

potentiellen Kandidaten begonnen wird.

MT_Object - Erstellen eines Modellobjekts

Das Erstellen eines Modellobjekts wird anhand des MT-Objekts vt der rechten Domäne der

Regel aus Abbildung C.1a demonstriert.

MT_OBJECT - ERSTELLEN EINES MODELLOBJEKTS

vt: MT_Object

Belegung der Metavariablen (Eingänge)

Deklarative Ebene Operationale Ebene

ObjName = * Assoc = „ov/containment“

RepClass = „ValveTemplate“ AssocRole = CHILD

Context = false SourceDom = false

Path = „/TU1“

Kommandostruktur

Command = CMD_RUN

ChbkState = ST_IDLE

Belegung der Metavariablen (Ausgänge)

Kommandostruktur Operationale Ebene

SendCommand = CMD_RUN ActIdent = „Y24“

State = ST_RUN ActPath = „/TU1/Y24“

Im ersten Zyklus befindet sich auch dieses MT-Objekt zunächst im Schritt ST_IDLE und wech-

selt durch das anliegende Kommando CMD_RUN nach ST_RUN. Anders als im vorangegange-

nen Beispiel wird dieses Mal jedoch der Modus auf CREATE gesetzt, da es sich um ein MT-

Objekt der Zieldomäne handelt, das nicht zum Kontext gehört. Dies wiederum führt zu einem

Schrittwechsel nach ST_CREATE. In diesem Schritt wird zunächst entlang des Korrespondenz-

links mn3 die Belegung der Metavariablen ObjName des MT-Objekts vt bestimmt. Dieser muss

übereinstimmen mit dem Wert der Metavariablen ActIdent des MT-Elements vr der linken

Domäne. Im konkreten Beispiel ist dies „V24“. Wie in ST_SEARCH versucht vt zunächst, ein

passendes Modellobjekt zu finden, dieses Mal mit festgelegtem Objektnamen. Diese Suche

133

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

bleibt im aktuellen Beispiel erfolglos, da noch kein ValveTemplate im Zielmodell existiert.

Es wird daher ein solches Objekt angelegt und über einen Link vom Typ ov/containment

mit dem Modellobjekt Y24 verknüpft. Tritt dabei ein Fehler auf, so wechselt das MT-Objekt vt

in den Schritt ST_ERROR. Ansonsten wird in den Schritt ST_CHILDS gewechselt, der jedoch

direkt wieder verlassen wird, da vt keine eigenen Auftragnehmer besitzt. Da die Auswertung

der Rückmeldungen im PostTasking erfolgt, wird diese positive Rückmeldung zunächst an

den Auftraggeber weitergeleitet, so dass der Übersetzungsschritt durch das Kopfelement und

die Korrespondenzobjekte dokumentiert werden kann.

Da in der linken Domäne keine weitere Instanz der Klasse ValveRequest existiert, wird das

MT-Objekt vt im zweiten Zyklus das Kommando CMD_RESET erhalten. Anschließend verbleibt

es im Schritt ST_BASIC.

MT_Branch - Quelldomäne

Die MT-Verzweigung hat mehrere Ausprägungen. Wird sie aktiviert, so wird zunächst an-

hand der Metavariablen SourceDom und Mode festgestellt, in welcher Ausprägung die MT-

Verzweigung zum Einsatz kommt. Im hier vorliegenden Beispiel, tritt sie als v1 in der Quelldo-

mäne als ODER auf und durchläuft den in Abbildung C.3 dargestellten SFC. Dieser überschreibt

den Schritt ST_RUN der Basisklasse MT-Element und stellt zwei getrennte Schritte für die Be-

arbeitung der beiden Alternativen bereit.

MT_BRANCH - QUELLDOMÄNE

v1: MT_Branch

Belegung der Metavariablen (Eingänge)

Deklarative Ebene Operationale Ebene

Context = false SourceDom = true

Path = „/TU1“

Kommandostruktur Mode = OR

Command = CMD_RUN

ChbkState = ST_IDLE

ChbkState2 = ST_IDLE

Belegung der Metavariablen (Ausgänge)

Kommandostruktur Operationale Ebene

SendCommand = CMD_RUN ActPath = „/TU1/Y24“

SendCommand2 = CMD_RUN

State = ST_RUN1

Im ersten Zyklus stößt sie die MT-Objekte der ersten Alternativen an. Liefern diese eine po-

sitive Rückmeldung, so wird zunächst ebenfalls eine positive Rückmeldung generiert. Im kon-

kreten Beispiel sind im ersten Zyklus ar und p gebunden an die Modellobjekte Y24 und dem

unterlagerten P, da diese in der Linkliste von TU1 vor N13 und dessen unterlagerten P stehen.

134

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

ST_BASIC

ST_RUN2

ST_NEG

true

Any.Chbk = ST_NEG

CMD_RESET

ST_RESET

MT_Branch

All.Chbk = BASIC

ST_POS

All.Chbk = ST_POS

ST_HOLD

CMD_NONE

ST_ERROR

Any.Chbk = ST_ERRORCMD_NONE

Legende: Any.Chbk – Mindestens ein Auftragnehmer liefert diese Rückmeldung
All.Chbk – Alle Auftragnehmer liefern diese Rückmeldung

ST_RUN1

CMD_RUN

Any.Chbk = ST_NEG

(a) Quelldomäne

ST_BASIC

ST_RUN2

ST_NEG

true

CMD_RUN &
ALT2

Any.Chbk = ST_NEG

CMD_RESET

ST_RESET

MT_Branch

All.Chbk = BASIC

ST_POS

All.Chbk = ST_POS

ST_HOLD

CMD_NONE

ST_ERROR

Any.Chbk = ST_ERRORCMD_NONE

Legende: Any.Chbk – Mindestens ein Auftragnehmer liefert diese Rückmeldung
All.Chbk – Alle Auftragnehmer liefern diese Rückmeldung

ST_RUN1

CMD_RUN &
ALT1

(b) Zieldomäne

Abbildung C.3: SFC der MT-Verzweigung

Die erste Alternative von v1 sucht nach einer Instanz der Klasse PumpRequest im Modell

und identifiziert P13 als potentiellen Kandidaten. Auch das MT-Objekt N passt noch auf das

Modellobjekt N. Eine passende Verlinkung fehlt jedoch. Aus diesem Grund, liefert die erste Al-

ternative im ersten Zyklus eine negative Rückmeldung. Die MT-Verzweigung wechselt daher

in den Schritt ST_RUN2 und stößt die Bearbeitung der zweiten Alternativen an. Diese findet

135

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

in V24 und Y zwei passende Modellobjekte, die auch über die verlangte Verlinkung verfügen.

Die zweite Alternative gibt daher eine positive Rückmeldung, die die MT-Verzweigung an ih-

ren Auftraggeber weiterreichen kann. Im zweiten Zyklus wird nach weiteren Treffern für die

zweite Alternative gesucht. Da keine weiteren passenden Modellobjekte existieren, wird eine

negative Rückmeldung an den Auftraggeber geliefert. Dies veranlasst dies Suche nach wei-

teren Modellobjekten, die der Parametrierung von der MT-Objekte ar und p entsprechen. Im

dritten Zyklus erhält die MT-Verzweigung von seinem Auftraggeber das Kommando zum zu-

rücksetzen (CMD_RESET). Die MT-Verzweigung leitet diese Kommando an beide Alternativen

weiter, so dass diese ihre gespeicherten Werte löschen und wieder in den Ausgangszustand

zurückkehren. Im vierten Zyklus sind die MT-Objekte ar und p an die Modellobjekte N13 und

dessen unterlagertes P gebunden und die erste Alternative kann bereits eine positive Rück-

meldung liefern. Im fünften Zyklus wird zunächst wieder versucht, weitere Modellobjekte zu

finden, die auf die erste Alternative passen. Da dies fehlschlägt wird die zweite Alternative an-

gestoßen. Auch diese liefert eine negative Rückmeldung, so dass die MT-Verzweigung diese

an ihren Auftraggeber weiterleitet.

