
Fortschritt-Berichte VDI

Dipl.-Ing. Liyong Yu,
Tianjin (China)

Nr. 1248

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

A Reference Model for
the Integration of
Agent Orientation in the
Operative Environment
of Automation Systems

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

A Reference Model for the Integration of Agent
Orientation in the Operative Environment of

Automation Systems

Von der Fakultät für Georessourcen und Materialtechnik

der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Ing.

Liyong Yu

aus Tianjin, China

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple

Univ.-Prof. Dr.-Ing. Dr. h. c. Peter Göhner

Tag der mündlichen Prüfung: 14. Dezember 2015

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Fortschritt-Berichte VDI

A Reference Model for
the Integration of
Agent Orientation in the
Operative Environment
of Automation Systems

Dipl .-Ing. Liyong Yu,
Tianj in (China)

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1248

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

D82 (Diss. RWTH Aachen University, 2015)

© VDI Verlag GmbH · Düsseldorf 2016
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-524808-5

Yu, Liyong
A Reference Model for the Integration of Agent Orientation in the
Operative Environment of Automation Systems
Fortschr.-Ber. VDI Reihe 8 Nr. 1248. Düsseldorf: VDI Verlag 2016.
 146 Seiten, 60 Bilder, 2 Tabellen.
ISBN 978-3-18-524808-5, ISSN 0178-9546,
¤ 57,00/VDI-Mitgliederpreis ¤ 51,30.
Keywords: Agent Systems – Procedure Description – Service Orientation – IEC 61131-3 –
Sequential Function Chart – Process Control – Engineering – Agentensysteme, Prozedurbeschrei-
bung, Dienstorientierung

This work introduces a reference model for automation agents that can be seamlessly integrated
in existing process control systems. This model combines the advantages of function block
technology, service orientation and agent orientation. Concept decisions about modularity,
service-oriented interaction and procedure description provide a base for the development of
process control- diagnosis-, model management-, project management- and other agents. The
model is implemented in a platform-neutral development environment as a proof of concept and
tested with an industrial plant.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Prefacet

The present thesis emerged from my work at the Chair of Process Control Engineering
of RWTH Aachen University during the period from 2008 to 2013.

I would like to express my deep and sincere gratitude to Univ.-Prof. Dr.-Ing. Ulrich
Epple for his mentoring, his encouragement and his support during my work as a doc-
toral student and research assistant at his chair. I also wish to express my warm and
sincere thanks to Univ.-Prof. Dr.-Ing. h. c. Peter Göhner for his kindness in taking on the
function of second advisor for this work. Furthermore, I am very grateful to Univ.-Prof.
Dr.-Ing. Gerhard Hirt for presiding over my doctoral examination. Finally, I sincerely
thank Margarete Milescu for her invaluable assistance.

Many people have contributed to the research that is presented in this thesis with their
comments and thoughts. For this I thank Lars Evertz, Dr. Reinhard Fuchs, Sten Grüner,
Holger Jeromin, Dr. Reiner Jorewitz, David Kampert, Roland König, Dr. Kai Krüning,
Sebastian Maurell-Lopez, Dr. Henning Mersch, Tina Mersch, Dr. Martin Mertens, Dr.
Gustavo Quirós, Markus Schlütter, Dr. Stefan Schmitz, Andreas Schüller, Sabrina von
Styp, Constantin Wagner. I also thank Ursula Bey, Christopher Fleischacker, Ting Guo,
Christopher Hense, Huijing Jie, Xinye Li, Tobias Lietke, Vihn Pham, Gregor Rohbogner,
Ilya, Schapovalov, Semjon Spitzglus, Martina Uecker for their collaboration at the Chair
of Process Control Engineering.

Finally, I owe my loving thanks to my parents Yizeng and Yuanheng, my parents-in-
law Heping and Honghui for their love, understanding and constant support throughout
my graduate. My special gratitude is also due to my wife Yifei and my Children Haoting
and Langting for their continuous loving support.

Aachen, December 2015 Liyong Yu

III

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

(Ge Wu Zhi Zhi)

To study the phenomena of nature in order to
acquire knowledge; to study the nature of things.

from “The Book of Rites - The Great Learning”
Zeng Shen (China, 505-434 B.C.)

IV

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Contents

Kurzfassung VIII

Abstract IX

1 Introduction 1
1.1 Motivation . 1

1.2 Structure of this Work . 2

2 Basics of Process Automation 3
2.1 Process Automation System . 3

2.1.1 Overview . 3

2.1.2 Hardware and Software Environment 4

2.1.3 Trend toward Integration and Standardization 5

2.2 Modelling . 6

2.2.1 Basics . 6

2.2.2 Function Block . 8

2.2.3 Runtime System Model . 9

2.2.4 Time Model of Cyclic Execution Environment 12

2.2.5 Model of Operational Resource and Operational Measure 13

2.2.6 Component Model for Hierarchical Process Control 14

2.3 Service Orientation . 17

2.4 Messages . 19

2.5 Agent Orientation . 20

2.5.1 Introduction . 20

2.5.2 Usability in Industrial Automation 23

2.5.3 Concept of a Reference Model . 25

3 Specification of a Reference Model for Automation Agents 28
3.1 Engineering Requirements . 29

3.1.1 Functional Requirements . 29

3.1.2 Non-functional Requirements . 30

3.2 Service Model . 32

3.3 Message Format . 34

3.4 Message Delivery Model . 36

3.5 Internal Structure . 37

V

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Contents

3.6 Service Interfaces . 39

3.6.1 Message Input and Message Inbox 40

3.6.2 Message Output . 45

3.6.3 Input interface . 46

3.7 Knowledge Base . 47

3.8 Execution Model . 48

3.9 Related Automation Technologies . 50

3.9.1 Relationship with Function Block Technology 50

3.9.2 Relationship with Service Orientation 51

3.9.3 Relationship with ACPLT/PF . 52

4 Usability Analysis of Existing Procedure Description Methods 54
4.1 Finite State Automaton . 55

4.2 Statechart . 57

4.3 Petri Net . 61

4.4 Sequential Function Chart . 64

4.4.1 Syntax . 64

4.4.2 Semantics . 67

4.4.3 Application in Process Automation 69

4.4.4 Usability Analysis . 69

4.5 Grafcet . 70

4.6 Procedural Function Chart . 72

4.7 Summary . 75

5 Specification of a General Procedure Description Method 77
5.1 Execution Frame . 78

5.2 State . 80

5.3 Transition . 81

5.4 Alternative Sequence . 82

5.5 Action . 83

5.6 Hierarchy . 86

5.7 Concurrency . 88

5.8 Procedure Progress . 90

5.9 Summary . 92

6 Prototypical Implementation 95
6.1 ACPLT Technologies . 95

6.1.1 Object Management System: ACPLT/OV 95

6.1.2 Basic Libraries . 97

6.2 FB-agent Library . 99

6.3 SSC Library . 102

6.3.1 Class Diagram . 102

6.3.2 Instance Model . 103

VI

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Contents

6.3.3 Task Model . 104

7 Case Study 107
7.1 Research Plant: Submerged Arc Furnace (SAF) 107

7.2 Process Automation System . 108

7.3 Process Control . 110

7.3.1 Service Oriented Interaction . 110

7.3.2 White-Box Engineering . 113

7.4 Knowledge-based Engineering . 115

7.4.1 Concept . 116

7.4.2 Use Cases . 117

7.4.3 Application Effects . 123

8 Conclusions and Outlook 124

Bibliography 127

VII

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Kurzfassung

Kurzfassung

Der zunehmende Funktionsumfang der Automatisierungssysteme sowie die steigende Komple-

xität der Automatisierungsfunktionen stellen dem Systementwickler die Herausforderung, die

Modularität, Flexibilität sowie die Autonomie auch der Prozessleitsysteme fortlaufend zu ver-

bessern. Die agenten-orientierte Automatisierung hat ein groes Potential beleuchtet, diese Her-

ausforderungen zu bewältigen und gleichzeitig den Engineeringaufwand zu reduzieren. Klas-

sische Agentensysteme aus der Informationstechnik isolieren in der Regel die Endanwender

vom Engineering der Agenten. Zudem sind die Engineeringumgebung, die Laufzeitumgebung

sowie die Beschreibungsmitteln für Agenten normalerweise inkompatibel mit den bestehenden

Automatisierungssystemen. Die vorliegende Arbeit stellt ein Referenzmodell für Automatisie-

rungsagenten vor, welches eine nahtlose Integration der Agenten in IEC 61131-3 basierende

Prozessleitsysteme und ein anwender-zentriertes Engineering ermöglicht.

Das Referenzmodell dient als ein generisches Muster für die Entwicklung von verschiede-

nen Agenten, z.B. für Prozessführung, Diagnose, Modellverwaltung, Projektierung usw. Je nach

der Aufgabenstellung können die autonomen Agenten miteinander interagieren. Auf diese Wei-

se können die Fähigkeiten einzelner Agenten für die Lösung komplexer Aufgaben kombiniert

werden. Das Referenzmodell definiert den Ausführungsrahmen der Agenten, ihre Kommunika-

tionsschnittstelle sowie die Beschreibungsmittel für agenten-interne kontinuierliche Funktionen

und Prozeduren anwendungs- und leitsystemneutral. Dadurch wird der Engineeringaufwand ge-

ring gehalten, während die Interoperabilität und die Wiederverwendbarkeit der Funktionsmodule

(d.h. Agenten) des Automatisierungssystems erhöht werden.

Das Referenzmodell ist in einer plattformneutralen Entwicklungsumgebung umgesetzt. Sei-

ne Anwendung in einem industriellen Projekt wird vorgestellt. In dem Projekt sind Agenten

u.a. zuständig für die operative Prozessführung sowie die automatische Erstellung der Pro-

zessführung und Anlagensimulation. Da in diesem Modell IEC 61131-3 kompatible Ausführungs-

semantiken und Beschreibungsmittel verwendet werden, können die Endanwender die Agenten

eigenständig projektieren. Diese Tätigkeiten können bei Verwendung klassischer agentenori-

entierter Methoden nur von Experten mit spezieller Programmierschulung und Erfahrungen im

Bereich Software Engineering durchgeführt werden.

Aufgrund der Reduzierung des Engineeringaufwands und der Kompatibilität mit den beste-

henden Automatisierungssystemen kann das Referenzmodell als Basis für die Integration von

Agentensystemen in Prozessleitsystem genutzt werden. Konzeptentscheidungen über dienstori-

entierte Interaktion, modulare Kapselung von Funktionen und generische Beschreibung der Au-

tomatisierungsprozeduren können ebenfalls bei der Entwicklung von Funktionen unterstützen,

die nicht von Agenten ausgeführt werden sollen. Auch in diesen Fällen wird erwartet, dass

die Engineering-Kosten reduziert und die Flexibilität sowie die Interoperabilität der Automati-

sierungsfunktionen erhöht werden.

VIII

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Abstract

The increasing functional range of automation systems and the increasing complexity of au-

tomation functions challenge system developers to continuously improve the modularity, flexi-

bility and the autonomy of process control systems. The agent-oriented automation has shown

great potential in addressing these challenges while reducing the engineering effort at the same

time. Classic agent systems in the field of information technology usually isolate the end users

from the engineering of agents. In addition, the applied engineering environment, runtime sys-

tems and description methods are normally incompatible with the existing automation systems.

The present work presents a reference model for automation agents that can be seamlessly

integrated in process control systems based on the IEC 61131-3 standard. Moreover, a user-

centralized engineering is allowed.

The reference model serves as a generic model for the development of process control-,

diagnosis-, model management-, project management-, and other agents. Depending on the

automation task, autonomous agents can also interact with each other. By this means, the ca-

pabilities of individual agents can be combined for solving complex tasks. The reference model

generally defines the execution frame of automation agents, their communication interfaces and

the description methods for continuous and procedural functions within the agents. These as-

pects are application- and system-neutral. Thus, the engineering effort is kept low, while the

interoperability and the reusability of functional modules (i.e. agents) within the automation sys-

tem is increased.

The reference model is implemented in a platform-neutral development environment. Its ap-

plications in an industrial project will be presented. In this project, agents are developed i.e. for

the operational process control as well as the automatic creation of process control and plant

simulation. Because IEC 61131-3 compatible execution semantics and description methods are

applied, the end-user can configure the agents by him-/herself. By using classic agent-oriented

methodologies, however, these activities can only be carried out by experts with special training

and programming experience in software engineering.

Due to the reduction of engineering effort and the compatibility with existing automation sys-

tems, the reference model can be used as a base for the integration of agent systems in process

control systems. Concept decisions about service-oriented interaction, modular encapsulation

of functions and general description of automation procedures can also assist in the develop-

ment of functions that are not going to be performed by agents. In these cases, the reduction of

the engineering cost and the increment of flexibility and interoperability of elementary modules

of the automation system are also to be expected.

IX

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

1 Introduction

1.1 Motivation

A process automation system is the hardware and software environment for the con-

trol and observation of production processes, typically in the chemical and metallurgical

industry. Along with the rapid development of automation technologies and computer

science, the process industry is facing new challenges at present. Firstly, the present

global market challenges the manufacturer to shorten the life cycle and raise the indi-

viduation of their product. Automation solutions should be flexibly structured, so that

they can be easily adapted for new production tasks. Secondly, the quantity and the

complexity of automation functions has increased significantly. It becomes more and

more difficult to define all possible production situations in advance. Autonomous func-

tions (e.g. adaptation, learning ability etc.) are necessary. Furthermore, technical

personals is changing more frequently than in 1970s. Automation systems should be

well-structured and easily understandable, so that the knowledge inheritance during a

personnel change and generation change can be simplified. The system intuition can

be improved through encapsulation and abstraction of automation functions (e.g. as

services).

Under these circumstances, the engineering principle of agent orientation appears to

have great potential for coping with the aforementioned challenges. By means of agent

orientation, automation functions can be encapsulated in individual agents which are in

charge of process control, data archiving, mode management or diagnosis. Automation

agents are modular entities and behave autonomously. They can, for instance, recog-

nize situations, sense abnormal changes in the environment and chose operation strate-

gies autonomously. Agents provide services to the user and ensure the achievement of

service objectives. The user does not need to master all implementation details. Agents

can cooperate among each other and solve complex automation tasks. With their help,

the autonomy, flexibility and scalability of automation systems can be significantly im-

proved. Bright practical perspectives can be expected through the further development

of automation agents.

The agent-oriented software engineering is one important research area in computer

science. Research achievements (e.g. situation recognition, adaptivity and learning

ability etc.) and their practical application offer a good basis for the development of

autonomous agents in process automation. However, the classic software agents can-

1

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

1 Introduction

not be directly applied in automation systems. One main reason for this is that classic

agents are normally developed for runtime systems and implemented in programming

languages (typically JAVA) which are not compatible with automation systems. There

is still no appropriate approach for the construction of automation agents and for their

integration in automation systems.

The process industry is a rather conservative industry and has special requirements

on software applications. During the application of a new technology, existing hardware

characteristics, runtime behaviors, programming languages (e.g. according to the IEC

61131-3 standard) should be regarded. Existing best practices (e.g. communication

technology, engineering processes etc.) are also worthy of being utilized.

One main goal of the present dissertation is to contribute a reference model for au-

tomation agents that can be harmonically integrated into existing automation systems.

The aforementioned characteristics of automation systems will be carefully considered.

The following engineering aspects will be discussed: encapsulation form and execution

frame, communication with the environment, internal structure, registration of services,

runtime behaviors and execution models in automation systems.

One central engineering aspect of the reference model, which is also the second

goal of the present dissertation, is the selection of appropriate description methods

for describing continuous functions and procedural functions. The existing description

methods in process automation and in computer science will be evaluated. Their com-

patibility with automation system and their utility in the introduced reference model of

agents will also be analyzed.

1.2 Structure of this Work

The present dissertation is structured as follows: Chapter 2 introduces basics of pro-

cess automation, model-based software engineering, service orientation and agent ori-

entation. Chapter 3 introduces a reference model which serves as a guideline for the

engineering of agents and for their implementation in automation systems. Chapter 4

evaluates existing procedure description methods. Chapter 5 specifies a general proce-

dure description method which combines advantages of the analyzed methods and can

be applied as a standard approach for describing most procedures in agents. Chap-

ter 6 presents prototypes of the agent model and of the general procedure description

method. Chapter 7 introduces results of case studies in which the models for agents

and procedure description were tested. And finally, Chapter 8 provides a conclusion

and highlights research directions for future research work.

2

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

The present work builds on theory and practice developed in the area of process control

engineering. In order to bring relevant aspects into perspective, this chapter gives an

overview of the basics of process automation and model-based engineering. Addition-

ally, the idea of service orientation and agent orientation from the software engineering

field will be introduced.

2.1 Process Automation System

A process control system (also decentralized control system (DCS)) is a decentralized

distributed network consists of various computer stations. Automation functionalities

installed in the network can be classified into different hierarchical levels and together

compose a so-called Automation Pyramid [1, 2], cf. Figure 2.1

2.1.1 Overview

The root of the pyramid is the production process and the plant which are controlled

by the upper levels. The field level contains components for measurement and con-

trol. Typical field devices are sensors and actors. The control level (or supervisory

level) contains Programmable Logic Controllers (PLC) for the control of field devices,

and PC stations for engineering, observation and operation. The level of Manufactur-

ing Execution System (MES) is composed of various systems and software packages

for data management (i.e. Process Information Management System PIMS), product

management, material tracking & tracing etc. The Enterprise Resource Planning (ERP)

level contains a suite of software applications (e.g. SAP) which are applied to optimize

business processes and resource usage (e.g. capital, personal).

Classic field devices are connected via remote I/O to the PLC on the control level.

PLCs can also be applied on the field level and serve as bus slaves. They can control

complex devices such as exhaust handling. Field devices with field bus interface and

PLC slaves can be connected to the PLC masters on the control level.

Control logics (e.g. valve control, PID loop) are executed on the PLC. The graphical

visualization for observation, operation and engineering is installed on industrial PCs

(IPC)(e.g. engineering station and operator station in Figure 2.1). These devices are

3

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.1: Automation pyramid and a schematic Decentralized Control System (DCS)

connected with the PLC masters via system bus. PC-based devices are also applied on

the MES level. ERP software is hosted and administrated on the enterprise level and is

not always coupled with the DCS network.

The DCS shown in Figure 2.1 is a simplified illustration. The network structure of a

real production plant is more complex. Computer stations and sub-networks for high-

level functionalities (e.g. advanced process control, backup & restore) are often applied.

Additionally, hardware firewalls and interface PCs for the data exchange between two

automation levels are often necessary.

2.1.2 Hardware and Software Environment

The pyramid’s levels differ not only in terms of functionalities, but also in terms of hard-

ware and software characteristics.

The device number on the bottom of the pyramid is much larger than on the top. A

typical chemical plant has thousands of sensors and actors which are controlled by

multiple PLCs and PC stations on the control level and MES level. ERP functionalities

are managed on the enterprise level, typically in the computer center. It can be assumed

for a specific plant, that the ERP applications are installed on one central remote server.

From a computing capacity point of view, devices on lower levels have relatively limited

processor performance and data storage. Programs and algorithms on the lower levels

are simpler but processed faster compared to the upper levels. Fields devices can be

4

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.1 Process Automation System

regarded as embedded systems. They process at millisecond even microsecond level,

and have very limited storage for algorithms or process data. Process controllers are

typically single-core devices with a typical cycle time of 1sec. and possess higher CPU

capacity and storage. Operation and engineering stations on the control level are PC-

based and apply universal operating systems (e.g. Windows, Linux or Unix). The MES

level and ERP level process larger data volumes (e.g. for long time archiving) and apply

work stations and servers whose performance and storage volume are theoretically

unlimited.

Various runtime systems and programming languages are applied on different pyra-

mid levels. The runtime of field devices and process controllers is characterized by

deterministic and cyclic-processing context. The cycle time is normally constant, which

is an important prerequisite for most digital controllers (e.g. PID) and signal filters.

Programs on the upper levels have lower requirements on real-time execution and are

normally executed periodically. The time span between two program iterations is not al-

ways strictly constant. Field devices mostly use a vendor-specific execution context and

hardware-near programming languages. PLCs normally support the well-established

international standard IEC 61131 [3–5] which specifies among other things:

• PLC runtime model (part 3),

• communication model (part 5),

• two textual programming languages (part 3): Instruction List (IL) and Structured

Text (ST),

• two graphical programming languages Ladder Diagram (LD) and Function Block

Diagramm (FBD), and

• one programming languages for procedures: Sequential Function Chart (SFC).

SFC can be implemented textually or graphically.

Software applications on the MES level and ERP level are normally vendor-specifically

designed and programmed in high-level programming languages such as JAVA and C#.

Further characteristics of hardware and software in process automation can be found

in [1, 2].

2.1.3 Trend toward Integration and Standardization

In classic automation systems, the pyramid’s levels are strictly separated. Along with

the rapid development of process automation and computer technology, the differences

and borders among the levels are getting more and more blurred in modern process

automation.

Firstly, the hardware differentiation among the levels is gradually eliminated. The per-

formance of embedded systems, microcontrollers and PLCs grows by orders of mag-

5

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

nitude. Modern PLCs can nowadays also process complex algorithms which was only

possible on hardware that was used on the upper levels. Additionally, the dependency

of software on hardware is continuously decreasing. Devices with universal operat-

ing systems (e.g. soft-PLC with Windows or Linux) are continuously spread. Modern

computer technologies like virtualization and cloud computing are applied or being in-

tensively discussed in communities. Due to the increasing hardware performance and

independency, even more functionalities and hardware will no longer be exclusive to a

certain level of the pyramid. For example, process control logics which are traditionally

executed on the control level, can nowadays also be distributed into field devices with

the Fundation Fieldbus technology.

Secondly, the requirements on integration and interoperability of automation systems

has increased significantly in the last years. Automation functionalities on different sys-

tems and pyramid’s levels are required to be interconnected more closely. One example

for this trend is the batch control. In classic DCS, production requirements (amount,

quality, time etc.) are given by ERP tools, e.g. SAP; batch recipes are mostly manu-

ally - parameterized and executed in DCS; production data are achieved on the MES

level. The call for continuous improvements in production efficiency has led to more in-

tense requests for a further integration of ERP-, MES- and DCS-functionailities in recent

years.

2.2 Modelling

Along with the increasing complexity of automation functionalities, a software engineer-

ing principles was required which can help developers and users to gain a better under-

standing of the automation systems and applications. Under this circumstance, model-

driven development of automation functionalities has grown to an important research

area in industrial automation. In the following sections, the basics of model-driven soft-

ware engineering in process automation will be introduced. Chosen example models

will be shown which provide a basis for the development of the agent model in Chap-

ter 3 and for the procedure description method in Chapter 5.

2.2.1 Basics

Systems (e.g. DCS, production plant) or processes (e.g. chemical reaction, engineering

process) in the real world often need to be described from different perspectives. For

instance, the representation, attributes and behaviors of the same production plant are

normally different in different application context (e.g. simulation, control, functional de-

scription, alarm monitoring etc.). The description from a certain perspective (or aspect)

can be regarded as a model of the system or process.

6

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.2 Modelling

According to [6, 7], the term model is formally defined as a depiction of a system or

process in another conceptual or concrete system which is obtained on the basis of the

application of known legitimacies, an identification or assumptions and which displays

the system of the process with sufficient accuracy with respect of the selected questions.

As the definition implies, models are conceptual, generalized, theoretic, not represen-

tational and always involve a specific context or aspect. The process towards creating

a model is called modelling which can be regarded as synonymous with abstraction.

Typical models in process automation are:

• mathematical models for process dynamics (e.g. chemical reaction),

• Piping and Instrumentation diagrams (P&ID [8]) for the representation of the inter-

connection of installed equipment of a plant,

• hierarchical models for recipes, procedures and processes; these models describe

batch production according to the IEC 61512 [9] and

• hierarchical structure model for plants and instruments [9, 10].

A model can be described in different ways, e.g. mathematical equations, natural

languages or formal description methods (e.g. class diagram according to the UML

specification [11]).

Aside from the depiction with models, models and modelling concepts themselves are

also subjects of the research works. In software engineering, the following terms are

important for the construction and implementation of models:

Meta Modelling is an abstraction of model. The product of a meta-modelling pro-

cess is called meta model which is a “model of a model”. A meta model specifies

elementary components, associations and rules of a model. According to the MOF

specification [12], models can be classified into four abstraction layers: instance (e.g. a

valve control unit “Y014”), model (e.g. “on/off valve”), Meta model (e.g. class, operation,

attribute) and Meta-meta model (e.g. meta-class, meta-attribute, meta-operation).

The Core Model describes fundamental facts and circumstances of a system or pro-

cess. A core model is generic, domain-neutral and unique. It identifies the generally

accepted “truth” that is sustainable and has no more valuable alternative variant. For

instance, basic construction and runtime behaviors of process automation applications

are generically and formally defined in a core model [13].

Reference Model: As the name implies, a reference model is a reference or design

pattern for developing specific models for an application area or domain. In comparison

with application- or domain-specific models, a reference model is neutral and is to be

designed as the most appropriate model variant or design pattern. It gives a guideline

for the construction and development of frames, rules as well as constraints for the

treatment of certain tasks in different application areas. In contrast to the unique core

model, a reference model may have alternative versions and even counter examples.

7

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.2: Function blocks according to the IEC 61131-3

2.2.2 Function Block

The function block is a central modeling principle in industrial automation. The history

of the function block technology can be tracked back to the 1960s where control circuit

elements (e.g. relay, timer and PID-controller) were gradually replaced by software

modules on Programmable Logic Controllers (PLC). Every function block encapsulates

internal logics and possesses input variables and output variables. Function blocks

can be connected to each other via signal connections which map electrical wires and

model the data flow. The modular and software-based solution on PLCs allows a flexible

manipulation and extension of control logics without hardware changes.

Function blocks are also well-established in further application areas, e.g. dynamical

modelling or simulation. Typical automation tools and modelling environments that apply

function blocks are MATLAB/Simulink, LabVIEW, Modellica, SIEMENS/SIMIT, WinMOD

etc. A meta-model of function blocks will be introduced in Section 6.1.1. In the following

sections, the application of the function block technology in two automation standards

will be introduced.

Application in IEC 61131-3

The function block is defined as an elementary Program Organization Unit (POU) in

the IEC 61131-3 [3] (see also Section 2.1). The standard has specified among other

data formats, communication interfaces and runtime behaviors of function blocks. Addi-

tionally, a set of standard function blocks (e.g. addition and multiplication) have also be

defined as standards.

Function blocks (FB) can be linked to each other via signal connections and compose

a Function Block Diagram (FBD). FBDs may nest subordinated FBDs. One example is

given in Figure 2.2

8

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.2 Modelling

In process automation systems, FBDs are usually implemented in the form of Contin-

uous Function Chart (CFC) which is an extended variant of FBD. In difference to FBDs,

CFCs allow a flexible positioning of function blocks. Moreover, the execution priority of

function blocks within a CFC can be freely defined, whereas an FBD has to follow the

priority rule “from top to bottom, from left to right”. Furthermore, CFCs allow feedback

connections (cf. Figure 2.2) which are not supported in classic FBDs. These three dif-

ferences between FBD and CFC are not essential and supported by FBD editors of all

major vendors of process control system. As a result, these two graphical languages

are usually regarded as synonymous in practical use.

Application in IEC 61499

The IEC61499 [14] defines the model and usage of function blocks for distributed

control logics. As shown in Figure 2.3, IEC 61499 function blocks support signal flow

and event flow. Function blocks can be distributed on different devices in the network

and communicate to each other via events.

In contrast to the cyclical execution according to the IEC 61131-3, the execution of

IEC 61499 function blocks is driven by events. An active IEC 61131 function block will

be permanently executed, although its inputs do not change in value. On the contrary,

an IEC 61499 function block starts to execute, only when an event input is received.

Every function block has an internal execution control chart (ECC) which controls the

execution of the internal algorithms, the read/write of inputs/outputs and the generation

of output events for further function blocks.

IEC 61499 is intensively discussed in the academic community. Among others, dis-

tribution, reusability, probability and interoperability are identified as the main advan-

tages [15]. However, this standard is still mainly being promoted by academics but not

well accepted by industrial users. One main reason is that the ability of distribution is

not required by the most applications, but requires higher complexity of the runtime sys-

tem. Additionally, the last three addressed advantages can also be largely fulfilled by

classic IEC 61131-3 function blocks. Furthermore, there is still no generally accepted

event model. Although the IEC 61499 is not sustainable for replacing IEC 61131, the

event-driven execution concept is worthy of being regarded in the further development

of function block technology [15].

2.2.3 Runtime System Model

The description of runtime systems is important for the development of models and

applications in process automation. [16] has introduced a unified model that can be uni-

versally applied for describing and modelling runtime systems on the field level, control

level and the MES level. Due to the application-neutral and vendor-neutral nature, this

model is taken as the terminology basis for the further discussions in the present work.

9

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.3: Function blocks according to the IEC 61499

Figure 2.4: Model components of the unified runtime system (Figure according to [16])

An example system according to the unified runtime model is given in Figure 2.4. Key

elements of the model will be introduced below:

• Function Block is the smallest and elementary unit for organizing program exe-

cution. In this model function blocks are generically defined and do not restrict

the execution behavior in runtime. A function block can be executed cyclically

(according to the IEC 61131-3) or event-driven (according to the IEC61499, cf.

Section 2.2.2).

10

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.2 Modelling

unified runtime system [16] related Terminology in standards

IEC 61499 IEC 61131

device device resource

resource resource task

application application
program

standalone component (SC) –

function block (FB) function block function block

function function function

Table 2.1: Overview of Terminology for runtime systems

• Standalone component (SC) is a further component for organizing programs. SCs

may contain function blocks and SCs. SCs possess communication interfaces

(e.g. signal inputs and ouputs) for the information exchange with further SCs. As

the name implies, an SC can theoretically be executed, irrespective of the execu-

tion of further SCs. To ensure the safety of the production, a strictly deterministic

execution within a Standalone Component (SC) is worthwhile.

