Fortschritt-Berichte VDI

oy

Reihe 8

Mess-,
Steuerungs- und
Regelungstechnik

Nr. 1248

Dipl.-Ing. Liyong Yu,
Tianjin (China)

A Reference Model for
the Integration of
Agent Orienfation in the
Operative Environment
of Automation Systems

Lehrstuhl fir
Prozessleittechnik

AACHENER der RWTH Aachen

https://doi.org/10.51202/9783186248084

https:/idol. IP 216.73.216.36, am 20.01.2026, 061

8. geschiizter Inhalt,
tersagt, m mit, f0r oder in KI-Syster

https://doi.org/10.51202/9783186248084

A Reference Model for the Integration of Agent
Orientation in the Operative Environment of
Automation Systems

Von der Fakultat fir Georessourcen und Materialtechnik
der Rheinisch-Westfalischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Ing.
Liyong Yu

aus Tianjin, China

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Dr. h. c. Peter Géhner

Tag der mindlichen Prifung: 14. Dezember 2015

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

https:/idol. IP 216.73.216.36, am 20.01.2026, 061

8. geschiizter Inhalt,
tersagt, m mit, f0r oder in KI-Syster

https://doi.org/10.51202/9783186248084

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- Dipl.-Ing. Liyong Yu,
und Regelungstechnik Tianjin (China)

[Nr. 1248 | A Reference Model for
the Integration of
Agent Orientation in the
Operative Environment
of Automation Systems

Lehrstuhl fir
Prozessleittechnik
A AC E

N ER der RWTH Aachen

https://doi.org/10.51202/9783186248084

Yu, Liyong

A Rezerence Model for the Integration of Agent Orientation in the
Operative Environment of Automation Systems

Fortschr.-Ber. VDI Reihe 8 Nr. 1248. Dusseldorf: VDI Verlag 2016.
146 Seiten, 60 Bilder, 2 Tabellen.

ISBN 978-3-18-524808-5, ISSN 0178-9546,

€ 5700/VDI-Mitgliederpreis € 51,30.

Keywords: Agent Systems — Procedure Description — Service Orientation — IEC 61131-3 -
Sequential Function Chart - Process Control — Engineering — Agentensysteme, Prozedurbeschrei-
bung, Dienstorientierung

This work introduces a reference model for automation agents that can be seamlessly integrated
in existing process control systems. This model combines the advanfages of function block
technology, service orientation and agent orienfation. Concept decisions about modularity,
service-oriented interaction and procedure description provide a base for the development of
process control- diagnosis-, model management, project management- and other agents. The
model is implemented in a platform-neutral development environment as a proof of concept and
tested with an indusrial plant.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Intfernet at

http://dnb.ddb.de.

D82 (Diss. RWTH Aachen University, 2015)

© VDI Verlag GmbH - Disseldorf 2016

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollsténdigen Wiedergabe
[Fotokopie, Mikrokopiel, der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789546
ISBN 978-3-18-524808-5

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Prefacet

The present thesis emerged from my work at the Chair of Process Control Engineering
of RWTH Aachen University during the period from 2008 to 2013.

| would like to express my deep and sincere gratitude to Univ.-Prof. Dr.-Ing. Ulrich
Epple for his mentoring, his encouragement and his support during my work as a doc-
toral student and research assistant at his chair. | also wish to express my warm and
sincere thanks to Univ.-Prof. Dr.-Ing. h. c. Peter Géhner for his kindness in taking on the
function of second advisor for this work. Furthermore, | am very grateful to Univ.-Prof.
Dr.-Ing. Gerhard Hirt for presiding over my doctoral examination. Finally, | sincerely
thank Margarete Milescu for her invaluable assistance.

Many people have contributed to the research that is presented in this thesis with their
comments and thoughts. For this | thank Lars Evertz, Dr. Reinhard Fuchs, Sten Griiner,
Holger Jeromin, Dr. Reiner Jorewitz, David Kampert, Roland Kénig, Dr. Kai Krlining,
Sebastian Maurell-Lopez, Dr. Henning Mersch, Tina Mersch, Dr. Martin Mertens, Dr.
Gustavo Quirés, Markus Schlitter, Dr. Stefan Schmitz, Andreas Schilller, Sabrina von
Styp, Constantin Wagner. | also thank Ursula Bey, Christopher Fleischacker, Ting Guo,
Christopher Hense, Huijing Jie, Xinye Li, Tobias Lietke, Vihn Pham, Gregor Rohbogner,
llya, Schapovalov, Semjon Spitzglus, Martina Uecker for their collaboration at the Chair
of Process Control Engineering.

Finally, | owe my loving thanks to my parents Yizeng and Yuanheng, my parents-in-
law Heping and Honghui for their love, understanding and constant support throughout
my graduate. My special gratitude is also due to my wife Yifei and my Children Haoting
and Langting for their continuous loving support.

Aachen, December 2015 Liyong Yu

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

he 35 10 44

(Ge Wu Zhi Zhi)

To study the phenomena of nature in order to
acquire knowledge; to study the nature of things.

from “The Book of Rites - The Great Learning”
Zeng Shen (China, 505-434 B.C.)

:idol. IP 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Contents

Kurzfassung
Abstract

1 Introduction
1.1 Motivation e
1.2 Structure ofthisWork

2 Basics of Process Automation
2.1 Process Automation System. oL
211 Overview
2.1.2 Hardware and Software Environment
2.1.3 Trend toward Integration and Standardization
22 Modelling
221 BasiCs
222 FunctionBlock
2.2.3 Runtime SystemModel
2.2.4 Time Model of Cyclic Execution Environment
2.2.5 Model of Operational Resource and Operational Measure
2.2.6 Component Model for Hierarchical Process Control
2.3 ServiceOrientation
24 MeSSaQgeS
25 AgentOrientation
25.1 Introduction
2.5.2 Usability in Industrial Automation,
2.5.3 Concept of a Reference Model

3 Specification of a Reference Model for Automation Agents

3.1 Engineering Requirements oL

3.1.1 Functional Requirements

3.1.2 Non-functional Requirements
3.2 ServiceModel
3.3 Message Format
3.4 Message DeliveryModel
3.5 Internal Structure

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Contents

\

3.6 Servicelnterfaces
3.6.1 Message Input and Message Inbox
3.6.2 MessageOutput
3.6.3 Inputinterface

3.7 KnowledgeBase

3.8 ExecutionModel

3.9 Related Automation Technologies
3.9.1 Relationship with Function Block Technology
3.9.2 Relationship with Service Orientation
3.9.3 Relationship with ACPLT/PF

Usability Analysis of Existing Procedure Description Methods
4.1 Finite State Automaton L
42 Statechart. e
43 PetriNet. e
4.4 Sequential FunctionChart
441 Syntax.
442 SemantiCsS.
4.4.3 Application in Process Automation
444 Usability Analysis.
45 Grafcet e
4.6 Procedural FunctionChart.
4.7 SUMMAIY . . . o o e e e e

Specification of a General Procedure Description Method

5.1 ExecutionFrame
5.2 State.
5.3 Transition
5.4 Alternative Sequence
5.5 Action
5.6 Hierarchy e
5.7 CONCUITENCY o o i e e e e e
5.8 Procedure Progress
5.9 Summary

Prototypical Implementation

6.1 ACPLT Technologies ittt
6.1.1 Object Management System: ACPLT/OV
6.1.2 BasiclLibraries

6.2 FB-agentLibrary

6.3 SSClLibrary
6.3.1 ClassDiagram
6.3.2 InstanceModel

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

54
55
57
61
64
64
67
69
69
70
72
75

77
78
80
81
82
83
86
88
90
92

https://doi.org/10.51202/9783186248084

Contents

6.3.3 TaskModel 104
7 Case Study 107
7.1 Research Plant: Submerged Arc Furnace (SAF) 107
7.2 Process Automation System.o oL 108
7.3 ProcessControl 110
7.3.1 Service Oriented Interaction. 110
7.3.2 White-Box Engineering oL 113
7.4 Knowledge-based Engineering oL 115
741 Concept 116
742 UseCases i i i i e 117
7.43 ApplicationEffects o oo 123
8 Conclusions and Outlook 124
Bibliography 127
Vi

https://dol. IP 216.73.216.36, am 20.01.2026, 06:19:58. (geschitzter Inhalt.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Kurzfassung

Kurzfassung

Der zunehmende Funktionsumfang der Automatisierungssysteme sowie die steigende Komple-
xitdt der Automatisierungsfunktionen stellen dem Systementwickler die Herausforderung, die
Modularitat, Flexibilitat sowie die Autonomie auch der Prozessleitsysteme fortlaufend zu ver-
bessern. Die agenten-orientierte Automatisierung hat ein groes Potential beleuchtet, diese Her-
ausforderungen zu bewaltigen und gleichzeitig den Engineeringaufwand zu reduzieren. Klas-
sische Agentensysteme aus der Informationstechnik isolieren in der Regel die Endanwender
vom Engineering der Agenten. Zudem sind die Engineeringumgebung, die Laufzeitumgebung
sowie die Beschreibungsmitteln fiir Agenten normalerweise inkompatibel mit den bestehenden
Automatisierungssystemen. Die vorliegende Arbeit stellt ein Referenzmodell fiir Automatisie-
rungsagenten vor, welches eine nahtlose Integration der Agenten in IEC 61131-3 basierende
Prozessleitsysteme und ein anwender-zentriertes Engineering ermdglicht.

Das Referenzmodell dient als ein generisches Muster fur die Entwicklung von verschiede-
nen Agenten, z.B. fiir Prozessfihrung, Diagnose, Modellverwaltung, Projektierung usw. Je nach
der Aufgabenstellung kénnen die autonomen Agenten miteinander interagieren. Auf diese Wei-
se kénnen die Fahigkeiten einzelner Agenten flr die Lésung komplexer Aufgaben kombiniert
werden. Das Referenzmodell definiert den Ausfiihrungsrahmen der Agenten, ihre Kommunika-
tionsschnittstelle sowie die Beschreibungsmittel flr agenten-interne kontinuierliche Funktionen
und Prozeduren anwendungs- und leitsystemneutral. Dadurch wird der Engineeringaufwand ge-
ring gehalten, wéhrend die Interoperabilitat und die Wiederverwendbarkeit der Funktionsmodule
(d.h. Agenten) des Automatisierungssystems erhéht werden.

Das Referenzmodell ist in einer plattformneutralen Entwicklungsumgebung umgesetzt. Sei-
ne Anwendung in einem industriellen Projekt wird vorgestellt. In dem Projekt sind Agenten
u.a. zustandig fir die operative Prozessfiihrung sowie die automatische Erstellung der Pro-
zessflhrung und Anlagensimulation. Da in diesem Modell IEC 61131-3 kompatible Ausfiihrungs-
semantiken und Beschreibungsmittel verwendet werden, kénnen die Endanwender die Agenten
eigenstandig projektieren. Diese Tatigkeiten kénnen bei Verwendung klassischer agentenori-
entierter Methoden nur von Experten mit spezieller Programmierschulung und Erfahrungen im
Bereich Software Engineering durchgefiihrt werden.

Aufgrund der Reduzierung des Engineeringaufwands und der Kompatibilitdt mit den beste-
henden Automatisierungssystemen kann das Referenzmodell als Basis fur die Integration von
Agentensystemen in Prozessleitsystem genutzt werden. Konzeptentscheidungen iber dienstori-
entierte Interaktion, modulare Kapselung von Funktionen und generische Beschreibung der Au-
tomatisierungsprozeduren kénnen ebenfalls bei der Entwicklung von Funktionen unterstitzen,
die nicht von Agenten ausgeflihrt werden sollen. Auch in diesen Fallen wird erwartet, dass
die Engineering-Kosten reduziert und die Flexibilitit sowie die Interoperabilitat der Automati-
sierungsfunktionen erhéht werden.

Vil

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Abstract

The increasing functional range of automation systems and the increasing complexity of au-
tomation functions challenge system developers to continuously improve the modularity, flexi-
bility and the autonomy of process control systems. The agent-oriented automation has shown
great potential in addressing these challenges while reducing the engineering effort at the same
time. Classic agent systems in the field of information technology usually isolate the end users
from the engineering of agents. In addition, the applied engineering environment, runtime sys-
tems and description methods are normally incompatible with the existing automation systems.
The present work presents a reference model for automation agents that can be seamlessly
integrated in process control systems based on the IEC 61131-3 standard. Moreover, a user-
centralized engineering is allowed.

The reference model serves as a generic model for the development of process control-,
diagnosis-, model management-, project management-, and other agents. Depending on the
automation task, autonomous agents can also interact with each other. By this means, the ca-
pabilities of individual agents can be combined for solving complex tasks. The reference model
generally defines the execution frame of automation agents, their communication interfaces and
the description methods for continuous and procedural functions within the agents. These as-
pects are application- and system-neutral. Thus, the engineering effort is kept low, while the
interoperability and the reusability of functional modules (i.e. agents) within the automation sys-
tem is increased.

The reference model is implemented in a platform-neutral development environment. lts ap-
plications in an industrial project will be presented. In this project, agents are developed i.e. for
the operational process control as well as the automatic creation of process control and plant
simulation. Because IEC 61131-3 compatible execution semantics and description methods are
applied, the end-user can configure the agents by him-/herself. By using classic agent-oriented
methodologies, however, these activities can only be carried out by experts with special training
and programming experience in software engineering.

Due to the reduction of engineering effort and the compatibility with existing automation sys-
tems, the reference model can be used as a base for the integration of agent systems in process
control systems. Concept decisions about service-oriented interaction, modular encapsulation
of functions and general description of automation procedures can also assist in the develop-
ment of functions that are not going to be performed by agents. In these cases, the reduction of
the engineering cost and the increment of flexibility and interoperability of elementary modules
of the automation system are also to be expected.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

https:/idol. IP 216.73.216.36, am 20.01.2026, 061

8. geschiizter Inhalt,
tersagt, m mit, f0r oder in KI-Syster

https://doi.org/10.51202/9783186248084

1 Introduction

1.1 Motivation

A process automation system is the hardware and software environment for the con-
trol and observation of production processes, typically in the chemical and metallurgical
industry. Along with the rapid development of automation technologies and computer
science, the process industry is facing new challenges at present. Firstly, the present
global market challenges the manufacturer to shorten the life cycle and raise the indi-
viduation of their product. Automation solutions should be flexibly structured, so that
they can be easily adapted for new production tasks. Secondly, the quantity and the
complexity of automation functions has increased significantly. It becomes more and
more difficult to define all possible production situations in advance. Autonomous func-
tions (e.g. adaptation, learning ability etc.) are necessary. Furthermore, technical
personals is changing more frequently than in 1970s. Automation systems should be
well-structured and easily understandable, so that the knowledge inheritance during a
personnel change and generation change can be simplified. The system intuition can
be improved through encapsulation and abstraction of automation functions (e.g. as
services).

Under these circumstances, the engineering principle of agent orientation appears to
have great potential for coping with the aforementioned challenges. By means of agent
orientation, automation functions can be encapsulated in individual agents which are in
charge of process control, data archiving, mode management or diagnosis. Automation
agents are modular entities and behave autonomously. They can, for instance, recog-
nize situations, sense abnormal changes in the environment and chose operation strate-
gies autonomously. Agents provide services to the user and ensure the achievement of
service objectives. The user does not need to master all implementation details. Agents
can cooperate among each other and solve complex automation tasks. With their help,
the autonomy, flexibility and scalability of automation systems can be significantly im-
proved. Bright practical perspectives can be expected through the further development
of automation agents.

The agent-oriented software engineering is one important research area in computer
science. Research achievements (e.g. situation recognition, adaptivity and learning
ability etc.) and their practical application offer a good basis for the development of
autonomous agents in process automation. However, the classic software agents can-

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

1 Introduction

not be directly applied in automation systems. One main reason for this is that classic
agents are normally developed for runtime systems and implemented in programming
languages (typically JAVA) which are not compatible with automation systems. There
is still no appropriate approach for the construction of automation agents and for their
integration in automation systems.

The process industry is a rather conservative industry and has special requirements
on software applications. During the application of a new technology, existing hardware
characteristics, runtime behaviors, programming languages (e.g. according to the IEC
61131-3 standard) should be regarded. Existing best practices (e.g. communication
technology, engineering processes etc.) are also worthy of being utilized.

One main goal of the present dissertation is to contribute a reference model for au-
tomation agents that can be harmonically integrated into existing automation systems.
The aforementioned characteristics of automation systems will be carefully considered.
The following engineering aspects will be discussed: encapsulation form and execution
frame, communication with the environment, internal structure, registration of services,
runtime behaviors and execution models in automation systems.

One central engineering aspect of the reference model, which is also the second
goal of the present dissertation, is the selection of appropriate description methods
for describing continuous functions and procedural functions. The existing description
methods in process automation and in computer science will be evaluated. Their com-
patibility with automation system and their utility in the introduced reference model of
agents will also be analyzed.

1.2 Structure of this Work

The present dissertation is structured as follows: Chapter 2 introduces basics of pro-
cess automation, model-based software engineering, service orientation and agent ori-
entation. Chapter 3 introduces a reference model which serves as a guideline for the
engineering of agents and for their implementation in automation systems. Chapter 4
evaluates existing procedure description methods. Chapter 5 specifies a general proce-
dure description method which combines advantages of the analyzed methods and can
be applied as a standard approach for describing most procedures in agents. Chap-
ter 6 presents prototypes of the agent model and of the general procedure description
method. Chapter 7 introduces results of case studies in which the models for agents
and procedure description were tested. And finally, Chapter 8 provides a conclusion
and highlights research directions for future research work.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

The present work builds on theory and practice developed in the area of process control
engineering. In order to bring relevant aspects into perspective, this chapter gives an
overview of the basics of process automation and model-based engineering. Addition-
ally, the idea of service orientation and agent orientation from the software engineering
field will be introduced.

2.1 Process Automation System

A process control system (also decentralized control system (DCS)) is a decentralized
distributed network consists of various computer stations. Automation functionalities
installed in the network can be classified into different hierarchical levels and together
compose a so-called Automation Pyramid [1, 2], cf. Figure 2.1

2.1.1 Overview

The root of the pyramid is the production process and the plant which are controlled
by the upper levels. The field level contains components for measurement and con-
trol. Typical field devices are sensors and actors. The control level (or supervisory
level) contains Programmable Logic Controllers (PLC) for the control of field devices,
and PC stations for engineering, observation and operation. The level of Manufactur-
ing Execution System (MES) is composed of various systems and software packages
for data management (i.e. Process Information Management System PIMS), product
management, material tracking & tracing etc. The Enterprise Resource Planning (ERP)
level contains a suite of software applications (e.g. SAP) which are applied to optimize
business processes and resource usage (e.g. capital, personal).

Classic field devices are connected via remote I/O to the PLC on the control level.
PLCs can also be applied on the field level and serve as bus slaves. They can control
complex devices such as exhaust handling. Field devices with field bus interface and
PLC slaves can be connected to the PLC masters on the control level.

Control logics (e.g. valve control, PID loop) are executed on the PLC. The graphical
visualization for observation, operation and engineering is installed on industrial PCs
(IPC)(e.g. engineering station and operator station in Figure 2.1). These devices are

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Intranet

Engineering Operatcr
Station Station

System Bus

Automation
Control Level Controller,
I PLC (master)
/ Field Level \ Field Bus
Remote PLC
Process Level /0 (slave)
4 - 20ma0 - 10V
Field Device

Figure 2.1: Automation pyramid and a schematic Decentralized Control System (DCS)

connected with the PLC masters via system bus. PC-based devices are also applied on
the MES level. ERP software is hosted and administrated on the enterprise level and is
not always coupled with the DCS network.

The DCS shown in Figure 2.1 is a simplified illustration. The network structure of a
real production plant is more complex. Computer stations and sub-networks for high-
level functionalities (e.g. advanced process control, backup & restore) are often applied.
Additionally, hardware firewalls and interface PCs for the data exchange between two
automation levels are often necessary.

2.1.2 Hardware and Software Environment

The pyramid’s levels differ not only in terms of functionalities, but also in terms of hard-
ware and software characteristics.

The device number on the bottom of the pyramid is much larger than on the top. A
typical chemical plant has thousands of sensors and actors which are controlled by
multiple PLCs and PC stations on the control level and MES level. ERP functionalities
are managed on the enterprise level, typically in the computer center. It can be assumed
for a specific plant, that the ERP applications are installed on one central remote server.

From a computing capacity point of view, devices on lower levels have relatively limited
processor performance and data storage. Programs and algorithms on the lower levels
are simpler but processed faster compared to the upper levels. Fields devices can be

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.1 Process Automation System

regarded as embedded systems. They process at millisecond even microsecond level,
and have very limited storage for algorithms or process data. Process controllers are
typically single-core devices with a typical cycle time of 1sec. and possess higher CPU
capacity and storage. Operation and engineering stations on the control level are PC-
based and apply universal operating systems (e.g. Windows, Linux or Unix). The MES
level and ERP level process larger data volumes (e.g. for long time archiving) and apply
work stations and servers whose performance and storage volume are theoretically
unlimited.

Various runtime systems and programming languages are applied on different pyra-
mid levels. The runtime of field devices and process controllers is characterized by
deterministic and cyclic-processing context. The cycle time is normally constant, which
is an important prerequisite for most digital controllers (e.g. PID) and signal filters.

Programs on the upper levels have lower requirements on real-time execution and are
normally executed periodically. The time span between two program iterations is not al-
ways strictly constant. Field devices mostly use a vendor-specific execution context and
hardware-near programming languages. PLCs normally support the well-established
international standard IEC 61131 [3-5] which specifies among other things:

e PLC runtime model (part 3),
e communication model (part 5),

e two textual programming languages (part 3): Instruction List (IL) and Structured
Text (ST),

e two graphical programming languages Ladder Diagram (LD) and Function Block
Diagramm (FBD), and

e one programming languages for procedures: Sequential Function Chart (SFC).
SFC can be implemented textually or graphically.

Software applications on the MES level and ERP level are normally vendor-specifically
designed and programmed in high-level programming languages such as JAVA and C#.

Further characteristics of hardware and software in process automation can be found
in[1, 2].

2.1.3 Trend toward Integration and Standardization

In classic automation systems, the pyramid’s levels are strictly separated. Along with
the rapid development of process automation and computer technology, the differences
and borders among the levels are getting more and more blurred in modern process
automation.

Firstly, the hardware differentiation among the levels is gradually eliminated. The per-
formance of embedded systems, microcontrollers and PLCs grows by orders of mag-

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

nitude. Modern PLCs can nowadays also process complex algorithms which was only
possible on hardware that was used on the upper levels. Additionally, the dependency
of software on hardware is continuously decreasing. Devices with universal operat-
ing systems (e.g. soft-PLC with Windows or Linux) are continuously spread. Modern
computer technologies like virtualization and cloud computing are applied or being in-
tensively discussed in communities. Due to the increasing hardware performance and
independency, even more functionalities and hardware will no longer be exclusive to a
certain level of the pyramid. For example, process control logics which are traditionally
executed on the control level, can nowadays also be distributed into field devices with
the Fundation Fieldbus technology.

Secondly, the requirements on integration and interoperability of automation systems
has increased significantly in the last years. Automation functionalities on different sys-
tems and pyramid’s levels are required to be interconnected more closely. One example
for this trend is the batch control. In classic DCS, production requirements (amount,
quality, time etc.) are given by ERP tools, e.g. SAP; batch recipes are mostly manu-
ally - parameterized and executed in DCS; production data are achieved on the MES
level. The call for continuous improvements in production efficiency has led to more in-
tense requests for a further integration of ERP-, MES- and DCS-functionailities in recent
years.

2.2 Modelling

Along with the increasing complexity of automation functionalities, a software engineer-
ing principles was required which can help developers and users to gain a better under-
standing of the automation systems and applications. Under this circumstance, model-
driven development of automation functionalities has grown to an important research
area in industrial automation. In the following sections, the basics of model-driven soft-
ware engineering in process automation will be introduced. Chosen example models
will be shown which provide a basis for the development of the agent model in Chap-
ter 3 and for the procedure description method in Chapter 5.

2.2.1 Basics

Systems (e.g. DCS, production plant) or processes (e.g. chemical reaction, engineering
process) in the real world often need to be described from different perspectives. For
instance, the representation, attributes and behaviors of the same production plant are
normally different in different application context (e.g. simulation, control, functional de-
scription, alarm monitoring etc.). The description from a certain perspective (or aspect)
can be regarded as a model of the system or process.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.2 Modelling

According to [6, 7], the term model is formally defined as a depiction of a system or
process in another conceptual or concrete system which is obtained on the basis of the
application of known legitimacies, an identification or assumptions and which displays
the system of the process with sufficient accuracy with respect of the selected questions.
As the definition implies, models are conceptual, generalized, theoretic, not represen-
tational and always involve a specific context or aspect. The process towards creating
a model is called modelling which can be regarded as synonymous with abstraction.
Typical models in process automation are:

e mathematical models for process dynamics (e.g. chemical reaction),

e Piping and Instrumentation diagrams (P&ID [8]) for the representation of the inter-
connection of installed equipment of a plant,

e hierarchical models for recipes, procedures and processes; these models describe
batch production according to the IEC 61512 [9] and

e hierarchical structure model for plants and instruments [9, 10].

A model can be described in different ways, e.g. mathematical equations, natural
languages or formal description methods (e.g. class diagram according to the UML
specification [11]).

Aside from the depiction with models, models and modelling concepts themselves are
also subjects of the research works. In software engineering, the following terms are
important for the construction and implementation of models:

Meta Modelling is an abstraction of model. The product of a meta-modelling pro-
cess is called meta model which is a “model of a model”. A meta model specifies
elementary components, associations and rules of a model. According to the MOF
specification [12], models can be classified into four abstraction layers: instance (e.g. a
valve control unit “Y014”), model (e.g. “on/off valve”), Meta model (e.g. class, operation,
attribute) and Meta-meta model (e.g. meta-class, meta-attribute, meta-operation).

The Core Model describes fundamental facts and circumstances of a system or pro-
cess. A core model is generic, domain-neutral and unique. It identifies the generally
accepted “truth” that is sustainable and has no more valuable alternative variant. For
instance, basic construction and runtime behaviors of process automation applications
are generically and formally defined in a core model [13].

Reference Model: As the name implies, a reference model is a reference or design
pattern for developing specific models for an application area or domain. In comparison
with application- or domain-specific models, a reference model is neutral and is to be
designed as the most appropriate model variant or design pattern. It gives a guideline
for the construction and development of frames, rules as well as constraints for the
treatment of certain tasks in different application areas. In contrast to the unique core
model, a reference model may have alternative versions and even counter examples.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

cyclical execution

] FB1 @ L] signal
data flow —___JH | connection
E logic E
— data B u
| | - n [r—
pits outputs u \\ data flow
feedback

Figure 2.2: Function blocks according to the IEC 61131-3

2.2.2 Function Block

The function block is a central modeling principle in industrial automation. The history
of the function block technology can be tracked back to the 1960s where control circuit
elements (e.g. relay, timer and PID-controller) were gradually replaced by software
modules on Programmable Logic Controllers (PLC). Every function block encapsulates
internal logics and possesses input variables and output variables. Function blocks
can be connected to each other via signal connections which map electrical wires and
model the data flow. The modular and software-based solution on PLCs allows a flexible
manipulation and extension of control logics without hardware changes.

Function blocks are also well-established in further application areas, e.g. dynamical
modelling or simulation. Typical automation tools and modelling environments that apply
function blocks are MATLAB/Simulink, LabVIEW, Modellica, SIEMENS/SIMIT, WinMOD
etc. A meta-model of function blocks will be introduced in Section 6.1.1. In the following
sections, the application of the function block technology in two automation standards
will be introduced.

Application in IEC 61131-3

The function block is defined as an elementary Program Organization Unit (POU) in
the IEC 61131-3 [3] (see also Section 2.1). The standard has specified among other
data formats, communication interfaces and runtime behaviors of function blocks. Addi-
tionally, a set of standard function blocks (e.g. addition and multiplication) have also be
defined as standards.

Function blocks (FB) can be linked to each other via signal connections and compose
a Function Block Diagram (FBD). FBDs may nest subordinated FBDs. One example is
given in Figure 2.2

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.2 Modelling

In process automation systems, FBDs are usually implemented in the form of Contin-
uous Function Chart (CFC) which is an extended variant of FBD. In difference to FBDs,
CFCs allow a flexible positioning of function blocks. Moreover, the execution priority of
function blocks within a CFC can be freely defined, whereas an FBD has to follow the
priority rule “from top to bottom, from left to right”. Furthermore, CFCs allow feedback
connections (cf. Figure 2.2) which are not supported in classic FBDs. These three dif-
ferences between FBD and CFC are not essential and supported by FBD editors of all
major vendors of process control system. As a result, these two graphical languages
are usually regarded as synonymous in practical use.

Application in IEC 61499

The IEC61499 [14] defines the model and usage of function blocks for distributed
control logics. As shown in Figure 2.3, IEC 61499 function blocks support signal flow
and event flow. Function blocks can be distributed on different devices in the network
and communicate to each other via events.

In contrast to the cyclical execution according to the IEC 61131-3, the execution of
IEC 61499 function blocks is driven by events. An active IEC 61131 function block will
be permanently executed, although its inputs do not change in value. On the contrary,
an IEC 61499 function block starts to execute, only when an event input is received.
Every function block has an internal execution control chart (ECC) which controls the
execution of the internal algorithms, the read/write of inputs/outputs and the generation
of output events for further function blocks.

IEC 61499 is intensively discussed in the academic community. Among others, dis-
tribution, reusability, probability and interoperability are identified as the main advan-
tages [15]. However, this standard is still mainly being promoted by academics but not
well accepted by industrial users. One main reason is that the ability of distribution is
not required by the most applications, but requires higher complexity of the runtime sys-
tem. Additionally, the last three addressed advantages can also be largely fulfilled by
classic IEC 61131-3 function blocks. Furthermore, there is still no generally accepted
event model. Although the IEC 61499 is not sustainable for replacing IEC 61131, the
event-driven execution concept is worthy of being regarded in the further development
of function block technology [15].

2.2.3 Runtime System Model

The description of runtime systems is important for the development of models and
applications in process automation. [16] has introduced a unified model that can be uni-
versally applied for describing and modelling runtime systems on the field level, control
level and the MES level. Due to the application-neutral and vendor-neutral nature, this
model is taken as the terminology basis for the further discussions in the present work.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

. event
hputs outputs
FB1 F83
event flow " execution | . T .
control S = S = el .
data flow —| internal data H :—-
H algorithm : o —
data data ' FB2
inputs outputs - execution -t-»
control

basic function
block T’4|:|,_'-|__l:'_]—‘
composite F—

function block

Figure 2.3: Function blocks according to the IEC 61499

communication network

device 1 device 2
resource 1 resource 2 resource 3
application 1 application 2
SC 1 SC2 SC4 SC5
SC3
T

SC: standalone component

Figure 2.4: Model components of the unified runtime system (Figure according to [16])

An example system according to the unified runtime model is given in Figure 2.4. Key
elements of the model will be introduced below:

e Function Block is the smallest and elementary unit for organizing program exe-
cution. In this model function blocks are generically defined and do not restrict
the execution behavior in runtime. A function block can be executed cyclically
(according to the IEC 61131-3) or event-driven (according to the IEC61499, cf.
Section 2.2.2).

10

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.2 Modelling

unified runtime system [16] | related Terminology in standards
IEC 61499 IEC 61131
device device resource
resource resource task
application application orogram
standalone component (SC) -
function block (FB) function block | function block
function function function

Table 2.1: Overview of Terminology for runtime systems

e Standalone component (SC) is a further component for organizing programs. SCs
may contain function blocks and SCs. SCs possess communication interfaces
(e.g. signal inputs and ouputs) for the information exchange with further SCs. As
the name implies, an SC can theoretically be executed, irrespective of the execu-
tion of further SCs. To ensure the safety of the production, a strictly deterministic
execution within a Standalone Component (SC) is worthwhile.

e Application provides a logical name space for a set of standalone components.
An application can be distributed on one or more resources that are not strictly
present on the same physical device.

e Resource (or Server) represents a thread-safe execution environment for a set of
standalone components. Resources are independent to each other and theoret-
ically run simultaneously. A resource cannot be distributed on different physical
devices. A standalone component can be located only on one resource.

o Device represents the entire hardware- and virtual world on a node in the automa-
tion network. A device may contain more than one resources.

In practical use, the terms device and server are often regarded as synonyms. Due
to the widespread “server-client-model” from computer science, many designations like
“engineering server”, “operation server”, and “batch server” also involve the host hard-
ware, on which resources and applications are installed. In the present work, the term

server only involves resource but not device unless otherwise noted.

