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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Ein Konzept zur Nutzung von Reinforcement Learning zur Parametrisierung von CT-Messungen 

CT-Messungen automatisieren
E. Blum, F. Stamer, G. Lanza

Z U S A M M E N F A S S U N G  Industrielle Computertomogra-
phie erfordert umfassendes Expertenwissen. In diesem Beitrag 
wird ein Konzept vorgestellt, um die Parametrisierung von 
Messungen durch Reinforcement Learning zu automatisieren. 
Innerhalb einer Simulation sollen Agenten Messstrategien wie 
das Auslegen zeitminimaler Messungen erlernen. Auch wenn 
aktuelle virtuelle CTs realitätsnahe Messungen erlauben, ver-
hindert die Laufzeit aktueller Simulationsumgebungen noch 
den Einsatz als effiziente Trainingsumgebung. 

Automating CT measurements

A B S T R A C T  Industrial computed tomography requires 
 extensive expert knowledge. This paper presents a concept to 
automate the parameterization of measurements by reinforce-
ment learning. Within a simulation, agents are supposed to 
 learn measurement strategies such as the design of time-mini-
mal measurements. Even though current virtual CTs allow 
 realistic measurements, their runtime currently still prevents 
their use as an efficient training environment.

1 Einleitung und Motivation

Die industrielle Computertomographie (CT) ermöglicht die 
zerstörungsfreie Prüfung von inneren Strukturen sowie metrolo-
gische Messungen von Bauteilen und bietet dadurch Vorteile 
 gegenüber klassischen Messmaschinen wie taktile Koordinaten-
messgeräte [1]. Der breite Einsatz als prozessnahe Messtechnik 
wird derzeit aufgrund des zugrunde liegenden Komplexitätsgrads 
bei der Durchführung von Messungen sowie der langen Mess-
dauer verhindert [2]. Besonders die Auslegung von Messungen 
verlangt umfangreiches Wissen und Erfahrung, um die große 
Zahl an konfigurierbaren Parametern eines CTs zielgerichtet aus-
zulegen. Aktuelle Unterstützungssysteme zur Optimierung von 
CT-Messungen konzentrieren sich meist auf einzelne Parameter, 
wie die Positionierung des Bauteils innerhalb des CT [3], die 
 Anzahl der erzeugten Röntgenprojektionen [2] oder die Optimie-
rung der Messtrajektorie [4]. Andere Ansätze setzen auf den Auf-
bau großer Datensätze von unterschiedlichen CT Messungen, um 
dieses Wissen auf noch nicht vermessene Bauteile zu externalisie-
ren [5]. Ansätze zur automatischen Optimierung aller Parameter 
einer Messung sind aktuell nicht existent, wodurch Messungen 
stets durch Zutun menschlichen Wissens ausgelegt werden müs-
sen. 

Zur autonomen Parametrisierung von visuellen robotergeführ-
ten Messsystemen hat sich Reinforcement Learning (RL) 
 bewährt. In [6] wird mittels RL die Pose eines Vertikalknickarm -
roboters sowie die Ausrichtung einer montierten 3D RGBD-
 Kamera autonom auf ein zu vermessenes Bauteil angepasst, um 
eine Bauteiloberfläche mittels einer minimalen Anzahl an 
Kamera posen vollumfänglich zu befunden. Durch das Training 
von RL-Agenten in einer Simulation kann eine Generalisierbar-
keit des Ansatzes erreicht werden, die es dem Messsystem erlaubt 
sich autonom auf Lageänderungen oder andere Varianten  eines 

Produktes anzupassen. Mit dem verwandten Problem des pro-
duktspezifischen Parametrisierens von Messaufgaben könnte RL 
auch Potenziale für die autonome Auslegung von CT-Messungen 
besitzen. In diesem Beitrag wird daher ein Konzept vorgestellt, 
wie sich RL-Agenten auch zur autonomen Parametrisierung von 
CT-Messungen einsetzen lassen.

