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ABSTRACT

The amount of transmitted video data is growing faster than the channel
capacity available for this purpose. This leads to the necessity of a con-
tinuous improvement of the coding methods for the used video codecs.
Modern video codecs are generally based on the principle of hybrid
coding, i.e. the combination of a prediction with a transformation coding
of the prediction error. The prediction methods can be roughly divided
into intra and inter prediction. In this work, two methods are proposed
for improving intra prediction.

The first contribution in this thesis is a stochastic contour model for
modeling and extrapolation of contours detected in the reference area.
A Gaussian process is used for the modeling. Expectations of typically
occurring contour shapes were taken into account by choosing the Squared
Exponential Kernel as covariance function of the prior of the Gaussian
process. The posterior Gaussian process resulted from the prior Gaussian
process by optimizing the hyperparameters of the covariance function
for each contour. A multivariate Gaussian distribution was formulated
for the contour extrapolation. The second contribution in this thesis is a
neural network-based method for sample value prediction. The neural
networks are used to process the adjacent reference sample values and the
results of contour modeling and extrapolation as input data to generate a
prediction of the sample values of the block to be coded. The contours
are required for the sample value prediction. The neural networks were
designed with an auto-encoder architecture and trained using a SATD cost
function.

The coding efficiency of the video codec HEVC was increased by up
to 5%. Averaged over all 55 test sequences, the All Intra configuration
resulted in BD-rates of —0.54% for high bit rates and —1.0% for low
bit rates. Compared to the methods from our own prior works, which
were already better than related works from the literature, an additional
increase in coding efficiency of 0.21 percentage points for high bit rates
and 0.27 percentage points for low bit rates was achieved.

Keywords — video coding, HEVC, intra prediction, machine learning,
Gaussian process.
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KURZFASSUNG

Die zur Ubertragung von Videos benétigte Ubertragungskapazitit wéchst
schneller als die hierfiir zur Verfiigung stehende Kanalkapazitdt. Hieraus
entsteht die Notwendigkeit einer stetigen Verbesserung der Codierungs-
verfahren fiir die verwendeten Videocodecs. Moderne Videocodecs be-
ruhen in der Regel auf dem Prinzip der Hybridcodierung, also der
Kombination von einer Pradiktion mit einer Transformationscodierung
des Pradiktionsfehlers. Die Pradiktionsverfahren kénnen grob in Intra-
und Inter-Pradiktion unterschieden werden. Fiir die Verbesserung der
Intra-Pradiktion werden in dieser Arbeit zwei Verfahren vorgeschlagen.

Der erste Beitrag in dieser Arbeit besteht aus einem stochastischen
Konturmodell zur Modellierung und Extrapolation von Konturen, die im
Referenzbereich detektiert werden. Fiir die Modellierung wird ein Gauf3-
Prozess verwendet. Die Erwartungen an typischerweise vorkommen-
de Konturverldufe werden durch die Wahl des Squared Exponential Ker-
nels als Kovarianzfunktion des Prior-Gauf3-Prozesses berticksichtigt. Der
Posterior-Gaufi-Prozess ergibt sich aus dem Prior-Gaufs-Prozess durch die
Optimierung der Hyperparameter der Kovarianzfunktion fiir jede Kon-
tur. Fiir die Konturextrapolation wird eine multivariate Gauf-Verteilung
formuliert. Der zweite Beitrag in dieser Arbeit ist ein auf neuronalen Netz-
werken basierendes Verfahren zur Abtastwertpradiktion. Mit den neuro-
nalen Netzwerken werden die benachbarten Referenzabtastwerte sowie
das Ergebnis der Konturmodellierung und -extrapolation als Eingabeda-
ten verarbeitet, um eine Pradiktion der Abtastwerte des zu codierenden
Blocks zu erzeugen. Die Konturen werden fiir die Abtastwertpradiktion
benotigt. Die neuronalen Netzwerke wurden mit einer Autoencoder-
Architektur entworfen und mittels einer saTp-Kostenfunktion trainiert.

Die Codierungseffizienz des Videocodecs HEvC wurde um bis zu 5%
gesteigert. Gemittelt tiber alle 55 Testsequenzen ergaben sich fiir die All
Intra-Konfiguration Bp-Raten von —0, 54% fiir hohe Datenraten und in
Hohe von —1,0% fiir niedrige Datenraten. Verglichen mit den Verfah-
ren aus eigenen Vorarbeiten, welche bereits besser waren als verwandte
Arbeiten aus der Literatur, wurde eine zusitzliche Steigerung der Codie-
rungseffizienz um 0, 21 Prozentpunkte fiir hohe Datenraten und um 0,27
Prozentpunkte fiir niedrige Datenraten erzielt.

Stichworte — Videocodierung, HEVC, Intra-Pradiktion, maschinelles Ler-
nen, Gauf3-Prozesse
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EINLEITUNG

1.1 MOTIVATION

Aus einer Prognose [18] des Telekommunikationsunternehmens Cisco
geht hervor, dass die fiir die Internetiibertragung von Videos benotig-
te Ubertragungskapazitit rasant ansteigt: Der Prognose zufolge werde
hierfiir eine Vervierfachung von 2016 bis 2021 auf dann 2,7 Zettabyte pro
Jahr! (entsprache einer Millionen Minuten Videomaterial pro Sekunde)
erwartet. Im gleichen Zeitraum werde lediglich eine Verdoppelung der
durchschnittlichen Kanalkapazitdt von Internetanschliissen angenommen.
Um die Ubertragung dieser Daten tiber die zur Verfiigung stehenden
Kanidle zu ermoglichen, ist eine stetige Verbesserung von Videocodie-
rungsverfahren erforderlich.

In den vergangenen Jahren konnten hierdurch motiviert enorme Verbes-
serungen von Videocodierungsverfahren beobachtet werden. Im Januar
2013 finalisierte das Joint Collaborative Team on Video Coding (JCT-VC)
— hierbei handelt es sich um eine gemeinsame Standardisierungsgrup-
pe von der International Telecommunication Union - Telecommunicati-
on Standardization Sector (ITU-T) Video Coding Experts Group (VCEG)
und International Standardization Organisation (ISO)/International Elec-
trotechnical Commision (IEC) Moving Picture Experts Group (MPEG) —
die technische Arbeit am neusten Videocodierungsstandard HEVC [47,
116, 119, 140]. Der HEVC Standard wurde von den beiden Standardisie-
rungsgremien als Recommendation H.265 (ITU-T) und als 23008-2:2013
MPEG-H Part 2 (1ISO/IEC) verdffentlicht. Bei gleicher visueller Quali-
tat ermoglicht HEVC, abhédngig von der gewdahlten Konfiguration, eine
deutliche Reduktion der Datenrate um 40-60% bezogen auf den Vor-
gangerstandard Advanced Video Coding (AVC), auch bekannt als ITU-T
Recommendation H.264 und ISO/IEC MPEG-4 Part 10 [44, 80, 95]. Diese
Messwerte wurden sowohl in Experimenten mit den entsprechenden
Referenzsoftwareimplementierungen aus der Standardisierung [35, 38,
94] als auch in Experimenten mit realen Produktimplementierungen [2o0,
34] ermittelt. Im Anschluss an die Finalisierung der ersten Version des
HEVC Standards wurden mehrere Erweiterungen (Range Extensions [28],

1 entsprache dann 82% aller {iber das Internet {ibertragener Daten
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EINLEITUNG

Scalable HEVC [11], HEVC Screen Content Coding [144]) entwickelt. Auch
aufSerhalb der Standardisierungsaktivitiaten des JCT-VC entstehen moder-
ne Videocodierungsverfahren, zum Beispiel AOMedia Video 1 (AV1) [16],
VP8 [5], VP9 [86] und andere [9, 87, 130]. Einen anderen Ansatz wahlen
Toderici et al. [125, 126], indem sie Bilder mit riickgekoppelten neurona-
len Netzwerken codieren. Hierbei wird das komplette Codierungssystem
einschliefSlich Binarisierung und Entropiecodierung durch Netzwerke
realisiert (Ende-zu-Ende). Die Codierungseffizienz der Ende-zu-Ende-
Ansitze lasst sich zwischen der von JPEG 2000 und HEVC-Intra einordnen.
In neueren Arbeiten ist die Codierungseffizienz weiter gestiegen.

Wie viele erfolgreiche Videocodierungsstandards zuvor beruht auch
HEVC auf dem Prinzip der Hybridcodierung, also auf der Kombination
von einer Pradiktion (bewegungskompensierend oder intra) mit einer
Transformationscodierung des Pradiktionsfehlers [92]. Hierbei wird das
Ziel verfolgt, den aktuell zu codierenden Teil des Videosignals aus bereits
codierten Signalanteilen zu pradizieren. Da diese bereits codierten Signal-
anteile am Decoder vorliegen, kann die Pradiktion ebenfalls am Decoder
durchgefiihrt werden. Der bei der Pradiktion entstehende Préadiktions-
fehler wird an den Decoder {ibertragen. Die zur Codierung benoétigte
Datenrate sinkt je besser die Pradiktion funktioniert. Zu dem Zweck
der Pradiktion werden die zu codierenden Bilder des Videos in Blocke
aufgeteilt, welche nacheinander codiert werden. Bei der Codierung eines
Blockes stehen die Informationen von bereits codierten Blocken aus dem
aktuellen Bild und aus zuvor codierten Bildern als Pradiktionsgrundlage
zur Verfiigung.

Die Codierungsverfahren, welche zu der erfolgreichen Verbreitung
dieser Videocodierungsstandards gefiihrt haben, konnen grob in Inter-
Codierung und in Intra-Codierung unterschieden werden. Wahrend
die Intra-Codierung ausschlieSlich ¢rtliche Redundanz im jeweiligen zu
codierenden Bild ausnutzt, wird bei der Inter-Codierung zusatzlich die
zeitliche Redundanz zwischen aufeinanderfolgenden Bildern mittels einer
bewegungskompensierenden Pradiktion ausgenutzt [30]. Deshalb werden
bei der Verwendung der Intra-Codierung typischerweise deutlich hohere
Datenraten (Faktor 10-100 [69]) als bei der Inter-Codierung benétigt, um
eine anndhernd konstante visuelle Qualitit zu erzielen.

Dennoch ist die Intra-Codierung ein essentieller Teil von allen Vi-
deocodierungsverfahren und -anwendungen: Sie wird fiir den Start der
Ubertragung, fiir den wahlfreien Zugriff in laufende Ubertragungen,
zur Fehlerkorrektur (hier teilweise auch in Kombination mit zeitlichen
Informationen), fiir die Umschaltung der Datenrate bei schwankenden
Datenkanélen bei Video-on-Demand Anwendungen [20] und nicht zu-
letzt fiir die Codierung von neu im Bild erscheinenden Inhalten benotigt.
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Des Weiteren sind Intra-Codierungsverfahren pradestiniert fiir die effizi-
ente Codierung von Einzelbildern. Dieses Szenario kann als Sonderfall
der Codierung einer Videosequenz mit nur einem Bild aufgefasst werden.

Die Intra-Codierung in HEVC basiert auf der ortlichen Pradiktion von
Abtastwerten® auf Grundlage von benachbarten, bereits codierten Abtast-
werten (Referenzabtastwerte) gefolgt von einer Transformationscodierung
des Préadiktionsfehlers [63]. Fiir die Pradiktion stehen 33 direktionale
Modi, ein Modus fiir die planare Pradiktion sowie ein Modus fiir die
Pradiktion mit dem Mittelwert der Referenzabtastwerte zur Verfiigung.
Die Referenzabtastwerte befinden sich in einer 1 Pel breiten Spalte be-
ziehungsweise Zeile innerhalb der bereits codierten Blocke direkt links
und oberhalb des aktuell zu codierenden Blockes (Referenzbereich). Die
direktionalen Modi erlauben die lineare Extrapolation der Referenzab-
tastwerte in der Richtung von 33 verschiedenen Winkeln. Da in typischen
Videosequenzen haufig horizontale und vertikale Strukturen vorkommen,
wurde hierfiir eine genauere Winkelauflosung als fiir andere Winkel
gewdhlt [82]. Diese direktionalen Modi zielen auf die Pradiktion von
Blocken mit einer linearen Struktur oder Kontur ab [63]. Nicht alle zu
codierenden Blocke enthalten eine lineare Struktur. Fiir solche Blocke
wurden die Pradiktion mit dem Mittelwert sowie die planare Pradiktion
(gewichtete Uberlagerung von vier Referenzabtastwerten) entwickelt [63].

Aktuell untersuchen VCEG und MPEG das Potential fiir die Standardisie-
rung eines HEVC-Nachfolgers im hierzu gegriindeten Joint Video Experts
Team (JVET), vormals: Joint Video Exploration Team [69, 93]. Im entwickel-
ten Test-Modell, Versatile Test Model (VIM), vormals: Joint Exploration
Model (JEM), finden sich mehrere Verbesserungen zur Intra-Codierung:
die Anzahl an direktionalen Modi wird auf 65 erhoht, die Interpolation
ftir die direktionalen Modi wird verbessert, zur Verhinderung von Dis-
kontinuitdten an den Blockgrenzen werden prédizierte Randabtastwerte
gefiltert, die Chrominanzen werden aus der Luminanz prédiziert und die
Filterung von Referenzabtastwerten wird modifiziert [15]. Das Matrix-
weighted Intra Prediction (MIP)-Verfahren beruht auf einer Pradiktion
mittels einer Matrixmultiplikation. Dieser Ansatz ist vergleichbar mit
einem neuronalen Netzwerk mit einer einzigen verborgenen Schicht und
ohne Aktivierungsfunktion.

Eine Analyse der im HEVC-Standard und im VIM eingesetzten Intra-
Codierung offenbart mehrere Ansétze fiir Verbesserungen: 1) Die Pradik-
tionsbasis ist mit 1 Pel Breite beziehungsweise Hohe klein. Es konnten
aus weiteren benachbarten und bereits codierten Abtastwerten zusatz-
liche fiir die Pradiktion niitzliche Informationen gewonnen werden. 2)

2 In dieser Arbeit werden die Begriffe Bildpunkt und Abtastwert unterschieden. Ein Bildpunkt
besteht typischerweise aus drei Abtastwerten fiir die drei Farbraumkomponenten (z.B. YCbCr).
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Die direktionale Pradiktion erlaubt nur eine Pradiktion von linearen
Strukturen. 3) Im Fall der direktionalen Pradiktion ist pro Block nur
eine Richtung fiir die Pradiktion wahlbar. Schwierig zu pradizieren sind
deshalb Blocke, in denen nichtlineare Konturen oder mehrere Konturen
in unterschiedlichen Richtungen vorhanden sind.

Zu einer vergleichbaren Erkenntnis kommen Lottermann und Stein-
bach in ihrer Arbeit [78], in der sie die Datenrate signalabhédngig unter
anderem {tiber die ortliche Aktivitit modellieren. Die Schlussfolgerung
von Lottermann und Steinbach (hohe Datenrate fiir Blocke mit vielen
Konturen) passt zu der dieser Arbeit zugrunde liegenden Pramisse, dass
Blocke mit vielen Kanten schwierig zu pradizieren sind.

1.2 STAND DER FORSCHUNG

Verwandte Arbeiten aus der Literatur zeigen auf, dass sich aus Konturen
in der Umgebung des zu codierenden Blockes fiir die Pradiktion wertvolle
Informationen ziehen lassen. Yuan und Sun demonstrieren, dass sich ba-
sierend auf einer Konturenkarte fiir das zu codierende Bild eine schnelle
Entscheidungsfindung fiir die Wahl eines guten Intra-Codierungsmodus
entwickeln ldsst [146]. Asheri et al. [2] sowie Au und Chan [3] verwen-
den Konturinformationen fiir Fehlerverschleierungsalgorithmen. Hierbei
werden Konturinformationen aus dem aktuellen Bild (Asheri et al.) be-
ziehungsweise aus dem aktuellen und dem vorherigen Bild (Au und
Chan) fiir die Verschleierung von Ubertragungsfehlern eingesetzt. Liu
et al. steigern die Codierungseffizienz des Joint Photographic Experts
Group (JPEG)-Standards [46, 48, 133] in [76] sowie von JPEG 2000 und AVC
in [75, 77] mit einem konturbasierten Inpainting- (Rekonstruktion von
gestorten Bildteilen) und Textursyntheseverfahren. Das Grundprinzip
dieses Verfahrens beruht auf der linearen Extrapolation von im bereits
codierten Bild gefundenen Konturen, der Ubertragung von nichtlinearen
Konturverldufen mittels des Joint Bi-level Image Experts Group (JBIG)-
Standards [45, 49], der Ubertragung von Vorlagen fiir die Textursynthese
sowie dem Losen von partiellen Differentialgleichungen fiir das Inpain-
ting. Im Gegensatz zum HEVC Intra-Codierungsverfahren wird durch
dieses Verfahren die Pradiktion von mehreren Konturen in unterschiedli-
che Richtungen pro Block ermoglicht.

Liu et al. gelingt eine Steigerung der Codierungseffizienz, jedoch wer-
den nur unkomplizierte lineare Konturen extrapoliert. Des Weiteren
miissen fiir die Abtastwertberechnung entweder zahlreiche Seiteninfor-
mationen tibertragen werden (Vorlagen fiir die Textursynthese) oder
rechenaufwendige partielle Differentialgleichungssysteme fiir das Inpain-
ting gelost werden (die Decodierung eines Bildes mit einer Auflosung von
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512x512 Pel benotigt mehrere Minuten [75]). Da die Leistungsfahigkeit
nur fiir ausschliefSlich intra-codierte, engl. all intra (Al), Bilder demons-
triert wird [75, 77] kann nicht angenommen werden, dass die visuell
gutaussehenden Ergebnisse der Textursynthese auch eine gute Pradikti-
on fiir die Codierung darstellen. Zur Kompensation der beschriebenen
Nachteile des Verfahrens von Liu et al. wurde in einer eigenen Vorarbeit
das Verfahren Contour-based Multidirectional Intra Coding (CoMIC) fiir
die Verbesserung der Codiereffizienz von JPEG und HEVC vorgeschlagen
[65]. Prinzipiell wird hierbei eine JPEG-Codierung um eine Pradiktion
ergdnzt und die diskrete Kosinustransformation, engl. Discrete Cosine
Transform (DCT), auf dem Pradiktionsfehler anstatt auf dem zu codieren-
den Signal berechnet. Durch die Ubertragung des Pradiktionsfehlers wird
das Problem von Liu et al., dass die synthetisierten Bildbereiche nicht als
Pradiktionsgrundlage geeignet sind, umgangen. CoMIC, hier in der ersten
Version (CoMIC v1), basiert wie das Verfahren von Liu et al. auf der ge-
trennten Verarbeitung von Konturen und der Abtastwertpradiktion. Die
Konturen werden im bereits codierten Bildbereich detektiert und ohne
die Ubertragung von Seiteninformationen linear in den zu codierenden
Block extrapoliert. Die Abtastwertpradiktion beruht auf der Fortfithrung
von benachbarten Abtastwerten entlang der extrapolierten Konturen. Da
die Konturmodellierung dieses Verfahrens in weit von den Blockgren-
zen zu den bekannten Bildbereichen entfernten Bereichen des Blockes
eine zu hohe Unsicherheit tiber den Konturverlauf aufweist, erfolgt ei-
ne distanzabhéngige Uberblendung des fortgesetzten Randabtastwertes
zum Mittelwert der Referenzabtastwerte. Im Gegensatz zu der im HEVC
Intra-Codierungsverfahren eingesetzten Abtastwertpradiktion werden
die einzelnen Konturen individuell behandelt, wodurch die Abtastwerte
in mehreren Richtungen pro Block fortgefiihrt werden konnen. Dieses
Verfahren eignet sich fiir die Pradiktion von linearen Konturverldufen. In
realen Bildern und Videosequenzen existieren viele nichtlineare Kontu-
ren, welche mit CoMIC v1 nicht pradiziert werden kénnen. Zur Pradiktion
dieser nichtlinearen Konturen wurden in einer Nachfolgearbeit (CoMIC
v2) die Konturen mit Polynomen hoheren Grades modelliert [69]. Durch
die in den eigenen Vorarbeiten vorgeschlagenen Verfahren konnte die
Codierungseffizienz von HEVC gesteigert werden.

Die extrapolierten Konturen werden fiir die Abtastwertpradiktion be-
notigt. Ein urspriinglich aus dem Bereich der Klassifikation bekannter
Trend, der seit einigen Jahren auch in der Videocodierung présent ist
und fiir die Abtastwertpradiktion vielversprechend erscheint, ist Deep
Learning [31, 71]. Hierbei handelt es sich um eine Art von maschinellen
Lernverfahren, bei der neuronale Netzwerke mit vielen aufeinanderfol-
genden Schichten zur Verarbeitung der Eingangsdaten eingesetzt werden.
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Héaufig werden neuronale Faltungsnetzwerke, engl. Convolutional Neural
Networks (CNNs), verwendet. Fiir Klassifikationsanwendungen werden
mit Deep Learning-Ansédtzen seit einigen Jahren Ergebnisse erzielt, die
dem bisherigen Stand der Technik deutlich {iberlegen sind [61, 122] und
eine rege Aktivitat zur Verbesserung der entsprechenden Lernverfahren
motivieren [50, 113]. Aufgrund des grolen Erfolges von Deep Learning-
Ansitzen in anderen Bereichen werden diese auch im Bereich der Bild-
verarbeitung vermehrt angewendet. Fawzi et al. [27] und Gupta et al. [36]
verwenden neuronale Netzwerke fiir das Inpainting von Bildern. Theis
und Bethge [124] sowie Gregor et al. [33] verwenden riickgekoppelte
neuronale Netzwerke fiir die generative Bildmodellierung.

1.3 UNGELOSTE PROBLEME

Die noch nicht hinreichend geltsten Aufgaben bei der Intra-Codierung
sind die folgenden:

Modellierung von Konturen im bereits codierten Signal: Es konnte
in der Literatur und in den eigenen Vorarbeiten gezeigt werden, dass
durch die Pradiktion von Abtastwerten entlang von Konturen die Codie-
rungseffizienz deutlich gesteigert werden kann. Jedoch erlaubt keines
der beschriebenen Verfahren die allgemeingtiltige Modellierung von Kon-
turen. Die Modellierungen aus der eigenen Vorarbeit [65] sowie aus
den Arbeiten von Liu et al. [y5-77] eignen sich ihrer linearen Form ent-
sprechend nicht fiir nichtlineare Konturen. Des Weiteren konnte gezeigt
werden, dass die nichtlinearen Modelle aus [69] jeweils nur fiir einen klei-
nen Anteil der in typischen Bildsignalen vorkommenden nichtlinearen
Konturen geeignet sind. Dieses ist intuitiv erkldrbar, da es zweifelhaft ist,
dass von der Natur geschaffene Formen genau die Form von quadrati-
schen oder kubischen Funktionen haben. Selbst bei der Betrachtung des
Inhaltes von einzelnen Blocken mit typischen Blockgrofien reicht eine
solche polynominelle Modellierung nicht fiir die zuverldssige Approxi-
mation der tatsdchlichen Konturverldufe. In der Vorarbeit [129] wurde
gezeigt, dass das polynomielle Konturmodell besser als Splines funktio-
niert. Fiir die zuverldssige Konturmodellierung wird ein Modell benétigt,
welches zu den realen Daten passt.

Extrapolation von Konturen: Neben der Modellierung von Konturen
im bereits codierten Bereich des Bildes ist fiir die Codierung eine Extra-
polation in den zu codierenden Block notwendig. Das Verfahren von Liu
et al. benotigt fiir komplizierte, zum Beispiel nichtlineare, Konturen die
Ubertragung des Konturverlaufes [75-77]. Das CoMIC v1 Verfahren aus
der eigenen Vorarbeit ermdglicht eine zuverldssige Pradiktion nur in den
Bereichen des zu codierenden Blockes, welche in der Nédhe des Referenz-
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bereiches liegen [65]. Die unterschiedlichen nichtlinearen Extrapolations-
verfahren aus der Nachfolgearbeit ermoglichen die Extrapolation jeweils
nur fiir einen kleinen Teil der vorhandenen Konturen [69)].

Abtastwertpradiktion: Keines der beschriebenen Verfahren ermoglicht
eine zufriedenstellende Pradiktion der Abtastwerte. Die Anforderungen
fiir ein zufriedenstellendes Verfahren sind, dass die Pradiktion genau
ist, dass die Pradiktion aus in bereits codierten Bildbereichen vorhande-
nen Informationen erfolgt, dass keine zusatzlichen Seiteninformationen
tibertragen werden und dass die Komplexitat des Pradiktionsverfahrens
gering genug ist, um eine Anwendung in Decodern zu erméglichen. Die
vorgestellten Verfahren verfehlen diese Anforderungen. So ist die Pradik-
tion der Verfahren aus den Vorarbeiten beim Vorliegen von komplizierten
Konturverldufen nicht hinreichend genau genug. In der Vorarbeit [24]
wurde gezeigt, dass neuronale Netzwerke alleine noch keine hinreichend
gute Intra-Pradiktion ermoglichen.

In den vier auf neuronalen Netzwerken basierenden Arbeiten [27, 33,
36, 124] ist das Ziel die Rekonstruktion eines visuell tiberzeugenden
Bildes. Solch eine visuell tiberzeugende Rekonstruktion ist jedoch nicht
notwendigerweise eine fiir eine effiziente Codierung geeignete Pradiktion,
da sie nicht den zu tibertragenden Pradiktionsfehler minimiert. Die
Ende-zu-Ende-Verfahren von Toderici et al. [125, 126] sind ebenfalls
ungeeignet, da sie ein komplettes Codierungssystem umfassen. In vielen
Fallen ist stattdessen eine Verbesserung der tiber Jahrzehnte optimierten
Codierungssysteme fiir Bilder und Videos erwiinscht, um existierende
Implementierungen, Architekturen und Infrastrukturen weiterverwenden
beziehungsweise verbessern zu kénnen.

1.4 ZIELE DER ARBEIT

In dieser Arbeit wird das Ziel verfolgt, eine effizientere Intra-Codierung
fiir die Bild- und Videocodierung durch die Kombination von konventio-
nellen Videocodierungsverfahren mit Konturextrapolationsverfahren und
maschinellen Lernansétzen fiir die Abtastwertpradiktion zu entwickeln.
Hierfiir wird ein Codierungsverfahren entworfen, welches sowohl die
genaue Extrapolation von komplizierten (zum Beispiel nichtlinearen)
Konturen erméglicht als auch aufbauend auf den extrapolierten Kon-
turen eine genaue Pradiktion von Abtastwerten erlaubt. Im Einzelnen
werden die folgenden Teilziele verfolgt:

Es wird ein Verfahren zur Modellierung von Konturverldufen im be-
reits codierten Signal entwickelt. Hierbei werden einige gewtinschte
Eigenschaften des zu entwickelnden Verfahrens besonders berticksich-
tigt. Das Verfahren ermoglicht eine allgemeingiiltige Modellierung fiir
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unterschiedliche Arten von real existierenden Konturverlaufen. Hierfiir
reicht ein einzelnes Modell aus anstatt viele verschiedene Modelle fiir
unterschiedliche Arten von Konturverldufen zu benétigen. Dieses Modell
basiert auf Gauf3-Prozessen.

Aufbauend auf diesem Modell wird die Extrapolation der im bereits
codierten Signal gefundenen und modellierten Konturverldufe in den
aktuell zu codierenden Bereich realisiert. Die Parameter fiir die Extrapola-
tion werden aus der Modellierung des bereits codierten Signals bestimmt.
Hierdurch wird die Datenrate fiir die extrapolierte Kontur stark reduziert,
da diese Informationen dem Decoder bereits zur Verfiigung stehen und
somit nicht tibertragen werden miissen.

Die extrapolierten Konturverldufe sind lediglich ein Zwischenschritt
fiir die angestrebte Intra-Codierung. Das eigentliche Ziel der Codierung
ist die Rekonstruktion der Abtastwerte des zu codierenden Blockes. Des-
halb werden diese Abtastwerte pradiziert. Hierfiir werden neuronale
Netzwerke verwendet.

Die entwickelten Algorithmen sind kompatibel zu bestehenden Codie-
rungssystemen, so dass sie zum Beispiel als zusétzlicher Pradiktionsmo-
de in ein bestehendes Codierungssystem integriert werden konnen und
hierbei bestehende Verfahren zur Transformationscodierung3 des Pradik-
tionsfehlers, zur Entropiecodierung, zur Partitionierung der Bilder mit
einem Blockraster, zur bewegungskompensierenden Pradiktion, etc. wei-
terverwendet werden konnen. Dieses wire mit Ende-zu-Ende-Ansétzen,
welche das komplette Codierungssystem durch eine Blackbox in Form
eines neuronalen Netzwerkes ersetzen, unmoglich. Des Weiteren wird
hierdurch die Integration in bestehende Verfahren zur Rate-Distortion-
Optimierung durch Encoder ermoglicht.

Die Ergebnisse aus den ersten drei Teilzielen werden verwendet, um
das entwickelte Verfahren in einen Bild- (CoMIC) und in einen Videocodec
(HEVC) zu integrieren. Diese Integration ist fiir einen fundierten Vergleich
mit dem Stand der Technik erforderlich.

Im Rahmen dieses Arbeit sollen unterschiedliche Verfahren fiir die
Konturextrapolation (ein modellbasiertes Verfahren) und fiir die Abtast-
wertpradiktion (ein datenbasiertes Verfahren) verwendet werden. Der
Grund hierfiir liegt in der Erkenntnis aus eigenen Vorarbeiten, dass die
Pradiktion mit einem datenbasierten Verfahren nur aus den Abtastwerten
des Referenzbereiches keine zufrieden stellenden Ergebnisse liefert, weil
Konturverldufe nicht hinreichend berticksichtigt werden. Die Arbeiten
von Liu et al. [75—77] bestdtigen diese Erkenntnis.

Eine Ausnahme bildet die Mode-dependent Transform, welche fiir ein zusétzliches Pradiktions-
verfahren zu erweitern wire.
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Zusammengefasst sind die Beitrdge in dieser Arbeit:

e Ein auf Gaufi-Prozessen basierendes Verfahren zur Modellierung
und Extrapolation von Konturen

e Ein Verfahren zur Pradiktion von Abtastwerten mittels neuronaler
Netzwerke

e Die Kombination der beiden vorgenannten Verfahren zu einem
Intra-Codierungsverfahren

e Die Integration in einen Bild- und in einen Videocodec

Teile der dieser Arbeit zugrunde liegenden Ideen wurden in [65] und
[69] veroffentlicht.

1.5 AUFBAU DER ARBEIT

Die weitere Arbeit ist wie folgt gegliedert: In Kapitel 2 werden die not-
wendigen Grundlagen fiir diese Arbeit beschrieben. Hierzu zdhlen die
HEVC-Videocodierung mit Schwerpunkt auf der Intra-Codierung, maschi-
nelles Lernen mit neuronalen Netzwerken und das verwendete Verfahren
zur Konturdetektion. Das vorgeschlagene stochastische Konturmodell
wird in Kapitel 3 hergeleitet. Hierfiir werden Konturen als gedachtnisbe-
haftete Quelle analysiert, die Konturen modelliert sowie die Extrapolation
der Konturen in den zu codierenden Block formuliert. Aufbauend auf
den Ergebnissen des dritten Kapitels wird die vorgeschlagene Abtast-
wertpradiktion in Kapitel 4 ausgefiihrt. Im Rahmen dieser Ausfiihrungen
werden sowohl die vorgeschlagenen Netzwerkarchitekturen als auch das
Training der Netzwerke beschrieben. Die experimentelle Untersuchung
und Bewertung der vorgeschlagenen Verfahren wird in Kapitel 5 ge-
schildert. In Kapitel 6 wird diese Arbeit mit einer Zusammenfassung
abgeschlossen.
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In diesem Kapitel werden die zum Verstdndnis dieser Arbeit notwendigen
Grundlagen ausgefiihrt. Die Grundlagen der Videocodierung werden mit
Blick auf den HEVC-Standard dargestellt. Maschinelles Lernen wird mit
einem Schwerpunkt auf den in dieser Arbeit verwendeten neuronalen
Netzwerken inklusive der zugehorigen Lernverfahren eingefiihrt. Da das
in Kapitel 3 vorgeschlagene Modell auf Konturen beruht, werden die
verwendeten Konturdetektionsverfahren vorgestellt.

2.1 VIDEOCODIERUNG

In diesem Abschnitt werden die Beschreibung von digitalen Videosigna-
len, die Hybridcodierung, HEVC sowie das Thema Encodersteuerung
eingefiihrt.

Beschreibung von Videosignalen

Videosignale sind die Eingabedaten von Videocodecs. Folglich ist die Be-
schreibbarkeit von Videosignalen eine notwendige Voraussetzung fiir die
Entwicklung von Videocodierungsverfahren. Im Rahmen dieser Arbeit
werden ausschliefilich digitale Videosignale betrachtet.

Typische Quellen fiir Videosignale sind Kameraaufnahmen von na-
ttirlichen Inhalten oder die Generierung von kiinstlichen Inhalten wie
Animationen im Computer. Weitere mogliche Quellen umfassen die
Digitalisierung von analogen Filmen oder die Ubertragung von Bild-
schirminhalten, beispielsweise via Chromecast oder AirPlay. Mischungen
von Videosignalen aus verschiedenen Quellen sind moglich und je nach
Anwendungsgebiet sogar tiblich. So werden zum Beispiel fiir Filmpro-
duktionen typischerweise Kameraaufnahmen von natiirlichen Inhalten
mit im Computer erzeugten kiinstlichen Inhalten kombiniert. Je nach
Quelle unterliegt das Videosignal bereits zu diesem Zeitpunkt der Verar-
beitungskette Verzerrungen, beispielsweise durch die Kameralinse.

Im Folgenden wird ohne Einschrankung davon ausgegangen, dass das
Videosignal mit einer Kamera aufgenommen wird. In diesem Fall ent-
steht das Videosignal aus sichtbarem Licht, also aus elektromagnetischen
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Wellen mit Wellenldngen zwischen 38onm und 78onm. Die Erzeugung
von Videosignalen erfolgt bildweise, d.h. ein Bild wird nach dem anderen
aufgenommen. Im Kamerasensor werden die einfallenden elektromagne-
tischen Wellen zeitlich und 6rtlich abgetastet sowie quantisiert. Hierdurch
entstehen quantisierte Abtastwerte’.

Die Abtastwerte werden in zweidimensionalen Feldern? zu einem
Bild angeordnet. Bei einem Grauwertbild besteht das Bild aus einem
Feld. Bei Farbbildern besteht das Bild in der Regel aus drei Feldern. Die
Abtastwerte an einer Ortlichen Position — also ein Wert fiir Grauwertbilder
und drei Werte fiir Farbbilder — werden als Bildpunkte (engl. pixel oder
picture element (Pel)) bezeichnet.

Die zeitliche Abtastung kann tiber die Bildrate, also die Anzahl an
Bildern pro Sekunde, gemessen mit der Einheit Hertz (Hz), beschrieben
werden. Die ortliche Abtastung kann tiber die Bildauflsung beschrieben
werden. Die Bildauflsung gibt die Anzahl an Bildpunkten innerhalb
eines Bildes in horizontaler und in vertikaler Richtung an. Die Quanti-
sierung3 kann tiber die Auflosung des Quantisierers, bei gleichformigen
Quantisierern parametrisiert tiber die Bittiefe, beschrieben werden.

Die menschliche visuelle Wahrnehmung kann physiologisch in Hellig-
keitswahrnehmung und Farbwahrnehmung unterschieden werden. Fiir
die Beschreibung von Farbe im Kontext der Videocodierung erfolgt oft
eine Bezugnahme auf das Normfarbsystem mit drei Grundfarben der
Internationalen Beleuchtungskommision (fr. Commission Internationale
de I’Eclairage (CIE)) von 1931. In diesem System wird jede Farbe als ein
Punkt in einem XYZ-Raum dargestellt. Die Koordinaten des Punktes
werden basierend auf dem einfallenden Lichtspektrum berechnet.

Fiir Farb-Videosignale operieren die Quelle und die Senke oft im
Rot-Griin-Blau (RGB)-Farbraum. Zwischen Quelle und Senke - also fiir
die Codierung — wird das Signal in der Regel in einen anderen Farb-
raum umgewandelt. Hierfiir wird typischerweise der YCbCr-Farbraum*
verwendet. Hier steht Y fiir die Helligkeit oder Luma gemaf3 des CIE-
Normfarbsystems und Cb und Cr fiir die Farbinformationen als Diffe-
renzsignale (Cb fiir die blau-gelbe Chroma und Cr fiir die rot-griine
Chroma). Fiir die Aufteilung des Videosignals in einen Helligkeitsanteil
und zwei Farbanteile gibt es im Wesentlichen zwei Griinde, von denen

1 Im Folgenden wird davon ausgegangen, dass Abtastwerte immer quantisiert sind.

2 Nicht zu verwechseln mit den Feldern von Videosignalen im Zeilensprungverfahren (engl.
interlaced), welche in dieser Arbeit nicht betrachtet werden.

3 Hier ist die Quantisierung wéhrend der Analog-zu-Digital-Wandlung und nicht die Quantisie-
rung wahrend der Videocodierung gemeint.

4 In HEVC-Erweiterungen wird teilweise auch der YCgCo-Farbraum verwendet, da hierdurch
die Korrelation zwischen den beiden Chroma-Komponenten zusitzlich reduziert werden kann
[150].
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einer nur noch unter historischen Gesichtspunkten relevant ist: Zu Zeiten
des analogen Schwarz-WeiS-Fernsehens gab es nur die Helligkeitskompo-
nente. Als das analoge Farbfernsehen aufkam, wurde die Farbe in Form
von zwei Differenzsignalen tibertragen. Hierdurch funktionierten alte
Schwarz-Weif3-Fernseher, welche nur die Helligkeit anzeigen konnten,
ohne Probleme weiter und Farbfernseher, welche zusétzlich die beiden
Farbsignale anzeigen konnten, stellten ein farbiges Bild dar [140]. Heu-
te noch relevant ist die unterschiedliche Sensibilitit des menschlichen
Beobachters fiir Helligkeits- und Farbunterschiede. Hierbei ist letztere
geringer. Durch die Trennung von Helligkeits- und Farbinformationen
konnen die fiir den menschlichen Beobachter weniger relevanten Farbin-
formationen mit geringerer Qualitédt codiert werden, was einen positiven
Einfluss auf die benotigte Datenrate hat.

Fir Anwendungen mit hohen Qualititsanforderungen wie zum Bei-
spiel die Filmproduktion oder die Verarbeitung medizinischer Daten
werden die Daten nach der beschriebenen Farbraumumwandlung direkt
verwendet. Fiir Anwendungen mit geringeren Qualitdtsanforderungen
wie zum Beispiel die Ausstrahlung von Filmen fiir Endkunden lasst sich
zundchst die genannte Eigenschaft der menschlichen Wahrnehmung mit
einer Farbunterabtastung gezielt ausnutzen um die Datenrate zu sen-
ken. Bei der Farbunterabtastung wird die ortliche Aufldsung von einer
oder beiden Farbkomponenten reduziert. Als Namensschema fiir unter-
schiedliche Arten der Farbunterabtastung wird das folgende Verhiltnis
verwendet:

SY * Shorizontal * Svertikal- (2.1)

Sy steht hierbei fiir die Luma-Abtastrate, den Bezugwert fiir die beiden
Chroma-Komponenten, und wird aus historischen Griinden und ohne
faktische Notwendigkeit auf Vier gesetzt>. Syrizontal kKennzeichnet die
horizontale Farbabtastung mit Bezug auf die Lumaabtastung. Haufig
wird dieser Faktor auf Zwei gesetzt, was einer Halbierung der Auflo-
sung entspricht. Syerikal beschreibt die vertikale Farbunterabtastung in
Abhéngigkeit der horizontalen Farbunterabtastung. Wird dieser Wert auf
Null gesetzt, so wird fiir die vertikale Farbunterabtastung der gleiche
Faktor wie fiir die horizontale Farbunterabtastung gewahlt. Wird der
Wert auf Zwei gesetzt, so erfolgt keine vertikale Farbunterabtastung. Die
gebrauchlichste Farbunterabtastung ist 4:2:0. Erfolgt keine Farbunterab-
tastung, so wird die Bezeichnung 4:4:4 verwendet. Die unterschiedlichen
ortlichen Auflosungen je nach gewdhlter Farbunterabtastung werden in
Abbildung 2.1 visualisiert.

Fiir das analoge Fernsehen wurde die Vierfache NTSC-Videobandbreite fiir die Abtastung der
Helligkeit verwendet.
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Abbildung 2.1: Schematische Darstellung der Farbunterabtastung fiir die Falle
4:4:4 und 4:2:0

Videos koénnen als Sequenz von Einzelbildern betrachtet werden. Die
Bilder werden zeitlich hintereinander angeordnet und wiedergegeben.
Ist die Bildrate hoch genug, dann nimmt der menschliche Betrachter eine
fliisssige Bewegung zwischen sich verandernden Bildern wahr. Ab 24Hz,
der oft im Kino eingesetzten Bildrate, werden Bewegungen als fliissig
wahrgenommen. Fiir andere Anwendungen werden 50Hz, 60Hz, 120Hz
oder mehr eingesetzt.