A comparison of the unified runtime model with related definitions in the IEC 61131
and IEC 61499 is given in Table 2.1. Detailed discussions on the model elements and
their relationship can be found in [16, 17].

11

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Update_Inputs! n Inputs_Updated?
) ©
Read_Input

(Cycle_Timer == Cycle_Time) calll
Cycle_Timer :=0

(Cycle_Timer <= Cycle_Time) CD

Execute_Program

Wait_ldle
Cycle_Finished?
Qutputs_Updated? Cycle_Timer :=
Duration_Read_|nputs +
Duration_Program

Update_Outputs! @

Figure 2.5: Cyclic execution context on an Programmable Logic Controller (PLC) or on
an Standalone Component (SC) according to [16]. (Figure according to [18, 19])

(Cycle_Timer < Cycle_Time)
Cycle_Timer := Cycle_Time

Write_Qutput

2.2.4 Time Model of Cyclic Execution Environment

The cyclic-processing runtime of automation systems can be modeled as automata ac-
cording to UPPAAL [18, 19]. UPPAAL is a software environment which allows an intuitive
graphical representation of runtime behaviors, relationship and interactions among sys-
tem components. Additionally, algorithms for model validation and verification can be
conveniently developed with the UPPAALs automata.

In UPPAAL, a runtime system is modeled as a network of automata. Every system
element (e.g. function block, server, device etc.) may have an exclusive automaton. All
automata describe behaviors in continuous time. They are standalone and theoretically
run in parallel. However, in an execution context without parallelism, e.g. on a single
threaded Programmable Logic Controller (PLC), only one automaton can be executed
at a certain time. The other automata should wait, until the runtime system is idle again.

Figure 2.5 shows the UPPAAL automation of a cyclic execution context according to
the IEC61131-3 [3]. This model can be applied to describe the execution of a PLC or
a Standalone Component (SC) introduced in Section 2.2.3. UPPAAL automations com-
municate among each other via binary communication channels. An outgoing signal
from one automaton on a channel is labeled channelname!. An incoming signal from a
channel is labeled channelname?, respectively.

UPPAAL automata are composed of states and transitions. Transitions may have
guards (expressions in brackets) and may perform actions (expressions without brack-
ets). The initial state is marked with a double-lined border. Theoretically, committed

12

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.2 Modelling

%»\"1_ \ ?%(L)

Wait_ldle O@\\”

@ 0@" vxf“% 6"’\\’ ?\“‘

Cycle_Finished! Finished_FBx?

Figure 2.6: Root task of an Standalone Component (SC, compare Figure 2.4)

states (state with the label C') and transitions have no duration, whereas non-committed
states (empty cycle) have time consumption.

The execution order of all internal components of an SC is defined by a Root Task. All
function blocks on the SC are defined as task’s children of the root task. The root task
will be executed cyclically.

In case the automaton in Figure 2.5 is in its initial state (i.e. the idle state Wait_Idie)
and the time span reaches the pre-defined cycle time, the automaton updates inputs;
emits the signal Call!; waits for the committed signal C'ycle_Finished!; updates outputs
of the PLC afterwards; and returns to the idle state at the end. As the Call! signal
is emitted in a fixed time rate, the root task (i.e. the task automata in Figure 2.6) is
triggered cyclically.

Figure 2.6 shows the UPPAAL automaton for a root task of an SC. In case the root
task receives a Call? signal from the SC (compare also Figure 2.5), the execution of
the task is triggered. Cuall signals are emitted to the task’s children that will be executed
sequentially. In the example root task, = function blocks (FB) are invoked as task’s
children. After a task’s child is executed for one iteration, a finished signal will be sent
back to the root task. When all task’s children are finished with their execution, the root
task emits a C'ycle_Finished! signal and returns to the idle state.

2.2.5 Model of Operational Resource and Operational Measure

Process control is the central operation of process control systems. [1] has introduced a
Resource Measure Model which describes hierarchical levels of heterogonous process
control functionalities and the relationship among process control modules. As shown
in Figure 2.7, control modules can be classified into three groups:

e Single Control Units (SCU) are software representatives for individual actors (e.g.
valve, ventilator etc.). Every unit is in charge of the downward interaction with
the real device in the field level, and for the upward interaction with superordinate
control modules and human users.

e Group Control Units (GCU) coordinate groups of control units (SCUs or GCUs).
Thus, a hierarchical control structure can be built. For instance, a pump control

13

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

dispose L waiting for start in processing finished delete
Operational Measure (OM): |Enginee‘rirb94|| Shuchwnl |Diagnoslic'|| | Recipe 2 | [Ml

Operational Measures *.\orcler

Operational Resources

Group Control Units (GCU):
Dosing 1

SingleCuntmIUnitsiSCU]:[|| i || | | | : || | | | ” N “ | |

Figure 2.7: Resource measure model for operative process control

unit and a valve control unit can be controlled by a GCU “pump-valve group” which
coordinates the two SCUs and realizes a flow control. The GCU can be controlled
by another GCU which controls the whole water cooling system.

e Operational Measures (OM) represent specific procedures for production, start-up,
shutdown, diagnosis etc.

SCUs and GCUs set up the level of operational resources. They represent the in-
trinsic process control functions of a plant, exist in the control system permanently and
are theoretically always active. The allocation relationship among SCUs and GCUs is
usually fixedly defined.

Operational measures (OM) realize production tasks by using operational resources.
OMs can be created and disposed dynamically. They allocate operational resources
temporarily and set them free, when the execution is finished. All operational resources
that are to be assigned are specified during the disposition. All OMs have the same
life cycle: disposed, waiting to start, processing, finished and deleted. The allocation
relationship between operational resources and operational measures is normally built
up dynamically.

2.2.6 Component Model for Hierarchical Process Control

The resource-measure-model in Section 2.2.5 specifies the general structure of process
control functionalities. For the construction and engineering of individual process con-
trol units, a design concept named ACPLT/PF' has been proposed in [20]. ACPLT/PF
defines among other things a reference model for control modules and the interaction
behavior among them. This work has been followed by different research works [20-24]
of the Chair of Process Control Engineering. Relevant discussions will be summarized
and introduced in condensed form in the following paragraphs.

"Prozessfiihrung: German expression of process control

14

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.2 Modelling

occcupancy state error state
() automatic zood efror
generic interface for i I' O t———p @
P . - - ¥
incomming orders local O/ =0 e
/" hand
PCU “ .E__; free not defined
| generic state machines working state operating state
) stationary o] function mode
3 o RY
function function function ¥ | i % .
shut ~% | "~ (" basic state
mode mode mode din | startup -
1 2 X | ¥
O idla *) out of operation
- - @ : can also be defined in more detail
| interlock logics |

'.'_ start-up stationary shut-down
generic interfaces s

for outgoing L] L =
orders 900 L =3

1 T [F3
ES—_ v

| operation-specific interlocks]

Figure 2.8: Component model of Process Control Unit (PCU)

According to ACPLT/PF, all Process Control Units can be designed with the standard
frame shown in Figure 2.8. Every PCU encapsulates Function Modes (FMs), and has
four standard state machines for controlling and monitoring the execution of function
modes (cf. Figure 2.8).

Every PCU can be dynamically occupied by another PCU (occupancy state automatic)
or the operator (occupancy state hand or local). Execution orders from requesters other
than the currently valid occupier are rejected.

Within the PCU frame, only one function mode can be active at any given time. Every
function mode is composed of three procedures: start-up, stationary and shut-down.

To enable and standardize the interaction among PCUs, as well as the interaction
between the operator and PCUs, two generic order interfaces have been defined. The
incoming interface is responsible for receiving process control order from superordinate
PCU or the operator, whereas the outgoing interface sends orders to further PCUs. Or-
der interfaces are designed to interpret process control orders with the following stan-
dard form:

order sender; order receiver; order; parameter

The first three entries are obligatory, whereas the parameter can be optionally defined
according to the specific process control order.

15

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

M
v
accupancy PCUA occupancy

state B state four standard

working working status variables

state B state

operating operating
state B state
—™ ol T process control order
state B M state N -
¥, PCUA; PCU B; START
y
PCUB occupancy
state
working
state
operating
state
error
M | state
v

Figure 2.9: Communication between two Process Control Units (PCUs)

Similar to traditional signal connections, the order communication between two PCUs
is also unidirectional. As shown in Figure 2.9, the superordinate PCU A sends a process
control order to its subordinate PCU B, whereas PCU B does not send back any reply.
Information about the occupancy and the progress of the execution is controlled by the
four generic state machines in PCU B and saved in the form of four standard output
variables. In order to inform about the current state information, PCU A can read the
four variables via signal connections.

In comparison with conventional process control solutions, ACPLT/PF provides two
main improvements. Firstly, a standard model for designing process control units has
been defined. It formulates a guideline for designing encapsulation frame, order in-
terfaces, state machines and variables representing execution states. Multiple signal
interfaces for receiving control instructions are replaced by a general order interface.
Secondly, the loosely-linked order interfaces allow a flexible interaction between PCUs.
Every PCU can be loosely coupled in the system and be dynamically occupied by an ex-
ecution requester which is not defined in advance. Moreover, the standard order format
can significantly simplify the engineering. Users can concentrate on the order content
and do not need to implementation details, such as, which variables of the individual
PCUs should be set and which syntax and semantics should be considered.

16

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.3 Service Orientation

ACPLT/PF is generally and platform-independently defined. A prototype is imple-
mented in the development environment ACPLT/OV which will be introduced in Sec-
tion 6.1.1.

2.3 Service Orientation

Service orientation is an architectural paradigm for software engineering and has re-
ceived extensive attention in process automation (cf. [25, 26]). According to OASIS [27],
service orientation is used for organizing and utilizing distributed capabilities that may
be under the control of different ownership domains.

The basic idea of service orientation was inspired by the management of business
processes among various departments within a company. Elementary services (e.g.
procurement, logistics, IT technology support) are provided by departments and can
be utilized as part of more complex services. The service user or service caller is the
service requester, whereas the supplier plays the role of service provider. A service
requester defines the functionality and entrusts one or more service providers with the
realization.

In technical fields, service orientation is suited to abstract implementation details
and to standardize communications among heterogeneous and loosely-coupled sys-
tems. As discussed in [25, 26], distributed automation functionalities can be provided
as services which possess clearly defined interfaces and support system-neutral com-
munication over networks. As shown in Figure 2.10, automation functionalities can be
abstracted as services (ellipses) in a virtual service system. Services can be flexibly
accessed and invoked. One service can use further services in the system.

For instance, data and configurations of automation systems often need to be archived.
In traditional automation systems, various servers or software packages are installed
on different systems to realize the functionality “archive”. Heterogeneous interfaces
have been developed for accessing these archives. The effort required for engineering
and maintenance is usually very high for these specific solutions. By means of ser-
vice orientation, a service “archive” with an abstraction of implementation details and
a well-descripted interface can be defined and utilized by service requesters, irrespec-
tive of their system and pyramid’s level. With this design, the usability and reusability
of automation functionalities can be significantly improved. [26] has presented a core
model of service orientation for process automation. The relationship between service,
provider, requester and service description is explicitly defined (cf. Figure 2.11)

The call mechanism of services is very similar to the function call in traditional pro-
gramming languages (e.g. ANSI C), but has some essential differences. Firstly, tradi-
tional functions are performed mostly on a local server, whereas service requests can
be sent across networks and can be fulfilled on a remote server. Secondly, the execution

17

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Service .
Interfaces Service System

\ _
reporting service.

N

/

N
\ N

|
MES I Voo
1

HEf .
archive service
L
Field Level eq.
I R - N | aintenance service

]

Process Level 1

Figure 2.10: Service-orientation for process automation. (Figure 2 in [28])

Service-Type | Describes

Service-Type

Checks to Find Description
Appropriate A
Service-Type Concretizes
Service .
Description Describes
Implements

(Checks to Find
Appropriate - — — 2\~

Service 4
— — — ~ Executes|Service

Is Responsible

for

Description

Basic System

Provides

‘Agree upon Contract

Requesting Entity Providing Entity

Service Provider

Service User

Figure 2.11: A reference mode for service-orientation in process automation. (Figure 4
in [26])

Messages

of a traditional function caller is normally blocked until the desired function is completely
finished, whereas service requester and provider are designed to execute indepen-
dently from each other. In other words, a service requester does not need to interrupt
and block its execution until the execution result is send back. Furthermore, services
should be able to describe themselves and can be explored. As introduced in [26, 29],
every service should possess a data model which contains information about service
characteristics, interfaces, data, as well as contracts and policies for using. These con-
tents should be structured and machine-readable.

18

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.4 Messages

In classic signal-oriented communication, a signal normally only contains the data
that is to be transmitted (e.g. value TRUE for the control signal VALV E_14 OPEN).
However, the content of service requests is more comprehensive. A service request
contains at least the requester address, receiver’'s address and service identity. Further
parameters specifying execution details and results are also required.

One central application of the service orientation in process automation is the OPC
UA which is specified in the IEC 62541 standard [30]. OPC UA forms a concept of
unified communication among various automation systems. The standard has defined
among other things a communication model and two example services: read variable
and write variable.

OPC UA is still not widespread in process automation. One reason for this is that
the definition in the IEC62541 standard is conceptual and abstract. For various appli-
cation areas in the automation system, standard services for specific application areas,
vendor-neutral data models and data formats for service-oriented interactions are still
to be defined. Another main reason is that DCS vendors address the integration of
own systems and software solutions with vendor-specific communication technology
(i.e. compare Siemens Simatic IT, ABB Enterprise Connectivity). Specific use cases
are to be identified by users, so that vendors can be convinced to open their system
and support vendor-neutral communication.

On the basis of OPC UA, the recommendation NAMUR NE 141 [31] has specified
typical services (e.g. read history, browse attributes of a batch recipe etc.) for the
communication between batch packages on the control level and MES level. However,
this recommendation is still not implemented in commercial DCS.

2.4 Messages

A message is a discrete unit of information sent from one communication party to an-
other. It can transmit data (e.g. temperature value, execution state) or represent a
service request.

Messages can be described in different ways. One possible implementation approach
is Value-List, in which all message contents are arranged in series and separated with
special symbols. For instance, the process control command according to ACPLT/PF
(cf. Section 2.2.6) is a Value-List message which is realized as a composed string.
Message contents, e.g. sender and receiver, are separated by semicolons. Value-List
is a compact message format which can reduce the storage space and communication
bandwidth. However, both the sender and the receiver have to master the message
syntax and the semantics of the entries. All contents must be defined and arranged
according to a fixed order.

19

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

An alternative message format is the so-called Attribute-Value-Pair, in which every
content consists of an attribute (e.g. setpoint) and a value (e.g. 5.3). All values in
an Attribute-Value-Pair are self-identified. They can be flexibly grouped, hierarchical
structured, and flexibly arranged.

A further development of the Attribute-Value Pair is the Extensible Markup Language
(XML) [32]. A typical XML-message contains contents and additional information about
the message type, coding, time stamp etc. It can be accurately interpreted both by ma-
chines and human users. Additionally, an XML message can contain a reference to a
schema which specifies the structure, grammar and content of the message. According
to this schema, incoming messages of a receiver can be formally evaluated and cor-
rectly interpreted. XML is widely used to realize a platform- and implementation-neutral
communication across networks. XML is established for instance in the realization of
web services. Many software agents (cf. Section 2.5) also apply XML-based message
formats, e.g. KQML [33]. An example XML-message will be introduced in Section 3.3.

2.5 Agent Orientation

This section introduces the design paradigm of agent orientation which provides a new
approach for software engineering in process automation. After an introduction of the
theoretical basis in Section 2.5.1 and Secion 2.5.2, a conceptual reference model for
automation agents will be introduced in Section 2.5.3.

2.5.1 Introduction

The word agent is derived from the Latin “agree” which means “to do”, “drive” or “act™.
In general, agent describes an entity which can be a human being, a trained animal, a
machine or a computer program. An agent serves as an intelligent delegate of the client
and is able to accomplish certain tasks autonomously. According to the VDI/VDE 2653
recommendation [34], a technical agent is defined as:

An encapsulated (hardware/software) entity with specified objectives. An agent en-
deavors to reach these objectives through its autonomous behavior, in interacting with
its environment and with other agents.

According to [34-36], a technical agent should possess a subset of the following pri-
mary characteristics:

e Autonomy allows an agent to control its internal state, objective-oriented behaviors
and decision-making.

2In German: “agieren”, “treiben” or “handeln”.

20

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

Authority and Autonomy

unrestricted autonomy

provide services

Mobility

interact with external data

hold local data

Reactivity
and
Interaction

autonoumous
relocation

modularly
encapsulated

script-dirven
execution of order

Software-

represent own
execution state

reasonifig solution strategy

recognize autongmuously

environment state

active detection of
execution tasks

earning ability N Objective-orientation
Situation Recognization and Flexibility

Figure 2.12: Differences between programs and automation agents (Figure based on
[35, 38])

e Encapsulation requires an agent to encapsulate states, behaviors, strategies and
objectives which are not visible externally. An agent must be an enclosed func-
tional unit with completely specified interfaces for the information exchange with
the outside [36, 37].

e Persistence describes the capability of keeping internal states during the life cycle
of an agent.

e Reactivity and Interaction enables an agent to sense the environment, to generate
reaction, and to interact with other communication partners.

e Scope of action limits the autonomy of an agent.

e Mobility allow an agent to move from one location (e.g. a PC on which the agent
is executed) to another.

Further characteristics such as proxy, rationality, and veracity are also intensively dis-
cussed in different research works. An overview of related opinions and theoretical
analysis can be found in [38—40]. Since these characteristics are application-specific
and have less general meaning, they are regarded as secondary characteristics in the
present work and will not be discussed in depth.

The primary characteristics of agents are not quantitatively defined. The abstract defi-
nitions have not clearly defined the difference between agents and non-agent entities. In
software engineering contexts, it is often confused whether a program can be regarded

21

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

as an agent. The scales in Figure 2.12 are specified on the basis of related discussion in
[35, 38]. They can be applied to differentiate automation agents from classic programs.

In general, all software agents are programs, but not all programs are agents. There
exists also no sharp distinction between agents and traditional programs. Classic pro-
grams have a low degree of properties (middle part of the diagram) as depicted in
Figure 2.12. Programs with a high degree of properties from the middle of the axes
can be regarded as agents. The outermost degrees of the diagram can be seen as the
ultimate goals of artificial intelligence.

The ability of one single agent is limited. Multiple agents often work together and
compose a so-called Multi-agent-System (MAS). An MAS can be regarded as a soci-
ety of autonomous agents. Single agents play specific roles (comparable with soccer
players assigned to different positions on the field). Complex missions (comparable
with soccer matches) can be divided into elementary tasks which are solved by indi-
vidual agents (comparable with defender, midfielder and forward). Agents accomplish
missions through different combinations and strategies (comparable with soccer forma-
tions). In addition, special agents can be employed which play the role of facilitator
and are responsible for coordination works, such as broking, matchmaking, recruiting
of service provider, broadcasting of information etc. (comparable with soccer coaches
and referees).

In technical fields, agent-orientation was originally a branch of the research area of
Artificial Intelligence (Al). It has been developed nowadays into an important modeling
paradigm which is utilized in different research and application areas. For example, [41]
has presented an approach, in which consumer’s buying behaviors (e.g. need identifi-
cation, product brokering, negotiation etc.) in e-commerce are automated by different
agents. In urban traffic networks, agents can be applied to control traffic lights, sen-
sors and further facilities, so that travel time and congestion can be reduced [42—45].
In areas of power supply, agents are suited to optimize the supply and consumption
among distributed power resources (e.g. wind park, solar farm, fuel cells) and con-
sumers [46—48]. In the area of software engineering, many researchers (cf. [49]) refer
to agent-orientation as the next dominating modeling principle after object-orientation.
By means of object orientation, entities are modelled as objects, whose capacity is rep-
resented as type-specific attributes and methods. As an extension of this modeling
principle, agent orientation defines advanced compatibilities that an intelligent entity or
object should possess.

The research on agent orientation involves two main aspects: knowledge and commu-
nication technology. A knowledge base allows an agent to sense its environment, recog-
nize situations, deduce solutions, and reach execution objectives autonomously. Com-
munication technology allows agents to interpret messages and to coordinate among
each other or with human-users. One central direction in this research area is the devel-
opment of a machine language in imitation of human languages. Research on the agent
language involves speech-act theory, ontology, role play, communication language and

22

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

protocol. Various approaches like KQML [33], FIPA-ACL [50] and JADE [51, 52] have
been developed in recent years. These studies allow agents to deal with different situa-
tional dialogs such as delegation, rejection, negotiation etc.

2.5.2 Usability in Industrial Automation

Many agent-oriented software solutions have been developed for industrial automation
in recent years. Some of them have already been tested in practical use. [53] pre-
sented an approach for data collection and interpretation in Decentralized Control Sys-
tems (DCS) and Computer-Aided Engineering (CAE) systems. [54, 55] have proposed
different self-management functionalities (healing, optimization, configuration, protec-
tion etc.) that can be autonomously managed by agents. [56, 57] have introduced an
approach in which sensor measurement can be substituted through correlated sensors
in the case of sensor failures.

Aside from the applications in specific areas, [35, 58, 59] have discussed the usability
of agent-orientation in the modelling of automation functionalities in general. By means
of agent orientation, the process control system can be constructed as a Multi Agent
System (MAS) where autonomous agents are in charge of different tasks. Different
automation objectives can be achieved through agent-agent and agent-human collabo-
ration.

As shown in Figure 2.13, agents can be applied to achieve various operation objec-
tives in automation systems. Entities (e.g. product, equipment) or functionalities can
be represented as process automation agents. Process control agents control and ob-
serve field devices (e.g. pump) or device groups. Measure agents are in charge of
operational measures for production, product transport or diagnostic tasks etc. System
agents manage distributed computing resources for warning, protocolling or archiving
and provide them as common systems services. Agents can also provide services for
engineering, asset management and model management.

The proposed use cases focus mainly on the control level and parts of its two ad-
jacent levels (cf. the area with shadowed background in the automation pyramid in
Figure 2.13). However, the discussion on agent-oriented engineering is generic and
level-neutral. Many use cases (e.g. archiving) are also suitable for further automation
levels.

All agents are modularly encapsulated. They possess a knowledge base, behave
autonomously, provide services to the outside and possess a unified service interface.
Services can be explored and invoked dynamically. Execution objectives can be defined
in form of service requests (e.g. “archive a value”). Agents can interpret the requests
and achieve the objectives on behalf of users. Implementation details (e.g. detection
of archive location, configuration for the data transmission) do not need to be known by
users.

23

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

P&ID,

Adaptation, | Engineering Model Exgﬁ” i
Optimization, Exploration A i :
PID-Tuning, ﬁ \% ,

Start-up, Alarm,
Shut-down, [Operational Standard Report,
Producing, |Measure M Service Archive,
Maintenance \e Control Level v Protocol,
Transport, a " \ a
Diagnosis, 1 Field Level . 1
Asset Sensor,
Valve Control, | Control of Actuator,
Pump Control, | Operational Product b ETETETE Controller,
Group Control, | Resource Management E
e

Figure 2.13: Process automation agents (Figure on base of discussions in [58, 59])

Agent orientation can improve the flexibility of process control systems. In classic au-
tomation systems, single automation functionalities normally have heterogonous com-
munication interfaces, and are usually rigidly coupled. All possible combinations of
functionalities have to be fixedly projected in advance. An extension involves often high
engineering cost. However, agents can cooperate to each other and solve complex
tasks together. An agent provides services to the outside and can request services
from further agents. The cooperation relationship between agents can be dynamically
built.

Additionally, the usability of automation functionalities can be improved by agents. In
traditional process control systems, operational resources for realizing system function-
alities are signals and communication interfaces. In order to control a valve for example,
users need to acknowledge which software module is to be applied, which variable(s)
should be set so that the valve can be opened and which feedback signal(s) should
be checked. For the automation of complex plants, the engineering workload of users
is high. By means of agent orientation, however, agents offer the achievement of ob-
jectives (e.g. services) as operational resources for users. Agents serve as intelligent
delegates of users and can achieve operational objectives autonomously. Users invoke
services provided by agents and do not need to master implementation details and
heterogeneous communication interfaces of heterogeneous systems.

24

https:/idol.

IP 216.73.216.36, am 20.01.2026, 06:19:58.
m ‘mit, flir oder in Ki-Syster

geschiizter Inhalt,

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

Message Input
R P Autonomous

[1L v Q Activities

— . Agent —
Input Variable | |
(local signal — B Qutput Variable
access) | — (local signal access)

(1 L] imigi N

UHY] CHHO-

Message Output
Input Interface 9 P

(read remote variable through a
reading service)

Figure 2.14: Interfaces of an automation agent

2.5.3 Concept of a Reference Model

Process automation agents can be applied in different application areas. Many com-
mon design aspects (e.g. structure, behavior, communication interface etc.) can be
generally specified in a reference model. [58] has proposed an agent reference model
which combines advantages of agent orientation, service orientation and function block
technology. This model builds a development basis for the discussions in Chapter 3 and
will be introduced in the following section.

As shown in Figure 2.14, an agent encapsulates certain autonomous activities and is
present in form of a function block. In similarity to a classic function block, an agent can
be activated or deactivated, and can communicate with its environment via signal inputs
and outputs.

Function block technology fulfills the main requirement on agents’ characteristics dis-
cussed in Section 2.5.2: Firstly, function blocks are modular and encapsulate algorithms
for achieving operation objectives. Secondly, function blocks are persistent. This means
that a function block (e.g. for pump control) can accompany the life cycle of an entity
(e.g. a centrifugal pump in field), and keep its internal algorithms and data (e.g. set
point for the power control, error state and software version). Furthermore, function
blocks are active, since they can be executed cyclically and almost continuously. They
are reactive, since they can sense their environment through input variables and exert
influence via output variables.

One central characteristic of the reference model is that agents can provide services.
In process automation contexts, services can be operative activities (e.g. process con-
trol) or organizational activities (e.g. exploration of meta-information, error diagnostic).
Further discussions and examples can be found in Section 3.2.

25

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2 Basics of Process Automation

Within an agent, components should be implemented to realize different functionali-
ties. Typical functionalities of an agent are situation recognition, service management,
status observation inference based on local knowledge bases etc. In order to realize a
flexible service-oriented communication, the execution frame of classic function blocks
is extended with the following three special types of interfaces (cf. Figure 2.14):

Message Inputs are responsible for receiving service requests. Every agent has the
same number of message inputs as services that the agent can provide. Depending
on different services, incoming requests (or commands) can be buffered or not. Ser-
vice requests are realized in form of messages. A message contains more enriched
information than a signal does. Every message is composed at least of the sender
address, receiver address and the service identity. Further service-specific parameters
and management parameters (e.g. Quality of Service) can be defined optionally.

Message Outputs are in charge of sending messages to communication partners (e.g.
another agent). A message output is in charge of sending messages to a communica-
tion partner. Every agent may have more than one message output. Every command
output is realized as a function block. All necessary entries for generating an outgoing
request are defined as input variables of the output function block.

Input Interfaces can read variables on the local server or remote servers. In contrast
to the signal input of a classic function block, the variable is read not by a signal con-
nection, but a “Get Variable” service which can access the target. In case the variable
is on a remote server, it will last for some time until the communication system delivers
the variable back. During this time, the execution of the agent should not be blocked.
The sampling interface should be implemented in such a way that it activates the “Get
Variable” service, proceeds with its execution, and checks after a period of time whether
the return value is arrived.

Similar to the communication between process control units introduced in Section 2.2.6,
the message-oriented communication between agents is unidirectional. A message will
be sent to the message input of the receiver without feedback by default. Every agent
has a standard output variable which lists the last incoming service requests and their
status. The sender can explore this variable and sense whether this request is con-
firmed or rejected by the receiver. In special cases, the sender can ask for feedback
messages (e.g. confirmation or rejection or data message). The messages should be
sent via a message output of the receiver, but not via its message input.

The elimination of feedback messages allows a simple and easy management of the
communication within automation systems. An agent will not be blocked by waiting for a
feedback. Complex algorithms for consistent backup and synchronization of messages
can be avoided. Detailed discussion and practical examples can be found in [20, 36, 58].

The service oriented communication realizes a separation of the message exchange
between the agents and the message processing within an agent. Services of an agent
can be explored and requested form the outside by sending and receiving service mes-

26

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

2.5 Agent Orientation

sages. The message-oriented communication between agents can take place asyn-
chronously. On the other hand, the execution of the services and the determination of
detailed execution behavior are controlled by the service-providing agent. This design
forms an important base for the development of autonomous behaviors of intelligent
agents [36].

27

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

3 Specification of a Reference Model
for Automation Agents

The reference model introduced in Section 2.5.3 is abstract and conceptual. Many
engineering aspects are not specified in detail. The scope of complementation and
improvement can be summarized as follows.

e |t is an assumption that services are provided and should be processed. It is to
be defined how automation functionalities can be abstracted as services and how
services can be encapsulated in agents. Additionally, mechanisms for registration,
exploration, description, invocation, and processing of services should also be
specified in more detail.

e The service-oriented communication is not compatible with the signal-oriented
communication in traditional automation systems. The former one is discrete,
whereas the latter one is continuous. Additionally, service messages and clas-
sic signals have different structure and should be processed differently. It is to be
defined how these two communication principles can be combined in the execu-
tion frame of automation agents. Mechanisms for message structuring, delivery
and processing should also be discussed

e The previous work focused mainly on the construction of multi-agent automation
system and the external design of agents. The internal construction and the exe-
cution control of internal components within an agent should be specified in more
detail. In order to fulfill specific requirements on engineering in process control,
description methods for continuous and procedural functions should be defined.

In order to gain a complete model for the implementation of automation agents, com-
plementation and extension seem necessary and will be discussed in the following
sections. Firstly, the functional and non-functional requirements on the engineering
of automation agents will be analyzed in Section 3.1. Based on this discussion, design
decisions on the agent reference model will be reviewed, revised and complemented.
Starting from Section 3.2, a further development of the conceptual model will be pro-
posed. The following engineering aspects of the model will be discussed in detail: Ser-
vice model for the abstraction of internal logics (Section 3.2); Message-oriented com-
munication (Section 3.3 and Section 3.4); internal structuring and description methods
(Section 3.5); service interfaces (Section 3.6); knowledge base (Section 3.7); reference

28

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.1 Engineering Requirements

models for the execution in runtime systems (Section 3.8); and finally, relationships and
differences to related automation technologies will be summarized in Section 3.9.2.

The objective of the analysis of engineering requirements and the further develop-
ment of the reference model is to establish a guideline for the implementation of various
agents in process automation systems (cf. Figure 2.13).

The reference model is based on function block technology. For convenience, it will
be named FB-agent which is derived from “Function-Block-based automation agent”.

3.1 Engineering Requirements

Due to high requirements on safety and technical sustainability, process automation
is conservative. In order to apply agent orientation in this field, specific engineering
aspects and restrictions should be carefully regarded. In this section, general engi-
neering requirements on automation agents will be summarized. Some requirements
are borrowed from discussions in related research works [34, 35]. Some aspects were
discussed in a previous work of the author [59] or are newly specified in the present
work.

3.1.1 Functional Requirements

Functional requirements on engineering specify structures, functions and behaviors that
are necessary for the realization of the agents’ characteristics and abilities introduced
in Section 2.5.

Requirement 1: Modularity and Classification

As introduced in Section 2.5 and [34, 35], every agent is an intelligent individual
and should be encapsulated and persistent. It is worthwhile to encapsulate agents as
classified modules in automation systems. Classification and modularity can ensure
the usability and reusability of agents. Modular agents can much easier be defined as
classes and multiply instantiated. Additionally, modularity is an important premise for
mobile agents. In case an agent needs to change its location, modular encapsulation
allows the agent to hold its internal data (e.g. state and intermediate result) and proceed
with its execution at the new location.

29

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Requirement 2: Remote and local Communication

Agents are distributed in the automation network. They should be able to communi-
cate with local partners or remote partners across networks. Appropriate communica-
tion technology and mechanisms for data exchange should be designed.

Requirement 3: Interoperability

To realize a flexible cooperation, agents distributed in the automation network should
be interoperable. Functions provided by agents should be easily accessible. Unified
data exchange formats and communication protocols should be defined.

Requirement 4: Rigid and loose coupling

The cooperation partnership between agents can be dynamically built and changed.
Agents in a flexible Multi-Agent System (MAS) should often be dynamically created,
deleted, manipulated or relocated. As a result, automation agents should be coupled to
the environment as loosely as possible. Their dependency on other system components
should be kept low, so that the error risk during a reconfiguration can be reduced. How-
ever, data to be exchanged between loosely coupled communication partners should
contain comprehensive information, among others, the sender identity and the receiver
address. To realize a secure communication, authorization information of the sender is
often necessary. In comparison to a rigid coupling (e.g. the classic signal connection),
the loose coupling may lead to a significant increase in network load. Additionally, the
rigid coupling can better ensure the timeliness, continuity and causality of the commu-
nication.

