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Symbole und Funktionen

Symbole

< W

-
S

B

Frg(x(t),v)

Bug(x,v)
Mengen
Be(x)

R’n
R’n

*

Rnxm
anm

Hn
Sym™ , Skew"

P"(N")

es existiert

es existiert und ist eindeutig
fir alle

definiert als

1,....n

die kleinste ganze Zahl, die grofier oder gleich
m € R ist

dg(x,v)
=

N
g(X,v
< ov

offene Kugel um x € R"™ mit Radius ¢, vgl.
Def. 5 (Anhang)

n x 1 Spaltenvektoren

von null verschiedene Spaltenvektoren, d.h.
R™\{0}

n x m reelle Matrizen

n x m reelle oder komplexe Matrizen

n X n hermitesche Matrizen

n x n reelle symmetrische, schief-
symmetrische Matrizen

n x n symmetrische und positiv definite (se-
midefinite) Matrizen

die leere Menge

Kern (Nullraum) einer Matrix A € R™*",
N(A) :={x € R"|Ax = 0}

Gebiet {x € R"|g«(x,v) < 0}

Ellipsoid {x € R"|x"P(v)x < 0}

Rand einer Menge G, vgl. Def. 8 (Anhang)
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X Symbole und Funktionen
coM bezeichnet die konvexe Hiille einer Menge
M, vgl. Def. 12 (Anhang)
dim M Dimension einer Menge
L(u,B) das Gebiet L(u,8) := {x € R"||Ju(x)| < 5}

Spezielle Matrizen

Om,n
L,
E,
A+

A )

adj(A), A4

L(1)
(i)
x) € R”

zlFl € RF
AlA

Matrixfunktionen
Rang(A)

sr(A)

zr(A)

Spec(A)

AMA)eC

wo die Stellgrofenbegrenzung § eingehalten
wird

m X n Nullmatrix

n X n Einheitsmatrix

n X n Elementarmatrix

Pseudoinverse einer Matrix A € C™*"™, auch
Moore-Penrose-Inverse genannt, vgl. [8, S.
397]

der Kofaktor zum Element a(; ;) der Matrix
A ¢ R™™", d.h. die Matrix, die entsteht,
wenn bei der Matrix A die i-te Zeile und
j-te Spalte gestrichen werden

die adjungierte Matrix zu A € R"*"™ d.h.
AA = CT, mit C(Lj) = (—1)Z+j det(A(m))
Element (i) eines Vektors x € R"

Element (¢,5) einer Matrix A € R™*"

zum Eigenwert A\ gehorender Rechtseigen-
vektor x)

[ 1 z 22 ... 21 ]T
Schur-Komplement der Matrix A € R™*"
bzgl. der Blockmatrix A = é g ], defi-
niert als A|A=D-CA~!B, A nichtsinguliir

Rang einer Matrix A € R™*"

Spaltenrang einer Matrix A € R™*"
Zeilenrang einer Matrix A € R™*"
Spektrum einer Matrix A € R™*"_ d.h. die
Menge aller Eigenwerte bei Nichtbeachtung
der Vielfachheit

Eigenwert einer Matrix A € R™*"
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XI

k(A)

Re M(A)
Im A(A)
Ai(A)eSpec(A) C R

Amax (A )€ Spec(A)CR

Amin (A)€Spec(A)CR

vec(A)

Il = /> 2,
1=1

| Alloo:= mwﬂAwﬂ

i€{l,....n
je{lv'“7m}
[Allooo := Omax(A)

A®B

AoB
AT
CH

Xy

Matrixrelationen
A - B(A > B)
A~B

Stochastik
H(-), 2(+)
h(-), (+)

c(-)

Konditionszahl einer Matrix A € R"*", de-
finiert als K(A) := Amax(A)/Amin(A)
Realteil des Eigenwertes A € Spec(A)
Imaginérteil des Eigenwertes A € Spec(A)
1.-grofiter Eigenwert einer Matrix A € R™*"™
mit reellen Eigenwerten

grofter Eigenwert einer Matrix A € R"*"
mit reellen Eigenwerten

kleinster Eigenwert einer Matrix A € R"*"
mit reellen Eigenwerten
Spalten-Vektorisierung einer Matrix A €
R™*" vgl. Def. 22 (Anhang)

Euklidische Norm eines Vektors x € R", vgl.
Def. 23 (Anhang)

Maximum Norm einer Matrix A € R"*™,
vgl. Def. 24 (Anhang)

Spektralnorm einer Matrix A €
Def. 24 (Anhang)

Kronecker Produkt, d.h. Multiplikation je-
des Elements der Matrix A mit der Matrix
B, vgl. [74] fiir verschiedene Eigenschaften
Kronecker Summe, vgl. Def. 21 (Anhang)
Transponierte einer Matrix A € R™*"
konjugiert komplexe und transponierte Ma-
trix C € C™*"

von v € R abhéngige Matrix X(v) € R"™*"

RnXm

, vgl.

A-BeP*(A-BeN")
die Matrizen A und B sind dhnlich, vgl. Def.
18 (Anhang)

skalare Zufallsfelder

Realisierungen (Pfade) der skalaren Zufalls-
felder H(-) bzw. Z(-)

mehrdimensionales Zufallsfeld
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Symbole und Funktionen

Ti(vyp,0?)

Abkiirzungen
0.B.d.A.

WSVR

iLF

PPDQ Funktion
LTT System
LHS

ERMSPE

AC

Realisierung (Pfad) eines mehrdimensiona-
len Zufallsfeldes C(-)

Zufallsvariable, Zufallsvektor

Realisierung einer Zufallsvariable bzw. eines
Zufallsvektors
Wahrscheinlichkeitsverteilung (kurz: Vertei-
lung), die durch ihre Wahrscheinlichkeits-
dichte (oder kurz Dichte) gegeben ist
Multiplikation von zwei Dichten, d.h.
Ix(x)- fy(y)

proportionale Verteilungen
Definitionsbereich der Variable ¢,
m-dimensionale multivariate Normalvertei-
lung mit Erwartungswertvektor g € R™
und positiv-definiter Kovarianzmatrix X €
Sym™, vgl. Abschnitt B.1 (Anhang)
eindimensionale Chi-Quadrat Verteilung mit
n Freiheitsgraden, vgl. Abschnitt B.2 (An-
hang)

eindimensionale Inverse-Chi-Quadrat Vertei-
lung mit n Freiheitsgraden, vgl. Abschnitt
B.2 (Anhang)

eindimensionale nicht-zentrale t-Verteilung
mit v Freiheitsgraden, Nichtzentralitdtspara-
meter p und Skalierungsparameter o2, vgl.
Abschnitt B.3 (Anhang)

ohne Beschrinkung der Allgemeinheit
weiche strukturvariable Regelung

implizite Ljapunov-Funktion

polynomiell parameterabhédngige quadrati-
sche Funktion

lineares zeitinvariantes System

Latin- Hypercube-Sampling

Empirical Root Mean Squared Prediction
Error

Achieved Coverage
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XIII

Kurzfassung

Die vorliegende Arbeit beschéaftigt sich mit der Synthese weicher struk-
turvariabler Regelungen (WSVR) zur Stabilisierung linearer zeitinvarian-
ten Systemen (LTT-Systeme) mit StellgroBenbeschrankung und einer neuen
Methode zur Performance-Analyse in nichtlinearen Regelkreisen. Im Rah-
men der Regelsynthese werden zum ersten Mal notwendige und hinreichen-
de Stabilisierbarkeitsbedingungen solcher Strecken durch WSVRs mittels
impliziter Ljapunov-Funktionen (iLF) vorgestellt. Die erzielte Regelung
ist also nicht-konservativ. Aus der Notwendigkeit der Bedingungen folgt,
dass im Fall deren Nichterfiillung iiberhaupt kein Regler aus der unter-
suchten Klasse existiert. Die Notwendigkeit stellt eine wesentliche Erwei-
terung gegeniiber bereits existierenden Stabilitdtsbedingungen dar. Eine
zweite Erweiterung der WSVR auf solche Regelungen mittels invers-poly-
nomialer Selektionsstrategien wird ebenfalls vorgestellt. Dariiber hinaus
werden die nicht-konservativen Regler beziiglich der Konvergenzrate opti-
miert. Es wird gezeigt, dass der konvergenzoptimale Regler ein Zweipunkt-
regler mit einer parameterabhéngigen Umschaltstrategie ist, der ein sehr
schnelles Ausregelverhalten aufweist. Die Formulierung der Bedingungen
mittels adquivalenter linearer Matrixungleichungen (LMIs) wird ebenfalls
vorgestellt. Dies erlaubt einen numerisch effizienten Entwurf der Regler
fiir Strecken beliebiger Ordnung. Die Reglersynthese endet mit den Sta-
bilisierbarkeitsbedingungen solcher Regler fiir Regelstreckenensembles, die
durch parametrische LTI-Systeme beschrieben sind.

Der zweite Teil der Arbeit beschéftigt sich mit der Performance-Ana-
lyse in nichtlinearen Regelkreisen. Wéahrend fiir lineare Regelkreise ex-
akte (auch frequenzbasierte) Methoden zur Performance-Analyse existie-
ren, bezieht sich die kleine Menge an Analysemethoden fiir nichtlineare
Regelkreise meistens auf experimentelle Aussagen iiber das dynamische
Verhalten eines einzelnen Regelkreises. In dieser Arbeit wird zum ersten
Mal das in der Praxis weitverbreitete Konzept der Computerexperimen-
te auf die Performance-Analyse in nichtlinearen Regelkreisen angewandt.
Mittels Bayes’scher Interpolationsmethoden wird die Performance-Pradik-
tion eines gesamten Streckenensembles ermoglicht. Sehr wichtig sind dabei
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X1V Kurzfassung

die angegebenen Konfidenzintervalle der Préadiktion. Damit ist es méglich,
die erwartete Performance einer Regelmethode fiir eine bestimmte Strecke
anzugeben, ohne dabei einen Regler entwerfen zu miissen. In diesem Zu-
sammenhang wird auch eine Sensitivitatsanalyse vorgestellt, die Aussagen
dariiber zuléflt, welchen Einfluf} einzelne Streckenparameter auf die Per-
formance einer Regelmethode erwartungsgeméifl haben. Die Arbeit endet
mit einem empirischen Vergleich verschiedener Pradiktoren anhand meh-
rerer Streckenensembles. Es wird gezeigt, dass die Pradiktionsgenauigkeit
abhingig von der Wahl der pradiktiven A-posteriori-Verteilung, von der
Wahl der Korrelationsfunktion zwischen verschiedenen Strecken, sowie von
der Wahl der empirischen Schitzmethode fiir die Parameter der Korrela-
tionsfunktion ist.
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Abstract

The thesis deals with the non-conservative synthesis of soft variable struc-
ture controls (SVSC) for stabilizing linear time invariant systems (LTI-
systems) with input saturation, and with a new method for the perfor-
mance analysis in nonlinear control systems. The non-conservative control
synthesis yields some necessary and sufficient stability conditions for these
plants, employing implicit Lyapunov-functions (iLF). From the necessity
of the conditions follows that if they are not fulfilled, then there exists no
control from this class which stabilizes the given plant. This is an essen-
tial benefit of the proposed controls relative to the already existing SVSC
employing iLFs. Furthermore, an extension of the SVSC to ones that em-
ploy inverse-polynomial selection strategies is presented. In addition, both
(non-conservative) controls are being optimized relative to the convergence
rate. The maximal convergence control is a bang-bang type control with a
parameter-dependent switching scheme, that achieves very short settling
times. The formulation of the stability conditions in form of equivalent
linear matrix inequalities (LMI) is also a benefit of the proposed control
methods. This allows for an efficient numerical control design for plants
of any given order. The control synthesis part of the thesis ends with the
(non-conservative) design of SVSC for a plant ensemble, that is described
by a parameter dependent LTI-System.

The second part of the thesis deals with the performance analysis in
nonlinear control systems. While for linear systems there exists a large
number of exact (also frequency-based) methods for the performance-ana-
lysis, the number of methods for the performance analysis of nonlinear
systems is very small, and deals mainly with the analysis of a single plant
for a given control. In this thesis the concept of the design and analysis of
computer experiments is applied to the performance analysis of nonlinear
control systems. By employing Bayesian interpolation methods, one can
make a prediction of the performance of the nonlinear control method for
an ensemble of nonlinear closed-loop systems. An important benefit of em-
ploying this statistical framework is that the prediction is given together
with some confidence bounds on the expected performance. Consequently,

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

XVI Abstract

it is possible to make a prediction of the performance of a control method
without designing the control. In this context we present also a sensitivity
analysis, which gives some insight on how the expected performance of the
control method changes, if one changes the parameters of the plant. The
thesis ends with an empirical comparison of some predictors, which shows
that the prediction depends on the a-posteriori distribution of the model,
on the correlation function employed and on its parameters, respectively
on the empirical estimation method for these unknown parameters.

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

1 Einleitung

Jedes reale Stellglied ist aus physikalischen Griinden mit einer Ampli-
tudenbeschriankung behaftet. In der Regelungstechnik sind Systeme mit
Stellgroflenbeschrénkungen seit langerer Zeit Gegenstand vieler Untersu-
chungen, vgl. [10] und die darin enthaltenen Verweise. Die lineare Zu-
standsriickfithrung ist eines der meist verwendeten Regelgesetze, deren
Anwendung nichtsédttigende bis hin zu High-Gain-Reglern erzielt, wobei
auftretende Sattigungseffekte mittels Anti-Windup Strukturen reduziert
[70] oder direkt in der Stabilitdtsanalyse [35] beriicksichtigt werden. Der
generelle Nachteil der linearen Zustandsriickfithrung ist, dass der Stellgro-
Benbereich im Bereich kleiner Auslenkungen von der Ruhelage aufgrund
konstanter Reglerverstirkung nicht optimal ausgenutzt werden kann, und
der jeweilige Regler somit oft zu langsamen Zeitverldufen fiihrt.

Unter den nichtlinearen Regelmethoden erzielt die zeitoptimale Rege-
lung, in diesem Fall ein schaltendes Regelgesetz, auch Zweipunktregler
genannt, den schnellsten Zeitverlauf. Da seine Umschaltstrategie aber ge-
nerell nicht berechenbar ist, wird diese Methode oft nur bei Systemen
niedrigerer Ordnung verwendet. Auflerdem kann in der Praxis die Diskon-
tinuitat des Regelgesetzes technische Probleme verursachen. Beispielsweise
kann die ununterbrochene Aktivitdt des Reglers aufgrund unvermeidba-
ren Rauschens die Aktoren beschidigen. Eine Alternative zu den beiden
Regelungsmethoden bieten die strukturvariablen Regelungen an, welche
durch variable Verstiarkungen den Nachteil der linearen Zustandsriickfiih-
rung tiberwinden und durch einfache Entwurfsverfahren bei Systemen be-
liebiger Ordnung verwendet werden kénnen.

Die Geschwindigkeit des Zeitverlaufs wird bei exponentiell stabilen Sys-
temen oft mit der Konvergenzrate in Verbindung gebracht, welche als
kleinster Abklingfaktor der Norm einer Trajektorie definiert ist. Fiir lineare
Systeme ist die Konvergenzrate konstant im gesamten Zustandsraum und
entspricht dem Betrag des Realteils des Eigenwertes, der am nachsten zur
Imaginérachse liegt. Fiir nichtlineare Systeme hingt sie von dem Abstand
zur Ruhelage ab. In der Literatur wird die Konvergenzrate daher mit Hilfe
von invarianten Gebieten analysiert, vgl. z.B. [13]. Dabei sind die meist
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verwendeten invarianten Gebiete ellipsoidaler Form, da diese mit effizien-
ten Hilfsmitteln, wie der Ljapunov Gleichung und, generell, der linearen
Matrixungleichungen (LMI) analysiert werden kénnen. Die Vorteile der
ellipsoidalen Gebiete werden auch im Fall weicher strukturvariabler Rege-
lungen genutzt, indem die Variation der Reglerverstiarkungen mit solchen
Gebieten im Zustandsraum verbunden wird.

Das Regelgesetz, das in der Form einer séttigenden linearen Zustands-
riickfithrung die Abklingrate einer quadratischen Ljapunov-Funktion V' (x)
= x'Px entlang der Trajektorien des Gesamtsystems maximiert, ist ein
Zweipunktregler mit einer einfachen Umschaltstrategie, vgl. z.B. [35]. Das
Regelgesetz hat die Form u = —sgn(b'Px), wobei b der Steuervektor der
Strecke ist. Die maximale Konvergenzrate hingt dabei von der Matrix P
ab, welche auch das invariante Ellipsoid determiniert. In [35] wird gezeigt,
dass die Grofe des erzielten Ellipsoids im Konflikt mit der Hohe der Kon-
vergenzrate steht, d.h. eine hohe Konvergenzrate erzielt ein kleines inva-
riantes Ellipsoid und umgekehrt. Durch eine parameterabhéngige Matrix
P,, wie im Fall strukturvariabler Regelungen, besteht die Moglichkeit, die
Grofle des Ellipsoids an den Abstand zur Ruhelage anzupassen und somit
die Konvergenzrate insgesamt zu verbessern. Vgl. auch [36] fiir eine sol-
che Verbesserung durch eine parameterabhéangige Matrix. Es wird gezeigt,
dass auch in diesem Fall die Optimierung der Konvergenzrate einen Zwei-
punktregler (auch Bang-Bang-Regler genannt) mit einer parameterabhén-
gigen Umschaltstrategie erzielt. Um die Nachteile der Diskontinuitét des
Regelgesetzes zu umgehen, wird eine stetige Approximation des konver-
genzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leichten Ver-
schlechterung der Konvergenzrate einen stetigen Stellgrolenverlauf erzielt.
Dabei wird auch ein nichtkonservativer Entwurf des konvergenzoptimalen
Regelgesetzes vorgestellt. Dieser beinhaltet Stabilitdtsbedingungen, wel-
che sowohl notwendig als auch hinreichend fiir die Stabilisierbarkeit einer
linearen Strecke mit Stellgrofenbeschrankung durch eine weiche struktur-
variable Regelung dieser Klasse sind.

Ein weiterer Aspekt dieser Arbeit ist die Performance-Analyse nichtli-
nearer Regelkreise. Wahrend fiir lineare Regelkreise exakte (frequenzba-
sierte) Methoden zur Performance-Analyse existieren, beziechen sich die
Performance-Methoden fiir nichtlineare Regelkreise meistens auf experi-
mentelle Aussagen iiber das dynamische Verhalten eines einzelnen Regel-
kreises. Die Schwierigkeit der Performance-Analyse entsteht aufgrund der
komplexeren Eigenschaften nichtlinearer Systeme relativ zu denen linearer
Systeme, wie zum Beispiel fehlende Giiltigkeit des Superpositionsprinzips,
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oder beziiglich der Stabilitdt der Ruhelage, die abhéngig von den Anfangs-
bedingungen und von den einwirkenden Eingangsgréfien ist. Ein weiterer
Grund ist, dass fiir nichtlineare Regelkreise, die mit Hilfe von nichtlinearen
Differentialgleichungen formuliert werden, im Allgemeinen keine exakte
Zeitlosung bekannt ist.

Die in der Literatur vorgestellten Methoden zur Performance-Analyse
werden meistens in exakte und approximative Methoden klassifiziert. Die-
se basieren auf der exakten bzw. approximativen Zeitlosung des Systems
und sind jeweils auf einen einzelnen Regelkreis anwendbar. Um die Er-
gebnisse zu verallgemeinern, konzentriert sich die vorliegende Arbeit auf
die Entwicklung einer Methode zur Performance-Analyse in Regelkreis-
Ensembles. Ein Regelkreis-Ensemble besteht aus linearen Strecken, wobei
die Systemmatrix und der Steuervektor jeder Strecke von einem Para-
meter aus einer kompakten Menge polynomiell abhéngen. Diese Methode
kniipft dabei an die Analyse durch Computerexperimente an, welche in der
Industrie eine breite Anwendung findet. Demnach wird die Performance ei-
ner Regelungsmethode fiir ein Regelkreis-Ensemble an einzelnen Strecken
(Design-Strecken) exakt oder approximativ iberprift und im tibrigen ana-
lysierten Bereich statistisch interpoliert. Wesentlich dabei ist die Angabe
von Konfidenzintervallen fiir die erwartete Performance im gesamten En-
semble.

1.1 Beitrage der Arbeit

Wie bereits erwahnt, beschéftigt sich die vorliegende Arbeit in einem ersten
Teil mit der nicht-konservativen Synthese weicher strukturvariabler Rege-
lungen (WSVR) mittels impliziter Ljapunov-Funktionen (iLF) zur Stabi-
lisierung linearer Systeme mit Stellgréenbeschréankung. Obwohl sich eine
grofle Anzahl an Regelungsmethoden mit der Stabilisierung solcher Sys-
teme beschéftigt, stellen die hier entwickelten Regelungsmethoden einen
deutlichen Fortschritt beziiglich des Entwurfsaufwands und der Perfor-
mance relativ zu der zeitoptimalen Regelung dar. Fiir die klassische WSVR
mittels iLF, welche auf [2] zuriickgeht, werden erstmals notwendige und
hinreichende Bedingungen vorgestellt. Aus der Notwendigkeit der Bedin-
gungen folgt, dass im Fall deren Nichterfiillung iiberhaupt kein Regler
dieser Klasse die jeweilige Strecke stabilisieren kann. Dies stellt einen we-
sentlichen Vorteil gegeniiber bereits existierenden Entwurfsbedingungen
fiir diese Klasse dar.
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Daran anschliefend wird die WSVR mittels iLF auf WSVR mit invers-
polynomialen Selektionsstrategien erweitert. Somit wird der (implizite) Pa-
rameter der weichen strukturvariablen Regelung anhand einer Selektions-
strategie berechnet, welche durch die Inverse einer (in diesem Parameter)
polynomialen Matrix bestimmt ist. Eine dhnliche invers-polynomiale Se-
lektionsstrategie wurde in [36] vorgestellt. Die wesentlichen Vorteile der
in dieser Arbeit entwickelten Regelungsmethode stellen einerseits der frei
wéahlbare Grad der polynomialen Matrix und andererseits die nicht-kon-
servativen Entwurfsbedingungen dar.

Eine darauf aufbauende Optimierung der Konvergenzrate erzeugt je-
weils Zweipunktregler mit einer parameterabhéingigen Selektionsstrategie.
Diese Regler werden auch Bang-Bang-Regler genannt und unterscheiden
sich von der zeitoptimalen Regelung durch deren Umschaltstrategie. Da
in der Praxis die Diskontinuitdt des Regelgesetzes technische Probleme
verursachen kann, wird in dieser Arbeit eine stetige Approximation des
konvergenzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leich-
ten Verschlechterung der Konvergenzrate einen stetigen StellgroBenverlauf
erzielt.

Im zweiten Teil der Arbeit werden verschiedene Methoden zur Perfor-
mance-Analyse in nichtlinearen Regelkreisen vorgestellt. Der Hauptbeitrag
dieses Teils stellt die Anwendung der Theorie {iber das Design von Compu-
terexperimenten auf die Performance-Analyse in nichtlinearen Regelkreisen
dar. Dariiber hinaus wird eine Sensitivititsanalyse fiir eine Regelmethode
bezliglich eines Streckenensembles mit unendlich vielen Strecken einge-
fithrt. Diese soll Aufschlufl dariiber geben, wie die Streckenparameter die
Performance einer Regelmethode beeinflussen. In diesem Zusammenhang
erfahrt die in dieser Arbeit neu-entwickelte konvergenzoptimale Regelung
durch weiche strukturvariable Regelungen mit invers-polynomialen Selek-
tionsstrategien eine besondere Beriicksichtigung.

1.2 Gliederung

Die Arbeit besteht aus zwei Teilen. Im ersten Teil werden die nicht-konser-
vativen weichen strukturvariablen Regelungen vorgestellt. Kapitel 2 ent-
hélt eine Einleitung tiber die Stabilisierung linearer Systeme mit Stellgro-
Benbeschrinkung und die Stabilitdtsanalyse mittels impliziter Ljapunov-
Funktionen. Im Kapitel 3 werden die notwendigen und hinreichenden Sta-
bilitdtsbedingungen der klassischen WSVR mittels iLFs und im Kapitel 4
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die invers-polynomiale WSVR vorgestellt. Im Kapitel 5 wird die Optimie-
rung der Konvergenzrate analysiert. Das letzte Kapitel aus diesem Teil,
Kapitel 6, stellt die notwendigen und hinreichenden Stabilitdtsbedingun-
gen der klassischen und invers-polynomialen WSVR fiir Regelstreckenen-
sembles vor.

Der zweite Teil der Arbeit beschéftigt sich mit Methoden zur Perfor-
mance-Analyse in nichtlinearen Regelkreisen. In dem einleitenden Kapi-
tel 7 werden die wesentlichen Unterschiede zwischen linearen und nichtli-
nearen Regelkreisen dargestellt, sowie verschiedene Performance-Mafle fiir
nichtlineare Regelkreise klassifiziert. Eine besondere Beriicksichtigung er-
fahrt dabei die Konvergenzrate, welche fiir die im ersten Teil vorgestellten
Regelungsmethoden analysiert wird. Kapitel 8 stellt die Anwendung des
Designs von Computerexperimenten auf die Performance-Analyse von Re-
gelungsmethoden vor. Das letzte Kapitel dieser Arbeit, Kapitel 9, fasst
die wesentlichen Ergebnisse dieser Arbeit zusammen und gibt einen Aus-
blick iiber mogliche Weiterentwicklungen. Schliellich enthalten die An-
hénge verschiedene Definitionen und Hilfssdtze, sowie die Parameter der
vorgestellten Beispiele. Anhang A enthilt einige allgemeine Definitionen
iiber Mengen, Funktionen und Matrizen, sowie mehrere Hilfssétze fiir die
Reglersynthese. Anhang B enthélt mehrere stochastische Grundlagen und
Anhang C enthélt die Parameter der Beispiele.
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2 Einleitende Hilfssatze

Fiir weiche strukturvariable Regelungen mit kontinuierlich parameterab-
héngiger Zustandsriickfithrung wurden in [1, 2] hinreichende Stabilisier-
barkeitsbedingungen linearer Systeme mit Stellgroflenbeschriankung mit-
tels impliziter Ljapunov-Funktionen (iLF) vorgestellt. Der Uberblicksarti-
kel [4] bietet eine Beschreibung solcher Regelungen. Bei diesen Regelun-
gen wird zwischen verschiedenen linearen Zustandsriickfithrungen konti-
nuierlich wahrend des Ausregelvorgangs umgeschaltet. Die Umschaltung
ist so ausgelegt, dass wihrend des Ausregelvorgangs mit kleiner werden-
dem Abstand zur Ruhelage immer mehr Einfluf} auf die Strecke ausgeiibt
wird. Diese Regelungen arbeiten nicht im Sattigungsbereich, d.h. die Stell-
grofenverlaufe tangieren hochstens die Begrenzungen, bleiben aber nicht
fiir langere Zeit in der Sattigung. Sattigende WSVR wurden beispielswei-
se in [19, 36], solche mittels impliziter Ljapunov-Funktionen wurden in
[25, 40, 44] vorgestellt. Die Arbeit von [25] beinhaltet dabei eine besonde-
re Berticksichtigung linearer Matrixungleichungen (LMI) zur Formulierung
der Stabilisierbarkeitsbedingungen. Die Arbeit von [40] stellt dariiber hin-
aus eine Generalisierung der WSVR mittels iLF dar, welche polynomiale
Selektionsstrategien beliebigen Grades sowie den Spezialfall der explizi-
ten LF beinhaltet. Da diese Stabilisierbarkeitsbedingungen jedoch nicht
notwendig sondern nur hinreichend sind, kann der Entwurf konservative
Regler erzeugen. Die Grofle des erzielten invarianten Gebietes kann z.B.
klein sein, oder die Einschwingzeit des Ausregelvorgangs kann lang sein.
Daher werden in diesem Teil der Arbeit erstmals Bedingungen vorgestellt,
die fiir die Stabilisierbarkeit der Strecke auch notwendig sind. Die Bedin-
gungen bauen auf den notwendigen und hinreichenden Bedingungen fiir die
Existenz eines linearen Zustandsreglers fiir eine lineare Strecke mit Stell-
groBenbeschrankung auf, welche in [39] vorgestellt wurden. Durch eine
konstruktive Methode werden notwendige und hinreichende Existenzbe-
dingungen einer WSVR aufgebaut, welche dariiber hinaus in dquivalente
LMIs transformiert werden kénnen. Sind diese Bedingungen erfiillt, so wird
ein beschrankter Regler angegeben, der das System stabilisiert.
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In Folgendem werden mehrere Hilfssitze vorgestellt, welche bei der
nicht-konservativen WSVR-Synthese verwendet werden. Dieses Kapitel
ist wie folgt gegliedert: im Abschnitt 2.1 wird die Stabilisierbarkeit linea-
rer Strecken mit StellgréfSenbeschrinkung diskutiert und im Abschnitt 2.2
werden zwei Hilfssétze {iber die Stabilitdtsuntersuchung eines nichtlinearen
Systems mittels impliziter Ljapunov-Funktionen vorgestellt.

2.1 Stabilisierbarkeit linearer Systeme mit
Stellgroflenbeschriankung

Falls die Stellgrole unbeschrankt ist, ist jedes vollsténdig steuerbare LTI-
System stabilisierbar, d.h. die Ruhelage des Systems kann durch die Auf-
schaltung eines geeigneten Regelgesetzes asymptotisch stabil werden. Im
Fall eines nicht vollstdndig steuerbaren Systems muss das nichtsteuerbare
Systemteil bereits asymptotisch stabil sein. Dies wird im folgenden Lemma
verdeutlicht.

Lemma 2.1 [Stabilisierbarkeit eines LTI-Systems]. Gegeben sei
das LTI-System

Xx=Ax+bu, xecR"ueR AcR"”™ becR"

welches vollstindig beschrieben durch das Paar (A,b) ist. Folgende Aus-
sagen sind dquivalent:

i) Das Paar (A,b) ist stabilisierbar.

i1) 3T € R™ "™ T nichtsingulir, sodass A = T {%1 ?;12} T ! und
2
b="T Fﬂ, wobei Ay € R™%, by € R? und (Ay,by) vollstindig

steuerbar und Ay € RMM—DX(=9) gqymptotisch stabil ist.

Beweis. Der Beweis kann in [8, Proposition 12.8.3] gefunden werden. Die
folgende Bemerkung veranschaulicht die Bedingung ). (]
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Bemerkung 2.1. Wie in [65, Abschnitt 3.4] gezeigt, existiert fir jedes LTI-
System eine eineindeutige Transformationsvorschrift

x = Tgx,

sodass der transformierte Zustandsvektor in der Form

Xsh - steuerbares und beobachtbares Systemteil
2— | X - steuerbares aber nicht beobachtbares Systemteil
T xsp - nicht steuerbares aber beobachtbares Systemteil
Xp - weder steuerbares noch beobachtbares Systemteil

vorliegt. Diese Systemform wird auch Kalman-kanonische Form genannt.
Fasst man die beiden steuerbaren bzw. nichtsteuerbaren Systemteile zu-
sammen, ergibt sich das transformierte System

% | _ [ A1 Ap X | by - _ |Xsb - _ |Xsb
x| [ 0 A X5 U e e R £

aus Punkt 7). Die Matrix A; und die Vektoren Xs und by haben n, Zeilen,
wobei ng der Rang der Steuerbarkeitsmatrix des Gesamtsystems ist. Es ist
ersichtlich, dass das zweite Systemteil X5 = AsXs nicht steuerbar ist. Da
die Matrix A, wesentlich fiir die Stabilitat des Gesamtsystems ist,") ist
es sowohl notwendig als auch hinreichend, dass dieses Systemteil bereits
asymptotisch stabil ist. A

Die Stabilisierbarkeit linearer Systeme mittels linearer Regelgesetze kann
auch durch die Existenz quadratischer Ljapunov-Funktionen der Form
V(x) = x'Px iiberpriift werden. Dabei ist die Existenz einer quadra-
tischen Ljapunov-Funktion hinreichend und notwendig fiir die Stabilitat
eines linearen Systems. Dies wird im folgenden Lemma verdeutlicht. Das
Resultat wird in den néchsten Kapiteln fiir die nicht-konservative WSVR,
erweitert.

Lemma 2.2 [Stabilisierbarkeit eines LTI-Systems mittels Ljapu-
nov-Funktionen]. Gegeben sei das LTI-System

x=Ax+bu, xcR* uecR,AcR"™ becR"

welches vollstindig beschrieben durch das Paar (A,b) ist. Folgende Aus-
sagen sind dquivalent:

DDie Systemmatrix des Gesamtsystems hat eine obere Dreiecksform. Somit sind ihre
Eigenwerte durch die Eigenwerte der Matrizen Aj und Ag bestimmt.
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i) Das Paar (A,b) ist durch ein lineares Zustandsregelgesetz u(x) = —k'x
stabilisierbar.

ii) 3P = 0, sodass AP + PAT < bb'.

Beweis. Das Lemma kann als Spezialfall des Satzes 3.1. aus [39] gesehen
werden. Der Beweis wird daher an dieser Stelle weggelassen. |

Im Fall von LTI-Systemen mit Stellgrofenbeschrankung ist das Problem
der Stabilisierbarkeit durch die Beschrankung der Stellgrofie erschwert.
Dies gilt natiirlich nicht fiir Systeme, die bereits stabil sind. Die Schwierig-
keit entsteht bei instabilen Systemen, da es fiir eine grofie Auslenkung von
der Ruhelage moglich ist, dass die begrenzte Stellgréfie nicht ausreicht um
das System zu stabilisieren. Daher kann nicht jedes vollstdndig steuerba-
re System durch eine beschrankte Stellgrofie im gesamten Zustandsraum,
d.h. global, stabilisiert werden.

Der Bereich im Zustandsraum, der damit stabilisierbar ist, wird null-
steuerbare Region, vgl. [35], genannt. Diese bildet zwar fiir stabile und
semi-stabile?) LTI-Systeme den gesamten Zustandsraum, fiir instabile Sys-
teme ist die Region jedoch beschriankt, konvex und offen, vgl. z.B. [35,
Proposition 2.2.1]. Die Region beinhaltet dabei die Ruhelage des Systems.
Beispiele fiir die Bestimmung dieser Region fiir lineare Systeme zweiter
und dritter Ordnung kann in [35, Abschnitt 2.3] gefunden werden.

Im Fall nicht vollstdndig steuerbarer Systeme, wobei der nichtsteuerba-
re Systemteil asymptotisch stabil ist, wird die Region asymptotisch-null-
steuerbar genannt, vgl. [35, Abschnitt 2.7]. Diese beinhaltet die null-steu-
erbare Region des steuerbaren Systemteils und den gesamten Unterraum
des nichtsteuerbaren aber asymptotisch stabilen Systemteils.

Im Folgenden beschrianken wir uns auf vollstindig steuerbare LTT-Syste-
me mit StellgréBenbeschréinkung. Da die hier untersuchten Regelmethoden
nichtlinear sind, ist Lemma 2.2 nicht mehr anwendbar und muss erweitert
werden. Dabei wird der im néchsten Unterabschnitt vorgestellte Satz aus
[1, 2] verwendet.

2)Bei linearen Systemen heifit ein System semi-stabil, falls dessen Systemmatrix Ei-
genwerte in der geschlossenen linken Halbebene besitzt. Dies umfasst auch die Ima-
gindrachse und, im Gegensatz zum Fall grenzstabiler Systeme, die rein imaginéren
Eigenwerte konnen eine beliebige Vielfachheit besitzen. Die grenzstabilen Systeme
bilden also ein Spezialfall semi-stabiler Systeme.
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2.2 Stabilitat mittels impliziter
Ljapunov-Funktionen (iLF)

Auch implizite Ljapunov-Funktionen konnen fiir die Uberpriifung der Sta-
bilitdt dynamischer Systeme verwendet werden. Diese entstehen beispiels-
weise durch eine Einteilung des Zustandsraumes in Regionen, z.B. Ellip-
soide, wobei diese in analytischer Form, d.h. x'P(v)x = 1, mit v € [v,v],
vorliegen. In dieser Arbeit ist P(v) beispielsweise eine polynomiale Ma-
trix in v. Die zustandsabhingige Variation des Parameters v, d.h. v(x),
kann zwar als Ljapunov-Funktion fungieren, diese kann jedoch in den meis-
ten Fillen nicht explizit angegeben werden. Folgender Satz aus [2] stellt
hinreichende Bedingungen fiir die asymptotische Stabilitdt der Ruhelage
eines nichtlinearen Systems mittels impliziter Ljapunov-Funktionen dar.
Der Satz verkniipft die direkte Methode von Ljapunov mit dem Satz iiber
implizite Funktionen, vgl. dazu [18].

Satz 2.3 [Vgl. [2]] Gegeben sei die stetige Funktion h(x) und das System
x = h(x), mit x € R” und der Ruhelage xg = 0 und eindeutiger Losung
fur jeden Anfangswert, sowie eine stetige und differenzierbare Funktion

g(x,v) : V(0) = R, V(0) := {(x,v)|x € U\ {0} C B5(0),0 < v < 1},
welche folgende Bedingungen erfillt:

(1) Aus g(x,v) =0 folgt: x =0 < v — 0,

(1) lim g(x,w) >0 und lim g(x,v) <0, Vx € Up\{0},
v—07F v—1—

) — 00 < yg(x,w) <0, V(x,v)€V(0),

) atg(x(t)vv) < 07 V(X,U) € V(O)

(i
(v
Dann ist die Ruhelage xg = 0 asymptotisch stabil, und die Gebiete

G(v) :={x eR"|g(x,0) <0} CUp

sind verschachtelt und kontraktiv invariant fir alle v € (0,1).“)

@)Vgl. Def. 15 (Anhang) bzw. Def. 14 (Anhang).

Beweis. Der Beweis des Satzes beziiglich der asymptotischen Stabilitét
der Ruhelage kann in [2, Satz 4] gefunden werden. Die kontraktive In-
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varianz der Gebiete G(v) wird in [2, Satz 5] und deren Verschachtelung
in [2, Abschnitt III] nachgewiesen. Im Folgenden wird daher lediglich die
Beweisidee fiir die asymptotische Stabilitdt der Ruhelage skizziert.

Die Bedingungen (i) und (44i) stellen sicher,?) dass die Selektionsstra-
tegie g(x,v) = 0 eine eindeutige Losung fir jedes x € Up\{0} hat, welche
eine stetige Funktion v = v(x) ist. Dariiber hinaus stellt die Funktion
0 < v(x) < 1, welche durch g(x,v) = 0 implizit definiert ist, und aufgrund
der Bedingung (i) fiir x = 0 stetig erweiterbar mit v(0) = 0 ist, eine impli-
zite Ljapunov-Funktion des Systems dar. Dies resultiert aus der Tatsache,
dass v(x) > 0 und v(x) < 0, da auf Grund der Bedingungen (4i7) und (iv)
gilt, dass

. 8tg(x(t),v)

0(x(t)) = Bog(x.) <0, VY(xw)e€V(0). (21D)
Korollar 2.4 [Vgl. [2]]. Alle Trajektorien, die auf dem Rand eines
Gebietes G(v) - d.h. fir x(0) € 0G(v), mit v € (0,1) - starten, laufen
fiirt > 0 in das Gebiet hinein.

Beweis. Dies folgt unmittelbar aus Bedingung (iv) des Satzes 2.3, da fiir
ein beliebiges At > 0 gilt g(x(t + At),v) < g(x(t),v) =0,Vx € IG(v), v €
(0,1). Der Zustand x(t + At) wird in das Ellipsoid G(v) hineinlaufen. [

Unter Verwendung des Satzes 2.3 werden in den néchsten Kapiteln die-
ses Teils der Arbeit nicht-konservative Stabilitdtsbedingungen fiir weiche
strukturvariable Regelungen (WSVR) vorgestellt. Kapitel 3 beschéftigt
sich mit dem Entwurf nicht-konservativer klassischer WSVR mittels iLF
und Kapitel 4 fithrt die invers-polynomiale WSVR ein. Anschlieend wer-
den die vorgestellten Regelgesetze beziiglich der Konvergenzrate der damit
verbundenen Ljapunov-Funktion optimiert. Die somit entstandere konver-
genzoptimale Regelung wird in Kapitel 5 vorgestellt. Schliellich zeigt Ka-
pitel 6 eine einfache Erweiterung der Regelgesetze fiir Regelstreckenensem-
bles.

3)Vgl. 2, Satz 3].
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3 Die klassische WSVR mittels iLF

Die erste weiche strukturvariable Regelung mittels impliziter Ljapunov-
Funktionen wurde in [2] vorgestellt und geht auf [42] zuriick. Diese Re-
gelungsmethode wird im Weiteren als klassische WSVR, bezeichnet. Es
handelt sich um eine kontinuierlich parameterabhéngige Zustandsriickfiih-
rung, wobei der Parameter gleichzeitig eine implizite Ljapunov-Funktion
des Systems darstellt. Der Parameter teilt dariiber hinaus den stabilisier-
baren Zustandsraum in infinitesimal dicht ineinander verschachtelte Ellip-
soide, vgl. Def. 15 (Anhang). Dabei entspricht jedem Ellipsoidenrand ein
eindeutiger Parameterwert, und je kleiner der Ellipsoid ist, desto hoher ist
die mit dessem Rand verbundene Reglerverstiarkung.

Im Abschnitt 3.1 wird die Definition einer klassischen WSVR mittels iLF
aus [2] erweitert und im Abschnitt 3.2 wird das erste Hauptergebnis die-
ser Arbeit, die nicht-konservativen Stabilitdtsbedingungen der klassischen
WSVR mittels iLFs vorgestellt. Das Kapitel endet mit dem Abschnitt 3.3
iiber mogliche Entwurfsschritte des vorgestellten Reglers.

3.1 Definition einer klassischen WSVR
mittels iLF

Betrachtet werden lineare Strecken mit Stellgrof8enbeschriankung in Steue-
rungsnormalform), gegeben durch

x=Ax+bu, xeR"ueR |ul<1,AeR"”™ beR" (3.1)

Bei der strukturvariablen Regelung wird zwischen verschiedenen Regelge-
setzen wiahrend des Ausregelvorgangs umgeschaltet. Dabei unterscheidet
man zwischen parameter- und strukturumschaltenden Regelgesetzen. In
dieser Arbeit wird eine Unterklasse der Ersteren betrachtet. Eine Uber-
sicht solcher Regelungen bietet [4]. Die erste systematisch entwickelte Re-
gelung dieser Art findet sich in [42]. Bei der untersuchten Regelung lautet

DDies ist keine Einschrankung, da jede steuerbare Regelstrecke in diese Form trans-
formiert werden kann.
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das Regelgesetz in allgemeiner Form

u(x) = —f(xv(x)), (3.2)

wobei der Parameter v € R aus einer vorgegebenen Selektionsgleichung
g(v,x) = 0 implizit bestimmt wird. Ein Regelgesetz aus dieser Klasse ist
die nichtsattigende implizite WSVR, die auf [1] zuriickgeht. Diese wird als
klassische WSVR bezeichnet. Es handelt sich dabei um eine vom Parame-
ter v abhéngige lineare Zustandsriickfithrung?

u(x) = —h] x. (3.3)

Das Regelgesetz ist so ausgelegt, dass wihrend des Ausregelvorgangs mit
kleiner werdendem Abstand zur Ruhelage immer mehr Einflufl auf die
Strecke ausgeiibt wird, d.h., dass der Abstand zwischen den momentanen
FEigenwerten des geschlossenen Regelkreises und denjenigen der Regelstre-
cke immer grofer wird, aber die StellgréBenbeschrankung nicht iiberschrit-
ten wird. Folglich wird der Stellgrofenbereich bei kleinen Auslenkungen
von der Ruhelage im Vergleich zur linearen Regelung besser ausgenutzt.
Betrachtet man den geschlossenen Regelkreis bei der Variation der Reg-
lerverstarkung, so werden die momentanen Eigenwerte auf (vorgebbare)
Bahnen wandern. Strahlenférmige Bahnen, wie in Bild 3.1 (links) gezeigt,
konnen durch das folgende Regelgesetz [1] festgelegt werden:

h,=D;'a—a, a' =[0---01]A,
a" =[0---01)A;, A, = A —bhj, (3.4)
D, = diag(v" 0", .. 0).

In der allgemeinen Form ist die Selektionsgleichung auf einer Menge
Vo := {(x,v)|x € Up\{0},0 < v < T}
definiert, wobei Uy C Bs(0) eine Umgebung der Ruhelage ist, und sie lautet
g(v,x) =0. (3.5)
Eine spezielle Form der Gleichung (3.5) ist

g(x,0) =xP,x—1=0. (3.6)

2)Der Ubersichtlichkeit halber wird die Parameterabhédngigkeit von v als Index dar-
gestellt, d.h. z.B. h, = h(v(x)).
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AIm Y A x,

Bild 3.1: Momentane Eigenwerte (links) und kontraktiv invariante Ge-
biete (rechts) fiir den Fall x € R?, mit v € (0,1].

Folglich erzeugt die Selektionsgleichung ellipsoidale Gebiete im Zustands-
raum, die durch die vom Parameter v abhingige Matrix P, skaliert und
gedreht werden.

Die Veranderung des Selektionsparameters v(x) : Up\{0} — (0,7] ist
an die Rénder der ellipsoidalen Gebiete 0E(P,,1) C R™ gekoppelt. Jedem
Gebiet entspricht ein eindeutiger Wert des Parameters v € (0,7], dem &ufle-
ren Gebiet der Wert v(x) = 7, dem innersten Gebiet der Wert v(0) — 0.
Bild 3.1 (rechts) veranschaulicht zwei solche Gebiete fiir den Fall n = 2.
Entsprechend wird wihrend des Ausregelvorgangs fiir jedes x € Uy\{0}
der Wert des Parameters v(x) aus der Selektionsgleichung numerisch be-
stimmt.

Die Matrix P, kann in der Form P, = englPngl, mit D, =
diag(v™, ... v2v), e, = hl P th, und P; = 0 gewihlt werden, sodass
sich die Uberpriifung der kontraktiven Invarianz der ellipsoidalen Gebiete
E(Py,1) auf die des dufleren Gebietes £(P1,1) reduziert. Die Skalierungs-
funktion e, ist dabei so bestimmt, dass das jeweilige Gebiet £(P,,1) unter
der Bedingung

E(P,,1) C {x eR"| |h'(v)x| <1} =: L(v) (3.7)

maximiert wird. Die Gebiete £(v) werden ebenfalls im Bild 3.1 (rechts)
gezeigt.

Die Selektionsgleichung kann man vereinfachen [41], indem man die Ska-
lierungsfunktion e(v) wegléasst, d.h.

P,=D,'P,D,". (3.8)
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Durch diese Vereinfachung kann man zwar auch Regler fiir instabile Stre-
cken entwerfen [41], es ist jedoch nicht mehr sichergestellt, dass die Stell-
grofie die Beschrankung nicht iiberschreitet. Dies muss durch eine zusétz-
liche Bedingung beim Regelungsentwurf sichergestellt werden.

Dariiber hinaus ist es moglich, die Matrixpotenz von —1 auf eine Zahl
zwischen —1 und 0 zu reduzieren. Dies ergibt eine Matrix®)

P,=D,"P,D;", re(0]1], (3.9)

wobei der Skalar r € (0,1] konstant ist. Diese Matrix wird im Folgenden
verwendet.

In dieser Arbeit ist die Existenz eines solchen Reglers fiir das LTI-System
aus Gl. (3.1) definitionsgeméfl dquivalent zu der Existenz einer Matrix
P, > 0, sodass die Gebiete

E() = {x e R"x'D,"P,D, "x < 1}

fir alle v € (0,1] (infinitesimal dicht ineinander) verschachtelt und kon-
traktiv invariant sind, und u(x) < 1, Vx € &£(v) mit v € (0,1] gilt. Die
kontraktive Invarianz eines Gebietes zeichnet sich dadurch aus, dass Tra-
jektorien, die in ein solches Gebiet hineinlaufen, das Gebiet nicht mehr
verlassen und asymptotisch in die Ruhelage konvergieren.?) Zwei Gebie-
te sind verschachtelt, falls ein Gebiet vollstdndig innerhalb des anderen
Gebietes ist und deren Réander keine gemeinsame Punkte haben.?
Basierend auf dieser Definition der klassischen WSVR, werden im Fol-
genden notwendige und hinreichende Stabilitdtsbedingungen vorgestellt.

3.2 Nicht-konservative
Stabilitatsbedingungen

Der folgende Satz mitsamt einer konstruktiven Beweismethode stellt not-
wendige und hinreichende Bedingungen fiir die Existenz einer stabilisieren-
den klassischen WSVR mittels iLFs dar. Fiir eine beliebige lineare Strecke
ergibt sich daraus (im Existenzfall) ein stabilisierendes Regelgesetz. Der
Satz wurde in [61] zum ersten Mal vorgestellt.