Die typische Senke fiir Videosignale war lange Zeit exklusiv der
menschliche Betrachter mittels einer Anzeige (z.B. Fernseher, Computer-
bildschirm, Smartphone, Tablet). Seit einiger Zeit kommen Algorithmen
als Senken fiir Videosignale hinzu (z.B. fiir die automatische Auswertung
von Uberwachungsvideos oder fiir die Inhaltserkennung in hochgelade-
nen Videos).

In Tabelle 2.1 werden die unkomprimierten Datenraten von Videosi-
gnalen mit typischen ortlichen und zeitlichen Auflésungen, Quantisierer-
Bittiefen und Farbunterabtastungen aufgelistet. Bei verfiigbaren Uber-
tragungsraten in der Groflenordnung von einigen Dutzend bis wenigen
hundert MBit/s und Speicherkapazititen von wenigen Terabyte ist er-
sichtlich, dass hochauflésende Videosignale ohne zusétzliche Codierung
nicht sinnvoll iibertragen oder gespeichert werden kénnen. Zur Losung
dieses Problems werden Videocodierungsverfahren eingesetzt. Im nach-
folgenden Abschnitt wird das Grundprinzip fiir viele Videocodierungs-
verfahren eingefiihrt — die Hybridcodierung.

Hybridcodierung

Die Hybridcodierung® beschreibt im Kontext der Videocodierung die
Kombination einer Pradiktion mit einer Transformationscodierung zur

6 Hybrid: lat. Mischung, zusammengesetzt aus zwei oder mehr Komponenten
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Tabelle 2.1: Ubersicht tiber typische Videoformate

Farbunter- MBit/s
Name Auflosung Bittiefe | abtastung | (unkomprimiert)
UHD 8K | 7680x4320@120Hz 10 Bit 4:2:0 59720
7680 % 4320@60Hz 10 Bit 4:2:0 29 860
7680 % 4320@50Hz 10 Bit 4:2:0 24884
7680x% 4320@24Hz 10 Bit 4:2:0 11944
7680 % 4320@120Hz 10 Bit 4:4:4 119 440
7680 % 4320@60Hz 10 Bit 4:4:4 59720
7680 % 4320@50Hz 10 Bit 4:4:4 49767
7680 % 4320@24Hz 10 Bit 4:4:4 23888
UHD 4K | 3840x2160@120Hz 10 Bit 4:2:0 14930
3840%2160@60Hz 10 Bit 4:2:0 7465
3840x2160@50Hz 10 Bit 4:2:0 6221
3840%2160@24Hz 10 Bit 4:2:0 2986
3840x2160@120HZ 10 Bit 4:4:4 29 860
3840%x2160@60Hz 10 Bit 4:4:4 14930
3840x2160@50Hz 10 Bit 4:4:4 12442
3840x2160@24Hz 10 Bit 4:4:4 5972
1080p 1920 X 1080@60Hz 8 Bit 4:2:0 1493
1920 X 1080@50Hz 8 Bit 4:2:0 1245
1920 % 1080@30Hz 8 Bit 4:2:0 747
1920 X 1080@25Hz 8 Bit 4:2:0 623
720p 1280 X 720@60Hz 8 Bit 4:2:0 664
1280 X 720@50Hz 8 Bit 4:2:0 553
1280 X 720@30Hz 8 Bit 4:2:0 332
1280 % 720@25Hz 8 Bit 4:2:0 277
WVGA 832x480@60Hz 8 Bit 4:2:0 288
832x480@50Hz 8 Bit 4:2:0 240
832x480@30Hz 8 Bit 4:2:0 144
832x480@25Hz 8 Bit 4:2:0 120
WQVGA 416X 240@60Hz 8 Bit 4:2:0 72
416 X240@50Hz 8 Bit 4:2:0 60
416X 240@30Hz 8 Bit 4:2:0 36
416 X 240@25Hz 8 Bit 4:2:0 30
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Abbildung 2.2: Blockschaltbild fiir einen auf der Hybridcodierung aufbauenden
Videocodec.

Ubertragung des Pradiktionsfehlers. Auch wenn mit der Zeit die ein-
zelnen Teil-Algorithmen in hybriden Videocodierungsverfahren stetig
verbessert und erweitert wurden, so ist das Grundprinzip seit dem 1988
veroffentlichten Videocodierungsstandard H.261 unverdndert. Im Folgen-
den wird die Hybridcodierung zunéchst aus Sicht eines Videoencoders
der Abbildung 2.2 folgend beschrieben?.

Es erfolgt eine blockweise Codierung des Videosignals in einer Differen-
tial Pulse Code Modulation (DPCM)-Schleife. Hierfiir wird das aktuell
zu codierende Bild des Videos in nicht-tiberlappende Blocke aufgeteilt,
welche nacheinander verarbeitet werden. Das Ziel der Pradiktion ist die
Reduktion von ortlicher und zeitlicher Redundanz im zu codierenden
Videosignal. Die Ziele der Transformation sind zum einen die Reduktion
von ortlicher Redundanz durch eine Transformation des Pradiktionsfeh-
lers sowie zum anderen die Entfernung der am wenigsten relevanten®
Informationen aus dem Videosignal durch Quantisierung.

Die Funktionsweise der Pradiktion beruht auf der Vorhersage des ak-
tuellen Blocks aus bereits am Decoder vorhandenen Signalen. Der Vorteil

HEVC und andere Videocodierungsstandards spezifizieren in der Regel nur die Syntax
und Semantik des Bitstroms sowie den zugehorigen Decodierungsprozess, mit dem aus dem
Bitstrom ein Videosignal rekonstruiert werden kann. Die Erzeugung des Bitstroms am Encoder
ist nicht standardisiert und liegt im Ermessen des Encoderentwicklers. Zwei verschiedene
Encoder fiir den gleichen Standard kénnen sehr unterschiedliche Ergebnisse produzieren. Zur
besseren Lesbarkeit werden in dieser Arbeit dennoch viele Prozesse aus Sicht des Encoders
beschrieben, auch wenn diese Sicht streng genommen auflerhalb der Standards liegt.

Der Begriff Irrelevanzreduktion wird hier bewusst nicht verwendet, da je nach Quantisiererstu-
fenanzahl auch (viele) relevante Informationen aus dem Signal entfernt werden.
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dieser Funktionsweise ist, dass alle aus am Decoder bereits vorhande-
nen Informationen préadizierten Signale nicht mehr tibertragen werden
miissen. Hierdurch hat die Pradiktion einen wesentlichen Anteil an der
Reduktion der Datenrate wiahrend der Codierung eines Videos. Fiir die
Pradiktion werden bereits decodierte Signale fiir einen gewissen Zeit-
raum am Decoder gespeichert, um diese Signale als Referenz fiir die
Pradiktion verwenden zu konnen.

Die in modernen Videocodecs verwendeten Pradiktionsverfahren kon-
nen in Intra-Pradiktion und Inter-Pradiktion unterschieden werden.

Bei der Intra-Pradiktion erfolgt eine Pradiktion des aktuellen Blocks
aus bereits decodierten Signalen des aktuellen Bildes. Die zugrunde lie-
gende Annahme ist hierbei, dass es ortliche Abhédngigkeiten zwischen
benachbarten Abtastwerten gibt. Als Referenz werden entweder direkt
benachbarte Abtastwerte verwendet (klassische Intra-Pradiktion [63, 95,
139]) oder ortlich weiter entfernte Abtastwerte (zum Beispiel Intra Block
Copy (IBC) [145]). Am Encoder findet eine Auswahl des am besten ge-
eigneten Intra-Pradiktionsverfahrens fiir den aktuellen Block statt. Die
Intra-Pradiktion wird unter anderem fiir die Pradiktion von neu in der
Szene erscheinenden Inhalten, fiir die Codierung von Einzelbildern, fiir
den Start und fiir den wahlfreien Zugriff bei Ubertragungen, fur die
Fehlerkorrektur und fiir die Umschaltung der Datenrate bei schwanken-
den Kanalkapazitaten benotigt. Bei der Intra-Pradiktion entstehen Fehler,
wenn das Signal des aktuellen Blockes gegeben der Referenzwerte nicht
vollstandig mit dem verwendeten Intra-Pradiktionsverfahren vorherge-
sagt werden kann. Abgesehen von Ausnahmen, wie zum Beispiel sehr
homogenen Blocken, entsteht in der Regel ein nicht zu vernachlassigender
Fehler.

Bei der Inter-Codierung erfolgt die Pradiktion des aktuellen Blocks aus
dem Signal in bereits vollstindig decodierten Bildern, den sogenannten
Referenzbildern?. Die hierbei getroffene Annahme ist, dass es eine ho-
he zeitliche Redundanz zwischen zeitlich benachbarten Bildern gibt. Es
wird deshalb angenommen, dass es nur wenige Anderungen zwischen
diesen Bildern gibt, welche hauptsédchlich auf Bewegungen innerhalb
der aufgenommenen Szene zuriickzufiihren sind. Diese Bewegungen
werden mit einem Bewegungsmodell beschrieben und kompensiert. Das
verwendete Verfahren wird als Bewegungskompensation bezeichnet. Aus
einem Ausschnitt des bewegungskompensierten Referenzbilds ergibt
sich eine gute Pradiktion fiir den aktuell codierten Block. In modernen
Videocodecs werden zum Beispiel translatorische und affine Bewegungs-

Da die Bilder eines Videos nicht in der gleichen Reihenfolge codiert werden miissen, in der sie
angezeigt werden, handelt es sich hierbei nicht notwendigerweise um zeitlich vorhergehende
Bilder [107].
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modelle fiir die Bewegungskompensation verwendet. Am Encoder findet
eine Bewegungssuche statt'®. Mit dieser Bewegungssuche werden die
Parameter fiir das verwendete Bewegungsmodell, also zum Beispiel der
Bewegungsvektor [74] (engl. Motion Vector (MV)) fiir das translatori-
sche Bewegungsmodell, bestimmt. Inter-Pradiktion wird dann eingesetzt,
wenn das Signal des zu codierenden Blocks zumindest ndherungsweise
in wenigstens einem der Referenzbilder vorhanden ist und durch das
Bewegungsmodell kompensiert werden kann. Fehler entstehen bei der
Inter-Pradiktion zum Beispiel, wenn die Bewegung durch das verwen-
dete Bewegungsmodell nicht erfasst werden kann, wenn Bildinhalte im
aktuellen Bild neu erscheinen oder wenn die Blockpartitionierung nicht
perfekt zu den Objektgrenzen in der aufgenommenen Szene passt [58].

Durch Subtraktion des pradizierten Signals von dem Originalsignal
wird der Pradiktionsfehler erzeugt. Dieser ist fiir einen Grofteil der
Gesamtdatenrate verantwortlich, insbesondere bei mittleren und hohen
Datenraten'". Benachbarte Werte des Pradiktionsfehlers sind miteinander
korreliert. Fiir eine effiziente Entropiecodierung wére eine Codierung
der Verbundereignisse erforderlich, was in der Praxis nicht sinnvoll
umsetzbar ist.

Die Pradiktionsfehlercodierung erfolgt deshalb in zwei Stufen: Zu-
néchst wird der Pradiktionsfehler in einen anderen Raum transformiert.
Anschlieffend werden die Transformationskoeffizienten quantisiert. Hier-
bei werden die folgenden beiden Ziele verfolgt: Erstens wird eine De-
korrelation der Koeffizienten angestrebt. Wenn dieses Ziel erreicht wird,
dann ist die Summe der Einzelentropien der Koeffizienten gleich der
Entropie des Verbundsereignisses aller Koeffizienten. Dann kénnen die
einzelnen Koeffizienten unabhangig voneinander codiert werden anstatt
der Codierung des Verbundereignisses ohne dass die Codierungseffi-
zienz sinkt. Zweitens soll der Pradiktionsfehler mit moglichst wenig
Transformationskoeffizienten beschrieben werden (Energiekompaktheit).

Die Karhunen-Loeve-Transformation (KLT)'? ist die beste Transformati-
on fiir das Erreichen der beiden genannten Ziele. Jedoch konnte sich die
KLT als datenabhéngige Transformation in der Praxis nicht durchsetzen,
da fiir jeden zu codierenden Préadiktionsfehler eine eigene Transformati-
onsmatrix berechnet und iibertragen werden miisste. Da die Transforma-
tionsmatrix fiir einen Block der Groe N x N die Grofle N2 x N2 hat, ist
die Menge an Seiteninformationen zu grofs.

10 Es gibt auch Ansitze fiir eine Bewegungssuche am Decoder zur Verbesserung der Inter-
Pradiktion [17, 59].

11 Klomp misst 75% fiir den oberen Bereich an Rundfunkqualitit [57].

12 Die KLT ist sehr eng mit der Hauptkomponentenanalyse, engl. Principal Component Analysis
(PCA), verwandt. Sie unterscheiden sich je nach Definition nur um eine Normierung.
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Stattdessen werden haufig DCT-Varianten'3 verwendet. Fiir den kon-
struierten Fall, dass die Korrelationsmatrix des Pradiktionsfehlers eine
Toeplitz-Matrix ist, sind die KLT und DCT asymptotisch dquivalent [109].
Fiir reale Pradiktionsfehler ist die DCT nicht ganz so gut wie die KLT.
Teilweise werden auch Discrete Sine Transform (DST)-Varianten verwen-
det, da diese fiir kleine, intra-pradizierte Blocke besser zu den Werten an
den Randern der Pradiktionsfehlerblocken passen. Seit AVC werden die
Transformationen in Ganzzahl-Arithmetik spezifiziert, um abweichende
Ergebnisse zwischen unterschiedlichen Flie(komma-Implementierungen
zu vermeiden.

Die Transformationskoeffizienten werden quantisiert. In der Regel wer-
den hierfiir skalare, gleichférmige Quantisierer verwendet. Unter der
Annahme, dass die Koeffizienten Laplace-verteilt sind, werden die Gren-
zen zwischen den Quantisiererstufen nicht mittig sondern verschoben
zwischen den Reprasentativwerten angeordent, um den Quantisierungs-
fehler zu minimieren. Optional kann eine Skalierung der Koeffizienten
erfolgen. Hierbei wird die Matrix der Pradiktionsfehlerwerte elementwei-
se durch eine Skalierungsmatrix geteilt. Haufig wird bei der Skalierung
berticksichtigt, dass die menschliche visuelle Wahrnehmung sensibler
flir niedrige als fiir hohe Frequenzen ist. Deshalb werden die Koeffizi-
enten fiir die hohen Frequenzen durch grofiere Zahlen geteilt als die
Koeffizienten fiir niedrige Frequenzen.

Die quantisierten Transformationskoeffizienten werden fiir die Rekon-
struktion des Signals verwendet. Hierfiir wird die inverse Transformation
auf sie angewendet. Der entstehende approximierte Pradiktionsfehler
weicht aufgrund der Quantisierung vom urspriinglichen Pradiktionsfeh-
ler ab. Durch die Addition des pradizierten Signals und des approximier-
ten Pradiktionsfehlers entsteht das rekonstruierte Signal. Das rekonstru-
ierte Signal wird in einem Speicher, dem sogenannten Referenzbildspei-
cher, engl. Decoded Picture Buffer (DPB), gespeichert, um angezeigt zu
werden und um als Referenz fiir zukiinftige Pradiktionen verwendet zu
werden.

Alle fiir die Rekonstruktion benétigten Informationen werden an den
Decoder tibertragen. Dieses umfasst die Information fiir die Durchfiih-
rung der Pradiktion, zum Beispiel Bewegungsvektoren oder das ausge-
wihlten Intra-Pradiktionsverfahren, sowie die quantisierten Transforma-
tionskoeffizienten. Fiir die zu {ibertragenden Informationen wird eine
Entropiecodierung angewendet. Das Ziel der Entropiecodierung ist die
verlustfreie Codierung der zu iibertragenen Informationen, welche gege-

Haufig wird die DCT-II als Transformation und die DCT-III als inverse Transformation
verwendet. In modernen Codecs werden zusitzlich weitere Varianten der DCT verwendet und
adaptiv ausgewahlt.
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benenfalls bereits verlustbehaftet sind, mit moglichst geringer Datenrate.
In den betrachteten Videocodierungsverfahren wird eine binare arith-
metische Codierung (BAC) verwendet. Hierbei werden bindre Symbole
codiert™. Gegebenenfalls erfolgt eine Binarisierung von nicht-bindren
Symbolen, zum Beispiel mittels Zahlcodes oder Varianten von Golombco-
des. Bei der BAC wird eine Folge von Bins als eine FlieSkommazahl aus
einem berechneten Intervall innerhalb eines definierten Wertebereichs
codiert™. Hieraus ergibt sich der Vorteil, dass Symbole mit weniger als
einem Bit codiert werden konnen. Dieses ist mit anderen Codes, wie
zum Beispiel Huffman-Codes, nicht moglich. Wahrend der Codierung
werden die fiir die Codierung genutzten Symbolwahrscheinlichkeiten an
die Statistik der codierten Daten angepasst. Das resultierende Verfahren
wird als kontext-adaptive BAC, engl. Context-adaptive Binary Arithmetic
Coding (CABAC), bezeichnet [118].

Von den beschriebenen Teilen der Hybridcodierung sind die inverse
Transformation zur Erlangung des approximierten Pradiktionsfehlers,
die Pradiktion, die Rekonstruktion des Signals sowie der Speicher mit
Referenzen fiir die Pradiktion ebenfalls am Decoder vorhanden.

High Efficiency Video Coding

In diesem Abschnitt werden relevante Aspekte des Videocodecs HEVC
[47, 116, 140] ausgefiihrt.

Im vorherigen Abschnitt wurde fiir die Schilderung der Hybridcodie-
rung vereinfachend angenommen, dass es bei der Codierung nur eine
Art von Blocken gibt und dass diese Blocke alle gleich grofs sind. Das ist
in modernen Videocodecs wie HEVC nicht der Fall. Zudem gibt es bei
HEVC die Unterscheidung zwischen Block und Unit: Ein Block umfasst
ein Feld mit Abtastwerten, welche einem rechteckigen Bereich innerhalb
eines Bildes zugeordnet sind. Eine Unit umfasst alle Blocke fiir diesen Be-
reich, also drei Blocke fiir Farbsignale oder einen Block fiir monochrome
Signale. Die Zuordnungen sind:

e Coding Tree Unit (CTU) - Coding Tree Block (CTB)
e Transform Unit (TU) -Transform Block (TB)
e Prediction Unit (PU) - Prediction Block (PB)

Die CTU bildet die erste Stufe der Blockpartitionierung und damit den
Ausgang fiir alle weiteren Partitionierungen. CTUs sind quadratisch und

Der Nomenklatur im Kontext von HEVC folgend werden binédre Symbole vor der Entropieco-
dierung (Bins) und bindre Symbole nach der Entropiecodierung (Bits) unterschieden.
In CABAC weicht die Realisierung hiervon ab.
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Abbildung 2.3: Ubersicht iiber die in HEVC verwendeten Blockarten

haben eine feste Grofie, die im Rahmen der Syntax eines Parametersets
auf einen der drei folgenden Werte festgelegt wird: 16 x 16, 32 x 32
und 64 x 64. Fur grofle ortliche Videoauflésungen ist eine grofse CTU-
Grofse sinnvoll, fiir kleine Auflésungen eine kleine CTU-Grofe [140]. Die
zu codierenden Bilder werden in gleichgrofle und nicht tiberlappende
CTUs aufgeteilt. Es erfolgt eine Verarbeitung der CTUs in Rasterscan-
Reihenfolge.

Jede CTU bildet die Wurzel fiir zwei unabhingige Quaterndrbaume
(engl. Quadtrees) aus Coding Unit (CU)s und TUs. Hierbei ist der TU-
Quaterndrbaum dem CU-Quaterndrbaum nachgelagert.

Auf Ebene der CU wird die Auswahl zwischen Intra- und Inter-Codierung
getroffen. AnschlieSend konnen die CUs weiter in ein, zwei oder vier PUs
aufgeteilt werden.

Die PUs dienen als Ebene fiir die Durchfiihrung der eigentlichen Pra-
diktion. Maximal kénnen die PUs so grofs sein wie die zugehorigen CUs.
Die minimale Grofe fiir die Intra-Pradiktion, welche auf TU-Ebene statt-
findet, ist 4 x 4, 4 x 8 beziehungsweise 8 x 4 fiir die Inter-Prédiktion
mit einem Referenzbild sowie 8 x 8 fiir die Inter-Pradiktion mit zwei
Referenzbildern. Die Beschrankungen fiir die Inter-Pradiktion dienen der
Komplexitatslimitierung fiir Decoder. Alle PUs sind rechteckig aber nicht
notwendigerweise quadratisch.
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Die quadratischen TUs werden fiir die Transformationscodierung ver-
wendet. Thre maximale Grofie entspricht fiir die Inter-Codierung der
CU-GroBe, die TUs konnen also grofer sein als die fiir die Pradiktion
dieses Bildbereiches verwendeten PUs. Dieses ist zum Beispiel bei mit
dem Skip Mode codierten Blocken sinnvoll [140]. Fiir die Intra-Codierung
konnen die TUs maximal so grof3 sein wie die zugehdorigen PUs, da das
rekonstruierte Signal, fiir das der decodierte Pradiktionsfehler verwendet
wird, fur die Pradiktion der nachsten PU benétigt wird.

Aufeinanderfolgende CTU eines Bildes in Verarbeitungsreihenfolge
(Rasterscan) werden in einem Slice zusammengefasst. Ein Bild kann aus
einem oder mehreren Slices bestehen. Somit sind Slices nicht notwendi-
gerweise rechteckig. Slices sind unabhéngig voneinander decodierbar —
bei einem verlorenen Slice konnen die verbleibenden Slices eines Bildes
codiert werden — und stellen ein Werkzeug zur Fehlereinddmmung dar.
In HEVC werden drei Arten von Slices unterschieden: I-Slices, in denen die
Blocke ausschliefslich mit Intra-Pradiktion codiert werden, P-Slices, in de-
nen die Blocke mit Intra-Pradiktion oder mit Inter-Pradiktion mit einem
Referenzbild codiert werden, und B-Slices, in denen Intra-Priadiktion so-
wie Inter-Pradiktion mit einem oder mit zwei Referenzbildern eingesetzt
werden. Zwischen den Slices eines Bildes bestehen keine Abhangigkeiten
beztiglich der Pradiktion, der Bestimmung von Syntaxelementen oder
beziiglich der Entropiecodierung. Slices dienen hauptsachlich zur Fehle-
reindimmung wahrend der Ubertragung, jedoch konnen sie potentiell
auch fiir die Parallelisierung der Encodierung und Decodierung des
Videos eingesetzt werden. Allerdings gibt es hierbei zwei nachteilige
Auswirkungen [84]: Damit Slices unabhédngig decodierbar sind ist es
erforderlich, dass Slice Header-Informationen redundant im Bitstrom vor-
handen sind. Insbesondere bei niedrigen Datenraten ist diese Redundanz
nicht vernachlissigbar’®. An den Grenzen zwischen Slices kann es zu
Blockartefakten kommen, da keine Filterung tiber Slice-Grenzen hinaus
moglich ist.

Tiles stellen eine Moglichkeit zur Parallelisierung der Encodierung und
Decodierung ohne die genannten Nachteile von Slices dar. Hierbei wird
das Bild entlang des CTU-Rasters in rechteckige Bereiche aufgeteilt. Die
Verarbeitungsreihenfolge der CTU eines Bildes wird angepasst: Fiir jedes
Tile gibt es einen unabhéngigen Rasterscan. Die Tiles eines Bildes konnen
parallel codiert werden, jedoch sind sie nicht unabhingig voneinander:
Falls die zu einem Tile gehorenden Daten verloren gehen, dann kénnen
die verbleibenden Tiles moglicherweise nicht fehlerfrei decodiert werden.
Da keine Informationen zum Fehlerschutz redundant tibertragen werden
und da eine Filterung des decodierten Signals tiber Tile-Grenzen hinweg

16 Auf dependent slice segments [108] wird an dieser Stelle nicht ndher eingegangen.
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Abbildung 2.4: HEVC-Referenzbereich fiir die Intra-Pradiktion. In Anlehnung an
[63]-

zuldssig ist, entstehen die genannten Parallelisierungsnachteile von Slices
nicht.

Schliefilich konnen mehrere Bilder zu Gruppen, engl. Group of Pic-
tures (GOP), zusammengefasst werden. Fiir weitere Informationen zur
sogenannten High-level Syntax (HLS) von HEVC sei der Leser auf [111]
verwiesen.

Die HEVC-Intra-Pradiktion ist das Referenzverfahren, welches durch
die Beitrdge in dieser Arbeit verbessert werden soll. Deshalb wird sie im
Folgenden detailliert geschildert.

Die Abtastwerte innerhalb eines 1 Pel breiten beziehungsweise hohen
Streifens in bereits codierten Blocken an der Grenze zum aktuellen Block
wie in Abbildung 2.4 dargestellt dienen als Referenzwerte fiir die Pradikti-
on. Fiir einen s x s-Block gibt es 4s 4 1 Referenzwerte. Aus der Abbildung
ist ersichtlich, dass sich Teile des Referenzbereichs in den diagonal links-
unten und rechts-oben gelegenen PB befinden. Je nach Partitionierung des
Bildes sind diese PB bereits codiert und stehen als Pradiktionsreferenz zur
Verfligung oder sie wurden noch nicht codiert und stehen somit nicht zur
Verftigung. Wenn Referenzwerte nicht referenzierbar sind, zum Beispiel
weil sie noch nicht codiert wurden oder aufSerhalb des Bildes, Slices oder

22

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

2.1 VIDEOCODIERUNG

Tiles liegen, dann werden sie auf den Wert des ortlich nédchsten verfiigba-
ren Referenzwertes gesetzt. Sind gar keine Referenzwerte verftigbar, zum
Beispiel fiir den ersten PB eines Bildes, Slices oder Tiles, dann werden
alle Referenzwerte auf den mittleren Wert des Wertebereichs der Abtast-
werte, also 128 fiir 8 Bit Signale, gesetzt. Abhdngig von der Blockgrofse
und des Intra-Pradiktionsmodus werden die Referenzabtastwerte vor der
Pradiktion mit einem Tiefpassfilter geglattet'”.

Fiir die Intra-Pradiktion stehen 35 verschiedene Modi zur Auswahl: 33
direktionale Modi, ein planarer Modus und einen Gleichanteilsmodus,
engl. Direct Current (DC). Die direktionalen Modi basieren auf der linea-
ren Extrapolation der Referenzwerte entlang einer von 33 Richtungen. Da
in typischen Videosequenzen héufig horizontale und vertikale Strukturen
vorkommen, wurde hierfiir eine genauere Winkelauflosung als fiir andere
Winkel gewahlt [82, 140]'8. Wenn fiir eine zu verwendende Richtung die
Referenzwerte fiir eine ganzzahlige Pixelposition eines zu prédizieren-
den Abtastwertes zwischen zwei ganzzahligen Pixelpositionen liegen, so
erfolgt eine lineare Interpolation zwischen den zwei umgebenen Refe-
renzwerten mit 1/32-Pel Genauigkeit. Die direktionalen Modi eignen sich
gut fiir die Pradiktion von linearen Strukturen und Konturen [63].

Bei der Pradiktion mit dem planaren Modus erfolgt eine gewichtete
Uberlagerung von vier Referenzwerten dhnlich einer bilinearen Interpola-
tion'. Dieser Modus eignet sich gut fiir Signale mit Helligkeitsverldufen
sowie fiir Signale, die gleichzeitig horizontale und vertikale Strukturen
enthalten.

Fiir mit dem DC-Modus pradizierte PB werden alle zu pradizierenden
Abtastwerte auf den arithmetischen Mittelwert der Referenzwerte ge-
setzt. Es gibt eine Abweichung von diesem Prozess fiir direkt an bereits
rekonstruierte Blocke angrenzende Abtastwerte: Zur Vermeidung von
starken Blockartefakten werden diese Abtastwerte als gewichtete Uberla-
gerung des direkt angrenzenden Referenzwertes und des Mittelwerts der
Referenzwerte pradiziert. Der Mittelwert wird hierbei starker gewichtet.
Durch dieses Vorgehen wird der Ubergang an den Blockgrenzen geglattet.
Der DC-Modus ist pradestiniert fiir einfarbige Signale. Gleichzeitig dient
dieser Modus als Ausweichlosung fiir Blocke, die mit den anderen Modi
nur schlecht pradiziert werden konnen.

Damit die Intra-Pradiktion am Decoder durchgefiihrt werden kann, ist
die Codierung von Seiteninformationen notwendig. Insbesondere wird

17 Es gibt drei verschiedene Varianten der Filterung [140]: Keine Filterung: Fiir Blocke der GroBe
4 x 4, DC-Modus, horizontale und vertikale Pradiktion. Normale Filterung: Fiir Blocke grofer
als 4 x 4, fiir unterschiedliche BlockgroBen fiir unterschiedliche Richtungen. Starke Filterung:
Fiir 32 x 32 Blocke in Abhéngigkeit der 6rtlichen Aktivitat.

18 Implementierungsgriinde sind eine weitere Ursache fiir die genauere Winkelauflosung.

19 Der Unterschied liegt in der Position und in der Gewichtung der verschiedenen Referenzwerte.

N
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der verwendete Intra-Pradiktionsmodus tibertragen. Hierzu wird zu-
nédchst eine Liste mit den drei wahrscheinlichsten Kandidaten, engl. Most
Probable Modes (MPM), fiir den Intra-Pradiktionsmodus basierend auf
den Modi von benachbarten Blocken und verschiedener Standardwerte
bestimmt [62]. Mit einem Bin wird signalisiert, ob der verwendete Intra-
Modus zu den MPM gehort. Ist dieses der Fall, so wird ein Index fiir den
richtigen Kandidaten aus der MPM-Liste mit Kontextmodellierung signa-
lisiert. Wird stattdessen einer der 32 verbleibenden Modi verwendet, so
wird hierfiir ein Code mit fester Lange und ohne Kontextmodellierung?°
verwendet. Der Verzicht auf die Kontextmodellierung ist vorteilhaft fiir
den Durchsatz bei der Entropiecodierung und bringt an dieser Stelle
keinen wesentlichen Nachteil, da modellierbare Kontexte bereits durch
die MPM-Liste erfasst sind.

Im Folgenden werden die von den allgemeinen Schilderungen der
Hybridcodierung abweichenden Eigenschaften der Pradiktionsfehlerco-
dierung in HEVC erldutert. In HEVC werden fiinf verschiedene Transfor-
mationen in Ganzzahl-Arithmetik definiert. Hiervon ndhern vier Trans-
formationen fiir die vier Blockgrofien 4 x 4, 8 x 8, 16 x 16 und 32 x 32
die entsprechenden DCT-II-Transformationen mit Ganzzahlen an. Fiir die
Blockgrofie 4 x 4 wird zusatzlich eine Transformation definiert, welche
die entsprechende DST anndhert. Es konnte durch Han et al. in [37] gezeigt
werden, dass die DST gut fiir eine einseitige Pradiktion aus einem Refe-
renzabtastwert geeignet ist, weil hierbei der Fehler angrenzend an den
bekannten Referenzbereich sehr klein ist und mit steigender Entfernung
zum bekannten Bereich ansteigt. Dieses Beobachtung korrespondiert
zu den Basisvektoren der DST. Folglich wird die 4 x 4-DST fiir die Pra-
diktionsfehler von intra-codierten Blocken dieser Grofie verwendet. Fiir
groBere Blocke dominiert die bessere Dekorrelationseigenschaft der DCT.
Deshalb wird fiir intra-codierte Blocke der Groien 8 x 8 bis 32 x 32 die
DCT verwendet.

Durch Narroschke wurde in [88] analysiert, dass die Pradiktionsfehler-
werte bereichsweise unterschiedlich starke statistische Abhdngigkeiten
voneinander haben und dass abhédngig von der Starke und der Ordnung
der Abhéngigkeiten die Codierung des Pradiktionsfehlers im Frequenz-
bereich oder im Ortsbereich effizienter ist. Diese Erkenntnis nutzend gibt
es in HEVC den Transform Skip-Modus, mit dem adaptiv auf TU-Ebene die
Transformation tibersprungen werden kann [91]. Anschliefend erfolgt
eine Weiterverarbeitung des Pradiktionsfehlers im Ortsbereich. Der Trans-
form Skip-Modus ist insbesondere fiir computergenerierte Videosignale
niitzlich [144].

CABAC Bypass-Modus
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Der Pradiktionsfehler wird im Fall einer verlustbehafteten Codierung
nach der Transformation quantisiert. Hierfiir wird ein Quantisierer mit
konstanter Stufenbreite verwendet. Die Stufenbreite wird tiber einen
Quantisierungsparameter (QP) gesteuert. Fiir 8 Bit-Videosignale liegt die-
ser zwischen o und 51. Kleinere QP-Werte fithren zu einer kleineren
Stufenbreite, also einer feineren Quantisierung. Es gibt einen logarith-
mischen Zusammenhang zwischen dem QP und der Stufenbreite: Eine
Erhohung des QP um sechs fiihrt jeweils zu einer Verdoppelung der Stu-
fenbreite. In Abhangigkeit von der Bittiefe der Abtastwerte verandert sich
der Wertebereich des QP. Fiir jedes zusitzliche Bit wird der Wertebereich
um sechs Werte nach unten erweitert. Fiir 10 Bit-Videosignale kann der
QP Werte im Bereich -12 bis 51 annehmen.

In der obigen Ausfiithrung wird jeder Koeffizient des Pradiktionsfehlers
gleichstark quantisiert. Aufgrund der Eigenschaften des menschlichen
Wahrnehmungsapparats kann es jedoch sinnvoll sein, je nach Anwen-
dung und zu codierendem Signal die hoheren Frequenzanteile des Pra-
diktionsfehlers starker zu quantisieren als die niedrigen Frequenzanteile.
Optional kann hierfiir in HEVC eine Gewichtungsmatrix fiir die Quanti-
sierung verwendet werden. Am Encoder kann entweder eine von sechs
vordefinierten Matrizen, jeweils eine fiir die Kombinationen aus Inter-
und Intra-Codierung mit den drei Farbraumkomponenten, verwendet
werden oder eine neue Matrix relativ zur vordefinierten Matrix signali-
siert werden.

Bei HEVC kommen mehrere Verfahren fiir die Entropiecodierung
zum Einsatz: Fiir Informationen auf der hochsten Ebene, zum Beispiel
Network Abstraction Layer (NAL)-Header und Informationen, die die gan-
ze Sequenz betreffen, werden Codes mit fester Codewortlange verwendet.
Hierdurch konnen diese Informationen leicht von Systemen verarbeitet
werden, die nur diese Informationen auswerten, aber das Video nicht
vollsténdig decodieren. Fiir Parameter Sets und die Konfiguration von
Codierungsverfahren werden sowohl Codes mit fester Codewortlange
als auch solche mit variabler Codewortlinge, engl. Context-adaptive
Variable Length Coding (CAVLC), verwendet. Diese Verfahren wurden
gewahlt, weil sie verglichen mit CABAC nicht so aufwendig zu decodieren
sind. Dafiir ist die Codierungseffizienz nicht so hoch wie bei CABAC. Das
wird akzeptiert, da diese Informationen nur einen kleinen Anteil an der
Gesamtdatenrate ausmachen. Ein Grofsteil der zu codierenden Informa-
tionen befindet sich auf Blockebene. Hierfiir wird CABAC verwendet. Der
Zustand von CABAC wird fiir jedes neue Slice beziehungsweise Tile zu-
riickgesetzt. Wird die parallele Decodierbarkeit von CTU-Reihen aktiviert,
engl. Wavefront Parallel Processing (WPP), so erfolgt eine Zurticksetzung
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des Zustandes fiir jede neue CTU-Reihe [1]. Weitere Informationen zur
Entropiecodierung in HEVC finden sich in [120].

Encodersteuerung

Dem HEVC-Standard entsprechende Bitstrome konnen auf viele Weisen
erzeugt werden. Die Codierung des gleichen Videos mit zwei unter-
schiedlichen Encodern, die beide giiltige HEVC-Bitstrome erzeugen, oder
unterschiedliche Konfigurationen des gleichen Encoders konnen zu sich
stark unterscheidenen aber dem Standard entsprechenden Bitstromen
fiihren. Die Aufgabe der Encodersteuerung ist die Konfiguration eines
Encoders, so dass unter den gegebenen Rahmenbedingungen ein HEVC-
Bitstrom erzeugt wird. Hierbei umfasst die Encoderkonfiguration unter
anderem die Partitionierung des Bildes, die Wahl der Codierungsverfah-
ren sowie die weiteren einzustellenden Parameter des Encoders.

Es ist ersichtlich, dass die Rahmenbedingungen und damit auch die
Encodersteuerung sehr anwendungsspezifisch sind. Zum einen hangt sie
ab von den verfiigbaren Ressourcen: Encoder, welche auf Hochleistungs-
servern oder in der Cloud ausgefiihrt werden, haben wesentlich mehr
Rechenleistung zur Verfiigung als Encoder auf mobilen Endgerédten wie
beispielsweise Smartphones. Zum anderen werden durch die jeweilige
Anwendung héufig zeitliche Randbedingungen gesetzt: Fiir die Offline-
Speicherung von Videos, zum Beispiel fiir On-Demand-Video, sind bei
der Encodierung auftretende Verzogerungen in der Regel vernachlds-
sigbar. Selbst Encodierungszeiten von mehreren Wochen pro Spielfilm
konnen akzeptabel sein. Bei Echtzeitiibertragungen ist die zeitnahe Enco-
dierung notwendig. Die genaueren Anforderungen hiangen wiederum
von der Anwendung ab. Wahrend bei einer unidirektionalen Echtzeit-
tibertragung, zum Beispiel fiir Fernsehtibertragungen oder Streaming-
Anwendungen, eine Verzogerung von einigen Sekunden unproblematisch
sein kann, fiihrt bei multidirektionalen Ubertragungen, zum Beispiel fiir
die Videotelefonie, bereits eine leichte Verzogerung zu einer Beeintrachti-
gung des Dienstes. Aus diesen Randbedingungen ergibt sich nicht nur,
mit wie viel Rechenaufwand eine Encodierung durchgefiihrt werden
kann, sondern auch, welche Signalanteile fiir die Pradiktion zur Ver-
figung stehen. In manchen Konfigurationen werden die Bilder einer
Videosequenz so codiert, dass nur Bilder aus der Vergangenheit referen-
ziert werden. In anderen Konfigurationen werden die Bilder innerhalb
einer GOP zu einer hierarchischen Struktur umgeordnet, in der die Bilder
aus einer Hierarchie-Ebene hintereinander codiert werden bevor die Bil-
der der nichsten Hierarchie-Ebene codiert werden. Hierdurch weicht die
Codierungsreihenfolge von der Anzeigereihenfolge ab. Dadurch kénnen
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in der Zukunft angezeigte Bilder wahrend der Codierung referenziert
werden, wenn sie einer bereits codierten Hierarchie-Ebene zugeordnet
sind>'.

Bei der Videocodierung werden in der Regel zwei gegenlaufige Ziele
verfolgt: Zum einen soll die Datenrate aus Effizienz- und Kostengriinden
moglichst klein sein. Zum anderen soll die Verzerrung ebenfalls moglichst
gering, die Qualitdt also besonders hoch, sein. Typischerweise sind die
Verzerrung und die Datenrate miteinander verkntipft: Eine Verringerung
der Verzerrung fithrt oft zu einer Erhohung der Datenrate. Das gleichzei-
tige Optimieren der Verzerrung und der Datenrate ist deshalb notwendig.
Hierfiir wird eine Raten-Verzerrungs-Optimierung, engl. Rate-Distortion
Optimization (RDO), eingesetzt [115]. Bei der RDO werden die Datenrate
R und die Verzerrung, engl. Distortion, D mit dem Lagrange-Faktor A
verkniift, um die Rate-Distortion-Kosten Crp zu berechnen:

Crp =D+ AR (2.2)

Bei gegebener Rate und Verzerrung ergibt sich fiir die Rate-Distortion-
Kosten eine Arbeitskurve in Abhingigkeit von A. Dieser Parameter ist
anwendungsspezifisch, da die Wichtigkeit einer geringeren Verzerrung
und einer geringeren Datenrate je nach Anwendung variieren kann. Die
RDO kann durch die Notwendigkeit, sehr viele Kombinationen aus Par-
titionierung, Wahl der Codierungsverfahren, Einstellung der Parameter
auszuprobieren, sehr rechenaufwendig sein [66]. Da je nach verftigbaren
Ressourcen nur ein begrenzter Aufwand fiir die Codierung eines Videos
im gegebenen Zeit- und Finanzbudget maoglich ist, haben verschiedene
Anwendungen unterschiedliche Arbeitskurven fiir die Rate-Distortion-
Kosten.

