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Ein Konzept zur Nutzung von Reinforcement Learning zur Parametrisierung von CT-Messungen

CT-Messungen automatisieren

E. Blum, F. Stamer, G. Lanza

ZUSAMMENFASSUNG Industrielle Computertomogra-
phie erfordert umfassendes Expertenwissen. In diesem Beitrag
wird ein Konzept vorgestellt, um die Parametrisierung von
Messungen durch Reinforcement Learning zu automatisieren.
Innerhalb einer Simulation sollen Agenten Messstrategien wie
das Auslegen zeitminimaler Messungen erlernen. Auch wenn
aktuelle virtuelle CTs realitditsnahe Messungen erlauben, ver-
hindert die Laufzeit aktueller Simulationsumgebungen noch
den Einsatz als effiziente Trainingsumgebung.
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1 Einleitung und Motivation

Die industrielle Computertomographie (CT) erméglicht die
zerstorungsfreie Priifung von inneren Strukturen sowie metrolo-
gische Messungen von Bauteilen und bietet dadurch Vorteile
gegeniiber klassischen Messmaschinen wie taktile Koordinaten-
messgerite [1]. Der breite Einsatz als prozessnahe Messtechnik
wird derzeit aufgrund des zugrunde liegenden Komplexititsgrads
bei der Durchfithrung von Messungen sowie der langen Mess-
dauer verhindert [2]. Besonders die Auslegung von Messungen
verlangt umfangreiches Wissen und Erfahrung, um die grofle
Zahl an konfigurierbaren Parametern eines CT's zielgerichtet aus-
zulegen. Aktuelle Unterstiitzungssysteme zur Optimierung von
CT-Messungen konzentrieren sich meist auf einzelne Parameter,
wie die Positionierung des Bauteils innerhalb des CT [3], die
Anzahl der erzeugten Rontgenprojektionen [2] oder die Optimie-
rung der Messtrajektorie [4]. Andere Ansitze setzen auf den Auf-
bau grofler Datensitze von unterschiedlichen CT Messungen, um
dieses Wissen auf noch nicht vermessene Bauteile zu externalisie-
ren [5] Ansitze zur automatischen Optimierung aller Parameter
einer Messung sind aktuell nicht existent, wodurch Messungen
stets durch Zutun menschlichen Wissens ausgelegt werden miis-
sen.

Zur autonomen Parametrisierung von visuellen robotergefiihr-
ten Messsystemen hat sich Reinforcement Learning (RL)
bewihrt. In [6] wird mittels RL die Pose eines Vertikalknickarm-
roboters sowie die Ausrichtung einer montierten 3D RGBD-
Kamera autonom auf ein zu vermessenes Bauteil angepasst, um
eine Bauteiloberfliche mittels einer minimalen Anzahl an
Kameraposen vollumfinglich zu befunden. Durch das Training
von RL-Agenten in einer Simulation kann eine Generalisierbar-
keit des Ansatzes erreicht werden, die es dem Messsystem erlaubt
sich autonom auf Lageinderungen oder andere Varianten eines
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Automating CT measurements

ABSTRACT Industrial computed tomography requires
extensive expert knowledge. This paper presents a concept to
automate the parameterization of measurements by reinforce-
ment learning. Within a simulation, agents are supposed to
learn measurement strategies such as the design of time-mini-
mal measurements. Even though current virtual CTs allow
realistic measurements, their runtime currently still prevents
their use as an efficient training environment.

Produktes anzupassen. Mit dem verwandten Problem des pro-
duktspezifischen Parametrisierens von Messaufgaben koénnte RL
auch Potenziale fiir die autonome Auslegung von CT-Messungen
besitzen. In diesem Beitrag wird daher ein Konzept vorgestellt,
wie sich RL-Agenten auch zur autonomen Parametrisierung von
CT-Messungen einsetzen lassen.