2 Grundlagen industrieller CTs  
 und Herausforderungen bei  
 der Durchführung von Messungen

Zur Durchführung einer CT-Messung sind eine Vielzahl an 
Parameter einzustellen, die gegenseitige Wechselwirkungen besit-
zen und das Resultat einer Messung beeinflussen. Diese Para -
meter lassen sich in software- und hardwareseitige einteilen. 
Hardwareseitig gehören dazu die Bauteilpositionierung auf dem 
kinematischen System und der metallische Vorfilter. Software -
seitig können Parameter für die Röntgenröhre (Spannung, 
Stromstärke), den Detektor (Integrationszeit, Verstärkung, Bild-
mittelung) und das kinematische System (Positionen in x-, y- 
und z-Richtung und Anzahl der Projektionen) definiert werden. 
Die Lage des Bauteils auf dem kinematischen System hat großen 
Einfluss auf die Rekonstruktionsgüte einer Messung. Neben 
 Unschärfeeffekten, ausgelöst durch eine fehlende Fixierung wäh-
rend der Messung, ist besonders die Lage des Bauteils ausschlag-
gebend für die erzielte Güte. Parallele Bauteilflächen zur Mittel-
ebene des Detektors führen beispielsweise zu Artefakten in der 
Rekonstruktion, worunter die Qualität einer Messung leidet [4]. 
Ein dünner metallischer Vorfilter zwischen Röntgenröhre und 
Messraum entfernt niederenergetische Strahlung, wodurch sog. 
Strahlaufhärtungsartefakte verhindert und die Rekonstruktions-
güte verbessert wird. Die Wahl des Vorfilters hängt vom zu ver-
messenden Bauteil ab [7]. Die Strahlenergie wird durch die ange-
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legte Spannung und Stromstärke in der Röntgenröhre definiert. 
Höhere Spannung ermöglicht das Durchdringen dichterer Mate-
rialien. Die Erhöhung der Stromstärke führt zu einer höheren 
Helligkeit und Rauschfreiheit der erzeugten Projektion. Beide 
 Parameter erhöhen jedoch die Energie der Röntgenstrahlung. 
 Eine hohe Energie erfordert jedoch eine größere Defokussierung 
des Elektronenstrahles und einen größeren Brennfleck, was die 
Projektionsunschärfe erhöht. Die Integrationszeit definiert die 
Dauer der Erzeugung einer Projektion. Eine Erhöhung führt ver-
gleichbar zur Stromstärke zu helleren und rauschfreieren Projek-
tionen, die Dauer der Messung erhöht sich jedoch. Die Verstär-
kung bestimmt die Empfindlichkeit des Detektors. Eine hohe 
Empfindlichkeit geht mit rauschbehafteten Bildern einher. Defi-
niert man eine Anzahl an Projektionen über die eine Bildmitte-
lung erfolgen soll, werden die erfassten Pixelwerte über diese An-
zahl gemittelt. Ein Rauschen der Projektionen kann so reduziert 
werden, die benötigte Anzahl an Projektionen und so die Dauer 
der Messung steigt jedoch. Die Positionierung des Bauteils in 
 horizontaler Richtung zwischen Quelle und Detektor beeinflusst 
die Vergrößerung des Systems und damit die Auflösung. Eine 
 höhere Auflösung geht jedoch mit unschärferen Projektionen ein-
her [7].

CTs besitzen daher systemimmanente Wechselwirkungen zwi-
schen den Parametern. Es ist daher nicht möglich eine allgemein-
gültige Parameterkonfiguration zur Vermessung unterschiedlicher 
Bauteile zu definieren. Messungen müssen daher stets auf das zu 
untersuchende Bauteil und unter einem bestimmten Ziel wie 
 einer minimalen Messunsicherheit oder Messzeit ausgelegt wer-
den. Die Parametrisierung benötigt daher aktuell große manuelle 
Aufwände und Expertenwissen [2].