MT_Branch - Zieldomäne

In der Zieldomäne werden die beiden Schritte RUN1 und RUN2 nicht nacheinander durchlaufen.

Vielmehr gibt die aktive Alternative der zugehörigen MT-Verzweigung in der Quelldomäne vor,

welche der beiden Zweige aktiviert wird (vgl. Abbildung C.3b). Ist in der der Quelldomäne die

erste Alternative aktiv, so wird auch in der Zieldomäne die erste Alternative aktiviert. Selbiges

gilt sinngemäß für die zweite Alternative.

MT_BRANCH - ZIELDOMÄNE

v2: MT_Branch

Belegung der Metavariablen (Eingänge)

Deklarative Ebene Operationale Ebene

Context = false SourceDom = false

Path = „/TU1“

Kommandostruktur Mode = OR

Command = CMD_RUN

ChbkState = ST_IDLE

ChbkState2 = ST_IDLE

136

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Belegung der Metavariablen (Ausgänge)

Kommandostruktur Operationale Ebene

SendCommand = CMD_RUN ActPath = „/TU1/Y24“

SendCommand2 = CMD_RUN

State = ST_RUN1

In dem konkreten Beispiel aus Abbildung C.1, ist im ersten Zyklus die zweite Alternative im

Quellmodell aktiv. Daher wird auch die zweite Alternative im Zielmodell aktiviert und es werden

jeweils Instanzen der Klasse ValveTemplate und Line angelegt. Im zweiten und dritten
Zyklus wird das rechte Teilpattern nicht aktiviert, da das linke eine negative Rückmeldung

liefert und anschließend zurückgesetzt wird.

Im vierten Zyklus ist die erste Alternative der Quelldomäne aktiv, was sich so auch auf die MT-

Verzweigung der Zieldomäne spiegelt. Dadurch werden im Zielmodell Instanzen der Klassen

PumpTemplate und Line erstellt. Im fünften Zyklus wird das Teilpattern der Zieldomäne

wiederum nicht aufgerufen.

Funktionsweise einer MT-Regel

Bevor auf die schrittweise Bearbeitung der Regel eingegangen wird, soll die Bearbeitungsrei-

henfolge der MT-Elemente einer Regel in den Fokus gerückt werden. Diese bestimmt maß-

geblich das Ergebnis eines Übersetzungsschritts. Ausschlaggebend für die Bearbeitungsrei-

henfolge ist die Schachtelung der MT-Elemente. Die folgende Tabelle stellt dies für die Regel

aus Abbildung C.1a strukturiert dar. Das Kopfelement der Regel (head: REC) ist das einzige

MT-Element, das in der globalen Taskliste WorkingMemory registriert ist. Es enthält su, g,

mn1 - mn4, sel1, l1, l2 als eingebettete MT-Elemente und ist damit für das Scheduling dieser

Bausteine zuständig. Durch grau hinterlegte Zellen markiert, welche MT-Elemente jeweils aktiv

sind.

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Im obigen Beispiel ist die Bearbeitung der internen Logik von vr aktiv. Da dieses MT-Element

jedoch eingebettet ist in v1 und dieses wiederum über su in head sind diese Bausteine eben-

falls aktiv und führen gerade ihren Ov_Call1 aus (vgl. Abbildung 6.14).

Vor ihrer Aktivierung liegt die Regel als inaktives Objektnetzwerk vor und ist nicht in das Tasking

eingebunden.

137

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

ZYKLUS 1

Zustand vor Schritt 1

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 1: head – MT-Kopfelement
Wird das Kopfelement aktiviert, so bestimmt es zunächst anhand seiner Metavariablen

die Transformationsrichtung. In dem konkreten Beispiel liegt eine Vorwärtstransformati-

on vor. Das MT-Kopfelement setzt daher die Metavariable SourceDom des linken Teil-

patterns auf true und die des rechten auf false anschließend stößt es zunächst die

MT-Objekte der linken Domäne an.

Schritt 2: su – MT-Objekt
Die Metavariable Path des MT-Objekt su ist so parametriert, dass es überall im Quellm-

odell nach einem potentiellen Kandidaten sucht („/*“). Bei der Suche wird TU1 gefunden.

Eine Abfrage beim Datenbankobjekt stellt sicher, dass TU1 bereits übersetzt ist und su

seine Auftragnehmer ar und v1 aktivieren kann. Diese bearbeiten „parallel“ ihre Suche.

Schritt 3: ar – MT-Objekt Da Funktionsbausteine sequentiell entsprechend ihrer Reihenfolge

in der Taskliste bearbeitet werden, startet zunächst ar mit der Suche nach einem poten-

tiellen Kandidaten und findet Y24. Auch hier wird überprüft, ob das Modellobjekt bereits

übersetzt ist.

Schritt 4: p – MT-Objekt Angestoßen von seinem Auftraggeber findet p das Modellobjekt P

unterhalb von Y24. Es wird überprüft, ob das MT-Objekt, dass über den MT-Link mit p

verbunden ist bereits gebunden ist. Dies ist jedoch nicht der Fall. Deshalb, und weil p

keine eigenen Auftragnehmer besitzt, gibt p eine positive Rückmeldung.

ZYKLUS 1

Zustand vor Verlassen von Schritt 4

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 5: ar – MT-Objekt
Nachdem p die Kontrolle zurückgegeben hat, wertet ar die Rückmeldung aus und gibt

seinerseits eine positive Rückmeldung.

138

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Schritt 6: su – MT-Objekt
Nachdem su die Kontrolle zurück erhalten hat, aktiviert es den nächsten Funktionsbau-

stein in seiner internen Taskliste - v1.

Schritt 7: v1 – MT-Verzweigung
Die MT-Verzweigung aktiviert zunächst ihre erste Alternative.

Schritt 8: pr – MT-Objekt
Das Modellobjekt P13 wird als potentieller Kandidat für pr gefunden. Die Überprüfung

beim Datenbankobjekt bestätigt, dass das gefundene Modellobjekt noch nicht übersetzt

wurde.

Schritt 9: N – MT-Objekt
Das Modellobjekt N wird als potentieller Kandidat gefunden. Das MT-Objekt N überprüft

wiederum, ob das durch den MT-Link verbundene MT-Objekt p bereits gebunden ist. Da

das der Fall ist, wird zwischen den beiden zugehörigen Modellobjekten eine Entspre-

chung für den MT-Link gesucht. Ein solcher Link existiert jedoch nicht. Das MT-Objekt N

erzeugt daher eine negative Rückmeldung.

ZYKLUS 1

Zustand vor Verlassen von Schritt 9

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 10: v1 – MT-Verzweigung
Die Kontrolle wird von N an pr und von da weiter an v1 zurückgegeben. Die negative

Rückmeldung von N wird dabei mit nach oben gereicht. Die MT-Verzweigung aktiviert auf

Grund der negativen Rückmeldung die zweite Alternative.