Automation agents should support a mixed form of ridged coupling and loose coupling
with the environment. The rigidly-coupled communication can be realized by classic sig-
nal connections. The loosely-coupled communication allows a flexible communication
partnership and can be suitably supported by the service-oriented communication intro-
duced in Section 2.3.

3.1.2 Non-functional Requirements

Non-functional requirements are criteria for the quality evaluation of the agent model.
According to the ISO/IEC 9126-1 [60], typical non-functional criteria for software engi-
neering are usability, maintainability, portability etc. In contrast to functional require-
ments, non-functional criteria are not mandatory. They serve as a design guideline for
agent engineering and can be tailored for individual application areas.

30

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.1 Engineering Requirements

Requirement 5: Compatibility with Existing Automation Systems

New technologies can be better accepted by industrial users, in case they can be
harmonically integrated into the existing automation systems. During the development
of automation agents, it is worthwhile to reference and utilize existing system infras-
tructures, communication technologies, and description methods. Automation agents
should be designed in such a way, that they can be easily plugged into the existing
runtime systems.

Existing agent approaches are mostly executed in PC-based operating systems (e.g.
Windows) which do not process strictly deterministically and cyclically. As listed in [61],
many agent approaches are implemented in high-level languages, typically in JAVA. For
instance, one main development framework JADE [52] employs a type of agent engi-
neering that is completely based on JAVA. However, JAVA is not compatible with most
existing runtime systems in process automation (e.g. PLC). Although there are also
JAVA-based real-time systems (e.g. [62]), it still takes long time, until these approaches
are stable and mature enough to replace the current runtime system in process automa-
tion. One central aspect to be considered by the agents’ developer is the compatibility
with the real-time context and programming languages according to the well-established
standard IEC61131-3 (cf. Sections 2.1.2).

Agents that are incompatible with automation systems can be implemented on sep-
arate hardware and linked via special communication interfaces to the automation sys-
tems. This design limits the usability of automation agents. A seamless integration is
more important. A new concept for the design and implementation of automation agents
is to be developed.

Requirement 6: White-box Engineering

Classic Multi Agent Systems (MAS) and agents are enclosed and can be regarded
as black-boxes. Users declare their needs via graphical interfaces (e.g. websites of
e-business corporations like eBay or amazon). The operation objectives are achieved
through interactions among various agents (e.g. for need identification, product bro-
kering etc.). Users can acknowledge the execution results on the graphical interface,
whereas they do not need to know how the system works and how the agents interact
among each other. Users even do not need to sense the existence of the agent system.
Furthermore, the engineering and maintenance of the system are not carried out by
users but by professional employees.

However, users of process automation systems need be aware of the implementation
in great detail. In most cases, users are also involved in the development of system
functions. For instance, control engineers often need to know which algorithm is used
during the automatic tuning of a PID controller; production procedures will be drafted
by chemical engineers, implemented by automation engineers, and monitored by oper-

31

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

ators. All these solutions should be developed on a user-driven basis without involving
the developer of the automation system.

To support the user-centralized work, automation agents should possess a white box
structure. This means that the internal logic of agents should be transparent and visible.
A user-driven engineering should be allowed. To describe different functions within
agents, description methods which can be easily handled by users with no in-depth
knowledge of programming or software engineering should be chosen.

Requirement 7: Platform- and Vendor- Independence

The usability of agents will be strongly limited, in case different agents can only be
implemented in special runtime systems and require special communication interfaces
form certain vendors. Additionally, mobile agents can only change their location flexi-
bly, when they are compatible with different systems. It is therefore desirable to design
agents independently from the underlying execution platform and the designated real-
ization technology from a certain vendor.

3.2 Service Model

The conceptual model introduced in 2.5.3 can partially fulfill the engineering require-
ments summarized in Section 3.1. Among others, the non-functional requirements
should still receive more considertation. Starting from this section, extensions and im-
provements on the conceptual agent design will be discussed according to the summa-
rized engineering requirements.

As indicated at the beginning of this chapter, one main engineering aspect of FB-
agents is the modelling of services. The service orientation introduced in Section 2.3
allows a loose coupling and a flexible cooperation of FB-agents. Additionally, it allows
an abstraction of implementation details within FB-agents.

To abstract automation functions into services, the layered model in Figure 3.1 is de-
fined for FB-agents. The model elements will be introduced in the following paragraphs.

Internal logic is the concrete implementation code for realizing a specific automation
function. Internal logics should be implemented in programming languages and contain
all implementation details.

An operation represents an elementary function or processing activity that can be
performed by an agent. Operations can be “open the valve”, “explore meta information”,
or “shut the plant down according to a control procedure”.

Internal logics within FB-agents can be abstracted into operations. For instance, the
logic “OUT:=TRUE; SET_POINT=30" within a “valve control agent” can be abstracted
as the operation “OPEN”. The aforementioned “shutdown procedure” can be abstracted

32

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.2 Service Model

e.g. valve control agent,
diagnostic agent

e.g. process control,
model exploration,

agent

encapsulate and
provision

service

Achieves objectives in
charge of service
requesters

Declares possible
execution objectives;

diagnostic fulfills service requests
grouping and
abstraction
e.g. OPEN, CLOSE, START, -
list registered services operation represulents el(.arftlentary
g S ’ execution activities
get error description -
l abstraction
e.g. “SET_POINT:= 30", implementation in
control procedure 04 internal logic specific programming

language

Figure 3.1: Abstraction hierarchy of service orientation

as a “shutdown” operation. Operations should be registered within the FB-agent and
can be explored from the outside. It should be clearly defined which input information is
required for the operation invocation.

Services can be regarded as high-level abstractions of operations. Services group
operations involve less implementation details. Possible services of automation agents
are process control, diagnostic, exploration etc. Services represent functional abilities
that can be provided to the outside. Services should be registered and should be ex-
plorable form the outside. Every service should possess a service description which
states the objective and clarifies execution criteria.

A service request specifies a concrete execution objective. The achievement of the
objective is to be realized by invoking an appropriate operation or operations. For in-
stance, an agent provides the service “product transport” which can be obtained through
different operations like “ transport with a certain flow rate”, “transport via the shortest
path” etc. The suitable operation can be explicitly defined by service requester or can

also be chosen by the agent autonomously.

A service can have multiple underlying operations. Every operation can have only one
covering service. Operations under the same service are normally mutually exclusive.
For instance, the “open” and “close” operations of the aforementioned valve control
agent represent alterative operating modes of the valve and of the covering service
“process control”. Only one of the conflicting operations can be activated at the same
time.

Operations of special services can also be activate at the same time. For instance,
an “exploration” service can group operations such as “get KPI”, “get meta infromation”
etc. The operations are not strictly alternative and can be processed at the same time.

33

https:/idol. IP 216.73.216.36, am 20.01.2026, 06:19:58.
tersagt, m ‘mit, flir oder in Ki-Syster

geschiizter Inhalt,

https://doi.org/10.51202/9783186248084

—_

w

N oA~

10
11
12
13
14
15

3 Specification of a Reference Model for Automation Agents

It should be defined for single services whether their underlying operations are mu-
tually exclusive. An example of controlling alterative process control operations will be
introduced in Section 7.3.2.

The top layer Agent in the model is the carrier of internal logics and the provider of
services. Agents are encapsulated and possess interfaces for communicating with the
environment. Every agent may contain more than one service and operation. Every
service can have many underlying operations. An operation can only be assigned to
one service.

The layered model in Figure 3.1 is defined on the basis of the service model shown in
Figure 2.11. FB-agents are service providers and providing entities at the same time.

3.3 Message Format

Service oriented interaction between FB-agents builds upon the exchange of messages.
Based on a theoretical discussion [26] of the Chair of Process Control Engineering, a
XML-based message format is specified in a student work for FB-agents. A standard
message can be generated as follows:

<?xml version="1.0" encoding="UTF-8"7>
<SvcMsg xmlins:ns="MsgSchema”>
<Header locAdr="serveri/processdata” sysAdr="10.42.12.54
:7509” MsglD="13223" RefMsglD="12432">
<AuthData>Authentication—Data goes here.</AuthData>
</Header>
<Body Service="diagnostic”
Operation="get_key.performance.indicators” Ticket="userXY”
>
<StructData ID="ServiceRequest”>
<Object ID="Pump14”>
<KVP Key="pressure”>1.0bar</KVP>
<KVP Key="flow ">30m3/h</KVP>
</ Object>
</StructData>
</Body>
</SvcMsg>

The start and the end of the contents are explicitly marked. A standard message
has two parts: header and body. The former part contains information about sender,
receiver, coding, sender authorization, time stamp, message identity etc. The latter part
consists of a set of Attribute-Value pairs (cf. Section 2.4). The given example message
requests the operation “get key performance indicators (KPI)” of the service “diagnostic”.

34

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.3 Message Format

Service Request indicates the message type. Object ID specifies the service requester.
The expected KPIs are defined as KV P Keys. An example value is given for every
desired KPI in the message and indicates data format, number of decimal places and
physical unit.

In order to simplify the message parsing, different optimization approaches can be
applied in practical use. The proposed message format can be applied as standard
message pattern. As soon as two communication parties build up a fixed and confident
partnership, they can exchange simplified messages. For example, in case a control
agent for “valve014” receive the pre-agreed code “cmd40” from a supervisory agent
“group control 010~ , it will start the service “process control” and the operation “open”
with the parameter “opening=40%".

The FB-agent model presented in this work supports two general message types:
service request and data message. As the name implies, the former one describes a
request with regard to a service (e.g. “diagnostic”). The latter one contains data such as
KPI, current execution state, request confirmation etc. In case the message is a service
request, service must be defined in the message body. Depending on different services,
operation in a service request can be either required or optional. In the second case,
the agent should identify a suitable operation autonomously.

As introduced in Secion 2.5, many agent approaches support complex conversations
(e.g. confirm, propose, rejection, negotiation) in imitation of human languages. Syntax,
semantics and rules of a certain conversation type can be modeled in a so-called on-
tology which should be loaded on the sender and the receiver. Every message header
should indicate which ontology should by loaded by the communication parties, so that
the sender can recognize the conversation type. For instance, The variety of conver-
sations between communication parties in process automation systems is limited. For
instance, it does not seem worthwhile to allow automation agents to negotiate with the
user autonomously, whether a production task is to be performed. In the most cases,
the two general message types are sufficient enough for the communication between
FB-agents.

The message format for automation applications and the classification of messages is
part of a larger research work conducted by the Chair of Process Control Engineering in
Aachen. Ongoing works and publications can be found on the homepage of the Chair.
As a general reference model, FB-agent supports only the two simple message types.
Extensions according to existing agent languages can be researched in future work. For
convenience, messages in the following discussions will be shown in simplified from:

“sender= ---; receiver= ---; service=--- ; operation=--- ; parameter= ---”

35

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

>| MDM |

N
> Fs B

—F 8 %
e
Standalone Standalone
Component 1 Component 2

Figure 3.2: Message exchange via Message Delivery Modules (MDM)
3.4 Message Delivery Model

The message exchange between automation agents can be realized in different ways.
A reference model for the implementation in automation runtime systems (cf. Sec-
tion 2.2.3) is defined in Figure 3.2.

One possible design is to allow a direct agent-to-agent communication. This design
has two disadvantages. Firstly, every single agent should be able to allow and man-
age communication with remote partners. Special interfaces for sending and receiving
messages over the network should be defined. Agents should be able to deal with
abnormal situations during the remote communication. For instance, in case the net-
work is temporary overloaded, all outgoing message should be buffered locally and sent
again when the network is free again. The agent model and its service interfaces will
be unnecessarily complex and bloated. Secondly, it is difficult to monitor and observe
the network load. Agents are decentrally distributed in the automation network. The
message-oriented communication between agents can be dynamically build at runtime.
Messages will be sent discretely and irregularly. In case the agents are allowed to send
messages directly, it is not easy to determine how many messages will be sent within
the whole network during a certain time period.

The second possible design is to manage the message-oriented communication in
a centralized manner. As shown in Figure 3.2, agents are installed on Standalone
Components (SC) which are the elementary components for organizing programs (cf.
2.2.3). Every SC possesses a Message Delivery Module (MDM) which manages the
message transmission between local and remote agents. Agents are not allowed to
exchange messages directly, but only through the local and remote MDMs which act as
intermediaries.

In case a message is to be sent from agent A to agent B as indicated in Figure 3.2, A
sends the message to the MDM on SC1. The MDM forwards the message to the MDM

36

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.5 Internal Structure

on SC2. The second MDM sends the message to agent B. In case the sender and the
receiver are located on the same Standalone Component, the local MDM delivers the
message to the receiver directly.

Message Delivery Modules (MDM) only read the receiver address of messages that
are to be transmitted. As an option, they can check the authority of the sender. Further
entries in a message are to be evaluated and interpreted by the receiver not by the
MDM.

The agent-MDM-agent communication has the advantage that the discrete and message-
oriented communication on single Standalone Components (i.e. servers) and in the
whole network can be better observed and supervised. The Message Delivery Mod-
ule on every standalone component acts as the central communication module which
manages the message exchange and deals with abnormal situations during the commu-
nication. For instance, in case the network is overloaded, all messages will be buffered
centrally in the MDM and sent until the network is free.

The idea of MDM is borrowed from network communication technology. Many existing
solutions for this area can be directly applied to solve communication problems, such as
the discovery (or addressing) of the receiver, the measures for abnormal situations etc.

The FB-agent model does not restrict mechanisms for the discovery and the address-
ing of communication participants. These two functions are to be realized as two basic
system services. In further discussions of the dissertation, the location of message
senders and receivers will be defined for convenience by their absolute path which is
composed of device name, server name and local path on the server.

The message delivery among all communication participants is unidirectional. As
discussed in Section 2.5.3, feedbacks are not supported and are to be sent separately
as data messages.

3.5 Internal Structure

As the name implies, FB-agents are to be encapsulated as function blocks. To realize
the white-box engineering required in Section 3.1.2, function block technology is applied
to construct the internal logics of FB-agents. The external design and the internal con-
struction form an invisible whole and will be termed Execution Frame of the FB-agent
model. The Execution Frame is encapsulated and possesses a local namespace for
variables and underlying function blocks of an agent. Internal function blocks within the
frame cannot be accessed directly from the outside.

As shown in Figure 3.3, internal logics of an agent are to be encapsulated as modular
function blocks which can be classified into two types:

37

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

incoming messages ﬁ :

message input

— E:E state observation —

—| - final connection

knowledge base

operation_1 | operation_x

Initial connection

sampling interface message oulput outgoing message

Figure 3.3: Execution Frame of an FB-agent: Modular composition of internal logics

1. Atomic Function Blocks (AFBs) or complied function blocks are “black-boxes”.
Their internal logic is fixedly defined, invisible from the outside, and can normally
not be edited by users. AFBs can be applied to realize functions of different com-
plexity, from simple logical operations (e.g. AND and OR), over complex algo-
rithms (e.g. model predictive control), to knowledge base (e.g. in neuronal net).
For the implementation in automation systems, an AFB can be defined as a class
in a library, and be instantiated multiple times. In case the logic is changed by the
user, the AFB class is to be recompiled and reloaded into the system.

2. Composed Function Blocks (CFBs) are “white-boxes”. Viewed from outside, CFBs
can be handled equally to AFBs. They are encapsulated and have input variables
and output variables. However, their internal logic is a composition of modular
components. The logic can be edited by users without recompilation. The modu-
lar composition allows an intuitive graphical visualization on the Human Machine
Interface (HMI). CFBs can be further divided into two subtypes: continuous CFB
and procedural CFB. The former one describes continuous functions. The latter
one is for sequential functions (e.g. control sequence) and state-based functions
(e.g. state machines). The modular components within a continuous CFB are in-
terconnected function blocks which can be atomic or composed. The nesting of
CFBs in CFBs allows a hierarchical structuring of complex logics. Internal com-
ponents of a procedural CFB are states and transitions. Their data exchange and
execution control will be discussed in Chapter 4.

The communication between AFBs and CFBs is realized through the exchange of
signals. The FB-agent model does not restrict the programming language for the im-

38

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

plementation in runtime systems. Atomic function blocks (AFBs) can be implemented
in IEC61131-3 [3] languages and further non-standard languages such as ANSI C or
JAVA, as long as they are supported by the underlying runtime system. Continuous
CFBs can for example be implemented as Function Block Diagrams (FBD) according to
the IEC 61131-3 [3]. Procedural CFBs can be designed and implemented in different
description methods (e.g. Sequential Function Chart). Appropriate approaches will be
analyzed in Chapter 4 and Chapter 5.

Function blocks realize a modular encapsulation of the internal logics of automation
agents. This modular design is native in the area of process automation and makes a
compatible integration of FB-agents in existing automation systems possible. Addition-
ally, an acceptance of users can be expected, since the users are accustomed to use
function blocks. Additionally, the requirements on modularity and white-box engineering
outlined in Section 3.1.2 can also be fulfilled.

Atomic and composed function blocks are not new in classic automation systems.
Users apply atomic function blocks to perform mathematic calculations such as addition
and multiplication. Function Block Diagrams are applied to implement interlock logics
e.g. for a pump. However, the function block technology has gradually been reduced
to a programming language with regard to its status in industrial use. The concepts
of modular encapsulation and hierarchical nesting are often neglected. For instance,
procedures in many automation systems are not modularly encapsulated. Hierarchical
nesting is often also not supported (cf. Chapter 5).

To improve the usability of automation systems, it is worthwhile to highlight the guid-
ance of function block technology during the engineering of automation functions [35,
63]. The function block technology is therefore applied as the essential modeling prin-
ciple in the FB-agent model. In contrast to classic function blocks, the programming
language for the implementation in runtime systems is not restricted. Additionally, all
continuous and procedural functions should be strictly encapsulated as modular func-
tion blocks.

Section 3.6 will introduce the realization of service interfaces. The execution control
of internal components within the Execution Frame will be modelled in Section 3.6. The
differences between traditional function blocks and FB-agents will be summarized in
Section 3.9.1.

3.6 Service Interfaces

The service-oriented communication between agents is based on the exchange of mes-
sages. To merge the message-oriented communication with the signal-oriented context
within FB-agents, services interfaces are realized as special function blocks which con-
vert messages to signals or vice versa.

39

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Message
Delivery | <« --~-~-~ | rejection
_____ 1
Module | message | X
41

service 1| | service 2

A
message inputs %

0 internal logics running| output
Senice| variable

[]
message oufput I‘-w/'l
[

——————— >

rejection message
(only if explicitly requsted)

Figure 3.4: Agent with multiple message inputs for registered services. In case the
desired service does not exist, the service requester cannot be informed about this
error.

Viewed from the outside, an agent possesses special interfaces for receiving and
sending messages. Within the agent, the service interfaces behave like normal function
blocks. An incoming message will be parsed. Its contents will be saved as output vari-
ables of the function blocks and can be read and processed by further function blocks,
e.g. via signal connections. To generate an outgoing message, the message contents
can be saved as input variables of a message output which composes a message from
the entries. Service interfaces of the FB-agent model will be introduced in detail during
the following sections.

3.6.1 Message Input and Message Inbox

Message Input

According to the conceptual model introduced in Section 2.5.3, an agent should setup
a message input for every single service (cf. Figure 3.4). To deliver a message, the
Message Deliver Module (MDM) introduced in Section 3.4 finds the receiving agent and
sends the message to the message input of the desired service. The message will be
buffered in the message input and be processed by the receiving agent. The message-
oriented communication is unidirectional. Conformations or rejections are to be sent as
separate messages.

This design has the disadvantage that the service requester cannot be easily in-
formed, in case its service request is invalid or the desired service is not registered

40

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

message input

diagnostic
serviceDescription ~ sender
» [registeredOP operation
service o parameter
inbox
. Process Control
serviceDescription sender | “onerator Message contents
incoming registeredOP operation | “OPEN are saved as
messages . parameter [30 - signals for
e downstream
function blocks
inbox for Invalid messages
messages ’ number | 3
of a certain ﬂ] sender | “Agent 4
category e

Figure 3.5: Service interfaces for the processing of incoming messages

in the receiver. In case the Message Delivery Module (MDM) in Figure 3.4 sends a ser-
vice request on an unregistered “service 3” to the agent, this request cannot be buffered
and processed by the receiver, since no message input named “service 3” exists. As
the receiving agent can only process messages in message inputs, it cannot generate
a rejection message and send it back to the sender.

The receiving agent can have a signal output (cf. runningService in Figure 3.4 which
highlights the services that are being processed or rejected. The sender can read this
output and sense that its service request is not accepted. However, a service request
can be rejected for different reasons, for instance, the agent is busy, the message is
invalid or the desired service does not exist. The sender cannot easily recognize the
actual reason.

It is defined as a concept decision that every FB-agent should possess only one cen-
tral interface for the message reception. Within the name space of an FB-agent frame,
the message Input should have a unique identity, e.g. ‘msgIN. In case the Message
Delivery Module receives a message for agent A, it will deliver the message to the target
address AgentA.msgIN.

As shown in Figure 3.5, every agent should possess only one message input. In
contrast to the conceptual model introduced in Section 2.5.3, the message input does
not represent services and does not buffer any messages. Incoming messages are
forwarded and buffered in Inboxes.

41

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

Message Inbox

A Message inbox is a container of incoming messages of a particular category. Every
registered service within an agent should have an exclusive message inbox which will
be termed Service Inbox. The message input forwards all message for a service to
the inbox of the service. Service inboxes are special message inboxes but not vice
versa. Further inboxes can be optionally defined for example for invalid messages and
for service requests that are to be rejected.

The idea of message input and message inbox is similar to an e-mail account which
can automatically sort incoming mails into subfolders for “work”, “bills”, “spam” and etc.
The Message Delivery Module (comparable with web mail server) addresses the re-
ceiver via its unique message input Agent.msgI N (comparable with liyong.yu@plt.rwth-
aachen.de), irrespective of the existence of the service register (comparable with the
subfolders). This design has the advantage that invalid messages can also be buffered
and processed by the receiver.

Service Registration

As introduced in Section 3.2, services and operations should be registered within an
agent. Services and operations should be able to be added or deleted by users.

Since every registered service has a service inbox, the list of all service inboxes can
represent the service register within an FB-agent.

A function block or a group of function blocks within an agent can be registered as an
operation (cf. Figure 3.1). Every operation should have a covering service. Ever service
inbox holds a local register of underling operations.

As shown in Figure 3.5, the inbox of the “Process Control” receives a message which
requests the operation “OPEN”. Information about sender, operation identity and pa-
rameters (e.g. opening = 30%) will be parsed by the service inbox and saved as its
output variables. These variables can be read by downstream function blocks for the
operation realization and for status observation.

Services and their underlying operations should be self-descriptive, namely, they
should possess a description which contains at least a textual introduction and a list
of parameters. The service- and operation-description can be defined on the meta level
of service inboxes. In order to allow a flexible extension and modification by users,
it is suggested to define service description and operation description as variables of
service inboxes.

As shown in Figure 3.5, every service inbox has an input variable service Description
which holds the textual description of the service and can be explored by service re-
questers. The variable registeredOP lists and describes all underlying operations of the
service.

42

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

The function-block-oriented design of the service register allows a flexible engineering
of services and operations by the user. In order to define and register a service, the user
can instantiate a service inbox. The service description and the underling operations
can be defined as parameters. In case a service inbox is modified or deleted, the service
is redefined or de-registered.

Section 6.2 will introduce an approach for the registration of operations as represen-
tative objects. In this approach, every registered operation should have an exclusive
representative object under its covering service inbox. The operation object holds the
operation description and can be flexibly defined and modified by users.

Plausibility Checks
In every execution iteration, the message input checks whether new messages exist.
The following general checks will be performed on every incoming message:
e The message format must be plausible.

e In case the message is a service request, the desired service must be registered.
In other words, an inbox for the service is present in the agent.

The following checks can be performed optionally:

e an operation is defined in the message and is registered in the agent.

the message sender must be explicitly given.
e the sender must be authorized for accessing the agent.
e the sender must be authorized for using the service.

Messages that fail the checks are regarded as invalid and will be deleted by default.
Invalid messages will be forwarded to the message inbox “invalid” (cf. Figure 3.5), only if
the sender requires a feedback (confirmation or rejection) explicitly. Valid message are
forwarded immediately to service inboxes. At the end of every execution, the message
input should be kept empty.

The service inboxes check according to the service description whether the format
of incoming messages is plausible, and whether all necessary parameter are defined.
Service inboxes parse messages. Key contents of a message are saved as signal
outputs of the inboxes and can be read by further internal function blocks (e.g. via
signal connections).

Message Processing Rule

Messages in an inbox can be processed in different ways. Every message inbox
should have the following properties which can be realized as variables of the inbox
instance or be fixedly defined in its meta model:

43

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

e Prioritization Rule defines the processing order of the messages. Messages can
be prioritized for example according to their arrival time and be processed in the
principle of “First-In-First-Out” (FIFO) or “Last-In-First-Out” (LIFO). Messages can
also be prioritized according to a certain property, e.g. the sender’s authority or
the importance. For instance, an emergency stop instruction is more important
than a normal instruction and should receive higher priority.

e Capacity defines the number of messages that can be at most contained in an
inbox. The inbox capacity is unlimited by default.

e Measure for Overflow defines the behavior of an inbox, in case its capacity is
reached. The inbox can refuse to receive any further messages. Alternatively, it
can delete the oldest message and can always receive new messages.

With these properties, different processing rules can be defined for individual mes-
sage inboxes.

For instance, the following rules can be defined for the service inbox “Process control”
of a valve control agent:

e Prioritization rule 1: Since the valve can only be allocated by one service requester
at a time, only one service request message will be accepted. Further requests
will be ignored or rejected.

e Prioritization rule 2: A manual operation should be allowed any time. Thus, the
operator has higher priority than all software requesters.

e Prioritization rule 3: In case two senders have the same priority, the message that
received earlier has higher priority (FIFO Principle).

e Capacity: 5 messages can be buffered in the inbox.

e Measure for overflow: In case more than 5 messages are received, the oldest
message will be deleted. This rule ensures that service requests from operators
will never be ignored. The service inbox can always be operated by the operator,
even if its message capacity is reached.

The valve control agent may receive the following three requests on the service “pro-
cess control” :

Message 1 : ... Sender = Agent_A; ... Operation = OPEN; ...
Message 2 : ... Sender = OPERATOR; ... Operation = ALLOCATE; ...
Message 3 : ... Sender = Agent_B; ... Operation = CLOSE; ...

The sender Agent_A of the first message wants to open the valve. The operator asks to
allocate the valve and control it manually. Agent_B wants to close the valve. However,
the valve cannot open and close at the same time. It can also not be operated manually
and automatically at the same time. According to the processing rules, all three mes-
sages will be buffered and processed, since the capacity of 5 is not reached. Agent_A

44

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.6 Service Interfaces

alias name for the message receiver

Valve A status

receiver

path

senvice

open | operation

Setpoint=0.3 |parametery

parameterd

doSend

Figure 3.6: Message output implemented as function block

and Agent_B have the same priority. Message 1 arrived first and therefore has higher
priority than message 3. Message 2 from the operator is to be accepted.

Processing rules for further services can be defined alternatively. For instance, re-
quests on a “diagnostic” service are not mutually exclusive. All incoming requests must
be buffered and processed by the receiver. The following processing rules can be de-
fined for the service inbox:

e Capacity: unlimited.
e Priority rule: First-In-First-Out (FIFO)

3.6.2 Message Output

A message output generates messages and delivers them to the local Message Delivery
Module. In contrast to the message input introduced in Secion 3.6.1, the message
output follows the conceptual model introduced in Section 2.5.3 but is not completely
redesigned.

As shown in Figure 3.6, all entries for a message are defined as input variables such
as receiver address, name of the service to be requested, operation name and param-
eters. Every message output function block has a standard input variable “doSend”. In
case this Boolean variable is set from FALSE to TRUFE, the message output checks
the plausibility of all entries, generates a message object and delivers it to the local
Message Delivery Module introduced in Section 3.4.

Every FB-agent may have more than one message output. The identity (i.e. function
block name) of a message output can be set as an alias name (e.g. “Pump0014”,
“Valve” or “Archive”) which represents a certain message receiver. A message outbox
can also be responsible for the generation of messages of a certain type, for instance

45

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

diagnostic data or rejection. In this case, its identity can be set to “diagnostic data” or
“rejection”.

The location and the actual identity of the receiver are defined as two input variables of
the message inbox: receiver and path. They can be defined manually or be dynamically
complemented. In the conceptual model introduced in Section 2.5.3, path can be com-
plemented by the runtime system. This design allows a direct value assignment from
the outside. To ensure the encapsulation property of the FB-agent frame (cf. Execution
Frame termed in Section 3.5), path is not allowed to be set directly from the outside, but
only via an input of the covering execution frame.

3.6.3 Input interface

An Input Interface can read the current value of a variable which can be present on
the local or on a remote server. In comparison with the conceptual model introduced
in Section 2.5.3, the input interface will be defined in more detail but not completely
redesigned.

As shown in Figure 3.7, an input interface is to be encapsulated as a function block.
The identity and the path of the desired variable are defined as input variables. Similar
to the message output introduced in Secion 3.6.2, the identity and the path of an input
interface can be statically defined or dynamically complemented at runtime.

To read a remote variable, the input interface invokes a system service “Get Variable”
which is to be standardly provided by every Standalone Component. The service finds
the variable, samples its current value and delivers it back to the input interface. In
addition, a time stamp is and a status variable should be sent back to the input interface.

The time stamp indicates the sampling time of the variable. In case the target variable
has no time stamp, the current system time will be taken.

The status variable indicates the quality of the value. A value can be good, bad or
questionable etc. The reference model FB-agent does not restrict the type of variable
status. A related research work on this topic can be found in [64].

Input interfaces are suitable for occasional or one-off accesses. They read the target
variable only if necessary. Classic signal connections, however, read the target variable
cyclically and load the system continuously. Additionally, the service oriented sampling
of variable value can reduce the dependence of a mobile FB-agent on its environment.
For instance, in case a mobile agent changes its location, its input interfaces do not
need to be reconfigured. No rigidly-connected signal connection should be deleted at
the old location and be rebuilt at the new location.

Input interfaces can also read variables periodically. The “Get Variable” service can
be touched off again, when the last reading activity is finish. An input interface of a
diagnostic agent can for example read a temperature value once an hour.

46

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.7 Knowledge Base

Standalone
Compontent B

Standalone
Compontent A

nput interface

U

FB1

“Get Variable ”
as a system service

Figure 3.7: Signal communication across networks via active input interface
3.7 Knowledge Base

Agents should possess a local knowledge base to realize autonomous behaviors. The
present work focuses on the construction of automation agents, not on the development
of autonomous algorithms. To realize the knowledge base in FB-agents, both, theory
and practice in area of process automation and computer science can be utilized.

Knowledge-based realization of automation tasks is not a novel research area in pro-
cess automation. Many knowledge-based approaches have been developed in resent
years. For instance, observation and diagnostic logics for field devices (e.g. pump)
can be automatically generated [65]. Basic automation logics (e.g. single control units,
HMI faceplates) can automatically initialized according to design data and knowledge
bases [66, 67]. An overview of related works can be found in [67, 68]. These advanced
automation algorithms can be applied to realize the knowledge base of FB-agents.
Section 7.4 will show an example of engineering agents, in which knowledge-based
engineering algorithms for the initialization of process control and plant simulation are
encapsulated.

A common implementation issue that the knowledge-based automation applications
face involves the coupling to existing automation systems. The most common solution
is to develop advanced algorithms in a specific programming environment and couple
the implementation to further automation systems via a special communication interface
(e.g. OPC server). A development of application-specific solutions for visualization, data
archiving, and communication interface is often necessary.

The execution frame provided by the FB-agent model allows a direct integration of
advanced algorithms into existing automation systems. Knowledge-based algorithms
can be encapsulated as function blocks (atomic or composed) and be plugged into
FB-agents. They can be abstracted as operations and services that can be invoked
via unified service interfaces of agents. Existing services in the system for diagnostic,
model management, data archiving etc. can be utilized by the new agents.

47

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

model engineering m
management = \j’}’ -
D_lﬂ b

v
Ll i [—| knowledge base [
archiving pump control Sreoreaen E}rﬂ

! 1 service-oriented [| .
D_rﬁ é’ D é’ interaction H}
a new agent

e.g. for pump diagnositc

existing agents

Figure 3.8: Integration of advanced automation algorithms as a knowledge base of
an FB-agent: Service-oriented interaction with existing system components. Existing
solutions can be utilized for model management, engineering, archiving of data and
knowledge base etc.