• Application provides a logical name space for a set of standalone components.

An application can be distributed on one or more resources that are not strictly

present on the same physical device.

• Resource (or Server) represents a thread-safe execution environment for a set of

standalone components. Resources are independent to each other and theoret-

ically run simultaneously. A resource cannot be distributed on different physical

devices. A standalone component can be located only on one resource.

• Device represents the entire hardware- and virtual world on a node in the automa-

tion network. A device may contain more than one resources.

In practical use, the terms device and server are often regarded as synonyms. Due

to the widespread “server-client-model” from computer science, many designations like

“engineering server”, “operation server”, and “batch server” also involve the host hard-

ware, on which resources and applications are installed. In the present work, the term

server only involves resource but not device unless otherwise noted.

A comparison of the unified runtime model with related definitions in the IEC 61131

and IEC 61499 is given in Table 2.1. Detailed discussions on the model elements and

their relationship can be found in [16, 17].

11

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.5: Cyclic execution context on an Programmable Logic Controller (PLC) or on

an Standalone Component (SC) according to [16]. (Figure according to [18, 19])

2.2.4 Time Model of Cyclic Execution Environment

The cyclic-processing runtime of automation systems can be modeled as automata ac-

cording to UPPAAL [18, 19]. UPPAAL is a software environment which allows an intuitive

graphical representation of runtime behaviors, relationship and interactions among sys-

tem components. Additionally, algorithms for model validation and verification can be

conveniently developed with the UPPAAL’s automata.

In UPPAAL, a runtime system is modeled as a network of automata. Every system

element (e.g. function block, server, device etc.) may have an exclusive automaton. All

automata describe behaviors in continuous time. They are standalone and theoretically

run in parallel. However, in an execution context without parallelism, e.g. on a single

threaded Programmable Logic Controller (PLC), only one automaton can be executed

at a certain time. The other automata should wait, until the runtime system is idle again.

Figure 2.5 shows the UPPAAL automation of a cyclic execution context according to

the IEC61131-3 [3]. This model can be applied to describe the execution of a PLC or

a Standalone Component (SC) introduced in Section 2.2.3. UPPAAL automations com-

municate among each other via binary communication channels. An outgoing signal

from one automaton on a channel is labeled channelname!. An incoming signal from a

channel is labeled channelname?, respectively.

UPPAAL automata are composed of states and transitions. Transitions may have

guards (expressions in brackets) and may perform actions (expressions without brack-

ets). The initial state is marked with a double-lined border. Theoretically, committed

12

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.2 Modelling

Figure 2.6: Root task of an Standalone Component (SC, compare Figure 2.4)

states (state with the label C) and transitions have no duration, whereas non-committed

states (empty cycle) have time consumption.

The execution order of all internal components of an SC is defined by a Root Task. All

function blocks on the SC are defined as task’s children of the root task. The root task

will be executed cyclically.

In case the automaton in Figure 2.5 is in its initial state (i.e. the idle state Wait Idle)

and the time span reaches the pre-defined cycle time, the automaton updates inputs;

emits the signal Call!; waits for the committed signal Cycle F inished!; updates outputs

of the PLC afterwards; and returns to the idle state at the end. As the Call! signal

is emitted in a fixed time rate, the root task (i.e. the task automata in Figure 2.6) is

triggered cyclically.

Figure 2.6 shows the UPPAAL automaton for a root task of an SC. In case the root

task receives a Call? signal from the SC (compare also Figure 2.5), the execution of

the task is triggered. Call signals are emitted to the task’s children that will be executed

sequentially. In the example root task, x function blocks (FB) are invoked as task’s

children. After a task’s child is executed for one iteration, a finished signal will be sent

back to the root task. When all task’s children are finished with their execution, the root

task emits a Cycle F inished! signal and returns to the idle state.

2.2.5 Model of Operational Resource and Operational Measure

Process control is the central operation of process control systems. [1] has introduced a

Resource Measure Model which describes hierarchical levels of heterogonous process

control functionalities and the relationship among process control modules. As shown

in Figure 2.7, control modules can be classified into three groups:

• Single Control Units (SCU) are software representatives for individual actors (e.g.

valve, ventilator etc.). Every unit is in charge of the downward interaction with

the real device in the field level, and for the upward interaction with superordinate

control modules and human users.

• Group Control Units (GCU) coordinate groups of control units (SCUs or GCUs).

Thus, a hierarchical control structure can be built. For instance, a pump control

13

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.7: Resource measure model for operative process control

unit and a valve control unit can be controlled by a GCU “pump-valve group” which

coordinates the two SCUs and realizes a flow control. The GCU can be controlled

by another GCU which controls the whole water cooling system.

• Operational Measures (OM) represent specific procedures for production, start-up,

shutdown, diagnosis etc.

SCUs and GCUs set up the level of operational resources. They represent the in-

trinsic process control functions of a plant, exist in the control system permanently and

are theoretically always active. The allocation relationship among SCUs and GCUs is

usually fixedly defined.

Operational measures (OM) realize production tasks by using operational resources.

OMs can be created and disposed dynamically. They allocate operational resources

temporarily and set them free, when the execution is finished. All operational resources

that are to be assigned are specified during the disposition. All OMs have the same

life cycle: disposed, waiting to start, processing, finished and deleted. The allocation

relationship between operational resources and operational measures is normally built

up dynamically.

2.2.6 Component Model for Hierarchical Process Control

The resource-measure-model in Section 2.2.5 specifies the general structure of process

control functionalities. For the construction and engineering of individual process con-

trol units, a design concept named ACPLT/PF1 has been proposed in [20]. ACPLT/PF

defines among other things a reference model for control modules and the interaction

behavior among them. This work has been followed by different research works [20–24]

of the Chair of Process Control Engineering. Relevant discussions will be summarized

and introduced in condensed form in the following paragraphs.

1Prozessführung: German expression of process control

14

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.2 Modelling

Figure 2.8: Component model of Process Control Unit (PCU)

According to ACPLT/PF, all Process Control Units can be designed with the standard

frame shown in Figure 2.8. Every PCU encapsulates Function Modes (FMs), and has

four standard state machines for controlling and monitoring the execution of function

modes (cf. Figure 2.8).

Every PCU can be dynamically occupied by another PCU (occupancy state automatic)

or the operator (occupancy state hand or local). Execution orders from requesters other

than the currently valid occupier are rejected.

Within the PCU frame, only one function mode can be active at any given time. Every

function mode is composed of three procedures: start-up, stationary and shut-down.

To enable and standardize the interaction among PCUs, as well as the interaction

between the operator and PCUs, two generic order interfaces have been defined. The

incoming interface is responsible for receiving process control order from superordinate

PCU or the operator, whereas the outgoing interface sends orders to further PCUs. Or-

der interfaces are designed to interpret process control orders with the following stan-

dard form:

order sender; order receiver; order; parameter

The first three entries are obligatory, whereas the parameter can be optionally defined

according to the specific process control order.

15

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.9: Communication between two Process Control Units (PCUs)

Similar to traditional signal connections, the order communication between two PCUs

is also unidirectional. As shown in Figure 2.9, the superordinate PCU A sends a process

control order to its subordinate PCU B, whereas PCU B does not send back any reply.

Information about the occupancy and the progress of the execution is controlled by the

four generic state machines in PCU B and saved in the form of four standard output

variables. In order to inform about the current state information, PCU A can read the

four variables via signal connections.

In comparison with conventional process control solutions, ACPLT/PF provides two

main improvements. Firstly, a standard model for designing process control units has

been defined. It formulates a guideline for designing encapsulation frame, order in-

terfaces, state machines and variables representing execution states. Multiple signal

interfaces for receiving control instructions are replaced by a general order interface.

Secondly, the loosely-linked order interfaces allow a flexible interaction between PCUs.

Every PCU can be loosely coupled in the system and be dynamically occupied by an ex-

ecution requester which is not defined in advance. Moreover, the standard order format

can significantly simplify the engineering. Users can concentrate on the order content

and do not need to implementation details, such as, which variables of the individual

PCUs should be set and which syntax and semantics should be considered.

16

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.3 Service Orientation

ACPLT/PF is generally and platform-independently defined. A prototype is imple-

mented in the development environment ACPLT/OV which will be introduced in Sec-

tion 6.1.1.

2.3 Service Orientation

Service orientation is an architectural paradigm for software engineering and has re-

ceived extensive attention in process automation (cf. [25, 26]). According to OASIS [27],

service orientation is used for organizing and utilizing distributed capabilities that may

be under the control of different ownership domains.

The basic idea of service orientation was inspired by the management of business

processes among various departments within a company. Elementary services (e.g.

procurement, logistics, IT technology support) are provided by departments and can

be utilized as part of more complex services. The service user or service caller is the

service requester, whereas the supplier plays the role of service provider. A service

requester defines the functionality and entrusts one or more service providers with the

realization.

In technical fields, service orientation is suited to abstract implementation details

and to standardize communications among heterogeneous and loosely-coupled sys-

tems. As discussed in [25, 26], distributed automation functionalities can be provided

as services which possess clearly defined interfaces and support system-neutral com-

munication over networks. As shown in Figure 2.10, automation functionalities can be

abstracted as services (ellipses) in a virtual service system. Services can be flexibly

accessed and invoked. One service can use further services in the system.

For instance, data and configurations of automation systems often need to be archived.

In traditional automation systems, various servers or software packages are installed

on different systems to realize the functionality “archive”. Heterogeneous interfaces

have been developed for accessing these archives. The effort required for engineering

and maintenance is usually very high for these specific solutions. By means of ser-

vice orientation, a service “archive” with an abstraction of implementation details and

a well-descripted interface can be defined and utilized by service requesters, irrespec-

tive of their system and pyramid’s level. With this design, the usability and reusability

of automation functionalities can be significantly improved. [26] has presented a core

model of service orientation for process automation. The relationship between service,

provider, requester and service description is explicitly defined (cf. Figure 2.11)

The call mechanism of services is very similar to the function call in traditional pro-

gramming languages (e.g. ANSI C), but has some essential differences. Firstly, tradi-

tional functions are performed mostly on a local server, whereas service requests can

be sent across networks and can be fulfilled on a remote server. Secondly, the execution

17

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.10: Service-orientation for process automation. (Figure 2 in [28])

Figure 2.11: A reference mode for service-orientation in process automation. (Figure 4

in [26])

of a traditional function caller is normally blocked until the desired function is completely

finished, whereas service requester and provider are designed to execute indepen-

dently from each other. In other words, a service requester does not need to interrupt

and block its execution until the execution result is send back. Furthermore, services

should be able to describe themselves and can be explored. As introduced in [26, 29],

every service should possess a data model which contains information about service

characteristics, interfaces, data, as well as contracts and policies for using. These con-

tents should be structured and machine-readable.

18

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.4 Messages

In classic signal-oriented communication, a signal normally only contains the data

that is to be transmitted (e.g. value TRUE for the control signal V ALV E 14 OPEN).

However, the content of service requests is more comprehensive. A service request

contains at least the requester address, receiver’s address and service identity. Further

parameters specifying execution details and results are also required.

One central application of the service orientation in process automation is the OPC

UA which is specified in the IEC 62541 standard [30]. OPC UA forms a concept of

unified communication among various automation systems. The standard has defined

among other things a communication model and two example services: read variable

and write variable.

OPC UA is still not widespread in process automation. One reason for this is that

the definition in the IEC62541 standard is conceptual and abstract. For various appli-

cation areas in the automation system, standard services for specific application areas,

vendor-neutral data models and data formats for service-oriented interactions are still

to be defined. Another main reason is that DCS vendors address the integration of

own systems and software solutions with vendor-specific communication technology

(i.e. compare Siemens Simatic IT, ABB Enterprise Connectivity). Specific use cases

are to be identified by users, so that vendors can be convinced to open their system

and support vendor-neutral communication.

On the basis of OPC UA, the recommendation NAMUR NE 141 [31] has specified

typical services (e.g. read history, browse attributes of a batch recipe etc.) for the

communication between batch packages on the control level and MES level. However,

this recommendation is still not implemented in commercial DCS.

2.4 Messages

A message is a discrete unit of information sent from one communication party to an-

other. It can transmit data (e.g. temperature value, execution state) or represent a

service request.

Messages can be described in different ways. One possible implementation approach

is Value-List, in which all message contents are arranged in series and separated with

special symbols. For instance, the process control command according to ACPLT/PF

(cf. Section 2.2.6) is a Value-List message which is realized as a composed string.

Message contents, e.g. sender and receiver, are separated by semicolons. Value-List

is a compact message format which can reduce the storage space and communication

bandwidth. However, both the sender and the receiver have to master the message

syntax and the semantics of the entries. All contents must be defined and arranged

according to a fixed order.

19

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

An alternative message format is the so-called Attribute-Value-Pair, in which every

content consists of an attribute (e.g. setpoint) and a value (e.g. 5.3). All values in

an Attribute-Value-Pair are self-identified. They can be flexibly grouped, hierarchical

structured, and flexibly arranged.

A further development of the Attribute-Value Pair is the Extensible Markup Language

(XML) [32]. A typical XML-message contains contents and additional information about

the message type, coding, time stamp etc. It can be accurately interpreted both by ma-

chines and human users. Additionally, an XML message can contain a reference to a

schema which specifies the structure, grammar and content of the message. According

to this schema, incoming messages of a receiver can be formally evaluated and cor-

rectly interpreted. XML is widely used to realize a platform- and implementation-neutral

communication across networks. XML is established for instance in the realization of

web services. Many software agents (cf. Section 2.5) also apply XML-based message

formats, e.g. KQML [33]. An example XML-message will be introduced in Section 3.3.

2.5 Agent Orientation

This section introduces the design paradigm of agent orientation which provides a new

approach for software engineering in process automation. After an introduction of the

theoretical basis in Section 2.5.1 and Secion 2.5.2, a conceptual reference model for

automation agents will be introduced in Section 2.5.3.

2.5.1 Introduction

The word agent is derived from the Latin “agree” which means “to do”, “drive” or “act”2.

In general, agent describes an entity which can be a human being, a trained animal, a

machine or a computer program. An agent serves as an intelligent delegate of the client

and is able to accomplish certain tasks autonomously. According to the VDI/VDE 2653

recommendation [34], a technical agent is defined as:

An encapsulated (hardware/software) entity with specified objectives. An agent en-

deavors to reach these objectives through its autonomous behavior, in interacting with

its environment and with other agents.

According to [34–36], a technical agent should possess a subset of the following pri-

mary characteristics:

• Autonomy allows an agent to control its internal state, objective-oriented behaviors

and decision-making.

2In German: “agieren”, “treiben” or “handeln”.

20

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

Figure 2.12: Differences between programs and automation agents (Figure based on

[35, 38])

• Encapsulation requires an agent to encapsulate states, behaviors, strategies and

objectives which are not visible externally. An agent must be an enclosed func-

tional unit with completely specified interfaces for the information exchange with

the outside [36, 37].

• Persistence describes the capability of keeping internal states during the life cycle

of an agent.

• Reactivity and Interaction enables an agent to sense the environment, to generate

reaction, and to interact with other communication partners.

• Scope of action limits the autonomy of an agent.

• Mobility allow an agent to move from one location (e.g. a PC on which the agent

is executed) to another.

Further characteristics such as proxy, rationality, and veracity are also intensively dis-

cussed in different research works. An overview of related opinions and theoretical

analysis can be found in [38–40]. Since these characteristics are application-specific

and have less general meaning, they are regarded as secondary characteristics in the

present work and will not be discussed in depth.

The primary characteristics of agents are not quantitatively defined. The abstract defi-

nitions have not clearly defined the difference between agents and non-agent entities. In

software engineering contexts, it is often confused whether a program can be regarded

21

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

as an agent. The scales in Figure 2.12 are specified on the basis of related discussion in

[35, 38]. They can be applied to differentiate automation agents from classic programs.

In general, all software agents are programs, but not all programs are agents. There

exists also no sharp distinction between agents and traditional programs. Classic pro-

grams have a low degree of properties (middle part of the diagram) as depicted in

Figure 2.12. Programs with a high degree of properties from the middle of the axes

can be regarded as agents. The outermost degrees of the diagram can be seen as the

ultimate goals of artificial intelligence.

The ability of one single agent is limited. Multiple agents often work together and

compose a so-called Multi-agent-System (MAS). An MAS can be regarded as a soci-

ety of autonomous agents. Single agents play specific roles (comparable with soccer

players assigned to different positions on the field). Complex missions (comparable

with soccer matches) can be divided into elementary tasks which are solved by indi-

vidual agents (comparable with defender, midfielder and forward). Agents accomplish

missions through different combinations and strategies (comparable with soccer forma-

tions). In addition, special agents can be employed which play the role of facilitator

and are responsible for coordination works, such as broking, matchmaking, recruiting

of service provider, broadcasting of information etc. (comparable with soccer coaches

and referees).

In technical fields, agent-orientation was originally a branch of the research area of

Artificial Intelligence (AI). It has been developed nowadays into an important modeling

paradigm which is utilized in different research and application areas. For example, [41]

has presented an approach, in which consumer’s buying behaviors (e.g. need identifi-

cation, product brokering, negotiation etc.) in e-commerce are automated by different

agents. In urban traffic networks, agents can be applied to control traffic lights, sen-

sors and further facilities, so that travel time and congestion can be reduced [42–45].

In areas of power supply, agents are suited to optimize the supply and consumption

among distributed power resources (e.g. wind park, solar farm, fuel cells) and con-

sumers [46–48]. In the area of software engineering, many researchers (cf. [49]) refer

to agent-orientation as the next dominating modeling principle after object-orientation.

By means of object orientation, entities are modelled as objects, whose capacity is rep-

resented as type-specific attributes and methods. As an extension of this modeling

principle, agent orientation defines advanced compatibilities that an intelligent entity or

object should possess.

The research on agent orientation involves two main aspects: knowledge and commu-

nication technology. A knowledge base allows an agent to sense its environment, recog-

nize situations, deduce solutions, and reach execution objectives autonomously. Com-

munication technology allows agents to interpret messages and to coordinate among

each other or with human-users. One central direction in this research area is the devel-

opment of a machine language in imitation of human languages. Research on the agent

language involves speech-act theory, ontology, role play, communication language and

22

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

protocol. Various approaches like KQML [33], FIPA-ACL [50] and JADE [51, 52] have

been developed in recent years. These studies allow agents to deal with different situa-

tional dialogs such as delegation, rejection, negotiation etc.

2.5.2 Usability in Industrial Automation

Many agent-oriented software solutions have been developed for industrial automation

in recent years. Some of them have already been tested in practical use. [53] pre-

sented an approach for data collection and interpretation in Decentralized Control Sys-

tems (DCS) and Computer-Aided Engineering (CAE) systems. [54, 55] have proposed

different self-management functionalities (healing, optimization, configuration, protec-

tion etc.) that can be autonomously managed by agents. [56, 57] have introduced an

approach in which sensor measurement can be substituted through correlated sensors

in the case of sensor failures.

Aside from the applications in specific areas, [35, 58, 59] have discussed the usability

of agent-orientation in the modelling of automation functionalities in general. By means

of agent orientation, the process control system can be constructed as a Multi Agent

System (MAS) where autonomous agents are in charge of different tasks. Different

automation objectives can be achieved through agent-agent and agent-human collabo-

ration.

As shown in Figure 2.13, agents can be applied to achieve various operation objec-

tives in automation systems. Entities (e.g. product, equipment) or functionalities can

be represented as process automation agents. Process control agents control and ob-

serve field devices (e.g. pump) or device groups. Measure agents are in charge of

operational measures for production, product transport or diagnostic tasks etc. System

agents manage distributed computing resources for warning, protocolling or archiving

and provide them as common systems services. Agents can also provide services for

engineering, asset management and model management.

The proposed use cases focus mainly on the control level and parts of its two ad-

jacent levels (cf. the area with shadowed background in the automation pyramid in

Figure 2.13). However, the discussion on agent-oriented engineering is generic and

level-neutral. Many use cases (e.g. archiving) are also suitable for further automation

levels.

All agents are modularly encapsulated. They possess a knowledge base, behave

autonomously, provide services to the outside and possess a unified service interface.

Services can be explored and invoked dynamically. Execution objectives can be defined

in form of service requests (e.g. “archive a value”). Agents can interpret the requests

and achieve the objectives on behalf of users. Implementation details (e.g. detection

of archive location, configuration for the data transmission) do not need to be known by

users.

23

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Figure 2.13: Process automation agents (Figure on base of discussions in [58, 59])

Agent orientation can improve the flexibility of process control systems. In classic au-

tomation systems, single automation functionalities normally have heterogonous com-

munication interfaces, and are usually rigidly coupled. All possible combinations of

functionalities have to be fixedly projected in advance. An extension involves often high

engineering cost. However, agents can cooperate to each other and solve complex

tasks together. An agent provides services to the outside and can request services

from further agents. The cooperation relationship between agents can be dynamically

built.

Additionally, the usability of automation functionalities can be improved by agents. In

traditional process control systems, operational resources for realizing system function-

alities are signals and communication interfaces. In order to control a valve for example,

users need to acknowledge which software module is to be applied, which variable(s)

should be set so that the valve can be opened and which feedback signal(s) should

be checked. For the automation of complex plants, the engineering workload of users

is high. By means of agent orientation, however, agents offer the achievement of ob-

jectives (e.g. services) as operational resources for users. Agents serve as intelligent

delegates of users and can achieve operational objectives autonomously. Users invoke

services provided by agents and do not need to master implementation details and

heterogeneous communication interfaces of heterogeneous systems.

24

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

Figure 2.14: Interfaces of an automation agent

2.5.3 Concept of a Reference Model

Process automation agents can be applied in different application areas. Many com-

mon design aspects (e.g. structure, behavior, communication interface etc.) can be

generally specified in a reference model. [58] has proposed an agent reference model

which combines advantages of agent orientation, service orientation and function block

technology. This model builds a development basis for the discussions in Chapter 3 and

will be introduced in the following section.

As shown in Figure 2.14, an agent encapsulates certain autonomous activities and is

present in form of a function block. In similarity to a classic function block, an agent can

be activated or deactivated, and can communicate with its environment via signal inputs

and outputs.

Function block technology fulfills the main requirement on agents’ characteristics dis-

cussed in Section 2.5.2: Firstly, function blocks are modular and encapsulate algorithms

for achieving operation objectives. Secondly, function blocks are persistent. This means

that a function block (e.g. for pump control) can accompany the life cycle of an entity

(e.g. a centrifugal pump in field), and keep its internal algorithms and data (e.g. set

point for the power control, error state and software version). Furthermore, function

blocks are active, since they can be executed cyclically and almost continuously. They

are reactive, since they can sense their environment through input variables and exert

influence via output variables.

One central characteristic of the reference model is that agents can provide services.

In process automation contexts, services can be operative activities (e.g. process con-

trol) or organizational activities (e.g. exploration of meta-information, error diagnostic).

Further discussions and examples can be found in Section 3.2.

25

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Within an agent, components should be implemented to realize different functionali-

ties. Typical functionalities of an agent are situation recognition, service management,

status observation inference based on local knowledge bases etc. In order to realize a

flexible service-oriented communication, the execution frame of classic function blocks

is extended with the following three special types of interfaces (cf. Figure 2.14):

Message Inputs are responsible for receiving service requests. Every agent has the

same number of message inputs as services that the agent can provide. Depending

on different services, incoming requests (or commands) can be buffered or not. Ser-

vice requests are realized in form of messages. A message contains more enriched

information than a signal does. Every message is composed at least of the sender

address, receiver address and the service identity. Further service-specific parameters

and management parameters (e.g. Quality of Service) can be defined optionally.

Message Outputs are in charge of sending messages to communication partners (e.g.

another agent). A message output is in charge of sending messages to a communica-

tion partner. Every agent may have more than one message output. Every command

output is realized as a function block. All necessary entries for generating an outgoing

request are defined as input variables of the output function block.

Input Interfaces can read variables on the local server or remote servers. In contrast

to the signal input of a classic function block, the variable is read not by a signal con-

nection, but a “Get Variable” service which can access the target. In case the variable

is on a remote server, it will last for some time until the communication system delivers

the variable back. During this time, the execution of the agent should not be blocked.

The sampling interface should be implemented in such a way that it activates the “Get

Variable” service, proceeds with its execution, and checks after a period of time whether

the return value is arrived.

Similar to the communication between process control units introduced in Section 2.2.6,

the message-oriented communication between agents is unidirectional. A message will

be sent to the message input of the receiver without feedback by default. Every agent

has a standard output variable which lists the last incoming service requests and their

status. The sender can explore this variable and sense whether this request is con-

firmed or rejected by the receiver. In special cases, the sender can ask for feedback

messages (e.g. confirmation or rejection or data message). The messages should be

sent via a message output of the receiver, but not via its message input.

The elimination of feedback messages allows a simple and easy management of the

communication within automation systems. An agent will not be blocked by waiting for a

feedback. Complex algorithms for consistent backup and synchronization of messages

can be avoided. Detailed discussion and practical examples can be found in [20, 36, 58].

The service oriented communication realizes a separation of the message exchange

between the agents and the message processing within an agent. Services of an agent

can be explored and requested form the outside by sending and receiving service mes-

26

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

sages. The message-oriented communication between agents can take place asyn-

chronously. On the other hand, the execution of the services and the determination of

detailed execution behavior are controlled by the service-providing agent. This design

forms an important base for the development of autonomous behaviors of intelligent

agents [36].

27

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

3 Specification of a Reference Model
for Automation Agents

The reference model introduced in Section 2.5.3 is abstract and conceptual. Many

engineering aspects are not specified in detail. The scope of complementation and

improvement can be summarized as follows.

• It is an assumption that services are provided and should be processed. It is to

be defined how automation functionalities can be abstracted as services and how

services can be encapsulated in agents. Additionally, mechanisms for registration,

exploration, description, invocation, and processing of services should also be

specified in more detail.

• The service-oriented communication is not compatible with the signal-oriented

communication in traditional automation systems. The former one is discrete,

whereas the latter one is continuous. Additionally, service messages and clas-

sic signals have different structure and should be processed differently. It is to be

defined how these two communication principles can be combined in the execu-

tion frame of automation agents. Mechanisms for message structuring, delivery

and processing should also be discussed

• The previous work focused mainly on the construction of multi-agent automation

system and the external design of agents. The internal construction and the exe-

cution control of internal components within an agent should be specified in more

detail. In order to fulfill specific requirements on engineering in process control,

description methods for continuous and procedural functions should be defined.

In order to gain a complete model for the implementation of automation agents, com-

plementation and extension seem necessary and will be discussed in the following

sections. Firstly, the functional and non-functional requirements on the engineering

of automation agents will be analyzed in Section 3.1. Based on this discussion, design

decisions on the agent reference model will be reviewed, revised and complemented.

Starting from Section 3.2, a further development of the conceptual model will be pro-

posed. The following engineering aspects of the model will be discussed in detail: Ser-

vice model for the abstraction of internal logics (Section 3.2); Message-oriented com-

munication (Section 3.3 and Section 3.4); internal structuring and description methods

(Section 3.5); service interfaces (Section 3.6); knowledge base (Section 3.7); reference

28

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.1 Engineering Requirements

models for the execution in runtime systems (Section 3.8); and finally, relationships and

differences to related automation technologies will be summarized in Section 3.9.2.

The objective of the analysis of engineering requirements and the further develop-

ment of the reference model is to establish a guideline for the implementation of various

agents in process automation systems (cf. Figure 2.13).

The reference model is based on function block technology. For convenience, it will

be named FB-agent which is derived from “Function-Block-based automation agent”.

3.1 Engineering Requirements

Due to high requirements on safety and technical sustainability, process automation

is conservative. In order to apply agent orientation in this field, specific engineering

aspects and restrictions should be carefully regarded. In this section, general engi-

neering requirements on automation agents will be summarized. Some requirements

are borrowed from discussions in related research works [34, 35]. Some aspects were

discussed in a previous work of the author [59] or are newly specified in the present

work.

3.1.1 Functional Requirements

Functional requirements on engineering specify structures, functions and behaviors that

are necessary for the realization of the agents’ characteristics and abilities introduced

in Section 2.5.

Requirement 1: Modularity and Classification

As introduced in Section 2.5 and [34, 35], every agent is an intelligent individual

and should be encapsulated and persistent. It is worthwhile to encapsulate agents as

classified modules in automation systems. Classification and modularity can ensure

the usability and reusability of agents. Modular agents can much easier be defined as

classes and multiply instantiated. Additionally, modularity is an important premise for

mobile agents. In case an agent needs to change its location, modular encapsulation

allows the agent to hold its internal data (e.g. state and intermediate result) and proceed

with its execution at the new location.

29

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Requirement 2: Remote and local Communication

Agents are distributed in the automation network. They should be able to communi-

cate with local partners or remote partners across networks. Appropriate communica-

tion technology and mechanisms for data exchange should be designed.

Requirement 3: Interoperability

To realize a flexible cooperation, agents distributed in the automation network should

be interoperable. Functions provided by agents should be easily accessible. Unified

data exchange formats and communication protocols should be defined.

Requirement 4: Rigid and loose coupling

The cooperation partnership between agents can be dynamically built and changed.

Agents in a flexible Multi-Agent System (MAS) should often be dynamically created,

deleted, manipulated or relocated. As a result, automation agents should be coupled to

the environment as loosely as possible. Their dependency on other system components

should be kept low, so that the error risk during a reconfiguration can be reduced. How-

ever, data to be exchanged between loosely coupled communication partners should

contain comprehensive information, among others, the sender identity and the receiver

address. To realize a secure communication, authorization information of the sender is

often necessary. In comparison to a rigid coupling (e.g. the classic signal connection),

the loose coupling may lead to a significant increase in network load. Additionally, the

rigid coupling can better ensure the timeliness, continuity and causality of the commu-

nication.