3 Simulation von CT-Messungen 

Mit dem vermehrten Einsatz von CTs im industriellen 
 Bereich, geht auch ein immer stärkerer Fokus auf die Simulation 

solcher Systeme einher. Innerhalb virtueller CTs werden die 
komplexen physikalischen Vorgänge durch Simulationsmodelle 
nachgebildet. Dazu gehören die Strahlerzeugung, die Abschwä-
chung von Strahlen beim Durchleuchten von Bauteilen in Form 
von CAD-Dateien und die Signalverarbeitung des Detektors. 
 Virtuelle CTs bieten die identischen Parameter zur Messaus -
legung, die in Kapitel 2 beschrieben wurden. Die zugrunde 
 liegenden Simulationsmodelle benötigen jedoch umfangreiche 
Konfigurationsaufwände bis realistische Ergebnisse erreicht 
 werden [8, 9]. Es gibt unterschiedliche Ansätze zur Simulation 
von CTs, folgend liegt der Fokus auf der Simulationssoftware 
„aRTist“ [8], anhand derer der Aufbau eines virtuellen CTs ver-
deutlicht wird.

Die Benutzeroberfläche ist in Bild 1 dargestellt und die Funk-
tionsweise am Beispiel des 30 mm PEEK Probekörper aus [5] 
veranschaulicht. Die CAD-Datei wird in eine virtuelle Umgebung 
bestehend aus Röntgenquelle und Detektor positioniert. Zur Er-
zeugung einer Röntgenprojektion wird ausgehend von der Rönt-
genquelle ein Strahl zu jedem Pixel des Detektors entsendet und 
der resultierende Grauwert dieses Pixels mittels der Modelle 
 errechnet. aRTist wurde konfiguriert, um einen vorhandenen CT 
des Typs „Metrotom 800“ von Zeiss zu simulieren. Die hierfür 
gewählte Konfiguration ist in Bild 2 dargestellt. 

Zur Validierung der Konfiguration wurde der virtuelle CT 
 anhand des von Schild [5] entwickelten Versuchsplan bestehend 
aus 20 Messungen für das 30 mm PEEK Probebauteil erprobt. 
Zur Evaluation wurden die durch aRTist erzeugten Rekonstruk-
tionen mithilfe der Software „VG Studio“ anhand der Bild 3 dar-
gestellten Prüfmerkmale ausgewertet. Als Referenzwert dienen 
die Dimensionen der CAD-Datei. Bild 4 zeigt die über alle Ver-
suche gemittelten Abweichungen der Prüfmerkmale. Für das vir-
tuelle CT befinden sich die Abweichungen der Fehler im Bereich 
von 2,5 µm bis 61 µm, wobei lediglich die Merkmale A1, A2 und 
A3 eine Abweichung größer als 20 µm aufweisen. Für die Rekon-
struktion von CAD-Daten kann daher geschlussfolgert werden, 

Bild 1. Benutzeroberfläche der Simulationssoftware „aRTist“ dargestellt anhand des 30 mm PEEK Probekörpers Prüfkörpers aus [5]. Grafik: wbk
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dass aktuelle CT Simulationen den Messvorgang mit geringer 
 Abweichung abbilden, sodass diese für das Erlernen von Mess-
strategien anwendbar erscheinen.

4 Ein Konzept zur Nutzung von RL 
 zur automatisierten Parametrisierung  
 von CT-Messungen

RL ist ein Teilbereich des maschinellen Lernens, der sich mit 
der Entwicklung von intelligenten Agenten befasst, die durch In-
teraktion mit ihrer Umwelt lernen können. Im Gegensatz zu An-
sätzen des überwachten Lernens, bei dem ein Agent aus gekenn-
zeichneten Daten lernt oder unüberwachtem Lernen, bei dem ein 
Agent Muster innerhalb von Datensätzen entdeckt, basiert RL auf 
dem Prinzip der Verstärkung. Die grundlegende Idee beim RL 
besteht darin, dass ein Agent in einer bestimmten Umgebung 
handelt und dabei Belohnungen oder Strafen erhält, abhängig von 
der Qualität seiner Handlungen. Der Agent versucht im Laufe der 
Zeit sein Verhalten anzupassen, um Belohnungen zu maximieren 
und Strafen zu minimieren. Der RL-Agent nimmt den aktuellen 
Zustand seiner Umgebung wahr und entscheidet, welche Aktion 

