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Vil

Symbole und Abkiirzungen

Lateinische Symbole und Formelzeichen

Symbol Beschreibung Einheit
A Systemmatrix

Ax Fahrzeugstirnfliche

a Beschleunigung m/s?
ac Zentripetalbeschleunigung m/s?

B Eingangsmatrix

B Pacejka-Reifenmodell-Parameter fiir die Steigung

b mittlere Spurweite m

by Spurweite vorne m

b, Spurweite hinten m

bs Abstand Sensor - Schwerpunkt in Y-Richtung m

C Pacejka-Reifenmodell-Formparameter

Croll Parameter fiir die Wankmomentverteilung

cw Luftwiderstandsbeiwert

Coy Schlupfsteifigkeit N

o auf die Radlast bezogene Schlupfsteifigkeit

Co Schréglaufsteifigkeit N/rad
D Pacejka-Reifenmodell-Parameter fiir das Kraftmaximum

Dron Déampfung des Wankmodells rad/(m/s)
E Pacejka-Reifenmodell-Formparameter

F Kraft N

Fr Reifenkraft N

Fr Rollwiderstandskraft N

g Gravitationskonstante m/s?
H Ausgangsmatrix

h Ausgangsfunktionsvektor

h Schwerpunkthéhe des Fahrzeugs m

hg Hohe des Sensors m

is Lenkiibersetzung

J Tragheitsmoment kgm?/rad
K Kalman-Verstirkung

Kron Verstirkung des Wankmodells rad/(m/s?)
kq Quotient aus Querkraft und Schréglaufsteifigkeit

/ Radstand m
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Symbol

Beschreibung

Einheit

A

S xROT T

G
®o

N

SX,crit

DI - BN N B B

N <
o

Abstand Hinterachse - Fahrzeugschwerpunkt

Abstand Vorderachse - Fahrzeugschwerpunkt
Abstand Sensor - Schwerpunkt in X-Richtung
Einlauflinge

Drehmoment

Antriebsmoment

Bremsmoment

Gesamtfahrzeugmasse

Kovarianzmatrix des Schétzfehlers

Kreuzkovarianzmatrix zwischen Schitzfehler und Ausgang

Kovarianzmatrix der Messung
Parametervektor

Kovarianzmatrix des Prozessrausches
Kovarianzmatrix des Messrausches
Kurvenradius

dynamischer Reifenhalbmesser
Querschlupf

Langsschlupf

resultierender Schlupf

kritischer Schlupf
Transformationsmatrix

Abtastzeit

Zeitkonstante des Wankmodells
Zeit

Eingangsvektor

Messrauschvektor
Schwerpunktgeschwindigkeit
Jacobimatrix des Prozessrauschens
Prozessrauschvektor
Sigma-Partikel

Zustandsvektor

geschétzter Zustandsvektor
laterale Position

m/s

Sigma-Partikel durch die Ausgangsfunktion transformiert

Systemausgang
longitudinale Position
Messvektor
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Griechische Symbole und Formelzeichen

Symbol Beschreibung Einheit

o Schriglaufwinkel rad

lerit Schraglaufwinkel bei dem die maximale Querkraft entsteht rad

af Schriglaufwinkel an der Vorderachse rad

i Schriglaufwinkel rad

o Schréglaufwinkel an der Hinterachse rad

B Schwimmwinkel in Aufbau-Koordinaten (DIN-ISO-8855:2013-11 rad
(2013) bezieht sich auf die Ebene)

ﬁ Schwimmwinkelgeschwindigkeit in Aufbau-Koordinaten (DIN-ISO- rad/s
8855:2013-11 (2013) bezieht sich auf die Ebene)