3)Diese Form wurde beispielsweise in [55] verwendet.
Vgl. Def. 14 (Anhang).
5)Vgl. Def. 15 (Anhang).
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Satz 3.1 Gegeben sei das folgende LTI-System in Steuerungsnormalform
mit einer Eingangsgrofie und Stellgrofienbeschrinkung

Xx=Ax+bu, xeR" ueR,|u <1. (3.10)

Folgende Aussagen sind dquivalent:
i) Fiir jedes € € (0,1) existieren ein Vektor & € R™, ein Skalar r € (0,1]
und eine Matriz Py € P, sodass fir alle v € (0,1] die Gebiete

Ea(v) =={x €R" |ga(x,v) := "D,"P,D,;"x—1 < 0} (3.11)

verschachtelt und kontraktiv invariant fir das System in Gl. (3.10) mit
dem Regelgesetz

u=-klx, kl:=D,"a—a, (3.12)
mit D, := diag(v™,...,v) und a := —[0 0---1]A sind, wobei der Para-
meter v implizit definiert durch die Gleichung

ga(x,v) =0
ist. Dariiber hinaus gilt
lul <1, Vxe€&r(v), v e [e1]. (3.13)
1) 3P € Sym”, sodass
P >0, (3.14)
AP + PAT < bb', (3.15)
NP +PN <0, N:=diag(-—n,...,—1). (3.16)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch
d=a+cP'b, P;=dP ', (3.17)
wobet

d>b'P~'b/4, (3.18)

/ /b™P—1b
c=V d(bTP_lb)_l,l/e Td,:l) s (319)
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gilt, und r € (0,1] die Losung des quasi-konvexen Optimierungsproblems

max 7, sodass
re(0,1]

(A—Dya) P (4—D,a) < d,Vuw € [",1], (3.20)

1st.

Bemerkung 3.1. Der Parameter d aus Gl. (3.18) kann zur Skalierung der
Matrix P71, und somit des kontraktiv invarianten Gebietes £,(1) verwen-
det werden. Ein kleinerer Wert von d ergibt ein grofieres Gebiet. Der
Parameter ¢ aus Gl. (3.19) skaliert den linearen Bereich der Séttigung
L(—k]x,1), sodass dieser das kontraktiv invariante Gebiet £, (1) beinhal-
tet. Somit ergibt sich fiir w = 1 ein nichtsdttigendes Regelgesetz. Ein
groflerer Wert von v ergibt einen kleineren linearen Bereich der Sattigung.
Bedingungen (3.18) und (3.19) kénnen in vereinfachter Form als

d T —1 1
52 (P b), >

geschrieben werden. A

Bemerkung 3.2. Sind die Parameter d, v und ¢ gegeben, dann kann GI.
(3.20) in eine dquivalente parameterunabhéngige LMI-Bedingung transfor-
miert werden. Dariiber hinaus existiert immer ein Skalar r € (0,1], sodass
Gl. (3.20) erfiillt ist. Dies resultiert aus der Tatsache, dass Gl. (3.20) fiir
w = 1 erfiillt ist und die linke Seite fir jedes w € [¢",1] endlich ist. A

Bemerkung 3.3. Falls Gl. (3.20) fiir einen Skalar r* € (0,1] erfiillt ist,
dann ist sie auch fiir » < r* erfiillt. Dies resultiert aus der Tatsache, dass
e € (0,1) und folglich, dass " > ¢”", V7 < r*. Der Skalar r € (0,1] kann
daher mit Hilfe des Bisektionsverfahrens berechnet werden.® A

Bemerkung 3.4. Der Ubersichtlichkeit halber wird der Beweis, der weiter
unten erfolgt, vorerst kurz skizziert. In dem ersten Teil des Beweises wird
i1) = 1) gezeigt, d.h. aus i) folgt ¢). Mit Hilfe des Satzes 2.3 wird dabei
bewiesen, dass die Bedingungen (3.14)-(3.16) aus Punkt i7), unter Ver-
wendung des Regelgesetzes aus Gl. (3.12), (3.17)-(3.20), hinreichend dafiir
sind, dass die ellipsoidalen Gebiete £, (v) aus Gl. (3.11) verschachtelt und
kontraktiv invariant sind. Im zweiten Teil des Satzes wird die Notwendig-
keit der Bedingungen (3.14)-(3.16) gezeigt, d.h. i) = 4i). Dies wird mit
Hilfe von Finsler’s Lemma, vgl. Satz A.5 (Anhang), bewiesen. A

6)Vgl. [17, Algorithm 4.1].
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Beweis. ii) = i) Aus Gl. (3.15) folgt
(A —cbb™P ™ HP + P(A — cbb'™ P}’ (3.21)
= AP + PAT—2¢bb"<AP + PAT—bb' <0,

da wegen Gl. (3.18)-(3.19) ¢ > 1/2 ist. Aus Lemma A.4 (Anhang), Seite
178, und Gl. (3.14) folgt, dass das LTI System

%= (A —cbb' P 1)x (3.22)

asymptotisch stabil ist. Nach links und rechts Multiplizieren der Gl. (3.21)
mit der nichtsinguliren Matrix P~! > 0 folgt dariiber hinaus

P 1(A—-cbb™P 1)+ (A -cbb'P P! <0

Daher ist die quadratische Funktion V (x) = x"P~!x eine giiltige Ljapunov-
Funktion des Systems % = (A — cbb'P~1)x.

Das LTI-System aus Gl. (3.22) beschreibt den geschlossenen Regelkreis
aus 1) fiir v = 1. Dies resultiert aus Gl. (3.10) und (3.12), da

% = (A — bk!)x
=[A-b(D,"a—a)|x

_ | On-1p In <
_ATD;r

1
= __Dr" |:On—1,1 ATIn_1:|D_TX

o Y —4 v

1
=~ D}(A—cbb’P "D, "x. (3.23)
(Y

Dariiber hinaus ist die zeitliche Anderung der Funktion g.(x,v) aus Gl.
(3.11), mit P; = dP~!, entlang einer Trajektorie des geschlossenen Regel-
kreises aus Gl. (3.23) gegeben durch

992(V)x(t) V) _ irpy—r gp-1D-rx + X" D-"dP~'D-"%
8t v v v v
_ d TD,;T [(A _ bb—l—Pfl)Tpfl

_;

+ P {(A-bb'P )| D,;"x <0, Vv e (0,1]. (3.24)
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Ferner ist die Matrix NP+PN negativ definit. Somit folgt, dass die Matrix
NP~! + PN auch negativ definit ist und, dass

dga(x,v) 10D, "P7'D;7)
ov x ov X
d

o

"D (NP + P7IN)D,"x < 0,Vv € (0,1],  (3.25)

gilt. Aus Gl. (3.24) und Gl. (3.25) folgt schliefilich, dass die Gebiete E4(v)
verschachtelt und kontraktiv invariant sind.” Somit sind die Bedingungen
aus Gl. (3.14)-(3.16) hinreichend fiir die Existenz einer weichen struktur-
variablen Regelung mittels impliziter Ljapunov-Funktionen. Ferner ist die
implizite Funktion 0 < v(x) < 1 fiir x = 0 stetig erweiterbar mit v(0) =0
und folglich eine zuléssige Ljapunov-Funktion des Systems.

Mit der Notation P, := D;"P1D;” = D, "dP~'D," ist die Bedingung
aus Gl. (3.13), |u| < 1, dquivalent zu

max_[klx|=/kID;d-1PD7k, <1, Yvele1],

XTP,x<1
und folglich zu
k! D'PD’k, < d, Ywclel]. (3.26)
Der Term auf der linken Seite der Gl. (3.26) ist weiterhin &dquivalent zu

k.D’PD’k, = (D;"4 —a)'D’PD" (D, "4 — a)

v
=(A—-D"a)'P(4a - D"a)

=(A—-D,a)'P(a—Dya), w:=0v".

Folglich garantiert Gl. (3.20), dass die StellgréBenbeschrankung eingehal-
ten ist, d.h. Ju| < 1, Vx € &(w), w € [e7,1].

i) = i) Falls 1) gilt, dann ist das Gebiet £4(1) kontraktiv invariant
fiir das System %X = (A — bk])x und die Funktion V' (x) := x"P;x ist eine
giiltige Ljapunov-Funktion des Systems. Folglich ist dieses System (global)
asymptotisch stabil. Fiir P := P L' 0 folgt

(A — bk])P+P(A —bk])" < 0. (3.27)

") Dies folgt unmittelbar aus dem Satz 2.3.
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Sei B+ € R 1*" eine Basis fiir den Nullraum von b, sodass Btb = 0
und B+ (B+)" = 0 gilt. Nach Multiplizieren der Gl. (3.27) mit der Matrix
B+ (von links) und der Matrix (B+)" (von rechts) folgt, dass
B+ (A - bk])P(B*)" + B*P(A — bk]) (BH)"

=B (AP + PA")(BY)" <0. (3.28)
Da dies nicht offensichtlich ist, wird im Folgenden eine kurze Erklédrung
hinzugefiigt. Weil B+ (B~+)" = 0 gilt, und dies dquivalent zu dem Fakt ist,
dass Rang(B+) = Rang(B+(B*)") = n — 1 ist, folgt, dass ein Vektor d €
R? existiert, sodass die Matrix S := [d (BlﬂT € R™ " nichtsingulir
ist. Unter Verwendung der Notation

M := (A — bk{)P + P(A — bk])"
folgt dann aus Gl. (3.27), dass

d’ dMd dMBHT
L 1 _
SMS' = [BJ_:| M [d (B ﬂ - BJ_Md BJ_M(BJ_)T <0

gilt. Daraus folgt unmittelbar Gl. (3.28), welche der unteren rechten Ecke
dieser Blockmatrix entspricht.®)

Aufgrund von Finslers’ Theorem? ist Gl. (3.28) weiterhin dquivalent zu
dem Sachverhalt, dass ein Skalar p € R existiert, sodass

AP +PAT < ubb’,
mit
p>d' [Q-Q(BH) (B Q(BY)) "B Qld,
Q:= AP +PA',
d" = |b,|7'b}", b, € R\{0}, b}/ € R™*",

wobei das Tupel (by, b, ) eine Voll-Rang-Faktorisierung des Vektors b ist.!?)
Schlieflich folgt Gl. (3.15) nach der Skalierung der Matrix P mit einem
f > max{0,u}.

8)Vgl. [8, Prop. 8.2.4].
9)Vgl. [68, Theorem 2.3.10].
10)Vgl. Def. 20 (Anhang).

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

22 3 Die klassische WSVR mittels iLF

Dariiber hinaus sind die Gebiete £4(v) verschachtelt, d.h. E5(v2) C
Ea(v1), VO < vy < vy < 1 und 9 (v1) N OEA(v2) = 0.1V Dies bedeu-
tet, dass fur x € €, (vy1) folgt, dass ga(x,v2) > 0 und ga(x,v1) = 0, und
daher dass

ga(x,02) > ga(x,01), VO <wve <wvy <1,x € IE(v7).
Folglich ist

092060) _ I rpr(NP-1 4+ PTIN)D; T
ov v
<0, ¥x € Ex(v) und v € (0,1].

Es folgt auch, dass x (NP~! + P7!N)x < 0, Vx € &(1). Zudem ist
(kx)T(NP~! + P7IN)(kx) < 0, Vk € R, x € &\(1), d.h. die Matrix
NP~! + P !N ist negativ definit. Nach Links- und Rechtsmultiplizie-
ren der Matrix mit der nichtsinguldren Matrix P folgt schliellich auch
Gl. (3.16). Daher sind die Bedingungen aus Gl. (3.14)-(3.16) auch not-
wendig fiir die Existenz einer weichen strukturvariablen Regelung mittels
impliziter Ljapunov-Funktionen. ]

Transformation der Bedingung aus Gl. (3.20) in eine LMI

Gl. (3.20) kann in eine dquivalente parameterunabhéngige LMI transfor-
miert werden. Die Transformation basiert auf Lemma 4.4 aus [78], das eine
Generalisierung der in [38] vorgestellten S-Prozedur verwendet. Dabei wird
gezeigt, dass Gl. (3.20) ein Matrixpolynom in der Variablen w € [e",1] ist,
welches in ein weiteres Matrixpolynom in der Variablen z € [—1,1] trans-
formiert werden kann. Darauf basierend wird eine parameterunabhéngige
LMI-Bedingung eingefiihrt, welche notwendig und hinreichend dafiir ist,
dass das letzte Matrixpolynom positiv fiir alle z € [—1,1] ist. Dies wird im
Folgenden gezeigt.
Da P € P", ist Gl. (3.20) dquivalent zu'?

P! a—Dg,a

Mu=la_Dya)  d

=0, Ywele1]. (3.29)

Vgl Def. 15 (Anhang).
12)Vgl. [8, Fact 8.15.5].
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Die Matrix M,, kann in Form eines Matrixpolynoms geschrieben werden,
d.h.

n

M, =Y w'M;, M; € Sym™*', w e [£",1], (3.30)
i=0
mit
P! a
MO - |: ﬁT d:| 5
_ On,n In eie—li— Onm In 0n71 .

MIL = |: a—r 017n On7n eie—li— On7n a , 1= 17 .y
wobei e] = [0,...,1,...,0], mit e;;, = 1, der i-te kanonische Einheitsvektor
ist. Eine zweite Variablensubstitution mit z := éw - g, wobei a := (1 —

e")/2 und B = (1+¢")/2, wird angewandt, um das Intervall w € [¢”,1] auf
das Intervall z € [—1,1] abzubilden. Folglich ist das Matrixpolynom aus
Gl. (3.30) aquivalent zu

M. = i(az +8)'M; = i i: <Z) 2B | M
=0

iz \j=0 \J

My, My e Sym™!, z e [-11], (3.31)

Il
NER

~
I
<

mit

My =) (;) of 3R M;. (3.32)
i=k

Das Matrixpolynom in Gl. (3.31) kann dariiber hinaus geschrieben werden
als

M, = (z[k+1} &® In)TME (Z[kJrl] & In) 5

mit My € Sym* V0D o e [—11], k = [n/2],"® sowie zlF+l =

[1 Z e zk] , wobei My eine symmetrische Tridiagonalmatrix mit den

13) [m] ist die kleinste ganze Zahl, die gréBer oder gleich m ist.
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Elementen'4)

Ma(i—1), i=7<k,

Moy, 1=j=k+ 1, k = gerade,
My, = 0n~+1,n+1, i=j=k+ 1, k = ungerade,

%M2(5—1)+17 li —jl=1,1=min{i,j},

0n+1,n+13 |Z - J| > 1.

ist. GL. (3.29) ist daher dquivalent zu

(Z[k+1] ® In)TMz (Z[k+1] ® In) >0, (3.33)
L+ — [1 P Z’“]T, Vze [-1,1].

Gl. (3.33) ist dann und nur dann erfiillt, wenn'®) zwei Matrizen D € P"*
und G € Skew™" existieren, sodass

w2 gL e

mit C = [Iy 0] ® I, und J = [0x1 Ii] ® I, gilt. Gl (3.34) stellt
eine parameterunabhingige LMI-Bedingung dar, welche notwendig und
hinreichend fiir die Bedingung aus Gl. (3.20) ist.

3.3 Regelungsentwurf

Die in Abschnitt 3 vorgestellten Regelgesetze konnen durch folgende
Schritte entworfen werden:

Schritt 1a Lose das Validierungsproblem (3.14)-(3.16).

Schritt 2a Fiir die resultierende Matrix P und einen frei gewdhlten Para-
meter £ € (0,1), wihle einen Skalar d > b"P~'b/4 um das grofite
erzielte Einzugsgebiet G,(1) zu bestimmen und einen Skalar v € (0,1)
um die lineare Region der Sattigung £(uyf,1) zu bestimmen.

14>Mg(m,> bezeichnet eine Matrix in der i-ten Zeile und j-ten Spalte der Blockmatrix

3.
15)Vgl. [78, Lemma 4.4].
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Schritt 3a Lose das Optimierungsproblem (3.20) mit Hilfe des Bisektions-
verfahrens'®), um ein Skalar r € (0,1] zu finden.

Schritt 4a Verwende das resultierende nichtsittigende Regelgesetz uy in
der Form gegeben in Gl. (3.12) und (3.17), mit den Parametern P,
d, v, and 1 aus den vorherigen Schritten.

Ein Beispiel eines solchen Reglers wird im Abschnitt 5.5 vorgestellt. Zu-
sammenfassend kann man feststellen, dass die im Satz 3.1 vorgestellten
nicht-konservativen Stabilitdtsbedingungen der klassischen WSVR mittels
iLF, so wie sie im Abschnitt 3.1 definiert wurde, einen nicht-konservativen
Regler erzielen. Wiren die oben genannten Bedingungen nicht erfiillt, so
wiirde keine klassische WSVR mittels iLF existieren, die die untersuchte
Regelstrecke stabilisieren wiirde. Eine Verbesserung des Ausregelverhal-
tens dieser nicht-konservativen klassischen WSVR mittels iLF wird im
Kapitel 5 vorgestellt. Im néchsten Kapitel wird aber erstmals eine Wei-
terentwicklung der klassischen WSVR beziiglich der Selektionsstrategie
vorgestellt.

16)Vgl. [17, Algorithm 4.1].
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4 Die invers-polynomiale WSVR

Bei der in diesem Abschnitt analysierten Klasse von WSVR ergibt sich der
Parameterwert aus einer Selektionsstrategie, die durch Inverse von polyno-
mialen Matrizen definiert ist. Ein Vorldufer dieser Klasse von WSVR wur-
de in [40] eingefiihrt. Darin wurden hinreichende Stabilisierbarkeitsbedin-
gungen linearer Systeme mit StellgréBenbeschriankung durch WSVR mit-
tels impliziter Ljapunov-Funktionen (iLF) und polynomialer?) Selektions-
strategien vorgestellt. Bei der in diesem Abschnitt vorgestellten Regelme-
thode stellt der implizite Parameter v dariiber hinaus keine implizite
Ljapunov-Funktion des Systems mehr dar.

Auflerdem kann diese Methode im Gegensatz zur klassischen WSVR, auf
Systeme in beliebiger Form direkt angewendet werden, d.h. die Systeme
miissen nicht vorerst in die Steuerungsnormalform transformiert werden.
Fiir lineare Systeme mit nur einer Eingangsgroflie stellt dies keinen Vor-
teil dar, da jedes lineare System in die Steuerungsnormalform transfor-
miert werden kann. Bei Mehrgréfiensystemen existieren zwar auch Nor-
malformen, jedoch ist der Entwurf der klassischen WSVR deutlich schwie-
riger, vgl. [32, 40]. Da die Transformation in die Steuerungsnormalform
nicht mehr notwendig ist, kann eine Ausdehnung der invers-polynomialen
WSVR auf Mehrgroensysteme wahrscheinlich leichter erfolgen, vgl. auch
[36] fiir eine dhnliche WSVR fiir MehrgroBensysteme.

Die Inversion der polynomialen Matrix, welche die Selektionsstrategie
bestimmt, hat zur Folge, dass die Stabilitdtsbedingungen, welche im Fol-
genden vorgestellt werden, nicht nur notwendig und hinreichend sind, son-
dern auch polynomiale Matrizen darstellen. Dies stellt einen wesentlichen
Vorteil dar, da die Definitheit einer polynomialen Matrix mittels einer
Aquivalenztransformation durch die Definitheit einer konstanten Matrix
iberpriift werden kann, d.h. in Form einer linearen Matrixungleichung
(LMI) formuliert werden kann.

Dieses Kapitel ist wie folgt gegliedert: im Abschnitt 4.1 wird die invers-
polynomiale WSVR, definiert und im Abschnitt 4.2 werden nicht-konser-

DDie Selektionsstrategie ist auch in diesem Fall eine quadratische Gleichung der Form
x"P(v)x = 1. Dabei ist jedoch P(v) eine polynomiale Matrix in v.
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vative Stabilitdtsbedingungen vorgestellt. Das Kapitel endet mit dem Ab-
schnitt 4.3 tiber mogliche Entwurfsschritte.

4.1 Definition einer stabilisierenden
invers-polynomialen WSVR

Wie in den vorherigen Abschnitten betrachten wir LTT-Systeme mit einer
Eingangsgrofie und Stellgroffenbeschriankung, gegeben durch

x=Ax+bu, xeR" ueR, |ul <. (4.1)

Die allgemeine Form der im néchsten Abschnitt analysierten WSVR mit
invers-polynomialer Selektionsstrategie ist?)

u=—k'x

v

(4.2)

wobei der Parameter v € [g,1], mit ¢ € (0,1), fiir ein gegebenes x € R?
durch die Gleichung

My
gr(xw) =x'R;'x—1=0, R,:= Z v'Re;, (4.3)
=M,

mit M}, M, € Z, M; < 0, M} < M, und R, > 0, Vv € [g,1], bestimmt
wird. Dabei ist R,, eine polynomiale Matrix.?)

Das Regelgesetz aus Gl. (4.2)-(4.3) fiir das System aus Gl. (4.1) heif3t sta-
bilisierende WSVR mit invers-polynomialer Selektionsstrategie (oder kurz
invers-polynomiale WSVR), wenn die Gebiete

Ep(v) := {x € R"|gp(x,v) < 0} (4.4)

fiir alle v € [g,1] verschachtelt und kontraktiv invariant sind,* und |u(x)| <
1,¥x € &Ep(v), v € [¢g,1] gilt.

2)Der Ubersichtlichkeit halber stellt in dieser Arbeit der Index v eine Notation dar.
Diese bedeutet, dass der Vektor k, eine Vektorfunktion in v darstellt, d.h. k, :=
k(v).

3)Strenggenommen handelt es sich um Laurent-Polynome, welche auch negative Ex-
ponenten zulassen. Diese Unterscheidung spielt jedoch im Weiteren keine Rolle.

YVgl. Def. 15 (Anhang) bzw. Def. 14 (Anhang).
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4.2 Nicht-konservative
Stabilitatsbedingungen

Der folgende Satz mitsamt einer konstruktiven Beweismethode stellt die
notwendigen und hinreichenden Bedingungen fiir die Existenz einer sta-
bilisierenden weichen strukturvariablen Regelung mit invers-polynomialer
Selektionsstrategie dar. Fiir eine beliebige lineare Strecke mit einer Ein-
gangsgrofe und StellgroBenbeschrankung ergibt sich daraus (im Existenz-
fall) ein stabilisierendes Regelgesetz. Dieses kann z.B. verwendet werden,
wenn eine beliebige stabilisierende Regelung fiir die Initialisierung eines
Optimierungsalgorithmus gesucht wird. Der Satz wurde zum ersten Mal
in [60] vorgestellt.

Satz 4.1 Gegeben sei das folgende LTI-System mit einer Eingangsgrifie
und Stellgréfienbeschrinkung

x=Ax+bu, xeR", ueR,|ul <1, (4.5)

sowie eine reelle Zahl e € (0,1). Folgende Aussagen sind dquivalent:

i) Es existieren die ganzen Zahlen My, My € Z, mit M) < 0, M} < M,,,
die Matrizen R, € Sym", mit i = My, ..., M,, sowie eine rationale Vek-
torfunktion k, : [e,1] = R™, sodass fiir alle v € [e,1] die Gebiete

Ep(v) := {x € R"|gp(x,v) < 0}, (4.6)
mit
gr(x0) == x'Qux — 1, (4.7)
»:=R;!
Ml'l
R,:= Y v'Re =0, Vvell]
i:Ml

fiir das System aus Gl. (4.5) mit dem Regelgesetz

u=-klx, k,:[l]—R", (4.8)
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verschachtelt und kontraktiv invariant sind, und

lu(x)] <1, Vx € &(v), velel], (4.9)
gilt.
i) Imy, my € Z, mit m; < 0, my < m,, sowie die Matrizen P., €
Sym", i =my,...,my, sodass fir jedes v € [e,1] gilt
my, )
P,=>Y v'P >0, (4.10)
i:m1
my, .
P, =Y ' 'Pe, -0, (4.11)
i:ml
AP, +P,A" <bb'. (4.12)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch

kl =cb'P;!, R,=d'P,, (4.13)
sowie
d 10, 1
Z2bP'b>0, >z (4.14)

Bemerkung 4.1. Die Parameter d und c skalieren wie im vorigen Kapitel
die kontraktiv invarianten Ellipsoide gegeben durch P, bzw. den linearen
Bereich der Sittigung, sodass dieser die kontraktiv invarianten Gebiete
beinhaltet.?) A

Bemerkung 4.2. Die parameterabhingigen Bedingungen aus Gl. (4.10)-
(4.12) stellen polynomiale Matrizen in v € [¢,1] dar und kénnen in &qui-
valente parameterunabhéngige LMIs transformiert werden. Die hier ver-
wendete Transformation wurde in [77] vorgestellt. Sie beruht auf der ver-
allgemeinerten S-Prozedur aus [38]. In [40, Anhang A.4] werden auch ein-
fache Matlab-Funktionen zur Verfiigung gestellt, mit denen man solche
Bedingungen in dquivalente parameterunabhéngige LMIs transformieren
kann. A

Bemerkung 4.3. Der Ubersichtlichkeit halber wird der Beweis, der weiter
unten erfolgt, vorerst kurz skizziert. Mit Hilfe des Satzes 2.3 aus [2] wird
erstens bewiesen, dass die Bedingungen (4.10)-(4.12), unter Verwendung

5)Vgl. Bemerkung 3.1.
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des Regelgesetzes aus Gl. (4.8), (4.13)-(4.14), hinreichend dafiir sind, dass
die ellipsoidalen Gebiete Ep(v) aus Gl. (4.6) verschachtelt und kontrak-
tiv invariant sind. Die Notwendigkeit der Bedingungen (4.10)-(4.12) wird
anschlieflend mit Hilfe von Finsler’s Lemma, vgl. Satz A.5 (Anhang), ge-
zeigt. A

Beweis. ii) = i) Fir den Beweis wird folgende Notation verwendet:
A,:=A —cbb'P L.
Aus Gl. (4.12) folgt, dass

AP, +P,Al = AP, + P,A" — 2cbb"
<AP,+P,A"—bb' <0, Vvelgl], (4.15)

da ¢ > 0.5 ist. Durch Links- und Rechtsmultiplizieren der Gl. (4.15) mit
der positiv definiten Matrix P! ergibt sich

P A, + AP, <0, VYvelgl]. (4.16)

Aus Q, = R;! = dP;! folgt, dass eine Umgebung Uy C Bs(0) der
Ruhelage existiert, sodass fiir die zeitliche Anderung der Funktion gp(x,v)
aus Gl. (4.7) entlang einer Trajektorie des Systems % = A, x5

drgp(x(t)w) = x"(AIQ, + QuA)x < 0, VY (x0) € V(e), (4.17)

mit
V(e) = {(x,v)|x € Up\{0} C Bs(0),e < v < 1}

gilt. Aus Gl. (4.17) folgt, dass Bedingung (iv) des Satzes 2.3 fiir alle (x,v) €
V(e) erfillt ist. Dartiber hinaus gilt

9,Qu = 0,(dP,") = —dP, ' (8,P,)P,' <0, Vvel[el],
d.h.
— 00 < ygp(x,0) =x'(8,Qu)x <0, VY(x,0) € V(e). (4.18)

Aus GIl. (4.18) folgt, dass die Bedingung (4i7) des Satzes 2.3 fur alle (x,v) €
V(e) erfiillt ist.

6)Die Ableitung wird in abgekiirzter Form durch d:gp(x(t),v) bezeichnet, d.h.

Orgp (x(t),v) := %x
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Die Bedingung (i) ist dariiber hinaus fir alle x € Ep(1)\Ep(e) erfiillt,
da

lim gp(x,v) =gp(x,1) <0, Vxe€&p(1)\Ep(e),

v—1—
lim+ gp(x,v) = gp(x,e) >0, Vxe&Ep(1)\Ep(e).
v—E
Die Bedingungen (i) und (éi%) stellen sicher, dass die Gleichung gp (x,v) =
0 eine eindeutige Losung fiir jedes x € Ep(1)\Ep (&) hat, welche eine stetige
Funktion v = v(x) fiir € < v < 1 ist. Dariiber hinaus stellt die Funktion

Vo (o) = {U(x), mit gp(x,0) =0, x € Ep(1)\Ep(e), (4.19)

ex'Q.x, x € Ep(e)

eine Ljapunov-Funktion des Systems dar. Dies folgt aus der Anwendung
der direkten Methode von Ljapunov.”) Dabei gilt Vi (0) = 0, sowie Vp(x) >
0 fiir alle x € Ep(1)\{0}. Dariiber hinaus gilt auf Grund der Bedingungen
(733) und (iv) Vp(x) < O fiir alle x € Ep(1)\Ep(¢), sowie auf Grund der Gl.
(4.16) Vp(x) < 0 fiir alle x € Ep(g)\{0}. Folglich ist die Ruhelage xg = 0
asymptotisch stabil und die Gebiete Ep(v) fiir alle v € [e,1] verschachtelt
und kontraktiv invariant.

Die Bedingung aus Gl. (4.9) beziiglich der StellgréBenbeschrankung ist
dquivalent zu

lu(x)] < max [klx|= \/kIlekU = C\/prgldePUP#b
1

xTQux<
=cVd-'b'P;'b <1, Vuelel],

und, folglich, zu
d
b'P;'b< —, VYvelgl] (4.20)

)
02

Da 0,P, > 0, Vv € [¢,1], folgt, dass mit steigendem v die Matrixfunktion
P, monoton steigend ist, d.h. fiir alle ¢ < v; < v2 < 1 gilt Py, < Py,.
Somit ist die Matrixfunktion P! monoton fallend,® d.h. fiir alle ¢ <
v < vy < 1gilt Pyt > Pl Daraus folgt, dass die Matrixfunktion

Dvgl. z.B. [3].
8)Dies gilt weil 9y(Py 1) = =P 1 (8yPy)Py ! <0, Vo € [e,1].
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bTPglb ebenfalls monoton fallend ist, d.h. fir alle ¢ < v; < v9 < 1 gilt
b'P,'b > b'P_'b.”) Folglich gilt
b'P,'b <b'P b, Vuvelgl]
und daher p
b'P,'b<b'P;'b< —, Vuvelgl],

c?’
d.h. Gl. (4.9) ist erfullt.

i) = i) Falls 4) gilt, dann ist fir jedes v € [e,1] das jeweilige Gebiet
Ep (v) kontraktiv invariant fiir das entsprechende System x = (A — bk )x.
Die Funktion W(x) := x'Q,x ist dabei eine giiltige Ljapunov-Funktion
des Systems, d.h.

(A —bk!)'Q, + Q,(A—Dbk]) <0, VYuvell]
und das System ist global asymptotisch stabil. Fiir
P, = qul (4.21)
folgt
(A —bk!)P, +P,(A -bk])' <0, Vuvelgl]. (4.22)

Sei B+ € R(®»~1x" ¢ine Basis fiir den Nullraum von b, sodass B+b = 0
und B+ (B4)" = 0 gilt. Nach Multiplizieren der Gl. (4.22) mit B+ (von
links) und (B+)" (von rechts) folgt, dass'®)

B+ (A - bk!)P,(BY)" + B P,(A — bk]) (B4)"
=B+ (AP, + P,ANBYH) <0, Vuvelsl].

Dies ist dquivalent zu dem Sachverhalt, dass fiir jedes v € [g,1] ein Skalar
Ly € R existiert,') sodass

AP, +P,A" < ;1,bb’,
mit
fo >d" {L, — L,(B")"[B'L,(B+)"] 'B*L, } d,
L,=AP,+P,A",
d":= b,|7'b;}f, b, € R\{0}, b/ € R*™,

9 Vgl. [8, Proposition 8.6.13, zv)].
10)ygl. [8] oder die Ausfithrung auf Seite 20.
D) Vgl. Finsler’s Lemma, [68, Theorem 2.3.10].
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wobei das Tupel (by,b,) eine Voll-Rang-Faktorisierung des Vektors b ist.
Gl. (4.12) folgt durch Skalierung der Matrix P,, durch einen Skalar

[ > max {0, max uv} .

v€E(e,1]
Dariiber hinaus sind die Gebiete Ep(v) verschachtelt, d.h.

513(1}2) C 513(’[11), Ve<uy < < 1,
5p(’l)2)ﬂgp(’vl):®, Ve <y <wv <1.

Dies bedeutet, dass fiir x € 9&p(v1), gp(x,v1) = 0 und gp(x,v2) > 0,
Ve < vy <wp <1, folgt und daher, dass

gp(x,v2) > gp(x,v1), Ve<wvy<wv; <1,x€dEp(v1)
gilt. Folglich gilt

Ovgp (x,0) = xT(&JQU)x <0, Vxe€dp(v),velel]
und somit 9,Q, < 0, Vv € [¢,1]. Daraus folgt, dass

0Py = 0,(Q, 1) = -Q,1(.Qu)Q, " - 0V v € [e1],

d.h. es folgt Gl. (4.11).
Gl. (4.10), d.h. P,, > 0, folgt aus Gl. (4.21), wobei die polynomiale Form
der Matrix P, durch
Pv = Q;l = Rv

sichergestellt ist.
Die Bedingungen (4.10)-(4.12) sind somit auch notwendig fir die Exis-
tenz einer WSVR mit invers-polynomialen Selektionsstrategien. O

Die Sétze 3.1 und 4.1 stellen also die hinreichenden und notwendigen Be-
dingungen fiir die Existenz einer stabilisierenden WSVR mittels impliziter
Ljapunov-Funktionen bzw. mittels invers-polynomialer Selektionsstrate-
gien dar. Die Stabilisierbarkeitsbedingungen sind somit nicht-konservativ.
Die damit entworfenen Regelgesetze konnen als Startwerte fiir eine Regler-
optimierung verwendet werden. Dies wird im Kapitel 5 fiir den Fall der
Maximierung der Konvergenzrate gezeigt.
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4.3 Regelungsentwurf

Das im vorigen Abschnitt vorgestellte Regelgesetz kann durch folgende
Schritte entworfen werden:

Schritt 1b Lose das Validierungsproblem (4.10)-(4.12).

Schritt 2b Verwende das resultierende nichtséttigende Regelgesetz u in
der Form gegeben in Gl. (4.8) und (4.13), mit den Parametern d und
caus Gl (4.14).

Bemerkung 4.4. Das Validierungsproblem aus Schritt 1 beinhaltet keine
Bedingungen beziiglich der Gréfle des Ellipsoids. M6chte man vermeiden,
dass das Validierungsproblem ein zu kleines Ellipsoid erzeugt, so kann man
weitere Bedingungen einfiihren. Beispielsweise kann man zusétzlich for-
dern, dass P;! < C, wobei die Matrix C € Sym” eine vorgegebene Matrix
ist. Damit stellt man sicher, dass das Volumen des Ellipsoids 9€(1) groBer
als das Volumen eines vorgegebenen Ellipsoids 9&, := {x € R*|x'Cx < 1}
ist. Erzielen kann man dies durch die zusétzliche LMI

[Pl I,

o]

A

Ein Beispiel eines solchen Reglers wird im Abschnitt 5.5 vorgestellt. Das
Regelgesetz aus Schritt 2 wird nicht notwendigerweise zu einem schnellen
Ausregelverhalten fithren. Aufgrund der Nicht-Konservativitit der Bedin-
gungen des Validierungsproblems aus Punkt 1, stellt dieses Regelgesetz
jedoch sicher, dass fiir die analysierte Strecke {iberhaupt ein Regelgesetz
dieser Klasse existiert. Dieses kann auch als Startregler fiir einen Opti-
mierungsalgorithmus verwendet werden. Dies wird im néchsten Kapitel
vorgestellt.
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(Bang-Bang) WSVR

Wie in [35] gezeigt, kann man eine untere Grenze der Konvergenzrate eines
nichtlinearen Systems anhand der Abklingrate (entlang der Trajektorien
des Systems) einer fiir das System giiltigen Ljapunov-Funktion untersu-
chen. In diesem Kapitel wird das Regelgesetz bestimmt, das diese Abklin-
grate maximiert. Das resultierende Regelgesetz ist dabei ein Bang-Bang-
Regelgesetz mit einer parameterabhéingigen Selektionsstrategie.

Unter der Voraussetzung, dass eine Selektionsstrategie

gu(xvv) = XTQHX -1=0

eine eindeutige und stetige Losung v(x) : Up\{0} — (&,1) fiir jedes x €
Up\{0} aus einer Umgebung der Ruhelage hat, kann diese Umgebung in
die ellipsoidalen Gebiete

Eu(v) = {x e R"x'Qx < 1}

geteilt werden, wobei dem Rand jedes Gebiets ein eindeutiges v € (g,1)
zugewiesen wird. Somit kann fiir die Optimierung der Konvergenzrate des
Gesamtsystems die Funktion

Vi(x) = {v(x), mit g, (x,0) =0, x € E(1)\Eu(e)

ex'Q.x, x € Eu(e) (5.1)

verwendet werden. Diese Funktion ist fiir alle x € &,(1)\{0} positiv definit.
Entlang einer Trajektorie des Systems aus Gl. (4.1), Seite 27, gilt dabei

. ) Vaaxu), x € &u(1)\Eule)
Vulu) = {Vug(x,u), x € E4(2)\{0}
mit
T(ATQ, v A 2x'Q,b
Vo (xu) = —X( Q —:CT((QGUQ):(): xQ u,

Vao(xu) = ex' (ATQ. + Q-A)x + 2x'Q.bu.
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Daraus folgt, dass fiir jedes x € £,(1)\{0}

arg IHTLH Vu(x,u) = —sgn(b'Q,x)
u|<1

gilt, d.h., dass das Regelgesetz, das die Funktion Vu(x,u) in jedem Punkt
x € &,(1)\{0} minimiert, ein Bang-Bang-artiges Regelgesetz mit einer
parameterabhéngigen Umschaltstrategie ist. Die Stabilitdtsbedingungen
dieses Regelgesetzes werden in Abschnitt 5.1 analysiert. Dabei wird er-
sichtlich, dass die Existenz eines stabilisierenden beschrédnkten Reglers,
wie z.B. in Abschnitt 4.2 bestimmt, notwendig und hinreichend fiir die
Stabilitdt der konvergenzoptimalen Regelung ist. Der Entwurf der konver-
genzoptimalen Regelung ist also auch nicht-konservativ. Jedoch hat die
Unstetigkeit des Regelgesetzes Nachteile in einer praktischen Implemen-
tierung, beispielsweise durch die ununterbrochene Aktivitdt des Reglers
aufgrund unvermeidbaren Rauschens. Daher wird eine stetige Approxima-
tion des konvergenzoptimalen Regelgesetzes in Abschnitt 5.2 untersucht,
welche auf Kosten einer geringeren Konvergenzrate einen stetigen Verlauf
erzielt.

Das Hauptergebnis dieses Kapitels ist im Abschnitt 5.1 enthalten. Dar-
in werden (nicht-konservative) Stabilitdtsbedingungen der Bang-Bang-
WSVRs vorgestellt. Anschliefend wird eine stetige Approximation des
konvergenzoptimalen Regelgesetzes im Abschnitt 5.2 und die jeweiligen
Entwurfsschritte im Abschnitt 5.4 vorgestellt. Das Kapitel endet mit dem
Abschnitt 5.5, in dem zwei Beispiele die neu-entwickelte Regelungsmetho-
de veranschaulichen.

5.1 Nicht-konservative
Stabilitatsbedingungen

Der folgende Satz stellt die notwendigen und hinreichenden Stabilitéts-
bedingungen fir das konvergenzoptimale Regelgesetz vor. Dieser Satz ist
ahnlich zu dem Satz aus [37], der die Stabilitdtsbedingungen eines konver-
genzoptimalen Reglers mit einer parameterunabhangigen zustandslinea-
ren Umschaltstrategie untersucht. Dariiber hinaus stellt dieser Satz eine
Generalisierung des Satzes aus [58] dar, welches die Stabilitdtsbedingungen
eines konvergenzoptimalen Reglers mit einer klassischen WSVRY) unter-

Dvegl. [2].
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sucht. Der hier vorgestellte Satz gilt fiir beliebige WSVR-Regelgesetze,
welche durch quadratische Selektionsstrategien determiniert werden.
Im Folgenden verwenden wir die Notation

V(e) = {(x,v) |x € Up\{0},e <v < 1},
wobei Uy C Bs(0) eine Umgebung der Ruhelage xg = 0 darstellt.

Satz 5.1 Gegeben sei das folgende LTI-System mit einer Eingangsgrifse
und Stellgréfsenbeschrankung

Xx=Ax+bu, xeR" uweR,|ul <1, (5.2)

sowie eine reelle Zahl € € (0,1). Folgende Aussagen sind dquivalent:
a) Es existiert ein beschrinktes Regelgesetz

up = —f(xv), |ug| <1, (5.3)

eine Umgebung Uy C Bs(0) der Ruhelage und eine Matriz Q, > 0,V v €
(e,1), sodass die Funktion

gr(x,) 1 V() = R, gr(x,v) i= x Qux — 1, (5.4)
fir alle (x,v) € V(e) die Bedingungen (ii) — (iv) des Satzes 2.8 fir das
System (5.2) mit dem Regelgesetz (5.3) erfillt.

b) Es existiert eine Umgebung der Ruhelage Uy C Bs(0) und eine Matrix
Q, >~ 0,Yv € (e,1), sodass die Funktion

gs(x,0) : V(e) = R, gs(x,v) := x'Qux — 1, (5.5)

fir alle (x,v) € V(e) die Bedingungen (it) — (iv) des Satzes 2.3 fir das
System (5.2) mit dem Regelgesetz

us := —sgn(b' Qux). (5.6)

erfillt.
¢) Es existiert eine Funktion k, : [e,1] = Ry, eine Umgebung der Ruhe-
lage Uy C Bs5(0) und eine Matriz Q, = 0,V v € (e,1), sodass die Funktion

Fsat(x,0) : V() = R, gsar(x,0) := X Qux — 1, (5.7)
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fir alle (x,v) € V(e) die Bedingungen (ii) — (iv) des Satzes 2.3 fir das
System (5.2) mit dem Regelgesetz

Usqr = —sat(k, b QuX), (5.8)
erfillt.

Beweis. a) = b) Falls a) gilt, dann ist die zeitliche Anderung der Funktion
gs(x,v) entlang einer Trajektorie des Systems (5.2) mit dem Regelgesetz
(5.6)

drgs(x(t),v)
=x"(ATQ, + Q,A)x - 2)x'Q,b|
= O (x(t)w) +2x'Q,bf(x,v) — 2x'Q,bl|
= g7 (x(t),0) + 2[x'Qub] - [sgn(x'Q,b) f(x,0) - 1]

— — T
= 9,95 (x(t),v) +2|b'Q,x| { :;Eizg:—:ii {(X,v))#sgn(x Q,b)

<0, V(x,v) € V(e),

wobei d;g¢(x(t),v) die zeitliche Anderung der Funktion gf(x,v) entlang
einer Trajektorie des Systems (5.2) mit dem Regelgesetz (5.3) darstellt und
negativ fir alle (x,v) € V(e) ist. Das bedeutet, dass die Bedingung (iv)
erfullt ist. Dariiber hinaus folgt unmittelbar aus a), dass die Bedingungen
(#7) — (447) fir alle (x,v) € V(e) fir das System (5.2) mit dem Regelgesetz
(5.6) erfiillt sind.

b) = ¢) Fiir diesen Teil des Beweises verwenden wir Finsler’s Lemma?).
Sei

Sy := Qub, s,:(g,1) > R,

mit Rang(s,) = 1, und S} € R(®~U*" eine Basis des Nullraums von s/,
sodass Sits, = 0 und St (S$)" = 0.2) Wenn b) gilt, dann folgt aus der
Bedingung (iv) des Satzes 2.3, Seite 11, dass

Drgs(x(t)v) = x"(ATQ, + QuA)x — 2|x'Q,b| < 0, V(x,v) € V(e).

2)Vgl. [68, Theorem 2.3.10].

3)Eine notwendige und hinreichende Bedingung, dass Sf;(Sf;)T > 0 gilt, ist, dass
Rang(S:) = n — 1 ist. Dies resultiert aus der Tatsache, dass S (SE)T »~ 0 <
A(SE(SH)T) > 0 < Rang(SiH(SE)") = Rang(SiH) =n — 1.
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Fiir jedes x € N(s]) := {x € R?|s]x = 0} gilt
x'(A'Qu + QuA)x <0, Y(xp) € {(xv)lx € N(s}),v e (1)}

Dabei existiert fiir jedes x € N (s]) ein y € R?7!, sodass x = (S:H)'y.
Daraus folgt, dass

y'SyLu(Sy)Ty <0, V(yw) € {(yw)ly eRI M ve ()}, (5.9)

wobei

L, = ATQU + QvA
Daraus folgt wiederum, dass
SIL,(SHT <0, Vove(el).

Wir wenden eine Kongruenztransformation der Matrix Q/stvsz — L, an,
wobei [, := 2kK,. Sei T, € R™*" eine nichtsingulare Matrix, definiert als

T,:=[d, (S5

mit dem Vektor d, € R" definiert als d] := s;!s s, wobei das Tupel
(Su,,5v, ) eine Voll-Rang-Faktorisierung® des Vektors s, ist.?) Daraus folgt,

dass

TU (NUSUS;I: - LU)TI

[ d—'g T ANT
= | st (lLL’US’US'U -L,) [ d, (Sy) ]
_ [ dz(:uvsvsz - L,) INT
= | S (josus] — Lo) [do (SP)' ]
_ [ d—g(ﬂvsvs—g*Lv)dv d, ( vsv - L, )(S )T
o I St (pyses) —Ly)dy  SE(pesys] — Ly,)(SH)T
_ [ e —diLud, —dLy(S;)"
— —SULLUdu —SLL (s ul) . (5.10)

“Vgl. Def. 20 (Anhang).

5)Die Matrix T, ist nichtsingulir, da N (dy) NN (SE) = {0} gilt, vgl. dazu [8, Fakt
2.11.3]. Dies ist ersichtlich aus der Tatsache, dass per Definition Sf; sy = 0 gilt, und
daher s, € N(S). Da noch dls, = sls,/|[su|?> = 1 # 0,Vv € [g,1], folgt, dass
sv ¢ N(sy)-
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Da —S:tL,(S$)" = 0, ist die Blockmatrix aus Gl. (5.10) positiv definit
dann und nur dann, wenn fiir jedes v € (g,1) ein Skalar u, € R existiert,
sodass®)

fy > dy, [Ly — Ly (Sy) (S Ly(S;)") 'Sy Ly | d. (5.11)

In diesem Fall ist die Matrix I/L’US'US—JL: — L, auch positiv definit, da beide
Matrizen kongruent” sind. Fiir x, = 0.5, folgt, dass

A'Q, + Q.A - 2x,Q,bb'Q, < 0.

Daraus folgt, dass die Funktion gsat(x,v) die Bedingung (iv) fiir das System
(5.2) mit dem Regelgesetz u, := —k,b'Q,x erfiillt. Da diese Bedingung
auch mit dem beschrankten Regelgesetz us erfillt ist, folgt ¢) aus der
Anwendung des Satzes 2 aus [45]. Dariiber hinaus folgt unmittelbar aus
b), dass die Bedingungen (ii) — (i4i) fir alle (x,v) € V(e) fiir das System
(5.2) mit dem Regelgesetz (5.8) erfiillt sind.

¢) = a) ist offensichtlich. O

Korollar 5.2. Fir das System aus Gl. (5.2) mit dem Regelgesetz aus Gl.
(5.3), (5.6) oder (5.8) seien die Bedingungen (ii) — (iv) des Satzes 2.3 fiir
alle (x,v) € V(e) mit Uy = Ex(1)\E«(g) erfiillt, wobei

E(v) = {x e R"x'Q,x — 1 < 0}. (5.12)

Auf Grund des Satzes 5.1 ist dies z.B. der Fall wenn die Bedingungen
(4.10)-(4.12) aus Satz 4.1 erfillt sind. Dann ist das Gebiet E,(1) kontrak-
tiv invariant. Dariber hinaus konvergieren die Trajektorien, die in dem
Gebiet starten, asymptotisch gegen die Ruhelage.

Beweis. Man betrachte die Funktion

T I LB

6)Dies resultiert aus der Bedingung, dass das Schur-Komplement von —SEL,(SE)"
beziiglich der Blockmatrix aus Gl. (5.10) positiv definit sein muss, vgl. [8, Proposi-
tion 8.2.4].

Vgl Def. 19 (Anhang).
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wobei die Bezeichnung (- ), fiir eins der Symbole (- )i, (-)s oder (-)sat
steht. Dabei gilt

V.(0) =0, (5.14)
Vi(x) >0, Vxe&(1)\{0}, (5.15)
Vi(x) <0, Vxe&(1)\{0}. (5.16)

Gl. (5.14) folgt aus der Definition der Funktion Vi (x) aus Gl. (5.13). GL
(5.15) folgt aus v € (¢,1) und Q. > 0. Fiir alle x € &,(1)\{0} folgt Gl.
(5.16) aus der kontraktiven Invarianz der Gebiete &, (v) fir alle v € [g,1].
Letzteres folgt aus Satz 2.3 und Korollar 2.4. Somit ist das Ellipsoid &,(1)
kontraktiv invariant®), und die Trajektorien, die in dem Gebiet starten,
konvergieren asymptotisch gegen die Ruhelage. O

Schlielich wird die Berechnung der notwendigen Verstiarkung x,,, bzw. der
unteren Grenze der Funktion p, aus Gl. (5.11), gezeigt.

