
ISBN 978-3-18-092307-9 V
D
I-
G
P
P
	

T
ec

hn
is
ch

e 
Z
uv

er
lä

ss
ig
ke

it
 2

01
7�

V
D
I-
B
er

ic
ht

e 
23

07VDI-Gesellschaft
Produkt- und Prozessgestaltung

VDI-Berichte�2307

VDI-Gesellschaft
Produkt- und Prozessgestaltung

28. VDI-Fachtagung

Technische 
Zuverlässigkeit 2017
Entwicklung und Betrieb  
zuverlässiger Produkte

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


VDI-BERICHTE
Herausgeber: VDI Wissensforum GmbH

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


VDI-Berichte�2307

VDI-Gesellschaft
Produkt- und Prozessgestaltung

28. VDI-Fachtagung

Technische  
Zuverlässigkeit 2017
Entwicklung und Betrieb  
zuverlässiger Produkte
Leonberg bei Stuttgart, 17. und 18. Mai 2017

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


© VDI Verlag GmbH · Düsseldorf 2017
Alle Rechte vorbehalten, auch das des Nachdruckes, der Wiedergabe (Photokopie, Mikrokopie), 
der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, auszugsweise oder vollständig.
Der VDI-Bericht, der die Vorträge der Tagung enthält, erscheint als nichtredigierter Manuskriptdruck. Die 
einzelnen Beiträge geben die auf persönlichen Erkenntnissen beruhenden Ansichten und Erfahrungen der 
jeweiligen Vortragenden bzw. Autoren wieder.
Printed in Germany.
ISSN 0083-5560
ISBN 978-3-18-092307-9

Bibliographische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen 
Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter  
http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek
(German National Library)
The Deutsche Nationalbibliothek lists this publication in the Deutsche National
bibliographie  
(German National Bibliography); detailed bibliographic data is available via Internet at 
http://dnb.ddb.de.

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Inhalt

� Seite

Vorwort 1

Plenarvortrag

F. Pasch, 
W. Hartewieg, 
D. Kirschmann

Peer Reviewed
Das Ende des zufälligen Zufalls – Warum scheinbar 
zufällige Feldbeanstandungen systematisch sein  
können

3

Prognostics & Health Management

W. Sextro, 
J. K. Kimotho, 
T. Kaul, 
T. Meyer,

Peer Reviewed
Entwicklung verlässlicher, intelligenter Systeme – 
Herausforderungen und Chancen

17

J. Fisch, 
M. Rossdeutscher, 
C. Diedrich

Peer Reviewed
Anwendung datenbasierter Methoden auf Werkzeug-
maschinendaten zur Abweichungserkennung vom 
Normalbetrieb

31

T. Rieker, 
M. Bartholdt, 
B. Bertsche, 
P. Zeiler, 
A. Jacobi

Peer Reviewed
Zuverlässigkeitsprognose in der Anlaufphase für 
„x-Months-in-Service“: Präzisierung und Validierung 
der Beanstandungsquote

43

C. Döbel
Peer Reviewed

Einsatz textiler Sensoren für die Lebensdauer- 
vorhersage von Maschinen

55

Modellierung und Simulation von Zuverlässigkeit

F. Müller, 
P. Zeiler, 
B. Bertsche

Peer Reviewed
Bootstrap-Monte-Carlo-Simulation von Zuverlässigkeit 
und Aussagewahrscheinlichkeit bei periodischer 
Instandhaltung

69

C. Hayer, 
S. Fiebig, 
T. Vietor, 
J. Sellschopp 

Robustheitsoptimierung innerhalb des Entwicklungs-
prozesses durch Integration von Fertigungstoleranzen 
in die Simulation

83

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


� Seite

S. Kemmler, 
M. Dazer, 
T. Lepold,  
B. Bertsche 
 

Peer Reviewed
Lebensdaueranalyse auf Basis von multidimensionaler 
Zuverlässigkeits- und Robust Design Simulation – 
Integrale Betrachtung der Robusten Zuverlässigkeit

97

J. Heinrich, 
F. Plinke, 
J. Hauschild

Peer Reviewed
Zustandsbasierte Sicherheits- und Verfügbarkeits- 
analyse unterschiedlich automatisierter  
Fahrfunktionen mittels Monte-Carlo-Simulation

109

Zuverlässigkeit und Big Data

D. Ortmann, 
C. Lisiecki

Peer Reviewed
Vorhersage von Verfügbarkeitszahlen in der Entwick-
lungsphase neuer Produktgenerationen

125

P. Dobry, 
A. Jacobi, 
B. Bertsche

Peer Reviewed
Anwendung von ausgewählten multivariaten Analyse-
methoden des Data Mining zur Identifizierung von aus-
fallverbundenen Fahrverhaltensmustern auf Basis von 
Kundenbelastungskollektiven

139

Zuverlässigkeit komplexer Systeme

S. Ochs, 
E. M. Slomski, 
T. Melz

Peer Reviewed
Stochastische Sensitivitätsmaße für smarte Systeme 151

F. Long, 
P. Zeiler, 
B. Bertsche 

Peer Reviewed
Prognose der Verfügbarkeit von flexiblen Produktions-
systemen in der Industrie 4.0

163

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


� Seite

Qualität und Zuverlässigkeit und funktionale Sicherheit

O. Bielefeld, 
H. Dransfeld, 
N. Schlüter

Peer Reviewed
Entwicklung eines Vorgehenskonzeptes zur Analyse 
von Fehlerfolgeketten in komplexen Systemen

177

A. Jacobi,  
C. Jordan,  
E. Kaganova

Peer Reviewed
Zuverlässigkeitsmanagement für den Anlauf von  
Neuproduktprojekten in der Automobilindustrie – 
Zuverlässigkeit bestimmen und messen

189

O. El Adlouni, 
H. Schäbe

Peer Reviewed
Nachweis der funktionalen Sicherheit für eine 
Abschalt- und Erdungsautomatik (AEA) mittels  
Bahnspezifischer Normen EN 50126, -28, -29.

201

Zuverlässigkeitstests und besonders beschleunigte Verfahren

M. Bartholdt, 
M. Bollmann, 
P. Zeiler, 
B. Bertsche

Peer Reviewed
Absicherung der Gesamtzuverlässigkeit eines  
Getriebes unter Berücksichtigung von Vorkenntnissen 
– Anwendung und Validierung

217

A. Romer, 
J.-M. Veith

Peer Reviewed
Berücksichtigung sich ändernder Steuergeräte- 
parameter auf entstehende Beanspruchungen für 
Zuverlässigkeitstests durch Monte-Carlo Simulation

229

T. Buschhaus, 
P. Glöckner, 
M. Metzele

Peer Reviewed
Berücksichtigung inhomogener Anforderungen in der 
Zuverlässigkeitsabsicherung am Beispiel eines Fahr-
werksystems eines 1st-Tier Zulieferers der Nutzfahr-
zeugindustrie

241

A. Müller, 
M. Hinz, 
S. Bracke

Peer Reviewed
Auslegung von Zeitraffertests auf Basis numerischer 
Simulationen im Rahmen der Dentalimplantat-Erpro-
bung

253

M. Stohrer, 
K. Lucan, 
B. Bertsche

Peer Reviewed
Planung eines Zuverlässigkeits-DoE im Spannungs-
feld zwischen Test-Design und Erfolgswahrscheinlich-
keit

269

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Vorwort 

Die Sicherstellung einer von Kundenseite gewünschten hohen Zuverlässigkeit erfordert im 

Zeitalter der Industrie 4.0 und der zunehmenden Komplexität der Systeme eine ständige 

Weiterentwicklung bekannter Ansätze. Letztendlich muss die Zuverlässigkeit eines Produk-

tes über den gesamten Produktlebenslauf betrachtet werden und beherrschbar sein.  

Derzeitige Bemühungen betrachten sowohl die Weiterentwicklung von analytischen Zuver-

lässigkeitsmethoden als auch umfassendere Datenanalysen und optimierte Zuverlässigkeits-

tests.  

Die VDI Wissensforum GmbH und die VDI-Gesellschaft Produkt- und Prozessgestaltung 

(GPP) führt bereits zum 28. Mal die Tagung Technische Zuverlässigkeit (TTZ) durch. 

Der vorliegende Tagungsband enthält die Manuskripte der Referenten, soweit sie zum Zeit-

punkt der Drucklegung vorlagen. Vorher fand ein Review des Programmausschusses statt. 

Der Tagungsleiter und die Mitglieder des Programmausschusses danken allen, die beim 

Gelingen der Veranstaltung mitgewirkt haben. 

Wir freuen uns, Sie auf der 28. Fachtagung „Technische Zuverlässigkeit“ am   

17. bis 18. Mai 2017 in Leonberg begrüßen zu dürfen. 

 

Im Namen des Programmausschusses 

 

Tagungsleiter 

 

Prof. Dr.-Ing. Bernd Bertsche  
Institutsleiter, Institut für Maschinenelementen (IMA)  
Universität Stuttgart 
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Fachlicher Träger 

Die VDI-Gesellschaft Produkt- und Prozessgestaltung bietet mit ihren Fachbereichen für alle 

Branchen abgesichertes Wissen zur Gestaltung von Produkten und Prozessen sowie deren 

Optimierung bezüglich Qualität, Zeit und Kosten-Nutzenverhältnis. 

 

Fachbereich Sicherheit und Zuverlässigkeit 

Der Fachbereich Sicherheit und Zuverlässigkeit widmet sich der Weiterentwicklung der  

Methoden zur Analyse, Bewertung und Prognose der Zuverlässigkeit. Handlungsempfehlun-

gen in Form von VDI-Richtlinien, Erfahrungsaustausch und Veranstaltungen sind Ergebnisse 

der Aktivitäten.  

www.vdi.de/zuverlaessigkeit 
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Das Ende des zufälligen Zufalls 
 
Warum scheinbar zufällige  
Feldbeanstandungen systematisch  
sein können 
 
Dipl.-Ing. Florian Pasch,  
TU Berlin, Fachgebiet Qualitätswissenschaft, Berlin; 
Dipl.-Ing. Wilfried Hartewieg, 
Volkswagen AG, Zentrale Konzern-Qualitätssicherung, Wolfsburg; 
Dr.-Ing. Daniel Kirschmann,  
Robert Bosch GmbH, Engineering Design Power Electronics, Reutlingen 
 
 
 
Kurzfassung 
Die Zuverlässigkeit von Produkten im Feldeinsatz ist ein Erfolgsfaktor für Unternehmen. Ab-

weichungen von der geplanten und erprobten Zuverlässigkeit der Produkte bzw. Systeme im 

Feld und damit deren Bauteile müssen schnell und sicher identifiziert werden. In der dazu-

gehörenden Feldbeobachtung werden Ausfalldaten ausgewertet. Erfolgen diese Auswertun-

gen nur auf Systemebene aber nicht auf Bauteilebene, mischen sich die Fehlermechanismen 

der Bauteile und ergeben bei einer Systembetrachtung ein Ausfallverhalten, das unter Um-

ständen als „zufällig“ erscheinen kann. Folgen hiervon sind zum Beispiel, dass Alterungsme-

chanismen (z.B. Verschleiß) verspätet erkannt und Abstellmaßnahmen nicht rechtzeitig ein-

geleitet werden können.  

Dieser Sachverhalt wird in diesem Beitrag mittels einer Simulationsstudie diskutiert und er-

läutert. Es wird aufgezeigt, unter welchen Umständen sich eine Schar von Fehlermechanis-

men bei bestimmten Anteilen von Früh-, Zufalls- sowie Alterungsausfällen innerhalb einer 

Grundgesamtheit in Abhängigkeit von bestimmten Auswertungszeitpunkten (Einsatzmonate) 

zu einem scheinbar zufälligen Ausfallverhalten (Weibull-Parameter β≈1) ergeben.  

Als Ergebnis zeigt sich, dass ein β≈1 auf Systemebene tatsächlich zustande kommt, wenn 

mehrere Systeme betrachtet werden und Anteile dieser Grundgesamtheit sowohl von Früh- 

als auch von Alterungsausfällen betroffen sind. Dabei dürfen diese Anteile nicht zu dominant 

sein. Entsprechend verbergen sich unterschiedliche Fehlermechanismen auf Bauteilebene in 

den Systemen, die bei einer Auswertung auf Systemebene ein scheinbar „zufälliges“ Ausfall-

verhalten ergeben. Eine Auswertung sollte also immer auf Bauteilebene und nicht auf Sys-

temebene erfolgen, um das „wahre“ Ausfallverhalten eines Systems beschreiben zu können. 
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1. Ausgangssituation 
Die Sicherstellung der geforderten Zuverlässigkeit für alle Anwendungsfälle von komplexen 

Produkten ist im Rahmen der Entwicklung nur eingeschränkt möglich, da nicht alle späteren 

Beanspruchungen und Belastungen in der Nutzungsphase vollständig bekannt sind. In der 

Entwicklungsphase werden Annahmen zu Belastungen in der späteren Nutzungsphase (z.B. 

Gebrauchs- als auch Umweltbedingungen) sowie Annahmen zur erzielbaren Fertigungsqua-

lität (Beanspruchbarkeit) getroffen [1]. Entsprechend werden in der Entwicklung zum Nach-

weis der Zuverlässigkeit System- (Fahrzeug-), Subsystem- und Komponententests unter 

diesen Annahmen durchgeführt sowie mit verschiedenen Methoden der Nachweis einer defi-

nierten Ziel-Zuverlässigkeit unter gegebenen Randbedingungen geführt (Methoden dazu 

sind zu finden in [1-3]). So werden beispielsweise Fahrzeug-Komponenten unter der An-

nahme von wirkenden Belastungen durch unterschiedliche Nutzerbedingungen (Mischkol-

lektiven) mit einer definierten Bauteilqualität (Beanspruchbarkeit) entwickelt und getestet. 

Allerdings sind die Tests oft nur gerafft mit einer begrenzten Stichprobengröße im Verhältnis 

zur Serienproduktion möglich, so dass nicht alle möglichen Aspekte (insbesondere Alterung) 

in ihrem vollen Ausmaß erkannt werden können. Bilden sich zusätzlich in der Nutzung der 

Fahrzeuge andere spezifische Nutzungsbedingungen aus als angenommen (Verschiebung 

der Anteile im Mischkollektiv) oder zeigt sich eine unzureichende Beanspruchbarkeit der 

Komponenten (z.B. Produktionsschwankungen), kann dies zu Fehlerarten bei Systemen füh-

ren, die in der Entwicklung nicht bekannt waren. Die Anzahl der tatsächlich auftretenden 

Fehlerarten sowie deren Häufigkeiten sind entsprechend abhängig von den tatsächlichen 

Nutzungsbedingungen als Mischbeanspruchung sowie der realen Bauteil-Qualität, die oft 

chargenabhängig ist. 

   

2. Analyse von Feldbeanstandungen 
Zur Systemverbesserung sind die Informationen aus der Nutzung durch statistische Analy-

sen von Felddaten zeitnah nach Produkteinführung auszuwerten. Oft dominieren in dieser 

frühen Phase Früh- und Zufallsausfälle, aber auch erste Alterungsausfälle treten an Syste-

men auf, die extrem beansprucht oder Belastungen ausgesetzt waren, die in der Erprobung 

nicht berücksichtigt werden konnten. Prinzipiell sollten die unterschiedlichen Fehlermecha-

nismen einzeln (homogene Grundgesamtheit) unter Verwendung eines unimodalen Ausfall-

modells ausgewertet werden, um das gesamte Ausfallverhalten mit Hilfe einer statistischen 

Verteilungsfunktion approximieren zu können [4]. Im industriellen Umfeld findet die Weibull-

verteilung am häufigsten Verwendung zur Beschreibung dieses Ausfallverhaltens [1]. Sie 

bietet die Besonderheit, dass sich anhand dessen Formparameter β die Art des Fehlerme-
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chanismus charakterisieren lässt. So können Fehlermechanismen mit einem β < 1 als Früh-

ausfall, mit einem β = 1 als Zufallsausfall und mit einem β > 1 als Alterungsausfälle (z.B. 

Verschleiß) klassifiziert werden [5]. Leider ist es oft nicht möglich oder praktikabel, einzelne 

Ausfälle aus dem Feld spezifischen Fehlerbildern (Komponente mit dessen Fehlermecha-

nismus) zuzuordnen. Dies führt dazu, dass Ausfalldaten von verschiedenen Fehlermecha-

nismen bewusst oder unbewusst zur Bestimmung des Ausfallverhaltens genutzt werden [6]. 

Findet nun eine Approximation dieser Ausfalldaten durch eine einzelne Verteilung wie der 

Weibullverteilung statt, kann dies sehr unpräzise sein. Es zeigen sich häufig hohe Abwei-

chungen zwischen der angenommenen Verteilung und den Ausfalldaten [7]. Oft ist grafisch 

schon direkt erkennbar (durch z.B. Steigungswechsel in der doppel-logarithmischen Darstel-

lung), dass es sich um eine Mischverteilung handelt. In diesem Fall sollten die Daten nach 

Fehlerbildern klassifiziert werden, um mit unimodalen Ausfallmodellen eine sinnvolle Ab-

schätzung des Ausfallverhaltens zu ermöglichen. Ist dies nicht möglich, können spezifische 

Modelle oder Verfahren zur Auswertung von Mischverteilungen genutzt werden.  

 

 

Bild 1:  Unimodale Weibullauswertung aller Ausfalldaten von verschiedenen Fehler-

mechanismen (links) und drei Weibullauswertung nach Fehlermechanismen  

getrennt (rechts). 

 

Die Abbildung 1 zeigt eine Auswertung mit simulierten Ausfalldaten von verschiedenen Feh-

lermechanismen sowie eine nach Fehlermechanismen getrennte Auswertung dieser Daten 

anhand einer automatisierten Klassifizierung der Daten durch einen Expectation-
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Maximization-Algorithmus [8]. Bei dieser Auswertung ist die Mischverteilung durch drei un-

terschiedliche Fehlerarten grafisch leicht ersichtlich. Problematisch wird es jedoch, wenn sich 

viele Fehlerbilder innerhalb einer Auswertung vermischen. Diese Ausfalldaten ergeben dann 

oft eine Weibullverteilung mit einem ߚ ൎ 	1, was einem  „mehr oder weniger“ zufallsbedingtes 

Ausfallverhalten entspräche. Wird dieses bei der Interpretation des analysierten Ausfallver-

haltens nicht kritisch hinterfragt, können systematische Fehlermechanismen wie Alterungs-

ausfälle in der Menge der unterschiedlichen Fehlerbilder übersehen werden. Dabei ist gera-

de die Erkennung von alterungsbedingten Ausfällen in frühen Serienphasen dringend not-

wendig, um geeignete Maßnahmen zur Reduzierung der Fehlerfolgen frühzeitig ergreifen zu 

können.  

 

In der Fachliteratur wird dieser Sachverhalt selten diskutiert sowie in der praktischen Arbeit 

häufig nicht berücksichtigt. Insbesondere [5] geht kurz auf diesen Sachverhalt ein und schil-

dert, dass die Weibullverteilung für viele gemischte Fehlermechanismen sich zu einem ߚ ൎ 	1  

ergeben und entsprechend äquivalent zur Exponentialverteilung ist. Allerdings führt die An-

wendung der Exponentialverteilung oft zu Fehlinterpretationen. So kritisiert [5], dass Stan-

dards wie das MIL-HDBK-217 [9] für das Beschreiben des Ausfallverhaltens von elektroni-

schen Bauteilen die Exponentialverteilung nutzen, obwohl Felddaten für Früh- oder Ver-

schleißausfälle sprechen [5]. Allerdings geht [5] nicht genauer darauf ein, unter welchen Um-

ständen sich ein ߚ ൎ 	1 ergibt. Um diesen Sachverhalt zu untersuchen wird nachfolgend ein 

Beispiel vorgestellt, das die Problematik der gemeinsamen Auswertung von vielen Fehlerbil-

dern verdeutlicht. Daran anschließend wird durch eine Simulationsstudie aufzeigt, mit wel-

chen Anteilen an Früh-, Zufalls- sowie Alterungsausfällen einzelner Bauteile in der Gesamt-

population von Systemen mit wie vielen unterschiedlichen Fehlerbildern und zu welchen be-

stimmten Auswertungszeitpunkten sich ein solch scheinbar zufälliges Ausfallverhalten 

(Weibull-Parameter β≈1) ergibt. 

 

3. Beispiel für scheinbar zufällige Feldbeanstandungen β≈1 
Als Beispiel werden hier 5.000 Systeme betrachtet, die je 100 Bauteile besitzen. Diese Bau-

teile können unabhängig voneinander mit unterschiedlichen Fehlermechanismen behaftet 

ausfallen. Das Ausfallverhalten der Systeme wird nach einem Einsatzzeitraum von 6, 24 und 

60 Monaten analysiert. Es werden nur Erstausfälle betrachtet. Bei einem Defekt des Sys-

tems wird auf eine Reparatur verzichtet.  
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Die erste Auswertung der Feldbeanstandungen findet nach sechs Monaten (6 MIS) der Sys-

teme im Feldeinsatz statt. Die Weibullauswertung (Abbildung 2 linke Grafik) ergibt einen An-

teil von beanstandeten Systemen von etwas mehr als 1% mit einem β-Wert von 0,8, was auf 

Frühausfälle hinweist. Eine genauere Fehlerbetrachtung bzw. Analyse der Fehlermechanis-

men zeigt, dass fast 50% aller Beanstandungen zu diesem Zeitpunkt auf 2 von bisher 16 

beanstandeten Bauteilen zurückzuführen sind. Die Abbildung 2 (rechte Grafik) zeigt einen 

Pareto-Plot, der die Häufigkeit von Beanstandungen zum Zeitpunkt 6 MIS für die einzelnen 

Bauteile darstellt. Dieser zeigt deutlich, dass Frühausfälle die Beanstandungen dominieren, 

jedoch auch schon erste verschleißbedingte Ausfälle bei weiteren Bauteilen sichtbar werden.  

 

 

Bild 2:  Die Weibullauswertung (links) sowie der Pareto-Plot (rechts) für die  

Feldbeanstandungen des Systems nach 6 MIS. 

 

Eine weitere Weibullauswertung wird nach 24 MIS für das Gesamtsystem (Abbildung 3 linke 

Grafik) durchgeführt. Der Anteil der ausgefallenen Systeme liegt bei etwas mehr als 5% mit 

einem β-Wert nicht signifikant unterschiedlich von 1. Der Pareto-Plot zeigt, dass nach 24 MIS 

vor allem zwei verschleißbedingte Ausfallbilder dominieren, die in der ersten Auswertung 

durch die Dominanz der Frühausfälle nicht besonders auffällig waren.  
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Beginnt man erst zu diesem Zeitpunkt (24 MIS) die Analyse der verschleißbedingten Ausfall-

bilder verliert man wertvolle Fehlerabstellzeit. Problematisch wird dieser Sachverhalt dann im 

Zeitraum bis 60 MIS. Hier steigt die Häufigkeit der Beanstandungen deutlich an und macht 

einen Sprung von etwas über 5% nach 24 MIS auf etwa 17% nach 60 MIS. Auch hier liefert 

eine Weibullanalyse auf Systemebene über 60 MIS keine Anhaltspunkte für Probleme auf 

Bauteilebene, die abgestellt werden müssten. Es ergibt sich zwar eine höhere Ausfallhäufig-

keit, allerdings mit einem β-Wert nicht signifikant unterschiedlich von 1. Eine detailliertere 

Analyse der einzelnen Fehlermechanismen ergibt jedoch, dass inzwischen vor allem ver-

schleißbedingtes Ausfallverhalten von verschiedenen Bauteilen für die hohe Beanstan-

dungshäufigkeit verantwortlich ist. Dabei sind zwei Bauteile besonders stark von Verschleiß 

betroffen. 

 

 

Bild 3:  Die Weibullauswertung (links) sowie der Pareto-Plot (rechts) für die  

Feldbeanstandungen des Systems nach 24 MIS. 

 

Die Alterungsmechanismen wären bei detaillierter Fehleranalyse auch schon nach 6 MIS 

erkennbar gewesen, werden aber durch die dominanten Frühausfälle in der Gesamtauswer-

tung überdeckt. Die Abbildung 4 zeigt die Weibullanalyse nach 60 MIS sowie die Entwicklung 

der zwei relevanten Ausfallbilder Frühausfall sowie Verschleiß über MIS. Anhand der rechten 

Grafik in Abbildung 4 ist deutlich erkennbar, dass der Anteil der Beanstandungen aufgrund 
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von Verschleiß über der Zeit deutlich zunimmt wohingegen der Anteil der Beanstandungen 

bedingt durch die Frühausfälle über der Zeit ein stabiles Niveau erreicht. 

 

Dieses Beispiel macht deutlich, dass eine Auswertung von Ausfalldaten über verschiedene 

Fehlerbilder bei der Betrachtung auf Systemebene schnell zu falschen Schlussfolgerungen 

führen kann bzw. keinen Hinweis auf die tatsächlich wirkenden Fehlermechanismen auf Bau-

teilebene in dem System liefert, da ein β-Wert der Weibullverteilung nahezu 1 erscheint.  

 

 

Bild 4:  Die Weibullanalyse (links) für das System nach 60 MIS sowie die Entwicklung der 

Früh- sowie Verschleißausfälle über MIS 

 

Um zu zeigen, dass dieses Beispiel keinen Sonderfall darstellt, wird nachfolgend anhand 

einer Simulationsstudie erarbeitet, dass Weibullanalysen für komplexe Systeme mit ver-

schiedenen Fehlermechanismen unter Umständen keinen Hinweis auf das tatsächliche Aus-

fallverhalten liefern und zu einem ߚ ൎ 	1 tendieren. 

 

4. Simulationsstudie zur Weibullanalyse von Systemausfällen 
Zur Simulation des Ausfallverhaltens von Systemen wurde das von [4] entwickelte Ausfall-

modell herangezogen. Das Modell erlaubt die Berücksichtigung von Teilpopulationen, die 

von einem bestimmten Fehlermechanismus betroffen sind, welcher beim Rest der Population 
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nicht wirkt. So können einzelne Systeme aufgrund von Fehlermechanismen ausfallen, die 

nur Teile der Grundgesamtheit betreffen und z.B. Chargenprobleme darstellen könnten. Die 

Fehlermechanismen, die dann in den einzelnen Subpopulationen auf ein System wirken, 

sind als konkurrierend für den Ausfall modelliert. Dies bedeutet, dass ein Ausfall potentiell 

aufgrund von verschiedenen Fehlermechanismen zustande kommen kann, die unabhängig 

sind und zu jedem Zeitpunkt einen Ausfall verursachen könnten. Jeder dieser Fehlermecha-

nismen und dessen Ausfallzeitpunkte wird durch eine eigene Wahrscheinlichkeitsverteilung 

beschrieben [4]. 

 

Die Simulation wurde entsprechend diesem Modell aufgebaut. Die Abbildung 5 zeigt sche-

matisch den Aufbau der Simulation mit beispielsweise 10 Systemen und 20 Bauteilen pro 

System sowie einem Fehlermechanismus pro Bauteil. 

 

 

Bild 5:  Prinzipieller Aufbau der Simulation mit beispielsweise 10 Systemen und  

20 Bauteilen pro System  

 

Die Anteile der betroffenen Systeme in der Grundgesamtheit wurden mit Früh-, Alterungs- 

und Zufallsausfällen von jeweils 0% bis 100% der betroffenen Grundgesamtheit variiert. 

Wenn z.B. 10% der Grundgesamtheit von Frühausfällen und 60% von Alterungsausfällen 

betroffen waren, wurden die übrigen 30% der Grundgesamtheit mit Zufallsausfällen belegt. 

Wenn die Kombination von Früh- als auch Alterungsausfällen mehr als 100% der Grundge-
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samtheit ausmachten (d.h. bei einem System sind sowohl Früh- als auch Alterungsausfälle 

potentiell möglich) wurden keine Zufallsausfälle modelliert. In der Simulation werden die Feh-

lermechanismen äquivalent zu Bauteilen gesehen, d.h. jedes Bauteil repräsentiert einen be-

stimmten Fehlermechanismus. Die Simulation wurde mit 10, 100  und 1.000 Fehlermecha-

nismen (Bauteilen) pro System durchgeführt. Zur Modellierung der Wahrscheinlichkeitsver-

teilungen der einzelnen Fehlermechanismen wurde die 2-parametrige Weibullverteilung ver-

wendet mit der Ausfallwahrscheinlichkeit ܨሺݐሻ bis zum Zeitpunkt ݐ einen Ausfall zu generie-

ren:  

 

ሻݐሺܨ ൌ 1 െ ݁
ିቀ

௧
ఎቁ

ഁ

    (1) 

Der Parameter ߚ kann durch dessen Ausprägung wie oben beschrieben Früh-, Zufall- oder 

Alterungsausfälle repräsentieren. Der Parameter ߟ ist der Lageparameter und wird auch als 

charakteristische Lebensdauer bezeichnet. Für die Simulation wurden sowohl die ߚ- als auch 

die ߟ-Werte für die Früh-, Zufalls- als auch Alterungsausfälle anhand einer Wertspanne zufäl-

lig simuliert.  

 

Die nachfolgende Tabelle 1 gibt die Wertespanne für die simulierten Weibullverteilungen an.   

 

Tabelle 1: Wertespanne für die Parameter der simulierten Weibullverteilungen 

Art des Ausfalls ߟ ߚ ሾ݅݊	݊݁ݐܽ݊݋ܯሿ 
Frühausfall 0,5 – 0,9 60	– 	700 
Zufallsausfall 1,0 300.000	– 	370.000 
Alterungsausfall 1,2 – 2,5 180 െ 2.000 
 

Aus diesen Wertespannen wurden nun 10,100 und 1.000 Weibullverteilungen mit einem fes-

ten Anteil von 5% an Früh-, 35% an Zufalls- und 60% an Alterungsausfallverteilungen simu-

liert. So wurden bei einem System bestehend aus 100 Bauteilen (Fehlermechanismen), 5 

Verteilungen die ein Frühausfallverhalten, 60 Verteilungen die ein Alterungsausfallverhalten 

und 40 Verteilungen die ein Zufallsausfallverhalten der Bauteile repräsentieren, modelliert.  

 

Innerhalb der Teilpopulationen, wo diese Fehlermechanismen vorkommen, wirken diese 

konkurrierend um den Ausfallzeitpunkt.  

 

Zur Erzeugung der Ausfallzeitpunkte wurde eine Monte-Carlo-Simulation [10] durchgeführt. 

Dazu wurde für jedes zu simulierende System aus den jeweils dort wirkenden Weibullvertei-
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lungen ein zufälliger Ausfallzeitpunkt generiert. Der Ausfallzeitpunkt ݐ௜ des Systems ݅ wird 

dann durch den minimalen Ausfallzeitpunkt von den erzeugten Ausfallzeitpunkten 
ሺݐ௜ଵ, ,௜ଶݐ … ,  :Weibullverteilungen bestimmt ݎ ௜௥ሻ ausݐ

 

௜ݐ ൌ ݉݅݊ሼݐ௜ଵ, ,௜ଶݐ … ,  ௜௥ሽ (2)ݐ

  

In der Simulation wurden insgesamt 5.000 Systeme pro Grundgesamtheit betrachtet und mit 

dem oben beschriebenen Vorgehen dessen Ausfallzeitpunkte erzeugt. Zur Auswertung der 

Ausfalldaten, wurden diese einmal nach 6, 12, 18 und 24 MIS (Months in Service) zensiert. 

Alle Systeme, die einen früheren Ausfallzeitpunkt besitzen als der Zensierungszeitpunkt 

wurden als ausgefallen klassifiziert und alle anderen Systeme als überlebend mit einer bis-

herigen Lebensdauer, die gleich dem Zensierungszeitpunkt ist. Die so entstandenen Le-

bensdauerdaten wurden durch eine Weibullverteilung approximiert. Dessen Parameter wur-

de durch die Maximum-Likelihood-Methode geschätzt sowie die dazugehörigen Konfidenzin-

tervalle der Parameter unter Verwendung der Varianz-Kovarianz-Matrix über die normal ap-

proximierten Konfidenzintervalle bestimmt (Details zum Berechnungsverfahren siehe [11]). 

Diese Simulation wurde dann für sämtliche Kombinationen an unterschiedlichen Anteilen der 

Grundgesamtheit von 5.000 Systemen, die von Früh-, Zufalls- und Alterungsausfällen betrof-

fen waren mit jeweils 10, 100 und 1000 Fehlermechanismen wiederholt und zu den Auswer-

tungszeitpunkten 6, 12, 18 und 24 MIS analysiert. Als Ergebnis entstand eine Übersicht, bei 

welcher Kombination von Anteilen der betroffenen Grundgesamtheit mit Früh-, Zufalls- und 

Alterungsausfällen mit welchen Zensierungszeitpunkten und mit welcher Anzahl an wirken-

den Fehlermechanismen bei jeweils einer Grundgesamtheit von 5000 Systemen ein signifi-

kantes ߚ ് 1	zu sehen ist. Die komplette Simulation wurde mit der Skriptsprache R [12] um-

gesetzt. Insgesamt ergaben sich 10.000 Kombinationen pro MIS-Bereich und Anzahl von 

Bauteilen, was 120.000 Kombinationen insgesamt entspricht. Die Ergebnisse der Simulati-

onsstudie sind in Abbildung 6 dargestellt. 
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Bild 6: Simulationsergebnis für eine Weibullauswertungen bei Systemen 

 

In jedem der Diagramme in Abbildung 6 ist auf der x-Achse der Anteil der betroffenen 

Grundgesamtheit mit Alterungsausfällen und auf der y-Achse der Anteil der Grundgesamtheit 

mit Frühausfällen aufgetragen. Somit ergibt z.B. die Kombination 60% auf der x-Achse und 

25% auf der y-Achse, dass in dieser Grundgesamtheit (hier immer 5000 Systeme) insgesamt 

60% der System also 3000 Stück von Alterungs- und 1250 von Frühausfällen potentiell be-

troffen sind. Der Punkt im Diagramm bei dieser Kombination spiegelt den ߚ-Wert wieder, den 

man bei einer Weibullauswertung mit der entsprechenden Anzahl an Fehlermechanismen im 

System und zu den entsprechenden Auswertezeitpunkten in der Simulation erhalten hat. Die 

β-Werte wurden hier in drei Klassen eingeteilt (signifikant kleiner 1, signifikant größer 1 sowie 

1) und entsprechend farblich markiert.  

 

Als Ergebnis der Simulationsstudie lässt sich ableiten, dass eine Mischung von wenigen Sys-

temen der Grundgesamtheit mit Frühausfallverhalten und ein mehr oder weniger beliebiger 

Anteil der Grundgesamtheit mit Alterungsproblemen ein ߚ ൎ 1 unter bestimmten Umstände 

ergeben können.  
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Ein höherer Anteil an Frühausfällen führt zu ߚ ൏ 1 unabhängig des betroffenen Anteils der 

Grundgesamtheit mit Alterungsmechanismen. Zu einem frühen Auswertungszeitpunkt (6 

MIS) sind die Ergebnisse der Weibullauswertung noch sehr gestreut, wohingegen bei der 

Zunahme von Ausfalldaten (12-24 MIS) und Bauteilen pro System sich deutliche Muster er-

geben. Bei einer höheren Anzahl an Fehlermechanismen im System (100,1.000) spiegelt 

sich die Dominanz von Alterungsmechanismen bei einem sehr geringen Anteil von Frühaus-

fällen wieder und ergeben ein ߚ ൐ 1. Sobald aber der Anteil an Frühausfällen zunimmt kon-

vergiert der ߚ-Wert gegen 1. Bei einer zu hohen Dominanz von Frühausfällen ergibt sich ein 

klares  ߚ	1 >. Je höher die Anzahl der Bauteile im System ist, umso schneller zeigt sich diese 

Dominanz.  

 

5. Fazit 
Die Weibullauswertungen des Systemausfallverhaltens zeigt bei der Zunahme von Bauteilen 

pro System ein immer klareres Bild, wann sich ein ߚ ൎ 1 für eine Weibullauswertung auf Sys-

temebene ergibt. Betrachtet man dies zudem über MIS, zeigt sich hier ein ähnliches Verhal-

ten. Erkennbar ist der Trend auch schon bei einer geringeren Anzahl von Bauteilen und bei 

geringeren MIS: Ein ߚ ൎ 1  auf Systemebene kommt zustande, wenn sowohl Anteile der 

Grundgesamtheit von Früh- als auch von Alterungsausfällen betroffen sind und diese jeweils 

nicht zu dominant sind. Dabei ist das konkrete Verhältnis der Anteile untereinander abhängig 

von der Anzahl der Bauteile pro System sowie dem Auswertungszeitpunkt. Unabhängig von 

dem was in der Weibullauswertung auf Systemebene ersichtlich wird, verbergen sich fast 

immer unterschiedliche Fehlermechanismen auf der Bauteilebene. Entsprechend muss eine 

Weibullauswertung nicht auf System-, sondern immer auf Bauteilebene erfolgen, um das 

„wahre“ Ausfallverhalten der Systeme ermitteln zu können. Dies zeigt auch das hier vorge-

stellte Beispiel. Als weitergehende Untersuchungen könnte noch ein komplexeres Simulati-

onsmodell aufgebaut werden, was die Anteile der Fehlermechanismen pro Bauteil sowie 

deren Verhältnisse von Früh- Zufalls- und Alterungsproblemen variieren lässt. So könnte 

erforscht werden, ob sich auch unter diesen Bedingungen ein ähnliches Verhalten/Bild 

ergibt. 
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Kurzfassung 
Intelligente technische Systeme sind durch einen erhöhten Funktionsumfang charakterisiert, 

der diese dazu befähigt, autonom auf wechselnde Umgebungsbedingungen, Anforderungen 

und inhärente Systemzustände zu reagieren. Dies kann mit den Methoden der Selbstopti-

mierung erreicht werden. Hier werden mit Verfahren der Mehrzieloptimierung mögliche Be-

triebspunkte des Systems bestimmt zwischen denen das System im Betrieb autonom aus-

wählt und somit eine Verhaltensadaption erwirkt. Zur Berechnung der Betriebspunkte ist es 

notwendig ein Modell des Systemverhaltens aufzustellen und das Verhalten hinsichtlich ver-

schiedener, meist konfliktärer, Ziele zu quantifizieren. 

Bei der Modellierung des Systemverhaltens und der Formulierung der Ziele stellt die Absi-

cherung der Verlässlichkeit auf Grund der zunehmenden Systemkomplexität eine große 

Herausforderung dar, der im Entwicklungsprozess begegnet werden muss. Die Implementie-

rung von Selbstoptimierung bietet darüber hinaus in Kombination mit einer Zustandsüberwa-

chung im Betrieb die Möglichkeit einer zuverlässigkeitsbasierten Verhaltensanpassung, de-

ren Potential zu einer Steigerung der Verlässlichkeit genutzt werden kann. 

In dieser Arbeit werden die Entwicklung intelligenter technischer Systeme und die damit ver-

bundenen notwendigen Entwicklungsschritte zur Absicherung der Verlässlichkeit anhand von 

selbstoptimierenden Systemen betrachtet. Dazu gehören die Formulierung verlässlichkeits-

relevanter Ziele und die Implementierung einer Zustandsüberwachung als Basis für eine zu-

verlässigkeitsbasierte Verhaltensanpassung. Es werden auf Grundlage einer Beschreibung 

der Entwicklungsschritte, Potentiale zur Steigerung der Verlässlichkeit sowie Chancen und 

zukünftige Herausforderungen herausgestellt und diskutiert. 
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Intelligente technische Systeme 
Moderne maschinenbauliche Erzeugnisse sind charakterisiert durch hohe Anforderungen an 

ihre Leistungsfähigkeit und ihre Verlässlichkeit. Die Verlässlichkeit umfasst dabei unter ande-

rem die Aspekte Zuverlässigkeit, Sicherheit und Verfügbarkeit (1). Um die Leistungsfähigkeit 

zu erhöhen, wird bereits seit geraumer Zeit die klassische mechanische Struktur durch Akto-

ren, Sensoren und Informationsverarbeitung ergänzt – diese Systeme werden als mechatro-

nische Systeme bezeichnet. Durch den Einsatz leistungsfähiger Informationsverarbeitung als 

digitale Regler wird ein gezieltes Beeinflussen der Systemdynamik möglich. Darauf aufbau-

end haben sich adaptive Systeme ergeben, die sich durch eine Anpassung der Dynamik zur 

Laufzeit auszeichnen. 

Durch die zunehmende Integration von Kommunikationsfähigkeiten, von Sensoren zur Auf-

nahme der Umgebung von Produkten und durch komplexe Datenauswerteverfahren wird 

mittlerweile über die reine Adaption des Systemverhaltens hinaus eine intelligente, selbst-

ständige Anpassung des Systems an veränderte Anforderungen, veränderte Situationen und 

den Systemzustand selbst möglich. Eine Variante, diese Adaptionsintelligenz zu implemen-

tieren besteht aus der Nutzung von Selbstoptimierung. 

Problematisch bei jeglichen Formen der Erweiterung der Informationsverarbeitung ist die 

steigende Komplexität, die nicht nur durch die Software, sondern auch und insbesondere 

durch Ersetzung mechanischer Funktionalitäten durch mechatronische Komponenten steigt. 

Ein Beispiel dafür sind diverse X-by-wire-Systeme im Kraftfahrzeug, die dazu geführt haben, 

dass die Zuverlässigkeit moderner KFZ maßgeblich durch die zur einwandfreien Funktion 

notwendige Elektronik beeinflusst wird. 

Nachdem in den vergangenen Jahrzehnten einzelne Komponenten oder Systeme innerhalb 

der Produkte durch mechatronische Systeme ersetzt oder erweitert wurden, ist die aktuelle 

Herausforderung vernetzte Systeme sicher und zuverlässig interagieren zu lassen. Diese 

Kombination ermöglicht neuartige Ansätze: Daten können nicht mehr nur innerhalb eines 

Systems verarbeitet und genutzt werden, sondern werden während des Betriebs dem Nut-

zer, einer Prozessleitstelle oder dem Hersteller zur Verfügung gestellt. Auf Basis dieser Da-

ten lassen sich moderne Condition Monitoring-Verfahren anwenden, um die Zuverlässigkeit 

und Verfügbarkeit einzelner Systeme zu steigern. 

Dazu wird die Adaptionsfähigkeit nicht mehr nur zur funktionalen Adaption der Systeme ge-

nutzt, sondern auch zu einer zuverlässigkeitsbasierten Adaption. Diese ermöglicht eine An-

passung des Systems an die aktuelle Zuverlässigkeit. Die Zuverlässigkeitsanforderungen, 

die konfliktär zu leistungsbasierten Zielen sein können, werden durch eine Priorisierung die-

ser Zuverlässigkeitsziele sicherstellt. Da diese Anpassung rein auf Software-Ebene ge-
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schieht und keine weiteren Aktoren im System benötigt, ist die zusätzlich entstehende Kom-

plexität im Rahmen der Softwareentwicklung beherrschbar. Zur Entwicklung einer solchen 

zuverlässigkeitsbasierten Verhaltensanpassung sind neben der reinen Erkennung des Zu-

stands weitere Schritte notwendig, die den Entwicklungsprozess erweitern. 

 

Entwicklungsprozess selbstoptimierender technischer Systeme 
Eine wesentliche Grundlage zur Entwicklung selbstoptimierender Systeme ist die Formulie-

rung von Zielen des Systems. Mittels Mehrzieloptimierungsverfahren werden auf Basis der 

vorab definierten Ziele mögliche Betriebspunkte berechnet, zwischen denen das System 

während des Betriebs autonom wählen kann. Zur Nutzung von Mehrzieloptimierung ist aller-

dings neben der Formulierung der Ziele auch eine exakte Quantifizierung der Zielerreichung 

notwendig, die nur auf Basis eines Modells des Systemverhaltens erfolgen kann. Das Modell 

muss dabei den Zusammenhang zwischen allen zur Laufzeit veränderlichen Parametern und 

allen relevanten Zielen abdecken, was einen ganzheitlichen Modellierungsansatz erfordert. 

Es reicht nicht mehr, Teilmodelle einzelner Domänen losgelöst voneinander zu betrachten, 

sondern das Systemmodell muss alle Domänen und eventuell auch sekundäre Teilaspekte 

beinhalten, die bei einem rein zum Reglerentwurf oder zur Auslegung der mechanischen 

Struktur aufgestellten Modells nicht notwendig wären. Dies führt zu einer starken Durchmi-

schung der einzelnen Domänen Maschinenbau, Elektrotechnik, Regelungstechnik und In-

formatik innerhalb des Entwicklungsprozesses. Dabei ergeben sich insbesondere durch die 

zwangsläufig notwendigen Abstimmungen zwischen den Mitarbeitern der einzelnen Domä-

nen große Risiken in Bezug auf die Modellkonsistenz, die in allererster Linie die Verlässlich-

keit des gesamten Systems gefährden (1–3).  

Dieser Prozess erfordert die Unterstützung durch geeignete Werkzeuge zur Sicherstellung 

synchroner Modellierungen innerhalb der einzelnen Domänen. Ein für das Systemverhalten 

letztendlich maßgebliches Bindeglied stellt dabei das innerhalb der Domäne Regelungstech-

nik aufgestellte Modell des Systemverhaltens dar, das die dynamischen Eigenschaften me-

chanischer Komponenten (Elastizitäten, Massen,…), elektronische Teilsysteme (Energiever-

sorgung, Filter, Sensoren,…) mit den für das Verhalten entscheidenden Regelgesetzen und 

ihren Parametern verknüpft, die dann zur Erzeugung von Steuergerätecode dienen. Durch 

die Festlegung dieser Reglerparameter wird auch über die Lebensdauer physischer Kompo-

nenten des Systems entschieden. Denn hohe Reglerdynamik führt meist zu hohen Ge-

schwindigkeiten, Stellkräften und Strömen, zu niedrige Reglerdynamik kann dagegen unge-

wolltes Systemverhalten wie starke Überschwinger begünstigen.  Somit kann eine nicht op-

timale Reglerdynamik die zugehörigen Komponenten stark belasten und zu einer kürzeren 

VDI-Berichte Nr. 2307, 2017 19

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Lebensdauer führen. Die genutzte Reglerdynamik ist dadurch eine maßgebliche Stellgröße, 

die zwischen dynamischen Systemverhalten und seiner Zuverlässigkeit ausgewählt werden 

kann. Während der Entwicklung selbstoptimierender Systeme ist daher eine selbstständige 

Auswahl von Reglerparameter während des Betriebs auf Basis der vorab formulierten Ziele 

der Schlüssel zur Implementierung von Verhaltensadaption. Die zur Berechnung möglicher 

Betriebspunkte notwendige Quantifizierung der Zielwerte bewertet dabei das (dynamische) 

Systemverhalten, muss aber zugleich auch die gegensätzliche Zuverlässigkeit bewerten. Für 

die Abbildung beider Aspekte ist eine Integration der Zuverlässigkeitsmodellierung in das 

Verhaltensmodell geeignet. 

 

Integrierte Modellierung zur Absicherung von Verlässlichkeits- und  
Verhaltensanforderungen 
Die Absicherung von Verlässlichkeits- und Verhaltensanforderungen in selbstoptimierenden 

Systemen erfordert eine geeignete Quantifizierung der gewählten Ziele. Zur Abbildung der 

Verhaltensanforderungen (Effizienz, Betriebskosten, Performance u. a.) eignen sich bei-

spielsweise Kostenfunktionale, die das Verhalten direkt bezüglich der Ziele bewerten. Die 

Abbildung der Verlässlichkeit erfordert dem gegenüber eine eigenständige Modellierung, die 

nicht kongruent zu dem Modell des Systemverhaltens ist. Die Herausforderung ist die Model-

lierung des Zusammenhangs zwischen Systemverhalten, Degradation der Systemelemente 

und Zuverlässigkeit des Gesamtsystems. Diese Aspekte, Verhalten und Zuverlässigkeit von 

Komponenten und des Gesamtsystems, weisen eine starke Abhängigkeit auf. So verändert 

der aktuell gewählte Betriebspunkt das (dynamische) Systemverhalten und damit auch die 

wirkenden Lasten im System selbst. Die Degradation der Systemkomponenten hängt im ho-

hen Maße von diesen Belastungen ab und ist maßgeblich für die Zuverlässigkeit des gesam-

ten Systems. 

Das bisherige Vorgehen zur Modellierung der Verlässlichkeit ist eine manuelle, auf Exper-

tenwissen basierende Aufgabe, die eine allgemeine geschlossene Betrachtung des System-

verhaltens und der Verlässlichkeit im Rahmen einer Mehrzieloptimierung ausschließt (vgl. 

Bild 1 oben). In jeder Optimierungsiteration ist eine Synchronisation zwischen Verhaltens- 

und Verlässlichkeitsmodell erforderlich, die manuell nicht umsetzbar ist. Es ist daher eine 

automatisierte Ableitung eines Verlässlichkeitsmodells aus dem Modell des Systemverhal-

tens umzusetzen, um eine geschlossene Modellierung zu erreichen. So ist es möglich, Ver-

lässlichkeits- und Verhaltensanforderungen gleichermaßen in der Mehrzieloptimierung zu 

betrachten (vgl. Bild 1 unten). 
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Um die Auswirkung der sich in Abhängigkeit des gewählten Betriebspunkts ändernden Be-

lastungen auf die Degradation der einzelnen Komponenten abzubilden, werden Lebensdau-

erschätzer an relevante Komponenten annotiert und bilden zusammen mit dem Verhaltens-

modell das vollständige Systemmodell (Bild 2). Dieses Systemmodell umfasst Verhaltens- 

sowie Verlässlichkeitsaspekte, hier die Zuverlässigkeit, und wird jeweils für die aktuell ge-

wählten Optimierungsparameter simuliert. Als Eingangsgrößen müssen Soll-Trajektorien für 

das System gewählt werden, die charakteristische Betriebszustände des Systems abdecken. 

Dies ist notwendig, um das System für den Betrieb und die zu erwartenden Umgebungs- und 

Einsatzbedingungen optimieren zu können. 

 

 
Bild 1:  Vergleich der Vorgehen zur Berücksichtigung verlässlichkeitsrelevanter Ziele für die 

Mehrzieloptimierung (nach (4)). Oben: bisheriges Vorgehen. Unten: Integrierte Mo-

dellierung. 

 

Eine automatisierte Ableitung eines Verlässlichkeitsmodells aus dem Systemmodell wird 

über eine geeignete Transformation ermöglicht (4, 5). Auf Basis des Verlässlichkeitsmodells 

ist nun die Formulierung verlässlichkeitsrelevanter Zielfunktionen, die Quantifizierung des 

Systemverhaltens hinsichtlich geforderter Zuverlässigkeit, Verfügbarkeit und Sicherheit, 

möglich. 
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Indem eine geforderte Zuverlässigkeit zu einer bestimmten Nutzungsdauer schon frühzeitig 

im Entwicklungsprozess berücksichtigt wird, ist es möglich die Obsoleszenz  eines techni-

schen Systems gezielt einzustellen. Um die geforderte Nutzungsdauer auch während des 

Betriebs noch zu beeinflussen ist eine Anpassung des Systemverhaltens während des Be-

triebs notwendig. 

 
Bild 2: Modellstruktur der Integrierten Modellierung (nach (5)) 

 

Verhaltensanpassung 
Um die für die Herstellung eines technischen Systems aufgewendeten Ressourcen gut aus-

zunutzen, ist eine möglichst lange Nutzung anzustreben. Dies wird nur dann ermöglicht, 

wenn Anforderungen der Nutzer erfüllt sind und wenn das System lebensdauergerecht be-

lastet wird. Die erreichbare Lebensdauer befindet sich dabei meist im Konflikt mit den Anfor-

derungen des Nutzers an das Systemverhalten: Starke Nutzung, beispielsweise die ständige 

Nutzung in einem Bereich, in dem hochdynamische Regler mit großen Stellkräften notwendig 

sind, beansprucht das System stark und schränkt die Lebensdauer ein.  

Die unterschiedliche Belastung ähnlicher Systeme mit resultierend stark unterschiedlichen 

Lebensdauern erfordert aufwendige Wartungsplanung. Nutzung von Condition Monitoring-

Verfahren ermöglicht dabei eine Vorhersage der verbleibenden Nutzungsdauer, die als Basis 

einer zustandsbasierten Instandhaltung bzw. vorausschauender Wartung genutzt werden 

kann. Problematisch dabei ist, dass optimale Ressourcennutzung möglichst späte Wartung 

kurz vor dem tatsächlichen Schadenseintritt erfordert, was die Wartungsplanung zusätzlich 

kompliziert. 

Um dies zu erleichtern, kann die Verhaltensanpassungsfähigkeit selbstoptimierender Syste-

me zur Sicherstellung einer vorab definierten Lebensdauer genutzt werden. Diese schränkt 

dabei die anderen Ziele des Systems so weit ein, dass die gewünschte Lebensdauer mög-

lichst gut erreicht wird – zugleich aber nur so weit, dass eine bestmögliche Leistungsfähigkeit 

erhalten bleibt. Als Grundlage dient dabei die Formulierung von mindestens zwei Zielen: Ei-

nes muss die Zuverlässigkeit des Systems abbilden, das andere seine Leistungsfähigkeit. 
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Hat ein System mehrere kritische Komponenten, die eventuell sogar selbst konfliktär sind, 

sind weitere Ziele notwendige. Dies ist der Fall bei allen Systemen mit Redundanz, da dabei 

mehrere Komponenten oder Teilsysteme die gleiche Teilfunktion erbringen, aber unter-

schiedliche stark geschädigt werden. Ebenso muss bei mehreren Leistungsfähigkeitszielen 

die Menge aller Ziele erweitert werden (6). 

Für den Fall je eines Zieles findet während des Betriebs eine Abwägung der beiden Ziele 

gegeneinander statt. Dazu wurden Regelungsverfahren entwickelt, die auf einem Health In-

dex basieren (7). Er ist ein Maß für die Fähigkeit des Systems, weitere Schädigung zu ertra-

gen. Bei einem neuen System ist der Health Index 1, bei einem verbrauchten System zum 

Zeitpunkt des Schadenseintritts 0. Der gewünschte Health Index wird dabei als zeitveränder-

licher Sollwert vorgegeben. Typischerweise ist er streng monoton fallend, Ausnahmen be-

stehen allerdings für Systeme mit Selbstheilung (beispielsweise Brennstoffzellen, in denen 

sich die Membran während Ruhezeiten chemisch selbst regeneriert). Die Definition des Zeit-

verlaufs basiert dabei auf einer Zuverlässigkeits-Zeit, die nicht mit der tatsächlichen Zeit kor-

relieren muss, und beispielsweise bei Luftfahrzeugen auf Flugstunden oder bei zyklisch be-

lasteten Komponenten auf der Anzahl Betriebszyklen basieren kann. Während des Betriebs 

wird der aktuelle Health Index des Systems bestimmt und als Istwert genutzt. Das selbstop-

timierende System erbringt dann die Funktionalität eines Reglers, der Soll- und Istwert ver-

gleicht und das Verhalten so vorgibt, dass der gewünschte Health Index erreicht wird (6). 

Die Verwendung des Health Index ist für Ausfallarten basierend auf einem Degradationsver-

halten geeignet. Um Zufallsausfällen, also Ausfallarten ohne erkennbarer Degradation, zu 

begegnen, wurde ein mehrstufiges Verlässlichkeitskonzept entwickelt. Hier werden online 

Diagnoseverfahren genutzt, um das Systemverhalten und Umfeldbedingungen zu analysie-

ren und mögliche Komponentenausfälle zu identifizieren. Um aufgetretenen Fehlern zur 

Laufzeit zu begegnen, wird unter Ausnutzung der Adaptionsfähigkeit das Systemverhalten, 

beispielsweise mit Hilfe von Rekonfiguration, angepasst (8). 

 

Condition Monitoring zur Erkennung des aktuellen Zustands 
Condition Monitoring oder die Zustandsüberwachung eines technischen Systems beinhaltet 

die kontinuierliche oder regelmäßige Datensammlung aus einem Netz von Sensoren oder 

Betriebsdaten, um den Zustand eines Systems während des Betriebs zu schätzen. Condition 

Monitoring kann entweder im Aktiv- oder Passiv-Modus durchgeführt werden. Im Aktiv-

Modus wird das System mit einer definierten Anregung periodisch ausgeregt. Dieser Ansatz 

wird für statische, quasi-statische Systeme oder Systeme mit stochastischer Anregung ver-

wendet, da keine definierte, kontinuierliche Systemantwort gemessen werden kann. Beispie-
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le für solche Systeme sind Strukturen wie Windkraftanlagen, Brücken, Flugzeugrümpfe und 

Kräne. Auf der anderen Seite weisen die meisten dynamischen Systeme eine gut definierte 

Antwort auf, die während des Betriebs gemessen werden können. Die gewonnenen Daten 

werden verarbeitet, um Zustandskennzahlen, die verschiedenen Zuständen des Systems 

(Health States) zugeordnet sind, zu identifizieren. Diese können nachfolgend als Eingangs-

signal zur Wartungsentscheidung oder für zuverlässigkeitsadaptive Systeme verwendet wer-

den. Dadurch kann die Zuverlässigkeit, Verfügbarkeit und Sicherheit des Systems erhöht 

werden. Typische Condition Monitoring-Ansätze auf Basis verfügbarer Daten und Systemin-

formationen werden im Folgenden erörtert (10). 

 

1) Modellbasiertes Condition Monitoring 

Bei dieser Methode wird ein Systemmodell genutzt, das die Degradation abbildet. Es basiert 

auf einer vollständigen Beschreibung des Systems und der Degradationsvorgänge. Die Vari-

ablen des Systemmodells, die mit Fehlerarten korrelieren, können dann durch Simulation 

des Systemmodells unter Berücksichtigung der Nutzung und der Umgebung, evaluiert wer-

den. Somit wird eine Zustandserkennung möglich. Bild 3 zeigt die Elemente eines modellba-

sierten Ansatzes zur Zustandserkennung. Modellbasierte Verfahren können leicht in zuver-

lässigkeitsadaptive Systeme integriert werden und sollten die erste Wahl sein, wenn ein Sys-

temmodell zur Verfügung steht. Allerdings erfordert die Modellentwicklung ein umfassendes 

Verständnis des Systems, wobei große, komplexe Systeme eine Herausforderung darstellen. 

Die Simulation komplexer Systemmodelle kann zudem sehr rechenintensiv sein, sodass die 

umsetzbare Modellkomplexität abhängig ist von der zur Verfügung stehenden Rechenleis-

tung. Auf Grund einer komplexitätsbedingt hohen Simulationsdauer ist dieser Ansatz nicht für 

Systeme mit sehr kurzen Lebensdauern geeignet. 

 

 
Bild 3: Modellbasierte Zustandserkennung 

 

2) Datengetriebenes Condition Monitoring mittels maschineller Lernverfahren 
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Datengetriebene Methoden verwenden Maschinenlernverfahren, um Zustandsüberwa-

chungsdaten auf eine Zustandskennzahl, die mit der Degradation des Systems korreliert, 

abzubilden. Diese Modelle basieren ausschließlich auf Messdaten, wodurch keine tiefgehen-

de Kenntnis des Systems notwendig ist (9). Maschinenlernverfahren, wie neuronale Netze, 

Support Vector Machines (SVM), Klassifikations- und Regressionsbäume, Random Forests 

u. ä., können verwendet werden. Die Verfahren werden zunächst offline zum Anlernen eines 

Modells genutzt. Dabei wird ein Modell erstellt, das Zustandsüberwachungsdaten auf ein Ziel 

(Zustandskenn (11)zahl) abbildet (Bild 4). Dazu sind sowohl Zustandsüberwachungsdaten 

als auch Zustandskennzahl als Trainingsdaten notwendig. Das Modell kann dann online mit 

Zustandsüberwachungsdaten eines ähnlichen Systems verwendet werden, um den aktuellen 

Zustand in Echtzeit zu schätzen (12). 

 

 
Bild 4: Allgemein Nutzung von maschinellem Lernverfahren zur Zustandsüberwachung 

 

3) Hybrides Condition Monitoring 

Um die Genauigkeit der Zustandserkennung zu erhöhen, kann ein Hybridansatz mit modell-

basierten und datengetriebenen Modellen verwendet werden. Die Kombination kann durch 

unterschiedliche Methoden, sowie gewichtete Mehrheitsentscheidung durchgeführt werden, 

wobei jeweils die Vorteile der verwendeten Modelle genutzt werden (13). 

 

Zukünftige Herausforderungen 
Selbstoptimierung ist eine vielversprechende Möglichkeit zur Steigerung der Verlässlichkeit 

mechatronischer Systeme, die sich bereits bei Laborversuchen bewährt hat (7, 14) und die 

Anwendungsreife erlangt hat. Dies wurde unter anderem durch leistungsfähige Condition 

Monitoring-Systeme ermöglicht. Durch gezielte Softwareunterstützung des Entwicklungspro-

zesses können fehleranfällige manuelle Synchronisierungsprozesse reduziert werden (4, 5). 
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Dennoch bleibt die Komplexität selbstoptimierender Systeme hoch und im zugehörigen Ent-

wicklungsprozess müssen Aspekte zahlreicher Domänen zugleich berücksichtigt werden. 

Eine besondere Herausforderung stellt dabei die Nutzung der Mehrzieloptimierung zur Be-

rechnung möglicher Betriebspunkte dar. Die dabei notwendigen Zielfunktionen müssen auf 

Basis eines Modells des Systemverhaltens quantifiziert werden. Dies bedingt einerseits eine 

detaillierte Modellierung des Systemverhaltens, andererseits, bedingt durch zahlreiche Aus-

wertungen und Simulationen durch den Optimierungsalgorithmus, schnelle Rechenzeit. Die-

ser Konflikt wird durch die Art der genutzten Modelle erschwert: Das (dynamische) Verhalten 

des Systems wird typischerweise mit spezialisierten Programmen modelliert und simuliert, 

beispielsweise als Mehrkörperdynamikmodell. Diese Modelle können zwar in einer Mehrzie-

loptimierung genutzt werden, bedingen durch die eingeschränkte Verfügbarkeit des Gradien-

ten der Zielfunktionen jedoch noch einmal mehr Auswertungen und höhere Rechenzeit wäh-

rend der Optimierung. 

Nach dem aktuellen Stand der Technik, ist es nicht möglich, die Gültigkeit eines Condition 

Monitoring-Systems ohne ein bestehendes Anwendungssystem zu gewährleisten, da Trai-

ningsdaten benötigt werden. Um diese Abhängigkeit bei der Entwicklung eines Condition 

Monitoring-Systems in der Entwicklungsphase eines Anwendungssystems zu beseitigen, 

sollte ein modellbasierter Ansatz gleichzeitig mit dem Entwurf des Anwendungssystems ent-

wickelt werden. Mit dem Systemmodell können Trainingsdaten zur Auswertung des Conditi-

on Monitoring-Systems generiert werden. Alle möglichen Fehlerarten sollten berücksichtigt 

und in das Systemmodell aufgenommen werden, um die Zustandserkennung zu ermöglichen 

(15). 

Um Verlässlichkeitssteigerung im Betrieb durch autonome Verhaltensanpassung weiter zu 

verbreiten ist eine weitere Herabsetzung der komplexitätsbedingten Hürden bei der Imple-

mentierung von Condition Monitoring-Systemen und insbesondere bei der Auswahl geeigne-

ter Messgrößen und Algorithmen durch softwareunterstütze Methoden notwendig. 

  

Chancen 
Erst die Verfügbarkeit kleiner, leistungsfähiger Recheneinheiten ermöglichte den Übergang 

von der Mechanik zur Mechatronik. Der nächste Schritt hin zu vernetzten, adaptiven und 

letztlich intelligenten Systemen wurde auch erst durch die weitere Miniaturisierung ermög-

licht. Mit dem Anhalten des Trends zu immer leistungsfähigeren, kleinen, energiesparenden 

Prozessoren mit mehreren Kernen steigt auch die Verfügbarkeit von Rechenleistung. Wäh-

rend vor kurzem noch ein Supercomputer zur Mehrzieloptimierung mechatronischer Systeme 

notwendig war, kann dies mittlerweile ein leistungsfähiger Arbeitsplatzrechner durchführen. 
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In absehbarer Zeit werden diese Berechnungen sogar auf im System ohnehin verfügbarer 

Hardware, etwa gerade nicht ausgelasteten Steuergeräten, durchgeführt werden können. 

Dadurch ergibt sich eine neue Stufe der Adaptionsfähigkeit: Statt einer reinen Auswahl zwi-

schen vorab berechneten Betriebspunkten ist nun auch eine Neuberechnung möglich. Damit 

einher geht eine Berücksichtigung neuer Ziele, neuer Umgebungsbedingungen oder die In-

tegration neuer Komponenten. 

Die Integration von echtzeitfähigen Netzwerkschnittstellen und der Austausch von Sensorda-

ten oder Sollwerten über diese ermöglicht auch eine Erweiterung des Datenaustauschs um 

Eigenschaften einzelner Komponenten. So könnte bei einer Wartung eine defekte Kompo-

nente gegen eine neue getauscht werden, die ihre veränderten Eigenschaften an die ande-

ren Komponenten weitergibt und eine Neuberechnung aller Betriebspunkte initiiert. Die Nut-

zung dieser Möglichkeiten würde damit eine ständige Adaption des Systems und einen je-

derzeit optimalen Betrieb gewährleisten. 

Derzeitige Wartungsstrategien sind auf solche Systeme noch nicht vorbereitet. Der aktuelle 

Stand der Technik geht von einer verschleißgetriebenen Wartungsplanung aus, in der auf 

das Ausfallverhalten der Systeme nur reaktiv eingegangen wird. Bei klassischer zustandsba-

sierter Instandhaltung schränkt die Verfügbarkeit von Wartungsteams die real erreichbare 

Verfügbarkeit stark ein. Soll, was zur bestmöglichen Ressourcennutzung erstrebenswert ist, 

möglichst spät gewartet werden, steigt die Gefahr der Nicht-Verfügbarkeit von Wartungs-

teams und eines vermeidbaren Ausfalls vor der Wartung. Zuverlässigkeitsbasierte Verhal-

tensanpassung auf der anderen Seite ergänzt das Condition Monitoring um den Rückschluss 

zum Systemverhalten, sodass der Ausfallzeitpunkt vorgegeben werden kann und die War-

tung besser planbar wird. Dies in einen Wartungsplan zu integrieren und die entstehende 

Verfügbarkeit zu berechnen ist ein derzeit noch ungelöstes Problem. 

Die Verwendung von Betriebsdaten, in der Regel für die Leistungsüberwachung eingesetzt, 

kann auch für die Zustandsüberwachung mittels Big Data Analytics verwendet werden. Big 

Data Analytics untersucht große Mengen an Daten unterschiedlicher Arten, um Muster, Kor-

relationen und andere Erkenntnisse aufzudecken. 

Die Weiterentwicklung und Verbreitung von Sensor- und Informationstechnik, das Internet of 

Things, Remote-Condition-Monitoring und die Verknüpfung mit Big Data Analytics ermögli-

chen detaillierteres Systemverständnis und tragen zu einem verlässlicheren Betrieb von au-

tark agierenden technischen Systemen bei. 
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Zusammenfassung/Ausblick 
Die Entwicklung intelligenter, technischer Systeme mit den Methoden der Selbstoptimierung 

führt zu einer Steigerung der Komplexität dieser Systeme und damit zu einer Gefährdung für 

die Verlässlichkeit. Der steigenden Komplexität kann mit geeigneten Modellierungswerkzeu-

gen in frühen Phasen des Entwicklungsprozesses begegnet werden. Die systeminhärente 

Intelligenz, implementiert als Selbstoptimierung, ermöglicht eine zuverlässigkeitsbasierte 

Verhaltensanpassung während des Betriebs auf Basis des aktuellen Zustands des Systems. 

Die Umsetzbarkeit intelligenter Systeme ist durch die stark gestiegene verfügbare Rechen-

leistung in der Informationsverarbeitung ermöglicht worden und führt zu Systemen wie (teil-) 

autonomen Fahrzeugen und Produktionsanlagen in der Industrie 4.0. 

Neben der gestiegenen Rechenleistung ist ein weiterer Schlüsselfaktor die Verbreitung von 

(vernetzten) Sensoren im Rahmen der Industrie 4.0 und dem Internet of Things, die in Kom-

bination mit Big Data-Methoden ein tiefergehendes Systemverständnis ermöglichen. Durch 

die weitere Verbreitung dieser zwei Faktoren ist es möglich das Potential intelligenter Syste-

me stärker nutzbar zu machen während zudem ihre Verlässlichkeit gesteigert werden kann. 

 

VDI-Berichte Nr. 2307, 201728

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Quellen 
1. GAUSEMEIER, J., F.-J. RAMMIG und W. SCHÄFER. Sonderforschungsbereich 614 - 

Selbstoptimierende Systeme des Maschinenbaus: Verlässlichkeit selbstoptimierender 

Systeme -Definitionen, Anwendungen, Konzepte: Heinz Nixdorf Institut, Universität Pa-

derborn, 2009. 234. 

2. GAUSEMEIER, J., F.-J. RAMMIG, W. SCHÄFER und W. SEXTRO. Dependability of 

Self-optimizing Mechatronic Systems: Springer-Verlag, 2014. 

3. GAUSEMEIER, J., F.-J. RAMMIG und SCHÄFER W. Design Methodology for Intelligent 

Technical Systems: Springer-Verl, 2014. 

4. KAUL, T., T. MEYER und W. SEXTRO. Integrierte Modellierung der Dynamik und der 

Verlässlichkeit komplexer mechatronischer Systeme. In: J. GAUSEMEIER, R. DUMIT-

RESCU, F.J. RAMMIG, W. SCHÄFER und A. TRÄCHTLER, Hg. 10. Paderborner Work-

shop Entwurf mechatronischer. Paderborn: Heinz Nixdorf Institut, Universität Paderborn, 

2015. 

5. KAUL, T., T. MEYER und W. SEXTRO. Integrated Model for Dynamics and Reliability of 

Intelligent Mechatronic Systems. In: PODOFILLINI ET AL, Hg. European Safety and Re-

liability Conference (ESREL2015). London: Taylor and Francis, 2015. 

6. MEYER, T. Optimization-based reliability control of mechatronic systems. Dissertation: 

Paderborn. 

7. MEYER, T., C. SONDERMANN-WÖLKE, J.K. KIMOTHO und W. SEXTRO. Controlling 

the Remaining Useful Lifetime using Self-Optimization. Chemical Engineering Transac-

tions, 2013, 33, 625-630. 

8. SONDERMANN-WÖLKE, C. Entwurf und Anwendung einer erweiterten Zustandsüber-

wachung zur Verlässlichkeitssteigerung selbstoptimierender Systeme, 2015. 

9. GOEBEL, K., A. SAXENA, M. DAIGLE, J. CELAYA, I. ROYCHOUDHURY und S. 

CLEMENTS. Introduction to prognostics. In: European PHM conference, 2012. 

10. KIMOTHO, J.K. Development and Performance Evaluation of Prognostic Approaches 

for Technical Systems. Dissertation. 

11. BUSCHMEYER, L. Grundlagen und Anwendungspotential elektroaktiver Polymere: 

Heinz Nixdorf Institut, Paderborn, Jan 06. 

12. KIMOTHO, J.K., C. SONDERMANN-WOELKE, T. MEYER und W. SEXTRO. Machinery 

Prognostic Method Based on Multi-Class Support Vector Machines and Hybrid Differen-

tial Evolution ‐ Particle Swarm Optimization [online]. Chemical Engineering Transac-

tions, 2013, 33, 619-624. Verfügbar unter: doi:10.3303/CET1333104 

VDI-Berichte Nr. 2307, 2017 29

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


13. SANKAVARAM, C., B. PATTIPATI, A. KODALI, K. PATTIPATI, M. AZAM, S. KUMAR 

und M. PECHT. Model-based and data-driven prognosis of automotive and electronic 

systems. In: 2009 IEEE International Conference on Automation Science and Engineer-

ing, 2009, S. 96-101. 

14. MEYER, M., A. UNGER, S. ALTHOFF, W. SEXTRO, M. BRÖKELMANN, M. HUNSTIG 

und K. GUTH. Reliable Manufacturing of Heavy Copper Wire Bonds Using Online Pa-

rameter Adaptation. In: IEEE 66th Electronic Components and Technology Conference, 

2016, S. 622-628. 