¢ mittlerer Lenkwinkel an der Vorderachse rad

Su Lenkradwinkel rad

8 mittlerer Lenkwinkel an der Hinterachse rad

[4 Parametervektor

0 Nickwinkel des Aufbaus relativ zur horizontalen Ebene rad

Ok Nickwinkel des Aufbaus relativ zur Fahrbahnebene rad

Or Nickwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad

K Parameter des Achsquerkraftmodells zur Parametrierung des Léangs-
schlupfeinflusses

i resultierender Kraftschlussbeiwert am Rad ij, ij € {fl,fr,rl,rr}

Mmax,i maximaler Kraftschlussbeiwert an Achse i, 1 € {f,r}

& Regressionsvektor

P Luftdichte kg/m?

o Standartabweichung

1% Wankwinkel des Aufbaus relativ zur horizontalen Ebene rad

oK Wankwinkel des Aufbaus relativ zur Fahrbahnebene rad

@1 ‘Wankwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad

v Vektor der Eulerwinkel rad

v Gierwinkel zum erdfesten Koordinatensystem rad

1'p Gierrate in der Ebene rad/s

1)} Gierbeschleunigung in der Ebene rad/s?

wjj Raddrehgeschwindigkeit rad/s

wx gemessene Winkelgeschwindigkeit um die Fahzeuglangsachse (Wank- rad/s
rate)

wz gemessene Winkelgeschwindigkeit um die Fahrzeughochachse (Gier- rad/s
rate)

wx gemessene Wankwinkelbeschleunigung rad/s?

Wz Gierbeschleunigung um die Fahrzeughochachse rad/s?
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Xl

Indizes

Indize Beschreibung

Corr Correvit

E im erdfesten Koordinatensystem

f an der Vorderachse

fl Vorderachse links

fr Vorderachse rechts

r an der Hinterachse

1l Hinterachse links

T Hinterachse rechts

S im Sensorkoordinatensystem

\% im Fahrzeugkoordinatensystem

X in X-Richtung im jeweiligen Koordinatensystem
Y in Y-Richtung im jeweiligen Koordinatensystem
Z in Z-Richtung im jeweiligen Koordinatensystem
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XH

Abkiirzungen

Kiirzel vollstdndige Bezeichnung

ABS Antiblockiersystem

ATP Automotiv Testcenter Papenburg
CG Center of Gravity (Schwerpunkt)
EG Eigenlenkgradient

EKF erweitertes Kalman-Filter

ESC Electronic Stability Control
ESM Einspurmodell

ESP elektronisches Stabilisierungsprogramm
FDM Fahrdynamikmodell

GPS Global-Positioning-System

HA Hinterachse

HK Handlingkurs

IMU Inertial-Measurement-Unit

KIN kinematisches Modell

KF Kalman-Filter

LS Least-Square

max maximal

min minimal

NLB nichtlinearer Beobachter

PT1 Verzogerungsglied 1. Ordnung
PT2 Verzogerungsglied zweiter Ordnung
PZB Priifzentrum Boxberg

RC Rollcenter (Wankpol)

RLS Recursive-Least-Square

STM Single Track Model

rms root mean square

SG Schwimmwinkelgradient

SR Sommerreifen

UKF Unscented Kalman-Filter

WG ‘Wankwinkelgradient

WI Wankindex

WR Winterreifen

VA Vorderachse

ZVF Zustandsvariablenfilter

ZSM Zweispurmodell
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X1

Kurzfassung

Ziel dieser Arbeit war die Entwicklung einer Methode zur Schitzung der wichtigsten Bewegungs-
groBen Schwerpunktgeschwindigkeit und Schwimmwinkel, um diese einer Fahrdynamikregelung
zur Verfiigung zu stellen. Dazu sollte lediglich die Sensorik der Electronic Stability Control (ESC)
genutzt werden. Damit eine modellbasierte Steuerung oder ein Fiihrungsmodell auf Verdnderung
des querdynamischen Fahrverhaltens reagieren kann, sollten zusitzlich die fahrdynamisch wich-
tigsten Parameter, wie die Schriglaufsteifigkeiten und der maximale Reibwert wihrend des Fahr-
betriebs geschitzt werden.

