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IX

Symbole und Funktionen

Symbole
∃ es existiert
∃! es existiert und ist eindeutig
∀ für alle
:= definiert als
1,n 1, . . . ,n

�m� die kleinste ganze Zahl, die größer oder gleich
m ∈ R ist

∂tg(x(t),v) ⇔
∂g(x,v)

∂x · ẋ

∂vg(x,v) ⇔
∂g(x,v)

∂v
Mengen
Bε(x) offene Kugel um x ∈ Rn mit Radius ε, vgl.

Def. 5 (Anhang)
Rn n× 1 Spaltenvektoren
Rn
∗ von null verschiedene Spaltenvektoren, d.h.

Rn\{0}
Rn×m n×m reelle Matrizen
Fn×m n×m reelle oder komplexe Matrizen
H

n n× n hermitesche Matrizen
Symn , Skewn n × n reelle symmetrische, schief-

symmetrische Matrizen
Pn(Nn) n× n symmetrische und positiv definite (se-

midefinite) Matrizen
∅ die leere Menge
N (A) Kern (Nullraum) einer Matrix A ∈ Rm×n,

N (A) := {x ∈ Rn|Ax = 0}
G�(v) Gebiet {x ∈ R

n|g�(x,v) < 0}
E�(v) Ellipsoid {x ∈ Rn|x�P(v)x < 0}
∂G Rand einer Menge G, vgl. Def. 8 (Anhang)
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X Symbole und Funktionen

coM bezeichnet die konvexe Hülle einer Menge
M, vgl. Def. 12 (Anhang)

dimM Dimension einer Menge
L(u,β) das Gebiet L(u,β) := {x ∈ Rn ||u(x)| ≤ β }

wo die Stellgrößenbegrenzung β eingehalten
wird

Spezielle Matrizen
0m,n m× n Nullmatrix
In n× n Einheitsmatrix
En n× n Elementarmatrix
A+ Pseudoinverse einer MatrixA ∈ Cm×n, auch

Moore-Penrose-Inverse genannt, vgl. [8, S.
397]

Ã(i,j) der Kofaktor zum Element a(i,j) der Matrix
A ∈ Rn×n, d.h. die Matrix, die entsteht,
wenn bei der Matrix A die i-te Zeile und
j-te Spalte gestrichen werden

adj(A),AA die adjungierte Matrix zu A ∈ Rn×n, d.h.
AA = C�, mit c(i,j) = (−1)i+j det(Ã(i,j))

x(i) Element (i) eines Vektors x ∈ Rn

a(i,j) Element (i,j) einer Matrix A ∈ Rm×n

xλ ∈ Rn zum Eigenwert λ gehörender Rechtseigen-
vektor xλ

z[k] ∈ Rk
[
1 z z2 · · · zk−1 ]�

A|A Schur-Komplement der Matrix A ∈ Rm×n

bzgl. der Blockmatrix A =
[
A B
C D

]
, defi-

niert als A|A=D−CA−1B,A nichtsingulär

Matrixfunktionen
Rang(A) Rang einer Matrix A ∈ Rm×n

sr(A) Spaltenrang einer Matrix A ∈ Rm×n

zr(A) Zeilenrang einer Matrix A ∈ Rm×n

Spec(A) Spektrum einer Matrix A ∈ Rn×n, d.h. die
Menge aller Eigenwerte bei Nichtbeachtung
der Vielfachheit

λ(A) ∈ C Eigenwert einer Matrix A ∈ R
n×n
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XI

κ(A) Konditionszahl einer Matrix A ∈ Rn×n, de-
finiert als κ(A) := λmax(A)/λmin(A)

Re λ(A) Realteil des Eigenwertes λ ∈ Spec(A)
Im λ(A) Imaginärteil des Eigenwertes λ ∈ Spec(A)
λi(A)∈Spec(A) ⊂ R i.-größter Eigenwert einer Matrix A ∈ Rn×n

mit reellen Eigenwerten
λmax(A)∈Spec(A)⊂R größter Eigenwert einer Matrix A ∈ R

n×n

mit reellen Eigenwerten
λmin(A)∈Spec(A)⊂R kleinster Eigenwert einer Matrix A ∈ Rn×n

mit reellen Eigenwerten
vec(A) Spalten-Vektorisierung einer Matrix A ∈

Rm×n, vgl. Def. 22 (Anhang)

‖x‖ =
√

n∑
i=1

x2(i) Euklidische Norm eines Vektors x ∈ R
n, vgl.

Def. 23 (Anhang)
‖A‖∞:= max

i∈{1,...,n}
j∈{1,...,m}

|A(i,j)| Maximum Norm einer Matrix A ∈ Rn×m,
vgl. Def. 24 (Anhang)

‖A‖σ∞ := σmax(A) Spektralnorm einer Matrix A ∈ Rn×m, vgl.
Def. 24 (Anhang)

A⊗B Kronecker Produkt, d.h. Multiplikation je-
des Elements der Matrix A mit der Matrix
B, vgl. [74] für verschiedene Eigenschaften

A⊕B Kronecker Summe, vgl. Def. 21 (Anhang)
A� Transponierte einer Matrix A ∈ Rm×n

CH konjugiert komplexe und transponierte Ma-
trix C ∈ Cm×n

Xv von v ∈ R abhängige Matrix X(v) ∈ Rm×n

Matrixrelationen
A 
 B (A � B) A−B ∈ Pn (A−B ∈ Nn)
A ∼ B die Matrizen A und B sind ähnlich, vgl. Def.

18 (Anhang)

Stochastik
H( · ), Z( · ) skalare Zufallsfelder
h( · ), z( · ) Realisierungen (Pfade) der skalaren Zufalls-

felder H( · ) bzw. Z( · )
C( · ) mehrdimensionales Zufallsfeld
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XII Symbole und Funktionen

c( · ) Realisierung (Pfad) eines mehrdimensiona-
len Zufallsfeldes C( · )

H , H Zufallsvariable, Zufallsvektor
η, η Realisierung einer Zufallsvariable bzw. eines

Zufallsvektors
[ · ] Wahrscheinlichkeitsverteilung (kurz: Vertei-

lung), die durch ihre Wahrscheinlichkeits-
dichte (oder kurz Dichte) gegeben ist

[X ] · [Y ] Multiplikation von zwei Dichten, d.h.
fX(x) · fY (y)

∝ proportionale Verteilungen
Dζx Definitionsbereich der Variable ζx

Nm(μ,Σ) m-dimensionale multivariate Normalvertei-
lung mit Erwartungswertvektor μ ∈ Rm

und positiv-definiter Kovarianzmatrix Σ ∈
Symm, vgl. Abschnitt B.1 (Anhang)

χ2n eindimensionale Chi-Quadrat Verteilung mit
n Freiheitsgraden, vgl. Abschnitt B.2 (An-
hang)

χ−2
n eindimensionale Inverse-Chi-Quadrat Vertei-

lung mit n Freiheitsgraden, vgl. Abschnitt
B.2 (Anhang)

T1(ν,μ,σ2) eindimensionale nicht-zentrale t-Verteilung
mit ν Freiheitsgraden, Nichtzentralitätspara-
meter μ und Skalierungsparameter σ2, vgl.
Abschnitt B.3 (Anhang)

Abkürzungen
o.B.d.A. ohne Beschränkung der Allgemeinheit
WSVR weiche strukturvariable Regelung
iLF implizite Ljapunov-Funktion
PPDQ Funktion polynomiell parameterabhängige quadrati-

sche Funktion
LTI System lineares zeitinvariantes System
LHS Latin-Hypercube-Sampling
ERMSPE Empirical Root Mean Squared Prediction

Error
AC Achieved Coverage
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XIII

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Synthese weicher struk-
turvariabler Regelungen (WSVR) zur Stabilisierung linearer zeitinvarian-
ten Systemen (LTI-Systeme) mit Stellgrößenbeschränkung und einer neuen
Methode zur Performance-Analyse in nichtlinearen Regelkreisen. Im Rah-
men der Regelsynthese werden zum ersten Mal notwendige und hinreichen-
de Stabilisierbarkeitsbedingungen solcher Strecken durch WSVRs mittels
impliziter Ljapunov-Funktionen (iLF) vorgestellt. Die erzielte Regelung
ist also nicht-konservativ. Aus der Notwendigkeit der Bedingungen folgt,
dass im Fall deren Nichterfüllung überhaupt kein Regler aus der unter-
suchten Klasse existiert. Die Notwendigkeit stellt eine wesentliche Erwei-
terung gegenüber bereits existierenden Stabilitätsbedingungen dar. Eine
zweite Erweiterung der WSVR auf solche Regelungen mittels invers-poly-
nomialer Selektionsstrategien wird ebenfalls vorgestellt. Darüber hinaus
werden die nicht-konservativen Regler bezüglich der Konvergenzrate opti-
miert. Es wird gezeigt, dass der konvergenzoptimale Regler ein Zweipunkt-
regler mit einer parameterabhängigen Umschaltstrategie ist, der ein sehr
schnelles Ausregelverhalten aufweist. Die Formulierung der Bedingungen
mittels äquivalenter linearer Matrixungleichungen (LMIs) wird ebenfalls
vorgestellt. Dies erlaubt einen numerisch effizienten Entwurf der Regler
für Strecken beliebiger Ordnung. Die Reglersynthese endet mit den Sta-
bilisierbarkeitsbedingungen solcher Regler für Regelstreckenensembles, die
durch parametrische LTI-Systeme beschrieben sind.
Der zweite Teil der Arbeit beschäftigt sich mit der Performance-Ana-

lyse in nichtlinearen Regelkreisen. Während für lineare Regelkreise ex-
akte (auch frequenzbasierte) Methoden zur Performance-Analyse existie-
ren, bezieht sich die kleine Menge an Analysemethoden für nichtlineare
Regelkreise meistens auf experimentelle Aussagen über das dynamische
Verhalten eines einzelnen Regelkreises. In dieser Arbeit wird zum ersten
Mal das in der Praxis weitverbreitete Konzept der Computerexperimen-
te auf die Performance-Analyse in nichtlinearen Regelkreisen angewandt.
Mittels Bayes’scher Interpolationsmethoden wird die Performance-Prädik-
tion eines gesamten Streckenensembles ermöglicht. Sehr wichtig sind dabei
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XIV Kurzfassung

die angegebenen Konfidenzintervalle der Prädiktion. Damit ist es möglich,
die erwartete Performance einer Regelmethode für eine bestimmte Strecke
anzugeben, ohne dabei einen Regler entwerfen zu müssen. In diesem Zu-
sammenhang wird auch eine Sensitivitätsanalyse vorgestellt, die Aussagen
darüber zuläßt, welchen Einfluß einzelne Streckenparameter auf die Per-
formance einer Regelmethode erwartungsgemäß haben. Die Arbeit endet
mit einem empirischen Vergleich verschiedener Prädiktoren anhand meh-
rerer Streckenensembles. Es wird gezeigt, dass die Prädiktionsgenauigkeit
abhängig von der Wahl der prädiktiven A-posteriori-Verteilung, von der
Wahl der Korrelationsfunktion zwischen verschiedenen Strecken, sowie von
der Wahl der empirischen Schätzmethode für die Parameter der Korrela-
tionsfunktion ist.
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XV

Abstract

The thesis deals with the non-conservative synthesis of soft variable struc-
ture controls (SVSC) for stabilizing linear time invariant systems (LTI-
systems) with input saturation, and with a new method for the perfor-
mance analysis in nonlinear control systems. The non-conservative control
synthesis yields some necessary and sufficient stability conditions for these
plants, employing implicit Lyapunov-functions (iLF). From the necessity
of the conditions follows that if they are not fulfilled, then there exists no
control from this class which stabilizes the given plant. This is an essen-
tial benefit of the proposed controls relative to the already existing SVSC
employing iLFs. Furthermore, an extension of the SVSC to ones that em-
ploy inverse-polynomial selection strategies is presented. In addition, both
(non-conservative) controls are being optimized relative to the convergence
rate. The maximal convergence control is a bang-bang type control with a
parameter-dependent switching scheme, that achieves very short settling
times. The formulation of the stability conditions in form of equivalent
linear matrix inequalities (LMI) is also a benefit of the proposed control
methods. This allows for an efficient numerical control design for plants
of any given order. The control synthesis part of the thesis ends with the
(non-conservative) design of SVSC for a plant ensemble, that is described
by a parameter dependent LTI-System.
The second part of the thesis deals with the performance analysis in

nonlinear control systems. While for linear systems there exists a large
number of exact (also frequency-based) methods for the performance-ana-
lysis, the number of methods for the performance analysis of nonlinear
systems is very small, and deals mainly with the analysis of a single plant
for a given control. In this thesis the concept of the design and analysis of
computer experiments is applied to the performance analysis of nonlinear
control systems. By employing Bayesian interpolation methods, one can
make a prediction of the performance of the nonlinear control method for
an ensemble of nonlinear closed-loop systems. An important benefit of em-
ploying this statistical framework is that the prediction is given together
with some confidence bounds on the expected performance. Consequently,
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XVI Abstract

it is possible to make a prediction of the performance of a control method
without designing the control. In this context we present also a sensitivity
analysis, which gives some insight on how the expected performance of the
control method changes, if one changes the parameters of the plant. The
thesis ends with an empirical comparison of some predictors, which shows
that the prediction depends on the a-posteriori distribution of the model,
on the correlation function employed and on its parameters, respectively
on the empirical estimation method for these unknown parameters.
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1

1 Einleitung

Jedes reale Stellglied ist aus physikalischen Gründen mit einer Ampli-
tudenbeschränkung behaftet. In der Regelungstechnik sind Systeme mit
Stellgrößenbeschränkungen seit längerer Zeit Gegenstand vieler Untersu-
chungen, vgl. [10] und die darin enthaltenen Verweise. Die lineare Zu-
standsrückführung ist eines der meist verwendeten Regelgesetze, deren
Anwendung nichtsättigende bis hin zu High-Gain-Reglern erzielt, wobei
auftretende Sättigungseffekte mittels Anti-Windup Strukturen reduziert
[70] oder direkt in der Stabilitätsanalyse [35] berücksichtigt werden. Der
generelle Nachteil der linearen Zustandsrückführung ist, dass der Stellgrö-
ßenbereich im Bereich kleiner Auslenkungen von der Ruhelage aufgrund
konstanter Reglerverstärkung nicht optimal ausgenutzt werden kann, und
der jeweilige Regler somit oft zu langsamen Zeitverläufen führt.
Unter den nichtlinearen Regelmethoden erzielt die zeitoptimale Rege-

lung, in diesem Fall ein schaltendes Regelgesetz, auch Zweipunktregler
genannt, den schnellsten Zeitverlauf. Da seine Umschaltstrategie aber ge-
nerell nicht berechenbar ist, wird diese Methode oft nur bei Systemen
niedrigerer Ordnung verwendet. Außerdem kann in der Praxis die Diskon-
tinuität des Regelgesetzes technische Probleme verursachen. Beispielsweise
kann die ununterbrochene Aktivität des Reglers aufgrund unvermeidba-
ren Rauschens die Aktoren beschädigen. Eine Alternative zu den beiden
Regelungsmethoden bieten die strukturvariablen Regelungen an, welche
durch variable Verstärkungen den Nachteil der linearen Zustandsrückfüh-
rung überwinden und durch einfache Entwurfsverfahren bei Systemen be-
liebiger Ordnung verwendet werden können.
Die Geschwindigkeit des Zeitverlaufs wird bei exponentiell stabilen Sys-

temen oft mit der Konvergenzrate in Verbindung gebracht, welche als
kleinster Abklingfaktor der Norm einer Trajektorie definiert ist. Für lineare
Systeme ist die Konvergenzrate konstant im gesamten Zustandsraum und
entspricht dem Betrag des Realteils des Eigenwertes, der am nächsten zur
Imaginärachse liegt. Für nichtlineare Systeme hängt sie von dem Abstand
zur Ruhelage ab. In der Literatur wird die Konvergenzrate daher mit Hilfe
von invarianten Gebieten analysiert, vgl. z.B. [13]. Dabei sind die meist
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2 1 Einleitung

verwendeten invarianten Gebiete ellipsoidaler Form, da diese mit effizien-
ten Hilfsmitteln, wie der Ljapunov Gleichung und, generell, der linearen
Matrixungleichungen (LMI) analysiert werden können. Die Vorteile der
ellipsoidalen Gebiete werden auch im Fall weicher strukturvariabler Rege-
lungen genutzt, indem die Variation der Reglerverstärkungen mit solchen
Gebieten im Zustandsraum verbunden wird.
Das Regelgesetz, das in der Form einer sättigenden linearen Zustands-

rückführung die Abklingrate einer quadratischen Ljapunov-Funktion V (x)
= x�Px entlang der Trajektorien des Gesamtsystems maximiert, ist ein
Zweipunktregler mit einer einfachen Umschaltstrategie, vgl. z.B. [35]. Das
Regelgesetz hat die Form u = −sgn(b�Px), wobei b der Steuervektor der
Strecke ist. Die maximale Konvergenzrate hängt dabei von der Matrix P
ab, welche auch das invariante Ellipsoid determiniert. In [35] wird gezeigt,
dass die Größe des erzielten Ellipsoids im Konflikt mit der Höhe der Kon-
vergenzrate steht, d.h. eine hohe Konvergenzrate erzielt ein kleines inva-
riantes Ellipsoid und umgekehrt. Durch eine parameterabhängige Matrix
Pv, wie im Fall strukturvariabler Regelungen, besteht die Möglichkeit, die
Größe des Ellipsoids an den Abstand zur Ruhelage anzupassen und somit
die Konvergenzrate insgesamt zu verbessern. Vgl. auch [36] für eine sol-
che Verbesserung durch eine parameterabhängige Matrix. Es wird gezeigt,
dass auch in diesem Fall die Optimierung der Konvergenzrate einen Zwei-
punktregler (auch Bang-Bang-Regler genannt) mit einer parameterabhän-
gigen Umschaltstrategie erzielt. Um die Nachteile der Diskontinuität des
Regelgesetzes zu umgehen, wird eine stetige Approximation des konver-
genzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leichten Ver-
schlechterung der Konvergenzrate einen stetigen Stellgrößenverlauf erzielt.
Dabei wird auch ein nichtkonservativer Entwurf des konvergenzoptimalen
Regelgesetzes vorgestellt. Dieser beinhaltet Stabilitätsbedingungen, wel-
che sowohl notwendig als auch hinreichend für die Stabilisierbarkeit einer
linearen Strecke mit Stellgrößenbeschränkung durch eine weiche struktur-
variable Regelung dieser Klasse sind.
Ein weiterer Aspekt dieser Arbeit ist die Performance-Analyse nichtli-

nearer Regelkreise. Während für lineare Regelkreise exakte (frequenzba-
sierte) Methoden zur Performance-Analyse existieren, beziehen sich die
Performance-Methoden für nichtlineare Regelkreise meistens auf experi-
mentelle Aussagen über das dynamische Verhalten eines einzelnen Regel-
kreises. Die Schwierigkeit der Performance-Analyse entsteht aufgrund der
komplexeren Eigenschaften nichtlinearer Systeme relativ zu denen linearer
Systeme, wie zum Beispiel fehlende Gültigkeit des Superpositionsprinzips,

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


1.1 Beiträge der Arbeit 3

oder bezüglich der Stabilität der Ruhelage, die abhängig von den Anfangs-
bedingungen und von den einwirkenden Eingangsgrößen ist. Ein weiterer
Grund ist, dass für nichtlineare Regelkreise, die mit Hilfe von nichtlinearen
Differentialgleichungen formuliert werden, im Allgemeinen keine exakte
Zeitlösung bekannt ist.
Die in der Literatur vorgestellten Methoden zur Performance-Analyse

werden meistens in exakte und approximative Methoden klassifiziert. Die-
se basieren auf der exakten bzw. approximativen Zeitlösung des Systems
und sind jeweils auf einen einzelnen Regelkreis anwendbar. Um die Er-
gebnisse zu verallgemeinern, konzentriert sich die vorliegende Arbeit auf
die Entwicklung einer Methode zur Performance-Analyse in Regelkreis-
Ensembles. Ein Regelkreis-Ensemble besteht aus linearen Strecken, wobei
die Systemmatrix und der Steuervektor jeder Strecke von einem Para-
meter aus einer kompakten Menge polynomiell abhängen. Diese Methode
knüpft dabei an die Analyse durch Computerexperimente an, welche in der
Industrie eine breite Anwendung findet. Demnach wird die Performance ei-
ner Regelungsmethode für ein Regelkreis-Ensemble an einzelnen Strecken
(Design-Strecken) exakt oder approximativ überprüft und im übrigen ana-
lysierten Bereich statistisch interpoliert. Wesentlich dabei ist die Angabe
von Konfidenzintervallen für die erwartete Performance im gesamten En-
semble.

1.1 Beiträge der Arbeit
Wie bereits erwähnt, beschäftigt sich die vorliegende Arbeit in einem ersten
Teil mit der nicht-konservativen Synthese weicher strukturvariabler Rege-
lungen (WSVR) mittels impliziter Ljapunov-Funktionen (iLF) zur Stabi-
lisierung linearer Systeme mit Stellgrößenbeschränkung. Obwohl sich eine
große Anzahl an Regelungsmethoden mit der Stabilisierung solcher Sys-
teme beschäftigt, stellen die hier entwickelten Regelungsmethoden einen
deutlichen Fortschritt bezüglich des Entwurfsaufwands und der Perfor-
mance relativ zu der zeitoptimalen Regelung dar. Für die klassischeWSVR
mittels iLF, welche auf [2] zurückgeht, werden erstmals notwendige und
hinreichende Bedingungen vorgestellt. Aus der Notwendigkeit der Bedin-
gungen folgt, dass im Fall deren Nichterfüllung überhaupt kein Regler
dieser Klasse die jeweilige Strecke stabilisieren kann. Dies stellt einen we-
sentlichen Vorteil gegenüber bereits existierenden Entwurfsbedingungen
für diese Klasse dar.
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4 1 Einleitung

Daran anschließend wird die WSVR mittels iLF auf WSVR mit invers-
polynomialen Selektionsstrategien erweitert. Somit wird der (implizite) Pa-
rameter der weichen strukturvariablen Regelung anhand einer Selektions-
strategie berechnet, welche durch die Inverse einer (in diesem Parameter)
polynomialen Matrix bestimmt ist. Eine ähnliche invers-polynomiale Se-
lektionsstrategie wurde in [36] vorgestellt. Die wesentlichen Vorteile der
in dieser Arbeit entwickelten Regelungsmethode stellen einerseits der frei
wählbare Grad der polynomialen Matrix und andererseits die nicht-kon-
servativen Entwurfsbedingungen dar.
Eine darauf aufbauende Optimierung der Konvergenzrate erzeugt je-

weils Zweipunktregler mit einer parameterabhängigen Selektionsstrategie.
Diese Regler werden auch Bang-Bang-Regler genannt und unterscheiden
sich von der zeitoptimalen Regelung durch deren Umschaltstrategie. Da
in der Praxis die Diskontinuität des Regelgesetzes technische Probleme
verursachen kann, wird in dieser Arbeit eine stetige Approximation des
konvergenzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leich-
ten Verschlechterung der Konvergenzrate einen stetigen Stellgrößenverlauf
erzielt.
Im zweiten Teil der Arbeit werden verschiedene Methoden zur Perfor-

mance-Analyse in nichtlinearen Regelkreisen vorgestellt. Der Hauptbeitrag
dieses Teils stellt die Anwendung der Theorie über das Design von Compu-
terexperimenten auf die Performance-Analyse in nichtlinearen Regelkreisen
dar. Darüber hinaus wird eine Sensitivitätsanalyse für eine Regelmethode
bezüglich eines Streckenensembles mit unendlich vielen Strecken einge-
führt. Diese soll Aufschluß darüber geben, wie die Streckenparameter die
Performance einer Regelmethode beeinflussen. In diesem Zusammenhang
erfährt die in dieser Arbeit neu-entwickelte konvergenzoptimale Regelung
durch weiche strukturvariable Regelungen mit invers-polynomialen Selek-
tionsstrategien eine besondere Berücksichtigung.

1.2 Gliederung
Die Arbeit besteht aus zwei Teilen. Im ersten Teil werden die nicht-konser-
vativen weichen strukturvariablen Regelungen vorgestellt. Kapitel 2 ent-
hält eine Einleitung über die Stabilisierung linearer Systeme mit Stellgrö-
ßenbeschränkung und die Stabilitätsanalyse mittels impliziter Ljapunov-
Funktionen. Im Kapitel 3 werden die notwendigen und hinreichenden Sta-
bilitätsbedingungen der klassischen WSVR mittels iLFs und im Kapitel 4
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1.2 Gliederung 5

die invers-polynomiale WSVR vorgestellt. Im Kapitel 5 wird die Optimie-
rung der Konvergenzrate analysiert. Das letzte Kapitel aus diesem Teil,
Kapitel 6, stellt die notwendigen und hinreichenden Stabilitätsbedingun-
gen der klassischen und invers-polynomialen WSVR für Regelstreckenen-
sembles vor.
Der zweite Teil der Arbeit beschäftigt sich mit Methoden zur Perfor-

mance-Analyse in nichtlinearen Regelkreisen. In dem einleitenden Kapi-
tel 7 werden die wesentlichen Unterschiede zwischen linearen und nichtli-
nearen Regelkreisen dargestellt, sowie verschiedene Performance-Maße für
nichtlineare Regelkreise klassifiziert. Eine besondere Berücksichtigung er-
fährt dabei die Konvergenzrate, welche für die im ersten Teil vorgestellten
Regelungsmethoden analysiert wird. Kapitel 8 stellt die Anwendung des
Designs von Computerexperimenten auf die Performance-Analyse von Re-
gelungsmethoden vor. Das letzte Kapitel dieser Arbeit, Kapitel 9, fasst
die wesentlichen Ergebnisse dieser Arbeit zusammen und gibt einen Aus-
blick über mögliche Weiterentwicklungen. Schließlich enthalten die An-
hänge verschiedene Definitionen und Hilfssätze, sowie die Parameter der
vorgestellten Beispiele. Anhang A enthält einige allgemeine Definitionen
über Mengen, Funktionen und Matrizen, sowie mehrere Hilfssätze für die
Reglersynthese. Anhang B enthält mehrere stochastische Grundlagen und
Anhang C enthält die Parameter der Beispiele.
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2 Einleitende Hilfssätze

Für weiche strukturvariable Regelungen mit kontinuierlich parameterab-
hängiger Zustandsrückführung wurden in [1, 2] hinreichende Stabilisier-
barkeitsbedingungen linearer Systeme mit Stellgrößenbeschränkung mit-
tels impliziter Ljapunov-Funktionen (iLF) vorgestellt. Der Überblicksarti-
kel [4] bietet eine Beschreibung solcher Regelungen. Bei diesen Regelun-
gen wird zwischen verschiedenen linearen Zustandsrückführungen konti-
nuierlich während des Ausregelvorgangs umgeschaltet. Die Umschaltung
ist so ausgelegt, dass während des Ausregelvorgangs mit kleiner werden-
dem Abstand zur Ruhelage immer mehr Einfluß auf die Strecke ausgeübt
wird. Diese Regelungen arbeiten nicht im Sättigungsbereich, d.h. die Stell-
größenverläufe tangieren höchstens die Begrenzungen, bleiben aber nicht
für längere Zeit in der Sättigung. Sättigende WSVR wurden beispielswei-
se in [19, 36], solche mittels impliziter Ljapunov-Funktionen wurden in
[25, 40, 44] vorgestellt. Die Arbeit von [25] beinhaltet dabei eine besonde-
re Berücksichtigung linearer Matrixungleichungen (LMI) zur Formulierung
der Stabilisierbarkeitsbedingungen. Die Arbeit von [40] stellt darüber hin-
aus eine Generalisierung der WSVR mittels iLF dar, welche polynomiale
Selektionsstrategien beliebigen Grades sowie den Spezialfall der explizi-
ten LF beinhaltet. Da diese Stabilisierbarkeitsbedingungen jedoch nicht
notwendig sondern nur hinreichend sind, kann der Entwurf konservative
Regler erzeugen. Die Größe des erzielten invarianten Gebietes kann z.B.
klein sein, oder die Einschwingzeit des Ausregelvorgangs kann lang sein.
Daher werden in diesem Teil der Arbeit erstmals Bedingungen vorgestellt,
die für die Stabilisierbarkeit der Strecke auch notwendig sind. Die Bedin-
gungen bauen auf den notwendigen und hinreichenden Bedingungen für die
Existenz eines linearen Zustandsreglers für eine lineare Strecke mit Stell-
größenbeschränkung auf, welche in [39] vorgestellt wurden. Durch eine
konstruktive Methode werden notwendige und hinreichende Existenzbe-
dingungen einer WSVR aufgebaut, welche darüber hinaus in äquivalente
LMIs transformiert werden können. Sind diese Bedingungen erfüllt, so wird
ein beschränkter Regler angegeben, der das System stabilisiert.
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8 2 Einleitende Hilfssätze

In Folgendem werden mehrere Hilfssätze vorgestellt, welche bei der
nicht-konservativen WSVR-Synthese verwendet werden. Dieses Kapitel
ist wie folgt gegliedert: im Abschnitt 2.1 wird die Stabilisierbarkeit linea-
rer Strecken mit Stellgrößenbeschränkung diskutiert und im Abschnitt 2.2
werden zwei Hilfssätze über die Stabilitätsuntersuchung eines nichtlinearen
Systems mittels impliziter Ljapunov-Funktionen vorgestellt.

2.1 Stabilisierbarkeit linearer Systeme mit
Stellgrößenbeschränkung

Falls die Stellgröße unbeschränkt ist, ist jedes vollständig steuerbare LTI-
System stabilisierbar, d.h. die Ruhelage des Systems kann durch die Auf-
schaltung eines geeigneten Regelgesetzes asymptotisch stabil werden. Im
Fall eines nicht vollständig steuerbaren Systems muss das nichtsteuerbare
Systemteil bereits asymptotisch stabil sein. Dies wird im folgenden Lemma
verdeutlicht.

Lemma 2.1 [Stabilisierbarkeit eines LTI-Systems]. Gegeben sei
das LTI-System

ẋ = Ax + bu, x ∈ R
n, u ∈ R,A ∈ R

n×n,b ∈ R
n,

welches vollständig beschrieben durch das Paar (A,b) ist. Folgende Aus-
sagen sind äquivalent:

i) Das Paar (A,b) ist stabilisierbar.

ii) ∃T ∈ Rn×n, T nichtsingulär, sodass A = T
[
A1 A12
0 A2

]
T−1 und

b = T
[
b1
0

]
, wobei A1 ∈ Rq×q, b1 ∈ Rq und (A1,b1) vollständig

steuerbar und A2 ∈ R(n−q)×(n−q) asymptotisch stabil ist.

Beweis. Der Beweis kann in [8, Proposition 12.8.3] gefunden werden. Die
folgende Bemerkung veranschaulicht die Bedingung ii).
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2.1 Stabilisierbarkeit linearer Systeme mit Stellgrößenbeschränkung 9

Bemerkung 2.1. Wie in [65, Abschnitt 3.4] gezeigt, existiert für jedes LTI-
System eine eineindeutige Transformationsvorschrift

x̃ = Tgx,

sodass der transformierte Zustandsvektor in der Form

x̃ =

⎡
⎢⎢⎣

xsb
xsb
xsb
xsb

⎤
⎥⎥⎦

- steuerbares und beobachtbares Systemteil
- steuerbares aber nicht beobachtbares Systemteil
- nicht steuerbares aber beobachtbares Systemteil
- weder steuerbares noch beobachtbares Systemteil

vorliegt. Diese Systemform wird auch Kalman-kanonische Form genannt.
Fasst man die beiden steuerbaren bzw. nichtsteuerbaren Systemteile zu-
sammen, ergibt sich das transformierte System[ ˙̃xs

˙̃xs

]
=
[

A1 A12
0 A2

] [
x̃s
x̃s

]
+
[

b1
0

]
u, x̃s =

[
xsb
xsb

]
, x̃s =

[
xsb
xsb

]
,

aus Punkt ii). Die MatrixA1 und die Vektoren x̃s und b1 haben ns Zeilen,
wobei ns der Rang der Steuerbarkeitsmatrix des Gesamtsystems ist. Es ist
ersichtlich, dass das zweite Systemteil ˙̃xs = A2x̃s nicht steuerbar ist. Da
die Matrix A2 wesentlich für die Stabilität des Gesamtsystems ist,1) ist
es sowohl notwendig als auch hinreichend, dass dieses Systemteil bereits
asymptotisch stabil ist. �
Die Stabilisierbarkeit linearer Systeme mittels linearer Regelgesetze kann
auch durch die Existenz quadratischer Ljapunov-Funktionen der Form
V (x) = x�Px überprüft werden. Dabei ist die Existenz einer quadra-
tischen Ljapunov-Funktion hinreichend und notwendig für die Stabilität
eines linearen Systems. Dies wird im folgenden Lemma verdeutlicht. Das
Resultat wird in den nächsten Kapiteln für die nicht-konservative WSVR
erweitert.

Lemma 2.2 [Stabilisierbarkeit eines LTI-Systems mittels Ljapu-
nov-Funktionen]. Gegeben sei das LTI-System

ẋ = Ax+ bu, x ∈ R
n, u ∈ R,A ∈ R

n×n,b ∈ R
n,

welches vollständig beschrieben durch das Paar (A,b) ist. Folgende Aus-
sagen sind äquivalent:
1)Die Systemmatrix des Gesamtsystems hat eine obere Dreiecksform. Somit sind ihre
Eigenwerte durch die Eigenwerte der Matrizen A1 und A2 bestimmt.
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10 2 Einleitende Hilfssätze

i) Das Paar (A,b) ist durch ein lineares Zustandsregelgesetz u(x) = −k�x
stabilisierbar.

ii) ∃P 
 0, sodass AP+PA�≺ bb�.

Beweis. Das Lemma kann als Spezialfall des Satzes 3.1. aus [39] gesehen
werden. Der Beweis wird daher an dieser Stelle weggelassen.

Im Fall von LTI-Systemen mit Stellgrößenbeschränkung ist das Problem
der Stabilisierbarkeit durch die Beschränkung der Stellgröße erschwert.
Dies gilt natürlich nicht für Systeme, die bereits stabil sind. Die Schwierig-
keit entsteht bei instabilen Systemen, da es für eine große Auslenkung von
der Ruhelage möglich ist, dass die begrenzte Stellgröße nicht ausreicht um
das System zu stabilisieren. Daher kann nicht jedes vollständig steuerba-
re System durch eine beschränkte Stellgröße im gesamten Zustandsraum,
d.h. global, stabilisiert werden.
Der Bereich im Zustandsraum, der damit stabilisierbar ist, wird null-

steuerbare Region, vgl. [35], genannt. Diese bildet zwar für stabile und
semi-stabile2) LTI-Systeme den gesamten Zustandsraum, für instabile Sys-
teme ist die Region jedoch beschränkt, konvex und offen, vgl. z.B. [35,
Proposition 2.2.1]. Die Region beinhaltet dabei die Ruhelage des Systems.
Beispiele für die Bestimmung dieser Region für lineare Systeme zweiter
und dritter Ordnung kann in [35, Abschnitt 2.3] gefunden werden.
Im Fall nicht vollständig steuerbarer Systeme, wobei der nichtsteuerba-

re Systemteil asymptotisch stabil ist, wird die Region asymptotisch-null-
steuerbar genannt, vgl. [35, Abschnitt 2.7]. Diese beinhaltet die null-steu-
erbare Region des steuerbaren Systemteils und den gesamten Unterraum
des nichtsteuerbaren aber asymptotisch stabilen Systemteils.
Im Folgenden beschränken wir uns auf vollständig steuerbare LTI-Syste-

me mit Stellgrößenbeschränkung. Da die hier untersuchten Regelmethoden
nichtlinear sind, ist Lemma 2.2 nicht mehr anwendbar und muss erweitert
werden. Dabei wird der im nächsten Unterabschnitt vorgestellte Satz aus
[1, 2] verwendet.

2)Bei linearen Systemen heißt ein System semi-stabil, falls dessen Systemmatrix Ei-
genwerte in der geschlossenen linken Halbebene besitzt. Dies umfasst auch die Ima-
ginärachse und, im Gegensatz zum Fall grenzstabiler Systeme, die rein imaginären
Eigenwerte können eine beliebige Vielfachheit besitzen. Die grenzstabilen Systeme
bilden also ein Spezialfall semi-stabiler Systeme.
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2.2 Stabilität mittels impliziter
Ljapunov-Funktionen (iLF)

Auch implizite Ljapunov-Funktionen können für die Überprüfung der Sta-
bilität dynamischer Systeme verwendet werden. Diese entstehen beispiels-
weise durch eine Einteilung des Zustandsraumes in Regionen, z.B. Ellip-
soide, wobei diese in analytischer Form, d.h. x�P(v)x = 1, mit v ∈ [v,v],
vorliegen. In dieser Arbeit ist P(v) beispielsweise eine polynomiale Ma-
trix in v. Die zustandsabhängige Variation des Parameters v, d.h. v(x),
kann zwar als Ljapunov-Funktion fungieren, diese kann jedoch in den meis-
ten Fällen nicht explizit angegeben werden. Folgender Satz aus [2] stellt
hinreichende Bedingungen für die asymptotische Stabilität der Ruhelage
eines nichtlinearen Systems mittels impliziter Ljapunov-Funktionen dar.
Der Satz verknüpft die direkte Methode von Ljapunov mit dem Satz über
implizite Funktionen, vgl. dazu [18].

Satz 2.3 [Vgl. [2]] Gegeben sei die stetige Funktion h(x) und das System
ẋ = h(x), mit x ∈ Rn und der Ruhelage xR = 0 und eindeutiger Lösung
für jeden Anfangswert, sowie eine stetige und differenzierbare Funktion

g(x,v) : V(0)→ R, V(0) := {(x,v)|x ∈ U0\{0} ⊆ Bδ(0), 0 < v < 1},

welche folgende Bedingungen erfüllt:

(i) Aus g(x,v) = 0 folgt: x = 0 ⇔ v → 0+,
(ii) lim

v→0+
g(x,v) > 0 und lim

v→1−
g(x,v) < 0, ∀x ∈ U0\{0},

(iii) −∞ < ∂vg(x,v) < 0, ∀(x,v) ∈ V(0),
(iv) ∂tg(x(t),v) < 0, ∀(x,v) ∈ V(0).

Dann ist die Ruhelage xR = 0 asymptotisch stabil, und die Gebiete

G(v) := {x ∈ R
n | g(x,v) < 0} ⊆ U0

sind verschachtelt und kontraktiv invariant für alle v ∈ (0,1).a)

a)Vgl. Def. 15 (Anhang) bzw. Def. 14 (Anhang).

Beweis. Der Beweis des Satzes bezüglich der asymptotischen Stabilität
der Ruhelage kann in [2, Satz 4] gefunden werden. Die kontraktive In-
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varianz der Gebiete G(v) wird in [2, Satz 5] und deren Verschachtelung
in [2, Abschnitt III] nachgewiesen. Im Folgenden wird daher lediglich die
Beweisidee für die asymptotische Stabilität der Ruhelage skizziert.
Die Bedingungen (ii) und (iii) stellen sicher,3) dass die Selektionsstra-

tegie g(x,v) = 0 eine eindeutige Lösung für jedes x ∈ U0\{0} hat, welche
eine stetige Funktion v = v(x) ist. Darüber hinaus stellt die Funktion
0 < v(x) < 1, welche durch g(x,v) = 0 implizit definiert ist, und aufgrund
der Bedingung (i) für x = 0 stetig erweiterbar mit v(0) = 0 ist, eine impli-
zite Ljapunov-Funktion des Systems dar. Dies resultiert aus der Tatsache,
dass v(x) > 0 und v̇(x) < 0, da auf Grund der Bedingungen (iii) und (iv)
gilt, dass

v̇(x(t)) = −
∂tg(x(t),v)
∂vg(x,v)

< 0, ∀ (x,v) ∈ V(0). (2.1)

Korollar 2.4 [Vgl. [2]]. Alle Trajektorien, die auf dem Rand eines
Gebietes G(v) - d.h. für x(0) ∈ ∂G(v), mit v ∈ (0,1) - starten, laufen
für t > 0 in das Gebiet hinein.

Beweis. Dies folgt unmittelbar aus Bedingung (iv) des Satzes 2.3, da für
ein beliebiges Δt > 0 gilt g(x(t+Δt),v) < g(x(t),v) = 0, ∀x ∈ ∂G(v), v ∈
(0,1). Der Zustand x(t +Δt) wird in das Ellipsoid G(v) hineinlaufen.

Unter Verwendung des Satzes 2.3 werden in den nächsten Kapiteln die-
ses Teils der Arbeit nicht-konservative Stabilitätsbedingungen für weiche
strukturvariable Regelungen (WSVR) vorgestellt. Kapitel 3 beschäftigt
sich mit dem Entwurf nicht-konservativer klassischer WSVR mittels iLF
und Kapitel 4 führt die invers-polynomiale WSVR ein. Anschließend wer-
den die vorgestellten Regelgesetze bezüglich der Konvergenzrate der damit
verbundenen Ljapunov-Funktion optimiert. Die somit entstandere konver-
genzoptimale Regelung wird in Kapitel 5 vorgestellt. Schließlich zeigt Ka-
pitel 6 eine einfache Erweiterung der Regelgesetze für Regelstreckenensem-
bles.

3)Vgl. [2, Satz 3].
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3 Die klassische WSVR mittels iLF

Die erste weiche strukturvariable Regelung mittels impliziter Ljapunov-
Funktionen wurde in [2] vorgestellt und geht auf [42] zurück. Diese Re-
gelungsmethode wird im Weiteren als klassische WSVR bezeichnet. Es
handelt sich um eine kontinuierlich parameterabhängige Zustandsrückfüh-
rung, wobei der Parameter gleichzeitig eine implizite Ljapunov-Funktion
des Systems darstellt. Der Parameter teilt darüber hinaus den stabilisier-
baren Zustandsraum in infinitesimal dicht ineinander verschachtelte Ellip-
soide, vgl. Def. 15 (Anhang). Dabei entspricht jedem Ellipsoidenrand ein
eindeutiger Parameterwert, und je kleiner der Ellipsoid ist, desto höher ist
die mit dessem Rand verbundene Reglerverstärkung.
Im Abschnitt 3.1 wird die Definition einer klassischen WSVRmittels iLF

aus [2] erweitert und im Abschnitt 3.2 wird das erste Hauptergebnis die-
ser Arbeit, die nicht-konservativen Stabilitätsbedingungen der klassischen
WSVR mittels iLFs vorgestellt. Das Kapitel endet mit dem Abschnitt 3.3
über mögliche Entwurfsschritte des vorgestellten Reglers.

3.1 Definition einer klassischen WSVR
mittels iLF

Betrachtet werden lineare Strecken mit Stellgrößenbeschränkung in Steue-
rungsnormalform1), gegeben durch

ẋ = Ax+ bu, x ∈ R
n, u ∈ R, |u| ≤ 1,A ∈ R

n×n,b ∈ R
n. (3.1)

Bei der strukturvariablen Regelung wird zwischen verschiedenen Regelge-
setzen während des Ausregelvorgangs umgeschaltet. Dabei unterscheidet
man zwischen parameter- und strukturumschaltenden Regelgesetzen. In
dieser Arbeit wird eine Unterklasse der Ersteren betrachtet. Eine Über-
sicht solcher Regelungen bietet [4]. Die erste systematisch entwickelte Re-
gelung dieser Art findet sich in [42]. Bei der untersuchten Regelung lautet
1)Dies ist keine Einschränkung, da jede steuerbare Regelstrecke in diese Form trans-
formiert werden kann.
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14 3 Die klassische WSVR mittels iLF

das Regelgesetz in allgemeiner Form

u(x) = −f(x,v(x)), (3.2)

wobei der Parameter v ∈ R aus einer vorgegebenen Selektionsgleichung
g(v,x) = 0 implizit bestimmt wird. Ein Regelgesetz aus dieser Klasse ist
die nichtsättigende implizite WSVR, die auf [1] zurückgeht. Diese wird als
klassische WSVR bezeichnet. Es handelt sich dabei um eine vom Parame-
ter v abhängige lineare Zustandsrückführung2)

u(x) = −h�vx. (3.3)

Das Regelgesetz ist so ausgelegt, dass während des Ausregelvorgangs mit
kleiner werdendem Abstand zur Ruhelage immer mehr Einfluß auf die
Strecke ausgeübt wird, d.h., dass der Abstand zwischen den momentanen
Eigenwerten des geschlossenen Regelkreises und denjenigen der Regelstre-
cke immer größer wird, aber die Stellgrößenbeschränkung nicht überschrit-
ten wird. Folglich wird der Stellgrößenbereich bei kleinen Auslenkungen
von der Ruhelage im Vergleich zur linearen Regelung besser ausgenutzt.
Betrachtet man den geschlossenen Regelkreis bei der Variation der Reg-
lerverstärkung, so werden die momentanen Eigenwerte auf (vorgebbare)
Bahnen wandern. Strahlenförmige Bahnen, wie in Bild 3.1 (links) gezeigt,
können durch das folgende Regelgesetz [1] festgelegt werden:

hv = D−1
v â − a, a� = [0 · · · 0 1]A,

â� = [0 · · · 0 1]Â1, Â1 = A− bh�1 ,
Dv = diag(vn,vn−1, . . . ,v).

(3.4)

In der allgemeinen Form ist die Selektionsgleichung auf einer Menge

V0 := {(x,v)|x ∈ U0\{0}, 0 < v < v}

definiert, wobei U0 ⊆ Bδ(0) eine Umgebung der Ruhelage ist, und sie lautet

g(v,x) = 0. (3.5)

Eine spezielle Form der Gleichung (3.5) ist

g(x, v) = x�Pvx− 1 = 0. (3.6)
2)Der Übersichtlichkeit halber wird die Parameterabhängigkeit von v als Index dar-
gestellt, d.h. z.B. hv = h(v(x)).
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x

x

x2

Re

Im

v=1

G P( 1)v,

L(v)

x

x1

Bild 3.1: Momentane Eigenwerte (links) und kontraktiv invariante Ge-
biete (rechts) für den Fall x ∈ R2, mit v ∈ (0,1].

Folglich erzeugt die Selektionsgleichung ellipsoidale Gebiete im Zustands-
raum, die durch die vom Parameter v abhängige Matrix Pv skaliert und
gedreht werden.
Die Veränderung des Selektionsparameters v(x) : U0\{0} → (0,v] ist

an die Ränder der ellipsoidalen Gebiete ∂E(Pv,1) ⊂ Rn gekoppelt. Jedem
Gebiet entspricht ein eindeutiger Wert des Parameters v ∈ (0,v], dem äuße-
ren Gebiet der Wert v(x) = v, dem innersten Gebiet der Wert v(0)→ 0+.
Bild 3.1 (rechts) veranschaulicht zwei solche Gebiete für den Fall n = 2.
Entsprechend wird während des Ausregelvorgangs für jedes x ∈ U0\{0}
der Wert des Parameters v(x) aus der Selektionsgleichung numerisch be-
stimmt.
Die Matrix Pv kann in der Form Pv = evD−1

v P1D−1
v , mit Dv =

diag(vn, . . . ,v2,v), ev = h�vP−1
v hv und P1 
 0 gewählt werden, sodass

sich die Überprüfung der kontraktiven Invarianz der ellipsoidalen Gebiete
E(Pv ,1) auf die des äußeren Gebietes E(P1,1) reduziert. Die Skalierungs-
funktion ev ist dabei so bestimmt, dass das jeweilige Gebiet E(Pv,1) unter
der Bedingung

E(Pv,1) ⊂
{
x ∈ R

n| |h�(v)x| ≤ 1
}
=: L(v) (3.7)

maximiert wird. Die Gebiete L(v) werden ebenfalls im Bild 3.1 (rechts)
gezeigt.
Die Selektionsgleichung kann man vereinfachen [41], indem man die Ska-

lierungsfunktion e(v) weglässt, d.h.

Pv=D−1
v P1D−1

v . (3.8)
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16 3 Die klassische WSVR mittels iLF

Durch diese Vereinfachung kann man zwar auch Regler für instabile Stre-
cken entwerfen [41], es ist jedoch nicht mehr sichergestellt, dass die Stell-
größe die Beschränkung nicht überschreitet. Dies muss durch eine zusätz-
liche Bedingung beim Regelungsentwurf sichergestellt werden.
Darüber hinaus ist es möglich, die Matrixpotenz von −1 auf eine Zahl

zwischen −1 und 0 zu reduzieren. Dies ergibt eine Matrix3)

Pv = D−r
v P1D−r

v , r ∈ (0,1], (3.9)

wobei der Skalar r ∈ (0,1] konstant ist. Diese Matrix wird im Folgenden
verwendet.
In dieser Arbeit ist die Existenz eines solchen Reglers für das LTI-System

aus Gl. (3.1) definitionsgemäß äquivalent zu der Existenz einer Matrix
P1 
 0, sodass die Gebiete

E(v) := {x ∈ R
n|x�D−r

v P1D−r
v x < 1}

für alle v ∈ (0,1] (infinitesimal dicht ineinander) verschachtelt und kon-
traktiv invariant sind, und u(x) ≤ 1, ∀x ∈ E(v) mit v ∈ (0,1] gilt. Die
kontraktive Invarianz eines Gebietes zeichnet sich dadurch aus, dass Tra-
jektorien, die in ein solches Gebiet hineinlaufen, das Gebiet nicht mehr
verlassen und asymptotisch in die Ruhelage konvergieren.4) Zwei Gebie-
te sind verschachtelt, falls ein Gebiet vollständig innerhalb des anderen
Gebietes ist und deren Ränder keine gemeinsame Punkte haben.5)
Basierend auf dieser Definition der klassischen WSVR werden im Fol-

genden notwendige und hinreichende Stabilitätsbedingungen vorgestellt.

3.2 Nicht-konservative
Stabilitätsbedingungen

Der folgende Satz mitsamt einer konstruktiven Beweismethode stellt not-
wendige und hinreichende Bedingungen für die Existenz einer stabilisieren-
den klassischen WSVR mittels iLFs dar. Für eine beliebige lineare Strecke
ergibt sich daraus (im Existenzfall) ein stabilisierendes Regelgesetz. Der
Satz wurde in [61] zum ersten Mal vorgestellt.

3)Diese Form wurde beispielsweise in [55] verwendet.
4)Vgl. Def. 14 (Anhang).
5)Vgl. Def. 15 (Anhang).
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3.2 Nicht-konservative Stabilitätsbedingungen 17

Satz 3.1 Gegeben sei das folgende LTI-System in Steuerungsnormalform
mit einer Eingangsgröße und Stellgrößenbeschränkung

ẋ = Ax+ bu, x ∈ R
n, u ∈ R, |u| ≤ 1. (3.10)

Folgende Aussagen sind äquivalent:
i) Für jedes ε ∈ (0,1) existieren ein Vektor â ∈ Rn, ein Skalar r ∈ (0,1]

und eine Matrix P1 ∈ Pn, sodass für alle v ∈ (0,1] die Gebiete

EΔ(v) :=
{
x ∈ R

n
∣∣gΔ(x,v) := x�D−r

v P1D−r
v x−1 < 0

}
(3.11)

verschachtelt und kontraktiv invariant für das System in Gl. (3.10) mit
dem Regelgesetz

u = −k�vx, k�v := D−r
v â − a, (3.12)

mit Dv := diag(vn, . . . ,v) und a := −[0 0 · · · 1]A sind, wobei der Para-
meter v implizit definiert durch die Gleichung

gΔ(x,v) = 0

ist. Darüber hinaus gilt

|u| < 1, ∀x ∈ EΔ(v), v ∈ [ε,1]. (3.13)

ii) ∃P ∈ Symn, sodass

P 
 0, (3.14)
AP+PA�≺ bb�, (3.15)
NP+PN ≺ 0, N := diag(−n, . . . ,− 1). (3.16)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch

â = a + cP−1b, P1 = dP−1, (3.17)

wobei

d >b�P−1b/4, (3.18)

c=ν
√
d(b�P−1b)−1, ν∈

[√
b�P−1b
4d ,1

)
, (3.19)
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18 3 Die klassische WSVR mittels iLF

gilt, und r ∈ (0,1] die Lösung des quasi-konvexen Optimierungsproblems

max
r∈(0,1]

r, sodass

(â −Dwa)�P (â −Dwa) < d, ∀w ∈ [εr,1], (3.20)

ist.
Bemerkung 3.1. Der Parameter d aus Gl. (3.18) kann zur Skalierung der
Matrix P−1, und somit des kontraktiv invarianten Gebietes EΔ(1) verwen-
det werden. Ein kleinerer Wert von d ergibt ein größeres Gebiet. Der
Parameter c aus Gl. (3.19) skaliert den linearen Bereich der Sättigung
L(−k�1x,1), sodass dieser das kontraktiv invariante Gebiet EΔ(1) beinhal-
tet. Somit ergibt sich für w = 1 ein nichtsättigendes Regelgesetz. Ein
größerer Wert von ν ergibt einen kleineren linearen Bereich der Sättigung.
Bedingungen (3.18) und (3.19) können in vereinfachter Form als

d

c2
≥ (b�P−1b), c >

1
2

geschrieben werden. �
Bemerkung 3.2. Sind die Parameter d, ν und c gegeben, dann kann Gl.
(3.20) in eine äquivalente parameterunabhängige LMI-Bedingung transfor-
miert werden. Darüber hinaus existiert immer ein Skalar r ∈ (0,1], sodass
Gl. (3.20) erfüllt ist. Dies resultiert aus der Tatsache, dass Gl. (3.20) für
w = 1 erfüllt ist und die linke Seite für jedes w ∈ [εr,1] endlich ist. �
Bemerkung 3.3. Falls Gl. (3.20) für einen Skalar r∗ ∈ (0,1] erfüllt ist,
dann ist sie auch für r ≤ r∗ erfüllt. Dies resultiert aus der Tatsache, dass
ε ∈ (0,1) und folglich, dass εr ≥ εr

∗ , ∀ r ≤ r∗. Der Skalar r ∈ (0,1] kann
daher mit Hilfe des Bisektionsverfahrens berechnet werden.6) �
Bemerkung 3.4. Der Übersichtlichkeit halber wird der Beweis, der weiter
unten erfolgt, vorerst kurz skizziert. In dem ersten Teil des Beweises wird
ii) ⇒ i) gezeigt, d.h. aus ii) folgt i). Mit Hilfe des Satzes 2.3 wird dabei
bewiesen, dass die Bedingungen (3.14)-(3.16) aus Punkt ii), unter Ver-
wendung des Regelgesetzes aus Gl. (3.12), (3.17)-(3.20), hinreichend dafür
sind, dass die ellipsoidalen Gebiete EΔ(v) aus Gl. (3.11) verschachtelt und
kontraktiv invariant sind. Im zweiten Teil des Satzes wird die Notwendig-
keit der Bedingungen (3.14)-(3.16) gezeigt, d.h. i) ⇒ ii). Dies wird mit
Hilfe von Finsler’s Lemma, vgl. Satz A.5 (Anhang), bewiesen. �
6)Vgl. [17, Algorithm 4.1].
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3.2 Nicht-konservative Stabilitätsbedingungen 19

Beweis. ii)⇒ i) Aus Gl. (3.15) folgt

(A− cbb�P−1)P+P(A− cbb�P−1)� (3.21)
= AP+PA�−2cbb��AP+PA�−bb�≺0,

da wegen Gl. (3.18)-(3.19) c ≥ 1/2 ist. Aus Lemma A.4 (Anhang), Seite
178, und Gl. (3.14) folgt, dass das LTI System

ẋ = (A− cbb�P−1)x (3.22)

asymptotisch stabil ist. Nach links und rechts Multiplizieren der Gl. (3.21)
mit der nichtsingulären Matrix P−1 
 0 folgt darüber hinaus

P−1(A− cbb�P−1) + (A− cbb�P−1)�P−1 ≺ 0.