Schritt 11: v1 – MT-Verzweigung
Da die Auswertung der Rückmeldungen im PostTasking der MT-Verzweigung durch-

geführt wird, kann die zweite Alternative nicht im gleichen Zyklus durchlaufen werden.

Stattdessen wird die Kontrolle zunächst zurück an su und von da an head gegeben. Im

zweiten Zyklus liegt weiterhin das Kommando CMD_RUN am MT-Objekt su an und wird

an die Auftragnehmer weitergeleitet. Während ar und p das Kommando CMD_NONE er-

halten und in den Schritt ST_HOLD wechseln, wird in der MT-Verzweigung nun die zweite

Alternative angestoßen.

Schritt 12: Y – MT-Objekt
Die MT-Objekte vr und Y finden potentielle Kandidaten in den Modellobjekten V24 und

Y. Der Link zwischen ActuatorInputPoint und ActuatorProcessInterface ist in

diesem Fall vorhanden. Es wird eine positive Rückmeldung generiert.

139

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

ZYKLUS 2

Zustand vor Verlassen von Schritt 12

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 13: head – Kopfelement
Die positive Rückmeldung wird bis ins Kopfelement hochgereicht. Dieses aktiviert darauf-

hin die rechte Teilproduktion. Da die Rückmeldung wiederum im PostTasking ausge-

wertet wurde, wird die Kontrolle zunächst jedoch an die globale Taskliste zurückgegeben

und erst im dritten Zyklus wird das rechte Teilpattern aktiviert. Eine Aktivierung des lin-

ken Teilpattern erfolgt in diesem Zyklus nicht.

ZYKLUS 3

Zustand vor Verlassen von Schritt 13

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 14: g – MT-Objekt
Das MT-Objekt g beschafft sich über den Korrespondenzlink den Objektnamen des durch

su gebundenen Modellobjektes und sucht anschließend einen potentiellen Kandidaten

im ACPLT/csHMI, der ebenfalls diesen Objektnamen trägt und auch die anderen Anfor-

derungen erfüllt. Das Modellobjekt TU1 erfüllt diese Anforderungen. Eine Abfrage am

Datenbankobjekt stellt sicher, dass die beiden Modellobjekte TU1 in der Prozessführung

und TU1 im ACPLT/csHMI über ein Kontextelement miteinander verbunden sind. Wäre

dies nicht der Fall, müsste die Suche nach einem potentiellen Kandidaten für g fortge-

führt werden. In diesem konkreten Beispiel gibt es jedoch eine positive Rückmeldung

vom Datenbankelement, so dass g seinen Auftragnehmer aktivieren kann.

Schritt 15: at – MT-Objekt
Das MT-Objekt at findet nach demselben Muster das Modellelement Y24 im csHMI als

potentiellen, bereits übersetzten Kandidaten.

Schritt 16: rt – MT-Objekt
Das MT-Objekt rt wird im Modellobjekt Y fündig. Da es selbst keine Auftragnehmer be-

sitzt, liefert es eine positive Rückmeldung.

140

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

ZYKLUS 3

Zustand vor Verlassen von Schritt 16

head

su g mn1 mn2 sel1 mn3 l1 mn4 l2

ar v1 at

p pr vr rt v2

N Y vt lo1 pt lo2

Schritt 17: v2 – MT-Verzweigung
Das MT-Objekt at bearbeitet weiter seine interne Taskliste und aktiviert v2. Diese MT-

Verzweigung erkennt anhand der entsprechenden Metavariable seine Zugehörigkeit zum

Teilpattern der Zieldomäne und holt sich deshalb über den Korrespondenzlink die aktive

Alternative der zugehörigen MT-Verzweigung in der Teilproduktion der Quelldomäne. Da

in der Quelldomäne die zweite Alternative aktiv ist, aktiviert v2 ebenfalls die Auftragneh-

mer in der zweiten Alternative.

Schritt 18: vt – MT-Objekt
Das MT-Objekt vt informiert sich mit Hilfe des Korrespondenzlinks über den Objektna-

men des gebundenen Modellobjekts von vr und durchsucht im ACPLT/csHMI die Link-

liste von Y24 nach einer Instanz der Klasse ValveTemplate mit gleichem Namen. Im

konkreten Beispiel sucht es nach einem Objekt V24, wird dabei aber nicht fündig. Es wird

daher eine Instanz der Klasse ValveTemplate angelegt und mit Y24 verlinkt. Anschlie-

ßend wird eine positive Rückmeldung generiert.

Schritt 19: Io1 – MT-Objekt
Die MT-Verzweigung v2 aktiviert auch den zweiten Auftragnehmer in seiner Taskliste Io1.

Bei diesem wiederholt sich sinngemäß Schritt 18, so dass am Ende das Modellobjekt Y24

des ACPLT/csHMI zwei untergeordnete Modellobjekte V24 und Y besitzt. Anschließend

wird eine positive Rückmeldung generiert.

Schritt 20: head – Kopfelement
Die positive Rückmeldung wird entlang der Rückmeldestruktur bis zum Kopfelement wei-

tergereicht. Da dieses nun sowohl vom der linken als auch vom rechten Teilpattern eine

positive Rückmeldung erhalten hat, werden nacheinander die Objekte der Korrespon-

denzdomäne angestoßen. Dies erfolgt im vierten Zyklus.
Schritt 21: mn2 – V2V

Die Korrespondenzobjekte im Kontext der Regel melden dem Kopfelement, dass sie als

Kontext zum Einsatz kamen. Diese Information kann für spätere Modelländerungen rele-

vant sein, bei denen Teile des Kontextes verändert werden.

Schritt 22: I2 – V2V
Die Korrespondenzobjekte, die nicht Teil des Kontextes der Regel sind, melden an das

Kopfelement die durch sie verknüpften Modellelemente anhand des Pfades.

Schritt 23: head – Kopfelement
Das Kopfelement meldet alle gesammelten Daten über den erfolgreichen Transformati-

onsschritt an das Datenbankobjekt, das diese Daten dauerhaft vorhält.

141

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel

Schritt 24: Suche nach weiteren passenden Modellobjekten
Im fünften Zyklus sendet das MT-Objekt su zunächst das Kommando CMD_NONE an

seinen ersten Auftragnehmer ar, der dies an seinen eigenen Auftragnehmer weiterleitet.

Der zweite Auftragnehmer von su erhält erneut das Kommando CMD_RUN und wird somit

beauftragt nach weiteren potentiellen Kandidaten zu suchen. In diesem Fall liefern jedoch

beide Alternativen eine negative Rückmeldung, die bis zum MT-Objekt su weitergereicht

wird. Dieses wechselt in den Schritt ST_HOLD, um dem Kopfelement zu melden, dass

die Suche im aktuellen Zyklus nicht erfolgreich war. Das Kopfelement verzichtet daher

auf die Aktivierung der rechten Teilproduktion und der Korrespondenzobjekte. Im nächs-

ten Zyklus erhält die Verzweigung das Kommando zum Zurücksetzen. Alle anderen MT-

Elemente der linken Domäne bleiben im Zustand ST_HOLD. Das rechte Teilpattern sowie

die Korrespondenzobjekte werden wiederum nicht angestoßen. Anschließend wird das

MT-Objekt ar beauftragt, einen weiteren potentiellen Kandidaten zu suchen. Dieses gibt

diesen Auftrag zunächst weiter an p. Es wird daher nach einer weiteren Instanz der Klas-

se ActuatorProcessInterface unterhalb des Modellobjektes Y24 gesucht. Da ein

solches nicht existiert, wird eine negative Rückmeldung von p erzeugt und ar wechselt

in den Schritt ST_HOLD.