2.2 MASCHINELLES LERNEN

Machine Learning: Field of study
that gives computers the ability to
learn without being explicitly
programmed. [104]

Arthur Samuel (IBM)
1959

In diesem Abschnitt werden nach einigen grundlegenden Einfiithrun-
gen zum Thema maschinelles Lernen insbesondere die Konfiguration
neuronaler Netzwerke sowie das Training neuronaler Netzwerke vertieft.

21 Vgl. die Konfigurationen Low Delay und Random Access in den im Kontext der Standardisierung
verwendeten Testbedingungen, engl. Common Test Conditions (CTC) [54].
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Vierzig Jahre nach der im Epigraph wiedergegebenen noch weiten Defi-
nition von Samuel definiert Mitchell ein gut formuliertes maschinelles
Lern-Problem wie folgt: , Ein Computerprogramm wird als lernend von
der Erfahrung E beziiglich einer Aufgabe T und einer Leistungsmetrik
P bezeichnet, wenn dessen Leistung fiir T, gemessen mittels P, sich mit
der Erfahrung E verbessert.”?* Diese Definition kann auf die vorliegende
Arbeit angewendet werden. Hier ist die Aufgabe T die Abtastwertpradik-
tion im Rahmen der vorgeschlagenen Verfahren, die Leistungsmetrik P
zum Beispiel die Verzerrung, die Datenrate oder die Rate-Distortion (RD)-
Kosten sowie die Erfahrung E die Menge an Beispielen, welche fiir das
Lernen verwendet werden. Die Menge an Beispielen, die wahrend des
Lernvorgangs verwendet wird, wird oft als Datensatz bezeichnet. Einzel-
ne Beispiele aus dem Datensatz werden auch als Datenpunkte bezeichnet.
In modernen Definitionen [31] umfasst ein maschineller Lernalgorithmus

e ein Modell, welches gelernt wird,
e einen Optimierungsalgorithmus, der zum Lernen eingesetzt wird,
e eine Kostenfunktion, mit welcher der Lernerfolg bewertet wird

e und einen Datensatz, der wiahrend des Lernens verarbeitet wird.

Maschinelle Lernprogramme verarbeiten in der Regel Beispiele, welche
jeweils aus einer Menge an Merkmalen, engl. Features, zusammenge-
setzt sind und erzeugen basierend auf den verarbeiteten Beispielen ein
Ausgangssignal®3. Wihrend des Lernvorgangs wird der Algorithmus
fortlaufend angepasst, er , lernt”, um gemessen mit der gewahlten Leis-
tungsmetrik die gestellte Aufgabe besser zu lsen.

Die Merkmale werden aus den zu verarbeitenden Daten gewonnen
und kénnen diese Daten unterschiedlich stark abstrahieren: Bezogen auf
Bildsignale konnten wenig abstrahierende Merkmale die Abtastwerte des
betrachteten Bildsignals sein. Mit zunehmendem Grad an Abstrahierung
konnten aus den Abtastwerten geometrische Strukturen und Objekte, die
den Bildinhalt beschreiben, werden.

In Abhéngigkeit davon, was fiir Erfahrungen wihrend des Lernvor-
gangs verwendet werden, konnen maschinelle Lernverfahren in tiber-

,,Well posed Learning Problem: A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E.”— Tom Mitchell, 1997 [85].

Nicht betrachtet werden im Rahmen dieser Arbeit Ansitze, in denen es zusitzlich zu der
Verarbeitung des Datensatzes eine Riickkopplung zwischen dem Lernalgorithmus und dem
Datensatz gibt. Zu dieser Art von Verfahren gehoren Reinforcement Learning-Ansitze. Hierbei
verursachen durch den Lernalgorithmus ermittelte Ausgangswerte eine Veranderung der
nachfolgend als Eingang verarbeiteten Beispiele.
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wachte Lernverfahren und untiberwachte Lernverfahren® unterschie-
den werden. Bei uniiberwachten Lernverfahren werden wahrend des
Lernvorgangs die Merkmale aus dem Datensatz genutzt, um relevante
Eigenschaften der dem Datensatz zu Grunde liegenden Quelle zu be-
stimmen. Typische Anwendungen umfassen Hauptkomponentenanalyse,
Clusteranalyse, Entrauschung oder Synthese. Bei tiberwachten Lernver-
fahren umfassen die verwendeten Erfahrungen zusitzlich zu den als
Eingang verwendeten Merkmalen ein oder mehrere gewtiinschte Ergeb-
nisse der Lernvorgangs, welche mit den Merkmalen assoziiert sind. Das
gewdiinschte Ergebnis wird teilweise auch als Label, Ziel oder Ground
Truth bezeichnet. Somit kann als Ziel dieser Gruppe an Verfahren das
Lernen einer Abbildung von Eingangs- auf Ausgangsdaten interpretiert
werden. Typische Anwendungen umfassen Klassifikation und Regression.
Die Grenze zwischen iiberwachten und uniiberwachten Lernalgorithmen
ist weder klar definiert noch in allen Fallen eindeutig. Goodfellow et al.
argumentieren, dass sich umfangreiche uniiberwachte Lernverfahren in
eine Kombination aus einer endlichen Anzahl an weniger umfangreichen
tiberwachten Lernalgorithmen tiberfiihren lassen [31].

In Abhingigkeit der durch das Modell gelernten Zusammenhénge kon-
nen generative und diskriminative Modelle unterschieden werden [90]:
Wiéhrend bei generativen Modellen die Verbundwahrscheinlichkeit der
Ein- und Ausgangssignale gelernt werden, werden bei diskriminativen
Modellen die bedingten Wahrscheinlichkeiten fiir das Ausgangssignal
gegeben das Eingangssignal gelernt. Obgleich aus der Verbundwahr-
scheinlichkeit mittels der Bayes-Regel die bedingte Wahrscheinlichkeit
ermittelt werden kann — und die generativen Modelle somit umfassender
als die diskriminativen Modelle erscheinen — sind in der Praxis ftir die
Aufgabe der Abbildung eines Eingangssignals auf ein Ausgangssignal
die diskriminativen Modelle effizienter [90].

Das Ziel von maschinellen Lernalgorithmen ist in der Regel nicht
nur, die jeweilige Aufgabe auf dem fiir den Lernvorgang verwendeten
Datensatz, dem sogenannten Trainingsdatensatz, gut zu 16sen, sondern
die gleiche Aufgabe auch auf neuen, im Trainingsdatensatz nicht ent-
haltenen, Beispielen gut zu erfiillen. Diese neuen Daten werden auch
als Testdaten bezeichnet. Diese Fahigkeit wird bei maschinellen Lern-
ansdtzen als Generalisierung bezeichnet®>. Wahrend des Lernvorgangs
kann der Algorithmus nur auf den Trainingsdaten evaluiert werden.

Die Begriffe beruhen auf der Analogie eines Schiilers, der wahrend des Lernens von einem
Lehrer tiberwacht beziehungsweise angeleitet wird oder nicht.

Hier unterscheiden sich maschinelle Lernverfahren von Optimierungsverfahren. Bei letzteren
werden lediglich die bereits vorliegenden Daten betrachtet. Beim Lernen wird angenom-
men, dass die Testdaten wahrend des Trainings nicht zur Verfiigung stehen, so dass keine
Optimierung auf diese moglich ist.
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Fehler
>
Unteranpassung | Uberanpassung

Kapazitat

Abbildung 2.5: Zusammenhang zwischen Kapazitit und Uber- und Unteranpas-
sung. In Anlehnung an [31].

Deshalb wird der Algorithmus zundchst wahrend des Lernvorgangs so
angepasst, dass der Fehler (vgl. Abschnitt 2.2) auf den Trainingsdaten
(Trainingsfehler), eyain, minimiert wird. Eine Generalisierung ist moglich,
wenn Trainings- und Testdaten (ndherungsweise) die gleichen statisti-
schen Eigenschaften haben, wenn die Beispiele in den Datensétzen jeweils
unabhéngig voneinander sind und wenn die Datensétze hinreichend um-
fangreich sind um die statistischen Eigenschaften des datenerzeugenden
Prozesses abzubilden [31]. Eine gute Generalisierung liegt vor, wenn der
Abstand zwischen efyaining und dem Fehler auf den Testdaten (Testfehler),
eTest, moglichst klein wird. Die Differenz wird als Generalisierungsfehler,
eGen2?, bezeichnet und geht idealerweise gegen Null:

€Gen = CTraining — €Test — 0. (2.3)

Mit Bezug auf die genannten Fehler konnen zwei Probleme wahrend
der Entwicklung von maschinellen Lernalgorithmen auftreten: Unteran-
passung und Uberanpassung. Eine Unteranpassung liegt vor, wenn der
Trainingsfehler wahrend des Lernvorgangs nicht hinreichend klein wird.
Eine Uberanpassung liegt vor, wenn der Trainingsfehler zwar hinreichend
klein wird, aber hierbei der Generalisierungsfehler zu grofd wird. Der
Arbeitspunkt von maschinellen Lernalgorithmen mit Bezug auf Unter-
und Uberanpassung lasst sich unter anderem tiber die Kapazitit des
Modells, auf den der Lernalgorithmus angewendet wird, kontrollieren.

Bei der Kapazitat handelt es sich um einen (nicht prézise definierten)
Begriff, der die Fahigkeit des Modells, komplexe und vielfiltige Auf-

In der Literatur wird teilweise auch der Testfehler abweichend von der hier verwendeten
Nomenklatur als Generalisierungsfehler bezeichnet. Die Motivation hiervon ist, dass dieser
Fehler bei der Generalisierung auf ungesehene Daten auftritt.

30

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

2.2 MASCHINELLES LERNEN

gaben zu lernen, beschreibt [31]. Ist die Kapazitdt zu klein, so kénnen
die Eigenschaften des den Daten zugrunde liegenden Prozesses nicht
hinreichend genau erfasst werden und es kommt zu Unteranpassung. Ist
die Kapazitat hingegen zu grofs, so werden nicht die Eigenschaften des
Prozesses gelernt. Stattdessen werden die Eigenschaften von den konkre-
ten Beispielen des Trainingsdatensatzes zu detailliert (d.h. auswendig)
gelernt. In Folge dessen ist keine Generalisierung auf ungesehene Daten
moglich. Somit kommt es zu einer Uberanpassung. Dieser Zusammen-
hang wird in Abbildung 2.5 grafisch veranschaulicht. Die Kapazitdt kann
auf unterschiedliche Weisen angepasst werden, zum Beispiel durch die
Wahl des Modells oder durch Parameter dieses Modells. Ein als Ockhams
Rasiermesser, engl. Occam’s Razor, benannter, auf maschinelles Lernen an-
wendbarer, Grundsatz besagt, dass von mehreren gleich guten Losungen
(hier: Modellen mit den jeweiligen Konfigurationen) die einfachste (hier:
die mit der geringsten Kapazitit) zu bevorzugen ist [6, 31, 106]. Fiir eine
formellere Betrachtung der Kapazitdt sei der Leser auf [31] verwiesen.

Neben der Kapazitdtsanpassung werden oft Regularisierungsansitze
zur Verbesserung der Generalisierung eingesetzt. Regularisierung wird als
Einflussnahme, zum Beispiel {iber zusétzliche Terme in der Kostenfunkti-
on, auf den Lernalgorithmus mit dem Ziel, den Generalisierungs- aber
nicht den Trainingsfehler zu reduzieren, definiert.

Maschinelle Lernalgorithmen haben in der Regel sogenannte Hyperpa-
rameter, welche nicht durch den Lernalgorithmus selbst — oder préziser:
das beinhaltete Optimierungsverfahren — bestimmt werden. Stattdessen
sind diese Parameter durch den Entwickler des Lernalgorithmus oder
durch einen umhiillenden zweiten Algorithmus zu bestimmen. Mit die-
sen Hyperparametern kénnen zum Beispiel die Kapazitdt des Modells
oder die Funktionsweise des Optimierungsverfahrens beeinflusst werden.
Von den fiir die Hyperparameter gesetzten Werten kann die Leistung
des Lernalgorithmus grundlegend abhangen; sie konnen den Ausschlag
zwischen einer sehr guten Leistung und einem Nicht-Funktionieren
geben. Eine Optimierung der Hyperparameter auf den Trainingsdaten-
satz ist nicht sinnvoll, da dieses nur zu einer Uberanpassung fiihren
wiirde. So liefSe sich in vielen Féllen zwar durch eine Erhchung der
Kapazitdt der Trainingsfehler reduzieren aber gleichzeitig wiirde der
Generalisierungsfehler steigen. Eine Optimierung auf den Testdatensatz
ist ebenfalls nicht sinnvoll. Zum einen ist dieses nicht sinnvoll, da konzep-
tionell angenommen wird, dass die Testdaten wahrend der Entwicklung
des Lernalgorithmus, hierzu gehort der Lernvorgang, unbekannt sind.
Zum anderen ist dieses ebenfalls nicht sinnvoll, da dieses auch zu ei-
ner Uberanpassung, und zwar auf den Testdatensatz, fithren wiirde.
Folglich wird fiir die Optimierung der Hyperparameter oft ein dritter
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Datensatz, der als Validierungsdatensatz bezeichnet wird, verwendet. Ty-
pischerweise werden die fiir die Entwicklung des Lernalgorithmus zur
Verftigung stehenden Daten zuféllig in einen Trainings- und in einen
Validierungsdatensatz aufgeteilt, oft in einem Verhiltnis von 8o zu 207.
Aufgrund des grofien Einflusses von Hyperparametern auf die Leistung
maschineller Lernalgorithmen und dem oft immensen Aufwand fiir eine
gute Hyperparameteroptimierung ist fiir eine sinnvolle Vergleichbarkeit
von verschiedenen Lernalgorithmen sicherzustellen, dass die jeweiligen
Hyperparameter vergleichbar gut optimiert wurden.

Einen weiteren fundamentalen Grundsatz im Kontext des maschinellen
Lernens stellt das No-Free-Lunch-Theorem [141] (sinngeméfs: Nichts-ist-
umsonst-Theorem) dar. Es besagt, dass alle Lernalgorithmen die gleiche
Leistung erreichen, wenn {tiber alle denkbaren Aufgaben fiir Lernalgo-
rithmen gemittelt wird. Folglich gebe es keine guten oder schlechten
Lernalgorithmen. Erst durch die Spezialisierung eines Lernalgorithmus
auf eine bestimmte Aufgabe und durch das Treffen geeigneter Annahmen,
zum Beispiel in Form von Hyperparametern, iiber die zu verarbeitenden
Daten sei maschinelles Lernen sinvoll [31].

Die Anwendungsmoglichkeiten fiir maschinelle Lernalgorithmen sind
vielfaltig. Im Folgenden werden einige Beispielanwendungen mit Schwer-
punkt auf die in dieser Arbeit betrachteten neuronalen Netzwerke ge-
nannt.

Kilassifikation: Eine der ersten Anwendungen, welche seit der Arbeit [61]
von Krizhevsky von auf neuronalen Netzwerken basierenden Ansdtzen
dominiert wird, ist die Klassifikation. Alle Gewinner-Verfahren in den
letzten Jahren des Wettbewerbs ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [103], bei dem Objekte in Bildern erkannt werden
miissen, basieren auf neuronalen Netzwerken. Die an Klassifikationsal-
gorithmen gerichtete Aufgabe ist die Zuordnung eines Beispiels in eine
Kategorie aus einer Menge an moglichen Kategorien. Teilweise erfolgt
auch eine Ausgabe der Wahrscheinlichkeiten fiir die Kategorien. Beispie-
le sind die Objekterkennung im oben genannten Wettbewerb oder die
Gesichtserkennung [99]. Auch im Bereich der Videocodierung werden
verstarkt Aufgaben der Encodersteuerung als Klassifikationsproblem
formuliert [66].

Regression: Bei Regressionsproblemen werden basierend auf dem Ein-
gangssignal einer oder mehrere numerische Werte als Ausgang bestimmt.
Auch hier werden oft maschinelle Lernansdtze zur Losung dieser Pro-
bleme angewendet [64]. Beispiele umfassen die Altersbestimmung aus
Bildern [134, 147] sowie die Poseschidtzung [128].

Die Daumenregel des 80-zu-20-Verhéltnisses beruht auf dem Paretoprinzip [98], in welchem
proklamiert wird, dass 80% des Ergebnisses mit 20% des Aufwands erreichbar sind.
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Interpretation: Bei diesem Anwendungsfall ist das Ziel die Erfassung
des Inhalts von zu verarbeitenden Daten. Konkrete Beispiele sind die
Spracherkennung, hier ist die Eingabe die Audioaufnahme von Sprache
und die gewiinschte Ausgabe die gesprochenen Worter als Text [40],
oder die Extraktion von Adressinformationen aus Straflenaufnahmen
[32]. Ebenfalls werden Lernalgorithmen zur Interpretation einer ganzen
Szene basierend auf einer Bild- oder Videoaufnahme [43] verwendet.

Ubersetzung: Ein weiterer Anwendungsfall ist die Ubersetzung von Text
zwischen verschiedenen Sprachen [4]. Teilweise geschieht dieses auch in
Kombination mit Algorithmen zur Spracherkennung in Audiosignalen
oder Texterkennung in Bildern.

Anomaliedetektion: Das Ziel der Anomaliedetektion ist die Detektion von
Abweichungen von einem erwarteten, als normal angesehenen, Verhalten
in den zu verarbeitenden Daten. Beispiele finden sich im Bereich der
Sicherheitstechnik fiir die Auswertung von Uberwachungsvideos oder
bei Sicherheitsmechanismen zur Verhinderung von Kreditkartenbetrug.

Synthese/Generierung: Die Synthese von Signalen unter gegebenen Rand-
bedingungen und optional Eingangssignalen ist ein weiteres Anwen-
dungsgebiet fiir Lernalgorithmen. Typische Beispiele umfassen die Sprach-
synthese gegeben eines zu sprechenden Textes [21, 148] und die Bewe-
gungssynthese fiir Animationen, beispielsweise fiir die Filmproduktion
oder Computerspiele [41]. Durch die automatisierte Animation lésst sich
der immense Aufwand fiir eine manuelle Animation umgehen. Die ge-
nerative Bildmodellierung und Inpainting-Verfahren wurden bereits in
der Einleitung dieser Arbeit thematisiert [27, 33, 36, 124]. Ebenfalls gibt
es Arbeiten zur Stiltibertragung [53]. Hierbei wird zum Beispiel der Stil
eines Gemaldes auf ein Foto tibertragen.

Entrauschung: Die Entrauschung von rauschbehafteten Signalen, zum
Beispiel Bildern [132, 143, 149] oder Datenreihen, ist ebenfalls eine Mog-
lichkeit fiir den Einsatz von Lernalgorithmen. Die Ursachen von Rauschen
konnen hierbei sehr vielféltig und damit schwierig zu erfassen sein.

Superresolution: Bei Superresolution-Ansatzen wird die Erzeugung ei-
nes Bildes mit hoher ortlicher Aufldsung aus einem niedrig aufgelosten
Bild [23, 55, 72] umgesetzt. Die Schwierigkeit ist hierbei die Generierung
oder Wiederherstellung von feinen Details und Texturen, welche in dem
Bild mit niedriger Auflosung nicht oder nur teilweise vorhanden sind.

Neuronale Netzwerke

Im Rahmen dieser Arbeit und heutzutage typischerweise auch fiir die
zuvor genannten Anwendungen werden (kiinstliche) neuronale Netz-
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werke?8 als Modell fiir die Lernalgorithmen verwendet. Deshalb werden
neuronale Netzwerke in diesem Abschnitt eingefiihrt.

Obgleich neuronale Netzwerke erst seit ungefahr 2012 [61] enorme
Aufmerksamkeit aufSerhalb der wissenschaftlichen Gemeinschaft erhalten
haben, sind sie seit Jahrzehnten bekannt. Zunachst wird ein kompakter
Uberblick iiber neuronale Netzwerke im Wandel der Zeit gegeben. Bereits
vorkommende relevante Begriffe, die noch nicht eingefiihrt wurden, wer-
den im Anschluss eingefiihrt. Die Ausfiihrungen folgen der historischen
Abhandlung [106] von Schmidhuber.

Die ersten neuronalen Netzwerke waren Implementierungen einer li-
nearen Regression, welche seit Jahrhunderten bekannt ist [29]. Die Idee
der neuronalen Netzwerke wurde erstmals in den 4oer-Jahren ohne Ler-
nen [81] und fiir untiberwachtes Lernen [39] vorgeschlagen. Im Kontext
des tiberwachten Lernens wurden neuronale Netzwerke in den darauf-
folgenden Jahrzehnten diskutiert [102, 138]. Nicht-lineare Aktivierungs-
funktionen werden seit 1965 [52] fiir neuronale Netzwerke verwendet.
Das Konzept von tiefen neuronalen Netzwerken ist seit den 7oer Jahren
bekannt. 1971 schlug Ivanhnenko ein Netzwerk mit acht Schichten vor
[51]. Fukushima schlug in den Jahren 1979 und 1980 ein tiefes Faltungs-
netzwerk vor, bei dem die Anzahl an zu lernenden Parametern durch die
Verwendung geteilter Werte, engl. weight sharing, deutlich gegentiber voll-
verbundenen neuronalen Netzwerken reduziert wurde. Vorstufen des
Backpropagation-Algorithmus wurden 1970 publiziert, ein erster Einsatz
fiir neuronale Netzwerke fand 1981 statt [137].

Neuronale Netzwerke bestehen, wie auch die als Inspiration dienen-
den Gehirne, aus vielen miteinander verbundenen Neuronen. In Ab-
bildung 2.6 ist ein (kiinstliches) Neuron illustriert. Basierend auf der
Summe von mehreren mit w; gewichteten Eingangssignalen i; und einem
Gleichanteil b, engl. bias, welche in dem Neuron mit einer (typischerweise
nichtlinearen) Aktivierungsfunktion a verarbeitet werden, gibt es ein als
Aktivierung bezeichnetes Signal o; am Ausgang. Die Ubertragungsfunk-
tion des Neurons, also 0(i)?9, ldsst sich wie folgt formulieren:

o(i) =a(w’i+b) (2.4)

Das Ausgangssignal kann dann wiederum als eines der Eingangssigna-
le fiir ein anderes Neuron verwendet werden. Die Gewichte sind das
wesentliche, fiir die Funktionalitit eines Netzwerkes verantwortliche,

Der Name zeigt an, dass die Netzwerke von der Funktionsweise des Gehirns, oder einiger
Teilaspekte desselben, inspiriert wurden. Dies bedeutet jedoch nicht, dass mit neuronalen
Netzwerken ein Gehirn ,nachgebaut”“werden soll.

o(i) hiangt zwar auch von den veranderlichen Gréen w und b ab. Diese werden jedoch nur
wiéhrend des Trainings des Netzwerkes verdndert und werden zum Zeitpunkt der eigentlichen
Anwendung des Netzwerkes als unveranderlich betrachtet.
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Abbildung 2.6: Schematische Darstellung eines (kiinstlichen) Neurons.

Merkmal des Neurons. Wahrend des Trainings werden die Gewichte der
Neuronen sukzessive angepasst, um die Leistung des Netzwerkes fiir die
gestellte Aufgabe zu verbessern.

Aus mehreren in sogenannten Schichten angeordneten Neuronen wer-
den neuronale Netzwerke aufgebaut. Eine Darstellung des grundlegen-
den Aufbaus neuronaler Netzwerke findet sich in Abbildung 2.7. Die erste
Schicht des Netzwerkes wird als Eingangsschicht bezeichnet, die letzte
als Ausgangsschicht. Zwischen der Eingangs- und der Ausgangsschicht
befinden sich eine oder mehrere verborgene Schichten, engl. hidden layer.
Als tiefe neuronale Netzwerke, teilweise auch mittels Deep Learning re-
ferenziert, werden Netzwerke mit mehr als einer verborgenen Schicht
bezeichnet [121]. Moderne neuronale Netzwerke haben zwischen fiinf
und {tiber 100 verborgene Schichten [13]. Die Neuronen einer Schicht
sind mit einigen oder allen Neuronen der vorherigen Schicht tiber die
Gewichte w verbunden.

Gibe es in Gleichung 2.4 nicht die Aktivierungsfunktion a, dann ent-
spréache die Gleichung lediglich der gewichteten Uberlagerung der Ein-
gangssignale mit einer zusétzlichen Addition des Bias. Der Wertebereich
am Ausgang entsprache den kompletten reellen Zahlen. Inspiriert durch
die Funktionsweise von Neuronen im Gehirn, welche nur dann ein Aus-
gangssignal erzeugen, wenn die Uberlagerung der Eingangssignale tiber
einem Grenzwert liegt, umfassen auch kiinstliche Neuronen eine Aktivie-
rungsfunktion.

Die Anforderungen umfassen mindestens die folgenden vier Aspekte:
Die Aktivierungsfunktion sollte nichtlinear sein. Die Nichtlinearitat wird
fiir das Lernen komplexer Zusammenhénge benotigt. Wiirden lediglich
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Abbildung 2.7: Schematische Darstellung eines (kiinstlichen) neuronalen Netzwer-
kes. In Anlehnung an [121].

lineare Aktivierungsfunktionen verwendet, so konnten selbst bei mehre-
ren hintereinander geschalteten Neuronen nur lineare Zusammenhénge
durch das Netzwerk erlernt werden. Sukzessive Anderungen an den Ein-
gangssignalen sollten zu einer sukzessiven Anderung der Aktivierung
fiihren. Durch diese Konsistenz sollen kleine Anderungen des Eingangs-
signals, zum Beispiel Rauschen, des Netzwerkes nicht zu einem sich
stark @ndernden Ausgangssignal, beispielsweise einer anderen Klasse
bei Klassifizierungsaufgaben, fiihren. Die Ausgangswerte der Aktivie-
rungsfunktion sollten nicht zu grofs werden. Die Aktivierungsfunktion
sollte differenzierbar sein und die Gradienten sollten sinnvoll fiir den
nachfolgend beschriebenen Optimierungsalgorithmus verwendbar sein.
Hierfiir sollten die Gradienten weder zu grofs noch zu klein werden.

Im Folgenden werden vier typische Aktivierungsfunktionen a(x) fiir
Eingangssignale x diskutiert. Diese Funktionen werden zusétzlich in
Abbildung 2.8 dargestellt.

Die Sigmoid-Funktion ist definiert als:

1

TTrer &5

Asigmoid (x )
Aufgrund des Wertebereichs des Ausgangssignal zwischen Null und Eins
wird diese Aktivierungsfunktion gerne fiir Anwendungen verwendet, in
dem am Ausgang eine Wahrscheinlichkeit, die ebenfalls zwischen Null
und Eins liegt, gefordert ist. Eine weitere Anwendungsmoglichkeit stellt
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Abbildung 2.8: Ubersicht tiber die vier Aktivierungsfunktionen Sigmoid, tanh,
ReLU und IreLU

die bindre Klassifikationen dar3°. Die Sigmoid-Aktivierungsfunktion er-
fullt viele der an Aktivierungsfunktionen gestellten Anforderungen: Sie
ist nichtlinear, es kommt zu sukzessiven Anderungen des Ausgangssi-
gnals bei sukzessiven Anderungen des Fingangssignals, das Ausgangssi-
gnal ist auf den Wertebereich Null bis Eins begrenzt und die Funktion
ist differenzierbar. Die Ableitung der Funktion ist fiir Eingangswerte
mit kleinem Betrag grof. Das ist niitzlich fiir den spéter eingefiihrten
Backpropagation-Algorithmus. Das Hauptproblem dieser Aktivierungs-
funktion ist, dass die Ableitung fiir Eingangssignale mit grofsem Betrag
sehr klein ist. Das kann wéahrend der Optimierung des Modells zu einem
Problem werden, wenn das Modell sich in einem Zustand befindet, in
dem Neuronen solche grofSen Werte ausgeben. Dann kann es passieren,
dass diese Werte wegen der verschwindenden Gradienten sich wahrend
der Optimierung nicht verandern und der Optimierungsalgorithmus
zu keiner Verbesserung des Modells mehr fiihrt. Dieses lasst sich als
Steckenbleiben wiahrend des Trainings vorstellen3'. Aufgrund des be-

Eine Verallgemeinerung fiir nicht-bindre Klassifikationsaufgaben bildet die Softmax-
Aktivierungsfunktion

Der Nachteil der Sittigung bei Werten mit groem Betrag kann vernachldssigt werden,
wenn die Sigmoid-Funktion als Aktivierungsfunktion in der letzten Schicht des Netzwerkes
verwendet wird und mit einer geeigneten, zum Beispiel logarithmischen, Kostenfunktion
kombiniert wird.
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schriebenen Nachteils wird die Sigmoid-Aktivierungsfunktion in der
Regel nicht mehr fiir verborgene Schichten in Feed-Forward-Netzwerken
verwendet. Fiir andere, in dieser Arbeit nicht betrachtete, Netzwerkarten
wird diese Aktivierungsfunktion dennoch weiter verwendet. Der Grund
hierfiir ist, dass andere Aktivierungsfunktionen wie die nachfolgend
betrachtete und fiir Feed-Forward-Netzwerke préferierte ReLU-Funktion
hier aus anderen Griinden nicht eingesetzt werden kénnen.

Der Tangens hyperbolicus (tanh) ist eine verschobene und skalierte
Version der Sigmoid-Aktivierungsfunktion:

Atanh (X) = 2uSigmoidL (2x) -1 (2.6)
2
Tirer &7

Die wesentlichen Anderungen gegentiber der Sigmoid-Aktivierungs-
funktion sind, dass zum einen die Steigung grofier ist und zum anderen
der Sattigungsbereich fiir betragsgrofie negative Eingangssignale nicht
bei Null liegt. Die erste Eigenschaft kann sinnvoll sein, wenn fiir die Op-
timierung grofiere Gradienten benétigt werden. Die zweite Eigenschaft
bewirkt, dass das Ausgangssignal — und damit das Eingangssignal fiir
nachfolgende Neuronen — fiir den relevanten Sattigungsbereich nicht bei
Null liegt, wodurch die Gewichte der nachfolgenden Neuronen bedeu-
tungslos wiirden.

Am héufigsten in modernen Netzwerken werden die gleichrichtende
Aktivierungsfunktion, engl. Rectifier Linear Unit (ReLU), oder Varianten
ebenjener verwendet. Sie ist definiert als:

areru(x) = max(0, x) (2.8)

x wennx >0
= (2.9)
0 sonst

Obgleich die ReLU stiickweise linear ist, ist sie als ganzes nichtlinear.
Abgesehen vom Ursprung ist die Funktion differenzierbar. Durch die
Nichtdifferenzierbarkeit im Ursprung verletzt diese Aktivierungsfunktion
die gestellten Anforderungen. Dieses kann jedoch vernachlassigt werden,
da es sich beim Ursprung iiber keinen typischerweise wahrend des
Trainings auftretenden Arbeitspunkt handelt [31]. Fiir positive Werte des
Eingangssignals wird das Signal ohne Verdanderung ausgegeben, somit
erfiillt die Funktion die diesbeztiglichen Anforderungen. Fiir negative
Werte ist der Ausgabewert der Funktion immer Null. Dieses kann zu
,sterbenden”Neuronen fithren, die aufgrund des fehlenden Gradienten
diesen Zustand wihrend des Trainings nie verlassen konnen und immer
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Nullen ausgeben. Hierdurch kénnen in ungtinstigen Féllen grofiere Teile
eines Netzwerkes dauerhaft deaktiviert werden. Dennoch ist die Funktion
als Aktivierungsfunktion beliebt, da sie sehr einfach zu berechnen ist —
es ist lediglich die Uberpriifung eines Vorzeichens notwendig — und zu
guten Lernergebnissen fiihrt.

Die durchldssige gleichrichtende Aktivierungsfunktion, engl. Leaky
Rectifier Linear Unit (lreLU), 16st das Problem der toten Neuronen, welches
bei der normalen ReLU-Aktivierungsfunktion besteht, in dem negativen
Eingangswerten ein sehr kleiner, nicht konstanter Wert zugewiesen wird:

x wennx >0
Arery () = (2.10)
cx sonst

mit einer Konstanten c, die typischerweise positiv und hinreichend klein,
zum Beispiel ¢ = 0.01, ist. Hier wird wahrend der Optimierung der
Netzwerkgewichte die Moglichkeit erhalten, die verbleibenden kleinen
Gradienten zur Verschiebung des Arbeitspunkts aus dem toten Bereich
zu nutzen.

Die Art der Neuronen in der letzten Schicht wird haufig in Abhéngig-
keit der durch das Netzwerk zu l6senden Aufgabe gewahlt. Lineare Neu-
ronen, hiermit werden Neuronen ohne Aktivierungsfunktion, also einer
Ubertragungsfunktion o(i) = w’i + b, bezeichnet werden oft fiir Aufga-
ben verwendet, bei denen am Netzwerkausgang ein quadratischer Fehler
minimiert werden soll. Neuronen mit Sigmoid-Aktivierungsfunktionen
werden fiir bindre Klassifikationen oder andere Aufgaben, bei denen
am Ausgang ein Wahrscheinlichkeitswert erwiinscht ist, verwendet. Als
Erweiterung werden Neuronen mit Softmax-Aktivierungsfunktion fiir
Klassifikationen mit mehr als zwei Klassen verwendet. Fiir den Ausgang
j mit j € [1, ]] erfolgt die Berechnung zu:

e

Zg:l et

Durch die Berechnung ist sichergestellt, dass alle Ausgangswerte zwi-
schen Null und Eins liegen und die Summe tiber alle Ausgangswerte
Eins ergibt. Hierdurch sind die Ausgangswerte als Wahrscheinlichkeiten
sinnvoll interpretierbar.

In Abhédngigkeit der verwendeten Neuronen und ihrer Verbindung zur
vorherigen Schicht werden unterschiedliche Arten von Schichten unter-
schieden. Die im Rahmen dieser Arbeit verwendeten voll-verbundenen
Schichten und Faltungsschichten werden im Folgenden erldutert. Fiir
weitere Arten von Schichten sei der Leser auf die Ubersichten von Good-
fellow et al. in [31] und von van Veen in [131] verwiesen.

ASoftmax (Xj) = (2.11)
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In voll-verbundenen Schichten sind alle Neuronen aus einer Schicht
mit allen Neuronen der vorherigen Schicht verbunden. Der Ausgang o;
einer Schicht [ lasst sich als Erweiterung von Gleichung 2.4 zu

o,=a(WTo;_1+b) (2.12)

mit einer elementweise angewandten Aktivierungsfunktion a, einer Ge-
wichtsmatrix W und einem Bias-Vektor b formulieren.

Bei Faltungsschichten gibt es anstatt einer grofSen Gewichtsmatrix W
wie in Gleichung 2.12 eine Anzahl an Faltungsmatrizen, mit denen das
Eingangssignal gefaltet wird. Faltungsschichten werden haufig fiir zwei-
dimensionale Eingangsdaten des neuronalen Netzwerkes, zum Beispiel
Bilder, verwendet. Die Faltungsmatrizen haben oft die gleiche Dimen-
sionalitdt wie die Eingangsdaten fiir die Faltungsschicht: Bestehen die
Eingangsdaten beispielsweise aus zweidimensionalen Bildern mit drei
Kanilen, so sind die Faltungsmatrizen ebenfalls dreidimensional mit
einer Tiefe von drei. Der Ausgang einer Faltungsschicht mit der Faltungs-
matrix W ldsst sich mit * als Faltungsoperator als

0, =a(WE xo0,_1 +b) (2.13)

schreiben.

Aus der Kombination der jeweiligen Schichten ergibt sich die Architek-
tur des Netzwerkes. Der Nomenklatur aus [31] folgend wird in dieser
Arbeit mit Architektur ausgedriickt, wie viele Neuronen ein Netzwerk
hat, wie diese Neuronen in Schichten angeordnet sind und wie diese
Schichten miteinander verbunden sind.

In dieser Arbeit werden Feed-Forward-Netzwerke3? verwendet. Mehre-
re Schichten werden hintereinander angeordnet. Der Ausgang von einer
Schicht ist der Eingang der ndchsten Schicht33. Die Gesamt—Ubertragungs—
funktion Oges fiir solche ein Netzwerk mit n Schichten ergibt sich aus der
Verkettung von Formel 2.4 zu:

0ges = op(0p—1(...02(01(i, b)) ...)), (2.14)

wo bei 0; der Index ! fiir die I-te Schicht des Netzwerkes steht. Die Anzahl
an Schichten, also L in Gleichung 2.14, wird als Tiefe des Netzwerkes
bezeichnet. Die Breite des Netzwerkes korrespondiert in einer unprézisen

Auf Netzwerke mit zusétzlichen Feedback-Verbindungen, zum Beispiel Recurrent Neural
Network (RNN) wird im Rahmen dieser Arbeit nicht ndher eingegangen

In vielen modernen Netzwerken gibt es nicht nur die hier beschriebenen Verbindungen von
einer Schicht zur direkt nachfolgenden Schicht. Zusatzlich werden Verbindungen verwendet,
bei denen einzelne Schichten iibersprungen werden, engl. skip connections. Hierdurch kon-
nen beim nachfolgend beschriebenen Backpropagation-Algorithmus Gradienten besser vom
Ausgang des Netzwerkes zu den Schichten nahe dem Eingang des Netzwerkes propagiert
werden.
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Definition zur Grofse der jeweiligen Schichten. Die genaue Wahl der
Netzwerktiefe und -breite bedarf der experimentellen Bestimmung.

Faltungsnetzwerke, engl. CNN, bestehen in der Regel aus mehreren
Faltungsschichten gefolgt von einer oder mehreren vollverbundenen
Schichten. In der ersten Faltungsschicht werden einfache Merkmale wie
Kanten extrahiert, welche dann mit zunehmender Tiefe des Netzwer-
kes abstrahiert werden bis am Ausgang des Netzwerkes beispielsweise
Objekte erkannt werden.

Das Universal Approximation Theorem, dessen vertiefte Diskussion den
Rahmen dieser Arbeit sprengen wiirde, besagt vereinfacht, dass neu-
ronale Netzwerke mit einer hinreichenden Tiefe und Breite und einer
geeigneten Aktivierungsfunktion jede Borel-messbare Funktion, hier-
zu zdhlen alle stetigen Funktionen, mit einem beliebig kleinen Fehler
darstellen konnen [31, 42, 73]34.

Training neuronaler Netzwerke

Das Ziel des Trainings neuronaler Netzwerke ist, dass die Ubertragungs-
funktion des Netzwerks, oges in Gleichung 2.14, durch die Anpassung
der Netzwerkparameter die Funktion der zu lernenden Aufgabe T (vgl.
Seite 28) moglichst gut anndhert.

Beim Training neuronaler Netzwerke wird die von den Parametern
des Netzwerkes, zum Beispiel von den Gewichten und Bias-Werten, ab-
héngende Kostenfunktion, welche die Leistung des Netzwerkes fiir die
betrachtete Aufgabe misst, minimiert. Fiir die Minimierung werden Gra-
dientenabstiegsverfahren [14] eingesetzt. Hierbei wird in einem iterativen
Prozess die Kostenfunktion minimiert, indem die die Kostenfunktion
beeinflussenden Parameter in kleinen Schritten entgegen des Gradien-
ten der Kostenfunktion nach ebenjenen Parametern angepasst werden35.
Durch die kleinen Schritte in Richtung kleinerer Werte fiir die Kosten-
funktion soll im Idealfall das globale Minimum der Kostenfunktion
erreicht werden. Im Kontext neuronaler Netzwerke wird das Erreichen
des globalen Minimums durch zahlreiche lokale Minima, Sattelpunkte
und flache Bereiche in der Kostenfunktion erschwert. Hierbei werden die
Gradienten zu klein um ein Weiterlernen zu ermoglichen, engl. vanishing

Das Theorem besagt lediglich, dass solch ein Netzwerk existiert. Es lasst jedoch keine Schliisse
iiber die tatsdchliche Grofe und Architektur oder tiber das notwendige Vorgehen beim
Training des Netzwerkes zu. Insbesondere kann ein als universeller Approximator geeignetes
Netzwerk so grof8 werden, dass ein Erlernen der zu lernenden Funktionen in der Praxis
unmoglich ist.