Daher ist die quadratische Funktion V (x) = x�P−1x eine gültige Ljapunov-
Funktion des Systems ẋ = (A− cbb�P−1)x.
Das LTI-System aus Gl. (3.22) beschreibt den geschlossenen Regelkreis

aus i) für v = 1. Dies resultiert aus Gl. (3.10) und (3.12), da

ẋ = (A− bk�v)x
= [A− b(D−r

v â − a)�]x

=
[

0n−1,1 In−1
−â�D−r

v

]
x

= 1
vr

Dr
v

[
0n−1,1 In−1

−â�
]
D−r

v x

= 1
vr

Dr
v(A−cbb�P−1)D−r

v x. (3.23)

Darüber hinaus ist die zeitliche Änderung der Funktion gΔ(x,v) aus Gl.
(3.11), mit P1 = dP−1, entlang einer Trajektorie des geschlossenen Regel-
kreises aus Gl. (3.23) gegeben durch

∂gΔ(v)(x(t),v)
∂t

= ẋ�D−r
v dP−1D−r

v x+ x�D−r
v dP−1D−r

v ẋ

= d

vr
x�D−r

v

[
(A− bb�P−1)�P−1

+ P−1(A− bb�P−1)
]
D−r

v x < 0, ∀v ∈ (0,1]. (3.24)
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20 3 Die klassische WSVR mittels iLF

Ferner ist die MatrixNP+PN negativ definit. Somit folgt, dass die Matrix
NP−1 +P−1N auch negativ definit ist und, dass

∂gΔ(x,v)
∂v

= x�∂(D
−r
v P−1D−r

v )
∂v

x

= d

vr
x�D−r

v (NP−1 +P−1N)D−r
v x < 0, ∀v ∈ (0,1], (3.25)

gilt. Aus Gl. (3.24) und Gl. (3.25) folgt schließlich, dass die Gebiete EΔ(v)
verschachtelt und kontraktiv invariant sind.7) Somit sind die Bedingungen
aus Gl. (3.14)-(3.16) hinreichend für die Existenz einer weichen struktur-
variablen Regelung mittels impliziter Ljapunov-Funktionen. Ferner ist die
implizite Funktion 0 < v(x) ≤ 1 für x = 0 stetig erweiterbar mit v(0) = 0
und folglich eine zulässige Ljapunov-Funktion des Systems.
Mit der Notation Pv := D−r

v P1D−r
v = D−r

v dP−1D−r
v ist die Bedingung

aus Gl. (3.13), |u| < 1, äquivalent zu

max
x�Pvx≤1

|k�vx|=
√

k�vDr
vd

−1PDr
vkv < 1, ∀v∈ [ε,1],

und folglich zu

k�vDr
vPDr

vkv < d, ∀v∈ [ε,1]. (3.26)

Der Term auf der linken Seite der Gl. (3.26) ist weiterhin äquivalent zu

k�vDr
vPDr

vkv = (D−r
v â − a)�Dr

vPDr
v(D−r

v â − a)
= (â −Dr

va)�P(â −Dr
va)

= (â −Dwa)�P(â −Dwa), w := vr.

Folglich garantiert Gl. (3.20), dass die Stellgrößenbeschränkung eingehal-
ten ist, d.h. |u| < 1, ∀x ∈ EΔ(w), w ∈ [εr,1].
i) ⇒ ii) Falls i) gilt, dann ist das Gebiet EΔ(1) kontraktiv invariant

für das System ẋ = (A− bk�1)x und die Funktion V (x) := x�P1x ist eine
gültige Ljapunov-Funktion des Systems. Folglich ist dieses System (global)
asymptotisch stabil. Für P := P−1

1 
 0 folgt

(A− bk�1)P+P(A− bk�1)�≺ 0. (3.27)

7)Dies folgt unmittelbar aus dem Satz 2.3.
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Sei B⊥ ∈ R(n−1)×n eine Basis für den Nullraum von b, sodass B⊥b = 0
und B⊥(B⊥)�
 0 gilt. Nach Multiplizieren der Gl. (3.27) mit der Matrix
B⊥ (von links) und der Matrix (B⊥)� (von rechts) folgt, dass

B⊥(A− bk�1)P(B⊥)�+B⊥P(A− bk�1)�(B⊥)�

= B⊥(AP+PA�)(B⊥)�≺ 0. (3.28)

Da dies nicht offensichtlich ist, wird im Folgenden eine kurze Erklärung
hinzugefügt. Weil B⊥(B⊥)�
 0 gilt, und dies äquivalent zu dem Fakt ist,
dass Rang(B⊥) = Rang(B⊥(B⊥)�) = n− 1 ist, folgt, dass ein Vektor d ∈
Rn
∗ existiert, sodass die Matrix S :=

[
d (B⊥)�

]� ∈ Rn×n nichtsingulär
ist. Unter Verwendung der Notation

M := (A− bk�1)P+P(A − bk�1)�

folgt dann aus Gl. (3.27), dass

SMS�=
[
d�
B⊥

]
M
[
d (B⊥)�

]
=
[
d�Md d�M(B⊥)�
B⊥Md B⊥M(B⊥)�

]
≺ 0

gilt. Daraus folgt unmittelbar Gl. (3.28), welche der unteren rechten Ecke
dieser Blockmatrix entspricht.8)
Aufgrund von Finslers’ Theorem9) ist Gl. (3.28) weiterhin äquivalent zu

dem Sachverhalt, dass ein Skalar μ ∈ R existiert, sodass

AP+PA�≺ μbb�,

mit

μ > d�
[
Q−Q(B⊥)�(B⊥Q(B⊥)�)−1B⊥Q

]
d,

Q := AP+PA�,

d� := |br|−1b+
l , br ∈ R\{0}, b+

l ∈ R
1×n,

wobei das Tupel (bl, br) eine Voll-Rang-Faktorisierung des Vektors b ist.10)
Schließlich folgt Gl. (3.15) nach der Skalierung der Matrix P mit einem
μ̃ > max{0,μ}.
8)Vgl. [8, Prop. 8.2.4].
9)Vgl. [68, Theorem 2.3.10].

10)Vgl. Def. 20 (Anhang).
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22 3 Die klassische WSVR mittels iLF

Darüber hinaus sind die Gebiete EΔ(v) verschachtelt, d.h. EΔ(v2) ⊂
EΔ(v1), ∀ 0 < v2 < v1 ≤ 1 und ∂EΔ(v1) ∩ ∂EΔ(v2) = ∅.11) Dies bedeu-
tet, dass für x ∈ ∂EΔ(v1) folgt, dass gΔ(x,v2) > 0 und gΔ(x,v1) = 0, und
daher dass

gΔ(x,v2) > gΔ(x,v1), ∀ 0 < v2 < v1 ≤ 1,x ∈ ∂EΔ(v1).

Folglich ist

∂gΔ(x,v)
∂v

= r

v
x�D−r

v (NP−1 +P−1N)D−r
v x

< 0, ∀x ∈ EΔ(v) und v ∈ (0,1].

Es folgt auch, dass x�(NP−1 + P−1N)x < 0, ∀x ∈ EΔ(1). Zudem ist
(kx)�(NP−1 + P−1N)(kx) < 0, ∀k ∈ R, x ∈ EΔ(1), d.h. die Matrix
NP−1 + P−1N ist negativ definit. Nach Links- und Rechtsmultiplizie-
ren der Matrix mit der nichtsingulären Matrix P folgt schließlich auch
Gl. (3.16). Daher sind die Bedingungen aus Gl. (3.14)-(3.16) auch not-
wendig für die Existenz einer weichen strukturvariablen Regelung mittels
impliziter Ljapunov-Funktionen.

Transformation der Bedingung aus Gl. (3.20) in eine LMI

Gl. (3.20) kann in eine äquivalente parameterunabhängige LMI transfor-
miert werden. Die Transformation basiert auf Lemma 4.4 aus [78], das eine
Generalisierung der in [38] vorgestellten S -Prozedur verwendet. Dabei wird
gezeigt, dass Gl. (3.20) ein Matrixpolynom in der Variablen w ∈ [εr,1] ist,
welches in ein weiteres Matrixpolynom in der Variablen z ∈ [−1,1] trans-
formiert werden kann. Darauf basierend wird eine parameterunabhängige
LMI-Bedingung eingeführt, welche notwendig und hinreichend dafür ist,
dass das letzte Matrixpolynom positiv für alle z ∈ [−1,1] ist. Dies wird im
Folgenden gezeigt.
Da P ∈ Pn, ist Gl. (3.20) äquivalent zu12)

Mw :=
[

P−1 â −Dwa
(â −Dwa)� d

]

 0, ∀w ∈ [εr,1]. (3.29)

11)Vgl. Def. 15 (Anhang).
12)Vgl. [8, Fact 8.15.5].
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Die Matrix Mw kann in Form eines Matrixpolynoms geschrieben werden,
d.h.

Mw =
n∑

i=0
wiMi, Mi ∈ Symn+1 , w ∈ [εr,1], (3.30)

mit

M0 =
[
P−1 â
â� d

]
,

Mi = −
[
0n,n In
a� 01,n

] [
eie�i 0n,n

0n,n eie�i

] [
In 0n,1
0n,n a

]
, i = 1, . . . ,n,

wobei e�i = [0, . . . ,1, . . . ,0], mit ei(i) = 1, der i-te kanonische Einheitsvektor
ist. Eine zweite Variablensubstitution mit z := 1

αw − β
α , wobei α := (1 −

εr)/2 und β = (1+ εr)/2, wird angewandt, um das Intervall w ∈ [εr,1] auf
das Intervall z ∈ [−1,1] abzubilden. Folglich ist das Matrixpolynom aus
Gl. (3.30) äquivalent zu

Mz =
n∑

i=0
(αz + β)iMi =

n∑
i=0

⎛
⎝ i∑

j=0

(
i

j

)
zi−jαi−jβj

⎞
⎠Mi

=
n∑

k=0
zkM̃k, M̃k ∈ Symn+1 , z ∈ [−1,1], (3.31)

mit

M̃k =
n∑

i=k

(
i

k

)
αkβi−kMi. (3.32)

Das Matrixpolynom in Gl. (3.31) kann darüber hinaus geschrieben werden
als

Mz =
(
z[k+1] ⊗ In

)�
MΣ

(
z[k+1] ⊗ In

)
,

mit MΣ ∈ Sym(k+1)(n+1) , z ∈ [−1,1], k = �n/2�,13) sowie z[k+1] =[
1 z · · · zk

]�, wobei MΣ eine symmetrische Tridiagonalmatrix mit den
13)�m� ist die kleinste ganze Zahl, die größer oder gleich m ist.
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24 3 Die klassische WSVR mittels iLF

Elementen14)

MΣ(i,j)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̃2(i−1), i = j ≤ k,

M̃2k, i = j = k + 1, k = gerade,
0n+1,n+1, i = j = k + 1, k = ungerade,
1
2M̃2(l−1)+1, |i− j| = 1, l = min{i,j},
0n+1,n+1, |i− j| > 1.

ist. Gl. (3.29) ist daher äquivalent zu(
z[k+1] ⊗ In

)�
MΣ

(
z[k+1] ⊗ In

)

 0, (3.33)

z[k+1] =
[
1 z · · · zk

]�
, ∀ z ∈ [−1,1].

Gl. (3.33) ist dann und nur dann erfüllt, wenn15) zwei Matrizen D ∈ Pnk

und G ∈ Skewnk existieren, sodass

MΣ 

[
C
J

]�[−D G
G D

] [
C
J

]
, (3.34)

mit C = [Ik 0k,1] ⊗ In und J = [0k,1 Ik] ⊗ In gilt. Gl. (3.34) stellt
eine parameterunabhängige LMI-Bedingung dar, welche notwendig und
hinreichend für die Bedingung aus Gl. (3.20) ist.

3.3 Regelungsentwurf
Die in Abschnitt 3 vorgestellten Regelgesetze können durch folgende
Schritte entworfen werden:

Schritt 1a Löse das Validierungsproblem (3.14)-(3.16).

Schritt 2a Für die resultierende Matrix P und einen frei gewählten Para-
meter ε ∈ (0,1), wähle einen Skalar d > b�P−1b/4 um das größte
erzielte Einzugsgebiet GΔ(1) zu bestimmen und einen Skalar ν ∈ (0,1)
um die lineare Region der Sättigung L(uf ,1) zu bestimmen.

14)MΣ(i,j) bezeichnet eine Matrix in der i-ten Zeile und j-ten Spalte der Blockmatrix
MΣ.

15)Vgl. [78, Lemma 4.4].
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3.3 Regelungsentwurf 25

Schritt 3a Löse das Optimierungsproblem (3.20) mit Hilfe des Bisektions-
verfahrens16), um ein Skalar r ∈ (0,1] zu finden.

Schritt 4a Verwende das resultierende nichtsättigende Regelgesetz uf in
der Form gegeben in Gl. (3.12) und (3.17), mit den Parametern P,
d, ν, and r aus den vorherigen Schritten.

Ein Beispiel eines solchen Reglers wird im Abschnitt 5.5 vorgestellt. Zu-
sammenfassend kann man feststellen, dass die im Satz 3.1 vorgestellten
nicht-konservativen Stabilitätsbedingungen der klassischen WSVR mittels
iLF, so wie sie im Abschnitt 3.1 definiert wurde, einen nicht-konservativen
Regler erzielen. Wären die oben genannten Bedingungen nicht erfüllt, so
würde keine klassische WSVR mittels iLF existieren, die die untersuchte
Regelstrecke stabilisieren würde. Eine Verbesserung des Ausregelverhal-
tens dieser nicht-konservativen klassischen WSVR mittels iLF wird im
Kapitel 5 vorgestellt. Im nächsten Kapitel wird aber erstmals eine Wei-
terentwicklung der klassischen WSVR bezüglich der Selektionsstrategie
vorgestellt.

16)Vgl. [17, Algorithm 4.1].
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4 Die invers-polynomiale WSVR

Bei der in diesem Abschnitt analysierten Klasse von WSVR ergibt sich der
Parameterwert aus einer Selektionsstrategie, die durch Inverse von polyno-
mialen Matrizen definiert ist. Ein Vorläufer dieser Klasse von WSVR wur-
de in [40] eingeführt. Darin wurden hinreichende Stabilisierbarkeitsbedin-
gungen linearer Systeme mit Stellgrößenbeschränkung durch WSVR mit-
tels impliziter Ljapunov-Funktionen (iLF) und polynomialer1) Selektions-
strategien vorgestellt. Bei der in diesem Abschnitt vorgestellten Regelme-
thode stellt der implizite Parameter v darüber hinaus keine implizite
Ljapunov-Funktion des Systems mehr dar.
Außerdem kann diese Methode im Gegensatz zur klassischen WSVR auf

Systeme in beliebiger Form direkt angewendet werden, d.h. die Systeme
müssen nicht vorerst in die Steuerungsnormalform transformiert werden.
Für lineare Systeme mit nur einer Eingangsgröße stellt dies keinen Vor-
teil dar, da jedes lineare System in die Steuerungsnormalform transfor-
miert werden kann. Bei Mehrgrößensystemen existieren zwar auch Nor-
malformen, jedoch ist der Entwurf der klassischen WSVR deutlich schwie-
riger, vgl. [32, 40]. Da die Transformation in die Steuerungsnormalform
nicht mehr notwendig ist, kann eine Ausdehnung der invers-polynomialen
WSVR auf Mehrgrößensysteme wahrscheinlich leichter erfolgen, vgl. auch
[36] für eine ähnliche WSVR für Mehrgrößensysteme.
Die Inversion der polynomialen Matrix, welche die Selektionsstrategie

bestimmt, hat zur Folge, dass die Stabilitätsbedingungen, welche im Fol-
genden vorgestellt werden, nicht nur notwendig und hinreichend sind, son-
dern auch polynomiale Matrizen darstellen. Dies stellt einen wesentlichen
Vorteil dar, da die Definitheit einer polynomialen Matrix mittels einer
Äquivalenztransformation durch die Definitheit einer konstanten Matrix
überprüft werden kann, d.h. in Form einer linearen Matrixungleichung
(LMI) formuliert werden kann.
Dieses Kapitel ist wie folgt gegliedert: im Abschnitt 4.1 wird die invers-

polynomiale WSVR definiert und im Abschnitt 4.2 werden nicht-konser-

1)Die Selektionsstrategie ist auch in diesem Fall eine quadratische Gleichung der Form
x�P(v)x = 1. Dabei ist jedoch P(v) eine polynomiale Matrix in v.
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4.1 Definition einer stabilisierenden invers-polynomialen WSVR 27

vative Stabilitätsbedingungen vorgestellt. Das Kapitel endet mit dem Ab-
schnitt 4.3 über mögliche Entwurfsschritte.

4.1 Definition einer stabilisierenden
invers-polynomialen WSVR

Wie in den vorherigen Abschnitten betrachten wir LTI-Systeme mit einer
Eingangsgröße und Stellgrößenbeschränkung, gegeben durch

ẋ = Ax + bu, x ∈ R
n, u ∈ R, |u| ≤ 1. (4.1)

Die allgemeine Form der im nächsten Abschnitt analysierten WSVR mit
invers-polynomialer Selektionsstrategie ist2)

u = −k�vx, (4.2)

wobei der Parameter v ∈ [ε,1], mit ε ∈ (0,1), für ein gegebenes x ∈ Rn
∗

durch die Gleichung

gP(x,v) := x�R−1
v x− 1 = 0, Rv :=

Mu∑
i=Ml

viRci , (4.3)

mit Ml ,Mu ∈ Z, Ml < 0, Ml ≤ Mu und Rv 
 0, ∀ v ∈ [ε,1], bestimmt
wird. Dabei ist Rv eine polynomiale Matrix.3)
Das Regelgesetz aus Gl. (4.2)-(4.3) für das System aus Gl. (4.1) heißt sta-

bilisierende WSVR mit invers-polynomialer Selektionsstrategie (oder kurz
invers-polynomiale WSVR), wenn die Gebiete

EP(v) := {x ∈ R
n|gP(x,v) < 0} (4.4)

für alle v ∈ [ε,1] verschachtelt und kontraktiv invariant sind,4) und |u(x)| ≤
1, ∀x ∈ EP(v), v ∈ [ε,1] gilt.

2)Der Übersichtlichkeit halber stellt in dieser Arbeit der Index v eine Notation dar.
Diese bedeutet, dass der Vektor kv eine Vektorfunktion in v darstellt, d.h. kv :=
k(v).

3)Strenggenommen handelt es sich um Laurent-Polynome, welche auch negative Ex-
ponenten zulassen. Diese Unterscheidung spielt jedoch im Weiteren keine Rolle.

4)Vgl. Def. 15 (Anhang) bzw. Def. 14 (Anhang).
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28 4 Die invers-polynomiale WSVR

4.2 Nicht-konservative
Stabilitätsbedingungen

Der folgende Satz mitsamt einer konstruktiven Beweismethode stellt die
notwendigen und hinreichenden Bedingungen für die Existenz einer sta-
bilisierenden weichen strukturvariablen Regelung mit invers-polynomialer
Selektionsstrategie dar. Für eine beliebige lineare Strecke mit einer Ein-
gangsgröße und Stellgrößenbeschränkung ergibt sich daraus (im Existenz-
fall) ein stabilisierendes Regelgesetz. Dieses kann z.B. verwendet werden,
wenn eine beliebige stabilisierende Regelung für die Initialisierung eines
Optimierungsalgorithmus gesucht wird. Der Satz wurde zum ersten Mal
in [60] vorgestellt.

Satz 4.1 Gegeben sei das folgende LTI-System mit einer Eingangsgröße
und Stellgrößenbeschränkung

ẋ = Ax + bu, x ∈ R
n, u ∈ R, |u| ≤ 1, (4.5)

sowie eine reelle Zahl ε ∈ (0,1). Folgende Aussagen sind äquivalent:
i) Es existieren die ganzen Zahlen Ml ,Mu ∈ Z, mit Ml < 0, Ml ≤ Mu,

die Matrizen Rci ∈ Symn, mit i = Ml , . . . ,Mu, sowie eine rationale Vek-
torfunktion kv : [ε,1]→ Rn, sodass für alle v ∈ [ε,1] die Gebiete

EP(v) := {x ∈ R
n|gP(x,v) < 0}, (4.6)

mit

gP(x,v) := x�Qvx− 1, (4.7)
Qv := R−1

v ,

Rv :=
Mu∑

i=Ml

viRci 
 0, ∀ v ∈ [ε,1],

für das System aus Gl. (4.5) mit dem Regelgesetz

u = −k�vx, kv : [ε,1]→ R
n, (4.8)
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4.2 Nicht-konservative Stabilitätsbedingungen 29

verschachtelt und kontraktiv invariant sind, und

|u(x)| ≤ 1, ∀x ∈ EP(v), v ∈ [ε,1], (4.9)

gilt.
ii) ∃ ml , mu ∈ Z, mit ml < 0, ml ≤ mu, sowie die Matrizen Pci ∈

Symn, i = ml , . . . ,mu, sodass für jedes v ∈ [ε,1] gilt

Pv =
mu∑

i=ml

viPci 
 0, (4.10)

∂vPv =
mu∑

i=ml

ivi−1Pci 
 0, (4.11)

APv +PvA�≺ bb�. (4.12)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch

k�v = cb�P−1
v , Rv = d−1Pv, (4.13)

sowie
d

c2
≥ b�P−1

ε b > 0, c >
1
2 . (4.14)

Bemerkung 4.1. Die Parameter d und c skalieren wie im vorigen Kapitel
die kontraktiv invarianten Ellipsoide gegeben durch Pv bzw. den linearen
Bereich der Sättigung, sodass dieser die kontraktiv invarianten Gebiete
beinhaltet.5) �
Bemerkung 4.2. Die parameterabhängigen Bedingungen aus Gl. (4.10)-
(4.12) stellen polynomiale Matrizen in v ∈ [ε,1] dar und können in äqui-
valente parameterunabhängige LMIs transformiert werden. Die hier ver-
wendete Transformation wurde in [77] vorgestellt. Sie beruht auf der ver-
allgemeinerten S -Prozedur aus [38]. In [40, Anhang A.4] werden auch ein-
fache Matlab-Funktionen zur Verfügung gestellt, mit denen man solche
Bedingungen in äquivalente parameterunabhängige LMIs transformieren
kann. �
Bemerkung 4.3. Der Übersichtlichkeit halber wird der Beweis, der weiter
unten erfolgt, vorerst kurz skizziert. Mit Hilfe des Satzes 2.3 aus [2] wird
erstens bewiesen, dass die Bedingungen (4.10)-(4.12), unter Verwendung

5)Vgl. Bemerkung 3.1.
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30 4 Die invers-polynomiale WSVR

des Regelgesetzes aus Gl. (4.8), (4.13)-(4.14), hinreichend dafür sind, dass
die ellipsoidalen Gebiete EP(v) aus Gl. (4.6) verschachtelt und kontrak-
tiv invariant sind. Die Notwendigkeit der Bedingungen (4.10)-(4.12) wird
anschließend mit Hilfe von Finsler’s Lemma, vgl. Satz A.5 (Anhang), ge-
zeigt. �

Beweis. ii)⇒ i) Für den Beweis wird folgende Notation verwendet:

Av := A− cbb�P−1
v .

Aus Gl. (4.12) folgt, dass

AvPv +PvA�
v = APv +PvA�− 2cbb�

≺ APv +PvA�− bb�≺ 0, ∀ v ∈ [ε,1], (4.15)

da c > 0.5 ist. Durch Links- und Rechtsmultiplizieren der Gl. (4.15) mit
der positiv definiten Matrix P−1

v ergibt sich

P−1
v Av +A�

vP−1
v ≺ 0, ∀ v ∈ [ε,1]. (4.16)

Aus Qv = R−1
v = dP−1

v folgt, dass eine Umgebung U0 ⊆ Bδ(0) der
Ruhelage existiert, sodass für die zeitliche Änderung der Funktion gP(x,v)
aus Gl. (4.7) entlang einer Trajektorie des Systems ẋ = Avx6)

∂tgP(x(t),v) = x�(A�
vQv +QvAv)x < 0, ∀ (x,v) ∈ V(ε), (4.17)

mit
V(ε) := {(x,v)|x ∈ U0\{0} ⊆ Bδ(0), ε < v < 1}

gilt. Aus Gl. (4.17) folgt, dass Bedingung (iv) des Satzes 2.3 für alle (x,v) ∈
V(ε) erfüllt ist. Darüber hinaus gilt

∂vQv = ∂v(dP−1
v ) = −dP−1

v (∂vPv)P−1
v ≺ 0, ∀ v ∈ [ε,1],

d.h.

−∞ < ∂vgP(x,v) = x�(∂vQv)x < 0, ∀ (x,v) ∈ V(ε). (4.18)

Aus Gl. (4.18) folgt, dass die Bedingung (iii) des Satzes 2.3 für alle (x,v) ∈
V(ε) erfüllt ist.
6)Die Ableitung wird in abgekürzter Form durch ∂tgP(x(t),v) bezeichnet, d.h.
∂tgP(x(t),v) := ∂g(x,v)

∂x ẋ.
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Die Bedingung (ii) ist darüber hinaus für alle x ∈ EP(1)\EP(ε) erfüllt,
da

lim
v→1−

gP(x,v) = gP(x,1) < 0, ∀x ∈ EP(1)\EP(ε),

lim
v→ε+

gP(x,v) = gP(x,ε) > 0, ∀x ∈ EP(1)\EP(ε).

Die Bedingungen (ii) und (iii) stellen sicher, dass die Gleichung gP(x,v) =
0 eine eindeutige Lösung für jedes x ∈ EP(1)\EP(ε) hat, welche eine stetige
Funktion v = v(x) für ε < v < 1 ist. Darüber hinaus stellt die Funktion

VP(x) :=
{
v(x), mit gP(x,v) = 0, x ∈ EP(1)\EP(ε),
εx�Qεx, x ∈ EP(ε)

(4.19)

eine Ljapunov-Funktion des Systems dar. Dies folgt aus der Anwendung
der direkten Methode von Ljapunov.7) Dabei gilt VP(0) = 0, sowie VP(x) >
0 für alle x ∈ EP(1)\{0}. Darüber hinaus gilt auf Grund der Bedingungen
(iii) und (iv) V̇P(x) < 0 für alle x ∈ EP(1)\EP(ε), sowie auf Grund der Gl.
(4.16) V̇P(x) < 0 für alle x ∈ EP(ε)\{0}. Folglich ist die Ruhelage xR = 0
asymptotisch stabil und die Gebiete EP(v) für alle v ∈ [ε,1] verschachtelt
und kontraktiv invariant.
Die Bedingung aus Gl. (4.9) bezüglich der Stellgrößenbeschränkung ist

äquivalent zu

|u(x)| ≤ max
x�Qvx<1

|k�vx| =
√

k�vQ−1
v kv = c

√
b�P−1

v d−1PvP−1
v b

= c
√
d−1b�P−1

v b ≤ 1, ∀ v ∈ [ε,1],

und, folglich, zu
b�P−1

v b ≤ d

c2
, ∀ v ∈ [ε,1]. (4.20)

Da ∂vPv 
 0, ∀ v ∈ [ε,1], folgt, dass mit steigendem v die Matrixfunktion
Pv monoton steigend ist, d.h. für alle ε ≤ v1 < v2 ≤ 1 gilt Pv1 ≺ Pv2 .
Somit ist die Matrixfunktion P−1

v monoton fallend,8) d.h. für alle ε ≤
v1 < v2 ≤ 1 gilt P−1

v1 
 P−1
v2 . Daraus folgt, dass die Matrixfunktion

7)Vgl. z.B. [3].
8)Dies gilt weil ∂v(P−1

v ) = −P−1
v (∂vPv)P−1

v ≺ 0, ∀ v ∈ [ε,1].
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32 4 Die invers-polynomiale WSVR

b�P−1
v b ebenfalls monoton fallend ist, d.h. für alle ε ≤ v1 < v2 ≤ 1 gilt

b�P−1
v1 b > b�P−1

v2 b.9) Folglich gilt

b�P−1
v b ≤ b�P−1

ε b, ∀ v ∈ [ε,1].

und daher
b�P−1

v b ≤ b�P−1
ε b ≤ d

c2
, ∀ v ∈ [ε,1],

d.h. Gl. (4.9) ist erfüllt.
i) ⇒ ii) Falls i) gilt, dann ist für jedes v ∈ [ε,1] das jeweilige Gebiet

EP(v) kontraktiv invariant für das entsprechende System ẋ = (A−bk�v)x.
Die Funktion W (x) := x�Qvx ist dabei eine gültige Ljapunov-Funktion
des Systems, d.h.

(A− bk�v)�Qv +Qv(A− bk�v) ≺ 0, ∀ v ∈ [ε,1],

und das System ist global asymptotisch stabil. Für

Pv = Q−1
v (4.21)

folgt
(A− bk�v)Pv +Pv(A− bk�v)�≺ 0, ∀ v ∈ [ε,1]. (4.22)

Sei B⊥ ∈ R(n−1)×n eine Basis für den Nullraum von b, sodass B⊥b = 0
und B⊥(B⊥)� 
 0 gilt. Nach Multiplizieren der Gl. (4.22) mit B⊥ (von
links) und (B⊥)� (von rechts) folgt, dass10)

B⊥(A− bk�v)Pv(B⊥)�+B⊥Pv(A− bk�v)�(B⊥)�

= B⊥(APv +PvA�)(B⊥)�≺ 0, ∀ v ∈ [ε,1].

Dies ist äquivalent zu dem Sachverhalt, dass für jedes v ∈ [ε,1] ein Skalar
μv ∈ R existiert,11) sodass

APv +PvA�≺ μvbb�,

mit

μv > d�
{
Lv − Lv(B⊥)�[B⊥Lv(B⊥)�]−1B⊥Lv

}
d,

Lv = APv +PvA�,

d� := |br|−1b+
l , br ∈ R\{0}, b+

l ∈ R
1×n,

9)Vgl. [8, Proposition 8.6.13, xv)].
10)Vgl. [8] oder die Ausführung auf Seite 20.
11)Vgl. Finsler’s Lemma, [68, Theorem 2.3.10].
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wobei das Tupel (bl,br) eine Voll-Rang-Faktorisierung des Vektors b ist.
Gl. (4.12) folgt durch Skalierung der Matrix Pv durch einen Skalar

μ > max
{
0, max

v∈[ε,1]
μv

}
.

Darüber hinaus sind die Gebiete EP(v) verschachtelt, d.h.

EP(v2) ⊂ EP(v1), ∀ ε ≤ v2 < v1 ≤ 1,
EP(v2) ∩ EP(v1) = ∅, ∀ ε ≤ v2 < v1 ≤ 1.

Dies bedeutet, dass für x ∈ ∂EP(v1), gP(x, v1) = 0 und gP(x, v2) > 0,
∀ ε ≤ v2 < v1 ≤ 1, folgt und daher, dass

gP(x, v2) > gP(x, v1), ∀ ε ≤ v2 < v1 ≤ 1, x ∈ ∂EP(v1)

gilt. Folglich gilt

∂vgP(x,v) = x�(∂vQv)x < 0, ∀x ∈ ∂EP(v), v ∈ [ε,1],

und somit ∂vQv ≺ 0, ∀ v ∈ [ε,1]. Daraus folgt, dass

∂vPv = ∂v(Q−1
v ) = −Q−1

v (∂vQv)Q−1
v 
 0,∀ v ∈ [ε,1],

d.h. es folgt Gl. (4.11).
Gl. (4.10), d.h. Pv 
 0, folgt aus Gl. (4.21), wobei die polynomiale Form

der Matrix Pv durch
Pv = Q−1

v = Rv

sichergestellt ist.
Die Bedingungen (4.10)-(4.12) sind somit auch notwendig für die Exis-

tenz einer WSVR mit invers-polynomialen Selektionsstrategien.

Die Sätze 3.1 und 4.1 stellen also die hinreichenden und notwendigen Be-
dingungen für die Existenz einer stabilisierenden WSVR mittels impliziter
Ljapunov-Funktionen bzw. mittels invers-polynomialer Selektionsstrate-
gien dar. Die Stabilisierbarkeitsbedingungen sind somit nicht-konservativ.
Die damit entworfenen Regelgesetze können als Startwerte für eine Regler-
optimierung verwendet werden. Dies wird im Kapitel 5 für den Fall der
Maximierung der Konvergenzrate gezeigt.
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34 4 Die invers-polynomiale WSVR

4.3 Regelungsentwurf
Das im vorigen Abschnitt vorgestellte Regelgesetz kann durch folgende
Schritte entworfen werden:

Schritt 1b Löse das Validierungsproblem (4.10)-(4.12).

Schritt 2b Verwende das resultierende nichtsättigende Regelgesetz u in
der Form gegeben in Gl. (4.8) und (4.13), mit den Parametern d und
c aus Gl. (4.14).

Bemerkung 4.4. Das Validierungsproblem aus Schritt 1 beinhaltet keine
Bedingungen bezüglich der Größe des Ellipsoids. Möchte man vermeiden,
dass das Validierungsproblem ein zu kleines Ellipsoid erzeugt, so kann man
weitere Bedingungen einführen. Beispielsweise kann man zusätzlich for-
dern, dass P−1

1 ≺ C, wobei die Matrix C ∈ Symn eine vorgegebene Matrix
ist. Damit stellt man sicher, dass das Volumen des Ellipsoids ∂E(1) größer
als das Volumen eines vorgegebenen Ellipsoids ∂E0 := {x ∈ Rn|x�Cx < 1}
ist. Erzielen kann man dies durch die zusätzliche LMI[

P1 In
In C

]

 0.

�
Ein Beispiel eines solchen Reglers wird im Abschnitt 5.5 vorgestellt. Das
Regelgesetz aus Schritt 2 wird nicht notwendigerweise zu einem schnellen
Ausregelverhalten führen. Aufgrund der Nicht-Konservativität der Bedin-
gungen des Validierungsproblems aus Punkt 1, stellt dieses Regelgesetz
jedoch sicher, dass für die analysierte Strecke überhaupt ein Regelgesetz
dieser Klasse existiert. Dieses kann auch als Startregler für einen Opti-
mierungsalgorithmus verwendet werden. Dies wird im nächsten Kapitel
vorgestellt.
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5 Die Konvergenzoptimale
(Bang-Bang) WSVR

Wie in [35] gezeigt, kann man eine untere Grenze der Konvergenzrate eines
nichtlinearen Systems anhand der Abklingrate (entlang der Trajektorien
des Systems) einer für das System gültigen Ljapunov-Funktion untersu-
chen. In diesem Kapitel wird das Regelgesetz bestimmt, das diese Abklin-
grate maximiert. Das resultierende Regelgesetz ist dabei ein Bang-Bang-
Regelgesetz mit einer parameterabhängigen Selektionsstrategie.
Unter der Voraussetzung, dass eine Selektionsstrategie

gu(x,v) := x�Qvx− 1 = 0

eine eindeutige und stetige Lösung v(x) : U0\{0} → (ε,1) für jedes x ∈
U0\{0} aus einer Umgebung der Ruhelage hat, kann diese Umgebung in
die ellipsoidalen Gebiete

Eu(v) := {x ∈ R
n|x�Qvx < 1}

geteilt werden, wobei dem Rand jedes Gebiets ein eindeutiges v ∈ (ε,1)
zugewiesen wird. Somit kann für die Optimierung der Konvergenzrate des
Gesamtsystems die Funktion

Vu(x) :=
{
v(x), mit gu(x,v) = 0, x ∈ Eu(1)\Eu(ε)
εx�Qεx, x ∈ Eu(ε)

(5.1)

verwendet werden. Diese Funktion ist für alle x ∈ Eu(1)\{0} positiv definit.
Entlang einer Trajektorie des Systems aus Gl. (4.1), Seite 27, gilt dabei

V̇u(x,u) =
{
Vu,1(x,u), x ∈ Eu(1)\Eu(ε)
Vu,2(x,u), x ∈ Eu(ε)\{0}

mit

Vu,1(x,u) = −x�(A�Qv +QvA)x + 2x�Qvbu
x�(∂vQv)x

,

Vu,2(x,u) = εx�(A�Qε +QεA)x + 2x�Qεbu.
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36 5 Die Konvergenzoptimale (Bang-Bang) WSVR

Daraus folgt, dass für jedes x ∈ Eu(1)\{0}

arg min
|u|≤1

V̇u(x,u) = − sgn(b�Qvx)

gilt, d.h., dass das Regelgesetz, das die Funktion V̇u(x,u) in jedem Punkt
x ∈ Eu(1)\{0} minimiert, ein Bang-Bang-artiges Regelgesetz mit einer
parameterabhängigen Umschaltstrategie ist. Die Stabilitätsbedingungen
dieses Regelgesetzes werden in Abschnitt 5.1 analysiert. Dabei wird er-
sichtlich, dass die Existenz eines stabilisierenden beschränkten Reglers,
wie z.B. in Abschnitt 4.2 bestimmt, notwendig und hinreichend für die
Stabilität der konvergenzoptimalen Regelung ist. Der Entwurf der konver-
genzoptimalen Regelung ist also auch nicht-konservativ. Jedoch hat die
Unstetigkeit des Regelgesetzes Nachteile in einer praktischen Implemen-
tierung, beispielsweise durch die ununterbrochene Aktivität des Reglers
aufgrund unvermeidbaren Rauschens. Daher wird eine stetige Approxima-
tion des konvergenzoptimalen Regelgesetzes in Abschnitt 5.2 untersucht,
welche auf Kosten einer geringeren Konvergenzrate einen stetigen Verlauf
erzielt.
Das Hauptergebnis dieses Kapitels ist im Abschnitt 5.1 enthalten. Dar-

in werden (nicht-konservative) Stabilitätsbedingungen der Bang-Bang-
WSVRs vorgestellt. Anschließend wird eine stetige Approximation des
konvergenzoptimalen Regelgesetzes im Abschnitt 5.2 und die jeweiligen
Entwurfsschritte im Abschnitt 5.4 vorgestellt. Das Kapitel endet mit dem
Abschnitt 5.5, in dem zwei Beispiele die neu-entwickelte Regelungsmetho-
de veranschaulichen.

5.1 Nicht-konservative
Stabilitätsbedingungen

Der folgende Satz stellt die notwendigen und hinreichenden Stabilitäts-
bedingungen für das konvergenzoptimale Regelgesetz vor. Dieser Satz ist
ähnlich zu dem Satz aus [37], der die Stabilitätsbedingungen eines konver-
genzoptimalen Reglers mit einer parameterunabhängigen zustandslinea-
ren Umschaltstrategie untersucht. Darüber hinaus stellt dieser Satz eine
Generalisierung des Satzes aus [58] dar, welches die Stabilitätsbedingungen
eines konvergenzoptimalen Reglers mit einer klassischen WSVR1) unter-
1)Vgl. [2].
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5.1 Nicht-konservative Stabilitätsbedingungen 37

sucht. Der hier vorgestellte Satz gilt für beliebige WSVR-Regelgesetze,
welche durch quadratische Selektionsstrategien determiniert werden.
Im Folgenden verwenden wir die Notation

V(ε) := {(x,v) |x ∈ U0\{0}, ε < v < 1},

wobei U0 ⊆ Bδ(0) eine Umgebung der Ruhelage xR = 0 darstellt.

Satz 5.1 Gegeben sei das folgende LTI-System mit einer Eingangsgröße
und Stellgrößenbeschränkung

ẋ = Ax+ bu, x ∈ R
n, u ∈ R, |u| ≤ 1, (5.2)

sowie eine reelle Zahl ε ∈ (0,1). Folgende Aussagen sind äquivalent:
a) Es existiert ein beschränktes Regelgesetz

uf := −f(x,v), |uf | ≤ 1, (5.3)

eine Umgebung U0 ⊆ Bδ(0) der Ruhelage und eine Matrix Qv 
 0, ∀ v ∈
(ε,1), sodass die Funktion

gf (x,v) : V(ε)→ R, gf(x,v) := x�Qvx− 1, (5.4)

für alle (x,v) ∈ V(ε) die Bedingungen (ii) − (iv) des Satzes 2.3 für das
System (5.2) mit dem Regelgesetz (5.3) erfüllt.
b) Es existiert eine Umgebung der Ruhelage U0 ⊆ Bδ(0) und eine Matrix

Qv 
 0, ∀ v ∈ (ε,1), sodass die Funktion

gs(x,v) : V(ε)→ R, gs(x,v) := x�Qvx− 1, (5.5)

für alle (x,v) ∈ V(ε) die Bedingungen (ii) − (iv) des Satzes 2.3 für das
System (5.2) mit dem Regelgesetz

us := −sgn(b�Qvx). (5.6)

erfüllt.
c) Es existiert eine Funktion κv : [ε,1]→ R+, eine Umgebung der Ruhe-

lage U0 ⊆ Bδ(0) und eine Matrix Qv 
 0, ∀ v ∈ (ε,1), sodass die Funktion

gsat(x,v) : V(ε)→ R, gsat(x,v) := x�Qvx− 1, (5.7)
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38 5 Die Konvergenzoptimale (Bang-Bang) WSVR

für alle (x,v) ∈ V(ε) die Bedingungen (ii) − (iv) des Satzes 2.3 für das
System (5.2) mit dem Regelgesetz

usat := −sat(κvb�Qvx), (5.8)

erfüllt.

Beweis. a)⇒ b) Falls a) gilt, dann ist die zeitliche Änderung der Funktion
gs(x,v) entlang einer Trajektorie des Systems (5.2) mit dem Regelgesetz
(5.6)

∂tgs(x(t),v)
= x�(A�Qv +QvA)x − 2|x�Qvb|
= ∂tgf (x(t),v) + 2x�Qvbf(x,v) − 2|x�Qvb|
= ∂tgf (x(t),v) + 2|x�Qvb| ·

[
sgn(x�Qvb)f(x,v) − 1

]
= ∂tgf (x(t),v) +2|b�Qvx| ·

{
−|f(x,v)|−1, sgn(f(x,v)) �=sgn(x�Qvb)
|f(x,v)|−1, sonst

< 0, ∀(x,v) ∈ V(ε),

wobei ∂tgf (x(t),v) die zeitliche Änderung der Funktion gf (x,v) entlang
einer Trajektorie des Systems (5.2) mit dem Regelgesetz (5.3) darstellt und
negativ für alle (x,v) ∈ V(ε) ist. Das bedeutet, dass die Bedingung (iv)
erfüllt ist. Darüber hinaus folgt unmittelbar aus a), dass die Bedingungen
(ii)− (iii) für alle (x,v) ∈ V(ε) für das System (5.2) mit dem Regelgesetz
(5.6) erfüllt sind.
b)⇒ c) Für diesen Teil des Beweises verwenden wir Finsler’s Lemma2).

Sei
sv := Qvb, sv : (ε,1)→ R

n,

mit Rang(sv) = 1, und S⊥
v ∈ R(n−1)×n eine Basis des Nullraums von s�v,

sodass S⊥
v sv = 0 und S⊥

v (S⊥
v )� 
 0.3) Wenn b) gilt, dann folgt aus der

Bedingung (iv) des Satzes 2.3, Seite 11, dass

∂tgs(x(t),v) = x�(A�Qv +QvA)x − 2|x�Qvb| < 0, ∀(x,v) ∈ V(ε).

2)Vgl. [68, Theorem 2.3.10].
3)Eine notwendige und hinreichende Bedingung, dass S⊥

v (S⊥
v )� � 0 gilt, ist, dass

Rang(S⊥
v ) = n − 1 ist. Dies resultiert aus der Tatsache, dass S⊥

v (S⊥
v )� � 0 ⇔

λ(S⊥
v (S⊥

v )�) > 0⇔ Rang(S⊥
v (S⊥

v )�) = Rang(S⊥
v ) = n− 1.
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5.1 Nicht-konservative Stabilitätsbedingungen 39

Für jedes x ∈ N (s�v) := {x ∈ Rn∗ |s�vx = 0} gilt

x�(A�Qv +QvA)x < 0, ∀(x,v) ∈ {(x,v)|x ∈ N (s�v), v ∈ (ε,1)}.

Dabei existiert für jedes x ∈ N (s�v) ein y ∈ Rn−1
∗ , sodass x = (S⊥

v )�y.
Daraus folgt, dass

y�S⊥
v Lv(S⊥

v )�y < 0, ∀(y,v) ∈ {(y,v)|y ∈ R
n−1
∗ , v ∈ (ε,1)}, (5.9)

wobei
Lv := A�Qv +QvA.

Daraus folgt wiederum, dass

S⊥
v Lv(S⊥

v )�≺ 0, ∀ v ∈ (ε,1).

Wir wenden eine Kongruenztransformation der Matrix 2κvsvs�v − Lv an,
wobei μv := 2κv. Sei Tv ∈ Rn×n eine nichtsinguläre Matrix, definiert als

Tv :=
[

dv (S⊥
v )�

]�
mit dem Vektor dv ∈ R

n definiert als d�v := s−1
vr s+vl , wobei das Tupel

(svl ,svr) eine Voll-Rang-Faktorisierung4) des Vektors sv ist.5) Daraus folgt,
dass

Tv(μvsvs�v − Lv)T�
v

=
[

d�v
S⊥

v

]
(μvsvs�v − Lv)

[
dv (S⊥

v )�
]

=
[

d�v(μvsvs�v − Lv)
S⊥

v (μvsvs�v − Lv)

] [
dv (S⊥

v )�
]

=
[

d�v(μvsvs�v − Lv)dv d�v(μvsvs�v − Lv)(S⊥
v )�

S⊥
v (μvsvs�v − Lv)dv S⊥

v (μvsvs�v − Lv)(S⊥
v )�

]

=
[
μv − d�vLvdv −d�vLv(S⊥

v )�
−S⊥

v Lvdv −S⊥
v Lv(S⊥

v )�
]
. (5.10)

4)Vgl. Def. 20 (Anhang).
5)Die Matrix Tv ist nichtsingulär, da N (dv) ∩ N (S⊥

v ) = {0} gilt, vgl. dazu [8, Fakt
2.11.3]. Dies ist ersichtlich aus der Tatsache, dass per Definition S⊥

v sv = 0 gilt, und
daher sv ∈ N (S⊥

v ). Da noch d�
vsv = s�vsv/‖sv‖2 = 1 �= 0,∀v ∈ [ε,1], folgt, dass

sv /∈ N (s�v).
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40 5 Die Konvergenzoptimale (Bang-Bang) WSVR

Da −S⊥
v Lv(S⊥

v )� 
 0, ist die Blockmatrix aus Gl. (5.10) positiv definit
dann und nur dann, wenn für jedes v ∈ (ε,1) ein Skalar μv ∈ R existiert,
sodass6)

μv > d�v
[
Lv − Lv(S⊥

v )�(S⊥
v Lv(S⊥

v )�)−1S⊥
v Lv

]
dv. (5.11)

In diesem Fall ist die Matrix μvsvs�v − Lv auch positiv definit, da beide
Matrizen kongruent7) sind. Für κv = 0.5μv folgt, dass

A�Qv +QvA− 2κvQvbb�Qv ≺ 0.

Daraus folgt, dass die Funktion gsat(x,v) die Bedingung (iv) für das System
(5.2) mit dem Regelgesetz uκ := −κvb�Qvx erfüllt. Da diese Bedingung
auch mit dem beschränkten Regelgesetz us erfüllt ist, folgt c) aus der
Anwendung des Satzes 2 aus [45]. Darüber hinaus folgt unmittelbar aus
b), dass die Bedingungen (ii) − (iii) für alle (x,v) ∈ V(ε) für das System
(5.2) mit dem Regelgesetz (5.8) erfüllt sind.
c)⇒ a) ist offensichtlich.

Korollar 5.2. Für das System aus Gl. (5.2) mit dem Regelgesetz aus Gl.
(5.3), (5.6) oder (5.8) seien die Bedingungen (ii)− (iv) des Satzes 2.3 für
alle (x,v) ∈ V(ε) mit U0 = E�(1)\E�(ε) erfüllt, wobei

E�(v) := {x ∈ R
n|x�Qvx− 1 < 0}. (5.12)

Auf Grund des Satzes 5.1 ist dies z.B. der Fall wenn die Bedingungen
(4.10)-(4.12) aus Satz 4.1 erfüllt sind. Dann ist das Gebiet E�(1) kontrak-
tiv invariant. Darüber hinaus konvergieren die Trajektorien, die in dem
Gebiet starten, asymptotisch gegen die Ruhelage.

Beweis. Man betrachte die Funktion

V�(x) :=
{
v(x), mit g�(x,v) = 0, x ∈ E�(1)\E�(ε),
εx�Qεx, x ∈ E�(ε),

(5.13)

6)Dies resultiert aus der Bedingung, dass das Schur-Komplement von −S⊥
v Lv(S⊥

v )�
bezüglich der Blockmatrix aus Gl. (5.10) positiv definit sein muss, vgl. [8, Proposi-
tion 8.2.4].

7)Vgl. Def. 19 (Anhang).
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wobei die Bezeichnung ( · )� für eins der Symbole ( · )f, ( · )s oder ( · )sat
steht. Dabei gilt

V�(0) = 0, (5.14)
V�(x) > 0, ∀x ∈ E�(1)\{0}, (5.15)
V̇�(x) < 0, ∀x ∈ E�(1)\{0}. (5.16)

Gl. (5.14) folgt aus der Definition der Funktion V�(x) aus Gl. (5.13). Gl.
(5.15) folgt aus v ∈ (ε,1) und Qε 
 0. Für alle x ∈ E�(1)\{0} folgt Gl.
(5.16) aus der kontraktiven Invarianz der Gebiete E�(v) für alle v ∈ [ε,1].
Letzteres folgt aus Satz 2.3 und Korollar 2.4. Somit ist das Ellipsoid E�(1)
kontraktiv invariant8), und die Trajektorien, die in dem Gebiet starten,
konvergieren asymptotisch gegen die Ruhelage.

Schließlich wird die Berechnung der notwendigen Verstärkung κv, bzw. der
unteren Grenze der Funktion μv aus Gl. (5.11), gezeigt.

5.2 Entwurf einer stetigen Approximation
des Regelgesetzes

Die Existenzbedingungen einer stetigen Approximation der Bang-Bang
WSVR wurden in Satz 5.1 vorgestellt. Dabei lautete das stetige Regel-
gesetz

usat = − sat(κvb�Qvx), (5.17)

wobei zur Bestimmung der notwendigen Verstärkung κv eine Basis des
Nullraums der Umschaltstrategie notwendig war. Dieser letzte Schritt, d.h.
die Berechung einer Basis des Nullraums des Vektors sv := Qvb wird im
Folgenden für beide weichen strukturvariablen Regelungen gezeigt.