5.2 Entwurf einer stetigen Approximation
des Regelgesetzes

Die Existenzbedingungen einer stetigen Approximation der Bang-Bang
WSVR wurden in Satz 5.1 vorgestellt. Dabei lautete das stetige Regel-
gesetz

Usat = — sat(k, b Q,X), (5.17)

wobei zur Bestimmung der notwendigen Verstarkung s, eine Basis des
Nullraums der Umschaltstrategie notwendig war. Dieser letzte Schritt, d.h.
die Berechung einer Basis des Nullraums des Vektors s, := Q,b wird im
Folgenden fiir beide weichen strukturvariablen Regelungen gezeigt.

5.2.1 Klassische WSVR mittels iLF

Im Fall der klassischen WSVR mittels iLF ist die parameterabhingige
Matrix Q, definiert als

Q,:=D;"Q,D;", D, :=diag(®v",...,v%v). (5.18)

v o)

8)Vgl. Def. 14 (Anhang).

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

42 5 Die Konvergenzoptimale (Bang-Bang) WSVR

Eine Basis des Nullraums von s! = b'Q,, d.h. eine Matrix S € R(»—1xn,
wofiir S{s, = 0 und S (SE)" = 0 gilt, kann aus

S1Q,b=S'D,;"QD,;"b=v"S:D,;"Qb=v""SID;"s; =0
berechnet werden. Es ergibt sich
St =0"S{ D7, (5.19)

wobei S1- € R("~1)*" ¢ine Basis des Nullraums von s; ist. Die Matrix Si-
kann aus der Gleichung
St = HU),
berechnet werden, wobei die Matrix H € R(?»~1)*("=1) gine beliebige nicht-
singuldre Matrix ist, und die Matrix Us aus der Singularwertzerlegung von
s1, d.h. aus
-
S1 = [Ul UQ} [ O'(Sl) 0 ] . (520)

stammt.”) Dies kann man wie folgt erkliren. Da die Blockmatrix [U; Us]
aus Gl (5.20) unitdr ist, folgt, dass UyU; = 0 gilt und dass, Sis; =
HUJU,0(s;) = 0 ist. Da die Matrix U, auch wunitdr ist, folgt, dass
Rang(Us,) = n—1. Daraus folgt, dass'®) Rang(S1) > Rang(H)+Rang(Uj)—
(n — 1) und somit, dass Rang(S{) = n — 1. Da ebenfalls Rang(D") = n,
folgt schlieflich, dass Rang(Sy) = n — 1, und somit, dass S;-(S:H)" = 0.

5.2.2 Invers-polynomiale WSVR

Um die untere Grenze der Funktion p, aus Gl. (5.11) zu berechnen, muss
eine Basis des Nullraums der Umschaltfunktion s! = b'Q,, berechnet wer-
den, wobei Rang(s,) = 1, Vv € [¢,1] gilt. Die in diesem Abschnitt analy-
sierte Form der parameterabhingigen Matrix Q,, ist

d

vi=dRy = R}
Q v T det(Ry)
mit d > 0 und
My l
Rv = Z ’Uchi, — ’UMI Zleci‘FM] - O,V’U c [5’”7 (521)
=M, 1=0

9)Vgl. [68, Theorem 2.1.1].
10)ygl. [8, Korollar 2.5.10].
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wobei R, € Sym” und ! := M, — M;. In [39, Lemma A.1] wurde eine obere
Grenze des Grades der Adjunkten einer polynomialen Matrix angegeben,
vgl. Lemma A.1 (Anhang). Fiir die Adjunkte der polynomialen Matrix aus
Gl. (5.21) gilt demnach

A

l
R;& — le < (n—1) (Z UiRcH_Ml)

=0

o
— M- (n—1) Z,UiNC“ NCi c Symn,
=0

mit den konstanten Matrizen N,, ¢ =0,...,u, und

I
p<l-min{n—1n—gq}, ¢q:=dim lﬂ N(RCi+M1)] .

Folglich gilt

1=0
mit s, := N¢,b. Gesucht wird im Weiteren eine polynomiale Matrix Sqf €
R=DX7 wofiir
Sts, =0, Ve lgl], (5.22)
SHSHT =0, Vuvelsl], (5.23)
gilt. Diese wird in der Form
Sy => v'Sy, SLeRC"Mu>o, (5.24)
i=0

angenommen. Sind die Koeffizienten des Polynoms R bekannt, so kénnen
die Koeflizienten des gesuchten Polynoms aus Gl. (5.24), wie im Folgenden
gezeigt, analytisch berechnet werden. Steht nur die Matrix Q! = d~!' R,
zur Verfiigung, so wie es im Satz 4.1 der Fall ist, so muss vorerst die
Adjunkte der Matrix R,,, d.h. die Matrizen N, i = 0,...,u, berechnet
werden. Diese kénnen z.B. aus [39, Lemmas A.1], vgl. A.1 (Anhang), be-
rechnet werden. Eine Alternative zur Berechnung der Adjunkten RZ ist
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die numerische Berechnung von S;-. Diese Vorgehensweise wird am Ende
dieses Abschnittes vorgestellt.

Im Weiteren nehmen wir an, dass die Matrizen N,, 7 = 0, ... ,u, bekannt
sind. Durch die Multiplikation der polynomialen Matrizen aus Gl. (5.22)
ergibt sich

v l
Sts, = ZviSé Zvjscj =0, Yvelgl],

i=0 §=0

da det(R,) # 0, Vv € (e,1), sowie d und v strikt positive Zahlen sind.
Diese Gleichung ist offensichtlich erfiillt, wenn alle Koeffizienten des re-
sultierenden polynomialen Vektors null sind. Dies ist dquivalent zu der
Bedingung

Scl Ce SC() e 0
St - Si]l: oo . . | =0,
0 Ce SCL e SCU
wobei die konstante Matrix
S .= [Si Sé:)] e R(r=1)xn(r+1) (5.25)

die Koeffizienten des gesuchten Polynoms gruppiert, und die konstante
Matrix

S¢ = : : ERn(v-ﬁ-l)><(l-i-1-&-u)7

0 S, <o Se

mit r := Rang(Sg), die Koeffizienten der bekannten Umschaltfunktion
gruppiert. Die Bestimmung der Matrix S kann aus der Singuldrwertzerle-
gung der Matrix Sg gewonnen werden, d.h. aus

Sg = H,U),

wobei die unitire Matrix Uy € RMVFDX#+D)n=" aug der Zerlegung

somton iP5 )
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entnommen wird, wobei %(Sq) = diag(c;(Sg)), ¢« = 1,...,min{n(v +
1),l+ 1+ v} und 0;(S¢) die Singuldrwerte der Matrix S¢ darstellen. Um
die gewlinschte Dimension der Matrix Sé zu erzielen, kann eine beliebige
nichtsingulire Matrix H; € RETDn—rx@+l)n=r gewshlt werden, sodass
fiir die resultierende Matrix S§ € R (vHD=rxn(v+1) gilt Somit ergibt sich

S4Se = HiUjSq = H,UJ U 3(Sq) V] = 0,
da UJU; = 0. Dabei gilt noch
n(v +1) — r = min{Rang(H;), Rang(U})}
> Rang(Sg)
> Rang(H;) + Rang(U}) —n(v +1) +r
=nv+1)—r,
d.h. Rang(Sg) = n(v+1)—r. Die gesuchte Matrix S ist schliefilich gegeben

durch
S = H,S§, H,ye RO-Dxnld-r (5.26)

wobei die Matrix Hy eine beliebige Matrix mit Rang(Hs) = min{n—1,(v+
1)n — r} ist. Es gilt folglich
min{n — 1,(v + 1)n — r}
= min{Rang(H>), Rang(Sg)}
> Rang(S)
> Rang(Hy) + Rang(Sg) —n(v +1) +r
=min{n — 1,(v + 1)n — r},
d.h. Rang(S) = min{n — 1,(v+ 1)n — r}. Fir das gesuchte Polynom ergibt

sich
w1, vl

1 . :
S, =8 -+ Sal : =S| |,
I, I,
mit S € RO=1Dxn(+1) wobei
Rang(Sy) < min{n — 1,(v + 1)n — r}.

Eine analytische Form des gesuchten Polynoms steht somit zur Verfiigung.
Diese Methode stellt jedoch nicht sicher, dass die Bedingung (5.23) erfiillt
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ist. Dies wiire der Fall, wenn Rang(S;-) = n—1 wire. Die Bedingung aus Gl.
(5.23) kann aber in eine LMI transformiert werden. Dies wird im Folgenden
noch gezeigt. Dazu bildet man erstens die Polynommultiplikation

2v
M, = SH(S7) =Y M.,

7=0
wobei

Z SH(SE ), 0<j<ow

C]’L

IJ<L<V

Gl (5.23) ist somit éiquivalent zu

2v
M, = ZMcjvj =0, Yovcelgsl].
j=0
Dies ist fiir 7 := (1/a)v — f/a, mit a := (1 —¢)/2 und 8 := (1 + ¢)/2,
weiterhin dquivalent zu

2v
M; = > M & =0, Viel[-11], (5.27)
§=0
mit
B 2v i S
Mcj:Z<')aj51jMCi’ OSjSQV,
— \J
i=j

Zweitens wird die Matrix Mg aus Gl. (5.27) in der Form

M; = ({;[u+1] ® In)TME(V[u+1] ®1,)

mit L - -
oM., M, 0 0
T T VN
Ms:=5| 0o M, 2M, 0
B - 1\"/‘[521/71
L0 0 M., , 2M,, |

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

5.2 Entwurf einer stetigen Approximation des Regelgesetzes 47

geschrieben. Die Matrix My ist positiv definit fiir jedes & € [—1,1] dann
und nur dann, wenn zwei Matrizen, D € P und G € Skew™" existieren,
sodass

M (5.28)

<

_[len] [-D 6]l el
J, oI, G' D||J, oL’
ju = [IV Oy,l]v jV = [Oy,l II/]7

gilt.'") Die Bedingung aus Gl. (5.28) ist eine parameterunabhingige LMI
Bedingung, welche numerisch effizient iberpriift werden kann.

Zusammenfassend ergibt sich die notwendige Verstarkung x, = 0.5p,
aus Gl. (5.11), mit dem Polynom S aus Gl (5.24), dessen Koeffizienten
in der Matrix S aus Gl. (5.25) gruppiert sind. Die Matrix S kann aus
der Singularwertzerlegung der Matrix S berechnet werden. Anschliefend
muss Bedingung (5.23) {iberpriift werden.

Eine Alternative zur obigen Berechnung ist eine Berechnung wéihrend
des Ausregelvorgangs. Fiir jedes v* € [g,1] kann die Matrix S} aus der
Singuldrwertzerlegung des Vektors s,« berechnet werden. Folglich hat die
Matrix S5 die Form

st —HUJ,..

’U*:

mit einer beliebigen nichtsinguliren Matrix H € R(~D>(=1) ynd Matrix
U,,. € R (™1 aus der Singulirwertzerlegung!? von s,+, d.h.'%)

Sp- = [Ur,. Us,.][ o(s,r) 0]

Somit gilt Ugv* € R (=1 und Rang(UgU*) =n — 1. Die Matrix Sk
hat dabei vollen Rang, d.h. Rang(S;.) = n — 1. Dies ist ersichtlich aus

n—1= min{Rang(H),Rang(Ugu* )} > Rang(S)
> Rang(H) + Rang(Uj ) — (n— 1) =n— L.

1) ygl. [77]. Diese Aquivalenzbedingung beruht auf einer verallgemeinerten S-Prozedur,
welche in [38] eingefithrt wurde. A ® B bezeichnet dabei das Kronecker-Produkt.

12)ygl. [68, Satz 2.1.1].

13)Da die Blockmatrix [Ulv* UQU*] unitar ist, folgt, dass Ugv* Ulv* = 0 und daher,
dass Sk s, = HU—Qrv* Ui,. 0(sy+) = 0. Dabei ist o(s,+) der Singuldrwert von s, .

1) Die Matrix Uy« = [Ul'u* Ugz, . | € R™*™ ist unitér. Diese hat folglich n unabhéngige
Spalten. Somit folgt, dass Rang(Ugv* )=n-—1.
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5.3 Maximierung des Einzugsgebiets der
konvergenzoptimalen
invers-polynomialen WSVR

Ein konvergenzoptimaler Regler wird im Allgemeinen mit Hilfe des Satzes
5.1 entworfen. Dabei kann als hinreichende Existenzbedingung die Exis-
tenz einer nichtsidttigenden WSVR beispielsweise aus Satz 3.1 oder 4.1
festgelegt werden. In diesem Fall ist die Grofle der erzielten verschachtel-
ten und kontraktiv invarianten Gebiete durch bestimmte Entwurfsbedin-
gungen beschrankt, welche wegen der Stabilitdt und des nichtsédttigenden
Charakters der unterlegten Regelgesetze entstanden sind. Diese Entwurfs-
bedingungen sind in Gl. (3.18)-(3.19) und Gl. (4.14) des Satzes 3.1 bzw.
4.1 enthalten.

Im Folgenden wird eine alternative Methode vorgestellt, die kontraktive
Invarianz von Ellipsoiden im Falle des konvergenzoptimalen Regelgesetzes
zu uberpriifen. Diese Methode setzt zwar nicht mehr die Existenz einer
nichtsittigenden WSVR voraus, ist jedoch nur hinreichend fiir die kon-
traktive Invarianz der analysierten Gebiete. Aufgrund ihrer Komplexitéat
wird dariiber hinaus nur den Fall einer vereinfachten Selektionssgleichung
dargestellt. Der Vorteil dieser Methode liegt aber in der Tatsache, dass sie
im Allgemeinen grofiere Gebiete als diejenigen aus dem Satz 4.1 erzielen
kann.

5.3.1 Invers-polynomiale WSVR mit vereinfachter
Selektionsgleichung

Angenommen, es existiert eine Matrixfunktion Q, : [g,1] — P", sodass
die Gebiete £(v) = {x € R"|x'Q,x < 1} fiir das System x = Ax —
bsgn(bTva) verschachtelt und kontraktiv invariant sind. Die Existenz
dieser Matrixfunktion kann beispielsweise mit Hilfe des Satzes 4.1 erfol-
gen. Fraglich ist, wie weit man diese Ellipsoide skalieren kann, sodass das
erzielte Einzugsgebiet der Ruhelage vergrofiert wird. Der im Folgenden
vorgestellte Satz beantwortet zwar diese Frage, ist jedoch nur fiir den Fall
einer vereinfachten Selektionsgleichung, d.h. fiir M = —1 und M, = 0
giiltig. Die Betrachtung einer beliebigen Selektionsgleichung ist moglich,
erfordert jedoch, wie es im Weiteren gezeigt wird, einen gréfieren Rechen-
aufwand.
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Korollar 5.3. Die Ellipsoide
E1(v) = {x eR"|g*"(x,v) =x R, 'x =1 <0,R, =v 'R._, + R, }
seten fiir das System
% = Ax — bsgn(b'R 'x) (5.29)
kontraktiv invariant. Die skalierten Ellipsoide

Er(w) = {x eR"|g*"(xv) =x'R;'x —d <0,
R, =v"'R¢_, +Re,, d>1}  (5.30)

sind fir das System aus Gl. (5.29) genau dann kontraktiv invariant, wenn
an der Stelle v := v~! = 1 das Polynom

n—1
G(x,0) =Y 9D h(x), (5.31)
1=0
mit
hi(x) := x' (ATN; + N;A)x — 2|x'N;b| (5.32)
RZ | i=0,
N; = in%ii(Rco/RC_JAa i=1,....n—2, (533)
R i=n-—1,

Co?

und seine samtlichen partiellen Ableitungen 3%G(x,17), vje{l,...,n—1},
strikt negativ bzw. nicht positiv fir alle x € £ (1) sind, d.h. wenn

max G(x,1) <0,

xTRl_lx:d

max dG(x,1) <0, je{l,...n—1}

xRy Ix=d

(5.34)

gilt.

Bemerkung 5.1. Der Skalar d > 1 wird verwendet, um die bereits erzielten
verschachtelten und kontraktiv invarianten Gebiete zu skalieren. A
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Beweis. Die Gebiete £7(v) aus Gl. (5.30) sind fiir das System aus Gl.
(5.29) definitionsgemifl dann und nur dann kontraktiv invariant, wenn

Org* (x(t)w) =x (AR + R TA)x — 2|x' R 'b| < 0,
Vx € 0& (v),v € [g,1]

gilt, d.h. wenn

det(Ry,)8, g™ (x(t),0)
=x (AR + R2A)x — 2)x'RAb| < 0, Vx € I (v),v € [¢,1]
(5.35)

gilt. Die Adjunkte der polynomialen Matrix R, ist wiederum eine polyno-
miale Matrix in v und ist gegeben durch'®

RA = ( 71RC , t RCO)A

( Z T, (Rey/Re_ 1) +U_(n_1)R?1>
_ Zvif(nfl)Nh
=0

N, :=RA

c_1)
N, := Fn—l—z’ R R A 1 _9
i —1n_ ( C()/ C—l) , 1=1,...,n s

Nn—l = Ré) .
Dabei ist zu beachten, dass der Grad des Polynoms von der Systemordnung
n abhangig ist. Folglich gilt

n—1
x (AR} + R} A)x — 2)x'Ry'b| < Y v (" Dhy(x),
1=0

15)ygl. [77, Korollar 2.2] oder Lemma A.2 (Anhang).
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mit
hi(x) = x (ATN; + N;A)x — 2|x'N;b)|.
Die Bedingung aus Gl. (5.35) ist folglich erfiillt, wenn

n—1
G(xv) =Y v Vhi(x) <0, Vx €& (v),v € [e]] (5.36)

=0

gilt. Die Uberpriifung der Bedingung aus Gl. (5.36) erfolgt im Weiteren
mit Hilfe der Newton-Regel'®). Fiir die Anwendung der Newton-Regel wird
eine Variablensubstitution verwendet. Fiir ¢ := v~! ist die Bedingung aus
Gl. (5.36) aquivalent zu

n—1
G(x,0) =Y _ 8"V 7hi(x) < 0,Vx € 0&; <1)v € [11
1=0

U

Aus der Anwendung der Newton-Regel ist das Polynom G(x,?) in ¥ negativ
fir alle o > 1, wenn an der Stelle ¥ = 1 dieses und seine sdmtlichen
partiellen Ableitungen nicht positiv sind, d.h. wenn

I G(x1)<0, Vje{0,...n—1}, Vxe&(1). (5.37)
Das Polynom ist negativ fiir alle o > 1 falls zusétzlich
G(x,1) <0, Vxeé&i(1) (5.38)

gilt. Die Bedingungen sind also fiir beliebig kleine ¢ € (0,1) hinreichend.
Die Funktionen 97G(x,1), mit j = 0,...,n—1, hingen dabei nicht mehr

von v ab und deren Maximum beziiglich x befindet sich auf dem Rand des

duBersten Ellipsoids &7 (1). Um dies zu zeigen, sei x € 9&f(1) = {x €

R*|x'R'x = d, d > 1} und eine Zahl k € (0,1]. Es folgt

d2G(kx,1)

v

n—1—j

j—1
= > (H n—1—i-— z) [k°x"(A'N; + N;A)x — 2k|x'N;b]]
=0

=0

n—1-—j /j—1
2
=k ) (H n—1—i-— l> [xT(ATNi + N;A)x — E|xTNib|
l

=0 =0

16)Vgl. Lemma A.3 (Anhang).
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n—1—j5 /j—1

<K Y <H n—1-—i— l) [x"(ATN; + N;A)x — 2|x'N;b]]
1=0 =0

< dlG(x,1).

Daraus folgt, dass die Bedingungen aus Gl. (5.37) und(5.38) dquivalent zu
den Bedingungen aus Gl. (5.34) sind. O

Bemerkung 5.2. Aus Gl. (5.34) ist ersichtlich, dass, falls diese Bedingun-
gen fur ein d > 1 erfiillt sind, dann sind sie fiir alle d* < d erfiillt. Daraus
folgt, dass die Bestimmung des maximalen Wertes von d mittels des Bi-
sektionsverfahrens erfolgen kann. A

Die Uberpriifung der Bedingung aus Gl. (5.34) kann wie in [37, Theorem
1] durchgefiihrt werden. Folgender Satz verdeutlicht dies.

Satz 5.4 [Nach [37, Theorem 1]] Es seien A € R™*", b € R” und L €
Sym”, mit Lb # 0 und A'L + LA # 0, sowie R € P". Des Weiteren

seien die reellen Zahlen A1, ..., A5 > 0, sodass
MR- AL - LA R B
det ™ j1Lpb'L. AR-ATL-pPL| 0 39
und
b'L(A'L + LA — \;R)"'Lb > 0. (5.40)
Dann gilt fir die Funktion
g(x) :=x"(ATL + LA)x — 2|x'Lb| (5.41)
<0 5.42
_max g(x) (5.42)
dann und nur dann, wenn
Amax [US(A'L + LA)U,(UJRU,) '] <0, (5.43)

mit der Matriz Uy € R (=1 qus der Singuldrwertzerlequng des Vektors
Lb, d.h. aus
Lb)

Lb = [u; Uy ["(O

] v, Uju; =0, (5.44)
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und
Ajd—b'LATL +LA - \;R)"'Lb <0, Vje{l,....J}.  (545)
Falls Gl (5.43) erfillt ist und keine reellen Zahlen \; > 0 ezistieren,

welche Gl. (5.39) und (5.40) erfillen, dann ist Gl. (5.42) erfillt.

Bemerkung 5.3. Die Losungen der Gl. (5.39) sind gleichzeitig Eigenwerte
der Matrix

R™/2(ATL + LA)R™!/2 ~1 ]

_d—lR—l/QLbbTLR—l/Q R—l/Z(ATL+LA)R—1/2 . (546)

Dies folgt aus der Multiplikation der Matrix aus Gl. (5.39) links und rechts
mit der nichtsinguldren Matrix

R1/2 0
[0 R—l/Q}’

wobei die Matrix R~1/2 die (eindeutig bestimmte) Quadratwurzel'”) der
positiv definiten Matrix R~ ist. A

Beweis. Fiir den Fall x'Lb = 0 gilt
g(x) =x"(A'L + LA)x.
In diesem Fall lassen sich die Nebenbedingungen
xRx =d (5.47)
x'Lb =0 (5.48)

in eine einzige Nebenbedingung wie folgt umformen. Alle moglichen Lo-
sungen der Gl. (5.48) kénnen in der Form

x' =h'U} (5.49)

mit einem beliebigen Vektor h € R?~! und der Matrix Uy € R™* ("1 aus
der Singuldrwertzerlegung des Vektors Lb, d.h. aus Gl. (5.44), geschrie-
ben werden. Dies kann man durch Einsetzen der Gl. (5.49) in Gl (5.48)
verifizieren. Durch Einsetzen dieser Losungen in Gl. (5.47) folgt

h'U,RU;h = d

17)Vgl. [8, Theorem 10.6.1].
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und somit
max g(x)= max h'UJ(A'L + LA)U;h
"-TrFL‘;‘i d hTU,RUzh=d

= Amax [U3(A'L + LA)U,(UJRU,) '] < 0

aufgrund der Bedingung aus Gl. (5.43). Wir betrachten im Weiteren nur
noch den Fall x'Lb > 0, da auf Grund der quadratischen Form der Funk-
tion g(x) der Fall x'Lb < 0 zum gleichen maximalen Wert fiihrt. Das
Verfahren der Lagrange-Multiplikatoren liefert die Optimalitdtsbedingun-
gen

(A'TL + LA — AR)x = Lb, )€cR, (5.50)
x'Rx = d, (5.51)

und das Maximum der Funktion g(x) aus Gl. (5.41) lautet
Gmax(x) = Ad — x'Lb. (5.52)

Falls A <0, gilt gmax(x) < 0 da x'Pb > 0. Es wird also nur noch der Fall
A > 0 betrachtet.
Aus Gl. (5.43) folgt, dass'®

Amax[US(A'L + LA)Uy(ULRU,) 7!
= max{\ € R:det [U}(A'L+LA — A\R)U,] =0} < 0.

Dies bedeutet, dass das grofite A € R, sodass
det [UJ(A'L + LA — AR)U;| =0

gilt, negativ ist und damit, dass fiir A > 0 die Matrix A'L + LA — AR
nichtsingulér ist. Dies kann man wie folgt erkldren. Da die Matrixfunk-
tion f1(A\) = ATL + LA — AR monoton fallend ist, ist die Matrixfunkti-
on fo(\) = UJ(A'L + LA — AR)U, fallend'?, und die Matrixfunktion
f3()) = det [UJ(ATL + LA — AR)U,| monoton fallend?”. Fiir A grofier
als Amax|US(ATL + LA)U(UJRU,) 1], z.B. fiir A > 0, ist die Determi-
nante kleiner null und die Matrix A'L + LA — AR daher nichtsingulir.

18)Vgl. [8, Fact 8.15.21].
19)vgl. [8, Prop. 8.6.13, xv)].
20)Vgl. [8, Prop. 8.6.13, xxii)].
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Losen der Gl. (5.50) ergibt
x=(A'TL+LA - AR)"'Lb, \>0, (5.53)
und Einsetzen in Gl. (5.51) ergibt
b'L(A'L+ LA - )R)"'R(A'L+ LA — AR)"'Lb = d.
Dies ist dquivalent zu?"

RN —1
det[_ d b'LY ]_07

v-lLb  R! (5-54)

mit ¥ = AR — ATL — LA. Im Weiteren folgt aus Gl. (5.54), dass
qet (4 0" 1 _[p'L o] fe~t 0 ][0 I
“\lo R o IJ[o u!|Lb o0
v 0 0 d- b'L 0
w(lo sl -l of fo ] D—O

det AR - AL - LA
—d~'Lbb'L AR — ATL LA

ot MR —ATL-LA
© d-'Lbb'L AR — ATL “LA

0,

=0.

Die letzte Gleichung ist Gl. (5.39). Aus dieser Gleichung kann A bestimmt
werden. Wie in der Bemerkung 5.3 gezeigt, sind die Losungen gleichzeitig
Eigenwerte der Matrix aus Gl. (5.46), d.h. deren Berechnung kann nu-
merisch erfolgen. Dariiber hinaus muss fiir ein erzieltes A > 0 aufgrund
x'Lb > 0 auch

b'L(A'TL + LA — AR)"'Lb >0

gelten, d.h., Gl. (5.40) muss auch erfiillt sein. Schlieflich ist der maximale
Wert der Funktion g(x) gegeben in Gl. (5.52) negativ dann und nur dann,
wenn

A\jd—b'LA'L+LA - )\R)"'Lb<0, Vje{l,...,J},

gilt, d.h. wenn Gl. (5.45) erfiillt ist, wobei die positiven Zahlen \; Gl
(5.39)-(5.40) erfiillen miissen. O

21) Dies folgt aus der Anwendung von [8, Prop. 8.2.3].
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Eine Erweiterung des Korollars 5.3 fiir polynomiale Selektionsgleichun-
gen mit einem beliebigen Grad ist ebenfalls moglich, da auch in diesem Fall
die Adjunkte der Matrix R, eine polynomiale Matrix ist. Jedoch erhéhen
sich der Grad dieses Polynoms?? und der Aufwand in der Berechnung der
Adjunkten der Matrix R.,.

5.4 Regelungsentwurf

Die Bang-Bang WSVR kann mit Hilfe der nicht-konservativen klassischen
WSVR oder der invers-polynomialen WSVR, wie folgt entworfen werden:

5.4.1 Klassische WSVR mittels iLF

Schritt 5a Nach den Entwurfsschritten 1a-4a aus Abschnitt 3.3 verwende
alternativ das konvergenzoptimale Regelgesetz us aus Gl. (5.6).

Schritt 6a Alternativ, verwende den High-Gain Regler ug,; aus Gl. (5.8)
mit dem Parameter x, = 0.5u, und p, aus Gl. (5.11) und (5.19).

5.4.2 Invers-polynomiale WSVR

Schritt 3b Nach den Entwurfsschritten 1b-2b aus Abschnitt 4.3 verwende
alternativ das konvergenzoptimale Regelgesetz ugs aus Gl. (5.6) mit
der Matrix Q, aus Gl. (4.13).

Schritt 4b Alternativ, verwende den High-Gain-Regler ug,t aus Gl. (5.8)
mit dem Parameter k, = 0.5u, und g, aus Gl (5.11), (5.24) und
(5.26).

Schritt 5b Berechne mit Hilfe des Korollars 5.3 und des Satzes 5.4 das
maximale Einzugsgebiet der Ruhelage des Systems, das durch das
Regelgesetz us aus Gl. (5.6) erzielbar ist.

Tabelle 5.1 zeigt eine Zusammenfassung der hier entwickelten nicht-kon-
servativen klassischen und invers-polynomialen WSVR zusammen mit den
dazu verwendeten Satzen. Im néchsten Abschnitt werden diese Regler an-
hand von zwei Beispielen veranschaulicht und mit anderen nichtlinearen
Reglern verglichen.

22)Vgl. [39, Lemma A.1] oder Lemma A.1 (Anhang).
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Tabelle 5.1: Zusammenfassung der nichtkonservativen klassischen und

inwvers-polynomialen WSVR.

Strecke: x = Ax + bu,

xeR"ueR, |u <1

Die klassische WSVR mittels iLF

Aus Satz 3.1 zusammen mit Satz 5.1

Regelgesetze

u(x) = —(D,"a —a)x
A=a+cP lbc>1/2
us(x) = — sgn(b'Qux)

Ugat (X) = — sat(k,b'Qyx)

Selektionsgleichung

x'Qux —d=0,d>c*(b'P1b)
Q, =D;"P,D,,P, = dP"!

Die invers-polynomiale WSVR,

Aus Satz 4.2 zusammen mit Satz 5.1

Regelgesetze

u(x) = —cb'Qux,c > 1/2
us(x) = —sgn(b'Q,x)
Ugat (X) = — sat(k,b' Qyx)

Selektionsgleichung

x'Qux—d=0,d> 02(bTRE_1b)
My .
v = RglaRv = Z ’U’LRci
=M,

Aus Satz 5.1 zusammen mit Korollar 5.3

Regelgesetze
ui(x) = —sgn(b'Qx)
ul, (x) = —sat(k,b'Qyx)

Selektionsgleichung
x'Qux—d=0,d>1
M,

QU = R1717R’U = Z viRCi

i=M;
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5.5 Beispiele

5.5.1 Allgemeine Strecke zweiter Ordnung

Betrachtet wird folgende allgemeine Strecke zweiter Ordnung mit einem
stabilen Eigenwert A = —1 und einem Eigenwert bei null

.o 1 0
X|:0 1}X+[Ju, lu] < 1.

Die null-steuerbare Region ist der gesamte Zustandsraum. Die Losung des
Validierungsproblems (3.14)-(3.16) lautet

P 0.7027 —0.2610
~|—0.2610  0.5354| "

Fiir ein gegebenes ¢ = 0.1 und eine (fiir v = 1) mittels d = 2.1 skalierte El-
lipse £, (1) beeinflusst der Reglerparameter v aus Gl. (3.19) des Satzes 3.1
die Grofe des Gebiets £(1). Zwei verschiedene Werte illustrieren den Ein-
fluss dieses Parameters. Der erste Wert v = 0.99 ist sehr nah an der oberen
Grenze des erlaubten Intervalls und erzielt ein Gebiet, dessen Rand fast
tangential zu dem Rand der Ellipse £, (1) ist. Der kleinste Wert v = 0.5212
erzielt ein viel grofieres Gebiet. Abbildung 5.1 veranschaulicht die Ellip-
se (1), die Anfangsauslenkung xo = [0.0594 — 0.4766]" € OEA(1) auf
derem Rand und die Gebiete £(1) fiir die verschiedenen Werte von v. In
beiden Féllen hilt die nichtsittigende klassische WSVR, die Stellgrofien-
beschrankung ein.

Tabelle 5.2 zeigt die Regelparameter ¢, d und v, sowie den jeweils er-
zielten maximalen Wert von r. Es ist ersichtlich, dass dieser vom Wert des
Parameters v beeinflusst wird. Dies liegt daran, dass ein gréflerer Wert von
v einen groferen Wert auf der linken Seite der Gl. (3.20) fiir gegebene w
und ¢ erzielt, mit der Folge, dass das Intervall w € [¢",1] verkleinert wird
und, somit, dass ein kleineres r erzielt wird. Dariiber hinaus beeinflusst der
Wert des Parameters r € (0,1] das Ausregelverhalten. Fiir » — 0 handelt
es sich bei der Regelung um eine nichtséttigende lineare Zustandsriickfiih-
rung. Fir r € (0,1] ist die nichtséttigende WSVR, schneller aufgrund ihrer
variablen Struktur. SchlieBlich zeigt die Tabelle auch den Faktor 7, der
die Verstarkung des High-Gain-Reglers iiber den notwendigen minimalen
Wert 0.54, erhoht. Je grofier n ist, desto besser approximiert der High-
Gain-Regler den konvergenzoptimalen Regler.
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Bild 5.1: Das kontraktiv invariante Gebiet fiir v = 1 und d = 2.1 (GA(1),
—), sowie die Gebiete L£(1) fiir v = 0.5212 (=) und v = 0.99 (—.).

Tabelle 5.2: Regelparameter fiir die nichtsdttigende klassische WSVR
mittels iLF (uy) und fiir den konvergenzoptimalen Regler (us).

Regler ¢ d v r 7 Symbol
Uy 0.1 2.1 0.5212 1 - (-)
Usg 0.1 2.1 0.5212 1 - (—o)
Usat 0.1 2.1 0.5212 1 16 (—+)
Uy 0.1 21 099 0.0048 - (—)
Us 0.1 21 099 0.0048 - (-0

Usr 0.1 21 099  0.0048 160 (—.x)

Abbildung 5.2 zeigt das Ausregelverhalten fiir die verschiedenen Reg-
lerparameter. Dabei wird die gleiche Anfangsauslenkung xy gewéhlt. Ver-
glichen werden die nichtséttigende klassische WSVR mit den jeweiligen
konvergenzoptimalen Reglern und den High-Gain Reglern, sowie mit dem
zeitoptimalen Regler. Der High-Gain Regler aus Satz 5.1 approximiert
dabei sehr gut den jeweiligen konvergenzoptimalen Regler. Die gewéhlte
Verstarkung ist gegeben durch k, = 0.5nu,, wobei n = 160 fir v = 0.99
und n = 16 fir v = 0.5212 gewdhlt wurde, und der Parameter pu, aus Gl
(5.11) mit S aus Gl. (5.19) und S{ = [-0.9374 0.3482]" berechnet wur-
de. Schliellich werden darin die Stellgréfenverldufe der nichtséttigenden
klassischen WSVR, der High-Gain Regler und des zeitoptimalen Reglers.
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Bild 5.2: Simulation der Zustdnde und Stellgroflen fiir die nichtséttigen-
de klassische WSVR (v = 0.5212 (—.¢) und v = 0.99 (—.x)), fiir den
konvergenzoptimalen Regler (v = 0.5212 (—o) und v = 0.99 (—.0)), fir
den High-Gain Regler (v = 0.5212 (—+) und v = 0.99 (—.x)) und fiir den
zeitoptimalen Regler (——).
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Aus Ubersichtlichkeitsgriinden werden die StellgroBenverliufe der kon-
vergenzoptimalen Regler nicht gezeigt, welche hochfrequent zwischen 1 und
—1 schalten. Es ist ersichtlich, dass die nichtsittigende klassische WSVR
fiir v = 0.99 nah an der Stellgroflenbeschrankung ist. Dies liegt daran, dass
der Rand des entsprechenden Gebiets £(v) fast tangential zu dem Rand der
Ellipse £4(1) ist, wie man in Abbildung 5.1 sehen kann. Der zeitoptimale
Regler schaltet wie erwartet ein Mal zwischen 1 und —1. Der High-Gain
Regler hat jeweils einen sdttigenden aber stetigen Verlauf und erzielt, wie
erwartet, eine sehr gute Approximation des Ausregelverhaltens, welches
durch den entsprechenden konvergenzoptimalen Regler erzielt wird.

5.5.2 Fusionsreaktor

Betrachtet wird folgende lineare Strecke mit einem instabilen und einem
stabilen Eigenwert

. 1o 1
x= {0 0.5]X+ {0.5] u, ful< 1.

Das Modell beschreibt die wesentlichen physikalischen Eigenschaften von
felderzeugenden Strémen, wobei die erzeugten Magnetfelder die Position
des Plasmas in einem Fusionsreaktor halten.??) Bei dieser Strecke ist zu
beachten, dass die null-steuerbare Region x € [—1,1] x R ist. Diese ist
die Region im Zustandsraum welche durch eine beschriankte Stellgrofe
|u| < 1 iiberhaupt ausregelbar ist. Sie ist beschrankt, da die Strecke einen
instabilen Eigenwert bei Ay = 1 besitzt.24

In diesem Beispiel werden die konvergenzoptimale WSVR mit invers-
polynomialer Selektionsgleichung und die nichtlineare Regelung aus [28]
verglichen. Als Anfangsauslenkung wird xo = [0.7 2.8]" gewiihlt. Die Ko-
effizienten P., und P,_, des Matrixpolynoms P, aus dem Validierungs-
problem (4.10)-(4.12) mit M; = —1 und M, = 0, sowie € = 0.01, sind im
Abschnitt C.1 (Anhang) angegeben.

In Abbildung 5.3 wird die erzielte Ellipse &p(1) = {x € R*|x'P{'x —
1 < 0} (-) fir v = 1 aus dem Validierungsproblem gezeigt. Sie ent-
hélt zwar nicht die gewiinschte Anfangsauslenkung, sie kann aber ska-
liert werden, sodass sich die Anfangsauslenkung auf derem Rand befin-
det. Eine Skalierung mit d* = (x)P;'x¢)~' = 1.1058 erzielt die Ellipse

23)Vgl. [28] und die Referenzen darin.
24)Vgl. [36, Proposition 2.2.1] und Gl (2.4.2) fiir die Analyse von null-steuerbaren
Regionen von Systemen mit reellen Eigenwerten.
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€2
o

Bild 5.3: Anfangszustand x¢ = [0.7,2.8]" (e) und erzielte Ellipsen im Zu-
standsraum fiir v = 1: die aus dem Validierungsproblem (4.10)-(4.12) er-
zielte Ellipse Ep(1) (-), die skalierte Ellipse £5(1) (- .) fir die Einhaltung
der StellgréBenbeschrinkung durch den Regler u(x) = —b'P !x, und die
skalierte Ellipse £5(1) (- -) fiir den Regler us(x) = —sgn(b™P; 1x).

(1) = {x € R"x"Py'x —d* < 0} (- -), mit xo € 9E5(1) (e). Mit
Hilfe des Korollars 5.3 muss jedoch iiberpriift werden, ob die skalierten
Ellipsen &5(v), mit v € [e,1], ebenfalls kontraktiv invariant fiir das Sys-
tem mit der konvergenzoptimalen WSVR u4(x) = —sgn(b'P,x) sind.
Dies wird ebenfalls im Abschnitt C.1 (Anhang) gezeigt. Die dritte Ellipse
Ex(1) = {x e R"x'P;'x —d < 0} (- .) mit d = 0.1249 zeigt schlieBlich
das Einzugsgebiet der Ruhelage fiir das System mit der nichtséttigenden
invers-polynomialen WSVR u(x) = —cb'P;!x und ¢ = 1 aus Satz 4.1.
Es ist ersichtlich, dass die nichtséttigende invers-polynomiale WSVR ein
kleineres Einzugsgebiet der Ruhelage erzielt.

Abbildung 5.4 zeigt die Simulationsergebnisse fiir den konvergenzopti-
malen Regler aus Gl. (5.6), den dazugehorigen High-Gain Regler aus Gl.
(5.8) und den in [28] vorgestellten nichtlinearen Regler

Unonlin = Sa't(_6x1 - 31‘2(1 - |l‘1‘)),

der speziell fiir die Regelung linearer Strecken mit einem einzigen instabilen
Pol und einer StellgroBenbeschrankung entwickelt wurde. Die Zeitverldufe
des konvergenzoptimalen und des High-Gain Reglers sind deckungsgleich,
d.h. der High-Gain Regler erzielt fast die gleiche Performance mit einem
stetigen Regelgesetz. Lediglich die Stellgréflen unterscheiden sich.
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Bild 5.4: Simulation des Fusionsreaktor-Modells. Die ersten zwei Abbil-
dungen zeigen die Zeitverldufe der Zusténde im Falle des konvergenzopti-
malen Reglers us(x) (o) und des dazugehorigen High- Gain-Reglers g, (x)
(%), welche deckungsgleich sind, sowie des nichtlinearen Reglers aus [28]
(0). Die dritte Abbildung zeigt die Zeitverldufe der jeweiligen Stellgrofien:
des High-Gain-Reglers mit der invers-polynomialen Selektionsstrategie (-
.), des nichtlinearen Reglers aus [28] (- -), sowie des konvergenzoptima-
len Reglers mit der invers-polynomialen Selektionsstrategie (-). Letzte-
rer schaltet hochfrequent zwischen —1 und 1 und entspricht dem grauen
Bereich.
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6 WSVR-Synthese in
Regelstrecken-Ensembles

Um die Performance-Analyse einer nichtlinearen Regelungsmethode tiber
eine einzelne Regelstrecke hinaus zu untersuchen, konzentriert sich Ka-
pitel 8 auf die Entwicklung einer Methode zur Performance-Analyse in
Regelstreckenensembles. Die Performance einer Regelungsmethode fiir ein
Regelstreckenensemble kann beispielsweise an einzelnen Strecken aus dem
Ensemble exakt iiberpriift und im iibrigen Bereich interpoliert werden.
Dabei muss aber garantiert werden, dass im ganzen Interpolationsbereich
auch Regler existieren. Dies wird in diesem Kapitel untersucht. Die jewei-
ligen Bedingungen fiir die klassische WSVR mittels iLFs werden im Ab-
schnitt 6.1 und diejenigen fiir die invers-polynomiale WSVR im Abschnitt
6.2 vorgestellt.

Es werden Regelstreckenensembles betrachtet, welche von einem Para-
meter aus einer kompakten Menge, vgl. Def. 11 (Anhang), abhéngen. Die
Abhéingigkeit wird als polynomial angenommen. Das hier analysierte Re-
gelstreckenensemble ist wie folgt definiert:

x=A0)x+bBu, xeR"uelR" |ul<1,0€06, (6.1)
mit
A(0):=) 0'A., A, €R™™i=0,... 04 n4 €N, (6.2)
=0
np )
b(6) :=> 6'b.,, b, €R"i=0,...m,m €N, (6.3)
=0

Es wird dariiber hinaus angenommen, dass ng,n, € N und © bekannt
sind. Der Wert von 6 € © variiert wahrend eines Ausregelvorgangs nicht
und ist erst bei der Reglerimplementierung bekannt. Ein solches Problem
wird auch in-situ Regler-Tuning?) genannt.

Dvegl. [39].
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Um zu garantieren, dass fiir jedes § € © ein WSVR Regelgesetz existiert,
kann eine bereits existierende Methode aus dem Bereich der robusten Re-
gelung verwendet werden, welche im Zusammenhang mit der WSVR, mit-
tels iLF und polynomialer Selektionsstrategien in [40] vorgestellt wurde.
Die Methode garantiert die Existenz eines einzigen Reglers fiir das gesam-
te Regelstreckenensemble. Dies ist zwar hinreichend aber nicht notwendig
und kann entsprechend konservativ sein.

Eine alternative Methode besteht darin, Existenzbedingungen fiir Reg-
ler zu formulieren, die sich an das Regelstreckenensemble anpassen. Sind
diese Bedingungen dariiber hinaus sowohl hinreichend als auch notwendig,
so ist die Untersuchung nicht mehr konservativ. Ein derart entworfener
Regler ist dann zwar nicht beziiglich eines Giitemafles optimiert, er ga-
rantiert aber die Stabilisierbarkeit des Regelstreckenensembles durch die
untersuchte Regelungsmethode, sodass eine Performance-Analyse fiir das
gesamte Ensemble erfolgen kann. Die Untersuchung dieser Bedingungen
wird, wie in den vorherigen Abschnitten, fiir die klassische WSVR mittels
iLF und fiir die invers-polynomiale WSVR vorgestellt.

Dieser Abschnitt ist wie folgt gegliedert. Abschnitt 6.1 stellt die notwen-
digen und hinreichenden Existenzbedingungen einer klassischen WSVR
mittels iLF fur das Regelstreckenensemble aus Gl. (6.4)-(6.6) vor. In Ab-
schnitt 6.2 werden die notwendigen und hinreichenden Existenzbedingun-

gen einer invers-polynomialen WSVR fiir das Regelstreckenensemble aus
Gl. (6.1)-(6.3) hergeleitet.

6.1 Die klassische WSVR mittels iLF

Bei der klassischen WSVR mittels iLF beschrankt sich diese Untersuchung
auf parametrische Reglerstrecken, welche bereits in Steuerungsnormalform
vorliegen. Diese haben also die Form

x=A@)x+bu, xeR" |[u/<1, #€6CR, (6.4)
mit
A(0):=) 0'A., A;eR™ n,€N, (6.5)

=0
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und
0 1 0 0 0
0 0 1 0 0
Aci=| 1 i |, b= (66)
0 0 0 1 0
—Qi, —Q; —Qyy o —Q4, 1

Im Folgenden werden die Existenzbedingungen eines Regelgesetzes der
Form
u= -k (v;0)x, uweER, |ul <1, (6.7)

mit der Reglerverstarkung
k(v;0) := D ' (v)a(d) —a(9), (6.8)

bestimmt, wobei der noch zu ermittelnde parameterabhéngige Vektor 4(6)
in polynomialer Form angenommen wird, d.h.

a0):=Y 0'a,, a,cR", (6.9)
=0
und
a'(0):=—[0 --- 1JA(6) =) 6'a], al =—[0 --- 1]JA.. (6.10)
=0

Wiéhrend des Ausregelvorgangs wird der Parameter v durch die Selekti-
onsstrategie
x'P(v;0)x —1=0, (6.11)

bestimmt, wobei

P(v;0) =D '(v)P(1;0)D  (v), P(1;0) € P",¥VHcO (6.12)
D(v) := diag(v", ... v).

Gesucht sind ein von # € O abhéngiger polynomialer Vektor &(f) und
eine polynomiale Matrix P(1;0), sodass fiir alle § € © die Selektionsstra-
tegie eine eindeutige Losung im Intervall v € (0,1] hat, das Regelgesetz
u beschrankt ist, d.h. |u| < 1, und der geschlossene Regelkreis stabil ist.
Folgender Satz stellt die notwendigen und hinreichenden Bedingungen fiir
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die Existenz einer stabilisierenden WSVR dieser Klasse fiir das Strecke-
nensemble aus Gl. (6.4)-(6.6) vor. Der Satz baut auf dem Satz 3.1, Seite
17, aus Abschnitt 3 auf und erweitert diesen zur Beriicksichtigung von
Streckenensembles durch den konstanten Parameter 6 € ©.

Satz 6.1 Gegeben sei das Ensemble von LTI-Systemen mit einer FEin-
gangsgrofse und Stellgrofienbeschrinkung aus Gl (6.4)-(6.6), sowie eine
Zahl € € (0,1). Folgende Aussagen sind dquivalent:

i) Es existieren die Zahlen ng € N und n, € N, die Vektoren 4., € R"
mit i = 1,...,ns sowie die Matrizen Q.,, i = 0,...,n,, sodass fir jedes
0 € © die Gebiete

Ga(v;0) := {x € R"|ga(x,0;0) = x'Q(v; )x — 1 < 0} (6.13)
mit
Q(v;0) :=D"'(v) Q(1;0) D™ (v), (6.14)
Q(1;0) := ieiqci =0 (6.15)
=0

verschachtelt und kontraktiv invariant fir alle v € (0,1] fiir das System
aus Gl. (6.4)-(6.6) mit dem Regelgesetz

u=—k'(v;0)x, (6.16)
a0):=>» 0'a.,, a,cR", a'(0):=-[0 --- 1JA(B), (6.17)
1=0

sind. Dartiber hinaus gilt

lul <1, Vx € Ga(v;), ve€El[el]. (6.18)
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i1) Es existieren die Zahl n, € N und die Matrizen P., € Sym", sodass
fiir alle 6 € ©

P(0) := i@iPci =0, (6.19)

=0
A(O)P(0) + P(0)AT(A) < bb', (6.20)
NP(#) + P(O)N <0, N :=diag(—n,...,—1). (6.21)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz gegeben durch

al0)=a(d) + MP_l(O)b, 0= gréiél det(P(9)), (6.22)

Q(1;0) = d(6) det(P(9))P~1(6), (6.23)

wobei der Skalierungsfaktor d(0) fir ein gegebenes 0 € © aus dem Opti-
mierungsproblem

min d(6), sodass
d(6) > 0, (6.24)

det(P(9))P(0)~t a(d) — D(v)a(f)
(4(0) — D(v)a(d))" d(9) =0, Yvclel],  (6.25)

berechnet wird.

