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X Formelzeichen, Symbole und Abkürzungen

Operatoren und sonstige Symbole

Symbol Beschreibung

( )T Transponierter Tensor

( )−1 Inverser Tensor

∇ Nabla-Operator

d( ) Vollständiges Differential

∂( )/∂( ) Partielle Ableitung

Sp( ) Spur eines Tensors
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Kurzfassung XI

Kurzfassung

Es wurde die Optimierungssoftware SPC-Opt entwickelt, mit welcher sich Aufgaben aus
den Bereichen der Formoptimierung sowie der Material- und Formidentifikation bearbeiten
lassen. Zur Lösung von Identifikationsproblemen steht eine robuste Implementierung des
Levenberg-Marquardt-Fletcher-Verfahrens zur Verfügung. Ergänzt wird dieses durch Line-
Search- und Trust-Region-Verfahren, welche sich besonders für Aufgaben der Formoptimie-
rung eignen. Es wurden effiziente Algorithmen zur Approximation der Hesse-Matrix sowie
verschiedene Verfahren zur Startparametervariation integriert. Das Programm verfügt über
Schnittstellen zur Nutzung von ABAQUS, ANSYS, MSC.MARC, eigenen FEM-Program-
men sowie LUA-Skripten. Für Formoptimierungen können geometrische Konturen durch
NURBS approximiert und deren Kontrollpunkte als Formparameter genutzt werden. Die
Aktualisierung der FEM-Netze entsprechend der Formparameteränderung erfolgt durch ein
analytisches Verfahren. Der zweite Schwerpunkt der Arbeit bezieht sich auf die Weiterent-
wicklung bestehender Verfahren zur Materialparameteridentifikation im Bereich der Gum-
miwerkstoffe. Hierbei wurde das Konzept der Anpassung anhand bauteilnaher Probekörper
entwickelt. Dabei wurde am Beispiel einer Fahrwerksbuchse ein Probekörper entworfen, wel-
cher dem originalen Bauteil zwar ähnlich sieht, jedoch eine deutlich einfachere Geometrie hat.
Durch diesen konnte das Verhalten des Bauteils gut approximiert und sichergestellt werden,
dass die im Rahmen der Parameteridentifikation durchgeführten FEM-Simulationen sicher
konvergieren. Zudem wurden die Nutzerschnittstellen des inelastischen Morph-Stoffgesetz
für MSC.MARC und ABAQUS weiterentwickelt, sodass diese nunmehr auch im industriel-
len Umfeld nutzbar sind. Es konnte nachgewiesen werden, dass die Verwendung bauteilnah
identifizierter Parameter zu einer erheblich besseren Abbildung des Materialverhaltens führt
als die Verwendung anhand von Standardprobekörpern identifizierter Parameter. Weiterhin
zeigte sich, dass vor allem der Einsatz eines Stoffgesetzes mit der Möglichkeit zur Abbildung
des charakteristischen Verhaltens von Elastomeren unbedingt erforderlich ist.

Schlagworte

Stoffgesetzanpassung, Parameteridentifikation, Formoptimierung, Formidentifikation, Gum-
miwerkstoffe, Nichtlineare FEM, Materialcharakterisierung, Numerische Integration
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XII Abstract

Abstract

Within the scope of this work the optimization software SPC-Opt has been developed to suc-
cessfully process tasks in the fields of shape optimization and parameter identification. The
software includes a robust Levenberg-Marquardt-Fletcher algorithm, several line search and
trust region algorithms as well as efficient methods for the approximation of the Hessian ma-
trix. Additionally, procedures for the variation of initial parameters (Design Of Experiments)
were implemented. The software includes interfaces to ABAQUS, ANSYS, MSC.MARC, in-
house FEM programs and LUA scripts. Within shape optimization problems, geometric
shapes are approximated by NURBS and the related control points are employed as design
variables. For the update of the FE mesh during the variation of the design variables, a
special analytical algorithm is used to preserve the mesh topology.

Another focus is related to the further development of existing material parameter identifica-
tion procedures for rubber materials. Therefor, the concept of component-oriented specimens
was developed. Using the example of a bushing, a specimen was designed, which is similar
to the original component but has a much simpler geometry. According to this, the behavior
of the original component is approximated and the stability of necessary FE simulations is
ensured. Additionally, the utilized Model of Rubber Phenomenology (MORPH) is improved
in view of the industrial use.

It is shown that the identification of material parameters using component-oriented spe-
cimens leads to a much better approximation of the original component behaviour than
using standard specimens. Additionally, it is shown that the use of a material law which can
consider characteritic properties of elastomers, is absolutely necessary.

Keywords

Parameter identification, shape optimization, shape identification, rubber materials, finite
element method, material characterization, numerical integration
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1

1 Einleitung

In praktisch allen technischen Bereichen stehen Ingenieure heute vor der Herausforderung,
Aussagen über Werkstoffe, Bauteile, Prozesse oder ganze Prozessketten zu treffen, deren Ei-
genschaften nur teilweise bekannt sind. Ihre Aufgabe besteht unter anderem darin, möglichst
viele Informationen zu sammeln und auf Basis derer die unbekannten Eigenschaften direkt
oder indirekt zu bestimmen. Beispielsweise können in der Biomechanik bei der nichtinva-
siven Untersuchung eines Körperteils Informationen über Form, Beschaffenheit und Farbe
der Oberfläche gewonnen werden, die tatsächliche Zusammensetzung des darunter liegenden
Gewebes bleibt jedoch unbekannt. Gleiches gilt für die Betrachtung der stofflichen Eigen-
schaften von Bauteilen, welche üblicherweise durch geeignete Materialmodelle dargestellt
werden. Sobald die Geometrie hinreichend komplex ist, kann die direkte Charakterisierung
der Materialeigenschaften am Bauteil durch einfache Versuche nur sehr eingeschränkt rea-
lisiert werden. Die Weiterentwicklung von Verfahren zur Identifikation vorhandener, jedoch
nicht sichtbarer Konturen innerhalb eines Bauteils sowie zur indirekten Ermittlung von Mate-
rialeigenschaften hat deshalb eine entscheidende Bedeutung für Industrie und Wissenschaft.

Eine weitere Kernaufgabe des Ingenieurwesens besteht in der Entwicklung neuer bzw. in
der Verbesserung vorhandener Produkte und Prozesse. Ein populäres Beispiel hierfür ist der
Fahrzeugbau, bei welchem seit mehr als 100 Jahren eine stetige Weiterentwicklung stattge-
funden hat und ein Ende derselben nicht zu erwarten ist. Im Fokus der Optimierungsprozesse
stehen dabei sowohl die Fahrzeugeigenschaften als auch alle Aspekte des Herstellungspro-
zesses. Die Kombination von äußeren Faktoren wie politischen Vorgaben, Mitbewerbern am
Markt und einem stetigen Preisdruck führt dazu, dass selbst kleine Baugruppen oder Bau-
teile bezüglich Gewicht, Form, Haltbarkeit, Produktionskosten, Wiederverwertbarkeit u.v.m.
ständig optimiert werden. Im gleichen Maße sind auch die Zulieferer der Fahrzeugindustrie
gezwungen, wiederkehrend ihre Fertigungsprozesse zu überarbeiten und zu optimieren, um
z.B. die Haltbarkeit der Umformwerkzeuge zu verbessern, Fertigungszeiten zu verringern
oder die Energiekosten zu senken.

Aus diesem Grund existiert heute eine ganze Reihe verschiedener mathematischer Verfah-
ren zur Bearbeitung der vorbenannten Aufgaben. Seit dem Einzug der Rechentechnik in
Forschung und Entwicklung wurden viele dieser Ansätze auf sehr unterschiedliche Weise
und mit stark variierendem Umfang in Software-Produkte implementiert. Ergänzt wird dies
durch das Einbinden numerischer Simulationsverfahren, welche auf der Methode der finiten
Elemente (FEM) basieren. Infolge dessen gehört die Möglichkeit zur Identifikation von Mate-
rialparametern sowie die Optimierung von Bauteilen hinsichtlich unterschiedlicher Kriterien
unter Einsatz kommerzieller Software bereits zum Stand der Technik.

Dennoch existieren nach wie vor in mehreren Bereichen Verbesserungspotentiale. Dies gilt
insbesondere, wenn mehrere Aspekte der Identifikation oder Optimierung gleichzeitig ho-
hen Anforderungen genügen müssen. Ein Beispiel dafür stellt die Materialmodellierung dar.
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2 1 Einleitung

Zwar kann das Verhalten metallischer Wertstoffe in FEM-Simulationen dargestellt werden,
jedoch sind moderne Stoffgesetze, welche z.B. neben der isotropen auch die kinematische und
formative Verfestigung von Metallen gut darstellen können, in kommerzieller Software nur
unzureichend implementiert. Gleiches gilt für Elastomere, deren typisch inelastisches Verhal-
ten bzw. Eigenschaften wie der Mullins-Effekt oder Hystereseerscheinungen ebenfalls nicht
genügend durch die vorhandenen Stoffgesetze der FEM-Programme abgebildet wird. Auch
wenn oft die Möglichkeit zur Implementierung eigener Materialmodelle besteht, ist die Iden-
tifikation der zugehörigen Parameter mit programmeigenen Routinen sehr aufwändig oder
gar nicht möglich. Erschwert wird dies zusätzlich, wenn der Anwender ein bestimmtes nume-
risches Verfahren zur Identifikation nutzen bzw. beeinflussen möchte oder einen spezifischen
Umgang mit den Messdaten benötigt.

Gerade die Verfügbarkeit und vor allem die gezielte Steuerung der notwendigen Optimie-
rungsverfahren ist nur zum Teil zufriedenstellend. So erfordern die angewandten Algorithmen
häufig eine große Anzahl von Optimierungsschritten, was sich vor allem dann sehr negativ
auf die benötigte Rechenzeit auswirkt, wenn die im Rahmen der Identifikation oder Optimie-
rung benötigten FEM-Simulationen sehr zeitaufwändig sind. Die automatische Adaption der
Verfahrenseigenschaften an die jeweilige Aufgabe zur Minimierung der Optimierungsschritte
und die Sicherstellung eines robusten Verhaltens auch für schlecht konditionierte Probleme
stellt daher ein wichtiges Betätigungsfeld dar.

Eine Herausforderung ist auch die Integration hauseigener Programme in bereits existierende
Software zur Optimierung oder Identifikation, welche oft mit Einbußen bezüglich Funktio-
nalität und Effizienz verbunden ist. Kern der vorliegenden Arbeit ist deshalb die Entwick-
lung der Optimierungssoftware SPC-Opt (Kap. 2), mit welcher die Geometrie technischer
Bauteile optimiert und Materialparameter zur Charakterisierung von Materialeigenschaften
sowie Formparameter zur Beschreibung geometrischer Bauteileigenschaften identifiziert wer-
den können. Die gezielte Steuerung der implementierten Optimierungsverfahren ist dabei
ebenso wichtig wie die Entwicklung eines robusten, aber dennoch effizienten Verfahrens zur
Identifikation von Parametern. Ein weiterer Schwerpunkt liegt bei der Konzeption einer mo-
dularen Schnittstelle zur Einbindung hauseigener und kommerzieller FEM-Software. Nur so
ist es möglich, ein breites Anwendungsfeld zu ermöglichen und bei Bedarf zu erweitern. Auch
die Nutzung paralleler Rechenarchitekturen soll möglich sein, da diese in Form von verteilten
Netzwerken und Rechenclustern in vielen Firmen und wissenschaftlichen Einrichtungen zur
Verfügung stehen.

Um eine möglichst vielfältige Auswahl von Aufgaben aus den Bereichen der Formoptimie-
rung sowie Parameteridentifikation bearbeiten zu können, wird eine Reihe dafür geeigneter
mathematischer Methoden in die Software integriert. Dies betrifft bezüglich der Parame-
teridentifikation vor allem das in Kap. 3 beschriebene Levenberg-Marquardt-Verfahren, die
zugehörige Fletcher-Erweiterung und eine Reihe von Maßnahmen zur Verbesserung der Ro-
bustheit des Verfahrens. In Kap. 4 werden verschiedene Ansätze vorgestellt, um auch Form-
optimierungen durchführen zu können. Dabei werden auch Möglichkeiten zur Approximation
der Hesse-Matrix betrachtet. Den Abschluss dieser Thematik bilden die Verfahren zur Start-
parametervariation zur Auffindung globaler Minima, auf welche in Kap. 5 eingegangen wird.

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


3

In Kooperation mit verschiedenen Unternehmen aus dem Bereich der Gummiindustrie wurde
im Rahmen eines industriefinanzierten Projektes die Optimierungssoftware SPC-Opt in Form
einer Programmauskopplung derart weiterentwickelt, dass sie auch im industriellen Umfeld
gut nutzbar ist. Den Anstoß zu diesem Projekt gab die Tatsache, dass die Identifikation
von Materialparametern in der Industrie zwar zum Stand der Technik gehört, dabei jedoch
speziell für die in der Gummiindustrie verwendeten Elastomere gleich mehrere Herausforde-
rungen existieren. Diese betreffen zum einen die Verfügbarkeit inelastischer Materialgesetze
zur korrekten Abbildung des Materialverhaltens in den kommerziellen FEM-Programmen so-
wie die korrekte Durchführung der für die Identifikation notwendigen Experimente und der
zugehörigen Messdatenaufbereitung. Zum anderen besteht bei Elastomeren das Problem,
dass deren Materialeigenschaften nicht nur von der chemischen Zusammensetzung, sondern
auch vom Herstellungsprozess und der Geometrie abhängen. Dies ist für die Identifikation
nachteilig, da die Stoffparameter gewöhnlich an Versuche mit Standardprobekörpern ange-
passt werden und sich diese geometrisch und herstellungstechnisch stark von den Bauteilen
unterscheiden. In Kap. 6 wird anhand eines konkreten Bauteils dargelegt, wie diese Pro-
bleme bewältigt werden können. Der Schwerpunkt liegt dabei bei der Identifikation anhand
sogenannter bauteilnaher Probekörper sowie der Verwendung des inelastischen Stoffgesetzes
“Morph” zur Abbildung des Materialverhaltens.
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4 2 Das Programm SPC-Opt

2 Das Programm SPC-Opt

Sowohl für die Identifikation von Parametern als auch zur Lösung von Problemen der Struk-
turoptimierung existiert eine große Menge kommerzieller und freier Software. So beinhalten
die weit verbreiteten FEM-Programme ABAQUS ∗ oder MSC.MARC ∗ bereits seit mehreren
Jahren Module zur Anpassung enthaltener Stoffgesetze an homogene Standardversuche. Seit-
dem wurden diese Funktionalitäten weiterentwickelt und erweitert. In jüngerer Zeit erfolgte
zudem die Implementierung von Modulen zur Form- bzw. Topologieoptimierung, wenn auch
auf unterschiedliche Art und Weise.

Andere kommerzielle Programme, welche meist keine nativen FEM-Solver beinhalten, wur-
den speziell im Hinblick auf die Bearbeitung von Optimierungsaufgaben entwickelt. Bekannte
Vertreter sind zum Beispiel TOSCA ∗, LS-OPT ∗, OptiStruct ∗ sowie FT-Optimization ∗. Die-
se stellen dem Anwender meist eine deutlich umfangreichere Palette von Werkzeugen zur
Verfügung. Mangels eigener FEM-Solver steht in den Programmen eine steigende Anzahl
Schnittstellen zum Einbinden externer FEM-Software zur Verfügung. Die Nutzung von FEM-
Programmen ist hierbei keineswegs zwingend, da für eine ganze Reihe Optimierungsaufgaben
die notwendigen Funktionsauswertungen auch in anderer Form, z.b. analytisch, ermittelt wer-
den können. In diesem Kontext ist auch die mathematische Umgebung MATLAB ∗ zu nennen,
welche zur effizienten Nutzung zwar Programmierfähigkeiten seitens des Nutzers erfordert,
im Gegenzug jedoch aufgrund ihrer historischen Entwicklung eine hohe Flexibilität und ein
breites Spektrum effizienter Lösungsalgorithmen bereit stellt. Ursprünglich als Konstruk-
tionswerkzeuge entwickelt, bieten moderne CAD-Systeme die Möglichkeit, bereits im Zuge
der Modellerstellung Topologie- oder Formoptimierungen durchzuführen. Der große Vorteil
aus Sicht des Nutzers ist die Tatsache, dass nach einer solchen Optimierung das aktualisierte
Modell ohne zusätzlichen Aufwand in Form der ursprünglichen CAD-Beschreibung vorliegt.
Beispiele hierfür sind NX ∗, SOLIDWORKS ∗ oder PTC/Creo ∗. Da die CAD-Parameter di-
rekt als Designvariablen genutzt werden, wird das FE-Netz im Gegensatz zur Optimierung
mit den oben genannten FEM-Programmen nach jeder Formänderung neu erstellt.

Neben kommerzieller Software gibt es auch eine große Zahl freier Programme, welche häufig
im Verlauf von Forschungsprojekten an oder in Zusammenarbeit mit universitären Einrich-
tungen entstanden sind. In den meisten Fällen sind diese auf bestimmte Anwendungsbe-
reiche spezialisiert und besitzen diesbezüglich eine hohe Kompetenz bzw. einen Entwick-
lungsvorsprung gegenüber alternativer Software. Damit geht jedoch auch oft eine Einschrän-
kung der Einsatzmöglichkeiten einher. Naturgemäß unterscheiden sich diese Programme in
ihrem Funktionsumfang und der Bedienerfreundlichkeit sehr stark voneinander. Vertreter
dieser Art sind u.a. ALGLIB ∗ und ADOL-C ∗, wobei ADOL-C ∗ zur umfangreichen Biblio-
thek COIN-OR gehört, welche auch andere Werkzeuge zur Optimierung beinhaltet. Falls

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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2.1 Anforderungsprofil und Funktionalität von SPC-Opt 5

Möglichkeiten zur stetigen Weiterentwicklung vorhanden sind und genutzt werden, ist auch
der Übergang zu einem kommerziellen Produkt, wie die Entwicklung von CARAT++ ∗ zeigt,
nicht ungewöhnlich.

Auch die in diesem Kapitel vorgestellte Optimierungssoftware SPC-Opt (Scientific Parallel
Computing and Optimization) wurde entsprechend den Erfordernissen verschiedener For-
schungsprojekte realisiert. Den Ausgangspunkt für die Programmentwicklung bildete die Er-
arbeitung neuer Beschreibungsweisen des elastisch-plastischen Verhaltens metallischer Werk-
stoffe (Bucher, 2001; Grewolls, 1998; Lindner und Kreißig, 2004; Panhans, 2006) und die in
diesem Kontext an der TU-Chemnitz entstandene FEM-Forschungssoftware SPC-PM2AdNl ∗.
Im Zusammenhang mit der dadurch notwendigen Parameteridentifikation sowie Untersu-
chungen zur Auswertung von inhomogenen Verschiebungsfeldern (Benedix, 2000; Bohnsack,
1997; Kreißig et al., 2007) wurde die Funktionalität des Programmes nochmals deutlich er-
weitert, u.a. durch die Implementierung des bewährten Levenberg-Marquardt-Verfahrens
(vergl. auch Kap. 3.6). Aufgrund der Entwicklungshistorie wies das in FORTRAN geschrie-
bene SPC-PM2AdNl jedoch mehrere strukturelle Nachteile auf, was eine effiziente Weiter-
entwicklung auf der vorhandenen Programmbasis zunehmend erschwerte.

2.1 Anforderungsprofil und Funktionalität von SPC-Opt

Im Rahmen des DFG-Projektes “Optimierung von Werkzeugen und Prozessparametern bei
Massivumformverfahren” (Schellenberg et al., 2007; Schellenberg und Kreißig, 2009;
Schellenberg et al., 2010) ergaben sich mehrere Kernforderungen an die verwendete Opti-
mierungssoftware. Neben der Bereitstellung der Funktionalität zur Materialparameteridenti-
fikation des bisher genutzten Programmes SPC-PM2AdNl sollte nunmehr auch die Bearbei-
tung verschiedener Aufgabenstellungen aus dem Bereich der Formoptimierung möglich sein.
Zudem wurde es notwendig, neben hauseigenen FEM-Programmen auch kommerzielle Soft-
ware einbinden zu können. Da in diesem Zusammenhang ein hoher Rechenaufwand für die
notwendigen FEM-Rechnungen zu erwarten war, empfahl sich darüber hinaus die Nutzung
paralleler Rechentechniken. Die Entscheidung fiel deshalb zugunsten einer neuen Optimie-
rungssoftware in C++, wobei im Hinblick auf künftige Erweiterungen folgende Paradigmen
berücksichtigt wurden:

• Modularisierung des Programms sowie Nutzung von Templates für gleichartige Struk-
turen (z.B. FEM-Schnittstellen)

• Verwendung des MPI-Standards zur Parallelisierung

• Allgemeine Definition einer FEM-Schnittstelle zur flexiblen Nutzung verschiedener
FEM-Programme

• Automatische Erstellung von Log-Dateien in allen Programmteilen zur Sicherstellung
einer effizienten Fehlerbearbeitung

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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6 2 Das Programm SPC-Opt

• Nutzung des Versionskontrollsystems SVN ∗ zur Versionsverwaltung und Koordination
der Mitarbeit verschiedener Personen

• Software-Dokumentation mit Hilfe von DOXYGEN ∗

• Nutzung plattformunabhängiger Programmierwerkzeuge, z.B. CMAKE ∗ und POCO ∗

• Strukturierung der Ein- und Ausgabedaten im XML-Format

Im Ergebnis dessen liegt nunmehr ein Programmpaket vor, mit welchem verschiedene Auf-
gaben auf den Gebieten der Materialparameteridentifikation, Parameterstudien, Formiden-
tifikation und Formoptimierung erfolgreich bearbeitet werden können. Zwar ist SPC-Opt

grundsätzlich für Multiprozessorsysteme konzipiert, kann jedoch ebenso in herkömmlichen
heterogenen Computernetzwerken oder auf einzelnen Computern genutzt werden.

2.2 Programmstruktur

Das Programmpaket besteht aus drei Komponenten, wobei die eigentliche Identifikation bzw.
Optimierung mit dem Hauptprogramm “SPC-Opt” erfolgt. Des Weiteren steht für die Auf-
bereitung von Messdaten das Modul “ExpFileGenerator” zur Verfügung. Die Konvertierung
von FEM-Eingabedaten in ein programmeigenes Format erfolgt mit dem “Converter” , einer
Auskopplung vom Hauptprogramm, welche lediglich die FEM-Schnittstellen beinhaltet.

Die zentrale Struktur von SPC-Opt stellt der Programmrumpf mit den Basisklassen und
notwendigen Grundfunktionen dar. Diese beziehen sich in erster Linie auf die Steuerung
der Optimierung sowie die Verwaltung der zugehörigen FEM-Daten. Als Grundlage hierfür
dienen verschiedene Werkzeuge, unter anderem

• eine Klasse zum systemunabhängigen Lesen und Schreiben von Dateien,

• ein XML-Parser zur Vereinheitlichung des Datenformats in XML

• sowie ein komfortables System zum automatischen Anlegen von Log-Dateien.

Durch die Implementierung der mathematischen Skriptsprache LUA (Ierusalimschy, 2006)
können durch den Anwender auch mathematische Ausdrücke bzw. Gleichungen eingegeben
und an verschiedenen Stellen innerhalb von SPC-Opt genutzt werden.

Neben dem Programmrumpf existiert eine Reihe unterschiedlicher Module, mit deren Hilfe
die verschiedenen Aspekte von Optimierungsproblemen bearbeitet werden können. Diese
werden in den nachfolgenden Kap. 2.3 - 2.6 näher betrachtet und sind in Bild 2.1 schematisch
dargestellt. Hierbei werden die obligatorischen Module mit durchgehenden Verbindungslinien
gekennzeichnet, wohingegen unterbrochene Linien für die Anbindung der optionalen Module
genutzt werden.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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2.2 Programmstruktur 7

Programmrumpf

NET_Organization (Verwaltung der FEM-Daten)
Computation (Optimierungssteuerung)
FileLogger (automatisches LOG-System)
FileSystem (Dateiverwaltung, Einlesen bzw.

Schreiben von Daten)
XML-Parser (Konvertierung aus bzw. in

XML-Datenformat)

Konverter

Konvertierung der FEM-Daten aus dem

bzw. in das Format der FEM-Programme

ExpFileGenerator

Aufbereitung von Messdaten für SPC-Opt

Auskopplungen

Startparametervariation

Parallelisierung

Netzglättung

Regularisierung

FEMSchnittstelle

Optimierer

Bild 2.1: Struktureller Aufbau von SPC-Opt.

Für Identifikationsaufgaben steht zur Aufbereitung von Messdaten aus Experimenten das
Modul “ExpFileGenerator ” zur Verfügung. Es können hierbei rampenartige sowie stationäre
und instationäre zyklische Belastungen verarbeitet werden. Die Art der Belastung ist dafür
unerheblich (soweit sie in SPC-Opt implementiert ist) und kann z.B. in Form von Verschie-
bungen, Kräften oder Spannungen vorliegen. Nach der Aufbereitung der Daten mit Hilfe des
ExpFileGenerators steht die gesamte Belastungsgeschichte des Versuchs in einer “.exp” -Datei
zwecks späterer Verwendung in SPC-Opt zur Verfügung.

Zur Erstellung der FEM-Modelle sowie für die Durchführung der notwendigen Simulatio-
nen können hauseigene FEM-Programme oder kommerzielle Software-Pakete wie ABAQUS ∗

oder MSC.MARC ∗ genutzt werden. Die in SPC-Opt enthaltenen Module der verschiedenen
FEM-Schnittstellen gestatten es, die Eingabedateien der unterstützten FEM-Programme zu
parsen und in einem programmeigenen “.sim” -Format mit der Möglichkeit zur anschließen-
den Modifikation auszugeben. In dieser Datei werden zudem die für das jeweilige Experiment
gültigen Zielfunktionsanteile formuliert. Um eine hohe Flexibilität und Erweiterbarkeit zu ga-
rantieren, wird als Datenformat der XML-Standard verwendet. Bei Identifikationsaufgaben
wird demnach meist für jedes Experiment eine “.sim” -Datei und eine gleichnamige “.exp” -
Datei generiert, bei Optimierungen ohne Messdaten genügt die “.sim” -Datei.

Die Steuerung der Identifikation bzw. Optimierung erfolgt mit Hilfe einer übergeordneten
“.opt” -Datei, welche ebenfalls im XML-Standard gehalten ist. Diese beinhaltet die Verwal-
tung der einzelnen Experimente, die Liste der zu identifizierenden Materialparameter mit
den entsprechenden Verweisen sowie einige globale Einstellungen. Zudem können hier bei
Bedarf auch die Steuergrößen des verwendeten Optimierungsverfahrens modifiziert werden.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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8 2 Das Programm SPC-Opt

Im Folgenden wird die Funktionalität der wichtigsten Programmbestandteile erläutert. Hier-
bei ist darauf hinzuweisen, dass die Entwicklung des Programmpakets nicht ausschließlich
durch den Verfasser der vorliegenden Arbeit erfolgte. Als Grundlage für die Implementie-
rung der einzelnen Module dienten auch vom Verfasser betreute studentische Arbeiten, in
welchen die existierenden Algorithmen der jeweiligen Funktionalität im Einzelnen betrachtet
und auf Eignung zur Bearbeitung praktischer Problemstellungen untersucht wurden. In pro-
grammiertechnischer Hinsicht ist zudem die Mitarbeit von Wulf (Wulf et al., 2012, 2013) zu
nennen, welcher eine große Hilfe bei notwendigen Umstrukturierungen und Programmerwei-
terungen war. Zum besseren Verständnis beschränken sich die nachfolgenden Ausführungen
zunächst auf die programmiertechnischen Aspekte des Programmes. Die Darstellung der
implementierten mathematischen Algorithmen erfolgt gesondert in Kap. 3 bis Kap. 5.

2.3 Optimierer

Welcher Algorithmus sich zur Lösung eines Optimierungsproblems eignet, hängt stark von
der Aufgabenstellung sowie den Eigenschaften der Zielfunktion ab. SPC-Opt wurde ent-
wickelt, um Aufgaben aus den Bereichen der Parameteridentifikation (Kap. 3) sowie der
Formoptimierung (Kap. 4) effizient bearbeiten zu können. Für die Klasse der Identifkations-
probleme liegt der Anwendungsschwerpunkt bei der Anpassung von Materialparametern an
vorhandene Experimente, da dies auch im industriellen Umfeld eine wiederkehrende He-
rausforderung darstellt (Kap. 6). Dies impliziert jedoch keine Beschränkung auf Probleme
der Materialparameteridentifkation - auch die Anpassung von Formparametern ist in vielen
Bereichen von praktischer Bedeutung.

Zielfunktion

Target BTarget A Target C

Datenfeld
(Spannungen)

Datenfeld
(Knotenkräfte)

Datenfeld
(Knotenkräfte)

Datenfeld
(Knotenkräfte)

FEM-Programm
(Ansys)

Datei
(Messdaten)

FEM-Programm
(Abaqus)

Wichtung

Aggregation
(Maximum) Fehlerquadratsumme

LUA-Skript

Bild 2.2: Beispiel für den Aufbau der Zielfunktion.

Allen vorgenannten Problemstellungen ist gemein, dass eine problembezogene Zielfunkti-
on entsprechend Gl. 3.4 gebildet und anschließend minimiert wird. Um dem Nutzer ein
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2.3 Optimierer 9

möglichst flexibles und dennoch intuitives System zur Definition der Zielfunktion zur Ver-
fügung zu stellen, beinhaltet SPC-Opt ein Baukastensystem zur entsprechenden Definition.
Der Aufbau einer Zielfunktion ist beispielhaft in Bild 2.2 dargestellt. Durch den Nutzer
können verschiedene Anteile (“Targets” ) definiert werden, aus welchen sich die zu minimie-
rende Größe konstituiert. Die einzelnen Targets wiederum basieren auf FEM-Ergebnissen,
Messdaten oder anderen Targets und können mit mathematischen Operationen modifiziert
werden. Anhand des Aufbaus der Zielfunktion kann festgestellt werden, ob es sich um ein
Fehlerquadratminimum-Problem (FQM) handelt, was üblicher Weise bei Identifikationssauf-
gaben der Fall ist. Der Optimierer kann somit auf das in Kap. 3.6 dargestellte Levenberg-
Marquardt-Fletcher-Verfahren (LMF) zurückgreifen. Trifft dies jedoch nicht zu, z.B. bei
Problemen der Formoptimierung, eignen sich die in Kap. 4.1 angegebenen Trust-Region
bzw. Line-Search-Verfahren zur Lösung. Dabei muss jedoch beachtet werden, dass die Hesse-
Matrix nicht mehr mit guter Näherung auf Basis der Ableitungen bestimmt werden kann,
sondern durch eines der in Kap. 4.2 angegebenen Verfahren (BFGS, SR1, ...) approximiert
werden muss. Falls das LMF-Verfahren verwendet wird, kann der Optimierer zusätzlich ent-
sprechend Kap. 3.7 Restriktionen in Form von Boxbeschränkungen in die Lösung des Mi-
nimierungsproblems einbeziehen. Abschließend werden dem Optimierungsmodul noch die
analytisch oder auf Basis der Differenzenquotienten numerisch ermittelten Ableitungen zur
Verfügung gestellt, welches somit einen neuen Parametersatz berechnet und zurückgibt. Der
beschriebene Ablauf wird in Bild 2.3 verdeutlicht.

Programmrumpf

Zielfunktionswert

FQM-Problem ja/nein

Ableitungen
• numerisch

• analytisch

Hesse-Matrix

(falls berechnet)

Restriktionen

(z.B. Boxbeschränkungen)

Gestörte Parameter

Optimierer

Optimierungsverfahren

• Levenberg-Marquardt-Fletcher

• Trust-Region

• Line-Search

• SQP (in Arbeit)

Approximation der Hesse-Matrix

(falls kein FQM-Problem)

• BFGS-Algorithmus

• SR1-Formel

• DFP-Formel

Berechnung des neuen

Parametersatzes

Bild 2.3: Aufbau des Optimierers und Datenfluss.
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10 2 Das Programm SPC-Opt

2.4 FEM-Schnittstellen

Für die Bestimmung des Zielfunktionswertes ist es notwendig, darin enthaltene Größen für
vorhandene bzw. gestörte Paramtersätze zu berechnen. In den meisten Fällen werden hierfür
kommerzielle oder hauseigene FEM-Programme genutzt, jedoch ist auch die Verwendung
mathematischer Software (z.B. MATLAB ∗) oder Skriptsprachen (z.B. LUA) üblich. Der
Einfachheit halber werden die verschiedenen Programmtypen im Weiteren unter dem Begriff
“FEM-Programme” zusammengefasst. Voraussetzung für deren Nutzung ist die Implementie-
rung entsprechender Schnittstellen in SPC-Opt, wobei der programmiertechnische Aufwand
sehr unterschiedlich ist. Die Funktionalität einer Schnittstelle kann entsprechend ihrer Auf-
gaben unterteilt werden - Parsen der FEM-Eingabedatei, Schreiben der Eingabedatei zur
Simulation und Einlesen der daraus resultierenden Ergebnisse.

Vor Start der Optimierung ist das Einlesen und Aufbereiten einer FEM-Eingabedatei not-
wendig. Die grundsätzliche Vorgehensweise besteht darin, dass ein an das jeweilige FEM-
Programm angepasster Parser die Eingabedatei durchläuft, alle für SPC-Opt relevanten Da-
ten einliest und in einem programmeigenen Format speichert. Innerhalb der Eingabedatei
werden die Abschnitte der tatsächlich eingelesenen Daten durch entsprechende Platzhalter
ersetzt. Das Resultat stellt ein Template der originalen Eingabedatei dar, in welcher sich
nur noch die Platzhalter für die eingelesenen Daten sowie die Textblöcke der nicht berück-
sichtigten Bereiche befinden. Die auf dieser Basis generierte “.sim” -Eingabedatei enthält die
geparsten Informationen bezüglich FE-Knoten, FE-Elementen, Materialien, Randbedingun-
gen u.a., sowie zusätzlich das oben beschriebene Eingabedatei-Template.

Durch den Anwender müssen anschließend noch die Informationen zur Zielfunktion ergänzt
werden. Um diese erfolgreich definieren zu können, existieren zwei synthetische Hilfsstruk-
turen in Form von ID-Listen und Step-Listen. Zum einen sind die Ortsabgaben bezüglich
der Messstellen und damit den korrespondierenden FE-Knoten notwendig. Mit Hilfe der
ID-Listen können deshalb ein oder mehrere Knoten bzw. Elemente gruppiert und an ge-
eigneter Stelle bei Bildung der Zielfunktion verwendet werden. Zum anderen können mit
Hilfe von Step-Listen Zeitpunkte festgelegt werden, zu denen ein Messwert oder eine Aus-
gabegröße benötigt wird. Die Projektion der Eingangsdaten auf die einzelnen Lastschritte
obliegt hierbei dem Anwender. Allerdings wird bei der Aufbereitung von Messdaten bereits
die entsprechende Step-Liste erzeugt und kann an dieser Stelle verwendet werden.

Während der eigentlichen Optimierung hat die FEM-Schnittstelle zwei Funktionen. So muss
zu Beginn eines jeden Optimierungsschrittes dem aktuellen bzw. den gestörten Parameter-
sätzen entsprechend die jeweilige FEM-Eingabedatei aktualisiert und geschrieben werden.
Bei einigen kommerziellen Programmen ist dies jedoch nicht unproblematisch, insbesondere
wenn Materialparameter für nutzereigene Materialmodelle identifiziert werden sollen. Dies
liegt daran, dass bei der Verwendung der Nutzschnittstelle für Materialmodelle die Para-
meter teilweise direkt im Quellcode hinterlegt sind und nicht ohne Weiteres innerhalb der
FEM-Eingabedatei modifiziert werden können.

Nach dem erfolgreichen Abschluss einer Simulation werden die benötigten Größen aus den
FEM-Ausgabedateien extrahiert, welche im Klartext vorliegen müssen. Sind die Informatio-
∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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2.4 FEM-Schnittstellen 11

nen bezüglich der Mess- und Zeitpunkte vollständig, kann auch die Zielfunktion ausgewertet
werden.

Programmrumpf

Template der

FEM-Eingabedatei

FEM-Daten
• Knoten

• Elemente

• Materialien

• Randbedingungen

• ...

Parameter

Ergebnisse

Optimierer

FEM-Schnittstelle

FEM-Eingabedatei

FEM-Programm

(z.B. ABAQUS)

FEM-Resultate

A
k
tu

al
is

ie
re

n

Starten

Status

Bild 2.4: Grundsätzliche Funktionsweise einer FEM-Schnittstelle.

In Bild 2.4 wird der beschriebene Ablauf schematisch dargestellt und verdeutlicht die klare
Abgrenzung der FEM-Schnittstelle vom Programmrumpf. Möglich ist dies durch die Nut-
zung der Fabrikmethode, einem Entwurfsmuster aus der Softwareentwicklung, welche z.B.
in (Gamma et al., 1994) beschrieben wird. Das Anlegen der FEM-Eingabedateien, der Start
des FEM-Programms und das Auswerten der Resultate werden durch den Programmrumpf
zwar gesteuert, die eigentliche Funktionalität (welche sich in Abhängigkeit des Programms
in Umfang und Komplexität stark unterschieden kann) befindet sich jedoch komplett in der
FEM-Schnittstelle. Es ist somit auch unproblematisch, dass erst während der Laufzeit be-
kannt wird, welche FEM-Programme bzw. wie viele Instanzen von diesen benötigt werden.
Zudem gestattet diese Programmierweise die Ergänzung weiterer FEM-Schnittstellen, ohne
den Programmrumpf modifizieren zu müssen. Die Vorgehensweise wird deshalb in vergleich-
barer Form auch an anderen Stellen von SPC-Opt angewendet, z.B. bei der Implementie-
rung des Optimierers oder der Startparametervariation. Zum aktuellen Zeitpunkt stehen in
SPC-Opt die nachfolgenden FEM-Schnittstellen zur Verfügung:

• ABAQUS ∗,

• ANSYS*,

• MSC.MARC*,

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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12 2 Das Programm SPC-Opt

• das hauseigene FEM-Programm SPC-PM2AdNl und darauf basierende Weiterentwick-
lungen sowie,

• LUA-Skripte.

Da die Schnittstellen der kommerziellen FEM-Programmen deutlich komplexer als die der
hauseigenen Programme bzw. LUA-Skripte sind, wird deren Funktionsweise im Folgenden
kurz dargestellt.

FEM-Schnittstelle ABAQUS

Als übliches Eingabeformat für ABAQUS wird die “.inp” -Datei genutzt, welches auch durch
Preprocessoren anderer Anbieter, z.B. HYPERMESH ∗ oder PATRAN ∗, unterstützt wird.
Das Einlesen der FEM-Daten ist infolge der guten Strukturierung des Eingabeformates pro-
blemlos möglich. Zudem ist der Aufwand für den Nutzer, die zur Bildung der Zielfunktion
benötigten Größen zu definieren sowie deren Ausgabe zeitlich und örtlich festzulegen, gering.
Geometrische Eigenschaften des Modells können allerdings nicht in der Eingabedatei hinter-
legt werden, was bei der Bearbeitung von Aufgaben der Formidentifikation bzw. -optimierung
von Bedeutung ist. Einen Ausweg stellt die Nutzung von Referenzpunkten dar, welche wie
FE-Knoten behandelt werden und deshalb auch in der “.inp” -Datei vorhanden sind. Darüber
hinaus bietet sich die Definition von Variablen in ABAQUS an, welche ebenso in der Einga-
bedatei enthalten sind. Das FE-Netz sollte bei dieser Vorgehensweise parametrisiert werden
und von den definierten Variablen abhängig sein. Zur eigentlichen Netzerstellung werden
durch ABAQUS unterstützte PYTHON-Skripte verwendet.

Das native “.odb” -Ausgabeformat steht nicht als Klartext zur Verfügung, kann jedoch nach
der Simulation durch einen nochmaligen Aufruf von ABAQUS in Kombination mit einem
entsprechenden PYTHON-Skript (welches automatisch von SPC-Opt angelegt wird) geparst
werden. Die auf dieser Basis erzeugte “.aba” -Datei enthält somit alle durch SPC-Opt ange-
forderten Ergebnisse und kann problemlos eingelesen werden.

FEM-Schnittstelle ANSYS

Auch bei ANSYS gibt es die Möglichkeit, innerhalb des Preprocessors die FEM-Daten als
“.inp” -Eingabedatei im Klartext abzulegen. Allerdings ist der Transfer von Informationen
bezüglich der Geometrie noch schwieriger als bei ABAQUS. Als Grundlage dient deshalb
das “.cdb” -Format, welches zwar nicht als Eingabedatei für den Solver verwendet werden
kann, jedoch im Gegenzug alle geometrischen Eigenschaften des Modells enthält. Mit Hilfe
dieser Informationen sowie notwendigen Anpassungen durch den Anwender ist die ANSYS-
Schnittstelle in der Lage, eine entsprechende “.inp” -Datei für die Simulation zu erzeugen.

Die Ausgabe der Ergebnisse ist demgegenüber einfach, da in der Eingabedatei Art, Zeit-
punkt und Position der auszuwertenden Zielgrößen definiert und das Ausgabeformat fest-
gelegt werden können. Im Anschluss an die Simulation können die benötigten Ergebnisse
deshalb problemlos aus der angelegten “.rst” -Datei eingelesen werden.
∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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2.4 FEM-Schnittstellen 13

FEM-Schnittstelle MSC.MARC

Zwar besitzt auch dieses FEM-Programm eine Eingabedatei (“.dat” )im Klartextformat,
jedoch müssen bei der Implementierung der FEM-Schnittstelle zwei Gesichtspunkte von
MSC.MARC berücksichtigt werden:

• Die Ausgabesteuerung von Zielgrößen ist mit Hilfe der Eingabedatei nur bedingt nutz-
bar. Das native “.t19” -Format ist nicht nur unübersichtlich, sondern kann auch sehr
groß werden, da teilweise erheblich mehr als die durch den Anwender gewünschten
Daten gespeichert werden. Auch bei der alternativen Ausgabe in einer der im Rah-
men der Simulation angelegten Dateien (z.B. “.sts” -Datei) ist die Ausgabestruktur der
verschiedenen Größen unübersichtlich und unterscheidet sich zudem für praktisch alle
Ausgabetypen voneinander. Noch schwerwiegender ist jedoch, dass bei beiden Varian-
ten die Genauigkeit der geschriebenen Werte auf fünf bis sieben Stellen beschränkt ist.
Werden auf dieser Basis die Zielfunktionswerte und Gradienten berechnet, wirken sich
diese Ungenauigkeiten zwangsläufig negativ auf die Optimierung aus.