15. MEYER, T., J.K. KIMOTHO und W. SEXTRO. Anforderungen an Condition-Monitoring-

Verfahren zur Nutzung im zuverlässigkeitsgeregelten Betrieb adaptiver Systeme. In: 27. 

Tagung Technische Zuverlässigkeit (TTZ 2015) - Entwicklung und Betrieb zuverlässiger 

Produkte. Leonberg, 2015, S. 111-122. 

VDI-Berichte Nr. 2307, 201730

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


 

 

Anwendung datenbasierter Methoden  
auf Werkzeugmaschinendaten  
zur Abweichungserkennung vom  
Normalbetrieb 
 

Dipl.-Ing. (FH) J. Fisch, Dr.-Ing. M. Rossdeutscher,  
Daimler AG, Stuttgart; 
Prof. Dr.-Ing. C. Diedrich,  
Otto-von-Guericke-Universität, Magdeburg 
 

 

Kurzfassung 

Dieser Beitrag stellt eine Methode zur Definition der Soll-Referenz aus Produktionsdaten vor. 

Ziel ist es, Abweichungen vom Normalbetrieb einer Anlage zu erkennen. Dazu wird auf die 

generellen Schritte der Studie wie Gewinnung, Vorverarbeitung und Aufbereitung der Daten 

eingegangen. Anschließend wird eine Signalabstraktion, welche das Signal in Form von sta-

tistischen Kennzahlen beschreibt, erläutert. Die Methode wird auf binäre Steuerungsdaten 

angewendet. Auf Basis von Kennzahlen wird eine Soll-Referenz der Produktionsanlage defi-

niert. Mit Hilfe der Soll-Referenz können die Produktionsdaten in Normal- und Abweichungs-

takte unterschieden werden. Die entwickelte Methode wird mit einem Anwendungsszenario 

von einer Werkzeugmaschine aus der Motorenkomponenten-Produktion validiert. 

 

1. Einleitung 

Der Komplexitätsgrad von Produktionsanlagen steigt im Zuge der Digitalisierung weiter an 

[1]. Dies äußert sich dadurch, dass Produktionsanlagen kontinuierlich große Mengen an ver-

schiedenen Daten erzeugen, welche nur teilweise ausgewertet werden [2]. Bei dem heutigen 

Automatisierungsgrad in der Serienproduktion der Automobilindustrie ist das Verhalten von 

Maschinen daher nur schwer und mit zunehmendem Zeitaufwand von Einzelpersonen zu 

überblicken [3, 4]. 

Große Datenmengen können meist nicht mehr mit herkömmlichen Methoden analysiert wer-

den, daher werden Big-Data-Analysen benötigt um komplexe Systeme zu beherrschen. Ein 

Teilgebiet von Big-Data-Analysen sind datenbasierte Methoden, welche unmittelbar auf Da-
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ten angewendet werden können und dem Menschen die Informationen in verständlicher 

Form bereitstellen [4 bis 6].  

In bisherigen Veröffentlichungen der Zustandsüberwachung von Produktionsanlagen wird die 

Rohdatenvisualisierung, Auswertung von wenigen Signalen und manuelle Festlegung von 

Alarmgrenzwerten als Funktion realisiert. Um das Verhalten von Produktionsanlagen ganz-

heitlich zu beschreiben, müssen alle Daten einer Maschine automatisch analysiert werden. 

Eine adaptierbare Lösung ist in der Literatur nicht vorhanden [6 bis 9]. Grundlage einer Da-

tenauswertung sind statistische Kennzahlen und deren Grenzwerte, welche eine objektive 

Beurteilung, einen Soll-Ist-Vergleich und die Erfassung von Zusammenhängen ermöglichen 

[10].  

Auf die grundlegenden Schritte der Datenverarbeitung und verwendeten Kennzahlen wird in 

Kapitel 2 eingegangen. Anschließend wird im Kapitel 3 eine Methode vorgestellt, um den 

Normalzustand der Maschine automatisch zu definieren und eine Abweichungserkennung 

von Produktionstakten durchzuführen. 

 

2. Grundlegende Schritte der Datenverarbeitung 

In den folgenden Abschnitten wird ein Konzept zur Datenverarbeitung vorgestellt, welches 

mit MATLAB umgesetzt wurde. Zuerst wird auf die Auswahl der Rohdaten eingegangen. Auf 

Grundlage der Rohdaten wird die Datenverarbeitung durchgeführt, welche die Daten einliest, 

aufbereitet, aussortiert und anschließend in Kennzahlen umwandelt, siehe Bild 1. Die Kenn-

zahlen sind ein notwendiger Bestandteil des Konzepts zur Bildung von Grenzwerten, wel-

ches in Abschnitt 3.1. verdeutlicht wird. 

 
Bild 1: Schritte der Datenverarbeitung 

 

2.1. Rohdaten 

Im Rahmen von Industrie 4.0 wird vermehrt von den vorhandenen, aber nicht ausgewerteten  

Datenmengen gesprochen. Bereits durchgeführte Analysen in der Motorenkomponenten-

Produktion ergaben eine Vielzahl von Datenerfassungssystemen. Eine anschließende Aus-

wertung zeigte, dass keines der Systeme Daten zur Beschreibung des gesamtheitlichen 
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Verhaltens von einer Maschine beinhaltet. Das einzige System, welches eine begrenzte An-

zahl an Informationen von Zustandsdaten der Maschine ausgibt, ist ein Betriebsdatenerfas-

sungssystem. Dieses System erfasst Daten wie Stückzahlen, Betriebszustände, Störgründe 

und Taktzeiten.  

 
Bild 2: Prinzip des Prozessabbildes einer Steuerung [11] 

Weitere Analysen zeigten, dass die Daten der Sensoren und Aktoren einer Maschine geeig-

net sind um das Maschinenverhalten zu beschreiben. Die in Bild 2 dargestellten Daten aus 

der Feldebene spiegeln sich im Prozessabbild der Steuerung und können aus der Steue-

rungsebene aufgezeichnet werden. 

 
Bild 3: Auszug Datenerfassung 

Die Rohdaten des ausgewählten Untersuchungsobjektes bestehen aus 238 Sensoren und 

146 Aktoren, welche z.B. das Bauteil im Greifer spannen, die Ladeluke öffnen oder den 

Kühlschmierstoffdruck überwachen. Die Daten werden mit einer Abtastrate von durchschnitt-

lich 100 ms erfasst. Die Steuerungsdaten sind Binärdaten, es können nur die Werte „0“ oder 

„1“ angenommen werden. Die erfassten Daten jedes Parameters werden in einer CSV-Datei 

für jeden Tag gesammelt, welche rechnerisch 864.000 Abtastzeitpunkte und 330 Mio. Werte 
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beinhaltet. Ein schematischer Aufbau der Aufzeichnung ist in Bild 3 dargestellt. Die erzeugte 

Datenmenge für eine Maschine liegt bei knapp 1 GB pro Tag. Skaliert auf 150 Maschinen für 

ein Jahr werden 54 TB erzeugt. 

 

2.2. Signalaufbereitung 

Nach dem Einlesen der Rohdaten in die Entwicklungsumgebung werden die Signale in  den 

folgenden Schritten aufbereitet. 

1. Produktionsdateneinteilung: Das Konzept baut auf einer taktgebundenen Auswertung 

auf. Daraus resultiert eine Vergleichbarkeit von Produktionstakten. Die Einteilung der 

Takte erfolgt durch ein Bit in der Steuerung, das beim Ablegen des Fertigteils gesetzt 

wird. Die schematische Einteilung von Takten ist in Bild 4 erkennbar. 

 
Bild 4: Schematische Produktionstakteinteilung 

2. Bewertung von Takten: Die Takte sind auf Betriebszustand, Logistikstörung, technische 

Störung, Kontrollfahrt und Zeitsynchronisation zu bewerten. Für die Identifikation wird die 

vorhandene Betriebsdatenerfassung genutzt. Takte mit einem dieser Zustände werden in 

diesem Beitrag nicht verwendet. Zusätzlich werden Takte mit niedrig qualitativen Daten 

aussortiert. Dieses können Takte mit Datenlücken, zu großen Abständen der Abtastzeit-

punkte oder nicht chronologische Zeitstempel sein. 

3. Variantenzuordnung zu Takten: Damit Takte verglichen werden können, muss jedem 

Takt die Bauteilvariante zugeordnet werden. Es werden nur Takte der gleichen Bauteilva-

rianten miteinander verglichen. 

4. Ermittlung der Datentypen je Parameter: Auf Basis der vorhandenen Daten wird eine 

automatische Bestimmung des Datentyps für jeden Parameter vorgenommen. Mögliche 

Datentypen können Bool, Integer, Double und String sein. In diesem Beitrag wird aus-

schließlich auf den Datentyp Bool eingegangen.  
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Die Ergebnisse der Signalaufbereitung sind aufbereitete Produktionstakte. Die Schritte der 

Signalaufbereitung sind bei Big-Data-Analysen grundsätzlich notwendig. 

 

2.3. Bildung von Kennzahlen 

Unter einer Kennzahl wird eine Zuordnung von Werten zu Informationen verstanden, welche 

hauptsächlich Anwendung in betriebswirtschaftlichen Prozessen findet. Im entwickelten Kon-

zept handelt es sich um absolute Kennzahlen, da diese quantitativ die Zeitreihe des Produk-

tionstaktes beschreiben. Die in diesem Beitrag vorgestellten Kennzahlen sind beispielhaft für 

die Signalbeschreibung ausgewählt.  

Für die Auswertung von binären Signalen werden drei grundlegende Kennzahlen verwendet. 

Der erste Kennzahltyp ist die Anzahl der Flankenwechsel, ein Flankenwechsel besteht aus 

der Zustandsänderung des Signals von „0“ zu „1“ oder „1“ zu „0“. Der zweite Kennzahltyp ist 

die Dauer eines Intervalls, wobei ein Intervall nur Werte von „0“ oder „1“ beinhaltet. Sobald 

ein Zustandswechsel eintritt, wird ein neues Intervall berechnet. Auf diese Weise beginnt die 

Berechnung beim ersten Abtastpunkt eines Wertes und endet beim letzten Punkt des glei-

chen Wertes. Es kann je nach Parameter eine unterschiedliche Anzahl an Intervallen geben. 

Der dritte Kennzahltyp ist die Aufsummierung von den Zeitdauern der Intervalle. Folgender-

maßen werden alle Intervalle mit dem Wert „0“ summiert und genauso alle mit dem Wert „1“. 

Die Umsetzung der Kennzahlenberechnungen für einen Produktionstakt und einen Parame-

ter ist in Bild 5 beispielhaft dargestellt. 

 
Bild 5: Beispiel eines Produktionstaktes mit Kennzahlen 

Durch die Abstraktion der Zeitreihe in Kennzahlen entsteht ein statistisch vergleichbares 

Maß, welches die Grundlage der Abweichungserkennung ist. 
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3. Konzept zur Abweichungserkennung vom Normalbetrieb einer Produktionsanlage 

In diesem Abschnitt wird auf Basis der Kennzahlen eine Methode zur Definition der Soll-

Referenz aus Kennzahlen vorgestellt. Weiterführend wird das Verfahren der Abweichungser-

kennung erläutert und die Abweichung in einem Produktionstakt mittels Intervallkennzahlen 

der Parameter eingegrenzt. Ein Überblick über die Vorgehensweise in diesem Abschnitt gibt 

Bild 6. Die entwickelte Methode basiert auf den Untersuchungen von Boronenko [12]. 

 
Bild 6: Schritte der Abweichungserkennung 

 

3.1. Bildung der Soll-Referenz 

Die Soll-Referenz beschreibt den ermittelten Normalzustand in Takten von Daten einer Pro-

duktionsanlage. Diese wird während der Trainingsphase berechnet und beinhaltet die 

Grenzwerte der Kennzahlen aller Parameter. Für die Definition der Grenzwerte sind Kenn-

zahlen einer repräsentativen Stichprobenmenge von Produktionstakten zu verwenden, wel-

che die Kriterien aus Abschnitt 2.2 erfüllen.  

Um die Grenzen von Kennzahlen robust zu definieren, ist bei der Auswahl einer universellen 

Grenzwertmethode die Verteilungsform aller Kennzahlen zu berücksichtigen. Analysen der 

Normalverteilung mittels des Shapiro-Wilk und Anderson-Darling Tests ergaben, dass durch-

schnittlich 48,17 % der Kennzahlen nicht normalverteilt sind. Die Analysen basieren auf einer 

Menge von 444 Kennzahlen über 225 Takte. Eine exemplarische Veranschaulichung der 

grafischen Analyse einer Normalverteilung mittels QQ-Plot und Histogramm für eine nicht 

normalverteilte Kennzahl ist in Bild 7 dargestellt. 
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Bild 7: Grafische Untersuchung der Normalverteilung einer Kennzahl 

Die Normalverteilung kann nicht für alle Kennzahlen angenommen werden, daher wurde der 

Interquartilsabstand als robuste Grenzwertmethode ausgewählt. Der obere Grenzwert wird 

nach der Formel OG = Q3 + k * (Q3 - Q1) berechnet. Der untere Grenzwert wird nach der 

Formel UG = Q1 - k * (Q3 - Q1) definiert. Die angewendete Methode basiert auf den Lagepa-

rametern, unteres (Q1) und oberes Quartil (Q3), einer Verteilung. Die Differenz zwischen die-

sen statistischen Kennzahlen wird als Interquartilsabstand (IQA) bezeichnet. Der IQA um-

fasst 50% der zentralen Werte der Datenreihe und charakterisiert die Streuung von Werten 

innerhalb des Intervalls. Der k-Faktor kann als k = 1,5 für explorative Studien und als k = 3,5 

für konfirmative Studien gewählt werden [13]. Die Grenzwertbestimmung von Kennzahlen 

gehört zur explorativen Statistik. Auf der Grundlage von Hedderich und Sachs wurde daher 

ein k-Faktor von 1,5 gewählt. Als Beispiel wird in Bild 8 eine Kennzahl mit unterschiedlichen 

k-Faktoren, Q1, Q3, OG und UG des k-Faktors von 1,5 dargestellt.  
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Bild 8: Exemplarische Grenzwertbildung für eine Kennzahl 

Die mittels Interquartilsabstand gebildeten Grenzwerte repräsentieren dabei die am häufigs-

ten aufgetretenen, ähnlichen Kennzahlwerte.  

 

3.2. Abweichungserkennung 

Nach erfolgreicher Trainingsphase kann anschließend die Testphase erfolgen, dabei wird ein 

Soll-Ist-Vergleich vorgenommen. Um eine Abweichungserkennung durchzuführen wird die 

Soll-Referenz für den Vergleich mit den Kennzahlen der Ist-Takte herangezogen. Das Er-

gebnis einer Abweichungserkennung ergibt entweder einen Normaltakt oder einen Abwei-

chungstakt. Ein Abweichungstakt liegt vor, sobald eine Kennzahl des Takts außerhalb der 

Grenzwerte der Soll-Referenz liegt.  

Wie in Bild 9 grafisch anhand von zwei Takten des Parameters a ersichtlich ist, weicht die 

Kennzahl des zweiten Intervalls leicht ab. Ab dem zweiten Intervall in Takt 4 entsteht eine 

Zeitverschiebung des Signalverlaufs. Takt 1 und Takt 4 waren beides Takte in der Trainings-

phase, jedoch wurde Takt 4 als abweichend gekennzeichnet und liegt rund 6 s außerhalb 

des oberen Grenzwertes für den beispielhaften Parameter a von Intervall 2. Dieses zeigt, 

dass der Bearbeitungsprozess an der Maschine mit den Schwankungen erfolgt und die Pro-

duktionstakte nicht vollständig identisch zueinander sind.  
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Bild 9: Vergleich von Signalverläufen des Parameter a in zwei Takten 

 

3.3 Visualisierung von zeitlichen Abweichungen 

Im nächsten Schritt wird zusätzlich zur Abweichungserkennung von Takten die zeitliche 

Identifizierung von Abweichungen im Takt vorgenommen. Hierbei werden die abweichenden 

Parameter in einem abweichenden Produktionstakt untersucht und durch die Schnittmenge 

wird der Abweichungszeitraum identifiziert. Ein abweichendes Intervall eines Parameters 

kann durch ein normales Intervall eines anderen Parameters in der zeitlichen Abweichung 

eingegrenzt werden. Mithilfe einer großen Anzahl an Parametern können so Abweichungs-

zeiträume genauer als mit einzelnen Parametern lokalisiert werden. Zusätzlich werden die 

Abweichungsintervalle gewichtet, umso länger ein Intervall ist, desto weniger fließt dieser in 

die Bewertung mit ein.  

Durch die übergreifende Auswertung von Parameterabweichungen lässt sich die Abwei-

chung in einem Produktionstakt eingrenzen und genauer lokalisieren. Die grafische Überset-

zung von Parameterabweichungen zu Taktabweichungen ist als Ausschnitt in Bild 10 darge-

stellt. Die oberen, rot gekennzeichneten vier Parameter sind in unterschiedlichen Intervallen 

abgewichen. Die Zusammenfassung als Takt im unteren Teil des Bildes zeigt zwei Abwei-

chungen in den Bereichen von 94 bis 122 s und von 180 bis 205 s. Eine Erwartung bei der 

Beurteilung von Bild 10 des einzelnen Parameters 4 ist eine Abweichung in dem Zeitraum 

von 41 bis 129 s des Taktes. Mittels der Kombination von Parameter 4 und 2 kann hingegen 

eine Abweichung in den ersten 95 s ausgeschlossen werden, da Intervall 2 und 3 von Para-

meter 2 einem Normalverlauf entsprechen und somit die Abweichung für diesen Zeitbereich 

aufheben. 
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Bild 10: Grafische Darstellung von abweichendem Zeitraum in einem Takt 

 

4. Umsetzungsbeispiel für die Abweichungserkennung 

Als Beispiel für die Umsetzung des in Abschnitt 3 erklärten Konzeptes wird die Änderung des 

Bearbeitungsprogrammes aus zwei Produktionstagen verwendet. Das Untersuchungsobjekt 

ist eine Werkzeugmaschine aus der Motorenkomponenten-Produktion mit zwölf Achsen, 

welche den Rohling für eine Nockenwellenbuchse bearbeiten. Die erfassten Daten dieser 

Maschine wurden bereits in Abschnitt 2.1 erläutert und bestehen aus binären Steuerungsda-

ten. Nach erfolgreicher Signalaufbereitung ist es möglich aus den Kennzahlen eine Soll-

Referenz zu bilden und mit neuen Daten aus anderen Produktionstakten zu vergleichen.  

Die Soll-Referenz wurde mit Hilfe von 68 Takten trainiert. Von den Trainingsdaten wurden 

sieben Takte als Abweichungstakte mit geringer Abweichung in einzelnen Parametern identi-

fiziert. Ein Takt hatte eine stärkere Abweichung, die Taktzeit wurde um 25% überschritten. 

Ursache dessen war eine Reduzierung der Bearbeitungsgeschwindigkeit durch eine vorher-

gehende Logistikstörung. Die Testdaten des zweiten Tages, welcher 44 Tage später aufge-

zeichnet wurde, bestanden aus 30 Takten. Bei der Abweichungserkennung wurden alle Tak-

te als stark abweichend identifiziert. Mit Hilfe der in Abschnitt 3.3. erklärten Methode konnten 

die Abweichungen den entsprechenden Zeiträumen zugeordnet werden. Die Ursache der 
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Abweichung war eine Änderung des Bearbeitungsprogrammes. Dabei haben sich die Kenn-

zahlen der Intervalllänge verändert, jedoch ist die Anzahl der Flankenwechsel gleichgeblie-

ben. Daraus resultiert, dass die Steuerungsdaten zwar die Symptome der Änderungen bein-

halten, aber keinen Aufschluss über eine Musteränderung geben. Somit ist die Ursache kein 

Teil der erfassten Daten. 

 

5. Zusammenfassung und Ausblick 

In diesem Beitrag wurde ein Konzept zur Abweichungserkennung vom Normalbetrieb einer 

Produktionsanlage vorgestellt. Zusätzlich wurde eine Methode dargestellt, welche die abwei-

chenden Zeiträume je Takt identifiziert. Anschließend wurde auf einen Anwendungsfall aus 

der Motorenkomponenten-Produktion eingegangen und die Methode überprüft. Das Konzept 

ermöglicht eine benutzerunabhängige Auswertung von großen Mengen an Produktionsdaten 

im Rahmen von Big-Data-Analysen. 

In zukünftigen Arbeiten ist das Konzept auf weitere Daten und Datentypen, wie Antriebsda-

ten einer CNC-Maschine, zu übertragen. Dazu müssen zunächst entsprechende Schritte für 

die Signalaufbereitung und -abstraktion von analogen Signalen in Form von Kennzahlen 

herausgefunden werden. Außerdem ist es notwendig die gewählten Kennzahlen auf deren 

Aussagekraft zu validieren. Mittels weiterer Szenarien sind die Sensibilität und das ganzheit-

liche Potential der Methode festzustellen.  
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Kurzfassung 

Die Beanstandungsquote cph („complaints per hundred“) nach x-monatiger Betriebszeit (z.B. 

12MiS, Months in Service) wurde basierend auf [1] weiterentwickelt, vgl. [2]. Die Zuverlässig-

keitsprognose für 12MiS wird in der Anlaufphase einer Fahrzeugproduktion auf eine Baureihe 

nach 3, 6 und 9 Monaten nach Markteinführung und ein Motorprojekt retrospektiv angewandt 

und mit der realen Beanstandungsquote nach 12MiS verglichen, um das Vorgehen zu validie-

ren. 
 

Abstract  

The complaints quota cph (complaints per hundred) after x months in service (MiS) is further 

specified based on [1] and [2]. The reliability prediction for 12MiS is applied retrospectively to 

a vehicle project during ramp-up after 3, 6 and 9 months after market launch as well as to an 

engine project. The obtained predicted values are compared to the actually observed quotas 

after 12MiS in order to validate the approach. 
 

1. Einleitung und Motivation 

Die Prognose der Zuverlässigkeit hilft, Ausfälle bzw. Beanstandungen nach Art und Häufigkeit 

vorauszusagen, woraufhin sich geeignete Korrekturmaßnahmen ableiten lassen. Sie ist umso 

wertvoller, je früher sie so präzise wie möglich erfolgt. Dann sind Maßnahmen zur Fehlerab-

stellung und Steigerung der Kundenzufriedenheit effizienter und effektiver. Zuverlässigkeits-

prognosen während der Entwicklung basieren auf Testkombinationen verschiedener Prototy-

pen auf beliebigen Systemebenen und bei ggf. unterschiedlichen Reifegraden. Zuverlässig-

keitsprognosen während des anschließenden Produktionsanlaufs sollten sich auf das Feldver-

halten stützen, das in dieser ersten Nutzungsphase beobachtet wird. Der Einbezug von Bean-
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standungen statt Ausfällen in die Prognose spiegelt noch besser die Kundenzufriedenheit wie-

der, an der die Unternehmensprozesse eines Premium-Automobilherstellers ausgerichtet 

sind. Die Prognose des Beanstandungsgeschehens über z.B. den Garantie- und Kulanzzeit-

raum in Verbindung mit der Kenntnis der anfallenden Behebungskosten lässt die Abschätzung 

der sich so kumulierenden Kosten zu. Im Rahmen dieser Arbeit wird eine kundennahe und 

insbesondere in Anlaufphasen anwendbare Möglichkeit der Zuverlässigkeitsprognose präzi-

siert und validiert. 
 

2. Die 12MiS-Beanstandungsquote  

Die Management-Kennzahl cph („complaints per hundred“) basiert auf Felddaten und lässt 

sich bereits auf Daten aus der frühen Anlaufphase eines Neuproduktprojekts anwenden. Sie 

berücksichtigt daher den höheren Reifegrad des Serienproduktes gegenüber einem Prototyp. 

Der Prognosehorizont, d.h. „x“ in „x-Months-in-Service“ ist dabei variabel. Unter „Months-in-

Service“ (MiS)  wird die Zeit verstanden, in der  das Fahrzeug in Kundenhand ist. Dieser Zeit-

raum beginnt mit dem Tag der Erstzulassung. Im Rahmen dieser Arbeit wird auf die 12MiS-

Prognose eingegangen, da sie als Referenzwert im Reliability-Growth-Monitoring und im Feh-

lerabstellprozess der Daimler AG [2] dient. 

Zugrunde gelegt wird das Verhältnis der Anzahl Ausfälle bezogen auf die Anzahl aller mögli-

chen Ausfälle (d.h. aller Fahrzeuge) und dem Grad des Erreichens der erwarteten Gesamt-

laufleistung (kumulativ erreichte Laufleistung zum Prognosezeitpunkt bezogen auf die erwar-

tete, kumulative Gesamtlaufleistung zum prognostizierten Zeitpunkt), vgl. Gleichung (1). 

 

 

(1) 

Schätzt man die Anzahl der Ausfälle x über den Chi-Quadrat-Schätzer und die charakteristi-

sche Lebensdauer T einer Weibull-Verteilung über den Maximum Likelihood-Schätzer für T 

und integriert beides in die Zuverlässigkeit ausgedrückt als Weibull-Verteilung, entsteht fol-

gender Ausdruck [3], sofern man Beanstandungen mit Ausfällen gleichsetzt: 

 (2) 

Gleichung (3) zeigt die Berechnung der Beanstandungsquote mit den zugehörigen Eingangs-

größen. 

(3) 
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mit 
cph: „complaints per hundred“  x: Anzahl an Beanstandungen 

 
Chi-Quadrat-Schätzer für Be-
anstandungen 

 
LLi: Kumulativ erreichte Laufleistung  

PA: Vertrauensbereich  b: Formparameter der Weibullverteilung 

LL12-MiS: Soll-Laufleistung nach 12 
Monaten im Service 

 t Prognosezeitpunkt  

Diese Gleichung (3) basiert auf einem Ansatz von Jordan et al. [1], vgl. [2]. Die Verwendung 

eines Chi-Quadrat-Schätzers für den Erwartungswert der Beanstandungen erlaubt es, Kon-

fidenzintervalle zu den jeweils berechneten Quoten anzugeben. Sie basieren auf der Anzahl 

Beanstandungen. Bild 3 zeigt einen cph-Plot mit 90-%igem Vertrauensbereich. 

Nachfolgend werden die Eingangsgrößen in Gleichung (3) näher untersucht und die Vorge-

hensweise bei deren Ermittlung vorgestellt.  
 

2.1 Kumulativ erreichte Laufleistung LLi  

Der prinzipielle Umgang mit Feldqualitätsdaten zu beanstandeten Fahrzeugen und nicht-be-

anstandeten Fahrzeugen, im Folgenden als Survivor bezeichnet, ist in [4] beschrieben und 

dient hier als Grundlage. 

Die kumulativ erreichte Laufleistung LLi umfasst die jeweilige Laufleistung aller Fahrzeuge im 

Feld. Hierzu zählen beanstandete ebenso wie nicht-beanstandete Fahrzeuge. Noch nicht zu-

gelassene Fahrzeuge werden nicht berücksichtigt.  

Über eine Schnittstelle zur GuK-Datenbank stehen Informationen über die produzierten und 

beanstandeten Fahrzeuge zur Verfügung. Zum Prognosezeitpunkt können die Fahrzeuge wie 

in Bild 1 dargestellt unterteilt werden. Für die hiernach entstandenen Fahrzeuggruppen erfolgt 

die Datengewinnung zur Prognose auf verschiedene Weise. 

Für beanstandete Fahrzeuge liegen alle zur Prognose benötigten Informationen (Erstzulas-

sung, km-Stand und Dauer des Werkstattaufenthalts) fahrzeugindividuell und besonders wäh-

rend der Garantie- und Kulanzzeit (also auch während der Anlaufphase) in hoher Dichte vor. 

Die effektive Betriebszeit setzt sich aus der Betriebszeit vor und nach Werkstattaufenthalt zu-

sammen. Für die Laufleistung nach Werkstattaufenthalt wird die individuelle Laufleistung pro 

Tag vor Werkstattaufenthalt zugrunde gelegt. 

Alle produzierten Fahrzeuge gehören entweder zu den K beanstandeten oder den J nicht be-

anstandeten Fahrzeugen (Survivor): 

 
(4) 

Für die Survivor liegen als für die Prognose relevante Informationen nur das Produktionsda-

tum, die Motorbauart und das vorgesehene Vertriebsland aus dem Produktionsbericht vor.  
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Bild 1: Übersicht über die verschiedenen Zustände der produzierten Fahrzeuge zum Progno-

sezeitpunkt 

Diesen Fahrzeugen werden ein individuelles simuliertes Erstzulassungsdatum und eine simu-

lierte Laufleistung pro Tag per Zufallsgröße aus repräsentativen Verteilungen zugewiesen. 

Die zugrunde liegenden Verteilungen werden zuvor aus Beanstandungsdaten der Vorgänger-

baureihe ermittelt (vgl. [1]), deren Datenmenge die der gerade angelaufenen aktuellen Bau-

reihe bei weitem übersteigt. Jedoch werden im Rahmen der Validierung (vgl. Kapitel 3) Vertei-

lungen aus Daten derselben Baureihe zugrunde gelegt. Um den unterschiedlichen Laufleis-

tungen zwischen Fahrzeugen mit Benzin- oder Dieselmotor Rechnung zu tragen, und weil de-

ren Verhältnis über die Produktionswochen nicht konstant ist, wurde bei den Laufleistungsver-

teilungen zwischen Benzin und Dieselfahrzeugen unterschieden. Die länderspezifischen Erst-

zulassungsverzüge weisen logistisch bedingt große Unterschiede auf. Aus Beanstandungsda-

ten wurden für gebildete Ländergruppen entsprechende Verteilungen der Erstzulassungsver-

züge für die Zufallszahlen der aktuellen Survivor zugrunde gelegt.  

Durch die Zuordnung des Erstzulassungsverzugs per Zufallsgröße ergeben sich auf der Seite 

der Survivor zunächst 3 Untergruppen.  
Survivor-Untergruppe I: Fahrzeuge, deren zugewiesenes Erstzulassungsdatum nach dem 

Prognosezeitpunkt ist, generieren keine Laufleistung.  
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Survivor-Untergruppe II: Fahrzeuge, die sich in Folge des Erstzulassungsdatums im Feld 

befinden, generieren Laufleistung. Der zum Prognosezeitpunkt simulierte km-Stand ergibt sich 

als Produkt aus den (simulierten) Tagen im Einsatz und der zugewiesenen Laufleistung pro 

Tag. 
Survivor-Untergruppe III: Eine dritte Untergruppe (vgl. Bild 1) der Survivor ensteht infolge 

des Gutschriftsverzugs und betrifft Fahrzeuge, die zum Zeitpunkt der Prognose bereits bean-

standet wurden, diese Beanstandungen aber noch nicht im Beanstandungsbericht erfasst 

sind. Der Gutschriftsverzug (GSV) beschreibt die verstrichene Zeit zwischen Reparaturdatum 

und der Eintragung in das GuK-System. Diese faktisch beanstandeten Fahrzeuge würden irr-

tümlicherweise den nicht beanstandeten Fahrzeugen der Untergruppe II zugeordnet werden 

und das Prognoseergebnis verfälschen. Ein Verfahren zur Bestimmung ihres Anteils an der 

Survivor-Gruppe wird in Kapitel 2.2 vorgeschlagen. Dass die Beanstandungen dieser Fahr-

zeuge noch nicht im GuK-System erfasst sind, bedeutet nicht, dass die Behebung der Bean-

standung (Reparatur) noch nicht abgeschlossen ist. Zur Berücksichtigung ihrer Zeitdauer im 

funktionsfähigen Zustand wird die theoretisch zur Verfügung stehende Zeit im Feld in funkti-

onsfähigem Zustand (Prognosedatum abzüglich simuliertes Erstzulassungsdatum) um einen 

mittleren Werkstattaufenthalt basierend auf Vorgängerdaten reduziert. Die Laufleistung dieser 

dritten Untergruppe (vgl. Bild 1) zum Prognosezeitpunkt ergibt sich wieder als Produkt aus den 

so (simulierten) Tagen im Einsatz und der (simulierten) Laufleistung pro Tag. 
 

2.2 Anzahl der Beanstandungen x  

Die Anzahl der in Kapitel 2.1 der Survivor-Untergruppe III zugeteilten „Survivor“ (die ja eigent-

lich ausgefallen sind) sollte als zusätzliche Anzahl Beanstandungen in die Prognose einflie-

ßen. Die Beanstandungsquote wird sonst fälschlicherweise zu klein, d.h. zu optimistisch, be-

rechnet (vgl. Gleichung (1)). 

Wie in Kapitel 2.1 erwähnt, spielt der Gutschriftsverzug in diesem Zusammenhang eine ent-

scheidende Rolle. Bild 2 zeigt qualitativ eine aus den Beanstandungsdaten ermittelte Vertei-

lung des Gutschriftsverzugs. Eingezeichnet sind zwei Prognosezeitpunkte (Daten-Abzug t1, 

Daten-Abzug t2), der Zeitpunkt des beanstandungsverursachenden Ereignisses und 3 Berei-

che. 

Die Fläche unter der Dichte des Gutschriftsverzugs entspricht der Wahrscheinlichkeit, zu der 

die Beanstandungen nach Auftritt des erzeugenden Ereignisses in die Datenbank eingetragen 

werden. Der Bereich 1 der Verteilung symbolisiert den Anteil Beanstandungen die bis zum 

Prognosezeitpunkt t1 erfasst sind. Diejenigen Beanstandungen zu Zeitpunkten t > t1, also in 

den Bereichen 2 und 3, können im Abzug zum Zeitpunkt t1 in diesem Beispiel noch nicht erfasst 

worden sein. Erst mit fortlaufender Zeit werden diese fehlenden Beanstandungen im G&K-

System eingetragen und somit einsehbar. Das Bestreben, so früh wie möglich eine Prognose 
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zum Beanstandungsgeschehen abgeben zu können steht folglich im Widerspruch zum Anlie-

gen, möglichst alle Beanstandungen zu einem Prognosezeitpunkt erfasst zu haben. 
 

 
Bild 2: Einfluss des Gutschriftsverzugs auf die erfassten Beanstandungen 

 

Die Einführung einer Quote qx zur Berücksichtigung dieser nicht erfassten Beanstandungen 

schafft Abhilfe. Hierzu wird der Quotient aus Beanstandungen gebildet, die im Intervall 

tx = t2 - t1 eingetragen wurden, aber Reparaturtermine vor t1 aufweisen und vor t1 aufgetretenen 

und eingetragenen Beanstandungen, vgl. Gleichung (5). Bei der Festlegung des Intervalls gilt 

es einen pragmatischen Kompromiss zwischen der Genauigkeit der Quote und der zeitlichen 

Verzögerung zu finden. Je größer das Intervall gewählt wird, desto wahrscheinlicher ist es, 

dass alle relevanten Beanstandungen erfasst sind. Demgegenüber steht die zeitliche Verzö-

gerung der Prognose und damit einhergehend der Verlust der kurzfristigen Reaktionsfähigkeit 

auf mögliche Zuverlässigkeits- bzw. Qualitätsprobleme im Anlauf. Die Anzahl der zum Zeit-

punkt t2 infolge des Gutschriftsverzugs nicht erfassten Beanstandungen mit Eintrittszeit-

punkt <t1 lässt sich zum Zeitpunkt t2 aus dem dann vorliegenden Beanstandungsbericht ermit-

teln. Es handelt sich um Beanstandungen mit Reparaturtermin vor t1, die zwischenzeitlich ein-

getragen sind. Die Quote wird wie folgt berechnet: 

 
(5) 

Mit x  Beanstandung, tx = Zeitpunkt des die Beanstandung hervorrufenden Ereignisses.  

Die Gesamtanzahl an Beanstandungen x, die in die Berechnung der Beanstandungsquote 

(„cph“) einfließt, ergibt sich letztendlich als Summe der erfassten Beanstandungen x‘ und der 

über die Quote zu erwartenden Beanstandungen x‘‘: 

 (6) 
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2.3 Weitere Eingangsgrößen in die 12MiS-Prognose  

Soll-Laufleistung LL12-MiS: 

Die Soll-Laufleistung ergibt sich z.B. aus der mittleren Laufleistung einer Vorgängerbaureihe. 

Hierbei ist zu beachten, dass je nach Motorausstattung unterschiedliche Laufleistungsvertei-

lungen entstehen können. So weisen Fahrzeuge mit Dieselmotoren deutliche höhere jährliche 

Laufleistungen auf als Fahrzeuge der gleichen Baureihe mit Benzinmotoren. Diese Unter-

schiede wurden im Rahmen der Validierung berücksichtigt. Eine motorenspezifische Auswer-

tung ist damit genauer möglich. 

Alternativ könnten als Soll-Laufleistung auch fest vorgegebene Werte angesetzt werden. 

Weibull-Formparameter b: 

Auszugehen ist vom Formparameter der Weibullverteilung des zu untersuchenden Systems. 

Für komplexe Systeme kann nach [3] b = 1 angenommen werden, wenn ≥ 3 Ausfallmechanis-

men verschiedener Formparameter zusammengefasst werden. Diese Annahme unterstellt ex-

ponentielles Ausfallverhalten bzw. Zufallsausfälle. Im Rahmen der Validierung der cph-Formel 

(vgl. Gleichung (1)) zur Prognose des Beanstandungsgeschehens wird b = 1 angenommen. 

Alternativ könnte der b-Wert des Vorgänger-Systems unterstellt werden. 
 

2.4 Sensitivitäten der 12MiS-Prognose  

Entsprechend der Lage der Eingangsgrößen in die 12MiS-Prognose, vgl. Gleichung (3), lässt 

sich feststellen, dass eine größere Anzahl Beanstandungen zu einem größeren cph-Wert führt. 

Ebenso verhält sich die cph bezüglich der kumulativ erwarteten Gesamtlaufleistung LL12-MiS. 

Demgegenüber steht die kumulierte Laufleistung, die den Effekt durch x und LL12-MiS auf die 

cph zu kompensieren hilft. Bild 3 (Prognosezeitpunkt 15.09.2014) stellt im Hintergrund dar, 

wieviel Kilometer pro Produktionswoche kumulativ zusätzlich nötig sind, um eine weitere Be-

anstandung, d.h. x+1, aufzuwiegen.  

 

 
Bild 3: Benötigte zusätzliche Kilometer um einen zusätzlichen Fehler zu kompensieren  

02
.1

2.
20

13
09

.1
2.

20
13

16
.1

2.
20

13
23

.1
2.

20
13

30
.1

2.
20

13
06

.0
1.

20
14

13
.0

1.
20

14
20

.0
1.

20
14

27
.0

1.
20

14
03

.0
2.

20
14

10
.0

2.
20

14
17

.0
2.

20
14

24
.0

2.
20

14
03

.0
3.

20
14

10
.0

3.
20

14
17

.0
3.

20
14

24
.0

3.
20

14
31

.0
3.

20
14

07
.0

4.
20

14
14

.0
4.

20
14

21
.0

4.
20

14
28

.0
4.

20
14

05
.0

5.
20

14
12

.0
5.

20
14

19
.0

5.
20

14
26

.0
5.

20
14

02
.0

6.
20

14
09

.0
6.

20
14

16
.0

6.
20

14
23

.0
6.

20
14

30
.0

6.
20

14
07

.0
7.

20
14

14
.0

7.
20

14
21

.0
7.

20
14

28
.0

7.
20

14
04

.0
8.

20
14

11
.0

8.
20

14
18

.0
8.

20
14

25
.0

8.
20

14
01

.0
9.

20
14

08
.0

9.
20

14

(Is
t-S

ol
l)k

m
 a

bs
ol

ut

cp
h 

(1
2M

iS
)

Produktionsdatum

Nötige zusätzliche km um 1 zusätzlichen Fehler zu kompensieren
cph
5%-Vertrauensgrenze
95%-Vertrauensgrenze

VDI-Berichte Nr. 2307, 2017 49

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Die Anzahl der benötigten zusätzlichen Kilometer ist über die Produktionswochen nicht kon-

stant. Sie ist insbesondere abhängig von der Anzahl der bereits beobachteten Beanstandun-

gen x und den bereits verbuchten Flottenkilometern (LLi). Auffällig ist der bezüglich einer Ver-

änderung der Ausfallanzahl sehr sensitive Randbereich. Der innere Bereich ist diesbezüglich 

etwas stabiler. Entsprechend vorsichtig ist in den Randbereichen die Prognose zu bewerten. 

In [1] wird empfohlen, dass die Prognosen bezüglich Produktionsdaten der letzten 2-3 Monate 

ab Prognosezeitpunkt ausgeblendet werden sollten. Zu gering sei ihre Datengrundlage infolge 

zu weniger vorliegender Beanstandungen bei einer gleichzeitig noch kleinen Anzahl zugelas-

sener Fahrzeuge (Erstzulassungsverzug) bzw. kumulierten Kilometer. 

Ähnliche Effekte ergaben sich bei Analysen, die folgende Fragestellungen untersuchten: 

- Welche Veränderung an Kilometern/ Beanstandungen ist nötig, um den cph-Wert der Vor-

woche zu halten, also das Schwanken der cph-Werte zu unterbinden? 

- Wieviele Kilometer (ggf. pro Fahrzeug) müssten zusätzlich (bzw. könnten weniger) kumu-

liert werden, um ein cph-Ziel zu erreichen? 

- Wieviele Beanstandungen müssten vermieden werden (bzw. dürften noch zusätzlich auf-

treten), um ein cph-Ziel zu erreichen? 

Insbesondere letztere Fragestellung kann dabei helfen, in Verbindung mit einer Analyse der 

tatsächlich beobachteten Fehler nach Folge (auch finanziell), Art, Ursache und Häufigkeit ba-

sierend auf den fortwährend gepflegten Beanstandungsdaten, geeignete Maßnahmen zur 

Qualitätsoptimierung zu quantifizieren und schließlich zu priorisieren. 

Bei ΣLLi
b > LL12MiS

b wird der Chi-Quadrat-Schätzer verringert (sonst überhöht). ΣLLi
b <LL12MiS

b 

tritt nur zu sehr frühen Prognosezeitpunkten bei ggf. zusätzlich sehr kleiner Anzahl der im Feld 

befindlichen Fahrzeuge (=Σi) oder vergleichsweise großen LL12MiS auf. 

Der Formparameter b der unterstellten Weibull-Verteilung wirkt sich ebenfalls auf den 

cph-Wert aus. Folgendes kann festgestellt werden: 

- Bei LLi < LL12MiS (LLi > LL12MiS) nimmt der cph-Wert bei größer werdendem b-Wert zu (ab). 

- Je größer (kleiner) Σi, desto kleiner (größer) ist dieser Effekt.  
 

3. Validierung 

Die Anwendung der Prognose erfolgt retrospektiv auf eine Fahrzeugbaureihe, abgek. FBR und 

einer Benzinmotor-Baureihe, abgek. MBR. Die Validierung besteht hier aus dem Vergleich der 

prognostizierten mit den ermittelten realen cph-Werten, vgl. Bilder 4 und 5, für die Produkti-

onsdaten während der Anlaufphase zwischen 02.12.2013 und 08.12.2014, also (von Start of 

Production, abgek. SOP, bis Erreichen der Kammlinie). Es wurden 3 Stichtage als Prognose-

zeitpunkte festgelegt, 3 Monate, 6 Monate und 9 Monate nach Markteinführung (15.03.2014) 

der betrachteten Fahrzeug-Baureihe.  

Beim Vergleich der cph-Prognose mit dem realen Wert ist generell zu beachten, dass sich für 

die reale cph je nach betrachtetem Daten-Abzugsdatum (entspricht Betrachtungszeitpunkt) in 
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Folge des Erstzulassungs- und Gutschriftsverzugs unterschiedliche Werte ergeben. Die realen 

Quoten sind in Bild 4 und Bild 5 als durchgezogene Linien dargestellt. Je später die Betrach-

tung bezogen zum Produktionsdatum, für das prognostiziert wird, desto höher der Anteil der 

Beanstandungen, die dem entsprechenden Produktionsdatum zugeschrieben werden und die 

das Kriterium erfüllen, nach maximal 12 Monaten im Feld aufgetreten zu sein (vgl. 12MiS-

Prognose). Das ist für alle sechs realen cph-Kurven (vgl. Bild 4 und Bild 5) gegeben. 
 

 
Bild 4: cph-Prognosen im Vergleich mit der retrospektiv realen cph-Quote für die betrachtete 

Fahrzeug-Baureihe 

 

 
Bild 5: cph-Prognosen im Vergleich mit der retrospektiv realen cph-Quote für die betrachtete 

Motor-Baureihe 
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Die Bilder 4 und 5 zeigen die Verläufe der 12MiS-Progosen zu den Prognosezeitpunkten 

16.06.2014, 15.09.2014 und 15.12.2014 sowie den Verlauf der realen cph-Werte, bezogen auf 

Produktionsdaten der Anlaufphase (KW49 2013 bis KW51 2014).  

Die im ersten Drittel des betrachteten Zeitraums (vgl. Bild 4) produzierten Fahrzeuge weisen 

einen höheren tatsächlichen Erstzulassungsverzug auf, da diese noch vor Markteinführung 

(15.03.) produziert wurden. Diesen Fahrzeugen (Survivor) wird bei Pauschalisierung des Erst-

zulassungsverzugs fälschlicherweise ein zu frühes Erstzulassungsdatum als Zufallsgröße zu-

gewiesen, was zu einer größeren generierten Laufleistung durch längere Betriebszeit und 

letztendlich zu einer zu positiv gerechneten Beanstandungsquote führt. Dem wurde hier Rech-

nung getragen, indem für den Zeitraum Dezember 2013 bis März 2014 der hier zutreffende 

Mittelwert angesetzt wurde. Im mittleren Bereich passt die Prognose recht gut, wobei sich ein-

zelne Ausreißer durch wochenindividuelle Einflüsse, wie z.B. auffällig hohe Beanstandungs-

zahlen in einem bestimmten Zeitraum erklären lassen. Im letzten Drittel der jeweiligen Prog-

nosen ist erneut der Einfluss des Erstzulassungsverzugs zu erkennen. Durch dessen Einfluss 

sinkt der Anteil der zugelassenen Fahrzeuge im Feld und folglich auch die Beanstandungen 

bzw. kumulierten Kilometer. Der Effekt der Extrapolation der Beanstandungen (vgl. Gleichung 

(3)) nimmt zu, je größer die Differenz zwischen mittlerer Laufleistung pro Fahrzeug (Tacho-

stand) und Ziellaufleistung ist. 

Ein Vergleich der jeweiligen Prognosen zum realen cph-Wert ist in Tabelle 1 für die FBR und 

Tabelle 2 für die MBR zusammengefasst. Betrachtet wird für den Wertevergleich zwischen 

den Prognosen verschiedener Zeitpunkte der jeweils mittlere Bereich des cph-Graphen, aus 

Gründen wie in Kapitel 2.4 hervorgehoben und in [1] benannt. Für die einzelnen Prognosen 

werden für diesen Vergleich deswegen 2 Monate (= 2 Prognosepunkte) vor Prognosedatum 

(16.06.2014, 15.09.2014 und 15.12.2014) sowie einheitlich der erste Monat (= 1 Prognose-

punkt) nach Produktionsbeginn wegen der anfangs für eine Prognose unzureichenden Daten-

grundlage ausgeblendet. 

Die Verläufe der drei Prognosen sind grundsätzlich gleichgerichtet (vgl. Bild 4 und Bild 5), sie 

weisen untereinander fast immer dieselben Knicke auf, folgen dabei prinzipiell den Verläufen 

der realen cph-Kurven der verschiedenen Zeitpunkte und nähern sich mit aktuellerem Prog-

nosezeitpunkt dem Verlauf der realen Beanstandungsquote an. Dies zeigt auch der Wertever-

gleich in Tabelle 1 und Tabelle 2, vgl. Mittelwert mit Standardabweichung. Die Mittelwerte der 

Abweichungen errechnen sich als Durchschnitt der absoluten Differenz zwischen Prognose-

werten und realen Werten, jeweils bezogen auf den realen Wert.  

Für FBR und MBR verbessert sich die Übereinstimmung erwartungsgemäß, je später der 

Prognosezeitpunkt (Ausnahme: FBR, 13 Monate). Gemittelt über alle Prognosezeitpunkte ver-

glichen gegen die realen cph-Werte bis heute, beträgt der Mittelwert der Abweichung bei FBR 

25,9% und bei MBR 31,2%, die Standardabweichung bei FBR 15,4% und bei MBR 21,4%.  
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Tabelle 1: Wertevergleich der 12MiS-Prognosen, FBR 

FBR reale cph  
nach 13 Monaten 

reale cph  
nach 16 Monaten reale cph bis heute 

Prog-
nose- 
zeit-
punkt ↓ 

Betrachteter 
Zeitraum 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

16.06. 
2014 

Jan. 2014 - 
April 2014 13,6% 12,0% 27,8% 12,1% 38,8% 14,1% 

15.09. 
2014 

Jan. 2014 - 
Juli 2014 20,7% 15,5% 20,1% 15,6% 26,0% 18,2% 

15.12. 
2014 

Jan. 2014 - 
Okt. 2014 23,2% 14,6% 19,0% 11,3% 23,3% 10,8% 

Gemittelt 19,6% 14,9% 20,1% 13,4% 25,9% 15,4% 

 

Tabelle 2: Wertevergleich der 12MiS-Prognosen, MBR 

MBR reale cph  
nach 13 Monaten 

reale cph  
nach 16 Monaten reale cph bis heute 

Prog-
nose- 
zeit-
punkt ↓ 

Betrachteter 
Zeitraum 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

Mittelwert 
der Abwei-
chung 

Standard-
abwei-
chung 

16.06. 
2014 

Jan. 2014 - 
April 2014 26,2% 9,5% 33,8% 11,9% 40,4% 20,2% 

15.09. 
2014 

Jan. 2014 - 
Juli 2014 24,6% 15,8% 33,1% 18,8% 39,5% 21,4% 

15.12. 
2014 

Jan. 2014 – 
Okt. 2014 15,8% 9,8% 19,2% 15,2% 24,8% 18,9% 

Gemittelt 19,8% 13,0% 25,4% 17,5% 31,2% 21,4% 

 

4. Zusammenfassung und Ausblick 

Die prinzipielle Anwendbarkeit des Prognoseverfahrens bzgl. Beanstandungen in frühen Pha-

sen des Feldeinsatzes wurde dargelegt. Eine Validierung des Verfahrens wurde durch eine 

retrospektive Auswertung anhand zweier Projekte (Fahrzeug- und Motorbaureihe) für jeweils 

3 Prognosezeitpunkte während der Anlaufphase der Produktion durchgeführt. Dabei wurde 

festgestellt, dass die Prognose im Mittel als zu positiv verglichen mit dem realen Beanstan-

dungswert ermittelt wurde. Die Prognosegüte steigt mit zunehmender Datengrundlage, also 

mit späterem Prognosezeitpunkt. Für den Vergleich der Prognose mit der realen cph-Kurve 

nach 13 Monaten zeigt sich in diesem Anwendungsfall die beste Übereinstimmung. 

Die Formel zur Prognose der cph ist sensibel bezüglich ihrer Eingangsgrößen, weshalb sie 

möglichst genauer Eingangsparameter bedarf. Die Dynamik des Anlaufs erschwert dies, durch 
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besonders starke Abweichungen zu angenommenen Eingangsparametern bezüglich Erstzu-

lassung und Laufleistung. 

Die weitere Anpassung des hier dargestellten Beanstandungsprognose-Verfahrens sollte sich 

mit der weitergeführten Präzisierung befassen. Insbesondere könnten die Einflüsse der Ver-

teilungsermittlung und Simulation der Zufallszahlen, der anlaufspezifischen Eingangsparame-

ter oder des belastungsabhängigen Ausfallverhaltens, z.B. über den Formparameter der 

Weibull-Verteilung, untersucht werden. 

Liegen Erfahrungswerte aus mehreren retrospektiv angewandten Prognosen vor, lässt sich 

der Unterschied zwischen Prognose und realem cph-Wert antizipieren und bereits in der Prog-

nose berücksichtigen, etwa durch Korrekturfaktoren. 
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Einsatz textiler Sensoren  
für die Lebensdauervorhersage  
von Maschinen  
 
Smart Maintenance am Beispiel einer  
Fünfachsfräsmaschine mit Hilfe  
textiler Fasern als Sensoren   
 
Dr.-Ing. Christian Döbel, TITK e. V., Rudolstadt  
 
 
 
Kurzfassung 
Mit Hilfe textiler, piezoelektrischer Sensorfasern wurde der Verschleißzustand einer Fün-

fachsfräsmaschine erkannt. Die Sensoren erfassen dabei den aktuellen Körperschall im Ma-

terial.  

 

Abstract (optional) 
The state of wear of an five-axis milling machine was detected with the help of textile, piezo-

electric sensor fibers. The sensors detect the current structure-borne sound inside the mate-

rial.  

 

1. Motivation  
Nicht erkannter Maschinenverschleiß oder unvorhergesehene Ereignisse führen häufig zu 

nicht mehr beeinflussbaren Stillstandszeiten von Anlagen in einer Fertigung. Wenn daraufhin 

die die gesamte Fertigung zu einem ungünstigen und nicht planbaren Zeitpunkt zum Erliegen 

kommt, entstehen nicht unerhebliche vermeidbare finanzielle Schäden.  

Deshalb wurden im Rahmen eines Projekts des TITK e. V. gemeinsam mit einem Bearbei-

tungszentrum textile Sensorfasern dazu benutzt, den aktuellen Verschleißzustand der 

Hauptspindel in einer Fünfachsfräsmaschine zu messen. Die textilen Piezosensoren haben 

den Vorteil, sehr flexibel hinsichtlich Form und Länge zu sein.  

In der mittelständischen Firma sind 31 Fünfachsfräsmaschinen (Baujahr 1997 … 2015) im 

Einsatz, von denen jede etwa alle vier Jahre wegen einer defekten Spindel ausfällt. Die 

durchschnittliche Stillstandszeit nach einem solchen Ausfall beträgt  10 Arbeitstage. Ziel der 

Verschleißerkennung ist es deshalb, Maschinenausfälle vorherzusagen, um den Gesamtpro-

zess besser planen zu können. Damit könnten intelligenter geplante Wartungen zu deutlich 
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mehr Liefertreue führen, wenn beispielsweise Betriebsmittel vorsorglich ausgetauscht wer-

den können und damit ein Stillstand des gesamten Fertigungsprozesses vermieden wird.  

 

2. Textile Piezosensoren  
Textile Piezosensoren bieten eine Kombination aus mechanischen und funktionalen Eigen-

schaften, die sich mit anderen Sensoren nicht darstellen lassen. Mechanisch sind sie einer-

seits sehr flexibel und eignen sich durch die freie Formbarkeit auch zum Einbau in bestehen-

de Systeme, andererseits ermöglicht deren Endlosfertigung eine wirtschaftliche Herstellung. 

Funktional ist mit der Möglichkeit, sehr lange Sensoren herzustellen, eine integrale Messung 

von Schwingungen über lange Wege hinweg möglich, außerdem können die Sensoren sehr 

breitbandig Signale messen (unterer Hz- bis MHz-Bereich).  

Die am TITK entwickelten textilen Piezosensoren sind schichtweise aufgebaut, wie in Bild 1 

gezeigt ist. Die innere Schicht (Innenleiter) ist das eigentliche Strukturelement des Funkti-

onsmaterials und hat die Aufgabe, die Reißfestigkeit des Sensors von 8.9 cN/tex (nach DIN 

EN ISO 2062) zu gewährleisten [1]. Die zweite Funktion des Innenleiters ist es, den elektri-

schen Messstrom zu tragen, der in den Sensor hinein fließt.  

 

 
Bild 1: Aufbau eines textilen Sensors. 

 

Am TITK wird der Innenleiter typischerweise aus Polyethylen (PE) als Matrixpolymer herge-

stellt, das mit leitfähigen Partikeln (typischerweise Polyblak) zu dessen Funktionalisierung 

gefüllt ist. Damit ist diese Werkstoffkombination nach dem Schmelzspinnen textil verstreck-

bar, um die Reißfestigkeit zu gewährleisten, zum anderen bilden die Füllpartikel elektrische 

Strompfade aus, um das Signal zu führen. Der Widerstand liegt im Bereich mehrerer MOhm 

pro Meter, was für die Anwendung als Sensor ausreichend ist (bei einer Kapazität von 

mm

pF
C 6.20  ). Der Innenleiter hat einen Durchmesser von etwa 620 µm.  

Die Funktionsschicht besteht aus Polyvinylidenfluorid (PVDF). Dieses piezoelektrische Po-

lymer wird ca. 40 µm dick aufgebaut. Infolge einer äußeren Anregung des polarisierten 

PVDF kommt es zur Gitterverschiebung des Werkstoffs und damit zur Verschiebung der La-
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dungsschwerpunkte. Daraufhin wird eine elektrische Spannung zwischen den Grenzschich-

ten zum Innenleiter sowie zum Außenleiter erzeugt, solange die äußere mechanische Anre-

gung, etwa das Auftreffen einer Körperschallwelle, vorliegt.  

Der Außenleiter ist eine nur ca. 0.1 µm dicke Aluminiumschicht, die aufgedampft wird und 

den Stromkreis zur elektrischen Signalableitung schließt, während als Schutzschicht meist 

ein Lacksystem eingesetzt wird, um eine elektrische Isolation des Sensors zu gewährleisten.  

Der Aufbau des gesamten Sensors mit den Anschlusskontakten ist in Bild 2 mit typischen 

Abmessungen gezeigt. Die Kontaktierung wird derzeit mit Silberleitlack realisiert, während 

weitere Möglichkeiten bereits in der Erprobung sind.  

 

 
Bild 2: Aufbau gesamter Piezosensor [2].  

 

 

3. Möglichkeiten der Verschleißerkennung an Fräsmaschinen  
Verschleißerkennung an Fräsmaschinen wird heutzutage üblicherweise durch die Messung 

der Stromaufnahme des Antriebs (elektrisch) realisiert. Alternativ können die mechanischen 

Größen Drehzahl, Drehmoment und Kraft des Antriebs gemessen werden, um Anomalien 

gegenüber einem Referenzzustand festzustellen. Auch die Ermittlung von Druck 

(z. B. Anpressdruck des Werkzeugs ans Werkstück) oder die Prozesstemperatur geben Auf-

schluss über einen möglichen Verschleiß [3]. 

Eine weitere Möglichkeit, Materialermüdungen zu erkennen, ist der Körperschall. Dieser wird 

durch die Spindelrotation verursacht und durch die Reibung zwischen dem Werkzeug (bei-

spielsweise einem Schneidwerkzeug) und dem Werkstück verändert [4]. Das übertragene 

Spektrum ist dabei abhängig von der Geometrie der Körper, die sich berühren, sowie des 

Materialzustands [5]. Dieser Zusammenhang bildet die Grundlage des Projekts.  

Möglichkeiten zur Messung des Körperschalls sind Beschleunigungsaufnehmer oder 

Klopfsensoren sowie MEMS mit integrierter Signalauswertung. Diese Systeme jedoch lassen 
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sich nicht direkt in Werkstoffe integrieren, wo die Körperschallwelle die größte Informations-

dichte besitzt und messen zudem nur punktuell.  

Deshalb werden im vorliegenden Projekt Textilfasern zur integralen Messung des Körper-

schalls über lange Entfernungen (bis zu mehreren Metern) eingesetzt. Integral bedeutet da-

bei, dass die Faser die Summe der mechanischen Belastungen, die die Faser über die ge-

samte Länge erfährt, in elektrische Spannung umwandelt [6].  

Um mit Hilfe des Körperschalls eine Aussage über den Verschleißzustand des Werkzeugs 

treffen zu können, darf dieser nur vom Werkzeugverschleißzustand verändert werden, indem 

alle anderen Einflüsse definiert sind. In Bild 3 sind typische Änderungen des Körperschall-

spektrums in einem bestimmten Zeitraum (4 … 10 s) gezeigt, der im vorgestellten Projekt 

einen Ausschnitt des Verschleißzeitraums symbolisiert.  

 

 
Bild 3: Wasserfallanalyse zeigt die Veränderung des Körperschallspektrums [7].  

 

Zum einen können sich infolge des Werkzeugsverschleißes zusätzliche Resonanzfrequen-

zen herausbilden (beispielsweise Oberwellen infolge von Mikrorissen), zum anderen auch 
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Resonanzfrequenzen verschieben. Das ist etwa der Fall, wenn sich die Festigkeit des Werk-

zeugs ändert (z. B. durch Delamination). Auch können Energieanteile in einem bestimmten 

Frequenzbereich wachsen, was sich durch eine Amplitudenerhöhung in Bild 3 darstellt. Ziel 

der Untersuchungen war es, diese Artefakte im Spektrum mit Hilfe einer Funktionsfaser zu 

identifizieren und bestimmten Verschleißerscheinungen des Werkzeugs zuzuordnen [8].  

 

4. Umsetzung im Projekt  
Im Rahmen des Projekts wurden für die spätere Integration der Sensorfasern in Werkstoffe 

verschiedene, adhäsive Möglichkeiten zur elektrischen Kontaktierung untersucht, indem die 

Piezofasern an silberbeschichtete Kupferleitungen zur Signalauskopplung (Durchmesser: 

70 µm) geklebt wurden. Die Verbindungen wurden mechanisch sowie elektrisch charakteri-

siert, wobei sich der Silberleitlack G3692 (Plano GmbH) als beste Variante erwies (mechani-

sche Spannung der Kontaktstelle: 0.54 cN/tex bei einem elektrischen Übergangswiderstand 

von 45 kΩ im Bereich 0.1 … 10 kHz). In Bild 4 sind die Kontaktstellen der Piezofaser darge-

stellt.  

 

 
Bild 4: Kontaktstellen des Außen- sowie des Innenleiters [2].  

 

Danach wurde eine polymere Piezofaser als Sensor am Spindelstock einer Fünfachsfräsma-

schine angebracht mit dem Ziel, Mikrobewegungen an der Oberfläche des Spindelstocks zu 

messen. Die formschlüssige Verbindung wurde mit Hilfe eines Aralditharz-Systems erreicht. 

Aufgrund des Handlings wurde die Faser kraftschlüssig auf die Oberfläche geklebt, womit 

der Oberflächenschall als Indikator für den Körperschall gemessen werden konnte1. Die 

                                                 
1 In einem nächsten Schritt ist die Integration geplant, um tatsächlich den Körperschall aufzunehmen.  
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Dämpfung des Klebers kann aus der Erfahrung vorangegangener Untersuchungen vernach-

lässigt werden, die aufgeklebte Faser ist in Bild 5 gezeigt.  

 

 
Bild 5: Eingespanntes Werkzeug mit Spindelstock und aufgeklebter Piezofaser.  
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Bild 6:  Untersuchungen mit drei verschiedenen Werkzeugen  

(a: kurzes, b: mittleres und c: langes Werkzeug).   

 

Die Prüflinge selbst sind eine verschlissene (kurz vor dem Auswechseln) sowie eine neue 

Spindel. Mit beiden wurden Versuche nach dem gleichen Versuchsplan durchgeführt. Der 

Versuchsplan umfasste die Bearbeitung eines definierten Stahlquaders („Standardkörper“). 

Dabei wurden drei Werkzeuge (kurz, mittel, lang, s. Bild 6), drei Rotationsgeschwindigkeiten 

(500, 6 000, 12 000 U/min), zwei verschiedene Fräsprogramme (Standard, Leerlauf) sowie 

zwei Rotationsrichtungen (Linkslauf, Rechtslauf) miteinander kombiniert.  

Vor dem Spindeltausch wurden mit der verschlissenen Spindel insgesamt 13 Versuche 

durchgeführt und dabei die ausgekoppelten Körperschallspektren gemessen. Ein Ausschnitt 

aus einer Messung ist in Bild 7 gezeigt, bei der drei verschiedene Rotationsgeschwindigkei-

ten miteinander verglichen werden. Die Amplituden sind sehr gering, da sich zwischen dem 

Antrieb als Energiequelle und dem Gehäuse (Spindelstock) ein sehr guter Dämpfungskörper 

(als Energiesenke) befindet. In den Messungen sind jeweils die charakteristischen Frequen-

zen (Drehzahl, Oberwellen) für die Rotationsgeschwindigkeiten von 500, 6 000 und 12 000 

U/min sichtbar.  

 

a b c 
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Bild 7: Fouriertransformation bei einem Arbeitspunkt (kurzes Werkzeug).  

 

Anschließend wurden nach dem Spindeltausch die gleichen Messungen anhand des Ver-

suchsplans mit einer neuen Spindel (Prüfling 2) wiederholt und die Frequenzspektren mit 

denen des ersten Prüflings miteinander verglichen. Daraus ergaben sich insgesamt acht po-

tentielle Merkmale, die zunächst eine Gut-Schlecht-Unterscheidung zwischen Verschleiß und 

Neuzustand erlauben. Am Beispiel der Signalleistung als potentielles Merkmal sind eine ver-

schlissene und eine neue Spindel in Bild 8 und Bild 9 gegenübergestellt. Die Randbedingun-

gen sind jeweils 500 U/min im Rechtslauf und ein mittleres Werkzeug.  
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Bild 8: Spektrum einer verschlissenen Spindel (Signalleistung s. braune, gestrichelte Linie).  

 

Einerseits ist hier feststellbar, dass der Trend der mittleren Signalleistung beim verschlisse-

nen Werkzeug eher konstant bleibt (Anstieg beim neuen Werkzeug). Andererseits sind mehr 

Resonanzfrequenzen im unseren Frequenzbereich im verschlissenen Zustand sichtbar.  

 

 
Bild 9: Spektrum einer neuen Spindel.  

 

Um aus den potentiellen Merkmalen im Signal zur Unterscheidung einer verschlissenen von 

einer neuer Spindel die signifikante Merkmale herauszufiltern, wurden anschließend zwei 

Schritte unternommen:  

 Die Merkmale wurden auf physikalische Plausibilität überprüft und  

 Die Messungen wurden gezielt auf signifikante Unterschiede zwischen dem Gut- so-

wie dem Verschleißzustand hinsichtlich des jeweils potentiellen Merkmals untersucht.  
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Eine solche Untersuchung ist für typische Messungen in Bild 10 dargestellt. Die drei Mes-

sungen mit einer neuen Spindel (Kurven NEU_1 … NEU_3) stark beieinander, am Beispiel 

der alten Spindel ist mit ALT_2 ein typischer und mit ALT_1 ein atypischer Verlauf der Kurve 

gezeigt.  

 

 
Bild 10:  Trends der Signalamplituden im niederfrequenten Bereich einer neuen  

(rot gestrichelt) und einer verschlissenen (blau gestrichelt) Spindel im Vergleich.  

 

Stehen hinreichend viele und voneinander unabhängige Messungen zur statistischen Aus-

wertung der Trendgeraden zur Verfügung, kann die Trennschärfe zwischen der neuen und 

denen der verschlissenen Spindel statistisch quantifiziert werden, indem eine Funktion exis-

tiert, die einen verschlissenen von einem neuen Prüfling unterscheidet. Im vorliegenden Pro-

jekt wurden für die alte und die verschlissene Spindel jeweils 25 Messungen ausgewertet, 

um eine statistische Aussage (Mittelwert und Streuung der Parameter) abzuleiten.  

Nur wenn die Trennschärfe groß genug ist, lassen sich gute und verschlissene Spindeln ein-

deutig anhand dieses Signalmerkmals klassifizieren, was bei diesem Merkmal der Fall ist. In 

Bild 11 sind die Konfidenzbereiche des Signalmerkmals gegenübergestellt. Hier ist bereits 

eine eindeutige (lineare) Unterscheidung zwischen einer guten und einer schlechten Spindel 

anhand dieses Signalmerkmals möglich ist.  
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Bild 11:  Vergleich der Konfidenzbereiche der neuen und der verschlissenen Spindel im 

Vergleich für das Signalmerkmal „Trend der Signalamplitude“. Anhand der  

Stichprobe ist eine eindeutige Klassifizierung zwischen „Neu“ und „Verschlissen“ 

möglich.  

 

Außerdem ist der Trend der Leistungsdichte im niederfrequenten Bereich auch physikalisch 

erklärbar. Aus diesem Grund wird aus dem potentiellen ein signifikantes Merkmal im Sinne 

der Unterscheidung zwischen einer verschlissenen und einer neuen Spindel. Ziel ist es, hin-

reichend viele signifikante Merkmale zu identifizieren, um durch ihre Kombination eine siche-

re Vorhersage des Verschleißzustands zu ermöglichen. Insgesamt wurden vier signifikante 

Signalmerkmale gefunden:  

 

 Messung der anteiligen Signalleistung im Bereich 500 Hz … 500 kHz im Vergleich zur 

gesamten Signalleistung bis 500 kHz  

 Trend der Signalamplitude bis 500 kHz  

 Abnahme der Signalamplitude im niederfrequenten Bereich  

 Messung der Anstiegszeiten an den Signalflanken im Zeitsignal  

 

Da die Messungen an der Spindel nur vier Wochen auseinanderlagen und der Spindelstock 

samt Sensor nicht getauscht wurde, ist der Verschleiß des Sensors selbst vernachlässigbar. 

In mehreren vorangegangenen Untersuchungen wurden Sensoren über einen deutlich län-

geren Zeitraum hinweg im Klimaschrank gelagert und erzeugten bei gleicher Anregung vor 

VDI-Berichte Nr. 2307, 2017 65

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


und nach der Beaufschlagung identische Signalamplitude, woraus auf eine lange Ver-

schleißzeit geschlossen wird.  

 

5. Ausblick: Überwachung per App/ Vorteile der Smart Factory  
Im nächsten Schritt wurde eine App zur Visualisierung der Daten programmiert. Ziel ist es, 

den Verschleißzustand einerseits sicher zu erkennen und andererseits dem Maschinenbe-

diener direkt auf dem Smartphone anzuzeigen. In Bild 12 findet sich die Oberfläche mit der 

Auswertung des aktuellen Signalspektrums im Vergleich zu einem Referenzspektrum zu ei-

nem definierten Zeitpunkt, an dem von einer nicht verschlissenen Spindel ausgegangen 

werden kann.  

 

 
Bild 12:  Diskrete Fouriertransformation zweier Signale der Piezofaser im Vergleich  

visualisiert in einer Smartphone-App [9]. Die graue Kurve ist das Referenzsignal 

bei einem definierten Gutzustand (nach einer Kalibrierung der App), die grüne 

Kurve zeigt die aktuelle Messung.  

 

Das ausgegebene Signal in Bild 12 ist als Dummysignal in einen Mikrocontroller implemen-

tiert worden, da die Anbindung an die Piezofaser noch nicht mit dem Mikrocontroller verbun-

den wurde. Allerdings ist bereits eine Datenübertragung vom Controller, an den die Piezofa-

ser angeschlossen ist, an die App möglich. Auch mehrere Verschleißstadien wurden dabei 

simuliert, die die App korrekt widerspiegelt.  
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6. Fazit 
Im Rahmen des Projekts wurden textile Sensorfasern dazu eingesetzt, den Verschleiß eines 

Werkzeugs einer Fünfachsfräsmaschine zu erkennen und zu quantifizieren. Dabei wurde der 

Körperschall, der die Faser erreicht, permanent breitbandig gemessen und (piezoelektrisch) 

in elektrische Energie gewandelt, bevor das Körperschallspektrum mit Hilfe der (Fast) Fou-

riertransformation berechnet wurde. Es konnten im Signalspektrum dabei Merkmale identifi-

ziert werden, die den Gutzustand vom Verschleißzustand unterscheiden konnten.  

Aufgrund der geringen Anzahl der Messwerte ich eine hinreichende Aussage bezüglich Sig-

nifikanz der Signale nicht möglich, sodass nur qualitative Aussagen getätigt werden konnten. 

Auch wurde die Korrelation zwischen den Signalen und bestimmten Fehlerbildern, etwa dem 

Spindelbruch, nicht hergestellt. Dazu sind weitere Messungen nötig.  

Der Vorteil der Nutzung von Funktionsfasern liegt in der freien Formgebung der Sensorik. 

