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den vielen Freunden am Lehrstuhl für die angenehme Atmosphäre und die gemeinsamen
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ỹ known fuel property data (various) various

ỹ mean of column-vector of known fuel property

data (various)

various

y vector of fuel property data (various) various

ỹ vector of known fuel property data (various) various

Δy confidence interval for the prediction ln(ms)

Y pathway yield

z mole fraction of the blend

z vector of mole fractions of the blend

Greek

α confidence level

α incremental step

β vector of regression coefficients (PLS)

γ activity coefficient

δ similarity threshold

δ Euclidean distance in the PC space

δ vector of Euclidean distances in the PC space

ΔΘ confidence interval for model parameter

ε̃ normally distributed measurement error (zero mean) ln(ms)

ζ absolute parameter correlation

ηLHV LHV efficiency MJ/MJ

Θ parameter of group contribution model

Θ vector of model parameters

χ auxilliary variable

λ air-fuel equivalence ratio

λ eigenvalue

μ dynamic viscosity Pa·s
ν kinematic viscosity mm2/s

υ stoichiometric coefficient

ξ mass fraction of the blend

ρL liquid density kg/m3
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Notation

ρm molar liquid density kmol/m3,

mol/cm3

σ surface tension N/m,

mN/m

σ̃ measurement standard deviation ln(ms)

σ̃ vector of measurement standard deviations ln(ms)

τ IQT ignition delay ms

φ objective function in parameter estimation

ϕ length of vector

ω acentric factor

Subscripts

5NTN five nearest training neighbors

a first-order structural group index

a2 second-order structural group index

a3 third-order structural group index

b descriptor index

boil normal boiling point

bp bubble point pressure (approximated Reid vapor

pressure)

c combustion cycle index (measurement index)

crit critical state

D distillate

ext external validation set

f enthalpy of formation

h pathway index

i index (component / compound)

j index (component / compound)

k pathway index

l index

L liquid

max maximum value

min minimum value

melt melting point

nAB number of aromatic bonds (descriptor)

nCCDB number of carbon-carbon double bonds (descriptor)

nTC number of tertiary carbon atoms (descriptor)
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Notation

nQC number of quaternary carbon atoms (descriptor)

p model parameter index

P1 biomass fractionation and depolymerization pathway

q model parameter index

Reid Reid vapor pressure

S1 biomass supply pathway

S2 hydrogen supply pathway

thre threshold value

vap enthalpy of vaporization

V vapor

x number of carbon atoms

y number of hydrogen atoms

z number of oxygen atoms

Superscripts

∗ optimal value

0 reference state

cum cumulative

j eigenvector/eigenvalue index

lb lower bound

norm normalization factor

S vapor pressure

t model candidate index

test test set (external validation set)

ub upper bound
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Abstract

The present thesis describes model-based strategies for the identification of pure and mul-

ticomponent cellulosic biofuel candidates that exhibit tailored properties for use in high-

efficiency, low-emission internal combustion engines. Following a description of the theo-

retical foundations of fuel design, an algorithm for the targeted generation of candidate

structures is proposed that facilitates an exploration of the molecular search space by

means of a rule-based approach resembling carbon- and energy-efficient chemo-catalytic

refunctionalization of bio-derived platform chemicals. Model-based evaluation of the ob-

tained structures is based on a group contribution method that is capable of predict-

ing the derived cetane number (DCN) of oxygenated hydrocarbon species directly from

molecular structure. Furthermore, the virtual fuel screening relies on tailored quantitative

structure-property relationship (QSPR) models which can predict a range of important

physicochemical fuel properties based on molecular descriptors computable from the two-

dimensional molecular graph. The analysis of two comprehensive case studies reveals that

compact ketones, furans and esters represent knock-resistant compounds which also ex-

hibit favorable thermophysical properties deemed important for the in-cylinder mixture

formation process in spark-ignition (SI) engines. In contrast, cyclic and acyclic ethers

of moderate size readily auto-ignite and therefore represent first choice candidates for