2 Grundlagen industrieller CTs
und Herausforderungen bei
der Durchfithrung von Messungen

Zur Durchfithrung einer CT-Messung sind eine Vielzahl an
Parameter einzustellen, die gegenseitige Wechselwirkungen besit-
zen und das Resultat einer Messung beeinflussen. Diese Para-
meter lassen sich in software- und hardwareseitige einteilen.
Hardwareseitig gehoren dazu die Bauteilpositionierung auf dem
kinematischen System und der metallische Vorfilter. Software-
seitig konnen Parameter fiir die Rontgenrdhre (Spannung,
Stromst'eirke), den Detektor (Integrationszeit, Verstirkung, Bild-
mittelung) und das kinematische System (Positionen in x-, y-
und z-Richtung und Anzahl der Projektionen) definiert werden.
Die Lage des Bauteils auf dem kinematischen System hat groflen
Einfluss auf die Rekonstruktionsgiite einer Messung. Neben
Unschirfeeffekten, ausgelost durch eine fehlende Fixierung wih-
rend der Messung, ist besonders die Lage des Bauteils ausschlag-
gebend fiir die erzielte Giite. Parallele Bauteilflichen zur Mittel-
ebene des Detektors fithren beispielsweise zu Artefakten in der
Rekonstruktion, worunter die Qualitdt einer Messung leidet [4]
Ein diinner metallischer Vorfilter zwischen Rontgenréhre und
Messraum entfernt niederenergetische Strahlung, wodurch sog.
Strahlaufhirtungsartefakte verhindert und die Rekonstruktions-
giite verbessert wird. Die Wahl des Vorfilters hingt vom zu ver-
messenden Bauteil ab [7]. Die Strahlenergie wird durch die ange-
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Bild 1. Benutzeroberflache der Simulationssoftware , aRTist” dargestellt anhand des 30 mm PEEK Probekdrpers Priifkdrpers aus [5]. Grafik: wbk

legte Spannung und Stromstirke in der Rontgenrohre definiert.
Hohere Spannung ermdoglicht das Durchdringen dichterer Mate-
rialien. Die Erhéhung der Stromstirke fithrt zu einer héheren
Helligkeit und Rauschfreiheit der erzeugten Projektion. Beide
Parameter erhohen jedoch die Energie der Rontgenstrahlung.
Eine hohe Energie erfordert jedoch eine groflere Defokussierung
des Elektronenstrahles und einen gréfleren Brennfleck, was die
Projektionsunschirfe erhoht. Die Integrationszeit definiert die
Dauer der Erzeugung einer Projektion. Eine Erhéhung fiithrt ver-
gleichbar zur Stromstirke zu helleren und rauschfreieren Projek-
tionen, die Dauer der Messung erhoht sich jedoch. Die Verstar-
kung bestimmt die Empfindlichkeit des Detektors. Eine hohe
Empfindlichkeit geht mit rauschbehafteten Bildern einher. Defi-
niert man eine Anzahl an Projektionen tiber die eine Bildmitte-
lung erfolgen soll, werden die erfassten Pixelwerte iiber diese An-
zahl gemittelt. Ein Rauschen der Projektionen kann so reduziert
werden, die bendtigte Anzahl an Projektionen und so die Dauer
der Messung steigt jedoch. Die Positionierung des Bauteils in
horizontaler Richtung zwischen Quelle und Detektor beeinflusst
die Vergroferung des Systems und damit die Auflosung. Eine
hohere Auflosung geht jedoch mit unschirferen Projektionen ein-
her [7].

CTs besitzen daher systemimmanente Wechselwirkungen zwi-
schen den Parametern. Es ist daher nicht moglich eine allgemein-
giiltige Parameterkonfiguration zur Vermessung unterschiedlicher
Bauteile zu definieren. Messungen miissen daher stets auf das zu
untersuchende Bauteil und unter einem bestimmten Ziel wie
einer minimalen Messunsicherheit oder Messzeit ausgelegt wer-
den. Die Parametrisierung benétigt daher aktuell grofle manuelle
Aufwinde und Expertenwissen [2].

3 Simulation von CT-Messungen

Mit dem vermehrten Einsatz von CTs im industriellen
Bereich, geht auch ein immer stirkerer Fokus auf die Simulation
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solcher Systeme einher. Innerhalb virtueller CTs werden die
komplexen physikalischen Vorginge durch Simulationsmodelle
nachgebildet. Dazu gehoren die Strahlerzeugung, die Abschwi-
chung von Strahlen beim Durchleuchten von Bauteilen in Form
von CAD-Dateien und die Signalverarbeitung des Detektors.
Virtuelle CTs bieten die identischen Parameter zur Messaus-
legung, die in Kapitel 2 beschrieben wurden. Die zugrunde
liegenden Simulationsmodelle benétigen jedoch umfangreiche
Konfigurationsaufwinde bis realistische Ergebnisse erreicht
werden [8, 9]. Es gibt unterschiedliche Ansitze zur Simulation
von CTs, folgend liegt der Fokus auf der Simulationssoftware
»aRTist“ [8], anhand derer der Aufbau eines virtuellen CTs ver-
deutlicht wird.