Auf die gleiche Weise wird auch ein PumpTemplate samt Line im ACPLT/csHMI ange-

legt passend zum PumpRequest und N der Prozessführung.

Funktionsweise einer MT-Modelltransformation

Während in den letzten Abschnitten die Funktionsweise einzelner MT-Elemente und deren Zu-

sammenspiel im Vordergrund standen, liegt nun das Hauptaugenmerk auf dem MT-Scheduler

und dem Gesamtverlauf einer Modelltransformation. Abbildung C.4 zeigt nochmals den SFC

des Schedulers aus Abbildung 6.13. Es wird ersichtlich, dass nach dem Starten des MT-

Schedulers zunächst das TriggerMemory initialisiert wird. Dazu werden die Trigger aller Re-

geln in die Taskliste TriggerMemory gehangen und durch das Kommando CMD_RUN aktiviert.

Trigger sind einzelne MT-Elemente, deren Suchpfad nicht auf die beiden korrelierenden Mo-

delle beschränkt ist. So überwacht zum Beispiel der Trigger für die Regel aus Abbildung

C.1a die Rückmeldung der Regel, die für die Übersetzung des ActuatorRequest und des

ActuatorProcessInterface zuständig ist. Gibt diese Regel die Rückmeldung Ready, so

schlägt der Trigger an. Die Zustandsüberwachung anderer Regeln als Trigger ist nur dann

geeignet, wenn die Transformation nur als reine Batch-Transformation zum Einsatz kommt.

Soll ein späteres inkrementelles Update durchgeführt werden, muss direkt auf Modellände-

rungen reagiert werden. Eine mögliche Realisierung ist, die Trigger so zu gestalten, dass sie

dauerhaft eine positive Rückmeldung geben. Dieser Ansatz würde die Performance jedoch

deutlich schwächen. Besser ist eine Realisierung über Dienste, die die korrelierenden Modelle

überwachen und mittels Variablen über Modelländerungen informieren. Die Trigger können

dann so gestaltet sein, dass sie auf Änderungen der Variablen reagieren.

Schlägt einer der Trigger im TriggerMemory an, so wird die zugehörige Regel in die Tasklis-

te WorkingMemory eingehängt und das Kommando CMD_RUN an das Kopfelement gesendet.

142

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

INIT_TRIG_MEM

RESET_TRIG_MEM

START_TRIG_MEM

WAITING

RESET_RULE

START_RULE

RESET_NEG_TRIG

RESET_TRIG

START_IDLE_TRIG

CMD_SFC_START

ALL_TRIG_INITIALIZED

ALL_TRIG_RESTARTED

ALL_TRIG_STARTED

POSITIV_TRIGGER

RULE_RESETED

RULE_COMPLETED

TRIGGER_RESETED

NEG_TRIGGER_RESETED

IDLE_TRIGGER_STARTED

CMD_SFC_RESET

RESET_SFC

MT_Scheduler

SFC_RESETED

DEL_ACTIVE_RULE

RULE_DELETED

Abbildung C.4: ACPLT/MT-Scheduling

Schlagen mehrere Trigger gleichzeitig an, so wird anhand der Position des Triggers in der Tas-

kliste entschieden, welche Regel bearbeitet wird. Diese wiederum ist abhängig von der Rei-

henfolge der Regeln in der Regelbasis. Trigger, die einmal eine positive Rückmeldung erzeugt

haben, verbleiben zunächst im Schritt ST_POS bis die zugehörige Regel bearbeitet wurde.

Die aktivierte Regel im WorkingMemory wird zunächst zurückgesetzt, um ggf. zurückgeblie-

bene Artefakte aus vorangegangenen Durchläufen zu beseitigen. Anschließend wird die Re-

gel vollständig abgearbeitet, d.h. alle Übersetzungsschritte, die durch sie im aktuellen Mo-

dellzustand durchgeführt werden können, werden auch durchgeführt. Anschließend gibt die

Regel die Rückmeldung Ready. Parallel zur Bearbeitung der Regel werden die Trigger des

TriggerMemory weiter bearbeitet. Schlägt in der Zwischenzeit ein weiterer Trigger an, so

verbleibt er im Zustand ST_POS.

Liefert die Regel im WorkingMemory die Rückmeldung Ready, so wird sie vom MT-Scheduler

wieder aus der Taskliste entfernt und der zugehörige Trigger wird zurückgesetzt und dadurch

veranlasst, erneut auf das entsprechende Ereignis zu reagieren.

143

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Literaturverzeichnis

[Alb96] Harald Albrecht. Technologiepapier Nr. 1: Übersicht über ACPLT/KS. Techn. Ber.

ACPLT, RWTH Aachen University, 1996 (Referenziert auf Seite 32).

[Alb97a] Harald Albrecht. Technologiepapier Nr. 2: Der Nachrichtentransport. Techn. Ber.

ACPLT, RWTH Aachen University, 1997 (Referenziert auf Seite 32).

[Alb97b] Harald Albrecht. Technologiepapier Nr. 3: Manager, Server und Klienten. Techn.

Ber. ACPLT, RWTH Aachen University, 1997 (Referenziert auf Seite 32).

[Anj+15] Anthony Anjorin, Erhan Leblebici, Roland Kluge, Andy Schürr und Perdita Ste-

vens. “A Systematic Approach and Guidelines to Developing a Triple Graph

Grammar”. In: Bidirectional Transformations. 4th International Workshop, Bx

2015. L’Aquila, Italy. July 24, 2015. Proceedings. 2015, S. 81–95 (Referenziert

auf Seite 50).

[Anj14] Anthony Anjorin. “Synchronization of models on different abstraction levels using

triple graph grammars”. Diss. TU Darmstadt, 2014 (Referenziert auf den Sei-

ten 50, 105).

[Aßm+14] Uwe Aßmann, Sebastian Götz, Jean-Marc Jézéquel, Brice Morin und Mario

Trapp. “A Reference Architecture and Roadmap for Models@run.time Systems”.

In: Models@run.time. Hrsg. von Nelly Bencomo, Robert France, Betty H.C.

Cheng und Uwe Aßmann. Bd. 8378. Lecture Notes in Computer Science. Sprin-

ger International Publishing, 2014, S. 1–18 (Referenziert auf Seite 54).

[Ber+15] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zol-

tán Ujhelyi und Dániel Varró. “Viatra 3: A Reactive Model Transformation Plat-

form”. In: Theory and Practice of Model Transformations . Theory and Practice of

Model Transformations: 8th International Conference, ICMT 2015, Held as Part

of STAF 2015, L’Aquila, Italy, July 20-21, 2015. 2015, S. 101–110 (Referenziert

auf Seite 54).

[BS09] Stefan Biffl und Alexander Schatten. “A Platform for Service-Oriented Integration

of Software Engineering Environments”. In: Proceedings of the 2009 Conference

on New Trends in Software Methodologies, Tools and Techniques: Proceedings

of the Eighth SoMeT_09. 2009, S. 75–92 (Referenziert auf Seite 40).