Bemerkung 6.1. Da die Matrix P(6) in polynomieller Form vorliegt, kon-
nen Gl. (6.19)-(6.21) in dquivalente parameterunabhéngige LMIs transfor-
miert werden. Die Transformation basiert auf [78, Lemma 4.4], welches
eine Generalisierung der in [38] vorgestellten S-Prozedur verwendet. A

Bemerkung 6.2. Fiir ein gegebenes 6§ € O ist dieser Satz sehr dhnlich zu
dem Satz 3.1 aus Abschnitt 3. Der einzige Unterschied besteht in der Form
des vorgegebenen Regelgesetzes in Gl. (6.22)-(6.25). A

Beweis. Der Beweis wird auf die gleiche Weise wie im Satz 3.1 aus Ab-
schnitt 3 ausgefiihrt. Durch Einsetzen des vorgegebenen Regelgesetzes aus
Gl (6.16), mit dem Vektor 4(f) aus Gl. (6.22), und der vorgegebenen
Matrix Q(1;6) aus Gl. (6.23) wird gezeigt, dass die Bedingungen aus GI.
(6.19)-(6.21) hinreichend fur ) sind. Deren Notwendigkeit wird mit Hilfe
von Finsler’s Lemma gezeigt. Da die Beweise in diesem Punkt deckungs-
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gleich sind, wird hier nur auf den Unterschied zwischen den beiden Regel-
gesetzen eingegangen.

Das Regelgesetz aus Gl. (6.16), mit dem Vektor 4(0) aus Gl. (6.22), wird
so bestimmt, dass es polynomial in 6 ist. Dies wird durch den zusétzlichen
Skalierungsfaktor det(P(f)) in Gl. (6.22) erreicht, da

det(P(0))P(9)' = P(9)" (6.26)

gilt, und die Adjunkte P(#)* der Matrix P(#) wiederum polynomial in 6
ist. Dies gilt auch fiir die Matrix Q(1; 6). Dariiber hinaus wird der konstan-
te Skalierungsfaktor ¢ eingefiihrt, sodass det(P(6))/0 > 1, fir alle § € ©
ist. Dies muss erfiillt sein, damit das Regelgesetz kontraktiv invariante Ge-
biete Ga(v;0) fir alle v € (0,1] erzeugt, vgl. Satz 3.1, bzw. dessen Beweis.
Schlieflich wird der Skalierungsfaktor d(f) in Gl. (6.23) eingefithrt, um
sicherzustellen, dass das Regelgesetz v beschrankt ist, d.h. dass Gl. (6.18)
gilt. Jeder Skalierungsfaktor d(6), der die Bedingungen (6.24) und (6.25)
erfiillt, ist zuldssig. Der kleinste Faktor d(#) ergibt dabei das maximale
Einzugsgebiet GA (1;0). Fiir ein gegebenes 6 € © ist die linke Seite der Be-
dingung (6.25) eine polynomiale Matrix in v € [¢,1], welche, wie im Satz
3.1, in eine dquivalente LMI transformiert werden kann. O

6.2 Invers-polynomiale WSVR fiir
Regelstreckenensembles

Wie im vorigen Abschnitt baut der nichste Satz auf dem Satz 4.1, Seite 28,
auf und erweitert ihn zur Beriicksichtigung von Streckenensembles durch
den konstanten Parameter 8 € ©. Dieser Satz wurde zum ersten Mal im
[59] vorgestellt.

Satz 6.2 Gegeben seien die Zahlen a,b € N, die Matrizen A., € R™*™ mit
i =0,...,a und die Vektoren b., € R", mit i =0,....,b, fiir das folgende
LTI-System mit einer Eingangsgrofie und Stellgrofienbeschrinkung

x=A@)x+b(@)u, uweR,|ul <1, (6.27)

wobei

Af) := i@iAci, b(6) :=> 0'be,, (6.28)
=0 i
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sowie eine reelle Zahl € € (0,1). Folgende Aussagen sind dquivalent:

i) Es existieren die Zahlen R € N, Mj, M, € Z, mit M; < 0, M; < M,
die Matrizen Re,; € Sym", mit i = My,...,My, j = 0,...,R, sowie die
Vektorfunktion k(v;8) : V — R™, mit V := {(v,0)|v € [e,1], 6 € O}, sodass
fiir jedes gegebene 6 € © die Gebiete

Ga(v;0) :={x € R™ |ga(x,v; 0)=x"Q(v;0)x—1 < 0}, (6.29)
mat
Q(v;0) :== R(v;0)71, (6.30)
M,
R(v;0) := Y _ o' ZQJRC” -0, Y(v,0) eV, (6.31)
=M,

fiir alle v € [e,1] verschachtelt und kontraktiv invariant fir das System
(6.27) mit dem Regelgesetz

u=—k(v;0)'x, k(v;6):V —R" (6.32)

sind, und
lu(x)| <1, Vxe€G,(v;0), velel] (6.33)

i1) Es existieren die Zahlen p € N, my,m, € Z, mit m; < 0, m; < m,,
und die Matrizen P.,; € Sym", mit i = my,...,my, j = 0,...,r, sodass
fiir jedes Tupel (v;0) € V gilt

P(v;0) mz Z 0P, | =0, (6.34)
0P (v;0) >~ 0, (6.35)
AO)P(v;0) +P(v;0)A(0)" < b(6)b(H)". (6.36)

Falls ii) gilt, dann ist ein stabilisierendes Regelgesetz in i) gegeben durch
k(v;0)" =b(0)"P(v;0)"",  Q(uv;0) = d(0) P(v;60)~", (6.37)

wobei

d(9) > b(0) P(s;0)"'b(h) > 0. (6.38)
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Bemerkung 6.3. Die parameterabhéngigen Bedingungen aus Gl. (6.34)-
(6.36) konnen in dquivalente parameterunabhingige LMIs transformiert
werden. Die Transformation beruht auf der allgemeinen S-Prozedur aus
[38] und wurde in [77] vorgestellt, vgl. Abschnitt A.3 (Anhang). Diese kann
als Verallgemeinerung der im Abschnitt 4 verwendeten Transformation
fiir polynomiale Matrizen mit nur einem Parameter gesehen werden. Fiir

den Fall mehrparametriger polynomialer Matrizen werden im folgenden
Abschnitt die LMIs vorgestellt. A

Beweis. Fir ein vorgegebenes 6 € O sind die Punkte ¢) und i) dquiva-
lent zu den gleichnamigen Punkten aus Theorem 4.1. Daher wird hier der
Beweis nicht wiederholt aufgefiihrt. O

6.2.1 Umwandlung der Stabilitatsbedingungen in
LMIs

Gl. (6.34)-(6.36) konnen in dquivalente parameterunabhéngige LMIs trans-
formiert werden. Die Transformation beruht auf [77, Theorem 6.3], und
wird im Folgenden beschrieben.

Satz 6.3 [Vgl. [77, Theorem 6.3]] Folgende Aussagen sind dquivalent:
1) Fir alle (p1,p2) € [—1,1] x [=1,1] gilt fir die polynomiell parameter-
abhéingige quadratische Matriz®

_ _ T _ _
P(p1,p2) := (p[;“z] ® pi @ In) Py (p[z‘”] ® pi ® In) -0, (6.39)
mit pi =1 p1 p} oo P und p5 =1 p2 p3 - p52T
ii) Es existieren die Matrizen D1,Ds € Sym?, mit D1,Ds = 0 und
g=2-(an—1)-(ag —1)-n, sodass

['D 0 0 o
Jx1'| 0 -D. 0 oIk
_Py4 [CK} O [CK] <o, (6.40)
D

0 0 0
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wobei
Jam1®Ja 1 ®1, Jar1©Ja, 101,
Ja 1®Ja 191, Ja 1®Ja 11,
Jrg = |+ e , Cg:= 2T e , (6.41
R SR Y- 3 T Pa1030, 106 (6.41)
Jag 1®Ja1 1®I Jag 1®Ja1 1®I
und

Je=[L Op1], Jp=[0p1 L.

@)Vgl. Def. 27 (Anhang) fiur die Definition einer polynomiell parameterabhéngigen
quadratischen (matrixwertigen) Funktion.

Negative Exponenten

Fir die Umwandlung der Polynome aus Gl. (6.34)-(6.36) in die Form eines
Polynoms aus Gl. (6.39) miissen diese erstens so transformiert werden, dass
die Exponenten von v positiv sind. Dies ist moglich durch eine mehrmalige
Multiplikation der Gleichungen mit dem Parameter v. Da

my r my T

P(v,0) = Z v ZejPCii =™ Z vl ZejPCij
i=my Jj=0 i=m; j=0
m, — mj
=" Z Z 0’ Pckerl y
k=0

gilt, ist Gl. (6.34) dquivalent zu

my — my

Si(wh) = Y WD 0P, | =0, V() €[l x0O, (6.42)

k=0
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und, da

vh) =Y vt 0P,

i:ml jZO
my, r
=pm ! g jo' ™ E P,
i=m, §=0

m, —m

=Mt Z (k +my)v Z 0’ PCHml g
k=0

gilt, ist Gl. (6.35) dquivalent zu

m, — mj
Sp(v,0) := > (k+m)v Zmpckm =0, V(o) el xe.
k=0 7=0
(6.43)
Schlieflich ist Gl. (6.36) dquivalent zu
S3(v,0) := A(0)S1(v,0) + S1(v,0)A(6)" — v~ ™b(0)b(d)"
Z Z Z QH‘J AP chpmyd T Pch“]AT)
k=0 =0 7=0
L) P
—0o7™ Y N " 0bbl <0, V(v,0) € [e,1] x ©.
=0 i=0
(6.44)
G1.(6.42)-(6.44) konnen in der allgemeinen Form
Ny ng
S.(v,0) =Y 0¥ 'S, =0, V(vb) €[s1]xO, =123 (6.45)
k=0 =0

geschrieben werden. Gl. (6.45) wird im Folgenden mit Hilfe des Theorems
6.3 in eine parameterunabhéngige LMI transformiert. Dazu werden ers-
tens zwei Intervalltransformationen durchgefiihrt, sodass beide Parameter
im Intervall [—1,1] liegen und anschlieBend die polynomiale Matrix umge-
formt, sodass diese in der Form aus Punkt ¢) des Theorems 6.3 vorliegt.
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Intervalltransformationen

Da der Parameter v aus Gl. (6.45) im Intervall v € [¢,1] liegt, wird statt-
dessen der transformierte Parameter ¢ := 2/av — §/a, mit @« =1 — ¢ und
B8 =1+ ¢ verwendet, wobei © € [—1,1] gilt. Fiir Gl. (6.45) ergibt sich nach
einigen Umformungen

0) = iﬁ’“a’“iz—j (i)ﬁj—’f (ZB eiscw> =:S,(3,0). (6.46)
k=0 j=k i=0

Wir nehmen an, dass das Intervall © in der Form © = [6;,0,,] vorliegt. Eine
zweite Intervalltransformation wird durch 8 := 2/v6 —§/~, mit v = 6, —6;
und & = 6, +6; vorgenommen, sodass € [—1,1] gilt. Folglich ist Gl. (6.46)
dquivalent zu

S.(3,0) Z ’6223@')5]’—’“ (Zez 722 (l)al—is%)

k=0 =0

U)n

(9.,0).

Mit der Notation & =: p1,  =: ps kann die Matrix §L(ﬁ,§) in der allgemei-
nen Form

P1,p2

T.(p1.,p2) := S.(p1,p2) Z py' p5?T Loy kg ? (6.47)
ey =k =0

mit p1 1= Ny, P2 = ng, sowie

P1 . P2
ok Z —i(J i—ky K Z Y Y
I'I‘L%l,k2 =o' 2 277 <k1>ﬁj 17 2l - 2 <k’2>6 2Scj'l
J=Fk1 =Rr2

unda:=1—¢,:=1+¢,v:=80, —0;, 6 := 0, + 0; geschrieben werden.

Umformung der polynomialen Matrix S(7,0)

Gl. (6.47) kann dariiber hinaus in der Form

_ _ T _ _
Tu(prpe) = (P8 @ o L) Ty (P @ o™ 0 1,),  (6.48)
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mit pl* =1 py p2 - PP und P =1 py P2 - p3NT
sowie a; := [p;i/2] + 1, i = 1,2, geschrieben werden, wobei die konstante

Block-Matrix T,,, € Sym® " *2"" aus

1

T, =

(TLZ + T—er)

gebildet wird. Dabei wird der (fy,f2)-te Block der Matrix T,,, durch

=T
“ry52) Yok ko

gebildet, wobei die Indizes fi; und f5 aus

f1 = fr(a1,a2)
f2 = fK(ﬂl,ﬁz)

mit
[r(ci,c2) == qica + 1+ 1

ki k|
Q; 1= ’75-‘ 9 B’L C \‘5J ’ 1= 1727

berechnet werden. Die restlichen Komponenten der Blockmatrix, welche
durch die Indizes f; und fo nicht festgelegt wurden, werden zu 0, ,, gesetzt.
Die Umformung aus Gl. (6.48) ist allerdings nicht eindeutig.

Die Sétze 6.1 und 6.2 beinhalten die notwendigen und hinreichenden
Bedingungen fiir die Stabilisierbarkeit eines Regelstreckenensembles durch
klassische bzw. invers-polynomiale WSVRs. Sie konnen als Erweiterungen
der im Kapitel 3 und 4 vorgestellten Regelungen gesehen werden.

Abschlieend werden hier noch die Hauptbeitridge des ersten Teils der
Arbeit zusammengefasst. Dieser stellt mehrere Weiterentwicklungen wei-
cher strukturvariabler Regelungen mittels impliziter Ljapunov-Funktionen
vor, deren Hauptaugenmerk die Nicht-Konservativitidt der Regelgesetze
bildet. Nach einem einleitenden Kapitel tiber die Stabilisierung linearer
Systeme mit Stellgréfenbeschréinkung werden im Kapitel 3 die hinreichen-
den und notwendigen Bedingungen der klassischen WSVR mittels iLF
vorgestellt. Daran anschlieBend wird die hier neu-entwickelte invers-poly-
nomiale WSVR in Kapitel 4 eingefiihrt. Beide Kapitel haben dabei eine
dhnliche Struktur. Sie beginnen mit der Definition der jeweiligen Regelung,

und
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werden dann mit den nicht-konservativen Stabilitdtsbedingungen fortge-
fiihrt und enden mit einem Abschnitt {iber einen moglichen Regelungs-
entwurf. Kapitel 5 stellt die konvergenzoptimale (Bang-Bang) WSVR dar.
Dabei werden ebenfalls nicht-konservative Stabilitdtsbedingungen vorge-
stellt. Dartiber hinaus wird der Aufbau stetiger Approximationen der vor-
gestellten Bang-Bang Regelgesetze und, abschliefend, ein moglicher Rege-
lungsentwurf vorgestellt. Der letzte Abschnitt des Kapitels veranschaulicht
die oben vorgestellten Regelgesetze anhand von zwei Beispielen mit Reg-
lerstrecken zweiter Ordnung. Der erste Teil der Arbeit endet mit der im
Kapitel 6 vorgestellten WSVR-Synthese fiir Regelstreckenensembles. Diese
werden im zweiten Teil der Arbeit im Rahmen der Performance-Analyse
in nichtlinearen Regelkreisensembles verwendet.
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7 Performance-Mafle in nichtlinearen
Regelkreisen

Lineare und nichtlineare Regelkreise unterscheiden sich wesentlich in ihren
Eigenschaften. Das Superpositionsprinzip, die Darstellbarkeit jedes linea-
ren Systems mit Hilfe einer endlichen Anzahl von Parametern, die Anwend-
barkeit des Satzes von Cayley-Hamilton mit den jeweiligen Folgen fiir den
linearen Regelkreis, z.B. bzgl. Steuerbarkeit und Beobachtbarkeit, haben
zu einer vollstdndingen Theorie linearer Systeme gefithrt. Diese Eigen-
schaften sind im Allgemeinen bei nichtlinearen Systemen nicht vorhanden.
Dies hat zur Folge, dass nur bestimmte Klassen nichtlinearer Systeme, wel-
che besondere Eigenschaften haben, einheitlich untersucht werden kénnen.
Eine Klassifizierung nichtlinearer Systeme kann man z.B. in [65] finden.

Die Eigenschaften eines nichtlinearen Systems konnen unter bestimm-
ten Bedingungen mit Hilfe der linearen Systemtheorie untersucht werden.
Diese wird zur asymptotischen Analyse nichtlinearer Zustandslésungen in
der Néhe linearer Losungen erweitert. Mit dieser Thematik beschéftigen
sich beispielsweise [11, 31, 43, 48, 56, 67, 76]. Ein Beispiel einer solchen
Methode ist die Analyse von Dauerschwingungen in der Néhe linearer
harmonischer Schwingungen, vgl. dazu [31]. Die Erweiterung der linearen
Systemtheorie in dieser Richtung basiert auf der asymptotischen Methode
von Krylov und Bogoliubov, vgl. [43]. In der Arbeit von [56] wurde diese
Methode auf geddmpfte nichtlineare Schwingungen erweitert. Die Voraus-
setzungen fiir diese Untersuchung war, dass die Dadmpfung und Frequenz
der nichtlinearer Schwingung nur langsam variieren. Diese Voraussetzung
wurde in der Arbeit von [76] gemildert, in der die nichtlineare Schwingung
in der Nahe einer linearer Schwingung mit zeitvarianter Démpfung und
Frequenz analysiert wurde. Die Anwendung dieser Methode auf den Fall
weicher strukturvariabler Regelungen wurde in [57] gezeigt. Dabei wurde
eine Losungsmethode unter Verwendung von Potenzreihen vorgestellt, um
die meistens sehr komplexe Form der angendherten Zeitlosung numerisch
effizient zu berechnen. Zwei weitere Anwendungen von solchen asymptoti-
schen Methoden konnen in [15], sowie [20] gefunden werden.
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Die Performance-Analyse nichtlinearer Systeme wird mit Hilfe ver-
schiedener Performance-MafBie (Giitemafle) durchgefiihrt, welche exakt be-
rechnet oder angendhert werden koénnen, oder wofiir bestimmte Ober-
und/oder Untergrenzen berechnet werden kénnen. In diesem Kapitel wer-
den mehrere Performance-Mafle sowie deren Einsatz zur Performance-Ana-
lyse in nichtlinearen Regelkreisen analysiert. Neben der Konvergenzrate
eines exponentiell stabilen nichtlinearen Systems, welche vielfach sowohl
fiir die Performance-Analyse als auch fiir den Reglerentwurf verwendet
wird, wird in dieser Arbeit - auf Basis eines neu entwickelten Zweipunkt-
reglers mit einer parameterabhingigen Schaltfunktion - auch ein neues
Performance-Maf} vorgestellt, das den Fehlklassifikationsanteil einer zeit-
suboptimalen Regelung mit Schaltfunktion miffit. Unabhéngig von der
Zeitlosung des Systems, quantifiziert dieses Mafl den Abstand zwischen
der Schaltfunktion eines zeitoptimalen Reglers und einer Schaltfunktion
eines zeitsuboptimalen Reglers. In dem gleichen Zusammenhang wird der
Quotient zwischen der FEinschwingzeit des neuen Reglers und der FEin-
schwingzeit des zeitoptimalen Reglers analysiert.

Das Kapitel ist wie folgt gegliedert. Abschnitt 7.1 stellt die wesentli-
chen Unterschiede zwischen linearen und nichtlinearen Regelkreisen dar.
Abschnitt 7.2 stellt eine Klassifizierung von Performance-Mafien dar. Ab-
schnitt 7.3 stellt ein neues Performance-Mafl dar, das geeignet fiir um-
schaltende Regler ist und den Fehlklassifikationsanteil einer zeitsubopti-
malen Regelung mit Schaltfunktion misst. Abschnitt 7.4 stellt ein weite-
res Performance-Maf dar, das das Verhéltnis zwischen der Einschwingzeit
des zeitoptimalen Reglers und der des konvergenzoptimalen Reglers mift.
Schliellich beschreibt Abschnitt 7.5 die Konvergenzrate eines exponentiell
stabilen nichtlinearen Systems und gibt einen theoretischen Rahmen fiir
dessen Bestimmung an.

7.1 Lineare und nichtlineare Regelkreise

Wie bereits erwdahnt, unterscheiden sich die linearen und die nichtlinearen
Regelkreise wesentlich in ihren Eigenschaften. Das Fehlen des Superposi-
tionsprinzips im Fall nichtlinearer Regelkreise fiihrt beispielsweise dazu,
dass der Zusammenhang zwischen Ein- und Ausgangsgrofie nicht durch
eine komplexe Ubertragungsfunktion darstellbar ist, und somit keine fre-
quenzbasierten Untersuchungsmethoden anwendbar sind. Dariiber hinaus
gelten die Ergebnisse, die flir einen Unterraum des R™ erzeugt wurden,
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nicht im gesamten Zustandsraum. Die Ergebnisse sind also nur lokal giil-
tig.

Dariiber hinaus ist die Darstellbarkeit eines nichtlinearen Systems mit
Hilfe einer endlichen Anzahl an Parametern nicht mehr mdéglich, da auch
eine geniigend glatte Funktion f(x) hochstens durch eine unendliche Rei-
he, z.B. in Form einer Taylorreihe in der Umgebung eines Arbeitspunktes
x(0), darstellbar ist. Dies fithrt dazu, dass die Zeitlosung allein bei be-
stimmten nichtlinearen Systemen exakt bestimmbar ist, im Allgemeinen
aber bestenfalls nur approximiert werden kann.

Sind Dauerschwingungen bei linearen Systemen theoretische Phinome-
ne, die aufgrund unvermeidbaren Rauschens oder Parameterschwankung
in einem realen System nicht vorkommen kénnen, so sind diese - zumindest
die stabilen Dauerschwingungen - in nichtlinearen Regelkreisen reale Phéa-
nomene, wobei deren Amplituden und Frequenzen unabhéngig von den
Anfangsauslenkungen sind. Diese bilden eine besondere Eigenschaft eines
nichtlinearen Systems und werden daher oft als Selbstschwingungen®) be-
zeichnet.

Weitere Eigenschaften nichtlinearer Regelkreise, wie z.B. Bifurkationen,
Chaos, sowie - bezogen auf die Instabilitdt - Unbeschranktheit des Aus-
gangssignals eines instabilen nichtlinearen Systems (nach endlicher Zeit),
oder die mogliche Inexistenz eines mathematischen Modells fiir die Be-
schreibung nichtlinearer Dynamiken werden beispielsweise in [75] behan-
delt. Bei der in dieser Arbeit untersuchten Spezialklasse nichtlinearer Sys-
teme sind jedoch solche Eigenschaften nicht vorhanden, sodass sie hier
keine weitere Beachtung finden.

Beziiglich der Performance erfahren auf der anderen Seite die linearen
Systeme fundamentale Grenzen, welche beispielsweise durch das Gleich-
gewichtstheorem?® anschaulich sind. Diese sind zwar prinzipiell mit Hilfe
nichtlinearer Regler iiberwindbar, dies jedoch auf Kosten einer Erhéhung
der Komplexitit des Reglers.

Die Performance-Mafe fiir die nichtlinearen Regelkreise sind folglich an-
gepasst an die besonderen Eigenschaften verschiedener Systemklassen. Fi-
ne besondere Klasse nichtlinearer Regelkreise, die in dieser Arbeit unter-
sucht wird, bilden die linearen Strecken mit StellgréBenbegrenzung, welche
durch lineare oder nichtlineare Regler geregelt sind. Allgemein ldsst sich
der Regelkreis wie in Abbildung 7.1 darstellen. Ist das Regelgesetz linear,

Dvgl. [29].
2)Vgl. [47, Abschnitt 7.4.4].
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Sattigungsglie Strecke
r=0 u 1] u | Xx=Ax+bu e
_ -1 Tl y=c'x, x0€Xp
Regler <
fx) =

Bild 7.1: Nichtlinearer Regelkreis.

so bildet die Sattigungsfunktion die einzige Nichtlinearitdt im Regelkreis.
Ein solches Modell ist in der Literatur auch als Hammerstein-Systemmo-
dell bekannt.?) Dabei ist die Sattigungsfunktion als symmetrisch und, ohne
Beschrankung der Allgemeinheit, normiert angenommen, d.h.

u = sat(u) = sign(v) min{1,|u|}.

Eine fehlende Symmetrie der Sattigungsfunktion dndert wesentlich die Ei-
genschaften des Systems. Diese Art von Systemen wird hier jedoch nicht
behandelt.

Ist der Regler nichtlinear, so muss dieser nicht notwendigerweise analy-
tisch sein. In dieser Arbeit werden Regelgesetze analysiert, welche nichtli-
near in den Systemzustinden sind und auflerdem unstetige Komponenten
beinhalten kénnen. Ein nichtlinearer Regler dieser Art ist beispielsweise
ein Bang-Bang-Regler (u(x) = sgn(s(x))).

Im Allgemeinen lésst sich obiger nichtlineare Regelkreis in der Form

% = Ax — bsat(f(x)), x€R" f(0)=0 (7.1)

beschreiben. Die Ruhelage des Systems ist dabei xg = 0. Solche Rege-
lungen fir lineare Systeme mit Stellgrofenbegrenzung wurden vielfach in
der Literatur untersucht, vgl. z.B. [35] fiir lineare und Bang-Bang-artige
Regelgesetze mit zustandslinearen Umschaltstrategien.

Im Folgenden wird eine Klassifizierung von Performance-Maflen fiir
nichtlineare Regelkreise mit besonderer Beriicksichtigung der oben vorge-
stellten Systemklasse vorgenommen.

3)Vgl. [65, Abschnitt 1.2].
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7.2 Klassifizierung von Performance-Maflen

Im Allgemeinen werden Performance-Mafle verwendet, um Aussagen iiber
das dynamische Verhalten des nichtlinearen Regelkreises zu machen. Sie
basieren oft auf der Antwortfunktion der homogenen Zustandsgleichung®
im Fall stabiler Systeme, im Weiteren als transientes Verhalten bezeichnet,
also auf der Antwort ausschliefSlich zu verschiedenen Anfangsauslenkun-
gen, ohne weitere aktive externe Storungen. Diese unterscheidet sich von
dem transienten Verhalten in einem linearen Regelkreis, welches das Ein-
schwingverhalten des Systems und nicht die Antwortfunktion der homoge-
nen Zustandsgleichung darstellt. Letztere beinhaltet bei linearen Systemen
auch das stationédre Verhalten.

Das transiente Verhalten in nichtlinearen Regelkreisen, also die Antwort
ausschliellich zu verschiedenen Anfangsauslenkungen, wird dabei genutzt,
um verschiedene zustandsbezogene Performance-Mafle zu formulieren.
Hierfiir relevante Performance-Mafle sind beispielsweise die Zeitkonstante,
d.h. die Zeit, in der die Zustandsnorm auf weniger als 35% (=~ e~') ihres
Anfangswertes ||x(0)] sinkt und die Einschwingzeit der Zustandsnorm,
d.h. die Zeit, wann die Zustandsnorm auf weniger als 5% (=~ e~3) ihres
Anfangswertes sinkt. Im Fall exponentiell stabiler Systemen kénnen diese
MafBe aus der Konvergenzrate des Systems, vgl. [69], berechnet werden,
welche sich leichter als die Zeitlosung des Systems ermitteln lasst und ge-
eignet fir die Reglersynthese iiber optimierungsbasierte Ansétze ist. Diese
wird im néchsten Abschnitt vorgestellt.

Auch relativ zur zeitoptimaler Regelung ist es relevant, wie schnell eine
(nichtlineare) Regelungsmethode ist. Ist die zeitoptimale Schaltfunktion
bekannt, so kann man das Verhéltnis der beiden Einschwingzeiten unter-
suchen. Dies wird im Weiteren relative Finschwingzeit genannt. Zudem
kann man den Fehlklassifikationsanteil einer zeitsuboptimalen Regelung
mit Schaltfunktion als Performance-Mafl verwenden. Diese Mafle werden
in den néchsten Abschnitten vorgestellt.

Ein weiteres zustandsbezogenes Performance-Maf ist die Grofie des Ein-
zugsgebiets der Ruhelage, welche beispielsweise durch das Volumen des
FEinzugsgebiets quantifiziert werden kann, denn je grofler das Einzugsge-
biet ist, desto mehr Anfangsauslenkungen kénnen ausgeregelt werden. Das
maximale Einzugsgebiet ist dabei im Fall linearer Strecken mit Stellgro-
Benbegrenzungen auf die asymptotisch-null-steuerbare Region beschrénkt,

4 Der entsprechende englische Begriff lautet zero-input response.
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die im Fall instabiler Strecken begrenzt ist.?) Im Fall ellipsoidaler Gebiete
lasst sich, wie im vorigen Teil der Arbeit gezeigt, das Volumen des Ein-
zugsgebiets mittels LMIs optimieren.

Im Fall schwingungsfahiger nichtlinearer Systeme kann, wie bereits er-
wahnt, auch eine zeitverdnderliche Frequenz der nichtlinearen Schwingung
ermittelt werden. Diese ist im Fall nichtlinearer Regelkreise, ebenso wie
die Dampfung, eine Funktion der Amplitude der nichtlinearen Schwingung.
Mit Hilfe der sogenannten amplitudenabhingigen Frequenz und Dampfung
kann die Zeitlésung des Systems approximiert werden und damit die oben
genannten Performance-Mafe, sowie die Anzahl der Schwingungsperioden
der nichtlinearen Schwingung approximiert werden.

Andere Performance-Mafle konnen die Zustandseigenschaften eines nicht-
linearen Systems quantifizieren, welche durch besondere Steuergréfien
entstehen. Diese werden input-to-state-bezogene Performance-Mafle ge-
nannt. Beispielsweise ist in [16] die Erreichbarkeitsmenge von Zustdnden
mittels einer Steuergréfle mit einer Gesamtenergie von eins, oder einer
Steuergréfle mit einer Obergrenze von eins von Interesse. Die Erreichbar-
keitsmenge gruppiert die Zustédnde eines nichtlinearen Systems, welche von
einem bestimmten Zustand aus mit Hilfe einer beliebigen Steuergrofie in
einer maximalen Zeitspanne von 7' Sekunden erreicht werden kénnen, vgl.
[3]. Beispielsweise ist die Erreichbarkeitsmenge (von jedem Zustandspunkt
aus) eines steuerbaren linearen Systems (ohne StellgréBenbeschriankun-
gen) der gesamte Zustandsraum. Im Fall steuerbarer linearer Systeme mit
Stellgréflenbeschréankungen ist dies nur bei stabilen oder semi-stabilen Sys-
temen der Fall, vgl. [35, Kapitel 2]. Auch bei nichtlinearen Systemen ist
dies nicht immer der Fall, wie das Beispiel aus [3, S. 163] zeigt.

Auch die Eigenschaften der Ausgangsgrofie eines nichtlinearen Systems,
welche durch die Zustdnde determiniert werden, kéonnen durch Perfor-
mance-MaBe quantifiziert werden. Diese werden state-to-output-bezoge-
ne Performance-Mafle genannt. Beispielsweise gehort die Ausgangsenergie
eines (nichtlinearen) Systems dazu, welche fiir Reglersynthese mit opti-
mierungsbasierten Ansitzen geeignet sind, vgl. z.B. [30]. Auch die Uber-
schwingweite, d.h. die maximale Amplitude der Ausgangsgrofie, kann zu
solchen Performance-Maflen gezdhlt werden.

Schliefllich kénnen die Eigenschaften der Ausgangsgrofie eines nichtli-
nearen Systems, welche durch die Steuergréfien determiniert werden, mit
Hilfe von sogenannten input-to-output-bezogenen Performance-Maflen

5)Vgl. [35, Proposition 2.2.1].
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quantifiziert werden. Beispielsweise quantifiziert die Lo-Verstirkung die
kleinste obere Schranke des Verhéltnises zwischen der Ausgangs- und Ein-
gangsenergie. Dieses ist definiert als

L= sup WYl
lulla0 [[all2

mit
o0
lwl|Z, ::/ w!wdt.
0

Eine Anwendung dieses MaBes kann z.B. in [53] gefunden werden. Ein
dhnliches MaB ist die RMS- Verstirkung®, welche als

RMS(y)

RMS:= sup —-"%,
RMS (u)2£0 RMS(u)
mit”
RMS(w)* := hmsup/ w'widt,
T— o0

definiert ist.

Die in diesem Abschnitt beschriebene Klassifizierung von Performance-
Maflen stammt aus [16] und ist nicht vollstdndig. Beispielsweise werden
Kombinationen der o.g. Mafle, wie das Lagrange’sche, das Mayer’sche,
sowie das Bolza’sche Gitemaf$ in der Arbeit von [30] beschrieben und
analysiert. Das Bolza’sche Giitemaf$ bezeichnet dabei die Addition der
beiden anderen Giitemafle und hat die Form

J = h(x(T),T) + /0 folx(t)u(t) p)dt,

wobei x(t) den Zustandsvektor, u(t) den Steuervektor, T' eine bestimm-
te Zeit, h(-) und fo(-) vorgegebene Funktionen bezeichnen. Im Weite-
ren beschéftigt sich die Arbeit nur mit zustandsbezogenen Performance-
MafBen, der Konvergenzrate, dem Fehlklassifikationsanteil der zeitsubopti-
malen Schaltfunktion, sowie der relativen Einschwingzeit. Die im letzten
Kapitel dieser Arbeit beschriebenen Methoden zur Performance-Analyse
mittels Computerexperimenten lassen sich jedoch auf beliebige Performan-
ce-Mafle {ibertragen.

6)RMS ist eine Abkiirzung fiir Root Mean Square.
7)Vgl. Def. 16 (Anhang) fiir die Definition der Limes superior einer Funktion.
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7.3 Der Fehlklassifikationsanteil einer
zeitsuboptimalen Regelung mit
Schaltfunktion

Im Abschnitt 5 wurde durch die Maximierung einer V-induzierten Ma-
trixnorm ein Bang-Bang-Regler erzielt, der im Fall linearer Systeme mit
Stellgréfenbeschréankung die gleiche Struktur wie der zeitoptimale Regler
besitzt, jedoch eine parameterabhéngige Schaltfunktion aufweist, wobei
der Parameter zustandsabhéngig ist. Um die Performance dieses zeitsub-
optimalen Reglers zu quantifizieren, kénnen die beiden Schaltfunktionen
verglichen werden. Dies wird im Folgenden gezeigt.

Das Ziel der zeitoptimalen Regelung ist es, den Zustandsvektor x(¢) aus
einem beliebigen Punkt x¢ der null-steuerbaren Region in kiirzester Zeit in
die Ruhelage xg = 0 des Systems zu bewegen. Mathematisch formulieren
lasst sich dies durch

T
minJ:/ 1dt =T,
u€ER 0

unter den Nebenbedingungen

% = Ax + bu,
x(0) =x9, x(T)=0,
lu] < 1.

Dieses Optimierungsproblem mit Nebenbedingungen kann durch den La-
grange-Multiplikatorenansatz in ein Optimierungsproblem ohne Nebenbe-
dingungen transformiert werden. Dabei ist der Multiplikator (im Folgen-
den mit 1 (¢) bezeichnet) aufgrund der Differentialgleichung aus der ersten
Nebenbedingung eine zeitabhéngige Vektorfunktion. Diese Transformation
und die anschliefende Losung des Problems lassen sich durch Einfiihren
der Hamilton-Funktion leichter darstellen, vgl. [30]. In diesem Fall hat
Letztere die Form

H(x,%,u) : = —1 + ' (Ax + bu)
=1+ ¢P"Ax + 9 bu, (7.2)
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wobei die Losung des obigen Optimierungsproblems die Bedingungen

% = %{f’“) — Ax + bu, (7.3)
i 8H(X7 7u) _ T,

= O _ ATy, (7.4)

Uopt, = argmax H(x,v,u) (7.5)

erfiillen muss. Bedingung (7.5) stellt den wesentlichen Aspekt des Maxi-
mumprinzips von Pontrjagin® dar, das aufgrund der Beschrinkung der
Stellgrofle |u| < 1 zur Anwendung kommt. Aus der Bedingung (7.5) folgt,
dass die Losung durch

Uopt (1) = sgn(thgp (1)) (7.6)
gegeben sein muss. Die Vektorfunktion top:(t) folgt dabei aus Bedingung
(7.4), d.h., es gilt

.

'l/’ODt(t) = eiA t"l’opt(o); (7.7)
wobei der unbekannte Parametervektor ¥op¢(0) unter Nutzung der Endbe-
dingung x(T") = 0 mit Hilfe der Zeitlosung des Gesamtsystems berechnet

werden muss. Es ergibt sich dabei mit der Losung von Gl. (7.3) die Vek-
torgleichung

T
/ e A bsgn (bTe*ATszopt(O)) dr = —xo. (7.8)
0

Diese ist besonders im Fall von Strecken héherer Ordnung nicht mehr
analytisch l6sbar, sodass die zeitoptimale Schaltfunktion aus Gl. (7.6) nicht
mehr in einer geschlossenen Form angegeben werden kann.

Die regelgesetzabhingige Komponente der Hamilton-Funktion ist im
Optimum gegeben durch

H(wioptauopt) = ¢;rpt (t)buopt = |¢;rpt(t)b| (79)

Sei ein zeitsuboptimales Regelgesetz gegeben durch

Usubopt (t) = Sgn(¢;rubopt (t)b) .

8)Vgl. [30].
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Beide Regelgesetze unterscheiden sich also durch die Vektorfunktion ().
Dies hat zur Folge, dass durch den zeitsuboptimalen Regler die Endbedin-
gung x(7") = 0 nicht mehr erfiillt ist. Nehmen wir an, dass im subopti-
malen Fall stattdessen gilt

x(T) = eATe, €+#0.
Gl. (7.8) wird in diesem Fall
T T,
/ e A bsgn (bTe_A Ttﬂsubopt(O)) dr = € — xq. (7.10)
0
Durch Subtrahieren der beiden Gleichungen (7.8) und (7.10) ergibt sich
g A T —AT T —AT
€= / e b [sgn (b e” szsubopt(O)) —sgn <b e T'z,bopt(())ﬂ dr
0
T
= /O e Ab [sgn (szpsubopt(r)) —sgn (bT'll)opt(T))] dr
und somit?)
T
lell S/ le™A7b] - [sgn (b 4aubept (7)) — sgn (b ghops(7)) [dr. (7.11)
0

Abgesehen von der Gewichtung |[e A7b||, je kleiner die Zeitspanne ist,
wo die Regelgesetze unterschiedliche Vorzeichen aufweisen, desto kleiner
ist ||€]|. Fiir ein gegebenes Einzugsgebiet G der Ruhelage wére es dann
denkbar, das Maf}

T [ /g |5En(¥Te (X)b) — sgn(¥lpope(OB)ldX  (7.12)

zu verwenden, welches die Fliche zwischen den beiden Schaltfunktionen
berechnet, wo die Regelgesetze unterschiedliche Vorzeichen haben. Um den
jeweiligen Wert im Verhéltnis zum gesamten Einzugsgebiet der Ruhelage

9 Dies kann man wie folgt erkliaren: Sei s := fab f(t)dt # 0, mit f : [a,b] — R™. Es gilt
Isl2 = sTs = sT [*£0)de = [*sTe(de < [ [slIE@)dt = [Is]| 7 [£()]ldt. Durch
. . b b
Teilen mit ||s|| # 0 folgt || [ £(t)del| < [ [I£(t)]|d¢.
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zu setzen, wird das Performance-Mafl zum Volumen des Einzugsgebiets

normiert, d.h.
0. _Ju

Jqi= =5
" Vol(g)
Dieses Mafl wird normierter Fehlklassifikationsanteil einer zeitsuboptima-

len Regelung mit Schaltfunktion'®) genannt.

(7.13)

7.4 Relative Einschwingzeit

Als alternativer Vergleich der Regelgiite zwischen einer zeitsuboptimalen
und einer zeitoptimalen Regelung wird die relative Finschwingzeit ver-
wendet. Diese ist definiert als das Verhéltnis zwischen der mittleren Ein-
schwingzeit einer zeitsuboptimalen Regelung (usubopt) und der mittleren
FEinschwingzeit einer zeitoptimalen Regelung (uopt), d.h.

m
L5 e (xu(0)

Jy, = —=L . xx(0) €0G, k=1,....m, (7.14)
w2 gk (xi(0))
k=1
wobei x;(0) € 90G, mit k = 1,...,m, dquidistante Anfangsauslenkungen

auf dem Rand des Einzugsgebietes G sind, und die Einschwingzeit als

t;fs% (x(0)) := max t (7.15)
[l (£)[|>0.05]|x (0) ||

definiert ist. Dabei stellt x(t) die Trajekorie des Systems X = Ax + bu
dar.

Offensichtlich konnen die letzten zwei Performance-Mafle nicht analy-
tisch berechnet werden. Diese werden im néchsten Kapitel fiir ein Strecke-
nensemble empirisch geschétzt.

7.5 Konvergenzrate

Im Fall exponentiell stabiler Systeme kann das Konvergenzverhalten der
Zeitlosung durch die Konvergenzrate (od. Rate der exponentiellen Konver-

10)Der Begriff Fehlklassifikationsanteil (engl. misclassification ratio) stammt aus dem
Bereich des maschinellen Lernens. Darin bezeichnet dieses Mafl den Anteil der falsch
klassifizierten (Test-)Daten an den gesamten (Test-)Daten.

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

7.5 Konvergenzrate 89

genz) des Systems analysiert werden, ohne dabei die exakte Zeitlosung zu
kennen. Die Konvergenzrate ist wie folgt definiert:

Definition 1 [Konvergenzrate eines exponentiell stabilen Systems| Gege-
ben sei das Differentialgleichungssystem x(t) = £(x(t)), mit x(t) € R™ und
f(0) = 0, wobei die Ruhelage xg = 0 exponentiell stabil ist. Der mazimale
Abklingfaktor o > 0, wofiir eine positive Zahl v > 0 existiert, sodass

lx@)|| < ~llx(0)]le=**, Vt > 0 und Vx(0) € Be(xr)

gilt, heifst Konvergenzrate des Systems.

Dieses Maf3 stellt eine obere Grenze der Zustandsnorm zu jedem Zeitpunkt
t > 0 dar. Diese Grenze kann verwendet werden, um den jeweiligen Wert
der Zustandsnorm zum Zeitpunkt ¢ im Verhéltnis zum Anfangswert ||x(0)]]
zu setzen. Dies ergibt sich aus der dquivalenten Darstellung

(@) < [x(0)fle™ 7=

Beispielsweise kann die Zeitkonstante approximiert werden, d.h. die Zeit,
in der die Zustandsnorm auf weniger als 35% (=~ e~!) ihres Anfangswertes
|x(0)]| sinkt. Auch die Einschwingzeit der Zustandsnorm kann damit ap-
proximiert werden, d.h. die Zeit, wann die Zustandsnorm auf weniger als
5% (=~ e~3) ihres Anfangswertes sinkt. Daraus folgt eine Approximation
der Finschwingzeit durch

_(Iny+3)

agy ~ 70[ .

t (7.16)

Es ist ersichtlich, dass je grofler die Konvergenzrate « ist, desto kleiner ist
die Finschwingzeit. Im Fall linearer Systeme entspricht die Konvergenzrate
betragsméBig dem Realteil des Eigenwertes/Eigenwertpaares der System-
matrix, der/das am néchsten zur imaginiren Achse liegt. Dies ist aus der
Zeitlosung eines linearen Systems ersichtlich. Im Fall nichtlinearer Systeme
ist die Konvergenzrate im Allgemeinen nicht mehr exakt bestimmbar.

7.5.1 Formulierung mittels Matrixnormen

In der Literatur existieren eine Reihe von Methoden, welche eine untere
Grenze der Konvergenzrate liefern. Sie basieren im Allgemeinen auf Ma-
trixnormen. Diese, sowie ein dazu passender theoretischer Rahmen wer-
den im Folgenden erldutert. Dazu werden zwei Matrixnormen vorgestellt,
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die logarithmische Matriznorm und die V-induzierte logarithmische Ma-
triznorm.

Definition 2 [Logarithmische Matrixnorm, vgl. [73, Section 2.2.2]] Ge-

geben sei eine quadratische Matriv A € R™ ™. Der Skalar pu(A) € R,
definiert als

I, +hA|; -1

w(A) = lim IT. +hAf; —1

7.17
h—0+ h ( )

wird logarithmische Matrixnorm genannt. Dabei bezeichnet ||Al|; eine in-
duzierte Matriznorm, vgl. Def. 24 (Anhang).

Bemerkung 7.1 (Abgrenzung zur induzierten Matrixnorm). Obwohl hier
der Begriff logarithmische Matriznorm verwendet wird, handelt es sich bei
((A) nicht um eine induzierte Matrixnorm im Sinne der Def. 24 (Anhang).
Ein wesentlicher Unterschied bildet die Tatsache, dass die logarithmische
Matrixnorm auch negative Werte annehmen kann, wobei die induzierte
Matrixnorm im eigentlichen Sinn nur positive Werte annimmt. Der Begriff
logarithmische Matriznorm wurde zum ersten Mal in [23] verwendet. A

Bemerkung 7.2 (Anschauliche Darstellung einer logarithmischen Matrix-
norm, vgl. [72]). Fiir eine kontinuierliche Funktion F : R™ — R heifit der
Skalar

OF (x;y) := lim Flx+hy) - F(x)

7.18
h—0+ h ( )

falls er existiert, Richtungsableitung von F' an der Stelle x in Richtungy.
Es ist ersichtlich, dass die logarithmische Matrixnorm aus Gl. (7.17) die
Richtungsableitung der induzierten Matrixnorm || - ||; an der Stelle I,, in
die Richtung der Matrix A ist. A

Bemerkung 7.3 (Ausgewéahlte Eigenschaften der logarithmischen Matrix-
norm, siehe [24]).
Die Grenze u(A) existiert fiir jede Matrix A € R"*".

)

) wn) =1, p(-1,) = -1,

(#7i)  —[|All; < —p(—A) <ReA(A) < u(A) < [|A];,

) waA)=au(A),Ya >0,
)

plvA + (1 —v)B|<vu(A) + (1 —v)u(B),Vv € [0,1], A,B € R"*".

A
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Tabelle 7.1: Ausgewéahlte Vektornormen, induzierte Matrixnormen und
logarithmische Matrixnormen.

[xlloo == max |z [|Allie = max Zl lagip)]  poo(A) = maxfagy) + é: lapll
j= J#i
Ixllv= Ele@l Al = max Elay| - p(A) = maxfag;) + ; lagis)l]
i= i= i#]
Ixllz2 == [ 2 lz@* (Al == v/ Amax(ATA) f12(A) = Amax(AT + A)/2

i=1

Tabelle 7.1 gibt mehrere Normen und die entsprechenden logarithmischen
Matrixnormen wieder. Fiir LTT und LTV-Systeme kann eine untere und
obere Grenze der Zustandsnorm mit Hilfe logarithmischer Matrixnormen
angegeben werden. Folgendes Lemma verdeutlicht dies.

Lemma 7.1 [Grenzen der Zustandsnorm basierend auf logaritmi-
schen Matrixnormen, vgl. [73, Section 2.5]]. Fir das LTV-System
x(t) = A(t)x(t), mit t > 0, x € R™ und der stetigen matrizwertigen Funk-
tion A(¢) : [0,00) — R™*™ wgl. Def. 25 (Anhang), gilt fiir jedes t > to > 0,

t

Ix(to) | exp / —u(~A(r)d7
< x|

< |Ix(to)]| exp / () dr

to

Bemerkung 7.4. Mit Hilfe der oberen Grenze aus Lemma 7.1 kann die
Konvergenzrate jedoch nur in Spezialfillen, z.B. fiir stabile LTI-Systeme
mit normalen Systemmatrizen, d.h. mit Systemmatrizen bei denen ATA =
AAT gilt, bestimmt werden. A

Diese Einschrinkung gilt, weil fiir allgemeine stabile LTI-Systeme die lo-
garithmische Matrixnorm sowohl positive als auch negative Werte anneh-
men kann. Jedoch sind im Fall von normalen Matrizen A mit negativen
Eigenwerten die Eigenwerte der Matrix A + AT ebenfalls negativ. Dies ist
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ersichtlich aus der Zeitlosung eines LTI-Systems x = Ax,
x(t) = eA'x(0),
und aus der Identitat
()1 = [[eAx(0)][* = x(0)Te " eA'x(0).
Dabei gilt
x(O)TeATteAtX(O) = X(O)Te(A+AT)tX(O),

dann und nur dann, wenn die Matrix A normal ist.'?) Somit ergibt sich
in diesem Fall

At (0)]2 = x(0)TeA+ADx(0),

wobei beide Seiten der oberen Identitat dann und nur dann fir alle x(0) €
R” gegen null konvergieren, wenn die Matrizen A bzw. A + AT nur Eigen-
werte mit negativen Realteilen besitzen. Ist im Fall einer nicht normalen
Systemmatrix der maximale Eigenwert der Matrix AT 4+ A positiv, so ist
die obere Grenze aus Lemma 7.1 unbrauchbar fiir die Berechnung der
Konvergenzrate. Folgendes Beispiel verdeutlicht dies.