Die Benutzeroberflache ist in Bild 1 dargestellt und die Funk-
tionsweise am Beispiel des 30 mm PEEK Probekorper aus [5]
veranschaulicht. Die CAD-Datei wird in eine virtuelle Umgebung
bestehend aus Rontgenquelle und Detektor positioniert. Zur Er-
zeugung einer Rontgenprojektion wird ausgehend von der Ront-
genquelle ein Strahl zu jedem Pixel des Detektors entsendet und
der resultierende Grauwert dieses Pixels mittels der Modelle
errechnet. aRTist wurde konfiguriert, um einen vorhandenen CT
des Typs ,Metrotom 800“ von Zeiss zu simulieren. Die hierfiir
gewihlte Konfiguration ist in Bild 2 dargestellt.

Zur Validierung der Konfiguration wurde der virtuelle CT
anhand des von Schild [5] entwickelten Versuchsplan bestehend
aus 20 Messungen fiir das 30 mm PEEK Probebauteil erprobt.
Zur Evaluation wurden die durch aRTist erzeugten Rekonstruk-
tionen mithilfe der Software ,,VG Studio“ anhand der Bild 3 dar-
gestellten Priiffmerkmale ausgewertet. Als Referenzwert dienen
die Dimensionen der CAD-Datei. Bild 4 zeigt die iiber alle Ver-
suche gemittelten Abweichungen der Priifmerkmale. Fiir das vir-
tuelle CT befinden sich die Abweichungen der Fehler im Bereich
von 2,5 pm bis 61 pum, wobei lediglich die Merkmale A1, A2 und
A3 eine Abweichung grofer als 20 pm aufweisen. Fiir die Rekon-
struktion von CAD-Daten kann daher geschlussfolgert werden,
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Bild 2. Gewahlte Konfiguration zur Simulation eines ,,Metrotom 800“ von Zeiss innerhalb der Software , aRTist” Grafik: wbk

Uni-Direktional

Bild 3. Untersuchte Priifmerkmale zur Evaluation des virtuellen CTs.
Grafik: aus [12, S. 59]

dass aktuelle CT Simulationen den Messvorgang mit geringer
Abweichung abbilden, sodass diese fiir das Erlernen von Mess-
strategien anwendbar erscheinen.

4 Ein Konzept zur Nutzung von RL
zur automatisierten Parametrisierung
von CT-Messungen

RL ist ein Teilbereich des maschinellen Lernens, der sich mit
der Entwicklung von intelligenten Agenten befasst, die durch In-
teraktion mit ithrer Umwelt lernen konnen. Im Gegensatz zu An-
sdtzen des tiberwachten Lernens, bei dem ein Agent aus gekenn-
zeichneten Daten lernt oder uniiberwachtem Lernen, bei dem ein
Agent Muster innerhalb von Datensitzen entdeckt, basiert RL auf
dem Prinzip der Verstirkung. Die grundlegende Idee beim RL
besteht darin, dass ein Agent in einer bestimmten Umgebung
handelt und dabei Belohnungen oder Strafen erhilt, abhingig von
der Qualitit seiner Handlungen. Der Agent versucht im Laufe der
Zeit sein Verhalten anzupassen, um Belohnungen zu maximieren
und Strafen zu minimieren. Der RL-Agent nimmt den aktuellen
Zustand seiner Umgebung wahr und entscheidet, welche Aktion
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Grafik: wbk

er aus einer Menge moglicher Aktionen ausfithren soll. Die Aus-
fithrung der Aktion fiihrt zu einer Zustandsidnderung seiner Um-
gebung. Auf Basis dieses Zustandes erhilt der Agent eine Beloh-
nung oder Strafe, die seine Leistung bewertet. Basierend auf
diesem Feedback passt der Agent seine zukiinftigen Entscheidun-
gen an und optimiert seine Handlungsstrategie, um immer besse-
re Ergebnisse zu erzielen. RL ist so ein leistungsstarkes Werkzeug
zur Losung komplexer Entscheidungsprobleme bei denen genaue
Modelle oder Regeln nicht verfiigbar sind, benétigt aber aufgrund
des Verstirkungsprinzips grofie Datenmengen [10].

