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Abstract

The present thesis describes model-based strategies for the identification of pure and mul-
ticomponent cellulosic biofuel candidates that exhibit tailored properties for use in high-
efficiency, low-emission internal combustion engines. Following a description of the theo-
retical foundations of fuel design, an algorithm for the targeted generation of candidate
structures is proposed that facilitates an exploration of the molecular search space by
means of a rule-based approach resembling carbon- and energy-efficient chemo-catalytic
refunctionalization of bio-derived platform chemicals. Model-based evaluation of the ob-
tained structures is based on a group contribution method that is capable of predict-
ing the derived cetane number (DCN) of oxygenated hydrocarbon species directly from
molecular structure. Furthermore, the virtual fuel screening relies on tailored quantitative
structure-property relationship (QSPR) models which can predict a range of important
physicochemical fuel properties based on molecular descriptors computable from the two-
dimensional molecular graph. The analysis of two comprehensive case studies reveals that
compact ketones, furans and esters represent knock-resistant compounds which also ex-
hibit favorable thermophysical properties deemed important for the in-cylinder mixture
formation process in spark-ignition (SI) engines. In contrast, cyclic and acyclic ethers
of moderate size readily auto-ignite and therefore represent first choice candidates for
compression-ignition (CI) engines. Moreover, the high fuel oxygen contents, the low vis-
cosities and the high volatilities of the ether compounds are expected to result in low levels
of engine-out soot emissions. Finally, an optimization-based approach for the formulation
of multicomponent biofuels by means of integrated product and pathway design is pre-
sented. Here, the objective is to maximize a process-related quantity, i.e., the energy of
fuel produced (in terms of the lower heating value), and the constraints in the problem
formulation allow to define target ranges for the blend’s physicochemical properties. To
account, for non-ideal mixture behavior with respect to two important properties of SI en-
gine fuels, i.e., the Reid vapor pressure and the distillation curve, the nonlinear program
includes the UNIFAC group contribution model. Application of the new design method-
ology to a case study underlines the significance of performing combined product and
pathway design, since only few investigated blends are found to exhibit both the desired

fuel properties and attractive process-related properties.
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Kurzfassung

Die vorliegende Arbeit beschreibt modellbasierte Strategien zur Identifikation lignocellu-
losebasierter Kraftstoffkandidaten mit vielversprechenden Eigenschaften fiir den Einsatz
in hoch-effizienten und schadstoffarmen Verbrennungsmotoren. Auf Basis theoretischer
Grundlagen zum molekularen Mafischneidern von Kraftstoffen wird dabei zunéchst ein Al-
gorithmus zur zielgerichteten Molekiilstrukturgenerierung vorgestellt, der den Suchraum
mittels eines regelbasierten Ansatzes systematisch aufspannt und dabei dem Konzept ei-
ner selektiven Refunktionalisierung biobasierter Plattformchemikalien folgt. Fiir die mo-
dellbasierte Bewertung der so erhaltenen Strukturen liefert die vorliegende Arbeit einen
essentiellen Baustein in Form einer Gruppenbeitragsmethode zur Vorhersage der abgeleite-
ten Cetanzahl (engl. Abk. DCN). Daneben fufit die virtuelle Kraftstoffsuche vor allem auf
mafBgeschneiderten quantitativen Struktur-Eigenschafts-Beziehungen (engl. Abk. QSPR),
die wesentliche Kraftstoffeigenschaften als Funktion molekularer Deskriptoren beschrei-
ben. Die Analyse umfangreicher Fallstudien zeigt, dass kompakte Ketone, Furane und
Ester sehr klopffeste Verbindungen darstellen, die zudem giinstige Eigenschaften fiir die
Gemischbildung im Ottomotor aufweisen. Fiir den Dieselmotor hingegen kommen vor al-
lem cyclische und acyclische Ether mittlerer Grofie in Frage, da diese Stoffe eine hohe
Ziindwilligkeit besitzen. Die hohen Sauerstoffgehalte, die vergleichsweise niedrigen Siede-
punkte und die geringen Viskosititen der Etherkraftstoffe lassen zudem niedrige Partikel-
emissionen bei der Verbrennung im Dieselmotor erwarten. Schliefllich wird ein optimie-
rungsbasierter Ansatz vorgestellt, der ein integriertes Produkt- und Pfadentwurfsproblem
zur Formulierung von Kraftstoffmischungen mit gewiinschten Eigenschaften 16st. Im Ziel-
funktional der Optimierung steht dabei mit der produzierten Energiemenge des Kraft-
stoffs (gemessen am Heizwert) eine prozessrelevante Grofie. Die in den Nebenbedingun-
gen des Problems auftretenden Stoffdatenmodelle erlauben die Beschrinkung physikalisch-
chemischer Kraftstoffeigenschaften und umfassen die UNIFAC-Gruppenbeitragsmethode,
um die Einfliisse von nicht-idealem Mischungsverhalten auf Dampfdruck und Destillati-
onskurve zu beschreiben. Die Anwendung der neuen Entwurfsmethode auf eine Fallstudie
verdeutlicht die Wichtigkeit einer integrierten Betrachtung von Produkt- und Pfadentwurf,
denn nur eine kleine Zahl der untersuchten Gemische weist neben den wiinschenswerten

Kraftstoffeigenschaften auch attraktive Prozesseigenschaften auf.
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