For example, the aforementioned knowledge-based algorithms for pump diagnostic
can be encapsulated within a “diagnostic agent”. As shown in Figure 3.8, the new
agent can communicate with the target valve control agent via service-oriented interac-
tion. It can also request an existing “data archiving agent” to read diagnostic data from
the long-term archive and save diagnostic results in the archive. Further services for
model management and engineering can be applied to maintain, analyze and backup
the knowledge-base of the new agent.

3.8 Execution Model

Theoretically, FB-agents are standalone modules that can be executed simultaneously
and independently from each other. However, in order to avoid unexpected execution
result and ensure a safe operation in automation systems, a deterministic execution
within the FB-agent frame is desirable. In other words, internal components of an FB-
agent should be executed according to a clearly defined order.

In every iteration cycle, the following execution procedure will be performed once:
1. Switch incoming signal connections and update all inputs.

2. Execute the unigue message input

3. Execute message inboxes
4

. Switch the so-called initial connections which connect inputs and internal function
blocks (cf. Figure 3.3).

48

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.8 Execution Model

Update_inputs_x!

O Call_agent_x?
Finished_x!

']‘ Final_connections_switched_x!
Switch_final_connections_x!
Finished_intask_x?
Call_intask_x!

©

Initial_connections_switched_x!

Inputs_updated_x?

Call_message_input_x!
finished_message_inbox_x?
Call_message_inboxes_x!

finished_message_inboxes_x?

Switch_initial_connections_x!

Figure 3.9: UPPAAL automaton for one iteration of FB-agent execution frame

5. Execute an internal task list named intask which controls the execution of internal
function blocks within an agent. Although the message input and the inboxes are
also function blocks, they should be regarded as special inputs and should be
executed at the beginning of the iteration cycle. Function blocks under the task list
will be executed by default “from above to below, and from left to right” as they are
positioned on the graphical visualization. The execution order can also be flexibly
defined by users.

6. Switch final connections which are connections ending with a signal output (cf.
Figure 3.3).

The execution procedure is represented in form of a UPPAAL automaton in Figure 3.9.
Based on this procedure, FB-agents can support the following execution behaviors:

e Cyclical Execution approximates a time-continuous execution. The aforemen-
tioned execution procedure will be processed cyclically. A cyclic processing agent
is always active.

e Event-driven Execution: An event-driven agent is inactive in normal state. It starts
with its execution only if a certain event occurs. The FB-agent model does not have
event inputs. An event can be for instance the value change of variables, or the
receiving of new messages. An activated agent will be cyclically executed, until it
reaches a certain stable state (e.g. all internal parameters do not change anymore,

49

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

or an underlying procedure is terminated). Then, the agent will be deactivated
automatically.

e Call-based Execution. The agent is always inactive and will be executed, only if
it is invoked, e.g. by a task. Call-based agents are prepared for runtime systems
with no cyclic-processing context.

Due to the central role of the cyclic-processing context in industrial automation (cf. Sec-
tion 2.1), further discussions in this dissertation focus on this mode unless otherwise
noted.

3.9 Related Automation Technologies

The development of the FB-agent model has referenced many related works and ex-
isting solutions in process automation and computer science. The relationship and
differences will be summarized in this section.

3.9.1 Relationship with Function Block Technology

The FB-agent model applies the function block technology as a basic modelling princi-
ple for the modular encapsulation of agents and their internal components. In order to
be integrated in existing automation systems, the FB-agent has inherited many mecha-
nisms (e.g. communication interface and execution scheduling) from these two function
block standards IEC 61131 [3] and IEC 61499 [14]. However, the FB-agent has the
following three main differences to the two standards.

Firstly, the FB-agent model extends the classic function block with service interfaces
which realize a loosely coupling and dynamical cooperation of agents (cf. discussion
in Section 3.6). In contrast to the event interfaces according to IEC 61499, service
interfaces are not fixedly connected with communication partners. Service-oriented
communication can be dynamically built, whereas event-oriented interactions among
IEC 61499 FBs should be realized as fixed connections. Additionally, every FB-agent
has only one standardized message input, whereas IEC 61499 function blocks may
have multiple event interfaces. Furthermore, structure and key contents of FB-agents’
service messages have a standardized definition, whereas the IEC 61419 event is ab-
stractly defined without the use of a unified data model.

Secondly, function block is defined as a program organization unit and a programming
language in the two standards, whereas FB-agent applies function block as a modelling
principle. On the one hand, as introduced in Section 3.5, the description method for
the implementation of FB-agents’ internal blocks can be freely chosen. On the other
hand, the FB-agent model is neutrally defined for different execution environments (call-

50

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.9 Related Automation Technologies

<> self-descripted service

s
v

Service orchestration and message-oriented communication
concrete implementation of an automation functionality
automation agent

|

device 1 archiving engineerin
o [Q‘a
oo T R
Ve | N network \ | Y
s [LW
FF 3 y
X papn ci‘:i bé,) Sa
device 2 device 3 process control diagnositc
(a) Classic Service Orientation (e.g. (b) Services are provided by agents
OPC UA): Services are provided by and can be flexibly invoked by local
devices. A service can not invoke or remote requesters.

services on the same device.

Figure 3.10: Two different concepts of Service orientation in process automation

based, cyclic or event-driven), whereas the function blocks according to the IEC 61131
and IEC61499 are closely coupled to a specific context.

3.9.2 Relationship with Service Orientation

The FB-agent model combines the advantages of agent-orientation and service orien-
tation (cf. Section 2.3). Internal logics of FB-agents should be abstracted as services.
The communication and interaction between FB-agents are service oriented.

Similar to the service-orientation, agent orientation also realizes an abstraction of
implementation details. However, agents possess a knowledge base and behave au-
tonomously, whereas classic service providers do not need to (cf. Section 2.5).

Theoretically, services are abstract and do not need to have representatives in the
runtime system. However, FB-agents are concrete and encapsulated software modules
in runtime systems. They possess individual name spaces and act as service providers.

As introduced in Section 2.3, service orientation is currently applied in process au-
tomation for realizing a neutral communication between different systems. According to
the OPC UA standard [30], services are provided by systems or servers installed in the
automation network and can normally only be invoked by remote requesters (cf. Fig-

51

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3 Specification of a Reference Model for Automation Agents

ure 3.10 (a)). According to the FB-agent model, services are provided by agents. As
shown in Figure 3.10 (b), services can be invoked by local and remote requesters. A
flexible orchestration of local services on the same server is allowed.

FB-agents are regarded as the elementary service providers in the automation sys-
tem. Services are provided by agents not by the servers on which the agents are in-
stalled. This design principle is similar to the soccer example introduced in Section 2.5.
The “defense” and “attack” services are provided by the soccer team and the individual
players, but not provided by the play field. The whole automation system can be re-
garded as a composition of agents which are in charge of services of “process control”,

“diagnostic”, “engineering” etc.

Along with the rapid development of computer science, the boundary between devices
and servers will get more and more blurred (compare discussions in Section 2.1.3).
Modern computer technologies like virtualization and cloud computing allow users to
design software irrespective of the underlying hardware infrastructure. The FB-agent
model follows this trend and provides a new design concept for the construction of the
future service-oriented automation systems.

3.9.3 Relationship with ACPLT/PF

Both the FB-agent model and the ACPLT/PF (cf. Section 2.2.6) follow the resource-
measure-model introduced in Section 2.2.5. The FB-agent model borrows many design
decisions from ACPLT/PF, among others, the function-block-oriented encapsulation and
the unidirectional communication. However, FB-agents and PCUs have essential differ-
ences. These will be summarized as follows.

Firstly, ACPLT/PF is designed for process control, whereas FB-agent is a general
design pattern for a broader range of application areas such as archiving and engi-
neering (cf. Figure 2.13). Additionally, FB-agents have advanced requirements on their
functional abilities. FB-agents should possess a knowledge base and autonomous be-
haviors.

Secondly, communication interfaces are differently defined in ACPLT/PF and FB-
agent. The order interface in ACPLT/PF is realized as a special signal input of func-
tion block. In case it receives many messages from different senders, only the last
received order (or command) will be taken. Further orders will be overwritten, even if
they have higher priority and emergency. For instance, the request on a manual oper-
ation in the example in Section 3.6.2 will be ignored. However, the message input and
service inboxes of FB-agents can process messages in different ways. Different prioriti-
zation rules and processing modes are defined for individual services. As discussed in
Section 3.6.2, no important messages (e.g. a manual shutdown) will be overwritten or
overlooked.

52

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

3.9 Related Automation Technologies

Thirdly, ACPLT/PF applies a simple message format of Value-List. FB-agents apply a
XML-based format which allows a flexible construction of content-rich messages and a
formal evaluation according to message schemas (cf. Section 3.3).

Furthermore, the FB-agent model realizes a white-box engineering of internal log-
ics. In the ACPLT/PF prototype presented in [20], every Process Control Unit (PCU)
should be implemented as an Atomic Function Block (AFB). The main limitation of this
black-box design is that every variant of POU should be defined as a library class. Con-
sidering varieties of group control units and operation measures in process automation,
it is difficult to avoid a class explosion. A workaround of ACPLT/PF presented in a
student work allows the user to edit part of the internal procedures. This design only
realizes a gray-box, which means that the internal logic can be partially acknowledged
and manipulated by users. The white-box engineering outlined in Section 3.1 is still not
supported. In contrast to ACPLT/PF, the FB-agent model allows a modular encapsula-
tion of all its internal logics, a flexible combination of black-boxes and white-boxes and
a service-oriented abstraction model (cf. Figure 3.1). Service interfaces of FB-agents
are realized as internal function blocks of the agent frame. The transparent design of
FB-agents ensures a user-friendly engineering. Internal logics of agents can be easily
mastered and flexibly manipulated by users.

53

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

4 Usability Analysis of Existing
Procedure Description Methods

Automation agents introduced in Section 2.5 and Chapter 3 need to observe internal
execution status, recognize environment situation and formulate sequential operations.
All these state-based functions or sequential functions can be called procedures, which
define the strategy for carrying out process control processes in runtime systems. In the
following sections, existing Procedure Description Methods (PDM) in industrial automa-
tion will be compared. Their usability for the FB-agent model presented in Chapter 3 will
be evaluated.

Typical PDMs in industrial automation are Finite State Automaton, Petri Nets, Se-
quential Function Charts and Procedural Function Charts. An introduction and a brief
comparison of the PDMs is given in the recommendation VDI/VDE 3681 [7]. In the
following sections, the PDMs will be evaluated in detail. Specific requirements on the
agent engineering outlined in Section 3.1 will be taken into consideration. Addition-
ally, further PDMs (e.g UML Statechart and Grafcet) which were not introduced in the
VDI/VDE 3681 but are important in process automation are also considered. All the
regarded PDMs are evaluated according to the following criteria:

e Completeness of syntax. With the increasing complexity of automation func-
tionalities, the requirement on the syntactical completeness of description meth-
ods has increased. A PDM is not suitable enough for comprehensive automation
applications, if it is only composed of a set of simple steps and transitions. An
overall solution is needed which can deal with actions, communication with the
environment, and high level structures (e.g. alternative branching, hierarchy and
concurrency).

e Unambiguity of semantics. Ambiguous semantics can lead to inconsistent re-
sults between the specifications of users and the implementation in runtime sys-
tems. As the user-centralized engineering is the central aspect of the FB-agent
model, it is especially important to ensure that the semantics are clearly defined.
Additionally, unambiguous semantics serve as a good base for the formal valida-
tion and verification.

e Compatibility with existing automation systems. As discussed in Section 3.1
and Chapter 3, FB-agents should be integrated into the existing automation sys-
tems. Thus, PDMs for agents should also be compatible with the control flow and

54

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.1 Finite State Automaton

data flow in the automation systems. It will be evaluated, whether the PDMs can
be implemented in the automation runtime environment. Additionally, to support
the procedure description in Composed Function Blocks (cf. Section 3.5), it will
be checked, whether the PDM can be composed of modular elements in runtime
systems.

4.1 Finite State Automaton

Finite-State Automaton (FSA) (or finite state machine, state machine, sequential ma-
chine) is an abstract mathematical method for modelling the behavior of a system which
is composed of a finite number of states. The word “automaton” can trace back to a
Greek word which means “self-acting”. The automaton theory plays an important role
in theoretical computer science. It is widely used in various application areas such as
computer programming and sequential logic circuits.

In 1943, McCulloch and Pitts have presented an FSA approach for the description of
neural nets [69] consisting of finite states. Based on this work, the final definition of
FSA was established by Moore and Mealy [70, 71] in 1950s. Named after the authors,
two kinds of FSA were defined: the Moore machine that generates outputs in states
and the Mealy machine that generates outputs in transitions. A Moore machine can be
converted into an equivalent Mealy machine and vice versa.

Syntax and Semantics

Finite State Automaton (FSA) consists of an input alphabet, an output alphabet, a
set of states and a set of transitions. Inputs can be regarded as events. Outputs can
be seen as actions, which are the consequences of events and state changes. States
and transitions should be interconnected alternately, meaning that steps are followed
by transitions and vice versa. Every FSA has an initial state. A state can be active or
inactive. Concurrency is not supported. Only one state within a PDM can be active at a
time.

‘ Input \ State H closed opening opened closing
cmd_open || state opening
fully_opened state opened
cmd_close state closing
fully_closed state closed

Table 4.1: Equivalent State Table of the Finite State Automat in Figure 4.1

Figure 4.1 and Table 4.1 shows three equivalent description variants of the control
logic of a switch valve: Moore machine, Mealy machine, and state table. The former two

55

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

initial state e

cmd_open / open fully_closed /

Cmd_open fully_closed

state
action
fully_opened / cmd_close / close fully_aopened _ cmd_close
% transition
opened
condition
(a) (b)

Figure 4.1: Equivalent Mealy machine (a) and Moore machine (b)

are graphical, whereas the last one is textual. The valve has two stationary states: fully
open or fully closed. Their transitional phases are represented as two further states. The
input alphabet of the FSAs is a vector of the conditions, whereas the output alphabet is
a vector of the actions. In case an input alphabet is received and a condition is fulfilled
(e.g. the command “cmd_open” asks to open the valve), the related action (e.g. “open”)
will be emitted.

FSA is an early approach for the graphical description of procedures. Since FSA use
simple elements and simple structures, their semantics can be easily formally defined
and mathematically analyzed. In computer science, there exist many algorithms and
tools for formal validation and verification of FSA.

However, the graphical notation of FSA can quickly become complicated and confus-
ing, in case the described procedure has dozens of states. Due to the risk of state
explosion, many commercial tools (e.g. S7-HiGraph for modelling control logics) are not
well-established in the practical use.

FSA’s elements are abstract graphical notations. The inputs and outputs are clear
text. It is not defined clearly in which format they can be implemented in the runtime
system. Additionally, many semantics are not clearly specified. For instance, in case
two outgoing transitions of a state are both fulfilled, it is not clearly defined which one of
the conflicting transitions can fire. A prioritization rule is missing.

Application in Automation

The modelling method FSA is widespread in the practical use. In industrial automa-
tion, FSA is typically applied to specify PLC logic or evaluate an implementation [7].
FSA cannot be directly integrated into automation systems. For the implementation,
FSA should normally be transformed into a textual programming language.

56

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.2 Statechart

Usability Analysis

FSA is a simple but rigorous description method. It is suitable for describing simple
procedures in FB-agents. Due to the risk of state explosion, it is also not suited to
describe complex procedures. Due to the missing of implementation model for the
runtime system, it is not suited to be applied to realized white-boxes, i.e. Composed
Function Blocks (CFB, see Section 3.5).

4.2 Statechart

Statechart constitutes a further development of the Finate State Automaton (FSA).
Among others, concurrency and hierarchy are supported.

Statechart was firstly presented by Harel in his work [72] for modeling discrete state
transitions in reactive systems. On the basis of this work, many Statechart variants have
been developed in the last decades, e.g. STATEMATE [73], PLC-Statecharts [74]. The
UML specification [11] has defined an object-oriented variant which is also known as
UML Statechart (also UML State Chart Diagram, UML state machine). The specifica-
tion is released as an international standard IEC 19501 [75]. It has standardized the
graphical notation of chart elements, a meta-model and the information exchange with
the environment. Due to the normative nature of the UML, the term Statechart will now
always refer to the UML Statechart, unless otherwise noted.

Syntax

Core elements of Statecharts are: transitions, events, actions, simple states, com-
posite states and pseudo states (e.g. initiation, transition fork, memory for composite
state etc.). An exhaustive introduction of all these extensions exceeds the scope of this
dissertation. Instead, key elements will be introduced with the example Statechart in
Figure 4.2.

As shown in Figure 4.2, states are marked as rectangles with rounded corners. States
can be simple or composite. Simple states (e.g. State 1 and State 21) are atomic,
whereas composite states (e.g. State 2 and State 3) contain subordinate Statecharts.

Every Statechart has at most one initial state and one final state. An initial state
is shown as a solid filled circle. A final state additionally has a surrounding circle. In
contrast to simple and composite states, initial and final states neither have state names
nor actions.

A composite state may nest one subchart and build a hierarchical structure (e.g. State
2in Figure 4.2). It can also nest many subcharts, which are processed concurrently. Ev-
ery concurrent subchart (see State 3) is contained in a region. Neighbored regions are

57

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Initial State Composite State

State 1 State 2

State 3
entry/action11

dolaction12 Call Event ? : ?
tion1 ;
exitaction13) State 21 Oaraion i | State 31] : f State 33

i Signal Event - : i
Simple State = entryraction21 | <25) [entry/action31 | j (entyiactons
l State 23 o) [c>23]:
Change Event . .
30 |
rmo Event| [swes2) i [owes
|
After 2min. J ! L

Final State @

(,)
/ \R%gr’onf l ﬁ'egionéi' /

Bool_1[d<20] / message
« L3 =

Trigger Guard Effect

Figure 4.2: Elements of UML/Statecharts

separated from each other by dotted lines. Composite states realize a clear represen-
tation of complex structures and can significantly reduce the risk of state explosion.
Composite states and concurrent regions are not encapsulated. A transition can con-

nect two states in two regions directly (see the transition from State 32 and State 33 in
Figure 4.2).

Every transition has one source state and one target state. Two states can be con-
nected to each other via more than one transition. A complete transition has four parts:

e arc connects the source state and the target state,

e trigger is an incentive event for the transition. An event can be one of the following
types:

— A Call Event: a function is invoked,
— A Change Event: the value of attribute(s) or association(s) is changed.
— A Signal Event: a particular signal is received.

— A Time Event: a deadline has expired. The deadline can be set relative to an
explicit starting time, or to the time of entry into the source state.

e guard is a Boolean expression which allows (TTRUE) or prevents (FALSE) the
change of state,

e action will be performed, when the transition fires.
A transition can have more than one trigger and more than one guard.

Actions are the response of Statecharts on events. An action can be a variable as-
signment, function invocation or event generation. Statecharts merge the design of
Moore machines and Mealy machines. It means that actions can be generated both

58

https:/idol.

IP 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.2 Statechart

in transitions (e.g. the message generation in the transition from State 3 to State 4 in
Figure 4.2) and in states (e.g. all simple states in Figure 4.2).

Every action should have a type which is represented as clear text before a slash
and defines the execution behavior of the action. For instance, an entry action will be
executed when the state is entered; a do action will be continuously executed and an
exit action will be executed when the active state is left. A transition action is equivalent
to an entry-action in the target state of the transition.

Semantics

A state can be active or inactivate. When a state is active, its outgoing transitions
are also activated and will be evaluated continuously. When a transition fires, its source
state will be deactivated, whereas its target state will be activated. In case a transition
crosses the boundary of a composite state from the outside and fires (e.g. the transition
from State 4 to State 22 in Figure 4.2), not only its target state (e.g. State 22) but also
the covering composite state (e.g. State 2) is activated.

In case a state is left, the Statechart progresses until a new stable state is reached
and no transition can fire. Theoretically, the progressing is seamless and timeless. It
means, the new stable state is reached immediately, even if the old state and the new
state are separated by a sequence of intermediate states.

In case a transition ends at the boundary of a composite state (e.g. State 2 in Fig-
ure 4.2), the subchart starts from its initial state by default. A final state defines the
default ending of a subchart. In case the subchart of State 2 reaches is finals state, the
chart is terminated. The State 2 keeps active until one of its outgoing transition fires.
The subchart in a composite state can be aborted when an outgoing transition fires. In
case the State 2 is active and the variable b is smaller than 25, the transition to state 3
will fire immediately, irrespective of the state of the subchart.

All composite states in the example have no memory. This means that, in case a
composite state is deactivated, its sub-charts will be reset. In case the covering state is
activated again, the sub-charts start form their initial states. A composite state may have
also memory. In case the composite state is deactivated, it stays on its current state.
The execution proceeds from the current state when the composite state is reactivated.

Transition triggers are to be checked continuously. A guard will be checked only if the
triggers of the same transition are fulfilled. The transition can fire if its trigger and guard
are both fulfilled. For instance, the semantics of the transition from State 3 to State 4 in
Figure 4.2 can be described as follows: If the variable Bool_1is TRUE and d is smaller
than 20, the transition will fire. State 3 will be deactivated. State 4 will be activated.
Message _3 will be emitted.

59

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Application in automation systems

Statechart is a classic modelling language in computer science and is not widespread
in industrial automation. One main reason for this is that many definitions may lead
to an over-engineering of procedures. Similar to further modeling languages specified
in UML, Statechart does not specify exact execution behaviors in the operative envi-
ronment deliberately. These are left to the system developer. For instance, the syntax
of guard, event and action is not clearly defined; semantics for the evaluation order of
guards starting from the same state are also not given.

Classic Statecharts cannot be directly implemented in automation systems. [74] has
introduced a variant named PLC-Statechart, which allows a graphical programming in
PLC. The programming language PLC-Statechart simplifies the UML Statechart and
borrows many design principles (i.e. action concept) from another programming lan-
guage called Sequential Function Charts (SFC, see Section 4.4). PLC-Statecharts sup-
port only a specific part of the syntax of classic Statecharts. Among others, only signal
events are allowed. Although PLC-Statecharts ultilize the action concept of SFC, it has
not been defined explicitly how complex actions (e.g. mathematical calculation) are to
be defined. All example actions in relevant publications are only signal assignments.

PLC-Statechart is formally defined. A mathematical model of PLC-Statecharts is
presented in [18]. This model makes the formal validation and verification of PLC-
Statecharts possible. However, semantics in this model are also not complete. For
instance, semantics of composite states are not explicitly defined. Execution behaviors
(e.g. prioritization rule) of complex actions are also not defined.

Usability Analysis

As a successor of classic Finite State Automata (FSA), the syntax of Statecharts has
been extended. Among others, hierarchical or concurrent substructures can be realized
as composite states. The complexity of a flat structure without hierarchy and the risk of
a state explosion can be significantly reduced. Additionally, events which describe the
interaction with the environment are defined.

Statecharts inherit the advantage of formal analyzability from FSA. Many analysis
methods for Startcharts have been developed on the basis of the formal analysis of
FSA. As a formal language, Statechart is very suitable for the specification of logics
in FB-agents. However, similar to FSA, Statechart is also a visual description method
and not suitable for the implementation in runtime systems. The main restriction is
that the event-driven execution behavior is not compatible with the cyclic processing
environment, which plays a central role in the process automation system.

The variant PLC-Statechart is compatible with the cyclic-processing context according
to the IEC61131-3. In principle, this approach can be applied as one possible imple-

60

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.3 Petri Net

mentation approach for Composed Function Blocks (CFBs). However, semantics of
PLC-Statechart are still to be complemented.

4.3 Petri Net

Petri nets (PN) were published by mathematician Petri in his PhD thesis [76] in the early
1960s. On the basis of this work, many types of PNs have been developed. PN is a very
important description method in computer science. PNs are widely used in concurrent
programming, workflow management, data analysis etc. Their main strength is that they
are very suitable for the description of concurrency, especially in decentralized systems.

Syntax

As shown in Figure 4.3, Petri nets are composed of places, transitions, arcs and
token. Places are drawn as circles, transitions as bars or rectangles, and tokens as
solid circles. Arcs are directed and can connect either a place with a transition, or a
transition with a place.

Tokens can move from one place to another. The maximal number of tokens that
a place can store is called capacity of the place. The number of tokens that pass an
arc every time can also be limited by the so-called weight of the arc. Unless explicitly
defined, the capacity of a state is infinite, and the weight of an arc is one by default.
The distribution of tokens at a certain time is called one marking of the net. The token
distribution from which a Petri net starts to progress is called initial marking.

A Petri Net is ordinary, in case the weight of all arcs is one and all transitions are
trivial, which means every transition has exactly one source place and one target place.
A Petri Net is general, in case the arc weight can be greater than one. Many high-level
PNs have been developed on the basis of general Petri Nets, for instance:

e Colored PN: Tokens are categorized. Tokens of different categories are marked
with different color.

e Timed PN: Arcs of transitions can have a delay, so that the movements of tokens
do not take place immediately. Every token has an own time stamp which indicates
the creation time of the token.

e Hierarchical PN: Places can nest sub-nets.

e Signal Interpreted Petri Nets (SIPNs) advanced ordinary Petri Nets which support
input and output signals, cyclical processing, global execution time and hierarchy.
Every SIPN should have only one initial token. A multiplication of tokens in split
(or simultaneous) sequences is allowed.

Detailed Introductions of the classification of Petri Nets can be found in [77, 78].

61

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

token

initial place split transition

ramification place

trivial place

trivial transition

junction place

collection transition

terminal place

Figure 4.3: Example Petri Net

Semantics

Many theoretical work focus on the mathematical model, the network rules and the
notation of Petri nets. In fact, the graphical visualization of networks is not the basic
idea of Petri Nets. PN can be regarded as a physical theory proposed in the language
of computer science. Many mechanisms are carefully designed according to the “natural
laws”.

For instance, Petri-Nets do not follow any central iteration. There exists neither global
time nor central schedule for the net elements. All transitions are standalone and are
- the same as in the nature world - always ready to react to events immediately. Any
fulfilled transition can fire at any moment without regarding the progress of the whole
net. The global state of a PN is not represented by a single active state, but by the
marking (i.e. token distribution) in the net.

In contrast to Finite State Automata and Statecharts, the state activity (or state mark)
is not “transfered” from one state to another state in a Petri Net. As shown in Figure 4.4,
Petri nets’ transition “consumes” as many tokens from its source places as the weight of
its input arcs, and then “produces” as many tokens in its target places as the weight of
its output arcs. During the consumption and the production of tokens, the total number
of tokens in the PN is not kept constant.

Precise mathematical models and analysis methods have been introduced in different
literature resources. For instance, a formal model is presented in [78]. These theoretical

62

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.3 Petri Net

(a) Beforehand (b) Afterwards

Figure 4.4: Consuption and Creation of Tokens in Petri Nets

studies can support a formal analysis of Petri Nets. Additionally, a Meta-model and a
XML-based interchange format PNML for Petri net tools are specified in [79, 80].

On the basis of the mathematical models, the following properties of a PN can be
formally analyzed:

e Reachability describes whether a marking can be reached from the initial marking.

e Liveness indicates the possibility of a deadlock during the progression of a Petri
net. A net is dead, if no transition can fire. A net is alive when it cannot be dead
for all possible markings.

e Boundedness gives the maximal number of tokens in places. A place is k-bounded,
when it cannot contain more than k token for all markings. A Petri net is k-
bounded, when all its places are k-bounded.

e Reversibility indicates, whether the initial marking of a net can be reached from
any other markings.

These properties can be analyzed with various methods, such as coverability graph [81],
reduction rules [82], finite net unfoldings [83, 84].

Application in Automation

Petri Net (PN) is very suitable for the specification, fine design, formal analysis and
verification of automation functionalities, but less suited for implementation [7]. The
event-driven progression without global scheduling of net elements is not compatible
with the cyclic processing context in existing automation systems. In the practical use,
a procedure modelled by a PN should normally be compiled into another language that
can be executed in the target runtime system.

The variant SIPN can model timed behaviors in automation systems. As an early
approach for describing automation logics, the syntax and semantics of SIPN are still
simple and incomplete. Among others, only simple actions (e.g. variable assignement)
are supported. Mathematical operations are normally not allowed; prioritization rules
for conflict transitions (i.e. outgoing transitions from the same place) are not specified.

63

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

On the basis of Petri Nets, further approaches such as Grafcet (see Section 4.5) and
SFC (see Section 4.4) are developed especially for the industrial automation. Many
designs of Petri Nets (e.g. token mechanism) are inherited by the latter approaches.

Usability Analysis

The main strength of Petri Nets (PN) is the token-driven mechanism which allows a
continuous execution and can appropriately describe concurrent behaviors. However,
the execution principle is not compatible with the cyclic processing context, which is
dominant in process automation. For the implementation of FB-agents, a strict de-
terministic execution of internal logics is required. All internal components should be
sequentially executed according to a fixed order. In this context, the strength of PN
becomes invalidated, whereas the shortcuts will limit their usability.

In principle, the variant SIPN can be applied to model internal logics of FB-agents.
However, it can also not be directly implemented in automation systems without a spe-
cial code generator. Thus, SIPN is not suitable for implementing Composed Function
Blocks (CFB) in FB-agents.

4.4 Sequential Function Chart

Sequential Function Chart (SFC) is a procedure description method specified in the IEC
61131-3 [3] for the PLC programming (see also Section 2.1.2). SFC was developed on
the basis of the work conducted by Levis [85] and standardized in the IEC 61131-3.
SFC is usually regarded as a graphical language. In fact, a textual representation has
also been given in the standard.

4.4.1 Syntax

PLCs were developed to model and replace analog circuit (hardware) in a software
environment. For this historical reason, many PLC languages such as FBD and SFC,
have adopted many working principles of electric circuits. Among others, the electrical
wires are mapped as software signals and connections. SFCs communicate with the
environment via signals. The information exchange between SFC elements (e.g. steps
and actions) is also realized via signals. For instance, the name of an SFC action
(e.g. a1l in Figure 4.5) is to be implemented as a Boolean variable (e.g. al=FALSE)
in the runtime system. This variable controls the activity of the action similar to an
on-off switch in an electrical circuit. In case the action is to be executed, e.g. x:=5 in
Figure 4.5, the Boolean variable a1 in the runtime is set to TRUE.

64

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

initial step

action qualifier
+ T T2 action name

[N] a1~ |

x=5

action
action block

T3 = T4 < transition

action qualifier: reset

Figure 4.5: Sequential Function Chart (SFC)

As shown in Figure 4.5, SFCs are composed of steps and transitions. Every SFC has
exactly one initial step. The ending of SFCs is not explicitly defined in the standard.
Example SFCs in the standard and in literature have no final steps. At the end of the
chart, the last step jumps back to a previous step. Final steps are allowed in many
commercial tools. For example, SFCs in the DCS SIEMENS PCS7 should end with
precisely one final step; PLCs of SIEMENS apply the syntax of final node which is
borrowed from Statecharts.

Action and Action Block

Steps can perform two general kinds of actions: the Boolean action, which sets or
resets a Boolean variable and the non-Boolean action, which can be implemented in
any IEC 61131-3 language. Non-Boolean actions can be local or global. Local actions
can only be invoked by their corresponding step, whereas global actions are shared and
can be invoked by different steps. Global actions are a useful design for the practical
use. In case the same action is used in different steps, it can be defined as a global
action. In case its logic is changed, the logic of all related steps does not need to be
adapted accordingly.

Every action should be associated to its corresponding step via an action block which
defines the action name and the so-called action qualifier. The latter one defines the
execution behavior of the action. According to the IEC 61131-3 standard, the following
action qualifiers are available:

65

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

e N: non-stored. The action is active as long as the step is active

e R: overriding reset. The action is deactivated.

e S:stored (set). The action is active, even if the step is deactivated.
e L: time limited. The action is active for a certain time.

e D:time delayed. The action will become active at a specific time after the step has
been activated.

e P:pulse. The action is executed once.

e SD: stored and time delayed

e DS delayed and stored

e SL: stored and time limited

e P1: pulse (rising edge). The action is executed once when the state is activated.

e PO: pulse (falling edge). The action is executed once when the state is deacti-
vated.

Transition

All SFC transitions have a direction. The transition arc is normally hidden. It will be
shown, only if the transition targets a previous step.

In contrast to Statecharts, SFC transitions are not allowed to invoke actions. More-
over, triggers and guards of a transition are consolidated into one transition condition
which provides one Boolean evaluation result. When this result is evaluated as TRUE,
the transition can be fired. A transition condition can be a Boolean variable. It can also
be defined in Instruction List (IL), Structured Text (ST), Ladder Diagram (LD) or Function
Block Diagram (FBD).

