

ONCO: An Ontology Model for MOOC Platforms

Susmita Bardhan* and Biswanath Dutta**

DRTC, Indian Statistical Institute, 8th Mile, Mysore Road, RVCE Post, Bangalore, 560059, India

*< susmita@drtc.isibang.ac.in >, **< bisu@drtc.isibang.ac.in >

Susmita Bardhan works as a Knowledgebase Manager at Rezoomex in India. Previously, she was a Library Trainee at the Indian Institute of Management Ahmedabad in India. She holds a Bachelor's degree in commerce with management from Guwahati University, Assam (India), and an MS in Library & Information Science from DRTC of Indian Statistical Institute, Bangalore (India). Her research interests lie in ontology modelling, semantic web, knowledge graphs, and knowledge management.

Biswanath Dutta is an Associate Professor at DRTC of the Indian Statistical Institute Bangalore, India. He holds a Ph.D. in LIS from the University of Pune for his research conducted in ISI Bangalore. He was a Post-Doctoral Fellow at the Department of Information Engineering and Computer Science of the UniTn, Italy (2009-2012). He worked as a research assistant at the Department of Computer Science, Dalhousie University, Canada. He actively worked on EU-funded research projects. Currently, he is handling a research project on "COVID-19 and knowledge graph" (<https://www.isibang.ac.in/~>). He provides consultancy services to industries. He has published more than 70 scientific articles in national and international journals and conferences. He has four books to his credit. His current research interests lie in ontology, metadata, knowledge graph, data science, and semantic technologies.

Bardhan, Susmita and Biswanath Dutta. 2022. "ONCO: An Ontology Model for MOOC Platforms." *Knowledge Organization* 49(8): 563-576. 21 references. DOI:10.5771/0943-7444-2022-8-563.

Abstract: In the process of searching for a particular course on e-learning platforms, it is required to browse through different platforms, and it becomes a time-consuming process. To resolve the issue, an ontology has been developed that can provide single-point access to all the e-learning platforms. The modelled ONline Course Ontology (ONCO) is based on YAMO, METHONTOLOGY and IDEF5 and built on the Protégé ontology editing tool. ONCO is integrated with sample data and later evaluated using pre-defined competency questions. Complex SPARQL queries are executed to identify the effectiveness of the constructed ontology. The modelled ontology is able to retrieve all the sampled queries. The ONCO has been developed for the efficient retrieval of similar courses from massive open online course (MOOC) platforms.

Received: 4 September 2022; Revised: 10 February 2023; Accepted: 7 March 2023

Keywords: E-learning, ontology, Protégé, SPARQL queries, ONCO, MOOC platforms

1.0 Introduction

An ontology provides a way to organize and structure information, making it easier to find relevant facts and data. Ontologies are used to define the concepts and relationships within a specific domain of knowledge and can be used to represent the structure of the data. Ontology is defined as a formal explicit specification of a shared conceptualization (Studer et al. 1998). Ontology provides an abstract model by identifying its concepts within a specific domain that can be understood by humans and machines (Guarino et al. 1995).

E-learning is gradually becoming a part of every student's life as it provides the facility to learn something new and interesting to an individual. E-learning platforms have made it possible for learners from anywhere in the world to get ac-

cess to online courses offered by top academicians and universities (Conache et al. 2016). Learning is made hassle-free as one is enabled to get the exact course that one wants to learn based on his interest, cost, level of knowledge and all other factors.

1.1 Objectives

In the information society, the process of learning is continuous. However, it is not possible to enrol for everything in formal education which leads to an online learning boom. But there are certain problems when someone searches for courses online. Firstly, search engines pop up with many massive open online course (MOOC) platforms. Secondly, browsing through each platform provides thousands of similar courses. Finally, comparing courses from one plat-

form to another takes considerable time. Hence, selecting the course of one's choice is a tedious process. We are mostly dependent on search engines such as Google, Bing, etc. for information retrieval, and Google Search can discover courses from MOOC platforms which are based on simple queries such as courses on Python, Java, music, etc. However, when it comes to the ability to find specific requirements such as courses provided by Harvard University on topics related to Python which are of beginner level and similar queries, search engines cannot deliver accurate results. Ontology can be employed for semantic-based information retrieval which aims to improve the accuracy of results through query expansion and terms disambiguation resolution (Asim et al. 2019). Ontology is one of the most common knowledge representation models used extensively in information retrieval as it represents the knowledge in terms of machine-readable, understandable, and processable information hierarchies (Gai et al. 2015). The objectives of the current study are as follows:

1. To design and develop an ontology that can support the retrieval of courses from various platforms in time when implemented in the backend of a system.
2. To develop an ontology that supports personalization, for instance for finding courses based on one's particular need such as the frontend coding course provided by Harvard University which is meant for the introductory level of knowledge.

1.2 Purpose

The purpose of the study is to construct an ontology that enables the representation of information about courses available in various MOOC platforms based on certain criteria such as level of knowledge, subject, language, university, instructor, etc. for a better understanding and retrieval of courses according to learners' needs. Here, learners' needs can be course language, subject area, level of understanding of a particular course, and so forth. In the event that the course is provided in German language and the student lacks proficiency in the language, the language parameter is a requirement of learners and they can choose the course in any language which is easier for them to understand (Dutta et al. 2009).

1.3 Contribution

The primary contributions of the current work are:

1. A modelled ontology has been developed by identifying the various facets of a course and MOOC platforms.
2. An integrated methodology for ontology has been proposed based on existing methodologies.

3. An open-source knowledge graph has been formulated based on ontology.

E-learning has become an integral part of the student as well as the commercial community. Especially in the post-Covid era, online learning will probably gain prominence over traditional learning. Hence, the motivation is to reduce the time and effort in finding the right course for an individual by introducing information retrieval through Ontology. The rest of the paper is organized as follows: section 2 briefly explains the ONCO and its evaluation section 3 discusses the related works; section 4 finally concludes the paper along with future prospects of the study.

2.0 Related work

El-Ghalayini (2011) constructed an ontology for developing an e-course to describe the concepts of the e-learning domain. An e-course ontology can improve the quality and effectiveness of e-Learning courses by providing a clear and standardized structure for the course content. Tulasi et al. (2013) developed a generic ontology for the concepts related to the e-learning domain. The current study is focused on the retrieval of courses using different facets of courses from MOOC platforms rather than creating content of courses for e-learning such as Course, Unit, Lesson, and Activity and generalized retrieval of information regarding the e-learning domain.

