
Black TNT_Logo_Cover_und_Innen.qxd.pdfM?rz 18, 2015 | 08:13:46 1

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Thorsten Laude,
Langenhagen

Nr. 871Nr. 871

Informatik/
Kommunikation

Reihe 10Reihe 10

Konturbasierte Konturbasierte
multidirektionale multidirektionale
Intra-Prädiktion für Intra-Prädiktion für
die Videocodierungdie Videocodierung

La
ud

e
 C

oM
IC

Co
M

IC
R

ei
he

 1
010
 ·

 N
r.

 8
7187
1

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-38711087110-0
Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

TNT_Logo_Cover und Innen_TNT_Logo_Cover und Innen.qxd 18.03.2015 09:12 Seite 1

Cyan Magenta Yellow Black PANTONE Process Blue CP
Preflight Lx3 am Dezember 15, 2020 | 09:24:02 | 350 mm x 250 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_201886_Reihe_10_871_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

RZ_VV_AZ_WerdenAutor_A5.indd 1 12.07.19 13:08

Veröffentlichen Sie die Ergebnisse Ihrer interdisziplinären technikorientierten
Spitzenforschung in der renommierten Schriftenreihe Fortschritt-Berichte VDI.
Ihre Dissertationen, Habilitationen und Forschungsberichte sind hier bestens platziert:

• Kompetente Beratung und editorische Betreuung
• Vergabe einer ISBN-Nr.
• Verbreitung der Publikation im Buchhandel
• Wissenschaftliches Ansehen der Reihe Fortschritt-Berichte VDI
• Veröffentlichung mit Nähe zum VDI
• Zitierfähigkeit durch Aufnahme in einschlägige Bibliographien
• Präsenz in Fach-, Uni- und Landesbibliotheken
• Schnelle, einfache und kostengünstige Abwicklung

PRoFItIeReN SIe VoN UNSeRem ReNommee!
www.vdi-nachrichten.com/autorwerden

Werden Sie Autor
im VDI Verlag!

Publizieren Sie
in „Fortschritt-
Berichte VDI“

PI
TS
TO
PS
ER

VE
R

Cyan Magenta Yellow Black
Preflight Lx3 am Dezember 15, 2020 | 09:24:02 | 350 mm x 250 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_201886_Reihe_10_871_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Konturbasierte multidirektionale Intra-Prädiktion
für die Videocodierung

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl.-Ing. Thorsten Laude

geboren am 29. Dezember 1988 in Hannover

2020

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Hauptreferent:
Korreferent:
Vorsitzender:

Prof. Dr.-Ing. Jörn Ostermann
Prof. Dr.-Ing. Jens-Rainer Ohm
Prof. Dr.-Ing. Bodo Rosenhahn

Tag der Promotion: 6. November 2020

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

TNT_Logo_Cover und Innen_TNT_Logo_Cover und Innen.qxd 18.03.2015 09:12 Seite 1

TNT_Logo_Cover_und_Innen.qxd.pdf 1

L_201886_Reihe_10_871_Innentitel.indd 1L_201886_Reihe_10_871_Innentitel.indd 1 14.12.2020 15:03:1514.12.2020 15:03:15

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Black
M?rz 18, 2015 | 08:13:46

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Konturbasierte Konturbasierte
multidirektionale multidirektionale
Intra-Prädiktion für Intra-Prädiktion für
die Videocodierungdie Videocodierung

Dipl.-Ing. Thorsten Laude,
Langenhagen

Informatik/
Kommunikation

Nr. 871Nr. 871

Reihe 10Reihe 10

Black
Preflight Lx3 am Dezember 14, 2020 | 15:05:54 | 148 mm x 210 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 1

L_201886_Reihe_10_871_Innentitel.pdf · Seite 1
1

1https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Schriften zur Informations- und Kommunikationstechnik
Herausgeber:

Wolfgang A. Halang, Lehrstuhl für Informationstechnik
Herwig Unger, Lehrstuhl für Kommunikationstechnik

FernUniversität in Hagen

L_201886_Reihe_10_871_Innentitel.indd 2L_201886_Reihe_10_871_Innentitel.indd 2 14.12.2020 15:03:1514.12.2020 15:03:15

© VDI Verlag GmbH · Düsseldorf 2021
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627
ISBN 978-3-18-387110-0

Laude, Thorsten
Konturbasierte multidirektionale Intra-Prädiktion für die
Videocodierung
Fortschr.-Ber. VDI Reihe 10 Nr. 871. Düsseldorf: VDI Verlag 2021.
160 Seiten, 36 Bilder, 12 Tabellen.
ISBN 978-3-18-387110-0, ISSN 0178-9627,
€ 57,00/VDI-Mitgliederpreis € 51,30.
Keywords: Videocodierung – HEVC – Intra-Prädiktion – maschinelles Lernen – Gauß-
Prozesse – Deep Learning – neuronale Netzwerke – stochastische Prozesse

In dieser Arbeit werden zwei Verfahren zur Verbesserung der Intra-Prädiktion für die Video-
codierung vorgeschlagen. Der erste Beitrag in dieser Arbeit besteht aus einem stochastischen
Konturmodell zur Modellierung und Extrapolation von Konturen, die im Referenzbereich
 detektiert werden. Für die Modellierung wird ein Gauß-Prozess verwendet. Für die Kontur-
extrapolation wird eine multivariate Gauß-Verteilung formuliert. Der zweite Beitrag in dieser
Arbeit ist ein auf neuronalen Netzwerken basierendes Verfahren zur Abtastwertprädiktion.
Mit den neuronalen Netzwerken werden die benachbarten Referenzabtastwerte sowie das
Ergebnis der Konturmodellierung und -extrapolation als Eingabedaten verarbeitet, um eine
Prädiktion der Abtastwerte des zu codierenden Blocks zu erzeugen. Die Codierungseffizienz
des Videocodecs HEVC wird um bis zu 5% gesteigert.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

Black
Preflight Lx3 am Dezember 14, 2020 | 15:05:54 | 148 mm x 210 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
In

ne
nt

ite
l.p

df
 ·

S
ei

te
 2

L_201886_Reihe_10_871_Innentitel.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

V O RW O RT

Diese Dissertation habe ich als wissenschaftlicher Mitarbeiter des Insti-
tuts für Informationsverarbeitung (TNT) der Gottfried Wilhelm Leibniz
Universität Hannover geschrieben. Meinem Doktorvater Professor Jörn
Ostermann danke ich für die exzellente Betreuung, seine Ideen und An-
regungen, das Hauptreferat zu dieser Dissertation, stets beste Arbeitsbe-
dingungen und alles, was ich wissenschaftlich und andersweitig gelernt
habe. Schon während meines Studiums gab er mir die Gelegenheit, am
TNT zu forschen und an internationalen Standardisierungsaktivitäten
teilzunehmen.

Professor Bodo Rosenhahn danke ich für zahlreiche wissenschaftliche
Diskussionen und dafür, dass er als Vorsitzender der Prüfungskommissi-
on den reibungslosen Ablauf der Promotion unter den Bedingungen der
Corona-Pandemie ermöglicht hat. Professor Jens-Rainer Ohm danke ich
für die Übernahme des Korreferats.

Meinen ehemaligen Arbeitskolleginnen und -kollegen, von denen viele
inzwischen enge Freunde sind, danke ich für ihre Hilfsbereitschaft, ihren
Rat und für viele schöne gemeinsame Erlebnisse. Hierzu zählen unter
anderem Hendrik Hachmann, der darüber hinaus ein ausgezeichneter
Trauzeuge war, Issi Zell, Felix Kuhnke, Bastian Wandt, Stella Graßhof,
Jan Voges, Marco Munderloh, der während meiner Zeit am TNT mein
Mentor war, Holger Meuel, Benjamin Spitschan, Aron Sommer, Matthias
Reso und Matthias Schuh, der das Institut technisch am Laufen hält und
stets für eine gute Atmosphäre sorgt. Sontje Ihler danke ich ebenfalls für
ihre Freundschaft und zahlreiche Diskussionen. Wegen ihnen war die
Zeit am TNT eine sehr gute und schöne Zeit.

Matthias Narrosche danke ich, dass er mich zur Videocodierung ge-
bracht hat. Solveig Behr, Doris Jaspers-Göring, Pia Bank, Hilke Brodersen,
Thomas Wehberg und Martin Pahl danke ich für die kompetente admi-
nistrative und technische Unterstützung.

Den Mitgliedern des Arbeitssaals Dachkammer danke ich für die
unvergessliche Zeit und die gemeinsame Unterstützung während des
Studiums. Hierzu zählen unter anderem Niklas Briest, Moritz Wallat,
Malte John sowie Felix Burghardt.

Meiner Frau Jennifer Laude danke ich für ihre Liebe, ihre unermüdliche
Unterstützung und auch für ihr Verständnis für lange Arbeitszeiten
während der Fertigstellung der Dissertation. Meinen Eltern Birgit und
Burkhard Laude danke ich dafür, dass sie mich während meines gesamten

III

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Werdegangs unterstützt haben. Ohne sie wäre diese Arbeit nicht möglich
gewesen. Meinen Schwiegereltern Petra und Norbert Lübke danke ich
für die Aufnahme in ihre Familie.

IV

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

I N H A LT S V E R Z E I C H N I S

1 einleitung 1
1.1 Motivation . 1
1.2 Stand der Forschung . 4
1.3 Ungelöste Probleme . 6
1.4 Ziele der Arbeit . 7
1.5 Aufbau der Arbeit . 9

2 grundlagen 10
2.1 Videocodierung . 10
2.2 Maschinelles Lernen . 27
2.3 Konturdetektion . 49

3 verfahren zur modellierung von konturen 53
3.1 Konturdetektion . 53
3.2 Konturglättung . 56
3.3 Modellierung der Kontur 57
3.4 A-Priori-Gauß-Prozess . 58
3.5 Posterior-Gauß-Prozess . 59
3.6 Konturextrapolation . 63
3.7 Einbettung in das Gesamtsystem 65

4 verfahren zur abtastwertprädiktion mittels ma-
schinellen lernens 67
4.1 Einordnung in das Gesamtsystem 67
4.2 Datenbasis . 67
4.3 Architekturen . 73
4.4 Training . 78

5 experimentelle untersuchung und bewertung 84
5.1 Integration in einen Bildcodec 85

5.1.1 Mehrwert des vorgeschlagenen Konturmodells . . 89
5.1.2 Mehrwert der vorgeschlagenen Abtastwertprädiktion 93
5.1.3 Einordnung von Effizienz und Komplexität 96

5.2 Integration in einen Videocodec 101
5.2.1 Polynomielles Konturmodell und Abtastwertprä-

diktion mit neuronalen Netzwerken 109
5.2.2 Stochastisches Konturmodell und Abtastwertprä-

diktion mit neuronalen Netzwerken 112
6 zusammenfassung 119

literatur 123

V

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

F O R M E L Z E I C H E N

videocodierung

r Datenrate

H Entropie

Shorizontal Horizontale Chroma-Unterabtastung

I Informationsgehalt

XFY Konstanten zur Modellierung der
Prädiktionsfehlerkoeffizientendatenrate

l Lagrange-Faktor für die Rate-Distortion-Kosten

SY Luma-Abtastrate

SMax Maximaler Signalwert

C Prädiktionsfehlerkoeffizienten

R Rate

CRD Rate-Distortion-Kosten

Svertikal Vertikale Chroma-Unterabtastung

D Verzerrung, engl. Distortion

konturmodellierung

Q0 Anfangswerte der Hyperparameter der Kovarianzfunktion

b Beobachtungen des zu modellierenden Prozesses („Ground
Truth“)

f Beobachtungen für rauschbehaftete Trainingspunkte

f Beobachtungen für rauschfreie Trainingspunkte

f⇤ Beobachtungen für Testpunkte

I Bild, engl. Image

VI

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

formelzeichen

s Blockgröße

|...| Determinantenoperator

I Einheitsmatrix

GP Gauß-Prozess

F Gradientenrichtungen für die Konturdetektion

Q Hyperparameter der Kovarianzfunktion

cxp Konfidenzfunktion im extrapolierten Konturpunkt xp

Gskel Konturenskelett

K Konturbild

k(xp , xq) Kovarianzfunktion

K(A, B) Kovarianzmatrix für die Zufallsvariablen A und B

S Kovarianzmatrix inklusive unkorreliertem weißen Rauschen

⇠ Längsskalierungsfaktor für kSE(xp, xq)

N Normal-Verteilung

eb Prior-Beobachtungen für den modellierten Prozess
(Prädiktion)

p Prädiktionen (Posterior-Beobachtungen)

Kpost Posterior-Kovarianzmatrix

Spost Posterior-Kovarianzmatrix mit Rauschen

⇣ Skalierungsfaktor für kSE(xp, xq)

KSobel Sobel-Operator

kSE(xp , xq) Squared Exponential-Kernel bzw. -Kovarianzfunktion

spi Standardabweichung der Prädiktion für den Punkt xpi

x⇤i , x⇤ Testpunkte

T Tiefpassfilter für die Konturdetektion

xi , x Trainingspunkte

VII

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

formelzeichen

e unkorrelliertes weißes Rauschen

L untere Dreiecksmatrix nach Cholesky-Zerlegung

s2
pi Varianz der Prädiktion für den Punkt xpi

s2
n Varianz des unkorrelierten weißen Rauschens e

p(...) Wahrscheinlichkeitsdichte für das Argument

P(...) Wahrscheinlichkeit für das Argument

xpi , xp x-Werte der Posterior-Prädiktionen

yi , y y-Werte der Konturpixel

ypi , xp y-Werte der Posterior-Beobachtungen

maschinelles lernen

a Aktivierungsfunktion

o Aktivierungssignal eines Neurons

a Aktualisierungsschrittweise beim Gradientenabstiegsverfahren
mit Momentum

N Anzahl an verwendeten Trainingsbeispielen

b Biasvektor einer Schicht eines neuronalen Netzwerks

i Eingangssignal eines Neurons

e Eulersche Zahl

egen Generalisierungsfehler

w Gewicht eines neuronalen Netzwerks

W Gewichtsmatrix einer Netzwerkschicht

WF Gewichtsmatrix einer Faltungsschicht

b Gleichanteil, engl. bias, eines Neurons

rcC Gradient von C nach c

gi Gradient zum Zeitpunk i

VIII

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

formelzeichen

b1, b2 Hyperparameter des Adam-Verfahrens

l Index der Schicht eines neuronalen Netzwerkes

O() Komplexität

c Konfiguration eines neuronalen Netzwerks

C Kostenfunktion für das Training eines neuronalen Netzwerks

vi Leistung zum Zeitpunkt i

h Lernrate

N⇤ Minibatch-Größe

mi Mittelwert zum Zeitpunkt i

µ Momentum

eTest Testfehler

eTraining Trainingsfehler

o(i) Übertragungsfunktion eines Neurons

IX

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

A K R O N Y M E

Adam Adaptive Moment Estimation

AI all intra

AV1 AOMedia Video 1

AVC Advanced Video Coding

BAC binäre arithmetische Codierung

BD Bjøntegaard Delta

Bins binäre Symbole vor der Entropiecodierung

Bits binäre Symbole nach der Entropiecodierung

BVI Bristol Vision Institute

CABAC Context-adaptive Binary Arithmetic Coding

CAVLC Context-adaptive Variable Length Coding

CIE Commission Internationale de l’Éclairage

CoMIC Contour-based Multidirectional Intra Coding

CAE Convolutional Auto Encoder

CNN Convolutional Neural Network

CPU Central Processing Unit

CTB Coding Tree Block

CTC Common Test Conditions

CTU Coding Tree Unit

CU Coding Unit

DC Direct Current

DCT Discrete Cosine Transform

DPB Decoded Picture Buffer

X

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

akronyme

DPCM Differential Pulse Code Modulation

DST Discrete Sine Transform

GOP Group of Pictures

GPU Graphics Processing Unit

HDF5 Hierarchical Data Format 5

HEVC High Efficiency Video Coding

HLS High-level Syntax

HM High Efficiency Video Coding (HEVC) Test Model

IBC Intra Block Copy

ILSVRC ImageNet Large Scale Visual Recognition Challenge

ITU-T International Telecommunication Union - Telecommunication
Standardization Sector

IEC International Electrotechnical Commision

ISO International Standardization Organisation

JBIG Joint Bi-level Image Experts Group

JCT-VC Joint Collaborative Team on Video Coding

JEM Joint Exploration Model

JPEG Joint Photographic Experts Group

JVET Joint Video Experts Team

KLT Karhunen-Loève-Transformation

KODIM Kodak Image Dataset

lreLU Leaky Rectifier Linear Unit

MIP Matrix-weighted Intra Prediction

MPEG Moving Picture Experts Group

MPM Most Probable Modes

MSE Mean Squared Error

XI

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

akronyme

MV Motion Vector

NAL Network Abstraction Layer

NMS Non-maximum Suppresion

PB Prediction Block

PCA Principal Component Analysis

Pel picture element

PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

QP Quantisierungsparameter

RAISE Raw Image Dataset

RD Rate-Distortion

RDO Rate-Distortion Optimization

ReLU Rectifier Linear Unit

RGB Rot-Grün-Blau

RNN Recurrent Neural Network

SATD Sum of Absolute Transformed Differences

SSIM Structural Similarity

TB Transform Block

TPU Tensor Processing Unit

TU Transform Unit

USC-SIPI University of Southern California - Signal and Information
Processing Institute

VCEG Video Coding Experts Group

VTM Versatile Test Model

WPP Wavefront Parallel Processing

XII

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

A B S T R A C T

The amount of transmitted video data is growing faster than the channel
capacity available for this purpose. This leads to the necessity of a con-
tinuous improvement of the coding methods for the used video codecs.
Modern video codecs are generally based on the principle of hybrid
coding, i.e. the combination of a prediction with a transformation coding
of the prediction error. The prediction methods can be roughly divided
into intra and inter prediction. In this work, two methods are proposed
for improving intra prediction.

The first contribution in this thesis is a stochastic contour model for
modeling and extrapolation of contours detected in the reference area.
A Gaussian process is used for the modeling. Expectations of typically
occurring contour shapes were taken into account by choosing the Squared
Exponential Kernel as covariance function of the prior of the Gaussian
process. The posterior Gaussian process resulted from the prior Gaussian
process by optimizing the hyperparameters of the covariance function
for each contour. A multivariate Gaussian distribution was formulated
for the contour extrapolation. The second contribution in this thesis is a
neural network-based method for sample value prediction. The neural
networks are used to process the adjacent reference sample values and the
results of contour modeling and extrapolation as input data to generate a
prediction of the sample values of the block to be coded. The contours
are required for the sample value prediction. The neural networks were
designed with an auto-encoder architecture and trained using a satd cost
function.

The coding efficiency of the video codec hevc was increased by up
to 5%. Averaged over all 55 test sequences, the All Intra configuration
resulted in bd-rates of �0.54% for high bit rates and �1.0% for low
bit rates. Compared to the methods from our own prior works, which
were already better than related works from the literature, an additional
increase in coding efficiency of 0.21 percentage points for high bit rates
and 0.27 percentage points for low bit rates was achieved.

Keywords – video coding, HEVC, intra prediction, machine learning,
Gaussian process.

XIII

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

K U R Z FA S S U N G

Die zur Übertragung von Videos benötigte Übertragungskapazität wächst
schneller als die hierfür zur Verfügung stehende Kanalkapazität. Hieraus
entsteht die Notwendigkeit einer stetigen Verbesserung der Codierungs-
verfahren für die verwendeten Videocodecs. Moderne Videocodecs be-
ruhen in der Regel auf dem Prinzip der Hybridcodierung, also der
Kombination von einer Prädiktion mit einer Transformationscodierung
des Prädiktionsfehlers. Die Prädiktionsverfahren können grob in Intra-
und Inter-Prädiktion unterschieden werden. Für die Verbesserung der
Intra-Prädiktion werden in dieser Arbeit zwei Verfahren vorgeschlagen.

Der erste Beitrag in dieser Arbeit besteht aus einem stochastischen
Konturmodell zur Modellierung und Extrapolation von Konturen, die im
Referenzbereich detektiert werden. Für die Modellierung wird ein Gauß-
Prozess verwendet. Die Erwartungen an typischerweise vorkommen-
de Konturverläufe werden durch die Wahl des Squared Exponential Ker-
nels als Kovarianzfunktion des Prior-Gauß-Prozesses berücksichtigt. Der
Posterior-Gauß-Prozess ergibt sich aus dem Prior-Gauß-Prozess durch die
Optimierung der Hyperparameter der Kovarianzfunktion für jede Kon-
tur. Für die Konturextrapolation wird eine multivariate Gauß-Verteilung
formuliert. Der zweite Beitrag in dieser Arbeit ist ein auf neuronalen Netz-
werken basierendes Verfahren zur Abtastwertprädiktion. Mit den neuro-
nalen Netzwerken werden die benachbarten Referenzabtastwerte sowie
das Ergebnis der Konturmodellierung und -extrapolation als Eingabeda-
ten verarbeitet, um eine Prädiktion der Abtastwerte des zu codierenden
Blocks zu erzeugen. Die Konturen werden für die Abtastwertprädiktion
benötigt. Die neuronalen Netzwerke wurden mit einer Autoencoder-
Architektur entworfen und mittels einer satd-Kostenfunktion trainiert.

Die Codierungseffizienz des Videocodecs hevc wurde um bis zu 5%
gesteigert. Gemittelt über alle 55 Testsequenzen ergaben sich für die All
Intra-Konfiguration bd-Raten von �0, 54% für hohe Datenraten und in
Höhe von �1, 0% für niedrige Datenraten. Verglichen mit den Verfah-
ren aus eigenen Vorarbeiten, welche bereits besser waren als verwandte
Arbeiten aus der Literatur, wurde eine zusätzliche Steigerung der Codie-
rungseffizienz um 0, 21 Prozentpunkte für hohe Datenraten und um 0, 27
Prozentpunkte für niedrige Datenraten erzielt.

Stichworte – Videocodierung, HEVC, Intra-Prädiktion, maschinelles Ler-
nen, Gauß-Prozesse

XIV

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

1
E I N L E I T U N G

1.1 motivation

Aus einer Prognose [18] des Telekommunikationsunternehmens Cisco
geht hervor, dass die für die Internetübertragung von Videos benötig-
te Übertragungskapazität rasant ansteigt: Der Prognose zufolge werde
hierfür eine Vervierfachung von 2016 bis 2021 auf dann 2,7 Zettabyte pro
Jahr1 (entspräche einer Millionen Minuten Videomaterial pro Sekunde)
erwartet. Im gleichen Zeitraum werde lediglich eine Verdoppelung der
durchschnittlichen Kanalkapazität von Internetanschlüssen angenommen.
Um die Übertragung dieser Daten über die zur Verfügung stehenden
Kanäle zu ermöglichen, ist eine stetige Verbesserung von Videocodie-
rungsverfahren erforderlich.

In den vergangenen Jahren konnten hierdurch motiviert enorme Verbes-
serungen von Videocodierungsverfahren beobachtet werden. Im Januar
2013 finalisierte das Joint Collaborative Team on Video Coding (JCT-VC)
– hierbei handelt es sich um eine gemeinsame Standardisierungsgrup-
pe von der International Telecommunication Union - Telecommunicati-
on Standardization Sector (ITU-T) Video Coding Experts Group (VCEG)
und International Standardization Organisation (ISO)/International Elec-
trotechnical Commision (IEC) Moving Picture Experts Group (MPEG) –
die technische Arbeit am neusten Videocodierungsstandard HEVC [47,
116, 119, 140]. Der HEVC Standard wurde von den beiden Standardisie-
rungsgremien als Recommendation H.265 (ITU-T) und als 23008-2:2013
MPEG-H Part 2 (ISO/IEC) veröffentlicht. Bei gleicher visueller Quali-
tät ermöglicht HEVC, abhängig von der gewählten Konfiguration, eine
deutliche Reduktion der Datenrate um 40-60% bezogen auf den Vor-
gängerstandard Advanced Video Coding (AVC), auch bekannt als ITU-T
Recommendation H.264 und ISO/IEC MPEG-4 Part 10 [44, 80, 95]. Diese
Messwerte wurden sowohl in Experimenten mit den entsprechenden
Referenzsoftwareimplementierungen aus der Standardisierung [35, 38,
94] als auch in Experimenten mit realen Produktimplementierungen [20,
34] ermittelt. Im Anschluss an die Finalisierung der ersten Version des
HEVC Standards wurden mehrere Erweiterungen (Range Extensions [28],

1 entspräche dann 82% aller über das Internet übertragener Daten

1

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

einleitung

Scalable HEVC [11], HEVC Screen Content Coding [144]) entwickelt. Auch
außerhalb der Standardisierungsaktivitäten des JCT-VC entstehen moder-
ne Videocodierungsverfahren, zum Beispiel AOMedia Video 1 (AV1) [16],
VP8 [5], VP9 [86] und andere [9, 87, 130]. Einen anderen Ansatz wählen
Toderici et al. [125, 126], indem sie Bilder mit rückgekoppelten neurona-
len Netzwerken codieren. Hierbei wird das komplette Codierungssystem
einschließlich Binarisierung und Entropiecodierung durch Netzwerke
realisiert (Ende-zu-Ende). Die Codierungseffizienz der Ende-zu-Ende-
Ansätze lässt sich zwischen der von JPEG 2000 und HEVC-Intra einordnen.
In neueren Arbeiten ist die Codierungseffizienz weiter gestiegen.

Wie viele erfolgreiche Videocodierungsstandards zuvor beruht auch
HEVC auf dem Prinzip der Hybridcodierung, also auf der Kombination
von einer Prädiktion (bewegungskompensierend oder intra) mit einer
Transformationscodierung des Prädiktionsfehlers [92]. Hierbei wird das
Ziel verfolgt, den aktuell zu codierenden Teil des Videosignals aus bereits
codierten Signalanteilen zu prädizieren. Da diese bereits codierten Signal-
anteile am Decoder vorliegen, kann die Prädiktion ebenfalls am Decoder
durchgeführt werden. Der bei der Prädiktion entstehende Prädiktions-
fehler wird an den Decoder übertragen. Die zur Codierung benötigte
Datenrate sinkt je besser die Prädiktion funktioniert. Zu dem Zweck
der Prädiktion werden die zu codierenden Bilder des Videos in Blöcke
aufgeteilt, welche nacheinander codiert werden. Bei der Codierung eines
Blockes stehen die Informationen von bereits codierten Blöcken aus dem
aktuellen Bild und aus zuvor codierten Bildern als Prädiktionsgrundlage
zur Verfügung.

Die Codierungsverfahren, welche zu der erfolgreichen Verbreitung
dieser Videocodierungsstandards geführt haben, können grob in Inter-
Codierung und in Intra-Codierung unterschieden werden. Während
die Intra-Codierung ausschließlich örtliche Redundanz im jeweiligen zu
codierenden Bild ausnutzt, wird bei der Inter-Codierung zusätzlich die
zeitliche Redundanz zwischen aufeinanderfolgenden Bildern mittels einer
bewegungskompensierenden Prädiktion ausgenutzt [30]. Deshalb werden
bei der Verwendung der Intra-Codierung typischerweise deutlich höhere
Datenraten (Faktor 10-100 [69]) als bei der Inter-Codierung benötigt, um
eine annähernd konstante visuelle Qualität zu erzielen.

Dennoch ist die Intra-Codierung ein essentieller Teil von allen Vi-
deocodierungsverfahren und -anwendungen: Sie wird für den Start der
Übertragung, für den wahlfreien Zugriff in laufende Übertragungen,
zur Fehlerkorrektur (hier teilweise auch in Kombination mit zeitlichen
Informationen), für die Umschaltung der Datenrate bei schwankenden
Datenkanälen bei Video-on-Demand Anwendungen [20] und nicht zu-
letzt für die Codierung von neu im Bild erscheinenden Inhalten benötigt.

2

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

1.1 motivation

Des Weiteren sind Intra-Codierungsverfahren prädestiniert für die effizi-
ente Codierung von Einzelbildern. Dieses Szenario kann als Sonderfall
der Codierung einer Videosequenz mit nur einem Bild aufgefasst werden.

Die Intra-Codierung in HEVC basiert auf der örtlichen Prädiktion von
Abtastwerten2 auf Grundlage von benachbarten, bereits codierten Abtast-
werten (Referenzabtastwerte) gefolgt von einer Transformationscodierung
des Prädiktionsfehlers [63]. Für die Prädiktion stehen 33 direktionale
Modi, ein Modus für die planare Prädiktion sowie ein Modus für die
Prädiktion mit dem Mittelwert der Referenzabtastwerte zur Verfügung.
Die Referenzabtastwerte befinden sich in einer 1 Pel breiten Spalte be-
ziehungsweise Zeile innerhalb der bereits codierten Blöcke direkt links
und oberhalb des aktuell zu codierenden Blockes (Referenzbereich). Die
direktionalen Modi erlauben die lineare Extrapolation der Referenzab-
tastwerte in der Richtung von 33 verschiedenen Winkeln. Da in typischen
Videosequenzen häufig horizontale und vertikale Strukturen vorkommen,
wurde hierfür eine genauere Winkelauflösung als für andere Winkel
gewählt [82]. Diese direktionalen Modi zielen auf die Prädiktion von
Blöcken mit einer linearen Struktur oder Kontur ab [63]. Nicht alle zu
codierenden Blöcke enthalten eine lineare Struktur. Für solche Blöcke
wurden die Prädiktion mit dem Mittelwert sowie die planare Prädiktion
(gewichtete Überlagerung von vier Referenzabtastwerten) entwickelt [63].

Aktuell untersuchen VCEG und MPEG das Potential für die Standardisie-
rung eines HEVC-Nachfolgers im hierzu gegründeten Joint Video Experts
Team (JVET), vormals: Joint Video Exploration Team [69, 93]. Im entwickel-
ten Test-Modell, Versatile Test Model (VTM), vormals: Joint Exploration
Model (JEM), finden sich mehrere Verbesserungen zur Intra-Codierung:
die Anzahl an direktionalen Modi wird auf 65 erhöht, die Interpolation
für die direktionalen Modi wird verbessert, zur Verhinderung von Dis-
kontinuitäten an den Blockgrenzen werden prädizierte Randabtastwerte
gefiltert, die Chrominanzen werden aus der Luminanz prädiziert und die
Filterung von Referenzabtastwerten wird modifiziert [15]. Das Matrix-
weighted Intra Prediction (MIP)-Verfahren beruht auf einer Prädiktion
mittels einer Matrixmultiplikation. Dieser Ansatz ist vergleichbar mit
einem neuronalen Netzwerk mit einer einzigen verborgenen Schicht und
ohne Aktivierungsfunktion.

Eine Analyse der im HEVC-Standard und im VTM eingesetzten Intra-
Codierung offenbart mehrere Ansätze für Verbesserungen: 1) Die Prädik-
tionsbasis ist mit 1 Pel Breite beziehungsweise Höhe klein. Es könnten
aus weiteren benachbarten und bereits codierten Abtastwerten zusätz-
liche für die Prädiktion nützliche Informationen gewonnen werden. 2)

2 In dieser Arbeit werden die Begriffe Bildpunkt und Abtastwert unterschieden. Ein Bildpunkt
besteht typischerweise aus drei Abtastwerten für die drei Farbraumkomponenten (z.B. YCbCr).

3

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

einleitung

Die direktionale Prädiktion erlaubt nur eine Prädiktion von linearen
Strukturen. 3) Im Fall der direktionalen Prädiktion ist pro Block nur
eine Richtung für die Prädiktion wählbar. Schwierig zu prädizieren sind
deshalb Blöcke, in denen nichtlineare Konturen oder mehrere Konturen
in unterschiedlichen Richtungen vorhanden sind.

Zu einer vergleichbaren Erkenntnis kommen Lottermann und Stein-
bach in ihrer Arbeit [78], in der sie die Datenrate signalabhängig unter
anderem über die örtliche Aktivität modellieren. Die Schlussfolgerung
von Lottermann und Steinbach (hohe Datenrate für Blöcke mit vielen
Konturen) passt zu der dieser Arbeit zugrunde liegenden Prämisse, dass
Blöcke mit vielen Kanten schwierig zu prädizieren sind.

1.2 stand der forschung

Verwandte Arbeiten aus der Literatur zeigen auf, dass sich aus Konturen
in der Umgebung des zu codierenden Blockes für die Prädiktion wertvolle
Informationen ziehen lassen. Yuan und Sun demonstrieren, dass sich ba-
sierend auf einer Konturenkarte für das zu codierende Bild eine schnelle
Entscheidungsfindung für die Wahl eines guten Intra-Codierungsmodus
entwickeln lässt [146]. Asheri et al. [2] sowie Au und Chan [3] verwen-
den Konturinformationen für Fehlerverschleierungsalgorithmen. Hierbei
werden Konturinformationen aus dem aktuellen Bild (Asheri et al.) be-
ziehungsweise aus dem aktuellen und dem vorherigen Bild (Au und
Chan) für die Verschleierung von Übertragungsfehlern eingesetzt. Liu
et al. steigern die Codierungseffizienz des Joint Photographic Experts
Group (JPEG)-Standards [46, 48, 133] in [76] sowie von JPEG 2000 und AVC
in [75, 77] mit einem konturbasierten Inpainting- (Rekonstruktion von
gestörten Bildteilen) und Textursyntheseverfahren. Das Grundprinzip
dieses Verfahrens beruht auf der linearen Extrapolation von im bereits
codierten Bild gefundenen Konturen, der Übertragung von nichtlinearen
Konturverläufen mittels des Joint Bi-level Image Experts Group (JBIG)-
Standards [45, 49], der Übertragung von Vorlagen für die Textursynthese
sowie dem Lösen von partiellen Differentialgleichungen für das Inpain-
ting. Im Gegensatz zum HEVC Intra-Codierungsverfahren wird durch
dieses Verfahren die Prädiktion von mehreren Konturen in unterschiedli-
che Richtungen pro Block ermöglicht.

Liu et al. gelingt eine Steigerung der Codierungseffizienz, jedoch wer-
den nur unkomplizierte lineare Konturen extrapoliert. Des Weiteren
müssen für die Abtastwertberechnung entweder zahlreiche Seiteninfor-
mationen übertragen werden (Vorlagen für die Textursynthese) oder
rechenaufwendige partielle Differentialgleichungssysteme für das Inpain-
ting gelöst werden (die Decodierung eines Bildes mit einer Auflösung von

4

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

1.2 stand der forschung

512x512 Pel benötigt mehrere Minuten [75]). Da die Leistungsfähigkeit
nur für ausschließlich intra-codierte, engl. all intra (AI), Bilder demons-
triert wird [75, 77] kann nicht angenommen werden, dass die visuell
gutaussehenden Ergebnisse der Textursynthese auch eine gute Prädikti-
on für die Codierung darstellen. Zur Kompensation der beschriebenen
Nachteile des Verfahrens von Liu et al. wurde in einer eigenen Vorarbeit
das Verfahren Contour-based Multidirectional Intra Coding (CoMIC) für
die Verbesserung der Codiereffizienz von JPEG und HEVC vorgeschlagen
[65]. Prinzipiell wird hierbei eine JPEG-Codierung um eine Prädiktion
ergänzt und die diskrete Kosinustransformation, engl. Discrete Cosine
Transform (DCT), auf dem Prädiktionsfehler anstatt auf dem zu codieren-
den Signal berechnet. Durch die Übertragung des Prädiktionsfehlers wird
das Problem von Liu et al., dass die synthetisierten Bildbereiche nicht als
Prädiktionsgrundlage geeignet sind, umgangen. CoMIC, hier in der ersten
Version (CoMIC v1), basiert wie das Verfahren von Liu et al. auf der ge-
trennten Verarbeitung von Konturen und der Abtastwertprädiktion. Die
Konturen werden im bereits codierten Bildbereich detektiert und ohne
die Übertragung von Seiteninformationen linear in den zu codierenden
Block extrapoliert. Die Abtastwertprädiktion beruht auf der Fortführung
von benachbarten Abtastwerten entlang der extrapolierten Konturen. Da
die Konturmodellierung dieses Verfahrens in weit von den Blockgren-
zen zu den bekannten Bildbereichen entfernten Bereichen des Blockes
eine zu hohe Unsicherheit über den Konturverlauf aufweist, erfolgt ei-
ne distanzabhängige Überblendung des fortgesetzten Randabtastwertes
zum Mittelwert der Referenzabtastwerte. Im Gegensatz zu der im HEVC
Intra-Codierungsverfahren eingesetzten Abtastwertprädiktion werden
die einzelnen Konturen individuell behandelt, wodurch die Abtastwerte
in mehreren Richtungen pro Block fortgeführt werden können. Dieses
Verfahren eignet sich für die Prädiktion von linearen Konturverläufen. In
realen Bildern und Videosequenzen existieren viele nichtlineare Kontu-
ren, welche mit CoMIC v1 nicht prädiziert werden können. Zur Prädiktion
dieser nichtlinearen Konturen wurden in einer Nachfolgearbeit (CoMIC
v2) die Konturen mit Polynomen höheren Grades modelliert [69]. Durch
die in den eigenen Vorarbeiten vorgeschlagenen Verfahren konnte die
Codierungseffizienz von HEVC gesteigert werden.

Die extrapolierten Konturen werden für die Abtastwertprädiktion be-
nötigt. Ein ursprünglich aus dem Bereich der Klassifikation bekannter
Trend, der seit einigen Jahren auch in der Videocodierung präsent ist
und für die Abtastwertprädiktion vielversprechend erscheint, ist Deep
Learning [31, 71]. Hierbei handelt es sich um eine Art von maschinellen
Lernverfahren, bei der neuronale Netzwerke mit vielen aufeinanderfol-
genden Schichten zur Verarbeitung der Eingangsdaten eingesetzt werden.

5

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

einleitung

Häufig werden neuronale Faltungsnetzwerke, engl. Convolutional Neural
Networks (CNNs), verwendet. Für Klassifikationsanwendungen werden
mit Deep Learning-Ansätzen seit einigen Jahren Ergebnisse erzielt, die
dem bisherigen Stand der Technik deutlich überlegen sind [61, 122] und
eine rege Aktivität zur Verbesserung der entsprechenden Lernverfahren
motivieren [50, 113]. Aufgrund des großen Erfolges von Deep Learning-
Ansätzen in anderen Bereichen werden diese auch im Bereich der Bild-
verarbeitung vermehrt angewendet. Fawzi et al. [27] und Gupta et al. [36]
verwenden neuronale Netzwerke für das Inpainting von Bildern. Theis
und Bethge [124] sowie Gregor et al. [33] verwenden rückgekoppelte
neuronale Netzwerke für die generative Bildmodellierung.