[CH06] Krzysztof Czarnecki und Simon Helsen. “Feature-based survey of model trans-

formation approaches”. In: IBM Systems Journal 45.3 (2006), S. 621–645 (Re-

ferenziert auf Seite 44).

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. The MIT Press Paperback

Series. M.I.T. Press, 1965 (Referenziert auf Seite 17).

[Div08] Industry Sector / Industry Automation Division. Siemens verstärkt sich durch

Übernahme von innotec mit Software für die Prozessindustrie. [Online; Stand

14.06.2015]. 2008. URL: http://www.siemens.com/press/de/pressemi

tteilungen/2008/industry_automation/iia2008081645.htm (Refe-

renziert auf Seite 41).

144

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[Ens01] Udo Enste. Generische Entwurfsmuster in der Funktionsbausteintechnik und de-

ren Anwendung in der operativen Prozeßführung. Bd. 884. Fortschritt-Berichte

VDI Reihe 8. VDI Verlag, 2001. (zugleich Dissertation. RWTH Aachen Universi-

ty. 2001) (Referenziert auf den Seiten 26, 33).

[EPL13] EPLAN Software & Service. Neue Schwester für EPLAN: Kuttig Computeran-

wendungen GmbH. [Online; Stand 14.06.2015]. 2013. URL: http://www.epl

an.de/de/unternehmen/presse/pressemeldungen/view/article/

neue-schwester-fuer-eplan-kuttig-computeranwendungen-gmbh/

(Referenziert auf Seite 41).

[ERD11] Ulrich Epple, Markus Remmel und Oliver Drumm. “Modellbasiertes Format für

RI-Informationen”. In: Automatisierungstechnische Praxis : atp edition 53 (2011),

S. 62–71 (Referenziert auf Seite 24).

[Fre92] Gottlob Frege. “Sinn und Bedeutung”. In: Zeitschrift für Philosophie und philosi-

sche Kritik NF 100 (1892). S. 25–50. nachgedruckt In Funktion, Begriff, Bedeu-

tung: fünf logische Studien. Kleine Vandenhoeck-Reihe (1962), S. 38–63 (Refe-

renziert auf den Seiten 14, 15).

[GE14] Sten Grüner und Urlich Epple. “Regelbasiertes Engineering mit Graphabfra-

gen”. In: Tagungsband. Dagstuhl-Workshop MBEES: Modellbasierte Entwick-

lung eingebetteter Systeme X. Model-Based Development of Embedded Sys-

tems. 05.03.2014-07.03.2014. 2014, S. 105–111 (Referenziert auf Seite 42).

[GK07] Joel Greenyer und Ekkart Kindler. “Reconciling TGGs with QVT”. In: Model Dri-

ven Engineering Languages and Systems: 10th International Conference, Mo-

DELS 2007, Nashville, USA, September 30 - October 5, 2007. Proceedings.

2007, S. 16–30 (Referenziert auf Seite 52).

[GKE12] Sten Grüner, David Kampert und Ulrich Epple. “A Model-Based Implementation

of Function Block Diagram”. In: Tagungsband. Dagstuhl - Workshop MBEES: Mo-

dellbasierte Entwicklung eingebetteter Systeme VI. Model-Based Development

of Embedded Systems. 06.02.2012-08.02.2012. 2012, S. 81–90 (Referenziert

auf Seite 32).

[GPR11] Joel Greenyer, Sebastian Pook und Jan Rieke. “Preventing information loss in

incremental model synchronization by reusing elements”. In: Modelling – Foun-

dation and Applications 7th European Conference, ECMFA 2011, Birmingham,

UK, June 6-9, 2011, Proceedings. 2011, S. 144–159 (Referenziert auf Seite 55).

[Güt09] Knut Güttel. “Konzept zur Generierung von Steuerungscode unter Verwendung

wissensbasierter Methoden in der Fertigungsautomatisierung”. In: AUTOMATI-

ON 2009 . Der Automationskongress in Deutschland. Bd. 2067. VDI-Berichte.

VDI-Verlag, 2009, S. 309–312 (Referenziert auf den Seiten 41, 42).

[GWE14] Sten Grüner, Peter Weber und Ulrich Epple. “A model for discrete product flows

in manufacturing plants”. In: Proceedings of the 2014 IEEE Emerging Technology

and Factory Automation, ETFA 2014, Barcelona, Spain, September 16-19, 2014.

2014, S. 1–8 (Referenziert auf den Seiten 4, 42, 105).

145

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[I4.0] Plattform Industrie 4.0. Umsetzungsstrategie Industrie 4.0. [Online; Stand 03.08.2015].

2015. URL: http://www.plattform-i40.de/sites/default/files/

150410_Umsetzungsstrategie_0.pdf (Referenziert auf Seite 1).

[JE12] Holger Jeromin und Ulrich Epple. “Anwendungs- und herstellerneutrales Modell

zur Darstellung und Interaktion mit leittechnischen Funktionen”. In: AUTOMATI-

ON 2012. 13. Branchentreff der Mess- und Automatisierungstechnik. Bd. 2171.

VDI-Berichte. VDI-Verlag, 2012, S. 219–222 (Referenziert auf den Seiten 25,

33).

[JE13] Holger Jeromin und Ulrich Epple. “Modellbasiertes und technologieneutrales

HMI für eingebettete Komponenten”. In: Dagstuhl-Workshop MBEES: Modellba-

sierte Entwicklung eingebetteter Systeme IX, Schloss Dagstuhl, Germany, April

24-26, 2013. 2013, S. 80–89 (Referenziert auf Seite 32).

[Kla12] Felix Klar. “Efficient and Compatible Bidirectional Formal Language Translators

based on Extended Triple Graph Grammars”. Diss. TU Darmstadt, 2012 (Refe-

renziert auf den Seiten 44, 98, 99).

[KME12] Tina Krausser, Henning Mersch und Ulrich Epple. “Rule-based Adaption of Dis-

tributed Automation Systems at Operation Time”. In: Bd. 45. IFAC Proceedings

Volumes 6. IFAC Online, 2012, S. 793–798 (Referenziert auf den Seiten 105,

106).

[Kön08] Alexander Königs. “Model Integration and Transformation - A Triple Graph

Grammar-based QVT Implementation”. Diss. TU Darmstadt, 2008 (Referenziert

auf den Seiten 44, 48, 49, 66, 70, 99).

[KQ11] Tina Krausser und Gustavo Quirós. “An IEC-61131-based rule system for In-

tegrated Automation Engineering: Concept and Case Study”. In: IEEE Xplore.

Digital Library. Proceedings of the 9th IEEE International Conference on Indus-

trial Informatics. 26-29 July 2011. Caparica, Lisbon, Portugal. 2011 (Referenziert

auf den Seiten 54, 92, 96).

[Kra+12] Tina Krausser, Marius Lauder, Michael Schlereth, Ulrich Epple und Andy Schürr.

“Integrated Graph Transformations in Automation Systems”. In: Bd. 45. IFAC Pro-

ceedings Volumes 2. IFAC Online, 2012, S. 872–877 (Referenziert auf den Sei-

ten 54, 92, 96).

[KSY10] Tina Krausser, Stefan Schmitz und Liyong Yu. “Regelbasierte Vollständigkeits-

überprüfung von Automatisierungslösungen”. In: AUTOMATION 2010. Der 11.