Sammour et al. (2015) presented an ontology for recommending MOOC courses based on the learner's knowledge of subjects. Harrathi et al. (2017) proposed a hybrid recommender system based on ontology, knowledge, and rules. The system provides recommendations based on learners and learners' activities in the setting of MOOCs. Rabahallah et al. (2018) also proposed a hybrid approach based on ontology and collaborative filtering to recommend online courses based on learners' activity in MOOC platforms which led to lessening the dropout rate. These studies focused on the recommendation of courses based on learners' existing knowledge and activities in MOOC platforms rather than supporting the free will of students in search of different courses from different domains based on personal requirements.

Dang, Tang and Li (2019) developed a knowledge graph called MOOC-KG which is based on curriculum course syllabus ontology. They have constructed the knowledge graph to represent and capture information about MOOCs. They focused more on the knowledge graph than formulating the ontology. Abdulazeez and Salah (2020) presented an ontology specific to the Coursera MOOC platform with the scope of finding courses according to learners' interests and navigating through the course. They had limited the work to Coursera, some of the classes and subclasses might be ir-

relevant while implementing for all MOOC platforms and didn't follow any methodology to develop the ontology.

Gupta and Sabitha (2020) identified interaction with the instructor and social environment as the cause of drop-out and provided a solution by constructing an ontology to deal with the issue of dropouts in MOOCs. Some learners may not have the perseverance to complete a course that takes a long time to finish. The ability to identify a course with parameters such as course length and course mode can significantly reduce the dropout rate that is considered in the current study.

The current study focuses on the retrieval of relevant courses based on different parameters such as subject area, university, instructor, language, knowledge level and so on.

3.0 Methodology

ONCO is based on three existing methodologies, namely YAMO (Yet Another Methodology for Ontology) (Dutta et al. 2015), Methontology (Fernandez et al. 1997) and IDEF5 (Integrated Definition for Ontology Description Capture Method) (Benjamin et al. 1994). YAMO is based on the facet-analysis approach proposed by S.R. Ranganathan (Ranganathan 1967) where facets are aspects of meaning. Methontology is one of the ontology engineering methodologies which focuses on the full development lifecycle from knowledge gathering to maintenance. In the present work, Methontology plays a crucial role in shaping ONCO ontology as a continual process. IDEF5 methodology is based on the entity-relationship modelling approach. We have implemented the entity-relationship approach while modelling the ontology. Based on the above-mentioned methodology, the ONCO is developed (as shown in Figure 1). The steps followed in the development of the ontology are as follows.

3.1 Identification of domain

The first step of constructing a domain ontology is to select the domain for which modelling work is to be performed. The domain of the present ontology is to model Massive Open Online Course (MOOC) platforms' contents in such a way that can be retrieved from various parameters.

3.2 Specific purpose

The next step is to identify the problem that needs to be solved, in other words, finding the objective and purpose of developing an ontology. The purpose of the study is to identify the courses based on level of knowledge, subject, language, university, instructor, and other parameters. Based on this purpose, some of the competency questions are formed to evaluate the entire model. Competency questions help in better understanding and building the ontology. Competency questions are questions for which an ontology can give a specific answer.

- i. What are the courses available?
- ii. What are the courses available at different levels?
- iii. Show the courses related to Python.
- iv. Find the courses along with the sponsored organizations/universities and instructors.
- v. Find the affiliation of a particular instructor.
- vi. Find the course provided by a particular instructor and his area of expertise along with the language in which he/she taught.
- vii. Find all the courses which have more than 1,00,000 students
- viii. Find all the courses having an introductory level which is provided by a particular institution.

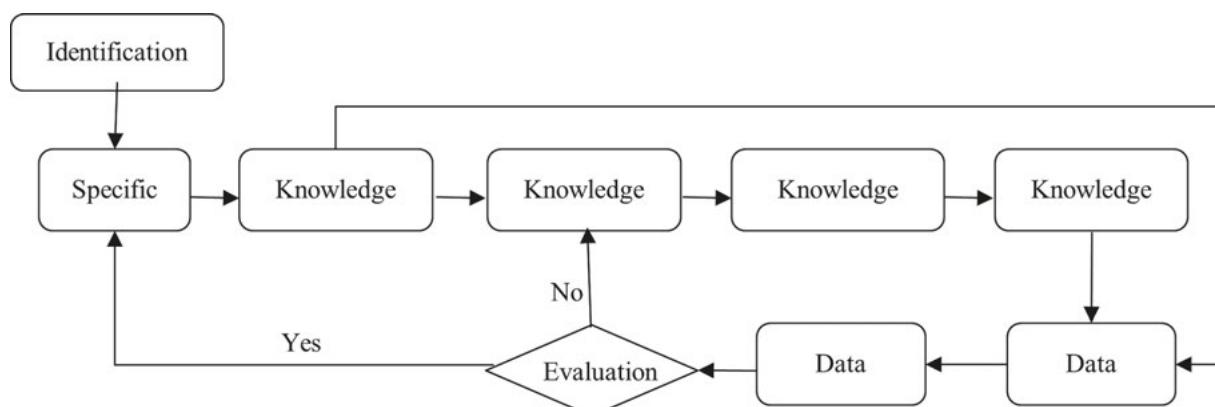


Figure 1. Steps of ONCO development process.

- ix. Find introductory courses from a particular university on a particular topic.
- x. Find the number of courses available on different subjects.

3.3 Knowledge gathering

In order to understand a problem and find the solution for it, it is necessary to have knowledge of the domain. For that purpose, the collection of information from various sources to acquire knowledge about the domain in depth. In order to build the ontology, information has been collected from various MOOC platforms. The following are the resources from which information has been collected.