Fahrdynamische Modelle wurden auf Basis der Starrkérperbewegung im Raum entwickelt, die
alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physikalischen Grenz-
bereich auf Hoch- und Niedrigreibwert genau genug modellieren. Dabei wurde ein optimaler Kom-
promiss aus Komplexitit und Genauigkeit gefunden.

Die fahrzeug- und reifenabhéngigen Parameter dieser nichtlinearen Schlupf-Kraftmodelle wur-
den durch Fahrversuche und einer neu entwickelten Referenzsensorik-Konfiguration bestehend
aus 6D-IMU, GPS und Correvit-Sensor identifiziert. Dabei wurden erstmals auch Mandver mit
gleichzeitigem Léngs- und Querschlupf (Kurvenbremsungen) verwendet, um die Querkraftab-
schwichung in Abhingigkeit des Langsschlupfes zu parametrieren. Die Validierung mit einer Kur-
venbremsung bei maximaler Querbeschleunigung zeigt die Leistungsfahigkeit des resultierenden
Fahrdynamikmodells auf.

Die Schitzung der fahrdynamischen Zustinde und Parameter mit ESC-Sensorik wurde auf Basis
von erweiterten und Unscented Kalman-Filtern entwickelt. Die Pridiktion der Zustinde erfolgte
wie in der Luft- und Raumfahrt iiblich mit einem kinematischen Modell, d.h. durch Integration der
Léangs- und Querbeschleunigungsensorsignale, sowie der Gierrate. Die Korrektur dieser instabilen
Integration erfolgte durch die Geschwindigkeiten der Vorderrader und mit den (aus Sensorgrof3en
geschitzten) Langs- und Querkréften der Vorder- und Hinterachse. Durch Beriicksichtigung des
maximalen Reibwerts in den Achslangs- und Querkraftmodellen wird dieser bei gentigend Schlupf
beobachtbar.

Es konnte gezeigt und erstmals begriindet werden, warum der hier zur Zustandsschitzung einge-
setzte Unscented Kalman-Filter im fahrdynamischen Grenzbereich durch die Beriicksichtigung
der Nichtlinearitit den Schwimmwinkel robuster als der erweiterte Kalman-Filter schatzt.

Die Schwimmwinkelschitzung wurde mittels 355 unterschiedlicher, vom Autor selbst durchge-
fithrter Testfahrten auf Fahrdynamikflichen, Steilkurven, Handlingkursen und auf Schnee vali-
diert. Der Algorithmus lieferte auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdy-
namisch relevanten Situationen robuste Ergebnisse. Im Mittel betrug der maximale Schwimm-
winkelfehler wihrend einer Testfahrt 2,7°. Der entwickelte Schwimmwinkelschitzer kann daher
einen entscheidenden Beitrag bei der Weiterentwicklung des ESC leisten, indem insbesondere
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kritische Situationen friihzeitig erkannt werden. Die Reibwertschitzung reagierte sehr schnell, so-
dass bereits bei ca. 80-85% der maximalen Querbeschleunigung der maximale Reibwert richtig
eingeschitzt wurde. Die Schriglaufsteifigkeiten konnten wihrend einer LandstraBenfahrt mit mitt-
leren Querbeschleunigungen robust geschitzt werden. Der Unterschied zwischen einer Winter-
und Sommerbereifung wurde deutlich.

Um das Zusammenspiel des entwickelten Schitzalgorithmus mit einer Fahrdynamikregelung zu
demonstrieren, wurde eine Modellfolgesteuerung einer aktiven Vorder- und Hinterachslenkung
zur Verbesserung der Gierdynamik in einer /PG-Carmaker-Simulation implementiert. Durch die
Riickfithrung des geschétzten Schwimmwinkels und einem einfachen P-Regler konnte das Fahr-
zeug durch Bremseingriffe auch bei einem langsam anwachsenden Schwimmwinkeln frithzeitig
stabilisiert werden, was durch eine Gierratenriickfithrung nicht méglich war.
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