• Für die Verwendung eigener Stoffgesetze ist in MSC.MARC die Nutzerschnittstel-
le HYPELA2 vorgesehen. Eine direkte Steuerung der zugehörigen Materialparame-
ter über die Eingabedatei ist in nativer Form jedoch programmseitig nicht ange-
dacht. Vielmehr werden in den meisten Fällen die aktuellen Parameter direkt in den
FORTRAN-Quellcode der Schnittstelle einprogrammiert. Dadurch muss für jeden Pa-
rametersatz der Solver MARC neu kompiliert werden, was vor allem im Hinblick auf
eine Parallelisierung der FEM-Simulationen zu einem hohen zeitlichen Mehraufwand
führt. Zudem treten potentiell Konflikte auf, falls verschiedene Instanzen von SPC-Opt

gleichzeitig versuchen, das FEM-Programm zu kompilieren.

Eine praktikable Lösung für das Ausgabeproblem stellt das direkte Schreiben der Zielgrö-
ßen innerhalb der zur Verfügung stehenden User-Subroutinen von MSC.MARC dar. Damit
kann nicht nur die Genauigkeit auf double precision erhöht, sondern auch die Ausgabe der
Zielgrößen bezüglich Zeitpunkt und Ort dezidiert gesteuert werden. Dies erfolgt, indem für
jede “.dat” -Eingabedatei eine zusätzliche “.cfg” -Datei mit den entsprechenden Informatio-
nen bezüglich der Ausgabegrößen erstellt wird. Nach dem Start des MARC-Solvers und dem
Einlesen der FEM-Daten wird unmittelbar vor Beginn der Simulation diese Datei eingele-
sen und innerhalb der User-Subroutinen eine entsprechende Datenstruktur für die benötig-
ten Zielgrößen angelegt. Nach jedem Lösungsinkrement werden alle bis dahin gespeicherten
Ausgabedaten in eine “.mrc” -Datei geschrieben und stehen somit nach dem Abschluss der
Simulation SPC-Opt zur Verfügung.

Wie aus der schematischen Darstellung des Informationsflusses in Bild 2.5 hervorgeht, wer-
den bei der Nutzung von Parallelisierung durch MSC.MARC mehrere “.mrc” -Ausgabedateien
angelegt. Der Grund hierfür ist, dass für die effiziente Parallelisierung das FE-Netz intern in
verschiedene Bereiche (Domains) aufgeteilt wird und für jedes dieser Gebiete voneinander
unabhängige Prozesse gestartet werden, innerhalb derer nur die Ergebnisse der jeweils ent-
haltenen Knoten und Elemente verfügbar sind. Beim Schreiben der Ergebnisse wird deshalb
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14 2 Das Programm SPC-Opt

eine zusätzliche “.cpu” -Datei mit der Anzahl der beteiligten Rechenknoten angelegt. An-
hand dieser Information kann in der Schnittstelle die Menge der angelegten Ergebnisdateien
ermittelt und jede Ausgabedatei eingelesen werden.

FEM-Schnittstelle für MSC.MARC

“.dat” -Datei

MSC.MARC-Eingabedatei

(enthält FEM-Daten des Modells)

“.cfg” -Datei

(Welche Daten sollen wann und

wo herausgeschrieben werden)

Einlesen und Verarbeiten der

Ergebnisdaten in den“.mrc” -Dateien

HYPELA2 in MSC.MARC

Einlesen der “.cfg” -Datei und

Erstellen der internen

Speicherstruktur

“.cpu” -Datei

(Anzahl der Rechenkerne = N)

N x “.mrc” -Datei

(Ausgabedaten entsprechend der

“.cfg” -Datei für jede Domain)

Bild 2.5: Datentransfer bei Nutzung der HYPELA2 in MSC.MARC.

Es besteht jedoch noch die Schwierigkeit, die Parameter in geeigneter Form dem Solver
zugänglich zu machen. Dies ist möglich, indem die in MSC.MARC vorhandenen “Initial
Conditions ” zweckentfremdet und als Transfermedium genutzt werden. Da bei der Definition
von Initial Conditions eine Elementzuordnung obligatorisch ist und diese Information auch in
die “.dat” -Datei geschrieben wird, können mehrere Materialbereiche definiert und innerhalb
der User-Subroutinen unterstützt werden. Dies ist sowohl mit MARC-eigenen Stoffgesetzen,
als auch mit nutzereigenen Materialmodellen möglich.

2.5 Parametrisierung der Modellgeometrie

Während bei der Stoffgesetzanpassung die Materialparameter im Fokus stehen, gilt bei der
Identifikation von Formparametern sowie der Formoptimierung das Interesse der Geometrie
eines Bauteils bzw. des zugehörigen Modells. Da in beiden Fällen während der Optimierung
eine oder mehrere geometrische Merkmale (meist Randkonturen) gezielt verändert werden
sollen, müssen diese zunächst in geeigneter Form parametrisiert werden. Hierfür werden
Designvariablen (Formparameter) als unabhängige Veränderliche eingeführt, mit deren Hilfe
die zu beschreibenden Konturen eindeutig definiert werden können (vgl. Schumacher (2005);
Floriani und Spagnuolo (2008)). Liegt das FEM-Modell bereits in parametrisierter Form
(z.B. als PYTHON-Skript bei ABAQUS) vor, können darin enthaltene Parameter wie Radien
oder Kantenlängen unmittelbar als Designvariablen fungieren. Dieses Vorgehen ist jedoch
ungünstig oder unmöglich, falls

• ein Parameter die zugehörige Kontur nur unzureichend beschreibt,

• durch das Modell bedingte Korrelationen zwischen Parametern auftreten oder
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2.5 Parametrisierung der Modellgeometrie 15

• das FEM-Modell nicht in parametrisierter Form vorliegt.

Ein übliches Prozedere besteht darin, die zu beschreibenden Konturen der Struktur durch
mathematische Funktionen mit den Designvariablen als Steuerparametern auszudrücken. Ty-
pisch hierfür ist die Nutzung von Polynomzügen (Splines), welche stückweise aus Polynomen
höchstens n-ten Grades zusammengesetzt sind. Wichtige Vertreter sind hierbei kubische
Splines, Basis-Splines (B-Splines) sowie NURBS (Non-Uniform Rational B-Splines), wel-
che durch den Vektor der Designvariablen p charakterisiert werden (Piegl und Tiller, 1995;
de Boor, 2001). Im Gegensatz zu B-Splines und NURBS verlaufen kubische Splines durch alle
gegebenen Stützstellen. Dadurch lassen sich die Randkonturen vorliegender FEM-Netze mit
geringem Aufwand mathematisch ausdrücken. Allerdings ist die direkte Verwendung dieser
Stützstellen für die Optimierung nicht sinnvoll, da damit eine Vielzahl von Designvariablen
verbunden wäre. Die Konturen auf Basis von B-Splines und NURBS hingegen werden durch
Kontrollpunkte (De-Boor-Punkte) gesteuert. Bei Verwendung von NURBS wird jedem Kon-
trollpunkt zusätzlich ein Wichtungsfaktor zugeordnet. Der hauptsächliche Vorteil bei der
Verwendung von NURBS besteht neben der geringeren Anzahl Designvariablen darin, dass
sich die Variation einer Designvariablen nur auf einen begrenzten Bereich in der Nähe des
Kontrollpunktes auswirkt. Dadurch kann die Korrelation zwischen den Formparametern er-
heblich verringert werden.

Da in SPC-Opt keine grafische Nutzeroberfläche zur Erstellung von FEM-Netzen vorgesehen
ist, werden für die Modellerstellung kommerzielle FEM-Programme wie ANSYS oder MSC-

MARC genutzt. Mit diesen erstellt der Anwender das Ausgangsnetz und legt die zugehörigen
Eigenschaften, beispielsweise die Randbedingungen oder verwendeten Materialmodelle, fest.
Für die Optimierung werden die relevanten Konturen während der Modellerstellung durch
Geraden, kubische Splines oder eine hinreichende Anzahl Keypoints approximiert. Die den
Konturen zugeordneten Knoten werden in Knoten-Sets zusammengefasst und eindeutig be-
nannt. Anschließend wird das Modell im dem FEM-Programm entsprechenden Datenformat
gespeichert und mittels des in Kap. 2.2 vorgestellten Konvertierungsprogramms in das für
SPC-Opt lesbare “.sim” -Format umgewandelt. Der Konverter enthält unter anderem einen
Algorithmus von Schneider (1993), mit welchem ohne merklichen Genauigkeitsverlust eine
Darstellung der Geraden, kubischen Splines oder Keypoint-Gruppen durch NURBS möglich
ist. Während dieses Prozesses werden die Koordinaten und Wichtungen der De-Boor-Punkte
berechnet, aus denen der Anwender diejenigen Größen auswählt, welche als Designvariablen
fungieren sollen.

In Bild 2.6 ist der Ausschnitt eines FEM-Netzes dargestellt. Die Randkontur des inneren
Kreises wird durch kubische Splines approximiert, deren Stützstellen den Eck- und Mittel-
knoten der Elementkanten entsprechen. In den gemeinsamen Knoten zweier Elementkanten
gilt Stetigkeit. Bei Konturen, die nicht geschlossen sind, wird im Anfangs- und Endpunkt
der Anstieg vorgegeben. Der nach der Konvertierung vorliegende NURBS wird durch die
eingezeichneten De-Boor-Punkte charakterisiert.

Falls die Optimierung für räumliche Probleme durchgeführt werden soll, kann die beschrie-
bene Vorgehensweise ebenso angewendet werden. Dies erfolgt, indem die Konturen durch
NURBS-Flächen approximiert und die zugehörigen De-Boor-Punkte in analoger Form für
die Optimierung verwendet werden (Elsässer, 1998; Friedrich, 2011).
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Bild 2.6: Darstellung einer Randkontur mittels kubischer Splines und NURBS.

Als Voraussetzung für die Durchführung von FEM-Simulationen müssen in jedem Optimie-
rungsschritt FEM-Netze auf Basis derjenigen Konturen generiert werden, welche sich auf den
jeweils aktuellen Parametersatz bzw. die gestörten Parametersätze beziehen. Grundsätzlich
kann dies auf verschiedene Arten erfolgen.

Eine Möglichkeit besteht darin, das benötigte FEM-Netz für jede gestörte Kontur automa-
tisch neu zu vernetzen. Werden kommerzielle CAD-Programme wie NX ∗ und PTC/Creo ∗

verwendet, stehen solche automatischen Vernetzungswerkzeuge bereits zur Verfügung und
können in den Optimierungsalgorithmus integriert werden. Zudem entspricht in den meisten
Fällen die mathematische Beschreibung der Konturen auch den entsprechenden CAD-Daten.
Somit sind die Formparameter des CAD-Modells direkt mit den Designvariablen gekoppelt.
Dadurch liegt nach der Optimierung die Kontur des Modells direkt in Form der CAD-Daten
vor und eine Konvertierung erübrigt sich. Der Nachteil dieser Vorgehensweise ist jedoch, dass
in jedem einzelnen Optimierungsschritt für jede Parameterstörung ein neues FEM-Netz au-
tomatisch erstellt wird und dabei unterschiedliche Netztopolgien (Veränderung der Anzahl
der Knoten) auftreten können.

Da zu Beginn der Optimierung oft ein der Startkontur entsprechendes FEM-Netz als Aus-
gangsbasis vorliegt, ist ein anderer Weg möglich. Dabei bleibt die Netztopologie unverändert
und es erfolgt lediglich eine Variation der Knotenkoordinaten während der Optimierung. Die
Qualität der neu gewonnenen FEM-Netze hängt dabei stark vom mathematischen Algorith-
mus ab, mit welchem die Neuberechnung der Knotenkoordinaten durchgeführt wird. Eine
Variante stellt die geeignete Verschiebung der Knoten des Ausgangsnetzes dar (Harzheim,
2008). Ausgehend von dem Vektor der Anfangskoordinaten R0 lässt sich der neue Vektor der
Knotenkoordinaten R durch den Formbasisvektor T und die Designvariable p darstellen:

R = R0 + p T (2.1)
∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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Für mehrere Designvariablen gilt

R = R0 +

N∑
i=1

pi T i . (2.2)

Alle Designvariablen befinden sich in dem Raum, welcher durch die Formbasisvektoren T

aufgespannt wird. Im Verlauf der Optimierung werden deren Werte so bestimmt, dass der
Wert der Zielfunktion minimal wird. Die Ermittlung der Basisvektoren muss derart erfolgen,
dass Netzverzerrungen infolge von Änderungen der Designvariablen nicht zu Diskretisierungs-
unterschieden führen, aufgrund derer die Ergebnisse der FEM-Simulation verfälscht werden.
Da die Berechnung der Formbasisvektoren meist mit einem hohen Aufwand (z.B. Simulation
typischer Lastfälle zur besseren Abschätzung) verbunden ist, existieren nur wenige kommer-
zielle Programme wie MSC.NASTRAN ∗ zur Generierung.

Ein ähnlicher, flexiblerer Ansatz besteht darin, die Koordinaten der FEM-Knoten an den
in der Nähe befindlichen Konturen auszurichten. Vergleichbar ist dies mit der Funktions-
weise von grafischen Programmen zur Verzerrung von Grafiken. Im Gegensatz zur Methode
der Basisvektoren existieren hier mehrere leistungsfähige kommerzielle Programme, z.B. die
Morphing-Tools von ANSA ∗ und HYPERMESH ∗. Auch die Vorgehensweise in SPC-Opt

basiert auf dieser Grundidee.

Während der Optimierung ändern sich zunächst die Koordinaten (und Wichtungen) der De-
Boor-Punkte und damit die zugehörigen Konturen. In Folge dessen müssen auch die Rand-
und Innenknoten des FEM-Netzes dementsprechend verschoben werden. In den folgenden
Ausführungen, die sich auf das FEM-Netz beziehen, wird nur noch von “Knoten” gesprochen.
Diesen werden im Rahmen der Netzgenerierung lokale Koordinatensysteme (KS) zugewiesen.
Typ sowie Koordinatenursprung können frei gewählt werden. Wenn kein lokales KS definiert
wird, dient das globale kartesische als Bezugssystem. Wenn eine oder mehrere Koordinaten-
achsen eines Punktes P bei der Aktualisierung der Netztopologie berücksichtigt werden
sollen, müssen jeweils zwei Bezugskurven für jede Koordinatenachse definiert werden, sodass
sich P zwischen diesen befindet.

In Bild 2.7a ist die Kombination von Geraden (Bη1, Bη2) und kubischen Splines (Bξ1, Bξ2) als
Bezugskurven in einem ebenen Modell dargestellt. Die Abstände von P zu den Bezugskurven
dξ1, dξ2 sowie dη1 und dη2 führen auf die Verhältnisse

γ1 =
dξ1

dξ1 + dξ2
und γ2 =

dη1
dη1 + dη2

, (2.3)

welche für jeden Knoten gespeichert werden. Sie bilden die Basis zur Bestimmung der neuen
Koordinaten bei Änderung der Bezugskurven. Im Rahmen des entwickelten Verfahrens stellt
die Einhaltung der Streckenverhältnisse (Gl. 2.3) eine notwendige Bedingung bei der Netz-
aktualisierung dar. Um den Anwendungsbereich der Methode zu erweitern, können auch
lokale Polarkoordinatensysteme einbezogen werden (Bild 2.7b).

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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(a) in lokalen kartesischen Koordinaten (b) in lokalen Polarkoordinaten

Bild 2.7: Abstände eines Knotens P von den Bezugskurven.

Die Anwendung des Verfahrens auf räumliche Probleme ist mit SPC-Opt in gleicher Weise
möglich. Der Unterschied besteht lediglich darin, dass der Anwender den Knoten keine Be-
zugskurven, sondern Bezugsflächen zuordnet. Es muss jedoch sichergestellt werden, dass die
Koordinatenachsen einen Schnittpunkt mit den zugeordneten Bezugsflächen besitzen.
In Bild 2.8 ist ein FEM-Netz im Ausgangszustand und nach der Netzaktualisierung bei Än-
derung von drei Bezugskurven angegeben. Im dargestellten Beispiel entsprechen die lokalen
Koordinatensysteme der Knoten dem globalen kartesischen KS. Die Topologie des Netzes
bleibt erhalten.

Bild 2.8: Netzaktualisierung eines FEM-Netzes nach Veränderung von drei Be-
zugskurven.

Für komplexe Geometrien ist es oft sinnvoll, das Netz in unterschiedliche Bereiche aufzuteilen
und diesen jeweils andere Bezugskurven bzw. -flächen zuzuweisen. Dabei können benachbarte
Gebiete auch durch eine Bezugskontur getrennt werden, welche beiden Bereichen (evtl. mit
unterschiedlichen lokalen KS) zugeordnet ist.
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Bei der Implementierung der Methode stand im Vordergrund, dass auch das verzerrte Netz
eine hohe Qualität besitzt, jedoch gleichzeitig der benötigte Rechenaufwand möglichst klein
ist. Es wurde deshalb bewusst kein Ansatz verwendet, welcher auf der Beibehaltung eines
Gleichgewichtszustandes zwischen den Knoten basiert. Der hier dargestellte Algorithmus er-
möglicht es, für jeden Parametersatz mit geringem Aufwand ein valides FEM-Netz analytisch
zu erzeugen. Ein Nachteil des Verfahrens besteht allerdings darin, dass der Anwender zwar
nur selten neue Bezugskonturen definieren muss (oft bietet sich die Nutzung von bestehen-
den Randkonturen an), der Arbeitsaufwand zur sinnvollen Gruppierung von Knoten und die
Erzeugung von lokalen KS (falls sinnvoll) jedoch unumgänglich ist.

In der Regel werden durch das Verfahren qualitativ gute, wenn auch nicht ideale, FEM-Netze
(im Sinne der geometrischen Elementgestalt) erstellt. Große Änderungen der Randkonturen,
bereits vorhandene spitze Innenwinkel oder große Seitenverhältnisse können jedoch dazu
führen, dass bei der Simulation Diskretisierungsfehler entstehen oder verstärkt werden. Er-
gänzend zum bestehenden Algorithmus stehen dem Anwender deshalb iterative Verfahren
zur nachträglichen Glättung der FEM-Netze zur Verfügung. Diese bestehen aus einer Kom-
bination geeigneter Glättungsalgorithmen mit entsprechenden Bewertungskriterien.

Bei der Implementierung wurden Laplace- und Optimierungsbasiertes Smoothing berück-
sichtigt (Blacker und Stephenson, 1991; Canann et al., 1993, 1998; Thompson et al., 1998;
Mukherjee, 2002; Chen et al., 2003). Darüber hinaus besteht die Möglichkeit zur Kombina-
tion beider Verfahren, wodurch die Vorteile von kurzer Rechenzeit mit der erhöhten Flexi-
bilität bei der Suche idealer Knotenpositionen verknüpft werden können. Alle verfügbaren
Algorithmen eignen sich sowohl für strukturierte als auch unstrukturierte Gitter und sind
unabhängig vom Elementtyp.

Im Kontext der Elementbewertungsfunktionen, die stets elementbezogene Gültigkeit aufwei-
sen, sind eine Reihe verschiedener Metriken für Dreiecks-, Vierecks- und Hexaederelemente im
Programm integriert (Canann et al., 1993; Knupp, 2002; Branets und Carey, 2005). Durch
die Kombination von Qualitätsmetriken mit den Glättungsalgorithmen und Variation der
Steuerparameter kann das Ergebnis der Netzglättung gezielt beeinflusst werden.

Es hat sich gezeigt, dass starke Netzglättungen einen Einfluss auf das Ergebnis der FEM-
Simulation haben, wenn auch in deutlich geringerem Maße als die Diskretisierungsunter-
schiede bei Neuvernetzungsstrategien. Da die Netzglättung gewöhnlich auf alle durch Para-
metervariation entstandenen FEM-Netze gleichermaßen angewendet wird, bleibt der relative
Unterschied zwischen diesen FEM-Netzen davon unberührt. Der entscheidende Vorteil gegen-
über Neuvernetzungsstrategien besteht deshalb darin, dass die bei der Formoptimierung mit
Gradientenverfahren notwendige stetige Änderung der Knotenkoordinaten bei der Variation
von Bezugskurven gewährleistet ist.

2.6 Parallelisierung

Der zeitliche Aufwand für die Lösung der benötigten FEM-Simulationen hängt maßgeblich
von der verfügbaren Rechenleistung ab. Eine Vergrößerung der Rechenkapazität wird durch
die Verwendung von mehreren Rechenknoten ("Processing Elements", PE) in einer parallelen
Rechnerarchitektur erreicht. In den vergangenen Jahren hat die Verbreitung dieser Technik
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deutlich zugenommen. Selbst handelsübliche Heimcomputer besitzen vier oder mehr Rechen-
kerne. Um die Rechenkapazität sinnvoll nutzen zu können, werden die zu lösenden Aufgaben
in unabhängige Teilprobleme aufgeteilt und parallel bearbeitet.

Derzeit stellen lokale Netzwerke unabhängiger Computer ("Networks of independent Com-
puters", NoCs) die häufigste Art paralleler Architekturen dar. Nahezu alle Firmen und wis-
senschaftliche Einrichtungen verfügen über eine Vielzahl von Computern, welche durch ein
lokales Netzwerk miteinander verbunden sind. Gewöhnlich bestehen diese aus heterogenen
Gruppen von Computern (Hennessy und Patterson, 2003; Parhami, 2005; Silc et al., 1999).
Der hohe Verbreitungsgrad solcher Systeme stellt einen großen Vorteil gegenüber den spe-
zialisierten massiv-parallelen Computern ("massively parallel processor computers", MPP)
dar. Dem entgegen steht der meist größere Programmieraufwand paralleler Umgebungen für
NoCs. Aufgrund der gewachsenen Strukturen von NoCs sind diese gewöhnlich aus Syste-
men mit unterschiedlichen Prozessortypen und Geschwindigkeiten aufgebaut. Darüber hi-
naus kann die Anzahl der verfügbaren PEs variieren. Idealerweise muss ein Steuerprogramm
fähig sein, die Berechnungen und Kommunikation ungleichmäßig unter den PEs mit Be-
rücksichtigung der jeweiligen Rechenleistung zu verteilen und mit Ausfällen im Netzwerk
umzugehen (Lastovetsky, 2003). Eine weitere nachteilige Eigenschaft ist der physisch ver-
teilte Speicher. Dadurch verringert sich zwar die Zugriffszeit auf lokaler Ebene, der Austausch
von Daten zwischen den PEs ist jedoch aufwändig und mit deutlichen Latenzen verbunden.

Im Hinblick auf SPC-Opt ist die Nutzung paralleler Rechentechniken auf zwei Ebenen sinn-
voll. So können die FEM-Berechnungen üblicher Weise durch programmeigene Möglichkeiten
parallelisiert werden, wobei dies meist durch die Anzahl der zur Verfügung stehenden Lizen-
zen begrenzt ist. Darüber hinaus ist es möglich, mehrere Instanzen von SPC-Opt zu starten,
wobei eine Instanz die Funktion der Verwaltung (Master) übernimmt. Entsprechend Bild 2.9
können verschiedene Experimente in der Optimierung berücksichtigt werden, wobei für je-
des dieser Experimente entsprechend der Parameteranzahl mehrere FEM-Berechnungen (in
Bild 2.9 als “Direct” bezeichnet) durchgeführt werden müssen. Diese werden in einer Warte-
schlange (Queue) gesammelt und durch die übrigen Prozesse (Slaves) abgearbeitet.

Computation

Experiment 2Experiment 1 ...

Direct 1.1 Direct 1.2 ... Direct 2.1 ...

FEM-Problem

(MSC.MARC)

FEM-Problem

(MSC.MARC)

FEM-Problem

(ABAQUS)

Parallelisierung

Parallelisierung

Bild 2.9: Darstellung der Möglichkeiten zur Parallelisierung.
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An der TU-Chemnitz steht der hochparallele Rechner (“High Performance Cluster” , HPC)
CHiC (“Chemnitzer High Performance Cluster” ) als Testplattform zur Verfügung. Die Kom-
munikation erfolgt durch ein gemeinsames Infiniband (10 Gbit/s) mit geringer Latenz und
großer Bandbreite. Im Gegensatz zu NoCs haben alle Prozessoren die gleiche Geschwindig-
keit und garantieren einen hohen Grad an Verfügbarkeit. Darüber hinaus führen die geringe
Latenz und große Bandbreite des Netzwerks, verglichen mit heterogenen NoCs, zu einer grö-
ßeren Geschwindigkeit bei der Kommunikation und dem Datenaustausch zwischen den PEs
des HPC.

Die Rechenknoten kommunizieren über das Message Passing Interface (MPI), eine Standard-
bibliothek für den Nachrichtenaustausch in parallelen Systemen (Lastovetsky, 2003; Snir,
1998). Das MPI gewährleistet eine hohe Effizienz sowohl in MPPs als auch NoCs und stellt
die notwendigen Sende- und Empfangs-Routinen für die Point-to-Point Kommunikation be-
reit.

Um Fehler während der Nachrichtenübermittlung zu vermeiden, müssen dem Empfänger
Typ und Größe des zu sendenden Datenpaketes bekannt sein. Des Weiteren ist es erfor-
derlich, dass der Speicher des Datenpaketes zusammenhängend vorliegt. Speziell bei der
Verwendung großer Datenfelder variabler Größe kann das schwierig sein, weshalb die C++
Bibliothek BLITZ ∗ genutzt wird. Deren Templates bieten eine hohe Effizienz bei der dynami-
schen Speicherverwaltung und unterstützen gleichzeitig verschiedene Matrizenoperationen.
Trotz dessen kann es insbesondere bei der Verwendung einer großen Zahl PEs zu Fehlern bei
der Datenübertragung oder anfallenden Dateioperationen kommen. Zusätzlich können wäh-
rend einer Optimierung ungünstige Parameterkonstellationen auftreten, welche die erfolg-
reiche Konvergenz der Simulation verhindern. In SPC-Opt gibt es deshalb ein dynamisches
Reaktionsschema, welches in Abhängigkeit von der Art des Abbruchs einer Simulation ent-
scheidet, ob die Optimierung abgebrochen, ein eventuell defekter Rechenknoten deaktiviert
oder eine neue Instanz der Simulation gestartet wird.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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3 Parameteridentifikation

3.1 Optimierungsaufgabe

Ein Großteil der aktuell verfügbaren FEM-Programme stellt zur Darstellung des Material-
verhaltens eine Vielzahl verschiedener Stoffgesetze zur Verfügung. Für diese müssen jedoch
Materialparameter ausgewählt werden, mit denen das Verhalten der real verwendeten Mate-
rialien möglichst gut abgebildet werden kann. Andernfalls sind die Ergebnisse der zugehörigen
FEM-Simulation nicht vertrauenswürdig.

Um diese Parameter zu bestimmen, wird in den meisten Fällen eine Materialparameter-
identifikation, welche ein inverses Problem darstellt (Mahnken und Stein, 1996; Moritz, 1993;
Schnur und Zabaras, 1992), durchgeführt. Eine analytische Lösung des Problems ist in der
Regel nicht möglich, da sich Materialparameter nicht direkt messen sondern lediglich anhand
ihrer Wirkung im Experiment analysieren lassen. Eine Lösung stellt die Rückführung des
Problems auf eine Optimierungsaufgabe dar. Dabei ist insbesondere die Methode der Fehler-
quadratminimierung (FQM) geeignet, um die Parameter pj (j = 1, ..., n) von konstitutiven
Gleichungen zu bestimmen. Dafür werden zu bestimmten Beobachtungszeitpunkten ti an
festgelegten Orten RB

i die Residuen zwischen den fehlerbehafteten Messwerten y (ti) = y i am
Bauteil und dem zugehörigen Modell M

(
pj , R

B
i , ti

)
= yi(pj) gebildet (Nocedal und Wright,

1999):
ri (pj) = y i −M

(
pj, R

B
i , ti

)
= y i − yi (pj)

mit i = 1, ..., m

und j = 1, ..., n .

(3.1)

Hierbei wird das Modell M oft durch Größen repräsentiert, welche im Rahmen einer nu-
merischen Simulation berechnet wurden. Die Nutzung analytischer Modelle in Form von
mathematischen Berechnungsvorschriften ist jedoch ebenso möglich. Gesucht wird nunmehr
derjenige Parametersatz p∗j , für welchen eine auf den Residuen ri basierende Zielfunktion
Φ(pj) minimal wird:

Suche p∗j , sodass Φ(ri(pj)) = Φ(pj) → min
p

. (3.2)

Gewöhnlich wird zur Berechnung der Zielfunktion die Fehlerquadratsumme der Residuen
eines Versuches gebildet. Dabei ist zu beachten, dass die Residuen unterschiedliche Einheiten
und Größenordnungen besitzen können. Die einheitenbehafteten ri werden daher durch die
Wichtungsfaktoren wi auf einheitenfreie und bei Bedarf skalierte Residuen ri reduziert:

ri = wi ri. (3.3)
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Mit diesen lässt sich die Fehlerquadratsumme und somit die Zielfunktion bilden:

Φ(pj) =
1

2

m∑
i=1

[ri (p1, ..., pn)]
2 → min

p
. (3.4)

Unter der Annahme, dass die Zielfunktion hinreichend glatt ist, bietet sich zur Lösung des
Optimierungsproblems ein gradientenbasiertes Verfahren an. Hierfür wird zunächst p durch
die dimensionslose Parametermatrix x ersetzt und Gl. 3.4 in typisch mathematischer Form
formuliert (Nocedal und Wright, 1999):

Suche x ∈ R
n, sodass f(x) =

1

2

m∑
i=1

[ri (x)]
2 → min

x
, (3.5)

wobei f(x) die Zielfunktion, x die Parametermatrix und ri die Einträge der Residuenmatrix
r darstellen. Zwecks Verwendung gradientenbasierter Verfahren muss durch Ableitung der
Residuen ri nach den Parametern xj die Jacobimatrix J bestimmt werden:

J := Jij =
∂ri
∂xj

. (3.6)

Zusammen mit Gl. 3.5 folgt unter Nutzung der Produktregel:

∇f(x) = JT r und

∇2f(x) = JTJ +
m∑
i=1

ri ∇2ri ,
(3.7)

wobei der Nabla-Operator aufgrund der Ableitung nach den entdimensionierten x einhei-
tenfrei ist. Ausgehend von einem Startpunkt x0 wird versucht, mittels Iteration ein x∗ zu
ermitteln, für welches die Funktion f(x∗) ein Minimum darstellt. Dabei wird x in folgender
Weise aufdatiert:

xk+1 = xk + dk mit k = 0, 1, 2, ... . (3.8)

Es gilt nun, in jedem Schritt k den Korrekturvektor dk derart zu bestimmen, dass möglichst
wenige Iterationen erforderlich sind. Dabei wird gefordert, dass nur diejenigen dk akzep-
tiert werden, durch welche f(xk+1) kleiner als f(xk) wird, also ein Abstieg sichergestellt ist.
Entsprechend dieser Forderung und bei Wahl der passenden Schrittlänge wird

dTk∇f(xk) < 0 (3.9)

erfüllt. Des Weiteren gilt für f(x) im Minimum x∗ die Optimalitätsbedingung 1. Ordnung:

∇f(x∗) = 0 . (3.10)

Demnach muss für Gl. 3.10 das Nullstellenproblem gelöst werden, was beispielsweise durch
die Anwendung des Newton-Iterationsverfahrens erfolgen kann. Hierbei wird eine Nullstelle
von einer Funktion F (x) ermittelt. Die typische Newton-Iteration für die Gleichung F (x) = 0

sieht bekanntermaßen wie folgt aus:

xk+1 = xk − F ′(xk)
−1F (xk) , (3.11)
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wobei F (x) gerade ∇f(x) darstellt und F ′ die Ableitungsmatrix von F nach xk ist. Aufgrund
der Gestalt von Gl. 3.8 ergibt sich automatisch der Newton-Korrekturschritt

dNk = − (∇2f(xk)
)−1 ∇f(xk) . (3.12)

Einen weiteren Zugang stellt die Entwicklung eines quadratischen Ersatzmodells für die
Zielfunktion im Punkt xk in Form einer Taylor-Reihe bis zum quadratischen Glied dar:

f(xk+1) ≈ mk(x) = f(xk) + (x− xk)
T∇f(xk) +

1

2
(x− xk)

T∇2f(xk)(x− xk) . (3.13)

Anstatt des Minimums der Zielfunktion f(x) wird nunmehr das Minimum von mk(x) gesucht.
Dies erfordert, dass in analoger Vorgehensweise die Ableitung ∇mk(x) Null wird:

∇mk(x) = ∇f(xk) +∇2f(xk)(x− xk) = 0 . (3.14)

Die Anwendung von Gl. 3.8 auf Gl. 3.14 führt wieder zum Newton-Korrekturschritt dNk nach
Gl. 3.12.

Unabhängig vom gewählten Zugang ist die Ermittlung von ∇2f(x) notwendig, was jedoch
sehr aufwändig ist. Es wird deshalb eine approximierte Hesse-Matrix Bk eingeführt. Das
Einsetzen in Gl. 3.13 liefert

mk(x) = f(xk) + (x− xk)
T∇f(xk) +

1

2
(x− xk)

TBk(x− xk) (3.15)

und der entsprechende Newton-Korrekturschritt aus Gl. 3.12 lautet:

dNk = −B−1k ∇f(xk) . (3.16)

Die Berechnung von Bk kann grundsätzlich auf vier verschiedene Weisen erfolgen, welche in
Kap. 3.3 - 3.6 diskutiert werden.

3.2 Gewichtete Fehlerquadratkennzahl (GFK)

Im Allgemeinen stellt der Zielfunktionswert, welcher im Rahmen der Identifikation minimiert
wird, eine (oft gewichtete) Kombination aus Zielfunktionswerten unterschiedlicher Versuche
dar. Diese Versuche unterscheiden sich jedoch häufig voneinander bezüglich des Belastungs-
typs, der Anzahl der Lastschritte und der Belastungsintensität. Um dennoch eine resultieren-
de Zielfunktion aufstellen zu können, müssen die einzelnen Zielfunktionsanteile entsprechend
der jeweiligen Belastungsart vor dem Zusammenführen gezielt modifiziert werden. Es wird
deshalb ein Qualitätskriterium benötigt, mit welchem sowohl verschiedene Versuche als auch
unterschiedliche Identifikationsergebnisse miteinander verglichen werden können. Das Krite-
rium sollte folgende Bedingungen erfüllen:

• Unabhängigkeit vom Belastungstyp

• Unabhängigkeit von der Anzahl der Lastschritte

• Unabhängigkeit von der Belastungsintensität
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3.3 Gradientenverfahren (Verfahren des steilsten Abstiegs) 25

Ein Kriterium, welches diese Bedingungen erfüllt, ist die sogenannte “Gewichtete Fehler-
quadrat-Kennzahl” (GFK), welche auf Basis der Anzahl der in die Identifikation einfließenden
Lastschritte nL, der gemessenen Größen yi sowie den zugeordneten Simulationsgrößen yi wie
folgt berechnet wird:

GFK =

1

nL
·

nL∑
i=1

(yi − yi)
2

[max (y) − min (y)]2
. (3.17)

Bei Betrachtung der Bildungsvorschrift wird deutlich, dass diese analog zu Gl. 3.4 die Fehler-
quadratsumme der Residuen beinhaltet, wobei jeweils gleichartige yi mit gleichen Einheiten
in einer GFK berücksichtigt werden. Je kleiner demnach die GFK ist, desto besser stimmen
Simulation und Messung überein. Eine Überprüfung zeigt, dass die GFK eine dimensions-
lose Größe ist, welche nicht mehr unmittelbar durch Belastungstyp, Anzahl der Lastschrit-
te oder die Belastungsintensität “verfälscht” wird. Dadurch können die GFKs verschiedener
Versuche quantitativ miteinander verglichen oder zusammengeführt werden. Die quadrati-
sche Bestrafung der Abweichung von den Messdaten soll bei der Zusammenführung jedoch
ausgeklammert werden, da sonst diejenigen Experimente, deren Informationen zum Materi-
alverhalten am wenigsten den übrigen Versuchen entsprechen würden, einen noch höheren
Anteil am Zielfunktionswert hätten. Somit ergibt sich ein übergeordnetes Gütemaß in Form
der kombinierten gewichteten Fehlerquadrat-Kennzahl GFK, welches auch in der Praxis als
Zielfunktionswert genutzt werden kann:

GFK =

(
1

nexp

·
nexp∑
i=1

√
GFKi

)2

. (3.18)

Die abschließende Quadrierung des Terms in Gl. 3.18 ermöglicht es, die berechnete GFK

wieder direkt mit den GFK der einzelnen Versuche zu vergleichen.

3.3 Gradientenverfahren (Verfahren des steilsten

Abstiegs)

Beim Gradientenverfahren entspricht die approximierte Hesse-Matrix der Einheitsmatrix I

und führt auf:
Bk = I . (3.19)

Das heißt, als Schrittrichtung wird immer die Richtung des steilsten Abstieges an der aktu-
ellen Stelle xk gewählt. Der große Vorteil des Verfahrens besteht darin, dass es sicher zum
Ziel konvergiert. Dies geschieht allerdings nur langsam. Des Weiteren können ungünstige
Zick-Zack-Effekte auftreten, indem die Iterationspunkte hin- und herspringen, obwohl ein
einfacher Schritt in eine andere Richtung schon genügen würde.

3.4 Newton-Verfahren

Bei Verwendung des Newton-Verfahrens stellt Bk den bereits bekannten Term ∇2f(xk) dar:

Bk = ∇2f(xk) . (3.20)
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Die Nutzung des Newton-Korrekturschrittes kann es ermöglichen, unter Ausnutzung der
lokalen quadratischen Konvergenz bei einem Start nahe dem Ziel selbiges sehr schnell zu
erreichen. Der Start an einem weit entfernten Punkt verlangsamt das Verfahren jedoch be-
trächtlich oder lässt es sogar divergieren. Zudem ist, wie bereits erläutert, die Berechnung
von ∇2f(xk) sehr aufwändig.

3.5 Gauss-Newton-Verfahren

Das Gauss-Newton-Verfahren basiert auf einer Vereinfachung des zweiten Terms von Gl. 3.7:

Bk = JT
k Jk . (3.21)

Durch die Vernachlässigung des Terms
m∑
i=1

∇2ri(x) ri(x) ist der Berechnungsaufwand von

Bk äußerst gering, da lediglich die ersten Ableitungen zur Bestimmung von Jk ermittelt
werden müssen. Die Berechnung der zweiten Ableitungen wäre nicht nur kostenintensiv,
sondern aufgrund von Rundungsfehlern potentiell unbrauchbar. Zudem können in der glei-
chen Zeit auch mehrere schnelle Iterationen der vereinfachten Variante berechnet werden.
Die Vernachlässigung dieses Terms ist in der Nähe der Lösung meist unkritisch, da dort die
Residuen entsprechend klein sind. Bei großer Entfernung vom Ziel wird das Ergebnis jedoch
stark verfälscht.

3.6 Levenberg-Marquardt-Verfahren

Die Idee des Levenberg-Marquardt-Algorithmus (Levenberg, 1944; Marquardt, 1963) basiert
auf der Kombination des Verfahrens des steilsten Abstiegs und dem Gauss-Newton-Verfahren
in der Form:

Bk = JT
k Jk + λL · I, λL ≥ 0 . (3.22)

Entsprechend ergibt sich der Levenberg-Marquardt-Korrekturschritt zu:

dLMk = −(JT
k Jk + λL · I)−1∇f(xk) . (3.23)

Die Wahl eines großen λL führt zu einer hohen Wichtung des Terms λL · I, während JT
k Jk an

Gewicht verliert und entspricht somit näherungsweise einem Gradienten-Korrekturschritt:

dLMk ≈ − 1

λL
∇f(xk) . (3.24)

Im Gegensatz dazu führt ein kleines λL zu einer starken Wichtung von JT
k Jk bei gleichzeitig

kleinem λL · I und stellt somit näherungsweise den Gauss-Newton-Korrekturschritt dar.

Um die Wahl zwischen beiden Möglichkeiten bzw. den Übergang zu automatisieren, wird
ein so genannter Fortschrittsquotient (FQ) eingeführt, welcher ein Maß für die Güte des
Schrittes darstellen soll. Es wird demzufolge nach einem probeweise gegangenen Schritt erst
ausgewertet, ob dieser zu einer Verringerung von f geführt hat, also “gut” ist, und somit
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akzeptiert wird. Andernfalls wird er ignoriert und die Parameter werden dementsprechend
neu angepasst.

Der Fortschrittsquotient ρ ergibt sich dabei nach

ρ =
f(xk)− f(xk+1)

mk(xk)−mk(xk+1)
, (3.25)

wobei mit mk(·) abermals das quadratische Ersatzmodell an der Stelle xk+1 mit der approxi-
mierten Hesse-Matrix JT

k Jk bezeichnet wird. Mittels Gl. 3.23 wird nur ein dLMk gefunden,
welches das Ersatzmodell näherungsweise löst. Es stellt sich jedoch die Frage, ob sich dadurch
auch der Funktionswert f(x) verringert. Gl. 3.25 beschreibt eben die reale Verbesserung im
Vergleich zum durch das Ersatzmodell vorhergesagten mk. Falls ρ nahe 1 ist, stimmen Mo-
dell und Realität gut überein. Ist ρ jedoch größer als 1, bedeutet dies eine Verbesserung
gegenüber der Erwartung. Bei einem Wert nahe, jedoch größer als 0 hat sich der Funktions-
wert zwar verbessert, jedoch nicht so gut wie erwartet. Werte kleiner als 0 kennzeichnen eine
Verschlechterung.

Praktischerweise wird ρ dabei in drei Bereiche unterteilt:

ρ ≥ ηhi guter Fortschritt Richtung Newtonschritt λL
k+1 = λL

k · σ1

ηlo ≤ ρ < ηhi mäßiger Fortschritt Schrittart beibehalten λL
k+1 = λL

k

ρ < ηlo schlechter Fortschritt Richtung Gradientenschritt λL
k+1 = λL

k · σ2

.

Dabei sind typisch genutzte Parametersätze: ηlo = 0.25, ηhi = 0.75, σ1 = 0.5 und σ2 = 2.
Die Änderung von λL in dieser Art ergibt sich aus den folgenden Überlegungen:

Wurde ein guter Fortschritt erzielt, wird die Annäherung an den Zielpunkt angenommen.
Aufgrund der lokalen Konvergenz des Newtonverfahrens wird dementsprechend der Parame-
ter λL in diese Richtung angepasst.

War der Fortschritt hingegen schlecht, liegt der Schluss nahe, dass die Modellfunktion un-
günstig gewählt wurde. Daher wird λL erhöht, um den Anteil des Gradienten-Schrittes stär-
ker zu gewichten und die Schrittweite zur verkürzen. Für ein genügend großes λL wird dem-
nach auf jeden Fall wieder die Bewegung in eine vielversprechende Abstiegsrichtung erwartet,
wohingegen das Newtonverfahren schlechter iterieren würde.