- i. edX: edX is a MOOC platform developed by two world-class institutions Harvard University and Massachusetts Institute of Technology (MIT) in 2012. It provides high-level courses from various universities and institutions. It runs as a not-for-profit organization. Udemy: Udemy was started in May 2010 as a MOOC platform to provide content on the web by Eren Bali, Gagan Biyani, and Oktay Caglar. The courses are mainly for professionals.
- ii. Coursera: Coursera is a MOOC platform founded in 2012. Daphne Koller and Andrew Ng are the founders of the website. They are from the computer science department of Stanford University. Coursera provides access to online courses and degrees from various universities and companies to anyone, anywhere and anytime.
- iii. IITBX: IITBombayX is an online platform developed by the Indian Institute of Technology Bombay which provides MOOC courses. Above are the main platforms from which most of the information about a course in the MOOC platform has been acquired. However, this is not the exclusive list of platforms that have been searched for understanding the domain. We have gone through other platforms such as Udacity, SWAYAM, Khan Academy, etc. Most of the platforms provide similar information about a course.

3.4 Knowledge analysis:

The acquired knowledge has to be analysed and evaluated to fulfil the purpose of constructing an ontology. Knowledge analysis is the process of analysis of the various resources available. Data are analysed to understand the importance of the information provided by the platforms about a course and related information. The analysis has been done by taking each facet of a course such as course name, course length, and course mode in MOOC. Each course has a different level of knowledge which means the depth or intention of a course. A beginner-level course gives

an overview of basic study materials and learning scope to the learners. An intermediate-level course provides an opportunity to learn another level of depth of the course which can be understood once a student has the basic knowledge of the topic. An advanced-level course offers a deeper intention of a course. Beginner-level, intermediate-level and advanced-level courses are ideas that can be broken down to the level of courses. Some terms that are extracted from edX are instructors, institution, level, language, subject, prerequisites, effort, video transcript, course type, length, title, price (verified track and audit track), enrolled number, and syllabus.

Some terms that are extracted from Udemy are certification on completion, created by, the organization from where instructor belongs, language, subtitle, rating, number of students rated, certification/ result, syllabus, students, and description. Some terms extracted from Coursera are shareable certification, skill, level, duration, flexible deadline, subject, language, subtitle, instructors, a skill you will gain, offered by, syllabus, enrolled number of students, about this course, rating, number of ratings. Some terms extracted from IITBX are effort, course number, course start and course end.

To retrieve a course, it is required to have a course name, and the course needs to be taught by someone who can be affiliated with some university or institute or he can independently teach.

3.5 Knowledge identification

Identification of various related terms of the domain and their features are arranged in a hierarchy. As ontology is for reuse and interoperability, the terms used in the ontology should be commonly shared vocabularies and most frequently used terms by domain experts. Knowledge identification is the process of identifying relationships between concepts, object properties and data properties. In order to provide the standard terms, authors have searched for some ontologies and reviewed some literature. The work of Dang, Tang and Li (2019) has been useful for identifying the standards term in the MOOC domain. Each MOOC platform has different terminologies describing the same concepts. A course needs to have a person who can teach the study materials. The person mentioned can be addressed by various names such as instructor, teacher, creator etc. In order to improve the searchability, we have used synonyms terms under skos:prefLabel, skos:altLabel.

A class (Table 1) defines a set of instances of an entity and the classes are defined using owl:Class.

Class	Definition	Label
onco:Course	Course number or course code	rdfs:label: Course
onco:Course_Duration	Duration of the course	rdfs:label: Course Duration, skos:prefLabel: Course Length
onco:Course_mode	Way of learning the course such as self-paced and instructor-led	rdfs:label: Course Mode
dc:Language	Language in which the course is taught	rdfs:label: Language
dc:Subject	Discipline or domain under which the course is being covered	rdfs:label: Subject
foaf:Agent	Person, Organization or group	rdfs:label: Agent
foaf:Organization	Institution which provides the course and the instructor affiliated to that institution.	rdfs:label: Institution, skos:prefLabel: University
foaf:Person	The person who teaches the course.	rdfs:label: Instructor, skos:prefLabel: teacher, skos:altLabel: creator
onco:Level	The depth of the course	rdfs:label: Level
onco:Mooc_platform	MOOC platforms such as edX, Coursera, Udacity, etc.	rdfs:label: Mooc Platform
onco:Assignment	Assignment are the task to complete to progress in the course.	rdfs:label: Assignment
onco:Outcome	Outcome of completing the course as a form of certification or degree	rdfs:label: Outcome
onco:Skill	Skill acquires after completing the course	rdfs:label: Skill set, skos:prefLabel: Skill
onco:Course_Material	Study materials has been used in teaching the course and for further reference to students	rdfs:label: Course material, skos:prefLabel: Study material
onco:Syllabus	Outlines of the course that will be taught	rdfs:label: Syllabus
onco:Module	Module is a section of syllabus. Subclass of Syllabus	rdfs:label: Module
onco:Article	Journal or Conference Article	rdfs:label: Article
onco: Book	Books can be referred by the student for further reference	rdfs:label: Book
onco:Lecturer_Note	Note prepared by Instructor for students reference	rdfs:label: Lecturer note
onco:Useful link	Useful website link can be referred by the student for further reference	rdfs:label: Useful link, skos:prefLabel: Website Link
onco: Video Material	Primary material for teaching the MOOC course.	rdfs:label: Video Material
onco: Exercise	Subclass of Assignment	rdfs:label: Exercise
onco: Project	Subclass of Assignment	rdfs:label: Project
onco: Quiz	Subclass of Assignment	rdfs:label: Quiz

Table 1. Classes used in ontology with the basic definition of each class.

3.6 Knowledge modelling

Modelling of ontology is the structuring of the objects and their relationships between the two entities and structuring the features of an entity. Knowledge modelling is the process of modelling and structuring the concepts that are developed in knowledge production. It depicts the relationship between entities and their properties which are based on the entity-relationship approach of modelling. Instructor and Institution are class entities. They are related to each other as Instructor has an affiliation with Institution. Object properties (Table 2) provide a directional connection or relationship between individuals.

Datatype properties (Table 3) relate entities to data values. A datatype property is said to be an example of the built-in OWL class `owl:DatatypeProperty`. In other words,

data property is to describe the attributes of an entity in the form of literals.

The ontology is built with the use of the Protégé ontology editing tool. Protégé is developed by Biomedical Informatics Research (BMIR) laboratory at Stanford University. Protégé is a free and open-source platform that provides tools to construct ontologies along with domain modelling (“Protégé” n.d.). It supports RDF specification and OWL 2.0 which are recommended by the World wide web consortium (W3C). The structure of the Course is shown in Figure 2.