1.3 ungelöste probleme

Die noch nicht hinreichend gelösten Aufgaben bei der Intra-Codierung
sind die folgenden:

Modellierung von Konturen im bereits codierten Signal: Es konnte
in der Literatur und in den eigenen Vorarbeiten gezeigt werden, dass
durch die Prädiktion von Abtastwerten entlang von Konturen die Codie-
rungseffizienz deutlich gesteigert werden kann. Jedoch erlaubt keines
der beschriebenen Verfahren die allgemeingültige Modellierung von Kon-
turen. Die Modellierungen aus der eigenen Vorarbeit [65] sowie aus
den Arbeiten von Liu et al. [75–77] eignen sich ihrer linearen Form ent-
sprechend nicht für nichtlineare Konturen. Des Weiteren konnte gezeigt
werden, dass die nichtlinearen Modelle aus [69] jeweils nur für einen klei-
nen Anteil der in typischen Bildsignalen vorkommenden nichtlinearen
Konturen geeignet sind. Dieses ist intuitiv erklärbar, da es zweifelhaft ist,
dass von der Natur geschaffene Formen genau die Form von quadrati-
schen oder kubischen Funktionen haben. Selbst bei der Betrachtung des
Inhaltes von einzelnen Blöcken mit typischen Blockgrößen reicht eine
solche polynominelle Modellierung nicht für die zuverlässige Approxi-
mation der tatsächlichen Konturverläufe. In der Vorarbeit [129] wurde
gezeigt, dass das polynomielle Konturmodell besser als Splines funktio-
niert. Für die zuverlässige Konturmodellierung wird ein Modell benötigt,
welches zu den realen Daten passt.

Extrapolation von Konturen: Neben der Modellierung von Konturen
im bereits codierten Bereich des Bildes ist für die Codierung eine Extra-
polation in den zu codierenden Block notwendig. Das Verfahren von Liu
et al. benötigt für komplizierte, zum Beispiel nichtlineare, Konturen die
Übertragung des Konturverlaufes [75–77]. Das CoMIC v1 Verfahren aus
der eigenen Vorarbeit ermöglicht eine zuverlässige Prädiktion nur in den
Bereichen des zu codierenden Blockes, welche in der Nähe des Referenz-

6

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

1.4 ziele der arbeit

bereiches liegen [65]. Die unterschiedlichen nichtlinearen Extrapolations-
verfahren aus der Nachfolgearbeit ermöglichen die Extrapolation jeweils
nur für einen kleinen Teil der vorhandenen Konturen [69].

Abtastwertprädiktion: Keines der beschriebenen Verfahren ermöglicht
eine zufriedenstellende Prädiktion der Abtastwerte. Die Anforderungen
für ein zufriedenstellendes Verfahren sind, dass die Prädiktion genau
ist, dass die Prädiktion aus in bereits codierten Bildbereichen vorhande-
nen Informationen erfolgt, dass keine zusätzlichen Seiteninformationen
übertragen werden und dass die Komplexität des Prädiktionsverfahrens
gering genug ist, um eine Anwendung in Decodern zu ermöglichen. Die
vorgestellten Verfahren verfehlen diese Anforderungen. So ist die Prädik-
tion der Verfahren aus den Vorarbeiten beim Vorliegen von komplizierten
Konturverläufen nicht hinreichend genau genug. In der Vorarbeit [24]
wurde gezeigt, dass neuronale Netzwerke alleine noch keine hinreichend
gute Intra-Prädiktion ermöglichen.

In den vier auf neuronalen Netzwerken basierenden Arbeiten [27, 33,
36, 124] ist das Ziel die Rekonstruktion eines visuell überzeugenden
Bildes. Solch eine visuell überzeugende Rekonstruktion ist jedoch nicht
notwendigerweise eine für eine effiziente Codierung geeignete Prädiktion,
da sie nicht den zu übertragenden Prädiktionsfehler minimiert. Die
Ende-zu-Ende-Verfahren von Toderici et al. [125, 126] sind ebenfalls
ungeeignet, da sie ein komplettes Codierungssystem umfassen. In vielen
Fällen ist stattdessen eine Verbesserung der über Jahrzehnte optimierten
Codierungssysteme für Bilder und Videos erwünscht, um existierende
Implementierungen, Architekturen und Infrastrukturen weiterverwenden
beziehungsweise verbessern zu können.

1.4 ziele der arbeit

In dieser Arbeit wird das Ziel verfolgt, eine effizientere Intra-Codierung
für die Bild- und Videocodierung durch die Kombination von konventio-
nellen Videocodierungsverfahren mit Konturextrapolationsverfahren und
maschinellen Lernansätzen für die Abtastwertprädiktion zu entwickeln.
Hierfür wird ein Codierungsverfahren entworfen, welches sowohl die
genaue Extrapolation von komplizierten (zum Beispiel nichtlinearen)
Konturen ermöglicht als auch aufbauend auf den extrapolierten Kon-
turen eine genaue Prädiktion von Abtastwerten erlaubt. Im Einzelnen
werden die folgenden Teilziele verfolgt:

Es wird ein Verfahren zur Modellierung von Konturverläufen im be-
reits codierten Signal entwickelt. Hierbei werden einige gewünschte
Eigenschaften des zu entwickelnden Verfahrens besonders berücksich-
tigt. Das Verfahren ermöglicht eine allgemeingültige Modellierung für

7

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

einleitung

unterschiedliche Arten von real existierenden Konturverläufen. Hierfür
reicht ein einzelnes Modell aus anstatt viele verschiedene Modelle für
unterschiedliche Arten von Konturverläufen zu benötigen. Dieses Modell
basiert auf Gauß-Prozessen.

Aufbauend auf diesem Modell wird die Extrapolation der im bereits
codierten Signal gefundenen und modellierten Konturverläufe in den
aktuell zu codierenden Bereich realisiert. Die Parameter für die Extrapola-
tion werden aus der Modellierung des bereits codierten Signals bestimmt.
Hierdurch wird die Datenrate für die extrapolierte Kontur stark reduziert,
da diese Informationen dem Decoder bereits zur Verfügung stehen und
somit nicht übertragen werden müssen.

Die extrapolierten Konturverläufe sind lediglich ein Zwischenschritt
für die angestrebte Intra-Codierung. Das eigentliche Ziel der Codierung
ist die Rekonstruktion der Abtastwerte des zu codierenden Blockes. Des-
halb werden diese Abtastwerte prädiziert. Hierfür werden neuronale
Netzwerke verwendet.

Die entwickelten Algorithmen sind kompatibel zu bestehenden Codie-
rungssystemen, so dass sie zum Beispiel als zusätzlicher Prädiktionsmo-
de in ein bestehendes Codierungssystem integriert werden können und
hierbei bestehende Verfahren zur Transformationscodierung3 des Prädik-
tionsfehlers, zur Entropiecodierung, zur Partitionierung der Bilder mit
einem Blockraster, zur bewegungskompensierenden Prädiktion, etc. wei-
terverwendet werden können. Dieses wäre mit Ende-zu-Ende-Ansätzen,
welche das komplette Codierungssystem durch eine Blackbox in Form
eines neuronalen Netzwerkes ersetzen, unmöglich. Des Weiteren wird
hierdurch die Integration in bestehende Verfahren zur Rate-Distortion-
Optimierung durch Encoder ermöglicht.

Die Ergebnisse aus den ersten drei Teilzielen werden verwendet, um
das entwickelte Verfahren in einen Bild- (CoMIC) und in einen Videocodec
(HEVC) zu integrieren. Diese Integration ist für einen fundierten Vergleich
mit dem Stand der Technik erforderlich.

Im Rahmen dieses Arbeit sollen unterschiedliche Verfahren für die
Konturextrapolation (ein modellbasiertes Verfahren) und für die Abtast-
wertprädiktion (ein datenbasiertes Verfahren) verwendet werden. Der
Grund hierfür liegt in der Erkenntnis aus eigenen Vorarbeiten, dass die
Prädiktion mit einem datenbasierten Verfahren nur aus den Abtastwerten
des Referenzbereiches keine zufrieden stellenden Ergebnisse liefert, weil
Konturverläufe nicht hinreichend berücksichtigt werden. Die Arbeiten
von Liu et al. [75–77] bestätigen diese Erkenntnis.

3 Eine Ausnahme bildet die Mode-dependent Transform, welche für ein zusätzliches Prädiktions-
verfahren zu erweitern wäre.

8

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

1.5 aufbau der arbeit

Zusammengefasst sind die Beiträge in dieser Arbeit:

• Ein auf Gauß-Prozessen basierendes Verfahren zur Modellierung
und Extrapolation von Konturen

• Ein Verfahren zur Prädiktion von Abtastwerten mittels neuronaler
Netzwerke

• Die Kombination der beiden vorgenannten Verfahren zu einem
Intra-Codierungsverfahren

• Die Integration in einen Bild- und in einen Videocodec

Teile der dieser Arbeit zugrunde liegenden Ideen wurden in [65] und
[69] veröffentlicht.

1.5 aufbau der arbeit

Die weitere Arbeit ist wie folgt gegliedert: In Kapitel 2 werden die not-
wendigen Grundlagen für diese Arbeit beschrieben. Hierzu zählen die
HEVC-Videocodierung mit Schwerpunkt auf der Intra-Codierung, maschi-
nelles Lernen mit neuronalen Netzwerken und das verwendete Verfahren
zur Konturdetektion. Das vorgeschlagene stochastische Konturmodell
wird in Kapitel 3 hergeleitet. Hierfür werden Konturen als gedächtnisbe-
haftete Quelle analysiert, die Konturen modelliert sowie die Extrapolation
der Konturen in den zu codierenden Block formuliert. Aufbauend auf
den Ergebnissen des dritten Kapitels wird die vorgeschlagene Abtast-
wertprädiktion in Kapitel 4 ausgeführt. Im Rahmen dieser Ausführungen
werden sowohl die vorgeschlagenen Netzwerkarchitekturen als auch das
Training der Netzwerke beschrieben. Die experimentelle Untersuchung
und Bewertung der vorgeschlagenen Verfahren wird in Kapitel 5 ge-
schildert. In Kapitel 6 wird diese Arbeit mit einer Zusammenfassung
abgeschlossen.

9

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2
G R U N D L A G E N

In diesem Kapitel werden die zum Verständnis dieser Arbeit notwendigen
Grundlagen ausgeführt. Die Grundlagen der Videocodierung werden mit
Blick auf den HEVC-Standard dargestellt. Maschinelles Lernen wird mit
einem Schwerpunkt auf den in dieser Arbeit verwendeten neuronalen
Netzwerken inklusive der zugehörigen Lernverfahren eingeführt. Da das
in Kapitel 3 vorgeschlagene Modell auf Konturen beruht, werden die
verwendeten Konturdetektionsverfahren vorgestellt.

2.1 videocodierung

In diesem Abschnitt werden die Beschreibung von digitalen Videosigna-
len, die Hybridcodierung, HEVC sowie das Thema Encodersteuerung
eingeführt.

Beschreibung von Videosignalen

Videosignale sind die Eingabedaten von Videocodecs. Folglich ist die Be-
schreibbarkeit von Videosignalen eine notwendige Voraussetzung für die
Entwicklung von Videocodierungsverfahren. Im Rahmen dieser Arbeit
werden ausschließlich digitale Videosignale betrachtet.

Typische Quellen für Videosignale sind Kameraaufnahmen von na-
türlichen Inhalten oder die Generierung von künstlichen Inhalten wie
Animationen im Computer. Weitere mögliche Quellen umfassen die
Digitalisierung von analogen Filmen oder die Übertragung von Bild-
schirminhalten, beispielsweise via Chromecast oder AirPlay. Mischungen
von Videosignalen aus verschiedenen Quellen sind möglich und je nach
Anwendungsgebiet sogar üblich. So werden zum Beispiel für Filmpro-
duktionen typischerweise Kameraaufnahmen von natürlichen Inhalten
mit im Computer erzeugten künstlichen Inhalten kombiniert. Je nach
Quelle unterliegt das Videosignal bereits zu diesem Zeitpunkt der Verar-
beitungskette Verzerrungen, beispielsweise durch die Kameralinse.

Im Folgenden wird ohne Einschränkung davon ausgegangen, dass das
Videosignal mit einer Kamera aufgenommen wird. In diesem Fall ent-
steht das Videosignal aus sichtbarem Licht, also aus elektromagnetischen

10

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Wellen mit Wellenlängen zwischen 380nm und 780nm. Die Erzeugung
von Videosignalen erfolgt bildweise, d.h. ein Bild wird nach dem anderen
aufgenommen. Im Kamerasensor werden die einfallenden elektromagne-
tischen Wellen zeitlich und örtlich abgetastet sowie quantisiert. Hierdurch
entstehen quantisierte Abtastwerte1.

Die Abtastwerte werden in zweidimensionalen Feldern2 zu einem
Bild angeordnet. Bei einem Grauwertbild besteht das Bild aus einem
Feld. Bei Farbbildern besteht das Bild in der Regel aus drei Feldern. Die
Abtastwerte an einer örtlichen Position – also ein Wert für Grauwertbilder
und drei Werte für Farbbilder – werden als Bildpunkte (engl. pixel oder
picture element (Pel)) bezeichnet.

Die zeitliche Abtastung kann über die Bildrate, also die Anzahl an
Bildern pro Sekunde, gemessen mit der Einheit Hertz (Hz), beschrieben
werden. Die örtliche Abtastung kann über die Bildauflösung beschrieben
werden. Die Bildauflösung gibt die Anzahl an Bildpunkten innerhalb
eines Bildes in horizontaler und in vertikaler Richtung an. Die Quanti-
sierung3 kann über die Auflösung des Quantisierers, bei gleichförmigen
Quantisierern parametrisiert über die Bittiefe, beschrieben werden.

Die menschliche visuelle Wahrnehmung kann physiologisch in Hellig-
keitswahrnehmung und Farbwahrnehmung unterschieden werden. Für
die Beschreibung von Farbe im Kontext der Videocodierung erfolgt oft
eine Bezugnahme auf das Normfarbsystem mit drei Grundfarben der
Internationalen Beleuchtungskommision (fr. Commission Internationale
de l’Éclairage (CIE)) von 1931. In diesem System wird jede Farbe als ein
Punkt in einem XYZ-Raum dargestellt. Die Koordinaten des Punktes
werden basierend auf dem einfallenden Lichtspektrum berechnet.

Für Farb-Videosignale operieren die Quelle und die Senke oft im
Rot-Grün-Blau (RGB)-Farbraum. Zwischen Quelle und Senke – also für
die Codierung – wird das Signal in der Regel in einen anderen Farb-
raum umgewandelt. Hierfür wird typischerweise der YCbCr-Farbraum4

verwendet. Hier steht Y für die Helligkeit oder Luma gemäß des CIE-
Normfarbsystems und Cb und Cr für die Farbinformationen als Diffe-
renzsignale (Cb für die blau-gelbe Chroma und Cr für die rot-grüne
Chroma). Für die Aufteilung des Videosignals in einen Helligkeitsanteil
und zwei Farbanteile gibt es im Wesentlichen zwei Gründe, von denen

1 Im Folgenden wird davon ausgegangen, dass Abtastwerte immer quantisiert sind.
2 Nicht zu verwechseln mit den Feldern von Videosignalen im Zeilensprungverfahren (engl.

interlaced), welche in dieser Arbeit nicht betrachtet werden.
3 Hier ist die Quantisierung während der Analog-zu-Digital-Wandlung und nicht die Quantisie-

rung während der Videocodierung gemeint.
4 In HEVC-Erweiterungen wird teilweise auch der YCgCo-Farbraum verwendet, da hierdurch

die Korrelation zwischen den beiden Chroma-Komponenten zusätzlich reduziert werden kann
[150].

11

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

einer nur noch unter historischen Gesichtspunkten relevant ist: Zu Zeiten
des analogen Schwarz-Weiß-Fernsehens gab es nur die Helligkeitskompo-
nente. Als das analoge Farbfernsehen aufkam, wurde die Farbe in Form
von zwei Differenzsignalen übertragen. Hierdurch funktionierten alte
Schwarz-Weiß-Fernseher, welche nur die Helligkeit anzeigen konnten,
ohne Probleme weiter und Farbfernseher, welche zusätzlich die beiden
Farbsignale anzeigen konnten, stellten ein farbiges Bild dar [140]. Heu-
te noch relevant ist die unterschiedliche Sensibilität des menschlichen
Beobachters für Helligkeits- und Farbunterschiede. Hierbei ist letztere
geringer. Durch die Trennung von Helligkeits- und Farbinformationen
können die für den menschlichen Beobachter weniger relevanten Farbin-
formationen mit geringerer Qualität codiert werden, was einen positiven
Einfluss auf die benötigte Datenrate hat.

Für Anwendungen mit hohen Qualitätsanforderungen wie zum Bei-
spiel die Filmproduktion oder die Verarbeitung medizinischer Daten
werden die Daten nach der beschriebenen Farbraumumwandlung direkt
verwendet. Für Anwendungen mit geringeren Qualitätsanforderungen
wie zum Beispiel die Ausstrahlung von Filmen für Endkunden lässt sich
zunächst die genannte Eigenschaft der menschlichen Wahrnehmung mit
einer Farbunterabtastung gezielt ausnutzen um die Datenrate zu sen-
ken. Bei der Farbunterabtastung wird die örtliche Auflösung von einer
oder beiden Farbkomponenten reduziert. Als Namensschema für unter-
schiedliche Arten der Farbunterabtastung wird das folgende Verhältnis
verwendet:

SY : Shorizontal : Svertikal. (2.1)

SY steht hierbei für die Luma-Abtastrate, den Bezugwert für die beiden
Chroma-Komponenten, und wird aus historischen Gründen und ohne
faktische Notwendigkeit auf Vier gesetzt5. Shorizontal kennzeichnet die
horizontale Farbabtastung mit Bezug auf die Lumaabtastung. Häufig
wird dieser Faktor auf Zwei gesetzt, was einer Halbierung der Auflö-
sung entspricht. Svertikal beschreibt die vertikale Farbunterabtastung in
Abhängigkeit der horizontalen Farbunterabtastung. Wird dieser Wert auf
Null gesetzt, so wird für die vertikale Farbunterabtastung der gleiche
Faktor wie für die horizontale Farbunterabtastung gewählt. Wird der
Wert auf Zwei gesetzt, so erfolgt keine vertikale Farbunterabtastung. Die
gebräuchlichste Farbunterabtastung ist 4:2:0. Erfolgt keine Farbunterab-
tastung, so wird die Bezeichnung 4:4:4 verwendet. Die unterschiedlichen
örtlichen Auflösungen je nach gewählter Farbunterabtastung werden in
Abbildung 2.1 visualisiert.

5 Für das analoge Fernsehen wurde die Vierfache NTSC-Videobandbreite für die Abtastung der
Helligkeit verwendet.

12

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Y CrCb

4:2:0

4:4:4

Abbildung 2.1: Schematische Darstellung der Farbunterabtastung für die Fälle
4:4:4 und 4:2:0

Videos können als Sequenz von Einzelbildern betrachtet werden. Die
Bilder werden zeitlich hintereinander angeordnet und wiedergegeben.
Ist die Bildrate hoch genug, dann nimmt der menschliche Betrachter eine
flüssige Bewegung zwischen sich verändernden Bildern wahr. Ab 24Hz,
der oft im Kino eingesetzten Bildrate, werden Bewegungen als flüssig
wahrgenommen. Für andere Anwendungen werden 50Hz, 60Hz, 120Hz
oder mehr eingesetzt.

Die typische Senke für Videosignale war lange Zeit exklusiv der
menschliche Betrachter mittels einer Anzeige (z.B. Fernseher, Computer-
bildschirm, Smartphone, Tablet). Seit einiger Zeit kommen Algorithmen
als Senken für Videosignale hinzu (z.B. für die automatische Auswertung
von Überwachungsvideos oder für die Inhaltserkennung in hochgelade-
nen Videos).

In Tabelle 2.1 werden die unkomprimierten Datenraten von Videosi-
gnalen mit typischen örtlichen und zeitlichen Auflösungen, Quantisierer-
Bittiefen und Farbunterabtastungen aufgelistet. Bei verfügbaren Über-
tragungsraten in der Größenordnung von einigen Dutzend bis wenigen
hundert MBit/s und Speicherkapazitäten von wenigen Terabyte ist er-
sichtlich, dass hochauflösende Videosignale ohne zusätzliche Codierung
nicht sinnvoll übertragen oder gespeichert werden können. Zur Lösung
dieses Problems werden Videocodierungsverfahren eingesetzt. Im nach-
folgenden Abschnitt wird das Grundprinzip für viele Videocodierungs-
verfahren eingeführt – die Hybridcodierung.

Hybridcodierung

Die Hybridcodierung6 beschreibt im Kontext der Videocodierung die
Kombination einer Prädiktion mit einer Transformationscodierung zur

6 Hybrid: lat. Mischung, zusammengesetzt aus zwei oder mehr Komponenten

13

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Tabelle 2.1: Übersicht über typische Videoformate

Farbunter- MBit/s
Name Auflösung Bittiefe abtastung (unkomprimiert)

UHD 8K 7680⇥4320@120Hz 10 Bit 4:2:0 59 720
7680⇥4320@60Hz 10 Bit 4:2:0 29 860
7680⇥4320@50Hz 10 Bit 4:2:0 24 884
7680⇥4320@24Hz 10 Bit 4:2:0 11 944

7680⇥4320@120Hz 10 Bit 4:4:4 119 440
7680⇥4320@60Hz 10 Bit 4:4:4 59 720
7680⇥4320@50Hz 10 Bit 4:4:4 49 767
7680⇥4320@24Hz 10 Bit 4:4:4 23 888

UHD 4K 3840⇥2160@120Hz 10 Bit 4:2:0 14 930
3840⇥2160@60Hz 10 Bit 4:2:0 7 465
3840⇥2160@50Hz 10 Bit 4:2:0 6 221
3840⇥2160@24Hz 10 Bit 4:2:0 2 986

3840⇥2160@120Hz 10 Bit 4:4:4 29 860
3840⇥2160@60Hz 10 Bit 4:4:4 14 930
3840⇥2160@50Hz 10 Bit 4:4:4 12 442
3840⇥2160@24Hz 10 Bit 4:4:4 5 972

1080p 1920⇥1080@60Hz 8 Bit 4:2:0 1 493
1920⇥1080@50Hz 8 Bit 4:2:0 1 245
1920⇥1080@30Hz 8 Bit 4:2:0 747
1920⇥1080@25Hz 8 Bit 4:2:0 623

720p 1280⇥720@60Hz 8 Bit 4:2:0 664
1280⇥720@50Hz 8 Bit 4:2:0 553
1280⇥720@30Hz 8 Bit 4:2:0 332
1280⇥720@25Hz 8 Bit 4:2:0 277

WVGA 832⇥480@60Hz 8 Bit 4:2:0 288
832⇥480@50Hz 8 Bit 4:2:0 240
832⇥480@30Hz 8 Bit 4:2:0 144
832⇥480@25Hz 8 Bit 4:2:0 120

WQVGA 416⇥240@60Hz 8 Bit 4:2:0 72
416⇥240@50Hz 8 Bit 4:2:0 60
416⇥240@30Hz 8 Bit 4:2:0 36
416⇥240@25Hz 8 Bit 4:2:0 30

14

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Transformation+

HEVC-Intra/
HEVC-Inter

-

Quantisierung

Inverse
Transformation

Entropie-
codierung

+

Bitstrom

Quantisierte
Transformations-

koeffizienten

Prädiktions-
fehler

Prädiziertes
Signal

Original-
signal

Rekonstruiertes
Signal

Transformations-
koeffizienten

Approximierter
Prädiktions-

fehler

Auch im Decoder enthalten

Speicher

Prädiktions-
parameter

Modeauswahl/
Bewegungs-

suche

Abbildung 2.2: Blockschaltbild für einen auf der Hybridcodierung aufbauenden
Videocodec.

Übertragung des Prädiktionsfehlers. Auch wenn mit der Zeit die ein-
zelnen Teil-Algorithmen in hybriden Videocodierungsverfahren stetig
verbessert und erweitert wurden, so ist das Grundprinzip seit dem 1988
veröffentlichten Videocodierungsstandard H.261 unverändert. Im Folgen-
den wird die Hybridcodierung zunächst aus Sicht eines Videoencoders
der Abbildung 2.2 folgend beschrieben7.

Es erfolgt eine blockweise Codierung des Videosignals in einer Differen-
tial Pulse Code Modulation (DPCM)-Schleife. Hierfür wird das aktuell
zu codierende Bild des Videos in nicht-überlappende Blöcke aufgeteilt,
welche nacheinander verarbeitet werden. Das Ziel der Prädiktion ist die
Reduktion von örtlicher und zeitlicher Redundanz im zu codierenden
Videosignal. Die Ziele der Transformation sind zum einen die Reduktion
von örtlicher Redundanz durch eine Transformation des Prädiktionsfeh-
lers sowie zum anderen die Entfernung der am wenigsten relevanten8

Informationen aus dem Videosignal durch Quantisierung.
Die Funktionsweise der Prädiktion beruht auf der Vorhersage des ak-

tuellen Blocks aus bereits am Decoder vorhandenen Signalen. Der Vorteil

7 HEVC und andere Videocodierungsstandards spezifizieren in der Regel nur die Syntax
und Semantik des Bitstroms sowie den zugehörigen Decodierungsprozess, mit dem aus dem
Bitstrom ein Videosignal rekonstruiert werden kann. Die Erzeugung des Bitstroms am Encoder
ist nicht standardisiert und liegt im Ermessen des Encoderentwicklers. Zwei verschiedene
Encoder für den gleichen Standard können sehr unterschiedliche Ergebnisse produzieren. Zur
besseren Lesbarkeit werden in dieser Arbeit dennoch viele Prozesse aus Sicht des Encoders
beschrieben, auch wenn diese Sicht streng genommen außerhalb der Standards liegt.

8 Der Begriff Irrelevanzreduktion wird hier bewusst nicht verwendet, da je nach Quantisiererstu-
fenanzahl auch (viele) relevante Informationen aus dem Signal entfernt werden.

15

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

dieser Funktionsweise ist, dass alle aus am Decoder bereits vorhande-
nen Informationen prädizierten Signale nicht mehr übertragen werden
müssen. Hierdurch hat die Prädiktion einen wesentlichen Anteil an der
Reduktion der Datenrate während der Codierung eines Videos. Für die
Prädiktion werden bereits decodierte Signale für einen gewissen Zeit-
raum am Decoder gespeichert, um diese Signale als Referenz für die
Prädiktion verwenden zu können.

Die in modernen Videocodecs verwendeten Prädiktionsverfahren kön-
nen in Intra-Prädiktion und Inter-Prädiktion unterschieden werden.

Bei der Intra-Prädiktion erfolgt eine Prädiktion des aktuellen Blocks
aus bereits decodierten Signalen des aktuellen Bildes. Die zugrunde lie-
gende Annahme ist hierbei, dass es örtliche Abhängigkeiten zwischen
benachbarten Abtastwerten gibt. Als Referenz werden entweder direkt
benachbarte Abtastwerte verwendet (klassische Intra-Prädiktion [63, 95,
139]) oder örtlich weiter entfernte Abtastwerte (zum Beispiel Intra Block
Copy (IBC) [145]). Am Encoder findet eine Auswahl des am besten ge-
eigneten Intra-Prädiktionsverfahrens für den aktuellen Block statt. Die
Intra-Prädiktion wird unter anderem für die Prädiktion von neu in der
Szene erscheinenden Inhalten, für die Codierung von Einzelbildern, für
den Start und für den wahlfreien Zugriff bei Übertragungen, für die
Fehlerkorrektur und für die Umschaltung der Datenrate bei schwanken-
den Kanalkapazitäten benötigt. Bei der Intra-Prädiktion entstehen Fehler,
wenn das Signal des aktuellen Blockes gegeben der Referenzwerte nicht
vollständig mit dem verwendeten Intra-Prädiktionsverfahren vorherge-
sagt werden kann. Abgesehen von Ausnahmen, wie zum Beispiel sehr
homogenen Blöcken, entsteht in der Regel ein nicht zu vernachlässigender
Fehler.

Bei der Inter-Codierung erfolgt die Prädiktion des aktuellen Blocks aus
dem Signal in bereits vollständig decodierten Bildern, den sogenannten
Referenzbildern9. Die hierbei getroffene Annahme ist, dass es eine ho-
he zeitliche Redundanz zwischen zeitlich benachbarten Bildern gibt. Es
wird deshalb angenommen, dass es nur wenige Änderungen zwischen
diesen Bildern gibt, welche hauptsächlich auf Bewegungen innerhalb
der aufgenommenen Szene zurückzuführen sind. Diese Bewegungen
werden mit einem Bewegungsmodell beschrieben und kompensiert. Das
verwendete Verfahren wird als Bewegungskompensation bezeichnet. Aus
einem Ausschnitt des bewegungskompensierten Referenzbilds ergibt
sich eine gute Prädiktion für den aktuell codierten Block. In modernen
Videocodecs werden zum Beispiel translatorische und affine Bewegungs-

9 Da die Bilder eines Videos nicht in der gleichen Reihenfolge codiert werden müssen, in der sie
angezeigt werden, handelt es sich hierbei nicht notwendigerweise um zeitlich vorhergehende
Bilder [107].

16

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

modelle für die Bewegungskompensation verwendet. Am Encoder findet
eine Bewegungssuche statt10. Mit dieser Bewegungssuche werden die
Parameter für das verwendete Bewegungsmodell, also zum Beispiel der
Bewegungsvektor [74] (engl. Motion Vector (MV)) für das translatori-
sche Bewegungsmodell, bestimmt. Inter-Prädiktion wird dann eingesetzt,
wenn das Signal des zu codierenden Blocks zumindest näherungsweise
in wenigstens einem der Referenzbilder vorhanden ist und durch das
Bewegungsmodell kompensiert werden kann. Fehler entstehen bei der
Inter-Prädiktion zum Beispiel, wenn die Bewegung durch das verwen-
dete Bewegungsmodell nicht erfasst werden kann, wenn Bildinhalte im
aktuellen Bild neu erscheinen oder wenn die Blockpartitionierung nicht
perfekt zu den Objektgrenzen in der aufgenommenen Szene passt [58].

Durch Subtraktion des prädizierten Signals von dem Originalsignal
wird der Prädiktionsfehler erzeugt. Dieser ist für einen Großteil der
Gesamtdatenrate verantwortlich, insbesondere bei mittleren und hohen
Datenraten11. Benachbarte Werte des Prädiktionsfehlers sind miteinander
korreliert. Für eine effiziente Entropiecodierung wäre eine Codierung
der Verbundereignisse erforderlich, was in der Praxis nicht sinnvoll
umsetzbar ist.

Die Prädiktionsfehlercodierung erfolgt deshalb in zwei Stufen: Zu-
nächst wird der Prädiktionsfehler in einen anderen Raum transformiert.
Anschließend werden die Transformationskoeffizienten quantisiert. Hier-
bei werden die folgenden beiden Ziele verfolgt: Erstens wird eine De-
korrelation der Koeffizienten angestrebt. Wenn dieses Ziel erreicht wird,
dann ist die Summe der Einzelentropien der Koeffizienten gleich der
Entropie des Verbundsereignisses aller Koeffizienten. Dann können die
einzelnen Koeffizienten unabhängig voneinander codiert werden anstatt
der Codierung des Verbundereignisses ohne dass die Codierungseffi-
zienz sinkt. Zweitens soll der Prädiktionsfehler mit möglichst wenig
Transformationskoeffizienten beschrieben werden (Energiekompaktheit).

Die Karhunen-Loève-Transformation (KLT)12 ist die beste Transformati-
on für das Erreichen der beiden genannten Ziele. Jedoch konnte sich die
KLT als datenabhängige Transformation in der Praxis nicht durchsetzen,
da für jeden zu codierenden Prädiktionsfehler eine eigene Transformati-
onsmatrix berechnet und übertragen werden müsste. Da die Transforma-
tionsmatrix für einen Block der Größe N ⇥ N die Größe N2 ⇥ N2 hat, ist
die Menge an Seiteninformationen zu groß.

10 Es gibt auch Ansätze für eine Bewegungssuche am Decoder zur Verbesserung der Inter-
Prädiktion [17, 59].

11 Klomp misst 75% für den oberen Bereich an Rundfunkqualität [57].
12 Die KLT ist sehr eng mit der Hauptkomponentenanalyse, engl. Principal Component Analysis

(PCA), verwandt. Sie unterscheiden sich je nach Definition nur um eine Normierung.

17

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Stattdessen werden häufig DCT-Varianten13 verwendet. Für den kon-
struierten Fall, dass die Korrelationsmatrix des Prädiktionsfehlers eine
Toeplitz-Matrix ist, sind die KLT und DCT asymptotisch äquivalent [109].
Für reale Prädiktionsfehler ist die DCT nicht ganz so gut wie die KLT.
Teilweise werden auch Discrete Sine Transform (DST)-Varianten verwen-
det, da diese für kleine, intra-prädizierte Blöcke besser zu den Werten an
den Rändern der Prädiktionsfehlerblöcken passen. Seit AVC werden die
Transformationen in Ganzzahl-Arithmetik spezifiziert, um abweichende
Ergebnisse zwischen unterschiedlichen Fließkomma-Implementierungen
zu vermeiden.

Die Transformationskoeffizienten werden quantisiert. In der Regel wer-
den hierfür skalare, gleichförmige Quantisierer verwendet. Unter der
Annahme, dass die Koeffizienten Laplace-verteilt sind, werden die Gren-
zen zwischen den Quantisiererstufen nicht mittig sondern verschoben
zwischen den Repräsentativwerten angeordent, um den Quantisierungs-
fehler zu minimieren. Optional kann eine Skalierung der Koeffizienten
erfolgen. Hierbei wird die Matrix der Prädiktionsfehlerwerte elementwei-
se durch eine Skalierungsmatrix geteilt. Häufig wird bei der Skalierung
berücksichtigt, dass die menschliche visuelle Wahrnehmung sensibler
für niedrige als für hohe Frequenzen ist. Deshalb werden die Koeffizi-
enten für die hohen Frequenzen durch größere Zahlen geteilt als die
Koeffizienten für niedrige Frequenzen.

Die quantisierten Transformationskoeffizienten werden für die Rekon-
struktion des Signals verwendet. Hierfür wird die inverse Transformation
auf sie angewendet. Der entstehende approximierte Prädiktionsfehler
weicht aufgrund der Quantisierung vom ursprünglichen Prädiktionsfeh-
ler ab. Durch die Addition des prädizierten Signals und des approximier-
ten Prädiktionsfehlers entsteht das rekonstruierte Signal. Das rekonstru-
ierte Signal wird in einem Speicher, dem sogenannten Referenzbildspei-
cher, engl. Decoded Picture Buffer (DPB), gespeichert, um angezeigt zu
werden und um als Referenz für zukünftige Prädiktionen verwendet zu
werden.

Alle für die Rekonstruktion benötigten Informationen werden an den
Decoder übertragen. Dieses umfasst die Information für die Durchfüh-
rung der Prädiktion, zum Beispiel Bewegungsvektoren oder das ausge-
wählten Intra-Prädiktionsverfahren, sowie die quantisierten Transforma-
tionskoeffizienten. Für die zu übertragenden Informationen wird eine
Entropiecodierung angewendet. Das Ziel der Entropiecodierung ist die
verlustfreie Codierung der zu übertragenen Informationen, welche gege-

13 Häufig wird die DCT-II als Transformation und die DCT-III als inverse Transformation
verwendet. In modernen Codecs werden zusätzlich weitere Varianten der DCT verwendet und
adaptiv ausgewählt.

18

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

benenfalls bereits verlustbehaftet sind, mit möglichst geringer Datenrate.
In den betrachteten Videocodierungsverfahren wird eine binäre arith-
metische Codierung (BAC) verwendet. Hierbei werden binäre Symbole
codiert14. Gegebenenfalls erfolgt eine Binarisierung von nicht-binären
Symbolen, zum Beispiel mittels Zählcodes oder Varianten von Golombco-
des. Bei der BAC wird eine Folge von Bins als eine Fließkommazahl aus
einem berechneten Intervall innerhalb eines definierten Wertebereichs
codiert15. Hieraus ergibt sich der Vorteil, dass Symbole mit weniger als
einem Bit codiert werden können. Dieses ist mit anderen Codes, wie
zum Beispiel Huffman-Codes, nicht möglich. Während der Codierung
werden die für die Codierung genutzten Symbolwahrscheinlichkeiten an
die Statistik der codierten Daten angepasst. Das resultierende Verfahren
wird als kontext-adaptive BAC, engl. Context-adaptive Binary Arithmetic
Coding (CABAC), bezeichnet [118].

Von den beschriebenen Teilen der Hybridcodierung sind die inverse
Transformation zur Erlangung des approximierten Prädiktionsfehlers,
die Prädiktion, die Rekonstruktion des Signals sowie der Speicher mit
Referenzen für die Prädiktion ebenfalls am Decoder vorhanden.

High Efficiency Video Coding

In diesem Abschnitt werden relevante Aspekte des Videocodecs HEVC
[47, 116, 140] ausgeführt.

Im vorherigen Abschnitt wurde für die Schilderung der Hybridcodie-
rung vereinfachend angenommen, dass es bei der Codierung nur eine
Art von Blöcken gibt und dass diese Blöcke alle gleich groß sind. Das ist
in modernen Videocodecs wie HEVC nicht der Fall. Zudem gibt es bei
HEVC die Unterscheidung zwischen Block und Unit: Ein Block umfasst
ein Feld mit Abtastwerten, welche einem rechteckigen Bereich innerhalb
eines Bildes zugeordnet sind. Eine Unit umfasst alle Blöcke für diesen Be-
reich, also drei Blöcke für Farbsignale oder einen Block für monochrome
Signale. Die Zuordnungen sind:

• Coding Tree Unit (CTU) - Coding Tree Block (CTB)

• Transform Unit (TU) -Transform Block (TB)

• Prediction Unit (PU) - Prediction Block (PB)

Die CTU bildet die erste Stufe der Blockpartitionierung und damit den
Ausgang für alle weiteren Partitionierungen. CTUs sind quadratisch und

14 Der Nomenklatur im Kontext von HEVC folgend werden binäre Symbole vor der Entropieco-
dierung (Bins) und binäre Symbole nach der Entropiecodierung (Bits) unterschieden.

15 In CABAC weicht die Realisierung hiervon ab.

19

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

TB TBTBTU(s)

PB PBPBPU(s)

CB CBCBCU(s)

CTU CTB CTBCTB

Abbildung 2.3: Übersicht über die in HEVC verwendeten Blockarten

haben eine feste Größe, die im Rahmen der Syntax eines Parametersets
auf einen der drei folgenden Werte festgelegt wird: 16 ⇥ 16, 32 ⇥ 32
und 64 ⇥ 64. Für große örtliche Videoauflösungen ist eine große CTU-
Größe sinnvoll, für kleine Auflösungen eine kleine CTU-Größe [140]. Die
zu codierenden Bilder werden in gleichgroße und nicht überlappende
CTUs aufgeteilt. Es erfolgt eine Verarbeitung der CTUs in Rasterscan-
Reihenfolge.

Jede CTU bildet die Wurzel für zwei unabhängige Quaternärbäume
(engl. Quadtrees) aus Coding Unit (CU)s und TUs. Hierbei ist der TU-
Quaternärbaum dem CU-Quaternärbaum nachgelagert.

Auf Ebene der CU wird die Auswahl zwischen Intra- und Inter-Codierung
getroffen. Anschließend können die CUs weiter in ein, zwei oder vier PUs
aufgeteilt werden.