5.2.1 Klassische WSVR mittels iLF
Im Fall der klassischen WSVR mittels iLF ist die parameterabhängige
Matrix Qv definiert als

Qv := D−r
v Q1D−r

v , Dv := diag(vn, . . . ,v2,v). (5.18)
8)Vgl. Def. 14 (Anhang).
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42 5 Die Konvergenzoptimale (Bang-Bang) WSVR

Eine Basis des Nullraums von s�v = b�Qv, d.h. eine Matrix S⊥
v ∈ R(n−1)×n,

wofür S⊥
v sv = 0 und S⊥

v (S⊥
v )�
 0 gilt, kann aus

S⊥
v Qvb = S⊥

v D−r
v Q1D−r

v b = v−rS⊥
v D−r

v Q1b = v−rS⊥
v D−r

v s1 = 0

berechnet werden. Es ergibt sich

S⊥
v = vrS⊥

1 Dr
v, (5.19)

wobei S⊥
1 ∈ R(n−1)×n eine Basis des Nullraums von s1 ist. Die Matrix S⊥

1
kann aus der Gleichung

S⊥
1 =HU�

2

berechnet werden, wobei die MatrixH ∈ R(n−1)×(n−1) eine beliebige nicht-
singuläre Matrix ist, und die MatrixU2 aus der Singulärwertzerlegung von
s1, d.h. aus

s1 = [U1 U2]
[
σ(s1) 0

]�
. (5.20)

stammt.9) Dies kann man wie folgt erklären. Da die Blockmatrix [U1 U2]
aus Gl. (5.20) unitär ist, folgt, dass U�

2U1 = 0 gilt und dass, S⊥
1 s1 =

HU�
2U1σ(s1) = 0 ist. Da die Matrix U2 auch unitär ist, folgt, dass

Rang(U2) = n−1. Daraus folgt, dass10) Rang(S⊥
1 ) ≥ Rang(H)+Rang(U2)−

(n − 1) und somit, dass Rang(S⊥
1 ) = n − 1. Da ebenfalls Rang(Dr

v) = n,
folgt schließlich, dass Rang(S⊥

v ) = n− 1, und somit, dass S⊥
v (S⊥

v )�
 0.

5.2.2 Invers-polynomiale WSVR
Um die untere Grenze der Funktion μv aus Gl. (5.11) zu berechnen, muss
eine Basis des Nullraums der Umschaltfunktion s�v = b�Qv berechnet wer-
den, wobei Rang(sv) = 1, ∀ v ∈ [ε,1] gilt. Die in diesem Abschnitt analy-
sierte Form der parameterabhängigen Matrix Qv ist

Qv := dR−1
v = d

det(Rv)
RA

v ,

mit d > 0 und

Rv :=
Mu∑

i=Ml

viRci = vMl
l∑

i=0
viRci+Ml


 0, ∀ v ∈ [ε,1], (5.21)

9)Vgl. [68, Theorem 2.1.1].
10)Vgl. [8, Korollar 2.5.10].

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


5.2 Entwurf einer stetigen Approximation des Regelgesetzes 43

wobeiRci ∈ Symn und l := Mu−Ml. In [39, Lemma A.1] wurde eine obere
Grenze des Grades der Adjunkten einer polynomialen Matrix angegeben,
vgl. Lemma A.1 (Anhang). Für die Adjunkte der polynomialen Matrix aus
Gl. (5.21) gilt demnach

RA
v = vMl · (n−1)

(
l∑

i=0
viRci+Ml

)A

= vMl · (n−1)
μ∑

i=0
viNci , Nci ∈ Symn,

mit den konstanten Matrizen Nci , i = 0, . . . ,μ, und

μ ≤ l · min{n− 1,n− q}, q := dim
[

l⋂
i=1

N (Rci+Ml
)
]
.

Folglich gilt

sv =
d · vMl · (n−1)

det(Rv)

μ∑
i=0

visci ,

mit sci := Ncib. Gesucht wird im Weiteren eine polynomiale Matrix S⊥
v ∈

R(n−1)×n, wofür

S⊥
v sv = 0, ∀ v ∈ [ε,1], (5.22)

S⊥
v (S⊥

v )�
 0, ∀ v ∈ [ε,1], (5.23)

gilt. Diese wird in der Form

S⊥
v =

ν∑
i=0

viS⊥
ci , S⊥

ci ∈ R
(n−1)×n, ν > 0, (5.24)

angenommen. Sind die Koeffizienten des PolynomsRA
v bekannt, so können

die Koeffizienten des gesuchten Polynoms aus Gl. (5.24), wie im Folgenden
gezeigt, analytisch berechnet werden. Steht nur die Matrix Q−1

v = d−1 Rv

zur Verfügung, so wie es im Satz 4.1 der Fall ist, so muss vorerst die
Adjunkte der Matrix Rv, d.h. die Matrizen Nci , i = 0, . . . ,μ, berechnet
werden. Diese können z.B. aus [39, Lemmas A.1], vgl. A.1 (Anhang), be-
rechnet werden. Eine Alternative zur Berechnung der Adjunkten RA

v ist
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die numerische Berechnung von S⊥
v . Diese Vorgehensweise wird am Ende

dieses Abschnittes vorgestellt.
ImWeiteren nehmen wir an, dass die MatrizenNci , i = 0, . . . ,μ, bekannt

sind. Durch die Multiplikation der polynomialen Matrizen aus Gl. (5.22)
ergibt sich

S⊥
v sv =

ν∑
i=0

viS⊥
ci

l∑
j=0

vjscj = 0, ∀ v ∈ [ε,1],

da det(Rv) �= 0, ∀ v ∈ (ε,1), sowie d und v strikt positive Zahlen sind.
Diese Gleichung ist offensichtlich erfüllt, wenn alle Koeffizienten des re-
sultierenden polynomialen Vektors null sind. Dies ist äquivalent zu der
Bedingung

[
S⊥

cν · · · S⊥
c0

] ⎡⎢⎣scl · · · sc0 · · · 0
...

. . .
. . .

. . .
...

0 · · · scl · · · sc0

⎤
⎥⎦ = 0,

wobei die konstante Matrix

S :=
[
S⊥

cν · · · S⊥
c0

]
∈ R

(n−1)×n(ν+1) (5.25)

die Koeffizienten des gesuchten Polynoms gruppiert, und die konstante
Matrix

SG :=

⎡
⎢⎣scl · · · sc0 · · · 0

...
. . .

. . .
. . .

...
0 · · · scl · · · sc0

⎤
⎥⎦ ∈ R

n(ν+1)×(l+1+ν),

mit r := Rang(SG), die Koeffizienten der bekannten Umschaltfunktion
gruppiert. Die Bestimmung der Matrix S kann aus der Singulärwertzerle-
gung der Matrix SG gewonnen werden, d.h. aus

S⊥
G = H1U�

2,

wobei die unitäre Matrix U2 ∈ Rn(ν+1)×(ν+1)n−r aus der Zerlegung

SG =
[
U1 U2

] [Σ(SG) 0
0 0

] [
V�

1
V�

2

]
,
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entnommen wird, wobei Σ(SG) := diag(σi(SG)), i = 1, . . . ,min{n(ν +
1), l+ 1+ ν} und σi(SG) die Singulärwerte der Matrix SG darstellen. Um
die gewünschte Dimension der Matrix S⊥

G zu erzielen, kann eine beliebige
nichtsinguläre Matrix H1 ∈ R(ν+1)n−r×(ν+1)n−r gewählt werden, sodass
für die resultierende Matrix S⊥

G ∈ Rn(ν+1)−r×n(ν+1) gilt. Somit ergibt sich

S⊥
GSG = H1U�

2SG = H1U�
2U1Σ(SG)V�

1 = 0,

da U�
2U1 = 0. Dabei gilt noch

n(ν + 1)− r = min{Rang(H1),Rang(U�
2)}

≥ Rang(S⊥
G)

≥ Rang(H1) + Rang(U�
2)− n(ν + 1) + r

= n(ν + 1)− r,

d.h. Rang(S⊥
G) = n(ν+1)−r. Die gesuchte Matrix S ist schließlich gegeben

durch
S = H2S⊥

G, H2 ∈ R
(n−1)×n(ν+1)−r, (5.26)

wobei die MatrixH2 eine beliebige Matrix mit Rang(H2) = min{n−1,(ν+
1)n− r} ist. Es gilt folglich

min{n− 1,(ν + 1)n− r}
= min{Rang(H2),Rang(S⊥

G)}
≥ Rang(S)
≥ Rang(H2) + Rang(S⊥

G)− n(ν + 1) + r

= min{n− 1,(ν + 1)n− r},

d.h. Rang(S) = min{n− 1,(ν+1)n− r}. Für das gesuchte Polynom ergibt
sich

S⊥
v =

[
S⊥

cν · · · S⊥
c0

]⎡⎢⎣v
νIn
...
In

⎤
⎥⎦ = S

⎡
⎢⎣v

νIn
...
In

⎤
⎥⎦ ,

mit S ∈ R(n−1)×n(ν+1), wobei

Rang(S⊥
v ) ≤ min{n− 1,(ν + 1)n− r}.

Eine analytische Form des gesuchten Polynoms steht somit zur Verfügung.
Diese Methode stellt jedoch nicht sicher, dass die Bedingung (5.23) erfüllt
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ist. Dies wäre der Fall, wenn Rang(S⊥
v ) = n−1 wäre. Die Bedingung aus Gl.

(5.23) kann aber in eine LMI transformiert werden. Dies wird im Folgenden
noch gezeigt. Dazu bildet man erstens die Polynommultiplikation

Mv := S⊥
v (S⊥

v )�=
2ν∑
j=0

Mcjv
j ,

wobei

Mcj :=
j∑

i=0
j−ν≤i≤ν

S⊥
ci(S

⊥
cj−i)

�, 0 ≤ j ≤ 2ν.

Gl. (5.23) ist somit äquivalent zu

Mv =
2ν∑
j=0

Mcjv
j 
 0, ∀ v ∈ [ε,1].

Dies ist für ṽ := (1/α)v − β/α, mit α := (1 − ε)/2 und β := (1 + ε)/2,
weiterhin äquivalent zu

M̃ṽ =
2ν∑
j=0

M̃cj ṽ
j 
 0, ∀ ṽ ∈ [−1,1], (5.27)

mit

M̃cj =
2ν∑
i=j

(
i

j

)
αjβi−jMci , 0 ≤ j ≤ 2ν.

Zweitens wird die Matrix M̃ṽ aus Gl. (5.27) in der Form

M̃ṽ = (ṽ[ν+1] ⊗ In)�M̃Σ(ṽ[ν+1] ⊗ In)

mit

M̃Σ :=
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2M̃c0 M̃c1 0 · · · 0

M̃c1 2M̃c2 M̃c3

. . .
...

0 M̃c3 2M̃c4

. . . 0
...

. . .
. . .

. . . M̃c2ν−1
0 · · · 0 M̃c2ν−1 2M̃c2ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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geschrieben. Die Matrix M̃ṽ ist positiv definit für jedes ṽ ∈ [−1,1] dann
und nur dann, wenn zwei Matrizen, D ∈ Pnν und G ∈ Skewnν existieren,
sodass

M̃ṽ 

[
Ĵν ⊗ In
J̌ν ⊗ In

]�[−D G
G� D

] [
Ĵν ⊗ In
J̌ν ⊗ In

]
, (5.28)

Ĵν := [Iν 0ν,1] , J̌ν := [0ν,1 Iν ] ,

gilt.11) Die Bedingung aus Gl. (5.28) ist eine parameterunabhängige LMI
Bedingung, welche numerisch effizient überprüft werden kann.
Zusammenfassend ergibt sich die notwendige Verstärkung κv = 0.5μv

aus Gl. (5.11), mit dem Polynom S⊥
v aus Gl. (5.24), dessen Koeffizienten

in der Matrix S aus Gl. (5.25) gruppiert sind. Die Matrix S kann aus
der Singulärwertzerlegung der Matrix SG berechnet werden. Anschließend
muss Bedingung (5.23) überprüft werden.
Eine Alternative zur obigen Berechnung ist eine Berechnung während

des Ausregelvorgangs. Für jedes v∗ ∈ [ε,1] kann die Matrix S⊥
v∗ aus der

Singulärwertzerlegung des Vektors sv∗ berechnet werden. Folglich hat die
Matrix S⊥

v∗ die Form
S⊥

v∗ = HU�
2v∗ ,

mit einer beliebigen nichtsingulären Matrix H ∈ R(n−1)×(n−1) und Matrix
U2v∗ ∈ Rn×(n−1) aus der Singulärwertzerlegung12) von sv∗ , d.h.13)

sv∗ = [U1v∗ U2v∗ ]
[
σ(sv∗) 0

]�
.

Somit gilt U�
2v∗ ∈ Rn×(n−1) und Rang(U�

2v∗ ) = n− 1.14) Die Matrix S⊥
v∗

hat dabei vollen Rang, d.h. Rang(S⊥
v∗) = n− 1. Dies ist ersichtlich aus

n− 1 = min{Rang(H),Rang(U�
2v∗ )} ≥ Rang(S

⊥
v∗)

≥ Rang(H) + Rang(U�
2v∗ )− (n− 1) = n− 1.

11)Vgl. [77]. Diese Äquivalenzbedingung beruht auf einer verallgemeinerten S-Prozedur,
welche in [38] eingeführt wurde. A ⊗ B bezeichnet dabei das Kronecker-Produkt.

12)Vgl. [68, Satz 2.1.1].
13)Da die Blockmatrix

[
U1v∗ U2v∗

]
unitär ist, folgt, dass U�

2v∗U1v∗ = 0 und daher,
dass S⊥

v∗sv∗ = HU�
2v∗U1v∗ σ(sv∗ ) = 0. Dabei ist σ(sv∗ ) der Singulärwert von sv∗ .

14)Die MatrixUv∗ = [U1v∗ U2v∗ ] ∈ Rn×n ist unitär. Diese hat folglich n unabhängige
Spalten. Somit folgt, dass Rang(U�

2v∗ ) = n− 1.
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5.3 Maximierung des Einzugsgebiets der
konvergenzoptimalen
invers-polynomialen WSVR

Ein konvergenzoptimaler Regler wird im Allgemeinen mit Hilfe des Satzes
5.1 entworfen. Dabei kann als hinreichende Existenzbedingung die Exis-
tenz einer nichtsättigenden WSVR beispielsweise aus Satz 3.1 oder 4.1
festgelegt werden. In diesem Fall ist die Größe der erzielten verschachtel-
ten und kontraktiv invarianten Gebiete durch bestimmte Entwurfsbedin-
gungen beschränkt, welche wegen der Stabilität und des nichtsättigenden
Charakters der unterlegten Regelgesetze entstanden sind. Diese Entwurfs-
bedingungen sind in Gl. (3.18)-(3.19) und Gl. (4.14) des Satzes 3.1 bzw.
4.1 enthalten.
Im Folgenden wird eine alternative Methode vorgestellt, die kontraktive

Invarianz von Ellipsoiden im Falle des konvergenzoptimalen Regelgesetzes
zu überprüfen. Diese Methode setzt zwar nicht mehr die Existenz einer
nichtsättigenden WSVR voraus, ist jedoch nur hinreichend für die kon-
traktive Invarianz der analysierten Gebiete. Aufgrund ihrer Komplexität
wird darüber hinaus nur den Fall einer vereinfachten Selektionssgleichung
dargestellt. Der Vorteil dieser Methode liegt aber in der Tatsache, dass sie
im Allgemeinen größere Gebiete als diejenigen aus dem Satz 4.1 erzielen
kann.

5.3.1 Invers-polynomiale WSVR mit vereinfachter
Selektionsgleichung

Angenommen, es existiert eine Matrixfunktion Qv : [ε,1] → Pn, sodass
die Gebiete E(v) = {x ∈ Rn|x�Qvx < 1} für das System ẋ = Ax −
b sgn(b�Qvx) verschachtelt und kontraktiv invariant sind. Die Existenz
dieser Matrixfunktion kann beispielsweise mit Hilfe des Satzes 4.1 erfol-
gen. Fraglich ist, wie weit man diese Ellipsoide skalieren kann, sodass das
erzielte Einzugsgebiet der Ruhelage vergrößert wird. Der im Folgenden
vorgestellte Satz beantwortet zwar diese Frage, ist jedoch nur für den Fall
einer vereinfachten Selektionsgleichung, d.h. für Ml = −1 und Mu = 0
gültig. Die Betrachtung einer beliebigen Selektionsgleichung ist möglich,
erfordert jedoch, wie es im Weiteren gezeigt wird, einen größeren Rechen-
aufwand.
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Korollar 5.3. Die Ellipsoide

E1(v) = {x ∈ R
n|g∗(x,v) = x�R−1

v x− 1 < 0,Rv = v−1Rc−1 +Rc0}

seien für das System

ẋ = Ax − b sgn(b�R−1
v x) (5.29)

kontraktiv invariant. Die skalierten Ellipsoide

E∗1 (v) = {x ∈ R
n|g∗(x,v) = x�R−1

v x − d < 0,
Rv = v−1Rc−1 +Rc0 , d > 1} (5.30)

sind für das System aus Gl. (5.29) genau dann kontraktiv invariant, wenn
an der Stelle ṽ := v−1 = 1 das Polynom

G(x,ṽ) :=
n−1∑
i=0

ṽ(n−1)−ihi(x), (5.31)

mit

hi(x) := x�(A�Ni +NiA)x − 2|x�Nib| (5.32)

Ni :=

⎧⎪⎨
⎪⎩

RA
c−1 , i = 0,

Γn−1−i
n−1 (Rc0/Rc−1)A, i = 1, . . . ,n− 2,

RA
c0 , i = n− 1,

(5.33)

und seine sämtlichen partiellen Ableitungen ∂j
ṽG(x,ṽ), ∀j ∈ {1, . . . ,n−1},

strikt negativ bzw. nicht positiv für alle x ∈ ∂E∗1 (1) sind, d.h. wenn

max
x�R−11 x=d

G(x,1) < 0,

max
x�R−11 x=d

∂j
ṽG(x,1) ≤ 0, j ∈ {1, . . . ,n− 1}

(5.34)

gilt.

Bemerkung 5.1. Der Skalar d > 1 wird verwendet, um die bereits erzielten
verschachtelten und kontraktiv invarianten Gebiete zu skalieren. �
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Beweis. Die Gebiete E∗1 (v) aus Gl. (5.30) sind für das System aus Gl.
(5.29) definitionsgemäß dann und nur dann kontraktiv invariant, wenn

∂tg
∗(x(t),v) = x�(A�R−1

v +R−1
v A)x − 2|x�R−1

v b| < 0,
∀x ∈ ∂E∗1 (v), v ∈ [ε,1]

gilt, d.h. wenn

det(Rv)∂tg
∗(x(t),v)

= x�(A�RA
v +RA

v A)x− 2|x�RA
v b| < 0, ∀x ∈ ∂E∗1 (v), v ∈ [ε,1]

(5.35)

gilt. Die Adjunkte der polynomialen Matrix Rv ist wiederum eine polyno-
miale Matrix in v und ist gegeben durch15)

RA
v = (v−1Rc−1 +Rc0)A

=
(
RA

c0 +
n−2∑
i=1

v−iΓi
n−1(Rc0/Rc−1)A + v−(n−1)RA

c−1

)

=
n−1∑
i=0

vi−(n−1)Ni,

mit

N0 := RA
c−1 ,

...

Ni := Γn−1−i
n−1 (Rc0/Rc−1)A, i = 1, . . . ,n− 2,

...

Nn−1 := RA
c0 .

Dabei ist zu beachten, dass der Grad des Polynoms von der Systemordnung
n abhängig ist. Folglich gilt

x�(A�RA
v +RA

v A)x − 2|x�RA
v b| ≤

n−1∑
i=0

vi−(n−1)hi(x),

15)Vgl. [77, Korollar 2.2] oder Lemma A.2 (Anhang).
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mit
hi(x) = x�(A�Ni +NiA)x − 2|x�Nib|.

Die Bedingung aus Gl. (5.35) ist folglich erfüllt, wenn

G(x,v) :=
n−1∑
i=0

vi−(n−1)hi(x) < 0, ∀x ∈ ∂E∗1 (v), v ∈ [ε,1] (5.36)

gilt. Die Überprüfung der Bedingung aus Gl. (5.36) erfolgt im Weiteren
mit Hilfe der Newton-Regel16). Für die Anwendung der Newton-Regel wird
eine Variablensubstitution verwendet. Für ṽ := v−1 ist die Bedingung aus
Gl. (5.36) äquivalent zu

G(x,ṽ) =
n−1∑
i=0

ṽ(n−1)−ihi(x) < 0, ∀x ∈ ∂E∗1
(
1
ṽ

)
, ṽ ∈

[
1,1
ε

]
.

Aus der Anwendung der Newton-Regel ist das PolynomG(x,ṽ) in ṽ negativ
für alle ṽ > 1, wenn an der Stelle ṽ = 1 dieses und seine sämtlichen
partiellen Ableitungen nicht positiv sind, d.h. wenn

∂j
ṽ G(x,1) ≤ 0, ∀ j ∈ {0, . . . ,n− 1}, ∀x ∈ E∗1 (1) . (5.37)

Das Polynom ist negativ für alle ṽ ≥ 1 falls zusätzlich

G(x,1) < 0, ∀x ∈ E∗1 (1) (5.38)

gilt. Die Bedingungen sind also für beliebig kleine ε ∈ (0,1) hinreichend.
Die Funktionen ∂j

ṽG(x,1), mit j = 0, . . . ,n−1, hängen dabei nicht mehr
von v ab und deren Maximum bezüglich x befindet sich auf dem Rand des
äußersten Ellipsoids ∂E∗1 (1). Um dies zu zeigen, sei x ∈ ∂E∗1 (1) = {x ∈
Rn|x�R−1

1 x = d, d > 1} und eine Zahl k ∈ (0,1]. Es folgt

∂j
ṽG(kx,1)

=
n−1−j∑
i=0

(
j−1∏
l=0

n− 1− i− l

)[
k2x�(A�Ni +NiA)x − 2k|x�Nib|

]

= k2
n−1−j∑
i=0

(
j−1∏
l=0

n− 1− i− l

)[
x�(A�Ni +NiA)x −

2
k
|x�Nib|

]
16)Vgl. Lemma A.3 (Anhang).
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≤ k2
n−1−j∑
i=0

(
j−1∏
l=0

n− 1− i− l

)[
x�(A�Ni +NiA)x− 2|x�Nib|

]
≤ ∂j

ṽG(x,1).

Daraus folgt, dass die Bedingungen aus Gl. (5.37) und(5.38) äquivalent zu
den Bedingungen aus Gl. (5.34) sind.

Bemerkung 5.2. Aus Gl. (5.34) ist ersichtlich, dass, falls diese Bedingun-
gen für ein d ≥ 1 erfüllt sind, dann sind sie für alle d∗ ≤ d erfüllt. Daraus
folgt, dass die Bestimmung des maximalen Wertes von d mittels des Bi-
sektionsverfahrens erfolgen kann. �
Die Überprüfung der Bedingung aus Gl. (5.34) kann wie in [37, Theorem

1] durchgeführt werden. Folgender Satz verdeutlicht dies.

Satz 5.4 [Nach [37, Theorem 1]] Es seien A ∈ Rn×n, b ∈ Rn und L ∈
Symn, mit Lb �= 0 und A�L + LA �= 0, sowie R ∈ Pn. Des Weiteren
seien die reellen Zahlen λ1, . . . ,λJ > 0, sodass

det
[
λjR −A�L− LA R

d−1Lbb�L λjR −A�L−PL

]
= 0 (5.39)

und
b�L(A�L+ LA− λjR)−1Lb > 0. (5.40)

Dann gilt für die Funktion

g(x) := x�(A�L+ LA)x − 2|x�Lb| (5.41)

max
x�Rx=d

g(x) < 0 (5.42)

dann und nur dann, wenn

λmax
[
U�

2(A�L+ LA)U2(U�
2RU2)−1] < 0, (5.43)

mit der Matrix U2 ∈ Rn×(n−1) aus der Singulärwertzerlegung des Vektors
Lb, d.h. aus

Lb = [u1 U2]
[
σ(Lb)

0

]
v, U�

2u1 = 0, (5.44)

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


5.3 Maximierung des Einzugsgebiets 53

und

λjd− b�L(A�L+ LA− λjR)−1Lb < 0, ∀ j ∈ {1, . . . ,J}. (5.45)

Falls Gl. (5.43) erfüllt ist und keine reellen Zahlen λj > 0 existieren,
welche Gl. (5.39) und (5.40) erfüllen, dann ist Gl. (5.42) erfüllt.

Bemerkung 5.3. Die Lösungen der Gl. (5.39) sind gleichzeitig Eigenwerte
der Matrix[

R−1/2(A�L+ LA)R−1/2 −I
−d−1R−1/2Lbb�LR−1/2 R−1/2(A�L+ LA)R−1/2

]
. (5.46)

Dies folgt aus der Multiplikation der Matrix aus Gl. (5.39) links und rechts
mit der nichtsingulären Matrix[

R−1/2 0
0 R−1/2

]
,

wobei die Matrix R−1/2 die (eindeutig bestimmte) Quadratwurzel17) der
positiv definiten Matrix R−1 ist. �

Beweis. Für den Fall x�Lb = 0 gilt

g(x) = x�(A�L+ LA)x.

In diesem Fall lassen sich die Nebenbedingungen

x�Rx = d (5.47)
x�Lb = 0 (5.48)

in eine einzige Nebenbedingung wie folgt umformen. Alle möglichen Lö-
sungen der Gl. (5.48) können in der Form

x�= h�U�
2 (5.49)

mit einem beliebigen Vektor h ∈ Rn−1∗ und der MatrixU2 ∈ Rn×(n−1) aus
der Singulärwertzerlegung des Vektors Lb, d.h. aus Gl. (5.44), geschrie-
ben werden. Dies kann man durch Einsetzen der Gl. (5.49) in Gl. (5.48)
verifizieren. Durch Einsetzen dieser Lösungen in Gl. (5.47) folgt

h�U�
2RU2h = d

17)Vgl. [8, Theorem 10.6.1].
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und somit

max
x
�

Rx=d
x
�

Lb=0

g(x) = max
h�U�2RU2h=d

h�U�
2(A�L+ LA)U2h

= λmax
[
U�

2(A�L+ LA)U2(U�
2RU2)−1] < 0

aufgrund der Bedingung aus Gl. (5.43). Wir betrachten im Weiteren nur
noch den Fall x�Lb > 0, da auf Grund der quadratischen Form der Funk-
tion g(x) der Fall x�Lb < 0 zum gleichen maximalen Wert führt. Das
Verfahren der Lagrange-Multiplikatoren liefert die Optimalitätsbedingun-
gen

(A�L+ LA− λR)x = Lb, λ ∈ R, (5.50)
x�Rx = d, (5.51)

und das Maximum der Funktion g(x) aus Gl. (5.41) lautet

gmax(x) = λd− x�Lb. (5.52)

Falls λ ≤ 0, gilt gmax(x) < 0 da x�Pb > 0. Es wird also nur noch der Fall
λ > 0 betrachtet.
Aus Gl. (5.43) folgt, dass18)

λmax[U�
2(A�L+ LA)U2(U�

2RU2)−1]
= max{λ ∈ R : det

[
U�

2(A�L+ LA− λR)U2
]
= 0} < 0.

Dies bedeutet, dass das größte λ ∈ R, sodass

det
[
U�

2(A�L+ LA− λR)U2
]
= 0

gilt, negativ ist und damit, dass für λ > 0 die Matrix A�L + LA − λR
nichtsingulär ist. Dies kann man wie folgt erklären. Da die Matrixfunk-
tion f1(λ) = A�L + LA − λR monoton fallend ist, ist die Matrixfunkti-
on f2(λ) = U�

2(A�L + LA − λR)U2 fallend19), und die Matrixfunktion
f3(λ) = det

[
U�

2(A�L+ LA− λR)U2
]
monoton fallend20). Für λ größer

als λmax[U�
2(A�L + LA)U2(U�

2RU2)−1], z.B. für λ > 0, ist die Determi-
nante kleiner null und die Matrix A�L+ LA− λR daher nichtsingulär.
18)Vgl. [8, Fact 8.15.21].
19)Vgl. [8, Prop. 8.6.13, xv)].
20)Vgl. [8, Prop. 8.6.13, xxii)].
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Lösen der Gl. (5.50) ergibt

x = (A�L+ LA− λR)−1Lb, λ > 0, (5.53)

und Einsetzen in Gl. (5.51) ergibt

b�L(A�L+ LA− λR)−1R(A�L+ LA− λR)−1Lb = d.

Dies ist äquivalent zu21)

det
[

d −b�LΨ−1

−Ψ−1Lb R−1

]
= 0, (5.54)

mit Ψ = λR −A�L− LA. Im Weiteren folgt aus Gl. (5.54), dass

det
([

d 0�
0 R−1

]
−
[
b�L 0
0 I

] [
Ψ−1 0
0 Ψ−1

] [
0 I
Lb 0

])
= 0,

det
([
Ψ 0
0 Ψ

]
−
[

0 I
Lb 0

] [
d−1 0�
0 R

] [
b�L 0
0 I

])
= 0,

det
[
λR −A�L− LA −R
−d−1Lbb�L λR −A�L− LA

]
= 0,

det
[
λR −A�L− LA R

d−1Lbb�L λR −A�L− LA

]
= 0.

Die letzte Gleichung ist Gl. (5.39). Aus dieser Gleichung kann λ bestimmt
werden. Wie in der Bemerkung 5.3 gezeigt, sind die Lösungen gleichzeitig
Eigenwerte der Matrix aus Gl. (5.46), d.h. deren Berechnung kann nu-
merisch erfolgen. Darüber hinaus muss für ein erzieltes λ > 0 aufgrund
x�Lb > 0 auch

b�L(A�L+ LA− λR)−1Lb > 0

gelten, d.h., Gl. (5.40) muss auch erfüllt sein. Schließlich ist der maximale
Wert der Funktion g(x) gegeben in Gl. (5.52) negativ dann und nur dann,
wenn

λjd− b�L(A�L+ LA− λjR)−1Lb < 0, ∀ j ∈ {1, . . . ,J},

gilt, d.h. wenn Gl. (5.45) erfüllt ist, wobei die positiven Zahlen λj Gl.
(5.39)-(5.40) erfüllen müssen.
21)Dies folgt aus der Anwendung von [8, Prop. 8.2.3].
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Eine Erweiterung des Korollars 5.3 für polynomiale Selektionsgleichun-
gen mit einem beliebigen Grad ist ebenfalls möglich, da auch in diesem Fall
die Adjunkte der Matrix Rv eine polynomiale Matrix ist. Jedoch erhöhen
sich der Grad dieses Polynoms22) und der Aufwand in der Berechnung der
Adjunkten der Matrix Rv.

5.4 Regelungsentwurf
Die Bang-Bang WSVR kann mit Hilfe der nicht-konservativen klassischen
WSVR oder der invers-polynomialen WSVR wie folgt entworfen werden:

5.4.1 Klassische WSVR mittels iLF
Schritt 5a Nach den Entwurfsschritten 1a-4a aus Abschnitt 3.3 verwende

alternativ das konvergenzoptimale Regelgesetz us aus Gl. (5.6).

Schritt 6a Alternativ, verwende den High-Gain Regler usat aus Gl. (5.8)
mit dem Parameter κv = 0.5μv und μv aus Gl. (5.11) und (5.19).

5.4.2 Invers-polynomiale WSVR
Schritt 3b Nach den Entwurfsschritten 1b-2b aus Abschnitt 4.3 verwende

alternativ das konvergenzoptimale Regelgesetz us aus Gl. (5.6) mit
der Matrix Qv aus Gl. (4.13).

Schritt 4b Alternativ, verwende den High-Gain-Regler usat aus Gl. (5.8)
mit dem Parameter κv = 0.5μv und μv aus Gl. (5.11), (5.24) und
(5.26).

Schritt 5b Berechne mit Hilfe des Korollars 5.3 und des Satzes 5.4 das
maximale Einzugsgebiet der Ruhelage des Systems, das durch das
Regelgesetz us aus Gl. (5.6) erzielbar ist.

Tabelle 5.1 zeigt eine Zusammenfassung der hier entwickelten nicht-kon-
servativen klassischen und invers-polynomialen WSVR zusammen mit den
dazu verwendeten Sätzen. Im nächsten Abschnitt werden diese Regler an-
hand von zwei Beispielen veranschaulicht und mit anderen nichtlinearen
Reglern verglichen.

22)Vgl. [39, Lemma A.1] oder Lemma A.1 (Anhang).
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Tabelle 5.1: Zusammenfassung der nichtkonservativen klassischen und
invers-polynomialen WSVR.

Strecke: ẋ = Ax + bu, x ∈ Rn, u ∈ R, |u| ≤ 1

Die klassische WSVR mittels iLF

Aus Satz 3.1 zusammen mit Satz 5.1

Regelgesetze Selektionsgleichung
u(x) = −(D−r

v â − a)x
x�Qvx − d = 0, d ≥ c2(b�P−1b)
Qv = D−r

v P1Dv,P1 = dP−1

â = a + cP−1b, c > 1/2
us(x) = − sgn(b�Qvx)
usat(x) = − sat(κvb�Qvx)

Die invers-polynomiale WSVR

Aus Satz 4.2 zusammen mit Satz 5.1

Regelgesetze Selektionsgleichung
u(x) = −cb�Qvx, c > 1/2 x�Qvx − d = 0, d ≥ c2(b�R−1

ε b)

Qv = R−1
v ,Rv =

Mu∑
i=Ml

viRci
us(x) = − sgn(b�Qvx)
usat(x) = − sat(κvb�Qvx)

Aus Satz 5.1 zusammen mit Korollar 5.3

Regelgesetze Selektionsgleichung
u∗s (x) = − sgn(b�Qvx) x�Qvx− d = 0, d > 1

u∗sat(x) = − sat(κvb�Qvx) Qv = R−1
v ,Rv =

Mu∑
i=Ml

viRci
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5.5 Beispiele

5.5.1 Allgemeine Strecke zweiter Ordnung
Betrachtet wird folgende allgemeine Strecke zweiter Ordnung mit einem
stabilen Eigenwert λ = −1 und einem Eigenwert bei null

ẋ =
[
0 1
0 −1

]
x+

[
0
1

]
u, |u| ≤ 1.

Die null-steuerbare Region ist der gesamte Zustandsraum. Die Lösung des
Validierungsproblems (3.14)-(3.16) lautet

P =
[
0.7027 −0.2610

−0.2610 0.5354

]
.

Für ein gegebenes ε = 0.1 und eine (für v = 1) mittels d = 2.1 skalierte El-
lipse EΔ(1) beeinflusst der Reglerparameter ν aus Gl. (3.19) des Satzes 3.1
die Größe des Gebiets L(1). Zwei verschiedene Werte illustrieren den Ein-
fluss dieses Parameters. Der erste Wert ν = 0.99 ist sehr nah an der oberen
Grenze des erlaubten Intervalls und erzielt ein Gebiet, dessen Rand fast
tangential zu dem Rand der Ellipse EΔ(1) ist. Der kleinste Wert ν = 0.5212
erzielt ein viel größeres Gebiet. Abbildung 5.1 veranschaulicht die Ellip-
se EΔ(1), die Anfangsauslenkung x0 = [0.0594 − 0.4766]� ∈ ∂EΔ(1) auf
derem Rand und die Gebiete L(1) für die verschiedenen Werte von ν. In
beiden Fällen hält die nichtsättigende klassische WSVR die Stellgrößen-
beschränkung ein.
Tabelle 5.2 zeigt die Regelparameter ε, d und ν, sowie den jeweils er-

zielten maximalen Wert von r. Es ist ersichtlich, dass dieser vom Wert des
Parameters ν beeinflusst wird. Dies liegt daran, dass ein größerer Wert von
ν einen größeren Wert auf der linken Seite der Gl. (3.20) für gegebene w
und ε erzielt, mit der Folge, dass das Intervall w ∈ [εr,1] verkleinert wird
und, somit, dass ein kleineres r erzielt wird. Darüber hinaus beeinflusst der
Wert des Parameters r ∈ (0,1] das Ausregelverhalten. Für r → 0 handelt
es sich bei der Regelung um eine nichtsättigende lineare Zustandsrückfüh-
rung. Für r ∈ (0,1] ist die nichtsättigende WSVR schneller aufgrund ihrer
variablen Struktur. Schließlich zeigt die Tabelle auch den Faktor η, der
die Verstärkung des High-Gain-Reglers über den notwendigen minimalen
Wert 0.5μv erhöht. Je größer η ist, desto besser approximiert der High-
Gain-Regler den konvergenzoptimalen Regler.
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Bild 5.1: Das kontraktiv invariante Gebiet für v = 1 und d = 2.1 (GΔ(1),
−), sowie die Gebiete L(1) für ν = 0.5212 (−) und ν = 0.99 (−.).

Tabelle 5.2: Regelparameter für die nichtsättigende klassische WSVR
mittels iLF (uf ) und für den konvergenzoptimalen Regler (us).

Regler ε d ν r η Symbol
uf 0.1 2.1 0.5212 1 - (−)
us 0.1 2.1 0.5212 1 - (−◦)
usat 0.1 2.1 0.5212 1 16 (−+)
uf 0.1 2.1 0.99 0.0048 - (−.)
us 0.1 2.1 0.99 0.0048 - (−.�)
usat 0.1 2.1 0.99 0.0048 160 (−.×)

Abbildung 5.2 zeigt das Ausregelverhalten für die verschiedenen Reg-
lerparameter. Dabei wird die gleiche Anfangsauslenkung x0 gewählt. Ver-
glichen werden die nichtsättigende klassische WSVR mit den jeweiligen
konvergenzoptimalen Reglern und den High-Gain Reglern, sowie mit dem
zeitoptimalen Regler. Der High-Gain Regler aus Satz 5.1 approximiert
dabei sehr gut den jeweiligen konvergenzoptimalen Regler. Die gewählte
Verstärkung ist gegeben durch κv = 0.5ημv, wobei η = 160 für ν = 0.99
und η = 16 für ν = 0.5212 gewählt wurde, und der Parameter μv aus Gl.
(5.11) mit S⊥

v aus Gl. (5.19) und S⊥
1 = [−0.9374 0.3482]� berechnet wur-

de. Schließlich werden darin die Stellgrößenverläufe der nichtsättigenden
klassischen WSVR, der High-Gain Regler und des zeitoptimalen Reglers.
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Bild 5.2: Simulation der Zustände und Stellgrößen für die nichtsättigen-
de klassische WSVR (ν = 0.5212 (−.�) und ν = 0.99 (−.
)), für den
konvergenzoptimalen Regler (ν = 0.5212 (−◦) und ν = 0.99 (−.�)), für
den High-Gain Regler (ν = 0.5212 (−+) und ν = 0.99 (−.×)) und für den
zeitoptimalen Regler (−−).
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Aus Übersichtlichkeitsgründen werden die Stellgrößenverläufe der kon-
vergenzoptimalen Regler nicht gezeigt, welche hochfrequent zwischen 1 und
−1 schalten. Es ist ersichtlich, dass die nichtsättigende klassische WSVR
für ν = 0.99 nah an der Stellgrößenbeschränkung ist. Dies liegt daran, dass
der Rand des entsprechenden Gebiets L(v) fast tangential zu dem Rand der
Ellipse EΔ(1) ist, wie man in Abbildung 5.1 sehen kann. Der zeitoptimale
Regler schaltet wie erwartet ein Mal zwischen 1 und −1. Der High-Gain
Regler hat jeweils einen sättigenden aber stetigen Verlauf und erzielt, wie
erwartet, eine sehr gute Approximation des Ausregelverhaltens, welches
durch den entsprechenden konvergenzoptimalen Regler erzielt wird.

5.5.2 Fusionsreaktor
Betrachtet wird folgende lineare Strecke mit einem instabilen und einem
stabilen Eigenwert

ẋ =
[
1 0
0 −0.5

]
x+

[
1

−0.5

]
u, |u| ≤ 1.

Das Modell beschreibt die wesentlichen physikalischen Eigenschaften von
felderzeugenden Strömen, wobei die erzeugten Magnetfelder die Position
des Plasmas in einem Fusionsreaktor halten.23) Bei dieser Strecke ist zu
beachten, dass die null-steuerbare Region x ∈ [−1,1] × R ist. Diese ist
die Region im Zustandsraum welche durch eine beschränkte Stellgröße
|u| ≤ 1 überhaupt ausregelbar ist. Sie ist beschränkt, da die Strecke einen
instabilen Eigenwert bei λ2 = 1 besitzt.24)
In diesem Beispiel werden die konvergenzoptimale WSVR mit invers-

polynomialer Selektionsgleichung und die nichtlineare Regelung aus [28]
verglichen. Als Anfangsauslenkung wird x0 = [0.7 2.8]� gewählt. Die Ko-
effizienten Pc0 und Pc−1 des Matrixpolynoms Pv aus dem Validierungs-
problem (4.10)-(4.12) mit Ml = −1 und Mu = 0, sowie ε = 0.01, sind im
Abschnitt C.1 (Anhang) angegeben.
In Abbildung 5.3 wird die erzielte Ellipse EP(1) = {x ∈ Rn|x�P−1

1 x −
1 < 0} (-) für v = 1 aus dem Validierungsproblem gezeigt. Sie ent-
hält zwar nicht die gewünschte Anfangsauslenkung, sie kann aber ska-
liert werden, sodass sich die Anfangsauslenkung auf derem Rand befin-
det. Eine Skalierung mit d∗ = (x�0P−1

1 x0)−1 = 1.1058 erzielt die Ellipse
23)Vgl. [28] und die Referenzen darin.
24)Vgl. [36, Proposition 2.2.1] und Gl. (2.4.2) für die Analyse von null-steuerbaren
Regionen von Systemen mit reellen Eigenwerten.
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Bild 5.3: Anfangszustand x0 = [0.7,2.8]� (•) und erzielte Ellipsen im Zu-
standsraum für v = 1: die aus dem Validierungsproblem (4.10)-(4.12) er-
zielte Ellipse EP(1) (-), die skalierte Ellipse Eu

P(1) (- .) für die Einhaltung
der Stellgrößenbeschränkung durch den Regler u(x) = −b�P−1

v x, und die
skalierte Ellipse E∗P(1) (- -) für den Regler us(x) = − sgn(b�P−1

v x).

E∗P(1) = {x ∈ Rn|x�P−1
1 x − d∗ < 0} (- -), mit x0 ∈ ∂E∗P(1) (•). Mit

Hilfe des Korollars 5.3 muss jedoch überprüft werden, ob die skalierten
Ellipsen E∗P(v), mit v ∈ [ε,1], ebenfalls kontraktiv invariant für das Sys-
tem mit der konvergenzoptimalen WSVR us(x) = − sgn(b�P−1

v x) sind.
Dies wird ebenfalls im Abschnitt C.1 (Anhang) gezeigt. Die dritte Ellipse
Eu
P(1) = {x ∈ Rn|x�P−1

1 x − d < 0} (- .) mit d = 0.1249 zeigt schließlich
das Einzugsgebiet der Ruhelage für das System mit der nichtsättigenden
invers-polynomialen WSVR u(x) = −cb�P−1

v x und c = 1 aus Satz 4.1.
Es ist ersichtlich, dass die nichtsättigende invers-polynomiale WSVR ein
kleineres Einzugsgebiet der Ruhelage erzielt.
Abbildung 5.4 zeigt die Simulationsergebnisse für den konvergenzopti-

malen Regler aus Gl. (5.6), den dazugehörigen High-Gain Regler aus Gl.
(5.8) und den in [28] vorgestellten nichtlinearen Regler

unonlin = sat(−6x1 − 3x2(1 − |x1|)),

der speziell für die Regelung linearer Strecken mit einem einzigen instabilen
Pol und einer Stellgrößenbeschränkung entwickelt wurde. Die Zeitverläufe
des konvergenzoptimalen und des High-Gain Reglers sind deckungsgleich,
d.h. der High-Gain Regler erzielt fast die gleiche Performance mit einem
stetigen Regelgesetz. Lediglich die Stellgrößen unterscheiden sich.
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Bild 5.4: Simulation des Fusionsreaktor-Modells. Die ersten zwei Abbil-
dungen zeigen die Zeitverläufe der Zustände im Falle des konvergenzopti-
malen Reglers us(x) (◦) und des dazugehörigen High-Gain-Reglers usat(x)
(∗), welche deckungsgleich sind, sowie des nichtlinearen Reglers aus [28]
(♦). Die dritte Abbildung zeigt die Zeitverläufe der jeweiligen Stellgrößen:
des High-Gain-Reglers mit der invers-polynomialen Selektionsstrategie (-
.), des nichtlinearen Reglers aus [28] (- -), sowie des konvergenzoptima-
len Reglers mit der invers-polynomialen Selektionsstrategie (-). Letzte-
rer schaltet hochfrequent zwischen −1 und 1 und entspricht dem grauen
Bereich.
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6 WSVR-Synthese in
Regelstrecken-Ensembles

Um die Performance-Analyse einer nichtlinearen Regelungsmethode über
eine einzelne Regelstrecke hinaus zu untersuchen, konzentriert sich Ka-
pitel 8 auf die Entwicklung einer Methode zur Performance-Analyse in
Regelstreckenensembles. Die Performance einer Regelungsmethode für ein
Regelstreckenensemble kann beispielsweise an einzelnen Strecken aus dem
Ensemble exakt überprüft und im übrigen Bereich interpoliert werden.
Dabei muss aber garantiert werden, dass im ganzen Interpolationsbereich
auch Regler existieren. Dies wird in diesem Kapitel untersucht. Die jewei-
ligen Bedingungen für die klassische WSVR mittels iLFs werden im Ab-
schnitt 6.1 und diejenigen für die invers-polynomiale WSVR im Abschnitt
6.2 vorgestellt.
Es werden Regelstreckenensembles betrachtet, welche von einem Para-

meter aus einer kompakten Menge, vgl. Def. 11 (Anhang), abhängen. Die
Abhängigkeit wird als polynomial angenommen. Das hier analysierte Re-
gelstreckenensemble ist wie folgt definiert:

ẋ = A(θ)x + b(θ)u, x ∈ R
n, u ∈ R

n, |u| ≤ 1, θ ∈ Θ, (6.1)

mit

A(θ) :=
na∑
i=0

θiAci , Aci ∈ R
n×n, i = 0, . . . ,na, na ∈ N, (6.2)

b(θ) :=
nb∑
i=0

θibci , bci ∈ R
n, i = 0, . . . ,nb, nb ∈ N. (6.3)

Es wird darüber hinaus angenommen, dass na, nb ∈ N und Θ bekannt
sind. Der Wert von θ ∈ Θ variiert während eines Ausregelvorgangs nicht
und ist erst bei der Reglerimplementierung bekannt. Ein solches Problem
wird auch in-situ Regler-Tuning1) genannt.
1)Vgl. [39].
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Um zu garantieren, dass für jedes θ ∈ Θ ein WSVR Regelgesetz existiert,
kann eine bereits existierende Methode aus dem Bereich der robusten Re-
gelung verwendet werden, welche im Zusammenhang mit der WSVR mit-
tels iLF und polynomialer Selektionsstrategien in [40] vorgestellt wurde.
Die Methode garantiert die Existenz eines einzigen Reglers für das gesam-
te Regelstreckenensemble. Dies ist zwar hinreichend aber nicht notwendig
und kann entsprechend konservativ sein.
Eine alternative Methode besteht darin, Existenzbedingungen für Reg-

ler zu formulieren, die sich an das Regelstreckenensemble anpassen. Sind
diese Bedingungen darüber hinaus sowohl hinreichend als auch notwendig,
so ist die Untersuchung nicht mehr konservativ. Ein derart entworfener
Regler ist dann zwar nicht bezüglich eines Gütemaßes optimiert, er ga-
rantiert aber die Stabilisierbarkeit des Regelstreckenensembles durch die
untersuchte Regelungsmethode, sodass eine Performance-Analyse für das
gesamte Ensemble erfolgen kann. Die Untersuchung dieser Bedingungen
wird, wie in den vorherigen Abschnitten, für die klassische WSVR mittels
iLF und für die invers-polynomiale WSVR vorgestellt.
Dieser Abschnitt ist wie folgt gegliedert. Abschnitt 6.1 stellt die notwen-

digen und hinreichenden Existenzbedingungen einer klassischen WSVR
mittels iLF für das Regelstreckenensemble aus Gl. (6.4)-(6.6) vor. In Ab-
schnitt 6.2 werden die notwendigen und hinreichenden Existenzbedingun-
gen einer invers-polynomialen WSVR für das Regelstreckenensemble aus
Gl. (6.1)-(6.3) hergeleitet.

6.1 Die klassische WSVR mittels iLF
Bei der klassischen WSVR mittels iLF beschränkt sich diese Untersuchung
auf parametrische Reglerstrecken, welche bereits in Steuerungsnormalform
vorliegen. Diese haben also die Form

ẋ = A(θ)x + bu, x ∈ R
n, |u| ≤ 1, θ ∈ Θ ⊂ R, (6.4)

mit

A(θ) :=
na∑
i=0

θiAci , Ai ∈ R
n×n, na ∈ N, (6.5)
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66 6 WSVR-Synthese in Regelstrecken-Ensembles

und

Aci :=

⎡
⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ai0 −ai1 −ai2 · · · −ain−1

⎤
⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦ . (6.6)

Im Folgenden werden die Existenzbedingungen eines Regelgesetzes der
Form

u = −k�(v; θ)x, u ∈ R, |u| ≤ 1, (6.7)

mit der Reglerverstärkung

k(v; θ) := D−1(v)â(θ) − a(θ), (6.8)

bestimmt, wobei der noch zu ermittelnde parameterabhängige Vektor â(θ)
in polynomialer Form angenommen wird, d.h.

â(θ) :=
n̂a∑
i=0

θiâci , âci ∈ R
n, (6.9)

und

a�(θ) := −[0 · · · 1]A(θ) =
na∑
i=0

θia�i , a�ci = −[0 · · · 1]Aci . (6.10)

Während des Ausregelvorgangs wird der Parameter v durch die Selekti-
onsstrategie

x�P(v; θ)x − 1 = 0, (6.11)

bestimmt, wobei

P(v; θ) := D−1(v)P(1; θ)D−1(v), P(1; θ) ∈ P
n, ∀ θ ∈ Θ (6.12)

D(v) := diag(vn, . . . ,v).

Gesucht sind ein von θ ∈ Θ abhängiger polynomialer Vektor â(θ) und
eine polynomiale Matrix P(1; θ), sodass für alle θ ∈ Θ die Selektionsstra-
tegie eine eindeutige Lösung im Intervall v ∈ (0,1] hat, das Regelgesetz
u beschränkt ist, d.h. |u| ≤ 1, und der geschlossene Regelkreis stabil ist.
Folgender Satz stellt die notwendigen und hinreichenden Bedingungen für
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die Existenz einer stabilisierenden WSVR dieser Klasse für das Strecke-
nensemble aus Gl. (6.4)-(6.6) vor. Der Satz baut auf dem Satz 3.1, Seite
17, aus Abschnitt 3 auf und erweitert diesen zur Berücksichtigung von
Streckenensembles durch den konstanten Parameter θ ∈ Θ.

Satz 6.1 Gegeben sei das Ensemble von LTI-Systemen mit einer Ein-
gangsgröße und Stellgrößenbeschränkung aus Gl. (6.4)-(6.6), sowie eine
Zahl ε ∈ (0,1). Folgende Aussagen sind äquivalent:
i) Es existieren die Zahlen nâ ∈ N und nr ∈ N, die Vektoren âci ∈ Rn

mit i = 1, . . . ,nâ sowie die Matrizen Qci , i = 0, . . . ,nr, sodass für jedes
θ ∈ Θ die Gebiete

GΔ(v; θ) := {x ∈ R
n|gΔ(x,v; θ) = x�Q(v; θ)x − 1 < 0} (6.13)

mit

Q(v; θ) := D−1(v)Q(1; θ)D−1(v), (6.14)

Q(1; θ) :=
nr∑
i=0

θiQci 
 0 (6.15)

verschachtelt und kontraktiv invariant für alle v ∈ (0,1] für das System
aus Gl. (6.4)-(6.6) mit dem Regelgesetz

u = −k�(v; θ)x, (6.16)
k(v; θ) := D−1(v)â(θ)− a(θ), D(v) = diag(vn, . . . ,v),

â(θ) :=
n̂a∑
i=0

θiâci , âci ∈ R
n, a�(θ) := −[0 · · · 1]A(θ), (6.17)

sind. Darüber hinaus gilt

|u| < 1, ∀x ∈ GΔ(v; θ), v ∈ [ε,1]. (6.18)
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ii) Es existieren die Zahl np ∈ N und die Matrizen Pci ∈ Symn, sodass
für alle θ ∈ Θ

P(θ) :=
np∑
i=0

θiPci 
 0, (6.19)

A(θ)P(θ) +P(θ)A�(θ) ≺ bb�, (6.20)
NP(θ) +P(θ)N ≺ 0, N := diag(−n, . . . ,− 1). (6.21)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz gegeben durch

â(θ) = a(θ) + det(P(θ))
δ

P−1(θ)b, δ := min
θ∈Θ

det(P(θ)), (6.22)

Q(1; θ) = d(θ) det(P(θ))P−1(θ), (6.23)

wobei der Skalierungsfaktor d(θ) für ein gegebenes θ ∈ Θ aus dem Opti-
mierungsproblem

min d(θ), sodass
d(θ) > 0, (6.24)[

det(P(θ))P(θ)−1 â(θ)−D(v)a(θ)
(â(θ) −D(v)a(θ))� d(θ)

]

 0, ∀ v ∈ [ε,1], (6.25)

berechnet wird.
Bemerkung 6.1. Da die Matrix P(θ) in polynomieller Form vorliegt, kön-
nen Gl. (6.19)-(6.21) in äquivalente parameterunabhängige LMIs transfor-
miert werden. Die Transformation basiert auf [78, Lemma 4.4], welches
eine Generalisierung der in [38] vorgestellten S -Prozedur verwendet. �
Bemerkung 6.2. Für ein gegebenes θ ∈ Θ ist dieser Satz sehr ähnlich zu
dem Satz 3.1 aus Abschnitt 3. Der einzige Unterschied besteht in der Form
des vorgegebenen Regelgesetzes in Gl. (6.22)-(6.25). �

Beweis. Der Beweis wird auf die gleiche Weise wie im Satz 3.1 aus Ab-
schnitt 3 ausgeführt. Durch Einsetzen des vorgegebenen Regelgesetzes aus
Gl. (6.16), mit dem Vektor â(θ) aus Gl. (6.22), und der vorgegebenen
Matrix Q(1; θ) aus Gl. (6.23) wird gezeigt, dass die Bedingungen aus Gl.
(6.19)-(6.21) hinreichend für i) sind. Deren Notwendigkeit wird mit Hilfe
von Finsler’s Lemma gezeigt. Da die Beweise in diesem Punkt deckungs-
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gleich sind, wird hier nur auf den Unterschied zwischen den beiden Regel-
gesetzen eingegangen.
Das Regelgesetz aus Gl. (6.16), mit dem Vektor â(θ) aus Gl. (6.22), wird

so bestimmt, dass es polynomial in θ ist. Dies wird durch den zusätzlichen
Skalierungsfaktor det(P(θ)) in Gl. (6.22) erreicht, da

det(P(θ))P(θ)−1 = P(θ)A (6.26)

gilt, und die Adjunkte P(θ)A der Matrix P(θ) wiederum polynomial in θ
ist. Dies gilt auch für die MatrixQ(1; θ). Darüber hinaus wird der konstan-
te Skalierungsfaktor δ eingeführt, sodass det(P(θ))/δ ≥ 1, für alle θ ∈ Θ
ist. Dies muss erfüllt sein, damit das Regelgesetz kontraktiv invariante Ge-
biete GΔ(v; θ) für alle v ∈ (0,1] erzeugt, vgl. Satz 3.1, bzw. dessen Beweis.
Schließlich wird der Skalierungsfaktor d(θ) in Gl. (6.23) eingeführt, um
sicherzustellen, dass das Regelgesetz u beschränkt ist, d.h. dass Gl. (6.18)
gilt. Jeder Skalierungsfaktor d(θ), der die Bedingungen (6.24) und (6.25)
erfüllt, ist zulässig. Der kleinste Faktor d(θ) ergibt dabei das maximale
Einzugsgebiet GΔ(1; θ). Für ein gegebenes θ ∈ Θ ist die linke Seite der Be-
dingung (6.25) eine polynomiale Matrix in v ∈ [ε,1], welche, wie im Satz
3.1, in eine äquivalente LMI transformiert werden kann.