Branchentreff der Mess- und Automatisierungstechnik. Bd. 2092. VDI-Berichte.

VDI-Verlag, 2010, S. 55–58 (Referenziert auf Seite 97).

[KW07] Ekkart Kindler und Robert Wagner. Triple graph grammars: Concepts, extensi-

ons, implementations, and application scenarios. Techn. Ber. tr-ri-07-284. Uni-

versität Paderborn, 2007 (Referenziert auf den Seiten 52, 55).

[KWB03] Anneke G. Kleppe, Jos Warmer und Wim Bast. MDA Explained: The Model Dri-

ven Architecture: Practice and Promise. Addison-Wesley Longman Publishing

Co., Inc., 2003 (Referenziert auf Seite 37).

146

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[Lau12] Marius Lauder. “Incremental Model Synchronization with Precedence-Driven Tri-

ple Graph Grammars”. Diss. TU Darmstadt, 2012 (Referenziert auf den Sei-

ten 44, 51, 99, 104).

[Leb+15] Erhan Leblebici, Anthony Anjorin, Andy Schürr und Gabriele Taentzer. “Multi-

amalgamated Triple Graph Grammars”. In: Graph Transformation: 8th Interna-

tional Conference, ICGT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July

21-23, 2015. Proceedings. 2015, S. 87–103 (Referenziert auf den Seiten 44, 51,

105).

[Leb+16] Erhan Leblebici, Anthony Anjorin, Andy Schürr und Gabriele Taentzer. “Multi-

amalgamated triple graph grammars: Formal foundation and application to visu-

al language translation”. In: Journal of Visual Languages & Computing (2016)

(Referenziert auf den Seiten 44, 51, 105).

[M4P] Lars Evertz und Ulrich Epple. “M4P.AC - Auf der Schnittlinie zwischen Informati-

onswelt und realer Welt”. In: 12. Fachtagung EKA - Entwurf komplexer Automa-

tisierungssysteme, 09.-10.05.2012, Magdeburg, Otto-von-Guericke-Universität

Magdeburg/ifak. 2012 (Referenziert auf Seite 94).

[ME11] Henning Mersch und Ulrich Epple. “Requirements on Distribution Management

for Service-Oriented Automation Systems”. In: IEEE Xplore. Proceedings of 2012

IEEE 17th International Conference on Emerging Technologies & Factory Auto-

mation ETFA 2012. September 17-21, 2012. Krakow, Poland. 2011 (Referenziert

auf Seite 106).

[Mer+11] Henning Mersch, Daniel Behnen, Dominik Schmitz, Ulrich Epple, Christian Bre-

cher und Matthias Jarke. “Gemeinsamkeiten und Unterschiede der Prozess- und

Fertigungstechnik”. In: at - Automatisierungstechnik 59.1 (2011), S. 7–17 (Refe-

renziert auf Seite 2).

[Mer16] Henning Mersch. Deterministische, dynamische Systemstrukturen in der Auto-

matisierungstechnik. Bd. 1245. Fortschritt-Berichte VDI Reihe 8. VDI Verlag,

2016. (zugleich Dissertation. RWTH Aachen University. 2016) (Referenziert auf

den Seiten 31, 42).

[Mey02] Dirk Meyer. Objektverwaltungskonzept für die operative Prozessleittechnik.

Bd. 940. Fortschritt-Berichte VDI Reihe 8. VDI Verlag, 2002. (zugleich Dis-

sertation. RWTH Aachen University. 2002) (Referenziert auf den Seiten 24,

32).

[New12] VDI News. Ein Dank an die Aktiven - Erfolgreiche Richtlinienarbeit in der GMA.

[Online; Stand 30.03.2012]. 2012. URL: http://www.vdi.de/6930.0.html?

tx_ttnews[tt_news]=55812 (Referenziert auf Seite 24).

[NN04] Joachim Nagelmann und Alexander Neugebauer. iFBSpro. [Online; Stand

29.05.2017]. 2004. URL: http : / / www . ltsoft . de / uploads / media /

iFBSpro164.pdf (Referenziert auf den Seiten 32, 74).

[Pol94] Martin Polke. Prozessleittechnik. Oldenbourg Verlag, 1994 (Referenziert auf Sei-

te 39).

147

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[Pra71] Terrence W. Pratt. “Pair grammars, graph languages and string-to-graph trans-

lations”. In: Journal of Computer and System Sciences 5.6 (1971), S. 560–595

(Referenziert auf Seite 44).

[Pre13] Cideo Pressestelle. Übernahme der CIDEON AG ist Meilenstein in der Unter-

nehmensgeschichte. [Online; Stand 14.06.2015]. 2013. URL: http://www.

cideon.de/site/d/de/holding/presse-news/archiv/uebernahme-

flg.php (Referenziert auf Seite 41).

[Qui11] Gustavo Quirós. Model-based Decentralised Automatic Management of Product

Flow Paths in Processing Plants. Bd. 1183. Fortschritt-Berichte VDI Reihe 8. VDI

Verlag, 2011. (zugleich Dissertation. RWTH Aachen University. 2011) (Referen-

ziert auf den Seiten 4, 24, 25, 32, 42, 93, 95).

[RL07] OptXware Research und Development LLC. The Viatra-I Model Transformati-

on Framework Users Guide. Techn. Ber. OptXware Research und Development

LLC., 2007 (Referenziert auf Seite 54).

[Sch+15] Andreas Schüller, André Scholz, Rainer Drath, Thomas Tauchnitz und Thomas

Scherwietes. “Speed-Standardisierung am Beispiel der PLT-Stelle : Datenaus-

tausch mit dem Namur-Datencontainer”. In: Atp-Edition 57.01-02 (2015), S. 36–

46 (Referenziert auf Seite 31).

[Sch10] Stefan Schmitz. Grafik- und Interaktionsmodell für die Vereinheitlichung gra-

fischer Benutzungsschnittstellen der Prozessleittechnik. Bd. 1176. Fortschritt-

Berichte VDI Reihe 8. VDI Verlag, 2010. (zugleich Dissertation. RWTH Aachen

University. 2010) (Referenziert auf den Seiten 2, 24, 25, 32).

[Sch11] Georg Schnitger. Skript zur Vorlesung „Formale Sprachen und Berechenbarkeit“.

[Online; Stand 14.06.2015]. 2011. URL: http://www.tks.cs.uni-frankfur

t.de/data/teaching/ss12/th-inf-2/skript-schnitger-ss11.pdf

(Referenziert auf den Seiten 18, 19).

[Sch12] Anne Schneller. “Parametrieren statt programmieren”. In: VDI nachrichten 6

(2012) (Referenziert auf den Seiten VII, VIII, 90).

[Sch14] Michael Schlereth. “Platform Independent Specification of Engineering Model

Transformations”. Diss. TU Darmstadt, 2014 (Referenziert auf Seite 43).

[Sch95] Andy Schürr. “Specification of Graph Translators with Triple Graph Grammars”.

In: Graph-Theoretic Concepts in Computer Science 20th International Workshop.

WG ’94, Herrsching, Germany, June 16 - 18, 1994. Proceedings. 1995, S. 151–

163 (Referenziert auf den Seiten 44, 51).

[SE06] Stefan Schmitz und Ulrich Epple. “On rule based automation of automation”. In:

Proceedings of the 5th MATHMOD : 5th Vienna Symposium on Mathematical

Modelling. February 8-10, 2006. Vienna University of Technology, Austria. 2006

(Referenziert auf den Seiten 42, 43).