er aus einer Menge möglicher Aktionen ausführen soll. Die Aus-
führung der Aktion führt zu einer Zustandsänderung seiner Um-
gebung. Auf Basis dieses Zustandes erhält der Agent eine Beloh-
nung oder Strafe, die seine Leistung bewertet. Basierend auf 
 diesem Feedback passt der Agent seine zukünftigen Entscheidun-
gen an und optimiert seine Handlungsstrategie, um immer besse-
re Ergebnisse zu erzielen. RL ist so ein leistungsstarkes Werkzeug 
zur Lösung komplexer Entscheidungsprobleme bei denen genaue 
Modelle oder Regeln nicht verfügbar sind, benötigt aber aufgrund 
des Verstärkungsprinzips große Datenmengen [10]. 

Realistische virtuelle CTs zeigen sich als ideale Datenquelle, 
um den Einsatz von RL auch auf die Problemstellung der autono-
men Parametrisierung von CT-Messungen zu erweitern. Ein 
Konzept wie dies erreicht werden soll, wird folgend vorgestellt. 

Bild 2. Gewählte Konfiguration zur Simulation eines „Metrotom 800“ von Zeiss innerhalb der Software „aRTist“. Grafik: wbk 

Bild 3. Untersuchte Prüfmerkmale zur Evaluation des virtuellen CTs.  
Grafik: aus [12, S. 59]

Bild 4. Gemittelte Abweichungen der untersuchten Prüfmerkmale zwischen 
Rekonstruktion des virtuellen CTs und CAD-Datei gemittelt über alle durch-
geführten Messungen mit Darstellung der Standardabweichung.  
Grafik: wbk
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Das Konzept ist in Bild 5 schematisch dargestellt. Ein virtuel-
les CT (1) dient als Basis zur Durchführung von Messungen. Die 
für die Messung zu definierenden Parameter für Röntgenquelle, 
Bauteillage und Detektor spiegeln den Aktionsraum des RL-
Agenten wieder. Für jeden dieser Parameter definiert der Agent 
(2) daher einen Wert basierend auf seinem aktuellen Wissens-
schatz sowie dem aktuellen Zustand, in dem er sich befindet. Da 
Messungen stets auf das zu untersuchende Bauteil sowie ein  bestimmtes Ziel ausgelegt werden, muss ein RL-Agent in der 
 Lage sein, sein erlerntes Wissen auf unterschiedliche Geometrien 
zu externalisieren. Bei der Auslegung von CT-Messungen kann 
die zu vermessene Geometrie (3) daher als Zustand gesehen 
werden, für die eine geeignete Ausprägung an Parametern gefun-
den werden muss. Um eine Geometrie in eine Machine Learning 
verständliche Form zu übersetzen hat sich die PointNet Architek-
tur [11] bewährt, die in der Lage ist, die Gestalt von Geometrien 
in einen Zahlenvektor zu überführen. Ähnliche Geometrien wei-
sen dabei ähnliche Vektoren auf [11]. Da anhand des Vektors 
nicht nur geometriespezifische Informationen encodiert sind, 
sondern auch die zugrundeliegende Ähnlichkeit abgeleitet werden 
kann, zeigt sich ein solcher Vektor als vielversprechende Zu-
standsinformation, auf dessen Basis ein RL-Agent die Auslegung 
von Messungen erlernen und generalisieren kann. Zum Erlernen 
von Messstrategien wird der RL-Agent mit unterschiedlichen 
Geometrien in Form von solchen Vektoren konfrontiert. Anhand 
dieser Information definiert der Agent auf Basis seines aktuellen 
Wissensschatzes eine Ausprägung für jeden der Parameter. Das 