3.7 Data cleaning

Data collected in the step of knowledge gathering are cleaned in order to integrate with the model (Figure 3). An instance of cleaning data can be the price of the course is

Object Properties	Domain	Range	Inverse of
<code>onco:has_affiliation</code>	<code>foaf:Person</code>	<code>foaf:Organization</code>	<code>onco:is_affiliation_of</code>
<code>onco:has_course_level</code>	<code>onco:Course</code>	<code>onco:Level</code>	<code>onco:is_level_for_course</code>
<code>onco:learning_mode</code>	<code>onco:Course</code>	<code>onco:Course_mode</code>	<code>onco:is_mode_of_learning_for_course</code>
<code>onco:has_duration</code>	<code>onco:Course</code>	<code>onco:Course_length</code>	<code>onco:is_duration_for_course</code>
<code>onco:has_assignment</code>	<code>onco:Course</code>	<code>onco:Assignment</code>	<code>onco:is_assignment_for_course</code>
<code>onco:has_instructor</code>	<code>onco:Course</code>	<code>foaf:Person</code>	<code>onco:teach</code>
<code>onco:has_language</code>	<code>onco:Course</code>	<code>dc:Language</code>	<code>onco:is_language_for_course</code>
<code>onco:prerequisites_knowledge_and_skill</code>	<code>onco:Course</code>	<code>onco:Skill</code>	<code>onco:prerequisite_knowledge_for</code>
<code>onco:has_availability_status</code>	<code>onco:Course</code>	<code>onco:Course_Availability</code>	<code>onco:is_available_for_course</code>
<code>onco:has_sponsored</code>	<code>foaf:Organization</code>	<code>onco:Course</code>	<code>onco:sponsored_by</code>
<code>onco:has_subject</code>	<code>onco:Course</code>	<code>onco:Discipline</code>	<code>onco:is_subject_for_course</code>
<code>onco:subtitle_language</code>	<code>onco:Course</code>	<code>dc:Language</code>	<code>onco:is_subtitle_language_of_course</code>
<code>onco:has_study_material</code>	<code>onco:Course</code>	<code>onco:Course_material</code>	<code>onco:is_study_material_for_course</code>
<code>onco:has_weekly_hours</code>	<code>onco:Course</code>	<code>onco:Course_Duration</code>	<code>onco:is_weekly_effort_for_course</code>
<code>onco:is_affiliation_of</code>	<code>foaf:Organization</code>	<code>foaf:Person</code>	<code>onco:has_affiliation</code>
<code>onco:offered_by</code>	<code>onco:Course</code>	<code>onco:Mooc_platform</code>	<code>onco:offers</code>
<code>onco:acquire_skill</code>	<code>onco:Course</code>	<code>onco:Skill</code>	<code>onco:acquire_skill_from</code>
<code>onco:result</code>	<code>onco:Course</code>	<code>onco:Outcome</code>	<code>onco:is_result_for_course</code>

Table 2. Object properties used in graphs with their domains and ranges.

Data Properties	Domain	Range
dc:Description	onco:Course	xsd:string
dc:Identifier	onco:Course	schema:url
onco:end_date	onco:Course	xsd:dateTime
foaf:homepage	foaf:Organization foaf:Person	schema:url
foaf:mbox	foaf:Person	xsd:string
onco:number_of_enrolled_students	onco:Course	xsd:integer
onco:Fee	onco:Course	xsd:integer
onco:number_of_reviews	onco:Course	xsd:integer
onco:rating	onco:Course	xsd:decimal
onco:start_date	onco:Course	xsd:dateTime
onco:summary	onco:Course	xsd:string
onco:certification	onco:Course	xsd:boolean
onco:title	onco:Course	xsd:string

Table 3. Data properties used in graphs with their domains and ranges.

\$100 and the data property is an integer. So, the dollar sign has been removed from the data so that it can be integrated with the data property. In the current study, we have taken sample data of 7402 courses (edx_courses.csv, udemy_courses.csv) from Kaggle and cleaned them with the use of Open Refine software. To successfully transfer the data into the ontology, it is necessary to clean it thoroughly in accordance with the defined classes and properties.

3.8 Data mapping

The process of merging the data with the ontology is in order to have instances of entities. Cellfie plugin of Protégé and JSON rules have been implemented to map or merge the cleaned data with the ontology (Table 4).

4.0 Visualization

The ONCO has been visualized using GraphDB tool. GraphDB (“GraphDB™ - Ontotext” n.d.) is a visualization

tool for ontology and knowledge graphs. It also allows running SPARQL queries and the results can be represented in the form of tables and various charts such as bar graphs, pie charts, and so on. For the current knowledge graph, GraphDB is used to produce the graphs visually.

Figure 4 represents an instance of course along with its object properties. Course8 has two predicates which are English which is the same for both subtitle_language and has_language. It has three instructors and other properties are shown.

Figures 5 and 6 show all the courses on a particular subject and having the same level of knowledge respectively. Six courses have subject as Business & Management and ten courses have a course level as intermediate. It can be seen as Course has_subject Business & Management and Course has_course_level Intermediate. The graph shows the object property and data property about a particular course and that particular course is an instance of entity course.