Die PUs dienen als Ebene für die Durchführung der eigentlichen Prä-
diktion. Maximal können die PUs so groß sein wie die zugehörigen CUs.
Die minimale Größe für die Intra-Prädiktion, welche auf TU-Ebene statt-
findet, ist 4 ⇥ 4, 4 ⇥ 8 beziehungsweise 8 ⇥ 4 für die Inter-Prädiktion
mit einem Referenzbild sowie 8 ⇥ 8 für die Inter-Prädiktion mit zwei
Referenzbildern. Die Beschränkungen für die Inter-Prädiktion dienen der
Komplexitätslimitierung für Decoder. Alle PUs sind rechteckig aber nicht
notwendigerweise quadratisch.

20

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Die quadratischen TUs werden für die Transformationscodierung ver-
wendet. Ihre maximale Größe entspricht für die Inter-Codierung der
CU-Größe, die TUs können also größer sein als die für die Prädiktion
dieses Bildbereiches verwendeten PUs. Dieses ist zum Beispiel bei mit
dem Skip Mode codierten Blöcken sinnvoll [140]. Für die Intra-Codierung
können die TUs maximal so groß sein wie die zugehörigen PUs, da das
rekonstruierte Signal, für das der decodierte Prädiktionsfehler verwendet
wird, für die Prädiktion der nächsten PU benötigt wird.

Aufeinanderfolgende CTU eines Bildes in Verarbeitungsreihenfolge
(Rasterscan) werden in einem Slice zusammengefasst. Ein Bild kann aus
einem oder mehreren Slices bestehen. Somit sind Slices nicht notwendi-
gerweise rechteckig. Slices sind unabhängig voneinander decodierbar –
bei einem verlorenen Slice können die verbleibenden Slices eines Bildes
codiert werden – und stellen ein Werkzeug zur Fehlereindämmung dar.
In HEVC werden drei Arten von Slices unterschieden: I-Slices, in denen die
Blöcke ausschließlich mit Intra-Prädiktion codiert werden, P-Slices, in de-
nen die Blöcke mit Intra-Prädiktion oder mit Inter-Prädiktion mit einem
Referenzbild codiert werden, und B-Slices, in denen Intra-Prädiktion so-
wie Inter-Prädiktion mit einem oder mit zwei Referenzbildern eingesetzt
werden. Zwischen den Slices eines Bildes bestehen keine Abhängigkeiten
bezüglich der Prädiktion, der Bestimmung von Syntaxelementen oder
bezüglich der Entropiecodierung. Slices dienen hauptsächlich zur Fehle-
reindämmung während der Übertragung, jedoch können sie potentiell
auch für die Parallelisierung der Encodierung und Decodierung des
Videos eingesetzt werden. Allerdings gibt es hierbei zwei nachteilige
Auswirkungen [84]: Damit Slices unabhängig decodierbar sind ist es
erforderlich, dass Slice Header-Informationen redundant im Bitstrom vor-
handen sind. Insbesondere bei niedrigen Datenraten ist diese Redundanz
nicht vernachlässigbar16. An den Grenzen zwischen Slices kann es zu
Blockartefakten kommen, da keine Filterung über Slice-Grenzen hinaus
möglich ist.

Tiles stellen eine Möglichkeit zur Parallelisierung der Encodierung und
Decodierung ohne die genannten Nachteile von Slices dar. Hierbei wird
das Bild entlang des CTU-Rasters in rechteckige Bereiche aufgeteilt. Die
Verarbeitungsreihenfolge der CTU eines Bildes wird angepasst: Für jedes
Tile gibt es einen unabhängigen Rasterscan. Die Tiles eines Bildes können
parallel codiert werden, jedoch sind sie nicht unabhängig voneinander:
Falls die zu einem Tile gehörenden Daten verloren gehen, dann können
die verbleibenden Tiles möglicherweise nicht fehlerfrei decodiert werden.
Da keine Informationen zum Fehlerschutz redundant übertragen werden
und da eine Filterung des decodierten Signals über Tile-Grenzen hinweg

16 Auf dependent slice segments [108] wird an dieser Stelle nicht näher eingegangen.

21

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

s
2s

s
2s

zu codierender
Block

Referenzbereich

Abbildung 2.4: HEVC-Referenzbereich für die Intra-Prädiktion. In Anlehnung an
[63].

zulässig ist, entstehen die genannten Parallelisierungsnachteile von Slices
nicht.

Schließlich können mehrere Bilder zu Gruppen, engl. Group of Pic-
tures (GOP), zusammengefasst werden. Für weitere Informationen zur
sogenannten High-level Syntax (HLS) von HEVC sei der Leser auf [111]
verwiesen.

Die HEVC-Intra-Prädiktion ist das Referenzverfahren, welches durch
die Beiträge in dieser Arbeit verbessert werden soll. Deshalb wird sie im
Folgenden detailliert geschildert.

Die Abtastwerte innerhalb eines 1 Pel breiten beziehungsweise hohen
Streifens in bereits codierten Blöcken an der Grenze zum aktuellen Block
wie in Abbildung 2.4 dargestellt dienen als Referenzwerte für die Prädikti-
on. Für einen s⇥ s-Block gibt es 4s+ 1 Referenzwerte. Aus der Abbildung
ist ersichtlich, dass sich Teile des Referenzbereichs in den diagonal links-
unten und rechts-oben gelegenen PB befinden. Je nach Partitionierung des
Bildes sind diese PB bereits codiert und stehen als Prädiktionsreferenz zur
Verfügung oder sie wurden noch nicht codiert und stehen somit nicht zur
Verfügung. Wenn Referenzwerte nicht referenzierbar sind, zum Beispiel
weil sie noch nicht codiert wurden oder außerhalb des Bildes, Slices oder

22

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Tiles liegen, dann werden sie auf den Wert des örtlich nächsten verfügba-
ren Referenzwertes gesetzt. Sind gar keine Referenzwerte verfügbar, zum
Beispiel für den ersten PB eines Bildes, Slices oder Tiles, dann werden
alle Referenzwerte auf den mittleren Wert des Wertebereichs der Abtast-
werte, also 128 für 8 Bit Signale, gesetzt. Abhängig von der Blockgröße
und des Intra-Prädiktionsmodus werden die Referenzabtastwerte vor der
Prädiktion mit einem Tiefpassfilter geglättet17.

Für die Intra-Prädiktion stehen 35 verschiedene Modi zur Auswahl: 33
direktionale Modi, ein planarer Modus und einen Gleichanteilsmodus,
engl. Direct Current (DC). Die direktionalen Modi basieren auf der linea-
ren Extrapolation der Referenzwerte entlang einer von 33 Richtungen. Da
in typischen Videosequenzen häufig horizontale und vertikale Strukturen
vorkommen, wurde hierfür eine genauere Winkelauflösung als für andere
Winkel gewählt [82, 140]18. Wenn für eine zu verwendende Richtung die
Referenzwerte für eine ganzzahlige Pixelposition eines zu prädizieren-
den Abtastwertes zwischen zwei ganzzahligen Pixelpositionen liegen, so
erfolgt eine lineare Interpolation zwischen den zwei umgebenen Refe-
renzwerten mit 1/32-Pel Genauigkeit. Die direktionalen Modi eignen sich
gut für die Prädiktion von linearen Strukturen und Konturen [63].

Bei der Prädiktion mit dem planaren Modus erfolgt eine gewichtete
Überlagerung von vier Referenzwerten ähnlich einer bilinearen Interpola-
tion19. Dieser Modus eignet sich gut für Signale mit Helligkeitsverläufen
sowie für Signale, die gleichzeitig horizontale und vertikale Strukturen
enthalten.

Für mit dem DC-Modus prädizierte PB werden alle zu prädizierenden
Abtastwerte auf den arithmetischen Mittelwert der Referenzwerte ge-
setzt. Es gibt eine Abweichung von diesem Prozess für direkt an bereits
rekonstruierte Blöcke angrenzende Abtastwerte: Zur Vermeidung von
starken Blockartefakten werden diese Abtastwerte als gewichtete Überla-
gerung des direkt angrenzenden Referenzwertes und des Mittelwerts der
Referenzwerte prädiziert. Der Mittelwert wird hierbei stärker gewichtet.
Durch dieses Vorgehen wird der Übergang an den Blockgrenzen geglättet.
Der DC-Modus ist prädestiniert für einfarbige Signale. Gleichzeitig dient
dieser Modus als Ausweichlösung für Blöcke, die mit den anderen Modi
nur schlecht prädiziert werden können.

Damit die Intra-Prädiktion am Decoder durchgeführt werden kann, ist
die Codierung von Seiteninformationen notwendig. Insbesondere wird

17 Es gibt drei verschiedene Varianten der Filterung [140]: Keine Filterung: Für Blöcke der Größe
4 ⇥ 4, DC-Modus, horizontale und vertikale Prädiktion. Normale Filterung: Für Blöcke größer
als 4 ⇥ 4, für unterschiedliche Blockgrößen für unterschiedliche Richtungen. Starke Filterung:
Für 32 ⇥ 32 Blöcke in Abhängigkeit der örtlichen Aktivität.

18 Implementierungsgründe sind eine weitere Ursache für die genauere Winkelauflösung.
19 Der Unterschied liegt in der Position und in der Gewichtung der verschiedenen Referenzwerte.

23

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

der verwendete Intra-Prädiktionsmodus übertragen. Hierzu wird zu-
nächst eine Liste mit den drei wahrscheinlichsten Kandidaten, engl. Most
Probable Modes (MPM), für den Intra-Prädiktionsmodus basierend auf
den Modi von benachbarten Blöcken und verschiedener Standardwerte
bestimmt [62]. Mit einem Bin wird signalisiert, ob der verwendete Intra-
Modus zu den MPM gehört. Ist dieses der Fall, so wird ein Index für den
richtigen Kandidaten aus der MPM-Liste mit Kontextmodellierung signa-
lisiert. Wird stattdessen einer der 32 verbleibenden Modi verwendet, so
wird hierfür ein Code mit fester Länge und ohne Kontextmodellierung20

verwendet. Der Verzicht auf die Kontextmodellierung ist vorteilhaft für
den Durchsatz bei der Entropiecodierung und bringt an dieser Stelle
keinen wesentlichen Nachteil, da modellierbare Kontexte bereits durch
die MPM-Liste erfasst sind.

Im Folgenden werden die von den allgemeinen Schilderungen der
Hybridcodierung abweichenden Eigenschaften der Prädiktionsfehlerco-
dierung in HEVC erläutert. In HEVC werden fünf verschiedene Transfor-
mationen in Ganzzahl-Arithmetik definiert. Hiervon nähern vier Trans-
formationen für die vier Blockgrößen 4 ⇥ 4, 8 ⇥ 8, 16 ⇥ 16 und 32 ⇥ 32
die entsprechenden DCT-II-Transformationen mit Ganzzahlen an. Für die
Blockgröße 4 ⇥ 4 wird zusätzlich eine Transformation definiert, welche
die entsprechende DST annähert. Es konnte durch Han et al. in [37] gezeigt
werden, dass die DST gut für eine einseitige Prädiktion aus einem Refe-
renzabtastwert geeignet ist, weil hierbei der Fehler angrenzend an den
bekannten Referenzbereich sehr klein ist und mit steigender Entfernung
zum bekannten Bereich ansteigt. Dieses Beobachtung korrespondiert
zu den Basisvektoren der DST. Folglich wird die 4 ⇥ 4-DST für die Prä-
diktionsfehler von intra-codierten Blöcken dieser Größe verwendet. Für
größere Blöcke dominiert die bessere Dekorrelationseigenschaft der DCT.
Deshalb wird für intra-codierte Blöcke der Größen 8 ⇥ 8 bis 32 ⇥ 32 die
DCT verwendet.

Durch Narroschke wurde in [88] analysiert, dass die Prädiktionsfehler-
werte bereichsweise unterschiedlich starke statistische Abhängigkeiten
voneinander haben und dass abhängig von der Stärke und der Ordnung
der Abhängigkeiten die Codierung des Prädiktionsfehlers im Frequenz-
bereich oder im Ortsbereich effizienter ist. Diese Erkenntnis nutzend gibt
es in HEVC den Transform Skip-Modus, mit dem adaptiv auf TU-Ebene die
Transformation übersprungen werden kann [91]. Anschließend erfolgt
eine Weiterverarbeitung des Prädiktionsfehlers im Ortsbereich. Der Trans-
form Skip-Modus ist insbesondere für computergenerierte Videosignale
nützlich [144].

20 CABAC Bypass-Modus

24

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.1 videocodierung

Der Prädiktionsfehler wird im Fall einer verlustbehafteten Codierung
nach der Transformation quantisiert. Hierfür wird ein Quantisierer mit
konstanter Stufenbreite verwendet. Die Stufenbreite wird über einen
Quantisierungsparameter (QP) gesteuert. Für 8 Bit-Videosignale liegt die-
ser zwischen 0 und 51. Kleinere QP-Werte führen zu einer kleineren
Stufenbreite, also einer feineren Quantisierung. Es gibt einen logarith-
mischen Zusammenhang zwischen dem QP und der Stufenbreite: Eine
Erhöhung des QP um sechs führt jeweils zu einer Verdoppelung der Stu-
fenbreite. In Abhängigkeit von der Bittiefe der Abtastwerte verändert sich
der Wertebereich des QP. Für jedes zusätzliche Bit wird der Wertebereich
um sechs Werte nach unten erweitert. Für 10 Bit-Videosignale kann der
QP Werte im Bereich -12 bis 51 annehmen.

In der obigen Ausführung wird jeder Koeffizient des Prädiktionsfehlers
gleichstark quantisiert. Aufgrund der Eigenschaften des menschlichen
Wahrnehmungsapparats kann es jedoch sinnvoll sein, je nach Anwen-
dung und zu codierendem Signal die höheren Frequenzanteile des Prä-
diktionsfehlers stärker zu quantisieren als die niedrigen Frequenzanteile.
Optional kann hierfür in HEVC eine Gewichtungsmatrix für die Quanti-
sierung verwendet werden. Am Encoder kann entweder eine von sechs
vordefinierten Matrizen, jeweils eine für die Kombinationen aus Inter-
und Intra-Codierung mit den drei Farbraumkomponenten, verwendet
werden oder eine neue Matrix relativ zur vordefinierten Matrix signali-
siert werden.

Bei HEVC kommen mehrere Verfahren für die Entropiecodierung
zum Einsatz: Für Informationen auf der höchsten Ebene, zum Beispiel
Network Abstraction Layer (NAL)-Header und Informationen, die die gan-
ze Sequenz betreffen, werden Codes mit fester Codewortlänge verwendet.
Hierdurch können diese Informationen leicht von Systemen verarbeitet
werden, die nur diese Informationen auswerten, aber das Video nicht
vollständig decodieren. Für Parameter Sets und die Konfiguration von
Codierungsverfahren werden sowohl Codes mit fester Codewortlänge
als auch solche mit variabler Codewortlänge, engl. Context-adaptive
Variable Length Coding (CAVLC), verwendet. Diese Verfahren wurden
gewählt, weil sie verglichen mit CABAC nicht so aufwendig zu decodieren
sind. Dafür ist die Codierungseffizienz nicht so hoch wie bei CABAC. Das
wird akzeptiert, da diese Informationen nur einen kleinen Anteil an der
Gesamtdatenrate ausmachen. Ein Großteil der zu codierenden Informa-
tionen befindet sich auf Blockebene. Hierfür wird CABAC verwendet. Der
Zustand von CABAC wird für jedes neue Slice beziehungsweise Tile zu-
rückgesetzt. Wird die parallele Decodierbarkeit von CTU-Reihen aktiviert,
engl. Wavefront Parallel Processing (WPP), so erfolgt eine Zurücksetzung

25

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

des Zustandes für jede neue CTU-Reihe [1]. Weitere Informationen zur
Entropiecodierung in HEVC finden sich in [120].

Encodersteuerung

Dem HEVC-Standard entsprechende Bitströme können auf viele Weisen
erzeugt werden. Die Codierung des gleichen Videos mit zwei unter-
schiedlichen Encodern, die beide gültige HEVC-Bitströme erzeugen, oder
unterschiedliche Konfigurationen des gleichen Encoders können zu sich
stark unterscheidenen aber dem Standard entsprechenden Bitströmen
führen. Die Aufgabe der Encodersteuerung ist die Konfiguration eines
Encoders, so dass unter den gegebenen Rahmenbedingungen ein HEVC-
Bitstrom erzeugt wird. Hierbei umfasst die Encoderkonfiguration unter
anderem die Partitionierung des Bildes, die Wahl der Codierungsverfah-
ren sowie die weiteren einzustellenden Parameter des Encoders.

Es ist ersichtlich, dass die Rahmenbedingungen und damit auch die
Encodersteuerung sehr anwendungsspezifisch sind. Zum einen hängt sie
ab von den verfügbaren Ressourcen: Encoder, welche auf Hochleistungs-
servern oder in der Cloud ausgeführt werden, haben wesentlich mehr
Rechenleistung zur Verfügung als Encoder auf mobilen Endgeräten wie
beispielsweise Smartphones. Zum anderen werden durch die jeweilige
Anwendung häufig zeitliche Randbedingungen gesetzt: Für die Offline-
Speicherung von Videos, zum Beispiel für On-Demand-Video, sind bei
der Encodierung auftretende Verzögerungen in der Regel vernachläs-
sigbar. Selbst Encodierungszeiten von mehreren Wochen pro Spielfilm
können akzeptabel sein. Bei Echtzeitübertragungen ist die zeitnahe Enco-
dierung notwendig. Die genaueren Anforderungen hängen wiederum
von der Anwendung ab. Während bei einer unidirektionalen Echtzeit-
übertragung, zum Beispiel für Fernsehübertragungen oder Streaming-
Anwendungen, eine Verzögerung von einigen Sekunden unproblematisch
sein kann, führt bei multidirektionalen Übertragungen, zum Beispiel für
die Videotelefonie, bereits eine leichte Verzögerung zu einer Beeinträchti-
gung des Dienstes. Aus diesen Randbedingungen ergibt sich nicht nur,
mit wie viel Rechenaufwand eine Encodierung durchgeführt werden
kann, sondern auch, welche Signalanteile für die Prädiktion zur Ver-
fügung stehen. In manchen Konfigurationen werden die Bilder einer
Videosequenz so codiert, dass nur Bilder aus der Vergangenheit referen-
ziert werden. In anderen Konfigurationen werden die Bilder innerhalb
einer GOP zu einer hierarchischen Struktur umgeordnet, in der die Bilder
aus einer Hierarchie-Ebene hintereinander codiert werden bevor die Bil-
der der nächsten Hierarchie-Ebene codiert werden. Hierdurch weicht die
Codierungsreihenfolge von der Anzeigereihenfolge ab. Dadurch können

26

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

in der Zukunft angezeigte Bilder während der Codierung referenziert
werden, wenn sie einer bereits codierten Hierarchie-Ebene zugeordnet
sind21.

Bei der Videocodierung werden in der Regel zwei gegenläufige Ziele
verfolgt: Zum einen soll die Datenrate aus Effizienz- und Kostengründen
möglichst klein sein. Zum anderen soll die Verzerrung ebenfalls möglichst
gering, die Qualität also besonders hoch, sein. Typischerweise sind die
Verzerrung und die Datenrate miteinander verknüpft: Eine Verringerung
der Verzerrung führt oft zu einer Erhöhung der Datenrate. Das gleichzei-
tige Optimieren der Verzerrung und der Datenrate ist deshalb notwendig.
Hierfür wird eine Raten-Verzerrungs-Optimierung, engl. Rate-Distortion
Optimization (RDO), eingesetzt [115]. Bei der RDO werden die Datenrate
R und die Verzerrung, engl. Distortion, D mit dem Lagrange-Faktor l
verknüft, um die Rate-Distortion-Kosten CRD zu berechnen:

CRD = D + lR (2.2)

Bei gegebener Rate und Verzerrung ergibt sich für die Rate-Distortion-
Kosten eine Arbeitskurve in Abhängigkeit von l. Dieser Parameter ist
anwendungsspezifisch, da die Wichtigkeit einer geringeren Verzerrung
und einer geringeren Datenrate je nach Anwendung variieren kann. Die
RDO kann durch die Notwendigkeit, sehr viele Kombinationen aus Par-
titionierung, Wahl der Codierungsverfahren, Einstellung der Parameter
auszuprobieren, sehr rechenaufwendig sein [66]. Da je nach verfügbaren
Ressourcen nur ein begrenzter Aufwand für die Codierung eines Videos
im gegebenen Zeit- und Finanzbudget möglich ist, haben verschiedene
Anwendungen unterschiedliche Arbeitskurven für die Rate-Distortion-
Kosten.

2.2 maschinelles lernen

Machine Learning: Field of study
that gives computers the ability to
learn without being explicitly
programmed. [104]

Arthur Samuel (IBM)
1959

In diesem Abschnitt werden nach einigen grundlegenden Einführun-
gen zum Thema maschinelles Lernen insbesondere die Konfiguration
neuronaler Netzwerke sowie das Training neuronaler Netzwerke vertieft.

21 Vgl. die Konfigurationen Low Delay und Random Access in den im Kontext der Standardisierung
verwendeten Testbedingungen, engl. Common Test Conditions (CTC) [54].

27

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Vierzig Jahre nach der im Epigraph wiedergegebenen noch weiten Defi-
nition von Samuel definiert Mitchell ein gut formuliertes maschinelles
Lern-Problem wie folgt: „Ein Computerprogramm wird als lernend von
der Erfahrung E bezüglich einer Aufgabe T und einer Leistungsmetrik
P bezeichnet, wenn dessen Leistung für T, gemessen mittels P, sich mit
der Erfahrung E verbessert.“22 Diese Definition kann auf die vorliegende
Arbeit angewendet werden. Hier ist die Aufgabe T die Abtastwertprädik-
tion im Rahmen der vorgeschlagenen Verfahren, die Leistungsmetrik P
zum Beispiel die Verzerrung, die Datenrate oder die Rate-Distortion (RD)-
Kosten sowie die Erfahrung E die Menge an Beispielen, welche für das
Lernen verwendet werden. Die Menge an Beispielen, die während des
Lernvorgangs verwendet wird, wird oft als Datensatz bezeichnet. Einzel-
ne Beispiele aus dem Datensatz werden auch als Datenpunkte bezeichnet.
In modernen Definitionen [31] umfasst ein maschineller Lernalgorithmus

• ein Modell, welches gelernt wird,

• einen Optimierungsalgorithmus, der zum Lernen eingesetzt wird,

• eine Kostenfunktion, mit welcher der Lernerfolg bewertet wird

• und einen Datensatz, der während des Lernens verarbeitet wird.

Maschinelle Lernprogramme verarbeiten in der Regel Beispiele, welche
jeweils aus einer Menge an Merkmalen, engl. Features, zusammenge-
setzt sind und erzeugen basierend auf den verarbeiteten Beispielen ein
Ausgangssignal23. Während des Lernvorgangs wird der Algorithmus
fortlaufend angepasst, er „lernt“, um gemessen mit der gewählten Leis-
tungsmetrik die gestellte Aufgabe besser zu lösen.

Die Merkmale werden aus den zu verarbeitenden Daten gewonnen
und können diese Daten unterschiedlich stark abstrahieren: Bezogen auf
Bildsignale könnten wenig abstrahierende Merkmale die Abtastwerte des
betrachteten Bildsignals sein. Mit zunehmendem Grad an Abstrahierung
könnten aus den Abtastwerten geometrische Strukturen und Objekte, die
den Bildinhalt beschreiben, werden.

In Abhängigkeit davon, was für Erfahrungen während des Lernvor-
gangs verwendet werden, können maschinelle Lernverfahren in über-

22 „Well posed Learning Problem: A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E.“– Tom Mitchell, 1997 [85].

23 Nicht betrachtet werden im Rahmen dieser Arbeit Ansätze, in denen es zusätzlich zu der
Verarbeitung des Datensatzes eine Rückkopplung zwischen dem Lernalgorithmus und dem
Datensatz gibt. Zu dieser Art von Verfahren gehören Reinforcement Learning-Ansätze. Hierbei
verursachen durch den Lernalgorithmus ermittelte Ausgangswerte eine Veränderung der
nachfolgend als Eingang verarbeiteten Beispiele.

28

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

wachte Lernverfahren und unüberwachte Lernverfahren24 unterschie-
den werden. Bei unüberwachten Lernverfahren werden während des
Lernvorgangs die Merkmale aus dem Datensatz genutzt, um relevante
Eigenschaften der dem Datensatz zu Grunde liegenden Quelle zu be-
stimmen. Typische Anwendungen umfassen Hauptkomponentenanalyse,
Clusteranalyse, Entrauschung oder Synthese. Bei überwachten Lernver-
fahren umfassen die verwendeten Erfahrungen zusätzlich zu den als
Eingang verwendeten Merkmalen ein oder mehrere gewünschte Ergeb-
nisse der Lernvorgangs, welche mit den Merkmalen assoziiert sind. Das
gewünschte Ergebnis wird teilweise auch als Label, Ziel oder Ground
Truth bezeichnet. Somit kann als Ziel dieser Gruppe an Verfahren das
Lernen einer Abbildung von Eingangs- auf Ausgangsdaten interpretiert
werden. Typische Anwendungen umfassen Klassifikation und Regression.
Die Grenze zwischen überwachten und unüberwachten Lernalgorithmen
ist weder klar definiert noch in allen Fällen eindeutig. Goodfellow et al.
argumentieren, dass sich umfangreiche unüberwachte Lernverfahren in
eine Kombination aus einer endlichen Anzahl an weniger umfangreichen
überwachten Lernalgorithmen überführen lassen [31].

In Abhängigkeit der durch das Modell gelernten Zusammenhänge kön-
nen generative und diskriminative Modelle unterschieden werden [90]:
Während bei generativen Modellen die Verbundwahrscheinlichkeit der
Ein- und Ausgangssignale gelernt werden, werden bei diskriminativen
Modellen die bedingten Wahrscheinlichkeiten für das Ausgangssignal
gegeben das Eingangssignal gelernt. Obgleich aus der Verbundwahr-
scheinlichkeit mittels der Bayes-Regel die bedingte Wahrscheinlichkeit
ermittelt werden kann – und die generativen Modelle somit umfassender
als die diskriminativen Modelle erscheinen – sind in der Praxis für die
Aufgabe der Abbildung eines Eingangssignals auf ein Ausgangssignal
die diskriminativen Modelle effizienter [90].

Das Ziel von maschinellen Lernalgorithmen ist in der Regel nicht
nur, die jeweilige Aufgabe auf dem für den Lernvorgang verwendeten
Datensatz, dem sogenannten Trainingsdatensatz, gut zu lösen, sondern
die gleiche Aufgabe auch auf neuen, im Trainingsdatensatz nicht ent-
haltenen, Beispielen gut zu erfüllen. Diese neuen Daten werden auch
als Testdaten bezeichnet. Diese Fähigkeit wird bei maschinellen Lern-
ansätzen als Generalisierung bezeichnet25. Während des Lernvorgangs
kann der Algorithmus nur auf den Trainingsdaten evaluiert werden.

24 Die Begriffe beruhen auf der Analogie eines Schülers, der während des Lernens von einem
Lehrer überwacht beziehungsweise angeleitet wird oder nicht.

25 Hier unterscheiden sich maschinelle Lernverfahren von Optimierungsverfahren. Bei letzteren
werden lediglich die bereits vorliegenden Daten betrachtet. Beim Lernen wird angenom-
men, dass die Testdaten während des Trainings nicht zur Verfügung stehen, so dass keine
Optimierung auf diese möglich ist.

29

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

ÜberanpassungUnteranpassung

Fehler

Kapazität

Testfehler

Trainingsfehler

Abbildung 2.5: Zusammenhang zwischen Kapazität und Über- und Unteranpas-
sung. In Anlehnung an [31].

Deshalb wird der Algorithmus zunächst während des Lernvorgangs so
angepasst, dass der Fehler (vgl. Abschnitt 2.2) auf den Trainingsdaten
(Trainingsfehler), etrain, minimiert wird. Eine Generalisierung ist möglich,
wenn Trainings- und Testdaten (näherungsweise) die gleichen statisti-
schen Eigenschaften haben, wenn die Beispiele in den Datensätzen jeweils
unabhängig voneinander sind und wenn die Datensätze hinreichend um-
fangreich sind um die statistischen Eigenschaften des datenerzeugenden
Prozesses abzubilden [31]. Eine gute Generalisierung liegt vor, wenn der
Abstand zwischen eTraining und dem Fehler auf den Testdaten (Testfehler),
eTest, möglichst klein wird. Die Differenz wird als Generalisierungsfehler,
eGen

26, bezeichnet und geht idealerweise gegen Null:

eGen = eTraining � eTest ! 0. (2.3)

Mit Bezug auf die genannten Fehler können zwei Probleme während
der Entwicklung von maschinellen Lernalgorithmen auftreten: Unteran-
passung und Überanpassung. Eine Unteranpassung liegt vor, wenn der
Trainingsfehler während des Lernvorgangs nicht hinreichend klein wird.
Eine Überanpassung liegt vor, wenn der Trainingsfehler zwar hinreichend
klein wird, aber hierbei der Generalisierungsfehler zu groß wird. Der
Arbeitspunkt von maschinellen Lernalgorithmen mit Bezug auf Unter-
und Überanpassung lässt sich unter anderem über die Kapazität des
Modells, auf den der Lernalgorithmus angewendet wird, kontrollieren.

Bei der Kapazität handelt es sich um einen (nicht präzise definierten)
Begriff, der die Fähigkeit des Modells, komplexe und vielfältige Auf-

26 In der Literatur wird teilweise auch der Testfehler abweichend von der hier verwendeten
Nomenklatur als Generalisierungsfehler bezeichnet. Die Motivation hiervon ist, dass dieser
Fehler bei der Generalisierung auf ungesehene Daten auftritt.

30

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

gaben zu lernen, beschreibt [31]. Ist die Kapazität zu klein, so können
die Eigenschaften des den Daten zugrunde liegenden Prozesses nicht
hinreichend genau erfasst werden und es kommt zu Unteranpassung. Ist
die Kapazität hingegen zu groß, so werden nicht die Eigenschaften des
Prozesses gelernt. Stattdessen werden die Eigenschaften von den konkre-
ten Beispielen des Trainingsdatensatzes zu detailliert (d.h. auswendig)
gelernt. In Folge dessen ist keine Generalisierung auf ungesehene Daten
möglich. Somit kommt es zu einer Überanpassung. Dieser Zusammen-
hang wird in Abbildung 2.5 grafisch veranschaulicht. Die Kapazität kann
auf unterschiedliche Weisen angepasst werden, zum Beispiel durch die
Wahl des Modells oder durch Parameter dieses Modells. Ein als Ockhams
Rasiermesser, engl. Occam’s Razor, benannter, auf maschinelles Lernen an-
wendbarer, Grundsatz besagt, dass von mehreren gleich guten Lösungen
(hier: Modellen mit den jeweiligen Konfigurationen) die einfachste (hier:
die mit der geringsten Kapazität) zu bevorzugen ist [6, 31, 106]. Für eine
formellere Betrachtung der Kapazität sei der Leser auf [31] verwiesen.

Neben der Kapazitätsanpassung werden oft Regularisierungsansätze
zur Verbesserung der Generalisierung eingesetzt. Regularisierung wird als
Einflussnahme, zum Beispiel über zusätzliche Terme in der Kostenfunkti-
on, auf den Lernalgorithmus mit dem Ziel, den Generalisierungs- aber
nicht den Trainingsfehler zu reduzieren, definiert.

Maschinelle Lernalgorithmen haben in der Regel sogenannte Hyperpa-
rameter, welche nicht durch den Lernalgorithmus selbst – oder präziser:
das beinhaltete Optimierungsverfahren – bestimmt werden. Stattdessen
sind diese Parameter durch den Entwickler des Lernalgorithmus oder
durch einen umhüllenden zweiten Algorithmus zu bestimmen. Mit die-
sen Hyperparametern können zum Beispiel die Kapazität des Modells
oder die Funktionsweise des Optimierungsverfahrens beeinflusst werden.
Von den für die Hyperparameter gesetzten Werten kann die Leistung
des Lernalgorithmus grundlegend abhängen; sie können den Ausschlag
zwischen einer sehr guten Leistung und einem Nicht-Funktionieren
geben. Eine Optimierung der Hyperparameter auf den Trainingsdaten-
satz ist nicht sinnvoll, da dieses nur zu einer Überanpassung führen
würde. So ließe sich in vielen Fällen zwar durch eine Erhöhung der
Kapazität der Trainingsfehler reduzieren aber gleichzeitig würde der
Generalisierungsfehler steigen. Eine Optimierung auf den Testdatensatz
ist ebenfalls nicht sinnvoll. Zum einen ist dieses nicht sinnvoll, da konzep-
tionell angenommen wird, dass die Testdaten während der Entwicklung
des Lernalgorithmus, hierzu gehört der Lernvorgang, unbekannt sind.
Zum anderen ist dieses ebenfalls nicht sinnvoll, da dieses auch zu ei-
ner Überanpassung, und zwar auf den Testdatensatz, führen würde.
Folglich wird für die Optimierung der Hyperparameter oft ein dritter

31

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Datensatz, der als Validierungsdatensatz bezeichnet wird, verwendet. Ty-
pischerweise werden die für die Entwicklung des Lernalgorithmus zur
Verfügung stehenden Daten zufällig in einen Trainings- und in einen
Validierungsdatensatz aufgeteilt, oft in einem Verhältnis von 80 zu 2027.
Aufgrund des großen Einflusses von Hyperparametern auf die Leistung
maschineller Lernalgorithmen und dem oft immensen Aufwand für eine
gute Hyperparameteroptimierung ist für eine sinnvolle Vergleichbarkeit
von verschiedenen Lernalgorithmen sicherzustellen, dass die jeweiligen
Hyperparameter vergleichbar gut optimiert wurden.

Einen weiteren fundamentalen Grundsatz im Kontext des maschinellen
Lernens stellt das No-Free-Lunch-Theorem [141] (sinngemäß: Nichts-ist-
umsonst-Theorem) dar. Es besagt, dass alle Lernalgorithmen die gleiche
Leistung erreichen, wenn über alle denkbaren Aufgaben für Lernalgo-
rithmen gemittelt wird. Folglich gebe es keine guten oder schlechten
Lernalgorithmen. Erst durch die Spezialisierung eines Lernalgorithmus
auf eine bestimmte Aufgabe und durch das Treffen geeigneter Annahmen,
zum Beispiel in Form von Hyperparametern, über die zu verarbeitenden
Daten sei maschinelles Lernen sinvoll [31].

Die Anwendungsmöglichkeiten für maschinelle Lernalgorithmen sind
vielfältig. Im Folgenden werden einige Beispielanwendungen mit Schwer-
punkt auf die in dieser Arbeit betrachteten neuronalen Netzwerke ge-
nannt.

Klassifikation: Eine der ersten Anwendungen, welche seit der Arbeit [61]
von Krizhevsky von auf neuronalen Netzwerken basierenden Ansätzen
dominiert wird, ist die Klassifikation. Alle Gewinner-Verfahren in den
letzten Jahren des Wettbewerbs ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [103], bei dem Objekte in Bildern erkannt werden
müssen, basieren auf neuronalen Netzwerken. Die an Klassifikationsal-
gorithmen gerichtete Aufgabe ist die Zuordnung eines Beispiels in eine
Kategorie aus einer Menge an möglichen Kategorien. Teilweise erfolgt
auch eine Ausgabe der Wahrscheinlichkeiten für die Kategorien. Beispie-
le sind die Objekterkennung im oben genannten Wettbewerb oder die
Gesichtserkennung [99]. Auch im Bereich der Videocodierung werden
verstärkt Aufgaben der Encodersteuerung als Klassifikationsproblem
formuliert [66].

Regression: Bei Regressionsproblemen werden basierend auf dem Ein-
gangssignal einer oder mehrere numerische Werte als Ausgang bestimmt.
Auch hier werden oft maschinelle Lernansätze zur Lösung dieser Pro-
bleme angewendet [64]. Beispiele umfassen die Altersbestimmung aus
Bildern [134, 147] sowie die Poseschätzung [128].

27 Die Daumenregel des 80-zu-20-Verhältnisses beruht auf dem Paretoprinzip [98], in welchem
proklamiert wird, dass 80% des Ergebnisses mit 20% des Aufwands erreichbar sind.

32

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

Interpretation: Bei diesem Anwendungsfall ist das Ziel die Erfassung
des Inhalts von zu verarbeitenden Daten. Konkrete Beispiele sind die
Spracherkennung, hier ist die Eingabe die Audioaufnahme von Sprache
und die gewünschte Ausgabe die gesprochenen Wörter als Text [40],
oder die Extraktion von Adressinformationen aus Straßenaufnahmen
[32]. Ebenfalls werden Lernalgorithmen zur Interpretation einer ganzen
Szene basierend auf einer Bild- oder Videoaufnahme [43] verwendet.

Übersetzung: Ein weiterer Anwendungsfall ist die Übersetzung von Text
zwischen verschiedenen Sprachen [4]. Teilweise geschieht dieses auch in
Kombination mit Algorithmen zur Spracherkennung in Audiosignalen
oder Texterkennung in Bildern.

Anomaliedetektion: Das Ziel der Anomaliedetektion ist die Detektion von
Abweichungen von einem erwarteten, als normal angesehenen, Verhalten
in den zu verarbeitenden Daten. Beispiele finden sich im Bereich der
Sicherheitstechnik für die Auswertung von Überwachungsvideos oder
bei Sicherheitsmechanismen zur Verhinderung von Kreditkartenbetrug.

Synthese/Generierung: Die Synthese von Signalen unter gegebenen Rand-
bedingungen und optional Eingangssignalen ist ein weiteres Anwen-
dungsgebiet für Lernalgorithmen. Typische Beispiele umfassen die Sprach-
synthese gegeben eines zu sprechenden Textes [21, 148] und die Bewe-
gungssynthese für Animationen, beispielsweise für die Filmproduktion
oder Computerspiele [41]. Durch die automatisierte Animation lässt sich
der immense Aufwand für eine manuelle Animation umgehen. Die ge-
nerative Bildmodellierung und Inpainting-Verfahren wurden bereits in
der Einleitung dieser Arbeit thematisiert [27, 33, 36, 124]. Ebenfalls gibt
es Arbeiten zur Stilübertragung [53]. Hierbei wird zum Beispiel der Stil
eines Gemäldes auf ein Foto übertragen.

Entrauschung: Die Entrauschung von rauschbehafteten Signalen, zum
Beispiel Bildern [132, 143, 149] oder Datenreihen, ist ebenfalls eine Mög-
lichkeit für den Einsatz von Lernalgorithmen. Die Ursachen von Rauschen
können hierbei sehr vielfältig und damit schwierig zu erfassen sein.

Superresolution: Bei Superresolution-Ansätzen wird die Erzeugung ei-
nes Bildes mit hoher örtlicher Auflösung aus einem niedrig aufgelösten
Bild [23, 55, 72] umgesetzt. Die Schwierigkeit ist hierbei die Generierung
oder Wiederherstellung von feinen Details und Texturen, welche in dem
Bild mit niedriger Auflösung nicht oder nur teilweise vorhanden sind.