Der Gradient der Kostenfunktion in einem Arbeitspunkt zeigt in Richtung der groften
Steigung der Kostenfunktion in diesem Arbeitspunkt. Deshalb erfolgt der Schritt entgegen
des Gradienten, da in dieser Richtung die Verrringerung des Wertes der Kostenfunktion am
groBten ist. Dieses entspricht dem groBten Fortschritt beim Training.
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gradients. Zu grofl werdende Gradienten, engl. exploding gradients, konnen
ebenfalls zu einem Problem werden, insbesondere in tiefen Netzwerken
in denen viele Gewichte in einer Kette miteinander multipliziert werden.
In dem nachfolgenden Abschnitt (ab Seite 43) zum Back-Propagation-
Algorithmus wird der Gradient konkret in Abhangigkeit der Gewichte
und Bias-Werte bestimmt werden. An dieser Stelle sei die Konfigura-
tion des Netzwerkes, inklusive Gewichten und Bias-Werten, zunéichst
allgemein als ¢ zusammengefasst. Die Kostenfunktion in Abhédngigkeit
dieser Konfiguration sei C(c). Der Gradient der Kostenfunktion nach
der Konfiguration sei VC(c). Dann ergibt sich die neue Konfiguration
des Netzwerkes, c; 1, nach einem Schritt i mit der Weite 77 aus der alten

Konfiguration ¢; zu:
ciy1 = ¢ —nVe,Clei) (2.15)

Die Schrittweite 7 wird im Kontext maschineller Lernverfahren auch als
Lernrate bezeichnet3.

Typischerweise werden fiir maschinelle Lernalgorithmen Datensitze
mit vielen Trainingsbeispielen verwendet. Die Berechnung des Gradien-
ten ergibt sich dann als Mittelung tiber je einen Gradienten pro Beispiel:

1 N
VeC(c) = N Y VCule), (2.16)
n=1

mit dem Index n € [1, N] fiir die einzelnen Beispiele.

Die Komplexitit der Berechnung in Gleichung 2.16 ist O(N) bei einem
Trainingsdatensatz der Grofie N. Da diese Berechnung in jeder Iteration
des Gradientenabstiegs durchgefiihrt werden miisste und Datensétze oft
viele Millionen oder Milliarden Beispiele enthalten, ist diese Berechnung
in der Praxis nicht umsetzbar.

Statt des bis hierhin beschriebenen urspriinglichen Gradientenabstiegs
wird deshalb in der Praxis der stochastische Gradientenabstieg eingesetzt.
Hierbei wird fiir jede Iteration eine zuféllige Untermenge an Trainings-
beispielen, in der Regel maximal eine dreistellige Anzahl, notiert als
N* mit N* << N aus der Gesamtmenge an Trainingsbeispielen gezo-
gen37. Die Pramisse hierbei ist, dass mit dieser Untermenge, welche auch

In der Regel wird die Lernrate wiahrend des Trainings laufend angepasst. Goodfellow et
al. bezeichnen diese Anpassung , mehr als Kunst denn als Wissenschaft“und fithren weiter
aus, das die meisten allgemeinen Richtlinien zur Anpassung der Lernrate mit Vorsicht zu
betrachten seien [31].

Bei sehr groflen Datensitzen erfolgt aus Rechenaufwandsgriinden in der Regel kein zufalliges
Ziehen von Beispielen in jeder Iteration. Stattdessen wird der komplette Datensatz einmalig
zuféllig durchgemischt und dann wahrend des Trainings sequenziell verarbeitet.
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Aktivierungsfunktion

a()

b@ b@®
we we c
i > 0@ > 00 >y
Eingabe Schicht 2 Schicht 3 Ground
(verborgen) (Ausgabe) Truth

Abbildung 2.9: Backpropagation-Algorithmus fiir ein sehr kleines neuronales
Netzwerk

Minibatch38 bezeichnet wird, der Gradient hinreichend gut angendhert
wird:

1Y 1 ¥
VeC(c) = N Y VeCule) = NG Y~ VeCalc) (2.17)
n=1 n=1

Diese Annahme wird nicht zuletzt dadurch bestérkt, dass grofie Daten-
sétze typischerweise nicht redundanzfrei sind [31].

Eine groflere (Mini-) Batchgrofe fiihrt typischerweise zu einer besseren
Anndherung des Gradienten in Gleichung 2.17 und zu einer besseren
Auslastung der Rechnerarchitektur, da alle Beispiele aus dem Minibatch
in der Regel parallel verarbeitet werden. Kleinere Batchgrofsen fithren
oft zu einem kleineren Generalisierungsfehler, da weniger Rauschen
durch die Mittelung entfernt wird, jedoch auch zu langeren Trainings-
dauern. Die obere Grenze des Minibatches ergibt sich aus dem in der
Rechnerarchitektur zur Verfiigung stehenden Arbeitsspeicher. [31]

Da die direkte Berechnung des Gradienten in Gleichung 2.17 fiir Netz-
werke mit vielen Parametern weiterhin sehr rechenaufwendig ware, wird
hierfiir der Backpropagation-Algorithmus verwendet.

Zundchst wird der fiir die Berechnung des Gradienten der Kosten-
funktion verwendete Backpropagation-Algorithmus fiir ein sehr kleines
Netzwerk gemdf Abbildung 2.9 mit drei Schichten, also einer verborge-
nen Schicht, mit jeweils einem Neuron erldutert. AnschlieSend erfolgt
eine Verallgemeinerung auf groflere Netzwerke. Das Grundprinzip des
Backpropagation-Algorithmus ist die Propagierung des Fehlers am Aus-
gang des Netzwerkes, gemessen mit der Kostenfunktion C, von Schicht
zu Schicht durch das Netzwerk um so die Gewichte mittels des stochasti-
schen Gradientenabstiegsverfahrens anzupassen. Durch dieses Vorgehen

Es ist zu beachten, dass in der Literatur zum Teil der Begriff Batch Learning verwendet wird,
um das Lernen auf dem gesamten Datensatz zu bezeichnen. Dieses mag verwirren, da die
Grofle des Minibatches auch als Batchgrifie bezeichnet wird.
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Abbildung 2.10: Abhéngigkeiten beim Backpropagation-Algorithmus fiir ein sehr
kleines neuronales Netzwerk

muss lediglich jeweils der Gradient fiir eine Schicht aber nicht der Gradi-
ent fiir alle Schichten zusammen berechnet werden.

Entsprechend Gleichung 2.4 ergibt sich der Ausgang o,(f) des Neurons
der letzten Schicht, Superscript (3)39, fiir das Trainingsbeispiel n zu

0&3) a(w(f’)off) + b(3>) (2.18)
a(w(3)a(w(2)i£}) + b(z)) + b<3)) (2.19)

Der Vollstandigkeit halber wird auch das Eingangssignal ig,l) mit dem

entsprechenden Schicht-Index notiert, da nicht notwendigerweise alle
Eingangssignale in der ersten Schicht in das Netzwerk gehen miissen.
Zur verkiirzten Notation wird der innere Term von Gleichung 2.18 als

2513) definiert:

25,3) = w(3>o,<12) +50 (2.20)

Zur Vereinfachung sei als Kostenfunktion am Ausgang des Netzwerkes
der quadratische Fehler zwischen dem Ausgangssignal des Netzwerks
und den Trainingsdaten y angenommen:

Cn = (0f) —y)? (2.21)

Anhand von Abbildung 2.10 ldsst sich der Weg des Fehlers durch das
Netzwerk und damit die Abhédngigkeiten der Kostenfunktion von den
verschiedenen Werten in dem Netzwerk nachvollziehen: C hingt von 0(%)
ab (Term Abh. a in Gleichung 2.22), 03 wiederum hangt von z3) ab (Abh.
b in Gleichung 2.22) und weiter in der Kette hangt z3) von w® (Abh. ¢
in Gleichung 2.22), 0(2) und b®) ab.4°

Der Superscript mit dem Index fiir die Schicht wird in Klammern gesetzt, um eine Verwechse-
lung mit einer Potenzierung zu vermeiden.

Eine umgangssprachliche, haufig referenzierte, Formulierung ist: Wie veradndert sich der Wert
der Kostenfunktion, wenn an den Gewichten ,leicht gewackelt wird“?
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Diese Abhéngigkeiten lassen sich mittels Kettenregel wie folgt formu-
lieren:
ac, 2z ad)  acl

500~ 0® .0 3.0 (2.22)
Abh.c  Aph.b  Abh.a
Die einzelnen Terme in Gleichung 2.22 ergeben sich zu:
(3)
aZ’E.%) v mit Gleichung 2.20 (2.23)
(3)
P = () (224
azn
acy) 3)
% =2(0p" —yn) mit Gleichung 2.21, (2.25)
00,
mit a’ als Ableitung der Aktivierungsfunktion. Also ist
W @ (21200 — y). (2:26)

ow®)

Analog lassen sich die Ableitungen der Kostenfunktion nach dem
Bias-Wert und dem Ausgang des vorherigen Neurons berechnen:

aC,  02% 90l acl®)

b0~ 9601 5,00 5,00 (227)
=1d'(z®) 2(0,(13) —Yn) (2.28)
und
aC, _ oz a0 acy (220)
ao,(f) 80,(12) 82,(13) 805,3)
=w® a/(z(3)) 2(0513) —Yn). (2.30)

Bei der Betrachtung von N* Trainingsbeispielen — N* entspricht zum
Beispiel der Batch-GrofSe — ergibt sich durch Mittelung aus Gleichung 2.26:

ac 1 N ac
Fe Nf Z n (2.31)
- (o)
N— Z —Yn) (2.32)
45

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

GRUNDLAGEN

(2)
o(k)

we . .
\ o S
2 B ——
i ]

>
Eingabe Schicht 2 Schicht 3 Ground
(verborgen) (Ausgabe) Truth

Abbildung 2.11: Backpropagation-Algorithmus fiir ein neuronales Netzwerk mit
einer verborgenen Schicht und mehreren Neuronen pro Schicht

Entsprechende Berechnungen lassen sich auch fiir die beiden anderen
betrachteten Ableitungen durchfiihren.

Es ist zu beachten, dass wahrend des Trainings lediglich die Gewichte
w und die Bias-Werte b, nicht jedoch die Ausgangswerte vorheriger Neu-
ronen, direkt beeinflusst werden konnen. Letztere tauchen jedoch noch in
den bis hier hergeleiteten Termen auf. Durch weiteres Anwenden der Ket-
tenregel lassen sich diese nicht direkt beeinflussbaren Terme eliminieren,
sodass die Veranderung der Kostenfunktion nur noch von Veranderungen
der beeinflussbaren, also der trainierbaren, Terme abhdngt.

Die vorherigen Gleichungen fiir ein neuronales Netzwerk mit nur
einem Neuron pro Schicht lassen sich wie im Folgenden ausgefiihrt
auf ein neuronales Netzwerk gleicher Tiefe mit mehreren Neuronen
pro Schicht, entsprechend Abbildung 2.11, durch die Ergdnzung von
weiteren Indizes verallgemeinern. Die Neuronen in Schicht 2 werden mit
k € [1,K] indiziert, die Neuronen in Schicht 3 mit j € [1,]]. Gewichte
erhalten entsprechend zwei Indizes, wj;, da sie zwei Neuronen mit den
zugehorigen Indizes k und j miteinander verkntipfen.

Die Kostenfunktion am Ausgang des Netzwerkes ergibt sich dann als
Summierung tiber die Kosten fiir die einzelnen Neuronen in der letzten
Schicht zu

Lo v
Cn = Z(Uj,n _yj) ’ (2.33)
=
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mit
(2.34)
und

3 3 (2 3 (2 3 (2 3
z](.,n> = jooé’rLl +...+ zujkol((,Ll +...+ ij0§<,;>171 + b]( ), (2.35)
Die Ableitungen der Kostenfunktion fiir ein Beispiel n nach den Ge-
wichten und den Bias-Werten ergeben sich durch Ergénzung der entspre-
chenden Indizes in den Gleichungen 2.22 und 2.27. Im Folgenden wird
die Erganzung nur fiir die Gewichte ausformuliert. Die zweite Gleichung
ergibt sich entsprechend.
3 3

ac, _ ) 90)) o)
0@ 3@ 9.0 3,0 (2.36)

Wik Wik 9Zjn 99y

Bei der Ableitung nach den Ausgangswerten vorheriger Neuronen
wird in Gleichung 2.29 zusétzlich zu den Indizes eine Summe ergéanzt,
da jedes vorherige Neuron in einem vollverbundenen Netzwerk alle
Neuronen der nachfolgenden Schicht beeinflusst:

3 3
9C, _ - 225, %) act? (2:37)
2) 3 3 3)° ’
80,((,2 j=1 ao,i,n) az](,r? 80](,)1)

Durch Hinzuftigen weiterer Indizes und Summen lésst sich die Glei-
chung fiir ein neuronales Netzwerk mit einer beliebigen Anzahl an
Schichten erweitern. Da sich hierdurch kein neuer Erkenntnisgewinn
ergibt wird an dieser Stelle zur Wahrung der Ubersichtlichkeit auf die
Erweiterung verzichtet.

Diese Gradienten werden fiir das zuvor beschriebene Gradientenab-
stiegsverfahren verwendet.

Bei einer hohen Varianz zwischen den Gradienten in aufeinanderfol-
genden Iterationen des Gradientenabstiegsverfahrens ist der Lernvorgang
nicht sehr zielgerichtet. Zur Umgehung dieses Problems wird der Aktua-
lisierungsschritt aus Gleichung 2.15 hdufig um ein Momentum erganzt.
Hierbei wird fiir den Aktualisierungsschritt nicht nur der in der aktuellen
Iteration berechnete Gradient verwendet, sondern eine Akkumulation
der vorherigen Gradienten mit exponentiell abfallender Gewichtung. Die
Aktualisierungsschrittweite «; in Iteration i wird definiert als:

a; = pa;_1 — Ve Clei) (2.38)

mit y als Momentum-Hyperparameter. Um den exponentiellen Abfall
der Gewichtung vergangener Gradienten zu erreichen ist y € [0,1). Oft

47

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

GRUNDLAGEN

wird pu = 0.9 als Wert fiir diesen Hyperparameter gewéahlt. Der Aktuali-
sierungsschritt in Gleichung 2.15 wird dann zur folgenden Formulierung
gedndert:

Ciy1 = € T4 (2:39)
Rahmenbedingungen fiir den Entwurf neuronaler Netzwerke

Ahnlich wie bei der zuvor erlauterten Encodersteuerung fiir Videocodecs
gibt es auch fiir den Entwurf neuronaler Netzwerke Rahmenbedingungen,
innerhalb derer der Entwurf erfolgt. Dieser Rahmen wird durch die zur
Verftigung stehende Menge an Trainingsdaten, durch die vertretbare
Trainingsdauer, durch Grenzen fiir den Rechenaufwand der Inferenz
sowie durch den Speicherbedarf des Netzwerkes gesetzt.

Die Menge an verfiigbaren Trainingsdaten ist fiir verschiedene Anwen-
dungen sehr unterschiedlich. Fiir manche Anwendungen gibt es sehr
viele Daten. Dieses gilt zum Beispiel fiir sehr stark beforschte Themen-
gebiete wie der Bildklassifikation oder fiir Anwendungen, in denen sich
synthetische Daten automatisiert erstellen lassen. In anderen Anwen-
dungsgebieten ist die Menge stark begrenzt. Das ist zum Beispiel der
Fall, wenn Daten hidndisch verarbeitet werden miissen bevor sie als Trai-
ningsdaten verwendbar sind. Fiir das Training grofler Netzwerke werden
in der Regel sehr viele Daten benétigt. Das Training von neuronalen
Netzwerken mit sehr wenigen Trainingsbeispielen ist Gegenstand der
aktuellen Forschung [101].

Die Trainingsdauer fiir neuronale Netzwerke und insbesondere der
Rechenaufwand fiir die Optimierung der Hyperparameter kann erheblich
sein. So berichten Zoph und Le von einem Experiment [151], bei dem
zur Hyperparameter-Optimierung fiir mehrere Wochen auf 8oo Grafik-
prozessoren, engl. Graphics Processing Unit (GPU), gleichzeitig gerechnet
wurde, um eine Verbesserung des Fehlers von 0,09% bei einer Beschleu-
nigung um einem Faktor von 1,05 gegeniiber dem zuvor besten Modell
zu erreichen. In Abhédngigkeit der zur Verfiigung stehenden Ressourcen
kann der vertretbare Rechenaufwand variieren.

In der Literatur werden in der Regel hochstens Angaben zur An-
zahl an verwendeten GPUs oder Tensor Processing Unit (TPU)s sowie
der Trainingsdauer gemacht — beides lediglich fiir das final verwen-
dete Modell. Das Training findet typischerweise auf den Servern von
Cloud-Anbietern wie Google oder Amazon statt. Durch den Abgleich
der Preislisten zur Anmietung der Cloud-Rechenkapazitdten mit den
Trainingsdauer- und Ressourcenverwendungs-Angaben schitzen Sharir
et al. in [110] die finanziellen Kosten fiir das Training ab: Fiir verschiede-
ne Netzwerk-Architekturen aus dem Stand der Technik im Bereich der
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Sprachverarbeitung schitzen sie die Trainingskosten fiir einen einmali-
gen Durchlauf des Trainings auf Werte zwischen $2.500 (Netzwerk mit
110 Millionen Parametern) bis $80.000 (fiir 1,5 Milliarden Parameter, das
aktuell grofite veroffentlichte Netzwerk). Unter der Berticksichtigung der
Tatsache, dass fiir Veroffentlichungen haufig nicht nur ein einmaliges
Training durchgefiihrt wird, sondern mehrere Architekturen ausprobiert
und Hyperparameter optimiert werden, kommen die Autoren inklusive
dieser versteckten Kosten auf Trainingskosten fiir die entsprechenden
Netzwerke zwischen $50.000 und $1.600.000.

Insbesondere fiir zeitkritische Anwendungen, zum Beispiele solche
mit einer Echtzeitanforderung, ist der Rechenaufwand fiir die Inferenz
relevant. Gegebenfalls kann es fiir manche Anwendungen nur moglich
sein, kleine Netzwerke mit vergleichsweise wenigen Rechenoperationen
zu entwerfen, da andernfalls keine Anwendbarkeit in Echtzeit mehr
moglich ist.

Fur Anwendungen, die auf mobilen Endgeraten oder eingebetten Syste-
men ausgefiihrt werden, oder bei denen die trainierten Netzwerkmodelle
tiber mobile Datenverbindungen zu tibertragen sind, wird die Dateigrofie
des Modells relevant und kann ein begrenzender Faktor werden. Die Spei-
cherplatzreduktion fiir neuronale Netzwerke ist ebenfalls Gegenstand
der aktuellen Forschung [67].

2.3 KONTURDETEKTION

Das in Kapitel 3 vorgeschlagene Verfahren beruht auf der Modellierung
und Extrapolation von Konturen. Somit ist die Detektion von Konturen
ein notwendiger Vorverarbeitungsschritt.

Eine beispielhafte Darstellung eines eindimensionalen Kontursignals
ist in Abbildung 2.12 zusammen mit der ersten und zweiten Ableitung
des Signals zu sehen. Prinzipiell lassen sich Konturen als Maximum
der ersten Ableitung beziehungsweise als Nulldurchgang in der zweiten
Ableitung mit hinreichend groflien Ausschldgen direkt davor und danach
bestimmen.

Fiir zweidimensionale Bilder I lidsst sich der Gradient V| mit den

partiellen Ableitungen in x- und y-Richtung berechnen:
al
V= 3;; (2.40)
dy
Der Betrag | V| des Gradienten berechnet sich wie folgt:

AIN* | [aI\?
|Vi| = (%) +(£> (2.41)
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Abbildung 2.12: Darstellung der ersten (Mitte) und zweiten (rechts) Ableitung
eines eindimensionalen Signals mit einer Kontur (links).

Durch Maximumsuche in dem Signal nach Gleichung 2.41 ergibt sich
die Position der Kontur. Eine entsprechende Berechnung fiir die zweite
Ableitung wird hier nicht ndher ausgefiihrt aber ergibt sich analog.

In der Praxis ist diese Art der Konturdetektion jedoch nicht robust
genug fiir reale Bilder. Stattdessen wird in dieser Arbeit der Canny-
Konturdetektionsalgorithmus [12] verwendet, welcher im Folgenden na-
her ausgefiihrt wird. Der Canny-Algorithmus besteht aus fiinf Schritten.

Im ersten Schritt wird das Bildsignal mit einem Tiefpass in Form einer
Gaufs-Funktion gefiltert. Durch die Filterung soll Rauschen, welches als
additiv, weifs und gauf3-verteilt angenommen wird, entfernt werden. Das
quadratische Filter T mit einer Kantenldnge von a = 2k + 1 ist definiert
als

1 _ =)+ (= (k+1)?

T = (hjj) mit h;; = 72 22 und i,j € [1,2k+ 1] (2.42)

Das gefilterte Bild ergibt sich durch Faltung zu

Ige =T x 1 (2.43)

Im zweiten Schritt werden die Bildgradienten mit dem Sobel-Operator
[112] bestimmt. Die Sobel-Operatoren fiir Konturen in x- und y-Richtung
sind wie folgt definiert:

10 -1 1 2 1
Ksgbelx =] 2 0 —2 | undKsgpety =] 0 0 0 (2.44)
10 -1 -1 -2 -1

Mit diesem Operator findet in Konturrichtung eine Anndherung des
Gradienten statt, wahrend orthogonal zur Konturrichtung das Signal
geglattet wird. Mittels des Sobel-Operators werden die Gradientenbilder
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in beiden Richtungen, G, und Gy, aus dem im ersten Schritt erzeugten
gefilterten Bild berechnet:

Gx = Ksobelx * It und Gy = Kggbely * It (2.45)

Aus den beiden Gradientenbildern wird durch jeweils punktweise Be-
rechnung fiir jeden Abtastwert der Betrag des Gradienten G sowie die
Richtung des Gradienten ® bestimmt:

G=4/G:+Gj} (2.46)

® = atan(Gy, Gy) (2.47)

Im dritten Schritt wird das Betragsgradientenbild G aus Gleichung 2.46
mittels Non-maximum Suppresion (NMS), der Unterdriickung von Werten,
die kein Maximum sind, ausgediinnt. In Folge der Ausdiinnung wird
das Skelett der Konturen, Ggye, ermittelt. Hierfiir wird der Wert jedes
Pixels in G mit den Werten n; und n; der beiden benachbarten Pixel in
Richtung und entgegen des Gradienten (®(x,y)) an der entsprechenden
Stelle verglichen. Nur wenn G(x,y) grofer als die beiden Nachbarwerte
ist, bleibt der Wert erhalten. Andernfalls wird der Wert auf Null gesetzt.
Also:

G(x,y) wenn G(x,y) > ny,ny

Gekel (x/ y) = (2.48)

0 sonst.

Die verbleibenden Konturpixel in Ggye| werden im vierten Schritt mit-
tels zweier Grenzwerte, 1) und 1, mit 77 < T, in starke Konturpixel,
schwache Konturpixel und keine Konturpixel klassifiziert. Die Matrix
mit den Klassifikationsergebnissen /C berechnet sich gemafs

starker Konturpixel wenn Ggel (%, 1) > T
K(x,y) = { schwacher Konturpixel wenn 7y < Ggel(x,y) < T
kein Konturpixel sonst.

(2.49)

Die als starke Konturpixel klassifizierten Pixel werden als auf jeden
Fall zu einer Kontur gehorend betrachtet. Uber die als schwache Kontur-
pixel klassifizierten Pixel wird im fiinften Schritt mittels einer Hysterese
entschieden. Ausgehend von allen starken Konturpixeln werden in bei-
de Richtungen gehend schwache Konturpixel als zur Kontur gehorend
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betrachtet, solange sie mit starken Konturpixel oder mit als zur Kontur ge-
horend entschiedenen schwachen Konturpixeln verbunden sind. Die fina-
le Matrix mit einem bindren Konturbild nach der Canny-Konturdetektion
wird als Icanny bezeichnet.

Fiir CoMIC v1 wurde ermittelt, dass durch die Verwendung von aus-
gefeilteren Konturdetektionsalgorithmen, zum Beispiel [22], ein minima-
ler zusatzlicher Codierungsgewinn von 0,3% erzielt werden kann. Da
dieser zusatzliche Codierungsgewinn jedoch mit einer Erhohung der
Rechenkomplexitdt des gesamten Verfahrens um einen Faktor von 9o
einhergeht, erfolgt eine Beschrankung auf den schneller berechenbaren
Canny-Algorithmus.
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Ausgehend von einem zu codierenden Block, mit dem zugehorigen ihn
umgebenden Referenzbereich als Pradiktionsgrundlage, wird in diesem
Kapitel die Modellierung und Extrapolation der Konturen mit dem vor-
geschlagenen stochastischem Konturmodell beschrieben. Aufier Betracht
gelassen wird hierbei die Partitionierung des Bildes in Blocke. Im wei-
teren Verlauf der Arbeit werden im Ergebniskapitel (Kapitel 5) zwei
Implementierungen betrachtet: Zum einen der selbstentwickelte CoMIC-
Codec sowie der Videocodec HEVC. In ersterem werden lediglich Blocke
mit stets der gleichen, zu Beginn der Codierung festgelegten, Blockgro-
e codiert wihrend in letzterem durch die ausgefeiltere Partitionierung
Blocke in verschiedenen Grofien entstehen. Im Rest dieses Kapitels wer-
den die Verfahren unter Annahme quadratischer Blocke diskutiert und
visualisiert. Dieses stellt jedoch keine Einschrankung der beschriebenen
Methoden dar.

Um die Konsistenz mit den eigenen Vorarbeiten [65, 69] zu wahren
wird der Referenzbereich so wie in Abbildung 3.1 visualisiert gewahlt:
Der Referenzbereich befindet sich in vier Bildbereichen links, oben, links-
oben sowie rechts-oben vom aktuell codierten Block. Die vier Bildbereiche,
die zusammen den Referenzbereich ergeben, sind jeweils so grofs wie
der aktuell zu codierende Block. Da ein kausales Codierungssystem
betrachtet wird, ist der Bereich rechts neben dem aktuellen Block nicht
referenzierbar.

3.1 KONTURDETEKTION

Die Konturdetektion im Rahmen dieser Arbeit unterscheidet sich nicht
im Vergleich zu den eigenen Vorarbeiten [65, 69]. Sie wird nachfolgend
kurz zusammengefasst, damit die vorliegende Arbeit in sich geschlossen
ist. Die Konturdetektion wird in den Bereichen des Referenzbereichs
durchgefiihrt, in denen die Abtastwerte verfligbar ist. In Abhdngigkeit
der gewdhlten Partitionierung und an den Randern des Bildes kann es
zu Einschrankungen kommen.

Der im vorherigen Kapitel beschriebene Canny-Algorithmus [12] zur
Konturdetektion wird auf den Referenzbereich angewendet. Der Canny-

53

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

VERFAHREN ZUR MODELLIERUNG VON KONTUREN

Referenzbereich

zZu
codierender
Block

Abbildung 3.1: Darstellung des Referenzbereichs. Die vier Blocke des Referenzbe-
reichs sind genauso grofs wie der zu codierende Block.

Kontur 3

Kontur 1 el

N .

codierender

\(ontur 4 Block

Abbildung 3.2: Konturen im Referenzbereich. Lediglich die Konturen, die an den
zu codierenden Block angrenzen, werden fiir die Pradiktion ver-
wendet. Im Beispiel handelt es sich um die Konturen 1 und 2.
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3.1 KONTURDETEKTION

Algorithmus hat zwei Parameter, mit denen die Klassifizierung der Punk-
te! in starke und schwache Konturpunkte kontrolliert wird. Da die be-
trachteten Videosignale potentiell sehr unterschiedliche Signalcharakte-
ristiken haben konnen, ist es nicht zielfiihrend, globale Werte fiir diese
Parameter festzulegen. Stattdessen werden die Parameter signaladaptiv
bestimmt. Wie bereits in den eigenen Vorarbeiten [65, 69] und geméfd der
Arbeit von Fang et al. [26] wird hierfiir die Otsu-Methode [96] eingesetzt.
Das Ergebnis des Canny-Algorithmus ist ein bindres Konturbild, in dem
alle zu Konturen gehorenden Punkte markiert sind. Ein Beispiel ist in
Abbildung 3.2 dargestellt. Mit dem von Suzuki und Be vorgeschlagenen
Verfahren aus [117] werden zusammenhangende Konturpunkte in dem
bindren Konturbild detektiert. Zusammenhédngende Konturpunkte ge-
horen zu der selben Kontur, nicht zusammenhdngende Konturpunkte
gehoren folglich zu unterschiedlichen Konturen. Durch das gewdhlte
Verfahren kann es passieren, dass einige Punkte mehrfach einer Kontur
hinzugefiigt werden. Solche redundant vorkommenden Punkte werden
bereinigt.

Das Ergebnis der Konturdetektion sind die x- und y-Koordinaten der
Kontur. Fiir eine Kontur mit n Konturpixeln p; = (x;,y;) miti=1,...,n
sei:

X1 1
x=|: eR™L, = e R"*1L (3-1)

Xn Yn

Fiir jede Kontur wird gepriift, ob sie an den zu codierenden Block
angrenzt. Nur diese Konturen werden wie in Abbildung 3.3 dargestellt
fuir die nachfolgend beschriebene Pradiktion berticksichtigt. Des Weiteren
werden nur Konturen mit mehr als drei Pixeln betrachtet. Dieser Wert
hat sich in Vorarbeiten als sinnvolle Abwagung zwischen einer hohen
Anzahl an verwendeten Konturen und der notwendigen Robustheit der
Konturextrapolation erwiesen.

Bei der Modellierung der Konturen wird unterschieden je nachdem,
ob die Konturen von links oder von oben auf den zu préddizierenden
Block treffen. Bei Konturen, die von links kommend auf den aktuell zu
codierenden Block treffen, wird die horizontale Koordinate x als unab-
héngige Variable und die vertikale Koordinate y als abhéngige Variable
betrachtet. Fiir von oben kommend auf den aktuell zu codierenden Block
treffende Konturen ist es umgekehrt. Ohne hiermit einhergehende Ein-

Der Begriff Punkt wird zur Abgrenzung von den zuvor definierten Pixeln gewéhlt. In der
verwendeten Definition besteht ein Punkt aus zwei ortlichen Koordinaten und einem repra-
sentierten Wert. Bei diesem Wert kann es sich um einen Abtastwert des Bildes, einen bindren
Wert einer Konturkarte oder einen Gradientenwert handeln.
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Kontur 1 NG 2

N .

codierender
Block

Abbildung 3.3: Relevante Konturen im Referenzbereich. Lediglich die Konturen,
die an den zu codierenden Block angrenzen, werden fiir die Pra-
diktion verwendet.

schrankungen wird im Folgenden lediglich der Fall betrachtet, dass x
die unabhéngige Variable ist. Samtliche Uberlegungen und Herleitungen
sind analog auf den anderen Fall iibertragbar.

3.2 KONTURGLATTUNG

Durch den gewédhlten Konturdetektionsalgorithmis sind die Konturpixel
bis hierhin nur mit Ganz-Pel-Genauigkeit bekannt. Diese Kontur wird
als diskrete Kontur bezeichnet. Hierdurch kommt es zu Instabilitdten
bei der Modellierung der Kontur. Um dieses zu vermeiden wird die
Kontur zundchst durch eine kontinuierliche Funktion angenéhert. Dieses
kann auch als Glattung der Kontur betrachtet werden. Dieses passt auch
dazu, dass die Kontur in der Realitdt einen kontinuierlichen Verlauf hatte,
welcher nun durch diskrete Koordinaten angenédhert wurde.

Fiir die Anndherung der Kontur werden jeweils vier Funktionen (Poly-
nome nullten, ersten und zweiten Grades, sowie eine Exponentialfunk-
tion) mit der Methode der kleinsten Quadrate beziiglich der diskreten
Kontur optimiert. Die Funktion mit dem kleinsten mittleren quadrati-
schen Fehler wird ausgewdhlt. Der mittlere quadratische Fehler wird
berechnet gemaf3:

n

1 2
MSEGlattung T Z (Vi — i) (3:2)
i=1
ftir die durch die kontinuierliche Funktion angendherten Werte y;.
Hierdurch sind die Koordinaten der Konturpixel nun mit Sub-Pel-
Genauigkeit gegeben. Diese Kontur-Reprasentation wird als kontinuierli-
che Kontur bezeichnet.
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Die beschriebene Anndherung ist nur sinnvoll, wenn der hierdurch
entstehende Fehler nicht zu groff wird. Deshalb wird die Anndherung
nur verwendet, wenn der mittlere quadratische Fehler zwischen der kon-
tinuierlichen und der diskreten Kontur kleiner als 1 Pel ist. In diesem Fall
ist die Anndherung fast exakt, da der Fehler im Mittel der Genauigkeit
der diskreten Kontur entspricht. Fiir den Fall, dass die Approximation
erfolgreich ist, wird im weiteren Verlauf ein rauschfreier Gauf3-Prozess
modelliert. Falls die Approximation nicht erfolgreich ist, wird die Annah-
me getroffen, dass die diskrete Kontur durch additives, weiffes Rauschen
aus der kontinuierlichen Kontur entstanden ist, und der Gauf3-Prozess
entsprechend fiir eine rauschbehaftete Kontur formuliert.

3.3 MODELLIERUNG DER KONTUR

Der Modellierung der Kontur wird die Pramisse zugrunde gelegt, dass
es sich bei den Konturpixeln um Beobachtungen eines stochastischen
Prozesses handelt. Ferner wird angenommen, dass die Beobachtungen
normalverteilt sind. Fiir die Modellierung wird ein Gau8-Prozess gewéhlt.
Die Nomenklatur fiir die Beschreibung der Gaufi-Prozesse folgt dem
Lehrbuch [100] von Rasmussen und Williams.

Zunichst wird der sogenannte A-Priori-Gauf-Prozess, kurz Prior, formu-
liert. In den Prior gehen die beim Entwurf des Gaufs-Prozesses getroffe-
nen Annahmen tiber den zugrundeliegenden Prozess, hier also die Kontu-
ren, in Form einer Erwartungswertfunktion und einer Kovarianzfunktion
ein. Der Prior ist somit unabhingig von den beobachteten Konturen. Die
Wahl von einer geeigneten Erwartungswertfunktion und einer geeigneten
Kovarianzfunktion bilden folglich den Kern des Prior-Entwurfs. Die typi-
scherweise gewihlten Funktionen haben in der Regel Hyperparameter.
Diese bleiben zunéchst fiir den Prior unbestimmt. Basierend auf dem
Prior kann fiir eine konkrete detektierte Kontur der sogenannte Posterior-
Gaufi-Prozess, kurz Posterior, bestimmt werden. Hierfiir wird der Prior
basierend auf den beobachteten Konturpunkten angepasst. Zu diesem
Zweck werden die Werte der Hyperparameter der Erwartungswertfunk-
tion sowie der Kovarianzfunktion optimiert. Das Ziel der Optimierung
ist das Erreichen einer groftmoglichen Ubereinstimmung zwischen den
aus dem Posterior hervorgehenden Beobachtungen und den tatsichlich
beobachteten Konturpunkten. In den nachfolgenden Abschnitten werden
die Bestimmung des Priors und des Posteriors genauer betrachtet.
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3.4 A-PRIORI-GAUSS-PROZESS

Die Beobachtungen b des zu modellierenden Prozesses seien Kontur-
punkte:

b= (xy) (33)

Die Auswertung des Gauf3-Prozesses an den x-Werten der detektier-
ten Kontur liefert die Prior-Auswertungen f. Diese Prior-Auswertungen
setzen sich aus den rauschfreien Auswertungen f und unkorreliertem

weiflen Rauschen € mit der Varianz 02 zusammen:

f=f+e. (3-4)
Fiir einen rauschfreien Gauf-Prozess ergeben sich die Beobachtungen zu
b=(x1), (35)

da 02 = 0 gesetzt wird. Fiir einen rauschbehafteten Gauf-Prozess ergibt
sich: N
b = (x ) mit f ~ N (0,K (x,x) +03Z) (.6)

Hierbei ist K die Kovarianzmatrix, die sich aus x ergibt, und 7 die
Einheitsmatrix.

Aus Gleichung 3.6 lassen sich zwei Beobachtungen ableiten: Die Aus-
wertungen f an den Stellen x sind normalverteilt und sie hdngen von den
Eingaben x ab. Aufgrund dessen wird £ als bedingte Zufallsvariable f|x
formuliert. Nachfolgend wird der rauschbehaftete Gaufi-Prozess betrach-
tet. Der rauschfreie Fall lisst sich durch Setzen von o2 = 0 herleiten.

Rasmussen und Williams [100] folgend wird, wie bereits in Glei-
chung 3.6 angedeutet, die Erwartungswertfunktion des Priors zu Null
gesetzt. Dieses stellt keine weitreichende Einschrankung dar, sondern
dient vielmehr der vereinfachten Notation, da sich keine ebensolche Re-
striktion fiir den im weiteren Verlauf der Ausfiihrungen betrachteten
Posterior ergibt.

Die Kovarianzfunktion, welche auch als Kernel bezeichnet wird, ist
fiir den Prior von weitaus grofierer Bedeutung als die Erwartungswert-
funktion. Der sogenannte Squared Exponential Kernel, ksg(xp, x;), ist der
Defacto-Standard fiir Gauf3-Prozess-Kovarianzfunktionen [25]. Deshalb
wird diese Kovarianzfunktion auch hier verwendet. Die Definition lautet:

(xp—x9)?

ksg(xp, x4) = e F (3-7)

Die Variable C ist hierbei ein Skalierungsfaktor. Er wird quadriert notiert,
da er auch als Varianz interpretiert wird, die angibt, wie die mittlere
Abweichung der zu modellierenden Funktion von ihrem Mittelwert ist.
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3.5 POSTERIOR-GAUSS-PROZESS

Der Langenskalierungsfaktor & beschreibt die zu erwartende Kriimmung
der zu modellierenden Kontur.

Die gewdhlte Kovarianzfunktion bietet den Vorteil, dass sie beliebig oft
differenzierbar ist und damit einen glatten Verlauf liefert. Diese Eigen-
schaft passt dazu, dass fiir die beobachteten Konturen in vielen Fallen
keine Knicke innerhalb der betrachteten BlockgrofSen erwartet werden.
Dieses geht einher mit den vielfaltigen Partitionierungsoptionen, die bei
der Codierung in einem Videocodec moglich sind.

Alternativ konnte auch der sogenannte Rational Quadratic Kernel ver-
wendet werden. Hierbei handelt es sich um eine Verallgemeinerung des
Squared Exponential Kernels mit einem zusitzlichen Langenskalierungs-
faktor als Hyperparameter. Durch den zusétzlichen Hyperparameter
lielen sich Daten, die entlang mehrerer Langenskalen variieren, besser
modellieren. Dieses wird jedoch ebenfalls aufgrund der Partitionierungs-
algorithmen nicht erwartet.

Ein Nachteil aufgrund der gewahlten Kovarianzfunktion ergibt sich,
falls Knicke in der modellierten Kontur vorkommen. In diesem Fall
passt das gewdhlte Modell nicht zu den zu modellierenden Daten. In
der eigenen Vorarbeit [69] wurde ein Losungsansatz fiir dieses Problem
vorgeschlagen. Da der Fall jedoch nur selten eintritt, wird er hier nicht
weiter betrachtet.

Die gewahlte Kovarianzfunktion fiihrt zu einer symmetrischen Ko-
varianzmatrix. Deshalb ladsst sich der Rechenaufwand der nachfolgend
beschriebenen Posterior-Bestimmung durch eine Cholesky-Zerlegung
verringern.

3.5 POSTERIOR-GAUSS-PROZESS

Der Posterior ergibt sich aus dem Prior durch Optimierung der Hyper-
parameter © = ((, &) der Kovarianzfunktion. Die Startwerte der Hy-
perparameter des Gauf3-Prozesses seien ®g. Das Optimierungsziel ist
hierbei, die Ubereinstimmung der Gauf-Prozess-Auswertungen f mit
den tatsachlichen Werten y der Konturpixel an den Stellen x zu ma-
ximieren. Als Giitekriterium wird die Likelihood verwendet. Auf den
Anwendungsfall der Konturmodellierung bezogen handelt es sich um
die Wahrscheinlichkeit, dass die Beobachtungen f|x des Gauf-Prozesses,
die Werte y der Konturpixel haben. Die Formulierung erfolgt tiber die
Verbundwahrscheinlichkeit P(y|f,x) der bedingten Zufallsvariable y/|f
und x.

Die Wahrscheinlichkeit, dass y unter der Bedingung x beobachtet wird,
ergibt sich als Randwahrscheinlichkeit, engl. Marginal Likelihood, von y
tiber alle f. Hierbei berechnet sich die Wahrscheinlichkeitsdichte aus dem
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Produkt der Prior-Wahrscheinlichkeitsdichte, p(f|x), und der Likelihood-
Wabhrscheinlichkeitsdichte, p(y|f, x):

p(ylx) = p(ylf, x) - p(f|x). (3-8)

Durch Integration lasst sich aus der Wahrscheinlichkeitsdichte die Wahr-
scheinlichkeit bestimmen:

P(yb) = [ p(yl£x) - p(Eix) i 9)

Fir die Wahrscheinlichkeitsdichtefunktionen wird die n-dimensionale
(vgl. Gleichung 3.1) gau8-formige Wahrscheinlichkeitsdichte eingesetzt.
Diese ist wie folgt definiert:

(X) = ——
P V2T

In Gleichung 3.10 steht ¥ fiir die Kovarianzmatrix, | - | fiir den Determi-
natenoperator und y fiir den Erwartungswertvektor.