War der Schritt mäßig gut, so ist die Wahl von λL zweckmäßig gewesen und wird so lange
beibehalten, bis sich der FQ ändert.

Der Schritt xk+1 = xk + dLMk wird nur verwendet, falls ρ > 0 ist. In diesem Fall hat sich der
Funktionswert f(x) verringert.

3.6.1 Levenberg-Marquardt als Trust-Region-Verfahren

Ein Problem besteht darin, dass das quadratische Ersatzmodell (Gl. 3.15) im Allgemeinen
nur innerhalb einer begrenzten Umgebung der aktuellen Entwicklungsstelle xk eine zuverläs-
sige Approximation darstellt. Ohne eine geeignete Begrenzung der Schrittweite würde das
Ersatzmodell in Bereichen Anwendung finden, wo es keine gute Approximation darstellt.
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Ein Trust-Region-Verfahren löst dieses Problem, indem ein Vertrauensbereich (Trust Re-
gion, TR) eingeführt wird, innerhalb dessen dem Ersatzmodell vertraut wird. Dieses Gebiet
wird stellvertretend mit einem Parameter Δ, dem Trust-Region-Radius, charakterisiert. Als
Nebenbedingung ergibt sich demnach stets ‖dk‖ ≤ Δ. Grundsätzlich wird auch bei dieser Va-
riante ein Fortschrittsquotient FQ (wie in Gl. 3.25) gebildet, wobei jener jedoch nur Einfluss
auf Δ hat. Genauer:

ρ ≥ ηhi guter Fortschritt Δk+1 = Δk · σ2 xk+1 = xk + dk
ηlo ≤ ρ < ηhi mäßiger Fortschritt Δk+1 = Δk xk+1 = xk + dk

ρ < ηlo schlechter Fortschritt Δk+1 = Δk · σ1 xk+1 = xk

.

Im Gegensatz zum Levenberg-Marquardt-Verfahren wird hier direkt der Trust-Region-Ra-
dius vergrößert, falls ein guter Fortschritt erzielt wurde bzw. im anderen Fall verkleinert, um
in einem kleineren Gebiet eine bessere Lösung finden zu können.

Folgende Aussagen sind äquivalent:
1. Der Vektor d∗ ist eine globale Lösung von:

min
d

mk(d) = f(xk) + dTk∇f(xk) +
1

2
dTk J

T
k Jkdk ,

mit d ∈ R
n und unter ‖d‖ ≤ Δ .

2. Es existiert ein eindeutig bestimmtes λL ≥ 0, sodass gilt:

(JT
k Jk + λL · I)d∗ = −∇f(xk) ,

λL ≥ 0 , ‖d∗‖ ≤ Δ , λL (‖d∗‖ −Δ) = 0 .

Somit ist der Levenberg-Marquardt-Schritt dLMk für ein gegebenes λL die Lösung eines Trust-
Region-Problems für einen implizit gewählten Trust-Region-Radius Δk =

∥∥dLMk ∥∥. Dies kann
der Komplementaritätsbeziehung aus Teil 2 entnommen werden. Falls λL > 0 ist, führt
der Schritt immer zum Rand der TR, bzw. wird der Radius durch den Schritt definiert. Ist
λL = 0, so befindet man sich innerhalb der TR, was einem gesichertem Gauss-Newton-Schritt
entspricht.

Neben dem im Levenberg-Marquardt-Algorithmus implizit enthaltenen Trust-Region-Ver-
fahren kann wahlweise auch ein weiterer externer Trust-Region-Radius gewählt werden, wel-
cher den Levenberg-Marquardt-Korrekturschritt dLMk zusätzlich begrenzen kann. Insbeson-
dere bei schlechten Startwerten kann die Nutzung dieser Möglichkeit sinnvoll sein.

Die Ausführungen in diesem Abschnitt stellen einen Vorgriff auf die allgemeine Darstellung
der Trust-Region-Verfahren in Kap. 4.1 dar, auf welches bezüglich weiterer Informationen
zu dieser Thematik verwiesen wird.

3.6.2 Modifikation nach Fletcher

Fletcher sah in (Fletcher, 1971) zwei Nachteile des Levenberg-Marquardt-Verfahrens:

• Die Erhöhung bzw. Verringerung des Parameters λL durch ein konstantes σ1 und σ2

ist unflexibel. Sinnvoller erscheint es, den Wachstums- bzw. Dämpfungsfaktor ent-
sprechend der aktuellen Situation zu bestimmen.
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• Bei der Reduktion von λL erfolgt die Näherung an 0 lediglich asymptotisch. Für einen
echten Gauss-Newton-Schritt ist jedoch λL = 0 nötig. Eine Alternative bestünde dem-
nach in einer Schranke für λL, welche den Verlauf abschneidet und sofort auf 0 setzt.

Bereits Marquardt hatte die Idee, die Erhöhung bzw. Verringerung von λL durch einen
allgemeinen Parameter νF zu steuern. Um die Erhöhung zu optimieren, wird νF mittels
folgender Gleichung berechnet:

νF = 2 +
f(xk)− f(xk + d)

dT∇f(xk)
. (3.26)

Dabei unterliegt νF der Boxbeschränkung 2 ≤ νF ≤ 10. Bei schlechtem Fortschritt (ρ < ηlo)
entspricht die Modifikation λL

k+1 = λL
k ·νF für große Werte von λL somit einer Reduzierung des

Schrittes d auf
1

νF
d. Grund dafür ist der Übergang zu einem gestauchten Gradientenschritt

entsprechend Gl. 3.24.
Falls der Fortschrittsquotient ρ größer als Null ist, gilt f(xk) > f(xk+1). In diesem Fall ist νF

kleiner als 2 und wird aufgrund der Boxbeschränkung auf νF = 2 gesetzt. Demnach wird ein
Schritt, welcher Verbesserung bringt, nicht übermäßig stark geändert. Gilt hingegen ρ < 0

und somit f(xk) < f(xk+1), ergibt sich νF > 2. Je schlechter der Schritt ist, desto stärker
wird λL durch νF erhöht.
In diesem Zusammenhang kann auch das Stagnieren der Identifikation verhindert werden,
falls ρ die Grenze ηlo unterschreitet. Die Erhöhung von λL verursacht in einem solchen Fall
für einen zu klein gewählten konstanten Faktor unnötige Iterationen. Andererseits kann ein
zu groß gewählter Faktor dazu führen, dass der Schritt nicht angenommen wird. Durch die
Nutzung von νF kann dies verhindert werden, da sowohl die stetige als auch die schleichende
Verschlechterung durch den Parameter aufgenommen und somit λL zielführend erhöht wird.
Bei gutem Fortschritt (ρ > ηhi) fällt nach Fletcher (1971) auf, dass sich bei der Nutzung

von Faktoren der Form
1

νF
für sinkende λL die Schrittlänge kaum verändert. Um die daraus

folgende geringere Konvergenzrate zu vermeiden, führt er den Cut-Off-Parameter λL
C ein:

λL
k+1 =

⎧⎪⎪⎨⎪⎪⎩
λL
k

2
, falls

λL
k

2
≥ λL

C

0 , falls
λL
k

2
< λL

C .
(3.27)

Für kleine Werte von λL wird demnach sofort ein reiner Gauss-Newton-Schritt genutzt,
wodurch quadratische Konvergenz sichergestellt wird.
Es stellt sich jedoch die Frage, wie λL

C gewählt werden muss. Ein zu kleines λL
C verhindert

den gewünschten Effekt, wohingegen bei einem zu großen Wert der Gauss-Newton-Schritt
potentiell zu früh gegangen wird und dadurch Oszillationen entstehen. Zur Lösung dessen
wird bei einer Erhöhung von λL der Cut-Off-Parameter λL

C automatisch neu berechnet und
anschließend λL auf diesen Wert gesetzt. Für den auf diese Weise mittels λL

C berechneten
Schritt dF soll folgende Gleichung gelten:

∥∥dF∥∥ =
1

2

∥∥dGN
∥∥ . (3.28)
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Unter der Annahme, dass ein reiner Gauss-Newton-Schritt nur für λL = 0 durchgeführt
wird, soll demnach bei der Erhöhung von 0 auf λL

C die Schrittlänge der Hälfte eines solchen
Gauss-Newton-Schrittes entsprechen. Um dies (näherungsweise) zu erfüllen, wird der Cut-
Off-Parameter λL

C wie folgt definiert:

λL
C =

1∥∥(JTJ)−1
∥∥ . (3.29)

Während der Identifikation ist die Aktualisierung von λL
C immer dann sinnvoll, wenn λL

von 0 aus erhöht wird. Als Startwerte werden λL
0 = 0 sowie λL

C = 0.75 empfohlen. Somit
ist das artifizielle Setzen von λL nicht mehr notwendig, da sich dieses auf natürliche Weise
entsprechend der vorgenannten Algorithmen verändert. Die Funktionsweise des Levenberg-
Marquardt-Fletcher-Algorithmus ist symbolisch in Bild 3.1 dargestellt.

Anfangswerte:

0 < ηlo < ηhi < 1
λL
0 = 0 , λL

C = 0.75
k0 = 0

Startparameter: x0

f(xk),∇f(xk) und
H(xk)bestimmen,
dk aus Gl. 3.23

ρ auswerten

λL
k+1 = λL

kλL
k+1 =

⎧⎨⎩
λL
k

2
, falls

λL
k

2
≥ λL

C

0 , sonst
νF berechnen

Falls λL = 0: λL
C =

1∥∥∥(JTJ)−1
∥∥∥ ,

λL = λL
C , νF = νF/2

λL
k+1 = νF · λL

k

xk+1 =

{
xk + dk, falls ρ > 0

xk, sonst
,

danach k = k + 1

Abbruchkriterien
hinreichend erfüllt?

Identifizierte Parameter: x∗

nein

ρ ≥ ηhi ρ < ηlo

ηlo ≤ ρ < ηhi

ja

Bild 3.1: Levenberg-Marquardt-Fletcher-Algorithmus.
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3.7 Berücksichtigung von Restriktionen

Das in Kap. 3.6 beschriebene Verfahren zur Lösung von FQM-Aufgaben gehört zur Klasse
der unrestringierten Optimierung, bei welcher Lösungen im gesamten Raum R

n zulässig
sind. Bei der Identifikation von Materialparametern unterliegen deren Werte jedoch häufig
Restriktionen. So führen Parameter, welche physikalisch unzulässig sind, oft zum Abbruch
der FEM-Simulation. Gleiches kann auch für übermäßig große oder besonders kleine Werte
zutreffen. Um dies zu vermeiden, ist für die Parameter statt R

n nur noch eine Teilmenge
U ⊂ R

n als Lösung zugelassen. Es handelt sich somit um ein restringiertes Minimierungspro-
blem.

Die entsprechenden Randbedingungen werden in zwei Kategorien unterteilt:

• Ungleichungsnebenbedingung: Es liegt eine Funktion g : Rn → R mit der Bedingung
g(x) ≤ 0 vor.

• Gleichungsnebenbedingung: Es liegt eine Funktion h : Rn → R mit der Bedingung
h(x) = 0 vor.

Bei der Bestimmung von Materialparametern sind vor allem Ungleichungsnebenbedingungen
relevant. Werden für einen solchen Parameter sowohl eine Ober- als auch Untergrenze defi-
niert, wird dies als Boxbeschränkung bezeichnet und in der Form ai ≤ xi ≤ bi, ai, bi ∈ R,
i ∈ {1, ..., m} mit m als Anzahl der Parameter ausgedrückt. Die Umwandlung in Unglei-
chungsnebenbedingungen liefert

ai ≤ xi ≤ bi ⇐⇒
[
ai − xi

xi − bi

]
≤ 0 . (3.30)

Die Lösung restringierter Probleme ist mit dem dargestellten Levenberg-Marquardt-Fletcher-
Algorithmus nicht möglich. Es existiert jedoch eine Reihe anderer Verfahren zur Bearbeitung
dieser Aufgaben, wobei die Klasse der SQP-Verfahren (Sequential Quadratic Programming)
den derzeit erfolgreichsten Ansatz darstellt. Da die Implementierung des SQP-Ansatzes in
SPC-Opt zwar weitestgehend abgeschlossen ist, jedoch noch nicht im Rahmen konkreter
Aufgabenstellungen genutzt wurde, wird an dieser Stelle auf die mathematische Herleitung
verzichtet. Einen Überblick bezüglich der Lösungsverfahren restringierter Optimierungspro-
bleme und speziell der verschiedenen SQP-Verfahren stellen z.B. Geiger und Kanzow (2002)
vor.

Algorithmen wie SQP, welche speziell für restringierte Probleme entwickelt wurden, sind im
Gegensatz zu unrestringierten Minimierungsverfahren deutlich aufwändiger. Im Folgenden
werden verschiedene in SPC-Opt verfügbare Vorgehensweisen dargestellt, um mittels des
Levenberg-Marquardt-Fletcher-Verfahrens auch Optimierungen der Form

min
x∈X

f(x) (3.31)

lösen zu können. Der Parameterraum X ist hierbei als Raum mit zweiseitigen Boxbeschrän-
kungen entsprechend Gl. 3.30 gegeben und die möglichen Lösungen sollen für alle Opti-
mierungsschritte innerhalb des zulässigen Bereiches liegen.
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Spiegelung

Ausgangspunkt der Überlegung ist, dass in einem Optimierungsschritt k die neuen Lösungen
xk+1 = xk + dk vorliegen, jedoch mehrere Parameter außerhalb von X liegen können. Ohne
entsprechende Überprüfung verbleiben diese außerhalb des zulässigen Raums (Bild 3.2). Für
die Lösungen wird deshalb eine Korrektur der Form

xk+1 =

⎧⎨⎩
a+ (a− xk − dk), falls xk + dk < a

xk + dk, falls xk + dk ∈ [a, b]

b− (xk + dk − b), falls xk + dk > b

(3.32)

vorgenommen. Es erfolgt demnach für jeden Parameter eine Spiegelung desjenigen Schritt-
anteils an der Grenze a bzw. b, welcher außerhalb des durch a und b begrenzten Gebietes
liegt (Bild 3.3).

Bild 3.2: Optimierungsschritt ohne
Grenzbetrachtung.

Bild 3.3: Spiegelung an Grenze a der
Boxbeschränkung.

Bei dieser Vorgehensweise ist jedoch schlecht abzuschätzen, inwieweit der gespiegelte Punkt
eine bessere Lösung als der Ausgangspunkt darstellt bzw. ob diese Wahl günstig bezüglich
der Minimierung der Optimierungsschritte ist. Im Extremfall kann die Spiegelung an einer
Grenze bei besonders großer Schrittweite sogar dazu führen, dass die gegenüber liegende
Grenze verletzt wird.

Projektion

Sollte eine Lösung xk+1 außerhalb von X liegen, so wird diese im Gegensatz zur Spiegelung bei
dieser Vorgehensweise auf die verletzte Grenze projiziert. Die Korrektur des Parametersatzes
erfolgt somit entsprechend

xk+1 =

⎧⎨⎩
a, falls xk + dk < a

xk + dk, falls xk + dk ∈ [a, b]

b, falls xk + dk > b .
(3.33)
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Bild 3.4: Projektion auf Grenze a der Boxbeschränkung.

Da bei dieser in Bild 3.4 dargestellten Variante die neue Lösung auf der Grenze liegt, der
Schrittvektor jedoch nach wie vor anhand des ursprünglichen Systems H(xk) dk = −∇f(xk)

ermittelt wird, tritt potentiell das in Bild 3.5 verdeutlichte Verhalten auf. Angenommen wird
hierbei, dass sich der optimale Parametersatz x∗ außerhalb von X befindet. Die dargestellten
Funktionswerte entlang der Grenze verhalten sich linear. Durch die einzelnen Projektionen
werden die Schrittvektoren derart verändert, dass sich die Lösungen entlang der Grenze a

bewegen. Dies wiederholt sich und die Lösung konvergiert zur Projektion von x∗ auf a. Da die
tatsächlich beste Lösung auf der Grenze jedoch durch die vollständige Zielfunktion bestimmt
wird, muss diese keineswegs mit der gefundenen Lösung xend übereinstimmen. Dies führt auf
die Idee der Optimierung in Unterräumen.

Bild 3.5: Verlauf der Optimierungsschritte bei der Projektionsmethode entlang
der Grenze a, wobei sich der optimale Parametersatz x∗ außerhalb
von X befindet.

Unterraummethode

Der grundlegende Unterschied gegenüber der Vorgehensweise, neue Schrittvektoren stets un-
ter Berücksichtigung der kompletten Zielfunktion zu generieren, ist die Reduzierung des
Parameterraum X bei Erreichen einer Grenze. Hierfür wird die Boxbeschränkung eines Pa-
rameters i genau dann als “aktiv” bezeichnet, wenn für die Lösung xk die Gleichung xi

k = ai

bzw. xi
k = bi gilt. Andernfalls wird sie als “inaktiv” angenommen. Diese Einordnung ent-

scheidet, ob eine Lösung im aktuellen Optimierungsschritt modifiziert wird oder unverändert
bleibt. Bei aktiver Boxbeschränkung erfolgt die Optimierung für diesen Parameter nicht im
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m-dimensionalen Lösungsraum, sondern nur noch innerhalb eines (m−1)-dimensionalen Un-
terraumes von X . Dementsprechend werden die Hesse-Matrix sowie die Gradienten mittels

Hred = AHA ∇f red = A∇f (3.34)

transformiert, wobei A eine Diagonalmatrix der Form

Ai,i =

{
1, falls Boxbeschränkung i inaktiv
0, falls Boxbeschränkung i aktiv

(3.35)

darstellt. Somit werden diejenigen Zeilen bzw. Spalten von H bzw. ∇f gestrichen, wel-
che zu aktiven Boxbeschränkungen gehören. Wird nun das reduzierte Gleichungssystem
Hreddred = −∇f red gelöst, so verläuft dred nur innerhalb des Unterraumes und verletzt die
Grenze nicht. Dies wird für alle Lösungen mit aktiven Boxbeschränkungen durchgeführt und
so oft wiederholt, bis der resultierende Schrittvektor bei Lösung des Systems H d = −∇f

in X verläuft. Demnach können einzelne Richtungen unabhängig voneinander aktiv bzw.
inaktiv sein.

Bild 3.6: Projektion auf eine Grenze a und Bestimmung von dredk+1 im darauf
folgenden Schritt mittels Unterraummethode.

Eine gesonderte Betrachtung erfolgt für Punkte, bei denen alle Boxbeschränkungen aktiv
sind (im Weiteren als Ecke bezeichnet). Durch die Reduzierung mittels A würde H in eine
Nullmatrix übergehen. Da eine solche Ecke nicht zwangsläufig den Abbruch der Optimie-
rung bedeutet, muss es möglich sein, diese wieder verlassen zu können. Dies wird durch den
Vergleich der Anteile des Gradienten in der Ecke gewährleistet, wobei der Anteil mit dem
größten Abstieg in Richtung von X gewählt und ein entsprechender Schrittvektor künstlich
generiert wird. Ist in einer Ecke keine solche Abstiegsrichtung vorhanden, wird die Optimie-
rung abgebrochen, da keine Verbesserung auffindbar ist.

Bei der Unterraummethode wird demnach zuerst immer geprüft, ob ein berechneter Schritt
die Boxbeschränkung verletzt. Ist dies der Fall und befindet sich der Ausgangspunkt nicht
auf der betrachteten Grenze, wird die neue Lösung auf diese projiziert. Liegt der Ausgangs-
punkt hingegen bereits auf dieser Grenze, so wird bei Verletzung der Boxbeschränkung der
zulässige Raum X entsprechend reduziert und das reduzierte System Hreddred = −∇f red im
Unterraum optimiert.
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3.8 Abbruchbedingungen

Einen wichtigen Aspekt der numerischen Optimierung stellt die Wahl der Abbruchbedin-
gungen dar. Diese sind notwendig, da die perfekte Übereinstimmung zwischen Modell und
Experiment praktisch nicht möglich ist, die Anzahl der Iterationen jedoch sinnvoll begrenzt
werden muss. Ist bereits ein einzelner Optimierungsschritt sehr zeitaufwändig, wie z.B. bei
der Identifikation anhand bauteilnaher Probekörper (Kap. 6.7), hat die geschickte Definition
von Abbruchkriterien einen besonders hohen Stellenwert.
Grundsätzlich ist der Abbruch einer Optimierung immer dann sinnvoll, wenn die Abweichung
zwischen aktueller und idealer Lösung hinreichend klein ist. Ausgehend vom theoretischen
Minimum ∇f(x∗) = 0 wird deshalb gewöhnlich eine Schranke εA definiert, mit welcher die
Abbruchbedingung

‖∇f(xk)‖ ≤ εA (3.36)

gebildet wird. Ergänzend werden in Gill et al. (1981) weitere Abbruchkriterien vorgeschla-
gen, welche sich auch auf die Änderung der Funktionswerte ‖f (xk−1)− f (xk) ‖ bzw. der
Lösungen ‖xk−1 − xk‖ beziehen und dabei sowohl absolute als auch relative Änderungen
beinhalten.
Bei der Wahl von εA ist zu beachten, dass aufgrund der begrenzten Genauigkeit unterhalb
eines kritischen Wertes die Ergebnisse unsicher bzw. fehlerbehaftet sind. Ergänzend zu den
Abbruchbedingungen ist es sinnvoll, die Anzahl der Optimierungsschritte durch eine Ober-
grenze zu beschränken.
Da zu Beginn der Optimierung die Wahl des Abbruchkriteriums und der Abbruchgrenze
schwierig ist, können in SPC-Opt mehrere gewichtete Abbruchbedingungen zu einem Krite-
rium E

A
zusammengefasst werden. Durch die Einführung einer Wichtung können Abbruch-

bedingungen, welche für den Anwender eine höhere Priorität besitzen, auch in höherem Maße
berücksichtigt werden. Für eine solche Teilbedingung EA

j sind folgende Größen relevant:

aj(x) Bildungsvorschrift der Abbruchbedingung
εAj Abbruchschranke
wj Wichtungsfaktor .

Der Anteil einer Teilbedingung bezüglich E
A

ergibt sich für eine Lösung x somit zu

EA
j (x) = wjχj (x) (3.37)

mit der charakteristischen Funktion

χj(x) =

{
1, falls aj(x) ≤ εAj
0, sonst

. (3.38)

Die Summe aller Abbruchbedingungen für eine Lösung x besitzt demzufolge die Form

E
A
(x) =

nE∑
j=1

EA
j (x) =

nE∑
j=1

wjχj(x) , (3.39)

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


36 3 Parameteridentifikation

mit nE als Anzahl der Abbruchbedingungen. Überschreitet diese Summe eine definierte Gren-
ze εA, so wird die Optimierung abgebrochen. Dabei sollte εA zwischen den Werten 0 (immer
erfüllt) und

∑nE

j=1wj (alle Bedingungen müssen erfüllt sein) verlaufen. Es ist demnach nicht
notwendig, dass die Schranken sämtlicher Teilbedingungen unterschritten werden müssen.

Folgende Abbruchbedingungen sind in SPC-Opt implementiert und können für eine Lösung
xk ausgewertet werden:

Schrittweite

Gilt als erfüllt, falls die Differenz der aktuellen und der letzten akzeptierten Lösung xA

klein genug ist.
aj(xk) = ‖xk − xA‖2 (3.40)

Relative Schrittweite

Gilt als erfüllt, falls die maximale relative Schrittweite aller Koordinaten i zwischen
der aktuellen und der letzten akzeptierten Lösung klein genug ist.

hi(xk) =
|xi

k − xi
A
|

xi
A

, ∀i ∈ {1, ..., n}
aj(xk) = max

i∈{1,...,n}
hi(xk)

(3.41)

Funktionswert

Gilt als erfüllt, falls der Funktionswert klein genug ist (bei FQM-Problemen idealer
Weise gleich 0).

aj(xk) = f(xk) (3.42)

Differenz der Funktionswerte

Gilt als erfüllt, falls die Änderung des Funktionswertes klein genug ist.

aj(xk) = |f(xk−1)− f(xk)| (3.43)

Gradient

Gilt als erfüllt, falls die Länge des Gradienten klein genug ist.

aj(xk) = ‖∇f(xk)‖2 (3.44)

[NA]-Schrittweite

Gilt als erfüllt, falls der Schrittvektor zwischen zwei aufeinander folgenden nicht ak-
zeptierten Punkten klein genug ist.

aj(xk) = ‖xk−1 − xk‖2 , falls xk und xk−1 nicht akzeptiert (3.45)

Die Erfüllung der [NA]-Schrittweiten-Bedingung ist ein Indiz dafür, dass kein neuer
akzeptabler Parametersatz gefunden wird. Es ist deshalb sinnvoll, die Wichtung dieser
Bedingung bei Bildung von E

A
(Gl. 3.39) größer als die der übrigen Abbruchbedin-

gungen zu wählen.
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Zwar ist die Implementierung weiterer Abbruchkriterien in SPC-Opt problemlos möglich,
jedoch war dies bei der Bearbeitung der bisherigen Aufgaben nicht notwendig.

3.9 Parameterschätzung

Unabhängig vom gewählten Verfahren sind bei der Anpassung eines Modells an entspre-
chende Versuche die zugehörigen Messungen naturgemäß mit Messfehlern verbunden. Somit
stellt sich die Frage nach der Vertrauenswürdigkeit der identifizierten Parameter, auch als
Konfidenz bezüglich der Messgenauigkeit bezeichnet. Dies äußert sich bei der Lösung von
FQM-Problemen wie der Identifikation von Materialparametern dadurch, dass in der Nähe
des Minimums der Zielfunktion für verschiedene Parameterkonstellationen nur gering von-
einander abweichende Funktionswerte auftreten.
Insbesondere bei der Identifikation von Materialparametern kann beobachtet werden, dass
teilweise eine Korrelation zwischen diesen auftritt. Dies ist der Fall, wenn verschiedene Pa-
rameter in der Lage sind, in gleicher Weise physikalische Effekte der Versuche darzustellen.
Bezogen auf die Zielfunktion manifestieren sich diese Abhängigkeiten als lange, schmale Tä-
ler.
Praktische Anwendungen der Parameterschätzung finden sich u.a. in den Arbeiten von
Thielecke (1997), Benedix (2000) und Lindner (2010).
Zur Bewertung des Einflusses stochastischer Effekte bei Messungen werden gewöhnlich
Schätzfunktionen genutzt (Sorenson, 1980; Bos, 2007). Bezogen auf die Parameteridenti-
fikation besteht im Allgemeinen die Grundannahme darin, dass das Modell M korrekt ist,
die fehlerbehafteten gemessenen Größen y und die von p abhängigen Modellgrößen y nur ge-
ringe Unterschiede aufweisen und die Parameter p fehlerfrei sind - das Modell demnach frei
von stochastischen Einflüssen ist. Zur Parameterschätzung werden vor allem die Maximum-
Likehood-Methode sowie die Methode der kleinsten Quadrate genutzt (Beck und Arnold,
1977). Da letztere keine zusätzlichen Informationen bezüglich der Messfehler benötigt und
dies für die meisten Probleme der Parameteridentifikation notwendig ist, erfolgen die weiteren
Betrachtungen auf Basis dieser Methode. Weiterhin wird angenommen, dass die Messfehler
voneinander unabhängig sowie nicht systematisch sind.
Auf dieser Basis wird zunächst die Varianz σ2 bestimmt, welche näherungsweise der Stich-
probenvarianz s2 entspricht (Beck und Arnold, 1977):

s2 =

(
rT (x∗) r(x∗)

)
m− np

. (3.46)

Hierbei stellt r(x∗) den Residuenvektor im Lösungspunkt, m die Anzahl der Messwerte und
np die Anzahl der freien Parameter dar. Auf Basis von Gl. 3.46 lässt sich mit Hilfe der
Jacobimatrix für die Lösung des linearisierten Modells an der Stelle x∗ die Kovarianzmatrix
P berechnen:

P = cov(x∗) ≈ σ2
(
J(x∗)T J(x∗)

)−1
. (3.47)

Die Diagonalelemente von P stellen demnach Schätzwerte für die Varianzen der entspre-
chenden Parameter dar. Werden mehrere Versuche mit unterschiedlichen Vergleichsgrößen

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183
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oder Messfehlern durchgeführt (vergl. Kap. 3.2), sind die Fehler von σ2 potentiell nicht mehr
konstant bzw. können untereinander korrelieren. In diesem Fall müssen zunächst die ver-
schiedenen Vergleichswerte auf dimensionslose Größen normiert und eine darauf bezogene
Matrix Ω in den Gl. 3.46 und 3.47 berücksichtigt werden. Diese ergeben sich somit zu:

s2 =

(
rT (x∗) Ω−1 r(x∗)

)
m− np

(3.48)

bzw.
P = cov(x∗) ≈ σ2

(
J(x∗)T Ω−1 J(x∗)

)−1
. (3.49)

Es lässt sich nunmehr (bei nichtlinearen Modellen näherungsweise) das Konfidenzintervall
berechnen, dessen Grenzen den Vertrauensbereich im Parameterraum einhüllen:

konf (xi) =
[
x∗i −

√
Pii; x

∗
i +

√
Pii

]
, ∀i ∈ {1, ..., np} . (3.50)

Grundsätzlich wird ein möglichst kleines Konfidenzintervall angestrebt. Aus diesem Grund
sollten die Messungen sorgfältig durchgeführt werden, um die entsprechenden stochastischen
Messfehler möglichst klein zu halten. Zudem bietet sich die mehrfache Wiederholung der
Messungen mit anschließender Mittlung an.

Weiterhin kann die Korrelationsmatrix K entsprechend

Kij =
Pij√
Pii Pjj

(3.51)

bestimmt werden, wobei Kii = 1 gilt. Die Nebendiagonalelemente der Korrelationsmatrix
beschreiben die Korrelation der Parameter untereinander und werden durch das Intervall
[−1; 1] begrenzt. Werte nahe 1 bzw. −1 weisen hierbei auf eine hohe Korrelation der ent-
sprechenden Parameter hin. Bei der Materialparameteridentifikation kann dies z.B. an der
mathematischen Form des Stoffgesetzes, wie bei der Identifikation der Ogden-Parameter in
Kap. 6.6.4 dargestellt, liegen. Eine weitere Ursache ist der Mangel an Informationen bezüg-
lich einzelner Parameter, welcher wiederum häufig die Folge von zu wenigen oder ungeschickt
gewählten Versuchen ist. Es ist deshalb sinnvoll, bereits bei der Auswahl der für die Iden-
tifikation verwendeten Experimente deren Aussagekraft bezüglich der Materialparameter zu
berücksichtigen. Ebenso gilt dies in Fällen, wenn zur Abbildung vorhandener Messdaten
aus Versuchen ein entsprechendes Modell, z.B. ein Stoffgesetz, ausgewählt oder entwickelt
werden soll.

Die mathematische Betrachtung des Einflusses von Parametern auf das Modell wurde bislang
noch nicht in SPC-Opt implementiert. Im Hinblick auf Problemstellungen der Parameter-
identifikation und Formoptimierung, welche mit dem Programmpaket bearbeitet wurden,
erscheint die entsprechende Erweiterung des Funktionsumfangs aufgrund der nachfolgenden
Ausführungen notwendig.

Eine exakte Definition der Sensitivität ist aufgrund des qualitativen Charakters schwierig.
Im Allgemeinen dient sie als Maß zur Bewertung des Einflusses der Parameter xi auf die
Ausgabegrößen yj. Diese werden als sensitiv gegenüber einem Parameter bezeichnet, wenn
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bereits eine kleine Änderung von xi zu einer großen Änderung von yj führt. Dabei wird
angenommen, dass neben den Parametern keine weiteren Einflüsse auf die Ausgabegrößen
wirken - das System demnach deterministisch ist. Äußere stochastisch verteilte Einflussgrö-
ßen dürfen in diesem Kontext existieren, da der Erwartungswert bei einer genügend hohen
Anzahl Wiederholungen unverändert bleibt. Die Kenntnis bezüglich des Einflusses von Para-
metern ist vor allem deshalb interessant, weil dadurch diejenigen mit einem kleinen Einfluss
auf den Zielfunktionswert bei der Optimierung vernachlässigt werden können und somit die
Dimension des Parameterraumes verringert werden kann. Beispielhaft seien drei konkrete
Anwendungsfälle genannt:

Parameteridentifikation

Bei der in Kap. 6 dargestellten Stoffgesetzanpassung werden unter anderem die acht
Materialparameter des von Ihlemann (2003) entwickelten Morph-Stoffgesetzes iden-
tifiziert. Entsprechend der Ausführungen in Kap. 7.7 seiner Arbeit kann die Zahl der
Parameter durch Vernachlässigung des Exponentialteils der Hüllspannungen auf fünf
gesenkt werden. Dies ist genau dann sinnvoll, wenn in den zur Anpassung genutzten
Experimenten der exponentielle Charakter des Elastomers aufgrund zu geringer Defor-
mationen kaum sichtbar ist oder grundsätzlich nur eine schwache Ausprägung besitzt.
Durch eine entsprechende Sensitivitätsanalyse könnte dies quantifiziert werden und als
Entscheidungsgrundlage bezüglich der gewählten Form des Stoffgesetzes dienen.

Entwicklung eines Reibgesetzes

In der Arbeit von Nostitz (2014) wird mit Hilfe eines 3-Skalen-Modells ein in FEM-
Programmen nutzbares Reibgesetz erarbeitet, dessen Basis die infolge zwischenatoma-
rer Kräfte auftretende Adhäsion zweier Körper darstellt. Dabei ist es notwendig, die
Wirkung und Einflüsse der Adhäsionskennwerte und weiterer charakteristischer Größen
der verschiedenen Skalen (z.B. die Oberflächenrauigkeit) zu untersuchen und bewer-
ten. Auf diese Weise ist es möglich, ein für die jeweilige Skala geeignetes Reibmodell
zu entwickeln. Eine Sensitivitätsanalyse ist deshalb unerlässlich und Teil der Arbeit.

Formoptimeriung

Beim Strangfließpressen, einem Massivumformverfahren, beeinflusst die Kontur der
Werkzeugschulter maßgeblich die benötigte Umformkraft. Ziel ist es, die Kontur derart
zu gestalten, dass die Umformkraft minimal wird. Dies erfolgt in (Schellenberg et al.,
2010) durch Lösung einer entsprechenden Optimierungsaufgabe, wobei die rotations-
symmetrische Werkzeugkontur mittels NURBS (Non-Uniform Rational B-Splines) ab-
gebildet wird und die Koordinaten der zugehörigen De-Boor-Punkte in radialer Rich-
tung die zu optimierenden Parameter darstellen. Die Wahl der Anzahl dieser Kontroll-
punkte sowie die anfängliche Positionierung ist dabei willkürlich und basiert auf Er-
fahrungswerten. Zwar kann das Optimierungsproblem zufriedenstellend gelöst werden,
jedoch würde eine Sensitivitätsanalyse zeigen, ob vernachlässigbare De-Boor-Punkte
existieren oder die Positionierung in Strangrichtung ungünstig ist.

Da in der Praxis keine Kenntnis der Zielfunktionslandschaft vorliegt, der Berechnungsauf-
wand einer großen Menge Funktionswerte zur Approximation jedoch meist zu groß ist, kann
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keine exakte Sensitivitätsanalyse durchgeführt werden. Einen Ausweg stellen vereinfachte
Verfahren dar, bei welchen die Funktionslandschaft nur grob approximiert wird bzw. sta-
tistische Methoden zur Auswertung genutzt werden. Da eine Vielzahl solcher Verfahren für
unterschiedliche Anwendungsbereiche existiert, sei stellvertretend auf die Arbeit von Fiacco
(1983) sowie den Überblick in Saltelli et al. (2008) verwiesen.

3.10 Formidentifikation

Ziel einer Materialparameteridentifikation ist die Ermittlung desjenigen Parametersatzes, für
welchen die einbezogenen Experimente am besten mit den zugehörigen Simulationen über-
einstimmen. Die Formidentifikation grenzt sich insoweit davon ab, dass geometrische Kenn-
größen gesucht werden, für welche die Abweichung zwischen Experiment und Simulation
minimal wird. In beiden Fällen erfolgt die Formulierung einer Zielfunktion, welche auf einer
Fehlerquadratsumme basiert und deren Minimum gesucht wird. Da die Parameter im Opti-
mierungsverfahren abstrakte Größen sind, gibt es aus mathematischer Sicht keine formalen
Unterschiede zwischen der Identifikation von Materialparametern und Formparametern.

Liegt ein FEM-Netz in parametrisierter Form vor, können die Steuervariablen direkt für die
Identifikation genutzt werden. Der Arbeitsaufwand für den Anwender ist dadurch sehr gering,
was z.B. bei der Festlegung des Probekörper-Designs in Kap. 6.7.1 der Fall ist. Andernfalls
erfordert die Formidentifikation bezüglich der Implementierung in SPC-Opt hingegen eine
deutliche Erweiterung der Funktionalität. Dies bezieht sich vor allem auf die Beschreibung
der geometrischen Konturen des Modells sowie die automatische Anpassung des FEM-Netzes
bei Änderung der Formparameter (Kap. 2.5). Zur Veranschaulichung der entsprechenden
Vorgehensweise bei einer Formidentifikation wird diese anhand des nachfolgenden Beispiels
eines gestauchten Zylinders dargelegt.

Beispiel Stauchversuch

Bei der Bestimmung von Fließkurven für große Verformungen wird häufig der Stauchversuch
eingesetzt. Infolge der immer vorhandenen Reibung kommt es im Verlauf des Experiments
zu einer Ausbauchung der Probe. Darauf basierend wird ein akademisches Beispiel zur For-
midentifikation abgeleitet. Das Ziel besteht darin, eine Probenform für den Ausgangszustand
(Bild 3.7) so zu bestimmen, dass der Probekörper bei einer vorgegebenen Stauchung mög-
lichst zylindrisch wird. Für die FEM-Simulation kommt das hauseigene FEM-Programm
SPC-PM2AdNl zum Einsatz. Da in dessen Kontaktalgorithmus kein Reibmodell zur Verfü-
gung steht, mit welchem sich der Wechsel von Haft- zu Gleitreibung modellieren lässt, wird
vollständiges Haften am Stempel angenommen. In der Berechnung wird elastisch-plastisches
Materialverhalten mit isotroper Verfestigung nach Ulbricht und Röhle (1975) verwendet.

In Vorbereitung der Identifikation wird die Randkontur Ω des Probekörpers, deren Kontur
sich durch n auf dem Rand befindliche FE-Knoten ergibt, durch NURBS approximiert. Die
horizontalen Koordinaten der zugehörigen Kontrollpunkte stellen die zu identifizierenden
Designvariablen p dar. Die Zielfunktion Φ wird entsprechend
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Φ(p) =

n∑
i=0

[A(xi(X i, t = tend), Γ)]
2 → min

p
(3.52)

gebildet, wobei A den waagerechten Abstand zwischen der Zielform Γ (im Meridianschnitt
eine senkrechte Gerade) und den Knoten X i auf der Randkontur Ω verkörpert. Durch die
Identifikation sollen die Formparameter derart bestimmt werden, dass bei einer Stauchung
um 10% (zum Zeitpunkt t = tend) die zugehörige Randkontur möglichst genau mit Γ über-
einstimmt. Bei der angegebenen Lösung wurden 4 Designvariablen verwendet.

Bild 3.7: Rotationssymmetrische Stauchprobe (ein Viertel des Meridian-
schnitts), Vernetzung und Randbedingungen, Zustand für x0.

Bild 3.8: Plastische Vergleichsdehnung
εpeq für pend, dargestellt im
Netz des undeformierten Zu-
stands.

Bild 3.9: Radiale Verschiebung ur für
pend, dargestellt im Netz des
deformierten Zustands.
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Die nach 6 Optimierungsschritten ermittelten Designvariablen p = pend führen, wie in
Bild 3.9 dargestellt, nach der Stauchung zu einer annähernd zylindrischen Form der Pro-
be.

Es ist anzumerken, dass die Genauigkeit der Übereinstimmung mit der Zielform maßgeb-
lich durch die Anzahl der Designvariablen beeinflusst wird. Bei Verwendung von wenigen
Formparametern ist die Variationsmöglichkeit der Randkontur Ω beschränkt und damit ei-
ne exakte zylindrische Form nicht erreichbar. Eine Vergrößerung der Zahl wirkt dem zwar
entgegen, jedoch ist dies mit einem deutlich schlechteren Konvergenzverhalten des Optimie-
rers verbunden. Die Ursache dafür ist, dass mit einer steigenden Zahl von Kontrollpunkten
auch stärkere Korrelationen zwischen den entsprechenden Designvariablen auftreten. Zu-
dem sinkt die Wahrscheinlichkeit, dass die gefundene Lösung auch dem globalen Minimum
der Zielfunktion entspricht. In diesem Fall wäre eine Kontrolle durch die Nutzung einer
Startparametervariation entsprechend Kap. 5 zu erwägen.
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4 Formoptimierung

Das Ziel einer Parameteridentifikation besteht darin, auf Basis optimal gewählter Parameter
die Differenz zwischen experimentellen Daten und entsprechenden Simulationsergebnissen
zu minimieren. Dabei ist es unerheblich, ob es sich um Form- oder Materialparameter han-
delt. Eine sehr vorteilhafte Eigenschaft der zugehörigen Zielfunktionen ist, dass sich diese
auf ein Problem der kleinsten Fehlerquadrate (Gl. 3.5) zurückführen lässt. Aufgaben dieser
Art lassen sich, wie in Kap. 3.6 beschrieben, sehr elegant mit dem LMF-Verfahren lösen. Aus
mathematischer Sicht gehört dieses zu den Trust-Region-Verfahren, stellt jedoch einen Son-
derfall dar. Der Grund dafür ist die Tatsache, dass bei der Approximation der Hesse-Matrix
die Terme zweiter Ordnung vernachlässigt werden (vgl. Gl. 3.21), deren Bestimmung sonst
sehr schwierig ist.

Im Gegensatz zur Identifikation von Parametern ist bei einer Formoptimierung nicht die
Anpassung an bereits vorhandene Messdaten oder Konturen von Interesse. Vielmehr soll die
Gestalt eines Bauteils derart verändert werden, dass das definierte Optimierungsziel durch
Lösung des entsprechenden Optimierungsproblems bestmöglich erreicht wird. Ein typisches
Optimierungsziel stellt die Minimierung oder Maximierung charakteristischer Größen wie
Gewicht, Umformarbeit, Bauteilsteifigkeit oder Spannungen im Bauteil dar. Da, analog zur
Formidentifikation, während der Optimierung eine oder mehrere geometrische Merkmale
(meist Randkonturen) gezielt verändert werden, müssen diese in geeigneter Form parametri-
siert werden (Kap. 2.5). Die entsprechenden Formparameter (Designvariablen) stellen die zu
optimierenden Parameter der Zielfunktion dar.