Beispiel 7.1. Fir das LTI-System x = Ax mit der (nicht normalen)
Systemmatrix
0 1
=l

und Figenwerten A\1 = —1 und Ay = —2, entspricht die Konvergenzrate
a = 1 betragsmafig dem Eigenwert, der am ndchsten zur imagindren Achse
liegt. Die obere Grenze aus Lemma 7.1 ergibt aber

1[I < [xoll exp {p2(A)(t —t0)} ,

wobei fiir die logarithmische Matriznorm pz(A) = 0.5 Amax(A + A7) =
0.0811 > 0 gilt. Folglich ist diese obere Grenze fiir die Bestimmung der
Konvergenzrate in diesem Fall unbrauchbar.

vgl. [8, Fakt 11.1.5].
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Fine modifizierte Form der logarithmischen Matrixnorm, welche fiir je-
des stabile System einen negativen Wert einnimmt, kann fiir jede konvexe
und positiv definite Funktion V' (x) : R™ — R, wie folgt definiert werden.

Definition 3 [V-induzierte logarithmische Matrixnorm, vgl. [72]] Gegeben
sei die stetige, konveze und positiv definite Funktion V(x) : R — R.. Die
V-induzierte logarithmische Matrixnorm ist definiert als®

py(A) == sup { (7.19)

IV (x; Ax)]
xeR™\{0}

V(x)

D'Wie in Gl. (7.18) definiert, bezeichnet 8V (x; Ax) die Richtungsableitung der Funk-
tion V' an der Stelle x in Richtung Ax.

Bemerkung 7.5 (Aquivalenz zur logarithmischen Matrixnorm). Die V-
induzierte logarithmische Matrixnorm ist dquivalent zur logarithmischen
Matrixnorm falls die Funktion V' eine Vektornorm darstellt, vgl. [72, Lem-
ma 1] fiir den Beweis. A

Bemerkung 7.6 (Eigenschaften der V-induzierten logarithmischen Ma-
trixnorm, vgl. [72]).
(1) wv(eA)=oauy(A), Va0,
(1) pv(A+B)<pv(A)+pv(B), YABEeR™,
(iii) v (vA + (1 - 1)B) < vy (A) + (1 - )y (B), W € [0,1],
VABeR"™™

A

Fir LTI-Systeme ist die Existenz einer V-induzierten logarithmischen Ma-
trixnorm mit negativem Wert durch die Stabilitidt des Systems gewéhrleis-
tet. Die Existenzbedingung ist sowohl notwendig als auch hinreichend.
Folgendes Lemma verdeutlicht dies.

Lemma 7.2 [Vgl. [72, Theorem 5]]. Gegeben sei die Matriz A €
R™ ™. Dann ezistiert eine konveze, positiv definite Funktion V , sodass
py (A) <0 dann und nur dann wenn A Hurwitz ist.

Beweis. Falls die Matrix A Hurwitz ist, dann existiert eine positiv defi-

nite und konvexe Ljapunov-Funktion der Form V (x) := x"Px, wobei die
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Matrix P > 0 die Ljapunov-Gleichung
AP +PA=-Q (7.20)

mit Q = 0 16st, siehe dazu Lemma A.4 (Anhang). Umgekehrt, falls es eine
konvexe und positiv definite Funktion V' (x) existiert, sodass uy (A) < 0,
dann folgt aus Gl. (7.19), dass

pv(A) = sup {

P A
oV (x; x)} <0,
xeR™\{0}

V(x)
was dquivalent ist zu
0V (x; Ax) < 0,Vx € R"\{0}.

Daraus folgt, dass die Funktion V eine giltige Ljapunov-Funktion des
Systems x = Ax ist und somit, dass die Matrix A Hurwitz ist. O

Mit Hilfe der modifizierten logarithmischen Matrixnorm kann eine untere
und obere Grenze der Funktion V' (x) angegeben werden. Folgendes Lemma
verdeutlicht dies.

Lemma 7.3 [Vgl. [72, Theorem 1, (iv)]]. Fir das LTV-System %x(t) =

At)x(t), mit t > 0, x € R™ und der stetigen matrizwertigen Funktion
A(t) : [0,00) = R™™ ™ wgl. Def. 25 (Anhang), gilt fir jedes t > 0

V(x(0)) exp /—uv(—A(T))dT
<

<VxO)exps [ uv(A@m)rp.

Fiir quadratische Funktionen der Form V(x) = x'Px, mit P = 0, kann
eine obere und untere Grenze der Zustandsnorm angegeben werden. Fol-
gendes Lemma verdeutlicht dies.
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Lemma 7.4. Fir das LTV-System %(t) = A(t)x(t), mitt > 0, x € R"
und der stetigen matrizwertigen Funktion A(t) : [0,00) — R™ ™ gilt fir
jedes t >0

1 1 f
Ol {5 O/ v (~A(r))dr

< x|
1 t
< V) [xO)] expq 5 [ nv(Am)ary.

0

wobei K(P) := Amax(P)/Amin(P) die Konditionszahl der Matriz P ist.

Beweis. Fir P > 0 gilt

Amin (P)[1%(6) 12 = x() Ain (P)Ix () < x(8) ' Px(t), Yt > 0,x(t) # O,
(7.21)
folgt aus Lemma 7.3 fiir V(x) = x'Px > 0, Vx € R"\{0}, dass

Amin(P)[[x(1)[|* < x(£) Px(t) < V(x(0))erv A1,
Mit
X(O)TPX(O) < X(O)TAmaX(P)IX(O) — )\max(P)HX(O)HQ, x(0) # 0,

folgt, dass

/\max (P)

ey IOl v e R

%@ <

d.h. der Abklingfaktor « ist mindestens /v (A). Die untere Grenze wird
dhnlich zur oberen Grenze hergeleitet. O

In diesem Fall kann die modifizierte Matrixnorm auch in analytischer Form
berechnet werden.

Bemerkung 7.7 (Berechnung von uy (A) fiir stabile LTI-Systeme). Mit
Hilfe der Ljapunov-Gleichung aus Gl. (7.20) kann fiir stabile LTI-Systeme
und quadratische Ljapunov-Funktionen die Matrixnorm gy (A) relativ ein-
fach berechnet werden. Fir eine beliebige symmetrisch und positiv definite
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Matrix Q > 0 ist die Lésung der Ljapunov-Gleichung ATP + PA = —Q
eine positiv definite Matrix P > 0, und py (A) wird

oV (x; Ax)
inri s [HA
xerm\{o} L V(x)
o [TE] [
xerm\{o} | X' Px xeRm\{0} | X' Px |

Folglich gilt
x'Qx
x'Px’

Da P = 0 und, somit, x' Px > 0, folgt, dass —uy (A)x'Px < x'Qx, d.h.,
dass

v (A) < Vx € R\ {0}. (7.22)

—u(A)P-Q=0. (7.23)

Durch Links- und Rechtsmultiplizieren der Gl. (7.23) mit der symmetri-
schen und nichtsinguldren Matrix P~1/2 folgt'?)

—uy (AT -PY2QP~1/2 < 0. (7.24)

Dies ist dquivalent zu'?)

— v (A) < Amin(P7Y2QP71/2) = A\ (QP 7). (7.25)

Der Wert Amin(QP™!) wird erreicht falls x der zugehérige Eigenvektor
zum Eigenwert A\pin (QP 1) ist. Es handelt sich folglich um ein Minimum.
Dann folgt, dass

pv(A) = = Anin(QP7H). (7.26)
A

12) Die Matrix P—1/2 stellt die Quadratwurzel der Matrix P dar. Da die Matrix P—1!
positiv definit ist, ist die Matrix P~1/2 eindeutig durch P~1/2P~1/2 = P! defi-
niert. Dartiber hinaus ist diese Matrix ebenfalls positiv definit, und folglich, symme-
trisch. In den Gl. (7.23) und (7.24) sind beide Matrizen somit kongruent, vgl. Def.
19 (Anhang).

13)Vgl. [8, Lemma 8.4.1]. Dabei wird auch die Tatsache verwendet, dass die Matrizen
P~1/2QP~1/2 und QP! Ghnlich sind, vgl. Def. 18 (Anhang), und somit gleiche
Eigenwerte haben. Dies ldsst sich durch Links- und Rechtsmultiplizieren der ersten
Matrix mit den nichtsinguliren Matrizen P/2 bzw. p-1/2 zeigen.
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Da die Matrizen Q und P~! positiv definit sind, kann man noch fest-
stellen, dass alle Eigenwerte der Matrix QP! positiv sind'® und somit,
dass, py (A) negativ ist. Der Wert py (A) stellt folglich eine untere Grenze
der Konvergenzrate des Systems aus Def. 1 dar, d.h.

1
Qy = —§,uV(A) < a. (7.27)
Je nach Wahl der Funktion V'(x), kann diese untere Grenze maximiert wer-
den. Durch Einsetzen der Gl. (7.27) in Gl. (7.22) ergibt sich als Bedingung
fiir die untere Grenze der Konvergenzrate

+
X' Qx
2 < —
Qv = x"Px’ Vx#0
und somit die Bedingung
—x"(ATP + PA)x > 2a,x'Px, Vx#0.

Die maximale untere Grenze o3, d.h. die Konvergenzrate des LTI-Systems,
kann folglich durch Lésen des konvexen Optimierungsproblems

max oy, sodass

s XV
P >0, ay >0, (7.28)
A"P + PA +2ayP < 0. (7.29)

berechnet werden. Die maximale Grenze aj, entspricht betragsmafig dem
Realteil des Eigenwertes/Eigenwertpaares, der/das am néchsten zur ima-
gindren Achse liegt, d.h.

a = aj, = —max{Re \;(A)}.

Auch fiir exponentiell stabile nichtlineare Systeme kann man mit Hil-
fe quadratischer Ljapunov-Funktionen und der dazugehorigen kontraktiv
invarianten Gebiete, vgl. Def. 13 (Anhang), eine untere Grenze der Kon-
vergenzrate angeben. Dies wird in Lemma 7.5 gezeigt. Darauf basierend,
stellt folgendes Lemma eine untere Grenze der Konvergenzrate eines all-
gemeinen exponentiell stabilen nichtlinearen Systems dar.

149)vgl. [8, Korollar 8.3.7].
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Lemma 7.5. Gegeben sei ein nichtlineares System
x(t) = f(x(t)), xe€R" f(0)=0, (7.30)
und das kontraktiv invariante Gebiet
EP,c) := {x e R"|x"Px < ¢},
mit P = 0. Es sei dariiber hinaus angenommen, dass
x'Pf(x) < —x'Qx, Vx e E(P,c)\{0}, (7.31)

gilt, wobei Q > 0. Dann gelten folgende Aussagen:

a) x| < VEP)[x(0)] exp {~Amin(QP )}, fiir jedes x(0) €
E(P,e)\{0} undt > 0.

b) Die Ruhelage xg = 0 ist exponentiell stabil.

¢) Die quadratische Ljapunov-Funktion V(x) nimmt entlang jeder Tra-
jektorien des Systems exponentiell ab, und die Hdlfte der grifiten unteren
Schranke der Menge aller Abklingfaktoren

oy(c)i= = it <_M

- = Amin(QP 1), 7.32
2 xeg(g,lc)\{o} V(x) ) @ ) ( )

stellt eine Untergrenze der Konvergenzrate o des Systems innerhalb des
ellipsoidalen Gebietes £(P,c)\{0} dar, d.h. es gilt

0<ay(c)<a, Ve>0. (7.33)

Beweis. a) Da das Gebiet £(P,c) kontraktiv invariant fiir das System aus
Gl. (7.30) ist, ist die quadratische Funktion V(x) = x'Px eine giiltige
Ljapunov-Funktion des Systems. Dariiber hinaus gilt

()1 Anin (P) < x(8) Px(t) < Amax (P)I|x(8)%, Vx #0,Yt > 0.
Aus Gl. (7.31) folgt, dass
’ T T
V(x) 2x'Pf(x) < 2x' Qx <

V(x) xPx ~ x'Px _xesglggc)

2 T
<_ ;I‘?)Z() = _2Amin(QP71)-

Integriert man die obige Ungleichung entlang einer Trajektorie vom Zeit-
punkt to = 0 zum Zeitpunkt ¢, erhdlt man

V(x(t)) < V(x(0)) exp{~2\min(QP ")t}
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Schlielich folgt, dass
() 1* Amin (P) < [[%(0)]|* Arnax (P) exD{ ~2Aumin (QP ™)1}

und somit, dass

()]l < V/k(P)[x(0)]| exp{—Amin(QP ™)}, Vx(0) € E(P,c)\{0}, > 0.

b) Dies folgt unmittelbar aus a).

c) Fir jeden Zustand x € £(P,c)\{0} existiert fiir das exponentiell sta-
bile nichtlineare System %(t) = f(x(t)) ein ax > 0, sodass V(x)/V (x)
—20y, d.h. V(x) < =20,V (x). Da aus Gl (7.32) folgt, dass ay (c)
ax,Vx € E(P,c)\{0}, folgt im Weiteren, dass V(x) < —2a,V(x)
—2ay,(¢)V(x). Daraus folgt dann, dass V(x) < V(xg)e 22v(9)t vyx
E(P,c)\{0} und schlieBlich aus Gl. (7.21), dass

m ININIA

1) < v Asmax(P)/ Amin (P) [ x(0)[e™2v (9", ¥x(0) € E(P,e)\{0},
d.h. dass ay/(c) eine untere Grenze der Konvergenzrate des Systems ist. [

Korollar 7.6. Die grofite untere Schranke der wvariablen Ljapunov-
Funktion-basierten Konvergenzrate eines exponentiell stabilen nichtlinea-
ren Systems x = f(x(t)), x € R innerhalb des Finzugsgebietes der Ruhe-
lage xg = 0,

ay = inf{gv(c) R (-%)} (7.34)

in
>0 2 x€&(P,c)\{0}

stellt eine untere Grenze der Konvergenzrate o des nichtlinearen Systems
dar.

Beweis. Der Beweis folgt unmittelbar aus dem Beweis des Lemmas 7.5
und wird hier weggelassen. O

Auch mittels impliziter Ljapunov-Funktionen kénnen Bedingungen fiir
die exponentielle Stabilitdt eines nichtlinearen Systems gestellt werden.
Folgender Satz zeigt in diesem Zusammenhang unter welchen Bedingungen
die Ruhelage eines nichtlinearen Systems in zustandsabhingiger Ko-
effizientenform exponentiell stabil ist. Dariiber hinaus wird eine obere
Grenze der Zustandsnorm angegeben. Der Satz kann als Erweiterung von
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[5, Satz 5] fiir den Fall nichtlinearer Systeme in zustandsabhingiger Ko-
effizientenform mit ellipsoidalen kontraktiv invarianten Gebieten gesehen
werden. Der Beweis basiert auf dem Nachweis der asymptotischen Stabi-
litdt eines nichtlinearen Systems mittels impliziter Ljapunov-Funktionen
aus [2, Satz 4].

Ein dhnliches Theorem, das auch dynamische Systeme in zustandsab-
hingiger Koeffizientenform analysiert und ebenfalls Bedingungen fiir ex-
ponentielle Stabilitdt untersucht, ist in [54, Theorem 1] angegeben. Darin
wird der Zustandsraum in endlich viele Gebiete aufgeteilt, die sich tiber-
lappen kénnen und in denen ein bestimmtes lineares System aktiv ist. Die
Gesamtdynamik des darin analysierten Systems ergibt sich als gewichteter
Durchschnitt der lokal aktiven linearen Dynamiken. Eine obere Grenze der
Zustandsnorm in einer der o.g. Regionen ist auch angegeben.

Satz 7.7 In einer Menge
Vo :i={(v,x)[0 <v<1,x€lU\{0} C B(0)},
sei eine stetige und differenzierbare Funktion g(v,x) gegeben durch
g(v,x) :=x"Pv(x))x —1, P(v):(0,1) — P, (7.35)
welche folgende Bedingungen erfillt:

i) Fiir x — 0 resultiert aus g(v,x) = 0 der Grenziibergang v — 07,

ii) lim g(v,x) >0 und lim g(v,x) <0 fir alle x € Up\{0}.
v—07F v—1-

Seien dariber hinaus die durch die Funktion g(v,x) bestimmten Gebiete
bezeichnet durch

EW) = {x|x"P(v(x))x <1} CUp.
Das autonome nichtlineare System

x(t) = A(v(x(t))x(t), x€R" xg =0, (7.36)
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mit

(7.37)

b(x) = {v(x), mit g(v,x) =0, x € E(1)\E(Vmin)
. Umin X € g(vmin)a
und der stetigen matrizwertigen Punktion®™ A(v) : [Umin,1) — R™ ™, wobei
Umin € (0,1) gegeben ist, besitze im Weiteren eine eindeutige Losung fir
jeden Anfangswert x(0) € B.(0).
Sind die Bedingungen

i) —oco < 290X ¢ fiir alle (v,x) € Vs,

iv) w < 0 fir alle (v,x) € Vo, mit g(v,x) =0

erfullt, dann gilt:

a) Fiir jedes x € Up\{0} besitzt die Gleichung g(v,x) = 0 eine eindeutige
Losung v = v(x), mit v € (0,1).

b) Die stetige Funktion

Vi) = {v(x), mit g(v,x) =0, x € E(L\E(Umin); o

vminXTP('Umin)X; X € E(Umin)

stellt in Uy eine Ljapunov-Funktion des Systems dar.

¢) Jedes abgeschlossene Gebiet E(c), mit ¢ € [Umin,1], ist ein kontraktiv
invariantes Gebiet der Ruhelage.

d) Fir alle ¢ € [Umin,1] sind die Rander der kontraktiv invarianten Ge-
biete E(c) disjunkt, d.h. es gilt

0E(c;) NOE(¢cj) =@, Y0 <ci,e <1,¢ #cj.

e) Fir alle ¢ € [Umin,1] sind die Gebiete E(c) ineinander verschachtelt,
d.h. es gilt

€<Cl) - g(cj)v vfUmin < ¢ < Cj < 1.

f) Fiir jeden Zeitpunkt t > 0 ist eine obere Grenze der Zustandsnorm
Ix(¢)|| gegeben durch

el < (22) " s { ~Lamat}, x0) <0201

min
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wobet Ymax durch

/\max (Pvm;n )

max ‘= max k(P,) = 7.39
L V€ [VUmin,1] ( ) >\min (Pl) ( )
und oupmin durch
min ~ Apin(AIP, + P,A,)
N 1 OE i >0  (7.40)
e Umin/\min(Pl) fnin I )\min(P;Pgl) .
VE [Umin,

gegeben sind.
g) Die Ruhelage xr = 0 ist exponentiell stabil.

Vgl. Def. 25 (Anhang).

Beweis. a) Dies wurde in [2, Theorem 4] bewiesen.

b) Fiir die Anwendung der direkten Methode von Ljapunov wird auf-
grund der besonderen Definition der Ljapunov-Funktion der Zustandsraum
in drei Gebiete eingeteilt. In dem Gebiet x € E(1)\(E (Vmin) U OE (Vmin)),
sowie in dem Gebiet x € &(vpip) ist die Funktion V (x) stetig und differen-
zierbar. In einem dritten Gebiet x € O (vpin ) ist diese nicht differenzierbar
und die direkte Methode von Ljapunov wird mit Hilfe von Dini-Derivierten
angewandt. Im ersten Gebiet gilt

V(x) =v(x) >0, mitg(v,x) =0, Vx€ED)\(E (vmin) U IE(Vmin)),
sowie, aufgrund der Bedingungen iii) und iv),

_ Og(v.x(t))/0t

V) = i) = dg(v,x)/0v

<0, Vx € EM\(E (Vmim)UIE(vmin)) -

Im zweiten Gebiet gilt

V(x) = vmmxTP(vmin)x >0, Vx€E&Wmin)\{0},
V(0) =0,

sowie aufgrund der Bedingung iv)

V(x) = UpinX | (A(vmin)TP(vmin) + P(Umin)A(vmin)) X
<0, Vx€EWmin)\{0}. (7.41)

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

7.5 Konvergenzrate 103

Im dritten Gebiet, x € 9E(Umin), ist die Funktion V(x) = wv(x) nicht
differenzierbar. Daher bedarf es bei der Anwendung der direkten Methode
von Ljapunov der rechten oberen Dini-Derivierten der stetigen Funktion
V(x) entlang einer Trajektorie x(t).'>) Diese ist definiert als'®)

Vx4 h) - VI(x(®))
DYV (x(t)) := h}?i:)lip W .

Aus Bedingung iv) folgt fiir x € € (vmin) und jedes beliebig kleine h > 0,
dass

g9(v.x(t+h)) < g(vx(t)) =0,

d.h. x(t + h) € E(Vmin). Somit ist die Ljapunov-Funktion in diesem Punkt
V(x(t 4+ h)) = vminX(t + k) P (vmin)x(t + h). Folglich gilt

D+V(X(t)) = lim sup UmmX(t + h) P(Umm)x(t + h) Umin
h—0t h
= Vi(x(t)), Vx € OE (vunin),

wobei Vi(x(t)) = VminX(t) P (vmin)x(t). Aus Gl. (7.41) folgt aber, dass
Vi(x(t)) < 0, fiir jedes x € R™\{0}. Daher gilt

DTV (x(t)) <0, Vx € IE(vmin)-

Daraus folgt,'” dass die Funktion V(x) eine giiltige Ljapunov-Funktion
des Systems ist.

c¢) Da die Funktion V(x) eine giiltige Ljapunov-Funktion des Systems
ist, folgt, dass fiir jedes ¢ > 0 das Gebiet

G:={x|V(x) <c}
kontraktiv invariant ist. Das Gebiet ist dabei gleich mit dem Gebiet

E(c).1®
d-e) Dies wurde in [2, Abschnitt ITI] bewiesen.

15)Vgl. Def. 17.

16)Vgl. Def. 16 (Anhang) fiir die Definition der Limes superior einer Funktion und Def.
17 (Anhang) fir die Definition der rechten oberen Dini-Derivierten einer stetigen
Funktion.

17)Vgl. [62, Theorem 6.3].

18)Vgl. [2, Theorem 5.
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f) In jedem Gebiet x € OE(v) C E(1)\E(vmin) gilt fiir die zeitliche Ab-
leitung der Ljapunov-Funktion V' (x)

C9g(vx(1)/ot  x"(AJP, + P,A,)x

; = } = —_— .42
Vix) =o(x) g (v,x)/0v x"P/x ’ (742)
wobei P! = 9P) < 0. Dabei gilt!?) fiir jedes v € [Vmin,1] und x € 9€(v) C
8(1)\5(”min)
x' P! x . x'P/x

= Amin(PLP; 1) <0,

min
x'P,x ~ xe€o(v) X Pyx

Daraus folgt, dass

XTPT)X 71)6{11)1:,{1,1] minitot o ) 7 R ’ X Umin )-

Dariiber hinaus gilt fir jedes v € [Upin,1] und x € IE(v)
Amin (A Py + PoAy) [x[* < x"(A [P, + PuAL)x,
wobei fiir

ky:= min  Ann(AlP, +P,A,) <0,

VE[Vmin, 1]
folgt
ko|lx||? < x"(AJP, + PyA,)x, Vx € 0E(1)\E(Vmin)-
Da x'P,x =1, Vx € 9€(v) C E(1)\E (vmin), folgt aus Gl. (7.42), dass

o(x) = _xT(AIPU +P,A,)x < _xT(AIPU +P,A,)x < ke
XTP;X - k1 R

/2.
(7.43)
Dartiber hinaus gilt

v/\min(Pv)HXH2 <o(x) < v)\maX(PU)HXHQ, Vx € 0E(v),

19)Vgl. [8, Fakt 8.15.21] und [9]. Voraussetzungen dafiir sind, dass die Matrix P’
symmetrisch ist und die Matrix P, positiv definit ist. Die letzte Beziehung
Amin(P,P51) < 0 folgt aus [8, Korollar 8.3.7].
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und, somit,
min v Amin (Py)||x]|?
VE [Umin,1
< v(x)
< max  Amax(Po)|Ix[|%, Vx € E(1)\E(Vmin)-

VE [Umin,

20)

Da die matrixwertige Funktion“®) P, monoton fallend ist, gilt noch

min . vAmin(Py) = UminAmin(P1) >0
UE['Umin;l]
max UAmax(Pv> - )\maX<P'b’min) > 0.

VE [Umin,1]

Aus Gl. (7.43) folgt dann, dass

S @y VE0), Vx() € OEWNE (Umin).

Integriert man die obige Ungleichung entlang einer Trajektorie des Systems
vom Zeitpunkt ty = 0 zum Zeitpunkt ¢, erhdlt man

ko 1

v(x(t)) < v(x(0))exp <_k_1 mt) ,Vx(t) €0E (V) \E (Vmin ), t > 0.

Schliellich folgt, dass

Vmin Amin (P1) | %(t)]|?
<w(x(t))

< o0 exp (2 o)

k 1
|x<o>|2exp< 2

< Amax (P, " tm e (P1) )
By ( mln) k,’l ’Umin/\min(Pl) >

20)Vgl. Def. 25 (Anhang).
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und, somit, dass

)\max(Pv i )
< min
Il < 2 |
i >\min ATPU P’UA’U
ox _lve[rgxlnrxlnl] (AP + : 1 "
P 2 min >\min (PLP;I) Umin)\min (Pl)
VE [Umin,1

g) Diese Aussage folgt unmittelbar aus e). Dabei gilt noch Yyax > 0 und
amin > 0. Dies folgt aus der Tatsache, dass fiir jedes v € [vpin,1] die Matrix
P, positiv definit und die Matrix AIPU + P, A, negativ definit sind. [

Der Wert amin aus Gl. (7.40) stellt eine untere Grenze der Konvergenzrate
des Systems im gesamten Bereich £(1) dar. Eine gebietsabhingige Kon-
vergenzrate kann dariiber hinaus wie folgt formuliert werden.

Korollar 7.8 [Gebietsabhingige Konvergenzrate des Systems].
Fiir das System aus Satz 7.7 ist fir jeden Zeitpunkt t > to, mit x(to) €
OE(v*) undv* € (0,1], eine obere Grenze der Zustandsnorm ||x(¢)|| gegeben
durch

()] < (Ymax(v™))"? [I%(to) | exp {_%O‘min(v*)t} , x(to) € 9E(v7),

wobet Ymax(v*) durch

Amax (Poin)
max (V) := max k(P,) = —— 22
7 ( ) VE [Umin,v*] ( ) )\min(P’U*)
und Qumin(v*) durch
min(0*) == min  {-Anax[(AJP, + P,A,)P; !} >0 (7.44)

"UE['Uminvv*]
definiert sind.

Der Wert apin (v*), mit v* € (0,1], wird gebietsabhdngige Konvergenzrate
des Systems genannt. Ein Vorteil der gebietsabhéngigen Konvergenzra-
te ist, dass sie unabhéngig von der Systemordnung eine skalare Funktion
ist. Dartiber hinaus stellt diese eine untere Grenze der Konvergenzrate
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des Systems innerhalb des jeweiligen Gebietes dar. Diese gebietsabhéngi-
ge Konvergenzrate kann exakt bestimmt, approximiert oder interpoliert
werden. Dies wird in den Kapiteln 7.5.2 und 8 gezeigt.

7.5.2 Analyse der Konvergenzrate

Eine exakte Performance-Analyse in einem nichtlinearen Regelkreis setzt
die Zeitlosung des Systems voraus. Weil diese nur in seltenen Fillen zur
Verfiigung steht, wird im Folgenden die gebietsabhingige Konvergenzrate
analysiert, welche im Korrolar 7.8 definiert wurde, und verwendet, um eine
obere Grenze der Zustandsnorm anzugeben.

Im Unterschied zu den linearen Systemen ist die Konvergenzrate ei-
nes nichtlinearen Systems nicht konstant, sondern abhangig von dem Ab-
stand zur Ruhelage und in den meisten Féllen nicht exakt bestimmbar.
Eine untere Grenze der Konvergenzrate kann jedoch mittels (impliziter)
Ljapunov-Funktionen angegeben werden. Diese ist ebenfalls im Abschnitt
7.5 vorgestellt worden. Deren Berechnung wird im Fall der nicht-séttigen-
den und konvergenzoptimalen klassischen WSVR mittels iLF und invers-
polynomialen WSVR vorgestellt.

Nicht-sattigende WSVR

Mit Hilfe des Satzes 7.7 kann die exponentielle Stabilitét des geschlossenen
Kreises aus Punkt ¢) des Satzes 3.1 und aus Punkt ¢) des Satzes 4.1 unter
Verwendung der (Ljapunov-)Funktion V,(x)

ex'Q.x, x € G (e), (7.45)

V) o= {v(x» mit g.(xv) =0, x € G.()\G(e),
mit x = A fir die klassische WSVR und x = P fiir die invers-polynomiale
WSVR, nachgewiesen werden. Der geschlossene Regelkreis hat dabei die
allgemeine Form x = A*U x. Wie im Korollar 7.8 gezeigt, bildet der kleins-
te Abklingfaktor der Funktion V, (x) entlang der Trajektorien des Systems
% = A, x eine obere Grenze der Zustandsnorm ||x| fiir alle Anfangsaus-
lenkungen, die auf dem Rand eines Gebietes x € 9G,(v) starten. Dieser

Faktor ist .
1 . Ve (x)
2,(v) = 2 xelglgl?(v) ( V*(X)> .
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Fiir alle x € 9G,(v) C G,(1)\G« () gilt des Weiteren
1

a,(v) =5 o (—0)

1 [x"(ALQ,+Q.A, )x
-— min
20 x€8G, (v) XTQ;X

1

= 2 (AL QU+ QAL Q)7 YueEl.  (7.46)

Da die Matrix AI Q. + QUAM symmetrisch ist und die Matrix Q] < 0
negativ definit ist, folgt?"), dass Spec[(Al Q. + Q,A,, )(Q,)"'] C R.
Da noch A:QU + Qu,A, < 0, folgt?? dariiber hinaus, dass )\[(A—,'U—QU +
Q.,A,)Q; '] > 0. Somit ist a,(v) fiir alle v € [¢,1] und jedes ¢ € (0,1)
positiv.

Fiir alle x € 0G,(¢) gilt

1 l_ x"(AT Q. + QEA*s)X]

a,(e) =5 min s
1

2 x€og, (e)
= §>\min |:_ (AIE QE =+ QEA*E)Qs_l] (747)

Ebenfalls gilt a, (¢) > 0 da die Matrizen —(AIEQg + Q.A.,.) und Q. po-
sitiv definit sind. Dariiber hinaus ist der geschlossene Regelkreis fiir alle
x € G,(e) linear, sodass die Konvergenzrate des Systems innerhalb des
Gebietes x € G, (¢) konstant bleibt. Dies kann man wie folgt veranschau-
lichen. Jeder Zustand y € G, (¢) kann in der Form y = kx, mit k € (0,1)
und x € 0G,(e) geschrieben werden, und es gilt

YT(AIE Q. + QEA*s )y

y€a.(2) y'Q.y
— min (kx)"(AL Q. + Q.A..)(kx)
x€8G. () (kx)TQc(kx)
ke(0,1]
= min —XT(AIE Q: + QA )x = 2a, (¢)
x€0G, (¢) x'Q.x =

21 Vgl. [66], Fakt 6.52.
22)Vgl. [8], Fakt 8.3.7.
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Es ist dabei ersichtlich, dass aufgrund der Tatsache, dass die Funktion
V. (x) fiir x € 9G,(e) nicht differenzierbar ist, die Funktion a,(v) fir v =
¢ nicht stetig ist. Gl. (7.46) und (7.47) nehmen im Fall der klassischen
und der invers-polynomialen WSVR, besondere Formen ein. Dies wird im
Folgenden gezeigt.

Die klassische WSVR mittels iLF

In diesem Fall lautet die Systemmatrix des geschlossenen Regelkreises

N 1 N "
A, =—D/A, D;", A, :=A—-cbb'P,
vr
mit D, = diag(v",v" "1, ... v). Fiir Q, = D, "(d-P~1)D, " folgt, dass fiir
x € 9Ga(v) € Ga(1)\Gal(e) gilt

1

0,(v) = 3o Amin[Dy " (AL P!+ PT1AL ) (NP + P7'N) /D]
L A
= S Aun[(AL P+ PTIAL) (NPT PTIN) Y, we (1),

(7.48)

Dies beruht auf der Tatsache, dass beide Matrizen dhnlich sind, vgl. Def.
18 (Anhang), und folglich gleiche Eigenwerte haben. Aus Gl. (7.48) ist
ersichtlich, dass mit kleiner werdendem v die LF-basierte Konvergenzrate
a,(v) steigt. Da die Gebiete ineinander verschachtelt sind, folgt auch,
dass innerhalb eines Einzugsgebietes G4 (v) die definitionsgeméafl minimale
Konvergenzrate auf dem Rand des Gebietes erzielt wird.

Fiir alle x € 0G4 (€) gilt

1 A " _
Qp (5) = 5)‘min [_ (AZE Q: + QEAAE>Q5 1}
]. A _ 1A
= Jmin |~(AL P + PTIAL, )P
Folgender Satz fasst diese Ergebnisse zusammen:

Satz 7.9 [Konvergenzrate der nicht-sittigenden klassischen WSVR mit-
tels iLF] Fir den geschlossenen Regelkreis aus Punkt i) des Satzes 3.1
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gilt:
(a) a (’U)_ %AminKA—glP_l+P_1AA1)(NP_1+P_1N)_1]v ’UG({:‘,l],
a7 L [—(ALP—l n P—lAAl)P} : v=c,

(b) a\(v) ist streng monoton steigend mit sinkendem v.

Die invers-polynomiale WSVR

In diesem Fall lautet die Systemmatrix des geschlossenen Regelkreises

Ap :=A—bb'P;!

wobei .
P,=> v'P,,.
i:ml
Mit Q, = d- P! ergibt sich fiir x € 9Gp(v) C Gp(1)\Gp(e)
1 < < B
QP(”) = %Amin[(A—;UQv + Q'UAP'U)(Q;) 1]
1 A A
= %/\min[(A—Fr’vPv_l + PglAPu)Pv (P;)_lpv]
1 ~ ~
= %/\min[qul(PvA—ll;,,P;l + APU)Pv (P;)ilpv]
1 ~ ~
- 2_>\min[(PvA—1E'UP;1 + APU)PU(P:J)_l]
v
1

= %)\min[(PvA—lgv +Ap, P,)(P,)7!).
Fir x € Gp(e) ergibt sich
ap(e) = 3w | ~(AL. Q- + QA Q]
- %)\min [-(ARP;l n P;lApE)PE} :
Folgender Satz fasst die Ergebnisse zusammen:

Satz 7.10 [Konvergenzrate der nicht-sittigenden invers-polynomialen-
WSVR] Fir den geschlossenen Regelkreis aus Punkt i) des Satzes 4.1,
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Seite 28, gilt:

I min[(PoAL +Ap, P,)(P,) 1], we (1],
aP(”) =
2

l)\min [—(A;EPE_l + P;lAPE)PE} , V=g,

Konvergenzoptimale WSVR

Die Konvergenzrate des Systems aus Punkt b) des Satzes 5.1 kann man
- wie auch in [37] dargestellt - mit Hilfe des Lagrange-Multiplikatoren-
Ansatzes analysieren. Untersucht wird der kleinste Abklingfaktor der
Funktion

Vi(x) i= {U(X)’ mit gs(x,0) =0, x € G(\Gs(),

ex'Q.x, x € Gs(e), (7.49)

entlang der Trajektorien des Systems X = Ax — bsgn(b'Q,x). Da die
Funktion V;(x) gerade ist, d.h. Vi(x) = V5(—x), reicht es aus die Zustands-
punkte zu betrachten, wofiir x' Q,b > 0 gilt. Fiir x € 9Gs(v) C Gs(1)\Gs(e)
ergibt sich

! min (—Vq(x))

V x€0Gs(v)
TOAT, _opT
_ L g XA QFQAX 2D Qux (7.50)
V x€Gs (v) x'Q!x
Schliefllich ergibt sich fiir jeden Zustand x € 9Gs(¢)
. Vs(X)>
2 = -
ay(e) xerggl?(s) < Va(x)
. XT(ATQE + QEA)X - 2bTQ6X
= min |-
x€0Gs(e) XTQEX
— Iggiln( : [-x"(ATQ- + Q-A)x — 2b'Q.x] . (7.51)
x€0Ys(e

Aufgrund der Komplexitéit der Bestimmungsfunktion, aber auch der kom-
plexeren Form der Matrix Q, lasst sich die untere Grenze a4 (v) nicht
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mehr analytisch berechnen. Diese wird nicht mehr exakt gel6st sondern
interpoliert. Dies geschieht im néchsten Kapitel.

Zusammenfassend ldsst sich feststellen, dass unter den Giitemafien fiir
nichtlineare Regelkreise die Konvergenzrate eins der vorteilhaftesten ist.
Dies liegt an seiner moglichen Verwendung zur Approximation der Giite
des Ausregelverhaltens aber auch zur Optimierung des Ausregelverhaltens.
Letztere basiert auf einer unteren Grenze der Konvergenzrate, die im Fal-
le der hier analysierten nichtlinearen Regelungsmethoden mit Hilfe einer
impliziten Ljapunov-Funktion angegeben werden konnte. Im nichsten Ka-
pitel wird eine Methode zur Performance-Analyse vorgestellt, welche die
bereits existierende Theorie iiber den Design und Analyse von Computer-
experimenten anwendet. Diese analysiert die Performance einer (nichtli-
nearen) Regelungsmethode in Ensembles von nichtlinearen Regelkreisen.
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8 Computerexperimente unter
Einsatz Bayes’scher Methoden

Computerexperimente bilden neben physikalischen Experimenten (Versu-
che an elektromechanischen Versuchsstdnden, klinische Versuche, landwirt-
schaftliche Feldversuche etc.) eine Methode zur Generierung von Beobach-
tungen iiber die Eigenschaften eines Versuchsobjekts infolge der Variation
verschiedener Faktoren, vgl. z.B. [27, 64]. Diese Faktoren sind die Ein-
gangsvariablen, und die Eigenschaften des Versuchsobjekts sind die Aus-
gangsvariablen des Experiments. Im Fall von Computerexperimenten wird
der Zusammenhang zwischen den Eingangs- und den Ausgangsvariablen
in Form eines Rechnercodes basierend auf einem mathematischen Modell
beschrieben, dessen Komplexitit im Allgemeinen sehr hoch ist. In vielen
Féllen waren die entsprechenden physikalischen Experimente sogar nicht
durchfiithrbar - z.B. aus ethischen, 6konomischen oder zeitlichen Griinden -
sodass das Computerexperiment die einzige Alternative bietet. Unter Ver-
wendung numerischer Verfahren kénnen dabei simulierte Beobachtungen
generiert werden, welche fiir eine Pradiktion des Verhaltens des Versuchs-
objekts verwendet werden konnen. Beispiele technologischer und wissen-
schaftlicher Entwicklungen basierend auf Computerexperimenten beinhal-
ten die Untersuchung des Verhaltens von Fusionsreaktoren, kiinstlichen
Prothesen, integrierten Schaltungen, thermischen Energiespeichern und
vielen anderen Objekten aus nahezu allen natur- und ingenieurwissen-
schaftlichen Bereichen.

In dieser Arbeit wird zum ersten Mal das theoretische Konzept der
Computerexperimente auf die Performance-Analyse von Regelmethoden
iibertragen. Das Versuchsobjekt ist ein Ensemble nichtlinearer Regelkrei-
se, dessen Eigenschaften infolge der Variation eines oder mehrerer Fakto-
ren analysiert werden. Bild 8.1 zeigt das untersuchte Regelkreisensemble.
Wie man im Bild sehen kann, beeinflussen die Faktoren ¢, welche belie-
bige Werte aus einer kompakten Menge annehmen koénnen, die Dynamik
der Regelstrecke und des Reglers. Das Computerexperiment besteht aus
mehreren Versuchen mit jeweils verschiedenen Faktoren. In jedem Versuch
werden irgendwelche Faktorenwerte ¢ vorgegeben und fiir die erzeugte Re-
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Sattigungsglied Regelstrecke
r=0 ~ u 1l @] x=AQx+bQ)a | ¥

- |1 y=c'x, xq€X, 1
< —
> Regler
x
fxQ) k=

Bild 8.1: Aufbau eines Computerexperiments.

gelstrecke automatisch ein Regler entworfen. Die erzielte Performance im
geschlossenen Regelkreis bildet eine Beobachtung. Es handelt sich hier um
ein deterministisches Ergebnis, d.h. zwei Versuche mit gleichen Faktoren
bestimmen gleiche Beobachtungen. AnschlieBend kann anhand der Beob-
achtungen eine Performancepridiktion fiir alle restlichen Faktorenwerte
gemacht werden. Ziel kann also die Pradiktion der Performance einer Re-
gelmethode fiir eine neue Strecke aus dem gegebenen Regelstreckenensem-
ble sein, ohne dabei einen Regler entwerfen zu miissen. Dabei wird auch
eine Quantifizierung der erwarteten Prédiktionssicherheit von Interesse
sein. Weitere Ziele konnen sein, den Einfluss verschiedener Faktoren auf
die Performance der Regelmethode zu analysieren oder die erwartete Per-
formance fiir eine zuféllig gewéahlte Strecke aus einem Streckenensemble zu
bestimmen.

Die Faktoren sind in einem Vektor ¢ := [(x (. (m|" gruppiert. Die
Einteilung der Eingangsvariablen spiegelt die allgemeine Klassifikation im
Rahmen von Computerexperimenten wider, vgl. [64]. Diese werden in drei
grofle Kategorien aufgeteilt: die Kontrollvariablen (Cx = [Cry -+ Ci]),
welche vom Experimentator gezielt gedndert werden kénnen, wie z.B. die
Spezifikationen eines eletromechanischen Aufbaus (z.B. die Motorspezifi-
kation fiir die Laufkatze bei einer Verladebriicke), die Umgebungsvaria-
blen (e == [Cey -+ (e, ]"), manchmal auch Rauschvariablen genannt, wel-
che stochastischer Natur und unbeeinflulbar sind, und Modellvariablen
(Cm = [Cmy -+ Cm.]"), welche Unsicherheiten in der mathematischen Mo-
dellierung beschreiben und entweder unbekannt oder stochastischer Natur
sind.
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Je nach Typ der Eingangsvariablen werden verschiedene Ziele des Expe-
riments formuliert. Es wird zwischen einem homogenen Eingang (Vorhan-
densein von nur einem Typ von Eingangsvariablen) und einem gemischten
Eingang (Vorhandensein von zwei Typen von Eingangsvariablen) unter-
schieden. In dieser Arbeit wird dariiber hinaus zwischen dem (einfacheren)
eindimensionalen (eine einzige Eingangsvariable) und dem mehrdimensio-
nalen Fall (mehrere Eingangsvariablen) unterschieden. Darauf basierend
koénnen folgende allgemeine Probleme behandelt werden:

e Priadiktion des Ausgangs n = h(¢) in einem Bereich ¢ € D¢, wo-
bei der Zusammenhang zwischen Eingangs- und Ausgangsvariablen
durch die unbekannte Funktion n = h({) beschrieben wird, welche
als Realisierung des skalaren Zufallsfeldes H({) angenommen wird,

e Optimierung - d.h. Bestimmung des Eingangs ¢, welcher einen op-
timalen Ausgangwert 7 erzielt,

e Nullstellensuche - d.h. Bestimmung eines Eingangs ¢ € L(ng) fiir
ein vorgegebenes Niveau des Ausgangs L(no) := {¢ € D¢|h({) =m0},

e Unsicherheitsanalyse - d.h. Bestimmung wesentlicher und unwe-
sentlicher Eingénge ¢ € D¢ fiir die Variation des Ausgangs n = h(¢),

e Sensitivitatsanalyse, als Verallgemeinerung der Unsicherheitsana-
lyse - d.h. Bestimmung der Art, wie Unsicherheit iiber den Eingang
¢ den Ausgang des Systems 7 beeinflusst,

e Integration des Ausgangs - d.h. die Bestimmung des Erwartungs-
wertes des skalaren Zufallfeldes H(¢), wobei der Eingang ¢ als Reali-
sierung eines Zufallsvektors mit einer bestimmten Verteilung F, d.h.
Z ~ F, betrachtet wird.

e Kalibrierung - d.h. Anpassung verschiedener Modellvariablen (,,,
sodass die beobachteten Ausgangswerte eines physikalischen Experi-
ments den Ausgangswerten des Modells eines Rechnercodes entspre-
chen.

Tabelle 8.1 zeigt eine typische Klassifizierung verschiedener Ziele in Ab-
hingigkeit der Eingangsvariablen, vgl. [64].

Im Rahmen der hier untersuchten Performance-Analyse von Regelme-
thoden gruppiert der Eingangsvektor mehrere Parameter einer Regelstre-
cke. Alle moglichen Werte des Parametervektors aus einer vorgegebenen
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Tabelle 8.1: Zielklassifizierung je nach Art der Eingangsvariablen.

2| .

| = =]
= | Z

2

R =

S| B2

Ziel XD | =
Pradiktion, Optimierung, Nullstellensuche i <

Kalibrierung X
Unsicherheits- und Sensitivitdtsanalyse <

Integration des Ausgangs

(kompakten) Menge generieren zusammen ein Regelstreckenensemble. Wie
bereits erwiahnt, umfasst das Computerexperiment eine Serie von Versu-
chen mit verschiedenen Parametervektoren. In jedem Versuch wird eine
neue Strecke durch einen bestimmten Wert des Parametervektors ¢ (De-
sign-Punkt) generiert und dafiir automatisch ein Regler u = — f(x,{) ent-
worfen. Der Wert eines Performance-Mafles des jeweiligen Regelkreises bil-
det dabei den Ausgang n = h(¢). Ein Performance-Ma$ ist z.B.

- der Fehlklassifikationsanteil einer zeitsuboptimalen Regelung mit Schalt-
funktion aus Gl. (7.13)

- die relative Finschwingzeit J;, aus Gl. (7.14),
- die gebietsabhingige Konvergenzrate des Systems aus Gl. (7.50)- (7.51).

Jedes untersuchte Performance-Maf erzielt fiir einen geschlossenen Regel-
kreis mit dem Eingangsvektor {; einen skalaren Wert n; := h((;). Die
skalare Funktion h(-) ist dabei unbekannt, auch wenn es sich um eine
deterministische Funktion handelt, da jeder Funktionswert erst durch die
Ausfiihrung des Rechnercodes bekannt ist. Eine Serie von N Versuchen er-
gibt entsprechend eine Menge von N Werten des jeweiligen Performance-
Mafes. Die Werte {;, mit ¢ = 1,...,N, werden Design-Punkte und die
Werte 7;, mit ¢ = 1,...,N, Trainingsdaten genannt. Letztere werden in
einem Vektor 1 := [, --- nn]" zusammengefasst. Anhand des erzielten
Vektors i werden die oben genannten Problemstellungen gelost. Beispiels-
weise konnen fiir die Pradiktion Neuronale Netze, Splines oder Pradikto-
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ren basierend auf Gauf’schen Zufallsfeldern?) verwendet werden. Letztere
haben den Vorteil, dass sie auch die erwartete Unsicherheit der Schét-
zung quantifizieren kénnen. Die Minimierung der erwarteten Unsicherheit
kann beispielsweise verwendet werden, um die N Parametervektoren (;,
mit ¢ = 1,...,N zu wéahlen. In dieser Arbeit werden diese Schétzer unter
Beriicksichtigung der Bayes’schen Methodik verwendet.

Im Fall der Pradiktion wird eine Bayes’sche Interpolationsmethode fiir
deterministische Funktionen, vgl. [21, 22], angewandt, welche in Abschnitt
8.2 beschrieben wird. Diese Methode betrachtet den unbekannten Ausgang
des Computerexperiments als ein skalares Zufallsfeld H(-) (meistens Zu-
fallsfunktion genannt, vgl. [64, S. 24-25]), dessen Verteilung noch bestimmt
werden muss. Als Pradiktionswert fiir einen neuen Punkt ¢y wird der Er-
wartungswert des skalaren Zufallsfeldes E{# ({o)|H = 1} an dem Punkt
¢o verwendet. Die Optimierung und Nullstellensuche sind mit der vo-
rigen Problemstellung eng verwandt und werden mit Hilfe der pradiktiven
Verteilung des Ausgangs berechnet. Die Sensitivitdtsanalyse wird eben-
falls unter Anwendung des Bayes’schen Ansatzes durchgefiihrt. Unter Ver-
wendung der A-posteriori-Verteilung des skalaren Zufallsfeldes #H(¢.) wird
eine Inferenz fiir verschiedene SensitivitdtsmaBle durchgefiihrt, vgl. [51].
Die in dieser Arbeit vorgestellten Sensitivitdtsmafe sind die Haupteffekte,
die Interaktionen, sowie die varianzbasierten Haupteffekt- und Interaktio-
nenindizes. Diese und die dafiir verwendete Bayes’sche Inferenz werden in
Abschnitt 8.3 vorgestellt.

