Fortschritt-Berichte VDI

iy

Reihe 8
Mess-, Dipl.-Inform. Tina Mersch,
Steuerungs- und Verl

Regelungstechnik

Nr. 1261 Regelbasierte Modell-
transformation in
prozessleittechnischen
Laufzeitumgebungen

Lehrstuhl fir
Prozessleittechnik

AACHENER der RWTH Aachen

https://doi.org/10.51202/9783186261083

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Regelbasierte Modelltransformation in
prozessleittechnischen Laufzeitumgebungen

Von der Fakultat flir Georessourcen und Materialtechnik
der Rheinisch-Westfalischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Inform.
Tina Mersch

aus Sémmerda

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr. rer. nat. Andy Schirr

Tag der mindlichen Prifung: 08.Dezember 2017

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfligbar

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Inhak.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

tar

mit, flr oder In KI-

https://doi.org/10.51202/9783186261083

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- Dipl.-Inform. Tina Mersch,
und Regelungstechnik Verl

[Nr. 1261 | Regelbasierte Modell-
transformation in
prozessleittechnischen
Laufzeitumgebungen

Lehrstuhl fiir
Prozessleittechnik
A AC

EN ER der RWTH Aachen

https://doi.org/10.51202/9783186261083

Mersch, Tina

Regelbasierte Modelltransformation in prozessleittechnischen
Laufzeitumgebungen

Fortschr-Ber. VDI Reihe 08 Nr. 1261. Disseldorf: VDI Verlag 2018.
160 Seiten, 54 Bilder, O Tabellen.

ISBN 978-3-18-526108-1 ISSN 0178-9546,

€ 5700/VDI-Mitgliederpreis € 51,30.

Fir die Dokumentation: Modellransformation — Automatisierungstechnik — Durchgéngiges
Engineering — Triple-Graph Grammatiken — TGG — Modellbasiertes Engineering — Regelbasier-
tes Engineering — Anlagenneutrale Automatisierungsfunktion — Automatisierung der Automatisie-
rung

Der aus der Informatik slammende Ansatz der Modelltransformation mittels Triple-Graph-Gram-
matiken wird in die Welt der IEC61131-Sprachen iberfihrt. Das dadurch entstandene Frame-
work bietet die Grundlage fir anlagenneutrale Automatisierungsfunktionen, die als Serienpro-
dukt verkauft und per Modelliransformation anhand der Planungsdaten an die konkrefe Anlage
und die akiuellen Anforderungen angepasst werden kénnen. Durch den Einsatz von Triple-
Graph-Grammatiken ist es zudem méglich, Anderungen in der Automatisierungsfunkfion in die
Planungsdaten zuriick zu spielen und somit zu dokumentiert. Das vorgestellie Konzept macht
sich die starke Korrelation zwischen verschiedenen Modellen der Anlagenautomatisierung zu
Nutze, indem es die Zusammenhdnge und nicht das Modell selbst in den Fokus riickt. Das
Wissen iber diese Zusammenhénge wird dabei, abgelegt als Regeln, nutzbar fiir eine ganze
Serie von Anlagen.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

[{German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
[{German National Bibliography); detailed bibliographic data is available via Intemet at
www.dnb.de.

D82 (Diss. RWTH Aachen University, 2017)

© VDI Verlag GmbH - Dissseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopiel, der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789546
ISBN 978-3-18-526108-1

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Vorwort

Die vorliegende Dissertation entstand wahrend meiner Tétigkeit am Lehrstuhl fir Prozessleit-
technik der RWTH Aachen University. Ich méchte mich an dieser Stelle bei allen bedanken, die
geholfen haben diese Arbeit erfolgreich abzuschlieBen. Mein besonderer Dank gilt dabei Herrn
Professor Dr.-Ing. Ulrich Epple, der in seiner Rolle als Doktorvater und Chef durch spannende
Diskussionen, neue DenkanstdéBe und durch die vielfaltigen Mdglichkeiten zum Austausch mit
anderen Wissenschaftlern maBgeblich zum Gelingen dieser Arbeit beigetragen hat.

Aus der urspriinglich wagen Idee Modelltransformation in die Automatisierungstechnik zu brin-
gen, hat sich insbesondere durch die langen und fachlich sehr lehrreichen Gesprache mit Herrn
Professor Dr. rer. nat. Andy Schiirr ein tragféhiges und wirklich spannendes Konzept entwickelt.
Fur die dabei aufgebrachte Geduld, die Nachsicht in vielen Dingen und nicht zuletzt fir die
Ubernahme der Rolle des Zweitgutachters méchte ich mich bei ihm herzlich bedanken.

Auch den vielen Wegbegleitern sei ein Dank ausgesprochen. Besonders erwdhnen méchte ich
dabei Stefan Schmitz, dessen Ideen und Ansétze die Grundlage dieser Arbeit lieferten und
Gustavo Quirés, der gerade in den ersten Phasen viele gute Ideen und Anwendungsmadglich-
keiten flir eine Modelltransformation in der Automatisierungstechnik beigetragen hat und mich
dadurch motiviert hat, das Thema zu vertiefen. Auch méchte ich mich bei Marius Lauder be-
danken, der mir in Gespréchen und gemeinsamen Arbeiten Einblicke in die Funktionsweise von
TGGen gewéhrt und mir die Faszination dieses Ansatzes néhergebracht hat.

Ein besonderer Dank gilt meiner Familie. Angefangen bei meinen Eltern, die mir durch ihre
Unterstutzung auch bei ungewdhnlichen Ausbildungswiinschen erst ermdglicht haben, diesen
Werdegang einzuschlagen und bei meinen Kindern Liam und Tjard, die gerade in den hei3en
Phasen der Arbeit oft zurlickstecken mussten, die mir aber auch immer wieder durch kleine
Gesten Uber die unzahligen Tiefpunkte hinweggeholfen haben. Der gréBte Dank gilt jedoch
meinem Mann Henning, der unendlich viel Geduld wahrend der Entstehung der Arbeit aufge-
bracht hat und mich immer wieder motiviert hat, nicht aufzugeben.

Verl, im Oktober 2018 Tina Mersch

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Most of the fundamental ideas of science are essentially simple,
and may, as a rule, be expressed in a language comprehensible to
everyone.

Albert Einstein

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation e
1.2 Zielsetzung
1.3 Gliederung e

Formale Modellierung

2.1 Allgemeine Begriffsbestimmung L o oL
2.2 Darstellungsformen.
2.2.1 Deskriptivvs. Konstruktiv
2.2.2 Textuellvs.Graphisch
2.3 Formalisierungsgrad
2.4 Formale Modellierung
2.4.1 Deskriptive, grafische Modellierung
2.4.2 Konstruktive, textuelle Modellierung
2.4.3 Deskriptive, textuelle Modellierung

2.4.4 Konstruktive, grafische Modellierung
25 Fazit

Modelle in der Automatisierungstechnik

3.1 StandderTechnik

3.2 BewertungderModelle
3.2.1 FlieBschemata fr verfahrenstechnische Anlagen
3.22 CAEX
323 PandIX
3.2.4 Sprachen fir die SPS-Programmierung
3.25 AutomationML
3.26 ACPLT-Modelle

3.3 Gewonnene Erkenntnisse L.

Modelltransformation in der Automatisierungstechnik

4.1 Allgemeine Begriffsbestimmung
4.2 Besondere Herausforderungen in der Automatisierungstechnik
4.3 StandderTechnik

Modelltransformation
5.1 Tripel-Graph-Grammatiken
5.1.1 OperationaleRegeln

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

10
12
13
14
16
16
17
21
21
23

24
24
27
27
28
29
30
31
32
33

36
36
38
40

44
44
51

https://doi.org/10.51202/9783186261083

Inhaltsverzeichnis

5.1.2 Kontrollalgorithmus
5.1.3 Modelltransformation zur Laufzeit
5.2 Alternative Ansatze

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

6.1 Grundlegende Design-Entscheidungen
6.2 Deklarative Ebene
6.3 Kommandostruktur
6.4 Operationale Ebene
6.41 MTObjekt
6.4.2 Modifikatoren
6.4.3 Korrespondenzgraph Lo
6.5 Kontrollalgorithmus
6.6 Referenzimplementierung L
6.6.1 Taskingkonzept L
6.6.2 ACPLT/MT-Framework im Laufzeitsystem
6.6.3 MT Element
6.6.4 MT_Object
6.6.5 Metavariablen, Variablenund Links
6.7 IEC 61131 basierte Modelltransformation

7 Validierung

7.1 SO - Bereitstellung von Planungsdaten im Laufzeitsystem
7.2 S1 - Einzelne Automatisierungsfunktion als Serienprodukt
7.3 82 — Entwicklungsbegleitende Modelltransformation
7.4 S3 - Konsistenzanalyse und Modellreparatur
7.5 Anforderungen an eine bidirektionale Modelltransformation
7.6 Anforderungen an eine Modelltransformation flir die Automatisierungstechnik . .

8 Zusammenfassung und Ausblick

8.1 Modelltransformation fir prozessleittechnische Laufzeitumgebungen
8.2 Erweiterte Einsatzszenarien und mégliche Spracherweiterungen

Anhang A ACPLT/MT-Schema-Definition

Anhang B TGG der Anwendungsszenarien

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel
Literaturverzeichnis

Normen und Richtlinien

Vi

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

100

102
102
104

107

116

128

144

151

https://doi.org/10.51202/9783186261083

Kurzfassung

Eine Umfrage unter 1800 Mitgliedern des Verbands Deutscher Maschinen- und Anlagenbauer
(VDMA) [Sch12] zeigte, dass sich schon heute 61% der befragten Entwicklungs- und Konstruk-
tionsingenieure den Herausforderungen bei der Entwicklung neuer Maschinen und Anlagen
nicht mehr in vollem Umfang gewachsen fuhlen. Mehr als die Halfte der Befragten erwarten so-
gar, dass ,die Technik, die fur die Erstellung effizienter, leistungsfahiger und flexibler Maschinen
bendtigt wird, immer aufwendiger wird“. Zudem ,nehmen Kompetenz und Qualifikation auf der
Anwender- und Bedienerseite ab“. Dieses Zusammentreffen von steigender Komplexitat und
sinkendem Fachwissen verlangen nach neuen Methoden im Engineering von Anlagen. Anne
Schneller, die diese Umfragen im Rahmen des VDI-Artikels vorstellte, schlagt vor, dass der
Weg der Automatisierungstechnik in Richtung ,Parametrieren statt Implementieren” zu lenken
ist, um diesen Herausforderungen auch in Zukunft gewachsen zu sein. Die vorliegende Arbeit
leistet einen Beitrag dazu, dieses Paradigma auch flir komplexe Automatisierungsfunktionen
zuganglich zu machen.

Das in dieser Arbeit vorgestellte Konzept macht sich die starke Korrelation zwischen verschie-
denen Modellen der Anlagenautomatisierung zu Nutze, indem es die Zusammenhénge und
nicht das Modell selbst in den Fokus riickt. Die Verwendung von Modelltransformation als Basis
einer anlagenneutralen Realisierung der Automatisierungsfunktion ermdglicht die Anpassung
der Funktionalitét an den konkreten Anlagenkontext durch Parametrieren mit den anlagenspe-
zifischen Planungsdaten. Das Fachwissen wird dabei, abgelegt als Regeln, nutzbar flr eine
ganze Serie von Anlagen.

Die Methode der regelbasierten Modelltransformation hat ihren Ursprung in der Informatik, wo
die entwickelten Ansétze bereits beachtliche Ergebnisse in den flr sie geschaffenen Modell-
welten erzielen. Trotz der langjahrigen, erfolgreichen Entwicklung auf dem Gebiet der Modell-
transformation stellt das Anwendungsgebiet der Automatisierungstechnik bisher eine besonde-
re Herausforderung dar. Insbesondere semiformale Modellbeschreibungen, die Vielfalt der Mo-
delle, erlaubte Varianzen in der Modellierung und multiple Quellmodelle erschweren den Ein-
satz von Standardverfahren oder machen ihn unméglich. Nicht nur die hohen Anforderungen
der Informatik an den Formalisierungsgrad und die Passgenauigkeit der beteiligten Modelle
stellen eine Hurde bei der Zusammenfihrung der beiden Disziplinen dar, auch die konservati-
ve Einstellung der Automatisierungstechnik bringen besondere Herausforderung mit sich. Das
in der Arbeit vorgestellte Konzept realisiert einen der erfolgversprechendsten Ansatze aus der
Informatik und gliedert diesen nahtlos in flr die Automatisierungstechnik tbliche Programmier-
sprachen ein. Dem Applikateur bieten sich dadurch alle Freiheiten der kooperativen Nutzung
von Modelltransformation und Standardprogrammierung.

Vil

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Abstract

A survey of 1800 members of the German engineering association VDMA [Sch12] showed
that 61% of development and design engineers surveyed don't feel up to the challenges in
the development of new machines and equipment. More than one half of the respondents
expect that the development of efficient, powerful and flexible machines will become even more
complex in future. In addition, they predict that users and operators will become less qualified.
This concurrence of increasing complexity and decreasing knowledge demands new methods
in the engineering of plants. Anne Schneller, author of the VDI article about the survey, suggests
that automation technology has to progress toward "parameterization instead implementation"
to cope with these challenges. The work at hand aims to contribute to make this paradigm
applicable for complex automation functions.

The approach presented in this work takes advantage of the strong correlation between diffe-
rent models of plants. It uses model transformation as the basis of a system-neutral develop-
ment of automation functions. Those automation functions can be parametrized with the plant-
specific planning data without further coding costs. The knowledge about the model correlations
is stored once as rules, available for a large set of plants.

The method of rule-based model transformation has its roots in computer science, where the
approaches already developed achieved significant results in the model worlds created for
them. Despite of many years of progress in the field of model transformation, automation tech-
nology presents special challenges for adoption. In particular, semiformal model descriptions
and the variances in modeling as well as multiple source models make the use of standard
methods impossible. Not only are the high demands of computer science on formalization and
the fit of the participating models a hurdle in merging the two disciplines but the conservative
attitude of automation technology brings particular challenges with it as well. One requirement
for the acceptance of these approaches in automation technology is the smooth integration of
the concepts in the application domain without ignoring the domain experts. The concept pre-
sented realizes one of the most promising approaches from computer science and integrates
it seamlessly into automation programming. With this approach the installation technician can
combine model transformation and standard programming in accordance with his purposes.

Vil

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1 Einleitung

Die steigende Komplexitat bei der Automatisierung von Anlagen und der erwartete Fachkréfte-
mangel werden insbesondere bei der Erstellung der Software ihre Auswirkung entfalten. Dies
liegt daran, dass alleine 10% des Gesamtaufwandes beim Bau einer Anlage in der Erstel-
lung der Software stecken. Darliber hinaus ist es schwierig, die Fehleranfalligkeit weiter zu
minimieren und die Korrektheit der implementierten Funktionalitat zu verifizieren [NA35]. Eine
anlagenneutrale, modularisierte Softwarelésung, die durch Parametrierung an den konkreten
Kontext angepasst wird, hat positive Auswirkungen auf die Projektierungszeit und Fehleranfal-
ligkeit. Zudem ergeben sich Synergieeffekte fiir alle Phasen des Lebenszykluses einer Anlage.
Das zu erwartende Potential eines solchen Ansatzes sowie die Zielsetzung der Arbeit werden
in den folgenden Abschnitten konkretisiert.

1.1 Motivation

Applikationen zur Ansteuerung verfahrenstechnischer Anlagen sind in den meisten Féllen so
individuell wie die anzusteuernde Anlage selbst. Doch auch wenn jede Applikation anlagenspe-
zifisch erstellt werden muss, bilden branchenspezifische Basisfunktionen wie Einzelsteuerun-
gen fir die Aktorik/Sensorik, Verriegelungslogiken, Flusswegkontrolle etc. die Grundlage der
Programmierung. Diese missen bei gegebenem Anlagentyp immer in gleicher oder &hnlicher
Form realisiert werden. Auch wenn die Umsetzung dieser Basisfunktionen mit Hilfe von Biblio-
theken erfolgt, deren Bausteine ,nur“ in die Applikation (bernommen und parametriert werden
mussen, sind die Basisfunktionen fir den Applikateur meist reine FlieBbandarbeit mit wenig
kreativer Eigenleistung, ,langweilig“ und ,stupide“. Hinzu kommt, dass auf Grund des reinen
Umfangs an Basisfunktionen viel Zeit in deren Umsetzung flie3t. Fir die Realisierung der anla-
genspezifischen Applikationskomponenten, die spezielles Fachwissen und einen hohen Grad
an Individualleistung vom Applikateur erfordern, steht entsprechend weniger Zeit zur Verfi-
gung. Und das, obwohl gerade hier die Kernkompetenzen eines gut ausgebildeten Applikateurs
liegen.

Auf der anderen Seite sind die Erhéhung der Flexibilitdt, der Skalierbarkeit und der Ausfall-
sicherheit nicht erst seit den Arbeiten im Rahmen der Initiative Industrie 4.0 [14.0] Themen,
mit denen sich Anlagenbauer und Applikateuer konfrontiert sehen. Dennoch erhéht die unter
Leitung des Bundesministeriums fir Bildung und Forschung (BMBF) und des Bundesministe-
riums fur Wirtschaft und Energie (BMWi) laufende Initiative den Druck auf die Anlagenbauer,
diese Anforderungen verstéarkt zu berlcksichtigen. Hinzu kommen neue Themen fiir die Rea-
lisierung zukunftsféhiger Anlagen wie die Ad-hoc-Anpassung der Produktion an veranderte

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1 Einleitung

Marktanforderungen, die auftragsorientierte Vernetzung der Produktionsstatten, dynamische
Anlagenstrukturen und damit einhergehend eine verstarkte Modularisierung der Anlagen.

Waéhrend bei der Modularisierung der Hardware auf die Erfahrungen der Fertigungstechnik
zurlickgegriffen werden kann, fehlt es bei der Entwicklung der passenden Softwaresysteme
zur Automatisierung von modularen Anlagen noch an Erfahrungen [Mer+11]. Zwei grundlegen-
de Ansétze sind hierbei denkbar. Der modulbasierte Ansatz, wie er in der Fertigungstechnik
Ublich ist, automatisiert jedes Hardwaremodul firr sich. Dieser Ansatz hat den Vorteil, dass
die Automatisierungssoftware optimal auf das Hardwaremodul abgestimmt und mit diesem als
eine automatisierungstechnische Komponente ausgeliefert werden kann. Fir den Bereich der
Prozessautomatisierung ist diese Herangehensweise allerdings ungeeignet, da fir gewdhn-
lich eine anlagenweite Automatisierung Uber die Modulgrenzen hinweg benétigt wird. Hier
bietet sich der Einsatz modellbasierter Entwicklung an. Wenn es gelingt, Automatisierungs-
I6sungen anlagenneutral auf Basis der zugrundeliegenden Modelle zu implementieren, kann
bei einer Hardwarerekonfiguration einer modularen Anlage die Automatisierungssoftware mit
Hilfe des neuen Anlagenmodells automatisch angepasst werden. Dies erfordert jedoch einen
grundlegenden Paradigmenwechsel in der Planung und Realisierung von Anlagen weg von
der instanzgetriebenen hin zur modellgetriebenen Entwicklung. Auch Anlagen in herkémmli-
cher, nicht-modularer Bauweise kénnen von einem solchen Paradigmenwechsel profitieren.
Standardisierte Automatisierungsfunktionen kénnten als Serienprodukt erworben, mit den An-
lagenplanungsdaten konfiguriert und in Betrieb genommen werden. Neben der deutlichen Kos-
tenreduktion, den verkirzten Entwicklungszeiten und dem Qualitatsgewinn durch Einsatz von
Standardkomponenten, sind auch verkiirzte Abnahme- und Prifverfahren zu erwarten. Zwar
bietet das Umfeld der Automatisierungstechnik gute Voraussetzungen firr den Einsatz modell-
basierter Entwicklung, das Potential bleibt zurzeit jedoch aus mehreren Griinden ungenutzt.
So stehen fir viele Abschnitte des Engineeringprozesses genormte bzw. standardisierte Mo-
delle (z.B. [PandIX], [IEC61131]) zur Verfigung. Im Planungsprozess werden die Daten be-
reits modelllibergreifend genutzt (z.B. [ST10]) oder zwischen den Modellen ausgetauscht (z.B.
[IEC62424]). Statt die Implementierung von Leitsystemfunktionen aber unter Einbezug der vor-
handenen Modellinformationen zu machen, werden durch explizites Ausprogrammieren der
Funktion Inselldsungen fiir konkrete Anlagen generiert.

1.2 Zielsetzung

Ziel dieser Arbeit ist es, den Applikateur entsprechend seiner Kernkompetenzen einzusetzen
und ihn von der Umsetzung der Standardfunktionen zu entbinden. Dabei wird ausgenutzt, dass
in der Automatisierungstechnik nicht nur die Anlagenplanung mit Hilfe von standardisierten Mo-
dellen erfolgt, sondern haufig auch die Implementierung. Neben explizit formulierten Modellen
wie dem HMI [Sch10] oder der Prozessfiihrung [SMEO5], liegen die Modelle h&ufig implizit Gber
Engineeringregeln vor. Diese Engineeringregeln beschreiben die Zusammenhénge zwischen
Planungsdaten und den zu erstellenden Objektstrukturen in der Implementationsphase.

In dieser Arbeit wird ein Konzept vorgestellt, das basierend auf regelbasierter Modelltransfor-
mation die bereits etablierte Arbeits- und Denkweise anhand von Engineeringregeln unterstitzt.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1.2 Zielsetzung

A—>m
vV->m
>->¢
Planungsdaten Engineering Engineering
Regeln Regeln

l

Planungsdaten

Anlagenspezifische Modellbasierte
Automatisierungs- Automatisierungs-
Funktion Funktion
(a) Instanzbasiert (b) Modellbasiert

Abbildung 1.1: Engineering einer Automatisierungsfunktion

Statt wie bisher die Engineeringregeln zu nutzen um von Hand die Planungsdaten in eine Im-
plementierung zu Uberflihren (vgl. Abbildung 1.1a), arbeitet der Applikateur auf Modellebene
und beschreibt einmalig die Modellzusammenhé&nge in Form von Regeln (vgl. Abbildung 1.1b).
Diese anlagenneutrale Herangehensweise (iber die Formulierung der zugrunde liegenden En-
gineeringregeln ermdglicht eine Verwendung der Automatisierungsfunktion als Serienprodukt,
das anschlieBend mit den Planungsdaten fiir die Verwendung an der konkreten Anlage para-
metriert wird. Die Arbeit der wiederkehrenden, einfachen Regeln folgenden Instanziierung und
Programmierung durch den Applikateur kann dadurch signifikant reduziert werden.

Hauptziel der Arbeit ist die Bereitstellung von kompletten Automatisierungsfunktionen als
Serienprodukte. Abbildung 1.2 skizziert das angestrebte Vorgehen bei der Automatisierung
einer verfahrenstechnischen Anlage. Die Umsetzung der Basisfunktionen soll mit Hilfe anla-
genneutraler Automatisierungslésungen erfolgen. Diese sollen auf Grundlage von Planungs-
daten und dem aktuellen Zustand der Anlage mittels regelbasierter Modelltransformation die
eigentlichen Basisfunktionen anlagenspezifisch bereitstellen. Instanzen der anlagenneutra-
len Automatisierungslésungen, die realisierten Basisfunktionen und die anlagenspezifischen
Applikationskomponenten miissen parallel zueinander in einem Laufzeitsystem ausgefiihrt
werden kénnen. Nur durch diese Integration ist es dem Applikateur mdglich, die gesam-
te Anlagenautomatisierung auf einer Hardware zu realisieren und auf die Ergebnisse der
modellbasiert erstellten Automatisierungsfunktionen zuzugreifen, um sie in seinen eigenen
Losungsstrategien nutzen zu kénnen. Das in dieser Arbeit bereitgestellte Konzept muss daher
eine vollstdndige Integration der Modelltransformation in die automatisierungstechnische Lauf-
zeitumgebung erméglichen. Unter dem Begriff Laufzeitumgebung/Laufzeitsystem wird dabei
eine Speicherprogrammierbare Steuerung (SPS, engl. programmable logic controller, PLC)
verstanden. Ist die Modelltransformation Teil der auf der SPS ausgefiihrten Applikation und
wird somit wahrend der Bearbeitung des Applikationscodes durchgefiihrt, so wird in dieser
Arbeit von ,Modelltransformation zur Laufzeit* gesprochen.

Neben der Bereitstellung kompletter Automatisierungsfunktionen als anlagenneutrale Serien-
produkte kommen aber auch andere Szenarien fiir den Einsatz regelbasierter Modelltransfor-

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1 Einleitung

U«—

: Anlagen-
N automatisierung

|
T ﬁnq
e "Hunggbs -

Abbildung 1.2: Konfigurieren statt Implementieren

mation in der Automatisierungstechnik in Frage. Einen kurzen Uberblick iiber forcierte Einsatz-
maoglichkeiten sowie deren besondere Anforderungen an das zu entwickelnde Konzept geben
die folgenden potentiellen Anwendungsszenarien.

S1. Einzelne Automatisierungsfunktion als Serienprodukt
Eine in sich abgeschlossene Funktionalitat, die anlagenneutral formuliert werden kann,
ist das Detektieren von Leckagestellen sowie unerwiinschter Vermischungen verschiede-
ner Medien in einer verfahrenstechnischen Anlage mit Hilfe der Flussweganalyse [Qui11;
GWE14]. Basierend auf der Anlagenstruktur und dem aktuellen Zustand der Aktoren (z.B.
Offnungszustand von Ventilen) wird das Bedienbild mit entsprechenden Informationen
angereichert. Drei Teilszenarien sind hier von prinzipiellem Interesse:

(a) Bei diesem Szenario soll der Anlagenfahrer eine Anfrage stellen kdnnen, welche Be-
reiche der Anlage durch das Offnen eines konkreten Ventils oder durch das Anschal-
ten einer Pumpe betroffen sind. Die Rohrleitungen, die ausgehend von diesem Aktor
durch gebffnete Ventile und angeschaltete Pumpen miteinander verbunden sind, wer-
den im Bedienbild farbig markiert.

G5

In verfahrenstechnischen Anlagen findet das Mischen von verschiedenen Medien im
Allgemeinen in Reaktoren statt. Mischen in Rohren durch gleichzeitiges Einpumpen
verschiedener Medien ist eher uniblich. Gleiches gilt fir den Medienablass Uber
die Systemgrenzen hinaus, sofern sich dort kein definierter Auffangpunkt (z.B. ein
Tanklaster) befindet. Beide ungewollten Zustande sollen durch Warnungen im Be-
dienbild kenntlich gemacht werden.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1.2 Zielsetzung

(c) Das Mischen von verschiedenen Medien auBBerhalb der daflir vorgesehenen Reakto-
ren kann durch das Sperren der Anlage gegen unerwiinschte Aktorbedienung verhin-
dert werden. Dazu wird bei Aktoranfrage ein entsprechend Szenario S1.b) konfigu-
rierter Suchlauf gestartet und ergebnisabhéngig der Aktor freigegeben oder gesperrt.

Alle drei Teilszenarien lassen sich nach einfachen Regeln aus der Anlagenstruktur und
dem aktuellen Anlagenzustand realisieren. Einmal implementiert kann die Flusswegana-
lyse daher ,von der Stange* fir jede Anlage eingesetzt werden. Fir eine dynamisch um-
rustbare Anlage, deren Struktur sich standig andert (z.B. M4P.AC), eignet sich der Einsatz
des modellbasierten Ansatzes besonders gut. Statt einer Reprojektierung erfolgt lediglich
eine Rekonfiguration anhand der neuen Strukturdaten der Anlage.

Ziel ist es, diese Funktionalitaten als eigenstandige Serienprodukte bereitzustellen.

S2. Entwicklungsbegleitende Modelltransformation

Das Bedienbild einer konventionellen Anlage ist nur ein Beispiel flr extrem spezialisier-
te Automatisierungsfunktionen. Die bendtigten Anzeigen, Detailbilder und &hnliches sind
zum Teil einzigartig und folgen keinen festen Regeln, nach denen sie aus den Planungs-
daten erstellt werden kénnen. Zwar gibt es bereits Ansatze, auch hier modellbasiert kom-
plette Bedienbilder durch Anreicherung der Planungsdaten zu erstellen [UOS12], an die-
ser Stelle soll jedoch die Integration von modellbasierter Entwicklung in die konventionelle
Bedienbilddarstellung im Vordergrund stehen.

Das Szenario sieht die modellbasierte Erstellung eines einfachen Bedienbildes vor, auf
dem fiir jeden Sensor und jeden Aktor in den Planungsdaten ein reprasentierendes Sym-
bol sowie eine Detailansicht fir das Ablesen von Sensorwerten bzw. das Absetzen von
Befehlen im Bedienbild erstellt wird. Eine anschlieBende Anpassung durch den Appli-
kateur an die anlagenspezifischen Gegebenheiten muss dabei mdglich bleiben. Inkre-
mentelle Anderungen an den Planungsdaten miissen in das méglicherweise gednderte
Bedienbild Gbertragen werden kénnen.

S3. Konsistenzanalyse und Modellreparatur

Die Realisierung der Basisautomatisierung ist zumeist so anlagenspezifisch, dass eine
regelbasierte Generierung nicht zielfihrend ist. Dennoch kann der Applikateur auch bei
diesen Aufgaben durch eine regelbasierte Modelltransformation unterstitzt werden, zum
einen durch eine Konsistenzanalyse des fertigen Bedienbildes mit den zugehérigen An-
steuerbausteinen der Prozessfiihrung und zum anderen durch eine regelbasierte Mo-
dellreparatur fir den Fall, dass Inkonsistenzen zwischen Bedienbild und Prozessfiihrung
erkannt wurden.

Ausgangspunkt der drei Anwendungsszenarien ist das Anlagenstrukturmodell PandIX [PandIX]
(vgl. Abbildung 1.3). PandIX ist ein Modell zur XML-basierten Reprasentation der fir die Auto-
matisierungstechnik relevanten Informationen des Rohrleitungs- und InstrumentenflieBbildes
(Abk. R&l-FlieBbild) [DIN10628] einer verfahrenstechnischen Anlage. Neben der plattformun-
abhéngigen Version nach [PandIX] kommt bei den Anwendungsszenarien auch die plattformab-
hangige Version ACPLT/PandIX fir die ACPLT-Modellwelt zum Einsatz sowie dessen Instanz
im Laufzeitsystem. Die ACPLT-Modellwelt (kurz ACPLT) ist die Modellierungsumgebung des

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1 Einleitung

Planungs-
Werkzeug Dateisystem

R&I-FlieRbild ——=XR2M5 pangix
I
S0.

ACPLT/ PandIX Aktivierung N) ACPLT/ F’andIX -
im Laufzeitsystem g
]
s1. S2./83. B
¥ v E
5
Flussweganalyse Bedienbild %
) <
ACPLT-Laufzeitsystem

Abbildung 1.3: Anwendungsszenarien

Lehrstuhls flir Prozessleittechnik der RWTH Aachen University. Sie besteht aus einem Satz
vielfaltiger prozessleittechnischer Modelle und ihrer Realisierung in einer Laufzeitumgebung.

Die aufgeflhrten Anwendungsszenarien basieren auf der Annahme, dass die zur Parametrie-
rung benétigten Planungsdaten bereits im System vorliegen. In der Regel ist jedoch das Lauf-
zeitsystem disjunkt vom Engineeringwerkzeug fiir die Planungsdaten. Ein viertes Anwendungs-
szenario des modellbasierten Ansatzes ist der Parametrierung von fertigen Softwaremodulen
aus Anlagenplanungsdaten daher vorgeschaltet:

S0. Bereitstellung von Planungsdaten im Laufzeitsystem
Es wird ein bidirektionaler Datenaustausch zwischen den mit Hilfe von Planungswerkzeu-
gen erstellen Dokumenten und einem erkundbaren Abbild der Planungsdaten im Lauf-
zeitsystem bereitgestellt. Exemplarisch soll in diesem Anwendungsszenario das Anla-
genstrukturmodell fir die Weiterverarbeitung in S1, S2 und S3 aufbereitet werden.

1.3 Gliederung

Die Struktur der Arbeit (vgl. Abbildung 1.4) tragt der Interdisziplinaritat des Themas Rechnung,
indem zunachst der Stand der Technik beider Disziplinen erértert und zueinander in Relation
gesetzt wird. Aufbauend darauf erfolgt im Hauptteil der Arbeit die Entwicklung eines Modells,
das die Methoden der Informatik fir die Automatisierungstechnik zuganglich macht. In Kapitel
2 wird zun&chst ein gemeinsames Verstandnis fiir die Begriffe Modell, Modellhierarchie und
formale Modellbeschreibung geschaffen. Es wird zudem eine Metrik entwickelt anhand derer
sich Modelle bezlglich ihres Formalisierungsgrades einordnen lassen.

Durch seine zentrale Rolle in den Anwendungsszenarien bieten sich PandIX als Grundlage fiir
die Verdeutlichung verschiedener Sachverhalte dieser Arbeit an. Es wird daher in den Beispie-
len regelmaBig aufgegriffen. Einen detaillierten Einblick in PandIX sowie in die tbrigen, fir die
Anwendungsszenarien relevanten Modelle bietet Kapitel 3. Es werden bestehende Probleme
bei der Modellierung aufgezeigt und Hinweise fir die Entwicklung zukinfiger Modelle gege-

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

1.3 Gliederung

Einleitung]
\l\
Z N - S,
5 Modelle in der AT €« Formale Modellierung] T
2 o
2 [N)
5 J :
::: Modelltransformation in der AT ——> Modelltransformation] %
7] o

===
1

(Validierung)

Modellierung

Zusammenfassung/Ausblick]

Kapitel 8 |Kapitel 7 Kapitel 6 | Kapitel 4 Kapitel 3 | Kapitel 1

AT-Praxis Technologie

Abbildung 1.4: Struktur der Arbeit

ben. Modellzusammenhéange in der Automatisierungstechnik sowie der Stand der Technik bei
der automatisierten Verarbeitung dieser Zusammenhéange werden in Kapitel 4 néher beleuch-
tet. Die dabei identifizierten Herausforderungen, denen sich eine Modelltransformation in der
Automatisierungstechnik stellen muss dienen als Richtschnur fir die Einflihrung des aus der
Informatik stammenden Konzeptes der Tripel-Graph-Grammatiken in Kapitel 5. Kapitel 6 stellt
ein Konzept fiir die Nutzung von Tripel-Graph-Grammatiken in der Anlagenautomatisierung
vor, welches in Kapitel 7 anhand der zuvor identifizierten Szenarien und Anforderungen vali-
diert wird. Kapitel 8 gibt eine Zusammenfassung der Arbeit sowie einen kurzen Ausblick auf
potentielle neue Einsatzszenarien sowie sinnvolle Erweiterungen des vorgestellten Konzeptes.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Der Fokus der vorliegenden Arbeit liegt auf dem Einsatz modellgetriebener Entwicklungsme-
thoden aus dem Bereich der Informatik in der Anwendungsdoméne der Ingenieurswissenschaf-
ten. Eine der gréBten Herausforderungen dabei stellt die unterschiedliche Herangehensweise
dieser beiden Disziplinen an die Modellierung dar. Wéhrend in der Informatik die automati-
sche Auswertbarkeit und somit die Modellierung nach klar definierten Regeln im Vordergrund
steht, beschreiben Ingenieure die zu modellierenden Systeme meist mit Hilfe der beobachte-
ten oder der erwiinschten Systemeigenschaften. Typische Aussagen beim Aufeinandertreffen
dieser beiden Herangehensweisen sind von Seiten der Informatiker: ,Das ist nicht eindeutig
modelliert” und ,es wird eine starke Typisierung bendtigt‘. Von den Ingenieuren kommen da-
bei Anforderungen wie: ,Es sollen nicht alle Sonderfélle, sondern nur die grundlegende Idee
modelliert werden“ oder ,das Modell soll nach Bedarf spéter verfeinert werden®.

Disziplinibergreifende Arbeiten haben insbesondere drei Aspekte der Modellierung abzuwé-
gen:

o deskriptiv vs. konstruktiv
o grafisch vs. textuell
o informal vs. formal

Dieses Kapitel sensibilisiert den Leser fir die unterschiedlichen Modellierungsmethoden. Dazu
werden zunachst die grundlegenden Begriffe eingeflihrt. Ausgehend vom zentralen Begriff des
Modells stehen dabei insbesondere die formale Modellbeschreibung und die modellgetriebene
Softwareentwicklung im Vordergrund.

Am Ende des Kapitels steht ein Bewertungsschema zur Verfligung, das dem Leser die Ein-
ordnung von Modellen hinsichtlich ihrer Eignung fur die modellgetriebene Softwareentwicklung
erlaubt. Zudem werden Hinweise flr die Entwicklung neuer Modelle unter diesem Gesichts-
punkt bereitgestellt.

2.1 Allgemeine Begriffsbestimmung

Auch wenn heute oftmals die von der Object Management Group (OMG) herausgegebenen
Standards als Basis fiir modellgetriebenen Softwareentwicklung verwendet werden, so kommt
man bei dem Thema Modelle nicht um den Modellbegriff von Stachowiak umher. In seinem
Buch Allgemeine Modelltheorie [Sta73] definiert er Modelle wie folgt:

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.1 Allgemeine Begriffsbestimmung

“

Definition 2.1 (Modell) Modelle sind ,Abbildungen [...] natirlicher oder kiinstlicher Originale
(Abbildungsmerkmal), die unter Zuhilfenahme von Abstraktion (Verkirzungsmerkmal), die
Attribute des Originals beleuchten, die ,fiir bestimmte [...] Subjekte” und einen bestimmten
Zweck ,innerhalb bestimmter Zeitintervalle® von Interesse sind (Pragmatisches Merkmal).

Viele von den 1973 von Stachowiak formulierten Ideen und Zusammenhéange finden sich heute
unter anderem in den von der OMG verbéffentlichten Standards so, oder in leicht verédnderter
Form wieder. Interessanter Grundgedanke beim Modellbegriff von Stachowiak ist die Betrach-
tung von Original und Modell als ,Attributklassen®, also rein durch ihre Eigenschaften und Re-
lationen beschriebene Objekte. Stachowiak unterteilt Modelle bzw. die fiir sie herangezogenen
Attribute in unterschiedliche Stufen. Attribute, die ein Original beschreiben, ordnet er der null-
ten Stufe zu. Diesen nur in der realen Welt existierenden ,uneigentlichen® Attributen stellt er
Eigenschaften von Individuen und Relationen zwischen Individuen als Attribute erster Stufe
entgegen. Attribute zweiter Stufe beschreiben Eigenschaften von Attributen erster Stufe und
Relationen zwischen Attributen erster Stufe.

Diese Idee wird ahnlich auch in den Standards der OMG aufgegriffen. Anders als bei Stachowi-
ak beschrankt die OMG die Hierarchie jedoch auf eine Instanz- und drei Modellebenen. Modelle
im Sinne von Definition 2.1 finden sich bei der OMG in der M1-Ebene. In dieser Schicht sind
auch das Anlagenstrukturmodell PandIX sowie die meisten anderen Modelle aus dem Bereich
der Automatisierungstechnik einzuordnen. Die Abbildung einer konkreten Anlagenstruktur mit
Hilfe von PandIX wird als Laufzeitinstanz bezeichnet und ist in der Ebene MO einzuordnen.
Zur Beschreibung von M1 Modellen kommen die Modellierungssprachen aus der M2-Ebene
zum Einsatz. Die OMG schl> hierfur eine einheitliche domaneniibergreifende Modellierungs-
sprache (engl. Unified Modelling Language, UML) [UML] vor. Diese hat insbesondere in der
Informatik und den Ingenieurswissenschaften mittlerweile einen hohen Durchdringungsgrad
bei der Modellierung erlangt. Diese Meta-Modell-Ebene wiederum wird mit Hilfe der Modell-
beschreibungssprachen aus der Meta-Meta-Modell-Ebene M3 definiert. Die OMG sieht die
Meta-Object-Facility [MOF] als einziges M3-Modell vor, mit deren Hilfe UML definiert wird. Da
von der OMG keine weiteren Meta-Ebenen vorgesehen sind, sind Modelle der M3-Ebene im
Allgemeinen selbstbeschreibend.

Definition 2.2 (Modellierung - Modellbeschreibung - Modellbildung) /n dieser Arbeit wird
der Begriff Modellierung fiir die Erstellung eines M1-Modells und der Begriff Modellbeschrei-
bung fiir die eines M2-Modells verwendet. Bei der Verwendung des Begriffs Modellbildung wird
von der konkreten Modellebene abstrahiert.

Definition 2.3 (Selbstbeschreibung - Introspektion) Ein Modell ist selbstbeschreibend/in-
trospektiv, wenn fir die Modellierung nur Elemente des Modells selbst zum Einsatz kommen.

Neben den von der OMG vorgeschlagenen Kombination aus MOF und UML sind auch wei-
tere Meta-(Meta-)Modelle denkbar. Dabei ist eine Zuordnung von Modellen zu einer der vier
Ebenen nicht immer eindeutig mdéglich, wie die beispielhafte Abbildung der Modellhierarchien
fir die Modellierung von verfahrenstechnischen Anlagen mit Hilfe von PandIX in Abbildung 2.1
zeigt. Um die Vorteile einer domé&nenubergreifenden Modellierungssprache nutzen zu kénnen
ohne sich auf ihre Beschreibungsmittel einschréanken zu missen, kdénnen fir ein Modell auch

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

{ Nat. Sprache { MOF ‘ M3 —
ﬂ—/ A = << reprasentiert >>
___________ 1
S p— — I |
(ACPLT/OV J L Nat. Sprache W WL M2 << modelliert mithilfe >>
= A A— —p—
1 . I —— 1
1 1
T S ; T -
ACPLT/PandiX ~—> PandiX | M1
A = A

1
7 <
ACPLT/ PandIX
| im Laufzeitsystem | & VT-Anlage MO

Abbildung 2.1: Einordnung von PandIX in die Modellhierarchie

mehrere Modellierungssprachen zum Einsatz kommen. So wird fir die Beschreibung von Syn-
tax und Semantik des PandIX-Modells aus Abbildung 2.1 sowohl UML als auch die natirliche
Sprache eingesetzt. Auch wenn die natirliche Sprache im Allgemeinen in solchen Modellhier-
archien auBBer Acht gelassen wird, so ist sie doch eine Meta-(Meta-)Sprache, die insbesondere
in den Ingenieurswissenschaften oft zur Modellierung eingesetzt wird.

Definition 2.4 (Modellwelt) Eine Menge aufeinander aufbauender bzw. harmonisierender Mo-
delle bilden eine Modellwelt.

Beispiel 2.1 Ein Beispiel fiir eine recht umfangreiche Modellwelt fiir die Doméne der Prozess-
leittechnik bildet die ACPLT-Modellwelt. Sie besteht aus einem Satz vielféltiger prozessleittech-
nischer Modelle und ihrer Realisierung in der ACPLT-Laufzeitumgebung. Das M3-Modell und
damit die Basis der ACPLT-Modellwelt bildet das Objektverwaltungssystem ACPLT/OV.

2.2 Darstellungsformen

Modellierung kommt in den unterschiedlichsten Domé&nen zum Einsatz, um komplexe Zusam-
menhénge fir einen spezifischen Anwendungsfall aufzubereiten. Die Heterogenitat der da-
bei zu beschreibenden Modelle bedingt die Entwicklung ebenso heterogener Sprachen fir die
Darstellung der Modelle. Diese oft hochspezialisierten domanenspezifischen Sprachen (engl.
domain-specific languages, DSL) sind fiir einen beschrankten Anwendungsbereich ausgelegt
und in ihrer Symbolik optimal an die Doméne angepasst.

Die Hierarchie und die Architektur der Modelle macht eine Aussage dariiber, WAS modelliert
wird. Stachowiak [Sta73] macht bei der Formulierung des Pragmatischen Merkmals seines Mo-
dellbegriffs deutlich, dass auch das FUR WEN, WANN und WOZU eine zentrale Rolle bei der
Modellbildung spielen. In diesem Zusammenhang kommen zwei weitere Aspekte der Modellie-
rung ins Spiel, zum einen die Form der Darstellung, zum anderen der Grad der Formalisierung.
Diese beiden Aspekte sollen in den nachsten Abschnitten ndher beleuchtet werden.

10

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.2 Darstellungsformen

Definition 2.5 (Darstellungsform) Die Darstellungsform eines Modells wird bestimmt durch
die verwendeten Symbole (Diagramme, FlieBtext, ...) und die verwendete Beschreibungsme-
thode. Die Beschreibungsmethoden lassen sich unterteilen in deskriptive und konstruktive Be-
schreibung.

Bildmodelle Diagramme

Graphische
Modell

Darstellungs-
modelle

Darstellungs-
graphen

Technische
Modelle

Flussdiagramme

Fluidogramme

Schaltbilder

Modelle

Emotionale

Modelle <|i{ SZie’SgEZﬁhes —|Formales Modell

Interne Modelle

Kognitive Modelle—{ Narritiv-Klasse Nicht-

Szientifisches
2. Semantische Gesprochene Modell
tufe Sprache

3. Semantische B
Stufe —[Schriftsprache

Semantische
Modelle

Externe Modelle

Abbildung 2.2: Ausschnitt aus den Modellkategorien nach Stachowiak [Sta73]

Auch Stachowiak geht in seiner Allgemeinen Modelltheorie auf verschiedene Darstellungsfor-
men ein. Er kategorisiert die Modelle dabei nur nach der verwendeten Symbolik (vgl. Abbildung
2.2). Den Aspekt der Beschreibungsmethoden lasst er dabei auBBen vor. Durch seine Sicht auf
Modelle als ,Attributklassen” schrankt er sich sogar auf die beschreibende/deskriptive Modellie-
rung ein. Dies ist insofern nicht weiter verwunderlich, da seine Arbeit den Bereich der Soziolo-
gie fokussiert. Die eher aus den Sprachwissenschaften stammende Methode der konstruktiven
Modellierung ist fiir die Anwendung in der Soziologie zu formal und daher wenig geeignet.

In der Informatik unterscheidet man in diesem Zusammenhang zwischen der abstrakten und
der konkreten Syntax eines Modells respektive einer Sprache.

Definition 2.6 (Syntax) Die Syntax beschreibt die erlaubten Symbole (das Alphabet) eines
Modells sowie die daraus generierbaren erlaubten Modellinstanzen (Wbrter). Die Abstrakte
Syntax stellt die Konzepte zur Verfliigung, die durch das Modell abgebildet werden sollen. Die
konkrete Syntax beschreibt die Darstellungsform, die fiir die Erstellung von Modellinstanzen
zur Verfiigung steht. Es kénnen mehrere konkrete Syntaxen zu einem Modell existieren.

Beispiel 2.2 Die in Abbildung 2.1 verwendete Assoziation ,représentiert” besagt nichts ande-
res, als dass hier der gleiche Aspekt mit Hilfe mehrere konkreter Syntaxen modelliert werden
kann. Modellierungswerkzeuge verwenden intern ggf. eine ganz andere Darstellung der Mo-
delleigenschaften z.B. in Form von C-Funktionen oder Arrays. Dies ist die jeweilige abstrakte
Syntax.

In diesem Abschnitt stehen die konkrete Syntax, ihre méglichen Auspragungen und die damit
einhergehenden Vor- und Nachteile im Fokus der Betrachtung.

11

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

2.2.1 Deskriptiv vs. Konstruktiv

Bei der deskriptiven Modellierung steht die Beschreibung von Objekten und Eigenschaften im
Vordergrund unter einem konkreten Aspekt (z.B. Vererbungshierarchie, Interaktion zwischen
Objekten, etc.) im Vordergrund. Diese, auch der UML zu Grunde liegende Modellierung findet
insbesondere in der Beschreibung von (technischen) Systemen ihren Einsatz. Der deskripti-
ven Modellierung steht die konstruktive Modellierung entgegen, die auf einem Alphabet und
Konstruktionsregeln basiert. Ein typischer Vertreter konstruktiver Modellierung sind Gramma-
tiken. Ausgehend von einer initialen Konstruktionsregel, die das zu beschreibende Modell als
Ganzes wiedergibt, kann durch wiederholte Anwendung der Konstruktionsregeln der gesamte
Raum der méglichen Modellinstanzen konstruiert werden.

Zwar gilt auch fur die konstruktive Modellierung, dass nur ein Ausschnitt aus der Realitat mo-
delliert wird, fir konstruktive Modelle gilt aber im Allgemeinen die Annahme, dass Objekte, Ei-
genschaften und Strukturen, die nicht durch die Konstruktionsregeln hergeleitet werden kénnen
auch nicht Teil eines validen Modells sein kénnen. Anders verhalt es sich bei den deskriptiven
Modellen, bei denen diese Weltabgeschlossenheit (engl. Closed world assumption) explizit for-
muliert werden muss. Der beschreibende Charakter der deskriptiven Modellierung fokussiert
eher die lockere Spezifikation (engl. Loose specification), bei der nur einzelne Aspekte valider
Modelle spezifiziert sind.

PLT-Stelle ’ PLT-Stelle ‘ = ’ Sensorstelle

A

Aktorstelle | oder
Regelstelle
Aktorstelle
(b) konstruktiv
Regelstelle

oder

(a) deskriptiv

Abbildung 2.3: Modellierung einer PLT-Stelle

Beispiel 2.3 Abbildung 2.3a [PandiX] beschreibt die Eigenschaft ,ist eine PLT-Stelle” der drei
Modellelemente ,Sensorstelle”, ,Aktorstelle” und ,Regelstelle” und die Eigenschaft ,ist keine
PLT-Stelle” der Modellelemente ,,Kombi-Stelle” und ,Handeingabestelle“. Ob eine ,Pumpe* die
Eigenschaft ,ist eine PLT-Stelle” oder die Eigenschaft ,ist keine PLT-Stelle” besitzt, ldsst sich
anhand dieser Modellierung nicht eindeutig kldren. Abbildung 2.3b hingegen leitet aus dem
Vorhandensein einer PLT-Stelle in der Modellinstanz ab, dass diese entweder eine ,Sensorstel-
le“, ,Aktorstelle” oder ,Regelstelle“ sein kann. Die Frage, ob eine ,Pumpe” eine PLT-Stelle ist,
ldsst sich eindeutig kldren. Da die Konstruktionsregel fiir PLT-Stelle keine Mdglichkeit bietet,
nach ,Pumpe* aufzulésen, ist ,Pumpe* keine PLT-Stelle.

12

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.2 Darstellungsformen

2.2.2 Textuell vs. Graphisch

Bei der Modellierung der PLT-Stelle aus Beispiel 2.3 wurde eine graphische Reprasentation
gewahlt. Die wohl bekannteste grafische Modellierungssprache ist die UML. Neben Klassen-
diagrammen (vgl. Abbildung 2.3a) stellt die UML auch grafische Modellierungselemente fir
Ablaufe, Zustande und vieles mehr zur Verfigung. Eine besondere Herausforderung bei der
Verwendung grafischer Sprachen stellt deren flexible Interpretierbarkeit dar. Schiiller und Epple
[SE12] identifizieren insbesondere drei Aspekte bei der Verwendung von Grafiken zur Model-
lierung als kritisch, die hier nicht unerwéhnt bleiben sollen:

Vollsténdigkeit Insbesondere manuell erstellte Grafikmodelle enthalten teilweise implizite
Uber das Modell hinausgehende Informationen. So werden Farben, Positionierungen
von Objekten zueinander und Kommentare genutzt, um Aspekte abzubilden, die das
Modell nicht vorsieht. Fur eine automatisierte Verarbeitung der grafischen Modelle soll-
ten alle verwendeten informationstragenden Elemente mdglichst vollsténdig im Modell
dokumentiert sein.

Verschiedenartigkeit Das Aussehen einzelner Modellelemente kann durch die Verwendung
verschiedener Stile von Implementierung zu Implementierung variieren ohne das Modell
zu verletzen.

Komplexitat Grafiken vereinigen oft mehrere zu modellierende Aspekte in kompakter Form.
Die Betrachtung einer Modellinstanz unter einem konkreten Aspekt erfordert in diesen
Féllen eine stark selektive Betrachtung der Grafik.

Bei den textuellen Modellierungssprachen ist die erweiterte Auszeichnungssprache (engl. ex-
tended markup language, XML) der am weitesten verbreitete Modellierungsansatz. Mit Hilfe
von XML-Schemata lassen sich Hierarchien von XML-basierten Modellen erstellen und fir die
rechnergestltzte Validierung nutzbar machen.

Zu einer abstrakten Syntax kdnnen parallel mehrere grafische als auch textuelle konkrete Syn-
taxen vorliegen. Dies kommt unter anderem bei der Bereitstellung von XML-basierten Aus-
tauschformaten flr grafische Modelle zum Tragen.

Beispiel 2.4 In Abbildung 2.4 ist ein Ventil mit einer entsprechenden PLT-Stelle grafisch als
R&I-Symbol nach [DIN10628] und textuell nach [PandlX] dargestellt. In diesem Fall sind die ent-
haltenen Informationen nahezu identisch, da PandIX als Austauschformat fiir R&I-FlieBbilder
definiert wurde. In der textuellen Reprdsentation ist eine zusétzliche Information (ber den
sicheren Zustand (SafeState) enthalten, die nicht in der grafischen Reprédsentation abgebildet
werden kann.

Die von Schiiller und Epple erwéhnten Aspekte grafischer Modellierung stellen insbesondere
bei der Umwandlung einer grafischen Modellinstanz in ein textuelles Modell und umgekehrt
eine besondere Hirde dar. Allgemein gilt jedoch, je formaler (im Sinne von eindeutig interpre-
tierbar) die beiden Modelle beschrieben sind, desto effektiver kann ein Informationsaustausch
zwischen den Instanzen der Modelle erfolgen. Im Folgenden soll daher auf die Bewertung von
Modellen anhand ihres Formalisierungsgrades eingegangen werden.

13

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

<InternalElement Name="Y24">
<Attribute Name="FunctionCode">

N Y24:ActuatorRequest

+ FunctionCode = Y

<Value>Y</Value> + SignalCode = O
</Attribute>

<Attribute Name="SignalCode">

<Value>0</Value> Y:ActuatorlnputPoint

</Attribute>
<RoleRequirements
Valve24:ValveRequest
<Attribute Name="Position"> P:ActuatorProcessinterface
<Value>S01P2|1.30</Value>

</Attribute> (b) UML-Darstellung
<Attribute Name="SafeState">
<Value>close</Value>

</Attribute> W

oleCl

>ath="PCEQActuatorRequest"/>

</InternalElement>
<InternalElement Name="Valve24"> % Venti

<< InternalLink >>

<RoleRequirements
Re oleClassPath="PPE@ValveRequest"/>
</InternalElement> } 4
<Internallink Name="Valve24_Y24" % Verbindung
RefPartnersS ="Valve24:Y"
RefPartnerSi ="Y24:P"/> C)GTaﬂSCh
nach DIN
(a) Textuell nach PandIX 10628

Abbildung 2.4: Modellierung eines Ventils und zugehériger PLT-Stelle

2.3 Formalisierungsgrad

In seiner Kategorisierung der Darstellungsformen (vgl. Abbildung 2.2) ordnet Stachowiak die
formalen Modelle als eine Unterkategorie den Semantischen Modellen zu. Doch schon durch

“Eidetik” (bereits zur Pragmatik gehérend)

“Nouetik” (oder Semantik im weiteren Sinne) 5. Vorstellung

Die durch das Zeichen

hervorgerufen wird
Semantik (im engeren Sinne) 4. Sinn

Der durch das Zeichen
ausgedrickt wird

Syntaktik 3. Bedeutung

Die durch das Zeichen
bezeichnet wird
2. Zeichen

(Zeichenverbindung,
Ausdruck) das Zeichen
1. Zeichentrager fur etwas ist

(Signal): Materielles Zunehmende Subjektabhangigkeit
Substrat, energetischer
Zustand

A 4

Abbildung 2.5: Die Kategorien der Bedeutung und des Sinnes nach G. Frege [Fre92] verein-
fachte Form der Darstellung von Stachowiak [Sta73]

14

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.3 Formalisierungsgrad

seine an Frege [Fre92] angelehnte ,Kategorien von Sinn und Bedeutung*” (vgl. Abbildung 2.5)
deutet er an, dass der Grad der Formalisierung (als Umkehr des Grades der Subjektivitat) or-
thogonal zur Darstellungsform ist. Auch die in den vorangegangenen Abschnitten aufgefiihrten
Beispiele legen nahe, dass die Eigenschaft ,Formales Modell“ nicht in Korrelation mit der Wahl
der Symbolik steht.

Beispiel 2.5 Die in Abbildung 2.3b aufgefiihrte Modellierung einer PLT-Stelle ist zwar grafisch
formuliert, aber sehr formal beschrieben. Auch die in Abbildung 2.4 aufgefiihrten Modelle sind
unabhdngig von der Darstellungsart als formale Modelle einzuordnen.

Woran l&sst sich nun aber messen, ob ein Modell formal beschrieben ist oder nicht? Um dieser
Frage auf den Grund zu gehen, soll zun&chst eine informelle Definition des Begriffs erfolgen,
der im Laufe des Abschnitts verfeinert und formalisiert wird:

Definition 2.7 (Formale Modellbeschreibung) Angelehnt an die ,Kategorien von Sinn und
Bedeutung*“ [Sta73] ist eine Sprache umso formaler, je weniger subjektabhdngig sie interpretiert
werden kann, d.h. je eindeutiger ihre Semantik beschrieben ist.

Definition 2.8 (Semantik) Die Semantik ordnet einzelnen Symbolen oder Symbolgruppen ei-
ne Bedeutung zu. Je nach syntaktischem Aufbau bzw. Kontext kann der gleichen Gruppe von
Symbolen auch unterschiedliche Semantik zugeordnet sein.

Beispiel 2.6 Die Semantik beschreibt, dass die Symbole aus Abbildung 2.4c ein Ventil in der
Anlage und seine Anknlipfung an die Informationswelt des Leitsystems darstellen.

Der Verein Deutscher Ingenieure (VDI) verwendet in seiner Richtlinie zum Thema ,Einordnung
und Bewertung von Beschreibungsmitteln aus der Automatisierungstechnik® [VDI3681] eine
ahnlich Definition von formal:

o Formales Beschreibungsmittel
Besitzt eine mathematische Basis und eine prdzise und vollstdndige Syntaxdefinition so-
wie eine eindeutige semantische Interpretation.

e Semiformales Beschreibungsmittel
Besitzt eine definierte vollstdndige Syntax sowie eine eindeutige semantische Interpreta-
tion aber keine mathematische Basis.

e Informales Beschreibungsmittel
Besitzt eine Syntax, die nicht grundsétzlich vollstandig definiert ist, sowie eine Semantik,
die nicht eindeutig sein muss.

In der Informatik erfolgt die Einordnung nach etwas anderen MaBstdben. So wird UML all-
gemein als semi-formal eingestuft, obwohl nicht in allen Details eine eindeutige semantische
Interpretation vorliegt. Die OMG geht daher einen anderen Weg. Statt zu definieren, was ,For-
mal“ bedeutet, werden in [UML] fiinf Eigenschaften aufgefihrt, die durch eine mdéglichst formale
Beschreibung forciert werden sollen:

15

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Korrektheit Bei dieser Eigenschaft steht die Validierbarkeit des zu beschreibenden Modells
im Vordergrund. Voraussetzung dafir ist, dass das Modell so aufgebaut ist, dass nur
korrekte Modellinstanzen aus den Regeln herleitbar sind.

Prazision Doppeldeutigkeiten in der Beschreibung der Syntax oder der Semantik sind zu ver-
meiden. Die OMG erlaubt dabei jedoch explizit beschriebene alternative semantische
Auslegungen.

Konsistenz Das Modell muss so formuliert sein, dass es keine Widerspriichlichkeiten enthélt.

Pragnanz Es sind nur die Eigenschaften des Modells zu modellieren, die wirklich von Interesse
sind. Uberfliissige Erganzungen sind wegzulassen.

Verstandlichkeit Das Modell muss so gestaltet sein, dass es leicht lesbar und leicht zu ver-
stehen ist.