Folglich wird die Wahrscheinlichkeit P(y|x) maximal, wenn die Expo-
nenten der Wahrscheinlichkeitsdichten gemafs Gleichung 3.10 maximal
werden. Fiir diese Maximierung wird durch Logarithmieren unter An-
nahme von ¢ = 0 und X = K + 027 die Log-Marginal-Likelihood berechnet:

In (p (y[x)) = In (ﬁ ~e-%yT21Y> (3.11)

e 2 T (=) (3.10)

=1 1 1 T -1
=In Nezg] Sy Xy (3.12)

= 2im@n - () -5yl G

Der erste Term in Gleichung 3.13 ist eine Konstante, der zweite Term
wirkt tiber die Hyperparameter der Kovarianzfunktion regularisierend
auf die Modellkomplexitat und der dritte Term beschreibt die Giite der
Anpassung des Gauf3-Prozesses an die detektierte Kontur [100].

Da ¥ positiv-definit und symmetrisch ist, kénnen £~! und |Z| mit der
in Gleichung 3.14 notierten Cholesky-Zerlegung berechnet werden:

L = cholesky (%), (3-14)
= =1L (3.15)
i
T
vl = (L—1> Ll (3.16)
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3.5 POSTERIOR-GAUSS-PROZESS

Da die Maximierung von In (p (y|x)) unter Annahme konstanter y
und x erfolgt, wird zur besseren Notation die folgende Umformulierung
vorgenommen:

In (p (y1x)) = In (py)x (©)) (G17)

Fiir die Maximierung werden die Hyperparameter ® gesucht, bei denen
die erste Ableitung der Log-Marginal-Likelihood Null ergibt:

d !
T} In (py‘x (@)) =0. (3-18)
Wegen des Logarithmus folgt hieraus ohne weitere Rechnung;:
d 1
@ln <Py\x (@)> = m (3.19)

Die Nullstellensuche erfolgt mit dem Newton-Raphson-Verfahren, einem
iterativen Ansatz zur Nullstellensuche. Dieses Verfahren ist fiir stetig-
differenzierbare Funktionen anwendbar. Durch die gewahlten Wahr-
scheinlichkeitsdichte- und Kovarianzfunktionen ist dieses Kriterium er-
ftllt. Durch die Maximierung werden die Hyperparameterwerte ®max
gefunden, bei denen die Log-Marginal-Likelihood maximal wird, die
Daten also am Besten modelliert werden kénnen.

Durch das Einsetzen von ®@max = (Cmax, Emax) in Gleichung 3.7 lassen
sich die Posterior-Kovarianzmatrizen fiir spater noch genauer spezifi-
zierte Zufallsvariablen a und b berechnen. Sie werden mit Kpost(a, b)
(rauschfrei) und Zpost(a, b) = Kpost(a, b) + 02T (rauschbehaftet) bezeich-
net.

Basierend auf dem so auf die bekannten Konturpunkte optimierten
Posterior soll nun die Erstellung einer Pradiktion hergeleitet werden.
Gauf3-Prozesse gehen mit der Erfiillung der sogenannten Konsistenz-
Eigenschaft einher [100]: Wenn ein GauB-Prozess beispielsweise (y1,y2) ~
N (p, %) definiert, dann definiert er automatisch auch fiir eine Teilmenge
der Variablen y; ~ N (p1,%11), wobei ¥1; die entsprechende Teilmatrix
von X ist. Fiir die Konturmodellierung entsprechen die Beobachtungen
ftir die Trainingspunkte y; und die Beobachtungen fiir die zu pradizie-
renden Punkte 5.

Mit dieser Erkenntnis ldsst sich die Pradiktion fiir den Fall rauschfreier
Beobachtungen als multivariate Gauf3-Verteilung betrachten. Hierbei wird
fiir den aus den Beobachtungen fiir die Trainingspunkte sowie die zu
préadizierenden Beobachtungen der folgende Zufallsvektor formuliert:

I:ff:| ~ N <O, Kpost(X,X) Kpost(xlx*) :|> '

(3.20)
Kpost (X*/ X) Kpost (X*, X )

mit
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x € R™: n Trainingspunkte

xx € R™: n, zu pradizierende Punkte

f € R™: n Beobachtungen fiir die Trainingspunkte

f. € R"™: n, Beobachtungen fiir die zu pradizierenden Punkte

Kovarianzmatrizen, die aus den Kombinationen von x und x, entstehen:
Kpost(x,x) € R"™",
Kpost (x, Xy ) € R"7,
Kpost(x*,x) € R™X¥",
Kpost (X, X ) € R,

In Gleichung 3.20 ist mit f bereits ein Teil des Zufallsvektors bekannt.

Der noch unbekannte Teil des Zufallsvektors, also f,, ldsst sich berechnen,
indem die bedingte Verteilung von f. gegeben x, x., f berechnet* wird:

£, |X, X, £~ N (Kpost(x*/ X)Kpost (Xr X) _1f/
Kpost(x*, X*)* (3.21)

Kpost (X*, X)Kpost (X, X) ! Kpost (X/ X )) .

Der rauschbehaftete Fall ldsst sich analog hierzu herleiten. Die nen-
nenswerten Anderungen im Vergleich zu den Gleichungen 3.20 und 3.21
sind, dass zum einen die tatsdchlichen y-Werte der Konturpunkte anstatt
der durch den Gaufs-Prozess beobachteten Punkte f verwendet werden3
und zum anderen im linken oberen Teil der Kovarianzmatrix fir die
Eintrdge auf der Hauptdiagonalen unkorreliertes Rauschen addiert wird.

Es ergeben sich:

HESE

Aus [100] von Rasmussen und von Mises in [83] folgend:

Es sei:
y. wl LCTB)
Dann sind die bedingten Wahrscheinlichkeiten von x gegeben y und umgekehrt:

x|y ~ N (ux +CB™" (y —pty) ,A— CB~'C"),
yx~N (py+CTA™ (x— ), B—CTATIC).

(3.22)

Kpost(X/ x) + U;%I KpOSt(x/ Xs) :| )
Kpost(x*, X) Kpost(x*, X*)

N

’

3 Siehe hierzu auch den Abschnitt 3.2 ab Seite 56.
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36 KONTUREXTRAPOLATION

und
-1
£o]% Xi, y ~ N(Kpost(x*/ X) [Kpost(xl x) + U%I} Y,
Kpost (x*/ x*)* (3-23)

1
Kpost (X*, x) [Kpost(xz X) + (751} Kpos’t (X, X*)) .

Fiir den Fall, das nur ein einzelner Konturpunkt gleichzeitig pradiziert
wird#4, sowie mit der verkiirzten Schreibweise Zpost = Kpost (X, X) + 027,
ergibt sich fiir die pradizierende Beobachtung f. an der Stelle x,:

Fu e (Kot (55 0 ey
(3-24)
kpost(xp/ xp) - prSt(xpl X)Zl;(,lstkpost(xz xp)) ’

mit den aus den detektierten Konturpunkten gewonnenen Trainingsdaten
X, y sowie x, als x-Koordinate fiir die Vorhersage f..

In Gleichung 3.24, wie auch in den Gleichungen 3.21 und 3.23, ist
bemerkenswert, dass zum einen der Mittelwert der Gauf-Verteilung eine
lineare Funktion der y-Werte der detektierten Kontur ist und zum ande-
ren die Unsicherheit der Pradiktion nur von den Kovarianzen zwischen
allen x-Werten (Trainingspunkte und zu pradizierende Punkte) abhangt
und unabhéngig von den pradizierten y-Werten ist.

36 KONTUREXTRAPOLATION

Um nun eine mit einem Posterior modellierte Kontur zu extrapolieren,
werden Prddiktionen y, an den Stellen xj, mittels des auf den bekannten
Konturpixeln optimierten Gauf3-Prozesses erzeugt. Xp sind hierbei die
x-Koordinaten fiir die zu extrapolierende Kontur. Deshalb werden alle x-
Werte des aktuell codierten Bereichs im lokalen Koordinatensystem, also
s < x < 2s bei einer Blockgrofie s, eingesetzt. Die y-Koordinaten werden
jeweils durch Auswertung des Posterior-Erwartungswerts ermittelt:

Yp = Mpost(xp) = kpost(xpfx)zily (3-25)

Die prédizierten Konturpunkte sind dann p = (xp,yp). Es erfolgt eine
Rundung auf Ganz-Pel-Genauigkeit.

4 Dieser Fall entspricht der fiir Kapitel 5 genutzten Implementierung des vorgeschlagenen
Verfahrens.

63

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

VERFAHREN ZUR MODELLIERUNG VON KONTUREN
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Abbildung 3.4: Konturextrapolation mit 95%-Konfidenzintervallen (y, £ 1.96 - 0},

An dieser Stelle liefSe sich ermitteln, ob die pradizierten Konturpunkte
innerhalb des aktuell codierten Blockes liegen, also

s <yp<2s (3.26)

gentigen. Aus Griinden einer geordneten Software-Architektur ist es je-
doch erstrebenswert, dass das vorgeschlagene Konturmodell nicht nur
mit dem in Kapitel 4 vorgeschlagenen Verfahren zur Abtastwertpradik-
tion mit neuronalen Netzwerken harmoniert, sondern auch vollstin-
dig kompatibel zu dem in der eigenen Vorarbeit [69] vorgeschlagenen
Along-contour-Verfahren zur Abtastwertpréadiktion ist. Da in letzterem die
extrapolierte Kontur entlang der durch sie geschnittenen Blockgrenze
verschoben wird, konnen eigentlich auflerhalb des aktuellen Blockes lie-
gende Konturpixel in diesen hineinverschoben werden. Folglich wird die
genannte Priifung im nachfolgenden Kapitel 4 im Rahmen der Erzeugung
der Eingangsdaten fiir das neuronale Netzwerk diskutiert werden.

Die Unsicherheit der Pradiktion ldsst sich tiber die Varianz beziehungs-
weise Standardabweichung berechnen:

(7;% = kposterior (xp/ Xp ) ’ (3-27)

op = \Jo3. (3.28)

Ein Beispiel fiir die Konturextrapolation ist in Abbildung 3.4 visualisiert.
Hierbei ist neben dem extrapolierten und dem tatsdchlichen Konturver-
lauf die Konfidenz in der Extrapolation mit 95%-Konfidenzintervallen
(yp +1.96 - 0},) dargestellt.

Ebenfalls im nachfolgenden Kapitel wird beschrieben werden, wie aus
der Varianz ein zusétzlicher Kanal fiir die Eingangsdaten des neuronalen
Netzwerks erzeugt wird.
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U, Along-contour
Polynomielles 9

Konturmodell —e i Mode- | . Abtastwert-
(Vorarbeit) A iauswahlix pradiktion
I tx (Vorarbeit)

Kontur- ,: ,:
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Abbildung 3.5: Einbettung der entwickelten Verfahren in das Gesamtsystem: Die
im Rahmen dieser Arbeit entwickelten Verfahren zur Konturmo-
dellierung und Abtastwertpradiktion werden so entworfen, dass
sie unter Wahrung der vollstindigen Kompatibilitit mit dem je-
weils entsprechenden Verfahren aus den Vorarbeiten getauscht
werden kénnen. Hierdurch kann der Mehrwert durch die in dieser
Arbeit vorgeschlagenen Verfahren ermittelt werden.

3.7 EINBETTUNG IN DAS GESAMTSYSTEM

Als Abschluss dieses Kapitels wird erldutert, wie sich das vorgeschlagene
Verfahren zur Modellierung von Konturen in das Gesamtsystem CoMIC
einordnet. Die Einordnung wird anhand von Abbildung 3.5 erldutert.
Das Gesamtsystem umfasst eine Verkettung von mehreren Verfahren. Die
Konturdetektion steht in jedem Fall zu Beginn der Verarbeitung. Der Rest
der Verfahrenskette ist zweigeteilt in die Konturmodellierung und die
Abtastwertpradiktion. Diese Teilung folgt der bereits in Kapitel 1 ndher
begriindeten Pramisse, dass die Konturmodellierung geeignet ist, um die
globalen Eigenschaften des Signals, beispielsweise Objektformen, gut zu
erfassen, wahrend die auf lokalen Signaleigenschaften aufbauende Abtast-
wertpradiktion gut fiir die Verarbeitung von lokalen Signaleigenschaften
wie Farbverldufen ist.

Fiir jeden dieser beiden Blocke wird im Rahmen dieser Arbeit ein
neues Verfahren vorgeschlagen. Hierbei ist das vorgeschlagene Verfah-
ren jeweils eine Alternative zu dem entsprechenden Verfahren aus den
eigenen Vorarbeiten [65, 69]. Das in diesem Kapitel vorgeschlagene sto-
chastische Konturmodell bietet eine Alternative zu dem polynomiellen
Konturmodell. Das im ndchsten Kapitel vorgeschlagene Verfahren zur Ab-
tastwertpradiktion mit neuronalen Netzwerken ldsst sich als Alternative
zum Along-contour-Verfahren einsetzen.

Die System-Architektur — und damit einhergehend auch die das Sys-
tem implementierende Software-Architektur — ist so entworfen, dass fiir
beide Teile der Verfahrenskette das Verfahren nach Belieben durch die
beiden Schalter in Abbildung 3.5 gewéhlt werden kann und unabhéngig
von der Wahl die Module kompatibel zueinander sind. Die Ausgabe
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der Konturmodellierung, und damit die an der Schnittstelle zwischen
Konturmodellierung und Abtastwertpradiktion weitergegebenen Infor-
mationen, sind pro modellierter Kontur der Schnittpunkt der Kontur mit
der Blockgrenze des aktuell codierten Blocks, der Verlauf der extrapolier-
ten Kontur, die Zuordnung von unabhéngiger und abhangiger Variable
zu x und y sowie die Konfidenz der Extrapolation. Letztere steht nur fiir
das stochastische Konturmodell zur Verftigung.
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VERFAHREN ZUR ABTASTWERTPRADIKTION
MITTELS MASCHINELLEN LERNENS

In diesem Kapitel wird das vorgeschlagene Verfahren zur Abtastwerpra-
diktion mittels maschinellen Lernens beschrieben. Nach einer kurzen
Einordnung in das Gesamtsystem wird die fiir das Training der neu-
ronalen Netzwerke verwendete Datenbasis erldutert. In den zentralen
Abschnitten des Kapitels werden die verwendeten Architekturen sowie
das Trainingsverfahren diskutiert.

4.1 EINORDNUNG IN DAS GESAMTSYSTEM

Die Eingangssignale fiir das in diesem Kapitel beschriebene Verfahren
sind die Abtastwerte des Referenzbereichs und pro Kontur die Ausga-
ben der Konturextrapolation, also der Schnittpunkt der Kontur mit dem
zu codierenden Block, die Zuordnung unabhingiger und abhangiger
Variablen, der Verlauf der extrapolierten Kontur sowie die zugehorige
Konfidenz in die Extrapolation. In Abhéangigkeit des gewahlten Kon-
turmodellierungsverfahrens (vgl. Abbildung 3.5) ist das letztgenannte
Eingangssignal fiir polynomiell modellierte Konturen nicht verftigbar.
Das Ergebnis des vorgeschlagenen Verfahrens sind die pradizierten Ab-
tastwerte fiir den zu codierenden Block.

4.2 DATENBASIS

Die richtige Wahl von Trainingsdaten ist von entscheidender Bedeutung
ftir den Erfolg des Trainings neuronaler Netzwerke. Es ist erforderlich,
dass die Anzahl an Beispielen in den Trainingsdaten hoch genug ist,
da Netzwerke in der Regel viele zu trainierende Parameter in ihrer
Konfiguration haben. Des Weiteren miissen die Trainingsdaten vielfaltig
genug sein, um eine gute Generalisierung zu ermoglichen. Auch miissen
die Daten frei von Artefakten sein, die das Training behindern kénnen
und zu dem Erlernen von irrelevanten Merkmalen fithren.
Im Rahmen dieser Arbeit wird die Raw Image Dataset (RAISE)-Datenbank

[19] verwendet. Diese Datenbank beinhaltet Fotografien, die mit verschie-
denen Kameras aufgenommen wurden, und Auflésungen von 3008 x
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VERFAHREN ZUR ABTASTWERTPRADIKTION MITTELS MASCHINELLEN
LERNENS

Abbildung 4.1: Bilder der Trainingsdatenbank.

2000, 4288 x 2848 und 4928 x 3264 haben. Die Bilder wurden als Raw-
Aufnahmen von den Kameras gespeichert und auch im weiteren Verlauf
der Datenbankerstellung nie verlustbehaftet codiert. Die Verwendung von
solchen unkomprimierten® Bildern als Trainingsdaten ist erstrebenswert,
weil die Bilder keinerlei Codierungsartefakte enthalten. Hierdurch wird
verhindert, dass die Netzwerke wahrend des Trainings lernen, Merkmale
aus Codierungsartefakten zu extrahieren. Die Motive der Bilder in der
Datenbank sind sehr vielféltig. Von der Autoren werden diese in die Ka-
tegorien Outdoor, Indoor, Landscape, Nature, People, Objects und Buildings
Klassifiziert [19]. Zur Erzeugung der Trainingsdaten werden 50 Bilder
zuféllig ausgewahlt. Die verwendeten Bilder aus der Datenbank sind in
Abbildung 4.1 dargestellt.

Aus den Bildern der RAISE-Datenbank werden bis zu vier verschiedene
Eingangssignale fiir die neuronalen Netzwerke gewonnen. Diese werden
im Folgenden erldutert:

Es ist anzumerken, dass der Referenzbereich wihrend der Codierung durch die Quantisierung
mit unterschiedlichen Quantisiererstufenbreiten nicht als unkomprimiert angesehen werden
kann. Im Rahmen dieser Arbeit wird nicht weiter untersucht, inwiefern sich die Effizienz des
vorgeschlagenen Verfahrens durch die Verwendung von quantisierten Trainingsdaten oder
durch das Training unterschiedlicher Netzwerke fiir verschiedene Quantisierungsparameter
weiter steigern liefSe.

68

IP 216.73.216.80, am 24.01.2026, 04:00:51.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

4.2 DATENBASIS

1. Abtastwerte des Referenzbereichs: Die Referenzabtastwerte sind die
wichtigste Information fiir das neuronale Netzwerk, da dieses die
Aufgabe hat, die Abtastwerte des benachbarten, aktuell zu codie-
renden, Blockes zu préadizieren. Anders als bei anderen Problemen,
beispielsweise im Feld der Klassifizierung, in dem mehr die rela-
tiven Anderungen zwischen benachbarten Abtastwerten relevant
sind, sind bei dem Problem der Abtastwertpradiktion die absoluten
Werte von Interesse. Deshalb erfolgt lediglich eine Skalierung des
urspriinglichen Wertebereichs von o bis 255 auf den Wertebereich
0,0 bis 1,0, aber keine weitere Manipulation.

2. Verftigbarkeit der Referenzwerte als Maske: Je nach gewdéhlter Par-
titionierung und der Position im Bild mit Bezug auf die Bild- und
Slice-Grenzen sind gegebenenfalls nicht alle Referenzabtastwerte
verfiigbar. Das Wissen hiertiber ist von Relevanz fiir das Netzwerk,
da nattirlich nur existierende Abtastwerte in eine Pradiktion ein-
gehen sollten. Gleichwohl ist es unpraktikabel, die Grole und die
Form der Eingangstensoren an die verfligbaren Referenzabtast-
werte anzupassen. Um dem neuronalen Netzwerk dennoch die
Kenntnis tiber die Verftigbarkeit des Referenzbereichs anzuzeigen
wird eine bindre Maske, dessen ortliche Grofse mit der Grofie des
Referenzbereichs tibereinstimmt, verwendet. Es konnte eingewen-
det werden, dass das Wissen tiber das Nichtvorhandensein der
Abtastwerte auch aus denselben extrahiert werden konne, beispiels-
weise in dem diese auf Null gesetzt werden. Dieses ist jedoch nicht
der Fall, da es sich hierbei um einen validen Eingangswert handelt,
der in realen Signalen nicht zuletzt bei Unterbelichtung auftreten
kann.

3. Modellierte und extrapolierte Kontur: Der Verlauf von Konturen,
und damit die Kenntnis tiber die Form von Objekten innerhalb
des betrachteten Bildausschnitts, wird als wertvolle Information
fur die Abtastwertpradiktion angesehen. Aus der Vorarbeit [24] ist
bekannt, dass die alleinige Verwendung von Referenzabtastwerten,
unter der Annahme, dass das neuronale Netzwerk die Schiatzung
des Konturverlaufs mitlernen kénne, nicht zu zufriedenstellenden
Ergebnissen fiihrt. Der Konturverlauf wird in Form eines ebenfalls
bindren Konturbildes in das Netzwerk eingegeben. Das Signal hat
die gleiche ortliche Auflosung wie der zu einem Rechteck erweiterte
Referenzbereich. Hierfiir wird die gefundene Kontur, die auch
schon die Eingabe der Konturmodellierung war, mit dem Ergebnis
der Konturextrapolation kombiniert.
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4. Konfidenz der Konturextrapolation: Mit dem Ergebnis der stochas-
tischen Konturmodellierung und der anschlieffenden Konturex-
trapolation hat man fiir jede extrapolierte Stelle x, entsprechend
Gleichung 3.27 eine Konfidenz (7%. Aus dieser wird, wie nachfol-
gend noch weiter ausgefiihrt, ein Grauwert-Signal mit der gleichen

ortlichen Grofie wie bei den anderen Eingangssignalen erzeugt.

Durch die Verarbeitung der 50 zuféllig gewahlten Bilder aus der RAISE-
Datenbank werden Hierarchical Data Format 5 (HDFs5)-Datenbanken [123]
mit den Trainings- und Validierungsdaten erzeugt. Es werden getrenn-
te Datenbanken fiir die unterschiedlichen Blockgrofien erstellt. Dieses
Datenbank-Format wurde gewdhlt, weil es eine hohe Effizienz beim wahl-
freien Lesen von Teilabschnitten der Datenbank ermoglicht. Dieses ist die
typische Anforderung wahrend des Trainingsvorgang, in dem die Daten
in einer zufélligen Reihenfolge gelesen werden. Alle Werte werden mit
32-Bit Genauigkeit als FlieBkommazahlen gespeichert, da diese fiir die
Ein- und Ausginge des neuronalen Netzwerks benotigt werden. Hier-
durch ist zwar der Speicherplatzbedarf hoher als bei einer Speicherung
von 8-Bit Daten, jedoch ist die einmalige Konvertierung praktikabler als
eine wiederkehrende Konvertierung in jeder Trainingsiteration.

Fiir die Datenbankerzeugung wird tiber alle fiir die Datenerzeugung
vorgesehenen Bilder iteriert. Jedes Bild wird entsprechend der gewéahlten
Blockgrofie in nicht tiberlappende Blocke aufgeteilt, tiber welche eben-
falls iteriert wird. Die Abtastwerte in direkt nebeneinander liegenden
Blocken sind insbesondere fiir kleine Blockgrofien stark korreliert. Zur
Vermeidung unnétiger Redundanzen in der Trainingsdatenbank wird in
Abhingigkeit der Blockgrofie nur jeder n-te Block verwendet, wobei n
die folgenden Werte hat: 1 fiir 64 x 64-Blocke, 2 fiir 32 x 32-Blocke, 6 fiir
16 x 16-Blocke, 25 fiir 8 x 8-Blocke und 100 fiir 4 x 4-Blocke. Fiir jeden
Block erfolgt die Konturdetektion wie im vorherigen Kapitel beschrieben.
Es kann eine Fallunterscheidung getroffen werden: Falls keine Konturen
im zugehorigen Referenzbereich des Blockes sind, werden fiir diesen
Datenbankeintrag lediglich die Felder fiir die Referenzabtastwerte sowie
die Verfiigbarkeitsmaske der Referenzabtastwerte befiillt.

Im Normalfall gibt es Konturen. Die werden mit dem vorgeschlagenen
Konturmodell aus Kapitel 3 verarbeitet. Um eine robuste Konturmodel-
lierung sicherzustellen, werden — wie auch bei der eigentlichen Codie-
rung — bei der Trainingsdatenerzeugung nur Konturen mit mehr als
drei Konturpixeln extrapoliert. Kiirzere Konturen werden nicht betrach-
tet. Alle geeigneten Konturen werden modelliert und extrapoliert. Das
Ergebnis der Konturextrapolation besteht aus den Vorhersagen gemaf3
Gleichung 3.25 mit den zugehorigen Konfidenzen gemaf Gleichung 3.27.
Hierbei handelt sich pro Konturpunkt um insgesamt drei Zahlenwerte:

70

IP 216.73.216.80, am 24.01.2026, 04:00:51. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

4.2 DATENBASIS

Zwei Zahlenwerte fiir die Koordinaten des Punkts, (xpi,ypi), und einen

Zahlenwert fiir die Varianz, (721-.

Die fiir das vorgeschlagene Verfahren verwendeten Netzwerkarchitek-
turen sind jedoch wegen ihrer zugrunde liegenden Faltungsschichten
fiir die Verarbeitung von zweidimensionalen Daten ausgelegt. Deshalb
erfolgt eine Umwandlung in ein entsprechendes Format. Dass die Um-
wandlung von eigentlich nicht zweidimensionalen Daten in solche fiir
eine Verarbeitung durch Faltungsnetzwerke sinnvoll ist, ist beispiels-
weise aus dem Fachgebiet der Audioverarbeitung bekannt [142]. In der
genannten Arbeit werden Audiodaten durch die Umwandlung in eine
Spektrumsdarstellung als zweidimensionale Bilder interpretiert.

Das bindre Konturbild ergibt sich aus den Koordinaten der Kontur-
punkte. Aus der Konfidenz in die Konturextrapolation wird eine soge-
nannte Konfidenzkarte erzeugt. Die Erlduterung des Vorgehens erfolgt
anhand von Abbildung 4.2. Fiir die Erzeugung der Konfidenzkarte wird
02 aus Gleichung 3.27 fiir jedes x}, im zu codierenden Block berechnet.
Zur vereinfachten Notation wird ein lokales Koordinatensystem, dessen

Ursprung im extrapolierten Konturpunkt (xp, Yx, (xp)> liegt, angenom-
men. In jeden Konturpunkt wird eine Gaufs-formige Konfidenzfunktion

Cx, (yxp> mit der berechneten Varianz gelegt:

2
Cx, (yxp> = e (4.1)
\/270?
Die Auswertungen der jeweiligen Konfidenzfunktionen in jedem Punkt
entlang der yx,-Achsen werden als Grauwerte interpretiert. Das Beispiel
in Abbildung 4.3 zeigt exemplarisch eine auf die geschilderte Weise
entstehende Konfidenzkarte.

Im Gegensatz zu anderen Arbeiten wie [66] werden nicht die durch eine
Codierung entstehenden rekonstruierten Abtastwerte fiir die Trainings-
daten verwendet sondern die originalen Abtastwerte. Zum einen ware
bei der Verwendung vor einer Codierung zu entscheiden, mit welchen
Quantisierungsparametern die Daten zu codieren wiren. Eine Optimie-
rung der Trainingsdaten — oder sogar noch weitergehend das Trainieren
von spezifischen Netzwerken — auf die in akademischen Veroffentli-
chungen und Standardisierungsbeitrdgen typischerweise verwendeten
vier Quantisierungsparameter erscheint nicht sinnvoll, da in realen Sze-
narien weit mehr unterschiedliche Quantisierungsparameter verwendet
werden. Die Unterschiede zwischen den rekonstruierten Abtastwerten
und den Original-Abtastwerten liegen im Wesentlichen in der durch die
Transformationscodierung bedingte leichte Tiefpassfilterung sowie in
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GauB-Funktionen in den
lokalen Koordinatensystemen

lokale Koordinatensysteme
an den Stellen der Konturpunkte

modellierte und
extrapolierte Kontur

Yx

3

Abbildung 4.2: Erzeugung der Konfidenzkarte: In jeden Punkt der extrapolierten
Kontur wird eine Gaufi-Funktion entsprechend Gleichung 4.1 ge-
legt, deren Varianz durch die Konfidenz der Extrapolation geméaf3
Gleichung 3.27 gegeben ist.

Codierungsartefakten begriindet. Da keine Codierungsartefakte in den
Trainingsdaten vorhanden sind, wird das neuronale Netzwerk nicht die
Reproduktion von solchen Artefakten erlernen. Durch eine Tiefpassfilte-
rung wiirden hochfrequente Daten in den Trainingsdaten fehlen. Es wird
jedoch angenommen, dass neuronale Netzwerke hohe Frequenzen in
Bildsignalen, bis hin zu dem Rauschanteil, nicht pixelgenau vorhersagen
konnen. Fin kiinstlich erzeugtes nicht pixel-genaues Rauschen wiirde
jedoch zu einer ansteigenden Datenrate fiir den Pradiktionsfehler fiihren.
Ferner geht der Verzicht auf die hohen Signalanteile einher mit der spater
beschriebenen Wahl der Kostenfunktion fiir das Training der Netzwerke.
Durch diese Kostenfunktion erfolgt eine Regularisierung gegen hohe-
re Frequenzen im pradizierten Signal. Hierdurch macht es letztendlich
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Abbildung 4.3: Beispiel einer Konfidenzkarte

keinen Unterschied, ob hohe Frequenzen in den Trainingsdaten sind
oder nicht, da diese durch die Kostenfunktion zwar nicht verboten aber
bestraft wiirden.

Die Eigenschaften des Luma- und der Chroma-Signale unterscheiden
sich voneinander. Das Luma-Signal hat eine wesentlich hohere Entro-
pie als die Chroma-Signale. Deshalb ist es nicht sinnvoll, Luma- und
Chroma-Signale einheitlich zu betrachtet. Stattdessen werden getrennte
Datenbanken erzeugt und auch separate neuronale Netzwerke trainiert.

4.3 ARCHITEKTUREN

Autoencoder sind eine Ausfiihrungsform von neuronalen Netzwerken.
Der Grundgedanke eines klassischen Autoencoders® besteht aus einer
Architektur mit der das Ziel verfolgt wird, dass die Eingangsdaten den
Ausgangsdaten entsprechen. In der sogenannten Codierungsschicht, die
auch als Bottleneck oder Latent Space bezeichnet wird, in der Mitte der
Architektur werden die Daten mit einer deutlich geringeren Anzahl an
Neuronen reprasentiert als am Ein- beziehungsweise Ausgang. Der Teil
der Architektur vor der Codierungsschicht wird als Encoder bezeichnet,
der Teil danach als Decoder3. Ein exemplarischer Autoencoder ist in
Abbildung 4.5 abgebildet. Im Encoder-Teil des Autoencoders werden die
Daten von Schicht zu Schicht mit einer geringeren Kapazitit repréasentiert.

Der Begriff Autoencoder wird verwendet, um die Konsistenz mit der Literatur zur wahren. Da
die so bezeichneten Netzwerke sowohl einen Encoder- als auch einen Decoder-Teil enthalten,
wire aus Sicht der Codierungsnomenklatur der Begriff Autocodec treffender.

Die beiden Hilften des Autoencoders werden als Encoder und Decoder bezeichnet. Die-
se Bezeichnung ist unabhingig von der Verwendung der vorgeschlagenen Verfahren im
Encoder- und Decoder-Teil der betrachteten Bild- und Videocodecs. In beiden Hilften der Bild-
und Videocodecs werden sowohl der Encoder- als auch der Decoder-Teil des Autoencoders
verwendet.

73

IP 216.73.216.80, am 24.01.2026, 04:00:51.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186871107

VERFAHREN ZUR ABTASTWERTPRADIKTION MITTELS MASCHINELLEN
LERNENS

Referenzbereich

Konturmodellierung

Abtastwert-
P pradiktion

. Auto- L
Konfidenzkarte encoder

Referenzverfligbarkeit

Abbildung 4.4: Ein- und Ausgabedaten fiir den Autoencoder. Der Autoencoder
hat bis zu vier Eingangssignale: Immer vorhanden sind der Refe-
renzbereich sowie die Referenzverfiigbarkeit. Zusétzlich werden
je nach trainiertem Modell die Konturmodellierung (inklusive Ex-
trapolation) und/oder die Konfidenzkarte als weitere Eingdnge

verwendet.
Codierungs-
schicht
| — | —
Encoder Decoder

Abbildung 4.5: Exemplarische Veranschaulichung eines Autoencoders
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Im Decoder-Teil wird die Kapazitat mit jeder Schicht bis zur Zielgrofie
erhoht. Hierdurch werden die wesentlichen Eigenschaften des Signals
erkannt und bleiben durch die entsprechende Représentation in der
Codierungsschicht erhalten. Weniger relevante Eigenschaften im Signal
bleiben nicht erhalten. Der urspriingliche Anwendungsfall — hierher
kommt auch der Name Autoencoder — ist die Codierung von Infor-
mationen. Durch die Eigenschaft, dass die wesentlichen Merkmale im
Signal erhalten bleiben oder weiter verarbeitet werden, sind Autoencoder
auch fiir Anwendungen wie die Entrauschung oder die nachtragliche
Kolorierung von monochromen Bildern gut geeignet.

Das Ziel des in diesem Kapitel vorgeschlagenen Verfahrens ist dhnlich:
Das neuronale Netzwerk soll die relevanten Signalcharakteristiken des
Referenzbereichs identifizieren und basierend auf ihnen eine Pradiktion
der Abtastwerte im zu codierenden Block erstellen. Ein wesentlicher
Unterschied ist, dass in diesem Szenario nicht die gleichen Signale am
Ein- und Ausgang vorhanden sind. Am Eingang liegen zwei bis vier
Signale mit der Groe des auf ein Rechteck erweiterten Referenzbereichs
an. Das Ausgangssignal hat die Grofle des zu codierenden Blocks und
beinhaltet die pradizierten Abtastwerte. Eine Darstellung der ein- und
ausgegebenen Daten befindet sich in Abbildung 4.4. Die Kapazitat der
Codierungsschicht ist so zu wihlen, dass genug relevante Informationen
aus den bis zu vier Eingéngen extrahiert werden konnen, um eine gute
Pradiktion des zu codierenden Blocks zu erzielen. Wegen der konzeptio-
nellen Eignung von Autoencodern werden diese fiir das vorgeschlagene
Verfahren verwendet. Da Bilddaten verarbeitet werden, werden ferner
Faltungsautoencoder, engl. Convolutional Auto Encoder (CAE), verwen-
det.

Nachfolgend wird zundchst die Architektur fiir zu codierende Blocke
der Grofe 32 x 32 beschrieben. Der grundsatzliche Aufbau fiir die Netz-
werke mit anderen Eingangsgrofien ist gleich. Einige Anpassungen von
einzelnen Parametern sind beschrieben. Eine Ubersicht tiber die Details
der Konfigurationen der verwendeten Architekturen gibt es in Tabelle 4.1.

Im Prinzip wird im Encoder-Teil die Anzahl an Filtern mit jeder Schicht
verdoppelt wihrend gleichzeitig die ortliche Auflésung der durch das
Netzwerk prozessierten Tensoren halbiert wird. Im Decoder findet der
umgekehrte Prozess statt: Die Anzahl an Filtern halbiert sich mit jeder
weiteren Schicht wéahrend die ortliche Auflosung verdoppelt wird. Je-
weils in der ersten Schicht wird die rechteckige ortliche Aufléosung der
Eingangssignale durch asymmetrische Filtergrofien und eine asymme-
trische Schrittweite in Tensoren mit quadratischer ortlicher Auflsung
tiberfiihrt. Alle weiteren Filter sind symmetrisch und werden ebenfalls
mit symmetrischen Schrittweiten verschoben.
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Tabelle 4.1: Architekturiibersicht. Die Nomenklatur fiir die Dimensionen ist

Kanalanzahl x Breite x Hohe. EF steht fiir die Eingangsfilteranzahl, BF
fiir die Anzahl an Filtern in der Codierungsschicht (engl. Bottleneck).
Der grundsatzliche Aufbau ist fiir alle Blockgrofien gleich: Im Enco-
der steigt mit jeder tiefergehenden Schicht die Anzahl an Filtern mit
dem Faktor zwei wahrend die ortliche Auflosung der Tensoren halbiert
wird. Im Decoder ist es anders herum. Die Netzwerke fiir die kleineren
BlockgroBlen haben eine geringere Anzahl an Schichten.

8x8 16x16 32x32 64x64
Aufbau Dimension Aufbau Dimension Aufbau Dimension Aufbau Dimension
1 Eingabe 3x24x16 Eingabe 3x48x32 Eingabe 3x96x64 Eingabe 3x192x128
Conv2d Conv2d Conv2d Conv2d
BatchNorm BatchNorm BatchNorm BatchNorm
2 EFx24x16 EFx48x32 EFx32x32 EFx192x128
Dropout Dropout Dropout Dropout
LeakyReLU LeakyRelLU LeakyReLU LeakyRelLU
Conv2d Conv2d Conv2d Conv2d
BatchNorm BatchNorm BatchNorm BatchNorm
3 2¢EFx8x8 2¢EFx16x16 2¢EFx16x16 2¢EFx64x64
Dropout Dropout Dropout Dropout
LeakyRelLU LeakyReLU LeakyRelLU LeakyRelLU
Conv2d Conv2d Conv2d Conv2d
BatchNorm BatchNorm BatchNorm BatchNorm
4 AeEFx4x4 4eEFx8x8 4eEFx8x8 4eEFx32x32
Dropout Dropout Dropout Dropout
LeakyReLU LeakyRelLU LeakyReLU LeakyRelLU
Conv2d Conv2d Conv2d Conv2d
BatchNorm BatchNorm BatchNorm BatchNorm
5 BFx4x4 BFx4x4 8eEFx4x4 8eEFx16x16
Dropout Dropout Dropout Dropout
LeakyReLU LeakyRelLU LeakyReLU LeakyRelLU
Conv2d Conv2d
ConvTransp2d ConvTransp2d
BatchNorm BatchNorm
6 | BatchNorm  4eEFx4x4 [ BatchNorm 4eEFx8x8 BFx2x2 BFx8x8
Dropout Dropout
LeakyRelLU LeakyRelLU
LeakyReLU LeakyRelLU
ConvTransp2d ConvTransp2d ConvTransp2d ConvTransp2d
7| BatchNorm  2eEFx8x8 | BatchNorm  2¢EFx16x16| BatchNorm 8eEFx4x4 BatchNorm  8eEFx16x16
LeakyReLU LeakyReLU LeakyReLU LeakyRelLU
ConvTransp2d ConvTransp2d ConvTransp2d ConvTransp2d
8 | BatchNorm 1x8x8 BatchNorm 1x16x16 BatchNorm 4eEFx8x8 BatchNorm  4eEFx32x32
Tanh Tanh LeakyReLU LeakyReLU
ConvTransp2d ConvTransp2d
9 BatchNorm  2#EFx16x16| BatchNorm — 2eEFx32x32
LeakyReLU LeakyRelLU
ConvTransp2d ConvTransp2d
10 BatchNorm EFx32x32 BatchNorm EFx64x64
LeakyReLU LeakyReLU
ConvTransp2d ConvTransp2d
11 BatchNorm 1x32x32 BatchNorm 1x64x64
Tanh Tanh
1,5M Parameter 4,5M Parameter 9,7M Parameter 5,5M Parameter
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Abbildung 4.6: Vergleich des Einflusses der Filtergrofie. Wird die Filtergroie zu
klein gewihlt, dann kénnen Strukturen nicht gut pradiziert wer-
den (links). Bei der fiir die vorgeschlagenenen Netzwerke gewahl-
ten Filtergrole konnen Strukturen sinnvoll extrapoliert werden
(rechts).

Bei der Wahl der Filtergrofie sind mehrere Abwagungen zu treffen.
Einerseits ist eine gewisse MindestgrofSe erforderlich, um die fiir die
Abtastwertpradiktion notwendige Zusammenhiange im Signal erkennen
zu konnen. Andererseits fithren groflere Filter auch zu einer hoheren
Verringerung der ortlichen Auflésung an den Réandern der verarbeiteten
Tensoren#. Dieses fiihrt zu dem Problem, dass die umsetzbarer Tiefe
des Netzwerkes ebenfalls sinkt. Wird die Tiefe zu gering, dann reicht
die Kapazitit des Netzwerks nicht mehr fiir eine gute Pradiktion der
Abtastwerte. Aufgrund von entsprechenden Analysen in Vorarbeiten wird
die Filtergrofie zu 4 x 4 und die Schrittweite zu 2 x 2 gewdhlt. Kleinere
Filter ermoglichen keine Fortsetzung von strukturierten Signalanteilen,
wie im Beispiel der Abbildung 4.6 dargestellt ist.