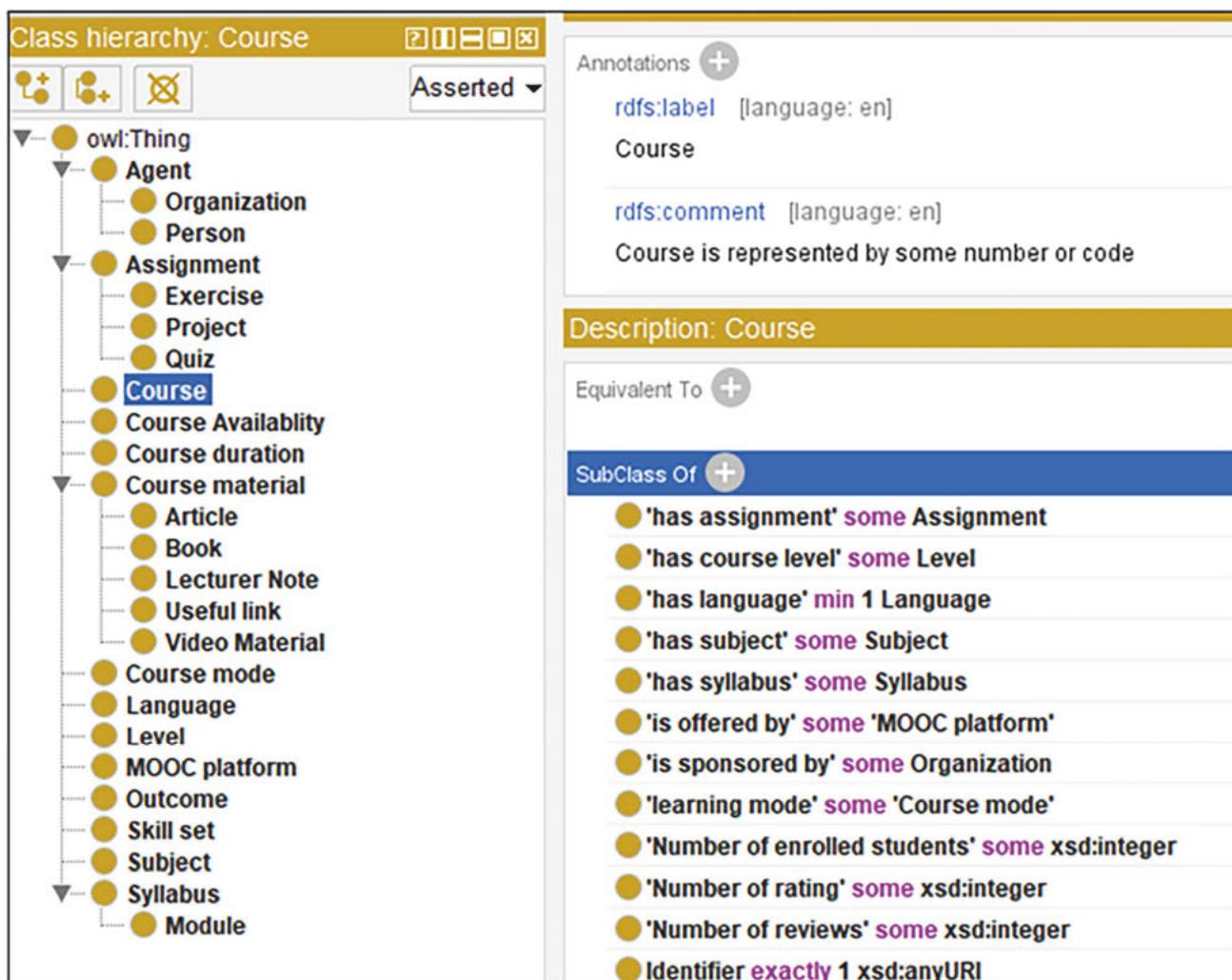


Figure 2. Course class with subclass.

	A	B	C	D	E	F	G	H	I	J
	Course	title	summary	number_of_enrolled_students	has_courses_e_type	foaf:Organization	Instructor	has_course_level	has_subject	has_language
1										
2	Course1	How to Learn esse	124980	Self-paced	redX		Nina Hunter	Introductory	Education	English
3	Course1						Robyn Belair			
4	Course1						Ben Piscopo			
5	Course2	Programm This course	293864	Self-paced	The University of Charles Seve	Introductory Computer	English			
6	Course3	CSS50's Intro An introdu	2442271	Self-paced	Harvard University	David J. Malai	Introductory Computer	English		
7	Course3						Doug Lloyd			
8	Course3						Brian Yu			
9	Course4	The Analyst Through Iri	129555	Instructor-I	Massachusetts In	Dimitris Bert	Intermediate Data Anal	English		
10	Course4						Allison O'Hair			
11	Course4						John Silberholz			
12	Course4						Iain Dunning			
13	Course5	Marketing This cours	81140	Self-paced	University of Calif	Stephan Sorg	Introductory Computer	English		
14	Course6	Introductik Learn the j	301793	Self-paced	University of Ade	Frank Schulr	Introductory Business & English			
15	Course6						Noel Lindsay			
16	Course6						Anton Jordaan			
17	Course6						John Sing			
18	Course7	Leading Hi Learn how	32847	Self-paced	The University of Tyler G. Okin	Intermediate Communic	English			
19	Course8	The FoundLearn why	67073	Self-paced	University of Calif	Dacher Keltin	Introductory Business & English			
20	Course8						Emiliana Simon			
21	Course8						Thomas			

Figure 3. An overview of the cleaned dataset

```

Individual: @A*(rdfs:label=(@A*))
Types: Course
Facts: title @B*(xsd:string),
       summary @C*(xsd:string),
       number_of_enrolled_students @D*(xsd:integer),
       Fee @N*(xsd:integer),
       has_syllabus @Q*(xsd:string),
       has_course_mode @E*,
       sponsored_by @F*,
       has_instructor @G*(rdfs:label=(@G*)),
       has_course_level @H*,
       has_subject @I*,
       has_language @J*,
       has_subtitle @K*,
       has_weekly_hours @L*,
       has_duration @M*,
       Identifier @R*

```

Table 4. A glimpse of JSON Transformation rule.