Die Eigenschaften Préagnanz und Verstandlichkeit sind wichtige Bewertungskriterien fir die
Einordnung von Modellen nach ihrer Anwendbarkeit. Sie sollen hier aber nicht weiter als Ei-
genschaften formaler Modelle verwendet werden, da sie zum einen subjektiver Einschétzung
unterliegen und im allgemeinen Verstandnis von ,formal* nicht zum Tragen kommen, wie das
folgende Beispiel zeigt:

Beispiel 2.7 Ein strikt formales Modell wird nicht dadurch weniger formal, dass ihm redundante
Informationen hinzugefiigt werden. Ein komplexes mathematisches Modell ist fiir den Experten
trivial, wahrend es fiir einen Laien véllig unversténdlich ist. Es wird dadurch nicht formaler oder
weniger formal fiir die einzelnen Personengruppen.

Im letzten Abschnitt dieses Kapitels werden Modellierungsverfahren vorgestellt, die die Erstel-
lung formaler Modelle unterstitzen.

2.4 Formale Modellierung

Im vorangegangenen Abschnitt sind einige Bewertungskriterien fiir den Grad der Formalisie-
rung aufgestellt worden. Um dem Leser geeignete Mittel fUr die Erstellung formaler Enginee-
ringmodelle an die Hand zu geben, werden in diesem Abschnitt konkrete Herangehensweisen
fur die formale Modellierung vorgestellt. Insbesondere sollen die Ideen der formalen Sprachen
und formaler Grammatiken im Vordergrund stehen. Zuvor wird jedoch die fur die deskriptive
Modellierung maBgebliche Sprache UML und ihre Grundlagen skizziert.

2.4.1 Deskriptive, grafische Modellierung

UML ist die bekannteste deskriptive Modellierungssprache, die auch auBBerhalb der Software-
entwicklung weite Verbreitung findet. Dies liegt zum einen daran, dass UML intuitiv versténdlich
und auf der anderen Seite machtig genug ist, um komplexe Zusammenhange zu beschreiben.
Zudem wird durch den objektorientierten Grundgedanken der UML eine ,natiirliche” und wie-
derum intuitive Strukturierung des Modells erméglicht. Die von der OMG als Standard heraus-

16

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

gegebene aktuelle Modellbeschreibung von UML - UML 2.4.1 [UML; UML2], ist mit Hilfe der
M3-Sprache MOF spezifiziert.

Als diagrammorientierte Modellierungssprache stellt UML eine Reihe von Sprachelemente fir
unterschiedliche Modellierungsanforderungen zur Verfligung. An dieser Stelle wird jedoch nur
auf die Elemente eingegangen, die fir das Versténdnis der weiteren Kapitel von Interesse
sind (Abbildung 2.6). Klassen von Objekten mit gleichen Eigenschaften werden in UML durch

<< assoziiert >>

Auto Auto 7 Fahrgestellnummer ‘
alypaSing (c) Assoziation
+ fahren ()
Besitzer Auto \\‘4{ Rad Auto ~— Corsa
(a) Klassen (d) Aggregation (f) Generalisierung
Carl: Corsa Auo SRR Corsa <--1 Carl
(b) Instanz (e) Komposition (9) Instanziierung

Abbildung 2.6: UML Sprachelemente

Rechtecke abgebildet (Abbildung 2.6a). Besitzt eine Klasse Attribute oder Operationen, so wer-
den diese separiert unter dem Klassennamen angegeben. Die Kurzschreibweise einer Klasse
beinhaltet nur den Klassennamen. Instanzen einer Klasse werden durch Angabe des Instanz-
namens und des Klassennamen getrennt durch ein ,.:* beschrieben (Abbildung 2.6b). Instanzen
kénnen konkrete Auspragungen der Attribute besitzen, diese werden &quivalent zur Darstellung
in Klassen angegeben. Zwischen Klassen kdnnen Assoziationen gekennzeichnet werden (Ab-
bildung 2.6c). Assoziationen kénnen optional eine Richtung, einen Namen sowie Angaben zur
Multiplizitét besitzen. Ersteres dient der naheren Beschreibung der Assoziation, letzteres gibt
an wie viele Instanzen der beiden Klassen jeweils miteinander durch die Assoziation verlinkt
werden. Die Generalisierung ist eine spezielle «ist ein»-Assoziation (Abbildung 2.6f), die den
Zusammenhang zwischen einer Klasse und ihrer Verallgemeinerung darstellt. Die «besteht
aus»-Assoziation wird auch als Aggregation bezeichnet und durch eine leere Raute gekenn-
zeichnet (Abbildung 2.6d). Die Komposition oder auch starke Aggregation ist eine spezielle
Aggregation, bei der die Einzelteile ohne das Ganze nicht existieren. Zudem ist die Anzahl
der Elternteile auf eins beschréankt. Die Komposition wird durch eine ausgefillte Raute ge-
kennzeichnet (Abbildung 2.6e). Die Instanziierung bzw. «Instanz von»-Assoziation (Abbildung
2.6g), erbt UML von MOF. Diese Assoziation kann unter anderem zwischen Klassen und von
JKlasse" abgeleiteten Modellelementen wie zum Beispiel Modellen und Instanzen verwendet
werden [MOF].

2.4.2 Konstruktive, textuelle Modellierung

Der Bereich der konstruktiven Modellierung wurde mafgeblich durch die Arbeiten von Noam
Chomsky [Cho65] gepragt. Sein Ziel war es, eine mathematisch prazise Modellierung natir-
licher Sprache zu formulieren. Dies ist zwar bis heute nicht gelungen, aber seine Ideen zu
formalen Grammatiken und formalen Sprachen bilden die Grundlage zur Modellierung vieler

17

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

heutiger kinstlicher, maschinenauswertbarer Sprachen. Der Exkurs in die Welt der formalen
Grammatiken und Sprachen scheint zunachst etwas weit ab vom Thema der formalen Model-
lierung. Doch wenn man genauer hinschaut, so finden sich eine Reihe von Modellierungen,
die auf eben diesen formalen Grammatiken basieren. Auch die, der Arbeit zugrunde liegenden
Tripel-Graph-Grammatiken (Kapitel 5.1) basieren auf den formale Sprachen nach Chomsky.

Die Grundidee von Chomsky ist dieselbe, wie sie bei der Beschreibung natirlicher Sprachen
auch zum Einsatz kommt. Eine Grammatik, die Regeln bereitstellt, nach denen sich syntaktisch
korrekte Zeichenfolgen der Sprache bilden lassen. Eine gute und allgemeinverstandliche Ein-
fihrung in formale Grammatiken und formale Sprachen nach Chomsky bietet das ,Skript zur
Vorlesung Formale Sprachen und Berechenbarkeit“ von Prof. Dr. Georg Schnitger [Sch11]. Das
besondere an Schnitgers Skript ist, dass er XML-basierte Sprachen bzw. die sie erzeugenden
XML-Grammatiken in den Kontext der formalen Sprachen einordnet. Die Wichtigkeit von XML
in der Automatisierungstechnik, sowie der bereits erwédhnte Zusammenhang mit Tripple Graph
Grammatiken, bedingen eine kurze Zusammenfassung der im Skript eingefiihrten Ideen und
Definitionen.

Definition 2.9 (Alphabet, Worte, Sprachen [Sch11])

(a) Ein Alphabet ¥ ist eine endliche, nicht-leere Menge. Die Elemente von % werden Buch-
staben genannt.

(b) " ={(a1,...,an)| a; € L} ist die Menge aller Worte der Lénge n Uber ¥. Wir werden im
folgenden a; - - - a,, statt (a1, ...,a,) schreiben. [...]

(d) ©* = G X" ist die Menge aller Worte tiber dem Alphabet X. [...]
n=0

(f) Firw € $* bezeichnet |w

die Ldnge von w, also die Anzahl der Buchstaben von w.

(9) Eine (formale) Sprache L (iiber 3) ist eine Teilmenge von ¥*.

Eine formale Sprache ist somit eine Menge Zeichenketten endlicher Lénge, die sich aus den
Buchstaben eines Alphabets, den sogenannten Terminalen erzeugen lassen (Wérter). Im All-
gemeinen sind allerdings nur Sprachen von Interesse, deren Worter bestimmten Regeln folgen.
Formale Sprachen bedienen sich bei der Beschreibung dieser Regeln sogenannter Termerset-
zungssysteme (oder Semi-Thue-Systeme).

Definition 2.10 (Termersetzungssysteme (TES)) Ein Termersetzungssystem hat die folgen-
den Komponenten:

e ¢in endliches Alphabet %,

e eine endliche Menge P von Produktionen mit P C ¥* x ¥*
Produktionen werden auch Konstruktionsregeln genannt. Sie sind Tupel (LHS, RHS) aus Zei-
chenketten. Eine Produktion kann angewendet werden, wenn in einem Wort eine der beiden

Zeichenketten LHS oder RHS vorkommt. Diese kann dann durch die andere Seite der Produk-
tion ersetzt werden, um ein neues gliltiges Wort zu erzeugen.

18

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

Einen Spezialfall der Termersetzungssysteme bilden Grammatiken. Bei ihnen erfolgt die Er-
setzung immer von LHS nach RHS (monotone TES). Zudem besitzen Grammatiken neben
dem Alphabet (von Terminalsymbolen) eine Menge von Variablen (Nichtterminale). Nichtter-
minale dienen als Platzhalter komplexerer Terme. Als gultige Worte der durch die Grammatik
erzeugten Sprache gelten nur solche, die keine Nichtterminale mehr enthalten. Produktionen
von Grammatiken haben auf der linken Seite immer mindestens ein Nichtterminal. Diese Nicht-
terminale werden durch die Produktion ersetzt.

Eine formale Grammatik ist definiert als:
Definition 2.11 (Grammatik [Sch11]) Eine Grammatik G hat die folgenden Komponenten:
e ein endliches Alphabet ¥,
e eine endliche Menge V von [...] Nichtterminalen [...]mit >NV =0,
e das Startsymbol S € V und
e eine endliche Menge P von Produktionen

Definition 2.12 (Produktion) Seien LHS (engl. left-hand side) und RHS (engl. right-hand side)
zwei Zeichenketten. Produktionen sind Tupel (LHS, RHS) fiir die gilt:

RHS € (VUX)" und
LHS = ayzmitz,z€ (VUX) undyeV

Ausgehend von einer Zeichenkette aus Terminalen und Nichtterminalen kénnen durch Anwen-
dung der Produktionen neue Zeichenketten abgeleitet werden.

Definition 2.13 (Ableitung) Sei (LHS, RHS) eine Produktion von G und wy, ws € (VUX)* zwei
Zeichenketten. Dann gilt wy — wo genau dann, wenn wsy durch die einmalige Ersetzung von
LHS durch RHS inw, erzeugt wird.

Gibt es eine Sequenz von Zeichenketten w, ws, . .. ,w, mitn € N, so dass gilt
w)p — Wy —> - —> Wy,

dann ist w, eine Ableitung von w; (kurz wy = wy,).

Definition 2.14 (Erzeugte Sprache) Sei G = (X,V, S, P) eine Grammatik. Die Menge aller
vom Startsymbol S ableitbaren Worte

{we¥*| S5 w}
ist die durch G erzeugte Sprache L(G).

Im folgenden Abschnitt soll beispielhaft anhand von XML gezeigt werden, wie die Definition von
Modellierungssprachen mit Hilfe formaler Sprachen aussieht.

"Im Weiteren wird dem Skript folgend diese Schreibweise auch fiir die Produktionen selbst genutzt (LHS — RHS).

19

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

2.4.2.1 XML-Grammatiken

Die erweiterbare Auszeichnungssprache (engl. eXtensible Markup Language, XML) ist die Ba-
sis einer ganzen Reihe von Modellierungssprachen. XML-basierte Sprachen werden haufig
dazu verwendet, grafische Modelle textuell abzubilden. Insbesondere Modelle, die in UML
beschrieben sind, besitzen oftmals auch eine textuelle Reprasentation in Form eines XML-
Dokuments. Auch in der Automatisierungstechnik sind verschiedene XML-basierte Sprachen
als Modellaustauschsprachen im Einsatz.

Die so beschriebenen Sprachen bestehen aus geschachtelten Elementen, wie sie aus HTML
oder PandIX [PandIX] bekannt sind:

Element Name "Ir 1E 2N 1d A bu nit Ne
<InternalElement Name="Y24">
<Attribute Name="FunctionCode"> 2lement t Name "Attribute"
<Value>Y</Value> % Element mit Name "Value" ohne Attribu
</Attribute>
<Attribute Name="SignalCode">
<Value>O</Value>
</Attribute>
<RoleRequirements Ref

</InternalElement>

Aufbauend auf der Basisdefinition fir XML bilden die XML-basierten Sprachen durch schritt-
weise Verfeinerung der Syntax eine Hierarchie von Sprachen. Wahrend die Basisgrammatik
allgemein beschreibt, dass Elemente der Sprache aus eine Starttag (ggf. mit Attributen), Inhalt
und einem dem Starttag zugehdrigen Endtag bestehen, schrénken die darauf aufbauenden
Sprachen die erlaubten Tags und Attribute mit Hilfe von XML-Grammatiken entsprechend ihren
Anforderungen ein. Fir die Beschreibung von XML-Grammatiken gibt es verschiedene Mog-
lichkeiten. Abbildung 2.7 zeigt zum Beispiel einen Ausschnitt einer Grammatik fiir PandIX, der
dem Ausschnitt aus der XML-Schema-Definition aus Abbildung 2.8 entspricht.

Σ = (A..Z, a..z, 0..9, =, :, ") % Sequenz aus § durch
o 11 gekennzeichr
V = (CAEXdoc, IEType, AType, RRType, RPType, Name, Value, String, AnyType
S = CAEXdoc
P = { CAEXdoc ::= {IEType} EBNF-Notation: beliebilg viele
EBNF-Notation: of onal RRTyp
IEType ::= ’'<InternalElement’ Name ’>’ {AType} [RRType] ’</InternalElement>’
AType ::= '<Attribute ’ Name ’>’ {Value} ’</Attribute>’
RRType ::= ’<RoleRequirements ’ [RPType] ’/>'
RPType ::= 'RefBaseRoleClassPath = "’ String "’/
Name ::= 'Name = "’/ String '"’ t ir
Value ::= 'Value = "’ AnyType '"’ r L
}

Abbildung 2.7: Grammatik fir PandIX

20

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.4 Formale Modellierung

2.4.3 Deskriptive, textuelle Modellierung

Im Allgemeinen sind firr die Beschreibung XML-basierter Sprachen jedoch deskriptive Metho-
den im Einsatz. Zudem kénnen durch die Hierarchie der XML-basierten Sprachen Produktio-
nen aus der allgemeineren Modellbeschreibung in die spezielle Gbernommen werden. Eine
der gebrauchlichsten Formen sind XML-Schema-Definitionen (kurz XSD). Abbildung 2.8 zeigt
eine stark verkirzte Variante der XML-Schema-Definition fiir CAEX, die der Grammatik aus
Abbildung 2.7 entspricht.

<xs:complexType name="AttributeType">
<xs:attribute name="Name" type="xs:string" s required">
<xs:element name="Value" type="xs:anyType" mi >curs="0"/>
</xs:complexType>
<xs:complexType name="InternalElementType">
<xs:attribute name="Name" type="xs:string" use="required">
<xs:element n "Attribute" type="AttributeType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="RoleRequirements" minOccurs="0">
<xs:attribute name="RefBaseRoleClassPath" type="xs:string" use="optional"/>
</xXs:element>
</xs:complexType>
<xs:element n "InternalElement" type="InternalElementType" minOccurs="0"
rs="unbounded" />

Abbildung 2.8: XSD fur PandIX

2.4.4 Konstruktive, grafische Modellierung

In den ersten beiden Abschnitten wurde zum einen die deskriptive, graphische Sprache UML
und zum anderen die konstruktive textuelle Herangehensweise an Sprachen Gber Grammatiken
vorgestellt. Wahrend die grafischen Sprachen meist einganglicher sind, besitzt die konstruktive
Herangehensweise den Vorteil einer impliziten Weltabgeschlossenheit (vgl. Abschnitt 2.2.1). In
diesem Abschnitt sollen nun die Vorteile beider in einer konstruktiven, grafischen Modellierung,
den sogenannten Graph-Grammatiken zusammengeflhrt werden. Zunéchst werden jedoch die
Begriffe Graph und Teilgraph eingefihrt.

Definition 2.15 (Graph) Ein Graph G ist ein Quadrupel (V, E,targets,label) von Knoten V
(engl. vertex), Kanten E (engl. edges) mit E C V x V und den darauf definierten Funktionen
targets und label iber den Labelalphabeten Qr und Qy U Qy. Die durch eine Kante ¢ € E
miteinander verbundenen Knoten vy,vo € V kdnnen mit Hilfe der Funktion targets ermittelt
werden:

Ve e E. targets(e) = (vi,v2)

21

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2 Formale Modellierung

Die Funktion label liefert zu jedem Knoten und jeder Kante die Knoten- respektive Kantenbe-
schriftung

Ve € E. label(e) = we € Qp
Vo e V. label(v) = wv € Qy UQN

Abkiirzend gelte auBBerdem die folgende Schreibweise fiir Knoten und Kanten in G

Vee E. ecG
YoeV. ve@G

Definition 2.16 (Teilgraph) Sei G = (V, E, targets, label) ein Graph. Eine Menge von Knoten
V’, eine Menge von Kanten E’ und die Funktionen targets’ und label’ mit

targets' = targets | E’
label' = label |V'UE'

bilden einen Teilgraph G’ = (V’, E’, targets’, label’) von G (G C G’), wenn folgendes gilt:

e Vst eine Teilmenge von V
e E’ist eine Teilmenge von E

Flir jede Kante e aus E’ gilt, dass auch die beiden Knoten, die sie verbindet in V’ sind.

Definition 2.17 (Graph-Grammatik) Eine Graph-Grammatik GG = (Qg,Qv,QN,S,GP) hat
die folgenden Komponenten:

o ein endliches Alphabet Q) terminaler Kantenbeschriftungen

e ein endliches Alphabet Q) terminaler Knotenbeschriftungen

eine endliche Menge Knotenbeschriftungen Q. (Nichtterminalen) mit Qy N Qy = 0,
das Startsymbol S € Qx und

eine endliche Menge GP von graphbasierten Produktionen

Knoten, die mit Elementen aus Qy beschriftet sind, heiBen Terminal-Knoten; solche, die mit
Elementen aus Qy beschriftet sind Nichtterminal-Knoten.

Definition 2.18 (Kanten-/Knotenbeschriftung) verschoben nach Definition 2.15

Definition 2.19 (Graphbasierte Produktion) Sei GG = (Qg,Qv,Qn,S,GP) eine Graph-
Grammatik und LHSG = (Vy,, Er, targets, label), RHSG = (Vg, ER, targets, label) zwei Graphen
mit

Yo e VLUVR: label(v) € QyUQy

Ve € E, UER: label(e) € Qp

Graphbasierte Produktionen sind Tupel (LHS¢, RHS). Fir (LHSq, RHS) kommt als alternati-
ve Schreibweise auch LHS¢ ::= RHS¢ zum Einsatz.

22

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

2.5 Fazit

Beispiel 2.8 Abbildung 2.3b zeigt eine graphbasierte Produktion basierend auf dem Alphabet
Qy = ,Sensorstelle”, ,Aktorstelle”, ,Regelstelle”, g = 0, Qn = ,PLT-Stelle”.

Bei der Anwendung einer graphbasierten Produktion wird ahnlich wie bei einer Produktion
zunachst ein Vorkommen von LHS im zu transformierenden Graph (Match) gesucht. Ist ein
Match gefunden, wird der gemeinsame Teilgraph (auch Klebegraph) K von LHS; und RHSq
bestimmt. Die Anwendung der graphbasierten Produktion erfolgt dann durch Léschen all je-
ner Knoten und Kanten des Matches, die zwar in LHS aber nicht in RHS; enthalten sind
(LHS¢ — K). AnschlieBBend werden alle Knoten und Kanten, die nur in RHS¢ nicht aber in LHS
enthalten sind (RHS — K) hinzugefiigt. Eine Anwendung der graphbasierten Produktion darf
jedoch nur durchgefiihrt werden, wenn sowohl die Kontakt- als auch die Identifikationsbedin-
gung erfillt sind. Erstere besagt, dass beim Anwenden der Regel keine hdngenden Kanten
entstehen durfen, also Kanten deren Quelle oder Ziel geléscht wurden. Die Identifikationsbe-
dingung schrénkt die Wahl des Matches ein. Ein Match darf einen Knoten in G prinzipiell auch
mehreren Knoten von LHS: zuordnen. Dabei muss allerdings gewahrleistet sein, dass dies
nicht LHS;-Knoten betrifft, von denen einer in K und der andere in LHS; — K liegt, da ansons-
ten der zugeordnete Knoten in G sowohl geldscht als auch nicht geléscht werden misste.

2.5 Fazit

Wahrend Modelle noch vor wenigen Jahren insbesondere flir die Kommunikation zwischen
Menschen entwickelt wurden, bedarf die fortschreitende maschinelle Auswertung Anpassun-
gen an den gewahlten Modellierungsmethoden. Wie in den vergangenen Abschnitten deutlich
wurde, ist dabei neben der Darstellungsform auch der gewéhlte Grad der Formalisierung aus-
schlaggebend. Ersteres sollte so gestaltet sein, dass es dem natlrlichen Sprachgebrauch der
Doménenexperten entgegenkommt. Die Analyse der verschiedenen Darstellungsformen hat
gezeigt, dass eine generelle Festlegung auf eine optimale Form nicht méglich ist. Hier muss
fallspezifisch zwischen grafisch/textuell und deskriptiv/konstruktiv entschieden werden. Fir ei-
ne geplante maschinelle Auswertung sollte, unabhéngig von der Wahl der Darstellungsform,
auf ein méglichst formales Modell gesetzt werden.

Zwar besitzen konstruktive Modelle den Vorteil der Weltabgeschlossenheit, einem wichtigen
Kriterium bei der Bewertung des Formalisierungsgrades, aber auch ein deskriptives Modell
kann durch explizit formulierte Abgeschlossenheit dieses Kriterium erflllen. So werden de-
skriptive Modelle in Form von XML-Schema-Definitionen als vollstdndig angesehen. Nicht im
Schema formulierte Zusammenhange werden damit auch als nicht valide angesehen. Da in die-
ser Arbeit die maschinelle Auswertung von Modellen eine zentrale Rolle spielt, soll im n&chsten
Kapitel der Formalisierungsgrad vorhandener Modelle aus der Anwendungsdomane der Auto-
matisierungstechnik im Fokus stehen.

23

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

Alleine in der deutschen Gesellschaft fiir Mess- und Automatisierungstechnik (GMA) des VDI
beschaftigen sich Experten in 75 Fachausschiissen damit, ein gemeinsames Versténdnis flr
Fragen der Automatisierungstechnik zu erarbeiten. Im Jahr 2011 resultierte dies in lber 50
VDI/VDE-Richtlinien [New12]. Auch die NAMUR, das DIN und der DKE beschéftigen sich mit
Modellen fiir die deutschsprachige Automatisierungsbranche. International sind unter ande-
rem Normungsgremien wie ISO, IEC und ANSI damit beschéftigt, die Modellvorstellungen in
weltweit standardisierter Form bereitzustellen. Diese enorme Anzahl an Gremien und daraus
resultierenden Normen, Standards und Richtlinien verdeutlicht, welchen Stellenwert Modelle in
der Automatisierungstechnik einnehmen.

Die Gleichsetzung von normativen Schriften (Normen, Standards und Richtlinien) mit Modellen
ist angelehnt an die Definitionen aus Kapitel 2.1. So beschaftigen sich alle normativen Schriften
damit, einen dem Titel der Schrift entsprechenden Teil der Realitat zu beschreiben (Abbildungs-
merkmal). Es wird dabei jeweils nur auf die Eigenschaften des Originals eingegangen, die fir
die Schrift von Interesse sind (Verkirzungsmerkmal). Zudem sind normative Schriften nicht
per se fir alle Zeit giiltig. Vielmehr muss eine regelmaBige Uberpriifung stattfinden, ob die
Schrift dem Original noch gerecht wird. Neben den normativen Schriften finden sich insbeson-
dere die Modelle aus dem wissenschaftlichen Bereich auch als Zeitschriften-Artikel [ERD11],
Konferenzbeitrage [Yu+12] und Buicher [Mey02; Sch10; Qui11] oder anderen, nicht-normativen
Verdffentlichungen wieder. Auch hier wird der geneigte Leser im Allgemeinen die drei Merkmale
von Modellen wiederfinden kénnen.

Im Folgenden soll beispielhaft gezeigt werden, welche Anforderungen die Automatisierungs-
technik an Modelle stellt und welche Probleme bei der aktuell gewahlten Beschreibung auftre-
ten. Mit den hier beispielhaft aufgefihrten Modellen ist die Modellwelt der Automatisierungs-
technik bei weitem nicht vollstéandig reprasentiert, die typischen Probleme lassen sich aber gut
erkennen.

3.1 Stand der Technik

Einen umfassenden und detaillierten Uberblick tiber Anwendungsmodelle, also M1-Modelle,
in der Automatisierungstechnik bietet Meyer in [Mey02]. Meyer konzentriert sich dabei auf die
Modelle, deren konkrete MaBnahmen unmittelbare Auswirkungen auf einen Prozess haben.
Dies schlieB3t alle reinen Planungsmodelle aus. Erganzend zu der Arbeit von Meyer empfiehlt
sich fur einen umfassenden Einblick die VDI/VDE 3681 - ,Einordnung und Bewertung von Be-
schreibungsmitteln aus der Automatisierungstechnik” [VDI3681], die eine Auflistung gangiger

24

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.1 Stand der Technik

Beschreibungsmodelle (M2- bzw. M3-Modelle) der Automatisierungstechnik liefert und eine
Bewertung nach Kriterien wie ,Formalisierung®, ,Determinismus® und ,Darstellungsart® gibt.

Wie einleitend erwéhnt, soll an dieser Stelle keine vollstdndige Analyse der Modellwelt der Au-
tomatisierungstechnik durchgefiihrt werden, sondern beispielhaft die Modelle der in Abschnitt
1.2 identifizierten Anwendungsszenarien und ihrer potentiellen Realisierung in der ACPLT-
Modellwelt untersucht werden.

Bei der Aufarbeitung von Planungsdaten zur Weiterverarbeitung im Laufzeitsystem (Szenario
S0) sind folgende Modelle von besonderem Interesse:

R&l-FlieBbild Das Rohrleitungs- und InstrumentenflieBbild [DIN10628; DIN19227] dient zur
Darstellung der Instrumentierung und Verrohrung einer verfahrenstechnischen Anlage.
Dabei steht die funktionale Struktur mit Flusswegen, Reaktionsorten, Stell- und Messge-
raten im Vordergrund. Rickschllsse auf die Lage der Elemente im Raum lassen sich aus
dem Modell nicht ableiten.

CAEX Das XML-basierte Austauschformat CAEX [IEC62424] ist zum Austausch hierarchi-
scher Strukturen konzipiert worden. Im Laufe der Zeit haben sich verschiedene Speziali-
sierungen entwickelt, um konkrete Strukturen besser beschreiben zu kénnen.

PandIX Viele Informationen fiir die Basisautomatisierung verfahrenstechnischer Anlagen las-
sen sich direkt aus dem R&I-FlieBbild ableiten. Um diesen Informationsgewinn zu unter-
stlitzen, wurde das Austauschformat PandIX [PandIX] entwickelt. Basierend auf CAEX
kénnen damit die funktionalen Zusammenhéange, die in einem R&l-FlieBbild beschrieben
sind, in die Implementierung tbernommen werden.

ACPLT/PandIX ACPLT/PandIX [SE13] ist eine Realisierung von PandIX auf Basis der Objekt-
verwaltung ACPLT/OV. Sie ermdglicht es, die Struktur einer Anlage im Laufzeitsystem als
erkundbare Objekte und Assoziationen zwischen diesen Objekten bereitzustellen.

AutomationML Basierend auf CAEX als strukturbeschreibendes Kernstlick ermdglicht Auto-
mationML [AML1; AML2; AML3; AML4] die Einbettung domanenspezifischer Modelle und
Verlinkungen zwischen den Modellinstanzen. Dadurch lassen sich verschiedene Facetten
einer Anlage wie die Struktur (PandIX), die Geometrie und Kinematik (COLADA) und das
Verhalten (PLCopen XML) in einem Modell zusammenfassen.

Neben den fiir SO aufgefiihrten Modellen sind fiir die Analyse von Flusswegen in verfahrens-
technischen Anlagen (Szenario S1) insbesondere Modelle von Interesse, die sich mit der Mo-
dellierung der Anlagenstruktur und dem Anlagenzustand befassen. Zudem benétigt die Pra-
sentation der Analyseergebnisse entsprechende Darstellungsmodelle. Diese Arbeit fokussiert
auf die am Lehrstuhl fur Prozessleittechnik der RWTH Aachen University entwickelten Modelle
aus diesen Bereichen, da diese auch in der Referenzimplementierung zum Einsatz kommen:

ACPLT/FlowPath Das Flusswegmodell ACPLT/FlowPath [Qui11] erméglicht die Uberwa-
chung von Stoffstrdmen in einer verfahrenstechnischen Anlage. Basierend auf der als
ACPLT/PandIX vorliegende Anlagenstruktur sowie dem Wissen Uber den Aktualzustand
der Anlageteile (Ventilstellungen, etc.) werden Leckagen erkannt oder Auswirkungen von
Aktorsteuerungen vorhergesagt.

ACPLT/csHMI Das ClientSide HMI [JE12; Sch10] ist ein Meta-Modell fiir Benutzerschnittstel-
len, deren Realisierung ausfihrbare, erkundbare Objekte in der ACPLT-Laufzeitumgebung

25

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

sind. Es basiert auf der Idee, dass fir die grafische Darstellung komplexer Inhalte ledig-
lich eine kleine, klar definierte Menge an Basiselementen wie Linien, Kreise und Text
notwendig sind. Diese werden durch spezielle ACPLT/OV-Objekte reprasentiert, die ent-
sprechend ihrer grafischen Auspragung SVG- bzw. HTML-Code erzeugen. Ein Server
stellt diese grafischen Reprasentationen zur Ansicht mit beliebigem Browser zur Ver-
figung. Aufbauend auf den Basiselementen lassen sich Templates definieren, die eine
vordefinierte Kombination an Basiselementen zur Wiederverwendung bereitstellen. So
stellen die Template-Datenbanken ACPLT/csHMIpr und APCLT/csHMI gy, ; grafische Ele-
mente fir die Prozessflihrung respektive fur die Darstellung eines R&l-FlieBbildes zur
Verfligung.

ACPLT/PF Die Kaskadierung der Prozessfiihrung durch eine Einzelsteuerebene und eine

oder mehrere Gruppensteuerebenen ist eine gangige Methode, um komplexe Prozess-
ansteuerungen zu strukturieren. In [Ens01; WE15] wird mit der kommandoorientierten
Prozessflhrungen ein Konzept vorgestellt, dass diese Art der kaskadierten Prozess-
fihrung in der Funktionsbausteintechnik zuganglich macht. Dies bildet die Basis von
ACPLT/PF, einer Funktionsbausteinbibliothek fir die Einzelsteuerebene mit Ansteuerbau-
steinen flr prozessleittechnische Aktoren. Die Bausteine der ACPLT/PF stellen neben
der eigentlichen Ansteuerfunktionalitdt auch die Handhabung des Belegungszustandes
(Hand, Automatik, . ..) sowie eine Fehlerliberwachung zur Verfligung. ACPLT/PF ist nur
durch lehrstuhlinterne Technologiepapiere auf informeller Ebene dokumentiert.

Flr die Generierung des Bedienbildes (Szenario S2) sowie fiir die Konsistenzanalyse zwi-
schen Bedienbild und Prozessfiihrung und die darauf aufbauende Modellreparatur (Szenario
S3) kommen die bereits genannten Modelle ACPLT/csHMI und ACPLT/PF zum Einsatz. Neben
den genannten M1-Modellen sollen zudem die folgenden M2- bzw. M3-Modelle n&her betrach-
tet werden:

SPS-Sprachen Die IEC 61131 [IEC61131] beschreibt den Aufbau, die Programmierung und

die Kommunikation Speicherprogrammierbarer Steuerungen. Von besonderem Interesse
fir diese Arbeit ist dabei der dritte Teil der Norm, der sich mit den Programmiersprachen
der Automatisierungstechnik beschéftigt. Neben den textuellen Sprachen Instruktions-
liste (IL) und Strukturierter Text (ST) werden drei grafische Sprachen beschrieben. Der
Kontaktplan (LD) orientiert sich in seiner Darstellung an Stromlaufpl&nen und eignet sich
besonders, um Informationsfliisse zu beschreiben. Eine spezielle Art von Zustandsauto-
maten bietet die Ablaufsprache (SFC) und die Funktionsblock-Diagramme (FBD) fokus-
sieren auf der Darstellung von Funktionsschnittstellen mit Parametern und Rickgabewer-
ten. Mit der dritten Fassung der Norm erhielten die Sprachen 2013 eine objektorientierte
Erweiterung.

ACPLT/OV Die ACPLT-Modellwelt umfasst eine Reihe von Modellen zu verschiedenen auto-

26

matisierungstechnischen Fragestellungen. Das MOF-&hnliche Modell ACPLT/OV bildet
den objektorientierten Kern aller ACPLT-Modelle. Eine elementare Eigenschaft dieses
Objekt-Modells ist die Introspektion. Leitgedanke aller ACPLT-Modelle ist die Bereitstel-
lung des Modells in drei Facetten:

1. ein Implementierungsunabhéngiges Modell,
2. ein auf ACPLT/OV und davon abgeleiteten Modellen basierendes M1-Modell und

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

3. die eigentliche Realisierung als MO-Modell

Die ACPLT-Grundidee, alle Modelle mit einer objektorientierten, ausfiihrbaren Reprasen-
tation zu versehen, macht die auf ACPLT/OV aufbauenden Modelle so interessant fiir
diese Arbeit.

ACPLT/FB ACPLT/FB ist ein objektorientiertes Bausteinsystem auf Basis von ACPLT/OV.
Funktionsbausteinklassen kapseln Basisfunktionalitit und die dazugehdérigen Daten. Der
Datenaustausch erfolgt dediziert Gber Bausteingdnge und -ausgénge (Ports). Durch In-
stanziierung und Verknipfung der Bausteininstanzen kénnen komplexe Funktionalitaten
realisiert werden. Die Bearbeitung der Bausteininstanzen erfolgt zyklisch. Die Reihen-
folge der Abarbeitung ist dabei festgelegt durch die Reihenfolge der Bausteine in der
Taskliste.

Die fiir diese Arbeit betrachtete Hierarchie der Modelle ist in Abbildung 3.1 dargestellt. Ausge-
graute Modelle werden dabei nicht weiter auf ihre formalen Eigenschaften hin untersucht. Sie
dienen lediglich der Einordnung der anderen Modelle in das Gesamtbild.

—————————
ACPLT/OV Nat. Sprache MOF M3
A=A A

o e ———— - i
t 1 t 1

ACPLT/csHMI] ACPLT/FB H IEC 61131-3 J UML Nat. Sprache M2
7 - '.\ A #” ¢
1 ntitnintntantautaiuts Y Lofeetelestetesteesteesteestente
(! !] Ral
{ ACPLT/csHMIga } { ACPLT/ FlowPath { ACPLT/ PandIX H Pandlx H FlleBblld M1
A A
S— . i — e l '
ACPLT/csHMIna1 ACPLT/ FlowPath ACPLT/ PandIX Rl FlieBbid im
L Im L J (|m Laufzei J L im L) > VT-Anlage Planungswerkzeug MO
L J
Y —_ - >

ACPLT — Modellwelt <<représentiert >> << modelliert mithilfe >>

Abbildung 3.1: Modellhierarchie der Anwendungsszenarien

3.2 Bewertung der Modelle

Fir die Bewertung der Modelle werden die Kriterien aus Abschnitt 2.3 zu Grunde gelegt. Zu-
satzlich werden die Modelle dahingehend untersucht, ob das Modell eine maschinenlesbare
Syntax besitzt.

3.2.1 FlieBschemata fiir verfahrenstechnische Anlagen

Die DIN EN 10628 [DIN10628] stellt eine Empfehlungen fiir die Erstellung verschiedener ver-
fahrenstechnischer FlieBbilder bereit. Das GrundflieBbild dient zur Strukturierung von verfah-
renstechnischen Anlagen oder Verfahren mit Hilfe von ,besteht aus*- Beziehungen, wahrend

27

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

das VerfahrensflieBbild die Zerlegung eines Verfahrens in einzelne Verfahrensschritte illustriert.
Von besonderem Interesse fir diese Arbeit ist allerdings das dritte FlieBbild, das R&lI-FlieBbild.
Es stellt eingebaute Aktoren, Sensoren, Verrohrungen und andere fiir die Automatisierung der
Anlage interessante Bauteile grafisch dar. Zudem sind Regelungs- und Steuerungsaufgaben
gekennzeichnet.

Der Fokus der Norm liegt jedoch nicht auf der durch die FlieBbilder abgebildeten Struktur,
sondern auf der Bereitstellung der Grafikelemente. Der normative Teil befasst sich insbeson-
dere mit Layout-Hinweisen wie Linienstarken oder Mindestabstanden. Diese sind explizit als
Vorschlage formuliert und beinhalten viele Freiheitsgrade. So lassen Aussagen wie, dass die
,2HauptflieBrichtung [...] im allgemeinen von links nach rechts und von oben nach unten“ ver-
lauft, keine Riickschliisse Uber die tatsachliche FlieBrichtung ziehen. Auch die Verortung der
Elemente lasst sich aus dem R&l-FlieBbild nicht ableiten. So ist ein Temperatursensor, der am
oberen Ende eines Behalters eingezeichnet ist nicht zwangsweise auch im oberen Bereich des
Behalters verbaut.

Den bei weiten gréBten Teil der Norm bilden die nicht-normativen Anhange mit Beispielen fiir
FlieBbilder. Auch die Symbole fir die R&l-FlieBbilder werden erst im Anhang C eingefihrt.
Die Darstellung der Symbole ist zwar mittlerweile Quasi-Standard, Hinweise wie der, dass die
Spitze des Pumpensymbols in Férderrichtung zeigt, finden jedoch nicht zwingend Anwendung.
Eine eingehende Analyse der Norm bieten Schmitz et al. [SSE08].

Zusammenfassend l&sst sich feststellen, dass insbesondere die fehlende Prézision und Vali-
dierbarkeit eine maschinelle Modellauswertung auf Basis dieser Norm unmgglich macht. Der
Fokus der Norm liegt klar bei der Interpretierbarkeit durch den Menschen und nicht durch eine
Maschine. In ihrem Rahmen ist sie verstandlich und konsistent. Symbole und ihre Bedeutung
kénnen allerdings unterschiedliche implementierungsspezifische Auspragungen besitzen. Um
FlieBschemata fiir die Modelltransformation nutzbar machen zu kénnen, wird eine ergéanzende
formale Beschreibung der strukturellen Zusammenhéange benétigt.

3.2.2 CAEX

Die DIN EN 62424 [DIN62424] widmet sich der Aufgabe, zumindest einen Teil der DIN EN
10628, die dargestellten Steuerungs- und Regelungsaufgaben eines R&l-FlieBbildes fur die
maschinelle Verarbeitung aufzuarbeiten. Die Norm stellt zunachst eine normierte grafische
Darstellung von prozessleittechnischen Funktionen in Form von PLT-Stellen zur Verfligung. Der
Kern der Norm ist jedoch das XML-basierte Meta-Modell CAEX fiir den Austausch von objek-
torientierten Strukturdaten. CAEX erweitert die, fir objektorientierte Sprachen typischen Ele-
mente Klasse und Schnittstelle durch Rollenklassen. Wahrend Schnittstellen syntaktische An-
forderungen an eine Instanz beschreiben, enthalten Rollenklassen semantische Festlegungen
wie z.B. Mindestdurchséatze einer Pumpe. Die drei Elemente lassen sich jeweils zu Klassen-,
Instanz- und Rollen-Bibliotheken zusammenfassen und zusammen mit der Instanzhierarchie
in einem CAEX-Dokument abbilden. Der Natur eines Meta-Modells entsprechend ist CAEX
fur sich erstmal nicht fir den Datenaustausch anwendbar. Hierzu missen konkrete CAEX-
Bibliotheken entworfen werden.

28

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

Ein dritter Aspekt der Norm ist daher die Abbildung der fir den Austausch mit der Prozess-
leittechnik relevanten Daten des R&l-FlieBbildes auf die CAEX-Elemente, im Folgenden PLT-
CAEX genannt. Zu diesen Daten gehdéren Signal-, Prozess- und Produktverbindungen sowie
Steuerungsfunktionen und zusatzliche physikalische Prozessparameter. Mechanische Zusam-
menhange sowie Angaben zu Betriebsmitteln und grafische Attribute werden hingegen nicht
abgebildet. Die Norm beschreibt, mit Hilfe welcher CAEX-Elemente einzelne Aspekte der gra-
fischen Darstellung abgebildet werden miissen. Eine konkrete Umsetzung erfolgt jedoch nur
beispielhaft.

Da die drei Aspekte der Norm grundverschiedene Zielsetzungen und Einsatzgebiete verfolgen,
wird an dieser Stelle eine getrennte Bewertung anhand der Kriterien formaler Modellierung
vorgenommen.

PLT-Stelle Die Beschreibung der grafischen Reprasentation ist zumeist prédgnant und leicht
verstandlich. Das Modell ist konsistent und eindeutig beschrieben, jedoch auf Grund sei-
ner grafischen Natur nur schwer maschinenauswertbar.

CAEX Die Modellbeschreibung von CAEX erfolgt in drei Stufen. Zun&chst wird eine auf Ver-
stdndnis und Semantik ausgerichtete Beschreibung durch FlieBtext, hinterlegt mit Bei-
spielen, gegeben. In einem zweiten Schritt werden die einzelnen Elemente der XML-
Grammatik in knapper Form dargestellt und ihre Bedeutung zusammengefasst. Erganzt
wird dies durch eine XML-Schema-Definition. Es werden alle Anforderungen an eine for-
male Modellierung erfullt. Kleinere Inkonsistenzen in den gelieferten Beispielen wie die
Benennung der External Interfaces [DIN62424, S. 51] haben keinen Einfluss auf die Kon-
sistenz des eigentlichen Modells.

PLT-CAEX In der Norm wird bereits auf die semiformale Natur der Modellbeschreibung hin-
gewiesen. Diese Einschétzung kann hier durchaus unterstitzt werden. Auch wenn der
Name der Norm sowie die einleitenden Worte vermuten lassen, dass dieser Aspekt den
Kern der Norm darstellt, ist das Modell weder vollstdndig noch eindeutig beschrieben.
Es dient vielmehr beispielhaft zur Verdeutlichung der CAEX-Sprachelemente. Eine wei-
terflihrende Analyse der daraus entstehenden Probleme und méglicher Ldsungsanséatze
bieten Theurich et. al [The+14].

Die drei sehr unterschiedlichen Facetten der Norm, grafische Reprasentation von Prozess-
leittechnischen Informationen, Austauschformat fiir Strukturdaten und Abbildung der R&l-
Informationen in das Austauschformat, machen die Norm unnétig komplex. Eine klare Fokus-
sierung auf CAEX und die Referenzierung vorhandener Normen sowie die Ergénzung durch
nicht-normative Veréffentlichungen hétten hier fir ein insgesamt kompakteres und formaleres
Modell gesorgt.

3.2.3 PandIX

PandIX greift den fehlenden formalen Aspekt der DIN EN 62424 bei der Abbildung von PLT-
Stellen in CAEX auf. Die PandIX-Modellbeschreibung liegt als, mit UML-Diagrammen ange-
reicherter FlieBtext, vor. Dieser benennt und formalisiert die fir die Automatisierungstechnik
relevanten Informationen, die in R&I-FlieBbildern enthalten sind, in einer objektorientierten Be-

29

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

trachtungsweise. Die darauf aufbauende CAEX-Reprasentation umfasst sowohl eine Klassen-,
eine Schnittstellen- sowie eine Rollenbibliothek, so dass Syntax und Semantik von PLT-Stellen
in einer austauschbaren Form beschrieben werden.

Die Modellbeschreibung fir PandIX wird erganzt durch eine CAEX-Musterbibliothek, die wei-
terflihrende CAEX-Klassen bereitstellt. Wahrend der Fokus bei PandIX auf Informationsfllissen
liegt, erweitert die Musterbibliothek das Repertoire auf die Elemente des Materialflusses.

Die Top-Down Betrachtungsweise von den Objekten der Anlagenwelt bis hinunter zum Aufbau
einer Sensorstelle macht die Idee und den Grundaufbau allgemein verstandlich. Kleinere In-
konsistenzen bzw. missversténdliche UML-Diagramme bieten jedoch bei einer konkreten Reali-
sierung viel Interpretationsfreiraum. So lassen die - nicht ganz UML-konformen - Darstellungen
in Abbildung 3.2 zwei widerspriichliche Interpretationsméglichkeiten offen. SH* und SL* kénnen
entweder Klassen sein [PandIX, S. 26] oder Instanznamen [PandIX, S. 11] von Objekten der
Klasse Switch. Die CAEX-Reprasentation beantwortet diese Frage ebenfalls nicht eindeutig,
da SH* und SL* in ihr nicht definiert sind. Das Vorhandensein der Klasse Switch und ihre Be-
schaffenheit lassen aber vermuten, dass die Interpretation als Instanzen gemeint ist. Auch die
wechselnde Verwendung englischer und deutscher Begriffe ohne explizite Zuordnung zuein-
ander (z.B. Prozessanlagenelement —PPERequest) erschweren die eindeutige Interpretation
und vor allem die Validierbarkeit von PandIX-Modellen.

Signalinterface SensorRequest

YA

Interface type: Switch

A\
SH*, SL* Interface type: Switch
(a) S.11: SH*, SL* als Klassen (b) S.25: SH*, SL* als Instanzen der Klasse ,,Switch*

Abbildung 3.2: Mehrdeutige Repréasentation von Elementen in [PandIX]

Eine weitere Herausforderung bei der rechnergestiitzten Auswertung von PandIX-Modellen ist
die fehlende Vollstandigkeit der Modellbeschreibung. Die Musterbibliothek stellt nur eine der
mdoglichen Erweiterungen dar. Die letztendlich anzuwendende Modellbeschreibung kann von
Implementierung zu Implementierung oder im schlimmsten Fall innerhalb einer Implementie-
rung gar von Modell zu Modell variieren.

3.2.4 Sprachen fiir die SPS-Programmierung

Die Beschreibung von Programmiersprachen fiir die SPS-Programmierung steht im Fokus
des dritten Teils der IEC 61131-3 [IEC61131]. Die Norm fokussiert bei der Sprachbeschrei-
bung zunachst den Strukturierten Text (ST). Der Hauptteil der Norm entwickelt schrittweise
die Grammatik der Sprache und reichert diese anhand von Beispielen mit Semantik an. An-
nex B bietet anschlieBend nochmal die formale Spezifikation der Syntax in kompakter Form.
Die Instruktionsliste (IL) wird &hnlich formal, bedingt durch ihren deutlich geringeren Umfang

30

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.2 Bewertung der Modelle

aber in knapperer Form beschrieben. Auch die grafischen Sprachen werden, soweit méoglich,
formal beschrieben. So wird fiir die Funktionsblock-Diagramme (FBD) festgelegt, dass als Dar-
stellung ein Rechteck mit Namen des Bausteins im oberen Teil gewahlt werden soll. Zudem
werden Position, Verbindungsméglichkeiten und die Darstellung von Negation von Baustein-
parametern beschrieben. Hier bleibt es natlrlich nicht aus, dass ein gewisser Freiheitsgrad
in der Darstellung besteht. Die Semantik der einzelnen in FBD vorhandenen Bausteine wird
zumeist in ST beschrieben oder ergibt sich aus den zugehdérigen logischen Operatoren. Die
Norm l&sst, bis auf kleine Ausnahmen in der grafischen Darstellung, keinen Platz fur Dop-
peldeutigkeiten oder Widersprichlichkeiten. Auch fur mégliche implementierungsspezifische
Erweiterungen der Norm wird klar geregelt, wie diese sich konsistent, pragnant und korrekt in
das Gesamtbild einbetten lassen.

3.2.5 AutomationML

Die Modellbeschreibung von AutomationML (kurz AML) ist aufgeteilt in das Kernmodell [AML1],
vorgefertigten Rollenbibliotheken [AML2] und Einbindungsvorschriften fir gangige Modelle
[AML3; AMLA4]. Allen drei Komponenten der Modellbeschreibung ist die starke Verquickung
von Semantik- und Syntaxbeschreibung gemein. Dies macht die Modellbeschreibung unnétig
komplex.

Bei der Beschreibung des Kernmodells wird zunéchst eine Beschreibung auf Basis von Bei-
spielen geliefert. Dies sollte an sich hilfreich sein, um die Grundgedanken des Modells dem
Leser néher zu bringen. Im Fall von AML fehlt allerdings die Referenz auf die konkrete Syntax,
so dass der Abgleich der beispielhaften Beschreibung mit der formalen Beschreibung schwer
fallt. Auch der formalere gehaltene Teil der Modellbeschreibung mischt Syntax und Semantik
und erschwert zusatzlich durch widersprichliche Formulierungen die eindeutige Interpretati-
on. Ein Beispiel hierfir ist die Interface-Klasse ,Order”. Sie dient als Basisklasse fir alle Arten
von sortierten Listen. Das enthaltene Attribut ,Direction” gibt dabei die Sortierreihenfolge an.
Als valide Werte fur ,Order” werden allerdings nur ,In“, ,Out“ und ,InOut“ angegeben, was der
semantischen Beschreibung widerspricht, die ,Descending” als M&glichkeit vorsieht.

The interface class “Order” is an abstract class that shall be used for the description
of orders, e.g. a successor or a predecessor. [...] The attribute “Direction” shall be
used in order to specify the direction. Permitted values are “In”, “Out” or “InOut”.
[AMLA, S. 29]

Auch die mitgelieferte CAEX-Reprasentation liefert an dieser und anderen Stellen keine Kon-
kretisierung sondern noch mehr Flexibilitat. Hier miissen vorgefertigte Modellinstanzen zu Rate
gezogen werden, um die beabsichtigte Interpretation zu erkennen.

AutomationML ist explizit nicht vollstandig beschrieben, sondern offen flr die Einbettung belie-
biger Teilmodelle. Es eignet sich daher als Basis von SpeedStandardisierung [Sch+15; Mer16],
die darauf setzt, dass das GrundgerUst standardisiert ist, einzelnen Facetten aber als Pseudo-
Standard oder Request for Comment schnell und unkompliziert umgesetzt werden kdnnen.

31

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

Das Kernmodell von AML besitzt eine starke Typisierung und eine flr die maschinelle Auswer-
tung optimierte Darstellung. Mdgliche Einbettungen missen getrennt bewertet werden.

3.2.6 ACPLT-Modelle

Der Formalisierungsgrad der ACPLT-Modelle ist sehr heterogen. Fir die Kernmodelle existiert
eine formale Spezifikation in Form einer Grammatik [Alb97b; Mey02] sowie ausfiihrliche be-
schreibende Dokumentation [Alb96; Alb97a]. Anders sieht es bei den Anwendungsmodellen
aus. Sie basieren zwar meist auch auf einer formalen Beschreibung, diese ist aber auf Grund
ihrer Natur als Forschungsmodelle meist nur in Ausziigen verdffentlicht. Nur vereinzelt sind die
M1-Modelle bis zur formalen Reife vorangetrieben. Neben einem implementierungsunabhéan-
gigen Modell besitzen ACPLT-Modelle ein auf ACPLT/OV basierendes M1-Modell und eine Re-
prasentation in der automatisierungstechnischen Laufzeitumgebung. Dank dieser drei Facetten
bieten die ACPLT-Modelle eine optimale Grundlage fir die rechnergestltzte Verarbeitung mo-
dellierter Zusammenhange.

Im Einzelnen ergibt sich fir die ACPLT-Modelle folgendes Bild:

ACPLT/OV Das Basismodell der ACPLT-Modellwelt ist umfassend spezifiziert und dokumen-
tiert [Mey02]. Auszuge aus der Arbeit fassen die Kernpunkte in Form von Technologie-
papieren zusammen. Das fiir diese Arbeit interessante Technologiepapier 3 [Alb97b]
beschreibt eine vollstidndige Grammatik von ACPLT/OV. Erganzt wird es durch weitere
Technologiepapiere [AIb96; Alb97a], die verschiedene Facetten des Modells beleuchten
und mit Hilfe von UML-Diagrammen und FlieBtext mit Semantik versehen. Die Trennung
von Grammatik und Semantik ermdglicht ein kompaktes, konsistentes, validierbares und
leicht verstandliches Modell.

ACPLT/FB Das Funktionsbausteinsystem ACPLT/FB ist umfénglich, wenn auch nicht vollstan-
dig, in der Softwaredokumentation zum Tool iFBspro [NN04] beschrieben. Des Weite-
ren existieren Veréffentlichungen, die das Konzept und einige Details n&her erlautern
[GKE12; Yu+12]. Die vollstéandige Syntax liegt in Form einer nichtéffentlichen ACPLT/OV-
Modelldatei (.ovm) sowie einer zugehérigen ACPLT/OV-Funktionsdatei (.ovf) vor. Alles in
allem treffen fir ACPLT/FB die gleichen Eigenschaften wie fur ACPLT/OV zu: kompakt,
konsistent, validierbar und leicht versténdlich.

ACPLT/PandIX Da es sich bei ACPLT/PandIX weitestgehend um eine 1-zu-1 Ubertragung
der XML-Elemente aus PandIX in Funktionsbausteine und Verknilpfungen handelt
(vgl. Abbildung 4.2a), leiten sich die meisten Punkte aus der Bewertung der PandIX-
Modellbeschreibung ab. In den Punkten ,Konsistenz“ und ,Prézision“ wurde bei der
Implementierung eine mdgliche Interpretation umgesetzt bzw. bei Inkonsistenzen eine
Variante gewahlt.

ACPLT/FlowPath Eine vollstdndige Grammatik sowie eine formale Semantik lassen bei die-
sem Modell keine Interpretationsfreiheit zu. Eine vorliegende Implementierung sowie um-
fangreiche Dokumentation [Qui11] erganzen die formale Modellierung.

ACPLT/csHMI Das Modell ist durch eine vollstéandige, aber unverdffentlichte Modellierung als
lehrstuhlinternes Technologiepapier definiert. Auszlige aus dem Modell wurden in wis-
senschaftlichen Arbeiten und auf einschléagigen Fachtagungen prasentiert [Sch10; JE13;

32

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.3 Gewonnene Erkenntnisse

JE12)]. Die Basis bildet ein Klassendiagramm, das alle erlaubten Klassen beinhaltet.
Ausgehend davon werden die einzelnen Klassen und ihre Parameter beleuchtet. Dies
geschieht in einer semiformalen Kombination aus UML und FlieBtext. Der Forschungs-
charakter dieses Modells kommt hier stark zum Tragen. Die niedergeschriebene Modell-
beschreibung Iasst viel Interpretationsspielraum zum Beispiel bei der Umsetzung von
Nutzerinteraktionen. Umfangreich vorhandene Beispielanwendungen zeigen aber, wel-
che Umsetzung der Autor im Sinn hatte.
Auf Grund seiner auf Basiselemente fokussierten Art eignet sich das Modell als Grundla-
ge flr grafische Modellierung verschiedenster Art [SE13]. Aufbauend auf ACPLT/csHMI
ist eine Reihe von Template-Bibliotheken entstanden. Nicht in allen Féllen besitzen die-
se ein vollstandig niedergeschriebenes Modell. Hierzu gehéren das Bedienmodell zur
Prozessfuhrung ACPLT/csHMIpp. In [JE12] fihrt Jeromin Teile von ACPLT/csHMIpp als
Bestandteil des Meta-Modells ACPLT/csHMI auf. An dieser Stelle soll es jedoch als ei-
genstandiges Modell gesehen werden, da es nicht wie ACPLT/csHMI grundlegende HMI-
Primitiva modelliert, sondern Anlagenstrukturen. Da fiir ACPLT/csHMI p keine weiter Do-
kumentation besteht, kann eine Einordnung hierzu nicht stattfinden.

ACPLT/PF In[WE15] beschreiben die Autoren die Grundidee sowie abstrakte und drei konkre-
te Syntaxen fir ACPLT/PF. Basis dazu bildet die kommandoorientierte Prozessflihrung,
die umfassend und formal fundiert in [Ens01] vorgestellt wird.

3.3 Gewonnene Erkenntnisse

In dieser Arbeit wird nicht weiter auf die Optimierung des Formalisierungsgrades vorhandener
Normen, Richtlinien oder nicht-normativer Modellbeschreibungen eingegangen. Dies ist Auf-
gabe entsprechender Gremien und Arbeitskreise. Ein Aufruf zur formalen Beschreibung von
Modellen soll an dieser Stelle trotzdem nicht fehlen, da sie nicht nur der automatisierten Mo-
delltransformation zugutekommt, sondern auch den eigentlichen Hintergrund der Modellierung
férdert, eine einheitliche Verwendung der Modelle.

In den vorgestellten Modellen wird vielfach auf mehrdeutigen FlieBtext zurlickgegriffen. Ob die-
se Mehrdeutigkeit politisch beabsichtigt ist, um allen an der Erstellung beteiligten Parteien ge-
recht zu werden, oder weil das Bewusstsein flir die Mehrdeutigkeit nicht vorhanden ist, sei an
dieser Stelle dahin gestellt. Fest steht, dass dies unweigerlich zu unterschiedlichen Interpreta-
tionen und Implementierungen fiihrt, was den Zweck eines Modells ad absurdum fiihrt. Fiir die
zukiinftige Beschreibung von Automatisierungsmodellen wird an dieser Stellen daher folgende
Empfehlung gegeben:

Trennung von Syntax und Semantik Bei der Analyse der verschiedenen automatisierungs-
technischen Modelle hat sich gezeigt, dass eine getrennte Beschreibung von Syntax und
Semantik ein wesentliches Kennzeichen der formal beschriebenen Modelle darstellte.
Insbesondere die dadurch entstandene Kompaktheit der Syntax vereinfacht die Entwick-
lung konsistenter und vollsténdiger Modelle.

Semi-Formale Semantik Der Einsatz von formalen Semantiken in der Automatisierungstech-
nik als Alternative zur natlrlichsprachlichen Beschreibung ist von Fall zu Fall abzuwa-

33

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3 Modelle in der Automatisierungstechnik

gen. Der formale Aspekt steht hierbei der allgemeinen Verstandlichkeit entgegen. Bei der
Verwendung der naturlichsprachlichen Beschreibung muss diese genauestens auf miss-
verstandliche oder zweideutige Formulierungen untersucht werden. Verwendete Bilder
mussen im Text genau beschrieben werden, da gerade unkommentierte Bilder viel Inter-
pretationsspielraum zulassen. Fur die Beschreibung der Semantik empfiehlt sich zudem
UML als unterstitzendes Werkzeug. UML hat sich mittlerweile in vielen Doménen als
Quasistandard zur Modellierung herauskristallisiert und wird daher auch von Domanen-
fremden leichter verstanden.

Abstrakte Syntax Unabhangig von der Syntax, die der Entwickler spater flr die Modell-

entwicklung nutzt, empfiehlt sich, zunéachst die Konzepte des Modells allgemein ver-

sténdlich mittels einer abstrakten Syntax zu beschreiben. Es empfiehlt sich ein UML-

Klassendiagramm zur Beschreibung des Modellalphabets und weitere Klassendiagram-

me zur Beschreibung der modellinternen Zusammenhange bereitzustellen:

Alphabet Zur Auflistung der vorhandenen Modellelemente inklusive aller modellspezifi-
schen Assoziationen, empfiehlt sich ein Klassendiagramm, das lediglich die Genera-
lisierung als Assoziation erlaubt. Auch Variablen und Methoden der Modellelemente
sollten in diesem Diagramm auBer Acht gelassen werden. Durch eine solche Auflis-
tung entsteht ein erster, umfassender Uberblick tiber das Alphabet des Modells.

Konstruktionsregeln Weitere Assoziationen zwischen Modellelementen, wie ,Besteht-
Aus” und die Verwendung modellspezifischer Assoziationen, sowie wichtige Metho-
den und Variablen sollten in davon unabhangigen Klassendiagrammen beschrieben
werden. Jedes dieser Klassendiagramme sollte einen klar umrissenen und im Text
ausfuhrlich erlduterten Aspekt des Modells abbilden. Bei der Verwendung der Asso-
ziationen sollte jeweils die Multiplizitdt angegeben werden.