Automation agents should support a mixed form of ridged coupling and loose coupling

with the environment. The rigidly-coupled communication can be realized by classic sig-

nal connections. The loosely-coupled communication allows a flexible communication

partnership and can be suitably supported by the service-oriented communication intro-

duced in Section 2.3.

3.1.2 Non-functional Requirements

Non-functional requirements are criteria for the quality evaluation of the agent model.

According to the ISO/IEC 9126-1 [60], typical non-functional criteria for software engi-

neering are usability, maintainability, portability etc. In contrast to functional require-

ments, non-functional criteria are not mandatory. They serve as a design guideline for

agent engineering and can be tailored for individual application areas.

30

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.1 Engineering Requirements

Requirement 5: Compatibility with Existing Automation Systems

New technologies can be better accepted by industrial users, in case they can be

harmonically integrated into the existing automation systems. During the development

of automation agents, it is worthwhile to reference and utilize existing system infras-

tructures, communication technologies, and description methods. Automation agents

should be designed in such a way, that they can be easily plugged into the existing

runtime systems.

Existing agent approaches are mostly executed in PC-based operating systems (e.g.

Windows) which do not process strictly deterministically and cyclically. As listed in [61],

many agent approaches are implemented in high-level languages, typically in JAVA. For

instance, one main development framework JADE [52] employs a type of agent engi-

neering that is completely based on JAVA. However, JAVA is not compatible with most

existing runtime systems in process automation (e.g. PLC). Although there are also

JAVA-based real-time systems (e.g. [62]), it still takes long time, until these approaches

are stable and mature enough to replace the current runtime system in process automa-

tion. One central aspect to be considered by the agents’ developer is the compatibility

with the real-time context and programming languages according to the well-established

standard IEC61131-3 (cf. Sections 2.1.2).

Agents that are incompatible with automation systems can be implemented on sep-

arate hardware and linked via special communication interfaces to the automation sys-

tems. This design limits the usability of automation agents. A seamless integration is

more important. A new concept for the design and implementation of automation agents

is to be developed.

Requirement 6: White-box Engineering

Classic Multi Agent Systems (MAS) and agents are enclosed and can be regarded

as black-boxes. Users declare their needs via graphical interfaces (e.g. websites of

e-business corporations like eBay or amazon). The operation objectives are achieved

through interactions among various agents (e.g. for need identification, product bro-

kering etc.). Users can acknowledge the execution results on the graphical interface,

whereas they do not need to know how the system works and how the agents interact

among each other. Users even do not need to sense the existence of the agent system.

Furthermore, the engineering and maintenance of the system are not carried out by

users but by professional employees.

However, users of process automation systems need be aware of the implementation

in great detail. In most cases, users are also involved in the development of system

functions. For instance, control engineers often need to know which algorithm is used

during the automatic tuning of a PID controller; production procedures will be drafted

by chemical engineers, implemented by automation engineers, and monitored by oper-

31

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

ators. All these solutions should be developed on a user-driven basis without involving

the developer of the automation system.

To support the user-centralized work, automation agents should possess a white box

structure. This means that the internal logic of agents should be transparent and visible.

A user-driven engineering should be allowed. To describe different functions within

agents, description methods which can be easily handled by users with no in-depth

knowledge of programming or software engineering should be chosen.

Requirement 7: Platform- and Vendor- Independence

The usability of agents will be strongly limited, in case different agents can only be

implemented in special runtime systems and require special communication interfaces

form certain vendors. Additionally, mobile agents can only change their location flexi-

bly, when they are compatible with different systems. It is therefore desirable to design

agents independently from the underlying execution platform and the designated real-

ization technology from a certain vendor.

3.2 Service Model

The conceptual model introduced in 2.5.3 can partially fulfill the engineering require-

ments summarized in Section 3.1. Among others, the non-functional requirements

should still receive more considertation. Starting from this section, extensions and im-

provements on the conceptual agent design will be discussed according to the summa-

rized engineering requirements.

As indicated at the beginning of this chapter, one main engineering aspect of FB-

agents is the modelling of services. The service orientation introduced in Section 2.3

allows a loose coupling and a flexible cooperation of FB-agents. Additionally, it allows

an abstraction of implementation details within FB-agents.

To abstract automation functions into services, the layered model in Figure 3.1 is de-

fined for FB-agents. The model elements will be introduced in the following paragraphs.

Internal logic is the concrete implementation code for realizing a specific automation

function. Internal logics should be implemented in programming languages and contain

all implementation details.

An operation represents an elementary function or processing activity that can be

performed by an agent. Operations can be “open the valve”, “explore meta information”,

or “shut the plant down according to a control procedure”.

Internal logics within FB-agents can be abstracted into operations. For instance, the

logic “OUT:=TRUE; SET POINT=30” within a “valve control agent” can be abstracted

as the operation “OPEN”. The aforementioned “shutdown procedure” can be abstracted

32

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.2 Service Model

Figure 3.1: Abstraction hierarchy of service orientation

as a “shutdown” operation. Operations should be registered within the FB-agent and

can be explored from the outside. It should be clearly defined which input information is

required for the operation invocation.

Services can be regarded as high-level abstractions of operations. Services group

operations involve less implementation details. Possible services of automation agents

are process control, diagnostic, exploration etc. Services represent functional abilities

that can be provided to the outside. Services should be registered and should be ex-

plorable form the outside. Every service should possess a service description which

states the objective and clarifies execution criteria.

A service request specifies a concrete execution objective. The achievement of the

objective is to be realized by invoking an appropriate operation or operations. For in-

stance, an agent provides the service “product transport” which can be obtained through

different operations like “ transport with a certain flow rate”, “transport via the shortest

path” etc. The suitable operation can be explicitly defined by service requester or can

also be chosen by the agent autonomously.

A service can have multiple underlying operations. Every operation can have only one

covering service. Operations under the same service are normally mutually exclusive.

For instance, the “open” and “close” operations of the aforementioned valve control

agent represent alterative operating modes of the valve and of the covering service

“process control”. Only one of the conflicting operations can be activated at the same

time.

Operations of special services can also be activate at the same time. For instance,

an “exploration” service can group operations such as “get KPI”, “get meta infromation”

etc. The operations are not strictly alternative and can be processed at the same time.

33

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

It should be defined for single services whether their underlying operations are mu-

tually exclusive. An example of controlling alterative process control operations will be

introduced in Section 7.3.2.

The top layer Agent in the model is the carrier of internal logics and the provider of

services. Agents are encapsulated and possess interfaces for communicating with the

environment. Every agent may contain more than one service and operation. Every

service can have many underlying operations. An operation can only be assigned to

one service.

The layered model in Figure 3.1 is defined on the basis of the service model shown in

Figure 2.11. FB-agents are service providers and providing entities at the same time.

3.3 Message Format

Service oriented interaction between FB-agents builds upon the exchange of messages.

Based on a theoretical discussion [26] of the Chair of Process Control Engineering, a

XML-based message format is specified in a student work for FB-agents. A standard

message can be generated as follows:

1 <?xml version= ” 1.0 ” encoding= ”UTF−8” ?>

2 <SvcMsg xmlns:ns= ”MsgSchema”>

3 <Header locAdr= ” server1 / processdata ” sysAdr= ” 10.42.12.54

:7509 ” MsgID= ” 13223 ” RefMsgID= ” 12432 ”>

4 <AuthData>Authen t i ca t i on−Data goes here .< / AuthData>

5 < / Header>

6 <Body Serv ice= ” d iagnos t i c ”

7 Operat ion= ” get key performance i n d i c a t o r s ” T i cke t= ” userXY ”

>

8 <Struc tData ID= ” ServiceRequest ”>

9 <Object ID= ”Pump14”>

10 <KVP Key= ” pressure ”>1.0 bar< /KVP>

11 <KVP Key= ” f low ”>30m3/ h< /KVP>

12 < / Object>

13 < / S t ruc tData>

14 < / Body>

15 < / SvcMsg>

The start and the end of the contents are explicitly marked. A standard message

has two parts: header and body. The former part contains information about sender,

receiver, coding, sender authorization, time stamp, message identity etc. The latter part

consists of a set of Attribute-Value pairs (cf. Section 2.4). The given example message

requests the operation “get key performance indicators (KPI)” of the service “diagnostic”.

34

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.3 Message Format

ServiceRequest indicates the message type. Object ID specifies the service requester.

The expected KPIs are defined as KV P Keys. An example value is given for every

desired KPI in the message and indicates data format, number of decimal places and

physical unit.

In order to simplify the message parsing, different optimization approaches can be

applied in practical use. The proposed message format can be applied as standard

message pattern. As soon as two communication parties build up a fixed and confident

partnership, they can exchange simplified messages. For example, in case a control

agent for “valve014” receive the pre-agreed code “cmd40” from a supervisory agent

“group control 010”, it will start the service “process control” and the operation “open”

with the parameter “opening=40%”.

The FB-agent model presented in this work supports two general message types:

service request and data message. As the name implies, the former one describes a

request with regard to a service (e.g. “diagnostic”). The latter one contains data such as

KPI, current execution state, request confirmation etc. In case the message is a service

request, service must be defined in the message body. Depending on different services,

operation in a service request can be either required or optional. In the second case,

the agent should identify a suitable operation autonomously.

As introduced in Secion 2.5, many agent approaches support complex conversations

(e.g. confirm, propose, rejection, negotiation) in imitation of human languages. Syntax,

semantics and rules of a certain conversation type can be modeled in a so-called on-

tology which should be loaded on the sender and the receiver. Every message header

should indicate which ontology should by loaded by the communication parties, so that

the sender can recognize the conversation type. For instance, The variety of conver-

sations between communication parties in process automation systems is limited. For

instance, it does not seem worthwhile to allow automation agents to negotiate with the

user autonomously, whether a production task is to be performed. In the most cases,

the two general message types are sufficient enough for the communication between

FB-agents.

The message format for automation applications and the classification of messages is

part of a larger research work conducted by the Chair of Process Control Engineering in

Aachen. Ongoing works and publications can be found on the homepage of the Chair.

As a general reference model, FB-agent supports only the two simple message types.

Extensions according to existing agent languages can be researched in future work. For

convenience, messages in the following discussions will be shown in simplified from:

“ sender=…; receiver=…; service=… ; operation=… ; parameter=…”

35

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Figure 3.2: Message exchange via Message Delivery Modules (MDM)

3.4 Message Delivery Model

The message exchange between automation agents can be realized in different ways.

A reference model for the implementation in automation runtime systems (cf. Sec-

tion 2.2.3) is defined in Figure 3.2.

One possible design is to allow a direct agent-to-agent communication. This design

has two disadvantages. Firstly, every single agent should be able to allow and man-

age communication with remote partners. Special interfaces for sending and receiving

messages over the network should be defined. Agents should be able to deal with

abnormal situations during the remote communication. For instance, in case the net-

work is temporary overloaded, all outgoing message should be buffered locally and sent

again when the network is free again. The agent model and its service interfaces will

be unnecessarily complex and bloated. Secondly, it is difficult to monitor and observe

the network load. Agents are decentrally distributed in the automation network. The

message-oriented communication between agents can be dynamically build at runtime.

Messages will be sent discretely and irregularly. In case the agents are allowed to send

messages directly, it is not easy to determine how many messages will be sent within

the whole network during a certain time period.

The second possible design is to manage the message-oriented communication in

a centralized manner. As shown in Figure 3.2, agents are installed on Standalone

Components (SC) which are the elementary components for organizing programs (cf.

2.2.3). Every SC possesses a Message Delivery Module (MDM) which manages the

message transmission between local and remote agents. Agents are not allowed to

exchange messages directly, but only through the local and remote MDMs which act as

intermediaries.

In case a message is to be sent from agent A to agent B as indicated in Figure 3.2, A

sends the message to the MDM on SC1. The MDM forwards the message to the MDM

36

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.5 Internal Structure

on SC2. The second MDM sends the message to agent B. In case the sender and the

receiver are located on the same Standalone Component, the local MDM delivers the

message to the receiver directly.

Message Delivery Modules (MDM) only read the receiver address of messages that

are to be transmitted. As an option, they can check the authority of the sender. Further

entries in a message are to be evaluated and interpreted by the receiver not by the

MDM.

The agent-MDM-agent communication has the advantage that the discrete and message-

oriented communication on single Standalone Components (i.e. servers) and in the

whole network can be better observed and supervised. The Message Delivery Mod-

ule on every standalone component acts as the central communication module which

manages the message exchange and deals with abnormal situations during the commu-

nication. For instance, in case the network is overloaded, all messages will be buffered

centrally in the MDM and sent until the network is free.

The idea of MDM is borrowed from network communication technology. Many existing

solutions for this area can be directly applied to solve communication problems, such as

the discovery (or addressing) of the receiver, the measures for abnormal situations etc.

The FB-agent model does not restrict mechanisms for the discovery and the address-

ing of communication participants. These two functions are to be realized as two basic

system services. In further discussions of the dissertation, the location of message

senders and receivers will be defined for convenience by their absolute path which is

composed of device name, server name and local path on the server.

The message delivery among all communication participants is unidirectional. As

discussed in Section 2.5.3, feedbacks are not supported and are to be sent separately

as data messages.

3.5 Internal Structure

As the name implies, FB-agents are to be encapsulated as function blocks. To realize

the white-box engineering required in Section 3.1.2, function block technology is applied

to construct the internal logics of FB-agents. The external design and the internal con-

struction form an invisible whole and will be termed Execution Frame of the FB-agent

model. The Execution Frame is encapsulated and possesses a local namespace for

variables and underlying function blocks of an agent. Internal function blocks within the

frame cannot be accessed directly from the outside.

As shown in Figure 3.3, internal logics of an agent are to be encapsulated as modular

function blocks which can be classified into two types:

37

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Figure 3.3: Execution Frame of an FB-agent: Modular composition of internal logics

1. Atomic Function Blocks (AFBs) or complied function blocks are “black-boxes”.

Their internal logic is fixedly defined, invisible from the outside, and can normally

not be edited by users. AFBs can be applied to realize functions of different com-

plexity, from simple logical operations (e.g. AND and OR), over complex algo-

rithms (e.g. model predictive control), to knowledge base (e.g. in neuronal net).

For the implementation in automation systems, an AFB can be defined as a class

in a library, and be instantiated multiple times. In case the logic is changed by the

user, the AFB class is to be recompiled and reloaded into the system.

2. Composed Function Blocks (CFBs) are “white-boxes”. Viewed from outside, CFBs

can be handled equally to AFBs. They are encapsulated and have input variables

and output variables. However, their internal logic is a composition of modular

components. The logic can be edited by users without recompilation. The modu-

lar composition allows an intuitive graphical visualization on the Human Machine

Interface (HMI). CFBs can be further divided into two subtypes: continuous CFB

and procedural CFB. The former one describes continuous functions. The latter

one is for sequential functions (e.g. control sequence) and state-based functions

(e.g. state machines). The modular components within a continuous CFB are in-

terconnected function blocks which can be atomic or composed. The nesting of

CFBs in CFBs allows a hierarchical structuring of complex logics. Internal com-

ponents of a procedural CFB are states and transitions. Their data exchange and

execution control will be discussed in Chapter 4.

The communication between AFBs and CFBs is realized through the exchange of

signals. The FB-agent model does not restrict the programming language for the im-

38

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

plementation in runtime systems. Atomic function blocks (AFBs) can be implemented

in IEC61131-3 [3] languages and further non-standard languages such as ANSI C or

JAVA, as long as they are supported by the underlying runtime system. Continuous

CFBs can for example be implemented as Function Block Diagrams (FBD) according to

the IEC 61131-3 [3]. Procedural CFBs can be designed and implemented in different

description methods (e.g. Sequential Function Chart). Appropriate approaches will be

analyzed in Chapter 4 and Chapter 5.

Function blocks realize a modular encapsulation of the internal logics of automation

agents. This modular design is native in the area of process automation and makes a

compatible integration of FB-agents in existing automation systems possible. Addition-

ally, an acceptance of users can be expected, since the users are accustomed to use

function blocks. Additionally, the requirements on modularity and white-box engineering

outlined in Section 3.1.2 can also be fulfilled.

Atomic and composed function blocks are not new in classic automation systems.

Users apply atomic function blocks to perform mathematic calculations such as addition

and multiplication. Function Block Diagrams are applied to implement interlock logics

e.g. for a pump. However, the function block technology has gradually been reduced

to a programming language with regard to its status in industrial use. The concepts

of modular encapsulation and hierarchical nesting are often neglected. For instance,

procedures in many automation systems are not modularly encapsulated. Hierarchical

nesting is often also not supported (cf. Chapter 5).

To improve the usability of automation systems, it is worthwhile to highlight the guid-

ance of function block technology during the engineering of automation functions [35,

63]. The function block technology is therefore applied as the essential modeling prin-

ciple in the FB-agent model. In contrast to classic function blocks, the programming

language for the implementation in runtime systems is not restricted. Additionally, all

continuous and procedural functions should be strictly encapsulated as modular func-

tion blocks.

Section 3.6 will introduce the realization of service interfaces. The execution control

of internal components within the Execution Frame will be modelled in Section 3.6. The

differences between traditional function blocks and FB-agents will be summarized in

Section 3.9.1.

3.6 Service Interfaces

The service-oriented communication between agents is based on the exchange of mes-

sages. To merge the message-oriented communication with the signal-oriented context

within FB-agents, services interfaces are realized as special function blocks which con-

vert messages to signals or vice versa.

39

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Figure 3.4: Agent with multiple message inputs for registered services. In case the

desired service does not exist, the service requester cannot be informed about this

error.

Viewed from the outside, an agent possesses special interfaces for receiving and

sending messages. Within the agent, the service interfaces behave like normal function

blocks. An incoming message will be parsed. Its contents will be saved as output vari-

ables of the function blocks and can be read and processed by further function blocks,

e.g. via signal connections. To generate an outgoing message, the message contents

can be saved as input variables of a message output which composes a message from

the entries. Service interfaces of the FB-agent model will be introduced in detail during

the following sections.

3.6.1 Message Input and Message Inbox

Message Input

According to the conceptual model introduced in Section 2.5.3, an agent should setup

a message input for every single service (cf. Figure 3.4). To deliver a message, the

Message Deliver Module (MDM) introduced in Section 3.4 finds the receiving agent and

sends the message to the message input of the desired service. The message will be

buffered in the message input and be processed by the receiving agent. The message-

oriented communication is unidirectional. Conformations or rejections are to be sent as

separate messages.

This design has the disadvantage that the service requester cannot be easily in-

formed, in case its service request is invalid or the desired service is not registered

40

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

Figure 3.5: Service interfaces for the processing of incoming messages

in the receiver. In case the Message Delivery Module (MDM) in Figure 3.4 sends a ser-

vice request on an unregistered “service 3” to the agent, this request cannot be buffered

and processed by the receiver, since no message input named “service 3” exists. As

the receiving agent can only process messages in message inputs, it cannot generate

a rejection message and send it back to the sender.

The receiving agent can have a signal output (cf. runningService in Figure 3.4 which

highlights the services that are being processed or rejected. The sender can read this

output and sense that its service request is not accepted. However, a service request

can be rejected for different reasons, for instance, the agent is busy, the message is

invalid or the desired service does not exist. The sender cannot easily recognize the

actual reason.

It is defined as a concept decision that every FB-agent should possess only one cen-

tral interface for the message reception. Within the name space of an FB-agent frame,

the message Input should have a unique identity, e.g. ‘msgIN . In case the Message

Delivery Module receives a message for agent A, it will deliver the message to the target

address AgentA.msgIN .

As shown in Figure 3.5, every agent should possess only one message input. In

contrast to the conceptual model introduced in Section 2.5.3, the message input does

not represent services and does not buffer any messages. Incoming messages are

forwarded and buffered in Inboxes.

41

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Message Inbox

A Message inbox is a container of incoming messages of a particular category. Every

registered service within an agent should have an exclusive message inbox which will

be termed Service Inbox. The message input forwards all message for a service to

the inbox of the service. Service inboxes are special message inboxes but not vice

versa. Further inboxes can be optionally defined for example for invalid messages and

for service requests that are to be rejected.

The idea of message input and message inbox is similar to an e-mail account which

can automatically sort incoming mails into subfolders for “work”, “bills”, “spam” and etc.

The Message Delivery Module (comparable with web mail server) addresses the re-

ceiver via its unique message input Agent.msgIN (comparable with liyong.yu@plt.rwth-

aachen.de), irrespective of the existence of the service register (comparable with the

subfolders). This design has the advantage that invalid messages can also be buffered

and processed by the receiver.

Service Registration

As introduced in Section 3.2, services and operations should be registered within an

agent. Services and operations should be able to be added or deleted by users.

Since every registered service has a service inbox, the list of all service inboxes can

represent the service register within an FB-agent.

A function block or a group of function blocks within an agent can be registered as an

operation (cf. Figure 3.1). Every operation should have a covering service. Ever service

inbox holds a local register of underling operations.

As shown in Figure 3.5, the inbox of the “Process Control” receives a message which

requests the operation “OPEN”. Information about sender, operation identity and pa-

rameters (e.g. opening = 30%) will be parsed by the service inbox and saved as its

output variables. These variables can be read by downstream function blocks for the

operation realization and for status observation.

Services and their underlying operations should be self-descriptive, namely, they

should possess a description which contains at least a textual introduction and a list

of parameters. The service- and operation-description can be defined on the meta level

of service inboxes. In order to allow a flexible extension and modification by users,

it is suggested to define service description and operation description as variables of

service inboxes.

As shown in Figure 3.5, every service inbox has an input variable serviceDescription

which holds the textual description of the service and can be explored by service re-

questers. The variable registeredOP lists and describes all underlying operations of the

service.

42

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

The function-block-oriented design of the service register allows a flexible engineering

of services and operations by the user. In order to define and register a service, the user

can instantiate a service inbox. The service description and the underling operations

can be defined as parameters. In case a service inbox is modified or deleted, the service

is redefined or de-registered.

Section 6.2 will introduce an approach for the registration of operations as represen-

tative objects. In this approach, every registered operation should have an exclusive

representative object under its covering service inbox. The operation object holds the

operation description and can be flexibly defined and modified by users.

Plausibility Checks

In every execution iteration, the message input checks whether new messages exist.

The following general checks will be performed on every incoming message:

• The message format must be plausible.

• In case the message is a service request, the desired service must be registered.

In other words, an inbox for the service is present in the agent.

The following checks can be performed optionally:

• an operation is defined in the message and is registered in the agent.

• the message sender must be explicitly given.

• the sender must be authorized for accessing the agent.

• the sender must be authorized for using the service.

Messages that fail the checks are regarded as invalid and will be deleted by default.

Invalid messages will be forwarded to the message inbox “invalid” (cf. Figure 3.5), only if

the sender requires a feedback (confirmation or rejection) explicitly. Valid message are

forwarded immediately to service inboxes. At the end of every execution, the message

input should be kept empty.

The service inboxes check according to the service description whether the format

of incoming messages is plausible, and whether all necessary parameter are defined.

Service inboxes parse messages. Key contents of a message are saved as signal

outputs of the inboxes and can be read by further internal function blocks (e.g. via

signal connections).

Message Processing Rule

Messages in an inbox can be processed in different ways. Every message inbox

should have the following properties which can be realized as variables of the inbox

instance or be fixedly defined in its meta model:

43

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

• Prioritization Rule defines the processing order of the messages. Messages can

be prioritized for example according to their arrival time and be processed in the

principle of “First-In-First-Out” (FIFO) or “Last-In-First-Out” (LIFO). Messages can

also be prioritized according to a certain property, e.g. the sender’s authority or

the importance. For instance, an emergency stop instruction is more important

than a normal instruction and should receive higher priority.

• Capacity defines the number of messages that can be at most contained in an

inbox. The inbox capacity is unlimited by default.

• Measure for Overflow defines the behavior of an inbox, in case its capacity is

reached. The inbox can refuse to receive any further messages. Alternatively, it

can delete the oldest message and can always receive new messages.

With these properties, different processing rules can be defined for individual mes-

sage inboxes.

For instance, the following rules can be defined for the service inbox “Process control”

of a valve control agent:

• Prioritization rule 1: Since the valve can only be allocated by one service requester

at a time, only one service request message will be accepted. Further requests

will be ignored or rejected.

• Prioritization rule 2: A manual operation should be allowed any time. Thus, the

operator has higher priority than all software requesters.

• Prioritization rule 3: In case two senders have the same priority, the message that

received earlier has higher priority (FIFO Principle).

• Capacity: 5 messages can be buffered in the inbox.

• Measure for overflow: In case more than 5 messages are received, the oldest

message will be deleted. This rule ensures that service requests from operators

will never be ignored. The service inbox can always be operated by the operator,

even if its message capacity is reached.

The valve control agent may receive the following three requests on the service “pro-

cess control”:

Message 1 : ... Sender = Agent A; ... Operation = OPEN; ...

Message 2 : ... Sender = OPERATOR; ... Operation = ALLOCATE; ...

Message 3 : ... Sender = Agent B; ... Operation = CLOSE; ...

The sender Agent A of the first message wants to open the valve. The operator asks to

allocate the valve and control it manually. Agent B wants to close the valve. However,

the valve cannot open and close at the same time. It can also not be operated manually

and automatically at the same time. According to the processing rules, all three mes-

sages will be buffered and processed, since the capacity of 5 is not reached. Agent A

44

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

Figure 3.6: Message output implemented as function block

and Agent B have the same priority. Message 1 arrived first and therefore has higher

priority than message 3. Message 2 from the operator is to be accepted.

Processing rules for further services can be defined alternatively. For instance, re-

quests on a “diagnostic” service are not mutually exclusive. All incoming requests must

be buffered and processed by the receiver. The following processing rules can be de-

fined for the service inbox:

• Capacity: unlimited.

• Priority rule: First-In-First-Out (FIFO)

3.6.2 Message Output

A message output generates messages and delivers them to the local Message Delivery

Module. In contrast to the message input introduced in Secion 3.6.1, the message

output follows the conceptual model introduced in Section 2.5.3 but is not completely

redesigned.

As shown in Figure 3.6, all entries for a message are defined as input variables such

as receiver address, name of the service to be requested, operation name and param-

eters. Every message output function block has a standard input variable “doSend”. In

case this Boolean variable is set from FALSE to TRUE, the message output checks

the plausibility of all entries, generates a message object and delivers it to the local

Message Delivery Module introduced in Section 3.4.

Every FB-agent may have more than one message output. The identity (i.e. function

block name) of a message output can be set as an alias name (e.g. “Pump0014”,

“Valve” or “Archive”) which represents a certain message receiver. A message outbox

can also be responsible for the generation of messages of a certain type, for instance

45

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

diagnostic data or rejection. In this case, its identity can be set to “diagnostic data” or

“rejection”.

The location and the actual identity of the receiver are defined as two input variables of

the message inbox: receiver and path. They can be defined manually or be dynamically

complemented. In the conceptual model introduced in Section 2.5.3, path can be com-

plemented by the runtime system. This design allows a direct value assignment from

the outside. To ensure the encapsulation property of the FB-agent frame (cf. Execution

Frame termed in Section 3.5), path is not allowed to be set directly from the outside, but

only via an input of the covering execution frame.

3.6.3 Input interface

An Input Interface can read the current value of a variable which can be present on

the local or on a remote server. In comparison with the conceptual model introduced

in Section 2.5.3, the input interface will be defined in more detail but not completely

redesigned.

As shown in Figure 3.7, an input interface is to be encapsulated as a function block.

The identity and the path of the desired variable are defined as input variables. Similar

to the message output introduced in Secion 3.6.2, the identity and the path of an input

interface can be statically defined or dynamically complemented at runtime.

To read a remote variable, the input interface invokes a system service “Get Variable”

which is to be standardly provided by every Standalone Component. The service finds

the variable, samples its current value and delivers it back to the input interface. In

addition, a time stamp is and a status variable should be sent back to the input interface.

The time stamp indicates the sampling time of the variable. In case the target variable

has no time stamp, the current system time will be taken.

The status variable indicates the quality of the value. A value can be good, bad or

questionable etc. The reference model FB-agent does not restrict the type of variable

status. A related research work on this topic can be found in [64].

Input interfaces are suitable for occasional or one-off accesses. They read the target

variable only if necessary. Classic signal connections, however, read the target variable

cyclically and load the system continuously. Additionally, the service oriented sampling

of variable value can reduce the dependence of a mobile FB-agent on its environment.

For instance, in case a mobile agent changes its location, its input interfaces do not

need to be reconfigured. No rigidly-connected signal connection should be deleted at

the old location and be rebuilt at the new location.

Input interfaces can also read variables periodically. The “Get Variable” service can

be touched off again, when the last reading activity is finish. An input interface of a

diagnostic agent can for example read a temperature value once an hour.

46

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.7 Knowledge Base

Figure 3.7: Signal communication across networks via active input interface

3.7 Knowledge Base

Agents should possess a local knowledge base to realize autonomous behaviors. The

present work focuses on the construction of automation agents, not on the development

of autonomous algorithms. To realize the knowledge base in FB-agents, both, theory

and practice in area of process automation and computer science can be utilized.

Knowledge-based realization of automation tasks is not a novel research area in pro-

cess automation. Many knowledge-based approaches have been developed in resent

years. For instance, observation and diagnostic logics for field devices (e.g. pump)

can be automatically generated [65]. Basic automation logics (e.g. single control units,

HMI faceplates) can automatically initialized according to design data and knowledge

bases [66, 67]. An overview of related works can be found in [67, 68]. These advanced

automation algorithms can be applied to realize the knowledge base of FB-agents.

Section 7.4 will show an example of engineering agents, in which knowledge-based

engineering algorithms for the initialization of process control and plant simulation are

encapsulated.