Insbesondere bei der Nachrüstung der Sensoren in bestimmte Systeme ist es entscheidend, 

dass sich die zusätzlichen Sensoren an die Gegebenheiten bestehender Systeme anpassen. 

Das war im vorliegenden Projekt ohne weiteres möglich. Dem wachsenden Bedarf an der 

Signalauskopplung sowie -verarbeitung wurde durch die Programmierung einer App zur Vi-

sualisierung Rechnung getragen.  

Neben der technologischen Weiterentwicklung der textilen Funktionsfasern stehen alle 

Schritte der Signalerhebung und –interpretation im Rahmen von Nachfolgeprojekten im Vor-

dergrund, um eine vorausschauende Verschleißerkennung zu ermöglichen.  
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Kurzfassung 
In diesem Beitrag wird zunächst die Bootstrap-Monte-Carlo-Simulation (BMCS) als neue 
Methode, mit welcher erstmals ein Vertrauensbereich der Zuverlässigkeit mit periodischer 
Instandhaltung für allgemeine technische Systeme angegeben werden kann, vorgestellt. Die 
Methode kann basierend auf einer Stichprobe aus Lebensdauerdaten oder einer Lebens-
dauerverteilung mit Angabe des zugrundeliegenden Stichprobenumfangs durchgeführt wer-
den. Sie besitzt keine Einschränkungen hinsichtlich der Verteilungsart und erlaubt sowohl 
den Zuverlässigkeitsnachweis als auch die -prognose. 
Zur Methodenverifikation wird zunächst das Bootstrap-Verfahren zur Berechnung eines Ver-
trauensbereichs einer Verteilungsfunktion untersucht und mit betaverteilten Vertrauensberei-
chen verglichen. Schließlich wird die Genauigkeit der über die BMCS bestimmten Vertrau-
ensbereiche der Zuverlässigkeit einer periodisch instandgehaltenen Komponente analysiert 
und anhand eines Vergleichs mit einem mittels der Momentenmethode bestimmten Vertrau-
ensbereich quantitativ bewertet. Abschließend wird eine Parameterstudie der Eingangsgrö-
ßen der BMCS durchgeführt sowie ferner ein Anwendungsszenario betrachtet. 
 
Abstract 
In this paper, the bootstrap Monte Carlo simulation (BMCS) as a new method for the deter-
mination of reliability with confidence level for general technical systems with periodical 
measures is presented. The method is either based on the pure samples of failure times or 
the mean value distributions in combination with the corresponding sample size of reliability. 
It does not require special distribution types and allows the reliability prediction as well as the 
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reliability demonstration. Besides the verification of the new method and a parameter study, 
a case study is presented within this paper. 
 
1. Einleitung 
Wichtigster Aspekt zur Beschreibung der Qualität eines Produktes ist dessen Zuverlässig-
keit. Um diese zu beschreiben, werden Lebensdauerdaten betrachtet. Die Auswertung er-
folgt dabei in der Regel über die Analyse einer mittelwertigen Verteilung, z.B. der Medianver-
teilung, kombiniert mit einem Vertrauensbereich. Dieser beschreibt die Wahrscheinlichkeit, 
mit welcher von der Stichprobe auf die Grundgesamtheit, d.h. auf die wahre Zuverlässigkeit 
der Produkte, geschlossen werden kann. 
Mit bisher bekannten Methoden kann zu einer einzelnen Komponente die Zuverlässigkeit mit 
Vertrauensbereich bestimmt werden. Neben analytischen stehen approximative und simula-
tionsbasierte Verfahren zur Verfügung [8]. Werden Systeme aus mehreren Teilsystemen 
bzw. Komponenten betrachtet, so kann mit exakten oder approximativen Methoden, wie der 
Momentenmethode, die Systemzuverlässigkeit mit Vertrauensbereich berechnet werden 
[11]. Ferner kann die Stichprobengröße bestimmt werden, mit welcher eine gewisse Zuver-
lässigkeit mit vorgegebener Aussagewahrscheinlichkeit nachgewiesen werden kann [10]. 
Für allgemeine Systeme, die einem Instandhaltungsprozess unterliegen, gibt es bisher keine 
Methode, mit der auch für deren Zuverlässigkeit die Aussagewahrscheinlichkeit angegeben 
werden kann. Basierend auf der Verfügbarkeitsprognose mit Vertrauensbereich [9] und dem 
Nachweis der Verfügbarkeit mit Vertrauensbereich [6] kann mit der in diesem Beitrag vorge-
stellten Bootstrap-Monte-Carlo-Simulation (BMCS) als neue Methode die Zuverlässigkeit mit 
Aussagewahrscheinlichkeit eines Einzelsystems, welches periodischen Instandhaltungen 
unterworfen ist, erstmals berechnet werden. 
Zunächst wird in diesem Beitrag die BMCS als neue Methode, mit welcher erstmalig die 
Prognose und der Nachweis der Zuverlässigkeit mit Aussagewahrscheinlichkeit für Systeme 
mit planmäßigen Instandhaltungen möglich sind, vorgestellt. Zur Methodenverifikation wird 
zum einen das Bootstrap-Verfahren zur Berechnung eines Vertrauensbereichs untersucht 
und mit betaverteilten Vertrauensbereichen verglichen. Zum anderen wird die Genauigkeit 
der BMCS anhand einer Komponente mit periodischer Instandhaltungsmaßnahmen verifi-
ziert. Durch Vergleich mit mittels der Momentenmethode berechneten Vertrauensbereichen 
wird die BMCS quantitativ bewertet. Ferner wird anhand einer Parameterstudie der Einfluss 
der Eingangsparameter verdeutlicht. 
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2. Zuverlässigkeit bei periodischer Instandhaltung 
Periodische Instandhaltungen werden häufig genutzt, um negative Einflüsse von Alterung 
oder Verschleiß zu minimieren. Zur Beschreibung des Systemverhaltens bei planmäßiger 
Erneuerung kann das periodische Instandhaltungsmodell genutzt werden [1]. 
Bild 1 verdeutlicht den Instandhaltungsplan in der zeitlichen Abfolge. Nach jeder, in konstan-
ten Zeitabständen TPM (PM = Preventive Maintenance) durchgeführten Maßnahme gilt die 
betrachtete Einheit als neuwertig. Die Dauer der Instandhaltung selbst wird vernachlässigt. 
Da das Ausfallverhalten vor und nach einer Instandhaltung als stochastisch unabhängig an-
genommen wird, ergibt sich die Zuverlässigkeitsfunktion einer gewarteten Einheit zu [1]: 

)()()( PM
k

PMPM TktRTRtR          (1) 
für PMPM TktTk  )1(  und  )1(0k  

 

Zeit t 
Stillstand

Betrieb

0 TPM 2·TPM 3·TPM (k kk-1)·TPM ·TPM ( +1)·TPM

... Planmäßige Instandhaltungen

 
Bild 1: Instandhaltungsplan unter periodischen Maßnahmen in der zeitlichen Abfolge. 
 

Fällt eine Komponente vor der nächsten periodischen Erneuerung aus, wird sie nicht weiter 
instandgehalten. Neben der Berechnung nach Gleichung 1 kann die Zuverlässigkeit bei peri-
odischer Instandhaltung auch über eine Monte-Carlo-Simulation nach Bild 2 approximativ 
bestimmt werden. 
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Bild 2: Monte-Carlo-Simulation der Zuverlässigkeit bei periodischer Instandhaltung [5]. 
 

Für jede Monte-Carlo-Replikation wird innerhalb des betrachteten Zeitraums ein einzelner 
Verlauf des Zustandsvektors Z(t) gebildet, indem aus der Lebensdauerverteilung F(t) zufälli-
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ge Lebensdauern i gezogen werden. Ist die Lebensdauer größer oder gleich dem Instand-
haltungsintervall (i ≥ TPM), so wird dem Zustandsindikator bis zum Zeitpunkt der nächsten 
Instandhaltung der Wert 1 (funktionsfähig) zugeordnet. Andernfalls nimmt er für die zufällige 
Lebensdauer den Wert 1 und anschließend für den kompletten restlichen Betrachtungszeit-
raum den Wert 0 (ausgefallen) an. D.h. nach einem Ausfall ist die Komponente auch in den 
folgenden Instandhaltungsintervallen nicht funktionsfähig. Nachdem für jede Monte-Carlo-
Replikation ein Zustandsverlauf gefunden wurde, kann die Zuverlässigkeit bei periodischer 
Instandhaltung RPM(t) für jeden Zeitpunkt tj des Betrachtungszeitraums als arithmetischer 
Mittelwert des Wertes aller Zustandsindikatoren abgeleitet werden. 
 
3. Aussagewahrscheinlichkeit und Vertrauensbereich 
Die Aussagewahrscheinlichkeit PA zur Zuverlässigkeit RU kann über das Integral der Dichte-
funktion mit der Zuverlässigkeit RU als unteren Grenzwert bestimmt werden zu [10]: 

  
1

')'(1
URUA dRRRRPP          (2) 

Ihre Berechnung basiert auf der Dichtefunktion der Zuverlässigkeit φ(R). Ein Vertrauensbe-
reich wird als Intervall um einen Schätzwert definiert, innerhalb welchem die Zufallsgröße mit 
einer bestimmten Wahrscheinlichkeit, der Aussagewahrscheinlichkeit liegt. In der Regel wird 
ein Vertrauensbereich symmetrisch zum Median gelegt, so dass ein 90 %-Vertrauensbereich 
eine 5 %- und 95 %-Vertrauensgrenze besitzt. Um Vertrauensbereiche zu bestimmen, kön-
nen unterschiedliche Methoden (siehe Tabelle 1) genutzt werden (in Anlehnung an [8]). 
 

Tabelle 1: Methoden zur Bestimmung von Vertrauensbereichen. 
Analytische Methoden Approximative Methoden Simulationsbasierte Methoden

Beta-Binominal-Intervall 
Likelihood-Ratio-Intervall 
Bayes-Vertrauensintervall 

Fisher-Matrix-Intervall 
Wald Methode 
Wilson Score Intervall 

Bootstrap-Methode: 
    Nicht-parametrisch 
    Parametrisch 

 

Analytische und approximative Methoden erfordern meist eine analytische Beschreibung der 
Problemstellung. Häufig liegt dies jedoch nicht vor, z.B. wenn die Monte-Carlo-Simulation 
genutzt wird, so dass insbesondere die Bootstrap-Methode für einen solchen Anwendungs-
fall gut geeignet ist. Häufig werden in der Zuverlässigkeitstechnik betaverteile Vertrauensbe-
reiche bestimmt, d.h. die Dichtefunktion des Vertrauensbereiches der Zuverlässigkeit Ri ge-
horcht der Betaverteilung [11]: 

11 )1(
),(

1
)(   ii B

i
A
i

ii
i RR

BA
R


     (3) 
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4. Bootstrap-Methode 
Bootstrapping [2] als Verfahren zur statistischen Auswertung, welches erstmals von Bradley 
Efron beschrieben wurde, eignet sich insbesondere als Analysemethode, wenn die Parame-
ter einer gegebenen Stichprobe nicht über andere, analytische Methoden bestimmt werden 
können. Die Bootstrap-Methode kann in zwei Arten unterteilt werden (siehe Bild 3): nicht-
parametrisches und parametrisches Bootstrapping. 
Ausgangspunkt des nicht-parametrischen Bootstrapping ist eine n Ausfallzeiten umfassende 
Stichprobe T = {t1, t2, … tn}. Durch Ziehen mit Zurücklegen und ohne Beachtung der Reihen-
folge von n zufälligen Zeiten aus T kann eine Bootstrap-Stichprobe T

~  bestimmt werden. 
Anschließend werden die Parameter  der Bootstrap-Stichprobe mit bekannten Parameter-
schätzverfahren, z.B. der Maximum-Likelihood-Methode [1], ermittelt, so dass eine 
Bootstrap-Verteilungsfunktion )(

~
tF  (sogenannte Realisierung) gefunden werden kann. 

 

t1 t2 …    tn

θ

t1 t2 …    tn
F(t)

t

Stichprobe T oder
Verteilungsfunktion F(t)

Bootstrap-Stichprobe T :
n zufällige Ausfallzeiten aus T bzw. 

F(t) ziehen (mit Zurücklegen)
Parameterschätzung

Bootstrap-Verteilungsfunktion F(t)

Nicht-parametrisches Bootstrapping Parametrisches Bootstrapping

θ

t t

F(t)F(t)

t1 t2 …    tn
~ ~ ~

~ ~ ~
~

~
~~

 
Bild 3: Nicht-parametrische (links) und parametrische (rechts) Bootstrap-Methode. 
 

Analog wird das parametrische Bootstrapping basierend auf einer Verteilungsfunktion F(t), 
durchgeführt. Über Pseudozufallszahlen und die Inversionsmethode werden n Zufallszeit aus 
der Verteilungsfunktion F(t) generiert. Diese Zeiten bilden die Bootstrap-Stichprobe T

~ , aus 
welcher die Realisierung )(

~
tF  geschätzt werden kann. Zur Ermittlung eines Vertrauensbe-

reichs können unterschiedliche Bootstrap-Typen eingesetzt werden [3], [4]: 
 Empirischer Bootstrap-Vertrauensbereich, 
 Standard-Bootstrap-Vertrauensbereich, 
 Perzentil-Bootstrap-Vertrauensbereich, 

 Bootstrap-t-Vertrauensbereich, 
 BCα-Vertrauensbereich, 
 etc. 

Im Folgenden wird nur der empirische Bootstrap-Vertrauensbereich weiter betrachtet. 
Unabhängig vom Typ des Bootstrap-Vertrauensbereichs, muss die Bootstrap-Methode ent-
sprechend ihrer Anzahl an Replikationen B-mal wiederholt werden, um den Bootstrap-
Vertrauensbereich zu einer gegebenen Verteilungsfunktion zu bestimmen. Damit werden B 
Realisierungen )(

~
tFi , i = 1(1)B, generiert. Anschließend wird die Kurvenschaar der B Reali-

sierungen )(
~

tFi für jeden Zeitpunkt tj statistisch ausgewertet, so dass für jeden Zeitpunkt eine 
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empirische Bootstrap-Vertrauensdichte ))(
~

( jtF  gefunden wird. Über die Perzentile unter-
halb diesen Dichtefunktionen kann der Vertrauensbereich zur ursprünglichen Verteilungs-
funktion bestimmt werden. Bild 4 verdeutlicht die Vorgehensweise graphisch. 
Um die Genauigkeit des Bootstrap-Vertrauensbereichs zu untersuchen, wird zur weibullver-
teilten Lebensdauerverteilung mit T = 1.103,26 h, b = 4,0 und MTTF = 1.000 h sowohl ein 
Bootstrap- als auch ein betaverteilter Vertrauensbereich mit 90 % Aussagewahrscheinlichkeit 
bestimmt. Der betaverteile Vertrauensbereich dient als Referenzwert. Anschließend können 
die Mittelwerte der Beträge der Abweichungen  sowie deren Standardabweichungen  zwi-
schen den jeweiligen Vertrauensgrenzen bestimmt werden. Der Stichprobenumfang n sowie 
die Anzahl der Bootstrap-Replikationen B wird variiert. Bild 5 zeigt beispielhaft die Berech-
nungsergebnisse für die 95 %-Vertrauensgrenze. Für die 5 %-Vertrauensgrenze kann ein 
identisches Verhalten beobachtet werden. 
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Bild 4: Bestimmung eines Vertrauensbereichs mit der Bootstrap-Methode. 
 

Für B ≥ 200 Bootstrap-Replikationen und einem Stichprobenumfang n ≥ 100 werden die Ab-
weichungen vernachlässigbar klein. In gewissem Umfang kann durch Erhöhung der Boot-
strap-Replikationen der Einfluss eines geringeren Stichprobenumfangs ausgeglichen wer-
den, weshalb immer eine große Anzahl an Bootstrap-Replikationen anzustreben ist. 
 
 
 

VDI-Berichte Nr. 2307, 201774

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


0
1.000

2

800 1.000

4

∆ 95
%
 [%

-P
uu

nk
te

]

600 800 

6

Stichproben-
      umfang n

600 
         Bootstrap-
Replikationen B

400 

8

400 200 200 0   0   

M
itt

el
w

er
t

              

0
1.000

2

800 1.000

4

σ 95
%
 [%

-P
uu

nk
te

]

600 800 

6

Stichproben-
      umfang n

600 
         Bootstrap-
Replikationen B

400 

8

400 200 200 0   0   

St
an

da
rd

ab
w

ei
ch

un
g

 
Bild 5: Mittelwert  (links) und Standardabweichung  (rechts) der Beträge der Abweichun-

gen zwischen der 95 %-Vertrauensgrenzen des Bootstrap-Vertrauensbereichs und 
des betaverteilten Vertrauensbereichs [5]. 

 
5. Bootstrap-Monte-Carlo-Simulation 
Wird die Zuverlässigkeit bei periodischer Instandhaltung RPM(t) mit Hilfe des periodischen 
Instandhaltungsmodells nach Gleichung 1 berechnet, so kann keine Aussagewahrschein-
lichkeit angegeben werden, da die Berechnung auf der mittelwertigen Zuverlässigkeitsfunkti-
on R(t) basiert und deren statistische Güte nicht miteinbezogen wird. Um einen Vertrauens-
bereich zu berechnen, wird die Bootstrap-Methode mit der Monte-Carlo-Simulation kombi-
niert. Mit der Bootstrap-Monte-Carlo-Simulation (BMCS) kann damit erstmals eine Aussage-
wahrscheinlichkeit bestimmt werden. Bild 6 zeigt den prinzipiellen Ablauf der BMCS. 
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Bild 6: Bootstrap-Monte-Carlo-Simulation der Zuverlässigkeit und Aussagewahrscheinlich-

keit bei periodischer Instandhaltung. 
 

Zunächst wird eine Realisierung )(
~

tRi  der Zuverlässigkeitsfunktion ohne periodische Maß-
nahmen mit Hilfe von Bootstrapping generiert. Sofern anstelle einer Verteilung eine Stich-
probe mit Ausfallzeiten gegeben ist, kann hierfür die nicht-parametrische Bootstrap-Methode 
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genutzt werden. Anschließend wird mit Hilfe der Monte-Carlo-Simulation nach Bild 2 eine 
Realisierung )(

~
, tR iPM  der Zuverlässigkeit bei periodischer Instandhaltung bestimmt. 

Die Realisierung )(
~

, tR iPM  kann neben der Monte-Carlo-Simulation auch mit Hilfe von Glei-
chung 1 bestimmt werden (siehe [5]). Da die Monte-Carlo-Simulation die leistungsfähigere 
und allgemeinere Methode darstellt, wird im Folgenden nur die Berechnung der Zuverlässig-
keit bei periodischer Erneuerung über die Monte-Carlo-Simulation detaillierter betrachtet. 
Diese liefert bei einer ausreichend hohen Anzahl an Monte-Carlo-Replikationen vergleichba-
re Ergebnisse zur Berechnung nach Gleichung 1. 
Durch entsprechend der Bootstrap-Replikationenanzahl B-malige (i = 1(1)B) Wiederholung 
können B Realisierungen )(

~
, tR iPM  generiert werden. Die erhaltene Kurvenschaar wird an-

schließend zu jedem Zeitpunkt tj des Betrachtungszeitraums statistisch ausgewertet, so dass 
zu jedem Zeitpunkt eine empirische Bootstrap-Vertrauensdichte ))(

~
( jPM tR  aus den einzel-

nen Funktionswerten der B Realisierungen abgeleitet werden kann. Über die Perzentile un-
terhalb dieser Dichtefunktionen kann der Vertrauensbereich zur Zuverlässigkeit mit periodi-
scher Instandhaltung berechnet werden. 
Bild 7 zeigt beispielhaft die Zuverlässigkeit bei periodischer Instandhaltung mit 
90 %-Vertrauensbereich. Die Zuverlässigkeit einer Einheit ohne planmäßige Instandhaltung 
wird über die Weibullverteilung mit T = 1.103,26 h, b = 4,0 und MTTF = 1.000 h beschrieben, 
wobei für deren Ermittlung n = 20 Stichprobenelemente analysiert wurden. Als Instandhal-
tungsintervall wurde TPM = 1.000 h angenommen. Die BMCS wurde mit B = 1.000 Bootstrap- 
und nMC = 10.000 Monte-Carlo-Replikationen durchgeführt. 
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Bild 7: Zuverlässigkeit bei periodischer Instandhaltung mit 90 %-Vertrauensbereich. 
 

Die BMCS bietet ein hohes Potenzial zur Anwendung bei allgemeinen technischen Syste-
men. Neben der Prognose ist auch der Nachweis von Zuverlässigkeiten mit Aussagewahr-
scheinlichkeit möglich. Ferner kann die BMCS auch zur Integration der Aussagewahrschein-
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lichkeit in die Berechnung von Verfügbarkeiten [5], [6], [9] genutzt werden. Die BMCS liefert 
als approximative Methode Näherungslösungen der Aussagewahrscheinlichkeiten. 
 
6. Verifikation der Bootstrap-Monte-Carlo-Simulation 
Zur Verifikation der über die BMCS ermittelten Aussagewahrscheinlichkeit kann der Vertrau-
ensbereich zur Zuverlässigkeit bei periodischer Instandhaltung auch mit Hilfe der Momen-
tenmethode und eines betaverteilten Vertrauensbereichs der Zuverlässigkeit ohne periodi-
sche Maßnahmen bestimmt werden. Die m Faktoren der Gleichung 1 werden genutzt und 
analog zu einem aus m Komponenten bestehenden Seriensystem [11] der Erwartungswert 
der Zuverlässigkeit bei periodischer Instandhaltung berechnet. Die Parameter Ai und Bi sind 
durch den betaverteilten Vertrauensbereich der Zuverlässigkeit ohne periodische Instandhal-
tung bekannt. Für den Erwartungswert E(RPM) und die Varianz Var(RPM) der Zuverlässigkeit 
mit periodischer Instandhaltung ergibt sich nach [7], [11]: 
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Daraus lassen sich die Bestimmungsgleichungen für die Parameter APM und BPM der betaver-
teilten Vertrauensdichte φ(RPM) ableiten. Die über die Momentenmethode berechneten Ver-
trauensbereiche sind ebenfalls approximativ, da die tatsächliche Vertrauensdichte mit einer 
Betaverteilung angenähert wird. Der ermittelte Erwartungswert ist jedoch der exakte Wert. 
Bild 8 vergleicht den 90 %-Vertrauensbereich der Momentenmethode und der BMCS. Die 
Eingangsdaten bleiben identisch zu den Berechnungen in Bild 7. 
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Bild 8: Vergleich des 90 %-Vertrauensbereich der BMCS bzw. der Momentenmethode für 

einen Stichprobenumfang n = 20 (links) und n = 500 (rechts). 
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Bereits bei geringem Stichprobenumfang (n = 20, Bild 8 links) weisen beide Vertrauensberei-
che einen vergleichbaren Verlauf auf. Bei großem Stichprobenumfang (n = 500, Bild 8 
rechts) sind diese nahezu deckungsgleich. Die Abweichungen bei geringem Stichprobenum-
fang werden stark durch die hohe statistische Unsicherheit der geringen Datenbasis beein-
flusst. Der Vertrauensbereich wird desto enger, je größer der Stichprobenumfang ist. 
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Bild 9: Mittelwert  (links) und Standardabweichung  (rechts) der Beträge der Abweichun-
gen zwischen der über die BMCS (nMC = 1.000) bzw. die Momentenmethode be-
rechneten 5 %-Vertrauensgrenzen. 

 

Der Einfluss des Stichprobenumfangs wird zudem deutlich, sofern die Mittelwerte der Beträ-
ge der Abweichungen  sowie deren Standardabweichung  zwischen den jeweiligen Ver-
trauensgrenzen der BMCS bzw. der Momentenmethode betrachtet werden. Bild 9 zeigt diese 
Kennwerte unter variierendem Stichprobenumfang bzw. variierender Bootstrap-Replikation-
enanzahl für die 5 %-Vertrauensgrenze. Die BMCS wurde mit nMC = 1.000 Monte-Carlo-Re-
plikationen durchgeführt. Für die 95 %-Vertrauensgrenze kann ein identisches Verhalten 
beobachtet werden. 
Bis zu einer Bootstrap-Replikationenanzahl B = 200 und einem Stichprobenumfang von 
n = 100 nehmen die Abweichungen stark ab. Für einen Stichprobenumfang n ≥ 200 in Kom-
bination mit B ≥ 200 Bootstrap-Replikationen sind die Abweichungen vernachlässigbar. 
 
7. Anwendungsszenario 
Im Folgenden wird eine Produktionsanlage betrachtet, für welche eine geeignete, periodi-
sche Instandhaltungsstrategie gesucht wird. Es soll bis zum Zeitpunkt t = 750 h eine Min-
destzuverlässigkeit von 50 % mit 95 % Aussagewahrscheinlichkeit erreicht werden. Für die 
Produktionsanlage wurden aus Zuverlässigkeitstests n = 20 Ausfalldaten (siehe Tabelle 2) 
ermittelt. Aufgrund produktionstechnischer Randbedingungen können die Instandhaltungen 
nur in periodischen Abständen von 250 h oder 500 h durchgeführt werden. 
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Tabelle 2: Ausfalldaten der Produktionsanlage [h]. 
177,5 
221,0 

252,5 
280,0 

305,0 
329,5 

353,5 
377,5 

402,0
428,0

455,0
484,0

515,5
551,0

591,0 
638,0 

695,5 
770,5 

881,0
1.097,0

 

Die Analyse der Ausfalldaten nach Tabelle 2 mit 90 %-Vertrauensbereich mit Hilfe der 
Bootstrap-Methode (B = 1.000) ergibt den in Bild 10 dargestellten Verlauf der Zuverlässig-
keit. Dieser ähnelt einer lognormalverteilen Zuverlässigkeit mit µ = 6,0896,  = 0,5 und 
MTTF = 500 h. Ohne Instandhaltungsmaßnahmen kann die B50-Lebensdauer mit 95 % Aus-
sagewahrscheinlichkeit nur bis zum Zeitpunkt t = 375 h nachgewiesen werden. 
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Bild 10: Zuverlässigkeit ohne Instandhaltungsmaßnahmen und 90 %-Vertrauensbereich. 
 

Um die Zuverlässigkeit zu erhöhen, wird zunächst das Instandhaltungsintervall TPM = 500 h 
gewählt und die Zuverlässigkeit bei periodischer Instandhaltung mit 90 %-Vertrauensbereich 
mittels BMCS (B = 1.000, nMC = 10.000) bestimmt. Wie Bild 11 links zeigt, können die Anfor-
derungen bei dieser Instandhaltungsstrategie ebenfalls nur bis t = 375 h garantiert werden. 
Sofern das Instandhaltungsintervall weiter verkleinert wird (TPM = 250 h, Bild 11 rechts), kön-
nen die Forderungen erfüllt werden. Die B50-Lebensdauer kann mit 95 % Aussagewahr-
scheinlichkeit bis zum Zeitpunkt t = 900 h nachgewiesen werden. Folglich ist die Instandhal-
tungsstrategie mit periodischen Maßnahmen in den Zeitabständen TPM = 250 h zu wählen. 
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Bild 11: Zuverlässigkeit mit Instandhaltungsmaßnahmen  

(TPM = 500 h links, TPM = 250 h rechts) und 90 %-Vertrauensbereich. 
 
8. Zusammenfassung 
Als neue Methode zur Prognose und zum Nachweis der Zuverlässigkeit und Aussagewahr-
scheinlichkeit periodisch instandgehaltener Systeme wird die Bootstrap-Monte-Carlo-Simula-
tion (BMCS) vorgestellt. Sie erlaubt die Analyse basierend auf einer aus Ausfallzeiten beste-
henden Stichprobe oder einer mittelwertigen Verteilungsfunktion unter Angabe des Stichpro-
benumfangs. Die BMCS setzt keine Einschränkungen hinsichtlich der Verteilungsart, d.h. es 
können z.B. Weibull-, lognormal- oder Exponentialverteilungen berücksichtigt werden. 
Zur Verifikation der BMCS wurde zunächst die Bootstrap-Methode zur Ermittlung eines Ver-
trauensbereichs untersucht. Für eine ausreichend große Anzahl der Bootstrap-Replikationen 
(B ≥ 200) bzw. einen großen Stichprobenumfang (n ≥ 100) sind die Abweichungen des 
Bootstrap-Vertrauensbereichs zu einem betaverteilten Vertrauensbereich vernachlässigbar. 
Die Güte der BMCS wurde ferner anhand der Zuverlässigkeit einer periodisch instandgehal-
tenen Komponente untersucht, indem der über die BMCS bestimmte Vertrauensbereich mit 
einem mittels der Momentenmethode bestimmten Vertrauensbereich verglichen wurde. Für 
eine ausreichend große Anzahl an Bootstrap- und Monte-Carlo-Replikationen (B ≥ 200, 
nMC ≥ 1.000-10.000) liefert die BMCS als approximative Methode sehr gute Ergebnisse. 
Nach einer abschließend durchgeführten Parameterstudie der Eingangsgrößen der BMCS 
wurde in einem Anwendungsszenario eine Produktionsanlage mit periodischer Erneuerung 
betrachtet. Durch die Möglichkeit zur Anwendung bei allgemeinen technischen Systemen ist 
die BMCS sehr innovativ. Sie kann auf die Berechnung von Verfügbarkeiten mit Angabe ei-
ner Aussagewahrscheinlichkeit [6], [9] übertragen werden und bietet ein hohes Potenzial zur 
Integration allgemeiner Instandhaltungsmaßnahmen bzw. Analyse individueller Kenngrößen. 
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C. Hayer, Dr.-Ing. S. Fiebig, J. Sellschopp,  
Volkswagen AG, Braunschweig; 
Prof. Dr.-Ing. T. Vietor, Technische Universität Braunschweig 
 
 
 
Kurzfassung 
Um die steigenden Anforderungen an automobile Strukturbauteile zu erfüllen, werden im 

Produktentstehungsprozess verstärkt rechnergestützte Optimierungsmethoden eingesetzt. 

Dabei ist es wichtig, die Robustheit der so generierten Bauteile frühestmöglich zu betrachten. 

Streuungen der Bauteileigenschaften im Toleranzbereich können zu einer Abweichung der 

Prüfergebnisse gegenüber den auf dem Nennbauteil basierenden Vorhersagen aus der Si-

mulation führen. Bauteile, bei denen dadurch die Anforderungen am Prüfstand verletzt wer-

den, müssen daraufhin durch konstruktive Maßnahmen robuster gestaltet werden. Dies ver-

ursacht einen zusätzlichen Zeitaufwand, verbunden mit einer Erhöhung von Kosten und Ge-

wicht. Dieser Beitrag zeigt, wie Fertigungstoleranzen bereits in der Simulation optimiert wer-

den können. Zunächst werden sensible Bereiche mithilfe aufwandsminimierter Versuchspla-

nung in der Simulation identifiziert. Mithilfe eines analytischen Ersatzmodells wird das Bauteil 

durch Anpassungen der Toleranzbereiche robuster gestaltet. Die optimierte Tolerierung er-

möglicht es, den Leichtbauvorteil aus der Strukturoptimierung in die Prototypenphase zu 

übertragen. Mit einer verbesserten Vorhersage der Prüfergebnisse können zusätzlich unnö-

tige Entwicklungsschleifen vermieden werden, wodurch erhebliche Zeit- und Kosteneinspa-

rungen erzielt werden. 

  

1. Einleitung 
In einem immer anspruchsvolleren Umfeld aus steigendem Wettbewerb und strengeren ge-

setzlichen Richtlinien in der Automobilindustrie spielt Leichtbau eine immer wichtigere Rolle 

[1]. Die häufigste Aufgabenstellung bei Bauteiloptimierungen ist die Minimierung des Ge-

wichts unter Berücksichtigung von technischen Anforderungen, wie zum Beispiel Festigkeit 

und Steifigkeit. Eine der wesentlichen Maßnahmen um das Leichtbaupotential maximal aus-

zuschöpfen ist eine möglichst enge Auslegung des Nennbauteils an die Grenzen der Anfor-

derungen, ohne diese zu verletzen [2]. Streuungen der Geometrie und der Materialeigen-
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schaften innerhalb des Toleranzbereiches werden bei der Auslegung in der Regel nicht be-

rücksichtigt. Diese führen jedoch zu einer Abweichung der Prüfergebnisse gegenüber den 

Vorhersagen aus der Simulation. So lässt sich erst mithilfe der Prüfergebnisse eine Aussage 

über die Robustheit des Bauteils treffen. Verletzt ein Prototyp die Anforderungen, muss der 

Bauteilentwurf durch konstruktive Maßnahmen robuster gestaltet werden. Dies verursacht 

einen zusätzlichen Zeitaufwand, erhöhte Kosten und ein höheres Gewicht. Ein robustes Bau-

teil wird im weiteren Verlauf dadurch definiert, dass die Anforderungen in jeder tolerierten 

Konfiguration erfüllt werden. Taguchi, dem das Konzept von robustem Design zugesprochen 

wird, entwickelte eine experimentelle Methode zur Optimierung der Robustheit, die später 

auch für die Anwendung in der Simulation angepasst wurde [3,4,5,6]. Das Ziel ist dabei, die 

Robustheit durch Anpassungen des Nennbauteils zu optimieren. Neben der robusteren Ge-

staltung durch konstruktive Maßnahmen ist die Anpassung der Toleranzbereiche eine weite-

re Möglichkeit, die Streuung der Prüfergebnisse zu beeinflussen. Die Berücksichtigung von 

Toleranzen im Produktentwicklungsprozess beschränkt sich bisher auf das Toleranzma-

nagement, dessen Ziel es ist, die Fertigbarkeit eines Bauteils sicherzustellen. Dabei wird 

keine Information darüber gegeben, wie sich die Toleranzen auf die technischen Anforde-

rungen auswirken. Um diesen Einfluss so früh wie möglich quantifizieren zu  können, muss 

die Streuung der Prüfergebnisse bereits in der Simulation ermittelt werden [7]. Um dies si-

cherzustellen, muss theoretisch jede tolerierte Konfiguration dargestellt und simuliert werden. 

Nur so können die Konfigurationen, in denen die Anforderungen nicht erfüllt werden, heraus-

gefiltert werden. Deswegen ist es nötig eine Methode zu entwickeln, die für eine große An-

zahl an Designparametern angewandt werden kann. Diese soll es nicht nur ermöglichen, die 

Streuung der Prüfergebnisse vorherzusagen sondern diese auch durch eine Optimierung der 

Toleranzbereiche in den gewünschten Bereich zu verschieben. 

 

2. Integration einer Robustheitsoptimierung in den Entwicklungsprozess 
Die Methode, mit der diese Fragestellung beantwortet wird, kann in zwei separate Phasen 

unterteilt werden. In der ersten Phase, der Robustheitsanalyse, wird die Streuung der Prü-

fergebnisse ermittelt. In der zweiten Phase, der Robustheitsoptimierung, werden die Tole-

ranzbereiche optimiert. Bild 1 zeigt die Integration beider Phasen in den aktuellen Entwick-

lungsprozess.  
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Bild 1: Entwicklungsprozess mit integrierter Robustheitsoptimierung 

 

Diese Methode nimmt als Ausgangspunkt einen Bauteilentwurf, der die technischen Anforde-

rungen erfüllt. Als Ergebnis erhält man eine Tolerierung desselben Entwurfs, mit der die An-

forderungen in jeder tolerierten Konfiguration eingehalten werden. In der Analysephase wird 

zunächst ein parametrisiertes CAE-Modell erstellt, mithilfe dessen alle Abweichungen zum 

Nennbauteil innerhalb des Toleranzbereiches dargestellt werden können. Die resultierende 

Anzahl an Designparametern ist in der Regel zu hoch, um mithilfe von Simulationen in einem 

angemessenen Zeitrahmen eine Aussage über die Streuung der Ausgangsgrößen (Steifig-

keit, Festigkeit,…) treffen zu können. Um die Anzahl an Parametern zu reduzieren, werden 

mithilfe der Taguchi Methodik die Parameter identifiziert, die den größten Einfluss auf die 

relevanten Ausgangsgrößen haben. Anhand eines effizienten Versuchsplans wird mit der 

reduzierten Anzahl an Parametern die Streuung der Ausgangsgrößen quantifiziert. Um den 

Rechenaufwand für die Optimierung der Toleranzbereiche zu minimieren, wird in der zweiten 

Phase ein analytisches Ersatzmodell erstellt. Dieses basiert auf den Ergebnissen aus der 

Versuchsplanung, die in der ersten Phase zur Quantifizierung der Streuung genutzt wurde. 

Das Ersatzmodell dient dazu, ohne weiteren Simulationsaufwand die Toleranzen zu optimie-

ren. Ziel der Optimierung ist die Minimierung der Summe der Größen der Toleranzbereiche. 

Dabei wird auf die Einhaltung der Anforderungen in jeder tolerierten Konfiguration geachtet.  

 

VDI-Berichte Nr. 2307, 2017 85

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


3. Robustheitsanalyse 
3.1 Parametrisches CAE-Modell 
Um jede Konfiguration im Toleranzbereich darstellen zu können, müssen alle  Simulations-

daten modifiziert werden. Informationen wie Blechdicken, Materialeigenschaften oder Intensi-

tät und Richtung von Lasteinleitungen können in der Regel direkt gesteuert werden. Um eine 

größtmögliche Präzision der Geometriemodifikation zu gewährleisten, wird die kleinste zur 

Verfügung stehende Auflösung zur Parametrisierung genutzt. Die Veränderung der Geomet-

rie wird daher über die Verschiebung von FEM-Knoten gesteuert. Diese wird den Anforde-

rungen angepasst, die durch die Toleranzen gegeben werden [8]. Üblicherweise wird zwi-

schen Veränderungen der Geometrie in der Ebene (in-plane) und außerhalb der Ebene (out-

of-plane), die durch das Blech definiert wird, unterschieden. Dabei werden die Knoten immer 

normal zum Bauteil verschoben. In Bild 2 wird an einem einfachen Beispiel veranschaulicht, 

wie diese Veränderungen an einem Blechbauteil aussehen können.  

 

 
Bild 2: Geometriemodifikation am Beispiel einer Platte 

 

Die in-plane Geometriemodifikation wird bei Beschnitten von Blechbauteilen eingesetzt. Die 

Richtung der Verschiebung (in Bild 2: ݐ଴ሬሬሬԦ) ergibt sich aus den Normalen zu den an einen Kno-

ten grenzenden, freiliegenden Kanten (in Bild 2: ݐଵሬሬሬԦ und ݐଶሬሬሬԦ). Bei der out-of-plane Verschie-

bung (in Bild 2: ݊଴ሬሬሬሬԦ) ergibt sich die Richtung aus den Normalen zu den an einen Knoten gren-

zenden Elementen (in Bild 2: ݊ଵሬሬሬሬԦ und ݊ଶሬሬሬሬԦ). Um die so entstehende Anzahl an Parametern zu 

reduzieren, werden die Elemente in der Praxis gruppiert, um physikalisch sinnvolle Modifika-

tionen zu generieren. Die Gruppierung wird durch den Benutzer individuell festgelegt, sollte 

aber den Geometriemodifikationen entsprechen, die durch den Fertigungsprozess entstehen 

können. 
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3.2 Sensitivitätsanalyse 
Um den Zeitaufwand zu verringern, wird in einem zweiten Schritt die Anzahl an Parametern 

reduziert. Dazu werden die Parameter, die den größten Einfluss auf die relevanten Aus-

gangsgrößen haben, mithilfe einer Sensitivitätsanalyse identifiziert. Diese wird in der Regel 

über Versuchspläne gesteuert, die sich hauptsächlich durch die Anzahl an Versuchen und 

die Genauigkeit der Quantifizierung unterscheiden. Um mit einer geringen Anzahl an Versu-

chen komplexe Zusammenhänge zwischen den Parametern darzustellen kann auf die ortho-

gonalen Felder oder Taguchi-Matrizen zurückgegriffen werden [9]. Die Effektivität dieser 

Versuchspläne wird in mehreren Arbeiten beschrieben. In Kombination mit einer statistischen 

Auswertung der Simulationsergebnisse bilden diese Felder die Basis für die Taguchi-

Methodik. Um die Anzahl an Berechnungen zu minimieren werden für jeden Parameter zwei 

Stufen gewählt. Stufen beschreiben festgelegte Zustände der Parameter. In der hier be-

schriebenen Methode sind die zwei gewählten Stufen die obere und die untere Grenze des 

Toleranzbereichs (P=Tu oder P=To). Hat man zum Beispiel eine nominale Blechdicke von 

3mm, mit einem Toleranzbereich von ±0,15mm, wären die zwei Stufen für diese Blechdicke 

2,85mm und 3,15mm. Orthogonale Felder sind so aufgebaut, dass für jeden Parameter jede 

Stufe in gleichem Anteil über die Versuche verteilt ist. In Tabelle 1 wird der Zusammenhang 

zwischen der Anzahl an Parametern und der Anzahl an Versuchen zusammengefasst.  

 

Tabelle 1: Größe der orthogonalen Felder 

Anzahl Parameter ݊௉ Anzahl Versuche ݊௏ Anzahl Versuche mit P= Tu /P= To 

2 - 3 4 2 

4 - 7 8 4 

2k - 2k+1-1 2k+1 2k 

 

Die Auswertung der Versuche erfolgt mithilfe einer Varianzanalyse [10]. Der Sobol-Wert, der 

zur Quantifizierung des Einflusses eines Parameters berechnet wird, stellt das Verhältnis 

zwischen der Varianz, die durch diesen Parameter verursacht wird, und der Varianz, die 

durch alle Parameter verursacht wird [11,12]. In der Regel hat eine Eingangsgröße einen 

signifikanten Einfluss auf die Ausgangsgrößen, wenn der errechnete S-Wert größer ist als 3 

[6]. So lässt sich die Anzahl der Parameter je nach Anwendungsbeispiel um bis zu 99% re-

duzieren.  
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3.3 Ermittlung der Streuung der Ausgangsgrößen 
Mit der reduzierten Anzahl an Parametern ist es möglich mithilfe einer weiteren Versuchs-

planung eine Aussage über die Streuung der Ausgangsgrößen zu treffen. Um einen optima-

len Versuchsplan zu finden, gibt es mehrere Kriterien, die es ermöglichen Versuchspläne zu 

vergleichen. Dazu gehören zum Beispiel die Orthogonalität, D-Optimalität, oder das Raum-

füllungskriterium [13]. Verschiedene Studien zeigen, dass für eine große Anzahl an Parame-

tern das „Orthogonal Array Design“ (OAD) am effektivsten ist, um das Spektrum der Ein-

gangsgrößen abzudecken [14]. Dieser Versuchsplan nimmt als Basis das in der Literatur 

weit verbreitete „Latin Hypercube Sampling“ (LHS) [15] und  ergänzt dieses um eine zusätz-

liche gleichmäßige Unterteilung des Wertebereichs. Dabei wird beachtet, dass jede dieser 

Unterteilung zu gleichen Teilen gefüllt wird. Bild 3 veranschaulicht diese Ergänzung an ei-

nem Beispiel mit zwei Parametern, deren Wertebereiche für das Orthogonal Sampling in 

jeweils 3 Teilbereiche unterteilt wurden. 

 

 
Bild 3: Vergleich zwischen LHS (links) und OAD (rechts) 

 

Im Gegensatz zum LHS wird beim OAD sichergestellt, dass die Versuchspunkte gleichmäßig 

über den Wertebereich verteilt sind und alle Extremitäten des Wertebereichs abgedeckt sind. 

Anhand des so erstellten Versuchsplans kann die Streuung der Ausgangsgrößen ermittelt 

werden. Die Ergebnisse werden in Abschnitt 5 an einem Beispiel veranschaulicht. 

 

4. Robustheitsoptimierung 
4.1 Modellbildung 
Mit der Modellbildung beginnt die zweite Phase des Prozesses, in der die Toleranzbereiche 

optimiert werden. Mit einem Ersatzmodell wird ein analytischer Zusammenhang zwischen 

Eingangs- und Ausgangsgrößen gebildet. Dadurch entfallen in der Optimierung die zeitauf-

wendigen Simulationen. Der erste Ansatz zur Bildung eines analytischen Modells wird von 

Box erarbeitet [16]. Mithilfe der „Response Surface Methodology“ wird hier ein linearer Zu-
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sammenhang zwischen Input und Output erstellt. Dieser ermöglicht es jedoch nicht, Wech-

selwirkungen zwischen den verschiedenen Parametern darzustellen. Zu den moderneren 

Ansätzen der Modellbildung zählt der Ansatz des „Polynomial Chaos“, der auf Wieners Theo-

rie des homogenen Chaos basiert [17]. Seit der Einführung wurde diese Methode an vielen 

Beispielen auf strukturmechanische Fragestellungen angewandt [18][19]. Bei der „Polynomi-

al Chaos Expansion“ (PCE) werden Polynome als Basisfunktion für das Modell gewählt. Eine 

detailliertere Beschreibung dieser Methode kann in [20] gefunden werden. Die Form der ge-

nutzten Polynome hängt von der Verteilung der Eingangsparameter im Wertebereich ab. Im 

Fall einer gleichmäßigen Verteilung, wie sie bei der Tolerierung angenommen wird, werden 

die Legendre-Polynome gewählt. Üblicherweise reicht es bei strukturmechanischen Prob-

lemstellungen einfache Wechselwirkungen zu berücksichtigen. Deswegen werden zunächst 

nur Polynome zweiter Ordnung verwendet. Bei der PCE wird in der Regel ein nichtlineares 

Ersatzmodell erstellt. In den Fällen, in denen die Wechselwirkungen zwischen den Parame-

tern keinen Einfluss haben, ist das Ersatzmodell linear. 

 

4.2 Optimierung der Toleranzbereiche 
Bei der Optimierung der Toleranzbereiche muss darauf geachtet, dass die Reduzierung der 

Toleranzbereiche in sensiblen Bereichen durch eine Erweiterung der Toleranzbereiche in 

anderen Bereichen ausgeglichen wird. So wird sichergestellt, dass durch die Anpassung der 

Toleranzen keine unnötig hohen Fertigungskosten entstehen. In der Optimierung werden für 

jeden Designparameter die untere und die obere Grenze des Toleranzbereichs (Tu, To) als 

Variable gewählt. Als Zielfunktion (F) wird die Gesamtgröße der Toleranzbereiche maximiert:  

,ሺܶ௨ܨ ܶ௢ሻ ൌ 	෍ ௜ܶ
௢ െ ௜ܶ

௨

௡ು

௜ୀଵ

 

 

݊௉ ist hier die Anzahl an Designparametern. Die Nebenbedingungen (G) der Optimierung 

sind eine Ober- und Untergrenze für den Toleranzbereich, eine Mindestgröße für den Tole-

ranzbereich, und die technischen Anforderungen, die als Restriktion (R) zusammengefasst 

werden. Die minimale Größe für den Toleranzbereich ist hierbei abhängig vom gewählten 

Fertigungsverfahren.  

௜ܶ
௨ ൒ ௠ܶ௜௡	, ௜ܶ

௢ ൑ ௠ܶ௔௫	, ௜ܶ
௢ െ ௜ܶ

௨ ൒ ݀ܶ
ܴሺܶ௨, ܶ௢ሻ ൒ 0

ቋ ,ሺܶ௨ܩ	 ܶ௢ሻ ൒ 0 

 

So entsteht ein Ungleichungssystem mit mehr Nebenbedingungen als Variablen. Die Form 

des Ersatzmodells ist ausschlaggebend dafür, ob das Problem linear oder nichtlinear ist. Ein 
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lineares Problem (LP) wird es mithilfe des Simplex-Verfahren gelöst [21]. Bei dieser Methode 

wird zunächst eine Startlösung bestimmt. Ausgehend von dieser Lösung, beginnt ein iterati-

ves Verfahren. In jedem Schritt wird versucht, eine neue Lösung mit besserem Zielfunkti-

onswert zu konstruieren, bis dies nicht mehr möglich ist. Um einen Schritt zu machen, be-

wegt man sich entlang des Polyeders der möglichen Lösungen. Dieser wird aus den soge-

nannten Basislösungen gebildet. Wie diese Basislösungen erhalten werden, wird in [21] er-

läutert. Besitzt (LP) ein Optimum, wird es mit dem Simplex-Verfahren ermittelt. Im Fall eines 

nichtlinearen Problems (NP) findet diese Methode ein lokales, jedoch nicht zwangsläufig ein 

globales Optimum. Das gefundene Optimum hängt in diesem Fall von der Startlösung ab. 

Für (NP) wird daher die Lagrange Methode verwendet [22]. Mithilfe der Lagrange Multiplika-

toren ߣ ൌ ሺߣ௞ ൒ 0ሻଵஸ௞ஸ௡ಿ wird eine neue Zielfunktion (L) generiert:  

,ሺܶ௨ܮ ܶ௢, ሻߣ ൌ ,ሺܶ௨ܨ	 ܶ௢ሻ ൅෍ߣ௞ܩ௞ሺܶ௨, ܶ௢ሻ

௡ಿ

௞ୀଵ

	 

 

݊ே ist die Anzahl an Nebenbedingungen. Die neue Zielfunktion muss zwei Konditionen erfül-

len: 

ቊ
ሬሬԦ்౫,்౥׏ ,ሺܶ௨ܮ ܶ௢, ሻߣ ൌ 0

݉݅݊൫ߣ௞, ,௞ሺܶ௨ܩ ܶ௢ሻ൯ ൌ 0, ∀݇ ∈ ሼ1…݊ேሽ
	

 

So ergibt sich ein Gleichungssystem mit ሺ݊௉ ൅ ݊ேሻ Gleichungen und ሺ݊௉ ൅ ݊ேሻ Variablen, 

dass sich einfach lösen lässt. Die so errechneten ሾ ௜ܶ
௨; ௜ܶ

௢ሿ bilden nun die neuen Toleranzbe-

reiche für das Bauteil.  

 

5. Robustheitsoptimierung am Beispiel eines Hilfsrahmens 
Die Robustheitsoptimierung wird in diesem Abschnitt an einem Hilfsrahmen veranschaulicht. 

Die Geometrie, Randbedingungen und Anforderungen ähneln vorhandenen Bauteilen, ohne 

dabei einem realen Produkt exakt zu entsprechen. Bild 4 zeigt die Geometrie des betrachte-

ten Bauteils.  
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Bild 4: Geometrie des Hilfsrahmens 

 

Der Hilfsrahmen wird an 4 Punkten fest gelagert. In vier Lastfällen werden Brems- und Be-

schleunigungskräfte an den 6 in Bild 4 beschriebenen Krafteinleitungspunkten eingebracht. 

Zusätzlich werden vier verschiedene Steifigkeiten ausgewertet. Das Bauteil wird mit 72006 

Shell-Elementen vernetzt. Zur Modifikation der Geometrie werden 59 Parameter verwendet. 

Dies sind 9 Blechdicken, 32 Beschnittkanten (in-plane Knotenverschiebung), 14 Auszugshö-

hen von Taschen (out-of-plane Knotenverschiebung) und 4 zusätzliche Parameter, mithilfe 

derer die Geometrie des vorderen Rohrs (in Bild 4 unten) verändert wird. Im ersten Schritt 

wird die Anzahl der Parameter in der Sensitivitätsanalyse reduziert. Bei 59 Parametern sind 

dafür 64 Simulationen notwendig. Bild 5 zeigt die Verteilung der S-Werte über die Designpa-

rameter. 

 

 
Bild 5: S-Werte für die Designparameter des Hilfsrahmens 
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Die Anzahl der Parameter wird im ersten Schritt auf 17 Parameter reduziert, die über alle 

Parameter-Kategorien verteilt sind. Anhand dieser Parameter wird ein Versuchsplan erstellt, 

um die Streuung der Ausgangsgrößen zu quantifizieren. Für 17 Eingangsgrößen, deren Wer-

tebereich jeweils in 4 Teilbereiche unterteilt wird, werden 256 Simulationen benötigt. Zusätz-

lich werden die Parameter, die einen geringen Einfluss auf die Ausgangsgrößen haben, zu-

fällig in ihrem Toleranzbereich gestreut. So kann ermittelt werden, welcher Anteil der Konfi-

gurationen die Anforderungen verletzt. Um die verschiedenen Anforderungen zu vereinheitli-

chen, wird die normierte technische Anforderung definiert. Dieser stellt das Ergebnis im Ver-

hältnis zu den Grenzen der Anforderungen dar. Ist dieser Wert kleiner als 1, wird keine An-

forderung verletzt. Ist der Wert größer wird mindestens eine Anforderung verletzt. In Bild 6 ist 

dieser Wert prozentual dargestellt. 

 

 
Bild 6: Streuung der Ausgangsgrößen (256 Versuche) 

 

In 25% der Konfigurationen wird mindestens eine Anforderung verletzt. Durch die Anpassung 

der Toleranzbereiche sollen alle Anforderungen in jeder Konfiguration erfüllt werden. Um das 

benötigte PCE-Modell zu bilden, werden zusätzliche 342 Berechnungen durchgeführt. Auch 

dabei werden die Parameter, die einen geringen Einfluss auf die Ausgangsgrößen haben, 

zufällig gestreut. Dabei entsteht ein nichtlineares Ersatzmodell. Der gewählte Optimierungs-

algorithmus ist daher die Lagrange-Methode. Die Toleranzen, die als Ausgangspunkt dienen, 

sowie die aus der Optimierung resultierenden Toleranzen sind in Tabelle 2 zusammenge-

fasst. Als Unter- und Obergrenze für die Optimierung wird der doppelte initiale Toleranzbe-

reich gewählt. 
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Tabelle 2: Alter und neuer Toleranzbereich für die 17 Einflussreichen Parameter 

 
Die Gesamtgröße der Toleranzbereiche wird in der Optimierung um 7% vergrößert. Die Ein-

haltung der Anforderungen in jeder Konfiguration wird mithilfe des Ersatzmodells sicherge-

stellt. Um dieses Ergebnis zu prüfen wird, wie schon in der ersten Phase des Prozesses, die 

Streuung der Ausgangsgrößen ermittelt, diesmal mit den neuen Toleranzbereichen. Der 

Vergleich zu der Streuung im Ausgangsbauteil (in grau) wird in Bild 7 dargestellt.  

 

 
Bild 7: Streuung der Ausgangsgrößen mit neuen Toleranzbereichen (400 Versuche) 

 

Bei 3% der Versuche die Anforderung trotz der Optimierung verletzt wird. Dabei beträgt die 

maximale Überschreitung des Spannungsgrenzwerts 0,6%, und die maximale Unterschrei-

tung des Steifigkeitsgrenzwerts 0,8%. Die Differenz zwischen den Aussagen aus der Opti-

mierung und der Berechnung kann durch die Ungenauigkeit des Ersatzmodells erklärt wer-
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den. Um dieser Abweichung entgegenzuwirken, kann zum Beispiel ein zusätzlicher Sicher-

heitsfaktor in die Optimierung integriert werden. Um die Genauigkeit des Ersatzmodells zu 

verbessern kann auch die Ordnung der Polynome bei der PCE erhöht werden. Werden die 

Berechnungsergebnisse dann auch am Prüfstand bestätigt, kann mit der neuen Tolerierung 

das Gewichtspotential aus der Entwurfsphase in die weiteren Entwicklungsphasen übertra-

gen werden.  

 

6. Zusammenfassung und Ausblick 
Mit der Robustheitsanalyse ist es möglich geworden, die Robustheit eines Bauteils zu ermit-

teln. Das Leichtbaupotential, dass durch rechnergestützte Methoden in der Entwurfsphase 

generiert wird, kann zudem durch die Optimierung der Toleranzbereiche in die weiteren Ent-

wicklungsschritte übertragen werden. Mithilfe aufwandsreduzierter Versuchsplanung werden 

die Designparameter identifiziert, die einen signifikanten Einfluss auf die relevanten Ein-

gangsgrößen haben. Der Einfluss einzelner Parameter, sowie komplexere Wechselwirkun-

gen werden mithilfe eines analytischen Ersatzmodells quantifiziert. Dieses wird dazu genutzt, 

die Toleranzbereiche der Eingangsgrößen so zu optimieren, dass alle Anforderungen in je-

der erlaubten Konfiguration erfüllt werden. Zeit- und gewichtsintensive Anpassungen des 

Bauteils entfallen und ein leichtes und robusteres Bauteil kann in einem schnellen und effi-

zienten Prozess entwickelt werden. Zudem entfallen Prototypenschleifen, die durch die nicht-

Erfüllung der Anforderungen am Prüfstand verursacht werden. Eine Toleranzoptimierung am 

Beispiel des Hilfsrahmens zeigt, welche Ergebnisse mit dieser Methode erzielt werden kön-

nen. Allerdings wird hier auch deutlich, dass die Genauigkeit des analytischen Ersatzmodells 

noch Verbesserungspotential bietet. Neben der Möglichkeit, die Ordnung der Polynome in 

der Modellierung zu erhöhen, kann die Genauigkeit zum Beispiel durch eine lokale Näherung 

der Ausgangsgrößen im Bereich der Grenzen der Anforderungen erhöht werden. Die zu-

nächst für Blechbauteile entwickelte Methode kann nun auch für Gussbauteile angepasst 

werden, um die gesamte Bandbreite der automobilen Bauteile abdecken zu können. Ein wei-

teres Potential bietet die Zielfunktion der Optimierung. Anstatt die Gesamtgröße der Tole-

ranzbereiche zu maximieren, kann zum Beispiel die Größe des kleinsten Toleranzbereichs 

maximiert werden. Mithilfe eines Kostenmodells kann außerdem eine Verbindung zwischen 

der Größe der Toleranzbereiche und der Fertigungskosten erstellt werden. Durch die In-

tegration eines solchen Modells als Zielfunktion in die Optimierung kann Übertragbarkeit in 

den Werkzeugbau erheblich verbessert werden.  
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Kurzfassung 

Konventionelle Methoden des Robust Design verfolgen größtenteils Ansätze zur 

Varianzbetrachtung, die potentiell über der Produkteinsatzzeit auftreten können. Daher geben 

diese Methoden keine genauen Informationen über das zeitlich funktionale Verhalten der sich 

verändernden Produkteigenschaften und –anforderungen sowie deren Lebensdauer. Um 

genaue Lebensdauerprognosen bezüglich dieser Funktionserfüllung zu beschreiben, ist eine 

kontinuierliche Merkmalsänderung in Form von sogenannten Degradationsmodellen von 

Vorteil. Diese werden im Allgemeinen durch reale Versuche mit einem hohen Grad an 

zeitlichem und kostenintensivem Aufwand durchgeführt. Für eine effizientere Ermittlung der 

Modelle sollten bereits in frühen Phasen des Produktentwicklungsprozesses, virtuelle 

Degradationsmodelle entwickelt werden. Durch die genaue Kennung von Funktionsausfällen 

über der Zeit können nicht nur Produkte zielgerichtet ausgelegt, sondern auch unnötige 

Ressourcen eingespart werden. 

 
Abstract (optional) 

Conventional methods of Robust Design are largely used for variance consideration, which 

may potentially occur during the product use. Therefore, these methods do not provide 

accurate information about the temporal behavior of the changing product properties and 

requirements. However, in order to describe accurate life predictions with regard to the fulfilling 

functions, a continuous feature change is advantageous with the aid of degradation models. 

These models are generally determine with real tests, which are associated with a high degree 

of time and cost effort. For a more efficient determination of these models, virtual degradation 

models should be developed in the early stages of the product development process. The 

products can be targeted designed and even unnecessary resources can be saved by the 

precise identification of functional failures over time.
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1. Einleitung und Motivation 

Die Lebensdauer eines Produkts gilt als wichtiges Qualitätsmerkmal. Sie markiert nicht nur die 

Beschaffenheit und den Zustand eines Produktes, sondern schließt auch den zuverlässigen 

und sicheren Betrieb innerhalb eines bestimmten Zeitrahmens ein. Wird die Ausfallrate an 

technischen Bauelementen in Abhängigkeit von deren Lebensdauer betrachtet, ergibt sich ein 

typischer Verlauf, die sogenannte Badewannenkurve. Das Ausfallverhalten wird hierbei in drei 

Phasen klassifiziert: Früh-, Zufalls- und Ermüdungsausfälle [1]. Bei den Ermüdungsausfällen 

altert das Bauteil und repräsentiert eine steigende Ausfallrate. Der Ausfallzeitpunkt kann 

anhand einer messbaren Degradation in der realen Erprobung beziehungsweise mit virtuellen 

Degradationsmodellen bereits früher im Entwicklungsprozess prognostizier werden. Diese 

Modelle ermöglichen dem Entwickler einerseits eine genauere Berechnung der Funktions-

Lebensdauer und andererseits eine Möglichkeit Schwachstellen im System zu ermitteln. Bild 1 

zeigt schematisch einen typischen Degradationsverlauf bis zu einem definierten 

Ausfallkriterium (End-of-life (EOL) - Kriterium). 

D
eg

ra
da

tio
ns

-
m

er
km

al

Ausfallzeit ti

D
eg

ra
da

tio
ns

-
m

er
km

al

EOL

t1 t2 t3 t4 t5

Lauf-
zeit

generierter Degradations-
pfad aus Messdaten
extrapolierter Pfad bis 
EOL

 
Bild 1: Änderung der Degradation über der Betriebszeit (a) und Zusammenhang zwischen 

Degradationspfaden und Ausfalldichte (b) 

Erste Degradationsmodelle basieren auf der Annahme, dass die Degradation ein zufälliger, 

stochastischer Prozess (Wiener Prozess) in einer definierten Zeit ist [2]. Für die Bestimmung 

dieser Modelle beziehungsweise die Prognose des Ausfallverhaltens der zu beschreibenden 

Aufgabenstellung, kann mittels statistischer Modelle erfolgen. Die Modellierung erfolgt auf 

Basis der Annahme einer Funktion über der Zeit mit multidimensionalen zufälligen Variablen 

(General Degradation Path Models). Beispiele hierfür sind unter anderem die zweistufige 

Bestimmung der Funktionsparameter (Nonlinear mixed-effects model) nach [3], das fraktionell 

faktorielle Design nach [4] oder das Model mit zufälligen Regressionskoeffizienten nach [5]. 

Weitere Modelle sind in Tabelle 1 gelistet. 

Gegenüber der herkömmlichen Erprobung haben diese Modelle den wirtschaftlich 

entscheidenden Vorteil einer beschleunigten Erprobung. Dies hat beispielsweise bei Bauteilen 

mit einer hohen Lebensdauer, unabhängig von deren Zuverlässigkeit, den Vorteil, dass durch 

(b) (a) 
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herkömmliche Lebensdauertests kaum oder keine Ausfälle generiert werden können und 

anhand der Degradationserprobung neben den Ausfallzeiten auch der Verlauf über der Zeit 

bis zum Ausfall beschrieben werden kann. Dies ermöglicht eine variable Messzeitpunkt-

Definition sowie ein vorzeitiges Beenden der Versuchsreihen nach Verhaltenskenntnis sowie 

deren Extrapolation. Zudem muss durch die Definition eines EOL-Kriteriums nicht zwingend 

bis zum Ausfall getestet werden. 

Tabelle 1: Degradationsmodellen nach Stand der Technik und Forschung 
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Arrhenius  [6] 

Random-Coefficients  [7] 

Simple-Constant-Rate  [6] 

Simple Path  [8] 

Random-Regression-
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Sample-Degradation-Path  [6] 
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Random-Effects  [9] 

Mixed-Effects  [3] 

Integrated S-Curve  [10] 

Gompertz  [11] 

Lloyd-Lipow  [12] 
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Gamma-Prozess  

 
[14] 

Wiener-Prozess  [2] 

Markov-Prozess 

Z1 Z2 Z3

P11 P22 P33

P12 P23

 

[15] 

Zusammenfassend gilt, dass die Degradation einen Ausfall hervorruft, sobald sie den 

kritischen Degradationswert  (EOL) erreicht. Infolgedessen hängt die 

Ausfallwahrscheinlichkeit  im Wesentlichen davon ab, mit welcher Wahrscheinlichkeit  
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die Degradationswerte  über oder unter dem EOL-Kriterium liegen. Hierfür ist die 

Verteilungsform des Degradationsmerkmals  wichtig, vergleich dazu Bild 1 (b) mit folgender 

Gleichung: 

 . 

Für eine sichere und genauere Aussage einer Prognose auf Basis von Stichproben hinsichtlich 

Streuung und Regressionsgüte gibt es bislang mehrere Ansätze zur Modellierung der 

Aussagesicherheit. Zur Verfügung stehen klassische Regressionsmethoden sowie analytische 

und numerische Methoden zur Verfügung. Hierfür wird anhand theoretischer Ausfallzeiten, 

welche sich aus dem parametrisierten Degradationsmodell ergeben, eine konventionelle 

Lebensdauerauswertung durchgeführt. Eine Übersicht gibt hierzu Bild 2. 
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Bild 2: Zuverlässigkeitstechnische Auswertungsmöglichkeiten von Degradationsmodelle 

Als weitere Möglichkeit wird in diesem Beitrag eine simulative Alternative gezeigt, die nicht nur 

die Modellierung der Degradation in der frühen Entwicklungsphase ermöglicht, sondern zudem 

zur Bestimmung der Aussagesicherheit dient. Hierfür werden stochastische 

Lebensdauerberechnungen bezüglich Funktionsausfällen mit Hilfe von simulativ ermittelten 

kontinuierlichen Merkmalsänderungen anhand einer Überlastkupplung einer Nachstelleinheit 

für Nutzfahrzeugbremssystemen vorgestellt. Dabei werden die schädigungsrelevanten 

Effekte, wie Verschleiß, hinsichtlich der Funktionsdegradation mit Finite Element (FE)-

Berechnungen ermittelt. Damit ist es möglich Zuverlässigkeitsprognosen für funktionales 

Versagen zu prognostizieren. 
2. Allgemeine Vorgehensweise 

Basierend auf der bekannten Vorgehensweise in Kapitel 2.1 wird als Vergleich die in diesem 

Beitrag zu Grunde liegende Vorgehensweise vorgestellt. 

2.1 Klassische Vorgehensweise 

In Bild 3 wird eine allgemeine Vorgehensweise gezeigt. Zu Beginn müssen in der ersten Phase 

Produkteigenschaften für typische Belastungen, wie beispielsweise Nutzungszyklen, 

Temperatur, Druck oder Strom, zur Degradationsbeschreibung ermittelt werden. Im Anschluss 

werden Zeitintervalle sowie EOL-Kriterien bestimmt und definiert. In der zweiten Phase wird 

das Modell auf der generierten Datenbasis sowie im Abgleich zu bestehenden Modellen 

erstellt. Jeder Degradationsprozess benötigt ein eigenes Modell nach dem jeweiligen 
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degradierten Merkmal, wie Risswachstum oder Widerstandsänderung. Im Anschluss erfolgen 

die Abschätzung der Parameter sowie die Evaluierung der Ausfallwahrscheinlichkeit. 
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Bild 3: Schematische Vorgehensweise zur Degradationsmodellierung 
2.2 Lebensdaueranalyse auf Basis von multidimensionaler Zuverlässigkeits- und 

Robust Design Simulation 

Die Lebensdaueranalyse soll auf Basis des Robust Design erfolgen. Der Grundgedanke dabei 

ist, das System oder die Komponente gegen äußere und innere Störeinflüsse unempfindlich 

zu gestalten. Hierbei wird nach der klassischen Vorgehensweise nicht explizit die Betriebszeit 

als eine steuernde Größe betrachtet, sondern als Störgröße, da das Produkt in der geforderten 

Betriebszeit seine Funktion aufrecht halten soll. Allerdings treten während der Einsatzzeit 

alterungsbedingte Ermüdungen am Produkt auf. Um das Produkt möglichst robust gegen 

diese Ermüdungen zu konstruieren, bedarf es eines Designs, das innerhalb der geforderten 

Einsatzzeit keine beziehungsweise bis zu einem zulässigen Kriterium die Funktion 

gewährleistet. Diese Herausforderung wird meistens unter der Prämisse einer 

Überdimensionierung erreicht. Allerdings kann selbst diese unwirtschaftliche Konstruktion 

außerhalb der Funktionsgrenzen liegen. Um dies zu vermeiden wird entsprechend der Theorie 
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der Robusten Zuverlässigkeit nach [16] eine zeitliche Betrachtung des Funktionsverhaltens 

unter Berücksichtigung sämtlicher Wechselwirkungen verfolgt. Zur Lebensdaueranalyse auf 

Basis von multidimensionaler Zuverlässigkeits- und Robust Design Simulation wird mittels 

einer stochastischen Degradationsanalyse die Funktionserfüllung innerhalb der Einsatzzeit 

betrachtet. Großteils sind solche virtuellen Degradationssimulationen mit einem Mehraufwand 

verbunden, die eine Effizienz infolge hoher Ressourcenaufwand von beispielsweise 

Rechenzeit und –kapazität nicht immer gewährleisten. Folglich wird nach der durchgeführten 

Robust Design Definition die  und  - Quantil-Designs bestimmt sowie ausschließlich 

mit diesen und dem nominalen Design die Degradation über der Einsatzzeit simuliert und die 

Ausfallzeit zum EOL betrachtet. Ziel ist es, mit den drei durchgeführten Simulationen nicht nur 

Rechenzeit einzusparen, sondern auch eine Aussagesicherheit respektive für die Population 

zu bieten. Entsprechend wird hierfür folgende Hypothese aufgestellt: 

Die definierten Quantil-Designs aus den Robusten Designs entsprechen 

zum Zeitpunkt des EOL-Kriteriums der Aussagesicherheit zum jeweiligen 

Lebensdauer-Quantil. 

Zur Überprüfung dieser These wird am nachfolgend beschriebenen Demonstrator das Robust 

Design sowie die virtuelle Degradationssimulation der drei genannten Designs durchgeführt. 

Zur Bestätigung wird die Simulation, nach erfolgter Validierung mittels realer 

Degradationsversuche, um die durchgeführte Parameterstudie im Robust Design auf die 

Degradationsmodellierung übertragen. Ziel ist es, die Quantil-Designs in ihrer Definition zu 

bestätigen. Nach erfolgreicher Bestätigung der Hypothese können somit nicht nur effektive 

virtuelle Lebensdaueranalysen umgesetzt, sondern auch daraus zielgerichtet reale 

Nachweisversuche ressourcenreduzierend abgeleitet und geplant werden. 
3. Verschleißmodellierung des Demonstrators 

In der vorliegenden Funktionsbaugruppe als Anwendungsbeispiel wird eine Überlastkupplung 

verwendet. Anschließend an die Vorstellung des Demonstrators wird die Vorgehensweise 

beschrieben und abschließend die Ergebnisse aus virtueller und realer Erprobung diskutiert. 

3.1 Das Anwendungsbeispiel 

Die Überlastkupplung besteht aus Nabe (1), Flanschring (2) sowie aus rotationssymmetrisch 

angeordnete Kugeln (3), die durch ihre Kontakteigenschaften das Drehmoment übertragen, 

vergleiche Bild 4. Bei einer korrekten Funktionsweise übertragen die Kugeln bis zu einem 

definierten Grenzwert das Drehmoment von der Nabe (1) auf den Flanschring (2). Im 

Überlastfall rotieren Nabe (1) und Flanschring (2) relativ zueinander, was die Kugeln (3) aus 

ihren Rastpunkten (RP) drückt. In diesem Zustand kann kein Drehmoment übertragen werden, 
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vergleiche Bild 4 (b). Die Drehbewegung wird in Folge der Überlastfunktion in eine axial 

translatorische Bewegung entkoppelt. Das Robustheitsmaß (Zielgröße) ist die Funktion 

innerhalb eines übertragbaren, normierten Drehmoments von 1,0 ± 0,2 [-]. 