Die Modellbeschreibung sollte abschlieBend formuliert sein. Dadurch wird eindeutig fest-

gelegt, welche Konstrukte ein valides Modell bilden und welche nicht erlaubt sind. Ist

eine flexible Erweiterbarkeit des Modells unabdingbar, so sollte dies an klar definierten

Schnittstellen im Modell erfolgen.

Konkrete Syntax Fur den Entwickler von Modellen stellt die konkrete Syntax das Handwerks-

zeug dar. Die konkrete Syntax hat daher weniger die allgemeine Versténdlichkeit als Ziel,
sondern vielmehr die Eignung fiir die konkrete Modellerstellung. Die konkrete Syntax
muss unabhangig von der gewahlten Darstellungsform konsistent zur abstrakten Syntax
sein. Fir graphische/diagrammartige Modelle bietet sich die Syntaxdefinition mittels Me-
tamodellierung auf Basis von UML (bzw. MOF) an, fur textuelle Sprachen eignet sich hin-
gegen eher eine EBNF-basierte Grammatik. Ist ein Datenaustausch oder eine textuelle
Reprasentation des Modells das Ziel, empfiehlt sich die Erstellung einer XML-Schema-
Definition.

Starke vs. schwache Typisierung [SK12] Von starker Typisierung spricht man, wenn Objek-

34

te mit unterschiedlichen Eigenschaften auch unterschiedlichen Klassen zugeordnet sind,
bei der schwachen Typisierung werden diese Eigenschaften durch Attribute einer ge-
meinsamen Klasse reprasentiert. Die Verwendung von Attributen zur Unterscheidung
von Elementen verschiedenen Typs hat durchaus seine Vorteile, da das Modell zunéchst
weniger Klassen besitzt. So wird im PandIX nur die Klasse ,ActuatorRequest” bendtigt,
um Pumpen, Ventile und elektrische Aktuatoren abzubilden. Eine Unterscheidung erfolgt
anhand des Attributs ,FunctionCode". Trotzdem sollte diese schwache Typisierung sehr

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

3.3 Gewonnene Erkenntnisse

sparsam und bewusst eingesetzt werden, da nur die starke Typisierung eine typgerechte
Verwendung und Parametrierung eines Objektes garantieren kann. Insbesondere beim
Austausch von Modelldaten zwischen verschiedenen Werkzeugen kann die schwache
Typisierung zu Fehlinterpretationen fihren.

Dieses Vorgehen ist sicher nicht fir alle Modelle der Automatisierungstechnik vollstandig um-
setzbar, fiir viele bietet es aber eine einfach zu realisierende und nachvollziehbare Méglichkeit
der Beschreibung. Zudem ermdglicht dieses Vorgehen ein friihzeitiges Erkennen von potentiel-
len Missverstandnissen oder Widerspriichen in den Modellen und stellt eine solide Grundlage
fir die maschinelle Auswertung der Modelle dar.

35

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der
Automatisierungstechnik

Wéhrend des gesamten Lebenszyklus einer verfahrenstechnischen Anlage ist eine Vielzahl
von Modellen im Einsatz. Dabei kénnen die meisten beteiligten Modelle nicht losgeldst be-
trachtet werden. Eine Anderung in einem Modell erzeugt oftmals eine Kaskade von Modellan-
passungen. Diese starke Korrelation sowie die mit der langen Lebensdauer einer verfahrens-
technischen Anlage einhergehende Dynamik der Modelle bedirfen eines gut funktionierenden
Anderungsmanagements. Hier ist das gréBte Potential fiir den Einsatz rechnergestiitzter Mo-
delltransformation in der Automatisierungstechnik zu sehen: der Abgleich von Modellanderun-
gen (ber alle beteiligten Modelle hinweg. Dies kann zum einen durch das Erzeugen und An-
dern von Modellen erfolgen, zum anderen sind auch Konsistenzpriifungen denkbar. Weiteres
Potential bieten die starken Regularien bei der Planung und dem Bau einer verfahrenstechni-
schen Anlage. Neben umfangreichen Dokumentationspflichten und Sicherheitsbestimmungen
bieten auch Zertifizierungsvorschriften Einsatzméglichkeiten flr rechnergestutzte Modelltrans-
formationen. So kann ein Teil der Dokumentation anhand der Planungsdaten generiert, das
Vorhandensein von sicherheitsrelevanten Programmteilen Gberpruft oder die Zertifizierung der
resultierenden Automatisierungsfunktion durch einmalige Zertifizierung der Transformation ver-
einfacht oder vollstandig ersetzt werden. Nicht zuletzt bietet der in dieser Arbeit angestrebt Weg
hin zu Automatisierungsfunktionen als Serienprodukt die Méglichkeit, auf Anderungen in den
Planungsdaten so flexibel wie nie zuvor reagieren zu kénnen. Zur Realisierung dieses Ansat-
zes bedarf es einer anlagenneutralen Beschreibung der Modellzusammenhange. Zur Laufzeit
erfolgt eine Auswertung der aktuell glltigen Planungsdaten mittels Modelltransformation und
als direkte Folge davon die Bereitstellung der Automatisierungsfunktion.

In diesem Kapitel werden zun&chst die aus der Informatik stammenden Grundbegriffe der Mo-
delltransformation eingefiihrt und bisherige Ansétze aus dem Bereich der Automatisierungs-
technik vorgestellt, Modellgrenzen fur die enthaltenen Informationen durchlassig zu machen.
Um eine Einordnung dieser Ansatze vornehmen zu kdnnen, erfolgt im Vorfeld eine Analyse der
durch die Automatisierungstechnik gestellten Anforderungen.

4.1 Allgemeine Begriffsbestimmung

Wir sprechen von korrelierenden Modellen, wenn ein Zusammenhang zwischen den Daten
oder Strukturen zweier (oder mehrerer) Modelle besteht und daher eine widerspruchsfreie Mo-
dellierung der jeweiligen Modellinstanzen beachtet werden muss. Traditionell haben Modell-
transformationen zum Ziel, diese Widerspruchsfreiheit (Konsistenz) zu gewahrleisten, in dem

36

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4.1 Allgemeine Begriffsbestimmung

sie automatisiert die Instanz eines Quellmodells in eine Instanz des korrelierenden Zielmodells
Uberflihren. Das Quellmodell einer Modelltransformation ist jenes, aus dem die Daten gewon-
nen werden, das Zielmodell ist das Modell, welches erstellt bzw. verédndert wird.

Basis einer Modelltransformation ist ein Satz an Transformationsregeln und ein Kontrollalgo-
rithmus. Transformationsregeln beschreiben, wie Strukturen eines Quellmodells in Strukturen
eines Zielmodells abzubilden sind [KWBO03]. Der Kontrollalgorithmus ist fiir die Auswahl und
Anwendung geeigneter Regeln zustandig.

Die in den folgenden Kapiteln verwendeten Beispiele basieren auf dem in Kapitel 1.2 vorgestell-
ten Szenario S2, der Erstellung eines Bedienbildes anhand der PandIX-Daten. Der vollstandi-
ge Regelsatz zu diesem Szenario findet sich in Anhang B. Fir die beispielhafte Demonstration
der vorgestellten Ideen beschranken wir uns an dieser Stelle zun&chst auf die Regeln, die die
Abbildung eines Ventils und der zugehdérigen PLT-Stelle beschreiben. Abbildung 4.1verdeutli-
chen den Zusammenhang zwischen der PandIX-Darstellung von Ventil und PLT-Stelle und der
grafischen Repréasentation. Die angestrebte Modelltransformation findet zwischen den entspre-
chenden ACPLT-Modellen ACPLT/PandIX und ACPLT/csHMI statt (vgl. Abbildung 4.2).

<InternalElement Name="Y24" ID="abc"
RefBaseClassPath="ActuatorRequest">
<Attribute Name="RemoteType">Central</Attribute>
<Attribute Name="SignalCode">0</Attribute>
<Attribute Name="FunctionCode">Y</Attribute>
<ExternalInterface Name="P"
RefBaseClassPath="ActuatorProcessInterface"/>
</InternalElement>

<InternalElement Name="V24" ID="123" m
RefBaseClassPath="“ValveRequest"> W

<ExternalInterface Name="Y" \\\\\
RefBaseClassPath="ActuatorInputPoint"/> \\\\\\\\
</InternalElement> ’.‘

<InternallLink Name="1link"
RefPartnerSideA="Y24:P"
RefPartnerSideB="Vv24:Y"

/>

Abbildung 4.1: Korrelation zwischen PandIX-Modell einer Anlage und zugehérigem Bedienbild’

Dieses Szenario beinhaltet typischer Weise folgende Aktionen:

1. Entwurf der Anlage mit Hilfe eines CAD-Werkzeugs

2. Generieren eines Grobentwurfs fir das Bedienbild anhand der CAD-Daten
3. Nachtragliche Anderungen am Entwurf im CAD-System

4. Manuelle Anpassungen am Bedienbild

Dadurch ergeben sich vielfaltige Aufgaben fir den Einsatz von Modelltransformationen:

"Die PandIX-Darstellung ist der Ubersichtlichkeit halber leicht vereinfacht. Unter anderem wurden die Value-Tags
der Attribute entfernt und die Pfadangabe fiir die Basisklassen ist in verkirzter Form angegeben.

37

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

<InternalElement N:
RefBaseClassPath="ActuatorRequest">
<Attribute Name="RemoteType">Central</Attribute>

TU1: SystemUnitClass
<Attribute Name="SignalCode">0</Attribute>

Y24: ActuatorRequest <Attribute Name="FunctionCode">Y</Attribute>
YedoAcluatoriequest <ExternalInterface Name="P"

RefBaseClassPath="ActuatorProcessInterface"/>
</InternalElement>

="Y24" 1D="abc"

Y24: ActuatorTemplate

R: RemoteTemplate

+ FunctionCode = Y
+ SignalCode = O

P: ActuatorProcessinterface

V24: ValveRequest
Y: ActuatorinputPoint

(a) Abbildung eines PandIX-Modells nach ACPLT/PandIX

+ FunctionCode = Y
+ SignalCode = O
+aName = Y24

<InternalElement Name="V24" ID="123"
RefBaseClassPath="ValveRequest">
<Externallnterface Name="Y"
RefBaseClassPath="ActuatorInputPoint"/>
</InternalElement>

<<enthélt>>

Valve24 :ValveTemplate
<Internallink Name="link"
RefPartnerSideA="Y24:P"

RefPartnersideB"vaa:y" (b) Abbildung eines grafischen
Elements in ACPLT/csHMI

<<V

/>

Abbildung 4.2: ACPLT-Repréasentationen von PandIX und Bedienoberflache

Initiale Batch-Transformation Der bestehende CAD-Entwurf wird als PandIX-Modell bereit-
gestellt und daraus das zugehdrige Bedienbild ,in einem Rutsch® automatisch erzeugt.

Inkrementelles Update Anderungen am CAD-Entwurf werden inkrementell in das zuvor
schon erstellte Bedienbild nachgezogen.

Zuriickpropagieren Anderungen am Bedienbild werden (soweit relevant) in den CAD-Entwurf

Ubertragen. Dies kann zum Beispiel Bezeichner oder verwendete Sensor-/Aktortypen be-
treffen.

Bei den genannten drei Transformationen handelt es sich jeweils um Outplace-Transformationen,
bei denen Quell- und Zielmodell disjunkt sind. Dabei bleibt das Quellmodell unveréndert. Im
Gegensatz dazu sind bei der Inplace-Transformation Quell- und Zielmodell identisch. Szenario
S1 ist (je nach Implementierung) ein Kandidat fiir eine solche Inplace-Transformation, da das
Einfarben von Rohleitungen anhand des aktuellen Anlagenzustandes das Bedienbild sowohl
als Quell- als auch als Zielmodell benétigt.

4.2 Besondere Herausforderungen in der
Automatisierungstechnik

Die Akzeptanz einer rechnergestitzten Modelltransformation zur modellgetriebenen Entwick-
lung von Automatisierungsfunktionen ist nur zu erwarten, wenn folgende Grundeigenschaften
zugesichert werden kdnnen:

Unidirektionale Batch-Transformation Aus einem oder mehreren Planungsmodellen muss
per Batch-Transformation das Zielmodell generiert werden. Anpassungen des Zielm-
odells missen durch den Applikateur in gewohnter Weise vorgenommen werden kdnnen.

Inkrementelle Anderungen Die Anforderungen an eine Anlage kénnen sich tber die Zeit an-
dern. Es muss daher méglich sein, Anderungen an den Planungsdaten vorzunehmen und
die geéanderten Informationen per Modelltransformation in die Implementierung zu tber-
nehmen. Vom Applikateur vorgenommene Anpassungen des Zielmodells missen, soweit
nicht direkt von der inkrementellen Anderung betroffen, dabei unberiihrt bleiben.

38

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4.2 Besondere Herausforderungen in der Automatisierungstechnik

Bidirektionale Auswertbarkeit Die Lehre des ordnungsgeméafBen Baus und Betriebs einer
Anlage [Pol94] postuliert, dass Anderungen immer zun&chst in den Planungsdaten und
danach in der Implementierung eingepflegt werden. Die Realitét sieht jedoch meist an-
ders aus. Es wird daher ein Mechanismus benétigt, der nicht nur die Informationsuber-
nahme aus den Planungsmodellen in die Implementierung ermdéglicht, sondern auch den
umgekehrten Weg unterstiitzt. Dadurch kénnen Anderungen in der Implementierung au-
tomatisiert in den Planungsdaten ,dokumentiert“ werden.

Konsistenziiberprifung Erganzend zur bidirektionalen Auswertbarkeit muss ein Mechanis-
mus vorhanden sein, der die Widerspruchsfreiheit (Konsistenz) von Instanzen prift, ohne
Anderungen vorzunehmen. Dies ist insbesondere dann von Interesse, wenn die verfah-
renstechnische Anlage bereits in Betrieb ist. Automatisierte Anderungen an den beteilig-
ten Automatisierungsfunktionen sind dann nur noch in festgelegten Wartungszeitrdumen
méglich. Eine passive Uberpriifung kann aber jederzeit durchgefiihrt werden.

Modellreparatur Inkonsistente Modelle missen wieder in einen konsistenten Zustand tber-
fiihrt werden. Da Inkonsistenzen sowohl durch Anderungen im Quell- als auch im Zielm-
odell entstehen kénnen, muss der Nutzer aktiv in den Reparaturprozess eingebunden
werden. Alternativ missen friihere Modellzustande in den Reparaturprozess einbezogen
werden, um identifizieren zu kénnen, ob die Inkonsistenz durch Anderungen am Quell-
oder Zielmodell verursacht wurden.

Nachvollziehbarkeit Die Transformation muss nachvollziehbar durchgefiihrt und dokumen-
tiert werden. Dazu gehdrt auch, dass die Transformation deterministisch ist und die ein-
zelnen Transformationsschritte dokumentiert werden.

Freie Werkzeugwahl In der Planungs- und Betriebsphase einer verfahrenstechnischen Anla-
ge ist eine ganze Reihe hochspezialisierter Werkzeuge im Einsatz. Die Wahl dieser Werk-
zeuge soll aus zweierlei Griinden nicht eingeschrénkt werden. Auf der einen Seite haben
Planungsingenieure und Applikateure nicht immer Einfluss auf die Wahl des Werkzeugs.
Dies ist insbesondere der Fall, wenn Planungsdaten von extern eingekauft werden oder
wenn die Implementierung an ein Subunternehmen vergeben wird. Auf der anderen Seite
sollen Planungsingenieure und Applikateure sich nicht an ein Werkzeug binden missen,
sondern das Werkzeug wéahlen kénnen, das ihren Anspriichen am besten genlgt.

Wartbare, nachvollziehbare Regeln Fir einen nachhaltigen Ansatz ist es wichtig, dass die
formulierten Regeln Uber Jahrzehnte und von verschiedenen Anwendern leicht nachzu-
vollziehen und anzupassen sind. Komplexe, auf speziellen Sprachen basierende Regeln
kénnen daher nicht zum Einsatz kommen. Vielmehr muss die Formulierung der Zusam-
menhange mdglichst durch einfache Verkniipfung der beteiligten und somit bekannten
Modelle erfolgen. Diese sollten minimalistisch angereichert werden mit entsprechenden
Elementen flr die Modelltransformation.

Hinweise auf weitere Anforderungen bieten die zuvor definierten Anwendungsszenarien.

S1. Einzelne Automatisierungsfunktion als Serienprodukt Das Besondere an diesem An-
wendungsbeispiel ist die Verwendung von Informationen aus zwei Quellen. Zum einen
wird das Anlagenstrukturmodell benétigt, um Zusammenhange zwischen Aktoren und
Rohrleitungen zu identifizieren, auf der anderen Seite wird der aktuelle Zustand der Pro-
zessflhrung fur die Auswertung der offenen Flusswege benétigt. Neben der Verwendung

39

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

zweier Quellmodelle ist auch die Transformation innerhalb der automatisierungstechni-
schen Laufzeitumgebung ausschlaggebend fiir dieses Szenario.

S2. Entwicklungsbegleitende Modelltransformation Das Bedienbild wird in diesem Szena-
rio als R&l-FlieBbild dargestellt. Die entsprechenden Abbildungsvorschriften sowie die
Positionierung werden aus dem PandIX tbernommen. Die Anforderungen an ein Bedien-
bild erfordern aber im Normalfall eine angepasste Positionierung und Darstellung. Das
Bedienbild muss daher nach der Erstellung vom Applikateur &nderbar sein. Es muss wei-
terhin méglich sein, spétere inkrementelle Anderungen durch erneute Transformation aus
dem PandIX vorzunehmen. Bereits vorgenommene Parametrierungen oder Erganzungen
im Bedienbild miissen davon unberiihrt bleiben, sofern sie nicht direkt von den Anderun-
gen betroffen sind.

S3. b) Modellreparatur bei aufgetretenen Inkonsistenzen Fir die Realisierung dieses Sze-
narios muss eine Interaktion mit dem Benutzer mdglich sein, da Inkonsistenzen nicht
automatisiert in die eine oder andere Richtung aufgeldst werden kénnen.

4.3 Stand der Technik

Ein erster Schritt zur Nutzung der Planungsdaten im weiteren Lebenszyklus der Anlage sind
Austauschmodelle. Diese spielen insbesondere bei der Anforderung der freien Werkzeugwahl
eine groBe Rolle. Nahezu alle gangigen Engineeringwerkzeuge bieten heutzutage einen Ex-
port/Import ihrer Daten als XML-Datei oder in einem anderen digitalen Format an. Die Modell-
transformation zwischen Transportmodell und dem Datenmodell des Werkzeugs erfolgt hier-
bei bei der Interpretation bzw. der Generierung der Austauschformate durch die Import/Ex-
port Schnittstelle der Werkzeuge. Herstellerspezifische Modelle haben den Vorteil, dass sie die
Daten eines Werkzeugs optimal abbilden kénnen. Durch die Vielzahl an auf dem Markt be-
findlichen Werkzeugen impliziert dieser Ansatz einen erheblichen Implementierungsaufwand.
Allein das Planungswerkzeug ePLAN P8 bietet Schnittstellen zu zehn verschiedenen Automa-
tisierungssystemen sowie weitere ePLAN-spezifische Austauschformate an. Wie in Kapitel 3
gezeigt, gibt es auch in Normungsgremien und Interessensverbanden grof3e Anstrengungen,
Transportmodelle wie CAEX [IEC62424], PandIX [PandIX] oder AutomationML [AML1] herstel-
lerneutral bereitzustellen. Solche Modelle kommen der Vielfalt der Werkzeuge auf dem Markt
entgegen. Auch kleinere Hersteller kbnnen sich durch die Umsetzung eines solchen normierten
Formates in die Werkzeuglandschaft integrieren. Bei dem Ansatz der Austausch- und Trans-
portmodelle stellen inkrementelle Anderungen und der Abgleich nach dem initialen Datenaus-
tausch noch immer eine gro3e Herausforderung dar.

In [BS09] stellen die Autoren einen Ansatz vor, bei dem sich herstellerneutral Werkzeuge durch
die Bereitstellung einer entsprechenden Schnittstelle an eine gemeinsame Datenbasis, dem
Engineering Servicebus (ESB) ankoppeln kénnen. Das Wissen Uber die im ESB vorhandenen
Daten und ihre Semantik muss, wie bei den Austauschformaten, wieder jedes Tool fir sich
mitbringen. Erschwerend kommt hinzu, dass jedes Werkzeug seine Daten in werkzeugspezifi-
scher Art ablegen kann. Eine Verknlipfung der Daten oder eine Interpretation der Daten durch
andere Werkzeuge ist daher nur schwer zu realisieren. Dieser Ansatz des integrierten Engi-
neerings, bei dem alle Gewerke auf einen gemeinsamen Datenhaushalt zugreifen, ist vermehrt

40

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4.3 Stand der Technik

auch bei den groBen auf dem Markt befindlichen Werkzeugherstellern zu finden. So hat Sie-
mens im Jahr 2008 mit der Ubernahme der Firma innotec GmbH sein Produktportfolio um die
Planungswerkzeuge der Comos-Produktgruppe erweitert [Div08]. Eine gemeinsame Datenba-
sis, das Siemens Teamcenter, bildet nun die Grundlage fir die Planung der Elektroverkabelung
sowie der Mess-, Steuer- und Regelungstechnik mit Hilfe von Comos und die Programmie-
rung der Automatisierung sowie die Erstellung von Anlagensimulationen. Auch namenhafte
Hersteller von Planungswerkzeugen erweitern ihr Produktportfolio, um die Daten durchgéngig
fur alle Gewerke bereitstellen zu kénnen. Im Jahr 2013 Ubernimmt die Friedhelm Loh Group,
Muttergesellschaft der Eplan Software und Service AG, den Hersteller mechanischer CAD-
Systeme Kuttig [EPL13] und den Autodesk-Hersteller Cideon [Pre13]. Uber die unterlagerte
ePLAN-Plattform werden somit neben R&l-Daten, Daten zur Elektroplanung, Daten fir die
Mess-, Steuerungs- und Regelungsplanung, der virtuelle Schaltschrankbau und nun auch me-
chanische Planungsdaten aufeinander abgebildet. Der Vorteil des integrierten Engineering ist,
dass im Hintergrund eine gemeinsame Datenbasis die Daten aller Gewerke akkumuliert und
in gewerkespezifischen Sichten zur Bearbeitung bereitstellt. Anderungen werden dadurch au-
tomatisch Uber alle Gewerke hinweg publiziert. Der groBe Nachteil dieses Ansatzes ist, dass
es kleine und mittelstandische Unternehmen aus dem Markt drangt, da diese keine durchgén-
gige Werkzeugkette bieten kdnnen. Der Anforderung nach freier Werkzeugwahl wird hier nicht
Genlige getan.

Ein Uberwiegend im universitdren Umfeld im Einsatz befindlicher Ansatz fir die Nutzung der
Planungsdaten im weiteren Lebenszyklus der Anlage ist die Automatisierung der Automatisie-
rung [SSE09]. Unter diesem Begriff lassen sich all jene Arbeiten zusammenfassen, die sich mit
der teil- oder vollautomatisierten Durchfiihrung des Engineeringworkflows beschaftigen. Hier-
zu gehéren unter anderem der Einsatz von Wissensbasierten Systemen, das Regelbasierte
Engineering und agentengestitzte Ansatze. Schon 1998 beschéaftigten sich Viswanathan et al.
[Vis+98a; Vis+98b] mit dem Einsatz Wissensbasierter Systeme fiir die automatische Gene-
rierung von Steuerungscode fiir Batch-Prozesse. Anlagenneutrale Verfahrensrezepte werden
dabei mit Informationen aus der Anlagenplanung zu Steuerungsrezepten verfeinert. Anlage
und Rezept besitzen innerhalb des Wissensbasierten Systems eine spezielle objektorientierte
Reprasentation in Grafchart. Ebenfalls auf der Basis eines Wissensbasierten Systems wird in
[Gt09] die Generierung von SPS-Programmen aus den Planungsdaten beschrieben. Ausge-
hend von der Voraussetzung, dass strukturbezogene Code-Schnipsel als Klassen bereits im
Engineeringsystem vorliegen, wird anhand der Planungsdaten der benétigte Steuerungscode
durch entsprechendes Instanziieren erstellt und verknlpft. Dieser Ansatz ist insbesondere fr
Serienanlagen oder Anlagen mit sehr &hnlichem Equipment und Verhalten konzipiert. Es wird
allerdings ein angepasster Planungsprozess verlangt, da viele Informationen aus der Formali-
sierten Prozessbeschreibung nach [VDI3682] gewonnen werden. Diese kommt in ihrer reinen
Form aber in realen Planungsprozessen von prozesstechnischen Anlagen heutzutage selten
zum Einsatz. Eine automatische Parametrierung von Bedienbildern wird in [UOS12] vorge-
schlagen. Basierend auf den Informationen des R&l-FlieBbildes werden vorgefertigte, standar-
disierte Bedienbilder mit Instanznamen, Einheiten, Grenzwerten und weiteren anlagenspezifi-
schen Daten parametriert. Auch kénnen in Abhéngigkeit des im FlieBbild angegebenen Sensor-
oder Aktortyps spezifische Bedienfelder aktiviert werden. Allen gemein ist die 1-zu-1 Transfor-
mation von Daten von einem Modell in genau ein anderes Modell. Zudem sind die Ansatze

41

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4 Modelltransformation in der Automatisierungstechnik

inflexibel gegeniiber Anderungen in den Planungsdokumenten. Die generierten Daten miissen
erneut erzeugt werden und ggf. gemachte handische Anderungen oder Erweiterungen gehen
verloren.

Griuner [GE14; GWE14] schlagt ein Regelbasiertes Engineering auf Basis von Graphabfragen
vor. Dieses ist deutlich flexibler im Einsatz verschiedener Modelle. Wie bei Gittel [Gt09] wird
bei diesem Ansatz das Expertenwissens in einer doménenfremden Sprache als Regeln ab-
gelegt, was zu zusatzlichen Barrieren bei der Formulierung der Zusammenhange fiihrt. Einen
agentenbasierten Ansatz verfolgt Wagner [Wag08] mit seiner aktiven Unterstlitzung des Appli-
kateurs im Engineeringprozess. Die Agenten analysieren wéhrend des Engineeringprozesses
fortlaufend Abhangigkeiten zwischen den vom Applikateur eingegebenen Modellanderungen
und anderen Modellen. Durch Interaktion mit dem Applikateur kénnen die eingesetzten Agen-
ten aufgetretene Inkonsistenzen auch dann behoben werden, wenn sie sich nicht direkt aus den
in den Agenten verankerten Regeln 16sen lassen. Durch die Anséatze von Gruner und Wagner
wird das Spektrum der Betrachtung auf eine m-zu-n-Beziehung zwischen Modellen erweitert
und ein Uber den initialen Modellabgleich hinausgehende Modelltransformation erméglicht. Die
Liste von Ansétzen zum modellbasierten Engineering lieBBe sich beliebig fortflihren. Die in die-
ser Arbeit betrachteten Automatisierungsfunktionen als Serienprodukte kdnnen von diesen An-
satzen allerdings nicht profitieren, da die Engineeringphase bereits vollstandig abgeschlossen
ist, wenn das auszuwertende Modell vorliegt.

Das von Schmitz [SE06; SE08] vorgestellte Regelbasierte System bietet die Basis fir ein
anlagenneutrales Engineering. Die WENN-DANN-Regeln des Regelsystems sind bei diesem
Ansatz Objektstrukturen im Laufzeitsystem und kénnen vorhandene Modelle auswerten und
manipulieren. Das von Schmitz vorgestellte Konzept beschrénkt sich jedoch auf die Formu-
lierung von unidirektionalen Regeln. Eine Konsistenzprifung oder gar eine Rickfiihrung von
Informationen in das Ausgangsmodell ist daher nicht méglich. Ein weiteres Problem stellt die
konzeptbedingte rechenzeitintensive Bearbeitung des Regelsatzes dar. Das in dieser Arbeit
vorgestellte Konzept stellt eine Weiterentwicklung der Vorarbeiten von Schmitz [SE06; SE08]
dar und erganzt diese unter anderem um eine formale Basis und die Mdglichkeit der bidirek-
tionalen Auswertung. Als einen weiteren Ansatz fiir das anlagenneutrale Engineering schlagt
Mersch [Mer16] die Realisierung von Automatisierungsfunktionen als Dienste vor, die auf einer
gemeinsamen Modellarchitektur operieren. Die vorgeschlagenen Dienste bearbeiten konkrete
Anfragen selbstandig durch Erkundung und Veréndern der in der Laufzeitumgebung vorlie-
genden Modelle. Zur ressourcenschonenden Erhaltung der systemweiten Konsistenz wird eine
Beobachterschnittstelle fur die einzelnen Modellinstanzen vorgeschlagen. Abhangige Modelle
kénnen sich bei einem Quellmodell registrieren und werden anschlieBend bei Anderungen in-
formiert. Entsprechende Dienste kdnnen dann mit Hilfe des Uberlagerten Relationsmodells Ab-
hangigkeiten zwischen den Modellen erkennen und Anpassungen am Zielmodell vornehmen.
Durch die Verwendung von Diensten wird der Ansatz insbesondere fur verteilte Automatisie-
rungssysteme interessant. Auf die Realisierung der einzelnen Dienste geht Mersch nicht weiter
ein.

Einen weiteren anlagenneutralen Ansatz verfolgt Quirés [Qui11] mit der Flussweganalyse. Auf
Basis der im R&l-FlieBbild bzw. im zugehdrigen PandIX-Modell enthaltenen Daten und dem
aktuellen Anlagenzustand werden Vorhersagen zu Auswirkungen von Aktorsteuerungen und

42

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

4.3 Stand der Technik

Warnungen bei unerlaubten Zustanden oder bei Leckage generiert. Hier ist die Modelltransfor-
mation zwar anlagenneutral formuliert, allerdings ist sie auf genau ein Quell- und ein Zielmodell
beschrénkt.

Einen ganz anderen Ansatz verfolgt Schlereth [Sch14]. Ausgehend von einer plattformunab-
héngigen Beschreibung der Modellzusammenhé&nge werden plattformspezifische Modelltrans-
formationen z.B. zur Ausfihrung in automatisierungstechnischen Laufzeitumgebungen durch
Higher-Order-Transformation erzeugt. Dieser Ansatz istin Doméanen interessant, wo plattforms-
pezifisch unterschiedliche Programmiersprachen zum Einsatz kommen. Fir den Einsatz in der
Automatisierungstechnik ist er allerdings weniger geeignet, da alle gdngigen SPSen die Spra-
chen der IEC 61131 und das dazugehdrige Austauschformat PLCOpen XML unterstiitzen. Ei-
ne plattform- und sprachunabhénge Beschreibung der Modellzusammenhéange bedeutet daher
einen unndétigen Mehraufwand bei der Spezifikation. Ein durchaus auch fir die vorliegende Ar-
beit interessanter Aspekt des von Schlereth vorgestellten Ansatzes ist, das fir die IEC 61131
Sprache ST beschriebene Konzept der Modelltransformation zur Laufzeit. Wie bei Schmitz
[SE06; SE08] wird dabei auf unidirektional auswertbare Bausteine gesetzt, die einzelne Ob-
jekte des Quellmodells bearbeiten. Die bei Schlereth beschriebenen Regeln sind allerdings so
komplex, dass sie nicht mehr durch den Doméanenexperten handhabbar sind. So muss fir jede
Klasse des Quellmodells und jede Klasse des Zielmodells ein eigener Baustein im Transfor-
mationsmodell bereitgestellt werden. Bei einer automatischen Generierung der plattformspe-
zifischen Transformationsregeln mag dies hinnehmbar sein, eine Wartung oder Erweiterung
der Regeln ist aber nur durch Anpassung des plattformunabh&ngigen Transformationsmodells
mdglich.

Zusammenfassend lasst sich feststellen, dass bereits eine ganze Reihe von Ansatzen Modell-
zusammenhange in der Automatisierungstechnik und die automatische Auflésung der daraus
resultierenden Abhéngigkeiten bei Modellanderungen adressieren. Der GrofBteil der Ansatze
beschréankt sich dabei jedoch alleine auf die Modelle zur Engineeringzeit. Oftmals sind die
Transformationen beschréankt auf ein spezifisches Quell- und Zielmodell. Eine bidirektionale
Auswertung von Modellzusammenhangen verfolgt keiner der bisherigen Anséatze. Die Wahl
spezieller Regelsprachen flr die Beschreibung der Modellzusammenhénge stért bei vielen An-
satzen die Integration in den bisherigen Engineeringprozessen, da die Domanenexperten neue
Sprachen und Werkzeuge erlernen miissen. Eine Losung fiir die zuvor identifizierten Anforde-
rungen an Modelltransformationen in der Automatisierungstechnik kann keiner der bisherigen
Ansatze liefern.

Im Folgenden werden vielversprechende Ansétze aus der Informatik vorgestellt und anschlie-
Bend in Kapitel 6 gezeigt, wie diese sich nutzen lassen, um die bisherigen Beschrankungen
aufzuheben und eine effiziente, bidirektional auswertbare Modelltransformation fiir die Lauf-
zeitsysteme der Automatisierungstechnik zur Verfigung zu stellen.

43

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Bei der Konzeptentwicklung fir eine Modelltransformation in prozessleittechnischen Laufzeit-
umgebungen stand die Suche nach einem geeigneten, gut erforschten und fundierten Ansatz
aus dem Bereich der Informatik als Basismodell im Vordergrund. Bei dieser Suche stellten
sich die bidirektionale Auswertbarkeit der Regeln sowie die inkrementelle Anwendbarkeit und
die freie Werkzeugwahl schnell als Schilsselkriterien heraus. Wéhrend diese Eigenschaften
tief im Transformationsmodell verankert sind, lassen sich andere Anforderungen wie eine gu-
te Nachvollziehbarkeit durch Protokollierung der Transformationsschritte oder die Wiederver-
wendbarkeit von Regeln und Regelteilen vergleichsweise einfach nachriisten.

Das Forschungsgebiet der Modelltransformation bietet ein breites Spektrum an potentiellen
Basismodellen. Eine umfangreiche und gut strukturierte Ubersicht zu diesem Thema bieten
Czarnecki und Helsen [CHO6]. Schlussendlich kristallisierten sich Tripel-Graph-Grammatiken
als geeigneter Kandidat heraus. Nicht zuletzt durch das umfangreiche Erweiterungspotential
[K&n08; Kla12; Lau12; Leb+15; Leb+186, ...], erste Ansétze fiir eine Modelltransformation zur
Laufzeit [Vog+09a; Vog+09b; VG13] und Regeln, die auf den domanenspezifischen Sprachen
der korrelierenden Modelle aufbauen konnte der Ansatz (iberzeugen. Dieses Kapitel widmet
sich daher hauptsachlich den Triple-Graph-Grammatiken und darauf aufbauenden Forschungs-
ansétzen.

Da Triple-Graph-Grammatiken jedoch nicht fir die Modelltransformation in leittechnischen Lauf-
zeitumgebungen entwickelt wurden, liegt es in der Natur der Dinge, dass nicht alle gestellten
Anforderungen in Génze mit diesem Ansatz erfiillt werden kénnen. Ein kleiner Einblick in wei-
tere Transformationsmodelle, die diese offenen Punkte thematisieren, schlie3t das Kapitel ab.

5.1 Tripel-Graph-Grammatiken

Die von Schirr entwickelten Tripel-Graph-Grammatiken (TGG) [Sch95], sind eine Weiterent-
wicklung der Paar-Grammatiken nach Pratt [Pra71]. Beide Anséatze gehen davon aus, dass fiir
zwei konsistente Modellinstanzen M; und M, korrelierender Modelle gilt:

o fiir jede valide Anderung von M, gibt es mindestens eine valide Anderung von M,, die
die beiden Modellinstanzen konsistent halt

« fiir jede valide Anderung von M, gibt es mindestens eine entsprechende konsistenzer-
haltende Anderung in M,

44

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Regeln der beiden Ansatze beschreiben solche konsistenzerhaltenden simultanen Ande-
rungen von Modellen. Pratt erzeugt in seinem Ansatz zwei, mittels kontextfreier Grammatiken
beschriebene, konsistente Modelle. Seine Regeln fir die Modelltransformation setzen Paare
von Produktionen in Beziehung (vgl. Abbildung 5.1). Jeder Zwischenschritt erzeugt durch Re-
gelanwendung parallel zwei Graphen; einen in der linken und einen in der rechten Doméne.
Diese enthalten Nichterminalsymbole, die miteinander Uber eine 1-zu-1 Nichtterminal-Paarung
verbunden sind. Durch die Anwendung einer Regel wird beim simultanen Auffinden des LHS-
Nichterminalsymbols im jeweiligen Modell dieses durch das entsprechende RHS-Pattern er-
setzt. Die beiden Modelle werden dadurch simultan erzeugt. Jeder Zwischenschritt ersetzt ge-
nau ein Nichtterminal-Paar. Das finale Graphen-Paar enthalt keine Nichtterminale und somit
auch keine Nichtterminal-Paarungen mehr.

Ein Hauptproblem bei dieser Art der Regeln ist die fehlende Nachvollziehbarkeit. Nur zum
Zeitpunkt der Transformation ist klar, welche Teile der beiden Modelle durch simultanes Erzeu-
gen einander zuzuordnen sind. Eine inkrementelle Anderung von Modellen ist daher mit Paar-
Grammatiken schwierig. Durch die Verwendung von kontextfreien Sprachen wird dieser Effekt
noch verstarkt, da die LHS ihrer Produktionen jeweils Nichtterminale sind. Ein bestehendes
valides Modell-Paar enthélt aber keine Nichtterminale mehr, die durch die Produktionen ersetzt
werden kdnnen. Eine starke Einschrankung fir den Einsatz von Paar-Grammatiken stellen die
1-zu-1-Beziehungen zwischen den Nichtterminalen dar.

| PandiX vave ==+ =| csHMI Vave LHS

t PandiX AR | _ | _ _ csHmi AT
PandX VR | _ | __ 1 csHmivT

Linke Produktion Rechte Produktion

RHS

(a) Initiale Ventil-Regel

PandiX AR = ====== { csHMI AT PandIX VR Fm======= =| csHMI VT

I—{ ar: ActuatorRequest ‘ I—{ at: ActuatorTemplate ‘ L vr: ValveRequest L vt: ValveTemplate ‘
I—{ P: ActuatorProcessInterface I—{ rt:RemoteTemplate ‘ Y: ActuatorlnputPoint
(b) Aktuator-Regel (c) Ventil-Regel

Abbildung 5.1: Paar-Grammatik zur simultanen Erstellung von PandIX und csHIM

Beispiel 5.1 Die Regeln aus Abbildung 5.1 bilden einen Ausschnitt aus der Paar-Grammatik
fiir die simultane Erstellung eines PandIX-Modells und einer Bedienoberflédche mittels ACPLT/cs-
HMI. Nichtterminal-Paare sind durch gestrichelte Linien gekennzeichnet. Bei Anwendung der
Regeln werden die Nichtterminale der LHS im Graph der jeweiligen Domédne gesucht und
durch RHS ersetzt. Die starre 1-zu-1 Beziehung bei den Nichtterminal-Paaren fihrt dazu, dass
Erweiterungen, die nur eine der beiden Modelle betreffen schwieriger zu realisieren sind. So
muss eine Erweiterung der Bedienoberfldche um ein Detailbild entweder mit der Ersetzung in

45

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

5.1c erfolgen oder in der initialen Ventil-Regel muss auf beiden Seiten ein weiterer Nichttermi-
nalknoten erzeugt werden. Wobei bei der Auswertung dieses Nichtterminal-Paares nur auf der
ACPLT/csHMI-Seite Elemente erzeugt werden.

Drei Erweiterungen sind daher nétig, die Verwendung von kontextsensitiven Sprachen, die
Protokollierung der Modellbeziehungen lber den Transformationsprozess hinaus und die Er-
weiterung auf n-zu-m-Beziehungen zwischen den beiden Domanen. Mit der Weiterentwicklung
von Paar-Grammatiken zu Tripel-Graph-Grammatiken konnte Schiirr diese Aufgaben erfolg-
reich 16sen. Zum einen fuhrt Schirr einen dritten, ebenfalls simultan erzeugten Korrespon-
denzgraph ein. Die Knoten dieses Graphs dokumentieren den Transformationsverlauf fir den
gesamten Lebenszyklus der beiden Modellinstanzen. Zudem verwendet Schirr als Basis sei-
ner Regeln kontextsensitive Graph-Grammatiken. Diese erlauben die Referenz auf terminale
Kontext-Elemente und erméglichen so eine einfachere inkrementelle Modellentwicklung.

Durch Tripel-Graph-Grammatiken werden immer drei Teilgraphen parallel entwickelt: das
Quellmodell, das Zielmodell und der Korrespondenzgraph. Abbildung 5.2 zeigt beispielhaft

su: SystemUnitClass < mn1:MN H g: Group ‘ :_Kl-ci)ftext-eraph)
\ = | c
su: SystemUnitClass mni: MN >| a: Group | RHS

at: ActuatorTemplate

ar: ActuatorRequest

H P:ActuatorProcesslnterface mt1: MT rt: RemoteTemplate
) « ‘ Korrespondenz- «
Linke Doméane Doméne Rechte Domane

Abbildung 5.2: TGG-Regel zur simultanen Erstellung von PandIX und csHIM

ein TGG-Produktion flr das Hinzufligen einer PLT-Stelle. Die Relation zwischen Elementen
der linken und der rechten Doméane werden dabei mit Hilfe sogenannter Korrespondenzlinks
beschrieben:

Definition 5.1 (Korrespondenzlink) Seien Qyr, Qyr, Qv drei endliche Alphabete terminaler
Knotenbeschriftung und Q gr, Q g, zZwei Alphabete terminaler Kantenbeschriftungen. Seien au-
Berdem LD, KD, RD Graphen mit Knoten- und Kantenbeschriftungen aus den entsprechenden
Doménen. Es gelte daher fir alle Knoten v und alle Kanten e:

Vv e LD : label(v) € Qyy
Ve e LD : label(e) € Qg
Yv € RD : label(v) € Qyr
Ve € RD : label(e) € Qg
Yo e KD : label(v) € Quk
AuBerdem gelte:
Fe € KD
46

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

Inhak.

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Knoten von KD werden Korrespondenzknoten genannt. Die Funktion map(vk) liefert zu
Jjedem Korrespondenzknoten v € KD ein Tupel (v;,~,), wobei ~; eine nichtleere Menge an
Knoten und Kanten aus LD und ~, eine nichtleere Menge an Knoten und Kanten aus RD sind.

Eine Menge {Lxp|Lkp = (i, vi,Vr), map(vk) = (y1,7-)} mit folgenden Eigenschaften:

rey = x€lD
rey = x€RD

wird Korrespondenzlinks zwischen LD und RD genannt.

Die Definition zeigt, dass Korrespondenzlinks sowohl Kanten als auch Knoten der beiden
Grammatiken miteinander in Relation setzten kdnnen. Korrespondenzlinks beschreiben das
Mapping zwischen linker und rechter Domé&ne durch die Formulierung von Bedingungen (vgl.
Abbildung 5.3). Zudem erzeugen sie durch Anlegen der entsprechenden Objekte aus der Kor-
respondenzdomaéne eine Dokumentation des Transformationsverlaufes. Sie sind zentraler Be-
standteil der TGG-Produktionen, deren genereller Aufbau in Abbildung 5.4 dargestellt ist.

MN) Objys-name == Objzyg.name J

MT Objy yys.name == Objzs.name
Obj,s-SignalCode == Objgys.SignalCode
Obj,s.FunctionCode == Objgys.FunctionCode

Abbildung 5.3: Korrespondenzobjekte der TGG-Produktion aus Abbildung 5.2

[[
LHS, p LHS,p LHSgp LHS
(Kontext-Graph)
w= C
RHS, 5 RHSyp RHSgp RHS
Linke Doméne Korrespo_pdenz- Rechte Doméne
Doméne

Abbildung 5.4: Aufbau einer TGG-Produktion

Definition 5.2 (Tripel-Graph-Grammatik)
Eine Tripel-Graph-Grammatik TGG = (g, Qv, Qn, S, Praa, map) ist eine Graph-Grammatik mit
folgenden speziellen Eigenschaften:

e drei endliche Alphabete Qyg, Qvr, Qui terminaler Knotenbeschriftungen mit
Qur U Qv U Qyk = Qv
e zwei endliche Alphabete Qrr, Qg terminaler Kantenbeschriftungen mit
QprU Qg = Qp
e dem Startsymbol S = ()
e eine endliche Menge von TGG-Produktionen Praa

47

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Definition 5.3 (TGG-Produktion) Seien Qyg, Qvr, Quk drei disjunkte endliche Alphabete ter-
minaler Knotenbeschriftung und Qgr, Qg zwei disjunkte endliche Alphabete terminaler Kan-
tenbeschriftungen. Seien auBerdem LHSp, RHS1p, LHSrp, RHSrp Graphen mit Knoten- und
Kantenbeschriftungen aus den entsprechenden Doménen:

Vv € LHS[p U RHS[p : label(v) € Qyy,
Ve € LHS;pURHSp: label(e) € Qg
Vv € LHSrp U RHSpp : label(v) € Qur
Ve € LHSpp U RHSRp : label(e) € Qpr
Vv € LHSkp U RHSkp : label(v) € Qui
fe € LHSkp U RHSkp

Eine TGG-Produktion Pro; = (LHS, RHS, L) ist eine graphbasierte Produktion (LHS, RHS))
fur die gilt:

LHS LHSp U LHSkp U LHSRpp
RHS = RHS;p U RHSKp U RHSRp

LHS;p < RHSip
LHSkp < RHSkp
LHSgp < RHSgp.

Fiir die Menge Ly von Korrespondenzlinks gelte zudem:

Vo € LHSkgp VI € Lkl = (w,vi,wy). ¢ €w, =z € LHSpA
T E€w, =x€LHSgp

Vo € RHSkgpVl € Ll = (w, vk, wy). ©€w = x € RHS[p A
T €w, =2 € RHSRp

Die Teilgraphen LHSp, LHSkp, LHSrp, RHS1p, RHSKkp, RHSRrp werden im Folgenden als Pat-
tern der TGG-Produktion bezeichnet, die in drei Teilproduktionen

LHS[p := RHSIp
LHSkp RHSkp und
LHSRpp := RHSRgp

organisiert sind.

Konigs [K6n08] fuhrt in seinen Arbeiten eine verkiirzte Schreibweise der TGG-Produktion ein,
die auch in dieser Arbeit Verwendung findet. Dabei werden die Pattern der LHS und RHS auf-
einander abgebildet. Elemente, die durch die Regel hinzugefligt werden, also nur in der RHS
vorkommen, werden mit ,++“ gekennzeichnet. Abbildung 5.5a stellt die verkurzte Form der
Regel aus Abbildung 5.2 dar. Abbildung 5.5b demonstriert, wie durch die Verwendung von
Kontextelementen und durch die Einflihrung des Korrespondenzgraphen der Aktor jeweils zur

48

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

entsprechenden Instanz der PLT-Stelle hinzugefiigt werden kann. Selbiges gilt fiir die Positio-
nierung der Elemente in Abbildung 5.5c. Die LHS der Regeln (helle Elemente) bilden nicht
nur die bereits erstellte Elemente ab, sondern auch die zuvor angelegten und nun erwarteten
Modellzusammenhénge. Das den Produktionen einer TGG zu Grunde liegende Transforma-
tionsmodell flir zwei korrelierende Modelle wird kompakt durch ein TGG-Schema abgebildet.
Dieses beschreibt die Zusammenhange der beiden Modelle als Ganzes. Abbildung 5.5d zeigt
den Ausschnitt aus dem TGG-Schema fiir das Beispielszenario.

su: SystemUnitClass mni: MN > g:Group ‘

Iﬁ; ++ +4+ ++
ar: Actuatornequest B at: Actuator lemplate
ar: ActuatorRequest < mn2: MN at: ActuatorTemplate

++ ++
P:ActuatorF mti: MT > ri: RemoteTemplate

(a) Anlegen der PLT-Stelle
{ mn1: MN :

su: SystemUnitClass

— rt: RemoteTemplate
++
++
(b) Hinzufigen des Aktors

< mn1: MN \ﬁ{ g: Group

ar: ActuatorRequest at: ActuatorTemplate
I [— mn2: MN 2| + Position

su: SystemUnitClass

|

L P: ActuatorProcessinterface

vr: ValveRequest

Y: ActuatorinputPoint

mp1: MP

(c) Positionieren der Elemente

MN H Group

l ActuatorTemplate
>| + Position

RemoteTemplate

SystemUnitClass

ActuatorRequest

ActuatorProcessinterface

j

ValveRequest <

Line

I

—
+ Position < L
Actuatorl itPoint
L oo [vaveTempiate

(d) Ausschnitt aus dem TGG-Schema

Abbildung 5.5: TGG-Produktionen und TGG-Schemata

Um die zu suchenden oder zu erstellenden Strukturen noch feingranularer beschreiben zu kén-
nen, fihrt Kénigs [K6n08] die Attributwertweitergabe ein. Dadurch kénnen Elemente mit Attri-
buten versehen werden, die wiederum Attribute der Klassen und Assoziationen in den Modellen
reprasentieren. Fiir das Anwendungsszenario ermdglicht dies unter anderem die Ubertragung

49

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

der Position vom Quellmodell in das Zielmodell (vgl. Abbildung 5.5¢)". Auch Informationen aus
schwach typisierten Modellen kénnen somit fiir die Modelltransformation nutzbar gemacht wer-
den.

Neben der Attributwertweitergabe beschreibt Kénigs in seiner Arbeit eine Reihe weiterer Er-
weiterungen von Tripel-Graph-Grammatiken, die auch flr diese Arbeit von Interesse sind:

NACs Soll ein bestimmtes Element explizit nicht vorhanden sein, so kann dies durch soge-
nannte NACs (engl. negativ application condition) beschrieben werden. Ein solches Ele-
ment wird durch ein Kreuz gekennzeichnet.

Optionale Elemente Optionale Elemente oder Teilgraphen dienen dazu, zwei Regeln zusam-
menzufassen, die bis auf das Vorhandensein des optionalen Elements/Teilgraphen iden-
tisch sind.

Optionale Erstellung Insbesondere fir inkrementelle Modellentwicklung kann es wichtig sein,
Elemente anzulegen, wenn sie noch nicht im Zielmodell vorhanden sind und unverandert
zu lassen, wenn sie schon existieren. Dies ist wiederum eine Verschmelzung zweier se-
parater Regeln, die das Vorhandensein des Elements als Kontext haben oder nicht.

Neuere Arbeiten zu Tripel-Graph-Grammatiken liefern weitere Ansatze zur Verbesserung der
Les- und Wartbarkeit von TGG-Produktionen. So ermdglicht das Vererbungskonzept von An-
jorin, [Anj14; Anj+15] Teile der Produktion durch Dekomposition als wiederverwendbare Ober-
klasse auszugliedern. Abbildung 5.6 zeigt die Dekomposition der Produktion aus Abbildung
5.5b. Die so geschaffene Oberklasse lasst sich fiir die Positionierung der Elemente aus Abbil-
dung 5.5c wiederverwenden.

su: SystemUnitClass mni: MN >1 g: Group ‘

ar: ActuatorRequest L‘ at: ActuatorTemplate
su: SystemUnitClass

ar: ActuatorRequest at: ActuatorTemplate

++
t

vr:ValveRequest
Y: ActuatorinputPoint
++

Abbildung 5.6: Vererbungskonzept fir Tripel-Graph-Grammatiken

rt: RemoteTemplate

vt: ValveTemplate

++

"Vereinfachend wird an dieser Stelle davon abstrahiert, dass Quell- und Zielmodell unterschiedliche Darstellungen
der Positionsangaben verwenden.

50

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

Die Anwendung von Tripel-Graph-Grammatiken auf nicht-bijektive Modellzusammenhénge
steht bei der Amalgamierung [Leb+15; Leb+16] sowie dem Einsatz von Leerlauf-Regeln
[Leb+16] im Vordergrund. Die Amalgamierung erlaubt, 1-zu-n Zusammenhange zwischen
Elementen des Quell- und Zielmodells zu beschreiben. So kénnen zum Beispiel unterschied-
lich detaillierte Ansichten einer Anlage (Ansicht je Reaktor, Ubersicht Teilanlage, Ubersicht
gesamte Anlage, ...) im HMI existieren. Wird die Erstellung der einzelnen Ansichten optional
bzw. durch einen Parameter in den Planungsdokumenten festgelegt, ist zum Zeitpunkt der Re-
gelbeschreibung nicht klar, wie viele Ansichten bei der spateren Regelanwendung existieren.
Dennoch soll in jeder Ansicht ein Navigationselement zu den jeweilig anderen Ansichten gene-
riert werden. Um diese 1-zu-n Beziehung beschreiben zu kdnnen, werden mehrere konkrete
TGG-Regeln zusammengefasst und auf Basis einer Kern-Regel beschrieben. Im aktuellen Bei-
spiel umfasst die Kern-Regel zunéchst die Erstellung einer Ansicht ohne Navigationselemente.
Die Multi-Regeln erweitern diesen Kern um das Vorhandensein keiner/einer/zwei/. . . weiterer
Ansichten zu denen Navigationselemente erstellt werden mussen. Die Kern-Regel enthélt den
Kontext-Teil, den alle zusammengefassten Regeln gemeinsam haben. Zusammen mit den
Multi-Regeln, die die unterschiedlichen Kombinationen beschreiben, ergibt die Kern-Regel
ein Interaktions-Schema. Die konkrete fiir ein Quell-/Zielmodell resultierende TGG-Produktion
wird multiamalgamierte TGG-Regel genannt. Fir ein konkretes Planungsdokument mit drei
parametrierten Ansichten erstellt die multiamalgamierte TGG-Regel diese drei Ansichten mit
jeweils zwei Navigationselementen zu den anderen beiden Ansichten.

Leerlaufregeln erlauben Modellanderungen im Quell- oder Zielmodell, die keinen Einfluss auf
das jeweils andere Modell haben. So hat ein Kommentar im PandIX keine Entsprechung im HMI
und Hintergrundbilder oder Markierungspfeile des HMls finden sich nicht im PandIX wieder.
Quell-Leerlauf-Regeln besitzen daher nur eine LD-Teilproduktion, Ziel-Leerlauf-Regeln nur eine
RD-Teilproduktion.

5.1.1 Operationale Regeln

Die im vorangegangenen Abschnitt vorgestellten bidirektionalen deklarativen TGG-Produktionen
kénnen daflir genutzt werden, zwei Modelle simultan zu erstellen. Ein Blick auf die in Kapitel
4.2 identifizierten Anforderungen zeigt, dass dies nicht den Kern der Modelltransformation in
der Automatisierungstechnik trifft. Schiirr [Sch95] filhrt dazu eine Ubersetzung der bidirektio-
nalen deklarativen Regeln zu operationalen Regeln ein. Je nach Anwendungsfall werden dabei
unidirektionale vorwarts- oder rlickwartsgerichtete Regeln erzeugt. Vorwartsgerichtete Regeln
werden genutzt, um Informationen aus dem Quellmodell in das Zielmodell zu tbertragen. Auf
der anderen Seite kénnen die Informationen aus dem Zielmodell mittels rlickwartsgerichteten
Regeln in das Quellmodell zuriickpropagiert werden. Bei der Untersuchung von Quell- und
Zielmodell auf Widerspruchsfreiheit werden bidirektionale Korrespondenzregeln eingesetzt.
Die Darstellung der operationalen Regeln ist an die der TGG-Produktionen angelehnt. Wie
bei Lauder [Lau12] werden Elemente, die im Quellmodell hinzugekommen sind mit O —
gekennzeichnet und Elemente, die bereits als Kontext bestanden mit ¥ — 1.

Die plattformunabhangigen operationalen Regeln werden in einem weiteren Schritt kompiliert
und dadurch in plattformspezifische imperative Anweisungen zur Modelltransformation lber-

51

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

M- M= -4
su: SystemUnitClass < mni: MN > g:Group

4| ++

++
mt1: MT

+

at: ActuatorTemplate

T+
. e

(a) Vorwartsgerichtete Regel

- (%] [Yilnd |
: i s <

su: SystemUnitClas: mni: MN % g: Group

at: ActuatorTemplate
O-
> rt: RemoteTemplate

P:ActuatorProcesslnterface
O-u

su: SystemUnitClass

> ++ [O-M O0-4
O-g| & ActuatorRequest s 5 at: ActuatorTemplate
O0-o ol O~ 0~
P:Actuator face mt1: MT > rt: RemoteTemplate

g: Group

O-@
(c) Korrespondenzregel

Abbildung 5.7: Aus Abbildung 5.5a abgeleitete operationale Regeln

setzt. Dieser Ansatz erméglicht es, bei der Ubersetzung zu optimieren und eine effiziente
Modelltransformation bereitzustellen. Einen alternativen Ansatz bietet der TGG-Interpreter
[KWO07; GKO7]. Hierbei werden keine operationalen Regeln erzeugt und es erfolgt auch kei-
ne Ubersetzung in imperative Anweisungen. Stattdessen bildet der TGG-Interpreter die platt-
formspezifische zentrale Einheit, die die bidirektionalen TGG-Regeln auswertet und anwendet.
Eine Optimierung der Modelltransformation ist durch den fehlenden Ubersetzungsschritt bei
diesem Ansatz nur sehr eingeschrankt moglich.

Beiden Ansétzen gemein ist, dass bei einer Vorwartstransformation? eine Regel nur dann an-
gewendet werden kann, wenn eine Entsprechung flir RHSp in der linken Domane gefunden
wurde und alle Kontextelemente bereits Ubersetzt wurden. Zudem muss in der rechten Doméne
eine Entsprechung fiir LHSgp zu finden sein. Sind all diese Anforderungen erflillt, so kénnen
die neuen Elemente in der rechten Doméne erzeugt werden. Die Objekte der linken Doméne,
die durch die Regel auf Nicht-Kontextelemente abgebildet wurden, werden anschlieBend als
Ubersetzt markiert und kénnen fir weitere Regelanwendungen als Kontextelemente genutzt
werden. Sie dirfen jedoch im weiteren Verlauf der Transformation nicht durch eine weitere Re-
gel als Nicht-Kontextelemente verwendet werden, da jedes Objekt nur einmal Ubersetzt werden
darf.

5.1.2 Kontrollalgorithmus

Die Regeln dienen als Basis fiir den TGG-Kontrollalgorithmus. Kénigs unterscheidet beim Kon-
trollalgorithmus zwischen der Strategie und dem Scheduling. Wahrend die Strategie den Teil

2Aquivalentes gilt fiir eine Riickwartstransformation sowie eine Konsistenzalanyse.

52

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.1 Tripel-Graph-Grammatiken

des Modells identifiziert, auf den eine Regel als nachstes angewendet werden soll, beschreibt
das Scheduling in welcher Reihenfolge die Regeln ausgewertet werden. Die Bestimmung der
Reihenfolge kann unabh&ngig vom Nutzer geschehen (implizites Scheduling) oder unter Ein-
flussnahme des Nutzers (explizites Scheduling). Zweiteres kann zum Beispiel durch die Verga-
be von Prioritaten oder durch direktes Einbeziehen des Nutzers in den Ubersetzungsprozess
geschehen. Sind Kontrollstrukturen und Regeln strikt voneinander getrennt, spricht man von
externem Scheduling. Im Gegensatz dazu kann beim internen Scheduling die Auswertung von
Regeln auch durch andere Regeln angestoBen werden.