Bei Aufgaben der Formoptimierung ist es nicht möglich, diese auf ein FQM-Problem zurück-
zuführen. Somit kann auch das in Kap. 3.6 beschriebene LMF-Verfahren nicht verwendet
werden. Um Aufgaben dieser Art dennoch lösen zu können, empfiehlt sich die Betrachtung
von Trust-Region-Verfahren im Allgemeinen und in diesem Zusammenhang die Nutzung
effizienter Algorithmen zur Approximation der Hesse-Matrix. Hierbei ist anzumerken, dass
stochastische Verfahren bewusst nicht berücksichtigt werden, da sie eine große Menge Funkti-
onsauswertungen erfordern und deren Berechnung gewöhnlich mit einem hohen numerischen
Aufwand verbunden ist.

4.1 Trust-Region-Verfahren

Als Einstiegspunkt dient die Idee der Einführung einer Modellfunktion mk an der aktuellen
Entwicklungsstelle xk, wie sie bereits in Kap. 3 entsprechend Gl. 3.13 erläutert wurde. Die
Übereinstimmung der tatsächlichen Funktion f mit dem lokalen Ersatzmodell ist verfahrens-
bedingt umso schlechter, je weiter weg von der Entwicklungsstelle sie berechnet wird. Aus
diesem Grund wird das Minimum von mk nur in einem definierten Vertrauensbereich (trust

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


44 4 Formoptimierung

region) um xk gesucht, in welchem die Differenz von f und mk als hinreichend klein angenom-
men wird. In Bild 4.1 ist das Prinzip des Trust-Region-Verfahrens für ein zweidimensionales
Problem dargestellt.

Bild 4.1: Funktionsweise des Trust-Region-Verfahrens.*

Die Schwierigkeit besteht darin, einen geeigneten Vertrauensbereich Δ an der aktuellen Ent-
wicklungsstelle xk festzulegen. Wird dieser zu klein gewählt, ist die Schrittweite in Richtung
des Minimums der Zielfunktion sehr gering und die Zahl der notwendigen Optimierungs-
schritte steigt. Ist der Wert von Δ jedoch zu groß, kann die neue Entwicklungsstelle xk+1

sogar weiter vom Minimum der Zielfunktion x∗ entfernt sein als xk, falls mk die Zielfunktion
in Richtung x∗ nur schlecht abbildet. Aus diesem Grund wird der Vertrauensbereich in
jedem Optimierungsschritt geprüft und bei guter Übereinstimmung von mk(xk) mit f(xk)

erhöht. Bei einem fehlgeschlagenen Schritt hingegen wird Δ verkleinert, was meist auch eine
Änderung der Schrittrichtung zur Folge hat (Nocedal und Wright (1999), Kap. 4). Je kleiner
der Trust-Region-Radius wird, desto mehr tendiert diese von der natürlichen Schrittrichtung
weg zur Gradientenrichtung (vgl. Bild 4.1).

∗Darstellung entstammt (Clausner, 2007)
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Das Anwenden des Trust-Region-Korrekturvektors dTR
k auf Gl. 3.8 und Gl. 3.15 führt zu

mk(d
TR
k ) = f(xk) + (dTR

k )T ∇f(xk) +
1

2
(dTR

k )T ∇2f(xk) d
TR
k (4.1)

unter der Bedingung, dass die Suche nach dem Minimum dieser Funktion auf den Vertrau-
ensbereich beschränkt ist:

min
dTR
k

mk(d
TR
k );

∥∥DdTR
k

∥∥ ≤ Δk . (4.2)

Da Trust-Region-Verfahren, im Gegensatz zu Line-Search-Verfahren, sehr empfindlich auf
unterschiedliche Skalierungen der Komponenten von x reagieren, enthält Gl. 4.2 die Ska-
lierungsmatrix D. Schlecht skalierte Probleme treten beispielsweise auf, wenn die Zielfunktion
Parameter mit unterschiedlichen physikalischen Bedeutungen enthält. Dies führt dazu, dass
die Zielfunktion sehr unterschiedlich sensitiv auf Störungen der verschiedenen Parameter
reagiert. Auch die Topologie der Zielfunktion bildet dies ab, da sie in diesem Fall lange,
schmale Täler enthält, innerhalb derer sich die Lösung das Minimum befindet. Durch eine
geschickte Wahl von D kann das Verfahren deutlich verbessert werden (Rao, 2009). In SPC-

Opt stehen verschiedene Skalierungsverfahren zur Verfügung, von denen sich für viele Pro-
blemstellungen die Skalierung

Dii =
√

‖(∇2f(xk))ii‖ bzw. Dii =
√

‖(Bk)ii‖ (4.3)

bewährt hat. Eine pauschale Aussage, welches Verfahren am besten geeignet ist, lässt dies
jedoch nicht zu.

Die Hauptschwierigkeit besteht jedoch in der Ermittlung von ∇2f(xk), bzw. der dafür einge-
führten approximierten Hesse-Matrix Bk. Drei Möglichkeiten zur Berechnung wurden bereits
vorgestellt und werden nachfolgend bezüglich ihrer Eignung für den Bereich der Formopti-
mierung bewertet:

Gradientenverfahren (Kap. 3.3)

Das Verfahren ist zwar global konvergent, jedoch meist außerordentlich langsam und
sollte deshalb lediglich zur Absicherung besserer Methoden (z.B. im Rahmen des Gauss-
Newton-Verfahrens) eingesetzt werden (Bonnans et al., 1997).

Newton-Verfahren (Kap. 3.4)

Diese Methode kann sehr schnell konvergieren, enthält jedoch die echte Hesse-Matrix.
Da hierfür die analytischen Ableitungen der Zielfunktion nach den Parametern notwen-
dig wären, diese jedoch nicht zur Verfügung stehen, kann die Methode nicht genutzt
werden.

Gauss-Newton-Verfahren (Kap. 3.5)

Mathematisch betrachtet entspricht das Trust-Region Gauss-Newton-Verfahren dem
Levenberg-Marquardt-Verfahren. Wie zu Beginn des Abschnitts erläutert, eignet es
sich nur für die Lösung von FQM-Problemen, welches hier jedoch nicht vorliegt.

Eine weitere Möglichkeit zur Approximation der Hesse-Matrix stellen die ebenfalls auf dem
Newton-Schritt basierenden Quasi-Newton-Verfahren dar.
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4.2 Quasi-Newton-Verfahren

Um eine gute Abstiegsrichtung zu ermitteln, genügt zunächst eine Näherung der Hesse-
Matrix. Ein entsprechender Ansatz ist die Abschätzung auf Basis der Änderung der ers-
ten Ableitungen von der Entwicklungsstelle xk−1 zu xk, welche implizit auch Informationen
über die zweiten Ableitungen enthalten. Eine einfache dementsprechende Bildungsvorschrift
(Miller, 2000) lautet

∇2f(xk) ≈ Bk =
∇f(xk) − ∇f(xk−1)

xk − xk−1
(4.4)

und stellt einen rückwärtigen Differenzenquotienten dar, dessen Störung der Schrittweite
des vergangenen Schrittes entspricht. Da meist jedoch auch die ersten Ableitungen nur in
Form von Differenzenquotienten zur Verfügung stehen, kann die Genauigkeit gering bzw. die
Fehlerfortpflanzung problematisch sein. Liegen die Entwicklungsstellen weit auseinander, was
insbesondere im Bereich der Formoptimierung der Fall ist, verstärkt sich dies noch.

Ein weiterer Aspekt der Quasi-Newton-Verfahren ist, dass die Approximation von Bk nicht
in jedem Schritt komplett neu berechnet, sondern lediglich aufgefrischt wird. Ziel ist es,
den Unterschied zwischen Bk und Bk+1 möglichst klein zu halten, die Änderung der Gra-
dienten jedoch angemessen zu berücksichtigen. Dabei sollte berücksichtigt werden, dass die
Approximation B folgende Eigenschaft der echten Hesse-Matrix erfüllt:

∇2f (xk+1) · (xk+1 − xk) ≈ ∇f (xk+1) − ∇f(xk) . (4.5)

Durch Einsetzen von dk = xk+1 − xk und yk = ∇f(xk+1)−∇f(xk) ergibt sich die auch als
Sekantenbedingung bezeichnete Formulierung

Bk+1 dk = yk . (4.6)

Um eine eindeutige Approximationsmatrix zu erhalten, wird zudem üblicher Weise die Sym-
metrie von Bk+1 gefordert sowie bei einigen Zugängen die positive Definitheit.

Unabhängig davon, welches Auffrischungsverfahren genutzt wird, muss zu Beginn der Opti-
mierung eine Startmatrix B0 gewählt werden. Während die Einheitsmatrix zwar die einfachs-
te Wahl darstellt, jedoch eine schlechte Leistung des gesamten Algorithmus zur Folge hat,
stellt eine an der Größenordnung der Zielfunktion orientierte Startmatrix die bessere Wahl
dar (Dennis und Schnabel, 1996), zumal dieser beim Start des Optimierungsalgorithmus zur
Verfügung steht:

B0 = |f(x0)| I . (4.7)

In der Praxis kann eine noch bessere Startmatrix generiert werden, wenn im Rahmen der
Gradientenberechnung in Form von Differenzenquotienten die Formparameter gestört und
die zugehörigen Zielfunktionswerte berechnet werden und somit zur Verfügung stehen. Auf
deren Basis kann die Startmatrix gemäß Gl. 4.4 bestimmt werden. Die Berücksichtigung der
Skalierung der einzelnen Parameter bei der Berechnung von B0 bleibt davon unberührt.

Es existieren verschiedene Zugänge zur Auffrischung der approximierten Hesse-Matrix, von
denen einige populäre Vertreter in SPC-Opt integriert sind:
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BFGS-Auffrischung

Die BFGS-Auffrisch-Formel wurde durch die Namensgeber Broyden (1970), Fletcher
(1970), Goldfarb (1970) sowie Shanno (1970) unabhängig voneinander vorgeschlagen
und lautet

Bk+1 = Bk − Bkdkd
T
kBk

dTkBkdk
+

yky
T
k

yTk dk
. (4.8)

Für diesen ungedämpften BFGS-Algorithmus, muss die Anstiegsbedingung

dTk yk > 0 (4.9)

eingehalten werden. Die Auffrischung erzeugt mit einigen Absicherungen auf Basis
einer positiv definiten Startmatrix eine stets symmetrische und positiv definite neue
Approximation der Hesse-Matrix.

Für den Fall, dass die Anstiegsbedingung Gl. 4.9 nicht erfüllt ist, muss eine entsprechen-
de Absicherung implementiert werden. Dies kann z.B. in Form eines Aussetzens der
Auffrischung erfolgen. Besser ist jedoch die Ergänzung eines Dämpfungsterms
(Nocedal und Wright, 1999):

Bk+1 = Bk − Bkdkd
T
kBk

dTkBkdk
+

yky
T
k

yTk dk
+

rkr
T
k

dTk rk
(4.10)

mit
rk = θkyk + (1− θk)Bkdk (4.11)

und

θk =

⎧⎪⎨⎪⎩
1 für dTk yk ≥ 0, 2 dTkBkdk

0, 8 · dTkBkdk
dTkBkdk − dTk yk

für dTk yk < 0, 2 dTkBkdk .
(4.12)

Aufgrund seiner guten Eigenschaften stellt das BFGS-Verfahren in SPC-Opt die Stan-
dardmethode zur Approximation der Hesse-Matrix dar.

SR1-Auffrischung

Die Auffrisch-Formel dieses Verfahrens (symmetric-rank-one) ist wie folgt gegeben
(Miller, 2000):

Bk+1 = Bk +
(yk − Bkdk)(yk − Bkdk)

T

(yk −Bkdk)Tdk
. (4.13)

Hierbei ist entsprechend (Nocedal und Wright, 1999) eine Absicherung notwendig. Die-
se besteht darin, dass keine Auffrischung stattfindet, falls mit r = 10−8 gilt:

∣∣dTk (yk −Bkdk)
∣∣ < r ‖dk‖ ‖yk −Bkdk‖ . (4.14)

Der Ansatz hat gegenüber der BFGS-Formel den Vorteil, dass die zweite Ableitung
genauer berechnet wird. Damit verbunden ist aber auch die Abbildung eventueller
negativer Krümmungen, womit Bk+1 nicht zwangsläufig positiv definit (wenn auch
stets symmetrisch) ist. Falls das verwendete Optimierungsverfahren ein positiv definites
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Bk+1 erfordert, können verschiedene zur Verfügung stehende Regularisierungsverfahren
zur nachträglichen Absicherung der positiven Definitheit verwendet werden.

DFP-Auffrischung

Der Ansatz zu Auffrischung von Bk ergibt sich zu (Nocedal und Wright, 1999):

Bk+1 = (I − γkykd
T
k )Bk (I − γkdky

T
k ) + γkyky

T
k mit γk = (yTk dk)

−1 . (4.15)

Auch hier ist eine Absicherung notwendig, welche äquivalent zum ungedämpften BFGS-
Verfahren erfolgt und im Aussetzen der Auffrischung besteht, falls yTk dk < 0 ist.

4.3 Bewertung der Trust-Region-Verfahren

Aufgrund der praktischen Erfahrungen bezüglich des Einsatzes des implementierten Trust-
Region-Verfahren lässt sich feststellen, dass die Konvergenzgeschwindigkeit maßgeblich da-
von abhängt,

• ob das Optimierungsproblem gut oder schlecht gestellt ist,

• wie stark die Designvariablen miteinander korrelieren und

• in welcher Art die Verfahrensparameter gewählt werden.

Insbesondere bei der Wahl der Steuergrößen des TR-Verfahrens muss abgeschätzt werden, ob
das sichere Auffinden des Minimums der Zielfunktion wichtiger ist als die unbedingte Reduk-
tion der dafür notwendigen Optimierungsschritte. Dies ist besonders dann schwierig, wenn
die Berechnung der einzelnen Funktionswerte sehr zeitaufwändig ist und die Optimierung
potentiell mehrere Tage zur Lösung benötigt.

Neben den Trust-Region-Verfahren wurden in SPC-Opt auch verschiedene Line-Search-Stra-
tegien integriert. Dies erfolgte auf Grundlage der Arbeit von Clausner (2007), in welcher
die verschiedenen Verfahren zusammengetragen und hinsichtlich ihrer Eigenschaften unter-
sucht wurden. Zwar ist die grundsätzliche Funktionsweise der beiden Verfahren gleich, je-
doch unterschieden sie sich in der Art und Weise, wie von xk zu xk+1 gegangen wird. Bei
den Trust-Region-Verfahren wird zuerst eine maximale Schrittweite festgelegt und danach
die Schrittrichtung mit den besten Ergebnissen gewählt. Für Line-Search-Strategien hinge-
gen stellt die Ermittlung des Schrittvektor die Grundvoraussetzung dar und erst danach
wird die Schrittweite festgelegt. Wie die Schrittrichtung bestimmt wird (Gradientenverfah-
ren, newtonbasierte Schritte, Trust-Region-Schritte), ist für einen Line-Search-Algorithmus
unerheblich. Es muss lediglich sichergestellt sein, dass es sich beim Schrittvektor dk um eine
Abstiegsrichtung handelt.

Die Berechnung der neuen Entwicklungsstelle erfolgt nunmehr nach:

xk+1 = xk + αdk (4.16)

Hierbei stellt α einen Faktor dar, der die Schrittweite in Richtung dk verändert, bis eine
akzeptable Schrittweite erreicht ist. Es wird nun eine Funktion Φ(α) erstellt, welche die
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Abhängigkeit der Funktionswerte von f entlang des Schrittvektors dk mit α als Schrittweite
darstellt. Die Herausforderung der Line-Search-Strategie besteht in der Bestimmung eines
α > 0, sodass ein Abstieg in Φ und somit auch in f erreicht wird. Hier tritt jedoch das
Problem auf, dass Φ praktisch nie in analytischer Form vorliegt. Die einzige Möglichkeit
besteht demnach in der Durchführung von Testrechnungen zur näherungsweisen Abbildung
dieser Funktion.

Die Testrechnungen müssen für verschiedene αj charakterisiert werden, wofür sie in drei
Kategorien eingeteilt werden - akzeptabel, zu groß oder zu klein. Hierfür existieren ver-
schiedene Akzeptanzkriterien, z.B. das Armijo-Kriterium, die Goldstein-Kriterien und die
Wolfe-Kriterien (Alt, 2011). Darüber hinaus wird ein Auffrischverfahren benötigt, welches
im Falle einer nicht akzeptablen Schrittweite αj vorgibt, auf welche Weise ein vermutlich
besseres αj+1 bestimmt wird. Beispiele dafür sind Verfahren mit konstanten Faktoren bzw.
Summanden, sowie Verfahren mit quadratischen oder kubischen Polynomen. Aufgrund der
weit verbreiteten Nutzung von Line-Search-Verfahren existiert eine Reihe guter Übersichten
zur Funktionsweise, u.a. (Nocedal und Wright, 1999; Bhatti, 2000; Alt, 2011).

Beim Vergleich der Line-Search-Strategien mit den Trust-Region-Verfahren besitzen erstere
den Vorteil, dass deutlich bessere und detailliertere Abbruchkriterien bei der Suche nach
α existieren, da diese Mischungen aus Abstiegs- und Krümmungskriterien sein können. Zu-
dem sind Line-Search-Verfahren skalierungsunempfindlicher. Bei einer guten Wahl von α

konvergieren sie deutlich schneller als die Trust-Region-Verfahren. Ein großer Schwachpunkt
ist jedoch die Abhängigkeit von der Schrittrichtung im ersten Optimierungsschritt. Ist das
Ersatzmodell an der Entwicklungsstelle x0 nicht gut, bricht die Optimierung ab, da die
Schrittweite des ersten Probeschrittes gewöhnlich dem natürlichen Newton- oder Gradien-
tenschritt entspricht. Zudem sind die optimalen Steuerparameter der Line-Search-Verfahren
von der Problemstellung abhängig, was sich auch darin äußert, dass dementsprechende Emp-
fehlungen je nach Autor variieren. Dies ist nicht nur für praxisorientierte Anwender ohne
umfangreiche Kenntnisse dieser Thematik problematisch, sondern auch für versierte Nutzer,
welche Aufgaben der Formoptimierung ohne Kenntnis der Zielfunktionstopologie oder einem
guten Startparametersatz bearbeiten. Aus diesem Grund enthält die vorliegende Arbeit keine
detaillierte Betrachtung der Line-Search-Verfahren bzw. entsprechende Anwendungsbeispie-
le. Die Nutzung des Trust-Region-Verfahrens zur Lösung eines Formoptimierungsproblems
hingegen wird anhand des nachfolgenden Beispiels demonstriert.

4.4 Beispiel Lochscheibe

Für das Beispiel einer biaxial belasteten Scheibe mit einem Loch entsprechend Bild 4.2 im
Ausgangszustand soll die Randkontur Ω derart verändert werden, dass die größte Hauptspan-
nung σ1 für eine gegebene Belastung am Rand Ω und eine vorgegebene Lochweite in Richtung
der beiden Koordinatenachsen minimal wird. Es handelt sich dabei um einen gleichmäßigen
zweiachsigen Zug bei Annahme des ebenen Verzerrungszustandes (EVZ). Das Material ver-
hält sich elastisch-plastisch mit isotroper Verfestigung nach Ulbricht und Röhle (1975).

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


50 4 Formoptimierung

Bild 4.2: Scheibe mit Loch (ein Viertel), Vernetzung und Randbedingungen.

Mit den Designvariablen p wird die Form der durch NURBS approximierten Randkontur Ω

festgelegt. Die Lochweite in Richtung der beiden Koordinatenachsen x und y ist identisch
und bleibt während der Identifikation konstant. Die entsprechende Zielfunktion Φ lautet

Φ(p) = σ1(X, p) → min
p
. (4.17)

Da sich die Zielfunktion nicht auf ein FQM-Problem zurückführen lässt, erfolgt die Optimie-
rung durch Nutzung des in Kap. 4.1 beschriebenen Trust-Region-Verfahrens. Die Approxi-
mation der Hesse-Matrix erfolgt mit dem implementierten BFGS-Verfahren. Bei Verwendung
von 4 Designvariablen endet die Formoptimierung nach 8 Optimierungsschritten und führt
auf die in Bild 4.3 dargestellte Kontur des Loches. Es sei darauf hingewiesen, dass es sich
bei der optimierten Kontur nicht um einen Kreisabschnitt handelt.

Bild 4.3: Verteilung der Hauptspannung σ1 für den Startvektor p
0

und den opti-
malen Vektor p

end
, dargestellt im Netz des undeformierten Zustands.
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Um das Ergebnis quantitativ bewerten zu können, sind die ersten Hauptspannungen der
Knoten nach der Simulation auf der Lochkontur in Tabelle 4.1 aufgeführt.

Tabelle 4.1: Hauptspannung σ1 in den Knoten entlang der Randkontur Ω.

Knotennummer σ1 [MPa] für p = p0 σ1 [MPa] für p = pend

362 1256 696
257 1245 738
213 1154 769
246 1096 853
210 961 845
235 896 854
211 786 812
219 743 818
212 686 793
296 742 818
290 785 812
308 895 853
302 960 845
320 1096 853
314 1154 769
332 1245 738
326 1256 696

Es ist deutlich sichtbar, dass die ermittelten Designvariablen p = pend zu einer deutlichen
Verringerung des größten Wertes der Hauptspannung σ1 auf der Randkontur Ω führen. Da
in jedem Optimierungsschritt der Maximalwert von σ1 in einem anderen Knoten des Randes
Ω auftreten kann, wird dadurch das Konvergenzverhalten negativ beeinflusst.
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5 Startparametervariation

Die bislang vorgestellten und in SPC-Opt integrierten Methoden zur Parameteridentifikation
und Formoptimierung gehören zu den gradientenbasierten Verfahren, welche gewöhnlich in
das nächstgelegene Minimum führen. In den meisten Fällen ist allerdings das globale Mi-
nimum von Interesse, dessen Bestimmung beim Vorhandensein mehrerer unterschiedlicher
lokaler Minima jedoch nicht ohne Weiteres möglich ist. Eine übliche Vorgehensweise besteht
daher in der Durchführung hinreichend vieler Optimierungen mit unterschiedlichen Start-
vektoren, von welchen das lokale Minimum mit dem kleinsten Zielfunktionswert als globales
Minimum angenommen wird. Beansprucht bereits eine einzelne Optimierung erhebliche Zeit,
was bei praktischen Problemstellungen häufig der Fall ist, muss die Zahl der Startvektoren
zwangsläufig begrenzt werden. Das naheliegende Interesse gilt daher der optimalen Auswahl
von Startvektoren, um so ein Maximum an Informationen über die Topologie der Zielfunk-
tion zu erhalten. Hierfür eignen sich Ansätze aus dem Bereich der Versuchsplanung, auch
als Design of Experiments (DOE) bezeichnet (Giunta et al., 2003). Die Grundlage der Im-
plementierung eines Moduls zur Startparametervariation in SPC-Opt stellt die Arbeit von
Landgraf (2008) dar, in welcher die Vor- und Nachteile verfügbarer Ansätze zu dieser The-
matik untersucht und bewertet wurden.

5.1 Methoden zur Erzeugung von Startvektoren

Zur Einordnung der globalen Optimierungsverfahren entsprechend ihrer Eigenschaften exis-
tieren unterschiedliche Ansätze, bezüglich derer Törn und Žilinskas (1989) einen guten Über-
blick darstellen. Für die Implementierung in SPC-Opt sind aus programmiertechnischer Sicht
diejenigen Methoden interessant, welche gut in die modulare Programmstruktur passen und
der eigentlichen Optimierung vorgeschaltet werden können. Zudem müssen infolge der Ver-
wendung gradientenbasierter Verfahren bei den meisten Aufgabenstellungen nur wenige Pa-
rameter identifiziert bzw. optimiert werden. Die Auswertung der Zielfunktion (meist in Form
einer FEM-Simulation) ist jedoch potentiell sehr rechenintensiv. Im Hinblick darauf eignen
sich Verfahren, welche entsprechend der vorgegebenen Zahl Startvektoren ein möglichst gu-
tes Raum füllendes Design erzeugen (Schumacher, 2005). Dies erfolgt zunächst für einen
Entwurfsraum X = [0, 1]d, wobei d der Anzahl der Parameter entspricht. Benötigt wird wei-
terhin die Definition der Unter- und Obergrenzen p

(l)
i bzw. die p

(u)
i eines jeden Parameters,

welche durch den Anwender festgelegt werden müssen und meist auf Erfahrungswerten, kon-
struktiven Beschränkungen (Formparameter) oder physikalischen sinnvollen Grenzen (z.B.
Materialparameter) basieren. Dadurch ergibt sich der zulässige Parameterraum P:

P =

⎛⎜⎜⎜⎝
p
(l)
1 ≤ p1 ≤ p

(u)
1

p
(l)
2 ≤ p2 ≤ p

(u)
2

...

p
(l)
d ≤ pd ≤ p

(u)
d

⎞⎟⎟⎟⎠ . (5.1)
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Die Rücktransformation aus dem Entwurfsraum in den Parameterraum und die damit ver-
bundene Skalierung erfolgt entsprechend

pij =
(
p
(u)
j − p

(l)
j

)
xi
j + p

(l)
j , (5.2)

wobei
(
p
(u)
j − p

(l)
j

)
die Skalierung der jeweiligen Achse j und xi

j die Koordinate im Entwurfs-

raum darstellt. Die durch xi
j beschriebenen Vektoren im Entwurfsraum werden auch als

“Designpunkte” bezeichnet. Mit Hilfe der sogenannten Sampling-Methoden werden die m

Designpunkte ermittelt und deren Koordinaten in der Designmatrix XD gespeichert werden.
Dies erfolgt in der Form Xi = {Xi1, Xi1, . . . , Xid} , wobei i = 1, 2, . . . , m die Designpunkte
darstellen.

Gittermethoden

Bei diesem deterministischen Ansatz wird der Parameterraum X mit einem Gitter
versehen, an welchem die Designpunkte ausgerichtet werden (hier: Ausrichtung an den
Mittelpunkten der Zellen des Gitters). Im einfachsten Fall verlaufen die Gitterstränge
parallel zu den Achsen des Versuchsraumes (Grossmann, 1997) und werden jeweils in
k äquidistante Intervalle aufgeteilt. Ein für d Dimensionen erzeugtes Design enthält
demnach m = kd Designpunkte. Diese Methode hat den Nachteil, dass die Anzahl
der Startvektoren nicht frei wählbar ist und außerordentlich groß sein kann. Zudem
wird für die verschiedenen Designpunkte jeder Parameterwert mehrfach verwendet,
was im Hinblick auf das weitestgehend deterministische Verhalten einer Simulation nur
wenige neue Informationen liefert und daher für Computerexperimente als ungeeignet
angesehen wird (Koehler und Owen, 1996). Eine Modifikation dieses Verfahrens stellt
die Methode der Good-Latice-Points (GLP) dar. Gittermethoden sind aufgrund der
vorgegebenen Anzahl Designpunkte nicht in SPC-Opt implementiert, finden jedoch
Eingang in die nachfolgenden Methoden.

Random Sampling

Zu den stochastischen Verfahren, welche die Designpunkte zufällig auswählen, gehört
die einfache Methode des Random Sampling, auch Monte Carlo Sampling genannt
(Giunta et al., 2003). Hierbei werden die Random Designs (RD) zufällig einer gleich-
verteilten Zahlenmenge U [0, 1] entnommen. Der Nachteil der Methode besteht darin,
dass die Verteilung der Startvektoren im Entwurfsraum sehr schlecht sein kann. Durch
(Burkardt, 2008) wird eine Modifikation des Verfahrens vorgeschlagen, bei welcher die
zufällige Auswahl auf diskrete Punkte im Entwurfsraum beschränkt wird. Diese werden
auf zuvor entsprechend der Vorgehensweise beim Gitterverfahren generiert.

Latin Hypercube Sampling

Das von McKay et al. (1979) vorgestellte Verfahren stellt eine Verbesserung gegenüber
dem Random Sampling dar. Analog zu den Gitterverfahren wird für die Erzeugung
eines Latin Hypercube Design (LHD) zunächst ein Gitter im Entwurfsraum X erzeugt.
Abweichend davon ist die Aufteilung k der Gitterstränge jedoch nicht frei, sondern
entspricht der Anzahl der zu erzeugenden Designpunkte m. Die Auswahl der Zellen
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erfolgt zufällig und unter der Bedingung, dass deren Projektion auf die Koordinaten-
achsen eine Gleichverteilung ergibt. Dabei kann die Positionierung der Designpunkte,
ausgedrückt durch die m×d Matrix U , innerhalb einer Zelle zufällig oder fest definiert
erfolgen. In SPC-Opt werden dafür die Zellenmittelpunkte genutzt, wodurch sich für
alle Designpunkte Uij = 0, 5 ergibt. Die Berechnungsvorschrift der Designmatrix XD

lautet:
XD

ij =
Πij − Uij

m
mit i = 1, 2 . . . , m ; j = 1, 2, . . . , d , (5.3)

wobei Π eine Permutationsmatrix darstellt (Park, 1994), deren Spalten Permutationen
von {1, . . .m} enthalten.

Im Vergleich zu den RDs sind die Designpunkte von LHDs deutlich besser verteilt.
Allerdings stellt nicht jedes LHD zwangsläufig eine gute Raum füllende Verteilung dar.
Dies wird durch das zweidimensionale Beispiel in Bild 5.1 veranschaulicht, welches zwei
gültige LHDs zeigt, von denen letzteres den Raum nur sehr schlecht ausfüllt.

0

1

0 1

x1

x
2

(a) LHD mit guter Verteilung

0

1

0 1

x1

x
2

(b) LHD mit schlechter Verteilung

Bild 5.1: Latin Hypercube Designs für d = 2 und m = 6.*

Für die Verbesserung der Eigenschaften von LHDs können verschiedene Vorgehenswei-
sen genutzt werden (Grary, 2002). Eine gute Möglichkeit stellt das Symmetrische Latin
Hypercube Design (SLHD) dar (Ye et al., 2000), welches eine beliebige Anzahl De-
signpunkte erzeugen kann, jedoch bessere Eigenschaften gegenüber den LHD aufweist.
Die Berechnung der SLHD erfolgt analog zum LHD entsprechend Gl. 5.3, jedoch unter
der Bedingung, dass für eine Zeile (a1, a2, . . . ad) der Permutationsmatrix eines SLHD
eine andere Zeile der Form (m+ 1− a1, n+ 1− a2, . . . n+ 1− ad) ebenfalls Teil dieser
Matrix ist. Grafisch ist dies für eine gerade Anzahl Designpunkte in Bild 5.2 dargestellt
und zeigt, dass die Einhaltung der Bedingung einer Punktspiegelung am Zentrum von
X entspricht.

∗Darstellung entstammt (Landgraf, 2008)
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Falls eine ungerade Anzahl Designpunkte vorliegt, wird eine weitere Bedingung benö-
tigt, da genau ein Punkt keinen zugehörigen Punkt entsprechend obiger Bedingung
besitzt. Zur Beibehaltung der Symmetrie wird deshalb per Definition ein Punkt exakt
im Zentrum des Entwurfsraumes gesetzt. Für die übrigen Designpunkte gilt die oben
genannte Bedingung und führt z.B. auf das in Bild 5.3 dargestellte Design.

Πeven =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2
2 4
3 6
4 1
5 3
6 5

⎞⎟⎟⎟⎟⎟⎟⎠
0

1

0 1x1
x

2

Bild 5.2: Symmetrisches Latin Hypercube Design für d = 2 und m = 6.*

Πodd =

⎛⎜⎜⎜⎜⎝
1 4
2 1
3 3
4 5
5 2

⎞⎟⎟⎟⎟⎠

0

1

0 1x1

x
2

Bild 5.3: Symmetrisches Latin Hypercube Design für d = 2 und m = 5.*

5.2 Optimierung der Startdesigns

Bezüglich der Raumfüllung sind die mit den in Kap. 5.1 vorgestellten Sampling-Verfahren
erzeugten RDs, LHDs sowie SLHDs nicht zwangsläufig gut. Es erfolgt deshalb eine Opti-
mierung der Startdesign anhand geeigneter Designkriterien, welche nachfolgend vorgestellt
werden. Mathematisch ausgedrückt wird das Design D∗ ∈ D mit D ⊂ R

d gesucht, für wel-
ches eine auf Basis der Designkriterien formulierte Zielfunktion φ(D) mit D ∈ D minimal
wird:

φ(D∗) = min
D∈D

φ(D) . (5.4)

∗Darstellung entstammt (Landgraf, 2008)
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5.2.1 Designkriterien

Die zur Beurteilung der Güte eines Designs verwendeten Größen, im Weiteren Designkriterien
genannt, können in drei verschiedene Klassen unterteilt werden. Diese werden nachfolgend in
kompakter Form vorgestellt. Für detaillierte Ausführungen sei auf die jeweilig angegebenen
Quellen verwiesen.

Designkriterien basierend auf Abstandsmessungen

Designkriterien dieser Kategorie basieren auf der Messung von Abständen im d-dimensionalen
euklidischen Raum R

d. Hierfür wird für die Berechnung des Abstandes δp zweier Punkte
x1, x2 ∈ R

d die Metrik

δp(x
1, x2) =

[
d∑

j=1

∣∣x1
j − x2

j

∣∣p]1/p

, p ≥ 1, p ∈ N (5.5)

eingeführt. Typische Werte von p sind p = 1 für die L1-Metrik, p = 2 für die euklidische
Metrik und p = ∞ für die Maximum-Metrik (Bronstein et al., 2005).

Das weit verbreitete, von Johnson et al. (1990) vorgestellte Maximin-Distance-Designkriteri-
um φMm(D) basiert auf der Annahme, dass die optimale Punkteverteilung D∗ vorliegt, wenn
der Abstand der beiden am nächsten zueinander liegenden Punkte maximal ist. Benötigt wird
demnach der minimale Wert aller ermittelten Abstände eines Designs, welcher gleichzeitig
das Designkriterium φMm(D) darstellt:

φMm(D) = min
x(i),x(j)∈D

δp(x
(i), x(j)); i = 1, . . . , n− 1; j = i+ 1, . . . , m (5.6)

Abweichend von Gl. 5.4 wird auf Basis von φMm(D) kein Minimierungsproblem, sondern ein
Maximierungsproblem der Form

φMm(D
∗) = max

D∈D
φMm(D) (5.7)

gelöst.

Ein Vertreter von Abstandskriterien, welche alle Abstände zwischen Designpunkten bei der
Bildung eines skalaren Größe einbeziehen, ist das φp-Kriterium (Morris und Mitchell, 1995).
Als Grundlage dient das Maximin-Distance-Designkriterium, jedoch werden alle Abstände
und deren Häufigkeiten des Auftretens in die Bildungsvorschrift einbezogen. Dies erfolgt
derart, dass in einem Vektor J = [J1, J2, . . . Jb]

T die Anzahl b des Auftretens aller Abstände
zwischen den m Punkten eines Designs D zusammengefasst werden. Die Berechnung des
Designkriteriums erfolgt nunmehr nach

φφp
(D) =

[
m∑
i=1

Jiδ
−p
i

]1/p

, p ≥ 1, p ∈ N , (5.8)

wobei sich für p → ∞ das φp-Kriterium zum Maximin-Distance-Designkriterium ergibt.
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Das Grundprinzip des Audze-Eglais-Designkriterium φAE(D) beruht auf dem Prinzip der
gegenseitigen Abstoßung physikalischer Teilchen (Ausze und Eglais, 1977; Husslage, 2006).
Deren Anordnung in einem System erfolgt naturgemäß derart, dass die potentielle Energie U
minimal wird. Dieses Phänomen wird auf die Designpunkte übertragen und φAE(D), welches
das Äquivalent der potentiellen Energie darstellt, ergibt sich zu

φAE(D) = U =

m−1∑
i=1

m∑
j=i+1

1

δ22(x
(i), x(j))

, x(i), x(j) ∈ D . (5.9)

Dabei stellt δ22(x
(i), x(j)) entsprechend Gl. 5.5 das Quadrat der euklidischen Metrik dar.

Von Santer et al. (2003) wurde das Average-Distance-Designkriterium vorgestellt. Auch mit
diesem werden alle Abstände eines Designs berücksichtigt. Die Besonderheit besteht hier
in der Normierung der Abstände δp(xi, xj) auf einen maximal möglichen Abstand. Dafür
wird der Ausdruck ρ1/p eingeführt, welcher den Abstand zwischen den Eckpunkten von X
darstellt und es ermöglicht, die Abstände von Punkten auch über verschiedenen Dimensionen
miteinander zu vergleichen. Die Berechnungsvorschrift von φav(D) lautet

φav(D) = m(p,λ)(D) =

⎛⎝ 1(
m
2

) ∑
x(i),x(j)∈D

[
ρ1/p

δp(xi, xj)

]λ⎞⎠1/λ

, λ ≥ 1 . (5.10)

Designkriterien zur Beurteilung der Gleichverteilung

Der Grundgedanke bei diesen Ansätzen besteht darin, den Unterschied zwischen der Punkt-
verteilung eines betrachteten Designs D zu einer absoluten Gleichverteilung in einem Kri-
terium zu erfassen. Die Messgrößen zur Bestimmung dieser Abweichung werden als Lp-
Diskrepanzen bezeichnet. Ein auf diese Weise optimiertes Design wird auch als Uniform De-
sign bezeichnet. Ein Überblick zu diesen Kriterien findet sich unter anderem in (Fang et al.,
2006) und (Hickernell, 1998). Nachfolgend wird das Grundprinzip anhand der so genannten
Stern Lp-Diskrepanz erläutert.

Den Ausgangspunkt der Betrachtung stellt analog zu den Abstandskriterien ein erzeugtes
Design D im Entwurfsraum X dar. Um die Diskrepanz eines Punktes x ∈ D zu bestimmen,
wird zunächst ein Teil des Entwurfsraumes als Teilraum U mit dem Hypervolumen Vol(U)
definiert. Für die Stern Lp-Diskrepanz entspricht dieser Raum der Aufspannung zwischen
dem Koordinatenursprung von X und dem Punkt x, also U = [0, x]. Alle Designpunkte von D

können nun innerhalb oder außerhalb von U liegen, wobei N(D, [0, x]) die Punkte innerhalb
des Teilraumes bezeichnet. Bei einer absoluten Gleichverteilung aller Designpunkte würde
der Quotient N(D, [0, x])/m dem Volumen des zugehörigen Teilraumes entsprechen. In allen
übrigen Fällen ist die Differenz zwischen den beiden Werten größer als 0 und wird auch als
Diskrepanz am Punkt x bezeichnet:

Dl (D, x) =

∣∣∣∣N(D, [0, x])

m
− Vol([0, x])

∣∣∣∣ (5.11)
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Die Mittelung aller Diskrepanzen der Punkte eines Designs mit Hilfe der sogenannten Lp-
Norm führt auf die Lp-Diskrepanz Dp(D) eines Designs D. Im Fall der Stern Lp-Diskrepanz
lautet diese:

Dp(D) =

{∫
X

∣∣∣∣N(D, [0, x)))

m
− Vol([0, x))

∣∣∣∣p}1/p

mit p ≥ 1 (5.12)

Sehr üblich ist die Wahl von p = 2 (Fang et al., 2003), welche als Stern L2-Diskrepanz D2(D)

bezeichnet wird und deren Quadrat das Designkriterium φD2(D) darstellt. In ausgeschrie-
bener Form und durch Einsetzen in Gl. 5.4 erhält man:

(D2(D))2 =

(
1

3

)d

− 21−d

m

m∑
i=1

d∏
k=1

(
1− x2

ik

)
+

1

m2

m∑
i=1

m∑
j=1

d∏
k=1

[1−max(xik, xjk)]

= φD2(D) .

(5.13)

Da die beispielhaft in Bild 5.5 dargestellte L2-Diskrepanz nicht invariant gegenüber einer
Koordinatenrotation ist, wird sie als eher ungeeignet zur Findung von Uniform-Designs er-
achtet (Fang et al., 2000). Aus diesem Grund existieren Modifikationen der L2-Diskrepanz,
von denen die nachfolgenden in SPC-Opt zur Verfügung stehen und sich gegenüber der L2-
Diskrepanz hinsichtlich der Definition des Teilraumes U unterscheiden:

• zentrierte L2-Diskrepanz CD2 (D) (Aufspannung von U zwischen x und nächstgelege-
nem Eckpunkt von X )

• symmetrische L2-Diskrepanz SD2 (D) (Aufspannung von zwei Teilräumen U1 = [0, x]

und U2 = [x, 1] Kombination zu U = U1 ∩ U2)

• wrap-around L2-Diskrepanz WD2 (Es erfolgt zunächst eine Aufspannung zwischen zwei
Punkten x1 und x2. Der Berechnung von WD2 liegt jedoch nicht dieser Raum, sondern
die Vereinigung derjenigen Räume zugrunde, die durch Projektion von U = [x(1), x(2)]

auf die Ränder von X entstehen (vgl. Bild 5.5)

Bild 5.4: Stern L2-Diskrepanz.* Bild 5.5: Wrap-around L2-Diskrepanz.*

∗Darstellung entstammt (Landgraf, 2008)
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Durch die Modifikation sind die Werte dieser L2-Diskrepanzen unabhängig von der Reihen-
folge der Punkte in der Designmatrix, invariant gegenüber Koordinatenrotationen und sie
betrachten auch die Verteilung von Punkten in nieder-dimensionalen Räumen. Für nähere
Ausführungen sei auf Hickernell (1998) verwiesen.

Designkriterien zur Beurteilung statistischer Eigenschaften

Die abschließend vorgestellte Klasse von Designkriterien basiert auf der Ermittlung derjeni-
gen Punktverteilung, mit welcher die Zielfunktion durch eine Modellfunktion Y (x) bestmög-
lich approximiert werden kann. Als allgemeiner Ansatz für Y (x) dient (Fang et al., 2006):

Y (x) =

k∑
j=1

βjfj(x) + Z(x) , (5.14)

wobeifj(x) bekannte Polynomfunktionen mit den jeweils noch zu bestimmenden Koeffizi-
enten βj darstellen und Z(x) einen stochastischen Prozess abbildet. Dafür wird häufig das
Kriging-Modell verwendet, für dessen Polynomfunktionen ein linearer Ansatz gewählt wird.
Der zugehörige stochastische Prozess Z(x) stellt einen Gaußschen Zufallsprozess mit dem
Erwartungswert E(Z(x)) = 0 und der Kovarianz nach Gl. 5.15 dar (Morris und Mitchell,
1995).

Cov(Z(fx(i)), Z(x(j))) = σ2R(x(i), x(j)) (5.15)

Hierbei verkörpert σ2 die Varianz des Approximationsfehlers und R(x(i), x(j)) stellt die als
bekannt vorauszusetzende Korrelation dar, welche für den Fall des Kriging-Modells der
Gaußschen Korrelationsfunktion entspricht (Fang et al., 2006):

R(x(i), x(j)) = exp

{
−θk

l∑
j=1

|x(i)
k − x

(j)
k |q

}
, 1 ≤ q ≤ 2 (5.16)

In den meisten Fällen ist die Korrelationsstruktur jedoch nicht bekannt, weshalb zunächst
die beiden Parameter θk und q bestimmt werden müssen. Dies stellt einen deutlichen Nachteil
des Ansatzes dar (Husslage, 2006).