Axiale Verschiebung
bei Überlast

VR
FST

RP

RPT

(a) (b)

SST

Nabe (1)

Flanschring (2)
Kugel (3)

 

Bild 4: Überlastkupplung im unbestätigtem (a) und betätigtem (b) Zustand 

3.2 Degradationsermittlung 

Die Umsetzung der Verschleißsimulation findet mittels FE statt. Der Grundgedanke besteht 

 

Bild 5: Schematische Vorgehensweise zur Degradationssimulation 

darin, alle Knoten des FE-Netzes zu sammeln, die während der gesamten Bewegung Kontakt 

mit den Kugeln erfahren. Diese Knoten sollen in die Wirkrichtung der Pressung in das 

Bauteilinnere verschoben werden. Die Vorgehensweise ist in Bild 5 aufgezeigt. Der Verschleiß 

in Form von Materialverlust wird durch Netzknoten-Verschiebung realisiert. Mit den aus der 

FE-Simulation erhaltenen Pressungswerten kann eine einfache Simulation des 

Materialabtrags aufgrund von adhäsiven Verschleiß modelliert werden. Hierfür werden 

Derivate des Archard’schen Verschleißmodells nach [17,18] angewandt. Weitere 

Informationen zur Umsetzung und Anwendung der Verschleißsimulation siehe [19]. 
3.3 Simulationsergebnisse 

Im Folgenden werden die Ergebnisse nach dem Robust Design, der Verschleißsimulation der 

Bahnkontur und der Validierung der Überlastkupplung kategorisiert vorgestellt. 

Kontaktknoten 
sammeln

Pressungsverlauf

Oberflächen-
elemente

Verschiebungs-
richtung am Koten

Knoten verschieben

Erneute Lösung
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3.3.1 Robust Design der Überlastkupplung 

Beginnend mit dem Robust Design der Überlastkupplung ist ein Design definiert, welches mit 

seiner Toleranzdefinition die maximal geforderten Grenzen von 1,0 ± 0,2 [-] (normiert) unter 

Einwirkung innerer sowie äußerer Störgrößen einhält. Dies zeigt die dargestellte 

Parameterstudie, vergleiche Bild 6 (a). 

   

Bild 6: Überlastmoment der Kupplung: Robust Design (a), Quantile sowie deren Designs (b) 

Für eine robuste Aussagesicherheit werden für die anschließende virtuelle Degradations-

modellierung zuerst die Verläufe der Überlastmomente des Robust Design diskretisiert und je 

Diskretisierungspunkt  ein  und  - Quantil mittels Linearer Interpolation für 

 Designs aus Bild 6 (a) bestimmt: 

 

Für die Zuordnung des jeweiligen Quantil zum entsprechenden Design, wird die Methode der 

Kleinsten Fehlerquadrate der deskriptiven Statistik angewendet: 

 

substituiert mit: 

und       

Als Ergebnis ergibt sich aus der minimalen Fehlerquadratsumme aller diskretisierten 

Abstandsberechnungen der in Bild 6 (b) dargestellte Zusammenhang zwischen Quantil und 

resultierenden Design. 
3.3.2 Degradationsergebnisse der Überlastkupplung 

Wird die Degradation der Bahnkontur beider Scheiben in Bezug auf das Überlastmoment in 

Abhängigkeit des Verdrehwinkels aufgetragen, vergleiche Bild 7, beispielhaft für sechs 

Simulationen, ergibt sich mit zunehmenden Verschleiß und verschiedenen 

Parameterkombinationen an der Bahnkontur ein stetig zunehmendes (a) und ein stetig 

abnehmendes (b) Überlastmoment sowie ein sich änderndes Verhalten der Merkmale. 

(b) (a) 
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Bild 7: Degradation der Bahnkontur in Bezug auf das resultierende abnehmende (a) und 

zunehmende (b) Überlastmoment 

Der Grund hierfür wird durch die Betrachtung der Degradationsmerkmale der Bahnkontur 

(Rastpunkt-Radius und -Tiefe, Übergangsradius sowie steile und flache Steigung) 

nachvollziehbar, vergleiche Bild 8. Es zeigt sich in allen Merkmalen eine durch die Pressung 

und Reibarbeit bedingte Abnahme des  Designs, die ein erschwerter Übergang zur 

rotatorischen Entkopplung indiziert und folglich zu einem zunehmenden Überlastmoment führt. 

Die Abnahme des  und des Nominal-Designs ergibt sich aufgrund deren 

Parameterkombination, die eine wechselseitige Beeinflussung auf die Merkmale haben.   

 

Bild 8: Normierte Degradation des Nominal- und der Quantil-Designs der Bahnkontur-

Parameter der Nabe und des Flanschring und des maximalen Überlastmoments 
3.3.3 Validierung der Überlastkupplung 

Mittels den vorhandenen Testdaten von sechs Nachstellern ist es möglich, eine erste 

Modellauswahl zu treffen. Nach erster Einschätzung beschreibt der lineare Modellansatz 

(a) (b) 
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(Simple-Constant-Rate) nach [7], vergleiche Tabelle 1, den Degradationspfad. Nach dem 

festgelegten EOL-Kriterium können via Monte-Carlo (MC)-Simulation und Extrapolation zur 

Generierung weiterer Degradationspfade der Daten sogenannte Pseudo-Ausfallzeiten 

generiert werden, vergleiche Bild 9. Eine Validierung des Degradationsmodells von realer und 

virtueller Erprobung kann aus dem Vergleich des normierten Überlastmoments aus Bild 8 und 

Bild 9 (a) geschlossen werden. Beide Modelle stimmen sowohl im Modell als auch in deren 

zeitlichen Verhalten überein, vergleiche hierzu vorab das Überlastmoment in Verhältnis zum 

Nominal-Design in Bild 10. 
4. Virtuelle Degradationsmodellierung und Ergebnisinterpretation 

Die Schlussfolgerung aus der Simulation zeigt sich in der Validierung der sechs Nachsteller 

sowie in der MC-Simulation, vergleiche Bild 9 und Bild 10. Die realen Versuche weisen sowohl 

zunehmende als auch abnehmende Überlastmomente auf. Der Streubereich verdeutlicht 

diesen Trend. Werden die EOL-Kriterien betrachtet ergibt sich eine  - Lebensdauer 

beziehungsweise ein  - Quantil für die untere Ausfallgrenze bei einer normierten 

Betriebszeit von  und eine obere Ausfallgrenze von . 

 

Bild 9: Extrapolation des Überlastmodells zum EOL mittels MC-Simulation 

Zur Überprüfung der Hypothese aus Kapitel 2.2 wird auf Basis der Quantil-Designs sowie dem 

Nominal-Design der virtuellen Degradations-Simulation eine Aussagesicherheit zum Zeitpunkt 

des EOL prognostiziert. Bild 10 zeigt die Simulation des jeweiligen Momentverlaufs. Es sind 

sowohl die Quantil- und Nominal-Designs der MC-Simulation auf Basis der realen Versuche 

aus Bild 9 (a), als auch die virtuelle Degradations-Simulation zusammengefasst. Es wird 

deutlich, dass alle Designs innerhalb der Degradation der Quantil-Designs liegen 

beziehungswiese mit konservativeren Ansatz diese umhüllen. Es ergibt sich ein  - Quantil 

für die untere Ausfallgrenze bei einer normierten Betriebszeit von  und eine obere 

Ausfallgrenze von . Dies sind im Vergleich zur MC-Simulation auf Basis der realen 

Versuche eine um ige beziehungsweise um ige konservativere Betrachtung. 

(a) (b) 
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Bild 10: Virtuelle Degradation mit Design-Grenzen als Aussagesicherheit im Vergleich zur 

realen Erprobung 

Die aufgestellte Hypothese zur Definition von Quantil-Designs aus den Robust Designs einer 

virtuellen Degradations-Simulation umfassen zum Zeitpunkt des EOL-Kriteriums die 

Aussagesicherheit zum jeweiligen Quantil, kann folglich bestätigt werden. Entsprechend ist 

eine integrale Betrachtung der Robusten Zuverlässigkeit des vorgestellten 

Anwendungsbeispiels gegeben. 
6. Zusammenfassung 

In diesem Beitrag wird eine Lebensdaueranalyse auf Basis von multidimensionaler 

Zuverlässigkeits- und Robust Design Simulation am Beispiel einer Überlastkupplung für 

Nutzfahrzeugbremssysteme vorgestellt. Die zu Beginn durchgeführte Robust Design 

Untersuchung beschreibt die Quantil- und Nominal-Designs zum Auslegungszeitpunkt vor 

Inbetriebnahme. Die anschließende virtuelle Degradations-Simulation zeigt, aufgrund der 

bestehenden Wechselwirkung der Degradationsmerkmale auf den Verlauf der 

Degradationspfade, ein sich zu- und abnehmendes Momentverhalten. Dieses wird durch die 

anschließenden realen Versuche und der darauf aufbauenden MC-Simulation unter Beweis 

gestellt. Diese realen Degradationspfade verlaufen innerhalb der Quantil-Designs. Dies 

bedeutet einerseits eine Bestätigung der aufgestellten Hypothese sowie eine ausreichende 

und konservative Abdeckung der virtuellen Degradations-Simulation anhand von Quantil- und 

Nominal-Designs. Dies erlaubt dem Entwickler frühzeitig eine robuste und zuverlässige 

Auslegung der Produkte sowie eine gezielte Versuchsplanung. 
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Zustandsbasierte Sicherheits- und  
Verfügbarkeitsanalyse unterschiedlich  
automatisierter Fahrfunktionen mittels 
Monte-Carlo-Simulation 
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Institut für Qualitäts- und Zuverlässigkeitsmanagement, Wuppertal; 
Dr.-Ing. Jan Hauschild,  
Institut für Qualitäts- und Zuverlässigkeitsmanagement, Hamburg 
 
 
Kurzfassung 
Automatisierte Fahrfunktionen, die den Fahrer durch die Übernahme der Längs- und Quer-

führung des Fahrzeuges aktiv entlasten (Teilautomatisierung), bzw. ihn komplett aus dem 

Regelkreis nehmen (Hochautomatisierung und Vollautomatisiert), müssen für den operativen 

Betrieb eine hohe Sicherheit und Verfügbarkeit gewährleisten können. Ein Ansatz für die 

Absicherung der Systeme sind quantitative Sicherheits- und Verfügbarkeitsanalysen. Hierbei 

ist jedoch zu beachten, dass das alleinige Analysieren von Systemstrukturen nicht mehr aus-

reichend ist, da auch Faktoren wie Degradationszustände des automatisierten Systems, die 

Umwelt und der Fahrer bei den Analysen einbezogen werden müssen. Mit dem in dieser 

Arbeit vorgestellten Modell, einer Kombination aus Zustandsdiagrammen und zeitbasierter 

Monte-Carlo-Simulation (MCS), ist es möglich, Sicherheits- und Verfügbarkeitsanalysen für 

hochautomatisierte Fahrerassistenzsysteme auf einer oberen Systemebene durchzuführen. 

Grundlage für dieses Modell sind Ergebnisse aus einem Forschungsprojekt mit der Bundes-

anstalt für Straßenwesen [1], welches mit der Unterstützung von Automobilherstellern und 

Zulieferern durchgeführt wurde. 

 

1. Einleitung 
OEMs und Zulieferer forschen bekanntlich zurzeit intensiv in allen Bereichen zum Thema 

automatisierte Fahrfunktionen. Eine große Herausforderung dabei wird es sein, Methoden zu 

finden, die die Funktionalitäten in zukünftigen Systemen derart absichern können, dass 

durch die Funktionen keine Gefahren für den Fahrer, Beifahrer oder Personen außerhalb des 

Fahrzeugs entstehen können. Hierzu müsste eine große Anzahl an Einflussfaktoren berück-

sichtigt werden, was jedoch einen immensen Anstieg der technischen und organisatorischen 

Ressourcen und eine gravierende Verlängerung der Entwicklungszeit zur Folge hätte. Des 

Weiteren verfügen viele Einflussfaktoren über keine deterministischen Eigenschaften, womit 
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eine reine analytische Betrachtung nicht möglich ist. Um ein einheitliches und ausreichendes 

Sicherheitslevel der Funktionalitäten gewährleisten zu können, müssen definierte Prozess-

schritte während der Produktentwicklung durchgeführt werden. Hierbei sollten auch alternati-

ve Methoden, im Vergleich zu den gängigen heutigen, verwendet werden; z.B. auf theoreti-

schem Level oder anhand von Simulationen. Insbesondere Systeme, bei denen der Fahrer 

die automatisierten Systeme nicht mehr überwachen muss, müssen diese so sicher und zu-

verlässig wie möglich ausgelegt werden. 

Das in dieser Arbeit präsentierte Modell zeigt ein Konzept, mit dem die Sicherheit und Ver-

fügbarkeit von automatisierten Fahrfunktionen berechnet werden kann. Hierbei wird der Ver-

lauf vom aktivierten System bis zum Erreichen des risikominimalen Zustandes aufgrund von 

diversen Einflussfaktoren dargestellt. 

Die für das Modell verwendeten Zustandsdiagramme werden hierbei um besondere Eigen-

schaften der Transitionen erweitert. Dabei erfolgt die Analyse mittels Monte-Carlo-Simulation 

(MCS) im Kontext definierter spezieller Entscheidungsregeln. 

Als Einflussgrößen und Systemgrenzen für das Modell wurde das 3-Ebenen Modell von 

Donges [2] zugrunde gelegt; dieses bildet allgemein den Zusammenhang zwischen Fahrer, 

Fahrzeug und Umwelt als Regelkreis ab.  

 

2. Automatisierte Fahrerassistenzsysteme 
Die Entwicklung von automatisierten Fahrerassistenzfunktionen begann bereits im 20. Jahr-

hundert. So wurde beispielsweise 1981 der erste Prototyp eines Abstandsregeltempomaten 

(Adaptive Cruise Control) entwickelt; 1995 folgte die Markteinführung im Modell Diamante 

von Mitsubishi [3]. Bei allen automatisierten Fahrerassistenzfunktionen, die bis heute in Se-

rienfahrzeugen verbaut wurden, ist der Fahrer für die komplette Fahrzeugführung verantwort-

lich, somit auch für Handlungen, die die automatisierte Fahrerassistenzfunktion initiiert. Für 

zukünftige Systeme wird diese Eigenschaft entfallen. D.h. dem Fahrer wird es möglich sein, 

sich vom Verkehrsgeschehen abzuwenden und anderen Tätigkeiten nachzugehen. Durch 

den steigenden Automatisierungsgrad, der durch eine maschinelle Sinneswahrnehmung und 

Informationsverarbeitung gekennzeichnet ist, verlagert sich die Verantwortung vom Fahrer 

auf das automatisierte Fahrzeug. 

Bei der Klassifikation von automatisierten Fahrfunktionen werden gegenwärtig die Standards 

J 3016 der SAE International und der Bundesanstalt für Straßenwesen (BASt) zugrunde ge-

legt. Für die in dieser Arbeit durchgeführten Untersuchungen wurde die Klassifikation der 

BASt vorausgesetzt [4]. In dieser werden fünf unterschiedliche Automatisierungsgrade klas-

sifiziert, aufsteigend von Driver only bis zu Vollautomatisiert. Differenziert wird bei der Eintei-

VDI-Berichte Nr. 2307, 2017110

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


lung zwischen der Übernahme der Längs- bzw. Querführung des Fahrzeuges, der Überwa-

chung des Systems, der Übernahmezeit des Fahrers, sowie der Fähigkeit des Systems sich 

autonom in den risikominimalen Zustand zu überführen (Tabelle 1). 

 

Tabelle 1: Grade der Automatisierung und ihre Definition [4] 

Nomenklatur Fahraufgaben des Fahrers nach Automatisierungsgrad 

Vo
lla

ut
om

at
is

ie
rt

 

Das System übernimmt Quer- und Längsführung vollständig in einem defi-
nierten Anwendungsfall. 
 Der Fahrer muss das System dabei nicht überwachen. 
 Vor dem Verlassen des Anwendungsfalles fordert das System den Fah-

rer mit ausreichender Zeitreserve zur Übernahme der Fahraufgabe auf. 
 Erfolgt dies nicht, wird in den risikominimalen Systemzustand zurückge-

führt. 
 Systemgrenzen werden alle vom System erkannt, das System ist in al-

len Situationen in der Lage, in den risikominimalen Systemzustand zu-
rückzuführen. 

H
oc

ha
ut

om
at

is
ie

rt
 Das System übernimmt Quer- und Längsführung für einen gewissen Zeit-

raum in spezifischen Situationen. 
 Der Fahrer muss das System dabei nicht überwachen. 
 Bei Bedarf wird der Fahrer zur Übernahme der Fahraufgabe mit ausrei-

chender Zeitreserve aufgefordert. 
 Systemgrenzen werden alle vom System erkannt. Das System ist nicht 

in der Lage, aus jeder Ausgangssituation den risikominimalen Zustand 
herbeizuführen. 

Te
ila

ut
o-

m
at

is
ie

rt
 Das System übernimmt Quer- und Längsführung (für einen gewissen Zeit-

raum oder/und in spezifischen Situationen). 
 Der Fahrer muss das System dauerhaft überwachen. 
 Der Fahrer muss jederzeit zur vollständigen Übernahme der Fahrzeug-

führung bereit sein. 

A
ss

is
tie

rt
 

Der Fahrer führt dauerhaft entweder die Querführung oder die Längsführung 
aus. Die jeweils andere Fahraufgabe wird in gewissen Grenzen vom System 
ausgeführt. 
 Der Fahrer muss das System dauerhaft überwachen. 
 Der Fahrer muss jederzeit zur vollständigen Übernahme der Fahrzeug-

führung bereit sein. 

D
riv

er
 

on
ly

 Der Fahrer führt dauerhaft (während der gesamten Fahrt) die Längsführung 
(Beschleunigung/Verzögerung) und die Querführung (lenken) aus. 

 

Aktuell verbaute Fahrerassistenzsysteme sind maximal teilautomatisierte Systeme. Die Ein-

führung von hochautomatisierten Systemen wird für ca. 2020 prognostiziert [5]. Vorausset-
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zung dafür ist jedoch eine Gesetzestextanpassung im Straßenverkehrsgesetz, in der der 

Mensch und der Computer der die automatisierte Fahrzeugführung übernimmt rechtlich 

gleichgestellt werden. Die ersten Funktionalitäten werden nach aktuellem Stand für die Auto-

bahn verfügbar sein, gefolgt vom Stadtverkehr und zuletzt für den ländlichen Bereich. 

 

3. Zustandsbasierte Simulation und Transitionsregeln 
Für die Transitionen in dem Modell werden auf der Basis von stochastischen Prozessen be-

sondere Regeln eingeführt und definiert. Damit der stochastische Prozess mit komplexen 

Strukturen, Abhängigkeiten und beliebigen Verteilungsfunktionen modelliert werden kann, 

wird im Folgenden die MCS angewandt. Weitere Ausführungen hierzu siehe [6],[7] und [8]. 

Die zugrunde gelegten Regeln werden in den folgenden Abschnitten erläutert. 

 

3.1.1. Mehrfache Transition 
Bei herkömmlichen Zustandsdiagrammen ist üblicherweise nur eine Transition pro Richtung 

zwischen zwei Zuständen vorgesehen. In dem erarbeiteten Modell wird diese Konvention 

dadurch erweitert, dass auch mehrere duale Transitionen (TⅠ,Ⅱ(1) und TⅠ,Ⅱ(2)) möglich sind 

(Abbildung 1). In der Praxis werden solche Transitionen üblicherweise zusammengefasst, 

wodurch jedoch die Hintergrundinformationen der Transition verloren gehen. Des Weiteren 

werden die Zielzustände oftmals geteilt, wodurch die Anzahl der Zustände exorbitant steigen. 

Ⅰ Ⅱ

TⅠ,Ⅱ(1)

TⅠ,Ⅱ(2)
 

Bild 1: Abbildung einer mehrfach Transition von Zustand Ⅰ nach Zustand Ⅱ 

 

3.1.2. Regel-basierte Transition 
In stochastischen Prozessen werden für die Transitionen in der Regel speziell ausgewählte 

Übergangswahrscheinlichkeiten verwendet. Im in dieser Arbeit vorgestellten Modell können 

jedoch auch unterschiedliche Zufallsgrößen und deren Verteilungen verwendet werden, z.B. 

Wahrscheinlichkeiten basierend auf stetigen Verteilungen oder relativen Häufigkeiten. Es ist 

außerdem möglich, dass mehrere Entscheidungen nacheinander getroffen werden müssen, 

beispielsweise wenn zunächst in Abhängigkeit der Zustandsausgänge ein Ereignis berück-

sichtigt werden muss und danach eine vom Wechselereignis abhängige Verweildauer zu 

ermitteln ist. 
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3.1.3. Abhängige Transition 
Die Eigenschaft abhängige Transition bedeutet, dass bestimmte Übergänge nur stattfinden 

können, wenn im Voraus eine definierte Transition durchgeführt wurde. In Verbindung mit 

der mehrfach-Transition können somit verschiedene Pfade über die gleichbleibende Anzahl 

von Zuständen ausgewählt werden (Abbildung 2). 

ⅡⅠ

Ⅲ

Ⅳ

TⅠ,Ⅱ(1)

TⅠ,Ⅱ(2)

abhängig von

abhängig von
 

Bild 2: Beispiel einer abhängigen Transition 

 

Die Transition von Ⅱ nach Ⅲ kann nur gewählt werden, wenn zuvor der Übergang von Ⅰ 

nach Ⅱ, basierend auf der gestrichelten Linie, also TⅠ,Ⅱ(1), durchgeführt wurde. Basierte der 

Übergang hingegen auf der durchgezogenen Linie, so kann vom Zustand Ⅱ nur nach Zu-

stand Ⅳ gewechselt werden. Die Entscheidungsregeln um Zustand Ⅱ zu verlassen sind 

somit: 

ⅡⅢ | ⅠⅡ basierend auf TⅠ,Ⅱ(1); 

ⅡⅣ | ⅠⅡ basierend auf TⅠ,Ⅱ(2). 

 
3.1.4. Zeit-Situations-basierte System Life-Modellierung 
Das Modell unterscheidet zwischen unterschiedlichen Ereignissen für die Aktivierung und die 

Deaktivierung des Assistenzsystems. Hierbei ist insbesondere der Unterschied zwischen 

einem Fehler bzw. Reparatur und der Aktivierung/Deaktivierung durch den Fahrer bzw. Ver-

lassen des Anwendungsbereiches wichtig. Einerseits wird die relative Lebensdauer des Sys-

tems nach einer Reparatur (tr,1, tr,2) auf null gesetzt, das System wird hierbei komplett repa-

riert und ist so gut wie neu, auf der anderen Seite stagniert die relative Lebensdauer nach 

einer Deaktivierung durch den Fahrer und wird nach der Aktivierung des Systems bei dem 

stagnierenden Zeitpunkt fortgesetzt (Abbildung 3). Das relative Alter des Systems steigt wei-

ter an, während die Zeiten für Deaktivierung durch Fahrer oder Verlassen Anwendungsbe-

reich genullt werden. Nach einer bestimmten Anzahl von Zyklen der Deaktivierung und Akti-

vierung tritt der Fall ein, dass die relative Lebenszeit des Systems den vorher generierten 

Ausfallzeitpunkt erreicht, das System in einen degradierten, aber nicht sicherheitskritischen, 
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Zustand wechselt und der Fahrer übernehmen muss. Es wird daraufhin eine Selbstreparatur 

eingeleitet, in der das System beispielsweise einen Reset durchführt. Im Anschluss wird die 

relative Lebensdauer auf null gesetzt. 

t

relative 
Betriebszeit

tr,1

tr,2

 
Bild 3: Zeitverlauf der Lebenszeit und der relativen Lebenszeit 

 

4. Simulationsmodell 
Das entwickelte Modell basiert auf einem Zustandsdiagramm für hochautomatisierte Fahrer-

assistenzsysteme. Das System agiert für definierte Anwendungsfälle komplett eigenständig 

ohne dass der Fahrer es überwachen muss. Der Fahrer muss jedoch jederzeit dazu in der 

Lage sein, die Fahrzeugführung innerhalb einer bestimmten Übernahmezeit zu übernehmen. 

Für den Fall, dass er dieser Aufforderung nicht nachkommt oder ein sicherheitskritischer 

Fehler eintritt, besteht die Möglichkeit, dass sich das System autonom in einen risikominima-

len Zustand überführt. Für den Fall, dass ein Aktionsplan „risikominimaler Zustand“ durchge-

führt wird, besteht die Annahme, dass die Zustände die darauf folgen, als absorbierend an-

zusehen sind.  

 

4.1. Beschreibung der Einflussgrößen 
Als Einflussgröße dient das 3-Ebenen-Modell von Donges [2]. In diesem ist der Zusammen-

hang zwischen dem Fahrzeug, dem Fahrer und der Umwelt als Regelkreis dargestellt. 

Der Fahrer kann als Einflussgröße das System direkt aktivieren und deaktivieren. Die Ein-

flussgröße Umwelt charakterisiert sich dadurch, dass das System die Umgebung beobachtet 

um zu kontrollieren, ob der Anwendungsbereich der automatisierten Funktion vorhanden ist. 

Das Fahrzeug wird durch einen einfachen übergeordneten stochastischen Prozess darge-

stellt (Abbildung 4). Hierbei werden sicherheitskritische (SK) und nicht-sicherheitskritische 

(NSK) Komponentenausfälle mittels MCS simuliert. 

Aus Zustand 1 kann das Modell einerseits durch einen nicht-sicherheitskritischen Kompo-

nentenausfall in Zustand 2 wechseln, aus dem es jedoch durch eine Reparatur wiederum in 

Zustand 1 übergehen kann. Andererseits wechselt das System im Falle eines sicherheitskri-
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tischen Komponentenausfalls in den absorbierenden Zustand 3. Dies kann von Zustand 1, 

aber auch im Anschluss an einen nicht- sicherheitskritischen Komponentenausfall, also Zu-

stand 2, geschehen.  

2 3

1

FSK(t)  
Bild 4: Das Fahrzeug illustriert als einfachen stochastischen Prozess 

 

Mittels der MCS ist es möglich, für die Fehler- und Reparaturübergangswahrscheinlichkeiten 

unterschiedliche Verteilungsfunktionen anzunehmen, um Ziel und Zeit der Transition zu be-

stimmen, beispielsweise Weibull- oder Normalverteilung. 

 

4.2. Zustandsbasiertes Modell 
Das Zustandsdiagramm für hochautomatisierte Fahrerassistenzsysteme ist in Abbildung 5 

abgebildet. Es zeigt unterschiedliche Zustandsverläufe die von einem aktiven System bis hin 

zu einem deaktivierten System führen. Das deaktivierte System ist hierbei entweder durch 

das Erreichen des risikominimalen Zustandes, durch den Fahrer oder das System, oder das 

nicht Erreichen des risikominimalen Zustandes charakterisiert. 
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1 2

3

4 5

Fahrer

Deaktivierung durch Fahrer

Fahrerübernahme-
aufforderung,

Start der 
Verweilzeit

Aktivierung 
System

Aktionsplan 
Risikominimaler-

Zustand

Deaktivierung 
System

Risiko-
minimaler 
Zustand

Verweilzeit abhängig von 
Degradationszustand/

Umfeld

Komponentenausfall (SK)

Reaktivierung durch Fahrer

Live-Reparatur NSK-Komponenten

Verlassen Anwendungsbereich

Komponentenausfall (NSK)

6
Risikominimaler 
Zustand nicht 

erreicht  
Bild 5: Zustandsdiagramm eines hochautomatisierten Fahrerassistenzsystems 

 

Die Übergänge werden im Rahmen einer MCS auf Basis unterschiedlicher Verteilungsfunkti-

onen modelliert. Die hier verwendeten Verteilungsfunktionen und Werte basieren auf Ab-

schätzungen und entsprechen nicht einem realen System. Nach Logik der MCS sind diese 

Verteilungen schnell austauschbar, so dass die Ergebnisse in dieser Analyse exemplarischer 

Natur sind. 

 

4.2.1. Komponenten Ausfall/Reparatur 
Für den Ausfall (Transition 12; 14; 24) und die Reparatur (31) von Komponenten 

wird mittels des stochastischen Prozesses und der MCS aus einer kontinuierlichen Vertei-

lung eine Zeit bestimmt (Abbildung 6). 

t/tM

F(t)/
MNSK(t)

 
Bild 6: Zeit bis zu einem Ausfall bzw. einer Reparatur 
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4.2.2. Verlassen des Anwendungsbereichs 
Für den Fall, dass der Anwendungsbereich der Funktion verlassen wird, muss dieser zuerst 

abgegrenzt werden. Im Modell werden die drei Bereiche Land, Stadt und Autobahn betrach-

tet. Diese Bereiche haben jeweils eine relative Häufigkeit, z.B. 15 % Land, 50 % Stadt und 

35 % Autobahn. Nachdem der Anwendungsbereich definiert wurde, wird eine Zeit festgelegt, 

nach der das Fahrzeug den Anwendungsbereich verlässt. Diese Zeit basiert auf einer steti-

gen Verteilung, die jeweils von dem festgelegten Anwendungsbereich abhängt (Abbildung 7). 

Die Zeit die sich das System auf der Autobahn befindet sei z.B. länger als die im Stadtver-

kehr. 

Land         Stadt     AutobahnStraßentyp

f(S
tra

ße
nt

yp
)

L A
S

t

f(t)

ti  
Bild 7: Relative Häufigkeit des Anwendungsbereiches und Dichtefunktion der Zeit, die das 

Fahrzeug im Anwendungsbereich verweilt 

 

4.2.3. Aktivierung vice versa Deaktivierung durch den Fahrer 
Die Zeit für die Aktivierung (31) sowie die Deaktivierung (13; 23) des Fahrerassistenz-

systems durch den Fahrer ist, abhängig von einer kontinuierlichen Verteilung (Abbildung 8), 

jedoch unabhängig von weiteren Einflussgrößen. 

t

f(t)

ti  
Bild 8:  Dichtefunktion der Zeit nach der der Fahrer das System aktiviert/deaktiviert 

 

4.2.4. Fahrer ignoriert 
Abhängig von dem Anwendungsbereich (Abbildung 7) werden maximale Verweilzeiten fest-

gelegt. So kann beispielsweise die Übernahmezeit auf der Autobahn größer sein als in der 
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Stadt. Überschreitet der Fahrer diese Zeiten so ist davon auszugehen, dass der Fahrer die 

Übernahmeaufforderung ignoriert (24).  

 

4.2.5. Aktionsplan risikominimaler Zustand 
Die Transition, ausgehend von Zustand 4, ist auf der ersten Ebene abhängig von einer dis-

kreten Verteilung, im Kontext eines erfolgreichen Überganges in den risikominimalen Zu-

stand (45) vice versa (46). Sollte der Übergang erfolgreich sein, so wird aus einer steti-

gen Verteilung eine Zeit generiert, die das System benötigt, bis es den risikominimalen Zu-

stand erreicht (Abbildung 9).  

Aktionsplan erfolgreich

Ja Nein

 t

f(t)

ti  
Bild 9: Relative Häufigkeit „Aktionsplan erfolgreich“ und Dichtefunktion für die Zeit nach der 

das Fahrzeug überführt ist 

 

4.3. Simulationsstruktur 
4.3.1. Zustand 1 – „Aktivierung System“ 
Zustand 1 repräsentiert ein aktiviertes Fahrerassistenzsystem, z.B. einen Autobahnpiloten. 

Das System funktioniert fehlerfrei und das Fahrzeug befindet sich in dem vorgegebenen An-

wendungsbereich. Ausgehend von Zustand 1 ist es möglich, in Zustand 2 zu wechseln. 

Gründe hierfür sind entweder ein nicht-sicherheitskritischer Komponentenausfall (Transi-

tionszeit tNSK) oder das Verlassen des Anwendungsbereiches (tvA). Von Zustand 1 ist es au-

ßerdem möglich, in den risikominimalen Zustand 3 zu wechseln, weil der Fahrer das aktivier-

te System deaktiviert (tdeak) und die Fahrzeugführung wieder übernimmt. Tritt im Zustand 1 

ein sicherheitskritischer Komponentenausfall (tSK) auf, wechselt das System in Zustand 4. 

Um den Zustand zu differenzieren, den das System nachfolgend einnimmt, wird die minimale 

Zeit der vier möglichen Transitionszeiten ausgewählt (Min[…]) (Tabelle 2). 
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Tabelle 2: Transitionen Zustand 1 

Zustand (i) Zustand (i+1) Transitionszeit Entscheidungsregel 

1 2 tNSK Min […] 

2 tvA 

3 tdeak 

4 tSK 

 

4.3.2. Zustand 2 – „ Fahrerübernahmeaufforderung, Start der Verweilzeit“ 
In Zustand 2 findet die Fahrerübernahmeaufforderung statt und die Verweilzeit startet. Ent-

weder deaktiviert der Fahrer das System (tdeak) und das System wechselt in Zustand 3 oder 

der Fahrer ignoriert die Übernahmeaufforderung (ts,max (Stadt); ta,max (Autobahn); tl,max (Land)) 

und das System konvertiert in Zustand 4. Außerdem ist die Transition nach Zustand 4 auf-

grund eines sicherheitskritischen Komponentenausfalls (tSK) möglich. Um den nächsten Zu-

stand zu lokalisieren wird wieder die minimale Transitionszeit ausgewählt (Tabelle 3). 

 

Tabelle 3: Transition Zustand 2 

Zustand (i) Zustand (i+1) Transitionszeit Entscheidungsregel 

2 3 tdeak Min […] 

4 ts,max; ta,max; 
tl,max  

4 TSK 

 

4.3.3. Zustand 3 – „Risikominimaler Zustand, Deaktivierung System“ 
Zustand 3 repräsentiert einen risikominimalen Zustand der durch die Deaktivierung des Sys-

tems durch den Fahrer erreicht wird. Der Fahrer hat in diesem Zustand wieder die Kontrolle 

über die Fahrzeugführung übernommen und ist für diese verantwortlich. Via Zustand 3 ge-

langt das System auf zwei Möglichkeiten in Zustand 1. Einerseits können nichtsicherheitskri-

tische Komponentenausfälle durch eine Reparatur beseitigt werden (trep). Diese Transition ist 

nur möglich, wenn die Transition 12 auf einem nicht-sicherheitskritischen Komponenten-

ausfall basiert. Andererseits kann der Fahrer das System wieder reaktivieren (treak), hierfür 

musste das System in Zustand 1 entweder direkt durch den Fahrer deaktiviert oder der An-

wendungsbereich des Systems verlassen worden sein (Tabelle 4). Bevor das System wieder 

aktiviert werden kann, muss jedoch geprüft werden, ob der Anwendungsbereich des Fahrer-

assistenzsystems vorhanden ist. 
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Tabelle 4: Transition Zustand 3 

Zustand (i) Zustand (i+1) Transitionszeit Entscheidungsregel 

3 1 treak 12 Deaktivierung durch Fahrer, Verlas-

sen Anwendungsbereich 

1 trep 12 nichtsicherheitskritischer Komponen-

tenausfall 

 

4.3.4. Zustand 4 – „Aktionsplan risikominimaler Zustand“ 
Im Zustand 4 startet der Aktionsplan risikominimaler Zustand. Dieser Aktionsplan kann un-

terschiedliche Ausprägungen besitzen, z.B. das einfache Anhalten auf der aktuellen Fahr-

spur mit Einschalten der Warnblinkanlage oder das Wechseln auf eine andere Spur, z.B. auf 

der Autobahn auf den Seitenstreifen. Für die Entscheidung ob der Aktionsplan erfolgreich ist 

oder nicht, wird aus einer diskreten Ja/Nein-Verteilung ein Wert generiert. Sollte der Aktions-

plan erfolgreich sein, wird aus einer stetigen Verteilung eine Zeit (trmz) generiert, die das Sys-

tem für die Überführung benötigt (Tabelle 5). 

 

Tabelle 5: Transition Zustand 4 

Zustand (i) Zustand (i+1) Transitionszeit Entscheidungsregel 

4 5 trmz Diskrete Ja/Nein Entscheidung 

6 --- 

 

4.3.5. Zustand 5 – „Risikominimaler Zustand, Deaktivierung System“ (absorbierend) 
Zustand 5 charakterisiert einen risikominimalen Zustand, der durch die autonome Überfüh-

rung des Systems eingetreten ist. Eine direkte Reaktivierung ist hier nicht möglich. Im Falle 

eines sicherheitskritischen Fehlers müsste das Fahrzeug z.B. erst in einer Werkstatt repariert 

werden, bevor es wieder betriebsbereit ist. 

 

4.3.6. Zustand 6 – „Risikominimaler Zustand nicht erreicht“ (absorbierend) 
Zustand 6 wird erreicht, wenn der Aktionsplan risikominimaler Zustand nicht erfolgreich war. 

Dies kann auf externen Einflüssen basieren, beispielsweise einem Unfall, z.B. verursacht 

durch ein anderes Fahrzeug, oder auf einem common mode, bzw. common cause Fehler der 

weitere Handlungen unterbindet. 
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5. Beispiel 
Durch die MCS kann eine große Anzahl an verfügbaren Daten als Einflussgrößen generiert 

werden. Zunächst lässt sich der Zustandsverlauf über die Zeit abbilden (Abbildung 10 oben 

links). Aufbauend darauf ist es möglich, zu untersuchen, wie der Zustandswechsel der Tran-

sitionen aus bestimmten Zuständen erfolgt, dargestellt in Abbildung 10 oben rechts. In dieser 

sind die relativen Häufigkeiten der Transitionen vom Zustand 1 ausgehend in die Zustände 2, 

3 und 4, dargestellt in einem Kreisdiagramm. Diese Auswertungsmethoden sind jedoch auch 

mit Markov-Ketten möglich und benötigen keine komplexen Simulationen. In den weiteren 

Auswerteschritten werden die Vorteile der Simulation jedoch präsenter. In Abbildung 10 un-

ten links ist die relative Häufigkeit der Gründe dargestellt, weshalb Zustand 1 verlassen wur-

de. Dies wird dadurch möglich, dass während der Simulation die Transitionsgründe unter-

schiedlich sein können und bei der Durchführung der Simulation gespeichert werden. 
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Bild 10: Zustandsverlauf über der Zeit (oben links), Zustände in die das System nach Zu-

stand 1 wechselt (oben rechts), Gründe des Verlassens von Zustand 1 prozentual 

dargestellt (unten links) 
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Eine weitere Möglichkeit die Daten aufzubereiten ist, die Aufenthaltsdauern in den jeweiligen 

Zuständen zu bestimmen. In Abbildung 11 oben links wurden dabei die Zustände „Aktiviert“, 

„Deaktiviert“, „Reparatur“ und „Ausgefallen“ betrachtet. Unter der Annahme, dass die Zu-

stände 5 und 6 absorbierend sind, ist es möglich, für das System empirische Ausfallwahr-

scheinlichkeiten zu berechnen. Im analysierten Beispiel wurden zehn Iterationen durchge-

führt, wobei das System bei neun Iterationen in einen der absorbierenden Zustände gelangt 

ist. Somit können neun Stützstellen für eine Ausfallfunktion bestimmt werden (Abbildung 11 

oben rechts). Abschließend lässt sich die Verfügbarkeit des Systems berechnen. Werden 

Zustand 1 und 2 betrachtet als die Zustände, in denen das System verfügbar ist, und die 

restlichen Zustände als nicht-verfügbar, so ist es möglich, über die Betriebszeit die Verfüg-

barkeit zu ermitteln. Der Verlauf der Grafik hat in der Regel die Charakteristik, dass sich die 

Funktion mit steigender Betriebszeit der stationären Verfügbarkeit eines Systems annähert 

(Abbildung 11 unten links). 
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Bild 11: Aufenthaltsdauern in Systemzustände differenziert nach „Aktiviert“, „Deaktiviert“, 

„Reparatur“ und „Ausgefallen“ (oben links), Ausfallwahrscheinlichkeit des Systems 

(oben rechts), Verfügbarkeit des Systems (unten links) 
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6. Fazit 
Das in dieser Arbeit präsentierte Modell zeigt auf einem hohen Systemlevel einen Ansatz für 

eine Sicherheits- und Verfügbarkeitsanalyse, basierend auf einer zustands- und zeitbasierten 

MCS für hochautomatisierte Fahrerassistenzfunktionen. Die Basis für die Klassifikation bildet 

die Einteilung der BASt, welche in Kapitel 2 kurz vorgestellt wurde. Mittels geeigneter, defi-

nierter Regeln für die Zustandsübergänge ist es möglich, die Anzahl der Zustände möglichst 

gering zu halten, ohne jedoch Informationen zu verlieren. Als Einflussgrößen für das entwi-

ckelte Modell, insbesondere für die Transitionen, dient das 3-Ebenen-Modell von Donges. 

Durch die Betrachtung des Systems auf einem hohen Systemlevel ist es möglich, ein kon-

zeptionelles praxisorientiertes Modell zu erstellen. Dabei konnten trotz der zahlreichen mög-

lich Varianten quantitative Daten zur Berechnung von verwertbaren Ergebnissen im Sinne 

einer sicherheits- und zuverlässigkeitstechnischen Bewertung genutzt werden.  

Der Ansatz, Zustandsdiagramme und die MCS zu kombinieren, scheint hierbei ein effizienter 

Weg ohne Restriktionen (z.B. via Markov) zu sein. Die Grundlage dieses Modells bilden die 

Arbeiten aus dem Forschungsprojekt für die Bundesanstalt für Straßenwesen [1]. In diesem 

wurden mit Unterstützung eines Expertenkreises aus der Automobil- und Zuliefererindustrie 

die unterschiedlichen Automatisierungsgrade hinsichtlich des risikominimalen Zustandes 

untersucht. Für zukünftige Untersuchungen wäre eine weitere Detaillierung des Systems auf 

der obersten Ebene möglich, beispielsweise sei hier auf die Einbindung von unterschiedli-

chen Degradationsstufen verwiesen, die wiederrum Einfluss auf die Verweilzeiten haben 

können. Eine weitere Möglichkeit das Model weiter zu entwickeln, ist die genaue Betrachtung 

der einzelnen Zustände und das Herunterbrechen bis auf die technische Ebene, um auf die-

ser ebenfalls mit Simulationen arbeiten zu können und auf diesem Wege u.a. verwertbare 

Daten wiederum für die Simulation auf der obersten Ebene zu erhalten.  

Mit dem vorgestellten Modell dürfte es zukünftig möglich sein, automatisierte Fahrfunktionen 

schon im Entwurfsstadium abzusichern, auch ist der Vergleich unterschiedlicher Entwürfe 

möglich, da durch die MCS die Einflussgrößen relativ einfach verändert werden können. Ein 

möglicher Einsatzbereich ist auch die Funktionale Sicherheit, auf Basis des Modells lassen 

sich Metriken zur Validierung und Verifizierung entwickeln. 

Das Modell wurde im Kontext automatisiertes Fahrerassistenzsysteme modelliert. Ein prinzi-

pieller Transfer auf weitere Bereiche, zum Beispiel Robotik, ist nach Ansicht der Autoren 

durchaus möglich. 
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Kurzfassung 
Der Beitrag stellt ein Verfahren vor, um aus der Analyse von Felddaten Verfügbarkeitszahlen 

neuer Produktgenerationen zu einem möglichst frühen Zeitpunkt des Produktentstehungs-

prozesses vorhersagen zu können. Hierzu werden Störmeldungen der aktuellen Produktge-

neration im Feld erfasst und den Hauptbaugruppen der Werkzeugmaschine zugewiesen. 

Somit ist es möglich, den Hauptbaugruppen  Verfügbarkeitswerte zu zuordnen. Unter Zuhil-

fenahme ausgewählter Unterbaugruppen der Stückliste und den Verfügbarkeitswerten wird 

durch maschinelles Lernen ein Modell trainiert, welches dann Verfügbarkeitswerte für neue 

Hauptbaugruppen und damit übergeordnet auch für neue Produktgenerationen vorhersagen 

kann. 

 

Abstract (optional) 
This paper presents a method to predict the technical availability of new product generations 

by analyzing field data. Therefor, alerts are recorded [in the field] and assigned to main com-

ponents of the tool machine to generate the technical availability of these. The technical 

availabilities are combined with data from the bill of material to train a machine learning 

model. This can be used to predict the technical availability of new components and accord-

ingly of new product generations. 

 

1. Einleitung 
Produzierende Unternehmen sehen sich mit der ständigen Herausforderung der steigenden 

Marktdynamiken konfrontiert. Individuell auf den Kunden zugeschnittene Produkte, kürzere 

Innovationszyklen sowie schwer vorhersehbare Nachfrageschwankungen sind nur einige 

Beispiele [1]. Hinzu kommt ein steigender Wettbewerbsdruck im Zuge der Globalisierung. 
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Letzteres führt dazu, dass sich Anbieter in den verkaufsentscheidenden Merkmalen gegen-

über der Konkurrenz abgrenzen müssen. 

Im Bereich der Werkzeugmaschinen sind neben dem Preis, eine qualitäts-gewährleistende 

Präzision sowie eine hohe Geschwindigkeit wichtige Verkaufsargumente. Insbesondere ge-

genüber Kunden aus dem Automobilsektor ist eine weitere wesentliche Kenngröße die tech-

nische Verfügbarkeit der Anlage. Diese Kennzahl beeinflusst nicht nur direkt die Ausbringung 

der Maschinen, sondern auch die Kosten im laufenden Betrieb bspw. für Instandhaltungsein-

sätze. 

 

1.1 Problemstellung 
In der Regel ist die technische Verfügbarkeit Teil des Kaufvertrages. Dies führt zum einen 

dazu, dass bei nicht Einhalten des zugesagten Wertes, Teilzahlungen zurückgehalten oder 

Abnahmen nicht erteilt werden. Zum anderen muss die Kenngröße zu einem Zeitpunkt be-

stimmt werden, da die Werkzeugmaschine noch nicht konstruiert wurde. Hierbei sind grund-

sätzlich zwei Fälle zu differenzieren: 

Im ersten Fall wird eine Werkzeugmaschine der Generation A verkauft. Diese Generation 

wurde bereits vielfach vertrieben und es existieren Felddaten, die analysiert werden. Da je-

doch Werkzeugmaschinen dergleichen Produktgeneration individuell auf den Kunden zuge-

schnitten werden (bspw. Spannvorrichtungen, Beladekonzept, Greifer) müssen die im Feld 

erhobenen Verfügbarkeitszahlen auf Baugruppenebene aufgeteilt werden. Dies ermöglicht 

dem Vertrieb die technische Verfügbarkeit für die, individuell auf den Kunden zugeschnitte-

ne, Werkzeugmaschine zu berechnen. 

Im zweiten Fall wird eine neue Generation (B) entwickelt. Ausgiebige Tests, um eine techni-

sche Verfügbarkeit zu bestimmen, würden den oben beschriebenen kürzer werdenden Inno-

vationszyklen entgegenwirken und zu einer Schwächung der Marktposition führen. Trotzdem 

müssen durch den Vertrieb Verfügbarkeitszahlen präsentiert werden. Bei den GROB-

WERKEN wurde dazu die im nachfolgenden vorgestellte Methode entwickelt, welche diese 

Kennzahl zu einem frühen Zeitpunkt des Produktentstehungsprozesses vorhersagen kann. 

Da für diese Methode ebenfalls Felddaten älterer Produktgenerationen analysiert werden 

müssen, wird in Kapitel 3.1 zunächst die Generierung von baugruppenbezogenen Verfügbar-

keitswerten beschrieben (s. erster Fall). 

 

2. Begriffe und Grundlagen 
Im Folgenden werden die begrifflichen Grundlagen für diesen Beitrag gelegt. Hierbei wird 

zwischen der Definition der wichtigsten Kenngrößen (Kapitel 2.1), dies beinhaltet insbeson-
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dere den Begriff der technischen Verfügbarkeit, und einer kurzen Einführung in das Gebiet 

Big Data und Datenanalyse (Kapitel 2.2) unterschieden. 

 

2.1 Definition der wichtigsten Kenngrößen 
Wie oben beschrieben ist die Kennzahl technische Verfügbarkeit ein wesentliches Verkaufs-

argument. Laut [2] gibt die technische Verfügbarkeit „den prozentualen Anteil der Bele-

gungszeit an, für den die Maschine/Anlage ohne technischen Mangel der Produktion zur 

Verfügung steht“. Die Zeiten zur Behebung der technischen Mängel werden zur technischen 

Ausfallzeit aggregiert: „Die technische Ausfallzeit ist die Summe aller Ausfallzeiten, die ihre 

Ursache in Mängeln der Konzeption oder Ausführung einer Maschine/Anlage haben. Sie 

gehören zur Verantwortung des Herstellers“ [2]. Die Ausfallzeiten, die vom Betreiber zu ver-

antworten sind, werden unter dem Begriff der organisatorischen Ausfallzeit zusammenge-

führt [2]. 

Für eine Differenzierung der beiden Begriffe haben die GROB-WERKE, die folgende grafi-

sche Darstellung der Zeiten zur Bestimmung der Verfügbarkeit entworfen (s. Bild 1) und die 

Zeitanteile beim Auftreten einer Störung der organisatorischen und der technischen Ausfall-

zeit zugeordnet. 

 
Bild 1: Übersicht der wichtigsten Kenngrößen (i.A.a. [2])  

 

Ein ebenfalls häufig verwendeter Begriff ist die Availability (Verfügbarkeit). Diese bestimmt 

sich aus dem „Verhältnis der Zeit, in der das System funktionsfähig ist, zur gesamten Zeit“ 
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[3]. Da in diesem Beitrag, jedoch die technische Verfügbarkeit nach [2] verwendet wird, sei 

lediglich auf die Literatur [3] verwiesen. 

 

2.2 Big Data und Datenanalyse 
Da in der Praxis der Begriff Big Data häufig nicht klar definiert ist, soll hier eine Eingrenzung  

mit Hilfe der sogenannten „5 V’s“ (Volume, Variety, Velocity, Veracity, Value) vorgenommen 

werden. Volume bedeutet, dass die Datenmenge enorm groß ist (>1 Petabyte). Variety be-

schreibt die Datenvielfalt (bspw. Wartungsverträge, E-Mails, Videos). Der Begriff Velocity 

umfasst die Geschwindigkeit mit der Daten generiert, aber auch analysiert werden. Die Da-

tenqualität bzw. Wahrhaftigkeit der Daten wird mit dem Begriff Veracity bewertet. Value be-

zeichnet den Wert, der aus den Daten gewonnen werden kann [4 und 5]. 

Zur Analyse werden häufig Methoden des Maschinellen Lernens genutzt. Dies bedeutet 

„Computer so zu programmieren, dass ein bestimmtes Leistungskriterium anhand von Bei-

spieldaten oder Erfahrungswerten aus der Vergangenheit optimiert wird“ [6]. Mit Hilfe des 

Modells können sowohl Rückschlüsse auf die Erfahrungswerte als auch Vorhersagen für die 

Zukunft getroffen werden [6]. 

Für das Trainieren eines Modells können (je nach Anwendungsfall) verschiedenste Algorith-

men genutzt werden. Ein Beispiel ist die Klasse der Entscheidungsbäume. Hierbei handelt 

es sich um ein hierarchisches Modell, welches aus Entscheidungsknoten und terminalen 

Blättern besteht [6 und 7]. 

 

3. Verfügbarkeitszahlen und Big Data im Werkzeugmaschinenbau 
In diesem Kapitel wird aufgezeigt, wie Verfügbarkeitszahlen auf Hauptbaugruppenebene 

generiert werden können, welche Probleme dabei zu beachten sind und wie diese Daten in 

Bezug zu Big Data (5V’s) eingeordnet werden können. 

Vorab sei hier beispielhaft eine vereinfachte Stücklistenstruktur einer Werkzeugmaschine 

skizziert: 
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Bild 2: vereinfachte Darstellung der Stücklistenstruktur einer Werkzeugmaschine  

 

3.1 Generierung von Verfügbarkeitszahlen auf Hauptbaugruppenebene 
Generell erzeugt jede Werkzeugmaschine im Verlaufe ihres Lebens eine Reihe von Fehler-

meldungen. Diese werden über einen gewissen Zeitraum im Alarm-Log gespeichert und sind 

auf der Maschine verfügbar. Da jedoch nicht jede Störmeldung zu einem technischen Ausfall 

führt, müssen diese Daten mit weiteren Maschinendaten angereichert werden. In der Regel 

gibt es hierzu ein Manufacturing Execution System (MES), welches bspw. zusätzlich Achs-

bewegungen kontrolliert und entsprechend der Bewegungen verschiedene Status ausgibt. 

So stellt ein MES aggregierte Daten zur Verfügung, in dem die verschiedenen Zustände mit 

Zeitstempel und eventuell weiteren Informationen vorhanden sind. 

Diese Daten müssen nun analysiert werden. Hierzu werden zunächst die einzelnen Status, 

die das MES ausgibt, analysiert und bewertet, welcher Status der technischen Ausfallzeit 

zugeordnet werden kann (bspw. Störung und Reparatur). Dabei gilt es zu beachten, dass die 

Betreiber der Werkzeugmaschinen unterschiedliche MES verwenden, was dazu führt, dass 

sich die Zustände und deren Berechnung unterscheiden. Hier muss vom Werkzeugmaschi-

nen-Hersteller eine Analyse durchgeführt werden, sodass die verschiedenen Rohdaten der 

Kunden-MES zunächst in ein einheitliches Format gebracht werden.  

Weiterhin können mehrere Fehlermeldungen zum gleichen Zeitpunkt auftreten, was, je nach 

MES, dazu führt, dass sich Zustände überschneiden oder gar doppelt vorkommen, wodurch 

bspw. real 10 Sekunden vergehen, aber die Maschine (lt. MES-Daten) 20 Sekunden ausfällt, 

da der Zustand doppelt vorkommt. Dies würde zu einer Verschlechterung der technischen 

Verfügbarkeit führen und muss bereinigt werden.  

Um nun eine Verfügbarkeit für Hauptbaugruppen zu berechnen, müssen die einzelnen Sta-

tus, die die technische Ausfallzeit beeinflussen, analysiert werden. Für einen Status, der eine 

Störmeldung der Maschine enthält, kann die Störmeldung analysiert und einer Hauptbau-
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gruppe zugeordnet werden. Für einen Status ohne Störmeldung (bspw. Reparatur) muss ein 

Zusammenhang zu einer Störmeldung gezogen werden. Eine einfache Möglichkeit ist, den 

Status ohne Störmeldung dem letzten Status mit Störmeldung zuzuordnen. Somit könnten 

die Zeiten addiert und entsprechend der technischen Verfügbarkeit der Baugruppe ange-

rechnet werden. Dies erweist sich jedoch nur als sinnvoll, sofern die beiden Status zeitlich 

betrachtet nicht zu weit auseinander liegen. Andernfalls müssen hier weitere Daten zur Hilfe 

genommen werden. Die Vorgehensweise zur Generierung von baugruppen-bezogenen Ver-

fügbarkeitszahlen fasst Bild 3 zusammen: 

 
Bild 3: Generierung von baugruppenbezogenen Verfügbarkeitszahlen  

 

3.2 Eingruppierung in den Bereich Big Data 
Um die gerade beschriebenen Daten zu klassifizieren, werden diese im Folgenden gemäß 

der in Kapitel 2.2 vorgestellten Big Data Definition eingeordnet. 

Der Bereich Volume (Datenmenge) hängt von verschiedenen Einflussfaktoren ab, bspw. wie 

viele Daten vom MES abgefragt werden und wie diese aggregiert werden. Da jedoch nicht 

nur eine Maschine im Feld ist, sondern eine Vielzahl von Maschinen bei vielen Kunden, ent-

steht alleine dadurch eine große Datenmenge. Weiterhin können Daten deutlich schneller als 

im Sekundentakt generiert werden, womit auch eine entsprechend hohe Geschwindigkeit 

(Velocity) bei der Erzeugung von Daten gewährleistet ist. 
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Da es sich bei MES-Daten immer um strukturierte Daten handelt, ist der Bereich der Variety 

sicherlich weniger stark ausgeprägt. Die gleiche Bewertung erfolgt für die Veracity der Da-

ten, da es sich um bereits aggregierte Daten handelt und (aus Sicht des Werkzeugmaschi-

nenherstellers) nicht immer geklärt werden kann, wie welcher Status innerhalb des MES ent-

steht. Dennoch haben die Daten einen hohen Value (Wert) für den Werkzeugmaschinenher-

steller. Die baugruppenbezogenen Verfügbarkeitswerte können im Vertrieb genutzt werden, 

um den Kunden realistische Kennzahlen für seine Werkzeugmaschine zu präsentieren oder 

in der Konstruktion/Entwicklung um Schwachstellen der Baugruppen zu verbessern. So kann 

ein kontinuierlicher Verbesserungsprozess datengetrieben erfolgen und mit Hilfe von Verfüg-

barkeitszahlen validiert werden. 

Tabelle 1 fasst die beschriebene Einordnung noch einmal zusammen, wobei „+“ eine geringe 

Erfüllung, „++“ eine mittlere Erfüllung und „+++“ eine volle Erfüllung des Teilaspekts von Big 

Data (aus Sicht eines Werkzeugmaschinenherstellers) bedeuten: 

 

Tabelle 1: Big Data im Werkzeugmaschinenbau 

Volume Variety Velocity Value Veracity 

+++ + +++ ++ + 

 

4. Vorhersage von Verfügbarkeitszahlen 
In Kapitel 3 wurde gezeigt, wie aus Felddaten Verfügbarkeitswerte für Hauptbaugruppen 

bestimmt werden können (Kapitel 1.1 erster Fall). In diesem Kapitel wird nun eine Methode 

beschrieben, mit der Verfügbarkeitskennzahlen für eine neue Produktgeneration bereits in 

der Entwicklungsphase bestimmt werden können (Kapitel 1.1 zweiter Fall). 

 

4.1 Dateninput für das Modell 
Als Grundlage des folgenden Verfahrens dienen die Ergebnis-Daten aus Kapitel 3 (s. Bild 2). 

Es werden die Verfügbarkeitszahlen für die erfassten Hauptbaugruppen betrachtet. Diese 

werden nun mit den Komponenten aus den darunterliegenden Stücklistenebenen der Bau-

gruppe ergänzt. Je nach Komplexität ergeben sich dadurch mehrere hundert Teile je Haupt-

baugruppe. Da nicht jedes Bauteil einen Einfluss auf die technische Verfügbarkeit hat, wird 

die Stückliste aggregiert und nur bestimmte Ausschnitte aus der Stückliste werden verwen-

det. Beispielsweise hat ein Antrieb sicherlich größeren Einfluss auf die technische Verfüg-

barkeit als ein Blech oder eine Schraube. Zur Einteilung, welche Auszüge aus der Stückliste 

mehr oder weniger relevant sind, können verschiedene Herangehensweisen gewählt wer-

den. Ein Ansatz kann sein auf das firmeneigene Knowhow zurückzugreifen. Beispielsweise 
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könnten Service-Mitarbeiter befragt werden, welche Bauteile innerhalb der Hauptbaugruppe 

häufig ausfallen oder ausgetauscht werden. Dies kann jedoch zu sehr subjektiven Beurtei-

lungen führen. Ein zweiter Ansatz ist deshalb Service-Meldungen zu untersuchen. Diese 

werden angelegt, wenn Kunden technische Probleme mit der Werkzeugmaschine haben. 

Bedingung hierfür ist eine entsprechende Pflege der Service-Meldung bzw. eine Auswerte-

möglichkeit von semi-strukturierten Daten. Ein Vorteil hierbei ist, dass Daten von einer Viel-

zahl von Maschinen vorliegen und diese objektiv ausgewertet werden können. 

Neben der Anzahl der ausgewählten verfügbarkeitsrelevanten Baugruppen können weitere 

Informationen hinzugefügt werden. Die Summe der verbauten Teile innerhalb der Hauptbau-

gruppe kann bspw. ein Indiz für die Komplexität der Baugruppe sein. Weiterhin kann eine 

Klassifizierung der Bauteile in Ersatz- und/oder Verschleißteile (E/V) verwendet werden. So-

fern die Service-Meldungen einer Baugruppe zugeordnet werden können, kann auch die 

Anzahl dieser Meldungen eine Inputinformation für ein mathematisches Modell sein. 

Generell kann als Input zunächst jede Information verwendet werden, für die ein Zusam-

menhang mit der technischen Verfügbarkeit gezogen werden kann. Ein vereinfachtes Bei-

spiel für solche Daten zeigt Tabelle 2. Die Spalten „1“, „2“ und „3“ beschreiben Eingruppie-

rungen in verschiedene Arten von Ersatz- und Verschleißteile: 

 

Tabelle 2: (Beispiel-)Input Daten 

Antriebe Führungs- 
leisten 

Rotations-
Achsen 

verbaute 
Teile 

Summe 
E/V 

1 2 3 techn. Ver-
fügbarkeit 

8 16 6 6452 243 3 124 89 0,990033 

6 14 4 4412 380 8 105 23

3 

0,995004 

4 9 3 7699 838 3 245 57

6 

0,996503 

1 4 1 811 197 1 118 75 0,996500 

6 8 4 4389 276 16 147 69 0,992424 

…         

 

4.2 Training und Anwendung des Modells 
Um Verfügbarkeitszahlen von neuen Baugruppen bzw. neuen Produktgenerationen vorher-

zusagen, werden die in 4.1 beschriebenen Daten verwendet, um einen Algorithmus zu trai-

nieren. Dabei werden die Daten in vier Gruppen unterteilt. Zunächst sollten die Daten in 

Trainings- und Testdaten differenziert werden. Der Großteil der Daten sollte dabei zum Trai-
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nieren des Modells genutzt werden. Beide Gruppen werden erneut in Ein- und Ausgabewerte 

gegliedert. In diesem Fall sind die Verfügbarkeitszahlen die Ausgabewerte (s. Tabelle 2: 

Spalte „techn. Verfügbarkeit“). Die Eingabewerte sind bspw. die aggregierte Stückliste sowie 

die Ersatz- und Verschleißteilkennzeichnung (Tabelle 2: Spalten „Antriebe“  bis „3“). Der Al-

gorithmus verwendet nun die Eingabewerte, um die Parameter des Modells zu optimieren 

und als Ergebnis die Ausgabewerte zu liefern. 

Die Testdaten werden zur Validierung genutzt. Hierzu werden dem Algorithmus die Einga-

bewerte zur Verfügung gestellt und der Ausgabewert wird durch den Algorithmus berechnet. 

Dieser kann nun mit dem realen Ausgabewert der Testdaten verglichen werden. Im Beispiel 

aus Tabelle 2 könnte dies wie folgt aussehen. Die ersten 100 Zeilen werden zum Trainieren 

des Modells, die letzten 20 Zeilen zum Validieren genutzt. Bei der Validierung wird die Spalte 

„techn. Verfügbarkeit“ nicht an das trainierte Modell übergeben, sondern durch das Modell 

berechnet. Die berechnete technische Verfügbarkeit, kann dann mit der realen technischen 

Verfügbarkeit verglichen werden. Weichen die Werte stark voneinander ab, kann dies ver-

schiedene Ursachen (falscher Algorithmus, overfitting, etc.) haben und muss im Einzelfall 

erörtert werden. 

Ist der Unterschied des vorhergesagten und des realen Ausgabewerts tolerierbar, kann das 

Modell zur Vorhersage von Verfügbarkeitszahlen neuer Baugruppen genutzt werden. Ver-

fügbarkeitszahlen für nicht veränderte Baugruppen können von der alten Produktgeneration 

übernommen werden. Für Baugruppen, die entscheidend verändert wurden, werden dem 

Modell die Eingabewerte (analog der Testdaten) übergeben. Da in diesem Fall nicht zwangs-

läufig alle Inputdaten vorhanden sind, da beispielsweise noch keine Service-Meldungen vor-

liegen, sollte ein möglichst robuster Algorithmus verwendet werden, es bietet sich in diesem 

Fall ein Algorithmus der Klasse Entscheidungsbäume (s. Kapitel 2.2) an. 

Abbildung 4 fasst die aufgezeigten Schritte nochmals zusammen: 
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Bild 4: Vorhersage von Verfügbarkeitszahlen neuer Baugruppen 

 

4.3 Prototypische Umsetzung bei den GROB-WERKEN 
Ein Prototyp der beschriebenen Vorgehensweise wurde bei den GROB-WERKEN in Python 

implementiert und soll hier diskutiert werden. 

Einen Auszug der Input-Daten zeigt Tabelle 2. Das Verhältnis der Trainingsdaten zu Testda-

ten betrug ca. 75% zu 25%. Als Algorithmus wurde der sogenannte RandomForest, aus der 

Klasse der Entscheidungsbäume genutzt. Wie der Name vermuten lässt, handelt es sich 

nicht um einen einzelnen Entscheidungsbaum, sondern um eine Vielzahl von Bäumen 

(Wald). Hierbei werden mehrere Modelle gleichzeitig trainiert und zu einem „Forest“ aggre-

giert. Zur Validierung wurde der Mittelwert der absoluten Abweichung zwischen der vorher-

gesagten und realen technischen Verfügbarkeit berechnet. Dieser lag mit 0,000934 in einem 

grenzwertig hohen Bereich, da dies bedeutet, dass der vorhergesagte Wert im Durschnitt 

0,000934 über bzw. unter dem realen Wert liegt. Die vorhergesagte technische Verfügbarkeit 

also beispielsweise 99,51%, die reale technische Verfügbarkeit jedoch 99,6% (oder 99,42%) 

betrug. Tritt diese Abweichung je veränderter Baugruppe auf kann die vorhergesagte Ver-

fügbarkeit leicht von der realen technischen Verfügbarkeit der gesamten Werkzeugmaschine 

abweichen. Im Zuge steigender Datenmengen und unter zur Hilfenahme von weiteren Ver-

fahren, wie bspw. der Kreuzvalidierung wird jedoch angenommen, dass die Qualität des Mo-
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dells noch erheblich gesteigert werden kann. Diese Annahme gilt es jedoch in Zukunft noch 

zu untersuchen. 

Ein weiterer Aspekt, der kurz erwähnt werden soll, ist die Analyse der Gewichtung der ein-

zelnen Eingabewerte. Hierbei zeigt sich, dass die Angaben zu Ersatz- und Verschleißteilen 

deutlich höher gewichtet werden, als die Angaben zur Anzahl konkreter Baugruppen. So liegt 

die Gewichtung der Anzahl der Rotationsachsen bei 1,3%, wohingegen die Gewichtung der 

Summe der Ersatz- und Verschleißteile bei 12,7% liegt. Diese Diskrepanz zeigt, dass für 

zukünftige Modelle der Schwerpunkt der Eingabewerte vermehrt auf Informationen zu Er-

satz- und Verschleißteilen gelegt werden sollte bzw. generell weitere Input-Informationen 

getestet werden können.  

 

5. Zusammenfassung und Ausblick 
Aufgrund des steigenden Wettbewerbsdruck sehen sich Unternehmen gezwungen, sich in 

den verkaufsentscheidenden Kenngrößen gegenüber der Konkurrenz abzugrenzen. Im Be-

reich der Werkzeugmaschinen betrifft dies unter anderem die Kennzahl der technischen Ver-

fügbarkeit. Um diese bereits im Anschluss an die Projektierungsphase angeben zu können, 

wurden zwei aufeinander aufbauende Methoden erläutert. Zum einen wurde gezeigt, wie 

baugruppenbezogene Verfügbarkeitszahlen aus Felddaten generiert werden können. Damit 

ist es möglich, für eine bestehende Produktgeneration kundenindividuell Verfügbarkeitszah-

len zu generieren. Zum anderen wurde eine Methodik vorgestellt, um bereits während des 

Produktentstehungsprozesses von neuen Produktgenerationen Verfügbarkeitszahlen zu be-

stimmen. Weiterhin konnte gezeigt werden, welche Kriterien von Big Data im Bereich der 

Werkzeugmaschine erfüllt werden. 

 

Zur Weiterentwicklung und Validierung der vorgestellten Methode können folgende Punkte 

erarbeitet werden: 

 Wie weit ist ein solches Modell generalisierbar und auf andere Maschinen übertrag-

bar bzw. wo sind Grenzen, die einen Vergleich zweier Produktgenerationen unmög-

lich machen? 

 Welche weiteren Datenquellen könnten als Eingabewerte genutzt werden, um das 

Modell zu optimieren? 

 Macht eine Aggregation der Stückliste Sinn, oder sollte die gesamte Stückliste als In-

put dienen? 
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 Für die Validierung des Modells könnten für eine neue Produktgeneration Verfügbar-

keitszahlen vorhergesagt werden und diese zu einem späteren Zeitpunkt mit Hilfe 

von Felddaten der neuen Produktgeneration verglichen werden. 

 Gibt es weitere Anwendungsfälle für diese Vorgehensweise? Könnte beispielsweise 

die Anzahl der Service-Anrufe für neue Baugruppen vorhergesagt werden? 
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Kurzfassung 

Ausfälle spezifischer Fahrzeugkomponenten finden ihre Ursache oftmals in einem bestimmten 

Nutzungsverhalten des Endkunden wieder. Um dieses Nutzungsverhalten verstehen und 

interpretieren zu können, bedienen sich Fahrzeughersteller und Zulieferer an zeit- und 

ortsunabhängigen, in elektronischen Steuergeräten abgespeicherten Kundenbelastungs-

kollektiven, welche während eines Werkstattbesuches via Diagnose ausgelesen werden 

können. Auf Basis derartiger Datensätze von Belastungskollektiven ausgefallener Fahrzeuge 

können durch geeignete Anwendung multivariater Analysemethoden des Data Mining 

Nutzungsmuster identifiziert und somit im Feld gefährdete Fahrzeuge frühzeitig erkannt 

werden. In diesem Artikel werden, in Anlehnung an den CRISP-Prozess, anhand einer 

ausgefallenen Fahrzeugkomponente der Einsatz zweier ausgewählter Analysemethoden 

vorgestellt, sowie deren anschließenden Anwendungsmöglichkeiten bezüglich präventiver 

Kundendienstmaßnahmen- und einer an den Kunden angepasste Erprobungsplanung/-

optimierung aufgezeigt.  

Abstract 

The failure of certain vehicle components are often caused by the customer’s specific driving 

behavior. To understand and interpret this behavior, OEMs and suppliers use time- and 

location independent load collectives which are stored in the control units and can be 

transferred by diagnosis during a workshop visit. Based on failed vehicles’ datasets, specific 

usage patterns can be identified by multivariate analytical methods in order to track vehicles 

at risk in the field. This article considers the implementation of two analytical methods in case 

of a specific failed vehicle component by following the CRISP-model. The resulting use cases 

for preventive customer services and customer’s based test planning/ optimization are shown 

subsequently.         
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1 Einleitung 

Im Automobilumfeld besitzt das Streben nach einer höheren Zuverlässigkeit zur Sicherung der 

marktführenden Position im Premiumsegment eine äußerst große Bedeutung. Um den stetig 

wachsenden Ansprüchen gerecht zu werden, benötigen Hersteller ein Konzept, die große 

Varianz in der Kundennutzung für die Auslegung neuer Komponenten zu berücksichtigen, um 

die Risiken späterer Probleme im Feld minimieren zu können. Hierzu ist eine genaue Kenntnis 

der durch Kunden induzierten Belastung der einzelnen Fahrzeugkomponenten von Nöten. Sie 

wird mithilfe von im Fahrzeug gespeicherten zeit- und ortsunabhängigen Belastungskollektiven 

überwacht und per Diagnose dem Hersteller zur Verfügung gestellt [1]. Somit lassen sich 

sowohl Varianz und Streuung der gesamten Fahrzeugflotte, als auch Belastungen kleinerer 

Fahrzeuggruppierung, abbilden. Das hohe Nutzungspotential dieser Daten in Verbindung mit 

hochmodernen Steuergeräten und Datenloggern führen zu immer größeren Datenmengen, die 

es gilt, mit geeigneten Verfahren des Data Minings zu einem Mehrwert sowohl für den 

Hersteller, als auch für den Kunden zu generieren. Für diesen Zweck wurde durch ein 

Konsortium unter Beteiligung der Daimler AG das CRISP-Modell entwickelt, welches den 

prinzipiellen Prozessablauf eines Data Mining Einsatzes im Unternehmen beschreibt und für 

Cross Industrie Standard Process for Data Mining steht [2]. 

In dieser Arbeit wird am Beispiel eines ausgewählten Bauteiles, in Anlehnung an CRISP, der 

Einsatz zweier multivariater Analysemethoden vorgestellt, welche die Möglichkeit bieten, 

anhand eines Modells auf Basis von Kundenbelastungskollektiven das Ausfallverhalten der  

Komponenten abzubilden, um Fahrzeuge hinsichtlich ihres Ausfallrisikos klassifizieren zu 

können. Es erfolgt zudem eine kurze Darlegung verschiedener Einsatzmöglichkeiten der 

entwickelten Analysemodelle im Unternehmen.      