5.1.3 Modelltransformation zur Laufzeit

Unter dem Begriff models@runtime untersuchen Wissenschaftler seit einigen Jahren die Mog-
lichkeit, Modelltransformation nicht nur im Engineering-Prozess sondern auch im Laufzeitsys-
tem anwendbar zu machen. An dieser Stelle sollen insbesondere die Arbeiten von Vogel et al.
[Vog+09a; Vog+09b; VG13] Erwahnung finden, da sie sich bei der Umsetzung der Modelltrans-
formation auf die in dieser Arbeit fokussierten Tripel-Graph-Grammatiken stiitzen (vgl. Abbil-
dung 5.8). Die Modelltransformation findet bei diesem Ansatz auBBerhalb der automatisierungs-
technischen Laufzeitumgebung statt. Zudem sind Laufzeitsystem und Engineeringsystem strikt
voneinander getrennt. Dies hat zur Folge, dass ein aufwéandiger Synchronisationsmechanismus
zwischen Engineering-, Transformations- und Laufzeitsystem implementiert werden muss. Das
Quellmodell wird dabei um eine Sensor-/Effektor-Schnittstelle erweitert. Uber Sensoren werden
Anderungen am Quellmodell nach auBen bekanntgegeben. Anderungen am Zielmodell kén-
nen uber Effektoren in das Quellmodell zuriickgespielt werden. Insbesondere die Quellmodelle
mussen dazu speziell angepasst und um die Sensor-/Effektor-Schnittstelle erweitert werden.
Um Anderungen effizient erkennen zu kénnen, schlagen Vogel et al. einen Ereignismechanis-
mus vor. Beim Auftreten eines Ereignisses, also einer Anderung am Quell- oder Zielmodell wird
zunachst Uberprift, ob die Modelle weiterhin konsistent sind. Ist dies nicht der Fall, wird eine
Modellanpassung vorgenommen.

1 Architekturelement
0 Modell

Laufzeitsystem —> Lesen/ schreiben
--+ Definiert durch
R E——
. |
Zielmodell “ """""""" Y Metamodell {
1 +
Modelltransformation }-—{ TGG Produktionen H
i] H

Quellmodell ‘ """"""" -{ Metamodell
l

[Sensoren| _[Effektoren]
Engineeringsystem

Abbildung 5.8: Architektur von models@runtime nach [Vog+09b]

53

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5 Modelltransformation

Unabhé&ngig vom konkreten Ansatz beschreiben Bencomo et al. [ABm+14] die Fahigkeit zur
Introspektion und Selbstmodifikation als einen Kernpunkt beim Einsatz von Modellen fir die
Modelltransformation zur Laufzeit.

5.2 Alternative Ansitze

In vorangegangenen Untersuchungen [KQ11; SK12; Kra+12] hat sich gezeigt, dass Tripel-
Graph-Grammatiken eine gute Grundlage flr die Modelltransformation in der Automatisie-
rungstechnik bieten. Insbesondere die Verwendung von Graphen als Basis flr die Produk-
tionen kommt dem Einsatz in der Automatisierungstechnik sehr entgegen. Die oftmals als
UML-Diagramme und/oder Grammatiken vorliegenden Automatisierungsmodelle kénnen durch
ein Tripel-Graph-Schema direkt miteinander in Beziehung gesetzt werden. Die daraus abge-
leiteten Produktionen sind fiir den Automatisierungstechniker gut verstandlich. Auch die in
Kapitel 4 identifizierten Anforderungen an Modelltransformationen fir die Automatisierungs-
technik kénnen durch Tripel-Graph-Grammatiken bereits weitestgehend erfillt werden. So
kommt der TGG-Ansatz ohne Anpassungen an den Quell- und Zielmodellen aus. Dies ist eine
wichtige Voraussetzung dafiir, dass die im Lebenszyklus der Anlage verwendeten Werkzeuge
ohne nennenswerte Einschrankungen frei gewahlt werden kdénnen, sofern sie ihre Daten in
einem allgemein lesbaren Austauschformat zur Verfligung stellen. Zudem stellen Tripel-Graph-
Grammatiken basierend auf einem Regelsatz ein breites Spektrum von Einsatzméglichkeiten
von Batch-Transformation Uber Ruckwartspropagieren, Konsistenzanalyse und inkrementelle
Modellanderungen zur Verfligung.

An anderen Stellen zeigen sich jedoch auch die Schwéchen des TGG-Ansatzes. Mit dem De-
kompositionsansatz von Anjorin ist zwar ein erstes Konzept zur Wiederverwendung von Regel-
bestandteilen geschaffen, weiterfiihrende Mdglichkeiten der Wiederverwendung stehen jedoch
noch nicht zur Verfligung. Auch ist die Machtigkeit von Tripel-Graph-Grammatiken gegeniber
anderen Ansatzen noch verhéltnismaBig eingeschrénkt. Die Abbildbarkeit von nicht-bijektiven
Zusammenhé&ngen mittels Leerlauf-Regeln und multiamalgamierten Regeln bieten zwar auch
hier schon eine gute Basis, allerdings fehlen unter anderem praktikable Ansétze fur die Mo-
delltransformation zwischen mehrere Quell- und Zielmodellen. Wiederverwendbarkeit von Re-
gelteilen und multiple Quell- und Zielmodelle sind wichtige Voraussetzungen, um Tripel-Graph-
Grammatiken fit flr reale Einsatzszenarien zu machen. Im Folgenden sollen zwei Transfor-
mationsansatze angerissen werden, die in ihrem Rahmen L&sungen fir diese offenen Punkte
anbieten.

Das Visual Automated model TRAnsformations Framework - kurz VIATRA [Ber+15; RL07] ist
eine Graftransformationserweiterung fir Eclipse. Es ermdglicht eine ereignisgetriebene Mo-
delltransformation, die auf Anderungen im Modell direkt reagiert. Zwei Arten von Ereignissen
werden dabei unterschieden; explizite Aufrufe der Regelbearbeitung, sogenannte kontrollierte
Ereignisse und beobachtete Ereignisse wie zum Beispiel Modellanderungen. VIATRA bietet ein
breites Spektrum an Wiederverwendungskonzepten bei der Gestaltung der Regeln. So kdnnen
Regeln die Bearbeitung anderer Regeln anstoBen. Dies ermdglicht ein Kaskadieren von Re-
geln und ein Auslagern mehrfach benétigter Regelbestandteile in separate Regeln. Eine Regel

54

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

5.2 Alternative Ansétze

kann dabei nicht nur andere Regeln sondern auch die eigene Bearbeitung ansto3en, wodurch
eine rekursive Regelbeschreibung ermdglicht wird. Auch erlaubt VIATRA die Definition von al-
ternativen Regelbestandteilen, die auf Basis einer booleschen Bedingung nach dem Schema
WENN-DANN-SONST angewendet werden. Hierdurch lassen sich, &hnlich einer Amalgamie-
rung von TGG-Produktionen, zwei nahezu identische Regeln zu einer zusammenfassen. Ne-
ben der reinen Wiederverwendbarkeit spielt hier auch die Zeitersparnis bei der Regelauswer-
tung eine groBe Rolle, da der Regelteil vor der Alternative nur einmal gebunden werden muss
und anschlieBen sowohl fiir die WENN-Variante als auch fiir die SONST-Variante zur Verfigung
steht. Die Bereitstellung von Graphmustern stellt eine weitere Méglichkeit zur Wiederverwen-
dung dar. Graphmuster sind prototypische Ausschnitte aus einem Instanzmodell, die bei der
Regelanwendung injektiv auf Modellstrukturen abgebildet werden, d.h. die Elemente des Mus-
ters werden auf disjunkte Elemente im Modell abgebildet. Ist eine solche Abbildung erfolgreich,
werden die Modellobjekte fiir die Regelanwendung gebunden und es kann innerhalb der Regel
darauf zugegriffen werden. Besonders effizient sind die Graphmuster, wenn sie in mehreren
Regeln zur Anwendung kommen oder wenn sie als Teile in anderen Mustern angewendet wer-
den. Auch bei der Beschreibung von Mustern sind Rekursion und Alternativen erlaubt.

Auch die OMG stellt mit der sogenannten QVT - Query/View/Control Sprachen fir die Modell-
transformation zur Verfligung [MOF-QVC]. QVT besteht aus den deklarativen Sprachen QVT-
Relations und QVT-Core, sowie der imperativen Sprache QVT-Operational. QVT-Core stellt
einen kleinen, sehr kompakten Sprachumfang fir die Beschreibung von Modellzusammenhén-
gen zur Verfugung. Der verringerte Sprachumfang vereinfacht die spezifikationsgetreue Rea-
lisierung von QVT-Core. Dies geschieht jedoch zu Lasten der Benutzerfreundlichkeit, da die
Beschreibung von Modellzusammenhéngen vergleichsweise kompliziert ist. Flr den Entwick-
ler einer QVT-basierten Modelltransformation spielt QVT-Relations mit seinem benutzerfreund-
licheren Sprachumfang die gréBer Rolle. Hiermit lassen sich Relationen zwischen Modellen be-
schreiben. Diese kdnnen mit imperativen Elemente aus QVT-Operational angereicht werden.
Fir die Anwendung einer Modelltransformation, werden die mit Hilfe von QVT-Relations be-
schriebenen Modellzusammenhange zunéachst in QVT-Core Ubersetzt. QVT-Core bildet daher
den ,Bytecode* fiir die ,Hochsprache QVT-Relations. Fir diese Arbeit von besonderem Inter-
esse sind die Unterstlitzung von multiplen Quell- und Zielmodellen, sowie die Mdglichkeit der
Inplace-Transformation. Im Bereich der Wiederverwendbarkeit sticht insbesondere das Templa-
tekonzept von QVT hervor. Templates beschreiben einfache oder komplexe Muster im Quell-
oder Zielmodell und versehen diese mit einem Namen. Dadurch lassen sich diese Muster in
verschiedenen Relationen Ulber das Schliusselwort ,Domain®“ und den Namen des Templates
wiederverwenden.

Beide Ansétze, sowohl VIATRA als auch QVT erlauben das L&schen von Modellelementen.
Dies ist bisher bei Tripel-Graph-Grammatiken noch nicht in zufriedenstellender Weise méglich.
Zwar laufen hierzu erste Untersuchungen, jedoch sind die bisher dazu veréffentlichten Ergeb-
nisse noch sehr vage [KWO07], es fehlen Beweise zum Erhalt der formalen Eigenschaft von
Tripel-Graph-Grammatiken und es kommt zu Performanceproblemen [GPR11].

55

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fir die
Automatisierungstechnik

In den vorangegangenen Kapiteln wurden das Potential sowie die Voraussetzungen fir ei-
ne Modelltransformation in der Automatisierungstechnik beleuchtet und gezeigt, dass Tripel-
Graph-Grammatiken den an eine solche Transformation gestellten Anforderungen besonders
gut gerecht werden. Um Tripel-Graph-Grammatiken innerhalb prozessleittechnischen Laufzeit-
umgebungen nutzbar zu machen, bedarf es allerdings einer Integration in die gédngigen Spra-
chen der Automatisierungstechnik. Die ACPLT-Modelltransformation (ACPLT/MT) bietet diese
Integration. In diesem Kapitel wird zunachst ein Uberblick tiber die getroffenen Designentschei-
dungen gegeben, die die Entwicklung von ACPLT/MT beeinflusst haben. Das daraus entstan-
dene plattformunabhangige Modell sowie seine plattformspezifische Realisierung auf Basis von
ACPLT/FB werden anschlieBend néher beleuchtet.

6.1 Grundlegende Design-Entscheidungen

In der Automatisierung von Anlagen kommen meist Speicherprogrammierbare Steuerungen
(kurz SPS) zum Einsatz. Diese zeichnen sich durch vergleichsweise niedrige Speicher- und
Performance-Werte aus. Zudem stehen zur Programmierung von SPSen ausschlieBlich die
Sprachen der IEC 61131-3 [IEC61131] zur Verfigung. Insbesondere die streng zyklische Be-
arbeitung einzelner Softwarekomponenten unterscheiden diese Sprachen von géngigen Pro-
grammiersprachen. Taktzyklen von 10ms bis runter zu 10us (in der Fertigungstechnik) so-
wie die von SPSen erwartete Echtzeitfahigkeit erfordern eine modulare und unterbrechbare
Programmierung. Um die zu realisierende Automatisierungsfunktion auf einer SPS zur Verfi-
gung zu stellen, muss das zu entwickelnde Konzept daher eine Portierung von Tripel-Graph-
Grammatiken in die Welt der IEC 61131-3 beinhalten.

Der gravierendste Unterschied von ACPLT/MT zu anderen TGG-Anséatzen zeigt sich im Aufbau
und der Anwendung der TGG-Produktionen. Neben der Verwendung der verkirzten Schreib-
weise von Tripel-Graph-Grammatiken setzt ACPLT/MT auf sogenannte aktivierbare Regeln.
Diese werden, weder wie beim Standardansatz in operationale Regeln bersetzt, noch wer-
den die Produktionen mittels Interpreter ausgewertet. Stattdessen sind die einzelnen Elemente
einer ACPLT/MT-Regel Objekte in der SPS und enthalten imperativen Code, der sie beféhigt
bestimmte Teilaufgaben der Transformation wie das Suchen oder Erstellen von Objekten und
Links selbststandig durchzuflihren. Um dies realisieren zu kénnen, sind die Elemente der lin-
ken und rechten Doméne, anders als bei Tripel-Graph-Grammatiken Ublich, keine Elemente
aus den jeweiligen doménenspezifischen Sprachen, sondern modellneutrale Repréasentanten,

56

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.1 Grundlegende Design-Entscheidungen

. SystemidrinCiass
<. Camiaing »

T 2 houstofeouent
| e Comtaing >> _e
b) «:‘c_.mm . i
<< e = = \ \ oae i .
¥ e Contain, | hsusiedogsipen | | Deklarative Ebene
g \ TP .
<t "'—““f’) Operationale Ebene
"2 .\ Kommandostruktur

Abbildung 6.1: Funktionsebenen eines ACPLT/MT-Pattern

die mit den erwarteten Eigenschaften, wie Klasse, vorhandene Attribute oder Verlinkungen pa-
rametriert werden kénnen. Diese schwache Typisierung Uber Reprasentanten erméglicht es,
dass die Reprasentanten Code zur Durchfiihrung der Modelltransformation enthalten.

ACPLT/MT-Regeln liegen zunéchst als passive Objektstrukturen vor, werden also nicht zyklisch
ausgeflhrt. In diesem passiven Zustand werden die enthaltenen imperativen Anweisungen
nicht ausgefiihrt und die MT-Regel steht als bidirektionale deklarative Regel zur Verfligung.
Wird eine ACPLT/MT-Regel aktiviert, wird sie in die zyklische Bearbeitung eingebunden und
dadurch zur operativen Regel. Dieses Design hat den Vorteil, dass keine operationalen Kopien
der deklarativen Regeln erstellt werden missen. Auch ein Interpreter wird hierbei nicht bend-
tigt. Die Aktivierung einer Regel erfolgt durch Ubergabe eines Richtungsparameters und eines
Aktivierungskommandos. Ersteres legt fest, ob ein Vergleich, eine Vorwérts- oder eine Rick-
wartstransformation der beiden Modelle durchgefiihrt werden soll. Das Aktivierungskommando
versetzt die Objekte der ACPLT/MT-Regel in den aktiven Zustand und 16st die Bearbeitung der
imperativen Anweisungen aus. Hierbei werden jedoch nicht alle Objekte einer Regel gleich-
zeitig aktiviert. Vielmehr sind die einzelnen Objekte Uber zusétzliche Assoziationen zu einer
Kommandostruktur miteinander verknlpft. Zur Laufzeit werden zunéachst die Objekte angesto-
B3en, die in der Kommandostruktur fiihrend sind. Diese bearbeiten ihre interne Logik und stoBen
anschlieBend die Objekte an, die ihnen in der Kommandostruktur untergeordnet sind. Wir spre-
chen im weiteren Verlauf von einer Auftraggeber-Auftragnehmer-Beziehung, in der das Objekt,
das in der Kommandostruktur Uibergeordnet ist als Auftraggeber und das untergeordnete Ob-
jekt als Auftragnehmer bezeichnet wird. Eine ACPLT/MT-Regel besitzt daher drei verschiedene
Funktionsebenen (vgl. Abbildung 6.1). Neben der Repréasentation der Modellzusammenhange
zwischen linker und rechter Doméne, der deklarativen Ebene, reprasentieren die gleichen Ele-
mente auch die Ausflihrungslogik in Form der operationalen Regel sowie die Kommandostruk-
tur.

Neben den Anpassungen aus Platz- und Performancegriinden, spielen aber auch strukturel-
le Besonderheiten eine groBe Rolle fir die Integration von Tripel-Graph-Grammatiken in die
prozessleittechnische Laufzeitumgebung. Da innerhalb der SPS alle Modelle in einer baumar-
tigen Struktur mit gemeinsamen Wurzelknoten organisiert sind, ist jede Transformation zwi-
schen zwei dieser Modelle per se erstmal eine potentielle Inplace-Transformation. Ein weiteres
Problem stellt die Anforderung der Automatisierungstechnik nach Transformationen zwischen
mehreren Quell- und Zielmodellen dar. Im Anwendungsszenario S1 treten beide Problemfalle
zu Tage.

57

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

Beispiel 6.1 Anwendungsszenario S1 benétigt fiir die Auswertung des Anlagenzustandes die
Struktur der Anlage und den aktuellen Anlagenzustand. Ersteres wird durch PandIX, zweiteres
durch die Prozessfiihrung, in unserem Fall ACPLT/PF, bereitgestellt. Der Stand dieser beiden
Modellinstanzen wird abgeglichen mit der Anzeige auf der Bedienoberfldche und in Szenario
S1.c) zusétzlich mit der Prozessfiihrung selbst zum Sperren oder Freigeben eines Aktors.

Sowohl Inplace-Transformationen als auch multiple Quell- und Zielmodelle sind mit Tripel-
Graph-Grammatiken zun&chst nicht zu vereinbaren. Um die Integration von Tripel-Graph-
Grammatiken in die Welt der Automatisierungstechnik zu ermdglichen, bedarf es einer ge-
naueren Analyse, unter welchen Bedingungen Tripel-Graph-Grammatiken trotzdem zum Ein-
satz kommen kdnnen und wo die Grenzen der Einsatzfahigkeit erreicht sind. So muss der
gemeinsame Wurzelknoten aquivalent zum leeren Modell behandelt werden. Er ist nicht Teil
der einzelnen Modelle und darf als Kontextelement in allen drei Domanen verwendet werden.
Es darf jedoch keine TGG-Produktion geben, die den Wurzelknoten erzeugt. Zudem muissen
die Modelle zusétzliche Eigenschaften erfiillen, um Inplace-Transformationen zu vermeiden.

Definition 6.1 (Klassendisjunkte Modelle) Zwei objektorientierte Modelle MM, und MM,
sind klassendisjunkt, wenn die Menge der Klassennamen disjunkt sind. Klassendisjunkte Mo-
delle kénnen zum Beispiel durch die Angabe von vollstdndig qualifizierte Klassennamen forciert
werden.

Um Tripel-Graph-Grammatiken auf Modelle anzuwenden, die unter einem gemeinsamen Wur-
zelknoten organisiert sind, miissen die Modelle klassendisjunkt sein. Neben der Verwendung
von klassendisjunkten Modellen muss verhindert werden, dass Verlinkungen zwischen den
beiden Modellen erzeugt werden. Assoziationen sollen allerdings nicht dahingehend einge-
schrankt sein, dass die Assoziationsnamen der beiden Modelle disjunkt sind. Dadurch wiirden
zwar Querverbindungen unterbunden, allerdings wéaren elementare Assoziationen wie ,enthalt*
oder auch Verbindungen zwischen Aus- und Eingangsvariablen der Funktionsbausteine nicht
mehr doméanenibergreifend einsetzbar. Um Links zwischen den beiden Modellen dennoch un-
terbinden zu kénnen, wird die Verwendung von Assoziationen in den TGG-Produktionen da-
hingegen eingeschrankt, dass sie nur gemeinsam mit allen durch sie verbundenen Klassen
verwendet werden dirfen. Mit dieser Einschrankung kann folgende Eigenschaft zugesichert
werden:

Behauptung 6.1 Eine Transformation mittels Tripel-Graph-Grammatiken zwischen zwei Mo-
dellen klassendisjunkter Modelle kann als Outplace-Transformation behandelt werden, auch
wenn die Modelle (iber einen gemeinsamen modellexternen Wurzelknoten verfiigen.

Anders ausgedruckt heit das, dass Objekte und Links, die durch Pattern der linken Seite
erzeugt werden, weder durch Pattern der rechten Seite erzeugt werden kénnen noch als Kon-
textelemente des rechten Patterns gefunden werden kénnen. Das Gleiche gilt sinngemaf fir
Objekte und Links, die durch Pattern der rechten Seite erzeugt werden.

58

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.1 Grundlegende Design-Entscheidungen

Beweis 6.1 Angenommen, es gibt eine Objekt O, das sowohl durch die linke Teilproduktion ei-
ner TGG-Produktion als auch durch die rechte Teilproduktion der gleichen oder einer anderen
TGG-Produktion gefunden oder erzeugt werden kann. Da die linke Teilproduktion nur Klassen
des Modells der linken Doméane enthalten, muss O eine Instanz einer solchen Klasse sein.
Mit der gleichen Begriindung muss es aber auch Instanz einer Klasse des Modells der rech-
ten Doméne sein. Da die Menge der Klassennamen der linken und rechten Doméne jedoch
klassendisjunkt sein sollen, kann ein solches Objekt O nicht existieren.

Angenommen, es gibt einen Link L, der sowohl durch eine linke Teilproduktion einer TGG-
Produktion als auch durch eine rechte Teilproduktion derselben oder einer anderen TGG-
Produktion gefunden oder erzeugt werden kann. Da eine Assoziation immer im Zusammen-
hang mit den durch sie verknlipften Klassen in einer TGG-Produktion verwendet werden muss,
mlissen die durch den Link verbundenen Objekte O, O2 Instanzen der entsprechenden Klas-
sen sein. Der obigen Argumentation folgend kénnen O, und O aber nur entweder durch linke
oder rechte Teilproduktionen gefunden oder erzeugt werden. Auch wenn der Link an sich in
beiden Doménen gefunden oder erzeugt werden kénnte, in Kombination mit den verlinkten
Objekten ist er eindeutig einer Doméne zuzuordnen. Ein solcher Link L kann daher nicht exis-
tieren.

Auch Querverbindungen zwischen den Modellen sind dadurch ausgeschlossen, da eine Quer-
verbindung Objekte verbinden wiirde, von denen eines eine Instanz einer Klasse des linken
Modells wére und das andere eine Instanz einer Klasse des rechten Modells. Angenommen
ein solcher Link wiirde durch eine rechte Teilproduktion erzeugt. Dann misste diese auch ei-
ne Klasse enthalten, die das Objekt erzeugt oder findet, das zum linken Modell gehért. Dies
ist aber nicht méglich, da die Modelle klassendisjunkt sind. Gleiches gilt sinngemas3 fiir das
Erzeugen des Links in einer linken Teilproduktion.

Fir den Nachweis, dass Tripel-Graph-Grammatiken unter bestimmten Umstanden auch fiir n-
zu-m Transformationen zum Einsatz kommen kénnen, werden sogenannte Kombinationsmo-
delle eingefiihrt:

Definition 6.2 (Kombinationsmodell) Seien M, ... M, Modelle mit den durch sie erzeug-
baren Modellinstanzen my ... my 4, ..., My1...m,,. Ein Kombinationsmodell KM, _,, ist ein
Modell, das alle Kombinationen von Modellinstanzen der kombinierten Modelle erzeugen kann.

Bei der Verwendung von Graph-Grammatiken wird ein Kombinationsmodell durch die Ver-
schmelzung der einzelnen Grammatiken zu einer gemeinsamen Grammatik erzeugt. Diese
Verschmelzung umfasst folgende Punkte

o die Menge der Knoten-/Kantenbeschriftungen der kombinierten Grammatik ist die Verei-
nigung der Knoten-/Kantenbeschriftungen aller verschmolzenen Grammatiken

o die Menge der Produktionen der kombinierten Grammatik ist die Vereinigung der Produk-
tionen aller verschmolzenen Grammatiken

Mit Hilfe dieser Kombinationsmodelle l&sst sich zeigen, dass unter der Voraussetzung der klas-
sendisjunkten Modelle fiir die linke und rechte Doméne Tripel-Graph-Grammatiken auch auf
n-zu-m Transformationen angewendet werden kénnen:

59

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

Behauptung 6.2 Tripel-Graph-Grammatiken kénnen auf n-zu-m Transformationen angewen-
det werden, wenn die Modelle der linken und der rechten Domé&ne klassendisjunkt sind.

Beweis 6.2 Die Modelle der linken, respektive rechten Doméne kénnen zu Kombinationsmo-
dellen KMy, und KMy, verschmolzen werden. Dadurch kann die Transformation auf eine 1-zu-1
Transformation abgebildet werden. Durch die klassendisjunkten Modelle kénnen unerwiinschte
Inplace-Transformationen auch im Setting der SPS ausgeschlossen werden.

Sind die Modelle der linken und der rechten Doméne klassendisjunkt, bleiben daher auch
bei einem gemeinsamem Wurzelknoten oder der n-zu-m Transformation alle fir Tripel-Graph-
Grammatiken zugesicherten Eigenschaften erhalten.

Schwieriger gestaltet sich die Situation, wenn Modelle doménenibergreifend verwendet wer-
den. Dies bringt nicht absehbare Probleme mit sich und ist mit Tripel-Graph-Grammatiken nicht
realisierbar. Bei ACPLT/MT wird jedoch auch die Beschrankung auf klassendisjunkte Model-
le nicht per se gefordert. Stattdessen wird bei der domé&nenibergreifenden Verwendung von
Modellen eine Warnung an den Benutzer ausgegeben. Diesem steht es dann frei, bewusst
die Welt der Tripel-Graph-Grammatiken zu verlassen und die damit verbundenen Risiken ein-
zugehen. Das Sperren und Freigeben eines Aktors aus dem Anwendungsszenario S1 ist ein
solcher Fall, bei dem die Modelle der linken und rechten Doméne nicht klassendisjunkt sind,
da ACPLT/PF in beiden Doménen zum Einsatz kommt. Der Rest des Szenarios hingegen kann
mittels Tripel-Graph-Grammatiken realisiert werden.

Die Amalgamierung wurde nicht realisiert, da sich diese nur schwer mit dem Konzept der akti-
vierbaren Tripel-Graph-Grammatiken vereinbaren lasst.

Abbildung 6.2 zeigt eine Ubersicht lber die Struktur des ACPLT/MT-Frameworks und den zur
Verfigung stehenden Klassen. Hier zeigt sich eine weitere Besonderheit von ACPLT/MT. Zu-
satzlich zu den drei Ublichen Teilproduktionen fir die linke, die rechte und die Korrespondenz-
domane besitzen ACPLT/MT-Regeln noch ein weiteres, sehr kompaktes Triggerpattern. Dieses
erzeugt bei der Ausflihrung keinerlei Objekte. Es dient dazu, &hnlich wie bei VIATRA, die Be-
arbeitung einer Regel gezielt anzustoBen oder auf ein Ereignis zu reagieren. Dieses Design
verringert die Anzahl der aktiven Objekte, die in der SPS bearbeitet werden miissen. Zudem
kann so zugesichert werden, dass zu einem beliebigen Zeitpunkt immer nur eine Regel ak-
tiv ist. So werden zwar alle Triggerpattern parallel ausgewertet, schlagt aber ein Trigger an,
wird die Triggerauswertung unterbrochen und die zum Trigger gehdrige Regel angewendet. Im
Abschnitt 6.5 wird auf das Konzept der Triggerpattern nochmals im Detail eingegangen.

Die Klassen von ACPLT/MT sowie ihre Auspragung in der deklarativen Ebene, der operationa-
len Ebene und der Kommandostruktur werden im Folgenden im Detail vorgestellt.

6.2 Deklarative Ebene

ACPLT/MT-Regeln orientieren sich in ihrem Grundaufbau an der verkiirzten Schreibweise
von TGG-Produktionen, die jeweils ein Pattern flr die linke und rechte Doméne sowie ein

60

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

ACPLT/MT 1 Template * MT-Template MT-Pattern
Datenbank
1 Regelbasis <>—*{ MT-Regel <>—1-{ MT-Kopfelement

7
1| Scheduling- r 4 N
(a) Struktur des ACPLT/MT-Frameworks
MT-Element
+Kontext: ~ Bool
+RepKlasse: String
N
Ziel ‘ I]
- Obi <<Ziel>>
+Obm:rg::e8|::mg «—<<Quelle>> MT-Link ‘ MT-Variable H Modifikator
Vi .
—r— 7
vav ‘ E2E ‘ MT-CLink ‘
[\ |
’ MT-MetaVar ’ MT-Platzhalter MT-Verzweigung ‘ MT-Logik ‘ MT-Kopfelement
A\
——
MT-Wahr ‘ MT-Nicht

(b) ACPLT/MT-Elemente

Abbildung 6.2: ACPLT/MT-Komponenten im Uberblick

Pattern fur die Korrespondenzdomane besitzen. So lange ACPLT/MT als Realisierung von
Tripel-Graph-Grammatiken zum Einsatz kommen, wird synonym zum Begriff Pattern der Be-
griff Teilproduktion verwendet. Wie auch beim zu Grunde liegende Konzept der Tripel-Graph-
Grammatiken, sind die Pattern Graphen, die die Strukturen der korrelierenden Modelle sowie
die der Korrespondenzdoméane abbilden. Wie in Abbildung 6.2b ersichtlich, stehen spezielle
ACPLT/MT-Elemente fiir die Reprasentation von Objekten, Links und Variablen zur Verfi-
gung. Abbildung 6.3 zeigt, wie diese genutzt werden, um Suchmuster zu beschreiben. Die
gesuchten Modellobjekte sind in diesem Fall zwei geschachtelte Funktionsbausteine N1 und p
(vgl. Abbildung 6.3a), wobei fir N1 verlangt wird, dass es zum einen eine Instanz der Klasse
ActuatorRequest ist und zum anderen mindestens zwei Eingangsvariablen SignalCode
und FunctionCode zur Verfugung stellt. Typ und Wert dieser Variablen sind in diesem Bei-
spiel nicht von Interesse. Das gesuchte Modellobjekt P muss in N1 eingebettet und eine
Instanz der Klasse ActuatorProcessInterface sein. Fur die Musterbeschreibung stehen
in ACPLT/MT drei Darstellungen zur Verfligung, die an die Ubliche Darstellung der deklarativen
TGG-Produktionen angelehnte Objektdarstellung, die an FBDs angelehnte Funktionsblock-
darstellung und die gemischte Darstellung, in der Elementen der Objektdarstellung und der
Funktionsblockdarstellung gemeinsam verwendet werden. In der Objektdarstellung werden
MT-Links zur besseren Lesbarkeit durch Pfeile reprasentiert, die mit dem Namen der Assozia-
tion beschriftet sind. Ist kein Name angegeben, so handelt es sich implizit um eine enthélt-
Beziehungen (RepKlasse="contains"). Falls ein entsprechender Link durch die Regel im
Modell erzeugt wird, ist der Pfeil mit einem ,+“markiert. Quelle und Ziel des reprasentierten
Links sind durch die Pfeilrichtung gekennzeichnet.

61

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

[N1: ActuatorRequest ‘ ar MT-Objekt ar: MT-Objekt
“Komext = false
SignalCode + RepKiasse = "ActuatorRequest”
) + - false [__| Kontext
FunctionCode >»| ObjName: MT-MetaVar Act. [] RepKlasse
P: ActuatorP... + SignalCode: MT-Variable * [2.7] ObjName p: MT-Objekt
+ 9[FunctionCode: MT-Variable‘ + Bl SignalGode et
M FunctionCode
p: MT-Objekt Em Act.. RepKlasse
+ + Kontext = false P ObjName
+ = “ActuatorP 3
ObjName = P*
(a) Gesuchte Modellobjekte (b) Objektdarstellung (c) Funktionsblockdarstellung

Abbildung 6.3: Verwendung von MT-Objekt und MT-Variable zur Musterbeschreibung

MT-Variablen dienen zur Représentation von Variablen im Modell. Eine Ausnahme stellt die MT-
Variable ObjName dar, die den Namen des Modellobjektes reprasentiert. MT-Variablen kénnen
in der Objektdarstellung entweder als eigenstéandiges Objekt oder als Variable des (ibergeord-
neten MT-Objektes dargestellt werden. Gleiches gilt auch fiir die Metavariablen, wie Kontext
und RepKlasse. Metavariablen besitzen keine Entsprechung in den zu durchsuchenden Mo-
dellen, sondern dienen der Parametrierung der MT-Elemente. So bedingt die Verwendung von
speziellen MT-Elementen an Stelle von Elementen aus den domé&nenspezifischen Sprachen
eine schwache Typisierung Uber die Metavariable RepKlasse. Fir die Kennzeichnung von
Kontextelementen bzw. Elementen, die durch die Regel erzeugt werden, steht die Metavaria-
ble Kontext zur Verfligung, wobei Kontext=false der Markierung ,++" entspricht. Bei MT-
Variablen wird zudem Uber die Metavariable Typ, der erwartete Datentyp und Uber die Metava-
riable value der erwartete Variablenwerte angegeben. Fir Metavariablen ist eine Parametrie-
rung mit Jokerzeichen mdglich, um eine entsprechende Variabilitdt zu kennzeichnen (vgl. Abbil-
dung 6.3c: ObjName, SignalCode und FunctionCode). Die Parametrierung einer Metavaria-
blen durch ein Asterisk kann in beiden Darstellungen auch durch Weglassen der entsprechen-
den Metavariablen verdeutlicht werden. Auf MT-Variablen und Metavariablen kann innerhalb

su: MT-Objekt [g: MT-Objekt
+ Kontext = true mni: V2V + Kontext

+ RepKlasse = "SystemUnitClass”

+ RepKlasse

false [Kontext

ObjName: MT-Variable ObjName: MT-Variable

ar: MT-Obijekt +5) at: MT-Objekt
+ + Kontext = false + Kontext = false
+ RepKlasse = “ActuatorRequest” + RepKlasse = “ActuatorTemplate”
mti: V2V
SignalCode: MT-Variable ————— N -
[+ Kontext = false] + 1t: MT-Objekt
" : | + Kontext = false
FunctionCode: MT-Variable + RepKlasse = “RemoteTemplate”
p: MT-Objekt +

SignalCode: MT-Variable
+ + Kontext false

+repKlasse = "ActuatorProcesslinterface” mt2: V2V +I>
+ ObjName =P FunctionCode: MT-Variable
+ Kontext = false

Abbildung 6.4: ACPLT/MT-Regel flir das Anlegen einer PLT-Stelle

der Regel zugegriffen werden. Dies wird durch einfache Linien gekennzeichnet. Abbildung 6.4
verdeutlicht dies anhand der Einbettung des vorgestellten Suchmusters im Gesamtzusammen-
hang einer ACPLT/MT-Regel. Die Abbildung zeigt beispielhaft die ACPLT/MT-Représentation
der TGG-Produktion aus Abbildung 5.5a, bei der unter anderem das Objekt mn2 sicherstellt,

62

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

dass der ActuatorRequest im Modell der linken Doméane den gleichen Namen hat, wie das
ActuatorTemplate der rechten Doméne. Dazu wird entlang der Korrespondenzlinks eine
Weitergabe des Objektnamens in Richtung der Regelauswertung realisiert. Zudem kommen in
der Teilproduktion fur die Korrespondenzdomane spezielle Unterklassen von MT-Objekt zum
Einsatz, die mit je mindestens einem MT-Element aus der Quell- und aus der Zieldoméne lber
spezielle MT-Links assoziiert sind. Anders als bei Tripel-Graph-Grammatiken Ublich, sind im
Basismodell von ACPLT/MT genau zwei Klassen fir die MT-Objekte der Korrespondenzdoma-
ne, E2E und v2V vorgesehen. Ersteres verbindet Elemente der beiden Domanen miteinander
ohne Einschrankungen zu Klasse, Elementname oder Typ des Elements. Existiert das durch
das Korrespondenzobijekt verlinkte Objekt in der linken Doméne, so muss eine Entsprechung
flr das MT-Objekt in der rechten Doméane gefunden bzw. erstellt werden. Korrespondenzobjek-
te vom Typ v2V verbinden zwei MT-Variablen miteinander, die den gleichen Datentyp und den
gleichen Wert besitzen. In der Objektdarstellung ist auch eine Verknlpfung zweier MT-Objekte
mittels v2v méglich. Dies bezieht sich jeweils auf die MT-Variable Ob jName, die aus Platzgrin-
den und zur besseren Lesbarkeit nicht immer einzeln aufgefiihrt wird. Die Beschrénkung auf
die beiden Klassen von Korrespondenzobjekten E2E und v2v erméglicht den flexiblen, model-
lunabhangigen Einsatz von ACPLT/MT.

Wie am Anfang des Kapitels erwahnt, ist ACPLT/MT auf Performance und Platzoptimierung
ausgelegt. Die bisher vorgestellten Elemente wirken durch ihre Granularitét diesem Ziel jedoch
eher entgegen. Wéhrend zum Beispiel in der TGG-Produktion flr PLT-Stellen (Abbildung 5.5a)
ein Korrespondenzobjekt vom Typ MT1 reichte, benétigt die ACPLT/MT-Variante drei Korrespon-
denzobjekte und entsprechend viele Links, um die gleiche Relation darzustellen. Zuséatzlich zu
den Reprasentanten fir Objekte, Links und Variablen gibt es daher noch eine Reihe weiterer
MT-Elemente, die unter dem Begriff MT-Modifikatoren zusammengefasst werden. Diese haben
keinen direkten Bezug zum Quell- oder Zielmodell. Stattdessen modifizieren sie die Abarbei-
tung der Regel. Einer dieser Modifikatoren, die Metavariablen (MT-MetaVar) wurden bereits
vorgestellt.

Auch die Wiederverwendung von Regelteilen (MT-Platzhalter) und Verzweigungen in den de-
klarativen Regeln (MT-Verzweigung) werden mit Hilfe von Modifikatoren realisiert. Diese beiden
Konzepte stellen eine Erweiterung der bisherigen Tripel-Graph-Grammatik-Ansétze dar. Platz-
halter beschreiben, ebenso wie QVT-Templates, komplexe Objektnetzwerke, die in verschiede-
nen Regeln oder in einer Regel mehrfach verwendet werden kénnen. Sie werden wahrend der
Ausflhrung der Transformation durch die entsprechenden Objektnetzwerke ersetzt, so dass
zum Ausflihrungszeitpunkt zeitweise die komplette Regel im System vorliegt. Dies ermdglicht
eine TGG-konforme Verwendung von Platzhaltern. Verzweigungen ermdglichen in deklarati-
ven ACPLT/MT-Regeln die Beschreibung von mehreren alternativen Regelvarianten. Dadurch
kénnen Regeln mit gemeinsamer Oberklasse zusammengefiihrt und Anjorins Vererbungskon-
zept umgesetzt werden. Verzweigungen werden dabei immer paarweise verwendet, eine in der
linken und eine in der rechten Doméane. Paare von Verzweigungen sind jeweils gleichgeschal-
tet, d.h. wenn in der Verzweigung der linken Teilproduktion die erste Alternative zum Einsatz
kommt, so muss dies auch fir die Verzweigung in der rechten Teilproduktion gelten. Zum Zeit-
punkt der Transformation ist immer maximal ein Paar an Alternativen aktiviert und es liegt so-
mit eine TGG-konforme Regel vor. Beide Erweiterungen, die Einflihrung von Platzhaltern und

63

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

‘ temp1: MT-Template |

[)

DSL1 DSL2 -]

v2: Vv
DSL1 DSL2

v3: V2V
DSL1 DsL2

(a) templ-Template

su: MT-Objekt mn1: V2V q: MT-Objekt
+ Kontext = true * + Kontext = true
+ RepKlasse = “SystemUnitClass” +Kontext = true + RepKlasse = “Group”

ObjName: MT-Variable ObjName: MT-Variable

p: MT-Platzhalter

ar: MT-Obijekt temp1[__] TemplateName at: MT-Objekt
+ Kontext = false + Kontext = false
+ RepKlasse = “ActuatorRequest” + RepKlasse = "ActuatorTemplate”
SignalCode: MT-Variable + rt: MT-Objekt
" : + Kontext = false
FunctionCode: MT-Variable + RepKlasse = “RemoteTemplate”

: MT-Objekt SignalCode: MT-Variable
+ Kontext = false
+ repKlasse = "ActuatorProcessinterface”
+ObjName ~ =*P” FunctionCode: MT-Variable

(b) Regel mit temp1-Platzhalter

Abbildung 6.5: Template-/Platzhalterkonzept von ACPLT/MT

die Verwendung von Verzweigungen dienen neben der Effizienzsteigerung auch der besseren
Nachvollziehbarkeit und Wartbarkeit der Regeln.

Platzhalter Beim Einsatz von ACPLT/MT konnte immer wieder beobachtet werden, dass Teil-

muster sich in verschiedenen Regel wiederholen. Das Auslagern von Teilmustern in Tem-
plates und die spatere Referenzierung mittels Platzhaltern ist in anderen Modell- bzw.
Graphtransformationsansatzen wie VIATRA und QVT léngst Standard. Bei Tripel-Graph-
Grammatiken kommt ein solches Konzept bisher nicht zum Einsatz. Zwar erlaubt das
Vererbungskonzept von Anjorin, Teile der Regel wiederzuverwenden, die Vererbung ist je-
doch auf eine Oberklasse beschrankt. Platzhalter lassen sich in ACPLT/MT fir beliebige
Teile einer TGG-Regel erstellen. Abbildung 6.5a zeigt die Kapselung dreier v2v-Objekte
in einem Template. Templates mussen alle spéter in der Regel bendtigten Anknipfungs-
punkte flr Links nach auBen als Ein- bzw. Ausgénge sichtbar machen. Die Mdglichkeit
der Wiederverwendung von Templates und die erhdhte Lesbarkeit der Regeln durch Ver-
wendung aussagekraftiger Templatenamen machen das Template-/Platzhalterkonzept zu
einem auBert sinnvollen Hilfsmittel bei der Gestaltung von Regeln. Fiir Anbieter von Au-
tomatisierungssoftware bietet das Template-/Platzhalterkonzept zudem die Mdéglichkeit
vorgefertigte Regelbestandteile als Template-Datenbank bereitzustellen und Applikateu-
ren dadurch die Erstellung der Regeln weiter zu vereinfachen.

Verzweigung Eine ACPLT-MT Umsetzung des Vererbungskonzeptes von Anjorin ist die Ver-

wendung von MT-Verzweigungen. Anstatt Klassen zu bilden, werden hierbei jedoch alle
Unterklassen in eine gemeinsame Regel abgebildet. Dies ist nétig, um dem Konzept der
aktivierbaren Regeln gerecht zu werden. MT-Verzweigungen basieren auf der Beschrei-

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.2 Deklarative Ebene

[mntvav | g: MT-
mRiiVEV ! MT-Objekt |
+ Kontext = true ‘ - ontext Ce

+ RepKlasse = “Group ‘
mn2: V2v

+ Kontext
+ RepKlass

temUnitClass’

ar: MT-Objekt at: MT-Obijekt |

]

+ Kontext ru P— — + Kontext = true
+ RepKlas: ‘ActuatorRequ - e + RepKlasse = “ActuatorTemplate’
p: MT-Objekt rt: MT-Objekt
+ Kontext e € > rue
+ repKlasse ‘ActuatorProcesslInterface’ RemoteTemplate’
+ObjName =P’
vr: MT-Objekt VAV ; vt: MT-Obijekt
+ Kontext alse Tl T ——— + Kontext alse
+repKlasse = "ValveRequest’ 2 L+ Kontext = faise | +RepKlasse = "ValveTemplate’
=]
v . ;
T-Objekt V[e | 1Y lo1: MT-Obiekt
+ Kontext false + Kontext false : s""‘Kelx' ifi!se“
+repKlasse = “ActuatorinputPoint’ | + epKlasse = “Line
+ObjName ~ ="Y"

(a) ACPLT/MT-Regel zum Anlegen eines Ventils
mni: V2V ‘ 9: MT-Objekt |

- Kontext e || +Kontext =true
: . + RepKlasse = “Group

v at: MT-Obijekt

u: MT-Objekt

rue
= “SystemUnitClass”

si

+ Kontext
+ RepKlasse

ar: MT-Objekt

+ Kontext = true + Kontext = tue + Kontext = true
+ RepKlasse = "ActuatorRequest L L + RepKlasse = "ActuatorTemplate
p: MT-Objekt rt; MT-Objekt
+ Kontext rue & > + Kontext = true
+ repKlasse = “ActuatorProcessinterface’ + RepKlasse = “RemoteTemplate’
+ObjName =
pr: MT-Objekt TR Y pt: MT-Objekt
+ Kontext alse A |+ Kontext = false + Kontext alse
+ repKlasse PumpRequest’ 2 +RepKlasse = "PumpTemplate”
£
N: MT-Objekt v i E2E ; lo2: MT-Objekt
++ "+ Kontext false +Kontext = false N :0’":'“
+ repKlasse “ActuatorinputPoint” | + epKlasse
+ObjName ~ ="N"

(b) ACPLT/MT-Regel zum Anlegen einer Pumpe

su: MT-Objekt RTVaV

+ Konte; =true —

mn2: V2v
+ Kontext = true

g: MT-Objekt

= true

e = "SystemUnitClass’

+ Kontext
+ RepKI

+ Kontext =t & + K ext = true
+repKlasse = pKlasse = “RemoteTemplate
+ ObjName =P E
self: A2A +
:MT-Verzweigung + Kontext = false ALT1 ALT2

<<link>>
<<link>>

mn3: V2v
alse . + Kontext
- “ValveRequest” +Kontext = false

+ Repklasse

+ Kontext
+ repKlasse

I+

Y: MT-Objekt 1: E2E
+ Kontext false + Kontext = false
+ repKlasse “ActuatorinputPoint”

=y

+ ObjName

mn4: V2V
+ Kontext = false + Kontext

+ RepKlasse

+ Kontext
+ repKlasse

+ Kontext R =] + Kontext
+ repKiasse g 12, E2E + RepKlasse
+ ObjName +Kontext = false

(c) Kombinierte Regel

Abbildung 6.6: Zusammenfihrung zweier &hnlicher Regeln mittels MT-Verzweigung

65

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

bung von alternativen Regelvarianten mit der Besonderheit, dass MT-Verzweigungen im-
mer paarweise in der linken und rechten Teilproduktion auftreten. Die Wahl der Alternative
ist bei Paaren von MT-Verzweigungen gleichgeschaltet. Dies wird durch eine Korrespon-
denzobjekt vom Typ A2A zugesichert. Abbildung 6.6¢ zeigt, wie die beiden Einzelregeln
zur Erstellung eines Ventils in ACPLT/HMI und ACPLT/PF aus Abbildung 6.6a und der
in Abbildung6.6b gezeigten Erstellung einer Pumpe in den beiden Doménen mittels MT-
Verzweigung zusammengefiihrt werden kénnen. Der ausgegraute Teil der Regeln ent-
spricht der Anjorins Oberklasse und ist in allen drei Regeln gleich.

Da die MT-Verzweigung eine Unterklasse von MT-Objekt ist, unterbricht sie einen MT-
Link. Ausschlaggebend bei der Anwendung der Regel sind die Metavariablen des von
der MT-Verzweigung in die jeweilige Alternative flihrenden MT-Links. MT-Links, die Quelle
oder Ziel innerhalb einer Alternativen besitzen, gehdren zu dieser Alternative, MT-Links
zwischen zwei Alternativen sind nicht erlaubt. Auch die Verwendung der Korrespondenz-
objekte ist eingeschrankt. Sie kdnnen nur Elemente von einander zugeordneten Alterna-
tiven der linken und rechten Teilproduktion miteinander verbinden.

Die gemeinsame Nutzung einer ,Oberklasse” ermdglicht deutliche Einsparungen von
Ressourcen sowohl in Bezug auf den Platzbedarf als auch beim Zeitbedarf wéhrend
der Transformation. Zudem ergibt sich ein deutlicher Zugewinn fur die Wartbarkeit der
Regeln.

Logische Operatoren Fiir die Realisierung der NACs, wie sie von Kénigs [K6n08] vorgeschla-
gen wurden, wird der Operator NICHT eingefiihrt. Er negiert das Vorhandensein der ihm
nachgeschalteten Struktur. NICHT-Elemente diirfen nur im Kontext einer Regel zum Ein-
satz kommen, um Interpretationsprobleme in den operationalen Regeln zu vermeiden.
Der Operator Wahr wird bei der Einflhrung von Triggern im Abschnitt 6.5 genauer erlau-
tert. Er erlaubt keine nachgeschalteten Kontrollstrukturen.

Kopfelement In der deklarativen ACPLT/MT-Regel dient das Kopfelement als gemeinsames
Waurzelelement fir die Pattern der Regel. Zudem ist das Kopfelement der Einstiegspunkt
fir die Bearbeitung der operationalen MT-Regel.

Metavariablen Daten, die zur Parametrierung von ACPLT/MT benétigt werden, werden in Me-
tavariablen (MT-MetaVar) abgelegt. Diese sind wie MT-Variablen Ein-/Ausgénge oder lo-
kale Variablen der MT-Objekte. Beispiele flir Metavariablen sind Kontext, RepKlasse
und die flr die operationale Ebene und den Kontrollalgorithmus benétigten Daten.

6.3 Kommandostruktur

Jedes MT-Element besitzt eine eigene interne Logik, die bestimmte Teilaufgaben bei der An-
wendung einer MT-Regel Ubernimmt. Die Bearbeitung der einzelnen Teilaufgaben wird tber
die Kommandostruktur zu einer operationalen Regel verknlpft. Abbildung 6.7 zeigt beispielhaft
die Kommandostruktur der linken Teilproduktion flir das Anlegen eines Ventils, sowie die Klas-
se MT-Element mit den fir die Kommandostruktur relevanten Metavariablen. Die MT-Elemente
agieren wahrend der Regelbearbeitung entlang der Kommandostruktur als Hierarchie von Auf-
traggebern und Auftragnehmern. Fir die Weitergabe bendtigter Daten und Auftrage entlang
dieser Hierarchie stehen verschiedene Metavariablen zur Verfiigung. Uber die Metavariable

66

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.3 Kommandostruktur

su: MT-Objekt
+ Kontext =true
+ RepKlasse = “SystemUnitClass”
+ Relationsklasse = “Contains”

+ Relationsrolle TARGET ‘
MT-Element
ANKommando: MT-Parameter ‘ Kommando ANKommando
AN.
..... ObjPfad: MT-Parameler‘ Status Status
H ANStatus: MT-Parameter }6 ————— 1 :Z:Z}:g;‘zzﬁ?e
. Pfad ObjPfad
ar: MT-Objekt
ar: MT-Objekt % Quelimodell [
+ Kontext = false
ig:gﬁf::ﬁass ol “ém:}z?eq“es‘ (b) Metavariablen des MT-Element fir
+ Relationsrolle = TARGET die Kommandostruktur (kursiv) und

flr die operationale Ebene

—‘ Pfad: MT-Parameter ‘

—] Kommando: MT-Parameler‘

*{ Status: MT-Parameter = =

4{ ANKommando: MT-Parameter ‘

*"j ObjPfad: MT-Parameter ‘

—{ ANStatus: MT-Parameterk ————————— -
H [}
p: MT-Objekt I —— enthalt-Beziehung
+ Kontext - false ' .
+ repKlasse = “ActuatorProcessinterface” | = > Parametrierung des Suchraumes

+ ObjName
+ Relationsklasse = “Contains”
+ Relationsrolle = TARGET

—> Kommandostruktur

5] Pfad: MT-Parameter |

4‘ Kommando: MT-Parameter‘

1
1
1
1
| = > Ruckmeldestruktur
]
1
1
1

—{ Status: MT-ParameterF —-_———

(a) Ausschnitt Kommandostruktur der MT-Regel fir PLT-Stellen

Abbildung 6.7: Kommandostruktur und operationale Ebene

Kommando erhalt ein MT-Element Kommandos von seinem Auftraggeber. Neben dem Kom-
mando START, das einen Auftragnehmer veranlasst, seine interne Logik zu bearbeiten, gibt
es auBerdem die Kommandos RUCKGANGIG, ZURUCKSETZEN und HALTEN. Ersteres kommt
nur bei MT-Objekten zum Tragen, die Elemente in der Zieldomane anlegen. Das zuletzt an-
gelegte Objekt wird beim Befehl RUCKGANGIG wieder geldscht oder in den Ursprungszustand
zuriickversetzt, falls sich nur die Variablen gedndert haben. Das Kommando ZURUCKSETZEN
wird genutzt, um die Werte der ausgehenden Metavariablen zu I6schen und die Regel wieder
in ihren Ursprungszustand zuriick zu versetzen.

Wéhrend die Auftragnehmer ihre Logik bearbeiten, befindet sich der Auftraggeber im Zustand
ARBEITEND.Das Kommando HALTEN unterbricht die Auswertung der internen Logik. Dies ist
insbesondere dann von Interesse, wenn ein MT-Objekt ein Objekt der entsprechenden Do-
méne gefunden oder angelegt hat und mit der Suche bzw. dem Anlegen weiterer Objekte im
Suchraum warten soll, bis die gesamte Regel abgearbeitet wurde. Durch die zyklische Be-
arbeitung wird die interne Logik von MT-Objekten in der Quelldoméne sonst ggf. die Suche
fortsetzen bevor eine Auswertung durch die MT-Elemente der Zieldoméne stattgefunden hat.

67

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

Das Kommando HALTEN erzeugt nach Riickmeldung der Auftragnehmer einen Statuswechsel
ZU HALTEND.

Kommandostruktur und die deklarative Ebene uberlagern sich in weiten Teilen. Zudem erfolgt
die Verarbeitung der Informationen tber einen MT-Link immer am Auftragnehmer. Diese beiden
Eigenschaften ermdglichen es, Kommandostruktur und deklarative Ebene aufeinander abzubil-
den. Zu diesem Zweck erhalten MT-Elemente zusétzlich die Metavariablen Relationsklasse
und Relationsrolle, um die Bedeutung des amkommando-Eingang anliegenden eingehen-
den Links flr die deklarative Regel anzugeben. Beide Metavariablen erlauben die Verwendung
von WildCards, um unbestimmte Relationen oder Relationsrollen abzubilden. Der in Abbildung
6.7a dargestellte ,.enthalt*-Link zwischen den MT-Objekten dient lediglich der strukturierten Da-
tenhaltung. Sie hat keine Bedeutung fiir die Logik der MT-Regel.

Ausnahme von der Uberlagerung der Kommandostruktur und der deklarativen Ebene bilden
die Links zwischen zwei MT-Variablen. Wird die Kommandostruktur entlang einer solchen Ver-
bindung weitergefiihrt, ergeben sich dadurch Probleme beim Anlegen der Zielvariablen, da
das Elternobjekt noch nicht gefunden bzw. erstellt ist. Links zwischen MT-Variablen werden
daher von beiden MT-Objekten, deren Variablen miteinander verbunden sind, bearbeitet. Die
MT-Objekte Uberpriifen dazu, ob das Uber den Link verbundene MT-Objekt bereits bearbeitet
wurde. Ist dies der Fall, so kann die Verbindung Uberprift bzw. angelegt werden, ansonsten
wird die Verbindung zuné&chst ignoriert.

Parallel zur Kommandostruktur existiert eine Rlckmeldestruktur, ber die der Auftragnehmer
dem Auftraggeber seinen aktuellen Zustand mitteilen kann.

6.4 Operationale Ebene

Die Regelanwendung erfolgt in ACPLT/MT durch Bearbeitung des in den MT-Elementen ent-
halten Codes. Ausgangspunkt flir die Regelbearbeitung ist das gemeinsame Wurzelelement
der drei Teilproduktionen, das Kopfelement (vgl. Abbildung 6.8). Dieses wird mit der Richtung
der Transformation (Vorwarts/Rickwarts/Konsistenz) sowie mit den Pfaden zum Wurzelkno-
ten der beteiligten Modelle parametriert und st6Bt nacheinander die Bearbeitung der Teilpro-
duktionen an. Wird ein Kopfelement aktiviert, stéBt es zunéchst die Kommandostruktur der
Quelldomane an und wartet auf Riickmeldung. Erfolgt eine positive Riickmeldung, so wird die
Kommandostruktur der Zieldomane angestoBen. Erfolgt auch durch diese eine positive Riick-
meldung, so werden nacheinander die Elemente der Korrespondenzdomane angestof3en, um
die Transformation zu dokumentieren. Zudem werden alle durch ein Nicht-Kontext-Element des
Quellmodell-Pattern gebundenen Objekte in einem zentralen Datenbankobjekt registriert und
sind somit als Ubersetzt markiert. Dies erlaubt die Verwendung dieser Objekte als Kontextele-
mente in weiteren Regelanwendungen.

Dieser Vorgang wiederholt sich so lange, bis das Pattern der Quelldomé&ne ein NICHT_GEFUNDEN
zuriickliefert. In diesem Fall sind alle durch das Pattern représentierten Strukturen im Quellm-
odell Ubersetzt. Tritt wahrend der Bearbeitung der drei Pattern ein Fehler auf, so wird an die

68

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.4 Operationale Ebene

bereits ausgefiihrten Regelbestandteile das Kommando RUCKGANGIG geschickt, wodurch die
MT-Objekte ihren letzten Schritt riickgangig machen. An dieser Stelle sei auf Anhang C ver-
wiesen, in dem anhand der Regel aus Abbildung 6.6¢ die Ubersetzung eines Modells in ein
anderes mit Hilfe von ACPLT/MT Schritt fir Schritt erlautert wird.

head: MT-Kopfelement
+ Richtung =FWT
+ LHSPfad “./PandIX”
+ CDPfad “/ACPLT_MT/CD"
+ RHSPfad “/HMI?

LHS: Domain

su: MT-Objekt
+ Kontext = true

+ RepKlasse = “SystemUnitClass”
+ Quellmodell = true

mn1: V2V
+ Kontext = true

RHS: Domain

q: MT-Objekt
+ Kontext =true

+ RepKlasse = “Group”

+ Quellmodell = false

> .

Abbildung 6.8: Operationale ACPLT/MT-Regel fiir die Vorwartstransformation

Fir die operationale Ebene stehen MT-Elementen die Eingangs-Metavariablen Quellmodell,
Relationsklasse, Relationsrolle und Pfad sowie der Ausgang ObjPfad zur Verfl-
gung (vgl. Abbildung 6.7b), auf die im Folgenden genauer eingegangen werden soll.

Wahrend bei operationalen TGG-Produktionen firr jedes Element individuell durch O —M bzw.
¥ —M angegeben wird, wie es zu interpretieren ist, bleibt bei den operationalen MT-Regeln die
Metavariable Kontext unverandert und gibt in Kombination mit der ergdnzenden Metavaria-
blen Quellmodell (true|false) an, ob ein entsprechendes Objekt im Modell gesucht oder
erstellt werden soll. Dieses Design bringt insbesondere unter dem Gesichtspunkt der Integra-
tion in die IEC 61131 - Sprachen enorme Vorteile bei der Handhabung mit sich. Der Wert der
Metavariablen Quellmodell ist fir alle MT-Elemente eines Patterns identisch und kann daher
ausgehend vom Kopfelement der MT-Regel durch Verbindungen zwischen den Variablen in alle
MT-Elemente des Patterns propagiert werden. Der Wert der Metavariablen Kontext bleibt so
fur weitere Regelausfiihrungen unverandert erhalten.

Wird die Regel zur Konsistenzanalyse eingesetzt, so werden sowohl die MT-Elemente der lin-
ken als auch die der rechten Domé&ne mit Quellmodell = true parametriert. Dies bewirkt,
dass sie unabhangig davon, ob sie Teil des Kontext sind oder nicht nach passenden Modellob-
jekten suchen und keine Modellobjekte erstellen. Beim Starten einer Regel zur Konsistenzana-

69

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

lyse stéBt das Kopfelement zunachst die Kommandostruktur der linken Doméane an. Fir jede
positive Riickmeldung der linken Doméne st6Bt sie die Kommandostruktur der rechten Domaé-
ne und anschlieBend der Korrespondenzobjekte an. Gibt es von der rechten Doméne oder von
den Korrespondenzobjekten eine negative Riickmeldung, so wird der Fehler gemeldet. Feh-
lende Korrespondenzobjekte werden dabei nicht als Fehler sondern als Warnung ausgegeben.
Es steht dem Anwender frei, die gemeldete Inkonsistenz zu beheben oder sie zu ignorieren.
Gibt die Kommandostruktur der linken Domane eine negative Rickmeldung, so werden die
MT-Elemente der Regel zuriickgesetzt und anschlieBend der gesamte Vorgang flr die rechte
Domane wiederholt. Eine automatische Korrektur der Inkonsistenzen ist bisher nicht vorgese-
hen. Der Anwender hat nach einer Konsistenzanalyse jedoch die Méglichkeit, eine inkremen-
telle Vorwarts- oder Riickwartstransformation anzustoBBen oder die Inkonsistenzen manuell zu
beheben.