Stellvertetend für diese Klasse steht in SPC-Opt das Maximum-Entropy-Designkriterium
zur Verfügung. Es ist ursprünglich ein von Shannon (1948) vorgestelltes Maß für den In-
formationsgehalt einer Verteilung von Punktdaten und wurde u.a. in (Shewry und Wynn,
1987) auf das Problem der Ermittlung eines optimalen Designs angewendet. Bei Nutzung
des Kriging-Modells entspricht die Maximierung der Entropie der Maximierung der Deter-
minante der Korrelationsmatrix R, welche entsprechend Gl. 5.16 berechnet wird (Fang et al.,
2006). Die Optimierungsaufgabe lautet demnach:

max
D∈D

log |R| . (5.17)
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5.2.2 Stochastische Optimierungsverfahren

Unabhängig vom verwendeten Designkriterium wird ein Optimierungsverfahren zur Ermitt-
lung des optimalen Designs entsprechend Gl. 5.4 benötigt. Für praktische Aufgaben haben
sich hierfür stochastische Verfahren bewährt, mit denen bei begrenztem Berechnungsaufwand
gute Näherungen des global optimalen Designs gefunden werden können. Einen entsprechen-
den Überblick und Verweise auf entsprechende Literatur bietet z.B. (Fang et al., 2003). Von
den verschiedenen Verfahren werden nachfolgend die drei in SPC-Opt implementierten An-
sätze vorgestellt. Da diese lediglich eine Auswahl der verfügbaren Verfahren zur Findung
optimaler Designs darstellen, sei an dieser Stelle auf den in Kap. 4 von (Landgraf, 2008)
enthaltenen Überblick zu weiteren Verfahren verwiesen. Zudem werden darin Verfahren zur
Erzeugung neuer Designs auf der Basis bereits vorhandener Design sowie geeignete Abbruch-
kriterien für die nachfolgenden Ansätze vorgestellt.

Random-Search-Verfahren

Dieses Verfahren entspricht der in Kap. 5.1 beschriebenen Monte-Carlo-Methode zur Erzeu-
gung eines Startdesigns. Dabei wird wiederkehrend der Zielfunktionswert φ(Dc) des aktu-
ellen Designs Dc mit φ(DNew) eines zufällig neu erzeugten Designs Dnew verglichen. Falls
φ(Dnew) < φ(Dc) gilt, wird Dc = Dnew gesetzt. Dieser Prozess wird bis zum Erreichen eines
definierten Abbruchkriteriums wiederholt. Das am Ende des Prozesses aktuell beste Design
Dc wird als global optimales Design D∗ betrachtet, auch wenn es im Allgemeinen nur eine
Näherung und nicht das beste Design aller D ∈ D darstellt. Da mit dem Random-Search-
Verfahren keine lokale Suche erfolgt, werden meist nur schlechte Näherungen des optimalen
Designs gefunden.

Local-Search-Verfahren

Eine bessere Möglichkeit stellt das heuristische Verfahren der lokalen Suche (Local-Search-
Verfahren) dar. Grundsätzlich funktioniert es nach dem gleichen Schema wie das Random-
Search-Verfahren. Abweichend davon erfolgt jedoch keine zufällige Wahl des neuen Designs
aus dem gesamten Raum D, sondern nur aus der Umgebung N(Dc) des aktuell besten
Designs Dc .

Bei der Betrachtung der Verfahren zur Definition einer Umgebung N(Dc) und der Auswahl
eines aktuellen Designs Dc genügt die Beschränkung auf die implementierten Designtypen
RD, LHD und SLHD. Die Umgebung wird hierbei durch zwei Bedingungen definiert. Einer-
seits müssen alle Designs der Umgebung N(Dc) eine Teilmenge aller Designs D ∈ D dar-
stellen. Andererseits dürfen zwischen den Eigenschaften der Designs der Umgebung N(Dc)

und Dc nur geringe Unterschiede vorliegen. Zudem wird empfohlen, eine kleine Umgebung
zu definieren und damit die Wahrscheinlichkeit zum Finden eines global optimales Design zu
erhöhen (Fang et al., 2006). Dies erfolgt für die aufgeführten Designtypen in nachfolgender
Form:
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RD

Es wird lediglich eine Komponente der aktuellen Permutationsmatrix geändert. Dabei
muss gewährleistet sein, dass der neue Wert dem Bereich [1, k] entstammt und durch die
Veränderung kein doppelter Punkt entsteht. Falls die Änderungsumgebung vergrößert
werden soll, können z.B. alle Komponenten einer zufälligen Zeile der Permutationsma-
trix geändert werden, was einer Lageänderung des Designpunkts in allen Dimensionen
entspricht. Zusätzlich können auch mehrere Designpunkte parallel verändert werden.

LHD

Ergänzend zum RD muss für ein LHD die Bedingung eingehalten werden, dass die
Spalten von Π eine Permutation von {1, . . . , m} bleiben müssen. Aus diesem Grund
erfolgt kein willkürliches Neusetzen einer Komponente, sondern eine Vertauschung von
zwei Komponenten einer Spalte (“column-exchange approach” ) Fang et al. (2006). Ei-
ne Vergrößerung der Umgebung kann analog zum RD durch gleichzeitiges Vertauschen
mehrerer Komponentenpaare einer Spalte erfolgen oder durch die Auswahl verschiede-
ner Spalten und dem parallelen Tausch des jeweiligen Komponentenpaares.

SLHD

Als Basis dient die Vorgehensweise des LHD. Es muss jedoch gesichert werden, das die
Symmetrie des Designs erhalten bleibt (Ye et al., 2000). Dies erfolgt, indem für jeden
Tausch eines Komponentenpaares auch das korrespondierende symmetrische Kompo-
nentenpaar getauscht wird. Notwendig ist dies nur dann nicht, wenn die Vertauschung
bereits πi und πn+1−i betrifft. Bei SLHD mit einer ungeraden Anzahl Designpunkte ist
die Vertauschung des Punktes im Zentrum nicht gestattet.

Bei der Nutzung des Local-Search-Verfahrens ist zu beachten, dass in Abhängigkeit des
Startdesigns nicht die globale Lösung, sondern das nächstgelegene optimale Design gefunden
wird. Diese stellt jedoch gewöhnlich nur eine lokal optimale Lösung dar.

Simulated Annealing

Eine Erweiterung des Local-Search-Verfahrens stellt der Algorithmus des Simulated Anne-
aling (SA) dar. Es gehört zur Klasse der Metaheuristiken und wird auch als “Verfahren
des simulierten Ausglühens” bezeichnet. Diesem Begriff entsprechend basiert das Grundprin-
zip auf dem physikalischen Prozess der langsamen Abkühlung eines Körpers vom flüssigen
zum festen Zustand und wurde von Kirkpatrick et al. (1983) vorgestellt. Analog zum Local-
Search-Verfahren wird in der Umgebung eines aktuellen Designs gesucht und ein Design mit
besserem Zielfunktionswerten stets übernommen. Allerdings können hier entsprechend eines
Zufallsalgorithmus auch schlechtere Designs als das aktuelle akzeptiert werden, womit das
Verlassen eines bereits gefundenen Minimums ermöglicht wird. Die Wahrscheinlichkeit πSA

für diese Akzeptanz ergibt sich zu:

πSA = exp

(
−φ(Dc)− φ(Dnew)

T

)
. (5.18)
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Daraus geht hervor, dass die Akzeptanzwahrscheinlichkeit umso höher ist, desto kleiner die
Differenz zwischen dem aktuellen und dem neuen Design ist. Der Prozessparameter T wird
in Anlehnung an den physikalischen Prozess als Temperatur bezeichnet und verringert sich,
ausgehend von einem Startwert T0, iterativ mit jeder neuen Suche. Die Abnahme von T wird
durch einen Abkühlungsfaktor α gesteuert, wodurch sich T im k-ten Schritt entsprechend

Tk = Tk−1 · α; 0 < α < 1 (5.19)

ergibt. Da für alle schlechteren Designs φ(Dc) > φ(Dnew) gilt, kann πSA entsprechend Gl. 5.18
Werte zwischen 0 und 1 annehmen. Die Übernahme des schlechteren Designs erfolgt immer
dann, wenn πSA größer als ein zufälliger Wert aus einer gleichverteilten Menge U [0, 1] ist,
d.h. wenn das Kriterium

p(T,Dc, Dnew) =

{
true falls πSA ≥ u; u ∈ U [0, 1]

false sonst
(5.20)

den Wert “true” zurück gibt.

Da SPC-Opt verschiedene Designkriterien enthält und dabei unterschiedliche Größenordnun-
gen für φ(D) und ∇φ auftreten, ist eine Normierung der Starttemperatur T0 erforderlich. Dies
erfolgt durch die Erzeugung einer bestimmten Anzahl Designpaare Dc und Dnew ∈ N(DC)

zu Beginn des Algorithmus’ und die Bestimmung der zugehörigen Differenzen ∇φ. Der Mit-
telwert ∇φaverage aller Differenzen wird zur Skalierung von T0 nach

(T0)scale = T0 · ∇φaverage (5.21)

verwendet. Zur effektiven Suche mit dem SA-Verfahren müssen geeignete Werte für T0 und α

gewählt werden. Bei zu hoher Starttemperatur oder zu großem Abkühlungsfaktor konvergiert
der Algorithmus nur langsam. Werden die Prozessparameter jedoch zu niedrig gewählt, so
erfolgt keine effiziente globale Suche und das Verfahren geht frühzeitig in eine lokale Suche
über.
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6 Identifikation von Materialparametern

anhand bauteilnaher Probekörper

6.1 Problemstellung

Gummiwerkstoffe finden aufgrund ihrer besonderen Materialeigenschaften in vielen techni-
schen Produkten Verwendung. Dazu gehören beispielsweise Reifen, elastische Aufhängungen,
Transportbänder, Ummantelungen bzw. Isolationen sowie eine breite Palette Dichtungs-,
Dämpfer- und Lagerelemente. Aufgrund steigender Anforderungen an diese Bauteile und
reduzierter Entwicklungszeiten sind FEM-Simulationen auch in diesem Bereich der Pro-
duktentwicklung praktisch unverzichtbar geworden. Die Aussagekraft der Simulationen wird
jedoch durch die Eignung sowohl der verwendeten Stoffgesetze als auch der zugeordneten
Materialparameter limitiert. Insbesondere das inelastische Materialverhalten, welches zu cha-
rakteristischen Effekten wie z.B. Hysterese, Entfestigung oder bleibender Verformung führt,
hat im Bereich der Materialmodellierung mittlerweile zu einer Reihe hochwertiger Stoffge-
setze geführt. Beispiele dafür sind unter anderem die Arbeiten von Dargazany und Itskov
(2009), Lion (1996), Klüppel und Schramm (2000) und Besdo und Ihlemann (2003).

Die Identifikation von Stoffparametern erfolgt im allgemeinen anhand von standardisierten
Laborprüfkörpern und ist bereits Stand der Technik (Hohl, 2007). Die Probekörper sind
meist durch eine sehr einfache Geometrie gekennzeichnet und die Beanspruchungen können
als näherungsweise homogen charakterisiert werden. Die entsprechenden Experimente lie-
fern deshalb Informationen über den direkten Zusammenhang von Spannungen und Verzer-
rungen. Demzufolge kann das Materialverhalten unmittelbar charakterisiert werden und die
notwendige Rechenkapazität ist sehr gering. Die Identifikation der Materialparameter erfolgt
gewöhnlich durch die Lösung eines Fehlerquadratminimumproblems (Luenberger, 1997).

Technische Bauteile und zugehörige Laborprüfkörper haben in der Regel sehr verschiedene
Geometrien und werden zudem häufig in unterschiedlicher Weise hergestellt. Dies bedingt
in vielen Fällen gravierende Abweichungen im Materialverhalten. Bauteilsimulationen mit
Stoffgesetzen, die an Messungen an solchen Prüfkörpern angepasst wurden, sind somit bereits
von vornherein fehlerbehaftet. Die Beschränkung auf homogene Referenzmessungen führt zu
zusätzlichen Einbußen bei der Qualität und der Verlässlichkeit der Stoffgesetzanpassung.
Einerseits ist die Zahl der realisierbaren, näherungsweise homogenen Belastungsverteilungen
gering (gerade die häufig ausgeführte einachsige Zugbelastung tritt in technischen Bauteilen
kaum auf). Zudem bleiben die zwangsläufigen Abweichungen von der Homogenität gänzlich
unberücksichtigt und in ihrer Ausprägung weitgehend unbekannt. Insbesondere letzteres ist
häufig, z.B. beim Druckversuch, eine Folge unklarer Randbedingungen.

Ein Lösungsansatz, welcher im Projekt “Stoffgesetzanpassung anhand bauteilnaher Probe-
körper” umgesetzt wurde, besteht in der effizienten Verwendung von Messdaten aus Versu-
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chen an bauteilnahen Prüfkörpern mit inhomogen verteilten Spannungen und Verzerrungen
zur Identifikation von Materialparametern. Auf diesem Weg werden die genannten Nach-
teile der Beschränkung auf homogene Referenzmessungen vermieden und es eröffnet sich
die Möglichkeit, spezifische Besonderheiten von Produktgruppen und Belastungsprozessen
bei der Anpassung der Stoffgesetze zu berücksichtigen. Die für die Referenzdaten unter-
suchten Prüfkörper sollten den später zu simulierenden Bauteilen ähneln, aber möglichst
einfach zu modellieren sein. Zudem sollten die Randbedingungen sowohl experimentell als
auch in der virtuellen Nachbildung eindeutig und mit hoher Genauigkeit einstellbar bzw.
erfassbar sein. Mit diesem Ansatz geht unweigerlich eine Erhöhung der Rechenzeiten einher.
Dies ist beim Leistungsumfang heutiger Standardcomputer jedoch von untergeordneter Be-
deutung, sofern das Potential effizienter Algorithmen und geschickter Programmierung voll
ausgeschöpft wird.

6.2 Bauteilgeometrie und Belastungen

Die Umsetzung des gewählten Lösungsansatzes erfolgt im Rahmen eines durch verschiedene
Firmen finanzierten Forschungsvorhabens anhand eines konkreten Bauteils. Dabei handelt
es sich um eine Fahrwerksbuchse aus der Serienproduktion der Anvis Deutschland GmbH,
welche für das Projekt adaptiert wurde. Diese besteht aus einer metallischen Innen- und
Außenbuchse sowie einer dazwischen liegenden Gummischicht.

Bild 6.1: Technische Zeichnung der adaptierten Fahrwerksbuchse.*

Die Adaption der Buchse besteht darin, dass die eigentlich konturierte Innenhülse durch eine
gerade Hülse mit einem Außendurchmesser von d = 28mm ersetzt (Bild 6.1) wird. Der In-
nendurchmesser der äußeren Hülse beträgt D = 35, 8mm und die Länge der Gummischicht
L = 24, 6mm. Dies resultiert in einem Formfaktor s = 2L/(D − d) ≈ 6, 3, welcher aufgrund

∗Anvis Deutschland GmbH
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seiner Höhe charakteristisch für eine dünne Gummischicht ist. Die Herstellung der Buchse
erfolgt mit Hilfe eines bereits vorhandenen Prototypenwerkzeugs. Nach dem Abkühlprozess
und der abgeschlossenen Vulkanisation verbleiben aufgrund der thermischen und chemischen
Schrumpfung im Inneren der Gummischicht Eigenspannungen, welche zu hydrostatischen
Zugspannungsanteilen führen. Da dies negative Auswirkungen auf die Dauerfestigkeit der
Buchse hat, wird die Buchse in einer entsprechenden Kalibriervorrichtung, welche ebenfalls
zur Verfügung steht, in Umfangsrichtung gestaucht. Während dieses Kalibriervorgangs wer-
den die vorhandenen Zugspannungen nicht nur ausgeglichen, sondern sogar überkompensiert.
Bild 6.2 zeigt die adaptierte Fahrwerksbuchse im kalibrierten Zustand.

Bild 6.2: Kalibrierte Fahrwerksbuchse.

Bei der Erstellung des zugehörigen FE-Modells werden die CAD-Daten der Fahrwerksbuchse
zugrunde gelegt (Bild 6.3). Die Abweichungen von der Rotationssymmetrie können für die
Modellierung des 3D-Modells vernachlässigt werden. Ein entsprechender Meridianschnitt
durch die Gummischicht ist in Bild 6.4 dargestellt.

Bild 6.3: CAD-Modell der Fahrwerksbuchse.

Bild 6.4: Meridianschnitt der Gummischicht der Fahrwerksbuchse.
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Für die originale Fahrwerksbuchse sind im Lastenheft typische Belastungsarten sowie die
zugehörigen Amplituden bereits vorgegeben. In den entsprechenden Versuchen am Bauteil
werden diese jeweils in einem Belastungszyklus aufgebracht. Dieser wird solange wiederholt,
bis ein quasistationärer Zustand erreicht ist. Die im Lastenheft definierten Beanspruchungen
des Bauteils werden im Folgenden vorgestellt.

Axiale Belastung

Die axiale Belastung stellt den einfachsten Lastfall dar. Dabei wird das Bauteil in axialer
Richtung mit einer Maximalkraft von F axial = 1KN belastet (Bild 6.5).

(a) Schematische Darstellung (b) Versuchsaufbau*

Bild 6.5: Axiale Belastung.

Radiale Belastung

Bei der radialen Belastung wird das Bauteil in radialer Richtung mit einer Maximalkraft von
F rad = 10KN belastet. Das zugehörige Belastungsschema sowie der Versuchsaufbau sind in
Bild 6.6 dargestellt.

(a) Schematische Darstellung (b) Versuchsaufbau*

Bild 6.6: Radiale Belastung.

∗Anvis Deutschland GmbH
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Kardanische Belastung

Das Belastungsschema und der Versuchsaufbau für die kardanische Belastung sind in Bild 6.7
dargestellt. Der Maximalwinkel der Verdrehung für das Bauteil beträgt ϕkard = 3◦.

(a) Schematische Darstellung (b) Versuchsaufbau*

Bild 6.7: Kardanische Beanspruchung.

Torsionsbelastung

Bei der Torsionsbelastung wird die Innenbuchse gegenüber der Außenbuchse in axialer Rich-
tung um einen Maximalwinkel von ϕTors = 15◦ verdreht (Bild 6.8).

(a) Schematische Darstellung (b) Versuchsaufbau*

Bild 6.8: Torsionsbeanspruchung.

Die Darstellung der verschiedenen Belastungen erfolgt in entsprechenden FEM-Simulationen,
für welche neben der Erstellung des FE-Modells auch die Auswahl eines geeigneten Stoffge-
setzes vorgenommen werden muss. Hierfür ist jedoch die genauere Betrachtung der für die
Fahrwerksbuchsen verwendeten Gummimischung notwendig.
∗Anvis Deutschland GmbH
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6.3 Gummimischung

Der hauptsächliche Bestandteil bei der Herstellung von Elastomeren ist entweder Naturkau-
tschuk (NR) oder ein Synthesekautschuk. Letzteres umfasst eine ganze Reihe verschiede-
ner Gummimischungen, welche sich in ihren Bestandteilen und Eigenschaften sehr stark
voneinander unterscheiden, z.B. Styrol-Butadien-Kautschuk (SBR) oder Ethylen-Propylen-
Dien-Kautschuk (EPDM). Weiterhin beinhalten Elastomere diverse Zusätze wie Füllstoffe,
Aktivatoren, Beschleuniger oder Haftmittel, welche vor der Vulkanisation mit dem Kau-
tschuk zur Elastomermischung (elastomer compound) verarbeitet werden. Bezüglich eines
Überblicks zu den verschiedenen Gummimischungen und zugehörigen Herstellungsprozessen
sei an dieser Stelle auf (Röthemeyer und Sommer, 2001; Hofmann und Gupta, 2010; Nagdi,
2004) und (Elias, 2009) verwiesen.

Das Verhalten eines Bauteils hängt demnach maßgeblich von der gewählten Gummimischung
ab. Für das Materialverhalten ist jedoch nicht nur die chemische Zusammensetzung, sondern
auch der Herstellungsprozess entscheidend. Wie im betrachteteten Beispiel unterscheiden sich
Geometrie und Herstellungsprozess von technischen Bauteilen und den zugehörigen Labor-
prüfkörpern in der Regel deutlich voneinander. Dies bedingt trotz gleicher Gummimischung
deutliche Abweichungen im Materialverhalten, welche sich für ein gewähltes Stoffgesetz in
Form jeweils unterschiedlicher Materialparameter manifestieren.

Tabelle 6.1: Chemische Zusammensetzung der verwendeten Gummimischung.

NR-Mischungsvariation N2M

Komponente pphr

Grundmischung

NR (TSR CV 60) 100
Ruß N-33024 24 / 28

IPPD 2
TMQ 1

Antilux500 2
ZnO RS 5

Stearinsäure 2

Vernetzungssystem

CBS 2
Schwefel 1,5
TMTD 0,2

Um die Ergebnisse der Identifikation auf Basis von Standardprobekörpern mit denen der
Identifikation anhand bauteilnaher Probekörper vergleichen zu können, wurde die Gummi-
mischung für Standardprobekörper, bauteilnahe Probekörper und Bauteile nach dem glei-
chen Rezept und in einer Charge hergestellt. Die Materialeigenschaften orientieren sich beim
betrachteten Bauteil an denen derjenigen Gummimischung, welche normaler Weise zur Her-
stellung der Fahrzeugbuchsen bei der Anvis Deutschland GmbH verwendet wird. Es handelt

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


6.4 Stoffgesetze 69

sich dabei um einen mit Ruß gefüllten Naturkautschuk, dessen chemische Zusammensetzung
in Tabelle 6.1 dargestellt ist.

Bei Lagerung einer fertigen, jedoch unvulkanisierten, Kautschukmischung verändern sich im
Laufe der Zeit deren Eigenschaften. Um dies zu vermeiden, wurde die fertige Kautschuk-
mischung nach der Herstellung zeitnah verarbeitet - sowohl für die Standardprobekörper als
auch für die Bauteile und bauteilnahen Probekörper. Temperatur und Dauer der Vulkanisie-
rung wurden auf Basis der in Bild 6.9 dargestellten Vulkameterkurve gewählt.

Bild 6.9: Vulkameterkurve, aufgenommen mit Rheometer MDR 2000 E.

6.4 Stoffgesetze

In der industriellen Anwendung hat ein geeignetes Materialmodell praktisch nie die Aufga-
be, das reale Werkstoffverhalten möglichst genau und vollständig nachzubilden. Im Vorder-
grund für die Praxistauglichkeit eines Stoffgesetzes steht vielmehr der ausgewogene Kom-
promiss zwischen problemspezifischen Anforderungen an Geltungsbereich, Genauigkeit und
Eigenschaftskombination der Materialbeschreibung auf der einen Seite und wirtschaftli-
chen Beschränkungen bezüglich erforderlicher Computerkapazitäten, Berechnungszeiten und
Charakterisierungsaufwand auf der anderen Seite. Für FEM-Simulationen von Elastomer-
Bauteilen werden deshalb vorwiegend hyperelastische Materialgesetze genutzt, welche in den
meisten kommerziellen FEM-Programmen verfügbar sind. Kennzeichnend ist die ausschließ-
liche Abhängigkeit des Spannungszustands von der aktuellen Deformation und nicht von
deren Vorgeschichte, wodurch die Darstellung von Hysterese-Effekten unmöglich ist. Die
Abbildung des realen Materialverhaltens ist dadurch zwar begrenzt, im Gegenzug ist die
Zahl der Materialparameter aber gering. Dies ist insbesondere im Hinblick auf die notwen-

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


70 6 Identifikation von Materialparametern anhand bauteilnaher Probekörper

digen FEM-Simulationen für gestörte Parameter im Rahmen einer Identifikation günstig.
Ein weiterer Vorteil ist das bessere Konvergenzverhalten gegenüber mächtigeren, und damit
einhergehend meist komplexeren, Materialmodellen.

Da es bislang in vielen Aspekten noch nicht gelungen ist, die tatsächlichen physikalischen
Vorgänge innerhalb von Elastomeren in entsprechenden Stoffgesetzen umzusetzen, wird das
Materialverhalten meist rein phänomenologisch nachgebildet. Darüber hinaus wird gewöhn-
lich inkompressibles Materialverhalten angenommen. Für die im Folgenden vorgestellten
Stoffgesetze wird die Formulierung der Energiedichte Ŵ in Abhängigkeit der Hauptinvari-
anten des Rechts-Cauchy-Green-Tensors verwendet.

Das einfachste hyperelastische Stoffgesetz ist das Neo-Hookesche Gesetz, welches in in-
kompressibler Formulierung nur einen Parameter α beinhaltet:

Ŵ = α (I1 − 3) mit: I3
!
= 1 . (6.1)

Es stellt eine Sonderform des Mooney-Rivlin-Ansatzes (Mooney, 1940) dar, welcher zusätz-
lich einen von I2 abhängigen Term und somit einen weiteren Parameter β besitzt:

Ŵ = α (I1 − 3) + β (I2 − 3) mit: I3
!
= 1 . (6.2)

Um die Nichtlinearität besser abbilden zu können, kann das YEOH-Stoffgesetz (Yeoh, 1990)
genutzt werden, welches eine Erweiterung des Neo-Hooke-Gesetzes um zwei weitere von
I1 abhängige Terme darstellt:

Ŵ = α1 (I1 − 3) + α2 (I1 − 3)2 + α3 (I1 − 3)3 mit: I3
!
= 1. (6.3)

Im Gegensatz zu den vorgenannten Ansätzen ist das Ogden-Gesetz (Ogden, 1972) auf Basis
der Hauptstreckungen λi formuliert:

Ŵ =
N∑

n=1

μn

αn
(λαn

1 + λαn

2 + λαn

3 − 3) mit: I3
!
= 1 . (6.4)

Die Anzahl der Materialparameter αn und μn kann durch den Anwender festgelegt wer-
den. Bei passender Wahl von αn geht das Ogden-Gesetz in das Neo-Hookesche Gesetz
(N = 1, α1 = 2) bzw. in den Mooney-Rivlin-Ansatz (N = 2, α1 = 2, α2 = −2) über. Beim
Setzen der Parameter ist zu beachten, dass die Verwendung mehrerer Potenz-Terme zwar die
Anpassung an ein Experiment verbessert, die damit einhergehende steigende Parameterzahl
jedoch zu ungewünschten Korrelationen zwischen diesen führen kann (Kap. 6.6.4). Zudem ist
für eine zuverlässige Bestimmung der Parameter eine umfangreichere Basis experimenteller
Daten notwendig.

Weitere, an dieser Stelle nicht näher betrachtete, hyperelastische Stoffgesetze stammen z.B.
von Gent und Thomas (1958), Hart-Smith (1966) und Alexander (1968). Aufgrund ihrer
Verfügbarkeit in den üblichen FEM-Programmen (hier: MSC.MARC ∗ und ABAQUS ∗) sowie
der guten Praxistauglichkeit werden für das vorliegende Beispiel die Ansätze von YEOH und
Ogden verwendet.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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Ein entscheidender Nachteil der hyperelastischen Stoffgesetze besteht in der sehr begrenz-
ten Abbildungsmöglichkeit typischer Effekte von Elastomeren. In den vergangenen Jahren
wurden deshalb verschiedene inelastische Ansätze entwickelt, um einige dieser Effekte be-
schreiben zu können. Für die in der Fahrzeugbuchse verwendete NR-Mischung sind vor allem
Entfestigung, Hystereseerscheinungen sowie verbleibende Restverformungen von Bedeutung.
Zur Verdeutlichung sind in Bild 6.10 die Ergebnisse eines mehrstufigen uniaxialen Zugver-
suches an einem S2-Zugstab aus dieser NR-Mischung dargestellt.
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Bild 6.10: Spannungs-Dehnungs-Verlauf für einen mehrstufigen einachsigen S2-Zugversuch
mit jeweils 5 Zyklen (links) sowie der für die Identifikation verwendeten (qua-
si)stationären Zyklen (rechts). Zusätzlich Kennzeichnung der Entfestigung durch
Lastwiederholung (1), Hysterese (2) und Restverformung (3).

Infolge von wiederholten Lastamplituden kommt es zu der für Gummi typischen Entfesti-
gung, welche auch als Mullins-Effekt bezeichnet wird. Einen weiteren Mullins-Effekt stellt die
Vorreckung eines Materials dar, welchem vor allem die verbleibende Restverformung zugeord-
net werden kann. Zur Abbildung dieser Effekte in einem Materialmodell exis-
tieren verschiedene Ansätze, z.B. von Klüppel und Schramm (2000), Miehe et al. (2004),
Miehe und Göktepe (2005) oder Besdo und Ihlemann (2003). Weiter entwickelte Stoffgesetze
bilden darüber hinaus auch die belastungsinduzierte Anisotropie (Göktepe und Miehe, 2005;
Dargazany und Itskov, 2009; Freund und Ihlemann, 2010) ab. Obwohl die Entfestigungser-
scheinungen zumindest teilweise reversibel sind, spielt dies bei der Wahl des Materialmodells
für die betrachtete Fahrwerksbuchse aufgrund der langen Erholungszeit keine Rolle.

Vor allem gefüllte Gummiwerkstoffe wie die verwendete NR-Mischung weisen teils erhebliche
Hystereseerscheinungen auf. Der damit verbundene Unterschied zwischen Be- und Entlas-
tung ähnelt viskoelastischem Materialverhalten. Dies spiegeln auch einige Ansätze, z.B. von
Bergström und Boyce (1998) oder Lion (2000), wider. Für die hier betrachtete Anwendung
steht nicht der Einspielvorgang, sondern vor allem der quasistationäre Belastungszustand
im Vordergrund. Parallel dazu müssen bei der Identifikation anhand bauteilnaher Probekör-
per (Kap. 6.7) viele FEM-Simulationen durchgeführt werden, weshalb die Reduzierung der
Anzahl simulierter Belastungszyklen außerordentlich wichtig ist. Demnach sind vor allem
diejenigen Materialmodelle interessant, bei denen sich möglichst schnell eine Gleichgewichts-
hysterese einstellt.
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Eine weitere Eigenschaft von Elastomeren ist Relaxation als Sonderform der Viskoelasti-
zität. In welcher Form sich die Materialspannung in gefüllten Gummiwerkstoffen unter einer
vorgegebenen und konstant gehaltenen Deformation verringert, wird zum Beispiel in den
Arbeiten von Gent (1962), Lion (1997) und Bergström und Boyce (1998) betrachtet. Die im
Lastenheft für die betrachtete Fahrwerksbuchse definierten Belastungen werden jedoch in
einem Zeitraum aufgebracht, welcher deutlich unterhalb typischer Relaxationszeiten liegt.
Weiterhin würden Terme eines inelastischen Stofgesetzes, welche das relaxierende Verhal-
ten beschreiben, die Anzahl der zu identifizierenden Parameter erhöhen. Darüber hinaus
müssten zusätzliche Versuche definiert werden, anhand derer diese Parameter identifiziert
werden können. Bei der Wahl des im Projekt genutzten Stoffgesetzes wird deshalb auf die
Darstellungsmöglichkeit von Relaxation verzichtet.
Bei der Wahl eines geeigneten Stoffgesetzes ist nicht nur die Möglichkeit zur Abbildung ty-
pischer Gummieigenschaften relevant, sondern im Hinblick auf die industrielle Anwendung
auch die Verfügbarkeit in den verwendeten FEM-Programmen MSC.MARC und ABAQUS

und ein möglichst robustes Konvergenzverhalten. Leider ist eine gleichzeitige Erfüllung al-
ler Kriterien zum aktuellen Zeitpunkt mit den eingebauten Stoffgesetzen nur mit Abstrichen
möglich. Beispielsweise ist der Ansatz von Ogden und Roxburgh (1999) recht robust, umfasst
wenige Materialparameter und steht als implementiertes Materialmodell bereits zur Verfü-
gung, jedoch können damit die Hysterese-Effekte nicht abgebildet werden. Die Möglichkeit
zur Überlagerung herkömmlicher hyperelastischer Materialmodelle mit viskoelastischen Ter-
men ist nicht praktikabel, da der damit einhergehende Einfluss der Belastungsgeschwindig-
keit mit den verfügbaren Experimenten nicht ausreichend berücksichtigt werden kann. Da
moderne FEM-Programme jedoch die Nutzung eigener Stoffgesetze mit Hilfe von Nutzer-
schnittstellen erlauben (Kap. 2.4), liegt die Wahl eines modernen, noch nicht standardmäßig
implementierten, Stoffgesetzes nahe. Üblicherweise werden in der Literatur bereits identi-
fizierte Parametersätze für die vorgestellten inelastischen Materialmodelle angegeben. Es
existieren jedoch selbst in Publikationen, welche Bezug auf die Identifikation der Parame-
ter nehmen (z.b. Dargazany und Itskov (2009)), oft nur wenige Angaben darüber, wie sich
das Stoffgesetz im Identifikationsprozess verhält. Gleiches gilt auch für die Robustheit der
Simulationen bei ungünstigen Parameterkonstellationen, welche während der Identifikation
entstehen können. Die Auswahlkriterien lassen sich demnach wie folgt zusammenfassen:

• Abbildung von Hysterese, Restdeformation und Mullins-Effekt

• Stabilität des Stoffgesetzes bei starker Deformation der finiten Elemente

• Robustes Konvergenzverhalten auch bei ungünstigen Parameterkonstellationen

• Verfügbarkeit in MSC.MARC sowie ABAQUS bzw. Aufwand der Implementierung in
eine Nutzerschnittstelle

Die Entscheidung fiel zugunsten des von Ihlemann (2003) entwickelten Model of Rubber
Phenomenology (Morph) in Kombination mit dem Konzept repräsentativer Raumrich-
tungen (Ihlemann, 2007). Für das Stoffgesetz lag zu diesem Zeitpunkt bereits eine Im-
plementierung für die beiden verwendeten FEM-Programme in Form einer entsprechenden
Nutzerschnittstelle vor und es war möglich, auf Erfahrungen bezüglich der Anpassung an
experimentelle Daten (Hohl, 2007) zurück zu greifen.
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6.4.1 Morph in repräsentativen Richtungen

Das MORPH-Stoffgesetz (Model of Rubber Phenomenology) wurde in erster Linie zur
Darstellung der nichtlinearen, inelastischen Effekte von gefüllten Gummiwerkstoffen entwi-
ckelt. Mit nur 8 Parametern sowie dem Kompressionsmodul ist die Abbildung typischer
Eigenschaften wie Hystereseerscheinungen, Entfestigung und verbleibender Restverformung
auch bei großen Verzerrungen möglich. Im Folgenden werden die wesentlichen Teile des Ma-
terialmodells in kompakter Form dargestellt, wobei die ausführliche Herleitung Ihlemann
(2003) entnommen werden kann.

Entsprechend der Lagrangeschen Formulierung setzen sich die Gesamtspannungen
(2. Piola-Kirchhoff-Spannungstensor T̃ ) des Stoffgesetzes aus folgenden Teilen zusammen:

T̃ = 2α
G
C ′ · C 1 +

(
T̃Z · C)′ · C 1 − p J3 C

1 . (6.5)

Der erste Teil beschreibt die Grundspannungen, welche für konstante α (was im Allgemei-
nen nicht der Fall ist) der Neo-Hooke-Formulierung entsprechen. Die Variable α ist in
Gl. (6.10) definiert und beinhaltet verschiedene Materialparameter pi sowie den Schlepp-

zeiger CS
T, welcher das Maximum der Tresca-Invariante von

G
C während der gesamten Be-

lastungsgeschichte darstellt:

CS
T (t) = max

[
G
CT (τ) ; 0 ≤ τ ≤ t

]
mit:

G
CT = max

[∣∣∣∣ GCI −
G
CJ

∣∣∣∣ ; I, J = 1, 2, 3

] (6.6)

Das bedeutet, dass nach Erreichen der maximalen Verzerrung die Grundspannungen ein
rein hyperelastisches Materialverhalten beschreiben. Im zweiten Teil ist die Entwicklung von
Zusatzspannungen T̃Z durch eine Differentialgleichung definiert:

�

T̃Z = β
G
LT

(
T̃H − T̃Z

)
+

1

3

(
T̃Z ·· C) �

C 1 − 1

3

(
C 1 ·· �

C
)
T̃Z mit T̃Z

0 = 0 . (6.7)

Hierbei werden die begrenzenden Hüllspannungen T̃H mittels einer Exponentialfunktion
berechnet:

T̃H =

⎛⎝γ exp

⎛⎝⎛⎝p7

G
L
G
LT

G
CT

CS
T

⎞⎠⎞⎠+ p8

G
L
G
LT

⎞⎠ · C 1 . (6.8)

Der Tensor
G
L kann als Lagrangesches Äquivalent zur Zaremba-Jaumann-Zeitableitung

des isochoren Links-Cauchy-Green-Tensor interpretiert werden. Die entsprechende

Tresca-Invariante wird mit
G
LT ausgedrückt:

G
L =

1

2

(
C 1 · �

C +
�

C · C 1
)′

· G
C . (6.9)
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Die Größen α, β und γ werden wir folgt dargestellt:

α = p1 + p2 f
(
p3C

S
T

)
β = p4 f

(
p3C

S
T

)
γ = p5C

S
T

(
1− f

(
CS

T/p6
)) (6.10)

mit
f (x) =

1√
1 + x2

. (6.11)

Darüber hinaus wurde die uniaxiale Form des tensoriellen Stoffgesetzes in das Konzept der
repräsentativen Richtungen (RepRicht) (Ihlemann, 2007; Freund und Ihlemann, 2010) in-
tegriert. Für die Verwendung dieses Prinzips werden anhand eines vorgegebenen dreidimen-
sionalen Verzerrungszustandes die Streckungen gedachter materialfester Linien in diskreten,
möglichst gleichmäßig verteilten Richtungen bestimmt. Für jede dieser “repräsentativen Rich-
tungen” lässt sich mit der uniaxialen Materialbeschreibung eine einachsige Spannungsantwort
angeben. Der Gesamtheit aller Richtungen wird anschließend über die Forderung gleicher
Formänderungsleistung durch numerische Integration über die Kugeloberfläche ein vollstän-
diger Spannungstensor zugeordnet. Dieser wird wiederum als Antwort auf die vorgegebene
Deformation interpretiert. Durch die Anwendung des Konzeptes auf das Morph-Stoffgesetz
kann günstigerweise automatisch eine weitere Eigenschaft technischer Gummiwerkstoffe, die
belastungsinduzierte Anisotropie, abgebildet werden. Zudem verhält sich das Stoffgesetz in
FEM-Simulationen stabiler, sodass auch komplizierte Bauteilsimulationen konvergieren.
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Bild 6.11: Spannungs-Dehnungs-Verlauf für einen mehrstufigen einachsigen Zug-
versuch mit jeweils 5 Zyklen bei Nutzung von MORPH in RepRicht.

In Bild 6.11 ist beispielhaft der Verlauf eines mehrstufigen Zugversuches mit dem in Ta-
belle 6.12 angegebenen Startparametersatz zur Beschreibung eines gefüllten Elastomers dar-
gestellt. Die Belastung erfolgt verschiebungsgesteuert und sowohl der Hysterese-Effekt als
auch die Entfestigung und die verbleibende Restdeformation sind gut sichtbar. Aufgrund
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der Abhängigkeit der Größe der Entfestigung bzw. der Restdeformation vom Schleppzeiger
verhält sich jeder Belastungszyklus ab der zweiten Wiederholung quasistationär. Dies ist im
Hinblick auf die Identifikation sehr vorteilhaft, da in den Experimenten zwar fünf oder mehr
Wiederholungen jeder Lastamplitude zum Erreichen der Gleichgewichtshysterese benötigt
werden, diese aber direkt dem quasistationären Zustand der entsprechenden Lastamplitude
in der Simulation nach der zweiten Wiederholung zugeordnet werden können. Der notwendige
Rechenaufwand kann somit deutlich gesenkt werden.

Die zum Zeitpunkt des Projektstarts “Identifikation anhand bauteilnaher Probekörper” vorlie-
gende Implementierung des Stoffgesetzes in den Nutzerschnittstellen von MSC.MARC und
ABAQUS war für Anwendungen im wissenschaftlichen Bereich konzipiert worden. Bezüglich
einer nutzerfreundlichen Verwendung im industriellen Umfeld sowie einer effizienten Nut-
zung innerhalb von Parameteridentifikationen mussten deshalb noch einige Modifikationen
vorgenommen werden. So existierte je eine separate Implementierung für MSC.MARC und
ABAQUS, weswegen sämtliche Änderungen oder Erweiterungen des Materialmodells in zwei
voneinander abweichenden Nutzerschnittstellen vorgenommen werden mussten. Durch Ein-
führung gemeinsamer Namenskonventionen und Datenstrukturen konnten alle für das Stoff-
gesetz relevanten Routinen zusammengeführt werden, sodass für jedes FEM-Programm nur
noch eine einzelne ummantelnde Funktion notwendig ist. Die Schnittstelle wurde zudem
derart erweitert, dass bei Einhaltung einfacher Namenskonventionen während der Modeller-
stellung auch mehrere unterschiedliche Materialbereiche definiert werden können, welche sich
sowohl bezüglich des gewählten Materialmodells als auch der zugehörigen Parametersätze un-
terscheiden können. Weitere umfangreiche Änderungen betrafen die Art der Verwaltung und
Variation der Materialparameter im Rahmen der Identifikation sowie die Ausgabesteuerung
der für die Identifikation wichtigen Simulationsergebnisse (Kap. 2.4).