Complex Structures

SFCs allow complex structures such as alternative path, concurrency and hierarchy.
Alternative path means that a step is followed by more than one successor transition.
Only one of them can fire. Concurrency is realized by simultaneous sequences, which
means a transition can also be followed by more than one simultaneous sequence start-
ing from the same step. Hierarchy is not explicitly defined in the IEC 61131-3. In the
practical use, the following two approaches are often regarded as the de-facto solution
for realizing hierarchical SFCs:

e SFC-action: An action can be realized as an SFC and be invoked by a step of
another SFC. This design is introduced in the IEC 61131-8, which specifies the
implementation guideline for the IEC 61131-3 standard.

66

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

e Macro step: A macro step represents a particular part of an SFC. A macro step
behaves similar to a normal step, but contains an underlying sequence. The con-
tained sequence starts with a step and ends with a step. Macro steps can be
seen as a simplified graphical representation for complex sequences. An SFC
with macro steps can be expanded to an equivalent “flat” SFC, i.e. an SFC with-
out hierarchy. This solution is actually not defined for SFC but for Grafcet (see
Section 4.5). Since some widespread SFC-editors (e.g. CoDeSys) support this
mechanism, it is often regarded as a standard structure of IEC61131/SFC.

4.4.2 Semantics

The SFC is informally specified, which means no standard mathematical model is de-
fined in the IEC61131-3. Models in many literature sources (e.g. [86]) are normally
vendor-specific or developer-specific.

The SFC is ambiguously defined and cannot be formally analyzed [87, 88]. The main
reason is that the standard does not mandate a unified solution, but recommends many
alternative and even conflicting solution approaches. After comparing various imple-
mentation of major PLC vendors, [89] has demonstrated that in case one solution ap-
proach is chosen for single semantic aspects (e.g. prioritization rule for transitions), the
SFC implementation can be formally analyzed.

Step and Transition

In similarity to FSA and Statecharts, the source step of a fired SFC transition will be
deactivated, and the target step of the transition will be activated. Every step must have
two standard variables: activity step_name.X and time step_name.T'. The former one will
be set or reset, in case the step is activated or deactivated. The latter one indicates the
time since the step has been activated. It will hold its value when the step is deactivated,
and be reset when the step is activated again.

In case a step is followed by more than one transition, only one of them can fire. The
IEC61131-3 has defined three rules for the prioritization of conflicting transitions:

1. Priority from left to right,
2. Priority must be explicitly defined by user, or

3. User must ensure that only one transition can be satisfied.

67

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

Simultaneous Sequences

The semantics of simultaneous sequences are similar to the token multiplication of
Petri Nets. In case a transition is fired, all its successor steps are marked and can be
activated.

The multiplication of step marks may lead to unexpected execution results. The
IEC61131-3 has defined two implausible structures: unsafe sequence and unreachable
sequence. The former one causes uncontrolled mutilation of step marks in the whole
SFC. The latter one can never be executed. Examples of the implausible structures can
be found in the standard and relevant literature and will not be discussed here in details.
The easiest and the most effective way to avoid implausible structure is to forbid jumps
out of a simultaneous sequence or a sequence after an alternative branching. How-
ever, as indicated in [86], some structures cannot be realized, although they are valid.
As an alternative solution, algorithms for the reachability analysis of Petri Nets can be
borrowed to evaluate SFCs.

Scheduling of SFC Elements

There exists no standardized model for the scheduling of SFC elements during the
execution. In general, SFC elements are executed according to the rules of “from top to
bottom” and “from left to right”. Additionally, SFCs are executed according to the Lock-
Step principle [88]. This means that in case a step is activated in a cycle, it cannot be
left (i.e. deactivated) in the same cycle.

Execution models of SFCs have been discussed in different research works. The main
differences of the models are the execution of the following three execution activities:

e Evaluation of transitions
e Update the activity of steps
e Sequential execution of actions

Different arrangement of the listed three execution activities may also lead to different
results. An execution model named deferred transition evaluation and deferred action
(DT-DA model) is introduced in [90]. According to this model, transitions should be eval-
uated prior to the action execution. Fulfilled transitions can only fire when all transitions
are evaluated. Actions can be executed when the activity of all steps is updated. As
introduced in [88], many commercial SFC implementations follow this model. The main
disadvantage of this design is that actions of the initial step cannot be executed, when
an outgoing transition is fulfilled at the beginning of the SFC execution. Discussions and
analysis with more details can be found in [86, 88, 91].

An alternative prioritization rule is the immediate action and immediate transit eval-
uation (IA-IT model) [90]. According to this model, actions should be executed prior
to transitions in every cycle. In case a transition is fulfilled, it must fire immediately.

68

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.4 Sequential Function Chart

The activity of its source step and target step should also be updated immediately. As
analyzed in [90, 92, 93], the IA-IT model can react on inputs (e.g. value change) as
quickly as possible and can avoid unexpected execution results effectively. It ensures,
among others things that actions of the initial step can be executed correctly. The dis-
advantage of this model is that it is not easily implementable in runtime systems that are
cyclic-processing [90]. An execution model for the implementation should be elaborately
defined.

Additionally, the execution order within the three single activities is also differently re-
alized in research works and commercial tools. For instance, the most commercial SFC
tools execute actions from top to bottom. However, in the widespread PLC runtime sys-
tem CoDeSys, actions are executed according to their alphabetical order. Additionally,
every action will be executed twice. This design may lead to different execution results
than the other SFC tools. Detailed analysis and execution examples can be found in
in [88, 91].

4.4.3 Application in Process Automation

SFC is defined as a programming language for PLC and is well-established in the prac-
tical use. It is also suited for further design phases, like specification, rough design,
and simulation [7]. In many DCS projects in the process industry, procedures are speci-
fied, implemented and documented in SFC without using further Procedure Description
Methods (PDMs).

As a standardized PDM in automation, the development and the application of SFC
are supported by various works of international committees and researchers. For exam-
ple, the international organization PLCOpen is in charge of the compatibility certification
of IEC 61131-3 for automation systems. PLCOpen has also specified a XML format for
the information exchange between systems from different vendors.

Due to the native support of existing automation systems, a procedure specified in
SFC can be directly implemented in the existing automation systems without a special
code generator.

4.4.4 Usability Analysis

The SFC is designed according to the software and hardware characteristics of the
existing automation systems. All syntax and semantics are compatible with the cyclic-
processing and signal-oriented execution context.

Due to the native support of existing automation systems, SFC is suitable for design-
ing and implementing various components within FB-agents. It can be applied as a tex-
tual programming language for the implementation of black-boxes (i.e. Atomic Function

69

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

action on activation

equivalent to an

[a1:=0 | “ |gseteaction of SFC

action

g"
initial steps
macro step

action on event

Figure 4.6: Grafcet

Blocks (AFBs). It is also suitable for application as a graphical language for Composed
Function Blocks (CFBs).

4.5 Grafcet

Grafcet is a specification language developed in 1977 for the design of procedures in
industrial controllers. Grafcets are the predecessor of SFC introduced in Secion 4.4 and
can be regarded as high-level Petri Nets.

The name Grafcet was derived from “graph” and “AFCT”. The former part implies that
this Procedure Description Method (PDM) is graphical. The latter part is the acronym
of the Associtiaon Francaise pour la Cyberneticu Economique et Technique, which sup-
ported the development of Grafcet. The Grafcet was firstly published as a French na-
tional standard in 1982, and later as an international standard IEC 60848 [94] in 1988. In
many publications, Grafcet is often translated as Sequential Function Chart in English.
Hence, Grafcets and SFCs are are often regarded as synonymous in many research
works.

An example of Grafcet is given in Figure 4.6. Since the syntax and semantics of
Grafcet are very similar to SFCs, only their main differences will be introduced in the
following lines:

e The Grafcet is a specification language, whereas the SFC is a programming lan-
guage. A sequential procedure can be specified in Grafcet and can be imple-

70

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.5 Grafcet

mented in different ways. An SFC can implement a procedure that can be speci-
fied in Grafcet or other description methods.

e Grafcets are to be executed periodically, but not strictly cyclically. In case a Grafcet
leaves its current step, it reaches a stable state immediately, even if the start step
and the target step are separated through many further steps and transitions. This
mechanism is termed Maximum Progress in [88]. However, SFCs should be cycli-
cally executed and can only move for one step (see Lock-Step in Section 4.4.2).

e A Grafcet may have more than one initial step; an SFC should have only one initial
step.

e Grafcet applies Macro Steps to realize hierarchical nesting. This design is also
utilized to design hierarchical SFCs, although it is not explicitly defined in the
IEC61131-3.

e Grafcet has 7 action control conditions, whereas SFC has 11 possible conditions
(action qualifiers).

e Grafcet-actions are value assignments. The SFC supports more complex actions,
e.g. Function Block Diagramms (FBDs) for mathematical calculations.

e In Grafcet, outgoing transitions of a step must be mutually exclusive, which means
only one transition condition can be fulfilled. However, SFCs allows two further
alternative approaches (cf. Section 4.4).

As an informally defined language for specification, Grafcet has no standardized ex-
ecution model. The formal analysis of Grafcets is not intensively discussed in literature
resources. [95] refers to a formal model of Grafcets. However, the origin and tool sup-
port of the model are not indicated.

Grafcet and SFC can be seen as two different expressions of the same logic in differ-
ent life cycle stages: Grafcet for specification and SFC for programming. In the author’s
opinion, the difference between specification and programming in the context of process
automation is not great enough to make two different description methods strictly nec-
essary. As introduced in Secion 4.4, SFCs are applied to specify procedures in practical
use. Grafcets are actually replaced by SFCs. This option can also be appropriately sup-
ported by the development trend in the technical community. Grafcets were intensively
discussed in the last century, but are rarely seen in publications of the last decade since
the IEC 61131/SFC was published.

Grafcet is only rarely applied in the industry, whereas its successor SFC is well-
established. Hence, Grafcet is not suggested for the design of FB-agents.

71

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

start
allocation
synchronisation
Unit procedure
implicate
transition "
mixing 2 transition
operation

|

A

Figure 4.7: Procedural Function Chart(PFC)

stop

4.6 Procedural Function Chart

Procedural Function Chart (PFC) is a specific description method for batch recipes in
the chemical industry. PFC is derived from Grafcet and is standardized in the IEC
61512 [9]. PFC has inherited most of its syntax from Grafct (See Section 4.5). In
the following section, only the main differences of the two description methods will be
introduced.

Syntax

PFCs are composed of elements and transitions. To model different procedure ele-
ments, PFC elements are classified into four types: procedure, unit procedure, opera-
tion and phase. Additionally, another element for the allocation of production equipment
is defined and can be applied in different procedure elements. Furthermore, the syntax
for the synchronization between elements is defined (cf. Figure 4.7).

PFC transition can be implicit or explicit. An implicit transition is permanently TRUE.
As shown in Figure 4.7, the successor step and proceeding step of an implicit transition
are connected directly. An explicit transition is drawn as two short parallel bars and
possesses a transition condition.

PFC has inherited the macro-steps from Grafcet. The single difference is, a PFC
element may only contain lower-level elements. For instance, a unit procedure cannot
contain procedures; an operation cannot contain unit procedures.

72

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.6 Procedural Function Chart

P .~

Fa i

[| Held) Holding
ey

Pause

Restart

- Running Pausing
Resume
Abort Stop
/ -._,_\\.
Stopping { Paused]
""\-.__ a2 /

D Final States
D Quiescent States
El Translent States

Figure 4.8: State transition diagram for PFC elements according to the IEC 61512 [9]

Reset

PFC actions are not explicitly defined in the IEC 61512 standard. In the most commer-
cial tools (e.g. ABB 800xA Batch, Siemens Simatic Batch), PFC elements can assign
variables (e.g. the activity variable of a dosing function in a PLC). Complex actions
(e.g. mathematical calculations) are normally not supported. In case a calculation is
required (e.g. calculate the current material consummation during a batch), it is to be
implemented as a special element in the PFC or outside of the PFC (e.g. as an ANSI C
program).

Semantics

PFC elements are self-ending and self-determinated. This means that an element
can start only if its previous element is finished. Although the operations “heating” and
“mixing” in Figure 4.7 are directly connected, the latter operation should wait until the
first operation is finished.

In case the condition of an explicite transition is fulfilled, the first bar is marked as
fireable. The successor step is asked to break down its execution. Only if this mission
is finished, the second bar and the whole transition can fire.

To prioritize conflicting transitions in alternative sequences, PFC borrows the first pri-
oritization rule from SFC (see Section 4.4). Alternative sequences should be evaluated
from left to right. The firstly fulfilled transition can fire.

The execution of every PFC element is to be controlled by the standard state transition
diagram shown in Figure 4.8. A PFC element can be running, held, aborted, stopped or
complete etc.

73

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

I:l «+— Initial
Step
1 . — Transition

== StEp

HEAT

A o — Transition

La— Step

WL

" Transition
F—

Terminal
Step

Figure 4.9: Example PFC in the documentation of the commercial tool Emerson/DeltaV
Batch

Industrial Application

PFC is an exclusive description method for batch procedures. It simplifies the complex
Grafcet and utilizes many features of SFC. Among others, the complicate and unintu-
itive action control of Grafcet is excluded. Many semantic details (e.g. prioritization of
hierarchical PFCs) are clearly defined.

There is still no standard execution model which is accepted by the researchers and
commercial vendors. The IEC61512/PFC is only partially implemented in commercial
automation systems [7]. For instance, the double lined transition and the synchroniza-
tion of materials is not supported by the most major vendors.

The implementation and graphical visualization of many PFCs in commercial tools are
often more similar to SFC, but less similar to the IEC61512/PFC. Figure 4.9 shows one
example PFC from the PFC document of a major DCS vendor. Due to the SFC-like
syntax, users cannot easily recognize the differences between PFCs and SFCs in their
system.

PFC is the only procedure description method which has explicitly defined the state
machine for controlling the execution of procedure elements. The standard state ma-
chine in 4.8 is also applied in some SFC implementations (see for instance the Ad-
vanced Process Library (APL) of the DCS vendor SIEMENS).

Usability Analysis

Similar to Grafcet, PFC is also defined as a specification method. However, PFC has
simplified and extended the over-complex Grafcet, and has specified many semantic
details in accordance with the programming language SFC. Due to the consideration of

74

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4.7 Summary

Finite State Automaton (FSA)

I >
Petri Net (PN) Statechart (SC)
= FSA + concurrency ~ FSA + concurrency +
hierarchy
IEC 60848 / Grafcet
= PN + |/O concept + hierarchy
IEC 61131/ IEC 61512/
Sequential Function Chart Procedure Function Chart PLC-Statechart
(SFC) (PFC) = UML Statechart - Events
= Grafcet + simplification and = Grafcet + extensions for + compatibility with
extension for the implementation batch control IEC 61131 runtime system

in PLC runtime

Figure 4.10: Development tree of Procedure Description Methods (PDMs) (revised il-
lustration according to Figure 1 in [19])

runtime behaviors, PFC is also suited for the implementation. PFCs can be applied to
specify and implement batch procedures in FB-agents.

However, syntax (e.g. element types) and semantics (e.g. hierarchical execution)
are specifically defined for batch automation. The usability of PFCs will be significantly
limited beyond the batch control area. Among others, a concept for actions should be
defined.

4.7 Summary

Figure 4.10 summarizes the relationship and main differences between the analyzed
Procedure Description Methods (PDMs).

Procedure description methods can be classified into two types: procedure specifi-
cation (or modelling) method and procedure implementation method. The former one
describes procedures generally and abstractly. The latter one is suited for the imple-
mentation of procedures in runtime systems.

Typical procedure specification methods are Finite State Automaton (SA), Statechart
(SC), Statechart (SC), Petri Net (PN), Grafcet and Procedural Function Chart (PFC).
They can be applied to draft and document procedures in FB-agents. For the imple-
mentation in runtime systems, alternative programming languages should be applied.
Procedures in Atomic Function Blocks (AFB) can be implemented in a textual program-
ming language such as Structured Text. Procedures in Composed Function Blocks
(CFB) can be implemented with the two procedure implementation methods: Sequen-
tial Function Chart (SFC) and PLC-Statechart.

75

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

4 Usability Analysis of Existing Procedure Description Methods

From the viewpoint of practical application, procedure specification and procedure im-
plementation have no restrict dividing line between them. Firstly, execution behaviors
in runtime systems should also rather often be defined in the procedure specification.
For instance, the execution prioritization of hierarchical procedures is an implementa-
tion detail, but should also be clearly defined in the specification (cf. discussions on
hierarchical Statecharts and PFCs). Secondly, implementation methods are often also
suited to specify procedures in practical use. For instance, the programming language
SFC is often applied to specify and document procedures.

There are also no convincing arguments for using different description methods for
specification and implementation. As the compatibility with existing automation systems
is one central requirement on the agent engineering, the two implementation-friendly
approaches Sequential Function Chart and PLC-Statechart are chosen as suitable de-
scription methods for the FB-agent model. Sequential procedures (e.g. start-up proce-
dure for a plant) can be described in SFC, whereas PLC-Statechart is suitable for the
description of state machines.

Additionally, Procedural Function Chart (PFC) is also a suitable approach for FB-
agents. Although PFC is a specification method, it has defined many semantic details
that are important and helpful for the implementation in runtime systems.

Although SFC, PLC-Statechart and PFC have their own strengths and can appropri-
ately describe procedures in different application areas, they can only partially fulfill the
requirements defined at the beginning of this chapter. PFC is specially tailored for batch
control and is only partially supported by commercial tools due to its high complexity. Its
usability in other application areas is limited. PLC-Statechart lacks many design details,
e.g. semantics for composed states. The present form of SFC defined in the IEC 61131-
3 has ambiguous semantics. Some of its design (e.g. action control condition) is still
over-complex. Thus, SFC is also not very suited to be applied as a general approach
for the procedure description in different application areas and engineering phases.

The usability of the FB-agent model can be significantly improved, in case the user
only needs to master one general approach for procedure description. This discussion
will be continued in the next chapter.

76

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General
Procedure Description Method

The introduction in Chapter 4 shows that the existing Procedure Description Methods
(PDM) are only partially suitable as a general approach for describing various proce-
dures in automation agents. In order to improve the intuition and usability of the FB-
agent model presented in Chapter 3, a general procedure description method will be
proposed in this Chapter.

Most automation procedures in process automation are not over-complex. For in-
stance, a typical control procedure consists of 15 steps and 5 actions per step. These
kinds of procedures with no complex structure and no exceptional functions will be
termed Ordinary Procedures in the following sections. Most ordinary procedures in pro-
cess automation can be appropriately described by a general approach without using
special PDM. The engineering workload of users can be significantly reduced. Although
the PDMs evaluated in Chapter 4 have different development backgrounds and different
application areas, their basic structure and topology of PDMs are essentially the same.
The following essential similarities of PDMs make the development of a general PDM
feasible:

o A PDM is composed of states (or steps, elements, places) and transitions between
them. States and transitions are interconnected via arcs. In case a transition fires,
its source state will be deactivated; its target state will be activated.

e A procedure is a software module with individual name space for internal elements
(e.g. state, variable). Procedures should exchange information with their environ-
ments. /O concept (e.g. signal, event) should be explicitly defined.

e Procedures are reactive, meaning that they can perform actions which are the
response on inputs.

e All description methods should provide solutions for dealing with alternative se-
quences, hierarchy and concurrency. Many design details are application-neutral
and can be generically defined. For instance, Sequential Function Chart has sum-
marized different rules for the prioritization of conflicting transitions. This collection
forms a good guideline for the development of further description methods.

Every PDM has its own strength and can suitably describe procedures in specific
application areas. It is neither meaningful nor feasible to develop a novel approach

77

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

which can replace all existing procedure description methods. However, a general PDM
can serve as a reference model which identifies the most appropriate solution for sin-
gle design details and combines advantages of existing PDMs. Additionally, a general
approach can unify the engineering process, graphical visualization and the implemen-
tation of the ordinary procedures in automation systems.

To ensure the usability of the general procedure description method, the following key
design principles will be regarded in the following sections:

e Completeness. The general PDM should provide complete solutions for dealing
with actions, hierarchy, concurrency and etc.

e Unambigurity. Semantics of the general PDM should be clear and easily un-
derstandable. A unified solution is to be defined for every semantic issue (e.g.
prioritization rule for conflicting transitions).

e Compactness. The general PDM should be designed as compact as possible.
Many design features of the PDMs are grown historically or developed for the
description of application-specific behaviors. Many of them are too complex and
not well-established in the practical use (see for example the action control condi-
tions of Grafcet (Section 4.5) and the data synchronization of Procedure Function
Chart (PFC) (Section 4.6)). A compact procedure description method can appro-
priately support the work of users who have no in-depth knowledge in the areas
of software engineering and computer science.

The need of a general procedure description method was also addressed in a previ-
ous publication [19] of the author. An approach named Sequential State Chart (SSC)
was drafted. As the name implies, SSC is developed on the basis of the programming
language Sequential Function Chart (SFC) and the specification language Statechart
(SC). In the following sections, SSC will be revised and further developed. Many design
decisions will be reasoned more precisely. The engineering requirements on PDM for
FB-agents outlined in Chapter 4 will be of major concern. Additionally, the engineer-
ing requirements on FB-agents outlined in Section 3.1 will be taken into consideration.
Among others, the requirement on white-box engineering will be carefully regarded dur-
ing the SSC design.

It should be noted that the graphical notations of SSCs are only recommendations.
They can be individually tailored for the implementation in different systems.

5.1 Execution Frame

Most PDMs have not explicitly defined the implementation form of procedures in the
runtime system. It is usually assumed that a procedure is encapsulated in an Execution
Frame which isolates procedures elements from the environment. To gain a complete

78

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.1 Execution Frame

EN Jctivestate
transition conditions actions herminated
FED1
Do: E‘O;;u—"
CALL FBD1; ouT1
55C11
= TRUE H E .
"—u?u_l'z = 8 s ouT3
. Do: s5C12
CALL 55€C11; = =
CALL 55C12; H E H
T1
52
Entry: N .
N JPump.EN=TRUE; Post-processing
2 : el
53 . i
Entry: I 0
0UT3=15; H Pump H

Figure 5.1: Execution frame and internal structure

execution model, an execution frame is necessary for the general description method
SSC. The execution frame and the procedure elements build an inseparable module.

Additionally, the execution frame can adequately fulfill the requirement regarding mod-
ularity of internal components within FB-agents. Form the outside, an SSC can be han-
dled as an encapsulated module with its own name space for internal components and
variables. Within the execution frame, the logic can be composed of modular compo-
nents which are linked via signal connections to each other.

As shown in Figure 5.1, every SSC is to be encapsulated as a Composed Function
Block (see Section 3.5). SSCs consist of states and transitions. States can invoke
actions. Transition conditions can be realized as variables (e.g. IN1 for T'2) or function
blocks (e.g. T'1). All internal components within the execution frame are to be realized
as function blocks.

Every execution frame possesses a standard input EN and two standard outputs
ActualState and terminated. EN controls the activity of the SSC. ActualState shows
the current active state. terminated indicates whether the procedure is finished.

To control the execution of SSCs, the standard state machine shown in Figure 4.8.
is applied. EN can be set to the commandos: STOP, START, PAUSE, HOLD,
ABORT, RESUME or RESET.

Every execution frame has a standard output ActualState indicates the current state.

79

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Aside from the procedure that is composted of states and transitions, continuous func-
tions can also be defined in the execution frame. Continuous logics are termed Post-
processing and will be cyclically executed at the end of every execution iteration without
regarding the progress of the SSC procedure. Post-processing can be used to perform
continuous calculations in parallel to the discrete procedure. For instance, the post-
processing for a batch recipe procedure can be utilized to calculate the current material
consummation.

Similar to the FB-agent frame introduced in Section 3.5, a deterministic execution
is also required in the execution frame of SSC. The execution of states, transitions,
transition conditions, actions and post-processing are to be controlled by an internal
Execution List. Details of the execution list will be introduced in Section 5.8. In the
following sections, single elements of the SSC model will be introduced.

5.2 State

The progress of a procedure can be represented in different ways. PDMs introduced in
Chapter 4 can be classified into two groups:

e State-based Procedure: Every state represents one possible overall state of the
whole procedure. Only one state can be active at a time. Finite State Automata
and Statecharts are typical state-based PDMs.

e Sequence-based Procedure: The progress of these procedures is represented
by a marking (see Section 4.3), i.e. the distribution of State Marks (or tokens,
activity marks) in the procedure. States (or steps, places) with a mark are active.
A procedure may have more than one mark. The distribution of marks can suitably
describe the progression of concurrent sequences within a procedure. Petri nets,
Grafcet, Sequential Function Chart (SFC) and Procedure Function Chart (PFC)
are sequence-based.

Multiple state marks (or token, activity mark) may cause practical problems. Firstly, an
uncontrolled distribution or multiplication of state marks may cause implausible struc-
tures (e.g. “unreachable sequence” and “unsafe sequence” introduced in Section 4.4).
Complex checking algorithms should be carefully defined. Secondly, depending on dif-
ferent evaluation rules of individual implementations, different execution results for the
same procedure could be a possible cause. Examples of unexpected execution results
due to read/write conflicts can be found in [88, 89, 91]. The discussion on concurrency
will be continued in Section 5.7.

SSC is designed as a state-based description method. In every SSC, exactly one
state can be active. To describe sequential procedures or complex state machines,
nesting structure can be applied (compare hierarchy in Section 5.4 and concurrency
in Section 5.7). The progress of the whole procedure is represented through all active

80

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.3 Transition

states on every hierarchical level, whereas every single SSC should have only one state
mark and one active state.

The state-based design ensures, that SSC can appropriately describe both, state-
based procedures and sequence-based procedures. Execution risks during the multi-
plication of marks can be effectively avoided. Complex mechanisms for the control of
mark multiplication are not needed, while the SSC model can be kept compact.

In similarity to SFCs and Statecharts, every SSC should have exactly one initial state.
Statecharts can have any number of final states. Although the IEC 61131-3 standard
has not explicitly defined the end of SFCs, most commercial SFC implementations al-
low multiple final steps. According to these two description methods, every SSC can
have more than one final state which has no outgoing transitions. The example SSC
in Figure 5.1 has exactly one final state and one initial state which is marked with a
double-lined border.

SSCs can be terminable or non-terminable. An SSC is terminable, when it has at
least one final state. Terminable SSCs are typically applied to describe sequential pro-
cedures, e.g. a production procedure. A non-terminable SSC has no final states and
can be used to describe state machines that always keep active. Every SSC frame
has a standard output variable terminated which shows the progress of the execution.
terminated of a non-terminable SSC will always be FALSE.

5.3 Transition

In general, a transition connects two states and possesses a transition condition. In the
most PDMs regarded in Chapter 4, transitions are normally logical operations with no
complex structure. The single exception is Statecharts, in which a transition is typically
composed of guards, triggers and conditions. This design was adopted from computer
science. Although more complex behaviors can be realized, it is less necessary in
process automation.

The SSC utilizes the transition concept of the well-established SFC. All prerequisites
for the state change (i.e. firing) are to be defined in a transition condition. Every tran-
sition has a Boolean variable RESULT. All prerequisites can be combined via logical
operations such as OR and AND. A transition is fireable, if its RESU LT is setto TRUE.

Every transition should have a transition condition. The condition can be a constant
(e.g. the TRUE transition after the initial state in Figure 5.1) or a variable of the cov-
ering SSC frame (e.g. IN1 for T2 in Figure 5.1). Transition conditions can also be
realized as function blocks (e.g. the composed function block connected with T'1 in Fig-
ure 5.1). Simple conditions can be realized by atomic function blocks (e.g. “AND” or
“>”). Complex condition can be defined as Composed Function Blocks. Function block
conditions will be termed FB-condition. Every FB-condition should possess a Boolean

81

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

- State 1 sequential P + =
i 14 | evaluation of 1S 3
L. T2 | transitions, ? T1
: 1 T2 T3 2

“first fulfill, -
--- T3 first fire" +

(a) Unified model for the ar- (b) Possible representation (c) Possible Representation
rangement and evaluation of for the rule: from left to right for explicit Priority
transitions in runtime systems

Figure 5.2: Prioritization of SSC Transitions (Priority in all there subfigures: 71 > 72 >
T3

output, which is to be connected to the RESULT of the corresponding transition. The
same transition condition can be connected to different transitions.

Similar to the most PDMs, two SSC states can be connected to each other via an
intermediate transition. Additionally, two SSC states can be connected via an implicit
transition which is represented as a directed line. This design is borrowed from the
Procedure Function Chart (PFC) and can be applied as a simplified graphical represen-
tation for a permanent TRUFE transition (e.g. the outgoing transition of the initial state
in Figure 5.1).

5.4 Alternative Sequence

Alternative sequences are supported by all regarded Procedure Description Methods
(PDM). The prioritization rule of alternative transitions is an important implementation
detail, but disregarded in many PDMs (e.g. Finite State Automaton, Statecharts and
Petri Nets).

In general, only one of the alternative outgoing transitions of the same state can fire.
Different prioritization rules applied in existing PDMs and well-established automation
tools are summarized as follows:

e Priority from left to right (as in SFC and PFC). The first fulfilled transition will be
fired.

e Priority is to be explicitly defined by the user (as in SFC, MATLAB/Stateflow, PLC-
Statecharts)

e |t is a task of the user to ensure that all the transition conditions are mutually
exclusive. (as in SFC and GRAFCET).

82

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.5 Action

In the author’s opinion, the PDM implementation should be designed in such a way
that it can prevent unexpected execution results. In case the conditions of alternative
transitions are not mutually exclusive although they should be, it is not meaningful to
fire all fulfilled alternative transitions. Thus, the third rule is not supported in the SSC
model.

The first prioritization rule is suitable for describing sequential procedures, which is
typically processed from top to bottom. To ensure the intuition of the graphical visual-
ization of procedures, the priority of conflicting transitions does not need to be explicitly
shown. However, it is suited for state-based procedures (e.g. complex state machines),
in which states are not arranged in a vertical column. For instance, to realize the state
machine shown in Figure 4.2, transitions should be allowed to leave their source steps
not only from the bottom but from all sides. In this case, the second rule is better suited.

The first and the second rule can be regarded as two engineering possibilities that are
allowed in the graphical editor. A unified execution model for the implementation in run-
time systems which can fulfill both rules can be defined. Figure 5.2a shows a reference
model for the implementation of SSC in runtime systems. All outgoing transitions of a
state are arranged under the step. In case a state is active, its outgoing transitions will
be sequentially evaluated. The first fulfilled transition will be fired. Further transitions
will not be evaluated.

This unified execution model realizes unambiguous semantics of the SSC model.
Graphical visualization and engineering rules for graphical editors for SSCs are not
stimulated. Figure 5.2b show a possible visualization for realizing the first prioritization
rule. Figure 5.2c depicts a possible graphical visualization for the second prioritization
rule. This design is borrowed from the widespread tool MATLAB/Stateflow and suitable
for state-based procedures (e.g. a state machine).

The execution priority is not defined as an attribute of SSC transitions. Instead, it is
represented by the arrangement of the transitions in the execution model. The question
of which prioritization rule is to be applied will be defined in the graphical editor for SSC
engineering. According to the chosen rule, transitions can be automatically arranged
under their source steps.

5.5 Action

SSC states can be action-less and represent empty states. They should also be able to
invoke actions, so that the SSC and the FB-agent can keep reactive to changes in the
environment.

83

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Action Types

Many Procedure Description Methods (PDM) only support value assignment or simple
logical operations as actions. Some PDMs (e.g. SFC, Grafcet) support complex actions,
for instance, for mathematical calculations and for the invocation of sub-sequences. As
a general approach, SSC is designed to support different action types. An SSC action
can be defined in one of the following forms:

e Value assignment to a variable of the execution frame (e.g. “OUT=0;" in Fig-
ure 5.1).

e Value assignment to one input of an function block within the execution frame, e.g.
“./FB.IN1=30". The notation “./” indicates, that the target function block is directly
encapsulated in the execution frame of the SSC. The function block name and the
variable name are separated by a point.

e Call a local Function Block. For instance, the CALL FBD1 in Figure 5.1 invokes
function block diagram F'BD1 as an action.

The first form is supported by most PDMs analyzed in Chapter 4. The second one
is an extension of the first form. The third form is borrowed from some commercial
PLCs in which complex actions (e.g. SFC-action) are supported. All function blocks
that are to be called as actions are termed FB-actions. This approach realizes a flexible
definition of actions. FB-actions may be atomic (e.g. multiplication block) or composed
(e.g. function block diagram).