Neuronale Netzwerke

Im Rahmen dieser Arbeit und heutzutage typischerweise auch für die
zuvor genannten Anwendungen werden (künstliche) neuronale Netz-

33

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

werke28 als Modell für die Lernalgorithmen verwendet. Deshalb werden
neuronale Netzwerke in diesem Abschnitt eingeführt.

Obgleich neuronale Netzwerke erst seit ungefähr 2012 [61] enorme
Aufmerksamkeit außerhalb der wissenschaftlichen Gemeinschaft erhalten
haben, sind sie seit Jahrzehnten bekannt. Zunächst wird ein kompakter
Überblick über neuronale Netzwerke im Wandel der Zeit gegeben. Bereits
vorkommende relevante Begriffe, die noch nicht eingeführt wurden, wer-
den im Anschluss eingeführt. Die Ausführungen folgen der historischen
Abhandlung [106] von Schmidhuber.

Die ersten neuronalen Netzwerke waren Implementierungen einer li-
nearen Regression, welche seit Jahrhunderten bekannt ist [29]. Die Idee
der neuronalen Netzwerke wurde erstmals in den 40er-Jahren ohne Ler-
nen [81] und für unüberwachtes Lernen [39] vorgeschlagen. Im Kontext
des überwachten Lernens wurden neuronale Netzwerke in den darauf-
folgenden Jahrzehnten diskutiert [102, 138]. Nicht-lineare Aktivierungs-
funktionen werden seit 1965 [52] für neuronale Netzwerke verwendet.
Das Konzept von tiefen neuronalen Netzwerken ist seit den 70er Jahren
bekannt. 1971 schlug Ivanhnenko ein Netzwerk mit acht Schichten vor
[51]. Fukushima schlug in den Jahren 1979 und 1980 ein tiefes Faltungs-
netzwerk vor, bei dem die Anzahl an zu lernenden Parametern durch die
Verwendung geteilter Werte, engl. weight sharing, deutlich gegenüber voll-
verbundenen neuronalen Netzwerken reduziert wurde. Vorstufen des
Backpropagation-Algorithmus wurden 1970 publiziert, ein erster Einsatz
für neuronale Netzwerke fand 1981 statt [137].

Neuronale Netzwerke bestehen, wie auch die als Inspiration dienen-
den Gehirne, aus vielen miteinander verbundenen Neuronen. In Ab-
bildung 2.6 ist ein (künstliches) Neuron illustriert. Basierend auf der
Summe von mehreren mit wi gewichteten Eingangssignalen ii und einem
Gleichanteil b, engl. bias, welche in dem Neuron mit einer (typischerweise
nichtlinearen) Aktivierungsfunktion a verarbeitet werden, gibt es ein als
Aktivierung bezeichnetes Signal oi am Ausgang. Die Übertragungsfunk-
tion des Neurons, also o(i)29, lässt sich wie folgt formulieren:

o(i) = a(wTi + b) (2.4)

Das Ausgangssignal kann dann wiederum als eines der Eingangssigna-
le für ein anderes Neuron verwendet werden. Die Gewichte sind das
wesentliche, für die Funktionalität eines Netzwerkes verantwortliche,

28 Der Name zeigt an, dass die Netzwerke von der Funktionsweise des Gehirns, oder einiger
Teilaspekte desselben, inspiriert wurden. Dies bedeutet jedoch nicht, dass mit neuronalen
Netzwerken ein Gehirn „nachgebaut“werden soll.

29 o(i) hängt zwar auch von den veränderlichen Größen w und b ab. Diese werden jedoch nur
während des Trainings des Netzwerkes verändert und werden zum Zeitpunkt der eigentlichen
Anwendung des Netzwerkes als unveränderlich betrachtet.

34

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

i1

.

.

.

ik

i2

+

× w1

× w2

× wk

.

.

.

Eingangssignale

+

b

a(.) o

Ausgangssignal

Gewichte

Bias

Aktivierungs-
funktion

Abbildung 2.6: Schematische Darstellung eines (künstlichen) Neurons.

Merkmal des Neurons. Während des Trainings werden die Gewichte der
Neuronen sukzessive angepasst, um die Leistung des Netzwerkes für die
gestellte Aufgabe zu verbessern.

Aus mehreren in sogenannten Schichten angeordneten Neuronen wer-
den neuronale Netzwerke aufgebaut. Eine Darstellung des grundlegen-
den Aufbaus neuronaler Netzwerke findet sich in Abbildung 2.7. Die erste
Schicht des Netzwerkes wird als Eingangsschicht bezeichnet, die letzte
als Ausgangsschicht. Zwischen der Eingangs- und der Ausgangsschicht
befinden sich eine oder mehrere verborgene Schichten, engl. hidden layer.
Als tiefe neuronale Netzwerke, teilweise auch mittels Deep Learning re-
ferenziert, werden Netzwerke mit mehr als einer verborgenen Schicht
bezeichnet [121]. Moderne neuronale Netzwerke haben zwischen fünf
und über 100 verborgene Schichten [13]. Die Neuronen einer Schicht
sind mit einigen oder allen Neuronen der vorherigen Schicht über die
Gewichte w verbunden.

Gäbe es in Gleichung 2.4 nicht die Aktivierungsfunktion a, dann ent-
spräche die Gleichung lediglich der gewichteten Überlagerung der Ein-
gangssignale mit einer zusätzlichen Addition des Bias. Der Wertebereich
am Ausgang entspräche den kompletten reellen Zahlen. Inspiriert durch
die Funktionsweise von Neuronen im Gehirn, welche nur dann ein Aus-
gangssignal erzeugen, wenn die Überlagerung der Eingangssignale über
einem Grenzwert liegt, umfassen auch künstliche Neuronen eine Aktivie-
rungsfunktion.

Die Anforderungen umfassen mindestens die folgenden vier Aspekte:
Die Aktivierungsfunktion sollte nichtlinear sein. Die Nichtlinearität wird
für das Lernen komplexer Zusammenhänge benötigt. Würden lediglich

35

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

1

4

3

2

3

1

2

Schicht 1
(Eingang)

4

2

1

3

5

6

Schicht 2
(verborgen)

Schicht 3
(Ausgang)

w(2)
31

w(2)
34

w(3)
16

w(3)
11

Gewichte
w(l)

jk

Eingangs-
daten des

Netzwerkes Ausgangs-
daten des

Netzwerkes

Abbildung 2.7: Schematische Darstellung eines (künstlichen) neuronalen Netzwer-
kes. In Anlehnung an [121].

lineare Aktivierungsfunktionen verwendet, so könnten selbst bei mehre-
ren hintereinander geschalteten Neuronen nur lineare Zusammenhänge
durch das Netzwerk erlernt werden. Sukzessive Änderungen an den Ein-
gangssignalen sollten zu einer sukzessiven Änderung der Aktivierung
führen. Durch diese Konsistenz sollen kleine Änderungen des Eingangs-
signals, zum Beispiel Rauschen, des Netzwerkes nicht zu einem sich
stark ändernden Ausgangssignal, beispielsweise einer anderen Klasse
bei Klassifizierungsaufgaben, führen. Die Ausgangswerte der Aktivie-
rungsfunktion sollten nicht zu groß werden. Die Aktivierungsfunktion
sollte differenzierbar sein und die Gradienten sollten sinnvoll für den
nachfolgend beschriebenen Optimierungsalgorithmus verwendbar sein.
Hierfür sollten die Gradienten weder zu groß noch zu klein werden.

Im Folgenden werden vier typische Aktivierungsfunktionen a(x) für
Eingangssignale x diskutiert. Diese Funktionen werden zusätzlich in
Abbildung 2.8 dargestellt.

Die Sigmoid-Funktion ist definiert als:

aSigmoid(x) =
1

1 + e�x (2.5)

Aufgrund des Wertebereichs des Ausgangssignal zwischen Null und Eins
wird diese Aktivierungsfunktion gerne für Anwendungen verwendet, in
dem am Ausgang eine Wahrscheinlichkeit, die ebenfalls zwischen Null
und Eins liegt, gefordert ist. Eine weitere Anwendungsmöglichkeit stellt

36

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

��

�

�

�

�

�

�

�� �� �� �� � � � � �

�����

��

�

�

�

�

�

�

�� �� �� �� � � � � �

����

��

���	

�

��	

�

�� �� �� �� � � � � �

�������

��

���	

�

��	

�

�� �� �� �� � � � � �

����

Abbildung 2.8: Übersicht über die vier Aktivierungsfunktionen Sigmoid, tanh,
ReLU und lreLU

die binäre Klassifikationen dar30. Die Sigmoid-Aktivierungsfunktion er-
füllt viele der an Aktivierungsfunktionen gestellten Anforderungen: Sie
ist nichtlinear, es kommt zu sukzessiven Änderungen des Ausgangssi-
gnals bei sukzessiven Änderungen des Eingangssignals, das Ausgangssi-
gnal ist auf den Wertebereich Null bis Eins begrenzt und die Funktion
ist differenzierbar. Die Ableitung der Funktion ist für Eingangswerte
mit kleinem Betrag groß. Das ist nützlich für den später eingeführten
Backpropagation-Algorithmus. Das Hauptproblem dieser Aktivierungs-
funktion ist, dass die Ableitung für Eingangssignale mit großem Betrag
sehr klein ist. Das kann während der Optimierung des Modells zu einem
Problem werden, wenn das Modell sich in einem Zustand befindet, in
dem Neuronen solche großen Werte ausgeben. Dann kann es passieren,
dass diese Werte wegen der verschwindenden Gradienten sich während
der Optimierung nicht verändern und der Optimierungsalgorithmus
zu keiner Verbesserung des Modells mehr führt. Dieses lässt sich als
Steckenbleiben während des Trainings vorstellen31. Aufgrund des be-

30 Eine Verallgemeinerung für nicht-binäre Klassifikationsaufgaben bildet die Softmax-
Aktivierungsfunktion

31 Der Nachteil der Sättigung bei Werten mit großem Betrag kann vernachlässigt werden,
wenn die Sigmoid-Funktion als Aktivierungsfunktion in der letzten Schicht des Netzwerkes
verwendet wird und mit einer geeigneten, zum Beispiel logarithmischen, Kostenfunktion
kombiniert wird.

37

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

schriebenen Nachteils wird die Sigmoid-Aktivierungsfunktion in der
Regel nicht mehr für verborgene Schichten in Feed-Forward-Netzwerken
verwendet. Für andere, in dieser Arbeit nicht betrachtete, Netzwerkarten
wird diese Aktivierungsfunktion dennoch weiter verwendet. Der Grund
hierfür ist, dass andere Aktivierungsfunktionen wie die nachfolgend
betrachtete und für Feed-Forward-Netzwerke präferierte ReLU-Funktion
hier aus anderen Gründen nicht eingesetzt werden können.

Der Tangens hyperbolicus (tanh) ist eine verschobene und skalierte
Version der Sigmoid-Aktivierungsfunktion:

atanh(x) = 2aSigmoid(2x)� 1 (2.6)

=
2

1 + e�2x � 1 (2.7)

Die wesentlichen Änderungen gegenüber der Sigmoid-Aktivierungs-
funktion sind, dass zum einen die Steigung größer ist und zum anderen
der Sättigungsbereich für betragsgroße negative Eingangssignale nicht
bei Null liegt. Die erste Eigenschaft kann sinnvoll sein, wenn für die Op-
timierung größere Gradienten benötigt werden. Die zweite Eigenschaft
bewirkt, dass das Ausgangssignal – und damit das Eingangssignal für
nachfolgende Neuronen – für den relevanten Sättigungsbereich nicht bei
Null liegt, wodurch die Gewichte der nachfolgenden Neuronen bedeu-
tungslos würden.

Am häufigsten in modernen Netzwerken werden die gleichrichtende
Aktivierungsfunktion, engl. Rectifier Linear Unit (ReLU), oder Varianten
ebenjener verwendet. Sie ist definiert als:

areLU(x) = max(0, x) (2.8)

=

8
<

:
x wenn x > 0

0 sonst
(2.9)

Obgleich die ReLU stückweise linear ist, ist sie als ganzes nichtlinear.
Abgesehen vom Ursprung ist die Funktion differenzierbar. Durch die
Nichtdifferenzierbarkeit im Ursprung verletzt diese Aktivierungsfunktion
die gestellten Anforderungen. Dieses kann jedoch vernachlässigt werden,
da es sich beim Ursprung über keinen typischerweise während des
Trainings auftretenden Arbeitspunkt handelt [31]. Für positive Werte des
Eingangssignals wird das Signal ohne Veränderung ausgegeben, somit
erfüllt die Funktion die diesbezüglichen Anforderungen. Für negative
Werte ist der Ausgabewert der Funktion immer Null. Dieses kann zu
„sterbenden“Neuronen führen, die aufgrund des fehlenden Gradienten
diesen Zustand während des Trainings nie verlassen können und immer

38

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

Nullen ausgeben. Hierdurch können in ungünstigen Fällen größere Teile
eines Netzwerkes dauerhaft deaktiviert werden. Dennoch ist die Funktion
als Aktivierungsfunktion beliebt, da sie sehr einfach zu berechnen ist –
es ist lediglich die Überprüfung eines Vorzeichens notwendig – und zu
guten Lernergebnissen führt.

Die durchlässige gleichrichtende Aktivierungsfunktion, engl. Leaky
Rectifier Linear Unit (lreLU), löst das Problem der toten Neuronen, welches
bei der normalen ReLU-Aktivierungsfunktion besteht, in dem negativen
Eingangswerten ein sehr kleiner, nicht konstanter Wert zugewiesen wird:

alreLU(x) =

8
<

:
x wenn x > 0

cx sonst
(2.10)

mit einer Konstanten c, die typischerweise positiv und hinreichend klein,
zum Beispiel c = 0.01, ist. Hier wird während der Optimierung der
Netzwerkgewichte die Möglichkeit erhalten, die verbleibenden kleinen
Gradienten zur Verschiebung des Arbeitspunkts aus dem toten Bereich
zu nutzen.

Die Art der Neuronen in der letzten Schicht wird häufig in Abhängig-
keit der durch das Netzwerk zu lösenden Aufgabe gewählt. Lineare Neu-
ronen, hiermit werden Neuronen ohne Aktivierungsfunktion, also einer
Übertragungsfunktion o(i) = wTi + b, bezeichnet werden oft für Aufga-
ben verwendet, bei denen am Netzwerkausgang ein quadratischer Fehler
minimiert werden soll. Neuronen mit Sigmoid-Aktivierungsfunktionen
werden für binäre Klassifikationen oder andere Aufgaben, bei denen
am Ausgang ein Wahrscheinlichkeitswert erwünscht ist, verwendet. Als
Erweiterung werden Neuronen mit Softmax-Aktivierungsfunktion für
Klassifikationen mit mehr als zwei Klassen verwendet. Für den Ausgang
j mit j 2 [1, J] erfolgt die Berechnung zu:

aSoftmax(xj) =
exj

ÂJ
i=1 exi

(2.11)

Durch die Berechnung ist sichergestellt, dass alle Ausgangswerte zwi-
schen Null und Eins liegen und die Summe über alle Ausgangswerte
Eins ergibt. Hierdurch sind die Ausgangswerte als Wahrscheinlichkeiten
sinnvoll interpretierbar.

In Abhängigkeit der verwendeten Neuronen und ihrer Verbindung zur
vorherigen Schicht werden unterschiedliche Arten von Schichten unter-
schieden. Die im Rahmen dieser Arbeit verwendeten voll-verbundenen
Schichten und Faltungsschichten werden im Folgenden erläutert. Für
weitere Arten von Schichten sei der Leser auf die Übersichten von Good-
fellow et al. in [31] und von van Veen in [131] verwiesen.

39

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

In voll-verbundenen Schichten sind alle Neuronen aus einer Schicht
mit allen Neuronen der vorherigen Schicht verbunden. Der Ausgang ol
einer Schicht l lässt sich als Erweiterung von Gleichung 2.4 zu

ol = a(WTol�1 + b) (2.12)

mit einer elementweise angewandten Aktivierungsfunktion a, einer Ge-
wichtsmatrix W und einem Bias-Vektor b formulieren.

Bei Faltungsschichten gibt es anstatt einer großen Gewichtsmatrix W
wie in Gleichung 2.12 eine Anzahl an Faltungsmatrizen, mit denen das
Eingangssignal gefaltet wird. Faltungsschichten werden häufig für zwei-
dimensionale Eingangsdaten des neuronalen Netzwerkes, zum Beispiel
Bilder, verwendet. Die Faltungsmatrizen haben oft die gleiche Dimen-
sionalität wie die Eingangsdaten für die Faltungsschicht: Bestehen die
Eingangsdaten beispielsweise aus zweidimensionalen Bildern mit drei
Kanälen, so sind die Faltungsmatrizen ebenfalls dreidimensional mit
einer Tiefe von drei. Der Ausgang einer Faltungsschicht mit der Faltungs-
matrix WF lässt sich mit ⇤ als Faltungsoperator als

ol = a(WT
F ⇤ ol�1 + b) (2.13)

schreiben.
Aus der Kombination der jeweiligen Schichten ergibt sich die Architek-

tur des Netzwerkes. Der Nomenklatur aus [31] folgend wird in dieser
Arbeit mit Architektur ausgedrückt, wie viele Neuronen ein Netzwerk
hat, wie diese Neuronen in Schichten angeordnet sind und wie diese
Schichten miteinander verbunden sind.

In dieser Arbeit werden Feed-Forward-Netzwerke32 verwendet. Mehre-
re Schichten werden hintereinander angeordnet. Der Ausgang von einer
Schicht ist der Eingang der nächsten Schicht33. Die Gesamt-Übertragungs-
funktion oges für solche ein Netzwerk mit n Schichten ergibt sich aus der
Verkettung von Formel 2.4 zu:

oges = oL(oL�1(. . . o2(o1(i, b)) . . .)), (2.14)

wo bei ol der Index l für die l-te Schicht des Netzwerkes steht. Die Anzahl
an Schichten, also L in Gleichung 2.14, wird als Tiefe des Netzwerkes
bezeichnet. Die Breite des Netzwerkes korrespondiert in einer unpräzisen

32 Auf Netzwerke mit zusätzlichen Feedback-Verbindungen, zum Beispiel Recurrent Neural
Network (RNN) wird im Rahmen dieser Arbeit nicht näher eingegangen

33 In vielen modernen Netzwerken gibt es nicht nur die hier beschriebenen Verbindungen von
einer Schicht zur direkt nachfolgenden Schicht. Zusätzlich werden Verbindungen verwendet,
bei denen einzelne Schichten übersprungen werden, engl. skip connections. Hierdurch kön-
nen beim nachfolgend beschriebenen Backpropagation-Algorithmus Gradienten besser vom
Ausgang des Netzwerkes zu den Schichten nahe dem Eingang des Netzwerkes propagiert
werden.

40

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

Definition zur Größe der jeweiligen Schichten. Die genaue Wahl der
Netzwerktiefe und -breite bedarf der experimentellen Bestimmung.

Faltungsnetzwerke, engl. CNN, bestehen in der Regel aus mehreren
Faltungsschichten gefolgt von einer oder mehreren vollverbundenen
Schichten. In der ersten Faltungsschicht werden einfache Merkmale wie
Kanten extrahiert, welche dann mit zunehmender Tiefe des Netzwer-
kes abstrahiert werden bis am Ausgang des Netzwerkes beispielsweise
Objekte erkannt werden.

Das Universal Approximation Theorem, dessen vertiefte Diskussion den
Rahmen dieser Arbeit sprengen würde, besagt vereinfacht, dass neu-
ronale Netzwerke mit einer hinreichenden Tiefe und Breite und einer
geeigneten Aktivierungsfunktion jede Borel-messbare Funktion, hier-
zu zählen alle stetigen Funktionen, mit einem beliebig kleinen Fehler
darstellen können [31, 42, 73]34.

Training neuronaler Netzwerke

Das Ziel des Trainings neuronaler Netzwerke ist, dass die Übertragungs-
funktion des Netzwerks, oges in Gleichung 2.14, durch die Anpassung
der Netzwerkparameter die Funktion der zu lernenden Aufgabe T (vgl.
Seite 28) möglichst gut annähert.

Beim Training neuronaler Netzwerke wird die von den Parametern
des Netzwerkes, zum Beispiel von den Gewichten und Bias-Werten, ab-
hängende Kostenfunktion, welche die Leistung des Netzwerkes für die
betrachtete Aufgabe misst, minimiert. Für die Minimierung werden Gra-
dientenabstiegsverfahren [14] eingesetzt. Hierbei wird in einem iterativen
Prozess die Kostenfunktion minimiert, indem die die Kostenfunktion
beeinflussenden Parameter in kleinen Schritten entgegen des Gradien-
ten der Kostenfunktion nach ebenjenen Parametern angepasst werden35.
Durch die kleinen Schritte in Richtung kleinerer Werte für die Kosten-
funktion soll im Idealfall das globale Minimum der Kostenfunktion
erreicht werden. Im Kontext neuronaler Netzwerke wird das Erreichen
des globalen Minimums durch zahlreiche lokale Minima, Sattelpunkte
und flache Bereiche in der Kostenfunktion erschwert. Hierbei werden die
Gradienten zu klein um ein Weiterlernen zu ermöglichen, engl. vanishing

34 Das Theorem besagt lediglich, dass solch ein Netzwerk existiert. Es lässt jedoch keine Schlüsse
über die tatsächliche Größe und Architektur oder über das notwendige Vorgehen beim
Training des Netzwerkes zu. Insbesondere kann ein als universeller Approximator geeignetes
Netzwerk so groß werden, dass ein Erlernen der zu lernenden Funktionen in der Praxis
unmöglich ist.

35 Der Gradient der Kostenfunktion in einem Arbeitspunkt zeigt in Richtung der größten
Steigung der Kostenfunktion in diesem Arbeitspunkt. Deshalb erfolgt der Schritt entgegen
des Gradienten, da in dieser Richtung die Verrringerung des Wertes der Kostenfunktion am
größten ist. Dieses entspricht dem größten Fortschritt beim Training.

41

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

gradients. Zu groß werdende Gradienten, engl. exploding gradients, können
ebenfalls zu einem Problem werden, insbesondere in tiefen Netzwerken
in denen viele Gewichte in einer Kette miteinander multipliziert werden.

In dem nachfolgenden Abschnitt (ab Seite 43) zum Back-Propagation-
Algorithmus wird der Gradient konkret in Abhängigkeit der Gewichte
und Bias-Werte bestimmt werden. An dieser Stelle sei die Konfigura-
tion des Netzwerkes, inklusive Gewichten und Bias-Werten, zunächst
allgemein als c zusammengefasst. Die Kostenfunktion in Abhängigkeit
dieser Konfiguration sei C(c). Der Gradient der Kostenfunktion nach
der Konfiguration sei rcC(c). Dann ergibt sich die neue Konfiguration
des Netzwerkes, ci+1, nach einem Schritt i mit der Weite h aus der alten
Konfiguration ci zu:

ci+1 = ci � hrci C(ci) (2.15)

Die Schrittweite h wird im Kontext maschineller Lernverfahren auch als
Lernrate bezeichnet36.

Typischerweise werden für maschinelle Lernalgorithmen Datensätze
mit vielen Trainingsbeispielen verwendet. Die Berechnung des Gradien-
ten ergibt sich dann als Mittelung über je einen Gradienten pro Beispiel:

rcC(c) =
1
N

N

Â
n=1

rcCn(c), (2.16)

mit dem Index n 2 [1, N] für die einzelnen Beispiele.
Die Komplexität der Berechnung in Gleichung 2.16 ist O(N) bei einem

Trainingsdatensatz der Größe N. Da diese Berechnung in jeder Iteration
des Gradientenabstiegs durchgeführt werden müsste und Datensätze oft
viele Millionen oder Milliarden Beispiele enthalten, ist diese Berechnung
in der Praxis nicht umsetzbar.

Statt des bis hierhin beschriebenen ursprünglichen Gradientenabstiegs
wird deshalb in der Praxis der stochastische Gradientenabstieg eingesetzt.
Hierbei wird für jede Iteration eine zufällige Untermenge an Trainings-
beispielen, in der Regel maximal eine dreistellige Anzahl, notiert als
N⇤ mit N⇤ << N aus der Gesamtmenge an Trainingsbeispielen gezo-
gen37. Die Prämisse hierbei ist, dass mit dieser Untermenge, welche auch

36 In der Regel wird die Lernrate während des Trainings laufend angepasst. Goodfellow et
al. bezeichnen diese Anpassung „mehr als Kunst denn als Wissenschaft“und führen weiter
aus, das die meisten allgemeinen Richtlinien zur Anpassung der Lernrate mit Vorsicht zu
betrachten seien [31].

37 Bei sehr großen Datensätzen erfolgt aus Rechenaufwandsgründen in der Regel kein zufälliges
Ziehen von Beispielen in jeder Iteration. Stattdessen wird der komplette Datensatz einmalig
zufällig durchgemischt und dann während des Trainings sequenziell verarbeitet.

42

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

Schicht 2
(verborgen)

Schicht 3
(Ausgabe)

o(2)

Eingabe

y
C

Ground
Truth

o(3)i(1)
w(2) w(3)

Aktivierungsfunktion
a(.)

b(2) b(3)

Abbildung 2.9: Backpropagation-Algorithmus für ein sehr kleines neuronales
Netzwerk

Minibatch38 bezeichnet wird, der Gradient hinreichend gut angenähert
wird:

rcC(c) =
1
N

N

Â
n=1

rcCn(c) ⇡
1

N⇤

N⇤

Â
n=1

rcCn(c) (2.17)

Diese Annahme wird nicht zuletzt dadurch bestärkt, dass große Daten-
sätze typischerweise nicht redundanzfrei sind [31].

Eine größere (Mini-) Batchgröße führt typischerweise zu einer besseren
Annäherung des Gradienten in Gleichung 2.17 und zu einer besseren
Auslastung der Rechnerarchitektur, da alle Beispiele aus dem Minibatch
in der Regel parallel verarbeitet werden. Kleinere Batchgrößen führen
oft zu einem kleineren Generalisierungsfehler, da weniger Rauschen
durch die Mittelung entfernt wird, jedoch auch zu längeren Trainings-
dauern. Die obere Grenze des Minibatches ergibt sich aus dem in der
Rechnerarchitektur zur Verfügung stehenden Arbeitsspeicher. [31]

Da die direkte Berechnung des Gradienten in Gleichung 2.17 für Netz-
werke mit vielen Parametern weiterhin sehr rechenaufwendig wäre, wird
hierfür der Backpropagation-Algorithmus verwendet.

Zunächst wird der für die Berechnung des Gradienten der Kosten-
funktion verwendete Backpropagation-Algorithmus für ein sehr kleines
Netzwerk gemäß Abbildung 2.9 mit drei Schichten, also einer verborge-
nen Schicht, mit jeweils einem Neuron erläutert. Anschließend erfolgt
eine Verallgemeinerung auf größere Netzwerke. Das Grundprinzip des
Backpropagation-Algorithmus ist die Propagierung des Fehlers am Aus-
gang des Netzwerkes, gemessen mit der Kostenfunktion C, von Schicht
zu Schicht durch das Netzwerk um so die Gewichte mittels des stochasti-
schen Gradientenabstiegsverfahrens anzupassen. Durch dieses Vorgehen

38 Es ist zu beachten, dass in der Literatur zum Teil der Begriff Batch Learning verwendet wird,
um das Lernen auf dem gesamten Datensatz zu bezeichnen. Dieses mag verwirren, da die
Größe des Minibatches auch als Batchgröße bezeichnet wird.

43

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

i(1) z(2) o(2) z(3) o(3)

y

C

b(3)b(2)

w(2) w(3)

Abbildung 2.10: Abhängigkeiten beim Backpropagation-Algorithmus für ein sehr
kleines neuronales Netzwerk

muss lediglich jeweils der Gradient für eine Schicht aber nicht der Gradi-
ent für alle Schichten zusammen berechnet werden.

Entsprechend Gleichung 2.4 ergibt sich der Ausgang o(3)n des Neurons
der letzten Schicht, Superscript (3)39, für das Trainingsbeispiel n zu

o(3)n = a(w(3)o(2)n + b(3)) (2.18)

= a(w(3)a(w(2)i(1)n + b(2)) + b(3)). (2.19)

Der Vollständigkeit halber wird auch das Eingangssignal i(1)n mit dem
entsprechenden Schicht-Index notiert, da nicht notwendigerweise alle
Eingangssignale in der ersten Schicht in das Netzwerk gehen müssen.
Zur verkürzten Notation wird der innere Term von Gleichung 2.18 als
z(3)n definiert:

z(3)n := w(3)o(2)n + b(3) (2.20)

Zur Vereinfachung sei als Kostenfunktion am Ausgang des Netzwerkes
der quadratische Fehler zwischen dem Ausgangssignal des Netzwerks
und den Trainingsdaten y angenommen:

Cn = (o(3)n � y)2 (2.21)

Anhand von Abbildung 2.10 lässt sich der Weg des Fehlers durch das
Netzwerk und damit die Abhängigkeiten der Kostenfunktion von den
verschiedenen Werten in dem Netzwerk nachvollziehen: C hängt von o(3)

ab (Term Abh. a in Gleichung 2.22), o(3) wiederum hängt von z(3) ab (Abh.
b in Gleichung 2.22) und weiter in der Kette hängt z(3) von w(3) (Abh. c
in Gleichung 2.22), o(2) und b(3) ab.40

39 Der Superscript mit dem Index für die Schicht wird in Klammern gesetzt, um eine Verwechse-
lung mit einer Potenzierung zu vermeiden.

40 Eine umgangssprachliche, häufig referenzierte, Formulierung ist: Wie verändert sich der Wert
der Kostenfunktion, wenn an den Gewichten „leicht gewackelt wird“?

44

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

Diese Abhängigkeiten lassen sich mittels Kettenregel wie folgt formu-
lieren:

∂Cn

∂w(3) =
∂z(3)n

∂w(3)
| {z }
Abh. c

∂o(3)n

∂z(3)n| {z }
Abh. b

∂C(3)
n

∂o(3)n| {z }
Abh. a

(2.22)

Die einzelnen Terme in Gleichung 2.22 ergeben sich zu:

∂z(3)n

∂w(3) = o(2)n mit Gleichung 2.20 (2.23)

∂o(3)n

∂z(3)n
= a0(z(3)n) (2.24)

∂C(3)
n

∂o(3)n
= 2(o(3)n � yn) mit Gleichung 2.21, (2.25)

mit a0 als Ableitung der Aktivierungsfunktion. Also ist

∂Cn

∂w(3) = o(2)n a0(z(3)n)2(o(3)n � yn). (2.26)

Analog lassen sich die Ableitungen der Kostenfunktion nach dem
Bias-Wert und dem Ausgang des vorherigen Neurons berechnen:

∂Cn

∂b(3)
=

∂z(3)n

∂b(3)
∂o(3)n

∂z(3)n

∂C(3)
n

∂o(3)n
(2.27)

= 1 a0(z(3)) 2(o(3)n � yn) (2.28)

und

∂Cn

∂o(2)n
=

∂z(3)n

∂o(2)n

∂o(3)n

∂z(3)n

∂C(3)
n

∂o(3)n
(2.29)

= w(3) a0(z(3)) 2(o(3)n � yn). (2.30)

Bei der Betrachtung von N⇤ Trainingsbeispielen – N⇤ entspricht zum
Beispiel der Batch-Größe – ergibt sich durch Mittelung aus Gleichung 2.26:

∂C
∂w(3) =

1
N⇤

N⇤

Â
n=1

∂Cn

∂w(3) (2.31)

=
1

N⇤

N⇤

Â
n=1

o(2)n a0(z(3)n)2(o(3)n � yn) (2.32)

45

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Schicht 2
(verborgen)

Schicht 3
(Ausgabe)

 …

o(2)
k

.

.

.

.

.

.

o(3)
j

.

.

.

.

.

.

Eingabe

y
j

.

.

.

.

.

.
C

j

w(3)
jk

Ground
Truth

Abbildung 2.11: Backpropagation-Algorithmus für ein neuronales Netzwerk mit
einer verborgenen Schicht und mehreren Neuronen pro Schicht

Entsprechende Berechnungen lassen sich auch für die beiden anderen
betrachteten Ableitungen durchführen.

Es ist zu beachten, dass während des Trainings lediglich die Gewichte
w und die Bias-Werte b, nicht jedoch die Ausgangswerte vorheriger Neu-
ronen, direkt beeinflusst werden können. Letztere tauchen jedoch noch in
den bis hier hergeleiteten Termen auf. Durch weiteres Anwenden der Ket-
tenregel lassen sich diese nicht direkt beeinflussbaren Terme eliminieren,
sodass die Veränderung der Kostenfunktion nur noch von Veränderungen
der beeinflussbaren, also der trainierbaren, Terme abhängt.

Die vorherigen Gleichungen für ein neuronales Netzwerk mit nur
einem Neuron pro Schicht lassen sich wie im Folgenden ausgeführt
auf ein neuronales Netzwerk gleicher Tiefe mit mehreren Neuronen
pro Schicht, entsprechend Abbildung 2.11, durch die Ergänzung von
weiteren Indizes verallgemeinern. Die Neuronen in Schicht 2 werden mit
k 2 [1, K] indiziert, die Neuronen in Schicht 3 mit j 2 [1, J]. Gewichte
erhalten entsprechend zwei Indizes, wjk, da sie zwei Neuronen mit den
zugehörigen Indizes k und j miteinander verknüpfen.

Die Kostenfunktion am Ausgang des Netzwerkes ergibt sich dann als
Summierung über die Kosten für die einzelnen Neuronen in der letzten
Schicht zu

Cn =
J

Â
j=1

(o(3)j,n � yj)
2, (2.33)

46

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.2 maschinelles lernen

mit
oj,n = a(z(3)j,n) (2.34)

und

z(3)j,n = w3
j0o(2)0,n�1 + . . . + w3

jko(2)k,n�1 + . . . + w3
jKo(2)K,n�1 + b(3)j . (2.35)

Die Ableitungen der Kostenfunktion für ein Beispiel n nach den Ge-
wichten und den Bias-Werten ergeben sich durch Ergänzung der entspre-
chenden Indizes in den Gleichungen 2.22 und 2.27. Im Folgenden wird
die Ergänzung nur für die Gewichte ausformuliert. Die zweite Gleichung
ergibt sich entsprechend.

∂Cn

∂w(3)
jk

=
∂z(3)j,n

∂w(3)
jk

∂o(3)j,n

∂z(3)j,n

∂C(3)
n

∂o(3)j,n

. (2.36)

Bei der Ableitung nach den Ausgangswerten vorheriger Neuronen
wird in Gleichung 2.29 zusätzlich zu den Indizes eine Summe ergänzt,
da jedes vorherige Neuron in einem vollverbundenen Netzwerk alle
Neuronen der nachfolgenden Schicht beeinflusst:

∂Cn

∂o(2)k,n

=
J

Â
j=1

∂z(3)j,n

∂o(3)k,n

∂o(3)j,n

∂z(3)j,n

∂C(3)
n

∂o(3)j,n

. (2.37)

Durch Hinzufügen weiterer Indizes und Summen lässt sich die Glei-
chung für ein neuronales Netzwerk mit einer beliebigen Anzahl an
Schichten erweitern. Da sich hierdurch kein neuer Erkenntnisgewinn
ergibt wird an dieser Stelle zur Wahrung der Übersichtlichkeit auf die
Erweiterung verzichtet.

Diese Gradienten werden für das zuvor beschriebene Gradientenab-
stiegsverfahren verwendet.

Bei einer hohen Varianz zwischen den Gradienten in aufeinanderfol-
genden Iterationen des Gradientenabstiegsverfahrens ist der Lernvorgang
nicht sehr zielgerichtet. Zur Umgehung dieses Problems wird der Aktua-
lisierungsschritt aus Gleichung 2.15 häufig um ein Momentum ergänzt.
Hierbei wird für den Aktualisierungsschritt nicht nur der in der aktuellen
Iteration berechnete Gradient verwendet, sondern eine Akkumulation
der vorherigen Gradienten mit exponentiell abfallender Gewichtung. Die
Aktualisierungsschrittweite ai in Iteration i wird definiert als:

ai = µai�1 � hrci C(ci) (2.38)

mit µ als Momentum-Hyperparameter. Um den exponentiellen Abfall
der Gewichtung vergangener Gradienten zu erreichen ist µ 2 [0, 1). Oft

47

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

wird µ = 0.9 als Wert für diesen Hyperparameter gewählt. Der Aktuali-
sierungsschritt in Gleichung 2.15 wird dann zur folgenden Formulierung
geändert:

ci+1 = ci + ai (2.39)

Rahmenbedingungen für den Entwurf neuronaler Netzwerke

Ähnlich wie bei der zuvor erläuterten Encodersteuerung für Videocodecs
gibt es auch für den Entwurf neuronaler Netzwerke Rahmenbedingungen,
innerhalb derer der Entwurf erfolgt. Dieser Rahmen wird durch die zur
Verfügung stehende Menge an Trainingsdaten, durch die vertretbare
Trainingsdauer, durch Grenzen für den Rechenaufwand der Inferenz
sowie durch den Speicherbedarf des Netzwerkes gesetzt.

Die Menge an verfügbaren Trainingsdaten ist für verschiedene Anwen-
dungen sehr unterschiedlich. Für manche Anwendungen gibt es sehr
viele Daten. Dieses gilt zum Beispiel für sehr stark beforschte Themen-
gebiete wie der Bildklassifikation oder für Anwendungen, in denen sich
synthetische Daten automatisiert erstellen lassen. In anderen Anwen-
dungsgebieten ist die Menge stark begrenzt. Das ist zum Beispiel der
Fall, wenn Daten händisch verarbeitet werden müssen bevor sie als Trai-
ningsdaten verwendbar sind. Für das Training großer Netzwerke werden
in der Regel sehr viele Daten benötigt. Das Training von neuronalen
Netzwerken mit sehr wenigen Trainingsbeispielen ist Gegenstand der
aktuellen Forschung [101].

Die Trainingsdauer für neuronale Netzwerke und insbesondere der
Rechenaufwand für die Optimierung der Hyperparameter kann erheblich
sein. So berichten Zoph und Le von einem Experiment [151], bei dem
zur Hyperparameter-Optimierung für mehrere Wochen auf 800 Grafik-
prozessoren, engl. Graphics Processing Unit (GPU), gleichzeitig gerechnet
wurde, um eine Verbesserung des Fehlers von 0,09% bei einer Beschleu-
nigung um einem Faktor von 1,05 gegenüber dem zuvor besten Modell
zu erreichen. In Abhängigkeit der zur Verfügung stehenden Ressourcen
kann der vertretbare Rechenaufwand variieren.