Realistische virtuelle CTs zeigen sich als ideale Datenquelle,
um den Einsatz von RL auch auf die Problemstellung der autono-
men Parametrisierung von CT-Messungen zu erweitern. Ein
Konzept wie dies erreicht werden soll, wird folgend vorgestellt.
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Bild 5. Schematische Darstellung des Konzeptes zum Training von RL-Agenten zur autonomen Parametrisierung von CT Messungen. Grafik: wbk

Das Konzept ist in Bild 5 schematisch dargestellt. Ein virtuel-
les CT (1) dient als Basis zur Durchfiihrung von Messungen. Die
fiir die Messung zu definierenden Parameter fiir Rontgenquelle,
Bauteillage und Detektor spiegeln den Aktionsraum des RL-
Agenten wieder. Fiir jeden dieser Parameter definiert der Agent
(2) daher einen Wert basierend auf seinem aktuellen Wissens-
schatz sowie dem aktuellen Zustand, in dem er sich befindet. Da
Messungen stets auf das zu untersuchende Bauteil sowie ein
bestimmtes Ziel ausgelegt werden, muss ein RL-Agent in der
Lage sein, sein erlerntes Wissen auf unterschiedliche Geometrien
zu externalisieren. Bei der Auslegung von CT-Messungen kann
die zu vermessene Geometrie (3) daher als Zustand gesehen
werden, fiir die eine geeignete Ausprigung an Parametern gefun-
den werden muss. Um eine Geometrie in eine Machine Learning
verstindliche Form zu iibersetzen hat sich die PointNet Architek-
tur [1 1] bewiihrt, die in der Lage ist, die Gestalt von Geometrien
in einen Zahlenvektor zu tiberfithren. Ahnliche Geometrien wei-
sen dabei dhnliche Vektoren auf [1 1]. Da anhand des Vektors
nicht nur geometriespezifische Informationen encodiert sind,
sondern auch die zugrundeliegende Ahnlichkeit abgeleitet werden
kann, zeigt sich ein solcher Vektor als vielversprechende Zu-
standsinformation, auf dessen Basis ein RL-Agent die Auslegung
von Messungen erlernen und generalisieren kann. Zum Erlernen
von Messstrategien wird der RL-Agent mit unterschiedlichen
Geometrien in Form von solchen Vektoren konfrontiert. Anhand
dieser Information definiert der Agent auf Basis seines aktuellen
Wissensschatzes eine Auspriagung fiir jeden der Parameter. Das
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virtuelle CT erzeugt eine kiinstliche Messung basierend auf den
getroffenen Einstellungen. Die resultierende Rekonstruktion wird
genutzt, um die Abweichung an vorher definierten Priifmerk-
malen zu bestimmen. Hierfiir werden die zugrunde liegenden
Dimensionen der CAD-Datei verwendet. Diese Abweichungen
(4) konnen in der Belohnungsfunktion (5) als gemittelter Fehler
verwendet werden. Je geringer die Abweichung der Rekonstrukti-
on zur CAD-Datei ist, desto hoher ist die Belohnung fiir dessen
Handeln. Zusitzlich erlaubt die Bewertung von RL-Agenten an-
hand einer Belohnungsfunktion das Miteinbeziehen von weiteren
Zielgrofen. Beispielsweise kann durch das negative Bewerten der
Messzeit innerhalb der Belohnungsfunktion ein Agent darauf
trainiert werden moglichst zeitminimale Messungen auszulegen.
Die Wichtigkeit der jeweiligen Zielgroflen kann durch eine
Gewichtung erfolgen. Anhand des berechneten Belohnungswertes
sowie des Zustandes erweitert der Agent seine Wissensbasis und
optimiert sein Verhalten. Je nach Messziel ist es daher notwendig
individuelle Agenten zu trainieren, die sich in ihrer Belohnungs-
funktion unterscheiden. Das Training kann anhand verschiedener
RL Algorithmen erfolgen. Fiir verwandte Probleme der Para-
metrisierung von robotergefithrten Messsystemen hat sich der
Soft-Actor Kritik Algorithmus bewihrt, weswegen dieser auch fiir
die Parametrisierung von CT-Messungen angewendet werden soll
[6]- Nach abgeschlossenem Training kann der Agent zur Parame-
terauslegung von Messungen genutzt werden, die anschliefend
auf realen Systemen durchgefithrt werden.
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