A common implementation issue that the knowledge-based automation applications

face involves the coupling to existing automation systems. The most common solution

is to develop advanced algorithms in a specific programming environment and couple

the implementation to further automation systems via a special communication interface

(e.g. OPC server). A development of application-specific solutions for visualization, data

archiving, and communication interface is often necessary.

The execution frame provided by the FB-agent model allows a direct integration of

advanced algorithms into existing automation systems. Knowledge-based algorithms

can be encapsulated as function blocks (atomic or composed) and be plugged into

FB-agents. They can be abstracted as operations and services that can be invoked

via unified service interfaces of agents. Existing services in the system for diagnostic,

model management, data archiving etc. can be utilized by the new agents.

47

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Figure 3.8: Integration of advanced automation algorithms as a knowledge base of

an FB-agent: Service-oriented interaction with existing system components. Existing

solutions can be utilized for model management, engineering, archiving of data and

knowledge base etc.

For example, the aforementioned knowledge-based algorithms for pump diagnostic

can be encapsulated within a “diagnostic agent”. As shown in Figure 3.8, the new

agent can communicate with the target valve control agent via service-oriented interac-

tion. It can also request an existing “data archiving agent” to read diagnostic data from

the long-term archive and save diagnostic results in the archive. Further services for

model management and engineering can be applied to maintain, analyze and backup

the knowledge-base of the new agent.

3.8 Execution Model

Theoretically, FB-agents are standalone modules that can be executed simultaneously

and independently from each other. However, in order to avoid unexpected execution

result and ensure a safe operation in automation systems, a deterministic execution

within the FB-agent frame is desirable. In other words, internal components of an FB-

agent should be executed according to a clearly defined order.

In every iteration cycle, the following execution procedure will be performed once：

1. Switch incoming signal connections and update all inputs.

2. Execute the unique message input

3. Execute message inboxes

4. Switch the so-called initial connections which connect inputs and internal function

blocks (cf. Figure 3.3).

48

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.8 Execution Model

Figure 3.9: UPPAAL automaton for one iteration of FB-agent execution frame

5. Execute an internal task list named intask which controls the execution of internal

function blocks within an agent. Although the message input and the inboxes are

also function blocks, they should be regarded as special inputs and should be

executed at the beginning of the iteration cycle. Function blocks under the task list

will be executed by default “from above to below, and from left to right” as they are

positioned on the graphical visualization. The execution order can also be flexibly

defined by users.

6. Switch final connections which are connections ending with a signal output (cf.

Figure 3.3).

The execution procedure is represented in form of a UPPAAL automaton in Figure 3.9.

Based on this procedure, FB-agents can support the following execution behaviors:

• Cyclical Execution approximates a time-continuous execution. The aforemen-

tioned execution procedure will be processed cyclically. A cyclic processing agent

is always active.

• Event-driven Execution: An event-driven agent is inactive in normal state. It starts

with its execution only if a certain event occurs. The FB-agent model does not have

event inputs. An event can be for instance the value change of variables, or the

receiving of new messages. An activated agent will be cyclically executed, until it

reaches a certain stable state (e.g. all internal parameters do not change anymore,

49

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

or an underlying procedure is terminated). Then, the agent will be deactivated

automatically.

• Call-based Execution. The agent is always inactive and will be executed, only if

it is invoked, e.g. by a task. Call-based agents are prepared for runtime systems

with no cyclic-processing context.

Due to the central role of the cyclic-processing context in industrial automation (cf. Sec-

tion 2.1), further discussions in this dissertation focus on this mode unless otherwise

noted.

3.9 Related Automation Technologies

The development of the FB-agent model has referenced many related works and ex-

isting solutions in process automation and computer science. The relationship and

differences will be summarized in this section.

3.9.1 Relationship with Function Block Technology

The FB-agent model applies the function block technology as a basic modelling princi-

ple for the modular encapsulation of agents and their internal components. In order to

be integrated in existing automation systems, the FB-agent has inherited many mecha-

nisms (e.g. communication interface and execution scheduling) from these two function

block standards IEC 61131 [3] and IEC 61499 [14]. However, the FB-agent has the

following three main differences to the two standards.

Firstly, the FB-agent model extends the classic function block with service interfaces

which realize a loosely coupling and dynamical cooperation of agents (cf. discussion

in Section 3.6). In contrast to the event interfaces according to IEC 61499, service

interfaces are not fixedly connected with communication partners. Service-oriented

communication can be dynamically built, whereas event-oriented interactions among

IEC 61499 FBs should be realized as fixed connections. Additionally, every FB-agent

has only one standardized message input, whereas IEC 61499 function blocks may

have multiple event interfaces. Furthermore, structure and key contents of FB-agents’

service messages have a standardized definition, whereas the IEC 61419 event is ab-

stractly defined without the use of a unified data model.

Secondly, function block is defined as a program organization unit and a programming

language in the two standards, whereas FB-agent applies function block as a modelling

principle. On the one hand, as introduced in Section 3.5, the description method for

the implementation of FB-agents’ internal blocks can be freely chosen. On the other

hand, the FB-agent model is neutrally defined for different execution environments (call-

50

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.9 Related Automation Technologies

Figure 3.10: Two different concepts of Service orientation in process automation

based, cyclic or event-driven), whereas the function blocks according to the IEC 61131

and IEC61499 are closely coupled to a specific context.

3.9.2 Relationship with Service Orientation

The FB-agent model combines the advantages of agent-orientation and service orien-

tation (cf. Section 2.3). Internal logics of FB-agents should be abstracted as services.

The communication and interaction between FB-agents are service oriented.

Similar to the service-orientation, agent orientation also realizes an abstraction of

implementation details. However, agents possess a knowledge base and behave au-

tonomously, whereas classic service providers do not need to (cf. Section 2.5).

Theoretically, services are abstract and do not need to have representatives in the

runtime system. However, FB-agents are concrete and encapsulated software modules

in runtime systems. They possess individual name spaces and act as service providers.

As introduced in Section 2.3, service orientation is currently applied in process au-

tomation for realizing a neutral communication between different systems. According to

the OPC UA standard [30], services are provided by systems or servers installed in the

automation network and can normally only be invoked by remote requesters (cf. Fig-

51

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

ure 3.10 (a)). According to the FB-agent model, services are provided by agents. As

shown in Figure 3.10 (b), services can be invoked by local and remote requesters. A

flexible orchestration of local services on the same server is allowed.

FB-agents are regarded as the elementary service providers in the automation sys-

tem. Services are provided by agents not by the servers on which the agents are in-

stalled. This design principle is similar to the soccer example introduced in Section 2.5.

The “defense” and “attack” services are provided by the soccer team and the individual

players, but not provided by the play field. The whole automation system can be re-

garded as a composition of agents which are in charge of services of “process control”,

“diagnostic”, “engineering” etc.

Along with the rapid development of computer science, the boundary between devices

and servers will get more and more blurred (compare discussions in Section 2.1.3).

Modern computer technologies like virtualization and cloud computing allow users to

design software irrespective of the underlying hardware infrastructure. The FB-agent

model follows this trend and provides a new design concept for the construction of the

future service-oriented automation systems.

3.9.3 Relationship with ACPLT/PF

Both the FB-agent model and the ACPLT/PF (cf. Section 2.2.6) follow the resource-

measure-model introduced in Section 2.2.5. The FB-agent model borrows many design

decisions from ACPLT/PF, among others, the function-block-oriented encapsulation and

the unidirectional communication. However, FB-agents and PCUs have essential differ-

ences. These will be summarized as follows.

Firstly, ACPLT/PF is designed for process control, whereas FB-agent is a general

design pattern for a broader range of application areas such as archiving and engi-

neering (cf. Figure 2.13). Additionally, FB-agents have advanced requirements on their

functional abilities. FB-agents should possess a knowledge base and autonomous be-

haviors.

Secondly, communication interfaces are differently defined in ACPLT/PF and FB-

agent. The order interface in ACPLT/PF is realized as a special signal input of func-

tion block. In case it receives many messages from different senders, only the last

received order (or command) will be taken. Further orders will be overwritten, even if

they have higher priority and emergency. For instance, the request on a manual oper-

ation in the example in Section 3.6.2 will be ignored. However, the message input and

service inboxes of FB-agents can process messages in different ways. Different prioriti-

zation rules and processing modes are defined for individual services. As discussed in

Section 3.6.2, no important messages (e.g. a manual shutdown) will be overwritten or

overlooked.

52

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

3.9 Related Automation Technologies

Thirdly, ACPLT/PF applies a simple message format of Value-List. FB-agents apply a

XML-based format which allows a flexible construction of content-rich messages and a

formal evaluation according to message schemas (cf. Section 3.3).

Furthermore, the FB-agent model realizes a white-box engineering of internal log-

ics. In the ACPLT/PF prototype presented in [20], every Process Control Unit (PCU)

should be implemented as an Atomic Function Block (AFB). The main limitation of this

black-box design is that every variant of POU should be defined as a library class. Con-

sidering varieties of group control units and operation measures in process automation,

it is difficult to avoid a class explosion. A workaround of ACPLT/PF presented in a

student work allows the user to edit part of the internal procedures. This design only

realizes a gray-box, which means that the internal logic can be partially acknowledged

and manipulated by users. The white-box engineering outlined in Section 3.1 is still not

supported. In contrast to ACPLT/PF, the FB-agent model allows a modular encapsula-

tion of all its internal logics, a flexible combination of black-boxes and white-boxes and

a service-oriented abstraction model (cf. Figure 3.1). Service interfaces of FB-agents

are realized as internal function blocks of the agent frame. The transparent design of

FB-agents ensures a user-friendly engineering. Internal logics of agents can be easily

mastered and flexibly manipulated by users.

53

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

4 Usability Analysis of Existing
Procedure Description Methods

Automation agents introduced in Section 2.5 and Chapter 3 need to observe internal

execution status, recognize environment situation and formulate sequential operations.

All these state-based functions or sequential functions can be called procedures, which

define the strategy for carrying out process control processes in runtime systems. In the

following sections, existing Procedure Description Methods (PDM) in industrial automa-

tion will be compared. Their usability for the FB-agent model presented in Chapter 3 will

be evaluated.

Typical PDMs in industrial automation are Finite State Automaton, Petri Nets, Se-

quential Function Charts and Procedural Function Charts. An introduction and a brief

comparison of the PDMs is given in the recommendation VDI/VDE 3681 [7]. In the

following sections, the PDMs will be evaluated in detail. Specific requirements on the

agent engineering outlined in Section 3.1 will be taken into consideration. Addition-

ally, further PDMs (e.g UML Statechart and Grafcet) which were not introduced in the

VDI/VDE 3681 but are important in process automation are also considered. All the

regarded PDMs are evaluated according to the following criteria:

• Completeness of syntax. With the increasing complexity of automation func-

tionalities, the requirement on the syntactical completeness of description meth-

ods has increased. A PDM is not suitable enough for comprehensive automation

applications, if it is only composed of a set of simple steps and transitions. An

overall solution is needed which can deal with actions, communication with the

environment, and high level structures (e.g. alternative branching, hierarchy and

concurrency).

• Unambiguity of semantics. Ambiguous semantics can lead to inconsistent re-

sults between the specifications of users and the implementation in runtime sys-

tems. As the user-centralized engineering is the central aspect of the FB-agent

model, it is especially important to ensure that the semantics are clearly defined.

Additionally, unambiguous semantics serve as a good base for the formal valida-

tion and verification.

• Compatibility with existing automation systems. As discussed in Section 3.1

and Chapter 3, FB-agents should be integrated into the existing automation sys-

tems. Thus, PDMs for agents should also be compatible with the control flow and

54

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.1 Finite State Automaton

data flow in the automation systems. It will be evaluated, whether the PDMs can

be implemented in the automation runtime environment. Additionally, to support

the procedure description in Composed Function Blocks (cf. Section 3.5), it will

be checked, whether the PDM can be composed of modular elements in runtime

systems.

4.1 Finite State Automaton

Finite-State Automaton (FSA) (or finite state machine, state machine, sequential ma-

chine) is an abstract mathematical method for modelling the behavior of a system which

is composed of a finite number of states. The word “automaton” can trace back to a

Greek word which means “self-acting”. The automaton theory plays an important role

in theoretical computer science. It is widely used in various application areas such as

computer programming and sequential logic circuits.

In 1943, McCulloch and Pitts have presented an FSA approach for the description of

neural nets [69] consisting of finite states. Based on this work, the final definition of

FSA was established by Moore and Mealy [70, 71] in 1950s. Named after the authors,

two kinds of FSA were defined: the Moore machine that generates outputs in states

and the Mealy machine that generates outputs in transitions. A Moore machine can be

converted into an equivalent Mealy machine and vice versa.

Syntax and Semantics

Finite State Automaton (FSA) consists of an input alphabet, an output alphabet, a

set of states and a set of transitions. Inputs can be regarded as events. Outputs can

be seen as actions, which are the consequences of events and state changes. States

and transitions should be interconnected alternately, meaning that steps are followed

by transitions and vice versa. Every FSA has an initial state. A state can be active or

inactive. Concurrency is not supported. Only one state within a PDM can be active at a

time.

Input \State closed opening opened closing

cmd open state opening

fully opened state opened

cmd close state closing

fully closed state closed

Table 4.1: Equivalent State Table of the Finite State Automat in Figure 4.1

Figure 4.1 and Table 4.1 shows three equivalent description variants of the control

logic of a switch valve: Moore machine, Mealy machine, and state table. The former two

55

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.1: Equivalent Mealy machine (a) and Moore machine (b)

are graphical, whereas the last one is textual. The valve has two stationary states: fully

open or fully closed. Their transitional phases are represented as two further states. The

input alphabet of the FSAs is a vector of the conditions, whereas the output alphabet is

a vector of the actions. In case an input alphabet is received and a condition is fulfilled

(e.g. the command “cmd open” asks to open the valve), the related action (e.g. “open”)

will be emitted.

FSA is an early approach for the graphical description of procedures. Since FSA use

simple elements and simple structures, their semantics can be easily formally defined

and mathematically analyzed. In computer science, there exist many algorithms and

tools for formal validation and verification of FSA.

However, the graphical notation of FSA can quickly become complicated and confus-

ing, in case the described procedure has dozens of states. Due to the risk of state

explosion, many commercial tools (e.g. S7-HiGraph for modelling control logics) are not

well-established in the practical use.

FSA’s elements are abstract graphical notations. The inputs and outputs are clear

text. It is not defined clearly in which format they can be implemented in the runtime

system. Additionally, many semantics are not clearly specified. For instance, in case

two outgoing transitions of a state are both fulfilled, it is not clearly defined which one of

the conflicting transitions can fire. A prioritization rule is missing.

Application in Automation

The modelling method FSA is widespread in the practical use. In industrial automa-

tion, FSA is typically applied to specify PLC logic or evaluate an implementation [7].

FSA cannot be directly integrated into automation systems. For the implementation,

FSA should normally be transformed into a textual programming language.

56

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.2 Statechart

Usability Analysis

FSA is a simple but rigorous description method. It is suitable for describing simple

procedures in FB-agents. Due to the risk of state explosion, it is also not suited to

describe complex procedures. Due to the missing of implementation model for the

runtime system, it is not suited to be applied to realized white-boxes, i.e. Composed

Function Blocks (CFB, see Section 3.5).

4.2 Statechart

Statechart constitutes a further development of the Finate State Automaton (FSA).

Among others, concurrency and hierarchy are supported.

Statechart was firstly presented by Harel in his work [72] for modeling discrete state

transitions in reactive systems. On the basis of this work, many Statechart variants have

been developed in the last decades, e.g. STATEMATE [73], PLC-Statecharts [74]. The

UML specification [11] has defined an object-oriented variant which is also known as

UML Statechart (also UML State Chart Diagram, UML state machine). The specifica-

tion is released as an international standard IEC 19501 [75]. It has standardized the

graphical notation of chart elements, a meta-model and the information exchange with

the environment. Due to the normative nature of the UML, the term Statechart will now

always refer to the UML Statechart, unless otherwise noted.

Syntax

Core elements of Statecharts are: transitions, events, actions, simple states, com-

posite states and pseudo states (e.g. initiation, transition fork, memory for composite

state etc.). An exhaustive introduction of all these extensions exceeds the scope of this

dissertation. Instead, key elements will be introduced with the example Statechart in

Figure 4.2.

As shown in Figure 4.2, states are marked as rectangles with rounded corners. States

can be simple or composite. Simple states (e.g. State 1 and State 21) are atomic,

whereas composite states (e.g. State 2 and State 3) contain subordinate Statecharts.

Every Statechart has at most one initial state and one final state. An initial state

is shown as a solid filled circle. A final state additionally has a surrounding circle. In

contrast to simple and composite states, initial and final states neither have state names

nor actions.

A composite state may nest one subchart and build a hierarchical structure (e.g. State

2 in Figure 4.2). It can also nest many subcharts, which are processed concurrently. Ev-

ery concurrent subchart (see State 3) is contained in a region. Neighbored regions are

57

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.2: Elements of UML/Statecharts

separated from each other by dotted lines. Composite states realize a clear represen-

tation of complex structures and can significantly reduce the risk of state explosion.

Composite states and concurrent regions are not encapsulated. A transition can con-

nect two states in two regions directly (see the transition from State 32 and State 33 in

Figure 4.2).

Every transition has one source state and one target state. Two states can be con-

nected to each other via more than one transition. A complete transition has four parts:

• arc connects the source state and the target state,

• trigger is an incentive event for the transition. An event can be one of the following

types:

– A Call Event : a function is invoked,

– A Change Event : the value of attribute(s) or association(s) is changed.

– A Signal Event : a particular signal is received.

– A Time Event : a deadline has expired. The deadline can be set relative to an

explicit starting time, or to the time of entry into the source state.

• guard is a Boolean expression which allows (TRUE) or prevents (FALSE) the

change of state,

• action will be performed, when the transition fires.

A transition can have more than one trigger and more than one guard.

Actions are the response of Statecharts on events. An action can be a variable as-

signment, function invocation or event generation. Statecharts merge the design of

Moore machines and Mealy machines. It means that actions can be generated both

58

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.2 Statechart

in transitions (e.g. the message generation in the transition from State 3 to State 4 in

Figure 4.2) and in states (e.g. all simple states in Figure 4.2).

Every action should have a type which is represented as clear text before a slash

and defines the execution behavior of the action. For instance, an entry action will be

executed when the state is entered; a do action will be continuously executed and an

exit action will be executed when the active state is left. A transition action is equivalent

to an entry-action in the target state of the transition.

Semantics

A state can be active or inactivate. When a state is active, its outgoing transitions

are also activated and will be evaluated continuously. When a transition fires, its source

state will be deactivated, whereas its target state will be activated. In case a transition

crosses the boundary of a composite state from the outside and fires (e.g. the transition

from State 4 to State 22 in Figure 4.2), not only its target state (e.g. State 22) but also

the covering composite state (e.g. State 2) is activated.

In case a state is left, the Statechart progresses until a new stable state is reached

and no transition can fire. Theoretically, the progressing is seamless and timeless. It

means, the new stable state is reached immediately, even if the old state and the new

state are separated by a sequence of intermediate states.

In case a transition ends at the boundary of a composite state (e.g. State 2 in Fig-

ure 4.2), the subchart starts from its initial state by default. A final state defines the

default ending of a subchart. In case the subchart of State 2 reaches is finals state, the

chart is terminated. The State 2 keeps active until one of its outgoing transition fires.

The subchart in a composite state can be aborted when an outgoing transition fires. In

case the State 2 is active and the variable b is smaller than 25, the transition to state 3

will fire immediately, irrespective of the state of the subchart.

All composite states in the example have no memory. This means that, in case a

composite state is deactivated, its sub-charts will be reset. In case the covering state is

activated again, the sub-charts start form their initial states. A composite state may have

also memory. In case the composite state is deactivated, it stays on its current state.

The execution proceeds from the current state when the composite state is reactivated.

Transition triggers are to be checked continuously. A guard will be checked only if the

triggers of the same transition are fulfilled. The transition can fire if its trigger and guard

are both fulfilled. For instance, the semantics of the transition from State 3 to State 4 in

Figure 4.2 can be described as follows: If the variable Bool 1 is TRUE and d is smaller

than 20, the transition will fire. State 3 will be deactivated. State 4 will be activated.

Message 3 will be emitted.

59

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Application in automation systems

Statechart is a classic modelling language in computer science and is not widespread

in industrial automation. One main reason for this is that many definitions may lead

to an over-engineering of procedures. Similar to further modeling languages specified

in UML, Statechart does not specify exact execution behaviors in the operative envi-

ronment deliberately. These are left to the system developer. For instance, the syntax

of guard, event and action is not clearly defined; semantics for the evaluation order of

guards starting from the same state are also not given.

Classic Statecharts cannot be directly implemented in automation systems. [74] has

introduced a variant named PLC-Statechart, which allows a graphical programming in

PLC. The programming language PLC-Statechart simplifies the UML Statechart and

borrows many design principles (i.e. action concept) from another programming lan-

guage called Sequential Function Charts (SFC, see Section 4.4). PLC-Statecharts sup-

port only a specific part of the syntax of classic Statecharts. Among others, only signal

events are allowed. Although PLC-Statecharts ultilize the action concept of SFC, it has

not been defined explicitly how complex actions (e.g. mathematical calculation) are to

be defined. All example actions in relevant publications are only signal assignments.

PLC-Statechart is formally defined. A mathematical model of PLC-Statecharts is

presented in [18]. This model makes the formal validation and verification of PLC-

Statecharts possible. However, semantics in this model are also not complete. For

instance, semantics of composite states are not explicitly defined. Execution behaviors

(e.g. prioritization rule) of complex actions are also not defined.

Usability Analysis

As a successor of classic Finite State Automata (FSA), the syntax of Statecharts has

been extended. Among others, hierarchical or concurrent substructures can be realized

as composite states. The complexity of a flat structure without hierarchy and the risk of

a state explosion can be significantly reduced. Additionally, events which describe the

interaction with the environment are defined.

Statecharts inherit the advantage of formal analyzability from FSA. Many analysis

methods for Startcharts have been developed on the basis of the formal analysis of

FSA. As a formal language, Statechart is very suitable for the specification of logics

in FB-agents. However, similar to FSA, Statechart is also a visual description method

and not suitable for the implementation in runtime systems. The main restriction is

that the event-driven execution behavior is not compatible with the cyclic processing

environment, which plays a central role in the process automation system.

The variant PLC-Statechart is compatible with the cyclic-processing context according

to the IEC61131-3. In principle, this approach can be applied as one possible imple-

60

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.3 Petri Net

mentation approach for Composed Function Blocks (CFBs). However, semantics of

PLC-Statechart are still to be complemented.

4.3 Petri Net

Petri nets (PN) were published by mathematician Petri in his PhD thesis [76] in the early

1960s. On the basis of this work, many types of PNs have been developed. PN is a very

important description method in computer science. PNs are widely used in concurrent

programming, workflow management, data analysis etc. Their main strength is that they

are very suitable for the description of concurrency, especially in decentralized systems.

Syntax

As shown in Figure 4.3, Petri nets are composed of places, transitions, arcs and

token. Places are drawn as circles, transitions as bars or rectangles, and tokens as

solid circles. Arcs are directed and can connect either a place with a transition, or a

transition with a place.

Tokens can move from one place to another. The maximal number of tokens that

a place can store is called capacity of the place. The number of tokens that pass an

arc every time can also be limited by the so-called weight of the arc. Unless explicitly

defined, the capacity of a state is infinite, and the weight of an arc is one by default.

The distribution of tokens at a certain time is called one marking of the net. The token

distribution from which a Petri net starts to progress is called initial marking.

A Petri Net is ordinary, in case the weight of all arcs is one and all transitions are

trivial, which means every transition has exactly one source place and one target place.

A Petri Net is general, in case the arc weight can be greater than one. Many high-level

PNs have been developed on the basis of general Petri Nets, for instance:

• Colored PN: Tokens are categorized. Tokens of different categories are marked

with different color.

• Timed PN: Arcs of transitions can have a delay, so that the movements of tokens

do not take place immediately. Every token has an own time stamp which indicates

the creation time of the token.

• Hierarchical PN: Places can nest sub-nets.

• Signal Interpreted Petri Nets (SIPNs) advanced ordinary Petri Nets which support

input and output signals, cyclical processing, global execution time and hierarchy.

Every SIPN should have only one initial token. A multiplication of tokens in split

(or simultaneous) sequences is allowed.

Detailed Introductions of the classification of Petri Nets can be found in [77, 78].

61

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.3: Example Petri Net

Semantics

Many theoretical work focus on the mathematical model, the network rules and the

notation of Petri nets. In fact, the graphical visualization of networks is not the basic

idea of Petri Nets. PN can be regarded as a physical theory proposed in the language

of computer science. Many mechanisms are carefully designed according to the “natural

laws”.

For instance, Petri-Nets do not follow any central iteration. There exists neither global

time nor central schedule for the net elements. All transitions are standalone and are

- the same as in the nature world - always ready to react to events immediately. Any

fulfilled transition can fire at any moment without regarding the progress of the whole

net. The global state of a PN is not represented by a single active state, but by the

marking (i.e. token distribution) in the net.

In contrast to Finite State Automata and Statecharts, the state activity (or state mark)

is not “transfered” from one state to another state in a Petri Net. As shown in Figure 4.4,

Petri nets’ transition “consumes” as many tokens from its source places as the weight of

its input arcs, and then “produces” as many tokens in its target places as the weight of

its output arcs. During the consumption and the production of tokens, the total number

of tokens in the PN is not kept constant.

Precise mathematical models and analysis methods have been introduced in different

literature resources. For instance, a formal model is presented in [78]. These theoretical

62

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.3 Petri Net

(a) Beforehand (b) Afterwards

Figure 4.4: Consuption and Creation of Tokens in Petri Nets

studies can support a formal analysis of Petri Nets. Additionally, a Meta-model and a

XML-based interchange format PNML for Petri net tools are specified in [79, 80].

On the basis of the mathematical models, the following properties of a PN can be

formally analyzed:

• Reachability describes whether a marking can be reached from the initial marking.

• Liveness indicates the possibility of a deadlock during the progression of a Petri

net. A net is dead, if no transition can fire. A net is alive when it cannot be dead

for all possible markings.

• Boundedness gives the maximal number of tokens in places. A place is k-bounded,

when it cannot contain more than k token for all markings. A Petri net is k-

bounded, when all its places are k-bounded.

• Reversibility indicates, whether the initial marking of a net can be reached from

any other markings.

These properties can be analyzed with various methods, such as coverability graph [81],

reduction rules [82], finite net unfoldings [83, 84].

Application in Automation

Petri Net (PN) is very suitable for the specification, fine design, formal analysis and

verification of automation functionalities, but less suited for implementation [7]. The

event-driven progression without global scheduling of net elements is not compatible

with the cyclic processing context in existing automation systems. In the practical use,

a procedure modelled by a PN should normally be compiled into another language that

can be executed in the target runtime system.

The variant SIPN can model timed behaviors in automation systems. As an early

approach for describing automation logics, the syntax and semantics of SIPN are still

simple and incomplete. Among others, only simple actions (e.g. variable assignement)

are supported. Mathematical operations are normally not allowed; prioritization rules

for conflict transitions (i.e. outgoing transitions from the same place) are not specified.

63

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

On the basis of Petri Nets, further approaches such as Grafcet (see Section 4.5) and

SFC (see Section 4.4) are developed especially for the industrial automation. Many

designs of Petri Nets (e.g. token mechanism) are inherited by the latter approaches.

Usability Analysis

The main strength of Petri Nets (PN) is the token-driven mechanism which allows a

continuous execution and can appropriately describe concurrent behaviors. However,

the execution principle is not compatible with the cyclic processing context, which is

dominant in process automation. For the implementation of FB-agents, a strict de-

terministic execution of internal logics is required. All internal components should be

sequentially executed according to a fixed order. In this context, the strength of PN

becomes invalidated, whereas the shortcuts will limit their usability.

In principle, the variant SIPN can be applied to model internal logics of FB-agents.

However, it can also not be directly implemented in automation systems without a spe-

cial code generator. Thus, SIPN is not suitable for implementing Composed Function

Blocks (CFB) in FB-agents.

4.4 Sequential Function Chart

Sequential Function Chart (SFC) is a procedure description method specified in the IEC

61131-3 [3] for the PLC programming (see also Section 2.1.2). SFC was developed on

the basis of the work conducted by Levis [85] and standardized in the IEC 61131-3.

SFC is usually regarded as a graphical language. In fact, a textual representation has

also been given in the standard.

4.4.1 Syntax

PLCs were developed to model and replace analog circuit (hardware) in a software

environment. For this historical reason, many PLC languages such as FBD and SFC,

have adopted many working principles of electric circuits. Among others, the electrical

wires are mapped as software signals and connections. SFCs communicate with the

environment via signals. The information exchange between SFC elements (e.g. steps

and actions) is also realized via signals. For instance, the name of an SFC action

(e.g. a1 in Figure 4.5) is to be implemented as a Boolean variable (e.g. a1=FALSE)

in the runtime system. This variable controls the activity of the action similar to an

on-off switch in an electrical circuit. In case the action is to be executed, e.g. x:=5 in

Figure 4.5, the Boolean variable a1 in the runtime is set to TRUE.

64

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

Figure 4.5: Sequential Function Chart (SFC)

As shown in Figure 4.5, SFCs are composed of steps and transitions. Every SFC has

exactly one initial step. The ending of SFCs is not explicitly defined in the standard.

Example SFCs in the standard and in literature have no final steps. At the end of the

chart, the last step jumps back to a previous step. Final steps are allowed in many

commercial tools. For example, SFCs in the DCS SIEMENS PCS7 should end with

precisely one final step; PLCs of SIEMENS apply the syntax of final node which is

borrowed from Statecharts.