Das Kapitel ist wie folgt gegliedert. Der einleitende Abschnitt 8.1 enthélt
die Grundidee des Bayes’schen Ansatzes, eine Einfiihrung iiber Gaufy’sche
Zufallsfelder und tiber den hier verwendeten besten linearen erwartungs-
treuen Pradiktor. Abschnitt 8.2 zeigt den Aufbau von pradiktiven A-poste-
riori-Verteilungen iiber den partiellen und den vollstdndigen Bayes’schen
Ansatz, das Design-Problem, die Mafle zur Analyse der Pradiktionsgenau-
igkeit, sowie ein Beispiel einer Funktion mit einer Variablen. Abschnitt 8.3
zeigt die Sensitivitdtsanalyse im Rahmen von Computerexperimenten und
die jeweilige Bayes’sche Inferenz. Der Abschnitt endet mit einem Beispiel
einer Funktion mit zwei Variablen und der Veranschaulichung der Pradik-
tion, sowie der Sensitivitdtsanalyse. Der letzte Abschnitt, Abschnitt 8.4,
wendet die oben vorgestellte Theorie iiber das Design von Computerexpe-

DWie im nachsten Abschnitt beschrieben wird, stellen Zufallsfelder (engl.: random
fields, vgl. [6]) eine Verallgemeinerung stochastischer Prozesse beliebiger Dimension
dar, wobei der Parameter Zeit durch einen beliebigen anderen Parameter ersetzt
werden kann.
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rimenten auf die Performance-Analyse von nichtlinearen Regelungsmetho-
den an. Der Abschnitt enthélt das Préadiktionsbeispiel einer nicht-simulier-
ten Strecke, ein Beispiel fiir die Sensitivitdtsanalyse und einen empirischen
Vergleich zwischen den Pradiktoren.

8.1 Vorbemerkungen

8.1.1 Notationen

In diesem Kapitel bezeichnen #(-), Z(-) und C(-) skalare bzw. mehr-
dimensionale Zufallsfelder mit den Realisierungen (auch Pfade genannt)
h(-), z(+) bzw. ¢(-); H und H bezeichnen Zufallsvariablen bzw. Zufalls-
vektoren mit den Realisierungen n bzw. n; [ -] bezeichnet die Wahrschein-
lichkeitsverteilung (oder kurz Verteilung) einer Zufallsvariable, die durch
ihre Wahrscheinlichkeitsdichte (oder kurz Dichte) gegeben ist. Die Mul-
tiplikation [X]-[Y] bezeichnet dabei die Multiplikation von zwei Wahr-
scheinlichkeitsdichten fx(z)- fy (y). Das Symbol  bezeichnet proportio-
nale Verteilungen, d.h. Verteilungen, welche sich voneinander nur durch
eine Konstante unterscheiden. Schliellich bezeichnet D¢ den Definitions-
bereich der Variable (.

8.1.2 Grundidee des Bayes’schen Ansatzes

Im untersuchten Bereich ¢ € D¢ bildet h(-) : D¢ — R eine (deterministi-
sche) reellwertige Funktion. Diese ist als unbekannt angenommen, obwohl
die Funktionswerte anhand eines bekannten Rechnercodes generiert wer-
den. Da die Komponenten des Eingangsvektors ¢ kontinuierliche Gréfen
sind, wére die Funktion erst durch unendlich viele Simulationen des Rech-
nercodes vollstédndig determiniert. In dieser Arbeit wird die Funktion h(-)
als Realisierung eines skalaren Zufallsfeldes betrachtet, dessen Verteilung
noch bestimmt werden muss. Das skalare Zufallsfeld - auch Zufallsfunktion
genannt - wird mit 7 ( - ) bezeichnet, um es von seiner Realisierung h(-) zu
unterscheiden. Im Rahmen des Bayes’schen Ansatzes wird eine Verteilung
fir die Zufallsfunktion H(-) formuliert - die sogenannte A-priori-Vertei-
lung - welche anhand der Trainingsdaten n aktualisiert wird. Letztere wird
A-posteriori-Wahrscheinlichkeitsdichte genannt und wird verwendet, um
Inferenzen iiber die unbekannte Funktion h( - ) (das gewéhlte Performance-
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Ma$ fiir die Regelmethode) oder iiber verschiedene Sensitivitdtsmafe zu
machen. Dies wird in den néichsten Abschnitten dieses Kapitels gezeigt.

Die Wahl der A-priori-Verteilung der Zufallsfunktion basiert auf den
vorhandenen Informationen des Experimentators iiber die unbekannte
Funktion A(-). Wie in [50] erldutert, kann man vorerst allgemeine Fragen
iiber h(-) stellen, wie z.B.

1. Ist die Funktion h(-) stetig im gesamten Bereich ¢ € D¢?

2. Kann das Wissen iiber ein bestimmtes h(¢;) Informationen {iber
h(¢2) liefern, wenn {3 nah an ¢; ist?

Konnen beide Fragen mit ’ja’ beantwortet werden, so kann als A-priori-
Verteilung beispielsweise ein skalares Gaufi’sches Zufallsfeld (Gauf’sche
Zufallsfunktion) verwendet werden. In vielen Fallen wird diese Wahl auf-
grund der Flexibilitdt des Gaufl’schen Zufallsfeldes getroffen. Gaufi’sche
Zufallsfelder werden kurz in Abschnitt 8.1.3 eingefiihrt. Sie sind die meist
verwendeten Modelle im Rahmen von Computerezperimenten. Dies bedeu-
tet aber nicht, dass ein skalares Gauf’sches Zufallsfeld die Unsicherheit
iiber die unbekannte Funktion perfekt modellieren kann. Vielmehr kénnen
die Parameter des Gaufy’schen Zufallsfeldes an die schon vorhandenen In-
formationen angepasst werden, und man spricht in diesem Fall von einer
angepassten A-priori-Verteilung.

8.1.3 Skalare Gauf’sche Zufallsfelder

Ein skalares Gauf’sches Zufallsfeld (GRF, Gaussian Random Field) ist
wie folgt definiert:

Definition 4 [Gaufi’sches Zufallsfeld, [64, S.27]] Gegeben sei die Menge
D¢ C R™ mit einem positiven m-dimensionalen Volumen. Das Zufallsfeld
H(C), mit ¢ € D¢, heifst ein GauB’sches Zufallsfeld falls fir N > 1 und
jede Wahl von (1,....Cn aus D¢, der Zufallsvektor (H(¢1), ..., H(CN))
eine multivariate Gauf$’sche Verteilung hat.

Die im Rahmen von Computerexperimenten verwendeten GRFs haben dar-
iiber hinaus folgende Eigenschaften:

e Nichtsingularitdt: Das skalare Zufallsfeld H(¢) heifit nichtsin-
guldr falls fiir jedes N > 1 die mit jeder Wahl von Eingangs-
vektoren (1, ...,(ny verbundene Kovarianzmatrix der multivariaten
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GaufB’schen Verteilung von (#({1), . .., H(¢n)) nichtsingulér ist. Die-
se Eigenschaft ist u.a. notwendig fiir den Aufbau des Pradiktors.

Trennbarkeit: Diese Eigenschaft?) stellt sicher, dass die endlich di-
mensionale Verteilung des Zufallsvektors (H(¢1), - .., H(¢y)) die Ei-
genschaften einer Realisierung h(¢), wie beispielsweise deren Stetig-
keit und Differenzierbarkeit, bestimmt.

Starke/schwache Stationaritdt und Ergodizitdt: Wie im Fall
von Zeitreihen, verfiigt man bei den hier analysierten Zufallsfeldern
tiber jeweils nur eine Beobachtung h(¢) fir ein bestimmtes ¢ € De¢.
Ein zweiter Versuch mit demselben Parametervektor ¢ € D¢ wiirde
die gleiche Beobachtung h(¢) generieren. Man verfiigt also nicht tiber
eine Stichprobe von Werten. Um eine Préadiktion des (unbekannten)
Wertes h(Cnew) auf Basis der Erwartungswertfunktion E{#(¢)} ma-
chen zu koénnen, muss das Zufallsfeld stark stationdr und ergodisch
sein, vgl. z.B. [64, Abschnitt 2.3.2].

— starke Stationaritidt: Das Zufallsfeld H(¢) heiBt stark sta-
tiondr (oder einfach stationdr) falls fir jedes d € R™ und
N > 1, und alle {; € D¢, @ = 1,...,N, sodass ¢; +d €
D¢, i = 1,...,N, die Zufallsvektoren (H(¢1), ..., H(¢n)) und
(H(¢1 + d),... . H(Cn + d)) die gleiche Verteilung besitzen.
Dies gilt auch fiir N = 1, d.h. alle Zufallsvariablen H(¢), mit
¢ € D¢, haben die gleiche Verteilung. Folglich haben sie einen
konstanten Erwartungswert und eine konstante Varianz.

— schwache Stationaritét: Das Zufallsfeld H(¢) heiit schwach
stationdr falls

u(€) == E{H({)} = p, und (8.1)
c(€1,62) := Cov{H (1), H(C)} = C (&1 — C2) (8.2)

gilt, wobei C({1 — {2) Kovarianzfunktion des Zufallsfeldes ge-
nannt wird. Gl. (8.1) bedeutet, dass die Erwartungswertfunk-
tion des skalaren Zufallsfeldes fiir alle ¢ € D¢ konstant ist. Gl.
(8.2) bedeutet, dass die Beobachtungen generiert von zwei Pa-
rametervektoren mit dem gleichen Abstand und gleiche Orien-
tierung den gleichen Autokovarianzfunktionswert haben. Star-

2)Eine formale Definition der Trennbarkeit wird in [6] angegeben.

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

8.1 Vorbemerkungen 121

ke Stationaritdt impliziert schwache Stationaritit. Der Um-
kehrschluf} ist nicht notwendigerweise wahr.

— Ergodizitat: Ein schwach stationdrer Zufallsprozess H(¢) mit
der konstanten Erwartungswertfunktion E{#({)} = u heifit er-

godisch falls
| N
J (5 o) =

gilt. Dies bedeutet, dass je mehr Beobachtungen verwendet
werden, desto besser wird die Schézung des Erwartungswertes
des Zufallsfeldes. Eine wichtige Voraussetzung dafir ist, dass
dler;O C(d) = 0. Das bedeutet, dass weit auseinander liegende

Beobachtungen nicht zu stark zusammenhéngen dirfen.

e Isotropie Ein stark-stationdres Zufallsfeld H({) heifit isotropisch
falls

Cov{H(C1),H(C)} = C (¢ = Gl (8.3)

gilt. GL. (8.3) bedeutet, dass die Beobachtungen generiert von zwei
Parametervektoren mit dem gleichen Abstand (unabhingig von der
Orientierung) den gleichen Autokovarianzfunktionswert haben.

Die Voraussetzung der Stationaritit des Zufallsfeldes 7 (¢) kann durch ein
Modell der Form

H(C) =£(¢)' B+ 2(¢),

umgangen werden, wobei f({) bekannte, bzw. vorher festgelegte, Regres-
sionsfunktionen, B := [Bi,...,B,]" ein Vektor von unbekannten Regres-
sionskoeffizienten, und Z({) ein mittelwertfreies skalares Zufallsfeld mit
der konstanten Varianz Var{Z({)} = 0% darstellen, welches alle obigen
Eigenschaften besitzt. Bei einer solchen Modellierung ist H(¢) nicht mehr
stationir. Weitere Modellierungen, die die Flexibilitat des Zufallsfeldes an-
streben, werden in [64] diskutiert.

FEin skalares Gauf’sches Zufallsfeld ist durch dessen Erwartungswert-
funktion E{H(¢)} und Autokovarianz-Funktion Cov{#(¢1),H(¢2)} voll-
standig spezifiziert. Alternativ zur Autokovarianz-Funktion wird die Kor-
relationsfunktion spezifiziert. Diese ist definiert als

Rd) = St MG} _C(d)
V/Var{H(¢1)} - Var{H(¢2)} o2

, deR™,
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wobei Var{#H(¢1)} = Var{H({2)} = Cov{H(¢),H({)} = C(0) =: 0% die
konstante Varianz des stationdren skalaren Zufallsfeldes #(¢) ist. Die Kor-
relationsfunktion R(d), mit R(0) = 1, muss positiv semidefinit und sym-
metrisch um den Ursprung sein, d.h. R(d) = R(—d). Eine weitere wichtige
Eigenschaft der Korrelationsfunktion betrifft die Stetigkeit der Realisie-
rungen (auch Pfade genannt) eines skalaren Zufallsfeldes (die sogenannten
Stichprobenfunktionen). Nach [6] hat ein stationdres skalares Zufallsfeld
H(-) mit der Korrelationsfunktion R(-) fast sicher, d.h. mit Wahrschein-
lichkeit eins, stetige Pfade falls die Korrelationsfunktion R(d)

1. stetig im Ursprung ist, d.h. éin}) R(d) =1, und
—

2. fiir d — 0 schnell genug gegen eins konvergiert. Dies ist z.B. der
Fall, wenn [64, S. 38]

1 - R(d) < <

- d 1)
< Tog(appe: "l <o

fiir irgendein ¢ > 0, e > 0 und § < 1 gilt.

Jede Korrelationsfunktion der (eindimensionalen) Potenz-Ezponential-
Familie

R(+):R— (0,00), R(d;v,p):=exp{—|d/¥|P}, ¥ >0,0<p<2
(8.4)
erfiillt diese Bedingungen und generiert folglich stetige Stichprobenfunktio-
nen mit der Probabilitdt eins. Der Fall p = 2 entspricht der sogenannten
Gauf$’schen Korrelationsfunktion. Im mehrdimensionalen Fall hat die Kor-
relationsfunktion der Potenz-Exponential-Familie die Form

R(-):R™ — (0,00),

R(d;¢,p) :== exp{Z!di/dJi pi}, v >0,0<p; <2,Vi=1,....m.
i=1

(8.5)

Die Korrelationsfunktion aus Gl. (8.5) wurde durch Multiplikation der
jeweiligen eindimensionalen Korrelationsfunktionen aus derselben Familie
gebildet. Dies ist moglich, weil das Produkt mehrerer Korrelationsfunktio-
nen wiederum eine Korrelationsfunktion darstellt.
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8.1.4 Bester linearer erwartungstreuer Pradiktor

(BLUP)
Das Problem der Pradiktion wird als Pradiktion einer Zufallsvariable Hy
basierend auf den (bekannten) Trainingsdaten H = [H; --- Hy]" for-
muliert. Wir unterscheiden dabei die Zufallsvariable H;, mit ¢ =0,...,N,

von ihrer Realisierung ;. Der Pradiktor wird mit Hy bezeichnet. In dieser
Arbeit wird nur der beste lineare erwartungtreue Pradiktor (BLUP, Best
Linear Unbiased Predictor) analysiert. Dieser hat die allgemeine Form

ﬁo::co+cTH, co €R, ceRY,

wobei die Parameter ¢y und ¢ noch bestimmt werden miissen. Der Pradik-
tor heifit erwartungstreu beziiglich einer Verteilungsfamilie F fiir (Hy,H),
falls Er{Hy} = Er{Ho}, fir (Ho,H) ~ F und F € F. Der beste lineare
Pradiktor heiflt einer, der unter allen méglichen linearen erwartungstreuen
Pradiktoren den mittleren quadratischen Pradiktionsfehler (MSPE, Mean
Squared Prediction Error)

MSPE(H,,F) := Ep{(Hy — Hy)?},

minimiert. In [64, Theorem 3.2.1] wird gezeigt, dass im Fall eines Zufalls-
vektors (Hop,H) mit einer vorgegebenen Verteilung F' € F, der Erwar-
tungswert der bedingten Verteilung [Ho|H] den besten MSPE-Pradiktor
fir Hy bildet, d.h. .

HO = E{Ho‘H = T]},

unter der Annahme, dass dieser bedingte Erwartungswert von Hy, gegeben
H = n, E{Hy|/H = n}, existiert.
8.2 Pradiktive Verteilungen

In dieser Arbeit wird der Ausgang des Computerexzperiments als skalares
Zufallsfeld modelliert. Dieses hat die Form

H(C) =£(0)'B+ Z(C), (8.6)
wobei £(¢) = [f1(¢) -+ fm(¢)]" bekannte, d.h. vorher festgelegte,
Regressionsfunktionen gruppiert, 8 := [f1 --- ﬂm]—r einen Vektor von

unbekannten (konstanten) Regressionskoeffizienten darstellt, und Z(¢)
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ein mittelwertfreies stationires GRF mit der unbekannten konstanten
Varianz 0% und unbekannten Korrelationsfunktion R(-) ist. Die Kor-
relationsfunktion wird in parametrischer Form angenommen, d.h. es gilt
R(-) = R(-]1), wobei der Vektor 1 die unbekannten Parameter der
Korrelationsfunktion gruppiert. Anhand eines gegebenen Vektors n :=
[R(¢1) -+ h(¢n)]" von Trainingsdaten wird eine Pridiktion des Aus-
gangs fiir einen neuen Datenpunkt y gesucht.

Das angenommene Modell aus Gl. (8.6) impliziert,?) dass die Zufallsva-
riable Hy := H(p) und der Zufallsvektor H := [H((1) -+ H(¢y)]" eine
gemeinsame multivariate Gaufy’sche Verteilung haben, d.h.

H

]~ M ), 1)
mit Erwartungswert und Kovarianzmatrix

)
pe=| p B, (8.8)
1 r}

S =02 Lo Ig] . (8.9)
Dabei bezeichnet fy := £5(¢o) = [f1(Co) -+ fm(Co)]™ einen Vektor von
bekannten Regressionsfunktionswerten, F := [f({1) -+ fn(¢n)]" eine

N x m-Matrix von bekannten Regressionsfunktionswerten, mit f;({;) :=
F1G) - G i = 1, N, ¥ = [R(Co — i) -+ R(Co—
¢n|1)]" einen Vektor von Korrelationen zwischen dem Zufallsvektor H und
der Zufallsvariable Hy, und, schliefilich, R eine Matrix von Korrelationen
zwischen den Zufallsvariablen H,...,Hy mit den Elementen R; ;) :=

Der BLUP-Pridiktor von Hy ist, wie im vorherigen Abschnitt erwéhnt,
Hy := E{Ho|H = 1}, d.h. der Erwartungswert der Verteilung [Ho|H]. Um
diesen Erwartungswert zu berechnen, wird der Bayes’sche Ansatz ange-
wandt. Dieser basiert auf dem Satz von Bayes.

Bemerkung 8.1 (Anwendung des Satzes von Bayes). Uber den Parameter
w eines Modells seien - beispielsweise aufgrund vorheriger Erfahrungen mit
dhnlichen Modellen oder Daten - irgendwelche probabilistische Annahmen
in der Form einer A-priori-Wahrscheinlichkeitsdichte getroffen worden. Sei
diese mit fqo(w) bezeichnet. Mit Hilfe von neuen Informationen in der Form

3)Dies folgt aus der Definition eines Gauf’schen Zufallsfeldes, vgl. Def. 4, Seite 119.
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eines neu erhobenen Datensatzes 1 kann die Wahrscheinlichkeitsdichte des
Parameters w aktualisiert werden. Diese wird A-posteriori-Dichte genannt
und wird mit fo—,(w) bezeichnet. Der Zusammenhang zwischen den
beiden Wahrscheinlichkeitsdichten kann durch den Satz von Bayes in der

o fitin-om) ()
H|Q=w\NN)JQ(W
for=n(w) = 8.10
geschrieben werden. Dabei sind fyjo—.,(n) die Likelihood (auch inverse
Wahrscheinlichkeitsdichte genannt), welche anhand der erhobenen Daten
n gewdhlt wird, fo(w) die A-priori-Dichte von Q, und fi(n) die margina-
le Likelihood (oder Ewvidenz), welche den Erwartungswert der Likelihood
beziiglich der A-priori-Dichte des Parameters w, d.h.

faln) = /°° JH|0=w (M) fo(w)dw,

darstellt und folglich eine Konstante ist. A

Fir die Bildung der pradiktiven Verteilung [Ho|H] ist es weiterhin von
Bedeutung, welche Parameter des Modells aus Gl. (8.6) bekannt sind. Die-
se Parameter sind der Koeffizientenvektor 8, die Varianz 0’% und der Pa-
rametervektor ¢ der Korrelationsfunktion R( - |1).%) In dieser Arbeit wird
davon ausgegangen, dass keiner dieser Parameter bekannt ist. Ist einer
der Parameter bekannt, so vereinfacht sich die Untersuchung, vgl. [64]
fiir solche Fiélle. Im Folgenden werden zwei Methoden vorgestellt. In der
ersten Methode - partieller Bayes’scher Ansatz - wird die pradiktive Ver-
teilung [Ho|H] unter Verwendung des Bayes’schen Ansatzes fiir die Pa-
rameter B und 0% berechnet, wobei der Parametervektor 1 vorerst als
bekannt angenommen und anschlieend empirisch, z.B. mit Hilfe der Ma-
ximum Likelihood Methode, geschétzt wird. Diese pradiktive Verteilung
heilt plug-in Verteilung. Die zweite Methode - wvollstdndiger Bayes’scher
Ansatz - berechnet eine préadiktive Verteilung [Ho|H] unter Verwendung
des Bayes’schen Ansatzes fiir alle Parameter 8, 0% und 1. Beide Ansitze
sind in zwei Etappen gegliedert. In der ersten Etappe wird der Parameter-
vektor 9 als bekannt angenommen, und in der zweiten Etappe wird dieser
empirisch geschétzt bzw. durch die Bayes’sche Methode inferiert. Die erste
Etappe enthilt die folgenden Schritte:

YEs wird dabei angenommen, dass die Korrelationsfunktion bis auf den Parameter-
vektor 1 bekannt ist.
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Schritt 1 Wihle beliebige A-priori-Verteilungen [8|0%] und [0%], um die
gemeinsame A-priori-Verteilung [8,0%] = [B|0%] - [0%] zu bilden.

Schritt 2 Wihle eine Verteilung [H|B,0%] fiir den Zufallsvektor H und
eine Verteilung [ (Ho,H)| B,0%] fiir den Zufallsvektor (Ho,H).

Schritt 3 Unter Verwendung des Satzes von Bayes und der Verteilungen
aus Schritt 1 und 2, berechne die gemeinsame A-posteriori-Wahr-
scheinlichkeitsdichte [(8,0%)|/H] mit Hilfe der Regel

[H| (ﬁaaé)] ) [ﬁ,U%]
[H] '

[(B.0%)H] = (8.11)

Schritt 4 Berechne aus der Verteilung [(8,0%)|H] die A-posteriori-Rand-
verteilungen [3|H] und [0%|H]. Es folgt

B1H] = /D [(8.02)[H] do?., (8.12)
0% [H] = /D [(8.0%)/H] dB. (8.13)

Bemerkung 8.2 (Zu Schritt 1 - Wahl der A-priori-Verteilungen [3|0%] und
[0%]). Die Wahl dieser Verteilungen kann einen grofien Einfluf} auf die A-
posteriori-Wahrscheinlichkeitsdichte [(8,0%)|H] aus Schritt 3 und auf die
pradiktive Verteilung [Ho|H] haben. Diese konnen nur im Fall bestimmter
A-priori-Verteilungen analytisch angegeben werden. Einen solchen einfa-
chen Fall bilden die nicht-informativen und die konjugierten A-priori-
Verteilungen. Die nicht-informative Verteilung hat definitionsgeméaf kei-
nen EinfluB auf die A-posteriori-Verteilung. Die konjugierten A-priori-
Verteilungen sind solche A-priori-Verteilungen, die - durch Multiplikation
mit der Likelihood, wie in Gl. (8.10) - A-posteriori-Wahrscheinlichkeits-
dichten aus derselben Klasse erzeugen. Ein Beispiel einer konjugierten
A-priori-Verteilung ist die multivariate Normalverteilung fir 8 mit einer
multivariaten Normalverteilung als Likelihood von H und mit bekannter
Kovarianzmatrix U%R.

Tabelle 8.2 zeigt die hier untersuchte Wahl von A-priori-Verteilun-
gen. Fir jeden Parameter wird jeweils eine informative und eine nicht-
informative A-priori-Verteilung gewihlt. Fiir den Zufallsvektor B|o% wird
als informative A-priori-Verteilung die Normalverteilung gewéhlt, d.h.
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Tabelle 8.2: Die untersuchten A-priori-Verteilungen [(8,0%)].

[0%]

[Blo%] co/xz, | 1/oZ
Nin(Bo,0%20) (1) (2)
1 (3) (4)

Blo% ~ Nm(Bo,0%%0), wobei By und X vorher festgelegt werden. Oft
wird die Matrix ¥, in Diagonalform gewahlt. Die nicht-informative A-
priori-Verteilung ist [B|o%] o 1. Fiir die Varianz 0% des skalaren Zu-
fallsfeldes Z wird als informative-Verteilung nicht die Normalverteilung
angenommen, da diese auch negative Realisierungen erlaubt, sondern die
Verteilung einer Konstanten co > 0 geteilt durch eine X2 (Chi-Quadrat)-
verteilte Zufallsvariable mit vy Freiheitsgraden.?) Die Konstanten ¢y und
vy werden als bekannt angenommen, d.h. vorher festgelegt. Die nicht-
informative A-priori-Verteilung ist [0%] ~ 1/0%, die sogenannte Jeffreys
A-priori-Verteilung. A

Bemerkung 8.3 (Zu Schritt 2 - Wahl der Verteilungen [H|3,0%] und
[(Ho,H)|B,0%]). In dieser Arbeit werden ausschliefflich Normalverteilun-
gen betrachtet, da angenommen wird, dass der Ausgang des Computer-
experiments als skalares Gauf’sches Zufallsfeld modelliert wird, d.h., es
gilt

[H|(8,0%)] ~ Nn(FB,0%R), (8.14)
(&) eor|~vwn ([ B |oet], B])- e
A

Bemerkung 8.4 (Zu Schritt 3). Die Evidenz [H] stellt eine Konstante dar,
die fiir Schétzungszwecke keine Rolle spielt. Somit kann man Gl. (8.11)
vereinfacht in der Form

[(B,0%)H] o [H|(8,0%)] - [B.0%].
schreiben. A

5)Falls eine Zufallsvariable X Chi-Quadrat verteilt ist, d.h. X ~ xgo, dann besitzt die
Zufallsvariable Y := ¢o/X eine inverse Chi-Quadrat-Verteilung, d.h. Y ~ cox;OQ.
Die inverse Chi-Quadrat-Verteilung wird auch als Inv—x;02 bezeichnet.
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Bemerkung 8.5 (Zu Schritt 4). Die Erwartungswerte der beiden A-poste-

riori-Randverteilungen werden als Schétzer des unbekannten Koeffizien-

tenvektors 3 bzw. der unbekannten Varianz 0% verwendet, d.h.

B :=E{pMH},
6% :=E{c%|H}.

8.2.1 Der partielle Bayes’sche Ansatz

Bei dem partiellen Bayes’schen Ansatz wird der Parametervektor 1 em-
pirisch geschétzt, vgl. [64, Abschnitt 3.3]. Der Ansatz enthéilt die Schritte
1-4 und

Schritt 5a Berechne die pradiktive Verteilung [Ho|H]. Dies wird in meh-
reren Schritten gemacht. Nach einigen Umformungen ergibt sich

(Ho[H] = /D //D [Ho[HLB.03][H|B.03][8l02]dBdo% . (8.16)

Die einzelnen Schritte werden im Anhang B.4.1 gezeigt.

Schritt 6a Berechne einen Schétzer 4 fiir den Parametervektor 1 aus Gl.
(B.26) und (B.27) mit Hilfe einer der im Folgenden vorgestellten
empirischen Schiatzmethoden.

Schritt 7a Berechne den Pridiktor Hy := E{H|H = n} und seine Vari-
anz Var{Hy|H = n} aus der Verteilung [Hy|H] aus Schritt 5a mit
dem Parametervektor 1 aus Schritt 6a. Es ergibt sich

H(Co) = Ho = 38 + t)R ' (n — FB), (8.17)

wobei £ und R~! vom geschétzten Parametervektor 1& aus Schritt
6a abhangen.

Bemerkung 8.6 (Zu Schritt 5a - Berechnung der A-posteriori-Wahrschein-
lichkeitsdichte [Ho|H]). Die Berechnung aus Schritt 5a wurde im Fall der
A-priori-Verteilungen aus Tabelle 8.2 in [64, Theorem 4.1.2] angegeben.
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Der Satz besagt, dass im Fall der A-priori-Verteilungen (1) — (4) aus Ta-
belle 8.2 und der Verteilung [Ho,H|(B8,0%)] aus Gl. (8.15), die A-poste-
riori-Wahrscheinlichkeitsdichte [Ho|H] eine eindimensionale nichi-zentrale
t-Verteilung ist, d.h.

H0|H ~ ﬂ(yinuho-iz) (818)

mit v; Freiheitsgraden, Nichtzentralitdtsparameter p; und Skalierungspa-
rameter o2, i = (1),...,(4). Diese Parameter werden im Theorem B.1
(Anhang) angegeben. Sie hingen vom Parametervektor v der Korrelati-
onsfunktion R(-|¢) ab. A

Dabei wird angenommen, dass die Trainingsdaten 1 die Realisierungen
einer Gauf’schen (bedingten) Verteilung sind, d.h.

[H|8,0%,%] ~ Nn(FB,0%R). (8.19)

Gl. (8.19) ist dabei sehr dhnlich zu Gl. (8.14). Letztere enthélt der Einfach-
heit halber den Parametervektor v nicht ausdriicklich, welcher in jenem
Schritt als bekannt angenommen wurde.

Maximum-Likelihood-Methode (MLE)

Die Log-Likelihood-Funktion der Verteilung [H|3,0% %] hat folglich bis auf
einen konstanten Term die Form

L0 .ot p) = — 5 | Nlogo + log(det(R()))
4z (- FARW) " (n ~ FB)

Im Fall eines bekannten Parametervektors v ergibt die Maximierung der
Log-Likelihood-Funktion beziiglich 8 und 0%

Buve () = arg max L(n: B.0%.4) = (F'R(y)'F) 'F'R(y) 'n,

02 ($) = argmax L(n; B,0% 1)

= (1= FBan() R) ™ (0 — Fhuws (),
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sowie ein Maximum von

L (BuLe(¥),0 %, () 4) (8.20)
= max L(n; f0%.%)

= _% [NlogoZ,, . (1) +log(det(R(¢))) + N], (8.21)

das vom Parametervektor 1 abhéngt. Eine (numerische) Maximierung be-
ziiglich 1 ergibt schliefllich einen empirischen Schétzer des unbekannten
Parametervektors, d.h.

P =:PyLE = arg max L*(BuLe(¥),0%,, . (¥).9). (8.22)

Alternativ zur Maximum-Likelihood-Methode kann die sogenannte be-
grenzte Mazimum-Likelihood-Methode, vgl. [64, Abschnitt 3.3] verwen-
det werden. Die begrenzte Maximum-Likelihood-Methode basiert auf der
gleichen Schétzmethode aus dem vorherigen Abschnitt, jedoch unter Ver-
wendung einer kleineren Menge von Trainingsdaten. Diese ergibt sich aus
1y = Cm, wobei die Matrix C € RIN=")*N " die Bedingung CF = 0
erfiillt. Die Matrix CT bildet also eine Basis des Nullraumes der Matrix
F'. Die Menge 7, beinhaltet weniger Trainingsdaten als i, die Verteilung
der Trainingsdaten enthéalt aber den Parametervektor 8 nicht mehr, d.h.
H;, := CH ~ Nx_,,(CFB = 0,02CR(¢)C").

Kreuzvalidierungsmethode (XVal)

Diese Methode generiert N Pradiktionen 7%1—.(1p), mit ¢ = 1,...,N, basie-
rend jeweils auf einem Vektor 7; von Trainingsdaten, der den i-ten Da-
tenpunkt 7({;) nicht enthélt. Da die Datenpunkte 7(¢;), mit i = 1,...,N,
aber bekannt sind, kann man einen empirischen quadratischen Prédikti-
onsfehler (E-MSPE) berechnen, d.h.

E-MSPE() = > (Fr() —n(6) (3.23)

i=1

und zur Schitzung des Parametervektors ¢ verwenden. Der Kreuzvalidie-
rung-Schétzer 1 minimiert den empirischen quadratischen Pradiktionsfeh-
ler aus Gl. (8.23).
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8.2.2 Der vollstindige Bayes’sche Ansatz

Bei dem vollstédndigen Bayes’schen Ansatz wird der Parametervektor i
ebenfalls mit Hilfe des Bayes’schen Ansatzes berechnet. Es wird davon aus-
gegangen, dass der Zufallsvektor ¥ unabhiingig vom Zufallsvektor (8,0%)
ist, d.h.

Die pradiktive Verteilung [Ho|H] aus Gl. (8.18) kann dabei als eine beding-

te Verteilung [Ho|H,1] angesehen werden. Diese Methode besteht dann
aus den Schritten 1-4 und:

Schritt 5b Wihle eine beliebige A-priori-Verteilung [t].

Schritt 6b Berechne die A-posteriori-Verteilung [1|H] mit Hilfe des Bayes’schen
Ansatzes und der Verteilungen aus den Schritten 1-3. Es folgt

wim = [ 2 |-/ (Bt uHagds, (829

wobei der Integrand aus Gl. (8.25) mit Hilfe des Bayes’schen Ansat-
zes aus

[/870%7¢|H] = [H|/870-%7¢] : [ﬂﬂ%ﬂ/’] (826)

berechnet werden kann.

Schritt 7b Berechne die pradiktive Verteilung [Ho|H] aus

moE) = [ Hoy M = [ HofH ],

(8.27)
wobei [Ho|H,] die gleiche Verteilung wie die Zufallsvariable Hy|H
aus Gl (8.18) hat, und die Verteilung [¢)|H] in Schritt 6b berechnet
wurde.

Schritt 8b Berechne den Pridiktor Hy := E{Hy|H = 1} und seine Vari-
anz Var{Hy|H = n} aus der Verteilung [Hy|H] aus Schritt 7b.

Bemerkung 8.7 (Zu Schritt 6b und 7b). Fiir einfache A-priori-Verteilun-
gen [B,0%,1] kann die (m + 1)-dimensionale Integration aus Gl. (8.26)
analytisch berechnet werden. Die Integration aus Gl. (8.27) kann nur in
seltenen Fillen analytisch berechnet werden, vgl. z.B. [33] fiir den Fall m =
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2, unter Verwendung von isotropischen Korrelationsfunktionen (Potenz-
Ezponential-Familie und Matérn-Korrelationsfunktionen).

Kann die analytische Berechnung nicht erfolgen, so besteht die Mog-
lichkeit, die A-posteriori-Verteilung [¢|H] und/oder die pradiktive Ver-
teilung [Ho|H] unter Verwendung der Gibbs Sampling-Methode oder des
Metropolis-Hastings-Algorithmus numerisch zu approximieren, vgl. z.B.
[12]. Beide Verfahren werden zur numerischen Approximation von Rand-
verteilungen bei gegebener gemeinsamer Verteilung verwendet. Die ge-
meinsame Verteilung kann dabei auch eine A-posteriori-Verteilung, wie
z.B. [B,0%,3|H], sein. Bei der Gibbs Sampling-Methode werden alle
bedingten Verteilungen als bekannt vorausgesetzt. Bei dem Metropolis-
Hastings-Algorithmus entféllt auch diese Voraussetzung. A

8.2.3 Das Design-Problem

Das Design-Problem beschéftigt sich mit der Frage, welche Design-Punkte
¢, mit i =1,...,N, gewahlt werden sollten, sodass ein vordefiniertes Ziel
des Computerexperiments erreicht wird. Ein solches Ziel ist beispielsweise

o cine moglichst gute Abdeckung des untersuchten Bereichs ¢ € D¢ -
raumausschopfendes Design,

e die Optimierung eines bestimmten statistischen Giitemafles - optima-
les-Design - wie z.B.

— die Minimierung einer bestimmten Funktion der Kovarianzma-
trix der Parameter des Modells (8, 0%, 9):

% die Determinante der Kovarianzmatrix - D-optimales-De-
sign,

x die Spur der Kovarianzmatrix - A-optimales-Design,

— die Minimierung der erwarteten Varianz des pradizierten Wer-
tes im ganzen Untersuchungsbereich - I-optimales-Design.

Die optimalen Designs setzen jedoch voraus, dass der jeweilige Parame-
ter des Modells bekannt ist. Daher wird das Design-Problem manchmal
in zwei Stufen gelost, in einer ersten Stufe wird der jeweilige Parameter
des Modells durch ein raumausschépfendes Design bestimmt, und in einer
zweiten Stufe, beispielsweise, dessen Varianz durch ein optimales Design
minimiert. In dieser Arbeit wird die erste Stufe verwendet.
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Raumausschopfende Designs

Fiir raumausschopfende Designs kénnen sowohl deterministische als auch
statistische Auswahlstrategien der Design-Punkte verwendet werden. Eine
sehr einfache deterministische Strategie wére, die Design-Punkte basierend
auf einem Grid zu wéhlen. Statistische Strategien basieren auf einfachen
oder stratifizierten Stichproben. Die raumausschopfenden Designs werden
in drei Klassen unterteilt:

e Stichprobenbasierte Designs

— einfache Zufallsstichprobe generiert aus einer bestimmten Ver-
teilung,

— geschichtete Zufallsstichprobe, d.h. einfache Zufallsstichproben
generiert in jeder Schicht aus der vorher geschichteten Design-
Region,

— Latin-Hypercube-Sampling (LHS): diese Methode generiert (mar-
ginal) gleichméfig verteilte Punkte tber jede Dimension des
Parameterbereichs, vgl. Abschnitt B.5 (Anhang) fiir eine Be-
schreibung im zweidimensionalen Fall. Fiir den héherdimensio-
nalen Fall siehe [64].

e Designs basierend auf Entfernungsmafien, wie z.B.

1/p
d
— Abstand p-ter Ordnung: pp(¢1,62) = | X €1 — C2|p]
Jj=1

*x Das mazimin Design XDChIm: Maximiert unter allen Design-
Mengen Xp C D¢ den kleinsten Abstand zwischen jeweils
zwei Design-Punkten aus einer Design-Menge, d.h.

X, '=arg max min .
Penm & XpCDe¢ €1,62€XD pp(C17C2)
* Das minimaz Design D¢ ,,: Verwendet den Abstand zwi-

schen einem beliebigen vorgegebenen Design-Punkt ¢ und
einer Design-Menge X'p, welcher als

pa(C,Xp) = Cfgi)gj pp(¢,¢i)

definiert wird, und minimiert unter allen Design-Mengen
Xp C D¢ den maximalen Abstand zwischen allen mdgli-
chen Design-Punkten ¢ € D¢ und einer Design-Menge A'p,
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d.h.

X, =a a X,
Dmp 1= arg min, max pa(C.Xp).

— Durchschnittlicher (funktionaler) Abstand zwischen zwei belie-
bigen Punkten aus einer Design-Menge (bei normierten Ein-
gangsvariablen, beispielsweise D¢ = [0,1]%):

1/X
N

1 di/r
Xp) = | =~ 2 (C1.C2) A=t
m(p,x) (D) (N) CiijZGXD |:pp(C17C2>:| , .

wobei 0 < Pp(ClaCQ) S dl/p’ VC1 ?é CQ S [Oa”d gllt

* Design basierend auf optimalen durchschnittlichen (funk-
tionalen) Abstdnden Xp,,, z.B.

XDav = mcl%g m(p A) (XD)

e Designs mit gleichverteilten Design-Punkten: Unter der Annahme
von normierten Eingangsvariablen, d.h. D¢ = ®f:1[ai,bi}, minimie-
ren diese Designs die Abweichung zwischen der empirischen Ver-

teilung der Design-Punkte Fy({) := Z I{Z; < ¢} aus einer
Design- Menge ¢ € Xp und der mehrdlmensmnalen Gleichverteilung

F(¢) = H (Cz ‘“) Die Abweichung ist definiert als

- [//D Fy(Q) — F(OIPAC

und das optimale Design Xp,, als

1/p

Xp, = arg Xglci%c Dy (Xp).

8.2.4 Pradiktionsgenauigkeit

Um die Genauigkeit der Pradiktion zu quantifizieren werden zwei Mafe
eingefiihrt. Das erste Maf} ist der empirische quadratische Mittelwert des
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Pradiktionsfehlers (ERMSPE Empirical Root Mean Squared Prediction
Error)

Tn

1 . 2
ERMSPE = || - Z (h(g) ~H(G) (8.28)
wobei T,, die Anzahl der Test-Punkte ist. Das zweite Maf} ist die erzielte
Deckung des wahren Funktionswertes durch das 1 — o Konfidenzintervall
(wobei z.B. a = 0.05) des Préadiktors. Fiir das Konfidenzintervall gilt

P (HO € B{Ho|H = n} + /Var{Ho|H = n}zl,m) =1-a, (8.29)

wobei 2 _q /9 das (1 —a/2)-Quantil der A-posteriori-Dichte [Ho|H] ist. Die
erzielte Deckung ist definitionsgeméfl der Anteil der Test-Punkte AC €
[0,1] (AC = Achieved Coverage), deren wahren Funktionswerte innerhalb
des 1 — a Konfidenzintervalls liegen.

8.2.5 Beispiel: Pradiktion einer Funktion mit einer
Variablen

Folgendes Beispiel illustriert den partiellen Bayes’schen Ansatz anhand der
folgenden Funktion aus [64, Beispiel 4.1]

n=nh() =e " cos(Tr¢/2), 0<¢ <. (8.30)

Fiir die Interpolation werden N = 7 Design-Punkte Xp = {(1,...,(n}
durch Latin-Hypercube-Sampling (vgl. Abschnitt B.5 (Anhang)) erzeugt,
welche die Trainingsdaten n :=[1 -+ nn] generieren. Das angenomme-
ne Modell des Ausgangs lautet

H(C) =B+ Z(0), (8.31)

wobei der freie Koeffizient § € R unbekannt und Z(¢) ein mittelwert-
freies skalares Zufallsfeld mit einer noch unbekannten konstanten Varianz
0% > 0 sind. Als A-priori-Verteilung [B8,0%] wird die nicht-informative
Verteilung (4) aus Tabelle 8.2 verwendet. Der Ausgang H(¢) des Modells
stellt - im Unterschied zum wahren und deterministischen Ausgangswert
n € R aus Gl (8.30) - ein skalares Gaufi’sches Zufallsfeld dar, dessen
Realisierungen Funktionen von ( sind. Ebenso wird der Vektor von Trai-

ningsdaten als Zufallsvektor H (mit einer multivariaten Normalverteilung)
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angenommen. Der Wert des skalaren Zufallsfeldes an einem Test-Punkt
Co ¢ Xp wird durch Hy := H({p) bezeichnet.

Unter diesen Annahmen besitzt die Zufallsvariable Ho|H eine A-poste-
riori nichtzentrale ¢-Verteilung (vgl. Theorem B.1 (Anhang)) mit vy = 6
Freiheitsgraden, sowie mit Nichtzentralitdtsparameter py({p,%) und Ska-
lierungsparameter o3((p,?). Die letzten Parameter kénnen aus Theorem
B.1 (Anhang) entnommen werden. Es gilt folglich

Ho|H — p14(o,20)
o4(Co,¥)

wobei 1 den noch unbekannten Parameter der Korrelationsfunktion R( - |1))
darstellt. Dafiir wird die Gaufi’sche Korrelationsfunktion gewéhlt, welche
zu der Potenz-Exponential-Familie aus Gl. (8.4), mit p = 2, gehort. Der
Parameter ¢ wurde mit Hilfe der Maximum Likelihood Methode aus Ab-
schnitt 8.2.1 auf 1) = 0.2965 geschétzt.

Bild 8.2 zeigt den Verlauf der wahren Funktion h((), sowie den Pré-
diktor Hy = E{Ho/H = n} = 14(¢o,?)) und die punktweise entsprechen-
den 95% Priidiktionsintervallgrenzen Hy + 04(40,1/3)7534/ ? des Pradiktors fiir
200 aquidistante Test-Punkte (y aus dem Intervall ¢ € [0,1]. Dabei stellt

tﬁi{z = FI;)l'H(l — o/2|vg = 6) = 2.4469 den oberen «/2 kritischen Punkt

der Verteilung 77(v4,0,1), mit a = 0.05, dar. Dies bedeutet, dass

~ T1(v4,0,1), (8.32)

P {H() S /14<C0312;> + 04(<0322)t34/2

H} —1-a (8.33)

Die Untersuchung der Pradiktionsgenauigkeit, welche anhand der Mafle
aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen quadrati-
schen Mittelwert des Pradiktionsfehlers von ERMSPE = 0.034 und einen
Anteil der erzielten Deckung von AC = 1.

8.3 Sensitivitatsanalyse

Wie in den vorherigen Abschnitten beschrieben, bildet der Ausgang ei-
nes Computerexperiments eine unbekannte deterministische Funktion n =
h(¢) = h(C1,-..,Cq). Die Sensitivititsanalyse beschiftigt sich mit der Un-
tersuchung des Einflusses eines oder mehrerer Eingénge (;,i = 1,....d,
auf den Ausgang 7. Haben beispielsweise bestimmte Eingénge einen nur
sehr kleinen Einflul auf den Ausgang, so konnen sie bei der Pradiktion
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Interpolation (AC=1, ERMSP=0.033866)

a/2
v4
2

h(Q), H(Q), H(C) £ aa(O)t

Bild 8.2: Verlauf der Funktion h(¢) (-), Menge der Trainingsdaten n (e),

~

Pridiktor Hy = 114(Co) (- -), sowie Pradiktionsintervallgrenzen i (Co,tb) &

04((0,1;)7534/ 2 (-.) fiir 200 &quidistante Test-Punkte (5 aus dem Intervall
[0,1].

des Ausgangs vernachléssigt werden. Dies wiirde zu einer Vereinfachung
der Untersuchung fiithren. Dariiber hinaus hilft die Sensitivitdtsanalyse
Interaktionen zwischen den Eingéngen (;, i = 1,....d, zu identifizieren.
Existieren solche Interaktionen nicht, dann ist der Einflufl eines bestimm-
ten Eingangs unabhéngig von den anderen Eingédngen. Dies ist vor allem
im Rahmen des Designs (der Auswahl der Design-Punkte) von Bedeu-
tung. Die Anderung der Einginge kann dabei infinitesimal klein (lokale
Sensitivitdtsanalyse) oder grofl (globale Sensitivitdtsanalyse) sein.

Die Sensitivitdtsanalyse kann auf den Ausgang 1 = h(¢) des Versuchs
oder auf den Pridiktor #H(¢) angewandt werden. Der wesentliche Un-
terschied besteht darin, dass bei der Anwendung auf den Pradiktor, die
Schluffolgerungen das vorgeschlagene Modell, und nicht das Computerez-
periment - wie im ersten Fall - betreffen. In Abschnitt 8.3.1 werden die
Sensitivitdtsmafle und in Abschnitt 8.3.2 die Bayes’sche Inferenz vorge-
stellt.
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8.3.1 Sensitivitatsmafle

Die in dieser Arbeit untersuchten SensitivitdtsmaBe, welche in [51] einge-
fithrt wurden, basieren entweder auf der Zerlegung des Ausgangs des Mo-
dells h(¢) oder H(¢) in Haupteffekte und Interaktionen - je nachdem ob
einzelne Eingédnge oder mehrere Einginge gleichzeitig betrachtet werden -
oder aber auf der Reduktion der Varianz des Ausgangs infolge Fixierung
eines oder mehrerer Eingénge.

Ausgangszerlegung in Haupteffekte und Interaktionen

Die Haupteffekte und Interaktionen werden durch eine Zerlegung des Aus-
gangs des Modells konstruiert. Die Komponenten der Zerlegung beinhalten
jeweils einen oder mehrere Eingéinge aus Z := [Z; --- Z4].9 Die Kom-
ponenten, welche einen einzigen Eingang betrachten, heiflen Haupteffekte,
die restlichen heilen Interaktionen. Alle Eingénge werden dabei als unab-
héngige Zufallsvariablen mit jeweils vorgegebener Verteilung betrachtet.
Die Zerlegung des Modells hat die Form

d
H(C) =E{H} + ZQ(Q) +3 Ci(Ci) + Y Cigkl(Cijr)t

1<j i<j<k
oo+ Cig,.a(C) (8.34)
mit ¢;; := [¢; ¢]und {5k =[G ¢ (k). Die einzelnen Komponenten
sind definitionsgeméf
Ci(Gi) = Ez{H({)|Z:} — E{H({)}, (8.35)

Cii(Gij) = Bz —{H(O)Zi;} — Ci(G) = Ci(G) = E{H(O)},  (8.36)
Cijk(Cij) = Bz AH(ONZi ik} = Cij(Gig) = Cik(Gik) = Cjk(Cjok)
—Ci(G) — C5(¢5) — Cr(Cr) — E{H(C)}, (8.37)

wobei der letzte Term Cy 5, 4(¢) als Differenz zwischen der Summe aller
anderen Komponenten und dem Ausgang des Modells H(¢) definiert wird.

6)Wir unterscheiden dabei durch diese Notation den Zufallsvektor Z von seiner Rea-
lisierung (.
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Zusammengefasst kann ein solcher Effekt beschrieben werden als

Cp(Cp) :=Ez {H|Zp} = > > Cr(Cr) — E{H(O)}, (8.38)

k=1mkCp

wobei p eine Menge von v, Indizes, m;, C p eine Untermenge von k In-
dizes aus der Menge p und p die Menge der d — v, Indizes darstellt,
welche sich nicht in der Menge p befinden. Die Zerlegung aus Gl. (8.34)
wird in der Literatur als hoherdimensionale Modellbeschreibung (HDMR
High Dimensional Model Representation) bezeichnet. Dabei sind C;(¢;)
die Haupteffekte und C,(¢,) die Interaktionen p-ter Ordnung.