2 Belastungskollektive 

Belastungskollektive (BLK) sind Daten, die mittels Zähl- und Klassierverfahren, aus 

Signalmessungen verschiedener Sensoren im Fahrzeug generiert und in den Steuergeräten 

gespeichert werden. Zu diesen Verfahren gehören die Momentanwert-, Ereignis-, Integral-, 

sowie die Rainflowzählung [3]. Die Transformation der Signaldaten sorgt neben der 

signifikanten Reduzierung des benötigten Speicherplatzes im jeweiligen Steuergerät für eine 

Eliminierung des Zeit-, Ort- und Personenbezuges und ist aufgrund existierender 

Datenschutzgesetze verpflichtende Basis für eine Datenerhebung aus Sicht des Herstellers 

[1]. Gängige Belastungskollektive sind beispielsweise „Anzahl Start-Stopp Vorgänge“ oder 

„Motor-Verweildauer im Drehmomentintervall x“. Auch mehrdimensionale Belastungskollektive 

sind unter Einhaltung der nicht-Reproduzierbarkeit des zeitlichen Bezuges eine geeignete 

Möglichkeit, die Belastung bestimmter Komponenten mit einem geringeren Informationsverlust 

abzubilden.   
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Die Datenübertragung aus den Steuergeräten der Fahrzeuge an den Hersteller erfolgt 

entweder in Form von Diagnosesitzungen, die während eines Werkstattaufenthaltes 

durchgeführt werden, oder mittels einer kabellosen Datenübertragung via Telediagnose in 

festgelegten Zeitintervallen (Abbildung 1).  

  

 

 

Abbildung 1: Belastungskollektive und deren Übertragung aus dem Kundenfahrzeug [4]  
  

Die kabellose Form der Datenerhebung über Telediagnose bietet dem OEM die Möglichkeit, 

neben der Kenntnis auftretender Belastungen, dem Kunden neue Dienstleistungen in Form 

von beispielsweise präventiven Reparaturen und belastungs-abhängigen Service-Intervallen 

anzubieten. Somit kann die Anzahl von Fahrzeugausfällen im Feld und die damit verbundenen 

Kosten gesenkt und gleichzeitig die Kundenzufriedenheit erhöht werden.  

3 Angewandte Multivariate Analyseverfahren des Data Mining  

Da der Ausfall bestimmter Fahrzeugkomponenten im Feld meist von mehr als nur einer 

Einflussgröße (Eingangsvariable) bestimmt wird, kommen zur Klassifizierung einzelner 

Fahrzeuge multivariate Analysemethoden zum Einsatz. Es wird dabei zwischen linearen und 

nicht-linearen Methoden unterschieden. Die in diesem Beitrag angewandten Methoden der 

linearen Diskriminanzanalyse und der logistischen Regression zählen zu den linearen 

Verfahren [5], deren Ziel es ist, mithilfe eines linearen Modells auf Basis der verfügbaren 

Eingangsvariablen  eine Aussage über die Ausfallwahrscheinlichkeit einer bestimmten 

Komponente im Feld treffen zu können. Folglich werden Fahrzeuge ausschließlich einer der 

beiden Klassen „Ausfall“ oder „nicht Ausfall“ (Survivor) zugeordnet. Man spricht hier von einem 

Zwei-Klassen-Fall.  

Lineare Diskriminanzanalyse LDA 

Die Diskriminanzanalyse zählt zu den strukturprüfenden Verfahren, deren Methodik darauf 

beruht, eine Linearkombination der  Eingangsvariablen  zu erstellen, welche die beiden 

Klassen optimal voneinander separiert indem deren Abstand zueinander maximiert, sowie die 

Streuung innerhalb der jeweiligen Klassen minimiert wird. Jeder Eingangsvariablen  wird ein 

Diskriminanzkoeffizient bi zugeordnet, b0 bildet die Konstante der Linearkombination [5].  

  (1) 

Diese lineare Funktion erwirkt eine bestmögliche Trennung der Verteilungen beider Gruppen. 
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In welchem Maß sich die beiden Gruppen tatsächlich voneinander unterscheiden, lässt sich 

durch das Diskriminanzkriterium  beschreiben. 

 (2) 

Die Streuung zwischen den Gruppen wird anhand des quadrierten Abstands der Gruppen-

Centroide  zum Gesamtmittel  ermittelt, während sich die Streuung innerhalb der Gruppen 

durch die quadrierten Abstände der Gruppenelemente zu den jeweiligen Gruppen-Centroiden 

ergibt. Die Modelloptimierung besteht demnach in der Findung des maximalen 

Diskriminanzwertes, welcher auch als Eigenwert  des Modells bezeichnet wird. Dies 

geschieht mithilfe der Methode der kleinsten Quadrate. Der kritische Diskriminanzwert liegt 

exakt zwischen den beiden Centroiden der Gruppen und bildet dementsprechend den 

Grenzwert [5]. Liegt der Diskriminanzwert eines Objekts in Bezug auf den kritischen 

Diskriminanzwert auf der Seite des Gruppencentroiden der Gruppe A, erfolgt eine Zuordnung 

zur Gruppe A, andernfalls wird das jeweilige Objekt der Gruppe B zugeordnet.  

Logistische Regressionsanalyse 

Die logistische Regressionsanalyse basiert analog zur linearen Diskriminanzanalyse auf 

einem linearen Modell. Im Unterschied zur LDA liefert jedoch die logistische Regressions-

analyse direkte Wahrscheinlichkeiten  über die Gruppenzugehörigkeit der zu klassi-

fizierenden Objekte [6]. Hierzu wird die Linearkombination der Eingangsgrößen in die 

logistische Verteilungsfunktion  

 (3) 

eingesetzt, woraus folgende logistische Regressionsfunktion resultiert. 

 

 

(4) 

Da es sich in diesem Fall um eine nicht-lineare Funktion handelt, können die Parameter nicht 

mittels der Methode der kleinsten Quadrate geschätzt, sondern müssen mithilfe des Maximum 

Likelihood Verfahrens iterativ ermittelt werden. Als Gütemaß des Modells dient der negierte 

doppelte Log-Likelihood -2LL, sowie der Likelihood-Ratio-Test. Für eine Klassifizierung der 

Objekte wird ein Trennwert  festgelegt [5]. Im vorliegenden zwei-Gruppen-Fall beträgt dieser 

0,5. Die Anpassung dieses Trennwertes ermöglicht, das Risiko einer Fehlzuordnung zu einer 

bestimmten Gruppe mit einfließen zu lassen.   
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4 Anwendungsbeispiel und Vergleich der Modelle 

Dieser Abschnitt dient der Veranschaulichung der 

beiden im vorherigen Anschnitt vorgestellten 

Analysemethoden anhand eines Ausfallbildes einer 

speziellen Motorkomponente einer ausgewählten 

Mercedes-Benz Baureihe.  

Der Ablauf des Analyseprozesses orientiert sich an 

den sechs Teilschritten des bereits in Abschnitt 1 

erwähnten CRISP-Modells. Diese beinhalten das 

Verstehen der Aufgabe (Business Understanding),  

das Verständnis der Daten (Data Understanding), 

die Datenvorbereitung (Data Preparation), der 

Modellbildung (Modelling), der Evaluation und dem 

Einsatz im Unternehmen (Deployment) [2]. Die Abbildung 1 zeigt schematisch dessen 

prinzipiellen Ablauf. 

Sämtliche Aufbereitungs-, Berechnungs- und Modellierungsschritte wurden mithilfe der IBM 

Software SPSS-Modeler durchgeführt [7].  

Schritt 1, das Business Understanding, ist im vorliegenden Fall klar definiert. Es werden 

Modelle gesucht, mit deren Hilfe es möglich ist, auf Basis von im Fahrzeug aufgezeichneten 

Kundenbelastungskollektiven und protokollierten Reparaturdaten eine Aussage über das 

Ausfallverhalten bestimmter risikobehafteter Komponenten treffen zu können. Die daraus 

gewonnenen Erkenntnisse können sowohl einen Anstoß zu möglichen Feldmaßnahmen, als 

auch Input für eine zukünftige, auf Kundenbelastung ausgerichtete Erprobungsplan-

optimierung darstellen. Im zweiten Prozessschritt, dem Data Understanding, kommt es zu 

einer detaillierten Betrachtung der verfügbaren Daten, deren Bedeutung und der vorliegenden 

Qualität. Für den vorliegenden Anwendungsfall werden drei übergeordnete 

Informationsquellen mit folgenden Inhalten (hier standardisiert angegebenen) benötigt: 

 Allgemeine Fahrzeuginformationen 

o Baureihe, Motor, Produktionsdatum, Erstzulassungsdatum, Vertriebsland 

 Reparaturdaten 

o Fehlerort (Komponente), Fehlerart, Reparaturdatum, km-Stand 

 Diagnosedaten 

o Diagnosedatum, BLK-Rohdaten, km-Stand  

Mit dieser Kenntnis wird zu Schritt 3, der Data Preparation, übergegangen. In diesem 

Prozessschritt gilt es, die relevanten Daten anhand der festgelegten Attribute Baureihe, Motor, 

Produktionszeitraum, Fehlerort (Komponente) zu selektieren und durch geeignete 

 
Abbildung 2: CRISP-Modell [2] 
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Verknüpfungen in eine konsistente Datentabelle zu überführen. Der schematische Ablauf der 

Datenzusammenführung ist in Abbildung 3 dargestellt. 

 

 
Abbildung 3: Synthese des Analysedatensatzes 
 

Ein neues Attribut „Ausfall“ wird erstellt, welches sogleich die binäre Zielvariable des folgenden 

Analyseprozesses darstellt. Fahrzeuge, welche bezüglich der ausgewählten Komponente 

einen Ausfall vorzuweisen haben, werden mit einer 1 deklariert, nicht ausgefallene Fahrzeuge 

mit einer 0 (Survivor). Oftmals weisen Fahrzeuge mehr als nur eine Diagnosesitzung und somit 

eine Mehrzahl an Belastungskollektiv-Datensätzen auf, bei denen es gilt, den jeweils richtigen 

für die Modellbestimmung auszuwählen. Bei nicht ausgefallen Fahrzeugen ist, unter der 

Annahme, dass es trotz der bisherigen Belastung zu keinem Ausfall der betrachteten 

Komponente gekommen ist, der aktuellste Datensatz zu verwenden, während bei 

ausgefallenen Fahrzeugen jener Datensatz relevant ist, welcher während des 

Werkstattaufenthaltes bzw. zeitnah zum Reparaturdatum aus den Steuergeräten ausgelesen 

wurde. Dieser Schritt ist von essentieller Wichtigkeit, da die Belastung nach der Reparatur 

keinerlei Einfluss auf das Ausfallverhalten der Komponente hat und es somit andernfalls zu 

einer Verfälschung des Modells kommen kann. Es resultiert letztendlich ein Analysedatensatz 

in Form der in Abbildung 3 dargestellten Struktur. 

Durch Softwarefehler oder vom Flashen des Steuergerätes resultierende Zurücksetzung der 

Zähler bedingte fehlerhafte und nicht plausible BLK-Datensätze werden beseitigt-, und die 

Eingangsparameter auf deren Verteilungseigenschaften kontrolliert. Besonders hinsichtlich 

des Verfahrens der Linearen Diskriminanzanalyse besteht die Forderung, dass sämtliche 

Eingangsgrößen annähernd normalverteilt sind, um ein verlässliches Modell gewährleisten zu 

können.  

Modellerstellung 

Zum vierten und fünften Prozessschritt, dem Modelling und der Evaluation, wird der vor-

liegende Datensatz anhand einer Partition in zwei Datensätze aufgeteilt. Beim ersten 

Datensatz handelt es sich um das Training-Set, auf dessen Basis das Klassifizierungsmodell 

erstellt wird. Mit dem zweiten Teil, dem Testing-Set, wird das Modell validiert. In der Literatur 

wird eine Aufteilung von 70% Trainings-Data und 30% Testing-Data empfohlen [6], wovon in 
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den vorliegenden Analysen nicht abgewichen wurde. Die in dieser Arbeit verwendeten 

Analysemethoden bedienen sich der schrittweisen Hinzunahme eines jeden Parameters zum 

entstehenden Modell und einer damit verbundenen Überprüfung der jeweiligen Eingangs-

größen auf deren Beitrag zur Modellverbesserung. Parameter, die keinerlei positiven Einfluss 

haben, werden dem Modell nicht hinzugefügt [6]. Durch diesen Schritt wird ermittelt, in 

welchem Umfang die einzelnen Eingangsgrößen Einfluss auf die Trennung der beiden 

Gruppen „Ausfall“ und „Survivor“ nehmen. Man spricht in diesem Fall von einer Predictor 

Importance, welche nach vollendeter Modellerstellung anhand von parameterspezifischen 

Gewichtungsfaktoren dem Modell entnommen werden kann. Die Erkenntnis, welche Faktoren 

den größten Einfluss auf die Schädigung der jeweiligen Komponente haben, können eine 

wesentliche Grundlage für die zukünftige Weiter- bzw. Neuentwicklung der jeweiligen 

Fahrzeugkomponenten bilden.      

Betrachtet wird im vorliegenden Anwendungsbeispiel eine Flotte von insgesamt 35.647 

Fahrzeugen, von denen 2.123 eine Beanstandung des betrachteten Bauteils aufweisen. 

Aufgrund der verhältnismäßig großen Anzahl an Fahrzeugen und Ausfällen besteht die 

Möglichkeit, neben der Modellerstellung für die Gesamtflotte, bestimmte vorklassifizierte 

Gruppen separat zu analysieren um eine möglicherweise höhere Modellgüte zu erreichen. Da 

erfahrungsgemäß innerhalb der Vertriebsländer deutliche Unterschiede sowohl bezüglich des 

Kundenfahrverhaltens, als auch dem Ausfallverhalten bestehen, wurde als eine Unter-

gruppierung das „Vertriebsland Y“ untersucht. Eine weitere Möglichkeit der Klassifizierung 

bildet eine Kundensegmentzuordnung auf Basis bekannter realer Belastungsprofile aus dem 

Feld. Je nach Nutzung kann mithilfe geeigneter Verfahren jedem Fahrzeug im Feld ein 

Kundensegment zugeordnet werden. Da es sich bei den in diesem Fall verwendeten 

Eingangsgrößen um relative Werte wie beispielsweise „Laufleistung pro Tag“ handelt, spielt 

die absolute Dauer bestimmter Belastungen keine Rolle. Diese Klassifizierung dient 

ausschließlich der Beschreibung des reinen allgemeinen Kundenfahrverhaltens. Das in 

diesem Beitrag ausgewählte Kundensegment wird exemplarisch als „Kundenprofil Y“ 

bezeichnet.  

Für folgende Gruppen wurden sechs Analysemodelle (Tabelle 1) erstellt, jeweils ein Modell 

der Linearen Diskriminanzanalyse LDA und eines der Logistischen Regression LR.  

 

Gruppe Fahrzeuge Ausfälle Ausfallquote LDA LR 

Gesamt 35.674 2.123 6,13% LDA_G LR_G 

Kundenprofil X 7.627 226 3,31% LDA_X LR_X 

Vertriebsland Y 3.815 68 1,84% LDA_Y LR_Y 

Tabelle 1: Modellübersicht  
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Ergebnisse 

Das Diagramm 1 zeigt die prozentualen Anteile der korrekt- und inkorrekt klassifizierten 

Fahrzeuge der jeweiligen Analysemodelle. Es ist ersichtlich, dass eine Vorklassifizierung 

generell positiven Einfluss auf die allgemeine Trefferquoten nehmen kann.     

 

 
Diagramm 1: Gesamtgüte der Modelle 
 

Einen detaillierteren Einblick liefern die Diagramme 2 und 3. Sie geben Aufschluss darüber, 

wie viele Fahrzeuge der jeweiligen Gruppe fälschlicherweise der anderen zugeordnet wurden. 

Beim Identifizieren von Ausfällen ist in den beiden Kundenprofil-Modellen eine 

Verschlechterung der Klassifizierungsgüte erkennbar. Dies lässt sich auf die Art der 

Vorklassifizierung zurückführen. Die Bestimmung eines spezifischen Kundenprofils beruht auf 

der Analyse des allgemeinen Fahrverhaltens. Somit wird automatisch die Streuung zwischen 

den beiden Gruppen Ausfall und Survivor reduziert, was eine größere Schnittmenge der 

beiden Verteilungen zur Folge hat, wodurch die Wahrscheinlichkeit einer fehlerhaften 

Zuordnung besonders innerhalb der kleinen Gruppe der ausgefallenen Fahrzeuge steigt. Die 

Verschlechterung der jeweiligen Gütemaße   und  bestätigen dies. Im Fall Vertriebsland 

ist dieses Phänomen aufgrund der großen Varianz nicht zu erkennen. Diese Erkenntnis zeigt, 

dass die Wahl der Vorklassifizierung einen signifikanten Einfluss auf die später resultierende 

Modellgüte linearer Verfahren nimmt und deshalb von besonderer Wichtigkeit ist.  

 

 
Diagramm 2: Erkannte und nicht erkannte Survivor 
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Diagramm 3: Erkannte und nicht erkannte Ausfälle 
 

Die vorliegenden Ergebnisse lassen möglicherweise den Anschein gewisser Zweifel bezüglich 

der Modelltauglichkeit im Hinblick auf die Vorhersagekraft und Prognosegenauigkeit 

erwecken, da ein nicht zu verachtender Anteil falsch klassifiziert wurde. Jedoch birgt selbst 

eine Früherkennung von beispielsweise 41% der Ausfälle (LR_Y) für den Fahrzeughersteller 

ein enormes Potential hinsichtlich Kosteneinsparung und Kundenzufriedenheit. Dieses 

Potential ist nicht allein abhängig vom prozentualen Anteil der entdeckten Fehler, sondern 

ergänzt sich mit dem Anteil korrekt prognostizierter Zuordnungen, deren Verteilungen in den 

Diagrammen 4 und 5 abgebildet sind.  

 
Diagramm 4: Prognostizierte Survivor 
 

 

 
Diagramm 5: Prognostizierte Ausfälle 
 

Es erfolgt eine Angabe, wie groß der Anteil korrekt prognostizierter Ausfälle / Nicht-Ausfälle 

der jeweiligen Modelle ist. Hier liefern die Modelle der logistischen Regression 

vielversprechende Ergebnisse. Hinsichtlich des Anteils prognostizierter Ausfälle muss betont 
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werden, dass es sich hierbei nicht um falsch klassifizierte Fahrzeuge handelt. Vielmehr bildet 

dieser Anteil eine Gruppe an Fahrzeugen im Feld, welche ein kritisches Nutzungsmuster 

aufweist, jedoch zum Zeitpunkt der Betrachtung als Survivor noch keinen Ausfall zu 

verzeichnen hat. Somit besteht für diese Gruppe weiterhin ein erhöhtes Ausfall-Risiko und 

verlangt nach einer gezielten Beobachtung. 

Die Auswertung der Predictor Importance aller Modelle zeigt, dass bestimmte Einflussgrößen 

wie beispielsweise „geringe Geschwindigkeit“, „geringe Drehzahlen“ und „hohe Drehzahl bei 

hohem Drehmoment“ das Ausfallverhalten der betrachteten Komponente signifikant 

beeinflussen. Der jeweilige Fachbereich konnte den schädigenden Einfluss dieser Größen 

bestätigen. Dabei sei erwähnt dass die genannten Schadensparameter nicht zwingend die 

einzigen sein müssen, welche Einfluss auf die Zuverlässigkeit der Komponente nehmen. Viele 

Faktoren komplexer Schadensmechanismen werden in den Umfängen der Belastungs-

kollektiv-Datenerhebung möglicherweise gar nicht erfasst. Aus diesem Grund befinden sich 

Hersteller im stetigen Kreislauf zwischen Schadensparameterermittlung, Definition neuer 

Belastungskollektive und deren Integration in die Applikation der unterschiedlichen Fahrzeug-

steuergeräte.   

Das Diagramm 6 zeigt eine ermittelte Verteilung des Einflusses bestimmter anonymisierter 

Belastungskollektive BLK1 bis BLK10. Demnach bietet in diesem Fall die schrittweise 

Hinzunahme der Eingangsparameter eine sehr gute Möglichkeit, schädigende Einfluss-

faktoren zu identifizieren.  

 

Diagramm 6: Einfluss der einzelnen Belastungskollektive auf das Modell (Predictor Importance)  
 

Im letzten Prozessschritt des CRISP-Modells, dem Deployment, können nun die entwickelten 

Analysemodelle verwendet werden, um Fahrzeuge, welche neue BLK-Daten aus dem Feld 

liefern, hinsichtlich ihres Ausfallrisikos zu untersuchen und gegebenenfalls präventive 

Maßnahmen seitens des Fahrzeugherstellers einzuleiten. In welchem Umfang dies geschieht, 

muss unter Betrachtung der Faktoren Kosten, Kundenzufriedenheit und Aufwand festgelegt 

werden.  

Die ermittelten Schädigungsparameter dienen zur zukünftigen Weiter- oder Neuentwicklung 

der betrachteten Komponente, sowie zum Abgleich der Erprobungsplanung. Geplante 
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Fahrprofile von Erprobungs- und Dauerlauffahrzeugen können nach einer Überführung der im 

Fahrzeug aufgezeichneten Zeitsignalen in das Datenformat der Belastungskollektive, unter 

der Verwendung der entwickelten Modelle überprüft werden, inwieweit das im Feld 

beobachtete kritische Belastungsmuster in der Erprobung abgebildet wird und unter welcher 

Wahrscheinlichkeit die Schädigung der Komponente in diesem Fall überhaupt entdeckt 

werden kann.  

5 Fazit und Ausblick 

Unter der Orientierung an den sechs Teilschritte des CRISP-Modells, wurde in diesem Beitrag 

der Einsatz ausgewählter Data Mining Methoden in Form zweier linearen multivariaten 

Analyseverfahren beschrieben, mit dem Ziel Fahrzeugausfälle auf Basis von Belastungs-

kollektiven und Reparaturdaten prognostizieren zu können. Die Ergebnisse zeigen, dass 

bereits verhältnismäßig einfache lineare Verfahren vielversprechende Erkenntnisse bezüglich 

Ausfallmechanismus und auftretender Schadensparameter liefern. Die Art der 

Vorklassifizierung spielt hinsichtlich der Modellgüte dabei eine signifikante Rolle und bedarf 

weiterer Entwicklungen. Speziell nicht-lineare Verfahren in Form von Cluster-Analysen und 

neuronalen Netzen sind dafür in Betracht zu ziehen. Es ist die Kombination geeigneter 

Verfahren, die ein Analysemodell erfolgreich erscheinen lassen, nicht die einzelne Methode 

an sich. 

6 Literaturverzeichnis 

[1] Köttermann, T.; Jacobi, A.; Bracke,S.: „Anwendung multivariater Methoden auf automobile 

Daten zur lastbasierten Zuverlässigkeitsanalyse“. Tagung Technische Zuverlässigkeit, 

Leonberg, 2015 

[2] Cleve, J.; Lämmel, U.: „Data Mining“. Oldenbourg Wissenschaftsverlag GmbH, S.733-

S.737, 2014 

[3] Bergmeir, P.; Nitsche, C.; Nonnast, J.; Bargende, M.: “Classifiying component failures of a 

hybrid electric vehicle fleet based on load spectrum data” The Natural Computing 

Applications Forum 2015 

[4] Jacobi, A.; Luy, J.-F.: „Zuverlässigkeitssteuerung bei Mercedes-Benz Cars“. Kongress QS 

Excellence, Bad Nauheim, 2016 

[5] Backhaus, K.; Erichson, B.; Plinke, U.; Weiber, R.: „Multivariate Analysemethoden“ 

Springer-Verlag, 14. Auflage, S.216-S.314, 2016 

[6] Wendler, T.; Gröttrup, S.: “Data Mining with SPSS Modeler”. Springer-Verlag, S.733-S.737, 

2016  

[7] IBM. SPSS Modeler 17 Handbook. International Business Machines Corporation, 2015 

 

VDI-Berichte Nr. 2307, 2017 149

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


VDI-Berichte Nr. 2307, 2017150

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


 

Stochastische Sensitivitätsmaße für smarte Systeme 
 
Stochastic sensitivity indices for smart systems 
 
 
S. Ochs, M.Sc., Dr.-Ing. E. M. Slomski, Prof. Dr.-Ing. T. Melz, 
Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik 
SAM, TU Darmstadt, Darmstadt 
 
 
Kurzfassung 
Die Zuverlässigkeitsbewertung adaptronischer (smarter) Systeme stellt, obwohl sie in den 

letzten Jahren zunehmend Aufmerksamkeit erfährt, ein immer noch wenig erforschtes Gebiet 

dar. Durch die Einbringung zusätzlicher aktiver Komponenten in eine zuvor passive Struktur 

werden Wechselwirkungseffekte zwischen den aktiven und den passiven Komponenten 

erzeugt, die das Systemverhalten erheblich verändern können. Diese Wechselwirkungen 

sind einerseits erwünscht, da sie den Funktionsbereich des Systems erweitern. Andererseits 

erschweren sie die Beurteilung der Systemzuverlässigkeit aufgrund der Entstehung 

vielfältiger Systemzustände. Am Fachgebiet Systemzuverlässigkeit, Adaptronik und 

Maschinenakustik SAM der TU Darmstadt wird der Ansatz verfolgt, anhand stochastischer 

Sensitivitätsanalysen die Zuverlässigkeit smarter Systeme mit statistischen Maßen (sog. 

Sensitivitätsmaßen) zu bewerten. Der vorliegende Beitrag befasst sich mit der gezielten 

Auswahl und Verknüpfung von stochastischen Sensitivitätsanalysemethoden zur 

quantitativen Bewertung von smarten Struktursystemen. Besonderer Wert wird dabei auf die 

Darstellung und die Bewertung der stochastischen Sensitivitätsmaße gelegt. Bisherige 

Analysemethoden ermöglichen lediglich eine normierte Betrachtung der stochastischen 

Sensitivitätsmaße. Durch die Adaption von Darstellungsverfahren aus dem Bereich der 

qualitativen Sensitivitätsanalysen ist es gelungen, die stochastischen Sensitivitätsmaße 

einheitenbehaftet darzustellen. Somit können Wechselwirkungseffekte eindeutig identifiziert 

und der Einfluss von Haupt- und Wechselwirkungseffekten auf das Systemverhalten 

quantifiziert werden. 

 
Abstract 
The reliability quantification of smart systems is still an area that is barely researched, 

although it has received increasing attention in the past years. The integration of active 

components into a passive structure initiates interactions between the active and the passive 
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components that considerably affect the system behavior. On the one hand, these 

interactions are desired as they extend the functional range of the system. On the other 

hand, they make the quantification of the system reliability more difficult due to the variety of 

system conditions that occur. The research group System Reliability, Adaptive Structures, 

and Machine Acoustics SAM of Technische Universität Darmstadt pursues the approach of 

quantifying the reliability of smart systems with statistical measures (so-called sensitivity 

indices) using stochastic sensitivity analyses. The present paper focuses on the systematic 

selection and combination of qualitative and quantitative methods of sensitivity analysis to 

improve the description and evaluation of stochastic sensitivity indices. Previous methods 

allow only a standardized evaluation of the stochastic sensitivity indices. By adapting 

methods from the field of qualitative sensitivity analysis we have succeeded in representing 

the stochastic sensitivity indices by means of physical units. Thus, interaction effects can be 

clearly identified and the influence of main and interaction effects on the system´s behavior 

are quantified. 

 
1. Einleitung 
Die Adaptronik ist eine Strukturtechnologie, die durch Verwendung fortschrittlicher Methoden 

der Strukturdynamik und Signalverarbeitung sowie unter Einbeziehung neuartiger Aktoren 

und Sensoren eine Überwachung und Verbesserung mechanischer Eigenschaften von 

Produkten ermöglicht [1]. Aufgrund ihrer Möglichkeit, sich an verändernde Randbedingungen 

anzupassen, werden diese Produkte auch als smarte Systeme bezeichnet [2].  Neben der 

Steigerung des Funktionsumfangs verursacht die Integration von aktiven Komponenten in 

die mechanische Struktur aber auch komplexe Wechselwirkungen zwischen den Eingangs-

parametern des Systems. Die sich daraus ergebende Vielfältigkeit an Systemzuständen 

erschwert die Auslegung, Optimierung und Zuverlässigkeitsanalyse des smarten Systems. 

Ein denkbares Einsatzgebiet für smarte Systeme ist potenziell überall dort, wo aktiv 

Strukturschwingungen reduziert werden sollen. Ein einseitig fest eingespannter Euler-

Bernoulli-Kragbalken mit einem kollokierten flächigen Piezoaktor und -sensorpaar, welches 

über einen Positive-Position-Feedback-Regler (PPF-Regler) verbunden ist, dient in diesem 

Beitrag als Beispielsystem zur Demonstration des dynamischen Verhaltens eines 

Anbindungssystems mit aktiver Unterdrückung störender Schwingungen durch 

piezokeramische aktive Elemente. Die Störkraft , welche die Struktur zu Schwingungen 

 anregt, greift in einer vorgegebenen Entfernung  zum eingespannten Balkenende 

an der Balkenstruktur an (Bild 1). 
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Bild 1: Schematischer Aufbau des smarten Balkensystems in Draufsicht. 

 

Zur analytischen eindimensionalen Beschreibung des Systems werden insgesamt 22 

Eingangsparameter benötigt (Tabelle 1).  

 

Tabelle 1: Eingangsparameter für das Modell des smarten Balkensystems. 

Sym. Parameter Wert Einheit  Sym. Parameter Wert Einheit 

 Balkenhöhe   mm   Sensorlänge  mm 

 Balkenlänge  mm   Sensorbreite  mm 

 Balkenbreite  mm   Position des Sensors  mm 

 Dichte des Balkens  kg/m3   Dichte der Piezokeramik  kg/m3 

 E-Modul des Balkens  GPa   E-Modul der Piezokeramik  GPa 

 Strukturdämpfungs- 
verhältnis  %   Ladungskonstante  m/V 

 Aktorhöhe  mm   PPF-Verstärkungsfaktor   s2 

 Aktorlänge  mm   PPF-Eigenkreisfrequenz  1/s 

 Aktorbreite  mm   PPF-Dämpfungskoeffizient  - 

 Position des Aktors  mm   Ladungsverstärkerkapazität  nF 

 Sensorhöhe  mm   Position der Kraftanregung  mm 

 

Im Rahmen dieses Beitrags werden Ergebnisse zu den Sensitivitätsanalysen der Parameter 

Balkenhöhe , Aktorhöhe , Sensorhöhe  und Position der Kraftanregung  detailliert 

dargestellt. Die gesamte Herleitung der Bewegungsgleichungen eines Euler-Bernoulli-

Balkens mit applizierten piezokeramischen Aktoren und Sensoren bei gegebenen 

Randbedingungen sowie die Einbindung einer Positive-Position-Feedback-Regelung sind im 

Detail in OCHS ET AL. [3] beschrieben. 

F(t)
a

Fa
A

a
S w(x, t)Piezosensor

PPF-Regler

Balken

Piezoaktor
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Ein Ansatz zur systematischen Zuverlässigkeitsbewertung von adaptronischen Struktur-

systemen wurde beispielsweise bereits 2006 von HASSAN [4] vorgestellt. Hierbei wird jede 

mögliche Fehlfunktion qualitativ über eine Fehlerbaumanalyse erfasst und es wird jeweils 

eine Grenzfunktion zugewiesen. Allerdings wird auf die Berechnung der Strukturzuverlässig-

keit, d. h. auf die Lösung der hochdimensionalen Integralterme, verzichtet. HAN [5] empfiehlt 

für die Zuverlässigkeitsanalyse adaptronischer Systeme alternativ die Verwendung von 

globalen Sensitivitätsanalysen (GSA). Die zugehörigen Sensitivitätsmaße werden bei GSA 

anhand des gesamten Parameterraums quantifiziert. Somit können neben dem direkten 

Einfluss (Haupteffekt) eines Parameters auch dessen Wechselwirkungen analysiert werden. 

Der am häufigsten verwendete globale Ansatz basiert gemäß SALTELLI ET AL. [6] auf einer 

Varianzanalyse des Systemverhaltens in Kombination mit einem Monte-Carlo-Sampling als 

Grundlage zur Berechnung von quantitativen Sensitivitätsmaßen. Die Darstellungsform der 

stochastischen Ergebnisse ist jedoch bis heute für die kommerzielle Nutzung unzureichend. 

Durch das in diesem Beitrag vorgestellte Bewertungsverfahren (siehe Kapitel 3), bei dem 

Auswertemethoden der qualitativen und der quantitativen GSA miteinander kombiniert 

werden, wird die Bewertung der berechneten Sensitivitätsmaße erleichtert, wodurch ihre 

Anwendbarkeit im industriellen Alltag praktikabel wird. 

 

2. Globale Sensitivitätsanalysen 
Unter dem Begriff Sensitivitätsanalyse werden unterschiedliche Verfahren zur Untersuchung 

des Zusammenhangs zwischen den Eingangsparametern und den Ausgangsgrößen eines 

Systems zusammengefasst. Die Wahl der Sensitivitätsanalysemethode wird hauptsächlich 

durch das verfolgte Ziel der Untersuchung, das Simulationsmodell mit seinen 

Eingangsparametern und das betrachtete Systemverhalten (Ausgangsgrößen) bedingt. Für 

Ausgangsgrößen, die sich durch eine Linearkombination der Eingangsparameter gut 

approximieren lassen, sind konventionelle Verfahren wie die Korrelations- und 

Regressionsanalyse hinreichend geeignet. Der entscheidende Nachteil dieser Methoden 

besteht in der lokal eingeschränkten Betrachtung und der damit verbundenen fehlenden 

Möglichkeit, Wechselwirkungen eindeutig zu identifizieren [7]. Bei komplexeren nichtlinearen 

Zusammenhängen, wie sie bei smarten Systemen häufig auftreten, ist daher der Einsatz 

globaler Verfahren zu empfehlen. Globale Verfahren der Sensitivitätsanalyse setzen keine 

Einschränkung des berücksichtigten Parameterraums voraus. Die zugehörigen Sensitivitäts-

maße werden somit anhand des gesamten Werteraums der Parameter bestimmt. Bei jeder 

GSA muss zur Erstellung der benötigten Daten aus der Grundgesamtheit eine Auswahl an 

Kombinationen der Parameterwerte, auch Realisationen genannt, getroffen werden. Die 
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getroffene Auswahl an Wertekombinationen wird als Stichprobe oder Sample bezeichnet. 

Die erstellte Stichprobe soll im Allgemeinen den vorgegebenen Parameterraum optimal 

ausfüllen. Der Vorgang des Auswählens wird als Stichprobenerstellung oder Sampling 

bezeichnet.  

Ist man lediglich an einer qualitativen Bewertung, beispielsweise in Form der Gruppierung in 

relevante und irrelevante Parameter, interessiert, stellt ein Screeningverfahren einen 

geeigneten Ansatz dar. Ein Verfahren ist beispielsweise das Morris-Screening [8]. Bei der 

qualitativen GSA erfolgt das Sampling üblicherweise anhand eines groben Gitters, welches 

auf den ursprünglichen Parameterraum, auch Hyperkubus genannt, angewendet wird. Der 

Hyperkubus   bezeichnet den Parameterraum , der von  Parametern aufgespannt wird. 

Die Anzahl an Realisationen wird bewusst niedrig gehalten, um eine schnelle Analyse zu 

gewährleisten. Die aus dieser Stichprobe berechneten Sensitivitätsmaße können nur zur 

qualitativen Bewertung des Systemverhaltens herangezogen werden, da durch das grobe 

Raster nicht alle Systemzustände erfasst werden können. 

Ist das Ziel der Untersuchung hingegen eine quantitative Bewertung des Systemverhaltens, 

muss auf eine stochastische GSA zurückgegriffen werden. Die am häufigsten verwendete 

Methode ist, wie bereits zuvor erwähnt, die Varianzanalyse in Kombination mit einem Monte-

Carlo-Sampling. Bei quantitativen Methoden erfolgt das Sampling meist anhand stochastisch 

verteilter Zufallszahlen, auch als Monte-Carlo-Simulation (MCS) bekannt. Der Stichproben-

umfang ist im Vergleich zur Rastersuche um einen Faktor ≥ 50 größer, was einerseits eine 

quantitative Bewertung des Systemverhaltens erlaubt, anderseits aber auch eine deutlich 

längere Analysezeit benötigt. Die Erzeugung der Zufallszahlen erfolgt anhand von 

Zufallszahlengeneratoren. Diese erzeugen im Allgemeinen Zahlenwerte zwischen 0 und 1 

aus dem Einheitshyperkubus . Die Berechnung der tatsächlichen Variablenwerte erfolgt, 

indem die generierten Zufallszahlen als Quantilwerte betrachtet und auf den ursprünglichen 

Parameterraum angewendet werden. In diesem Beitrag werden Quasizufallszahlen 

verwendet. Diese werden im eigentlichen Sinne nicht zufällig erstellt, sondern aus 

deterministischen Zahlensequenzen entnommen. Dies hat den Vorteil, dass die Zahlenfolgen 

derart konstruiert werden können, dass die gewonnene Stichprobe möglichst gleichförmig 

den Raum des Hyperkubus ausfüllt und somit eine schnellere Konvergenz der 

Sensitivitätsmaße erreicht wird [6]. Ein schnelleres Konvergenzverhalten bedeutet zugleich 

eine Verringerung des Simulationsaufwands. Zur Erstellung dieser Zahlensequenzen 

existieren unterschiedliche Ansätze, wobei in diesem Beitrag die Sobol’-Sequenz [9], als 

derzeit verbreitetster Ansatz, verwendet wird.  
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Die qualitative und quantitative GSA unterscheidet sich folglich in der Art des Samplings. 

Damit einhergehend erfolgt auch die Wahl der Bewertungsmethode zur Berechnung der 

Sensitivitätsmaße, auf die im nächsten Kapitel genauer eingegangen wird. Eine ausführliche 

Beschreibung der Samplingverfahren für die GSA ist beispielsweise in SALTELLI ET AL. [7] 

wiederzufinden. 

 
3. Bewertung der Sensitivitätsmaße 
Bei der quantitativen GSA mittels Varianzanalyse werden die zugehörigen quantitativen 

Bewertungsmaße durch das Verhältnis der durch einen Parameter  bis  erzeugten 

Varianz in der Systemantwort bezogen auf die Gesamtvarianz des Systemverhaltens 

beschrieben. Das Sensitivitätsmaß 1. Ordnung, der Haupteffekt, beschreibt quantitativ den 

direkten Einfluss eines Parameters. Er berechnet sich anhand der vom Parameter  

verursachten Varianz bezogen auf die komplette Varianz der Ausgangsgröße  im 

Parameterraum  [6]. 

 
(1)  

Als relative Größe kann er Werte zwischen 0 (kein direkter Einfluss) und 1 (starker direkter 

Einfluss) annehmen und ermöglicht somit einen quantitativen Vergleich der Einflüsse 

verschiedener Eingangsparameter, bezogen auf die Gesamtvarianz.  

Der Totaleffekt hingegen gibt den gesamten Einfluss eines Parameters auf die betrachtete 

Ausgangsgröße wieder und fasst folglich den direkten Einfluss (Sensitivität 1. Ordnung) und 

alle Wechselwirkungen (Sensitivitäten höherer Ordnung) des Parameters zusammen [10]. 

 
(2) 

Der Totaleffekt ist ebenfalls eine relative Größe. Der Ausdruck  bezeichnet dabei alle 

Eingangsparameter ohne . Da der Totaleffekt sowohl die Sensitivität 1. Ordnung als auch 

darüber hinaus die Sensitivitäten der Wechselwirkungen beinhaltet, ist sein Wert gleich dem 

des Haupteffekts oder höher. Eine große Differenz zwischen dem berechneten Haupt- und 

dem berechneten Totaleffekt eines Parameters weist in Konsequenz auf starke 

Wechselwirkungen dieses Parameters mit einem oder mehreren anderen Parametern hin.  

Die analytischen Lösungen der Gleichungen (1) und (2) sind für die meisten adaptronischen 

Systeme, wie auch für das Beispielsystem, nicht berechenbar. Aus diesem Grund müssen 

die Sensitivitätsmaße über Schätzverfahren bestimmt werden. HAN [5] hat gezeigt, dass bei 

der Sensitivitätsanalyse strukturdynamischer Systeme die Anwendung von statistischen 
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Verfahren der Anwendung von spektralen Verfahren vorzuziehen ist. Die dort verwendeten 

statistischen Schätzer, eingeführt von SOBOL‘ [9] für den Haupteffekt und von JANSEN [11] für 

den Totaleffekt, kommen auch im vorliegenden Beitrag wie folgt zur Berechnung der 

Sensitivitätsmaße zum Einsatz. 

Haupteffekt-
Schätzer:  

 

(3) 

Totaleffekt-
Schätzer:  

 

(4) 

 

Die Analyse von  Eingangsparametern erfolgt dabei durch die Durchführung und 

Auswertung von  Systemsimulationen mit den Simulationswerten , 

 der betrachteten Ausgangsgröße. Für die Anwendung der Schätzverfahren 

werden zwei unabhängige Stichproben  und  der Größe  sowie deren 

Verknüpfungen  benötigt. Diese werden durch das Einsetzen der -ten Spalte von  in 

die -te Spalte der Matrix  gebildet.  

In der praktischen Anwendung der globalen Sensitivitätsanalyse ist die Bewertung der 

Sensitivitäten anhand der einheitenlosen Bewertungsmaße Haupt- und Totaleffekt nur 

bedingt zielführend, da direkte Maßnahmen nur schwierig abzuleiten sind. Ein weiterer 

Nachteil dieser relativen Größen ist die schlechte Vergleichbarkeit verschiedener System-

modellierungsansätze, da sich die Größen jeweils nur relativ auf die Grundgesamtheit 

beziehen, welche z. B. beim Vergleich mit experimentellen Sensitivitätsanalysedaten nicht 

bekannt ist. Eine Umrechnung in einheitenbehaftete Größen ist nicht möglich.  

In Anlehnung an die Vorgehensweise bei der Elementareffekt-Methode (EE-Methode) nach 

MORRIS [8] werden zur besseren Bewertung der Sensitivitäten daher zwei weitere 

Sensitivitätsmaße als Erweiterung der bisherigen stochastischen Analyse bestimmt. Ein 

Elementareffekt beschreibt die absolute Änderung der Ausgangsgröße bezogen auf die 

Änderung eines einzigen Eingangsparameters an einem beliebigen Ort im Parameterraum  

und kann somit einheitenbehaftet dargestellt werden. Er fasst den direkten Einfluss eines 

Parameters  sowie seine Wechselwirkungen mit anderen Eingangsparametern am 

betrachtenden Ort im Parameterraum  zusammen. Die Schwierigkeit bei der Anwendung 

der EE-Methode ist, dass sie ursprünglich für die Anwendung auf ein Sampling für eine 

qualitative GSA erstellt wurde, bei dem die Simulationspunkte anhand eines vorgegebenen 
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Gitters eindeutig zueinander angeordnet sind. Hierdurch ist die Bedingung, dass bei einem 

Sprung zu einem anderen Simulationspunkt immer nur ein Eingangsparameter geändert 

wird, erfüllt. Diese eindeutige Zuordnung ist auf den ersten Blick bei einem Monte-Carlo-

Sampling nicht gegeben, da die Generierung der Zufallszahlen und damit der 

Simulationspunkte stochastisch erfolgt. Wird das Monte-Carlo-Sampling jedoch wie bei der 

Verwendung der angesprochenen Schätzverfahren aufgebaut, so kann ein Elementareffekt 

wiederum über die Differenz der Simulationsergebnisse aus den Stichproben  und  wie 

folgt ermittelt werden: 

 
(5) 

 beschreibt die auf die Differenz des oberen und unteren Grenzwertes des i-ten 

Parameters normierte Änderung für den r-ten Simulationsdurchlauf, während alle anderen 

Parameter unverändert bleiben. Die Gleichung erfüllt somit die Bedingung, dass immer nur 

ein Eingangsparameter verändert wird.  

Durch die Berechnung des arithmetischen Mittelwerts der absoluten Elementareffekte eines 

Parameters  für alle Simulationsdurchläufe  wird das globale Sensitivitätsmaß wie folgt 

bestimmt: 

 
(6) 

Der totale Einfluss des Parameters auf das betrachtete Systemverhalten wird somit anhand 

des Mittelwertes aller Elementareffekte eines Parameters  quantifiziert. Des Weiteren kann 

anhand der Standardabweichung der Elementareffekte eines Parameters  direkt 

Wechselwirkungen des Parameters mit anderen Eingangsparametern wie folgt berechnet 

werden: 

 

(7) 

Zeigen sich deutliche Unterschiede in der Berechnung der Elementareffekte  eines 

Parameters  für die unterschiedlichen Simulationsdurchläufe , so deutet dies entweder auf 

starke Wechselwirkungen des Parameters mit anderen Parametern, auf ein nichtlineares 

Verhalten im Parameterraum oder eine Kombination von beidem hin.  
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Der Unterschied zwischen den ursprünglichen Sensitivitätsmaßen Haupteffekt  und 

Totaleffekt  einerseits und den neu eingeführten Sensitivitätsmaßen Elementareffekt-

Mittelwert  und -Standardabweichung  bei einer quantitativen GSA von komplexen 

Systemen andererseits wird anhand des in Kapitel 1 eingeführten Beispielsystems im 

Folgenden erprobt. 
 
4. Vergleich und Diskussion der Sensitivitätsmaße am Beispielsystem 
In diesem Beitrag werden die Einflüsse von vier Eingangsparametern des Beispielsystems 

(siehe Tabelle 2) auf zwei Ausgangsgrößen des Systems, die erste Resonanzfrequenz  

und die Amplitude  der Übertragungsfunktion zwischen Kraftanregung und Ge-

schwindigkeit des freien Balkenendes an der ersten Resonanzfrequenz, untersucht. 

 

Tabelle 2: In der GSA betrachtete Eingangsparameter und ihre Grenzwerte. 

Symbol Eingangsparameter untere 
Grenze 

obere 
Grenze 

Einheit Dichtefunktion 

 Balkenhöhe   mm  

 Aktorhöhe   mm  

 Sensorhöhe   mm  

 Position der 
Kraftanregung    mm  

 

Der Parameterraum  dieser  Parameter wird über die Angabe von unteren und 

oberen Grenzwerten definiert. Innerhalb der Grenzwerte sind alle vier Eingangsparameter 

gleichverteilt. Die Grenzwerte orientieren sich an einer Variabilität der Parameter von  

zum Ursprungswert (siehe Tabelle 1), wie sie im Rahmen eines Konstruktionsprozesses 

auftreten kann. Die Position der Kraftanregung wird dabei nur in eine Richtung variiert, da sie 

in der anderen Richtung außerhalb der Abmessung des Balkens liegen würde. Es wurden 

insgesamt  Systemsimulationen durchgeführt, um die Konvergenz der 

Sensitivitätsmaße zu gewährleisten. Dies entspricht einer Stichprobengröße von .  

In Bild 2 sind die berechneten Sensitivitätsmaße Haupteffekt  und Totaleffekt für beide 

Ausgangsgrößen  und  dargestellt. Zu erkennen sind die relativen Parameter-

sensitivitäten bezogen auf die Gesamtvarianz der jeweiligen Ausgangsgröße. Es wird 

deutlich, dass die erste Resonanzfrequenz  im Kontext der vier betrachteten 

Eingangsparameter unmittelbar abhängig von der Balkenhöhe  ist. Dieses Verhalten ist 

plausibel, da die Eigenfrequenzen des Balkensystems zwar formal von den Eigenschaften 

der Piezokeramik (Aktorhöhe  und Sensorhöhe ) abhängig sind, aufgrund der geringen 
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Gesamtmasse der Piezokeramiken im Vergleich zur Balkenmasse weisen diese jedoch nur 

einen sehr geringfügigen Einfluss auf diese Ausgangsgröße auf. Auch die Position der 

Kraftanregung  hat keinen Einfluss auf die erste Resonanzfrequenz. Eine quantitative 

Aussage über die Verschiebung der ersten Resonanzfrequenz in Hz kann anhand dieser 

Sensitivitätsmaße nicht getroffen werden. Die Amplitude  der Übertragungsfunktion an der 

ersten Resonanzfrequenz ist im Vergleich zu  deutlich stärker von der Position der 

Kraftanregung  abhängig. Ebenso ist ein im Vergleich zur Balkenhöhe und zur Position 

der Kraftanregung  geringer Einfluss der Parameter der aktiven Komponenten (Aktorhöhe 

 und Sensorhöhe ) des Systems erkennbar. Eine konstruktionsbedingte Abweichung von 

 der passiven Komponente hat einen deutlich größeren Einfluss auf das 

Systemverhalten als die Parameter der aktiven Komponenten. Anhand dieser Sensitivitäts-

maße kann jedoch keine Aussage über die Höhe der Abweichung von  in dB getroffen 

werden. Wechselwirkungen, erkennbar durch einen Unterschied zwischen dem Haupt- und 

dem Totaleffekt eines Parameters, scheinen im betrachteten Versuchsraum nur eine 

untergeordnete Rolle zu spielen. 

 

 
Bild 2: Haupt- und Totaleffekte der vier betrachteten Eingangsparameter bezogen auf die 

Ausgangsgrößen Y1 und Y2. 

 

Die in Bild 3 dargestellten Sensitivitätsmaße  und  liefern qualitativ dieselben 

Beobachtungen wie die Sensitivitätsmaße  und . Auch in diesem Betrachtungsfall wird 

die Ausgangsgröße  primär von der Balkenhöhe  und die Ausgangsgröße  von den 

Parametern der passiven Komponente beeinflusst. Durch die quantitative Darstellung der 

Effekte in der physikalischen Einheit der entsprechenden Ausgangsgröße können jedoch 

zusätzlich auch absolute Aussagen getroffen werden. Somit kann beispielsweise direkt 

abgelesen werden, dass im verwendeten Simulationsmodell eine maximale Veränderung der 

Balkenhöhe  um  eine Verschiebung der ersten Resonanzfrequenz  um  
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hervorruft, was einer deutlichen Änderung der Systemeigenschaften entspricht. Des 

Weiteren ist zu erkennen, dass die Effekte der drei weiteren Eingangsparameter ,  und 

 auf die erste Resonanzfrequenz unter  liegen und somit das Systemverhalten nur 

marginal beeinflussen. 

 

 
Bild 3: Elementar-Mittelwerte und -Standardabweichungen der vier betrachteten 

Eingangsparameter bezogen auf die Ausgangsgrößen Y1 und Y2. 

 

Für die Ausgangsgröße , die Amplitude der Übertragungsfunktion zwischen Kraftanregung 

und Geschwindigkeit des freien Balkenendes an der ersten Resonanzfrequenz, kann zudem 

abgelesen werden, dass eine Veränderung der vier Eingangsparameter um  nur eine 

Veränderung der Amplitude um max.  hervorruft. Absolut gesehen reagiert das smarte 

System somit robust gegenüber konstruktionsbedingten Änderungen dieser vier Eingangs-

parameter. Des Weiteren ist zu beobachten, dass der Einfluss der Balkenhöhe über dem 

Parameterraum  streut und auf Wechselwirkungseffekte, ein nichtlineares Verhalten im 

Parameterraum oder eine Kombination von beidem geschlossen werden kann, während dies 

in der ursprünglichen Darstellung in Bild 2 nicht ablesbar ist.  

 

5. Fazit 
Durch die Anpassung und Anwendung von Bewertungsmaßen aus der qualitativen globalen 

Sensitivitätsanalyse auf Stichproben aus der quantitativen globalen Sensitivitätsanalyse wird 

die Voraussetzung für eine praktikable Anwendbarkeit von stochastischen Sensitivitäts-

maßen geschaffen. Die Sensitivitätsmaße Elementareffekt-Mittelwert und Elementareffekt-

Standardabweichung liefern dabei qualitativ dieselben Beobachtungen wie die bekannten 

Sensitivitätsmaße Haupt- und Totaleffekt. Zusätzlich ermöglicht die Bewertung der 

Sensitivitäten anhand der beiden neu eingeführten einheitenbehafteten Sensitivitätsmaße 

eine Quantifizierung der Einflüsse und lässt beispielsweise einen direkten Vergleich 
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verschiedener Modellierungsansätze smarter Systeme sowie eine experimentelle Validierung 

der Modelle mittels Messungen am Prüfstand zu. 
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Kurzfassung 
Die Prognose der Verfügbarkeit von flexiblen Produktionssystemen dient dazu, das Risiko 

von unerwarteten Maschinenausfällen und die daraus resultierenden Verluste zu reduzieren. 

Die Flexibilität hat weitreichende Auswirkung auf die Gestaltung von Produktionssystemen in 

der Industrie 4.0 und ist nach wie vor eine Herausforderung in der Modellierung. In dieser 

Arbeit wird zuerst ein Konzept der flexiblen Produktion vorgestellt und anschließend mit ei-

nem High-Level-Petrinetz modelliert. Schließlich werden die Produktivität und die Verfügbar-

keit der Produktionssysteme analysiert und diskutiert. 

 

Abstract 
Prediction of the availability of flexible production systems serves to reduce the risk of unex-

pected machine failures and the resulting losses. Flexibility has a significant impact on the 

design of production systems in the industry 4.0 and is still a challenge in modelling. In this 

paper, a concept of flexible production is presented and modelled with high-level Petri net. 

Finally, the productivity and availability of the product systems are analysed and discussed. 

 

1. Einleitung 
Die Produktionssysteme haben sich zunächst von der handwerklichen Produktion in die 

klassische industrielle Produktion am Anfang des zwanzigsten Jahrhunderts entwickelt, da-

nach in die schlanke Produktion in der Mitte des zwanzigsten Jahrhunderts und schließlich in 

die wandlungsfähige Produktion in den letzten zehn Jahren [1]. Zur Erhöhung der Effektivität 

bei wachsender Produktvielfalt wurde die schlanke Produktion weit verbreitet. Mit der rasan-

ten Popularisierung des Computers und Internets gewinnt die digitale Produktion [2] immer 
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mehr an Bedeutung. Vor kurzem wurde ein neues Konzept der Produktionssysteme vorge-

schlagen: die Produktion als ein System zu betrachten [3]. Als zukünftige Fabriken werden 

die wandlungsfähige Produktion, vernetzte Produktion, digitale Produktion, Lernfähige Pro-

duktion und Nachhaltigkeit im Lebenszyklus des Systems Produktion in [3] vorgestellt. Diese 

Konzepte weisen auf die Entwicklungsrichtung der Produktionssysteme in Industrie 4.0 hin. 

Mit der Entwicklung der Produktionssysteme wandelte sich die Produktionsstrategie von 

Massenproduktion über kundenspezifische Massenproduktion zur Massenpersonalisierung. 

Am Ende des achtzehnten Jahrhunderts führte die erste Massenproduktion durch Maschinen 

zur ersten industriellen Revolution. Im späten zwanzigsten Jahrhundert hat kundenspezifi-

sche Massenproduktion (KMP) als eine wichtige strategische Initiative viel Aufmerksamkeit 

von der Wissenschaft und Industrie erregt [4, 5]. In den letzten Jahren wird die Personalisie-

rung als einer der Haupttreiber für die nächste Transformation der Weltwirtschaft betrachtet 

[6, 7]. 

Die Industrie 4.0 ist durch eine starke Individualisierung der Produkte unter den Bedingungen 

einer hoch flexiblen Produktion gekennzeichnet [8]. Die Individualisierung ist einer der acht 

wichtigsten globalen Megatrends, die direkte Auswirkungen auf die Produktion haben [3]. 

Aufgrund der verkürzten Produktlebenszyklen und der zunehmenden Schwankung von Markt 

und Nachfrage muss die Produktion eine Vielzahl von Produkten, Designs und Volumen-

schwankungen anbieten. Die Flexibilität hat weitreichende Auswirkungen auf die Gestaltung 

von Produktionssystemen in der Industrie 4.0. Deshalb ist es nötig, kundenorientierte flexible 

Produktion in Industrie 4.0 zu implementieren. In den letzten Jahrzehnten haben zahlreiche 

Studien die Flexibilität und das Design und die Messung flexibler Produktionssysteme unter-

sucht [9-11]. Eine Definition der flexiblen Produktion wird in [12] diskutiert. In vielen Studien 

[11-15] wurde die Modellierung flexibler Produktionssysteme behandelt. Die Literatur zeigt, 

dass die flexible Produktion nach wie vor eine Herausforderung in der Modellierung aufgrund 

der dynamischen Struktur und komplexe Wechselwirkungen ist. Die Petrinetze wurden in 

umfangreichen Studien [11, 12, 15-17] zur Untersuchung der flexiblen Produktion verwendet. 

Sie zeichnen sich durch starke analytische und quantitative Ansätze aus. Daher wird die fle-

xible Produktion in dieser Arbeit mit den Petrinetzen weiter untersucht. 

Die Verfügbarkeit ist ein wichtiger Parameter für die objektive Charakterisierung des Leis-

tungsgrads von Produktionssystemen. In den letzten Jahrzehnten haben viele Forscher die 

Verfügbarkeit von Produktionssystemen auf Basis der gesammelten umfassenden Daten 

untersucht [18-20]. Heutzutage werden zahlreiche Datenerfassungsgeräte in den Maschinen 

zur Überwachung ihrer Zustände eingebaut. Darüber hinaus ermöglichen cyber-physische 

Systeme und das Internet der Dienste und Dinge die Überwachung und Steuerung der ge-
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samten Produktionssysteme [20-22]. Damit kann die Analyse der Produktionsprozesse ver-

einfacht werden. Die Vorhersagemodelle können die Entscheidungen zur Optimierung der 

Systeme unterstützen. Sie wurden jedoch selten untersucht, weil die Prognose stark von der 

Expertenerfahrung abhing und die Vorhersage zufälliger Ereignisse und Unfälle schwierig 

war. Durch die Modellierung der stochastischen Prozesse und die Analyse der Verfügbarkeit 

von Produktionssystemen können potenzielle Verzögerungen, Störungen und Ausfällen 

prognostiziert werden. Die Prognose der Verfügbarkeit von Produktionssystemen ermöglicht 

es, die potenziellen Risiken von unerwarteten Maschinenausfällen und die daraus resultie-

renden Verluste zu reduzieren und anschließend die Optimierung der Produktionssysteme 

zu unterstützen. Bosse et al. [23] schlugen ein Modell zur Vorhersage der Verfügbarkeit von 

IT-Service vor. Das Modell basiert auf einem System mit fester Struktur und ist für die flexible 

Produktion nur eingeschränkt verwendbar. Deshalb ist es nötig, ein neues Modell zu konzi-

pieren. 

In der Literatur wurden verschiedene Methoden [24-27] zur Analyse der Verfügbarkeit vorge-

stellt. Die Petrinetze verfügen über große Potenziale, die Produktionssysteme in der Indust-

rie 4.0 zu modellieren. Sie wurden als eine Methode vorgeschlagen, um komplexe Systeme 

zu modellieren [27]. In einer früheren Arbeit [28] wurden die graphischen Modellierungsme-

thoden nach den speziellen Eigenschaften der Produktionssysteme in der Industrie 4.0 ─ 

Vernetzungsfähigkeit, Kommunikation, Intelligenz und Veränderungsfähigkeit ─ bewertet. 

Die erweiterten farbigen stochastischen Petrinetze (ECSPNs) [29] wurden als eine der leis-

tungsfähigsten Methoden bewertet und werden daher in dieser Arbeit weiter untersucht. 

Ziel dieser Arbeit ist es, die flexible Produktion mit ECSPNs zur Analyse der Produktivität 

und Verfügbarkeit der Produktionssysteme zu modellieren. In Abschnitt 2 werden die Petri-

netze und ECSPNs in Kürze beschrieben. Dann wird ein Konzept der flexiblen Produktion in 

Abschnitt 3 vorgestellt und anschließend mit ECSPN modelliert. Die Modellierungsergebnis-

se werden in Abschnitt 4 erläutert. Am Ende der Arbeit wird eine Zusammenfassung gege-

ben. 

 

2. Modellierungsmethode 
Die Petrinetze wurden von Carl Adam Petri zur Modellierung von nebenläufigen diskreten 

Systemen im Jahre 1962 entwickelt [30]. Sie bestehen aus vier Grundelementen: Stelle, 

Transition, Kante und Marke. Die Stellen sind als Kreise dargestellt. Sie beschreiben mögli-

che Zustände eines Systems oder einer Komponente und können eine oder mehrere Marken 

enthalten. Die spezifischen Werte der Zustände werden durch die Marken beschrieben, die 

im Allgemeinen als ausgefüllte Kreise dargestellt sind. Die Transitionen stellen die Aktivitäten 
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dar, die die Werte der Zustände ändern, und können das dynamische Verhalten in einem 

System modellieren. Sie sind als Quadrate dargestellt. Die Kanten verbinden die Stellen und 

Transitionen und stellen den Fluss einer Marke durch Pfeile dar. Sie zeigen die logischen 

Zusammenhänge und die Strukturen der Modelle. 

In den letzten Jahrzehnten wurden viele neue Petrinetze entwickelt, die jeweils eigene Ei-

genschaften haben. Auf Basis der farbigen Petrinetze und der erweiterten stochastischen 

Petrinetze entwickelte Pozsgai die erweiterten farbigen stochastischen Petrinetze (ECSPNs) 

[29]. Die ECSPNs können nicht nur die allgemeinen Aspekte der Produktionssysteme wie 

Struktur und Arbeitsablauf, sondern auch stochastische Prozesse, verschiedene Zustände 

der Produktionsprozesse und deren Änderungen sowie Eigenschaften wie Warteschlangen 

und Wächterfunktionen simulieren. Mehr Modellierungsaspekte von ECSPNs werden in [29] 

vorgestellt. 

 

3. Modellierung einer flexiblen Produktion 
Im Folgenden wird ein Konzept der flexiblen Produktion vorgestellt und anschließend mit 

ECSPNs modelliert. Zum Vergleich wird zuerst die serielle Produktion (siehe Bild 2 links) 

erklärt. Das folgende Bild 1 zeigt ein konventionelles Modell einer seriellen Produktion (Mo-

dell K), die aus vier Prozessen A, B, C und D besteht. Die Maschinen werden durch die 

Transitionen Tr3, Tr6, Tr9 und Tr12 modelliert. Die Verfügbarkeit der jeweiligen Maschine 

wird mit den markierten Stellen P31, P61, P91 und P121 modelliert. Weil die Reihenfolge der 

Prozesse vorher definiert wird, ist die Struktur der Prozesse daher fest. Deshalb ist sie nicht 

anpassungsfähig. Diverse Varianten eines Produkts und verschiedene Produkte können 

nicht oder nur mit aufwändigen Anpassungen hergestellt werden. Zusätzlich hat ein Maschi-

nenausfall in der seriellen Produktion eine Kettenreaktion zur Folge. Ein Ausfall der ersten 

Maschine bewirkt, dass der ganze Produktionsprozess abbricht. Deshalb wird für jede Ma-

schine ein Puffer benötigt, um die Kettenreaktion zu reduzieren. Um die Anpassungsfähigkeit 

zu ermöglichen, wird eine flexible Produktion benötigt. Das Bild 2 rechts illustriert ein Kon-

zept der flexiblen Produktion. 
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Bild 1: Konventionelles Modell der seriellen Produktion (Modell K) 

 
Bild 2: Konzept der flexiblen Produktion 

 

Die Maschinen werden nicht nacheinander, sondern durch ein Verteilzentrum verbunden. 

Alle Maschinen werden als Individuen betrachtet und sind unabhängig von anderen. Die 

Reihenfolge der Prozesse soll bei der Produktion keine Rolle spielen. Dadurch können die 

Prozesse flexibel sein. Die Struktur der Prozesse wird in diesem Konzept abgeschafft. Somit 

sind die durch Strukturveränderung entstandenen Probleme nicht mehr vorhanden. Das Bild 

3 zeigt ein Petrinetz-Modell der flexiblen Produktion mit Berücksichtigung der Warteschlange 

und Priorität (Modell FP). Die Stelle P1 beschreibt den Auftrag der zu herstellenden Produk-

te. Die Produkte werden mit den Marken in Form „n`(a,b,c,d,pr)“ dargestellt. Dabei bedeutet 

„n“ die Anzahl der Produkte. Die Buchstaben a, b, c und d weisen die entsprechenden Pro-

zesse hin. Die Zahl „0“ bedeutet, dass der entsprechende Prozess durchzuführen ist. Die 

Zahl „1“ deutet hin, dass der Prozess entweder nicht notwendig ist oder schon bearbeitet 

wurde. Die Marke entspricht RFID auf dem Bauteil mit individuellem Arbeitsplan. 

 

D C 

B A 

A

CB

D

Verfügbarkeit 
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Bild 3: Modell der flexiblen Produktion mit Priorität (Modell FP) 

 

Die Stelle P2 entspricht dem Verteilzentrum in obigem Konzept und ist ein zentraler Puffer 

für alle Maschinen. Sie kann als der „Supermarkt“ in heutigen Produktionssystemen betrach-

tet werden. Das Warteschlangeprinzip und die Priorität dienen dazu, die zu bearbeitenden 

Produkte nach definierter Reihenfolge zu sortieren. Die Wächterfunktionen der Transitionen 

Tr2, Tr5, Tr8 und Tr11 haben die Funktion, die richtigen zu bearbeitenden Prozesse eines 

Produkts zu erkennen. Sie können nach Bedarf angepasst werden. Die Normalkante und die 

Verbotskante zwischen Tr2 und P3 bewirken, dass nur jeweils ein Produkt zu Maschine A 

versandt wird. Während der Bearbeitung wird kein weiteres Produkt zu dieser Maschine 

transportiert. 

Die Transition Tr3 entspricht dem Bearbeitungsprozess von Maschine A. Sie ist durch eine 

Lesekante mit der Stelle P31 verbunden, die die Verfügbarkeit der Maschine A zeigt. Die 

Elemente zwischen P31 und P33 modellieren die Lebensdauer, die Instandhaltung und die 

Ersatzteile der Maschine. Nach der Bearbeitung wird das Produkt durch den Kantenausdruck 

„1`(a+1,b,c,pr+1)“ zwischen Tr3 und P4 markiert. Die Priorität wird um eins erhöht. Die Stelle 

P41 dient dazu, die Produktivität der Maschine A zu bewerten. Die anderen Maschinen B, C 

und D sind wie die Maschine A gestaltet. Mit der Wächterfunktion in Tr14 

„[(a=1)AND(b=1)AND(c=1)AND(d=1)]“ können die Endprodukte aussortiert werden. Die Ele-
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mente hinter der Stelle P12 dienen dazu, die Endprodukte nach Produktvarianten zu sortie-

ren. 

 

4. Ergebnis  
Das Modell der flexiblen Produktion wird mit einer Software REALIST simuliert. Die Prozess-

dauer, die Lebensdauer und die Reparaturdauer werden mit zweiparametrigen Weibullvertei-

lungen (b=1) beschrieben. Die Prozessdauer (Tr3, Tr6, Tr9, Tr12) und die Reparaturdauer 

aller Maschinen (Tr32, Tr62, Tr92, Tr122) sind zehn Stunden. Die charakteristische Lebens-

dauer aller Maschinen (Tr31, Tr61, Tr91, Tr121) ist 1000 Stunden. Das im Bild 3 dargestellte 

Modell der flexiblen Produktion kann durch Anpassung der Wächterfunktionen nach Tabelle 

1 auch für eine definierte serielle Produktion verwendet werden. Zum Vergleich werden die 

beiden Modelle in Bild 1 und 3 mit verschiedenen Parametern simuliert. In den Modellen K1 

und F1 haben alle Maschinen zehn Ersatzteile. Dagegen haben sie in den Modellen K2 und 

F2 keine Ersatzteile. Dabei bedeutet „K“ konventionelle serielle Produktion, und „F“ serielle 

Produktion mit flexiblem Modell. Die Priorität wird in beiden Modellen nicht verwendet. 

Durch Variation der Ersatzteile können die Produktivität und Verfügbarkeit des ganzen Sys-

tems analysiert werden. Alle Modelle werden mit 3000 Stunden und 1000 Replikationen si-

muliert. Die Ergebnisse sind in Bild 4 dargestellt. Dabei entspricht die mittlere Markenbeset-

zung dem Mittelwert aller Replikationen. Es gibt zwei hundert Produkte, die nach der Pro-

zessreihenfolge A, B, C und D hergestellt zu werden. Der Vertrag ist als 200`(0,0,0,0,0) dar-

gestellt. 

Tabelle 1: Wächterfunktionen der Transition in flexiblen Modellen 

Modell Tr2 Tr5 Tr8 Tr11 

Flexible Produktion [(a=0)] [(b=0)] [(c=0)] [(d=0)] 

Serielle Produktion [(a=0)] [(a=1)AND 

(b=0)] 

[(a=1)AND(b=1) 

AND(c=0)] 

[(a=1)AND(b=1)AND 

(c=1)AND(d=0)] 

 

Das Bild 4.a zeigt, dass die beiden Modelle gleiche Produktivität in beiden Fällen (mit und 

ohne Ersatzteil) haben. Die Bilder 4.b und 4.c zeigen, dass jede Maschine gleiche Produktivi-

tät in beiden Modellen hat. Die minimale und maximale Puffergröße des konventionellen Mo-

dells kann man in Bild 4.d erkennen. Die Puffergröße A ist größer als B, und B größer als C. 

Es ist sehr auffällig, dass die Puffergröße A deutlich zunimmt, wenn es keine Ersatzteile gibt. 

Der Grund liegt darin, dass der Ausfall einer vorderen Maschine eine Kettenreaktion auf die 

hintere Maschine hat. Ohne Instandhaltung wird dieser Effekt besonders groß. Zusätzlich 

besitzt der Auftrag vom Modell K in Stelle P1 einen sehr großen Lagerraum, wie im Bild 4.e 
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dargestellt. Im Vergleich dazu benötigt das flexible Modell keine zusätzlichen Puffer. Das Bild 

4.f zeigt, dass sich die Verfügbarkeiten der Maschinen in beiden Modellen gleich verhalten. 

Das konventionelle Modell kann nur für eine definierte serielle Produktion verwendet werden. 

Im Vergleich dazu kann das flexible Modell die Produktion verschiedener Produktvarianten 

modellieren. Im Folgenden werden die Anwendungen des flexiblen Modells erklärt. Vier Pro-

duktvarianten sind in unterschiedlicher Losgröße herzustellen: 20 „a“, 30 „ab“, 50 „abc“ und 

100 „abcd“. 

 

 
Bild 4: Ergebnisse des konventionellen und flexiblen Modells 

 

Diese Information wird im Vertrag als „20`(0,1,1,1,0)+30`(0,0,1,1,0)+50`(0,0,0,1,0)+ 

100`(0,0,0,0,0)“ dargestellt. Insgesamt werden acht Modelle mit verschiedenen Variablen 

simuliert. In F1, FS1, FP1 und FSP1 ist die Anzahl der Ersatzteile für alle Maschine zehn, 

und in F2, FS2, FP2 und FSP2 die Anzahl null. Dabei bedeutet „F“ flexible Produktion, „FS“ 

serielle Produktion mit flexiblem Modell und „P“ das Modell mit Priorität. In den FS-Modellen 

werden die Wächterfunktionen nach Tabelle 1 angepasst. Die Produktivität der Maschinen 

und die Anzahl der hergestellten Produkte werden analysiert und in Bild 5 vorgestellt. Die 

Produktivität des Systems wird in Stelle P11 bewertet und in Bild 5.a dargestellt. Die Produk-

tivität von F1 ist am Anfang sehr gering. Jedoch steigt sie später sehr schnell und ist am En-

de am höchsten. Der S-förmige Verlauf deutet hin, dass die Prozesse zufällig bearbeitet 

werden. Dagegen werden die Produkte im FS-Modell nach einer Prozessreihenfolge herge-

stellt. Deshalb hat FS1 eine konstante Produktivität. Die Produkte werden mit Warteschlange 
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und Priorität sortiert. Ein Teil der Produkte muss auf die Produkte mit höherer Priorität war-

ten. Deshalb haben FP1 und FSP1 konstante und im Vergleich zu F1 und FS1 niedrigere 

Produktivität. 