6.2 Invers-polynomiale WSVR für
Regelstreckenensembles

Wie im vorigen Abschnitt baut der nächste Satz auf dem Satz 4.1, Seite 28,
auf und erweitert ihn zur Berücksichtigung von Streckenensembles durch
den konstanten Parameter θ ∈ Θ. Dieser Satz wurde zum ersten Mal im
[59] vorgestellt.

Satz 6.2 Gegeben seien die Zahlen a,b ∈ N, die Matrizen Aci ∈ Rn×n, mit
i = 0, . . . ,a und die Vektoren bci ∈ Rn, mit i = 0, . . . ,b, für das folgende
LTI-System mit einer Eingangsgröße und Stellgrößenbeschränkung

ẋ = A(θ)x + b(θ)u, u ∈ R, |u| ≤ 1, (6.27)

wobei

A(θ) :=
a∑

i=0
θiAci , b(θ) :=

b∑
i=0

θibci , (6.28)
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sowie eine reelle Zahl ε ∈ (0,1). Folgende Aussagen sind äquivalent:
i) Es existieren die Zahlen R ∈ N, Ml ,Mu ∈ Z, mit Ml < 0, Ml ≤ Mu,

die Matrizen Rcij ∈ Symn, mit i = Ml , . . . ,Mu, j = 0, . . . ,R, sowie die
Vektorfunktion k(v; θ) : V → Rn, mit V := {(v,θ)|v ∈ [ε,1], θ ∈ Θ}, sodass
für jedes gegebene θ ∈ Θ die Gebiete

GΛ(v; θ) :=
{
x ∈ R

n
∣∣gΛ(x,v; θ)=x�Q(v; θ)x−1 < 0

}
, (6.29)

mit

Q(v; θ) := R(v; θ)−1, (6.30)

R(v; θ) :=
Mu∑

i=Ml

vi

⎛
⎝ R∑

j=0
θjRcij

⎞
⎠ 
 0, ∀ (v,θ) ∈ V , (6.31)

für alle v ∈ [ε,1] verschachtelt und kontraktiv invariant für das System
(6.27) mit dem Regelgesetz

u = −k(v; θ)�x, k(v; θ) : V → R
n (6.32)

sind, und
|u(x)| ≤ 1, ∀x ∈ GΛ(v; θ), v ∈ [ε,1]. (6.33)

ii) Es existieren die Zahlen ρ ∈ N, ml ,mu ∈ Z, mit ml < 0, ml ≤ mu
und die Matrizen Pcij ∈ Symn, mit i = ml , . . . ,mu, j = 0, . . . ,r, sodass
für jedes Tupel (v; θ) ∈ V gilt

P(v; θ) :=
mu∑

i=ml

vi

⎛
⎝ r∑

j=0
θjPcij

⎞
⎠ 
 0, (6.34)

∂vP(v; θ) 
 0, (6.35)
A(θ)P(v; θ) +P(v; θ)A(θ)�≺ b(θ)b(θ)�. (6.36)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch

k(v; θ)�= b(θ)�P(v; θ)−1, Q(v; θ) = d(θ)P(v; θ)−1, (6.37)

wobei
d(θ) ≥ b(θ)�P(ε; θ)−1b(θ) > 0. (6.38)
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Bemerkung 6.3. Die parameterabhängigen Bedingungen aus Gl. (6.34)-
(6.36) können in äquivalente parameterunabhängige LMIs transformiert
werden. Die Transformation beruht auf der allgemeinen S -Prozedur aus
[38] und wurde in [77] vorgestellt, vgl. Abschnitt A.3 (Anhang). Diese kann
als Verallgemeinerung der im Abschnitt 4 verwendeten Transformation
für polynomiale Matrizen mit nur einem Parameter gesehen werden. Für
den Fall mehrparametriger polynomialer Matrizen werden im folgenden
Abschnitt die LMIs vorgestellt. �

Beweis. Für ein vorgegebenes θ ∈ Θ sind die Punkte i) und ii) äquiva-
lent zu den gleichnamigen Punkten aus Theorem 4.1. Daher wird hier der
Beweis nicht wiederholt aufgeführt.

6.2.1 Umwandlung der Stabilitätsbedingungen in
LMIs

Gl. (6.34)-(6.36) können in äquivalente parameterunabhängige LMIs trans-
formiert werden. Die Transformation beruht auf [77, Theorem 6.3], und
wird im Folgenden beschrieben.

Satz 6.3 [Vgl. [77, Theorem 6.3]] Folgende Aussagen sind äquivalent:
i) Für alle (ρ1,ρ2) ∈ [−1,1]× [−1,1] gilt für die polynomiell parameter-

abhängige quadratische Matrixa)

P(ρ1,ρ2) :=
(
ρ
[ᾱ2]
2 ⊗ ρ

[ᾱ1]
1 ⊗ In

)�
PΣ

(
ρ
[ᾱ2]
2 ⊗ ρ

[ᾱ1]
1 ⊗ In

)

 0, (6.39)

mit ρ[ᾱ1]1 = [1 ρ1 ρ21 · · · ρᾱ1−1
1 ]� und ρ

[ᾱ2]
2 = [1 ρ2 ρ22 · · · ρᾱ2−1

2 ]�.
ii) Es existieren die Matrizen D1,D2 ∈ Symq, mit D1,D2 
 0 und

q = 2 · (ᾱ1 − 1) · (ᾱ2 − 1) ·n, sodass

−PΣ +
[
JK

CK

]�⎡⎢⎢⎣
−D1 0 0 0
0 −D2 0 0
0 0 D1 0
0 0 0 D2

⎤
⎥⎥⎦
[
JK

CK

]
≺ 0, (6.40)
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wobei

JK :=

⎡
⎢⎢⎣
Ĵα2−1 ⊗ J̌α1−1 ⊗ In
J̌α2−1 ⊗ J̌α1−1 ⊗ In
J̌α2−1 ⊗ Ĵα1−1 ⊗ In
J̌α2−1 ⊗ J̌α1−1 ⊗ In

⎤
⎥⎥⎦ , CK :=

⎡
⎢⎢⎣
Ĵα2−1 ⊗ Ĵα1−1 ⊗ In
J̌α2−1 ⊗ Ĵα1−1 ⊗ In
Ĵα2−1 ⊗ Ĵα1−1 ⊗ In
Ĵα2−1 ⊗ J̌α1−1 ⊗ In

⎤
⎥⎥⎦ , (6.41)

und
Ĵk =

[
Ik 0k,1

]
, J̌k =

[
0k,1 Ik

]
.

a)Vgl. Def. 27 (Anhang) für die Definition einer polynomiell parameterabhängigen
quadratischen (matrixwertigen) Funktion.

Negative Exponenten

Für die Umwandlung der Polynome aus Gl. (6.34)-(6.36) in die Form eines
Polynoms aus Gl. (6.39) müssen diese erstens so transformiert werden, dass
die Exponenten von v positiv sind. Dies ist möglich durch eine mehrmalige
Multiplikation der Gleichungen mit dem Parameter v. Da

P(v,θ) =
mu∑

i=ml

vi

⎛
⎝ r∑

j=0
θjPcij

⎞
⎠ = vml

mu∑
i=ml

vi−ml

⎛
⎝ r∑

j=0
θjPcij

⎞
⎠

= vml
mu−ml∑

k=0
vk

⎛
⎝ r∑

j=0
θjPck+ml ,j

⎞
⎠

gilt, ist Gl. (6.34) äquivalent zu

S1(v,θ) :=
mu −ml∑

k=0
vk

⎛
⎝ r∑

j=0
θjPck+ml ,j

⎞
⎠ 
 0, ∀ (v,θ) ∈ [ε,1]×Θ, (6.42)
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und, da

∂vP(v,θ) =
mu∑

i=ml

ivi−1

⎛
⎝ r∑

j=0
θjPcij

⎞
⎠

= vml−1
mu∑

i=ml

ivi−ml

⎛
⎝ r∑

j=0
θjPcij

⎞
⎠

= vml−1
mu−ml∑

k=0
(k +ml)vk

⎛
⎝ r∑

j=0
θjPck+ml ,j

⎞
⎠

gilt, ist Gl. (6.35) äquivalent zu

S2(v,θ) :=
mu −ml∑

k=0
(k +ml)vk

⎛
⎝ r∑

j=0
θjPck+ml ,j

⎞
⎠ 
 0, ∀ (v,θ) ∈ [ε,1]×Θ.

(6.43)
Schließlich ist Gl. (6.36) äquivalent zu

S3(v,θ) := A(θ)S1(v,θ) + S1(v,θ)A(θ)�− v−mlb(θ)b(θ)�

=
mu −ml∑

k=0
vk

⎛
⎝ na∑

i=0

r∑
j=0

θi+j(AiPck+ml ,j
+Pck+ml ,j

A�
i )

⎞
⎠

− v−ml
nb∑
i=0

nb∑
i=0

θi+jbib�j ≺ 0, ∀ (v,θ) ∈ [ε,1]×Θ.

(6.44)

Gl.(6.42)-(6.44) können in der allgemeinen Form

Sι(v,θ) =
nv∑
k=0

vk
nθ∑
i=0

θiSck,i 
 0, ∀ (v,θ) ∈ [ε,1]× Θ, ι = 1,2,3. (6.45)

geschrieben werden. Gl. (6.45) wird im Folgenden mit Hilfe des Theorems
6.3 in eine parameterunabhängige LMI transformiert. Dazu werden ers-
tens zwei Intervalltransformationen durchgeführt, sodass beide Parameter
im Intervall [−1,1] liegen und anschließend die polynomiale Matrix umge-
formt, sodass diese in der Form aus Punkt i) des Theorems 6.3 vorliegt.
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Intervalltransformationen

Da der Parameter v aus Gl. (6.45) im Intervall v ∈ [ε,1] liegt, wird statt-
dessen der transformierte Parameter ṽ := 2/αv − β/α, mit α = 1− ε und
β = 1+ ε verwendet, wobei ṽ ∈ [−1,1] gilt. Für Gl. (6.45) ergibt sich nach
einigen Umformungen

Sι(v,θ) =
nv∑
k=0

ṽkαk
nv∑
j=k

2−j

(
j

k

)
βj−k

(
nθ∑
i=0

θiScj,i

)
=: S̃ι(ṽ,θ). (6.46)

Wir nehmen an, dass das Intervall Θ in der Form Θ = [θl,θu] vorliegt. Eine
zweite Intervalltransformation wird durch θ̃ := 2/γθ−δ/γ, mit γ = θu−θl
und δ = θu+θl vorgenommen, sodass θ̃ ∈ [−1,1] gilt. Folglich ist Gl. (6.46)
äquivalent zu

S̃ι(ṽ,θ) =
nv∑
k=0

ṽkαk
nv∑
j=k

2−j

(
j

k

)
βj−k

(
nθ∑
i=0

θ̃iγi
nθ∑
l=i

2−l

(
l

i

)
δl−iScjl

)

=: ˜̃Sι(ṽ,θ̃).

Mit der Notation ṽ =: ρ1, θ̃ =: ρ2 kann die Matrix ˜̃Sι(ṽ,θ̃) in der allgemei-
nen Form

Tι(ρ1,ρ2) := ˜̃Sι(ρ1,ρ2) =
ρ̄1,ρ̄2∑

k1=k2=0
ρk1
1 ρk2

2 Tιck1,k2
, (6.47)

mit ρ̄1 := nv, ρ̄2 := nθ, sowie

Tιck1,k2
:= αk1

ρ̄1∑
j=k1

2−j

(
j

k1

)
βj−k1γk2

ρ̄2∑
l=k2

2−l

(
l

k2

)
δl−k2Scjl

und α := 1− ε, β := 1 + ε, γ := θu − θl, δ := θu + θl geschrieben werden.

Umformung der polynomialen Matrix S(ṽ,θ̃)

Gl. (6.47) kann darüber hinaus in der Form

Tι(ρ1,ρ2) =
(
ρ
[ᾱ2]
2 ⊗ ρ

[ᾱ1]
1 ⊗ In

)�
TιΣ

(
ρ
[ᾱ2]
2 ⊗ ρ

[ᾱ1]
1 ⊗ In

)
, (6.48)
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mit ρ[α1]1 = [1 ρ1 ρ21 · · · ρᾱ1−1
1 ]� und ρ

[ᾱ2]
2 = [1 ρ2 ρ22 · · · ρα2−1

2 ]�,
sowie ᾱi := �ρ̄i/2� + 1, i = 1,2, geschrieben werden, wobei die konstante
Block-Matrix TιΣ ∈ Symα1 ·α2 ·n aus

TιΣ :=
1
2(T̄ιΣ + T̄�

ιΣ)

gebildet wird. Dabei wird der (f1,f2)-te Block der Matrix T̄ιΣ durch

T̄ιΣ(f1,f2)
:= Tιck1,k2

gebildet, wobei die Indizes f1 und f2 aus

f1 := fK(α1,α2)
f2 := fK(β1,β2)

mit
fK(c1,c2) := ᾱ1c2 + c1 + 1

und
αi :=

⌈
ki

2

⌉
, βi :=

⌊
ki

2

⌋
, i = 1,2,

berechnet werden. Die restlichen Komponenten der Blockmatrix, welche
durch die Indizes f1 und f2 nicht festgelegt wurden, werden zu 0n,n gesetzt.
Die Umformung aus Gl. (6.48) ist allerdings nicht eindeutig.
Die Sätze 6.1 und 6.2 beinhalten die notwendigen und hinreichenden

Bedingungen für die Stabilisierbarkeit eines Regelstreckenensembles durch
klassische bzw. invers-polynomiale WSVRs. Sie können als Erweiterungen
der im Kapitel 3 und 4 vorgestellten Regelungen gesehen werden.
Abschließend werden hier noch die Hauptbeiträge des ersten Teils der

Arbeit zusammengefasst. Dieser stellt mehrere Weiterentwicklungen wei-
cher strukturvariabler Regelungen mittels impliziter Ljapunov-Funktionen
vor, deren Hauptaugenmerk die Nicht-Konservativität der Regelgesetze
bildet. Nach einem einleitenden Kapitel über die Stabilisierung linearer
Systeme mit Stellgrößenbeschränkung werden im Kapitel 3 die hinreichen-
den und notwendigen Bedingungen der klassischen WSVR mittels iLF
vorgestellt. Daran anschließend wird die hier neu-entwickelte invers-poly-
nomiale WSVR in Kapitel 4 eingeführt. Beide Kapitel haben dabei eine
ähnliche Struktur. Sie beginnen mit der Definition der jeweiligen Regelung,
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werden dann mit den nicht-konservativen Stabilitätsbedingungen fortge-
führt und enden mit einem Abschnitt über einen möglichen Regelungs-
entwurf. Kapitel 5 stellt die konvergenzoptimale (Bang-Bang) WSVR dar.
Dabei werden ebenfalls nicht-konservative Stabilitätsbedingungen vorge-
stellt. Darüber hinaus wird der Aufbau stetiger Approximationen der vor-
gestellten Bang-Bang Regelgesetze und, abschließend, ein möglicher Rege-
lungsentwurf vorgestellt. Der letzte Abschnitt des Kapitels veranschaulicht
die oben vorgestellten Regelgesetze anhand von zwei Beispielen mit Reg-
lerstrecken zweiter Ordnung. Der erste Teil der Arbeit endet mit der im
Kapitel 6 vorgestellten WSVR-Synthese für Regelstreckenensembles. Diese
werden im zweiten Teil der Arbeit im Rahmen der Performance-Analyse
in nichtlinearen Regelkreisensembles verwendet.
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Teil II

Performance-Analyse
nichtlinearer Regelkreise
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7 Performance-Maße in nichtlinearen
Regelkreisen

Lineare und nichtlineare Regelkreise unterscheiden sich wesentlich in ihren
Eigenschaften. Das Superpositionsprinzip, die Darstellbarkeit jedes linea-
ren Systems mit Hilfe einer endlichen Anzahl von Parametern, die Anwend-
barkeit des Satzes von Cayley-Hamilton mit den jeweiligen Folgen für den
linearen Regelkreis, z.B. bzgl. Steuerbarkeit und Beobachtbarkeit, haben
zu einer vollständingen Theorie linearer Systeme geführt. Diese Eigen-
schaften sind im Allgemeinen bei nichtlinearen Systemen nicht vorhanden.
Dies hat zur Folge, dass nur bestimmte Klassen nichtlinearer Systeme, wel-
che besondere Eigenschaften haben, einheitlich untersucht werden können.
Eine Klassifizierung nichtlinearer Systeme kann man z.B. in [65] finden.
Die Eigenschaften eines nichtlinearen Systems können unter bestimm-

ten Bedingungen mit Hilfe der linearen Systemtheorie untersucht werden.
Diese wird zur asymptotischen Analyse nichtlinearer Zustandslösungen in
der Nähe linearer Lösungen erweitert. Mit dieser Thematik beschäftigen
sich beispielsweise [11, 31, 43, 48, 56, 67, 76]. Ein Beispiel einer solchen
Methode ist die Analyse von Dauerschwingungen in der Nähe linearer
harmonischer Schwingungen, vgl. dazu [31]. Die Erweiterung der linearen
Systemtheorie in dieser Richtung basiert auf der asymptotischen Methode
von Krylov und Bogoliubov, vgl. [43]. In der Arbeit von [56] wurde diese
Methode auf gedämpfte nichtlineare Schwingungen erweitert. Die Voraus-
setzungen für diese Untersuchung war, dass die Dämpfung und Frequenz
der nichtlinearer Schwingung nur langsam variieren. Diese Voraussetzung
wurde in der Arbeit von [76] gemildert, in der die nichtlineare Schwingung
in der Nähe einer linearer Schwingung mit zeitvarianter Dämpfung und
Frequenz analysiert wurde. Die Anwendung dieser Methode auf den Fall
weicher strukturvariabler Regelungen wurde in [57] gezeigt. Dabei wurde
eine Lösungsmethode unter Verwendung von Potenzreihen vorgestellt, um
die meistens sehr komplexe Form der angenäherten Zeitlösung numerisch
effizient zu berechnen. Zwei weitere Anwendungen von solchen asymptoti-
schen Methoden können in [15], sowie [20] gefunden werden.
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Die Performance-Analyse nichtlinearer Systeme wird mit Hilfe ver-
schiedener Performance-Maße (Gütemaße) durchgeführt, welche exakt be-
rechnet oder angenähert werden können, oder wofür bestimmte Ober-
und/oder Untergrenzen berechnet werden können. In diesem Kapitel wer-
den mehrere Performance-Maße sowie deren Einsatz zur Performance-Ana-
lyse in nichtlinearen Regelkreisen analysiert. Neben der Konvergenzrate
eines exponentiell stabilen nichtlinearen Systems, welche vielfach sowohl
für die Performance-Analyse als auch für den Reglerentwurf verwendet
wird, wird in dieser Arbeit - auf Basis eines neu entwickelten Zweipunkt-
reglers mit einer parameterabhängigen Schaltfunktion - auch ein neues
Performance-Maß vorgestellt, das den Fehlklassifikationsanteil einer zeit-
suboptimalen Regelung mit Schaltfunktion mißt. Unabhängig von der
Zeitlösung des Systems, quantifiziert dieses Maß den Abstand zwischen
der Schaltfunktion eines zeitoptimalen Reglers und einer Schaltfunktion
eines zeitsuboptimalen Reglers. In dem gleichen Zusammenhang wird der
Quotient zwischen der Einschwingzeit des neuen Reglers und der Ein-
schwingzeit des zeitoptimalen Reglers analysiert.
Das Kapitel ist wie folgt gegliedert. Abschnitt 7.1 stellt die wesentli-

chen Unterschiede zwischen linearen und nichtlinearen Regelkreisen dar.
Abschnitt 7.2 stellt eine Klassifizierung von Performance-Maßen dar. Ab-
schnitt 7.3 stellt ein neues Performance-Maß dar, das geeignet für um-
schaltende Regler ist und den Fehlklassifikationsanteil einer zeitsubopti-
malen Regelung mit Schaltfunktion misst. Abschnitt 7.4 stellt ein weite-
res Performance-Maß dar, das das Verhältnis zwischen der Einschwingzeit
des zeitoptimalen Reglers und der des konvergenzoptimalen Reglers mißt.
Schließlich beschreibt Abschnitt 7.5 die Konvergenzrate eines exponentiell
stabilen nichtlinearen Systems und gibt einen theoretischen Rahmen für
dessen Bestimmung an.

7.1 Lineare und nichtlineare Regelkreise
Wie bereits erwähnt, unterscheiden sich die linearen und die nichtlinearen
Regelkreise wesentlich in ihren Eigenschaften. Das Fehlen des Superposi-
tionsprinzips im Fall nichtlinearer Regelkreise führt beispielsweise dazu,
dass der Zusammenhang zwischen Ein- und Ausgangsgröße nicht durch
eine komplexe Übertragungsfunktion darstellbar ist, und somit keine fre-
quenzbasierten Untersuchungsmethoden anwendbar sind. Darüber hinaus
gelten die Ergebnisse, die für einen Unterraum des Rn erzeugt wurden,
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nicht im gesamten Zustandsraum. Die Ergebnisse sind also nur lokal gül-
tig.
Darüber hinaus ist die Darstellbarkeit eines nichtlinearen Systems mit

Hilfe einer endlichen Anzahl an Parametern nicht mehr möglich, da auch
eine genügend glatte Funktion f(x) höchstens durch eine unendliche Rei-
he, z.B. in Form einer Taylorreihe in der Umgebung eines Arbeitspunktes
x(0), darstellbar ist. Dies führt dazu, dass die Zeitlösung allein bei be-
stimmten nichtlinearen Systemen exakt bestimmbar ist, im Allgemeinen
aber bestenfalls nur approximiert werden kann.
Sind Dauerschwingungen bei linearen Systemen theoretische Phänome-

ne, die aufgrund unvermeidbaren Rauschens oder Parameterschwankung
in einem realen System nicht vorkommen können, so sind diese - zumindest
die stabilen Dauerschwingungen - in nichtlinearen Regelkreisen reale Phä-
nomene, wobei deren Amplituden und Frequenzen unabhängig von den
Anfangsauslenkungen sind. Diese bilden eine besondere Eigenschaft eines
nichtlinearen Systems und werden daher oft als Selbstschwingungen1) be-
zeichnet.
Weitere Eigenschaften nichtlinearer Regelkreise, wie z.B. Bifurkationen,

Chaos, sowie - bezogen auf die Instabilität - Unbeschränktheit des Aus-
gangssignals eines instabilen nichtlinearen Systems (nach endlicher Zeit),
oder die mögliche Inexistenz eines mathematischen Modells für die Be-
schreibung nichtlinearer Dynamiken werden beispielsweise in [75] behan-
delt. Bei der in dieser Arbeit untersuchten Spezialklasse nichtlinearer Sys-
teme sind jedoch solche Eigenschaften nicht vorhanden, sodass sie hier
keine weitere Beachtung finden.
Bezüglich der Performance erfahren auf der anderen Seite die linearen

Systeme fundamentale Grenzen, welche beispielsweise durch das Gleich-
gewichtstheorem2) anschaulich sind. Diese sind zwar prinzipiell mit Hilfe
nichtlinearer Regler überwindbar, dies jedoch auf Kosten einer Erhöhung
der Komplexität des Reglers.
Die Performance-Maße für die nichtlinearen Regelkreise sind folglich an-

gepasst an die besonderen Eigenschaften verschiedener Systemklassen. Ei-
ne besondere Klasse nichtlinearer Regelkreise, die in dieser Arbeit unter-
sucht wird, bilden die linearen Strecken mit Stellgrößenbegrenzung, welche
durch lineare oder nichtlineare Regler geregelt sind. Allgemein lässt sich
der Regelkreis wie in Abbildung 7.1 darstellen. Ist das Regelgesetz linear,

1)Vgl. [29].
2)Vgl. [47, Abschnitt 7.4.4].
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1
−1

Sättigungsglied
ẋ = Ax + bu
y = c�x, x0∈X0

Strecke

u

f(x)

Regler

r=0 u y

x

−

Bild 7.1: Nichtlinearer Regelkreis.

so bildet die Sättigungsfunktion die einzige Nichtlinearität im Regelkreis.
Ein solches Modell ist in der Literatur auch als Hammerstein-Systemmo-
dell bekannt.3) Dabei ist die Sättigungsfunktion als symmetrisch und, ohne
Beschränkung der Allgemeinheit, normiert angenommen, d.h.

u = sat(u) = sign(u)min{1,|u|}.

Eine fehlende Symmetrie der Sättigungsfunktion ändert wesentlich die Ei-
genschaften des Systems. Diese Art von Systemen wird hier jedoch nicht
behandelt.
Ist der Regler nichtlinear, so muss dieser nicht notwendigerweise analy-

tisch sein. In dieser Arbeit werden Regelgesetze analysiert, welche nichtli-
near in den Systemzuständen sind und außerdem unstetige Komponenten
beinhalten können. Ein nichtlinearer Regler dieser Art ist beispielsweise
ein Bang-Bang-Regler (u(x) = sgn(s(x))).
Im Allgemeinen lässt sich obiger nichtlineare Regelkreis in der Form

ẋ = Ax− b sat(f(x)), x ∈ R
n, f(0) = 0 (7.1)

beschreiben. Die Ruhelage des Systems ist dabei xR = 0. Solche Rege-
lungen für lineare Systeme mit Stellgrößenbegrenzung wurden vielfach in
der Literatur untersucht, vgl. z.B. [35] für lineare und Bang-Bang-artige
Regelgesetze mit zustandslinearen Umschaltstrategien.
Im Folgenden wird eine Klassifizierung von Performance-Maßen für

nichtlineare Regelkreise mit besonderer Berücksichtigung der oben vorge-
stellten Systemklasse vorgenommen.

3)Vgl. [65, Abschnitt 1.2].
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7.2 Klassifizierung von Performance-Maßen
Im Allgemeinen werden Performance-Maße verwendet, um Aussagen über
das dynamische Verhalten des nichtlinearen Regelkreises zu machen. Sie
basieren oft auf der Antwortfunktion der homogenen Zustandsgleichung4)
im Fall stabiler Systeme, im Weiteren als transientes Verhalten bezeichnet,
also auf der Antwort ausschließlich zu verschiedenen Anfangsauslenkun-
gen, ohne weitere aktive externe Störungen. Diese unterscheidet sich von
dem transienten Verhalten in einem linearen Regelkreis, welches das Ein-
schwingverhalten des Systems und nicht die Antwortfunktion der homoge-
nen Zustandsgleichung darstellt. Letztere beinhaltet bei linearen Systemen
auch das stationäre Verhalten.
Das transiente Verhalten in nichtlinearen Regelkreisen, also die Antwort

ausschließlich zu verschiedenen Anfangsauslenkungen, wird dabei genutzt,
um verschiedene zustandsbezogene Performance-Maße zu formulieren.
Hierfür relevante Performance-Maße sind beispielsweise die Zeitkonstante,
d.h. die Zeit, in der die Zustandsnorm auf weniger als 35% (≈ e−1) ihres
Anfangswertes ‖x(0)‖ sinkt und die Einschwingzeit der Zustandsnorm,
d.h. die Zeit, wann die Zustandsnorm auf weniger als 5% (≈ e−3) ihres
Anfangswertes sinkt. Im Fall exponentiell stabiler Systemen können diese
Maße aus der Konvergenzrate des Systems, vgl. [69], berechnet werden,
welche sich leichter als die Zeitlösung des Systems ermitteln lässt und ge-
eignet für die Reglersynthese über optimierungsbasierte Ansätze ist. Diese
wird im nächsten Abschnitt vorgestellt.
Auch relativ zur zeitoptimaler Regelung ist es relevant, wie schnell eine

(nichtlineare) Regelungsmethode ist. Ist die zeitoptimale Schaltfunktion
bekannt, so kann man das Verhältnis der beiden Einschwingzeiten unter-
suchen. Dies wird im Weiteren relative Einschwingzeit genannt. Zudem
kann man den Fehlklassifikationsanteil einer zeitsuboptimalen Regelung
mit Schaltfunktion als Performance-Maß verwenden. Diese Maße werden
in den nächsten Abschnitten vorgestellt.
Ein weiteres zustandsbezogenes Performance-Maß ist die Größe des Ein-

zugsgebiets der Ruhelage, welche beispielsweise durch das Volumen des
Einzugsgebiets quantifiziert werden kann, denn je größer das Einzugsge-
biet ist, desto mehr Anfangsauslenkungen können ausgeregelt werden. Das
maximale Einzugsgebiet ist dabei im Fall linearer Strecken mit Stellgrö-
ßenbegrenzungen auf die asymptotisch-null-steuerbare Region beschränkt,

4)Der entsprechende englische Begriff lautet zero-input response.
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die im Fall instabiler Strecken begrenzt ist.5) Im Fall ellipsoidaler Gebiete
lässt sich, wie im vorigen Teil der Arbeit gezeigt, das Volumen des Ein-
zugsgebiets mittels LMIs optimieren.
Im Fall schwingungsfähiger nichtlinearer Systeme kann, wie bereits er-

wähnt, auch eine zeitveränderliche Frequenz der nichtlinearen Schwingung
ermittelt werden. Diese ist im Fall nichtlinearer Regelkreise, ebenso wie
die Dämpfung, eine Funktion der Amplitude der nichtlinearen Schwingung.
Mit Hilfe der sogenannten amplitudenabhängigen Frequenz und Dämpfung
kann die Zeitlösung des Systems approximiert werden und damit die oben
genannten Performance-Maße, sowie die Anzahl der Schwingungsperioden
der nichtlinearen Schwingung approximiert werden.
Andere Performance-Maße können die Zustandseigenschaften eines nicht-

linearen Systems quantifizieren, welche durch besondere Steuergrößen
entstehen. Diese werden input-to-state-bezogene Performance-Maße ge-
nannt. Beispielsweise ist in [16] die Erreichbarkeitsmenge von Zuständen
mittels einer Steuergröße mit einer Gesamtenergie von eins, oder einer
Steuergröße mit einer Obergrenze von eins von Interesse. Die Erreichbar-
keitsmenge gruppiert die Zustände eines nichtlinearen Systems, welche von
einem bestimmten Zustand aus mit Hilfe einer beliebigen Steuergröße in
einer maximalen Zeitspanne von T Sekunden erreicht werden können, vgl.
[3]. Beispielsweise ist die Erreichbarkeitsmenge (von jedem Zustandspunkt
aus) eines steuerbaren linearen Systems (ohne Stellgrößenbeschränkun-
gen) der gesamte Zustandsraum. Im Fall steuerbarer linearer Systeme mit
Stellgrößenbeschränkungen ist dies nur bei stabilen oder semi-stabilen Sys-
temen der Fall, vgl. [35, Kapitel 2]. Auch bei nichtlinearen Systemen ist
dies nicht immer der Fall, wie das Beispiel aus [3, S. 163] zeigt.
Auch die Eigenschaften der Ausgangsgröße eines nichtlinearen Systems,

welche durch die Zustände determiniert werden, können durch Perfor-
mance-Maße quantifiziert werden. Diese werden state-to-output-bezoge-
ne Performance-Maße genannt. Beispielsweise gehört die Ausgangsenergie
eines (nichtlinearen) Systems dazu, welche für Reglersynthese mit opti-
mierungsbasierten Ansätzen geeignet sind, vgl. z.B. [30]. Auch die Über-
schwingweite, d.h. die maximale Amplitude der Ausgangsgröße, kann zu
solchen Performance-Maßen gezählt werden.
Schließlich können die Eigenschaften der Ausgangsgröße eines nichtli-

nearen Systems, welche durch die Steuergrößen determiniert werden, mit
Hilfe von sogenannten input-to-output-bezogenen Performance-Maßen

5)Vgl. [35, Proposition 2.2.1].
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quantifiziert werden. Beispielsweise quantifiziert die L2-Verstärkung die
kleinste obere Schranke des Verhältnises zwischen der Ausgangs- und Ein-
gangsenergie. Dieses ist definiert als

L2 := sup
‖u‖L2 
=0

‖y‖L2
‖u‖L2

,

mit
‖w‖2L2 :=

∫ ∞

0
w�wdt.

Eine Anwendung dieses Maßes kann z.B. in [53] gefunden werden. Ein
ähnliches Maß ist die RMS-Verstärkung6), welche als

RMS := sup
RMS(u) 
=0

RMS(y)
RMS(u) ,

mit7)

RMS(w)2 := lim sup
T→∞

∫ T

0
w�wdt,

definiert ist.
Die in diesem Abschnitt beschriebene Klassifizierung von Performance-

Maßen stammt aus [16] und ist nicht vollständig. Beispielsweise werden
Kombinationen der o.g. Maße, wie das Lagrange’sche, das Mayer’sche,
sowie das Bolza’sche Gütemaß in der Arbeit von [30] beschrieben und
analysiert. Das Bolza’sche Gütemaß bezeichnet dabei die Addition der
beiden anderen Gütemaße und hat die Form

J = h(x(T ),T ) +
∫ T

0
f0(x(t),u(t),t)dt,

wobei x(t) den Zustandsvektor, u(t) den Steuervektor, T eine bestimm-
te Zeit, h( · ) und f0( · ) vorgegebene Funktionen bezeichnen. Im Weite-
ren beschäftigt sich die Arbeit nur mit zustandsbezogenen Performance-
Maßen, der Konvergenzrate, dem Fehlklassifikationsanteil der zeitsubopti-
malen Schaltfunktion, sowie der relativen Einschwingzeit. Die im letzten
Kapitel dieser Arbeit beschriebenen Methoden zur Performance-Analyse
mittels Computerexperimenten lassen sich jedoch auf beliebige Performan-
ce-Maße übertragen.
6)RMS ist eine Abkürzung für Root Mean Square.
7)Vgl. Def. 16 (Anhang) für die Definition der Limes superior einer Funktion.
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7.3 Der Fehlklassifikationsanteil einer
zeitsuboptimalen Regelung mit
Schaltfunktion

Im Abschnitt 5 wurde durch die Maximierung einer V -induzierten Ma-
trixnorm ein Bang-Bang-Regler erzielt, der im Fall linearer Systeme mit
Stellgrößenbeschränkung die gleiche Struktur wie der zeitoptimale Regler
besitzt, jedoch eine parameterabhängige Schaltfunktion aufweist, wobei
der Parameter zustandsabhängig ist. Um die Performance dieses zeitsub-
optimalen Reglers zu quantifizieren, können die beiden Schaltfunktionen
verglichen werden. Dies wird im Folgenden gezeigt.
Das Ziel der zeitoptimalen Regelung ist es, den Zustandsvektor x(t) aus

einem beliebigen Punkt x0 der null-steuerbaren Region in kürzester Zeit in
die Ruhelage xR = 0 des Systems zu bewegen. Mathematisch formulieren
lässt sich dies durch

min
u∈R

J =
∫ T

0
1dt = T,

unter den Nebenbedingungen

ẋ = Ax+ bu,
x(0) = x0, x(T ) = 0,
|u| ≤ 1.

Dieses Optimierungsproblem mit Nebenbedingungen kann durch den La-
grange-Multiplikatorenansatz in ein Optimierungsproblem ohne Nebenbe-
dingungen transformiert werden. Dabei ist der Multiplikator (im Folgen-
den mit ψ(t) bezeichnet) aufgrund der Differentialgleichung aus der ersten
Nebenbedingung eine zeitabhängige Vektorfunktion. Diese Transformation
und die anschließende Lösung des Problems lassen sich durch Einführen
der Hamilton-Funktion leichter darstellen, vgl. [30]. In diesem Fall hat
Letztere die Form

H(x,ψ,u) : = −1 +ψ�(Ax + bu)
= −1 +ψ�Ax+ψ�bu, (7.2)
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wobei die Lösung des obigen Optimierungsproblems die Bedingungen

ẋ = ∂H(x,ψ,u)
∂ψ

= Ax+ bu, (7.3)

ψ̇ = −∂H(x,ψ,u)
∂x = −A�ψ, (7.4)

uopt = argmax
u
H(x,ψ,u) (7.5)

erfüllen muss. Bedingung (7.5) stellt den wesentlichen Aspekt des Maxi-
mumprinzips von Pontrjagin8) dar, das aufgrund der Beschränkung der
Stellgröße |u| ≤ 1 zur Anwendung kommt. Aus der Bedingung (7.5) folgt,
dass die Lösung durch

uopt(t) = sgn(ψ�
opt(t)b) (7.6)

gegeben sein muss. Die Vektorfunktion ψopt(t) folgt dabei aus Bedingung
(7.4), d.h., es gilt

ψopt(t) = e−A�tψopt(0), (7.7)

wobei der unbekannte Parametervektorψopt(0) unter Nutzung der Endbe-
dingung x(T ) = 0 mit Hilfe der Zeitlösung des Gesamtsystems berechnet
werden muss. Es ergibt sich dabei mit der Lösung von Gl. (7.3) die Vek-
torgleichung ∫ T

0
e−Aτb sgn

(
b�e−A�τψopt(0)

)
dτ = −x0. (7.8)

Diese ist besonders im Fall von Strecken höherer Ordnung nicht mehr
analytisch lösbar, sodass die zeitoptimale Schaltfunktion aus Gl. (7.6) nicht
mehr in einer geschlossenen Form angegeben werden kann.
Die regelgesetzabhängige Komponente der Hamilton-Funktion ist im

Optimum gegeben durch

H(x,ψopt,uopt) = ψ�
opt(t)buopt = |ψ�

opt(t)b|. (7.9)

Sei ein zeitsuboptimales Regelgesetz gegeben durch

usubopt(t) := sgn(ψ�
subopt(t)b).

8)Vgl. [30].
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Beide Regelgesetze unterscheiden sich also durch die Vektorfunktion ψ(t).
Dies hat zur Folge, dass durch den zeitsuboptimalen Regler die Endbedin-
gung x(T ) = 0 nicht mehr erfüllt ist. Nehmen wir an, dass im subopti-
malen Fall stattdessen gilt

x(T ) = eAT ε, ε �= 0.

Gl. (7.8) wird in diesem Fall∫ T

0
e−Aτb sgn

(
b�e−A�τψsubopt(0)

)
dτ = ε− x0. (7.10)

Durch Subtrahieren der beiden Gleichungen (7.8) und (7.10) ergibt sich

ε =
∫ T

0
e−Aτb

[
sgn
(
b�e−A�τψsubopt(0)

)
− sgn

(
b�e−A�τψopt(0)

)]
dτ

=
∫ T

0
e−Aτb

[
sgn
(
b�ψsubopt(τ)

)
− sgn

(
b�ψopt(τ)

)]
dτ

und somit9)

‖ε‖ ≤
∫ T

0
‖e−Aτb‖ ·

∣∣sgn (b�ψsubopt(τ)
)
− sgn

(
b�ψopt(τ)

)∣∣dτ. (7.11)

Abgesehen von der Gewichtung ‖e−Aτb‖, je kleiner die Zeitspanne ist,
wo die Regelgesetze unterschiedliche Vorzeichen aufweisen, desto kleiner
ist ‖ε‖. Für ein gegebenes Einzugsgebiet G der Ruhelage wäre es dann
denkbar, das Maß

JH :=
1
2

∫
· · ·
∫
G
| sgn(ψ�

opt(x)b) − sgn(ψ�
subopt(x)b)|dx (7.12)

zu verwenden, welches die Fläche zwischen den beiden Schaltfunktionen
berechnet, wo die Regelgesetze unterschiedliche Vorzeichen haben. Um den
jeweiligen Wert im Verhältnis zum gesamten Einzugsgebiet der Ruhelage

9)Dies kann man wie folgt erklären: Sei s :=
∫ b
a

f(t)dt �= 0, mit f : [a,b]→ Rn. Es gilt

‖s‖2 = s�s = s�
∫ b
a

f(t)dt =
∫ b
a

s�f(t)dt ≤
∫ b
a
‖s‖‖f(t)‖dt = ‖s‖

∫ b
a
‖f(t)‖dt. Durch

Teilen mit ‖s‖ �= 0 folgt ‖
∫ b
a

f(t)dt‖ ≤
∫ b
a
‖f(t)‖dt.
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zu setzen, wird das Performance-Maß zum Volumen des Einzugsgebiets
normiert, d.h.

Jn
H :=

JH
Vol(G) . (7.13)

Dieses Maß wird normierter Fehlklassifikationsanteil einer zeitsuboptima-
len Regelung mit Schaltfunktion10) genannt.

7.4 Relative Einschwingzeit
Als alternativer Vergleich der Regelgüte zwischen einer zeitsuboptimalen
und einer zeitoptimalen Regelung wird die relative Einschwingzeit ver-
wendet. Diese ist definiert als das Verhältnis zwischen der mittleren Ein-
schwingzeit einer zeitsuboptimalen Regelung (usubopt) und der mittleren
Einschwingzeit einer zeitoptimalen Regelung (uopt), d.h.

Jta :=

1
m

m∑
k=1

t
usubopt
a5% (xk(0))

1
m

m∑
k=1

t
uopt
a5% (xk(0))

, xk(0) ∈ ∂G, k = 1, . . . ,m, (7.14)

wobei xk(0) ∈ ∂G, mit k = 1, . . . ,m, äquidistante Anfangsauslenkungen
auf dem Rand des Einzugsgebietes G sind, und die Einschwingzeit als

tua5%(xk(0)) := max
t>0

‖xk(t)‖≥0.05‖xk(0)‖
t (7.15)

definiert ist. Dabei stellt xk(t) die Trajekorie des Systems ẋ = Ax + bu
dar.
Offensichtlich können die letzten zwei Performance-Maße nicht analy-

tisch berechnet werden. Diese werden im nächsten Kapitel für ein Strecke-
nensemble empirisch geschätzt.

7.5 Konvergenzrate
Im Fall exponentiell stabiler Systeme kann das Konvergenzverhalten der
Zeitlösung durch die Konvergenzrate (od. Rate der exponentiellen Konver-
10)Der Begriff Fehlklassifikationsanteil (engl. misclassification ratio) stammt aus dem
Bereich des maschinellen Lernens. Darin bezeichnet dieses Maß den Anteil der falsch
klassifizierten (Test-)Daten an den gesamten (Test-)Daten.
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genz) des Systems analysiert werden, ohne dabei die exakte Zeitlösung zu
kennen. Die Konvergenzrate ist wie folgt definiert:

Definition 1 [Konvergenzrate eines exponentiell stabilen Systems] Gege-
ben sei das Differentialgleichungssystem ẋ(t) = f(x(t)), mit x(t) ∈ Rn und
f(0) = 0, wobei die Ruhelage xR = 0 exponentiell stabil ist. Der maximale
Abklingfaktor α > 0, wofür eine positive Zahl γ > 0 existiert, sodass

‖x(t)‖ ≤ γ‖x(0)‖e−αt, ∀t > 0 und ∀x(0) ∈ Bε(xR)

gilt, heißt Konvergenzrate des Systems.

Dieses Maß stellt eine obere Grenze der Zustandsnorm zu jedem Zeitpunkt
t > 0 dar. Diese Grenze kann verwendet werden, um den jeweiligen Wert
der Zustandsnorm zum Zeitpunkt t im Verhältnis zum Anfangswert ‖x(0)‖
zu setzen. Dies ergibt sich aus der äquivalenten Darstellung

‖x(t)‖ ≤ ‖x(0)‖elnγ−αt.

Beispielsweise kann die Zeitkonstante approximiert werden, d.h. die Zeit,
in der die Zustandsnorm auf weniger als 35% (≈ e−1) ihres Anfangswertes
‖x(0)‖ sinkt. Auch die Einschwingzeit der Zustandsnorm kann damit ap-
proximiert werden, d.h. die Zeit, wann die Zustandsnorm auf weniger als
5% (≈ e−3) ihres Anfangswertes sinkt. Daraus folgt eine Approximation
der Einschwingzeit durch

ta5% ≈
(ln γ + 3)

α
. (7.16)

Es ist ersichtlich, dass je größer die Konvergenzrateα ist, desto kleiner ist
die Einschwingzeit. Im Fall linearer Systeme entspricht die Konvergenzrate
betragsmäßig dem Realteil des Eigenwertes/Eigenwertpaares der System-
matrix, der/das am nächsten zur imaginären Achse liegt. Dies ist aus der
Zeitlösung eines linearen Systems ersichtlich. Im Fall nichtlinearer Systeme
ist die Konvergenzrate im Allgemeinen nicht mehr exakt bestimmbar.

7.5.1 Formulierung mittels Matrixnormen
In der Literatur existieren eine Reihe von Methoden, welche eine untere
Grenze der Konvergenzrate liefern. Sie basieren im Allgemeinen auf Ma-
trixnormen. Diese, sowie ein dazu passender theoretischer Rahmen wer-
den im Folgenden erläutert. Dazu werden zwei Matrixnormen vorgestellt,
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die logarithmische Matrixnorm und die V-induzierte logarithmische Ma-
trixnorm.

Definition 2 [Logarithmische Matrixnorm, vgl. [73, Section 2.2.2]] Ge-
geben sei eine quadratische Matrix A ∈ Rn×n. Der Skalar μ(A) ∈ R,
definiert als

μ(A) := lim
h→0+

‖In + hA‖i − 1
h

(7.17)

wird logarithmische Matrixnorm genannt. Dabei bezeichnet ‖A‖i eine in-
duzierte Matrixnorm, vgl. Def. 24 (Anhang).

Bemerkung 7.1 (Abgrenzung zur induzierten Matrixnorm). Obwohl hier
der Begriff logarithmische Matrixnorm verwendet wird, handelt es sich bei
μ(A) nicht um eine induzierte Matrixnorm im Sinne der Def. 24 (Anhang).
Ein wesentlicher Unterschied bildet die Tatsache, dass die logarithmische
Matrixnorm auch negative Werte annehmen kann, wobei die induzierte
Matrixnorm im eigentlichen Sinn nur positive Werte annimmt. Der Begriff
logarithmische Matrixnorm wurde zum ersten Mal in [23] verwendet. �
Bemerkung 7.2 (Anschauliche Darstellung einer logarithmischen Matrix-
norm, vgl. [72]). Für eine kontinuierliche Funktion F : Rn → R heißt der
Skalar

∂F (x;y) := lim
h→0+

F (x + hy)− F (x)
h

(7.18)

falls er existiert, Richtungsableitung von F an der Stelle x in Richtung y.
Es ist ersichtlich, dass die logarithmische Matrixnorm aus Gl. (7.17) die
Richtungsableitung der induzierten Matrixnorm ‖ · ‖i an der Stelle In in
die Richtung der Matrix A ist. �
Bemerkung 7.3 (Ausgewählte Eigenschaften der logarithmischen Matrix-
norm, siehe [24]).

(i) Die Grenze μ(A) existiert für jede Matrix A ∈ R
n×n.

(ii) μ(In) = 1, μ(−In) = −1,
(iii) − ‖A‖i ≤ −μ(−A) ≤ Reλ(A) ≤ μ(A) ≤ ‖A‖i,
(iv) μ(αA) = αμ(A), ∀α ≥ 0,
(v) μ[νA+ (1− ν)B]≤νμ(A) + (1 − ν)μ(B), ∀ ν ∈ [0,1],A,B ∈ R

n×n.

�
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Tabelle 7.1: Ausgewählte Vektornormen, induzierte Matrixnormen und
logarithmische Matrixnormen.

‖x‖∞ := max
i
|x(i)| ‖A‖i∞ := max

i

n∑
j=1

|a(ij)| μ∞(A) = max
i
[a(ij) +

∑
j 
=i

|a(ij)|]

‖x‖1 :=
n∑

i=1
|x(i)| ‖A‖i1 := max

j

n∑
i=1

|a(ij)| μ1(A) = max
j
[a(jj) +

∑
i
=j

|a(ij)|]

‖x‖2 :=
√

n∑
i=1

|x(i)|2 ‖A‖i2 :=
√
λmax(A�A) μ2(A) = λmax(A�+A)/2

Tabelle 7.1 gibt mehrere Normen und die entsprechenden logarithmischen
Matrixnormen wieder. Für LTI und LTV-Systeme kann eine untere und
obere Grenze der Zustandsnorm mit Hilfe logarithmischer Matrixnormen
angegeben werden. Folgendes Lemma verdeutlicht dies.

Lemma 7.1 [Grenzen der Zustandsnorm basierend auf logaritmi-
schen Matrixnormen, vgl. [73, Section 2.5]]. Für das LTV-System
ẋ(t) = A(t)x(t), mit t ≥ 0, x ∈ Rn und der stetigen matrixwertigen Funk-
tion A(t) : [0,∞)→ Rn×n, vgl. Def. 25 (Anhang), gilt für jedes t ≥ t0 ≥ 0,

‖x(t0)‖ exp

⎧⎨
⎩

t∫
t0

−μ(−A(τ)) d τ

⎫⎬
⎭

≤ ‖x(t)‖

≤ ‖x(t0)‖ exp

⎧⎨
⎩

t∫
t0

μ(A(τ)) d τ

⎫⎬
⎭ .

Bemerkung 7.4. Mit Hilfe der oberen Grenze aus Lemma 7.1 kann die
Konvergenzrate jedoch nur in Spezialfällen, z.B. für stabile LTI-Systeme
mit normalen Systemmatrizen, d.h. mit Systemmatrizen bei denenA�A =
AA� gilt, bestimmt werden. �
Diese Einschränkung gilt, weil für allgemeine stabile LTI-Systeme die lo-
garithmische Matrixnorm sowohl positive als auch negative Werte anneh-
men kann. Jedoch sind im Fall von normalen Matrizen A mit negativen
Eigenwerten die Eigenwerte der Matrix A+A� ebenfalls negativ. Dies ist
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ersichtlich aus der Zeitlösung eines LTI-Systems ẋ = Ax,

x(t) = eAtx(0),

und aus der Identität

‖x(t)‖2 = ‖eAtx(0)‖2 = x(0)�eA�teAtx(0).

Dabei gilt

x(0)�eA�teAtx(0) = x(0)�e(A+A�)tx(0),

dann und nur dann, wenn die Matrix A normal ist.11) Somit ergibt sich
in diesem Fall

‖eAtx(0)‖2 = x(0)�e(A+A�)tx(0),

wobei beide Seiten der oberen Identität dann und nur dann für alle x(0) ∈
Rn gegen null konvergieren, wenn die Matrizen A bzw. A+A� nur Eigen-
werte mit negativen Realteilen besitzen. Ist im Fall einer nicht normalen
Systemmatrix der maximale Eigenwert der Matrix A�+A positiv, so ist
die obere Grenze aus Lemma 7.1 unbrauchbar für die Berechnung der
Konvergenzrate. Folgendes Beispiel verdeutlicht dies.

Beispiel 7.1. Für das LTI-System ẋ = Ax mit der (nicht normalen)
Systemmatrix

A =
[
0 1

−2 −3

]

und Eigenwerten λ1 = −1 und λ2 = −2, entspricht die Konvergenzrate
α = 1 betragsmäßig dem Eigenwert, der am nächsten zur imaginären Achse
liegt. Die obere Grenze aus Lemma 7.1 ergibt aber

‖x‖ ≤ ‖x0‖ exp {μ2(A)(t − t0)} ,

wobei für die logarithmische Matrixnorm μ2(A) = 0.5λmax(A + A�) =
0.0811 > 0 gilt. Folglich ist diese obere Grenze für die Bestimmung der
Konvergenzrate in diesem Fall unbrauchbar.