Wiirden die Netzwerke so wie bis hierhin beschrieben verwendet
werden, dann kdme es beim Training zu einer Uberanpassung auf die
Trainingsdaten. Batch-Normierung ist ein anerkanntes Verfahren, um
die Lernfahigkeit neuronaler Netzwerke zu verbessern. Die urspriing-
liche Motivation liegt in der Beobachtung, dass wahrend des Trainings
bereits jeweils kleine Anderungen der Gewichte in den Schichten eines
tiefen Netzwerkes durch die multiplikative Verkntipfung der Schich-
ten zu grofen Anderungen der Aktivierungen fiihren [50]. Hierdurch
miissten diese Anderungen der Aktivierungen in jeder Trainingsiteration
kompensiert werden. Durch die Normierung der Eingédnge fiir jedes
Batch entfdllt diese Notwendigkeit und das Training wird effizienter.
Die Normierungsparameter werden wéhrend des Trainings gelernt und
sind fiir die Inferenz konstant. Weitere positive Eigenschaften der Batch-
Normierung werden in [60, 105] beschrieben. Fiir die vorgeschlagenen

Dieses liefe sich zwar technisch durch Auffiillen, engl. Padding, an den Randern 16sen, doch
hierbei wiirden lediglich Informationen aus dem inneren Bereich der Tensoren reproduziert
werden, sodass kein zusétzlicher Informationsgewinn fiir die zugrunde liegende Aufgabe zu
erwarten ist.
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Blockgroie ‘ 8x8 16X16 32X32 64Xx64
Eingangsfilteranzahl (EF) 16 32 32 32
Bottleneck-Filteranzahl (BF) | 128 1024 512 512

Tabelle 4.2: Filteranzahl fiir die Eingangs- und Bottleneck-Schicht

Architekturen wird die Batch-Normierung in jeder Schicht verwendet.
Die beobachteten positiven Effekte sind ein schnelleres Training sowie
eine reduzierte Uberanpassung.

In Abhéngigkeit der betrachteten Blockgrofie gibt es geringe Abwei-
chungen bei der Anzahl an Filtern in der Eingangsschicht (EF) und in der
Bottleneck-Schicht (BF). Die jeweiligen Werte sind in Tabelle 4.2 gelistet.

4.4 TRAINING

In diesem Abschnitt wird das Training der zuvor beschriebenen Netzwer-
ke diskutiert. Insbesondere werden hierbei das Optimierungsverfahren
(der sogenannte Solver), die verwendeten Regularisierungsstrategien, das
Thema Datenaugmentierung und die mit dem Training einhergehenden
Hyperparameter erlautert.

Fiir das Training der neuronalen Netzwerke, also das Anpassen der
Netzwerkkonfiguration ¢ in Gleichung 2.39, wird ein stochastisches Gra-
dientenabstiegsverfahren mit Mini-Batches, wie es in Kapitel 2.2 be-
schrieben wurde, verwendet. Bei dem konventionellen stochastischen
Gradientenabstiegsverfahren tritt die Schwierigkeit auf, dass unabhéngig
von den gerade betrachteten Daten eines Mini-Batches die gleiche Lern-
rate fiir alle Parameter in der Netzwerkkonfiguration verwendet wird.
Da die fiir den Gradientenabstieg berechneten Gradienten stark von den
Daten abhidngen kénnen und auch fiir die verschiedenen Parameter der
Netzwerkkonfiguration unterschiedlich sein konnen, ist es sinnvoller, die
Lernrate adaptiv anzupassen.

Im Rahmen dieser Arbeit wird hierfiir das Adaptive Moment Estimati-
on (Adam)-Verfahren [56] verwendet. Bei diesem Verfahren wird anstatt
des Momentums aus Gleichung 2.15 ein entsprechender Term verwendet,
der auf dem ersten Moment (Mittelwert ;) und dem zweiten Moment
(Leistung v;) der Gradienten g; zum Zeitpunkt i beruht. Die Momente
werden in einem gleitenden Fenster berechnet, in dem eine exponentiell
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abfallende Gewichtung der vergangenen Gradienten gewéhlt wird. Der
Aktualisierungsschritt aus Gleichung 2.38 wird erweitert zu:

nm;

Cit1=2Ci— ' (4-2)
( 13'@ +€) (1-p1)
mit
m; = Brmi_1 + (1 — B1)gi (4-3)
v = Bovi1 + (1— B2)g?. (4-4)

Die Terme 1 — /311 und 1 — ,812 werden verwendet, um einen Bias gegen
Null zu verhindern, der entsteht, weil das gleitende Fenster mit Nul-
len initialisiert wird. f; und B, sind Hyperparameter, mit denen der
exponentielle Abfall im gleitenden Fenster gesteuert wird. € ist ein aus
numerischen Griinden existierender Hyperparameter, der eine Division
durch Null verhindert. Die Wahl der Werte fiir diese drei Hyperparameter
wird spater zusammen mit den anderen Hyperparametern diskutiert.
Mit der Wahl der Kostenfunktion wird festgelegt, fiir welches Kriteri-
um die Konfiguration des Netzwerkes wéhrend des Trainings optimiert
wird. Nur wenn die Kostenfunktion fiir das zu l6sende Problem geeignet
ist, dann kann das Training zu sinnvollen Ergebnissen fiihren. Typische
Kostenfunktionen fiir die Pradiktion von (Teilen von) Bildern waren der
mittlere quadratische Fehler, engl. Mean Squared Error (MSE), oder die
strukturelle Ahnlichkeit, engl. Structural Similarity (SSIM), welche bei-
de eine objektive Distanz zwischen dem pradizierten Signal und dem
Originalsignal messen, sowie Funktionen, die ein subjektiv plausibles
Ergebnis erzeugen. Da die vorgeschlagenen Verfahren in ein Codierungs-
system eingebaut werden, das aufgrund von objektiven Kriterium die
Auswahl von Codierungsverfahren durchfiihrt, ist ein objektives Krite-
rium fiir das pradizierte Signal sinnvoll. MSE und SSIM fallen in diese
Kategorie. Sie erzeugen ein pradiziertes Signal mit hohem Peak Signal-
to-Noise Ratio (PSNR) (im Fall des MSE). Dieses pradizierte Signal wird
jedoch niemals angezeigt. Angezeigt wird stattdessen das rekonstruierte
Signal, welches sich durch Summierung des pradizierten Signals und
des tibertragenen Pradiktionsfehlers ergibt. Deshalb erlaubt ein hoher
PSNR des pradizierten Signals keine allgemeingiiltige Aussage tiber die
Videoqualitit. Dieses wiirde lediglich eine Optimierung des PSNR des
rekonstruierten Signals ermoglichen. Jedoch steht dieses Signal wahrend
des Trainings nicht zur Verfigung, da es bedingt durch die Transfor-
mationscodierung des Pradiktionsfehlers nur durch einen wéahrend des
Trainings mitlaufenden Videoencoder beziehungsweise des fiir die Trans-
formationscodierung mitlaufenden Submoduls ermittelt werden konnte.
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Dieses ist jedoch wegen der enormen Rechenkomplexitat nicht prakti-
kabel realisierbar. Ferner hiangt die Qualitdt des rekonstruierten Signals
letzten Endes wie in Kapitel 2 beschrieben von den Rahmenbedingun-
gen wie der zur Verfligung stehenden Datenrate und weiteren Faktoren
ab. Gleichwohl ist aus Codierungssicht erstrebenswert, dass wahrend
des Trainings berticksichtigt wird, dass die Pradiktion zu einem mit
geringer Datenrate tibertragbaren Pradiktionsfehler fiihrt. Ein geringer
MSE des prédizierten Signals fiihrt jedoch nicht notwendigerweise auch
zu einer geringen Datenrate des zugehorigen Fehlers. Stattdessen soll
die zur Codierung des Pradiktionsfehler bendtigte Datenrate zumindest
ndherungsweise optimiert werden.

Der Fehler wird im Frequenzbereich codiert. Die durch die Transfor-
mation berechneten Koeffizienten C sind niherungsweise mittelwertfrei
und Laplace-verteilt>:

Pcoeff(c) = q)eTlc‘ (4.5)

mit Konstanten ® und Y. Die fiir die Codierung eines Koeffizienten
benotigte Datenrate r ldsst sich tiber den Informationsgehalt I anndhern
und ist proportional zum Betrag des Koeffizienten:

F o 1 (peoets (€)) = —logz (@e¥I€T) ~ g[c| (46)

mit einer Konstanten =. Die Entropie H des Pradiktionsfehlers, also eine
Anniherung der fiir die Ubertragung desselben benétigte und damit zu
minimierende Datenrate unter der Bedingung einer hinreichend guten
Entropiecodierung, ist damit proportional zur Summe der Absolutwerte
des transfomierten Pradiktionsfehlers, engl. Sum of Absolute Transfor-
med Differences (SATD):

H ~ SATD (4.7)

Deshalb wird die SATD als Kostenfunktion gewahlt.

In Tabelle 4.3 ist ein Beispiel gewédhlt, in dem fiir zwei Pradiktions-
fehler die Unterschiede zwischen MSE und SATD deutlich hervortreten.
Es ist ersichtlich, dass obwohl beide Pradiktionsfehler den gleichen MSE
haben, die SATD deutlich unterschiedlich sind. Folglich wére der obere
Pradiktionsfehler mit einer geringeren Datenrate codierbar.

Durch den Einsatz von Regularisierungsverfahren wird eine Uber-
anpassung auf der Trainingsdaten verhindert. Das urspriinglich von
Srivastava et al. vorgeschlagene Dropout-Verfahren [113] ist ein typischer
Regularisierungsansatz und wird auch in dieser Arbeit eingesetzt, um die
verbleibende Uberanpassung zu neutralisieren. Das Problem der Uber-
anpassung an die Trainingsdaten von Netzwerken mit hoher Kapazitat

Den entsprechenden Nachweis erbringt Narroschke in [88].
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Tabelle 4.3: Gegentiberstellung von MSE und SATD. Beide Pradiktionfehler ha-
ben den gleichen MSE. Durch die unterschiedlichen Frequenzanteile
kommt es jedoch zu stark abweichenden Koeffizienten nach der Trans-
formation, wodurch der obere Pradiktionsfehler mit einer geringeren
Datenrate codierbar ist (vgl. Gleichung 4.7).

Pradiktionsfehler Koeffizienten
1 1 1 1 40 0 0 O
1 1 1 1 0 0 0 O
o—e
1 1 1 1 0 0 0 O
1 1 1 1 0 0 0 O
MSE = 1,0 SATD = 4,0
-1 1 -1 -1 —1,0 0 —-1,0 0
-1 -1 1 —1 —-0,92 0,91 -0,92 —-0,79
o—e
1 1 -1 -1 0 —1,31 0 —0,54
-1 -1 1 1 0,38 2,20 0,38 —-1,91
MSE =1,0 SATD = 12,28
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wird hierbei geltst, indem in jeder Iteration nur ein zufillig bestimmter
Teil des Netzwerkes trainiert wird. Die Tatsache, dass in jeder Iteration
ein anderer Teil des Netzwerkes trainiert wird, ldsst sich so interpretieren,
dass viele Netzwerke mit geringerer Kapazitdt im Vergleich zum eigent-
lichen Netzwerk trainiert werden. Einzeln betrachtet sind diese kleinen
Netzwerke nicht in der Lage, das gestellte Problem mit guter Leistung
zu l6sen — es kommt zu einer Unteranpassung. Fiir die Inferenz wird
das gesamte Netzwerk eingesetzt. Dieses lasst sich so interpretieren, dass
die Ergebnisse der vielen kleineren Netzwerke zu einem Gesamtergebnis
kombiniert werden. Durch diese Kombination kommt es weder zu der
Unteranpassung durch die Verwendung eines kleinen Netzwerkes noch
zu der Uberanpassung durch die Verwendung des grofen, ohne Dropout
trainierten, Netzwerkes.

Das klassische Dropout geméf [113], bei dem einzelne Verbindungen
entfernt werden, ist in erster Linie fiir vollverbundene Schichten geeignet.
Wiirde man es auf Faltungsschichten anwenden, dann wiirde es durch
die Korrelation zwischen ortlich benachbarten Abtastwerten laut der
Erkenntnisse in [127] lediglich zu einem verlangsamten Training, nicht
aber zu einer Verringerung der Uberanpassung, kommen. Deshalb wird
stattdessen eine Dropout-Variante eingesetzt, in der stets komplette Kana-
le aus Filtern deaktiviert werden. Zur vollstindigen Vermeidung von
Uberanpassung reicht es, wenn Dropout im Encoder eingesetzt wird. Um
das Training nicht unnétig zu verlangsamen wird deshalb auf Dropout
im Decoder-Teil des Netzwerkes verzichtet.

Wenn Netzwerke zu lange trainiert werden, kann es ebenfalls zu einer
Uberanpassung kommen. Dieses erkennt man an einer steigenden Kosten-
funktion fiir den Validierungsdatensatz bei gleichzeitig gleichbleibenden
oder weiter fallenden Werten fiir die Kostenfunktion fiir den Trainings-
datensatz. Deshalb wird immer der beste Zustand des Netzwerks auf
dem Validierungsdatensatz zwischengespeichert und anschliefiend fiir
die Inferenz verwendet.

Aus der Literatur ist bekannt, dass typischerweise Augmentierungs-
verfahren auf die Trainingsdaten angewendet werden, um vielféltigere
Trainingsdaten zu erhalten. Typische Verfahren sind Spiegeln, Rotati-
on, Helligskeits- und Kontrastanpassungen sowie das Hinzuftigen von
Rauschen. Da das vorliegende Problem variant gegebentiber diesen Aug-
mentierungen ist, sind diese nicht anwendbar.

Der Trainingsvorgang héngt noch von einigen weiteren Hyperparame-
tern ab, welche nachfolgend erldutert werden.

Durch systematische Experimente wurde eine Dropout-Rate von 30%
als effizient bestimmt. Das bedeutet, dass die Wahrscheinlichkeit, dass
ein Kanal eines Filters in einer Trainingsiteration nicht betrachtet wird,
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als Bernoulli-Verteilung mit einer Wahrscheinlichkeit ftir das Nicht-
betrachten von 30% modelliert wird.

Die Basis-Lernrate von Adam, also # in Gleichung 4.2, wird auf 0.005
gesetzt. Dieser Parameter wurde durch einen Lernratentest, bei dem die
Werte von 1077 bis 1 inkrementiert wurden, bestimmt. Der Parameter
B1, der den exponentiellen Abfall im gleitenden Fenster fiir das erste
Moment gemaf3 Gleichung 4.3 steuert, wird auf 0,9 gesetzt, B, fiir das
zweite Moment gemaf3 Gleichung 4.4 auf 0,999 und € zur Verhinderung
einer Division durch Null auf 1078. Hierbei handelt es sich um sehr
typische Werte.

Die Lernrate hat wie in Kapitel 2 erldutert einen wesentlichen Einfluss
auf den Erfolg des Trainings. Ist sie zu grofs gewahlt, dann konvergiert das
Training nicht. Ist sie zu klein gewéahlt, dann dauert das Training zu lange
beziehungsweise es findet gar kein Lernen statt. Typischerweise wird die
Basis-Lernrate wahrend des Trainings verringert, um den Gradienabstieg
zu Beginn mit groflen Schrittweiten durchzufiihren und dann im weiteren
Verlauf mit kleineren Schrittweiten in der Ndhe des Minimums dieses
anzundhern. Als Erweiterung hierzu wird im Rahmen dieser Arbeit eine
sogenannte One Cycle Learning Rate Policy verwendet. Hierbei steigt die
Basislernrate zunéchst an, bleibt dann in der Mitte des Trainings konstant
um fiir den letzten Teil des Trainings wieder abzufallen. Der zusétzliche
Anstieg zu Beginn ist dadurch motiviert, dass die Startkonfiguration des
neuronalen Netzwerkes zu Beginn des Trainings sehr weit von einem
guten Arbeitspunkt entfernt sein kann. Wiirden die hierbei entstehenden
ebenfalls sehr groflen Gradienten in einem Aktualisierungsschritt mit
grofler Lernrate eingesetzt werden, so konnte dieses die Konfiguration
des Netzwerkes in einen sehr schlechten Arbeitspunkt bewegen, aus
dem heraus keine sinnvolle Optimierung mehr moglich ist. Deshalb
wird zu Beginn des Trainings eine kleinere Lernrate gewahlt, um zu
grofle Spriinge der Konfiguration zu verhindern. Da der Arbeitspunkt
wéhrend des ersten Teil des Trainings schnell in die Néhe einer guten
Konfiguration bewegt werden kann, kann sukzessive die Lernrate erhoht
werden, um im weiteren Verlauf des Trainings eine schnellere Konvergenz
zu erzielen.

Die Datensétze werden zuféllig in einen Trainings- und Validierungs-
datensatz aufgeteilt. 90%/10% ist hierfiir die gewédhlte Aufteilung. Die
Mini-Batch-Grole wird zu 64 gewdhlt. Die maximale Anzahl an Epo-
chen wéhrend des Trainings wird auf 100 gesetzt. Die Verringerung der
Kostenfunktion ist zu diesem Zeitpunkt bereits sehr gering, es ist keine
weitere signifikante Verbesserung zu erwarten.
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In diesem Kapitel werden die entwickelten Verfahren zur Modellierung
von Konturen und zur Abtastwertpradiktion experimentell untersucht
und die hierbei erzielten Ergebnisse diskutiert. Hierfiir werden die vor-
geschlagenen Verfahren in den selbstentwickelten Bildcodec CoMIC so-
wie in das HEVC Test Model (HM), die Referenzimplementierung des
HEVC-Standards, integriert. Diese beiden Implementierungen verfolgen
unterschiedliche Ziele.

Die CoMIC-Implementierung ermoglicht die detaillierte Analyse der
entwickelten Verfahren. Hierbei kann die Effizienz sowie der Beitrag der
einzelnen Teilschritte zu dem Gesamtverfahren analysiert werden. AufSer-
dem konnen Teile der entwickelten Verfahren gezielt betrachtet und zum
Beispiel durch die Anpassung von Parametern optimiert werden. Die Er-
zielung solch eines tiefgehenden Verstandnisses der Funktionsweise der
entwickelten Verfahren ist bei der HM-Implementierung nicht moglich,
da in einem hochoptimierten Videocodec viele aufeinanderfolgende und
sich gegenseitig beeinflussende Algorithmen wie die Partitionierung in
unterschiedlichen Blockrastern, die unterschiedlichen Pradiktionsverfah-
ren, die Rate-Distortion-Optimierung, hocheffiziente Entropiecodierung
durch CABAC, Nachverarbeitungsverfahren wie Sample Adaptive Offset
und Deblockingfilter und so weiter verwendet werden. Durch das Hinzu-
fligen eines neuen Verfahrens gébe es Auswirkungen auf die Verwendung
aller anderen bereits existierenden Verfahren.

Die Implementierung in einem Videocodec wie HM hingegen ermog-
licht die Bewertung der Codiereffizienz der entwickelten Verfahren in
einer realen Videocodierungsanwendung und somit den Vergleich mit
dem aktuellen Stand der Technik. Zusétzlich ldsst sich mit dieser Imple-
mentierung eine Optimierung der Ubertragung von Seiteninformationen
im Hinblick auf die verwendete Entropiecodierung mit CABAC vorneh-
men.
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Das Ziel dieses Teilexperiments ist die Evaluierung der vorgeschlagenen
Verfahren unter Laborbedingungen. Hierftir wird ein selbstentwickel-
ter Bildcodec namens CoMIC, welcher in der Programmiersprache C++
implementiert wurde, verwendet.

Das Bild wird zu Beginn der Codierung in gleichgrofSe Blocke aufgeteilt.
Hierdurch entfillt die Abhédngigkeit der Pradiktion von den vielfaltigen
Partitionierungsmoglichkeiten, welche es in HEVC gibt’. Im Rahmen der
Evaluierung des CoMIC-Codecs werden die Blockgrofien 8 x 8, 16 x 16,
32 x 32 und 64 x 64 verwendet. Jeder Block wird mit den gleichen Verfah-
ren codiert. Hierfiir wird vor Beginn der Codierung festgelegt, welches
Verfahren zur Konturmodellierung (polynomiell oder stochastisch) und
welches Verfahren zur Abtastwertpradiktion (Along-contour oder neuro-
nale Netzwerke) verwendet werden sollen. Dieses entspricht dem Setzen
der beiden Schalter in Abbildung 3.5. Durch die Anwendung der ausge-
wdhlten Verfahren wird eine Pradiktion fiir den zu codierenden Block
erzeugt. Eine Modeauswabhl findet anders als im Videocodec nicht statt,
da die zu verwendenden Codierungsverfahren vor Beginn der Codie-
rung festgelegt wurden. Zur Ubertragung des Pradiktionsfehlers wird
dieser mit einer DCT in den Frequenzbereich transformiert. Die hierbei
entstehenden Pradiktionsfehlerkoeffizienten werden quantisiert. Hierfiir
wird eine gleichférmige Quantisierung durch eine Division und Multi-
plikation mit einem QP realisiert. Eine Signalisierung von zusatzlichen
Syntaxelementen zur Ubertragung der Modeentscheidungen ist ebenfalls
anders als im Videocodec nicht erforderlich.

Nachfolgend werden die fiir die Experimente mit dem CoMIC-Codec
verwendeten Metriken erldutert. Die Datenrate wird tiber die Entropie
der quantisierten Pradiktionsfehlerkoeffizienten angenahert. Die Entschei-
dung hierfiir und gegen die Verwendung der durch eine Entropiecodie-
rung der quantisierten Pradiktionsfehlerkoeffizienten erreichten realen
Datenrate ist wie folgt motiviert: Die umfangreichen Bemiihungen von
Entropiecodierungsverfahren, vorhergehenden Binarisierungsverfahren
sowie komplexen Syntaxkonstrukten zur Beschreibung der Pradiktions-
fehlerkoeffizienten dient dazu, diese mit einer Datenrate moglichst nah
an der Entropie der zu codierenden Werte zu codieren. Nun lieSe sich
entweder ein geeignetes Verfahren entwickeln oder ein vorhandenes Ver-
fahren wie CABAC auswéhlen. Jedoch wére es nicht notwendigerweise
zu erwarten, dass es sich hierbei um das bestmogliche Entropiecodie-

Es ist zu beachten, dass die hiermit erzielte Codierungseffizienz lediglich einer Untersuchung
unter Laborbedingungen dient. Die Codierungseffizienz ist deutlich geringer als in modernen
Videocodecs mit solchen vielféltigen Partitionierungsmoglichkeiten. Die Codierungseffizienz
unter den Bedingungen solch eines Videocodecs wird in Abschnitt 5.2 untersucht.
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rungsverfahren handelt, was auch gar nicht Kern des durchgefiihrten
Experiments waére.

Alternativ konnte die Pramisse vertreten werden, dass ein entsprechen-
des Verfahren existiere, ohne es zu implementieren. Die Entropie ist die
untere Grenze fiir die mit einer hinreichend guten Entropiecodierung
bei einer verlustlosen®> Codierung erreichbaren Datenrate. Da im nachfol-
genden Abschnitt 5.2 fiir die Evaluierung der vorgeschlagenen Verfahren
in einem Videocodec ohnehin die Codierung des entstehenden Pradik-
tionsfehlers mit CABAC verwendet wird, erscheint die Beschrankung in
diesem Abschnitt auf die Datenratenanndherung per Entropie sinnvoll
und vertretbar.

Die Entropie wird berechnet, indem zunéchst fiir die Koeffizienten des
codierten Blocks ein Histogramm fiir die Werte der Transformationsko-
effizienten erstellt wird. Basierend auf diesem Histogramm werden die
relativen Haufigkeiten p; der unterschiedlichen Koeffizienten berechnet.
Mit diesen relativen Haufigkeiten ergibt sich die Entropie H fiir einen
Block der Grofle s x s zu3:

SXs

H=1Y" —piloga(pi). (5.1)
i=1

Der MSE wird gemessen und hieraus wird das PSNR berechnet:

2
PSNR = 10 - log;, (idmsz ) , (5.2)

mit dem maximalen Signalwert Smayx, also Smax = 255 fiir 8 Bit Videosi-
gnale.

Die Encoderlaufzeit wird als Prozessor-, engl. Central Processing Unit
(CPU)-, Zeit* gemessen. Die Messung der Decoderlaufzeit entfillt, da
es keine Modeauswahl gibt. Hierdurch unterscheidet sich die Laufzeit
zwischen Encoder und Decoder nicht.

Die als verlustlos angenommene Entropiecodierung impliziert nicht, dass die komplette
Codierung verlustlos ist. Durch den entstehenden Quantisierungsfehler ist die Bildcodierung
verlustbehaftet.

Es ist zu beachten, dass hier eine Annahme tiiber die Adaptierungsfihigkeit des Entropie-
codierungsverfahrens zu Grunde gelegt wird, die fiir realen Entropiecodierungsverfahren
moglicherweise nur ndherungsweise zutrifft.

Da zum Teil mehrere Prozesse gleichzeitig fiir die Berechnung der implementierten Verfahren
verwendet werden, ist hier eine Unterscheidung zwischen der Laufzeit des Programms und
der hierbei verwendeten CPU-Zeit notwendig. Wird nur ein Prozess gleichzeitig verwendet, so
sind die beiden Zahlenwerte identisch. Werden mehrere Prozesse gleichzeitig verwendet, dann
ist die als Summe der Laufzeiten der einzelnen Prozesse berechnete CPU-Zeit entsprechend
grofler. Da nur die CPU-Zeit den tatsdchlichen Rechenaufwand der Verfahren erfasst, wird
diese verwendet.
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Zunéchst wird der Experimentaufbau beschrieben. Als Eingangsdaten
dienen Bilder aus zwei populdren Datenbanken, die haufig fiir die Evalu-
ierung von Bildcodierungsverfahren verwendet werden: die Kodak Image
Dataset (KODIM) und die University of Southern California - Signal and
Information Processing Institute (USC-SIPI)-Bilddatenbank. Keine dieser
Datenbanken wurde fiir das Training der neuronalen Netzwerke oder die
Optimierung anderer Hyperparameter der vorgeschlagenen Verfahren
verwendet.

Bei den 24 Bildern der KODIM, welche Auflésungen von 768 x 512 und
512 x 768 haben, handelt es sich um klassische Fotografiemotive [79].
Obgleich es sich bei den Bildern aus diesen Datenbank um die typischer-
weise fiir die Evaluierung von Bildcodierungsverfahren verwendeten
Bilder handelt, ist anzumerken, dass die Bildeigenschaften nicht in allen
Fallen reprasentativ fiir moderne Digitalkameras sind.

In der UsC-sIPI-Datenbank gibt es 141 Bilder5. Diese haben Auflosun-
gen von 256 x 256, 512 x 512 und 1024 x 1024. Die Bilder sind aufgeteilt
in die Kategorien Textures (Nahaufnahmen von Texturen), Aerials (Luft-
aufnahmen) und Miscellaneous (klassische Fotografiemotive). [135]

Einige exemplarische Bilder aus den Datenbanken sind in Abbil-
dung 5.1 dargestellt.

5 Es werden alle Bilder bis auf drei (Tiffany, Lena, Elaine) verwendet. Die Herausgeber der
Datenbank vertreten den Standpunkt, dass die Verwendung dieser Bilder aus ethischen
Griinden nicht mehr zeitgemaf sei und bieten deshalb die Dateien seit 2018 nicht mehr zum
Herunterladen an [136].
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Kodak Image Dataset (KODIM)

USC-SIPI Textures

Abbildung 5.1: Exemplarische Darstellung einiger Testbilder
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Es werden die folgenden Vergleiche durchgefiihrt:

1. Bestimmung des Mehrwerts des vorgeschlagenen Konturmodells

Testverfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertpradiktion

Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertpradiktion

2. Bestimmung des Mehrwerts des vorgeschlagenen Verfahrens zur
Abtastwertpradiktion

Testverfahren: Polynomielle Konturmodellierung mit neuronalen
Netzwerken als Abtastwertpradiktor

Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertpradiktion

In beiden Vergleichen wird das polynomielle Konturmodell in Kom-
bination mit der Along-contour-Abtastwertpradiktion verwendet, da in
den eigenen Vorarbeiten bereits gezeigt wurde, dass hierdurch die Codie-
rungseffizienz von HEVC verbessert werden kann.

Es werden Quantisierungsparameter im Bereich 1 bis 31 mit einem
Abstand von 5 festgelegt. Fiir die Durchfithrung der Simulationen wur-
de eine homogene Serverinfrastruktur mit Intel Xeon Gold 5120 CPUs
verwendet. Die Inferenz der neuronalen Netzwerke wurde ebenfalls auf
der CPU berechnet. Potentiell lieSe sich die Inferenz durch eine GPU-
Beschleunigung schneller berechnen. Dieser Aspekt wird im Rahmen
dieser Arbeit nicht weiter betrachtet.

5.1.1  Mehrwert des vorgeschlagenen Konturmodells

In diesem Teilexperiment wird der Mehrwert des vorgeschlagenen Kon-
turmodells gegentiber dem polynomiellen Konturmodell aus der eigenen
Vorarbeit [69] evaluiert. Hierfiir werden die gemessenen BD-Raten, das
BD-PSNR sowie die Erhohung der Rechenkomplexitit betrachtet. Die BD-
Raten und das BD-PSNR werden geméf [7, 8] berechnet und nachfolgend
kurz anhand von Abbildung 5.2 skizziert. Der Beginn der Berechnung
ist fiir beide Metriken gleich. Sowohl fiir das Testverfahren als auch fiir
das Referenzverfahren werden die gemessenen Datenpunkte bestehend
aus Datenrate und PSNR als RD-Kurve aufgetragen. Zwischen den Da-
tenpunkten der jeweiligen Verfahren wird mittels stiickweise kubischer
Splines interpoliert. Uber die beiden Kurven wird nun integriert und die
Differenz, deshalb Bjentegaard-Delta, der Flachen berechnet. Ab diesem
Schritt unterscheiden sich die beiden Metriken.
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}PSNR PSNR

BD-PSNR

Rate Rate

Abbildung 5.2: Veranschaulichung der Berechnung von BD-Rate (links) und BD-
PSNR (rechts). Die BD-Rate misst die Datenratenveranderung bei
gleichbleibender Bildqualitdt. Dementsprechend impliziert ein ne-
gativer Wert eine verbesserte Codierungseffizienz. Das BD-PSNR
gibt die Qualitdtsverdnderung bei gleichbleibender Datenrate an.
Ein positiver Wert zeigt eine gesteigerte Codierungseffizienz an.

Mit der BD-Rate soll die Verdnderung der Datenrate bei gleicher Qua-
litat gemessen werden. Hierftir wird der Bereich zwischen den beiden
RD-Kurven durch zwei zur Raten-Achse parallele Linien begrenzt und
jeweils zwischen diesen Grenzen integriert. Ein negativer Zahlenwert
bedeutet eine Verringerung der Datenrate bei gleichbleibender Qualitét
und somit eine Verbesserung der Codierungseffizienz durch das Test-
verfahren im Vergleich zum Referenzverfahren. Mit dem BD-PSNR wird
hingegen die Veranderung des PSNR bei gleichbleibender Datenrate ge-
messen. Entsprechend werden die Grenzen und die Integrale wie in dem
rechten Teil der Abbildung 5.2 veranschaulicht bestimmt. Ein positiver
Zahlenwert bedeutet einen gestiegenen PSNR-Wert bei gleichbleibender
Datenrate, also eine Verbesserung der Codierungseffizienz. Da das PSNR
in Dezibel angegeben wird, wird das gleiche fiir das BD-PSNR umgesetzt.
Durch den abweichenden Integrationsbereich, der vom Verlauf der RD-
Kurven abhangt, ldsst sich keine triviale Rechenvorschrift zur direkten
Umwandlung von BD-Raten in BD-PSNR-Werte angeben.

Die Komplexitétssteigerung wird als Quotient aus der Laufzeit des
Testverfahrens und des Referenzverfahrens ermittelt.

Die berechneten Metriken sind in Tabelle 5.1 zusammengefasst. Ferner
sind die BD-Raten und die Komplexitétssteigerung in den Abbildun-
gen 5.3 und 5.4 veranschaulicht. Es ist zu beobachten, dass die mittleren
Codierungsgewinne durch den Einsatz des vorgeschlagenen Konturmo-
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Tabelle 5.1: Codierungsergebnisse fiir die CoMIC-Implementierung. Test-

0,0%

-0,5%

-1,0%

BD-Rate

-1,5%

-2,0%

-2,5%

verfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertpradiktion. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertpradiktion. Negative BD-Raten
sowie positive BD-PSNR-Werte zeigen eine gesteigerte Codierungs-
effizienz an. Die Komplexitit ist als Quotient der Laufzeiten des
Testverfahrens und des Referenzverfahrens angegeben.

BlockgréBe Bildd: bank BD-Rate BD-PSNR [dB] Komplexitdt

Textures -0.5% 0.08 73
Aerials 0.0% 0.01 65

8x8 Miscellaneous -0.3% 0.05 110
Kodim -0.1% 0.02 24
Gesamt -0.2% 0.00 80
Textures -0.5% 0.08 60
Aerials -0.2% 0.03 46
16x16 Miscellaneous -1.0% 0.14 74
Kodim -0.9% 0.14 28
Gesamt -0.7% 0.11 59

Textures -1.6% 0.23 150
Aerials -0.6% 0.06 45
32x32 Miscellaneous -2.1% 0.29 74
Kodim -1.7% 0.27 62
Gesamt -1.6% 0.23 88

Textures -1.9% 0.26 1078
Aerials -1.1% 0.12 58
64x64  Miscellaneous -2.1% 0.32 97
Kodim -2.1% 0.34 111

Gesamt -1.9% 0.26 408

Textures Aerials Miscellaneous Kodim Gesamt

m38x8 m16x16 m32x32 64x64

Abbildung 5.3: BD-Rate fiir die CoMIC-Implementierung. Testverfahren: Stochasti-

sche Konturmodellierung mit Along-contour-Abtastwertpradiktion.
Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertpradiktion. Negative Zahlenwerte zeigen eine
gesteigerte Codierungseffizienz an.
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Textures Aerials Miscellaneous Kodim Gesamt
1000

100

W 3x8 W16x16 M 32x32 64x64

Komplexitat

=
o

Abbildung 5.4: Komplexititssteigerung fiir die CoMIC-Implementierung. Test-
verfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertpradiktion. Referenzverfahren: Polynomielle Konturmo-
dellierung mit Along-contour-Abtastwertpradiktion. Die Komple-
xitit ist als Quotient der Laufzeiten des Testverfahrens und des
Referenzverfahrens angegeben.

dells gemittelt tiber alle Testbilder mit der BlockgrofSe steigen. Fiir Blocke
der Grofie 64 x 64 werden die grofiten Gewinne mit einer BD-Rate von
—1,9% gemessen. Die Korrelation zwischen Blockgrofie und Codierungs-
effizienz ldsst sich in diesem Fall dadurch erklidren, dass der Basiswert fiir
die Berechnung der Codierungseffizienz ebenfalls auf einer Konturmodel-
lierung, der weniger genauen polynomiellen Konturmodellierung, beruht.
Der bei der Extrapolation entstehende grofsere Fehler fiir das polynomi-
elle Konturmodell wird umso grofer, je weiter die Kontur extrapoliert
wird. Des Weiteren kann beobachtet werden, dass die Effizienzsteigerung
von den zu codierenden Inhalten abhiangt. Wahrend die Verfahren fiir
klassische Fotografiemotive (KODIM und Miscellaneous) und Texturen gut
funktionieren, liegen die Werte fiir Luftbildaufnahmen (Aerials) jeweils
etwas niedriger. Die Steigerung der Komplexitait liegt in Abhangigkeit
der Blockgrofie zwischen 59 und 408. Hierbei ist bemerkenswert, dass die
Komplexitat tendenziell mit der BlockgrofSe und bei Inhalten mit vielen
Konturen (Textures) steigt.
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5.1.2  Mehrwert der vorgeschlagenen Abtastwertpridiktion

Die Auswertung dieses Teilexperiments zur Bewertung des Mehrwerts
des vorgeschlagenen Verfahrens zur Abtastwertpradiktion mittels neu-
ronaler Netzwerke gegeniiber dem Along-contour-Referenzverfahren aus
den eigenen Vorarbeiten [65] und [69] erfolgt analog zum im vorherigen
Abschnitt beschriebenen Teilexperiment. Die neuronalen Netzwerke wur-
den wie in Kapitel 4 beschrieben trainiert. Es gibt keine Uberlappung
zwischen den fiir das Training verwendeten Datenbanken und den fiir
die Evaluierung verwendeten Datenbanken. Die Codierungsergebnisse
sind in Tabelle 5.2 zusammengefasst. Die BD-Raten und die Komplexi-
tatssteigerung sind in den Abbildungen 5.5 und 5.6 visualisiert.

Tabelle 5.2: Codierungsergebnisse fiir die CoMIC-Implementierung. Testverfahren:
Polynomielles Konturmodellierung mit neuronalen Netzwerken als
Abtastwertpradiktor. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertpradiktion. Negative BD-Raten
sowie positive BD-PSNR-Werte zeigen eine gesteigerte Codierungseffi-
zienz an. Die Komplexitit ist als Quotient der Laufzeiten des Testver-
fahrens und des Referenzverfahrens angegeben.

BlockgroBe Bilddatenbank BD-Rate BD-PSNR [dB] Komplexitit

Textures -3.2% 0.44 7.7

Aerials -2.3% 0.31 8.9

8x8 Miscellaneous -3.6% 0.53 9.2
Kodim -3.5% 0.58 8.5

Gesamt -3.5% 0.47 8.7

Textures -6.1% 0.86 22.0

Aerials -5.9% 0.76 254

16x16  Miscellaneous -7.8% 1.12 29.2
Kodim -7.2% 1.11 23.9

Gesamt -7.2% 1.00 26.2

Textures -7.4% 1.11 23.8

Aerials -6.7% 0.85 27.4

32x32  Miscellaneous -9.9% 1.42 30.7
Kodim -8.8% 1.35 26.4

Gesamt -8.8% 1.23 28.3

Textures -6.7% 1.04 25.2

Aerials -5.3% 0.70 30.6

64x64  Miscellaneous -7.9% 1.24 29.9
Kodim -7.3% 1.10 28.7

Gesamt -6.6% 1.02 29.2

In Abhéngigkeit der Blockgrofie liegen die mittleren BD-Raten zwischen
—3,5% fur 8 x 8-Blocke und —8,8% fiir 32 x 32-Blocke. Fiir 64 x 64-
Blocke sind die Codierungsgewinne etwas geringer als fiir die Block-
groflen 16 x 16 und 32 x 32. Fiir jede BlockgrofSe lasst sich beobachten,
dass die grofiten Codierungsgewinne fiir die Kategorien Miscellaneous
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und KODIM, in denen klassischen Fotografiemotive zu finden sind, am
grofiten sind. Dieses ldsst sich damit erkldren, dass diese Inhalte auch in
der fiir das Training der neuronalen Netzwerke verwendeten Datenbank
abgebildet sind. Die Bilder mit den spezielleren Inhalten in den Katego-
rien Textures und Aerials, die nicht Bestandteil der Trainingsdatenbank
sind, fithren zu geringeren Gewinnen. Dass trotzdem Gewinne messbar
sind erschliefit sich dennoch leicht, da beispielsweise auch in normalen
Fotografien Texturen vorkommen. Die Komplexitétssteigerung liegt fiir
die meisten Blockgrofien zwischen 20 und 30, fiir die kleinste Blockgrofie
unter 10.

Textures Aerials Miscellaneous Kodim Gesamt
0%

-1% I
-3%
-4%
-5%
-7%

BD-Rate

2
X

-8%

-9%

-10%
W 8x8 W 16x16 M 32x32 64x64

Abbildung 5.5: BD-Rate fiir die CoMIC-Implementierung. Testverfahren: Polyno-
mielles Konturmodellierung mit neuronalen Netzwerken als Ab-
tastwertpradiktor. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertpradiktion. Negative Zahlen-
werte zeigen eine gesteigerte Codierungseffizienz an.

Es konnte gezeigt werden, dass die vorgeschlagenen Verfahren die
korrespondierenden Verfahren aus den Vorarbeiten jeweils verbessern.
Somit ist die Kombination der beiden vorgeschlagenen Verfahren zu
einem Intra-Codierungsverfahren erfolgsversprechend. Noch nicht be-
riicksichtigt wurde in den bisherigen Experimenten, dass dieses Intra-
Codierungsverfahren in realen Videocodecs mit anderen Codierungsver-
fahren kombiniert wiirde. Die Erkenntnis, wie sich die Codierungseffizi-
enz in Kombination mit den existierenden Verfahren verhilt, kann nur
durch die Integration des vorgeschlagenen Intra-Codierungsverfahrens
in einen Videocodec erlangt werden. Das entsprechende Experiment wird
in Abschnitt 5.2 geschildert.