 

 
Bild 5: Produktivität der flexiblen Modelle 

 

Wie erwartet haben die Modelle ohne Ersatzteile eine geringe Produktivität. Die Bilder 5.b bis 

5.e zeigen die Produktivität der jeweiligen Maschine in allen Modellen. Alle Maschinen haben 

konstante Produktivität. Die Produktivität ist im Modell F1 am höchsten. Besonders auffällig 

ist die Produktivität der Maschine D. Maschine D muss darauf warten, bis alle anderen Pro-

zesse der Produkte durchgeführt werden. Eine Ausnahme ist die Produktivität der Maschine 

A im Modell FS1. Wie im Bild 5.b gezeigt, überlappen sich die Linien F1 und FS1. Der Grund 

dafür ist, dass alle Produkte mit dem Prozess „a“ beginnen. Betrachtet man die Produktivität 

von den Modellen ohne Ersatzteil, kann man deutlich erkennen, dass F2 eine viel höhere 

Produktivität besitzt als die anderen Modelle. Die Bilder 5.f bis 5.i stellen die Produktivität der 

jeweiligen Produktvariante dar. Die Summe aller Produkte entspricht der Produktivität des 
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Systems. Ohne Ersatzteil kann das Model FS2 mehr Produkte als andere Modelle herstellen. 

In diesem Fall hat das flexible Modell keinen Vorteil. Insgesamt kann man erkennen, dass 

das flexible Modell höchste Produktivität hat. Besonders haben die Maschinen B, C und D in 

flexiblem Modell viel höhere Produktivität als in den anderen Modellen. Somit können die 

Maschinen früher ausgeschaltet werden oder mit weiterer Produktion beginnen. 

Die Verfügbarkeit eines reparierbaren Systems hängt wesentlich von dessen Zuverlässigkeit 

und seiner Instandhaltung ab. Durch Zerlegung der Systemstruktur aus einer Kombination 

von seriellen und parallelen Strukturen ist es möglich, die Verfügbarkeit der Systeme mit fi-

xierter Struktur zu berechnen. Das Verfahren ist jedoch für dynamische Systeme mit verän-

derter Struktur nicht anwendbar. Das im Bild 3 dargestellte Modell ermöglicht zwar die Mo-

dellierung der flexiblen Produktion. Die Maschinen werden jedoch als Individuen betrachtet. 

Weil die Struktur des Systems abgeschafft wird, ist es nur möglich, die Verfügbarkeit jeder 

einzelnen Maschine separat zu betrachten. Die Verfügbarkeit des Systems kann man durch 

Analyse der Produktivität des Systems indirekt ermitteln. In dieser Arbeit wird nur die Anzahl 

der Ersatzteile als Variable zur Analyse der Verfügbarkeit verwendet. Die Einflüsse der ande-

ren Parameter auf die Verfügbarkeit werden in weiteren Forschungsarbeiten behandelt. 

Die Anzahl der Ersatzteile wird nach der Tabelle 2 eingestellt. Im Model F1 haben alle Ma-

schinen ausreichende Ersatzteile. Dagegen haben sie keine Ersatzteile im Model F2. In den 

Modellen F3, F4 und F5 wird nur die Anzahl der Ersatzteile von Maschine A variiert.  

Die Ergebnisse sind in Bild 6 dargestellt. Das Bild 6.a zeigt die Verfügbarkeit der Maschine 

A. Die Modelle F2 und F3 haben den gleichen Verfügbarkeitsverlauf. Mit zunehmender An-

zahl der Ersatzteile steigt die Verfügbarkeit der Maschine A. Die Verfügbarkeit der anderen 

Maschinen wird in Bild 6.b illustriert. Die Maschinen B, C und D haben in den Modellen F1, 

F3, F4 und F5 die höchste und in F2 die niedrigste Verfügbarkeit. Die Produktivität des Sys-

tems spiegelt die Verfügbarkeit des Systems wieder und wird in Bild 6.c dargestellt. 

 

Tabelle 2: Anzahl der Ersatzteile zur Analyse der Verfügbarkeit 

Modell P33 P63 P93 P123 Modell P33 P63 P93 P123 

F1 10 10 10 10 F4 1 10 10 10 

F2 0 0 0 0 F5 2 10 10 10 

F3 0 10 10 10      
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Bild 6: Verfügbarkeit und Produktivität des flexiblen Modells 

 

Die Produktivität erhöht sich mit zunehmender Anzahl der Ersatzteile von Maschine A. Das 

Model F3 hat eine höhere Produktivität als F2, weil die Verfügbarkeiten der Maschinen B, C 

und D erhöht werden. Abhängig von der erzielten Produktivität ist es beispielsweise möglich, 

die Anzahl der notwendigen Ersatzteile zu bestimmen. 

 

5. Zusammenfassung 
In dieser Arbeit wird zuerst ein Konzept der flexiblen Produktion vorgestellt und anschließend 

mit ECSPNs modelliert. Die Produktivität und die Verfügbarkeit der Produktionssysteme 

werden analysiert. Die Produktivität der jeweiligen Maschine zeigt, dass das konzipierte Mo-

dell die flexible Produktion modellieren kann. Die Herstellung verschiedener Produkte mit 

unterschiedlicher Losgröße kann dadurch analysiert werden. Zur Analyse und Prognose der 

Verfügbarkeit wird die Anzahl der Ersatzteile als Parameter variiert. Dadurch kann die Pro-

duktivität und die Verfügbarkeit der Systeme bestimmt werden. Als nächster Schritt ist die 

Lebensdauer als Parameter mit unterschiedenen Verteilungsfunktionen zu untersuchen. Die 

Flexibilität ist nur eine Basisfunktion. Zur Modellierung fortgeschrittener Eigenschaften wie 

Intelligenz ist es nötig, andere Methoden, z.B. maschinelles Lernen, weiter zu untersuchen. 
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Entwicklung eines Vorgehenskonzeptes zur  
Analyse von Fehlerfolgeketten in komplexen  
Systemen 
 
Development of a procedure for the analysis of  
failure chains in complex systems 
 
O. Bielefeld, M.Sc., H. Dransfeld, B.Sc., Dr.-Ing. N. Schlüter,  
Bergische Universität Wuppertal, Wuppertal 
 
 
 
Kurzfassung 
Fehler, die sich auf die Qualität und Zuverlässigkeit eines Produktes auswirken, frühzeitig in 

der Produktentwicklung zu vermeiden, ist ein lang gehegtes Ziel und immer noch eine große 

Herausforderung in der Entwicklung komplexer, mechatronischer Produkte. Insbesondere 

die zunehmende Verschmelzung der Systemgrenzen  erschwert es, Ursache-Wirkungs-

Zusammenhänge von Fehlern zu erkennen. So bedarf es eines Vorgehens, welches das 

Zusammenspiel von mehreren Fehlern, Fehlfunktionen oder fehlerbehafteten Komponenten 

und deren Zusammenwirken in Fehlerfolgeketten analysieren kann.  

Um solche komplexen Zusammenhänge zu untersuchen, ist eine systematische und modell-

basierte Analyse unter Nutzung verschiedener, fachspezifischer Methoden erforderlich. Da-

mit lassen sich Auswirkungen und Wechselwirkungen innerhalb und zwischen den System-

elementen anhand einer problemfokussierten Vorgehensweise transparent darstellen. Eine 

ganzheitliche Abbildung des zu untersuchenden Systems ist zudem notwendig, damit die im 

System inhärenten, potenziellen Fehlerketten entdeckt werden können. 

Doch wie können Fehlerketten in einem System transparent dargestellt und identifiziert wer-

den? Gibt es Möglichkeiten, die ermittelten Fehlerketten so zu modellieren, dass sie mit 

etablierten Methoden der Qualitäts- und Zuverlässigkeitswissenschaften (wie z.B. FTA, 

RBD,…) umfassend analysiert werden können? Diese Kernfragen bilden den wesentlichen 

Bestandteil des vorliegenden Beitrags.  

 

1. Einleitung 
Die gestiegene Komplexität von mechatronischen Systemen führt dazu, dass auch die Feh-

ler und deren Folgen komplexer werden [1]. So kann ein Leistungsverlust einzelner Kompo-

nenten, für einzelne Bauteilgruppen, noch unkritisch sein, aber in Kombination für das Ge-
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samtsystem diverse Funktionsausfälle bedeuten [2]. Eine entsprechende Problemfokussie-

rung, die umfassende Wirkzusammenhänge zu einer konkreten Fehlerbeschreibung ermög-

licht, ist hier ein erster Schritt, um trotz der hohen Komplexität von mechatronischen Syste-

men, effektiv Fehleranalysen durchführen zu können [1]. Es sind zudem bei der Entwicklung 

eines solchen Ansatzes zur Analyse von Fehlerfolgeketten systematische Vorgehensweisen 

zu erarbeiten, die die klassische Fehlerdefinition, wie bspw. aus der Qualitätsmanagement-

Norm, dass ein Fehler die Nicht-Erfüllung einer Anforderung ist [3], erweitert und den Funkti-

onsabfall einzelner Komponenten und das Scheitern von Prozessen mit betrachtet [2]. 

Diese umfassendere Fehlerdefinition ist zudem auf die für die Analyse verwendete Modellie-

rung und die damit gekoppelten Methoden zu übertragen. Dementsprechend wird im Fol-

genden zunächst auf die Herleitung einer umfassenden und der heutigen Komplexität von 

mechatronischen Systemen gerecht werdenden Fehlerdefinition eingegangen, um anschlie-

ßend eine darauf zugeschnittene Modellierung für das zu entwickelnde systematische Vor-

gehen aufzuzeigen. 

 

2. Fehlerdefinition 
In den internationalen und nationalen Normen sowie Literatur befindet sich eine Vielzahl an 

Fehlerdefinitionen, die zum Teil nur schwer miteinander vereinbar sind. Wie bereits zuvor 

erwähnt, bezieht sich die DIN EN ISO 9001:2015 bei Fehlern auf die Nicht-Erfüllung einer 

Anforderung [3]. Die IEC 61508 beschreibt einen Fehler als eine ungewöhnliche Bedingung, 

die möglicherweise dazu führen kann, dass eine Systemeinheit ihre spezifizierte Funktion 

nicht oder nur eingeschränkt erfüllen kann [4]. Göhner benennt für den Begriff „Fehler“ vier 

verschiedene Definitionen: 

Fehler1: Abweichung zwischen einem berechneten Wert und dem wahren, spezifizierten oder 

theoretisch richtigem Wert aufgrund eines Fehlers2 oder einer Störung. 

Fehler2: Nichterfüllung einer Anforderungsspezifikation, Unkorrektheit. 

Fehler3: Abweichung der tatsächlichen Ausführung von der, für die Erfüllung der Anforde-

rungsspezifikation erforderlichen, konstruktiven und fertigungstechnischen Ausführung des 

Systems. 

Fehler4: Menschliche Handlungen mit unerwünschtem Ergebnis, ein Irrtum oder Schnitzer. 

([5], S. 324 ff.) 

Die ISO 26262 benennt ebenfalls verschiedene Fehlerarten, indem sie englische Begriffe 

differenziert. So steht fault für eine abnorme Bedingung, die ein Element scheitern lassen 

kann, während error eine Abweichung zwischen dem berechneten und dem spezifizierten 
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Wert bezeichnet. Als failure im Sinne von Ausfall wird ein Aussetzen der Ausführung einer 

festgelegten Aufgabe verstanden [6]. 

Werden diese verschiedenen Fehlerbegriffe in den Kontext von Fehlerfolgeketten gesetzt, 

deren logischen Zusammenhänge über mehrere Elemente und Systemebenen hinweg ver-

laufen, so wird deutlich, dass der Systemgedanke, der die Betrachtung von Elementen und 

deren Relationen bzw. Auswirkungen untereinander beinhaltet, unabdingbar für eine geeig-

nete Fehlerdefinition ist. Ebenfalls ist zu berücksichtigen, dass bereits ein Leistungsabfall 

einzelner Elemente, die sich auf unteren Systemebenen befinden, auf höheren Systemebe-

nen funktionale Einbußen verursachen können. Dementsprechend wird im weiteren Verlauf 

unter Fehler, gemäß der ISO 26262, eine abnormale Bedingung, die ein Element scheitern 

lässt [6], verstanden. Ein Element kann dabei eine Komponente auf den unteren Systemle-

veln sein oder eine Bauteilgruppe bzw. ein Sub-System auf höheren Systemebenen, wie die 

Abbildung 1 skizziert.  

 
Bild 1: Fehler und Fehlerfolgen einer Komponente innerhalb eines Systems 

 

Der Input für das fehlerhafte Element, in diesem Fall die Komponente 1, ist entsprechend 

ausschlaggebend bezüglich der Fehlerursache, während das Output des Elements sich auf 

die Fehlerfolgen auswirkt. Bei Fehlerfolgeketten, die sich aus einer Mehrzahl an Elementen 

zusammen setzen, können die durch Input und Output attribuierten Relationen, zwischen 

den Elementen, den logischen Zusammenhang herstellen.  
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Neben der Elementart „Komponente“ existieren jedoch noch weitere Elementarten – auch 

Systemsichten genannt – die Bestandteil einer Fehlerfolgekette sein können. Für eine prob-

lemfokussierte Fehleranalyse stellt sich somit die Frage, welche Arten von Elementen be-

schrieben werden müssen. Dies soll im Folgenden geklärt werden. 

 
3. Modellierung von Fehlern 
Bezüglich der Modellierung von Fehlern im Rahmen der Problemfokussierung gilt gemäß der 

Systemtheorie der Grundsatz, nur die minimal nötige Anzahl von Elementarten zu verwen-

den, um unnötige Komplexität zu vermeiden. Wird die hier verwendete Fehlerdefinition, die 

wegen des Scheiterns eines Elementes, auf Grund einer abnormalen Bedingung, verwendet, 

so kann jede Elementart Bestandteil einer Fehlerfolgekette sein. Eine für die Analyse von 

Fehlerfolgeketten geeignete Modellierung liegt somit vor, wenn das mechatronische System 

mit einer minimalen Anzahl an Systemsichten abgebildet wird, die ausreicht, um das Prob-

lem, mit seinen Ursache-Wirkungszusammenhängen, umfassend zu beschreiben. 

Forschungsergebnisse u. a. von [7] und [1] weisen nach, dass die hier gesuchte minimale 

Anzahl an Sichten vier beträgt und folgende Elementarten enthält: Anforderungen, Funktio-

nen, Komponenten und Prozesse. Diese – DeCoDe genannte – Modellierung verwendet 

zudem die Dekomposition von Systemen mit Hilfe von Matrizen, um die Komplexität durch 

die Verwendung von Systemleveln, Hierarchien und Wechselbeziehungen untereinander 

handhabbar zu machen [9]. 

Um den Zusammenhang der vier Elementarten in Bezug auf eine Fehlerfolgekette zu ver-

deutlichen, wird hier an einem Beispiel aus dem EU-Forschungsprojekts K-VEC (siehe Ab-

bildung 2) eine solche Fehlerfolgekette skizziert. 

 
Bild 2: Schematische Darstellung des K-VEC Konzeptes in Anlehnung an [10] 
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Ziel des Forschungsprojektes K-VEC war die Entwicklung eines Prototyps für Busse des 

öffentlichen Personennahverkehrs, der einen alternativen Elektroantrieb verwendet, um hohe 

Energiemengen in kürzester Zeit laden zu können. Hierfür wurde ein konduktives Ladekon-

zept gewählt. Ein Stromabnehmer, der unter dem Fahrzeugboden angebracht ist, wird an der 

Haltestelle über einem Ladeteppich positioniert, welcher in den Asphalt eingelassen ist. 

Nachdem die notwendigen Identifikations- und Autorisierungsprozesse durchlaufen wurden, 

senkt sich der Stromabnehmer und verbindet sich mit den hexagonalen Platten, die durch 

den runden Aufbau bedeckt sind. Somit kann der Ladeprozess beginnen [11]. 

In der Entwicklungsphase wurde ein Wirkungszusammenhang identifiziert, der über mehrere 

Elemente, Elementarten und Systemlevel hinweg verläuft, wie Abbildung 3 visualisiert ist. 

 
Bild 3: Beispiel einer Fehlerfolgekette beim K-VEC System 

 

Die in Abbildung 3 dargelegte Fehlerfolgekette beschreibt, wie ein Systemausfall des K-VEC 

Ladekonzeptes im Feld auftreten könnte. Angenommen wird, dass eine Eisschicht auf dem 

Ladeteppich den Ladeprozess stören würde, indem das Eis die konduktive Verbindung zwi-

schen den Spitzen des Stromabnehmers und den Hexagonalplatten des Ladeteppichs ver-

hindert. Infolgedessen könnte keine Energie von den Hochleistungskondensatoren an der 

Haltestelle auf die des Fahrzeugs transferiert werden, womit der Prozess „Laden des Fahr-

zeugs“ auf Grund der abnormalen Bedingung „Eis auf Ladeteppich“ scheitert. Wäre das der 

Fall, würde dies nicht direkt den sofortigen Systemausfall im Sinne „Weiterfahrt des Busses 

nicht möglich“ bedeuten. Aufgrund der Energiereserven käme es erst zum Systemausfall, 

wenn zwei aufeinanderfolgende Haltestellen betroffen wären. Die direkte Folge, bezogen auf 
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das Gesamtsystem, ist demnach zunächst eine Minderung der Reichweite, welche mit einer 

Funktionseinschränkung gleichzusetzen ist [11]. 

Wenn zu der beschriebenen Wirkungskette eine weitere Ursache hinzukommt, wie Abbil-

dung 3 mit der zweiten Wirkungskette aufzeigt, verändert sich aber auch die Funktionsfähig-

keit des Gesamtsystems. Die Hochleistungskondensatoren sollen im Projekt K-VEC so aus-

gelegt werden, dass im Streckenverlauf problemlos jede zweite Haltestelle nicht angefahren 

werden muss. Für den Fall, dass die zweite Haltestelle in Reihe nicht angefahren werden 

kann, sind als Rückfallebene zusätzlich Lithium Ionen Akkus vorgesehen, welche die Weiter-

fahrt sichern. Kommt es nun zusätzlich zu dem Problem mit dem Eis auf einem Ladeteppich 

zum Ausfall des Akkus, oder aber zum Umstand, dass mehr als vier Haltestellen in Reihe 

Schnee und Eis auf dem Ladeteppich haben, ist die Weiterfahrt nicht möglich. Das Gesamt-

system scheitert [11]. 

Das Beispiel zeigt auf, dass jede Elementart von DeCoDe einen Anteil am Scheitern des 

Gesamtsystems mit sich bringen kann. 

Allerdings ist die Modellierung an sich nicht die Lösung des Problems, sondern nur ein Bau-

stein auf dem Weg dahin. Die Lösung bedarf der systematischen Analyse von Fehlerfolge-

ketten. Die hier beschriebene DeCoDe-Modellierung bietet allerdings die Ausgangsbasis für 

ein Vorgehenskonzept, das verschiedene Fehleranalysemethoden, je nach vorliegender 

Problemlösung, nutzt. Dementsprechend wird im Folgenden dargelegt, wie ein solcher mo-

dellbasierter Systems Engineering Ansatz unter Verwendung von DeCoDe und einem Vor-

gehenskonzept für die Fehleranalyse bei mechatronischen Systemen aussehen kann. 

 

4. Modellbasiertes Systems Engineering für die Analyse von Fehlerfolgeketten 
Das modellbasierte Systems Engineering (MBSE) wird in diversen Fachdisziplinen verwen-

det, um komplexe Problemstellungen zu lösen [7]. Dabei wird das Modell als Ausgangsbasis 

für ein je Problem zu erstellendes Vorgehenskonzept aus verschiedenen Methoden heran-

gezogen. Die Schwachstellen solcher MBSE-Ansätze sind allerdings, dass sie fachspezifisch 

sind und somit eine interdisziplinäre Ausrichtung, wie es bei mechatronischen Systemen nö-

tig ist, nicht ermöglichen [8]. Zudem erfolgt bei den klassischen MBSE-Ansätzen eine Model-

lierung lediglich zu Beginn des Vorgehenskonzeptes, um das Problem zu beschreiben. Er-

kenntnisse von [8] belegen allerdings, dass eine kontinuierliche Interaktion zwischen Modell 

und Vorgehenskonzept unabdingbar ist, um einen effektiven Problemlösungsprozess zu ge-

stalten. 
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Um diesen Schwachstellen entgegen zu wirken, postuliert Winzer das Generic Systems En-

gineering (GSE), welches ein einheitliches, fachdisziplinübergreifend verwendbares Modell 

nutzt und dieses im Vorgehenskonzept kontinuierlich aktualisieren lässt [7], [8].  

Diese Prinzipien sollen auch für die hier betrachtete Analyse von Fehlerfolgeketten berück-

sichtigt werden. Dies bedeutet, dass das DeCoDe-Modell von einem Vorgehenskonzept um-

geben wird, das systematisch Fehlerfolgeketten identifiziert sowie analysiert und die Er-

kenntnisse der einzelnen Schritte wieder ins Modell überführt, so dass für die nächsten 

Schritte immer ein aktuelles Systemmodell als Input zur Verfügung steht (siehe Abbildung 4). 

 

 
Bild 4: Modell und Vorgehenskonzept für die Analyse von Fehlerfolgeketten 

 

Bezogen auf das oben vorgestellte Beispiel „Eis auf Ladeteppich“ bedeutet dies, dass zu-

nächst auf Basis des identifizierten Problems das hiervon betroffene System definiert, abge-

grenzt und modelliert wird, wie es MBSE-Ansätze fordern. Die oben dargestellte Fehlerkette 

ist im DeCoDe-basierten Systemmodell des Busses bereits latent vorhanden. Um die Aus-

wertung der Kausalketten zu ermöglichen, ist diese Fehlerkette jedoch zunächst zu identifi-

zieren, die beteiligten Relationen zu isolieren und in ein separates Modell (bzw. fokussiertes 

Modell) zu überführen, das die nötigen Informationen für den Einsatz der Fehleranalyseme-

thoden bildet. 

Hierzu kann beispielsweise die Komplexitätsmanagement-Software Loomeo® 

(www.teseon.de) verwendet werden. Die Software ermöglicht nicht nur die Darstellung der 

DeCoDe-Daten, sondern auch die graphische Visualisierung der DeCoDe-Elementarten und 
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ihrer Relationen. Durch Fokussierung auf ein Element und seiner Relationen können im 

Rahmen von Workshops im interdisziplinären Entwicklerteam einzelne Ursache-Wirkungs-

Zusammenhänge über verschiedene, mit dem betroffenen Element in Relation stehende 

andere Elemente, diskutiert werden, wie Abbildung 5 zeigt. 

 
Bild 5: Exemplarische Visualisierung der Identifizierung von Ursache-Wirkungs-

Zusammenhängen bei einzelnen Elementen über Fokussierung mittels der Loo-

meo®-Funktion „Umgebung“ [1] 

 

Auf Basis der Auswahl eines Systemelements und der Fokussierung mittels der Loomeo®-

Funktion „Umgebung“ wird ersichtlich, welche Elemente vom Scheitern des ausgewählten 

Elements direkt oder indirekt über entsprechende Relationen betroffen sind. Die so identifi-

zierten Fehlerketten werden separat mit einer eindeutigen ID gespeichert und für die an-

schließende Fehleranalyse bereitgestellt. Nach Durchführung der je Systemelementart und 

Problemstellung am besten geeigneten Fehleranalysemethoden werden die Erkenntnisse, 

die im separaten Modell festgehalten sind, wieder zurück in das Gesamtmodell überführt. 

Bezüglich des gewählten Beispiels bedeutet dies, dass nach Isolation der Fehlerfolgekette 

zu bestimmen ist, welche Fehleranalysemethoden geeignet sind, um Entscheidungen bezüg-

lich der Überarbeitung der Konstruktion zu treffen und somit eine anforderungsgerechte Ge-

staltung von komplexen technischen Systemen zu gewährleisten. So wurde bezüglich der 

Komponenten ein Reliability-Blockdiagramm verwendet. In Bezug auf die Ladefunktion und 

deren mögliches Scheitern kam eine Failure-Tree-Anaylsis zum Einsatz. Die Ergebnisse bei-

der Methoden wurden im KAUSAL-Modell hinterlegt und waren Input für eine anschließend 

durchgeführte FMECA (siehe Abbildung 6).  
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Bild 6: Durchführung verschiedener Fehleranalysemethoden bezüglich des Problems „Eis 

auf Ladeteppich“ 

 

Die Fehlermöglichkeits- und Einflussanalyse (FMECA) ist eine State-of-the-Art-Methode aus 

dem Bereich der qualitativen Zuverlässigkeitsanalyse [12]. Das Problem der Analyse ist al-

lerdings die limitierte Darstellung von Fehlerketten hinsichtlich ihrer Länge. Innerhalb des 

Formblattes ist für jeden Fehler, für die potentielle Fehlerursache und –folge, lediglich eine 

Spalte für die Dokumentation vorgesehen. Die Verkettung von Wirkungseffekten zu Fehlern 

über mehrere Elemente hinweg wird dadurch vernachlässigt [13]. Doch gerade die Verket-

tung von unterschiedlichen, fehlerbedingten Ursachen und Wirkungen sind für die Analyse 

von komplexen Zusammenhängen, wie das oben beschriebene auch Beispiel zeigt, unum-

gänglich [6] [14] [15] [16]. Dementsprechend wurde vor der Durchführung der FMECA, im 

hier vorliegenden Beispiel, zunächst eine RBD und eine FTA durchgeführt, die einzelne Wir-

kungsketten ohne Begrenzung analysierten. Die Ergebnisse für einzelne Pfade der Fehler-

folgekette wurden im DeCoDe-Modell hinterlegt und konnten dann für die FMECA als ein 

separates Element verwendet werden, wodurch die Problematik der eingeschränkten Fehler-

folgekette behoben wurde. 

Als Ergebnis der FMECA wurde im Projektteam beschlossen, den Unterboden des Busses 

zusätzlich mit einer Bürste auszustatten. Des Weiteren wurde die Ladekapazität der Lithium-

Ionen-Akkus erhöht, so dass mehr als nur eine Haltestelle überbrückt werden kann. 
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5. Ausblick 
Wie am K-VEC Beispiel aufgezeigt wird, führt die Komplexität heutiger technischer Systeme 

dazu, dass auch Fehler an Komplexität zunehmen. Solche Fehlerfolgeketten beinhalten 

mehrere Elementarten und verlaufen über mehrere Systemlevels. Folglich bedarf es einer 

Weiterentwicklung des Fehlerverständnisses.  

Der erste Schritt hierzu ist die Fehlerdefinition. Nur wenn die Fehlerdefinition an sich beinhal-

tet, dass Fehler mehr als nur ein simples Ursache-Effekt Verhältnis aufweisen, sondern über 

mehrere Elemente hinweg logisch miteinander in Verbindung stehen, ist eine umfassende 

Betrachtung und Vermeidung von Fehlern bei komplexen, technischen Systemen möglich. 

Dementsprechend wurde in dieser Arbeit eine Fehlerdefinition gewählt, die unter Fehler das 

Scheitern eines Elements unter abnormalen Bedingungen versteht. Dabei wird ein Element 

nicht allein als eine Komponente verstanden. Das Element kann verschiedener Art sein: Es 

kann neben einer Komponente auch eine Anforderung, eine Funktion, ein Prozess oder aber 

eine Kette von Elementen und deren Relationen sein, die ggf. auch über Systemebenen 

hinweg verlaufen. Dies wurde am Beispiel des K-VEC Bussystems veranschaulicht und mit 

Hilfe von DeCoDE modelliert.  

Um Fehlerfolgeketten umfassend zu identifizieren und zu analysieren wurde zudem ein auf 

dem GSE-Ansatz basierendes Vorgehenskonzept erarbeitet, das kontinuierlich mit dem Sys-

temmodell interagiert, um für die einzelnen Schritte immer über aktuelle Informationen zu 

verfügen. Des Weiteren fördert der GSE-basierte Ansatz die interdisziplinäre Entwicklungs-

arbeit, da dieser fachdisziplinübergreifend ist.  

Je nach konkret vorliegender Problemstellung der isolierten Fehlerfolgekette ermöglicht das 

Vorgehenskonzept, gemäß der GSE-Philosophie, die Auswahl geeigneter Fehleranalyseme-

thoden je in der Fehlerfolgekette vorkommender Elementarten und Relationen. Das Ergebnis 

ist die Betrachtung und Analyse von Fehlerfolgeketten, die über eine hohe Anzahl an Syste-

melementen und Elementarten bestehen sowie über mehrere Systemebenen hinweg verlau-

fen. 

Die Grundlage für eine systematische Analyse von komplexen Fehlerfolgeketten ist somit 

geschaffen. Allerdings ist zum heutigen Zeitpunkt noch unklar, welche Attribute für die Be-

schreibung der Relationen zwischen den Elementen zwingend erforderlich sind. Während die 

minimale Anzahl an Elementarten bereits bestimmt wurde, sind weitere Untersuchungen 

nötig, um die minimale Anzahl an Relationsattributen zu bestimmen, die für die umfassende 

Beschreibung der Problem- und Zielstellung als auch die Durchführung der verschiedenen 

Fehleranalysemethoden nötig sind. Hierzu sind im Rahmen des DFG-Forschungsprojektes 

KAUSAL weitere Analysen durchzuführen. Ziel ist es, eine auf Basis des GSE fußende 
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KAUSAL-Methodik zu schaffen, die eine mit einer minimalen Anzahl an Elementarten und 

Relationsattributen gestalteten Modellierung nutzt, um Fehleranalysemethoden verschiede-

ner Fachdisziplinen miteinander zu koppeln. Der hierdurch entstehende Fehlerfolgeketten-

Analyseworkflow soll eine qualitative, semi-qualitative und quantitative Analyse komplexer 

Fehlerfolgeketten in interdisziplinären Teams ermöglichen. 
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Zuverlässigkeitsmanagement für den Anlauf von 
Neuproduktprojekten in der Automobilindustrie

Zuverlässigkeit bestimmen und messen

Dr. Andreas Jacobi, Christoph Jordan, Dr. Ekaterina Kaganova,
Center of Competence Reliability, Daimler AG, Sindelfingen

Kurzfassung

Um die geplante Zuverlässigkeit eines neuen Fahrzeugs und dessen kritische Komponenten 

zu erreichen, sind durchgängig anwendbare Messgrößen von größter Bedeutung. Dieser 

Beitrag beschreibt, wie die abgesicherte Zuverlässigkeit von kritischen Komponenten 

bestimmt wird, wenn die Erprobung unterschiedliche Erprobungsprofile mit abweichenden 

Raffungsfaktoren und Bauteilmusterständen enthält. Es wird untersucht, welche Änderungen 

in den Eingangsgrößen sich auf das Ergebnis auswirken. Die Zuverlässigkeit einer Stichprobe 

von Fahrzeugen wird über ein neues Berechnungsverfahren abgeschätzt, welches

durchgängig in allen Erprobungsphasen eingesetzt werden kann.

Abstract

For reaching the planned reliability target of a new vehicle and its critical components universal 

applicable measureable quantities are of utmost importance. This article describes how the 

verified reliability of critical components is calculated if testing includes acceleration factors 

and different part specimen levels. It is investigated which variations of the input parameters 

affect the results. The vehicle´s reliability is assessed by a new calculation method which may 

be universally applied throughout all testing phases.

1. Einleitung und Zielsetzung

Aus Kundensicht bleibt Zuverlässigkeit das wichtigste Kaufkriterium beim Neuwagenkauf, vor 

Preis und Wirtschaftlichkeit [1]. Gemessen an Anschaffungspreis und Kosten sind Autos teure 

Gebrauchsgüter, folglich müssen sie verlässlich funktionieren – unter verschiedenen Einsatz-

bedingungen ein ganzes Produktleben lang. Die gefühlte Zuverlässigkeit entscheidet mit, ob

der Kunde das Auto weiterfährt oder es nach Mängeln und Versagen verkauft. Bewährt es sich 

aus Kundensicht, stehen die Chancen hoch, der Marke treu zu bleiben und ein weiteres Modell

zu kaufen. Auch wenn es überzeugende Innovationen aufweist, erwartet der Kunde, dass es 

ebenso verlässlich und benutzerfreundlich ist, sowie möglichst weniger kostet. In diesem 

dynamischen Umfeld benötigen die Hersteller ein Konzept, wie sie die Zuverlässigkeit ihrer 
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Produkte sicherstellen. Es reicht nicht aus, sich auf Projektmittel, Fähigkeiten und Erfahrungen

des Teams zu verlassen und zu hoffen, dass die Zuverlässigkeit erreicht wird.

Ziel des vorliegenden Beitrags ist es, einige wichtige methodische Voraussetzungen für ein

wirksames Zuverlässigkeitsmanagement neuer Produkte zu beschreiben. Hierzu gehört die 

Definition geeigneter Ziele bezüglich Kundennutzung und Zuverlässigkeit sowie die 

Berechnung der durch das Erprobungsportfolio abgesicherten Zuverlässigkeit für kritische 

Komponenten. Für Letztere wird im Rahmen einer Sensibilitätsanalyse untersucht, wie sich 

Änderungen an den Eingangsparametern auf das Gesamtergebnis auswirken. Es wird ein 

neues Schätzverfahren zur Bestimmung der Beanstandungsquoten von Fahrzeugen und 

reparierbaren Systemen präsentiert.

2. Zuverlässigkeitsziele für Neuproduktprojekte

Die Qualität des vorherigen Produkts definiert die Meßlatte für die Verbesserungen des 

Nachfolgers. Es müssen geeignete Qualitäts- und Zuverlässigkeitsziele für das zukünftige 

Fahrzeug, dessen Systeme und Komponenten festgelegt werden, anhand derer in der 

Entwicklungs- und Anlaufphase die Zielerreichung quantitativ und qualitativ bewertet werden 

kann. Die Zuverlässigkeit wird durch die Kundennutzung und die Belastungen beeinflusst. Die 

Kunden nutzen die Fahrzeuge mehr oder weniger intensiv. Tägliche Laufleistungen und 

Betriebszeiten, Stadt- oder Autobahnbetrieb führen zu verschiedenen Belastungen und zu 

Verschleiß, gegen welche das Produkt angemessen ausgelegt werden muss.

Bild 1: Messgrößen für die Zuverlässigkeit von Systemen & Komponenten

Im Entwicklungsprozess dienen Erprobungen dem Zweck, die Belastungen des kritischen

Kundenbetriebs nachzubilden. Mit einem Erprobungsprogramm weist der OEM nach, dass die 
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geforderte Lebensdauer und Zuverlässigkeit erreicht werden und das Produkt und dessen 

Komponenten bzgl. der Belastbarkeit freigegeben werden können.

Die Bewährung von Neuwagen in Kundenhand kann verschiedenartig berechnet werden,

siehe Bild 1. Eine große, praktische Bedeutung hat die Beanstandungsquote nach einer ge-

wissen Servicedauer. Für eine Stichprobe, z.B. Produktionsmonat, wird die Summe der

Beanstandungen ermittelt und auf den Stichprobenumfang bezogen, siehe [2]. In der be-

trachteten Stichprobe weisen die Fahrzeuge verschiedene Belastungen (wie Laufleistungen, 

Betriebszeiten etc.) während der Nutzung auf. Die OEMs nutzen die 12MiS-Beanstan-

dungsquote als zentrale Messgröße zur Bewertung der Fahrzeugqualität im Feld. Durch

Produkt- und Prozessverbesserungen in der laufenden Serie sinkt die 12MiS-Quote während 

der Serienproduktion. Für jede Fahrzeug-Baureihe wird über den gesamten Lifecycle (vom 

Job Nr.1 bis zum Auslaufen der Produktion) ein Qualitätsziel als 12 MiS-Quote festgelegt und 

anschließend auf dessen Teilsysteme, wie z.B. Antriebsstrang, Motor, Getriebe, Fahrwerk, 

Exterieur, u.a., heruntergebrochen. In der Praxis wird der Ziel- und Istwert der 12MiS-Quote in 

den monatlichen Q-Gremien dem Management berichtet.

Für nichtreparierbare Systeme, wie eine Fahrzeugkomponente, welche bei Ausfall ausge-

tauscht wird, werden Zuverlässigkeitsziele, in Form von maximal zulässigen Ausfallwahr-

scheinlichkeiten bezüglich einer Laufleistung, festgelegt. Ein solches Ziel könnte lauten:

maximal x % Ausfälle bis 100.000km.

Bild 2: Ziele zur Absicherung von Komponenten

Bei der Einführung von Zuverlässigkeit im Entwicklungsprozess muss dafür gesorgt werden, 

dass den Entwicklungsingenieuren der Sinn und Zweck der verschiedenen Ziele hinreichend 

klar sind. Wie in Bild 2 dargestellt, definieren Auslegungsziele die beabsichtigte Nutzungs-

dauer und Laufleistung in Kundenhand. Alle Komponenten eines Fahrzeugs müssen diese 
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generell gültigen Werten übernehmen; ausgenommen sind anerkannte Verschleißteile und 

sicherheitskritische Komponenten mit spezifischen Vorgaben. Demgegenüber dienen 

Zuverlässigkeitsziele einer angemessenen statistischen Absicherung. Sie definieren, welche 

maximale Ausfallwahrscheinlichkeit eine Komponente aufweisen darf, um die Zuverlässigkeit 

des übergeordneten Systems bzw. die Kundenwahrnehmung nicht zu beeinträchtigen. Die 

dritte Säule umfasst alle weiteren Erprobungen mit spezifischen, oft extremalen Nutzungen

zur funktionalen Absicherung.

3. Absicherung von Komponenten mittels Design Verification Plan

Die Bestimmung von Zuverlässigkeitskennzahlen und die Steuerung des Zuverlässigkeits-

wachstums sind für technische Systeme auf Komponentenebene möglich. In der Automobil-

industrie wird der Zuverlässigkeitsprozess in der frühen Produktkonzeptphase gestartet und 

Komponenten mit hohem Ausfallrisiko werden identifiziert. Für die zuverlässigkeitskritischen 

Komponenten wird ein weibullverteiltes Ausfallverhalten angenommen, da in der Regel 

unterschiedliche Ursachen zum Ausfall von Komponenten führen können.

Für den Nachweis der abgesicherten Zuverlässigkeit ( ) wird das Prior-Knowledge-

WeiBayes Verfahren genutzt, bei dem verschiedene Entwicklungs- oder Bauteilmusterstände 

der Komponente durch den Einsatz von Vorwissensfaktoren berücksichtigt werden können [3].

( ) = ;
2 ( ) mit      = 1, … ,                           (1)

– geforderte Lebensdauer/Laufleistung;

– Ausfallzeiten oder Laufzeiten;

– Anzahl der Ausfälle;

– Anzahl der Prüfungen unterschiedlicher 

      Teilestände/Stichprobenumfang;

– Vorwissensfaktor der Erprobung

– Raffungsfaktor;

– Chi-Quadrat-Verteilung;

– Aussagewahrscheinlichkeit der 

       Chi-Quadrat-Verteilung;

– Weibull-Formparameter.

Die Zuverlässigkeit ( ) kann damit berechnet werden, wenn Ausfälle vorliegen, d.h. > 0.

Wenn keine Ausfälle auftreten, also ein sogenannter „Success Run“ vorliegt, gilt als 

Freiheitsgrad für die Chi-Quadrat-Verteilung 2(1 + ) =  = 2.

In den folgenden Abschnitten werden die benötigten Parameter für die Zuverlässigkeitsbe-

rechnung bestimmt und dargestellt wie Änderungen der Eingangswerte die Berechnung der 

Zuverlässigkeit beeinflussen.

Wie in Kapitel 2 erläutert, definieren Autohersteller den Zielwert einer Komponente zumeist 

über eine Ausfallwahrscheinkeit ( )  oder direkt als Zuverlässigkeitszielwert ( ) . Des 
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weiteren ist ein vorgeplantes Erprobungsportfolio mit einer Anzahl von Prüfungen und den 

entsprechenden Laufzeiten festgelegt. Um zu berechnen, welche Zuverlässigkeit sich auf 

Basis des aktuellen Erprobungsportfolios nachweisen lässt, werden die nach Gleichung (1) 

stehenden Eingangsparameter , , ermittelt oder abgeschätzt. Zusätzlich wird durch die

Annahme „Success Run“ mit dem geplanten Erprobungsportfolio untersucht, ob das 

Zuverlässigkeitsziel erreicht wird oder ob zum Erreichen des Zuverlässigkeitsziels zusätzliche 

Prüfungen für die Komponente notwendig sind. Unter Umständen kann auch eine 

Überdimensionierung der Erprobung vorliegen und gegebenenfalls der Stichprobenumfang 

reduziert werden.

Im Folgenden wird erläutert, wie die Parameter , , und deren Werte in der Regel 

bestimmt werden. Der Weibull-Formparameter beschreibt das Ausfallverhalten der 

Komponente. wird entweder durch Erfahrungen von gleichartigen Vorgängerkomponenten 

oder über bereits vorhandene Erprobungsergebnisse, mit hinreichender Anzahl von Ausfällen, 

ermittelt. Falls keine großen Änderungen an der Komponente, deren Schadensparametern 

und der Umgebung vorliegen, kann der Weibull-Formparameter direkt aus der Weibull-

Verteilung des Vorgängerbauteils im Feld übernommen werden. Gegebenenfalls wird eine

Wertekorrektur oder eine Schätzung durchgeführt.

Die Bestimmung der komponentenspezifischen Raffungsfaktoren in der jeweiligen Erpro-

bung  erfolgt auf Basis von Schadensparametern. Es werden von vorhandenen Erprobungs-

und Felddaten für jede Komponente kritische Schadensparameter identifiziert. Anschließend 

wird zu jeder Erprobungsart das Kundennutzungsverhalten bzgl. dieser Schadensparameter 

analysiert. Als Ergebnis werden entsprechende Raffungsfaktoren je nach Alterungstyp oder 

-einfluss mit der Hilfe von verschiedenen physikalischen oder mathematischen Modellen (z.B. 

dem Arrhenius-Modell oder dem Accelerated-Failure-Time-Modell) bestimmt. Falls die 

Berechnung über Modelle nicht möglich ist, können Raffungsfaktoren näherungsweise mit 

dem Verhältnis der Anzahl der kritischen Ereignisse in der Erprobung und der Anzahl der 

kritischen Ereignisse beim Kunden ermittelt werden. Zudem gibt es auch die Möglichkeit,

Raffungsfaktoren durch Experten schätzen zu lassen.

Die Vorwissensfaktoren  ermöglichen die gewichtete Berücksichtigung von Erprobungs-

ergebnissen der Komponente aus verschiedenen Entwicklungsständen. Mit den Vorwissens-

faktoren wird der Ähnlichkeitsgrad eines Entwicklungsstandes in Bezug auf den Serienstand 

der Komponente beschrieben. Der Vorwissensfaktor  ist im Intervall [0,1] definiert. 

Entspricht die Erprobungscharge fast dem späteren Serienstand, so liegt der Faktor näher bei

1, bei massiven Abweichungen näher bei 0. Die Vorwissensfaktoren werden von den Bauteil-

verantwortlichen für die jeweilige Entwicklungsphase beurteilt, wobei Bauteiländerungen, wie 
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z.B. Geometrie-, Material-, Schnittstellenanpassungen, sowie Änderungen in der Montage 

oder Fertigung zu berücksichtigen sind.

Da mehrere Parameter für die Zuverlässigkeitsberechnung mit der Hilfe von mathematischen 

Modellen und vorhandenem Expertenwissen näherungsweise bestimmt werden, ist die 

Sensibilität der Formel (1) von besonderem Interesse.

Zum besseren Verständnis wird im Folgenden ein Beispiel aus der Praxis dargestellt. Für eine 

Komponente wurde ein Zuverlässigkeitsziel ( ) von 99,7% für = 30.000 definiert, d.h.

die Ausfallwahrscheinlichkeit ( ) darf maximal 0,3% betragen. Der Nachweis des 

Zuverlässigkeitsziels soll mit einer Aussagewahrscheinlichkeit von = 90% erfolgen. Zur 

Ermittlung des Zuverlässigkeitsnachweises wurde ein fiktives Erprobungsportfolio für die vier 

vorhandenden Entwicklungsphasen erstellt, s. Tabelle 1.

Anzahl Erprobungen in jeweil. 
Entwicklungsphase
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Hinweis: fiktive Erprobungs-
bezeichnungen & Werte
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-B

N
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te
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Pr
üf
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de

Hochlast Dauerlauf 1 1 2 1 5 120.000

Niederlast Dauerlauf 1 1 1 3 60.000

Wechsellast Dauerlauf 1 1 1 3 52.000

Peripherie Dauerlauf 1 1 2 50.000

Lebensdauererprobung 1 1 1 3 150.000

Fa
hr

ze
ug

e

Autobahn-Dauerlauf 1 2 1 4 100.000

Stadt-Dauerlauf 2 2 1 5 40.000

Straßen-Dauerlauf 2 2 1 5 60.000

Taxi-Dauerlauf 1 2 3 75.000

Welt-Dauerlauf 1 1 2 52.000

∑ = 35

Tabelle 1: Erprobungsportfolio

Mit dem Erprobungsportfolio wird definiert, wie viele Komponentenprüflinge je Entwicklungs-

phase in bestimmten Dauerlaufprofilen getestet werden.

Die Raffungs- und Vorwissensfaktoren, die in den nachfolgenden Tabellen 2 und 3 dargestellt 

sind, wurden mit mathematischen Modellen und Experteneinschätzungen bestimmt. Um den 

Einfluss der Veränderung dieser Faktoren auf den Nachweis der Zuverlässigkeit besser

untersuchen zu können, wird eine Abweichung dieser Werte von bis zu 10% angenommen. 

Damit ergeben sich die Minimal- und Maximalwerte der Vorwissens- und Raffungsfaktoren.
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Auf Basis der vorhandenen Daten für die Vorgängerkomponente ergibt sich ein Weibull-

Formparameter = 2. Analog zur Betrachtung der Raffungs- und Vorwissensfaktoren wird 

eine Abweichung von 10% angenommen. Dementsprechend variiert zwischen 1,8 und 2,2.

Hinweis: fiktive 
Erprobungs-
bezeichnungen &
Werte
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de

Hochlast Dauerlauf 2,2 1,98 2,42
Niederlast Dauerlauf 1,0 0,90 1,10
Wechsellast Dauerlauf 1,7 1,53 1,87
Peripherie Dauerlauf 1,5 1,35 1,65
Lebensdauererprobung 3,0 2,70 3,30

Fa
hr

ze
ug

e

Autobahndauerlauf 1,2 1,08 1,32
Stadt-Dauerlauf 2,0 1,80 2,20
Straßen-Dauerlauf 1,2 1,08 1,32
Taxidauerlauf 2,0 1,80 2,20
Weltdauerlauf 1,0 0,90 1,10
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Vorwissensfaktor 0,025 0,05 0,075 0,09

min.
Vorwissensfaktor

0,225 0,45 0,675 0,81

max.
Vorwissensfaktor

0,275 0,55 0,825 0,99

Tabelle 3: VorwissensfaktorenTabelle 2: Raffungsfaktoren

Unter Verwendung der Formel (1) mit dem vorhandenden Erprobungsportfolio, den abge-

leiteten Werten der Vorwissens- und Raffungsfaktoren und des Weibull-Formparameters lässt 

sich in Success Run eine Zuverlässigkeit von ( = 30.000 ) = 99,7% nachweisen, wenn 

man eine mögliche Abweichung ausschliesst. Somit wird das definierte Zuverlässigkeitsziel 

erreicht.

Da in der Realität, wie oben bereits erläutert, mit der Abweichung der abgeleiteten Werte zu 

rechnen ist, wird nun eine Sensibilitätsanalyse des Zuverlässigkeitswerts in Abhängigkeit von 

jeweils geänderten Input-Parametern durchgeführt. Wechselwirkungen werden im ersten 

Schritt nicht berücksichtigt. Auf der nächsten Seite sind in Tabelle 4 die Werte für die durch 

das Erprobungsportfolio abgesicherte Zuverlässigkeit unter Veränderung der Einzelparameter 

dargestellt. Dabei wurde unter Verwendung von (1) jeweils eine Maximierung und eine 

Minimierung der Zielfunktion vorgenommen, um im Rahmen der Abweichung Maximum und 

Minimum der erreichten Zuverlässigkeit zu ermitteln. Hierbei ergibt sich jeweils das Maximum 

oder Minimum des Input-Parameters als Lösung eines entsprechenden Linear Programming 

Problems (LPP). Wenn beispielsweise der tatsächliche Wert der Vorwissensfaktoren in allen

Entwicklungsphasen jeweils 10% unter dem ursprünglich abgeleiteten Wert liegt und 

gleichzeitig die Raffungsfaktoren und Weibull-Parameter unverändert bleiben, beträgt die 

erreichte Zuverlässigkeit nur 99,66%. Damit kann das Zuverlässigkeitsziel nicht nachgewiesen 

werden.
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In der Praxis kann es auch zu einer gleichzeitigen Abweichung mehrerer Input-Parameter für 

die Zuverlässigkeitsberechnung kommen. Zur Ermittlung dieses Einflusses wurden alle drei 

Input-Parameter gleichzeitig verändert und jeweils wieder eine Maximierung und eine

Minimierung des Funktionswertes als LPP vorgenommen.

, , ( ) = ;
2 ( ) ,

, < <  ,
, < < ,
1,8 < < 2,2

(2)

In der nachfolgenden Tabelle 5 sind die LPP-Lösungen als zwei Szenarien dargestellt, welche

bei gleichzeitigen Änderungen von mehreren Eingangsgrößen zu den maximalen

Abweichungen vom ursprünglichen Zuverlässigkeitsnachweis führen. Damit repräsentieren 

sie die „worst-case“ Szenarien.

ursprüngliche 
Werte

LPP-Lösungen für 
veränderbare
Vorwissensfaktoren

LPP-Lösungen 
für veränderbare 
Raffungsfaktoren

LPP-Lösungen 
für veränderbare 
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nachgewiesene 
Zuverlässigkeit 99,70% 99,66% 99,72% 99,63% 99,75% 99,53% 99,81%

nachgewiesene Ausfall-
wahrscheinlichkeit 0,30% 0,34% 0,28% 0,37% 0,25% 0,47% 0,19%

Tabelle 4: Nachgewiesene Zuverlässigkeit
ursprüngliche
Werte

MIN LPP-Lösung: 
min. Vorwissensfaktor, 
min. Raff.faktor, min.

MAX LPP-Lösung: 
max Vorwissensfaktor, 
max Rafffaktor, max.

nachgewiesene 
Zuverlässigkeit  

99,70% 99,38% 99,86%

nachgewiesene Ausfall-
wahrscheinlichkeit

0,30% 0,62% 0,14%

Tabelle 5: Nachgewiesene Zuverlässigkeit

Schliesst man Wechselwirkungen aus, kann man direkt den Einfluss veränderter Input-

Parameter auf die Zuverlässigkeit erkennen. So wurde deutlich, dass der Einfluss der 

Raffungsfaktoren größer als der Einfluss der Vorwissensfaktoren ist. Allerdings ist der Einfluss 

des Weibull-Formparameters auf die nachgewiesene Zuverlässigkeit am stärksten. Bei einer 

Verringerung des -Werts um 10%, sinkt der Zuverlässigkeitswert um 0,17%. Dieser Effekt 

verstärkt sich bei einer gleichzeitigen Änderung von mehreren Eingangsgrößen: Bei der MIN 

LPP-Lösung von (2), sinkt der Zuverlässigkeitswert gar um 0,32%. Zusammenfassend gilt,
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dass die Berechnung der Zuverlässigkeit über Formel (1) sehr sensibel auf Veränderungen

der Input-Parameter reagiert und folglich bei diesen eine hohe Datenqualität benötigt wird. 

4. Zielerreichung auf Systemebene

Neben der detaillierten Komponentenbetrachtung ist es gleichzeitig auch wichtig, den Blick auf 

das Gesamtsystem und die Zielerreichung bezüglich der 12MiS-Beanstandungsquote zu 

richten. Kurz nach dem Projektbeginn definierte Key Performance Indicators (KPIs) 

beschreiben den planmäßigen Fortschritt in den jeweiligen Entwicklungsphasen hinsichtlich 

der Zuverlässigkeit. Der stufenweise gestaffelte Zielanflug stellt sicher, dass bereits in frühen 

Erprobungsphasen das Zuverlässigkeitswachstum gemessen wird und das Management,

wenn gefordert, rechtzeitig Maßnahmen ergreifen kann. Bei Mercedes-Benz Cars wird diese 

Methodik als Predicted Reliability Approach (PRA) zusammengefasst und sorgt für eine 

Zuverlässigkeitssteuerung und –objektivierung im Entwicklungsprozess.

Grundlage zur Messung des Zuverlässigkeitsfortschritts bilden die im Kapitel 2 beschriebenen

12MiS-Werte. In der Praxis ergeben sich bei der näherungsweisen Berechnung der 12MiS-

Werte einige Herausforderungen, für die geeignete Lösungen benötigt werden:

Betriebszeit & Laufleistung: Dauerlauffahrzeuge haben das Ziel, möglichst viel Lauf-

leistung in möglichst kurzer Zeit zu sammeln. Zur näherungsweisen Berechnung der 

Beanstandungsquote müssen die Laufleistungen der Erprobungsfahrzeuge in kunden-

äquivalente Laufleistungen transformiert werden.

Erprobungsprofile & Raffung: Die Erprobung besteht aus unterschiedlichsten Profilen 

und daraus resultieren verschiedenartige Belastungen für die Komponenten. Infolge-

dessen ist es nicht möglich, einen Raffungsfaktor auf Fahrzeugebene in die Berechnung 

einfließen zu lassen. Für die Berechnung des Zuverlässigkeitswachstums werden extreme 

Dauerlaufarten ausgeschlossen. Den Fokus bilden sogenannte kundennahe Dauerläufe,

welche näherungsweise eine kundenäquivalente Belastung abbilden können.

Dokumentation von Beanstandungen: Die Erprobungsbereiche sind darauf fokussiert, 

möglichst streng und umfassend alle während der Erprobung entdeckten Mängel und 

Beanstandungen zu dokumentieren, damit erforderliche Optimierungen schnell eingeleitet 

werden können. Im Vergleich zu den Feldbeanstandungen, die durch den Kunden bemerkt 

und bei Werkstattbesuch dokumentiert und abgearbeitet werden, besteht eine Diskrepanz. 

Daher müssen alle während der Erprobung entdeckten Beanstandungen aus Kundensicht 

analysiert und klassifiziert werden. Daraus können sich Fehler ergeben, die aus 
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Entwicklungssicht durchaus wichtig sind, aber für eine Prognose der späteren 

Beanstandungsquote nicht herangezogen werden. 

Formparameter der Weibullverteilung: Das charakteristische Ausfallverhalten einer 

Komponente wird durch den Weibull-Formparameter beschrieben. Durch die Über-

lappung unterschiedlicher Ausfallmechanismen bei einem System wird in der Literatur 

immer wieder auf näherungsweise zufallsbasiertes Ausfallverhalten für komplexe Systeme 

hingewiesen. Diese Annahme wird durch Simulationsmodelle bestärkt.

Die klassische Berechnung der Beanstandungsquote lautet

=   Ø 100 (3)

mit den Größen

- Schätzung der 12 MiS Beanstandungsquote „complaints per hundred“,

- die in der Erprobung aufgetretenen Ausfälle, 

- die zurückgelegten Laufleistung der Erprobung und

 - durchschnittliche Jahreslaufleistung im Feld. 

Mit dem zentralen Konfidenzintervall für den Schätzer des Erwartungswerts der Ausfälle 

aus der Poisson-Verteilung ergibt sich [4]:

=  =  ( );   (4).

Damit wird aus (3) mit (4)

= ( );  100 (5)

wobei 
 - Formparameter der Weibullverteilung 

- Anzahl der Beanstandungen in der Erprobung 
- Aussagewahrscheinlichkeit  
- Laufleistung der Dauerlauffahrzeuge.

Zur Bewertung des Projektfortschritts der Erprobung benötigen die Projektbeteiligten eine 

klare Vorgabe welche Steigerung der Zuverlässigkeit für das gesamte System, z.B. ein 

Fahrzeug oder einen Motor, erzielt wurde. Diese Steigerung wird durch den Rückgang der 

Beanstandungsquote über der Zeit dokumentiert. Aus vorangehenden Projekten kann diese 

Kurve berechnet werden. Nach Ermittlung des Fehlerabstellgradientens wird dieser auf das 

neue 12MiS Ziel umgelegt. Dadurch ergeben sich Zielanflugskorridore in den jeweiligen 
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Entwicklungschargen gegen welche die Erprobung des Neuproduktprojektes gemessen 

werden kann.

Die linke Darstellung im nachfolgenden Bild 3 zeigt den Verlauf der Schätzung der 12 MiS-

Quote mit den gepunkten dargestellten 5% bzw. 95%-Grenzen des Konfidenzbereiches in den 

Entwicklungsphasen eines Neuproduktprojekts nach Gleichung 5. In der rechten Darstellung 

sind die Zielkorridore für den „Anflug“ der Beanstandungsquote eingezeichnet, welche aus den 

Beanstandungsdaten von zwei Vorgängerprojekten gewonnen wurden.

Bild 3: Verlauf der 12MiS-Beanstandungsquote in den Entwicklungsphasen eines Projekts

5. Fazit und Ausblick

Wie der Artikel zeigt, ist ein gesteuerter Zielanflug für ein komplexes System nicht das Resultat 

einer einzigen Methode, sondern die konsequente Anwendung und Verbindung von 

zuverlässigkeitstechnischen Werkzeugen für die jeweils gegebenen Herausforderungen im 

Entwicklungsprozess. 

Dabei ist es von elementarer Bedeutung zum Projektbeginn, die zu erreichenden Ziele und 

Messgrößen genau zu definieren. Nur so lässt sich zu einem späteren Zeitpunkt auch eine 

eindeutige Bewertung vornehmen, ob man sich im Plan befindet oder nicht. Ebenfalls wird 

empfohlen, das Gesamtsystem in reparierbare und nicht reparierbare Umfänge einzuteilen, da 

für die jeweiligen Betrachtungen unterschiedliche Berechnungsmethoden gewählt werden 

müssen. Wie die durchgeführte Sensibilitätsanalyse für die Komponentenabsicherung zeigt, 

beeinflussen die Eingangsparameter und deren Prämissen in starkem Maße die abgesicherte 

Zuverlässigkeit. Deswegen sollten die beteiligten Experten nach dem Anlauf die verwendeten 

Eingangsparameter und deren Prämissen anhand der vorliegenden Istdaten kritisch 

überprüfen. In gleicher Weise sollten nach dem Anlauf die Eingangsparameter für die 
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vorgestellte Schätzung der 12 MiS-Beanstandungsquote anhand der vorliegenden Ergebnisse 

überprüft werden. Auf diese Weise kann für nachfolgende Projekte eine höhere 

Ergebnisqualität der Absicherungsrechnung sichergestellt werden. 

Die hier gezeigten Methoden bilden die Basis für eine ganzheitliche Zuverlässigkeits-

absicherung im Entwicklungsprozess, sowohl auf Komponenten- als auch Systemebene. Bei 

Mercedes-Benz Cars kommen diese Vorgehensweisen im Zuge des Zuverlässigkeits-

prozesses bei allen Neuproduktprojekten flächendeckend zur Anwendung. 
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Nachweis der funktionalen Sicherheit für eine Abschalt- und 
Erdungsautomatik (AEA) mittels Bahnspezifischer Normen 
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Inter Traffic GmbH, Köln 
 
 
 

Kurzfassung  

Der Beitrag untersucht die Anwendung der CENELEC-Normen EN 50126 / EN 50128 / EN 50129 

für den Nachweis der funktionalen Sicherheit. Dabei geht primär darum, die 

Kundenanforderungen DB Fernverkehr zu analysieren und nachweislich unter Berücksichtigung 

der gesetzlichen und normativen Vorgaben umzusetzen.  

Nachdem alle Sicherheitsanforderungen der neuartigen Abschalt- und Erdungsautomatik (AEA) 

bekannt wurden, wurde ein Sicherheitsplan in Abstimmung mit dem Auftraggeber erstellt. In 

diesem Sicherheitsplan wurde eine Auswahl von zeitlich festgelegten Maßnahmen und 

Aktivitäten (Verantwortlichkeit, Dokumentstruktur, Verfahren) dem SIL-Level entsprechend, 

festgelegt. Die Schlussfolgerung ist, dass die hier gewählten Bahnnormen und deren Methodik 

erfolgreich zur funktionalen Sicherheit von Bahnstromanlagen angewendet wurden. 

 

1 Einführung  

Im Bereich der Bahntechnik existieren drei wesentliche Normen zur Zuverlässigkeits- und 

Sicherheitstechnik. Die EN 50126 für den RAMS -Prozess in Eisenbahnsystemen, die EN 50128 

für Software  sowie  die EN 50129 für „Telekommunikationstechnik, Signaltechnik und 

Datenverarbeitungssysteme – Sicherheitsrelevante elektronische Systeme für Signaltechnik“, 

wie es in der EN 50129 heißt. 

Auch wenn nun  die funktionale Sicherheit von Systemen außerhalb der Signaltechnik betrachtet 

wird, muss zwangsläufig eine der oben genannten Normen ausgewählt werden. Diesem Problem 

widmen sich die Autoren in der vorliegenden Arbeit. 
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Der Ausgangspunkt war eine neuartige Abschalt- und Erdungsautomatik (AEA) für eine 

Wagenhalle, die ein elektronisches System in Form einer speicherprogrammierbaren Steuerung 

benutzt. Gegenüber bisher gebauten Anlagen basierend auf Relaistechnik, wird für den Neubau 

der Halle Berlin Rummelsburg eine softwarebasierte Lösung entwickelt. Dabei wird ein 

besonderes Augenmerk auf den Umgang mit den neuen Kundenanforderungen unter 

Berücksichtigung der umfangreichen Nahtstellen gelegt. 

Die durch Rail Power Systems (RPS) zu errichtende AEA-Anlage hat als oberstes Ziel, das 

sichere Arbeiten auf und an Fahrzeugen bei ausgeschalter und geerdeter Oberleitung zu 

gewährleisten. Für die Konstruktion der AEA-Anlage sind strenge Sicherheitsanforderungen zum 

Schutz von Instandhaltungspersonal einzuhalten. Ein Teil dieser Sicherheit ist die funktionale 

Sicherheit, welche durch die korrekte Funktion der Steuerungseinrichtung bestimmt wird. Damit 

kommt ganz zwangsläufig die Frage der funktionalen Sicherheit ins Spiel und demnach  ist eine 

geeignete Norm auszuwählen. 

In dieser Arbeit wird dargestellt, wie die Auswahl einer geeigneten Norm in Abstimmung mit dem 

Auftraggeber erfolgte und welche Konsequenzen dies beim Hersteller hatte, insbesondere wie 

der RAMS –Prozess beim Hersteller gestaltet wurde. Für die Begutachtung wurde der TÜV-

Rheinland seitens des Auftraggebers beauftragt. 

2 Anforderungen an die Abschalt- und Erdungsautomatik  

Bei der hier vorgestellten technischen Lösung handelt es sich  um eine Abschalt- und 

Erdungsautomatik (AEA) für die Große Wagenhalle Rummelsburg. Diese Wagenhalle wird für 

Instandhaltungsaufgaben an Lokomotiven und IEC-Triebzügen genutzt und verfügt über eine 

Oberleitungsdeckenstromschiene (OSS). Wenn nun am Dach der Fahrzeuge Arbeiten 

durchgeführt werden, so muss die Dacharbeitsbühne betreten werden. Dadurch können 

Personen in die Nähe der Oberleitung gelangen und es besteht die Gefahr eines Stromschlages. 

Daher muss die Oberleitung sicher abgeschaltet und geerdet werden. Hierfür wird die AEA  

benötigt, um die 5 Sicherheitsregeln gemäß DIN VDE 0105 einzuhalten. 

Anforderungen an Erdungsanlagen haben eine typische Struktur und bestimmte typische 

Elemente. Dafür wurde eine Anforderungsliste erstellt, deren Struktur folgende Elemente 

beinhaltet: 

 Eindeutige Identifizierungsnummer, 

 Festlegung der AEA-Teilsysteme und der Fremdsysteme, 

 Art und Beschreibung der Anforderung, 

 Gliederung der Anforderungen in z.B. übergeordnete, funktional, betrieblich, 

Umweltbedingungen, RAMS, Qualität, 

 Herkunft ( Kunde, Gesetze und Normen, Behörde Auflage, interne), 
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 Status (Verständlichkeit, Vollständigkeit, Messbarkeit und Widerspruchsfreiheit) 

 Verantwortlichkeit (Projektleiter, Produktmanager, Designer, Gutachter, RAMS, Tester), 

 Methodik der Nachweise ( Berechnung, Simulation, Messung, Zertifikate), 

 Kommentare ( Begründungen, Abweichungen in der Methodik,..) und 

 Historie für die Verwaltung. 

Nachfolgend sind die wesentlichen Kundenanforderungen mit den jeweiligen 

Sicherheitsaspekten zusammengefasst: 

1. Die Personensicherheit wird durch ein Schlüsselsystem gewährleistet. Als 

Mitarbeiterschlüssel werden Medien verwendet, die entweder elektrisch oder per Funksignal 

gelesen werden. Eine fehlerhafte Lesung der Schlüsselnummer bzw. Übertragung zur 

Steuerung ist soweit wie möglich auszuschließen. Die Verfahren, die für den Betrieb eines 

solchen Schlüsselsystems angewendet werden, müssen zwischen Betreiber, unabhängiger 

Prüfstelle und Lieferanten abgestimmt werden.  

2. Mehrere Arbeitsstände müssen zusammengefasst werden können, wenn ein Fahrzeug sich 

gleichzeitig in zwei oder mehr Arbeitsständen befindet. Die Detektion von Fahrzeugen, die 

die Trennstellen überbrücken (Überstandbereich), erfolgt mittels Lichtschranken. 

3. Signale, welche für die Personensicherheit von Bedeutung sind, müssen fehlersicher 

übertragen werden. 

4. Als Kommunikationsprotokoll zwischen der AEA und der Mehrspannungsversorgung (MSV) 

soll Profisafe in Verbindung mit Profinet zum Einsatz kommen. 

5. Schnittstellen werden über Profibus mit einem DP/DP-Koppler zum Betriebsführungsrechner 

(BFR) und mittels PN/PN-Koppler zur Dacharbeitsbühne (DAB) ausgeführt. 

6. Die funktionale Sicherheit der AEA wird gemäß DIN EN ISO 13849 festgelegt und verifiziert. 

Als notwendiger Performance Level (PL) wurde PL d ermittelt. 

7. Die funktionale Sicherheit muss durch eine unabhängige Prüfstelle beurteilt werden. 

Man sieht, dass in den Kundenanforderungen die EN ISO 13849 genannt wurde. Bei näherer 

Analyse stellt sich jedoch heraus, dass diese Norm nicht auf Bahnanlagen und Teile davon 

anwendbar ist. 

Diese Anforderungen wurden bei RPS daher nicht buchstabengetreu umgesetzt, sondern 

entsprechend weiter entwickelt. 

Wenn bisher bei RPS derartige Technik im Wesentlichen in Hardware entwickelt wurde, so hat 

man sich entschlossen, eine Software Lösung vorzusehen. Hierfür wurde eine bereits zertifizierte 

speicherprogrammierbare Steuerung verwendet, sodass man bei der Hardware auf eine bereits 

zertifizierte Komponente zurückgreifen konnte und zudem bei der Softwareentwicklung auch 

zertifizierte Tools nutzen konnte. 
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3 AEA-Funktionen als Teil des Bahnsystems  

Die Abschalt- und Erdungsanlage stellt einen Bestandteil des Bahnsystems dar. In der großen 

Wagenhalle befinden sich Deckenstromschienen. Die Deckenstromschiene ist pro Gleis in jeweils 

vier Oberleitungs-Segmente aufgeteilt (Abbildung 1). Diese Segmente lassen sich einzeln mit 15 

kV/16,7 Hz beschalten bzw. ausschalten und erden. Es lassen sich auch mehrere benachbarte 

Segmente desselben Gleises, zu einem Arbeitsbereich zusammenführen. 

 
Abbildung 1: Oberleitungssegmente mit den primärtechnischen Komponenten (Quelle RPS) 
 
Die Hauptfunktionen der AEA sind neben der automatischen Durchführung der 5 

Sicherheitsregeln sowie die Enterdung der Oberleitung auch z.B. die Ansteuerung der El-6 

Signale (Halt für Fahrzeuge mit gehobenen Stromabnehmer) und DAB-Türen. Die fünf 

Sicherheitsregeln und ihre Umsetzung werden nachfolgend nochmals genannt. 

Segment 1 Segment 2 Segment 3 Segment 4

El 6 SignalTrennstelle

Speiseschalter Spannungswandler

Erdungsschalter

Legende:

II
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Tabelle 1: Die Fünf Sicherheitsregeln nach DIN VDE 0105 

Sicherheitsregel Umsetzung durch AEA 

1 – Freischalten Öffnen der Fahrleitungstrenner 

2 – Gegen Wiedereinschalten sichern Verriegeln der Fahrleitungstrenner, Sperren des 

Betätigungsmechanismus, Unwirksammachen 

der Hilfsenergie 

3 – Spannungsfreiheit feststellen Messung mittels Spannungswandler 

4 – Erden und Kurzschließen Einlegen der Erdungsschalter (2stufig), sichere 

Rückmeldung über Endkontakt am Schaltmesser 

5 – Benachbarte, unter Spannung 

stehende Teile abdecken oder 

abschranken 

Fahrleitungsspannung steht außerhalb des 

Segmentes hinter Fahrleitungstrenner an. 

Verbindungstüren sind geschlossen und 

überwacht. El6-Signale werden angesteuert. 

 

Das unten stehende Bild zeigt den Aufbau der Steuerung innerhalb eines Gleises. Die 

fehlersichere CPU (S7 -1516F) befindet sich im Zentralschrank und ist angebunden mit den vier 

Bedienstellen über einen LWL-Ring mit Profisafe Protokoll. 

 

 

Abbildung 2: Sekundärtechnische Steuerkomponenten (Quelle RPS) 
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In der Abbildung 3 wird der Bedienprozess der AEA im Zusammenhang mit der Dacharbeitsbühne 

(DAB) dargestellt. Nach erfolgreicher Anmeldung an der Bedienstelle kann der Mitarbeiter die 

Zugangstür mit seinem Transponder passieren und somit gelangt er zur DAB. 

 
Abbildung 3: Bedienprozess der AEA (Quelle RPS) 

Ein wesentlicher Aspekt für die Entwicklung der AEA, ist es die bereits identifizierten Nahtstellen 

zu realisieren. Dabei sind die frühzeitige Abstimmung und die verbindliche Festlegung von 

Zuständigkeiten, Leistungen und Terminen vor allem zwischen den Fremdsystemen 

(Betriebsführungsrechner BFR, Dacharbeitsbühne DAB, Zentralschaltstelle Zes) von Relevanz. 

Die folgende Abbildung 4 zeigt die projektspezifischen übergeordneten, internen und externen 

(Fremdsysteme) Nahtstellen. Für die Prozesssimulation wurde eine Demonstrationsanlage 

eingerichtet, um bestimmte Softwarefunktionen zusammen mit den Nahtstellen zu testen. 
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Abbildung 4: Nahtstellen der AEA (Quelle RPS) 

 
Es wurde ein Gefahrenprotokoll aufgestellt. Hierin wurden die folgenden Sicherheitsfunktionen 

definiert, welche bei Anforderung die Anlage in den sicheren Zustand (Notfallerdung) überführen:  

• Notfallerdung,  ausgelöst durch Betätigung eines Not-Halt-Tasters 

• Notfallerdung,  ausgelöst durch unerlaubtes Öffnen einer DAB-Zugangstür 

• Notfallerdung,  ausgelöst durch unerlaubtes Öffnen einer DAB-Verbindungstür 

• Notfallerdung,  ausgelöst durch Freiraumlichtschranke 

• Notfallerdung bei niedriger USV-Kapazität. 

Bevor die Dacharbeitsbühne zugänglich gemacht wird, muss die Oberleitung freigeschaltet und 

geerdet sein und gegen Wiedereinschalten gesichert sein. Letzteres bedeutet, dass die 

Spannung nur wieder zugeschaltet werden darf, wenn folgende Bedingungen erfüllt sind: 

• Keine Person ist mehr angemeldet. 