Action and Action Block

Steps can perform two general kinds of actions: the Boolean action, which sets or

resets a Boolean variable and the non-Boolean action, which can be implemented in

any IEC 61131-3 language. Non-Boolean actions can be local or global. Local actions

can only be invoked by their corresponding step, whereas global actions are shared and

can be invoked by different steps. Global actions are a useful design for the practical

use. In case the same action is used in different steps, it can be defined as a global

action. In case its logic is changed, the logic of all related steps does not need to be

adapted accordingly.

Every action should be associated to its corresponding step via an action block which

defines the action name and the so-called action qualifier. The latter one defines the

execution behavior of the action. According to the IEC 61131-3 standard, the following

action qualifiers are available:

65

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

• N: non-stored. The action is active as long as the step is active

• R: overriding reset. The action is deactivated.

• S: stored (set). The action is active, even if the step is deactivated.

• L: time limited. The action is active for a certain time.

• D: time delayed. The action will become active at a specific time after the step has

been activated.

• P: pulse. The action is executed once.

• SD: stored and time delayed

• DS delayed and stored

• SL: stored and time limited

• P1: pulse (rising edge). The action is executed once when the state is activated.

• P0: pulse (falling edge). The action is executed once when the state is deacti-

vated.

Transition

All SFC transitions have a direction. The transition arc is normally hidden. It will be

shown, only if the transition targets a previous step.

In contrast to Statecharts, SFC transitions are not allowed to invoke actions. More-

over, triggers and guards of a transition are consolidated into one transition condition

which provides one Boolean evaluation result. When this result is evaluated as TRUE,

the transition can be fired. A transition condition can be a Boolean variable. It can also

be defined in Instruction List (IL), Structured Text (ST), Ladder Diagram (LD) or Function

Block Diagram (FBD).

Complex Structures

SFCs allow complex structures such as alternative path, concurrency and hierarchy.

Alternative path means that a step is followed by more than one successor transition.

Only one of them can fire. Concurrency is realized by simultaneous sequences, which

means a transition can also be followed by more than one simultaneous sequence start-

ing from the same step. Hierarchy is not explicitly defined in the IEC 61131-3. In the

practical use, the following two approaches are often regarded as the de-facto solution

for realizing hierarchical SFCs:

• SFC-action: An action can be realized as an SFC and be invoked by a step of

another SFC. This design is introduced in the IEC 61131-8, which specifies the

implementation guideline for the IEC 61131-3 standard.

66

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

• Macro step: A macro step represents a particular part of an SFC. A macro step

behaves similar to a normal step, but contains an underlying sequence. The con-

tained sequence starts with a step and ends with a step. Macro steps can be

seen as a simplified graphical representation for complex sequences. An SFC

with macro steps can be expanded to an equivalent “flat” SFC, i.e. an SFC with-

out hierarchy. This solution is actually not defined for SFC but for Grafcet (see

Section 4.5). Since some widespread SFC-editors (e.g. CoDeSys) support this

mechanism, it is often regarded as a standard structure of IEC61131/SFC.

.

4.4.2 Semantics

The SFC is informally specified, which means no standard mathematical model is de-

fined in the IEC61131-3. Models in many literature sources (e.g. [86]) are normally

vendor-specific or developer-specific.

The SFC is ambiguously defined and cannot be formally analyzed [87, 88]. The main

reason is that the standard does not mandate a unified solution, but recommends many

alternative and even conflicting solution approaches. After comparing various imple-

mentation of major PLC vendors, [89] has demonstrated that in case one solution ap-

proach is chosen for single semantic aspects (e.g. prioritization rule for transitions), the

SFC implementation can be formally analyzed.

Step and Transition

In similarity to FSA and Statecharts, the source step of a fired SFC transition will be

deactivated, and the target step of the transition will be activated. Every step must have

two standard variables: activity step name.X and time step name.T . The former one will

be set or reset, in case the step is activated or deactivated. The latter one indicates the

time since the step has been activated. It will hold its value when the step is deactivated,

and be reset when the step is activated again.

In case a step is followed by more than one transition, only one of them can fire. The

IEC61131-3 has defined three rules for the prioritization of conflicting transitions:

1. Priority from left to right,

2. Priority must be explicitly defined by user, or

3. User must ensure that only one transition can be satisfied.

67

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Simultaneous Sequences

The semantics of simultaneous sequences are similar to the token multiplication of

Petri Nets. In case a transition is fired, all its successor steps are marked and can be

activated.

The multiplication of step marks may lead to unexpected execution results. The

IEC61131-3 has defined two implausible structures: unsafe sequence and unreachable

sequence. The former one causes uncontrolled mutilation of step marks in the whole

SFC. The latter one can never be executed. Examples of the implausible structures can

be found in the standard and relevant literature and will not be discussed here in details.

The easiest and the most effective way to avoid implausible structure is to forbid jumps

out of a simultaneous sequence or a sequence after an alternative branching. How-

ever, as indicated in [86], some structures cannot be realized, although they are valid.

As an alternative solution, algorithms for the reachability analysis of Petri Nets can be

borrowed to evaluate SFCs.

Scheduling of SFC Elements

There exists no standardized model for the scheduling of SFC elements during the

execution. In general, SFC elements are executed according to the rules of “from top to

bottom” and “from left to right”. Additionally, SFCs are executed according to the Lock-

Step principle [88]. This means that in case a step is activated in a cycle, it cannot be

left (i.e. deactivated) in the same cycle.

Execution models of SFCs have been discussed in different research works. The main

differences of the models are the execution of the following three execution activities:

• Evaluation of transitions

• Update the activity of steps

• Sequential execution of actions

Different arrangement of the listed three execution activities may also lead to different

results. An execution model named deferred transition evaluation and deferred action

(DT-DA model) is introduced in [90]. According to this model, transitions should be eval-

uated prior to the action execution. Fulfilled transitions can only fire when all transitions

are evaluated. Actions can be executed when the activity of all steps is updated. As

introduced in [88], many commercial SFC implementations follow this model. The main

disadvantage of this design is that actions of the initial step cannot be executed, when

an outgoing transition is fulfilled at the beginning of the SFC execution. Discussions and

analysis with more details can be found in [86, 88, 91].

An alternative prioritization rule is the immediate action and immediate transit eval-

uation (IA-IT model) [90]. According to this model, actions should be executed prior

to transitions in every cycle. In case a transition is fulfilled, it must fire immediately.

68

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

The activity of its source step and target step should also be updated immediately. As

analyzed in [90, 92, 93], the IA-IT model can react on inputs (e.g. value change) as

quickly as possible and can avoid unexpected execution results effectively. It ensures,

among others things that actions of the initial step can be executed correctly. The dis-

advantage of this model is that it is not easily implementable in runtime systems that are

cyclic-processing [90]. An execution model for the implementation should be elaborately

defined.

Additionally, the execution order within the three single activities is also differently re-

alized in research works and commercial tools. For instance, the most commercial SFC

tools execute actions from top to bottom. However, in the widespread PLC runtime sys-

tem CoDeSys, actions are executed according to their alphabetical order. Additionally,

every action will be executed twice. This design may lead to different execution results

than the other SFC tools. Detailed analysis and execution examples can be found in

in [88, 91].

4.4.3 Application in Process Automation

SFC is defined as a programming language for PLC and is well-established in the prac-

tical use. It is also suited for further design phases, like specification, rough design,

and simulation [7]. In many DCS projects in the process industry, procedures are speci-

fied, implemented and documented in SFC without using further Procedure Description

Methods (PDMs).

As a standardized PDM in automation, the development and the application of SFC

are supported by various works of international committees and researchers. For exam-

ple, the international organization PLCOpen is in charge of the compatibility certification

of IEC 61131-3 for automation systems. PLCOpen has also specified a XML format for

the information exchange between systems from different vendors.

Due to the native support of existing automation systems, a procedure specified in

SFC can be directly implemented in the existing automation systems without a special

code generator.

4.4.4 Usability Analysis

The SFC is designed according to the software and hardware characteristics of the

existing automation systems. All syntax and semantics are compatible with the cyclic-

processing and signal-oriented execution context.

Due to the native support of existing automation systems, SFC is suitable for design-

ing and implementing various components within FB-agents. It can be applied as a tex-

tual programming language for the implementation of black-boxes (i.e. Atomic Function

69

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.6: Grafcet

Blocks (AFBs). It is also suitable for application as a graphical language for Composed

Function Blocks (CFBs).

4.5 Grafcet

Grafcet is a specification language developed in 1977 for the design of procedures in

industrial controllers. Grafcets are the predecessor of SFC introduced in Secion 4.4 and

can be regarded as high-level Petri Nets.

The name Grafcet was derived from “graph” and “AFCT”. The former part implies that

this Procedure Description Method (PDM) is graphical. The latter part is the acronym

of the Associtiaon Francaise pour la Cyberneticu Economique et Technique, which sup-

ported the development of Grafcet. The Grafcet was firstly published as a French na-

tional standard in 1982, and later as an international standard IEC 60848 [94] in 1988. In

many publications, Grafcet is often translated as Sequential Function Chart in English.

Hence, Grafcets and SFCs are are often regarded as synonymous in many research

works.

An example of Grafcet is given in Figure 4.6. Since the syntax and semantics of

Grafcet are very similar to SFCs, only their main differences will be introduced in the

following lines:

• The Grafcet is a specification language, whereas the SFC is a programming lan-

guage. A sequential procedure can be specified in Grafcet and can be imple-

70

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.5 Grafcet

mented in different ways. An SFC can implement a procedure that can be speci-

fied in Grafcet or other description methods.

• Grafcets are to be executed periodically, but not strictly cyclically. In case a Grafcet

leaves its current step, it reaches a stable state immediately, even if the start step

and the target step are separated through many further steps and transitions. This

mechanism is termed Maximum Progress in [88]. However, SFCs should be cycli-

cally executed and can only move for one step (see Lock-Step in Section 4.4.2).

• A Grafcet may have more than one initial step; an SFC should have only one initial

step.

• Grafcet applies Macro Steps to realize hierarchical nesting. This design is also

utilized to design hierarchical SFCs, although it is not explicitly defined in the

IEC61131-3.

• Grafcet has 7 action control conditions, whereas SFC has 11 possible conditions

(action qualifiers).

• Grafcet-actions are value assignments. The SFC supports more complex actions,

e.g. Function Block Diagramms (FBDs) for mathematical calculations.

• In Grafcet, outgoing transitions of a step must be mutually exclusive, which means

only one transition condition can be fulfilled. However, SFCs allows two further

alternative approaches (cf. Section 4.4).

As an informally defined language for specification, Grafcet has no standardized ex-

ecution model. The formal analysis of Grafcets is not intensively discussed in literature

resources. [95] refers to a formal model of Grafcets. However, the origin and tool sup-

port of the model are not indicated.

Grafcet and SFC can be seen as two different expressions of the same logic in differ-

ent life cycle stages: Grafcet for specification and SFC for programming. In the author’s

opinion, the difference between specification and programming in the context of process

automation is not great enough to make two different description methods strictly nec-

essary. As introduced in Secion 4.4, SFCs are applied to specify procedures in practical

use. Grafcets are actually replaced by SFCs. This option can also be appropriately sup-

ported by the development trend in the technical community. Grafcets were intensively

discussed in the last century, but are rarely seen in publications of the last decade since

the IEC 61131/SFC was published.

Grafcet is only rarely applied in the industry, whereas its successor SFC is well-

established. Hence, Grafcet is not suggested for the design of FB-agents.

71

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.7: Procedural Function Chart(PFC)

4.6 Procedural Function Chart

Procedural Function Chart (PFC) is a specific description method for batch recipes in

the chemical industry. PFC is derived from Grafcet and is standardized in the IEC

61512 [9]. PFC has inherited most of its syntax from Grafct (See Section 4.5). In

the following section, only the main differences of the two description methods will be

introduced.

Syntax

PFCs are composed of elements and transitions. To model different procedure ele-

ments, PFC elements are classified into four types: procedure, unit procedure, opera-

tion and phase. Additionally, another element for the allocation of production equipment

is defined and can be applied in different procedure elements. Furthermore, the syntax

for the synchronization between elements is defined (cf. Figure 4.7).

PFC transition can be implicit or explicit. An implicit transition is permanently TRUE.

As shown in Figure 4.7, the successor step and proceeding step of an implicit transition

are connected directly. An explicit transition is drawn as two short parallel bars and

possesses a transition condition.

PFC has inherited the macro-steps from Grafcet. The single difference is, a PFC

element may only contain lower-level elements. For instance, a unit procedure cannot

contain procedures; an operation cannot contain unit procedures.

72

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.6 Procedural Function Chart

Figure 4.8: State transition diagram for PFC elements according to the IEC 61512 [9]

PFC actions are not explicitly defined in the IEC 61512 standard. In the most commer-

cial tools (e.g. ABB 800xA Batch, Siemens Simatic Batch), PFC elements can assign

variables (e.g. the activity variable of a dosing function in a PLC). Complex actions

(e.g. mathematical calculations) are normally not supported. In case a calculation is

required (e.g. calculate the current material consummation during a batch), it is to be

implemented as a special element in the PFC or outside of the PFC (e.g. as an ANSI C

program).

Semantics

PFC elements are self-ending and self-determinated. This means that an element

can start only if its previous element is finished. Although the operations “heating” and

“mixing” in Figure 4.7 are directly connected, the latter operation should wait until the

first operation is finished.

In case the condition of an explicite transition is fulfilled, the first bar is marked as

fireable. The successor step is asked to break down its execution. Only if this mission

is finished, the second bar and the whole transition can fire.

To prioritize conflicting transitions in alternative sequences, PFC borrows the first pri-

oritization rule from SFC (see Section 4.4). Alternative sequences should be evaluated

from left to right. The firstly fulfilled transition can fire.

The execution of every PFC element is to be controlled by the standard state transition

diagram shown in Figure 4.8. A PFC element can be running, held, aborted, stopped or

complete etc.

73

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Figure 4.9: Example PFC in the documentation of the commercial tool Emerson/DeltaV

Batch

Industrial Application

PFC is an exclusive description method for batch procedures. It simplifies the complex

Grafcet and utilizes many features of SFC. Among others, the complicate and unintu-

itive action control of Grafcet is excluded. Many semantic details (e.g. prioritization of

hierarchical PFCs) are clearly defined.

There is still no standard execution model which is accepted by the researchers and

commercial vendors. The IEC61512/PFC is only partially implemented in commercial

automation systems [7]. For instance, the double lined transition and the synchroniza-

tion of materials is not supported by the most major vendors.

The implementation and graphical visualization of many PFCs in commercial tools are

often more similar to SFC, but less similar to the IEC61512/PFC. Figure 4.9 shows one

example PFC from the PFC document of a major DCS vendor. Due to the SFC-like

syntax, users cannot easily recognize the differences between PFCs and SFCs in their

system.

PFC is the only procedure description method which has explicitly defined the state

machine for controlling the execution of procedure elements. The standard state ma-

chine in 4.8 is also applied in some SFC implementations (see for instance the Ad-

vanced Process Library (APL) of the DCS vendor SIEMENS).

Usability Analysis

Similar to Grafcet, PFC is also defined as a specification method. However, PFC has

simplified and extended the over-complex Grafcet, and has specified many semantic

details in accordance with the programming language SFC. Due to the consideration of

74

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4.7 Summary

Figure 4.10: Development tree of Procedure Description Methods (PDMs) (revised il-

lustration according to Figure 1 in [19])

runtime behaviors, PFC is also suited for the implementation. PFCs can be applied to

specify and implement batch procedures in FB-agents.

However, syntax (e.g. element types) and semantics (e.g. hierarchical execution)

are specifically defined for batch automation. The usability of PFCs will be significantly

limited beyond the batch control area. Among others, a concept for actions should be

defined.

4.7 Summary

Figure 4.10 summarizes the relationship and main differences between the analyzed

Procedure Description Methods (PDMs).

Procedure description methods can be classified into two types: procedure specifi-

cation (or modelling) method and procedure implementation method. The former one

describes procedures generally and abstractly. The latter one is suited for the imple-

mentation of procedures in runtime systems.

Typical procedure specification methods are Finite State Automaton (SA), Statechart

(SC), Statechart (SC), Petri Net (PN), Grafcet and Procedural Function Chart (PFC).

They can be applied to draft and document procedures in FB-agents. For the imple-

mentation in runtime systems, alternative programming languages should be applied.

Procedures in Atomic Function Blocks (AFB) can be implemented in a textual program-

ming language such as Structured Text. Procedures in Composed Function Blocks

(CFB) can be implemented with the two procedure implementation methods: Sequen-

tial Function Chart (SFC) and PLC-Statechart.

75

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

From the viewpoint of practical application, procedure specification and procedure im-

plementation have no restrict dividing line between them. Firstly, execution behaviors

in runtime systems should also rather often be defined in the procedure specification.

For instance, the execution prioritization of hierarchical procedures is an implementa-

tion detail, but should also be clearly defined in the specification (cf. discussions on

hierarchical Statecharts and PFCs). Secondly, implementation methods are often also

suited to specify procedures in practical use. For instance, the programming language

SFC is often applied to specify and document procedures.

There are also no convincing arguments for using different description methods for

specification and implementation. As the compatibility with existing automation systems

is one central requirement on the agent engineering, the two implementation-friendly

approaches Sequential Function Chart and PLC-Statechart are chosen as suitable de-

scription methods for the FB-agent model. Sequential procedures (e.g. start-up proce-

dure for a plant) can be described in SFC, whereas PLC-Statechart is suitable for the

description of state machines.

Additionally, Procedural Function Chart (PFC) is also a suitable approach for FB-

agents. Although PFC is a specification method, it has defined many semantic details

that are important and helpful for the implementation in runtime systems.

Although SFC, PLC-Statechart and PFC have their own strengths and can appropri-

ately describe procedures in different application areas, they can only partially fulfill the

requirements defined at the beginning of this chapter. PFC is specially tailored for batch

control and is only partially supported by commercial tools due to its high complexity. Its

usability in other application areas is limited. PLC-Statechart lacks many design details,

e.g. semantics for composed states. The present form of SFC defined in the IEC 61131-

3 has ambiguous semantics. Some of its design (e.g. action control condition) is still

over-complex. Thus, SFC is also not very suited to be applied as a general approach

for the procedure description in different application areas and engineering phases.

The usability of the FB-agent model can be significantly improved, in case the user

only needs to master one general approach for procedure description. This discussion

will be continued in the next chapter.

76

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General
Procedure Description Method

The introduction in Chapter 4 shows that the existing Procedure Description Methods

(PDM) are only partially suitable as a general approach for describing various proce-

dures in automation agents. In order to improve the intuition and usability of the FB-

agent model presented in Chapter 3, a general procedure description method will be

proposed in this Chapter.

Most automation procedures in process automation are not over-complex. For in-

stance, a typical control procedure consists of 15 steps and 5 actions per step. These

kinds of procedures with no complex structure and no exceptional functions will be

termed Ordinary Procedures in the following sections. Most ordinary procedures in pro-

cess automation can be appropriately described by a general approach without using

special PDM. The engineering workload of users can be significantly reduced. Although

the PDMs evaluated in Chapter 4 have different development backgrounds and different

application areas, their basic structure and topology of PDMs are essentially the same.

The following essential similarities of PDMs make the development of a general PDM

feasible:

• A PDM is composed of states (or steps, elements, places) and transitions between

them. States and transitions are interconnected via arcs. In case a transition fires,

its source state will be deactivated; its target state will be activated.

• A procedure is a software module with individual name space for internal elements

(e.g. state, variable). Procedures should exchange information with their environ-

ments. I/O concept (e.g. signal, event) should be explicitly defined.

• Procedures are reactive, meaning that they can perform actions which are the

response on inputs.

• All description methods should provide solutions for dealing with alternative se-

quences, hierarchy and concurrency. Many design details are application-neutral

and can be generically defined. For instance, Sequential Function Chart has sum-

marized different rules for the prioritization of conflicting transitions. This collection

forms a good guideline for the development of further description methods.

Every PDM has its own strength and can suitably describe procedures in specific

application areas. It is neither meaningful nor feasible to develop a novel approach

77

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

which can replace all existing procedure description methods. However, a general PDM

can serve as a reference model which identifies the most appropriate solution for sin-

gle design details and combines advantages of existing PDMs. Additionally, a general

approach can unify the engineering process, graphical visualization and the implemen-

tation of the ordinary procedures in automation systems.

To ensure the usability of the general procedure description method, the following key

design principles will be regarded in the following sections:

• Completeness. The general PDM should provide complete solutions for dealing

with actions, hierarchy, concurrency and etc.

• Unambigurity. Semantics of the general PDM should be clear and easily un-

derstandable. A unified solution is to be defined for every semantic issue (e.g.

prioritization rule for conflicting transitions).

• Compactness. The general PDM should be designed as compact as possible.

Many design features of the PDMs are grown historically or developed for the

description of application-specific behaviors. Many of them are too complex and

not well-established in the practical use (see for example the action control condi-

tions of Grafcet (Section 4.5) and the data synchronization of Procedure Function

Chart (PFC) (Section 4.6)). A compact procedure description method can appro-

priately support the work of users who have no in-depth knowledge in the areas

of software engineering and computer science.

The need of a general procedure description method was also addressed in a previ-

ous publication [19] of the author. An approach named Sequential State Chart (SSC)

was drafted. As the name implies, SSC is developed on the basis of the programming

language Sequential Function Chart (SFC) and the specification language Statechart

(SC). In the following sections, SSC will be revised and further developed. Many design

decisions will be reasoned more precisely. The engineering requirements on PDM for

FB-agents outlined in Chapter 4 will be of major concern. Additionally, the engineer-

ing requirements on FB-agents outlined in Section 3.1 will be taken into consideration.

Among others, the requirement on white-box engineering will be carefully regarded dur-

ing the SSC design.

It should be noted that the graphical notations of SSCs are only recommendations.

They can be individually tailored for the implementation in different systems.

5.1 Execution Frame

Most PDMs have not explicitly defined the implementation form of procedures in the

runtime system. It is usually assumed that a procedure is encapsulated in an Execution

Frame which isolates procedures elements from the environment. To gain a complete

78

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.1 Execution Frame

Figure 5.1: Execution frame and internal structure

execution model, an execution frame is necessary for the general description method

SSC. The execution frame and the procedure elements build an inseparable module.

Additionally, the execution frame can adequately fulfill the requirement regarding mod-

ularity of internal components within FB-agents. Form the outside, an SSC can be han-

dled as an encapsulated module with its own name space for internal components and

variables. Within the execution frame, the logic can be composed of modular compo-

nents which are linked via signal connections to each other.

As shown in Figure 5.1, every SSC is to be encapsulated as a Composed Function

Block (see Section 3.5). SSCs consist of states and transitions. States can invoke

actions. Transition conditions can be realized as variables (e.g. IN1 for T2) or function

blocks (e.g. T1). All internal components within the execution frame are to be realized

as function blocks.

Every execution frame possesses a standard input EN and two standard outputs

ActualState and terminated. EN controls the activity of the SSC. ActualState shows

the current active state. terminated indicates whether the procedure is finished.

To control the execution of SSCs, the standard state machine shown in Figure 4.8.

is applied. EN can be set to the commandos: STOP , START , PAUSE, HOLD,

ABORT , RESUME or RESET .

Every execution frame has a standard output ActualState indicates the current state.

79

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Aside from the procedure that is composted of states and transitions, continuous func-

tions can also be defined in the execution frame. Continuous logics are termed Post-

processing and will be cyclically executed at the end of every execution iteration without

regarding the progress of the SSC procedure. Post-processing can be used to perform

continuous calculations in parallel to the discrete procedure. For instance, the post-

processing for a batch recipe procedure can be utilized to calculate the current material

consummation.

Similar to the FB-agent frame introduced in Section 3.5, a deterministic execution

is also required in the execution frame of SSC. The execution of states, transitions,

transition conditions, actions and post-processing are to be controlled by an internal

Execution List. Details of the execution list will be introduced in Section 5.8. In the

following sections, single elements of the SSC model will be introduced.

5.2 State

The progress of a procedure can be represented in different ways. PDMs introduced in

Chapter 4 can be classified into two groups:

• State-based Procedure: Every state represents one possible overall state of the

whole procedure. Only one state can be active at a time. Finite State Automata

and Statecharts are typical state-based PDMs.

• Sequence-based Procedure: The progress of these procedures is represented

by a marking (see Section 4.3), i.e. the distribution of State Marks (or tokens,

activity marks) in the procedure. States (or steps, places) with a mark are active.

A procedure may have more than one mark. The distribution of marks can suitably

describe the progression of concurrent sequences within a procedure. Petri nets,

Grafcet, Sequential Function Chart (SFC) and Procedure Function Chart (PFC)

are sequence-based.

Multiple state marks (or token, activity mark) may cause practical problems. Firstly, an

uncontrolled distribution or multiplication of state marks may cause implausible struc-

tures (e.g. “unreachable sequence” and “unsafe sequence” introduced in Section 4.4).

Complex checking algorithms should be carefully defined. Secondly, depending on dif-

ferent evaluation rules of individual implementations, different execution results for the

same procedure could be a possible cause. Examples of unexpected execution results

due to read/write conflicts can be found in [88, 89, 91]. The discussion on concurrency

will be continued in Section 5.7.

SSC is designed as a state-based description method. In every SSC, exactly one

state can be active. To describe sequential procedures or complex state machines,

nesting structure can be applied (compare hierarchy in Section 5.4 and concurrency

in Section 5.7). The progress of the whole procedure is represented through all active

80

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.3 Transition

states on every hierarchical level, whereas every single SSC should have only one state

mark and one active state.

The state-based design ensures, that SSC can appropriately describe both, state-

based procedures and sequence-based procedures. Execution risks during the multi-

plication of marks can be effectively avoided. Complex mechanisms for the control of

mark multiplication are not needed, while the SSC model can be kept compact.

In similarity to SFCs and Statecharts, every SSC should have exactly one initial state.

Statecharts can have any number of final states. Although the IEC 61131-3 standard

has not explicitly defined the end of SFCs, most commercial SFC implementations al-

low multiple final steps. According to these two description methods, every SSC can

have more than one final state which has no outgoing transitions. The example SSC

in Figure 5.1 has exactly one final state and one initial state which is marked with a

double-lined border.

SSCs can be terminable or non-terminable. An SSC is terminable, when it has at

least one final state. Terminable SSCs are typically applied to describe sequential pro-

cedures, e.g. a production procedure. A non-terminable SSC has no final states and

can be used to describe state machines that always keep active. Every SSC frame

has a standard output variable terminated which shows the progress of the execution.

terminated of a non-terminable SSC will always be FALSE.

5.3 Transition

In general, a transition connects two states and possesses a transition condition. In the

most PDMs regarded in Chapter 4, transitions are normally logical operations with no

complex structure. The single exception is Statecharts, in which a transition is typically

composed of guards, triggers and conditions. This design was adopted from computer

science. Although more complex behaviors can be realized, it is less necessary in

process automation.

The SSC utilizes the transition concept of the well-established SFC. All prerequisites

for the state change (i.e. firing) are to be defined in a transition condition. Every tran-

sition has a Boolean variable RESULT . All prerequisites can be combined via logical

operations such as OR and AND. A transition is fireable, if its RESULT is set to TRUE.

Every transition should have a transition condition. The condition can be a constant

(e.g. the TRUE transition after the initial state in Figure 5.1) or a variable of the cov-

ering SSC frame (e.g. IN1 for T2 in Figure 5.1). Transition conditions can also be

realized as function blocks (e.g. the composed function block connected with T1 in Fig-

ure 5.1). Simple conditions can be realized by atomic function blocks (e.g. “AND” or

“>”). Complex condition can be defined as Composed Function Blocks. Function block

conditions will be termed FB-condition. Every FB-condition should possess a Boolean

81

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

(a) Unified model for the ar-

rangement and evaluation of

transitions in runtime systems

(b) Possible representation

for the rule: from left to right

(c) Possible Representation

for explicit Priority

Figure 5.2: Prioritization of SSC Transitions (Priority in all there subfigures: T1 > T2 >

T3

output, which is to be connected to the RESULT of the corresponding transition. The

same transition condition can be connected to different transitions.

Similar to the most PDMs, two SSC states can be connected to each other via an

intermediate transition. Additionally, two SSC states can be connected via an implicit

transition which is represented as a directed line. This design is borrowed from the

Procedure Function Chart (PFC) and can be applied as a simplified graphical represen-

tation for a permanent TRUE transition (e.g. the outgoing transition of the initial state

in Figure 5.1).

5.4 Alternative Sequence

Alternative sequences are supported by all regarded Procedure Description Methods

(PDM). The prioritization rule of alternative transitions is an important implementation

detail, but disregarded in many PDMs (e.g. Finite State Automaton, Statecharts and

Petri Nets).

In general, only one of the alternative outgoing transitions of the same state can fire.

Different prioritization rules applied in existing PDMs and well-established automation

tools are summarized as follows:

• Priority from left to right (as in SFC and PFC). The first fulfilled transition will be

fired.

• Priority is to be explicitly defined by the user (as in SFC, MATLAB/Stateflow, PLC-

Statecharts)

• It is a task of the user to ensure that all the transition conditions are mutually

exclusive. (as in SFC and GRAFCET).

82

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.5 Action

In the author’s opinion, the PDM implementation should be designed in such a way

that it can prevent unexpected execution results. In case the conditions of alternative

transitions are not mutually exclusive although they should be, it is not meaningful to

fire all fulfilled alternative transitions. Thus, the third rule is not supported in the SSC

model.

The first prioritization rule is suitable for describing sequential procedures, which is

typically processed from top to bottom. To ensure the intuition of the graphical visual-

ization of procedures, the priority of conflicting transitions does not need to be explicitly

shown. However, it is suited for state-based procedures (e.g. complex state machines),

in which states are not arranged in a vertical column. For instance, to realize the state

machine shown in Figure 4.2, transitions should be allowed to leave their source steps

not only from the bottom but from all sides. In this case, the second rule is better suited.