6.4.2 Verwendung von Stabilisierungselementen

Im Gegensatz zu üblichen FEM-Simulationen im wissenschaftlichen Bereich müssen in der
Industrie oft Belastungen an komplexen Bauteilgeometrien, welche zudem oft zu sehr großen
Deformationen führen, durch FEM-Simulationen dargestellt werden. Bereits bei der Simu-
lation der Belastungen des Bauteils unter Verwendung des robusten YEOH-Stoffgesetzes
traten teilweise Konvergenzschwierigkeiten auf (Kap. 6.2). Der Grund dafür ist, dass infolge
der Bauteilgeometrie und verstärkt durch den vorhandenen Selbstkontakt einige Elemente
dazu tendieren, aufgrund der großen lokalen Verzerrungen zu entarten. Nähern sich einzel-
ne Innenwinkel der Grenze von 180◦, ist ein Abbruch der Simulation sehr wahrscheinlich.
Aufgrund der Komplexität des inelastischen Stoffgesetzes sind derartige Innenwinkel umso
kritischer. Da eine gezielte Vernetzung zur Vermeidung dieser Effekte nicht für alle Be-
lastungsarten erfolgreich war, wurde ein anderer Ansatz zur Stabilisierung der Simulation
entwickelt. Zu diesem Zweck werden in jeder Ecke von Elementen, welche potentiell entar-
ten können, zusätzliche sogenannte “Stabilisierungselemente ” eingebaut. Ein solches Stabi-
lisierungselement wird erst dann aktiv, wenn der zugehörige Winkel sich einer vom Nutzer
gewählten kritischen Grenze (z.B. 180◦) nähert und reagiert auf die drohende Entartung mit
einer zunehmenden Versteifung der Ecke. Ein Überschreiten der kritischen Grenze ist nicht
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möglich und die Stabilität der Simulation bleibt somit gewahrt. Die Stabilisierung erfolgt,
indem für jeden Gausspunkt der Stabilisierungselemente ein Wichtungsfaktor q auf Basis der
Volumenänderung J3 berechnet wird:

q = α · β · (ln J3)β−1 mit J3 =
√
I3
(
C
)
. (6.12)

Hierbei wird das Ansprechverhalten des Wichtungsfaktors auf die Volumenänderung durch
die Steuerparameter α und β gesteuert. In Bild 6.12 sind die Verläufe des Wichtungsfaktors
für verschiedene Kombinationen der Steuerparameter beispielhaft dargestellt. Davon ausge-
hend wird die zugehörige Spannung T̃ ermittelt, welche für große q zu einer zunehmenden
Versteifung im Gausspunkt führt:

T̃ = q · C−1 . (6.13)
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Bild 6.12: Verlauf des Wichtungsfaktors q in Abhängigkeit der 3. Hauptinvariante des
Rechts-Cauchy-Green-Tensors.

Zwar verfälscht eine solche lokale Versteifung die Abbildungsgenauigkeit des Bauteilverhal-
tens, jedoch hat dies auf die globalen, integralen Größen nur einen geringen Einfluss. Dies be-
legt beispielhaft der Vergleich der axialen Belastung des bauteilnahen Probekörpers mit und
ohne Stabilisierung in Bild 6.13. Bis zum Zeitpunkt des Abbruches der Simulation aufgrund
entarteter Elemente verhalten sich beide FE-Modelle praktisch identisch. Diese Aussage ist
nur insoweit einzuschränken, dass kein beträchtlicher Teil des FE-Gebietes von Entartung
betroffen sein sollte und die daraus folgende Versteifung großer Bereiche auch die integralen
Größen maßgeblich beeinflusst.
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Bild 6.13: Simulationsvergleich der axialen Belastung eines bauteilnahen Pro-
bekörpers ohne und mit Verwendung von Stabilisierungselementen.

Die Verwendung des MORPH-Stoffgesetzes in repräsentativen Richtungen in Kombinati-
on mit der Nutzung zusätzlicher Stabilisierungselemente in FE-Gebieten mit potentiellen
Konvergenzschwierigkeiten erweist sich durchweg als vorteilhaft. Selbst anspruchsvolle Si-
mulationen am Bauteil wie die kardanische Belastung der Fahrzeugbuchse konvergieren er-
folgreich, obwohl dies bei Verzicht auf die Stabilisierungselemente und Nutzung des robusten
Yeoh-Ansatzes aufgrund entartender Elemente nicht der Fall ist.

6.5 Bauteilsimulation

Zur Darstellung der verschiedenen Belastungen aus Kap. 6.2 in diesbezüglichen FEM-Simula-
tionen ist zunächst eine Vernetzung des Bauteils notwendig. Im Rahmen des Forschungsvor-
habens wurden dafür, ebenso wie für die anschließenden Simulationen, die kommerziellen
FEM-Programme MSC.MARC ∗ und ABAQUS ∗ genutzt. Aufgrund der Tatsache, dass die
prinzipielle Vorgehensweise unabhängig vom gewählten FEM-Programm ist, wird im Folgen-
den nur auf die mittels MSC.MARC durchgeführten Simulationen Bezug genommen.

Da lediglich das Verhalten der Gummischicht von Interesse ist, wird auch nur diese als
FE-Modell benötigt - die Berücksichtigung der Außen- und Innenhülse erfolgt durch Definiti-
on entsprechender Randbedingungen. Die Vernetzung der Gummischicht des realen Bauteils
ist in Bild 6.14 dargestellt, wobei Abweichungen von der Rotationssymmetrie vernachlässigt
wurden.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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www.ankhor.com

Bild 6.14: FE-Modell des Originalbauteils der Anvis-Buchse.

Zwar ist die Geometrie der Gummischicht nicht übermäßig kompliziert, jedoch stellen die
durch Kalibrierung und Belastung bedingten großen Verzerrungen in einigen Bereichen des
Modells sowie der entstehende Selbstkontakt eine große Herausforderung dar. Durch die
Nutzung der in Kap. 6.4.2 beschriebenen Stabilisierungselemente können dennoch alle Bean-
spruchungen des Lastenhefts simuliert werden.

Zur Darstellung der Simulationsergebnisse bietet sich ein geometrisches Vergleichsmaß an,
da vor allem die erheblichen Verzerrungen für Elastomere im Allgemeinen und für die hier
betrachteten Lastfälle im Besonderen typisch und somit zur Bewertung besonders hilfreich
sind. Zudem ist die Aussagekraft von Spannungsgrößen, gerade in Gebieten mit potentieller
Entartung, nur begrenzt zuverlässig (siehe Kap. 6.4.2). Gewählt wird deshalb, analog zur
Berechnung der plastischen Vergleichsverzerrung (z.B. nach Gross (1992)), die auf Basis des
Green-Lagrangeschen Verzerrungstensors γ gebildete Vergleichsdehnung εeq:

εeq =

√√
2

3
γ ·· γ mit γ =

1

2

(
F TF − I

)
. (6.14)

Die Simulationen, welche den nachfolgenden Darstellungen zugrunde liegen, wurden unter
Verwendung von Morph in RepRicht mit den in Tabelle 6.18 angegeben Parameter durch-
geführt. Zusätzlich sind in den FE-Modellen (in den Abbildungen nicht sichtbare) Stabili-
sierungselemente enthalten, um das Auftreten entarteter finite Elemente, speziell im Bereich
des Selbstkontaktes, zu vermeiden. Bevor die Bauteilbeanspruchungen aufgebracht werden,
müssen vorher auch in der Simulation der Abkühlprozess sowie die Kalibrierung der Buch-
se berücksichtigt werden. In Bild 6.15 ist das deformierte Bauteil nach dem Abkühlen um
150K abgebildet. Der anschließende Kalibriervorgang führt zu dem in Bild 6.16 dargestellten
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Zustand. Obwohl die verschiedenen Belastungen noch nicht aufgebracht wurden, sind einige
Bereiche des Bauteils bereits stark deformiert.
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Bild 6.15: Vergleichsdehnungen im Bauteil nach dem Abkühlen.
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Bild 6.16: Vergleichsdehnungen im Bauteil nach dem Kalibrieren.

Die verschiedenen Beanspruchungen werden jeweils nach Abkühlung und Kalibrierung der
Buchse simuliert. Um den quasistationären Zustand zu erreichen, werden die Belastungszy-
klen zwei Mal in Folge mit der gleichen Amplitude aufgebracht.

Bei der Simulation der axialen Bauteilbelastung kann aufgrund des axialsymmetrischen Cha-
rakters ein rotationssymmetrisches FE-Modell genutzt werden. Die wiederholte axiale Be-
lastung des Bauteils mit F axial = 1KN führt auf die in Bild 6.17 dargestellten Vergleichs-
dehnungen.
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(a) Rückseite
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(b) Vorderseite

Bild 6.17: Vergleichsdehnungen bei axialer Belastung (1KN).

Da die radiale Belastung nicht rotationssymmetisch ist, muss ein 3D-Netz für die FEM-
Simulation verwendet werden. Allerdings kann die Größe des Modells durch Ausnutzung der
Symmetrieebenen in axialer Richtung sowie der Symmetrieebene, welche den mittigen Meri-
dianschnitt darstellt, geviertelt werden. Die Simulation für die radiale Maximalbelastung von
F rad = 10KN führt auf die in Bild 6.18 dargestellten Vergleichsdehnungen. Dabei treten in
einigen Elementen sehr ungünstige Innenwinkel auf, was zu einer entsprechenden Versteifung
der dort befindlichen Stabilisierungselemente führt. Dies führt zwar lokal zu Fehlern, hat auf
die globalen Reaktionsgrößen jedoch keinen signifikanten Einfluss.

5.145E+00

4.292E+00

3.439E+00

2.586E+00

1.733E+00

8.800E-01

5.145E+00

4.292E+00

3.439E+00

2.586E+00

1.733E+00

8.800E-01

2.703E-02

www.ankhor.com

(a) Oberseite
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(b) Unterseite

Bild 6.18: Vergleichsdehnungen bei radialer Belastung (10KN).

Auch bei der kardanischen Beanspruchung handelt es sich nicht um eine rotationssymme-
trische Belastung, womit ebenfalls ein 3D-Netz für die FEM-Simulation notwendig ist. Zur
Reduktion der Größe des Modells kann lediglich die Symmetrieebene, welche den mittigen
Meridianschnitt darstellt, genutzt werden. Die Simulation für die kardanische Maximalver-
drehung von ϕkard = 3◦ führt auf die in Bild 6.19 dargestellten Vergleichsdehnungen. Analog
zur radialen treten auch bei der kardanischen Belastung in einigen Bereichen durch Stabili-
sierungselemente induzierte Spannungen auf, welche das Ergebnis lokal beeinflussen.
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(a) Vorderseite
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(b) Rückseite

Bild 6.19: Vergleichsdehnungen bei kardanischer Belastung (3◦).

Für die Simulation von Torsionsbelastungen steht im FEM-Programm MSC.MARC ein spe-
zieller Elementtyp (Twist & Herrmann Formulation) zur Verfügung. Bei Verwendung dieses
Typs würde ein rotationssymmetrisches FE-Modell für die Berechnung genügen. Leider be-
schränkt sich die Darstellungsgenauigkeit der entsprechenden Simulationen nur auf kleine
Verdrehungen, weshalb eine Nutzung an dieser Stelle nicht möglich ist. Um dennoch kein
3D-Modell nutzen zu müssen, wird der Meridianschnitt der Gummischicht durch Extrusion
in Umfangsrichtung in ein dünnes Schichtmodell umgewandelt und mit zyklischen Rand-
bedingungen versehen. Der Extrusionswinkel beträgt 1, 25◦ und stellt einen Kompromiss
zwischen gutem Konvergenzverhalten (je kleiner der Extrusionswinkel, desto schlechter) und
hoher Abbildungsgenauigkeit (je größer der Extrusionswinkel, desto ungenauer) dar. Die Si-
mulation für die Maximalverdrehung von ϕTors = 15◦ führt auf die in Bild 6.20 dargestellten
Vergleichsdehnungen, wobei zur Verdeutlichung der starken Verwölbung des Meridianschnitts
nochmals der kalibrierte Zustand zum Vergleich aus dem gleichen Blickwinkel zu sehen ist.
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(a) Nach Kalibrierung
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(b) Nach Torsionsbeanspruchung

Bild 6.20: Vergleichsdehnungen bei Torsionsbeanspruchung (15◦).

Aufgrund der großen Elementzahl in den 3D-Modellen der radialen und der kardanischen
Belastung sind diese FEM-Simulationen sehr rechenintensiv. Hinzu kommt, dass die bereits
durch Kalibrierung entstandenen Gebiete mit Selbstkontakt durch die Belastungen nochmals
größer werden und das Konvergenzverhalten deutlich beeinflussen. Nur durch eine geschickte
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Kontaktformulierung können hier unerwünschte Effekte wie die Durchdringung gegenüber
liegender Flächen oder das “Hängenbleiben” einzelner Knoten vermieden werden.

Die Materialparameter, welche in den dargestellten Simulationen verwendet wurden, sind
zu Beginn eines Projektes gewöhnlich nicht bekannt. Zwar ist es legitim, einen bereits be-
kannten Parametersatz des Materialmodells von einer vergleichbaren Gummimischung zu
nutzen, um vorab eine grobe Bewertung der Simulationen vornehmen zu können. Jedoch ist
angesichts der Tatsache, dass neben der gewählten Gummimischung sowohl die Geometrie
als auch der Fertigungsprozess des Bauteils die Materialparameter maßgeblich beeinflussen,
die Identifikation der Parameter des Stoffgesetzes absolut notwendig.

6.6 Identifikation mit Standardprobekörpern

Die Identifikation von Materialparametern wird üblicher Weise mittels standardisierter La-
borprüfkörper durchgeführt. Diese sind gewöhnlich durch eine sehr einfache Geometrie ge-
kennzeichnet und die Belastungen sind derart gewählt, dass sie als näherungsweise homogen
charakterisiert werden können. Für die Nutzung solcher Standardprobekörper sprechen meh-
rere Fakten:

• Die notwendige Rechenkapazität zur Ermittlung der für die Identifikation notwendigen
Zielfunktionswerte ist außerordentlich gering.

• Konvergenzschwierigkeiten spielen unabhängig vom gewählten Stoffgesetz praktisch
keine Rolle, da häufig die Betrachtung eines einzelnen Materialpunktes mit einem auf-
gebrachten Belastungszustand genügt.

• Das Materialverhalten wird durch die Beschränkung auf homogene Belastungen un-
mittelbar charakterisiert.

• Standardprobekörper können preisgünstig und in großer Zahl hergestellt werden. Da
sich deren Geometrie nicht an den Bauteilen orientiert, können sowohl die Herstel-
lungswerkzeuge als auch die Prüfvorrichtungen für jede Identifikation erneut verwendet
werden.

Vor allem der letzte Punkt stellt für industrielle Anwendungen einen großen Vorteil dar,
da bei der Entwicklung neuer Bauteile oder Gummimischungen im ersten Schritt die exakte
Abbildung des Materialverhaltens oft gar nicht im Vordergrund steht. Vielmehr genügt meist
erst einmal eine grobe Abschätzung, welche dafür aber möglichst schnell zur Verfügung ste-
hen muss. Unter anderem deshalb ist die Identifikation anhand von Standardprobekörpern
in der Industrie sehr gebräuchlich und stellt auch hier die Grundlage weiterer Betrachtungen
dar. Sowohl die Herstellung der Standardprobekörper als auch die Durchführung der ent-
sprechenden Versuche erfolgten am DIK Hannover.
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6.6.1 Auswahl der Probekörpergeometrien

Nach wie vor werden in vielen Bereichen der Industrie Stoffgesetzanpassungen noch aus-
schließlich anhand der Messdaten aus einachsigen Zugversuchen (S2-Zugversuch) durchge-
führt. Die eigentliche Anpassung, meist durch hyperelastische Stoffgesetze, stellt dabei ge-
wöhnlich kein Problem dar. Dies ist beispielhaft für das Ogden-Stoffgesetz mit zwei Po-
tenztermen in Bild 6.21 dargestellt. Hierbei, wie auch im Folgenden, stellt ε die technische
Dehnung und T die 1. Piola-Kirchhoff-Spannung (technische Spannung) dar.
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Bild 6.21: Spannungs-Dehnungs-Diagramm auf Basis des S2-Zugversuches -
Kurvenverlauf für identifizierte Ogden-Parameter (n = 2).

Die Anwendung auf die Simulation anderer homogener Belastungsarten (Bild 6.22) zeigt
jedoch eine deutliche Abweichung gegenüber den zugehörigen Messungen.
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Bild 6.22: Spannungs-Dehnungs-Diagramm auf Basis des S2-Zugversuches -
Kurvenverläufe für identifizierte Ogden-Parameter (n = 2).

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


84 6 Identifikation von Materialparametern anhand bauteilnaher Probekörper

Der Grund dafür liegt nicht nur in den beschränkten Abbildungsmöglichkeiten der elas-
tischen Stoffgesetze, sondern darin, dass der S2-Zugversuch eine sehr spezielle Belastungsart
darstellt. In Bild 6.23 sind die möglichen Beanspruchungen eines Materialpunktes bei ange-
nommener Volumenkonstanz (I3 = 1) im I1-I2-Raum gekennzeichnet. Daraus wird ersicht-
lich, dass insbesondere der S2-Zugversuch nur den Rand des möglichen Belastungsgebietes
darstellt.
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Bild 6.23: I1-I2-Diagramm für mögliche Kombinationen
der Hauptstreckungen.

Um eine möglichst repräsentative Abbildung des gesamten Lösungsraumes zu erhalten, soll-
ten möglichst viele unterschiedliche Belastungsarten in die Identifikation einbezogen werden.
Im vorliegenden Projekt wurden deshalb vier verschiedene näherungsweise homogene Ex-
perimente durchgeführt:

• einachsiger Zugversuch an einem S2-Zugstab (Bild 6.24)

• biaxaler Zugversuch (Bild 6.25)

• Plane-Strain-Zugversuch (Bild 6.26)

• Simple-Shear-Versuch (Bild 6.27)

Bild 6.24: S2-Zugstab. Bild 6.25: Biaxiale Zugprobe.
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Bild 6.26: Plane-Strain-Probekörper. Bild 6.27: Simple-Shear-Probekörper.

Die Belastung erfolgte dabei jeweils weggesteuert, wobei in den Experimenten für jede Last-
amplitude jeweils fünf Zyklen durchgeführt wurden. Um die Auswirkung von Messfehlern
zu verringern, wurden die Experimente jeweils drei Mal wiederholt und die gewonnenen
Messergebnisse anschließend gemittelt.

Da die Materialparameter nicht für den anfänglichen Zustand des Materials bestimmt werden
sollen, werden die transienten Zyklen der Experimente nicht berücksichtigt. Lediglich der
jeweils fünfte Zyklus, welcher bereits näherungsweise stationär ist,wird für die Identifikation
verwendet. Dies ist am Beispiel des S2-Zugversuchs in Bild 6.28 dargestellt.
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Bild 6.28: Spannungs-Dehnungs-Diagramm des S2-Zugversuches.

Darüber hinaus wurden auch mehrstufige Versuche durchgeführt. Die dabei gewonnen Er-
gebnisse werden benötigt, wenn statt eines hyperelastischen Stoffgesetzes ein komplexeres,
inelastisches Stoffgesetz verwendet wird. Die Belastung wurde hierfür in drei Stufen unter-
teilt, wobei die Belastungszyklen jeder Stufe so oft wiederholt wurden, bis der jeweilige sta-
tionäre Zyklus näherungsweise erreicht wurde. Die Aufteilung der drei Stufen erfolgte linear
bezüglich der dem S2-Zugversuch zugeordneten Henky-Dehnung hZug

1 , was einer logarithmi-
schen Aufteilung der entsprechenden Streckung λZug

1 entspricht und für den S2-Zugversuch
in Bild 6.29 dargestellt ist:

λi = ehi . (6.15)
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Bild 6.29: Spannungs-Dehnungs-Diagramm bezüglich des
mehrstufigen S2-Zugversuches.

Die Durchführung der Versuche erfolgte ganz bewusst verschiebungsgesteuert. Dies bietet ge-
genüber der kraftgesteuerten Belastung den Vorteil, dass im Hinblick auf die Eigenschaft der
belastungsinduzierten Entfestigung des verwendeten Materials schneller ein quasistationärer
Zyklus erreicht wird. Viel wichtiger ist jedoch ein weiterer Aspekt. Bei der Verwendung von
MORPH in RepRicht genügt für einen Belastungszyklus entsprechend Kap. 6.4.1 eine einzige
Wiederholung zum Erreichen des quasistationären Zustands. Für einen dreistufigen Versuch
genügt demnach die Darstellung von insgesamt sechs Belastungszyklen, um jedem quasi-
stationären Zyklus aus dem Experiment einen entsprechend simulierten gegenüberstellen zu
können. Gerade im Hinblick auf die rechenintensive Identifikation anhand bauteilnaher Pro-
bekörper ist dies außerordentlich wichtig. Der Nachteil dieses Vorgehens besteht darin, dass
bei den Zugversuchen an den Standardprobekörpern am Ende der Rückverformung (Entlas-
tungszyklen) infolge der Entfestigung bereits vor Erreichen des Ausgangspunktes die Span-
nungen Null werden und die nachfolgenden Messdaten bis zum erneuten Überschreiten dieser
Grenze unbrauchbar, was z.B. Bild 6.28 deutlich zeigt. Eine mögliche Lösung bestünde darin,
nur die Hinverformung weggesteuert durchzuführen und die Rückverformung kraftgesteuert.
Dies war aus messtechnischer Sicht jedoch nicht möglich. Zudem ist es in einigen FEM-
Programmen (z.B. bei MSC.MARC nur durch Nutzung der User-Subroutine “FORCDT” )
aufwändig, während eines Simulation zwischen den Belastungsarten zu wechseln - was im
Hinblick auf die industrielle Anwendung nicht zu vernachlässigen ist. Im vorliegenden Pro-
jekt wurden die Zugversuche deshalb zwar vollständig verschiebungsgesteuert durchgeführt,
die unbrauchbaren Messdaten bei der Anpassung jedoch nicht berücksichtigt.

Bei der Festlegung der Maximalbelastung für die Versuche muss berücksichtigt werden, dass
die Zuverlässigkeit der identifizierten Materialparameter stark von der Abstimmung der ho-
mogenen Experimente auf die später typische Belastung in den FEM-Simulationen des Bau-
teils abhängig ist. In Bild 6.31 ist die Anpassung an das Yeoh-Stoffgesetz bei unterschiedli-
chen Maximaldehnungen für den S2-Zugversuch dargestellt. Dabei wird deutlich, dass nahe

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


6.6 Identifikation mit Standardprobekörpern 87

dem Koordinatenursprung die Messdaten von der simulierten Kurve abweichen. Noch dras-
tischer ist jedoch die Extrapolation des Materialverhaltens auf höhere Dehnungen - sie kann
zu katastrophalen Ergebnissen führen. Es ist daher notwendig, die Höhe der Belastungen in
den Experimenten auf die später typischen Belastungsintensitäten im Bauteil abzustimmen.
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Bild 6.30: Spannungs-Dehnungs-Diagramm für den S2-Zugversuch
bei Nutzung unterschiedlicher Maximaldehnungen.
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Bild 6.31: Spannungs-Dehnungs-Diagramm für den S2-Zugversuch
bei Nutzung unterschiedlicher Maximaldehnungen.
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6.6.2 Nullpunktverschiebung von Messdaten

Im industriellen Umfeld werden entsprechend Kap. 6.4 vor allem hyperelastische Stoffge-
setze genutzt. Diese sind jedoch nicht in der Lage, belastungsinduzierte Restverformungen
darzustellen. Eben diese treten jedoch bei drei der vier hier betrachteten Versuche an Stan-
dardprobekörpern auf, da diese einsinnige Zugversuche darstellen. Das heißt, dass sich nach
einem Belastungszyklus eine Restdehnung einstellt, welche bei mehrfacher Wiederholung der
Lastamplitude einem quasistationären Wert entgegen strebt. Sollen nun Materialparameter
identifiziert werden, stellt sich die Frage nach dem Umgang mit dieser Restdehnung. In der
Dokumentation von MSC.MARC wird beispielsweise empfohlen, die erhaltenen Messkurven
waagerecht in den Nullpunkt zu verschieben. Bei Rücksprachen mit den Projektpartnern
wurde deutlich, dass dies auch in der Industrie gängige Praxis ist. Im Folgenden soll diese
Vorgehensweise näher beleuchtet werden.

Hierfür werden die Hauptstreckungen der Versuche an den Standardprobekörpern (Bild 6.24
- Bild 6.27) benötigt, wobei λ1 jeweils die Hauptstreckung in Belastungsrichtung kennzeich-
net:

• S2-Zugversuch (Zug) mit λ1 und λ2 = λ3 =
1√
λ1

.

• Biaxial-Zugversuch (Biax) mit λ1, λ2 = λ1 und λ3 =
1

λ2
1

.

• Plane-Strain-Zugversuch (Plane) mit λ1, λ2 = 1 und λ3 =
1

λ1

.

• Simple-Shear-Versuch (Shear) mit dem Schermaß γ bzw. κ, aus welchem sich die Haupt-
streckungen ergeben.

λ1 =

√
1 +

κ2

4
+

κ

2

λ2 =

√
1 +

κ2

4
− κ

2

λ3 = 1

Für die prinzipielle Betrachtung der Nullpunktverschiebung soll der Anstieg eines an dieser
Stelle abstrakten Versuches als linear angenommen werden. Die Zahlenwerte sind willkürlich
gewählt und die Umrechnung der Messdaten soll beispielhaft für einen einachsigen Zugver-
such betrachtet werden (Bild 6.32).
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Bild 6.32: Nullpunktverschiebung der Messdaten ohne Umrechnung.

Die bei dem Versuch ermittelte 1. Piola-Kirchhoff-Spannung T kann mit der Ausgangs-
fläche A0 sowie der gemessenen Kraft F wie folgt ausgedrückt werden:

T =
F

A0
. (6.16)

Die zugehörige Streckung λ ergibt sich aus der Ausgangslänge l0 und der aktuellen Länge l:

λ =
l

l0
. (6.17)

Der Fußpunkt von Kurve 2 liegt in Abhängigkeit der Restdehnung bei der Streckung λ∗ und
ergibt sich zu

λ∗ =
l∗

l0
> 1 . (6.18)

Wird nun angenommen, dass eine Verschiebung von Kurve 2 in den Nullpunkt das gleiche
Materialverhalten widerspiegelt, kann man dies mit einem weiteren Zugversuch prüfen. Prak-
tisch bedeutet dies, dass Person A einen S2-Zugversuch 1 durchführt, die zugehörige Probe
liegen lässt und eine Person B diese findet und ohne Vorkenntnis ihrerseits in Versuch 2 prüft.
Um keine erneute Restdehnung zu erhalten, sei angenommen, dass die maximale gemessene
Kraft in Versuch 2 der gemessenen Kraft im letzten Zyklus aus Versuch 1 entspricht. Somit
ist die Messkurve bereits ab dem ersten Zyklus stationär.

Der Fußpunkt der Kurve liegt aus Sicht von Person B bei λneu = 1, wobei sich die Streckung
aufgrund der Vorbelastung auf l∗ bezieht:

λneu =
l

l∗
. (6.19)
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Durch Erweiterung des Termes lässt sich der Bezug zu λ aus dem 1. Versuch herstellen:

λneu =
l

l∗
=

l

l0

l0
l∗

= λ
l0
l∗

. (6.20)

Die Spannung Tneu bezieht sich nun auf die Querschnittsfläche A∗, welche aufgrund des
nahezu inkompressiblen Materialverhalten durch die Gleichung

l∗A∗ = l0A0 (6.21)

charakterisiert werden kann. Dies führt zu

Tneu =
F

A∗
=

F

A0

A0

A∗
= T

A0

A∗
= T

l∗

l0
. (6.22)

Betrachtet man den Anstieg der Messkurve aus Versuch 2, so wird diese steiler:

dTneu

dλneu

=
dT

dλ

l∗ l∗

l0 l0
=

dT

dλ

(
l∗

l0

)2

. (6.23)
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Bild 6.33: Nullpunktverschiebung der Messdaten mit Umrechnung.

Entsprechend Bild 6.33 bilden die Messkurve 2 aus Versuch 1 und die Messkurve 4 aus
Versuch 2 zwar den gleichen Materialzustand ab, haben jedoch einen unterschiedlichen An-
stieg. Eine bloße Nullpunktverschiebung ist demnach aus physikalischer Sicht nicht zulässig.
Bei Umrechnung der Zugversuche entsprechend dem hier gezeigten Vorgehen muss beach-
tet werden, dass die anschließende Identifikation nicht für das unbelastete Material erfolgt.
Vielmehr erhält man Parameter, welche das Verhalten des bereits vorbelasteten Werkstoffes
beschreiben. Zudem gelten die Parameter nur dann, wenn die Belastungsintensität des Bau-
teils derjenigen im Versuch ähnelt, da andernfalls die der Umrechnung zugrunde liegende
Restdehnung nicht mehr passen würde.
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Im Gegensatz zu den Zugversuchen genügt bei Simple-Shear-Versuchen eine bloße Verschie-
bung der Daten in den Nullpunkt. Die Schubspannung τ bezieht sich auch bei einer vor-
handenen Restscherung κ∗ auf die gleiche Querschnittsfläche. Das zugeordnete Schermaß κ

ergibt sich aus
κ =

u

d
, (6.24)

wobei d den Probendurchmesser und u die Verschiebung in Querrichtung darstellen. Der
Nulldurchgang κ∗ von Kurve 1, der Resultierenden des letzten Zyklus, ergibt sich aus

κ∗ =
u∗

d
. (6.25)

Bei Messung der Kurve 2 gilt nun

uneu = ualt − u∗ , (6.26)

welches auf Basis von
κneu =

uneu

d
(6.27)

zu
κneu =

ualt − u∗

d
= κ − κ∗ (6.28)

führt.
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Bild 6.34: Nullpunktverschiebung der Messdaten bei Scherung.

Wie in Bild 6.34 verdeutlicht wird, ist demzufolge auch der Anstieg der beiden Kurven iden-
tisch. Dies stellt eine grundsätzliche Abgrenzung zur korrekten Umrechnung der Messdaten
von Zugversuchen dar.

Im Hinblick auf die im Projekt verwendeten Standardversuche kann nunmehr die Auswirkung
der Messdatenmanipulation auf die Identifikation für hyperelastische Stoffgesetze bewertet
werden. Hierbei ist zu berücksichtigen, dass lediglich der Simple-Shear-Versuch einen Scher-
versuch darstellt, während die übrigen Belastungen den Zugversuchen zuzuordnen sind. Ent-
sprechend des Umgangs mit den Messdaten sollen die Fälle
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• keine Nullpunktverschiebung,

• Nullpunktverschiebung ohne Umrechung, sowie

• Nullpunktverschiebung mit Umrechnung gemäß Gl. 6.20 und Gl. 6.22

miteinander verglichen werden.

1. Unabhängig von der Anpassungsgenauigkeit ist die Nullverschiebung von Messdaten ohne
entsprechende Umrechnung physikalisch nicht korrekt und sollte deshalb grundsätzlich
vermieden werden.

2. Bei Verwendung der Messkurven ohne Nullpunktverschiebung tritt gegenüber den anderen
beiden Varianten im ersten Viertel der Kurvenverläufe zwangsläufig eine größere Abwei-
chung zu den Messdaten auf. Dies ist jedoch unkritisch, da der ermittelte Parametersatz
in diesem Bereich ohnehin nur eingeschränkte Gültigkeit besitzt (siehe Kap. 6.6.3).

3. Erfolgt die Anpassung anhand aller vier Standardversuche, führt die Anpassung an die
Messdaten nach Nullpunktverschiebung mit Umrechnung zu einem vergleichsweise
schlechten Identifikationsergebnis. Der Grund dafür liegt darin, dass die umgerechneten
Messkurven der Zugversuche einen anderen Materialzustand repräsentieren als die umge-
rechneten Daten des Simple-Shear-Versuches. Beim Simple-Shear-Versuch findet aus-
schließlich eine Änderung der Eigenrichtungen statt. Zudem ist die Belastung im Gegen-
satz zu den Zugversuchen nicht einsinnig, weshalb sich eine andere Form der Anisotropie
ausbildet. Um Vergleichbarkeit zwischen den umgerechneten Zugversuchen und dem Sim-
ple Shear-Versuch zu erreichen, müsste eine bereits durch den Zugversuch vorbelastete
Probe geschert werden. Infolgedessen würde sich κ ändern, da sich die Probendicke d

entsprechend Gl. 6.24 ändern würde. Da entsprechende Messungen aber nicht vorliegen,
ist es günstiger, auf die Simple-Shear-Versuche zu verzichten.

4. Ein Verzicht auf die Simple-Shear-Versuche wiederum hätte einen merklichen Informati-
onsverlust zur Folge, da eben dieser Versuch einen deutlichen Mehrwert an Information
bezüglich des Materialverhaltens darstellt (vergl. Bild 6.23).

6.6.3 Kriterien zum Vergleich der Lastfälle

Aufgrund der begrenzten Gültigkeit identifizierter Parameter bezüglich der Beanspruchungs-
intensität eines Materialpunkts ist die Abstimmung der Belastungsamplituden der Stan-
dardversuche auf die im Bauteil typischen Belastungsintensitäten außerordentlich wichtig.
In diesem Zusammenhang muss jedoch auch die Abstimmung der Belastungsamplituden
der unterschiedlichen Experimente aufeinander betrachtet werden. Zu diesem Zweck sollen
unterschiedliche Vergleichsmaße betrachtet und im Folgenden vorgestellt werden.
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Vergleichsmaß Energiedichte

Entsprechend des Odgen-Ansatzes ergibt sich die Energiedichte Ŵ aus den Materialkenn-
werten und den Hauptstreckungen λi zu:

Ŵ =
∑
n

μn

αn
(λαn

1 + λαn

2 + λαn

3 − 3) . (6.29)

Dabei stellen λ1, λ2 und λ3 die Eigenwerte des rechten Strecktensors U =
√

C dar. Die Zah-
lenwerte der folgenden Berechnungen basieren auf Materialdaten, welche durch die Firma
Anvis bereitgestellt wurden. Um bei den Messungen die grobe Übereinstimmung zwischen
der Belastungsintensität der verschiedenen Versuche zu gewährleisten, wird von einer jeweils
gleichen Energiedichte ausgegangen. Zudem wird das Material als ideal inkompressibel be-
trachtet. Die Hauptstreckung λ1 wird immer als Hauptzugrichtung angenommen. Auf deren
Basis lässt sich die Energiedichte für die verschiedenen Belastungen ermitteln, welche im
Folgenden angegeben sind.

S2-Zugversuch

Da es sich um einachsigen Zug handelt, ergeben sich

λ2 = λ3 =
1√
λ1

. (6.30)

Somit lässt sich die Energiedichte wie folgt zusammenfassen:

Ŵ =
∑
n

μn

αn

(
λαn

1 + 2

(
1√
λ1

)αn

− 3

)
. (6.31)

Biaxialer Zugversuch

Beim biaxialen Zugversuch gilt aufgrund λ2 = λ1:

λ3 =
1

λ2
1

. (6.32)

Somit lässt sich die Energiedichte wie folgt zusammenfassen:

Ŵ =
∑
n

μn

αn

(
2 λαn

1 +

(
1

λ2
1

)αn

− 3

)
. (6.33)

Plane-Strain-Zugversuch

Der Plane-Strain-Zugversuch gleicht dem S2-Zugversuch, wobei λ2 = 1 erzwungen wird.
Demnach ergibt sich λ3 zu:

λ3 =
1

λ1

. (6.34)

Somit lässt sich die Energiedichte wie folgt zusammenfassen:

Ŵ =
∑
n

μn

αn

(
λαn

1 + 1 +

(
1

λ1

)αn

− 3

)
. (6.35)
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Simple-Shear-Versuch

Beim Simple-Shear-Versuch muss auf das Schermaß κ zurückgegriffen werden:

λ1 =

√
1 +

κ2

4
+

κ

2
,

λ2 =

√
1 +

κ2

4
− κ

2
,

λ3 = 1 .

(6.36)

Somit lässt sich die Energiedichte wie folgt zusammenfassen:

Ŵ =
∑
n

μn

αn

((√
1 +

κ2

4
+

κ

2

)αn

+

(√
1 +

κ2

4
− κ

2

)αn

+ 1 − 3

)
. (6.37)

Für die Ermittlung der Hauptstreckungen λ1 wird eine gleichmäßige Aufteilung der zugehö-
rigen logarithmischen Hauptdehnung h gewählt, womit sich λ1 wie folgt ergibt:

λ1i = ehi mit i = 1, 2, 3 . (6.38)

Ausgangsbasis ist der S2-Zugversuch, bei welchem für den mehrstufigen Versuch die Haupt-
dehnungen h1 = 0, 3 , h2 = 0, 6 und h3 = 0, 9 angefahren werden.
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Bild 6.35: Streckungen für die unterschiedlichen Belastungen.

Die den angefahrenen Hauptdehnungen zugeordneten Streckungen für die unterschiedlichen
Belastungen können Tabelle 6.2 entnommen werden. Zudem sind die entsprechenden Ver-
läufe in Bild 6.35 grafisch veranschaulicht.
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Tabelle 6.2: Streckungen für die unterschiedlichen Belastungen.

hZug
1 Ŵ λZug

1 λBiax
1 λP lane

1 kSimple

0,9 1,35 2,46 1,74 2,33 1,91
0,6 0,52 1,82 1,40 1,73 1,15
0,3 0,12 1,35 1,17 1,31 0,54

Geometrisches Vergleichsmaß

Für den Fall, dass bezüglich der Materialparameter des zu identifizierenden Werkstoffes kei-
nerlei Kenntnisse vorliegen, bietet sich die Verwendung eines geometrischen Vergleichsmaßes
an. Im Folgenden wird ein Vergleichsmaß erläutert, welches auf dem Umformgrad λ basiert.

Die Zeitableitung des Umformgrades λ ergibt sich entsprechend Haupt (2002) nach:

λ̇ =
1

2

√
Sp

(
Ċ · C−1

)2

=
√

D ··D ,

(6.39)

wobei C wieder den Rechts-Cauchy-Green-Tensor darstellt, welcher sich auf Basis des
Deformationsgradienten F entsprechend

C = F T · F sowie D =
1

2

(
L + LT

)
mit L =

(
Ḟ · F−1

)
(6.40)

ergibt. Auf Basis von Gl. 6.39 lässt sich nach Haupt die akkumulierte Verzerrungsgeschwindig-
keit ṡ darstellen:

ṡ =

√
2

3
D ··D =

√
2

3
λ̇ bzw. s =

√
2

3
λ . (6.41)

Im Weiteren werden die vier verschiedenen Versuche in Bezug auf den Umformgrad λ be-
trachtet.

S2-Zugversuch

Aus

[Fab] =

⎡⎢⎣λ1 0 0

0 λ
− 1

2
1 0

0 0 λ
− 1

2
1

⎤⎥⎦ (6.42)

folgt mit

[
Ċab

]
= λ̇1

⎡⎣2λ1 0 0

0 −λ−21 0

0 0 −λ−21

⎤⎦ und
[
C−1ab

]
=

⎡⎣λ−21 0 0

0 λ1 0

0 0 λ1

⎤⎦ (6.43)

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


96 6 Identifikation von Materialparametern anhand bauteilnaher Probekörper

die Gleichung

λ̇ =

√
3

2
λ−11 λ̇1 . (6.44)

Durch Integration erhält man somit

λ =

√
3

2
lnλ1 bzw. s = lnλ1 . (6.45)

Biaxialer Zugversuch

Aus

[Fab] =

⎡⎣λ1 0 0

0 λ1 0

0 0 λ−21

⎤⎦ (6.46)

folgt mit

[
Ċab

]
= λ̇1

⎡⎣2λ1 0 0

0 2λ1 0

0 0 −4 λ−51

⎤⎦ und
[
C−1ab

]
=

⎡⎣λ−21 0 0

0 λ−21 0

0 0 λ4
1

⎤⎦ (6.47)

die Gleichung
λ̇ =

√
6 λ−11 λ̇1 . (6.48)

Durch Integration erhält man somit

λ =
√
6 lnλ1 . (6.49)

Plane-Strain-Zugversuch

Aus

[Fab] =

⎡⎣λ1 0 0

0 1 0

0 0 λ−11

⎤⎦ (6.50)

folgt mit

[
Ċab

]
= λ̇1

⎡⎣2λ1 0 0

0 0 0

0 0 −2 λ−31

⎤⎦ und
[
C−1ab

]
=

⎡⎣λ−21 0 0

0 1 0

0 0 λ2
1

⎤⎦ (6.51)

die Gleichung
λ̇ =

√
2 λ−11 λ̇1 . (6.52)

Durch Integration erhält man somit

λ =
√
2 lnλ1 . (6.53)
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Simple-Shear-Versuch

Aus

[Fab] =

⎡⎣1 κ 0

0 1 0

0 0 1

⎤⎦ (6.54)

folgt mit

[
Ċab

]
= κ̇

⎡⎣0 1 0

1 2 κ 0

0 0 0

⎤⎦ und
[
C−1ab

]
=

⎡⎣1 + κ2 −κ 0

−κ 1 0

0 0 1

⎤⎦ (6.55)

die Gleichung

λ̇ =
1√
2
κ̇ . (6.56)

Durch Integration erhält man somit

λ =
1√
2
κ =

1√
2

K

h
. (6.57)

Vergleich der Versuche mittels des Umformgrades

Durch die Verwendung des Umformgrades lassen sich die Hauptstreckungen für die Biaxial-,
Plane-Strain- und Simple-Shear-Versuche auf Basis des Zugversuches sehr leicht ermitteln,
wenn für alle Versuche ein identischer Umformgrad gefordert wird:

λ =

√
3

2
lnλZug

1 ,

λBiax
1 =

√
λZug
1 ,

λP lane
1 =

(
λZug
1

)√3

2 ,

κSimple =
√
3 lnλZug

1 .

(6.58)

Für die in den Versuchen genutzten Zugdehnungen ergeben sich die in Tabelle 6.3 aufgeführ-
ten Werte.

Tabelle 6.3: Streckungen für die unterschiedlichen Belastungen.

hZug
1 λ λZug

1 λZug
2 λBiax

1 λBiax
3 λP lane

1 λP lane
3 κSimple

0,9 1,1023 2,4596 0,6376 1,5683 0,4066 2,1802 0,4587 1,5588
0,6 0,7348 1,8221 0,7408 1,3499 0,5488 1,6814 0,5947 1,0392
0,3 0,3674 1,3499 0,8607 1,1618 0,7408 1,2967 0,7712 0,5196
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98 6 Identifikation von Materialparametern anhand bauteilnaher Probekörper

Vorteile eines Beanspruchungsmaßes

Falls für den zu prüfenden Gummiwerkstoff keinerlei Abschätzungen der Materialparame-
ter auf Basis ähnlicher Werkstoffe mit bereits bekannten Materialparametern zur Verfügung
stehen, sollte ein Verfahren mit einem ausschließlich auf Verformung basierenden Vergleichs-
maß genutzt werden. Ist jedoch eine grobe Abschätzung der Parameter möglich, bietet ein
Vergleichsmaß wie die Energiedichte durchaus Vorteile.

Der Spannungsverlauf in Bild 6.36 zeigt deutlich, dass die identifizierten Materialparameter
stark von der gewählten Streckung abhängen. Gleiches gilt für die verbleibende Restdeh-
nung, welche mit steigender Streckungsamplitude ebenfalls zunimmt. Bei der Nutzung un-
terschiedlicher Experimente muss deshalb darauf geachtet werden, dass diese miteinander
vergleichbar sind. Eine Möglichkeit dafür stellt, wie vorab beschrieben, die Energiedichte Ŵ

dar. Es liegt deshalb nahe, die Intensität der Werkstoffbelastung in Form der Energiedichte
als vergleichendes Maß zu nutzen. Denn nicht die Streckung an sich, sondern die auf Ba-
sis der Materialparameter daraus resultierende Beanspruchung des Werkstoffes lässt diesen
versagen.
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Bild 6.36: Vergleich des Reißversuches und des ersten Zyklus der Einhüllenden.