Einige exemplarische Beispiele fiir mit den vorgeschlagenen Verfahren
erzeugte Pradiktionssignale sind in Abbildung 5.7 visualisiert. In der
oberen Reihe ist jeweils das Originalsignal zu dem pradizierten Signal in
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Textures Aerials Miscellaneous Kodim Gesamt
35

1
0

m8x8 m16x16 m 32x32 64x64

Komplexitat
N N
o v

=
w

o

Abbildung 5.6: Komplexititssteigerung fiir die CoMIC-Implementierung. Test-
verfahren: Testverfahren: Polynomielles Konturmodellierung mit
neuronalen Netzwerken als Abtastwertpradiktor. Referenzver-
fahren: Polynomielle Konturmodellierung mit Along-contour-
Abtastwertpradiktion. Die Komplexitit ist als Quotient der Lauf-
zeiten des Testverfahrens und des Referenzverfahrens angegeben.

Abbildung 5.7: Beispiele fiir die Pradiktion mit dem vorgeschlagenen Verfahren.
Obere Reihe: Originalsignal, untere Reihe: Pradiktion.

der unteren Reihe gezeigt. Die Beispiele zeigen sowohl die Limitierungen
der Verfahren als auch Fille in denen die Pradiktion gut funktioniert. Im
ersten Beispiel wird das Signal im Bereich des zu codierenden Blocks
dunkel, im letzten Beispiel kann nicht pradiziert werden, dass die Gitter-
stdbe teilweise hintereinander liegen. Beides ist aus dem Referenzbereich
nicht ersichtlich. Mit dem Beispiel ganz rechts kann gezeigt werden, dass
auch Blocke mit mehreren Konturen in unterschiedlichen Richtungen
zuverldssig pradiziert werden konnen. Weitere Beispiele fiir pradizierte
Signale sind in Abbildung 5.8 dargestellt.
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Abbildung 5.8: Weitere Pradiktionsbeispiele

5.1.3 Einordnung von Codierungseffizienz und Komplexititssteigerung

Der Vorschlag neuer Codierungsverfahren erfordert eine Abwégung
zwischen der Steigerung der Codierungseffizienz und der hiermit ein-
hergehenden Steigerung des Rechenaufwands. In der Regel ist es durch
das Einftihren zusatzlicher Codierungsverfahren nicht moglich, die Co-
dierungseffizienz zu steigern und gleichzeitig den Rechenaufwand zu
senken. Somit ist zu bewerten, ob der zusitzliche Rechenaufwand fiir die
Steigerung der Codierungseffizienz vertretbar ist. In Abbildung 5.9 sind
ftir die unterschiedlichen Experimente, das heif3t die Vergleiche der Kon-
turmodelle sowie der Abtastwertpradiktoren, jeweils fiir vier Blockgrofien
die BD-Raten tiber der Steigerung des Rechenaufwands aufgetragen. Die
Komplexitatssteigerung wird hierbei, wie auch im vorherigen Abschnitt,
als Quotient aus der Laufzeit des Testverfahrens und der Laufzeit des Re-
ferenzverfahrens gemessen. Die Datenpunkte der jeweiligen Datenreihen
flir den Vergleich der Abtastwertpradiktoren sind tendenziell vertikal
verteilt wahrend die Datenpunkte fiir den Vergleich der Konturmodelle
eine starke horizontale Spreizung aufweisen.

Der Rechenaufwand fiir die Inferenz mit den neuronalen Netzwerken
ist unabhédngig von dem als Eingang anliegenden Signal. Deshalb ist
es leicht ersichtlich, dass die zu einer Blockgrofle gehorenden Daten-
punkte mit einem sehr dhnlichen Rechenaufwand codiert wurden. Es
ist ebenfalls zu beobachten, dass die Komplexitét fiir die Blockgrofien
16 x 16 bis 64 x 64 in einer dhnlichen Grofienordnung ist wiahrend sie
fiir 8 x 8-Blocke geringer ist. Dieses lasst sich {iber die unterschiedlichen
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Abbildung 5.9: Einordnung von Verbesserung der Codierungseffizienz und hier-

mit einhergehender Komplexitdtssteigerung fiir die CoMIC-
Implementierung. Syntax fiir Legendeneintrige: Blockgrofie
Testverfahren-Referenzverfahren. Negative BD-Raten zeigen eine
gesteigerte Codierungseffizienz an. Die Komplexitit ist als Quoti-
ent der Laufzeiten des Testverfahrens und des Referenzverfahrens
angegeben.

Filter- und Schichtanzahlen der Netzwerke erkldren. Die Qualitdt der
Pradiktion durch das neuronale Netzwerk hingegen héangt sehr wohl von
dem Eingangssignal ab. Hierdurch ist es erkldrbar, dass die Steigerung
der Codierungseffizienz gemessen als BD-Rate fiir die unterschiedlichen
Bilder schwankt.

Fiir den Vergleich der beiden Konturmodelle sind die Schwankun-
gen innerhalb der Datenreihen fiir die unterschiedlichen Blockgrofien
groBer. Dieses ldsst sich hiermit begriinden, dass die Komplexitit der
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stochastischen Konturmodellierung durch die fiir die Optimierung der
Hyperparameter der Kovarianzfunktion notwendige Matrixinvertierung
gemifl Gleichung 3.14 kubisch mit der Anzahl an Konturpixeln N an-
steigt, O (N?). Die Konturldngen konnen fiir verschiedene Bilder unter-
schiedlich sein und steigen tendenziell mit der Blockgrofie. Dieses lédsst
sich ebenfalls in den Messwerten beobachten.

Die vorgeschlagenen Verfahren verursachen eine nicht zu vernachlassi-
gende Steigerung der Rechenkomplexitdt im Vergleich zu den Referenz-
verfahren. Es ist daher von Interesse zu ergriinden, welche Teilverfahren
flir die gesteigerte Komplexitit verantwortlich sind. Hierfiir wurde ei-
ne detaillierte Analyse des Laufzeitverhaltens der Software mit einem
sogenannten Profiler durchgefiihrt. Mit einem geeigneten Profiler lasst
sich messen, wie viel Rechenzeit jede Zeile des Programmcodes fiir die
Ausfithrung benotigt. Es wurde der Profiler Callgrind verwendet. Die
Berechnungen erfolgten auf einer Intel Core i9-9900K CPU. Es wird fiir
die beiden in den Abschnitten 5.1.1 und 5.1.2 geschilderten Experimente
das gleiche Bild mit den gleichen Parametern codiert. Die wesentlichen
Ergebnisse der Analyse werden im Folgenden naher ausgefiihrt.

In Abbildung 5.10 sind die Ergebnisse fiir die Codierung mit dem
polynomiellen Konturmodell und dem neuronalen Netzwerk als Ab-
tastwertpradiktor veranschaulicht. Es ldsst sich schlussfolgern, dass die
Abtastwertpradiktion die Rechenkomplexitdt dominiert: Die Inferenz mit
dem neuronalen Netzwerk ist fiir 93,9% der Rechenzeit verantwortlich.
Die weiteren nennenswerten Teilverfahren mit Bezug auf die Rechenkom-
plexitit sind die Konturdetektion mit 4,5%, die Konturvorverarbeitung
mit 0,1% sowie die Konturmodellierung mit dem polynomiellen Kontur-
modell mit 0,7% der Rechenzeit. Die restlichen Teilverfahren sind fiir die
verbleibenden 0,8% der Rechenzeit verantwortlich.

Die Ergebnisse fiir das Experiment mit dem stochastischen Kontur-
modell in Kombination mit dem neuronalen Netzwerk sind in Abbil-
dung 5.11 visualisiert. Es ist ersichtlich, dass in diesem Fall die Rechen-
komplexitdt durch die Konturmodellierung dominiert wird. Ein Grofteil
der Rechenzeit, 95,4%, lassen sich der Cholesky-Zerlegung gemaf} Glei-
chung 3.14 zuordnen. Die Konturdetektion kommt auf 0,1%, die Inferenz
mit dem neuronalen Netzwerk auf 3%, die Konturextrapolation mit dem
Gauf3-Prozess auf 0,2%. Die sonstigen Teilschritte verursachen zusammen
1,3% der Rechenzeit.

Zusammenfassend lasst sich festhalten, dass die Inferenz mit dem
neuronalen Netzwerk sowie die Cholesky-Zerlegung fiir einen Grofteil
der Rechenzeit verantwortlich sind. Es ist anzunehmen, dass diese durch
weitergehende Optimierung potentiell beschleunigt werden kénnen. Die
Inferenz konnte durch die sehr reguldre Architektur von neuronalen
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Netzwerken durch eine geeignete Hardwarebeschleunigung in kommer-
ziellen Implementierungen optimiert werden. Die Cholesky-Zerlegung
konnte hochstwahrscheinlich durch eine hochoptimierte Implementie-
rung oder durch eine Anndherung mit geeigneten Verfahren betrachtlich
beschleunigt werden.

/ 4.5%

—_— . 0.1%

0.8%

93.9%

m Konturdetektion
® Konturvorverarbeitung
® Konturmodellierung
Inferenz mit neuronalem Netzwerk

Sonstiges

Abbildung 5.10: Analyse der Rechenkomplexitit fiir das polynomielle Konturmo-
dell mit neuronalem Netzwerk als Abtastwertpradiktor

Abschliefsend erscheint es sinnvoll festzuhalten, dass bei der Einord-
nung der Codierungsgewinne zu berticksichtigen ist, dass sich diese auf
einen Versuch mit dem selbstentwickelten Bildcodec CoMIC beziehen,
in dem als Referenzverfahren lediglich die eigenen Vorarbeiten verwen-
det werden. Dieses Experiment ermoglicht lediglich eine Einordnung
der vorgeschlagenen Verfahren mit Bezug auf die Verfahren aus der
eigenen Vorarbeit. Um eine Einordnung der Codierungseffizienz der
vorgeschlagenen Verfahren mit dem Stand der Technik zu ermoglichen,
ist dieses Experiment ungeeignet. Hierfiir ist eine Integration der vorge-
schlagenen Verfahren in einen Videocodec notwendig. Das entsprechende
Experiment wird im restlichen Verlauf dieses Kapitels erortert.
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— ). 1%
/. )

EEEEE 0.2%

1.3%

m Konturdetektion

m Cholesky-Zerlegung (GauRprozess)
= Inferenz mit neuronalem Netzwerk
= Konturextrapolation mit GauRprozess

Sonstiges

Abbildung 5.11: Analyse der Rechenkomplexitit fiir das stochastische Konturmo-
dell mit neuronalem Netzwerk als Abtastwertpradiktor
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5.2 INTEGRATION IN EINEN VIDEOCODEC

Zunichst wird die Implementierung in der HM-Software, hierbei handelt
es sich um die in der Programmiersprache C++ geschriebene Referenzim-
plementierung des HEVC-Standards, anhand von Abbildung 5.12 erldutert.
Die vorgeschlagenen Verfahren werden als zusatzliches Codierungsver-
fahren parallel zu den existierenden Codierungsverfahren implementiert.
Die zu codierenden Bilder werden geméfs des in Kapitel 2 beschriebe-
nen Partitionierungsverfahrens in Blocke aufgeteilt. Die vorgeschlage-
nen Verfahren werden fiir jede Pradiktionstiefe auf CU-Ebene getestet.
Hierfiir wird eine Pradiktion erzeugt, in dem zuerst das Verfahren zur
Konturmodellierung und dann das Verfahren zur Abtastwertpradiktion
eingesetzt werden. Der bei der Pradiktion entstehende Pradiktionsfehler
wird mit dem ebenfalls in Kapitel 2 beschriebenen Verfahren transforma-
tionscodiert. Hierbei kann der Fehlerblock durch den TU-Baum weiter
partitioniert werden.

Quantisierte

Transformations- Transformations-
koeffizienten koeffizienten
—— Transformation Quantisierung E”U‘lf"p'e' {—» Bitstrom
Pradiktions- I codierung
- - fehler
Original-
signal Inverse

Transformation

Préadiziertes

Signal Approximierter

Pradiktions-
fehler

Mode-Auswahl Rekonstruiertes

Signal

HEVC-Intra/
HEVC-Inter

Speicher

Rate-Distortion- |- A ,’/
Optimierung | Ciatblie

Abbildung 5.12: Integration der vorgeschlagenen Verfahren in einen Videocodec

Die Rate-Distortion-Optimierung wird im Encoder dazu genutzt, um
mit der Encodersteuerung diejenige Kombination aus Partitionierung,
Modeauswahl und Parameterwahl fiir die Modi zu finden, welche die
geringsten RD-Kosten verursacht. Das CoMIC-Verfahren wird ausgewdhlt,
wenn es in Kombination mit einer gefundenen Partitionierung fiir eine
CU die beste Wahl mit Bezug auf die RD-Kosten ist. Die Modeauswahl als
ein Ergebnis der Rate-Distortion-Optimierung muss als Teil des Bitstroms
an den Decoder signalisiert werden, da der Decoder mangels des nur
am Encoder vorliegenden Originalsignals keine eigene Rate-Distortion-
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Optimierung durchfiihren kann. Es wird ein zusétzliches Bin® namens
comic_flag in die CU-Syntax, §7.3.8.5 des HEVC-Standards, eingefiihrt.
Dieses Bin wird mittels CABAC unter Verwendung eines wahrend der
Codierung fortlaufend auf Basis zuvor codierter Syntaxelemente ange-
passten Kontexts codiert. Die Initialisierung des Kontexts erfolgt auf
die gleichen Werte wie fiir das Syntaxelement pred_mode_flag, welches
die Entscheidung zwischen Intra- und Intra-Codierung signalisiert. Die

Erweiterung der Syntaxtabelle ist in Tabelle 5.3 hervorgehoben.

Tabelle 5.3: Syntaxtabelle fiir die Integration in einen Videocodec. Ein Bin in der
CU-Syntax dient der Signalisierung, ob das vorgeschlagene Verfahren
fiir die Codierung eines Blocks verwendet wird. Die Tabelle basiert auf
§7.3.8.5 des HEVC-Standards. Ergdnzungen wurden in gelb hinterlegt.
ae(v) steht fiir ein Syntaxelement, welches mit binérer arithmetischer
Entropiecodierung unter Verwendung eines wahrend der Codierung
fortlaufend auf Basis zuvor codierter Syntaxelemente angepassten

Kontexts codiert wird.

coding_unit( x0, y0, log2CbSize ) { Descriptor
if( transquant_bypass_enabled_flag )
cu_transquant_bypass_flag ae(v)
if( slice_type !=1)
cu_skip_flag[ x0 ][ y0 ] ae(v)
nCbS = (1 << log2CbSize )
if( cu_skip_flag[ x0][y0])
prediction_unit( x0, y0, nCbS, nCbS )
else {
if( slice_type != 1)
pred_mode_flag ae(v)
if( CuPredMode[ x0 ][ y0 ] '= MODE_INTRA || log2CbSize == MinCbLog2SizeY )
part_mode ae(v)
if( CuPredMode[ x0 ][ y0 ] == MODE_INTRA ) {
comic_flag[ x0 ][ y0 ] ae(v)

if (!comic_flag[ x0 ][ y0]) {

.1

6 Zum Unterschied zwischen Bins und Bits sieche Fufinote 14 in Kapitel 2.
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Die Semantik fiir das eingefiihrte Syntaxelement lautet:

comic_flag[xo]lyo] equal to 1 specifies that the CoMIC mode is
used to code the current coding unit. comic_flag[xo][yol equal
to o specifies that the coding unit is not coded with the CoMIC
mode. The array indices xo, yo specify the location (xo,yo0) of the
top-left luma sample of the considered coding block relative to
the top-left luma sample of the picture. When not present, the
value of comic_flag is inferred to be equal to o.

Es ist ersichtlich, dass nur geringfiigige Anderungen an Syntax und
Semantik zur Integration der vorgeschlagenen Verfahren notwendig sind.

Als Metriken werden die Datenrate des sich ergebenen Bitstroms sowie
der MSE und hieraus berechnet das PSNR zur Qualitdtsbeurteilung ver-
wendet. Aus den Datenraten und den PSNR-Werten lassen sich wie zuvor
beschrieben die BD-Raten berechnen. Die Encoderlaufzeit wird ebenfalls
gemessen. Fiir diese ist eine deutliche Steigerung zu erwarten, da im
Rahmen der RD-Optimierung die vorgeschlagenen Verfahren fiir jede
Blockgrofe getestet werden. Dies impliziert, dass jedes Pixel — wie auch
fur andere Pradiktionsverfahren — mehrfach durch die vorgeschlagenen
Verfahren préadiziert werden muss, weil die Ergebnisse fiir eine Blockgro-
e weder fiir die Pradiktion mit anderen Blockgrofien wiederverwendet
werden noch kombiniert werden konnen. Fiir die Integration in einen
Videocodec wird zusatzlich die Decoderlaufzeit analysiert. Anders als
bei der zuvor betrachteten CoMIC-Implementierung ist die Decoderlauf-
zeit fiir die HM-Implementierung von Relevanz. Der Unterschied ergibt
sich aus der Verfligbarkeit von alternativen Pradiktionsverfahren gemaf
des HEVC-Standards, welche auf Blockebene anstatt des vorgeschlagenen
Verfahrens verwendet werden konnen. Da die vorgeschlagenen Verfahren
nur dann eingesetzt werden, wenn sie im Rahmen der RD-Optimierung
zu den geringsten Kosten fiihren, hangt die Veranderung der Decoder-
laufzeit von der Verwendungshaufigkeit der vorgeschlagenen Verfahren
ab. Die Verwendungshéaufigkeit wird ebenfalls gemessen.

Im Folgenden wird der Experimentaufbau fiir die Evaluierung der
vorgeschlagenen Verfahren in einem Videocodec ausgefiihrt. Im Rah-
men der Standardisierungsaktivitaten fiir HEVC wurden Common Test
Conditions (CTC) fiir die Evaluierung von auf HM aufbauenden Codie-
rungsverfahren festgelegt [10]. Die Motivation fiir die Verwendung der
CTC ergibt sich daraus, dass diese prazise definierte Einstellungen des
Encoders vorgeben, um so eine Vergleichbarkeit von Ergebnissen zu er-
moglichen. Im Gegensatz hierzu setzen kommerzielle Encoder auf eine
Vielzahl von Encoder-Optimierungen und Ratenkontroll-Algorithmen.
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Da sich hierdurch viele Effekte tiberlagern, ist es schwierig den Mehr-
wert von neuen Codierungsverfahren zu messen. Deshalb werden in der
Literatur und in den Standardisierungsgremien Encodereinstellungen
ohne viele Optimierungen und Ratenkontrolle verwendet [140].

In den CTC sind drei Konfigurationen definiert:

1. All Intra: In dieser Konfigurationen werden alle Bilder ohne Refe-
renzierung anderer, zuvor codierter, Bilder, beispielsweise mittels
bewegungskompensierender Pradiktion, codiert. Hierdurch sollen
die Intra-Pradiktionsverfahren sowie die Pradiktionsfehlercodie-
rung fiir die durch die Intra-Pradiktion erzeugten Pradiktionsfehler
evaluiert werden. Die Einzelbildcodierung kann als Spezialfall fiir
die Anwendung dieser Konfiguration gesehen werden.

2. Low Delay: Diese Konfiguration zielt auf Anwendungen die eine
geringe Latenz erfordern. Hierzu zadhlen beispielsweise Videokon-
ferenzen. Das erste Bild einer Sequenz kann ausschliefilich intra-
pradiziert werden. Fiir die Blocke in den weiteren Bildern der Se-
quenz kann bei dieser Konfiguration zusétzlich zur Intra-Pradiktion
die Inter-Pradiktion mit Referenz auf zuvor angezeigte Bilder ver-
wendet werden. Da die Bilder in der gleichen Reihenfolge codiert
werden, in der sie auch angezeigt werden, ergibt sich keine durch
die GOP-Struktur bedingte Latenz.

3. Random Access: Mit dieser Konfiguration werden klassische Rund-
funk-Anwendungen sowie andere Anwendungen mit der Notwen-
digkeit eines wahlfreien Zugriffs, beispielsweise Streaming oder
Blu-rays, abgebildet. Die Bilder werden einer hierarchischen GOP-
Struktur entsprechend codiert. Fiir die zu codierenden Blocke kon-
nen sowohl die Intra-Pradiktion als auch die Inter-Pradiktion ein-
gesetzt werden. Im Gegensatz zur Low Delay-Konfiguration konnen
in der Random Access-Konfiguration nicht nur vorherige sondern
auch zukiinftige Bilder referenziert werden. Dieses wird dadurch
ermoglicht, dass sich die Codierungsreihenfolge der Bilder von
deren Anzeigereihenfolge unterscheidet. Hierdurch entsteht eine
zusatzliche Latenz fiir den Decodierungsprozess. In regelméfiigen
Abstinden wird ein ausschliefilich intra-codiertes Bild verwendet,
um den wabhlfreien Zugriff zu ermdéglichen. Fiir diesen Abstand
wird in Abhéngigkeit der Bildwiederholrate der jeweiligen Sequenz
dasjenige Vielfache der GOP-Grofle von 8 gewdhlt, dass einem I-
Bild-Abstand von einer Sekunde am nachsten kommt.

In den CTC werden ferner 24 Videosequenzen mit unterschiedlichen
Auflosungen und Charakteristiken aufgefiihrt. Diese werden ebenfalls
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alle fiir die vorliegende Arbeit verwendet. Die Quantisierungsparameter
werden, ebenfalls den CTC folgend, auf 22, 27, 32, und 37 festgelegt.

Fiir die Evaluierung der vorgeschlagenen Verfahren werden die CTC in
zwei Punkten erweitert, um zusatzliche Experimente durchzufiihren.

Zum einen liefSe sich gegen die Verwendung der CTC-Sequenzen ein-
wenden, dass diese auch fiir die Entwicklung des HEVC-Standards ver-
wendet wurden. Deshalb werden zusétzliche Sequenzen codiert und die
Ergebnisse getrennt angegeben. Es handelt sich um die Bristol Vision
Institute (BVI)-Texturdatenbank [97] und die Bike-Datenbank [68]. In der
erstgenannten beinhalten die Sequenzen verschiedene Texturen. Die Se-
quenzen sind wie die CTC-Sequenzen unkomprimiert. Bei den Sequenzen
aus der zweiten zusitzlichen Datenbank handelt es sich um sogenannten
User-generated Content, der anders als die CTC- und BVI-Sequenzen nicht
mit hochstqualitativen Kameras aufgenommen wurde. Die Sequenzen
wurden bereits in der Kamera codiert. Es handelt sich also bei den durch-
gefiihrten Experimenten fiir diese Sequenzen um eine Transcodierung.
Dieses entspricht der typischen Anwendung fiir diese Art von Inhalten.
Bei beidem handelt es sich um wichtige Charakteristiken, die in den CTC-
Sequenzen unterreprasentiert sind. Die zusétzlichen Ergebnisse werden
getrennt présentiert.

Zum anderen wurde in der eigenen Vorarbeit [70] erkannt, dass die
Verwendung der vier in den CTC definierten Quantisierungsparameter
zu teils unrealistisch hohen Qualitiaten und Datenraten fiihrt. So werden
4K-Sequenzen mit teils tiber 200 MBit/s codiert, wahrend fiir die gleiche
Auflosung in realen Streaming-Anwendungen teils nur etwas mehr als
ein Zehntel hiervon verwendet wird [89]. Auch die Qualitit des rekonstru-
ierten Videos ist mit teils tiber 45dB fiir mit einer Kamera aufgenommene
Videosequenzen und iiber 50dB fiir computergenerierte Sequenzen sehr
hoch. Narroschke gibt fiir Rundfunkqualitdt einen Wert von 36dB an [88].
Deshalb wird ein zusétzlicher Satz an Quantisierungsparametern, 32,
37, 42, 47, verwendet. Die Verwendung dieser Quantisierungsparameter
fiihrt zu niedrigeren Qualitdten und Datenraten, wie sie insbesondere fiir
Streaming-Anwendungen tiber Mobilfunknetze, Echtzeitanwendungen
wie Videokonferenzen oder noch héufiger bei der Videotelefonie mit mo-
bilen Endgerédten zu beobachten sind. Auch hier werden die Ergebnisse
separat angegeben.

Zur Verringerung des Rechenaufwands wurden von jeder Sequenz
die ersten 64 Bilder codiert. Unter Berticksichtigung der Tatsache, dass
in dieser Arbeit Intra-Codierungsverfahren vorgeschlagen werden, er-
scheint diese Einschrankung vertretbar. Fiir Intra-Codierungsverfahren
erscheint durch die Codierung von 64 Bildern von einer hohen Anzahl an
unterschiedlichen Testsequenzen der zu erwartende Erkenntnisgewinn
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hoher zu sein als durch die Codierung von jeweils mehr Bildern von we-
niger Sequenzen. Diese Annahme wird gestarkt durch die Beobachtung,
dass lediglich eine der tiber fiinfzig verwendeten Testsequenzen (Kimono)
einen Szenenwechsel enthilt.

Die verwendeten Testsequenzen werden in Abbildung 5.13 veranschau-
licht.
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Class B (1080p)

Class E (720p)

User-generated (720p)

” ' \ o,

Abbildung 5.13: Veranschaulichung der verwendeten Testsequenzen
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Fiir die Messung der Codierungseffizienz werden die BD-Raten [7, 8]
mit der Implementierung aus [10] berechnet. Fiir die drei Farbraumkom-
ponenten sind jeweils PSNR-Werte messbar — pro QP einer. Die jeweiligen
Werte werden mit PSNRy, PSNR¢}, und PSNRc, bezeichnet. Bei der Vi-
deocodierung entsteht ein Bitstrom, der alle drei Farbraumkomponenten
gemeinsam représentiert. Hierdurch ist es schwierig, einzelne Bitanzah-
len den jeweiligen Komponenten zuzuordnen. Typischerweise verursacht
die Luma-Komponente einen hoheren Anteil der Gesamtdatenrate als die
Chroma-Komponenten. Deshalb werden die Ergebnisse als gewichtete
Uberlagerung der Ergebnisse der einzelnen Farbraumkomponenten be-
rechnet. Als Gewichtungsfaktoren werden fiir 4:2:0-Farbuntertastungen
in der Regel die Werte 6/1/1 fiir die Komponenten Y/Cb/Cr und die
Faktoren 4/1/1 flir 4:4:4-Farbunterabtastungen verwendet.

Fiir die Berechnung der gewichteten Uberlagerung stehen zwei Vorge-
hensweisen zur Auswahl: Entweder konnten zunéchst drei BD-Raten fiir
die einzelnen Komponenten (BDy, BDcp,, BDcy) berechnet und anschlie-
Bend durch gewichtete Uberlagerung die BD-Rate fiir die drei Farbraum-
komponenten gemeinsam (BDycpc;) ermittelt werden:

BDy = BD (r,PSNRy), (5-3)
BDcp = BD (1, PSNRcp,), (5.4)
BDc; = BD (r,PSNRcy,) , (5-5)

6 X BDy -+ BD¢p, -+ BD
BDycber = Y 3 cb S (5.6)

Hierbei steht BD(r, PSNRy/cp/cy) filr die Berechnung der BD-Rate in Ab-
hangigkeit der als Argument angegebenen Gesamt-Datenraten r sowie
der zu der entsprechenden Farbraumkomponente gehdrenden PSNR-
Werte. Alternativ konnten zunéchst die PSNR-Werte tiberlagert werden,
um anschlieffend eine BD-Rate fiir die Gesamt-Datenrate und den gewich-
teten PSNR-Mittelwert zu berechnen:

6 X PSNRy -+ PSNRc}, + PSNRcy

PSNRychcr = g , (5.7)

BDycher = BD (1, PSNRycper) - (5.8)

In dem internationalen Standardisierungsgremium JVET von ISO, IEC
und ITU-T fiir Videocodierung wird die Auffassung vertreten, dass die
Variante aus Gleichung 5.8 vorzuziehen sei, da bei der Variante aus
Gleichung 5.6 Ausreifler in den Chroma-Komponenten einen zu starken
Einfluss hétten [114]. Deshalb wird fiir diese Arbeit die Variante aus
Gleichung 5.8 verwendet.
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Die folgenden Kombinationen an Codierungsverfahren werden unter-
sucht:

1. Polynomielles Konturmodell +
Abtastwertpradiktion mit neuronalen Netzwerken

2. Stochastisches Konturmodell +
Abtastwertpradiktion mit neuronalen Netzwerken

Die Beschrankung auf diese beiden Kombinationen wird damit begriin-
det, dass bereits in dem Experiment mit dem CoMIC-Codec gezeigt wurde,
dass die Abtastwertpradiktion mit neuronalen Netzwerk tiberlegen mit
Bezug auf die Along-contour-Abtastwertpradiktion ist und der Rechen-
aufwand fiir die Durchfiihrung der Simulationen somit begrenzt werden
kann.

5.2.1  Polynomielles Konturmodell und Abtastwertpridiktion mit neuronalen
Netzwerken

Zunéchst wird in diesem Abschnitt die Kombination aus dem polyno-
miellen Konturmodell aus der Vorarbeit [69] und dem in dieser Arbeit
vorgeschlagenen Verfahren zur Abtastwertpradiktion mittels neuronaler
Netzwerke evaluiert. Eine tabellarische Ubersicht der BD-Raten fiir alle
Konfigurationen befindet sich in Tabelle 5.4.

Es ist ersichtlich, dass fiir fast alle Sequenzen eine Verbesserung der
Codierungseffizienz gemessen wird. Die Tatsache, dass trotz der Rate-
Distortion-Optimierung fiir einige wenige Sequenzen Verluste gemessen
werden konnen, ldsst sich damit erkldren, dass in der gewéahlten Imple-
mentierung die Entscheidung fiir das Codierungsverfahren basierend
auf der Luma-Komponente getroffen werden muss, bevor die Codierung
der Chroma-Komponenten beginnt. In einzelnen Féllen kann es dazu
kommen, dass die Codierung fiir eine Chroma-Komponente nicht so
gut funktioniert, obwohl fiir die Luma-Komponente ein gutes Ergebnis
erzielt wurde und der CoMIC-Mode deshalb ausgewéahlt wurde. Da die
Datenraten fiir die drei Komponenten nicht getrennt betrachtet werden
konnen, hat dieses einen nicht vermeidbaren Einfluss auf die BD-Raten.
Hierzu lasst sich die Hypothese aufstellen, dass die Codierungsgewinne
durch eine ausgefeiltere RD-Optimierung hochstwahrscheinlich weiter
gesteigert werden konnten.

Fiir All Intra werden BD-Raten von bis zu —3.44% gemessen. Inte-
ressante Erkenntnisse lassen sich durch die Analyse, fiir welche Arten
von Sequenzen die groiten Gewinne erzielt werden, gewinnen. Hierfiir
werden die Mittelwerte im unteren Bereich der Tabelle 5.4 betrachtet. Aus
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den Daten geht hervor, dass die grofiten Gewinne fiir Sequenzen mit
sehr grofien Auflosungen (Class A, 4K) und mit User-generated Content
erzielt werden. Die geringsten Gewinne beziehungsweise teilweise sogar
Verluste werden fiir Sequenzen mit sehr geringen Auflosungen (Class
D, 416 x 240) und computergenerierten Inhalten (Class F, Screen Content)
gemessen.

Die fiir die Pradiktion verwendeten neuronalen Netzwerke wurden
mit Trainingsdaten trainiert, in denen Auflésungen von 3008 x 2000,
4288 x 2848 und 4928 x 3264 vorkommen. Diese Auflosungen sind in der
gleichen GroBlenordnung wie die Auflosung der 4K Sequenzen, was nahe
legt, dass die Signalcharakteristiken dhnlicher als bei den sehr niedrigen
Auflosungen sind. Die User-generated Content-Sequenzen wurden mit ei-
ner nicht-professionellen Kamera aufgenommen. Verglichen mit den mit
professionellen Kameras aufgenommenen CTC-Sequenzen haben diese
Sequenzen eine geringere Ausgangsqualitit, beispielsweise in Bezug auf
das Vorhandensein hoher Frequenzen. Dieses begiinstigt die Pradiktion
mit den per SATD trainierten Netzwerken ebenfalls. Da computergene-
rierte Inhalte in den Trainingsdaten der Netzwerke nicht vorkommen, ist
es wenig verwunderlich, dass das vorgeschlagene Codierungsverfahren
hierfiir nicht so effizient funktioniert.

Des Weiteren ist festzustellen, dass die Codierungsgewinne im Mittel
ftir die Konfigurationen Random Access und Low Delay in der gleichen
Grofienordnung wie die Gewinne fiir All Intra sind. Dieses zeigt, dass
Intra-Codierungsverfahren auch fiir Bilder, fiir die eine bewegungskom-
pensierende Pradiktion verwendet werden kann, von grofier Bedeutung
sind. Auch in diesen Bildern wird ein Anteil der Blocke intra-codiert,
beispielsweise neu im Bild erscheinende Inhalte. Fiir die Interpretation
der Ergebnisse sind zwei Aspekte zu berticksichtigen: Zum einen werden
weniger Blocke intra-codiert als in der All Intra-Konfiguration”. Zum an-
deren ist die Gesamtdatenrate niedriger. Wenn nun davon ausgegangen
wird, dass die absoluten Datenrateneinsparungen fiir die intra-codierten
Blocke vergleichbar sind und diese fiir die BD-Raten-Berechnung mit
der Gesamtdatenrate in Bezug gesetzt werden, dann ldsst sich erkla-
ren, warum auch fiir die Random Access- und Low Delay-Konfiguration
nennenswerte Codierungsgewinne erzielt werden.

Ein entsprechender Nachweis wird im weiteren Verlauf des Kapitels bei der Analyse der
Verwendungshaufigkeit erbracht.
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Tabelle 5.4: BD-Raten fiir die HM-Implementierung des polynomiellen Konturmo-
dells in Kombination mit neuronalen Netzwerken zur Abtastwertpra-
diktion. HR = Hohe Datenraten, NR = Niedrige Datenraten. Negative
BD-Raten zeigen eine gesteigerte Codierungseffizienz an.

All Intra Random Access Low Delay

Kategorie Sequenz HR NR HR NR HR NR
Traffic -036% -0.87%  -0.33% -0.76%  -0.12% -0.52%

Class A (4K) People on Street -0.62% -1.05%  -0.53% -1.42% -0.37% -1.18%
Nebuta -0.18% -0.41%  -0.02% -0.04% 0.01% -0.37%

Steam Locomotive -0.49% -3.44%  -0.53% -1.43%  -027% -1.01%

Kimono -0.83% -0.71%  -0.23% -0.39% 0.27% -0.49%

Park Scene -0.69% -1.65%  -0.40% -0.92%  -0.22% -0.53%

Class B (1080p) Cactus -0.22% -0.71%  -0.27% -0.59% -0.26% -0.58%
BQ Terrace -0.08% -0.35%  -0.10% -0.05%  -0.11% 0.09%

Drive -017% -1.04%  -0.49% -0.76% -0.35% -0.89%

Race Horses -0.10% -0.76%  -0.37% -0.71% -0.26% -0.84%

Class C (WVGA) BQ Mall 0.08% -1.07%  -0.02% -0.54% 0.05% -0.20%
Party Scene 0.06% 0.33% -0.13% -0.84% 0.07%  0.14%

Drill -0.14% 0.03% -033% -0.85%  -0.17% 0.74%

Race Horses 0.43% 0.46% -0.20% -0.27% 0.22% 0.74%

BQ Square -0.09% -0.40%  -0.06% -0.15%  -0.18% -0.08%

Class D (WQVGA) Blowing Bubbles 0.00% -0.63%  -0.16% -0.18%  -0.05% -0.05%
Pass 0.03% 0.65% -0.18% -0.14% 0.04% _-0.36%

Four People -0.36% -0.10% .13% -0.42%  -0.40% -0.60%

Class E (720p) Johnny 0.14% -0.70% -0.58% -0.18% -0.63% -0.65%
Kristen and Sara -0.44% -0.77% 0.14% -0.01%  -0.10% -0.55%

Basketball Drill Text 0.08% 0.03% -0.25% -0.45% 0.09% 0.22%

China Speed -0.17% -0.25%  -0.14% 0.01% -0.02% -0.35%

Class F (Sereen Content) i e diting 0.14% 025%  024% -021%  020% 0.11%
Slide Show -0.12% 0.90% 0.07% _0.14% -0.07% _0.52%

Ball Under Water -100% -1.87%  -1.68% -3.17%  -142% -3.29%

Bookcase -055% -1.33%  -0.19% -0.56% -0.08% 0.60%

Bricks and Bushes -039% -0.81%  -0.21% -0.59%  -0.03% -0.43%

Bricks Leaves -047% -1.42%  -0.62% -1.35% -0.68% -1.49%

Bubbles Clear -0.03% -0.04%  -1.84% -185%  -178% -178%

Calming Water -0.64% -0.48%  -0.84% -1.23% -0.67% -0.83%

Carpet -0.28% -0.44%  -0.20% -0.15% -0.43% 0.23%

Drops on Water 0.77% -1.07%  -0.78% -1.03%  -0.66% -0.65%

BVI-Textures (1080p)  Flowers 2 -0.59% -0.75% -0.19% -0.41% -0.24% -0.22%
Lamp Leaves -055% -1.01%  -0.23% -0.63%  -0.14% -0.41%

Paiting Tilting -031% -073%  -0.30% -0.57% -0.22% -0.34%

Plasma Free 0.06% -020%  -0.77% -130%  -0.47% -0.64%

Pond Dragonflies -0.34% -0.61%  -0.28% -0.70% -0.09% -0.33%

Smoke Clear -0.15% 0.48% -038% -1.76% -1.29% -4.54%

Sparkler -036% -161%  -1.79% -1.87%  -156% -167%

Squirrel -035% -0.83%  -0.73% -1.02% -0.37% -0.68%

Tree Willis -0.28% -0.63%  -0.08% -0.45%  -0.12% -0.35%

Bike 1 -0.62% -1.99%  -0.41% -1.02% 0.12% -0.07%

Bike 2 -0.92% -0.64%  -0.21% -1.35%  -0.20% -0.82%

Bike 3 0.07% -2.04%  -0.29% -0.80% -0.38% -0.22%

Bike 4 -038% -0.12%  -0.57% -1.29%  -0.54% -136%

Bike 5 -1.24% -0.86%  -0.19% -1.40% -0.32% -1.35%

Bike 6 -0.57% -1.44%  -0.38% -0.50% -0.48% -0.94%

User-generated (720p) B¢ 7 -0.85% -091%  -0.46% -0.05%  -0.56% -0.81%
Bike 8 -0.17% 0.25% .33%  -0.84% -0.51% -0.25%

Bike 9 -0.62% -1.24%  -0.37% -1.25%  -0.28% -0.88%

Bike 10 -0.33% -1.37%  -0.52% -0.74% -0.41% -0.46%

Bike 11 -0.65% -1.59%  -0.48% -1.52%  -0.37% -0.80%

Bike 12 0.15% 0.43% -0.12% -0.42% -0.09% -0.02%

Bike 13 -1.02% -0.50%  -0.29% -0.67% -0.01% -0.40%

Bike 14 -037% -2.30% _ -2.43% -5.75% _ -144% -4.51%

Mittelwert -034% -0.73%  -0.42% -0.86%  -0.34% -0.66%

Class A (4K) -0.41% -1.44%  -0.35% -0.91% -0.19% -0.77%

Class B (1080p) -0.40% -0.90%  -0.30% -0.54%  -0.24% -0.48%

Class C (WVGA) -0.03% -037%  -0.21% -0.73% -0.08% -0.04%

Class D (WQVGA) 0.09% 0.02% -0.15% -0.18% 0.01% 0.06%

Class E (720p) -0.22% -0.52%  -0.19% -0.20% -0.38% -0.60%

Class F (Screen Content)  -0.02% 0.23% .02%  -0.13% 0.05% 0.12%

BVI-Textures (1080p) -0.41% -0.78%  -0.65% -1.10% -0.60% -0.99%

User-generated (720p) -0.54% -1.02% -0.50% -1.26% -0.39% -0.92%
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5.2.2  Stochastisches Konturmodell und Abtastwertpridiktion mit neuronalen
Netzwerken

In diesem Abschnitt wird die Kombination aus den beiden in dieser
Arbeit vorgeschlagenen Verfahren evaluiert. Hierbei wird untersucht, ob
es durch das stochastische Konturmodell nicht nur fiir die Along contour-
Abtastwertpradiktion, wie bereits in Abschnitt 5.1.1 gezeigt, einen Mehr-
wert gegentiber dem polynomiellen Konturmodell bietet, sondern auch
wenn es mit der vorgeschlagenen Abtastwertpradiktion mit neuronalen
Netzwerken kombiniert wird. Es werden die identischen Encoderkonfi-
gurationen und Testsequenzen verwendet wie im vorherigen Experiment.
Eine tabellarische Ubersicht der BD-Raten fiir alle Konfigurationen befin-
det sich in Tabelle 5.5.