The first and the second rule can be regarded as two engineering possibilities that are

allowed in the graphical editor. A unified execution model for the implementation in run-

time systems which can fulfill both rules can be defined. Figure 5.2a shows a reference

model for the implementation of SSC in runtime systems. All outgoing transitions of a

state are arranged under the step. In case a state is active, its outgoing transitions will

be sequentially evaluated. The first fulfilled transition will be fired. Further transitions

will not be evaluated.

This unified execution model realizes unambiguous semantics of the SSC model.

Graphical visualization and engineering rules for graphical editors for SSCs are not

stimulated. Figure 5.2b show a possible visualization for realizing the first prioritization

rule. Figure 5.2c depicts a possible graphical visualization for the second prioritization

rule. This design is borrowed from the widespread tool MATLAB/Stateflow and suitable

for state-based procedures (e.g. a state machine).

The execution priority is not defined as an attribute of SSC transitions. Instead, it is

represented by the arrangement of the transitions in the execution model. The question

of which prioritization rule is to be applied will be defined in the graphical editor for SSC

engineering. According to the chosen rule, transitions can be automatically arranged

under their source steps.

5.5 Action

SSC states can be action-less and represent empty states. They should also be able to

invoke actions, so that the SSC and the FB-agent can keep reactive to changes in the

environment.

83

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Action Types

Many Procedure Description Methods (PDM) only support value assignment or simple

logical operations as actions. Some PDMs (e.g. SFC, Grafcet) support complex actions,

for instance, for mathematical calculations and for the invocation of sub-sequences. As

a general approach, SSC is designed to support different action types. An SSC action

can be defined in one of the following forms:

• Value assignment to a variable of the execution frame (e.g. “OUT=0;” in Fig-

ure 5.1).

• Value assignment to one input of an function block within the execution frame, e.g.

“./FB.IN1=30”. The notation “./” indicates, that the target function block is directly

encapsulated in the execution frame of the SSC. The function block name and the

variable name are separated by a point.

• Call a local Function Block. For instance, the CALL FBD1 in Figure 5.1 invokes

function block diagram FBD1 as an action.

The first form is supported by most PDMs analyzed in Chapter 4. The second one

is an extension of the first form. The third form is borrowed from some commercial

PLCs in which complex actions (e.g. SFC-action) are supported. All function blocks

that are to be called as actions are termed FB-actions. This approach realizes a flexible

definition of actions. FB-actions may be atomic (e.g. multiplication block) or composed

(e.g. function block diagram).

Every state may possess any number of actions. FB-actions may be shared by dif-

ferent states in the same SSC. In other words, different SSC states can call the same

FB-action. This design is inherited from SFC and can lower the engineering workload for

reusable actions. To keep SSCs modular and encapsulated, FB-actions are not allowed

to be shared by different SSCs. For instance, a sub-SSC cannot invoke FB-actions of

the main SSC.

Action Control Condition

The PDMs compared in Chapter 4 have different solutions for action controls, ranging

from simple and nondistinctive action control (as in FSAs and some variants of PNs)

to complex 11 types for different execution behaviors (as in IEC61131/SFCs). Non-

distinctive action control limits the functionality of the PDM, whereas too many variants

of action control increase the complexity and reduce intuition and usability. The 11

different action control variants in SFC for example are helpful for programmers, but

appear to be superfluous and not intuitive enough for users with no in-depth knowledge

of programming or software engineering.

Similar to Statecharts, the execution of a SSC state is divided into three phases:

entry, do and exit. As shown in Figure 5.1, every action should be assigned to an

84

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.5 Action

execution phase. For the practical use, entry-actions are the most applied approach.

Do-actions are typically applied to invoke FB-actions (e.g. subordinated SSC) cyclically.

Exit-actions are typically used to reset variables and reset subordinated SSCs.

Further control conditions (e.g. saved and timed behaviors) will not be defined as an

inherent part of the SSC model. The related time behaviors can be realized as function

blocks. For instance, in case an action should set the variable V AR1 to TRUE with a

delay of 5 sec. after the activation of a state, a function block DELAY can be defined

as a do-action. Its Boolean output can be connected with V AR1. The function block will

be cyclically executed. It checks the time duration in every iteration and sets V AR1, in

case the delay time of 5 sec. is reached.

Action Execution

Actions of the same state will be sequentially executed. In case an FB-action is called,

it will be executed for one iteration. This means that its inputs will be updated, the

internal logic will be iterated once and the outputs will be updated at the end. The

execution is theoretically timeless.

Actions with duration (e.g. “execution of a sub-procedure from beginning to end”) will

be termed activities which are not directly supported by the SSC model. An activity can

be defined outside of the execution frame of the SSC which should invoke the activity.

The SSC can activate the activity (e.g. via signal assignment). During the execution

of the activity, the SSC is not blocked. At the end of the activity, a confirmation signal

can be sent back to the SSC. Section 5.6 will show an example of the execution of an

external procedure which has unpredictable duration.

The second possibility of realizing activities is to approximate their continuous execu-

tion with a cyclical execution. An activity can be defined as a function block and invoked

as a normal FB-action. For instance, a sub-SSC can be encapsulated as a function

block (see also Section 5.6) which can be cyclically invoked as an FB-action. In case

the sub-procedure reaches its final state, the activity is finished.

Action in Transition

In most PDMs, actions can only be invoked in states (or steps, places). Only Moore

machines and Statecharts allow also actions in transitions.

To keep the model easy and simple, SSC transitions are not allowed to invoke actions.

In case actions should be performed together with a transition, they are to be defined

as exit-actions of the source state or entry-actions of the target state.

85

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Figure 5.3: Signal-oriented control of subordinated SSCs

5.6 Hierarchy

Hierarchy is an important structure that is supported by most Procedure Description

Methods (PDM) analyzed in Chapter 4. As introduced in Section 4.1 and Section 4.2,

complex procedures without hierarchical abstraction quickly become unintuitive and

confusing. A PDM without hierarchy (e.g. Finate State Charts) will be eliminated and

replaced by other PDMs (e.g. Statecharts and Petri Nets). As a result, hierarchical

structures are supported by Sequential State Charts (SSC).

Hierarchical procedures can be realized by simple procedures (i.e. procedures with-

out hierarchy). As shown in Figure 5.3, the substructure of STATE1 in SSC1 can be

realized as a standalone SSC with the identity SSC2. The activity of the sub-SSC can

be controlled via signals. SSC1 possesses an output SSC2 which is connected with

the activity control EN of SSC2. The assignment of SSC2 can be realized via “variable

assignment” actions in STATE1.

This design is suited to realize simple hierarchical procedures. However, an SSC

quickly becomes unintuitive and confusing, in case many states have sub-procedures.

To close this gap, Sub-SSCs can be realized as FB-actions. As shown in Figure 5.1,

SSCs on the lower hierarchy level can be defined as FB-actions of the main-SSC. Sub-

SSCs can also encapsulate further sub-SSCs. This design is not novel but inherited

from the SFC-block of SFCs and the Macro Action of Grafcets.

A prioritization rule for hierarchical SSCs should be defined. Figure 5.4 shows a

general procedure with a nested sub-procedure. The markers show the active states in

the both procedures. It is to be defined which transition can fire, when both T1 and T11

are fulfilled. In general, the following three general prioritization rules can be applied for

the implementation in runtime systems:

86

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.6 Hierarchy

Figure 5.4: Prioritization issue of hierarchical procedures: which transition may fire,

when T1 and T11 are both fulfilled?

• The main procedure has higher priority. This means that T1 may fire, T11 does

not. The current state of the main-procedure will be left and deactivated. The

sub-procedure will be interrupted and deactivated. It holds its current state and

continues with the execution, in case it is activated again.

• The main procedure has higher priority. In contrast to the first prioritization rule,

the sub-procedure should be reset after an interruption and start from its initial

state when it is activated again.

• The sub-procedure has higher priority. Its execution cannot be interrupted. This

means that T1 in Figure 5.3 may fire, only if the sub-procedure is terminated,

which means that it has reached its final state.

This semantic issue is solved differently in the existing procedure description methods:

Procedure Function Charts and Grafcets allow a unified rule; Statecharts allow various

possible rules; other methods (e.g. Sequential Function Chart) have not defined priori-

tization rules explicitly. Similar to the prioritization of conflicting transitions discussed in

Section 5.4, all these rules for hierarchical structure are important for the practical use.

None of them can be abandoned.

To keep the semantics clear and easily understandable, SSC applies the first priori-

tization rule as the unified approach. Runtime behaviors of the other two rules can be

realized via exit-actions. As shown in Figure 5.5a, a subordinate SSC is invoked as an

action in state1. In case the transition T1 fires, the execution of subSSC will be inter-

rupted, but not be reset. In case the sub-SSC is to be reset (see Figure 5.5b), state1

generates a RESET command and calls the subSSC for the last time. To realize the

third behavior, as shown in Figure 5.5c, the Boolean variable terminated of the sub-

SSC is to be checked in the outgoing transition. State1 can only be left, in case its

subordinate SSC reaches its final step.

87

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

(a) Unified semantics: sub-

SSC can be interrupted by

T1.

(b) The subSSC can be in-

terrupted by T1. subSSC

must be reset and starts

from its initial step when it is

activated again.

(c) The main SSC must wait

until subSSC is terminated.

Figure 5.5: Prioritization of SSCs on different hierarchy levels

5.7 Concurrency

Concurrency is supported by nearly all existing Procedure Description Methods (PDM).

The single exception is the early approach Finite State Automaton. As analyzed in

Section 4.3, 4.4 and 5.2, the main execution risk of concurrency is the uncontrollable

multiplication of tokens which control the activity of state. To ensure a safe and deter-

ministic execution, concurrent behaviors of Sequential State Charts (SSC) should be

meticulously designed.

Theoretically, active states in concurrent or simultaneous sequences should be exe-

cuted at the same time. However, a real concurrency can only be expected in a multi-

core/multi-threading environment, which is not available in the most automation systems

(e.g. PLC). Although concurrent sequences are allowed in the graphical editor and on

the graphical visualization, concurrent states are executed sequentially, in fact, accord-

ing to an implicit and system-specific order. As discussed in [88], different prioritization

rules of concurrent sequences may lead to different execution results, and thus may

complicate the formal analysis of procedures.

It is defined as a concept decision, that the SSC model does not support concurrent

sequences directly. Every transition should have exactly one target state. Concurrent

sequences should be encapsulated as separate SSC (cf. Figure 5.6).

Similar to hierarchical SSCs (cf. Figure 5.3), concurrent SSCs can be controlled by

the main-SSC via signal connections. As shown in Figure 5.6a, the activity of the two

sub-SSCs is set and reset in the main-SSC.

88

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.7 Concurrency

(a) Concurrent sub-SSCs can be controlled by the main-SSC via signal connections

(b) Concurrent sub-SSCs can be encapsulated in the main-SSC and invoked as actions in the

same state

Figure 5.6: Concurrent sequences in SSC

Alternatively, sub-SSCs can also be encapsulated in the execution frame of their main-

SSC and be invoked as actions. The execution priority of SSC-actions is represented

by the position of CALL-actions in the state. As shown in Figure 5.6b, two concurrent

SSCs are invoked in a state of the main-SSC.

89

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

In contrast to the existing procedure description methods, the prioritization of concur-

rent sequences is clearly and explicitly defined. In the signal-based solution shown in

Figure 5.6a, the two sub-SSCs are encapsulated as function blocks. Similar to tradi-

tional function blocks, their execution order in the runtime system is explicitly defined.

In the call-based solution shown in Figure 5.6b, actions of STATE1 are sequentially

executed according to the rule “from top to bottom”. Thus, subSSC1 is executed prior to

subSSC2 in every cycle.

5.8 Procedure Progress

The progress of procedures should be approximated by the cyclic execution in runtime

systems. In an ideal case, a procedure progresses according to the Maximum Progress

rule, which means that the procedure progresses as far as possible in a cycle until

it reaches a stable state. However, as discussed in Section 4.4.2 and Section 4.5,

Maximum Progress has the disadvantage that the system workload can vary greatly

and is difficult to predict. Additionally, it is hard to avoid endless loops, if jumps are

allowed in a procedure. As a result, SSC borrows the Lock-Step rule from Sequential

Function Charts. Every SSC state lasts at least one cycle. In case a state is activated in

one cycle, it cannot be deactivated in the same cycle, regardless of whether its outgoing

transitions are fireable.

As introduced in Section 5.1, a deterministic execution within the execution frame of

SSCs is required. The execution of the execution frame and its underlying components

is to be controlled by an internal task list intask, which performs the following measures

that are sequentially executed in every iteration:

1. Switch incoming signal connections and update signal inputs.

2. Execute internal logics:

a) Switch initial connections, which are connections starting from an signal input

(compare Figure 3.3).

b) Evaluate the SSC: As only one state can be active and transitions are ar-

ranged under their source state, only the current state will be executed in this

stage.

i. In case the current state is executed for the first time (e.g. initial state),

its entry-actions will be sequentially executed.

ii. Determine outgoing transitions of the active state and evaluate their tran-

sition conditions according to a predefined prioritization rule (compare

Section 5.3)

90

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.8 Procedure Progress

iii. In case no transition fires, do-actions of the current state will be sequen-

tially executed. Otherwise, the current state will be deactivated; its Exit-

actions will be executed.

iv. In case a transition fires, the succeeding state of the fired transition will be

activated. Its Entry-action will be executed. Its Do-action will be executed

once. All actions will be sequentially executed.

c) Post-processing: Execute continuous functions (compare, Section 5.1)

3. Switch final connections, which are connections ending with a signal output (com-

pare Figure 3.3).

The model for progressing SSCs is shown in the form of UPPAAL automaton in Fig-

ure 5.7b. SSC x will be activated, in case it receives a Call signal. All states possess

the same UPPAAL model in Figure 5.7a. Arcs on the left and right side of the model

represent the connections between different states.

The execution model for progressing SSCs combines advantages of the immediate

action and immediate transit evaluation (IA-IT model) and deferred transition evaluation

and deferred action (DT-DA model) introduced in Section 4.4.2. All SSC states follow

the execution order: entry-actions, do-actions, transitions and exit-actions. The end of

an execution cycle takes place between the execution of do-actions and the execution

of transitions. With this design, actions of the initial state can be correctly executed and

will not be skipped in the first cycle. Transitions are evaluated prior to the actions in

further cycles. “Transitions prior to actions” allows SSCs to respond to inputs as quickly

as possible and can avoid unexpected results which can be caused for instance by

read-write-conflict in a “actions prior to transitions” model.

Additionally, the execution model allows a fast progress of SSCs. Every state lasts

at least one execution cycle and last exactly one cycle when its outgoing transitions

are fulfilled. No execution cycle will be lost during a state change. In case a state is

deactivated in one cycle, its exit-actions can be immediately executed. The entry- and

do-actions can also be executed in the same cycle.

Furthermore, the representation of the procedure progress at the end of every cycle is

correct and unambiguous. In the idle time between two cycles (compare Figure 2.5), an

SSC is always in the progressing state “do-actions of the active state are executed”. This

clear and defined execution state is not ensured in many existing procedure description

methods. For example, PLC-statecharts [74] and Sequential Function Charts in the

commercial tool CoDeSys end the cycle after exit-actions. In case a state (or SFC step)

is left, it is still marked as the “current state” in the idle time, although it should actually

be inactive. Its next state, which is the real current state, is still not started. Due to

this confusing state representation in idle time, some literature sources differentiate the

two terms “current state” and “ready state”. However, the state representation of SSCs

is always clearly and correctly defined. There are no SSC states, which are “inactive

but still running” or “active but still not started”. The correct state representation is

91

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

(a) Runtime Model of an SSC state (Hexagon represents the macro step in Figure 5.7b)

(b) Macro step: runtime Model of the Execution Frame for SSC x

Figure 5.7: UPPAAL Automation for SSC

especially meaningful for SSCs, since SSCs and FB-agents could be executed in a

non-cyclic execution context (compare Section 3.8).

5.9 Summary

Sequential State Charts (SSC) are mainly based on Seqential State Charts (SFC) and

Statecharts (SC) and clarify many design details which are ambiguous in the both pre-

92

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5.9 Summary

decessors. The main differences and the relationships among SSC, SFC and Statechart

can be summarized as follows:

SSC ≈ SFC − simultaneous branching + simplified action control + en-

capsulated execution frame + unambiguous semantics

and

SSC ≈ Statechart − event − action in transition − complex hierarchy +

implementation mechanism for actions + encapsulated execution frame +

unambiguous semantics

Sequential State Charts are suited to describe sequence-based procedures and state-

based procedures in the FB-agent model introduced in Chapter 3. SSCs provide com-

plete and unified solutions for different design details (e.g. hierarchy, prioritization rule).

The SSC semantics are clearly defined. The main features and design decisions for

SSC can be summarized as follows:

• All procedure elements are encapsulated in an SSC execution frame which is

characterized by its signal interfaces, enclosed name space, deterministic execu-

tion and white-box construction.

• Only one state can be active within an SSC. Multiple tokens (or activity marks) are

not allowed. Hierarchical procedures and concurrent sequences are to be defined

as individual SSCs.

• Every SSC has one initial state and any number of final states.

• Unified semantics are defined for action execution, transition prioritization, hier-

archy and concurrency. Mathematical models according to UPAAL have been

defined which can support a formal analysis of SSC implementations.

• Actions are timeless. Activities (i.e. action with duration) should be approximated

by cyclic execution of actions or external function blocks.

• To ensure a quick response, transitions are executed prior to states and actions in

every cycle.

• In case a state is left, its succeeding state will be activated in the same cycle. The

activity of all states is correctly set or reset. The state representation of the whole

SSC in the idle time between two cycles is clearly defined.

The general procedure description method SSC combines advantages of existing

PDMs. All concept decisions on syntax and semantics are made on the basis of syn-

thesis of existing PDMs. No novel procedure element has been developed. To gain

a complete and meaningful execution model, many design details (e.g. prioritization

rules) have been clearly specified. This model can also be regarded as a reference

model which serves as a guideline for the implementation of different procedures in

existing runtime systems.

93

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

The concept of SSC was published in a previous publication [19] of the author. Details

about the execution model and a prototype were published as an internal Technological

Paper of the Chair of Process Control Engineering in Aachen in 2013. On the basis

of these works, a reference model for procedure description in the context of Industry

4.0 was published in a further publication of the Chair [96]. In contrast to the SSC

introduced in the present work, this reference model is tailored for the Industry 4.0

context and involves less design details for the implementation in runtime systems.

94

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

This chapter presents a prototypical implementation of the FB-agent model (Chapter 3)

and the Sequential State Chart (SSC, Chapter 5). In order to keep the implementa-

tion vendor- and platform-neutral, the development environment provided by ACPLT-

technologies is applied during the modelling and implementation phases. After an in-

troduction of ACPLT technologies in Section 6.1, a detailed design of the FB-agent and

SSC will be introduced in Section 6.2 and Section 6.3 respectively.

6.1 ACPLT Technologies

ACPLT1 Technology is the umbrella term for reference models and software implemen-

tations developed at the Chair of Process Control Engineering at the RWTH Aachen Uni-

versity in Germany. ACPLT technology targets application areas within the field of pro-

cess control engineering and is designed and implemented in a vendor- and platform-

independent manner. Models, concepts and implementations of ACPLT technologies

have already been applied in different industrial projects and standardizations.

6.1.1 Object Management System: ACPLT/OV

ACPLT/OV1[97] is an object-management system. As shown in Figure 6.1, OV includes

the following components: a language for defining object-oriented class models (OVM),

an object-oriented application programming interface (API) for ANSI C (libov), and a

platform-independent runtime system (OV server). An OV server can be regarded as

a standalone component (cf. Section 2.2.3) which is responsible for memory manage-

ment, task control, object management etc. The server supports dynamic loadable

class libraries, meta-objects and meta-classes, as well as persistent storage.

In comparison with classic automation runtime systems (e.g. the runtime according

to the IEC61131-3), ACPLT/OV provides several novel and distinctive features:

Complete meta-model available on the runtime system: In traditional automation

runtime systems according to the IEC 61131-3, the machine code running on the target

1AaChener ProcessLeitTechnik: The German expression of Aachen Process Control Engineering
1Objekt Verwaltung: German expression for object management.

95

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

Figure 6.1: ACPLT/OV

hardware (e.g. a PLC) is not self-descriptive. This means that meta-information about

the loaded instances is not available on the runtime system. Information about instance

type, behavior and connections among instances cannot be explored from the outside.

In ACPLT/OV, instances, instance models and their meta-models are all present in the

form of objects on the runtime system. The dissection of objects into the three types is

a semantic grouping. However, viewed from the OV system, it makes no difference with

regard to the management of those objects. Instance models, meta-models and meta-

meta models are treated equally in OV. This design simplifies the maintenance tasks

and engineering tasks. The development of adaptive systems and self-X technologies

can also be well supported.

Integrated Engineering and Execution: Classical automation runtime systems fol-

low the engineering cycle: edit-compile-load-execute. Control algorithms are engi-

neered in graphical editors of an engineering system (typically a standalone PC-station)

and can be complied into machine codes and loaded onto the execution hardware (e.g.

the automation controller in Figure 2.1). In case the code is to be modified, the exe-

cution of the runtime system should be interrupted. In OV servers, control algorithms

are represented as objects. Instead of compiling and loading machine codes into the

runtime system, users implement the control algorithms by instantiating and parameter-

izing objects. Function blocks, signal connections, states, transitions and actions can

be directly defined in the form of objects in the runtime system. One effect of using AC-

PLT/OV is that there is no distinction between the engineering system and the execution

system of the control algorithms. Objects in the runtime system can be flexibly modified,

even during the running operation. The access to OV servers can be controlled. Only

authorized users or systems can explore and manipulate objects on an OV server.

Online model exploration and manipulation via ACPLT/KS ACPLT/OV supports

the communication protocol ACPLT/KS [98] which allows - similar to OPC technol-

96

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6.1 ACPLT Technologies

ogy [30] - a platform-neutral communication among different systems. Data and meta-

information of objects in an OV server can be explored and edited through local or

remote KS clients. This design ensures great flexibility in performing engineering, oper-

ation and monitoring tasks.

Online reconfiguration via model transformation: One central advantage of having

instances and their meta-models on the runtime system is the possibility of performing

automatic reconfiguration. In order to adapt an existing control algorithm to a new sit-

uation (e.g. a new version, or a certain execution situation), its initial situation and the

target situation can be clearly described via a model of objects. Model transformation

rules can be formally defined. and performed by active objects (e.g. engineering agent).

The transformation can be carried out offline or online.

The development of ACPLT/OV and ACPLT/KS is supported and accompanied by dif-

ferent research works and publications at the Chair of Process Control Engineering. So

far, ACPLT/KS clients have been developed in C++, Tcl, JavaScript and VB. The usabil-

ity and stability of OV and KS have been proved in different academical and industrial

projects.

6.1.2 Basic Libraries

Related libraries for FB-agent and Sequential State Chart (SSC) are shown in Fig-

ure 6.2.

The fundament of the OV environment is the OV library which defines basic classes

(e.g. object, domain and variable) and basic associations (e.g. inheritance, contain-

ment). OV doesnt support multiple inheritances. This is indirectly realized through the

association embedment. To combine attributes and behaviors of different classes, one

object may embed objects of different classes. One example is depicted in Figure 6.4.

The FB library specifies meta-models for function blocks, execution tasks and signal

connections. According to the IEC 61131-3 [3], a function block can only be executed

when they are assigned to a task. In the FB library, functionBlock is directly derived

from task. Every function block can then be executed as a task. functionBlock is

abstract, which means that it is only a derived class (e.g. ADD, AND, valveControl

and etc.)

Task can be applied to realize the cyclic execution context introduced in Section 2.2.4.

Tasks can be arranged under a main task (e.g. the root task in Figure 2.6) via the

association taskList and build a task tree. The association parent of tasklist is termed

task parent, whereas the association child is called task child or subtask.

Signal connections are realized as instantiable objects. Every connection instance

is linked with the source function block and the target function block via two separate

associations.

97

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

Figure 6.2: Class libraries in the ACPLT/OV environment (simplified)

functionChart realizes the Composed Function Blocks (CFB) presented in Section 3.8.

functionChart is derived from functionBlock, and allows an aggregation of the internal

algorithms with function blocks. Every functionChart is encapsulated and possesses

a local name space for underlying variables and function blocks. The execution of a

functionChart is dissected into three phases:

• pre-processing will be executed at the beginning of the execution cycle.

• intask

• post-processing will be executed at the end of the execution cycle.

Every function block within a functionChart should be assigned to an execution phase.

Most function blocks are to be sequentially executed in the instask phase.

Another fundamental library in this context is the KS library [98] which realizes data

exchange between OV objects. Elementary communication functions are encapsulated

in an Application Programming Interface (API) which can be utilized in further libraries.

KS exceeds the scope of this thesis and is not shown in Figure 6.2.

The KS API is, for instance, applied in the Message System Library which realizes a

message oriented communication. This library is generically defined. Message sender

and receivers can be represented as any OV objects. This library is applied to realize

98

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6.2 FB-agent Library

the agent-to-agent communication specified in Section 3.4. Messages are realized as

instances of the class message. Every Standalone Component (cf. Figure 2.4) pos-

sesses a Messages Delivery Module (MDM). It delivers messages from the sender to

the local or remote receivers. In case an agent is the receiver, the message object is

linked via the association containment under its message input (i.e. an instance of the

class msgInput in Figure 6.2).

The introduced libraries form a development basis. On this base, further libraries

have been developed in different works for different application areas such as diagnos-

tics [99], product transport [100], Human Machine Interface (HMI) [101] and others.

6.2 FB-agent Library

The FB-agent library implements the FB-agent model (cf. Chapter 3) in the ACPLT/OV

environment. The class diagram of the FB-agent library is shown in Figure 6.2. Model

elements and the construction of an FB-agent will be introduced in the following para-

graphs.

Model Elements

As introduced in Section 3.5, an FB-agent is encapsulated in an Execution Frame

which controls the execution of all internal components according to the model spec-

ified in Figure 3.9. In the FB-agent library, no specific class is defined for the execu-

tion frame. This can be realized as a standard Composed Function Block of the class

functionChart.

All internal logics of agents should be function blocks. Service interfaces specified

in Section 3.6 are defined as instantiable sub-classes derived from functionBlock:

msgInput for message inputs; msgInbox for message inboxes; msgOutput for message

outputs; and samplingInterface for input interfaces.

In contrast to a normal functionChart, the unique service interface and the service

inboxes of an FB-agent must be executed at the beginning of every iteration, i.e. in the

post-processing phase introduced in Section 6.1.2.

Every input interface samplingInterface reads the current value of a variable in the

network. It has an output V ALUE of the OV data type ANY which consists of a time

stamp, the status of the type unsigned integer and a value of any data type. The

data format of the last variable is void by default and can be dynamically determined.

The state shows the quality of the value. In general, a value may have the quality:

NOT SUPPORTED, UNKNOWN , BAD, QUESTIONABLE or GOOD.

A message inbox msgInbox processes messages of a certain category (e.g. invalid),

though it may also process messages for a specific service.. The prioritization rule,

99

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

capacity and overflow measure (cf. Section 3.6.1) are defined as three parameters of

the msgInbox class. Different processing rules of incoming messages can be defined

according to different parameterizations, e.g. “First-In-First-Out”.

As introduced in Section 3.6, a service inbox acts as the representative object of a

service. The identity of a serviceInbox instance should be set to the service name.

Every serviceInbox has a STRING variable which holds the textual description of the

service. The class serviceInbox is derived from the msgInbox. In contrast to a com-

mon message inbox, a service inbox holds the description the service and manages all

operations arranged under this service.

As introduced in Section 3.6, a function block or a set of function blocks within an

FB-agent can be registered as an operation. Every registered operation has an exclu-

sive representative instance of the operation. Every operation should be linked via the

association registeredOperation to a covering service (i.e. a service inbox). The identity

of an operation should be set to the name of the operation it represents.

To read ad and write the XML-based messages (compare Section 3.3), an XML parser

named MiniXML [102] was chosen in a student work. MiniXML is a small and free library

developed based on ANSI C language. It allows a simple and quick processing of XML

format without large non-standard libraries. In another Bachlor thesis, the message

format introduced in Section 3.3 was specified for FB-agents and implemented in the

OV environment with help of a MiniXML parser.

Instance Model

The class diagram in Figure 6.2 cannot suitably describe engineering rules and con-

strains of the FB-agent model. In order to provide a guideline for the construction of a

concrete FB-agent model in runtime systems, a so-called Instance Model is defined in

Figure 6.3.

The instance model is not described in a formal language. It applies UML-like nota-

tions which were developed in an internal research work at the Chair of Process Con-

trol Engineering. This approach was first applied for the description of a visualization

model [103]. A theoretical research on a formal description method will be followed by

an ongoing dissertation at the Chair of Process Control Engineering. Key elements of

the instance model will be introduced in the following paragraph.

Every rectangle in the model represents an object instance. The instance identity and

the class should be underlined and separated by a colon. In case the instance identity

is kept blank, it can be freely defined. Otherwise, it is fixedly defined and should not be

changed. Abstract classes (with italic text) can also be applied as placeholders of their

sub-classes. For instance, the abstract class functionBlock in Figure 6.3 indicates that

an instance of any instantiable sub-class of functionBlock (e.g. ADD) can be put on

this place.

100

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6.2 FB-agent Library

Figure 6.3: Standard Instance Model of an FB-agent

The arrangement of instances is represented as a tree structure. Objects are con-

nected via associations (e.g. contaiment) to each other. The hierarchical level of in-

stances is indicated by their indent. The number next to the association shows the

allowed number of instances. A star ∗ indicates that any number of instances is al-

lowed.

Figure 6.3 shows a typical FB-agent which is realized as an instance of functionChart.