In der Literatur werden in der Regel höchstens Angaben zur An-
zahl an verwendeten GPUs oder Tensor Processing Unit (TPU)s sowie
der Trainingsdauer gemacht – beides lediglich für das final verwen-
dete Modell. Das Training findet typischerweise auf den Servern von
Cloud-Anbietern wie Google oder Amazon statt. Durch den Abgleich
der Preislisten zur Anmietung der Cloud-Rechenkapazitäten mit den
Trainingsdauer- und Ressourcenverwendungs-Angaben schätzen Sharir
et al. in [110] die finanziellen Kosten für das Training ab: Für verschiede-
ne Netzwerk-Architekturen aus dem Stand der Technik im Bereich der

48

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.3 konturdetektion

Sprachverarbeitung schätzen sie die Trainingskosten für einen einmali-
gen Durchlauf des Trainings auf Werte zwischen $2.500 (Netzwerk mit
110 Millionen Parametern) bis $80.000 (für 1,5 Milliarden Parameter, das
aktuell größte veröffentlichte Netzwerk). Unter der Berücksichtigung der
Tatsache, dass für Veröffentlichungen häufig nicht nur ein einmaliges
Training durchgeführt wird, sondern mehrere Architekturen ausprobiert
und Hyperparameter optimiert werden, kommen die Autoren inklusive
dieser versteckten Kosten auf Trainingskosten für die entsprechenden
Netzwerke zwischen $50.000 und $1.600.000.

Insbesondere für zeitkritische Anwendungen, zum Beispiele solche
mit einer Echtzeitanforderung, ist der Rechenaufwand für die Inferenz
relevant. Gegebenfalls kann es für manche Anwendungen nur möglich
sein, kleine Netzwerke mit vergleichsweise wenigen Rechenoperationen
zu entwerfen, da andernfalls keine Anwendbarkeit in Echtzeit mehr
möglich ist.

Für Anwendungen, die auf mobilen Endgeräten oder eingebetten Syste-
men ausgeführt werden, oder bei denen die trainierten Netzwerkmodelle
über mobile Datenverbindungen zu übertragen sind, wird die Dateigröße
des Modells relevant und kann ein begrenzender Faktor werden. Die Spei-
cherplatzreduktion für neuronale Netzwerke ist ebenfalls Gegenstand
der aktuellen Forschung [67].

2.3 konturdetektion

Das in Kapitel 3 vorgeschlagene Verfahren beruht auf der Modellierung
und Extrapolation von Konturen. Somit ist die Detektion von Konturen
ein notwendiger Vorverarbeitungsschritt.

Eine beispielhafte Darstellung eines eindimensionalen Kontursignals
ist in Abbildung 2.12 zusammen mit der ersten und zweiten Ableitung
des Signals zu sehen. Prinzipiell lassen sich Konturen als Maximum
der ersten Ableitung beziehungsweise als Nulldurchgang in der zweiten
Ableitung mit hinreichend großen Ausschlägen direkt davor und danach
bestimmen.

Für zweidimensionale Bilder I lässt sich der Gradient rI mit den
partiellen Ableitungen in x- und y-Richtung berechnen:

rI =

0

@
∂I
∂x
∂I
∂y

1

A (2.40)

Der Betrag |rI | des Gradienten berechnet sich wie folgt:

|rI | =

s✓
∂I
∂x

◆2
+

✓
∂I
∂y

◆2
(2.41)

49

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

Abbildung 2.12: Darstellung der ersten (Mitte) und zweiten (rechts) Ableitung
eines eindimensionalen Signals mit einer Kontur (links).

Durch Maximumsuche in dem Signal nach Gleichung 2.41 ergibt sich
die Position der Kontur. Eine entsprechende Berechnung für die zweite
Ableitung wird hier nicht näher ausgeführt aber ergibt sich analog.

In der Praxis ist diese Art der Konturdetektion jedoch nicht robust
genug für reale Bilder. Stattdessen wird in dieser Arbeit der Canny-
Konturdetektionsalgorithmus [12] verwendet, welcher im Folgenden nä-
her ausgeführt wird. Der Canny-Algorithmus besteht aus fünf Schritten.

Im ersten Schritt wird das Bildsignal mit einem Tiefpass in Form einer
Gauß-Funktion gefiltert. Durch die Filterung soll Rauschen, welches als
additiv, weiß und gauß-verteilt angenommen wird, entfernt werden. Das
quadratische Filter T mit einer Kantenlänge von a = 2k + 1 ist definiert
als

T = (hij) mit hij =
1

2ps2 e�
(i�(k+1))2+(j�(k+1))2

2s2 und i, j 2 [1, 2k + 1] (2.42)

Das gefilterte Bild ergibt sich durch Faltung zu

Ifilt = T ⇤ I (2.43)

Im zweiten Schritt werden die Bildgradienten mit dem Sobel-Operator
[112] bestimmt. Die Sobel-Operatoren für Konturen in x- und y-Richtung
sind wie folgt definiert:

KSobel,x =

0

BB@

1 0 �1

2 0 �2

1 0 �1

1

CCA und KSobel,y =

0

BB@

1 2 1

0 0 0

�1 �2 �1

1

CCA (2.44)

Mit diesem Operator findet in Konturrichtung eine Annäherung des
Gradienten statt, während orthogonal zur Konturrichtung das Signal
geglättet wird. Mittels des Sobel-Operators werden die Gradientenbilder

50

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

2.3 konturdetektion

in beiden Richtungen, Gx und Gy, aus dem im ersten Schritt erzeugten
gefilterten Bild berechnet:

Gx = KSobel,x ⇤ Ifilt und Gy = KSobel,y ⇤ Ifilt (2.45)

Aus den beiden Gradientenbildern wird durch jeweils punktweise Be-
rechnung für jeden Abtastwert der Betrag des Gradienten G sowie die
Richtung des Gradienten F bestimmt:

G =
q

G2
x + G2

y (2.46)

F = atan(Gy, Gx) (2.47)

Im dritten Schritt wird das Betragsgradientenbild G aus Gleichung 2.46
mittels Non-maximum Suppresion (NMS), der Unterdrückung von Werten,
die kein Maximum sind, ausgedünnt. In Folge der Ausdünnung wird
das Skelett der Konturen, Gskel, ermittelt. Hierfür wird der Wert jedes
Pixels in G mit den Werten n1 und n2 der beiden benachbarten Pixel in
Richtung und entgegen des Gradienten (F(x, y)) an der entsprechenden
Stelle verglichen. Nur wenn G(x, y) größer als die beiden Nachbarwerte
ist, bleibt der Wert erhalten. Andernfalls wird der Wert auf Null gesetzt.
Also:

Gskel(x, y) =

8
<

:
G(x, y) wenn G(x, y) > n1, n2

0 sonst.
(2.48)

Die verbleibenden Konturpixel in Gskel werden im vierten Schritt mit-
tels zweier Grenzwerte, t1 und t2 mit t1 < t2, in starke Konturpixel,
schwache Konturpixel und keine Konturpixel klassifiziert. Die Matrix
mit den Klassifikationsergebnissen K berechnet sich gemäß

K(x, y) =

8
>>><

>>>:

starker Konturpixel wenn Gskel(x, y) > t2

schwacher Konturpixel wenn t1 < Gskel(x, y) < t2

kein Konturpixel sonst.
(2.49)

Die als starke Konturpixel klassifizierten Pixel werden als auf jeden
Fall zu einer Kontur gehörend betrachtet. Über die als schwache Kontur-
pixel klassifizierten Pixel wird im fünften Schritt mittels einer Hysterese
entschieden. Ausgehend von allen starken Konturpixeln werden in bei-
de Richtungen gehend schwache Konturpixel als zur Kontur gehörend

51

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

grundlagen

betrachtet, solange sie mit starken Konturpixel oder mit als zur Kontur ge-
hörend entschiedenen schwachen Konturpixeln verbunden sind. Die fina-
le Matrix mit einem binären Konturbild nach der Canny-Konturdetektion
wird als ICanny bezeichnet.

Für CoMIC v1 wurde ermittelt, dass durch die Verwendung von aus-
gefeilteren Konturdetektionsalgorithmen, zum Beispiel [22], ein minima-
ler zusätzlicher Codierungsgewinn von 0,3% erzielt werden kann. Da
dieser zusätzliche Codierungsgewinn jedoch mit einer Erhöhung der
Rechenkomplexität des gesamten Verfahrens um einen Faktor von 90
einhergeht, erfolgt eine Beschränkung auf den schneller berechenbaren
Canny-Algorithmus.

52

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3
V E R FA H R E N Z U R M O D E L L I E R U N G V O N K O N T U R E N

Ausgehend von einem zu codierenden Block, mit dem zugehörigen ihn
umgebenden Referenzbereich als Prädiktionsgrundlage, wird in diesem
Kapitel die Modellierung und Extrapolation der Konturen mit dem vor-
geschlagenen stochastischem Konturmodell beschrieben. Außer Betracht
gelassen wird hierbei die Partitionierung des Bildes in Blöcke. Im wei-
teren Verlauf der Arbeit werden im Ergebniskapitel (Kapitel 5) zwei
Implementierungen betrachtet: Zum einen der selbstentwickelte CoMIC-
Codec sowie der Videocodec HEVC. In ersterem werden lediglich Blöcke
mit stets der gleichen, zu Beginn der Codierung festgelegten, Blockgrö-
ße codiert während in letzterem durch die ausgefeiltere Partitionierung
Blöcke in verschiedenen Größen entstehen. Im Rest dieses Kapitels wer-
den die Verfahren unter Annahme quadratischer Blöcke diskutiert und
visualisiert. Dieses stellt jedoch keine Einschränkung der beschriebenen
Methoden dar.

Um die Konsistenz mit den eigenen Vorarbeiten [65, 69] zu wahren
wird der Referenzbereich so wie in Abbildung 3.1 visualisiert gewählt:
Der Referenzbereich befindet sich in vier Bildbereichen links, oben, links-
oben sowie rechts-oben vom aktuell codierten Block. Die vier Bildbereiche,
die zusammen den Referenzbereich ergeben, sind jeweils so groß wie
der aktuell zu codierende Block. Da ein kausales Codierungssystem
betrachtet wird, ist der Bereich rechts neben dem aktuellen Block nicht
referenzierbar.

3.1 konturdetektion

Die Konturdetektion im Rahmen dieser Arbeit unterscheidet sich nicht
im Vergleich zu den eigenen Vorarbeiten [65, 69]. Sie wird nachfolgend
kurz zusammengefasst, damit die vorliegende Arbeit in sich geschlossen
ist. Die Konturdetektion wird in den Bereichen des Referenzbereichs
durchgeführt, in denen die Abtastwerte verfügbar ist. In Abhängigkeit
der gewählten Partitionierung und an den Rändern des Bildes kann es
zu Einschränkungen kommen.

Der im vorherigen Kapitel beschriebene Canny-Algorithmus [12] zur
Konturdetektion wird auf den Referenzbereich angewendet. Der Canny-

53

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

zu
codierender

Block

Referenzbereich

Abbildung 3.1: Darstellung des Referenzbereichs. Die vier Blöcke des Referenzbe-
reichs sind genauso groß wie der zu codierende Block.

zu
codierender

Block

Kontur 1 Kontur 2
Kontur 3

Kontur 4

Abbildung 3.2: Konturen im Referenzbereich. Lediglich die Konturen, die an den
zu codierenden Block angrenzen, werden für die Prädiktion ver-
wendet. Im Beispiel handelt es sich um die Konturen 1 und 2.

54

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.1 konturdetektion

Algorithmus hat zwei Parameter, mit denen die Klassifizierung der Punk-
te1 in starke und schwache Konturpunkte kontrolliert wird. Da die be-
trachteten Videosignale potentiell sehr unterschiedliche Signalcharakte-
ristiken haben können, ist es nicht zielführend, globale Werte für diese
Parameter festzulegen. Stattdessen werden die Parameter signaladaptiv
bestimmt. Wie bereits in den eigenen Vorarbeiten [65, 69] und gemäß der
Arbeit von Fang et al. [26] wird hierfür die Otsu-Methode [96] eingesetzt.
Das Ergebnis des Canny-Algorithmus ist ein binäres Konturbild, in dem
alle zu Konturen gehörenden Punkte markiert sind. Ein Beispiel ist in
Abbildung 3.2 dargestellt. Mit dem von Suzuki und Be vorgeschlagenen
Verfahren aus [117] werden zusammenhängende Konturpunkte in dem
binären Konturbild detektiert. Zusammenhängende Konturpunkte ge-
hören zu der selben Kontur, nicht zusammenhängende Konturpunkte
gehören folglich zu unterschiedlichen Konturen. Durch das gewählte
Verfahren kann es passieren, dass einige Punkte mehrfach einer Kontur
hinzugefügt werden. Solche redundant vorkommenden Punkte werden
bereinigt.

Das Ergebnis der Konturdetektion sind die x- und y-Koordinaten der
Kontur. Für eine Kontur mit n Konturpixeln pi = (xi, yi) mit i = 1, . . . , n
sei:

x =

2

664

x1
...

xn

3

775 2 Rn⇥1, y =

2

664

y1
...

yn

3

775 2 Rn⇥1. (3.1)

Für jede Kontur wird geprüft, ob sie an den zu codierenden Block
angrenzt. Nur diese Konturen werden wie in Abbildung 3.3 dargestellt
für die nachfolgend beschriebene Prädiktion berücksichtigt. Des Weiteren
werden nur Konturen mit mehr als drei Pixeln betrachtet. Dieser Wert
hat sich in Vorarbeiten als sinnvolle Abwägung zwischen einer hohen
Anzahl an verwendeten Konturen und der notwendigen Robustheit der
Konturextrapolation erwiesen.

Bei der Modellierung der Konturen wird unterschieden je nachdem,
ob die Konturen von links oder von oben auf den zu prädizierenden
Block treffen. Bei Konturen, die von links kommend auf den aktuell zu
codierenden Block treffen, wird die horizontale Koordinate x als unab-
hängige Variable und die vertikale Koordinate y als abhängige Variable
betrachtet. Für von oben kommend auf den aktuell zu codierenden Block
treffende Konturen ist es umgekehrt. Ohne hiermit einhergehende Ein-

1 Der Begriff Punkt wird zur Abgrenzung von den zuvor definierten Pixeln gewählt. In der
verwendeten Definition besteht ein Punkt aus zwei örtlichen Koordinaten und einem reprä-
sentierten Wert. Bei diesem Wert kann es sich um einen Abtastwert des Bildes, einen binären
Wert einer Konturkarte oder einen Gradientenwert handeln.

55

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

zu
codierender

Block

Kontur 1 Kontur 2

Abbildung 3.3: Relevante Konturen im Referenzbereich. Lediglich die Konturen,
die an den zu codierenden Block angrenzen, werden für die Prä-
diktion verwendet.

schränkungen wird im Folgenden lediglich der Fall betrachtet, dass x
die unabhängige Variable ist. Sämtliche Überlegungen und Herleitungen
sind analog auf den anderen Fall übertragbar.

3.2 konturglättung

Durch den gewählten Konturdetektionsalgorithmis sind die Konturpixel
bis hierhin nur mit Ganz-Pel-Genauigkeit bekannt. Diese Kontur wird
als diskrete Kontur bezeichnet. Hierdurch kommt es zu Instabilitäten
bei der Modellierung der Kontur. Um dieses zu vermeiden wird die
Kontur zunächst durch eine kontinuierliche Funktion angenähert. Dieses
kann auch als Glättung der Kontur betrachtet werden. Dieses passt auch
dazu, dass die Kontur in der Realität einen kontinuierlichen Verlauf hatte,
welcher nun durch diskrete Koordinaten angenähert wurde.

Für die Annäherung der Kontur werden jeweils vier Funktionen (Poly-
nome nullten, ersten und zweiten Grades, sowie eine Exponentialfunk-
tion) mit der Methode der kleinsten Quadrate bezüglich der diskreten
Kontur optimiert. Die Funktion mit dem kleinsten mittleren quadrati-
schen Fehler wird ausgewählt. Der mittlere quadratische Fehler wird
berechnet gemäß:

MSEGlättung =
1
n

n

Â
i=1

(yi � eyi)
2 (3.2)

für die durch die kontinuierliche Funktion angenäherten Werte eyi.
Hierdurch sind die Koordinaten der Konturpixel nun mit Sub-Pel-

Genauigkeit gegeben. Diese Kontur-Repräsentation wird als kontinuierli-
che Kontur bezeichnet.

56

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.3 modellierung der kontur

Die beschriebene Annäherung ist nur sinnvoll, wenn der hierdurch
entstehende Fehler nicht zu groß wird. Deshalb wird die Annäherung
nur verwendet, wenn der mittlere quadratische Fehler zwischen der kon-
tinuierlichen und der diskreten Kontur kleiner als 1 Pel ist. In diesem Fall
ist die Annäherung fast exakt, da der Fehler im Mittel der Genauigkeit
der diskreten Kontur entspricht. Für den Fall, dass die Approximation
erfolgreich ist, wird im weiteren Verlauf ein rauschfreier Gauß-Prozess
modelliert. Falls die Approximation nicht erfolgreich ist, wird die Annah-
me getroffen, dass die diskrete Kontur durch additives, weißes Rauschen
aus der kontinuierlichen Kontur entstanden ist, und der Gauß-Prozess
entsprechend für eine rauschbehaftete Kontur formuliert.

3.3 modellierung der kontur

Der Modellierung der Kontur wird die Prämisse zugrunde gelegt, dass
es sich bei den Konturpixeln um Beobachtungen eines stochastischen
Prozesses handelt. Ferner wird angenommen, dass die Beobachtungen
normalverteilt sind. Für die Modellierung wird ein Gauß-Prozess gewählt.
Die Nomenklatur für die Beschreibung der Gauß-Prozesse folgt dem
Lehrbuch [100] von Rasmussen und Williams.

Zunächst wird der sogenannte A-Priori-Gauß-Prozess, kurz Prior, formu-
liert. In den Prior gehen die beim Entwurf des Gauß-Prozesses getroffe-
nen Annahmen über den zugrundeliegenden Prozess, hier also die Kontu-
ren, in Form einer Erwartungswertfunktion und einer Kovarianzfunktion
ein. Der Prior ist somit unabhängig von den beobachteten Konturen. Die
Wahl von einer geeigneten Erwartungswertfunktion und einer geeigneten
Kovarianzfunktion bilden folglich den Kern des Prior-Entwurfs. Die typi-
scherweise gewählten Funktionen haben in der Regel Hyperparameter.
Diese bleiben zunächst für den Prior unbestimmt. Basierend auf dem
Prior kann für eine konkrete detektierte Kontur der sogenannte Posterior-
Gauß-Prozess, kurz Posterior, bestimmt werden. Hierfür wird der Prior
basierend auf den beobachteten Konturpunkten angepasst. Zu diesem
Zweck werden die Werte der Hyperparameter der Erwartungswertfunk-
tion sowie der Kovarianzfunktion optimiert. Das Ziel der Optimierung
ist das Erreichen einer größtmöglichen Übereinstimmung zwischen den
aus dem Posterior hervorgehenden Beobachtungen und den tatsächlich
beobachteten Konturpunkten. In den nachfolgenden Abschnitten werden
die Bestimmung des Priors und des Posteriors genauer betrachtet.

57

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

3.4 a-priori-gauß-prozess

Die Beobachtungen b des zu modellierenden Prozesses seien Kontur-
punkte:

b = (x, y) (3.3)

Die Auswertung des Gauß-Prozesses an den x-Werten der detektier-
ten Kontur liefert die Prior-Auswertungen f. Diese Prior-Auswertungen
setzen sich aus den rauschfreien Auswertungen f und unkorreliertem
weißen Rauschen e mit der Varianz s2

n zusammen:

f = f + e. (3.4)

Für einen rauschfreien Gauß-Prozess ergeben sich die Beobachtungen zu

eb = (x, f), (3.5)

da s2
n = 0 gesetzt wird. Für einen rauschbehafteten Gauß-Prozess ergibt

sich:
eb = (x, f) mit f ⇠ N

⇣
0, K (x, x) + s2

nI
⌘

. (3.6)

Hierbei ist K die Kovarianzmatrix, die sich aus x ergibt, und I die
Einheitsmatrix.

Aus Gleichung 3.6 lassen sich zwei Beobachtungen ableiten: Die Aus-
wertungen f an den Stellen x sind normalverteilt und sie hängen von den
Eingaben x ab. Aufgrund dessen wird f als bedingte Zufallsvariable f|x
formuliert. Nachfolgend wird der rauschbehaftete Gauß-Prozess betrach-
tet. Der rauschfreie Fall lässt sich durch Setzen von s2

n = 0 herleiten.
Rasmussen und Williams [100] folgend wird, wie bereits in Glei-

chung 3.6 angedeutet, die Erwartungswertfunktion des Priors zu Null
gesetzt. Dieses stellt keine weitreichende Einschränkung dar, sondern
dient vielmehr der vereinfachten Notation, da sich keine ebensolche Re-
striktion für den im weiteren Verlauf der Ausführungen betrachteten
Posterior ergibt.

Die Kovarianzfunktion, welche auch als Kernel bezeichnet wird, ist
für den Prior von weitaus größerer Bedeutung als die Erwartungswert-
funktion. Der sogenannte Squared Exponential Kernel, kSE(xp, xq), ist der
Defacto-Standard für Gauß-Prozess-Kovarianzfunktionen [25]. Deshalb
wird diese Kovarianzfunktion auch hier verwendet. Die Definition lautet:

kSE(xp, xq) = ⇣
2e�

(xp�xq)2

2⇠2 (3.7)

Die Variable ⇣ ist hierbei ein Skalierungsfaktor. Er wird quadriert notiert,
da er auch als Varianz interpretiert wird, die angibt, wie die mittlere
Abweichung der zu modellierenden Funktion von ihrem Mittelwert ist.

58

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.5 posterior-gauß-prozess

Der Längenskalierungsfaktor ⇠ beschreibt die zu erwartende Krümmung
der zu modellierenden Kontur.

Die gewählte Kovarianzfunktion bietet den Vorteil, dass sie beliebig oft
differenzierbar ist und damit einen glatten Verlauf liefert. Diese Eigen-
schaft passt dazu, dass für die beobachteten Konturen in vielen Fällen
keine Knicke innerhalb der betrachteten Blockgrößen erwartet werden.
Dieses geht einher mit den vielfältigen Partitionierungsoptionen, die bei
der Codierung in einem Videocodec möglich sind.

Alternativ könnte auch der sogenannte Rational Quadratic Kernel ver-
wendet werden. Hierbei handelt es sich um eine Verallgemeinerung des
Squared Exponential Kernels mit einem zusätzlichen Längenskalierungs-
faktor als Hyperparameter. Durch den zusätzlichen Hyperparameter
ließen sich Daten, die entlang mehrerer Längenskalen variieren, besser
modellieren. Dieses wird jedoch ebenfalls aufgrund der Partitionierungs-
algorithmen nicht erwartet.

Ein Nachteil aufgrund der gewählten Kovarianzfunktion ergibt sich,
falls Knicke in der modellierten Kontur vorkommen. In diesem Fall
passt das gewählte Modell nicht zu den zu modellierenden Daten. In
der eigenen Vorarbeit [69] wurde ein Lösungsansatz für dieses Problem
vorgeschlagen. Da der Fall jedoch nur selten eintritt, wird er hier nicht
weiter betrachtet.

Die gewählte Kovarianzfunktion führt zu einer symmetrischen Ko-
varianzmatrix. Deshalb lässt sich der Rechenaufwand der nachfolgend
beschriebenen Posterior-Bestimmung durch eine Cholesky-Zerlegung
verringern.

3.5 posterior-gauß-prozess

Der Posterior ergibt sich aus dem Prior durch Optimierung der Hyper-
parameter Q = (⇣, ⇠) der Kovarianzfunktion. Die Startwerte der Hy-
perparameter des Gauß-Prozesses seien Q0. Das Optimierungsziel ist
hierbei, die Übereinstimmung der Gauß-Prozess-Auswertungen f mit
den tatsächlichen Werten y der Konturpixel an den Stellen x zu ma-
ximieren. Als Gütekriterium wird die Likelihood verwendet. Auf den
Anwendungsfall der Konturmodellierung bezogen handelt es sich um
die Wahrscheinlichkeit, dass die Beobachtungen f|x des Gauß-Prozesses,
die Werte y der Konturpixel haben. Die Formulierung erfolgt über die
Verbundwahrscheinlichkeit P(y|f, x) der bedingten Zufallsvariable y|f
und x.

Die Wahrscheinlichkeit, dass y unter der Bedingung x beobachtet wird,
ergibt sich als Randwahrscheinlichkeit, engl. Marginal Likelihood, von y
über alle f. Hierbei berechnet sich die Wahrscheinlichkeitsdichte aus dem

59

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

Produkt der Prior-Wahrscheinlichkeitsdichte, p(f|x), und der Likelihood-
Wahrscheinlichkeitsdichte, p(y|f, x):

p(y|x) = p(y|f, x) · p(f|x). (3.8)

Durch Integration lässt sich aus der Wahrscheinlichkeitsdichte die Wahr-
scheinlichkeit bestimmen:

P(y|x) =
Z

p(y|f, x) · p(f|x)df. (3.9)

Für die Wahrscheinlichkeitsdichtefunktionen wird die n-dimensionale
(vgl. Gleichung 3.1) gauß-förmige Wahrscheinlichkeitsdichte eingesetzt.
Diese ist wie folgt definiert:

px(x) =
1p

2pn|S|
· e�

1
2 (x�µ)S�1(x�µ) (3.10)

In Gleichung 3.10 steht S für die Kovarianzmatrix, | · | für den Determi-
natenoperator und µ für den Erwartungswertvektor.

Folglich wird die Wahrscheinlichkeit P(y|x) maximal, wenn die Expo-
nenten der Wahrscheinlichkeitsdichten gemäß Gleichung 3.10 maximal
werden. Für diese Maximierung wird durch Logarithmieren unter An-
nahme von µ = 0 und S = K + s2

nI die Log-Marginal-Likelihood berechnet:

ln (p (y|x)) = ln

1p

2pn|S|
· e�

1
2 yT S�1y

!
(3.11)

= ln

1p

2pn|S|

!
�

1
2

yTS�1y (3.12)

= �
n
2

ln (2p)�
1
2

ln (|S|)�
1
2

yTS�1y (3.13)

Der erste Term in Gleichung 3.13 ist eine Konstante, der zweite Term
wirkt über die Hyperparameter der Kovarianzfunktion regularisierend
auf die Modellkomplexität und der dritte Term beschreibt die Güte der
Anpassung des Gauß-Prozesses an die detektierte Kontur [100].

Da S positiv-definit und symmetrisch ist, können S�1 und |S| mit der
in Gleichung 3.14 notierten Cholesky-Zerlegung berechnet werden:

L = cholesky(S), (3.14)

|S| = ’
i

Lii, (3.15)

S�1 =
⇣

L�1
⌘T

· L�1. (3.16)

60

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.5 posterior-gauß-prozess

Da die Maximierung von ln (p (y|x)) unter Annahme konstanter y
und x erfolgt, wird zur besseren Notation die folgende Umformulierung
vorgenommen:

ln (p (y|x)) ! ln
⇣

py|x (Q)
⌘

. (3.17)

Für die Maximierung werden die Hyperparameter Q gesucht, bei denen
die erste Ableitung der Log-Marginal-Likelihood Null ergibt:

d
dQ

ln
⇣

py|x (Q)
⌘

!
= 0. (3.18)

Wegen des Logarithmus folgt hieraus ohne weitere Rechnung:

d
dQ

ln
⇣

py|x (Q)
⌘
=

1
py|x (Q)

. (3.19)

Die Nullstellensuche erfolgt mit dem Newton-Raphson-Verfahren, einem
iterativen Ansatz zur Nullstellensuche. Dieses Verfahren ist für stetig-
differenzierbare Funktionen anwendbar. Durch die gewählten Wahr-
scheinlichkeitsdichte- und Kovarianzfunktionen ist dieses Kriterium er-
füllt. Durch die Maximierung werden die Hyperparameterwerte Qmax
gefunden, bei denen die Log-Marginal-Likelihood maximal wird, die
Daten also am Besten modelliert werden können.

Durch das Einsetzen von Qmax = (⇣max, ⇠max) in Gleichung 3.7 lassen
sich die Posterior-Kovarianzmatrizen für später noch genauer spezifi-
zierte Zufallsvariablen a und b berechnen. Sie werden mit Kpost(a, b)
(rauschfrei) und Spost(a, b) = Kpost(a, b) + s2

nI (rauschbehaftet) bezeich-
net.

Basierend auf dem so auf die bekannten Konturpunkte optimierten
Posterior soll nun die Erstellung einer Prädiktion hergeleitet werden.
Gauß-Prozesse gehen mit der Erfüllung der sogenannten Konsistenz-
Eigenschaft einher [100]: Wenn ein Gauß-Prozess beispielsweise (y1, y2) ⇠
N (µ, S) definiert, dann definiert er automatisch auch für eine Teilmenge
der Variablen y1 ⇠ N (µ1, S11), wobei S11 die entsprechende Teilmatrix
von S ist. Für die Konturmodellierung entsprechen die Beobachtungen
für die Trainingspunkte y1 und die Beobachtungen für die zu prädizie-
renden Punkte y2.

Mit dieser Erkenntnis lässt sich die Prädiktion für den Fall rauschfreier
Beobachtungen als multivariate Gauß-Verteilung betrachten. Hierbei wird
für den aus den Beobachtungen für die Trainingspunkte sowie die zu
prädizierenden Beobachtungen der folgende Zufallsvektor formuliert:

"
f
f⇤

#
⇠ N

0,

"
Kpost(x, x) Kpost(x, x⇤)
Kpost(x⇤, x) Kpost(x⇤, x⇤)

#!
, (3.20)

mit

61

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

x 2 Rn: n Trainingspunkte

x⇤ 2 Rn⇤ : n⇤ zu prädizierende Punkte

f 2 Rn: n Beobachtungen für die Trainingspunkte

f⇤ 2 Rn⇤ : n⇤ Beobachtungen für die zu prädizierenden Punkte

Kovarianzmatrizen, die aus den Kombinationen von x und x⇤ entstehen:
Kpost(x, x) 2 Rn⇥n,
Kpost(x, x⇤) 2 Rn⇥n⇤ ,
Kpost(x⇤, x) 2 Rn⇤⇥n,
Kpost(x⇤, x⇤) 2 Rn⇤⇥n⇤ : .

In Gleichung 3.20 ist mit f bereits ein Teil des Zufallsvektors bekannt.
Der noch unbekannte Teil des Zufallsvektors, also f⇤, lässt sich berechnen,
indem die bedingte Verteilung von f⇤ gegeben x, x⇤, f berechnet2 wird:

f⇤|x, x⇤, f ⇠ N

✓
Kpost(x⇤, x)Kpost(x, x)�1f,

Kpost(x⇤, x⇤)�

Kpost(x⇤, x)Kpost(x, x)�1Kpost(x, x⇤)
◆

.

(3.21)

Der rauschbehaftete Fall lässt sich analog hierzu herleiten. Die nen-
nenswerten Änderungen im Vergleich zu den Gleichungen 3.20 und 3.21
sind, dass zum einen die tatsächlichen y-Werte der Konturpunkte anstatt
der durch den Gauß-Prozess beobachteten Punkte f verwendet werden3

und zum anderen im linken oberen Teil der Kovarianzmatrix für die
Einträge auf der Hauptdiagonalen unkorreliertes Rauschen addiert wird.

Es ergeben sich:
"

y
f⇤

#
⇠ N

0,

"
Kpost(x, x) + s2

nI Kpost(x, x⇤)
Kpost(x⇤, x) Kpost(x⇤, x⇤)

#!
(3.22)

2 Aus [100] von Rasmussen und von Mises in [83] folgend:
Es sei: "

x

y

#
⇠ N

 "
µx

µy

#
,

"
A C

CT B)

#!
.

Dann sind die bedingten Wahrscheinlichkeiten von x gegeben y und umgekehrt:

x|y ⇠ N
�
µx + CB�1 �y � µy

�
, A � CB�1CT� ,

y|x ⇠ N
�
µy + CT A�1 (x � µx) , B � CT A�1C

�
.

3 Siehe hierzu auch den Abschnitt 3.2 ab Seite 56.

62

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.6 konturextrapolation

und

f⇤|x, x⇤, y ⇠ N

✓
Kpost(x⇤, x)

h
Kpost(x, x) + s2

nI
i�1

y,

Kpost(x⇤, x⇤)�

Kpost(x⇤, x)
h
Kpost(x, x) + s2

nI
i�1

Kpost(x, x⇤)
◆

.

(3.23)

Für den Fall, das nur ein einzelner Konturpunkt gleichzeitig prädiziert
wird4, sowie mit der verkürzten Schreibweise Spost = Kpost(x, x) + s2

nI ,
ergibt sich für die prädizierende Beobachtung f⇤ an der Stelle xp:

f⇤ ⇠ N

✓
kpost(xp, x)S�1

posty,

kpost(xp, xp)� kpost(xp, x)S�1
postkpost(x, xp)

◆
,

(3.24)

mit den aus den detektierten Konturpunkten gewonnenen Trainingsdaten
x, y sowie xp als x-Koordinate für die Vorhersage f⇤.

In Gleichung 3.24, wie auch in den Gleichungen 3.21 und 3.23, ist
bemerkenswert, dass zum einen der Mittelwert der Gauß-Verteilung eine
lineare Funktion der y-Werte der detektierten Kontur ist und zum ande-
ren die Unsicherheit der Prädiktion nur von den Kovarianzen zwischen
allen x-Werten (Trainingspunkte und zu prädizierende Punkte) abhängt
und unabhängig von den prädizierten y-Werten ist.

3.6 konturextrapolation

Um nun eine mit einem Posterior modellierte Kontur zu extrapolieren,
werden Prädiktionen yp an den Stellen xp mittels des auf den bekannten
Konturpixeln optimierten Gauß-Prozesses erzeugt. xp sind hierbei die
x-Koordinaten für die zu extrapolierende Kontur. Deshalb werden alle x-
Werte des aktuell codierten Bereichs im lokalen Koordinatensystem, also
s  x < 2s bei einer Blockgröße s, eingesetzt. Die y-Koordinaten werden
jeweils durch Auswertung des Posterior-Erwartungswerts ermittelt:

yp = mpost(xp) = kpost(xp, x)S�1y. (3.25)

Die prädizierten Konturpunkte sind dann p = (xp, yp). Es erfolgt eine
Rundung auf Ganz-Pel-Genauigkeit.

4 Dieser Fall entspricht der für Kapitel 5 genutzten Implementierung des vorgeschlagenen
Verfahrens.

63

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

extrapolierter
Verlauf

tatsächlicher
Verlauf

95% Konfidenzintervall
detektierte Kontur

Abbildung 3.4: Konturextrapolation mit 95%-Konfidenzintervallen (yp ± 1.96 · sp)

An dieser Stelle ließe sich ermitteln, ob die prädizierten Konturpunkte
innerhalb des aktuell codierten Blockes liegen, also

s  yp < 2s (3.26)

genügen. Aus Gründen einer geordneten Software-Architektur ist es je-
doch erstrebenswert, dass das vorgeschlagene Konturmodell nicht nur
mit dem in Kapitel 4 vorgeschlagenen Verfahren zur Abtastwertprädik-
tion mit neuronalen Netzwerken harmoniert, sondern auch vollstän-
dig kompatibel zu dem in der eigenen Vorarbeit [69] vorgeschlagenen
Along-contour-Verfahren zur Abtastwertprädiktion ist. Da in letzterem die
extrapolierte Kontur entlang der durch sie geschnittenen Blockgrenze
verschoben wird, können eigentlich außerhalb des aktuellen Blockes lie-
gende Konturpixel in diesen hineinverschoben werden. Folglich wird die
genannte Prüfung im nachfolgenden Kapitel 4 im Rahmen der Erzeugung
der Eingangsdaten für das neuronale Netzwerk diskutiert werden.

Die Unsicherheit der Prädiktion lässt sich über die Varianz beziehungs-
weise Standardabweichung berechnen:

s2
p = kposterior(xp, xp), (3.27)

sp =
q

s2
p . (3.28)

Ein Beispiel für die Konturextrapolation ist in Abbildung 3.4 visualisiert.
Hierbei ist neben dem extrapolierten und dem tatsächlichen Konturver-
lauf die Konfidenz in der Extrapolation mit 95%-Konfidenzintervallen
(yp ± 1.96 · sp) dargestellt.

Ebenfalls im nachfolgenden Kapitel wird beschrieben werden, wie aus
der Varianz ein zusätzlicher Kanal für die Eingangsdaten des neuronalen
Netzwerks erzeugt wird.

64

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

3.7 einbettung in das gesamtsystem

Referenz-
bereich

Kontur-
detektion

Polynomielles
Konturmodell

(Vorarbeit)

Stochastisches
Konturmodell

Mode-
auswahl

Along-contour
Abtastwert-
prädiktion
(Vorarbeit)

Abtastwert-
prädiktion

mit neuronalen
Netzwerken

Abbildung 3.5: Einbettung der entwickelten Verfahren in das Gesamtsystem: Die
im Rahmen dieser Arbeit entwickelten Verfahren zur Konturmo-
dellierung und Abtastwertprädiktion werden so entworfen, dass
sie unter Wahrung der vollständigen Kompatibilität mit dem je-
weils entsprechenden Verfahren aus den Vorarbeiten getauscht
werden können. Hierdurch kann der Mehrwert durch die in dieser
Arbeit vorgeschlagenen Verfahren ermittelt werden.

3.7 einbettung in das gesamtsystem

Als Abschluss dieses Kapitels wird erläutert, wie sich das vorgeschlagene
Verfahren zur Modellierung von Konturen in das Gesamtsystem CoMIC
einordnet. Die Einordnung wird anhand von Abbildung 3.5 erläutert.
Das Gesamtsystem umfasst eine Verkettung von mehreren Verfahren. Die
Konturdetektion steht in jedem Fall zu Beginn der Verarbeitung. Der Rest
der Verfahrenskette ist zweigeteilt in die Konturmodellierung und die
Abtastwertprädiktion. Diese Teilung folgt der bereits in Kapitel 1 näher
begründeten Prämisse, dass die Konturmodellierung geeignet ist, um die
globalen Eigenschaften des Signals, beispielsweise Objektformen, gut zu
erfassen, während die auf lokalen Signaleigenschaften aufbauende Abtast-
wertprädiktion gut für die Verarbeitung von lokalen Signaleigenschaften
wie Farbverläufen ist.

Für jeden dieser beiden Blöcke wird im Rahmen dieser Arbeit ein
neues Verfahren vorgeschlagen. Hierbei ist das vorgeschlagene Verfah-
ren jeweils eine Alternative zu dem entsprechenden Verfahren aus den
eigenen Vorarbeiten [65, 69]. Das in diesem Kapitel vorgeschlagene sto-
chastische Konturmodell bietet eine Alternative zu dem polynomiellen
Konturmodell. Das im nächsten Kapitel vorgeschlagene Verfahren zur Ab-
tastwertprädiktion mit neuronalen Netzwerken lässt sich als Alternative
zum Along-contour-Verfahren einsetzen.

Die System-Architektur — und damit einhergehend auch die das Sys-
tem implementierende Software-Architektur — ist so entworfen, dass für
beide Teile der Verfahrenskette das Verfahren nach Belieben durch die
beiden Schalter in Abbildung 3.5 gewählt werden kann und unabhängig
von der Wahl die Module kompatibel zueinander sind. Die Ausgabe

65

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur modellierung von konturen

der Konturmodellierung, und damit die an der Schnittstelle zwischen
Konturmodellierung und Abtastwertprädiktion weitergegebenen Infor-
mationen, sind pro modellierter Kontur der Schnittpunkt der Kontur mit
der Blockgrenze des aktuell codierten Blocks, der Verlauf der extrapolier-
ten Kontur, die Zuordnung von unabhängiger und abhängiger Variable
zu x und y sowie die Konfidenz der Extrapolation. Letztere steht nur für
das stochastische Konturmodell zur Verfügung.