148

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[SE08] Stefan Schmitz und Ulrich Epple. “Automatisiertes Engineering leittechnischer

Funktionen durch integrierte Regeln”. In: Entwurf komplexer Automatisierungs-

systeme, EKA 2008: Beschreibungsmittel, Methoden, Werkzeuge und Anwen-

dungen ; 10. Fachtagung, 15. bis 16. April 2008 Tutorium, 16. bis 17. April 2008

Fachtagung, Magdeburg, Denkfabrik im Wissenschaftshafen / Ifak, Institut für Au-

tomation und Kommunikation e.V., Magdeburg. 2008, S. 241–252 (Referenziert

auf den Seiten 42, 43).

[SE12] Andreas Schüller und Ulrich Epple. “PandIX - Exchanging P&I diagram model

data”. In: IEEE Xplore. Proceedings of 2012 IEEE 17th International Conference

on Emerging Technologies & Factory Automation ETFA 2012. September 17-21,

2012. Krakow, Poland. 2012 (Referenziert auf Seite 13).

[SE13] Andreas Schüller und Ulrich Epple. “Ein Modellserver zur Nutzung von R&I-

Fließbild-Informationen”. In: AUTOMATION 2013. 14. Branchentreff der Mess-

und Automatisierungstechnik. Bd. 2209. VDI-Berichte. VDI-Verlag, 2013, S. 223–

226 (Referenziert auf den Seiten 25, 33).

[SK12] Michael Schlereth und Tina Krausser. “Platform-Independent Specification of

Model Transformations at Runtime Using Higher-Order Transformations”. In: Mo-

dellierung 2012. 14.-16. März 2012. Bamberg Proceedings. 2012, S. 123–138

(Referenziert auf den Seiten 34, 54).

[SME05] Stefan Schmitz, Ansgar Münnemann und Ulrich Epple. “Komponentenmodell

für den systematischen Entwurf von Prozessführungsfunktionen”. In: GMA Kon-

gress 2005. Automation als interdisziplinäre Herausforderung. Bd. 1883. VDI-

Berichte. VDI-Verlag, 2005, S. 817–824 (Referenziert auf Seite 2).

[SSE08] Stefan Schmitz, Markus Schlütter und Ulrich Epple. “R&I - Grundlage durch-

gängigen Engineerings”. In: AUTOMATION 2008. Lösungen für die Zukunft.

Bd. 2032. VDI-Berichte. VDI-Verlag, 2008, S. 55–59 (Referenziert auf Seite 28).

[SSE09] Stefan Schmitz, Markus Schluetter und Ulrich Epple. “Automation of Automation

- Definition, components and challenges”. In: IEEE Xplore. Digital Library. Pro-

ceedings of the 2009 IEEE Conference on Emerging Technologies & Factory

Automation. 22-25 Sept. 2009. 2009, S. 1–7 (Referenziert auf Seite 41).

[ST10] Industry Automation Siemens AG Industry Sector und Drive Technologies. How

can I manage all automation software tasks in one engineering environment?

[Online; Stand 14.06.2015]. 2010. URL: https://w5.siemens.com/belux/

web/nl/industrie/industrie/tia- portal/Documents/e20001-

a340-p230-x-7600.pdf (Referenziert auf Seite 2).

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973 (Referen-

ziert auf den Seiten 8, 10, 11, 14, 15).

[TC3] Beckhoff Automation GmbH & Co. KG. TwinCAT 3 | eXtended Automation (XA).

[Online; Stand 30.05.2017]. URL: https://www.beckhoff.com/german.

asp?twincat/twincat-3.htm (Referenziert auf Seite 88).

149

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[The+14] Stefan Theurich, Martin Wollschlaeger, Andreas Schüller und Ulrich Epple.

“Dienstbasierte Prüfung von CAEX-Exporten mit standardisierten Bibliothe-

ken”. In: AUTOMATION 2014. Smart X - Powered by Automation. Bd. 2231.

VDI-Berichte. VDI/VDE GMA, 2014, S. 157–168 (Referenziert auf Seite 29).

[UOS12] Leon Urbas, Michael Obst und Markus Stöss. “Formal Models for High Perfor-

mance HMI Engineering”. In: Bd. 45. IFAC Proceedings Volumes 2. IFAC Online,

2012, S. 854–859 (Referenziert auf den Seiten 5, 41).

[VG13] Thomas Vogel und Holger Giese. Model-Driven Engineering of Adaptation En-

gines for Self-Adaptive Software: Executable Runtime Megamodels. Techn. Ber.

66. Hasso Plattner Institute for Software Systems Engineering, University of

Potsdam, Germany, 2013 (Referenziert auf den Seiten 44, 53).

[Vis+98a] Shankar Viswanathan, Charlotta Johnsson, Rajagopalan Srinivasan, Venkat

Venkatasubramanian und Karl Erik Ärzen. “Automating operating procedure

synthesis for batch processes: Part I. Knowledge representation and planning

framework”. In: Computers & Chemical Engineering 22.11 (1998), S. 1673–1685

(Referenziert auf Seite 41).

[Vis+98b] Shankar Viswanathan, Charlotta Johnsson, Rajagopalan Srinivasan, Venkat

Venkatasubramanian und Karl Erik Ärzen. “Automating operating procedure

synthesis for batch processes: Part II. Implementation and application”. In: Com-

puters & Chemical Engineering 22.11 (1998), S. 1687–1698 (Referenziert auf

Seite 41).

[Vog+09a] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese und Basil

Becker. “Incremental Model Synchronization for Efficient Run-time Monitoring”.

In: Models in Software Engineering Workshops and Symposia at MODELS 2009,

Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected Papers.

2009, S. 124–139 (Referenziert auf den Seiten 44, 53).

[Vog+09b] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese und Ba-

sil Becker. “Model-driven Architectural Monitoring and Adaptation for Autonomic

Systems”. In: Proceedings of the 6th IEEE International Conference on Autono-

mic Computing Barcelona, Spain June 15-19, 2009. 2009, S. 67–68 (Referen-

ziert auf den Seiten 44, 53).

[Wag08] Thomas Wagner. “Agentenunterstütztes Engineering von Automatisierungsanla-

gen”. Diss. Universität Stuttgart, 2008 (Referenziert auf Seite 42).

[WE15] Constantin Wagner und Ulrich Epple. “Sprechende Kommandos als Grundla-

ge moderner Prozessführungsschnittstellen”. In: AUTOMATION 2015. Benefits

of Change - the Future of Automation. Bd. 2258. VDI-Berichte. VDI/VDE GMA,

2015, S. 157–168 (Referenziert auf den Seiten 26, 33).

[Yu+12] Liyong Yu, Gustavo Quirós, Tina Krausser und Ulrich Epple. “ACPLT + IEC

61131-3 = Dynamic Reconfigurable Models@runtime”. In: Softwaretechnik-

Trends. Bd. 32. 2. GI - Gesellschaft für Informatik, 2012, S. 90–91 (Referenziert

auf den Seiten 24, 32).

150

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Normen und Richtlinien

[AML1] AutomationML consortium. AutomationML Whitepaper Part 1 - Architecture and

general requirements. 2014 (Referenziert auf den Seiten 25, 31, 40).

[AML2] AutomationML consortium. AutomationML Whitepaper Part 2 - Role class libra-

ries. 2013 (Referenziert auf den Seiten 25, 31).