Every state may possess any number of actions. FB-actions may be shared by dif-
ferent states in the same SSC. In other words, different SSC states can call the same
FB-action. This design is inherited from SFC and can lower the engineering workload for
reusable actions. To keep SSCs modular and encapsulated, FB-actions are not allowed
to be shared by different SSCs. For instance, a sub-SSC cannot invoke FB-actions of
the main SSC.

Action Control Condition

The PDMs compared in Chapter 4 have different solutions for action controls, ranging
from simple and nondistinctive action control (as in FSAs and some variants of PNs)
to complex 11 types for different execution behaviors (as in IEC61131/SFCs). Non-
distinctive action control limits the functionality of the PDM, whereas too many variants
of action control increase the complexity and reduce intuition and usability. The 11
different action control variants in SFC for example are helpful for programmers, but
appear to be superfluous and not intuitive enough for users with no in-depth knowledge
of programming or software engineering.

Similar to Statecharts, the execution of a SSC state is divided into three phases:
entry, do and exit. As shown in Figure 5.1, every action should be assigned to an

84

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.5 Action

execution phase. For the practical use, entry-actions are the most applied approach.
Do-actions are typically applied to invoke FB-actions (e.g. subordinated SSC) cyclically.
Exit-actions are typically used to reset variables and reset subordinated SSCs.

Further control conditions (e.g. saved and timed behaviors) will not be defined as an
inherent part of the SSC model. The related time behaviors can be realized as function
blocks. For instance, in case an action should set the variable VAR1 to TRUE with a
delay of 5 sec. after the activation of a state, a function block DELAY can be defined
as a do-action. Its Boolean output can be connected with VAR1. The function block will
be cyclically executed. It checks the time duration in every iteration and sets VAR1, in
case the delay time of 5 sec. is reached.

Action Execution

Actions of the same state will be sequentially executed. In case an FB-action is called,
it will be executed for one iteration. This means that its inputs will be updated, the
internal logic will be iterated once and the outputs will be updated at the end. The
execution is theoretically timeless.

Actions with duration (e.g. “execution of a sub-procedure from beginning to end”) will
be termed activities which are not directly supported by the SSC model. An activity can
be defined outside of the execution frame of the SSC which should invoke the activity.
The SSC can activate the activity (e.g. via signal assignment). During the execution
of the activity, the SSC is not blocked. At the end of the activity, a confirmation signal
can be sent back to the SSC. Section 5.6 will show an example of the execution of an
external procedure which has unpredictable duration.

The second possibility of realizing activities is to approximate their continuous execu-
tion with a cyclical execution. An activity can be defined as a function block and invoked
as a normal FB-action. For instance, a sub-SSC can be encapsulated as a function
block (see also Section 5.6) which can be cyclically invoked as an FB-action. In case
the sub-procedure reaches its final state, the activity is finished.

Action in Transition
In most PDMs, actions can only be invoked in states (or steps, places). Only Moore
machines and Statecharts allow also actions in transitions.

To keep the model easy and simple, SSC transitions are not allowed to invoke actions.
In case actions should be performed together with a transition, they are to be defined
as exit-actions of the source state or entry-actions of the target state.

85

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

SscC1 SSC2 EN ssc2
STATEO | STATE11 | |
= T0 - + T11 =
STATEL | | STATE12 | ||
Entry:
SSC2="START"; — —
Exit: || + 2 L
SSC2="STOP"; STATE13
= T]
1 J- T13]

Figure 5.3: Signal-oriented control of subordinated SSCs
5.6 Hierarchy

Hierarchy is an important structure that is supported by most Procedure Description
Methods (PDM) analyzed in Chapter 4. As introduced in Section 4.1 and Section 4.2,
complex procedures without hierarchical abstraction quickly become unintuitive and
confusing. A PDM without hierarchy (e.g. Finate State Charts) will be eliminated and
replaced by other PDMs (e.g. Statecharts and Petri Nets). As a result, hierarchical
structures are supported by Sequential State Charts (SSC).

Hierarchical procedures can be realized by simple procedures (i.e. procedures with-
out hierarchy). As shown in Figure 5.3, the substructure of STATFE1 in SSC1 can be
realized as a standalone SSC with the identity SSC2. The activity of the sub-SSC can
be controlled via signals. SSC1 possesses an output SSC2 which is connected with
the activity control EN of SSC2. The assignment of SSC2 can be realized via “variable
assignment” actions in STATE1.

This design is suited to realize simple hierarchical procedures. However, an SSC
quickly becomes unintuitive and confusing, in case many states have sub-procedures.
To close this gap, Sub-SSCs can be realized as FB-actions. As shown in Figure 5.1,
SSCs on the lower hierarchy level can be defined as FB-actions of the main-SSC. Sub-
SSCs can also encapsulate further sub-SSCs. This design is not novel but inherited
from the SFC-block of SFCs and the Macro Action of Grafcets.

A prioritization rule for hierarchical SSCs should be defined. Figure 5.4 shows a
general procedure with a nested sub-procedure. The markers show the active states in
the both procedures. It is to be defined which transition can fire, when both 7'1 and T'11
are fulfilled. In general, the following three general prioritization rules can be applied for
the implementation in runtime systems:

86

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.6 Hierarchy

activity _
marker

T11

Figure 5.4: Prioritization issue of hierarchical procedures: which transition may fire,
when T'1 and T'11 are both fulfilled?

e The main procedure has higher priority. This means that 7’1 may fire, 711 does
not. The current state of the main-procedure will be left and deactivated. The
sub-procedure will be interrupted and deactivated. It holds its current state and
continues with the execution, in case it is activated again.

e The main procedure has higher priority. In contrast to the first prioritization rule,
the sub-procedure should be reset after an interruption and start from its initial
state when it is activated again.

e The sub-procedure has higher priority. Its execution cannot be interrupted. This
means that 7'1 in Figure 5.3 may fire, only if the sub-procedure is terminated,
which means that it has reached its final state.

This semantic issue is solved differently in the existing procedure description methods:
Procedure Function Charts and Grafcets allow a unified rule; Statecharts allow various
possible rules; other methods (e.g. Sequential Function Chart) have not defined priori-
tization rules explicitly. Similar to the prioritization of conflicting transitions discussed in
Section 5.4, all these rules for hierarchical structure are important for the practical use.
None of them can be abandoned.

To keep the semantics clear and easily understandable, SSC applies the first priori-
tization rule as the unified approach. Runtime behaviors of the other two rules can be
realized via exit-actions. As shown in Figure 5.5a, a subordinate SSC is invoked as an
action in statel. In case the transition T'1 fires, the execution of subSSC will be inter-
rupted, but not be reset. In case the sub-SSC is to be reset (see Figure 5.5b), statel
generates a RESET command and calls the subSSC for the last time. To realize the
third behavior, as shown in Figure 5.5c, the Boolean variable terminated of the sub-
SSC is to be checked in the outgoing transition. Statel can only be left, in case its
subordinate SSC reaches its final step.

87

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

Statel
|
Il
Do- — Statel Statel
CALL su bSSC; E’_‘ALL subSSC; Do:
Exit: CALL subSSC;

JsubSSC.EN="RESET";

CALL subSSC; =+

T1 AND
+ T1 + T1 subS5Cterminated

(a) Unified semantics: sub- (b) The subSSC can be in- (¢) The main SSC must wait
SSC can be interrupted by terrupted by T1. subSSC until subSSC is terminated.
T1. must be reset and starts

from its initial step when it is

activated again.

Figure 5.5: Prioritization of SSCs on different hierarchy levels
5.7 Concurrency

Concurrency is supported by nearly all existing Procedure Description Methods (PDM).
The single exception is the early approach Finite State Automaton. As analyzed in
Section 4.3, 4.4 and 5.2, the main execution risk of concurrency is the uncontrollable
multiplication of tokens which control the activity of state. To ensure a safe and deter-
ministic execution, concurrent behaviors of Sequential State Charts (SSC) should be
meticulously designed.

Theoretically, active states in concurrent or simultaneous sequences should be exe-
cuted at the same time. However, a real concurrency can only be expected in a multi-
core/multi-threading environment, which is not available in the most automation systems
(e.g. PLC). Although concurrent sequences are allowed in the graphical editor and on
the graphical visualization, concurrent states are executed sequentially, in fact, accord-
ing to an implicit and system-specific order. As discussed in [88], different prioritization
rules of concurrent sequences may lead to different execution results, and thus may
complicate the formal analysis of procedures.

It is defined as a concept decision, that the SSC model does not support concurrent
sequences directly. Every transition should have exactly one target state. Concurrent
sequences should be encapsulated as separate SSC (cf. Figure 5.6).

Similar to hierarchical SSCs (cf. Figure 5.3), concurrent SSCs can be controlled by
the main-SSC via signal connections. As shown in Figure 5.6a, the activity of the two
sub-SSCs is set and reset in the main-SSC.

88

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.7 Concurrency

ssci1
lsubSSC1 _I—}ﬂ subSSC1| |
+ subssC2 L E —
STATE1 . -

Entry:
subSSC1="START"; |EN | subssci
subSSC2="START";

EXit:]
subSSC1="STOP”; B
subSSC2="STOP"; 1

+

HER

(a) Concurrent sub-SSCs can be controlled by the main-SSC via signal connections

SSC1
+ subSSC1
STATE1L E
Do:
CALL subSSC1;
CALL sub SSC2; subSSC1

(b) Concurrent sub-SSCs can be encapsulated in the main-SSC and invoked as actions in the
same state

Figure 5.6: Concurrent sequences in SSC
Alternatively, sub-SSCs can also be encapsulated in the execution frame of their main-
SSC and be invoked as actions. The execution priority of SSC-actions is represented

by the position of CALL-actions in the state. As shown in Figure 5.6b, two concurrent
SSCs are invoked in a state of the main-SSC.

89

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

In contrast to the existing procedure description methods, the prioritization of concur-
rent sequences is clearly and explicitly defined. In the signal-based solution shown in
Figure 5.6a, the two sub-SSCs are encapsulated as function blocks. Similar to tradi-
tional function blocks, their execution order in the runtime system is explicitly defined.
In the call-based solution shown in Figure 5.6b, actions of STATE1 are sequentially
executed according to the rule “from top to bottom”. Thus, subSSC'1 is executed prior to
subSSC2 in every cycle.

5.8 Procedure Progress

The progress of procedures should be approximated by the cyclic execution in runtime
systems. In an ideal case, a procedure progresses according to the Maximum Progress
rule, which means that the procedure progresses as far as possible in a cycle until
it reaches a stable state. However, as discussed in Section 4.4.2 and Section 4.5,
Maximum Progress has the disadvantage that the system workload can vary greatly
and is difficult to predict. Additionally, it is hard to avoid endless loops, if jumps are
allowed in a procedure. As a result, SSC borrows the Lock-Step rule from Sequential
Function Charts. Every SSC state lasts at least one cycle. In case a state is activated in
one cycle, it cannot be deactivated in the same cycle, regardless of whether its outgoing
transitions are fireable.

As introduced in Section 5.1, a deterministic execution within the execution frame of
SSCs is required. The execution of the execution frame and its underlying components
is to be controlled by an internal task list intask, which performs the following measures
that are sequentially executed in every iteration:

1. Switch incoming signal connections and update signal inputs.
2. Execute internal logics:

a) Switch initial connections, which are connections starting from an signal input
(compare Figure 3.3).

b) Evaluate the SSC: As only one state can be active and transitions are ar-
ranged under their source state, only the current state will be executed in this
stage.

i. In case the current state is executed for the first time (e.g. initial state),
its entry-actions will be sequentially executed.

ii. Determine outgoing transitions of the active state and evaluate their tran-
sition conditions according to a predefined prioritization rule (compare
Section 5.3)

90

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.8 Procedure Progress

iii. In case no transition fires, do-actions of the current state will be sequen-
tially executed. Otherwise, the current state will be deactivated; its Exit-
actions will be executed.

iv. In case atransition fires, the succeeding state of the fired transition will be
activated. Its Entry-action will be executed. Its Do-action will be executed
once. All actions will be sequentially executed.

¢) Post-processing: Execute continuous functions (compare, Section 5.1)

3. Switch final connections, which are connections ending with a signal output (com-
pare Figure 3.3).

The model for progressing SSCs is shown in the form of UPPAAL automaton in Fig-
ure 5.7b. SSC z will be activated, in case it receives a Call signal. All states possess
the same UPPAAL model in Figure 5.7a. Arcs on the left and right side of the model
represent the connections between different states.

The execution model for progressing SSCs combines advantages of the immediate
action and immediate transit evaluation (IA-IT model) and deferred transition evaluation
and deferred action (DT-DA model) introduced in Section 4.4.2. All SSC states follow
the execution order: entry-actions, do-actions, transitions and exit-actions. The end of
an execution cycle takes place between the execution of do-actions and the execution
of transitions. With this design, actions of the initial state can be correctly executed and
will not be skipped in the first cycle. Transitions are evaluated prior to the actions in
further cycles. “Transitions prior to actions” allows SSCs to respond to inputs as quickly
as possible and can avoid unexpected results which can be caused for instance by
read-write-conflict in a “actions prior to transitions” model.

Additionally, the execution model allows a fast progress of SSCs. Every state lasts
at least one execution cycle and last exactly one cycle when its outgoing transitions
are fulfilled. No execution cycle will be lost during a state change. In case a state is
deactivated in one cycle, its exit-actions can be immediately executed. The entry- and
do-actions can also be executed in the same cycle.

Furthermore, the representation of the procedure progress at the end of every cycle is
correct and unambiguous. In the idle time between two cycles (compare Figure 2.5), an
SSC is always in the progressing state “do-actions of the active state are executed”. This
clear and defined execution state is not ensured in many existing procedure description
methods. For example, PLC-statecharts [74] and Sequential Function Charts in the
commercial tool CoDeSys end the cycle after exit-actions. In case a state (or SFC step)
is left, it is still marked as the “current state” in the idle time, although it should actually
be inactive. Its next state, which is the real current state, is still not started. Due to
this confusing state representation in idle time, some literature sources differentiate the
two terms “current state” and “ready state”. However, the state representation of SSCs
is always clearly and correctly defined. There are no SSC states, which are “inactive
but still running” or “active but still not started”. The correct state representation is

91

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

:@call_en! O@hed_en?’fc-\calI_ddoﬁnished_domﬁuard: Ti@ call_ex! Ofinishad_ex@

Guard: Not T1

uard: T% call_ex! J—\ﬂnishsd_e:(?f\
& L4 &

call_ex! /-\finishad_ex'i(—\
. &

Guard: Not T3

(a) Runtime Model of an SSC state (Hexagon represents the macro step in Figure 5.7b)

@ - Call_x?
i Finished_x!

Final_connections_switched_x!

Update_inputs_x!
Inputs_updated_x?

Switch final connections x! Switch_initial_connections_x!

Initial_connections_switched_x!

Post_processing_finished_x?

Post_processing_x! Initial_connections_switched_x!

(b) Macro step: runtime Model of the Execution Frame for SSC x

Figure 5.7: UPPAAL Automation for SSC

especially meaningful for SSCs, since SSCs and FB-agents could be executed in a
non-cyclic execution context (compare Section 3.8).

5.9 Summary

Sequential State Charts (SSC) are mainly based on Seqential State Charts (SFC) and
Statecharts (SC) and clarify many design details which are ambiguous in the both pre-

92

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5.9 Summary

decessors. The main differences and the relationships among SSC, SFC and Statechart
can be summarized as follows:

SSC ~ SFC — simultaneous branching + simplified action control + en-
capsulated execution frame + unambiguous semantics

and

SSC ~ Statechart — event — action in transition — complex hierarchy +
implementation mechanism for actions + encapsulated execution frame +
unambiguous semantics

Sequential State Charts are suited to describe sequence-based procedures and state-
based procedures in the FB-agent model introduced in Chapter 3. SSCs provide com-
plete and unified solutions for different design details (e.g. hierarchy, prioritization rule).
The SSC semantics are clearly defined. The main features and design decisions for
SSC can be summarized as follows:

e All procedure elements are encapsulated in an SSC execution frame which is
characterized by its signal interfaces, enclosed name space, deterministic execu-
tion and white-box construction.

e Only one state can be active within an SSC. Multiple tokens (or activity marks) are
not allowed. Hierarchical procedures and concurrent sequences are to be defined
as individual SSCs.

e Every SSC has one initial state and any number of final states.

e Unified semantics are defined for action execution, transition prioritization, hier-
archy and concurrency. Mathematical models according to UPAAL have been
defined which can support a formal analysis of SSC implementations.

e Actions are timeless. Activities (i.e. action with duration) should be approximated
by cyclic execution of actions or external function blocks.

e To ensure a quick response, transitions are executed prior to states and actions in
every cycle.

e In case a state is left, its succeeding state will be activated in the same cycle. The
activity of all states is correctly set or reset. The state representation of the whole
SSC in the idle time between two cycles is clearly defined.

The general procedure description method SSC combines advantages of existing
PDMs. All concept decisions on syntax and semantics are made on the basis of syn-
thesis of existing PDMs. No novel procedure element has been developed. To gain
a complete and meaningful execution model, many design details (e.g. prioritization
rules) have been clearly specified. This model can also be regarded as a reference
model which serves as a guideline for the implementation of different procedures in
existing runtime systems.

93

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

5 Specification of a General Procedure Description Method

The concept of SSC was published in a previous publication [19] of the author. Details
about the execution model and a prototype were published as an internal Technological
Paper of the Chair of Process Control Engineering in Aachen in 2013. On the basis
of these works, a reference model for procedure description in the context of Industry
4.0 was published in a further publication of the Chair [96]. In contrast to the SSC
introduced in the present work, this reference model is tailored for the Industry 4.0
context and involves less design details for the implementation in runtime systems.

94

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

This chapter presents a prototypical implementation of the FB-agent model (Chapter 3)
and the Sequential State Chart (SSC, Chapter 5). In order to keep the implementa-
tion vendor- and platform-neutral, the development environment provided by ACPLT-
technologies is applied during the modelling and implementation phases. After an in-
troduction of ACPLT technologies in Section 6.1, a detailed design of the FB-agent and
SSC will be introduced in Section 6.2 and Section 6.3 respectively.

6.1 ACPLT Technologies

ACPLT" Technology is the umbrella term for reference models and software implemen-
tations developed at the Chair of Process Control Engineering at the RWTH Aachen Uni-
versity in Germany. ACPLT technology targets application areas within the field of pro-
cess control engineering and is designed and implemented in a vendor- and platform-
independent manner. Models, concepts and implementations of ACPLT technologies
have already been applied in different industrial projects and standardizations.

6.1.1 Object Management System: ACPLT/OV

ACPLT/OV'[97] is an object-management system. As shown in Figure 6.1, OV includes
the following components: a language for defining object-oriented class models (OVM),
an object-oriented application programming interface (API) for ANSI C (libov), and a
platform-independent runtime system (OV server). An OV server can be regarded as
a standalone component (cf. Section 2.2.3) which is responsible for memory manage-
ment, task control, object management etc. The server supports dynamic loadable
class libraries, meta-objects and meta-classes, as well as persistent storage.

In comparison with classic automation runtime systems (e.g. the runtime according
to the IEC61131-3), ACPLT/OV provides several novel and distinctive features:

Complete meta-model available on the runtime system: In traditional automation
runtime systems according to the IEC 61131-3, the machine code running on the target

'AaChener ProcessLeitTechnik: The German expression of Aachen Process Control Engineering
"Objekt Verwaltung: German expression for object management.

95

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

Libraryx

classy
classz

SN S —_—
libov (API) e DTE'ID & meta ACPLT/KS - E @e
‘ =

T All 2 3 C++ Java Script

classz

Engineering and
operationclients

1 -

w! =
5 S

Tel/Tk VB

classy

Figure 6.1: ACPLT/QOV

hardware (e.g. a PLC) is not self-descriptive. This means that meta-information about
the loaded instances is not available on the runtime system. Information about instance
type, behavior and connections among instances cannot be explored from the outside.
In ACPLT/QV, instances, instance models and their meta-models are all present in the
form of objects on the runtime system. The dissection of objects into the three types is
a semantic grouping. However, viewed from the OV system, it makes no difference with
regard to the management of those objects. Instance models, meta-models and meta-
meta models are treated equally in OV. This design simplifies the maintenance tasks
and engineering tasks. The development of adaptive systems and self-X technologies
can also be well supported.

Integrated Engineering and Execution: Classical automation runtime systems fol-
low the engineering cycle: edit-compile-load-execute. Control algorithms are engi-
neered in graphical editors of an engineering system (typically a standalone PC-station)
and can be complied into machine codes and loaded onto the execution hardware (e.g.
the automation controller in Figure 2.1). In case the code is to be modified, the exe-
cution of the runtime system should be interrupted. In OV servers, control algorithms
are represented as objects. Instead of compiling and loading machine codes into the
runtime system, users implement the control algorithms by instantiating and parameter-
izing objects. Function blocks, signal connections, states, transitions and actions can
be directly defined in the form of objects in the runtime system. One effect of using AC-
PLT/QV is that there is no distinction between the engineering system and the execution
system of the control algorithms. Objects in the runtime system can be flexibly modified,
even during the running operation. The access to OV servers can be controlled. Only
authorized users or systems can explore and manipulate objects on an OV server.

Online model exploration and manipulation via ACPLT/KS ACPLT/OV supports
the communication protocol ACPLT/KS [98] which allows - similar to OPC technol-

96

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6.1 ACPLT Technologies

ogy [30] - a platform-neutral communication among different systems. Data and meta-
information of objects in an OV server can be explored and edited through local or
remote KS clients. This design ensures great flexibility in performing engineering, oper-
ation and monitoring tasks.

Online reconfiguration via model transformation: One central advantage of having
instances and their meta-models on the runtime system is the possibility of performing
automatic reconfiguration. In order to adapt an existing control algorithm to a new sit-
uation (e.g. a new version, or a certain execution situation), its initial situation and the
target situation can be clearly described via a model of objects. Model transformation
rules can be formally defined. and performed by active objects (e.g. engineering agent).
The transformation can be carried out offline or online.

The development of ACPLT/OV and ACPLT/KS is supported and accompanied by dif-
ferent research works and publications at the Chair of Process Control Engineering. So
far, ACPLT/KS clients have been developed in C++, Tcl, JavaScript and VB. The usabil-
ity and stability of OV and KS have been proved in different academical and industrial
projects.

6.1.2 Basic Libraries

Related libraries for FB-agent and Sequential State Chart (SSC) are shown in Fig-
ure 6.2.

The fundament of the OV environment is the OV library which defines basic classes
(e.g. object, domain and variable) and basic associations (e.g. inheritance, contain-
ment). OV doesnt support multiple inheritances. This is indirectly realized through the
association embedment. To combine attributes and behaviors of different classes, one
object may embed objects of different classes. One example is depicted in Figure 6.4.

The FB library specifies meta-models for function blocks, execution tasks and signal
connections. According to the IEC 61131-3 [3], a function block can only be executed
when they are assigned to a task. In the FB library, functionBlock is directly derived
from task. Every function block can then be executed as a task. functionBlock is
abstract, which means that it is only a derived class (e.g. ADD, AND, valveControl
and etc.)

Task can be applied to realize the cyclic execution context introduced in Section 2.2.4.
Tasks can be arranged under a main task (e.g. the root task in Figure 2.6) via the
association taskList and build a task tree. The association parent of tasklist is termed
task parent, whereas the association child is called task child or subtask.

Signal connections are realized as instantiable objects. Every connection instance
is linked with the source function block and the target function block via two separate
associations.

97

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

variable

QV library
IfundfanIockl(}-—i functionChart |
N FE library
S
MUL ADD |msgDeIiveryModu|e | | message
IECE61131 standard FB library message system library
FB agent library
|sscHeader ” state ” transition || actf'onB!ock| | msglnput |“—| msgOutput |
T iy i
) . e JaN | msglnbox |+ inputinterface |

i previousTransition A -
T .

registeredOperation

setSscVariable ” i || i |
$SC library setFbVariable || callFbAction

Figure 6.2: Class libraries in the ACPLT/OV environment (simplified)

functionChart realizes the Composed Function Blocks (CFB) presented in Section 3.8.
functionChart is derived from functionBlock, and allows an aggregation of the internal
algorithms with function blocks. Every functionChart is encapsulated and possesses
a local name space for underlying variables and function blocks. The execution of a
functionChart is dissected into three phases:

e pre-processing will be executed at the beginning of the execution cycle.
e intask
e post-processing will be executed at the end of the execution cycle.

Every function block within a functionChart should be assigned to an execution phase.
Most function blocks are to be sequentially executed in the instask phase.

Another fundamental library in this context is the KS library [98] which realizes data
exchange between OV objects. Elementary communication functions are encapsulated
in an Application Programming Interface (API) which can be utilized in further libraries.
KS exceeds the scope of this thesis and is not shown in Figure 6.2.

The KS APl is, for instance, applied in the Message System Library which realizes a
message oriented communication. This library is generically defined. Message sender
and receivers can be represented as any OV objects. This library is applied to realize

98

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6.2 FB-agent Library

the agent-to-agent communication specified in Section 3.4. Messages are realized as
instances of the class message. Every Standalone Component (cf. Figure 2.4) pos-
sesses a Messages Delivery Module (MDM). It delivers messages from the sender to
the local or remote receivers. In case an agent is the receiver, the message object is
linked via the association containment under its message input (i.e. an instance of the
class msgInput in Figure 6.2).

The introduced libraries form a development basis. On this base, further libraries
have been developed in different works for different application areas such as diagnos-
tics [99], product transport [100], Human Machine Interface (HMI) [101] and others.

6.2 FB-agent Library

The FB-agent library implements the FB-agent model (cf. Chapter 3) in the ACPLT/OV
environment. The class diagram of the FB-agent library is shown in Figure 6.2. Model
elements and the construction of an FB-agent will be introduced in the following para-
graphs.

Model Elements

As introduced in Section 3.5, an FB-agent is encapsulated in an Execution Frame
which controls the execution of all internal components according to the model spec-
ified in Figure 3.9. In the FB-agent library, no specific class is defined for the execu-
tion frame. This can be realized as a standard Composed Function Block of the class
SfunctionChart.

All internal logics of agents should be function blocks. Service interfaces specified
in Section 3.6 are defined as instantiable sub-classes derived from functionBlock:
msgInput for message inputs; msgInbox for message inboxes; msgOutput for message
outputs; and samplingInter face for input interfaces.

In contrast to a normal functionChart, the unique service interface and the service
inboxes of an FB-agent must be executed at the beginning of every iteration, i.e. in the
post-processing phase introduced in Section 6.1.2.

Every input interface samplingInter face reads the current value of a variable in the
network. It has an output VALUFE of the OV data type ANY which consists of a time
stamp, the status of the type unsigned integer and a value of any data type. The
data format of the last variable is void by default and can be dynamically determined.
The state shows the quality of the value. In general, a value may have the quality:
NOT_SUPPORTED,UNKNOWN, BAD, QUESTIONABLE or GOOD.

A message inbox msgInbor processes messages of a certain category (e.g. invalid),
though it may also process messages for a specific service.. The prioritization rule,

99

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

capacity and overflow measure (cf. Section 3.6.1) are defined as three parameters of
the msgInbox class. Different processing rules of incoming messages can be defined
according to different parameterizations, e.g. “First-In-First-Out”.

As introduced in Section 3.6, a service inbox acts as the representative object of a
service. The identity of a serviceInbox instance should be set to the service name.
Every serviceInboxr has a STRING variable which holds the textual description of the
service. The class servicelnboz is derived from the msginbox. In contrast to a com-
mon message inbox, a service inbox holds the description the service and manages all
operations arranged under this service.

As introduced in Section 3.6, a function block or a set of function blocks within an
FB-agent can be registered as an operation. Every registered operation has an exclu-
sive representative instance of the operation. Every operation should be linked via the
association registeredOperation to a covering service (i.e. a service inbox). The identity
of an operation should be set to the name of the operation it represents.

To read ad and write the XML-based messages (compare Section 3.3), an XML parser
named MiniXML [102] was chosen in a student work. MiniXML is a small and free library
developed based on ANSI C language. It allows a simple and quick processing of XML
format without large non-standard libraries. In another Bachlor thesis, the message
format introduced in Section 3.3 was specified for FB-agents and implemented in the
OV environment with help of a MiniXML parser.

Instance Model

The class diagram in Figure 6.2 cannot suitably describe engineering rules and con-
strains of the FB-agent model. In order to provide a guideline for the construction of a
concrete FB-agent model in runtime systems, a so-called Instance Model is defined in
Figure 6.3.

The instance model is not described in a formal language. It applies UML-like nota-
tions which were developed in an internal research work at the Chair of Process Con-
trol Engineering. This approach was first applied for the description of a visualization
model [103]. A theoretical research on a formal description method will be followed by
an ongoing dissertation at the Chair of Process Control Engineering. Key elements of
the instance model will be introduced in the following paragraph.

Every rectangle in the model represents an object instance. The instance identity and
the class should be underlined and separated by a colon. In case the instance identity
is kept blank, it can be freely defined. Otherwise, it is fixedly defined and should not be
changed. Abstract classes (with italic text) can also be applied as placeholders of their
sub-classes. For instance, the abstract class functionBlock in Figure 6.3 indicates that
an instance of any instantiable sub-class of functionBlock (e.g. ADD) can be put on
this place.

100

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6.2 FB-agent Library

functionChart “« an FB-agent
r
containment
) - input variables and
""" ~variable output variables
1 2 y
====1 msgIN:msglnput | < unigue message inpuit
* . . - .
----- :servicelnbox < multiple service inboxes
i T
1 1
1y . . 5
tOLE :message S incoming messages
|
1]
registeredOperation registered
[} - 3 P 5
* :operation operations
*
=== :msglnbox [< multiple message inboxes
[]
i
[.Imessage incoming messages
.
— :samplin R sampling interfaces
----- 1 -functionblock < further fimction blocks
#*
----- :msgOutput ,nessage outputs

Figure 6.3: Standard Instance Model of an FB-agent

The arrangement of instances is represented as a tree structure. Objects are con-
nected via associations (e.g. contaiment) to each other. The hierarchical level of in-
stances is indicated by their indent. The number next to the association shows the
allowed number of instances. A star x indicates that any number of instances is al-
lowed.

Figure 6.3 shows a typical FB-agent which is realized as an instance of functionChart.
It can encapsulate multiple variables, function blocks and service interfaces. However,
every agent can possess only one message input. The identity of the message input is
standardly defined as msgI N. The identity of further objects can be flexibly defined.

The instance list of serviceInbox represents the list of registered services within an
agent. Every serviceInbox can possess more than one registered operation.

In case a message is sent to the agent, a message instance will be created and
arranged under the unique message input msgI N. After a formal checking (cf. Sec-
tion 3.6), it will be forwarded immediately to specific message inboxes or service in-

101

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

boxes. During the forwarding, the message instance will not be deleted and recreated.
Instead, it will only be “relinked” which means that its parent of the containment associ-
ation is redefined.

The elements in Figure 6.3 should be deterministically executed according to the order
specified in Section 3.8.

6.3 SSC Library

The SSC library implements the Sequential State Chart (SSC) presented in Chapter 5.

6.3.1 Class Diagram

As shown in Figure 6.2, all SSC elements are directly or indirectly derived from the class
SfunctionBlock of the FB library. This means that all SSC elements are encapsulated as
function blocks. Their attributes can be declared as inputs and outputs that can be read
or written via signal connections. Since functionBlock is derived from task, every SSC
element can be regarded as a sub-task and can be directly linked to a task tree. This
design simplifies the development of the execution model of SSC.

Every SSC represents a procedural Composed Function Block (CFB) and is to be
encapsulated as a functionChart. Every SSC contains an sscHeader which is the
central unit for the overall control of the procedure that is to be described. All steps and
transitions of an SSC are to be managed by the sscHeader of the SSC (cf. Section 6.3.2
for more detail).

State and transitions are defined as two classes. The initial state and final states
are not defined as special classes. Every state has two standard Boolean variables
isInit and isFinal which are set to FALSE by default. isInit of the initial state will
be set to TRUE, whereas isFinal of final states (i.e. states with no outgoing tran-
sition) should be FALSE. Every step is linked to its incoming transitions via the as-
sociation previousTransition, and linked to its outgoing transitions via the association
succeedingTransition.

Actions and transition conditions have no exclusive class. They are to be realized as
ordinary function bocks (e.g. AND, OR, ADD, Function Block Diagrams etc.)

Action block is defined as an abstract class actionBlock which has three instan-
tiable subclasses: setSscVariable for the assignment of a variable to the covering SSC;
set bV ariable assigns a variable to a function block within the SSC; call FbAction in-
vokes an FB-action (compare Section 5.5). An FB-action (i.e. function block action) can
be invoked by different call FbAction blocks.