11)Vgl. [8, Fakt 11.1.5].
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Eine modifizierte Form der logarithmischen Matrixnorm, welche für je-
des stabile System einen negativen Wert einnimmt, kann für jede konvexe
und positiv definite Funktion V (x) : Rn → R+ wie folgt definiert werden.

Definition 3 [V -induzierte logarithmische Matrixnorm, vgl. [72]] Gegeben
sei die stetige, konvexe und positiv definite Funktion V (x) : Rn → R+. Die
V -induzierte logarithmische Matrixnorm ist definiert alsa)

μV (A) := sup
x∈Rn\{0}

[
∂V (x;Ax)

V (x)

]
. (7.19)

a)Wie in Gl. (7.18) definiert, bezeichnet ∂V (x;Ax) die Richtungsableitung der Funk-
tion V an der Stelle x in Richtung Ax.

Bemerkung 7.5 (Äquivalenz zur logarithmischen Matrixnorm). Die V -
induzierte logarithmische Matrixnorm ist äquivalent zur logarithmischen
Matrixnorm falls die Funktion V eine Vektornorm darstellt, vgl. [72, Lem-
ma 1] für den Beweis. �
Bemerkung 7.6 (Eigenschaften der V -induzierten logarithmischen Ma-
trixnorm, vgl. [72]).

(i) μV (αA) = αμV (A), ∀α ≥ 0,
(ii) μV (A+B) ≤ μV (A) + μV (B), ∀A,B ∈ R

n×n,

(iii) μV (νA+ (1 − ν)B) ≤ νμV (A) + (1 − ν)μV (B), ∀ν ∈ [0,1],
∀A,B ∈ R

n×n.

�
Für LTI-Systeme ist die Existenz einer V -induzierten logarithmischen Ma-
trixnorm mit negativem Wert durch die Stabilität des Systems gewährleis-
tet. Die Existenzbedingung ist sowohl notwendig als auch hinreichend.
Folgendes Lemma verdeutlicht dies.

Lemma 7.2 [Vgl. [72, Theorem 5]]. Gegeben sei die Matrix A ∈
Rn×n. Dann existiert eine konvexe, positiv definite Funktion V , sodass
μV (A) < 0 dann und nur dann wenn A Hurwitz ist.

Beweis. Falls die Matrix A Hurwitz ist, dann existiert eine positiv defi-
nite und konvexe Ljapunov-Funktion der Form V (x) := x�Px, wobei die
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Matrix P 
 0 die Ljapunov-Gleichung

A�P+PA = −Q (7.20)

mit Q 
 0 löst, siehe dazu Lemma A.4 (Anhang). Umgekehrt, falls es eine
konvexe und positiv definite Funktion V (x) existiert, sodass μV (A) < 0,
dann folgt aus Gl. (7.19), dass

μV (A) := sup
x∈Rn\{0}

[
∂V (x;Ax)

V (x)

]
< 0,

was äquivalent ist zu

∂V (x;Ax) < 0, ∀x ∈ R
n\{0}.

Daraus folgt, dass die Funktion V eine gültige Ljapunov-Funktion des
Systems ẋ = Ax ist und somit, dass die Matrix A Hurwitz ist.

Mit Hilfe der modifizierten logarithmischen Matrixnorm kann eine untere
und obere Grenze der Funktion V (x) angegeben werden. Folgendes Lemma
verdeutlicht dies.

Lemma 7.3 [Vgl. [72, Theorem 1, (iv)]]. Für das LTV-System ẋ(t) =
A(t)x(t), mit t ≥ 0, x ∈ Rn und der stetigen matrixwertigen Funktion
A(t) : [0,∞)→ R

n×n, vgl. Def. 25 (Anhang), gilt für jedes t ≥ 0

V (x(0)) exp

⎧⎨
⎩

t∫
0

−μV (−A(τ))dτ

⎫⎬
⎭

≤ V (x(t))

≤ V (x(0)) exp

⎧⎨
⎩

t∫
0

μV (A(τ))dτ

⎫⎬
⎭.

Für quadratische Funktionen der Form V (x) = x�Px, mit P 
 0, kann
eine obere und untere Grenze der Zustandsnorm angegeben werden. Fol-
gendes Lemma verdeutlicht dies.

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


7.5 Konvergenzrate 95

Lemma 7.4. Für das LTV-System ẋ(t) = A(t)x(t), mit t ≥ 0, x ∈ Rn

und der stetigen matrixwertigen Funktion A(t) : [0,∞) → Rn×n, gilt für
jedes t ≥ 0√

1
κ(P)‖x(0)‖ exp

⎧⎨
⎩12

t∫
0

−μV (−A(τ))dτ

⎫⎬
⎭

≤ ‖x(t)‖

≤
√
κ(P)‖x(0)‖ exp

⎧⎨
⎩12

t∫
0

μV (A(τ))dτ

⎫⎬
⎭,

wobei κ(P) := λmax(P)/λmin(P) die Konditionszahl der Matrix P ist.

Beweis. Für P 
 0 gilt

λmin(P)‖x(t)‖2 = x(t)�λmin(P)Ix(t) ≤ x(t)�Px(t), ∀ t ≥ 0,x(t) �= 0,
(7.21)

folgt aus Lemma 7.3 für V (x) = x�Px > 0, ∀x ∈ Rn\{0}, dass

λmin(P)‖x(t)‖2 ≤ x(t)�Px(t) ≤ V (x(0))eμV (A)t.

Mit

x(0)�Px(0) ≤ x(0)�λmax(P)Ix(0) = λmax(P)‖x(0)‖2, x(0) �= 0,

folgt, dass

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x(0)‖e 12μV (A)t, ∀x ∈ R
n,

d.h. der Abklingfaktor α ist mindestens 1
2μV (A). Die untere Grenze wird

ähnlich zur oberen Grenze hergeleitet.

In diesem Fall kann die modifizierte Matrixnorm auch in analytischer Form
berechnet werden.
Bemerkung 7.7 (Berechnung von μV (A) für stabile LTI-Systeme). Mit
Hilfe der Ljapunov-Gleichung aus Gl. (7.20) kann für stabile LTI-Systeme
und quadratische Ljapunov-Funktionen die Matrixnorm μV (A) relativ ein-
fach berechnet werden. Für eine beliebige symmetrisch und positiv definite
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Matrix Q 
 0 ist die Lösung der Ljapunov-Gleichung A�P + PA = −Q
eine positiv definite Matrix P 
 0, und μV (A) wird

μV (A) := sup
x∈Rn\{0}

[
∂V (x;Ax)

V (x)

]

= sup
x∈Rn\{0}

[
−x�Qx

x�Px

]
= − inf

x∈Rn\{0}

[
x�Qx
x�Px

]
.

Folglich gilt

−μV (A) ≤
x�Qx
x�Px , ∀x ∈ R

n\{0}. (7.22)

Da P 
 0 und, somit, x�Px > 0, folgt, dass −μV (A)x�Px ≤ x�Qx, d.h.,
dass

−μV (A)P−Q � 0. (7.23)

Durch Links- und Rechtsmultiplizieren der Gl. (7.23) mit der symmetri-
schen und nichtsingulären Matrix P−1/2 folgt12)

−μV (A)I−P−1/2QP−1/2 � 0. (7.24)

Dies ist äquivalent zu13)

−μV (A) ≤ λmin(P−1/2QP−1/2) = λmin(QP−1). (7.25)

Der Wert λmin(QP−1) wird erreicht falls x der zugehörige Eigenvektor
zum Eigenwert λmin(QP−1) ist. Es handelt sich folglich um ein Minimum.
Dann folgt, dass

μV (A) = −λmin(QP−1). (7.26)

�
12)Die Matrix P−1/2 stellt die Quadratwurzel der Matrix P dar. Da die Matrix P−1

positiv definit ist, ist die Matrix P−1/2 eindeutig durch P−1/2P−1/2 = P−1 defi-
niert. Darüber hinaus ist diese Matrix ebenfalls positiv definit, und folglich, symme-
trisch. In den Gl. (7.23) und (7.24) sind beide Matrizen somit kongruent, vgl. Def.
19 (Anhang).

13)Vgl. [8, Lemma 8.4.1]. Dabei wird auch die Tatsache verwendet, dass die Matrizen
P−1/2QP−1/2 und QP−1 ähnlich sind, vgl. Def. 18 (Anhang), und somit gleiche
Eigenwerte haben. Dies lässt sich durch Links- und Rechtsmultiplizieren der ersten
Matrix mit den nichtsingulären Matrizen P1/2 bzw. P−1/2 zeigen.
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Da die Matrizen Q und P−1 positiv definit sind, kann man noch fest-
stellen, dass alle Eigenwerte der Matrix QP−1 positiv sind14) und somit,
dass, μV (A) negativ ist. Der Wert μV (A) stellt folglich eine untere Grenze
der Konvergenzrate des Systems aus Def. 1 dar, d.h.

αV := −12μV (A) ≤ α. (7.27)

Je nachWahl der Funktion V (x), kann diese untere Grenze maximiert wer-
den. Durch Einsetzen der Gl. (7.27) in Gl. (7.22) ergibt sich als Bedingung
für die untere Grenze der Konvergenzrate

2αV ≤ x�Qx
x�Px , ∀x �= 0

und somit die Bedingung

−x�(A�P+PA)x ≥ 2αV x�Px, ∀x �= 0.

Die maximale untere Grenze α∗V , d.h. die Konvergenzrate des LTI-Systems,
kann folglich durch Lösen des konvexen Optimierungsproblems

max
P, αV

αV , sodass

P 
 0, αV > 0, (7.28)
A�P+PA+ 2αV P � 0. (7.29)

berechnet werden. Die maximale Grenze α∗V entspricht betragsmäßig dem
Realteil des Eigenwertes/Eigenwertpaares, der/das am nächsten zur ima-
ginären Achse liegt, d.h.

α = α∗V = −max
i
{Reλi(A)}.

Auch für exponentiell stabile nichtlineare Systeme kann man mit Hil-
fe quadratischer Ljapunov-Funktionen und der dazugehörigen kontraktiv
invarianten Gebiete, vgl. Def. 13 (Anhang), eine untere Grenze der Kon-
vergenzrate angeben. Dies wird in Lemma 7.5 gezeigt. Darauf basierend,
stellt folgendes Lemma eine untere Grenze der Konvergenzrate eines all-
gemeinen exponentiell stabilen nichtlinearen Systems dar.

14)Vgl. [8, Korollar 8.3.7].
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Lemma 7.5. Gegeben sei ein nichtlineares System

ẋ(t) = f(x(t)), x ∈ R
n, f(0) = 0, (7.30)

und das kontraktiv invariante Gebiet

E(P,c) := {x ∈ R
n|x�Px ≤ c},

mit P 
 0. Es sei darüber hinaus angenommen, dass

x�Pf(x) ≤ −x�Qx, ∀x ∈ E(P,c)\{0}, (7.31)

gilt, wobei Q 
 0. Dann gelten folgende Aussagen:
a) ‖x(t)‖ ≤

√
κ(P)‖x(0)‖ exp

{
−λmin(QP−1)t

}
, für jedes x(0) ∈

E(P,c)\{0} und t ≥ 0.
b) Die Ruhelage xR = 0 ist exponentiell stabil.
c) Die quadratische Ljapunov-Funktion V (x) nimmt entlang jeder Tra-

jektorien des Systems exponentiell ab, und die Hälfte der größten unteren
Schranke der Menge aller Abklingfaktoren

αV (c) :=
1
2 · inf

x∈E(P,c)\{0}

(
−∂V (x; f(x))

V (x)

)
= λmin(QP−1), (7.32)

stellt eine Untergrenze der Konvergenzrate α des Systems innerhalb des
ellipsoidalen Gebietes E(P,c)\{0} dar, d.h. es gilt

0 < αV (c) ≤ α, ∀ c > 0. (7.33)

Beweis. a) Da das Gebiet E(P,c) kontraktiv invariant für das System aus
Gl. (7.30) ist, ist die quadratische Funktion V (x) = x�Px eine gültige
Ljapunov-Funktion des Systems. Darüber hinaus gilt

‖x(t)‖2λmin(P) ≤ x(t)�Px(t) ≤ λmax(P)‖x(t)‖2, ∀x �= 0, ∀ t ≥ 0.
Aus Gl. (7.31) folgt, dass

V̇ (x)
V (x) =

2x�Pf(x)
x�Px ≤ −2x

�Qx
x�Px ≤ sup

x∈E(P,c)

(
−2x

�Qx
x�Px

)
= −2λmin(QP−1).

Integriert man die obige Ungleichung entlang einer Trajektorie vom Zeit-
punkt t0 = 0 zum Zeitpunkt t, erhält man

V (x(t)) ≤ V (x(0)) exp{−2λmin(QP−1)t}.
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Schließlich folgt, dass

‖x(t)‖2λmin(P) ≤ ‖x(0)‖2λmax(P) exp{−2λmin(QP−1)t}

und somit, dass

‖x(t)‖ ≤
√
κ(P)‖x(0)‖ exp

{
−λmin(QP−1)t

}
, ∀x(0) ∈ E(P,c)\{0}, t ≥ 0.

b) Dies folgt unmittelbar aus a).
c) Für jeden Zustand x ∈ E(P,c)\{0} existiert für das exponentiell sta-

bile nichtlineare System ẋ(t) = f(x(t)) ein αx > 0, sodass V̇ (x)/V (x) ≤
−2αx, d.h. V̇ (x) ≤ −2αxV (x). Da aus Gl. (7.32) folgt, dass αV (c) ≤
αx, ∀x ∈ E(P,c)\{0}, folgt im Weiteren, dass V̇ (x) ≤ −2αxV (x) ≤
−2αV (c)V (x). Daraus folgt dann, dass V (x) ≤ V (x0)e−2α

V
(c)t, ∀x ∈

E(P,c)\{0} und schließlich aus Gl. (7.21), dass

‖x(t)‖ ≤
√
λmax(P)/λmin(P)‖x(0)‖e−αV (c)t, ∀x(0) ∈ E(P,c)\{0},

d.h. dass αV (c) eine untere Grenze der Konvergenzrate des Systems ist.

Korollar 7.6. Die größte untere Schranke der variablen Ljapunov-
Funktion-basierten Konvergenzrate eines exponentiell stabilen nichtlinea-
ren Systems ẋ = f(x(t)), x ∈ R

n innerhalb des Einzugsgebietes der Ruhe-
lage xR = 0,

αV = inf
c>0

{
αV (c) =

1
2 · inf

x∈E(P,c)\{0}

(
−∂V (x; f(x))

V (x)

)}
, (7.34)

stellt eine untere Grenze der Konvergenzrate α des nichtlinearen Systems
dar.

Beweis. Der Beweis folgt unmittelbar aus dem Beweis des Lemmas 7.5
und wird hier weggelassen.

Auch mittels impliziter Ljapunov-Funktionen können Bedingungen für
die exponentielle Stabilität eines nichtlinearen Systems gestellt werden.
Folgender Satz zeigt in diesem Zusammenhang unter welchen Bedingungen
die Ruhelage eines nichtlinearen Systems in zustandsabhängiger Ko-
effizientenform exponentiell stabil ist. Darüber hinaus wird eine obere
Grenze der Zustandsnorm angegeben. Der Satz kann als Erweiterung von
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[5, Satz 5] für den Fall nichtlinearer Systeme in zustandsabhängiger Ko-
effizientenform mit ellipsoidalen kontraktiv invarianten Gebieten gesehen
werden. Der Beweis basiert auf dem Nachweis der asymptotischen Stabi-
lität eines nichtlinearen Systems mittels impliziter Ljapunov-Funktionen
aus [2, Satz 4].
Ein ähnliches Theorem, das auch dynamische Systeme in zustandsab-

hängiger Koeffizientenform analysiert und ebenfalls Bedingungen für ex-
ponentielle Stabilität untersucht, ist in [54, Theorem 1] angegeben. Darin
wird der Zustandsraum in endlich viele Gebiete aufgeteilt, die sich über-
lappen können und in denen ein bestimmtes lineares System aktiv ist. Die
Gesamtdynamik des darin analysierten Systems ergibt sich als gewichteter
Durchschnitt der lokal aktiven linearen Dynamiken. Eine obere Grenze der
Zustandsnorm in einer der o.g. Regionen ist auch angegeben.

Satz 7.7 In einer Menge

V0 := {(v,x)|0 < v < 1, x ∈ U0\{0} ⊂ Bε(0)},

sei eine stetige und differenzierbare Funktion g(v,x) gegeben durch

g(v,x) := x�P(v(x))x − 1, P(v) : (0,1)→ P
n, (7.35)

welche folgende Bedingungen erfüllt:

i) Für x → 0 resultiert aus g(v,x) = 0 der Grenzübergang v → 0+,

ii) lim
v→0+

g(v,x) > 0 und lim
v→1−

g(v,x) < 0 für alle x ∈ U0\{0}.

Seien darüber hinaus die durch die Funktion g(v,x) bestimmten Gebiete
bezeichnet durch

E(v) :=
{
x
∣∣x�P(v(x))x < 1

}
⊆ U0.

Das autonome nichtlineare System

ẋ(t) = A(ν(x(t)))x(t), x ∈ R
n, xR = 0, (7.36)
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mit

ν(x) :=
{
v(x), mit g(v,x) = 0, x ∈ E(1)\E(vmin)
vmin, x ∈ E(vmin),

(7.37)

und der stetigen matrixwertigen Funktiona) A(v) : [vmin,1)→ Rn×n, wobei
vmin ∈ (0,1) gegeben ist, besitze im Weiteren eine eindeutige Lösung für
jeden Anfangswert x(0) ∈ Bε(0).

Sind die Bedingungen

iii) −∞ < ∂g(v,x)
∂v < 0 für alle (v,x) ∈ V0,

iv) ∂g(v,x(t))
∂t < 0 für alle (v,x) ∈ V0, mit g(v,x) = 0

erfüllt, dann gilt:
a) Für jedes x ∈ U0\{0} besitzt die Gleichung g(v,x) = 0 eine eindeutige

Lösung v = v(x), mit v ∈ (0,1).
b) Die stetige Funktion

V (x) :=
{
v(x), mit g(v,x) = 0, x ∈ E(1)\E(vmin),
vminx�P(vmin)x, x ∈ E(vmin)

(7.38)

stellt in U0 eine Ljapunov-Funktion des Systems dar.
c) Jedes abgeschlossene Gebiet E(c), mit c ∈ [vmin,1], ist ein kontraktiv

invariantes Gebiet der Ruhelage.
d) Für alle c ∈ [vmin,1] sind die Ränder der kontraktiv invarianten Ge-

biete E(c) disjunkt, d.h. es gilt

∂E(ci) ∩ ∂E(cj) = ∅, ∀0 < ci, cj < 1, ci �= cj .

e) Für alle c ∈ [vmin,1] sind die Gebiete E(c) ineinander verschachtelt,
d.h. es gilt

E(ci) ⊂ E(cj), ∀ vmin ≤ ci < cj < 1.

f) Für jeden Zeitpunkt t ≥ 0 ist eine obere Grenze der Zustandsnorm
‖x(t)‖ gegeben durch

‖x(t)‖ ≤
(
γmax
vmin

)1/2
‖x(0)‖ exp

{
−12αmint

}
, ∀x(0) ∈ ∂E(1),
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wobei γmax durch

γmax := max
v∈[vmin,1]

κ(Pv) =
λmax(Pvmin)
λmin(P1)

(7.39)

und αmin durch

αmin :=
1

vminλmin(P1)

min
v∈[vmin,1]

λmin(A�
vPv +PvAv)

min
v∈[vmin,1]

λmin(P′
vP−1

v )
> 0 (7.40)

gegeben sind.
g) Die Ruhelage xR = 0 ist exponentiell stabil.

a)Vgl. Def. 25 (Anhang).

Beweis. a) Dies wurde in [2, Theorem 4] bewiesen.
b) Für die Anwendung der direkten Methode von Ljapunov wird auf-

grund der besonderen Definition der Ljapunov-Funktion der Zustandsraum
in drei Gebiete eingeteilt. In dem Gebiet x ∈ E(1)\(E (vmin) ∪ ∂E(vmin)),
sowie in dem Gebiet x ∈ E(vmin) ist die Funktion V (x) stetig und differen-
zierbar. In einem dritten Gebiet x ∈ ∂E(vmin) ist diese nicht differenzierbar
und die direkte Methode von Ljapunov wird mit Hilfe von Dini-Derivierten
angewandt. Im ersten Gebiet gilt

V (x) = v(x) > 0, mit g(v,x) = 0, ∀x ∈ E(1)\(E (vmin) ∪ ∂E(vmin)) ,

sowie, aufgrund der Bedingungen iii) und iv),

V̇ (x) = v̇(x) = −∂g(v,x(t))/∂t
∂g(v,x)/∂v < 0, ∀x ∈ E(1)\(E (vmin) ∪ ∂E(vmin)) .

Im zweiten Gebiet gilt

V (x) = vminx�P(vmin)x > 0, ∀x ∈ E(vmin)\{0},
V (0) = 0,

sowie aufgrund der Bedingung iv)

V̇ (x) = vminx�
(
A(vmin)�P(vmin) +P(vmin)A(vmin)

)
x

< 0, ∀x ∈ E(vmin)\{0}. (7.41)
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Im dritten Gebiet, x ∈ ∂E(vmin), ist die Funktion V (x) = v(x) nicht
differenzierbar. Daher bedarf es bei der Anwendung der direkten Methode
von Ljapunov der rechten oberen Dini-Derivierten der stetigen Funktion
V (x) entlang einer Trajektorie x(t).15) Diese ist definiert als16)

D+V (x(t)) := lim sup
h→0+

V (x(t + h))− V (x(t))
h

.

Aus Bedingung iv) folgt für x ∈ ∂E(vmin) und jedes beliebig kleine h > 0,
dass

g(v,x(t+ h)) < g(v,x(t)) = 0,

d.h. x(t+ h) ∈ E(vmin). Somit ist die Ljapunov-Funktion in diesem Punkt
V (x(t + h)) = vminx(t+ h)�P(vmin)x(t + h). Folglich gilt

D+V (x(t)) = lim sup
h→0+

vminx(t + h)�P(vmin)x(t + h)− vmin
h

= V̇l(x(t)), ∀x ∈ ∂E(vmin),

wobei Vl(x(t)) = vminx(t)�P(vmin)x(t). Aus Gl. (7.41) folgt aber, dass
V̇l(x(t)) < 0, für jedes x ∈ Rn\{0}. Daher gilt

D+V (x(t)) < 0, ∀x ∈ ∂E(vmin).

Daraus folgt,17) dass die Funktion V (x) eine gültige Ljapunov-Funktion
des Systems ist.
c) Da die Funktion V (x) eine gültige Ljapunov-Funktion des Systems

ist, folgt, dass für jedes c > 0 das Gebiet

G := {x |V (x) < c}

kontraktiv invariant ist. Das Gebiet ist dabei gleich mit dem Gebiet
E(c).18)
d-e) Dies wurde in [2, Abschnitt III] bewiesen.

15)Vgl. Def. 17.
16)Vgl. Def. 16 (Anhang) für die Definition der Limes superior einer Funktion und Def.
17 (Anhang) für die Definition der rechten oberen Dini-Derivierten einer stetigen
Funktion.

17)Vgl. [62, Theorem 6.3].
18)Vgl. [2, Theorem 5].
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f) In jedem Gebiet x ∈ ∂E(v) ⊆ E(1)\E(vmin) gilt für die zeitliche Ab-
leitung der Ljapunov-Funktion V (x)

V̇ (x) = v̇(x) = −∂g(v,x(t))/∂t
∂g(v,x)/∂v = −x�(A�

vPv +PvAv)x
x�P′

vx
, (7.42)

wobeiP′
v =

∂P(v)
∂v ≺ 0. Dabei gilt19) für jedes v ∈ [vmin,1] und x ∈ ∂E(v) ⊆

E(1)\E(vmin)

x�P′
vx

x�Pvx
≥ min

x∈∂E(v)
x�P′

vx
x�Pvx

= λmin(P′
vP−1

v ) < 0.

Daraus folgt, dass

x�P′
vx

x�Pvx
≥ min

v∈[vmin,1]
λmin(P′

vP−1
v ) =: k1 < 0, ∀x ∈ E(1)\E(vmin).

Darüber hinaus gilt für jedes v ∈ [vmin,1] und x ∈ ∂E(v)

λmin(A�
vPv +PvAv)‖x‖2 ≤ x�(A�

vPv +PvAv)x,

wobei für

k2 := min
v∈[vmin,1]

λmin(A�
vPv +PvAv) < 0,

folgt

k2‖x‖2 ≤ x�(A�
vPv +PvAv)x, ∀x ∈ ∂E(1)\E(vmin).

Da x�Pvx = 1, ∀x ∈ ∂E(v) ⊆ E(1)\E(vmin), folgt aus Gl. (7.42), dass

v̇(x) = −x�(A�
vPv +PvAv)x
x�P′

vx
≤ −x�(A�

vPv +PvAv)x
k1

≤ −k2
k1
‖x‖2.

(7.43)

Darüber hinaus gilt

vλmin(Pv)‖x‖2 ≤ v(x) ≤ vλmax(Pv)‖x‖2, ∀x ∈ ∂E(v),
19)Vgl. [8, Fakt 8.15.21] und [9]. Voraussetzungen dafür sind, dass die Matrix P′

v

symmetrisch ist und die Matrix Pv positiv definit ist. Die letzte Beziehung
λmin(P′

vP−1
v ) < 0 folgt aus [8, Korollar 8.3.7].
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und, somit,

min
v∈[vmin,1]

vλmin(Pv)‖x‖2

≤ v(x)
≤ max

v∈[vmin,1]
vλmax(Pv)‖x‖2, ∀x ∈ E(1)\E(vmin).

Da die matrixwertige Funktion20) Pv monoton fallend ist, gilt noch

min
v∈[vmin,1]

vλmin(Pv) = vminλmin(P1) > 0

max
v∈[vmin,1]

vλmax(Pv) = λmax(Pvmin) > 0.

Aus Gl. (7.43) folgt dann, dass

v̇(x(t)) ≤ −k2
k1
‖x(t)‖2

≤ −k2
k1

1
vminλmin(P1)

v(x(t)), ∀x(t) ∈ ∂E(v)\E(vmin).

Integriert man die obige Ungleichung entlang einer Trajektorie des Systems
vom Zeitpunkt t0 = 0 zum Zeitpunkt t, erhält man

v(x(t)) ≤ v(x(0)) exp
(
−k2
k1

1
vminλmin(P1)

t

)
, ∀x(t)∈∂E(v)\E(vmin), t ≥ 0.

Schließlich folgt, dass

vminλmin(P1)‖x(t)‖2

≤ v(x(t))

≤ v(x(0)) exp
(
−k2
k1

1
vminλmin(P1)

t

)

≤ λmax(Pvmin)‖x(0)‖2 exp
(
−k2
k1

1
vminλmin(P1)

t

)
,

20)Vgl. Def. 25 (Anhang).
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und, somit, dass

‖x‖ ≤
√

λmax(Pvmin)
vminλmin(P1)

‖x0‖

· exp

⎛
⎝−12

min
v∈[vmin,1]

λmin(A�
vPv +PvAv)

min
v∈[vmin,1]

λmin(P′
vP−1

v )
1

vminλmin(P1)
t

⎞
⎠ .

g) Diese Aussage folgt unmittelbar aus e). Dabei gilt noch γmax > 0 und
αmin > 0. Dies folgt aus der Tatsache, dass für jedes v ∈ [vmin,1] die Matrix
Pv positiv definit und die Matrix A�

vPv +PvAv negativ definit sind.

Der Wert αmin aus Gl. (7.40) stellt eine untere Grenze der Konvergenzrate
des Systems im gesamten Bereich E(1) dar. Eine gebietsabhängige Kon-
vergenzrate kann darüber hinaus wie folgt formuliert werden.

Korollar 7.8 [Gebietsabhängige Konvergenzrate des Systems].
Für das System aus Satz 7.7 ist für jeden Zeitpunkt t ≥ t0, mit x(t0) ∈
∂E(v∗) und v∗ ∈ (0,1], eine obere Grenze der Zustandsnorm ‖x(t)‖ gegeben
durch

‖x(t)‖ ≤ (γmax(v∗))1/2 ‖x(t0)‖ exp
{
−12αmin(v∗)t

}
, x(t0) ∈ ∂E(v∗),

wobei γmax(v∗) durch

γmax(v∗) := max
v∈[vmin,v∗]

κ(Pv) =
λmax(Pvmin)
λmin(Pv∗)

und αmin(v∗) durch

αmin(v∗) := min
v∈[vmin,v∗]

{
−λmax[(A�

vPv +PvAv)P−1
v ]
}
> 0 (7.44)

definiert sind.

Der Wert αmin(v∗), mit v∗ ∈ (0,1], wird gebietsabhängige Konvergenzrate
des Systems genannt. Ein Vorteil der gebietsabhängigen Konvergenzra-
te ist, dass sie unabhängig von der Systemordnung eine skalare Funktion
ist. Darüber hinaus stellt diese eine untere Grenze der Konvergenzrate
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des Systems innerhalb des jeweiligen Gebietes dar. Diese gebietsabhängi-
ge Konvergenzrate kann exakt bestimmt, approximiert oder interpoliert
werden. Dies wird in den Kapiteln 7.5.2 und 8 gezeigt.

7.5.2 Analyse der Konvergenzrate
Eine exakte Performance-Analyse in einem nichtlinearen Regelkreis setzt
die Zeitlösung des Systems voraus. Weil diese nur in seltenen Fällen zur
Verfügung steht, wird im Folgenden die gebietsabhängige Konvergenzrate
analysiert, welche im Korrolar 7.8 definiert wurde, und verwendet, um eine
obere Grenze der Zustandsnorm anzugeben.
Im Unterschied zu den linearen Systemen ist die Konvergenzrate ei-

nes nichtlinearen Systems nicht konstant, sondern abhängig von dem Ab-
stand zur Ruhelage und in den meisten Fällen nicht exakt bestimmbar.
Eine untere Grenze der Konvergenzrate kann jedoch mittels (impliziter)
Ljapunov-Funktionen angegeben werden. Diese ist ebenfalls im Abschnitt
7.5 vorgestellt worden. Deren Berechnung wird im Fall der nicht-sättigen-
den und konvergenzoptimalen klassischen WSVR mittels iLF und invers-
polynomialen WSVR vorgestellt.

Nicht-sättigende WSVR

Mit Hilfe des Satzes 7.7 kann die exponentielle Stabilität des geschlossenen
Kreises aus Punkt i) des Satzes 3.1 und aus Punkt i) des Satzes 4.1 unter
Verwendung der (Ljapunov-)Funktion V�(x)

V�(x) :=
{
v(x), mit g�(x,v) = 0, x ∈ G�(1)\G�(ε),
εx�Qεx, x ∈ G�(ε),

(7.45)

mit 
 = Δ für die klassische WSVR und 
 = P für die invers-polynomiale
WSVR, nachgewiesen werden. Der geschlossene Regelkreis hat dabei die
allgemeine Form ẋ = Â�vx. Wie im Korollar 7.8 gezeigt, bildet der kleins-
te Abklingfaktor der Funktion V�(x) entlang der Trajektorien des Systems
ẋ = Â�vx eine obere Grenze der Zustandsnorm ‖x‖ für alle Anfangsaus-
lenkungen, die auf dem Rand eines Gebietes x ∈ ∂G�(v) starten. Dieser
Faktor ist

α�(v) :=
1
2 min

x∈∂G�(v)

(
− V̇�(x)
V�(x)

)
.
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Für alle x ∈ ∂G�(v) ⊆ G�(1)\G�(ε) gilt des Weiteren

α�(v) =
1
2v min

x∈∂G�(v)
(−v̇)

= 1
2v min

x∈∂G�(v)

[
x�(Â�

�vQv +QvÂ�v )x
x�Q′

vx

]

= 1
2vλmin

[
(Â�

�vQv +QvÂ�v )(Q′
v)−1

]
, ∀ v ∈ (ε,1]. (7.46)

Da die Matrix Â�
�vQv +QvÂ�v symmetrisch ist und die Matrix Q′

v ≺ 0
negativ definit ist, folgt21), dass Spec[(Â�

�vQv + QvÂ�v )(Q′
v)−1] ⊂ R.

Da noch Â�
vQv + QvÂv ≺ 0, folgt22) darüber hinaus, dass λ[(Â�

vQv +
QvÂv)Q−1

v ] > 0. Somit ist α�(v) für alle v ∈ [ε,1] und jedes ε ∈ (0,1)
positiv.
Für alle x ∈ ∂G�(ε) gilt

α�(ε) =
1
2 min

x∈∂G�(ε)

[
−

x�(Â�
�εQε +QεÂ�ε)x

x�Qεx

]

= 1
2λmin

[
−(Â�

�εQε +QεÂ�ε)Q−1
ε

]
(7.47)

Ebenfalls gilt α�(ε) > 0 da die Matrizen −(Â�
�εQε +QεÂ�ε) und Qε po-

sitiv definit sind. Darüber hinaus ist der geschlossene Regelkreis für alle
x ∈ G�(ε) linear, sodass die Konvergenzrate des Systems innerhalb des
Gebietes x ∈ G�(ε) konstant bleibt. Dies kann man wie folgt veranschau-
lichen. Jeder Zustand y ∈ G�(ε) kann in der Form y = kx, mit k ∈ (0,1)
und x ∈ ∂G�(ε) geschrieben werden, und es gilt

min
y∈G�(ε)

−
y�(Â�

�εQε +QεÂ�ε)y
y�Qεy

= min
x∈∂G�(ε)
k∈(0,1]

−
(kx)�(Â�

�εQε +QεÂ�ε)(kx)
(kx)�Qε(kx)

= min
x∈∂G�(ε)

−
x�(Â�

�εQε +QεÂ�ε)x
x�Qεx

= 2α�(ε).

21)Vgl. [66], Fakt 6.52.
22)Vgl. [8], Fakt 8.3.7.
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Es ist dabei ersichtlich, dass aufgrund der Tatsache, dass die Funktion
V�(x) für x ∈ ∂G�(ε) nicht differenzierbar ist, die Funktion α�(v) für v =
ε nicht stetig ist. Gl. (7.46) und (7.47) nehmen im Fall der klassischen
und der invers-polynomialen WSVR besondere Formen ein. Dies wird im
Folgenden gezeigt.

Die klassische WSVR mittels iLF

In diesem Fall lautet die Systemmatrix des geschlossenen Regelkreises

ÂΔv =
1
vr

Dr
vÂΔ1D−r

v , ÂΔ1 := A− cbb�P−1,

mit Dv = diag(vn,vn−1, . . . ,v). Für Qv = D−r
v (d ·P−1)D−r

v folgt, dass für
x ∈ ∂GΔ(v) ⊆ GΔ(1)\GΔ(ε) gilt

αΔ(v) =
1
2vλmin[D−r

v (Â�
Δ1P

−1 +P−1ÂΔ1)(NP−1 +P−1N)−1Dr
v]

= 1
2vλmin[(Â�

Δ1P
−1 +P−1ÂΔ1)(NP−1 +P−1N)−1], v ∈ (ε,1].

(7.48)

Dies beruht auf der Tatsache, dass beide Matrizen ähnlich sind, vgl. Def.
18 (Anhang), und folglich gleiche Eigenwerte haben. Aus Gl. (7.48) ist
ersichtlich, dass mit kleiner werdendem v die LF-basierte Konvergenzrate
αΔ(v) steigt. Da die Gebiete ineinander verschachtelt sind, folgt auch,
dass innerhalb eines Einzugsgebietes GΔ(v) die definitionsgemäß minimale
Konvergenzrate auf dem Rand des Gebietes erzielt wird.
Für alle x ∈ ∂GΔ(ε) gilt

αΔ(ε) =
1
2λmin

[
−(Â�

ΔεQε +QεÂΔε)Q−1
ε

]
= 1
2λmin

[
−(Â�

Δ1P
−1 +P−1ÂΔ1)P

]
.

Folgender Satz fasst diese Ergebnisse zusammen:

Satz 7.9 [Konvergenzrate der nicht-sättigenden klassischen WSVR mit-
tels iLF] Für den geschlossenen Regelkreis aus Punkt i) des Satzes 3.1
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gilt:

(a) αΔ(v)=
{ 1

2vλmin[(Â�
Δ1P

−1+P−1ÂΔ1)(NP−1+P−1N)−1], v∈(ε,1],
1
2λmin

[
−(Â�

Δ1P
−1 +P−1ÂΔ1)P

]
, v=ε,

(b) αΔ(v) ist streng monoton steigend mit sinkendem v.

Die invers-polynomiale WSVR

In diesem Fall lautet die Systemmatrix des geschlossenen Regelkreises

ÂPv := A− bb�P−1
v

wobei

Pv =
mu∑

i=ml

viPci .

Mit Qv = d ·P−1
v ergibt sich für x ∈ ∂GP(v) ⊆ GP(1)\GP(ε)

αP(v) =
1
2vλmin[(Â�

Pv
Qv +QvÂPv )(Q′

v)−1]

= 1
2vλmin[(Â�

Pv
P−1

v +P−1
v ÂPv )Pv(P′

v)−1Pv]

= 1
2vλmin[P−1

v (PvÂ�
PvP

−1
v + ÂPv)Pv(P′

v)−1Pv]

= 1
2vλmin[(PvÂ�

PvP
−1
v + ÂPv )Pv(P′

v)−1]

= 1
2vλmin[(PvÂ�

Pv + ÂPvPv)(P′
v)−1].

Für x ∈ GP(ε) ergibt sich

αP(ε) =
1
2λmin

[
−(Â�

PεQε +QεÂPε)Q−1
ε

]
= 1
2λmin

[
−(Â�

PεP
−1
ε +P−1

ε ÂPε)Pε

]
.

Folgender Satz fasst die Ergebnisse zusammen:

Satz 7.10 [Konvergenzrate der nicht-sättigenden invers-polynomialen-
WSVR] Für den geschlossenen Regelkreis aus Punkt i) des Satzes 4.1,
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Seite 28, gilt:

αP(v) =
{ 1

2vλmin[(PvÂ�
Pv + ÂPvPv)(P′

v)−1], v ∈ (ε,1],
1
2λmin

[
−(Â�

PεP
−1
ε +P−1

ε ÂPε)Pε

]
, v = ε,

Konvergenzoptimale WSVR

Die Konvergenzrate des Systems aus Punkt b) des Satzes 5.1 kann man
- wie auch in [37] dargestellt - mit Hilfe des Lagrange-Multiplikatoren-
Ansatzes analysieren. Untersucht wird der kleinste Abklingfaktor der
Funktion

Vs(x) :=
{
v(x), mit gs(x,v) = 0, x ∈ Gs(1)\Gs(ε),
εx�Qεx, x ∈ Gs(ε),

(7.49)

entlang der Trajektorien des Systems ẋ = Ax − b sgn(b�Qvx). Da die
Funktion Vs(x) gerade ist, d.h. Vs(x) = Vs(−x), reicht es aus die Zustands-
punkte zu betrachten, wofür x�Qvb ≥ 0 gilt. Für x ∈ ∂Gs(v) ⊆ Gs(1)\Gs(ε)
ergibt sich

2αs(v) := min
x∈∂Gs(v)

(
− V̇s(x)
Vs(x)

)
= 1

v
min

x∈∂Gs(v)
(
−V̇s(x)

)
= 1

v
min

x∈∂Gs(v)
x�(A�Qv +QvA)x − 2b�Qvx

x�Q′
vx

. (7.50)

Schließlich ergibt sich für jeden Zustand x ∈ ∂Gs(ε)

2αs(ε) := min
x∈∂Gs(ε)

(
− V̇s(x)
Vs(x)

)

= min
x∈∂Gs(ε)

[
−x�(A�Qε +QεA)x − 2b�Qεx

x�Qεx

]
= min

x∈∂Gs(ε)
[
−x�(A�Qε +QεA)x − 2b�Qεx

]
. (7.51)

Aufgrund der Komplexität der Bestimmungsfunktion, aber auch der kom-
plexeren Form der Matrix Qv lässt sich die untere Grenze αs(v) nicht
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mehr analytisch berechnen. Diese wird nicht mehr exakt gelöst sondern
interpoliert. Dies geschieht im nächsten Kapitel.
Zusammenfassend lässt sich feststellen, dass unter den Gütemaßen für

nichtlineare Regelkreise die Konvergenzrate eins der vorteilhaftesten ist.
Dies liegt an seiner möglichen Verwendung zur Approximation der Güte
des Ausregelverhaltens aber auch zur Optimierung des Ausregelverhaltens.
Letztere basiert auf einer unteren Grenze der Konvergenzrate, die im Fal-
le der hier analysierten nichtlinearen Regelungsmethoden mit Hilfe einer
impliziten Ljapunov-Funktion angegeben werden konnte. Im nächsten Ka-
pitel wird eine Methode zur Performance-Analyse vorgestellt, welche die
bereits existierende Theorie über den Design und Analyse von Computer-
experimenten anwendet. Diese analysiert die Performance einer (nichtli-
nearen) Regelungsmethode in Ensembles von nichtlinearen Regelkreisen.
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8 Computerexperimente unter
Einsatz Bayes’scher Methoden

Computerexperimente bilden neben physikalischen Experimenten (Versu-
che an elektromechanischen Versuchsständen, klinische Versuche, landwirt-
schaftliche Feldversuche etc.) eine Methode zur Generierung von Beobach-
tungen über die Eigenschaften eines Versuchsobjekts infolge der Variation
verschiedener Faktoren, vgl. z.B. [27, 64]. Diese Faktoren sind die Ein-
gangsvariablen, und die Eigenschaften des Versuchsobjekts sind die Aus-
gangsvariablen des Experiments. Im Fall von Computerexperimenten wird
der Zusammenhang zwischen den Eingangs- und den Ausgangsvariablen
in Form eines Rechnercodes basierend auf einem mathematischen Modell
beschrieben, dessen Komplexität im Allgemeinen sehr hoch ist. In vielen
Fällen wären die entsprechenden physikalischen Experimente sogar nicht
durchführbar - z.B. aus ethischen, ökonomischen oder zeitlichen Gründen -
sodass das Computerexperiment die einzige Alternative bietet. Unter Ver-
wendung numerischer Verfahren können dabei simulierte Beobachtungen
generiert werden, welche für eine Prädiktion des Verhaltens des Versuchs-
objekts verwendet werden können. Beispiele technologischer und wissen-
schaftlicher Entwicklungen basierend auf Computerexperimenten beinhal-
ten die Untersuchung des Verhaltens von Fusionsreaktoren, künstlichen
Prothesen, integrierten Schaltungen, thermischen Energiespeichern und
vielen anderen Objekten aus nahezu allen natur- und ingenieurwissen-
schaftlichen Bereichen.
In dieser Arbeit wird zum ersten Mal das theoretische Konzept der

Computerexperimente auf die Performance-Analyse von Regelmethoden
übertragen. Das Versuchsobjekt ist ein Ensemble nichtlinearer Regelkrei-
se, dessen Eigenschaften infolge der Variation eines oder mehrerer Fakto-
ren analysiert werden. Bild 8.1 zeigt das untersuchte Regelkreisensemble.
Wie man im Bild sehen kann, beeinflussen die Faktoren ζ, welche belie-
bige Werte aus einer kompakten Menge annehmen können, die Dynamik
der Regelstrecke und des Reglers. Das Computerexperiment besteht aus
mehreren Versuchen mit jeweils verschiedenen Faktoren. In jedem Versuch
werden irgendwelche Faktorenwerte ζ vorgegeben und für die erzeugte Re-
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1
−1

Sättigungsglied
ẋ = A(ζ)x + b(ζ)u
y = c�x, x0∈X0

Regelstrecke

u

f(x,ζ)

Regler

r=0 u y

x

−ζ
η

Bild 8.1: Aufbau eines Computerexperiments.

gelstrecke automatisch ein Regler entworfen. Die erzielte Performance im
geschlossenen Regelkreis bildet eine Beobachtung. Es handelt sich hier um
ein deterministisches Ergebnis, d.h. zwei Versuche mit gleichen Faktoren
bestimmen gleiche Beobachtungen. Anschließend kann anhand der Beob-
achtungen eine Performanceprädiktion für alle restlichen Faktorenwerte
gemacht werden. Ziel kann also die Prädiktion der Performance einer Re-
gelmethode für eine neue Strecke aus dem gegebenen Regelstreckenensem-
ble sein, ohne dabei einen Regler entwerfen zu müssen. Dabei wird auch
eine Quantifizierung der erwarteten Prädiktionssicherheit von Interesse
sein. Weitere Ziele können sein, den Einfluss verschiedener Faktoren auf
die Performance der Regelmethode zu analysieren oder die erwartete Per-
formance für eine zufällig gewählte Strecke aus einem Streckenensemble zu
bestimmen.
Die Faktoren sind in einem Vektor ζ := [ζk ζe ζm]� gruppiert. Die

Einteilung der Eingangsvariablen spiegelt die allgemeine Klassifikation im
Rahmen von Computerexperimenten wider, vgl. [64]. Diese werden in drei
große Kategorien aufgeteilt: die Kontrollvariablen (ζk = [ζk1 · · · ζkl ]�),
welche vom Experimentator gezielt geändert werden können, wie z.B. die
Spezifikationen eines eletromechanischen Aufbaus (z.B. die Motorspezifi-
kation für die Laufkatze bei einer Verladebrücke), die Umgebungsvaria-
blen (ζe := [ζe1 · · · ζep ]�), manchmal auch Rauschvariablen genannt, wel-
che stochastischer Natur und unbeeinflußbar sind, und Modellvariablen
(ζm := [ζm1 · · · ζmc ]�), welche Unsicherheiten in der mathematischen Mo-
dellierung beschreiben und entweder unbekannt oder stochastischer Natur
sind.
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Je nach Typ der Eingangsvariablen werden verschiedene Ziele des Expe-
riments formuliert. Es wird zwischen einem homogenen Eingang (Vorhan-
densein von nur einem Typ von Eingangsvariablen) und einem gemischten
Eingang (Vorhandensein von zwei Typen von Eingangsvariablen) unter-
schieden. In dieser Arbeit wird darüber hinaus zwischen dem (einfacheren)
eindimensionalen (eine einzige Eingangsvariable) und dem mehrdimensio-
nalen Fall (mehrere Eingangsvariablen) unterschieden. Darauf basierend
können folgende allgemeine Probleme behandelt werden:

• Prädiktion des Ausgangs η = h(ζ) in einem Bereich ζ ∈ Dζ , wo-
bei der Zusammenhang zwischen Eingangs- und Ausgangsvariablen
durch die unbekannte Funktion η = h(ζ) beschrieben wird, welche
als Realisierung des skalaren Zufallsfeldes H(ζ) angenommen wird,

• Optimierung - d.h. Bestimmung des Eingangs ζ, welcher einen op-
timalen Ausgangwert η erzielt,

• Nullstellensuche - d.h. Bestimmung eines Eingangs ζ ∈ L(η0) für
ein vorgegebenes Niveau des Ausgangs L(η0) := {ζ ∈ Dζ |h(ζ) = η0},

• Unsicherheitsanalyse - d.h. Bestimmung wesentlicher und unwe-
sentlicher Eingänge ζ ∈ Dζ für die Variation des Ausgangs η = h(ζ),

• Sensitivitätsanalyse, als Verallgemeinerung der Unsicherheitsana-
lyse - d.h. Bestimmung der Art, wie Unsicherheit über den Eingang
ζ den Ausgang des Systems η beeinflusst,

• Integration des Ausgangs - d.h. die Bestimmung des Erwartungs-
wertes des skalaren Zufallfeldes H(ζ), wobei der Eingang ζ als Reali-
sierung eines Zufallsvektors mit einer bestimmten Verteilung F , d.h.
Z ∼ F , betrachtet wird.

• Kalibrierung - d.h. Anpassung verschiedener Modellvariablen ζm,
sodass die beobachteten Ausgangswerte eines physikalischen Experi-
ments den Ausgangswerten des Modells eines Rechnercodes entspre-
chen.

Tabelle 8.1 zeigt eine typische Klassifizierung verschiedener Ziele in Ab-
hängigkeit der Eingangsvariablen, vgl. [64].
Im Rahmen der hier untersuchten Performance-Analyse von Regelme-

thoden gruppiert der Eingangsvektor mehrere Parameter einer Regelstre-
cke. Alle möglichen Werte des Parametervektors aus einer vorgegebenen
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Tabelle 8.1: Zielklassifizierung je nach Art der Eingangsvariablen.

Ziel K
on
tr
ol
l-

U
m
ge
bu
ng
s-

M
od
el
lv
ar
.

Prädiktion, Optimierung, Nullstellensuche x
x x

Kalibrierung x
Unsicherheits- und Sensitivitätsanalyse xIntegration des Ausgangs

(kompakten) Menge generieren zusammen ein Regelstreckenensemble. Wie
bereits erwähnt, umfasst das Computerexperiment eine Serie von Versu-
chen mit verschiedenen Parametervektoren. In jedem Versuch wird eine
neue Strecke durch einen bestimmten Wert des Parametervektors ζ (De-
sign-Punkt) generiert und dafür automatisch ein Regler u = −f(x,ζ) ent-
worfen. Der Wert eines Performance-Maßes des jeweiligen Regelkreises bil-
det dabei den Ausgang η = h(ζ). Ein Performance-Maß ist z.B.

- der Fehlklassifikationsanteil einer zeitsuboptimalen Regelung mit Schalt-
funktion aus Gl. (7.13)

- die relative Einschwingzeit Jta aus Gl. (7.14),

- die gebietsabhängige Konvergenzrate des Systems aus Gl. (7.50)- (7.51).

Jedes untersuchte Performance-Maß erzielt für einen geschlossenen Regel-
kreis mit dem Eingangsvektor ζi einen skalaren Wert ηi := h(ζi). Die
skalare Funktion h( · ) ist dabei unbekannt, auch wenn es sich um eine
deterministische Funktion handelt, da jeder Funktionswert erst durch die
Ausführung des Rechnercodes bekannt ist. Eine Serie von N Versuchen er-
gibt entsprechend eine Menge von N Werten des jeweiligen Performance-
Maßes. Die Werte ζi, mit i = 1, . . . ,N , werden Design-Punkte und die
Werte ηi, mit i = 1, . . . ,N , Trainingsdaten genannt. Letztere werden in
einem Vektor η := [η1 · · · ηN ]� zusammengefasst. Anhand des erzielten
Vektors η werden die oben genannten Problemstellungen gelöst. Beispiels-
weise können für die Prädiktion Neuronale Netze, Splines oder Prädikto-
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ren basierend auf Gauß’schen Zufallsfeldern1) verwendet werden. Letztere
haben den Vorteil, dass sie auch die erwartete Unsicherheit der Schät-
zung quantifizieren können. Die Minimierung der erwarteten Unsicherheit
kann beispielsweise verwendet werden, um die N Parametervektoren ζi,
mit i = 1, . . . ,N zu wählen. In dieser Arbeit werden diese Schätzer unter
Berücksichtigung der Bayes’schen Methodik verwendet.
Im Fall der Prädiktion wird eine Bayes’sche Interpolationsmethode für

deterministische Funktionen, vgl. [21, 22], angewandt, welche in Abschnitt
8.2 beschrieben wird. Diese Methode betrachtet den unbekannten Ausgang
des Computerexperiments als ein skalares Zufallsfeld H( · ) (meistens Zu-
fallsfunktion genannt, vgl. [64, S. 24-25]), dessen Verteilung noch bestimmt
werden muss. Als Prädiktionswert für einen neuen Punkt ζ0 wird der Er-
wartungswert des skalaren Zufallsfeldes E{H(ζ0)|H = η} an dem Punkt
ζ0 verwendet. Die Optimierung und Nullstellensuche sind mit der vo-
rigen Problemstellung eng verwandt und werden mit Hilfe der prädiktiven
Verteilung des Ausgangs berechnet. Die Sensitivitätsanalyse wird eben-
falls unter Anwendung des Bayes’schen Ansatzes durchgeführt. Unter Ver-
wendung der A-posteriori-Verteilung des skalaren Zufallsfeldes H(ζe) wird
eine Inferenz für verschiedene Sensitivitätsmaße durchgeführt, vgl. [51].
Die in dieser Arbeit vorgestellten Sensitivitätsmaße sind die Haupteffekte,
die Interaktionen, sowie die varianzbasierten Haupteffekt- und Interaktio-
nenindizes. Diese und die dafür verwendete Bayes’sche Inferenz werden in
Abschnitt 8.3 vorgestellt.
Das Kapitel ist wie folgt gegliedert. Der einleitende Abschnitt 8.1 enthält

die Grundidee des Bayes’schen Ansatzes, eine Einführung über Gauß’sche
Zufallsfelder und über den hier verwendeten besten linearen erwartungs-
treuen Prädiktor. Abschnitt 8.2 zeigt den Aufbau von prädiktiven A-poste-
riori-Verteilungen über den partiellen und den vollständigen Bayes’schen
Ansatz, das Design-Problem, die Maße zur Analyse der Prädiktionsgenau-
igkeit, sowie ein Beispiel einer Funktion mit einer Variablen. Abschnitt 8.3
zeigt die Sensitivitätsanalyse im Rahmen von Computerexperimenten und
die jeweilige Bayes’sche Inferenz. Der Abschnitt endet mit einem Beispiel
einer Funktion mit zwei Variablen und der Veranschaulichung der Prädik-
tion, sowie der Sensitivitätsanalyse. Der letzte Abschnitt, Abschnitt 8.4,
wendet die oben vorgestellte Theorie über das Design von Computerexpe-
1)Wie im nächsten Abschnitt beschrieben wird, stellen Zufallsfelder (engl.: random

fields, vgl. [6]) eine Verallgemeinerung stochastischer Prozesse beliebiger Dimension
dar, wobei der Parameter Zeit durch einen beliebigen anderen Parameter ersetzt
werden kann.
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rimenten auf die Performance-Analyse von nichtlinearen Regelungsmetho-
den an. Der Abschnitt enthält das Prädiktionsbeispiel einer nicht-simulier-
ten Strecke, ein Beispiel für die Sensitivitätsanalyse und einen empirischen
Vergleich zwischen den Prädiktoren.