virtuelle CT erzeugt eine künstliche Messung basierend auf den 
getroffenen Einstellungen. Die resultierende Rekonstruktion wird 
genutzt, um die Abweichung an vorher definierten Prüfmerk -
malen zu bestimmen. Hierfür werden die zugrunde liegenden 
 Dimensionen der CAD-Datei verwendet. Diese Abweichungen 
(4) können in der Belohnungsfunktion (5) als gemittelter Fehler 
verwendet werden. Je geringer die Abweichung der Rekonstrukti-
on zur CAD-Datei ist, desto höher ist die Belohnung für dessen 
Handeln. Zusätzlich erlaubt die Bewertung von RL-Agenten an-
hand einer Belohnungsfunktion das Miteinbeziehen von weiteren 
Zielgrößen. Beispielsweise kann durch das negative Bewerten der 
Messzeit innerhalb der Belohnungsfunktion ein Agent darauf 
trainiert werden möglichst zeitminimale Messungen auszulegen. 
Die Wichtigkeit der jeweiligen Zielgrößen kann durch eine 
 Gewichtung erfolgen. Anhand des berechneten Belohnungswertes 
sowie des Zustandes erweitert der Agent seine Wissensbasis und 
optimiert sein Verhalten. Je nach Messziel ist es daher notwendig 
individuelle Agenten zu trainieren, die sich in ihrer Belohnungs-
funktion unterscheiden. Das Training kann anhand verschiedener 
RL Algorithmen erfolgen. Für verwandte Probleme der Para -
metrisierung von robotergeführten Messsystemen hat sich der 
Soft-Actor Kritik Algorithmus bewährt, weswegen dieser auch für 
die Parametrisierung von CT-Messungen angewendet werden soll 
[6]. Nach abgeschlossenem Training kann der Agent zur Parame-
terauslegung von Messungen genutzt werden, die anschließend 
auf realen Systemen durchgeführt werden.

Bild 5. Schematische Darstellung des Konzeptes zum Training von RL-Agenten zur autonomen Parametrisierung von CT Messungen. Grafik: wbk 
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5 Limitationen und Ausblick

Industrielle CTs zeigen große Potenziale gegenüber herkömm-
licher Messtechnik wie taktiler Koordinatenmesstechnik, beson-
ders die zugrunde liegende Komplexität und Messdauer verhin-
dern jedoch den breiten Einsatz als prozessnahe Messsysteme. 
Die komplizierten physikalischen Wechselwirkungen sowie die 
Individualität einer jeder Messung verlangen daher umfassendes 
Expertenwissen und manuelle Aufwände bei der Parametrisie-
rung. RL-Agenten zeigen sich vielversprechend zur autonomen 
und zielgerichteten Auslegung solcher Parameterkonfigurationen. 
In diesem Artikel wurde ein Konzept zur Nutzung von RL vorge-
stellt, mit dem die Durchführung von Messungen automatisiert 
werden soll. Aufgrund der benötigten großen Datenmenge und 
Trainingsdauer wird hierfür eine effiziente virtuelle Trainings-
umgebung benötigt. Aktuelle Ansätze zur Simulation von CTs 
 ermöglichen Ergebnisse mit geringen Abweichungen im Vergleich 
zu realen Systemen [8], der Einsatz als virtuelle Trainingsumge-
bung für RL-Agenten wird jedoch aufgrund der Rechendauer und 
besonders der fehlenden Optimierung der aktuellen Simulations-
umgebungen als Trainingsumgebung für RL-Agenten erschwert. 
Mit den gewählten Parametern hat das in Kapitel 3 vorgestellte 
virtuelle CT beispielsweise etwa 60 Minuten pro Messung benö-
tigt. Die benötigte Trainingsdatenmenge kann so noch nicht 
 effizient aufgebracht werden. Ohne eine Laufzeitoptimierung des 
virtuellen CTs ist das vorgestellte Konzept daher aktuell schwer 
realisierbar. Für weitere Arbeiten wird daher eine Optimierung 
der Simulationsumgebung angestrebt. 
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