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v Messrauschvektor
v Schwerpunktgeschwindigkeit m=s
W Jacobimatrix des Prozessrauschens
w Prozessrauschvektor
X Sigma-Partikel
x Zustandsvektor
Ox geschätzter Zustandsvektor
xE laterale Position m
Y Sigma-Partikel durch die Ausgangsfunktion transformiert
y Systemausgang
yE longitudinale Position m
z Messvektor
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Griechische Symbole und Formelzeichen

Symbol Beschreibung Einheit

˛ Schräglaufwinkel rad
˛crit Schräglaufwinkel bei dem die maximale Querkraft entsteht rad
˛f Schräglaufwinkel an der Vorderachse rad
˛ij Schräglaufwinkel rad
˛r Schräglaufwinkel an der Hinterachse rad
ˇ Schwimmwinkel in Aufbau-Koordinaten (DIN-ISO-8855:2013-11

(2013) bezieht sich auf die Ebene)
rad

P̌ Schwimmwinkelgeschwindigkeit in Aufbau-Koordinaten (DIN-ISO-
8855:2013-11 (2013) bezieht sich auf die Ebene)

rad=s

ıf mittlerer Lenkwinkel an der Vorderachse rad
ıH Lenkradwinkel rad
ır mittlerer Lenkwinkel an der Hinterachse rad
� Parametervektor
� Nickwinkel des Aufbaus relativ zur horizontalen Ebene rad
�K Nickwinkel des Aufbaus relativ zur Fahrbahnebene rad
�T Nickwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad
� Parameter des Achsquerkraftmodells zur Parametrierung des Längs-

schlupfeinflusses
�ij resultierender Kraftschlussbeiwert am Rad ij, ij 2 ffl;fr;rl;rrg
�max;i maximaler Kraftschlussbeiwert an Achse i, i 2 ff;rg
� Regressionsvektor
� Luftdichte kg=m3

� Standartabweichung
' Wankwinkel des Aufbaus relativ zur horizontalen Ebene rad
'K Wankwinkel des Aufbaus relativ zur Fahrbahnebene rad
'T Wankwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad
‰ Vektor der Eulerwinkel rad
 Gierwinkel zum erdfesten Koordinatensystem rad
P Gierrate in der Ebene rad=s
R Gierbeschleunigung in der Ebene rad=s2

!ij Raddrehgeschwindigkeit rad=s
!X gemessene Winkelgeschwindigkeit um die Fahzeuglängsachse (Wank-

rate)
rad=s

!Z gemessene Winkelgeschwindigkeit um die Fahrzeughochachse (Gier-
rate)

rad=s

P!X gemessene Wankwinkelbeschleunigung rad=s2

P!Z Gierbeschleunigung um die Fahrzeughochachse rad=s2
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Indizes

Indize Beschreibung

Corr Correvit
E im erdfesten Koordinatensystem
f an der Vorderachse
fl Vorderachse links
fr Vorderachse rechts
r an der Hinterachse
rl Hinterachse links
rr Hinterachse rechts
S im Sensorkoordinatensystem
V im Fahrzeugkoordinatensystem
X in X-Richtung im jeweiligen Koordinatensystem
Y in Y-Richtung im jeweiligen Koordinatensystem
Z in Z-Richtung im jeweiligen Koordinatensystem
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Abkürzungen

Kürzel vollständige Bezeichnung

ABS Antiblockiersystem
ATP Automotiv Testcenter Papenburg
CG Center of Gravity (Schwerpunkt)
EG Eigenlenkgradient
EKF erweitertes Kalman-Filter
ESC Electronic Stability Control
ESM Einspurmodell
ESP elektronisches Stabilisierungsprogramm
FDM Fahrdynamikmodell
GPS Global-Positioning-System
HA Hinterachse
HK Handlingkurs
IMU Inertial-Measurement-Unit
KIN kinematisches Modell
KF Kalman-Filter
LS Least-Square
max maximal
min minimal
NLB nichtlinearer Beobachter
PT1 Verzögerungsglied 1. Ordnung
PT2 Verzögerungsglied zweiter Ordnung
PZB Prüfzentrum Boxberg
RC Rollcenter (Wankpol)
RLS Recursive-Least-Square
STM Single Track Model
rms root mean square
SG Schwimmwinkelgradient
SR Sommerreifen
UKF Unscented Kalman-Filter
WG Wankwinkelgradient
WI Wankindex
WR Winterreifen
VA Vorderachse
ZVF Zustandsvariablenfilter
ZSM Zweispurmodell
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Kurzfassung

Ziel dieser Arbeit war die Entwicklung einer Methode zur Schätzung der wichtigsten Bewegungs-
größen Schwerpunktgeschwindigkeit und Schwimmwinkel, um diese einer Fahrdynamikregelung
zur Verfügung zu stellen. Dazu sollte lediglich die Sensorik der Electronic Stability Control (ESC)
genutzt werden. Damit eine modellbasierte Steuerung oder ein Führungsmodell auf Veränderung
des querdynamischen Fahrverhaltens reagieren kann, sollten zusätzlich die fahrdynamisch wich-
tigsten Parameter, wie die Schräglaufsteifigkeiten und der maximale Reibwert während des Fahr-
betriebs geschätzt werden.