Aufgrund des nichtlinearen Materialverhaltens führt die Verwendung der Energiedichte als
vergleichende Größe bezüglich der Versuche zu unterschiedlichen Verhältnissen zwischen
den zugeordneten Hauptstreckungen verschiedener Belastungsstufen. Dies ist jedoch nicht
zwangsläufig ein Nachteil, da wie oben beschrieben nicht die Streckungen allein entschei-
dend sind.
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6.6.4 Durchführung der Identifikation

Basierend auf den Vorbetrachtungen lassen sich die Eckpunkte für die Identifikation mit
Standardprobekörpern wie folgt zusammenfassen:

• Die Identifikation erfolgt für das Yeoh-Materialgesetz (Yeoh, 1993), das Ogden-
Materialgesetz (Ogden, 1972) und MORPH in RepRicht (Freund und Ihlemann, 2010).

• Für die Identifikation der Yeoh- und Ogden-Parameter werden die einstufigen Ver-
suche der vier Belastungsarten verwendet, wobei jedes Experiment drei Mal wiederholt
und dann gemittelt wird. Abweichend davon werden bei der Anpassung von MORPH

in RepRicht die dreistufigen Versuche benötigt. In allen Fällen finden dabei jeweils
ausschließlich die stationären Zyklen Berücksichtigung. Die Belastung erfolgt wegge-
steuert.

• Eine Nullpunktverschiebung oder andere Modifikationen der Messdaten finden nicht
statt.

• Als Zielfunktionswert wird GFK (vergl. Kap. 3.2) genutzt.

Identifikation für das Yeoh-Stoffgesetz

Unter Berücksichtigung der vorgenannten Rahmenbedingungen werden die Materialpara-
meter des Yeoh-Stoffgesetzes mittels der Standardprobekörper identifiziert. Ausgehend von
einem willkürlich gewählten Startparametersatz führt die Minimierung der kombinierten
gewichteten Fehlerquadrat-Kennzahl GFK auf die in Tabelle 6.4 dargestellten Parameter.

Tabelle 6.4: Ergebnis der Yeoh-Parameter-Identifikation nach 4 Schritten.

C10[MPa] C20[MPa] C30[MPa] GFK

Startparameter 1,0 1,0 1,0 27,328
Identifizierte Parameter 0,352 −0,0071 0,00386 2,240 · 10−3

In diesem Kontext soll das Kriterium der gewichteten Fehlerquadrat-Kennzahl bezüglich
der Anpassung der Simulationsdaten an die Messdaten für die einzelnen Experimente der
Homogen-Identifikation bewertet werden. Die dafür notwendigen Daten werden den Log-
Dateien entnommen, welche im Rahmen der Identifikation durch SPC-Opt angelegt werden.

Tabelle 6.5: GFK-Ermittlung für identifizierte Yeoh-Parameter.∑nL

i=1 (yi − Mi)
2 nL max (y) − min (y) GFK

S2-Zugversuch 1,025 95 2,34 1,971 · 10−3

Biaxialer Zugversuch 1,108 95 1,60 4,554 · 10−3

Plane-Strain-Zugversuch 0,909 95 2,03 2,323 · 10−3

Simple-Shear-Versuch 0,765 98 3,02 0,856 · 10−3
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Bild 6.37: Vergleich der Experimente mit den zugehörigen Simulationen bei Verwendung der
anhand homogener Standardversuche identifizierten Yeoh-Parameter.

Die Berechnung der GFK der verschiedenen Versuche, mit denen nach Gl. 3.18 der Zielfunk-
tionswert in Form von GFK gebildet wird, geht aus Tabelle 6.5 hervor. Beim Vergleich der
einzelnen GFK für die verschiedenen Experimente mit der visuellen Einordnung der Anpas-
sungsqualität entsprechend Bild 6.37 wird eine gute Übereinstimmung ersichtlich. Während
die Simple-Shear-Versuche besonders gut angepasst werden, ist die Diskrepanz zwischen den
Messdaten und der Simulation für den biaxialen Zugversuch deutlich höher.
In SPC-Opt besteht die Möglichkeit zur Ausgabe der Korrelationsmatrix. Sie basiert für
Probleme der kleinsten Quadrate auf der approximierten Hessematrix und kann bei der De-
tektion voneinander abhängiger Parameter hilfreich sein. Ein Hinweis auf starke Korrelation
liegt dann vor, wenn der Betrag eines Elementes, welches nicht auf der Hauptdiagonalen
liegt, nahe eins ist. Da die in Tabelle 6.6 dargestellte Korrelationsmatrix keine kritischen
Werte beinhaltet, kann die Korrelationen einzelner Parameter ausgeschlossen werden.

Tabelle 6.6: Korrelationsmatrix für identifizierte Yeoh-Parameter.

C10 C20 C30

C10 1 −0,757 0,489
C20 1 −0,919
C30 1

Aufgrund der hohen Stabilität der FEM-Simulationen, auch bei ungünstigen Startpara-
metervariationen, sowie der schnellen Konvergenz der Identifikation, eignet sich das Yeoh-
Stoffgesetz für die Identifikation anhand bauteilnaher Probekörper.

Identifikation für das Ogden-Stoffgesetz

Die Anpassung des Ogden-Stoffgesetzes erfolgt analog zur Vorgehensweise bei der Iden-
tifikation der Yeoh-Parameter. Entsprechend der grundsätzlichen Betrachtungen wird die
Identifikation für zwei Ogden-Terme durchgeführt. Als Startwerte stehen hier die Ogden-
Parameter eines bereits bekannten Materials mit vergleichbaren Eigenschaften zur Verfü-
gung. In Tabelle 6.7 sind die identifizierten Parameter dargestellt. Diese unterscheiden sich
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offenbar nur geringfügig von den Startparametern, weshalb auch die Verringerung des Ziel-
funktionswertes recht klein ist. Der Zielfunktionswert am Ende der Identifikation entspricht
etwa dem der Yeoh-Identifikation (Tabelle 6.4).

Tabelle 6.7: Ergebnis der Ogden-Parameter-Identifikation nach 7 Schritten.

μ1[MPa] α1 μ2[MPa] α2 GFK

Startparameter 0,03 5,0 12,0 0,1 3,298 · 10−3

Identifizierte Parameter 0,0586 4,59 11,74 0,0894 2,185 · 10−3

Bild 6.38 zeigt den Vergleich der Experimente mit den Verläufen der zugehörigen Simulatio-
nen. Bereits während der Vorbetrachtungen zeigte sich, dass die Verwendung von mehr als
zwei Ogden-Termen keine deutliche Verbesserung der Anpassung liefert. Eine entsprechende
Parameteridentifikation ist deshalb an dieser Stelle nicht zielführend.
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Bild 6.38: Vergleich der Experimente mit den zugehörigen Simulationen bei Verwendung der
anhand homogener Standardversuche identifizierten Ogden-Parameter.

Im Gegensatz zur Yeoh-Identifikation beinhaltet die Korrelationsmatrix in Tabelle 6.8
durchaus kritische Werte nahe eins. Das bedeutet, dass für die identifizierten Parameter
offenbar zwischen den Basen der Ogden-Terme und ihren zugehörigen Exponenten eine
starke Korrelation auftritt. Um diese Annahme validieren zu können, soll im Weiteren eine
Startparametervariation durchgeführt werden, um die identifizierten Parametervektoren bei
unterschiedlichen Startparametervektoren miteinander vergleichen zu können.

Tabelle 6.8: Korrelationsmatrix für identifizierte Ogden-Parameter.

μ1 α1 μ2 α2

μ1 1 −0, 988 0,317 0,387
α1 1 −0,265 0,330
μ2 1 −0, 997

α2 1

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


102 6 Identifikation von Materialparametern anhand bauteilnaher Probekörper

Um die Startparametervariation durchführen zu können, müssen zunächst Bereichsgren-
zen der Ogden-Parameter definiert werden, innerhalb derer die Parameter variiert werden
(Tabelle 6.9).

Tabelle 6.9: Gewählter Bereich für die Startparametervariation der Ogden-Parameter.

Untergrenze Obergrenze

μ1 [MPa] −1,0 2,0
α1 −8,0 8,0

μ2 [MPa] −5,0 20,0
α2 −1,0 2,0

Da für jede Parametervariation eine vollständige Identifikation durchgeführt werden muss,
wird die Anzahl der Variationen auf 10 beschränkt. Entsprechend Kap. 5 bietet sich die
Nutzung des Latin-Hypercube-Verfahrens in Kombination mit dem Simulated-Annealing-
Verfahren als Sampling-Methode an. Als zugehöriges Design-Kriterium wird das auf Ab-
standsmessungen basierende Kriterium nach Audze-Eglais gewählt. Die auf dieser Basis
erzeugten Startparameter sind in Tabelle 6.10 dargestellt.

Tabelle 6.10: Startwerte der Ogden-Parameter bei Startparametervariation.

μ1[MPa] α1 μ2 [MPa] α2 GFK

Parametersatz 1 1,25 −4,0 −3,75 0,65 41,20
Parametersatz 2 1,85 0,8 8,75 1,55 13,92
Parametersatz 3 −0,25 5,6 1,25 −0,25 5,622
Parametersatz 4 −0,85 2,4 11,25 1,25 7,007
Parametersatz 5 0,95 7,2 16,25 0,35 526,6
Parametersatz 6 0,35 4,0 −1,25 1,85 0,161
Parametersatz 7 −0,55 −5,6 3,75 0,05 80,11
Parametersatz 8 1,55 −0,8 6,25 −0,85 5,434
Parametersatz 9 0,05 −2,4 18,75 −0,55 11,06
Parametersatz 10 0,65 −7,2 13,75 0,95 NN

Die Auswertung der identifizieren Parameter entsprechend Tabelle 6.11 zeigt, dass mehrere
Startparameterkombinationen nicht in ein lokales Minimum innerhalb des zulässigen Berei-
ches führen, sondern an den Grenzen (GW) hängen bleiben. Des Weiteren gibt es Parame-
terkombinationen, bei denen selbst die Simulation der homogenen Belastung an nur einem
Element nicht konvergiert (Parametersatz 10). In den Fällen, bei denen ein lokales Mini-
mum erreicht wird, liegen die entsprechenden Zielfunktionswerte zwar nah beieinander, die

zugehörigen identifizierten Parametervektoren unterscheiden sich jedoch deutlich. Aufgrund
der Korrelation zwischen den Basen und Exponenten der Ogden-Terme und auftretenden
Konvergenzproblemen bei der Simulation der radialen und kardanischen Belastung am Bau-
teil wird bei der Identifikation anhand bauteilnaher Probekörper das Ogden-Materialgesetz
nicht betrachtet.
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Tabelle 6.11: Identifizierte Ogden-Parameter bei Startparametervariation.

μ1[MPa] α1 μ2 [MPa] α2 GFK

Parametersatz 1 0,3648 −2,0230 −5,0(GW) −0,5437 19,42 · 10−3

Parametersatz 2 0,08335 4,1958 7,5551 0,1290 2,221 · 10−3

Parametersatz 3 0,08552 4,1761 10,029 0,0961 2,221 · 10−3

Parametersatz 4 −1,0(GW) 0,99467 1,9511 1,3939 5,778 · 10−3

Parametersatz 5 0,09501 4,0694 16,959 0,05489 2,232 · 10−3

Parametersatz 6 0,06143 4,4781 3,2430 0,3312 2,219 · 10−3

Parametersatz 7 0,45201 −0,2395 0,8054 2,0(GW) 3,726 · 10−3

Parametersatz 8 1,9993 −0,0462 0,7994 2,0(GW) 3,674 · 10−3

Parametersatz 9 2,0(GW) −0,8303 18,091 0,2015 11,91 · 10−3

Parametersatz 10 NN NN NN NN NN

Identifikation für Morph in RepRicht

Im Unterschied zu den Ansätzen nach Yeoh und Ogden können durch Morph in Re-
pRicht auch inelastische Effekte abgebildet werden. Um die entsprechenden acht Parame-
ter erfolgreich zu identifizieren, genügen die Informationen der einstufigen Versuche nicht
mehr. Stattdessen werden die quasistationären Zyklen der dreistufigen Versuche herangezo-
gen (vergl. Bild 6.29). Bezüglich der Festsetzung der Startparameter wurde auf die Arbeit
von Ihlemann (2003) zurückgegriffen. In dieser wurde für ein gefülltes NR-basiertes Ma-
terial ein entsprechender Parametersatz identifiziert, wenn auch für die tensorielle Varian-
te von Morph. Da die Materialantworten von Morph in RepRicht und dem tensoriellen
Morph bei Verwendung des gleichen Parametersatzes voneinander abweichen, wurden diese
in (Freund, 2013) entsprechend umgerechnet. Die Parameter werden auch im Weiteren den
Ausgangspunkt der Stoffgesetzanpassungen für Morph in RepRicht darstellen.

Das Ergebnis der Anpassung sowie die entsprechenden GFK sind in Tabelle 6.12 und Ta-
belle 6.13 angegeben. Die in den Experimenten gemessenen Spannungen der für die Iden-
tifikation verwendeten quasistationären Zyklen sind in Bild 6.39 grafisch dargestellt. Dar-
über hinaus sind auch die Verläufe der entsprechenden FEM-Simulationen bei Verwendung
der identifizierten Parameter pHomogen enthalten. Auch hier zeigt sich beim Vergleich der
Zahlenwerte der GFK mit den zugehörigen visuellen Abbildungen, dass das Kriterium zur
Bewertung der Anpassungsgenauigkeit gut geeignet ist.

Tabelle 6.12: Startparameter und anhand von Standardprobekörpern bei Minimierung von
GFK für Morph in RepRicht identifizierte Parameter.

p1 [MPa] p2 [MPa] p3 p4 p5 [MPa] p6 p7 p8 [MPa]

pStart 0,0109 0,408 0,421 6,850 0,00560 5,54 5,84 0,1170
pHomogen 0,1366 0,3271 0,6341 11,208 0,000979 9,052 8,088 0,04861
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Tabelle 6.13: GFK für die Identifikation anhand von Standardprobekörpern bei Minimie-
rung von GFK für Morph in RepRicht nach 26 Schritten.

GFK
(
pStart

)
GFK

(
pHomogen

)
S2-Zugversuch 2,455 · 10−3 0,306 · 10−3

Biaxialer Zugversuch 2,689 · 10−3 1,264 · 10−3

Plane-Strain-Zugversuch 2,452 · 10−3 0,374 · 10−3

Simple-Shear-Versuch 2,687 · 10−3 0,600 · 10−3

Kombiniert 2,570 · 10−3 0,587 · 10−3
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Bild 6.39: Vergleich der Experimente mit den zugehörigen Simulationen bei Verwendung der
anhand homogener Standardversuche identifizierten Parameter für MORPH in
RepRicht.

Bei Betrachtung aller vier Versuche wird sichtbar, dass das Materialverhalten aus dem biaxia-
len Zugversuch deutlich von dem der anderen Versuche abweicht. Dies erklärt sich höchst-
wahrscheinlich durch Messungenauigkeiten, welche infolge der Art des Versuchsaufbaus ent-
stehen. Aufgrund dessen ist zu überlegen, ob lediglich die übrigen drei Belastungsarten bei
der Identifikation verwendet werden sollten. Eine solche Vorgehensweise würde zu den in
Tabelle 6.14 abgebildeten GFK der drei für die Anpassung verwendeten Versuche sowie der
entsprechenden kombinierten GFK führen. Die Anpassungsgenauigkeit bei Auslassen des
biaxialen Zugversuches verbessert sich demnach deutlich. Es ist jedoch zu beachten, dass
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der Verzicht auf diese Informationen die Wahrscheinlichkeit für eine Korrelation zwischen
zwei oder mehr Parametern bzw. die Anzahl lokaler Minima der Zielfunktion erhöht. Eine
stichprobenartige Kontrolle ergab, dass insbesondere bei der Wahl schlechter Startparameter
das Minimum ohne Berücksichtigung der biaxialen Belastung nicht immer gefunden wird,
während demgegenüber die Identifikation anhand aller vier Versuche für die geprüften Para-
metervariationen in jedem Fall das Minimum trifft.

Tabelle 6.14: GFK für die Identifikation anhand von Standardprobekörpern bei Minimie-
rung von GFK für Morph in RepRicht.

GFK(pStart) GFK(pHomogen)

S2-Zugversuch 2,452 · 10−3 0,199 · 10−3

Plain-Strain-Zugversuch 2,464 · 10−3 0,198 · 10−3

Simple-Shear-Versuch 2,682 · 10−3 0,517 · 10−3

Kombiniert 2,532 · 10−3 0,288 · 10−3

Die Kontrolle der Korrelationsmatrix in Tabelle 6.15 zeigt keine Auffälligkeiten. Es ist jedoch
nicht auszuschließen, dass es bei der doch erheblichen Anzahl von acht Parametern zwar keine
direkte Korrelation zwischen zwei Parametern, sehr wohl aber eine komplexere Abhängigkeit
zwischen mehreren Parametern gibt.

Tabelle 6.15: Korrelationsmatrix der identifizierten Parameter für
Morph in RepRicht.

p1 p2 p3 p4 p5 p6 p7 p8

p1 1 −0,829 0,919 0,337 −0,403 −0,402 0,038 −0,105
p2 1 −0,563 −0,155 0,388 0,356 −0,136 −0,061
p3 1 0,350 −0,362 −0,400 −0,095 −0,182
p4 1 −0,265 −0,225 0,174 −0,586
p5 1 0,962 −0,262 0,138
p6 1 0,011 0,191
p7 1 0,163
p8 1

Im Gegensatz zu den elastischen Stoffgesetzen kann das Materialverhalten mit MORPH

in RepRicht deutlich besser abgebildet werden. Dies wird beim Vergleich der kombinierten
GFK in Tabelle 6.13 mit Tabelle 6.4 bzw. Tabelle 6.7 deutlich.

6.7 Identifikation anhand bauteilnaher Probekörper

Während der frühen Phase eines Entwicklungsprozesses steht die exakte Abbildung des Ma-
terialverhaltens häufig nicht an vorderster Stelle. Sobald jedoch die möglichst genauen Wie-
dergabe der Realität durch FEM-Simulationen im Mittelpunkt steht, können die Nachteile
der Standardprobekörper nicht mehr vernachlässigt werden. Wie in Kap. 6.3 beschrieben,
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wirkt sich neben dem Herstellungsprozess auch die geometrische Form der Bauteile auf deren
Materialeigenschaften aus. Im Hinblick auf die Fahrwerksbuchse muss berücksichtigt werden,
dass infolge der unterschiedlichen Abkühlungszeiten der Materialpunkte der eingespritzten
Gummimischung während des Fertigungsprozesses bereits nach dem Abkühlen keine ho-
mogenen Materialeigenschaften vorliegen. Dementsprechend wäre für jeden Materialpunkt
ein gesonderter Materialparametersatz zu ermitteln, um auf Basis des gewählten Stoffgeset-
zes das Materialverhalten möglichst gut nachzubilden. Da dies in der Praxis jedoch nicht
möglich ist, werden diejenigen Materialparameter gesucht, welche einen guten Kompromiss
für das Verhalten aller Materialbereiche darstellen. Die Anpassung an Standardprobekörper
zur Identifikation dieses “gemittelten” Parametersatzes ist vor diesem Hintergrund nur einge-
schränkt nutzbar, da sich der Vulkanisationsprozess bezüglich Druck und Temperaturverlauf
grundlegend vom Bauteil unterscheidet. Vielmehr erscheint es sinnvoll, die Identifikation für
die jeweilige Problemstellung separat zu betrachten und sowohl hinsichtlich des Abkühlpro-
zesses als auch der Belastungen am später zu simulierenden Bauteil zu orientieren.

Neben dem Herstellungsprozess spielen auch die Belastungsarten und Randbedingungen
für die Stoffgesetzanpassung eine entscheidende Rolle. Bei der Identifikation anhand von
Standardprobekörpern werden deshalb die verwendeten Versuche entsprechend Bild 6.3 in
Kap. 6.6.3 aufeinander abgestimmt. Zur Verdeutlichung wird wieder das I1-I2-Diagramm auf
Basis der Hauptstreckungen herangezogen, wobei zusätzlich die Beanspruchung bei Annahme
der maximalen Amplituden jeder Stufe gekennzeichnet sind (Bild 6.40 a). Da die Anpassung
anhand der quasistationären Zyklen bis zu den eingezeichneten Punkten erfolgt, stellt der
identifizierte Parametersatz unabhängig vom gewählten Stoffgesetz einen Kompromiss zwi-
schen den vier Belastungsarten dar. Für die Simulation am Bauteil bedeutet dies, dass vor
allem Beanspruchungsszenarien innerhalb desjenigen Gebietes, welches durch die Standard-
versuche abgedeckt wird, im Rahmen der Simulation wirklichkeitsgetreu dargestellt werden.

(a) für die maximalen Amplituden der mehrstufigen
Versuche.

(b) für die Materialpunkte in der Gummischicht
(Meridianschnitt) nach Kalibrieren und Abküh-
len.

Bild 6.40: I1-I2-Diagramm mit Kennzeichnung der ersten und zweiten Hauptinvarianten.
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In Bild 6.40 b ist der Zustand innerhalb der Gummischicht der Fahrwerksbuchse nach dem
Abkühlen und Kalibrieren dargestellt. Es sei darauf hingewiesen, dass lediglich alle Materi-
alpunkte eines Meridianschnitts abgebildet sind, da sowohl Abkühlung als auch Kalibrierung
axialsymmetrisch sind. Der überwiegende Teil der Materialpunkte befindet sich bezüglich der
Hauptinvarianten innerhalb des durch die homogenen Versuche abgedeckten Gebietes, wobei
sich der Schwerpunkt im Anfangsbereich des durch die Invarianten aufgespannten Trichters
befindet.

(a) axiale Belastung (Meridianschnitt) mit 1KN. (b) Torsion (halber Meridianschnitt) mit 15◦.

(c) radiale Belastung (Viertelmodell) mit 10KN. (d) kardanische Beanspruchung (Halbmodell) mit 3◦.

Bild 6.41: I1-I2-Diagramm mit Kennzeichnung der ersten und zweiten Hauptinvarianten aller
Materialpunkte in der Gummischicht.

Werden nun die im Lastenheft definierten Belastungen aufgebracht, ändert sich dies sehr
deutlich (Bild 6.41). Während bei der axialen Beanspruchung der Unterschied zum kali-
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brierten Zustand noch moderat ausfällt, befindet sich bei Torsionsbeanspruchung bereits
eine ganze Reihe Materialpunkte oberhalb des durch die Standardversuche abgedeckten
Bereiches. Zudem bewegt sich der Beanspruchungsschwerpunkt deutlich in Richtung der
Trichteröffnung. Bei radialer und kardanischer Belastung erfolgt dies noch in weitaus größe-
rem Maße.

Dass die Materialpunkte vorwiegend auf der Druckseite liegen, erscheint schlüssig, da durch
das Kalibrieren der hydrostatische Zug in der Buchse überkompensiert wird und die Belastun-
gen diesen Effekt in großen Bereichen zusätzlich verstärken (vergl. Bild 6.17 - Bild 6.20). Auf
der Entlastungsseite hingegen (z.B. auf der “Unterseite” bei radialer Belastung) müssen die
durch den Kalibriervorgang erzeugten hydrostatischen Druckspannungen erst kompensiert
werden, sodass nur ein Teil der entsprechenden Materialpunkte dem Zugbereich zuzuordnen
ist.

Bei der Spannungsberechnung in Materialpunkten, deren Verzerrungszustand sich weit au-
ßerhalb des Bereiches der Standardversuche im I1-I2-Diagramm befinden, kann die Extrapo-
lation des verwendeten Stoffgesetzes mit den identifizierten Parametern zu außerordentlich
großen Fehlern führen. Dies gilt insbesondere bei der Verwendung hyperelastischer Stoffge-
setze (vergl. Bild 6.31). Als valider Lösungsansatz erscheint die Substitution der Standard-
probekörper durch Probekörper, an welchen sich die in der Bauteilsimulation aufgebrachten
Belastungen bereits im Rahmen der Parameteridentifikation darstellen lassen.

6.7.1 Der bauteilnahe Probekörper

Infolge der Vernetzung der Gummischicht entsteht eine Vielzahl von Elementen, insbeson-
dere für das 3D-Modell (vergl. Kap. 6.5). Erste Simulationen zeigten zudem, dass bereits
während des Kalibriervorgangs Selbstkontakt zu erwarten ist. Diese Tatsache ist auch aus
dem tatsächlichen Fertigungsprozess der Fahrzeugbuchsen bekannt.

Die Identifikation von Materialparametern erfordert eine Vielzahl von FEM-Simulationen,
welche zudem auch für ungünstige Parameterkonstellationen stabil konvergieren müssen.
Die Verwendung des eigentlichen Bauteils zur Identifikation ist deshalb zwar bezüglich der
Anpassungsgenauigkeit der Materialparameter ideal, jedoch nicht realisierbar. Benötigt wird
vielmehr ein sogenannter “bauteilnaher Probekörper” , welcher das Verhalten des Bauteils gut
approximiert, dabei jedoch eine einfache Geometrie besitzt und stabile FEM-Simulationen
ermöglicht.

Für die vorliegende Fahrwerksbuchse wird festgelegt, dass die radialen Abmessungen der me-
tallische Innen- und Außenhülse beibehalten werden. Zudem sollen die Volumen der Gum-
mischicht von Bauteil und Probekörper näherungsweise übereinstimmen, um die Steifigkeit
der originalen Buchse möglichst wenig zu verändern.

Den Ausgangspunkt für sämtliche Belastungsszenarien stellt die kalibrierte Buchse dar. Um
ein gutes FE-Netz für die unterschiedlichen Belastungen zu erhalten, sollte die Randkon-
tur der Gummischicht im Ausgangszustand derart geformt sein, dass sie nach dem Kali-
brieren eine möglichst geringe Krümmung aufweist. Aufgrund der Tatsache, dass der Kali-
briervorgang die thermische und chemische Schrumpfung überkompensiert, kann von ei-
ner konkaven Randkontur ausgegangen werden. Um die Fertigung des Prototypenwerkzeugs
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zu vereinfachen, wird für die Randkontur ein Kreisabschnitt angenommen. Zur Ermittlung
des Radius wurde eine Formidentifikation durchgeführt, wobei als Zielform ein Rand ohne
Krümmung nach dem Kalibiervorgang zugrunde gelegt wurde. Die Materialparameter und
der Wärmeausdehnungskoeffizient wurden einer früheren Identifikation für eine Buchse mit
vergleichbarer Geometrie und Härte entnommen. Auf dieser Basis wurde ein Radius von
rRand = 2, 5mm ermittelt (Bild 6.42) und zur Herstellung der Werkzeugmatrize verwendet.

Bild 6.42: Meridianschnitt der Gummischicht des bauteilnahen Probekörpers.

Sowohl der Herstellungsprozess als auch der Kalibriervorgang sind für das Bauteil und den
bauteilnahen Probekörper identisch. Bild 6.43 und Bild 6.44 stellen den bauteilnahen Pro-
bekörper im abgekühlten Zustand vor bzw. nach der Kalibrierung dar.

Bild 6.43: Probekörper nach dem Ab-
kühlen.

Bild 6.44: Probekörper nach dem Kali-
brieren.

Die Vermessung des bauteilnahen Probekörpers nach dem Abkühlen und Kalibrieren zeigt
deutliche Unterschiede gegenüber der Simulation. Bei der Festlegung der Probekörpergeo-
metrie war aufgrund der Erfahrungen mit vergleichbaren Gummimischungen ein Wärmeaus-
dehnungskoeffizient von αt = 0, 00014K−1 angenommen worden. Die Volumenverringerung
infolge des Abkühlens um 150K ist in der Simulation deutlich größer als bei der Messung
des thermischen und chemischen Schrumpfes des bauteilnahen Probekörpers. Die Auswer-
tung der Volumenverringerung beim Kalibrieren infolge der Kompression der Gummischicht
zeigt zudem, dass diese in der Simulation 0, 63%, bei der Messung jedoch 1, 75% beträgt.
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Möglicherweise ist der in der Simulation angenommene Kompressionsmodul K = 5000MPa
zu hoch gewählt.

Der tatsächliche Zustand nach dem Abkühlen spielt für die FEM-Simulation nur eine un-
tergeordnete Rolle. Vielmehr ist der Zustand nach dem Kalibrieren entscheidend, da dieser
die Basis der verschiedenen Beanspruchungen darstellt. Dementsprechend wird die Über-
einstimmung von Messung und Simulation zu diesem Zeitpunkt angestrebt. Dabei wird der
Kompressionsmodul als konstant angenommen und lediglich der Wärmeausdehnungskoeffi-
zient identifiziert. Die Lösung des Formidentifikationsproblems durch die Anpassung der
Simulation die Messergebnisse nach dem Kalibriervorgang führt auf αt = 9, 87 ·10−5K−1 und
wird für alle folgenden FEM-Simulationen verwendet.

6.7.2 Simulation der Lastfälle am bauteilnahen Probekörper

Um möglichst zuverlässige Materialparameter für die FEM-Simulationen des Originalbauteils
zu erhalten, entsprechen die zur Identifikation verwendeten Experimente den Belastungen
im Lastenheft. Demnach ist die Nutzung eines energetischen oder geometrischen Vergleichs-
maßes zur Abstimmung der verschiedenen Belastungen aufeinander von vornherein nicht
möglich. Dies stellt jedoch kein Problem dar, da auch hier die Verwendung der GFK als
Zielfunktionswert eine gute Wahl darstellt. Bei der Vernetzung soll sichergestellt werden,
dass für alle Belastungen die Topologie der FE-Netze nicht voneinander abweicht. Entspre-
chende Testsimulationen zeigen jedoch, dass bei Nutzung einer regelmäßigen Netztopologie
die FEM-Simulationen nicht für alle Beanspruchungen stabil konvergieren und die FE-Netze
teilweise stark verzerrt werden. Die Netztopologie wurde daher gezielt modifiziert und ist in
Bild 6.45 dargestellt.

www.ankhor.com

Bild 6.45: FE-Netz des undeformierten bauteilnahen Probekörpers.

In Bild 6.46 ist der deformierte Probekörper nach dem Abkühlen um 150K dargestellt. Der
anschließende Kalibriervorgang führt zu den in Bild 6.47 dargestellten Vergleichsdehnungen.
Obwohl die verschiedenen Belastungen noch nicht aufgebracht wurden, sind einige Bereiche
des Probekörpers bereits stark deformiert.
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Bild 6.46: Vergleichsdehnungen im bauteilnahen Probekörper nach dem Abkühlen.
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Bild 6.47: Vergleichsdehnungen im bauteilnahen Probekörper nach dem Kalibrieren.

Interessant ist an dieser Stelle die Auswertung der hydrostatischen Spannungen in der Gum-
mischicht nach dem Kalibriervorgang. Diese sind für das Bauteil in Bild 6.48 a sowie für den
bauteilnahen Probekörper in Bild 6.48 b dargestellt.
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(a) für das Bauteil.
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(b) für den bauteilnahen Probekörper.

Bild 6.48: Hydrostatischer Spannungsanteil nach dem Abkühlen und Kalibrieren.
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Anhand der Abbildungen ist gut sichtbar, dass das Kalibrieren der Fahrwerksbuchse bzw.
des zugehörigen Probekörpers in beiden Fällen die nach dem Abkühlen vorhandenen hydro-
statischen Zugspannungen nicht nur kompensiert, sondern zu beträchtlichem hydrostatischen
Druck führt. Unter der Annahme, dass eine Fahrwerksbuchse in der Praxis tendenziell erst
nach mehreren Tagen oder Wochen im Fahrzeug verbaut wird, ist der Abbau eines Teils dieser
hydrostatischen Druckspannungen infolge von Relaxation entsprechend Kap. 6.4 sehr wahr-
scheinlich. Da Relaxation jedoch mit den hier betrachteten Stoffgesetzen nicht darstellbar ist,
wird dies weder bei der Identifikation, noch bei der eigentlichen Simulation berücksichtigt.

Im Anschluss an die Kalibrierung werden analog zum Bauteil die Belastungen aus dem
Lastenheft aufgebracht. Im Folgenden werden die entsprechenden FEM-Simulationen am
bauteilnahen Probekörper betrachtet.

Axiale Belastung

Analog zum Bauteil genügt für die entsprechende Simulation ein rotationssymmetrisches FE-
Modell. Aufgrund des dadurch bedingten geringen Rechenaufwandes soll anhand dessen die
Simulation des Abkühl- und Kalibriervorgangs für unterschiedliche Vernetzungsdichten un-
tersucht werden. Während für die grobe Vernetzung nach dem Kalibrieren eine rein konvexe
Randkontur vorliegt, werden bei feiner werdender Vernetzung in der Randkontur Bereiche
mit konkaver Form sichtbar (Bild 6.49 a). Bereits während der Kalibrierung kommt es zum
kompletten Einklappen der Randkontur (Bild 6.49 b) und anschließend zu Selbstkontakt.
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(a) Nach dem Kalibrieren
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(b) Unmittelbar vor Selbstkontakt

Bild 6.49: Vergleichsdehnungen im Probekörper mit extrem feiner Vernetzung.

Da in den für die Identifikation verwendeten Simulationen aus Rechenzeitgründen auf Kon-
takt verzichtet werden soll und das Einklappen die Konvergenz der Simulationen stark be-
einträchtigt, ist die Prüfung der Auswirkungen des lokalen Einklappens auf die globalen
Reaktionsgrößen notwendig. Zu diesem Zweck werden die Kraft-Verschiebungs-Kurven für
die axiale Belastung bei grober und feiner Vernetzung miteinander verglichen (Bild 6.50).
Dabei ist zu beobachten, dass das lokale Einklappen nahezu keinen Einfluss auf die globale
Reaktionskraft hat. Es ist somit zulässig, die grobe Vernetzung zu nutzen, auch wenn dabei
dieses lokale Verhalten nicht berücksichtigt wird. Zudem war in den tatsächlichen Versuchen
dieses Einklappen nicht zu beobachten, wobei der Grund für den Unterschied zwischen Ex-
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periment und Simulation mit sehr feiner Vernetzung noch genauer betrachtet werden sollte.
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Bild 6.50: Vergleich der Kraft-Verschiebungs-Kurven bei axialer Belastung für
unterschiedliche Vernetzungen.

Ein weiterer interessanter Aspekt ist der Vergleich der Simulation bei Variation des Kom-
pressionsmoduls. Allgemein wird für Gummiwerkstoffe von quasi inkompressiblem Materi-
alverhalten ausgegangen. Um dies auf FEM-Simulationen übertragen zu können, wird ein
möglichst hoher Kompressionsmodul K angenommen. Allerdings verschlechtert sich das Kon-
vergenzverhalten der Simulation bei steigendem Kompressionsmodul zunehmend. Sowohl bei
der Homogen-Identifikation als auch bei der Identifikation anhand bauteilnaher Probekör-
per wird zunächst K = 5000MPa angenommen. Da die Konvergenz der Simulationen für
die Belastung der eigentlichen Fahrwerksbuchse bei Nutzung eines derart hohen K jedoch
teilweise schlecht ist, erfolgt zu Testzwecken die Simulation der axialen Belastung des bau-
teilnahen Probekörpers für unterschiedliche K. Dabei wird sichtbar, dass die Verringerung
auf K = 500MPa bzw. K = 50MPa zu einem drastisch anderen Deformationszustand führt
(Bild 6.51 - Bild 6.53).
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Bild 6.51: Axiale Verschiebung für
K = 5000MPa.
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Bild 6.52: Axiale Verschiebung für
K = 500MPa.
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Bild 6.53: Axiale Verschiebung für K = 50MPa.

Bei zusätzlicher Berücksichtigung der deutlichen Unterschiede zwischen Experiment und ent-
sprechender FEM-Simulation des Abkühlens bzw. des Kalibrierens liegt der Schluss nahe,
dass die Annahme eines sehr hohen, temperatur- und belastungsunabhängigen Kompressions-
moduls fragwürdig ist. Dies erscheint auch deshalb schlüssig, da die Abhängigkeit des Kom-
pressionsmoduls vom Umgebungsdruck bereits länger bekannt ist (z.B. Adams und Gibson
(1930)). Der beim Kalibriervorgang entstehende hohe hydrostatische Druck innerhalb der
Gummischicht der Fahrwerksbuchse hat demnach potentiell einen deutlichen Einfluss auf
den Kompressionsmodul, was auch Stommel und Zimmermann (2012) darlegen. Da darüber
hinaus auch die verschiedenen Bauteilbelastungen Einfluss auf den hydrostatischen Druck
haben und diese Problematik unabhängig vom verwendeten Stoffgesetz ist, erscheint eine de-
taillierte Untersuchung im Rahmen eines eigenständigen Forschungsprojektes sehr sinnvoll.

Die Simulation der axialen Belastung unter Verwendung der groben Vernetzung mit
K = 5000MPa für die Maximalbelastung von F axial = 1KN führt auf die in Bild 6.54
dargestellten Vergleichsdehnungen.
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(a) Rückseite
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(b) Vorderseite

Bild 6.54: Vergleichsdehnungen bei axialer Belastung (1KN).
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Radiale Belastung

Die radiale Belastung des bauteilnahen Probekörpers ist ebenso wie beim Bauteil nicht ro-
tationssymmetrisch. Somit wird auch hierfür ein 3D-Netz unter Ausnutzung der Symme-
trieebenen in axialer Richtung sowie der Symmetrieebene, welche den mittigen Meridian-
schnitt darstellt, für die FEM-Simulation verwendet. Aus der radialen Maximalbelastung
von F rad = 10KN resultieren die in Bild 6.55 dargestellten Vergleichsdehnungen. Dabei tre-
ten in einigen Elementen sehr ungünstige Innenwinkel auf, welche zwar lokal zu Fehlern
führen, auf die globalen Reaktionsgrößen jedoch keinen signifikanten Einfluss haben.
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(b) Unterseite

Bild 6.55: Vergleichsdehnungen bei radialer Belastung (10KN).

Kardanische Belastung

Die kardanische Belastung wird bewusst nicht zur Identifikation verwendet. Einerseits ist
der Rechenaufwand aufgrund des analog zum Originalbauteil notwendigen Halbmodells ver-
gleichsweise groß, was zu einer erheblichen Erhöhung des Rechenaufwandes im Rahmen der
Identifikation führen würde. Darüber hinaus soll diese Belastung zur Validierung der ermit-
telten Materialparameter genutzt werden. Dies ist vor allem deshalb sinnvoll, weil sich die
infolge der kardanischen Beanspruchung einstellenden Verzerrungen in der Gummischicht
außerordentlich stark von denen der übrigen Belastungen unterscheiden.

Torsionsbelastung

Auch die Torsionsbeanspruchung des bauteilnahen Probekörpers orientiert sich an der Be-
lastung des Bauteils. Entsprechend Kap. 6.5 wird auch hier nicht der durch MSC.MARC

bereitgestellte Elementtyp “Twist & Herrmann Formulation” , sondern ein Schichtmodell ge-
nutzt. Die Simulation für die Maximalverdrehung von ϕTors = 15◦ führt auf die in Bild 6.56
dargestellten Vergleichsdehnungen.
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Bild 6.56: Vergleichsdehnungen bei Torsionsbeanspruchung (15◦).

6.7.3 Inhomogen-Parameteridentifikation

Aufgrund der in Kap. 6.6.4 beschriebenen Korrelation zwischen den Basen und Exponenten
der Ogden-Terme wird das Ogden-Stoffgesetz an dieser Stelle nicht berücksichtigt und
die Identifikation anhand bauteilnaher Probekörper ausschließlich für Yeoh und Morph in
RepRicht durchgeführt.
Um die Identifikation anhand bauteilnaher Probekörper durchführen zu können, wurden für
die verschiedenen Lastfälle entsprechende Versuche am bauteilnahen Probekörper durchge-
führt. Für die Identifikation der Yeoh-Parameter wurden die Versuche ebenso wie bei den
Standardprobekörpern einstufig durchgeführt und der näherungsweise stationäre sechste Zy-
klus zur Anpassung verwendet. Beispielhaft ist dafür die Kraft-Verschiebungs-Kurve der
axialen Belastung in Bild 6.57 dargestellt.

 0

 200

 400

 600

 800

 1000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

K
ra

ft 
[N

]

Axiale Verschiebung [mm]

Axiale Belastung Experiment Zyklus 1 bis 5
Axiale Belastung Experiment Zyklus 6

Axiale Belastung Experiment Zyklus 1 bis 5
Axiale Belastung Experiment Zyklus 6Axiale Belastung Experiment Zyklus 6

Bild 6.57: Kraft-Verschiebungs-Kurve für einstufige axiale Belastung (1KN)
des bauteilnahen Probekörpers.
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Für das Morph-Stoffgesetz hingegen sind analog zur Homogen-Identifikation mehrstufige
Versuche notwendig, um genügend Informationen zur Identifikation der Parameter bereitzu-
stellen. Da sich im Gegensatz zu den Standardprobekörpern bei der Fahrwerksbuchse einer
Belastungsamplitude keine einzelne klar definierte Deformationsgröße zuordnen lässt, werden
die drei Belastungsstufen für jeden Lastfall linear bezüglich der Maximalbelastung unterteilt
und der jeweilige quasistätionäre Zyklus genutzt (Bild 6.58).
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Bild 6.58: Kraft-Verschiebungs-Kurve für mehrstufige axiale Belastung des
bauteilnahen Probekörpers.

Infolge der Art des Versuchsaufbaus erfolgt das Aufbringen der Belastungen für Kardanik
und Torsion verschiebungsgesteuert in Form einer Winkeländerung, für die axiale und ra-
diale Belastung jedoch kraftgesteuert. Wie in Kap. 6.6.1 dargelegt, ist die Simulation der
kraftgesteuerten Belastung im Rahmen der Identifikation anhand bauteilnaher Probekörper
bei Verwendung von Morph in RepRicht aufwändig und mit hohem Rechenaufwand ver-
bunden. Die axiale und radiale Belastung wird deshalb trotz kraftgesteuerter Versuche in
den entsprechenden Simulationen verschiebungsgesteuert aufgebracht.