66

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4
V E R FA H R E N Z U R A B TA S T W E RT P R Ä D I K T I O N
M I T T E L S M A S C H I N E L L E N L E R N E N S

In diesem Kapitel wird das vorgeschlagene Verfahren zur Abtastwerprä-
diktion mittels maschinellen Lernens beschrieben. Nach einer kurzen
Einordnung in das Gesamtsystem wird die für das Training der neu-
ronalen Netzwerke verwendete Datenbasis erläutert. In den zentralen
Abschnitten des Kapitels werden die verwendeten Architekturen sowie
das Trainingsverfahren diskutiert.

4.1 einordnung in das gesamtsystem

Die Eingangssignale für das in diesem Kapitel beschriebene Verfahren
sind die Abtastwerte des Referenzbereichs und pro Kontur die Ausga-
ben der Konturextrapolation, also der Schnittpunkt der Kontur mit dem
zu codierenden Block, die Zuordnung unabhängiger und abhängiger
Variablen, der Verlauf der extrapolierten Kontur sowie die zugehörige
Konfidenz in die Extrapolation. In Abhängigkeit des gewählten Kon-
turmodellierungsverfahrens (vgl. Abbildung 3.5) ist das letztgenannte
Eingangssignal für polynomiell modellierte Konturen nicht verfügbar.
Das Ergebnis des vorgeschlagenen Verfahrens sind die prädizierten Ab-
tastwerte für den zu codierenden Block.

4.2 datenbasis

Die richtige Wahl von Trainingsdaten ist von entscheidender Bedeutung
für den Erfolg des Trainings neuronaler Netzwerke. Es ist erforderlich,
dass die Anzahl an Beispielen in den Trainingsdaten hoch genug ist,
da Netzwerke in der Regel viele zu trainierende Parameter in ihrer
Konfiguration haben. Des Weiteren müssen die Trainingsdaten vielfältig
genug sein, um eine gute Generalisierung zu ermöglichen. Auch müssen
die Daten frei von Artefakten sein, die das Training behindern können
und zu dem Erlernen von irrelevanten Merkmalen führen.

Im Rahmen dieser Arbeit wird die Raw Image Dataset (RAISE)-Datenbank
[19] verwendet. Diese Datenbank beinhaltet Fotografien, die mit verschie-
denen Kameras aufgenommen wurden, und Auflösungen von 3008 ⇥

67

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

Abbildung 4.1: Bilder der Trainingsdatenbank.

2000, 4288 ⇥ 2848 und 4928 ⇥ 3264 haben. Die Bilder wurden als Raw-
Aufnahmen von den Kameras gespeichert und auch im weiteren Verlauf
der Datenbankerstellung nie verlustbehaftet codiert. Die Verwendung von
solchen unkomprimierten1 Bildern als Trainingsdaten ist erstrebenswert,
weil die Bilder keinerlei Codierungsartefakte enthalten. Hierdurch wird
verhindert, dass die Netzwerke während des Trainings lernen, Merkmale
aus Codierungsartefakten zu extrahieren. Die Motive der Bilder in der
Datenbank sind sehr vielfältig. Von der Autoren werden diese in die Ka-
tegorien Outdoor, Indoor, Landscape, Nature, People, Objects und Buildings
klassifiziert [19]. Zur Erzeugung der Trainingsdaten werden 50 Bilder
zufällig ausgewählt. Die verwendeten Bilder aus der Datenbank sind in
Abbildung 4.1 dargestellt.

Aus den Bildern der RAISE-Datenbank werden bis zu vier verschiedene
Eingangssignale für die neuronalen Netzwerke gewonnen. Diese werden
im Folgenden erläutert:

1 Es ist anzumerken, dass der Referenzbereich während der Codierung durch die Quantisierung
mit unterschiedlichen Quantisiererstufenbreiten nicht als unkomprimiert angesehen werden
kann. Im Rahmen dieser Arbeit wird nicht weiter untersucht, inwiefern sich die Effizienz des
vorgeschlagenen Verfahrens durch die Verwendung von quantisierten Trainingsdaten oder
durch das Training unterschiedlicher Netzwerke für verschiedene Quantisierungsparameter
weiter steigern ließe.

68

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.2 datenbasis

1. Abtastwerte des Referenzbereichs: Die Referenzabtastwerte sind die
wichtigste Information für das neuronale Netzwerk, da dieses die
Aufgabe hat, die Abtastwerte des benachbarten, aktuell zu codie-
renden, Blockes zu prädizieren. Anders als bei anderen Problemen,
beispielsweise im Feld der Klassifizierung, in dem mehr die rela-
tiven Änderungen zwischen benachbarten Abtastwerten relevant
sind, sind bei dem Problem der Abtastwertprädiktion die absoluten
Werte von Interesse. Deshalb erfolgt lediglich eine Skalierung des
ursprünglichen Wertebereichs von 0 bis 255 auf den Wertebereich
0,0 bis 1,0, aber keine weitere Manipulation.

2. Verfügbarkeit der Referenzwerte als Maske: Je nach gewählter Par-
titionierung und der Position im Bild mit Bezug auf die Bild- und
Slice-Grenzen sind gegebenenfalls nicht alle Referenzabtastwerte
verfügbar. Das Wissen hierüber ist von Relevanz für das Netzwerk,
da natürlich nur existierende Abtastwerte in eine Prädiktion ein-
gehen sollten. Gleichwohl ist es unpraktikabel, die Größe und die
Form der Eingangstensoren an die verfügbaren Referenzabtast-
werte anzupassen. Um dem neuronalen Netzwerk dennoch die
Kenntnis über die Verfügbarkeit des Referenzbereichs anzuzeigen
wird eine binäre Maske, dessen örtliche Größe mit der Größe des
Referenzbereichs übereinstimmt, verwendet. Es könnte eingewen-
det werden, dass das Wissen über das Nichtvorhandensein der
Abtastwerte auch aus denselben extrahiert werden könne, beispiels-
weise in dem diese auf Null gesetzt werden. Dieses ist jedoch nicht
der Fall, da es sich hierbei um einen validen Eingangswert handelt,
der in realen Signalen nicht zuletzt bei Unterbelichtung auftreten
kann.

3. Modellierte und extrapolierte Kontur: Der Verlauf von Konturen,
und damit die Kenntnis über die Form von Objekten innerhalb
des betrachteten Bildausschnitts, wird als wertvolle Information
für die Abtastwertprädiktion angesehen. Aus der Vorarbeit [24] ist
bekannt, dass die alleinige Verwendung von Referenzabtastwerten,
unter der Annahme, dass das neuronale Netzwerk die Schätzung
des Konturverlaufs mitlernen könne, nicht zu zufriedenstellenden
Ergebnissen führt. Der Konturverlauf wird in Form eines ebenfalls
binären Konturbildes in das Netzwerk eingegeben. Das Signal hat
die gleiche örtliche Auflösung wie der zu einem Rechteck erweiterte
Referenzbereich. Hierfür wird die gefundene Kontur, die auch
schon die Eingabe der Konturmodellierung war, mit dem Ergebnis
der Konturextrapolation kombiniert.

69

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

4. Konfidenz der Konturextrapolation: Mit dem Ergebnis der stochas-
tischen Konturmodellierung und der anschließenden Konturex-
trapolation hat man für jede extrapolierte Stelle xp entsprechend
Gleichung 3.27 eine Konfidenz s2

p . Aus dieser wird, wie nachfol-
gend noch weiter ausgeführt, ein Grauwert-Signal mit der gleichen
örtlichen Größe wie bei den anderen Eingangssignalen erzeugt.

Durch die Verarbeitung der 50 zufällig gewählten Bilder aus der RAISE-
Datenbank werden Hierarchical Data Format 5 (HDF5)-Datenbanken [123]
mit den Trainings- und Validierungsdaten erzeugt. Es werden getrenn-
te Datenbanken für die unterschiedlichen Blockgrößen erstellt. Dieses
Datenbank-Format wurde gewählt, weil es eine hohe Effizienz beim wahl-
freien Lesen von Teilabschnitten der Datenbank ermöglicht. Dieses ist die
typische Anforderung während des Trainingsvorgang, in dem die Daten
in einer zufälligen Reihenfolge gelesen werden. Alle Werte werden mit
32-Bit Genauigkeit als Fließkommazahlen gespeichert, da diese für die
Ein- und Ausgänge des neuronalen Netzwerks benötigt werden. Hier-
durch ist zwar der Speicherplatzbedarf höher als bei einer Speicherung
von 8-Bit Daten, jedoch ist die einmalige Konvertierung praktikabler als
eine wiederkehrende Konvertierung in jeder Trainingsiteration.

Für die Datenbankerzeugung wird über alle für die Datenerzeugung
vorgesehenen Bilder iteriert. Jedes Bild wird entsprechend der gewählten
Blockgröße in nicht überlappende Blöcke aufgeteilt, über welche eben-
falls iteriert wird. Die Abtastwerte in direkt nebeneinander liegenden
Blöcken sind insbesondere für kleine Blockgrößen stark korreliert. Zur
Vermeidung unnötiger Redundanzen in der Trainingsdatenbank wird in
Abhängigkeit der Blockgröße nur jeder n-te Block verwendet, wobei n
die folgenden Werte hat: 1 für 64 ⇥ 64-Blöcke, 2 für 32 ⇥ 32-Blöcke, 6 für
16 ⇥ 16-Blöcke, 25 für 8 ⇥ 8-Blöcke und 100 für 4 ⇥ 4-Blöcke. Für jeden
Block erfolgt die Konturdetektion wie im vorherigen Kapitel beschrieben.
Es kann eine Fallunterscheidung getroffen werden: Falls keine Konturen
im zugehörigen Referenzbereich des Blockes sind, werden für diesen
Datenbankeintrag lediglich die Felder für die Referenzabtastwerte sowie
die Verfügbarkeitsmaske der Referenzabtastwerte befüllt.

Im Normalfall gibt es Konturen. Die werden mit dem vorgeschlagenen
Konturmodell aus Kapitel 3 verarbeitet. Um eine robuste Konturmodel-
lierung sicherzustellen, werden — wie auch bei der eigentlichen Codie-
rung — bei der Trainingsdatenerzeugung nur Konturen mit mehr als
drei Konturpixeln extrapoliert. Kürzere Konturen werden nicht betrach-
tet. Alle geeigneten Konturen werden modelliert und extrapoliert. Das
Ergebnis der Konturextrapolation besteht aus den Vorhersagen gemäß
Gleichung 3.25 mit den zugehörigen Konfidenzen gemäß Gleichung 3.27.
Hierbei handelt sich pro Konturpunkt um insgesamt drei Zahlenwerte:

70

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.2 datenbasis

Zwei Zahlenwerte für die Koordinaten des Punkts,
⇣

xpi, ypi

⌘
, und einen

Zahlenwert für die Varianz, s2
pi.

Die für das vorgeschlagene Verfahren verwendeten Netzwerkarchitek-
turen sind jedoch wegen ihrer zugrunde liegenden Faltungsschichten
für die Verarbeitung von zweidimensionalen Daten ausgelegt. Deshalb
erfolgt eine Umwandlung in ein entsprechendes Format. Dass die Um-
wandlung von eigentlich nicht zweidimensionalen Daten in solche für
eine Verarbeitung durch Faltungsnetzwerke sinnvoll ist, ist beispiels-
weise aus dem Fachgebiet der Audioverarbeitung bekannt [142]. In der
genannten Arbeit werden Audiodaten durch die Umwandlung in eine
Spektrumsdarstellung als zweidimensionale Bilder interpretiert.

Das binäre Konturbild ergibt sich aus den Koordinaten der Kontur-
punkte. Aus der Konfidenz in die Konturextrapolation wird eine soge-
nannte Konfidenzkarte erzeugt. Die Erläuterung des Vorgehens erfolgt
anhand von Abbildung 4.2. Für die Erzeugung der Konfidenzkarte wird
s2

p aus Gleichung 3.27 für jedes xp im zu codierenden Block berechnet.
Zur vereinfachten Notation wird ein lokales Koordinatensystem, dessen
Ursprung im extrapolierten Konturpunkt

⇣
xp, yxp

�
xp
�⌘

liegt, angenom-
men. In jeden Konturpunkt wird eine Gauß-förmige Konfidenzfunktion
cxp

⇣
yxp

⌘
mit der berechneten Varianz gelegt:

cxp

⇣
yxp

⌘
=

1q
2ps2

p

e
�

y2xp
2s2p (4.1)

Die Auswertungen der jeweiligen Konfidenzfunktionen in jedem Punkt
entlang der yxp -Achsen werden als Grauwerte interpretiert. Das Beispiel
in Abbildung 4.3 zeigt exemplarisch eine auf die geschilderte Weise
entstehende Konfidenzkarte.

Im Gegensatz zu anderen Arbeiten wie [66] werden nicht die durch eine
Codierung entstehenden rekonstruierten Abtastwerte für die Trainings-
daten verwendet sondern die originalen Abtastwerte. Zum einen wäre
bei der Verwendung vor einer Codierung zu entscheiden, mit welchen
Quantisierungsparametern die Daten zu codieren wären. Eine Optimie-
rung der Trainingsdaten — oder sogar noch weitergehend das Trainieren
von spezifischen Netzwerken — auf die in akademischen Veröffentli-
chungen und Standardisierungsbeiträgen typischerweise verwendeten
vier Quantisierungsparameter erscheint nicht sinnvoll, da in realen Sze-
narien weit mehr unterschiedliche Quantisierungsparameter verwendet
werden. Die Unterschiede zwischen den rekonstruierten Abtastwerten
und den Original-Abtastwerten liegen im Wesentlichen in der durch die
Transformationscodierung bedingte leichte Tiefpassfilterung sowie in

71

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

x

y

yx1

yx2

yx3

cx1
(yx1

)

cx2
(yx2

)

cx3
(yx3

)

modellierte und
extrapolierte Kontur

lokale Koordinatensysteme
an den Stellen der Konturpunkte

Gauß-Funktionen in den
lokalen Koordinatensystemen

Abbildung 4.2: Erzeugung der Konfidenzkarte: In jeden Punkt der extrapolierten
Kontur wird eine Gauß-Funktion entsprechend Gleichung 4.1 ge-
legt, deren Varianz durch die Konfidenz der Extrapolation gemäß
Gleichung 3.27 gegeben ist.

Codierungsartefakten begründet. Da keine Codierungsartefakte in den
Trainingsdaten vorhanden sind, wird das neuronale Netzwerk nicht die
Reproduktion von solchen Artefakten erlernen. Durch eine Tiefpassfilte-
rung würden hochfrequente Daten in den Trainingsdaten fehlen. Es wird
jedoch angenommen, dass neuronale Netzwerke hohe Frequenzen in
Bildsignalen, bis hin zu dem Rauschanteil, nicht pixelgenau vorhersagen
können. Ein künstlich erzeugtes nicht pixel-genaues Rauschen würde
jedoch zu einer ansteigenden Datenrate für den Prädiktionsfehler führen.
Ferner geht der Verzicht auf die hohen Signalanteile einher mit der später
beschriebenen Wahl der Kostenfunktion für das Training der Netzwerke.
Durch diese Kostenfunktion erfolgt eine Regularisierung gegen höhe-
re Frequenzen im prädizierten Signal. Hierdurch macht es letztendlich

72

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.3 architekturen

jX8X AMi2;`�iBQM BM /B2 .22T G2�`MBM;@#�bB2`i2 SBt2Hr2`iT` /BFiBQM 9R

8 16 24 32 40 48 56 64

8

16

24

32

�##BH/mM; jXNX, o�`B�Mx;`�mr2`i#BH/ /2` 2ti`�TQHB2`i2M EQMim` KBi /2` ai�M/�`/@
�#r2B+?mM; �n = 0X

8 16 24 32 40 48 56 64

8

16

24

32

�##BH/mM; jXRyX, o�`B�Mx;`�mr2`i#BH/ /2` 2ti`�TQHB2`i2M EQMim` KBi /2` ai�M/�`/@
�#r2B+?mM; �n = 1XAbbildung 4.3: Beispiel einer Konfidenzkarte

keinen Unterschied, ob hohe Frequenzen in den Trainingsdaten sind
oder nicht, da diese durch die Kostenfunktion zwar nicht verboten aber
bestraft würden.

Die Eigenschaften des Luma- und der Chroma-Signale unterscheiden
sich voneinander. Das Luma-Signal hat eine wesentlich höhere Entro-
pie als die Chroma-Signale. Deshalb ist es nicht sinnvoll, Luma- und
Chroma-Signale einheitlich zu betrachtet. Stattdessen werden getrennte
Datenbanken erzeugt und auch separate neuronale Netzwerke trainiert.

4.3 architekturen

Autoencoder sind eine Ausführungsform von neuronalen Netzwerken.
Der Grundgedanke eines klassischen Autoencoders2 besteht aus einer
Architektur mit der das Ziel verfolgt wird, dass die Eingangsdaten den
Ausgangsdaten entsprechen. In der sogenannten Codierungsschicht, die
auch als Bottleneck oder Latent Space bezeichnet wird, in der Mitte der
Architektur werden die Daten mit einer deutlich geringeren Anzahl an
Neuronen repräsentiert als am Ein- beziehungsweise Ausgang. Der Teil
der Architektur vor der Codierungsschicht wird als Encoder bezeichnet,
der Teil danach als Decoder3. Ein exemplarischer Autoencoder ist in
Abbildung 4.5 abgebildet. Im Encoder-Teil des Autoencoders werden die
Daten von Schicht zu Schicht mit einer geringeren Kapazität repräsentiert.

2 Der Begriff Autoencoder wird verwendet, um die Konsistenz mit der Literatur zur wahren. Da
die so bezeichneten Netzwerke sowohl einen Encoder- als auch einen Decoder-Teil enthalten,
wäre aus Sicht der Codierungsnomenklatur der Begriff Autocodec treffender.

3 Die beiden Hälften des Autoencoders werden als Encoder und Decoder bezeichnet. Die-
se Bezeichnung ist unabhängig von der Verwendung der vorgeschlagenen Verfahren im
Encoder- und Decoder-Teil der betrachteten Bild- und Videocodecs. In beiden Hälften der Bild-
und Videocodecs werden sowohl der Encoder- als auch der Decoder-Teil des Autoencoders
verwendet.

73

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

Auto-
encoder

Referenzbereich

Konturmodellierung

Konfidenzkarte

Referenzverfügbarkeit

Abtastwert-
prädiktion

Abbildung 4.4: Ein- und Ausgabedaten für den Autoencoder. Der Autoencoder
hat bis zu vier Eingangssignale: Immer vorhanden sind der Refe-
renzbereich sowie die Referenzverfügbarkeit. Zusätzlich werden
je nach trainiertem Modell die Konturmodellierung (inklusive Ex-
trapolation) und/oder die Konfidenzkarte als weitere Eingänge
verwendet.

Encoder Decoder

Codierungs-
schicht

Abbildung 4.5: Exemplarische Veranschaulichung eines Autoencoders

74

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.3 architekturen

Im Decoder-Teil wird die Kapazität mit jeder Schicht bis zur Zielgröße
erhöht. Hierdurch werden die wesentlichen Eigenschaften des Signals
erkannt und bleiben durch die entsprechende Repräsentation in der
Codierungsschicht erhalten. Weniger relevante Eigenschaften im Signal
bleiben nicht erhalten. Der ursprüngliche Anwendungsfall — hierher
kommt auch der Name Autoencoder — ist die Codierung von Infor-
mationen. Durch die Eigenschaft, dass die wesentlichen Merkmale im
Signal erhalten bleiben oder weiter verarbeitet werden, sind Autoencoder
auch für Anwendungen wie die Entrauschung oder die nachträgliche
Kolorierung von monochromen Bildern gut geeignet.

Das Ziel des in diesem Kapitel vorgeschlagenen Verfahrens ist ähnlich:
Das neuronale Netzwerk soll die relevanten Signalcharakteristiken des
Referenzbereichs identifizieren und basierend auf ihnen eine Prädiktion
der Abtastwerte im zu codierenden Block erstellen. Ein wesentlicher
Unterschied ist, dass in diesem Szenario nicht die gleichen Signale am
Ein- und Ausgang vorhanden sind. Am Eingang liegen zwei bis vier
Signale mit der Größe des auf ein Rechteck erweiterten Referenzbereichs
an. Das Ausgangssignal hat die Größe des zu codierenden Blocks und
beinhaltet die prädizierten Abtastwerte. Eine Darstellung der ein- und
ausgegebenen Daten befindet sich in Abbildung 4.4. Die Kapazität der
Codierungsschicht ist so zu wählen, dass genug relevante Informationen
aus den bis zu vier Eingängen extrahiert werden können, um eine gute
Prädiktion des zu codierenden Blocks zu erzielen. Wegen der konzeptio-
nellen Eignung von Autoencodern werden diese für das vorgeschlagene
Verfahren verwendet. Da Bilddaten verarbeitet werden, werden ferner
Faltungsautoencoder, engl. Convolutional Auto Encoder (CAE), verwen-
det.

Nachfolgend wird zunächst die Architektur für zu codierende Blöcke
der Größe 32 ⇥ 32 beschrieben. Der grundsätzliche Aufbau für die Netz-
werke mit anderen Eingangsgrößen ist gleich. Einige Anpassungen von
einzelnen Parametern sind beschrieben. Eine Übersicht über die Details
der Konfigurationen der verwendeten Architekturen gibt es in Tabelle 4.1.

Im Prinzip wird im Encoder-Teil die Anzahl an Filtern mit jeder Schicht
verdoppelt während gleichzeitig die örtliche Auflösung der durch das
Netzwerk prozessierten Tensoren halbiert wird. Im Decoder findet der
umgekehrte Prozess statt: Die Anzahl an Filtern halbiert sich mit jeder
weiteren Schicht während die örtliche Auflösung verdoppelt wird. Je-
weils in der ersten Schicht wird die rechteckige örtliche Auflösung der
Eingangssignale durch asymmetrische Filtergrößen und eine asymme-
trische Schrittweite in Tensoren mit quadratischer örtlicher Auflösung
überführt. Alle weiteren Filter sind symmetrisch und werden ebenfalls
mit symmetrischen Schrittweiten verschoben.

75

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

Tabelle 4.1: Architekturübersicht. Die Nomenklatur für die Dimensionen ist
Kanalanzahl⇥Breite⇥Höhe. EF steht für die Eingangsfilteranzahl, BF
für die Anzahl an Filtern in der Codierungsschicht (engl. Bottleneck).
Der grundsätzliche Aufbau ist für alle Blockgrößen gleich: Im Enco-
der steigt mit jeder tiefergehenden Schicht die Anzahl an Filtern mit
dem Faktor zwei während die örtliche Auflösung der Tensoren halbiert
wird. Im Decoder ist es anders herum. Die Netzwerke für die kleineren
Blockgrößen haben eine geringere Anzahl an Schichten.

Aufbau Dimension Aufbau Dimension Aufbau Dimension Aufbau Dimension
1 Eingabe 3×24×16 Eingabe 3×48×32 Eingabe 3×96×64 Eingabe 3×192×128

2

Conv2d
BatchNorm
Dropout
LeakyReLU

EF×24×16

Conv2d
BatchNorm
Dropout
LeakyReLU

EF×48×32

Conv2d
BatchNorm
Dropout
LeakyReLU

EF×32×32

Conv2d
BatchNorm
Dropout
LeakyReLU

EF×192×128

3

Conv2d
BatchNorm
Dropout
LeakyReLU

2•EF×8×8

Conv2d
BatchNorm
Dropout
LeakyReLU

2•EF×16×16

Conv2d
BatchNorm
Dropout
LeakyReLU

2•EF×16×16

Conv2d
BatchNorm
Dropout
LeakyReLU

2•EF×64×64

4

Conv2d
BatchNorm
Dropout
LeakyReLU

4•EF×4×4

Conv2d
BatchNorm
Dropout
LeakyReLU

4•EF×8×8

Conv2d
BatchNorm
Dropout
LeakyReLU

4•EF×8×8

Conv2d
BatchNorm
Dropout
LeakyReLU

4•EF×32×32

5

Conv2d
BatchNorm
Dropout
LeakyReLU

BF×4×4

Conv2d
BatchNorm
Dropout
LeakyReLU

BF×4×4

Conv2d
BatchNorm
Dropout
LeakyReLU

8•EF×4×4

Conv2d
BatchNorm
Dropout
LeakyReLU

8•EF×16×16

6
ConvTransp2d
BatchNorm
LeakyReLU

4•EF×4×4
ConvTransp2d
BatchNorm
LeakyReLU

4•EF×8×8

Conv2d
BatchNorm
Dropout
LeakyReLU

BF×2×2

Conv2d
BatchNorm
Dropout
LeakyReLU

BF×8×8

7
ConvTransp2d
BatchNorm
LeakyReLU

2•EF×8×8
ConvTransp2d
BatchNorm
LeakyReLU

2•EF×16×16
ConvTransp2d
BatchNorm
LeakyReLU

8•EF×4×4
ConvTransp2d
BatchNorm
LeakyReLU

8•EF×16×16

8
ConvTransp2d
BatchNorm

Tanh
1×8×8

ConvTransp2d
BatchNorm

Tanh
1×16×16

ConvTransp2d
BatchNorm
LeakyReLU

4•EF×8×8
ConvTransp2d
BatchNorm
LeakyReLU

4•EF×32×32

9
ConvTransp2d
BatchNorm
LeakyReLU

2•EF×16×16
ConvTransp2d
BatchNorm
LeakyReLU

2•EF×32×32

10
ConvTransp2d
BatchNorm
LeakyReLU

EF×32×32
ConvTransp2d
BatchNorm
LeakyReLU

EF×64×64

11
ConvTransp2d
BatchNorm

Tanh
1×32×32

ConvTransp2d
BatchNorm

Tanh
1×64×64

8×8 16×16 32×32 64×64

1,5M Parameter 4,5M Parameter 9,7M Parameter 5,5M Parameter

76

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.3 architekturen

Abbildung 4.6: Vergleich des Einflusses der Filtergröße. Wird die Filtergröße zu
klein gewählt, dann können Strukturen nicht gut prädiziert wer-
den (links). Bei der für die vorgeschlagenenen Netzwerke gewähl-
ten Filtergröße können Strukturen sinnvoll extrapoliert werden
(rechts).

Bei der Wahl der Filtergröße sind mehrere Abwägungen zu treffen.
Einerseits ist eine gewisse Mindestgröße erforderlich, um die für die
Abtastwertprädiktion notwendige Zusammenhänge im Signal erkennen
zu können. Andererseits führen größere Filter auch zu einer höheren
Verringerung der örtlichen Auflösung an den Rändern der verarbeiteten
Tensoren4. Dieses führt zu dem Problem, dass die umsetzbarer Tiefe
des Netzwerkes ebenfalls sinkt. Wird die Tiefe zu gering, dann reicht
die Kapazität des Netzwerks nicht mehr für eine gute Prädiktion der
Abtastwerte. Aufgrund von entsprechenden Analysen in Vorarbeiten wird
die Filtergröße zu 4 ⇥ 4 und die Schrittweite zu 2 ⇥ 2 gewählt. Kleinere
Filter ermöglichen keine Fortsetzung von strukturierten Signalanteilen,
wie im Beispiel der Abbildung 4.6 dargestellt ist.

Würden die Netzwerke so wie bis hierhin beschrieben verwendet
werden, dann käme es beim Training zu einer Überanpassung auf die
Trainingsdaten. Batch-Normierung ist ein anerkanntes Verfahren, um
die Lernfähigkeit neuronaler Netzwerke zu verbessern. Die ursprüng-
liche Motivation liegt in der Beobachtung, dass während des Trainings
bereits jeweils kleine Änderungen der Gewichte in den Schichten eines
tiefen Netzwerkes durch die multiplikative Verknüpfung der Schich-
ten zu großen Änderungen der Aktivierungen führen [50]. Hierdurch
müssten diese Änderungen der Aktivierungen in jeder Trainingsiteration
kompensiert werden. Durch die Normierung der Eingänge für jedes
Batch entfällt diese Notwendigkeit und das Training wird effizienter.
Die Normierungsparameter werden während des Trainings gelernt und
sind für die Inferenz konstant. Weitere positive Eigenschaften der Batch-
Normierung werden in [60, 105] beschrieben. Für die vorgeschlagenen

4 Dieses ließe sich zwar technisch durch Auffüllen, engl. Padding, an den Rändern lösen, doch
hierbei würden lediglich Informationen aus dem inneren Bereich der Tensoren reproduziert
werden, sodass kein zusätzlicher Informationsgewinn für die zugrunde liegende Aufgabe zu
erwarten ist.

77

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

Blockgröße 8⇥8 16⇥16 32⇥32 64⇥64

Eingangsfilteranzahl (EF) 16 32 32 32

Bottleneck-Filteranzahl (BF) 128 1024 512 512

Tabelle 4.2: Filteranzahl für die Eingangs- und Bottleneck-Schicht

Architekturen wird die Batch-Normierung in jeder Schicht verwendet.
Die beobachteten positiven Effekte sind ein schnelleres Training sowie
eine reduzierte Überanpassung.

In Abhängigkeit der betrachteten Blockgröße gibt es geringe Abwei-
chungen bei der Anzahl an Filtern in der Eingangsschicht (EF) und in der
Bottleneck-Schicht (BF). Die jeweiligen Werte sind in Tabelle 4.2 gelistet.

4.4 training

In diesem Abschnitt wird das Training der zuvor beschriebenen Netzwer-
ke diskutiert. Insbesondere werden hierbei das Optimierungsverfahren
(der sogenannte Solver), die verwendeten Regularisierungsstrategien, das
Thema Datenaugmentierung und die mit dem Training einhergehenden
Hyperparameter erläutert.

Für das Training der neuronalen Netzwerke, also das Anpassen der
Netzwerkkonfiguration c in Gleichung 2.39, wird ein stochastisches Gra-
dientenabstiegsverfahren mit Mini-Batches, wie es in Kapitel 2.2 be-
schrieben wurde, verwendet. Bei dem konventionellen stochastischen
Gradientenabstiegsverfahren tritt die Schwierigkeit auf, dass unabhängig
von den gerade betrachteten Daten eines Mini-Batches die gleiche Lern-
rate für alle Parameter in der Netzwerkkonfiguration verwendet wird.
Da die für den Gradientenabstieg berechneten Gradienten stark von den
Daten abhängen können und auch für die verschiedenen Parameter der
Netzwerkkonfiguration unterschiedlich sein können, ist es sinnvoller, die
Lernrate adaptiv anzupassen.

Im Rahmen dieser Arbeit wird hierfür das Adaptive Moment Estimati-
on (Adam)-Verfahren [56] verwendet. Bei diesem Verfahren wird anstatt
des Momentums aus Gleichung 2.15 ein entsprechender Term verwendet,
der auf dem ersten Moment (Mittelwert mi) und dem zweiten Moment
(Leistung vi) der Gradienten gi zum Zeitpunkt i beruht. Die Momente
werden in einem gleitenden Fenster berechnet, in dem eine exponentiell

78

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.4 training

abfallende Gewichtung der vergangenen Gradienten gewählt wird. Der
Aktualisierungsschritt aus Gleichung 2.38 wird erweitert zu:

ci+1 = ci �
hmi✓q

vi
1�bi

2
+ e

◆ �
1 � bi

1
� (4.2)

mit

mi = b1mi�1 + (1 � b1)gi, (4.3)

vi = b2vi�1 + (1 � b2)g2
i . (4.4)

Die Terme 1 � bi
1 und 1 � bi

2 werden verwendet, um einen Bias gegen
Null zu verhindern, der entsteht, weil das gleitende Fenster mit Nul-
len initialisiert wird. b1 und b2 sind Hyperparameter, mit denen der
exponentielle Abfall im gleitenden Fenster gesteuert wird. e ist ein aus
numerischen Gründen existierender Hyperparameter, der eine Division
durch Null verhindert. Die Wahl der Werte für diese drei Hyperparameter
wird später zusammen mit den anderen Hyperparametern diskutiert.

Mit der Wahl der Kostenfunktion wird festgelegt, für welches Kriteri-
um die Konfiguration des Netzwerkes während des Trainings optimiert
wird. Nur wenn die Kostenfunktion für das zu lösende Problem geeignet
ist, dann kann das Training zu sinnvollen Ergebnissen führen. Typische
Kostenfunktionen für die Prädiktion von (Teilen von) Bildern wären der
mittlere quadratische Fehler, engl. Mean Squared Error (MSE), oder die
strukturelle Ähnlichkeit, engl. Structural Similarity (SSIM), welche bei-
de eine objektive Distanz zwischen dem prädizierten Signal und dem
Originalsignal messen, sowie Funktionen, die ein subjektiv plausibles
Ergebnis erzeugen. Da die vorgeschlagenen Verfahren in ein Codierungs-
system eingebaut werden, das aufgrund von objektiven Kriterium die
Auswahl von Codierungsverfahren durchführt, ist ein objektives Krite-
rium für das prädizierte Signal sinnvoll. MSE und SSIM fallen in diese
Kategorie. Sie erzeugen ein prädiziertes Signal mit hohem Peak Signal-
to-Noise Ratio (PSNR) (im Fall des MSE). Dieses prädizierte Signal wird
jedoch niemals angezeigt. Angezeigt wird stattdessen das rekonstruierte
Signal, welches sich durch Summierung des prädizierten Signals und
des übertragenen Prädiktionsfehlers ergibt. Deshalb erlaubt ein hoher
PSNR des prädizierten Signals keine allgemeingültige Aussage über die
Videoqualität. Dieses würde lediglich eine Optimierung des PSNR des
rekonstruierten Signals ermöglichen. Jedoch steht dieses Signal während
des Trainings nicht zur Verfügung, da es bedingt durch die Transfor-
mationscodierung des Prädiktionsfehlers nur durch einen während des
Trainings mitlaufenden Videoencoder beziehungsweise des für die Trans-
formationscodierung mitlaufenden Submoduls ermittelt werden könnte.

79

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

Dieses ist jedoch wegen der enormen Rechenkomplexität nicht prakti-
kabel realisierbar. Ferner hängt die Qualität des rekonstruierten Signals
letzten Endes wie in Kapitel 2 beschrieben von den Rahmenbedingun-
gen wie der zur Verfügung stehenden Datenrate und weiteren Faktoren
ab. Gleichwohl ist aus Codierungssicht erstrebenswert, dass während
des Trainings berücksichtigt wird, dass die Prädiktion zu einem mit
geringer Datenrate übertragbaren Prädiktionsfehler führt. Ein geringer
MSE des prädizierten Signals führt jedoch nicht notwendigerweise auch
zu einer geringen Datenrate des zugehörigen Fehlers. Stattdessen soll
die zur Codierung des Prädiktionsfehler benötigte Datenrate zumindest
näherungsweise optimiert werden.

Der Fehler wird im Frequenzbereich codiert. Die durch die Transfor-
mation berechneten Koeffizienten C sind näherungsweise mittelwertfrei
und Laplace-verteilt5:

pcoeff(C) = FeY|C| (4.5)

mit Konstanten F und Y. Die für die Codierung eines Koeffizienten
benötigte Datenrate r lässt sich über den Informationsgehalt I annähern
und ist proportional zum Betrag des Koeffizienten:

r ⇠ I (pcoeff (C)) = �log2

⇣
FeY|C|

⌘
⇠ X|C| (4.6)

mit einer Konstanten X. Die Entropie H des Prädiktionsfehlers, also eine
Annäherung der für die Übertragung desselben benötigte und damit zu
minimierende Datenrate unter der Bedingung einer hinreichend guten
Entropiecodierung, ist damit proportional zur Summe der Absolutwerte
des transfomierten Prädiktionsfehlers, engl. Sum of Absolute Transfor-
med Differences (SATD):

H ⇠ SATD (4.7)

Deshalb wird die SATD als Kostenfunktion gewählt.
In Tabelle 4.3 ist ein Beispiel gewählt, in dem für zwei Prädiktions-

fehler die Unterschiede zwischen MSE und SATD deutlich hervortreten.
Es ist ersichtlich, dass obwohl beide Prädiktionsfehler den gleichen MSE
haben, die SATD deutlich unterschiedlich sind. Folglich wäre der obere
Prädiktionsfehler mit einer geringeren Datenrate codierbar.

Durch den Einsatz von Regularisierungsverfahren wird eine Über-
anpassung auf der Trainingsdaten verhindert. Das ursprünglich von
Srivastava et al. vorgeschlagene Dropout-Verfahren [113] ist ein typischer
Regularisierungsansatz und wird auch in dieser Arbeit eingesetzt, um die
verbleibende Überanpassung zu neutralisieren. Das Problem der Über-
anpassung an die Trainingsdaten von Netzwerken mit hoher Kapazität

5 Den entsprechenden Nachweis erbringt Narroschke in [88].

80

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.4 training

Tabelle 4.3: Gegenüberstellung von MSE und SATD. Beide Prädiktionfehler ha-
ben den gleichen MSE. Durch die unterschiedlichen Frequenzanteile
kommt es jedoch zu stark abweichenden Koeffizienten nach der Trans-
formation, wodurch der obere Prädiktionsfehler mit einer geringeren
Datenrate codierbar ist (vgl. Gleichung 4.7).

Prädiktionsfehler Koeffizienten

2

66664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3

77775
⌫

2

66664

4, 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

77775

MSE = 1, 0 SATD = 4, 0

2

66664

�1 1 �1 �1

�1 �1 1 �1

1 1 �1 �1

�1 �1 1 1

3

77775
⌫

2

66664

�1, 0 0 �1, 0 0

�0, 92 0, 91 �0, 92 �0, 79

0 �1, 31 0 �0, 54

0, 38 2, 20 0, 38 �1, 91

3

77775

MSE = 1, 0 SATD = 12, 28

81

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

verfahren zur abtastwertprädiktion mittels maschinellen
lernens

wird hierbei gelöst, indem in jeder Iteration nur ein zufällig bestimmter
Teil des Netzwerkes trainiert wird. Die Tatsache, dass in jeder Iteration
ein anderer Teil des Netzwerkes trainiert wird, lässt sich so interpretieren,
dass viele Netzwerke mit geringerer Kapazität im Vergleich zum eigent-
lichen Netzwerk trainiert werden. Einzeln betrachtet sind diese kleinen
Netzwerke nicht in der Lage, das gestellte Problem mit guter Leistung
zu lösen — es kommt zu einer Unteranpassung. Für die Inferenz wird
das gesamte Netzwerk eingesetzt. Dieses lässt sich so interpretieren, dass
die Ergebnisse der vielen kleineren Netzwerke zu einem Gesamtergebnis
kombiniert werden. Durch diese Kombination kommt es weder zu der
Unteranpassung durch die Verwendung eines kleinen Netzwerkes noch
zu der Überanpassung durch die Verwendung des großen, ohne Dropout
trainierten, Netzwerkes.