6.4.1 MT-Objekt

Wird ein MT-Objekt wahrend der Laufzeit durch einen Auftraggeber aktiviert, so sucht es inner-
halb eines vorgegebenen Suchraums selbststandig ein der Parametrierung entsprechendes
Modellelement oder legt es - je nach Richtung der Regel - an. Der Suchraum wird Uber die
Metavariable pfad festgelegt. Eine Parametrierung des Suchpfads mit Hilfe von Jokerzeichen
erlaubt eine flexible Suche zum Beispiel im gesamten Modell oder nur in bestimmten Teilstruk-
turen. Die Metavariablen Relationsklasse und Relationsrolle geben an, Uber welche
Assoziation das zu suchende Objekt mit dem durch den Auftraggeber gebundene Objekt ver-
knupft ist. Beide Metavariablen kénnen wiederum mit Jokerzeichen parametriert werden, um
beliebige Assoziationen zuzulassen.

War die Suche oder das Anlegen erfolgreich, wird der Auftragnehmer selbst zum Auftragge-
ber und stéBt weitere Elemente der Regel an, ihrerseits passende Objekte zu suchen oder
anzulegen. Haben alle angesto3enen Elemente ihre Aufgabe erfolgreich erledigt, wird eine
Rickmeldung an den Auftraggeber erzeugt. Beim Auftreten eines Fehlers wird eine Fehlermel-
dung an den Auftraggeber zuriickgeliefert und gegebenenfalls durchgefiihrte Anderungen am
Zielmodell riickgangig gemacht. Zusammenfassend besteht die interne Logik der MT-Objekte
aus folgenden Schritten:

Starten der Bearbeitung Zuné&chst wird die Metavariable Status auf ARBEITEND gesetzt,
um dem Auftraggeber eine Riickmeldung Uber den Erhalt des Kommandos zu geben.
Zudem wird anhand der Metavariablen Kontext und Quellmodell ausgewertet, ob
sich das MT-Objekt im Modus SUCHEN, VERGLETCHEN oder ANLEGEN befindet.

Suchen/Erstellen eines Objektes Es wird ein Objekt entsprechend der Parametrierung unter
Berlicksichtigung des Modus, des Suchraumes (P fad) und der von da ausgehenden As-
soziation (Relationsklasse, Relationsrolle) gesucht oder erstellt. Nacheinander
werden bei jedem Regeldurchlauf alle auf die Beschreibung zutreffende Objekte gefun-
den/erstellt. Hierbei kommt, wie von Kénigs [K&n08] vorgeschlagen, das optionale Erstel-
len zum Einsatz. Objekte die bereits im Zielmodell vorhanden sind werden dabei erkannt
und nicht erneut angelegt.

70

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.4 Operationale Ebene

Auswerten der MT-Variablen In Abhéngigkeit des Modus werden alle MT-Variablen des MT-
Objektes auf Typ und Wert Uberprift (SUCHEN, VERGLEICHEN) oder die Werte der Varia-
blen werden (iber den Korrespondenzgraph vom MT-Element im Quellmodell geholt und
am Zielobjekt gesetzt (ANLEGEN).

Auswerten von Verbindungen Alle Verbindungen zwischen MT-Variablen werden dahinge-
hend untersucht, ob das verbundene MT-Objekt bereits bearbeitet wurde. Ist dies der
Fall, so wird das Vorhandensein der Verbindung Uberprift (SUCHEN/VERGLEICHEN) oder
die Verbindung wird angelegt (ANLEGEN).

Setzen des Objektnamens Der Pfad des gefundenen/erstellten Objektes wird in der Metava-
riablen Ob 3P fad gespeichert und dem Kopfelement bekanntgegeben.

AnstoBen der Auftragnehmer Uber die Metavariable ANKommando wird der Befehl START
abgesetzt und somit die Auftragnehmer angestoBBen, ihre Logik abzuarbeiten. Diese su-
chen oder erstellen ihrerseits einen Teil der durch die Regel beschriebenen Struktur.

Warten auf Riickmeldung Das MT-Objekt wartet auf eine Riickmeldung von den angestoB3e-
nen Auftragnehmern.

Riickmeldung an den Auftraggeber Uber die Metavariable status wird eine Riickmeldung
an den Auftraggeber abgesetzt. War die Bearbeitung erfolgreich und die eigenen Auftrag-
nehmer haben eine positive Riickmeldung gegeben, wird der Status Ok zurlickgegeben.
Bei aufgetretenen Fehlern kénnen ein allgemeiner Fehler oder spezielle Fehlermeldun-
gen wie NICHT_GEFUNDEN oder im Modus VERGLEICHEN der Fehler INKONSISTENT
bei fehlenden Objekten oder inkonsistenten Variablenwerten zuriickgegeben werden.

6.4.2 Modifikatoren

Die Modifikatoren besitzen eine angepasste Ausflihrungslogik, die ebenfalls die komplette Be-
arbeitung der flr das Element benétigten Funktionalitat umfasst.

Platzhalter/Template Wird ein Platzhalters aktiviert, erstellt er eine lokale Kopie des referen-
zierten Templates und verknUpft diese mit den eigenen Ein- und Ausgéngen (vgl. Abbil-
dung 6.9). Diese temporére Instanziierung des Template ist notwendig, da Templates
mehrfach in der Regel referenziert werden kénnen. Bedingt durch die zyklische Bearbei-
tung in der SPS, muss jede Instanz ihre Ein- und Ausgénge Uber mehrere Zyklen halten.
Eine bloBe Verlinkung zum Template und somit eine Mehrfachbenutzung der templa-
teinternen MT-Elemente wiirde ein Uberschreiben der Variablenwerte zur Folge haben.
Nach dem Anlegen der lokalen Kopie des Templates st63t das Platzhalterobjekt die im
Template enthaltene Struktur zur Bearbeitung ihrer Logik an. Rickmeldungen von der
Kommandostruktur der lokalen Kopie werden direkt an den Auftraggeber weitergereicht.
Erhalt der Platzhalter das Kommando zURUCKSETZEN, wird die lokale Kopie des Templa-
tes wieder geldscht und der Speicherplatz freigegeben.

Verzweigungen Die Verzweigung bedingt eine doppelte Kommandostruktur und somit jeweils
zwei Metavariablen ANKommando und ANStatus. Der ObjPfad kann flr beide Alterna-
tiven verwendet werden. Wird eine Verzweigung im Modus SUCHEN aktiviert, so stof3t sie
zun&chst die Bearbeitung der ersten Alternative an. Erst wenn diese die Riickmeldung
NICHT_GEFUNDEN zurlckliefert, erhalt die néchste Alternative das Kommando zur Be-

71

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

mn1: Vav
e + Kontext = true |+ Kontext |
ass” + RepKlasse
E p: MT-Platzhalter |—>
: tempi: MI.IEmE]Q_t_E_ ! +

vi:Vav i —

DSL1 DSL2 = T — _ + Kontext
rRequest” : v2: V2v T + RepKlas;
CDSL1 DSL2 T “ActuatorTe
Variable +
1 + Kor
[-Variable + Rey
I “‘Rem

Abbildung 6.9: Eingesetztes Template fuir den in Abbildung 6.5b gezeigten Platzhalter

arbeitung ihrer Logik. Uber eine zusétzliche Metavariable zeigt die MT-Verzweigung an,
welche Alternative gerade aktiv ist. In den Modi VERGLEICHEN und ANLEGEN wird die
aktive Alternative des Partners ausgelesen und nur die entsprechende eigene Alternative
zur Bearbeitung angestoBBen. Durch die gemeinsame Nutzung von Regelbestandteilen
halbiert sich die Anzahl der Suchvorgange fiir diesen gemeinsamen Teil. Dadurch kann
mit der Verwendung von Verzweigungen eine verringerte Systembelastung bei gleicher
Wirkung erzielt werden.

Die mit dem Einsatz von MT-Verzweigungen einhergehende Verzweigung der Kontroll-
struktur wird zudem genutzt, wenn ein Pattern aus zwei nicht miteinander verbunde-
nen Teilgraphen besteht. Dies kann insbesondere bei der Verwendung von multiplen
Quellmodellen auftreten. Um die Kontrollstruktur trotzdem abbilden zu kénnen wird die
MT-Verzweigung in diesem Fall als UND statt als ODER genutzt. Hierzu wird eine weite-
re Metavariable eingefiihrt, die eine entsprechende Umschaltung zwischen den beiden
Varianten erméglicht. Ein passender Korrespondenzknoten vom Typ v2Vv synchronisiert
diese Wahl zwischen linker und rechter Teilproduktion. Wird eine als UND parametrierte
Verzweigung durch seinen Auftraggeber angestoB3en, so gibt er diesen Auftrag direkt an
alle Alternativen weiter. Erst wenn alle Alternativen eine positive Rickmeldung liefern,
wird dies an den Auftraggeber weitergeleitet. Als UND parametrierte MT-Verzweigungen
werden ungepaart verwendet. Sie bendtigen daher kein Gegensttick in der anderen Do-
mane.

Logik-Operatoren Der NICHT-Operator liefert eine positive Riickmeldung, wenn der nachge-

72

schaltete Auftragnehmer ein NICHT_GEFUNDEN meldet und umgekehrt. Fehlermeldun-
gen von den Auftragnehmern werden entlang der Kommandostruktur nach oben durch-
gereicht. Der Operator Wahr liefert immer ein GEFUNDEN zurlick, sobald er angestof3en
wird.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.5 Kontrollalgorithmus

6.4.3 Korrespondenzgraph

Die MT-Elemente des Korrespondenzgraphen haben zwei Aufgaben. Zum einen dienen sie da-
zu, durch Verlinkung der reprasentierenden MT-Elemente eine Verkniipfung zwischen den MT-
Objekten, MT-Links und MT-Variablen der linken und der rechten Teilproduktion herzustellen.
Die Auswertung dieser Verlinkung erfolgt in den verlinkten MT-Elementen. So Uberprift jede
MT-Variable entlang der mit ihr verkn(ipften Korrespondenzobjekte v2v, ob die Gegenseite be-
reits gebunden ist. Ist dies der Fall, so passt es seine Metavariablen Type und value an, um
die Gleichheit von Wert und Typ zuzusichern. Die zweite Aufgabe der Korrespondenzobjekte ist
die Dokumentation der Transformation. Hierzu sind verschiedene Realisierungen denkbar. So
kénnen, wie bei Tripel-Graph-Grammatiken Ublich, Objekte angelegt werden. Dies widerspricht
aber dem Ansatz, einer ressourcenschonende Implementierung. Eine weitere Méglichkeit ist
die Speicherung in einem Datenbankobjekt, so dass jede Instanziierung eines Korresponden-
zobjektes ein Datenbankeintrag erzeugt, der unter anderem Daten Uber die durch das Korre-
spondenzobjekt verlinkten Modellelemente sowie die Richtung und den Zeitpunkt der Trans-
formation enthalt. Durch diesen Ansatz kénnen auch die korrelierenden Modelle unverandert
bleiben, da kein Anknlpfungspunkt fur den Link zum Korrespondenzobjekt benétigt wird.

6.5 Kontrollalgorithmus

Der Kontrollalgorithmus besteht aus zwei Komponenten, der Strategie und dem Scheduling.
Die Strategiekomponente ist in den MT-Regeln enthalten. Insbesondere MT-Objekte und die
Modifikatoren besitzen eine eigene Logik, die zur Laufzeit die Funktionalitat des entsprechen-
den Elements selbstandig bearbeitet. Das Scheduling dient als lbergeordnete Steuerungs-
komponente fir die Bearbeitung der verschiedenen MT-Regeln.

Durch die beschrénkten Ressourcen in einer SPS ware ein fortlaufendes Ausfiihren aller in der
Regelbasis enthaltenen Regeln eine enorme Belastung flir das Gesamtsystem. Erfahrungs-
geman sind es aber bestimmte Ereignisse, wie das Speichern eines Modells nach erfolgter
Modellanpassung oder die nutzergesteuerte Anforderung eines Zustandswechsels bei einem
Ventil, die einem bendtigten Modellabgleich vorausgehen. Aus diesem Grund eignet sich eine
ereignisgesteuerte Regelaktivierung wie bei VIATRA besonders gut fur eine Modelltransfor-
mation in prozessleittechnischen Laufzeitumgebungen. Zur Ereignisiiberwachung kommt ein
viertes relativ kompaktes Pattern, das Triggerpattern zum Einsatz. Anders als die tbrigen Pat-
tern der MT-Regel mussen Trigger ihre gesamte Logik innerhalb eines Zyklus bearbeiten, da
ansonsten Ereignisse, die nur einen Zyklus lang vorliegen, verloren gehen kénnen. Zudem darf
es keine zusétzlichen Zyklen benétigen, um die Trigger zurlickzusetzen. Zu diesem Zweck wird
ein weiteres Kommando TRIGGER eingefiihrt. Dieses veranlasst das angestoBene MT-Objekt
zustandslos zu arbeiten und in jedem Zyklus nur in Abhangigkeit von den Eingangen und nicht
auf Basis von Ergebnissen vorheriger Zyklen zu arbeiten.

Die Schedulingkomponente nutzt die Trigger, um die Regel zum richtigen Zeitpunkt anzusto-
Ben. Folgende Schritte werden dabei durchlaufen:

73

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

Aktivieren aller Trigger Die Schedulingkomponente aktiviert zunéchst die Trigger aller MT-
Regeln der Regelbasis und tberprift anschlieBend zyklisch ihren Status.

Regel-Bearbeitung Hat mindestens ein Trigger eine positive Rlickmeldung erzeugt, so wird
die zugehdrige Regel aktiviert. Haben mehrere Trigger eine positive Rickmeldung er-
zeugt, so werden ihre Regeln nacheinander aktiviert, so dass zu jedem Zeitpunkt maximal
eine aktive Regel ihren Teil der Modelltransformation durchfiihrt. Ist eine Regel einmal ak-
tiviert, ermittelt sie nacheinander alle relevanten Modellstrukturen und fiihrt entsprechend
oft eine Transformation durch. Dieser sehr einfache Ansatz ist sicher zunéchst nicht sehr
performant. Die Suche nach einem optimalen Algorithmus kann Ausgangspunkt von wei-
terfihrenden Forschungen sein, soll an dieser Stelle aber nicht weiter thematisiert wer-
den. Der Status der Regel wird zyklisch von der Schedulingkomponente iberwacht.

Trigger Zuriicksetzen Meldet die aktivierte Regel zuriick, dass sie ihre Transformationsschrit-
te abgeschlossen hat, so wird ihr Trigger sowie alle zuvor in einen Fehlerzustand gerate-
nen Trigger zurlickgesetzt.

Trigger aktivieren AnschlieBend wird die zuvor angehaltene Bearbeitung der Trigger weiter-
geflhrt. Trigger die vor dem Anhalten bereits eine positive Rlickmeldung geliefert haben,
werden direkt erkannt und Schritt 2 wird ausgeldst.

Trigger kdnnen unter anderem auch durch die erfolgreiche Abarbeitung einer anderen MT-
Regel anschlagen. Dadurch kénnen Transformationsschritte gezielt nacheinander ausgefiihrt
werden. Auch ein simples Prioritdten-Konzept I&sst sich durch die Trigger abbilden, indem die
Schedulingkomponente jeweils die héchstpriore MT-Regel mit positivem Trigger zur Bearbei-
tung anstoBt. Sollen bestimmte Regeln dauerhaft aktiv sein, so kann ein Trigger realisiert wer-
den, der nur ein wahr-Objekt enthélt und somit immer positive Riickmeldung liefert.

Fir die Aktorregel aus Abbildung 6.6¢ bietet sich ein Trigger an, der die Regel zur Ubersetzung
der SystemUnitClass auf erfolgreiche Bearbeitung Uberwacht. Schlagt dieser Trigger an,
hangt die Schedulingkomponente die Regel zusammen mit allen anderen Regeln deren Trig-
ger angeschlagen haben in eine Warteschlage. AnschlieBend wird die erste Regel der Warte-
schlange aktiviert, d.h. ihre MT-Elemente werden in das Tasking der SPS eingehangt und somit
ihre interne Logik zur Ausfliihrung gebracht.

6.6 Referenzimplementierung

Die Referenzimplementierung von ACPLT/MT erfolgte auf Basis von ACPLT/FB-Funktions-
bausteinen (kurz FB) [NNO4]. Als Laufzeitsystem kam iFBspro [NN04] zum Einsatz. Durch
Ahnlichkeit von ACPLT/FB-Funktionsbausteinen zu den Funktionsblockdiagrammen der IEC
61131 und die fir ACPLT-Modelle typischen Eigenschaften der Introspektion und Selbstmani-
pulation bieten FBs eine geeignete Basis fir die Umsetzung von ACPLT/MT. Analog zu den
Funktionsblockdiagrammen der IEC 61131 wird die interne Logik der FBs mit einer textuellen
Sprache, in diesem Fall C, programmiert. Einzelne FBs werden (ber ihre Ein- und Ausgénge
miteinander verkniipft und stellen dadurch komplexere Automatisierungsfunktionen zur Verfi-
gung.

74

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Um die Echtzeitfahigkeit der Automatisierungsfunktionen gewéhrleisten zu kénnen, wird die
Bearbeitung des gesamten Programmcodes in Zyklen mit fester Zykluszeit durchgefiihrt. Das
Tasking der einzelnen FBs erfolgt dabei anhand einer Taskliste, die pro Zyklus einmal durch-
laufen wird und jedem FB die Mdglichkeit gibt, einen Teil seiner Logik zu bearbeiten. FBs mit
zeitaufwandiger Funktionalitdt mussen diese in Teilaufgaben zerlegen, um die Echtzeitfahig-
keit des Systems nicht zu gefahrden. Die Teilaufgaben missen dabei so gestaltet sein, dass
eine Unterbrechung und eine Bearbeitung der anderen FBs der Taskliste keine ungewollten
Seiteneffekte auf die Gesamtfunktionalitat haben.

fo/funktionblock fb/variable ‘ fb/connection ov/domain ‘

I 1 T—\

Scheduler | [MT_Element | [MT Link | [MT_Variable | [MT_Metavar | [MT_Connection MT_Domain |
A

I — T 1

MT_Object ‘ MTﬁPIaceholder‘ ‘ MT_True ‘ MT_Branch

MT_Trigger | | CD_Object | | MT_RuleExecutionControl
F !
vav | | EE |

Abbildung 6.10: Klassendiagramm ACPLT/MT

Die Referenzimplementierung von ACPLT/MT umfasst die in Abbildung 6.10 aufgefiihrten Klas-
sen. Die Klassen MT_Element und MT_Link sind als Funktionsblécke realisiert. Variablen
dieser beiden Klassen kénnen daher als Ein-/Ausgange oder lokale Variablen (fb/variable)
deklariert werden, so dass sie vom iFBspro als miteinander verknipfbare Ports dargestellt
werden. Es bietet sich daher an MT-Variablen und Metavariablen als Ports zu implementie-
ren. Um eine besser Unterscheidung wéhrend der Regelbearbeitung zu ermdglichen wird hier
eine starke Typisierung mittels eigener Unterklassen vorgenommen. Auch flr die Verbindung
zwischen zwei Ports (fb/connection) wird eine spezielle Unterklasse bereitgestellt um si-
cherzustellen, dass nur jeweils zwei Objekte von Typ MT_variable oder zwei Objekte vom
Typ MT_MetaVar Uber sie miteinander verbunden werden kénnen. Zudem wurde eine Klasse
Trigger eingefigt, die eine Unterklasse von MT_Objekt bildet. Sie erlaubt keine Kaskadie-
rung und sichert eine zustandslose Ausfiihrung der internen Logik zu. Zur besseren Strukturie-
rung des ACPLT/MT-Frameworks im Laufzeitsystem wird die Klasse MT_Domain bereitgestellt.
Sie dient als ,Ordner” in der Baumstruktur und besitzt keine eigene Logik.

Bevor die einzelnen Klassen und ihre Funktionsweise im Detail vorgestellt werden, soll zu-
néchst auf die Limitierungen von ACPLT/FB und die Auflésung dieser Limitierung eingegangen
werden.

6.6.1 Taskingkonzept

Anders als bei FBDs ist es in ACPLT/FB nicht méglich, Bausteine in die Ausfihrungslogik eines
anderen Bausteins einzubetten, so dass dieser vor- und nachher eigenen Code ausfiihren
kann. Stattdessen werden alle FBs baumartig in eine Taskliste eingehéngt und erhalten pro
Zyklus genau einmal die Kontrolle.

75

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

[fb1: MT-Element

1 fb2 MT-Element
L o fb3 MTE...
ﬁ—E Jint outt[1+
b3: FB [1]m2 out J
:Jflm outt[1+ p' oma

> 1 [In2 Out2] 1
11In3 Out3| 1
e

OUH .

(b) Bausteininternes Tasking

(a) Globales Tasking

Abbildung 6.11: Tasking ohne und mit bausteininternem Tasking

Erhalt ein FB einen Zeitslot zum Bearbeiten seiner internen Logik, so wird zunachst das Pro-
zessabbild der Eingangsvariablen mit Daten versorgt, anschlieBend wird die Bausteinlogik ab-
gearbeitet und die Werte ins Prozessabbild der Ausgangsvariablen geschrieben. Dies bringt
insbesondere bei kaskadierten FBs zeitliche Verzégerungen mit sich. Abbildung 6.11a zeigt
eine solche Kaskadierung. Die interne Logik der dargestellten Bausteine sei der Einfachheit
halber so implementiert, dass die Daten der Eingénge unverandert an die jeweiligen Ausgange
weitergegeben werden. Wéhrend die Daten von £b1 Uber £b2 nach £b3 innerhalb des ersten
Zyklus durchgereicht werden, bendtigt die Datenweitergabe in die andere Richtung drei Zyklen.
Im ersten Zyklus stehen die Werte fiir den zweiten und dritten Eingang von £b2 noch nicht zur
Verfiigung, da £b3 noch nicht ausgefiihrt wurde und somit die Werte noch nicht bereitstellen
konnte. Erst im zweiten Zyklus kann £b2 auf diese Werte zugreifen und sie als Ausgange zur
Verfugung stellen. Da zum Zeitpunkt der Bearbeitung von £b2 der Baustein £b1 jedoch schon
bearbeitet wurde, stehen ihm diese Daten erst im dritten Zyklus zur Verfligung. Pro Verbindung
zwischen FBs entgegen der Reihenfolge in der Taskliste werden die Daten somit um einen
Zyklus verzdgert. Dies kann gewollt sein, wenn zum Beispiel ein Speicher implementiert wer-
den soll, bei der Weitergabe von Stati wie sie fir ACPLT/MT benétigt wird, geht eine solche
Verzdgerung jedoch deutlich zu Lasten der Performance.

Als Alternative steht in vielen Leitsystemen die Méglichkeit der Schachtelung von Funktions-
bausteinen zur Verfligung (vgl. Abbildung 6.11b). Erhalt nun £b1 einen Zeitslot zur Bearbeitung
seiner internen Logik, so wird wiederum zunéchst das Prozessabbild der Eingangsvariablen mit
Daten versorgt und anschlieBend wird die Bausteinlogik, genauer gesagt das PreTasking ab-
gearbeitet. Bevor jedoch das Prozessabbild der Ausgangsvariablen geschrieben wird, wird die
Kontrolle an £b2 abgegeben, der seinerseits seine Logik abarbeiten kann. Erhalt £b1 die Kon-
trolle von £b2 zurlick, kann weiterer £b1-Code, das Post Tasking ausgeflihrt werden, bevor
abschlieBend das Prozessbild der Ausgénge geschrieben wird. Durch diese Unterbrechung in
der Ausfiihrung der Bausteinlogik kdnnen Daten von auBen nach innen und von innen nach
auBen innerhalb eines Zyklus weitergegeben werden.

Um gekapselte Funktionsbausteine auch fir ACPLT/MT einsetzen zu kénnen, wurde das Tas-
kingkonzept von ACPLT/FB in der Unterklasse MT_Element Uberschrieben. Jedes MT_Element
erhélt eine eigene interne Taskliste und ein eigens rudimentares Scheduling, dass nach der

76

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Bearbeitung des internen Codes die Teilnehmer der Taskliste nacheinander zur Ausfiihrung
bringt. AuBerdem wurde die Tatsache ausgenutzt, dass sowohl die Taskliste als auch die Kas-
kadierung von FBs mit Hilfe von Links realisiert sind. Wird ein neues MT_Element in einer
Kaskade angelegt, so I6scht der Konstruktor den Link zur globalen Taskliste und erstellt einen
neuen Link zur Taskliste des in der Kaskade vorgelagerten MT_Element-Objektes. Eine Kaska-
de von MT_Element-Objekten wird dadurch automatisch in geschachtelte FBs umgewandelt.

Beispiel 6.2 Abbildung 6.11b zeigt das bei ACPLT/MT realisierte interne Tasking. Beim An-
legen von b3 ldscht dieser selbststédndig seine Zuordnung zur globalen Taskliste und héngt
sich in die Taskliste von £b2 ein. Wahrend der Bearbeitung von £b2 versorgt dieser im Pre-
Tasking unter anderem die Eingdnge von b3 mit Daten. AnschlieBend wird die Kontrolle an
b3 libergeben und nach dessen Bearbeitung werden die Ausgédnge von £b3 im PostTasking
verarbeitet und ggf. die Werte an die Ausgdnge von £b2 weitergereicht.

Die in dieser Arbeit gewonnenen Erfahrungen mit der Kapselung von Funktionsbausteinen sind
in die Entwicklung von ACPLT/FC und ACPLT/SCC eingeflossen. Mit diesen Modellen stehen
mittlerweile auch in der ACPLT-Modellwelt schachtelbare Funktionsblockdiagramme und Se-
quenzdiagramme flr das Engineering zur Verfligung.

6.6.2 ACPLT/MT-Framework im Laufzeitsystem

Abbildung 6.12 zeigt die Umsetzung des ACPLT/MT-Framework im iFBSpro. Generell erlaubt
ACPLT/MT parallel mehrere Modelltransformationen im Laufzeitsystem, von denen aber maxi-
mal eine gleichzeitig aktiv sein darf.

Jede Modelltransformation besteht aus einer Regelbasis, der Template-Datenbank und einem
Satz an Werkzeugen, wie zum Beispiel Funktionsbausteine fir das Anlegen und Léschen von
Objekten bzw. Links. AuBerdem besitzt jede Modelltransformation ihre eigene Schedulingkom-
ponente und eine zugehdrige Visualisierung, die den Zustand des Schedulers in Form eines
Sequenzdiagramms zugéanglich machen (vgl. Abbildung 6.13). Schlussendlich stehen noch
zwei getrennte Tasklisten fur die Trigger und die operationalen Regeln zur Verfigung. Den ein-
zelnen Komponenten tbergeordnet ist das Datenbankobjekt (vgl. PandIX_csHMI bzw. MT2 in
Abbildung 6.12a), das unter anderem die Datenbankeintrage zu den Korrespondenzobjekten
enthalt. Diese Informationen kénnen auch zwischen verschiedenen Transformationen ausge-
tauscht werden, so dass aufeinander aufbauende Transformationen entstehen. Ein Beispiel
daflr ist Anwendungsszenario S1, das Einfarben der Rohrleitungen, die von einer Aktorbedie-
nung betroffen sind. Die dazu gehdrige Modelltransformation findet zwischen ACPLT/PandIX
und dem ACPLT/csHMI statt. Diese werden durch die Transformation aus Anwendungssze-
nario S2 erstellt und durch Korrespondenzobjekte dokumentiert. Anwendungsszenario S1 ist
daher auf die Informationen aus Anwendungsszenario S2 angewiesen.

Die Regelbasis von ACPLT/MT enthélt alle MT-Regeln der Transformation. Abbildung 6.12b
zeigt den Aufbau einer solchen Regel im Laufzeitsystem. Das Kopfelement wird durch ein Ob-
jekt vom Typ RuleExecutionControl (kurz REC) realisiert. Dieses ist wahrend der Regel-
ausflhrung daflir zusténdig, die Teilproduktionen mit Daten zu versorgen und ihre Bearbeitung

77

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

(e

¢ 1 PandIX_csHMI

(+} RuleBase
[y Templates

[y ‘: Scheduler
9 TriggerMemory

+ @ WorkingMemory

& iMT2

(a) Domainstruktur ACPLT/MT

78

=

RuleBase
. IREC1
—
= Trigger

| buttonPressed

~
77| LD

su

& | REC2

(b) MT-Regel: PLT-Stelle anlegen

Abbildung 6.12: ACPLT/MT im Laufzeitsystem

H-e

INIT_TRIG

MEM

+

RESET_TRIG_MEM

+

START_TRIG_MEM

L

=
>
=
=
=
=
&

I

w El
= m
> n
= m
3 I -
£ E)
c c
= =
m m

I

I

RE:

n

ET_TRIG

+

RESET_NEG_TRIG

+

DEL_ACTIVE_RULE

START_IDLE_TRIG
IDLE_TRIGGER_STARTED

CMD_SFC_START

ALL_TRIG_INITIALIZED

MT_Scheduler F

+ CMD_SFC_RESET

RESET_SFC

ALL_TRIG_RESTARTED

ALL_TRIG_STARTED

POSITIV_TRIGGER

RULE_RESETED

RULE_COMPLETED

RULE_DELETED

TRIGGER_RESETED

NEG_TRIGGER_RESETED

M SFC_RESETED

®

Abbildung 6.13: ACPLT/MT-Scheduling

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

Inhak.

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

anzustoBen. Zudem registrieren alle MT-Elemente der Regel die Pfade zu gebundenen oder
erstellten Modellobjekten beim REC. Wurde ein Ubersetzungsschritt erfolgreich durchgefiihrt,
meldet der REC anhand der registrierten Modellobjekte dem Datenbankobjekt die neu Ulber-
setzten Objekte.

Zunachst liegen die MT-Regeln jedoch als inaktive Objektnetzwerke im System vor, d.h. sie
hangen in keiner Taskliste und ihre interne Logik kommt nicht zur Ausfihrung. Wird eine Trans-
formation durch das Setzen des Kommandos cMD_SFC_START am Kommandoeingang des
Scheduler aktiviert, so hangt dieser die Triggerobjekte aller Regeln der Regelbasis in die Tas-
kliste WworkingMemory, setzt die Eingédnge der Trigger zurlick und aktiviert die zyklische Be-
arbeitung der Trigger lber deren Kommandoeingang (vgl. Abbildung 6.13). Sobald ein Trigger
eine positive Riickmeldung liefert, wird der zugehdrige REC in die Taskliste WorkingMemory
eingehangt und erhalt vom Scheduler den Befehl cMD_RESET. Dieser wird weitergereicht an al-
le MT_Elemente der Regel und bewirkt das Rilcksetzen aller Ausgangsvariablen auf ihren Ur-
sprungswert. AnschlieBend wird die Bearbeitung der Regel durch das Kommando CMD_ START
gestartet. Ist die Regel vollstéandig abgearbeitet, gibt der REC die Rickmeldung Ready. Dar-
aufhin kann der Scheduler die Regel aus dem WorkingMemory I8schen. AuBerdem wird der
zugehérige Trigger im TriggerMemory zurlickgesetzt und mit einer neuen Uberwachung be-
auftragt. Auch Trigger, die zuvor einen Fehler zuriickgegeben haben, werden zurlickgesetzt
und neu gestartet.

Wird zu einem beliebigen Zeitpunkt ein Zuriicksetzen der Transformation (CMD_SFC_RESET)
angefordert, werden zunéchst das TriggerMemory sowie das WorkingMemory geleert und
anschlieBend die Modelltransformation wieder deaktiviert.

6.6.3 MT_Element

Um die in Abschnitt 6.6.1 thematisierte unverzdgerte Rickmeldung realisieren zu kdnnen, wur-
de die zyklisch aufgerufenen Methode typemethode der Basisklasse fb/functioblock
wie in Abbildung 6.14 gezeigt erweitert. Die eigentliche Bausteinfunktionalitat wird in Pre- und
Posttasking-Funktionalitit unterteilt und in die Methoden mtLib_MTElement_preintask
und mtLib_MTElement_postintask ausgelagert. Dadurch kénnen das Pre- und Posttas-
king in abgeleiteten Klassen gezielt Uberschrieben werden. Zwischen den beiden Methoden-
aufrufen erfolgt die Bearbeitung der internen Taskliste, die die eingebetteten Funktionsbaustei-
ne enthalt.

Die eigentliche Funktionalitat von MT_Element und davon abgeleiteter Klassen wird mit Hil-
fe eines Sequenzdiagramms realisiert. Einen ausfiihrlichen Einblick in die Funktionalitat von
MT_Element und davon abgeleiteten Klassen sowie eine Schritt-flir-Schritt-Erlauterung die-
ses Sequenzdiagramms bietet Anhang C.

Da die ACPLT-Modellwelt zum Implementierungszeitpunkt von ACPLT/MT noch keine Reali-
sierung fiir Sequenzdiagramme besaf3, wurde die interne Logik mittels CASE-Anweisung in C
implementiert und aufbauend darauf mit ACPLT/csHMI eine Visualisierung als SFCs erstellt
(vgl. Abbildung 6.15). Die einzelnen Schritte und Transitionen wurde jeweils als eigene Metho-

79

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

OV_DLLFNCEXPORT void mtLib_MTElement_:
OV_INSTPTR_fb_functionblock pfb, OV

pemethod
E x pltc)

(
{

« Execute own logi

mtLib_MTElement_preintask (pfb, pltc);

Exe e another part of own

mtLib_MTElement_postintask (pfb

Abbildung 6.14: Realisierung geschachtelter FBs

() { MT_Element
true
CMD_RESET
ST_BASIC ST_RESET
l All.Chbk = BASIC
+ CMD_RUN
ST_RUN
mmmm CMD_NONE + All.Chbk = ST_POS + Any.Chbk = ST_NEG + Any.Chbk = ST_ERROR
ST_POS ST_NEG ST_ERROR
:F CMD_NONE
ST_HOLD
Legende: Any.Chbk - Mindestens ein Auftragnehmer liefert diese Riickmeldung

All.Chbk - Alle Auftragnehmer liefern diese Riickmeldung

Abbildung 6.15: SFC des MT-Element

den realisiert, um sie in abgeleiteten Klassen gezielt tberschreiben zu kénnen. Die Bearbeitung
der Schritte, sowie der Transitionen, die sich auf Kommandos beziehen erfolgt im PreTasking
und die Auswertung der Transitionen die sich auf Rickmeldungen von Auftragnehmer beziehen
im PostTasking. Dadurch kénnen innerhalb eines Zyklus Rickmeldungen von Auftragneh-
mern direkt im PostTasking und somit in der Auswertung der Transitionen bericksichtigt
werden. Wird die Bedingung einer Transition erfillt, so fihrt dies direkt zu einem Schrittwech-
sel, was sich in der Metavariablen state widerspiegelt. Dadurch kénnen Rickmeldungen von
den eingebetteten Auftragnehmern noch im gleichen Zyklus an den eigenen Auftraggeber wei-
tergereicht werden.

Insgesamt besteht die Funktionalitat der Basisklassen MT_Element aus sieben Schritten. Im
Basisschritt wird keine Logik ausgefuhrt, der Baustein ruht und wartet auf eingehende Kom-

80

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

mandos von Auftraggeber. Kommt der Befehl cMD_RUN wird mit der Bearbeitung der eigent-
lichen Bausteinfunktionalitdt begonnen. Die abgeleitete Klasse MT_Object fiihrt in diesem
Schritt zum Beispiel das Suchen bzw. Erstellen von Objekten durch. Im Normalfall wird die Lo-
gik des ST_RUN innerhalb eines Zyklus abgearbeitet. In den nachfolgenden Zyklen wird ledig-
lich auf die Rickmeldung von eingebetteten Auftragnehmern oder das Eintreffen eines neuen
Kommandos vom Auftraggeber gewartet. Erfolgt ersteres, dann wird je nach Art der Riickmel-
dung in die Schritte ST_P0S, ST_NEG oder ST_ERROR gewechselt, was dem eigenen Auftrag-
nehmer in Form der Metavariablen status als Riickmeldung weitergegeben wird. Kommt vom
Auftraggeber das Kommando CMD_NONE wird in den Schritt ST_HOLD gewechselt, der den
aktuellen Zustand des MT_Element einfriert bis entweder erneut ein cMD_RUN oder ein Kom-
mando zum Zuriicksetzen vom Auftraggeber eingeht. Im Schritt ST_RESET, der jederzeit durch
das Kommando cMD_RESET ausgeldst werden kann, werden alle Ein- und Ausgénge wieder
auf den Ursprungszustand zuriickgesetzt. Sobald auch alle eingebetteten Auftragnehmer ihre
Werte zurlickgesetzt haben, wird in den Basiszustand gewechselt.

Im Detail besitzen die Zusténde folgende Ausfiihrungslogik:

PreTasking PostTasking

ST_BASIC Alle Ausgange sind zuriickgesetzt, | Der Zustand wird verlassen, so-
der Baustein befindet sich im Basis- | bald der Befehl cMD_RUN vom Auf-
zustand. Beim Aktivieren dieses Zu- | traggeber kommt.
stands wird an die nachfolgenden
MT_Elemente der Befehl CMD_NONE
gesendet. In den weiteren Zyklen wird
auf einen Befehl vom Auftraggeber
gewartet.

ST _RUN In diesem Zustand wird die eigent- | In diesem Zustand wird verblie-
liche Funktionalitat des MT_Element | ben, bis die Auftragsnehmer eine
ausgeflhrt. Es werden je nach Para- | Rickmeldung tber den Verlauf ih-
metrierung Objekte in den Modellen | rer Bearbeitung liefern. Der riick-
gesucht oder erstellt. AnschlieBend | gemeldete Zustand wird direkt an
erhalten die Auftragsnehmer ebenfalls | den eigenen Auftraggeber weiter-
das Kommando CMD_RUN. gereicht.

ST_POS Alle Ausgénge bleiben in diesem Zu- | Der Zustand kann nur durch
stand unverandert. Beim Aktivieren | den Befehl CMD_RESET oder
dieses Zustands wird an die ein- | CMD_HOLD verlassen werden.
gebetteten MT_Element der Befehl
CMD_NONE gesendet. In den weiteren
Zyklen wird auf einen Befehl vom Auf-
traggeber gewartet.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

81

Inhak.

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

[ST RUN |

MODE=CREATE

ST_CREATE

= pObj = NULL

ST_ERROR

Legende:

MODE=SEARCH &
(Any.Chbk = ST_NEG |
ActNode = EMPTY)

ST_SEARCH

+ sonst wmmm ActNode = EMPTY -

= sonst WEEE MODE=SEARCH &

(Any.Chbk != ST_NEG &

ActNode != EMPTY)

ST_CHILDS

Any.Chbk = ST_NEG All.Chbk = ST_POS

[ST_NEG] [

ST_HOLD

ST_POS]

J--o

Any.Chbk - Mindestens ein Auftragnehmer liefert diese Riickmeldung

All.Chbk - Alle Auftragnehmer liefern diese Riickmeldung

Abbildung 6.16: Verfeinerter SFC des Schrittes ST_RUN im MT_Object

PreTasking

PostTasking

ST_HOLD

Die Bearbeitung des Bausteins wird
unterbrochen. Die historischen Daten
bleiben jedoch erhalten. Die einge-
betteten Auftragnehmer bekommen
den Auftrag CMD_NONE und gehen
dadurch ebenfalls in den Zustand
ST_HOLD.

Bekommt der Baustein den Befehl
CMD_RUN so wird in den Zustand
ST_RUN gewechselt und im nachs-
ten Zyklus die Bearbeitung unter
Bertiicksichtigung der historischen
Daten wieder aufgenommen.

ST_NEG

siehe ST_POS

Der Zustand kann nur Gber den
Befehl cMD_RESET verlassen wer-
den.

ST ER-
ROR

siehe sT_POS

siehe ST_NEG

ST_RESET

Die Bearbeitung des Bausteins wird
unterbrochen. Die historischen Daten
des Bausteins werden zurilickgesetzt.
Eine erneute Suche startet wieder am
Anfang des Suchraums. Alle Auftrag-
nehmer erhalten ebenfalls den Befehl
CMD_RESET.

Wurden alle Auftragnehmer erfolg-
reich zurlickgesetzt, wird in den
Ausgangszustand ST_BASIC ge-
wechselt.

6.6.4 MT_Object

Die Klasse MT_Object Uberschreibt den Schritt ST_RUN der Basisklasse und unterteilt ihn
in drei Teilschritte (vgl. Abbildung 6.16). Im Schritt ST_SEARCH wird nach einem passenden
Modellobjekt gesucht. Die Suche ist dabei als Tiefensuche implementiert. Den Startpunkt der
Suche erhélt das MT_Object Uber die Metavariable pfad. Diese stellt einen absoluten Pfad zu
einem Modellobjekt als Zeichenkette bereit und wird dazu genutzt, einen Link auf das entspre-

82

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

chende Objekt zu generieren. AnschlieBend wird das Modellobjekt dahingehend untersucht,
ob es entsprechend dem Wert der Metavariable Assoc verlinkt ist. Gefundene Links dieses
Typs werden verfolgt und das Uber das Ziel bzw. die Quelle des Links als potentieller Kandidat
fir die aktuelle Suche in Betracht gezogen. Stimmen Klasse und Objektname mit den Werten
der Metavariablen RepClass und ObjName Uberein und kénnen auch die MT_vVariable vom
Typ und Wert her auf die Variablen des potentiellen Kandidaten abgebildet werden, so muss
abschlieBend noch Uberpriift werden, ob das gefundene Objekt schon Ubersetzt wurde. Dies
erfolgt durch eine Abfrage beim Datenbankobjekt, das alle bereits Ubersetzten Modellobjekte
nachhélt. Der Metavariablen-Ausgang ActNode wird mit dem Pfad des gefundenen Objektes
belegt und dient damit aus Startpunkt fir eingebettete MT_0Object. Liefern diese eine positive
Riickmeldung, so wurde eine Entsprechung im Modell gefunden. Da weitere Modellstrukturen
auf die eingebetteten Objekte passen kdénnen, werden sie mit gleicher Parametrierung erneut
mit der Bearbeitung ihrer internen Logik beauftragt. Erst wenn die eingebetteten Objekte eine
negative Riickmeldung geben, kann keine weitere Objektstruktur im Modell gefunden werden
und es wird der néchste potentielle Kandidat fir das lokale MT_0Object gesucht. Die Meta-
variable ActNode dient dabei als Speicher, welches Modellobjekt als letztes gefunden wurde
und die Suche nach weiteren Uber RepAssoc verbundenen potentiellen Kandidaten kann fort-
gefiihrt werden. Dabei wird ausgenutzt, dass Links in ACPLT als geordnete Listen an den
verlinkten Objekten, also auch an dem durch pfad referenzierten Modellobjekt zur Verfligung
stehen.

Im Schritt ST_CREATE wird zun&chst wie im Schritt ST_SEARCH nach einem passenden Model-
lobjekt gesucht. Ist ein solches Objekt vorhanden, werden nur ggf. abweichende Variablenwerte
angepasst. Ist ein solches Modellobjekt nicht vorhanden, wird ein Objekt der Klasse RepClass
angelegt und mit Hilfe eines Links vom Typ RepAssoc mit dem Modellobjekt verknipft, das
Uber die Metavariable Pfad referenziert wird. AuBBerdem werden die Variablen mit den Werten
entsprechend der MT_variablen des MT_Object belegt. Gehen vom aktuellen MT_oObject
oder dessen MT_vVariablen Links aus, so wird Uberprift, ob das Gegenstlick des Links be-
reits gebunden wurde. Ist dies der Fall, so wird ein Link entsprechend der Parametrierung im
Modell angelegt. Auch im Schritt ST_CREATE gibt die Metavariable ActNode Informationen
Uber das gebundene Modellobjekt.

War die Suche bzw. das Erstellen erfolgreich, so werden die eingebetteten MT_Object im
Zustand ST_CHILDS bearbeitet und auf Riickmeldung von ihnen gewartet.

Zusammenfassend besitzen die Schritte und Transitionen des MT_0Ob ject folgende Logik:

PreTasking PostTasking

ST_RUN Anhand der Metavariablen | Je nach aktuellem Modus wird
Context und SourceDom wird | in den Zustand ST_CREATE oder
der Modus des MT_Object auf | ST_SEARCH gewechselt

suchend (SEARCH) oder erstellend
(CREATE) gesetzt.

83

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

PreTasking PostTasking

ST _CREATE Das durch die Metavariable path | Trat bei der Erstellung ein Fehler
referenziere Objekt wird als Start- | auf, wird in den Zustand ST_ERROR
punkt fir die Suche nach einem ent- | gewechselt. Ansonsten wird der
sprechend der AssocClass ver- | Auftrag an die Auftragnehmer wei-
linkten Modellobjekt genutzt, das | tergeleitet und in den Zustand
den Anforderungen nach Klasse | ST_CHILDS gewechselt.
(RepClass), Variablentypen und
Variablenwerten entspricht. Kann
ein solches Modellobjekt nicht ge-
funden werden, so wird es angelegt,
der Wert der Variablen gesetzt und
ggf. benétigte Verbindungen erstellt.

ST_SEARCH || Ausgehend von dem durch den Pa- | War die Suche erfolglos und der
rameter Path referenzierten Ob- | Ausgang ActNode enthdlt keinen
jekt wird die né&chste, noch nicht | Objektpfad, wird in ST_NEG ge-
bearbeitete Instanz der Assoziation | wechselt, wird in den Zustand
AssocClass gesucht und ihr Ge- | ST_CHILDS gewechselt.
genpart dahingehend Uberpriift, ob
er dem reprasentierten Objekt ent-
spricht. Wurde ein passendes Ob-
jekt gefunden, wird es beim REC
Uberprlft und registriert, um zu
vermeiden, dass ein Objekt dop-
pelt gebunden wird. Der Ausgang
ActNode wird mit dem Pfad des ge-
fundenen Objektes belegt.

ST_CHILDS An alle Auftragnehmer wird der Be- | Kommt eine negative Riickmeldung
fehl cMD_RUN geschickt, um ihre | vom Auftragnehmer, wird die Bear-
Bearbeitung anzustoB3en. beitung unterbrochen. Eine positive

Rickmeldung erlaubt einen Wech-
sel in den Zustand ST_POs.

ST _RESET Zusatzlich zu der Funktionalitit aus | keine Anderung zur Basisklasse
der Basisklasse wird bei gesetz-
tem ActNode das Objekt noch beim
REC de-registriert.

Die Logik der Ubrigen Bausteine hélt sich weitestgehend an die der Basisklasse MT_Element.

True Erhalt der Baustein in den Schritten ST_BASIC oder ST_HOLD den Befehl CMD_RUN,
so wird direkt in ST_P0Os gewechselt. Der negative Fall sowie der Fehlerfall kénnen bei
diesem Baustein nie erreicht werden.

Not Erfolgt durch den Auftragnehmer die Rickmeldung sT_posS, so liefert der Baustein an
seinen eigenen Auftraggeber die Rickmeldung sT_NEG und umgekehrt. Alle anderen
Schritte und Transitionen bleiben unberihrt.

84

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.6 Referenzimplementierung

Placeholder Im Schritt sT_RUN wird eine Kopie des referenzierten Templates aus der Template-
Datenbank der Modelltransformation als eingebetteter Funktionsbaustein des Platzhal-
ters erstellt und die Ein- und Ausgénge verknlpft. Da die Ersetzung eines Platzhalters
erst erfolgt, wenn der Kontrollfluss den entsprechenden Modifikator aktiviert, gibt es Platz-
halter, die wahrend einer Regelbearbeitung nie ersetzt werden. Dies ist zum Beispiel der
Fall, wenn vor Erreichen des Platzhalters ein Fehler auftritt oder wenn bei einer Ver-
zweigung sich der Platzhalter in der inaktiven Alternative befindet. Diese Lazy-Evaluation
verringert die Anzahl der Objekte und Kopiervorgénge im Laufzeitsystem und ist daher
platz- sowie ressourcensparend. Dies kommt dem Gesamtkonzept in doppelter Hinsicht
entgegen.

Im Zustand sT_RESET wird die Kopie des Templates wieder geldscht.

Trigger Statt dem Zustandswechsel nach ST_NEG werden die Ausgange direkt geléscht und
im Zustand ST_RUN verblieben. Dies erlaubt die Erkennung von einmaligen Events, da
kein Zyklus durch das Zurlicksetzten des Bausteins verloren geht. Alle anderen Schritte
und Transitionen werden unveréndert von MT_Ob ject Ubernommen.

Branch Die Verzweigung kann sowohl als ODER als auch als UND fungieren. Die Parametrie-
rung nach ODER/UND muss in Quell- und Zieldoméne identisch sein. Bei einer ODER-
Verzweigung erfolgt die Tiefensuche zun&chst in der ersten Alternative und erst wenn
diese eine negative Riickmeldung liefert, in der zweiten Alternative. Es wird daher zu-
nachst der Auftragnehmer in der ersten Alternative angestoB3en. Liefert dieser ST_NEG
zurlick, so erhélt der Auftragnehmer in der zweiten Alternative den Befehl cMD_RUN. Erst
wenn auch dieser eine negative Riickmeldung gibt, wechselt die Verzweigung in den
Schritt ST_NEG. Fehlermeldungen werden weiterhin direkt an den eigenen Auftraggeber
weitergereicht. In der Zieldoméane erhélt die ODER-Verzweigung mit Hilfe des Korrespon-
denzgraphs Auskunft ber die in der Quelldoméane aktive Alternative und stéBt seinerseits
nur die Bearbeitung des entsprechenden Auftragnehmers an. Unabhéngig von der Doma-
ne werden bei einer UND-Verzweigung beide Alternativen gleichzeitig angesto3en. In den
Zustand ST_POs wird erst gewechselt, wenn beide Auftragnehmer diese Riickmeldung
geben. Fur den Wechsel in ST_NEG reicht die entsprechende Riickmeldung einer der
beiden Auftragnehmer.

CD_Object Die Klasse flr die Korrespondenzobjekte schreibt im Zustand sT_RUN die Trans-
formationsdaten in ein Array des Kopfelements. Dabei werden neben den gebundenen
Objekten der Quell- und Zieldomane auch den Korrespondenztyp (E2E/v2V) sowie der
Zeitstempel protokolliert. Nach erfolgreicher Bearbeitung eines kompletten Transformati-
onsschrittes, werden diese Daten vom Kopfelement in das Datenbankobijekt lbertragen,
wo sie dauerhaft nachgehalten werden.

6.6.5 Metavariablen, Variablen und Links

Die Ports von ACPLT/FB-Funktionsbausteinen sind eigensténdige Objekte und erflillen alle An-
forderungen an die Realisierung von Metavariablen. Aus diesem Grund werden Metavariablen
direkt durch Ports realisiert und sind daher in der Signatur von MT_Element sichtbar (vgl.
Abbildung 6.17). Die Verwendung von Ports zur Realisierung von MT-Parametern bringt eine

85

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

: CLASS mtLib/MT_Element IS_INSTANTIABLE;

COMMENT = ents 1 object of any domain in an ACPLT/MT-Pattern";
VARIABLES
RepLib 8 STRING HAS_ACCESSORS FLAGS = "i"
X Element
FLA = "1

RING HAS_ACC

FLAGS = "i"

END_VARIABLES;

END_CLASS;

Abbildung 6.17: Signatur der Klasse MT_Element

Ubersichtliche Darstellung aller Metavariablen als Ein- und Ausgénge eines MT_Element in
iFBspro mit sich.

Im Vergleich zu Metavariablen benétigen MT_variablen weitergehende Parametrierungs-
méglichkeiten fiir den Datentyp und den erwarteten Wert der représentierten Variablen. Aus
diesem Grund wurde fir MT_variablen eine entsprechende Erweiterung auf Basis der
ACPLT/FB-Ports vorgenommen und eine spezielle Assoziation MT_Connection bereitge-
stellt, mit Hilfe derer man zwei MT_variablen gerichtet miteinander verbinden kann. Eine
MT_Connection reprasentiert eine entsprechende Verbindung zwischen Variablen.

Assoziationen, die entlang der Kommandostruktur verlaufen, werden wie in Abbildung 6.17
zu sehen ist, Uber die Metavariablen AssocLib, AssocClass und AssocRole reprasentiert.
Alle anderen Assoziationen, die nicht durch die Kommandostruktur abgedeckt sind, werden mit
Hilfe eines MT_Assoc-Objektes reprasentiert. Mittels einer speziellen Assoziation werden die
MT_Assoc-Objekte mit den entsprechenden MT-Objekten verknipft.

6.7 IEC 61131 basierte Modelltransformation

Die Sprachen der IEC 61131 sind imperative Sprachen, deren Funktionalitat in zyklisch aufge-
rufenen Programmblécken (engl. program organization unit, POU) gekapselt wird. Die interne
Logik von POUs wird mit Hilfe der in der IEC 61131 beschriebenen Sprachen realisiert. In
dieser Arbeit kommen dabei insbesondere die pascalahnliche Sprache des Strukturierten Text
(engl. Structured Text, ST), die an Zustandsautomaten angelehnten Sequenzdiagramme (engl.

86

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6.7 IEC 61131 basierte Modelltransformation

doSomethingSpecial();

Sum := fbl(Inl := THIS*.Inl,
fb1: FBD In2 := THIS".In2,
In3 := THIS*.In3);

fb1: ADD '
(1 It out[}——Sum £b2.In1 := Sum.Out;
2 0 fb2.In2 := THIS~.In2;
In3 I3 fb2.In3 := THIS*.In3;
T — b2();
b2: SORT 2 O;
L_Jint outt] THIS”.Minimum := fb2.0utl;
1]2 ou2[] THISA.Maximum := fb2.0ut3;

—{ 13 Out3
doSomethingSpecial();

(a) FBD vs. ST

CASE AktuellerSchritt OF
1: Schrittl();
IF Bedingungl THEN
AktuellerSchritt := 2;
ELSE
AktuellerSchritt := 3;
END_IF
2: Schritt2();
IF Bedingung2 THEN
AktuellerSchritt := 1;

I:P Bedingung1 [FI Sonst END_IF
3: Schritt3();

Schritt1

‘ Schritt2 ‘ ‘ Schritt3 ‘ IF Bedingung3 THEN
AktuellerSchritt := 1;
[] Bedingung2 Bedingung3 END_IF
END_CASE

(b) SFC vs. ST

Abbildung 6.18: Sprachen der IEC 61131 im Vergleich

Sequential Function Chart, SFC) und die Funktionsblockdiagramme (engl. Function Block Dia-
gram, FBD) zum Einsatz. In Abbildung 6.18 sind die grafischen Sprachen der entsprechenden
ST-Umsetzung gegeniibergestellt. Die Darstellung in ST in Abbildung 6.18a zeigt, dass vor und
nach dem Aufruf der internen POUs weitere Bearbeitungsschritte erlaubt sind. Zudem ist in ST
die Reihenfolge der Aufrufe klar ersichtlich. Diese Reihenfolge muss auch bei FBDs beachtet
werden. Wird £b2 vor £bl aufgerufen werden, so kann das Ergebnis von £b1 erst einen Zy-
klus spéater durch £b2 ausgewertet und in diesem Fall mit den neuen Werten der Eingédnge
In2 und In3 verglichen werden. Die Sprachen der IEC 61131 kdnnen gemeinsam in einem
Programm eingesetzt werden. So kann, unabhangig von der aufrufenden POU, zur Realisie-
rung der Funktionalitat von ADD und SORT in Abbildung 6.18a, eine beliebige Sprache der IEC
61131 genutzt werden. In der IEC 61131 gibt es nur Verbindungen zwischen Variablen als As-
soziationen. Andere Assoziationen miissen durch Zeigertypen realisiert werden. Verbindungen
zwischen Variablen wirken wie Zuweisungen.

87

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

6 ACPLT/MT - Modelltransformation fiir die Automatisierungstechnik

Fur die direkte Realisierung von ACPLT/MT in den Sprachen der IEC 61131 fehlen diesen
Sprachen zwei elementare Eigenschaften. Zum einen ist in der IEC 61131 keine Introspektion
vorgesehen, so dass zur Laufzeit Modelle nicht durch MT-Elemente erkundet werden kénnen.
Zudem stellt die IEC 61131 keine dynamische Speicherverwaltung zur Verfigung. Das Anle-
gen von Objekten in der Zieldoméne lasst sich dadurch nicht realisieren. Auch wenn die Norm
diese beiden Eigenschaften nicht vorsieht, so werden sie von immer mehr Automatisierungs-
systemen bereitgestellt. Insbesondere die Introspektion wird zurzeit durch einen anderen Trend
geradezu forciert. Immer mehr Automatisierungssysteme setzen auf OPC/UA als Kommuni-
kationsschnittstelle zwischen dem Automatisierungssystem und Komponenten auBBerhalb der
Echtzeitumgebung. OPC/UA basiert aber auf dem Grundgedanken, dass ein Laufzeitsystem
erkundbar ist. Eine Konsistenzanalyse auf Basis von ACPLT/MT lasst sich auf solchen Syste-
men bereits realisieren. Ein Ansatz fir die Realisierung der Selbsterkundbarkeit ist die Ablage
der Strukturinformationen als erkundbare Datei [TC3]. Alternativ kénnen Bausteine mit einem
Interface versehen werden, das eine Referenz auf den instanziierenden Baustein sowie Me-
thoden zur Abfrage der eigenen Struktur beinhalten. Dieser interfacebasierte Ansatz |&sst sich
auch in Systemen realisieren, die sich strikt an die Vorgaben der IEC 61131 halten. Auch das
dynamische Andern und Anlegen von Funktionsbausteininstanzen zur Laufzeit wird von den
ersten Automatisierungssystemen bereits angeboten [TC3]. Es ist also zu erwarten, dass sich
die beschriebenen Konzepte in naher Zukunft in allen gangigen Automatisierungssystemen
umsetzen lassen, auch wenn dies nicht explizit durch die IEC 61131 unterstlitzt wird.

Bei der Umsetzung von ACPLT/MT mittels eines IEC 61131 basierten Automatisierungssys-
tems mit entsprechenden Mdglichkeiten kann die interne Logik der MT-Elemente und der
Scheduling-Komponente durch einen SFC realisiert werden. Oftmals wird jedoch auch eine
CASE-Anweisung in ST fir solche Zwecke genutzt (vgl. Abbildung 6.18b). Fir die Beschrei-
bung der MT-Regeln bietet sich ein Funktionsblockdiagramm an. Dies ist nur méglich, da
die Sprachen der IEC 61131 frei gemischt werden kénnen und so die interne SFC oder ST-
Realisierung nach auBBen als ein FBD reprasentiert werden kénnen. Das kommt auch zum
Tragen bei der Realisierung der einzelnen Schritte und Transitionen der erstellten SFC. Hier
bietet sich wiederum die Umsetzung in ST an.

88

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

ACPLT/MT wurde bereits in mehreren Projekten zur Anwendung gebracht und konnte dabei gu-
te Ergebnisse vorweisen. Insbesondere bei der Realisierung von Automatisierungsfunktionen
fir die Praktikumsanlage des Lehrstuhl fir Prozessleittechnik der RWTH Aachen University
und der Automatisierung eines modularen Elektro-Reduktionsofen (MERF) wurden verschie-
denen Einsatzszenarien realisiert. Die dabei entstandenen Modelltransformationen spiegeln
sich in den Anwendungsszenarien aus Kapitel 1.2 wieder. Im Folgenden soll erlautert wer-
den, wieweit sich ACPLT/MT zur Realisierung der verschiedenen Szenarien eignete und an
welchen Stellen das Konzept an seine Grenzen gestofBen ist. AnschlieBend wird die Passge-
nauigkeit von ACPLT/MT entlang der zuvor identifizierten informationstechnischen und auto-
matisierungstechnischen Anforderungen an eine Modelltransformation analysiert.

7.1 SO — Bereitstellung von Planungsdaten im Laufzeitsystem

Anwendungsszenario SO realisiert den Datenabgleich zwischen den XML-basierten Planungs-
daten und der ACPLT-Modellwelt. Als korrelierende Modelle kommen hierbei PandIX [PandIX]
und ACPLT/PandIX zum Einsatz. Neben der bidirektionalen Auswertung von ACPLT/MT-Regel
steht dabei die Anwendbarkeit auf Modelle im Vordergrund, die nicht in der ACPLT-Modellwelt
beheimatet sind.