102

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6.3 SSC Library

fumctionChart

containment

I
em—— wvariable
i

- :functionBlock

,.
H
!
i
Lol ssseHeader

containment

i.*

state

i -
L :actionBlock

i
T

i

| :

i containment
| £

i

i

i

i

transition

T_
i
i
i
i H
i
! H
I

actions:domain

containment
i

-

SfunctionBlock

1 o @
RS Sl S el transConditions: domain

containment
[

SfunctionBlock

Figure 6.4: Instance Model of a Sequential State Chart (SSC)

6.3.2 Instance Model

Figure 6.4 shows the general instance model of SSC. Every SSC execution frame (i.e.
functionChart) contains any number of variables and function blocks and precisely one
sscHeader. In other words, every functionchart can only represent one SSC. However,
a function chart is allowed to contain further function charts whose internal logic is
also an SSC. For instance, an SSC which is encapsulated as a function chart can be
arranged under the doman “action” (cf. Figure 6.6) under an sscHeader.

States and transitions are arranged under the sscHeader. Every transition must have
exactly one previous state and exactly one succeeding state. Every sscHeader should
contain at least one state which represents the initial state. Every SSC state may contain
any number of action blocks.

functionBlock and actionBlock are abstract and cannot be instantiated. Their place
(object with italic text in Figure 6.4) is to be taken by instances of their subclasses.
For instance, actionBlock in the figure indicates that setSscVariable, set FbV ariable or
call b Action can be instantiated here.

Every sscHeader contains two standard domains (i.e. instance container), namely
actions and transConditions. These two domains realize the two special regions for
FB-actions and transition conditions in Figure 5.1. Function blocks in transConditions

103

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

HMunctionChart

embedment

tasklist

]
I= 1 :sscHeader

embedment

1
A intask: task

tasklist
bl
- State

B functionblock

sequentical execution in every cyclec

Figure 6.5: General Task Tree for an Sequential State Charts (SSC)

are to be regarded as transition conditions. Function blocks in the actions region are
FB-actions and should have no parent task. These two domains are linked via the
association embedment to the sscHeader. In contrast to containment, embedded objects
are fixed. They can neither be renamed nor deleted.

6.3.3 Task Model

The execution order of SSC elements is not identical to their arrangement order. The
instances in Figure 6.4 should be arranged via the tasklist association according to the
so-called SSC task model depicted in Figure 6.6.

SSC Exectuion

SfunctionChart and sscH eader possess an embedded task named intask which sched-
ules the execution of child tasks of a function chart or SSC. This task is explicitly de-
fined, so that the outputs and functionCharts and sscHeaders can be updated after
the sequential execution of all child tasks (compare the execution order described in
Section 5.8).

As shown in Figure 5.2a, transitions are to be arranged as child tasks under their
source states. Thus, only states are directly linked to the intask of an SSC. As in-
troduced in Section 5.8, the state change should be performed in the same execution
cycle. In case a state is left, the next state should be activated in the same cycle. The
simplest solution is to arrange all steps as child tasks under sscHeader according to a

104

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6.3 SSC Library

sequential and fixed order. The disadvantage of this design is that it can lead to loss of
one execution cycle during the SSC progress in runtime systems. For instance, in case
an SSC jump from state S5 back to a previous state S2 and S5 is arranged after S2 in
the task tree, S5 can only be activated in the second cycle.

To overcome this potential gab, SSC-states are dynamically linked to sscHeader. As
shown in Figure 6.5, an sscHeader should only have one state instance as child task.
Before an SSC starts to progress, its initial state is linked to the sscHeader by default.
Further states within the same SSC have no parent task. During the progress of an SSC,
only the current active state will be linked to the sscHeader. When a transition fires, it
unlinks the active state from the sscHeader and links the next state to sscHeader.

A further advantage of the dynamical task list is that the computing resource can
be saved. In case all states are statically arranged under the intask, their activity will
be evaluated in every execution cycle, although only one of them can be active. In a
dynamical task list, the intask of sscHeader has always only one child task and does
not need to ask other deactivated states whether they should be executed.

sscHeader checks in every execution iteration, whether it has a child task. If not, it
finds the intial state (i.e. the state with isInit = TRUEFE) and links it via the association
tasklist to the intask of sscHeader automatically. This function ensures that always one
state is active within an SSC. In case an SSC is initialized or reset, this function will also
be performed.

Task Tree of a State

Figure 6.6 shows the task model of an SSC state. This model realizes the immedi-
ate action and immediate transit evaluation semantics (i.e. IA-IT model) discussed in
Section 5.8.

Every step has four fixed subtasks: entry, transitions, do, exit. These tasks are integral
and linked via the embedment to their covering step. According to the assigned value of
the attribute quali fier, action blocks are to be arranged under the entry- do- or exit-task.

All outgoing transitions of the step should be arranged under the subtask transition.

The tree structure shown in Figure 6.6 can be automatically generated according
to the instance model of Figure 6.4. In the current SSC prototype in the ACPLT/OV
environment, a set assessor is defined for the qualifier of the class actionBlock. In
case the qualifier is set to TRUE, the action block will be automatically linked via a
tasklist association to the entry-action of the covering state. No engineering rules are
to be developed in the engineering clients (compare Section 6.1.1).

The task tree is sequentially executed from top to bottom in every iteration. The entry-
task and the do-task are active initially. In case the step is activated, these two tasks
and their underling action blocks will be executed once. At the end of the first execution,
the entry-task will be deactivated, the do-task will be kept active, the transition-task

105

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

6 Prototypical Implementation

previous Transition
embedment

hah entry: task
'

tasklist
[octipn@lock

| nextTransition

i qualifier=1

T
tasklist
i

P dfunctionBlock

tasklis!

stransition

i tasklist
] 0.1

Junctionflock

st sactionBlock

qualifier=2

tasklist

'

' D functionBlock
i

i

exit; task

tacklist -
F . actignBlock

qualifier=3

T
'.\N!!:I‘t

]
O functionBlock

Figure 6.6: Standard Task Tree of an SSC State

will be activated. In the next iteration, transitions will be sequentially evaluated. In
case no transition is firable, the do-task and its underlying actions will be executed. In
case a transition fires, the do-task will not be executed and be deactivated immediately.
Instead, the exit-task will be activated, executed once, and deactivated afterwards.

When a transition fires, it deactivates the do-task, activates the exit-task, deactivates
its source state (i.e. the current state), activates its target state and links it to the intask
of the covering sscHeader as the new child task (compare Figure 6.5).

The class transition has no attribute specifying its priority (cf. Figure 5.2). All tran-
sitions are arranged under the transition-task and to be sequentially executed. The
arrangement of transitions shall be defined according to the prioritization rule chosen in
the engineering client for SSC (compare Secion 5.4).

106

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

This chapter introduces the test results of FB-agents and Sequential State Charts (SSC)
in a project where a multi-product and multi-function metallurgical furnace was auto-
mated. After an introduction of the automation concept in Section 7.1 and Section 7.2,
solutions for process control and engineering will be introduced in Section 7.3 and Sec-
tion 7.4.

7.1 Research Plant: Submerged Arc Furnace (SAF)

The FB-agent model (cf. Chapter 3) and the Sequential State Chart (SSC) (cf. Chapte 5)
are tested during the automation of a new pilot furnace which was constructed at the
Institute of Process Metallurgy and Metal Recycling (IME) of RWTH Aachen University.
The new furnace with the patent name Modular Electric Reducing Furnace (SAF) is built
and donated by the company SMS Group GmbH. The chair of process control engineer-
ing is currently in charge of the design and implementation of automation systems.

As shown in Figure 7.1, the SAF is equipped with one fixed mounted bottom elec-
trode and three vertical movable electrodes that are positioned on top of the furnace
vessel. Every of the top electrodes is carried by a hydraulic column. During a melting
process, electric arcs are generated between the top electrodes and the melting mate-
rial. The length of the electric arcs can be controlled through raising and lowering the
top electrodes. The electrical energy and the melting temperature can be controlled
correspondently. In contrast to a classic electric arc furnace, the SAF allows multiple
melting modes: AC or DC power supply; with one, two or three top electrodes; with or
without bottom electrode; with or without electric arcs.

The SAF in Aachen is applied for academic research, and is smaller than a industry-
standard production furnace. It has a useful volume of 2m?, and can melt up to 10 tons of
material in every charge. However, the complexity of functionality and the engineering
cost (hardware and software) are even higher than they are for an industry-standard
production furnace. As a research furnace, SAF applies more field devices as usual.
For instance, in order to gain the complete temperature distribution in the vessel, more
sensors are installed. In total, 50 actors, over 150 sensors, and about 2000 signals must
be engineered. The SAF project places high demands on the automation engineering:

107

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

three electrodes

hydraulic
electrode-
carrying arms

ground
electrode

Figure 7.1: Research Plant: Submerged Arc Furnace (SAF)

Firstly, various (including some innovative) production processes will be tested or
newly developed together with industrial partners. A flexible combination of operational
resources (e.g. single devices, device groups) should be allowed.

Secondly, the process control strategy is also part of the research works on the SAF
plant. To test a new method for measuring the vessel temperature, temperature sensors
could be added or removed. To optimize the cooling system, the combination of pumps
and control valves could be modified. The process control should be implemented in a
manner that allows flexible manipulation and extension.

Furthermore, research works on the SAF are mostly driven by PhD students who typ-
ically work at the university over a time period of five years. Thus, the knowledge of the
plant, processes and automation should be transferred from one generation to the next
generation every five years. Due to frequent extensions of the plant and the associated
processes, a smooth knowledge transfer should not only be supported by well-written
documents, but also by intuitive implementations. Automation solutions should be eas-
ily understandable and manageable in order that new employees can easily master the
implementations and engineer new functions.

7.2 Process Automation System

Figure 7.2 gives an overview of the applied automation system for the SAF. All field de-
vices and hardware on the control level are catalog products from commercial vendors.

108

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.2 Process Automation System

Operator—station

=] b= =

‘\ ACPLTMS il TCP/IP

IPC

Remote 1/Os
0...24 mA
4,20 mA
0...10V

ca. 200 sensors and actors

PROFIBUS DP

Cooling Hydraulic Sensors on Power Exhaust
System System Vessel Supply Handling

Figure 7.2: Automation System for the SAF at the IME Institute in Aachen

Automation software for the control level are implemented in the runtime environment
provided by the ACPLT technology introduced in Secion 6.1.

The central device for process control is an Industrial PC (IPC) with a Windows-
Embedded operating system. All peripheries like power supply for the electrodes, water
cooling system, exhaust handling, chargers and manual control panels are connected
with the IPC either directly via PROFIBUS or indirectly via remote 1/Os. Furthermore, a
desktop PC is connected with the IPC via Ethernet. It acts as the operation-station and
is in charge of observation and manual control, archiving and protocoling. Functional
Safety is not realized in the system shown in Figure 7.2. All safety relevant functions
or Safety Integrity Levels (SILs) are realized by special hardware on the field level. A
second IPC is in the planning stages to increase the availability of process control and
to provide more computing capacity for future extensions of the process control strategy.

Process control logics are installed on an ACPLT/OV server on the IPC. A further OV
server for Human Machine Interface is set up on the operation station. Additionally, a
simulation server is set up on the IPC. On this server, simulation models for I/O commu-

109

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

Operational Measures

s i iy) (i)
Operatical Resources mﬂlﬂﬂmﬂ ﬂ [um @ISnm

i - N

e e o (o e e e o
e el y.

Figure 7.3: Process Control Agents for the SAF plant

nication, field devices and chosen melting processes are installed. They can be applied
to test process control logics, before they are coupled to the physical plant.

Every QV server is a Standalone Component according to the unified runtime model
introduced in Section 2.2.3. The communication between the OV servers is realized by
ACPLT/KS (cf. Section 6.1).

The SAF project is a long-term project that is set to last for many years. Automa-
tion software such as process control and HMI have been implemented and virtually
commissioned via the plant simulation. The recooling system and the control of the
electrode columns have already been tested with the hardware. Further components of
the furnace are being commissioned in progressive stages.

7.3 Process Control

Figure 7.3 shows the process control structure implemented for the SAF plant. This
structure follows the model of operational resources and operational measures intro-
duced in Section 2.2.5. Modular FB-agents compose a Multi Agent System: Opera-
tional Resource Agents control single field devices (e.g. valve, pumpe) or asset groups
(e.g. pump station, heat exchanger). Operational Measure Agents are in charge of
production procedures, engineering activities, diagnostic measures etc.

The process control of the SAF plant mainly uses two advantages of the FB-agents:
flexible service-oriented cooperation and white-box engineering. Concrete use cases
will be introduced in the following sections.

7.3.1 Service Oriented Interaction

In conventional process control systems, signals are applied as the operational re-
sources for users. To perform operational measures, users should master all imple-

110

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.3 Process Control

mentation details. In the agent-oriented system for the SAF plant, process control func-
tionalities are encapsulated in single agents and provided as operations and services
to the outside (cf. introductions in Section 3.2). Both the inter-agent interaction and
the interaction between human users and agents are organized in a service-oriented
manner.

Operational Measure Agents provide different services according to their individual
responsibility such as “Production Recipe Execution” or “plant start-up”. Operational
Resource Agents provide the service “Process Control”. All agents provide two ser-
vices: “exploration” and “diagnostic”’. The former one explores meta information, avail-
able services and operations of an agent. The latter one diagnoses the execution status
and explores diagnostic information (e.g. the current setpoint) of an agent.

Operations are agent-specifically defined. For instance, the movement of the three
top electrodes are controlled by three “electrode column control agents” which provide
the operations of “RAISE”, “HOLD” and “LOWER?”; an agent for a hydraulic pump with
variable delivery capacity has the operations “QUICK”, “SLOW” and “STOP” which are
arranged (or grouped) under the “Process Control” service. The “diagnostic” service
of a pump control agent has two operations: “get Key Performance Integrators” and
“get error status”. The “explore” service has two general underlying operations: “list
registered services” and “list registered operations under a service”.

Operations abstract implementation details, whereas services group and abstract op-
erations. In case the user wants to raise an electrode column, this execution objective
can be described in form of a service request message. The electrode column agent
can interpret the message and activate the operation “RAISE”. Implementation details,
such as the steps that are to be followed, control signals that are to be set and check
back signals that are to be observed are concealed behind the service-oriented interac-
tion and are not to be mastered by the service requester (i.e. the user).

The “exploration” and “diagnostic” services can be provided to different requesters
at the same time. A service provider is not allocated by its requesters. However, the
“process control” service of an agent can only be provided to one requester. The arcs in
Figure 7.3 show the cooperation relationship between agents in the context of process
control. The target agent of an arc provides the “process control” service to the source
agent which acts as the service requester. A service provider is dynamically allocated
by its service provider and can only be released by it. Process control requests from
further requesters will be rejected. Nevertheless, a special authority is reserved for the
operator so that a manual access is always possible. Their cooperation relationship
between agents can be fixedly defined or dynamically constructed. A lower level in the
control hierarchy corresponds with a more rigid and fixed coupling between the agents.

Operational Resource Agents for single devices are rigidly connected with physical
devices in the field via signal connections. Single control agents are normally controlled
by the same group control agents. For instance, the allocation relationship between the

111

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

“heat exchanger control agent” and its four underlying agents for ventilator control is
ridig and will not be changed.

The cooperation relationship between group control agents is fixed in most cases,
but can also be dynamically changed in some cases. For instance, three closed-loop-
control agents can allocate the three “electrode column control agents” and control the
length of the electric arcs separately. The electrode column agents can also be allocated
by a “moeller control agent” which control the raising and lowering of the three top
electrodes in a synchronized manner.

All Operational Measure Agents are loosely coupled. They assign operational re-
sources dynamically and release them when the operational measure is finished.

The modular encapsulation of agents and the dynamical cooperation between them
allow a flexible modification and extension of the process control strategy. Agents can be
modularly added or removed with a minimized influence on the existing implementation.
For instance, the three electrode column agents were controlled manually by operators
or automatically by close-loop control agents. The “moeller control” agent was newly
added. It invokes the existing process control service provided by the three agents via
dynamically generated messages. The service providers can recognize the sender of
incoming messages and avoid simultaneous allocation automatically. Thus, the existing
implementation and cooperation relationships do not need to be adapted. In traditional
process control systems, complex allocation algorithms should be defined in this case.

With the modular and flexible extendable structure realized by FB-agents, the process
control engineering could be started, while the mechanical engineering of the SAF plant
is still not finished. A service or operation can be registered and invoked, before the un-
derlying implementation is completely defined. For instance, the “RAISE”, “HOLD” and
“LOWER?” operations of the electrode columns were firstly defined and used for the de-
sign and test of the superordinate control algorithms, before the number of underling
hydraulic valves was set to be two. A further example is the recooling system. Its inter-
action with further plant segments is organized in a service-oriented manner. Although
its structure was redesigned and new pumps and valves were added, its services and
operations were not changed. The hydraulic system, electrode column control and in-
terlock algorithms should not be tested again. Along with the progression of the SAF
project, the process control strategy is continually extended and optimized. Among oth-
ers, the number of field devices has been doubled untill 2013. Experience has shown
that the implemented process control can be adapted with minimal reengineering work.

The present process control concept focuses mainly on service orientation and flex-
ible engineering during the engineering phase of the SAF plant. The action scope of
autonomy is deliberately kept small. On the basis of the implemented agent-oriented
structure, advanced autonomous algorithms can be added. For instance, knowledge
bases can be developed which recognize the situation of the environment in abnormal
states and lead the plant to a safe state autonomously. Agents with self-x functions

112

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.3 Process Control

can be developed that can, for instance, perform partial stroke tests for on/off valves
autonomously.

7.3.2 White-Box Engineering

The white-box engineering realized by the FB-agent model allows users to register and
deregister services and operations. Internal logics of FB-agents can also be defined,
manipulated and extended by users. Continuous functions can be defined as Func-
tion Block Diagrams (FBD). Sequential procedures (e.g. control sequences) and state-
based procedures (e.g. state machines) can be described in Sequential State Charts
(SSC) (cf. Chapter 5).

c slate

1
"1 manual

L7~ LY

I local | I operation 1 I Ioperatlon 2 I

(a) Occupancy State Machine (b) Operating State Machine

automatic | i

stationary

(c) Working State Machine (d) Error State Machine

Figure 7.4: Sequential State Charts (SSC) for the Status Representation of Single Con-
trol Agents.

As shown in Figure 7.4, every Operational resource Agent (ORA) has four standard
SSCs for the representation of occupancy state, operating state, working state and
error state. Operational measure Agents (OMA) also have three standard SSCs for
representing the occupancy state, error state and the life-cycle phase (cf. Figure 7.5).
All SSCs can be tailored for individual agents.

113

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

—
init

+

o B

| |
2 L manual occupy
| resources

==

processing

-

not defined free
resources

+

1
good . | efror
|

free

automatic

to be
deleted

Figure 7.5: Standard state machines for operational measure agents

Figure 7.6 shows the control logic within an electrode column. Three SSCs are de-
fined for raising, holding and lowering the electrode column. Each of the three SSCs
has four standard states: idle, stationary, start-up and shutdown. Each of the last two
states has a sub-procedure which is connected via signal connections to the main-SSC.
Another SSC that is set up according to Figure 7.4b controls the transition between the
three operations and a predefined basic state. In case an operation which is different to
the current operation is requested, the current one will be shut down and lead to its idle
state. The new operations will be started up afterwards.

The three main SSCs are registered as operations: “RAISE”, “HOLD” and “LOWER”.
Operations are arranged under the service “Process Control”. Every operation has a
representative object of the class operation introduced in Section 6.2. Service requests
on the process control service will be saved as signal variables (e.g. operation, parame-
ter) of the service inbox “Process Control” (cf. Figure 3.5). These variables can be read
via signal connections of the SSCs shown in Figure 7.6.

The introduction in this section has indicated that the general procedure description
method Sequential State Chart (SSC) can appropriately describe various procedures for
process control and state representation. No application-specific description methods
are needed.

114

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

StartUp

[eniny’ ¥1.operation-= open
entry/ Y1.operation:= close

ul Shut down
e

shutDown [
State=automatic

¥1.0ce
AND Y2 OccupancySate=automatic

Operation Control |

AciveState

ActveState

~ N

- - -
~ P

Figure 7.6: Control Logic of an Electrode Column

7.4 Knowledge-based Engineering

Many control logics (e.g. valve control) of the SAF plant are repetitive. A fully manual
engineering is time-consuming and error-prone. To accumulate the engineering pro-
cess, engineering agents are applied. They serve as autonomous assistants for the
user and can initiate implementations or check the completeness of existing implemen-
tations. The engineering knowledge of the agents are formally described according to
the theoretical work ACPLT/RE’ [66], which allows a rule-based and knowledge-based
engineering of automation functionalies.

Section 7.4.1 presents the concept of agent-oriented engineering. Specific use cases
will be introduced in Section 7.4.2. A prototype was implemented in a diploma thesis

'RE: acronym of Regelbasiertes Engineering (German Expression for Rule-based Engineering.)

115

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

|] r - —
(== = HMI
B L o —
[Engineering Procedure Knowledge Base
=3 [Emd g (Engineering Rules) = [
Process
- - 2 WHEN YO [Control
il = - = | THAN control agent || Generation e
T L = |- = for on-off valve or P
| - =] = = Evaluation e
P&ID — T = .
| - Simulation
Planning Data Engineering Agent Implementations in

Engineering logics in operative systems

- script language Tcl (blackbox engineering),
- or $5C and FBD (whitebox engineering).

Figure 7.7: Eingeering Agent

and successfully applied during the SAF engineering. Some results have already been
introduced in a previous publication of the author [104].

7.4.1 Concept

Figure 7.7 demonstrates the basic idea of the knowledge-based engineering. An en-
gineering agent encapsulates procedures and fact knowledge for specific engineering
objectives. It explores planning data of the plant and can provide the following two types
of engineering services:

e Initialization of process control implementation in runtime systems,
e Evaluation of existing implementations

Planning data is defined in a Piping and Instrumentation Diagram (P&ID). It models
the structure of the plant, connections between the instruments and signals that are to
be exchanged between the process control level and field level. The planning data is
present in electronic form and can be explored by engineering agents. The P&ID is
defined in the CAE tool Comos and can be transformed into a CAEX model according
to the standard IEC 62424 [105]. This model is present in the ACPLT/OV environment
and can be explored by engineering agents.

The knowledge base of agents contains fact knowledge which is formulated as en-
gineering rules in the standard form “IF premise, THAN conclusion”. A premise is a
pattern for the exploration in the planning data. In case the pattern (e.g. a pump-valve
module) is detected, its corresponding conclusion (e.g. “generate interlock logics”) will
be performed. Engineering rules can be project-specific or project-neutral. Neutral rules
can be applied in different projects.

116

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Every agent encapsulates at least one Engineering Procedure which controls the pro-
gression of an engineering process. The procedure invokes engineering rules and per-
forms actions such as “initialize an OV server for the simulation”, “load defined libraries
onto the server” etc.

In the first prototype of the engineering agents, all engineering logics were programmed
by a script language Tcl [106]. Script languages are not standard automation languages.
Many solutions should be specially developed, among others, the communication inter-
face to the runtime system, interfaces for operation and observation, solutions for error
diagnosis etc. Additionally, users have to master an application-specific language with
which they are not familiar. Experience in the SAF project shows that the automation
engineers need at least two weeks of training before becoming familiar with the pro-
gramming.

As an alternative to the textual script language Tcl, ACPLT/RE has been applied. In
ACPLT/RE, engineering rules are formally described in the native automation language
Function Block Diagram according to the IEC 61131-3 (cf. Section 2.2.2). ACPLT/RE
provides a function block library for elementary engineering functions such as “create
object”, “Link Object”, “Set Variable” and “Get Variable”. Engineering rules can be ag-
gregated by using these function blocks. Most automation engineers of the SAF project
are automation engineers, mechanical engineers or chemical engineers. The function
block technology is an essential part of their academic study. During the SAF engineer-
ing, they only need to learn about the function blocks of the engineering library and can
begin with the engineering work with no special training on the programming language.
The white-box engineering realized by function blocks allows engineers to master and
flexibly extend engineering rules.

7.4.2 Use Cases

Figure 7.8 depicts the engineering agents applied for the SAF project. Every single
agent is responsible for a specific engineering work and provides engineering services
such as “Initialization of Single Control Level” and “Analyze the plausibility of the exist-
ing 1/0O configuration”. The achievement of specific engineering objectives is ensured
by the knowledge base encapsulated in individual agents. Specific use cases of the
engineering agents will be introduced in the following paragraphs.

Engineering of /0 Configuration

Signals that are to be exchanged via field bus should be converted. Figure 7.9 shows
the default Function Block Diagram (FBD) for processing a temperature signal. The data
sent from the field bus is a real number between 0 and 100. It should be mapped to the
range [0°C, 1500°C], which is defined in the signal list. Additionally, a function block for
signal monitoring is to be instantiated. It monitors up to four thresholds and generates

117

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

Overall Engineering Control

Project-specific Agent:

A 1 v 7]

Project-neutral Agents: 3 :s% 3 % U : ,% :%
i 1

i

1/0 Configuration ~ Single Control HMI Initialization Plant Simulation
Level

ey ——
= e i e e

Figure 7.8: Agents for the initialization of automation applications of the SAF plant

COM|value —value | adaption | value —_value |phservation

rangeHH HH
max rangeH H
min rangelL L
unit RangeLL L

Figure 7.9: FBD to be generated for the conversion and the monitoring of a temperature
signal (revised figure based on Figure 7 in [104]

four monitoring signals accordingly: very high (HH), high (H), low (L) and very low
(LL). Similar FBDs are to be applied for every single analog input, analog output, digital
input and digital output on the process control server.

An engineering agent for the service “Initialization of I/O configuration” is implemented.
It instantiates the desired function blocks, creates signal connections and parameterizes
the function blocks according to the entries (e.g. signal range, thresholds, hysteresis,
warning text etc.) in the signal list.

All engineering activities are controlled by an engineering procedure shown in Fig-
ure 7.10. The procedure is described in Sequential State Chart (SSC). Every state re-
alizes an engineering activity and calls an engineering rule. Every rule is implemented
in form of a Function Block Diagram which consists of function blocks for the exploration
of planning data and the configuration of function blocks etc.

The initial step of the Sequential State Chart (SSC) performs necessary configurations
of the engineering rules through the assignment of parameters, such as the location of
planning data. In a second step, the rule for generating the plant hierarchy in Figure 7.11
is invoked. Five hierarchical levels are automatically initialized: plant, instrument Com-

118

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

INIT
-
Generate plant Rule01
hierarchy — -
Do/ CALL Rule01 :_,_D_%FD_,_:
Engineering Ruleli
crnalog Inpais | || WHEN analog input |
Do/ CALL Rule11 || THAN generate/analyze | _|
* | FBD in Figure 8.4 | |
Engineering - % ‘:[l |

Analog Outputs

Do/ CALL Rule12 - Rule12 -
- = =
Engineering :_‘—CI—%?:'_I_:
Binary Inputs
— Rule13
Dol CALL Rule13 ~ -
= B =
Engineering :—‘—CI—EFD_v—:
Binary Qutputs
Do/ CALL Rule14 Rule14
END H =0

)) Knowledge Base
Engineering Procedure - Engineering Rules in term of ACPLT/RE
- FBDs that can be invoked as actions

Figure 7.10: SSC and FB-actions for I/O configuration.

plex, plant unit, plant segement and technical unit. In the next four steps, engineering
rules for different signal types are sequentially executed. For instance, Rule 11 creates
and configures a copy of the FBD in Figure 7.9 for every analog input signal detected in
the planning data.

The initialized logic can be manually changed in the engineering phase. For instance,
parameters of the function blocks can be modified. A similar agent is implemented for
the service “Check of I/0O configuration”. In contrast to the initialization agent, the latter
agent does not generate the function blocks but only checks their existence, necessary
connections and the plausibility of their parameters. It is, for example, only plausible, in
case all monitoring thresholds are within the given measurement range, and follow the
ruleof HH > H > L > LL.

119

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

3 % A39.13U. 043,10 13UY

8 gl3l.l30.l‘l).ll:?509

] rsacen
MANAGER process control server {5 1h0_simmation
fb_lbe_ProcessControl) ; BT Tecktint bt
T simulation server 1 %u o
E)ﬁ\ﬂ Communication - PCPIPoints
: P30 EE P30
G‘ﬂ €10 1§]1c10
PULD :
{0 plant hierarchy plaprue
B{ig)ps10 B rs10
(}ﬁn P520 o(Lj)rs20
TULD
{1y Tu10 a pump e
Lt (exported model from —
was53 MATLAB/Simulink)
xi5% *GJDI:;:._;“"
et Sensors and Actors (L) ross
POGD e
TO6L (13) ros1
Y063 {13 Yos2
R VARS (TPiwvnes

/O configuration plant simulation
Figure 7.11: Automatically generated object structures (Screenshots from the engineer-
ing client iFBSpro @LTSoft

Engineering of Single Control Level

The SAF plant is equipped with many standard field devices such as pumps and
on/off valves. Their corresponding single control agents (cf. Section 7.3) on the process
control server are automatically generated by an engineering agent. Only the signal
connections between the agents and the field devices, as well as specific interlock logics
should be individually defined by the user.

The engineering agent for the process control initialization creates a single control
agent for every actuator and configures its connections with 1/0O signals (e.g. set point,
check back signals) which are generated by the aforementioned agent for I/O configu-
ration.

A similar agent is defined which can check the plausibility of the existing single con-
trol level. For instance, it can check whether a manually engineered agent is correctly
connected to the field device.

Engineering of Human Machine Interface (HMI):

The HMI uses many standard visualization elements, e.g. for monitoring sensor sig-
nals. An engineering agent for HMI is defined which can generate the standard ele-
ments and initiate their configuration.

As shown in Figure 7.12, every temperature signal has an exclusive visualization. The
HMI engineering agent can generate the visualization element, set the signal name and

120

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

Ofentemperatur
- Automatic created
; and configured by
(s~ (o J agent
e :]l . - Exacﬂy positioned
il user
l, ¥
-
[ToiA]] . .
THLES PV |
o - 1.1* .
LN] 1 - -
Toifa [|
=SS . —_—— U]
MO o= | (AP _” [ToTpe T
|| |Toa_pe [T P [
[TeeTA Y Tt | [TEA] |
7wl - 1 [T B | [T |] |

Figure 7.12: Visualisation of sensor value observation: automatically initialized and
manually placed

the physical unit, link the element with the measuring signal form the 1/O level, and ini-
tiate a solid line for indicating the mounting position of the sensor on the SAF vessel.
Additionally, every signal has an exclusive face plate which is displayed by clicking on
the signal. This face plate shows measurement range and monitoring thresholds of the
signal and can also be automatically created by the HMI agent. All signal visualiza-
tion, face plates and lines are initiated by the agent and then precisely positioned by
automation engineers.

A similar checking agent is defined which can check whether all sensor signals are
visualized and whether the HMI configuration is plausible.

Engineering of Plant Simulation:

In order to test the process control logic and to train operators, a simulation model for
the SAF plant is applied. I/O signals, field devices and melting processes are simulated.

Every actor and sensor has an exclusive representative in the simulation. Simulation
models for the field devices and processes were developed in MATLAB/Simulink in a
diploma thesis. These models are compiled in ANSI C code and loaded to the simulation
server (cf. Figure 7.2 and Figure 7.7). Figure 7.11 shows the object structure which
is generated by the engineering agent. Initially, the agent generates the same plant

121

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7 Case Study

antry:
CALL createControlServer

initerate
control server

initerateServer. T>10sec.

generate /O
configuration

generate

. entry:
single control

JgenerateSingleControl sendMsg:=TRUE

generate
group Control

use simulation =sm no simulation createControlSarver
initerate - 130.134.0.57... | location | status
simulation server| “Engineering) ProcessControl wrNam
Procedure ~ Actions 10 MB [size
generate : - %D
device = 000 TRUE [doCreate
simulation i
message
Toad proces outpuls
D:-mz:mns generateSingleContral
- sefvice
operation
configure arameterd
[parameorn |
communication -
sendMsg

Figure 7.13: Procedure for Overall Engineering

hierarchy that takes effect in the process control hierarchy. It instantiates simulation
models for field devices and then configures the communication between the simulation
server and the process control server.

Aside from the agent for the simulation initialization, an agent for checking manually
extended implementation is applied. The agent can check whether every single de-
vice has an exclusive simulation element and whether the communication between the
simulation and the process control logic works properly.

Engineering of Automation System:

Agents for the previous four use cases are project-neutral and can be reused in fur-
ther projects. A project-specific agent was developed which can initialize the whole
automation system and control the aforementioned four agents.