Das klassische Dropout gemäß [113], bei dem einzelne Verbindungen
entfernt werden, ist in erster Linie für vollverbundene Schichten geeignet.
Würde man es auf Faltungsschichten anwenden, dann würde es durch
die Korrelation zwischen örtlich benachbarten Abtastwerten laut der
Erkenntnisse in [127] lediglich zu einem verlangsamten Training, nicht
aber zu einer Verringerung der Überanpassung, kommen. Deshalb wird
stattdessen eine Dropout-Variante eingesetzt, in der stets komplette Kanä-
le aus Filtern deaktiviert werden. Zur vollständigen Vermeidung von
Überanpassung reicht es, wenn Dropout im Encoder eingesetzt wird. Um
das Training nicht unnötig zu verlangsamen wird deshalb auf Dropout
im Decoder-Teil des Netzwerkes verzichtet.

Wenn Netzwerke zu lange trainiert werden, kann es ebenfalls zu einer
Überanpassung kommen. Dieses erkennt man an einer steigenden Kosten-
funktion für den Validierungsdatensatz bei gleichzeitig gleichbleibenden
oder weiter fallenden Werten für die Kostenfunktion für den Trainings-
datensatz. Deshalb wird immer der beste Zustand des Netzwerks auf
dem Validierungsdatensatz zwischengespeichert und anschließend für
die Inferenz verwendet.

Aus der Literatur ist bekannt, dass typischerweise Augmentierungs-
verfahren auf die Trainingsdaten angewendet werden, um vielfältigere
Trainingsdaten zu erhalten. Typische Verfahren sind Spiegeln, Rotati-
on, Helligskeits- und Kontrastanpassungen sowie das Hinzufügen von
Rauschen. Da das vorliegende Problem variant gegebenüber diesen Aug-
mentierungen ist, sind diese nicht anwendbar.

Der Trainingsvorgang hängt noch von einigen weiteren Hyperparame-
tern ab, welche nachfolgend erläutert werden.

Durch systematische Experimente wurde eine Dropout-Rate von 30%
als effizient bestimmt. Das bedeutet, dass die Wahrscheinlichkeit, dass
ein Kanal eines Filters in einer Trainingsiteration nicht betrachtet wird,

82

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

4.4 training

als Bernoulli-Verteilung mit einer Wahrscheinlichkeit für das Nicht-
betrachten von 30% modelliert wird.

Die Basis-Lernrate von Adam, also h in Gleichung 4.2, wird auf 0.005
gesetzt. Dieser Parameter wurde durch einen Lernratentest, bei dem die
Werte von 10�7 bis 1 inkrementiert wurden, bestimmt. Der Parameter
b1, der den exponentiellen Abfall im gleitenden Fenster für das erste
Moment gemäß Gleichung 4.3 steuert, wird auf 0, 9 gesetzt, b2 für das
zweite Moment gemäß Gleichung 4.4 auf 0, 999 und e zur Verhinderung
einer Division durch Null auf 10�8. Hierbei handelt es sich um sehr
typische Werte.

Die Lernrate hat wie in Kapitel 2 erläutert einen wesentlichen Einfluss
auf den Erfolg des Trainings. Ist sie zu groß gewählt, dann konvergiert das
Training nicht. Ist sie zu klein gewählt, dann dauert das Training zu lange
beziehungsweise es findet gar kein Lernen statt. Typischerweise wird die
Basis-Lernrate während des Trainings verringert, um den Gradienabstieg
zu Beginn mit großen Schrittweiten durchzuführen und dann im weiteren
Verlauf mit kleineren Schrittweiten in der Nähe des Minimums dieses
anzunähern. Als Erweiterung hierzu wird im Rahmen dieser Arbeit eine
sogenannte One Cycle Learning Rate Policy verwendet. Hierbei steigt die
Basislernrate zunächst an, bleibt dann in der Mitte des Trainings konstant
um für den letzten Teil des Trainings wieder abzufallen. Der zusätzliche
Anstieg zu Beginn ist dadurch motiviert, dass die Startkonfiguration des
neuronalen Netzwerkes zu Beginn des Trainings sehr weit von einem
guten Arbeitspunkt entfernt sein kann. Würden die hierbei entstehenden
ebenfalls sehr großen Gradienten in einem Aktualisierungsschritt mit
großer Lernrate eingesetzt werden, so könnte dieses die Konfiguration
des Netzwerkes in einen sehr schlechten Arbeitspunkt bewegen, aus
dem heraus keine sinnvolle Optimierung mehr möglich ist. Deshalb
wird zu Beginn des Trainings eine kleinere Lernrate gewählt, um zu
große Sprünge der Konfiguration zu verhindern. Da der Arbeitspunkt
während des ersten Teil des Trainings schnell in die Nähe einer guten
Konfiguration bewegt werden kann, kann sukzessive die Lernrate erhöht
werden, um im weiteren Verlauf des Trainings eine schnellere Konvergenz
zu erzielen.

Die Datensätze werden zufällig in einen Trainings- und Validierungs-
datensatz aufgeteilt. 90%/10% ist hierfür die gewählte Aufteilung. Die
Mini-Batch-Größe wird zu 64 gewählt. Die maximale Anzahl an Epo-
chen während des Trainings wird auf 100 gesetzt. Die Verringerung der
Kostenfunktion ist zu diesem Zeitpunkt bereits sehr gering, es ist keine
weitere signifikante Verbesserung zu erwarten.

83

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5
E X P E R I M E N T E L L E U N T E R S U C H U N G U N D
B E W E RT U N G

In diesem Kapitel werden die entwickelten Verfahren zur Modellierung
von Konturen und zur Abtastwertprädiktion experimentell untersucht
und die hierbei erzielten Ergebnisse diskutiert. Hierfür werden die vor-
geschlagenen Verfahren in den selbstentwickelten Bildcodec CoMIC so-
wie in das HEVC Test Model (HM), die Referenzimplementierung des
HEVC-Standards, integriert. Diese beiden Implementierungen verfolgen
unterschiedliche Ziele.

Die CoMIC-Implementierung ermöglicht die detaillierte Analyse der
entwickelten Verfahren. Hierbei kann die Effizienz sowie der Beitrag der
einzelnen Teilschritte zu dem Gesamtverfahren analysiert werden. Außer-
dem können Teile der entwickelten Verfahren gezielt betrachtet und zum
Beispiel durch die Anpassung von Parametern optimiert werden. Die Er-
zielung solch eines tiefgehenden Verständnisses der Funktionsweise der
entwickelten Verfahren ist bei der HM-Implementierung nicht möglich,
da in einem hochoptimierten Videocodec viele aufeinanderfolgende und
sich gegenseitig beeinflussende Algorithmen wie die Partitionierung in
unterschiedlichen Blockrastern, die unterschiedlichen Prädiktionsverfah-
ren, die Rate-Distortion-Optimierung, hocheffiziente Entropiecodierung
durch CABAC, Nachverarbeitungsverfahren wie Sample Adaptive Offset
und Deblockingfilter und so weiter verwendet werden. Durch das Hinzu-
fügen eines neuen Verfahrens gäbe es Auswirkungen auf die Verwendung
aller anderen bereits existierenden Verfahren.

Die Implementierung in einem Videocodec wie HM hingegen ermög-
licht die Bewertung der Codiereffizienz der entwickelten Verfahren in
einer realen Videocodierungsanwendung und somit den Vergleich mit
dem aktuellen Stand der Technik. Zusätzlich lässt sich mit dieser Imple-
mentierung eine Optimierung der Übertragung von Seiteninformationen
im Hinblick auf die verwendete Entropiecodierung mit CABAC vorneh-
men.

84

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

5.1 integration in einen bildcodec

Das Ziel dieses Teilexperiments ist die Evaluierung der vorgeschlagenen
Verfahren unter Laborbedingungen. Hierfür wird ein selbstentwickel-
ter Bildcodec namens CoMIC, welcher in der Programmiersprache C++
implementiert wurde, verwendet.

Das Bild wird zu Beginn der Codierung in gleichgroße Blöcke aufgeteilt.
Hierdurch entfällt die Abhängigkeit der Prädiktion von den vielfältigen
Partitionierungsmöglichkeiten, welche es in HEVC gibt1. Im Rahmen der
Evaluierung des CoMIC-Codecs werden die Blockgrößen 8 ⇥ 8, 16 ⇥ 16,
32⇥ 32 und 64⇥ 64 verwendet. Jeder Block wird mit den gleichen Verfah-
ren codiert. Hierfür wird vor Beginn der Codierung festgelegt, welches
Verfahren zur Konturmodellierung (polynomiell oder stochastisch) und
welches Verfahren zur Abtastwertprädiktion (Along-contour oder neuro-
nale Netzwerke) verwendet werden sollen. Dieses entspricht dem Setzen
der beiden Schalter in Abbildung 3.5. Durch die Anwendung der ausge-
wählten Verfahren wird eine Prädiktion für den zu codierenden Block
erzeugt. Eine Modeauswahl findet anders als im Videocodec nicht statt,
da die zu verwendenden Codierungsverfahren vor Beginn der Codie-
rung festgelegt wurden. Zur Übertragung des Prädiktionsfehlers wird
dieser mit einer DCT in den Frequenzbereich transformiert. Die hierbei
entstehenden Prädiktionsfehlerkoeffizienten werden quantisiert. Hierfür
wird eine gleichförmige Quantisierung durch eine Division und Multi-
plikation mit einem QP realisiert. Eine Signalisierung von zusätzlichen
Syntaxelementen zur Übertragung der Modeentscheidungen ist ebenfalls
anders als im Videocodec nicht erforderlich.

Nachfolgend werden die für die Experimente mit dem CoMIC-Codec
verwendeten Metriken erläutert. Die Datenrate wird über die Entropie
der quantisierten Prädiktionsfehlerkoeffizienten angenähert. Die Entschei-
dung hierfür und gegen die Verwendung der durch eine Entropiecodie-
rung der quantisierten Prädiktionsfehlerkoeffizienten erreichten realen
Datenrate ist wie folgt motiviert: Die umfangreichen Bemühungen von
Entropiecodierungsverfahren, vorhergehenden Binarisierungsverfahren
sowie komplexen Syntaxkonstrukten zur Beschreibung der Prädiktions-
fehlerkoeffizienten dient dazu, diese mit einer Datenrate möglichst nah
an der Entropie der zu codierenden Werte zu codieren. Nun ließe sich
entweder ein geeignetes Verfahren entwickeln oder ein vorhandenes Ver-
fahren wie CABAC auswählen. Jedoch wäre es nicht notwendigerweise
zu erwarten, dass es sich hierbei um das bestmögliche Entropiecodie-

1 Es ist zu beachten, dass die hiermit erzielte Codierungseffizienz lediglich einer Untersuchung
unter Laborbedingungen dient. Die Codierungseffizienz ist deutlich geringer als in modernen
Videocodecs mit solchen vielfältigen Partitionierungsmöglichkeiten. Die Codierungseffizienz
unter den Bedingungen solch eines Videocodecs wird in Abschnitt 5.2 untersucht.

85

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

rungsverfahren handelt, was auch gar nicht Kern des durchgeführten
Experiments wäre.

Alternativ könnte die Prämisse vertreten werden, dass ein entsprechen-
des Verfahren existiere, ohne es zu implementieren. Die Entropie ist die
untere Grenze für die mit einer hinreichend guten Entropiecodierung
bei einer verlustlosen2 Codierung erreichbaren Datenrate. Da im nachfol-
genden Abschnitt 5.2 für die Evaluierung der vorgeschlagenen Verfahren
in einem Videocodec ohnehin die Codierung des entstehenden Prädik-
tionsfehlers mit CABAC verwendet wird, erscheint die Beschränkung in
diesem Abschnitt auf die Datenratenannäherung per Entropie sinnvoll
und vertretbar.

Die Entropie wird berechnet, indem zunächst für die Koeffizienten des
codierten Blocks ein Histogramm für die Werte der Transformationsko-
effizienten erstellt wird. Basierend auf diesem Histogramm werden die
relativen Häufigkeiten pi der unterschiedlichen Koeffizienten berechnet.
Mit diesen relativen Häufigkeiten ergibt sich die Entropie H für einen
Block der Größe s ⇥ s zu3:

H =
s⇥s

Â
i=1

�pilog2(pi). (5.1)

Der MSE wird gemessen und hieraus wird das PSNR berechnet:

PSNR = 10 · log10

✓
S2

max
MSE

◆
, (5.2)

mit dem maximalen Signalwert Smax, also Smax = 255 für 8 Bit Videosi-
gnale.

Die Encoderlaufzeit wird als Prozessor-, engl. Central Processing Unit
(CPU)-, Zeit4 gemessen. Die Messung der Decoderlaufzeit entfällt, da
es keine Modeauswahl gibt. Hierdurch unterscheidet sich die Laufzeit
zwischen Encoder und Decoder nicht.

2 Die als verlustlos angenommene Entropiecodierung impliziert nicht, dass die komplette
Codierung verlustlos ist. Durch den entstehenden Quantisierungsfehler ist die Bildcodierung
verlustbehaftet.

3 Es ist zu beachten, dass hier eine Annahme über die Adaptierungsfähigkeit des Entropie-
codierungsverfahrens zu Grunde gelegt wird, die für realen Entropiecodierungsverfahren
möglicherweise nur näherungsweise zutrifft.

4 Da zum Teil mehrere Prozesse gleichzeitig für die Berechnung der implementierten Verfahren
verwendet werden, ist hier eine Unterscheidung zwischen der Laufzeit des Programms und
der hierbei verwendeten CPU-Zeit notwendig. Wird nur ein Prozess gleichzeitig verwendet, so
sind die beiden Zahlenwerte identisch. Werden mehrere Prozesse gleichzeitig verwendet, dann
ist die als Summe der Laufzeiten der einzelnen Prozesse berechnete CPU-Zeit entsprechend
größer. Da nur die CPU-Zeit den tatsächlichen Rechenaufwand der Verfahren erfasst, wird
diese verwendet.

86

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

Zunächst wird der Experimentaufbau beschrieben. Als Eingangsdaten
dienen Bilder aus zwei populären Datenbanken, die häufig für die Evalu-
ierung von Bildcodierungsverfahren verwendet werden: die Kodak Image
Dataset (KODIM) und die University of Southern California - Signal and
Information Processing Institute (USC-SIPI)-Bilddatenbank. Keine dieser
Datenbanken wurde für das Training der neuronalen Netzwerke oder die
Optimierung anderer Hyperparameter der vorgeschlagenen Verfahren
verwendet.

Bei den 24 Bildern der KODIM, welche Auflösungen von 768 ⇥ 512 und
512 ⇥ 768 haben, handelt es sich um klassische Fotografiemotive [79].
Obgleich es sich bei den Bildern aus diesen Datenbank um die typischer-
weise für die Evaluierung von Bildcodierungsverfahren verwendeten
Bilder handelt, ist anzumerken, dass die Bildeigenschaften nicht in allen
Fällen repräsentativ für moderne Digitalkameras sind.

In der USC-SIPI-Datenbank gibt es 141 Bilder5. Diese haben Auflösun-
gen von 256 ⇥ 256, 512 ⇥ 512 und 1024 ⇥ 1024. Die Bilder sind aufgeteilt
in die Kategorien Textures (Nahaufnahmen von Texturen), Aerials (Luft-
aufnahmen) und Miscellaneous (klassische Fotografiemotive). [135]

Einige exemplarische Bilder aus den Datenbanken sind in Abbil-
dung 5.1 dargestellt.

5 Es werden alle Bilder bis auf drei (Tiffany, Lena, Elaine) verwendet. Die Herausgeber der
Datenbank vertreten den Standpunkt, dass die Verwendung dieser Bilder aus ethischen
Gründen nicht mehr zeitgemäß sei und bieten deshalb die Dateien seit 2018 nicht mehr zum
Herunterladen an [136].

87

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Kodak Image Dataset (KODIM)

USC-SIPI Miscellaneous

USC-SIPI Aerials

USC-SIPI Textures

Abbildung 5.1: Exemplarische Darstellung einiger Testbilder

88

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

Es werden die folgenden Vergleiche durchgeführt:

1. Bestimmung des Mehrwerts des vorgeschlagenen Konturmodells

Testverfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertprädiktion

Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertprädiktion

2. Bestimmung des Mehrwerts des vorgeschlagenen Verfahrens zur
Abtastwertprädiktion

Testverfahren: Polynomielle Konturmodellierung mit neuronalen
Netzwerken als Abtastwertprädiktor

Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertprädiktion

In beiden Vergleichen wird das polynomielle Konturmodell in Kom-
bination mit der Along-contour-Abtastwertprädiktion verwendet, da in
den eigenen Vorarbeiten bereits gezeigt wurde, dass hierdurch die Codie-
rungseffizienz von HEVC verbessert werden kann.

Es werden Quantisierungsparameter im Bereich 1 bis 31 mit einem
Abstand von 5 festgelegt. Für die Durchführung der Simulationen wur-
de eine homogene Serverinfrastruktur mit Intel Xeon Gold 5120 CPUs
verwendet. Die Inferenz der neuronalen Netzwerke wurde ebenfalls auf
der CPU berechnet. Potentiell ließe sich die Inferenz durch eine GPU-
Beschleunigung schneller berechnen. Dieser Aspekt wird im Rahmen
dieser Arbeit nicht weiter betrachtet.

5.1.1 Mehrwert des vorgeschlagenen Konturmodells

In diesem Teilexperiment wird der Mehrwert des vorgeschlagenen Kon-
turmodells gegenüber dem polynomiellen Konturmodell aus der eigenen
Vorarbeit [69] evaluiert. Hierfür werden die gemessenen BD-Raten, das
BD-PSNR sowie die Erhöhung der Rechenkomplexität betrachtet. Die BD-
Raten und das BD-PSNR werden gemäß [7, 8] berechnet und nachfolgend
kurz anhand von Abbildung 5.2 skizziert. Der Beginn der Berechnung
ist für beide Metriken gleich. Sowohl für das Testverfahren als auch für
das Referenzverfahren werden die gemessenen Datenpunkte bestehend
aus Datenrate und PSNR als RD-Kurve aufgetragen. Zwischen den Da-
tenpunkten der jeweiligen Verfahren wird mittels stückweise kubischer
Splines interpoliert. Über die beiden Kurven wird nun integriert und die
Differenz, deshalb Bjøntegaard-Delta, der Flächen berechnet. Ab diesem
Schritt unterscheiden sich die beiden Metriken.

89

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Rate

PSNR

Rate

PSNR

BD-Rate BD-PSNR

Abbildung 5.2: Veranschaulichung der Berechnung von BD-Rate (links) und BD-
PSNR (rechts). Die BD-Rate misst die Datenratenveränderung bei
gleichbleibender Bildqualität. Dementsprechend impliziert ein ne-
gativer Wert eine verbesserte Codierungseffizienz. Das BD-PSNR
gibt die Qualitätsveränderung bei gleichbleibender Datenrate an.
Ein positiver Wert zeigt eine gesteigerte Codierungseffizienz an.

Mit der BD-Rate soll die Veränderung der Datenrate bei gleicher Qua-
lität gemessen werden. Hierfür wird der Bereich zwischen den beiden
RD-Kurven durch zwei zur Raten-Achse parallele Linien begrenzt und
jeweils zwischen diesen Grenzen integriert. Ein negativer Zahlenwert
bedeutet eine Verringerung der Datenrate bei gleichbleibender Qualität
und somit eine Verbesserung der Codierungseffizienz durch das Test-
verfahren im Vergleich zum Referenzverfahren. Mit dem BD-PSNR wird
hingegen die Veränderung des PSNR bei gleichbleibender Datenrate ge-
messen. Entsprechend werden die Grenzen und die Integrale wie in dem
rechten Teil der Abbildung 5.2 veranschaulicht bestimmt. Ein positiver
Zahlenwert bedeutet einen gestiegenen PSNR-Wert bei gleichbleibender
Datenrate, also eine Verbesserung der Codierungseffizienz. Da das PSNR
in Dezibel angegeben wird, wird das gleiche für das BD-PSNR umgesetzt.
Durch den abweichenden Integrationsbereich, der vom Verlauf der RD-
Kurven abhängt, lässt sich keine triviale Rechenvorschrift zur direkten
Umwandlung von BD-Raten in BD-PSNR-Werte angeben.

Die Komplexitätssteigerung wird als Quotient aus der Laufzeit des
Testverfahrens und des Referenzverfahrens ermittelt.

Die berechneten Metriken sind in Tabelle 5.1 zusammengefasst. Ferner
sind die BD-Raten und die Komplexitätssteigerung in den Abbildun-
gen 5.3 und 5.4 veranschaulicht. Es ist zu beobachten, dass die mittleren
Codierungsgewinne durch den Einsatz des vorgeschlagenen Konturmo-

90

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

Tabelle 5.1: Codierungsergebnisse für die CoMIC-Implementierung. Test-
verfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertprädiktion. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertprädiktion. Negative BD-Raten
sowie positive BD-PSNR-Werte zeigen eine gesteigerte Codierungs-
effizienz an. Die Komplexität ist als Quotient der Laufzeiten des
Testverfahrens und des Referenzverfahrens angegeben.

Blockgröße Bilddatenbank BD-Rate BD-PSNR [dB] Komplexität
Textures -0.5% 0.08 73
Aerials 0.0% 0.01 65
Miscellaneous -0.3% 0.05 110
Kodim -0.1% 0.02 24
Gesamt -0.2% 0.00 80
Textures -0.5% 0.08 60
Aerials -0.2% 0.03 46
Miscellaneous -1.0% 0.14 74
Kodim -0.9% 0.14 28
Gesamt -0.7% 0.11 59
Textures -1.6% 0.23 150
Aerials -0.6% 0.06 45
Miscellaneous -2.1% 0.29 74
Kodim -1.7% 0.27 62
Gesamt -1.6% 0.23 88
Textures -1.9% 0.26 1078
Aerials -1.1% 0.12 58
Miscellaneous -2.1% 0.32 97
Kodim -2.1% 0.34 111
Gesamt -1.9% 0.26 408

8x8

16x16

32x32

64x64

-2,5%

-2,0%

-1,5%

-1,0%

-0,5%

0,0%
Textures Aerials Miscellaneous Kodim Gesamt

BD
-R
at
e

8x8 16x16 32x32 64x64

Abbildung 5.3: BD-Rate für die CoMIC-Implementierung. Testverfahren: Stochasti-
sche Konturmodellierung mit Along-contour-Abtastwertprädiktion.
Referenzverfahren: Polynomielle Konturmodellierung mit Along-
contour-Abtastwertprädiktion. Negative Zahlenwerte zeigen eine
gesteigerte Codierungseffizienz an.

91

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

1

10

100

1 000
Textures Aerials Miscellaneous Kodim Gesamt

Ko
m

pl
ex

itä
t

8x8 16x16 32x32 64x64

Abbildung 5.4: Komplexitätssteigerung für die CoMIC-Implementierung. Test-
verfahren: Stochastische Konturmodellierung mit Along-contour-
Abtastwertprädiktion. Referenzverfahren: Polynomielle Konturmo-
dellierung mit Along-contour-Abtastwertprädiktion. Die Komple-
xität ist als Quotient der Laufzeiten des Testverfahrens und des
Referenzverfahrens angegeben.

dells gemittelt über alle Testbilder mit der Blockgröße steigen. Für Blöcke
der Größe 64 ⇥ 64 werden die größten Gewinne mit einer BD-Rate von
�1, 9% gemessen. Die Korrelation zwischen Blockgröße und Codierungs-
effizienz lässt sich in diesem Fall dadurch erklären, dass der Basiswert für
die Berechnung der Codierungseffizienz ebenfalls auf einer Konturmodel-
lierung, der weniger genauen polynomiellen Konturmodellierung, beruht.
Der bei der Extrapolation entstehende größere Fehler für das polynomi-
elle Konturmodell wird umso größer, je weiter die Kontur extrapoliert
wird. Des Weiteren kann beobachtet werden, dass die Effizienzsteigerung
von den zu codierenden Inhalten abhängt. Während die Verfahren für
klassische Fotografiemotive (KODIM und Miscellaneous) und Texturen gut
funktionieren, liegen die Werte für Luftbildaufnahmen (Aerials) jeweils
etwas niedriger. Die Steigerung der Komplexität liegt in Abhängigkeit
der Blockgröße zwischen 59 und 408. Hierbei ist bemerkenswert, dass die
Komplexität tendenziell mit der Blockgröße und bei Inhalten mit vielen
Konturen (Textures) steigt.

92

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

5.1.2 Mehrwert der vorgeschlagenen Abtastwertprädiktion

Die Auswertung dieses Teilexperiments zur Bewertung des Mehrwerts
des vorgeschlagenen Verfahrens zur Abtastwertprädiktion mittels neu-
ronaler Netzwerke gegenüber dem Along-contour-Referenzverfahren aus
den eigenen Vorarbeiten [65] und [69] erfolgt analog zum im vorherigen
Abschnitt beschriebenen Teilexperiment. Die neuronalen Netzwerke wur-
den wie in Kapitel 4 beschrieben trainiert. Es gibt keine Überlappung
zwischen den für das Training verwendeten Datenbanken und den für
die Evaluierung verwendeten Datenbanken. Die Codierungsergebnisse
sind in Tabelle 5.2 zusammengefasst. Die BD-Raten und die Komplexi-
tätssteigerung sind in den Abbildungen 5.5 und 5.6 visualisiert.

Tabelle 5.2: Codierungsergebnisse für die CoMIC-Implementierung. Testverfahren:
Polynomielles Konturmodellierung mit neuronalen Netzwerken als
Abtastwertprädiktor. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertprädiktion. Negative BD-Raten
sowie positive BD-PSNR-Werte zeigen eine gesteigerte Codierungseffi-
zienz an. Die Komplexität ist als Quotient der Laufzeiten des Testver-
fahrens und des Referenzverfahrens angegeben.

Blockgröße Bilddatenbank BD-Rate BD-PSNR [dB] Komplexität
Textures -3.2% 0.44 7.7
Aerials -2.3% 0.31 8.9
Miscellaneous -3.6% 0.53 9.2
Kodim -3.5% 0.58 8.5
Gesamt -3.5% 0.47 8.7
Textures -6.1% 0.86 22.0
Aerials -5.9% 0.76 25.4
Miscellaneous -7.8% 1.12 29.2
Kodim -7.2% 1.11 23.9
Gesamt -7.2% 1.00 26.2
Textures -7.4% 1.11 23.8
Aerials -6.7% 0.85 27.4
Miscellaneous -9.9% 1.42 30.7
Kodim -8.8% 1.35 26.4
Gesamt -8.8% 1.23 28.3
Textures -6.7% 1.04 25.2
Aerials -5.3% 0.70 30.6
Miscellaneous -7.9% 1.24 29.9
Kodim -7.3% 1.10 28.7
Gesamt -6.6% 1.02 29.2

8x8

16x16

32x32

64x64

In Abhängigkeit der Blockgröße liegen die mittleren BD-Raten zwischen
�3, 5% für 8 ⇥ 8-Blöcke und �8, 8% für 32 ⇥ 32-Blöcke. Für 64 ⇥ 64-
Blöcke sind die Codierungsgewinne etwas geringer als für die Block-
größen 16 ⇥ 16 und 32 ⇥ 32. Für jede Blockgröße lässt sich beobachten,
dass die größten Codierungsgewinne für die Kategorien Miscellaneous

93

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

und KODIM, in denen klassischen Fotografiemotive zu finden sind, am
größten sind. Dieses lässt sich damit erklären, dass diese Inhalte auch in
der für das Training der neuronalen Netzwerke verwendeten Datenbank
abgebildet sind. Die Bilder mit den spezielleren Inhalten in den Katego-
rien Textures und Aerials, die nicht Bestandteil der Trainingsdatenbank
sind, führen zu geringeren Gewinnen. Dass trotzdem Gewinne messbar
sind erschließt sich dennoch leicht, da beispielsweise auch in normalen
Fotografien Texturen vorkommen. Die Komplexitätssteigerung liegt für
die meisten Blockgrößen zwischen 20 und 30, für die kleinste Blockgröße
unter 10.

-10%
-9%
-8%
-7%
-6%
-5%
-4%
-3%
-2%
-1%
0%

Textures Aerials Miscellaneous Kodim Gesamt

BD
-R
at
e

8x8 16x16 32x32 64x64

Abbildung 5.5: BD-Rate für die CoMIC-Implementierung. Testverfahren: Polyno-
mielles Konturmodellierung mit neuronalen Netzwerken als Ab-
tastwertprädiktor. Referenzverfahren: Polynomielle Konturmodel-
lierung mit Along-contour-Abtastwertprädiktion. Negative Zahlen-
werte zeigen eine gesteigerte Codierungseffizienz an.

Es konnte gezeigt werden, dass die vorgeschlagenen Verfahren die
korrespondierenden Verfahren aus den Vorarbeiten jeweils verbessern.
Somit ist die Kombination der beiden vorgeschlagenen Verfahren zu
einem Intra-Codierungsverfahren erfolgsversprechend. Noch nicht be-
rücksichtigt wurde in den bisherigen Experimenten, dass dieses Intra-
Codierungsverfahren in realen Videocodecs mit anderen Codierungsver-
fahren kombiniert würde. Die Erkenntnis, wie sich die Codierungseffizi-
enz in Kombination mit den existierenden Verfahren verhält, kann nur
durch die Integration des vorgeschlagenen Intra-Codierungsverfahrens
in einen Videocodec erlangt werden. Das entsprechende Experiment wird
in Abschnitt 5.2 geschildert.

Einige exemplarische Beispiele für mit den vorgeschlagenen Verfahren
erzeugte Prädiktionssignale sind in Abbildung 5.7 visualisiert. In der
oberen Reihe ist jeweils das Originalsignal zu dem prädizierten Signal in

94

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

0

5

10

15

20

25

30

35
Textures Aerials Miscellaneous Kodim Gesamt

Ko
m
pl
ex
itä

t

8x8 16x16 32x32 64x64

Abbildung 5.6: Komplexitätssteigerung für die CoMIC-Implementierung. Test-
verfahren: Testverfahren: Polynomielles Konturmodellierung mit
neuronalen Netzwerken als Abtastwertprädiktor. Referenzver-
fahren: Polynomielle Konturmodellierung mit Along-contour-
Abtastwertprädiktion. Die Komplexität ist als Quotient der Lauf-
zeiten des Testverfahrens und des Referenzverfahrens angegeben.

Abbildung 5.7: Beispiele für die Prädiktion mit dem vorgeschlagenen Verfahren.
Obere Reihe: Originalsignal, untere Reihe: Prädiktion.

der unteren Reihe gezeigt. Die Beispiele zeigen sowohl die Limitierungen
der Verfahren als auch Fälle in denen die Prädiktion gut funktioniert. Im
ersten Beispiel wird das Signal im Bereich des zu codierenden Blocks
dunkel, im letzten Beispiel kann nicht prädiziert werden, dass die Gitter-
stäbe teilweise hintereinander liegen. Beides ist aus dem Referenzbereich
nicht ersichtlich. Mit dem Beispiel ganz rechts kann gezeigt werden, dass
auch Blöcke mit mehreren Konturen in unterschiedlichen Richtungen
zuverlässig prädiziert werden können. Weitere Beispiele für prädizierte
Signale sind in Abbildung 5.8 dargestellt.

95

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Abbildung 5.8: Weitere Prädiktionsbeispiele

5.1.3 Einordnung von Codierungseffizienz und Komplexitätssteigerung

Der Vorschlag neuer Codierungsverfahren erfordert eine Abwägung
zwischen der Steigerung der Codierungseffizienz und der hiermit ein-
hergehenden Steigerung des Rechenaufwands. In der Regel ist es durch
das Einführen zusätzlicher Codierungsverfahren nicht möglich, die Co-
dierungseffizienz zu steigern und gleichzeitig den Rechenaufwand zu
senken. Somit ist zu bewerten, ob der zusätzliche Rechenaufwand für die
Steigerung der Codierungseffizienz vertretbar ist. In Abbildung 5.9 sind
für die unterschiedlichen Experimente, das heißt die Vergleiche der Kon-
turmodelle sowie der Abtastwertprädiktoren, jeweils für vier Blockgrößen
die BD-Raten über der Steigerung des Rechenaufwands aufgetragen. Die
Komplexitätssteigerung wird hierbei, wie auch im vorherigen Abschnitt,
als Quotient aus der Laufzeit des Testverfahrens und der Laufzeit des Re-
ferenzverfahrens gemessen. Die Datenpunkte der jeweiligen Datenreihen
für den Vergleich der Abtastwertprädiktoren sind tendenziell vertikal
verteilt während die Datenpunkte für den Vergleich der Konturmodelle
eine starke horizontale Spreizung aufweisen.

Der Rechenaufwand für die Inferenz mit den neuronalen Netzwerken
ist unabhängig von dem als Eingang anliegenden Signal. Deshalb ist
es leicht ersichtlich, dass die zu einer Blockgröße gehörenden Daten-
punkte mit einem sehr ähnlichen Rechenaufwand codiert wurden. Es
ist ebenfalls zu beobachten, dass die Komplexität für die Blockgrößen
16 ⇥ 16 bis 64 ⇥ 64 in einer ähnlichen Größenordnung ist während sie
für 8 ⇥ 8-Blöcke geringer ist. Dieses lässt sich über die unterschiedlichen

96

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

2%
1 10 100 1000

BD
-R

at
e

Komplexität

8x8 Stochastisch-Polynomiell 16x16 Stochastisch-Polynomiell

32x32 Stochastisch-Polynomiell 64x64 Stochastisch-Polynomiell
8x8 Netzwerk-Along 16x16 Netzwerk-Along

32x32 Netzwerk-Along 64x64 Netzwerk-Along

Abbildung 5.9: Einordnung von Verbesserung der Codierungseffizienz und hier-
mit einhergehender Komplexitätssteigerung für die CoMIC-
Implementierung. Syntax für Legendeneinträge: Blockgröße
Testverfahren-Referenzverfahren. Negative BD-Raten zeigen eine
gesteigerte Codierungseffizienz an. Die Komplexität ist als Quoti-
ent der Laufzeiten des Testverfahrens und des Referenzverfahrens
angegeben.

Filter- und Schichtanzahlen der Netzwerke erklären. Die Qualität der
Prädiktion durch das neuronale Netzwerk hingegen hängt sehr wohl von
dem Eingangssignal ab. Hierdurch ist es erklärbar, dass die Steigerung
der Codierungseffizienz gemessen als BD-Rate für die unterschiedlichen
Bilder schwankt.

Für den Vergleich der beiden Konturmodelle sind die Schwankun-
gen innerhalb der Datenreihen für die unterschiedlichen Blockgrößen
größer. Dieses lässt sich hiermit begründen, dass die Komplexität der

97

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

stochastischen Konturmodellierung durch die für die Optimierung der
Hyperparameter der Kovarianzfunktion notwendige Matrixinvertierung
gemäß Gleichung 3.14 kubisch mit der Anzahl an Konturpixeln N an-
steigt, O

�
N3�. Die Konturlängen können für verschiedene Bilder unter-

schiedlich sein und steigen tendenziell mit der Blockgröße. Dieses lässt
sich ebenfalls in den Messwerten beobachten.

Die vorgeschlagenen Verfahren verursachen eine nicht zu vernachlässi-
gende Steigerung der Rechenkomplexität im Vergleich zu den Referenz-
verfahren. Es ist daher von Interesse zu ergründen, welche Teilverfahren
für die gesteigerte Komplexität verantwortlich sind. Hierfür wurde ei-
ne detaillierte Analyse des Laufzeitverhaltens der Software mit einem
sogenannten Profiler durchgeführt. Mit einem geeigneten Profiler lässt
sich messen, wie viel Rechenzeit jede Zeile des Programmcodes für die
Ausführung benötigt. Es wurde der Profiler Callgrind verwendet. Die
Berechnungen erfolgten auf einer Intel Core i9-9900K CPU. Es wird für
die beiden in den Abschnitten 5.1.1 und 5.1.2 geschilderten Experimente
das gleiche Bild mit den gleichen Parametern codiert. Die wesentlichen
Ergebnisse der Analyse werden im Folgenden näher ausgeführt.

In Abbildung 5.10 sind die Ergebnisse für die Codierung mit dem
polynomiellen Konturmodell und dem neuronalen Netzwerk als Ab-
tastwertprädiktor veranschaulicht. Es lässt sich schlussfolgern, dass die
Abtastwertprädiktion die Rechenkomplexität dominiert: Die Inferenz mit
dem neuronalen Netzwerk ist für 93,9% der Rechenzeit verantwortlich.
Die weiteren nennenswerten Teilverfahren mit Bezug auf die Rechenkom-
plexität sind die Konturdetektion mit 4,5%, die Konturvorverarbeitung
mit 0,1% sowie die Konturmodellierung mit dem polynomiellen Kontur-
modell mit 0,7% der Rechenzeit. Die restlichen Teilverfahren sind für die
verbleibenden 0,8% der Rechenzeit verantwortlich.

Die Ergebnisse für das Experiment mit dem stochastischen Kontur-
modell in Kombination mit dem neuronalen Netzwerk sind in Abbil-
dung 5.11 visualisiert. Es ist ersichtlich, dass in diesem Fall die Rechen-
komplexität durch die Konturmodellierung dominiert wird. Ein Großteil
der Rechenzeit, 95,4%, lassen sich der Cholesky-Zerlegung gemäß Glei-
chung 3.14 zuordnen. Die Konturdetektion kommt auf 0,1%, die Inferenz
mit dem neuronalen Netzwerk auf 3%, die Konturextrapolation mit dem
Gauß-Prozess auf 0,2%. Die sonstigen Teilschritte verursachen zusammen
1,3% der Rechenzeit.

Zusammenfassend lässt sich festhalten, dass die Inferenz mit dem
neuronalen Netzwerk sowie die Cholesky-Zerlegung für einen Großteil
der Rechenzeit verantwortlich sind. Es ist anzunehmen, dass diese durch
weitergehende Optimierung potentiell beschleunigt werden können. Die
Inferenz könnte durch die sehr reguläre Architektur von neuronalen

98

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.1 integration in einen bildcodec

Netzwerken durch eine geeignete Hardwarebeschleunigung in kommer-
ziellen Implementierungen optimiert werden. Die Cholesky-Zerlegung
könnte höchstwahrscheinlich durch eine hochoptimierte Implementie-
rung oder durch eine Annäherung mit geeigneten Verfahren beträchtlich
beschleunigt werden.

4.5%

0.1%
0.7%

93.9%

0.8%

6.1%

Konturdetektion
Konturvorverarbeitung
Konturmodellierung
Inferenz mit neuronalem Netzwerk
Sonstiges

Abbildung 5.10: Analyse der Rechenkomplexität für das polynomielle Konturmo-
dell mit neuronalem Netzwerk als Abtastwertprädiktor

Abschließend erscheint es sinnvoll festzuhalten, dass bei der Einord-
nung der Codierungsgewinne zu berücksichtigen ist, dass sich diese auf
einen Versuch mit dem selbstentwickelten Bildcodec CoMIC beziehen,
in dem als Referenzverfahren lediglich die eigenen Vorarbeiten verwen-
det werden. Dieses Experiment ermöglicht lediglich eine Einordnung
der vorgeschlagenen Verfahren mit Bezug auf die Verfahren aus der
eigenen Vorarbeit. Um eine Einordnung der Codierungseffizienz der
vorgeschlagenen Verfahren mit dem Stand der Technik zu ermöglichen,
ist dieses Experiment ungeeignet. Hierfür ist eine Integration der vorge-
schlagenen Verfahren in einen Videocodec notwendig. Das entsprechende
Experiment wird im restlichen Verlauf dieses Kapitels erörtert.