Fahrdynamische Modelle wurden auf Basis der Starrkörperbewegung im Raum entwickelt, die
alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physikalischen Grenz-
bereich auf Hoch- und Niedrigreibwert genau genug modellieren. Dabei wurde ein optimaler Kom-
promiss aus Komplexität und Genauigkeit gefunden.

Die fahrzeug- und reifenabhängigen Parameter dieser nichtlinearen Schlupf-Kraftmodelle wur-
den durch Fahrversuche und einer neu entwickelten Referenzsensorik-Konfiguration bestehend
aus 6D-IMU, GPS und Correvit-Sensor identifiziert. Dabei wurden erstmals auch Manöver mit
gleichzeitigem Längs- und Querschlupf (Kurvenbremsungen) verwendet, um die Querkraftab-
schwächung in Abhängigkeit des Längsschlupfes zu parametrieren. Die Validierung mit einer Kur-
venbremsung bei maximaler Querbeschleunigung zeigt die Leistungsfähigkeit des resultierenden
Fahrdynamikmodells auf.

Die Schätzung der fahrdynamischen Zustände und Parameter mit ESC-Sensorik wurde auf Basis
von erweiterten und Unscented Kalman-Filtern entwickelt. Die Prädiktion der Zustände erfolgte
wie in der Luft- und Raumfahrt üblich mit einem kinematischen Modell, d.h. durch Integration der
Längs- und Querbeschleunigungsensorsignale, sowie der Gierrate. Die Korrektur dieser instabilen
Integration erfolgte durch die Geschwindigkeiten der Vorderräder und mit den (aus Sensorgrößen
geschätzten) Längs- und Querkräften der Vorder- und Hinterachse. Durch Berücksichtigung des
maximalen Reibwerts in den Achslängs- und Querkraftmodellen wird dieser bei genügend Schlupf
beobachtbar.
Es konnte gezeigt und erstmals begründet werden, warum der hier zur Zustandsschätzung einge-
setzte Unscented Kalman-Filter im fahrdynamischen Grenzbereich durch die Berücksichtigung
der Nichtlinearität den Schwimmwinkel robuster als der erweiterte Kalman-Filter schätzt.

Die Schwimmwinkelschätzung wurde mittels 355 unterschiedlicher, vom Autor selbst durchge-
führter Testfahrten auf Fahrdynamikflächen, Steilkurven, Handlingkursen und auf Schnee vali-
diert. Der Algorithmus lieferte auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdy-
namisch relevanten Situationen robuste Ergebnisse. Im Mittel betrug der maximale Schwimm-
winkelfehler während einer Testfahrt 2,7ı. Der entwickelte Schwimmwinkelschätzer kann daher
einen entscheidenden Beitrag bei der Weiterentwicklung des ESC leisten, indem insbesondere
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kritische Situationen frühzeitig erkannt werden. Die Reibwertschätzung reagierte sehr schnell, so-
dass bereits bei ca. 80-85% der maximalen Querbeschleunigung der maximale Reibwert richtig
eingeschätzt wurde. Die Schräglaufsteifigkeiten konnten während einer Landstraßenfahrt mit mitt-
leren Querbeschleunigungen robust geschätzt werden. Der Unterschied zwischen einer Winter-
und Sommerbereifung wurde deutlich.

Um das Zusammenspiel des entwickelten Schätzalgorithmus mit einer Fahrdynamikregelung zu
demonstrieren, wurde eine Modellfolgesteuerung einer aktiven Vorder- und Hinterachslenkung
zur Verbesserung der Gierdynamik in einer IPG-Carmaker-Simulation implementiert. Durch die
Rückführung des geschätzten Schwimmwinkels und einem einfachen P-Regler konnte das Fahr-
zeug durch Bremseingriffe auch bei einem langsam anwachsenden Schwimmwinkeln frühzeitig
stabilisiert werden, was durch eine Gierratenrückführung nicht möglich war.
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