Figure 7.13 shows the engineering procedure within this superordinate agent. This
procedure is implemented as a Sequential Sate Chart (SSC). At the beginning of the
procedure, a function block is invoked as an action which creates a server for process
control (cf. Figure 7.2). It takes a while until the storage space is reserved and the
server is started. After a waiting time of 10sec., the second state will be activated. In this
state, a message output is activated which creates and delivers a service request to the
aforementioned engineering agent for /O configuration. Further services for the initial-
ization of single control level, HMI and plant simulation will be requested sequentially in

122

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

7.4 Knowledge-based Engineering

the following states. Additionally, states can be defined for project-specific engineering
activities. For instance, the group control level (cf. Figure 7.3) can be generated in
an SSC state. Simulation models for special devices (e.g. power supply) and process
models (e.g. thermodynamic model for a melting process) can be loaded at the end of
the procedure.

7.4.3 Application Effects

The reference model FB-agent forms a design guideline for engineering agents. Engi-
neering activities are modularly encapsulated and registered as services in individual
agents. The engineering knowledge base is describted in Function Block Diagrams
(FBDs) according to ACPLT/RE. Engineering procedures are described in Sequential
State Charts (SSC). Both the FBD and the SSC realize a graphical representation and
modular encapsulation of engineering logic. As the FBD and the SSC can be directly
implemented in existing automation systems, special communication interfaces or APls
are not required.

In this context, the same execution frame, service communication and description
methods that are applied for process control agents can be utilized. As the automation
engineers of the SAF plant only need to master a unified design pattern for different
application areas, the engineering workload can be reduced.

In traditional engineering processes, the process control strategy can only be imple-
mented when the planning data will not be altered anymore. The engineering cost for a
plant reconstruction is usually high. By using engineering agents, however, the process
automation engineering of the SAF plant could be started in parallel with the mechanical
engineering. The process control strategy can be quickly implemented in the runtime
system and tested via a plant simulation. Implausibility and incompleteness in the plan-
ning data and the implementation in the runtime system can be automatically detected.
The correctness and the completeness of a manually engineered implementation can
be automatically tested by agents. All engineering rules and engineering procedures
can be flexibly modified and extended by users.

123

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

8 Conclusions and Outlook

8 Conclusions and Outlook

The present dissertation discusses engineering aspects of process automation agents.
A reference model named FB-agent was defined which combines the advantages of
function block technology, service orientation and agent orientation. The FB-agent
model serves as a standard design pattern for the development of agents in different
application areas (e.g. process control, engineering, model management, archiving and
etc.)

In order to realize a flexible agent-agent or agent-human cooperation, internal logics
of FB-agents are abstracted by means of service orientation. Elementary automation
functions within an agent are to be registered as operations which represent the elemen-
tary functional ability of the agent. Operations are grouped and abstracted as services
which can be explored and invoked from the outside. Services represent the execution
objectives that can be achieved by agents. To perform an automation task, the user
specifies the expected execution objective in form of a service request message. The
service providing agent can interpret the service request and achieve the objective au-
tonomously by using its local knowledge base and by cooperating with further agents.
The cooperation relationship between agents can be fixedly defined or dynamically built
at runtime.

The signal orientation in classic automation systems and the service-oriented (or
message-oriented) communication from computer science are integrated in the FB-
agent model. Viewed from the outside, an FB-agent is encapsulated as a function
block which supports signal- and message-exchange with the environment. Data flow
between internal components of agents is signal-oriented. Incoming messages from
the outside are received by a message input of the agent and forwarded to internal
message inboxes. The inboxes buffer and sort messages according to their objectives
(e.g. service request) and types (e.g. invalid). Contents of the messages are converted
to signals that can be processed by further components (e.g. function blocks) within
the agent. Message outboxes collect internal signals, generate messages (e.g. service
requests for other agents) and send them out.

Classic agent systems are normally implemented as black-boxes. Users do no need
to acknowledge, how the agents work. However, users of automation systems should
not be isolated from the design and implementation of automation agents. FB-agents
applies a white-box structure and allows a user-centralized engineering. All compo-
nents within an FB-agent shall be modularly encapsulated as function blocks. A flexible
combination of atomic function blocks (black-box) and composed function blocks (white-

124

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

box) is allowed. Function block technology is highlighted as a basic modelling principle
during the FB-agent engineering. Due to the native support of process control systems
on the function blocks, FB-agents can be seamlessly integrated into the control flow and
the existing systems. A user-friendly engineering is achieved, since users are already
familiar with the function-block-driven engineering.

FB-agents can be integrated into runtime systems which can be call-based, event-
driven or cyclic-processing. The execution of all function blocks within an agent is con-
trolled by an internal task list which ensures a strictly deterministic execution. Runtime
behaviors of the task list are clearly defined in a formal model according to UPPAALs
automata which can appropriately support the validation and verification of FB-agents
in runtime systems.

The selection of description methods is the second main aspect that was addressed
during the present work. Continuous functions within FB-agents can be described in
Function Block Diagrams (FBD). For the description of state-based and sequence-
based procedures, existing Procedure Description Methods (PDMs) in industrial au-
tomation and computer science are evaluated. The completeness of syntax, the un-
ambiguity of semantics and the compatibility with existing automation systems were
addressed as main criteria during the comparison. Sequential Function Chart (SFC),
PLC-Statechart and Procedure Function Chart (PFC) were determined as possible ap-
proaches for the specification and implementation of FB-agents. However, none of the
cited methods is suitable for being applied as a general approach for the description of
diverse state-based and sequence-based procedures within FB-agents in their present
form. In order to lower the engineering effort and raise the intuition, a general descrip-
tion approach called Sequential State Chart (SSC) has been developed.

Most existing procedure description methods are developed for specific application
domains and can provide domain-specific syntax and semantics. The development of
the general approach Sequential State Chart, however, focuses on the description of
simple automation procedures which have no over-complex structure but are dominant
in process automation. Based on the evaluation of existing description methods, am-
biguously or neglected details have been identified. Unified solutions for the following
design aspects are defined for the Sequential State Chart: the prioritization of alterna-
tive transitions, the execution order for actions, the execution of concurrent sequences,
the progression of the entire procedure and the state representation in the idle time be-
tween two execution cycles. Additionally, every Sequential State Chart has an explicitly
defined execution frame which encapsulates the chart, controls the deterministic exe-
cution of internal components and manages the data exchange with the environment.
Semantics of SSCs are also described in the form of UPPAALs automata which offer a
formal analysis of SSCs in runtime systems.

Prototypes of FB-agent and Sequential State Chart have been tested in a practical
project in which a metallurgical furnace SAF is automated. Experiences show that the
modularity and the flexibility of process control are improved by using process control

125

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

8 Conclusions and Outlook

agents. The engineering effort and the time consumption are also significantly reduced
by using engineering agents. Additionally, various state machines and sequential proce-
dures for the automation of the furnace can be appropriately specified and implemented
in the form of Sequential State Charts. No application-specific procedure description
methods were needed during the entire project.

The general approach Sequential State Chart (SSC) is not a novel description method.
It is developed on the basis of a synthesis of the best practice of existing procedure de-
scription methods. The SSC is mainly characterized by its simple design, unambiguous
semantics and the compatibility with existing automation runtimes. It can also be re-
garded as a reference model for the specification and implementation of automation
procedures.

The reference model FB-agent and the general description method (or model) of Se-
quential State Chart establish a working platform for the description of process automa-
tion functions and for the construction of automation systems. Although the present
dissertation focuses on agent engineering, the development of non-agent automation
functions can also benefit from the discussions and design decisions that were made in
the context of FB-agent and Sequential State Chart, e.g. modular encapsulation, inte-
gration of signal- and service-orientation, white-box engineering etc. These two models
can be used as a guideline for the design of future automation systems.

The present work focusses on the construction of a general framework and on the
selection of description methods for the development of automation agents in existing
automation systems. The autonomous behaviors of agents were not intensively dis-
cussed. The scope of action of the example FB-agents is deliberately kept low. The
development of advanced autonomous functions (e.g. self-x functions) for process au-
tomation is addressed as a central work for the future.

126

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

Bibliography

[1] M. Polke, Process Control Engineering. Weinheim, Germany: VCH, 1994.

[2] R. Lauber and P. Géhner, Prozessautomatisierung Il. Germany: Springer-Verlag,
1999.

[3] IEC 61131-3: Programmable controllers - Part 3: Programming languages, 2013.
3rd Edition.

[4] IEC 61131-5: Programmable controllers - Part 5: Communications, 2000.

[5] IEC TR 61131-8: Programmable controllers - Part 8: Guidelines for the applica-
tion and implementation of programming languages, Technical Report, 2003. 2nd
Edition.

[6] IEC 60050-351: International electrotechnical vocabulary - Part 351: Control
technology, 2013.

[7]1 VDI/VDE 3681 Guideline: Classification and evaluation of description methods in
automation and control technology, 2005.

[8] DIN EN ISO 10628-2: Diagrams for the chemical and petrochemical industry-
Part 2: Graphical symbols (ISO 10628-2:2012); German version EN ISO 10628-
2:2012, 2013.

[9] IEC 61512-2: Batch control - Part 1: Models and terminology, 2002.

[10] ISA-106 TRO1: Procedure Automation for Continuous Process Operations - Mod-
els and Terminology, Technical Report, 2013.

[11] UML: Unified Modeling Language, V2.4.1, 2012.

[12] “OMG’s meta object facility.” http://www.omg.org/mof/. Accessed: 2014-
09-10.

[13] A. Minnemann, Infrastrukturmodell zur Integration expliziter verhaltensbeschrei-
bungen in die operative Prozessleittechnik. PhD thesis, Chair of Process Control
Engineering, RWTH Aachen University, Germany, 2005.

[14] IEC 61499: Function blocks for industrial-process measurement and control sys-
tems, 2000.

127

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

(18]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

128

K. Thramboulidis, “IEC 61499: Back to the well proven practice of IEC 611317, in
ETFA2012: 17th IEEE International Conference on Emerging Technologies and
Factory Automation, (Krakow, Poland), 2012.

S. Griiner and U. Epple, “Paradigms for unified runtime systems in industrial
automation,” in ECC: Proceedings of the 12th European Control Conference,
(Zurich), pp. 3925-3930, |IEEE, July 2013.

W. Dai, V. Dubinin, and V. Vyatkin, “Migration from PLC to IEC 61499 using se-
mantic web technologies,” IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, vol. in print, 2013.

D. Witsch and B. Vogel-Heuser, “PLC-statecharts: An approach to integrate uml-
statecharts in open-loop control engineering - aspects on behavioral semantics
and model-checking,” in Preprints of the 18th IFAC World Congress Milano (Italy),
2011.

L. Yu, S. Griner, and U. Epple, “An engineerable procedure description method
for industrial automation,” ETFA2013: 18th Conference on Emerging Technolo-
gies and Factory Automation, 2013.

U. Enste, Generische Entwurfsmuster in der Funktionsbausteintechnik und deren
Anwendung in der operativen Prozessfiihrung. PhD thesis, Chair of Process Con-
trol Engineering, RWTH Aachen University,Germany, 2001.

U. Enste and M. Fedai, “Flexible process control structures in multi-product and
redundant-routing-plants,” in MMM 98 — 9th IFAC Symposium on Automation in
Mining, Mineral and Metal Processing, Elsevier Science, 1998.

S. Schmitz, A. Minnemann, and U. Epple, “Component modell for systematic de-
sign of process control functions,” in GMA Congress 2005, VDI/VDE-Gesellschaft
Mess- und Automatisierungstechnik, pp. 817-824, 2005.

A. Minnemann, U. Enste, and U. Epple, “Hybrid modelling of complex process
control function blocks,” in S. Engel, G. Frehse, E. Schneider (Eds.): Modelling,
Analysis, and Design of Hybrid Systems, Springer-Verlag Berlin Heidelberg New
York, 2002.

L. Yu, G. Quirés, and U. Epple, “Service-oriented process control for complex
multifunctional plants: Concept and case study,” in ETFA 2010: 15th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation, (Bilbao),
IEEE, sep 2010.

H. Mersch, M. Schldtter, and U. Epple, “Classifying services for the automation
environment,” in ETFA 2010: 15th IEEE International Conference on Emerging
Technologies and Factory Automation, 2010.

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[26] L. Evertz and U. Epple, “Laying a basis for service systems in process control,”
in ETFA 2013: IEEE 18th Conference on Emerging Technologies and Factory
Automation, 2013.

[27] “WS-Trust 1.4. OASIS standard.” http://docs.ocasis-open.org/ws—sx/
ws—trust/vl.4/ws-trust.html, 2009.

[28] M. Schlltter, U. Epple, and T. Edelmann, “On service-orientation as a new ap-
proach for automation environments,” in Proceedings of MATHMOD 2009 — 6th
Vienna International Conference on Mathematical Modelling, vol. 2, pp. 2426—
2431, 2009.

[29] Y. Natis, “Service-oriented architecture scenario,” Gartner, ID Number: AV-19-
6751, 20083.

[30] IEC 62541: OPC unified architecture - Part 1: Overview and concepts, 2010.

[31] NAMUR Recommendation NE141: Interface between Batch and MES Systems,
2012.

[32] “W3c recommendation: Extensible markup language (xml) 1.0 (fifth edition).”
http://www.w3.0org/TR/REC-xml/, 2008.

[33] M. Gaspari, “Concurrency and knowledge-level communication in agent lan-
guage,” Artificial Intelligence, vol. 105, pp. 1-45, 1998.

[34] VDI/VDE 2653 Guideline: Multi-agent systems in industrial automation - funda-
mentals, June 2010.

[35] U. Epple, “Agentensysteme in der Leittechnik,” atp - Automatisierungstechnische
Praxis, vol. 42, pp. 45-51, 2000.

[36] P. Goéhner, P. G. de A. Urbano, and T. Wagner, “Softwareagenten - Einflihrung
und Uberblcok Uber eine alternative Art der Softwareengwicklung teil 3: Agenten-
systeme in der Automatisierungstechnik: Aufbau, Strukture und Implementierung
an einem Anwendungsbeispiel,” atp - Aufomatisierungstechnische Praxis, 2004.

[37] S. Eberle and P. Géhner, “Softwareentwicklung fir eingebettete Systeme mit
strukturierten Komponenten. teil 1+2,” atp - Automatisierungstechnische Praxis,
vol. 46, 2004.

[38] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy
for autonomous agents,” in The Third International Workshop on Agent Theories,
Architectures, and Languages, 1996.

[39] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.
[40] J. Odell, “Agent technology: An overview,” 2010.

129

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[41] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated electronic commerce: A
survey,” The Knowledge Engineering Review, vol. 13, pp. 147-159, 1998.

[42] E. Ferreira, E. Subrahmanian, and D. Manstetten, “Intelligent agents in decentral-
ized traffic control,” in IEEE Intelligent Transportation Systems Conference Pro-
ceedings, 2001.

[43] J. France and A. Ghorbani, “A multiagent system for optimizing urban traffic,” in
IEEE/WIC International Conference on Intelligent Agent Technology, 2003.

[44] K. Mizuno, Y. Fukui, and S. Nishihara, “Urban traffic signal control based on dis-
tributed constraint satisfaction,” in the 41st Hawaii International Conference on
System Sciences, 2008.

[45] X. Zhao and J. Zhao, “Research on model of resource management for traffic
grid,” Procedia Engineering, vol. 15, pp. 1476—-1480, 2011.

[46] J. Lagorse, D. Paire, and A. Miraoui, “A multi-agent system for energy manage-
ment of distributed power sources,” Renewable Energy, vol. 35, pp. 174—-182,
2010.

[47] G. Rohbogner and S. Fey, “What the term agent stands for in the smart grid
definition of agents and multi-agent systems from an engineer’s perspective,” in
Proceedings of the Federated Conference on Computer Science and Information
Systems, 2012.

[48] J. Zeng, J. Liu, J. Wu, and H. Ngan, “A multi-agent solution to energy manage-
ment in hybrid renewable energy generation system,” Renewable Energy, vol. 36,
pp. 1352-1363, 2011.

[49] N. Jennings, “Agent-oriented software engineering,” in Multiple Approaches to
Intelligent Systems, vol. 1611 of Lecture Notes in Computer Science, pp. 4-10,
Springer Berlin Heidelberg, 1999.

[50] J. Bagherzadeh and S. Arun-Kumar, “Flexible communication of agents based on
fipa-acl,” Electronic Notes in Theoretical Computer Science, vol. 159, pp. 23—-39,
2006.

[51] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-compliant agent frame-
work,” in PAAM 1999: 4th International Conference on Practical Application of
Intelligent Agents and Multi-Agent Technology, vol. 99, pp. 97-108, IEEE, 1999.

[52] “Java Agent DEvelopment framework.” http://jade.tilab.com/. Accessed:
2014-09-16.

[53] S. Pech, Agentenbasierte Informationsgewinnung flir automatisierte Systeme.
PhD thesis, Institut fir Automatisierungs- und Softwaretechnik, University
Stuttgart, Germany, 2014.

130

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[54] H. Mubarak and P. Géhner, “An agent-oriented approach for self-management of
industrial automation systems,” in INDIN 2010: 8th IEEE International Conference
on Industrial Informatics, 2010.

[55] H. Mubarak, Agentenbasiertes Selbstmanagement von Automatisierungsania-
gen. PhD thesis, Institut fir Automatisierungs- und Softwaretechnik, University
Stuttgart, Germany, 2013.

[56] A. Wannagat and B. Vogel-Heuser, “Increasing flexibility and availability of man-
ufacturing systems-dynamic reconfiguration of automation software at runtime
on sensor faults,” Journal of Automation, Mobile Robotics & Intelligent Systems,
vol. 3, pp. 47-53, 2009.

[57] D. Schiitz, M. Schraufstetter, J. Folmer, B. Vogel-Heuser, T. Gmeiner, and
K. Shea, “Highly reconfigurable production systems controlled by real-time
agents,” in ETFA2011: 16th IEEE Conference on Emerging Technologies Fac-
tory Automation, pp. 1 -8, sept. 2011.

[58] U. Epple, “Agentenorientierte Modelle in der Anlagenautomation,” in Agenten-
systeme in der Automatisierungstechnik (P. Géhner, ed.), pp. 95-110, Springer-
Vieweg, 2013.

[59] L. Yu, A. Schiller, and U. Epple, “On the engineering design for systematic in-
tegration of agent-orientation in industrial automation,” in 70th IEEE International
Conference on Control & Automation, 2013.

[60] ISO/IEC 9126-1: Software engineering - Product quality, Part 1: Quality model,
2001.

[61] A. Wannagat, Entwicklung und Evaluation agentenorientierter Automa-
tisierungssysteme zur Erhéhung der Flexibilitdt und Zuverldssigkeit von Produk-
tionsanlagen. PhD thesis, Lehrstuhl fir Automatisierung und Informationssys-
teme, TU Miinchen, Germany, 2014.

[62] G. Bollella and J. Gosling, “The real-time specification for Java,” Computer,
vol. 33, pp. 47-54, 2000.

[63] L. Yu, G. Quirds, T. Krausser, and U. Epple, “ACPLT + IEC 61131-3 = Dynamic
Reconfigurable Models,” Bamberg, Germany, pp. 90-91, 2012.

[64] F. Uecker, Konzept zur Prozessdatenvalidierung flir die Prozessleittechnik. PhD
thesis, Chair of Process Control Engineering, RWTH Aachen University, 2005.

[65] R. Jorewitz, A. Minnemann, U. Epple, R. Bockler, W. Wille, and R. Schmitz,
“Automated treatment of balances,” in MATHMOD 2006: 5th Vienna Symposium
on Mathematical Modelling, vol. 30, pp. 4-1 — 4-13 (Vol. 2), AGRESIM-Verlag,
2006.

131

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[66] T. Krausser, G. Quirds, and U. Epple, “An IEC-61131-based rule system for inte-
grated automation engineering: Concept and case study,” in IEEE INDIN 2011:
9th IEEE International Conference on Industrial Automation, (Lisbon), IEEE, July
2011.

[67] S. Runde, A. Fay, S. Schmitz, and U. Epple, “Wissensbasierte Systeme im Engi-
neering der Automatisierungstechnik - knowledge-based system for the engineer-
ing of automation systems,” at - Automatisierungstechnik, vol. 59, pp. 42—-49, Jan.
2011.

[68] S. Schmitz, M. Schlutter, and U. Epple, “Automation of automation - definition,
components and challenges,” in ETFA 2009: 14th IEEE International Conference
on Emerging Technologies and Factory Automation, IEEE, Sept. 2009.

[69] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115—133, 1943.

[70] E. Moore, “Gedanken-experiments on sequential machines,” in Automata Studies,
Annals of Mathematical Studies, pp. 129—153, Princeton University Press, 1956.

[71] G. Mealy, “A method to synthesizing sequential circuits,” Bell System Technical
Journal, vol. 34, pp. 1045-1079, 1955.

[72] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-
puter Programming, vol. 8, pp. 231-274, 1987.

[73] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The Statem-
ate Approach. McGraw-Hill, 1998.

[74] D. Witsch, M. Ricken, B. Kormann, and B. Vogel-Heuser, “PLC-statecharts: An
approach to integrate UML-statecharts in open-loop control engineering,” in IN-
DIN 2010: 8th IEEE International Conference on Industrial Informatics, pp. 120—
125, July 2006.

[75] ISO/IEC 19501: Information technology - open distributed processing - Unified
Modeling Language (UML), 2005.

[76] C. Petri, Kommunikation mit Automaten. PhD thesis, Fachbereich flir Mathematik
und Physik, TU Darmstadt, 1962.

[77] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Application.
Springer-Verlag, 1991.

[78] D. Abel, Petri-Netze fir Ingenieure: Modellbildung und Analyse diskret ges-
teuerter Systeme. Springer-Verlag, 1990.

[79] ISO/IEC 15909-1: Systems and software engineering - High-level Petri nets - Part
1: Concepts, definitions and graphical notation, 2004.

132

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[80] ISO/IEC 15909-2: Systems and software engineering - High-level Petri nets - Part
2: Transfer format, 2011.

[81] B. Falko, “Analysis of petri nets with a dynamic priority method,” Application and
Theory of Petri Nets 1997, vol. 1248, pp. 359376, 1997.

[82] G. Berthelot, “Transformations and decompositions of nets-,” Petri Nets: Central
models and their properties, vol. 254, pp. 359-376, 1987.

[83] B. Graves, “Computing reachability properties hidden in a finite net unfold-
ing,” Foundations of Software Technology and Theoretical Computer Science,
vol. 1346, pp. 327-341, 1997.

[84] A. Kondratyev, M. Kishinevsky, A. Taubin, and S. Ten, “A structural approach for
the analysis of petri nets by reduced unfoldings,” Application and Theory of Petri
Nets 1996, vol. 1091, pp. 346-365, 1996.

[85] R. Lewis, Programming Industrial Control Systems Using IEC 1131-3. Institution
of Electrical Engineeres: VCH, 1998.

[86] K. John and M. Tiegelkamp, SPS-Programmierung mit IEC 61131-3, 4. neubearb.
Aufl. Springer-Verlag, 2009.

[87] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe, , and
O. Stursberg, “Verification of PLC programs given as sequential function charts,”
in INT2004, LNCS3147, 2004.

[88] N. Bauer, Formale Analyse von Sequential Function Charts (In English: Formal
Analysis of Sequential Function Charts). PhD thesis, Chair of Process Dynamics
and Operations, TU Dortmond, Germany, 2004.

[89] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, “A unifying semantics for se-
quential function charts,” Integration of Software Specification Techniques for Ap-
plications in Engineering, vol. 3147, pp. 400-418, 2004.

[90] A. Hellgren, M. Fabian, and B. Lennartson, “On the execution of sequential func-
tion charts,” Control Engineering Practice, vol. 13, pp. 1283—1293, 2004.

[91] L. Yu, G. Quirds, T. Krausser, and U. Epple, “SFC-based process description
for complex automation functionalities,” in EKA2012: Entwurf komplexer Automa-
tisierungssysteme, 12. Fachtagung, (Magdeburg), pp. 13 — 20, ifak Institut fir
Automation und Kommunikation e.V., may 2012.

[92] S. Bornot, R. Huuck, Y. Lakhnech, and B. Lukoschus, “An abstract model for
sequential function charts,” Discrete Event Systems, pp. 255-264, 2000.

133

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[93] N. Bauer and R. Huuck, “A parameterized semantics for sequential function
charts,” in Proceedings of the semantic foundations of engineering design lan-
guages, Satellite Event of ETAPS, 2002.

[94] IEC 60848: GRAFCET specification language for sequential function charts,
2013. 3rd Edition.

[95] F. Schumacher and A. Fay, “Konzept und werkzeugunterstltzung zur automatis-
chen generierung von IEC 61131-3 konformen steuerungsalgorithmen auf basis
einer grafcet-spezifikation,” in Automation 2013, 2013.

[96] A. Schiller and U. Epple, “Ein referenzmodell zur prozedurbeschreibung: eine
basis flr industrie 4.0,” at - Automatisierungstechnik, vol. 63, no. 2, pp. 87-98,
2015.

[97] D. Meyer, Objektverwaltungskonzept fir die operative Prozessleittechnik. PhD
thesis, Chair of Process Control Engineering, RWTH Aachen University, 2001.

[98] H. Albrecht, On Meta-Modeling for Communication in Operational Process Con-
trol Engineering. PhD thesis, Chair of Process Control Engineering, RWTH
Aachen University, 2003.

[99] R. Jorewitz, Eine strukturelle Beschreibungsmethodik zur automatisierten Erzeu-
gung von Prozessbewertungen in der operativen Prozessleittechnik. PhD thesis,
Chair of Process Control Engineering, RWTH Aachen University, 2011.

[100] G. Quirés, Model-based Decentralised Automatic Management of Product Flow
Paths in Processing Plants. PhD thesis, Chair of Process Control Engineering,
RWTH Aachen University, 2011.

[101] S. Schmitz, Grafik- und Interaktionsmodell fiir die Vereinheitlichung grafischer Be-
nutzungsschnittstellen der Prozessleittechnik. PhD thesis, Chair of Process Con-
trol Engineering, RWTH Aachen University, 2010.

[102] “Mini-xml.” http://www.msweet .org/projects.php?2z3, 2013. Accessed:
2014-11-15.

[103] H. Jeromin and U. Epple, “Anwendungs- und herstellerneutrales Modell zur
Darstellung und Interaktion mit leittechnischen Funktionen,” in In Automation
2012: der 13. Branchentreff der Mess- und Automatisierungstechnik / VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik, 2012.

[104] T. Krausser, L. Yu, and S. Schmitz, “Regelbasierte Vollstandigkeitsiiberpriifung
von Automatisierungslésungen,” in VDI-Berichte 2092, Automation 2010: Leading
through Automation, (Disseldorf), pp. Kurzfassung: S. 55-58, Langfassung: auf
beiliegender CD, VDI Verlag, June 2010.

134

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Bibliography

[105] IEC 62424: Representation of process control engineering - Requests in P&l
diagrams and data exchange between P&ID tools and PCE-CAE tools, 2008. 1st

Edition.

[106] “Tcl developer xchange site” http://www.tcl.tk/, 2013. Accessed: 2014-
09-10.

135

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.
tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

https:/idol. IP 216.73.216.36, am 20.01.2026, 061

8. geschiizter Inhalt,
tersagt, m mit, f0r oder in KI-Syster

https://doi.org/10.51202/9783186248084

HEE VDI nachrichten

V4
Y 4
7

Fachliteratur und mehr -
jetzt bequem online recher-
chieren & bestellen unter:
www.vdi-nachrichten.com/
Der-Shop-im-Ueberblick

me |

]

[} :
Fahrzeughonzepte fur

das 2. Jahe hundert
Automobilteghniy

VDI-Berichte 1653

Taglich aktualisiert:
Neuerscheinungen
VDI-Schriftenreihen

[——

Fortsrhei =
Fa Fortsehritt-Berichte VDI
e ;f'-"‘sum“
o “Berichre

iy

vpIl nachrichten

https:/idol.

Online-Buchshop filr Ingenieure

BUCH |

Im Buchshop von vdi-nachrichten.com finden Ingenieure
und Techniker ein speziell auf sie zugeschnittenes, um-
fassendes Literaturangebot.

Mit der komfortablen Schnellsuche werden Sie in den
VDI-Schriftenreihen und im Verzeichnis lieferbarer
Bicher unter 1.000.000 Titeln garantiert flindig.

Im Buchshop stehen fiir Sie bereit:

VDI-Berichte und die Reihe Kunststofftechnik:

Berichte nationaler und internationaler technischer
Fachtagungen der VDI-Fachgliederungen

Fortschritt-Berichte VDI:

Dissertationen, Habilitationen und Forschungsberichte
aus samtlichen ingenieurwissenschaftlichen Fachrich-
tungen

Newsletter ,,Neuerscheinungen”:

Kostenfreie Infos zu aktuellen Titeln der VDI-Schriften-
reihen bequem per E-Mail

Autoren-Service:

Umfassende Betreuung bei der Veroffentlichung Ihrer
Arbeit in der Reihe Fortschritt-Berichte VDI

Buch- und Medien-Service:

Beschaffung aller am Markt verfligbaren Zeitschriften,
Zeitungen, Fortsetzungsreihen, Handbucher, Technische
Regelwerke, elektronische Medien und vieles mehr —
einzeln oder im Abo und mit weltweitem Lieferservice

BUCHSHOP www.vdi-nachrichten.com/Der-Shop-im-Ueberblick

geschiizter Inhalt,

IP 216.73.216.36, am 20.01.2026, 06:19:58.
m

tersagt, ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
T Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kéltetechnik

20 Rechnerunterstiitzte Verfahren (CAD, CAM, CAE CAQ, CIM ...

21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-524808-5

https:/idol. 1P 216.73.216.36, am 20.01.2026, 06:19:58. gaschlitzter Inhalt.

tersagt, m ‘mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186248084

	Cover
	1 Introduction
	1.1 Motivation
	1.2 Structure of this Work

	2 Basics of Process Automation
	2.1 Process Automation System
	2.1.1 Overview
	2.1.2 Hardware and Software Environment
	2.1.3 Trend toward Integration and Standardization

	2.2 Modelling
	2.2.1 Basics
	2.2.2 Function Block
	2.2.3 Runtime System Model
	2.2.4 Time Model of Cyclic Execution Environment
	2.2.5 Model of Operational Resource and Operational Measure
	2.2.6 Component Model for Hierarchical Process Control

	2.3 Service Orientation
	2.4 Messages
	2.5 Agent Orientation
	2.5.1 Introduction
	2.5.2 Usability in Industrial Automation
	2.5.3 Concept of a Reference Model

	3 Specification of a Reference Model for Automation Agents
	3.1 Engineering Requirements
	3.1.1 Functional Requirements
	3.1.2 Non-functional Requirements

	3.2 Service Model
	3.3 Message Format
	3.4 Message Delivery Model
	3.5 Internal Structure
	3.6 Service Interfaces
	3.6.1 Message Input and Message Inbox
	3.6.2 Message Output
	3.6.3 Input interface

	3.7 Knowledge Base
	3.8 Execution Model
	3.9 Related Automation Technologies
	3.9.1 Relationship with Function Block Technology
	3.9.2 Relationship with Service Orientation
	3.9.3 Relationship with ACPLT/PF

	4 Usability Analysis of Existing Procedure Description Methods
	4.1 Finite State Automaton
	4.2 Statechart
	4.3 PetriNet
	4.4 Sequential Function Chart
	4.4.1 Syntax
	4.4.2 Semantics
	4.4.3 Application in Process Automation
	4.4.4 Usability Analysis

	4.5 Grafcet
	4.6 Procedural Function Chart
	4.7 Summary

	5 Specification of a General Procedure Description Method
	5.1 Execution Frame
	5.2 State
	5.3 Transition
	5.4 Alternative Sequence
	5.5 Action
	5.6 Hierarchy
	5.7 Concurrency
	5.8 Procedure Progress
	5.9 Summary

	6 Prototypical Implementation
	6.1 ACPLT Technologies
	6.1.1 Object Management System: ACPLT/OV
	6.1.2 Basic Libraries

	6.2 FB-agent Library
	6.3 SSC Library
	6.3.1 Class Diagram
	6.3.2 Instance Model
	6.3.3 Task Model

	7 Case Study
	7.1 Research Plant: Submerged Arc Furnace (SAF)
	7.2 Process Automation System
	7.3 Process Control
	7.3.1 Service Oriented Interaction
	7.3.2 White-Box Engineering

	7.4 Knowledge-based Engineering
	7.4.1 Concept
	7.4.2 Use Cases
	7.4.3 Application Effects

	8 Conclusions and Outlook
	Bibliography