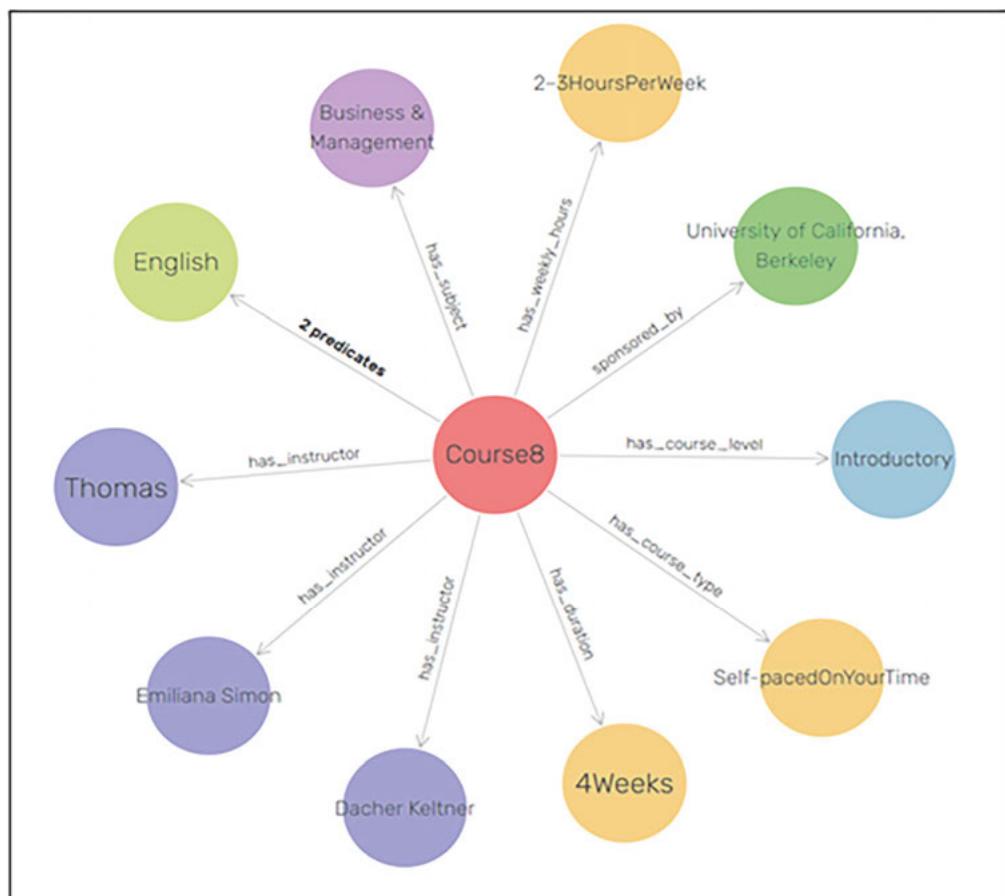


Figure 4. Shows the relationship between an instance of a course and its relationship with other classes.

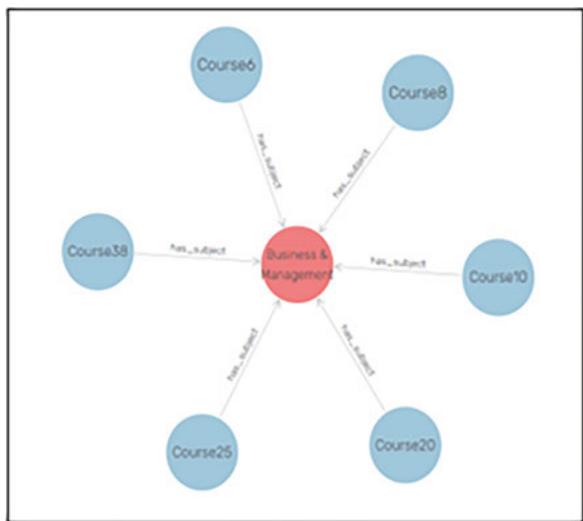


Figure 5. Courses available based on a particular subject.

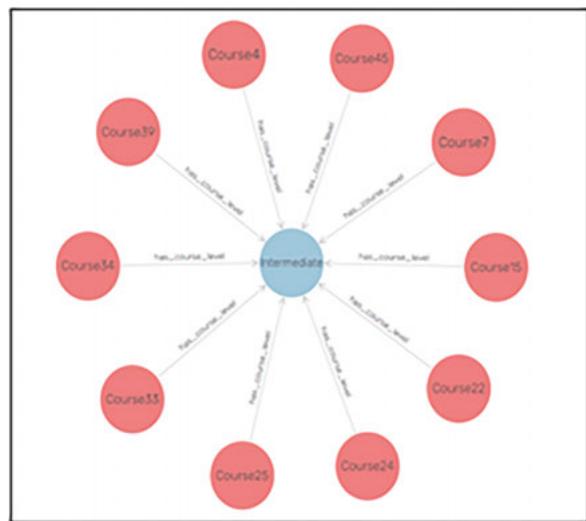


Figure 6. Courses having intermediate level.

5.0 Evaluation

Evaluating the quality of the ontology as well as fulfilling the purpose is the final step of developing the ontology. We have implemented the pallet reasoner which is an open-source OWL reasoner. The pallet can be used to infer new information from an OWL ontology based on the relationships between its classes and individuals and to detect inconsistencies in the ontology (Sirin et al. 2007). The constructed ontology has consistency in its structure. The quality of the ontology is dependent on the effective retrieval of course information. In order to identify the efficiency of the ONCO, some of the competency questions are transformed into SPARQL Queries. The queries are given below:

PREFIX is used to avoid repeating the resource IRIs in the query. The following prefixes are required for every query. Prefix onco is the IRI for onco ontology and has used some Dublin core prefixes to build the ontology.

PREFIX rdf: <<http://www.w3.org/1999/02/22-rdf-syntax-ns#>>

PREFIX owl: <<http://www.w3.org/2002/07/owl#>>

PREFIX rdfs: <<http://www.w3.org/2000/01/rdf-schema>>

PREFIX xsd: <<http://www.w3.org/2001/XMLSchema#>>
 PREFIX dc: <<http://purl.org/dc/elements/1.1/>>
 PREFIX onco:<<http://www.isibang.ac.in/ns/onco/>>

- Query 1 (Figure 7): find courses which have “python” in its syllabus and also show their levels.
- Query 2 (Figure 8): retrieve courses with their instructor and institution.
- Query 3 (Figure 9): find a particular instructor’s affiliation.
- Query 4 (Figure 10): find the course provided by a particular instructor and his area of expertise.
- Query 5 (Figure 11): retrieve all the courses which have more than 100,000 students.
- Query 6 (Figure 12): find introductory courses from a particular university on a particular topic.
- Query 7 (Figure 13): identify the number of courses available on different subjects.

Course	Level	Title	Syllabus
Course18	Introductory	“Python Basics for Data Science”	“Module 1 - Python Basics Your first program Types Expressions Operators”
Course34	Intermediate	“Using Python for Research”	“Week 1: Python Basics Review of basic Python 3 language”

Figure 7. Shows the python courses based on syllabus.