8.1 Vorbemerkungen

8.1.1 Notationen
In diesem Kapitel bezeichnen H( · ), Z( · ) und C( · ) skalare bzw. mehr-
dimensionale Zufallsfelder mit den Realisierungen (auch Pfade genannt)
h( · ), z( · ) bzw. c( · ); H und H bezeichnen Zufallsvariablen bzw. Zufalls-
vektoren mit den Realisierungen η bzw. η; [ · ] bezeichnet die Wahrschein-
lichkeitsverteilung (oder kurz Verteilung) einer Zufallsvariable, die durch
ihre Wahrscheinlichkeitsdichte (oder kurz Dichte) gegeben ist. Die Mul-
tiplikation [X ] · [Y ] bezeichnet dabei die Multiplikation von zwei Wahr-
scheinlichkeitsdichten fX(x) · fY (y). Das Symbol ∝ bezeichnet proportio-
nale Verteilungen, d.h. Verteilungen, welche sich voneinander nur durch
eine Konstante unterscheiden. Schließlich bezeichnet Dζx den Definitions-
bereich der Variable ζx.

8.1.2 Grundidee des Bayes’schen Ansatzes
Im untersuchten Bereich ζ ∈ Dζ bildet h( · ) : Dζ → R eine (deterministi-
sche) reellwertige Funktion. Diese ist als unbekannt angenommen, obwohl
die Funktionswerte anhand eines bekannten Rechnercodes generiert wer-
den. Da die Komponenten des Eingangsvektors ζ kontinuierliche Größen
sind, wäre die Funktion erst durch unendlich viele Simulationen des Rech-
nercodes vollständig determiniert. In dieser Arbeit wird die Funktion h( · )
als Realisierung eines skalaren Zufallsfeldes betrachtet, dessen Verteilung
noch bestimmt werden muss. Das skalare Zufallsfeld - auch Zufallsfunktion
genannt - wird mit H( · ) bezeichnet, um es von seiner Realisierung h( · ) zu
unterscheiden. Im Rahmen des Bayes’schen Ansatzes wird eine Verteilung
für die Zufallsfunktion H( · ) formuliert - die sogenannte A-priori-Vertei-
lung - welche anhand der Trainingsdaten η aktualisiert wird. Letztere wird
A-posteriori-Wahrscheinlichkeitsdichte genannt und wird verwendet, um
Inferenzen über die unbekannte Funktion h( · ) (das gewählte Performance-
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Maß für die Regelmethode) oder über verschiedene Sensitivitätsmaße zu
machen. Dies wird in den nächsten Abschnitten dieses Kapitels gezeigt.
Die Wahl der A-priori-Verteilung der Zufallsfunktion basiert auf den

vorhandenen Informationen des Experimentators über die unbekannte
Funktion h( · ). Wie in [50] erläutert, kann man vorerst allgemeine Fragen
über h( · ) stellen, wie z.B.

1. Ist die Funktion h( · ) stetig im gesamten Bereich ζ ∈ Dζ?

2. Kann das Wissen über ein bestimmtes h(ζ1) Informationen über
h(ζ2) liefern, wenn ζ2 nah an ζ1 ist?

Können beide Fragen mit ’ja’ beantwortet werden, so kann als A-priori-
Verteilung beispielsweise ein skalares Gauß’sches Zufallsfeld (Gauß’sche
Zufallsfunktion) verwendet werden. In vielen Fällen wird diese Wahl auf-
grund der Flexibilität des Gauß’schen Zufallsfeldes getroffen. Gauß’sche
Zufallsfelder werden kurz in Abschnitt 8.1.3 eingeführt. Sie sind die meist
verwendeten Modelle im Rahmen von Computerexperimenten. Dies bedeu-
tet aber nicht, dass ein skalares Gauß’sches Zufallsfeld die Unsicherheit
über die unbekannte Funktion perfekt modellieren kann. Vielmehr können
die Parameter des Gauß’schen Zufallsfeldes an die schon vorhandenen In-
formationen angepasst werden, und man spricht in diesem Fall von einer
angepassten A-priori-Verteilung.

8.1.3 Skalare Gauß’sche Zufallsfelder
Ein skalares Gauß’sches Zufallsfeld (GRF, Gaussian Random Field) ist
wie folgt definiert:

Definition 4 [Gauß’sches Zufallsfeld, [64, S.27]] Gegeben sei die Menge
Dζ ⊂ R

m mit einem positiven m-dimensionalen Volumen. Das Zufallsfeld
H(ζ), mit ζ ∈ Dζ, heißt ein Gauß’sches Zufallsfeld falls für N ≥ 1 und
jede Wahl von ζ1, . . . ,ζN aus Dζ, der Zufallsvektor (H(ζ1), . . . ,H(ζN ))
eine multivariate Gauß’sche Verteilung hat.

Die im Rahmen von Computerexperimenten verwendeten GRFs haben dar-
über hinaus folgende Eigenschaften:

• Nichtsingularität: Das skalare Zufallsfeld H(ζ) heißt nichtsin-
gulär falls für jedes N ≥ 1 die mit jeder Wahl von Eingangs-
vektoren ζ1, . . . ,ζN verbundene Kovarianzmatrix der multivariaten
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Gauß’schen Verteilung von (H(ζ1), . . . ,H(ζN )) nichtsingulär ist. Die-
se Eigenschaft ist u.a. notwendig für den Aufbau des Prädiktors.

• Trennbarkeit: Diese Eigenschaft2) stellt sicher, dass die endlich di-
mensionale Verteilung des Zufallsvektors (H(ζ1), . . . ,H(ζN )) die Ei-
genschaften einer Realisierung h(ζ), wie beispielsweise deren Stetig-
keit und Differenzierbarkeit, bestimmt.

• Starke/schwache Stationarität und Ergodizität: Wie im Fall
von Zeitreihen, verfügt man bei den hier analysierten Zufallsfeldern
über jeweils nur eine Beobachtung h(ζ) für ein bestimmtes ζ ∈ Dζ .
Ein zweiter Versuch mit demselben Parametervektor ζ ∈ Dζ würde
die gleiche Beobachtung h(ζ) generieren. Man verfügt also nicht über
eine Stichprobe von Werten. Um eine Prädiktion des (unbekannten)
Wertes h(ζneu) auf Basis der Erwartungswertfunktion E{H(ζ)} ma-
chen zu können, muss das Zufallsfeld stark stationär und ergodisch
sein, vgl. z.B. [64, Abschnitt 2.3.2].

– starke Stationarität: Das Zufallsfeld H(ζ) heißt stark sta-
tionär (oder einfach stationär) falls für jedes d ∈ Rm und
N ≥ 1, und alle ζi ∈ Dζ , i = 1, . . . ,N , sodass ζi + d ∈
Dζ , i = 1, . . . ,N , die Zufallsvektoren (H(ζ1), . . . ,H(ζN )) und
(H(ζ1 + d), . . . ,H(ζN + d)) die gleiche Verteilung besitzen.
Dies gilt auch für N = 1, d.h. alle Zufallsvariablen H(ζ), mit
ζ ∈ Dζ , haben die gleiche Verteilung. Folglich haben sie einen
konstanten Erwartungswert und eine konstante Varianz.

– schwache Stationarität: Das Zufallsfeld H(ζ) heißt schwach
stationär falls

μ(ζ) := E{H(ζ)} = μ, und (8.1)
c(ζ1,ζ2) := Cov{H(ζ1),H(ζ2)} = C(ζ1 − ζ2) (8.2)

gilt, wobei C(ζ1 − ζ2) Kovarianzfunktion des Zufallsfeldes ge-
nannt wird. Gl. (8.1) bedeutet, dass die Erwartungswertfunk-
tion des skalaren Zufallsfeldes für alle ζ ∈ Dζ konstant ist. Gl.
(8.2) bedeutet, dass die Beobachtungen generiert von zwei Pa-
rametervektoren mit dem gleichen Abstand und gleiche Orien-
tierung den gleichen Autokovarianzfunktionswert haben. Star-

2)Eine formale Definition der Trennbarkeit wird in [6] angegeben.
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ke Stationarität impliziert schwache Stationarität. Der Um-
kehrschluß ist nicht notwendigerweise wahr.

– Ergodizität: Ein schwach stationärer Zufallsprozess H(ζ) mit
der konstanten Erwartungswertfunktion E{H(ζ)} = μ heißt er-
godisch falls

lim
N→∞

(
1
N

N∑
i=1

H(ζi)
)
= μ

gilt. Dies bedeutet, dass je mehr Beobachtungen verwendet
werden, desto besser wird die Schäzung des Erwartungswertes
des Zufallsfeldes. Eine wichtige Voraussetzung dafür ist, dass
lim

d→∞
C(d) = 0. Das bedeutet, dass weit auseinander liegende

Beobachtungen nicht zu stark zusammenhängen dürfen.

• Isotropie Ein stark-stationäres Zufallsfeld H(ζ) heißt isotropisch
falls

Cov{H(ζ1),H(ζ2)} = C(‖ζ1 − ζ2‖) (8.3)

gilt. Gl. (8.3) bedeutet, dass die Beobachtungen generiert von zwei
Parametervektoren mit dem gleichen Abstand (unabhängig von der
Orientierung) den gleichen Autokovarianzfunktionswert haben.

Die Voraussetzung der Stationarität des Zufallsfeldes H(ζ) kann durch ein
Modell der Form

H(ζ) = f(ζ)�β + Z(ζ),
umgangen werden, wobei f(ζ) bekannte, bzw. vorher festgelegte, Regres-
sionsfunktionen, β := [β1, . . . ,βp]� ein Vektor von unbekannten Regres-
sionskoeffizienten, und Z(ζ) ein mittelwertfreies skalares Zufallsfeld mit
der konstanten Varianz Var{Z(ζ)} = σ2Z darstellen, welches alle obigen
Eigenschaften besitzt. Bei einer solchen Modellierung ist H(ζ) nicht mehr
stationär. Weitere Modellierungen, die die Flexibilität des Zufallsfeldes an-
streben, werden in [64] diskutiert.
Ein skalares Gauß’sches Zufallsfeld ist durch dessen Erwartungswert-

funktion E{H(ζ)} und Autokovarianz-Funktion Cov{H(ζ1),H(ζ2)} voll-
ständig spezifiziert. Alternativ zur Autokovarianz-Funktion wird die Kor-
relationsfunktion spezifiziert. Diese ist definiert als

R(d) := Cov{H(ζ1),H(ζ2)}√
Var{H(ζ1)} ·Var{H(ζ2)}

= C(d)
σ2Z

, d ∈ R
m,
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wobei Var{H(ζ1)} = Var{H(ζ2)} = Cov{H(ζ),H(ζ)} = C(0) =: σ2Z die
konstante Varianz des stationären skalaren Zufallsfeldes H(ζ) ist. Die Kor-
relationsfunktion R(d), mit R(0) = 1, muss positiv semidefinit und sym-
metrisch um den Ursprung sein, d.h. R(d) = R(−d). Eine weitere wichtige
Eigenschaft der Korrelationsfunktion betrifft die Stetigkeit der Realisie-
rungen (auch Pfade genannt) eines skalaren Zufallsfeldes (die sogenannten
Stichprobenfunktionen). Nach [6] hat ein stationäres skalares Zufallsfeld
H( · ) mit der Korrelationsfunktion R( · ) fast sicher, d.h. mit Wahrschein-
lichkeit eins, stetige Pfade falls die Korrelationsfunktion R(d)

1. stetig im Ursprung ist, d.h. lim
d→0

R(d) = 1, und

2. für d → 0 schnell genug gegen eins konvergiert. Dies ist z.B. der
Fall, wenn [64, S. 38]

1−R(d) ≤ c

| log(‖d‖)|1+ε
, ∀ ‖d‖ < δ,

für irgendein c > 0, ε > 0 und δ < 1 gilt.

Jede Korrelationsfunktion der (eindimensionalen) Potenz-Exponential-
Familie

R( · ) : R→ (0,∞), R(d;ψ,p) := exp{−|d/ψ|p}, ψ > 0, 0 < p ≤ 2
(8.4)

erfüllt diese Bedingungen und generiert folglich stetige Stichprobenfunktio-
nen mit der Probabilität eins. Der Fall p = 2 entspricht der sogenannten
Gauß’schen Korrelationsfunktion. Im mehrdimensionalen Fall hat die Kor-
relationsfunktion der Potenz-Exponential-Familie die Form

R( · ) : Rm → (0,∞),

R(d;ψ,p) := exp
{
−

m∑
i=1

|di/ψi|pi
}
, ψi > 0, 0 < pi ≤ 2, ∀i = 1, . . . ,m.

(8.5)

Die Korrelationsfunktion aus Gl. (8.5) wurde durch Multiplikation der
jeweiligen eindimensionalen Korrelationsfunktionen aus derselben Familie
gebildet. Dies ist möglich, weil das Produkt mehrerer Korrelationsfunktio-
nen wiederum eine Korrelationsfunktion darstellt.
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8.1.4 Bester linearer erwartungstreuer Prädiktor
(BLUP)

Das Problem der Prädiktion wird als Prädiktion einer Zufallsvariable H0
basierend auf den (bekannten) Trainingsdaten H = [H1 · · · HN ]� for-
muliert. Wir unterscheiden dabei die Zufallsvariable Hi, mit i = 0, . . . ,N ,
von ihrer Realisierung ηi. Der Prädiktor wird mit Ĥ0 bezeichnet. In dieser
Arbeit wird nur der beste lineare erwartungtreue Prädiktor (BLUP, Best
Linear Unbiased Predictor) analysiert. Dieser hat die allgemeine Form

Ĥ0 := c0 + c�H, c0 ∈ R, c ∈ R
N ,

wobei die Parameter c0 und c noch bestimmt werden müssen. Der Prädik-
tor heißt erwartungstreu bezüglich einer Verteilungsfamilie F für (H0,H),
falls EF {Ĥ0} = EF {H0}, für (H0,H) ∼ F und F ∈ F . Der beste lineare
Prädiktor heißt einer, der unter allen möglichen linearen erwartungstreuen
Prädiktoren den mittleren quadratischen Prädiktionsfehler (MSPE, Mean
Squared Prediction Error)

MSPE(Ĥ0,F ) := EF {(Ĥ0 −H0)2},

minimiert. In [64, Theorem 3.2.1] wird gezeigt, dass im Fall eines Zufalls-
vektors (H0,H) mit einer vorgegebenen Verteilung F ∈ F , der Erwar-
tungswert der bedingten Verteilung [H0|H] den besten MSPE-Prädiktor
für H0 bildet, d.h.

Ĥ0 := E{H0|H = η},
unter der Annahme, dass dieser bedingte Erwartungswert vonH0, gegeben
H = η, E{H0|H = η}, existiert.

8.2 Prädiktive Verteilungen
In dieser Arbeit wird der Ausgang des Computerexperiments als skalares
Zufallsfeld modelliert. Dieses hat die Form

H(ζ) = f(ζ)�β + Z(ζ), (8.6)

wobei f(ζ) := [f1(ζ) · · · fm(ζ)]� bekannte, d.h. vorher festgelegte,
Regressionsfunktionen gruppiert, β := [β1 · · · βm]� einen Vektor von
unbekannten (konstanten) Regressionskoeffizienten darstellt, und Z(ζ)
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ein mittelwertfreies stationäres GRF mit der unbekannten konstanten
Varianz σ2Z und unbekannten Korrelationsfunktion R( · ) ist. Die Kor-
relationsfunktion wird in parametrischer Form angenommen, d.h. es gilt
R( · ) = R( · |ψ), wobei der Vektor ψ die unbekannten Parameter der
Korrelationsfunktion gruppiert. Anhand eines gegebenen Vektors η :=
[h(ζ1) · · · h(ζN )]� von Trainingsdaten wird eine Prädiktion des Aus-
gangs für einen neuen Datenpunkt ζ0 gesucht.
Das angenommene Modell aus Gl. (8.6) impliziert,3) dass die Zufallsva-

riable H0 := H(ζ0) und der Zufallsvektor H := [H(ζ1) · · · H(ζN )]� eine
gemeinsame multivariate Gauß’sche Verteilung haben, d.h.[

H0
H

]
∼ N1+N (μ,Σ) , (8.7)

mit Erwartungswert und Kovarianzmatrix

μ :=
[

f�0
F

]
β, (8.8)

Σ := σ2Z

[
1 r�0
r0 R

]
. (8.9)

Dabei bezeichnet f0 := f0(ζ0) = [f1(ζ0) · · · fm(ζ0)]� einen Vektor von
bekannten Regressionsfunktionswerten, F := [f1(ζ1) · · · fN (ζN )]� eine
N × m-Matrix von bekannten Regressionsfunktionswerten, mit fi(ζi) :=
[f1(ζi) · · · fm(ζi)]�, i = 1, . . . ,N , r�0 := [R(ζ0 − ζ1|ψ) · · · R(ζ0 −
ζN |ψ)]� einen Vektor von Korrelationen zwischen dem ZufallsvektorH und
der Zufallsvariable H0, und, schließlich, R eine Matrix von Korrelationen
zwischen den Zufallsvariablen H1, . . . ,HN mit den Elementen R(i,j) :=
R(ζi − ζj |ψ), mit i,j = 1, . . . ,N .
Der BLUP-Prädiktor von H0 ist, wie im vorherigen Abschnitt erwähnt,

Ĥ0 := E{H0|H = η}, d.h. der Erwartungswert der Verteilung [H0|H]. Um
diesen Erwartungswert zu berechnen, wird der Bayes’sche Ansatz ange-
wandt. Dieser basiert auf dem Satz von Bayes.
Bemerkung 8.1 (Anwendung des Satzes von Bayes). Über den Parameter
ω eines Modells seien - beispielsweise aufgrund vorheriger Erfahrungen mit
ähnlichen Modellen oder Daten - irgendwelche probabilistische Annahmen
in der Form einer A-priori-Wahrscheinlichkeitsdichte getroffen worden. Sei
diese mit fΩ(ω) bezeichnet. Mit Hilfe von neuen Informationen in der Form
3)Dies folgt aus der Definition eines Gauß’schen Zufallsfeldes, vgl. Def. 4, Seite 119.
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eines neu erhobenen Datensatzes η kann die Wahrscheinlichkeitsdichte des
Parameters ω aktualisiert werden. Diese wird A-posteriori-Dichte genannt
und wird mit fΩ|H=η(ω) bezeichnet. Der Zusammenhang zwischen den
beiden Wahrscheinlichkeitsdichten kann durch den Satz von Bayes in der
Form

fΩ|H=η(ω) =
fH|Ω=ω(η)fΩ(ω)

fH(η)
(8.10)

geschrieben werden. Dabei sind fH|Ω=ω(η) die Likelihood (auch inverse
Wahrscheinlichkeitsdichte genannt), welche anhand der erhobenen Daten
η gewählt wird, fΩ(ω) die A-priori-Dichte von Ω, und fH(η) die margina-
le Likelihood (oder Evidenz), welche den Erwartungswert der Likelihood
bezüglich der A-priori-Dichte des Parameters ω, d.h.

fH(η) =
∫ ∞

−∞
fH|Ω=ω(η)fΩ(ω)dω,

darstellt und folglich eine Konstante ist. �
Für die Bildung der prädiktiven Verteilung [H0|H] ist es weiterhin von

Bedeutung, welche Parameter des Modells aus Gl. (8.6) bekannt sind. Die-
se Parameter sind der Koeffizientenvektor β, die Varianz σ2Z und der Pa-
rametervektor ψ der Korrelationsfunktion R( · |ψ).4) In dieser Arbeit wird
davon ausgegangen, dass keiner dieser Parameter bekannt ist. Ist einer
der Parameter bekannt, so vereinfacht sich die Untersuchung, vgl. [64]
für solche Fälle. Im Folgenden werden zwei Methoden vorgestellt. In der
ersten Methode - partieller Bayes’scher Ansatz - wird die prädiktive Ver-
teilung [H0|H] unter Verwendung des Bayes’schen Ansatzes für die Pa-
rameter β und σ2Z berechnet, wobei der Parametervektor ψ vorerst als
bekannt angenommen und anschließend empirisch, z.B. mit Hilfe der Ma-
ximum Likelihood Methode, geschätzt wird. Diese prädiktive Verteilung
heißt plug-in Verteilung. Die zweite Methode - vollständiger Bayes’scher
Ansatz - berechnet eine prädiktive Verteilung [H0|H] unter Verwendung
des Bayes’schen Ansatzes für alle Parameter β, σ2Z und ψ. Beide Ansätze
sind in zwei Etappen gegliedert. In der ersten Etappe wird der Parameter-
vektor ψ als bekannt angenommen, und in der zweiten Etappe wird dieser
empirisch geschätzt bzw. durch die Bayes’sche Methode inferiert. Die erste
Etappe enthält die folgenden Schritte:

4)Es wird dabei angenommen, dass die Korrelationsfunktion bis auf den Parameter-
vektor ψ bekannt ist.
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Schritt 1 Wähle beliebige A-priori-Verteilungen [β|σ2Z ] und [σ2Z ], um die
gemeinsame A-priori-Verteilung [β,σ2Z ] = [β|σ2Z ] · [σ2Z ] zu bilden.

Schritt 2 Wähle eine Verteilung [H|β,σ2Z ] für den Zufallsvektor H und
eine Verteilung

[
(H0,H)|β,σ2Z

]
für den Zufallsvektor (H0,H).

Schritt 3 Unter Verwendung des Satzes von Bayes und der Verteilungen
aus Schritt 1 und 2, berechne die gemeinsame A-posteriori-Wahr-
scheinlichkeitsdichte [(β,σ2Z )|H] mit Hilfe der Regel

[(β,σ2Z )|H] =
[H|(β,σ2Z)] · [β,σ2Z ]

[H] . (8.11)

Schritt 4 Berechne aus der Verteilung [(β,σ2Z)|H] die A-posteriori-Rand-
verteilungen [β|H] und [σ2Z |H]. Es folgt

[β|H] =
∫
Dσ2Z

[
(β,σ2Z)|H

]
dσ2Z , (8.12)

[σ2Z |H] =
∫
· · ·
∫
Dβ

[
(β,σ2Z)|H

]
dβ. (8.13)

Bemerkung 8.2 (Zu Schritt 1 - Wahl der A-priori-Verteilungen [β|σ2Z ] und
[σ2Z ]). Die Wahl dieser Verteilungen kann einen großen Einfluß auf die A-
posteriori-Wahrscheinlichkeitsdichte [(β,σ2Z)|H] aus Schritt 3 und auf die
prädiktive Verteilung [H0|H] haben. Diese können nur im Fall bestimmter
A-priori-Verteilungen analytisch angegeben werden. Einen solchen einfa-
chen Fall bilden die nicht-informativen und die konjugierten A-priori-
Verteilungen. Die nicht-informative Verteilung hat definitionsgemäß kei-
nen Einfluß auf die A-posteriori-Verteilung. Die konjugierten A-priori-
Verteilungen sind solche A-priori-Verteilungen, die - durch Multiplikation
mit der Likelihood, wie in Gl. (8.10) - A-posteriori-Wahrscheinlichkeits-
dichten aus derselben Klasse erzeugen. Ein Beispiel einer konjugierten
A-priori-Verteilung ist die multivariate Normalverteilung für β mit einer
multivariaten Normalverteilung als Likelihood von H und mit bekannter
Kovarianzmatrix σ2ZR.
Tabelle 8.2 zeigt die hier untersuchte Wahl von A-priori-Verteilun-

gen. Für jeden Parameter wird jeweils eine informative und eine nicht-
informative A-priori-Verteilung gewählt. Für den Zufallsvektor β|σ2Z wird
als informative A-priori-Verteilung die Normalverteilung gewählt, d.h.
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Tabelle 8.2: Die untersuchten A-priori-Verteilungen [(β,σ2Z)].

[σ2Z ]
[β|σ2Z ] c0/χ

2
ν0 1/σ2Z

Nm(β0,σ
2
ZΣ0) (1) (2)

1 (3) (4)

β|σ2Z ∼ Nm(β0,σ
2
ZΣ0), wobei β0 und Σ0 vorher festgelegt werden. Oft

wird die Matrix Σ0 in Diagonalform gewählt. Die nicht-informative A-
priori-Verteilung ist [β|σ2Z ] ∝ 1. Für die Varianz σ2Z des skalaren Zu-
fallsfeldes Z wird als informative-Verteilung nicht die Normalverteilung
angenommen, da diese auch negative Realisierungen erlaubt, sondern die
Verteilung einer Konstanten c0 > 0 geteilt durch eine X 2

ν0 (Chi-Quadrat)-
verteilte Zufallsvariable mit ν0 Freiheitsgraden.5) Die Konstanten c0 und
ν0 werden als bekannt angenommen, d.h. vorher festgelegt. Die nicht-
informative A-priori-Verteilung ist [σ2Z ] ∼ 1/σ2Z , die sogenannte Jeffreys
A-priori-Verteilung. �

Bemerkung 8.3 (Zu Schritt 2 - Wahl der Verteilungen [H|β,σ2Z ] und
[(H0,H)|β,σ2Z ]). In dieser Arbeit werden ausschließlich Normalverteilun-
gen betrachtet, da angenommen wird, dass der Ausgang des Computer-
experiments als skalares Gauß’sches Zufallsfeld modelliert wird, d.h., es
gilt

[H|(β,σ2Z)] ∼ NN (Fβ,σ2ZR), (8.14)[[
H0
H

]∣∣∣∣ (β,σ2Z)
]
∼ NN+1

([
f�0
F

]
β,σ2Z

[
1 r�0
r0 R

])
. (8.15)

�
Bemerkung 8.4 (Zu Schritt 3). Die Evidenz [H] stellt eine Konstante dar,
die für Schätzungszwecke keine Rolle spielt. Somit kann man Gl. (8.11)
vereinfacht in der Form

[(β,σ2Z)|H] ∝ [H|(β,σ2Z)] · [β,σ2Z ].

schreiben. �
5)Falls eine Zufallsvariable X Chi-Quadrat verteilt ist, d.h. X ∼ χ2ν0 , dann besitzt die
Zufallsvariable Y := c0/X eine inverse Chi-Quadrat-Verteilung, d.h. Y ∼ c0χ

−2
ν0 .

Die inverse Chi-Quadrat-Verteilung wird auch als Inv-χ−2
ν0 bezeichnet.
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Bemerkung 8.5 (Zu Schritt 4). Die Erwartungswerte der beiden A-poste-
riori-Randverteilungen werden als Schätzer des unbekannten Koeffizien-
tenvektors β bzw. der unbekannten Varianz σ2Z verwendet, d.h.

β̂ := E{β|H},
σ̂2Z := E{σ2Z |H}.

�

8.2.1 Der partielle Bayes’sche Ansatz
Bei dem partiellen Bayes’schen Ansatz wird der Parametervektor ψ em-
pirisch geschätzt, vgl. [64, Abschnitt 3.3]. Der Ansatz enthält die Schritte
1-4 und

Schritt 5a Berechne die prädiktive Verteilung [H0|H]. Dies wird in meh-
reren Schritten gemacht. Nach einigen Umformungen ergibt sich

[H0|H] =
∫
D
σ2Z

∫
· · ·
∫
Dβ

[H0|H,β,σ2Z ][H|β,σ2Z ][β|σ2Z ]dβdσ2Z . (8.16)

Die einzelnen Schritte werden im Anhang B.4.1 gezeigt.

Schritt 6a Berechne einen Schätzer ψ̂ für den Parametervektor ψ aus Gl.
(B.26) und (B.27) mit Hilfe einer der im Folgenden vorgestellten
empirischen Schätzmethoden.

Schritt 7a Berechne den Prädiktor Ĥ0 := E{H0|H = η} und seine Vari-
anz Var{H0|H = η} aus der Verteilung [H0|H] aus Schritt 5a mit
dem Parametervektor ψ̂ aus Schritt 6a. Es ergibt sich

Ĥ(ζ0) =: Ĥ0 = f�0 β̂ + r̂�0R̂−1(η − Fβ̂), (8.17)

wobei r̂0 und R̂−1 vom geschätzten Parametervektor ψ̂ aus Schritt
6a abhängen.

Bemerkung 8.6 (Zu Schritt 5a - Berechnung der A-posteriori-Wahrschein-
lichkeitsdichte [H0|H]). Die Berechnung aus Schritt 5a wurde im Fall der
A-priori-Verteilungen aus Tabelle 8.2 in [64, Theorem 4.1.2] angegeben.
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Der Satz besagt, dass im Fall der A-priori-Verteilungen (1)− (4) aus Ta-
belle 8.2 und der Verteilung [H0,H|(β,σ2Z)] aus Gl. (8.15), die A-poste-
riori-Wahrscheinlichkeitsdichte [H0|H] eine eindimensionale nicht-zentrale
t-Verteilung ist, d.h.

H0|H ∼ T1(νi,μi,σ
2
i ) (8.18)

mit νi Freiheitsgraden, Nichtzentralitätsparameter μi und Skalierungspa-
rameter σ2i , i = (1), . . . ,(4). Diese Parameter werden im Theorem B.1
(Anhang) angegeben. Sie hängen vom Parametervektor ψ der Korrelati-
onsfunktion R( · |ψ) ab. �
Dabei wird angenommen, dass die Trainingsdaten η die Realisierungen
einer Gauß’schen (bedingten) Verteilung sind, d.h.

[H|β,σ2Z ,ψ] ∼ NN (Fβ,σ2ZR). (8.19)

Gl. (8.19) ist dabei sehr ähnlich zu Gl. (8.14). Letztere enthält der Einfach-
heit halber den Parametervektor ψ nicht ausdrücklich, welcher in jenem
Schritt als bekannt angenommen wurde.

Maximum-Likelihood-Methode (MLE)

Die Log-Likelihood-Funktion der Verteilung [H|β,σ2Z ,ψ] hat folglich bis auf
einen konstanten Term die Form

L(η;β,σ2Z ,ψ) = −12

[
N log σ2Z + log(det(R(ψ)))

+ 1
σ2Z
(η − Fβ)�R(ψ)−1(η − Fβ)

]

Im Fall eines bekannten Parametervektors ψ ergibt die Maximierung der
Log-Likelihood-Funktion bezüglich β und σ2Z

βMLE(ψ) := argmax
β

L(η;β,σ2Z ,ψ) = (F�R(ψ)−1F)−1F�R(ψ)−1η,

σ2ZMLE(ψ) := argmax
σ2Z

L(η;β,σ2Z ,ψ)

= 1
N
(η − FβMLE(ψ))�R(ψ)−1(η − FβMLE(ψ)),
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sowie ein Maximum von

L∗(βMLE(ψ),σ2ZMLE(ψ),ψ) (8.20)
:= max

β,σ2Z
L(η;β,σ2Z ,ψ)

= −12
[
N log σ2ZMLE(ψ) + log(det(R(ψ))) +N

]
, (8.21)

das vom Parametervektor ψ abhängt. Eine (numerische) Maximierung be-
züglich ψ ergibt schließlich einen empirischen Schätzer des unbekannten
Parametervektors, d.h.

ψ̂ =: ψMLE = argmax
ψ

L∗(βMLE(ψ),σ2ZMLE(ψ),ψ). (8.22)

Alternativ zur Maximum-Likelihood-Methode kann die sogenannte be-
grenzte Maximum-Likelihood-Methode, vgl. [64, Abschnitt 3.3] verwen-
det werden. Die begrenzte Maximum-Likelihood-Methode basiert auf der
gleichen Schätzmethode aus dem vorherigen Abschnitt, jedoch unter Ver-
wendung einer kleineren Menge von Trainingsdaten. Diese ergibt sich aus
ηb := Cη, wobei die Matrix C ∈ R(N−m)×N , die Bedingung CF = 0
erfüllt. Die Matrix C� bildet also eine Basis des Nullraumes der Matrix
F�. Die Menge ηb beinhaltet weniger Trainingsdaten als η, die Verteilung
der Trainingsdaten enthält aber den Parametervektor β nicht mehr, d.h.
Hb := CH ∼ NN−m(CFβ = 0,σ2ZCR(ψ)C�).

Kreuzvalidierungsmethode (XVal)

Diese Methode generiert N Prädiktionen Ĥi(ψ), mit i = 1, . . . ,N , basie-
rend jeweils auf einem Vektor ηi von Trainingsdaten, der den i-ten Da-
tenpunkt η(ζi) nicht enthält. Da die Datenpunkte η(ζi), mit i = 1, . . . ,N ,
aber bekannt sind, kann man einen empirischen quadratischen Prädikti-
onsfehler (E-MSPE) berechnen, d.h.

E-MSPE(ψ) :=
N∑
i=1

(
Ĥi(ψ)− η(ζi)

)2
, (8.23)

und zur Schätzung des Parametervektors ψ verwenden. Der Kreuzvalidie-
rung-Schätzer ψ̂ minimiert den empirischen quadratischen Prädiktionsfeh-
ler aus Gl. (8.23).
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8.2.2 Der vollständige Bayes’sche Ansatz
Bei dem vollständigen Bayes’schen Ansatz wird der Parametervektor ψ
ebenfalls mit Hilfe des Bayes’schen Ansatzes berechnet. Es wird davon aus-
gegangen, dass der Zufallsvektor ψ unabhängig vom Zufallsvektor (β,σ2Z)
ist, d.h.

[β,σ2Z ,ψ] = [β,σ2Z ] · [ψ]. (8.24)

Die prädiktive Verteilung [H0|H] aus Gl. (8.18) kann dabei als eine beding-
te Verteilung [H0|H,ψ] angesehen werden. Diese Methode besteht dann
aus den Schritten 1-4 und:

Schritt 5b Wähle eine beliebige A-priori-Verteilung [ψ].

Schritt 6b Berechne dieA-posteriori-Verteilung [ψ|H] mit Hilfe des Bayes’schen
Ansatzes und der Verteilungen aus den Schritten 1-3. Es folgt

[ψ|H] =
∫
Dσ2Z

∫
· · ·
∫
Dβ

[β,σ2Z ,ψ|H]dβ dσ2Z , (8.25)

wobei der Integrand aus Gl. (8.25) mit Hilfe des Bayes’schen Ansat-
zes aus

[β,σ2Z ,ψ|H] = [H|β,σ2Z ,ψ] · [β,σ2Z ,ψ] (8.26)

berechnet werden kann.

Schritt 7b Berechne die prädiktive Verteilung [H0|H] aus

[H0|H] =
∫
· · ·
∫
Dψ

[H0,ψ|H]dψ =
∫
· · ·
∫
Dψ

[H0|H,ψ][ψ|H]dψ,

(8.27)
wobei [H0|H,ψ] die gleiche Verteilung wie die Zufallsvariable H0|H
aus Gl. (8.18) hat, und die Verteilung [ψ|H] in Schritt 6b berechnet
wurde.

Schritt 8b Berechne den Prädiktor Ĥ0 := E{H0|H = η} und seine Vari-
anz Var{H0|H = η} aus der Verteilung [H0|H] aus Schritt 7b.

Bemerkung 8.7 (Zu Schritt 6b und 7b). Für einfache A-priori-Verteilun-
gen [β,σ2Z ,ψ] kann die (m + 1)-dimensionale Integration aus Gl. (8.26)
analytisch berechnet werden. Die Integration aus Gl. (8.27) kann nur in
seltenen Fällen analytisch berechnet werden, vgl. z.B. [33] für den Fallm =
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2, unter Verwendung von isotropischen Korrelationsfunktionen (Potenz-
Exponential-Familie und Matérn-Korrelationsfunktionen).
Kann die analytische Berechnung nicht erfolgen, so besteht die Mög-

lichkeit, die A-posteriori-Verteilung [ψ|H] und/oder die prädiktive Ver-
teilung [H0|H] unter Verwendung der Gibbs Sampling-Methode oder des
Metropolis-Hastings-Algorithmus numerisch zu approximieren, vgl. z.B.
[12]. Beide Verfahren werden zur numerischen Approximation von Rand-
verteilungen bei gegebener gemeinsamer Verteilung verwendet. Die ge-
meinsame Verteilung kann dabei auch eine A-posteriori-Verteilung, wie
z.B. [β,σ2Z ,ψ|H], sein. Bei der Gibbs Sampling-Methode werden alle
bedingten Verteilungen als bekannt vorausgesetzt. Bei dem Metropolis-
Hastings-Algorithmus entfällt auch diese Voraussetzung. �

8.2.3 Das Design-Problem
Das Design-Problem beschäftigt sich mit der Frage, welche Design-Punkte
ζi, mit i = 1, . . . ,N , gewählt werden sollten, sodass ein vordefiniertes Ziel
des Computerexperiments erreicht wird. Ein solches Ziel ist beispielsweise

• eine möglichst gute Abdeckung des untersuchten Bereichs ζ ∈ Dζ -
raumausschöpfendes Design,

• die Optimierung eines bestimmten statistischen Gütemaßes - optima-
les-Design - wie z.B.

– die Minimierung einer bestimmten Funktion der Kovarianzma-
trix der Parameter des Modells (β, σ2Z , ψ):
∗ die Determinante der Kovarianzmatrix - D-optimales-De-
sign,

∗ die Spur der Kovarianzmatrix - A-optimales-Design,
– die Minimierung der erwarteten Varianz des prädizierten Wer-
tes im ganzen Untersuchungsbereich - I-optimales-Design.

Die optimalen Designs setzen jedoch voraus, dass der jeweilige Parame-
ter des Modells bekannt ist. Daher wird das Design-Problem manchmal
in zwei Stufen gelöst, in einer ersten Stufe wird der jeweilige Parameter
des Modells durch ein raumausschöpfendes Design bestimmt, und in einer
zweiten Stufe, beispielsweise, dessen Varianz durch ein optimales Design
minimiert. In dieser Arbeit wird die erste Stufe verwendet.

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


8.2 Prädiktive Verteilungen 133

Raumausschöpfende Designs

Für raumausschöpfende Designs können sowohl deterministische als auch
statistische Auswahlstrategien der Design-Punkte verwendet werden. Eine
sehr einfache deterministische Strategie wäre, die Design-Punkte basierend
auf einem Grid zu wählen. Statistische Strategien basieren auf einfachen
oder stratifizierten Stichproben. Die raumausschöpfenden Designs werden
in drei Klassen unterteilt:

• Stichprobenbasierte Designs
– einfache Zufallsstichprobe generiert aus einer bestimmten Ver-
teilung,

– geschichtete Zufallsstichprobe, d.h. einfache Zufallsstichproben
generiert in jeder Schicht aus der vorher geschichteten Design-
Region,

– Latin-Hypercube-Sampling (LHS): diese Methode generiert (mar-
ginal) gleichmäßig verteilte Punkte über jede Dimension des
Parameterbereichs, vgl. Abschnitt B.5 (Anhang) für eine Be-
schreibung im zweidimensionalen Fall. Für den höherdimensio-
nalen Fall siehe [64].

• Designs basierend auf Entfernungsmaßen, wie z.B.

– Abstand p-ter Ordnung: ρp(ζ1,ζ2) =
[

d∑
j=1

|ζ1 − ζ2|p
]1/p

∗ Dasmaximin Design XDζMm
: Maximiert unter allen Design-

Mengen XD ⊂ Dζ den kleinsten Abstand zwischen jeweils
zwei Design-Punkten aus einer Design-Menge, d.h.

XDζMm
:= arg max

XD⊂Dζ

min
ζ1,ζ2∈XD

ρp(ζ1,ζ2).

∗ Das minimax Design DζmM: Verwendet den Abstand zwi-
schen einem beliebigen vorgegebenen Design-Punkt ζ und
einer Design-Menge XD, welcher als

ρd(ζ,XD) := min
ζi∈XD

ρp(ζ,ζi)

definiert wird, und minimiert unter allen Design-Mengen
XD ⊂ Dζ den maximalen Abstand zwischen allen mögli-
chen Design-Punkten ζ ∈ Dζ und einer Design-Menge XD,
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d.h.
XDmM := arg min

XD⊂Dζ

max
ζ∈Dζ

ρd(ζ,XD).

– Durchschnittlicher (funktionaler) Abstand zwischen zwei belie-
bigen Punkten aus einer Design-Menge (bei normierten Ein-
gangsvariablen, beispielsweise Dζ = [0,1]d):

m(p,λ)(XD) :=

⎛
⎝ 1(

N
2
) ∑
ζi,ζj∈XD

[
d1/p

ρp(ζ1,ζ2)

]λ⎞⎠1/λ

, λ ≥ 1,

wobei 0 < ρp(ζ1,ζ2) ≤ d1/p, ∀ ζ1 �= ζ2 ∈ [0,1]d gilt.
∗ Design basierend auf optimalen durchschnittlichen (funk-
tionalen) Abständen XDav, z.B.

XDav := min
XD⊂Dζ

m(p,λ)(XD).

• Designs mit gleichverteilten Design-Punkten: Unter der Annahme
von normierten Eingangsvariablen, d.h. Dζ =

⊗d
i=1[ai,bi], minimie-

ren diese Designs die Abweichung zwischen der empirischen Ver-

teilung der Design-Punkte FN (ζ) := 1
N

N∑
i=1

I{Zi ≤ ζi} aus einer
Design-Menge ζ ∈ XD und der mehrdimensionalen Gleichverteilung

F (ζ) :=
d∏

i=1

(
ζi−ai
bi−ai

)
. Die Abweichung ist definiert als

Dp(XD) :=
[∫

· · ·
∫
Dζ

|FN (ζ) − F (ζ)|pdζ
]1/p

und das optimale Design XDu als

XDu := arg min
XD⊂Dζ

Dp(XD).

8.2.4 Prädiktionsgenauigkeit
Um die Genauigkeit der Prädiktion zu quantifizieren werden zwei Maße
eingeführt. Das erste Maß ist der empirische quadratische Mittelwert des
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Prädiktionsfehlers (ERMSPE Empirical Root Mean Squared Prediction
Error)

ERMSPE =

√√√√ 1
Tn

Tn∑
i=1

(
h(ζi)− Ĥ(ζi)

)2
(8.28)

wobei Tn die Anzahl der Test-Punkte ist. Das zweite Maß ist die erzielte
Deckung des wahren Funktionswertes durch das 1− α Konfidenzintervall
(wobei z.B. α = 0.05) des Prädiktors. Für das Konfidenzintervall gilt

P
(
H0 ∈ E{H0|H = η} ±

√
Var{H0|H = η}z1−α/2

)
= 1− α, (8.29)

wobei z1−α/2 das (1−α/2)-Quantil der A-posteriori-Dichte [H0|H] ist. Die
erzielte Deckung ist definitionsgemäß der Anteil der Test-Punkte AC ∈
[0,1] (AC = Achieved Coverage), deren wahren Funktionswerte innerhalb
des 1− α Konfidenzintervalls liegen.

8.2.5 Beispiel: Prädiktion einer Funktion mit einer
Variablen

Folgendes Beispiel illustriert den partiellen Bayes’schen Ansatz anhand der
folgenden Funktion aus [64, Beispiel 4.1]

η = h(ζ) = e−1.4ζ cos(7πζ/2), 0 ≤ ζ ≤ 1. (8.30)

Für die Interpolation werden N = 7 Design-Punkte XD := {ζ1, . . . ,ζN}
durch Latin-Hypercube-Sampling (vgl. Abschnitt B.5 (Anhang)) erzeugt,
welche die Trainingsdaten η := [η1 · · · ηN ] generieren. Das angenomme-
ne Modell des Ausgangs lautet

H(ζ) = β + Z(ζ), (8.31)

wobei der freie Koeffizient β ∈ R unbekannt und Z(ζ) ein mittelwert-
freies skalares Zufallsfeld mit einer noch unbekannten konstanten Varianz
σ2Z > 0 sind. Als A-priori-Verteilung [β,σ2Z ] wird die nicht-informative
Verteilung (4) aus Tabelle 8.2 verwendet. Der Ausgang H(ζ) des Modells
stellt - im Unterschied zum wahren und deterministischen Ausgangswert
η ∈ R aus Gl. (8.30) - ein skalares Gauß’sches Zufallsfeld dar, dessen
Realisierungen Funktionen von ζ sind. Ebenso wird der Vektor von Trai-
ningsdaten als ZufallsvektorH (mit einer multivariaten Normalverteilung)
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angenommen. Der Wert des skalaren Zufallsfeldes an einem Test-Punkt
ζ0 /∈ XD wird durch H0 := H(ζ0) bezeichnet.
Unter diesen Annahmen besitzt die Zufallsvariable H0|H eine A-poste-

riori nichtzentrale t-Verteilung (vgl. Theorem B.1 (Anhang)) mit ν4 = 6
Freiheitsgraden, sowie mit Nichtzentralitätsparameter μ4(ζ0,ψ) und Ska-
lierungsparameter σ24(ζ0,ψ). Die letzten Parameter können aus Theorem
B.1 (Anhang) entnommen werden. Es gilt folglich

H0|H− μ4(ζ0,ψ)
σ4(ζ0,ψ)

∼ T1(ν4,0,1), (8.32)

wobei ψ den noch unbekannten Parameter der KorrelationsfunktionR( · |ψ)
darstellt. Dafür wird die Gauß’sche Korrelationsfunktion gewählt, welche
zu der Potenz-Exponential-Familie aus Gl. (8.4), mit p = 2, gehört. Der
Parameter ψ wurde mit Hilfe der Maximum Likelihood Methode aus Ab-
schnitt 8.2.1 auf ψ̂ = 0.2965 geschätzt.
Bild 8.2 zeigt den Verlauf der wahren Funktion h(ζ), sowie den Prä-

diktor Ĥ0 = E{H0|H = η} = μ4(ζ0,ψ̂) und die punktweise entsprechen-
den 95% Prädiktionsintervallgrenzen Ĥ0±σ4(ζ0,ψ̂)tα/2

ν4 des Prädiktors für
200 äquidistante Test-Punkte ζ0 aus dem Intervall ζ ∈ [0,1]. Dabei stellt
t
α/2
ν4 = F−1

H0|H(1 − α/2|ν4 = 6) = 2.4469 den oberen α/2 kritischen Punkt
der Verteilung T1(ν4,0,1), mit α = 0.05, dar. Dies bedeutet, dass

P
{
H0 ∈ μ4(ζ0,ψ̂)± σ4(ζ0,ψ̂)tα/2

ν4

∣∣∣H} = 1− α. (8.33)

Die Untersuchung der Prädiktionsgenauigkeit, welche anhand der Maße
aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen quadrati-
schen Mittelwert des Prädiktionsfehlers von ERMSPE = 0.034 und einen
Anteil der erzielten Deckung von AC = 1.

8.3 Sensitivitätsanalyse
Wie in den vorherigen Abschnitten beschrieben, bildet der Ausgang ei-
nes Computerexperiments eine unbekannte deterministische Funktion η =
h(ζ) = h(ζ1, . . . ,ζd). Die Sensitivitätsanalyse beschäftigt sich mit der Un-
tersuchung des Einflusses eines oder mehrerer Eingänge ζi, i = 1, . . . ,d,
auf den Ausgang η. Haben beispielsweise bestimmte Eingänge einen nur
sehr kleinen Einfluß auf den Ausgang, so können sie bei der Prädiktion
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Bild 8.2: Verlauf der Funktion h(ζ) (-), Menge der Trainingsdaten η (•),
Prädiktor Ĥ0 = μ4(ζ0) (- -), sowie Prädiktionsintervallgrenzen μ4(ζ0,ψ̂)±
σ4(ζ0,ψ̂)tα/2

ν4 (-.) für 200 äquidistante Test-Punkte ζ0 aus dem Intervall
[0,1].

des Ausgangs vernachlässigt werden. Dies würde zu einer Vereinfachung
der Untersuchung führen. Darüber hinaus hilft die Sensitivitätsanalyse
Interaktionen zwischen den Eingängen ζi, i = 1, . . . ,d, zu identifizieren.
Existieren solche Interaktionen nicht, dann ist der Einfluß eines bestimm-
ten Eingangs unabhängig von den anderen Eingängen. Dies ist vor allem
im Rahmen des Designs (der Auswahl der Design-Punkte) von Bedeu-
tung. Die Änderung der Eingänge kann dabei infinitesimal klein (lokale
Sensitivitätsanalyse) oder groß (globale Sensitivitätsanalyse) sein.
Die Sensitivitätsanalyse kann auf den Ausgang η = h(ζ) des Versuchs

oder auf den Prädiktor Ĥ(ζ) angewandt werden. Der wesentliche Un-
terschied besteht darin, dass bei der Anwendung auf den Prädiktor, die
Schlußfolgerungen das vorgeschlagene Modell, und nicht das Computerex-
periment - wie im ersten Fall - betreffen. In Abschnitt 8.3.1 werden die
Sensitivitätsmaße und in Abschnitt 8.3.2 die Bayes’sche Inferenz vorge-
stellt.
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8.3.1 Sensitivitätsmaße
Die in dieser Arbeit untersuchten Sensitivitätsmaße, welche in [51] einge-
führt wurden, basieren entweder auf der Zerlegung des Ausgangs des Mo-
dells h(ζ) oder H(ζ) in Haupteffekte und Interaktionen - je nachdem ob
einzelne Eingänge oder mehrere Eingänge gleichzeitig betrachtet werden -
oder aber auf der Reduktion der Varianz des Ausgangs infolge Fixierung
eines oder mehrerer Eingänge.

Ausgangszerlegung in Haupteffekte und Interaktionen

Die Haupteffekte und Interaktionen werden durch eine Zerlegung des Aus-
gangs des Modells konstruiert. Die Komponenten der Zerlegung beinhalten
jeweils einen oder mehrere Eingänge aus Z := [Z1 · · · Zd].6) Die Kom-
ponenten, welche einen einzigen Eingang betrachten, heißen Haupteffekte,
die restlichen heißen Interaktionen. Alle Eingänge werden dabei als unab-
hängige Zufallsvariablen mit jeweils vorgegebener Verteilung betrachtet.
Die Zerlegung des Modells hat die Form

H(ζ) = E{H}+
d∑

i=1
Ci(ζi) +

∑
i<j

Ci,j(ζi,j) +
∑

i<j<k

Ci,j,k(ζi,j,k)+

. . .+ C1,2,...,d(ζ) (8.34)

mit ζi,j := [ζi ζj ] und ζi,j,k := [ζi ζj ζk]. Die einzelnen Komponenten
sind definitionsgemäß

Ci(ζi) := EZ
i
{H(ζ)|Zi} − E{H(ζ)}, (8.35)

Ci,j(ζi,j) := EZ(i,j){H(ζ)|Zi,j} − Ci(ζi)− Cj(ζj)− E{H(ζ)}, (8.36)

Ci,j,k(ζi,j,k) := EZ(i,j,k){H(ζ)|Zi,j,k} − Ci,j(ζi,j)− Ci,k(ζi,k)− Cj,k(ζj,k)

− Ci(ζi)− Cj(ζj)− Ck(ζk)− E{H(ζ)}, (8.37)
...

wobei der letzte Term C1,2,...,d(ζ) als Differenz zwischen der Summe aller
anderen Komponenten und dem Ausgang des Modells H(ζ) definiert wird.

6)Wir unterscheiden dabei durch diese Notation den Zufallsvektor Z von seiner Rea-
lisierung ζ.
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Zusammengefasst kann ein solcher Effekt beschrieben werden als

Cp(ζp) := EZp
{H |Zp} −

νp∑
k=1

∑
πk⊆p

Cπk(ζπk)− E{H(ζ)}, (8.38)

wobei p eine Menge von νp Indizes, πk ⊆ p eine Untermenge von k In-
dizes aus der Menge p und p die Menge der d − νp Indizes darstellt,
welche sich nicht in der Menge p befinden. Die Zerlegung aus Gl. (8.34)
wird in der Literatur als höherdimensionale Modellbeschreibung (HDMR
High Dimensional Model Representation) bezeichnet. Dabei sind Ci(ζi)
die Haupteffekte und Cp(ζp) die Interaktionen p-ter Ordnung.