compression-ignition (CI) engines. Moreover, the high fuel oxygen contents, the low vis-

cosities and the high volatilities of the ether compounds are expected to result in low levels

of engine-out soot emissions. Finally, an optimization-based approach for the formulation

of multicomponent biofuels by means of integrated product and pathway design is pre-

sented. Here, the objective is to maximize a process-related quantity, i.e., the energy of

fuel produced (in terms of the lower heating value), and the constraints in the problem

formulation allow to define target ranges for the blend’s physicochemical properties. To

account for non-ideal mixture behavior with respect to two important properties of SI en-

gine fuels, i.e., the Reid vapor pressure and the distillation curve, the nonlinear program

includes the UNIFAC group contribution model. Application of the new design method-

ology to a case study underlines the significance of performing combined product and

pathway design, since only few investigated blends are found to exhibit both the desired

fuel properties and attractive process-related properties.
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Kurzfassung

Die vorliegende Arbeit beschreibt modellbasierte Strategien zur Identifikation lignocellu-

losebasierter Kraftstoffkandidaten mit vielversprechenden Eigenschaften für den Einsatz

in hoch-effizienten und schadstoffarmen Verbrennungsmotoren. Auf Basis theoretischer

Grundlagen zum molekularen Maßschneidern von Kraftstoffen wird dabei zunächst ein Al-

gorithmus zur zielgerichteten Molekülstrukturgenerierung vorgestellt, der den Suchraum

mittels eines regelbasierten Ansatzes systematisch aufspannt und dabei dem Konzept ei-

ner selektiven Refunktionalisierung biobasierter Plattformchemikalien folgt. Für die mo-

dellbasierte Bewertung der so erhaltenen Strukturen liefert die vorliegende Arbeit einen

essentiellen Baustein in Form einer Gruppenbeitragsmethode zur Vorhersage der abgeleite-

ten Cetanzahl (engl. Abk. DCN). Daneben fußt die virtuelle Kraftstoffsuche vor allem auf

maßgeschneiderten quantitativen Struktur-Eigenschafts-Beziehungen (engl. Abk. QSPR),

die wesentliche Kraftstoffeigenschaften als Funktion molekularer Deskriptoren beschrei-

ben. Die Analyse umfangreicher Fallstudien zeigt, dass kompakte Ketone, Furane und

Ester sehr klopffeste Verbindungen darstellen, die zudem günstige Eigenschaften für die

Gemischbildung im Ottomotor aufweisen. Für den Dieselmotor hingegen kommen vor al-

lem cyclische und acyclische Ether mittlerer Größe in Frage, da diese Stoffe eine hohe

Zündwilligkeit besitzen. Die hohen Sauerstoffgehalte, die vergleichsweise niedrigen Siede-

punkte und die geringen Viskositäten der Etherkraftstoffe lassen zudem niedrige Partikel-

emissionen bei der Verbrennung im Dieselmotor erwarten. Schließlich wird ein optimie-

rungsbasierter Ansatz vorgestellt, der ein integriertes Produkt- und Pfadentwurfsproblem

zur Formulierung von Kraftstoffmischungen mit gewünschten Eigenschaften löst. Im Ziel-

funktional der Optimierung steht dabei mit der produzierten Energiemenge des Kraft-

stoffs (gemessen am Heizwert) eine prozessrelevante Größe. Die in den Nebenbedingun-

gen des Problems auftretenden Stoffdatenmodelle erlauben die Beschränkung physikalisch-

chemischer Kraftstoffeigenschaften und umfassen die UNIFAC-Gruppenbeitragsmethode,

um die Einflüsse von nicht-idealem Mischungsverhalten auf Dampfdruck und Destillati-

onskurve zu beschreiben. Die Anwendung der neuen Entwurfsmethode auf eine Fallstudie

verdeutlicht die Wichtigkeit einer integrierten Betrachtung von Produkt- und Pfadentwurf,

denn nur eine kleine Zahl der untersuchten Gemische weist neben den wünschenswerten

Kraftstoffeigenschaften auch attraktive Prozesseigenschaften auf.
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