Die Verwendung von ACPLT/MT anstelle einer in das Automatisierungssystem integrierten
Import-/Exportlésung bringt insbesondere bei nachtraglichen Anpassungen der beteiligten Mo-
delle sowie bei Erweiterungen der Funktionalitat auf weitere Austauschmodelle signifikante Vor-
teile mit sich. Eine integrierte Import-/Exportfunktion bedingt bei Anderungen am Modell eine
Anpassung des Laufzeitsystems und somit einen zeitweisen Ausfall der Anlage. In einer Anla-
ge im Produktiveinsatz ist dies nicht realisierbar. Bei der Verwendung von ACPLT/MT missen
lediglich die Regeln angepasst werden. Dies kann ohne Unterbrechung der Basisfunktionali-
tat und somit ohne Ausfallzeiten erfolgen. Die Performance-Nachteile gegeniber integrierten
Import-/Exportfunktionen sind hingegen vernachléssigbar. Dies liegt insbesondere daran, dass
ein Datenimport respektive -export vergleichsweise selten durchgefiihrt wird. Zudem ist die
Bearbeitung eines solchen Datenaustauschs im Regelfall zeitunkritisch.

Durch die Fokussierung von ACPLT/MT-Elementen auf die Représentation von Objektnetzwer-
ken war dieses Szenario nicht mit dem vorgestellten Basismodell realisierbar. Zur Umsetzung
des Datenimports wurden daher spezielle ACPLT/MT-Objekte und ACPLT/MT-Variablen ent-
wickelt, die den Inhalt von XML-Tags bzw. XML-Attributen je nach Transformationsrichtung
auswerten oder schreiben. Die angepassten ACPLT/MT-Objekte erhalten als Eingabe einen

89

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

XML-Baum und suchen entsprechend ihrer Parametrierung darin Elemente mit den passen-
den Eigenschaften. Die identifizierten TeilbAume werden zur Weiterverarbeitung an die Auftrag-
nehmer weitergereicht. Umgekehrt verlauft bei der erstellenden Abarbeitung die Generierung
eines XML-Baums, der durch den eigenen Auftraggeber in eine gréBere XML-Struktur einge-
bettet wird. MT-Assoziationen und MT-Verbindungen kommen bei der Représentation von XML-
Kontexten nicht zum Einsatz. Die vollstandige TGG fiir dieses Anwendungsszenario findet sich
in Anhang B. Es hat sich gezeigt, dass durch diese Erweiterung der ACPLT/MT-Bausteine be-
liebige XML-basierte Modelle in ACPLT/MT verarbeitet werden kénnen. Durch die Verwendung
weiterer modellspezifischen MT-Elemente kann auch eine generelle Unabhangigkeit von den
verwendeten Planungswerkzeugen und den darin verwendeten doménenspezifischen Spra-
chen realisiert werden.

Trotz der nétigen Anpassungen an den MT-Objekten ist dieses Szenario pradestiniert fiir den
vorgestellten Transformationsansatz mittels Tripel-Graph-Grammatiken. Anderungen in den
Planungsdaten konnten zeitnah in die prozessleittechnische Laufzeitumgebung weitergegeben
werden, Anderungen im Laufzeitsystem konnten in den Planungsdaten dokumentiert werden.

7.2 S1 - Einzelne Automatisierungsfunktion als Serienprodukt

Bei Anwendungsszenario S1 steht die Realisierung einer Flusswegkontrolle auf Basis der
PandIX-Daten im Vordergrund. In einem ersten Teilszenario werden die Auswirkungen einer
Aktorbedienung auf der Bedienoberflache fir den Anwender durch Einfarben der betroffenen
Rohrleitungen sichtbar gemacht. So werde in der Anlage aus Abbildung 7.1a alle in Abbildung
7.1b gestrichelt gezeichneten Rohrleitungen eingefarbt, da sie beim Offnen des durch den An-
wender angefragten Ventils Y1 betroffen waren. Dieses Teilszenario stellt einen Sonderfall dar,

N1/
[
> YN YO
N2/ Y2/
> K P
(NO™ £ YO™
NNt/ N
B2 B2
o
(a) Beispielanlage mit gedffnetem Ventil Y2 (b) Auswirkungen der Aktorsteuerung an Y1

Abbildung 7.1: Auswirkungen einer Aktorsteuerung

da die Modelltransformation dauerhaft aktiv bleibt und selbst Teil der Automatisierungsfunktion
ist. Es verwendet daher das Prinzip ,Parametrieren statt Implementieren* [Sch12] in idealisier-
ter Form. Dadurch verlasst dieses Teilszenario allerdings gleich aus mehreren Griinden die
Welt der Tripel-Graph-Grammatiken. Zum einen handelt es sich hierbei nicht um einen einmali-

90

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.2 S1 - Einzelne Automatisierungsfunktion als Serienprodukt

gen Ubersetzungsprozess. Wird die Produktion S1-R0 angewendet, so wird der Link zwischen
den beiden Flanschen (Connector) als Ubersetzt markiert. Ein Entfarben bzw. Schwérzen der
Rohrleitung oder gar ein erneutes Farben sind mit einer TGG nicht realisierbar.

S1-R0: Einfarben

tu: MT-Objekt mni: Vav tu: MT-Objekt
+ Kontext = true + Kontext = true
+ RepKlasse = “SystemUnitClass” = + RepKlasse = “Group”
vr: MT-Objekt v: MT-Objekt
—> Kontext -tue mn2: V2V =D Konext -tue
+ RepKlasse = “ValveRequest” + Kontext —true + RepKlasse = “ValveTemplate”
con1: MT-Objekt p1: MT-Objekt
+ Kontext =true mn3: V2V =+ Kontext =true
+ RepKlasse = “Connector” _ ——|_+ RepKlasse = “Pipe”
+ Kontext = true
p1: MT-Objekt Color: MT-Variable
—> i Kontext = true FKontext - false
" 1: E2E
+ RepKlasse = “Pipe” sal: B2k + Value — “Green’
| +Kontext = false|
con2: MT-Objekt si: MT-Variable
+ Kontext = true + + ;0"(:(' - g‘el teditem”
+ RepKlasse = *Connector’ + Repilasse = Selectediiem

Um das Anwendungsszenario dennoch umsetzen zu kdnnen, kann das vorgestellte Framework
ACPLT/MT jedoch auch als Basis fiir eine ,herkdmmliche” unidirektionale Modelltransformation
genutzt werden. Die MT-Elemente des linken Pattern sind dabei alle mit Kontext = true und
Quellmodell = true parametriert. Die Regel lasst sich dann wie eine WENN-DANN-Regel
lesen. Hierbei entfallt die Uberpriifung, ob ein Objekt bereits (ibersetzt wurde. Anders als bei
Leerlaufregeln kann dabei jedoch auf Informationen aus dem Quellmodell zugegriffen wer-
den. Dies bringt natlrlich neue Probleme mit sich. So steht eine bidirektionale Auswertbarkeit
fir solche Regelsatze nicht mehr zur Verfligung. Durch die erlaubte mehrfache Anwendung
der Regel auf die gleichen Modellelemente entfallt zudem die Zusicherung, dass die Trans-
formation terminiert. Wird beispielsweise in der Regel S1-R0 der Link im Pattern der linken
Domaéne als Kontext markiert und somit in eine WENN-DANN-Regel verwandelt, so wird sie im-
mer und immer wieder ausgefihrt werden, auch wenn die Rohrleitung bereits griin gefarbt ist.
WENN-DANN-Regeln missen daher so formuliert sein, dass sie dennoch ressourcenschonend
ausgewertet werden kénnen. Dies kann entweder durch einen geeigneten Trigger oder durch
gezielte Abfrage des Aktualzustandes geschehen. Im aktuellen Beispiel schlagt der Trigger
einmalig an, sobald eine Anfrage vom Benutzer erfolgt.

ACPLT/MT bietet fur dieses Szenario noch weitere Uber die Machtigkeit von Tripel-Graph-
Grammatiken hinausreichende Méglichkeiten fiir die Realisierung an. Durch die Uberpriifung
des ausgewahlten HMI-Objektes in der linken Doméne (SelectedItem) ist die Regel S1-R0
insgesamt sehr ineffizient, da das linke Pattern alle Kombinationen von Ventilen und Rohrleitun-
gen findet und erst ganz zuletzt bei der Auswertung der rechten Doméane ein Vergleich mit dem
eigentlich selektierten Element stattfindet. Um den Regelsatz effizienter zu gestalten, wurde
die Regel umgestellt und eine Inplace-Transformation mit multiplen Quellmodellen formuliert.
Dadurch wird die Welt der Tripel-Graph-Grammatiken endgultig verlassen.

Die resultierende Regel S1-R1 verwendet fir die Umsetzung multipler Quellmodelle die als
UND parametrierte MT-Verzweigung. Sie dient damit lediglich als Multiplikator fiir die Komman-
dostruktur und st6Bt die MT-Elemente der ersten und der zweiten Alternative parallel an. Da die

91

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

MT-Elemente der ersten Alternativen in der Taskliste vor denen der zweiten eingeordnet sind,
wird zundchst das selectedItem ausgewertet und in der zweiten Alternative nur das Ventil
gefunden, das vom Anwender ausgewahlt wurde.

Das massive Verlassen der TGG-Welt bringt eine Reihe von Problemen und Gefahren mit sich,
fir die im Einzelfall eine Kosten-Nutzen-Abwagung durchgefiihrt werden muss. So besteht die
Gefahr eines nicht terminierenden Regelsatzes durch Inplace-Transformation und mehrfache
,Ubersetzung* ein und desselben Objektes. Zudem fehlt die formale Zusicherung, dass die
Regelanwendungen konsistenzerhaltend wirken. Die Machtigkeit der Ausdruckskraft geht an
dieser Stelle auf Kosten der Zusicherbarkeit von formalen Eigenschaften. Der Anwender muss
daher jeden Regelsatz, der auBerhalb der TGG-Spezifikation lauft, explizit auf die bendtigten
Eigenschaften hin Gberprifen.

S1-R1: Auswirkung eines Stellbefehls am Ventil
N

Ve
‘J/ v1:MT-Verzweigung \

\ ALT1

tu: MT-Objekt mni: V2V tu: MT-Objekt
+ Kontext =true Kontext e + Kontext =true
+ RepKlasse = “SystemUnitClass” * = + RepKlasse = “Group”

vr: MT-Objekt v: MT-Objekt
+ Kontext = true mn2: V2V + Kontext =true
+ RepKlasse = “ValveRequest' TKonext —te + RepKlasse = “ValveTemplate”
con1: MT-Objekt p1: MT-Objekt
+ Kontext =true mn3: Vav + Kontext = true
+ RepKlasse = “Connector” mng: Yev + RepKlasse = “Pipe”
+ Kontext = true
p1: MT-Objekt Color: MT-Variable
+ Kontext = true T 1: E2E + Kontext = false
+ RepKlasse = “Pipe” | sal: EZE S PRV — “Green”
+ Kontext = false
con2: MT-Objekt
+ Kontext =true
+ RepKlasse = “Connector”

tu: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”

[si: MT-Variable |

+ Kontext = true
+ RepKlasse = "

Auf Basis dieser flexibleren nicht TGG-konformen Anwendung von ACPLT/MT férbt der in
[KQ11; Kra+12] vorgestellte Regelsatz die im HMI dargestellten Rohrleitungen, schrittweise
ausgehend vom angewahlten Aktor, ein bis ein geschlossenes Ventil, eine ausgeschaltete
Pumpe oder ein Reaktor erreicht ist. Die Anzahl der flr die Einfarbung bendtigten Zyklen ent-
spricht der maximalen Anzahl der Rohrabschnitte in den gefundenen aktiven Flusswegen. Bei
einer fur die Prozessindustrie Ublichen Zykluszeit von 10ms ist dieses Vorgehen auch fiir groBe
Anlagen mit bis zu 40 oder 50 Rohrabschnitten bis zum nachsten Reaktor ausreichend schnell.

Die fuinf fir das Teilszenario benétigten Regeln werden in Anhang B als ACPLT/MT-Regeln de-
tailliert aufgefihrt. An dieser Stelle soll die schon in [Kra+12] verwendete beschreibende Form
verwendet werden, um die Grundidee zu illustrieren. Die Regeln beschreiben den Zusammen-
hang von Ventil- (V'), Pumpenzustanden (P), Vorhandensein von Kreuzungspunkte (K) und

92

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.2 S1 - Einzelne Automatisierungsfunktion als Serienprodukt

der Farbung der angeschlossenen Rohrleitungen (R). Indizes geben an, ob es sich um das
entsprechende Objekt in der Doméne ACPLT/csHMI (HMI) und ACPLT/PandIX (R&l) handelt.

R1. WENN Vi1gayr angefragt wurde UND
Vignr entspricht V1ggr UND

Vlggr verbunden ist durch Rlgg UND

DANN Uberprife Rlgg; entspricht Rl g UND

farbe Rl €in.

R2. aquivalente Regel fir Pumpen Ply s bzw. Plggr

R3. WENN Rlgy eingeférbtist UND
Rlpg; verbunden ist mit V1gg UND
Viper offenist UND

V1ger verbunden ist durch R2gg
DANN wird R2y) eingeféarbt

R4. aquivalente Regel fir Pumpen Pl bzw. Pl
R5. WENN Rlgy; eingeférbtist UND
Rlper verbunden ist mit K1pzg; UND

Klggr verbunden ist durch R2gg s
DANN wird R2ymr eingeférbt

Wahrend das erste Teilszenario inkrementelle Anderungen, multiple Quellmodelle und eine
Inplace-Transformation fokussiert, steht bei der Erkennung von Leckagen und unerwiinsch-
ter Vermischung von Medien die Umsetzung einer unidirektionalen Batch-Transformation im
Vordergrund. Daher erlaubt sich an dieser Stelle die Frage, ob hier die Verwendung von Tripel-
Graph-Grammatiken nicht Uber das Ziel hinausschief3t. Da jedoch die Gefahr besteht, dass ein
Anwender die Bausteinnetzwerke fir die Flussweganalyse beabsichtigt oder unbeabsichtigt
verandert und auch die Anlagenstruktur Uber die Zeit ggf. angepasst wird, ist die Mdglichkeit
zur Konsistenzanalyse und zum inkrementellen Update generell wiinschenswert.

Als Basis flr die Teilszenarien b) und c) dient die von Quirés [Qui11] formulierte Logik zur
Analyse von Flusswegen in einer verfahrenstechnischen Anlage. Quir6s beschreibt darin alle
mdglichen Flusswegproblematiken in Form von Funktionsbausteinnetzen. Abbildung 7.3 zeigt
die anlagenspezifischen Bausteinnetze zur Realisierung der Flussweganalyse von Behélter B1
nach Behalter B2 tiber die Pumpe N1. Fir die in Abbildung 7.3a gezeigte Anlage existieren zwei
Flusswege von Behalter B1 nach B2 (vgl. Abbildungen 7.2b und 7.2c). Ein Vermischen kann
potentiell dann auftreten, wenn ein Medium Uber das an den Flussweg angrenzende Ventil Y2
zuflieBt. Ein offenes Ventil Y2 bedeutet aber ebenso ein potentielles Leck.

Zur Auswertung dieser ungewiinschten Zusténde stehen entsprechende Bausteinnetze zur
Uberwachung von geéffneten Flusswegen 7.3c, die Erkennung von Leckagen 7.3d und die

93

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

(a) Beispielanlage (b) 1. Flussweg von B1 nach B2 (c) 2. Flussweg von B1 nach B2

Abbildung 7.2: Beispielanlage fiir die Flusswegkontrolle

Erkennung von unerwiinschtem Mischen von Medien 7.3e zur Verfugung. Wird eine Leckage
oder ein Mischen auBerhalb der dafiir vorgesehenen Reaktoren identifiziert, so wird der Nutzer
daruber informiert 7.3f. Die zu realisierenden Bausteinnetzwerke sind anlagenspezifisch reali-
siert. Bei flexiblen Anlagen wie M4P.AC [M4P] ist eine Flussweganalyse daher nur einsetzbar,
wenn die entsprechenden Bausteinnetze automatisiert anhand der aktuellen Anlagenstruktur
erstellt werden.

Bei der Realisierung dieser beiden Teilszenarien stéBt das vorgestellte Konzept schnell an sei-
ne Grenzen. Zwar |asst sich die Darstellung der Anlage mittels ACPLT/Flowpath-Objekten noch
relativ einfach in ACPLT/MT realisieren, doch schon die Suche nach méglichen Flusswegen ist
nicht mehr méglich. Ursache hierfir ist die fehlende Méglichkeit, rekursive Zusammenhange zu
beschreiben. Die Suche nach einem Flussweg kann generell ahnlich angegangen werden wie
das Einfarben der Rohrleitungen im ersten Teilszenario, sogar ohne die Verwendung von multi-
plen Quellmodellen, Inplace-Transformation und wiederholtem ,Ubersetzen* ein und desselben
Objektes. Anders als beim ersten Teilszenario reicht es aber nicht, Elemente die sich mehrere
Flusswege teilen einmalig zu bearbeiten. Die Kreuzungspunkte verhindern daher den Einsatz
von ACPLT/MT zur Realisierung des Szenarios. Beim Erreichen eines solchen Kreuzungs-
punktes misste der bis dahin generierte Flussweg vervielféltigt werden. Dies ist mit ACPLT/MT
jedoch nicht mdéglich. Die gleiche Problematik tritt auch bei der Generierung der Uibrigen Bau-
steinnetzwerke auf.

An diesem Anwendungsszenario wurde ersichtlich, dass das vorgestellte Konzept von ACPLT/MT
zum einen flexibel genug ist, auch Modelltransformationen abzubilden, die lGber die Mé&chtigkeit
von Tripel-Graph-Grammatiken hinaus gehen. Dennoch gibt es zuné&chst einfach anmutende
Modellzusammenhénge, die nicht durch ACPLT/MT realisiert werden kénnen.

7.3 S2 - Entwicklungsbegleitende Modelltransformation

Das R&l-FlieBbild enthalt grafische Elemente fiir alle Sensoren und Aktoren und stellt die An-
lagenstruktur in einer flr den Menschen interpretierbaren Form dar. Eine 1-zu-1 Transforma-
tion in entsprechende Elemente des ACPLT/csHMI kann daher als ein erster Entwurf fir die
Bedienoberflache angesehen werden. Neben der Abbildung entsprechender Symbole und der

94

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.3 S2 — Entwicklungsbegleitende Modelltransformation

| Cont: Connector |
| Cont: Connector |
| Con2: Connector |
| Cons3: Connector |
| Con2: Connector |

Con1: Connector |-

lage

FR1: FlowRoute

| B1: Source |
Z1: Elem

N1: Elem
Z2: Elem

(b) 1. Flussweg

Con2: Connector |~
Con3: Connector |~~~

Con2: Connector [~

(a) ACPLT/Flowpath Darstellung der An-

and1:AND

B1_Con2

and2:AND

Z1_Cont
Z1_Con3
and6:AND

and3:AND 1 FR1_Open

N1_Con1

N1_Con2 f———
and4:AND

Z2_Cont

Z2_Con3
and5:AND

B2_Con1
1

(c) Flussweganalyse fiir den ersten Flussweg

and1:AND
1
Z2_Con4

and2:AND

and3:AND

[FR1_LEAK

Y2_Cont
Y2_Con2
(d) Erkennen von Leckage
and1:AND
vs cona C5 _angsanp |
>_Con:
Y2_Cont []

[FR1_MIX

and2:AND
Z2_Con4
10]

(e) Erkennen von Vermischung
or1:OR
and1:AND
FR1_LEAK
FR1_MIX —
FR1_ALERT
FR1_Open I

(f) Generieren einer Warnung

Abbildung 7.3: Bausteinnetze zur Realisierung der Flussweganalyse nach [Quit11]

95

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

Verwendung der Struktur- und Positionsinformationen kénnen auch angepasste Detailansich-
ten zur Verfligung gestellt werden. So werden fiir analoge Aktoren Schieberegler oder Prozen-
tangaben in der Detailansicht benétigt, fir digitale Aktoren werden Schalter eingesetzt. Auch
die Beschriftung innerhalb der Detailansichten ist abhangig vom Aktortyp. Bei digitalen Ventilen
werden die Schalter mit ,auf/zu” beschriftet, bei Pumpen mit ,an/aus”.

In [KQ11; Kra+12] sowie in den vorangegangenen Kapitel dieser Arbeit wurde bereits mehr-
fach auf den Regelsatz fur die Realisierung einer solchen Transformation eingegangen. Der
ausfuhrliche TGG-Regelsatz findet sich in Anhang B und umfasst folgende Regeln:

R1. - Anlegen einer Doméne Das Axiom legt eine ov/domain als Wurzelelement fiir das
PandIX bzw. das HMI an. Die HMI-Doméne erhélt zudem zusétzliche strukturierende Ele-
mente.

R2. - Anlage Fir jede Anlage wird ein eigens R&I-FlieBbild (PlantScheme) im PandIX angelegt
bzw. eine Bedienoberflache im ACPLT/csHMI.

R3. - Teilanlage Auch fiir Teilanlagen werden eigene Ansichten im ACPLT/csHMI bereitge-
stellt. Dies ermdglicht die spatere Umschaltung zwischen einem Gesamtlberblick und
einer feineren Auflésung fir eine Teilanlage.

R4. - Aktor Jeder Aktor ist im HMI durch ein Oval mit spezifischer Beschriftung gekennzeich-
net. Diese entsprechen den ActuatorRequest im PandIX-Modell.

R5. - Ventile/Pumpen Pumpen und Ventile im PandIX erzeugen entsprechende Symbole in
der Gesamtansicht.

R6. - Behilter Aquivalent zu R5 erstellt diese Regel Symbole fiir Behalter.

R7. - Rohrleitungen Aquivalent zu R6. erstellt diese Regel Rohrleitungen. Das Routing und
somit den genauen Verlauf der Rohrleitungen werden durch das ACPLT/csHMI automa-
tisch berechnet. Rohrleitungen erhalten lediglich ein Anfangs- und ein Endelement mit
dem sie verknlpft sind. Dies sind die Flansche der Aktoren, Kreuzungspunkte und Be-
hélter.

Mit diesem Anwendungsszenario konnte gezeigt werden, dass das entwickelte Konzept flr
den Einsatz praxisrelevanter Automatisierungsfunktionen geeignet ist. Anpassungen an der
Anlagenstruktur kdnnen schnell und konsistent in die Bedienoberflache Gbernommen werden.
Zuvor bereits vorhandenen Aktoren, Behalter und Rohrleitungen bleiben bei einem solchen in-
krementellen Updaten unveréndert und behalten ihre durch den Apllikateur ggf. angepassten
Grafikeigenschaften, wie die Position von Grafikelementen bei. Softsensoren und Gruppen-
steuerungen, die eine Kaskade von Aktoren ansteuert, kénnen in der Bedienoberflache erstellt
und in die Planungsdaten riickdokumentiert werden. Auch die regelmaBige Konsistenzanaly-
se von Planungsdaten und HMI stellt wahrend der Projektierung einer Anlage eine enorme
Arbeitserleichterung dar und kann abschlieBend zur Zertifizierung des HMI genutzt werden.

Dieses Anwendungsszenario hat jedoch auch gezeigt, dass die TGG-Regeln selbst bei einfa-
chen Modellzusammenhangen schnell sehr umfangreich und komplex werden.

96

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.4 S3 - Konsistenzanalyse und Modellreparatur

7.4 S3 - Konsistenzanalyse und Modellreparatur

Die Konsistenzanalyse und eine bidirektionale Auswertung der Regeln zur Modellreparatur sind
Kernthemen des letzten Anwendungsszenarios. Im ersten Teilszenario soll die Konsistenz zwi-
schen den in der Bedienoberflache dargestellten Aktoren und der Prozessfliihrung sowie das
Vorhandensein der entsprechenden VerknUpfung Uberprift werden.

Die Prozessfiihrung ist im Allgemeinen zu komplex, um sie automatisiert aus den Planungsda-
ten generieren zu kénnen [KSY10]. Dennoch sind bestimmte Teile, wie die Verriegelungslogik
von Pumpen und Ventilen, immer ahnlich. Wird die Verriegelungslogik vergessen oder kann
ein aktives Element wegen einer fehlenden Verkniipfung zur Prozessfiihrung nicht wie erwar-
tet Uber die Bedienoberflache angesteuert werden, so kann dies schwerwiegende Folgen fiir
Mensch, Maschine und Umwelt nach sich ziehen. In diesem Szenario steht deshalb die Aufga-
be im Vordergrund, zu jedem in der Bedienoberflache vorhandenen Aktor eine entsprechende
Prozessfuhrungskomponente zu identifizieren und umgekehrt. Hierbei kdnnen einzelne Akto-
ren auch mehrfach in der Bedienoberflache reprasentiert sein. AuBerdem muss Uberprift wer-
den, ob die Prozessfiihrungskomponenten mit den zugehérigen Bedienkomponenten verkniipft
sind, da nur so die Aktoren angesteuert werden kénnen.

Eine direkte Umsetzung dieses Szenarios als TGG ist nicht méglich, da die Uberpriifung von
Verknipfungen zwischen Bedienoberflache und Prozessfiihrung einer Inplace-Transformation
bedurfen. Hierzu werden die Transformation aus Anwendungsszenario S2 um die Komponen-
ten der Prozessfiihrung und die Verlinkungen zwischen Bedienbild und Prozessfiihrung erwei-
tert.

Zur Realisierung der Konsistenzanalyse wurde eine Vorwarts- und anschlieBende Ruickwarts-
transformation durchgefiihrt. Statt allerdings Objekte in der jeweiligen Zieldoméne anzulegen,
wird bei der Anwendung einer Regel im Modus Konsistenziberprifung lediglich untersucht, ob
Objekte existieren, die den MT-Elementen des Patterns der Zieldoméne entsprechen. Ist dies
der Fall, so werden die Objekte der Quelldomane wie gehabt als Ubersetzt markiert und falls
nicht vorhanden die Korrespondenzlinks zwischen Quell- und Zieldoméne erzeugt. Nach voll-
standig durchlaufener ,Transformation“ wird die Existenz nicht Ubersetzter Objekte der Quell-
doméne untersucht und ggf. protokolliert.

Die Modellreparatur konnte nicht realisiert werden. Angedacht, war eine Interaktion mit dem
Anwender, der fir die einzelnen, bei der Konsistenzanalyse aufgetretenen Inkonsistenzen ent-
scheidet, in welcher Richtung die Anderung propagiert wird. Dieser naive Ansatz hatte jedoch
gleich mehrere Schwachstellen. Wird eine einzelne Inkonsistenz behoben, so kann dies Aus-
wirkungen auf weitere zuvor bestehende Inkonsistenzen haben, da diese ggf. im gleichen Zug
mit behoben werden. Um solche Wechselwirkungen aufdecken zu kénnen, misste nach jeder
Anderung erneut eine Konsistenzanalyse durchgefiihrt werden. Dieses Vorgehen belastet das
System jedoch unverhaltnismaBig stark. Auch muss der Regelsatz erneut nach passenden Re-
geln fiir die Ubersetzung der konkreten Inkonsistenz durchsucht werden, was die Performance
weiter herabsetzt.

97

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

7.5 Anforderungen an eine bidirektionale Modelltransformation

Die drei Anwendungsszenarien bieten einen ersten Einblick, bei welchen Problemstellungen
ACPLT/MT zur Realisierung eingesetzt werden kann und wo die Grenzen des Ansatzes liegen.
Im Folgenden soll die Passgenauigkeit von ACPLT/MT auf die in den Kapiteln 4.2 identifizierten
generellen Anforderungen an eine Modelltransformation fiir die Automatisierungstechnik ana-
lysiert werden sowie ein Abgleich mit den von Klar [Kla12] beschriebenen Anforderungen an
eine bidirektionale Modelltransformation erfolgen.

Gerade bei der informationstechnischen Sicht auf ACPLT/MT muss dabei klar zwischen dem
Modell an sich und der Realisierung einer TGG mit Hilfe von ACPLT/MT unterschieden wer-
den, da hier groBBe Unterschiede in Bezug auf die Méachtigkeit auf der einen Seite und der
Zusicherung formaler Eigenschaften auf der anderen Seite zu erwarten sind. Bei der Analyse
der von Klar aufgestellten Kriterien steht daher ein kritischer Blick auf die mit der gewonnenen
Flexibilitdt einhergehenden Risiken und Probleme im Vordergrund.

Flexibel einsetzbar Tripel-Graph-Grammatiken sind fir die Beschreibung von Modellzusam-
menhé&ngen zwischen zwei graphbasierten Modellen entwickelt worden. Durch die Be-
reitstellung von MT-Elementen zur Interpretation von XML-B&umen ist das Anwendungs-
spektrum nochmals erweitert worden. Diese Bandbreite an mdéglichen Modellen steht
sowohl in ACPLT/MT allgemein als auch bei der Realisierung einer TGG auf Basis von
ACPLT/MT zur Verfligung.

Eindeutige Semantik Die vorliegende Arbeit konzentriert sich auf die Konzeptentwicklung fir
eine Modelltransformation in prozessleittechnischen Laufzeitumgebungen. Eine umfang-
reiche Einflhrung in die Semantik von ACPLT/MT finden sich in Kapitel 6. Weiterflihrende
Arbeiten sind jedoch noch notwendig, um eine detaillierte eindeutige Semantik zur Verfi-
gung zu stellen.

Méchtigkeit Die Machtigkeit von Tripel-Graph-Grammatiken ist im Vergleich zu anderen Mo-
delltransformationssprachen wie QVT und VIATRA zu Gunsten der zugesicherten forma-
len Eigenschaften deutlich eingeschrankt. Durch die Beschrankung auf ein Quell- und ein
Zielmodell, auf Outplace-Transformation und nichtrekursive Modellzusammenhé&nge sind
viele Anwendungsszenarien nicht mit Tripel-Graph-Grammatiken realisierbar. ACPLT/MT
hebt zwar einige dieser Beschrankungen auf, gerét aber zum Beispiel bei den rekursi-
ven Problemen ebenso an seine Grenzen. Wie an den Anwendungsszenarien zu sehen
war, lasst sich trotz der eingeschréankten Machtigkeit ein breites Feld an praxisrelevan-
ten Anwendungen mit ACPLT/MT und vielfach auch mit einer darauf aufbauenden TGG
realisieren.

Bijektivitdt Wie in Abschnitt 7.2 ersichtlich wird, unterstiitzt ACPLT/MT die Beschreibung
nicht-bijektiver Modellzusammenhange. Zum einen stehen dafiir die WENN-DANN-Regeln
zur Verfuigung, zum anderen bieten Leerlaufregeln eine TGG-konforme Mdéglichkeit, eines
der beiden Modelle zu modifizieren ohne das andere anzupassen. Um Leerlaufregeln
in ACPLT/MT zu nutzen, wird das Pattern fir das unveranderte Modell mit Hilfe eines
MT-True-Objektes realisiert. Dieses gibt immer eine positive Riickmeldung, so dass die
Regel effektiv nur aus einem Pattern besteht.

98

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.5 Anforderungen an eine bidirektionale Modelltransformation

Wiederverwendbarkeit Die Verwendung von Template-Datenbanken ermdglicht es, beliebig
komplexe Regelbestandteile fir die Mehrfachverwendung bereitzustellen. Zudem bie-
ten Verzweigungen die Mdéglichkeit, mehrere Regeln zusammenzufassen und so ge-
meinsam genutzte Regelbestandteile wiederzuverwenden. Beide Wiederverwendungs-
konzepte sind auch beim Einsatz von ACPLT/MT als Basis einer TGG nutzbar.

Terminierung Diese Eigenschaft kann fir den Kontrollalgorithmus nicht generell zugesichert

werden. Sie ist abhangig von den formulierten Regeln. Insbesondere bei Inplace-
Transformationen kann es zu Zyklen in der Bearbeitung kommen, wenn zum Beispiel
durch eine Regel die RHS jeweils ein Element hinzufiigt wird, das durch die LHS gesucht
wird. In diesem Fall wird in jedem Schritt ein neues Element angelegt und im nachsten
Schritt als neu angelegt gefunden. Auch bei Transformationen mit disjunkten Quell- und
Zielmodellen kann es zu nicht-terminierenden Regelsdtzen kommen. Eine Transforma-
tion, die den Zustand einer zyklisch blinkenden Lampe aus der Prozessflhrung in eine
Anzeige der Bedienoberflache Uberflhrt, kann bei ungiinstiger Wahl der Abbruchbedin-
gung bei der Bearbeitung der Regeln zu nicht-terminierendem Verhalten fihren. Wie
in diesem Beispiel ersichtlich ist, kann dies aber durchaus gewollt sein. Terminierung
kann lediglich fir einzelne, auf ein wahrend der Regelbearbeitung stabiles, endliches
Quellmodell angewendet, zugesichert werden. Die Einschrédnkung bei der Verwendung
von Templates auf Zyklenfreiheit sowie die verwendete Tiefensuche mit Backtracking
verhindert hier ein nichtterminierendes Festhangen in Zyklen oder toten Enden.
Wird ACPLT/MT jedoch als Basis fiir eine TGG genutzt und auf ein Quellmodell angewen-
det, das Uber den Zeitraum der Transformation unveréndert bleibt, so kann eine Terminie-
rung zugesichert werden, da jedes Element nur einmal tbersetzt wird und anschlieBend
nur noch im Kontext von Regeln zum Einsatz kommt.

Inkrementelle Anderungen Das vorgestellte Konzept eignet sich auch fiir inkrementelle Mo-
delldnderungen, da die Zusammenhange zwischen Quell- und Zielmodell dauerhaft nach-
gehalten und auch fur spatere Durchlaufe der Transformation zur Verfligung stehen. Re-
gelsatze kdnnen auch explizit als inkrementelle Regelsatze konzipiert werden, indem sie
auf die Ergebnisse und Korrespondenzobjekte vorangegangener Transformationen auf-
bauen.

Wie aus der Analyse des Konzeptes entlang der von Klar aufgestellten Anforderungen deut-
lich wird, sind einige Punkte nicht generell fiir das vorgestellte Konzept gultig. Dieser Verzicht
auf die formalen Rahmenbedingungen ist bewusster Bestandteil des Konzeptes. Dadurch ist
es mdglich, Modelltransformation auch fir Anwendungsszenarien zur Verfugung zu stellen,
die den formalen Eigenschaften nicht gerecht werden. Diese erhdhte Flexibilitat geht jedoch
immer mit der Gefahr einher, die positiven Eigenschaften, die bei der Verwendung von Tripel-
Graph-Grammatiken zugesichert werden kénnen zu verlieren. Das vorgestellte Konzept soll-
te daher immer im Zusammenhang mit den theoretischen Vorarbeiten aus dem Bereich der
Tripel-Graph-Grammatiken gesehen werden. Insbesondere die Arbeiten von Kdnigs [K6n08],
Klar [Kla12] und Lauder [Lau12] beschreiben und beweisen die formalen Eigenschaften von
Tripel-Graph-Grammatiken. Zudem bieten sie eine Fille von Optimierungsvorschlagen flr die
Regelbeschreibung und -verarbeitung von denen nur ein kleiner Teil in dieser Arbeit Beachtung
gefunden hat.

99

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7 Validierung

7.6 Anforderungen an eine Modelltransformation fiir die
Automatisierungstechnik

Bei der Ubertagung von Konzepten aus der Informatik in eine Anwendungsdomane miissen
immer die Bedirfnisse und Kenntnisse der Domanenexperten in die Konzeptentwicklung ein-
bezogen werden. Ein Ansatz, der den Ublichen Arbeitsfluss auf Dauer eher behindert als ihn
zu unterstiitzen, kann noch so innovativ sein, er wird keine Anwendung finden.

Auch das vorgestellte Konzept muss sich daher an den MaBstaben aus Kapitel 4.2 messen
lassen:

Unidirektionale Batch-Transformation Nicht alle mit ACPLT/MT realisierbaren Regelsatze
sind zur Ausflihrung als unidirektionale Batch-Transformation geeignet. Insbesondere
solche, die auf WENN-DANN-Regeln basieren sind fiir die kontinuierliche inkrementelle
Modelldnderung ausgelegt. Generell stellen unidirektionale Batchtransformationen aller-
dings schon das Hauptanwendungsgebiet von ACPLT/MT dar, insbesondere wenn die
Realisierung mit Hilfe von Tripel-Graph-Grammatiken auf Basis von ACPLT/MT erfolgt.

Inkrementelle Anderungen Wie bereits im vorangegangenen Abschnitt erldutert, eignet sich
ACPLT/MT auch fir das Propagieren inkrementeller Modellanderungen und ermdglicht
des Weiteren rein inkrementelle Regelsatze.

Bidirektionale Auswertbarkeit Eine Zusicherung dieser Eigenschaft kann nur erfolgen, wenn
die Transformation als TGG auf Basis von ACPLT/MT realisiert wurde. Durch Setzen des
entsprechenden Parameters des REC lassen sich ACPLT/MT-Regeln in beliebiger Rich-
tung zur Modelltransformation anwenden. Die einmal formulierten Modellzusammenhan-
ge lassen sich dadurch entweder zur Realisierung der Automatisierungsfunktion anhand
der Planungsdaten oder zur Riickdokumentation von Anderungen an der Automatisie-
rungsfunktion nutzen. Eine Anpassung der Regel ist dazu nicht notwendig.

Konsistenzpriifung Auch die Konsistenzpriifung erfolgt durch Parametrierung der bidirektio-
nal formulierten MT-Regeln. In diesem Fall produzieren die Objekte der Korrespondenz-
doméne eine entsprechende Dokumentation der erfolgten Analyse.

Modellreparatur Das bisher vorgestellte Konzept ermdglicht noch keine effiziente Modellre-
paratur. Ein erster naiver Ansatz ermdglichte zwar eine generelle Identifikation der In-
konsistenzen und deren Behebung, belastet jedoch das System in einem nicht tragbaren
Umfang. Zudem erfordert die aktuelle zustandsbasierte Ausrichtung von ACPLT/MT, die
nur den aktuellen Zustand der Modelle betrachtet, den aktiven Einbezug des Anwenders
bei der Auflésung von Inkonsistenzen.

Nachvollziehbarkeit Ob diese Anforderung erflllt ist, hangt stark von den formulierten MT-
Regeln ab. Die Dokumentation und Nachvollziehbarkeit der Transformationsschritte muss
durch die Logik der Korrespondenzobjekte abgedeckt werden. Auch kann mit dem bishe-
rigen Konzept noch keine deterministische Auswertung zugesichert werden. Hierzu mis-
sen die Regeln so gestaltet sein, dass die Reihenfolge der Auswertung irrelevant fir das
Ergebnis ist oder es muss eine feste Auswertungsreihenfolge vorgeschrieben werden.
Jeder Regelsatz muss explizit auf Determinismus hin untersucht werden.

Freie Werkzeugwahl Das Konzept ist unabhangig von den fir die Erstellung der Modelle ver-
wendeten Werkzeugen. Es stellt lediglich an die verwendeten Modelle die Anforderung,

100

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

7.6 Anforderungen an eine Modelltransformation fiir die Automatisierungstechnik

dass sie in einer objektorientierten, rechnerauswertbaren Form vorliegen und in das Ziel-
system in Form von Objektnetzwerken importiert werden kénnen. Dies ist bei vielen Pla-
nungsmodellen in der einen oder anderen Form mittlerweile der Fall.

Wartbare, nachvollziehbare Regeln ACPLT/MT-Regeln setzen Objektnetzwerke der korrelie-
renden Modelle in Beziehung und erméglichen so Regeln, die fir den Domé&nenexperten
einfach nachvollziehbar sind. Durch die Wiederverwendung von Regelteilen mit Hilfe des
Platzhalter/Template-Konzeptes kann die Lesbarkeit von Regeln weiter verbessert wer-
den. Hierzu ist es ratsam, fur die Templates sprechende Namen zu verwenden. Auch die
Wartbarkeit der Regel profitiert von der Verwendung der Templates, da Anpassungen nur
an einer Stelle durchgefiihrt werden missen und anschlieBend an allen Platzhaltern di-
rekt zur Verfigung stehen. Die Verwendung von Verzweigungen reduziert die Anzahl der
redundanten Regelteile weiter und tragt ihren Teil zur besseren Wartbarkeit bei.

101

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

Traditionell werden verfahrenstechnische Anlagen einmal geplant, errichtet und tber Jahrzehn-
te nahezu unverandert betrieben. Diese traditionellen Anlagen werden in Zukunft immer haufi-
ger durch flexible Anlagen ergénzt, die auftragsbezogen rekonfiguriert und kombiniert werden
kdnnen. Eine solche Flexibilitdt verlangt aber nicht nur ein Umdenken beim Bau von verfahrens-
technischen Anlagen sondern auch bei ihrer Automatisierung. Nur die Kombination aus modu-
laren Anlagen und effizienter Anpassung der benétigten Automatisierungsfunktionen kénnen
die Anlagen der Zukunft fit machen fir die mit Industrie 4.0 einhergehenden Anforderungen.

Das erklarte Ziel dieser Arbeit war die Bereitstellung von anlagenneutralen Automatisierungs-
funktionen, die als Serienprodukt verkauft und per Modelltransformation anhand der Planungs-
daten an die konkrete Anlage und an aktuelle Anforderungen angepasst werden kénnen. Zu-
dem sollen Anderungen in der Automatisierungsfunktion in die Planungsdaten zuriickgespielt
und somit dokumentiert werden kénnen. Dieses Kapitel fasst das zu diesem Zweck entwickelte
Konzept in Klrze zusammen, reflektiert, inwieweit die gesetzten Ziele erreicht werden konnten
und gibt einen Ausblick auf die zukiinftig Entwicklung von ACPLT/MT.

8.1 Modelltransformation fiir prozessleittechnische
Laufzeitumgebungen

Die angestrebte Problemstellung und ein Einblick in das Potential einer Modelltransformati-
on in prozessleittechnischen Laufzeitumgebungen wurden dem Leser in Kapitel 1 ndher ge-
bracht. Zudem wurden drei ganz konkrete aus der Praxis stammende Anwendungsszenarien
vorgestellt, die im Verlauf der Arbeit unter anderem zur Veranschaulichung der beschriebenen
Inhalte und zur Verdeutlichung konkreter Problemstellungen herangezogen wurden. Die Basis-
begriffe aus dem Bereich der Modellierung sowie verschiedene Modellierungsarten wurden in
Kapitel 2 angerissen. Kapitel 3 analysiert eine Reihe von Modellen aus dem Bereich der Au-
tomatisierungstechnik hinsichtlich ihrer Eignung fur eine Modelltransformation. Dabei dienten
die zuvor bereitgestellten Anwendungsszenarien als Leitfaden fiir die Auswahl der betrachte-
ten Modelle. Die bei der Analyse gewonnenen Erfahrungen flossen ein in eine Empfehlung
fur die Entwicklung kiinftiger Automatisierungsmodelle am Ende des Kapitels. Als Basis fiir
die angestrebte Konzeptentwicklung fur eine Modelltransformation in prozessleittechnischen
Laufzeitumgebungen wurden in Kapitel 4 und 5 Anforderungen an eine solche Modelltransfor-
mation formuliert und relevante Ansétze aus der Automatisierungstechnik und der Informatik
vorgestellt und auf ihre Eignung hin untersucht. Ein besonderer Fokus lag dabei auf den Tripel-
Graph-Grammatiken.

102

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

8.1 Modelltransformation fiir prozessleittechnische Laufzeitumgebungen

Der aus der Informatik stammende Ansatz der Modelltransformation mittels Tripel-Graph-
Grammatiken wurde in Kapitel 6 in die Sprachen der IEC 61131 Uberfiihrt. Das dadurch
entstandene Framework ACPLT/MT fir eine Modelltransformation in prozessleittechnischen
Laufzeitumgebungen bietet die Grundlage fir die Bereitstellung von parametrierbaren anla-
genneutralen Automatisierungsfunktionen und ermdglicht eine Anpassung der Anlagenauto-
matisierung an neue Gegebenheiten ohne erneuten Implementierungsaufwand. Die Integra-
tion von Tripel-Graph-Grammatiken in die Sprachen der IEC 61131 gewahrleistet, dass sich
Automatisierungsfunktionen, die mit ACPLT/MT realisiert werden, nahtlos in die automatisie-
rungstechnische Laufzeitumgebung einbinden lassen. Zudem ermdglicht die Umsetzung in
den doméanenspezifischen Sprachen eine erhdhte Akzeptanz, da die Applikateure keine neue
Sprache fiir die Regelerstellung erlernen missen. Ergénzend zur Vorstellung des Konzeptes
wurde die Referenzimplementierung auf Basis der ACPLT-Modellwelt im Detail erlautert. Im
Fokus standen dabei insbesondere die benétigten Anpassung am Tasking-Konzept sowie die
Umsetzung in den an die IEC 61131-3 angelehnten Sprachen SFC und ACPLT/FB. Anders als
bei bisherigen TGG-Ansatzen wurde dabei sowohl auf eine explizite Ubersetzung in operatio-
nale Regeln als auch auf einen Interpreter verzichtet. Stattdessen kamen aktivierbare Regeln
zum Einsatz, die zunachst als passive Objektnetzwerke die deklarativen TGG-Produktionen
reprasentieren. Zum Zeitpunkt der Regelanwendung werden die Objekte in die zyklische Be-
arbeitung eingebunden und agieren daher als operationale Regeln.

Anhand von umfangreichen Testszenarien konnte in Kapitel 7 gezeigt werden, dass sich das
vorgestellte Konzept in der Praxis bewahrt und auch komplexere parametrierbare Automati-
sierungsfunktionen ermdglicht. Als eine besondere Herausforderung bei der Realisierung der
Anwendungsszenarien stellte sich die Komplexitat der Modelle und Modellzusammenhange
heraus. Insbesondere die Einschréankung von Tripel-Graph-Grammatiken, dass jedes Modell-
element nur einmal Ubersetzt werden darf, fihrte dabei schnell zu sehr komplexen und uniiber-
sichtlichen Regeln. Zwar kann durch Leerlaufregeln schon ein Teil der Problematik abgefangen
werden, diese lassen jedoch keine Wiederverwendung von Objektnamen oder Variablenwerte
aus dem Kontext fur die Generierung der neuen Objekte zu. Auch an anderen Stellen erschwert
die eingeschrénkte Mé&chtigkeit von Tripel-Graph-Grammatiken die Realisierbarkeit von auto-
matisierungstechnischen Problemstellungen. So schrénken die fehlende Rekursivitat und die
fehlende Méglichkeit zum Léschen die beschreibbaren Modellzusammenhange merklich ein.
Zwar bietet ACPLT/MT zum Teil die Moglichkeit, auf die flexibleren WENN-DANN-Regeln aus-
zuweichen, dies geht aber zu Lasten der zugesicherten formalen Eigenschaften, die bei der
Verwendung TGG-konformer Regeln gelten. Die spezifischen Handschriften der Planungsin-
genieure und Applikateure sowie domanenspezifische Benennungen von korrelierenden Mo-
dellelementen stellen eine weitere Herausforderung fiir das Konzept der regelbasierten Mo-
delltransformation zur Realisierung von anlagenneutralen Automatisierungsfunktion dar. Dies
kommt verstérkt an den Stellen zum Tragen, bei denen die Anlage aus einem anderen Blick-
winkel betrachtet wird. So sieht der Elektrokonstrukteur die Anlage aus Sicht der verbauten
Remote I/O und der durch sie zur Verfigung gestellten Anschlusspunkte fir die Hardware im
Feld, bei der Erstellung eines R&l-FlieBbildes steht hingegen die funktionale Sicht auf die An-
lage im Fokus. Dementsprechend féllt die Benennung der Aktoren und Sensoren zwischen der
Elektroplanung und einem R&I-FlieBbild unterschiedlich aus.

103

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

Trotz all dieser Unwéagbarkeiten hat sich gezeigt, dass auch praxisrelevante Problemstellun-
gen mit ACPLT/MT realisiert werden kénnen. Die einmal beschriebenen Regeln kénnen anla-
genneutral bereitgestellt werden, um die anlagenspezifischen Funktionen zu generieren, oder
selbst als Automatisierungsfunktion zu agieren. Mit ACPLT/MT steht daher ein umfangrei-
ches Framework zur Realisierung von Modelltransformationen in der prozessleittechnischen
Laufzeitumgebung zur Verfligung. Durch die Fokussierung von ACPLT/MT auf Tripel-Graph-
Grammatiken als Basis steht dem Anwender eine fundierte, gut erforschte Transformationss-
prache mit umfangreichen formalen Zusicherungen zur Verfiigung. Zuklinftige Anpassungen
am vorgestellten Konzept bieten das Potential, ACPLT/MT noch anwenderfreundlicher und ro-
buster zu gestalten und das Anwendungsspektrum von ACPLT/MT zu erweitern. Einige dieser
Erweiterungsmdglichkeiten werden im Folgenden vorgestellt.

8.2 Erweiterte Einsatzszenarien und mogliche
Spracherweiterungen

M@chte sich ein Anwender die durch Tripel-Graph-Grammatiken bereitgestellten Eigenschaften
in ACPLT/MT zu Nutze machen, unterliegt er strengen Regularien bei der Erstellung der Re-
geln. Gerade bei komplexen Regeln und umfangreichen Regelsatzen ist dies fiir den Anwender
ohne unterstlitzende Werkzeuge nur schwer zu realisieren. Die Bereitstellung entsprechender
Werkzeuge bietet daher groBBes Potential, die Anwendbarkeit von ACPLT/MT in der Praxis vor-
anzutreiben. Ein erster Schritt zur Unterstltzung des Anwenders ist die Einflhrung eines Vali-
dierungswerkzeuges, das vom Anwender entwickelte Regelsétze auf Konformitat zu den TGG-
Regularien Gberprift. Um schon bei der Erstellung der Regeln Fehler zu vermeiden, bedarf
es jedoch eines Entwicklungswerkzeuges, das die Beschreibung von Modellzusammenhéangen
unterstitzt und dabei auf Wunsch auf TGG-konforme Méglichkeiten einschréankt. Auch die Re-
gelauswertung bietet noch umfangreiches Erweiterungspotential. So ist die Bereitstellung einer
weitgehend automatisierten Modellreparatur fir die Automatisierungstechnik von besonderem
Interesse. Nur so lassen sich Anlagenzustand und Anlagendokumentation auf Dauer konsistent
halten. Hierbei kann auf Arbeiten aus dem Forschungsbereich der Tripel-Graph-Grammatiken
zurlickgegriffen werden, die nicht nur den aktuellen Modellzustand sondern die zeitliche Ent-
wicklung und damit die vorangegangenen Modellzustdnde mit in die Betrachtung einbeziehen.
Dadurch ist es bei auftretenden Inkonsistenzen in vielen Fallen méglich, zu entscheiden wel-
che Modellanderung fiir die Inkonsistenz verantwortlich ist und die ursachliche Anderung in das
andere Modell zu Gbernehmen. Ein weiterer Ansatzpunkt aus dem Bereich der Regelauswer-
tung ist die Laufzeitoptimierung durch parallele Bearbeitung mehrerer Modelltransformationen
oder mehrerer Regeln einer Transformation. Hierbei empfiehlt sich eine Art Sandkastensystem,
bei dem jeder in Ausfiihrung befindlichen Regel ein klar definierter Modellteil zum Lesen und
Andern bereitgestellt wird. Ein tiberlagerter Kontrollmechanismus muss sicherstellen, dass die
Modellteile, die von parallel aktiven Regeln genutzt werden sich nicht Uberschneiden. Neben
der Modellreparatur und paralleler Regelbearbeitung bietet das Forschungsgebiet der Tripel-
Graph-Grammatiken generell ein breites Spektrum bisher noch nicht in Betracht gezogener
Erweiterungen. So kann unter anderem die Realisierung von Léschungen [Lau12], Amalga-

104

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

8.2 Erweiterte Einsatzszenarien und mégliche Spracherweiterungen

mierung [Leb+15; Leb+16] und Vererbung [Anj14] den Einsatzhorizont von ACPLT/MT deutlich
erweitern.

Bei der Realisierung der Anwendungsszenarien und im Gesprach mit Kollegen und Mitstreitern
ergaben sich weitere vielversprechende Anregungen zur Weiterentwicklung von ACPLT/MT. So
wurde bereits in [KME12] die Einbettung von ACPLT/MT in eine verteilte Automatisierungs-
landschaft untersucht. Die Verteilung von Funktionalitdt auf verschiedene Rechner und Steue-
rungssysteme ist ein Grundprinzip heutiger Automatisierungssysteme. Der Trend geht immer
weiter in Richtung autark agierender Einzelkomponenten, die sich benétigte Informationen Giber
den Anlagenzustand eigenstéandig lber das angeschlossene Netzwerk besorgen. Ein popula-
rer Ansatz auf diesem Gebiet ist der Gedanke der Service-Orientierten Architektur, kurz SOA.
Dabei wird gezielt auf kleine Softwarekomponenten mit dedizierter Aufgabe und klar definierter
Schnittstelle gesetzt. Die einzelnen Softwarekomponenten, die so genannten Services, kapseln
die durch sie bereitgestellte Funktionalitat und stellen sie bei Dienstaufrufen zur Verflgung.
Durch den losen Verbund der einzelnen Softwarekomponenten in verteilten Systemen ist ein
zentrales Anderungsmanagement aller Komponenten schwer zu realisieren. Anpassungen an
einer Komponente kénnen daher nicht kalkulierbare Auswirkungen auf andere Komponenten
haben. Jede Softwarekomponente muss flr sich entscheiden, ob eine im Gesamtsystem auf-
getretene Anpassung Auswirkungen auf die lokalen Modelle hat. Hierzu schlagen [KME12]
vor, die durch eine Softwarekomponente bereitgestellte Automatisierungsfunktion (z.B. den Er-
kundungsservice, vgl. Abbildung 8.1) in eine Servicegruppe einzubetten. Diese beobachtet das
Gesamtsystem und passt ggf. die Automatisierungsfunktion mittels Modelltransformation an die
Systemanderungen an. Hierzu stehen zwei lokale Dienste zur Verfiigung, der Anderungs- und
der Engineeringservice. Wird eine Automatisierungsfunktion geandert, so stellt der Anderungs-
service Informationen tiber Art der Anderung und Anderungszeitpunkt als Anderungsnachricht
fiir andere Servicegruppen bereit. Zudem registriert sich der Anderungsservice bei relevanten
anderen Servicegruppen, um so Informationen iiber Anderungen an deren Automatisierungs-
funktion mittels Anderungsnachricht informiert zu werden. Der Engineeringservice wiederum
reagiert auf die einkommenden Anderungsnachrichten und passt das lokale Modell via Modell-
transformation an die Anderungen der anderen Automatisierungsfunktionen an. Erste Erwei-
terungen des Konzeptes der Servicegruppen von Griiner et. al [GWE14] erlauben sogar den
Einsatz Uber die Prozessleittechnik hinaus in die Fertigungstechnik.

In eine &hnliche Richtung geht der potentielle Einsatz von ACPLT/MT in Self-X-Systemen.
Die Modelltransformation kann beispielsweise dazu genutzt werden, Automatisierungsfunktio-
nen in ein vorher unbekanntes Gesamtsystem per Plug-and-Play einzubinden. Anders als in
dieser Arbeit betrachtet erfolgt dabei allerdings keine Parametrierung mit Hilfe der Planungs-
daten. Vielmehr erkundet die Modelltransformation, unterstiitzt durch Services, selbststandig
das bestehende Gesamtsystem und passt die Automatisierungsfunktion per Selbstkonfigurati-
on entsprechend an. Auch selbstheilende Systeme sind denkbar, die Inkonsistenzen erkennen
und - sofern mdglich - beheben. Die dritte vielversprechende Self-X Eigenschaft, die durch
ACPLT/MT realisiert werden kann ist die Selbstoptimierung. Anhand aktueller Performanceda-
ten der Anlage kann die Prozessfiihrung angepasst und Uber die Zeit optimiert werden. Der
Einsatz von ACPLT/MT in Self-X-Systemen jeglicher Art bedarf jedoch einer Situationsanalyse
der konkreten Einsatzszenarien und umfangreicher Weiterentwicklungen am hier vorgestellten
Konzept.

105

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

8 Zusammenfassung und Ausblick

Erkundungs- <
Anderungsnachricht

Abbildung 8.1: Automatisierungsfunktion als Service-Gruppe [KME12]

Auch zur Unterstiitzung des traditionellen Engineeringprozesses kann der Einsatz von ACPLT/MT
sinnvoll sein. Werden die Ein- und Ausgéange eines Funktionsbausteins im Engineeringsystem
veréndert, so muss das Laufzeitsystem fUr gewdhnlich angehalten werden um den Baustein
zu ersetzen und anschlieBen das Laufzeitsystem wieder zu starten. Diese Unterbrechung ist
eine besondere Herausforderung flr Applikateure, da die Anlage komplett leer gefahren wer-
den muss, um nicht ungesteuert Produkte in der Anlage zu halten. Durch den Einsatz von
ACPLT/MT kénnen Funktionsbausteine im laufenden System ersetzt werden. Dazu muss zu-
nachst ein Baustein mit den neuen Eigenschaften angelegt und mit den Eingéngen des alten
Bausteins verbunden werden. Sobald der neue Baustein sich in seinem Verhalten eingependelt
hat, kénnen die Ausgange stoB3frei vom alten Baustein auf den neuen verlinkt werden.

Neben den noch nicht erschlossenen Anwendungsfeldern von ACPLT/MT bieten sich auch
Weiterentwicklungsmdglichkeiten zur optimierten Verwendung in automatisierungstechnischen
Laufzeitumgebungen. Mersch et al. [ME11] schlagen in ihren Arbeiten die Auslagerung von
Komponenten fiir die Selbstkonfiguration, zu denen ACPLT/MT zu z&hlen ist, aus dem Echt-
zeitkontext vor. Dies ist dann mdglich, wenn die Automatisierung mit einem Industrie-PC statt
mit einer herkdmmlichen SPS realisiert wird. Je nach Anwendungsszenario kann zur Entlas-
tung der Echtzeit alternativ auch die Ausfiihrung von ACPLT/MT in einem langsameren, nie-
derprioren Task in Betracht gezogen werden. Beim Einsatz von Industrie-PCs mit Multi- oder
ManyCore-Technologie ermdglicht ein separater ACPLT/MT-Task zudem die Auslagerung auf
einen oder mehrere eigene Kerne.

106

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

MT-Element

+Kontext: ~ Bool
+RepKlasse: String

I 1

- Obi << Ziel >>
+0bm:§§-§l§:mg < <<Quelle>> MT-Link ‘ MT-Variable ‘ Modifikator

i

vav E2E MT-CLink ‘

‘ MT-MetaVar MT-Platzhalter MT-Verzweigung ‘ MT-Logik ‘ MT-Kopfelement
i ‘
MT-Wahr ‘ MT-Nicht

Abbildung A.1: ACPLT/MT-Elemente

Dem Konzept von ACPLT/MT folgend, sollten ACPLT/MT-Regelséatze nicht spezifisch fir ei-
ne SPS entwickelt werden, sondern anhand von ,Planungsdaten” regelbasiert erstellt werden.
Hierzu bietet sich an, bei der Bereitstellung von ACPLT/MT auf einer SPS einen initialen Regel-
satz mitzuliefern, der ahnlich wie der Regelsatz fir Anwendungsszenario SO eine XML-Datei
einlesen und daraus ACPLT/MT-Regeln erzeugen bzw. Anderungen an den Regeln zurlickspie-
len kann. Das aktuelle Kapitel stellt zu diesem Zweck ein Austauschformat fir ACPLT/MT als
XSD bereit.

ACPLT/MT-Klassen

Abbildung A.1 zeigt nochmals die ACPLT/MT-Klassen aus Abbildung 6.2b im Uberblick. In ei-
nem ersten Schritt werden Elemente fir diese Klassen bereitgestellt.

107

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Die Basisklasse MT_Element wird im XML mit
einer ID versehen. Diese ist notwendig, um
eine eindeutige Referenz fiir Korrespondenz-
links und MT-Links zu ermdglichen. Das Attri-
but Ob jName gibt den Namen des MT-Elements
im Laufzeitsystem an. Ob das MT-Element zum
Kontext des jeweiligen Patterns gehért oder
nicht wird Uber das Unterelement Context
Ubermittelt.

8 attributes |

ObjName

—"context |
l,_::J_l] Repclassl
e
0..;"

RepClass gibt die Klasse an, die das MT-Element in der jeweiligen Doméane reprasentiert.
Fir die Unterklasse MT-Modification wird dieses Feld genutzt, um den Typ der Modifikation
kenntlich zu machen. Die in der Regel verankerte Kommandostruktur wird Gber eingebettete

MT-Elemente reprasentiert.