SELECT ?Instructor ?Course ?Title ?Title ?Title WHERE { ?Instructor ?Course ?Title . ?Instructor ?Course ?Title . ?Course ?Title ?Title . ?Course ?Title ?Title .}				
Execute				
?Instructor	?Course	?Title	?Title	?Title
onc:RobynBelair	onco:Course1	onco:edX	How to Learn Online**xsd:string	
onc:NinaHuntmann	onco:Course1	onco:edX	How to Learn Online**xsd:string	
onc:BenPlacido	onco:Course1	onco:edX	How to Learn Online**xsd:string	
onc:MartinGruber	onco:Course10	onco:TechnischeUniversitätMünchen	Six Sigma, Define and Measure**xsd:string	
onc:HollyOt	onco:Course10	onco:TechnischeUniversitätMünchen	Six Sigma, Define and Measure**xsd:string	
onc:BenedictGross	onco:Course11	onco:HarvardUniversity	Fat Chance: Probability from the Ground Up**xsd:string	
onc:JosephHarms	onco:Course11	onco:HarvardUniversity	Fat Chance: Probability from the Ground Up**xsd:string	
onc:EmilyRehl	onco:Course11	onco:HarvardUniversity	Fat Chance: Probability from the Ground Up**xsd:string	
onc:PavelKochkin	onco:Course12	onco:NationalResearchNuclearUniversity	Chasing your Dream: How to End Procrastination and Get... Bitcoin and Cryptocurrencies**xsd:string	
onc:MengyiGloriaWang	onco:Course13	onco:UniversityOfCalifornia,Berkeley	Bitcoin and Cryptocurrencies**xsd:string	
onc:RustieLin	onco:Course13	onco:UniversityOfCalifornia,Berkeley	English Grammar and Style**xsd:string	
onc:RaslynPetain	onco:Course14	onco:TheUniversityOfQueensland	Ethics in Action**xsd:string	
onc:DrWilliamEndley	onco:Course15	onco:SDGAcademy	Ethics in Action**xsd:string	
onc:JeffreyD.Sachs	onco:Course15	onco:SDGAcademy	Introduction to FinTech**xsd:string	
onc:DouglasAmer	onco:Course16	onco:UniversityOfHongKong	Introduction to FinTech**xsd:string	
onc:DavidSackley	onco:Course16	onco:UniversityOfHongKong	Introduction to FinTech**xsd:string	

Figure 8. Shows the courses along with its instructors and institution.

Active ontology < Entities < Classes < Individuals by class < DL Query < SPARQL Query <				
Open SPARQL Query				
<pre>PREFIX onc: <http://www.semanticweb.org/91887/ontologies/2021/2/onco> PREFIX onco: <http://www.semanticweb.org/91887/ontologies/2021/2/onco> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX onco: <http://www.semanticweb.org/91887/ontologies/2021/2/onco> PREFIX onco: <http://www.semanticweb.org/91887/ontologies/2021/2/onco></pre>				
Execute	?Instructor	?Course	?Title	?Title
	onco:TheUniversityOfQueensland	onco:Course14		

Figure 9. Shows affiliation of a particular instructor.

Select ?Institution ?Course ?Title ?Title ?Title Where { ?Institution ?Course ?Title . ?Institution ?Course ?Title . ?Course ?Title ?Title . ?Course ?Title ?Title .}				
Execute				
?Institution	?Course	?Title	?Title	?Title
onco:HarvardUniversity	onco:Course21	C550's Introduction to Artificial Intelligence with... onco:ComputerScience	onco:English	
onco:HarvardUniversity	onco:Course22	C550's Introduction to Game Development**x... onco:ComputerScience	onco:English	
onco:HarvardUniversity	onco:Course24	C550's Web Programming with Python and J... onco:ComputerScience	onco:English	
onco:HarvardUniversity	onco:Course46	C550 for Lawyers**xsd:string	onco:ComputerScience	onco:English
onco:HarvardUniversity	onco:Course3	C550's Introduction to Computer Science**xs... onco:ComputerScience	onco:English	

Figure 10. Shows the subject interest, language and course provided by a particular instructor.

Some of the queries have been shown to provide an idea of what we can expect from the ONCO graph. Since the name and syllabus of the course are a string, a regex filter has been used to identify a particular topic in Figure 7. The model can retrieve information about instructors that can be depicted in Figures 9 and 10. Figure 11 shows the arithmetic filters on integers and strings. Figure 12 also shows one of the complex queries by using double filters. Last but not the least, the query is used for information purposes as it shows the count of courses on various available subjects and shows

the visualization of the number of courses as a percentage of available courses on various different subjects which are based on the query of counting courses of various subjects in Figure 13. Most of the courses are related to the computer science field.

In the process of modelling an ontology, the first step is to identify the domain and the problem that is required to be solved. The next step is to identify the sources of information and brainstorm to identify with precise questions or in other words, competency questions. The modelling is

Figure 11. Shows courses having more than 100,000 enrolled students.

Figure 12. Show the courses provided by Harvard University on topics related to python which are of beginner level.

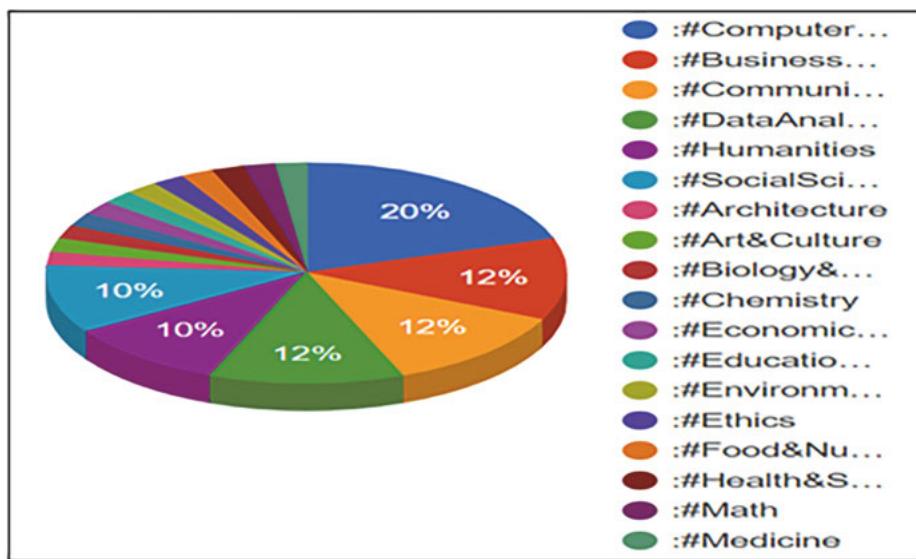


Figure 13. Shows the percentage of the number of courses available on various subjects.

like three planes of work given by Ranganathan in 1967. First, the idea plane where the main process of modelling starts as modelling is a mental process followed by a verbal plane in which the idea is presented in natural language in

the form of questions and terms that can be used in the model. Finally, the notational plane is implemented from various shared vocabularies such as foaf, dc, etc.