Ausgangsvarianzreduktion

Ein Sensitivitätsmaß kann die Reduktion der Varianz Var{H(ζ)} des Zu-
fallsfeldes H(ζ) in Abhängigkeit von einem oder mehreren Eingängen
quantifizieren. Im Fall eines einzigen Eingangs hat dieses die Form7)

Vi := VarZi{EZ
i
{H(ζ)|Zi}}. (8.39)

Dessen Wahl kann man wie folgt erklären. Sei VarZ
i
{H(ζ)|Zi = ζ∗i } die

resultierende Varianz von H(ζ) infolge der Unsicherheit über alle Eingän-
ge Z außer Zi. Diese wird bedingte Varianz genannt. Eine intuitive Folge
der Fixierung eines Eingangs Zi = ζ∗i ist, dass die resultierende Vari-
anz VarZ

i
{H(ζ)|Zi = ζ∗i } kleiner als die unbedingte Varianz Var{H(ζ)}

ist. Je kleiner dieser Wert ist, desto wichtiger ist der Faktor Zi. Dieser
Wert ist jedoch abhängig von dem festgelegten Wert von ζ∗i . Daher wird
noch der Mittelwert über alle möglichen Werte von ζ∗i angewendet, d.h.
EZi{VarZi

{H(ζ)|Zi = ζi}}, welches immer kleiner oder gleich der unbe-
dingten Varianz Var{H(ζ)} ist. Aus dem Satz von der totalen Varianz,
folgt darüber hinaus

EZi{VarZi
{H(ζ)|Zi}}+VarZi{EZ

i
{H(ζ)|Zi}} = Var{H(ζ)}. (8.40)

Aus Gl. (8.40) ist ersichtlich, dass der Wert VarZi{EZ
i
{H(ζ)|Zi}} das Aus-

maß der Varianzreduktion des Ausgangs durch die Fixierung des Eingangs
Zi quantifiziert. Durch eine Normierung mit Var{H(ζ)} erzielt man das
Sensitivitätsmaß

Si :=
VarZi{EZ

i
{H(ζ)|Zi}}

Var{H(ζ)} , (8.41)

7)Vgl. [63, Kapitel 1].
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welches varianzbasierter Haupteffektindex des Eingangs Zi genannt wird.
Zusammengefasst können die varianzbasierten Haupteffekt- und Interak-
tionenindizes beschrieben werden als

Sp :=
VarZp{EZp

{H(ζ)|Zp}}
Var{H(ζ)} . (8.42)

8.3.2 Bayes’sche Inferenz
Da der Ausgang des Computerexperiments eine unbekannte Funktion dar-
stellt, können diese Sensitivitätsmaße nicht exakt berechnet werden. Sie
werden daher, wie der Ausgang selbst, als Zufallsfelder (im Fall der Haupt-
effekte und Interaktionen) bzw. Zufallsvariablen (im Fall der Haupteffekt-
und Interaktionenindizes) angenommen. Mittels Bayes’scher Inferenz wer-
den dann für diese Sensitivitätsmaße A-posteriori-Erwartungswerte be-
rechnet.

Haupteffekte und Interaktionen

Die Haupteffekte und Interaktionen aus Gl. (8.35)-(8.37) hängen von dem
Erwartungswert bzw. den Erwartungswertfunktionen der jeweiligen be-
dingten Zufallsfelder ab. Diese sind gegeben durch

E{H(ζ)} =
∫
Dζ1

· · ·
∫
Dζd

H(ζ) · f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd, (8.43)

EZ
i
{H(ζ)|Zi} =

∫
Dζ1

· · ·
∫
Dζi−1

∫
Dζi+1

· · ·
∫
Dζd

H(ζ)

· f1(ζ1) · . . . · fi−1(ζi−1)
· fi+1(ζi+1) · . . . · fd(ζd)dζ1 · · ·dζi−1dζi+1 · · ·dζd,

(8.44)
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wobei Dζ i, i = 1, . . . ,d, den Definitionsbereich der Zufallsvariable Zi dar-
stellt, sowie - der Einfachheit halber in Vektorschreibweise dargestellt -

EZ(i,j){H(ζ)|Zi,j} =
∫
· · ·
∫

d⊗
l=1
l �=i,j

Dζ l

H(ζ) ·
d∏
l=1
l �=i,j

fl(ζl) dζ(i,j), (8.45)

EZ(i,j,k){H(ζ)|Zi,j,k} =
∫
· · ·
∫

d⊗
l=1

l �=i,j,k

Dζl

H(ζ) ·
d∏
l=1

l �=i,j,k

fl(ζl) dζ(i,j,k), (8.46)

...

Zusammengefasst können die Komponenten aus Gl. (8.43)-(8.46) für einen
beliebigen Vektor ζp, mit einer Menge p von νp Indizes, geschrieben werden
als

EZp
{H(ζ)|Zp} =

∫
· · ·
∫
Dζp

H(ζ)dGp(ζp), (8.47)

mit

dGp(ζp) :=
d∏
l=1

l �=p(i)
i=1,...,νp

fl(ζl) dζp

und

Dζp :=
d⊗
l=1

l �=p(i)
i=1,...,νp

Dζ l.

Der Term EZp
{H(ζ)|Zp} aus Gl. (8.47) ist ein lineares Funktional des ska-

laren Zufallsfeldes H(ζ). Somit wird das Zufallsfeld (oder die Zufallsvaria-
ble im Fall von p = ∅) EZp

{H(ζ)|Zp} für jeden Punkt ζp eine nichtzentrale
t-Verteilung wie in Gl. (8.18), Seite 129, haben, jedoch mit anderen Para-
metern. Der A-posteriori-Erwartungswert ist

E∗{EZp
{H(ζ)|Zp}} =

∫
· · ·
∫
Dζp

E∗{H(ζ)}dGp(ζp), (8.48)

wobei das Symbol ∗ die Berechnung des Erwartungswertes relativ zur A-
posteriori-Wahrscheinlichkeitsdichte von EZp

{H(ζ)|Zp} bezeichnet. Aus
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Gl. (8.17), Seite 128, folgt darüber hinaus, dass

E∗{H(ζ)} := E{H(ζ)|H} = f(ζ)�β̂ + r̂(ζ)�R̂−1(η − Fβ̂). (8.49)

Durch Einsetzen der Gl. (8.49) in Gl. (8.48) folgt

E∗{EZp
{H(ζ)|Zp}} = s�p(ζp)β̂ + t�p(ζp)R̂−1(η − Fβ̂), (8.50)

mit

s�p(ζp) :=
∫
· · ·
∫
Dζp

f(ζ)�dGp(ζp), (8.51)

t�p(ζp) :=
∫
· · ·
∫
Dζp

r̂(ζ)�dGp(ζp). (8.52)

Die Integrale aus Gl. (8.51) und (8.52) können nur in wenigen Fällen ana-
lytisch berechnet werden. Eine numerische Lösung ist jedoch unproblema-
tisch. Auf die gleiche Weise kann auch der A-posteriori-Erwartungswert
E∗{E{H(ζ)}} für den Erwartungswert aus Gl. (8.43) berechnet werden.
Es folgt

E∗{E{H(ζ)}} = s�β̂ + t�R̂−1(η − Fβ̂), (8.53)
mit s� := s�p(ζp) und t� := t�p(ζp) für p = ∅. Somit können die A-posteriori-
Erwartungswerte der Haupteffekte und Interaktionen aus Gl. (8.38) unter
Verwendung der Gl. (8.50) und Gl. (8.53) berechnet werden.
Für die Inferenz über die bedingte Ausgangsvarianzreduktion wird noch

die A-posteriori-Kovarianzfunktion des skalaren Zufallsfeldes EZp
{H(ζ)|Zp}

benötigt. Diese ist

Cov∗{EZp
{H(ζ)|Zp},EZ′

q
{H(ζ)|Z′

q}}

=
∫
· · ·
∫
Dζp

∫
· · ·
∫
Dζ
′
q

Cov∗{H(ζ)}dGp(ζp)dGq(ζ′q)

=
∫
· · ·
∫
Dζp

∫
· · ·
∫
Dζ
′
q

σ̂2Zr
∗(ζ,ζ′)dGp(ζp)dGq(ζ′q), (8.54)

wobei ζ := (ζp,ζp), ζ′ := (ζq,ζq), der Wert σ̂2Z eine Schätzung derA-priori-
Varianz und die Funktion r∗(ζ,ζ′) die A-posteriori-Korrelationsfunktion
des skalaren Zufallsfeldes Z sind. Im Fall der A-priori-Verteilungen aus
dem vorherigen Abschnitt werden diese Größen in Gl. (B.18) und (B.19)
des Satzes B.1 (Anhang) angegeben.
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Bedingte Ausgangsvarianzreduktion

Schließlich wird der A-posteriori-Erwartungswert der Sensitivitätsmaße Sp

aus Gl. (8.42) berechnet. Dieser wird durch

E∗{Sp} ≈
E∗{VarZp{EZp

{H(ζ)|Zp}}}
E∗{Var{H(ζ)}} (8.55)

angenähert, vgl. [51], da der exakte Erwartungswert nicht analytisch be-
rechnet werden kann. Dabei gilt

VarZp{EZp
{H(ζ)|Zp}} = EZp{EZp

{H(ζ)|Zp}2} − EZp{EZp
{H(ζ)|Zp}}2

= EZp{EZp
{H(ζ)|Zp}2} − E{H(ζ)}2. (8.56)

Der A-posteriori-Erwartungswert des zweiten Terms auf der rechten Seite
von Gl. (8.56) ist8)

E∗{E{H(ζ)}2} := E{E{H(ζ)}2|H}
= Var{E{H(ζ)}|H}+ E{E{H(ζ)}|H}2

= Var∗{E{H(ζ)}}+ (E∗{E{H(ζ)}})2, (8.57)

wobei der erste Term aus Gl. (8.54), mit Zp = Z′
q und q = p = ∅, und der

zweite Term aus Gl. (8.53) entnommen werden können.
Der A-posteriori-Erwartungswert des ersten Terms auf der rechten Seite

von Gl. (8.56), EZp{EZp
{H(ζ)|Zp}2}, lautet

E∗
{
EZp

{
EZp

{H(ζ)|Zp}2
}}

= E∗
{
EZp

{
EZp

{H(ζ)|Zp} · EZp
{H(ζ)|Zp}

}}
.

Unter Verwendung der Gl. (8.47), Seite 141, ist dieser weiterhin äquivalent
zu

E∗
{
EZp{EZp

{H(ζ)|Zp}2}
}
=

= E∗
{
EZp

{∫
· · ·
∫
Dζp

H(ζ)dGp(ζp) ·
∫
· · ·
∫
Dζ
′
p

H(ζ�)dG′
p(ζ′p)

}}

= E∗
{
EZp {I(ζp)}

}
, (8.58)

8)Dies folgt aus dem Verschiebungssatz, d.h. Var{X|Y } = E{X2|Y } − E{X|Y }2.
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mit

I(ζp) :=
∫
· · ·
∫
Dζp

H(ζ)dGp(ζp) ·
∫
· · ·
∫
Dζ
′
p

H(ζ�)dG′
p(ζ′p), (8.59)

sowie ζ := (ζp, ζp), ζ� := (ζp, ζ
′
p) und

dGp(ζp) :=
d∏
l=1

l �=p(i)
i=1,...,νp

fl(ζl) dζp,

dG′
p(ζ′p) :=

d∏
l=1

l �=p(i)
i=1,...,νp

fl(ζl) dζ′p.

Weiterhin folgt aus Gl. (8.58), dass

E∗
{
EZp{I(ζp)}

}
= E∗

{∫
· · ·
∫
Dζp

I(ζp)dGp(ζp)
}
, (8.60)

mit

dGp(ζp) :=
νp∏
l=1

fp(l)(ζp(l)) dζp. (8.61)

Somit ergibt sich

E∗
{
EZp{EZp

{H(ζ)|Zp}2}
}
=

=
∫
· · ·
∫
Dζp

∫
· · ·
∫
Dζp

∫
· · ·
∫
Dζ
′
p

E∗{H(ζ)H(ζ�)}dGp(ζp)dG′
p(ζ′p)dGp(ζp),

wobei

E∗{H(ζ)H(ζ�)} = E∗{H(ζ)}E∗{H(ζ�)}+ Cov∗{H(ζ),H(ζ�)}

mit

E∗{H(ζ)} = μi(ζ),
E∗{H(ζ�)} = μi(ζ�),

Cov∗{H(ζ),H(ζ�)} = σ̂2Z · r∗(ζ,ζ�),
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sowie μi( · ), σ̂2Z und r∗(ζ,ζ�) aus Theorem B.1 entnommen werden können.
Schließlich wird der A-posteriori-Erwartungswert der Varianz des Zu-

fallsfeldes H(ζ), E∗ {Var{H(ζ)}} = E {Var{H(ζ)}|H} aus Gl. (8.55) be-
rechnet. Dies wird jedoch nur für den Fall von nicht-informativen A-priori-
Verteilungen von β|σ2Z und σ2Z gezeigt. Es gilt

E∗ {Var{H(ζ)}} = E∗{E{H(ζ)2}} − E∗
{
E{H(ζ)}2

}
, (8.62)

wobei der zweite Term in Gl. (8.57) berechnet wird, und für den ersten
Term gilt

K2 := E∗{E{H(ζ)2}}

=
∫
· · ·
∫
Dζ

E∗
{
E{H(ζ)2}

}
· f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd

=
∫
· · ·
∫
Dζ

E
{
E{H(ζ)2}|H

}
· f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd. (8.63)

Der Integrand aus Gl. (8.63) muss jedoch noch bestimmt werden. Dieser
ist der A-posteriori-Erwartungswert von H(ζ)2. Da in dieser Arbeit für
jedes ζ0 ∈ Dζ der Wert des skalaren Zufallsfeldes H(ζ0)|H =: H0|H ei-
ne Zufallsvariable mit einer a-posteriori nicht-zentralen t-Verteilung ist,
besitzt die Zufallsvariable H2

0 |H eine nicht-zentrale F -Verteilung. Da dies
die Angabe einer geschlossenen Form des A-posteriori-Erwartungswertes
der Varianz des Zufallsfeldes E∗{E{H(ζ)2}} praktisch unmöglich macht,
wird eine Schätzung des Integranden durch

K̂2 := Eσ2Z |H
{
E
{
E{H(ζ)2}|H,σ2Z

}}
(8.64)

verwendet. Diese Vorgehensweise wurde in [34] vorgestellt und basiert auf
der Tatsache, dass

E
{
E{H(ζ)2}|H,σ2Z

}
= E

{∫
· · ·
∫
Dζ

H(ζ)2 · f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd|H,σ2Z

}

=
∫
· · ·
∫
Dζ

E
{
H(ζ)2|H,σ2Z

}
· f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd,

gilt, wobei für jedes ζ0 ∈ Dζ der Erwartungswert E
{
H(ζ0)2|H,σ2Z

}
in

analytischer Form angebbar ist. Dies liegt daran, dass die Zufallsvariable
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H(ζ0)|H,σ2Z normalverteilt ist, mit

H(ζ0)|H,σ2Z ∼ N (μ4(ζ0),σ24(ζ0))

und, dass

E
{
H(ζ0)2|H,σ2Z

}
= μ4(ζ0)2 + σ24(ζ0)
= μ4(ζ0)2 + σ2Zr

∗(ζ0,ζ0)

gilt. Dabei können die Parameter μ4(ζ0) und r∗(ζ0,ζ0) aus Theorem B.1
entnommen werden. Eine Schätzung des gesuchten A-posteriori-Erwar-
tungswertes E

{
E{H(ζ)2}|H

}
bildet dessen Erwartungswert bezüglich der

A-posteriori-Wahrscheinlichkeitsdichte von σ2Z , d.h. von σ2Z |H. Es folgt

K̂2 := Eσ2Z |H
{
E
{
E{H(ζ)2}|H,σ2Z

}}
= Eσ2Z |H

{∫
· · ·
∫
Dζ

E
{
H(ζ)2|H,σ2Z

}
· f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd

}

= Eσ2Z |H

{∫
· · ·
∫
Dζ

(
μ4(ζ)2 + σ2Zr

∗(ζ,ζ)
)
· f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd

}

=
∫
· · ·
∫
Dζ

μ4(ζ)2 · f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd+

+ Eσ2Z |H

{∫
· · ·
∫
Dζ

σ2Zr
∗(ζ,ζ) · f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd

}

=
∫
· · ·
∫
Dζ

μ4(ζ)2 · f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd

+
∫
· · ·
∫
Dζ

Eσ2Z |H
{
σ2Z
}
r∗(ζ,ζ) · f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd.

(8.65)

Wie in [52] gezeigt, hat die Zufallsvariable σ2Z |H eine inverse Chi-quadrat
Verteilung, d.h.

σ2Z |H ∼ Q2
4 ·χ−2

N−q,

mit q := Rang(F) und Erwartungswert

σ̊2Z := E{σ2Z |H} = Q2
4/(N − q − 2), (8.66)
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wobei der Skalar Q2
4 aus Theorem B.1 zu entnehmen ist. Für den Schätzer

aus Gl. (8.65) ergibt sich schließlich

K̂2 =
∫
· · ·
∫
Dζ

μ4(ζ)2 · f1(ζ1) · . . . · fd(ζd)dζ1 · · ·dζd

+
∫
· · ·
∫
Dζ

σ̊2Zr
∗(ζ,ζ) · f1(ζ1) · . . . · fd(ζd)dζ1 · · · dζd.

Somit kann der A-posteriori-Erwartungswert der Varianz des skalaren Zu-
fallsfeldes aus Gl. (8.62) vollständig berechnet werden.

8.3.3 Beispiel: Sensitivitätsanalyse und Prädiktion
einer Funktion mit zwei Variablen

Folgendes Beispiel illustriert den partiellen Bayes’schen Ansatz und die
Sensitivitätsanalyse anhand der folgenden Funktion mit zwei Variablen
aus [64, Beispiel 4.2]

η = h(ζ) = 2ζ31ζ22 , ζ := [ζ1 ζ2]�∈ [−1,1]× [−1,1]. (8.67)

Der Ausgang wird als skalares Gauß’sches Zufallsfeld

H(ζ) = β + Z(ζ) (8.68)

modelliert, wobei der freie Koeffizient β ∈ R unbekannt und Z(ζ) ein mit-
telwertfreies skalares Zufallsfeld mit einer noch unbekannten konstanten
Varianz σ2Z > 0 ist. Für die Interpolation werden N = 20 Design-Punkte
XD := {ζ1, . . . ,ζ7} durch Latin-Hypercube-Sampling (vgl. Abschnitt B.5
(Anhang)) erzeugt, welche die Trainingsdaten η := [η1 · · · η20] generie-
ren.
Da das Produkt von Korrelationsfunktionen wiederum eine Korrelations-

funktion generiert, wird bei diesem Beispiel die Korrelationsfunktion

R(d|ψ) = R(d1|ψ1) ·R(d2|ψ2) (8.69)

verwendet, wobei R(d1|ψ1) und R(d2|ψ2) Gauß’sche Korrelationsfunktio-
nen mit unbekannten Parametern ψ1 und ψ2 darstellen.
Als A-priori-Verteilung [β,σ2Z ] wird die nicht-informative Verteilung (4)

aus Tabelle 8.2 verwendet. Der Wert des skalaren Zufallsfeldes an einem
Test-Punkt ζ0 /∈ XD wird durch die Zufallsvariable H0 := H(ζ0) model-
liert. Unter diesen Annahmen besitzt die bedingte Zufallsvariable H0|H
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eine t-Verteilung mit ν4 = 5 Freiheitsgraden, dessen Nichtzentralitätspa-
rameter μ4(ζ0,ψ) und Skalierungsparameter σ24(ζ0,ψ) aus Theorem B.1
(Anhang) entnommen werden können. Es gilt folglich

H0|H− μ4(ζ0,ψ)
σ4(ζ0,ψ)

∼ T1(ν4,0,1), (8.70)

wobei ψ := [ψ1,ψ2] den noch unbekannten Parametervektor der Kor-
relationsfunktion R(h|ψ) darstellt. Der Parametervektor ψ wird mit
Hilfe der Maximum Likelihood Methode aus Abschnitt 8.2.1 auf ψ̂ =
[0.6645, 2.3251] geschätzt.
Bild 8.3 (links) zeigt die wahre Funktion aus Gl. (8.67) und (rechts)

die Prädiktion Ĥ0 = E{H0|H} für 625 äquidistante Test-Punkte, sowie,
auf beiden Seiten die Menge der Design-Punkte XD ⊂ [0,1] × [0,1]. An
den Design-Punkten stimmen, wie erwartet, die Prädiktion und die wahre
Funktion überein. Dies kann man auch anhand der in den beiden Bildern
dargestellten Niveaulinien sehen, welche die gleichen Niveaus darstellen.
Die Untersuchung der Prädiktionsgenauigkeit, welche anhand der Maße
aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen quadrati-
schen Mittelwert des Prädiktionsfehlers von ERMSPE = 0.1828 und einen
Anteil der erzielten Deckung von AC = 0.3776.
Für die Sensitivitätsanalyse wird angenommen, dass die Eingangsvaria-

blen ζ1 und ζ2 zwei Umgebungsvariablen darstellen und durch zwei unab-
hängige standard-normalverteilte Zufallsvariablen - bezeichnet durch Z1,
Z2 - repräsentiert sind, d.h. Z1, Z2 ∼ N1(0,1). Es gilt

E{H(ζ)} =
∫
Dζ1

∫
Dζ2

H(ζ)f1(ζ1)f2(ζ2)dζ1dζ2, (8.71)

EZ1
{H(ζ)|Z1} =

∫
Dζ2

H(ζ)f2(ζ2)dζ2, (8.72)

EZ2
{H(ζ)|Z2} =

∫
Dζ1

H(ζ)f1(ζ1)dζ1 (8.73)

und die Haupteffekte sind

C1(ζ1) = EZ1
{H(ζ)|Z1} − E{H(ζ)},

C2(ζ2) = EZ2
{H(ζ)|Z2} − E{H(ζ)}.

Da bei diesem Beispiel die wahre Funktion - aus Gl. (8.67) - bekannt
ist, können auch der Erwartungswert E{h(ζ)}, sowie die entsprechenden
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Bild 8.3: Wahre Funktion η = h(ζ) und Menge der Design-Punkte η für
das Beispiel einer Funktion mit zwei Variablen (links), sowie Prädiktion
Ĥ und die gleiche Menge der Design-Punkte η (rechts).

Haupteffekte c1(ζ1) und c2(ζ2) basierend auf der wahren Funktion h(ζ)
berechnet werden. Insbesondere ergibt sich für E{h(ζ)}

E{h(ζ)} = 1
π

∫ 1

−1
ζ31 exp

(
−12ζ

2
1

)
dζ1
∫ 1

−1
ζ22 exp

(
−12ζ

2
2

)
dζ2.

Für das zweite Integral aus der obigen Gleichung gilt∫ 1

−1
ζ22 exp

(
−12ζ

2
2

)
dζ2 =

√
2π(2Φ(1)− 1) ≈ 1.71,

wobei Φ( · ) die Verteilungsfunktion der Standardnormalverteilung ist. Für
das erste Integral gilt∫ 1

−1
ζ31 exp

(
−12ζ

2
1

)
dζ1 = −(ζ21 + 1) · exp

(
−12ζ

2
1

)∣∣∣∣1
−1
= 0.
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Somit gilt E{h(ζ)} = 0. Ebenso ergibt sich c2(ζ2) = 0. Schließlich ergibt
sich für c1(ζ1)

c1(ζ1) = 2ζ31
∫ 1

−1
ζ22f2(ζ2)dζ2 =

√
2
π
ζ31

∫ 1

−1
ζ22 exp

(
−12ζ

2
2

)
dζ2

= 2(2Φ(1)− 1)ζ31 ≈ 1.37 · ζ31 .

Die Bayes’sche Inferenz für die Haupteffekte ergibt

E∗{E{H(ζ)}} =
∫ 1

−1

∫ 1

−1
E{H(ζ)|H}f1(ζ1)f2(ζ2)dζ1dζ2

=
∫ 1

−1

∫ 1

−1

(
β̂ + r̂(ζ)�R̂−1(η − 1N β̂)

)
f1(ζ1)f2(ζ2)dζ1dζ2

= sβ̂ + t�R̂−1(η − 1N β̂), (8.74)

wobei 1N ∈ R
n ein Vektor von Einsen ist, und

s =
∫ 1

−1

∫ 1

−1
f1(ζ1)f2(ζ2)dζ1dζ2 = (2Φ(1)− 1)2,

t�=
∫ 1

−1

∫ 1

−1
r̂�(ζ)f1(ζ1)f2(ζ2)dζ1dζ2,

sowie

E∗{EZ
i
{H(ζ)|Zi}} = giβ̂ + t�i(ζi)R̂−1(η − 1N β̂), i = {1,2},

mit

gi =
∫ 1

−1
fi(ζi)dζi = 2Φ(1)− 1,

t�i(ζi) =
∫ 1

−1
r̂�(ζ)fi(ζi)dζi.

Der Index i bezeichnet den zum Index i komplementären Index, d.h. falls
i = 1, ist i = 2. Die konstanten Faktoren s und si sind nur von den
Verteilungen der Zufallsvariablen Z1 und Z2 abhängig.
Die Haupteffektindizes sind

VarZi{EZ
i
{H(ζ)|Zi}} = EZi{EZ

i
{H(ζ)|Zi}2} − EZi{EZ

i
{H(ζ)|Zi}}2

= EZi{EZ
i
{H(ζ)|Zi}2} − E{H(ζ)}2, i ∈ {1,2},
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wobei der Term E{H(ζ)} in Gl. (8.71) berechnet wird. Der erste Term ist

EZi{EZ
i
{H(ζ)|Zi}2}

=
∫ 1

−1

[∫ 1

−1

∫ 1

−1
H(ζ)H(ζ�)fi(ζi)fi(ζ

′
i
)dζidζ

′
i

]
fi(ζi)dζi, (8.75)

wobei ζ := (ζi,ζi), ζ� := (ζi,ζ′i). Die Bayes’sche Inferenz für die Hauptef-
fektindizes ergibt

E∗{VarZi{EZ
i
{H(ζ)|Zi}}} = E∗{EZi{EZ

i
{H(ζ)|Zi}2}} − E∗{E{H(ζ)}2},

für alle i ∈ {1,2}. Für den zweiten Term E∗{E{H(ζ)}2} gilt

E∗{E{H(ζ)}2} = E{E{H(ζ)}2|H} = Var{E{H(ζ)}|H}+ E{E{H(ζ)}|H}2,

wobei

Var{E{H(ζ)}|H}=Var∗{E{H(ζ)}}=
(∫ 1

−1

∫ 1

−1
σ2i (ζ)f1(ζ1)f2(ζ2)dζ1dζ2

)2

und - aus Gl. (8.74) -

E{E{H(ζ)}|H}2 = E∗{E{H(ζ)}}2 =
[
sβ̂ + t�R̂−1(η − IN β̂)

]2
.

Für den ersten Term gilt aus Gl. (8.75)

E∗
{
EZi

{
EZ

i
{H(ζ)|Zi}2

}}
=E∗

{∫ 1

−1

[∫ 1

−1

∫ 1

−1
H(ζ)H(ζ�)fi(ζi)fi(ζ

′
i
)dζidζ

′
i

]
fi(ζi)dζi

}
,

=
∫ 1

−1

[∫ 1

−1

∫ 1

−1
E∗{H(ζ)H(ζ�)}fi(ζi)fi(ζ

′
i
)dζidζ

′
i

]
fi(ζi)dζi

=
∫ 1

−1

[∫ 1

−1

∫ 1

−1

(
μi(ζ)μi(ζ�) + σ̂2Zr

∗(ζ,ζ�)
)
fi(ζi)fi(ζ

′
i
)dζidζ

′
i

]
· fi(ζi)dζi, (8.76)

wobei ζ := (ζi,ζi), ζ� := (ζi,ζ′i) und μi( · ), sowie σ2Z und r∗(ζ,ζ�) aus
Theorem B.1 entnommen werden.
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Bild 8.4: Wahre Haupteffekte und die jeweiligen Bayes’schen Inferenzen.

Bild 8.4 zeigt die wahren Werte der Sensitivitätsmaße c1(ζ1) und c2(ζ2),
die sich ergeben wenn h(ζ) statt H(ζ) in Gl. (8.71)-(8.73) eingesetzt wird,
sowie die entsprechende Bayes’sche Inferenz E∗{C1(ζ1)} und E∗{C2(ζ2)}.
Tabelle 8.3 zeigt die wahren Haupteffektindizes Si und die geschätzten
Haupteffektindizes Ŝi. Es ist ersichtlich, dass der Beitrag der Zufallsva-
riable Z1 - unabhängig von Z2 - etwa 35% der Gesamtvarianz Var{H(ζ)}
erklärt, wohingegen die Zufallsvariable Z2 keinen Einfluss unabhängig von
Z1 auf die Varianz hat. Die inferierten Werte überschätzen dabei die wah-
ren Haupteffektindizes. Diese Differenz ist abhängig von der Wahl der
Design-Punkte XD.

Tabelle 8.3: Die wahren und die geschätzten Haupteffektindizes.

100Si 100Ŝi

Z1 35.1735 39.3996
Z2 0 1.1861
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8.4 Anwendungsbeispiel: Sensitivitätsanalyse
und Performanceprädiktion in einem
Streckenensemble

Der Einsatz Bayes’scher Methoden wird im Folgenden anhand eines Com-
puterexperiments dargestellt, welches die Performance einer Regelmetho-
de für ein Streckenensemble analysiert. In Abschnitt 8.4.1 wird die Per-
formance einer Regelmethode innerhalb eines Streckenensembles an meh-
reren Strecken (Design-Punkten) berechnet und im Übrigen interpoliert.
Das Beispiel zeigt, wie man die Performance eines nicht-simulierten Regel-
kreises analysieren kann. In Abschnitt 8.4.2 wird eine Sensitivitätsanalyse
für die gebietsabhängige Konvergenzrate innerhalb eines Streckenensem-
bles durchgeführt. Das Beispiel zeigt welchen Einfluß der Reglerparameter
v ∈ [ε,1] und der Ensembleparameter θ ∈ [−1,1] auf die prädizierte Kon-
vergenzrate sowie auf deren Varianz haben. Schließlich wird in Abschnitt
8.4.3 ein empirischer Vergleich zwischen mehreren Prädiktoren anhand von
93 Computerexperimenten gezeigt, welche jeweils die Prädiktion für eine
nicht-simulierte Strecke als Ziel haben. Dabei wird mit Hilfe von Boxplots
gezeigt, wie die Prädiktionsgenauigkeit durch verschiedene prädiktive Ver-
teilungen, sowie Korrelationsfunktionen und empirische Schätzmethoden
der Korrelationsparameter variiert.

8.4.1 Prädiktion für eine nicht-simulierte Regelstrecke
Eine Prädiktion der Performance für eine nicht-simulierte Regelstrecke aus
einem Regelstreckenensemble kann mit folgenden Schritten durchgeführt
werden:
Schritt 1: Wahl eines Streckenensembles Wähle für eine bestimmte Ord-

nung n ≥ 1 die Matrizen Ai ∈ Rn×n, i = 0, . . . ,a und die Vektoren
bi ∈ Rn, i = 0, . . . ,b, welche ein Streckenensemble der Form

ẋ =
a∑

i=0
ζiAix+

b∑
i=0

ζibi ·u, x ∈ R
n, ζ ∈ [−1,1] (8.77)

definieren.

Schritt 2: Überprüfung der Stabilisierbarkeit des gesamten Ensembles
Überprüfe wie im Abschnitt 6 dargestellt, ob für jede mögliche Stre-
cke aus diesem Streckenensemble ein stabilisierendes Regelgesetz
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existiert. Falls dies nicht der Fall ist, ändere das Intervall θ ∈ [−1,1]
oder gehe zu Schritt 1 und wähle ein anderes Streckenensemble.

Schritt 3: Generierung von Trainingsdaten Wähle eine Menge von N
Design-Punkten XD := {ζ1, . . . ,ζN} ⊂ C = [−1,1] und entwerfe
für jeden Design-Punkt ζk, mit k = 1, . . . ,N , den jeweiligen zeitopti-
malen und den konvergenzoptimalen Regler. Berechne anschließend
für den geschlossenen Regelkreis die Performance-Maße Jta(ζk) (rela-
tive Einschwingzeit) und Jn

H(ζk) (Fehlklassifikationsanteil durch die
konvergenzoptimale Schaltfunktion) aus Gl. (7.14) bzw. Gl. (7.13).
Diese bilden die Trainingsdaten für die jeweiligen Prädiktionen, d.h.
η := {J∗(ζ1), . . . ,J∗(ζN )}, wobei das Symbol ∗ stellvertretend für ta
oder H verwendet wird.

Schritt 4: Bildung der prädiktiven A-posteriori-Verteilung
Bilde eine oder mehrere prädiktive Verteilungen mit Hilfe des Theo-
rems B.1 (Anhang) unter Verwendung der im Schritt 3 ausgewählten
Design-Punkte XD.

Schritt 5: Berechnung der Prädiktionsgenauigkeit Berechne fürM äqui-
distante Testpunkte aus dem Intervall ζ ∈ [−1,1] die wahren Per-
formance-Maße J und JΣ, sowie die Prädiktionen Ĵ und ĴΣ. Darauf
basierend, berechne die Prädiktionsgenauigkeit, d.h. den empirischen
quadratischen Mittelwert des Prädiktionsfehlers (ERMSPE) und die
erzielte Deckung des wahren Wertes durch das 1 − α Konfidenzin-
tervall des Prädiktors (AC), vgl. Abschnitt 8.2.4.

Bemerkung 8.8 (Zu Schritt 1). In diesem Beispiel werden die analysier-
ten Streckenensembles zufällig generiert. Die Elemente der Matrizen Ai,
mit i = 1, . . . ,a und der Vektoren bi, mit i = 1, . . . ,b, sind dabei stan-
dard normalverteilte Zufallszahlen. Die Koeffizienten der hier analysierten
Streckenensembles sind im Anhang C.2 zu finden. �
Die Berechnung der Performance-Indizes Jta(ζ) und Jn

H(ζ) erfolgt nume-
risch. Die relative Einschwingzeit wird in Gl. (7.14) definiert, wobei die
jeweiligen Einschwingzeiten nach einer Simulation in der Toolumgebung
Matlab/Simulink gemessen werden. Dabei werden jeweils 10 Anfangsaus-
lenkungen simuliert, welche äquidistant auf dem oberen Rand9) des maxi-
malen Einzugsgebiets (in diesem Fall eine Ellipse) verteilt sind. Die Simula-
tion wurde jeweils mit einer konstanten Schrittweite von 0.001 ausgeführt.
9)Der obere Rand ist durch den Rand oberhalb einer der Halbachsen definiert.
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Aufgrund der Reglerstruktur entsteht bei den beiden Reglern ein Rattern
um die Ruhelage, welches sich auf die Bemessung der Einschwingzeit aus-
wirkt. Darüber hinaus stellt die Einschwingzeit den Zeitpunkt dar, wann
die jeweilige Zustandsnorm 5% der Norm der Anfangsauslenkung (zum
letzten Mal) erreicht. So ist es möglich, dass - auch aufgrund numeri-
scher Ungenauigkeiten - der konvergenzoptimale Regler schneller eine kür-
zere Einschwingzeit als der (angenäherte) zeitoptimale Regler hat. Bild
8.5 zeigt ein solches Beispiel. Dabei wird jeweils die zeitliche Änderung
der Zustandsnorm auf einer logarithmischen Skala, sowie der Grenzwert
0.05‖x(0)‖ gezeigt. Es ist ersichtlich, dass in diesem Fall die Einschwingzeit
des konvergenzoptimalen Reglers kürzer als die des zeitoptimalen Reglers
ist.
Bild 8.6 zeigt ein Beispiel des Fehlklassifikationsanteils durch die kon-

vergenzoptimale Schaltfunktion für eine andere Strecke aus dem obigen
Streckenensemble mit θ = 1. Dieser entspricht der Fläche zwischen den
beiden Schaltfunktionen, wo die Regelgesetze unterschiedliche Vorzeichen
aufweisen. Die Berechnung der zeitoptimalen Schaltfunktion für lineare
Strecken mit komplex konjugierten Eigenwerten kann u.a. in [7] gefunden
werden.
Tabelle 8.4 zeigt die jeweiligen Parameter und die erzielte Prädiktions-

genauigkeit anhand des empirischen quadratischen Mittelwertes des Prä-
diktionsfehlers und der erzielten Deckung. Beide Maße wurden anhand von
jeweils M = 25 Test-Punkten berechnet.

Tabelle 8.4: Prädiktionsparameter für das Streckenensemble im Fall der
Gauß’schen Korrelationsfunktion und der nicht-informativen prädiktiven
Verteilung aus Satz B.1.

ψ̂ ν4 α t
α/2
ν4 ERMSPE AC

Jta(ζ) 0.0836 9 0.05 2.2622 0.0199 0.9200
Jn
H(ζ) 0.2360 9 0.05 2.2622 0.0296 0.8000

Bild 8.7 zeigt die Prädiktion von Jta(ζ) und Jn
H(ζ) für das gesamte Stre-

ckenensemble. Die Prädiktion an den Design-Punkten entspricht, wie er-
wartet, der tatsächlichen Performance der Regelmethode. Für die Prädik-
tion wurde die Gauß’sche Korrelationsfunktion und die nicht-informative
A-posteriori-Verteilung verwendet. Es ist ersichtlich, dass die Prädiktion
von Jta(ζ) eine höhere Genauigkeit aufweist. Dies ist jedoch nicht im-
mer der Fall. Eine empirische Analyse verschiedener Prädiktoren wird im
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Bild 8.5: Vergleich der Einschwingzeiten im Fall einer Strecke zweiter
Ordnung mit negativ reellen Eigenwerten. Gezeigt werden die zeitlichen
Änderungen der jeweiligen Zustandsnormen für den konvergenzoptimalen
Regler (bezeichnet mit konv, -) und den zeitoptimalen Regler (bezeichnet
mit opt, - -), sowie die Grenze 0.05‖x(0)‖ (-.).

letzten Abschnitt anhand von mehreren Streckenensembles für die beiden
Performance-Maße durchgeführt.
Mit Hilfe der Prädiktion kann auch die erwartete Performance einer

nicht-simulierten Regelstrecke untersucht werden. Diese entspricht dem Er-
wartungswert derA-posteriori-Wahrscheinlichkeitsdichte des Performance-
Maßes. Das Konfidenzintervall der Prädiktion kann ebenfalls angegeben
werden. Für ζ∗ = 0.5833 ergibt sich beispielsweise die Strecke

ẋ =
[
−1.0477− 0.1971
2.5108− 1.0402

]
x +

[
0.5515

−1.1724

]
u, (8.78)

deren Systemmatrix A die Eigenwerte λ(A) = −1.0439±0.7035j aufweist.
Die Prädiktion beider Performance-Indizes kann aus Tabelle 8.5 entnom-
men werden. Gemäß des angenommenen Modells beträgt die Wahrschein-
lichkeit, dass der wahre Wert des Performance-Maßes außerhalb des in
Tabelle 8.5 angegebenen Intervalls μ4(ζ∗) ± σ4(ζ∗,ψ̂)tα/2

ν4 liegt, α = 0.05.
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Bild 8.6: Fehlklassifikationsanteil durch die konvergenzoptimale Schalt-
funktion im Fall einer Strecke zweiter Ordnung mit konjugiert komplexen
Eigenwerten. Gezeigt werden der Rand des Einzugsgebiets der Ruhela-
ge (-.), die zeitoptimale Schaltfunktion (- -) und die konvergenzoptimale
Schaltfunktion (-). Die Fläche zwischen den beiden Funktionen stellt den
Fehlklassifikationsanteil dar. Der normierte Wert ist Jn

H(ζL) = 0.1018.

Tabelle 8.5: Wahre und prädizierte Werte der Performance-Maße für die
Strecke aus Gl. (8.78).

ζ∗ = 0.5833 Jta Jn
H

η (wahrer Wert) 1.0028 0.2112
η̂ = μ4(ζ∗) (Prädiktion) 0.9905 0.2912

σ4(ζ∗,ψ̂) 0.0256 0.0476
μ4(ζ∗)± σ4(ζ∗,ψ̂)tα/2

ν4 [0.9327,1.0483] [0.1835, 0.3988]

Dieses Intervall hängt sowohl von den gewählten Design-Punkten, als auch
von der Wahl der Korrelationsfunktion und ihrer Parameterschätzung ab.

8.4.2 Sensitivitätsanalyse
Als Anwendungsbeispiel für die Sensitivitätsanalyse wird die Prädiktion
der Konvergenzrate für ein Streckenensemble gewählt. Diese hängt von
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Bild 8.7: Prädiktion von Jta(ζ) (-, oben) und Jn
H(ζ) (-, unten), sowie je-

weils das Konfidenzintervall (-.), die wahren Funktionswerte (◦) und die
Trainingsdaten (�).

zwei Parametern ab, dem Parameter des Streckenensembles ζ1 := θ ∈
[−1,1] und dem Selektionsparameter ζ2 := v ∈ [ε,1].
Bild 8.8 zeigt erstens die Prädiktion der gebietsabhängigen Konvergenz-

rate für das gleiche Streckenensemble aus dem vorherigen Abschnitt. Dafür
wurden N = 10 Design-Punkte verwendet, welche ebenfalls im Bild darge-
stellt sind. Die Untersuchung der Prädiktionsgenauigkeit, welche anhand
der Maße aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen
quadratischen Mittelwert des Prädiktionsfehlers von ERMSPE ≈ 0.28
und einen Anteil der erzielten Deckung AC ≈ 0.23 bei einer Anzahl von
M = 25× 25 Test-Punkten. Es ist ersichtlich, dass die Prädiktion an den
Design-Punkten der tatsächlichen Konvergenzrate entspricht. Dies ist an-
hand der im Bild dargestellten Niveaulinien zu sehen, die unterschiedlichen
Flächen (der wahren bzw. der interpolierten Fläche) unterliegen, jedoch die
gleichen Niveaus zeigen.
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Bild 8.9 zeigt die Haupteffekte sowie die jeweilige Bayes’sche Inferenz,
d.h. die A-posteriori-Erwartungswerte E∗{C1(ζ1)} und E∗{C2(ζ2)} und
Bild 8.10 zeigt die Interaktionen zwischen den beiden Eingangsvariablen.
Dabei entspricht ζ1 dem Parameter θ ∈ [−1,1] des Streckenensembles und
ζ2 dem Reglerparameter v ∈ [ε,1]. Es ist ersichtlich, dass die Bayes’sche In-
ferenz sehr nah an dem wahren Verlauf ist. Diese Sensitivitätsmaße zeigen
den Einfluss des Eingangs ζi auf die Variation der gebietsabhängigen Kon-
vergenzrate. Da im Rahmen der Sensitivitätsanalyse die Eingangswerte als
Realisierungen unabhängiger Zufallsvariablen betrachtet werden, hängen
die Sensitivitätsmaße auch von der Wahl der Verteilung der jeweiligen Ein-
gangsgröße ab. Für den ersten Eingang (der Parameter θ ∈ [−1,1]) wurde
die Standardnormalverteilung, d.h. Z1(ζ1) ∼ N1(0,1), und für den zweiten
(der Reglerparameter v ∈ [ε,1]) die Exponentialverteilung gewählt, d.h.
Z2 ∼ Exp(1).
Aus Bild 8.9 (links) ist beispielsweise ersichtlich, dass mit steigendem

θ =: ζ1 der Einfluss dieses Parameters auf die Konvergenzrate unabhän-
gig von v =: ζ2 sinkt. Der Einfluss der Interaktion zwischen den beiden
Parametern, E∗{C12(ζ)}, sinkt mit steigendem θ jedoch nicht für alle v.
Bild 8.4 zeigt z.B., dass der Einfluss der Interaktion zwischen θ und v auf
die Konvergenzrate mit steigendem θ für v = 1 sinkt, jedoch für v = ε
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Bild 8.8: Prädiktion Ĥ und Menge der Design-Punkte η für die gebiets-
abhängige Konvergenzrate innerhalb eines Streckenensembles.
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Bild 8.9: Bayes’sche Inferenz für die Sensitivitätsmaße.

steigt. Tabelle 8.6 verdeutlicht dies. Diese Bilder stellen also ein nützliches

Tabelle 8.6: Ausgangszerlegung in Haupteffekte und Interaktionen für
die Ecken des untersuchten Parameterbereichs.

θ v E∗{E{H(ζ)}} E∗{C1(ζ1)} E∗{C2(ζ2)} E∗{C12(ζ)}
−1

ε
18.8280

15.1027 -18.2647 -13.4647
1 4.1281 -4.6448

−1 1 15.1027 52.6291 41.6111
1 4.1281 11.3320

Instrument dar, um die verschiedenen Komponenten des Modellausgangs,
d.h. die Haupteffekte und Interaktionen, zu visualisieren, und damit den
Einfluß jedes Eingangs zu analysieren.
Schließlich zeigt Tabelle 8.7 das Ausmaß der Varianzreduktion des Aus-

gangs durch die Fixierung des jeweiligen Eingangs Zi. Es ist ersichtlich,
dass die einzelnen Eingänge nicht die gesamte Varianz des Modells erklä-
ren können. Die restliche Varianz von etwa 26.1% wird durch Interaktionen
zwischen den beiden Eingängen erklärt.
Diese Beispiele verdeutlichen die Anwendbarkeit der Computerexperi-

mente unter Verwendung Bayes’scher Interpolationsmethoden für die Per-
formance-Analyse von Regelungsmethoden. Dabei ist es leicht ersichtlich,
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Bild 8.10: A-posteriori-Erwartungswert der Interaktion zwischen den
beiden Eingängen, E∗{C12(ζ)}.

welche Vorteile diese Analyse-Methode mit sich bringt. Die Performan-
ce einer Regelungsmethode für ein gesamtes Streckenensemble kann an
einzelnen Strecken überprüft und im Übrigen interpoliert werden. Mittels
Bayes’scher Interpolationsmethoden ist es auch möglich, jeweils Konfidenz-
intervalle der Prädiktionen anzugeben. Wie das Beispiel der Sensitivitäts-
analyse gezeigt hat, ist es darüber hinaus möglich, den Einfluss eines oder
mehrerer Parameter der Strecke und/oder des Reglers auf die Performance
der Regelmethode zu veranschaulichen und/oder zu quantifizieren.

8.4.3 Empirischer Vergleich von Prädiktoren
Um den Unterschied zwischen verschiedenen prädiktiven Verteilungen, so-
wie Korrelationsfunktionen und empirischen Schätzmethoden der Korre-
lationsparameter zu zeigen, werden mehrere Prädiktionen anhand von 93

Tabelle 8.7: Die wahren und die geschätzten Haupteffektindizes.

100Si 100Ŝi

Z1 19.8235 19.8559
Z2 54.1266 54.1273

https://doi.org/10.51202/9783186252081 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186252081


162 8 Computerexperimente unter Einsatz Bayes’scher Methoden

Streckenensembles durchgeführt. Bei jedem Ensemble wird die Prädiktion
nicht nur für eine Strecke durchgeführt, wie im Abschnitt 8.4.1 gezeigt
wurde, sondern für 25 Strecken (Test-Strecken), welche darüber hinaus
simuliert werden, um die Genauigkeit der Prädiktion quantifizieren und
vergleichen zu können.
Jedes Ensemble ist wie in Gl. (8.77) durch ein parametrisches LTI-

System beschrieben. Als Elemente der jeweiligen Systemmatrizen Ai und
bi (aus Gl. (8.77)) werden standard normalverteilte Zufallszahlen gewählt.
Für jedes Ensemble wird die Prädiktion der Regelmethode, wie im Ab-
schnitt 8.4.1 gezeigt, anhand von 25 Test-Strecken durchgeführt. Für die
Bestimmung der prädiktiven Verteilungen werden jeweils 10 Design-Stre-
cken verwendet. Diese und die 25 Test-Strecken werden darüber hinaus
simuliert. Für jedes Ensemble ergeben sich 35 Werte für die relative Ein-
schwingzeit und den Fehlklassifikationsanteil. Das Minimum, das Maxi-
mum, der Mittelwert, der Median, sowie die Standardabweichung der 35
generierten Beobachtungen werden gebildet und als erste allgemeine Sta-
tistik im Folgenden gezeigt. Da dies für 93 Ensembles geschieht, werden
Boxplots zur Darstellung der Resultate verwendet.
Bild 8.11 zeigt mehrere Boxplots10) über die empirischen Verteilungen

der untersuchten statistischen Maße. Der Mittelwert der relativen Ein-
schwingzeit über alle Ensembles hinweg liegt beispielsweise bei etwa 1.72,
der Median bei 1.66. Beide Kennzahlen sind im Bild 8.11 (links) zu se-
hen. Diese sind durch die Kreise innerhalb der jeweiligen Boxplots ge-
kennzeichnet. Da insgesamt 3255 Strecken untersucht wurden, stellt eine
mittlere relative Einschwingzeit von 1.72 ein sehr gutes Ergebnis dar. Der
Fehlklassifikationsanteil zeigt zwar eine gute Klassifikation durch die kon-
vergenzoptimale Schaltfunktion, jedoch keine große Korrelation mit der
relativen Einschwingzeit.
Für beide Performance-Maße, die relative Einschwingzeit Jta und den

Fehlklassifikationsanteil durch die konvergenzoptimale Schaltfunktion Jn
H,

10)Ein Boxplot ist die grafische Darstellung einer Verteilung. Dieser zeigt in welchem
Bereich die Daten liegen (die senkrechten Linien stellen das Minimum und Maxi-
mum aus der jeweiligen Datenmenge dar), in welchem Bereich sich die mittleren
50% der Daten befinden (der Block zeigt wo sich die Daten zwischen dem unteren
Quartil, d.h. 25% der Datenwerte, und dem oberen Quartil, d.h. 75% der Datenwer-
te, befinden) und den Median (der Kreis zeigt den Wert, der größer oder gleich 50%
aller Datenwerte ist). An der Lage des Kreises innerhalb des Blocks erkennt man
beispielsweise, ob die Verteilung symmetrisch oder schief ist. Die roten Plus-Zeichen
in der Grafik zeigen Datenpunkte, welche als Ausreißer angenommen wurden und
in der Berechnung der Quartile und der Extremwerte nicht berücksichtigt wurden.
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Bild 8.11: Boxplot-Statistiken für die untersuchten Streckenensembles.

werden jeweils in einem Trellisplot11) alle vier prädiktiven Verteilungen
((1) − (4)) aus Satz B.1 (Anhang), vier Korrelationsfunktionen (die li-
neare, die exponentiale, sowie die Potenz-Exponentiale mit p = 1 und
p = 2 (Gauß’sche Korrelationsfunktion)), sowie die empirischen Schät-
zer (die (begrenzte) Maximum Likelihood Methode und die Kreuzvalidie-
rungsmethode) der Parameter der jeweiligen Korrelationsfunktionen ver-
glichen. Die Bilder 8.12 und 8.13, sowie 8.14 und 8.15 zeigen jeweils die
erreichte Deckung des wahren Funktionswertes durch das 1−α Konfidenz-
intervall (mit α = 0.05) des Prädiktors und den empirischen quadratischen
Mittelwert des Prädiktionsfehlers im Fall von 14 Ensembles, die erfolg-
reich analysiert werden konnten.12) Es ist ersichtlich, dass die Gaußsche
Korrelationsfunktion generell eine schlechtere Prädiktionsgenauigkeit auf-

11)Der Trellisplot zeigt Boxplots über die Verteilung von Beobachtungen (hier die er-
zielte Deckung und der mittlere quadratische Prädiktionsfehler bei einem Ensemble)
im Falle von verschiedenen Faktoren. Die Faktoren sind hier die vier analysierten
Korrelationsfunktionen, die vier A-posteriori-Wahrscheinlichkeitsdichten, sowie drei
empirische Schätzmethoden für die Parameter der Korrelationsfunktionen.