Ausgangsvarianzreduktion

Ein SensitivitdtsmaB kann die Reduktion der Varianz Var{H({)} des Zu-
fallsfeldes H(¢) in Abhéngigkeit von einem oder mehreren Eingéngen
quantifizieren. Im Fall eines einzigen Eingangs hat dieses die Form”

Vi == Varz, {Ez_{H({)|Zi}}. (8.39)

Dessen Wahl kann man wie folgt erkléren. Sei Varz {H({)|Z; = ¢} die
resultierende Varianz von H(¢) infolge der Unsicherheit iiber alle Eingéin-
ge Z aufler Z;. Diese wird bedingte Varianz genannt. Eine intuitive Folge
der Fixierung eines Eingangs Z; = (7 ist, dass die resultierende Vari-
anz Varz_{H(¢)|Z; = (¢} kleiner als die unbedingte Varianz Var{H(¢)}
ist. Je kleiner dieser Wert ist, desto wichtiger ist der Faktor Z;. Dieser
Wert ist jedoch abhéngig von dem festgelegten Wert von (. Daher wird
noch der Mittelwert iiber alle moglichen Werte von (¢} angewendet, d.h.
Ez {Varz_{H({)|Z; = (;}}, welches immer kleiner oder gleich der unbe-
dingten Varianz Var{#(¢)} ist. Aus dem Satz von der totalen Varianz,
folgt dariiber hinaus

Ez {Varz {H()|Zi}} + Varz, {Ez {}(()|Zi}} = Var{H(¢)}.  (8.40)

Aus Gl. (8.40) ist ersichtlich, dass der Wert Varz, {Ez_{#H({)|Z;}} das Aus-
maf der Varianzreduktion des Ausgangs durch die Fixierung des Eingangs
Z; quantifiziert. Durch eine Normierung mit Var{#({)} erzielt man das

Sensitivitatsmaif
- Varg {Ez{H({)|Zi}}
T Var{H(¢)} ’

(8.41)

DVgl. [63, Kapitel 1].
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welches varianzbasierter Haupteffektindexr des Eingangs Z; genannt wird.
Zusammengefasst konnen die varianzbasierten Haupteffekt- und Interak-
tionenindizes beschrieben werden als

g .= Varz, {Ez_{H(¢)|Zy}}
. Var{H(¢)}

(8.42)

8.3.2 Bayes’sche Inferenz

Da der Ausgang des Computerexperiments eine unbekannte Funktion dar-
stellt, konnen diese Sensitivitdtsmafle nicht exakt berechnet werden. Sie
werden daher, wie der Ausgang selbst, als Zufallsfelder (im Fall der Haupt-
effekte und Interaktionen) bzw. Zufallsvariablen (im Fall der Haupteffekt-
und Interaktionenindizes) angenommen. Mittels Bayes’scher Inferenz wer-
den dann fiir diese Sensitivitdtsmafle A-posteriori-Erwartungswerte be-
rechnet.

Haupteffekte und Interaktionen

Die Haupteffekte und Interaktionen aus Gl. (8.35)-(8.37) hidngen von dem
Erwartungswert bzw. den Erwartungswertfunktionen der jeweiligen be-
dingten Zufallsfelder ab. Diese sind gegeben durch

E{H(C)}—/D A H(C) - f1(C) - - - fa(Ca)dCy - - dCa, (8.43)
<1 ¢d

Bz {H(01Z:) = | A A o e

f1(G) e fim1(Gimr)

(AN (CAS) RPN FI(¢) [ (SRR (CREY: (CRRIERY: (¢’
(8.44)
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wobei De¢,, i = 1,...,d, den Definitionsbereich der Zufallsvariable Z; dar-
stellt, sowie - der Einfachheit halber in Vektorschreibweise dargestellt -

d
Bo (HOZs) = [ o H©O T[ hlc)deyy ()
2 i
d
‘de}_/ /® b : H fl(Cl)de, (846)
<1 =1
l#1,5,k
1¢1jk

Zusammengefasst konnen die Komponenten aus Gl. (8.43)-(8.46) fiir einen
beliebigen Vektor {,, mit einer Menge p von v, Indizes, geschrieben werden
als

Bz {H(0)|Zy} = / (O)dGH(C), (8.47)

Dc,

mit

d
H 1(¢) dé

und

Der Term Ez_{H({)|Z,} aus Gl. (8.47) ist ein lineares Funktional des ska-
laren Zufallsfeldes 7(¢). Somit wird das Zufallsfeld (oder die Zufallsvaria-
ble im Fall von p = 0) Ez_{#({)|Z,} fiir jeden Punkt ¢, eine nichtzentrale
t-Verteilung wie in Gl. (8.18), Seite 129, haben, jedoch mit anderen Para-
metern. Der A-posteriori-Erwartungswert ist

BB AHQOZ) = [ BHONGHG). (49

wobei das Symbol * die Berechnung des Erwartungswertes relativ zur A-
posteriori-Wahrscheinlichkeitsdichte von Ez_{#H(()|Z,} bezeichnet. Aus
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Gl. (8.17), Seite 128, folgt dariiber hinaus, dass

E'{H(¢)} = E{H(QH} =£(¢)'B + 7R (n—FB).  (8.49)
Durch Einsetzen der Gl. (8.49) in Gl. (8.48) folgt

B Bz, (121} = 5,68 + G(GIR (n—FB),  (350)

mit
6) = [+ #0TaGs(G). (8.51)
06 = [+ #0TGs(G). (5.52)

Die Integrale aus Gl. (8.51) und (8.52) koénnen nur in wenigen Féllen ana-
lytisch berechnet werden. Eine numerische Losung ist jedoch unproblema-
tisch. Auf die gleiche Weise kann auch der A-posteriori-Erwartungswert
E*{E{#H(¢)}} fir den Erwartungswert aus Gl. (8.43) berechnet werden.
Es folgt . R .

E{E{H(C)}} =s'B+t'R™ (n - Fp), (8:53)
mit s' := s;';(cp) und t" = t;';(Cp) fiir p = (. Somit kénnen die A-posteriori-
Erwartungswerte der Haupteffekte und Interaktionen aus Gl. (8.38) unter
Verwendung der Gl. (8.50) und Gl. (8.53) berechnet werden.

Fiir die Inferenz iiber die bedingte Ausgangsvarianzreduktion wird noch
die A-posteriori-Kovarianzfunktion des skalaren Zufallsfeldes Ez_{(¢)|Z}
benotigt. Diese ist

Cov* {Ez,{H(¢)|Z,}, Bz {H(¢)| Zg }}

[ ) [ o OO
-/ /D/ /D 63" (CC)ICH GGG, (854)

wobei ¢ := ({p,(5), ¢’ := ({y,¢7), der Wert 6% eine Schitzung der A-priori-
Varianz und die Funktion 7*(¢,¢’) die A-posteriori-Korrelationsfunktion
des skalaren Zufallsfeldes Z sind. Im Fall der A-priori-Verteilungen aus
dem vorherigen Abschnitt werden diese Gréfien in Gl. (B.18) und (B.19)
des Satzes B.1 (Anhang) angegeben.
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Bedingte Ausgangsvarianzreduktion

Schliefflich wird der A-posteriori-Erwartungswert der Sensitivitdtsmafe S,
aus Gl. (8.42) berechnet. Dieser wird durch

E*{Varz, {Ez_{H({)|Z}}}
E*{Var{H(¢)}}

angendhert, vgl. [51], da der exakte Erwartungswert nicht analytisch be-

rechnet werden kann. Dabei gilt

Varz, {Ez_{H(¢)|Zp}} = Ez,{Ez {H(¢)|Z,}*} — Bz, {Ez {H({)|Z,}}°
= Bz, {Ez_{H({)|Z,}*} — E{H({)}*. (8.56)

Der A-posteriori-Erwartungswert des zweiten Terms auf der rechten Seite
von Gl. (8.56) ist®)

E{E{#(¢)}*} = E{E{H(¢)}*|H}
= Var{E{#(¢)}[H} + E{E{H({)}|H}*
= Var' {E{H({)}} + (B {E{H({)}})?, (8.57)
wobei der erste Term aus Gl. (8.54), mit Z, = Z; und ¢ = p = ), und der
zweite Term aus Gl. (8.53) entnommen werden konnen.

Der A-posteriori-Erwartungswert des ersten Terms auf der rechten Seite
von Gl. (8.56), Ez,{Ez_{H(C)|Z,}*}, lautet

E*{S,} ~ (8.55)

B° {2, {Ez,{1(0)1Z,) |}
= B {Bz, {E2,{(H(Q)|Z,} - Bz, {H(Q)[Z,} } |

Unter Verwendung der Gl. (8.47), Seite 141, ist dieser weiterhin dquivalent
zu

B {Bz, (B2, {H(0)12,)°} | =

:E*{Ezp{ H(C)dGF(Cﬁ)'/"' H(C*)dG%(C%)}}
Deg D¢l

=E"{Ez, {1(¢»)}} (8.58)

8)Dies folgt aus dem Verschiebungssatz, d.h. Var{X|Y} = E{X?|Y} — E{X|YV}2.
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mit
1G) = [ H@OiGs(G)- [ HeeHe). (559

sowie ¢ := ({p, (), ¢F = (Cp;CII—,) und

d
4Gy(G) = ]I AilG)dG,

Weiterhin folgt aus Gl. (8.58), dass

E* {EZ {I Cp }} E* {/ / Cp dG Cp)} (8'60)
mit ,
dGp(&p) =[] fow (Goy) A (8.61)
=1
Somit ergibt sich

B {Bz, (B2 {H(Q)|Z,}*} | =

/ /D/ /D/ /D B {H(OM(C)}AGH(¢p)AGH(ER)AC (G),

wobei

E{H(OH(C)} = E{H(O)} E{H(C)} + Cov {H(€),H(¢")}

E{H({)} = ni(C),
E{H(C")} = ni(¢),
Cov* {H(C),H(CH)} = 0% -7*(¢,C),
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sowie (- ), O‘:% und r*(¢,¢*) aus Theorem B.1 entnommen werden kénnen.

Schlielich wird der A-posteriori-Erwartungswert der Varianz des Zu-
fallsfeldes H(¢), E* {Var{H({)}} = E{Var{H({)}|H} aus Gl. (8.55) be-
rechnet. Dies wird jedoch nur fiir den Fall von nicht-informativen A-priori-
Verteilungen von B|o% und 0% gezeigt. Es gilt

E" {Var{#H(O)}} = E"{E{H(¢)*}} - E" {E{H({)}*}, (8.62)

wobei der zweite Term in Gl. (8.57) berechnet wird, und fir den ersten
Term gilt

Ky == E{E{H({)*}}
= //D E*{E{H(¢)*}} - f1(¢1) - - - fa(Ca)dCr - - - dla

= //D E{E{#(¢)>}H} - f1(¢1) - -+ - fa(Ca)dSr---dCa. (8.63)

Der Integrand aus Gl. (8.63) muss jedoch noch bestimmt werden. Dieser
ist der A-posteriori-Erwartungswert von H(¢)2. Da in dieser Arbeit fiir
jedes Co € D¢ der Wert des skalaren Zufallsfeldes H({o)/H =: Ho|H ei-
ne Zufallsvariable mit einer a-posteriori nicht-zentralen t-Verteilung ist,
besitzt die Zufallsvariable HZ|H eine nicht-zentrale F-Verteilung. Da dies
die Angabe einer geschlossenen Form des A-posteriori-Erwartungswertes
der Varianz des Zufallsfeldes E*{E{#(¢)?}} praktisch unméglich macht,
wird eine Schétzung des Integranden durch

Ky =Bz u {E {E{H(¢)*}[H,0% }} (8.64)

verwendet. Diese Vorgehensweise wurde in [34] vorgestellt und basiert auf
der Tatsache, dass

E{E{H(¢)’}H,0%}
- E{/ [ aer n@)- gt ~--d<drH,a%}
- //D E{H(CPHo2) - 1(C)- .. - falCa)dCr - - dCa,

gilt, wobei fiir jedes o € D¢ der Erwartungswert E {#({o)?H, 0%} in
analytischer Form angebbar ist. Dies liegt daran, dass die Zufallsvariable
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H(¢o)|H,0% normalverteilt ist, mit

H(C0)|H702 ~ N(M4(C0)aUZ(C0))

und, dass

E{H(¢o)*H, 0%} = 1a(Co)® + 03 (<o)
= pa(€o)* + 027 (¢0,C0)

gilt. Dabei konnen die Parameter 14(¢o) und 7*(¢p,¢o) aus Theorem B.1
entnommen werden. Eine Schétzung des gesuchten A-posteriori-Erwar-
tungswertes E {E{?(¢)?}|H} bildet dessen Erwartungswert beziiglich der
A-posteriori-Wahrscheinlichkeitsdichte von 0%, d.h. von 0% |H. Es folgt

Ky :=E o2 |H {E{E{H(¢)*}|H,0%}}

B2 {//D E{HOPEL)  fi(G) - - falCa)dG -~~dcd}

=E;2 {//D (1a(€)2 + 0% (¢,0)) - F1(G1) - ... 'fd((d)dfl“'dCd}

/ / (€% 1) o falCa)AC - dCat
D¢

+Eam {//p 0% (C€) filG)- .. ~fd(<d)d<1~~d<d}
¢
/ / pa(C)?- f1(&) - ... - fa(Ca)dCy - --dey
D¢

+/---/D< Bos e {02} 7(G0) - f1(G) o falCa)dGa -+ dCa
(8.65)

Wie in [52] gezeigt, hat die Zufallsvariable 0% |H eine inverse Chi-quadrat
Verteilung, d.h.

UZ|H ~ Q4 XN @
mit ¢ := Rang(F) und Erwartungswert

6% = E{o2|H} = Q1/(N - ¢ - 2), (8.66)
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wobei der Skalar Q7 aus Theorem B.1 zu entnehmen ist. Fiir den Schétzer
aus Gl. (8.65) ergibt sich schliefilich

Ky = ///M “fi(G) e fa(Ca)dG - - - dCa
D¢

#fof GO R i

Somit kann der A-posteriori-Erwartungswert der Varianz des skalaren Zu-
fallsfeldes aus Gl. (8.62) vollstandig berechnet werden.

8.3.3 Beispiel: Sensitivitatsanalyse und Pradiktion
einer Funktion mit zwei Variablen
Folgendes Beispiel illustriert den partiellen Bayes’schen Ansatz und die

Sensitivitdtsanalyse anhand der folgenden Funktion mit zwei Variablen
aus [64, Beispiel 4.2]

n="h¢) =2¢IG, ¢:=[G &I € [-1.1)x [-1.1]. (8.67)
Der Ausgang wird als skalares Gauf3’sches Zufallsfeld
H() =B+ Z(C) (8.68)

modelliert, wobei der freie Koeffizient § € R unbekannt und Z(¢) ein mit-
telwertfreies skalares Zufallsfeld mit einer noch unbekannten konstanten
Varianz 0% > 0 ist. Fiir die Interpolation werden N = 20 Design-Punkte
Xp = {{1,...,¢7} durch Latin-Hypercube-Sampling (vgl. Abschnitt B.5
(Anhang)) erzeugt, welche die Trainingsdaten ) := [n1 -+ 720] generie-
ren.

Da das Produkt von Korrelationsfunktionen wiederum eine Korrelations-
funktion generiert, wird bei diesem Beispiel die Korrelationsfunktion

R(d|vY) = R(d1]p1) - R(d2|vp2) (8.69)

verwendet, wobei R(di|11) und R(dz|v2) Gaui’sche Korrelationsfunktio-
nen mit unbekannten Parametern ¢, und o darstellen.

Als A-priori-Verteilung [3,0%] wird die nicht-informative Verteilung (4)
aus Tabelle 8.2 verwendet. Der Wert des skalaren Zufallsfeldes an einem
Test-Punkt (o ¢ Xp wird durch die Zufallsvariable Hy := H(¢p) model-
liert. Unter diesen Annahmen besitzt die bedingte Zufallsvariable Hy|H
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eine t-Verteilung mit v4 = 5 Freiheitsgraden, dessen Nichtzentralitdtspa-
rameter 114(¢o,3) und Skalierungsparameter o2((o,1) aus Theorem B.1
(Anhang) entnommen werden konnen. Es gilt folglich

Ho|H — p4(Co,9)
a4(Co,?)

wobei ¥ := [11,12] den noch unbekannten Parametervektor der Kor-
relationsfunktion R(h|v) darstellt. Der Parametervektor 1 wird mit
Hilfe der Maximum Likelihood Methode aus Abschnitt 8.2.1 auf ¢ =
[0.6645,2.3251] geschéatzt.

Bild 8.3 (links) zeigt die wahre Funktion aus Gl. (8.67) und (rechts)
die Pradiktion Hy = E{Hy|H} fiir 625 dquidistante Test-Punkte, sowie,
auf beiden Seiten die Menge der Design-Punkte Xp C [0,1] x [0,1]. An
den Design-Punkten stimmen, wie erwartet, die Pradiktion und die wahre
Funktion iiberein. Dies kann man auch anhand der in den beiden Bildern
dargestellten Niveaulinien sehen, welche die gleichen Niveaus darstellen.
Die Untersuchung der Pradiktionsgenauigkeit, welche anhand der Mafe
aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen quadrati-
schen Mittelwert des Pradiktionsfehlers von ERMSPE = 0.1828 und einen
Anteil der erzielten Deckung von AC = 0.3776.

Fiir die Sensitivitdtsanalyse wird angenommen, dass die Eingangsvaria-
blen ¢; und {5 zwei Umgebungsvariablen darstellen und durch zwei unab-
hingige standard-normalverteilte Zufallsvariablen - bezeichnet durch 7,
Zs - reprasentiert sind, d.h. Z;, Z3 ~ N1(0,1). Es gilt

~ ﬂ(V4,071)7 (870)

B} = [ [ mon@p@aade, s
B M1} = [ HO LG (8.72)
B HQ|Z) = [ HOAGHG (8.73)

und die Haupteffekte sind
Ci(G) = Ez{H(OIZ1} — E{H(O)},
C2(G2) = Ez {H({)|Z2} — E{H ()}

Da bei diesem Beispiel die wahre Funktion - aus Gl. (8.67) - bekannt
ist, konnen auch der Erwartungswert E{h(¢)}, sowie die entsprechenden
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Wahre Funktion Interpolation (AC=0.3776, ERMSP=0.18284)

Bild 8.3: Wahre Funktion n = h(¢) und Menge der Design-Punkte n fir
das Beispiel einer Funktion mit zwei Variablen (links), sowie Pridiktion
H und die gleiche Menge der Design-Punkte n (rechts).

Haupteffekte ¢1(¢1) und c2(¢2) basierend auf der wahren Funktion h(¢)
berechnet werden. Insbesondere ergibt sich fiir E{h({)}

1 1
E{h(¢)} = 71T/—1 ¢ exp <—;C12> d¢ /_1 (3 exp (—;@2) dés.

Fir das zweite Integral aus der obigen Gleichung gilt

1
/ (2 exp (—%(3) déy = V2m(2®(1) — 1) ~ 1.71,
-1

wobei @( -) die Verteilungsfunktion der Standardnormalverteilung ist. Fiir
das erste Integral gilt

' 1 2 2 1 2
/ (7 exp <—2C1> dGi = —(¢7 + 1) exp (—2C1>
-1

1
=0.
-1
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Somit gilt E{h(¢)} = 0. Ebenso ergibt sich c2({2) = 0. Schlieflich ergibt
sich fiir ¢1(¢1)

e1() —2@/ G ha(G)dG = \fg/ @exp(—@)d@

=2(28(1) — 1)¢3 ~ 1.37-¢3.

Die Bayes’sche Inferenz fiir die Haupteffekte ergibt

B (B{H(C)}} = / 1 / B{HQIH}A(G) fa2)dd:

1o A R

= / / (5 +#(¢)' R (n— 1N5>> f1(C1) f2(¢2)dCidCe
—1J-1

=sB+t' R (n—1xp), (8.74)

wobei 1y € R™ ein Vektor von Einsen ist, und

5 = / 1 / L A0 fC)ACAG = (20(1) — 1),
/ / ¢) f1(C1) f2(C2)d¢idCs,

sowie
EY{Ez{H(¢)|Z:}} = g:B + 6] (G)R ' (n — 1nB), i={12},
mit
1
= /_1 f(G)dG =29(1) — 1,
1
10 = [ FORGG

Der Index i bezeichnet den zum Index i komplementéren Index, d.h. falls
i = 1, ist ¢ = 2. Die konstanten Faktoren s und s; sind nur von den
Verteilungen der Zufallsvariablen Z; und Z3 abhéngig.

Die Haupteffektindizes sind

Varz {Ez{H(C)|Zi}} = EzABz{H(C)|Z:}*} — Bz {Ez{H(C)|Z:}}?
=Bz {Bz{H(0)|Z:}*} - E{H(¢)}?, i€ {12},
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wobei der Term E{H(¢)} in Gl. (8.71) berechnet wird. Der erste Term ist
Bz ABz{H(¢)|Z:}*}

/ {/ / ¢ G f5(G)AGAG | fi(G)dG, (8.75)

wobei ¢ := (¢;,G;), ¢* = (Ci,CZ—f). Die Bayes’sche Inferenz fiir die Hauptef-
fektindizes ergibt

E*{Varz {Ez{H({)|Zi}}} = EN{Ez {BE2{H()|Z:}*}} - E{E{H(O)}},
fiir alle i € {1,2}. Fiir den zweiten Term E*{E{H(¢)}?} gilt
EY{B{H(¢)}*} = B{E{H(¢)}*[H} = Var{E{#(¢)} H} + E{E{H({)}[H}?,

wobei

2

Var (E{H(C)}[H) = Var* (E{H(C)}) = ( / / O <1>f2<<2>d<1dc2>
und - aus Gl (8.74) -

E(B{H(O}[H) = B {BH(ON? = [0+ R (n -~ 1xA)]

Fiir den ersten Term gilt aus Gl. (8.75)

B {Ez {Bzin(¢ )IZ»}2}}

{/ [/ / (¢ f(C)deC]fi(Q)dQ},
/ [/ / Er{(e (OF; (<)d<d<}fi<<i>d<i

/[// Hi(Q)pa(¢*) + 6% (CC*))f(C—)f(C;f)dcgdg]
filk)da, (8.76)

wobei ¢ == (Ci.G), ¢* = (G:¢) und pii(-), sowie 0% und r*(¢.¢*) aus

Theorem B.1 entnommen werden.
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Bild 8.4: Wahre Haupteffekte und die jeweiligen Bayes’schen Inferenzen.

Bild 8.4 zeigt die wahren Werte der SensitivitatsmaBe ¢;1(¢1) und e2(¢2),
die sich ergeben wenn h(¢) statt H(¢) in Gl (8.71)-(8.73) eingesetzt wird,
sowie die entsprechende Bayes’sche Inferenz E*{C1({1)} und E*{C2((2)}.
Tabelle 8.3 zeigt die wahren Haupteffektindizes S; und die geschéitzten
Haupteffektindizes S;. Es ist ersichtlich, dass der Beitrag der Zufallsva-
riable Z; - unabhéngig von Z; - etwa 35% der Gesamtvarianz Var{H(¢)}
erklart, wohingegen die Zufallsvariable Zs keinen Einfluss unabhéngig von
Z1 auf die Varianz hat. Die inferierten Werte iiberschatzen dabei die wah-
ren Haupteffektindizes. Diese Differenz ist abhingig von der Wahl der
Design-Punkte Xp.

Tabelle 8.3: Die wahren und die geschétzten Haupteffektindizes.

| 100S; 1005,
Zy | 35.1735 39.3996
Zy 0 1.1861
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8.4 Anwendungsbeispiel: Sensitivitatsanalyse
und Performancepriadiktion in einem
Streckenensemble

Der Einsatz Bayes’scher Methoden wird im Folgenden anhand eines Com-
puterexperiments dargestellt, welches die Performance einer Regelmetho-
de fiir ein Streckenensemble analysiert. In Abschnitt 8.4.1 wird die Per-
formance einer Regelmethode innerhalb eines Streckenensembles an meh-
reren Strecken (Design-Punkten) berechnet und im Ubrigen interpoliert.
Das Beispiel zeigt, wie man die Performance eines nicht-simulierten Regel-
kreises analysieren kann. In Abschnitt 8.4.2 wird eine Sensitivititsanalyse
fiir die gebietsabhingige Konvergenzrate innerhalb eines Streckenensem-
bles durchgefiihrt. Das Beispiel zeigt welchen Einflul der Reglerparameter
v € [,1] und der Ensembleparameter 6 € [—1,1] auf die pradizierte Kon-
vergenzrate sowie auf deren Varianz haben. Schliefllich wird in Abschnitt
8.4.3 ein empirischer Vergleich zwischen mehreren Préadiktoren anhand von
93 Computerexperimenten gezeigt, welche jeweils die Pradiktion fiir eine
nicht-simulierte Strecke als Ziel haben. Dabei wird mit Hilfe von Boxplots
gezeigt, wie die Pradiktionsgenauigkeit durch verschiedene pradiktive Ver-
teilungen, sowie Korrelationsfunktionen und empirische Schiatzmethoden
der Korrelationsparameter variiert.

8.4.1 Pridiktion fiir eine nicht-simulierte Regelstrecke

Eine Pradiktion der Performance fiir eine nicht-simulierte Regelstrecke aus
einem Regelstreckenensemble kann mit folgenden Schritten durchgefiihrt
werden:

Schritt 1: Wahl eines Streckenensembles Wihle fiir eine bestimmte Ord-
nung n > 1 die Matrizen A; € R"*" ¢ =0,...,a und die Vektoren

b; e R", i =0,...,b, welche ein Streckenensemble der Form
a b
x=> ("Aix+ ) (biru, xR (€ [-1]] (8.77)
i=0 i=0
definieren.

Schritt 2: Uberpriifung der Stabilisierbarkeit des gesamten Ensembles
Uberpriife wie im Abschnitt 6 dargestellt, ob fiir jede mégliche Stre-
cke aus diesem Streckenensemble ein stabilisierendes Regelgesetz
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existiert. Falls dies nicht der Fall ist, &ndere das Intervall § € [—1,1]
oder gehe zu Schritt 1 und wéhle ein anderes Streckenensemble.

Schritt 3: Generierung von Trainingsdaten Wihle eine Menge von N
Design-Punkten Xp = {(1,...,{nv} € C = [-1,1] und entwerfe
fiir jeden Design-Punkt (., mit k = 1,...,N, den jeweiligen zeitopti-
malen und den konvergenzoptimalen Regler. Berechne anschlieflend
fiir den geschlossenen Regelkreis die Performance-Mafle J;, (¢x) (rela-
tive Einschwingzeit) und Jj(Cx) (Fehlklassifikationsanteil durch die
konvergenzoptimale Schaltfunktion) aus Gl. (7.14) bzw. GlL. (7.13).
Diese bilden die Trainingsdaten fiir die jeweiligen Pradiktionen, d.h.
n:={J«((1),...,J«({n)}, wobei das Symbol * stellvertretend fiir t,
oder H verwendet wird.

Schritt 4: Bildung der pradiktiven A-posteriori-Verteilung
Bilde eine oder mehrere priadiktive Verteilungen mit Hilfe des Theo-
rems B.1 (Anhang) unter Verwendung der im Schritt 3 ausgewéhlten
Design-Punkte Xp.

Schritt 5: Berechnung der Pradiktionsgenauigkeit Berechne fiir M dqui-
distante Testpunkte aus dem Intervall ( € [—1,1] die wahren Per-
formance-Mafle J und Jy, sowie die Pradiktionen J und jz;. Darauf
basierend, berechne die Pradiktionsgenauigkeit, d.h. den empirischen
quadratischen Mittelwert des Pradiktionsfehlers (ERMSPE) und die
erzielte Deckung des wahren Wertes durch das 1 — o Konfidenzin-
tervall des Pradiktors (AC), vgl. Abschnitt 8.2.4.

Bemerkung 8.8 (Zu Schritt 1). In diesem Beispiel werden die analysier-
ten Streckenensembles zufillig generiert. Die Elemente der Matrizen A;,

mit ¢ = 1,...,a und der Vektoren b;, mit ¢ = 1,...,b, sind dabei stan-
dard normalverteilte Zufallszahlen. Die Koeffizienten der hier analysierten
Streckenensembles sind im Anhang C.2 zu finden. A

Die Berechnung der Performance-Indizes Ji, (¢) und Jj(¢) erfolgt nume-
risch. Die relative Finschwingzeit wird in Gl. (7.14) definiert, wobei die
jeweiligen FEinschwingzeiten nach einer Simulation in der Toolumgebung
Matlab/Simulink gemessen werden. Dabei werden jeweils 10 Anfangsaus-
lenkungen simuliert, welche dquidistant auf dem oberen Rand® des maxi-
malen Einzugsgebiets (in diesem Fall eine Ellipse) verteilt sind. Die Simula-
tion wurde jeweils mit einer konstanten Schrittweite von 0.001 ausgefiihrt.

9) Der obere Rand ist durch den Rand oberhalb einer der Halbachsen definiert.
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Aufgrund der Reglerstruktur entsteht bei den beiden Reglern ein Rattern
um die Ruhelage, welches sich auf die Bemessung der Finschwingzeit aus-
wirkt. Dariiber hinaus stellt die Finschwingzeit den Zeitpunkt dar, wann
die jeweilige Zustandsnorm 5% der Norm der Anfangsauslenkung (zum
letzten Mal) erreicht. So ist es moglich, dass - auch aufgrund numeri-
scher Ungenauigkeiten - der konvergenzoptimale Regler schneller eine kiir-
zere FEinschwingzeit als der (angendherte) zeitoptimale Regler hat. Bild
8.5 zeigt ein solches Beispiel. Dabei wird jeweils die zeitliche Anderung
der Zustandsnorm auf einer logarithmischen Skala, sowie der Grenzwert
0.05||x(0)|| gezeigt. Es ist ersichtlich, dass in diesem Fall die Einschwingzeit
des konvergenzoptimalen Reglers kiirzer als die des zeitoptimalen Reglers
ist.

Bild 8.6 zeigt ein Beispiel des Fehlklassifikationsanteils durch die kon-
vergenzoptimale Schaltfunktion fiir eine andere Strecke aus dem obigen
Streckenensemble mit # = 1. Dieser entspricht der Fliache zwischen den
beiden Schaltfunktionen, wo die Regelgesetze unterschiedliche Vorzeichen
aufweisen. Die Berechnung der zeitoptimalen Schaltfunktion fiir lineare
Strecken mit komplex konjugierten Eigenwerten kann u.a. in 7] gefunden
werden.

Tabelle 8.4 zeigt die jeweiligen Parameter und die erzielte Préadiktions-
genauigkeit anhand des empirischen quadratischen Mittelwertes des Préa-
diktionsfehlers und der erzielten Deckung. Beide Mafle wurden anhand von
jeweils M = 25 Test-Punkten berechnet.

Tabelle 8.4: Pradiktionsparameter fiir das Streckenensemble im Fall der
Gaufy’schen Korrelationsfunktion und der nicht-informativen pradiktiven
Verteilung aus Satz B.1.

| 0w o ” |ERMSPE  AC
Jta(g)‘0.0836 9 0.05 2.2622‘ 0.0199  0.9200

JR(C) 102360 9 0.05 2.2622 0.0296 0.8000

Bild 8.7 zeigt die Pradiktion von Ji_ (¢) und Jj(¢) fiir das gesamte Stre-
ckenensemble. Die Pradiktion an den Design-Punkten entspricht, wie er-
wartet, der tatséchlichen Performance der Regelmethode. Fiir die Pradik-
tion wurde die GauB3’sche Korrelationsfunktion und die nicht-informative
A-posteriori-Verteilung verwendet. Es ist ersichtlich, dass die Pradiktion
von Ji, (¢) eine hohere Genauigkeit aufweist. Dies ist jedoch nicht im-
mer der Fall. Eine empirische Analyse verschiedener Pradiktoren wird im
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Bild 8.5: Vergleich der Finschwingzeiten im Fall einer Strecke zweiter
Ordnung mit negativ reellen Eigenwerten. Gezeigt werden die zeitlichen
Anderungen der jeweiligen Zustandsnormen fiir den konvergenzoptimalen
Regler (bezeichnet mit konv, -) und den zeitoptimalen Regler (bezeichnet
mit opt, - -), sowie die Grenze 0.05|x(0)] (-.)-

letzten Abschnitt anhand von mehreren Streckenensembles fiir die beiden
Performance-Mafle durchgefiihrt.

Mit Hilfe der Pradiktion kann auch die erwartete Performance einer
nicht-simulierten Regelstrecke untersucht werden. Diese entspricht dem Er-
wartungswert der A-posteriori-Wahrscheinlichkeitsdichte des Performance-
Mafes. Das Konfidenzintervall der Pradiktion kann ebenfalls angegeben
werden. Fiir ¢* = 0.5833 ergibt sich beispielsweise die Strecke

—1.0477 — 0.1971] < { 0.5515] (8.78)

2.5108 — 1.0402 —1.1724| "

deren Systemmatrix A die Eigenwerte A(A) = —1.0439+0.7035; aufweist.
Die Pradiktion beider Performance-Indizes kann aus Tabelle 8.5 entnom-
men werden. Geméafl des angenommenen Modells betréigt die Wahrschein-
lichkeit, dass der wahre Wert des Performance-Mafles auflerhalb des in

Tabelle 8.5 angegebenen Intervalls py(C*) £ m;(ﬁ*,z[?)tﬁf liegt, o = 0.05.
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Bild 8.6: Fehlklassifikationsanteil durch die konvergenzoptimale Schalt-
funktion im Fall einer Strecke zweiter Ordnung mit konjugiert komplexen
Eigenwerten. Gezeigt werden der Rand des Einzugsgebiets der Ruhela-
ge (-.), die zeitoptimale Schaltfunktion (- -) und die konvergenzoptimale
Schaltfunktion (-). Die Fldche zwischen den beiden Funktionen stellt den
Fehlklassifikationsanteil dar. Der normierte Wert ist Jij((r) = 0.1018.

Tabelle 8.5: Wahre und pridizierte Werte der Performance-Mafle fiir die
Strecke aus Gl. (8.78).

¢* = 0.5833 | i, J
7 (wahrer Wert) 1.0028 0.2112
f) = pa(C*) (Pradiktion) 0.9905 0.2912
o4 (C* ) 0.0256 0.0476

114 (C*) £ og(C D)% | [0.9327,1.0483]  [0.1835, 0.3988]

Dieses Intervall hingt sowohl von den gewéhlten Design-Punkten, als auch
von der Wahl der Korrelationsfunktion und ihrer Parameterschéitzung ab.

8.4.2 Sensitivitidtsanalyse

Als Anwendungsbeispiel fiir die Sensitivitdtsanalyse wird die Prédiktion
der Konvergenzrate fiir ein Streckenensemble gewihlt. Diese héngt von
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Bild 8.7: Pradiktion von J;_(¢) (-, oben) und J§(¢) (-, unten), sowie je-
weils das Konfidenzintervall (-.), die wahren Funktionswerte (o) und die
Trainingsdaten (¢).

zwei Parametern ab, dem Parameter des Streckenensembles (; := 6 €
[—1,1] und dem Selektionsparameter (3 := v € [g,1].

Bild 8.8 zeigt erstens die Prédiktion der gebietsabhéngigen Konvergenz-
rate fiir das gleiche Streckenensemble aus dem vorherigen Abschnitt. Dafiir
wurden N = 10 Design-Punkte verwendet, welche ebenfalls im Bild darge-
stellt sind. Die Untersuchung der Préadiktionsgenauigkeit, welche anhand
der Mafle aus Abschnitt 8.2.4 quantifiziert wird, ergibt einen empirischen
quadratischen Mittelwert des Pradiktionsfehlers von ERMSPE ~ 0.28
und einen Anteil der erzielten Deckung AC =~ 0.23 bei einer Anzahl von
M = 25 x 25 Test-Punkten. Es ist ersichtlich, dass die Pradiktion an den
Design-Punkten der tatsdchlichen Konvergenzrate entspricht. Dies ist an-
hand der im Bild dargestellten Niveaulinien zu sehen, die unterschiedlichen
Fléchen (der wahren bzw. der interpolierten Fliache) unterliegen, jedoch die
gleichen Niveaus zeigen.
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Bild 8.9 zeigt die Haupteffekte sowie die jeweilige Bayes’sche Inferenz,
d.h. die A-posteriori-Erwartungswerte E*{C1(¢1)} und E*{C3((2)} und
Bild 8.10 zeigt die Interaktionen zwischen den beiden Eingangsvariablen.
Dabei entspricht ¢; dem Parameter 6 € [—1,1] des Streckenensembles und
(2 dem Reglerparameter v € [¢,1]. Es ist ersichtlich, dass die Bayes’sche In-
ferenz sehr nah an dem wahren Verlauf ist. Diese SensitivitdtsmafBe zeigen
den Einfluss des Eingangs ¢; auf die Variation der gebietsabhéngigen Kon-
vergenzrate. Da im Rahmen der Sensitivitdtsanalyse die Eingangswerte als
Realisierungen unabhéngiger Zufallsvariablen betrachtet werden, hingen
die Sensitivitdtsmafle auch von der Wahl der Verteilung der jeweiligen Ein-
gangsgrofe ab. Fir den ersten Eingang (der Parameter 6 € [—1,1]) wurde
die Standardnormalverteilung, d.h. Z1((1) ~ N1(0,1), und fiir den zweiten
(der Reglerparameter v € [e,1]) die Exponentialverteilung gewéhlt, d.h.
Z2 ~ EXp(l)

Aus Bild 8.9 (links) ist beispielsweise ersichtlich, dass mit steigendem

=: (1 der Einfluss dieses Parameters auf die Konvergenzrate unabhén-
gig von v =: (5 sinkt. Der Einfluss der Interaktion zwischen den beiden
Parametern, E*{C12(¢)}, sinkt mit steigendem 6 jedoch nicht fir alle v.
Bild 8.4 zeigt z.B., dass der Einfluss der Interaktion zwischen 6 und v auf
die Konvergenzrate mit steigendem 6 fiir v = 1 sinkt, jedoch fir v = ¢

Wahre Funktion Interpolation (AC=0.2288, ERMSP=0.27918)
120 T 120 Toe
100, - 0\ 100~ S
~—~
o 8o A 80 \
~—~ 2 ~— £
£ 60 3 X 60
L] L]
40 ! 40

Bild 8.8: Pridiktion H und Menge der Design-Punkte n fiir die gebiets-
abhingige Konvergenzrate innerhalb eines Streckenensembles.
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Bild 8.9: Bayes’sche Inferenz fiir die Sensitivitdtsmafe.

steigt. Tabelle 8.6 verdeutlicht dies. Diese Bilder stellen also ein niitzliches

Tabelle 8.6: Ausgangszerlegung in Haupteffekte und Interaktionen fiir
die Ecken des untersuchten Parameterbereichs.

0 v | E{E{H()}} | E{Ci(&1)} E*{Ca(¢)} E*{Ci2(¢)}

1 15.1027 113.4647
1 ° 18,8950 4.1281 -18.2647 -4.6448

-T : 15.1027 55 6201 16111
1 4.1281 ' 11.3320

Instrument dar, um die verschiedenen Komponenten des Modellausgangs,
d.h. die Haupteffekte und Interaktionen, zu visualisieren, und damit den
Einflu} jedes Eingangs zu analysieren.

Schlieflich zeigt Tabelle 8.7 das Ausmafl der Varianzreduktion des Aus-
gangs durch die Fixierung des jeweiligen Eingangs Z;. Es ist ersichtlich,
dass die einzelnen Eingédnge nicht die gesamte Varianz des Modells erkla-
ren kénnen. Die restliche Varianz von etwa 26.1% wird durch Interaktionen
zwischen den beiden Eingéngen erklart.

Diese Beispiele verdeutlichen die Anwendbarkeit der Computerexperi-
mente unter Verwendung Bayes’scher Interpolationsmethoden fiir die Per-
formance-Analyse von Regelungsmethoden. Dabei ist es leicht ersichtlich,
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Bild 8.10: A-posteriori-Erwartungswert der Interaktion zwischen den
beiden Eingéingen, E*{C12(¢)}.

welche Vorteile diese Analyse-Methode mit sich bringt. Die Performan-
ce einer Regelungsmethode fiir ein gesamtes Streckenensemble kann an
einzelnen Strecken iiberpriift und im Ubrigen interpoliert werden. Mittels
Bayes’scher Interpolationsmethoden ist es auch moglich, jeweils Konfidenz-
intervalle der Préadiktionen anzugeben. Wie das Beispiel der Sensitivitéts-
analyse gezeigt hat, ist es dariiber hinaus moéglich, den Einfluss eines oder
mehrerer Parameter der Strecke und/oder des Reglers auf die Performance
der Regelmethode zu veranschaulichen und/oder zu quantifizieren.

8.4.3 Empirischer Vergleich von Pradiktoren

Um den Unterschied zwischen verschiedenen pradiktiven Verteilungen, so-
wie Korrelationsfunktionen und empirischen Schéitzmethoden der Korre-
lationsparameter zu zeigen, werden mehrere Pridiktionen anhand von 93

Tabelle 8.7: Die wahren und die geschétzten Haupteffektindizes.

100S; 1008,
7, | 19.8235 19.8559
7y | 54.1266 54.1273
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Streckenensembles durchgefiihrt. Bei jedem Ensemble wird die Pradiktion
nicht nur fir eine Strecke durchgefithrt, wie im Abschnitt 8.4.1 gezeigt
wurde, sondern fiir 25 Strecken (Test-Strecken), welche dariiber hinaus
simuliert werden, um die Genauigkeit der Pradiktion quantifizieren und
vergleichen zu kénnen.

Jedes Ensemble ist wie in Gl. (8.77) durch ein parametrisches LTI-
System beschrieben. Als Elemente der jeweiligen Systemmatrizen A; und
b; (aus Gl. (8.77)) werden standard normalverteilte Zufallszahlen gewéhlt.
Fir jedes Ensemble wird die Priadiktion der Regelmethode, wie im Ab-
schnitt 8.4.1 gezeigt, anhand von 25 Test-Strecken durchgefiihrt. Fiir die
Bestimmung der pradiktiven Verteilungen werden jeweils 10 Design-Stre-
cken verwendet. Diese und die 25 Test-Strecken werden dariiber hinaus
simuliert. Fiir jedes Ensemble ergeben sich 35 Werte fiir die relative Ein-
schwingzeit und den Fehlklassifikationsanteil. Das Minimum, das Maxi-
mum, der Mittelwert, der Median, sowie die Standardabweichung der 35
generierten Beobachtungen werden gebildet und als erste allgemeine Sta-
tistik im Folgenden gezeigt. Da dies fiir 93 Ensembles geschieht, werden
Boxplots zur Darstellung der Resultate verwendet.

Bild 8.11 zeigt mehrere Boxplots!?) iiber die empirischen Verteilungen
der untersuchten statistischen MaBle. Der Mittelwert der relativen Ein-
schwingzeit iiber alle Ensembles hinweg liegt beispielsweise bei etwa 1.72,
der Median bei 1.66. Beide Kennzahlen sind im Bild 8.11 (links) zu se-
hen. Diese sind durch die Kreise innerhalb der jeweiligen Boxplots ge-
kennzeichnet. Da insgesamt 3255 Strecken untersucht wurden, stellt eine
mittlere relative Finschwingzeit von 1.72 ein sehr gutes Ergebnis dar. Der
Fehlklassifikationsanteil zeigt zwar eine gute Klassifikation durch die kon-
vergenzoptimale Schaltfunktion, jedoch keine grofie Korrelation mit der
relativen Einschwingzeit.

Fiir beide Performance-Mafle, die relative Einschwingzeit J;, und den
Fehlklassifikationsanteil durch die konvergenzoptimale Schaltfunktion Jf,

10)Ein Boxplot ist die grafische Darstellung einer Verteilung. Dieser zeigt in welchem
Bereich die Daten liegen (die senkrechten Linien stellen das Minimum und Maxi-
mum aus der jeweiligen Datenmenge dar), in welchem Bereich sich die mittleren
50% der Daten befinden (der Block zeigt wo sich die Daten zwischen dem unteren
Quartil, d.h. 25% der Datenwerte, und dem oberen Quartil, d.h. 75% der Datenwer-
te, befinden) und den Median (der Kreis zeigt den Wert, der groer oder gleich 50%
aller Datenwerte ist). An der Lage des Kreises innerhalb des Blocks erkennt man
beispielsweise, ob die Verteilung symmetrisch oder schief ist. Die roten Plus-Zeichen
in der Grafik zeigen Datenpunkte, welche als Ausreifler angenommen wurden und
in der Berechnung der Quartile und der Extremwerte nicht beriicksichtigt wurden.
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Bild 8.11: Boxplot-Statistiken fiir die untersuchten Streckenensembles.

werden jeweils in einem Trellisplot'?) alle vier pridiktiven Verteilungen
((1) — (4)) aus Satz B.1 (Anhang), vier Korrelationsfunktionen (die li-
neare, die exponentiale, sowie die Potenz-Exponentiale mit p = 1 und
p = 2 (GauBy’sche Korrelationsfunktion)), sowie die empirischen Schét-
zer (die (begrenzte) Maximum Likelihood Methode und die Kreuzvalidie-
rungsmethode) der Parameter der jeweiligen Korrelationsfunktionen ver-
glichen. Die Bilder 8.12 und 8.13, sowie 8.14 und 8.15 zeigen jeweils die
erreichte Deckung des wahren Funktionswertes durch das 1 — a Konfidenz-
intervall (mit a = 0.05) des Pradiktors und den empirischen quadratischen
Mittelwert des Pradiktionsfehlers im Fall von 14 Ensembles, die erfolg-
reich analysiert werden konnten.'? Es ist ersichtlich, dass die GauBsche
Korrelationsfunktion generell eine schlechtere Pradiktionsgenauigkeit auf-

) Der Trellisplot zeigt Boxplots iiber die Verteilung von Beobachtungen (hier die er-
zielte Deckung und der mittlere quadratische Pradiktionsfehler bei einem Ensemble)
im Falle von verschiedenen Faktoren. Die Faktoren sind hier die vier analysierten
Korrelationsfunktionen, die vier A-posteriori-Wahrscheinlichkeitsdichten, sowie drei
empirische Schiatzmethoden fiir die Parameter der Korrelationsfunktionen.

12)Die empirische Schitzung der Parameter der Korrelationsfunktionen wurde nume-
risch durchgefiihrt. Bei vielen Ensembles war die numerische Optimierung nicht
erfolgreich. Fir diese 14 aus 93 untersuchten Ensembles wurden alle Korrelations-
funktionen fir beide Performance-Mafle erfolgreich geschétzt.
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Bild 8.12: Vergleich der erzielten Deckung (AC) im Fall der Pradikti-
on der relativen Einschwingzeit, vgl. Abschnitt 8.2.4. Dabei wurden vier
Korrelationsfunktionen (lineare, exponentiale, sowie Potenz-Exponential-
Familie der Korrelationsfunktionen mit p = 1 und p = 2), die vier A-
posteriori-Wahrscheinlichkeitsdichten aus Satz B.1, sowie drei empirische
Methoden (MLE, RMLE, XVal) fiir die Schitzung der Parameter der Kor-
relationsfunktionen verglichen.

weist. Dariiber hinaus erzielt die Kreuzvalidierungsmethode die niedrigsten
Deckungsraten und zwischen den A-posteriori-Wahrscheinlichkeitsdichten
gibt es kaum Unterschiede.