With the use of Protégé, the modelling of class, object property and data property with constraints is developed. A sample data of 7402 courses is merged in the ontology with the use of cellfie tool and rules based on is on OntoGraf, SPARQL query and Span SPARQL query are applied to display and validate the knowledge graph.

6.0 Conclusion and future prospect

In this present study, an ontology has been constructed to retrieve information related to courses available on various MOOC platforms based on level of knowledge, subject, language, university, instructor, etc. Ontology helps in retrieving and representing knowledge in a well-structured manner.

ONCO can be implemented for educational courses that are delivered online by institutions. The ONCO ontology can be extended to overall e-learning which will include the electronic materials provided by institutions to their students. In the CoVID 19 pandemic situation, almost every school, college, and university has shifted to online learning. But access to study materials and class recordings is limited to specific students of that particular institution and over time course materials will increase and searchability will be an issue. An institute can use the ONCO ontology in the backend of the platform from where materials are delivered so that students will have better access to the content of the courses.

Our future plan is to validate the ontology by utilizing course data from various MOOC platforms. The evaluation of the ontology will be carried out by experts and students engaged in online learning. Further, a website or a system can be built where the model ontology will be implemented in the backend and data can be integrated by implementing various technologies for crawling and cleaning the data automatically.

References

Abdulazeez, D. H. and R. M. Salah. (2020). "Developing an Ontology for Retrieving Massive Open Online Courses (Moocs) Information in Coursera Platform." *Journal of Duhok University* 23(1): 103-14.

Asim, M. N., M. Wasim, M. U. G. Khan, N. Mahmood and W. Mahmood. 2019. "The Use of Ontology in Retrieval: A Study on Textual, Multilingual, and Multimedia Retrieval." *IEEE Access* 7:21662-86.

Benjamin, Perakath C., C. Menzel and R. Mayer. 1994. "The IDEF5 Ontology Description Capture Method Overview." <https://www.ideal.com/idef5-ontology-description-capture-method/>

Conache, Maria, Ramona Dima and Andreea Mutu. 2016. "A Comparative Analysis of MOOC (Massive Open Online Course) Platforms." *Informatica Economica* 20 (2). <https://doi.org/10.12948/issn14531305/20.2.2016.01>

Dang, Furong, Jintao Tang and Shasha Li. 2019. "MOOC-KG: A MOOC Knowledge Graph for Cross-Platform Online Learning Resources." *2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC)*, July, 596–603. <https://doi.org/10.1109/ICEIEC.2019.8784572>

Dutta, B., D. P. Madalli and A.R.D. Prasad. 2009. "Ontology Supported Personalized eLearning Repositories." In *2nd International Conference on the Semantic Web and Digital Libraries (ICSD), Trento, Italy, 2009*.

Dutta, Biswanath, Usashi Chatterjee, and Devika P. Madalli. 2015. "Yamo: Yet Another Methodology for Large-Scale Faceted Ontology Construction." *Journal of Knowledge Management* 19: 6–24. <https://doi.org/10.1108/JKM-10-2014-0439>

El-Ghalayini, Haya. 2011. "E-Course Ontology for Developing e-Learning Courses." *Proceedings - 4th International Conference on Developments in ESystems Engineering, DeSE 2011*, 245–9. <https://doi.org/10.1109/DeSE.2011.29>

Fernandez, Mariano, A. Gomez-Perez and Natalia Juristo. 1997. "Methontology: From Ontological Art towards Ontological Engineering." *Proceedings of the AAAI97 Spring Symposium Series on Ontological Engineering*, 33–40. <https://oa.upm.es/id/eprint/5484>

Gai, K., M. Qiu, S. Jayaraman and L. Tao. 2015. "Ontology-Based Knowledge Representation for Secure Self-Diagnosis in Patient-Centered Telehealth with Cloud Systems." *2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, New York, November*, 98-103. DOI: 10.1109/CSCloud.2015.72

GraphDB™ – Ontotext. <https://www.ontotext.com/products/graphdb/>

Guarino, N. 1995. "Formal Ontology, Conceptual Analysis and Knowledge Representation." *International Journal of Human-Computer Studies* 43: 625-40.

Gupta, S. and A. S. Sabitha. 2020. "Designing Ontology for Massive Open Online Courses Using Protégé." In *2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2020*, 403-6, doi: 10.1109/ICRITO48877.2020.9197794

Harrathi, M. N. Touzani and R. Braham. 2017. "A Hybrid Knowledge-Based Approach for Recommending Massive Learning Activities." In *2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA)*, 49–54. DOI:10.1109/AICCSA.2017.8030020

Protégé. <https://protege.stanford.edu/>

Rabahallah, K., L. Mahdaoui and F. Azouaou. 2018. "MOOCs Recommender System Using Ontology and Memory-Based Collaborative Filtering." *Proceedings of the 20th International Conference on Enterprise Information*

Systems (ICEIS 2018). vol. 1, 635–41. <https://doi.org/10.5220/0006786006350641>

Ranganathan, S.R. 1967. *Prolegomena to Library Classification*. Bombay; New York: Asia Publishing House.

Sammour, G., A. Al-Zoubi, A. Gladun, K. Khala and J. Schreurs. 2015. "Semantic Web and Ontologies for Personalisation of Learning in MOOCs." *2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 2015*, 183-6. doi: 10.1109/IntelCIS.2015.7397219

Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz. 2007. "Pellet: A Practical Owl-DL Reasoner." *Journal of Web Semantics* 5(2): 51-3.

Studer, R., V. R. Benjamins and D. Fensel. 1998. "Knowledge Engineering: Principles and Methods." *Data and Knowledge Engineering* 25: 161-97.

Tulasi, R. L., M. S. Rao and G. R. Gouda. 2013. "Study of E-Learning Information Retrieval Model Based on Ontology." *International Journal of Computer Applications* 61(17): 9-13. DOI: 10.5120/10018-4747