12)Die empirische Schätzung der Parameter der Korrelationsfunktionen wurde nume-
risch durchgeführt. Bei vielen Ensembles war die numerische Optimierung nicht
erfolgreich. Für diese 14 aus 93 untersuchten Ensembles wurden alle Korrelations-
funktionen für beide Performance-Maße erfolgreich geschätzt.
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Bild 8.12: Vergleich der erzielten Deckung (AC) im Fall der Prädikti-
on der relativen Einschwingzeit, vgl. Abschnitt 8.2.4. Dabei wurden vier
Korrelationsfunktionen (lineare, exponentiale, sowie Potenz-Exponential-
Familie der Korrelationsfunktionen mit p = 1 und p = 2), die vier A-
posteriori-Wahrscheinlichkeitsdichten aus Satz B.1, sowie drei empirische
Methoden (MLE, RMLE, XVal) für die Schätzung der Parameter der Kor-
relationsfunktionen verglichen.

weist. Darüber hinaus erzielt die Kreuzvalidierungsmethode die niedrigsten
Deckungsraten und zwischen den A-posteriori-Wahrscheinlichkeitsdichten
gibt es kaum Unterschiede.
Zusammenfassend lässt sich feststellen, dass eine Performance-Analyse

in nichtlinearen Regelkreisen unter Verwendung von Computerexperimen-
ten sehr vorteilhaft ist. Dadurch ist es möglich, die Performance einer Re-
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Bild 8.13: Vergleich des mittleren quadratischen Prädiktionsfehlers
(ERMSPE) im Fall der Prädiktion der relativen Einschwingzeit, vgl. Ab-
schnitt 8.2.4. Dabei wurden vier Korrelationsfunktionen (lineare, exponen-
tiale, sowie Potenz-Exponential-Familie der Korrelationsfunktionen mit
p = 1 und p = 2), die vier A-posteriori-Wahrscheinlichkeitsdichten aus
Satz B.1, sowie drei empirische Methoden (MLE, RMLE, XVal) für die
Schätzung der Parameter der Korrelationsfunktionen verglichen.

gelungsmethode für ein gesamtes Regelstreckenensemble zu analysieren.
Die erwartete Performance für das Streckenensemble lässt sich dabei in
funktionaler Form angeben. Somit ist es möglich, eine Prädiktion der Per-
formance für eine Regelstrecke aus einem vorgegebenem Ensemble ohne
Reglerentwurf und Simulation zu machen. Darüber hinaus ist es möglich,
die Sensitivität der Performance einer Regelungsmethode infolge der Varia-
tion eines Streckenparameters zu quantifizieren. Ein empirischer Vergleich
von Prädiktoren im Falle von 93 Streckenensembles zeigt schließlich, dass
diese Methode zur Performance-Analyse eine gute Prädiktionsgenauigkeit
aufweist und sich als vielversprechend für weitere Untersuchungen zeigt.
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Bild 8.14: Vergleich der erzielten Deckung (AC) im Fall der Prädiktion
des Fehlklassifikationsanteils durch die konvergenzoptimale Schaltfunkti-
on, vgl. Abschnitt 8.2.4. Dabei wurden vier Korrelationsfunktionen (linea-
re, exponentiale, sowie Potenz-Exponential-Familie der Korrelationsfunk-
tionen mit p = 1 und p = 2), die vierA-posteriori-Wahrscheinlichkeitsdich-
ten aus Satz B.1, sowie drei empirische Methoden (MLE, RMLE, XVal)
für die Schätzung der Parameter der Korrelationsfunktionen verglichen.
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Bild 8.15: Vergleich des mittleren quadratischen Prädiktionsfehlers
(ERMSPE) im Fall des Fehlklassifikationsanteils durch die konvergenz-
optimale Schaltfunktion, vgl. Abschnitt 8.2.4. Dabei wurden vier Korrela-
tionsfunktionen (lineare, exponentiale, sowie Potenz-Exponential-Familie
der Korrelationsfunktionen mit p = 1 und p = 2), die vier A-posteriori-
Wahrscheinlichkeitsdichten aus Satz B.1, sowie drei empirische Methoden
(MLE, RMLE, XVal) für die Schätzung der Parameter der Korrelations-
funktionen verglichen.
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9 Zusammenfassung und Ausblick

Diese Arbeit stellt mehrere Weiterentwicklungen weicher strukturvaria-
bler Regelungen (WSVR) mittels impliziter Ljapunov-Funktionen (iLF)
vor, deren Hauptaugenmerk die Nicht-Konservativität der Regelgesetze
bildet. Dabei werden Entwurfsbedingungen vorgestellt, welche nicht nur
hinreichend für die Stabilisierung einer linearen Strecke mit Stellgrößen-
beschränkung, sondern auch notwendig sind. Aus der Notwendigkeit der
Bedingungen folgt, dass im Fall deren Nichterfüllung überhaupt kein Reg-
ler dieser Klasse die jeweilige Strecke stabilisieren kann. Dieser Vorteil
der Entwurfsbedingungen ist darüber hinaus nützlich, wenn ein beliebi-
ger Startregler für eine Optimierung gesucht wird. So wird beispielsweise
gezeigt, dass eine daran anschließende Optimierung der Konvergenzrate
fast zeitoptimale Regelgesetze erzielt. Da der Entwurf dieser Regelgesetze
mittels äquivalenter linearer Matrixungleichungen (LMIs) erfolgt, welche
numerisch gelöst werden, ist der Entwurf für höherdimensionale Systeme
unproblematisch. Anders ist es z.B. im Fall zeitoptimaler Regler, bei de-
nen für höherdimensionale Systeme keine exakte Lösung mehr angegeben
werden kann.
Die Weiterentwicklungen der WSVR, welche in dieser Arbeit vorgestellt

werden, sind die nicht-konservative klassische WSVR mittels iLF und
die nicht-konservative invers-polynomiale WSVR. Darüber hinaus
wird bei jedem dieser Regler gezeigt, dass die Optimierung der Konvergenz-
rate Zweipunktregler (auch Bang-Bang- Regler genannt) mit einer parame-
terabhängigen Schaltfunktion erzielt. Diese unterscheiden sich daher von
dem zeitoptimalen Regler allein durch die Schaltfunktion. Da in der Pra-
xis die Diskontinuität des Regelgesetzes technische Probleme verursachen
kann, wird in dieser Arbeit eine stetige Approximation des konver-
genzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leichten
Verschlechterung der Konvergenzrate einen stetigen Stellgrößenverlauf er-
zielt. Zwei Beispiele, ein Fusionsreaktor und ein U-Boot, veranschaulichen
die Vorteile der vorgestellten Regelungsmethoden.
Der zweite Teil der Arbeit widmet sich der Performance-Analyse in

nichtlinearen Regelkreisen. Dabei wird erstmal eine Klassifizierung von
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Performance-Maßen für nichtlineare Regelkreise vorgestellt. Eine beson-
dere Berücksichtigung erfährt die Konvergenzrate eines nichtlinearen
Systems, für welche ein theoretischer Rahmen vorgestellt wird und im Fall
der vorher entwickelten Regelungsmethoden analysiert wird. Es wird da-
bei gezeigt, dass im Unterschied zu linearen Regelkreisen, die nichtlinearen
Regelkreise eine variable Konvergenzrate aufweisen, die von dem Abstand
zur Ruhelage abhängig ist. Daher wird erstens der Begriff der gebietsab-
hängigen Konvergenzrate eingeführt und zweitens gezeigt, wie diese zur
Angabe einer oberen Grenze der Zustandsnorm genutzt werden kann.
Der letzte Beitrag der Arbeit stellt zum ersten Mal die Anwendung der

in der Praxis weit verbreiteten Theorie über dasDesign von Computer-
experimenten auf die Performance-Analyse in nichtlinearen Regelkreisen
vor. Die Computerexperimente bilden neben physikalischen Experimenten
eine Methode zur Generierung von Beobachtungen über die Eigenschaf-
ten eines Versuchsobjekts, in diesem Fall eines nichtlinearen Regelkreises,
infolge der Variation eines oder mehrerer Parameter. Der Zusammenhang
zwischen den Eingangs- und Ausgangsvariablen wird in Form eines Rech-
nercodes basierend auf einem mathematischen Modell beschrieben, dessen
Komplexität im Allgemeinen sehr hoch ist. Die Parameter stellen in dieser
Arbeit hauptsächlich Streckenparameter dar, welche zwar aus einem vor-
gegebenen Intervall beliebig gewählt werden können, aber während eines
Ausregelvorgangs konstant bleiben. Die Idee dieser freien Parameteraus-
wahl ist, dass sie Streckenensembles erzeugt, welche somit eine unendli-
che Menge an Strecken beinhalten. Ein Computerexperiment enthält dabei
den Entwurf und die Performance-Analyse an einer endlichen Anzahl von
Design-Strecken aus diesem Streckenensemble. Mit Hilfe der gesammelten
Trainingsdaten wird die Performance des gesamten Streckenensembles mit-
tels Bayes’scher Interpolationsmethoden prädiziert. Wesentlich bei diesem
Ansatz der Prädiktion der Performance einer Regelungsmethode ist
die Angabe von Konfidenzintervallen des besten linearen erwartungstreu-
en Prädiktors (BLUP), welche einerseits von der Wahl der prädiktiven A-
posteriori-Verteilung und andererseits von der Wahl der Design-Strecken
abhängig ist.
Für ein gesamtes Streckenensemble, welches eine unendliche Anzahl an

Strecken enthält, werden erstmals (ebenfalls nicht-konservative) Bedingun-
gen vorgestellt, welche in äquivalente LMIs transformiert werden kön-
nen und die Stabilisierbarkeit des gesamten Ensembles mittels klassischer
oder invers-polynomialer WSVRs (je nach Untersuchung) sicherstellen.
Anschließend wird mit Hilfe Bayes’scher Interpolationsmethoden die Per-
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formance einer Regelmethode für das gesamte Streckenensemble prädiziert.
So wird beispielsweise gezeigt, wie man für eine Regelstrecke aus diesem
Ensemble die Performance einer Regelmethode vorhersagen kann, ohne
dabei einen Regler entwerfen zu müssen.
Die Prädiktionsgenauigkeit wird darüber hinaus anhand von 93 Stre-

ckenensembles empirisch getestet. Die Ergebnisse dieser empirischen Un-
tersuchung zeigen die Variation der Prädiktionsgenauigkeit bei einer un-
terschiedlichen Wahl prädiktiver Distributionen, Korrelationsfunktionen,
sowie Schätzmethoden der Parameter der Korrelationsfunktionen. Es wird
gezeigt, dass die Prädiktionsgenauigkeit, welche durch den mittleren qua-
dratischen Prädiktionsfehler gemessen wird, bis auf wenige Ausreißer hoch
ist. Auch die erzielte Deckung des wahren Funktionswertes durch das 1−α
Konfidenzintervall des Prädiktors wird untersucht. Die empirischen Ergeb-
nisse zeigen auch hier eine hohe Genauigkeit. Darüber hinaus wird anhand
der gesammelten Daten aus den 93 Streckenensembles über die Perfor-
mance der Regelmethode gezeigt, dass die invers-polynomiale WSVR eine
durchschnittliche relative Einschwingzeit von etwa 1.72 aufweist, und dies
bei etwa 3255 direkt untersuchten Regelstrecken. Die relative Einschwing-
zeit mißt den Unterschied zwischen den Einschwingzeiten des zeitoptima-
len Reglers und der invers-polynomialer WSVR. Eine relative Einschwing-
zeit von eins entspricht einer gleich langen Einschwingzeit der beiden Reg-
ler.
Als eine zweite Anwendung der Theorie über das Design von Compu-

terexperimenten wird die Sensitivitätsanalyse untersucht. Anhand ver-
schiedener Sensitivitätsmaße wird die (unbekannte) Sensitivität der Per-
formance einer Regelungsmethode infolge der Variation eines Streckenpa-
rameters quantifiziert. Die Bayes’sche Inferenz stellt anschließend eine Me-
thode dar, diese unbekannte Funktion zu prädizieren. Die in dieser Arbeit
untersuchten Sensitivitätsmaße sind die Haupteffekte und Interaktionen
generiert durch eine diesbezügliche Ausgangszerlegung, sowie die Haupt-
effektindizes und Interaktionenindizes generiert durch eine diesbezügliche
Zerlegung der Ausgangsvarianzreduktion. Anhand der bereits gesammel-
ten Trainingsdaten erfolgt beispielsweise die Angabe einer prozentualen
Ausgangsvarianzreduktion infolge der Fixierung eines oder mehrerer Pa-
rameters des Streckenensembles.
Ausblickend kann man über die neu-entwickelte invers-polynomiale

WSVR feststellen, dass die Methode vielversprechende Ergebnisse rela-
tiv zur zeitoptimalen Regelung aufweist. Da diese nicht nur Strecken in
Steuerungsnormalform stabilisieren kann, ist es möglich, nicht-konserva-
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tive Entwurfsbedingungen für lineare Strecken mit mehreren Eingängen
anzugeben.
Bezüglich der Performance-Analyse mittels Computerexperimenten wä-

re auch von Interesse, eine empirische Untersuchung für Strecken höherer
Ordnung durchzuführen. Allerdings erweist sich ein automatischer Ent-
wurf zeitoptimaler Regler für solche Systeme zwecks Vergleich mit der
jeweiligen Regelmethode als sehr aufwendig. Darüber hinaus kann hin-
zugefügt werden, dass die Performance-Analyse mittels Computerexperi-
menten keinesfalls auf die in dieser Arbeit untersuchten Performance-Ma-
ße oder Regelungsmethoden beschränkt, sondern beliebig anwendbar ist.
Allerdings ist die Sicherstellung der Existenz von stabilisierenden Regelge-
setzen im gesamten Streckenensemble unerlässlich für die Anwendbarkeit
solcher Performance-Prädiktionen. Für andere Regelungsmethoden müs-
sen daher vorerst solche Existenzbedingungen entworfen bzw. überprüft
werden. Dabei wäre auch von Interesse, welche Vorteile ein vollständiger
Bayes’scher Ansatz gegenüber dem in dieser Arbeit untersuchten partiellen
Bayes’schen Ansatz mit sich bringt.
Auch eine gleichzeitige Untersuchung mehrerer Ausgänge, wie z.B. der

relativen Einschwingzeit und des Volumens des jeweiligen Einzugsgebiets
der Ruhelage, kann im Rahmen von Computerexperimenten durchgeführt
werden. Da solche Ausgänge aber nicht unabhängig sind, muss die prä-
diktive Verteilung auf den höherdimensionalen Fall überführt werden. Sol-
che höherdimensionalen Verteilungen können beispielsweise mit Hilfe von
(Pair)-Copula Verteilungen aufgebaut werden.
Schließlich ist bezüglich der Sensitivitätsanalyse zu erwähnen, dass diese

Methode sehr gut geeignet ist, um gezielt nach Streckenparametern zu
suchen, welche die Performance einer Regelmethode stärker beeinflussen,
oder, anders ausgedrückt, die Robustheit eines Reglers determinieren.
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A Ausgewählte Definitionen und
Hilfssätze für die Reglersynthese

A.1 Ausgewählte Definitionen

A.1.1 Mengen
Definition 5 [Offene Kugel um x∈Rn mit Radius ε>0, vgl. [8], S. 681]
Die Menge Bε(x) = {y ∈ Rn|‖x−y‖ < ε}, wobei ‖ · ‖ eine beliebige Norm
auf Rn(Cn) ist, heißt offene Kugel um x ∈ Rn mit Radius ε > 0.

Definition 6 [Innerer Punkt einer Menge, vgl. [8], Def. 10.1.1] Ein Vektor
x ∈ M ⊆ Rn(Cn) heißt innerer Punkt der Menge M wenn es eine Zahl
ε > 0 existiert, sodass Bε(x) ⊆M.

Definition 7 [Randpunkt einer Menge] Ein Vektor x ∈ Rn heißt Rand-
punkt einer Menge M, wenn er nicht innerer Punkt der Menge ist und
für alle ε > 0, die Menge M∩Bε(x) nichtleer ist.

Definition 8 [Rand einer Menge] Die Menge aller Randpunkte einer Men-
ge M⊂ Rn heißt der Rand von M und wird mit ∂M bezeichnet.

Definition 9 [Abgeschlossene Menge] Eine Menge M heißt abgeschlossen
wenn sie ihren Rand enthält.
Definition 10 [Beschränkte Menge, vgl. [8], S. 682] Eine Menge M ⊂
Rn(Cn) heißt beschränkt wenn es eine Zahl δ > 0 existiert, sodass ‖x −
y‖ < δ für alle x,y ∈M.

Definition 11 [Kompakte Menge, vgl. [8], S. 682] Eine Menge M ⊆
Rn(Cn) heißt kompakt wenn diese abgeschlossen und beschränkt ist.

Definition 12 [Konvexe Hülle, vgl. [8], S. 98] Für eine gegebene Menge
M ⊆ Rn(Cn), die konvexe Hülle coM beschreibt die kleinste konvexe
Menge, welche die Menge M beinhaltet. Falls die Menge M eine endliche
Anzahl von Elementen aufweist, bildet coM ein konvexes Polytop.
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Definition 13 [Kontraktiv invariantes Gebiet] Ein abgeschlossenes Gebiet

G(V,c) := {x ∈ R
n|V (x) ≤ c}

heißt kontraktiv invariant für ein System ẋ(t) = f(x(t)) mit der Ruhelage
xR = 0, wenn für eine gegebene Funktion V (x), mit V (x) > 0, ∀x ∈
G(V,c)\{0}, und V (0) = 0, V̇ (x) < 0, ∀x ∈ G(V,c)\{0} gilt. Somit ist
V (x) eine Ljapunov-Funktion des Systems und das Gebiet G(V,c) ist Teil
des Einzugsgebietes der Ruhelage xR = 0.

Bei quadratischen Ljapunov-Funktionen ist dieses Gebiet ellipsoidal, d.h.

E(P,c) := G(V,c) = {x ∈ R
n|x�Px ≤ c}.

Definition 14 [Kontraktiv invariantes Ellipsoid] Für eine gegebene Ma-
trix P 
 0 heißt ein Ellipsoid G(P) := {x ∈ R

n|x�Px < 1} kon-
traktiv invariant für ein System ẋ = f(x), wenn für V (x) := x�Px,
V̇ (x) = 2x�Pf(x) < 0, ∀x ∈ G(P)\{0} gilt. In diesem Fall konvergieren
alle Trajektorien, die in G(P) starten, asymptotisch gegen die Ruhelage
xR = 0. Dies ist ein Spezialfall eines kontraktiv invarianten Gebietes aus
Def. 13.

Definition 15 [Verschachtelte Ellipsoide] Zwei Ellipsoide G(v1) und G(v2),
mit 0 < v2 < v1 ≤ v, heißen verschachtelt im Intervall v ∈ (0,v], wenn de-
ren Ränder keine gemeinsamen Punkte haben, d.h. wenn ∂G(v1)∩∂G(v2) =
∅, und wenn G(v2) ⊂ G(v1) gilt.

A.1.2 Funktionen
Definition 16 [Limes superior einer Funktion, vgl. [62, S. vi]]

lim sup
x→a

f(x) := inf
ε>0

{sup{f(x) : x ∈ B(a,ε), x �= a}} ∈ R ∪ {−∞} ∪ {+∞}

Definition 17 [Rechte Obere Dini-Derivierte einer stetigen Funktion]

D+f(t) := lim sup
h→0+

f(t+ h)− f(t)
h

= inf
ε>0

{
sup
{
f(t+ h)− f(t)

h
: h ∈ (0,ε)

}}
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A.1.3 Matrixdefinitionen und -funktionen
Definition 18 [Ähnliche Matrizen] Die Matrizen A,B ∈ F

n×n sind de-
finitionsgemäß ähnlich wenn ∃S ∈ Fn×n (nichtsingulär) existiert, sodass
A = SBS−1.
Definition 19 [Kongruente Matrizen] Die Matrizen A,B ∈ Fn×n heißen
kongruent, wenn ∃S ∈ Fn×n (nichtsingulär) existiert, sodass A = SBS∗.

Bemerkung A.1 (Vgl [8, Fakt 3.4.5, xi)]). Sind die Matrizen A und B
kongruent, dann ist Matrix A positiv (semi)definit dann und nur dann
wenn B positiv (semi)definit ist. �
Definition 20 [Voll-Rang-Faktorisierung einer Matrix] Gegeben sei eine
Matrix A ∈ Rm×n, mit Rang(A) = r. Das Matrizentupel (Al,Ar), mit
Al ∈ Rm×r, Rang(Al) = r und Ar ∈ Rr×n, Rang(Ar) = r heißt eine
Voll-Rang-Faktorisierung der matrix A wenn A = AlAr.

Definition 21 [Kronecker Summe] Gegeben seien die Matrizen A ∈ Rn×n

und B ∈ Rm×m. Die Kronecker Summe ist die nm× nm Matrix

A⊕B := A⊗ In + Im ⊗B. (A.1)

Bemerkung A.2. Eine wichtige Eigenschaft der Matrix A ⊕ A ist, dass
ihre Eigenwerte die n2 Zahlen λi + λj , mit i,j = 1, . . . ,n sind, wobei λi,
λj Eigenwerte der Matrix A darstellen. �
Definition 22 [Spalten-Vektorisierung einer Matrix] Die Spalten-Vekto-
risierung einer Matrix A ∈ Rm×n ist definiert als

vec(A) :=
[
a(1,1), · · · , a(m,1), a(1,2), · · · , a(m,2), · · ·a(1,n), · · · , a(m,n)

]�
.

Bemerkung A.3. Folgende Beziehung gilt1)

vec(AX+XA�) = (A⊕A) vec(X), (A.2)

�
Definition 23 [Norm] Die Funktion ‖ · ‖ : Rn → [0,∞) heißt Norm falls
sie folgende Bedingungen erfüllt:

i) ‖x‖ ≥ 0, ∀x ∈ Fn.

ii) ‖x‖ = 0⇔ x = 0.
1)Vgl. [49, Abschnitt 2.1 und 2.3].
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iii) ‖αx‖ = |α|‖x‖, ∀α ∈ F und x ∈ Fn.

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈ Fn.

Definition 24 [Induzierte Matrixnorm (für quadratische Matrizen]) Die
Funktion ‖ · ‖i : Fn×n → F, mit

‖A‖i := maxx∈Fn∗

‖Ax‖
‖x‖

heißt (von einer Vektornorm) induzierte Matrixnorm. Für nicht-quadrati-
sche Matrizen siehe [8, Definition 9.4.1]. Darüber hinaus ist die induzierte
Matrixnorm ebenfalls eine Norma), vgl. [8, Theorem 9.4.2].

a)Für die Definition der Norm siehe Def. 23.

A.1.4 Parameterabhängige Matrizen und Funktionen
Definition 25 [Matrixwertige Funktion] Eine Funktion A(z) : R

d →
Rn×n, deren Funktionswert analytisch für alle z ∈ Rd ist, wird in die-
ser Arbeit unter dem Begriff ein- (d = 1) oder mehrdimensionale (d > 1)
matrixwertige Funktion verwendet.

Definition 26 [Charakteristisches Polynom eines matrixwertigen Funk-
tionwertes] Für einen matrixwertigen Funktionswert A(z) ist das charak-
teristische Polynom durch

p(z,λ) := det(λIn −A(z)) = an(z)λn + · · ·+ a1(z)λ + a0(z), (A.3)

definiert, wobei die Koeffizienten a0(z), . . . ,an(z) analytische Funktionen
in z sind.
Definition 27 [Polynomiell parameterabhängige quadratische Funktion
(PPDQ-Funktion], [14]) Eine polynomiell parameterabhängige quadrati-
sche Funktion, im Weiteren PPDQ-Funktion genannt, ist jede quadrati-
sche Funktion f : Rd × Rn → R, f(z,x) = x�M(z)x, sodass

M(z) :=
k−1∑

i1,i2,...,id=0
zi1
1 · · · z

id
d Mi1,...,id , Mi1,...,id ∈ Symn . (A.4)
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Dabei wird die Zahl k − 1 ∈ Z als Grad der PPDQ-Funktion bezeichnet.
Die Funktion kann umgeformt werden zu

M(z) := (z[k]d ⊗ · · · ⊗ z[k]1 ⊗ In)�Mk (z[k]d ⊗ · · · ⊗ z[k]1 ⊗ In), (A.5)

z[k]i :=
[
1 z(i) · · · zk−1

(i)

]�
, ∀i = 1, . . . ,d,

Mk ∈ Symkdn .

Die Umformung ist nicht eindeutig.

A.1.5 Andere Funktionen
Lemma A.1 [Adjunkte einer polynomialen Matrix, vgl. [39]].
Gegeben sei die polynomiale Matrix

Av :=
Nu∑

i=Nl

viAi, Nl < 0, Nl ≤ Nu , Ai ∈ R
n×n. (A.6)

Die Adjunkte von Av ist

AA
v = vNl(n−1)

(Nu−Nl∑
i=0

viAi+Nl

)A

(A.7)

= vNl(n−1)
μ∑

i=0
viNi, Ni ∈ R

n×n, (A.8)

wobei

μ ≤ (Nu−Nl)min{n− 1,n− q}, q := dim
[Nu−Nl⋂

i=1
N (Ai+Nl)

]
(A.9)

und das (i,j)-Element der Matrix AA
v ist gegeben durch

(AA
v )(i,j) = (−1)i+jvNl(n−1) det(Ãv[j,i]), (A.10)

wobei Ãv[j,i] der Kofaktor zum Element Av(j,i) der Matrix Av ist, d.h. die
Matrix, die entsteht, wenn bei Av die j-te Zeile und i-te Spalte gestrichen
werden.
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Lemma A.2 [Adjunkte einer polynomialen Matrix mit Grad 1,
vgl. [77, Korollar 2.2]]. Seien die Matrizen A,B ∈ Rn×n und der
Parameter ρ ∈ R. Dann gilt

(A+ ρB)A = AA + ρn−1BA +
n−2∑
i=1

ρiΓi
n−1(A/Bi)A,

wobei das (k,j)-te Element der Matrix Γi
n−1(A/Bi)A ist(

Γi
n−1(A/Bi)A

)
kj
= (−1)k+jΓi

n−1 det(Ajk/Bi
jk),

Ajk und Bjk Matrizen nach Elimination der j-ten Reihe und k-ten Spal-
te der Matrizen A bzw. B sind, und Γi

n−1 det(Ajk/Bi
jk) die Summe der

Determinanten, wobei die i-ten Reihen der Matrix Ajk durch diejenigen
der Matrix Bjk substituiert werden.

Lemma A.3 [Newton-Regel]. Gegeben sei das reelle Polynom m-ter
Ordnung

p(x,θ) = am(x)θm + am−1(x)θm−1 + . . .+ a0(x)

mit m > 0, ai(x) : X → R, X ⊆ Rn, ∀ i = 0, . . . ,m, am(x) �= 0, ∀x ∈ X
und eine Zahl L ∈ R. Wenn an der Stelle θ = L das Polynom und seine
sämtlichen partiellen Ableitungen ∂i

θp(x, L) ≤ 0, ∀i ∈ {0,1, . . . ,m} und
∀x ∈ X sind, dann ist p(x,θ) < 0, ∀θ > L, ∀x ∈ X .

Beweis. Das Lemma ist sehr ähnlich zur Lemma 4.1 aus [25].
Für θ = L+ ε, mit ε ≥ 0 ist die Entwicklung des Polynoms p(x,θ) nach

θ an der Stelle θ = L gegeben durch

p(x,θ) = p(x,L) + ε∂θp(x,L) +
ε2

2 ∂
2
θp(x,L) + · · ·+

εn

n
∂m
θ p(x,L).

Da ∂i
θp(x, L) ≤ 0, ∀i ∈ {0,1, . . . ,m} gilt und die m-te partielle Ableitung

∂m
θ p(x,L) = m! · am(x) �= 0, ∀x ∈ X , folgt, dass p(x,θ) < 0, ∀ θ > L und

x ∈ X .
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A.2 Hilfssätze
Lemma A.4. Folgende Aussagen sind equivalent:

i) Die Ruhelage x = 0 des Systems ẋ = Ax, x ∈ Rn ist asymptotisch
stabil.

ii) ∃P ∈ Pn, sodass AP+PA�≺ 0.

iii) ∀Q ∈ Pn, ∃!P ∈ Pn, welche die Gleichung AP+PA�= −Q erfüllt.

Beweis. iii) ⇒ ii) ist offensichtlich. ii) ⇒ i) folgt aus der Anwendung der
direkten Methode von Ljapunov,2) mit der Ljapunov Funktion V (x) =
x�Px, und unter Berücksichtigung der Tatsache, dass die Matrizen A und
A� die gleichen Eigenwerte besitzen. i) ⇒ iii) Ist die Matrix A asym-
ptotisch stabil, so ist auch A ⊕ A = A ⊗ In + In ⊗ A.3) Folglich sind
alle Eigenwerte der Matrix A ⊕A negativ und somit die Matrix A ⊕A
nichtsingulär. Gleichung AP+PA�= −Q ist im Weiteren äquivalent zu4)

vec(AP+PA�) + vec(Q) = (A⊕A) vec(P) + vec(Q) = 0.

DaA⊕A nichtsingulär ist, ist die Lösung P = − vec−1((A⊕A)−1 vec(Q))
eindeutig. Darüber hinaus gilt∫ t

0
AeτAdτ =

∫ t

0
A

∞∑
k=0

1
k! (τA)

kdτ

=
∫ t

0

∞∑
k=0

1
k!τ

kAk+1dτ

=
∞∑

k=0

tk+1

(k + 1)!A
k+1 = etA−In

und folglich, weil A Hurwitz und somit auch nichtsingulär ist

lim
t→∞

∫ t

0
eτAdτ = lim

t→∞A−1(eAt − In) = −A−1.

2)Vgl. z.B. [8, Satz 11.7.2].
3)Vgl. [8, Satz 11.18.32].
4)Vgl. dazu Gl. (A.2).
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Darüber hinaus gilt für die Lösung der Ljapunov-Gleichung AP+PA�=
−Q

P = vec−1 (−(A⊕A)−1 vec(Q)
)
= vec−1

(∫ ∞

0
et(A⊕A)dt vec(Q)

)

=
∫ ∞

0
vec−1

(
et(A⊕A) vec(Q)

)
dt =

∫ ∞

0
vec−1 [(etA ⊗ etA

)
vec(Q)

]
dt

=
∫ ∞

0
vec−1

[
vec
(
etAQetA

�)]
dt =

∫ ∞

0
etAQetA

�
dt.

Da Q 
 0 ist, existiert immer eine nichtsinguläre Matrix C, sodass Q =
CC�. Somit gilt für einen beliebigen Vektor x ∈ Rn\{0},

x�Px =
∫ ∞

0
x�etACC�etA

�
x dt =

∫ ∞

0
‖C�etA

�
x‖2 dt > 0,

d.h. die Matrix P ist positiv definit. Schließlich, weil die Matrix Q sym-
metrisch angenommen wurde und somit,

(AP+PA�)− (AP+PA�)�= A(P −P�) + (P−P�)A�= 0

gilt, folgt, dass P−P�= 0, d.h. die Matrix P ist auch symmetrisch.

Bemerkung A.4 (Analytische Ljapunov-Funktion). Für ein gegebenes kon-
stantes θ ∈ Θ ist die Lösung P(θ) ∈ Rn×n einer parameterabhängigen
Ljapunov-Gleichung (PDLG)

A(θ)P(θ) +P(θ)A�(θ) +Q(θ) = 0, (A.11)

gegeben durch
P(θ) =

∫ ∞

0
eA(θ)tQ(θ)eA�(θ)tdt,

analytisch in θ wenn A(θ) und Q(θ) analytisch in θ sind. In diesem Fall
kann die Matrix P(θ) durch

P(θ) = P0 + θP1 + θ2P2 + . . . =
∞∑
i=0

θiPi (A.12)

approximiert werden. Ist darüber hinaus die Menge Θ kompakt, so kann
man die Potenzreihe aus Gl. (A.12) ab einem hinreichend großen aber
endlichen Grad m < ∞ abbrechen, sodass die Ljapunov-Ungleichung aus
Lemma A.4 ii) erfüllt ist, vgl. [78]. �
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Satz A.5 [Satz von Finsler, vgl. [68, Satz 2.3.10]] Es seien die Matri-
zen B ∈ Cn×m, mit Rang (B) = r < n und B⊥ ∈ C(n−r)×n, sodass
B⊥B = 0 und B⊥B⊥∗ ≺ 0. und Q ∈ H

n. Angenommen sei im Weite-
ren, dass (Br,Bl) eine Voll-Rang-Faktorisierunga) der Matrix B ist und
D := (BrB∗

r)−1/2B+
l . Dann sind folgende Aussagen äquivalent:

i) ∃μ ∈ R, sodass

μBB∗ −Q 
 0. (A.13)

ii) Es gilt

R := B⊥QB⊥∗ ≺ 0. (A.14)

Wenn Gl. (A.13) und (A.14) gelten, dann gilt auch

μ > μmin := λmax

[
D(Q−QB⊥∗R−1B⊥Q)D∗

]
. (A.15)

a)Vgl. Def. 20 (Anahng).

Beweis. Die Notwendigkeit der Bedingung (A.14) kann durch eine Kon-
gruenztransformation5) der Matrix μBB∗ − Q 
 0 aus Gl. (A.13), mit
S = [D B⊥]� nachgewiesen werden. Es folgt6)

S(μBB∗ −Q)S∗ =
[
D
B⊥

]
(μBB∗ −Q)

[
D B⊥]

=
[
D(μBB∗ −Q)D∗ D(μBB∗ −Q)B⊥∗

B⊥(μBB∗ −Q)D∗ B⊥(μBB∗ −Q)B⊥∗
]

=
[
μDBB∗D∗ −DQD∗ −DQB⊥∗

−B⊥QD∗ −B⊥QB⊥∗
]

 0.

Dabei gilt

DBB∗D∗ = (BrB∗
r)−1/2 B+

l Bl︸ ︷︷ ︸
Ir

BrB∗
r B∗

l B+∗
l︸ ︷︷ ︸

Ir

[(BrB∗
r)−1/2]∗ = Ir.

5)Vgl. Def. 19.
6)Vgl. auch die Bemerkung A.1 bezüglich der positiven Definitheit von zwei kongru-

enten Matrizen.
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Somit ist S(μBB∗ −Q)S∗ 
 0 äquivalent zu7)

R := B⊥QB⊥∗ ≺ 0,
(μ Ir −DQD∗) |(S(μBB∗ −Q)S∗)

= μ Ir −DQD∗ +DQB⊥∗R−1B⊥QD∗ 
 0, (A.16)

es folgt also Gl. (A.14).
Bedingung (A.14) ist auch hinreichend, da für eine beliebige negativ

definite Matrix R ≺ 0 immer eine Zahl μ ∈ R existiert, sodass Gl. (A.16)
erfüllt ist, und zwar ist diese Zahl gegeben durch Gl. (A.15). Es folgt daraus
Gl. (A.13).

Bemerkung A.5. Es gilt noch, vgl. [68], μmin ≤ 0 dann und nur dann wenn
Q � 0. Dies folgt aus{

μmin ≤ 0⇔ D(Q−QB⊥∗R−1B⊥Q)D∗ � 0
R ≺ 0

⇔
[
DQD∗ DQB⊥∗

B⊥QD∗ R

]
� 0.

Dies ist äquivalent zu SQS∗ � 0 und, somit, zu Q � 0. �

A.3 Umwandlung der unendlich- in
endlich-dimensionale LMIs

Lemma A.6 [S-Prozedur]. Gegeben seien die Matrizen Q ∈ Hn und
Si ∈ Hn, mit i = 1, . . . ,m. Die Ungleichung

x�Qx < 0, ∀x ∈ X := {x ∈ R
n
∗ |x�Six ≤ 0, ∀ i = 1, . . . ,m} (A.17)

ist genau dann erfüllt, wenn die Skalare τi > 0 existieren, sodass

Q ≺
m∑
i=1

τiSi (A.18)

7)Vgl. [8, Fakt 8.2.4] für die positive Definitheit des Schur-Komplements einer positiv
definiten Blockmatrix.
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gilt.
Die Bestimmung der Skalare τi stellt ein endlich-dimensionales konvexes
Validierungsproblem dar. In mehreren Spezialfällen ist Gl. (A.18) nicht
nur hinreichend - wie in Lemma A.6 dargestellt - sondern auch notwendig
für die Erfüllung der Gl. (A.17).
Die Umwandlung einer parameterabhängigen LMI der Form (A.5) in

eine parameterunabhängige LMI basiert auf die in [38] vorgestellte Ver-
allgemeinerung der S -Prozedur. Für den eindimensionalen Fall, d.h. für
d = 1, wurde die Umwandlung in [77] gezeigt. Die Lemmas A.7 bis A.9
fassen dieses Ergebnis zusammen. Die entsprechenden Beweise können in
[77] gefunden werden.

Lemma A.7 [[78], Erweiterung der verallgemeinerten S-Proze-
dur]. Gegeben seien die Matrizen Σ ∈ Symn und J,C ∈ R

k×n. Die
folgenden Aussagen sind äquivalent:

i) ζ�Σζ < 0, ∀ ζ ∈ Z := {ζ ∈ Rn\{0} |(J− δC)ζ = 0, δ ∈ R, |δ| ≤ 1}.

ii) ∃D ∈ Pk,G ∈ Skewk, sodass

Σ ≺
[
C
J

]�[−D G
G D

] [
C
J

]
.

Lemma A.7 gibt eine notwendige und hinreichende Bedingung für i) in
Form einer linearen Matrixungleichung (LMI) aus ii) an. Dass diese Be-
dingung somit nicht konservativ ist, folgt aus der verallgemeinerten S -
Prozedur, vgl. [38, Theorem 1]. Die Menge G der in dem Teil i) des Lem-
mas A.7 betrachteten Vektoren ζ ∈ Rn\{0} ist für bestimmte Matrizen
J und C gleich zu der gesuchten Menge aus Gl. (A.19), wie es in Lemma
A.8 dargestellt ist.

A.3.1 Einparametriger Fall (d = 1)
Gesucht ist eine parameterunabhängige Bedingung für die Erfüllung der
Ungleichung

(z[k] ⊗ In)�Mk (z[k] ⊗ In) < 0, z[k] =
[
1 z z2 · · · zk−1]� , ∀ z ∈ [−1,1],

(A.19)

wobei die Matrix Mk ∈ Symkn vorgegeben ist. Dafür wird folgendes Lem-
ma aus [78] verwendet:
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Lemma A.8 [[78]]. Folgende Mengen sind gleich:

C1 :=
{
ζ ∈ R

nk
∣∣∣(J − δC)ζ = 0,J = J̌k−1 ⊗ In,C = Ĵk−1 ⊗ In,

J̌k−1 = [0k−1,1 Ik−1], Ĵk−1 = [Ik−1 0k−1,1], δ ∈ [−1,1]
}
,

C2 :=
{
ζ ∈ R

nk
∣∣∣ζ = (z[k] ⊗ In)v, z[k] =

[
1 z z2 · · · zk−1]�,

z ∈ [−1,1],v ∈ R
n} .

Schließlich, unter Verwendung der Lemmas A.7 und A.8, folgt

Lemma A.9 [[77], Lemma 4.12]. Die Ungleichung

(z[k] ⊗ In)�Σ (z[k] ⊗ In) < 0, z[k] =
[
1 z z2 · · · zk−1]� (A.20)

ist für jedes z ∈ [−1,1] erfüllt dann und nur dann wenn es existieren die
Matrizen D ∈ Pn(k−1) und G ∈ Skewn(k−1) sodass

Σ ≺
[
C
J

]�[−D G
G D

] [
C
J

]
. (A.21)
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B Ausgewählte stochastische
Grundlagen

B.1 Die multivariate Normalverteilung
Sei der Zufallsvektor X := (X1, . . . ,Xr) gebildet aus r standardnormalver-
teilten Zufallsvariablen Xi ∼ N1(0,1), i = 1, . . . ,r. Der Zufallsvektor

W := LX+ μ, (B.1)

mit L ∈ Rm×r und μ ∈ Rm, heißt multivariat normalveteilt. Dies wird
durch W ∼ Nm(μ,Σ) bezeichnet. Die Wahrscheinlichkeitsdichtefunktion
des Zufallsvektors lautet

fW (w) =
1

(2π)m/2
√
det(Σ)

exp
{
−12(w− μ)�Σ−1(w− μ)

}
, (B.2)

wobei w ∈ Rm und Rang(Σ) = m.

B.2 Die Chi-Quadrat Verteilung
Seien X1, . . . ,Xn unabhängige und identisch verteilte Zufallsvariablen, mit
Xi ∼ N1(0,1). Die Verteilung der Zufallsvariable

W := X2
1 + . . .+X2

n (B.3)

heißt Chi-Quadrat mit n Freiheitsgraden. Dies wird durch W ∼ χ2n be-
zeichnet. Es gilt dabei E{W} = n und Var{W} = 2n, vgl. auch [26]. Die
Verteilung der Zufallsvariable

Y := 1
W

(B.4)
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heißt inverse-Chi-Quadrat mit n Freiheitsgraden und wird mit Y ∼ χ−2
n

bezeichnet. Es gilt dabei

E{Y } = 1
n− 2 , n > 2, (B.5)

Var{Y } = 2
(n− 2)2(n− 4) , n > 4. (B.6)

B.3 Die nicht-zentrale t-Verteilung
Seien die unabhängigen Zufallsvariablen X ∼ N1(0,1) und Z ∼ χ2n. Die
Verteilung der Zufallsvariable

W̃ := X√
Z/n

(B.7)

heißt t-Verteilung mit n Freiheitsgraden. Diese wird mit W̃ ∼ T1(νW ,0,1)
bezeichnet, vgl. [26].
Eine Zufallsvariable W ∼ T1(νW ,μW ,σ2W ) heißt nicht-zentral t-verteilt.

Ihre Wahrscheinlichkeitsdichtefunktion lautet

fW (w) =
Γ((νW + 1)/2)√
σ2
W
πνWΓ(νW/2)

(
1 + 1

νW

(w − μW )2

σ2
W

)−(νW+1)/2

. (B.8)

Es gilt dabei

W ∼ T1(νW ,μW ,σ2W )⇔
W − μW

σ2W
∼ T1(νW ,0,1). (B.9)

Weitere Eigenschaften sind

E{W} = μW , falls νW > 1, (B.10)

Var{W} = σ2W
νW

νW − 2 , falls νW > 2. (B.11)

B.4 Prädiktive Distributionen
Satz B.1 [Vgl. [64, Theorem 4.1.2]] Es sei angenommen, dass der Zufalls-
vektor (H0,H) eine multivariate Normalverteilung besitzt, d.h.

(H0,H)|β,σ2Z ∼ NN+1

([
f�0
F

]
β,σ2Z

[
1 r�0
r0 R

])
, (B.12)
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wobei β ∈ Rp und σ2Z > 0 unbekannt sind, aber der Zufallsvektor (β,σ2Z)
eine der Verteilungen (1)−(4) aus Tabelle 8.2 besitzt, wobei die Parameter
β0 ∈ R

p, Σ0 � 0, c0 > 0 und ν0 > 2 bekannt sind. Darüber hinaus sind der
Vektor r0 := [R(ζ0 − ζ1) · · · R(ζ0 − ζN )]� und die Matrix R, mit den
Elementen R(i,j) := R(ζi − ζj), mit i,j = 1, . . . ,N , abhängig von einer
parametrischen Korrelationsfunktion R(ζ − ζ′) = r(ζ,ζ′;ψ) mit einem
unbekannten Parametervektor ψ.

Die Zufallsvariable H0|H besitzt dann eine eindimensionale nicht-zen-
trale t-Verteilung gegeben durch

[H0|H] ∼ T1(νi,μi,σ
2
i ), (B.13)

mit νi Freiheitsgraden, Nichtzentralitätsparameter μi und Skalierungspa-
rameter σ2i . Der Parameter νi ergibt sich aus

νi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N + ν0, i = (1),
N, i = (2),
N − p+ ν0, i = (3),
N − p, i = (4).

(B.14)

Der Nichtzentralitätsparameter μi ergibt sich aus

μi(ζ0) = E{H0|H} = f�0 β̂ + r�0R−1(η − Fβ̂), (B.15)

wobei - in diesem Fall - der Parametervektor β̂ aus Gl. (8.12) die analy-
tische Form

β̂ =
{(

F�R−1F+Σ−1
0 )−1(F�R−1η +Σ−1

0 β0
)
, i = (1) oder (2)(

F�R−1F)−1(F�R−1η
)
, i = (3) oder (4)

(B.16)
hat. Schließlich ist der Parameter σ2i

σ2i := σ2i (ζ0) = σ̂2Z · r∗(ζ0,ζ0) = σ̂2Z ·
{
1−
[
f0
r0

]� [Σi F�
F R

]−1 [f0
r0

]}
,

(B.17)
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mit

σ̂2Z =
Q2

i

νi
, (B.18)

r∗(ζ,ζ′) := r(ζ,ζ′|H) = r(ζ,ζ′)−
[
fζ
rζ

]� [Σi F�
F R

]−1 [fζ′
rζ′

]
, (B.19)

r(ζ,ζ′) = R(ζ − ζ′), (B.20)

Σi =
{
−Σ−1

0 , i = (1) oder (2)
0, i = (3) oder (4)

(B.21)

und

Q2
i :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c0 +Q2
2, i = (1),

Q2
4 + (β0 − β̂)�

[
Σ0 +

(
F�R−1F

)−1
]−1

(β0 − β̂), i = (2),
c0 +Q2

4, i = (3),
η�
[
R−1 −R−1F

(
F�R−1F

)−1 F�R−1
]
η, i = (4).

(B.22)
Der Erwartungswert und Varianz der Zufallsvariable H0|H können somit
aus Gl. (B.10) und (B.11) berechnet werden.

B.4.1 Berechnung der bedingten prädiktiven
Verteilung [H0|H] aus Schritt 5a

Die bedingte Verteilung [H0|H] aus Schritt 5a kann aus

[H0|H] =
∫
Dσ2Z

[
H0,σ

2
Z |H

]
dσ2Z ,

berechnet werden, wobei für den Integrand

[H0,σ
2
Z |H] = [H0|H,σ2Z ] · [σ2Z |H] (B.23)

gilt. Die Verteilung [H0|H,σ2Z ] kann dabei wie folgt berechnet werden:

[H0|H,σ2Z ] =
∫
· · ·
∫
Dβ

[H0,β|H,σ2Z ]dβ,

wobei
[H0,β|H,σ2Z ] = [H0|H,β,σ2Z ] · [β|H,σ2Z ]. (B.24)
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Die erste Verteilung auf der rechten Seite der Gl. (B.24) ist bekannt. Die
zweite kann mit Hilfe des Bayes’schen Satzes aus

[β|H,σ2Z ] = [H,σ2Z |β] · [β], (B.25)

berechnet werden, wobei die Verteilung [H,σ2Z |β] aus der Äquivalenz der
Zerlegungen

[H,σ2Z ,β] = [β] · [σ2Z |β] · [H|σ2Z ,β] = [β] · [β|σ2Z ] · [σ2Z ] · [H|σ2Z ,β],
[H,σ2Z ,β] = [β] · [H,σ2Z |β]

berechnet werden kann, d.h.

[H,σ2Z |β] = [β|σ2Z ] · [σ2Z ] · [H|σ2Z ,β].

Dabei sind die Verteilungen [H|σ2Z ,β], [β|σ2Z ] und [σ2Z ] bekannt. Schließ-
lich kann die Verteilung [σ2Z |H] aus Gl. (B.23) aus der Äquivalenz der
Zerlegungen

[H,σ2Z ,β] = [β|H,σ2Z ] · [H,σ2Z ] = [β|H,σ2Z ] · [σ2Z |H] · [H],
[H,σ2Z ,β] = [H|β,σ2Z ] · [β|σ2Z ] · [σ2Z ],

berechnet werden, d.h.

[σ2Z |H] =
[H|β,σ2Z ] · [β|σ2Z ] · [σ2Z ]

[β|H,σ2Z ] · [H]
,

wobei die Verteilung [β|H,σ2Z ] in Gl. (B.25) berechnet wird, und die Ver-
teilungen [H|β,σ2Z ] und [β|σ2Z ] bekannt sind. Der Erwartungswert

μH0|H(ζ0) = μH0|H(ζ0|ψ) (B.26)

und die Varianz
σ2H0|H(ζ) = σ2H0|H(ζ0|ψ) (B.27)

der A-posteriori-Wahrscheinlichkeitsdichte [H0|H] hängen vom Parame-
tervektor ψ der Korrelationsfunktion R( · |ψ) ab.

B.5 Latin-Hypercube-Sampling (LHS)
Die Methode wird für den zweidimensionalen Fall erläutert. Ist beispiels-
weise der Parameterbereich [0,1]2, so kann man darin N Design-Punk-
te durch Latin-Hypercube-Sampling wie folgt generieren. In einem ersten
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Schritt wird über den untersuchten Bereich ein Gitter gelegt, mit jeweils
N gleich großen Intervallen pro Dimension. Es ergeben sich somit N2 Zel-
len. Jede Zelle wird mit einer Zahl aus der Menge {1,2, . . . ,N} versehen,
sodass ein lateinisches Quadrat entsteht. Dieses ist dadurch gekennzeich-
net, dass jede Zahl nur einmal in jeder Zeile und jeder Spalte erscheint.
Anschließend wählt man zufällig eine Zahl aus der Menge {1,2, . . . ,N},
und in jeder damit versehenen Zelle wird ein Punkt zufällig gewählt.
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C Parameter der Beispiele

Die Folgenden LMI-basierten Validierungs- und Optimierungsprobleme
wurden unter Anwendung des Parsers YALMIP, vgl. [46], und des Sol-
vers SDPT3, vgl. [71], in der Programmiersprache MATLAB formuliert
und gelöst.

C.1 Parameter für das Beispiel 5.5.2

C.1.1 die klassische WSVR mittels iLF
Die Lösung der Optimierungsproblems (3.14)-(3.16) mit ε = 0.01 und
Optimierungsziel

min
P∈Sym2

Spur(P)

ergibt die (in Originalkoordinaten transformierte) Matrix

P =
[
2.3584 9.7426
9.7426 46.1678

]
.

Das maximale Einzugsgebiet ist durch das kleinste d > b�P−1b/4, d.h.
durch ein dmin > 0.5412, bestimmt. Der Parameter d kann aber auch
so gewählt werden, dass eine gewünschte Anfangsauslenkung innerhalb
oder auf dem Rand des Einzugsgebiets liegt, jedoch solange Gl. (3.18) und
(3.19) erfüllt sind. Für d = 0.5682 und ν = 0.99 ergibt sich c = 0.5072
und r = 0.2868. Der Parameter d wurde so gewählt, dass die gewünschte
Anfangsauslenkung x0 = [0.7,2.8]� auf dem Rand des Einzugsgebiets liegt.
Im Bild 5.3 wird die sich ergebende Ellipse, E(dP−1) (-.) gezeigt.
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C.1.2 Die invers-polynomiale WSVR
Die Lösung des Validierungsproblems (4.10)-(4.12) mit Ml = −1 und Mu =
0, sowie ε = 0.01 ergibt die Matrizen

Pc−1 =
[
−0.1000 −0.4897
−0.4897 −2.4573

]
,

Pc0 =
[
15.5918 76.5334
76.5334 383.5764

]
.

Für v = 1 und v = ε ergeben sich die Matrizen

P−1
1 =

[
2.0076 0.0052
0.0052 0.0130

]
, P−1

ε =
[
8.0040 0.0078
0.0078 0.0358

]
.

Die Koeffizienten des Matrixpolynoms RA
v := PA

v aus Korollar 5.3 sind

N0 = PA
c−1 =

[
−0.2246 −0.4419
−0.4419 −0.8842

]
, N1 = PA

c0 =
[
34.9526 68.9648
68.9648 138.0588

]
.

Die Überprüfung der Bedingungen aus Korollar 5.3 mit dem Skalierungs-
faktor d = 1.1058 ergibt

max
x�P−11 x=d

G(x,1) = −52.2830,

max
x�P−11 x=d

∂ṽG(x,1) = −52.6196.

C.2 Parameter für das Beispiel 8.4.1
Das Streckenensemble aus Gl. (8.77) ist gegeben durch

A0 =
[
−1.4095 0.3255
1.7701 −1.1190

]
, A1 =

[
0.6204 −0.8960
1.2698 0.1352

]

und

b0 =
[
−0.1390
−1.1634

]
, b1 =

[
1.1837

−0.0154

]
.
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Die Überprüfung der Stabilisierbarkeitsbedingungen aus Gl. (6.34)-(6.36)
hat für r = 1, sowie ml = −1 und mu = 0 folgende Matrizen Pcij ergeben:

Pc−1,0 =
[
−0.3238 −0.2778
−0.2778 −0.8295

]
, Pc−1,1 =

[
−0.0357 −0.0178
−0.0178 −0.0711

]
, (C.1)

Pc0,0 =
[
103.6145 32.0932
32.0932 255.2761

]
, Pc1,1 =

[
12.6196 −1.9560
−1.9560 31.8894

]
. (C.2)
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Radius ε>0, vgl. [8], S.
681, 172

6 Innerer Punkt einer Menge,
vgl. [8], Def. 10.1.1, 172

7 Randpunkt einer Menge, 172
8 Rand einer Menge, 172
9 Abgeschlossene Menge, 172
10 Beschränkte Menge, vgl. [8],

S. 682, 172
11 Kompakte Menge, vgl. [8],

S. 682, 172
12 Konvexe Hülle, vgl. [8], S.

98, 172
13 Kontraktiv invariantes

Gebiet, 173
14 Kontraktiv invariantes

Ellipsoid, 173
15 Verschachtelte Ellipsoide,

173
16 Limes superior einer

Funktion, vgl. [62, S. vi],
173

17 Rechte Obere
Dini-Derivierte einer
stetigen Funktion, 173

18 Ähnliche Matrizen, 174
19 Kongruente Matrizen, 174
20 Voll-Rang-Faktorisierung

einer Matrix, 174
21 Kronecker Summe, 174
22 Spalten=Vektorisierung

einer Matrix, 174
23 Norm, 174
24 Induzierte Matrixnorm (für

quadratische Matrizen),
175

25 Matrixwertige Funktion, 175
26 Charakteristisches Polynom

eines matrixwertigen
Funktionwertes, 175

27 Polynomiell
parameterabhängige
quadratische Funktion
(PPDQ-Funktion), [14],
175

Korollar
2.4 Vgl. [2], 12
5.2, 40
5.3, 49

Lemma
2.1 Stabilisierbarkeit eines

LTI-Systems, 8
2.2 Stabilisierbarkeit eines

LTI-Systems mittels
Ljapunov-Funktionen, 9

7.2 Vgl. [72, Theorem 5], 93
7.3 Vgl. [72, Theorem 1, (iv)],

94
7.4, 95
7.5, 98
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A.1 Adjunkte einer
polynomialen Matrix, vgl.
[39], 176

A.2 Adjunkte einer
polynomialen Matrix mit
Grad 1, vgl. [77, Korollar
2.2], 177

A.3 Newton-Regel, 177
A.4, 178
A.6 S -Prozedur, 181
A.7 [78], Erweiterung der

verallgemeinerten
S=Prozedur, 182

A.8 [78], 183
A.9 [77], Lemma 4.12, 183
LTV-System
7.1 Grenzen der
Zustandsnorm basierend
auf logaritmischen
Matrixnormen, vgl. [73,
Section 2.5], 91

Satz
2.3 Vgl. [2], 11
3.1, 17
4.1, 28
5.1, 37
5.4 Nach [37, Theorem 1], 52
6.1, 67
6.2, 69
6.3 Vgl. [77, Theorem 6.3], 71
7.10 Konvergenzrate der

nicht=sättigenden
invers=polynomialen
WSVR, 110

7.7, 100
7.9 Konvergenzrate der

nicht=sättigenden
klassischen WSVR mittels
iLF, 109

A.5 Satz von Finsler, vgl. [68,
Satz 2.3.10], 180

B.1 Vgl. [64, Theorem 4.1.2],
185
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