Fir die Repréasentation von Modellobjekten,
erganzt das MT-Objekt die Struktur von MT-
Element um Felder fir den Namen des re-
prasentierten Objektes (RepIdent), um Anga-
ben zur Assoziation Uber die das reprasen-
tierte Objekt mit dem durch den Auftraggeber
gebundene Objekt verlinkt ist (AssocClass,
AssocRole) und um MT-Variablen.

Ein MT-Link reprasentiert Links im Modell, die
nicht entlang der Kommandostruktur verlau-
fen. Die Elemente Source und Target ent-
halten zu diesem Zweck Referenzen auf die
MT-Elemente, die die Quelle bzw. das Ziel re-
prasentieren. MT-Link selbst besitzt keine Auf-
tragnehmer und daher auch keine eingebette-
ten MT-Elemente.

108

MT-Element (extension

—| H attributes
(o
—|—--— “RepClass

o Repldent
[
| AssocClass
ﬁ AssocRole i

—(=P

e B

-
MT-LinkBasic (extension)

\
} attributes
[
MT-Link

Context

RepClass

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

MT-Variablen reprasentieren eine Variablen im
Modell und benétigen dazu Angaben zum Typ
und ggf. zum Wert der jeweiligen Variablen.

Metavariablen besitzen keine Entsprechung in
den korrelierenden Modellen. Sie dienen ledig-
lich zur Parametrierung der Modelltransformati-
on. Aus diesem Grund kann bei ihnen auf die
Typangabe verzichtet werden.

Platzhalter besitzen keine Auftragnehmer und
daher auch keine eingebetteten MT-Elemente.
Zudem ist die RepClass festgelegt auf den
Wert ,Placeholder”, um zu kennzeichnen, dass
dieses MT-Element einen Platzhalter darstellt.
Uber das zusatzliche Element RepIdent wird
der Name des Templates angegeben, fiir das
der Platzhalter steht.

Auch die Verzweigung wird Uber einen festen
Wert fir RepClass identifiziert. Zudem ist die
Anzahl der eingebetteten MT-Elemente auf ge-
nau zwei eingeschrankt, eines als Wurzelele-
ment fUr die erste und eines als Wurzelelement
fUr die zweite Alternative.

H attributes

MT-Variable

MT-Variable (restriction

attributes]

MT-MetaVar

MT-PlaceholderBasic (extension
HH attributes |

Context

MT-Placeholder

— 1 RepClass

| —ewa— '—I—I‘ Repldent

MT-Modification (restriction

MT-Branch .

109

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Der Modifikator MT-True ermdglicht die Umset-
zung von Leerlaufregeln, indem sie als einziges
MT-Element der linken oder rechten Doméne
eingesetzt werden. MT-True besitzt keine ein-
gebetteten MT-Elemente.

Der Modifikator MT-Not negiert die Riickmel-
dungen seiner Auftraggeber.

Das Kopfelement wird im Austauschformat ver-
einfacht représentiert, da lediglich die Parame-
trierung der drei Suchpfade flr den Datenaus-
tausch relevant ist.

Fir die Elemente der Korrespondenzdoméne
ist es wichtig, dass sie jeweils mindestens
einen Link zu MT-Elementen der linken und
der rechte Doméne besitzen. Um dies beim
Datenaustausch zuzusichern, werden die MT-
Elemente der Korrespondenzdomé&ne geson-
dert definiert.

110

MT-Logic (restriction

MT-Logic (restriction)

A attributes

(W =

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

(s

0)

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

ACPLT/MT

Template *
ACPLT/MT Datenbank O—{ MT-Template MT-Pattern
1! Regelbasis %* MT- Regel MT»KopfeIemem ‘
Scheduling- N
Komponente <<slossi an>> MT-Pattern ‘ MT-Element

Abbildung A.2: Struktur des ACPLT/MT-Frameworks

Nun kann das Gesamtgebilde aufgebaut werden. Hierzu werden strukturierende Elemente hin-
zugeflugt, die im Laufzeitsystem durch OV-Doménen realisiert sind und keine eigene Logik
beinhalten. Abbildung A.2 zeigt nochmals die Gesamtstruktur des ACPLT/MT-Frameworks aus
Abbildung 6.2a. Firr den Austausch von Modelltransformationen zwischen zwei Systemen mit
ACPLT/MT werden nicht alle Komponenten benétigt. Insbesondere der Scheduler besitzt keine
Parametrierungsmdglichkeit und muss daher auch nicht in einem Austauschformat bereitge-
stellt werden.

MT-Pattern

H

MT-Pattern

1 gger -3 MTSlement §)

MT-Pattern

LHS [F-{eee -] MT-Element [

—| Rulebase |J—_|—{l :_J_—}M

MT-Pattern

L RHE F{=ee= EH-] MT-Eloment

111

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

Vollstandige XSD fiur ACPLT/MT

<?xml version="1.0" encoding="UTF-8"?

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:vc="http://www.w3.0rg/2007/
XMLSchema-versioning" elementFormDefault
vc:minVersion="1.1">

e="ACPLT-MT">

<xs:complexType>

"qualified" attributeFormDefault="unqualified"

<xs:element r

<xs:sequence>
<xs:element name="TemplateDB">
<xs:complexType>
<Xs:sequence>
<xs:element name="MT-Template" type="MT-Pattern" minOccurs
unbounded">

"0" maxOccur

<xs:annotation>
<xs:documentation>Der Name des MT-Element ist gleichzeitig der Name des
Templates, der durch die Platzhalter referenziert wird.
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Rulebase">
<xs:complexType>
<xs:sequence>
<xs:element name="MT-Rule" minOccurs
<xs:complexType>

maxOccurs="unbounded">

<xs:sequence>
<xs:element name="Header" type="MT-Head" minOccurs="1" maxOccur
<xs:annotation>

—myns

<xs:documentation>Kopfelement der Regel mit Angaben zu Suchpfaden.
</xs:documentation>
</xs:annotation>
</xs:element>

<xs:element name="Trigger" type="MT-Pattern" minOccurs
<xs:annotation>

1" maxOccurs="1">

<xs:documentation>MT-Objekt, das die Regelbearbeitung anstéht.</xs:
documentation>
</xs:annotation>
</xs:element>
<xs:element name="LHS" type="MT-Pattern" minOccurs="1" maxOc
<xs:annotation>

rs="1">

<xs:documentation>Pattern der linken Doméne.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CG">
<xs:annotation>
<xs:documentation>Pattern der Korrespondenzdomdne.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="CObject" type="CObject" minOccurs
unbounded" />

maxOccurs

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="RHS" type="MT-Pattern" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>Pattern der rechten Doméne.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>

112

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<!—— Typen -->
<xs:complexType name="MT-Pattern" abstract="true">
<Xs:sequence>
<xs:element name="MT-Element" type="MT-Element" minOccurs="1" maxOccurs
</xs:sequence>
</xs:complexType>

n /s

<xs:complexType name="CObject">
<xs:sequence>
<xs:element name="Name" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Type" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="Context"
<xs:element name="RefRHS

xs:boolean" minOccurs="1" maxOccurs="1"/>

"xs:IDREF" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="RefLHS" type="xs:IDREF" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="MT-Head">
<Xs:sequence>
<xs:element name="LHSPath" type="xs:string" minOccurs="1" maxOccurs="1"/>

<xs:element name="CDPath" type="xs:string" minOccurs="1" maxOccurs="1"/>

"1" maxOccurs="1"/>

<xs:element name="RHSPath" type="xs:string" minOccurs
</xs:sequence>
</xs:complexType>
<!-- MT-Element -->
<xs:complexType name="MT-Element" abstract="true">
<xs:sequence>

<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs
<xs:annotation>
<xs:documentation>Markiert, ob ein MT-Element Teil des Kontextes ist oder nicht.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="RepClass" type="xs:string" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>Klasse, die das MT-Element in der jeweiligen Domdne reprdsentiert.
Fiir die Erweiterung MT-Modification wird dieses Feld genutzt, um den Typ der
Modifikation kenntlich zu machen.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Eingebettete MT-Elemente. Diese Schachtelung bildet die
Kommandostruktur ab. </xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="ID" type

"xs:ID" use="required"/>
<xs:attribute name="ObjName" use="required"/>
</xs:complexType>
<xs:annotation>
<xs:documentation>Definition der verschiedenen Sub-Typen von MT-Element</xs:documentation>
</xs:annotation>
<xs:complexType name="MT-Variable">
<xs:sequence>
<xs:element name="Type" type="xs:string" default="String" minOccurs="0" maxOccurs="1"/>
<xs:element name="Value" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="ObjName" us

"required"/>
</xs:complexType>

113

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang A ACPLT/MT-Schema-Definition

<xs:complexType name="MT-Object">
<xs:complexContent>
<xs:extension base="MT-Element">
<xs:sequence>
<xs:element name="RepIdent" typ
<xs:element name="AssocClass" type="xs:string" minOccurs="1" maxO

"xs:string" minOccurs="1" maxOccurs="1"/>
1rs="1"/>

<xs:element name="AssocRole" minOccurs="1" maxOccurs="1">
<xs:simpleType>

<xs:restriction base="xs:string">
parent"/>
child"/>
*"/>

<xs:enumeration value

<xs:enumeration value=
<xs:enumeration value=
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Variable" type="MT-Variable" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-LinkBasic">
<xs:complexContent>
<xs:restriction base="MI-Element">
<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
/>
"on/>

<xs:element name="RepClass" type="xs:string" minOccurs="1" maxOccurs

<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Link">
<xs:complexContent>
<xs:extension base="MT-LinkBasic">
<xs:sequence>
<xs:element name="Source" type="xs:IDREF" minOccurs="1" maxOccurs="1"/>
<xs:element name="Target" type="xs:IDREF" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- MT-Modifikatoren -->
<xs:complexType name="MT-Modification" abstract="true">
<xs:complexContent>
<xs:extension base="MT-Element"/>
</xs:complexContent>
</xs:complexType>
<xs:annotation>
<xs:documentation>Definition der verschiedenen Sub-Typen von MT-Modification</xs:
documentation>
</xs:annotation>
<xs:complexType name="MT-MetaVar">
<xs:complexContent>
<xs:restriction base="MT-Variable">
<xs:sequence>
<xs:element name="Type" type="xs:string" default="String" minOccurs="0" maxOccurs="0
n/s
<xs:element name="Value" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-PlaceholderBasic">
<xs:complexContent>
<xs:restriction base="MT-Modification">

114

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

<xs:sequence>

<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>

<xs:element name="RepClass" type="xs:string" fixed="Placeholder" minOccurs="1"

maxOccurs="1"/>

<xs:element name="Element" type="MT-Element" minOccurs="0" maxOccurs="0"/>

</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Placeholder">
<xs:complexContent>
<xs:extension base="MT-PlaceholderBasic">
<xs:sequence>

<xs:element name="RepIdent" type="xs:string" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Branch">
<xs:complexContent>
<xs:restriction base="MT-Modification">
<xs:sequence>

<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs="1"/>

<xs:element nam
nyn /s

"RepClass" type="xs:string" fixed="Branch" minOccurs

1" maxOccurs=

<xs:element name="Element" type="MT-Element" minOccurs="2" maxOccurs="2"/>

</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Logic">
<xs:complexContent>
<xs:extension base="MT-Modification"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-True">
<xs:complexContent>
<xs:restriction base="MT-Logic">
<xs:sequence>
<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccurs
<xs:element name="RepClass" type="xs:string" fixed="True" minOccur
/>
<xs:element name

"0" maxOccur

"Element" type="MT-Element" minOccur

</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="MT-Not">
<xs:complexContent>
<xs:restriction base="MT-Logic">
<xs:sequence>

<xs:element name="Context" type="xs:boolean" minOccurs="1" maxOccur
<xs:element name="RepClass" type="xs:string" fixed="Not" minOccurs
/>

<xs:element nam "1" maxOccurs

Element" type="MT-Element" minOccurs

</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
</xs:schema>

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

1>
"1" maxOccurs="1

on/>

1/

maxOccurs="1"

unbounded" />

115

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

Die in Kapitel 1.2 definierten Anwendungsszenarien wurden im Rahmen mehrere Verdffent-
lichungen mit Hilfe des vorgestellten Ansatzes realisiert. Die benétigten Regelsatze werden
soweit mdglich in diesem Kapitel bereitgestellt und detailliert beschrieben. Der Umfang der
Modelle wurde dabei zun&chst auf die fiir die Beispielanlage aus Abbildung B.1 benétigten Ele-
mente reduziert, da eine Erweiterung auf die vollstdndigen Modelle den Rahmen dieser Arbeit
sprengt. Die daflir benétigten Regeln folgen im Allgemeinen jedoch dem gleichen Schema wie
die bereitgestellten Regeln und kénnen so im Bedarfsfall einfach ergénzt werden.

(NO™
)
>
7 YO
<] <]
B2
<

Abbildung B.1: R&I-Fliebild der Beispielanlage

S0 - Bereitstellung von Planungsdaten im Laufzeitsystem

In diesem Anwendungsszenario steht der bidirektionale Datenaustausch zwischen den Pla-
nungstools und der prozessleittechnischen Laufzeitumgebung im Vordergrund. Es stellt damit
einen Sonderfall fiir die Anwendung des vorgestellten Konzeptes dar, da das Modell der linken
Domaéne nicht auf den Basismodellen der Laufzeitumgebung — ACPLT/OV oder im allgemeinen
Fall IEC 61131 — beruht sondern ein textuelles XML-basiertes Modell ist. Um diesen Anfor-
derungen gerecht zu werden, wurden die Klasse MT_Object so erweitert, dass sie auch in
XML-B&umen nach Modellelementen sucht. Dabei wird nicht wie Ublich die Metavariable pfad
zur Referenzierung des Suchraumes genutzt, sondern Uber die Metavariable Input ein XML-
Baum Ubergeben. Innerhalb dieses Baumes wird nach entsprechenden Modellelementen ge-
sucht oder es werden entsprechende Modellelemente angelegt. Bei erfolgreicher Suche wird
ein Teilbaum des urspriinglichen XML als Suchraum fir den Auftragnehmer zurlickgeliefert,
beim Anlegen entsprechend das neu generierte XML.

116

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

<SystemUnitClass Name=“ExamplePlant”>
<InternalElement Name="Y1" RefBaseClassPath="ActuatorRequest">
<ExternalInterface Name="Y1l:P" RefBaseClassPath="ActuatorProcessInterface"/>
</InternalElement>

<InternalElement Name="V1" RefBaseClassPath="ValveRequest">
<ExternalInterface Name=“V1:Y" RefBaseClassPath="ActuatorInputPoint"/>
<ExternalInterface Name="V1:PIn" RefBaseClassPath="ProductConnectionPoint"/>
<ExternalInterface Name="V1:POut" RefBaseClassPath="ProductConnectionPoint"/>
</InternalElement>

<InternalLink Name="1link" RefPartnerSideA="Y1:P" RefPartnerSideB="V1:Y"/>

<InternalElement Name="B1" RefBaseClassPath="VesselRequest">
<ExternalInterface Name="B1l:PIn" RefBaseClassPath="ProductConnectionPoint"/>
<ExternalInterface Name="B1l:POut" RefBaseClassPath="ProductConnectionPoint"/>
</InternalElement>

<InternalElement Name="Z1" RefBaseClassPath="PipeJunctionRequest">
<ExternalInterface Name="Z1:P1" RefBaseClassPath="ProductConnectionPoint"/>
<ExternallInterface Name="Z1:P2" RefBaseClassPath="ProductConnectionPoint"/>
<ExternallInterface Name="Z1:P3" RefBaseClassPath="ProductConnectionPoint"/>
</InternalElement>

<InternalElement Name="P1" RefBaseClassPath="PipeRequest">
<ExternalInterface Name="P1:PIn" RefBaseClassPath="ProductConnectionPoint"/>

<ExternalInterface Name="P1:POut" RefBaseClassPath="ProductConnectionPoint"/>
</InternalElement>

<InternalLink Name="pipe" RefPartnerSideA="B1:POut" RefPartnerSideB="P1:PIn"/>

</SystemUnitClass>

Abbildung B.2: PandIX-XML der Beispielanlage

Abbildung B.2 zeigt das PandIX-XML fir die Beispielanlage. In einem ersten Schritt wird mit
Hilfe der Regel S0-R1 die Rahmenstruktur in Form einer ov/domain und den fiir eine Anlage
benotigten ACPLT/PandIX-Objekten angelegt. Die Hardwarekomponenten wie Pumpen, Ven-
tile, Behélter, Verzweigungen und Rohleitungen werden alle auf die gleiche Weise generiert.
Es wére durchaus legitim dies mit Hilfe einer verschachtelten MT-Verzweigung in einer Regel
abzubilden. Zur besseren Lesbarkeit wurde jedoch auf die Schachtelung verzichtet und drei
getrennte Regeln S0-R2 fir Pumpen und Ventile, S0-R3 fir Verzweigungen und Behalter und
S0-R4 fir Rohrleitungen mit jeweils maximal einer Verzweigung genutzt. Mit Hilfe von Regel
S0-R5 werden die Flansche und Anschlussstellen fur die PLT-Stellen bereitgestellt. Die Aus-
wertung der Internallinks, die die Verknlpfung der Aktoren mit den PLT-Stellen und die
Rohrleitungen symbolisieren erfolgt nach Typ getrennt. Zunachst erfolgt mit der Regel S0-R6
die Auswertung, der Verbindungslinien zwischen Aktoren und PLT-Stellen. In einem weiteren
Schritt werden mit Hilfe der Regel S0-R7 die Rohleitungen tber die entsprechenden Flansche
mit den Aktoren, Verzweigungen und Behaltern verbunden.

117

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S0-R1: Rahmenstruktur

sul: MT-Objekt

+ Kontext alse
+ RepKlasse ‘SystemUnitClass”
+ ObjName

+ Kontext

dom: MT-Objekt

+ Kontext
+ RepKlasse
+ ObjName

= false
= “ov/domain”
= PandIX

+

= false

ps: MT-Objekt

= false
= “PlantScheme”
= Plant

+ Kontext
+ RepKlasse
+ ObjName

+ + Kontext

tu: MT-Objekt
= false

= “TechUnit"
=TU

+ RepKlasse
+ ObjName

su2: MT-Objekt
+ Kontext alse
+ RepKlasse = “SystemUnitClass”

S0-R2: Pumpen und Ventile

mni: V2V

+ RepKlasse =
+ [ie: MT-Objekt |
+ Kontext = false
+ RepKlasse = “InternalElement”

v1:MT-Verzweigun,

+ Kontext = true

sel: A2A

tn

+ Kontext
+ RepKlasse

v1:MT-Verzweigung

e
ystemUnitClass”

+ Kontext = false

mn2:V2v |

vr2: MT-Objekt
fal

+ Kontext = false
+ RepKlasse “‘RefBaseRoleC..."
+ Value “ValveRequest”
riable
+ + Kontext = false
+ RepKlasse “RefBaseRoleC..."

+ Value

“‘PumpRequest”

+ Kontext = false

mn3: V2V
+ Kontext = false

T Kontext
+ repKlasse - “ValveRequest'
[pr2: MT-Objekt |
+Rontext Talse
+ repKlasse ~ “PumpRequest”

S0-R3: Verzweigungen und Behilter

sul: MT-Objekt

mn1: V2V

su2: MT-Objekt

+ Kontext
+ RepKlasse

ue
SystemUnitClass”

+ Kontext =
+ RepKlasse - “InternalElement

+I /[Vi:MT.

+ Kontext = true

sell: A2A

ALT1

vri: MT-Variable
+ Kontext = false
+ RepKlasse = “RefBaseRoleC
+ Value = “VesselRequest
pi T-Variable
+ + Kontext = false
+ RepKlasse = “RefBaseRoleC..."
+ Value = “PipeJunctionRe..."!

+ Kontext = false

mn2: V2V

+ Kontext = false

mn3: V2V
+ Kontext = false

+Kontext
+ RepKlasse

e
ystemUnitClass”

Vv1:MT-Verzweigung

vr2: MT-Objekt

+ Kontext = false

+ repKlasse = “VesselRequest”
pir2: MT-Objekt |

+ Kontext Talse

+ repKlasse = “PipeJunctionRe..."

118

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

Inhak.

mit, flr oder In KI-

tar

https://doi.org/10.51202/9783186261083

S0-R4:

Rohrleitungen

sul: MT-Objekt mni: V2V su. -Objekt
+ Kontext =true + Kontext rue
+RepKlasse = “SystemUnitClass” + Kontext =true +RepKlasse = “SystemUnitClass”
N ie: MT-Objekt pr2: MT-Obijekt
+ Kontext ~Talse + + Kontext Ise
+ RepKlasse = “InternalElement” el: E2E + repKlasse = “PipeRequest”
pri: MT-Variable + Kontext = false
+ + Kontext = false
+ RepKlasse = “RefBaseRoleC..."
+ Value = “PipeRequest”

S0-R5: Flansche und Anschlussstellen

ie: MT-Objekt |
n

+ Kontext true
+ RepKlasse = “InternalElement”
ble]
= f r:eq2 MT-Objekt
+ Kontext true mn1: V2¥ + Kontext 4 = |rueI
+ RepKlasse = “RefBaseRoleC..." + Kontext = true + repKlasse ="*Request” ‘
+ Value = “*Request”
A o/ viwr. sell: A2A V1:MT-Verzweigun,
ALT1 ALT2 + Kontext = false
aip1: MT-Objekt aip1: MT-Objekt |
+ Kontext alse mn2: V2V oxt ~false
+ repKlasse = “ActuatorinputPoint” "+ Kontext _false + repKlasse = “ActuatorinputPoint”
cp1: MT-Objekt Dep2: MT-Objekt |
* T Kontext ~false mn3: V2V + Kontext ~Talse
+ repKlasse = *ProductConnectionP...” "+ Kontext _false + repKlasse = “Connector”
S0-R6: Zuordnung der PLT-Stellen

[motvav |
+ Kontext true = + Kontext ue
+RepKlasse = “SystemUnitClass” + Kontext = true +RepKlasse = “SystemUnitClass”
ie1: MT-Obijekt | ar: MT-Objekt
+ Kontext =True + Kontext =true
+ RepKlasse = “InternalElement” + Kontext |+ RepKlasse = "ActuatorRequest”
eil: MT-Objekt con3: MT-Objekt
| > _ " + +Kontext True
+ Kontext true . mn3: V2v + repKiasse = “Connector”
+ RepKlasse = “Externalinterface’
+ Kontext = true ‘ MT-Objekt n
- r: MT-Objel A
pcpl: MT-Variable + Kontext true £
+ Kontext —true +repKlasse = “*Request’ 3
+ RepKlasse = “RefBaseClassPath” 4: MT-Objekt
_u ion cond: MT-Objel
+ Value = “ProductConnection.. . Kontoxt e
ie2: MT-Objekt mna:vav | +repKlasse ="Connector” |+
+ Kontext =true =
+ RepKlasse = “InternalElement” + Kontext = true
12 MT-Ob}
ei2: MT-Objekt mn5: V2V
+ Kontext =true "+ Kontext —true
+ RepKlasse = “Externallnterface” —
pcp12: MT-Variable
+ Kontext true
+ RepKlasse “RefBaseClassPath”
+ Value = “ProductConnection...”
AN \
9 + Kontext = false i
+ RepKlasse = “InternalLink” + Kontext = true
con1: MT-Variable
+ + Kontext = false
+ RepKlasse = “RefPartnerSideA”
con2: MT-Variable
+ + Kontext false
+ RepKlasse = “RefPartnerSideB”
Inhat.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

mit, flr oder In KI-

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S0-R7: Verkniipfung der Rohrleitungen

T .
+ Kontext = true e + Kontext = true
+RepKlasse = "SystemUnitClass” | + Kontext = true +RepKlasse = *SystemUnitClass”
ie1: MT-Objekt | mn2: V2V [ar: MT-Objekt |
+ Kontext =true == + Kontext —true
+ RepKlasse = “InternalElement” + Kontext = true + RepKlasse = “ActuatorRequest”
ei1: MT-Objekt | [api3: MT-Objekt |
- " + +Kontext = tiue
+ Kontext true R mn3: V2V + repKlasse — "ActuatorProcessl...”
+ RepKlasse = “Externallnterface L
‘ + Kontext = true ‘ MT-Objekt A
- - req: MT-Objel
apl1; MT-Variable L= Kontext true 2
+ Kontext —true + repKlasse =""Request’ ¥
+ RepKlasse = “RefBaseClassPath” To
+ Value = “ActuatorProcessl..." | aipd:MT-Oblekt |
+ Kontext =true [—
ie2: MT-Objekt mna: V2V + repKlasse = “ActuatorinputPoint | +
+ Kontext =true 7 —_—
+ RepKlasse = “InternalElement” + Kontext = true
ei2: MT-Obijekt
mns5: V2v
+ Kontext =true -+ Kontext —true
+ RepKlasse = “Externalinterface” —
api2: MT-Variable
+ Kontext =true
+ RepKlasse = “RefBaseClassPath”
+ Value = “ActuatorinputPoint”
+ [il: MT-Objekt | link: E2E
+ Kontext = false
+ RepKlasse = “InternalLink” ‘ + Kontext = fa\se‘
con1: MT-Variable
+ + Kontext = false
+ RepKlasse = “RefPartnerSideA”
+ con2: MT-Variable
+ Kontext = false
+ RepKlasse = “RefPartnerSideB”

S1 - Einzelne Automatisierungsfunktion als Serienprodukt

Bei diesem Szenario soll der Anlagenfahrer eine Anfrage stellen kénnen, welche Bereiche der
Anlage durch das Offnen eines konkreten Ventils oder durch das Anschalten einer Pumpe
betroffen sind. Die Rohrleitungen, die ausgehend von diesem Aktor durch gedffnete Ventile
und angeschaltete Pumpen miteinander verbunden sind, werden im Bedienbild farbig markiert.

Dieses Szenario kann nicht auf Basis von einer TGG realisiert werden. Stattdessen wer-
den die ACPLT/MT-Regel so parametriert, dass die Regeln als WENN-DANN-Regeln agie-
ren. Die Regel S1-R1 liest sich daher wie folgt: Wenn ein Link zwischen zwei Flanschen
(Connector) existiert, dann farbe das zugehérige Rohrleitungssymbol im ACPLT/csHMI griin
ein. Die MT-Objekte agieren dabei wie gewohnt und suchen bzw. erstellen die reprasentierten
Modellobjekte oder setzten Variablenwerte. An dieser Regel wird deutlich, dass ACPLT/MT-
Transformationen in gegenseitiger Abhangigkeit zueinander stehen kénnen. So sind die im
Kontext verwendeten MT-Objekte noch durch keine andere Regel des Regelsatzes Ubersetzt
worden. Hier wird auf die Ergebnisse der Transformation aus Anwendungsszenario S2 zu-
rickgegriffen, die eine TGG zwischen ACPLT/PandIX und ACPLT/csHMI beschreibt. Diese
Korrelation von ACPLT/MT-Transformationen ermdglicht es, verschiedene Anwendungen auf
ein und demselben Modellpaar aufzusetzen. Mdchte man in der Welt der reinen Tripel-Graph-
Grammatiken bleiben, so missen die Regeln aus Anwendungsszenario S2 mit in den Regel-
satz von S1 kopiert werden. Eine weitere TGG zwischen ACPLT/PandIX und ACPLT/csHMI

120

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

musste ebenfalls eine Kopie der Regeln aus S2 beinhalten. Bei ein Vorwértstransformation auf
Basis dieser TGG wirde dann allerdings eine neues ACPLT/csHMI-Modell erzeugt werden.
Der alternative Ansatz, alle ACPLT/MT-Transformationen, die auf einer konkreten prozesslei-
ttechnischen Laufzeitumgebung zur Verfligung stehen in einer groBen TGG zu vereinigen ist
sehr inflexibel bezlglich Erweiterungen. Dennoch, im GroBen gesehen funktioniert der Ansatz
wie eine komplexe TGG, deren Regeln jedoch immer nur zu definierten Zeitslots — namlich
wenn die zugehdrige ACPLT/MT-Transformation aktiv ist — angewendet werden kénnen.

S1-R1: Auswirkung Stellbefehl Ventil als WENN-DANN-Regel

/vi :MT-Verzweigung \

vr: MT-Objekt

tu: MT-Objekt
+ Kontext s te —}
+ RepKlasse = “SystemUnitClass” *

tu: MT-Objekt

+ Kontext

= true

+ RepKlasse = “Group”

v: MT-Objekt

=+ Kontext =true

+ RepKlasse

= “ValveTemplate”

p1: MT-Objekt

=—=>{ "+ Kontext =true

é + Kontext =true mn2: Vav
+ RepKlasse = “ValveRequest” N Kom—ext e
con1: MT-Objekt
+ Kontext ue ’—|
+ RepKlasse = “Connector” mn3: V2V
[eKonext - e |
p1: MT-Objekt
é + Kontext = true

+ RepKlasse = “Pipe”

con2: MT-Objekt

+ Kontext =true
+ RepKlasse = “Connector”
tu: MT-Objekt
-
+ Kontext = true
+ RepKlasse = “Group”

+ Kontext
+ RepKlasse = “Selectedltem”

| + Kontext = false

+ RepKlasse = “Pipe”

Color: MT-Variable

+ Kontext
+ Value

Ise

Der Anlagenfahrer kann jedoch nicht nur die Auswirkungen eines Fahrbefehls fur ein Ventil
abfragen, sondern auch flrr eine Pumpe. Die dazu gehérige Regel sieht wie folgt aus:

Inhak.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

tar

mit, flr oder In KI-

121

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S1-R2: Auswirkung Stellbefehl Pumpe

/ v1:MT-Verzweigung

g2: MT-Objekt

p1: MT-Objekt

% + Kontext =true

+ Kontext

+ RepKlasse = “Pipe”

+ Kontext ue

| con2: MT-Objekt

+ RepKlasse = “Connector”

1: MT-Objekt

-
+ Kontext = true
+ RepKlasse = “Group”

T-Variable

+ Kontext
+ RepKlasse

su: MT-Objekt mni: Vav
+ Kontext = true * + Kontext = true
+ RepKlasse = “SystemUnitClass” + Kontext = true + RepKI. = “Group”
pr: MT-Objekt pt: MT-Objekt
é + Kontext =true mn2: V2V + Kontext =true
+ RepKlasse = “PumpRequest” + Kontext —true + RepKlasse = “PumpTemplate”
| con1: MT-Objekt p2: MT-Objekt
+ Kontext = true N 9 + Kontext = true
+ RepKlasse = “Connector” mn3: V2V + RepKlasse = “Pipe”

| + Kontext = false

Color: MT-Variable

+ Kontext false
+ Value ="Green”

Die beiden Regeln S1-R1 und S1-R2 lieBen sich in eine gemeinsame Regel Uberfihren, in-
dem die Metavariablen Repklasse der MT-Objekte vr der linken Doméne und v der rechten
Doméne mit einem Asterisk parametriert werden.

Im nachsten Schritt werden, ausgehend von einer grin gefarbten Rohrleitung, weitere Rohrlei-
tungen eingefarbt, die durch gedffnete Ventile, laufende Pumpen oder einfache Verzweigungen
angebunden sind. Gedffnete Ventile oder laufende Pumpen kénnen anhand ihrer griinen Farbe
im HMI identifiziert werden. Die Regel S1-R3 zum Einféarben lautet daher: Wenn die Flansche
eines Aktors Uber entsprechende Links mit zwei Rohrleitungen verbunden sind, dann tberpri-
fe, ob fur die entsprechenden Symbole der Rohrleitung im HMI eine der beiden Rohrleitungen
bereits griin eingefarbt ist und farbe ggf. die andere ebenfalls griin ein.

122

Inhak.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m mit, flr oder In KI-

tar

https://doi.org/10.51202/9783186261083

S1-R3: Geodffnetes Ventil/ Gestartete Pumpe

- su: MT-Objekt mni: V2V ” 9q: MT-Objekt
+ Kontext = true _ + Kontext = true
+ RepKlasse = “SystemUnitClass” + Kontext = true + RepKlasse = “Group”
any1: MT-Objekt any2: MT-Objekt
—> + Kontext = true mn2: V2V —>{ + Kontext = true
+ RepKlasse =* + Kontext —true + RepKlasse ="
con1: MT-Objekt Color: MT-Variable
+ Kontext = true — + Kontext =true
+ RepKlasse = “Connector” + Value = “Green”
con2: MT-Objekt p2: MT-Objekt
+ Kontext =true mn3: V2V | >+ Kontext
+ RepKlasse = “Connector” + Kontext — ttue | + RepKlasse
p1: MT-Objekt Color: MT-Variable
9 + Kontext =true + Kontext
+ RepKlasse = “Pipe” [sai: E2E ‘ + Value
+ Kontext = false
con3: MT-Obijekt p3: MT-Objekt
+ Kontext =true = mna: V2V 9 + Kontext = trqe
+ RepKlasse = “Connector” Kontext oo —| + RepKlasse = “Pipe”
+ =
p2: MT-Objekt Color: MT-Variable
+ + Kontext = true + Kontext
+ RepKlasse = “Pipe” sa2: E2F ‘ + Value
+ Kontext = false
con4: MT-Objekt
+ Kontext = true
+ RepKlasse = “Connector”

S2 — Modularisierte Teilfunktion

Das Szenario sieht die modellbasierte Erstellung eines einfachen Bedienbildes vor, auf dem
fir jeden Sensor und jeden Aktor im ACPLT/PandIX-Modell der Anlage ein reprasentierendes
Symbol sowie eine Detailansicht fiir das Ablesen von Sensorwerten bzw. das Absetzen von Be-
fehlen im Bedienbild erstellt wird. Eine anschlieBende Anpassung an die anlagenspezifischen
Gegebenheiten durch den Applikateur muss dabei méglich bleiben.

In einem ersten Schritt werden mit Hilfe von Regel S2-R1 fiir die beiden Modelle eigene
ov/domain-Objekte angelegt, die als Wurzelelement fiir alle weiteren Modellelemente dienen.
Eine durch Regel S2-R2 erzeugte Gesamtibersicht zeigt das R&l-FlieBbild (PlantScheme) als
Ganzes. Hier kdnnen im Betrieb aufgetretene Fehler farblich markiert werden und somit ei-
ne schnelleren Problemlésung unterstitzt werden. Fir jede Teilanlage, die im R&I enthalten
ist (TechUnit) wird durch Regel S2-R3 eine zusétzliche Ansicht im HMI erstellt, die die zuge-
hérigen Modellobjekte kapselt und im ACPLT/csHMI-Modell den entsprechenden Ausschnitt
anzeigt. Somit wird ein Hineinzoomen in einzelne Teilanlagen méglich. Zudem wird ein Objekt
SelectedItemim ACPLT/csHMI-Modell angelegt, welches spater Informationen Uiber das ak-
tuell selektierte Grafikobjekt einer Gruppe liefert. Diese Information wird fiir den aufbauenden
Regelsatz aus Anwendungsszenario S1 benétigt.

123

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S2-R1: Axiom

dom1: MT-Objekt dom2: MT-Objekt

+ Kontext = false mn1: E2E + Kontext false
+ RepKlasse = “ov/domain” + Kontext = false + RepKlasse = “ov/domain”

+ ObjName = “PandIX* + ObjName = “HMI"

c1: MT-Objekt

+ + Kontext = false

+ RepKlasse = “Component”
+ ObjName = “PandIX*

> s1: MT-Objekt

+ Kontext = false

+ RepKlasse = “Switch”

+ ObjName = “InfoBoxes*

+ .
—> $2: MT-Obijekt
+ Kontext = false
+ RepKlasse = “Switch”
+ ObjName = “Workspaces*

S2-R2: Anlage

dom1: MT-Objekt s1: MT-Obijekt
+ Kontext rue @ + Kontext
+ RepKlasse = “ov/domain” + Kontext = true + RepKlasse
+ ObjName = PandIX + ObjName
ps1: MT-Objekt c1: MT-Objekt ‘
+ + Kontext = false + + Kontext = false
+ RepKlasse = “PlantScheme” mn2: V2V + RepKlasse ="“Case”
+ObjName =~ + Kontext = false +ObjName =
| d: MT-Objekt
+ + Kontext = false
+ RepKlasse = “Group”
si: MT-Variable
+ + Kontext = false
+ RepKlasse = “Selectedltem”
S2-R3: Teilanlage
ps: MT-Objekt s: MT-Objekt
+ Kontext mni: V2v + Kontext = true
+ RepKlasse + Kontext + RepKlasse
+ ObjName =" + ObjName
tu1: MT-Objekt c1: MT-Objekt
+ + Kontext = false mn2: V2V é + Kontext =true
+ RepKlasse = “TechUnit" + Kontext = false + RepKlasse = “Case”
+ ObjName =" + ObjName =*
. kt c2: MT-Objekt
+ Kontext false : +L3| + Kontext alse
+ RepKlasse = “SystemUnitClass” + RepKlasse
+ ObjName
mn3: V2V + + Kontext alse
+ Kontext = false + RepKlasse = "Group”
[si: MT-Variable |
+ + Kontext = false
+ RepKlasse = “Selectedltem”
124
IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhat.
tersagt, m ‘mit, fir oder in KI-Syster

https://doi.org/10.51202/9783186261083

Aktoren (und auch Sensoren) werden im R&l durch eine PLT-Stelle — einem Oval mit entspre-
chenden Indizes — gekennzeichnet. Regel S2-R4 erzeugt entsprechende Darstellungen fiir die
PLT-Stellen in der Gesamtansicht der Anlage und der Ansicht fiir die Teilanlage. Zudem wird
ein Bedienbild zur Ansteuerung des Aktors in den Infoboxen generiert.

S2-R4: Aktor

dom1: MT-Objekt
+ Kontext

dom2: MT-Objekt
+ Kontext rue

mn1: E2E
+ Kontext = true

+RepKlasse = “ov/domain” +RepKlasse = ‘ov/domain”
+ObjName = “PandIX* +ObjName = “HMI*
c1: MT-Objekt
[+ Kontext =true
+RepKlasse = “Component”
+ObjName = “PandIX"*

s1: MT-Objekt
+ Kontext ~true

+RepKlasse = “Switch”
+ ObjName nfoBoxes
[af: MT-Objekt |
+Kontext false
oot MT-Oniekt + RepKlasse = *ActuatorFaceplate”
TKontext =t mn2: vav 1 2: MT-Obiekt
+RepKlasse = "PlantScheme” + Kontext = true <+ Kontext e
+ObjName =" > RepKlasse
+ ObjName
tu1: MT-Objekt

N

TRontext = tue mn2: Vav 1: MT-Objekt
+RepKlasse = "TechUnit" +Kontext_= true TKontext - te
+ObjName = > RepKlasse = "Case”
+ObjName ="
~Rontext :;’,i,’:povem mn3: V2v g1: MT-Objekt
+ -
+| ar: MT-Objekt mnZ: Vav o MOk
+ Kontext = false + Kontext = false + s -
+ RepKlasse ~ “ActuatorRequest” |+ RepKlasse = *ActuatorTemplate’
rt1: MT-Objekt
apiz MT-Objekt * L Kontext = false
TRoned -fake + Repklasse - “RemoteTemplate”
+ +repKlasse = "ActuatorProcessl...” 5 MT-oe
ObjName P c2: MT-Objekt
+ Obj + Kontext = true
> RepKlasse = ‘Case”

+ObjName =*

g2: MT-Objekt

+ Kontext = true
+ RepKlasse = “Group”
at2: MT-Objekt
+ Kontext —false
+ 9 + RepKlasse = “ActuatorTemplate”
112: MT-Objekt
* + Kontext e
+ RepKlasse = *RemoteTemplate”

Zusatzlich zu den PLT-Stellen und dem Bedienbild besitzen Aktoren noch ein Icon, das den
Typ reprasentiert. Dieses wird durch Regel S2-R5 erzeugt. Die Regel zur Bereitstellung der
Icons flir Pumpen und Ventile aus Abbildung 6.6¢ enthielt zur besseren Lesbarkeit noch keine
Flansche. Diese sind jedoch fiir die anschlieBende Verrohrung elementar. Die Regel S2-R5 er-
weitert daher die urspriinglich Version um eben diese Flansche (Connector). Auf der anderen
Seite wurde auf die Generierung der Icons in der Gesamtdarstellung der Anlage verzichtet.
Durch die Regel S2-R6 werden die Behalter und durch Regel S2-R7 die Rohleitungen erzeugt.
Auch hierbei wurde auf die Generierung der entsprechenden Symbole in der Gesamtansicht
der Anlage verzichtet. Im ACPLT/PandIX sind Rohleitungen durch Links zwischen Flanschen
gekennzeichnet. Diese missen im ACPLT/csHMI durch entsprechende Rohrleittungssymbole
gekennzeichnet werden.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

125

Inhak.

mit, flr oder In KI-

tar

https://doi.org/10.51202/9783186261083

Anhang B TGG der Anwendungsszenarien

S2-R5: Pumpe/Ventil

+ Kontext u
“SystemUnitClass”

mn1: V2V

g: MT-Objekt

+ Kontext

+ RepKlasse = + RepKlasse
ar: MT-Objekt v at: MT-Objekt |
+ Kontext “tue — Konlergnz- vz)/‘me I+ Kontext rue
+ RepKlasse - “ActuatorRequest’ | [+ Kontet ~te | | + RepKlasse ~ “ActuatorTemplate”
p: MT-Objekt rt: MT-Objekt
+ Kontext —true & + Kontext —true
+ repKlasse “ActuatorProcessl...” & + RepKlasse - *RemoteTemplate”
' P e
+ ObjName P €
+
. 2:MT-Verzwei
M TS v erzweigung
oo\ [an am | are
2
2
<
vr: MT-Objekt | v v + vt: MT-Objekt]
+ Kontext =false 1 mnd: V2V, "+ Kontext false
+ repKlasse — *ValveRequest” ‘ [Konte _ -faise | ‘ + RepKlasse — “ValveTemplate”
Y- MT-Objekt . [lo1: MT-Objekt |
+ “+Kontext I i E%E + Kontext alse
+ repKlasse = + RepKlasse = “Line”
* GbiName L + Kontext — false Pl
conl: MT-Objekt
+ + Kontext ~Talse
+ RepKlasse ~ “Connector” R
+ ObjName =*Cont” 2
£
con2: MT-Objekt 3
+ + Kontext ~false
+RepKlasse = “Connector”
+ ObjName —*Con2’
- + "
pr: MT-Obiekt [mavey] pt: MT-Objekt |
L) Kontext = false Py S [+ Konted = false
+ + repKlasse = “PumpRequest’ [+Kontet -felse | ‘ + RepKasse = “PumpTemplate”
N: MT-Obijekt +Ly] l02: MT-Objekt]
+ + Kontext false + Kontext
+ repKiasse Actuatorinputpoint” | | [12iE2E | + RepKlasse
+ ObjName - Lt [Kontext -faise
. + Kontext — als:
+ RepKlasse
+ ObjName “Cont”
con!
+ “Kontext
+ RepKlasse
+ ObjName
S2-R6: Behilter
su: MT-Objekt 1. V2V q: MT-Objekt
+ Kontext ue Kot Tt“ = T + Kontext =true
+ RepKlasse = “SystemUnitClass” [[+Kontext — -tue | + RepKlasse = “Group”
vr: MT-Objekt [mnzvev | + I) vt: MT-Objekt
+ + Kontext = false Kon(e::nz szfalse + Kontext = false
+ repKlasse = “VesselRequest” I—l+ — + RepKlasse ="“VesselTemplate”
+ + Kontext
+ RepKlasse “Connector”
+ ObjName ="“Con1”
IT-Objekt
+ + Kontext false
+ RepKlasse = “Connector”
+ ObjName ="“Con2”
IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhalt,
tersagt, m ‘mit, fir oder in KI-Syster

https://doi.org/10.51202/9783186261083

S2-R7: Rohleitung

tu: MT-Objekt

—>{ + Kontext =true

+ RepKlasse ="

mn2: V2V

tu: MT-Objekt mn1: Vav
+ Kontext true + Kontext —true + Kontext =true
+ RepKlasse = “SystemUnitClass” — + RepKlasse = “Group”
r: MT-Objekt v: MT-Objekt

+ + Kontext =true

+ Kontext = true

| +RepKlasse ="*

+ p1: MT-Objekt
9 + Kontext = false

+ RepKlasse = “Pipe”

+ p1: MT-Obiekt

9 + Kontext = false

+ RepKlasse = “Pipe”

.

+ + Kontext

+ RepKlasse = “Connector”

+ Kontext -
+ RepKlasse = “Connector” mn3: V2V

127

Inhak.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m mit, flr oder In KI-

tar

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fir-Schritt-Anwendung
einer ACPLT/MT-Regel

Dieses Kapitel beleuchtet beispielhaft die Anwendung der Regel aus Abbildung C.1a auf die in
Abbildung C.1b gezeigte Modellsituation. Dabei sollen drei Detailstufen im Fokus stehen. Zu-
néchst wird tief in die Regel hineingezoomt und die Funktionalitédt und Arbeitsweise einzelner
MT-Elemente genauer betrachtet. Da die Umsetzung dieser Detailstufe stark implentierungs-
abhangig ist, beziehen sich die Erklarungen hierbei auf die Referenzimplementierung. In einem
zweiten Schritt, wird das Zusammenspiel von MT-Elementen auf Basis der Kommandostruktur
im Vordergrund stehen. AbschlieBend wird noch eine Stufe weiter herausgezoomt und die ein-
zelne Regelanwendung im Gesamtbild der ACPLT/MT-Modelltransformation betrachtet. Dabei
steht insbesondere das Schedulingverhalten im Fokus.

Bei der Beispielanwendung wird davon ausgegangen, dass durch vorangegangene Regelan-
wendungen der Kontext bereits vom ACPLT/PF-Modell (linke Doméne) in das ACPLT/csHMI-
Modell (rechte Doméne) Ubersetzt wurde.

Funktionsweise MT_Element

Die Bearbeitung von MT-Elementen wird beispielhaft an zwei MT-Objekten demonstriert. Das
erste ist so parametriert, dass es ein entsprechendes Modellobjekt sucht, das zweite so, dass
es ein Modellobjekt erstellt. AuBerdem wird die Anwendung einer MT-Verzweigung detailliert
beleuchtet. Dabei wird unterschieden zwischen der Anwendung einer Verzweigung in der
Quelldomane und einer Verzweigung in der Zieldoméane.

Zunachst soll jedoch die Bedeutung der einzelnen Metavariablen zusammengefasst werden:

Objektname - Ob jName
Gibt an, wie das gesuchte Modellobjekt heiBen muss, damit es als potentieller Kandidat
in Frage kommt. Ist der Name irrelevant, so kann diese Metavariable mit Jokerzeichen
parametriert werden.

Klasse - RepClass
Gibt an, von welcher Klasse das gesuchte Modellobjekt sein soll. Auch hier ist eine Para-
metrierung mit Jokerzeichen méglich.

Kontext - Context
Wenn das aktuelle MT-Objekt im Kontext der Regel steht, so ist diese Metavariable t rue.

128

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

su: MT-Objekt p—p [g: MT-Objekt |
+Kontext = true Komtoxt —vue || * Kontext rue
+ RepKlasse = “SystemUnitClass” = = ‘ + RepKlasse = “Group”
ar: MT-Objekt mn2: V2V at: MT-Objekt
—>{ + Kontext ue |+ Kontext | + Kontext ue
+ RepKlasse = “ActuatorRequest” w — + Repl = “ActuatorTemplate”
p: MT-Objekt rt: MT-Objekt
+ Kontext rue & + Kontext =true
+ repKlasse tuatorProcessl...” ‘E + RepKlasse emoteTemplate”
+ ObjName "
sell: A2A v2:MT-Verzweigung
A + Kontext = false
£
£
v
n rp—
3 VaV S| vt: MT-Obiekt
+ Kontext + Kontext false + Kontext false
+ repKlasse = + RepKlasse ‘ValveTemplate”
+ . MT-Obi
=2 11: E2E S lo1: MT-Objekt
+ Kontext [Frontext = faise) + Kontext
+ rep y t + RepKlasse
+ ObjName
VAV SN pt: MT-Objekt
+ Kontext + Kontext false + Kontext alse
+ repKlasse = “PumpRequest” = + RepKlasse = “PumpTemplate”

+. + Kontext
+ repKlasse
+ ObjName

(a) Kombinierte Regel aus Abbildung 6.6c

TU1: SystemUnitClass

<<enthélt>>

P: ActuatorProcessInterface

N13: ActuatorRequest

| | +FunctionCode = N

P13: PumpRequest

+ SignalCode = O

+ SignalCode = O

kt>>

<<verli

N: ActuatorinputPoint

<<verlinkt>>

Y24: ActuatorRequest C2: Va2V

| | + FunctionCode = Y

lo2: MT-Objekt

¢+

+ Kontext
+ RepKlasse

<<enthalt>> —1 Y24: ActuatorTemplate

Y: RemoteTemplate

N13: ActuatorTemplate

N: RemoteTemplate

(b) Zustand der Modelle zum Aktivierungszeitpunkt der Regel

Abbildung C.1: Schritt-fur-Schritt-Beispiel

Assoziation - Assoc
Gibt an, tUber welche Assoziation das gesuchte Modellobjekt mit dem Uber Path referen-

zierten Objekt verknlipft ist.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m

129

Inhak.

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

Rolle - AssocRole
Gibt an, ob das gesuchte Modellobjekt in der Rolle der Quelle oder des Ziels der durch
Assoc bestimmten Assoziation auftritt.
Quellmodell - SourceDom
Ist das MT-Objekt in der Teilproduktion des Quelimodells, so ist diese Metavariable
true. Das Quellmodell ist jenes Modell, von dem aus die Ubersetzung stattfinden soll.
Bei einer Rickwartstransformation sind daher die MT-Objekte des linken Teilpattern mit
SourceDom = true parametriert.
Pfad - Path
Die Metavariable path gibt den Startpunkt der Suche an, von dem aus ein Link vom Typ
Assoc und ein darlber verkniipftes Modellobjekt der Klasse RepClass gesucht wird.
Kommando - Command
Uber diese Metavariable erhalt das MT-Objekt seine Kommandos vom Auftraggeber.
ANStatus - ChbkState
Die Riickmeldung nachgeschalteter Auftragnehmer kann liber die Metavariable ANStatus
bzw. in der Referenzimplementierung Chbk St ate zugegriffen werden. Zum Zeitpunkt der
ersten Ausfiihrung eines MT-Objektes sind die Auftragnehmer noch im Zustand ST_IDLE.

Die Metavariablen-Ausgange haben folgende Semantik:

ANKommando - SendCommand
Das Kommando flr den Auftragnehmer wird mit Hilfe der Metavariablen ANKommando
bzw. in der Referenzimplementierung sendCommand bereitgestellt. Dieser Ausgang ist
mit dem Eingang Command des Auftragnehmers verkn(pft.

Status - state
Gibt den Schritt zurlick, indem sich das MT-Objekt befindet. Dies dient als Riickmeldung
an den eigenen Auftraggeber.

Objektkennung - Act Ident
Wurde ein passendes Modellobjekt gefunden oder erstellt, so gibt diese Metavariable den
Namen dieses Modellobjekt an.

Objektpfad - ActPath
Diese Metavariable gibt den Pfad zum gefundenen Modellobjekt an. Der Pfad dient fir
nachgeschalteten Auftragnehmern als Startpunkt fiir die Suche und wird daher mit der
Metavariable path der Auftragnehmer verknupft.

MT_Object - Suche eines Modellobjekts

Die Suche eines Modellobjekts wird anhand des MT-Objekts ar aus der linken Doméane der
Regel in Abbildung C.1a gezeigt. Dieses bekommt von seinem Auftraggeber su als Suchpfad
L/ TU1" Gbergeben und erkundet ausgehend von dem dazugehérigen Modellobjekt Tu1 die Mo-
dellinstanz nach Objekten, die vom Typ ActuatorRequest sind und per ov/containment
mit TU1 verlinkt sind.

130

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

PTTTTTTTTTT T TT T mmm e s @Y - MT_Object
—— true + CMD_RESET
ST_RESET |
ST_BASIC J

All.Chbk = BASIC

== CMD_RUN

(ST_RUN
m——0DE=CREATE m— 1ODE=SEARCH &
(Any.Chbk = ST_NEG |
ActNode = EMPTY)
ST_CREATE ST_SEARCH
+ sonst mmmm ActNode = EMPTY | mmmm sonst E ODE=SEARCH &
Any.Chbk = ST_NEG (Any.Chbk != ST_NEG &
ActNode != EMPTY)
ST_CHILDS
m—pObj = NULL |
: Any.Chbk = ST_ERROR
: Any.Chbk = ST_NEG All.Chbk = ST_POS
: ST_ERROR ST_NEG] [ST_HOLD] [ST _PoS] !
: ——
! CMD_NONE i
ST_HOLD

Abbildung C.2: SFC des MT_Object

MT_OBJECT - SUCHE EINES MODELLOBJEKTS
ar: MT_Obiject

Belegung der Metavariablen (Eingédnge)

Deklarative Ebene Operationale Ebene
ObjName =" Assoc = ,ov/containment®
RepClass = ,ActuatorRequest" AssocRole = CHILD
Context = true SourceDom = true

Path =,/TU1"

Kommandostruktur
Command = CMD_RUN
ChbkState = ST_IDLE

Belegung der Metavariablen (Ausgénge)

Kommandostruktur Operationale Ebene
SendCommand = CMD_RUN Actldent =,Y24"
State =ST_RUN ActPath = ,/TU1/Y24"

Der SFC eines MT_Objekt ist in Abbildung C.2 nochmals dargestellt. Im ersten Zyklus befin-
det sich ar im Schritt ST_IDLE. Das anliegende Kommando cMD_RUN flhrt jedoch zu einem

131

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

Schrittwechsel nach sT_RUN." In diesem Schritt wird anhand der Metavariablen Context und
SourceDom festgestellt, ob ein Modellobjekt gesucht oder erstellt werden soll und die lokale
Variable Modus des MT-Objektes entsprechend auf SEARCH oder CREATE gesetzt wird. Im ak-
tuellen Beispiel ist ar Teil des Kontextes des Quellmodells, d.h. der Modus wird auf SEARCH
gesetzt. Dies wiederum fUhrt zu einem erneuten Schrittwechsel nach sT_SEARCH. Im Schritt
ST_SEARCH wird zunéchst ein Zeiger auf das durch die Metavariable path referenzierte Ob-
jekt generiert. Existiert das Objekt nicht, so wird unmittelbar in den Schritt ST_NEG gewechselt.
Das durch path referenzierte Modellobjekt wird nach Links untersucht, die vom Typ her der
Parametrierung der Metavariablen Assoc entsprechen. Diese Links sind in einer geordneten
Liste organisiert. Das durch den ersten Link verknlpfte Modellobjekt ist ein erster potentieller
Kandidat.

Im konkreten Beispiel wird zundchst ein Zeiger auf das Objekt TU1 erstellt. Dessen Linkliste
fir die Assoziation ov/containment enthélt vier potentielle Kandidaten: y24, N13, v24,
p13. Diese werden nun nacheinander Uberprift. Y24 erfullt direkt die Ubrigen Bedingungen,
da es eine Instanz der Klasse ActuatorRequest ist und Ziel bzw. CHILD des Links zu TU1
ist. Da keine weiteren Anforderungen an das Modellobjekt beschrieben sind, kann Y24 an ar
gebunden werden und die Metavariablen Act Ident und ActPath von ar werden auf ,Y24“
bzw. ,/TU1/Y24" gesetzt. AnschlieBend wird das Kopfelemente durch ar Uber diese Bindung
informiert. AuBerdem wird Uber die Metavariable SendCommand das Kommando CMD_RUN an
den Auftragnehmer, in diesem Fall an das MT-Objekt p, gesendet. Da p auf das Modellobjekt
P angewendet werden kann und selbst keine Auftragnehmer nachgeschaltet hat, meldet es
einen positiven Verlauf (State = ST_POS) und gibt die Kontrolle an ar zuriick. Dieser Uber-
priift die Metavariablen-Ausgénge aller Auftragnehmer, also aller MT-Elemente, die per Link
mit der Metavariablen SendCommand verknipft sind und bildet daraus zusammenfassend eine
Rickmeldung aller Auftragnehmer (ChbkState). Befindet sich mindestens ein Auftragnehmer
im Schritt ST_ERROR, s0 wird auch der ChbkState = ST_ERROR gesetzt. Die zweithdchste
Prioritat hat die Rickmeldung ST_NEG, gefolgt von sT_BAsIC. Nur wenn alle Auftragnehmer
ST_POS melden, wird auch ChbkState auf ST_POS gesetzt. Durch die positive Rlickmeldung
von p erfolgt erneut ein Schrittwechsel Gber ST_CHILDS nach sT_PoOS.

Im zweiten Zyklus erhalt das MT-Objekt ar erneut das Kommando cMD_RUN. Da die Suche
im vorangegangenen Zyklus positiv verlaufen ist, erh< der Auftragnehmer p den Auftrag, nach
weiteren potentiellen Kandidaten zu suchen. Da neben P jedoch kein weiteres Modellobjekt die
Bedingungen des MT-Objektes p erfillen kann, gibt es in diesem Zyklus eine negative Rick-
meldung (ST_NEG) vom Auftragnehmer. Das MT-Objekt ar wechselt daraufhin in den Schritt
ST_HOLD. Dieser Zwischenschritt ist notwendig, da die Auftragnehmer nur einmal pro Zyklus
bearbeitet werden dirfen, um die Echtzeitfahigkeit nicht zu gefahrden.

Im dritten Zyklus liegt wiederum das Kommando ST_RUN an. Es erfolgt ein Schrittwech-
sel Uber ST_RUN nach sT_SEARCH. Dadurch werden weitere potentielle Kandidaten gesucht,
die die Anforderungen von ar erfiillen. Das Modellobjekt N13 erzeugt zusammen mit sei-

Zur Erinnerung: Die Bearbeitung der internen Logik der Schritte, sowie die Auswertung der Transitionen, die
sich auf Kommandos beziehen erfolgt im PreTasking. Die Auswertung der Transitionen die sich auf Riickmel-
dungen von Auftragnehmer beziehen im Post Tasking. Es kbnnen daher mehrere Schritte im gleichen Zyklus
durchlaufen werden.

132

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

nem ActuatorProcessInterface erneut eine positive Riickmeldung und anschlieBend im
vierten Zyklus ein ST_HOLD.

Auch im flinften Zyklus liegt das Kommando cMD_RUN an. Das MT-Objekt ar kann jedoch
keinen weiteren potentiellen Kandidaten finden, da v24 und P13 nicht den Anforderungen ent-
sprechen. Es wird daher in den Schritt ST_NEG gewechselt, der nur durch das Kommando
CMD_RESET wieder verlassen werden kann. Kommt ein solcher Befehl zum Zuriicksetzten,
wird es zum einem an die Auftragnehmer weitergeleiten und auf der anderen Seite werden
ActIdent und ActPath zurlickgesetzt. Dies bewirkt, dass beim nachsten Mal, wenn der
Schritt ST_SEARCH durchlaufen wird, wieder am Anfang der Linksliste mit der Suche nach
potentiellen Kandidaten begonnen wird.

MT_Object - Erstellen eines Modellobjekts

Das Erstellen eines Modellobjekts wird anhand des MT-Objekts vt der rechten Doméne der
Regel aus Abbildung C.1a demonstriert.