Zusammenfassend lésst sich feststellen, dass eine Performance-Analyse
in nichtlinearen Regelkreisen unter Verwendung von Computerexperimen-
ten sehr vorteilhaft ist. Dadurch ist es moglich, die Performance einer Re-
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Bild 8.13: Vergleich des mittleren quadratischen Prédiktionsfehlers
(ERMSPE) im Fall der Pradiktion der relativen Einschwingzeit, vgl. Ab-
schnitt 8.2.4. Dabei wurden vier Korrelationsfunktionen (lineare, exponen-
tiale, sowie Potenz-Exponential-Familie der Korrelationsfunktionen mit
p =1 und p = 2), die vier A-posteriori-Wahrscheinlichkeitsdichten aus
Satz B.1, sowie drei empirische Methoden (MLE, RMLE, XVal) fiir die
Schétzung der Parameter der Korrelationsfunktionen verglichen.

gelungsmethode fiir ein gesamtes Regelstreckenensemble zu analysieren.
Die erwartete Performance fiir das Streckenensemble ldsst sich dabei in
funktionaler Form angeben. Somit ist es moglich, eine Priadiktion der Per-
formance fiir eine Regelstrecke aus einem vorgegebenem Ensemble ohne
Reglerentwurf und Simulation zu machen. Dariiber hinaus ist es moglich,
die Sensitivitit der Performance einer Regelungsmethode infolge der Varia-
tion eines Streckenparameters zu quantifizieren. Ein empirischer Vergleich
von Prédiktoren im Falle von 93 Streckenensembles zeigt schliefSlich, dass
diese Methode zur Performance-Analyse eine gute Pradiktionsgenauigkeit
aufweist und sich als vielversprechend fiir weitere Untersuchungen zeigt.
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Bild 8.14: Vergleich der erzielten Deckung (AC) im Fall der Pradiktion
des Fehlklassifikationsanteils durch die konvergenzoptimale Schaltfunkti-
on, vgl. Abschnitt 8.2.4. Dabei wurden vier Korrelationsfunktionen (linea-
re, exponentiale, sowie Potenz-Exponential-Familie der Korrelationsfunk-
tionen mit p = 1 und p = 2), die vier A-posteriori-Wahrscheinlichkeitsdich-
ten aus Satz B.1, sowie drei empirische Methoden (MLE, RMLE, XVal)
flir die Schitzung der Parameter der Korrelationsfunktionen verglichen.
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Bild 8.15: Vergleich des mittleren quadratischen Pradiktionsfehlers
(ERMSPE) im Fall des Fehlklassifikationsanteils durch die konvergenz-
optimale Schaltfunktion, vgl. Abschnitt 8.2.4. Dabei wurden vier Korrela-
tionsfunktionen (lineare, exponentiale, sowie Potenz-Exponential-Familie
der Korrelationsfunktionen mit p = 1 und p = 2), die vier A-posteriori-
Wahrscheinlichkeitsdichten aus Satz B.1, sowie drei empirische Methoden
(MLE, RMLE, XVal) fiir die Schdtzung der Parameter der Korrelations-
funktionen verglichen.
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9 Zusammenfassung und Ausblick

Diese Arbeit stellt mehrere Weiterentwicklungen weicher strukturvaria-
bler Regelungen (WSVR) mittels impliziter Ljapunov-Funktionen (iLF)
vor, deren Hauptaugenmerk die Nicht-Konservativitiat der Regelgesetze
bildet. Dabei werden Entwurfsbedingungen vorgestellt, welche nicht nur
hinreichend fiir die Stabilisierung einer linearen Strecke mit Stellgréfien-
beschrinkung, sondern auch notwendig sind. Aus der Notwendigkeit der
Bedingungen folgt, dass im Fall deren Nichterfiillung iberhaupt kein Reg-
ler dieser Klasse die jeweilige Strecke stabilisieren kann. Dieser Vorteil
der Entwurfsbedingungen ist dariiber hinaus niitzlich, wenn ein beliebi-
ger Startregler fiir eine Optimierung gesucht wird. So wird beispielsweise
gezeigt, dass eine daran anschliefende Optimierung der Konvergenzrate
fast zeitoptimale Regelgesetze erzielt. Da der Entwurf dieser Regelgesetze
mittels dquivalenter linearer Matrixungleichungen (LMIs) erfolgt, welche
numerisch gelost werden, ist der Entwurf fiir hoherdimensionale Systeme
unproblematisch. Anders ist es z.B. im Fall zeitoptimaler Regler, bei de-
nen fiir hoherdimensionale Systeme keine exakte Losung mehr angegeben
werden kann.

Die Weiterentwicklungen der WSVR, welche in dieser Arbeit vorgestellt
werden, sind die nicht-konservative klassische WSVR mittels iLF und
die nicht-konservative invers-polynomiale WSVR. Dariiber hinaus
wird bei jedem dieser Regler gezeigt, dass die Optimierung der Konvergenz-
rate Zweipunktregler (auch Bang-Bang- Regler genannt) mit einer parame-
terabhéngigen Schaltfunktion erzielt. Diese unterscheiden sich daher von
dem zeitoptimalen Regler allein durch die Schaltfunktion. Da in der Pra-
xis die Diskontinuitat des Regelgesetzes technische Probleme verursachen
kann, wird in dieser Arbeit eine stetige Approximation des konver-
genzoptimalen Regelgesetzes vorgestellt, die auf Kosten einer leichten
Verschlechterung der Konvergenzrate einen stetigen Stellgréflenverlauf er-
zielt. Zwei Beispiele, ein Fusionsreaktor und ein U-Boot, veranschaulichen
die Vorteile der vorgestellten Regelungsmethoden.

Der zweite Teil der Arbeit widmet sich der Performance-Analyse in
nichtlinearen Regelkreisen. Dabei wird erstmal eine Klassifizierung von
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Performance-Maflen fiir nichtlineare Regelkreise vorgestellt. Eine beson-
dere Beriicksichtigung erfihrt die Konvergenzrate eines nichtlinearen
Systems, flir welche ein theoretischer Rahmen vorgestellt wird und im Fall
der vorher entwickelten Regelungsmethoden analysiert wird. Es wird da-
bei gezeigt, dass im Unterschied zu linearen Regelkreisen, die nichtlinearen
Regelkreise eine variable Konvergenzrate aufweisen, die von dem Abstand
zur Ruhelage abhéingig ist. Daher wird erstens der Begriff der gebietsab-
hingigen Konvergenzrate eingefiihrt und zweitens gezeigt, wie diese zur
Angabe einer oberen Grenze der Zustandsnorm genutzt werden kann.

Der letzte Beitrag der Arbeit stellt zum ersten Mal die Anwendung der
in der Praxis weit verbreiteten Theorie iber das Design von Computer-
experimenten auf die Performance-Analyse in nichtlinearen Regelkreisen
vor. Die Computerexperimente bilden neben physikalischen Experimenten
eine Methode zur Generierung von Beobachtungen iiber die Eigenschaf-
ten eines Versuchsobjekts, in diesem Fall eines nichtlinearen Regelkreises,
infolge der Variation eines oder mehrerer Parameter. Der Zusammenhang
zwischen den Eingangs- und Ausgangsvariablen wird in Form eines Rech-
nercodes basierend auf einem mathematischen Modell beschrieben, dessen
Komplexitdt im Allgemeinen sehr hoch ist. Die Parameter stellen in dieser
Arbeit hauptsichlich Streckenparameter dar, welche zwar aus einem vor-
gegebenen Intervall beliebig gewahlt werden konnen, aber wéahrend eines
Ausregelvorgangs konstant bleiben. Die Idee dieser freien Parameteraus-
wahl ist, dass sie Streckenensembles erzeugt, welche somit eine unendli-
che Menge an Strecken beinhalten. Ein Computerexperiment enthélt dabei
den Entwurf und die Performance-Analyse an einer endlichen Anzahl von
Design-Strecken aus diesem Streckenensemble. Mit Hilfe der gesammelten
Trainingsdaten wird die Performance des gesamten Streckenensembles mit-
tels Bayes’scher Interpolationsmethoden priadiziert. Wesentlich bei diesem
Ansatz der Pradiktion der Performance einer Regelungsmethode ist
die Angabe von Konfidenzintervallen des besten linearen erwartungstreu-
en Préadiktors (BLUP), welche einerseits von der Wahl der pradiktiven A-
posteriori-Verteilung und andererseits von der Wahl der Design-Strecken
abhéngig ist.

Fiir ein gesamtes Streckenensemble, welches eine unendliche Anzahl an
Strecken enthélt, werden erstmals (ebenfalls nicht-konservative) Bedingun-
gen vorgestellt, welche in Aquivalente LMIs transformiert werden kon-
nen und die Stabilisierbarkeit des gesamten Ensembles mittels klassischer
oder invers-polynomialer WSVRs (je nach Untersuchung) sicherstellen.
Anschliefend wird mit Hilfe Bayes’scher Interpolationsmethoden die Per-
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formance einer Regelmethode fiir das gesamte Streckenensemble prédiziert.
So wird beispielsweise gezeigt, wie man fiir eine Regelstrecke aus diesem
Ensemble die Performance einer Regelmethode vorhersagen kann, ohne
dabei einen Regler entwerfen zu miissen.

Die Pradiktionsgenauigkeit wird dariiber hinaus anhand von 93 Stre-
ckenensembles empirisch getestet. Die Ergebnisse dieser empirischen Un-
tersuchung zeigen die Variation der Préadiktionsgenauigkeit bei einer un-
terschiedlichen Wahl pradiktiver Distributionen, Korrelationsfunktionen,
sowie Schiatzmethoden der Parameter der Korrelationsfunktionen. Es wird
gezeigt, dass die Pradiktionsgenauigkeit, welche durch den mittleren qua-
dratischen Pradiktionsfehler gemessen wird, bis auf wenige Ausreifler hoch
ist. Auch die erzielte Deckung des wahren Funktionswertes durch das 1 —«
Konfidenzintervall des Pradiktors wird untersucht. Die empirischen Ergeb-
nisse zeigen auch hier eine hohe Genauigkeit. Dartiber hinaus wird anhand
der gesammelten Daten aus den 93 Streckenensembles iiber die Perfor-
mance der Regelmethode gezeigt, dass die invers-polynomiale WSVR eine
durchschnittliche relative Einschwingzeit von etwa 1.72 aufweist, und dies
bei etwa 3255 direkt untersuchten Regelstrecken. Die relative Finschwing-
zeit mifit den Unterschied zwischen den Einschwingzeiten des zeitoptima-
len Reglers und der invers-polynomialer WSVR. Eine relative Finschwing-
zeit von eins entspricht einer gleich langen Einschwingzeit der beiden Reg-
ler.

Als eine zweite Anwendung der Theorie iiber das Design von Compu-
terexperimenten wird die Sensitivitdtsanalyse untersucht. Anhand ver-
schiedener SensitivitdtsmaBe wird die (unbekannte) Sensitivitdt der Per-
formance einer Regelungsmethode infolge der Variation eines Streckenpa-
rameters quantifiziert. Die Bayes’sche Inferenz stellt anschlieffend eine Me-
thode dar, diese unbekannte Funktion zu pradizieren. Die in dieser Arbeit
untersuchten Sensitivitdtsmafe sind die Haupteffekte und Interaktionen
generiert durch eine diesbeziigliche Ausgangszerlegung, sowie die Haupt-
effektindizes und Interaktionenindizes generiert durch eine diesbeziigliche
Zerlegung der Ausgangsvarianzreduktion. Anhand der bereits gesammel-
ten Trainingsdaten erfolgt beispielsweise die Angabe einer prozentualen
Ausgangsvarianzreduktion infolge der Fixierung eines oder mehrerer Pa-
rameters des Streckenensembles.

Ausblickend kann man tiber die neu-entwickelte invers-polynomiale
WSVR feststellen, dass die Methode vielversprechende Ergebnisse rela-
tiv zur zeitoptimalen Regelung aufweist. Da diese nicht nur Strecken in
Steuerungsnormalform stabilisieren kann, ist es moglich, nicht-konserva-
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tive Entwurfsbedingungen fiir lineare Strecken mit mehreren Eingéngen
anzugeben.

Beziiglich der Performance-Analyse mittels Computererperimenten wé-
re auch von Interesse, eine empirische Untersuchung fiir Strecken hoherer
Ordnung durchzufithren. Allerdings erweist sich ein automatischer Ent-
wurf zeitoptimaler Regler fiir solche Systeme zwecks Vergleich mit der
jeweiligen Regelmethode als sehr aufwendig. Dariiber hinaus kann hin-
zugefiigt werden, dass die Performance-Analyse mittels Computerexperi-
menten keinesfalls auf die in dieser Arbeit untersuchten Performance-Ma-
Be oder Regelungsmethoden beschrénkt, sondern beliebig anwendbar ist.
Allerdings ist die Sicherstellung der Existenz von stabilisierenden Regelge-
setzen im gesamten Streckenensemble unerlisslich fiir die Anwendbarkeit
solcher Performance-Pradiktionen. Fiir andere Regelungsmethoden miis-
sen daher vorerst solche Existenzbedingungen entworfen bzw. iiberpriift
werden. Dabei wére auch von Interesse, welche Vorteile ein vollstindiger
Bayes’scher Ansatz gegeniiber dem in dieser Arbeit untersuchten partiellen
Bayes’schen Ansatz mit sich bringt.

Auch eine gleichzeitige Untersuchung mehrerer Ausgdinge, wie z.B. der
relativen Finschwingzeit und des Volumens des jeweiligen Einzugsgebiets
der Ruhelage, kann im Rahmen von Computerexperimenten durchgefiihrt
werden. Da solche Ausginge aber nicht unabhéngig sind, muss die pra-
diktive Verteilung auf den héherdimensionalen Fall iiberfiihrt werden. Sol-
che hoherdimensionalen Verteilungen kénnen beispielsweise mit Hilfe von
(Pair)-Copula Verteilungen aufgebaut werden.

Schliefllich ist beziiglich der Sensitivitdtsanalyse zu erwédhnen, dass diese
Methode sehr gut geeignet ist, um gezielt nach Streckenparametern zu
suchen, welche die Performance einer Regelmethode stérker beeinflussen,
oder, anders ausgedriickt, die Robustheit eines Reglers determinieren.
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A Ausgewihlte Definitionen und
Hilfssatze fiir die Reglersynthese

A.1 Ausgewiahlte Definitionen

A.1.1 Mengen

Definition 5 [Offene Kugel um x € R™ mit Radius ¢ >0, vgl. [8], S. 681]
Die Menge B.(x) = {y € R"|[|x —y| < e}, wobei || - || eine beliebige Norm
auf R™(C™) ist, heifit offene Kugel um x € R™ mit Radius € > 0.

Definition 6 [Innerer Punkt einer Menge, vgl. [8], Def. 10.1.1] Ein Vektor
x € M C R*(C") heifit innerer Punkt der Menge M wenn es eine Zahl
€ > 0 exzistiert, sodass Bs(x) C M.

Definition 7 [Randpunkt einer Menge| Ein Vektor x € R™ heifit Rand-
punkt einer Menge M, wenn er nicht innerer Punkt der Menge ist und
fir alle e > 0, die Menge M N B.(x) nichtleer ist.

Definition 8 [Rand einer Menge| Die Menge aller Randpunkte einer Men-
ge M C R™ heifit der Rand von M und wird mit OM bezeichnet.

Definition 9 [Abgeschlossene Menge| Eine Menge M heifit abgeschlossen
wenn sie thren Rand enthdlt.

Definition 10 [Beschriankte Menge, vgl. [8], S. 682] Eine Menge M C
R™(C™) heifit beschrinkt wenn es eine Zahl § > 0 existiert, sodass ||x —
yll < ¢ fiir alle x,y € M.

Definition 11 [Kompakte Menge, vgl. [8], S. 682] Eine Menge M C
R™(C™) heifit kompakt wenn diese abgeschlossen und beschrankt ist.

Definition 12 [Konvexe Hiille, vgl. [8], S. 98] Fir eine gegebene Menge
M C R™(C"), die konvexe Hille co M beschreibt die kleinste konvexe
Menge, welche die Menge M beinhaltet. Falls die Menge M eine endliche
Anzahl von Elementen aufweist, bildet co M ein konvexes Polytop.
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Definition 13 [Kontraktiv invariantes Gebiet] Ein abgeschlossenes Gebiet
G(Vye) = {xeR"|V(x) <c}

heifit kontraktiv invariant fir ein System %(t) = f(x(t)) mit der Ruhelage
xg = 0, wenn fir eine gegebene Funktion V(x), mit V(x) > 0, Vx €
G(V,e)\{0}, und V(0) = 0, V(x) < 0, Vx € G(V,c)\{0} gilt. Somit ist
V(x) eine Ljapunov-Funktion des Systems und das Gebiet G(V,c) ist Teil
des Finzugsgebietes der Ruhelage xg = 0.

Bei quadratischen Ljapunov-Funktionen ist dieses Gebiet ellipsoidal, d.h.
E(P,c) :=G(Ve) = {x e R"|x' Px < ¢}.

Definition 14 [Kontraktiv invariantes Ellipsoid| Fir eine gegebene Ma-
triv P = 0 heift ein Ellipsoid G(P) := {x € R*x'Px < 1} kon-
traktiv invariant fir ein System x = f(x), wenn fir V(x) = x'Px,
V(x) = 2x'Pf(x) < 0, Vx € G(P)\{0} gilt. In diesem Fall konvergieren
alle Trajektorien, die in G(P) starten, asymptotisch gegen die Ruhelage
xg = 0. Dies ist ein Spezialfall eines kontraktiv invarianten Gebietes aus
Def. 18.

Definition 15 [Verschachtelte Ellipsoide| Zwei Ellipsoide G(v1) und G(v2),
mit 0 < vy < v1 < T, heiffen verschachtelt im Intervall v € (0,U], wenn de-
ren Rainder keine gemeinsamen Punkte haben, d.h. wenn 0G(v1)NOG(ve) =
0, und wenn G(vz) C G(v1) gilt.

A.1.2 Funktionen

Definition 16 [Limes superior einer Funktion, vgl. [62, S. vi]]

limsup f(x) := g% {sup{f(x): x € B(ae),x # a}} e RU{—00} U {+o0}

Tr—a

Definition 17 [Rechte Obere Dini-Derivierte einer stetigen Funktion]

D*f(t) := limsup LEH M = SO
h—0+ h

= inf {Sup{w the (076)}}

e>0
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A.1.3 Matrixdefinitionen und -funktionen

Definition 18 [Ahnliche Matrizen] Die Matrizen A,B € F"*" sind de-
finitionsgemdfl dhnlich wenn 3S € F"*™ (nichtsingulir) existiert, sodass
A =SBS!.

Definition 19 [Kongruente Matrizen| Die Matrizen A, B € F"*™ heiflen
kongruent, wenn 3S € F"*" (nichtsinguldr) existiert, sodass A = SBS*.

Bemerkung A.1 (Vgl [8, Fakt 3.4.5, xi)]). Sind die Matrizen A und B
kongruent, dann ist Matrix A positiv (semi)definit dann und nur dann
wenn B positiv (semi)definit ist. A

Definition 20 [Voll-Rang-Faktorisierung einer Matrix| Gegeben sei eine
Matriz A € R™*", mit Rang(A) = r. Das Matrizentupel (A;, A,), mit
A, € R™*" Rang(A;) = r und A, € R™*"™ Rang(A,) = r heifst eine
Voll-Rang-Faktorisierung der matric A wenn A = AjA,.

Definition 21 [Kronecker Summe| Gegeben seien die Matrizen A € R™*"
und B € R"™*™. Die Kronecker Summe ist die nm x nm Matriz

A9B:=AQI,+1,®B. (A1)

Bemerkung A.2. Eine wichtige Eigenschaft der Matrix A ® A ist, dass
ihre Eigenwerte die n? Zahlen \; + Aj, mit ¢,j = 1,...,n sind, wobei A;,
Aj Eigenwerte der Matrix A darstellen. A

Definition 22 [Spalten-Vektorisierung einer Matrix] Die Spalten- Vekto-
risierung einer Matrix A € R™*"™ ist definiert als
-
vec(A) == [a(,1), > Qam1)s G1,2)> " A(m,2)s Q1) > Umun)]

Bemerkung A.3. Folgende Beziehung gilt?)

vec(AX + XAT) = (A @ A) vee(X), (A.2)
A
Definition 23 [Norm]| Die Funktion |- || : R™ — [0,00) heifst Norm falls

sie folgende Bedingungen erfillt:
i) |Ix[| >0, Vx € F.

ii) ||x||=0<x=0.

DVgl. [49, Abschnitt 2.1 und 2.3].
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ii1) |lax|| = |af]|x|, Vo € F und x € F™.
w) [x+yll < [ +lyll, vx,y € F".

Definition 24 [Induzierte Matrixnorm (fiir quadratische Matrizen|) Die
Funktion || - ||; : F**™ — F, mit

A
|A|l; := max [ Ax]
xeFr ||x]||

heifst (von einer Vektornorm) induzierte Matriznorm. Fir nicht-quadrati-
sche Matrizen siehe [8, Definition 9.4.1]. Dariber hinaus ist die induzierte
Matriznorm ebenfalls eine Norm®, vgl. [8, Theorem 9.4.2].

2)Fiir die Definition der Norm siehe Def. 23.

A.1.4 Parameterabhingige Matrizen und Funktionen

Definition 25 [Matrixwertige Funktion] Eine Funktion A(z) : R? —
R™ " deren Funktionswert analytisch fiir alle z € R? ist, wird in die-
ser Arbeit unter dem Begriff ein- (d = 1) oder mehrdimensionale (d > 1)
matrixwertige Funktion verwendet.

Definition 26 [Charakteristisches Polynom eines matrixwertigen Funk-
tionwertes| Fir einen matrizwertigen Funktionswert A(z) ist das charak-
teristische Polynom durch

p(z,A) :=det(A\L, — A(z)) = an(2)A" + -+ a1(2)A + ao(z), (A.3)

definiert, wobei die Koeffizienten ag(z),...,an(2z) analytische Funktionen
in z sind.

Definition 27 [Polynomiell parameterabhingige quadratische Funktion
(PPDQ-Funktion], [14]) Eine polynomiell parameterabhingige quadrati-
sche Funktion, im Weiteren PPDQ-Funktion genannt, ist jede quadrati-
sche Funktion f : R? x R® — R, f(z,x) = x' M(z)x, sodass

k—1
M(z) := Z 2. -zédMil,wid, M,, ..., € Sym". (A.4)

11,%2,..,4a=0
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Dabei wird die Zahl k — 1 € Z als Grad der PPDQ-Funktion bezeichnet.
Die Funktion kann umgeformt werden zu
M(z) := (Zg@] - ® z[ T ) T My, (zgk] - ® z[l] ®1I,), (A.5)
ng] = [1 2@ e zé“l)_l} WVi=1,....4d,
My € Symkd" .

Die Umformung ist nicht eindeutig.

A.1.5 Andere Funktionen

Lemma A.1 [Adjunkte einer polynomialen Matrix, vgl. [39]].
Gegeben sei die polynomiale Matrix

Nu
A, =) v'A;, N1 <0, NN <Ny, A; € R™ (A.6)
=N,

Die Adjunkte von A, ist

A

Nu— N,
Af = ’UNl(nil) ( Z UiAi-i—N]) (A?)
=0
H .
= pNi(n—1) ZvZNi, N, € R™™", (A.8)
=0
wobed
Nu—Ni
p < (Ny—Np)min{n —1,n—gq}, ¢:=dim l ﬂ N(Aisn)| (A9)
i=1
und das (i,j)-Element der Matriz A2 ist gegeben durch
(AN i) = (=1)7HipMNi(n—1) det(Av[j’i]), (A.10)

wobei A der Kofaktor zum Element Av( der Matrixz A, ist, d.h. die
Matriz, dze entsteht, wenn bei A, die j-te Zezle und i-te Spalte gestrichen
werden.
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Lemma A.2 [Adjunkte einer polynomialen Matrix mit Grad 1,
vgl. [77, Korollar 2.2]]. Seien die Matrizen A,B € R"*" und der
Parameter p € R. Dann gilt

n—2
(A+pB)A = A% 4 1B4 4+ 30 5T (A/BY)A,
=1

wobei das (k,j)-te Element der Matriz T (A/B%)4 ist
(T4 (A/BYA), = (“1FHIT,_, det(Ase/Bly),

A und By, Matrizen nach Elimination der j-ten Reihe und k-ten Spal-
te der Matrizen A bzw. B sind, und T?_, det(Ajk/Bj-k) die Summe der
Determinanten, wobei die i-ten Reihen der Matriz A i, durch diejenigen
der Matriz Bjj, substituiert werden.

Lemma A.3 [Newton-Regel]. Gegeben sei das reelle Polynom m-ter
Ordnung

P(%,0) = A (X)0™ + a1 (X)0™ 1 4+ .+ ap(x)

mitm >0, a;(x) : X >R, X CR", Vi=0,....,m, an(x) #0, Vx € X
und eine Zahl L € R. Wenn an der Stelle 0 = L das Polynom und seine
sdmtlichen partiellen Ableitungen 95p(x,L) < 0, Vi € {0,1,...,m} und
Vx € X sind, dann ist p(x,0) <0,V0 > L, Vx € X.

Beweis. Das Lemma ist sehr dhnlich zur Lemma 4.1 aus [25].
Fiir 6 = L + €, mit € > 0 ist die Entwicklung des Polynoms p(x,0) nach
0 an der Stelle # = L gegeben durch

62 en
px) = p(x.L) + eople.L) + G O3p(x,L) -+ O p(x L),
Da dip(x,L) <0, Vi € {0,1,...,m} gilt und die m-te partielle Ableitung

Of'p(x,L) = m!-an(x) # 0, Vx € X, folgt, dass p(x,0) < 0, V6 > L und
x e X. O
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A.2 Hilfssatze

Lemma A.4. Folgende Aussagen sind equivalent:

i) Die Ruhelage x = 0 des Systems x = Ax, x € R™ ist asymptotisch
stabil.

ii) 3P € P", sodass AP + PAT < 0.

i) VQ € P*, AP € P, welche die Gleichung AP +PAT = —Q erfiillt.
Beweis. iii) = ii) ist offensichtlich. ii) = i) folgt aus der Anwendung der
direkten Methode von Ljapunov,? mit der Ljapunov Funktion V(x) =
x"Px, und unter Beriicksichtigung der Tatsache, dass die Matrizen A und
AT die gleichen Eigenwerte besitzen. i) = iii) Ist die Matrix A asym-
ptotisch stabil, so ist auch A @ A = A ®1I, + I, ® A.?) Folglich sind

alle Eigenwerte der Matrix A @ A negativ und somit die Matrix A @& A
nichtsingulér. Gleichung AP +PAT = —Q ist im Weiteren dquivalent zu®

vec(AP + PA") + vec(Q) = (A @ A) vec(P) + vec(Q) = 0.

Da A® A nichtsingulir ist, ist die Losung P = — vec ™ (ADA) ! vec(Q))
eindeutig. Dariiber hinaus gilt

t t o 1
TA _ k
/OAe dr —/OAZH(TA) dr
k k+1
= [ 3 gt aar

o0

tk k+1 tA
- AR — gtA T
kZ::O(k: 1) ¢

und folglich, weil A Hurwitz und somit auch nichtsingulér ist

t
lim e™dr = lim A" YA —1,) = —A~ L

t—o00 0 t—o00

2Vegl. z.B. [8, Satz 11.7.2].
3)Vgl. [8, Satz 11.18.32].
YVgl. dazu Gl. (A.2).
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Dariiber hinaus gilt fiir die Lésung der Ljapunov-Gleichung AP 4+ PAT =
-Q

P=vec ' (—(A®A) 'vec(Q)) = vec! (/OC e ABA) gt V€C(Q)>
0
= /oo vec™! (et(AEBA) VGC(Q)) dt = /OQ vec ! [(eM ® ™) vec(Q)] dt
0 0
—/O vec™! [VGC (etAQetATﬂ dt :/ etAQetATdt.

0

Da Q > 0 ist, existiert immer eine nichtsingulire Matrix C, sodass Q =
CC'. Somit gilt fiir einen beliebigen Vektor x € R™\{0},

x'Px = / x'eACCTe A x dt = / HCTetATXH2 dt >0,
0 0
d.h. die Matrix P ist positiv definit. Schliellich, weil die Matrix Q sym-
metrisch angenommen wurde und somit,
(AP +PA") — (AP+PAN =AP-PH+(P-PHA"=0
gilt, folgt, dass P — P" = 0, d.h. die Matrix P ist auch symmetrisch. [

Bemerkung A.4 (Analytische Ljapunov-Funktion). Fiir ein gegebenes kon-
stantes 6 € O ist die Losung P(f) € R™*"™ einer parameterabhingigen
Ljapunov-Gleichung (PDLG)

AO)P(0) +P(O)AT(0) + Q(9) = 0, (A.11)
gegeben durch
P(0) = / ADLQ(9)eA Oty
0
analytisch in 6 wenn A(f) und Q() analytisch in € sind. In diesem Fall
kann die Matrix P(#) durch
P(0) =Py + 0P, +0°Py+...= ) 0'P; (A.12)
=0

approximiert werden. Ist dariiber hinaus die Menge © kompakt, so kann
man die Potenzreihe aus Gl. (A.12) ab einem hinreichend groflen aber
endlichen Grad m < oo abbrechen, sodass die Ljapunov-Ungleichung aus
Lemma A .4 ii) erfillt ist, vgl. [78]. A
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Satz A.5 [Satz von Finsler, vgl. [68, Satz 2.3.10]] Es seien die Matri-
zen B € C"™, mit Rang(B) = r < n und BX € C" X" sodass
B'B = 0 und BB+ < 0. und Q € H". Angenommen sei im Weite-
ren, dass (B,,B;) eine Voll-Rang-Faktorisierung® der Matriz B ist und
D= (BTB;“,)*I/ZBZ*. Dann sind folgende Aussagen dquivalent:

i) 3 € R, sodass
uBB* — Q0. (A.13)
ii) Es gilt
R :=B'QB' <o. (A.14)
Wenn GI. (A.13) und (A.14) gelten, dann gilt auch

M > Hmin ‘= )\max |:D(Q - QBL*RilBJ—Q)D*] 0 (A15)

2)Vgl. Def. 20 (Anahng).

Beweis. Die Notwendigkeit der Bedingung (A.14) kann durch eine Kon-
gruenztransformation® der Matrix yBB* — Q = 0 aus Gl (A.13), mit
S = [D B*]T nachgewiesen werden. Es folgt®

* * [ D * 1

S(uBB* - Q)S* = | o, | (4BB* - Q) [D B-]

[ D(uBB* - Q)D*  D(uBB* - Q)B*
B*(uBB* - Q)D* B*(uBB* - Q)B*

[ DBB*D* — DQD* —-DQB*’

_[oeme-pa> pamy]

Dabei gilt

DBB*D* = (B,B})"'/?B; B, B,B! B{B; [(B,B})""/?* =1,.
SN—— S~——

I7‘ I7‘

5)Vgl. Def. 19.
6>Vgl. auch die Bemerkung A.1 beziiglich der positiven Definitheit von zwei kongru-
enten Matrizen.
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Somit ist S(uBB* — Q)S* = 0 dquivalent zu”)

R :=B'QB' <o,
(nL, —DQD") [(S(kBB* — Q)S")
= uI, — DQD* + DQB R 'B+QD* - 0, (A.16)

es folgt also Gl. (A.14).

Bedingung (A.14) ist auch hinreichend, da fiir eine beliebige negativ
definite Matrix R < 0 immer eine Zahl p € R existiert, sodass Gl. (A.16)
erfiillt ist, und zwar ist diese Zahl gegeben durch Gl. (A.15). Es folgt daraus
Gl. (A.13). O

Bemerkung A.5. Es gilt noch, vgl. [68], pmin < 0 dann und nur dann wenn
Q =< 0. Dies folgt aus

{ fimin <0< D(Q - QBT R'BLQ)D* <0

R<0
DQD* DQBY
=< 0.
“lBigqgpr wr | =0
Dies ist dquivalent zu SQS* < 0 und, somit, zu Q < 0. A

A.3 Umwandlung der unendlich- in
endlich-dimensionale LMIs

Lemma A.6 [S-Prozedur|. Gegeben seien die Matrizen Q € H" und
S; e H", miti=1,...,m. Die Ungleichung

x'Qx <0, VxeX:={xecRx'S;x<0,Vi=1,...,m} (A.17)

ist genau dann erfillt, wenn die Skalare T; > 0 existieren, sodass

Q=) 7S, (A.18)
i=1

Vgl [8, Fakt 8.2.4] fiir die positive Definitheit des Schur-Komplements einer positiv
definiten Blockmatrix.
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gilt.

Die Bestimmung der Skalare 7; stellt ein endlich-dimensionales konvexes
Validierungsproblem dar. In mehreren Spezialfillen ist Gl. (A.18) nicht
nur hinreichend - wie in Lemma A.6 dargestellt - sondern auch notwendig
fur die Erfullung der Gl. (A.17).

Die Umwandlung einer parameterabhidngigen LMI der Form (A.5) in
eine parameterunabhingige LMI basiert auf die in [38] vorgestellte Ver-
allgemeinerung der S-Prozedur. Fiir den eindimensionalen Fall, d.h. fiir
d = 1, wurde die Umwandlung in [77] gezeigt. Die Lemmas A.7 bis A.9
fassen dieses Ergebnis zusammen. Die entsprechenden Beweise kénnen in
[77] gefunden werden.

Lemma A.7 [[78], Erweiterung der verallgemeinerten S-Proze-
dur]. Gegeben seien die Matrizen ¥ € Sym™ und J,C € R**". Die
folgenden Aussagen sind dquivalent:

i) (T2( <0, V(€ Z:={CeR"\{0}|(J-6C)(=0,6€R,|§|<1}.
ii) 3D € P*, G e Skew”, sodass

(g2 90

J G D||J|°

Lemma A.7 gibt eine notwendige und hinreichende Bedingung fiir ) in
Form einer linearen Matrixungleichung (LMI) aus ii) an. Dass diese Be-
dingung somit nicht konservativ ist, folgt aus der verallgemeinerten S-
Prozedur, vgl. [38, Theorem 1]. Die Menge G der in dem Teil i) des Lem-
mas A.7 betrachteten Vektoren ¢ € R™\{0} ist fiir bestimmte Matrizen
J und C gleich zu der gesuchten Menge aus Gl. (A.19), wie es in Lemma
A.8 dargestellt ist.

A.3.1 Einparametriger Fall (d =1)

Gesucht ist eine parameterunabhingige Bedingung fiir die Erfiilllung der
Ungleichung

(M @ 1,)™; (2™ 91,) <0, zF = 1222 - zkil}—r Vze[-11],
(A.19)

wobei die Matrix My, € Sym’m vorgegeben ist. Dafiir wird folgendes Lem-
ma aus [78] verwendet:
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Lemma A.8 [[78]]. Folgende Mengen sind gleich:

Cr = {g eR™[(J-0C)(C=0,J=J;_1®L,,C=J_s ®L,
Jp1 =[0h11 Dol Jpoy = [Tee1 Op_11],6 € [—
Cy = {C eR™ (¢ = (M @1,)v,zM = [1 z 22 ... zkil]—r,

z €[-1,1],v e R"}.

Schliefllich, unter Verwendung der Lemmas A.7 und A.8, folgt

Lemma A.9 [[77], Lemma 4.12]. Die Ungleichung

M o1,)'E =M e1,) <0, zM= 122> - zk_l]T

L1},

(A.20)

ist fir jedes z € [—1,1] erfillt dann und nur dann wenn es existieren die

Matrizen D € PP¢=1) ynd G € Skew™* ™V sodass

=<[3] [5 5][3]
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B Ausgewiahlte stochastische
Grundlagen

B.1 Die multivariate Normalverteilung

Sei der Zufallsvektor X := (X7, ...,X,) gebildet aus r standardnormalver-
teilten Zufallsvariablen X; ~ N7(0,1), 2 =1,...,r. Der Zufallsvektor

W = LX + p, (B.1)

mit L € R™*" und p € R™, heifit multivariat normalveteilt. Dies wird
durch W ~ N, (u,X) bezeichnet. Die Wahrscheinlichkeitsdichtefunktion
des Zufallsvektors lautet

fw(w) =

(ZW)m/Ql o) exp {—%(W —p)' = (w - ,u)} ,  (B.2)

wobei w € R™ und Rang(X) = m.

B.2 Die Chi-Quadrat Verteilung

Seien X1, ...,X,, unabhingige und identisch verteilte Zufallsvariablen, mit
X; ~N1(0,1). Die Verteilung der Zufallsvariable

W=X7+...+X2 (B.3)
heifit Chi-Quadrat mit n Freiheitsgraden. Dies wird durch W ~ x?2 be-

zeichnet. Es gilt dabei E{W} = n und Var{W} = 2n, vgl. auch [26]. Die
Verteilung der Zufallsvariable

Y = — (B.4)
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heift inverse-Chi-Quadrat mit n Freiheitsgraden und wird mit Y ~ 2
bezeichnet. Es gilt dabei
1

B{Y} = —, n>2, (B.5)

Var{Y'} = (71_2)3(71_4), n > 4. (B.6)

B.3 Die nicht-zentrale ¢-Verteilung

Seien die unabhingigen Zufallsvariablen X ~ N;(0,1) und Z ~ x2. Die
Verteilung der Zufallsvariable

Wi (B.7)

Z/n
heiBt ¢- Verteilung mit n Freiheitsgraden. Diese wird mit W ~ Ti(vw,0,1)
bezeichnet, vgl. [26].

Eine Zufallsvariable W ~ Ti (v ,piw,02,) heilt nicht-zentral t-verteilt.
Thre Wahrscheinlichkeitsdichtefunktion lautet

_ T +1)/2) L (w— )\
fw(w) = 5 4+ ——F— . (B.8)
o2, vl (vy /2) Uy o2,
Es gilt dabei
W — uw
W~ Ti (Vi s ,02,) & Tu ~ Ti(vw,0,1). (B.9)
w

Weitere Eigenschaften sind
E{W} = uw, falls v, > 1, (B.10)
Var{W} = 02— falls vy, > 2. (B.11)

Vw — 2

B.4 Pradiktive Distributionen

Satz B.1 [Vgl. [64, Theorem 4.1.2]] Es sei angenommen, dass der Zufalls-
vektor (Ho,H) eine multivariate Normalverteilung besitzt, d.h.

)
e~ N (8624 R]): @2
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wobei B € RP und 0% > 0 unbekannt sind, aber der Zufallsvektor (8,0%)
eine der Verteilungen (1)—(4) aus Tabelle 8.2 besitzt, wobei die Parameter
Bo € RP, Xy =0, cg > 0 und vy > 2 bekannt sind. Dartiber hinaus sind der
Vektor ro := [R(Co — ¢1) -+ R(Co — ¢w)|" und die Matriz R, mit den
Elementen Ry, jy := R(¢; — ), mit i,j = 1,...,N, abhdngig von einer
parametrischen Korrelationsfunktion R(¢ — ¢') = r(¢,{’;v¢) mit einem
unbekannten Parametervektor 1.

Die Zufallsvariable Ho|H besitzt dann eine eindimensionale nicht-zen-
trale t-Verteilung gegeben durch

[Ho[H] ~ T (vi,pi,07), (B.13)

mit v; Freiheitsgraden, Nichtzentralititsparameter p; und Skalierungspa-
rameter o2. Der Parameter v; ergibt sich aus

N + v, = (1),
N = (2
= =) (B.14)
N_p+V07 7’:(3)7
N —p, i = (4).
Der Nichtzentralitdtsparameter p; ergibt sich aus
1i(¢o) = E{Ho[H} = £]5 + r{R ™' (n — Ff), (B.15)

wobei - in diesem Fall - der Parametervektor 8 aus Gl. (8.12) die analy-
tische Form

s JEFRIF+E7HIEFER I+ 37'680), i= (1) oder (2
A= (FR'F)"Y(F'R"!n), i = (3) oder (4)

(B.16)
hat. Schlieplich ist der Parameter o?

T -1
0l =07 (Co) = 6% -1*(0,60) = 6% {1 - Lt:ﬂ ﬁi}‘l Ff‘{ H(())] } ,
(B.17)
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mit
s QF
6% =2 (B.18)
, , o (8] (2 7 (f
re)=reem=reo)- (%] 3R] [¥] @
r(¢.¢") = R(¢ - ¢)), (B.20)
=5 i=(1) oder (2)
25 = {0, i = (3) oder (4) (B21)
und
co + @3, i= (1),
2 _11-1 a
ot Q3+ (Bo—B) [Zo + (FRTE) '] (8- B), i=(2),
e+ @3 i=(3),
n' [R*I ~R!F(FR'F)" FTR*I} n, i=(4).
(B.22)

Der Erwartungswert und Varianz der Zufallsvariable Hyo|H kénnen somit
aus Gl. (B.10) und (B.11) berechnet werden.

B.4.1 Berechnung der bedingten priadiktiven
Verteilung [Hy|H| aus Schritt 5a

Die bedingte Verteilung [Ho|H] aus Schritt 5a kann aus

(Holtt) = [ [Hoo%H] do?,
D,_2
Z
berechnet werden, wobei fiir den Integrand
[Ho,0%|H] = [Ho|H,0%] - [0%H] (B.23)

gilt. Die Verteilung [Ho|H,0%] kann dabei wie folgt berechnet werden:
(Holto2] = [+ [topIH02laB.
Dg

wobei
[Hy,BH,0%] = [Ho|H,B,0%] - [BIH,0%]. (B.24)
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Die erste Verteilung auf der rechten Seite der Gl. (B.24) ist bekannt. Die
zweite kann mit Hilfe des Bayes’schen Satzes aus

[BIH.0%] = [H.0%|8]- (8], (B.25)

berechnet werden, wobei die Verteilung [H,0%|8] aus der Aquivalenz der
Zerlegungen

[H,0%.8] = 8] [0%18] - [H|o% 8] = [8] - [BloZ] - [0Z] - [H|oZ,8],
[Hp’%,ﬂ] = [ﬁ] : [vaé|ﬂ}
berechnet werden kann, d.h.
[H.0%|8] = [BloZ] - [0Z]  [H|oZ,B).

Dabei sind die Verteilungen [H|o%,8], [8|c%] und [¢%] bekannt. Schlief-
lich kann die Verteilung [0%|H] aus Gl. (B.23) aus der Aquivalenz der
Zerlegungen

[H.0%.,8] = [B|H.0%] - [H.o%] = [8|H,0%] - [0Z[H] - [H],
[H,0%,6] = H|B,0%] - [8loZ] - [0Z],
berechnet werden, d.h.
H|B,0%]- [BloZ] - [0Z]
[BHZ]-H]

wobei die Verteilung [3|H,0%] in Gl. (B.25) berechnet wird, und die Ver-
teilungen [H|B,0%] und [B|o%] bekannt sind. Der Erwartungswert

o u(Co) = ey m(Col?) (B.26)

o2 [H] = |

und die Varianz
Tt () = g1 (Col¥) (B.27)

der A-posteriori-Wahrscheinlichkeitsdichte [Ho|/H] hingen vom Parame-
tervektor ¢ der Korrelationsfunktion R( - |1) ab.

B.5 Latin-Hypercube-Sampling (LHS)

Die Methode wird fir den zweidimensionalen Fall erlautert. Ist beispiels-
weise der Parameterbereich [0,1]?, so kann man darin N Design-Punk-
te durch Latin-Hypercube-Sampling wie folgt generieren. In einem ersten
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Schritt wird iiber den untersuchten Bereich ein Gitter gelegt, mit jeweils
N gleich groBen Intervallen pro Dimension. Es ergeben sich somit N? Zel-
len. Jede Zelle wird mit einer Zahl aus der Menge {1,2,...,N} versehen,
sodass ein lateinisches Quadrat entsteht. Dieses ist dadurch gekennzeich-
net, dass jede Zahl nur einmal in jeder Zeile und jeder Spalte erscheint.
AnschlieBend wahlt man zufillig eine Zahl aus der Menge {1,2,...,N},
und in jeder damit versehenen Zelle wird ein Punkt zufillig gewéhlt.
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C Parameter der Beispiele

Die Folgenden LMI-basierten Validierungs- und Optimierungsprobleme
wurden unter Anwendung des Parsers YALMIP, vgl. [46], und des Sol-
vers SDPT3, vgl. [71], in der Programmiersprache MATLAB formuliert
und gelost.

C.1 Parameter fiir das Beispiel 5.5.2

C.1.1 die klassische WSVR mittels iLF

Die Losung der Optimierungsproblems (3.14)-(3.16) mit ¢ = 0.01 und
Optimierungsziel
min _Spur(P)
PcSym?

ergibt die (in Originalkoordinaten transformierte) Matrix

2.3584 9.7426

P =1 9712 461678 |

Das maximale Einzugsgebiet ist durch das kleinste d > b'P~'b/4, d.h.
durch ein dyi, > 0.5412, bestimmt. Der Parameter d kann aber auch
so gewahlt werden, dass eine gewiinschte Anfangsauslenkung innerhalb
oder auf dem Rand des Einzugsgebiets liegt, jedoch solange Gl. (3.18) und
(3.19) erfiillt sind. Fiir d = 0.5682 und v = 0.99 ergibt sich ¢ = 0.5072
und r = 0.2868. Der Parameter d wurde so gewahlt, dass die gewiinschte
Anfangsauslenkung x¢ = [0.7,2.8]" auf dem Rand des Einzugsgebiets liegt.
Im Bild 5.3 wird die sich ergebende Ellipse, £(dP 1) (-.) gezeigt.

216.73.216.36, am 20.01.2026, 08:44:15. © Urheberrechtiich geschitzter Inhaft.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186252081

C.2 Parameter fiir das Beispiel 8.4.1 191

C.1.2 Die invers-polynomiale WSVR

Die Losung des Validierungsproblems (4.10)-(4.12) mit M; = —1 und M, =
0, sowie € = 0.01 ergibt die Matrizen

P - —0.1000 —0.4897
=1 |—0.4897 —2.4573]

P 15.5918  76.5334
€7 176.5334 383.5764| "

Fiir v =1 und v = € ergeben sich die Matrizen

Pl =

0.0052 0.0130

p-1_ 2.0076 0.0052
L ’ 0.0078 0.0358

{8.0040 0.0078]

Die Koeffizienten des Matrixpolynoms R := P! aus Korollar 5.3 sind

Ny = P4 — [—0.2246 —0.4419] . N, =PA— {34.9526 68.9648] _

—0.4419 —0.8842 68.9648 138.0588

Die Uberpriifung der Bedingungen aus Korollar 5.3 mit dem Skalierungs-
faktor d = 1.1058 ergibt

max G(x,1) = —52.2830,

x'Py lx=d

max 9;G(x,1) = —52.6196.

xTPflx:d

C.2 Parameter fiir das Beispiel 8.4.1

Das Streckenensemble aus Gl. (8.77) ist gegeben durch

A, — [~1:4095  0.3255 A, _ [0:6204 —0.8960
7 1 17701 —1.1190|° YT [1.2698  0.1352

und

b _ [F0-1390] [ 11837
0= |-1.1634|> "'~ |-0.0154|"
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Die Uberpriifung der Stabilisierbarkeitsbedingungen aus Gl. (6.34)-(6.36)
hat fiir r = 1, sowie m; = —1 und m, = 0 folgende Matrizen P.,; ergeben:

—0.3238 —0.2778 —0.0357
PC—1,0 = |: ] ) PC—1,1 = |:

—-0.2778 —0.8295 —0.0178

P _ 103.6145  32.0932 P — 12.6196
€00 7 132.0932  255.2761| ‘T 1 —1.9560

—0.0178
0.0711} » (C1)

~1.9560
31.8894} - (€2)
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exponentiell stabilen
Systems, 89

2 Logarithmische Matrixnorm,
vgl. [73, Section 2.2.2], 90

3 V-induzierte logarithmische
Matrixnorm, vgl. [72], 93

4 Gaufi’sches Zufallsfeld, [64,
S.27], 119

5 Offene Kugel um x €R™ mit
Radius € >0, vgl. [8], S.
681, 172

6 Innerer Punkt einer Menge,
vgl. [8], Def. 10.1.1, 172

7 Randpunkt einer Menge, 172

8 Rand einer Menge, 172

9 Abgeschlossene Menge, 172

10 Beschriankte Menge, vgl. [8],
S. 682, 172

11 Kompakte Menge, vgl. [8],
S. 682, 172

12 Konvexe Hiille, vgl. [8], S.
98, 172

13 Kontraktiv invariantes
Gebiet, 173

14 Kontraktiv invariantes
Ellipsoid, 173

15 Verschachtelte Ellipsoide,
173

16 Limes superior einer
Funktion, vgl. [62, S. vi],
173

17 Rechte Obere
Dini-Derivierte einer
stetigen Funktion, 173
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parameterabhéngige
quadratische Funktion
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Korollar
2.4 Vgl. [2], 12
5.2, 40
5.3, 49

Lemma

2.1 Stabilisierbarkeit eines
LTI-Systems, 8

2.2 Stabilisierbarkeit eines
LTI-Systems mittels
Ljapunov-Funktionen, 9

7.2 Vgl. [72, Theorem 5], 93

7.3 Vgl. [72, Theorem 1, (iv)],
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A.1 Adjunkte einer Satz
polynomialen Matrix, vgl. 2.3 Vgl. 2], 11
39], 176 31,17
A.2 Adjunkte einer 4.1, 28
polynomialen Matrix mit 5.1, 37
Grad 1, vgl. [77, Korollar 5.4 Nach [37, Theorem 1], 52
2.2], 177 6.1, 67
6.2, 69

A.3 Newton-Regel, 177

A4, 178

A.6 S-Prozedur, 181

A.7 [78], Erweiterung der
verallgemeinerten
S=Prozedur, 182

A8 [78], 183

A9 [77], Lemma 4.12, 183

LTV-System

7.1 Grenzen der

Zustandsnorm basierend
auf logaritmischen

Matrixnormen, vgl. [73,
Section 2.5], 91

6.3 Vgl. [77, Theorem 6.3], 71

7.10 Konvergenzrate der
nicht=séttigenden
invers=polynomialen
WSVR, 110

7.7, 100

7.9 Konvergenzrate der
nicht=séttigenden
klassischen WSVR, mittels
iLF, 109

A5 Satz von Finsler, vgl. [68,
Satz 2.3.10], 180

B.1 Vgl. [64, Theorem 4.1.2],
185
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