It can encapsulate multiple variables, function blocks and service interfaces. However,

every agent can possess only one message input. The identity of the message input is

standardly defined as msgIN . The identity of further objects can be flexibly defined.

The instance list of serviceInbox represents the list of registered services within an

agent. Every serviceInbox can possess more than one registered operation.

In case a message is sent to the agent, a message instance will be created and

arranged under the unique message input msgIN . After a formal checking (cf. Sec-

tion 3.6), it will be forwarded immediately to specific message inboxes or service in-

101

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

boxes. During the forwarding, the message instance will not be deleted and recreated.

Instead, it will only be “relinked” which means that its parent of the containment associ-

ation is redefined.

The elements in Figure 6.3 should be deterministically executed according to the order

specified in Section 3.8.

6.3 SSC Library

The SSC library implements the Sequential State Chart (SSC) presented in Chapter 5.

6.3.1 Class Diagram

As shown in Figure 6.2, all SSC elements are directly or indirectly derived from the class

functionBlock of the FB library. This means that all SSC elements are encapsulated as

function blocks. Their attributes can be declared as inputs and outputs that can be read

or written via signal connections. Since functionBlock is derived from task, every SSC

element can be regarded as a sub-task and can be directly linked to a task tree. This

design simplifies the development of the execution model of SSC.

Every SSC represents a procedural Composed Function Block (CFB) and is to be

encapsulated as a functionChart. Every SSC contains an sscHeader which is the

central unit for the overall control of the procedure that is to be described. All steps and

transitions of an SSC are to be managed by the sscHeader of the SSC (cf. Section 6.3.2

for more detail).

State and transitions are defined as two classes. The initial state and final states

are not defined as special classes. Every state has two standard Boolean variables

isInit and isF inal which are set to FALSE by default. isInit of the initial state will

be set to TRUE, whereas isF inal of final states (i.e. states with no outgoing tran-

sition) should be FALSE. Every step is linked to its incoming transitions via the as-

sociation previousTransition, and linked to its outgoing transitions via the association

succeedingTransition.

Actions and transition conditions have no exclusive class. They are to be realized as

ordinary function bocks (e.g. AND, OR, ADD, Function Block Diagrams etc.)

Action block is defined as an abstract class actionBlock which has three instan-

tiable subclasses: setSscV ariable for the assignment of a variable to the covering SSC;

setFbV ariable assigns a variable to a function block within the SSC; callF bAction in-

vokes an FB-action (compare Section 5.5). An FB-action (i.e. function block action) can

be invoked by different callF bAction blocks.

102

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6.3 SSC Library

Figure 6.4: Instance Model of a Sequential State Chart (SSC)

6.3.2 Instance Model

Figure 6.4 shows the general instance model of SSC. Every SSC execution frame (i.e.

functionChart) contains any number of variables and function blocks and precisely one

sscHeader. In other words, every functionchart can only represent one SSC. However,

a function chart is allowed to contain further function charts whose internal logic is

also an SSC. For instance, an SSC which is encapsulated as a function chart can be

arranged under the doman “action” (cf. Figure 6.6) under an sscHeader.

States and transitions are arranged under the sscHeader. Every transition must have

exactly one previous state and exactly one succeeding state. Every sscHeader should

contain at least one state which represents the initial state. Every SSC state may contain

any number of action blocks.

functionBlock and actionBlock are abstract and cannot be instantiated. Their place

(object with italic text in Figure 6.4) is to be taken by instances of their subclasses.

For instance, actionBlock in the figure indicates that setSscV ariable, setFbV ariable or

callF bAction can be instantiated here.

Every sscHeader contains two standard domains (i.e. instance container), namely

actions and transConditions. These two domains realize the two special regions for

FB-actions and transition conditions in Figure 5.1. Function blocks in transConditions

103

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

Figure 6.5: General Task Tree for an Sequential State Charts (SSC)

are to be regarded as transition conditions. Function blocks in the actions region are

FB-actions and should have no parent task. These two domains are linked via the

association embedment to the sscHeader. In contrast to containment, embedded objects

are fixed. They can neither be renamed nor deleted.

6.3.3 Task Model

The execution order of SSC elements is not identical to their arrangement order. The

instances in Figure 6.4 should be arranged via the tasklist association according to the

so-called SSC task model depicted in Figure 6.6.

SSC Exectuion

functionChart and sscHeader possess an embedded task named intask which sched-

ules the execution of child tasks of a function chart or SSC. This task is explicitly de-

fined, so that the outputs and functionCharts and sscHeaders can be updated after

the sequential execution of all child tasks (compare the execution order described in

Section 5.8).

As shown in Figure 5.2a, transitions are to be arranged as child tasks under their

source states. Thus, only states are directly linked to the intask of an SSC. As in-

troduced in Section 5.8, the state change should be performed in the same execution

cycle. In case a state is left, the next state should be activated in the same cycle. The

simplest solution is to arrange all steps as child tasks under sscHeader according to a

104

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6.3 SSC Library

sequential and fixed order. The disadvantage of this design is that it can lead to loss of

one execution cycle during the SSC progress in runtime systems. For instance, in case

an SSC jump from state S5 back to a previous state S2 and S5 is arranged after S2 in

the task tree, S5 can only be activated in the second cycle.

To overcome this potential gab, SSC-states are dynamically linked to sscHeader. As

shown in Figure 6.5, an sscHeader should only have one state instance as child task.

Before an SSC starts to progress, its initial state is linked to the sscHeader by default.

Further states within the same SSC have no parent task. During the progress of an SSC,

only the current active state will be linked to the sscHeader. When a transition fires, it

unlinks the active state from the sscHeader and links the next state to sscHeader.

A further advantage of the dynamical task list is that the computing resource can

be saved. In case all states are statically arranged under the intask, their activity will

be evaluated in every execution cycle, although only one of them can be active. In a

dynamical task list, the intask of sscHeader has always only one child task and does

not need to ask other deactivated states whether they should be executed.

sscHeader checks in every execution iteration, whether it has a child task. If not, it

finds the intial state (i.e. the state with isInit = TRUE) and links it via the association

tasklist to the intask of sscHeader automatically. This function ensures that always one

state is active within an SSC. In case an SSC is initialized or reset, this function will also

be performed.

Task Tree of a State

Figure 6.6 shows the task model of an SSC state. This model realizes the immedi-

ate action and immediate transit evaluation semantics (i.e. IA-IT model) discussed in

Section 5.8.

Every step has four fixed subtasks: entry, transitions, do, exit. These tasks are integral

and linked via the embedment to their covering step. According to the assigned value of

the attribute qualifier, action blocks are to be arranged under the entry- do- or exit-task.

All outgoing transitions of the step should be arranged under the subtask transition.

The tree structure shown in Figure 6.6 can be automatically generated according

to the instance model of Figure 6.4. In the current SSC prototype in the ACPLT/OV

environment, a set assessor is defined for the qualifier of the class actionBlock. In

case the qualifier is set to TRUE, the action block will be automatically linked via a

tasklist association to the entry-action of the covering state. No engineering rules are

to be developed in the engineering clients (compare Section 6.1.1).

The task tree is sequentially executed from top to bottom in every iteration. The entry-

task and the do-task are active initially. In case the step is activated, these two tasks

and their underling action blocks will be executed once. At the end of the first execution,

the entry-task will be deactivated, the do-task will be kept active, the transition-task

105

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

Figure 6.6: Standard Task Tree of an SSC State

will be activated. In the next iteration, transitions will be sequentially evaluated. In

case no transition is firable, the do-task and its underlying actions will be executed. In

case a transition fires, the do-task will not be executed and be deactivated immediately.

Instead, the exit-task will be activated, executed once, and deactivated afterwards.

When a transition fires, it deactivates the do-task, activates the exit-task, deactivates

its source state (i.e. the current state), activates its target state and links it to the intask

of the covering sscHeader as the new child task (compare Figure 6.5).

The class transition has no attribute specifying its priority (cf. Figure 5.2). All tran-

sitions are arranged under the transition-task and to be sequentially executed. The

arrangement of transitions shall be defined according to the prioritization rule chosen in

the engineering client for SSC (compare Secion 5.4).

106

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

This chapter introduces the test results of FB-agents and Sequential State Charts (SSC)

in a project where a multi-product and multi-function metallurgical furnace was auto-

mated. After an introduction of the automation concept in Section 7.1 and Section 7.2,

solutions for process control and engineering will be introduced in Section 7.3 and Sec-

tion 7.4.

7.1 Research Plant: Submerged Arc Furnace (SAF)

The FB-agent model (cf. Chapter 3) and the Sequential State Chart (SSC) (cf. Chapte 5)

are tested during the automation of a new pilot furnace which was constructed at the

Institute of Process Metallurgy and Metal Recycling (IME) of RWTH Aachen University.

The new furnace with the patent name Modular Electric Reducing Furnace (SAF) is built

and donated by the company SMS Group GmbH. The chair of process control engineer-

ing is currently in charge of the design and implementation of automation systems.

As shown in Figure 7.1, the SAF is equipped with one fixed mounted bottom elec-

trode and three vertical movable electrodes that are positioned on top of the furnace

vessel. Every of the top electrodes is carried by a hydraulic column. During a melting

process, electric arcs are generated between the top electrodes and the melting mate-

rial. The length of the electric arcs can be controlled through raising and lowering the

top electrodes. The electrical energy and the melting temperature can be controlled

correspondently. In contrast to a classic electric arc furnace, the SAF allows multiple

melting modes: AC or DC power supply; with one, two or three top electrodes; with or

without bottom electrode; with or without electric arcs.

The SAF in Aachen is applied for academic research, and is smaller than a industry-

standard production furnace. It has a useful volume of 2m3, and can melt up to 10 tons of

material in every charge. However, the complexity of functionality and the engineering

cost (hardware and software) are even higher than they are for an industry-standard

production furnace. As a research furnace, SAF applies more field devices as usual.

For instance, in order to gain the complete temperature distribution in the vessel, more

sensors are installed. In total, 50 actors, over 150 sensors, and about 2000 signals must

be engineered. The SAF project places high demands on the automation engineering:

107

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

3D-Design of the MERF (SMS-SIEMAG)

ground
electrode

three electrodes

hydraulic
electrode-
carrying arms

Figure 7.1: Research Plant: Submerged Arc Furnace (SAF)

Firstly, various (including some innovative) production processes will be tested or

newly developed together with industrial partners. A flexible combination of operational

resources (e.g. single devices, device groups) should be allowed.

Secondly, the process control strategy is also part of the research works on the SAF

plant. To test a new method for measuring the vessel temperature, temperature sensors

could be added or removed. To optimize the cooling system, the combination of pumps

and control valves could be modified. The process control should be implemented in a

manner that allows flexible manipulation and extension.

Furthermore, research works on the SAF are mostly driven by PhD students who typ-

ically work at the university over a time period of five years. Thus, the knowledge of the

plant, processes and automation should be transferred from one generation to the next

generation every five years. Due to frequent extensions of the plant and the associated

processes, a smooth knowledge transfer should not only be supported by well-written

documents, but also by intuitive implementations. Automation solutions should be eas-

ily understandable and manageable in order that new employees can easily master the

implementations and engineer new functions.

7.2 Process Automation System

Figure 7.2 gives an overview of the applied automation system for the SAF. All field de-

vices and hardware on the control level are catalog products from commercial vendors.

108

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.2 Process Automation System

Figure 7.2: Automation System for the SAF at the IME Institute in Aachen

Automation software for the control level are implemented in the runtime environment

provided by the ACPLT technology introduced in Secion 6.1.

The central device for process control is an Industrial PC (IPC) with a Windows-

Embedded operating system. All peripheries like power supply for the electrodes, water

cooling system, exhaust handling, chargers and manual control panels are connected

with the IPC either directly via PROFIBUS or indirectly via remote I/Os. Furthermore, a

desktop PC is connected with the IPC via Ethernet. It acts as the operation-station and

is in charge of observation and manual control, archiving and protocoling. Functional

Safety is not realized in the system shown in Figure 7.2. All safety relevant functions

or Safety Integrity Levels (SILs) are realized by special hardware on the field level. A

second IPC is in the planning stages to increase the availability of process control and

to provide more computing capacity for future extensions of the process control strategy.

Process control logics are installed on an ACPLT/OV server on the IPC. A further OV

server for Human Machine Interface is set up on the operation station. Additionally, a

simulation server is set up on the IPC. On this server, simulation models for I/O commu-

109

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.3: Process Control Agents for the SAF plant

nication, field devices and chosen melting processes are installed. They can be applied

to test process control logics, before they are coupled to the physical plant.

Every OV server is a Standalone Component according to the unified runtime model

introduced in Section 2.2.3. The communication between the OV servers is realized by

ACPLT/KS (cf. Section 6.1).

The SAF project is a long-term project that is set to last for many years. Automa-

tion software such as process control and HMI have been implemented and virtually

commissioned via the plant simulation. The recooling system and the control of the

electrode columns have already been tested with the hardware. Further components of

the furnace are being commissioned in progressive stages.

7.3 Process Control

Figure 7.3 shows the process control structure implemented for the SAF plant. This

structure follows the model of operational resources and operational measures intro-

duced in Section 2.2.5. Modular FB-agents compose a Multi Agent System: Opera-

tional Resource Agents control single field devices (e.g. valve, pumpe) or asset groups

(e.g. pump station, heat exchanger). Operational Measure Agents are in charge of

production procedures, engineering activities, diagnostic measures etc.

The process control of the SAF plant mainly uses two advantages of the FB-agents:

flexible service-oriented cooperation and white-box engineering. Concrete use cases

will be introduced in the following sections.

7.3.1 Service Oriented Interaction

In conventional process control systems, signals are applied as the operational re-

sources for users. To perform operational measures, users should master all imple-

110

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.3 Process Control

mentation details. In the agent-oriented system for the SAF plant, process control func-

tionalities are encapsulated in single agents and provided as operations and services

to the outside (cf. introductions in Section 3.2). Both the inter-agent interaction and

the interaction between human users and agents are organized in a service-oriented

manner.

Operational Measure Agents provide different services according to their individual

responsibility such as “Production Recipe Execution” or “plant start-up”. Operational

Resource Agents provide the service “Process Control”. All agents provide two ser-

vices: “exploration” and “diagnostic”. The former one explores meta information, avail-

able services and operations of an agent. The latter one diagnoses the execution status

and explores diagnostic information (e.g. the current setpoint) of an agent.

Operations are agent-specifically defined. For instance, the movement of the three

top electrodes are controlled by three “electrode column control agents” which provide

the operations of “RAISE”, “HOLD” and “LOWER”; an agent for a hydraulic pump with

variable delivery capacity has the operations “QUICK”, “SLOW” and “STOP” which are

arranged (or grouped) under the “Process Control” service. The “diagnostic” service

of a pump control agent has two operations: “get Key Performance Integrators” and

“get error status”. The “explore” service has two general underlying operations: “list

registered services” and “list registered operations under a service”.

Operations abstract implementation details, whereas services group and abstract op-

erations. In case the user wants to raise an electrode column, this execution objective

can be described in form of a service request message. The electrode column agent

can interpret the message and activate the operation “RAISE”. Implementation details,

such as the steps that are to be followed, control signals that are to be set and check

back signals that are to be observed are concealed behind the service-oriented interac-

tion and are not to be mastered by the service requester (i.e. the user).

The “exploration” and “diagnostic” services can be provided to different requesters

at the same time. A service provider is not allocated by its requesters. However, the

“process control” service of an agent can only be provided to one requester. The arcs in

Figure 7.3 show the cooperation relationship between agents in the context of process

control. The target agent of an arc provides the “process control” service to the source

agent which acts as the service requester. A service provider is dynamically allocated

by its service provider and can only be released by it. Process control requests from

further requesters will be rejected. Nevertheless, a special authority is reserved for the

operator so that a manual access is always possible. Their cooperation relationship

between agents can be fixedly defined or dynamically constructed. A lower level in the

control hierarchy corresponds with a more rigid and fixed coupling between the agents.

Operational Resource Agents for single devices are rigidly connected with physical

devices in the field via signal connections. Single control agents are normally controlled

by the same group control agents. For instance, the allocation relationship between the

111

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

“heat exchanger control agent” and its four underlying agents for ventilator control is

ridig and will not be changed.

The cooperation relationship between group control agents is fixed in most cases,

but can also be dynamically changed in some cases. For instance, three closed-loop-

control agents can allocate the three “electrode column control agents” and control the

length of the electric arcs separately. The electrode column agents can also be allocated

by a “moeller control agent” which control the raising and lowering of the three top

electrodes in a synchronized manner.

All Operational Measure Agents are loosely coupled. They assign operational re-

sources dynamically and release them when the operational measure is finished.

The modular encapsulation of agents and the dynamical cooperation between them

allow a flexible modification and extension of the process control strategy. Agents can be

modularly added or removed with a minimized influence on the existing implementation.

For instance, the three electrode column agents were controlled manually by operators

or automatically by close-loop control agents. The “moeller control” agent was newly

added. It invokes the existing process control service provided by the three agents via

dynamically generated messages. The service providers can recognize the sender of

incoming messages and avoid simultaneous allocation automatically. Thus, the existing

implementation and cooperation relationships do not need to be adapted. In traditional

process control systems, complex allocation algorithms should be defined in this case.

With the modular and flexible extendable structure realized by FB-agents, the process

control engineering could be started, while the mechanical engineering of the SAF plant

is still not finished. A service or operation can be registered and invoked, before the un-

derlying implementation is completely defined. For instance, the “RAISE”, “HOLD” and

“LOWER” operations of the electrode columns were firstly defined and used for the de-

sign and test of the superordinate control algorithms, before the number of underling

hydraulic valves was set to be two. A further example is the recooling system. Its inter-

action with further plant segments is organized in a service-oriented manner. Although

its structure was redesigned and new pumps and valves were added, its services and

operations were not changed. The hydraulic system, electrode column control and in-

terlock algorithms should not be tested again. Along with the progression of the SAF

project, the process control strategy is continually extended and optimized. Among oth-

ers, the number of field devices has been doubled untill 2013. Experience has shown

that the implemented process control can be adapted with minimal reengineering work.

The present process control concept focuses mainly on service orientation and flex-

ible engineering during the engineering phase of the SAF plant. The action scope of

autonomy is deliberately kept small. On the basis of the implemented agent-oriented

structure, advanced autonomous algorithms can be added. For instance, knowledge

bases can be developed which recognize the situation of the environment in abnormal

states and lead the plant to a safe state autonomously. Agents with self-x functions

112

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.3 Process Control

can be developed that can, for instance, perform partial stroke tests for on/off valves

autonomously.

7.3.2 White-Box Engineering

The white-box engineering realized by the FB-agent model allows users to register and

deregister services and operations. Internal logics of FB-agents can also be defined,

manipulated and extended by users. Continuous functions can be defined as Func-

tion Block Diagrams (FBD). Sequential procedures (e.g. control sequences) and state-

based procedures (e.g. state machines) can be described in Sequential State Charts

(SSC) (cf. Chapter 5).

(a) Occupancy State Machine (b) Operating State Machine

(c) Working State Machine (d) Error State Machine

Figure 7.4: Sequential State Charts (SSC) for the Status Representation of Single Con-

trol Agents.

As shown in Figure 7.4, every Operational resource Agent (ORA) has four standard

SSCs for the representation of occupancy state, operating state, working state and

error state. Operational measure Agents (OMA) also have three standard SSCs for

representing the occupancy state, error state and the life-cycle phase (cf. Figure 7.5).

All SSCs can be tailored for individual agents.

113

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.5: Standard state machines for operational measure agents

Figure 7.6 shows the control logic within an electrode column. Three SSCs are de-

fined for raising, holding and lowering the electrode column. Each of the three SSCs

has four standard states: idle, stationary, start-up and shutdown. Each of the last two

states has a sub-procedure which is connected via signal connections to the main-SSC.

Another SSC that is set up according to Figure 7.4b controls the transition between the

three operations and a predefined basic state. In case an operation which is different to

the current operation is requested, the current one will be shut down and lead to its idle

state. The new operations will be started up afterwards.

The three main SSCs are registered as operations: “RAISE”, “HOLD” and “LOWER”.

Operations are arranged under the service “Process Control”. Every operation has a

representative object of the class operation introduced in Section 6.2. Service requests

on the process control service will be saved as signal variables (e.g. operation, parame-

ter) of the service inbox “Process Control” (cf. Figure 3.5). These variables can be read

via signal connections of the SSCs shown in Figure 7.6.

The introduction in this section has indicated that the general procedure description

method Sequential State Chart (SSC) can appropriately describe various procedures for

process control and state representation. No application-specific description methods

are needed.

.

114

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Figure 7.6: Control Logic of an Electrode Column

7.4 Knowledge-based Engineering

Many control logics (e.g. valve control) of the SAF plant are repetitive. A fully manual

engineering is time-consuming and error-prone. To accumulate the engineering pro-

cess, engineering agents are applied. They serve as autonomous assistants for the

user and can initiate implementations or check the completeness of existing implemen-

tations. The engineering knowledge of the agents are formally described according to

the theoretical work ACPLT/RE1 [66], which allows a rule-based and knowledge-based

engineering of automation functionalies.

Section 7.4.1 presents the concept of agent-oriented engineering. Specific use cases

will be introduced in Section 7.4.2. A prototype was implemented in a diploma thesis

1RE: acronym of Regelbasiertes Engineering (German Expression for Rule-based Engineering.)

115

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.7: Eingeering Agent

and successfully applied during the SAF engineering. Some results have already been

introduced in a previous publication of the author [104].

7.4.1 Concept

Figure 7.7 demonstrates the basic idea of the knowledge-based engineering. An en-

gineering agent encapsulates procedures and fact knowledge for specific engineering

objectives. It explores planning data of the plant and can provide the following two types

of engineering services:

• Initialization of process control implementation in runtime systems,

• Evaluation of existing implementations

Planning data is defined in a Piping and Instrumentation Diagram (P&ID). It models

the structure of the plant, connections between the instruments and signals that are to

be exchanged between the process control level and field level. The planning data is

present in electronic form and can be explored by engineering agents. The P&ID is

defined in the CAE tool Comos and can be transformed into a CAEX model according

to the standard IEC 62424 [105]. This model is present in the ACPLT/OV environment

and can be explored by engineering agents.

The knowledge base of agents contains fact knowledge which is formulated as en-

gineering rules in the standard form “IF premise, THAN conclusion”. A premise is a

pattern for the exploration in the planning data. In case the pattern (e.g. a pump-valve

module) is detected, its corresponding conclusion (e.g. “generate interlock logics”) will

be performed. Engineering rules can be project-specific or project-neutral. Neutral rules

can be applied in different projects.

116

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Every agent encapsulates at least one Engineering Procedure which controls the pro-

gression of an engineering process. The procedure invokes engineering rules and per-

forms actions such as “initialize an OV server for the simulation”, “load defined libraries

onto the server” etc.

In the first prototype of the engineering agents, all engineering logics were programmed

by a script language Tcl [106]. Script languages are not standard automation languages.

Many solutions should be specially developed, among others, the communication inter-

face to the runtime system, interfaces for operation and observation, solutions for error

diagnosis etc. Additionally, users have to master an application-specific language with

which they are not familiar. Experience in the SAF project shows that the automation

engineers need at least two weeks of training before becoming familiar with the pro-

gramming.

As an alternative to the textual script language Tcl, ACPLT/RE has been applied. In

ACPLT/RE, engineering rules are formally described in the native automation language

Function Block Diagram according to the IEC 61131-3 (cf. Section 2.2.2). ACPLT/RE

provides a function block library for elementary engineering functions such as “create

object”, “Link Object”, “Set Variable” and “Get Variable”. Engineering rules can be ag-

gregated by using these function blocks. Most automation engineers of the SAF project

are automation engineers, mechanical engineers or chemical engineers. The function

block technology is an essential part of their academic study. During the SAF engineer-

ing, they only need to learn about the function blocks of the engineering library and can

begin with the engineering work with no special training on the programming language.

The white-box engineering realized by function blocks allows engineers to master and

flexibly extend engineering rules.

7.4.2 Use Cases

Figure 7.8 depicts the engineering agents applied for the SAF project. Every single

agent is responsible for a specific engineering work and provides engineering services

such as “Initialization of Single Control Level” and “Analyze the plausibility of the exist-

ing I/O configuration”. The achievement of specific engineering objectives is ensured

by the knowledge base encapsulated in individual agents. Specific use cases of the

engineering agents will be introduced in the following paragraphs.

Engineering of I/O Configuration

Signals that are to be exchanged via field bus should be converted. Figure 7.9 shows

the default Function Block Diagram (FBD) for processing a temperature signal. The data

sent from the field bus is a real number between 0 and 100. It should be mapped to the

range [0◦C, 1500◦C], which is defined in the signal list. Additionally, a function block for

signal monitoring is to be instantiated. It monitors up to four thresholds and generates

117

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.8: Agents for the initialization of automation applications of the SAF plant

Figure 7.9: FBD to be generated for the conversion and the monitoring of a temperature

signal (revised figure based on Figure 7 in [104]

four monitoring signals accordingly: very high (HH), high (H), low (L) and very low

(LL). Similar FBDs are to be applied for every single analog input, analog output, digital

input and digital output on the process control server.

An engineering agent for the service “Initialization of I/O configuration” is implemented.

It instantiates the desired function blocks, creates signal connections and parameterizes

the function blocks according to the entries (e.g. signal range, thresholds, hysteresis,

warning text etc.) in the signal list.

All engineering activities are controlled by an engineering procedure shown in Fig-

ure 7.10. The procedure is described in Sequential State Chart (SSC). Every state re-

alizes an engineering activity and calls an engineering rule. Every rule is implemented

in form of a Function Block Diagram which consists of function blocks for the exploration

of planning data and the configuration of function blocks etc.

The initial step of the Sequential State Chart (SSC) performs necessary configurations

of the engineering rules through the assignment of parameters, such as the location of

planning data. In a second step, the rule for generating the plant hierarchy in Figure 7.11

is invoked. Five hierarchical levels are automatically initialized: plant, instrument Com-

118

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Figure 7.10: SSC and FB-actions for I/O configuration.

plex, plant unit, plant segement and technical unit. In the next four steps, engineering

rules for different signal types are sequentially executed. For instance, Rule 11 creates

and configures a copy of the FBD in Figure 7.9 for every analog input signal detected in

the planning data.

The initialized logic can be manually changed in the engineering phase. For instance,

parameters of the function blocks can be modified. A similar agent is implemented for

the service “Check of I/O configuration”. In contrast to the initialization agent, the latter

agent does not generate the function blocks but only checks their existence, necessary

connections and the plausibility of their parameters. It is, for example, only plausible, in

case all monitoring thresholds are within the given measurement range, and follow the

rule of HH > H > L > LL.

119

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.11: Automatically generated object structures (Screenshots from the engineer-

ing client iFBSpro @LTSoft

Engineering of Single Control Level

The SAF plant is equipped with many standard field devices such as pumps and

on/off valves. Their corresponding single control agents (cf. Section 7.3) on the process

control server are automatically generated by an engineering agent. Only the signal

connections between the agents and the field devices, as well as specific interlock logics

should be individually defined by the user.

The engineering agent for the process control initialization creates a single control

agent for every actuator and configures its connections with I/O signals (e.g. set point,

check back signals) which are generated by the aforementioned agent for I/O configu-

ration.

A similar agent is defined which can check the plausibility of the existing single con-

trol level. For instance, it can check whether a manually engineered agent is correctly

connected to the field device.

Engineering of Human Machine Interface (HMI):

The HMI uses many standard visualization elements, e.g. for monitoring sensor sig-

nals. An engineering agent for HMI is defined which can generate the standard ele-

ments and initiate their configuration.

As shown in Figure 7.12, every temperature signal has an exclusive visualization. The

HMI engineering agent can generate the visualization element, set the signal name and

120

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Figure 7.12: Visualisation of sensor value observation: automatically initialized and

manually placed

the physical unit, link the element with the measuring signal form the I/O level, and ini-

tiate a solid line for indicating the mounting position of the sensor on the SAF vessel.

Additionally, every signal has an exclusive face plate which is displayed by clicking on

the signal. This face plate shows measurement range and monitoring thresholds of the

signal and can also be automatically created by the HMI agent. All signal visualiza-

tion, face plates and lines are initiated by the agent and then precisely positioned by

automation engineers.

A similar checking agent is defined which can check whether all sensor signals are

visualized and whether the HMI configuration is plausible.

Engineering of Plant Simulation:

In order to test the process control logic and to train operators, a simulation model for

the SAF plant is applied. I/O signals, field devices and melting processes are simulated.

Every actor and sensor has an exclusive representative in the simulation. Simulation

models for the field devices and processes were developed in MATLAB/Simulink in a

diploma thesis. These models are compiled in ANSI C code and loaded to the simulation

server (cf. Figure 7.2 and Figure 7.7). Figure 7.11 shows the object structure which

is generated by the engineering agent. Initially, the agent generates the same plant

121

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7 Case Study

Figure 7.13: Procedure for Overall Engineering

hierarchy that takes effect in the process control hierarchy. It instantiates simulation

models for field devices and then configures the communication between the simulation

server and the process control server.

Aside from the agent for the simulation initialization, an agent for checking manually

extended implementation is applied. The agent can check whether every single de-

vice has an exclusive simulation element and whether the communication between the

simulation and the process control logic works properly.

Engineering of Automation System:

Agents for the previous four use cases are project-neutral and can be reused in fur-

ther projects. A project-specific agent was developed which can initialize the whole

automation system and control the aforementioned four agents.