• Kein MSV-Betrieb. 

• Die Verbindungstüren sind ordnungsgemäß geschlossen. 

• Der Kran befindet sich in Parkposition. 

• Es liegt keine Störung im Betrieb vor. 

• PIN ist eingegeben. 

Diese Funktionen und Bedingungen sind nun in einer Einheit zu implementieren, die diese Logik 

umsetzt und implementiert. Damit liegen Anforderungen an die funktionale Sicherheit vor.  

4 Begründung für die Auswahl der Normen  

Es war zunächst wichtig, die relevanten Normen zu berücksichtigen. Da die große Wagenhalle 

Teil des Bahnsystems ist, sind damit die ISO 13849 als auch die IEC 61508 nicht anwendbar, da 
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diese die Bahntechnik explizit oder implizit ausschließen. Aus diesem Gründen wurde zunächst 

die allgemeine RAMS-Norm für das Gebiet der Bahntechnik, das ist die EN 50126 gewählt. Um 

nun die Aspekte der funktionalen Sicherheit möglichst gut abzudecken, wurden hierfür die EN 

50129 sowie die EN 50128 ausgewählt. Streng genommen sind diese Normen nur für 

Signaltechnik, Telekommunikation und Datenverarbeitung anwendbar. Man kann nun den 

relevanten informationstechnischen Teil der Abschalt- und Erdungsautomatik als 

Datenverarbeitungsanlage auffassen und damit die EN 50128 / 50129 hinzuziehen. Dies wurde 

gemeinsam mit dem Auftraggeber so entschieden. Es wurden dabei die jeweils neuesten 

Versionen dieser Normen benutzt, selbst wenn die Verwendung der älteren Version der EN 50128 

von 2003 noch zulässig gewesen wäre. 

Die IEC 61508 ist die Grundnorm der funktionalen Sicherheit. Diese ist jedoch nicht anwendbar, 

wenn es branchenspezifische Normen gibt. A priori ist die IEC 61508 damit eigentlich nicht auf 

Bahnsysteme anwendbar, hierfür gibt es das Normenwerk EN 50126, EN 50128, EN 50129. 

Insbesondere die EN 50128 und EN 50129 sind streng genommen nur anzuwenden auf  

• Telekommunikationstechnik, Signaltechnik und Datenverarbeitungssysteme (EN 50129) 

bzw. 

• Telekommunikationstechnik, Signaltechnik und Datenverarbeitungssysteme – Software 

für Eisenbahnsteuerungs- und Überwachungssysteme (EN 50128) 

Die Steuerungssysteme einer Abschalt- und Erdungsanlage können im weitesten Sinne als 

Eisenbahnsteuerungs- und Überwachungssystem aufgefasst werden. Dies wurde so getan und 

damit die Anwendung der EN 50129 und EN 50128 motiviert. 

5 Normative Grundlagen zur Sicherheitsbetrachtung auf der Basis 
der EN 50128 und EN 50129  

Auf Grundlage der EN 50129 wird das Sanduhr-Modell angewendet. Nach diesem Modell werden 

die Sicherheitsaktivitäten zwischen Betreiber / Auftraggeber (betriebliche Parameter wie z.B. 

Schalthäufigkeit, Signalisationsart)  einerseits und Hersteller (System-Parameter wie z.B. 

Architektur, Art der Diagnose, Kommunikation) andererseits aufgeteilt. Dabei wurde durch RPS 

in Abstimmung mit dem Auftraggeber  

• die Identifikation und Analyse der Gefährdungen sowie Weiterverfolgung 

(Vorläufige Gefährdungsanalyse / Hazard-Log),  

• die Auswahl eines Kriteriums der Risikoakzeptanz sowie  

• die Risikoanalyse (Festlegung der SIL-Einstufung) durchgeführt. 

Zu Beginn des Lebenszyklus wurde damit durch RPS eine Risikoanalyse (PHA) durchgeführt. 

Die PHA wurde von Anfang an im Format eines Hazard Logs gemäß EN 50126 Kapitel 6.3.3.3 

erstellt und dabei wurden alle Erfahrungen der vorhergehenden Projekte berücksichtigt. 
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Für die Risikoanalyse wurde der Risikograph nach EN 61508-5 verwendet. Dies wurde motiviert 

durch die Parallelen zur Anlagentechnik, jedoch auch dadurch, dass die im TSIP / SIRF 

ermittelten SILs bzw. SAS sich nur auf Fahrzeuge beziehen. Im Ergebnis wurde SIL 2 ermittelt.  

Das nachfolgende Bild zeigt den Risikographen sowie die Wahl der Parameter. 

 

 

Abbildung 5: Herleitung der SIL-Einstufung anhand des Risikographen nach [4] 

Die Wahl war dabei wie folgt angeregt: Ein Unfall wird jeweils eine einzelne Person betreffen, die 

dabei zu Tode kommen kann (CB), bedingt durch die hohe Spannung von 15 kV. Es hält sich 

häufig bis dauernd jemand auf der Dacharbeitsbühne auf (FB). Die  Vermeidung des 

Unglücksfalles ist möglich, indem man Sicherheitsabstand zur Oberleitung hält (PA). Zudem gibt 

es kaum eine Möglichkeit, dass der Unfall durch andere Faktoren nicht eintritt (W3). 

Es gibt eine Zuordnung des SIL (Sicherheitsanforderungsstufe) zu THR-Werte, d.h. den maximal 

zulässigen Raten gefährlicher Ausfälle der Sicherheitsfunktion. 
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Tabelle 2: Zuordnung von SIL zu THR nach [3] 

Sicherheitsanforderungsstufe 
(SIL) 

Tolerierbare gefährdungsrate (THR) 
pro Stunde und pro Funktion 

4 10-9 ≤ THR < 10-8 

3 10-8 ≤ THR < 10-7 

2 10-7≤ THR < 10-6 

1 10-6 ≤ THR < 10-5 

 

Im nächsten Schritt erfolgte die Erstellung eines Sicherheitsplans nach 50126 unter 

Berücksichtigung der Vorgaben aus EN 50128 und EN 50129. Dies gestaltete sich zunächst 

etwas schwierig, was dadurch bedingt war, dass es sich um die überhaupt erste Anwendung 

dieser Normen auf eine AEA-Anlage handelte. In der zweiten Version  entstand jedoch ein Plan, 

mit dem man nicht nur guten Gewissens an die Arbeit gehen konnte, sondern der auch die 

notwendigen planerischen Grundlagen für das Projekt legte. 

Der erste rein technische Ansatzpunkt war das Erstellen einer Anforderungsliste. Diese Liste 

stellte das Systemanforderungsdokument als auch die Sicherheitsanforderungsspezifikation dar. 

Alle Anforderungen des Kunden als auch zusätzliche Anforderungen von RPS wurden hier 

aufgenommen. Die Sicherheitsanforderungen wurden in der Anforderungsliste separat 

gekennzeichnet. Diese Liste gewährleistete gleichzeitig die Nachverfolgbarkeit der 

Anforderungen – es wurde jeweils angegeben, wo und wie die Anforderungen im System 

umgesetzt wurden. 

Insgesamt wurde die folgende Dokumentenstruktur für den SIL-2 Nachweis erstellt.  

 
Abbildung 6: Dokumentstruktur für den SIL2- Nachweis (Quelle RPS) 
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Einige durch die Normen geforderte Dokumente sind im konkreten Anwendungsfall  nicht relevant 

oder durch die SPS (TIA-Portal V13) abgedeckt. Dies wurde begründet, wie z.B. für den SW-

Wartungsplan, SW-Konfigurationsmanagementplan und SW-Quellcodedokumentation. Ebenso 

sind die Verifikationsberichte des Validierers auch Bestandteil der Dokumentation. Das 

Zusammenfassen von Dokumenten wurde ebenfalls aufgezeigt und mit dem Gutachter 

abgestimmt. 

 

6 Technische Lösung  

Die technische Lösung von RPS basiert auf den folgenden wichtigen Punkten. 

1. Für die Realisierung der Personensicherheit und Türfreigabe werden Transpondern an 

Stelle eines Schlüsselsystems verwendet. Auf Grund der Flexibilität einer derartigen 

Lösung ist man nicht gezwungen an derselben Stelle auszuchecken, an der man 

eingecheckt hat. Zudem kann man die Transponder an Personen koppeln. 

2. Die Daten, die auf die Transponder geschrieben werden, müssen nach EN 50159 

abgesichert werden. Dabei wird folgender Übertragungsweg betrachtet: Zentrale, 

Anmeldestelle, Transponder, abmeldestelle, Zentrale. Durch die zusätzliche Eingabe der 

PIN am Bedientableau ist eine zweistufige Authentifizierung realisiert worden und so ist 

ein sicheres An- und Abmeldeverfahren gestaltet worden. 

3. Schließlich wurden  verschiedene SPS-Hersteller aufgefordert, Angebote zu unterbreiten. 

Die Wahl fiel letztendlich auf ein Modell, das gemäß SIL 3 nach IEC 61508 zertifiziert war. 

Damit war zum einen eine SPS gewählt, die höheren Sicherheitsanforderungen genügte, 

zum anderen musste begründet werden, weshalb  sich diese SPS in einem Umfeld der 

EN 50128/ EN 50129 einsetzen ließ. Dies wurde im spezifischen Sicherheitsnachweis 

begründet, wobei sowohl die Parallele zur Anlagentechnik, als auch die Position der SPS 

in einer Halle entfernt vom Gleis eine Rolle spielten. Dadurch konnten eine Reihe 

verschärfter Umweltanforderungen, die in der Bahntechnik unter bestimmten 

Bedingungen auftreten, entfallen. 
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Das nachfolgende Bild zeigt den prinzipiellen Aufbau des Systems. Dabei beachtet man die 

typische Aufteilung in Sensor - Verarbeitung – Aktor. 

 

 

 

 

 

 

Abbildung 7: Allgemeine Darstellung der Komponenten der gesamten Steuerungskette (Quelle     
RPS) 

Durch die Verwendung einer zertifizierten speicherprogrammierbaren Steuerung ergaben sich 

Vorteile. Eine Reihe von Elementen des Softwareprozesses wurden durch ein zertifiziertes Tool, 

das zusammen mit der SPS geliefert wurde, abgedeckt. Dies vereinfachte den SW-

Entwicklungsprozess. Dabei ging es insbesondere um Techniken und Maßnahmen, die durch die 

SPS abgedeckt wurden wie z.B. typisierte Programmiersprache, Trennung zwischen 

fehlersicherer Anwendung und Standardanwendung, Fehlerkennung und Diagnose, defensive 

Programmierung usw. Trotzdem wurde die Softwareentwicklung  jedoch  gemäß EN 50128 

durchgeführt. 

 

7 Sicherheitsnachweis, Verifikation und Validierung  

Nach EN 50129 besteht eine Sicherheitsanforderung immer aus einer funktionalen 

Sicherheitsanforderung (Überführung der Anlage in einen sicheren Zustand) sowie einer 

qualitativen  SIL- Stufung und einer quantitativen Ausfallrate (THR). 

Um diese zu gewährleisten, sind folgende Maßnahmen seitens der Norm gefordert: 

 Maßnahmen zum Management und zur Beurteilung der funktionalen Sicherheit 

 Maßnahmen gegen systematische Fehler 

 Maßnahmen gegen zufällige Fehler. 

Die Verifizierung wurde einerseits durch ein Review der relevanten Dokumente abgedeckt, 

andererseits durch Nachvollziehbarkeit. Hierfür wurde die Anforderungsliste benutzt um 

nachzuweisen, wie die einzelnen Anforderungen umgesetzt wurden und wie diese getestet oder 

auf andere Art und Weise nachgewiesen wurde. 

Auf Grund der relativ einfachen Struktur des Systems ließ sich dies mit vertretbarem Aufwand 

abwickeln. Hierbei war vorteilhaft, dass die gesamte Logik in der SPS implementiert war. 

 
Bedienelemente 

Endschalter 
Not-Aus Taster 

Lichtgitter 
Meßumformer 
Hilfskontakte 
Transponder

Logik 
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Erdungsschalter 
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Entriegelungen 

Sicherheitsrelais 
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VDI-Berichte Nr. 2307, 2017212

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


 

 

Die Validierung erfolgte durch die Abnahme durch einen EBA-anerkannten Prüfer, der ohnehin 

für Starkstromanlagen erforderlich war und umfangreiche Tests durchführte. Damit entstand 

gewissermaßen als „Abfallprodukt“ der Validierungstest der funktionalen Sicherheit durch eine 

unabhängige Person. 

Umwelttests mussten nur in geringem Maße nachgewiesen werden, da die Eignung der 

Schaltkomponenten ohnehin für den geeigneten Zweck nachgewiesen waren und die SPS die 

Umweltbedingungen ohnehin schon erfüllte. Dabei wirkte sich günstig aus, dass die Anlage 

a) in einer Halle aufgebaut wurde und 

b) sich keine relevanten Steuerungselemente im 3m Bereich des Gleises befanden. 

Die Maßnahmen gegen systematische Fehler konnten gemäß den Tabellen des Anhangs A der 

Normen EN 50129 bzw. EN 50128 nachgewiesen werden. Es wurden eine Reihe von wichtigen 

Sicherheitsprinzipien in der Schaltung angewendet: 

 Auswahl von Fail-Safe Komponenten 

 Ruhestromprinzip 

 Redundanz der Stromversorgung für die SPS 

 Redundante Abfrage der Stellungsmeldung für den Erdungsschalter 

 Sicherheitsrelais, Sicherheitsendschalter 

 Zweihandbedienung sicherheitskritischer Befehle 

 Gegenseitige Überwachung der Signale (Fremdsysteme) anhand von Lebenszeichen 

 Überdimensionierung der SPS: SIL 3 statt SIL 2 

 Trennung der Module, welche sicherheitsrelevante Daten bearbeiten von denen keine 

Sicherheitsrelevanz haben (F und S Teile von CPU) 

 Zweipolige Ansteuerung (Erhöhung der Meldesicherheit) 

 Sichere Datenübertragung (Profisafe Protokoll) 

Daneben wurden Prinzipien für die elektrische Sicherheit angewendet, die indirekt Einfluss auf 

die Funktionale Sicherheit haben: 

 Überspannungsschutz vom Trafo, Motorantrieb des Erdungsschalters,..  

 Isolationswächter (Überwachung des Isolationswiderstandes im Niederspannungsnetz) 

 Leitungsschutzschalter für El 6, Mastschalter, ZSS (Schutz Leitungen vor 

Beschädigungen durch Erwärmung infolge zu hohen Stroms)  

 Trenntrafo mit verstärkter Isolierung 

 Überdimensionierung der USV (Autonomiezeit pro Gleis mindestens 60 min, 

Überwachung der Akkumulator-Kapazität bzw. Tiefentladung) 

 Schutzbeschaltung mit RC-Glied, 

 Überwachung der AC- und DC- Ströme mit Hilfe eines digitales Relais. 
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Der Nachweis, dass hinreichende Maßnahmen gegen zufällige Fehler implementiert wurden, 

erfolgte mit Zuverlässigkeits-Blockdiagrammen (RBD). Grundlage für die Erstellung der 

Blockdiagramme waren die durch RPS erstellen FMECAs. Diese wurde erweitert um die 

normativen Anforderungen zu erfüllen um folgende Angaben: 

 Unterteilung der Ausfallraten in sicher und gefahrbringend, erkannte oder unerkannte 

Ausfälle 

 Festlegung des Prüfintervalls T1. 

Das Ziel der Sicherheitsanalyse ist, für die identifizierten sicherheitsrelevanten Funktionen die 

Hardware Komponenten zu kategorisieren und die zugehörigen THR bzw. ʎd (Rate gefährlicher 

Ausfälle) zu ermitteln.  

Für die Berechnung der Blockdiagramme wurden folgende Annahmen getroffen: 

 alle nachgelagerten Fehler in den Fremdsystemen, welche die funktionale Sicherheit der 

Anlage beeinflussen, sind nicht Bestandteil dieser Analyse, 

 Anwendung von Herstellerdaten für die Ausfallraten der Komponenten, 

 die definierten MTTR-Werten (Erwartungswert der Reparaturzeiten) basieren aus 

Erfahrungen, die RPS Mitarbeitern aus ähnlichen Anlagen gesammelt haben. In diesen 

Werten sind keine logistischen Zeitelemente enthalten, 

 das Proof Test Intervall wurde auf ein Jahr ( 8760 h) festgelegt, 

 als Wert für die Schalthäufigkeit der elektromechanischen Komponenten wurden 20 

Schaltungen / Tag angenommen, 

 als ß Wert (Anteil der hardwarebedingten Ausfälle in Folge gemeinsamer Ursache) wurde 

der Wert aus der Norm angenommen ßd = 1%. 

Nachfolgend wird ein Beispiel der erstellten  Zuverlässigkeits-Blockdiagramme für die 

Sicherheitsfunktion „ Notfallerdung ausgelöst durch unerlaubtes Öffnen einer DAB-

Verbindungstür“ gegeben.  
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Abbildung 8: RBD für die gesamte Kette inklusiv das mit + gekennzeichneten Modul  (Logik)  

Für die Berechnungen wurde das Tool Reliability Workbench 10.2 der Firma Isograph verwendet.  

Die Überlebenswahrscheinlichkeit der gesamten Kette lässt sich wie folgt ermitteln: 
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8 Begutachtung  

Die Begutachtung wurde gemäß dem Standard-Prozess des TÜV Rheinland für funktionale 

Sicherheit an Bahnanlagen durchgeführt. 

Es wurden daher zum einen alle relevanten Dokumente begutachtet, insbesondere der 

Sicherheitsplan, das Gefahrenprotokoll und natürlich der Sicherheitsnachweis. 

Dabei wurden zunächst Kommentare zu Dokumenten abgegeben, die dann umgesetzt wurden. 

Diese Kommentare wurden in Kurzprüfberichten zu einem oder mehreren Dokumente 

aufgenommen.  

Daneben wurden zwei Audits durchgeführt. Zum einen ein Audit zum Qualitätssystem und zu den 

Sicherheitsprozessen, zum anderen ein Audit zu den Softwareprozessen. Dabei wurden die 

Zeitpunkte jeweils so gewählt, dass einerseits die jeweiligen Prozesse schon liefen, andererseits 

aber auch genug Zeit war um gegebenenfalls Korrekturen einzubringen. 

Abschließend erstellte der Gutachter ein Gutachten in dem bescheinigt werden konnte, dass 

keine sicherheitsrelevanten Mängel vorhanden waren. 
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9 Zusammenfassung  

In dieser Veröffentlichung wurde dargestellt, wie eine Abschalt- und Erdungsautomatik (AEA) als 

Teil des Bahnsystems nach Prinzipien der funktionalen Sicherheit entwickelt, implementiert und 

begutachtet wurde. Dies war eine erstmalige Anwendung der Normen EN 50128 und EN 50129 

auf die AEA-Anlage. Es hat sich gezeigt, dass diese Bahnnormen als Normen zur funktionalen 

Sicherheit von Bahnstromanlagen erfolgreich angewendet werden können. Es haben sich keine 

Probleme bei der Anwendung dieser Normen gezeigt, begonnen von der PHA bis hin zum 

Sicherheitsnachweis und auch eine Begutachtung nach diesen Normen hat nicht zu Problemen, 

z.B. hinsichtlich der Auslegung geführt. 
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Kurzfassung

Für das 6-Gang-Automatikgetriebe EcoLife der ZF Friedrichshafen AG wird ausgehend von 

den während der Produktentwicklung durchgeführten Berechnungen und Erprobungen auf 

verschiedenen Systemebenen die Gesamtzuverlässigkeit prognostiziert und mit dem 

Ausfallverhalten im Feld verglichen. Es wird zum einen dargestellt, wie diese unterschiedlichen 

Informationsquellen miteinander verknüpft werden können, um die Zuverlässigkeitswerte einer 

betrachteten Komponente zu präzisieren. Zum anderen, wie diese wiederum mit 

Zuverlässigkeitskennwerten anderer Komponenten zur Aussage auf einer höheren Ebene, bis 

hin zur Systemebene, verbunden werden können. 

 

1. Motivation 

Die Absicherung der Zuverlässigkeit eines neuen Getriebes erfolgt in der Produktentwicklung 

über Berechnungen und Erprobungen. Die Berechnungen werden meistens für Komponenten 

des Getriebes durchgeführt und dienen der betriebs- oder dauerfesten Auslegung. Die 

Erprobungstests erfolgen üblicherweise auf unterschiedlichen Systemebenen. Beispielsweise 

werden Tests auf Komponenten-, Baugruppen- oder Gesamtsystemebene durchgeführt. Die 

Tests können darüber hinaus unterschiedliche Zielsetzungen haben und als sogenannte 

„Success-Run-Tests“ (SR) oder „End-of-Life-Tests“ (EoL) konzipiert sein.  

Die zentralen Fragestellungen sind, 

 wie sich diese unterschiedlichen Informationsquellen nutzen lassen, um daraus eine 

Gesamtaussage zur abgesicherten Zuverlässigkeit des Getriebes abzuleiten, und 

 ob die während der Produktentwicklung prognostizierte abgesicherte Zuverlässigkeit 

durch das Verhalten im Feld bestätigt wird. 
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2. Prinzipielles Vorgehen 

Vorkenntnisse aus Berechnung und Simulation sowie aus Versuchen werden zur Aussage 

über die aktuelle Zuverlässigkeit auf Komponenten-, Subsystem- und Systemebene 

berücksichtigt. Die Verknüpfung verschiedener Vorinformationen innerhalb eines Teilsystems 

(Komponente, Baugruppe o.ä.) erfolgt durch einen Bayes-Ansatz [1] basierend auf 

Betaverteilungen wie in [2] (S. 39-42) beschrieben. Zur Nutzung von Zuverlässigkeitswerten 

verschiedener Komponenten als Vorinformation zu einem höheren Systemniveau kommt die 

Approximation über (Beta-)Verteilungsmomente [3] zum Einsatz, wie z.B. in [4] (S. 95-96) 

beschrieben. 

Das Zuverlässigkeitsmodell, d.h. die zuverlässigkeitstheoretische Systemstruktur mit allen 

relevanten bzw. zu betrachtenden Subsystemen und Komponenten bildet dabei den 

Ausgangspunkt. Die a-priori-Zuverlässigkeitsverteilung bildet die wesentliche Grundlage für 

die Anwendung des Satzes von Bayes, der sie mit weiteren Informationen aus zusätzlichen, 

aktuellen Tests, zur a-posteriori-Zuverlässigkeitsverteilung verknüpft. Eine Validierung des 

Vorgehens entsteht aus dem Abgleich der errechneten, theoretischen Zuverlässigkeit mit der 

Feldzuverlässigkeit auf verschiedenen Systemebenen.  

In den folgenden Kapiteln wird als theoretische Grundlage das Vorgehen zur Verknüpfung von 

Vorkenntnissen nach dem Bayes-Ansatz bzw. der Momentenmethode erläutert. 

 

3. Grundlagen zur Verknüpfung von Vorkenntnissen mit aktuellen Testergebnissen 

Vorinformationen aus Berechnungen/ Simulationen oder vorangegangenen Versuchen 

konstruktiv ähnlicher Produkte bzw. des gleichen Produkts werden zur Beurteilung der 

Zuverlässigkeit ergänzend zu aktuellen Tests berücksichtigt. Somit lässt sich die 

Aussagewahrscheinlichkeit erhöhen oder der für den Zuverlässigkeitsnachweis nötige 

Stichprobenumfang reduzieren. 

Der Satz von Bayes verknüpft Vorkenntnisse in Form der a-priori-Dichte mit dem 

Ausfallverhalten des aktuelleren Produktstands zur a-posteriori-Dichte. Sie stellt eine 

verbesserte Schätzung des tatsächlichen Werts der Zufallsgröße „Zuverlässigkeit“ dar.   

Im Rahmen dieser Arbeit stammt die a-priori-Dichte aus Berechnungen, die zusätzlichen 

Informationen aus Tests. 

Die aus dem Bayes-Theorem resultierende a-posteriori-Dichte lässt sich mathematisch wie 

folgt angeben, vgl. z.B. [5] (S. 274):  

 
(1) 
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mit f(R)  a-priori-Dichte, P(Ex|R)  bedingte Wahrscheinlichkeit, f(R| Ex)  a-posteriori-

Dichte, R  Zuverlässigkeit. 

Die bedingte Wahrscheinlichkeit wird typischerweise als binomialverteilt beschrieben [2] 

(S. 37): 

 (2) 

mit n  Stichprobenumfang, x  Anzahl der Ausfälle, b  Weibull-Formparameter bei 

Feldbedingungen, bp  Weibull-Formparameter bei Prüfbedingungen, Lv = 

Lebensdauerverhältnis, r = Raffungsfaktor. 

Betrachtet wird die durch eine Binomialverteilung beschriebene bedingte Wahrscheinlichkeit 

(vgl. (2)) und die a-priori-Dichte der Zuverlässigkeit in Form der Betaverteilung (vgl. (3), mit A0 

und B0 als die verteilungsbeschreibenden Parameter mit „0“ als Kennzeichnung der 

Vorinformation). Die Methode wie hier dargestellt und angewandt überträgt das Vorwissen aus 

der Komponentenerprobung in vollem Umfang. Ein teilweiser Übertrag ist möglich, wie z.B. in 

[2] (S. 75) vorgeschlagen. 

Aus der a-priori-Dichte der Form 

 (3) 

wird die a-posteriori-Dichte der folgenden Form: 

 
(4) 

Dies entspricht der Betaverteilung mit den verteilungsbeschreibenden Parametern: 

;  (5) 

Die Integration von Gleichung (4) liefert die Aussagewahrscheinlichkeit PA. 

Vorkenntnisse aus Berechnung resultieren in einer theoretischen Stichprobenreduktion ∆ nber. 

Sie berechnet sich unter der Annahme einer Stufenfunktion für f(R) mit Stufensprung bei R(ts) 

und eines Success-Run-Äquivalents der Berechnung (kein Ausfall) wie folgt: 

 

(6) 

Hierbei wird angenommen, dass Rber mit einer Aussagewahrscheinlichkeit von PA = 50% 

vorliegt. Die hier angewandte Berechnung von ∆nber ersetzt die in [2] (S. 69-70) 

vorgeschlagene numerische Rechenweise. Es handelt sich weiterhin um eine mit Dr. Krolo 

abgestimmte Alternative. Die für diesen Ansatz zu Grunde gelegte Stufenfunktion als a-priori-

Dichte f(R) ist in Bild 1 dargestellt. Sie weist einen Stufensprung bei Rsoll(ts) auf. Die berechnete 

Zuverlässigkeit zum Zeitpunkt der Solllebensdauer ts (Rber(ts)) muss größer als das Quadrat 
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der Soll-Zuverlässigkeit zum gleichen Zeitpunkt (Rsoll(ts)2) sein, da sonst eine negative 

Stichprobenreduktion errechnet wird. In der Praxis kann i.d.R. davon ausgegangen werden, 

dass Rber > Rsoll ist.  

 
Bild 1: Zuverlässigkeitsdichte der a-priori-Verteilung zur Berücksichtigung von 

 Vorkenntnissen aus Berechnungsergebnissen 

 

Besteht das Vorwissen aus Berechnungsergebnissen und bestehen die aktuellen Tests aus i 

Success Runs (SR) oder End-of-Life-Tests (EoL) mit Lebensdauerverhältnissen (Lv), 

Raffungsfaktoren (r) und im Falle der EoL-Tests mit x Ausfällen, ändert sich (5) in (7). Hier sind 

keine Vorkenntnisse aus Tests enthalten, weswegen A0 und B0 entfallen. 

;      (7) 

Dies sind die verteilungsbeschreibenden Parameter der a-posteriori-(Beta-)Verteilung der 

Zuverlässigkeitsdichte. Aus ihr bestimmt sich der Zuverlässigkeitswert bei gegebener 

Aussagewahrscheinlichkeit in dieser Arbeit.  

 

4. Grundlagen zur Verknüpfung von Vorkenntnissen zur höheren Systemebene 

Vorkenntnisse einer untergeordneten Systemebene werden zur Zuverlässigkeitsverteilung der 

übergeordneten Systemebene verknüpft, vgl. Bild 2. Hier geschieht das über die 

Approximation über Verteilungsmomente der Betaverteilung. 

Die a-priori-Systemverteilung auf dieser nun höheren Systemebene kann als Vorkenntnis wie 

in Kapitel 3 beschrieben genutzt und somit mit Testergebnissen aktueller Tests verknüpft 

werden.  

Über Gleichungen (8) werden die Beta-Verteilungsparameter der Zuverlässigkeitsverteilung 

der übergeordneten Systemebene berechnet. Es handelt sich um einen approximativen 

Ansatz. Die sich ergebende Verteilung stellt die a-priori-Dichte dar, falls aktuelle 

Testergebnisse auf dieser Systemebene vorliegen und beide Informationen verknüpft werden 

sollen. Dies geschieht z.B. nach [2]. Der Erwartungswert entspricht hierbei dem ersten Moment 

der Systemverteilung, vgl. Gleichung (9). Die Methode wie hier dargestellt und angewandt  
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überträgt das Vorwissen aus der Komponentenerprobung in vollem Umfang. Ein teilweiser 

Übertrag ist möglich, wie z.B. durch in [4] (S. 96) vorgeschlagen. 

;  (8) 

Mit dem Erwartungswert der a-priori-Systemverteilung basierend auf Ai und Bi der 

Komponentenverteilungen: 

 
(9) 

Die Varianz Vars(R) der System-Verteilung errechnet sich wie folgt: 

 
(10)

Weitere Methoden zur Bildung der (a-priori-)Systemverteilung über 

Zuverlässigkeitsverteilungen der beinhalteten Komponenten existieren. Erwähnt seien die 

unter Umständen exakte Mellin-Transformation, sowie die approximative Bestimmung über 

Monte-Carlo-Simulationen. Ein Vergleich der Methoden wird in [6] erbracht. 

 

5. Zusammengeführtes Vorgehen

Bild 3 zeigt das Schema der angewandten Vorgehensweise zur Berücksichtigung von 

Vorkenntnissen innerhalb einer Komponente (vgl. Kapitel 3) bzw. zur Verknüpfung der so 

gefundenen a-posteriori-Verteilungen verschiedener Komponenten zur höheren Systemebene 

(vgl. Kapitel 4). Die aus der Verknüpfung von Vorkenntnissen zur höheren Systemebene 

 

Bild 2: Verknüpfung von Zuverlässigkeitsdichten auf Komponentenebene zur a-priori-

 Systemverteilung (nach [4] S.93, gekürzt) 
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entstandene Beta-Verteilung entspricht der a-priori-Verteilung eben dieser höheren 

Systemebene. Diese wird, verknüpft mit Informationen aus aktuellen Testergebnissen, über 

die in Kapitel 3 dargestellte Methode mittels des Satzes von Bayes, zur a-posteriori-

Systemverteilung, die um diesen Informationsgehalt präzisiert ist, vgl. Bild 3. 

 

Bild 3: Angewandte Vorgehensweise zur Berücksichtigung von Vorkenntnissen  

 

6. Das Beispielgetriebe EcoLife 

Die reduzierte Systemstruktur, die modellhaft das Gesamtsystem EcoLife 

zuverlässigkeitstechnisch beschreibt, ist in Bild 4 zusammen mit dem Abbild des Getriebes 

dargestellt. Die in dieser Arbeit zuverlässigkeitstechnisch betrachteten 16 Komponenten und 

Subsysteme sind umrahmt. Für sie werden Vorinformationen aus Berechnung berücksichtigt.  

 

Bild 4: Reduzierte Systemstruktur des Beispielgetriebes EcoLife 
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Es liegen des Weiteren folgende Annahmen zu Grunde: 

 Die Systemstruktur ist rein seriell. 

 Die Zuverlässigkeitsdichten werden durch Beta-Verteilungsdichten beschrieben. 

 Die Zuverlässigkeit der in dieser Arbeit nicht explizit betrachteten Elemente der 

Systemstruktur wird zu R(ts) = 1 (100%) angenommen. 

 Jeder Planetensatz wurde mehrmals ausfallfrei getestet und deren 

Komponentenbeanspruchungen zu individuellen Lebensdauerverhältnissen 

ausgewertet. Die Unabhängigkeit der Tests auf Subsystemebene (Planetensatz) und 

Komponentenebene wird vorausgesetzt. Ergebnisse der Tests fließen auf zwei 

Systemebenen mit ein. 

 

7. Berechnung der a-posteriori-Zuverlässigkeit beispielhalft anhand Planetensatz 1 

Zunächst werden Vorkenntnisse aus Berechnungen zu den einzelnen Komponenten, die der 

Baugruppe Planetensatz 1 (vgl. Bild 4) zugeordnet sind, über den Satz von Bayes mit aktuellen 

Testergebnissen verknüpft (vgl. Kapitel 3). Dies erfolgt exemplarisch anhand der Komponente 

„Planetenlager“. Anschließend werden die jeweilig ermittelten a-posteriori-

Zuverlässigkeitsdichten aller 4 Komponenten (Sonnenrad, Planetenlager, Planetenrad, 

Hohlrad) über die Approximation über Verteilungsmomente der Betaverteilung (vgl. Kapitel4) 

zur (a-priori-) Zuverlässigkeitsdichte der höheren Systemebene des Planetensatzes verknüpft. 

Prämissen und Ergebnisse der beispielhaften Berechnung sind in Tabelle 1 

zusammengefasst. Sensible Daten sind durch # unkenntlich gemacht. 

Tabelle 1: Berechnungsprämissen und -ergebnisse Planetenlager, Zusammenfassung 

ts 1 [-] b 1,5 [-] 

Rsoll(ts) #% t0 0,44 [-] 

PA(Rsoll(ts)) 50% T # [-] 

tber 8,72 [-] Rber(ts) #% 

R(tber) #% nber 1,98 Stück 
 

Die Zuverlässigkeit bei Solllebensdauer Rber(ts) wird wie folgt berechnet [5] (S.43): 

 
(11)

Die theoretische Stichprobenreduktion ∆nber berechnet sich nach Gleichung (6).  

Tabelle 2 fasst die Testergebnisse für die Komponente Planetenlager 1 zusammen, also die 

Informationen der bedingten Wahrscheinlichkeit. Der verglichen zur Berechnung größere Wert 

für Formparameter b der Weibull-Verteilung soll berücksichtigen, dass sich bei der 

VDI-Berichte Nr. 2307, 2017 223

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


Beschreibung einer tatsächlichen (z.B. empirischen) Ausfalldichte mit beobachteter 

ausfallfreie Zeit t0 unterschiedliche b-Werte für eine 2- bzw. 3-parametrige Weibull-Verteilung 

ergeben. Der b-Wert für die 2-parametrige Weibull-Verteilung tendiert größer zu sein. Im Test 

wurde ZF-seitig von einer 2-parametrigen Weibull-Verteilung ausgegangen.  

Tabelle 2: Testergebnisse Planetenlager 1, Zusammenfassung, 3 Success Runs (SR) 
n Pro SR 1 Stück Lv1 1,18 [-] 

b 2 [-] Lv2 2,41 [-] 

r 1 [-] Lv3 1,69 [-] 

 

Unter Anwendung der Gleichungen (8) werden die beschreibenden Parameter der Beta-

Verteilung berechnet. Die so entstandene a-posteriori-Zuverlässigkeitsdichte des 

Planetenlagers sowie die weiteren in Planetensatz 1 gemäß Systemstruktur (vgl. Bild 4) 

berücksichtigten Komponenten sind in Bild 5 (dünn, gestrichelt) dargestellt. Jene des 

Sonnenrads und des Hohlrads sind zufällig identisch.  

Ebenso in Bild 5 dargestellt ist die Zuverlässigkeitsdichte des Planetensatzes 1 (fett, 

gestrichelt). Die beschreibenden Parameter wurden nach Gleichungen (8)-(10) berechnet. 

Diese Zuverlässigkeitsdichte wird als a-priori-Dichte verstanden (vgl. Kapitel 5), repräsentiert 

durch die Summanden A0 und B0, und mit den vorliegenden Testergebnissen verknüpft. Aus 

Gleichung (7) wird dann Gleichung (12).  

;  (12)

Liegen, wie hier der Fall, keine Berechnungsergebnisse auf Planetensatz-Niveau vor, die als 

Vorkenntnisse berücksichtigt werden können, wird ∆nber = 0.  

Bild 5: Zuverlässigkeitsdichten von Planetensatz 1 

Komponente 1
Komponente 2
Komponente 3
Komponente 4
PLANETENSATZ 1 (a-priori)
PLANETENSATZ 1 (a-posteriori)

f(R) 

R 
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Planetensatz 1 wurde in 3 Tests mit verschiedenen Lebensdauerverhältnissen ohne Ausfall 

getestet. Die Berücksichtigung dieser Testergebnisse gemäß dem Ansatz beschrieben in 

Kapitel 3 bzw. nach Gleichung (12) führt zu einer verbesserten Zuverlässigkeitsaussage bzw. 

bei gleicher Aussagewahrscheinlichkeit zur Prognose einer höheren Zuverlässigkeit. Bild 5 

stellt die so berechnete a-posteriori-Dichte (d.h. mit Berücksichtigung der Testergebnisse) des 

Planetensatzes 1 dar (fett, durchgezogen). 

 

8. Die Zuverlässigkeitsdichten weiterer Komponenten, Baugruppen bzw. Subsysteme 

Die Zuverlässigkeitsdichten der weiteren Einheiten gemäß Systemstruktur werden ähnlich 

dem oben genannten Vorgehen bestimmt. Auf z.T. abweichende Prämissen wird im 

Folgenden eingegangen. 

Turbinenwelle: Es wird eine gleichverteilte Zuverlässigkeitsdichte als Vorinformation 

berücksichtigt. Das entspricht mathematisch ∆nber =1 (vgl. [2] S.70). Aus den Testergebnissen 

werden 6 EoL-Tests und ein SR auf verschiedenen Belastungsniveaus berücksichtigt. Die 

Testergebnisse werden auf die äquivalente Lebensdauer bei Feld-Belastung unter 

Anwendung des Inverse-Power-Law bezogen und somit Lebensdauerverhältnisse berechnet. 

Als Formparameter wird ein für Wellen typischer Wert angenommen. 

Antriebswelle: Die Berechnungsergebnisse werden mit Ergebnissen aus 5 SR-Tests 

verknüpft. Die Belastungen im Test variieren. Die erreichten Lastwechselzahlen werden auf 

ihr Äquivalent bei Feld-Belastung bezogen um die Lebensdauerverhältnisse zu erhalten. Der 

Testcharakter (SR oder EoL) spielt für die Berücksichtigung des „Lebensdauer“-Verhältnisses 

formell keine Rolle. Ausfällen wird über den Summand x Rechnung getragen, vgl. Gleichung 

(12). Über eine Amplitudentransformation nach [7] (S. 185) werden verschiedene 

Kollektivanteile auf eine rein wechselnde Belastung reduziert. 

Planetensätze 2 und 3: Auf gleiche Weise, wie in Kapitel 7 beispielhaft die 

Zuverlässigkeitsdichte des Planetensatzes 1 berechnet wird, geschieht dies nun für die 

Planetensätze 2 und 3. Wieder werden die a-priori-Dichten aus der Berechnung als 

Vorkenntnis mit je drei EoL-Testergebnissen zur a-posteriori-Dichte verknüpft. Diese a-

posteriori-Dichten werden wieder über die Approximation durch die Betaverteilung zur a-priori-

Dichte auf höherem Systemniveau. 

Kolben A: Berechnungsergebnisse beziehen sich auf die als am kritischsten identifizierte 

Stelle. Dabei werden verschiedene Oberflächenrauheiten berücksichtigt. Testergebnisse 

liegen für zwei verschiedene Belastungen (Drücke) aus je drei SR vor. Auf die jeweils 

ertragbare Lastwechselzahl wird wieder über den Ansatz des Inverse-Power-Law 

geschlossen. Der Exponent des Inverse-Power-Law wird über ähnliche Produkte geschätzt. 
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Da die restlichen Komponenten des Subsystems „Schaltelemente“ nicht Teil der Untersuchung 

dieses Projekts sind (d.h. mit R=1 angenommen wurden) (vgl. Kapitel 6), entspricht die 

rechnerische Zuverlässigkeitsdichte von Kolben A der des übergeordneten Subsystems 

„Kupplung A“ und diese wiederum jener des Subsystems „Schaltelemente“. 

Bild 6 illustriert u.a. die Zuverlässigkeitsdichten der Subsysteme Turbinen- und Antriebswelle, 

Planetensätze 1-3 und Kupplung A. 

 

9. Zuverlässigkeitsdichte des Gesamtsystems EcoLife 

Die Dichten der Planetensätze 1-3 ergeben zusammen mit der Dichte der Turbinenwelle und 

der Antriebswelle die Zuverlässigkeitsdichte des Planetengetriebes (vgl. Systemstruktur, Bild 

4). Diese wiederum verknüpft mit jener von Kupplung A (identisch mit der Dichte für 

„Schaltelemente“) ergeben die Zuverlässigkeitsdichte für das Gesamtsystem EcoLife. Die 

Dichte der Kupplung A wird durch einen sehr hohen A- und einen vergleichsweise kleinen B-

Parameter beschrieben (ähnlich wie auch die Dichten von Turbinenwelle und Antriebswelle). 

Das impliziert eine hohe Zuverlässigkeit. Kombiniert mit dem Planetengetriebe resultiert die 

Dichte des Gesamtsystems. Die Dichte des Planetengetriebes und des Gesamtsystems 

EcoLife stimmen nach dem angesetzten Modell fast überein, zumal sehr hohe 

Zuverlässigkeiten der Antriebs- und Turbinenwelle prognostiziert wurden, vgl. Bild 6. 

Bild 6: Zuverlässigkeitsdichten der Subsysteme sowie des Gesamtsystems EcoLife 

 

10. Validierung: Vergleich prognostizierter mit beobachteter Zuverlässigkeit 

Die Prognosegüte der Zuverlässigkeit wird retrospektiv über den Vergleich mit dem aus 

Felddaten ermittelten Zuverlässigkeitswert bestimmt. Dokumentierte Feldausfälle bilden die 

Grundlage für die Ausfallwahrscheinlichkeitsanalyse der betrachteten Einheiten. 

Planetensatz 1 (a-posteriori)
Planetensatz 2 (a-posteriori)
Planetensatz 3 (a-posteriori)
Antriebswelle
Turbinenwelle
Kupplung A
Planetengetriebe
EcoLife

f(R) 

R 
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Suspensionen (Überlebende) werden gemäß der angegebenen Produktionsvolumina 

berücksichtigt. Aus den erfassten Beanstandungen wurde eine Laufleistungsverteilung 

ermittelt, die den Suspensionen zu Grunde liegt. Die errechneten Prognosewerte der 

Zuverlässigkeit R bei ts = 1 mit einer Aussagewahrscheinlichkeit von PA = 50% wurden mit den 

im Feld beobachteten Werten verglichen. 

Für Kolben A bzw. Kupplung A ergibt dem Modell gemäß sich gute Konformität zwischen 

vorausgesagter und der im Feld beobachteten Zuverlässigkeit. Im Falle des Planetengetriebes 

weicht die beobachtete Zuverlässigkeit im Feld gemäß Auswertung gegenüber der Prognose 

um etwa die Hälfte in Richtung höherer Zuverlässigkeit ab, was teilweise auf den Effekt der 

Serienschaltung aller Komponenten zurückzuführen sein könnte. Die Zuverlässigkeit der 

Schaltelemente wurde durch die Prognose leicht überschätzt. Ein Hauptgrund könnte in der 

starken Vereinfachung des Zuverlässigkeitsmodells des Teilsystems Schaltelemente liegen. 

Die beobachtete Gesamtzuverlässigkeit des Gesamtsystems EcoLife verhält sich zur 

prognostizierten ähnlich wie dies beim Planetengetriebe der Fall ist. 

 

11. Zusammenfassung und Ausblick 

Die angewandte Methode erscheint tendenziell konservativ, selbst bei voller Übernahme der 

Vorkenntnisse (hier: Transformationsfaktoren Ф=1). Das dargestellte Beispiel der 

Zuverlässigkeitsprognose zeigt, dass hiernach die Prognose trotz Integration von 

Berechnungsergebnissen und Testergebnissen konservativer ist als die im Feld beobachtete 

Zuverlässigkeit. Als Methodenkombination eignet sich das dargelegte Vorgehen zur 

quantitativen, transparenten Abschätzung dennoch. Die prinzipielle Einsatzfähigkeit und der 

Nutzen der Methoden (vgl. Kapitel 3 und 4) bei isolierter und kombinierter Anwendung wurden 

aufgezeigt. Eine erweiterte Betrachtung der Übertragbarkeit der Prognose auf das 

Feldverhalten könnte die Einordnung der teilweise methodenbedingt eher konservativen 

Prognose unterstützen, z.B. über faktorielle Anpassungen, mit dem Ziel, dem Zuverlässigkeits-

Nachweis beizutragen. 

Ergebnisse aus EoL-Tests wirken sich methodenbedingt tendenziell negativ auf die a-

posteriori Zuverlässigkeitsdichte aus, da die Anzahl der Ausfälle den 

Betaverteilungsparameter A verkleinert, B hingegen vergrößert (vgl. Gleichung (8) bzw. (12)). 

Bei ausschließlich SR-Tests würde A nicht gemindert werden und B minimal bleiben. Die 

Berücksichtigung weiterer Testergebnisse würde die Zuverlässigkeitsprognose ergänzen und 

präzisieren.  

Raffungsfaktoren sind in das dargelegte Vorgehen zu integrieren, um Tests bei einer anderen 

als der Feldbelastung zu betrachten. Transformationsfaktoren würden einer nur teilweisen 
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Übertragbarkeit der Vorinformationen Rechnung tragen. Die Auswirkung alternativer 

Annahmen zur prinzipiellen Verteilung der Zuverlässigkeitsdichte aus  

Berechnungsergebnissen ist zu untersuchen.  

Die dargelegte Struktur des Vorgehens zur Zuverlässigkeitsprognose auf verschiedenen 

Systemebenen bei Verknüpfung mehrerer verschiedener Subsystem-Zuverlässigkeiten 

diversen Ursprungs (hier: Berechnung + Test) ist praktikabel und eignet sich für eine 

wiederholte Aktualisierung der Zuverlässigkeitsaussage. Hierzu muss die a-posteriori Dichte 

wieder als a-priori-Dichte verstanden werden und mit neuen Test- bzw. 

Berechnungsergebnissen verknüpft werden. Die Genauigkeit der Zuverlässigkeitsaussage 

wächst als Folge.  
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Kurzfassung 
Moderne Fahrzeuge verfügen über eine Vielzahl von Steuergeräten, welche notwendig sind, 

um Anforderungen an Verbrauch, Fahrleistung oder -komfort zu erfüllen. Dabei haben sowohl 

die Bedatung, wie auch deren Regelstrategien, einen großen Einfluss auf die sich ergebenden 

mechanischen Belastungen. 

Der Beitrag vermittelt anhand konkreter Beispiele (Allradverteilung und Quersperre) quantitativ 

die sich durch Änderung des Datenstands ergebenden Lasten, sowie deren 

Auftretenswahrscheinlichkeit. Ferner wird ein Ansatz zur Zuverlässigkeitsbestimmung 

aufgezeigt. Kern des Ansatzes ist dabei, Umgebungs- und Fahrermodelle innerhalb von 

Simulationen per Monte-Carlo Methodik zu variieren, um schadenskritische Abläufe zu 

identifizieren und so verschiedene Bedatungen und Regelstrategien zu bewerten. So ist es 

möglich, die notwendigen Erprobungen zur Zuverlässigkeitsbestimmung zu verschlanken. 

 
Abstract 
Modern vehicles contain a variety of control units which are necessary in order to meet the 

requirements for fuel consumption, driving performance or travelling comfort. Data sets and 

control strategies of these control units have a big influence on resulting mechanical loads. 

This paper gives a quantitative overview of the resulting loads caused by changes of data sets 

regarding specific examples (all-wheel distribution and axle-differential lock) and their 

probabilities of occurrence. Furthermore, an approach to evaluate a reliability analysis will be 

shown. The core of the approach is to vary the environmental and driver models within a 

simulation by Monte-Carlo method to identify critical courses and thus evaluate data sets and 

control strategies. This way, the extent of vehicle testing necessary for reliability evaluation 

can be reduced.   
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1. Einleitung 
Durch die fortschreitende Digitalisierung verkürzen sich auch in der Automobilbranche die 

Produktlebenszyklen immer weiter. Dieser Umstand erzwingt eine Verkürzung der 

Entwicklungszeiten eines Produkts. Im Gegensatz hierzu steht die steigende Komplexität 

moderner Fahrzeugantriebstränge. Neben der Kombination von Verbrennungsmotoren und 

elektrischen Antrieben führen auch immer leistungsfähigere Regelsysteme (beispielsweise zur 

Steigerung der Fahrdynamik oder des Komforts) zu einer steigenden Anzahl von 

Komponenten, sowie der Zunahme der Leistungsfähigkeit der einzelnen Bauteil-Steuergeräte.  

Dies führt zunehmend dazu, dass die Bedatung der Steuergeräte beziehungsweise die 

hinterlegte Regelstrategie maßgeblich die auftretenden mechanischen Belastungen bestimmt. 

Allerdings entwickeln sich Bedatung beziehungsweise Regelstrategie über den Produkt-

Entstehungsprozess kontinuierlich weiter, was die genaue Betrachtung der sich daraufhin 

einstellenden Belastungen erfordert. Ein Ansatz hierzu ist die Anwendung einer Monte-Carlo-

Simulation, um den Einfluss sich ändernder Steuergeräteparameter auf entstehende 

Beanspruchungen bewerten zu können. 

 
2. Getriebeerprobung am Beispiel des Manövers „Überfahrt μ-Split“ 
Die Erprobung eines Getriebes kann in verschiedene Versuchsarten eingeteilt werden [1]. So 

werden bei der  Funktionserprobung Grundfunktionalitäten, wie die Ölversorgung, 

sichergestellt. Bei der Dauererprobung werden Lastläufe gefahren, beispielsweise in Form 

einer Beanspruchungs-Zeit-Funktion aus zuvor berechneten Lastkollektiven. Eine Sonderform 

stellen Manöver dar, welche durch unsachgemäßen Gebrauch des Fahrzeugs Belastungen in 

Höhe der Kurzzeitfestigkeit einzelner Bauteile erzeugen können [2] – im Folgenden 

„Missbrauchsmanöver“ genannt. 

Eine Form dieser Missbrauchsmanöver basiert auf unterschiedlichen Reibwerten zwischen 

Reifen und Straße je Rad beziehungsweise Achse. Diese Manöver stellen das Anfahren auf 

teilweise vereisten oder verschmutzten Fahrbahnuntergründen dar, wobei μ-high einen hohen 

Reibwert (μ circa 1) zwischen Straße und Reifen bezeichnet, μ-low einen niedrigen (μ circa 

0,1).  

Das Manöver „Überfahrt μ-Split“ zielt auf einen maximalen Energieeintrag in die Achsgetriebe 

ab, kombiniert mit einer hohen Stoßbelastung des gesamten Antriebstrangs. Wie Bild 1 

 verdeutlicht, steht das Fahrzeug zu Beginn des Manövers jeweils mit beiden Rädern einer 

Fahrzeugseite auf μ-high, mit den anderen beiden auf μ-low.  
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Bild 1: Manöver "Überfahrt μ-Split" 

 

Das Fahrzeug wird beschleunigt, bei angetriebenen Rädern ohne Quersperre im Achsgetriebe 

stellt sich eine Differenzdrehzahl zwischen linker und rechter Radseite ein. Beim Übergang 

des schlupfenden Rads von μ-low auf μ-high wird diese Differenzdrehzahl (schlagartig) wieder 

abgebaut. Das Manöver erhält seinen Missbrauchscharakter durch die Volllast-

Beschleunigung in dieser Situation. Bild 2 zeigt beispielhaft die Verläufe der Drehmomente 

und Drehzahlen in Abhängigkeit der Fahrpedalstellung.  
 

   
Bild 2: Verlauf von Fahrpedal, Rad-Drehmoment und Rad-Drehzahl  
 
3. Monte-Carlo-Simulation zur Bestimmung der Streuung von Versuchsergebnissen 
Wiederholt durchgeführte (reale) Manöver führen zu stochastisch verteilten 

Versuchsergebnissen, im Gegensatz zu meist deterministischen Simulationsergebnissen. 

Aufgrund minimaler Variation der Versuchsrandbedingungen streut beispielsweise das 

maximal auftretende Rad-Drehmoment während eines Manöverdurchgangs um einen 

bestimmten Wert. Zur Beschreibung der  Streuung gibt es verschiedene Verteilungen, wie die 

Gleichverteilung oder die Normalverteilung. Die Auswertung der Messreihen ergab häufig 

asymmetrisch verteilte Messgrößen, welche durch eine Weibullverteilung besser beschrieben 

werden können [3]. 

Allgemein erzeugt bei der Monte-Carlo-Simulation (MCS) ein Zufallsgenerator gleichverteile 

Zahlen (stochastisch unabhängig) im Intervall [0,1] [4]. Gemäß dem schwachen Gesetz großer 

Zahlen strebt die relative Häufigkeit eines gleichverteilten Ereignisses gegen seinen 
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Erwartungswert. Die absoluten Häufigkeiten konvergieren jedoch nicht [5]. Eine Monte-Carlo-

Simulation arbeitet daher mit einer großen Anzahl an Simulationsdurchläufen, bei denen 

unbekannte Parameter zufällig vorgegeben werden, bis ein Abbruchkriterium erreicht wird. 

Anwendung findet die MCS bei Problemstellungen, welche sehr komplex und meist nur noch 

numerisch zu lösen sind [6]. 

Soll beispielsweise das Maximum einer Funktion innerhalb eines Intervalls  gefunden 

werden, welche nicht differenzierbar ist, so bietet sich der Einsatz einer MCS an. Für zufällige 

Werte  wird der Funktionswert  berechnet und zwischengespeichert. Mit 

steigender Anzahl an Berechnungen nähert sich der gefundene Maximalwert dem echten 

Maximum an. Um gute Ergebnisse zu erzielen, sind jedoch sehr viele Berechnungsschritte 

notwendig. 

Eine Möglichkeit zur Steigerung der Effizienz sind mehrstufige MCS. Hier werden in der ersten 

Stufe Zufallszahlen aus dem gesamten Intervall gezogen. Nach einer festgelegten Anzahl an 

Durchläufen wird das Intervall auf den Bereich eingeengt, in dem die höchsten Werte gefunden 

wurden. In der nächsten Stufe werden dann Zufallszahlen aus dem eingeengten Intervall 

gezogen. In weiteren Schritten wird das Intervall schrittweise eingeengt, siehe Bild 3. 

 

 
Bild 3: Suche des Maximums mit einer zweistufigen MCS 

 

Durch eine zufällige Parametrisierung eines Simulationsmodells wird eine Streuung des 

Simulationsergebnisses erzeugt, wobei die Streuung der Eingangsparameter einer zuvor 

definierten Verteilung folgt. Eine große Herausforderung hierbei ist die Wahl der 

Verteilungsparameter für die Eingangsgrößen der MCS [7]. Bei internen Versuchen zeigte 

sich, dass kleine Abweichungen hier zu einer großen Verfälschung der Ergebnisse führen. Ein 

Ansatz zur Bestimmung dieser Verteilungsparameter aus Messdaten wird in Kapitel 4 gezeigt. 
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4. Bestimmung auftretender Belastungen und deren Streuung durch sich ändernde 
Steuergeräteparameter  

Im Folgenden wird das gesamte Vorgehen zur Bestimmung der auftretenden Belastungen 

aufgezeigt. Das Hauptaugenmerk liegt dabei auf einer Methode zur Bestimmung der 

Verteilungsparameter für die Eingangsgrößen der MCS durch eine zweite überlagerte MCS, 

siehe „Optimierung“ in Bild 4. 

 

 
Bild 4: Vorgehen zur Bestimmung auftretender Belastungen und deren Streuung durch sich 

ändernde Steuergeräteparameter 

 

4.1. Aufbau des Simulationsmodells 
Der Antriebstrang des Fahrzeugs wird als Fünf-Massen-Schwinger abgebildet, wobei die 

Massen über eine Drehsteifigkeit und eine geschwindigkeitsproportionale Dämpfung 

interagieren, wie in Bild 5 dargestellt. 

Der Reifen-Straße-Kontakt wird über ein Pacejka-Reifenmodell dargestellt: In Abhängigkeit 

des Schlupfs und des Reibkontakts Reifen-Straße kann der Reifen Kräfte übertragen, dadurch 

wird das Gesamtfahrzeug (als Massenpunkt modelliert) beschleunigt.  

Des Weiteren ist die im Vergleichsfahrzeug vorhandene elektronische Differentialsperre im 

Modell abgebildet. Ein PID-Regler regelt die Differenz aus Fahrzeuggeschwindigkeit und 

Radgeschwindigkeit zu Null, wenn die Differenzgeschwindigkeit einen Schwellwert übersteigt. 

Das Motordrehmoment wird aus Fahrpedal und Motordrehzahl berechnet, wobei ein 

Zweipunktregler bei Erreichen der maximal zulässigen Motordrehzahl das Motordrehmoment 

ausblendet. Um ein reales Ansprechverhalten des Motors abzubilden, verzögern PT1-Glieder 

den Aufbau des Drehmoments. 
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Der Reibwert μ zwischen Straße und Reifen wird für jedes Rad einzeln vorgegeben. Gemäß 

dem Versuchsaufbau bleibt der Reibwert des μ-high-Rads konstant, während das andere Rad 

zum Zeitpunkt t-Sprung von μ = μ-low auf μ = μ-high ansteigt. 

 

 
Bild 5: Aufbau des Simulationsmodells  

 
4.2. Bestimmung realitätsnaher Verteilungsparameter für die Eingangsgrößen der 

Monte-Carlo-Simulation 
Ziel der Variation der Simulationsparameter ist eine Modellparametrisierung, welche bei 

vielfacher Simulation eines Manövers Belastungen mit vergleichbarer Streuung analog zu 

Realmessungen erzeugen. Stellvertretend für auftretende Belastungen wird nachfolgend das 

maximal auftretende Rad-Drehmoment während eines Simulationsdurchgang betrachtet. 

Bild 6 zeigt den Ablauf der Simulation: In einem Durchgang werden die Parameter μ-low, μ-

high und t-Sprung zufällig erzeugt, wobei diese Parameter weibullverteilt vorliegen. 

Anschließend wird das maximale Rad-Drehmoment M-max dieses Durchgangs berechnet.  

Für feste Weibull-Parameter bx und Tx wird das Simulationsmodell n mal berechnet, wobei 

jeder Durchgang, aufgrund zufällig gewählter Parameter μ-low, μ-high und t-Sprung, andere 

maximale Rad-Drehmomente M-max erzeugen. Diesen Drehmomenten wird wiederrum eine 
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Verteilung angenähert, welche mit der Verteilung der maximal auftretenden Rad-

Drehmomente aus der vorliegenden Fahrzeugmessung verglichen werden kann. 

Im nächsten Schritt wird für jeden Weibull-Parameter bx und Tx der drei zu variierenden 

Parametern ein neuer Wert bestimmt, dieser wird zufällig (gleichverteilt) zwischen zwei zuvor 

definierten Grenzwerten ausgewählt. Nun werden wieder n Simulationsdurchgänge 

durchgeführt und eine Verteilung der maximal auftretenden Rad-Drehmomente berechnet. 

Dieser Schritt wird m mal wiederholt, wobei durch den Vergleich der Verteilung zwischen 

Simulation und Messung die Grenzwerte der Weibull-Parameter fortlaufend optimiert werden. 

 

 
Bild 6: Ablauf der Simulation 

 

Ergebnis der Optimierung ist eine Parametrisierung bopt und Topt für jeden der Parameter μ-

low, μ-high und t-Sprung, so dass die wiederholte Simulation des Manövers maximale Rad-

Drehmomente M-max mit einer Verteilung erzeugt, welche sich der Verteilung der Rad-

Drehmomente aus den gemessenen Versuchsdaten annähert. Bild 7 zeigt das beste 

Simulationsergebnis, welches nach rund 150.000 Simulationsdurchgängen erzielt wurde. 
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Bild 7: Häufigkeiten der max. auftretenden Rad-Drehmomente  

 

Mit jedem Optimierungsschritt verkleinern sich dabei die Intervalle, aus denen die Weibull-

Parameter bx und Tx gezogen werden. Bild 8 zeigt den Verlauf der Ober- und Untergrenzen 

eines Parameterpaars und deren Mittelwerte über die ausgeführten Optimierungsschritte. 

 

 
Bild 8: Optimierung der Verteilungsparameter 

 

Durch die Optimierung der Parametergrenzen nähert sich die Streuung der maximal 

auftretenden Rad-Drehmomente der Streuung der Versuchsergebnisse an. In Bild 9 sind die 

über mehrere Simulationsdurchläufe gemittelten relativen Häufigkeiten des Rad-

Drehmomentes über der Anzahl an Optimierungsschritten dargestellt. Zu Beginn der 

Optimierung streuen vereinzelte Werte stark nach oben, erst gegen Ende der Optimierung 

treten diese Extremwerte nicht mehr auf.  
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Bild 9: Gemittelte relative Häufigkeiten je Optimierungsschritt 

 
4.3. Berücksichtigung sich ändernder Steuergeräteparameter  
Im Entwicklungsprozess eines Fahrzeugs werden Regelstrategien und somit Bedatungen von 

Steuergeräten kontinuierlich weiterentwickelt. Im vorliegenden Simulationsmodell werden nun 

beispielhaft veränderte Datenstände einzelner Steuergeräte eingebunden: das 

Simulationsmodell wird also mit veränderten Parametern der betrachteten Steuergeräten 

erneut n mal simuliert. Für diese Simulation werden die im vorherigen Schritt bestimmten 

Streuungsparameter der Eingangsgrößen verwendet. Der zuvor erfolgte Abgleich der sich 

ergebenden Streuung mit real gemessenen Streuungen soll dabei sicherstellen, dass auch die 

sich aus den neuen Simulationen ergebenden Streuungen möglichst realitätsnah ergeben. 

Ergebnis ist wieder eine Verteilung der maximal auftretenden Rad-Drehmomente, welche mit 

den zuvor erzeugten Daten verglichen wird. Daraus erfolgt im Anschluss eine Bewertung des 

Datenstands hinsichtlich der zu erwartenden Belastungen für den Fahrzeugantriebstrang. 

Im ersten Beispiel wurden die Parameter des Steuergeräts des Porsche Stability 

Managements (PSM) verändert, siehe Bild 10. Dieser Datenstand beeinflusst das 

Regelverhalten des Automatischen Bremsen Differenzials (ABD), also die Höhe des durch die 

Bremsanlage aufgebauten Drehmoments bei Differenzdrehzahl zwischen linker und rechter 

Fahrzeugseite. Änderungen im Datenstand können sich beispielsweise durch geänderte 

Anforderungen an die Fahrdynamik ergeben. 
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Bild 10: Änderung des Datenstands des PSM-Steuergeräts 

 

Die Simulation wurde mit zwei veränderten Datenständen durchgeführt, die daraus 

resultierenden Verteilungen der maximal auftretenden Rad-Drehmomente sind in Bild 11 

dargestellt. So führt Datenstand 1 zu einer Verlagerung zu geringfügig niedrigeren Rad-

Drehmomenten, während Datenstand 2 im Durchschnitt höhere Werte mit geringerer 

Streubreite erzeugt. 

 

 
Bild 11: Dichtefunktionen max. Rad-Drehmoment je PSM-Datenstand 

 

Aufgrund der deutlich höheren Belastungen bei Datenstand 2 muss nun geprüft werden, ob 

bisher durchgeführte Versuche wiederholt werden müssen. Im Gegensatz dazu macht 

Datenstand 1, aufgrund der geringfügig niedrigeren Belastungen, die Wiederholung der 

Versuche nicht nötig. 
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Im zweiten Beispiel wurden die Auswirkungen verschiedener Strategien der Allradverteilung 

untersucht. Dazu wurden wiederum zwei alternative Datenstände des Porsche Traction 

Management (PTM) -Steuergeräts eingebunden.  

 

 
Bild 12: Änderung des Datenstands des PTM-Steuergeräts 

 

Datenstand 1 führte im Vergleich zum Referenzdatenstand zu deutlich niedrigeren Rad-

Drehmomenten bei einer ähnlichen Streuung. Datenstand 2 erzeugte hingegen deutlich 

höhere Rad-Drehmomente. 

 

 
Bild 13: Dichtefunktionen max. Rad-Drehmoment je PTM-Datenstand 

 

Somit führt Datenstand 1 zu einer höheren Lebensdauer des betrachteten Bauteils, hier kann 

sogar aus Gewichts- oder Kostengründen eine Verschlankung des Bauteils in Betracht 

gezogen werden. Bei Datenstand 2 müssen etwaige Versuche zur Freigabe des Bauteils 

wiederholt werden. 
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5. Zusammenfassung und Ausblick 
In diesem Beitrag wurde ein Vorgehen entwickelt, um den Einfluss sich ändernder 

Steuergeräteparameter auf entstehende Belastungen im Fahrzeug-Antriebstrang zu 

bewerten. Ein bestehendes Simulationsmodell wurde auf Grundlage einer Referenzmessung 

aus einem Fahrzeugversuch derart trainiert, dass es vergleichbare Messgrößenverläufe wie 

in der Realmessung generiert. Durch eine Monte-Carlo-Simulation wurden die 

Simulationsparameter des Modells variiert, damit die Ergebnisse einer Streuung unterliegen. 

Mit Hilfe einer zweiten, überlagerten Monte-Carlo-Simulation wurden die vorgegebenen 

Verteilungen der Simulationsparameter dahingehend optimiert, dass sich die Streuung der 

Simulationsergebnisse der Streuung der Ergebnisse aus den Fahrzeugmessungen annähert. 

Nach Abschluss dieser Initialisierungsphase wurden beispielhaft die Datenstände zweier 

Bauteil-Steuergeräte verändert, um deren Auswirkung auf entstehende Belastungen zu 

beurteilen. Daraus resultierte jeweils eine Verteilung der auftretenden Belastungen, was 

Grundlage für eine Beurteilung eines Datenstands ist. 

Zukünftig sollten die betrachteten Bauteil-Steuergeräte über eine X-in-the-Loop Umgebung in 

das Simulationsmodell eingebunden werden, damit die zu untersuchenden Datenstände 

vergleichbar zum Fahrzeug auf die Steuergeräte aufgespielt werden können. 
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Kurzfassung 
Dieser Artikel stellt eine Methode dar, inhomogene Anforderungen in der Zuverlässigkeitsab-

sicherung zu berücksichtigen. Die Anwendbarkeit der Methode wird am Beispiel eines Fahr-

werksystems eines 1st-Tier-Zulieferers aufgezeigt. Ein wichtiger Bestandteil der Methode ist 

die Bestimmung der Belastungen durch den sogenannten kritischen Kunden des Gesamt-

marktes. Die Methode nutzt u.a. die Simulation, um unterschiedliche Märkte und Anforde-

rungsprofile in gemeinsame Bewertungsgrößen zu überführen. Es wird weiterhin aufgezeigt, 

welche Mehrwerte für die Entwicklung bzw. den Hersteller durch optimale Kombination der 

verschiedenen Einflussfaktoren generiert werden können. Darüber hinaus wird ein Ausblick 

auf weitere Anwendungsmöglichkeiten gegeben. 

 

1. Einleitung 
Im Spannungsfeld verkürzter Entwicklungszeiten und betriebswirtschaftlich steigender Risi-

ken sehen sich Nutzfahrzeug-Zulieferer (im weiteren Nfz-Zulieferer) vor der Herausforde-

rung, Systeme zu entwickeln, die sowohl den Anforderungen verschiedener OEM als auch 

den Anforderungen stark unterschiedlicher Nutzer bzw. Märkte genügen. Hierbei stellt auch 

nach aktuellen Erkenntnissen die Zuverlässigkeit das entscheidende Kaufkriterium für den 

Spediteur dar. Aufgrund des steigenden Kostendrucks und der Gewichtssensibilität (zuneh-

mend bedingt durch CO2-Emissions-Beschränkungen) im Nfz-Bereich ist eine Überdimensi-

onierung der Systeme keine zielführende Lösung, um die optimale Zuverlässigkeit über ei-

nen weiten Einsatzbereich gewährleisten zu können. In diesem Zielkonflikt rücken die anfor-

derungsgerechte Entwicklung und Erprobung zunehmend in den aktuellen Fokus der Zulie-

ferindustrie. 
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Der Stand der Technik in der Nfz-Industrie bezieht die Belastungsgröße „jährliche Fahrleis-

tungsverteilung“ zur Zuverlässigkeitsabsicherung heran. Die vorgestellte Methode berück-

sichtigt hinsichtlich der Erprobungsauslegung weitere auf das System einwirkende Schädi-

gungsparameter und Anforderungsprofile, um die Mindestzuverlässigkeit des Systems abzu-

sichern. Des Weiteren wird aufgezeigt, wie die einzelnen unterschiedlichen Nutzungs- und 

Anforderungsprofile zusammengeführt werden können, so dass je Schädigungsparameter 

der auslegungsrelevante Zielwert für das 95% Kunden-/Fahrerkollektiv („kritischer Kunde“) 

bestimmt werden kann. Diese Konsolidierung des marktspezifischen Nutzerverhaltens sowie 

der Schädigungsparameter der Einzelmärkte zu einem Gesamtmarktmodell ist die wesentli-

che Voraussetzung einer Zuverlässigkeitsziel-orientierten und kostenoptimierten Erpro-

bungsplanung. In der Nfz-Industrie gibt es sehr viele verschiedene Einsatzgebiete welche mit 

identischen Produkten bedient werden, so dass daraus ein breites Anforderungsspektrum 

resultiert. Der Vergleich der Anforderungen eines Trailers im innerstädtischen Verteilerver-

kehr in Europa mit einem Langstreckeneinsatz in Australien, den sogenannten Roadtrains, 

zeigt die Unterschiede bei den Anforderungen deutlich auf. Nicht nur die jährliche Fahrleis-

tung variiert erheblich, sondern diverse andere Parameter unterscheiden sich wesentlich, wie 

beispielsweise die „Anzahl der jährlichen Lenkungen“, die Belastung durch bestimmte „Um-

weltfaktoren“ oder zahlreiche Belastungskollektive, die aufgrund der Straßenbeschaffenheit 

entstehen. Zum Zuverlässigkeitsnachweis des Produktes ist es daher notwendig, die bei-

spielhaft genannten Parameter marktübergreifend zu bewerten [1]. 

Daher ist eine Methode entwickelt worden, die sowohl die verschiedenen Märkte kombiniert, 

als auch die verschiedenartigen Schädigungsparameter verknüpft, um so die marktübergrei-

fenden auslegungsrelevanten Zielwerte (95% Kunden-/Fahrerprofil) je Schädigungsparame-

ter zu bestimmen, gegen welche das System abgesichert werden soll. 

 

2. Methode zur Berücksichtigung inhomogener Anforderungen 
 

Eine relevante Auslegungsgröße ist gegeben durch den Schädigungsmechanismus und das 

probabilistische Ausfallverhalten (z.B. charakterisierbar durch die zweiparametrige Weibull-

Verteilung β und T*) und wird als Schädigungsparameter definiert. In der Realität wirken 

stets mehrere Einflüsse gleichzeitig auf ein System, so dass das Ausfallverhalten mehrdi-

mensional beeinflusst wird und mehrere Schädigungsparameter definiert werden müssen. 

Die unterschiedlichen Schädigungsparameter können in zwei Kategorien unterschieden wer-

den, die funktions- oder systembedingten und die umgebungs- oder einsatzbedingten. Die 
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Einteilung dient als Handlungshilfe zur Beschreibung der Märkte und des zugehörigen Nut-

zungsverhaltens. Die Tabelle 1 zeigt einige Beispiele für diese Einteilung. 