Es ist ersichtlich, dass die vorgeschlagenen Verfahren fiir die Inhalte,
flir die bereits die Kombination aus dem polynomiellen Konturmodell
mit der Abtastwertpradiktion basierend auf neuronalen Netzwerken zu
nennenswerten Codierungsgewinnen fiihrten, ebenfalls gut funktionie-
ren. Hierbei handelt es sich um die Kategorien mit hochauflésenden
Sequenzen (Class A mit 4K-Sequenzen und Class B 1080p-Sequenzen)
sowie fiir User-generated Content. Dartiber hinaus ist zu beobachten, dass
fur die schwierig zu codierenden Texturen in der BVI-Datenbank der Co-
dierungsgewinn deutlich gesteigert werden kann. Im Mittel betragen die
gemessenen BD-Raten fiir die AI-Konfiguration —0,54% (fiir die hohen
Datenraten) und —1,0% fiir die niedrigen Datenraten. Der gemessene
Maximalwert fiir die Steigerung der Codierungseffizienz ist mit einer
BD-Rate von —5% in etwa genauso grofd wie fiir das Experiment mit dem
polynomiellen Konturmodell.

Um den Mehrgewinn durch das stochastische Konturmodell genauer
zu quantifizieren wird die Differenz der jeweils gemessenen BD-Raten
gebildet:

MehrgEWinn = BD-Rategiochastisch — BD'RatePolynomiell

Negative Zahlenwerte sagen hierbei aus, um wieviel zusatzliche Prozent-
punkte die Codierungseffizienz durch das vorgeschlagene Verfahren im
Vergleich zu der eigenen Vorarbeit gesteigert werden konnte. Die Ergeb-
nisse sind in Tabelle 5.6 zusammengefasst. Aus der Tabelle ldsst sich
ablesen, dass die Verwendung des stochastischen Konturmodells einen
Mehrwert fiir die Codierungseffizienz bietet. Dieses zeigt sich sowohl
in den gemittelten BD-Raten als auch in der Anzahl an Sequenzen, fiir
welche die Codierungseffizienz zusitzlich gesteigert werden kann. Fiir
die All Intra-Konfiguration wird die Codierungseffizienz im Mittel um
weitere 0,21 Prozentpunkte (fiir hohe Datenraten) beziehungsweise 0, 27
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Prozentpunkte (fiir niedrige Datenraten) gesteigert. Dieses entspricht
bezogen auf die die urspriinglichen BD-Raten prozentualen Steigerungen
von 58% und 36%. Fiir einige Sequenzen werden Steigerungen um mehr
als einen Prozentpunkt gemessen.

Wie auch fiir das vorhergehende Experiment zeigt sich, dass auch fiir
die Encoderkonfigurationen mit der Moglichkeit zur Verwendung der
bewegungskompensierenden Pradiktion die Codierungseffizienz gestei-
gert werden kann. Fiir Random Access werden BD-Raten von —0,56% (fiir
hohe Datenraten) und —1,05% (fiir niedrige Datenraten) gemessen. Fiir
Low Delay liegen die entsprechenden Werte bei —0,42% und —0, 85%.
Die Erklarung fiir diese Codierungsgewinne liegt wie auch zuvor in
der Annahme, dass auch in diesen Konfigurationen ein Teil der Pixel
intra-pradiziert wird. Zwar ist davon auszugehen, dass weniger Pixel
intra-pradiziert werden — eine Annahme, die nachfolgend noch naher
untersucht wird — jedoch die fiir diese Pixel eingesparte absolute Da-
tenrate zu einer ebenfalls niedrigeren Gesamtdatenrate in Bezug gesetzt
wird und somit die Codierungsgewinne in dhnlicher Hohe wie fiir die
All Intra-Konfiguration erklart werden kénnen.

Zur weiteren Analyse wird ermittelt, welcher Anteil der codierten
Pixel durch das CoMIC-Verfahren pradiziert wird. Hierbei wird bewusst
der Anteil an Pixeln und nicht der Anteil an Blocken betrachtet. Dieses
ist notwendig, da die Blocke unterschiedlich grof$ sein konnen und so-
mit der Anteil an mit dem CoMIC-Verfahren codierten Blocken nur eine
geringe Aussagekraft hitte. Die Ergebnisse sind in Tabelle 5.7 zusammen-
gefasst. Im Mittel werden die vorgeschlagenen Verfahren fiir die All Intra-
Konfiguration fiir 12,9% (hohe Datenraten) beziehungsweise fiir 17, 85%
(niedrige Datenraten) der codierten Pixel verwendet. Fiir die Konfigura-
tion Random Access liegen die Werte bei 3,95% und 3,53%, fiir die Low
Delay-Konfiguration bei 3, 8% und 3, 7%. Somit wird das CoMIC-Verfahren
regelmaflig durch die RD-Optimierung als bestes Codierungsverfahren
ausgewdhlt. Ferner lasst sich festhalten, dass die Verwendungshaufigkeit
erwartungsgemdf fiir die Encoderkonfigurationen, welche eine bewe-
gungskompensierende Pradiktion zulassen, geringer ist, aber dennoch
fur ein Intra-Pradiktionsverfahren haufig ist.

Die Steigerung der Komplexitat wird anhand der Encoder- und Deco-
derlaufzeiten analysiert. Die Ergebnisse sind in Tabelle 5.8 zusammen-
gefasst. Zur Einordnung ist anzumerken, dass die Laufzeiten aufgrund
der sehr groflen Anzahl an Simulationen mittels einer stark heterogenen
Mischung aus verschiedenen Computern gemessen wurden. Die verwen-
deten CPU-Typen sind: Intel Xeon CPU E5-2680 v3 (2.50GHz), Intel Xeon
CPU Es5-2670 (2.60GHz), Intel Xeon Gold 5120 CPU (2.20GHz), Intel Xeon
CPU Es5-2690 v2 (3.00GHz), Intel Core i9-9900K CPU (3.60GHz) und Intel
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Core i7-3770K CPU (3.50GHz). Wie bereits aufgrund der Analyse der Kom-
plexitat im Bildcodec erwartet wurde, ist die Steigerung der Komplexitat
sehr grof3. Hierdurch sind die Auswirkungen durch die unterschiedlichen
CPU-Typen im Rahmen einer akzeptablen Messungenauigkeit.

AbschliefSend ist erwdhnenswert, dass die Gewichte der neuronalen
Netzwerke sowie alle weiteren Parameter des Codierungsverfahrens
fir alle codierten Sequenzen gleich waren. Durch eine Adaptivitit, bei-
spielsweise durch das Vorhalten mehrere Netzwerkmodelle fiir unter-
schiedliche Signalcharakteristiken, liefle sich die Codierungseffizienz
hochstwahrscheinlich weiter steigern.
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Tabelle 5.5: BD-Raten fiir die HM-Implementierung des stochastischen Konturmo-
dells in Kombination mit neuronalen Netzwerken zur Abtastwertpra-
diktion. HR = Hohe Datenraten, NR = Niedrige Datenraten. Negative
BD-Raten zeigen eine gesteigerte Codierungseffizienz an.

All Intra Random Access Low Delay

Kategorie Sequenz HR NR HR NR HR NR
Traffic -051% -1.12%  -0.43% -0.94% -0.17% -0.68%

Class A (4K) People on Street -0.87% -143%  -0.79% -1.82% -0.47% -1.45%
Nebuta -0.53% -0.91%  -0.17% -0.28% 0.03% -0.16%

Steam Locomotive -0.63% -3.38%  -0.06% -0.89% -0.35% -0.70%

Kimono -1.25% -1.23%  -0.46% -0.80% -0.25% -0.81%

Park Scene -0.84% -2.00%  -0.55% -1.28% -0.33% -1.06%

Class B (1080p) Cactus -0.30% -1.02%  -0.37% -0.88% -0.36% -0.99%
BQ Terrace -0.14% -0.51%  -0.09% 0.48% -0.16% -0.18%

Drive -0.48% -2.06%  -0.84% -1.52% -0.49% -1.45%

Race Horses -0.32% -0.40%  -0.34% -0.66% -0.25% -1.09%

Class C (WVGA) BQ Mall 0.13% -0.58%  -0.32% -1.28% 0.04% -0.51%
Party Scene -0.08% -0.41%  -0.18% -0.89% -0.06% -0.31%

Drill -0.04% -0.98%  -0.31% -0.89% 0.00% 0.11%

Race Horses 0.26% -0.16%  -0.22% -0.97% 0.06% 0.06%

BQ Square 0.04% -0.48% 0.35% 0.43% 0.00% -0.40%

Class D (WQVGA) Blowing Bubbles 0.12% -1.05%  -0.05% -0.33%  0.01% -0.24%
Pass -0.03% 0.67% -0.06% -0.13% 031% -0.65%

Four People -0.25% -0.02% .36% -0.46% -0.36% -0.10%

Class E (720p) Johnny -0.67% -0.82% -0.81% -0.38% -0.70% -0.77%
Kristen and Sara -0.67% -1.70%  -0.31% -0.33% 0.02% -0.74%

Basketball Drill Text -0.24% -0.13%  -0.23% -0.34% 0.04% 0.09%

China Speed -0.02% -0.42%  -0.14% -0.21% -0.07% -0.52%

Class F (Sereen Content) i e diting 0.04% -0.46%  -0.22% -021%  0.12% 0.08%
Slide Show -0.08% -0.45%  -0.28% 0.32% 0.13%  0.56%

Ball Under Water -142% -133%  -2.33% -4.00% -1.86% -3.61%

Bookcase -0.69% -2.35%  -0.10% -0.54% -0.27% -0.62%

Bricks and Bushes -0.68% -1.16%  -0.27% -0.81% -0.08% -0.40%

Bricks Leaves -0.67% -1.39%  -0.81% -1.57% -0.82% -1.44%

Bubbles Clear 0.00% -0.68%  -2.41% -2.65% -2.39% -2.63%

Calming Water -1.06% -1.52%  -1.52% -2.35% -130% -1.74%

Carpet -0.86% -1.43%  -0.79% -1.32% -0.82% -0.95%

Drops on Water -1.06% -1.62%  -1.32% -1.93% -1.16% -1.12%

BVI-Textures (1080p)  Flowers 2 -1.19% -1.97% -0.33% -1.23% -0.29% -0.73%
Lamp Leaves -0.69% -1.22%  -0.37% -0.90% -0.23% -0.53%

Painting Tilting -061% -1.18%  -0.61% -1.14% -0.50% -0.83%

Plasma Free -0.47% -0.96% -1.78% -2.72% -1.14% -1.82%

Pond Dragonflies -0.64% -1.36%  -0.37% -0.87% -0.15% -0.71%

Smoke Clear -0.65% 1.52% -1.03% -2.45% -1.60% -4.05%

Sparkler -0.53% -1.36%  -2.27% -3.14% -1.92% -2.70%

Squirrel -0.63% -1.49%  -0.85% -1.47% -0.62% -117%

Tree Willis -047% -091%  -0.16% -0.49% -0.16% -0.40%

Bike 1 -0.99% -2.10%  -0.34% -0.86% -0.23% -0.03%

Bike 2 -0.99% -0.82%  -0.22% -0.79% 0.00% -0.13%

Bike 3 -0.23% -0.66%  -0.47% -0.40% -0.04%  0.03%

Bike 4 -0.53% -0.88%  -0.49% -1.36% -0.62% -1.49%

Bike 5 -1.68% -1.16%  -0.08% -1.15% -0.30% -0.95%

Bike 6 -0.82% -1.44%  -0.41% -0.31% -0.50% -0.47%

User-generated (720p) B¢ 7 -0.61% -0.50%  -0.66% -0.76% -0.57% -0.93%
Bike 8 -0.22% 0.32% .37%  -0.57% -031% 0.12%

Bike 9 -0.68% -1.06%  -0.43% -1.27% -0.49% -0.95%

Bike 10 -0.64% -0.82%  -0.34% -0.04% -0.36% -0.32%

Bike 11 -0.79% -1.74%  -0.18% -1.15% -0.18% -0.06%

Bike 12 -0.36% 0.50% -0.01% -0.16% 0.07% -0.03%

Bike 13 -1.16% -0.38%  -0.26% -0.24% 0.04% -0.28%

Bike 14 -0.52% -2.66% __ -2.01% -5.00% -0.86% -4.10%

Mittelwert -0.54% -1.00%  -0.56% -1.05% -0.42% -0.85%

Class A (4K) -0.63% -1.71%  -0.36% -0.98% -0.24% -0.75%

Class B (1080p) -0.60% -1.36%  -0.46% -0.80% -0.32% -0.89%

Class C (WVGA) -0.08% -0.59%  -0.29% -0.93% -0.07% -0.45%

Class D (WQVGA) 0.10% -0.25% 0.01% -0.25% 0.09% -0.31%

Class E (720p) -0.53% -0.85%  -0.43% -0.39% -0.35% -0.54%

Class F (Screen Content)  -0.09% -0.37% .122%  -0.11% 0.06% 0.05%

BVI-Textures (1080p) -0.72% -1.20%  -1.02% -1.74% -0.90% -1.50%

User-generated (720p) -0.73% -0.96% -0.45% -1.00% -0.31% -0.69%
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Tabelle 5.6: Mehrgewinn durch das stochastische Konturmodell im Vergleich mit
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dem polynomiellen Konturmodell, jeweils in Kombination mit neu-
ronalen Netzwerken zur Abtastwertpradiktion. Es werden die Ande-
rungen der BD-Raten in Prozentpunkten angegeben. Negative Werte
zeigen eine gesteigerte Codierungseffizienz an. HR = Hohe Datenraten,
NR = Niedrige Datenraten.

All Intra Random Access Low Delay

Kategorie Sequenz HR NR HR NR HR NR
Traffic T0.15%  0.25%  -010% -0.19%  -0.04% -0.16%

Class A (4K) People on Street 0.25% -038%  -0.25% -040%  -0.11% -0.27%
Nebuta 035% -051%  -016% -024%  002% 021%

Steam Locomotive -0.14%  0.06% 047% 0.55%  -0.08% 0.31%

Kimono 042%  052%  -023% -041%  002% -031%

Park Scene 015% -0.34%  -015% -0.36%  -0.11% -0.52%

Class B (1080p) Cactus -008% -030%  -010% -0.28%  -0.10% -0.41%
BQ Terrace 006% -0.16%  001% 054%  -0.05% -0.27%

Basketball Drive -031%  -1.02%  -036% -0.76%  -0.14% -0.56%

Race Horses 0.22%  0.36% 003% 005%  001% -0.25%

BQ Mall 005%  0.49%  -029% -074%  -001% -031%

Class € (WVGA) Party Scene -0.14% -073%  -0.05% -0.05%  -0.12% -0.45%
Basketball Drill 010% -1.01%  002% -004% _ 017% -0.64%

Race Horses 017% 0.62%  -001% -0.71%  -0.16% -0.68%

BQ Square 013% -0.07%  041% 0.58%  017% -0.32%

Class D (WQVGA) Blowing Bubbles 012% -0.42%  011% -0.15%  006% -0.19%
Basketball Pass -0.06% _ 0.02% 0.12% 000%  0.26% -0.29%

Four People 011%  008%  -023% -004%  004% 049%

Class E (720p) Johnny 0.81% -0.13%  -023% -0.20%  -0.07% -0.12%
Kristen and Sara -023%  -0.93%  -045% -032%  0.3% -0.20%

Basketball Drill Text 032% -0.16%  003% O011%  -0.05% -0.13%

Class ¥ (screen Conten) N2 Speed 015% -0.17%  000% -021%  -0.05% -0.18%
Slide Editing 018% -0.71%  -045% 000%  -0.08% -0.03%

Slide Show 004%  -135%  -035% 018%  020% 0.04%

Ball Under Water 042%  054%  -065% -0.83%  -0.44% -0.32%

Bookcase -0.14% -1.03%  009% 001%  -0.19% -122%

Bricks and Bushes 029% -0.35%  -006% -022%  -005% 003%

Bricks Leaves 020% 0.02%  -019% -022%  -0.14% 0.05%

Bubbles Clear 003% -0.64%  -0.58% -0.80%  -0.60% -0.85%

Calming Water 042% -1.03%  -0.68% -112%  -0.63% -0.91%

Carpet -0.58% -0.99%  -0.60% -117%  -0.39% -118%

Drops on Water 029% -055%  -0.54% -0.90%  -0.50% -0.47%

BVI-Textures (1080p)  Flowers 2 060% -1.22%  -014% -0.81%  -0.05% -0.51%
Lamp Leaves -0.14% -021%  -013% -027%  -0.08% -0.12%

Painting Tilting 030% -045%  -031% -0.57%  -0.29% -0.49%

Plasma Free 0.53% -0.76%  -101% -142%  -0.67% -119%

Pond Dragonflies 0.30% -075%  -009% -017%  -0.06% -0.39%

Smoke Clear 0.50%  104%  -065% -068%  -031% 049%

Sparkler 047%  025%  -048% -127%  -0.36% -104%

Squirrel 028% -0.66%  -012% -045%  -0.25% -0.49%

Tree Willis -019%  -0.28%  -0.08% -0.04%  -0.04% -0.05%

Bike 1 037% 0.11%  007% 016%  -035% 004%

Bike 2 007% -0.18%  -001% 056%  020% 0.68%

Bike 3 -030% 138%  -017% 040%  034% 025%

Bike 4 0.15% -0.76%  008% -0.07%  -0.08% -0.13%

Bike 5 -044% -030%  011% 025%  002% 040%

Bike 6 0.26% 001%  -003% 019%  -003% 047%

User-generated (720p) B 7 024%  041%  -020% -071%  -001% -0.12%
Bike 8 -005% 007%  -004% 028%  021% 036%

Bike 9 006% 0.18%  -0.06% -0.02%  -0.20% -0.06%

Bike 10 031%  055% 0.18% 070%  0.05% 0.14%

Bike 11 -015% -0.15%  030% 037%  019% 0.74%

Bike 12 051%  0.07% 0.11% 026%  0.17% -0.01%

Bike 13 -0.14%  0.12% 003% 043%  005% 0.12%

Bike 14 -0.15% -0.36% _ 042% 076% _ 058% 041%

Mittelwert 021%  -027%  0.14% -0.19%  -0.07% -019%

Class A (4K) 022% -027%  -001% -007%  -005% 0.02%

Class B (1080p) 021% -047%  -016% -0.26%  -0.08% -0.41%

Class C (WVGA) 005% -022%  -007% -0.20%  001% -0.41%

Class D (WQVGA) 001% -027%  016% -0.07%  0.08% -0.37%

Class E (720p) 031% -032%  -030% -019%  003% 006%

Class F (Screen Content) -0.08%  -0.60% -0.20% 0.02% 0.01% -0.07%

BVI-Textures (1080p) 031% -0.42%  -037% -0.64%  -0.30% -0.51%

User-generated (720p)  -0.19%  0.07% 006% 0.25%  0.08% 0.23%
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5.2 INTEGRATION IN EINEN VIDEOCODEC

Tabelle 5.7: Verwendungshaufigkeit des vorgeschlagenen Verfahrens. Es wird an-
gegeben, welcher Anteil der codierten Pixel mit dem CoMIC-Verfahren
codiert wird. HR = Hohe Datenraten, NR = Niedrige Datenraten.

Al Intra Random Access Low Delay
Kategorie Sequenz HR NR HR NR HR NR
Traffic T2.8% 20.0% 0.28% 047% 0.28% 047%
Class A (4K) People on Street 13.4% 216% 2.47% 335% 2.19% 3.23%
Nebuta 21.8% 24.0% 2.18% 0.89% 2.00% 0.80%
Steam Locomotive 23.9% 26.1% 160% 1.10% 1.30% 1.10%
Kimono 23.0% 30.4% 2.96% 330% 164% 2.19%
Park Scene 14.8% 21.6% 1.01% 1.44% 0.63% 0.96%
Class B (1080p) Cactus 122% 17.7% 1.42% 1.93% 1.06% 173%
BQ Terrace 5.53% 9.60% 0.24% 0.22% 017% 0.20%
Basketball Drive 9.63% 15.2% 2.66% 3.36% 2.50% 3.67%
Race Horses 8.85% 17.1% 1.42% 234% 125% 2.22%
B8Q Mall 5.18% 133% 0.72% 132% 0.67% 139%
Class C(WVGA) Party Scene 3.78% 11.3% 0.96% 148% 0.86% 145%
Basketball Drill 4.57% 7.61% 1.16% 1.87% 1.05% 171%
Race Horses 10.4% 16.8% 2.18% 318% 1.95% 3.16%
BQ Square 223%  481% 0.03% 0.08% 0.03% 0.10%
Class D(WQVGA) Blowing Bubbles 8.45% 20.2% 1.44% 1.92% 152% 2.10%
Basketball Pass 2.87% 14.0% 0.37% 0.69% 0.20% 0.48%
Four People 7.90% 17.6% 0.23% 0.3%% 0.18% 0.34%
Class E (720p) Johnny 6.26% 10.6% 0.13% 0.22% 0.11% 0.19%
Kristen and Sara 6.47% 103% 0.18% 0.25% 0.14% 0.26%
Basketball Drill Text 2.88% 5.58% 0.93% 149% 0.85% 139%
Class F (screen Conteny) C1ina Speed 4.27% 7.35% 185% 1.84% 1.74% 1.98%
Slide Editing 0.60% 257% 0.03% 0.10% 0.02% 0.08%
Slide Show 0.86% 1.35% 0.11% 0.19% 0.14% 0.25%
Ball Under Water 4.89% 5.27% 6.79% 5.91% 7.40% 7.65%
Bookease 8.09% 15.0% 0.28% 0.53% 0.28% 0.60%
Bricks and Bushes 23.7% 32.7% 0.93% 1.06% 0.55% 0.81%
Bricks Leaves 23.1% 32.8% 1.04% 128% 0.94% 135%
Bubbles Clear 107% 231% 2.18% 227% 2.01% 2.49%
Calming Water 33.9% 38.1% 36.0% 28.0% 37.5% 34.6%
Carpet 25.7% 286% 0.43% 051% 0.49% 057%
Drops on Water 33.0% 36.8% 39.7% 31.9% 40.2% 37.7%
BVI-Textures (1080p)  Flowers 2 26.7% 35.6% 0.42% 0.60% 0.42% 0.59%
Lamp Leaves 19.8% 27.8% 2.46% 2.80% 135% 193%
Painting Tilting 28.3% 37.9% 0.30% 051% 0.40% 0.54%
Plasma Free 3.83% 6.02% 2.86% 3.40% 272% 3.77%
Pond Dragonflies 16.3% 25.3% 0.23% 0.38% 0.25% 0.41%
Smoke Clear 6.93%  4.86% 6.42% 259% 6.67% 3.18%
Sparkler 3.61% 7.63% 7.59% 9.75% 6.95% 9.82%
squirrel 2.7% 26.6% 0.32% 0.36% 0.34% 0.42%
Tree Willis 14.3% 20.7% 0.20% 0.29% 0.22% 0.31%
Bike 1 14.0% 17.9% 2.99% 253% 2.10% 151%
Bike 2 12.6% 17.2% 2.06% 2.16% 146% 126%
Bike 3 111% 8.60% 3.03% 2.40% 2.38% 1.48%
Bike 4 15.1% 193% 4.62% 3.74% 4.29% 3.28%
Bike 5 23.5% 28.8% 126% 7.65% 115% 7.61%
Bike 6 19.4% 23.1% 9.08% 6.72% 8.46% 6.71%
User-generated (720p) B 7 17.0% 15.2% 7.76% 6.19% 7.63% 6.69%
Bike 8 8.84% 125% 9.22% 8.95% 8.70% 8.81%
Bike 9 15.4% 20.9% 453% 4.06% 4.14% 3.75%
Bike 10 135% 17.4% 6.59% 739% 6.21% 6.79%
Bike 11 16.5% 21.9% 6.99% 7.20% 7.17% 8.15%
Bike 12 7.30% 8.28% 173% 156% 1.50% 117%
Bike 13 13.9% 16.5% 4.05% 3.75% 3.17% 2.65%
Bike 14 16.6% 22.9% 7.57% 4.30% 2.09% 5.60%
Mittelwert 12.9% 17.9% 3.95% 353% 3.80% 3.70%
Class A (4K) 18.0% 22.9% 163% 146% 1.44% 1.40%
Class B (1080p) 13.1% 18.9% 166% 2.06% 121% 175%
Class C (WVGA) 5.59% 12.3% 1.06% 175% 0.96% 169%
Class D (WQUGA) 5.99% 14.0% 1.01% 147% 0.93% 145%
Class E (720p) 6.88% 12.9% 037% 0.29% 0.15% 0.26%
Class F (Screen Content) ~ 2.15%  4.21% 0.73% 0.91% 0.69% 0.93%
BVI-Textures (1080p) 17.2% 22.6% 6.36% 5.42% 6.39% 6.28%
User-generated (720p)  14.6% 17.9% 5.91% 4.90% 5.56% 4.68%
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EXPERIMENTELLE UNTERSUCHUNG UND BEWERTUNG

Tabelle 5.8: Komplexitatssteigerung durch die vorgeschlagenen Verfahren. Die
Berechnung erfolgt durch die Encoder- und Decoderlaufzeiten.

All Intra Random Access Low Delay
Kategorie Sequenz Encoder Decoder Encoder Decoder Encoder Decoder
Traffic 1567 2973 615 723 544 s
Glass A (4K) People on Street 1239 4493 427 3071 275 2315
Nebuta 3383 6638 715 1006 814 852
Steam Locomotive 3663 7021 1386 1265 668 646
Kimono 652 907 213 724 22 827
Park Scene 1482 4646 513 1304 376 840
Class B (1080p) Cactus 1246 2444 548 1497 336 852
BQ Terrace 1583 2428 652 371 333 192
Drive 824 1107 145 763 126 768
Race Horses 1032 1014 480 2583 2% 1206
Class € (WVGA) BQ Mall 1392 798 a9 785 587 1106
Party Scene 1759 686 1362 1573 718 109
orill 164 392 550 1413 276 839
Race Horses 1143 1005 27 1130 298 952
BQ Square 1499 349 913 s6 789 62
Class D (WQVGA) Blowing Bubbles 1683 1204 621 1401 365 1052
Pass 983 331 439 473 51 2
Four People 1286 1566 533 390 7
Class E (720p) Johnny 654 602 300 133 23 108
Kristen and Sara 780 727 300 18 79 143
Basketball Drill Text 054 292 21 795 331 781
Glass  (Screen Contenty N3 Speed 1438 344 sa9 702 a2 697
Slide Editing 1385 126 1099 55 929 66
slide Show 929 79 444 36 252 108
Ball Under Water 36 173 74 668 71 503
Bookease 1030 1234 292 215 61 344
Bricks and Bushes 260 7812 887 2159 937 1446
Bricks Leaves 221 9769 1016 2427 1379 6435
Bubbles Clear 4 18 105 752 107 o1
Calming Water 903 1730 164 5800 19 3334
Carpet 788 826 48 10 236 135
Drops on Water 956 2086 124 4819 100 3966
BVI-Textures (1080p)  Flowers 2 711 1510 387 a2 a1 a7t
Lamp Leaves 2155 5672 599 3046 438 1679
Painting Tilting 2545 1834 1791 252 149 170
Plasma Free 886 1029 99 2 169 2391
Pond Dragonflies 1563 3677 21 288 453 3
Smoke Clear 365 270 620 317 75 822
Sparkler 713 831 72 593 167 4192
Squirrel 1755 4876 127 2980 933 814
Tree Willis 3182 6648 1257 555 1013 524
Bike 1 1012 1267 894 473 267 987
Bike 2 1268 2037 453 2575 265 758
Bike 3 s07 301 283 1328 265 758
Bike 4 1045 1432 302 1489 189 553
Bike 5 954 1669 208 1893 165 1458
Bike 6 996 1500 156 2730 126 2415
Bike 7 49 659 187 3061 176 3075
Usergenerated (7200) gy g 931 855 141 1816 16 1714
Bike 9 1664 2813 148 2046 126 2033
Bike 10 821 863 322 3041 307 2741
Bike 11 664 1125 202 2637 184 2350
Bike 12 930 710 a3 778 148 su
Bike 13 693 766 177 1210 124 765
Bike 14 1151 1999 163 1478 9% 118
Mittelwert 1277 2005 476 1390 375 11
Class A (4K) 2463 5281 78 1516 575 1084
Class B (1080p) 1157 2306 EEVER Y 77 6%
Class C (WVGA) 1337 722 721 1589 459 1062
Class D (WQVGA) 1327 72 600 765 426 577
Class E (720p) 907 95 377 24 349 232
Class F (Screen Content) 1252 210 628 410 489 413
BVI-Textures (1080p) 1356 2949 481 1615 462 1681
User-generated (720p) 938 1285 275 1897 182 1521
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Die Ausgangssituation fiir diese Arbeit ergab sich aus der Beobachtung,
dass die fiir die Ubertragung von Videos benotigte Ubertragungskapazi-
tiat wesentlich schneller wéchst als die hierfiir zur Verftigung stehende
Kanalkapazitit. Hieraus entsteht die Notwendigkeit einer stetigen Ver-
besserung der Codierungsverfahren fiir die verwendeten Videocodecs.

Moderne Videocodecs beruhen in der Regel auf dem Prinzip der Hy-
bridcodierung, also der Kombination von einer Pradiktion mit einer
Transformationscodierung des Pradiktionsfehlers. Die Pradiktionsverfah-
ren konnen grob in Intra- und Inter-Pradiktion unterschieden werden.
Wihrend die Intra-Codierung ausschliefilich ¢rtliche Redundanz im je-
weiligen zu codierenden Bild ausnutzt, wird bei der Inter-Codierung
zusétzlich die zeitliche Redundanz zwischen aufeinander folgenden Bil-
dern mittels einer bewegungskompensierenden Pradiktion ausgenutzt.
Im Rahmen dieser Arbeit sollte die Intra-Pradiktion verbessert werden.

In den eigenen Vorarbeiten [65] und [69] wurde ein als CoMIC bezeich-
netes Codierungsverfahren zur Verbesserung der Intra-Pradiktion vorge-
schlagen. Diese Vorarbeiten beruhen auf der Detektion von Konturen im
bereits codierten Referenzbereich, der Modellierung dieser Konturen mit
polynomiellen Modellen gefolgt von einer Konturextrapolation in den zu
codierenden Block in Kombination mit einem als Along-contour bezeich-
neten Verfahren zur Abtastwertpradiktion, bei dem die Randabtastwerte
entlang der extrapolierten Konturen fortgesetzt werden. Durch diese
beiden Verfahren konnten im Gegensatz zu dem zugrunde liegenden
Referenzverfahren, der Intra-Priadiktion des HEVC-Standards, mehrere
unterschiedliche Konturrichtungen innerhalb eines Blocks extrapoliert
werden, welche zusitzlich nicht nur linear sondern auch nichtlinear
verlaufen konnten.

Im Rahmen der vorliegenden Arbeit wurde das CoMIC-Verfahren wei-
terentwickelt. Hierfiir wurden zwei neue Verfahren vorgeschlagen:

1. Ein stochastisches Konturmodell zur Modellierung und Extrapola-
tion der detektierten Konturen, welches das polynomielle Kontur-
modell ersetzt.

2. Ein auf neuronalen Netzwerken basierendes Verfahren zur Abtast-
wertpradiktion, welches das Along-contour-Verfahren ersetzt.
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Der erste Beitrag in dieser Arbeit, das vorgeschlagene Verfahren zur
Konturmodellierung, verarbeitet im Referenzbereich detektierte Kontu-
ren. Diese Konturen werden mit dem Canny-Algorithmus [12] detektiert.
Die Hyperparameter des Canny-Algorithmus werden signaladaptiv mit-
tels des Otsu-Verfahrens [26, 96] bestimmt. Aus dem bindren Konturbild
nach der Konturdetektion werden mit dem von Suzuki und Be vorgeschla-
genen Verfahren [117] Vektoren mit den Koordinaten der Konturpunkte
erzeugt. Fiir die weitere Verarbeitung werden nur Konturen berticksich-
tigt, die an den zu codierenden Block angrenzen.

Die Konturkoordinaten liegen nur in Ganz-Pel-Genauigkeit vor. Fiir
eine gleichmafBigere Kontur wird versucht diese zu glétten, indem sie
als kontinuierliche Funktion angenahert wird. Die Konturglattung wird
nur eingesetzt, wenn der mittlere resultierende Fehler kleiner als 1 Pel
ist, also im Rahmen der Konturgenauigkeit liegt. Andernfalls werden die
detektierten Konturpunkte mit der groberen Auflosung verwendet.

Die Modellierung der detektierten Kontur erfolgt mittels eines Gauf3-
Prozesses. Wurde die Kontur erfolgreich gegléttet, dann wird ein rausch-
freier Gauf3-Prozess verwendet. War die Konturglattung aufgrund eines
hierbei entstehenden zu grofien Fehlers nicht moglich, dann wird der
Gaufi-Prozess unter der Annahme, dass die Konturpunkte mit Ganz-Pel-
Genauigkeit aus einer Kontur mit kontinuierlichen Koordinaten durch die
Uberlagerung von unkorreliertem Rauschen entstanden sind, formuliert.

Der Prior-Gaufi-Prozess wurde mit dem Defacto-Standard fiir Gauf3-
Prozess-Kovarianzfunktionen, dem sogenannten Squared Exponential
Kernel, formuliert. In der Wahl der Kovarianzfunktion werden die Erwar-
tungen an die zu modellierenden Konturen ausgedriickt. Die gewahlte
Funktion passt zu den in den durch die Partitionierung entstehenden
Blocken erwarteten glatten Konturverlaufen.

Der Posterior-Gauf3-Prozess ergab sich aus dem Prior-Gauf3-Prozess
durch Optimierung der Hyperparameter der Kovarianzfunktion fiir jede
Kontur. Hierfiir wurde die Log-Marginal-Likelihood iterativ maximiert.
Fiir die Konturextrapolation wurde eine multivariate Gauf3-Verteilung
ftir alle Konturpunkte formuliert. Von diesen Konturpunkten sind fiir
manche beide Koordinaten bekannt (fiir die detektierte Kontur) wiahrend
ftir manche nur eine Koordinate bekannt ist (fiir die zu extrapolierenden
Stellen). Basierend auf dieser Formulierung wurden die extrapolierten
Konturpunkte als bedingte Verteilung, gegeben der Punkte der detektier-
ten Kontur und gegeben der Stellen fiir die Extrapolation, formuliert. Die
Pradiktion fiir den Konturverlauf ergibt sich aus dem Mittelwert dieser
Verteilung und die Unsicherheit der Pradiktion aus der Varianz dieser
Verteilung.
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Der zweite Beitrag in dieser Arbeit ist ein auf neuronalen Netzwerken
basierendes Verfahren zur Abtastwertpradiktion. Mit den neuronalen
Netzwerken werden die benachbarten Referenzabtastwerte (vier Blocke
mit der gleichen Grofle wie der zu codierende Block) sowie das Ergebnis
der Konturmodellierung und -extrapolation als Eingabedaten verarbeitet,
um eine Pradiktion der Abtastwerte des zu codierenden Blocks zu erzeu-
gen. Die Konturen werden fiir die Abtastwertpradiktion benétigt. Die
neuronalen Netzwerke wurden mit einer Autoencoder-Architektur ent-
worfen. Autoencoder erhalten die wesentlichen Merkmale des Eingangs-
signals und verarbeiten diese gegebenenfalls weiter. Diese Eigenschaft
passt zu der zu 16senden Aufgabe, welche darin besteht, die wesentlichen
Signalcharakteristiken des Referenzbereichs zu erkennen und basierend
auf ihnen das zu codierende Signal zu pradizieren.

Fiir das Training der neuronalen Netzwerke wurden Trainingsdaten
basierend auf der RAISE-Bilddatenbank erstellt. Die Netzwerke wurden
mittels der Summe der absoluten transformierten Differenzen (SATD),
also der Summe der Koeffizientenbetrdge nach einer Hadamard-Transfor-
mation, als Kostenfunktion trainiert. Unter der Annahme mittelwertfreier
und Laplace-verteilter Pradiktionsfehlerkoeffizienten, wie sie fiir Video-

codecs typisch sind, ist diese Kostenfunktion proportional zu der fiir die
Ubertragung des Pradiktionsfehlers bendtigten Datenrate. Das pradizierte
Signal, also im Fall des vorgeschlagenen Verfahrens das Ausgangssignal
des neuronalen Netzwerkes, wird nie angezeigt, sondern ergibt erst zu-
sammen mit dem tiibertragenen Pradiktionsfehler das letztlich angezeigte
rekonstruierte Bild. Deshalb ist es bedeutender die Datenrate des Pradik-
tionsfehlers zu optimieren, anstatt den Fokus der Optimierung auf die
Qualitédt des pradizierten Signals zu legen.

Fiir die experimentelle Untersuchung erfolgte die Integration der bei-
den Verfahren in den selbstentwickelten Bildcodec CoMIC sowie in die
Referenzsoftware HM. Die beiden Implementierungen verfolgten unter-
schiedliche Ziele. Wahrend die Implementierung in dem Bildcodec die
gezielte Betrachtung einzelner Verfahren ermoglichte, konnte mit der
Implementierung in der Referenzsoftware die Codierungseffizienz im
Zusammenspiel mit einem modernen Videocodierungsstandard evaluiert
werden. In der Referenzsoftware wurden die entwickelten Verfahren
als zusitzlicher Mode implementiert, der auf CU-Ebene durch die RD-
Optimierung ausgewdhlt werden kann, wenn er im Vergleich mit den
anderen zur Verfiigung stehenden Codierungsverfahren die geringsten
RD-Kosten verursacht. Als Vergleichsverfahren wurden jeweils die eige-
nen Vorarbeiten verwendet. In diesen Vorarbeiten wurde bereits gezeigt,
dass die Verfahren aus diesen Vorarbeiten besser als vergleichbare Ver-
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fahren aus der Literatur sind und durch sie die Codierungseffizienz von
HEVC weiter gesteigert werden konnte.

Sowohl in dem selbstentwickelten Bildcodec als auch in der Refe-
renzsoftware des HEVC-Standards ergab sich durch die Verwendung der
vorgeschlagenen Verfahren eine Steigerung der Codierungseffizienz. Un-
ter den Laborbedingungen des Bildcodecs, in dem die vorgeschlagenen
Verfahren aus dieser Arbeit jeweils mit den korrespondierenden Verfah-
ren aus den eigenen Vorarbeiten verglichen wurden, ergab sich durch
das vorgeschlagene Konturmodell eine Verbesserung um im Mittel bis zu
1,9% und durch das vorgeschlagene Verfahren zur Abtastwertpradiktion
um im Mittel bis zu 8,8% - jeweils in Abhédngigkeit von der Blockgrofe.

Die Codierungseffizienz des Videocodecs HEVC wurde um bis zu 5%
gesteigert. Gemittelt tiber alle 55 Testsequenzen ergaben sich fiir die All
Intra-Konfiguration BD-Raten von —0, 54% fiir hohe Datenraten und in
Hohe von —1, 0% fiir niedrige Datenraten. Durch den Einsatz des stochas-
tischen Konturmodells anstelle des polynomiellen Konturmodells aus der
eigenen Vorarbeit — jeweils in Kombination mit dem vorgeschlagenen
Verfahren zur Abtastwertpradiktion — wurde eine zusatzliche Steigerung
der Codierungseffizienz um 0,21 Prozentpunkte fiir hohe Datenraten
und um 0, 27 Prozentpunkte fiir niedrige Datenraten erzielt.

Die Codierungsgewinne sind fiir hochauflosende Videos (4K und
1080p) sowie fiir User-generated Content hoher als fiir sehr niedrig aufls-
sende Videos (416 x240) sowie computergenerierte Videos. Die hoheren
Codierungsgewinne fiir hochauflésende Videos lassen sich vermutlich
auf das Vorkommen dieser Aufldsungen in den Trainingsdaten der Netz-
werke zurtickfithren. Bilder mit niedriger Aufldsung sowie computerge-
nerierte Signale kamen in den Trainingsdaten nicht vor, weswegen die
geringere Codierungseffizienz hierfiir nicht tiberraschend ist. Die hoheren
Gewinne fiir niedrige Datenraten und fir User-generated Content lassen
sich vermutlich auf die verwendete Kostenfunktion fiir das Training der
neuronalen Netzwerke zurtickfiihren.

Der Anstieg der Rechenzeit durch die vorgeschlagenen Verfahren ist
nicht gering. Ansétze zur Beschleunigung sowohl fiir den Encoder als
auch fiir den Decoder sind denkbar, beispielsweise durch eine Berech-
nung der Netzwerk-Inferenz auf GPUs. Zur zusitzlichen Steigerung der
Codierungseffizienz gibt es noch Verbesserungspotential. Beispielswei-
se konnten unterschiedliche Netzwerkmodelle vorgehalten werden und
adaptiv in Abhingigkeit der Charakteristik der zu codierenden Videos
ausgewdhlt werden.

Abschliefiend ldsst sich schlussfolgern, dass das in dieser Arbeit ver-
folgte Ziel, die Entwicklung einer effizienteren Intra-Codierung, durch
die beiden vorgeschlagenen Verfahren erreicht wurde.
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