MT_OBJECT - ERSTELLEN EINES MODELLOBJEKTS
vt: MT_Object

Belegung der Metavariablen (Eingédnge)

Deklarative Ebene Operationale Ebene
ObjName =" Assoc = ,ov/containment”
RepClass = ,ValveTemplate* AssocRole = CHILD
Context = false SourceDom = false

Path = ,/TU1®

Kommandostruktur
Command = CMD_RUN
ChbkState =ST_IDLE

Belegung der Metavariablen (Ausgénge)

Kommandostruktur Operationale Ebene
SendCommand = CMD_RUN Actldent =,Y24"
State =ST_RUN ActPath =, /TU1/Y24¢

Im ersten Zyklus befindet sich auch dieses MT-Objekt zun&chst im Schritt ST_IDLE und wech-
selt durch das anliegende Kommando cMD_RUN nach ST_RUN. Anders als im vorangegange-
nen Beispiel wird dieses Mal jedoch der Modus auf CREATE gesetzt, da es sich um ein MT-
Objekt der Zieldomane handelt, das nicht zum Kontext gehért. Dies wiederum fiihrt zu einem
Schrittwechsel nach sT_CREATE. In diesem Schritt wird zun&chst entlang des Korrespondenz-
links mn3 die Belegung der Metavariablen Ob jName des MT-Objekts vt bestimmt. Dieser muss
Ubereinstimmen mit dem Wert der Metavariablen Act Ident des MT-Elements vr der linken
Doméne. Im konkreten Beispiel ist dies ,v24“. Wie in ST_SEARCH versucht vt zunachst, ein
passendes Modellobjekt zu finden, dieses Mal mit festgelegtem Objektnamen. Diese Suche

133

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

bleibt im aktuellen Beispiel erfolglos, da noch kein ValveTemplate im Zielmodell existiert.
Es wird daher ein solches Objekt angelegt und Uber einen Link vom Typ ov/containment
mit dem Modellobjekt Y24 verkniipft. Tritt dabei ein Fehler auf, so wechselt das MT-Objekt vt
in den Schritt ST_ERROR. Ansonsten wird in den Schritt ST_CHILDS gewechselt, der jedoch
direkt wieder verlassen wird, da vt keine eigenen Auftragnehmer besitzt. Da die Auswertung
der Rickmeldungen im PostTasking erfolgt, wird diese positive Rlickmeldung zunachst an
den Auftraggeber weitergeleitet, so dass der Ubersetzungsschritt durch das Kopfelement und
die Korrespondenzobjekte dokumentiert werden kann.

Da in der linken Doméane keine weitere Instanz der Klasse valveRequest existiert, wird das
MT-Objekt vt im zweiten Zyklus das Kommando cMD_RESET erhalten. AnschlieBend verbleibt
es im Schritt ST_BASIC.

MT_Branch - Quelldoméane

Die MT-Verzweigung hat mehrere Auspragungen. Wird sie aktiviert, so wird zunéchst an-
hand der Metavariablen SsourcebDom und Mode festgestellt, in welcher Auspréagung die MT-
Verzweigung zum Einsatz kommt. Im hier vorliegenden Beispiel, tritt sie als v1 in der Quelldo-
mane als ODER auf und durchlauft den in Abbildung C.3 dargestellten SFC. Dieser Uberschreibt
den Schritt ST_RUN der Basisklasse MT-Element und stellt zwei getrennte Schritte fiir die Be-
arbeitung der beiden Alternativen bereit.

MT_BrancH - QUELLDOMANE
vl: MT_Branch

Belegung der Metavariablen (Eingénge)

Deklarative Ebene Operationale Ebene
Context = false SourceDom = true
Path =,/TU1"
Kommandostruktur Mode =0R
Command = CMD_RUN
ChbkState =ST_IDLE
ChbkState2 =ST_IDLE
Belegung der Metavariablen (Ausgénge)
Kommandostruktur Operationale Ebene
SendCommand = CMD_RUN ActPath =,/TUtl/Y24"
SendCommand2 = CMD_RUN
State = ST_RUN1

Im ersten Zyklus std3t sie die MT-Objekte der ersten Alternativen an. Liefern diese eine po-
sitive Rickmeldung, so wird zunéchst ebenfalls eine positive Rlickmeldung generiert. Im kon-
kreten Beispiel sind im ersten Zyklus ar und p gebunden an die Modellobjekte Y24 und dem
unterlagerten p, da diese in der Linkliste von TU1 vor N13 und dessen unterlagerten P stehen.

134

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

C) MT_Branch

true
CMD_RESET

ST_BASIC ST_RESET
{ All.Chbk = BASIC
+ CMD_RUN
ST_RUN1 ST_RUN2
Any.Chbk = ST_NEG
= CMD_NONE + All.Chbk = ST_POS Any.Chbk = ST_ERROR + Any.Chbk = ST_NEG
ST_POS ST_ERROR ST_NEG
* CMD_NONE
ST_HOLD
]
Legende: Any.Chbk - Mindestens ein Auftragnehmer liefert diese Riickmeldung

All.Chbk - Alle Auftragnehmer liefern diese Riickmeldung
(a) Quelldoméane

O) | MT_Branch |
true
CMD_RESET
ST_BASIC ST_RESET
|
D RUN & CMD_RUN & All.Chbk = BASIC
ALT1 ALT2
ST_RUN1 ST_RUN2
mmmm CMD_NONE + All.Chbk = ST_POS + Any.Chbk = ST_NEG + Any.Chbk = ST_ERROR
ST_POS ST_NEG ST_ERROR
:F CMD_NONE
ST_HOLD
Legende: Any.Chbk - Mindestens ein Auftragnehmer liefert diese Riickmeldung

All.Chbk - Alle Auftragnehmer liefern diese Riickmeldung

(b) Zieldoméne

Abbildung C.3: SFC der MT-Verzweigung

Die erste Alternative von v1 sucht nach einer Instanz der Klasse PumpRequest im Modell
und identifiziert 13 als potentiellen Kandidaten. Auch das MT-Objekt N passt noch auf das
Modellobjekt N. Eine passende Verlinkung fehlt jedoch. Aus diesem Grund, liefert die erste Al-
ternative im ersten Zyklus eine negative Rickmeldung. Die MT-Verzweigung wechselt daher
in den Schritt ST_RUN2 und st6Bt die Bearbeitung der zweiten Alternativen an. Diese findet

135

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

in v24 und Y zwei passende Modellobjekte, die auch Uber die verlangte Verlinkung verflgen.
Die zweite Alternative gibt daher eine positive Riickmeldung, die die MT-Verzweigung an ih-
ren Auftraggeber weiterreichen kann. Im zweiten Zyklus wird nach weiteren Treffern fir die
zweite Alternative gesucht. Da keine weiteren passenden Modellobjekte existieren, wird eine
negative Rickmeldung an den Auftraggeber geliefert. Dies veranlasst dies Suche nach wei-
teren Modellobjekten, die der Parametrierung von der MT-Objekte ar und p entsprechen. Im
dritten Zyklus erhalt die MT-Verzweigung von seinem Auftraggeber das Kommando zum zu-
ricksetzen (CMD_RESET). Die MT-Verzweigung leitet diese Kommando an beide Alternativen
weiter, so dass diese ihre gespeicherten Werte 16schen und wieder in den Ausgangszustand
zurlickkehren. Im vierten Zyklus sind die MT-Objekte ar und p an die Modellobjekte N13 und
dessen unterlagertes P gebunden und die erste Alternative kann bereits eine positive Riick-
meldung liefern. Im flinften Zyklus wird zunachst wieder versucht, weitere Modellobjekte zu
finden, die auf die erste Alternative passen. Da dies fehlschlégt wird die zweite Alternative an-
gestoBen. Auch diese liefert eine negative Riickmeldung, so dass die MT-Verzweigung diese
an ihren Auftraggeber weiterleitet.

MT_Branch - Zieldoméane

In der Zieldomane werden die beiden Schritte RUN1 und RUN2 nicht nacheinander durchlaufen.
Vielmehr gibt die aktive Alternative der zugehérigen MT-Verzweigung in der Quelldomane vor,
welche der beiden Zweige aktiviert wird (vgl. Abbildung C.3b). Ist in der der Quelldoméane die
erste Alternative aktiv, so wird auch in der Zieldoméane die erste Alternative aktiviert. Selbiges
gilt sinngeman flr die zweite Alternative.

MT_BRANCH - ZIELDOMANE
v2: MT_Branch

Belegung der Metavariablen (Eingédnge)

Deklarative Ebene Operationale Ebene
Context = false SourceDom = false
Path =, /TU1®
Kommandostruktur Mode =0OR

Command =CMD_RUN
ChbkState = ST_IDLE
ChbkState2 = ST_IDLE

136

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Belegung der Metavariablen (Ausgénge)

Kommandostruktur Operationale Ebene
SendCommand = CMD_RUN ActPath = ,/TU1/Y24“
SendCommand2 = CMD_RUN
State = ST_RUN1

In dem konkreten Beispiel aus Abbildung C.1, ist im ersten Zyklus die zweite Alternative im
Quellmodell aktiv. Daher wird auch die zweite Alternative im Zielmodell aktiviert und es werden
jeweils Instanzen der Klasse ValveTemplate und Line angelegt. Im zweiten und dritten
Zyklus wird das rechte Teilpattern nicht aktiviert, da das linke eine negative Riickmeldung
liefert und anschlieBend zurlickgesetzt wird.

Im vierten Zyklus ist die erste Alternative der Quelldoméne aktiv, was sich so auch auf die MT-
Verzweigung der Zieldoméne spiegelt. Dadurch werden im Zielmodell Instanzen der Klassen
PumpTemplate und Line erstellt. Im fiinften Zyklus wird das Teilpattern der Zieldoméne
wiederum nicht aufgerufen.

Funktionsweise einer MT-Regel

Bevor auf die schrittweise Bearbeitung der Regel eingegangen wird, soll die Bearbeitungsrei-
henfolge der MT-Elemente einer Regel in den Fokus geriickt werden. Diese bestimmt maB3-
geblich das Ergebnis eines Ubersetzungsschritts. Ausschlaggebend fiir die Bearbeitungsrei-
henfolge ist die Schachtelung der MT-Elemente. Die folgende Tabelle stellt dies fur die Regel
aus Abbildung C.1a strukturiert dar. Das Kopfelement der Regel (head: REC) ist das einzige
MT-Element, das in der globalen Taskliste WorkingMemory registriert ist. Es enthalt su, g,
mnl - mn4, sell, 11, 12 als eingebettete MT-Elemente und ist damit fir das Scheduling dieser
Bausteine zustandig. Durch grau hinterlegte Zellen markiert, welche MT-Elemente jeweils aktiv
sind.

head
su g mn1 ‘ mn2 ‘ sell ‘ mn3 ‘ 11 ‘ mn4 ‘ 12
ar vi at
p |pr wvri|rt v2
N[Y vt [lo1 [pt | lo2

Im obigen Beispiel ist die Bearbeitung der internen Logik von vr aktiv. Da dieses MT-Element
jedoch eingebettet ist in v1 und dieses wiederum Uber su in head sind diese Bausteine eben-
falls aktiv und fihren gerade ihren Ov_cal11 aus (vgl. Abbildung 6.14).

Vor ihrer Aktivierung liegt die Regel als inaktives Objektnetzwerk vor und ist nicht in das Tasking
eingebunden.

137

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

ZYKLUS 1
Zustand vor Schritt 1

head
su g mni [mn2 [self [mn3 [H [mnd |12
ar 4 at
p [pr[wr|rt] v2
N[Y [vt [lo1 [pt [lo2

Schritt 1: head — MT-Kopfelement
Wird das Kopfelement aktiviert, so bestimmt es zundchst anhand seiner Metavariablen
die Transformationsrichtung. In dem konkreten Beispiel liegt eine Vorwartstransformati-
on vor. Das MT-Kopfelement setzt daher die Metavariable SourceDom des linken Teil-
patterns auf true und die des rechten auf false anschlieBend st6Bt es zunéchst die
MT-Objekte der linken Doméne an.

Schritt 2: su— MT-Objekt
Die Metavariable path des MT-Objekt su ist so parametriert, dass es lberall im Quellm-
odell nach einem potentiellen Kandidaten sucht (,/*“). Bei der Suche wird TU1 gefunden.
Eine Abfrage beim Datenbankobjekt stellt sicher, dass TU1 bereits Ubersetzt ist und su
seine Auftragnehmer ar und v1 aktivieren kann. Diese bearbeiten ,parallel“ ihre Suche.

Schritt 3: ar — MT-Objekt Da Funktionsbausteine sequentiell entsprechend ihrer Reihenfolge
in der Taskliste bearbeitet werden, startet zunéchst ar mit der Suche nach einem poten-
tiellen Kandidaten und findet v24. Auch hier wird Gberprift, ob das Modellobjekt bereits
Ubersetzt ist.

Schritt 4: p — MT-Objekt AngestoBen von seinem Auftraggeber findet p das Modellobjekt P
unterhalb von v24. Es wird Uberprift, ob das MT-Objekt, dass Uber den MT-Link mit p
verbunden ist bereits gebunden ist. Dies ist jedoch nicht der Fall. Deshalb, und weil p
keine eigenen Auftragnehmer besitzt, gibt p eine positive Riickmeldung.

ZYKLUS 1
Zustand vor Verlassen von Schritt 4

head
su g mni [mn2 [selt [mn3 [[mnd |12
ar vi at
p [pr[vr|rt] v2
NTY | vt [o1 [pt [lo2

Schritt 5: ar — MT-Objekt
Nachdem p die Kontrolle zurlickgegeben hat, wertet ar die Rickmeldung aus und gibt
seinerseits eine positive Riickmeldung.

138

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Schritt 6: su— MT-Objekt
Nachdem su die Kontrolle zuriick erhalten hat, aktiviert es den né&chsten Funktionsbau-
stein in seiner internen Taskliste - v1.

Schritt 7: v1 — MT-Verzweigung
Die MT-Verzweigung aktiviert zunachst ihre erste Alternative.

Schritt 8: pr — MT-Objekt
Das Modellobjekt P13 wird als potentieller Kandidat fiir pr gefunden. Die Uberpriifung
beim Datenbankobjekt bestatigt, dass das gefundene Modellobjekt noch nicht Ubersetzt
wurde.

Schritt 9: N — MT-Objekt
Das Modellobjekt N wird als potentieller Kandidat gefunden. Das MT-Objekt N Uberpruift
wiederum, ob das durch den MT-Link verbundene MT-Objekt p bereits gebunden ist. Da
das der Fall ist, wird zwischen den beiden zugehérigen Modellobjekten eine Entspre-
chung fiir den MT-Link gesucht. Ein solcher Link existiert jedoch nicht. Das MT-Objekt N
erzeugt daher eine negative Rickmeldung.

ZYKLUS 1

Zustand vor Verlassen von Schritt 9

head
| su g mni [mn2 [self [mn3 [H [mn4 |12
ar vi at
p [pr[w |t v2
N|Y [vt [o1 [pt [lo2

Schritt 10: v1 — MT-Verzweigung
Die Kontrolle wird von N an pr und von da weiter an v1 zurlickgegeben. Die negative
Rickmeldung von N wird dabei mit nach oben gereicht. Die MT-Verzweigung aktiviert auf
Grund der negativen Riickmeldung die zweite Alternative.

Schritt 11: v1 — MT-Verzweigung
Da die Auswertung der Rickmeldungen im PostTasking der MT-Verzweigung durch-
gefuhrt wird, kann die zweite Alternative nicht im gleichen Zyklus durchlaufen werden.
Stattdessen wird die Kontrolle zunéchst zuriick an su und von da an head gegeben. Im
zweiten Zyklus liegt weiterhin das Kommando cMD_RUN am MT-Objekt su an und wird
an die Auftragnehmer weitergeleitet. Wahrend ar und p das Kommando CMD_NONE er-
halten und in den Schritt sST_HOLD wechseln, wird in der MT-Verzweigung nun die zweite
Alternative angestofBen.

Schritt 12: Y — MT-Objekt
Die MT-Objekte vr und Y finden potentielle Kandidaten in den Modellobjekten v24 und
v. Der Link zwischen ActuatorInputPoint und ActuatorProcessInterface istin
diesem Fall vorhanden. Es wird eine positive Rlickmeldung generiert.

139

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

ZYKLUS 2
Zustand vor Verlassen von Schritt 12

head
su g mni [mn2 [self [mn3 [[mnd |12
ar vi at
p [pr [vr|rt] v2
N Y [vt [lo1 [pt [lo2

Schritt 13: head — Kopfelement

Die positive Riickmeldung wird bis ins Kopfelement hochgereicht. Dieses aktiviert darauf-
hin die rechte Teilproduktion. Da die Rickmeldung wiederum im PostTasking ausge-
wertet wurde, wird die Kontrolle zundchst jedoch an die globale Taskliste zurlickgegeben
und erst im dritten Zyklus wird das rechte Teilpattern aktiviert. Eine Aktivierung des lin-
ken Teilpattern erfolgt in diesem Zyklus nicht.

ZYKLUS 3
Zustand vor Verlassen von Schritt 13

head
su g mni [mn2 [selt [mn3 [[mnd |12
ar vi at
p [pr[vr[rt v2
NTY | vt [o1 [pt [lo2

Schritt 14: g — MT-Objekt

Das MT-Objekt g beschafft sich tiber den Korrespondenzlink den Objektnamen des durch
su gebundenen Modellobjektes und sucht anschlieBend einen potentiellen Kandidaten
im ACPLT/csHMI, der ebenfalls diesen Objektnamen tragt und auch die anderen Anfor-
derungen erfillt. Das Modellobjekt TU1 erfillt diese Anforderungen. Eine Abfrage am
Datenbankobjekt stellt sicher, dass die beiden Modellobjekte TU1 in der Prozessfihrung
und TU1 im ACPLT/csHMI Uber ein Kontextelement miteinander verbunden sind. Wére
dies nicht der Fall, miisste die Suche nach einem potentiellen Kandidaten fir g fortge-
fuhrt werden. In diesem konkreten Beispiel gibt es jedoch eine positive Ruckmeldung
vom Datenbankelement, so dass g seinen Auftragnehmer aktivieren kann.

Schritt 15: at — MT-Objekt

Das MT-Objekt at findet nach demselben Muster das Modellelement Y24 im csHMI als
potentiellen, bereits Ubersetzten Kandidaten.

Schritt 16: rt — MT-Objekt

140

Das MT-Objekt rt wird im Modellobjekt Y findig. Da es selbst keine Auftragnehmer be-
sitzt, liefert es eine positive Rlickmeldung.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

ZYKLUS 3
Zustand vor Verlassen von Schritt 16

head
su g mni [mn2 [self [mn3 [H [mnd |12
ar vi at
p [pr[w]t v2
N[Y [vt [lo1 [pt [lo2

Schritt 17: v2 — MT-Verzweigung
Das MT-Objekt at bearbeitet weiter seine interne Taskliste und aktiviert v2. Diese MT-
Verzweigung erkennt anhand der entsprechenden Metavariable seine Zugehérigkeit zum
Teilpattern der Zieldomé&ne und holt sich deshalb Gber den Korrespondenzlink die aktive
Alternative der zugehérigen MT-Verzweigung in der Teilproduktion der Quelldoméne. Da
in der Quelldoméne die zweite Alternative aktiv ist, aktiviert v2 ebenfalls die Auftragneh-
mer in der zweiten Alternative.

Schritt 18: vt — MT-Objekt
Das MT-Objekt vt informiert sich mit Hilfe des Korrespondenzlinks Gber den Objekina-
men des gebundenen Modellobjekts von vr und durchsucht im ACPLT/csHMI die Link-
liste von Y24 nach einer Instanz der Klasse valveTemplate mit gleichem Namen. Im
konkreten Beispiel sucht es nach einem Objekt v24, wird dabei aber nicht fiindig. Es wird
daher eine Instanz der Klasse VvalveTemplate angelegt und mit Y24 verlinkt. Anschlie-
Bend wird eine positive Riickmeldung generiert.

Schritt 19: Io1 — MT-Objekt
Die MT-Verzweigung v2 aktiviert auch den zweiten Auftragnehmer in seiner Taskliste To1.
Bei diesem wiederholt sich sinngemaf Schritt 18, so dass am Ende das Modellobjekt v24
des ACPLT/csHMI zwei untergeordnete Modellobjekte v24 und Y besitzt. AnschlieBend
wird eine positive Riickmeldung generiert.

Schritt 20: head — Kopfelement
Die positive Riickmeldung wird entlang der Riickmeldestruktur bis zum Kopfelement wei-
tergereicht. Da dieses nun sowohl vom der linken als auch vom rechten Teilpattern eine
positive Ruckmeldung erhalten hat, werden nacheinander die Objekte der Korrespon-
denzdoméne angestof3en. Dies erfolgt im vierten Zyklus.

Schritt 21: mn2 - V2V
Die Korrespondenzobjekte im Kontext der Regel melden dem Kopfelement, dass sie als
Kontext zum Einsatz kamen. Diese Information kann fur spatere Modellanderungen rele-
vant sein, bei denen Teile des Kontextes verandert werden.

Schritt 22: 12 - V2V
Die Korrespondenzobjekte, die nicht Teil des Kontextes der Regel sind, melden an das
Kopfelement die durch sie verknipften Modellelemente anhand des Pfades.

Schritt 23: head — Kopfelement
Das Kopfelement meldet alle gesammelten Daten Uber den erfolgreichen Transformati-
onsschritt an das Datenbankobjekt, das diese Daten dauerhaft vorhalt.

141

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Anhang C Schritt-fiir-Schritt-Anwendung einer ACPLT/MT-Regel

Schritt 24: Suche nach weiteren passenden Modellobjekten

Im flnften Zyklus sendet das MT-Objekt su zunachst das Kommando CMD_NONE an
seinen ersten Auftragnehmer ar, der dies an seinen eigenen Auftragnehmer weiterleitet.
Der zweite Auftragnehmer von su erhélt erneut das Kommando cMD_RUN und wird somit
beauftragt nach weiteren potentiellen Kandidaten zu suchen. In diesem Fall liefern jedoch
beide Alternativen eine negative Riickmeldung, die bis zum MT-Objekt su weitergereicht
wird. Dieses wechselt in den Schritt ST_HOLD, um dem Kopfelement zu melden, dass
die Suche im aktuellen Zyklus nicht erfolgreich war. Das Kopfelement verzichtet daher
auf die Aktivierung der rechten Teilproduktion und der Korrespondenzobjekte. Im néachs-
ten Zyklus erhélt die Verzweigung das Kommando zum Zuriicksetzen. Alle anderen MT-
Elemente der linken Doméne bleiben im Zustand ST_HOLD. Das rechte Teilpattern sowie
die Korrespondenzobjekte werden wiederum nicht angesto3en. AnschlieBend wird das
MT-Objekt ar beauftragt, einen weiteren potentiellen Kandidaten zu suchen. Dieses gibt
diesen Auftrag zunéchst weiter an p. Es wird daher nach einer weiteren Instanz der Klas-
se ActuatorProcessInterface unterhalb des Modellobjektes Y24 gesucht. Da ein
solches nicht existiert, wird eine negative Riickmeldung von p erzeugt und ar wechselt
in den Schritt ST_HOLD.

Auf die gleiche Weise wird auch ein PumpTemplate samt Line im ACPLT/csHMI ange-
legt passend zum PumpRequest und N der Prozessflhrung.

Funktionsweise einer MT-Modelltransformation

Wahrend in den letzten Abschnitten die Funktionsweise einzelner MT-Elemente und deren Zu-
sammenspiel im Vordergrund standen, liegt nun das Hauptaugenmerk auf dem MT-Scheduler
und dem Gesamtverlauf einer Modelltransformation. Abbildung C.4 zeigt nochmals den SFC
des Schedulers aus Abbildung 6.13. Es wird ersichtlich, dass nach dem Starten des MT-
Schedulers zunachst das TriggerMemory initialisiert wird. Dazu werden die Trigger aller Re-
gelnin die Taskliste TriggerMemory gehangen und durch das Kommando CMD_RUN aktiviert.

Trigger sind einzelne MT-Elemente, deren Suchpfad nicht auf die beiden korrelierenden Mo-
delle beschrankt ist. So Uberwacht zum Beispiel der Trigger fur die Regel aus Abbildung
C.1a die Riickmeldung der Regel, die fiir die Ubersetzung des ActuatorRequest und des
ActuatorProcessInterface zustandig ist. Gibt diese Regel die Riickmeldung Ready, so
schlagt der Trigger an. Die Zustandsiiberwachung anderer Regeln als Trigger ist nur dann
geeignet, wenn die Transformation nur als reine Batch-Transformation zum Einsatz kommt.
Soll ein spateres inkrementelles Update durchgefiihrt werden, muss direkt auf Modellande-
rungen reagiert werden. Eine mdgliche Realisierung ist, die Trigger so zu gestalten, dass sie
dauerhaft eine positive Rickmeldung geben. Dieser Ansatz wirde die Performance jedoch
deutlich schwéachen. Besser ist eine Realisierung Uber Dienste, die die korrelierenden Modelle
Uberwachen und mittels Variablen Uber Modellanderungen informieren. Die Trigger kénnen
dann so gestaltet sein, dass sie auf Anderungen der Variablen reagieren.

Schlagt einer der Trigger im TriggerMemory an, so wird die zugehérige Regel in die Tasklis-
te WorkingMemory eingehdngt und das Kommando cMD_RUN an das Kopfelement gesendet.

142

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

MT_Scheduler F
CMD_SFC_START

+

INIT_TRIG_MEM

+ ALL_TRIG_INITIALIZED + CMD_SFC_RESET
RESET_TRIG_MEM RESET_SFC
ALL_TRIG_RESTARTED mmmm SFC_RESETED

+

START_TRIG_MEM

L

ALL_TRIG_STARTED

=
>
f=}
3
=
=
[}

1_

POSITIV_TRIGGER
RESET

E]

ULE

+

RULE_RESETED

STAI

=
-1
)
c

LE

RULE_COMPLETED

+

DEL_ACTIVE_RULE

+

RULE_DELETED
RESET_TRIG

TRIGGER_RESETED

+

RESET_NEG_TRIG

+

NEG_TRIGGER_RESETED

START_IDLE_TRIG

f IDLE_TRIGGER_STARTED

®

Abbildung C.4: ACPLT/MT-Scheduling

Schlagen mehrere Trigger gleichzeitig an, so wird anhand der Position des Triggers in der Tas-
kliste entschieden, welche Regel bearbeitet wird. Diese wiederum ist abhangig von der Rei-
henfolge der Regeln in der Regelbasis. Trigger, die einmal eine positive Riickmeldung erzeugt
haben, verbleiben zunachst im Schritt ST_P0S bis die zugehdrige Regel bearbeitet wurde.

Die aktivierte Regel im WorkingMemory wird zundchst zurlickgesetzt, um ggf. zurlickgeblie-
bene Artefakie aus vorangegangenen Durchlaufen zu beseitigen. AnschlieBend wird die Re-
gel vollstandig abgearbeitet, d.h. alle Ubersetzungsschritte, die durch sie im aktuellen Mo-
dellzustand durchgefuihrt werden kénnen, werden auch durchgefiihrt. AnschlieBend gibt die
Regel die Rickmeldung Ready. Parallel zur Bearbeitung der Regel werden die Trigger des
TriggerMemory weiter bearbeitet. Schlagt in der Zwischenzeit ein weiterer Trigger an, so
verbleibt er im Zustand ST_POS.

Liefert die Regel im WworkingMemory die Rickmeldung Ready, so wird sie vom MT-Scheduler
wieder aus der Taskliste entfernt und der zugehdérige Trigger wird zuriickgesetzt und dadurch
veranlasst, erneut auf das entsprechende Ereignis zu reagieren.

143

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Literaturverzeichnis

[AlIb96]

[AIb97a]

[Alb97b]

[Anj+15]

[Anj14]

[ABm+14]

[Ber+15]

[BS09]

[CHO6]

[Cho65]

[Div08]

144

Harald Albrecht. Technologiepapier Nr. 1: Ubersicht iiber ACPLT/KS. Techn. Ber.
ACPLT, RWTH Aachen University, 1996 (Referenziert auf Seite 32).

Harald Albrecht. Technologiepapier Nr. 2: Der Nachrichtentransport. Techn. Ber.
ACPLT, RWTH Aachen University, 1997 (Referenziert auf Seite 32).

Harald Albrecht. Technologiepapier Nr. 3: Manager, Server und Klienten. Techn.
Ber. ACPLT, RWTH Aachen University, 1997 (Referenziert auf Seite 32).

Anthony Anjorin, Erhan Leblebici, Roland Kluge, Andy Schiirr und Perdita Ste-
vens. “A Systematic Approach and Guidelines to Developing a Triple Graph
Grammar”. In: Bidirectional Transformations. 4th International Workshop, Bx
2015. L'Aquila, ltaly. July 24, 2015. Proceedings. 2015, S. 81-95 (Referenziert
auf Seite 50).

Anthony Anjorin. “Synchronization of models on different abstraction levels using
triple graph grammars”. Diss. TU Darmstadt, 2014 (Referenziert auf den Sei-
ten 50, 105).

Uwe ABmann, Sebastian Goétz, Jean-Marc Jézéquel, Brice Morin und Mario
Trapp. “A Reference Architecture and Roadmap for Models@run.time Systems”.
In: Models@run.time. Hrsg. von Nelly Bencomo, Robert France, Betty H.C.
Cheng und Uwe ABmann. Bd. 8378. Lecture Notes in Computer Science. Sprin-
ger International Publishing, 2014, S. 1-18 (Referenziert auf Seite 54).

Gabor Bergmann, Istvan David, Abel Hegediis, Akos Horvath, Istvan Rath, Zol-
tan Ujhelyi und Daniel Varré. “Viatra 3: A Reactive Model Transformation Plat-
form”. In: Theory and Practice of Model Transformations . Theory and Practice of
Model Transformations: 8th International Conference, ICMT 2015, Held as Part
of STAF 2015, L'Aquila, ltaly, July 20-21, 2015. 2015, S. 101-110 (Referenziert
auf Seite 54).

Stefan Biffl und Alexander Schatten. “A Platform for Service-Oriented Integration
of Software Engineering Environments”. In: Proceedings of the 2009 Conference
on New Trends in Software Methodologies, Tools and Techniques: Proceedings
of the Eighth SoMeT_09. 2009, S. 75-92 (Referenziert auf Seite 40).

Krzysztof Czarnecki und Simon Helsen. “Feature-based survey of model trans-
formation approaches”. In: IBM Systems Journal 45.3 (2006), S. 621-645 (Re-
ferenziert auf Seite 44).

Noam Chomsky. Aspects of the Theory of Syntax. The MIT Press Paperback
Series. M.I.T. Press, 1965 (Referenziert auf Seite 17).

Industry Sector / Industry Automation Division. Siemens verstérkt sich durch
Ubernahme von innotec mit Software fiir die Prozessindustrie. [Online; Stand
14.06.2015]. 2008. URL: http://www.siemens.com/press/de/pressemi
tteilungen/2008/industry_automation/11a2008081645.htm (Refe-
renziert auf Seite 41).

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[Ens01]

[EPL13]

[ERD11]

[Fre92]

[GE14]

[GKO7]

[GKE12]

[GPR11]

[Git09]

[GWE14]

Udo Enste. Generische Entwurfsmuster in der Funktionsbausteintechnik und de-
ren Anwendung in der operativen ProzeBfihrung. Bd. 884. Fortschritt-Berichte
VDI Reihe 8. VDI Verlag, 2001. (zugleich Dissertation. RWTH Aachen Universi-
ty. 2001) (Referenziert auf den Seiten 26, 33).

EPLAN Software & Service. Neue Schwester fiir EPLAN: Kuttig Computeran-
wendungen GmbH. [Online; Stand 14.06.2015]. 2013. URL: http://www.epl
an.de/de/unternehmen/presse/pressemeldungen/view/article/
neue-schwester-fuer-eplan-kuttig-computeranwendungen-gmbh/
(Referenziert auf Seite 41).

Ulrich Epple, Markus Remmel und Oliver Drumm. “Modellbasiertes Format fir
RI-Informationen”. In: Automatisierungstechnische Praxis : atp edition 53 (2011),
S. 62-71 (Referenziert auf Seite 24).

Gottlob Frege. “Sinn und Bedeutung”. In: Zeitschrift fiir Philosophie und philosi-
sche Kritik NF 100 (1892). S. 25-50. nachgedruckt In Funktion, Begriff, Bedeu-
tung: finf logische Studien. Kleine Vandenhoeck-Reihe (1962), S. 38—63 (Refe-
renziert auf den Seiten 14, 15).

Sten Griiner und Urlich Epple. “Regelbasiertes Engineering mit Graphabfra-
gen”. In: Tagungsband. Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme X. Model-Based Development of Embedded Sys-
tems. 05.03.2014-07.03.2014. 2014, S. 105-111 (Referenziert auf Seite 42).

Joel Greenyer und Ekkart Kindler. “Reconciling TGGs with QVT”. In: Model Dri-
ven Engineering Languages and Systems: 10th International Conference, Mo-
DELS 2007, Nashville, USA, September 30 - October 5, 2007. Proceedings.
2007, S. 16-30 (Referenziert auf Seite 52).

Sten Griiner, David Kampert und Ulrich Epple. “A Model-Based Implementation
of Function Block Diagram”. In: Tagungsband. Dagstuhl - Workshop MBEES: Mo-
dellbasierte Entwicklung eingebetteter Systeme VI. Model-Based Development
of Embedded Systems. 06.02.2012-08.02.2012. 2012, S. 81-90 (Referenziert
auf Seite 32).

Joel Greenyer, Sebastian Pook und Jan Rieke. “Preventing information loss in
incremental model synchronization by reusing elements”. In: Modelling — Foun-
dation and Applications 7th European Conference, ECMFA 2011, Birmingham,
UK, June 6-9, 2011, Proceedings. 2011, S. 144-159 (Referenziert auf Seite 55).

Knut Gttel. “Konzept zur Generierung von Steuerungscode unter Verwendung
wissensbasierter Methoden in der Fertigungsautomatisierung”. In: AUTOMATI-
ON 2009 . Der Automationskongress in Deutschland. Bd. 2067. VDI-Berichte.
VDI-Verlag, 2009, S. 309-312 (Referenziert auf den Seiten 41, 42).

Sten Griiner, Peter Weber und Ulrich Epple. “A model for discrete product flows
in manufacturing plants”. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation, ETFA 2014, Barcelona, Spain, September 16-19, 2014.
2014, S. 1-8 (Referenziert auf den Seiten 4, 42, 105).

145

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[14.0] Plattform Industrie 4.0. Umsetzungsstrategie Industrie 4.0. [Online; Stand 03.08.2015].
2015. URL: http://www.plattform-i40.de/sites/default/files/
150410_Umsetzungsstrategie_0.pdf (Referenziert auf Seite 1).

[JE12] Holger Jeromin und Ulrich Epple. “Anwendungs- und herstellerneutrales Modell
zur Darstellung und Interaktion mit leittechnischen Funktionen”. In: AUTOMATI-
ON 2012. 13. Branchentreff der Mess- und Automatisierungstechnik. Bd. 2171.
VDI-Berichte. VDI-Verlag, 2012, S. 219-222 (Referenziert auf den Seiten 25,
33).

[JE13] Holger Jeromin und Ulrich Epple. “Modellbasiertes und technologieneutrales
HMI flr eingebettete Komponenten”. In: Dagstuhl-Workshop MBEES: Modellba-
sierte Entwicklung eingebetteter Systeme IX, Schloss Dagstuhl, Germany, April
24-26, 2013. 2013, S. 80-89 (Referenziert auf Seite 32).

[Kla12] Felix Klar. “Efficient and Compatible Bidirectional Formal Language Translators
based on Extended Triple Graph Grammars”. Diss. TU Darmstadt, 2012 (Refe-
renziert auf den Seiten 44, 98, 99).

[KME12] Tina Krausser, Henning Mersch und Ulrich Epple. “Rule-based Adaption of Dis-
tributed Automation Systems at Operation Time”. In: Bd. 45. IFAC Proceedings
Volumes 6. IFAC Online, 2012, S. 793-798 (Referenziert auf den Seiten 105,
106).

[K6n08] Alexander Konigs. “Model Integration and Transformation - A Triple Graph
Grammar-based QVT Implementation”. Diss. TU Darmstadt, 2008 (Referenziert
auf den Seiten 44, 48, 49, 66, 70, 99).

[KQ11] Tina Krausser und Gustavo Quirés. “An IEC-61131-based rule system for In-
tegrated Automation Engineering: Concept and Case Study”. In: IEEE Xplore.
Digital Library. Proceedings of the 9th IEEE International Conference on Indus-
trial Informatics. 26-29 July 2011. Caparica, Lisbon, Portugal. 2011 (Referenziert
auf den Seiten 54, 92, 96).

[Kra+12] Tina Krausser, Marius Lauder, Michael Schlereth, Ulrich Epple und Andy Schiirr.
“Integrated Graph Transformations in Automation Systems”. In: Bd. 45. IFAC Pro-
ceedings Volumes 2. IFAC Online, 2012, S. 872-877 (Referenziert auf den Sei-
ten 54, 92, 96).

[KSY10] Tina Krausser, Stefan Schmitz und Liyong Yu. “Regelbasierte Vollstandigkeits-
Uberprifung von Automatisierungslésungen”. In: AUTOMATION 2010. Der 11.
Branchentreff der Mess- und Automatisierungstechnik. Bd. 2092. VDI-Berichte.
VDI-Verlag, 2010, S. 55-58 (Referenziert auf Seite 97).

[KWO07] Ekkart Kindler und Robert Wagner. Triple graph grammars: Concepts, extensi-
ons, implementations, and application scenarios. Techn. Ber. tr-ri-07-284. Uni-
versitat Paderborn, 2007 (Referenziert auf den Seiten 52, 55).

[KWBO03] Anneke G. Kleppe, Jos Warmer und Wim Bast. MDA Explained: The Model Dri-
ven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., 2003 (Referenziert auf Seite 37).

146

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[Lau12]

[Leb+15]

[Leb+16]

[M4P]

ME11]

[Mer+11]

[Mer16]

[Mey02]

[New12]

[NNO4]

[Polo4]

Marius Lauder. “Incremental Model Synchronization with Precedence-Driven Tri-
ple Graph Grammars”. Diss. TU Darmstadt, 2012 (Referenziert auf den Sei-
ten 44, 51, 99, 104).

Erhan Leblebici, Anthony Anjorin, Andy Schiirr und Gabriele Taentzer. “Multi-
amalgamated Triple Graph Grammars”. In: Graph Transformation: 8th Interna-
tional Conference, ICGT 2015, Held as Part of STAF 2015, L'Aquila, ltaly, July
21-23, 2015. Proceedings. 2015, S. 87-103 (Referenziert auf den Seiten 44, 51,
105).

Erhan Leblebici, Anthony Anjorin, Andy Schiirr und Gabriele Taentzer. “Multi-
amalgamated triple graph grammars: Formal foundation and application to visu-
al language translation”. In: Journal of Visual Languages & Computing (2016)
(Referenziert auf den Seiten 44, 51, 105).

Lars Evertz und Ulrich Epple. “M4P.AC - Auf der Schnittlinie zwischen Informati-
onswelt und realer Welt”. In: 12. Fachtagung EKA - Entwurf komplexer Automa-
tisierungssysteme, 09.-10.05.2012, Magdeburg, Otto-von-Guericke-Universitét
Magdeburg/ifak. 2012 (Referenziert auf Seite 94).

Henning Mersch und Ulrich Epple. “Requirements on Distribution Management
for Service-Oriented Automation Systems”. In: IEEE Xplore. Proceedings of 2012
IEEE 17th International Conference on Emerging Technologies & Factory Auto-
mation ETFA 2012. September 17-21, 2012. Krakow, Poland. 2011 (Referenziert
auf Seite 106).

Henning Mersch, Daniel Behnen, Dominik Schmitz, Ulrich Epple, Christian Bre-
cher und Matthias Jarke. “Gemeinsamkeiten und Unterschiede der Prozess- und
Fertigungstechnik”. In: at - Automatisierungstechnik 59.1 (2011), S. 7-17 (Refe-
renziert auf Seite 2).

Henning Mersch. Deterministische, dynamische Systemstrukturen in der Auto-
matisierungstechnik. Bd. 1245. Fortschritt-Berichte VDI Reihe 8. VDI Verlag,
2016. (zugleich Dissertation. RWTH Aachen University. 2016) (Referenziert auf
den Seiten 31, 42).

Dirk Meyer. Objektverwaltungskonzept fiir die operative Prozessleittechnik.
Bd. 940. Fortschritt-Berichte VDI Reihe 8. VDI Verlag, 2002. (zugleich Dis-
sertation. RWTH Aachen University. 2002) (Referenziert auf den Seiten 24,
32).

VDI News. Ein Dank an die Aktiven - Erfolgreiche Richtlinienarbeit in der GMA.
[Online; Stand 30.03.2012]. 2012. URL: http://www.vdi.de/6930.0.html?
tx_ttnews[tt_news]=55812 (Referenziert auf Seite 24).

Joachim Nagelmann und Alexander Neugebauer. iFBSpro. [Online; Stand
29.05.2017]. 2004. URL: http : / /www . ltsoft . de / uploads / media /
iFBSprol64.pdf (Referenziert auf den Seiten 32, 74).

Martin Polke. Prozessleittechnik. Oldenbourg Verlag, 1994 (Referenziert auf Sei-
te 39).

147

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[Pra71]

[Pre13]

[Quit1]

[RLO7]

[Sch+15]

[Sch10]

[Sch11]

[Sch12]

[Sch14]

[Schos]

[SE06]

148

Terrence W. Pratt. “Pair grammars, graph languages and string-to-graph trans-
lations”. In: Journal of Computer and System Sciences 5.6 (1971), S. 560-595
(Referenziert auf Seite 44).

Cideo Pressestelle. Ubernahme der CIDEON AG ist Meilenstein in der Unter-
nehmensgeschichte. [Online; Stand 14.06.2015]. 2013. URL: http: / / www .
cideon.de/site/d/de/holding/presse—-news/archiv/uebernahme—-
flg.php (Referenziert auf Seite 41).

Gustavo Quirés. Model-based Decentralised Automatic Management of Product
Flow Paths in Processing Plants. Bd. 1183. Fortschritt-Berichte VDI Reihe 8. VDI
Verlag, 2011. (zugleich Dissertation. RWTH Aachen University. 2011) (Referen-
ziert auf den Seiten 4, 24, 25, 32, 42, 93, 95).

OptXware Research und Development LLC. The Viatra-I Model Transformati-
on Framework Users Guide. Techn. Ber. OptXware Research und Development
LLC., 2007 (Referenziert auf Seite 54).

Andreas Schller, André Scholz, Rainer Drath, Thomas Tauchnitz und Thomas
Scherwietes. “Speed-Standardisierung am Beispiel der PLT-Stelle : Datenaus-
tausch mit dem Namur-Datencontainer”. In: Atp-Edition 57.01-02 (2015), S. 36—
46 (Referenziert auf Seite 31).

Stefan Schmitz. Grafik- und Interaktionsmodell fir die Vereinheitlichung gra-
fischer Benutzungsschnittstellen der Prozessleittechnik. Bd. 1176. Fortschritt-
Berichte VDI Reihe 8. VDI Verlag, 2010. (zugleich Dissertation. RWTH Aachen
University. 2010) (Referenziert auf den Seiten 2, 24, 25, 32).

Georg Schnitger. Skript zur Vorlesung ,Formale Sprachen und Berechenbarkeit".
[Online; Stand 14.06.2015]. 2011. URL: http://www.tks.cs.uni-frankfur
t.de/data/teaching/ssl2/th-inf-2/skript-schnitger-ssll.pdf
(Referenziert auf den Seiten 18, 19).

Anne Schneller. “Parametrieren statt programmieren”. In: VDI nachrichten 6
(2012) (Referenziert auf den Seiten VII, VIII, 90).

Michael Schlereth. “Platform Independent Specification of Engineering Model
Transformations”. Diss. TU Darmstadt, 2014 (Referenziert auf Seite 43).

Andy Schiirr. “Specification of Graph Translators with Triple Graph Grammars”.
In: Graph-Theoretic Concepts in Computer Science 20th International Workshop.
WG 94, Herrsching, Germany, June 16 - 18, 1994. Proceedings. 1995, S. 151—
163 (Referenziert auf den Seiten 44, 51).

Stefan Schmitz und Ulrich Epple. “On rule based automation of automation”. In:
Proceedings of the 5th MATHMOD : 5th Vienna Symposium on Mathematical
Modelling. February 8-10, 2006. Vienna University of Technology, Austria. 2006
(Referenziert auf den Seiten 42, 43).

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[SE08]

[SE12]

[SE13]

[SK12]

[SMEO5]

[SSE08]

[SSE09]

[ST10]

[Sta73]

[TC3]

Stefan Schmitz und Ulrich Epple. “Automatisiertes Engineering leittechnischer
Funktionen durch integrierte Regeln”. In: Entwurf komplexer Automatisierungs-
systeme, EKA 2008: Beschreibungsmittel, Methoden, Werkzeuge und Anwen-
dungen ; 10. Fachtagung, 15. bis 16. April 2008 Tutorium, 16. bis 17. April 2008
Fachtagung, Magdeburg, Denkfabrik im Wissenschaftshafen / Ifak, Institut fir Au-
tomation und Kommunikation e.V., Magdeburg. 2008, S. 241-252 (Referenziert
auf den Seiten 42, 43).

Andreas Schdller und Ulrich Epple. “PandIX - Exchanging P&l diagram model
data”. In: IEEE Xplore. Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation ETFA 2012. September 17-21,
2012. Krakow, Poland. 2012 (Referenziert auf Seite 13).

Andreas Schiller und Ulrich Epple. “Ein Modellserver zur Nutzung von R&I-
FlieBbild-Informationen”. In: AUTOMATION 2013. 14. Branchentreff der Mess-
und Automatisierungstechnik. Bd. 2209. VDI-Berichte. VDI-Verlag, 2013, S. 223—
226 (Referenziert auf den Seiten 25, 33).

Michael Schlereth und Tina Krausser. “Platform-Independent Specification of
Model Transformations at Runtime Using Higher-Order Transformations”. In: Mo-
dellierung 2012. 14.-16. Mdrz 2012. Bamberg Proceedings. 2012, S. 123—-138
(Referenziert auf den Seiten 34, 54).

Stefan Schmitz, Ansgar Minnemann und Ulrich Epple. “Komponentenmodell
fir den systematischen Entwurf von Prozessfiihrungsfunktionen”. In: GMA Kon-
gress 2005. Automation als interdisziplindre Herausforderung. Bd. 1883. VDI-
Berichte. VDI-Verlag, 2005, S. 817-824 (Referenziert auf Seite 2).

Stefan Schmitz, Markus Schlltter und Ulrich Epple. “R&l - Grundlage durch-
gangigen Engineerings”. In: AUTOMATION 2008. Lésungen fir die Zukunft.
Bd. 2032. VDI-Berichte. VDI-Verlag, 2008, S. 55-59 (Referenziert auf Seite 28).

Stefan Schmitz, Markus Schiuetter und Ulrich Epple. “Automation of Automation
- Definition, components and challenges”. In: IEEE Xplore. Digital Library. Pro-
ceedings of the 2009 IEEE Conference on Emerging Technologies & Factory
Automation. 22-25 Sept. 2009. 2009, S. 1-7 (Referenziert auf Seite 41).

Industry Automation Siemens AG Industry Sector und Drive Technologies. How
can | manage all automation software tasks in one engineering environment?
[Online; Stand 14.06.2015]. 2010. URL: https://w5.siemens.com/belux/
web/nl/industrie/industrie/tia-portal/Documents/e20001 -
a340-p230-x-7600.pdf (Referenziert auf Seite 2).

Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973 (Referen-
ziert auf den Seiten 8, 10, 11, 14, 15).

Beckhoff Automation GmbH & Co. KG. TwinCAT 3 | eXtended Automation (XA).
[Online; Stand 30.05.2017]. URL: https: //www .beckhoff .com/german .
asp?twincat/twincat-3.htm (Referenziert auf Seite 88).

149

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[The+14]

[UOS12]

[VG13]

[Vis+98a]

[Vis+98b]

[Vog+09a]

[Vog+09b]

[Wag08]

[WE15]

[Yu+12]

150

Stefan Theurich, Martin Wollschlaeger, Andreas Schiiller und Ulrich Epple.
“Dienstbasierte Prifung von CAEX-Exporten mit standardisierten Bibliothe-
ken”. In: AUTOMATION 2014. Smart X - Powered by Automation. Bd. 2231.
VDI-Berichte. VDI/VDE GMA, 2014, S. 157-168 (Referenziert auf Seite 29).

Leon Urbas, Michael Obst und Markus Stdss. “Formal Models for High Perfor-
mance HMI Engineering”. In: Bd. 45. IFAC Proceedings Volumes 2. IFAC Online,
2012, S. 854-859 (Referenziert auf den Seiten 5, 41).

Thomas Vogel und Holger Giese. Model-Driven Engineering of Adaptation En-
gines for Self-Adaptive Software: Executable Runtime Megamodels. Techn. Ber.
66. Hasso Plattner Institute for Software Systems Engineering, University of
Potsdam, Germany, 2013 (Referenziert auf den Seiten 44, 53).

Shankar Viswanathan, Charlotta Johnsson, Rajagopalan Srinivasan, Venkat
Venkatasubramanian und Karl Erik Arzen. “Automating operating procedure
synthesis for batch processes: Part |. Knowledge representation and planning
framework”. In: Computers & Chemical Engineering 22.11 (1998), S. 1673-1685
(Referenziert auf Seite 41).

Shankar Viswanathan, Charlotta Johnsson, Rajagopalan Srinivasan, Venkat
Venkatasubramanian und Karl Erik Arzen. “Automating operating procedure
synthesis for batch processes: Part Il. Implementation and application”. In: Com-
puters & Chemical Engineering 22.11 (1998), S. 1687-1698 (Referenziert auf
Seite 41).

Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese und Basil
Becker. “Incremental Model Synchronization for Efficient Run-time Monitoring”.
In: Models in Software Engineering Workshops and Symposia at MODELS 2009,
Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected Papers.
2009, S. 124-139 (Referenziert auf den Seiten 44, 53).

Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese und Ba-
sil Becker. “Model-driven Architectural Monitoring and Adaptation for Autonomic
Systems”. In: Proceedings of the 6th IEEE International Conference on Autono-
mic Computing Barcelona, Spain June 15-19, 2009. 2009, S. 67—68 (Referen-
ziert auf den Seiten 44, 53).

Thomas Wagner. “Agentenunterstiitztes Engineering von Automatisierungsanla-
gen”. Diss. Universitat Stuttgart, 2008 (Referenziert auf Seite 42).

Constantin Wagner und Ulrich Epple. “Sprechende Kommandos als Grundla-
ge moderner Prozessfuhrungsschnittstellen”. In: AUTOMATION 2015. Benefits
of Change - the Future of Automation. Bd. 2258. VDI-Berichte. VDI/VDE GMA,
2015, S. 157-168 (Referenziert auf den Seiten 26, 33).

Liyong Yu, Gustavo Quirés, Tina Krausser und Ulrich Epple. “ACPLT + IEC
61131-3 = Dynamic Reconfigurable Models@runtime”. In: Softwaretechnik-
Trends. Bd. 32. 2. Gl - Gesellschaft fur Informatik, 2012, S. 90-91 (Referenziert
auf den Seiten 24, 32).

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Normen und Richtlinien

[AML1]

[AML2]

[AML3]

[AMLA4]

[DIN10628]

[DIN19227]

[DIN62424]

[IEC61131]

[IEC62424]

[MOF]

[MOF-QVC]

[NA35]
[PandIX]

[UML]

[UML2]

[VDI3681]

AutomationML consortium. AutomationML Whitepaper Part 1 - Architecture and
general requirements. 2014 (Referenziert auf den Seiten 25, 31, 40).

AutomationML consortium. AutomationML Whitepaper Part 2 - Role class libra-
ries. 2013 (Referenziert auf den Seiten 25, 31).

AutomationML consortium. AutomationML Whitepaper Part 3 - Geometry and
kinematics. 2013 (Referenziert auf den Seiten 25, 31).

AutomationML consortium. AutomationML Whitepaper Part 4 - Logic. 2010 (Re-
ferenziert auf den Seiten 25, 31).

Deutsches Institut fir Normung. DIN EN 10628: FlieBschemata flir verfahrens-
technische Anlagen - Allgemeine Regel. 2000 (Referenziert auf den Seiten 5, 13,
25, 27).

Deutsches Institut flir Normung. DIN 19227: Graphische Symbole und Kenn-
buchstaben fiir die ProzeBleittechnik. 1993 (Referenziert auf Seite 25).

Deutsches Institut fir Normung. DIN EN 62424: Festlegung fiir die Darstellung
von Aufgaben der Prozessleittechnik in Flie3bildern und fiir den Datenaustausch
zwischen EDV-Werkzeugen zur FlieBbilderstellung und CAE-Systemen. 2009
(Referenziert auf den Seiten 28, 29).

International Electrotechnical Commission. IEC 61131: Programmable control-
lers, Part 3: Programming languages. 2003 (Referenziert auf den Seiten 2, 26,
30, 56).

International Electrotechnical Commission. IEC PAS 62424: Specification for Re-
presentation of process control engineering requests in P&l Diagrams and for
data exchange between P&ID tools and PCE-CAE tools. 2008 (Referenziert auf
den Seiten 2, 25, 40).

Object Management Group. OMG Meta Object Facility (MOF) Core Specification.
Version 2.4.1. 2011 (Referenziert auf den Seiten 9, 17).

Object Management Group. Meta Object Facility (MOF) Query/View/Transforma-
tion Specification. Version 1.1. 2011 (Referenziert auf Seite 55).

NAMUR. NA35: Abwicklung von PLT-Projekten. 2003 (Referenziert auf Seite 1).

Ulrich Epple, Markus Remmel und Oliver Drumm. PandlX Modellbeschreibung.
Version 5.01. 2010 (Referenziert auf den Seiten 2, 5, 12, 13, 20, 25, 30, 40, 89).
Object Management Group. OMG Unified Modeling LanguageTM (OMG UML),
Infrastructure. Version 2.4.1. 2011 (Referenziert auf den Seiten 9, 15, 17).

Object Management Group. OMG Unified Modeling Language (OMG UML), Su-
perstructure. 2011 (Referenziert auf Seite 17).

Verein Deutscher Ingenieure. VDI/VDE 3681: Einordnung und Bewertung von
Beschreibungsmitteln aus der Automatisierungstechnik. 2005 (Referenziert auf
den Seiten 15, 24).

151

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

[VDI3682] VDI/VDE. VDI-Richtlinie 3682: Formalisierte Prozessbeschreibung. 2015 (Refe-
renziert auf Seite 41).

152

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

Lebenslauf

Personliche Daten

Name:
Geburtsdatum:
Geburtsort:

Ausbildungsdaten

Allgemeine Hochschulreife:

Hochschulausbildung:

Wissenschaftliche Tatigkeit

Wissenschaftliche Mitarbeiterin:

Wissenschaftliche Mitarbeiterin:

Berufliche Tatigkeit

Produktentwicklung:

Verl den 8. Oktober 2018

Tina Mersch (geb. KrauBer)
30. November 1980
Sémmerda

08/1995 — 06/1999
Albert-Schweizer Gymnasium, Erfurt

10/1999 — 09/2001
Studium der Naturwissenschaftlichen Informatik
Universitat Bielefeld

07/2000 — 04/2001
Studium der Informatik (Datorteknik)
Technische Hochschule - KTH Stockholm

10/2001 — 07/2005

Studium der Informatik
Universitat Bremen
Abschluss: Diplom-Informatik

06/2005 — 10/2006
Security Engineering Group
RWTH Aachen University

11/2006 — 09/2012
Lehrstuhl fir Prozessleittechnik
RWTH Aachen University

seit 11/2012
Beckhoff Automation GmbH & Co. KG, Verl

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

HEE VDI nachrichten

Fachliteratur und mehr -
jetzt bequem online recher-
chieren & bestellen unter:
www.vdi-nachrichten.com/
Der-Shop-im-Ueberblick

[

=

m

Fahizeughanzepte fur

9as 2 Jahrhundert
Automodiltachnix

|
VOI-Berichte 1653

Taglich aktualisiert:
Neuerscheinungen
VDI-Schriftenreihen

Fortseheiss
g Fortschritt-Berichte voi

nnnnnnn

vpi nachrichten

Online-Buchshop fir Ingenieure

BUCH |

Im Buchshop von vdi-nachrichten.com finden Ingenieure
und Techniker ein speziell auf sie zugeschnittenes, um-
fassendes Literaturangebot.

Mit der komfortablen Schnellsuche werden Sie in den
VDI-Schriftenreihen und im Verzeichnis lieferbarer
Bucher unter 1.000.000 Titeln garantiert flindig.

Im Buchshop stehen flir Sie bereit:

VDI-Berichte und die Reihe Kunststofftechnik:

Berichte nationaler und internationaler technischer
Fachtagungen der VDI-Fachgliederungen

Fortschritt-Berichte VDI:

Dissertationen, Habilitationen und Forschungsberichte
aus samtlichen ingenieurwissenschaftlichen Fachrich-
tungen

Newsletter ,Neuerscheinungen”:

Kostenfreie Infos zu aktuellen Titeln der VDI-Schriften-
reihen bequem per E-Mail

Autoren-Service:

Umfassende Betreuung bei der Veroffentlichung lhrer
Arbeit in der Reihe Fortschritt-Berichte VDI

Buch- und Medien-Service:

Beschaffung aller am Markt verfligbaren Zeitschriften,
Zeitungen, Fortsetzungsreihen, Handbuicher, Technische
Regelwerke, elektronische Medien und vieles mehr —
einzeln oder im Abo und mit weltweitem Lieferservice

BUCHSHOP www.vdi-nachrichten.com/Der-Shop-im-Ueberblick

Inhak.

IP 216.73.216.36, am 20.01.2026, 12:39:25. @
m mi

tersagt, \it, fOr oder in KI-Syster

https://doi.org/10.51202/9783186261083

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
7 Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik

20 Rechnerunterstiitzte Verfahren (CAD, CAM, CAE CAQ, CIM ...

21 Elekfrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-526108-1

IP 216.73.216.36, am 20.01.2026, 12:39:25. @ Inhak.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186261083

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Gliederung

	2 Formale Modellierung
	2.1 Allgemeine Begriffsbestimmung
	2.2 Darstellungsformen
	2.2.1 Deskriptiv vs. Konstruktiv
	2.2.2 Textuell vs. Graphisch

	2.3 Formalisierungsgrad
	2.4 Formale Modellierung
	2.4.1 Deskriptive, grafische Modellierung
	2.4.2 Konstruktive, textuelle Modellierung
	2.4.3 Deskriptive, textuelle Modellierung
	2.4.4 Konstruktive, grafische Modellierung

	2.5 Fazit

	3 Modelle in der Automatisierungstechnik
	3.1 Stand der Technik
	3.2 Bewertung der Modelle
	3.2.1 Fließschemata für verfahrenstechnische Anlagen
	3.2.2 CAEX
	3.2.3 PandIX
	3.2.4 Sprachen für die SPS-Programmierung
	3.2.5 AutomationML
	3.2.6 ACPLT-Modelle

	3.3 Gewonnene Erkenntnisse

	4 Modelltransformation in der Automatisierungstechnik
	4.1 Allgemeine Begriffsbestimmung
	4.2 Besondere Herausforderungen in der Automatisierungstechnik
	4.3 Stand der Technik

	5 Modelltransformation
	5.1 Tripel-Graph-Grammatiken
	5.1.1 Operationale Regeln
	5.1.2 Kontrollalgorithmus
	5.1.3 Modelltransformation zur Laufzeit

	5.2 Alternative Ansätze

	6 ACPLT/MT - Modelltransformation für die Automatisierungstechnik
	6.1 Grundlegende Design-Entscheidungen
	6.2 Deklarative Ebene
	6.3 Kommandostruktur
	6.4 Operationale Ebene
	6.4.1 MT-Objekt
	6.4.2 Modifikatoren
	6.4.3 Korrespondenzgraph

	6.5 Kontrollalgorithmus
	6.6 Referenzimplementierung
	6.6.1 Taskingkonzept
	6.6.2 ACPLT/MT-Framework im Laufzeitsystem
	6.6.3 MT_Element
	6.6.4 MT_Object
	6.6.5 Metavariablen, Variablen und Links

	6.7 IEC 61131 basierte Modelltransformation

	7 Validierung
	7.1 S0 – Bereitstellung von Planungsdaten im Laufzeitsystem
	7.2 S1 – Einzelne Automatisierungsfunktion als Serienprodukt
	7.3 S2 – Entwicklungsbegleitende Modelltransformation
	7.4 S3 – Konsistenzanalyse und Modellreparatur
	7.5 Anforderungen an eine bidirektionale Modelltransformation
	7.6 Anforderungen an eine Modelltransformation für die Automatisierungstechnik

	8 Zusammenfassung und Ausblick
	8.1 Modelltransformation für prozessleittechnische Laufzeitumgebungen
	8.2 Erweiterte Einsatzszenarien und mögliche Spracherweiterungen

	Anhang A ACPLT/MT-Schema-Definition
	Anhang B TGG der Anwendungsszenarien
	Anhang C Schritt-für-Schritt-Anwendung einer ACPLT/MT-Regel
	Literaturverzeichnis
	Normen und Richtlinien