 

Tabelle 1:  Einteilung der Schädigungsparameter 

Umgebungs- oder einsatzbedingte Schädigungsparameter 

 Luftfeuchtigkeit 

 Umgebungstemperatur 

 Witterungsbedingungen 

Funktions- oder systembedingte Schädigungsparameter 

 Fahrleistung 

 Anzahl der Lenkungen 

 Anzahl der Start/Stopp-Vorgänge 

 

Es hat sich als zielführend herausgestellt, die Schädigungsparameter auf ein jährliches Inter-

vall zu normieren. Die Zeit ist in der Regel immer noch die führende Auslegungskenngröße 

in der Nfz-Industrie. Mit dieser Angabe der erwarteten Nutzungsdauer und der jährlichen 

Normierung der Schädigungsparameter können die für die Lebensdauer relevanten Belas-

tungen der Schädigungsparameter ermittelt werden. Zur Quantifizierung von Schädigungs-

parametern können unterschiedliche Datenquellen genutzt werden, vergleichbar mit der Da-

tenbasis der Belastungskollektive. So erfolgt die Quantifizierung beispielsweise auf Basis 

von Sensordaten, Felddaten oder Ergebnissen von Kundenbefragungen bzw. Marktfor-

schungsstudien.  

Die Beschreibung der Schädigungsparameter mit Hilfe von Zeitreihen ist eine weitere mögli-

che Methode, wie z.B. bei umweltbedingter Schädigung. Auf die Beschreibung sowie An-

wendung von bedingt aufeinander folgenden Ereignisse mit Hilfe von Zeitreihen wird verzich-

tet und sei hier nur der Vollständigkeit halber erwähnt.  

Eine weitere relevante Auslegungsgröße sind die Marktanteile. Durch eine unterschiedliche 

Ausprägung der Schädigungsparameter in den einzelnen Märkten können die zu erwarten-

den Beanstandungen sehr unterschiedlich ausfallen, was großen Einfluss auf den wirtschaft-

lichen Erfolg des Entwicklungsprojektes nehmen kann. Nur unter Einbeziehung der Marktan-

teile kann eine wirtschaftliche Risikobetrachtung realisiert werden. Abbildung 1 zeigt sche-

matisch die Gegenüberstellung inhomogener Anforderungen für ein Entwicklungsprojekt.  
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Bild 1:  Inhomogene Markt-Anforderungen 

 

Im Beispiel soll ein System für zwei Märkte (A und B) und zwei Schädigungsparameter (1 = 

jährliche Fahrleistung und 2 = jährliche Anzahl an Lenkungen) ausgelegt werden. Markt A 

hat einen Anteil von 70% und Markt B von 30%. Beide Schädigungsparameter hängen kau-

sal zusammen und weisen eine Korrelation auf.  

Aktuell ist es in der Praxis üblich, eine gemeinsame Führungs- bzw. Auslegungsgröße zu 

definieren (z.B. Nutzungszeit oder Fahrleistung) und einen konstanten Umrechnungswert 

(z.B. Mittelwert) zur Skalierung der weiteren Parameter zu nutzen. Dies kann dazu führen, 

dass die Ausprägungen der Parameter (z.B. Streuung) nicht vollständig berücksichtigt und 

somit unter Umständen die weiteren Parameter über- bzw. unterschätzt werden. Zusätzlich 

zeigt der Vergleich der marktübergreifenden Nutzung, dass die Korrelation zwischen zwei 

Schädigungsparametern global sehr inhomogen sein kann. Die Nutzung eines konstanten 

Wertes zur Umrechnung kann dazu führen, dass die vorhandenen Wechselwirkungen zwi-

schen Marktnutzung und Schädigungsmechanismus nicht genügend abgebildet werden.  

Die folgende Betrachtung des Beispiels erläutert diesen Zusammenhang näher. Markt A 

zeichnet sich durch eine niedrige Fahrleistung und große Anzahl an Lenkungen aus. Markt B 

weist eine große Fahrleistung aber eine geringe Anzahl an Lenkungen auf. Wird nur nach 

einem Markt ausgelegt, z.B. Markt A, könnten Schädigungsparameter in den anderen Märk-

ten unterrepräsentiert sein (hier: für Markt B die Fahrleistung). Eine Auslegung des Systems 

auf den kritischen Teilmarkt je Schädigungsparameter, hier also eine große Fahrleistung und 

viele Lenkungen, hätte aber eine Überdimensionierung zur Folge.  

Als Führungsgröße in diesem Modell wurde die Nutzungsdauer (Zeit) festgelegt. Die anderen 

Schädigungsparameter beziehen sich auf die Führungsgröße, werden aber nicht linear um-

gerechnet. D.h. ein zehn Jahre alter Trailer hat nicht zwingend 500.000 km zurückgelegt, 

sondern kann auch 1.000.000 km oder nur 280.000 km als Fahrleistung haben. Eine weitere 

wichtige Einschränkung ist, dass die Schädigungsparameter voneinander unabhängig sind, 

auch wenn dies nicht der Realität entspricht. 
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Diese Ausgangssituation und die Kombination aller Parameter und Einsatzgebiete bringen 

den gängigen Ansatz an seine Grenzen. Sind darüber hinaus die Marktanteile, wie im Bei-

spiel, zudem sehr unterschiedlich, verstärkt sich zusätzlich das Potenzial zur Überdimensio-

nierung des Systems und einhergehend der Reduzierung der Wirtschaftlichkeit des Ge-

schäftsmodells. Die Bestimmung des markt- und schädigungsparameterübergreifenden 

95%-Nutzers ist nötig, um den einsatzbedingten, wirtschaftlichen und rechtlichen Anforde-

rungen zu genügen. 

Im Folgenden wird die Erweiterung des bestehenden VDA-Ansatzes zur Bestimmung des 

kritischen Kunden vorgestellt. Der hier vorgestellte Ansatz berücksichtigt zusätzlich zu [3] die 

Auswirkung sowohl differierender Märkte und unterschiedlicher Markanteile als auch Einflüs-

se verschiedener Schädigungsmechanismen. Abbildung 2 zeigt die Methode zur Bestim-

mung des marktübergreifenden kritischen Nutzers für einen Schädigungsparameter anhand 

von zwei exemplarischen Märkten. 

 
Bild 2:  Methode zur Bestimmung des 95%-Kunden 

 

Die Definition der Märkte und die Prognose der Marktanteile ist Ausgangspunkt der Erweite-

rung. Der Prognosehorizont der Marktanteile sollte sich nicht auf den SOP beschränken, 
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sondern die Abschätzung von zukünftigen Trends beachten. Der Ansatz bezieht so zukünfti-

ge Entwicklungen mit ein, wie z.B. die Erschließung neuer Märkte oder zukünftiger Technik-

Trends. Nachdem die Märkte und ihre Anteile definiert sind, muss das spezifische Nutzungs-

verhalten je Markt beschrieben werden. Auf Basis von beispielsweise Belastungskollektiven, 

Messfahrten, Auswertungen von Statistik-Datenbanken oder Experteneinschätzungen wird 

das Nutzungsverhalten innerhalb jedes Marktes und für jeden einzelnen Schädigungspara-

meter bezogen auf eine geeignete und unabhängige Führungsgröße (z.B. km, Tage, Anzahl 

pro Überfahrt) definiert. Dies ist Voraussetzung für die folgenden Schritte. 

Als Eingangsgröße für die Bestimmung des marktübergreifenden kritischen Nutzers liegen 

nun die Marktanteile und die Belastungskollektive je Schädigungsparameter und Markt vor. 

Aus der zufälligen und gewichteten Kombination der Eingangsgrößen mittels Monte-Carlo-

Simulation (MCS) resultiert die marktgewichtete Grundgesamtheit der Führungsgröße. Unter 

Einbeziehung einer Spline-Interpolation wird eine Hüllkurve gebildet, deren Näherung für die 

weiteren Schritte nicht relevant ist. Die MCS wird genutzt, da diese verteilungsunabhängig 

ist. Weiter können mathematische Gesetze durch einfache Abfragen ersetzt werden, sodass 

die fehlende Normierung der gewichteten Eingangsgrößen ( 1)( einzelP ) nicht relevant ist. 

Die Normierung der gewichteten Grundgesamtheit ( 1)( gesamtP ) folgt aus der Gesamt-

markt-Betrachtung. Das 95%-Quantil wird nach VDA Band 3.2 als auslegungsrelevanter kri-

tischer Kunde empfohlen. Durch Bestimmung des 95%-Quantils der marktgewichteten 

Grundgesamtheit ist der marktübergreifende kritische Kunde für den Schädigungsparameter 

bestimmt. Dieses Vorgehen wird für alle definierten Schädigungsparameter durchgeführt. 

Das Resultat ist der markt- und schädigungsparameterübergreifende kritische Kunde, wie 

der Matrix in Abbildung 2 zu entnehmen ist. 

Alternativ zu dieser Vorgehensweise hätte die Auslegung basierend auf dem 95%-Kunden 

des kritischsten Marktes erfolgen können. Solange keine sicherheitsrelevanten Fehlerbilder 

betrachtet werden, würde dies jedoch zu einer wirtschaftlich meist nicht tragbaren Überdi-

mensionierung des Produktes führen. Ist aber ein bezüglich eines Schädigungsparameters 

besonders kritischer Markt mit geringer Stückzahl vorhanden, so wird dieser ggf. nur äußerst 

unzureichend in der Entwicklung berücksichtigt. Um in solchen Fällen eine Entscheidungshil-

fe zu generieren und das wirtschaftliche Risiko abzuschätzen, wird das Quantil des markt-

übergreifenden 95%-Kunden auf die Verteilung des Teilmarktes übertragen und somit die 

prozentuale Markterfüllung ermittelt. Hierdurch kann ein unterrepräsentierter Markt identifi-

ziert werden und so die Basis für eine gezielte Risikoentscheidung gebildet werden. Diese 

Betrachtung kann z.B. die Ausgliederung eines Marktes in ein Sonderprojekt bewirken, um 
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das wirtschaftliche Risiko zu minimieren und die Kundenzufriedenheit langfristig zu gewähr-

leisten. Die Anwendungsmöglichkeit des beschriebenen Ansatzes wird im Weiteren erläutert.  

 

3. Berücksichtigung inhomogener Anforderungen in der Zuverlässigkeitsabsiche-
rung 

Zur Absicherung der Zuverlässigkeit wird die Success-Run-Methode (vgl. [2] und [3]) einge-

setzt. Diese folgt der Logik, dass n  Prüflinge den Prüfplan absolvieren müssen, um ein Min-

destzuverlässigkeit )(tR  zur Konfidenz   abzusichern. Es ergibt sich eine nachgewiesene 

Mindestzuverlässigkeit von 

  ntR

1

1)(  . (F1) 

Die Mindestzuverlässigkeit )(tR  des Systems ist für den markt- und parameterübergreifen-

den kritischen Kunden nachgewiesen, wenn das System gegenüber jedem Schädigungspa-

rameter die erforderliche Zuverlässigkeit aufweist. Verschiedene Prüfungen und Musterstän-

de können durch Überführung der Anzahl der Prüflinge n  in die Feld-Äquivalenzbauteile 

Äquin  gesamtheitlich berücksichtigt werden. Die Vorrausetzung für diese Überführung ist die 

Berechnung des Lebensdauerverhältnisses VL , welches den Lastfaktor zwischen den Be-

dingungen im Feld und in den Prüfungen beschreibt. Der Raffungsfaktor r berücksichtigt die 

Komprimierung der Belastung im Versuch gegenüber der Feldlast. Der Musterfaktor MF  

bezieht den jeweiligen Entwicklungsstand des Prüflings mit ein, kann aber auch genutzt wer-

den um den Bezug zwischen Komponenten und System zu beschreiben. Die Bestimmung 

des Musterfaktors ist nicht fest vorgegeben und wird meist durch Experteneinschätzung be-

stimmt. Die Wechselwirkungen zwischen Komponenten und System müssen jedoch in der 

Prüfung abgebildet und für die Schädigungsmechanismen relevant sein. Die reale Prüfungs-

größe realLabt ;  ergibt sich direkt aus den Prüfkollektiven. Es ist zu berücksichtigen, dass nicht 

jedes Prüfkollektiv jeden Schädigungsparameter repräsentiert und der Schädigungsmecha-

nismus durch Wechselwirkungen beeinflusst sein kann. Die Bezugsgröße im Feld Feldt  ist 

gegeben durch den marktübergreifenden 95%-Kunden. Die Einheiten der Prüfungsgröße 

und der Bezugsgröße im Feld sind nicht an die Einheit Zeit gebunden. Das Lebensdauerver-

hältnis VL  je Prüfkollektiv, Musterstand und Schädigungsparameter ist gegeben durch 

 
Feld

realLab
V

t

MFrt
L




;
. (F2) 
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Zur Bestimmung der Feld-Äquivalenzbauteile Äquin  muss das Ausfallverhalten je Schädi-

gungsparameter mit Hilfe des Formparameters der Weibull-Verteilung SchäPa  aufgenommen 

werden. Dieser wird häufig im Rahmen des Zuverlässigkeitsprozesses mit der Felddatenana-

lyse bestimmt. Mit Hilfe des Lebensdauerverhältnisses VL  und des Formparameters der 

Weibullverteilung SchäPa  ergibt sich das Feld-Äquivalenzbauteil zu 

 SchäPaVÄqui Lnn  . (F3) 

Die einzelnen Äquivalenzbauteile der i  Prüfungen summieren sich zur Gesamtzahl der 

Äquivalenzbauteile je Schädigungsparameter SchäPaÄquin ;  (siehe F4), 

 



i

k
kk

i

k
kÄquiSchäPaÄqui

SchäPaLvnnn
11

;;
 . (F4) 

Daraus folgt die nachgewiesene marktübergreifende Mindestzuverlässigkeit für den jeweili-

gen Schädigungsparameter bezogen auf den kritischen Kunden SchäPatR ;)(   durch Einsetzen 

von (F4) in (F1) zu 

    
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 
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Um den Nachweis der Mindestzuverlässigkeit für den markt- und parameterübergreifenden 

Schädigungsparameter erbringen zu können, ist es nötig, die oben beschriebene Vorge-

hensweise für alle Schädigungsparameter durchzuführen. Wenn die Anzahl der Prüflinge je 

Prüfung optimal festgelegt worden ist, resultiert eine abgesicherte Zuverlässigkeit für das 

System. Einzelne Prüfungen können hierbei je nach Prüfungsart mehrere Schädigungspa-

rameter oder nur einzelne Parameter abprüfen. Zudem können bestimmte Schädigungspa-

rameter in verschiedenen Prüfungen mit unterschiedlichen Lebensdauerverhältnissen be-

rücksichtigt sein. Eine gesamtheitlich optimierte Auslegung der Zuverlässigkeitsabsicherung 

muss eine Aufteilung aller Prüflinge auf die Prüfungen unter den Gesichtspunkten minimaler 

Kosten, geringem Prüfaufwand und nachgewiesener Mindestzuverlässigkeit gewährleisten. 

Dies stellt ein klassisches Optimierungsproblem dar.  
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4. Anwendung der Methoden an dem Bespiel eines Fahrwerksystems eines 1st-Tier-
Zulieferers 

Die vorgestellte Methode wird nachfolgend am Beispiel der Zuverlässigkeitsabsicherung ei-

nes Fahrwerksystems für Nfz (siehe Abbildung 4) anhand fiktiver Beispielwerte dargestellt.  

 
Bild 4:  BPW -Fahrwerksystem für einen Nfz-Trailer  

 

Das Fahrwerksystem gehört zu der Produktgruppe „Starrachse“ und besteht aus mehreren 

Komponenten. Die Abhängigkeiten zwischen Komponente, System und Prüfungen sind be-

kannt und sind im Nachfolgenden durch Raffungs- und Musterfaktoren quantifiziert. 

Das System wird für die Anforderungen dreier inhomogener Märkte entwickelt. Die Abbildung 

5 zeigt im ersten Quadranten die Märkte und die zugehörigen prognostizierten Marktanteile 

bei SOP.  

 
Bild 5: Marktanteile und die Gegenüberstellung der marktspezifischen und der gewichteten 

marktübergreifenden Nutzung 
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Ein Entwicklungsziel könnte es sein, den Markt B neu zu erschließen. Dieser neue Markt 

wurde hinsichtlich der Schädigungsparameter künstlich extrem verzerrt, um den Nutzen der 

Methode deutlich zeigen zu können. Marktforschungsstudien haben ergeben, dass ein Anteil 

von 20% der Systeme in diesem Markt abgesetzt werden können. Der Markt A soll zukünftig 

weiterhin eine dominierende Position einnehmen und ebenso soll der Markt C berücksichtigt 

werden. Ein wesentliches Entwicklungsziel ist es, eine Zuverlässigkeit von mindestens 90% 

für den Gesamtmarkt (bei einer Konfidenz von 90%) abzusichern. Diese Werte werden im 

VDA Band 3.2 als gängige Vorgaben genannt. Auf Basis von Felddatenanalysen und Exper-

tenbefragungen wurden die Parameter "Kilometer-Fahrleistung", "Anzahl der Lenkungen" 

und "Anzahl der Bremsungen" bestimmt und als systemschädigend identifiziert. Die Gegen-

überstellung der marktspezifischen und der mittels Hüllkurve simulierten marktübergreifen-

den Nutzung je Schädigungsparameter sind in den Quadranten 2, 3 und 4 der Abbildung 4 

abgebildet. Es zeigt sich, dass die Anforderungen aus Markt A die marktübergreifende Nut-

zung wesentlich beeinflussen und Markt C durch seinen geringen Marktanteil den Gesamt-

markt-Nutzer nicht dominiert. Aus der simulierten Hüllkurve ergibt sich ein kritischer Ge-

samtmarkt-Nutzer, der durch folgende Parameter beschrieben wird: 

- Üblicherweise anzunehmende Lebensdauer: 15 Jahre, 

- Kilometer-Fahrleistung: 4.100.000 km, 

- Anzahl der Lenkungen: 20.000.000, 

- Anzahl der Bremsungen: 42.000.000. 

Diese Parameter werden zur Zuverlässigkeitsabsicherung herangezogen. Vorab erfolgt je-

doch der Abgleich der Markterfüllungen. Zur Bewertung der Markterfüllung werden die pro-

zentualen Anteile zum Quantil des Gesamtmarkt-Nutzers aus der marktspezifischen Vertei-

lung bestimmt und sind in der Tabelle 2 abgebildet. 

 

Tabelle 2:  Markterfüllung im Entwicklungsprojekt 

 Markt A Markt B Markt C 

Kilometer-Fahrleistung 99,78% 93,42% 66,53% 

Anzahl der Lenkungen 94,02% 97,30% 99,99% 

Anzahl der Bremsungen 99,99% 76,37% 99,99% 

 

Das Ergebnis ist, dass für den Markt A bzgl. der Kilometer-Fahrleistung und der Anzahl der 

Bremsungen und für den Markt C bzgl. der Anzahl der Lenkungen und der Anzahl der Brem-

sungen eine 99,99% Markterfüllung vorliegt. Der Markt B weist für keinen Parameter eine 

99,99% Markterfüllung auf. Angesichts der unzureichenden Markterfüllung könnte eine Maß-
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nahme sein, den Markt B aus dem Entwicklungsprojekt auszugliedern. Da Markt B aber mit 

diesem Projekt neu erschlossen werden soll, benötigt es hier eine wirtschaftliche Risikoent-

scheidung: Ist das wirtschaftliche Risiko noch tragbar im Konsens zur wahrgenommenen 

Qualität und Zuverlässigkeit des Systems? Die Beantwortung dieser Fragestellung und die 

daraus folgenden Maßnahmen können vielfältig sein. So hätte der Hersteller beispielsweise 

die Möglichkeit, durch verkürzte Wartungsintervalle und eine verschärfte Feldbeobachtung 

das wirtschaftliche Risiko zu minimieren und mögliche Auffälligkeiten durch Früherkennung 

festzustellen. Wird diese Entscheidung zu Grunde gelegt, so sind folglich alle Märkte als aus-

legungsrelevant zu betrachten. 

Die Ergebnisse der Erprobungsplanung sind in Abbildung 6 dargestellt. 

 
Bild 6: Randbedingungen für die Erprobungsplanung 

 

Zur Erprobungsplanung sind die Prüf- mit den Feldkollektive abgeglichen, das probabilisti-

sche Ausfallverhalten ermittelt und die Lebensdauerverhältnisse bestimmt worden. Es zeigt 

sich, dass nicht alle Prüfungen die verschiedenen Schädigungsparameter abdecken. Nur 

während der Felderprobung kommt es zur Kombination aller Schädigungsparameter. Die 

anderen Prüfungen werden dennoch zur Absicherung der Zuverlässigkeit herangezogen, um 

Prüfungen Prüfung A Prüfung B Felderprobung
Anz. Prüflinge 2000 1500 600

tFeld 4.100.000 km 90%

Raffungsfaktor 1,75 2 1 1,5

tLab real 80.000 km 100.000 km 120.000 km

MF 0,75 0,90 1,00

tLabÄqui 105.000 km 180.000 km 120.000 km

Lv 0,0256 0,0439 0,0293

n_Äaqui 8,20 13,80 3,00 Σ nÄquii 25,00

R(t) 75,51% 84,63% 46,47% R(t)Σ 91,20%

tFeld                 20.000.000   90%

Raffungsfaktor r4 1,5 1 1,5

tLab real
tLab real4 800.000             1.500.000       

MF MF4 0,80 1,00

tLabÄqui tLabÄqui4 960.000             1.500.000       

Lv Lv4 0,0480 0,0750

n_Äaqui nÄqui4 15,77 12,32 Σ nÄquii 28,10

R(t) R(t)4 86,42% 82,96% R(t)Σ 92,13%

tFeld                  42.000.000   90%

Raffungsfaktor 1,75 r5 1 1,75

tLab real 2.250.000                 tLab real5 3.500.000       

MF 0,75 MF5 1,00

tLabÄqui
3.500.000                 tLabÄqui5 3.500.000       

Lv 0,0703 Lv5 0,0833

n_Äaqui 19,20 nÄqui5 7,76 Σ nÄquii 26,96

R(t) 88,70% R(t)5 74,31% R(t)Σ 91,81%
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frühestmöglich im Entwicklungsprozess eine Aussage bzgl. der Zuverlässigkeit zu generie-

ren (z.B. durch den Aufbau eines Zuverlässigkeitswachstumsmodells). Es sollte eine Min-

destanzahl an geforderten Prüfungen je Prüfstand festgelegt werden. Anschließend werden 

mit Hilfe der Anzahl der Prüflinge und (F5) die Äquivalenzbauteile je Schädigungsparameter 

und die abgesicherten Zuverlässigkeiten bestimmt. Für alle Schädigungsparameter wird bei 

der angegebenen Anzahl von Prüflingen die nachzuweisende Mindestzuverlässigkeit über-

schritten.  

Da die nachzuweisende Mindestzuverlässigkeit überschritten wurde, besitzt der Versuchs-

plan das Potenzial, ressourceneffizient optimiert zu werden. In einem Entwicklungsprozess 

sind insbesondere die Entwicklungskosten und -zeit gern gewählte Optimierungsgrößen. 

Wenn die Erprobungsplanung unter diesen Voraussetzungen betrachtet wird, kann durch 

optimale Aufteilung der Prüflinge sowie der Prüfzeiten und -kosten ein Erprobungsplan er-

stellt werden, der allen Anforderungen des Entwicklungsprojektes Rechenschaft trägt. 

  

5. Fazit 
In der Zuverlässigkeitsabsicherung wird der kritische Kunde genutzt, um ein Entwicklungsziel 

zu definieren. Die Berücksichtigung von inhomogenen Anforderungen verschiedener Märkte 

stellt den bestehenden Ansatz vor Grenzen, da dieser die unterschiedlichen Führungsgrößen 

der Schädigungsparameter, die Marktanteile und die Verkettung der Schädigungsparameter 

nicht berücksichtigt. Die vorgestellte Methode schließt diese Aspekte mit in den bestehenden 

Ansatz zur Absicherung ein und vermeidet somit Überdimensionierung. Eine Entscheidungs-

hilfe für wirtschaftliche Risiken kann in einer frühen Entwicklungsphase generiert werden, um 

eine gezielte Entscheidung bzgl. der Kundenzufriedenheit zu treffen. Die vorgestellte Erpro-

bungsplanung bietet die Möglichkeit der Optimierung hinsichtlich Prüfdauer, -kosten und 

nachgewiesener Mindestzuverlässigkeit. Dies bietet Erweiterungspotential der Methode hin-

sichtlich zuverlässigkeitsoptimierter Prüfplanerstellung. 
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Kurzfassung 
Während die Produktanforderungen bezüglich Qualität, Zuverlässigkeit und Lebensdauer 

kontinuierlich steigen, sinkt die Produktentwicklungszeit. Schnelle und effektive Testverfah-

ren sind notwendig, um ein höheres, technologisches Produktniveau in kürzerer Zeit zu ent-

wickeln: 

Erste Informationen über die konstruktiven Produktschwachstellen und die Produktlebens-

dauer liefern in der frühen Entwicklungsphase numerische Ermüdungssimulationen. Zeitin-

tensive Entwicklungsschleifen bestehend aus der prototypischen Produktion, der Produktprü-

fung und der konstruktiven Korrektur können mithilfe von numerischen Berechnungen im 

Vorfeld reduziert werden. 

Im Rahmen dieses Papers wird ein Konzept vorgestellt, welches einen Beitrag zur effizienten 

Auslegung von Zeitraffererprobung von dentalen Implantaten auf Basis von Finite Elemente 

Simulationen und unter Anwendung von Zeitraffermethoden leistet. 

 

1. Einleitung 
Die Verweildauer eines Dentalimplantats im Kiefer eines Patienten wurde zu Beginn der den-

talen Implantologie in den 1990er Jahren auf zehn Jahre geschätzt. Heute werden für die 

Lebensdauer der Implantate dreißig Jahre angenommen. Innerhalb der Nutzungsphase ist 

eine einwandfreie Produktfunktionalität gefordert: Das Versagen im Kiefer verursacht sowohl 

für den Patienten als auch für den Hersteller katastrophale Folgen. Daher wird die Ermü-

dungsfestigkeit eines dentalen Implantats vor der Vermarktung mithilfe einer genormten Er-

müdungsprüfung [1] belegt. Dabei kann die Ermüdungsprüfung eines Prüfkörpers bis zu 

mehreren Wochen benötigen. Die Gesamttestzeit eines dentalen Implantats mit allen Deriva-

ten dauert bis zu sechs Monaten. 

Eine numerische Simulation, die nicht nur eine Ermüdungsberechnung, sondern auch zeitraf-

fende Methoden (z.B. auf Basis physikalisch / chemischer Modelle wie dem Coffin-Manson 
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Ansatz) beinhaltet, erzielt mehr Informationen über Produktschwachstellen, die Produktle-

bensdauer und ermöglicht es, die Prüfmethode zu verbessern sowie die Prüfdauer zu ver-

kürzen. 

Durch die Anwendung dieses Konzepts wird die Anzahl an Prüflingen verringert, die Entwick-

lungskosten reduziert und die Entwicklungsphase verkürzt. 

 

2. Grundlagen: Accelerated Testing 
Zur Identifizierung von Bauteilschwachstellen, die in der Entwicklung und oder Produktion 

entstanden sind, dient das quantitative Testen. Dieses Testverfahren dient ausschließlich der 

Steigerung der Robustheit und Zuverlässigkeit des Bauteils. Dazu zählt auch das sogenann-

te Step-Stress-Testing (SST): ein Prüfling wird fortlaufend höheren Beanspruchungsniveaus 

unterzogen [6]. Zunächst wird das Bauteil eine definierte Zeit einer definierten konstanten 

Beanspruchung ausgesetzt. Versagt es nicht, wird es eine definierte Zeit einer höheren Be-

anspruchung ausgesetzt. Auf diese Art und Weise wird die Beanspruchung Stück für Stück 

bis zum Versagen erhöht. Normalerweise durchlaufen alle Prüflinge dasselbe Muster aus 

Beanspruchungsniveau und Zeit [6]. In Bild 1 sind zwei verschiedene Muster beispielhaft 

dargestellt.  

 
Bild 1: Step Stress Testing [6] 

 

Während die Kreuze die Bauteile repräsentieren, die versagen, repräsentieren die Kreise die 

überlebenden Bauteile. Das schnelle Erreichen von Versagen ist der wesentliche Vorteil die-

ses Verfahrens. Allerdings garantieren sie keine genauen Abschätzungen der Produktle-

bensdauer. Darüber hinaus werden die meisten Bauteile unter konstanten und nicht unter 

schrittweisen Beanspruchen betrieben. Hinzu kommt, dass es sich um ein komplexes Ver-

fahren handelt, da hier ein kumulatives Schadensmodell betrachtet wird [6].  
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Anwendung findet das Verfahren in der Dentalimplantat Forschung: 2012 prüfte Freitas [7] 

zweiteilige Implantatsysteme aus Titan unter Wasser. In Bild 2 sind die drei Belastungsprofi-

le, die er „mild“, „moderate“ und „aggressive“ nannte abgebildet.  

 
Bild 2: Lastprofile der Erprobung mithilfe des Step-Stress-Testing Verfahrens nach [7] 

 

Das Verfahren verwendeten auch Silva 2009 [8], Baldassarri 2011 [9] und Borba [10]. Dabei 

variierten die Belastungsfrequenz, das Prüfmedium, die Umgebungstemperatur sowie der 

Implantatwerkstoff. 

 

3. Grundlagen: Dentalimplantat-Erprobung 
Dentale Implantate gehören zu den Medizinprodukten der Risikogruppe IIb, die ein erhöhtes 

Risiko für den Menschen darstellen. Sie werden gemäß der Norm DIN EN ISO 14801 [1] 

einer dynamischen Ermüdungsprüfung unter der Bedingung des „ungünstigsten Falles“ [1] 

(=Worst-Case-Szenario) unterzogen. 

Das standardisierte Prüfverfahren findet im Labor (in-vitro) in warmer Luft (20±5°C) statt. Der 

Prüfaufbau für Implantatsysteme, die keine abgewinkelten Verbindungsteile enthalten, wird 

in Bild 3 schematisch dargestellt.  
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Bild 3: Schema des Prüfaufbaus für Systeme mit nicht abgewinkelten Verbindungsteilen [1] 

 

Dabei muss der im Knochen zu verankernde Teil des dentalen Implantatkörpers (5) mit einer 

starren Einspannvorrichtung befestigt werden [1]. Wenn ein Einbettungsmaterial für die Pro-

bekörperhalterung (6) verwendet wird, muss dieses einen Elastizitätsmodul von >3GPa auf-

weisen [1]. Der Implantatprüfling muss so eingespannt werden, dass seine Achse einen 

Winkel von 30±2° zur Belastungsrichtung des Prüfgerätes (1) bildet [1]. Die Kraftübertragung 

erfolgt querkraftfrei und uniaxial über den halbkugelförmigen Belastungsaufsatz (4) auf das 

genau definierte Belastungszentrum C. Um einen typischen Fall für den natürlichen Kno-

chenabbau darzustellen, wurde zwischen dem nominellen Knochenrand (2) und der Probe-

körperhalterung innerhalb der Norm ein Abstand von 3,0±0,5mm gewählt [1]. 

Während der Ermüdungsprüfung muss die Kraft F sinusförmig zwischen einem Nenn-

Höchstwert und 10% dieses Wertes bei einer maximalen Frequenz von 15Hz wechseln [1]. 

Als geeignete Anfangsbelastung werden 80% der Belastung, die in einer statischen Prüfung 

mit derselben Prüfgeometrie zum Bruch führt, angegeben [1]. Die anschließenden Prüfungen 

werden mit niedrigeren Belastungen durchgeführt. Mindestens drei Prüflinge müssen diese 

Belastung 5*106 Zyklen versagensfrei überstehen. Wird das Belastungsniveau in Newton 

logarithmisch über die logarithmierte Anzahl an Lastzyklen aufgetragen, ergibt sich eine bau-

teilbezogene Wöhlerkurve, beispielhaft dargestellt in Bild 4. 
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Bild 4: Beispiel einer Wöhlerkurve [1] 

 

Die Plus-Zeichen stellen die gebrochenen und die Kreise die überlebenden Prüflinge dar. Die 

geforderten 5*106 Zyklen (nF) überstehen drei Prüflinge bei der Ermüdungsgrenze LF. 

Seit Oktober 2014 liegt ein Entwurf [2] zum Ersatz dieser Norm vor. Neben einer detaillierten 

Beschreibung des „ungünstigsten Falles“ wird hier als Alternative zur klassischen Ermü-

dungsprüfung das Treppenstufenverfahren angegeben. Bei diesem Verfahren wird die Er-

müdungsgrenzbelastung zunächst abgeschätzt oder über die statische Festigkeit berechnet, 

10% ihres Wertes bilden die Stufentiefe d [2]. Die Prüfung beginnt mit der geschätzten Er-

müdungsgrenzbelastung. Übersteht ein Prüfling die geforderte Anzahl an Lastwechseln von 

5*106 Zyklen (von 2 bis maximal 15Hz) ist die Belastung um d zu erhöhen, bei Versagen um 

d zu verringern. Die Prüfung ist beendet wenn mindestens vier Prüflinge versagt und mindes-

tens vier überlebt haben. Zuletzt wird eine statistische Auswertung vorgenommen, bei der 

die Ermüdungsgrenzbelastungen zur Berechnung der Überlebenswahrscheinlichkeiten von 

10%, 50% und 90% dienen.  

 

4. Ansatz 
Der Ansatz zur Auslegung von Zeitraffertests auf Basis numerischer Simulationen besteht 

aus sechs aufeinanderfolgenden Schritten, schematisch dargestellt in Bild 5. Im Folgenden 

wird das Konzept anhand des Anwendungsgebietes der dentalen Implantologie erläutert. Im 

Fokus steht ein einphasiges Zahnimplantat aus Titan, welches nach einem Zahnverlust als 

künstliche Zahnwurzel dient. 
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Bild 5: Ablauf des Ansatzes Schritt für Schritt 

 

4.1 Schritt 1 - Auswahl des Beschleunigungsverfahrens 
Zur Reduzierung der Erprobungsdauer werden Prüfungen unter verschärften Beanspru-

chungen durchgeführt [11]. Für die sogenannte Raffung wird im Rahmen dieser Studie die 

Temperatur als Beschleunigungsvariable ausgewählt. Zur Verifikation der numerischen Er-

gebnisse kann eine Erwärmung einfach realisiert werden. Darüber hinaus wird eine Raffung 

durch eine kontinuierliche zyklische Be- und Entlastung des Implantats, ohne Unterbrechun-

gen, simuliert. 

 

4.2 Schritt 2 - Geometrieerstellung 
Zunächst wird die Geometrie eines handelsüblichen einphasigen Dentalimplantats in einer 

gewöhnlichen CAD-Software Umgebung erstellt. Zahnimplantate werden mit einer Länge 

von 7-13mm und einem Durchmesser von 3-4,8mm aus Titan hergestellt [17]. Neben einer 

hervorragenden Biokompatibilität und Korrosionsbeständigkeit weist Titan eine hohe spezifi-

sche Festigkeit bei geringer Dichte auf [3]. Außerdem ermöglicht die Anwendung von Titan 

problemlos medizinische Weiterbehandlungen, wie beispielsweise das Röntgen [3]. 

In Bild 6 ist das speziell für diese Studien konstruierte einphasige Dentalimplantat dargestellt. 

Die Gesamtlänge beträgt 13mm. Der Kopf des Implantats ist 2,3mm hoch und hat einen ma-

ximalen Außendurchmesser von 4,8mm. Auf diesen Kopf, der aus dem Zahnfleisch heraus-

ragt, wird der keramische Zahnersatz geschraubt. Der Gewindedurchmesser am Rumpf des 

Implantats misst 3,2mm. Dieser untere Teil wird in den Kieferknochen des Patienten ge-

schraubt und wächst im Idealfall fest ein. Die hier angewendete Modellierung beinhaltet we-
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der die Verbindungschraube noch den keramischen Zahnersatz, da sie zu Kontaktproblemen 

und der Nutzung eines weiteren Spezialwerkstoffes führen, welche an dieser Stelle den 

Rahmen des Möglichen übersteigen [17]. 

 
Bild 6: Skizze des einphasigen Dentalimplantats für diese Studie [17] 

 

4.3 Schritt 3 – Netzgenerierung 
Die erstellte CAD-Geometrie muss zunächst in einem kompatiblen Dateiformat abgespei-

chert werden, um in der Berechnungssoftware verwendet werden zu können [17]. Während 

der Umwandlung können Informationsverluste auftreten. Zur Vernetzung wird aber ein voll-

ständiges und geschlossenes Volumenmodell benötigt, daher müssen fehlende Flächen er-

zeugt, überflüssige entfernt sowie unpassende Flächen entweder repariert oder entfernt und 

neu erstellt werden. Liegt im Anschluss ein geschlossenes Flächenmodell vor, kann daraus 

ein Volumenmodell erzeugt werden. Während der Vernetzung wird es in beschreibbare Teil-

gebiete, die Elemente, zerlegt. Im Rahmen dieser Studie werden quadratische Tetra-

ederelemente, die auch parabolisch oder Elemente zweiter Ordnung genannt werden, ver-

wendet [17]. Sie sind besonders für komplexe Geometrien mit vielen verschiedenen Radien 

und Winkeln geeignet. Zu Verifizierung der Netzgröße wird in Anlehnung an die Studie von 

Pessoa [4] eine Konvergenzstudie der maximal auftretenden Von-Mises Vergleichsspannung 

durchgeführt. Dazu wird das Implantat mit quadratischen Tetraederelementen der folgenden 

Elementgrößen vernetzt: 1,25mm, 1,0mm, 0,75mm, 0,5mm, 0,25mm, 0,125mm und 0,1mm. 
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Bei kleineren Elementgrößen steigt die Anzahl der Elemente: bei einer Elementgröße von 

0,125mm beträgt die Elementanzahl 65482, bei 0,1mm 105651. Für die Konvergenzstudie 

wird die maximale Von-Mises Vergleichsspannung resultierend aus der Belastung mit drei 

verschiedenen Kräften (100N, 200N und 300N) herangezogen. Das Konvergenzkriterium 

wird in Anlehnung an die Studie von Pessoa [4] auf 3% Änderung der maximalen Von-Mises 

Vergleichsspannung von einer Vernetzungsstufe zur nächst feineren gewählt. In Bild 7 ist die 

resultierende Vergleichsspannung in Abhängigkeit der Belastung über die Elementanzahl 

aufgetragen.  

 
Bild 7: Konvergenzstudie 

 

Die relative Abweichung der maximalen Von-Mises Vergleichsspannung von 65482 auf 

105651 Elemente beträgt im Mittel 2,1% und erfüllt damit das Konvergenzkriterium. 

 

4.4 Schritt 4 - Statische FEM Simulation 
Im Rahmen der statischen Berechnung wird der Spannungszustand des Implantats in einer 

handelsüblichen Berechnungssoftware bestimmt [17]. Die einwirkenden Kräfte und Lage-

rungsbedingungen werden auf Basis der Erprobungsnorm [1] und weiteren Literaturquellen 

[4, 12, 13] angenommen. 
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Außerdem wird angenommen, dass es sich um ein rotationssymmetrisches Bauteil handelt: 

nur das Außengewinde des Implantats ist nicht vollständig symmetrisch. Darüber hinaus ist 

sowohl die Insertionstiefe als auch -richtung maßgeblich vom Knochenstatus sowie der indi-

viduellen Kieferbeschaffenheit des Patienten (wie beispielsweise die Anzahl und Lage der 

Nachbarzähne, Verlauf der Nervenbahnen etc.) abhängig. 

Gemäß der Prüfnorm [1] wird das Implantatsystem im 30° Winkel belastet. Bezüglich der 

Kraftübertragung vom keramischen Zahnersatz bzw. des halbkugelförmigen Belastungsauf-

satzes auf das dentale Implantat wird die Annahme getroffen, sie finde auf den Außenflä-

chen des Implantatkopfes statt. Diese Flächen sind in Bild 8 rot eingefärbt. 

Als Lagerung wird eine feste Einspannung gewählt, weil idealerweise davon auszugehen ist, 

dass das Implantat fest in den Kiefer des Patienten einwächst. Der nominelle Knochen-

schwund von 3mm wird bei der Implementierung berücksichtigt. Die Flächen, die fest einge-

spannt werden, sind in Bild 8 blau dargestellt. 

 
Bild 8: Anwendung der gewählten Randbedingungen auf das einphasige Dentalimplantat 

dieser Studie 

 

Um einen möglichst präzisen Überblick über die Verteilung der Spannungen im Implantat zu 

erhalten, wird das Implantat, zunächst bei Raumtemperatur, mit Kräften von 100N bis 400N 

in 25N Schritten belastet. In Bild 9 ist die resultierende Von-Mises Vergleichsspannung 

exemplarisch dargestellt. 

Rot markierte Außen-

fläche des Implantat-

kopfes

Blau markierte Ein-

spannung des Implan-

tats 
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Bild 9: Von-Mises Vergleichsspannung von F=250N bei Raumtemperatur 

 

Eindeutig zu erkennen ist das Auftreten der maximalen Spannung in Höhe von 1498,6MPa 

am Rand der Einspannung. Hier tritt das höchste Moment auf. 

Neben einer rein mechanischen Belastung des Bauteils, die bisher erörtert wurde, besteht 

auch die Möglichkeit Bauteile thermisch zu belasten. Temperaturänderungen können Span-

nungen und Formänderungen verursachen [5]. Wird die freie Wärmeausdehnung behindert, 

entstehen im inneren des Bauteils Spannungen [5]. Für die Wahl der Temperatur ist zu be-

achten, dass es sich bei Titan, ähnlich wie bei Eisen, um einen Werkstoff handelt, der eine 

Phasenumwandlung durchläuft: unterhalb von 882°C liegt Titan als sogenanntes α-Titan mit 

einer hexagonalen Gitterkonfiguration vor. Oberhalb der Umwandlungswandlungstemperatur 

entsteht das kubisch-raumzentrierte β-Titan [3]. Daher wird für die Belastung bestehend aus 

Kraft und Temperatur, eine Temperatur in Höhe von 220°C gewählt. Die Temperaturübertra-

gung erfolgt instationär über die Außenflächen des Implantatkopfes. Die resultierende Von-

Mises Spannung aus Temperaturbelastung und Kraft ist exemplarisch in Bild 10 dargestellt. 
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Bild 10: Von-Mises Vergleichsspannung bei einer Belastung von F=250N und T=220°C 

 

Resultierend aus der Temperaturbelastung mit 220°C auf den Kopf des Implantats sowie 

einer Kraft in Höhe von 250N tritt eine höheres Beanspruchungsniveau auf: die maximale 

Spannung beträgt 1501,6MPa und tritt am Rand der Einspannung auf. 

 

4.5 Schritt 5 - Ermüdungssimulation 
Im fünften Schritt des Ansatzes wird die FEM basierte Ermüdungssimulation mithilfe einer 

handelsüblichen Software durchgeführt. Als Input dient die statische Berechnung des Span-

nungszustandes, der zur Bestimmung der Belastbarkeit des Implantats zyklisch aufgeprägt 

wird [17].  

Als Berechnungsansatz wird der High Cycle Fatigue Ansatz ausgewählt [17]. Er gilt ab einer 

Belastung von 105 Zyklen [14] und ist damit für die Implantaterprobung, deren Grenz-

schwingspielzahl nach DIN EN ISO 14801 mit 5*106 Zyklen definiert ist, heran zu ziehen [1]. 

Gemäß der Ermüdungsprüfung wird die Last sinusförmig wiederholt bis das Bauteil versagt. 

Dabei wird eine konstante, reinwechselnde Amplitude periodisch aufgeprägt. Da die Mit-

telspannung einen Einfluss auf die Belastbarkeit des Bauteils ausübt, wird der in der Technik 

meist [15] genutzte Ansatz zur Mittelspannungskorrektur verwendet: der Goodman Ansatz. 

Hierbei werden die Grenzwerte der Spannungsamplitude über einen linearen Ansatz durch 

die Wechselfestigkeit, die Zugfestigkeit und die Mittelspannung beschrieben [16].  
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Auf Basis der maximalen Vergleichsspannung wird die minimale Lebensdauer jedes einzel-

nen Elements berechnet. Ausgegeben wird die Anzahl an Lastzyklen, die das Implantat ohne 

Versagen überlebt. Die Bestimmung der Belastbarkeit basiert auf der Berechnung elasti-

scher und empirischer Spannungen versus der Werkstoff Wöhlerkurve. Mithilfe dieses An-

satzes wird die Produktschwachstelle eindeutig identifiziert. In Bild 11 wird das Resultat der 

Belastung mit 250N und 220°C als Beispiel dargestellt. Ausgehend von der statischen Be-

rechnung, versagt das Implantat, wie erwartet, am Rand der Einspannung. 

 
Bild 11: Resultierende Lebensdauer [Wiederholungen] der Belastung aus F=250N und 

T=220°C 

 

4.6 Schritt 6 - Bestimmung des Beschleunigungsfaktors 
Im Rahmen dieser Studie ist zur Raffung der Dental-Implantaterprobung die Temperatur als 

Beschleunigungsvariable untersucht worden. Zunächst wurde die Belastbarkeit, von 100N 

bis 400N in Raumtemperatur und im Anschluss zusätzlich zu einer Temperaturbelastung in 

Höhe von 220°C, numerisch berechnet. Das Ergebnis ist grafisch in Bild 12 dargestellt. Hier 

ist die Lebensdauer in ertragbaren Anzahl an Lastwiederholungen über die Kraft in Abhän-

gigkeit der Temperatur aufgetragen. 
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Bild 12: Ergebnis der numerischen Ermüdungsberechnung 

 

Die blauen Rauten stellen die Lebensdauer in ertragbaren Wiederholungen bis zum Versa-

gen des Implantats bei einer Umgebungstemperatur von 22°C dar. Die roten Punkte reprä-

sentieren die Belastung aus Last und Temperatur in Höhe von 220°C. Die Geraden basieren 

auf einer Exponentialverteilung. Die Verschiebung von der blauen zur roten Geraden visuali-

siert den Beschleunigungsfaktor. 

Das Ergebnis ist plausibel, obwohl beide Punktverläufe einen Knick aufweisen, der durch 

weitere Untersuchungen, wie eine feinere Aufteilung der Kraftintervalle und die Anwendung 

weiterer Temperaturen, genauer analysiert werden muss. Auch die beiden Ausreißer bei 

250N und 350N müssen genauer betrachtet werden. 

 

5. Zusammenfassung und Ausblick 
Das vorliegende Paper stellt das Konzept sowie die Ergebnisse der numerischen Studie im 

Hinblick auf FEM Simulation von beschleunigter Zeitraffererprobung, die der Optimierung der 

Erprobungspläne dienen soll. Das Verfahren ist rein numerischer Natur, daher auch auf an-

dere technische Produkte umsetzbar.  

Die Simulation bietet eine hervorragende Alternative zur herkömmlichen Erprobung in den 

frühen Entwicklungsphasen, wobei anzumerken ist, dass die Erprobung von der Simulation 
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nicht abgelöst werden soll. Vielmehr stellt sie eine Erweiterung des Testings mit einer hohen 

Flexibilität bezüglich der Einsatzgebiete und Applikation von Randbedingungen dar.  

Das vorgestellte Konzept ist einfach zu realisieren und wurde mit Hilfe von kommerzieller 

Software umgesetzt. Für die Umsetzung dieser Studie wurde ein realitätstreues Implantat in 

einem gängigen CAD Programm (Catia V5) erstellt und mit Third-Party Software vernetzt 

und berechnet. Die Lastapplikation erfolgte auf Basis der DIN EN ISO 14801 [1].  

Diese Studie wird mit weiteren Berechnungen fortgeführt. Hierzu werden neben anderen 

Lasten (Lastkollektiven) weitere Zeitraffermodelle sowie Bauteilgeometrien simuliert. Im Hin-

blick auf die Diskreditierung der Bauteile sollen Netze mit anderen Netzelementen überprüft 

werden. Besonderer Focus wird dabei auf Elemente höherer Ordnung gelegt. Darüber hin-

aus sollen dynamische Belastungen sowie Bauteile bestehend aus mehreren Körpern (Multi-

Body-Simulation) erforscht werden.  

Ein wesentlicher Punkt der weiteren Forschungsarbeit stellt die Validierung der numerischen 

Ergebnisse dar. Hierzu ist eine Reihe an Experimenten unter Laborbedingungen geplant. 

Anzumerken ist, dass es zur Zeit der Forschungsarbeit keine standardmäßigen Prüfstände 

zur beschleunigten Erprobung von Zahnimplantaten auf dem Markt verfügbar sind.  

Schließlich soll die Methode mittels Simulation und Validierung anhand gezielter Erprobung 

von anderen, technischen Produkten umgesetzt werden.  
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Kurzfassung 

In diesem Beitrag wird ein Vorgehen zur systematischen und fallbezogenen Planung eines 

Zuverlässigkeits-DoE für Produkte mit weibullverteilten Lebensdauern vorgestellt. Kern des 

Vorgehens ist das Ergebnis einer Parameterstudie, in der mit Hilfe von Monte-Carlo-Simu-

lationen der Einfluss von Stichprobenumfang, Weibullformparameter, Zensierung, Fak-

toranzahl und Testdesign auf die Genauigkeit geschätzter Modellparameter untersucht 

wird. Das vorgestellte Konzept der „Erfolgswahrscheinlichkeit“ ermöglicht die quantitative 

Bewertung der Genauigkeit der Schätzung von Modellparametern mit Hilfe eines einzelnen 

Kennwerts und ist damit Grundlage für eine Anwendung des Vorgehens in der Praxis. Mit 

Hilfe der Parameterstudie können bereits vor Durchführung erster Versuche Testdesigns 

ausgeschlossen werden, die ein hohes Risiko beinhalten, das gewünschte Ergebnis nicht 

zu erhalten. Mit einer Fallstudie wird die praktische Anwendung des Vorgehens erläutert. 

 

1. Einleitung 

Die statistische Versuchsplanung (engl. design of experiments, DoE) gilt als  Methode zur 

effizienten Planung und Auswertung von Versuchsreihen mit normalverteilten Zielgrößen  

[1, 2]. Bei Anwendung auf Lebensdauerversuche technischer Produkte wird in der englisch-

sprachigen Literatur von „Reliability-DoEs“, zu Deutsch Zuverlässigkeits-DoEs (Zuv-DoE) 

gesprochen [3]. Zuv-DoEs bieten die Möglichkeit, effizient den Einfluss von mehreren Fak-

toren wie Designparametern, Herstellungsverfahren, Belastungsarten und deren Wechsel-

wirkungen auf die Produktzuverlässigkeit in Lebensdauerversuchen zu ermitteln. Dafür wird 

untersucht, ob eine Änderung des Niveaus der Eingangsfaktoren zu einer signifikanten Ver-

änderung der Lebensdauer des Produkts führt. Daraus gewonnene Erkenntnisse finden 

Verwendung bei der Entwicklung zuverlässigerer Produkte im Sinne von Design for Reliabi-

lity (DFR) und der Bestimmung von Raffungsmodellen für eine beschleunigte Produktabsi-

cherung [4]. In der Literatur finden sich Versuchspläne für unterschiedliche Zielsetzungen 

[1, 2]. Im Fokus dieser Untersuchung sind 2-stufige teil- und vollfaktorielle Versuchspläne, 

die für Screenings und die Ermittlung linearer Zusammenhänge genutzt werden. 
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2 Eigenschaften von Zuverlässigkeits-DoE 

Bei Zuv-DoEs muss berücksichtigt werden, dass Lebensdauerdaten als Zielgröße i.d.R. 

lognormal-, exponential- oder weibullverteilt, nicht aber normalverteilt sind. Zudem können 

Lebensdauerdaten aus Versuchen vollständig oder zensiert sein. In diesem Fall können 

Standardverfahren wie ANOVA oder lineare Regression, die auf normalverteilte Daten in 

herkömmlichen DoEs anwendbar sind, nicht mehr für die Ergebnisanalyse herangezogen 

werden [5]. In dieser Untersuchung wird daher das in [4]  vorgestellte Verfahren der Maxi-

mum Likelihood Estimation zur Analyse von Zuv-DoEs angewendet.  

 

3 Ansatz zur Planung eines Zuverlässigkeits-DoEs 

Wichtiger Bestandteil der statistischen Versuchsplanung ist die Bestimmung des Stichpro-

benumfanges in Abhängigkeit von Trennschärfe, Alpha-Niveau, Streuung der Grundge-

samtheit und gewünschter zu erkennender Effekthöhe. Dabei ist die Trennschärfe ein Maß 

für die Fähigkeit eines Tests, richtigerweise zu erkennen, dass die Nullhypothese falsch ist. 

Bei normalverteilter Zielgröße und bekannter Standardabweichung kann hierfür ein Gauß-

Test als Hypothesentest zur Überprüfung des angesetzten Stichprobenumfangs angesetzt 

werden [6]. Da aber Lebensdauerdaten in der Regel nicht normalverteilt sind, lässt sich der 

Gaußtest auf sie nicht anwenden. Der Grundzusammenhang gilt allerdings auch für 

weibullverteilte Lebensdauerdaten. Ist die Effekthöhe E zwischen unterer und oberer Fak-

torstufe gering, liegen die Stichproben dicht beieinander und ihre Vertrauensbereiche über-

lappen sich deutlich, siehe Bild 1 links. 

 
Bild 1: Einfluss von Effekthöhe und Stichprobenumfang auf die Trennschärfe 
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Die Trennschärfe steigt mit Effekthöhe E und Stichprobenumfang n, siehe Bild 1 rechts. Je 

größer der Stichprobenumfang, desto genauer können Effekte, d.h. die Differenz zwischen  

Lageparameter (hier:  char. Lebensdauer T) auf oberer Faktorstufe FSo (x = 1) und unterer 

Faktorstufe FSu (x = -1),  erkannt werden. Der notwendige Stichprobenumfang ist umso 

größer, je kleiner die Effekte sind, die erkannt werden sollen. Eine größere Streuung der 

Lebensdauern, charakterisiert durch einen kleinen Formparameter b, führt ebenfalls zu ei-

ner Erhöhung des notwendigen Stichprobenumfangs. Ziel dieser Arbeit ist, diesen Zusam-

menhang für weibullverteilte Daten zu quantifizieren und damit die Bestimmung des Stich-

probenumfangs bei der Planung von Zuv-DoEs zu ermöglichen.  

 
3.1 Simulation von Versuchsplänen 

Für die rechnergestützte Untersuchung verschiedener Versuchspläne und Lebensdauer-

modelle (LM) wurde ein Simulationsprogramm in Matlab aufgebaut. Es ermöglicht die virtu-

elle Durchführung von Lebensdauerversuchen nach einem Versuchsplan für ein vorgege-

benes LM, an dessen Ende die Parameter des geschätzten LM mit der Vorgabe verglichen 

werden. Für die Berücksichtigung der Zufallsstreuung bei der Bewertung wird der Ver-

suchsplan 1.000-mal durchsimuliert. Die Implementierung von Latin Hypercube Sampling 

(LHS) zur Erzeugung zufälliger Ausfallzeiten für die Faktorstufenkombinationen (FSK) des 

Versuchsplans sorgt dabei für eine gute Abdeckung aller möglichen Ausfallzeiten. Eine au-

tomatisierte statistische Zuv-DoE Analyse ermöglicht eine zeiteffiziente Ermittlung der Mo-

dellparameter nach gleichbleibenden Kriterien.  

 
3.1.1 Lebensdauermodell 

Der Grundaufbau des Lebensdauermodells (LM) entspricht dem Ansatz von [4, 7] und wird 

nachfolgend vereinfacht beschrieben. Für die Modellierung von Effekten wird anstelle der 

char. Lebensdauer T in der Weibullverteilung ein lineares LM TLM hinterlegt. Da TLM eine 

Lebensdauer darstellt, die keine negativen Werte annehmen kann, wird eine logarithmische 

Transformation angewendet. Ein Beispiel für eine zweiparametrische Weibullverteilung mit 

einem Zwei-Faktoren-Lebensdauermodell ist in Gleichung (1) abgebildet. Dabei geben die 

Modellparameter a1 bis a3 in Kombination mit den Faktorstufeneinstellungen x1 und x2 die 

Effekthöhe E der Haupteffekte und Wechselwirkungen vor.  

Für die Schätzung der Parameter des LM wird die Methode der Maximum-Likelihood-

Schätzung verwendet. Dieses Schätzverfahren bietet den Vorteil, dass sowohl rechts- als 
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auch intervall-zensierte Daten berücksichtigt werden können. Durch die multiplikative Kom-

bination der Likelihoodfunktionen können bei der Auswertung alle erdenklichen Ausgangs-

szenarien berücksichtigt werden, vgl. Gleichung (2). 

    
 

 
(1)  

    

  (2)  

    
 

3.1.2 Automatisierte statistische Zuv-DoE Analyse 

Für die Überprüfung der Signifikanz der Effekte wird ein Likelihood-Ratio-Quotienten-Test 

verwendet. Es wird definiert, dass alle Haupteffekte und Wechselwirkungen von Faktoren 

mit einem P-Wert von größer als 0,05 als nicht signifikant bewertet werden.  

Die Herausforderung bei einer automatisierten, rein auf der Statistik beruhenden Auswer-

tung liegt in der Definition eines Prozesses, den das Simulationsprogramm bei jedem 

Durchlauf selbstständig und auf dieselbe Weise durchläuft. Dieses ist nachfolgend be-

schrieben, Bild 2.  

 
Bild 2: Ablaufschema der automatisierten statistischen Zuv-DoE Analyse 
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nächstes werden alle Faktoren, die nicht Teil einer Wechselwirkung sind, auf die Signifi-

kanz ihres Haupteffekts untersucht und gegebenenfalls aus dem LM entfernt. Faktoren, die 

Teil einer Wechselwirkung sind, müssen, auch wenn ihr Haupteffekt nicht signifikant ist, im 

Modell enthalten bleiben [1]. Sollte nach dem Streichen eines Haupteffektes eine Wechsel-

wirkung bei der nächsten Modellschätzung nicht signifikant werden, muss diese gestrichen 

werden, bevor weitere Effekte auf ihre Signifikanz untersucht werden können. Am Ende 

des Iterativen Vorgehens steht ein LM mit geschätzten Parametern für Haupteffekte und 

Wechselwirkungen, die, basierend auf der Stichprobe, alle signifikant sind. Das geschil-

derte Vorgehen wird bei jedem Simulationsdurchlauf nach demselben Schema durchlaufen. 

Es ergeben sich somit 1.000 LM, die mit dem vorgegebenen LM zu vergleichen sind. 

 
3.2 Parameterstudie als Planungsbasis 

Basis des Planungsansatzes ist eine Parameterstudie, in der die Güte der Schätzung der 

Modellparameter eines vorgegebenen LM für verschiedene Kombinationen von Effekthö-

hen E, Formparameter b und Lebensdauerversuche je Faktorstufe eines Faktors nFS ermit-

telt wird, vgl. Tabelle 1.  

 

Tabelle 1: Definition des Untersuchungsraums der Parameterstudie 

 Untersuchungsbereich 

b 1,5 2 2,5 3 3,5 - - - 
E 0,2·T 0,4·T 0,6·T 0,8·T 1,0·T - - - 
nFS  4 8 12 16 20 24 28 32 

 

Zur Sicherstellung der Übertragbarkeit der Ergebnisse auf beliebige LM wird definiert: 

- Die char. Lebensdauer T des LM im Zentralpunkt (x = 0) wird auf T = 1 normiert. Da-

mit ergibt sich für alle Modelle nach Gleichung (2) die Vorgabe a0 = ln(1) = 0. 

- Die Effekthöhe E wird auf die normierte charakteristische Lebensdauer T im Zentral-

punkt bezogen. Ein Effekt von 0,4·T bedeutet damit, dass die Differenz zwischen 

char. Lebensdauer auf FSo (x = 1) und FSu (x = -1) 0,4·T  beträgt. 

Für die Parameterstudie wird ein 2-stufiger vollfaktorieller Versuchsplan für k = 2 Faktoren 

verwendet. Um die Genauigkeit der Schätzung der Haupteffekte der Faktoren A und B nicht 

durch WW zu beeinflussen (vgl. Abschnitt 3.1.2), wird die Zwei-Faktor-Wechselwirkung 

(2FWW) im LM gestrichen. Des Weiteren wird nur für Faktor A die Effekthöhe E entspre-

chend der Stufen in Tabelle 1 variiert. Faktor B wird hingegen null gesetzt. Dadurch kann 

ermittelt werden, bis zu welchem Mindeststichprobenumfang Pseudo-Effekte für Faktor B 

VDI-Berichte Nr. 2307, 2017 273

https://doi.org/10.51202/9783181023075 - Generiert durch IP 216.73.216.119, am 30.01.2026, 10:41:28. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783181023075


erkannt werden, die durch die Zufallsstreuung der weibullverteilten Lebensdauern als ver-

meintlich signifikant bewertet werden. Das LM für die Parameterstudie lautet damit 

    
  . (3)  

    
Der Zusammenhang zwischen a1 in Gleichung (7) und vorgegebener Effekthöhe E ist 

    
  . (4)  

    
Der Parameter a1 errechnet sich damit zu 

    
  . (5)  

    
Für die Parameterkombination b = 1,5 und E = 0,2·T ergibt sich damit  

    
 

  ,  . (6) 
 

    
Der 2-stufige vollfaktorielle (VF) Versuchsplan für k = 2 Faktoren und Reduktionsstufe p = 0 

enthält m = 2^(k - p) = 4 Faktorstufenkombinationen. Je Faktor liegen davon für beide Fak-

toren 2^(k - p - 1) = 2  auf der unteren und 2^(k - p - 1) = 2 auf der oberen Faktorstufe. Zur 

Erreichung der Vorgabe von nFS Versuchen je Faktorstufe müssen daher mehrere Replikati-

onen nR des Versuchsplans durchgeführt werden. Es gilt 

    
  . (7)  

    
Der Gesamtstichprobenumfang n errechnet sich zu  

    
  . (8)  

    
 
3.3 Erfolgswahrscheinlichkeit  

Den Autoren ist bei der Ermittlung geeigneter Versuchspläne zur Bestimmung von signifi-

kanten Haupteffekten oder Wechselwirkungen wichtig, dass neben den tatsächlichen durch 
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das LM vorgegebenen Effekten auch deren Vorzeichen und absoluter Wert mit hinreichen-

der Genauigkeit bestimmt wird. Für die Bewertung der Genauigkeit der Schätzung einzel-

ner Modellparameter mit einem bestimmten Versuchsplan wird daher die in [8] vorgestellte 

Erfolgswahrscheinlichkeit EW herangezogen. Sie gibt an, wieviel Prozent aller 1.000 Schät-

zungen eines Modellparameters ai oder b innerhalb einer Toleranzbandbreite TB um den 

Parameter des vorgegebenen LM liegen. Ein hoher Wert für EW ist danach ein Indiz für ei-

nen Versuchsplan, der robust gegenüber der Zufallsstreuung ist. 

Für die Bewertung der Schätzung des Weibull-Formparameters b wird im Folgenden 

TB = ± 0,1·b, Gleichung (9). Für die Bewertung der geschätzten LM-parameter ai wird eine 

Toleranzbandbreite von ± 10% der normierten char. Lebensdauer T vorgegeben, Gleichung 

(10). Dadurch wird sichergestellt, dass in einem Ranking signifikanter Effekte eines LM 

keine Faktoren mit einem Effektunterschied ≥ 0,2·T fälschlicherweise in der falschen Rei-

henfolge angeordnet werden. 

    
   (9)  
    
  (10)  
    

 
3.4 Ergebnisse der Parameterstudie 

Alle möglichen Parameterkombinationen von b und E aus Tabelle 1 wurden mit dem in 

Kap. 3.2 vorgestellten VF Versuchsplan für alle in Tabelle 1 angegebenen nFS nach dem in 

Kap. 3.1 vorgestellten Simulationsprogramm 1.000 mal simuliert. 

Die Ergebnisse für  sind in Tabelle 2 dargestellt. Folgende Zusammen-

hänge bestätigen sich: 

- Je kleiner der Formparameter b, desto geringer ist die Erfolgswahrscheinlichkeit EW 

bei konstanter Lebensdauerversuchsanzahl je Faktorstufe nFS und Effekthöhe E. 

- Je kleiner der Effekt, der erkannt werden soll, desto geringer ist die Erfolgswahr-

scheinlichkeit bei gleichbleibendem Formparameter und konstanter Lebensdauer-

versuchsanzahl je Faktorstufe. 
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Tabelle 2: Erfolgswahrscheinlichkeit für ai in Abhängigkeit von nFS und Effekthöhe E 

E [%·T] nFS 
 [%] 

b=1,5 b=2,0 b=2,5 b=3,0 b=3,5 

20 4 < 5 < 5 < 5 8 11 
20 8 < 5 < 5 < 5 9 14 
20 12 < 5 < 5 6 15 28 
20 16 < 5 < 5 12 23 41 
20 20 < 5 < 5 17 36 52 
20 24 < 5 7 23 40 60 
20 28 < 5 12 29 51 64 
20 32 < 5 17 36 57 73 

40 4 < 5 9 17 26 31 
40 8 < 5 15 31 41 54 
40 12 6 25 43 57 60 
40 16 14 36 50 60 67 
40 20 20 46 58 71 75 
40 24 32 50 63 69 81 
40 28 37 55 64 76 83 
40 32 40 57 68 79 85 

60 4 8 17 26 31 38 
60 8 16 31 40 48 56 
60 12 25 40 51 59 66 
60 16 34 45 54 63 72 
60 20 39 51 62 73 81 
60 24 41 55 67 72 80 
60 28 45 59 69 78 86 
60 32 49 60 72 81 87 

80 4 14 23 28 37 41 
80 8 27 35 44 49 59 
80 12 34 41 51 60 66 
80 16 39 47 57 65 74 
80 20 43 57 68 73 81 
80 24 44 57 68 76 84 
80 28 46 60 74 82 89 
80 32 50 65 76 84 89 

100 4 18 29 33 40 48 
100 8 30 40 49 56 62 
100 12 35 49 56 69 71 
100 16 41 54 63 72 80 
100 20 47 63 73 79 85 
100 24 50 61 76 82 88 
100 28 53 68 78 87 92 
100 32 55 70 80 88 93 

 

Die Erfolgswahrscheinlichkeit für die richtige Schätzung des Formparameters innerhalb der 

vorgegebenen Toleranzbandbreite  ist indes nur von der Anzahl an 

Versuchen je Faktorstufe nFS und damit vom Gesamtstichprobenumfang abhängig, Bild 3.  
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Bild 3: Erfolgswahrscheinlichkeit für Formparameter b in Abhängigkeit von Formparameter, 

Effekthöhe und Versuchsanzahl je Faktorstufe 

 
3.5 Systematischen Planung eines 2F-Zuv-DoE 

Auf Grundlage des Ergebnisses der Parameterstudie kann die systematische Planung ei-

nes beliebigen 2F-Zuv-DoEs in drei Schritten erfolgen, Bild 4.  

 
Bild 4: Planung eines 2F-Zuv-DoE in drei Schritten 

 

Im ersten Schritt ist festzulegen, welche auf die normierte char. Lebensdauer bezogene 
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rungs- oder Schätzwert für den Formparameter b benötigt. In Abhängigkeit der gewünsch-

ten Erfolgswahrscheinlichkeit kann damit aus Tabelle 2 die Mindestversuchsanzahl je Fak-

torstufe nFS_min bestimmt werden.  

Der zweite Schritt besteht aus der Auswahl eines geeigneten 2F-Versuchsplans in Abhän-

gigkeit der zu untersuchenden Anzahl an Faktoren und der Versuchsplanauflösung. Sollen 

2FWW sicher erkannt werden, empfiehlt sich eine Auflösung größer III [2]. Faktoranzahl 

und Auflösung bestimmen die Faktorstufenanzahl m. 

Im dritten Schritt kann mit nFS_min und m die Anzahl an Versuchsplan-Replikationen nR so-

wie der Mindestgesamtstichprobenumfang nmin errechnet werden. 

 
4. Fallstudie 

Für vier Faktoren A, B, C und D soll mit einem Zuv-DoE ein Faktorscrenning durchgeführt 

werden. Ziel ist, Effekte E ≥ 0,6·T mit EWmin = 70% zu erkennen. Bei Annahme von b = 2,5 

ergibt sich nFS_min = 32 (Tabelle 2). Da mögliche 2FWW erkannt werden sollen, wird ein VF 

Versuchsplan mit m = 24 = 16 FSK gewählt. Daraus ergibt sich nR = 4 und nmin = 64.  

Für die Überprüfung der für diesen Versuchsplan in Tabelle 2 prognostizierten Erfolgswahr-

scheinlichkeit für vorgegebene Effekthöhen wird ein fiktives LM mit den in Bild 5 links ange-

gebenen Effekthöhen vorgegeben. Mit diesem Modell wird der gewählte Versuchsplan 

nach dem in Bild 2 gezeigten Vorgehen 1.000 Mal simuliert. Die sich ergebenden Istwerte 

für die EW der einzelnen Faktoren liegen dabei sehr nah an den EW-Planungswerten, 

siehe Bild 5 rechts. Abweichungen resultieren aus vermeintlich als signifikant beurteilten 

WW, die zu zusätzlichen Modelltermen führen und die restlichen Modellterme beeinflussen. 

 
Bild 5: Lebensdauermodellvorgabe und Ergebnis für VF Versuchsplan der Fallstudie 

 

5. Optimierungspotentiale 

64 bis zum Ausfall gefahrene Lebensdauerversuche erfordern immense Testkapazitäten. 

Es stellt sich daher die Frage nach Optimierungspotentialen für den Versuchsplan. 
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Zur Verkürzung von Lebensdauerversuchszeiten ist die Zeitzensierung ein möglicher An-

satz. Angewendet auf die Zuv-DoEs führt sie allerdings zu unausgewogenen Versuchsplä-

nen, bei denen für manche FSK auf geringem Belastungsniveau kein einziger Ausfall zu 

verzeichnen ist. Entsprechend schlecht sind die Schätzer für die Modellparameter, Bild 6. 

 
Bild 6: Lebensdauermodellvorgabe und Ergebnis für zeitzensierten VF Versuchsplan  

 

Ein anderer Optimierungsansatz sind teilfaktorielle (TF) Versuchspläne. Da die EW bei kon-

stantem b und Emin nur von nFS abhängt, ergibt sich bei gleicher Faktoranzahl k keine Stich-

probenreduktion gegenüber VF Plänen. Jedoch können mit TF Plänen bei gleichem n mehr 

Faktoren gleichzeitig untersucht werden, siehe Bild 7. Ein weiterer praktischer Vorteil von 

TF Plänen liegt in der geringeren FSK- und damit Variantenanzahl, die zu geringeren Kos-

ten für Grenzmuster und reduzierten Rüstzeiten im Versuch führen. 

 
Bild 7: Lebensdauermodellvorgabe und Ergebnis für zeitzensierten TF Versuchsplan 

 

6. Zusammenfassung 

Die vorliegende Arbeit beschreibt ein Vorgehen zur systematischen Planung von 2-faktoriel-

len Zuverlässigkeits-DoEs für weibullverteilte Zielgrößen. Grundlage des Vorgehens und Vo-

raussetzung für eine quantitative Bewertung des zu erwartenden Versuchsergebnisses sind 

eine standardisierte Parameterstudie sowie die Einführung der Erfolgswahrscheinlichkeit.  
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Ergebnis der Untersuchung ist, dass die Schätzung des Formparameters b ausschließlich 

vom Gesamtstichprobenumfang abhängt, während die Schätzung einzelner Lebensdauer-

modellparameter von Formparameter, Effekthöhe und Anzahl an Lebensdauerversuchen je 

Faktorstufe beeinflusst wird. 

Für genaue Parameterschätzer sind große Stichprobenumfänge und damit lange Gesamt-

versuchsdauern notwendig. Eine Zeitzensierung führt allerdings zu sehr schlechten Parame-

terschätzungen und birgt damit kein Optimierungspotential. Teilfaktorielle Pläne bieten insbe-

sondere bei großen Anzahlen zu untersuchender Faktoren (k > 5) die Möglichkeit, den 

Gesamtstichprobenumfang zu reduzieren. Hierbei ist zu beachten, das 2FWW ab Versuchs-

plan-Auflösung III nicht mehr ohne Alias-Effekte erkannt werden können.  
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