[AML3] AutomationML consortium. AutomationML Whitepaper Part 3 - Geometry and

kinematics. 2013 (Referenziert auf den Seiten 25, 31).

[AML4] AutomationML consortium. AutomationML Whitepaper Part 4 - Logic. 2010 (Re-

ferenziert auf den Seiten 25, 31).

[DIN10628] Deutsches Institut für Normung. DIN EN 10628: Fließschemata für verfahrens-

technische Anlagen - Allgemeine Regel. 2000 (Referenziert auf den Seiten 5, 13,

25, 27).

[DIN19227] Deutsches Institut für Normung. DIN 19227: Graphische Symbole und Kenn-

buchstaben für die Prozeßleittechnik. 1993 (Referenziert auf Seite 25).

[DIN62424] Deutsches Institut für Normung. DIN EN 62424: Festlegung für die Darstellung

von Aufgaben der Prozessleittechnik in Fließbildern und für den Datenaustausch

zwischen EDV-Werkzeugen zur Fließbilderstellung und CAE-Systemen. 2009

(Referenziert auf den Seiten 28, 29).

[IEC61131] International Electrotechnical Commission. IEC 61131: Programmable control-

lers, Part 3: Programming languages. 2003 (Referenziert auf den Seiten 2, 26,

30, 56).

[IEC62424] International Electrotechnical Commission. IEC PAS 62424: Specification for Re-

presentation of process control engineering requests in P&I Diagrams and for

data exchange between P&ID tools and PCE-CAE tools. 2008 (Referenziert auf

den Seiten 2, 25, 40).

[MOF] Object Management Group. OMG Meta Object Facility (MOF) Core Specification.

Version 2.4.1. 2011 (Referenziert auf den Seiten 9, 17).

[MOF-QVC] Object Management Group. Meta Object Facility (MOF) Query/View/Transforma-

tion Specification. Version 1.1. 2011 (Referenziert auf Seite 55).

[NA35] NAMUR. NA35: Abwicklung von PLT-Projekten. 2003 (Referenziert auf Seite 1).

[PandIX] Ulrich Epple, Markus Remmel und Oliver Drumm. PandIX Modellbeschreibung.

Version 5.01. 2010 (Referenziert auf den Seiten 2, 5, 12, 13, 20, 25, 30, 40, 89).

[UML] Object Management Group. OMG Unified Modeling LanguageTM (OMG UML),

Infrastructure. Version 2.4.1. 2011 (Referenziert auf den Seiten 9, 15, 17).

[UML2] Object Management Group. OMG Unified Modeling Language (OMG UML), Su-

perstructure. 2011 (Referenziert auf Seite 17).

[VDI3681] Verein Deutscher Ingenieure. VDI/VDE 3681: Einordnung und Bewertung von

Beschreibungsmitteln aus der Automatisierungstechnik. 2005 (Referenziert auf

den Seiten 15, 24).

151

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

[VDI3682] VDI/VDE. VDI-Richtlinie 3682: Formalisierte Prozessbeschreibung. 2015 (Refe-

renziert auf Seite 41).

152

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Lebenslauf

Persönliche Daten

Name: Tina Mersch (geb. Kraußer)

Geburtsdatum: 30. November 1980

Geburtsort: Sömmerda

Ausbildungsdaten

Allgemeine Hochschulreife: 08/1995 – 06/1999

Albert-Schweizer Gymnasium, Erfurt

Hochschulausbildung: 10/1999 – 09/2001

Studium der Naturwissenschaftlichen Informatik

Universität Bielefeld

07/2000 – 04/2001

Studium der Informatik (Datorteknik)

Technische Hochschule - KTH Stockholm

10/2001 – 07/2005

Studium der Informatik

Universität Bremen

Abschluss: Diplom-Informatik

Wissenschaftliche Tätigkeit

Wissenschaftliche Mitarbeiterin: 06/2005 – 10/2006

Security Engineering Group

RWTH Aachen University

Wissenschaftliche Mitarbeiterin: 11/2006 – 09/2012

Lehrstuhl für Prozessleittechnik

RWTH Aachen University

Berufliche Tätigkeit

Produktentwicklung: seit 11/2012

Beckhoff Automation GmbH & Co. KG, Verl

Verl den 8. Oktober 2018

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-526108-1

https://doi.org/10.51202/9783186261083 - Generiert durch IP 216.73.216.36, am 20.01.2026, 12:39:25. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186261083

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Gliederung

	2 Formale Modellierung
	2.1 Allgemeine Begriffsbestimmung
	2.2 Darstellungsformen
	2.2.1 Deskriptiv vs. Konstruktiv
	2.2.2 Textuell vs. Graphisch

	2.3 Formalisierungsgrad
	2.4 Formale Modellierung
	2.4.1 Deskriptive, grafische Modellierung
	2.4.2 Konstruktive, textuelle Modellierung
	2.4.3 Deskriptive, textuelle Modellierung
	2.4.4 Konstruktive, grafische Modellierung

	2.5 Fazit

	3 Modelle in der Automatisierungstechnik
	3.1 Stand der Technik
	3.2 Bewertung der Modelle
	3.2.1 Fließschemata für verfahrenstechnische Anlagen
	3.2.2 CAEX
	3.2.3 PandIX
	3.2.4 Sprachen für die SPS-Programmierung
	3.2.5 AutomationML
	3.2.6 ACPLT-Modelle

	3.3 Gewonnene Erkenntnisse

	4 Modelltransformation in der Automatisierungstechnik
	4.1 Allgemeine Begriffsbestimmung
	4.2 Besondere Herausforderungen in der Automatisierungstechnik
	4.3 Stand der Technik

	5 Modelltransformation
	5.1 Tripel-Graph-Grammatiken
	5.1.1 Operationale Regeln
	5.1.2 Kontrollalgorithmus
	5.1.3 Modelltransformation zur Laufzeit

	5.2 Alternative Ansätze

	6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik
	6.1 Grundlegende Design-Entscheidungen
	6.2 Deklarative Ebene
	6.3 Kommandostruktur
	6.4 Operationale Ebene
	6.4.1 MT-Objekt
	6.4.2 Modifikatoren
	6.4.3 Korrespondenzgraph

	6.5 Kontrollalgorithmus
	6.6 Referenzimplementierung
	6.6.1 Taskingkonzept
	6.6.2 ACPLT/MT-Framework im Laufzeitsystem
	6.6.3 MT_Element
	6.6.4 MT_Object
	6.6.5 Metavariablen, Variablen und Links

	6.7 IEC 61131 basierte Modelltransformation

	7 Validierung
	7.1 S0 – Bereitstellung von Planungsdaten im Laufzeitsystem
	7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt
	7.3 S2 – Entwicklungsbegleitende Modelltransformation
	7.4 S3 – Konsistenzanalyse und Modellreparatur
	7.5 Anforderungen an eine bidirektionale Modelltransformation
	7.6 Anforderungen an eine Modelltransformation für die Automatisierungstechnik

	8 Zusammenfassung und Ausblick
	8.1 Modelltransformation für prozessleittechnische Laufzeitumgebungen
	8.2 Erweiterte Einsatzszenarien und mögliche Spracherweiterungen

	Anhang A ACPLT/MT-Schema-Definition
	Anhang B TGG der Anwendungsszenarien
	Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel
	Literaturverzeichnis
	Normen und Richtlinien