Figure 7.13 shows the engineering procedure within this superordinate agent. This

procedure is implemented as a Sequential Sate Chart (SSC). At the beginning of the

procedure, a function block is invoked as an action which creates a server for process

control (cf. Figure 7.2). It takes a while until the storage space is reserved and the

server is started. After a waiting time of 10sec., the second state will be activated. In this

state, a message output is activated which creates and delivers a service request to the

aforementioned engineering agent for I/O configuration. Further services for the initial-

ization of single control level, HMI and plant simulation will be requested sequentially in

122

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

the following states. Additionally, states can be defined for project-specific engineering

activities. For instance, the group control level (cf. Figure 7.3) can be generated in

an SSC state. Simulation models for special devices (e.g. power supply) and process

models (e.g. thermodynamic model for a melting process) can be loaded at the end of

the procedure.

7.4.3 Application Effects

The reference model FB-agent forms a design guideline for engineering agents. Engi-

neering activities are modularly encapsulated and registered as services in individual

agents. The engineering knowledge base is describted in Function Block Diagrams

(FBDs) according to ACPLT/RE. Engineering procedures are described in Sequential

State Charts (SSC). Both the FBD and the SSC realize a graphical representation and

modular encapsulation of engineering logic. As the FBD and the SSC can be directly

implemented in existing automation systems, special communication interfaces or APIs

are not required.

In this context, the same execution frame, service communication and description

methods that are applied for process control agents can be utilized. As the automation

engineers of the SAF plant only need to master a unified design pattern for different

application areas, the engineering workload can be reduced.

In traditional engineering processes, the process control strategy can only be imple-

mented when the planning data will not be altered anymore. The engineering cost for a

plant reconstruction is usually high. By using engineering agents, however, the process

automation engineering of the SAF plant could be started in parallel with the mechanical

engineering. The process control strategy can be quickly implemented in the runtime

system and tested via a plant simulation. Implausibility and incompleteness in the plan-

ning data and the implementation in the runtime system can be automatically detected.

The correctness and the completeness of a manually engineered implementation can

be automatically tested by agents. All engineering rules and engineering procedures

can be flexibly modified and extended by users.

123

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

8 Conclusions and Outlook

8 Conclusions and Outlook

The present dissertation discusses engineering aspects of process automation agents.

A reference model named FB-agent was defined which combines the advantages of

function block technology, service orientation and agent orientation. The FB-agent

model serves as a standard design pattern for the development of agents in different

application areas (e.g. process control, engineering, model management, archiving and

etc.)

In order to realize a flexible agent-agent or agent-human cooperation, internal logics

of FB-agents are abstracted by means of service orientation. Elementary automation

functions within an agent are to be registered as operations which represent the elemen-

tary functional ability of the agent. Operations are grouped and abstracted as services

which can be explored and invoked from the outside. Services represent the execution

objectives that can be achieved by agents. To perform an automation task, the user

specifies the expected execution objective in form of a service request message. The

service providing agent can interpret the service request and achieve the objective au-

tonomously by using its local knowledge base and by cooperating with further agents.

The cooperation relationship between agents can be fixedly defined or dynamically built

at runtime.

The signal orientation in classic automation systems and the service-oriented (or

message-oriented) communication from computer science are integrated in the FB-

agent model. Viewed from the outside, an FB-agent is encapsulated as a function

block which supports signal- and message-exchange with the environment. Data flow

between internal components of agents is signal-oriented. Incoming messages from

the outside are received by a message input of the agent and forwarded to internal

message inboxes. The inboxes buffer and sort messages according to their objectives

(e.g. service request) and types (e.g. invalid). Contents of the messages are converted

to signals that can be processed by further components (e.g. function blocks) within

the agent. Message outboxes collect internal signals, generate messages (e.g. service

requests for other agents) and send them out.

Classic agent systems are normally implemented as black-boxes. Users do no need

to acknowledge, how the agents work. However, users of automation systems should

not be isolated from the design and implementation of automation agents. FB-agents

applies a white-box structure and allows a user-centralized engineering. All compo-

nents within an FB-agent shall be modularly encapsulated as function blocks. A flexible

combination of atomic function blocks (black-box) and composed function blocks (white-

124

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

box) is allowed. Function block technology is highlighted as a basic modelling principle

during the FB-agent engineering. Due to the native support of process control systems

on the function blocks, FB-agents can be seamlessly integrated into the control flow and

the existing systems. A user-friendly engineering is achieved, since users are already

familiar with the function-block-driven engineering.

FB-agents can be integrated into runtime systems which can be call-based, event-

driven or cyclic-processing. The execution of all function blocks within an agent is con-

trolled by an internal task list which ensures a strictly deterministic execution. Runtime

behaviors of the task list are clearly defined in a formal model according to UPPAAL’s

automata which can appropriately support the validation and verification of FB-agents

in runtime systems.

The selection of description methods is the second main aspect that was addressed

during the present work. Continuous functions within FB-agents can be described in

Function Block Diagrams (FBD). For the description of state-based and sequence-

based procedures, existing Procedure Description Methods (PDMs) in industrial au-

tomation and computer science are evaluated. The completeness of syntax, the un-

ambiguity of semantics and the compatibility with existing automation systems were

addressed as main criteria during the comparison. Sequential Function Chart (SFC),

PLC-Statechart and Procedure Function Chart (PFC) were determined as possible ap-

proaches for the specification and implementation of FB-agents. However, none of the

cited methods is suitable for being applied as a general approach for the description of

diverse state-based and sequence-based procedures within FB-agents in their present

form. In order to lower the engineering effort and raise the intuition, a general descrip-

tion approach called Sequential State Chart (SSC) has been developed.

Most existing procedure description methods are developed for specific application

domains and can provide domain-specific syntax and semantics. The development of

the general approach Sequential State Chart, however, focuses on the description of

simple automation procedures which have no over-complex structure but are dominant

in process automation. Based on the evaluation of existing description methods, am-

biguously or neglected details have been identified. Unified solutions for the following

design aspects are defined for the Sequential State Chart: the prioritization of alterna-

tive transitions, the execution order for actions, the execution of concurrent sequences,

the progression of the entire procedure and the state representation in the idle time be-

tween two execution cycles. Additionally, every Sequential State Chart has an explicitly

defined execution frame which encapsulates the chart, controls the deterministic exe-

cution of internal components and manages the data exchange with the environment.

Semantics of SSCs are also described in the form of UPPAAL’s automata which offer a

formal analysis of SSCs in runtime systems.

Prototypes of FB-agent and Sequential State Chart have been tested in a practical

project in which a metallurgical furnace SAF is automated. Experiences show that the

modularity and the flexibility of process control are improved by using process control

125

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

8 Conclusions and Outlook

agents. The engineering effort and the time consumption are also significantly reduced

by using engineering agents. Additionally, various state machines and sequential proce-

dures for the automation of the furnace can be appropriately specified and implemented

in the form of Sequential State Charts. No application-specific procedure description

methods were needed during the entire project.

The general approach Sequential State Chart (SSC) is not a novel description method.

It is developed on the basis of a synthesis of the best practice of existing procedure de-

scription methods. The SSC is mainly characterized by its simple design, unambiguous

semantics and the compatibility with existing automation runtimes. It can also be re-

garded as a reference model for the specification and implementation of automation

procedures.

The reference model FB-agent and the general description method (or model) of Se-

quential State Chart establish a working platform for the description of process automa-

tion functions and for the construction of automation systems. Although the present

dissertation focuses on agent engineering, the development of non-agent automation

functions can also benefit from the discussions and design decisions that were made in

the context of FB-agent and Sequential State Chart, e.g. modular encapsulation, inte-

gration of signal- and service-orientation, white-box engineering etc. These two models

can be used as a guideline for the design of future automation systems.

The present work focusses on the construction of a general framework and on the

selection of description methods for the development of automation agents in existing

automation systems. The autonomous behaviors of agents were not intensively dis-

cussed. The scope of action of the example FB-agents is deliberately kept low. The

development of advanced autonomous functions (e.g. self-x functions) for process au-

tomation is addressed as a central work for the future.

126

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

Bibliography

[1] M. Polke, Process Control Engineering. Weinheim, Germany: VCH, 1994.

[2] R. Lauber and P. Göhner, Prozessautomatisierung II. Germany: Springer-Verlag,

1999.

[3] IEC 61131-3: Programmable controllers - Part 3: Programming languages, 2013.

3rd Edition.

[4] IEC 61131-5: Programmable controllers - Part 5: Communications, 2000.

[5] IEC TR 61131-8: Programmable controllers - Part 8: Guidelines for the applica-

tion and implementation of programming languages, Technical Report, 2003. 2nd

Edition.

[6] IEC 60050-351: International electrotechnical vocabulary - Part 351: Control

technology, 2013.

[7] VDI/VDE 3681 Guideline: Classification and evaluation of description methods in

automation and control technology, 2005.

[8] DIN EN ISO 10628-2: Diagrams for the chemical and petrochemical industry-

Part 2: Graphical symbols (ISO 10628-2:2012); German version EN ISO 10628-

2:2012, 2013.

[9] IEC 61512-2: Batch control - Part 1: Models and terminology, 2002.

[10] ISA-106 TR01: Procedure Automation for Continuous Process Operations - Mod-

els and Terminology, Technical Report, 2013.

[11] UML: Unified Modeling Language, V2.4.1, 2012.

[12] “OMG’s meta object facility.” http://www.omg.org/mof/. Accessed: 2014-

09-10.

[13] A. Münnemann, Infrastrukturmodell zur Integration expliziter verhaltensbeschrei-

bungen in die operative Prozessleittechnik. PhD thesis, Chair of Process Control

Engineering, RWTH Aachen University, Germany, 2005.

[14] IEC 61499: Function blocks for industrial-process measurement and control sys-

tems, 2000.

127

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[15] K. Thramboulidis, “IEC 61499: Back to the well proven practice of IEC 61131?,” in

ETFA2012: 17th IEEE International Conference on Emerging Technologies and

Factory Automation, (Krakow, Poland), 2012.

[16] S. Grüner and U. Epple, “Paradigms for unified runtime systems in industrial

automation,” in ECC: Proceedings of the 12th European Control Conference,

(Zurich), pp. 3925–3930, IEEE, July 2013.

[17] W. Dai, V. Dubinin, and V. Vyatkin, “Migration from PLC to IEC 61499 using se-

mantic web technologies,” IEEE Transactions on Systems, Man, and Cybernetics,

Part A: Systems and Humans, vol. in print, 2013.

[18] D. Witsch and B. Vogel-Heuser, “PLC-statecharts: An approach to integrate uml-

statecharts in open-loop control engineering - aspects on behavioral semantics

and model-checking,” in Preprints of the 18th IFAC World Congress Milano (Italy),

2011.

[19] L. Yu, S. Grüner, and U. Epple, “An engineerable procedure description method

for industrial automation,” ETFA2013: 18th Conference on Emerging Technolo-

gies and Factory Automation, 2013.

[20] U. Enste, Generische Entwurfsmuster in der Funktionsbausteintechnik und deren

Anwendung in der operativen Prozessführung. PhD thesis, Chair of Process Con-

trol Engineering, RWTH Aachen University,Germany, 2001.

[21] U. Enste and M. Fedai, “Flexible process control structures in multi-product and

redundant-routing-plants,” in MMM 98 – 9th IFAC Symposium on Automation in

Mining, Mineral and Metal Processing, Elsevier Science, 1998.

[22] S. Schmitz, A. Münnemann, and U. Epple, “Component modell for systematic de-

sign of process control functions,” in GMA Congress 2005, VDI/VDE-Gesellschaft

Mess- und Automatisierungstechnik, pp. 817–824, 2005.

[23] A. Münnemann, U. Enste, and U. Epple, “Hybrid modelling of complex process

control function blocks,” in S. Engel, G. Frehse, E. Schneider (Eds.): Modelling,

Analysis, and Design of Hybrid Systems, Springer-Verlag Berlin Heidelberg New

York, 2002.

[24] L. Yu, G. Quirós, and U. Epple, “Service-oriented process control for complex

multifunctional plants: Concept and case study,” in ETFA 2010: 15th IEEE Inter-

national Conference on Emerging Technologies and Factory Automation, (Bilbao),

IEEE, sep 2010.

[25] H. Mersch, M. Schlütter, and U. Epple, “Classifying services for the automation

environment,” in ETFA 2010: 15th IEEE International Conference on Emerging

Technologies and Factory Automation, 2010.

128

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[26] L. Evertz and U. Epple, “Laying a basis for service systems in process control,”

in ETFA 2013: IEEE 18th Conference on Emerging Technologies and Factory

Automation, 2013.

[27] “WS-Trust 1.4. OASIS standard.” http://docs.oasis-open.org/ws-sx/

ws-trust/v1.4/ws-trust.html, 2009.

[28] M. Schlütter, U. Epple, and T. Edelmann, “On service-orientation as a new ap-

proach for automation environments,” in Proceedings of MATHMOD 2009 – 6th

Vienna International Conference on Mathematical Modelling, vol. 2, pp. 2426–

2431, 2009.

[29] Y. Natis, “Service-oriented architecture scenario,” Gartner, ID Number: AV-19-

6751, 2003.

[30] IEC 62541: OPC unified architecture - Part 1: Overview and concepts, 2010.

[31] NAMUR Recommendation NE141: Interface between Batch and MES Systems,

2012.

[32] “W3c recommendation: Extensible markup language (xml) 1.0 (fifth edition).”

http://www.w3.org/TR/REC-xml/, 2008.

[33] M. Gaspari, “Concurrency and knowledge-level communication in agent lan-

guage,” Artificial Intelligence, vol. 105, pp. 1–45, 1998.

[34] VDI/VDE 2653 Guideline: Multi-agent systems in industrial automation - funda-

mentals, June 2010.

[35] U. Epple, “Agentensysteme in der Leittechnik,” atp - Automatisierungstechnische

Praxis, vol. 42, pp. 45–51, 2000.

[36] P. Göhner, P. G. de A. Urbano, and T. Wagner, “Softwareagenten - Einführung

und überblcok über eine alternative Art der Softwareengwicklung teil 3: Agenten-

systeme in der Automatisierungstechnik: Aufbau, Strukture und Implementierung

an einem Anwendungsbeispiel,” atp - Automatisierungstechnische Praxis, 2004.

[37] S. Eberle and P. Göhner, “Softwareentwicklung für eingebettete Systeme mit

strukturierten Komponenten. teil 1+2,” atp - Automatisierungstechnische Praxis,

vol. 46, 2004.

[38] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy

for autonomous agents,” in The Third International Workshop on Agent Theories,

Architectures, and Languages, 1996.

[39] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.

[40] J. Odell, “Agent technology: An overview,” 2010.

129

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[41] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated electronic commerce: A

survey,” The Knowledge Engineering Review, vol. 13, pp. 147–159, 1998.

[42] E. Ferreira, E. Subrahmanian, and D. Manstetten, “Intelligent agents in decentral-

ized traffic control,” in IEEE Intelligent Transportation Systems Conference Pro-

ceedings, 2001.

[43] J. France and A. Ghorbani, “A multiagent system for optimizing urban traffic,” in

IEEE/WIC International Conference on Intelligent Agent Technology, 2003.

[44] K. Mizuno, Y. Fukui, and S. Nishihara, “Urban traffic signal control based on dis-

tributed constraint satisfaction,” in the 41st Hawaii International Conference on

System Sciences, 2008.

[45] X. Zhao and J. Zhao, “Research on model of resource management for traffic

grid,” Procedia Engineering, vol. 15, pp. 1476–1480, 2011.

[46] J. Lagorse, D. Paire, and A. Miraoui, “A multi-agent system for energy manage-

ment of distributed power sources,” Renewable Energy, vol. 35, pp. 174–182,

2010.

[47] G. Rohbogner and S. Fey, “What the term agent stands for in the smart grid

definition of agents and multi-agent systems from an engineer’s perspective,” in

Proceedings of the Federated Conference on Computer Science and Information

Systems, 2012.

[48] J. Zeng, J. Liu, J. Wu, and H. Ngan, “A multi-agent solution to energy manage-

ment in hybrid renewable energy generation system,” Renewable Energy, vol. 36,

pp. 1352–1363, 2011.

[49] N. Jennings, “Agent-oriented software engineering,” in Multiple Approaches to

Intelligent Systems, vol. 1611 of Lecture Notes in Computer Science, pp. 4–10,

Springer Berlin Heidelberg, 1999.

[50] J. Bagherzadeh and S. Arun-Kumar, “Flexible communication of agents based on

fipa-acl,” Electronic Notes in Theoretical Computer Science, vol. 159, pp. 23–39,

2006.

[51] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-compliant agent frame-

work,” in PAAM 1999: 4th International Conference on Practical Application of

Intelligent Agents and Multi-Agent Technology, vol. 99, pp. 97–108, IEEE, 1999.

[52] “Java Agent DEvelopment framework.” http://jade.tilab.com/. Accessed:

2014-09-16.

[53] S. Pech, Agentenbasierte Informationsgewinnung für automatisierte Systeme.

PhD thesis, Institut für Automatisierungs- und Softwaretechnik, University

Stuttgart, Germany, 2014.

130

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[54] H. Mubarak and P. Göhner, “An agent-oriented approach for self-management of

industrial automation systems,” in INDIN 2010: 8th IEEE International Conference

on Industrial Informatics, 2010.

[55] H. Mubarak, Agentenbasiertes Selbstmanagement von Automatisierungsanla-

gen. PhD thesis, Institut für Automatisierungs- und Softwaretechnik, University

Stuttgart, Germany, 2013.

[56] A. Wannagat and B. Vogel-Heuser, “Increasing flexibility and availability of man-

ufacturing systems-dynamic reconfiguration of automation software at runtime

on sensor faults,” Journal of Automation, Mobile Robotics & Intelligent Systems,

vol. 3, pp. 47–53, 2009.

[57] D. Schütz, M. Schraufstetter, J. Folmer, B. Vogel-Heuser, T. Gmeiner, and

K. Shea, “Highly reconfigurable production systems controlled by real-time

agents,” in ETFA2011: 16th IEEE Conference on Emerging Technologies Fac-

tory Automation, pp. 1 –8, sept. 2011.

[58] U. Epple, “Agentenorientierte Modelle in der Anlagenautomation,” in Agenten-

systeme in der Automatisierungstechnik (P. Göhner, ed.), pp. 95–110, Springer-

Vieweg, 2013.

[59] L. Yu, A. Schüller, and U. Epple, “On the engineering design for systematic in-

tegration of agent-orientation in industrial automation,” in 10th IEEE International

Conference on Control & Automation, 2013.

[60] ISO/IEC 9126-1: Software engineering - Product quality, Part 1: Quality model,

2001.

[61] A. Wannagat, Entwicklung und Evaluation agentenorientierter Automa-

tisierungssysteme zur Erhöhung der Flexibilität und Zuverlässigkeit von Produk-

tionsanlagen. PhD thesis, Lehrstuhl für Automatisierung und Informationssys-

teme, TU München, Germany, 2014.

[62] G. Bollella and J. Gosling, “The real-time specification for Java,” Computer,

vol. 33, pp. 47–54, 2000.

[63] L. Yu, G. Quirós, T. Krausser, and U. Epple, “ACPLT + IEC 61131-3 = Dynamic

Reconfigurable Models,” Bamberg, Germany, pp. 90–91, 2012.

[64] F. Uecker, Konzept zur Prozessdatenvalidierung für die Prozessleittechnik. PhD

thesis, Chair of Process Control Engineering, RWTH Aachen University, 2005.

[65] R. Jorewitz, A. Münnemann, U. Epple, R. Böckler, W. Wille, and R. Schmitz,

“Automated treatment of balances,” in MATHMOD 2006: 5th Vienna Symposium

on Mathematical Modelling, vol. 30, pp. 4–1 – 4–13 (Vol. 2), AGRESIM-Verlag,

2006.

131

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[66] T. Krausser, G. Quirós, and U. Epple, “An IEC-61131-based rule system for inte-

grated automation engineering: Concept and case study,” in IEEE INDIN 2011:

9th IEEE International Conference on Industrial Automation, (Lisbon), IEEE, July

2011.

[67] S. Runde, A. Fay, S. Schmitz, and U. Epple, “Wissensbasierte Systeme im Engi-

neering der Automatisierungstechnik - knowledge-based system for the engineer-

ing of automation systems,” at - Automatisierungstechnik, vol. 59, pp. 42–49, Jan.

2011.

[68] S. Schmitz, M. Schlütter, and U. Epple, “Automation of automation - definition,

components and challenges,” in ETFA 2009: 14th IEEE International Conference

on Emerging Technologies and Factory Automation, IEEE, Sept. 2009.

[69] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

[70] E. Moore, “Gedanken-experiments on sequential machines,” in Automata Studies,

Annals of Mathematical Studies, pp. 129–153, Princeton University Press, 1956.

[71] G. Mealy, “A method to synthesizing sequential circuits,” Bell System Technical

Journal, vol. 34, pp. 1045–1079, 1955.

[72] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-

puter Programming, vol. 8, pp. 231–274, 1987.

[73] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The Statem-

ate Approach. McGraw-Hill, 1998.

[74] D. Witsch, M. Ricken, B. Kormann, and B. Vogel-Heuser, “PLC-statecharts: An

approach to integrate UML-statecharts in open-loop control engineering,” in IN-

DIN 2010: 8th IEEE International Conference on Industrial Informatics, pp. 120–

125, July 2006.

[75] ISO/IEC 19501: Information technology - open distributed processing - Unified

Modeling Language (UML), 2005.

[76] C. Petri, Kommunikation mit Automaten. PhD thesis, Fachbereich für Mathematik

und Physik, TU Darmstadt, 1962.

[77] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Application.

Springer-Verlag, 1991.

[78] D. Abel, Petri-Netze für Ingenieure: Modellbildung und Analyse diskret ges-

teuerter Systeme. Springer-Verlag, 1990.

[79] ISO/IEC 15909-1: Systems and software engineering - High-level Petri nets - Part

1: Concepts, definitions and graphical notation, 2004.

132

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[80] ISO/IEC 15909-2: Systems and software engineering - High-level Petri nets - Part

2: Transfer format, 2011.

[81] B. Falko, “Analysis of petri nets with a dynamic priority method,” Application and

Theory of Petri Nets 1997, vol. 1248, pp. 359–376, 1997.

[82] G. Berthelot, “Transformations and decompositions of nets-,” Petri Nets: Central

models and their properties, vol. 254, pp. 359–376, 1987.

[83] B. Graves, “Computing reachability properties hidden in a finite net unfold-

ing,” Foundations of Software Technology and Theoretical Computer Science,

vol. 1346, pp. 327–341, 1997.

[84] A. Kondratyev, M. Kishinevsky, A. Taubin, and S. Ten, “A structural approach for

the analysis of petri nets by reduced unfoldings,” Application and Theory of Petri

Nets 1996, vol. 1091, pp. 346–365, 1996.

[85] R. Lewis, Programming Industrial Control Systems Using IEC 1131-3. Institution

of Electrical Engineeres: VCH, 1998.

[86] K. John and M. Tiegelkamp, SPS-Programmierung mit IEC 61131-3, 4. neubearb.

Aufl. Springer-Verlag, 2009.

[87] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe, , and

O. Stursberg, “Verification of PLC programs given as sequential function charts,”

in INT2004, LNCS3147, 2004.

[88] N. Bauer, Formale Analyse von Sequential Function Charts (In English: Formal

Analysis of Sequential Function Charts). PhD thesis, Chair of Process Dynamics

and Operations, TU Dortmond, Germany, 2004.

[89] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, “A unifying semantics for se-

quential function charts,” Integration of Software Specification Techniques for Ap-

plications in Engineering, vol. 3147, pp. 400–418, 2004.

[90] A. Hellgren, M. Fabian, and B. Lennartson, “On the execution of sequential func-

tion charts,” Control Engineering Practice, vol. 13, pp. 1283–1293, 2004.

[91] L. Yu, G. Quirós, T. Krausser, and U. Epple, “SFC-based process description

for complex automation functionalities,” in EKA2012: Entwurf komplexer Automa-

tisierungssysteme, 12. Fachtagung, (Magdeburg), pp. 13 – 20, ifak Institut für

Automation und Kommunikation e.V., may 2012.

[92] S. Bornot, R. Huuck, Y. Lakhnech, and B. Lukoschus, “An abstract model for

sequential function charts,” Discrete Event Systems, pp. 255–264, 2000.

133

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[93] N. Bauer and R. Huuck, “A parameterized semantics for sequential function

charts,” in Proceedings of the semantic foundations of engineering design lan-

guages, Satellite Event of ETAPS, 2002.

[94] IEC 60848: GRAFCET specification language for sequential function charts,

2013. 3rd Edition.

[95] F. Schumacher and A. Fay, “Konzept und werkzeugunterstützung zur automatis-

chen generierung von IEC 61131-3 konformen steuerungsalgorithmen auf basis

einer grafcet-spezifikation,” in Automation 2013, 2013.

[96] A. Schüller and U. Epple, “Ein referenzmodell zur prozedurbeschreibung: eine

basis für industrie 4.0,” at - Automatisierungstechnik, vol. 63, no. 2, pp. 87–98,

2015.

[97] D. Meyer, Objektverwaltungskonzept für die operative Prozessleittechnik. PhD

thesis, Chair of Process Control Engineering, RWTH Aachen University, 2001.

[98] H. Albrecht, On Meta-Modeling for Communication in Operational Process Con-

trol Engineering. PhD thesis, Chair of Process Control Engineering, RWTH

Aachen University, 2003.

[99] R. Jorewitz, Eine strukturelle Beschreibungsmethodik zur automatisierten Erzeu-

gung von Prozessbewertungen in der operativen Prozessleittechnik. PhD thesis,

Chair of Process Control Engineering, RWTH Aachen University, 2011.

[100] G. Quirós, Model-based Decentralised Automatic Management of Product Flow

Paths in Processing Plants. PhD thesis, Chair of Process Control Engineering,

RWTH Aachen University, 2011.

[101] S. Schmitz, Grafik- und Interaktionsmodell für die Vereinheitlichung grafischer Be-

nutzungsschnittstellen der Prozessleittechnik. PhD thesis, Chair of Process Con-

trol Engineering, RWTH Aachen University, 2010.

[102] “Mini-xml.” http://www.msweet.org/projects.php?Z3, 2013. Accessed:

2014-11-15.

[103] H. Jeromin and U. Epple, “Anwendungs- und herstellerneutrales Modell zur

Darstellung und Interaktion mit leittechnischen Funktionen,” in In Automation

2012: der 13. Branchentreff der Mess- und Automatisierungstechnik / VDI/VDE-

Gesellschaft Mess- und Automatisierungstechnik, 2012.

[104] T. Krausser, L. Yu, and S. Schmitz, “Regelbasierte Vollständigkeitsüberprüfung

von Automatisierungslösungen,” in VDI-Berichte 2092, Automation 2010: Leading

through Automation, (Düsseldorf), pp. Kurzfassung: S. 55–58, Langfassung: auf

beiliegender CD, VDI Verlag, June 2010.

134

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Bibliography

[105] IEC 62424: Representation of process control engineering - Requests in P&I

diagrams and data exchange between P&ID tools and PCE-CAE tools, 2008. 1st

Edition.

[106] “Tcl developer xchange site.” http://www.tcl.tk/, 2013. Accessed: 2014-

09-10.

135

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-524808-5

https://doi.org/10.51202/9783186248084 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:19:58. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186248084

	Cover
	1 Introduction
	1.1 Motivation
	1.2 Structure of this Work

	2 Basics of Process Automation
	2.1 Process Automation System
	2.1.1 Overview
	2.1.2 Hardware and Software Environment
	2.1.3 Trend toward Integration and Standardization

	2.2 Modelling
	2.2.1 Basics
	2.2.2 Function Block
	2.2.3 Runtime System Model
	2.2.4 Time Model of Cyclic Execution Environment
	2.2.5 Model of Operational Resource and Operational Measure
	2.2.6 Component Model for Hierarchical Process Control

	2.3 Service Orientation
	2.4 Messages
	2.5 Agent Orientation
	2.5.1 Introduction
	2.5.2 Usability in Industrial Automation
	2.5.3 Concept of a Reference Model

	3 Specification of a Reference Model for Automation Agents
	3.1 Engineering Requirements
	3.1.1 Functional Requirements
	3.1.2 Non-functional Requirements

	3.2 Service Model
	3.3 Message Format
	3.4 Message Delivery Model
	3.5 Internal Structure
	3.6 Service Interfaces
	3.6.1 Message Input and Message Inbox
	3.6.2 Message Output
	3.6.3 Input interface

	3.7 Knowledge Base
	3.8 Execution Model
	3.9 Related Automation Technologies
	3.9.1 Relationship with Function Block Technology
	3.9.2 Relationship with Service Orientation
	3.9.3 Relationship with ACPLT/PF

	4 Usability Analysis of Existing Procedure Description Methods
	4.1 Finite State Automaton
	4.2 Statechart
	4.3 PetriNet
	4.4 Sequential Function Chart
	4.4.1 Syntax
	4.4.2 Semantics
	4.4.3 Application in Process Automation
	4.4.4 Usability Analysis

	4.5 Grafcet
	4.6 Procedural Function Chart
	4.7 Summary

	5 Specification of a General Procedure Description Method
	5.1 Execution Frame
	5.2 State
	5.3 Transition
	5.4 Alternative Sequence
	5.5 Action
	5.6 Hierarchy
	5.7 Concurrency
	5.8 Procedure Progress
	5.9 Summary

	6 Prototypical Implementation
	6.1 ACPLT Technologies
	6.1.1 Object Management System: ACPLT/OV
	6.1.2 Basic Libraries

	6.2 FB-agent Library
	6.3 SSC Library
	6.3.1 Class Diagram
	6.3.2 Instance Model
	6.3.3 Task Model

	7 Case Study
	7.1 Research Plant: Submerged Arc Furnace (SAF)
	7.2 Process Automation System
	7.3 Process Control
	7.3.1 Service Oriented Interaction
	7.3.2 White-Box Engineering

	7.4 Knowledge-based Engineering
	7.4.1 Concept
	7.4.2 Use Cases
	7.4.3 Application Effects

	8 Conclusions and Outlook
	Bibliography