Aus messtechnischen Gründen war es nicht möglich, die mehrstufigen Belastungen innerhalb
eines einzelnen Experimentes durchzuführen. Vielmehr musste für jede Stufe nach Errei-
chen des quasistationären Zustandes das Experiment unterbrochen, die Versuchssteuerung
an die nächste Belastungsamplitude angepasst und das Experiment neu gestartet werden.
Im Rahmen der Aufbereitung der Messdaten müssen somit für jede Banspruchungsart die
drei Teilexperimente derart dargestellt werden, dass die Anfangspunkte der zweiten und
dritten Belastungsamplitude mit den Endpunkten der vorangegangenen Amplitude überein-
stimmen. Bei Betrachtung von Bild 6.58 fällt jedoch auf, dass trotz dessen die Erstbelastung
der zweiten und dritten Stufe nicht mit der Belastungskurve des jeweils vorangegangenen
quasistätionären Zyklus übereinstimmt (im Gegensatz zum unterbrechungsfrei durchgeführ-
ten mehrstufigen S2-Zugversuch, Bild 6.29). Eine schlüssige Erklärung besteht darin, dass
die Zeit, welche zur Anpassung der Versuchssteuerung und der damit zusammen hängenden
Arbeitsschritte notwendig ist, bereits zu einer messbaren Relaxation in der Gummischicht
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führt. Die weitergehende Validierung der These war aufgrund der messtechnischen Beschrän-
kungen sowie mangels einer ausreichenden Zahl Probekörper jedoch nicht möglich.

Unter der Annahme von Relaxation haben die quasistätionären Zyklen der unterbrochenen
mehrstufigen Versuche bezüglich ihrer jeweiligen Restdeformationen einen größeren Abstand
voneinander als die von unterbrechungsfreien Versuchen. Dies wird sich auch auf den iden-
tifizierten Parametersatz auswirken, da in den zur Identifikation verwendeten Simulationen
die Versuche unterbrechnungsfrei dargestellt werden. Auf eine zusätzliche Modifikation der
Messdaten wird dennoch verzichtet, da der tatsächlich korrekte Versatz nicht zweifelsfrei
bestimmt werden kann.

Entsprechend Kap. 6.7.2 wird die kardanische Beanspruchung nicht berücksichtigt, sondern
dient ausschließlich zur Validierung der Materialparameter. Die Identifikation erfolgt anhand
der axialen und radialen Belastung sowie der Torsionsbelastung.

Identifikation für das Yeoh-Stoffgesetz

Auf Basis der Vorbetrachtungen erfolgt die Anpassung anhand der einstufigen Versuche am
bauteilnahen Probekörper. Analog zur Homogen-Identifikation wird auf Basis der drei be-
rücksichtigten Versuche die kombinierte gewichtete Fehlerquadrat-Kennzahl GFK ermittelt.
Ausgehend von einem willkürlich gewählten Startparametersatz führt die Minimierung von
GFK auf die in Tabelle 6.16 angegebenen Yeoh-Parameter.

Für die identifizierten Parameter wird die Berechnung der GFK der berücksichtigten Versu-
che in Tabelle 6.17 dargestellt. Dabei fällt auf, dass die Anpassung an die axiale Belastung
deutlich schlechter ist als an die anderen beiden Versuche. Dies belegt auch der visuelle Ver-
gleich der Versuche an den bauteilnahen Probekörpern mit den zugehörigen Simulationen,
welche in Bild 6.59 dargestellt sind.

Tabelle 6.16: Ergebnis der Yeoh-Parameter-Identifikation nach 6 Schritten.

C10[MPa] C20[MPa] C30[MPa] GFK

Startparameter 0,5 0,0 0,0 9,834 · 10−3

Identifizierte Parameter 0,463 −0,0103 0,000637 5,421 · 10−3

Tabelle 6.17: GFK-Ermittlung für identifizierte Yeoh-Parameter.∑nL

i=1 (yi − mi)
2 nL max (y) − min (y) GFK

Axiale Belastung 4,780 · 105 44 1005 10,754 · 10−3

Radiale Belastung 1,681 · 107 44 10050 3,781 · 10−3

Torsionsbeanspruchung 2,499 · 108 44 43000 3,071 · 10−3
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Bild 6.59: Vergleich der Experimente an bauteilnahen Probekörpern mit den zugehörigen
Simulationen bei Verwendung der anhand bauteilnaher Probekörper identifizierten
Parameter für YEOH.

Bei Betrachtung der Verläufe für die verschiedenen Arten der Identifikation anhand bauteil-
naher Probekörper fällt auf, dass die axiale Belastung in der Simulation zu einem deutlich
weicheren Verhalten führt, als es die Experimente tatsächlich zeigen. Werden zusätzlich die
Vergleichsdehnungen in Bild 6.54 - Bild 6.56 bzw. die Darstellungen der I1-I2-Diagramme
in Bild 6.39 für diese Lastfälle berücksichtigt, lässt sich dieses Verhalten erklären. Bereits in
den Vorbetrachtungen zur Identifikation (Kap. 6.6.1) wird gezeigt, dass die Abbildungsge-
nauigkeit in der Simulation mit vorgegebenen bzw. identifizierten Materialparameter stark
von der Höhe der Beanspruchung abhängt. Da die Lastfälle für die Bauteile bzw. bauteil-
nahen Probekörper bereits im Lastenheft festgelegt sind, ist eine nachträgliche Abstimmung
aufeinander nicht möglich. Insbesondere die axiale Belastung führt im Vergleich zu den
übrigen Beanspruchungen in großen Bereichen der Gummischicht nur zu geringen Defor-
mationen. Für diese Belastungsbereiche liefert die Identifikation jedoch nur eingeschränkt
vertrauenswürdige Materialparameter, da lediglich einstufige Versuche genutzt werden und
infolge sowohl radialer Belastung als auch Torsionsbeanspruchung deutlich größere Verzer-
rungen auftreten. Somit ist die deutliche Abweichung zwischen Experiment und Simulation
der axialen Belastung am bauteilnahen Probekörper mit dem identifizierten Parametersatz,
welcher einen Kompromiss zwischen den drei berücksichtigten Versuchen darstellt, schlüs-
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sig. Eine mögliche Lösung stellt die Verwendung inelastischer Stoffgesetze dar, welche das
tatsächliche Materialverhalten in einem größeren Anwendungsbereich zuverlässig abbilden
können.

Mit hyperelastischen Stoffgesetzen ist es nicht möglich, die bei zyklischer Beanspruchung ver-
bleibenden Restdeformationen abzubilden. Diese sind jedoch bei der Fahrwerksbuchse sehr
stark ausgeprägt, womit die Anpassungsgenauigkeit bei Verwendung des Yeoh-Stoffgesetzes
begrenzt ist. Bei einer Anpassung an die einsinnige Erstbelastung eines Probekörpers hin-
gegen spielt dies keine Rolle. Im industriellen Umfeld ist es deshalb an einigen Stellen üb-
lich, die Materialparameter an eben diese Erstbelastungen anzupassen, da dies zu einem
deutlich besseren Anpassungsergebnis gegenüber der Anpassung an die quasistationären Zy-
klen führen soll. Dies ist jedoch schon deshalb nicht zwingend, da bereits die Kalibrierung
zu einer deutlichen Änderung der Werkstoffeigenschaften führt und nicht vollständig durch
das elastische Materialgesetz abgebildet werden kann. Des Weiteren werden sowohl Be- als
auch Entlastungsweg der Hysterese, welche ebenfalls nicht durch das elastische Stoffgesetz
abgebildet werden kann, bei Verwendung des kompletten Zyklus berücksichtigt, was bei aus-
schließlicher Nutzung der Erstbelastung nicht der Fall ist. Zusammenfassend bedeutet dies,
dass die Erstbelastung nicht repräsentativ für das Verhalten bei mehrfacher Lastwiederho-
lung ist und die entsprechend identifiziertem Parameter später in der Bauteilsimulation der
betrachteten Lastfälle nicht das tatsächliche Materialverhalten im stationären Zustand ab-
bilden. Sinnvoll ist eine solche Anpassung demnach ausschließlich dann, wenn auch in der
Bauteilsimulation später lediglich die Darstellung der Erstbelastung relevant ist.

Identifikation für Morph in RepRicht

Für die Anpassung an das inelastische Stoffgesetz dienen die in Bild 6.58 dargestellten
mehrstufigen Versuche als Grundlage. Der Startparametersatz ist mit dem der Homogen-
Identifikation identisch. Die identifizierten Materialparameter sowie die den Lastfällen zuge-
ordneten GFK sind in Tabelle 6.18 und Tabelle 6.19 angegeben.

Tabelle 6.18: Startparameter und anhand bauteilnaher Probekörper bei Minimierung von
GFK für Morph in RepRicht identifizierte Parameter.

p1 [MPa] p2 [MPa] p3 p4 p5 [MPa] p6 p7 p8 [MPa]

pStart 0,0109 0,408 0,421 6,850 0,00560 5,54 5,84 0,1170
pBauteilnah 0,1663 0,3817 0,5939 7,603 0,000295 6,058 4,077 0,0302

Tabelle 6.19: GFK für die Identifikation anhand bauteilnaher Probekörper bei Minimie-
rung von GFK für Morph in RepRicht nach 6 Schritten.

GFK
(
pStart

)
GFK

(
pBauteilnah

)
Axiale Belastung 14,63 · 10−3 0,5105 · 10−3

Radiale Belastung 14,25 · 10−3 0,6924 · 10−3

Torsionsbeanspruchung 3,029 · 10−3 0,5713 · 10−3

Kombiniert 9,674 · 10−3 0,5871 · 10−3
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Die gemessenen Größen der für die Identifikation verwendeten quasistationären Zyklen sind
in Bild 6.60 grafisch dargestellt. Zudem enthalten die Abbildungen die Verläufe der entspre-
chenden FEM-Simulationen bei Verwendung der identifizierten Parameter pBauteilnah.
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Bild 6.60: Vergleich der Experimente an bauteilnahen Probekörpern mit den zugehörigen
Simulationen bei Verwendung der anhand bauteilnaher Probekörper identifizierten
Parameter für Morph in RepRicht.

Der gefundene Parametersatz stellt auch hier einen Kompromiss bezüglich der verschiede-
nen Lastfälle dar. Dies äußert sich darin, dass bei der axialen und radialen Belastung die
verbleibende Restdeformation zu groß, bei der Torsionsbelastung jedoch zu klein abgebildet
wird. Zudem befinden sich die Fußpunkte der Zyklen bei radialer Belastungen deutlich un-
terhalb der Nulllinie während sich diese bei Torsion oberhalb befinden. Zur Verbesserung des
Ergebnisses im Rahmen zukünftiger Identifikationen erscheinen vor allem zwei Maßnahmen
sinnvoll:

• Durchführung der Versuche ohne Unterbrechungen beim Wechsel der Belastungsstufen
während der Messungen, auf welche zu Beginn des Kapitels hingewiesen wurde.

• Mehrfache Wiederholung der Versuche für die jeweiligen Lastfälle und anschließen-
de Mittlung der Ergebnisse. Aufgrund der begrenzten Probekörperzahl musste darauf
verzichtet werden, womit die Korrektur zufälliger Messfehler bzw. Kompensation von
Unterschieden zwischen den geprüften Probekörpern nicht möglich war.
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Dessen ungeachtet können die stationären Zyklen der berücksichtigten Lastfälle mit Hil-
fe des verwendeten inelastischen Materialgesetzes gut wiedergegeben werden. Zudem zeigt
die geringe Anzahl benötigter Optimierungsschritte deutlich, dass die Versuche genügend
Informationen zur sicheren Bestimmung der Materialparameter beinhalten.

6.8 Validierung am Bauteil

Die Validierung der identifizierten Materialparameter erfolgt anhand der in Kap. 6.5 beschrie-
benen Bauteilsimulationen. Entsprechend den Vorgaben im Lastenheft werden die verschie-
denen Belastungsarten einstufig simuliert und der stationäre Zyklus mit entsprechenden Ver-
suchsergebnissen verglichen. Aufgrund der Tatsache, dass für das Ogden-Stoffgesetz keine
Identifikation anhand bauteilnaher Probekörper durchgeführt wurde, erübrigt sich auch die
Berücksichtigung bei der Validierung. Diese beschränkt sich somit auf den Vergleich des
Yeoh-Stoffgesetzes sowie Morph in RepRicht für die Identifikation anhand von Standard-
probekörpern bzw. bauteilnahen Probekörpern.
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Bild 6.61: Vergleich der Experimente am realen Bauteil mit den zugehörigen Simulationen
bei Verwendung der anhand von homogenen Standardversuchen bzw. bauteilnahen
Probekörpern identifizierten Parameter für das Yeoh-Stoffgesetz.

In Bild 6.61 ist der Vergleich der Identifikationsergebnisse für Yeoh dargestellt. Aufgrund
des hyperelastischen Materialverhaltens genügt die Simulation der Erstbelastung, da diese
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6.8 Validierung am Bauteil 123

mit den Folgezyklen übereinstimmt. Bei Betrachtung der in der Identifikation verwende-
ten Lastfälle wird deutlich, dass trotz der begrenzten Abbildungsmöglichkeiten des Yeoh-
Stoffgesetzes die anhand bauteilnaher Probekörper ermittelten Materialparameter zu bes-
seren Ergebnissen in der Bauteilsimulation führen als die der Homogen-Identifikation
(Schellenberg et al., 2012). Lediglich bei der kardanischen Beanspruchung ist kein deutli-
cher Unterschied vorhanden.

Der Wechsel zum inelastischen Morph in RepRicht führt bereits bei der Simulation mit
Parametern aus der Homogen-Identifikation zu einem erheblich besseren Ergebnis, welche
in Bild 6.62 dargestellt sind. Ursache dafür ist insbesondere die Möglichkeit zur Darstellung
der Restdeformation bzw. der Hysterese. Werden zur Anpassung der Morph-Parameter
Versuche an bauteilnahen Probekörpern genutzt, erhöht sich die Abbildungsgenauigkeit der
Bauteilsimulation nochmals deutlich (Schellenberg et al., 2013). Dies betrifft vor allem die
Breite der Hysterese sowie die Maximalamplituden bei der radialen und kardanischen Belas-
tung.
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Bild 6.62: Vergleich der Experimente am realen Bauteil mit den zugehörigen Simulationen
bei Verwendung der anhand von homogenen Standardversuchen bzw. bauteilnahen
Probekörpern identifizierten Parameter für Morph in RepRicht.

Besonders die Abbildungsgenauigkeit der kardanischen Belastung des Bauteils zeigt, dass
die Informationen bezüglich des Materialverhaltens, welche im Rahmen der Identifikation
anhand bauteilnaher Probekörper gewonnen werden, auch für FEM-Simulationen deutlich
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abweichender Belastungsarten geeignet sind. Um die visuelle Darstellung zu untermauern,
sind in Tabelle 6.20 die GFK für alle dargestellten Lastfälle sowie die daraus gebildeten GFK

zusammengefasst. Darin wird deutlich, dass nicht nur die Art der Identifikation, sondern
vor allem die Wahl des Stoffgesetzes für die Darstellungsgenauigkeit der Simulation aus-
schlaggebend ist.

Tabelle 6.20: GFK zur Bewertung der Abbildungsgenauigkeit der Bauteilsimulationen bei
Verwendung der anhand von Standardprobekörpern bzw. bauteilnahen Pro-
bekörpern identifizierten Parameter für das Yeoh-Stoffgesetz und Morph

in RepRicht.

Yeoh-Stoffgesetz Morph in RepRicht
pHomogen pBauteilnah pHomogen pBauteilnah

Axiale Belastung 19,547 · 10−3 5,890 · 10−3 2,876 · 10−3 0,4479 · 10−3

Radiale Belastung 5,002 · 10−3 3,623 · 10−3 3,596 · 10−3 0,4237 · 10−3

Torsionsbeanspr. 10,258 · 10−3 2,874 · 10−3 0,3473 · 10−3 0,8492 · 10−3

Kardanische Beanspr. 3,169 · 10−3 3,199 · 10−3 3,785 · 10−3 1,141 · 10−3

Kombiniert 8,469 · 10−3 3,816 · 10−3 2,346 · 10−3 0,6846 · 10−3

Darüber hinaus geht aus den Abbildungen hervor, dass sich die Simulationsverläufe beim
bauteilnahen Probekörper und beim realen Bauteil trotz deutlicher geometrischer Unter-
schiede ausgesprochen ähnlich sind. Es ist deshalb zu erwarten, dass auch FEM-Simulationen
anderer Fahrwerksbuchsen, die der gleichen Produktgruppe angehören, bei Verwendung der
identifizierten Materialparameter zuverlässige Ergebnisse liefern. Dies ist für industrielle An-
wendungen besonders interessant, da so die Parameteridentifikation für eine repräsentative
Geometrie zur Ermittlung eines Referenz-Parametersatzes genügt.

Zusammenfassend lässt sich konstatieren, dass die Nutzung von Materialparametern, welche
an homogene Standardversuche angepasst werden, nur begrenzt vertrauenswürdige Ergebnis-
se bei FEM-Simulationen am Bauteil ermöglichen. Werden die Parameter hingegen anhand
bauteilnaher Probekörper identifiziert, führt dies zu einer deutlich besseren Vorhersage des
Bauteilverhaltens im Rahmen einer FEM-Simulation. Es ist jedoch zu berücksichtigen, dass
auch die Wahl des Stoffgesetzes einen erheblichen Einfluss besitzt und sich die Auswahl an
den im Vorfeld charakterisierten Materialeigenschaften orientieren sollte.
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Für die Weiterentwicklung technischer Produkte stellt die numerische Simulation auf Basis
der Finite-Elemente-Methode ein unverzichtbares Werkzeug dar. Von entscheidender Bedeu-
tung bezüglich der Zuverlässigkeit der Ergebnisse ist nicht zuletzt das gewählte Stoffgesetz
und in diesem Kontext die Bestimmung der entsprechenden Materialparameter. Da eine di-
rekte Parameterbestimmung gewöhnlich nicht möglich ist, erfolgt die Identifikation meist
durch die Lösung eines inversen Problems der Anpassung an experimentelle Daten. Zwar
beinhalten gängige FEM-Programme Verfahren zur Parameteridentifikation, jedoch sind de-
ren Möglichkeiten bezüglich eigener Stoffgesetze bzw. der Optimierungsverfahren begrenzt.
Dies gilt in gleichem Maße für die Identifikation geometrischer Formen bzw. der sie beschrei-
benden Formparameter, die nicht frei zugänglich sind und deshalb ebenfalls der indirekten
Bestimmung durch Lösung eines Optimierungsproblems bedürfen.
Bei Aufgaben der Formoptimierung soll die Gestalt eines Bauteils oder Werkzeugs derart ver-
ändert werden, dass das bestmögliche Ergebnis für ein definiertes Optimierungsziel gefunden
wird. Typische Anwendungsbereiche sind die Minimierung der höchsten Spannungen in ei-
nem Bauteil oder der Umformkraft bei Massivumformverfahren wie dem Strangfließpressen.
Für die Lösung solcher Probleme stehen ebenfalls verschiedene Werkzeuge zur Verfügung,
welche jedoch spezifische Nachteile aufweisen. Diese betreffen vor allem die Einbindung kom-
merzieller und hauseigener FEM-Programme.
Einen Schwerpunkt der vorliegenden Arbeit stellt deshalb die Entwicklung der Optimierungs-
software SPC-Opt dar, mit welcher sich eine Vielzahl verschiedener Aufgaben aus den Berei-
chen der Formoptimierung sowie der Material- und Formidentifikation bearbeiten lässt. Die
Grundlage hierfür bildet das an der Technischen Universität Chemnitz entwickelte
FEM-Forschungsprogramm SPC-PM2AdNl und dessen Erweiterung von Lindner
(Lindner und Kreißig, 2004), welches die Identifikation von Parametern zur Beschreibung
der plastischen Anisotropie metallischer Werkstoffe ermöglicht. Bezüglich der Programment-
wicklung ist die Unterstützung durch Wulf (Wulf et al., 2013) hervorzuheben. Zudem finden
sich die Ergebnisse mehrerer studentischer Arbeiten in einzelnen Programmmodulen wieder.
Das Programm SPC-Opt ist modular aufgebaut und ermöglicht so eine stetige Weiter-
entwicklung. Zur Lösung von Identifikationsproblemen, welche üblicherweise auf die Mini-
mierung einer Fehlerquadratsumme zurückgeführt werden können, steht eine robuste Im-
plementierung des Levenberg-Marquardt-Fletcher-Verfahrens zur Verfügung. Ergänzt wird
dieses durch eine Reihe verschiedener Line-Search- und Trust-Region-Verfahren. Letztere eig-
nen sich besonders zur Bearbeitung von Aufgaben der Formoptimierung. In diesem Kontext
wurden zudem effiziente Algorithmen zur Approximation der Hesse-Matrix integriert. Er-
gänzend stehen verschiedene Verfahren zur Startparametervariation zur Verfügung, da zwar
meist das globale Minimum einer Zielfunktion gesucht wird, die vorhandenen auf Gradienten
basierenden Verfahren jedoch manchmal nur ein lokales Minimum liefern. Die Implementie-
rung eines Baukastensystems zur Erstellung der Zielfunktion, ein automatisches Log-System

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


126 7 Zusammenfassung und Ausblick

und die konsequente Nutzung von XML-Ein- und Ausgabeformaten erleichtern die Bedie-
nung und ermöglichen in Form einer Programmauskopplung die Anwendung in der Industrie.

Einen essentiellen Bestandteil der Optimierung stellt die Berechnung der Zielfunktionswerte
dar. Dies kann auf verschiedene Weise erfolgen - durch Nutzung von Skripten, mathema-
tischen Programmen oder hauseigenen bzw. kommerziellen FEM-Programmen. Eine große
Bedeutung kommt deshalb der Implementierung geeigneter Schnittstellen zur Einbindung
dieser Programme zu. Die Funktionalität einer solchen Schnittstelle beinhaltet das Ein-
lesen und die Ausgabe der Eingabedateien sowie die Fähigkeit, dem zur Berechnung des
Funktionswertes verwendeten Programm die bezüglich der örtlichen und zeitlichen Diskre-
tisierung notwendigen Informationen zu übermitteln. Zum aktuellen Zeitpunkt werden die
kommerzielle FEM-Software ABAQUS, ANSYS und MSC.MARC, verschiedene hauseigene
FEM-Programme sowie LUA-Skripte unterstützt.

Bei der Identifikation von Formparametern sowie der Formoptimierung werden während der
Optimierung geometrische Konturen gezielt verändert. Voraussetzung hierfür ist deren Pa-
rametrisierung mit Hilfe geeigneter Designvariablen. Aus diesem Grund wurde in SPC-Opt

die Funktionalität implementiert, vorhandene Konturen wie Linien, Splines oder Keypoint-
Gruppen mit Hilfe von NURBS zu approximieren und die Koordinaten und Wichtungsfak-
toren der zugehörigen Kontrollpunkte als Formparameter zu nutzen. Damit verbunden war
zudem die Implementierung eines analytischen Algorithmus zur Aktualisierung der FEM-
Netze entsprechend der Formparameteränderung zugehöriger Konturen. Um negative Fol-
gen stark verzerrter Netze infolge der Netzaktualisierung zu vermeiden, wurden zusätzlich
verschiedene Algorithmen zur automatischen Netzglättung integriert.

Die technische Entwicklung der letzten Jahre im Bereich der Computertechnik hat die Nut-
zung paralleler Rechentechniken praktisch unverzichtbar gemacht. Bei der Entwicklung von
SPC-Opt wurde dem Rechnung getragen, indem auf zwei Ebenen die Möglichkeit zur Par-
allelisierung implementiert wurde. So können die FEM-Simulationen durch Nutzung der
jeweiligen programmeigenen Möglichkeiten parallelisiert werden, wobei dies meist durch die
verfügbaren Lizenzen begrenzt wird. Darüber hinaus ist es möglich, die notwendigen Funkti-
onswertberechnungen eines Optimierungsschrittes in beliebiger Form auf mehreren Instanzen
von SPC-Opt aufzuteilen und auch auf diese Weise die absolute Rechenzeit zu verringern.

Neben der Programmierung der Software stellt die praktische Anwendung im industriel-
len Umfeld den zweiten Schwerpunkt der Arbeit dar. Dieser bezog sich auf die Weiterent-
wicklung bestehender Verfahren zur Materialparameteridentifikation im Bereich der Gum-
miwerkstoffe, deren besondere Materialeigenschaften Ursache für die Verwendung in einer
Vielzahl technischer Produkte sind. Um das inelastische Materialverhalten, welches sich in
charakteristischen Effekten wie Hysterese, Entfestigung oder bleibender Verformung äußert,
in FEM-Simulationen abbilden zu können, wurden in der jüngeren Vergangenheit eine Rei-
he hochwertiger Stoffgesetze entwickelt. Dem gegenüber hat sich die Vorgehensweise zur
Identifikation der Stoffparameter nur unwesentlich weiterentwickelt. Die übliche Methode
der Anpassung an homogene Standardversuche ignoriert die Tatsache, dass das tatsächliche
Materialverhalten und somit auch die Materialparameter des gewählten Stoffgesetzes eines
Bauteils nicht nur von der chemischen Zusammensetzung, sondern auch von der Bauteilgeo-
metrie, dem Fertigungsprozess und nicht zuletzt von der Belastungsgeschichte abhängen.
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Um die Unterschiede bezüglich Geometrie und Fertigungsprozess zwischen dem Bauteil und
dem Probekörper zu verringern, wurde von Ihlemann (Ihlemann, 2003) als Lösungsansatz
das Konzept der Anpassung anhand bauteilnaher Probekörper entwickelt. Basierend auf die-
sem Ansatz wurde im Rahmen der vorliegenden Arbeit am Beispiel einer Fahrwerksbuchse
ein Probekörper entworfen, welcher dem originalen Bauteil zwar ähnlich sieht, jedoch eine
deutlich einfachere Geometrie hat. Dadurch konnte das Verhalten des Bauteils gut approxi-
miert und dennoch sichergestellt werden, dass die im Rahmen der Parameteridentifikation
durchgeführten FEM-Simulationen sicher konvergieren. Das verwendete Material sowie der
Fertigungsprozess von Bauteil und Probekörper sind identisch. Auch die Belastungen der
zur Identifikation verwendeten Versuche orientierten sich an den im Lastenheft definierten
Beanspruchungen. Zur Identifikation wurde eine auf industrielle Bedürfnisse zugeschnittene
Auskopplung von SPC-Opt verwendet. Die Simulation der Lastfälle erfolgte mit den kommer-
ziellen FEM-Programmen ABAQUS ∗ und MSC.MARC ∗, deren entsprechende Schnittstellen
in SPC-Opt bezüglich ihrer Funktionalität erweitert wurden. Dies war vor allem deshalb not-
wendig, da das im Projekt genutzte Morph-Stoffgesetz (Besdo und Ihlemann, 2003) in den
FEM-Programmen nur über die Nutzerschnittstellen implementiert werden konnte.

Während des Projektverlaufs erfolgten weitere Betrachtungen zur Parameteridentifikation.
Hierfür wurden zu Vergleichszwecken auch herkömmliche Versuche an Standardprobekörpern
durchgeführt. In diesem Kontext erfolgte die Untersuchung und Bewertung typischer Vor-
gehensweisen zur Manipulation von Messdaten in der Industrie und ihre Auswirkungen auf
die Identifikation. Zur besseren Vergleichbarkeit verschiedener homogener Lastfälle konnte
ein einfach zu berechnendes, auf dem Umformgrad basierendes, Vergleichsmaß hergeleitet
werden. Da sich die bei der Berechnung der Zielfunktion berücksichtigten Belastungsarten
bezüglich Belastungstyp, Lastschrittzahl und Belastungsintensität unterscheiden, wurde die
“Gewichtete Fehlerquadrat-Kennzahl” entwickelt. Dadurch können die verschiedenen Versu-
che quantitativ miteinander verglichen werden.

Für die FEM-Simulation einiger Belastungen am realen Bauteil, und eingeschränkt auch am
bauteilnahen Probekörper, traten Konvergenzschwierigkeiten infolge entartender Elemente
auf. Durch die Implementierung sogenannter “Stabilisierungselemente” konnte das Entarten
vermieden werden und die FEM-Simulationen konvergierten erfolgreich. Dadurch war die
Validierung der bauteilnah identifizierten Parameter anhand des Vergleiches der Experimen-
te am Bauteil und der zugehörigen FEM-Simulationen möglich. Die Validierung bestätigte,
dass die Verwendung bauteilnah identifizierter Parameter zu einer erheblich besseren Abbil-
dung des Materialverhaltens führt als die Verwendung anhand von Standardprobekörpern
identifizierter Parameter. Es zeigte sich weiterhin, dass vor allem der Einsatz eines Stoffge-
setzes mit der Möglichkeit zur Abbildung des charakteristischen Verhaltens von Elastomeren
unbedingt erforderlich ist.

Dennoch bleiben einige Fragestellungen ungeklärt, z.B. inwieweit ein für ein spezifisches Bau-
teil identifizierter Parametersatz auch zuverlässige Simulationsergebnisse für Bauteile mit
einer ähnlichen Geometrie liefert. Die Möglichkeit zur “Wiederverwendbarkeit” identifizierter
Parametersätze hätte einen erheblichen Effizienzgewinn zur Folge, weshalb die Klärung dieser
Thematik das Teilziel eines Nachfolgeprojektes darstellt.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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Auch die allgemeine Annahme eines temperatur- und belastungsunabhängigen Kompressi-
onsmoduls ist, unabhängig vom verwendeten Stoffgesetz, sehr fraglich. Dies belegen sowohl
alte als auch neue Arbeiten (Adams und Gibson, 1930; Stommel und Zimmermann, 2012).
Da die Wahl des Kompressionsmoduls einen großen Einfluss auf das gesamte Materialver-
halten in der FEM-Simulation hat, ist die nähere Betrachtung im Rahmen eines gesonderten
Projektes sehr sinnvoll.

Im Hinblick auf die Weiterentwicklung von SPC-Opt ist die bereits laufende Integration von
SQP-Verfahren zur Lösung restingierter Probleme zu nennen. Die Vielfalt möglicher Anwen-
dungen erweitert sich dadurch deutlich, insbesondere für den Bereich der Formoptimierung.
Dies liegt daran, dass Restriktionen einzelner Designvariablen bzw. davon abhängiger Grö-
ßen zur Einhaltung definierter Vorgaben bezüglich Bauraum, Masse, Volumen, Spannungen
usw. deutlich besser in der Optimierung berücksichtigt werden können.

Die Frage, wie stark sich die Variation einzelner Parameter auf das Modell und somit auf die
Zielfunktion auswirkt, kann bislang in SPC-Opt nicht zufriedenstellend beantwortet werden.
Insbesondere für Probleme der Formoptimierung ist es jedoch bereits während der Modeller-
stellung wichtig, die optimale Anzahl und Position derjenigen Designvariablen zu ermitteln,
welche die zu optimierenden Konturen beschreiben. Vor diesem Hintergrund erscheint eine
entsprechende Erweiterung des Funktionsumfangs sehr sinnvoll, zumal verschiedene anwen-
dungsabhängige Verfahren bereits existieren (Saltelli et al., 2008).

Grundsätzlich ist der Aufwand zur Entwicklung hauseigener Optimierungssoftware wieder-
kehrend zu hinterfragen. Dies ist vor allem dem Fakt geschuldet, dass kommerzielle Anbieter
von CAD- und FEM-Programmen sowie Optimierungssoftware stetig die Funktionalität ihrer
Produkte erweitern. Dadurch werden die Anwendungsbereiche zunehmend erweitert und die
Vorteile spezialisierter Lösungen abgeschwächt oder gar kompensiert. Verstärkt wird dies
durch den fortschreitenden Konzentrationsprozess in Form von Übernahmen oder Fusionen,
beispielsweise die Übernahme der Firmen Simufact, Free Field Technologies (FFT) u.w.
durch MSC Software.

Die im Rahmen der vorliegenden Arbeit entwickelte Optimierungssoftware SPC-Opt ist nicht
nur in der aktuellen Form ein vielseitiges Werkzeug zur Bearbeitung von Problemstellungen
der Identifikation und Formoptimierung. Dank der modularen Struktur kann die Softwa-
re entsprechend neuer Anforderungen flexibel erweitert werden und stellt daher auch in
weiteren Forschungsprojekten einen wichtigen Bestandteil dar. Durch gezielte Modifikatio-
nen der Optimierungsverfahren bezüglich Robustheit und Automatisierung entstand eine
Programmauskopplung, welche auch im industriellen Umfeld einfach anzuwenden ist und
selbst bei schlecht konditionierten Problemen der Parameteridentifikation gute Ergebnisse
mit wenigen Optimierungsschritten ermöglicht. In diesem Kontext ist auch die Program-
mierung von Schnittstellen zur Einbindung verschiedener kommerzieller FEM-Programme
bei Verwendung eigener Stoffgesetze hervorzuheben. Diese wurden gezielt im Hinblick auf
ein stabiles Konvergenzverhalten trotz stark verzerrter FE-Netze sowie geringe Geschwindig-
keitsverluste infolge des notwendigen Datenaustauschs zwischen dem FEM-Programm und
SPC-Opt optimiert. Im Ergebnis dessen sind die beteiligten Industriepartner nunmehr in
der Lage, die Vorteile fortgeschrittener Materialmodelle im Rahmen von FEM-Simulationen
bzw. bei der Lösung von Optimierungsaufgaben effizient und sicher zu nutzen.
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A.1 Software und Programmpakete

An mehreren Stellen der vorliegenden Arbeit wird auf Software und Programmpakete unter-
schiedlichen Umfangs verwiesen. Im Folgenden sind diese aufgelistet und mit weiterführenden
Informationen versehen. Die Angaben zur Programmversion beinhalten keine Aussage be-
züglich der im Text angegebenen Funktionalität. Sie dienen ausschließlich zur Information
darüber, welche Versionen im Rahmen der Arbeit betrachtet bzw. verwendet wurden.

ABAQUS

Programmbezeichnung: Abaqus
Entwickler: Dassault Systèmes
Version: 6.11-6.14
URL: http://www.3ds.com/products-services/simulia/products/abaqus

ADOL-C

Programmbezeichnung: ADOL-C und weitere Programmpakete
Entwickler: COIN-OR
Version: ADOL-C 2.5
URL: http://www.coin-or.org/projects/ADOL-C.xml

ALGLIB

Programmbezeichnung: ALGLIB
Entwickler: ALGLIB Project
Version: 3.8.1
URL: http://www.alglib.net/

ANKHOR

Programmbezeichnung: ANKHOR FlowSheet
Entwickler: ANKHOR Software GmbH
Version: 2.0.1
URL: http://www.ankhor.com

ANSA

Programmbezeichnung: ANSA
Entwickler: BETA CAE Systems S.A.
Version: 15.0
URL: http://www.beta-cae.gr/ansa.htm
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ANSYS

Programmbezeichnung: ANSYS Mechanical
Entwickler: ANSYS, Inc.
Version: 14.0
URL: http://www.ansys.com/Products/Simulation+Technology/Structural+Analysis/
ANSYS+Mechanical

BLITZ

Programmbezeichnung: Blitz++ Library
Entwickler: oonumerics
Version:
URL: http://www.oonumerics.org/blitz/

CARAT++

Programmbezeichnung: CARAT++(vormals CARAT)
Entwickler: FEMopt Studios
Version: CARAT-4
URL: http://www.femopt.de/index.php/de

CMAKE

Programmbezeichnung: CMake
Entwickler: Bill Hoffman, Ken Martin, Brad King, Dave Cole, Alexander Neundorf, Clinton
Stimpson
Version: 2.8.12
URL: http://www.cmake.org/

DOXYGEN

Programmbezeichnung: Doxygen
Entwickler: Dimitri van Heesch
Version: 1.6.1
URL: http://www.stack.nl/∼dimitri/doxygen/index.html

FT-Optimization

Programmbezeichnung: FEMtools Optimization
Entwickler: Dynamic Design Solutions
Version: 3.8
URL: http://www.femtools.com/products/ftopt.htm

HYPERMESH

Programmbezeichnung: Altair HyperMesh
Entwickler: Altair HyperWorks
Version: 12.0
URL: http://www.altairhyperworks.de/
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LS-OPT

Programmbezeichnung: LS-OPT
Entwickler: DYNAmore
Version: 4.2
URL: http://www.dynamore.de/de/produkte/opt/ls-opt

MATLAB

Programmbezeichnung: MATLAB (Optimization Toolbox, Global Optimization Toolbox)
Entwickler: MathWorks
Version: R2013-R2014
URL: http://www.femtools.com/products/ftopt.htm

MSC.MARC

Programmbezeichnung: Marc
Entwickler: MSC Software
Version: 2007-2013
URL: http://www.mscsoftware.com/de/product/marc

MSC.NASTRAN

Programmbezeichnung: Nastran
Entwickler: MSC Software
Version: 2013
URL: http://www.mscsoftware.com/de/product/msc-nastran

NX

Programmbezeichnung: NX(vormals UNIGRAPHICS)
Entwickler: Siemens PLM Software
Version: 10
URL: http://www.plm.automation.siemens.com/de_de/products/nx/10/index.shtml

OptiStruct

Programmbezeichnung: OptiStruct
Entwickler: Altair
Version: 11.0
URL: http://www.altairhyperworks.de/Product,19,OptiStruct.aspx

PATRAN

Programmbezeichnung: Patran
Entwickler: MSC Software
Version: 2012
URL: http://www.mscsoftware.com/de/product/patran

POCO

Programmbezeichnung: POCO C++ Libraries
Entwickler: Günter Obiltschnig, Aleksandar Fabijanic u.w.
Version: 1.3
URL: http://pocoproject.org/

https://doi.org/10.51202/9783186347183 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:47:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186347183


132 Anhang

PTC/Creo

Programmbezeichnung: PTC Creo Parametric(vormals Pro/ENGINEER Wildfire)
Entwickler: INNEO Solutions
Version: Pro/Engineer Wildfire 5.0
URL: http://de.ptc.com/product/creo/3d-cad/parametric

SOLIDWORKS

Programmbezeichnung: SolidWorks Simulation
Entwickler: Dassault Systèmes
Version: 2013-2014
URL: http://www.solidworks.de/sw/products/simulation/structural-optimization.htm

SPC-PM2AdNl

Programmbezeichnung: SPC-PM2AdNl
Entwickler: Institut für Mechanik und Therodynamik, Professur Numerische Mathematik,
TU-Chemnitz
Version: 2004
URL: http://www.tu-chemnitz.de/sfb393

SVN

Programmbezeichnung: Apache Subversion
Entwickler: The Apache Software Foundation
Version: 1.6.11
URL: http://subversion.apache.org/

TOSCA

Programmbezeichnung: Tosca Structure
Entwickler: Dassault Systèmes (bis 2013 FE-Design)
Version: 7.0.2
URL: http://www.fe-design.de
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A.2 Visualisierung von FEM-Ergebnissen

Die ansprechende Visualisierung der Ergebnisse von FEM-Simulationen ist sowohl für die
Präsentation wissenschaftlicher Erkenntnisse bei Konferenzen als auch für die Darstellung
in Artikeln und wissenschaftlichen Arbeiten wie der vorliegenden Dissertation unerlässlich.
Leider entspricht die vorhandene Qualität der mit kommerziellen FEM-Programmen erzeug-
ten Grafiken und Animationen nur eingeschränkt einem hohen Anspruch und es häufig nicht
möglich, fehlerfreie Vektorgrafiken zu erzeugen bzw. ohne akzeptablen Qualitätsverlust in
Präsentationen zu integrieren.

Aufgrund dessen wurde in Zusammenarbeit mit Sigmund (2000) eine auf ANKHOR ∗ basie-
rende Anwendung entwickelt, welche aus einer Bibliothek mit Operatoren zum Einlesen,
Manipulieren und visuellen Aufbereiten von Ergebnisdaten aus FEM-Programmen sowie
einer darauf aufbauenden interaktiven Dashboard-Anwendung besteht. Die Bedienoberfläche
dieses im Weiteren als “FEM-Viewer” bezeichneten Programmes ist in Bild A.1 anhand eines
Beispielmodells dargestellt.

Bild A.1: Darstellung der Bedienoberfläche des FEM-Viewers.

Mit Hilfe des FEM-Viewers ist es möglich, die Ergebnisse einer FEM-Simulation einzulesen
und sie für Präsentationen oder andere Anwendungsbereiche aufzubereiten. Kenntnisse be-
züglich des zugrunde liegenden Programmes ANKHOR sind hierfür nicht erforderlich. Der
grundsätzliche Ablauf bei der Generierung qualitativ hochwertiger Bilder beinhaltet das
Einlesen der zu visualisierenden FEM-Daten, die Anpassung der Anzeigeeinstellungen sowie
die anschließende Speicherung für die oben genannten Anwendungsfälle. Hierbei werden die
nachfolgenden Dateiformate unterstützt:

• vektorbasiertes WMF bzw. EMF als Exportformat für MS Office-Anwendungen, z.B.
PowerPoint

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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• PNG als Bitmap basiertes Format, z.B. für Web-Präsentationen

• EPS als Vektorformat für die Druckausgabe oder zur Integration in TeX-basierten
Veröffentlichungen

• PDF zur Weitergabe der Daten via Email

Darüber hinaus können auf Keyframes basierende Animationen generiert und mit automa-
tischer Kompression in ein übliches Videoformat wie z.B. MPEG-2 umgewandelt werden.

Bei der Programmentwicklung war zu beachten, dass die bei einer FE-Analyse generierten
Ergebnisdaten nicht immer in einem anzeigefreundlichen Format vorliegen (vergl. Kap. 2.4).
Zudem ist es teilweise notwendig, die Ergebnisse durch Rotation (z.B. Axialsymmetrie),
Extrusion (z.B. bei Vorliegen eines EVZ) oder Spiegelung (z.B. bei Nutzung von Symmetrie-
randbedingungen) auf entsprechende 3D-Darstellungen zu erweitern. Zusätzlich müssen die
in den Gaußpunkten ermittelten Simulationsergebnisse durch Interpolation bzw. Extrapola-
tion oder durch Eigenwertbestimmung auf die Eckpunkte der finiten Elemente transformiert
werden.

Um Ausgabegrößen unterschiedlicher Simulationen des gleichen Bauteils gut miteinander
vergleichen zu können und den Arbeitsaufwand zu verringern, kann eine gewählte Bauteil-
Perspektive bzw. ein definierter Satz Bildparameter zur Darstellung unterschiedlicher Ergeb-
nisdateien verwendet werden. Für die Visualisierung der FE-Modelle hinsichtlich der ermit-
telten Verformungen und Spannungen existieren zahlreiche Möglichkeiten zur Hervorhebung
von Details, z.B. die Modifikation der Farbe oder Strichstärke von Elementkanten.

In der aktuellen Form können die Ergebnisse des FEM-Programms MSC.MARC ∗ in Form der
auf FORTRAN basierenden “t19” -Dateien eingelesen und verarbeitet werden. Eine Heraus-
forderung stellt hierbei die Tatsache dar, dass die Ergebnisdaten teilweise mehrere Gigabyte
umfassen und dadurch nicht als Ganzes im Arbeitsspeicher vorgehalten werden können. Aus
diesem Grund erfolgt das Parsen der Daten dynamisch, was bedeutet, dass nur die aktuell
benötigten Teile der Ergebnisdatei eingelesen werden.

∗Detaillierte Angaben sind im Anhang A.1 aufgeführt.
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