99

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

0.1%

95.4%

3.0%

0.2%

1.3%

4.6%

Konturdetektion
Cholesky-Zerlegung (Gaußprozess)
Inferenz mit neuronalem Netzwerk
Konturextrapolation mit Gaußprozess
Sonstiges

Abbildung 5.11: Analyse der Rechenkomplexität für das stochastische Konturmo-
dell mit neuronalem Netzwerk als Abtastwertprädiktor

100

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

5.2 integration in einen videocodec

Zunächst wird die Implementierung in der HM-Software, hierbei handelt
es sich um die in der Programmiersprache C++ geschriebene Referenzim-
plementierung des HEVC-Standards, anhand von Abbildung 5.12 erläutert.
Die vorgeschlagenen Verfahren werden als zusätzliches Codierungsver-
fahren parallel zu den existierenden Codierungsverfahren implementiert.
Die zu codierenden Bilder werden gemäß des in Kapitel 2 beschriebe-
nen Partitionierungsverfahrens in Blöcke aufgeteilt. Die vorgeschlage-
nen Verfahren werden für jede Prädiktionstiefe auf CU-Ebene getestet.
Hierfür wird eine Prädiktion erzeugt, in dem zuerst das Verfahren zur
Konturmodellierung und dann das Verfahren zur Abtastwertprädiktion
eingesetzt werden. Der bei der Prädiktion entstehende Prädiktionsfehler
wird mit dem ebenfalls in Kapitel 2 beschriebenen Verfahren transforma-
tionscodiert. Hierbei kann der Fehlerblock durch den TU-Baum weiter
partitioniert werden.

Transformation+

HEVC-Intra/
HEVC-Inter

-

Quantisierung

Inverse
Transformation

Entropie-
codierung

+

Bitstrom

Quantisierte
Transformations-

koeffizienten

Prädiktions-
fehler

Prädiziertes
Signal

Original-
signal

Rekonstruiertes
Signal

Transformations-
koeffizienten

Approximierter
Prädiktions-

fehler

Speicher

CoMICRate-Distortion-
Optimierung

Mode-Auswahl

Abbildung 5.12: Integration der vorgeschlagenen Verfahren in einen Videocodec

Die Rate-Distortion-Optimierung wird im Encoder dazu genutzt, um
mit der Encodersteuerung diejenige Kombination aus Partitionierung,
Modeauswahl und Parameterwahl für die Modi zu finden, welche die
geringsten RD-Kosten verursacht. Das CoMIC-Verfahren wird ausgewählt,
wenn es in Kombination mit einer gefundenen Partitionierung für eine
CU die beste Wahl mit Bezug auf die RD-Kosten ist. Die Modeauswahl als
ein Ergebnis der Rate-Distortion-Optimierung muss als Teil des Bitstroms
an den Decoder signalisiert werden, da der Decoder mangels des nur
am Encoder vorliegenden Originalsignals keine eigene Rate-Distortion-

101

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Optimierung durchführen kann. Es wird ein zusätzliches Bin6 namens
comic_flag in die CU-Syntax, §7.3.8.5 des HEVC-Standards, eingeführt.
Dieses Bin wird mittels CABAC unter Verwendung eines während der
Codierung fortlaufend auf Basis zuvor codierter Syntaxelemente ange-
passten Kontexts codiert. Die Initialisierung des Kontexts erfolgt auf
die gleichen Werte wie für das Syntaxelement pred_mode_flag, welches
die Entscheidung zwischen Intra- und Intra-Codierung signalisiert. Die
Erweiterung der Syntaxtabelle ist in Tabelle 5.3 hervorgehoben.

Tabelle 5.3: Syntaxtabelle für die Integration in einen Videocodec. Ein Bin in der
CU-Syntax dient der Signalisierung, ob das vorgeschlagene Verfahren
für die Codierung eines Blocks verwendet wird. Die Tabelle basiert auf
§7.3.8.5 des HEVC-Standards. Ergänzungen wurden in gelb hinterlegt.
ae(v) steht für ein Syntaxelement, welches mit binärer arithmetischer
Entropiecodierung unter Verwendung eines während der Codierung
fortlaufend auf Basis zuvor codierter Syntaxelemente angepassten
Kontexts codiert wird.

coding_unit(x0, y0, log2CbSize) { Descriptor
 if(transquant_bypass_enabled_flag)
 cu_transquant_bypass_flag ae(v)
 if(slice_type != I)
 cu_skip_flag[x0][y0] ae(v)
 nCbS = (1 << log2CbSize)
 if(cu_skip_flag[x0][y0])
 prediction_unit(x0, y0, nCbS, nCbS)
 else {
 if(slice_type != I)
 pred_mode_flag ae(v)
 if(CuPredMode[x0][y0] != MODE_INTRA | | log2CbSize = = MinCbLog2SizeY)
 part_mode ae(v)
 if(CuPredMode[x0][y0] = = MODE_INTRA) {
 comic_flag[x0][y0] ae(v)
 if (!comic_flag[x0][y0]) {
 […]
 }
 }
 } else {
 […]
 }
 […]
 }
}

6 Zum Unterschied zwischen Bins und Bits siehe Fußnote 14 in Kapitel 2.

102

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Die Semantik für das eingeführte Syntaxelement lautet:

comic_flag[x0][y0] equal to 1 specifies that the CoMIC mode is
used to code the current coding unit. comic_flag[x0][y0] equal
to 0 specifies that the coding unit is not coded with the CoMIC
mode. The array indices x0, y0 specify the location (x0,y0) of the
top-left luma sample of the considered coding block relative to
the top-left luma sample of the picture. When not present, the
value of comic_flag is inferred to be equal to 0.

Es ist ersichtlich, dass nur geringfügige Änderungen an Syntax und
Semantik zur Integration der vorgeschlagenen Verfahren notwendig sind.

Als Metriken werden die Datenrate des sich ergebenen Bitstroms sowie
der MSE und hieraus berechnet das PSNR zur Qualitätsbeurteilung ver-
wendet. Aus den Datenraten und den PSNR-Werten lassen sich wie zuvor
beschrieben die BD-Raten berechnen. Die Encoderlaufzeit wird ebenfalls
gemessen. Für diese ist eine deutliche Steigerung zu erwarten, da im
Rahmen der RD-Optimierung die vorgeschlagenen Verfahren für jede
Blockgröße getestet werden. Dies impliziert, dass jedes Pixel — wie auch
für andere Prädiktionsverfahren — mehrfach durch die vorgeschlagenen
Verfahren prädiziert werden muss, weil die Ergebnisse für eine Blockgrö-
ße weder für die Prädiktion mit anderen Blockgrößen wiederverwendet
werden noch kombiniert werden können. Für die Integration in einen
Videocodec wird zusätzlich die Decoderlaufzeit analysiert. Anders als
bei der zuvor betrachteten CoMIC-Implementierung ist die Decoderlauf-
zeit für die HM-Implementierung von Relevanz. Der Unterschied ergibt
sich aus der Verfügbarkeit von alternativen Prädiktionsverfahren gemäß
des HEVC-Standards, welche auf Blockebene anstatt des vorgeschlagenen
Verfahrens verwendet werden können. Da die vorgeschlagenen Verfahren
nur dann eingesetzt werden, wenn sie im Rahmen der RD-Optimierung
zu den geringsten Kosten führen, hängt die Veränderung der Decoder-
laufzeit von der Verwendungshäufigkeit der vorgeschlagenen Verfahren
ab. Die Verwendungshäufigkeit wird ebenfalls gemessen.

Im Folgenden wird der Experimentaufbau für die Evaluierung der
vorgeschlagenen Verfahren in einem Videocodec ausgeführt. Im Rah-
men der Standardisierungsaktivitäten für HEVC wurden Common Test
Conditions (CTC) für die Evaluierung von auf HM aufbauenden Codie-
rungsverfahren festgelegt [10]. Die Motivation für die Verwendung der
CTC ergibt sich daraus, dass diese präzise definierte Einstellungen des
Encoders vorgeben, um so eine Vergleichbarkeit von Ergebnissen zu er-
möglichen. Im Gegensatz hierzu setzen kommerzielle Encoder auf eine
Vielzahl von Encoder-Optimierungen und Ratenkontroll-Algorithmen.

103

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Da sich hierdurch viele Effekte überlagern, ist es schwierig den Mehr-
wert von neuen Codierungsverfahren zu messen. Deshalb werden in der
Literatur und in den Standardisierungsgremien Encodereinstellungen
ohne viele Optimierungen und Ratenkontrolle verwendet [140].

In den CTC sind drei Konfigurationen definiert:

1. All Intra: In dieser Konfigurationen werden alle Bilder ohne Refe-
renzierung anderer, zuvor codierter, Bilder, beispielsweise mittels
bewegungskompensierender Prädiktion, codiert. Hierdurch sollen
die Intra-Prädiktionsverfahren sowie die Prädiktionsfehlercodie-
rung für die durch die Intra-Prädiktion erzeugten Prädiktionsfehler
evaluiert werden. Die Einzelbildcodierung kann als Spezialfall für
die Anwendung dieser Konfiguration gesehen werden.

2. Low Delay: Diese Konfiguration zielt auf Anwendungen die eine
geringe Latenz erfordern. Hierzu zählen beispielsweise Videokon-
ferenzen. Das erste Bild einer Sequenz kann ausschließlich intra-
prädiziert werden. Für die Blöcke in den weiteren Bildern der Se-
quenz kann bei dieser Konfiguration zusätzlich zur Intra-Prädiktion
die Inter-Prädiktion mit Referenz auf zuvor angezeigte Bilder ver-
wendet werden. Da die Bilder in der gleichen Reihenfolge codiert
werden, in der sie auch angezeigt werden, ergibt sich keine durch
die GOP-Struktur bedingte Latenz.

3. Random Access: Mit dieser Konfiguration werden klassische Rund-
funk-Anwendungen sowie andere Anwendungen mit der Notwen-
digkeit eines wahlfreien Zugriffs, beispielsweise Streaming oder
Blu-rays, abgebildet. Die Bilder werden einer hierarchischen GOP-
Struktur entsprechend codiert. Für die zu codierenden Blöcke kön-
nen sowohl die Intra-Prädiktion als auch die Inter-Prädiktion ein-
gesetzt werden. Im Gegensatz zur Low Delay-Konfiguration können
in der Random Access-Konfiguration nicht nur vorherige sondern
auch zukünftige Bilder referenziert werden. Dieses wird dadurch
ermöglicht, dass sich die Codierungsreihenfolge der Bilder von
deren Anzeigereihenfolge unterscheidet. Hierdurch entsteht eine
zusätzliche Latenz für den Decodierungsprozess. In regelmäßigen
Abständen wird ein ausschließlich intra-codiertes Bild verwendet,
um den wahlfreien Zugriff zu ermöglichen. Für diesen Abstand
wird in Abhängigkeit der Bildwiederholrate der jeweiligen Sequenz
dasjenige Vielfache der GOP-Größe von 8 gewählt, dass einem I-
Bild-Abstand von einer Sekunde am nächsten kommt.

In den CTC werden ferner 24 Videosequenzen mit unterschiedlichen
Auflösungen und Charakteristiken aufgeführt. Diese werden ebenfalls

104

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

alle für die vorliegende Arbeit verwendet. Die Quantisierungsparameter
werden, ebenfalls den CTC folgend, auf 22, 27, 32, und 37 festgelegt.

Für die Evaluierung der vorgeschlagenen Verfahren werden die CTC in
zwei Punkten erweitert, um zusätzliche Experimente durchzuführen.

Zum einen ließe sich gegen die Verwendung der CTC-Sequenzen ein-
wenden, dass diese auch für die Entwicklung des HEVC-Standards ver-
wendet wurden. Deshalb werden zusätzliche Sequenzen codiert und die
Ergebnisse getrennt angegeben. Es handelt sich um die Bristol Vision
Institute (BVI)-Texturdatenbank [97] und die Bike-Datenbank [68]. In der
erstgenannten beinhalten die Sequenzen verschiedene Texturen. Die Se-
quenzen sind wie die CTC-Sequenzen unkomprimiert. Bei den Sequenzen
aus der zweiten zusätzlichen Datenbank handelt es sich um sogenannten
User-generated Content, der anders als die CTC- und BVI-Sequenzen nicht
mit höchstqualitativen Kameras aufgenommen wurde. Die Sequenzen
wurden bereits in der Kamera codiert. Es handelt sich also bei den durch-
geführten Experimenten für diese Sequenzen um eine Transcodierung.
Dieses entspricht der typischen Anwendung für diese Art von Inhalten.
Bei beidem handelt es sich um wichtige Charakteristiken, die in den CTC-
Sequenzen unterrepräsentiert sind. Die zusätzlichen Ergebnisse werden
getrennt präsentiert.

Zum anderen wurde in der eigenen Vorarbeit [70] erkannt, dass die
Verwendung der vier in den CTC definierten Quantisierungsparameter
zu teils unrealistisch hohen Qualitäten und Datenraten führt. So werden
4K-Sequenzen mit teils über 200 MBit/s codiert, während für die gleiche
Auflösung in realen Streaming-Anwendungen teils nur etwas mehr als
ein Zehntel hiervon verwendet wird [89]. Auch die Qualität des rekonstru-
ierten Videos ist mit teils über 45dB für mit einer Kamera aufgenommene
Videosequenzen und über 50dB für computergenerierte Sequenzen sehr
hoch. Narroschke gibt für Rundfunkqualität einen Wert von 36dB an [88].
Deshalb wird ein zusätzlicher Satz an Quantisierungsparametern, 32,
37, 42, 47, verwendet. Die Verwendung dieser Quantisierungsparameter
führt zu niedrigeren Qualitäten und Datenraten, wie sie insbesondere für
Streaming-Anwendungen über Mobilfunknetze, Echtzeitanwendungen
wie Videokonferenzen oder noch häufiger bei der Videotelefonie mit mo-
bilen Endgeräten zu beobachten sind. Auch hier werden die Ergebnisse
separat angegeben.

Zur Verringerung des Rechenaufwands wurden von jeder Sequenz
die ersten 64 Bilder codiert. Unter Berücksichtigung der Tatsache, dass
in dieser Arbeit Intra-Codierungsverfahren vorgeschlagen werden, er-
scheint diese Einschränkung vertretbar. Für Intra-Codierungsverfahren
erscheint durch die Codierung von 64 Bildern von einer hohen Anzahl an
unterschiedlichen Testsequenzen der zu erwartende Erkenntnisgewinn

105

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

höher zu sein als durch die Codierung von jeweils mehr Bildern von we-
niger Sequenzen. Diese Annahme wird gestärkt durch die Beobachtung,
dass lediglich eine der über fünfzig verwendeten Testsequenzen (Kimono)
einen Szenenwechsel enthält.

Die verwendeten Testsequenzen werden in Abbildung 5.13 veranschau-
licht.

106

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Class A (4K)

Class B (1080p)

Class C (WVGA)

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

Abbildung 5.13: Veranschaulichung der verwendeten Testsequenzen

107

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Für die Messung der Codierungseffizienz werden die BD-Raten [7, 8]
mit der Implementierung aus [10] berechnet. Für die drei Farbraumkom-
ponenten sind jeweils PSNR-Werte messbar — pro QP einer. Die jeweiligen
Werte werden mit PSNRY, PSNRCb und PSNRCr bezeichnet. Bei der Vi-
deocodierung entsteht ein Bitstrom, der alle drei Farbraumkomponenten
gemeinsam repräsentiert. Hierdurch ist es schwierig, einzelne Bitanzah-
len den jeweiligen Komponenten zuzuordnen. Typischerweise verursacht
die Luma-Komponente einen höheren Anteil der Gesamtdatenrate als die
Chroma-Komponenten. Deshalb werden die Ergebnisse als gewichtete
Überlagerung der Ergebnisse der einzelnen Farbraumkomponenten be-
rechnet. Als Gewichtungsfaktoren werden für 4:2:0-Farbuntertastungen
in der Regel die Werte 6/1/1 für die Komponenten Y/Cb/Cr und die
Faktoren 4/1/1 für 4:4:4-Farbunterabtastungen verwendet.

Für die Berechnung der gewichteten Überlagerung stehen zwei Vorge-
hensweisen zur Auswahl: Entweder könnten zunächst drei BD-Raten für
die einzelnen Komponenten (BDY, BDCb, BDCr) berechnet und anschlie-
ßend durch gewichtete Überlagerung die BD-Rate für die drei Farbraum-
komponenten gemeinsam (BDYCbCr) ermittelt werden:

BDY = BD (r, PSNRY) , (5.3)

BDCb = BD (r, PSNRCb) , (5.4)

BDCr = BD (r, PSNRCr) , (5.5)

BDYCbCr =
6 ⇥ BDY + BDCb + BDCr

8
. (5.6)

Hierbei steht BD(r, PSNRY/Cb/Cr) für die Berechnung der BD-Rate in Ab-
hängigkeit der als Argument angegebenen Gesamt-Datenraten r sowie
der zu der entsprechenden Farbraumkomponente gehörenden PSNR-
Werte. Alternativ könnten zunächst die PSNR-Werte überlagert werden,
um anschließend eine BD-Rate für die Gesamt-Datenrate und den gewich-
teten PSNR-Mittelwert zu berechnen:

PSNRYCbCr =
6 ⇥ PSNRY + PSNRCb + PSNRCr

8
, (5.7)

BDYCbCr = BD (r, PSNRYCbCr) . (5.8)

In dem internationalen Standardisierungsgremium JVET von ISO, IEC
und ITU-T für Videocodierung wird die Auffassung vertreten, dass die
Variante aus Gleichung 5.8 vorzuziehen sei, da bei der Variante aus
Gleichung 5.6 Ausreißer in den Chroma-Komponenten einen zu starken
Einfluss hätten [114]. Deshalb wird für diese Arbeit die Variante aus
Gleichung 5.8 verwendet.

108

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Die folgenden Kombinationen an Codierungsverfahren werden unter-
sucht:

1. Polynomielles Konturmodell +
Abtastwertprädiktion mit neuronalen Netzwerken

2. Stochastisches Konturmodell +
Abtastwertprädiktion mit neuronalen Netzwerken

Die Beschränkung auf diese beiden Kombinationen wird damit begrün-
det, dass bereits in dem Experiment mit dem CoMIC-Codec gezeigt wurde,
dass die Abtastwertprädiktion mit neuronalen Netzwerk überlegen mit
Bezug auf die Along-contour-Abtastwertprädiktion ist und der Rechen-
aufwand für die Durchführung der Simulationen somit begrenzt werden
kann.

5.2.1 Polynomielles Konturmodell und Abtastwertprädiktion mit neuronalen
Netzwerken

Zunächst wird in diesem Abschnitt die Kombination aus dem polyno-
miellen Konturmodell aus der Vorarbeit [69] und dem in dieser Arbeit
vorgeschlagenen Verfahren zur Abtastwertprädiktion mittels neuronaler
Netzwerke evaluiert. Eine tabellarische Übersicht der BD-Raten für alle
Konfigurationen befindet sich in Tabelle 5.4.

Es ist ersichtlich, dass für fast alle Sequenzen eine Verbesserung der
Codierungseffizienz gemessen wird. Die Tatsache, dass trotz der Rate-
Distortion-Optimierung für einige wenige Sequenzen Verluste gemessen
werden können, lässt sich damit erklären, dass in der gewählten Imple-
mentierung die Entscheidung für das Codierungsverfahren basierend
auf der Luma-Komponente getroffen werden muss, bevor die Codierung
der Chroma-Komponenten beginnt. In einzelnen Fällen kann es dazu
kommen, dass die Codierung für eine Chroma-Komponente nicht so
gut funktioniert, obwohl für die Luma-Komponente ein gutes Ergebnis
erzielt wurde und der CoMIC-Mode deshalb ausgewählt wurde. Da die
Datenraten für die drei Komponenten nicht getrennt betrachtet werden
können, hat dieses einen nicht vermeidbaren Einfluss auf die BD-Raten.
Hierzu lässt sich die Hypothese aufstellen, dass die Codierungsgewinne
durch eine ausgefeiltere RD-Optimierung höchstwahrscheinlich weiter
gesteigert werden könnten.

Für All Intra werden BD-Raten von bis zu �3.44% gemessen. Inte-
ressante Erkenntnisse lassen sich durch die Analyse, für welche Arten
von Sequenzen die größten Gewinne erzielt werden, gewinnen. Hierfür
werden die Mittelwerte im unteren Bereich der Tabelle 5.4 betrachtet. Aus

109

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

den Daten geht hervor, dass die größten Gewinne für Sequenzen mit
sehr großen Auflösungen (Class A, 4K) und mit User-generated Content
erzielt werden. Die geringsten Gewinne beziehungsweise teilweise sogar
Verluste werden für Sequenzen mit sehr geringen Auflösungen (Class
D, 416 ⇥ 240) und computergenerierten Inhalten (Class F, Screen Content)
gemessen.

Die für die Prädiktion verwendeten neuronalen Netzwerke wurden
mit Trainingsdaten trainiert, in denen Auflösungen von 3008 ⇥ 2000,
4288⇥ 2848 und 4928⇥ 3264 vorkommen. Diese Auflösungen sind in der
gleichen Größenordnung wie die Auflösung der 4K Sequenzen, was nahe
legt, dass die Signalcharakteristiken ähnlicher als bei den sehr niedrigen
Auflösungen sind. Die User-generated Content-Sequenzen wurden mit ei-
ner nicht-professionellen Kamera aufgenommen. Verglichen mit den mit
professionellen Kameras aufgenommenen CTC-Sequenzen haben diese
Sequenzen eine geringere Ausgangsqualität, beispielsweise in Bezug auf
das Vorhandensein hoher Frequenzen. Dieses begünstigt die Prädiktion
mit den per SATD trainierten Netzwerken ebenfalls. Da computergene-
rierte Inhalte in den Trainingsdaten der Netzwerke nicht vorkommen, ist
es wenig verwunderlich, dass das vorgeschlagene Codierungsverfahren
hierfür nicht so effizient funktioniert.

Des Weiteren ist festzustellen, dass die Codierungsgewinne im Mittel
für die Konfigurationen Random Access und Low Delay in der gleichen
Größenordnung wie die Gewinne für All Intra sind. Dieses zeigt, dass
Intra-Codierungsverfahren auch für Bilder, für die eine bewegungskom-
pensierende Prädiktion verwendet werden kann, von großer Bedeutung
sind. Auch in diesen Bildern wird ein Anteil der Blöcke intra-codiert,
beispielsweise neu im Bild erscheinende Inhalte. Für die Interpretation
der Ergebnisse sind zwei Aspekte zu berücksichtigen: Zum einen werden
weniger Blöcke intra-codiert als in der All Intra-Konfiguration7. Zum an-
deren ist die Gesamtdatenrate niedriger. Wenn nun davon ausgegangen
wird, dass die absoluten Datenrateneinsparungen für die intra-codierten
Blöcke vergleichbar sind und diese für die BD-Raten-Berechnung mit
der Gesamtdatenrate in Bezug gesetzt werden, dann lässt sich erklä-
ren, warum auch für die Random Access- und Low Delay-Konfiguration
nennenswerte Codierungsgewinne erzielt werden.

7 Ein entsprechender Nachweis wird im weiteren Verlauf des Kapitels bei der Analyse der
Verwendungshäufigkeit erbracht.

110

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Tabelle 5.4: BD-Raten für die HM-Implementierung des polynomiellen Konturmo-
dells in Kombination mit neuronalen Netzwerken zur Abtastwertprä-
diktion. HR = Hohe Datenraten, NR = Niedrige Datenraten. Negative
BD-Raten zeigen eine gesteigerte Codierungseffizienz an.

Kategorie Sequenz HR NR HR NR HR NR
Traffic -0.36% -0.87% -0.33% -0.76% -0.12% -0.52%
People on Street -0.62% -1.05% -0.53% -1.42% -0.37% -1.18%
Nebuta -0.18% -0.41% -0.02% -0.04% 0.01% -0.37%
Steam Locomotive -0.49% -3.44% -0.53% -1.43% -0.27% -1.01%
Kimono -0.83% -0.71% -0.23% -0.39% -0.27% -0.49%
Park Scene -0.69% -1.65% -0.40% -0.92% -0.22% -0.53%
Cactus -0.22% -0.71% -0.27% -0.59% -0.26% -0.58%
BQ Terrace -0.08% -0.35% -0.10% -0.05% -0.11% 0.09%
Basketball Drive -0.17% -1.04% -0.49% -0.76% -0.35% -0.89%
Race Horses -0.10% -0.76% -0.37% -0.71% -0.26% -0.84%
BQ Mall 0.08% -1.07% -0.02% -0.54% 0.05% -0.20%
Party Scene 0.06% 0.33% -0.13% -0.84% 0.07% 0.14%
Basketball Drill -0.14% 0.03% -0.33% -0.85% -0.17% 0.74%
Race Horses 0.43% 0.46% -0.20% -0.27% 0.22% 0.74%
BQ Square -0.09% -0.40% -0.06% -0.15% -0.18% -0.08%
Blowing Bubbles 0.00% -0.63% -0.16% -0.18% -0.05% -0.05%
Basketball Pass 0.03% 0.65% -0.18% -0.14% 0.04% -0.36%
Four People -0.36% -0.10% -0.13% -0.42% -0.40% -0.60%
Johnny 0.14% -0.70% -0.58% -0.18% -0.63% -0.65%
Kristen and Sara -0.44% -0.77% 0.14% -0.01% -0.10% -0.55%
Basketball Drill Text 0.08% 0.03% -0.25% -0.45% 0.09% 0.22%
China Speed -0.17% -0.25% -0.14% 0.01% -0.02% -0.35%
Slide Editing 0.14% 0.25% 0.24% -0.21% 0.20% 0.11%
Slide Show -0.12% 0.90% 0.07% 0.14% -0.07% 0.52%
Ball Under Water -1.00% -1.87% -1.68% -3.17% -1.42% -3.29%
Bookcase -0.55% -1.33% -0.19% -0.56% -0.08% 0.60%
Bricks and Bushes -0.39% -0.81% -0.21% -0.59% -0.03% -0.43%
Bricks Leaves -0.47% -1.42% -0.62% -1.35% -0.68% -1.49%
Bubbles Clear -0.03% -0.04% -1.84% -1.85% -1.78% -1.78%
Calming Water -0.64% -0.48% -0.84% -1.23% -0.67% -0.83%
Carpet -0.28% -0.44% -0.20% -0.15% -0.43% 0.23%
Drops on Water -0.77% -1.07% -0.78% -1.03% -0.66% -0.65%
Flowers 2 -0.59% -0.75% -0.19% -0.41% -0.24% -0.22%
Lamp Leaves -0.55% -1.01% -0.23% -0.63% -0.14% -0.41%
Paiting Tilting -0.31% -0.73% -0.30% -0.57% -0.22% -0.34%
Plasma Free 0.06% -0.20% -0.77% -1.30% -0.47% -0.64%
Pond Dragonflies -0.34% -0.61% -0.28% -0.70% -0.09% -0.33%
Smoke Clear -0.15% 0.48% -0.38% -1.76% -1.29% -4.54%
Sparkler -0.36% -1.61% -1.79% -1.87% -1.56% -1.67%
Squirrel -0.35% -0.83% -0.73% -1.02% -0.37% -0.68%
Tree Willis -0.28% -0.63% -0.08% -0.45% -0.12% -0.35%
Bike 1 -0.62% -1.99% -0.41% -1.02% 0.12% -0.07%
Bike 2 -0.92% -0.64% -0.21% -1.35% -0.20% -0.82%
Bike 3 0.07% -2.04% -0.29% -0.80% -0.38% -0.22%
Bike 4 -0.38% -0.12% -0.57% -1.29% -0.54% -1.36%
Bike 5 -1.24% -0.86% -0.19% -1.40% -0.32% -1.35%
Bike 6 -0.57% -1.44% -0.38% -0.50% -0.48% -0.94%
Bike 7 -0.85% -0.91% -0.46% -0.05% -0.56% -0.81%
Bike 8 -0.17% 0.25% -0.33% -0.84% -0.51% -0.25%
Bike 9 -0.62% -1.24% -0.37% -1.25% -0.28% -0.88%
Bike 10 -0.33% -1.37% -0.52% -0.74% -0.41% -0.46%
Bike 11 -0.65% -1.59% -0.48% -1.52% -0.37% -0.80%
Bike 12 0.15% 0.43% -0.12% -0.42% -0.09% -0.02%
Bike 13 -1.02% -0.50% -0.29% -0.67% -0.01% -0.40%
Bike 14 -0.37% -2.30% -2.43% -5.75% -1.44% -4.51%
Mittelwert -0.34% -0.73% -0.42% -0.86% -0.34% -0.66%

Class A (4K) -0.41% -1.44% -0.35% -0.91% -0.19% -0.77%
Class B (1080p) -0.40% -0.90% -0.30% -0.54% -0.24% -0.48%
Class C (WVGA) -0.03% -0.37% -0.21% -0.73% -0.08% -0.04%
Class D (WQVGA) 0.09% 0.02% -0.15% -0.18% 0.01% 0.06%
Class E (720p) -0.22% -0.52% -0.19% -0.20% -0.38% -0.60%
Class F (Screen Content) -0.02% 0.23% -0.02% -0.13% 0.05% 0.12%
BVI-Textures (1080p) -0.41% -0.78% -0.65% -1.10% -0.60% -0.99%
User-generated (720p) -0.54% -1.02% -0.50% -1.26% -0.39% -0.92%

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

Class C (WVGA)

All Intra Random Access Low Delay

Class A (4K)

Class B (1080p)

111

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

5.2.2 Stochastisches Konturmodell und Abtastwertprädiktion mit neuronalen
Netzwerken

In diesem Abschnitt wird die Kombination aus den beiden in dieser
Arbeit vorgeschlagenen Verfahren evaluiert. Hierbei wird untersucht, ob
es durch das stochastische Konturmodell nicht nur für die Along contour-
Abtastwertprädiktion, wie bereits in Abschnitt 5.1.1 gezeigt, einen Mehr-
wert gegenüber dem polynomiellen Konturmodell bietet, sondern auch
wenn es mit der vorgeschlagenen Abtastwertprädiktion mit neuronalen
Netzwerken kombiniert wird. Es werden die identischen Encoderkonfi-
gurationen und Testsequenzen verwendet wie im vorherigen Experiment.
Eine tabellarische Übersicht der BD-Raten für alle Konfigurationen befin-
det sich in Tabelle 5.5.

Es ist ersichtlich, dass die vorgeschlagenen Verfahren für die Inhalte,
für die bereits die Kombination aus dem polynomiellen Konturmodell
mit der Abtastwertprädiktion basierend auf neuronalen Netzwerken zu
nennenswerten Codierungsgewinnen führten, ebenfalls gut funktionie-
ren. Hierbei handelt es sich um die Kategorien mit hochauflösenden
Sequenzen (Class A mit 4K-Sequenzen und Class B 1080p-Sequenzen)
sowie für User-generated Content. Darüber hinaus ist zu beobachten, dass
für die schwierig zu codierenden Texturen in der BVI-Datenbank der Co-
dierungsgewinn deutlich gesteigert werden kann. Im Mittel betragen die
gemessenen BD-Raten für die AI-Konfiguration �0, 54% (für die hohen
Datenraten) und �1, 0% für die niedrigen Datenraten. Der gemessene
Maximalwert für die Steigerung der Codierungseffizienz ist mit einer
BD-Rate von �5% in etwa genauso groß wie für das Experiment mit dem
polynomiellen Konturmodell.

Um den Mehrgewinn durch das stochastische Konturmodell genauer
zu quantifizieren wird die Differenz der jeweils gemessenen BD-Raten
gebildet:

Mehrgewinn = BD-RateStochastisch � BD-RatePolynomiell

Negative Zahlenwerte sagen hierbei aus, um wieviel zusätzliche Prozent-
punkte die Codierungseffizienz durch das vorgeschlagene Verfahren im
Vergleich zu der eigenen Vorarbeit gesteigert werden konnte. Die Ergeb-
nisse sind in Tabelle 5.6 zusammengefasst. Aus der Tabelle lässt sich
ablesen, dass die Verwendung des stochastischen Konturmodells einen
Mehrwert für die Codierungseffizienz bietet. Dieses zeigt sich sowohl
in den gemittelten BD-Raten als auch in der Anzahl an Sequenzen, für
welche die Codierungseffizienz zusätzlich gesteigert werden kann. Für
die All Intra-Konfiguration wird die Codierungseffizienz im Mittel um
weitere 0, 21 Prozentpunkte (für hohe Datenraten) beziehungsweise 0, 27

112

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Prozentpunkte (für niedrige Datenraten) gesteigert. Dieses entspricht
bezogen auf die die ursprünglichen BD-Raten prozentualen Steigerungen
von 58% und 36%. Für einige Sequenzen werden Steigerungen um mehr
als einen Prozentpunkt gemessen.

Wie auch für das vorhergehende Experiment zeigt sich, dass auch für
die Encoderkonfigurationen mit der Möglichkeit zur Verwendung der
bewegungskompensierenden Prädiktion die Codierungseffizienz gestei-
gert werden kann. Für Random Access werden BD-Raten von �0, 56% (für
hohe Datenraten) und �1, 05% (für niedrige Datenraten) gemessen. Für
Low Delay liegen die entsprechenden Werte bei �0, 42% und �0, 85%.
Die Erklärung für diese Codierungsgewinne liegt wie auch zuvor in
der Annahme, dass auch in diesen Konfigurationen ein Teil der Pixel
intra-prädiziert wird. Zwar ist davon auszugehen, dass weniger Pixel
intra-prädiziert werden — eine Annahme, die nachfolgend noch näher
untersucht wird — jedoch die für diese Pixel eingesparte absolute Da-
tenrate zu einer ebenfalls niedrigeren Gesamtdatenrate in Bezug gesetzt
wird und somit die Codierungsgewinne in ähnlicher Höhe wie für die
All Intra-Konfiguration erklärt werden können.

Zur weiteren Analyse wird ermittelt, welcher Anteil der codierten
Pixel durch das CoMIC-Verfahren prädiziert wird. Hierbei wird bewusst
der Anteil an Pixeln und nicht der Anteil an Blöcken betrachtet. Dieses
ist notwendig, da die Blöcke unterschiedlich groß sein können und so-
mit der Anteil an mit dem CoMIC-Verfahren codierten Blöcken nur eine
geringe Aussagekraft hätte. Die Ergebnisse sind in Tabelle 5.7 zusammen-
gefasst. Im Mittel werden die vorgeschlagenen Verfahren für die All Intra-
Konfiguration für 12, 9% (hohe Datenraten) beziehungsweise für 17, 85%
(niedrige Datenraten) der codierten Pixel verwendet. Für die Konfigura-
tion Random Access liegen die Werte bei 3, 95% und 3, 53%, für die Low
Delay-Konfiguration bei 3, 8% und 3, 7%. Somit wird das CoMIC-Verfahren
regelmäßig durch die RD-Optimierung als bestes Codierungsverfahren
ausgewählt. Ferner lässt sich festhalten, dass die Verwendungshäufigkeit
erwartungsgemäß für die Encoderkonfigurationen, welche eine bewe-
gungskompensierende Prädiktion zulassen, geringer ist, aber dennoch
für ein Intra-Prädiktionsverfahren häufig ist.

Die Steigerung der Komplexität wird anhand der Encoder- und Deco-
derlaufzeiten analysiert. Die Ergebnisse sind in Tabelle 5.8 zusammen-
gefasst. Zur Einordnung ist anzumerken, dass die Laufzeiten aufgrund
der sehr großen Anzahl an Simulationen mittels einer stark heterogenen
Mischung aus verschiedenen Computern gemessen wurden. Die verwen-
deten CPU-Typen sind: Intel Xeon CPU E5-2680 v3 (2.50GHz), Intel Xeon
CPU E5-2670 (2.60GHz), Intel Xeon Gold 5120 CPU (2.20GHz), Intel Xeon
CPU E5-2690 v2 (3.00GHz), Intel Core i9-9900K CPU (3.60GHz) und Intel

113

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Core i7-3770K CPU (3.50GHz). Wie bereits aufgrund der Analyse der Kom-
plexität im Bildcodec erwartet wurde, ist die Steigerung der Komplexität
sehr groß. Hierdurch sind die Auswirkungen durch die unterschiedlichen
CPU-Typen im Rahmen einer akzeptablen Messungenauigkeit.

Abschließend ist erwähnenswert, dass die Gewichte der neuronalen
Netzwerke sowie alle weiteren Parameter des Codierungsverfahrens
für alle codierten Sequenzen gleich waren. Durch eine Adaptivität, bei-
spielsweise durch das Vorhalten mehrere Netzwerkmodelle für unter-
schiedliche Signalcharakteristiken, ließe sich die Codierungseffizienz
höchstwahrscheinlich weiter steigern.

114

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Tabelle 5.5: BD-Raten für die HM-Implementierung des stochastischen Konturmo-
dells in Kombination mit neuronalen Netzwerken zur Abtastwertprä-
diktion. HR = Hohe Datenraten, NR = Niedrige Datenraten. Negative
BD-Raten zeigen eine gesteigerte Codierungseffizienz an.

Kategorie Sequenz HR NR HR NR HR NR
Traffic -0.51% -1.12% -0.43% -0.94% -0.17% -0.68%
People on Street -0.87% -1.43% -0.79% -1.82% -0.47% -1.45%
Nebuta -0.53% -0.91% -0.17% -0.28% 0.03% -0.16%
Steam Locomotive -0.63% -3.38% -0.06% -0.89% -0.35% -0.70%
Kimono -1.25% -1.23% -0.46% -0.80% -0.25% -0.81%
Park Scene -0.84% -2.00% -0.55% -1.28% -0.33% -1.06%
Cactus -0.30% -1.02% -0.37% -0.88% -0.36% -0.99%
BQ Terrace -0.14% -0.51% -0.09% 0.48% -0.16% -0.18%
Basketball Drive -0.48% -2.06% -0.84% -1.52% -0.49% -1.45%
Race Horses -0.32% -0.40% -0.34% -0.66% -0.25% -1.09%
BQ Mall 0.13% -0.58% -0.32% -1.28% 0.04% -0.51%
Party Scene -0.08% -0.41% -0.18% -0.89% -0.06% -0.31%
Basketball Drill -0.04% -0.98% -0.31% -0.89% 0.00% 0.11%
Race Horses 0.26% -0.16% -0.22% -0.97% 0.06% 0.06%
BQ Square 0.04% -0.48% 0.35% 0.43% 0.00% -0.40%
Blowing Bubbles 0.12% -1.05% -0.05% -0.33% 0.01% -0.24%
Basketball Pass -0.03% 0.67% -0.06% -0.13% 0.31% -0.65%
Four People -0.25% -0.02% -0.36% -0.46% -0.36% -0.10%
Johnny -0.67% -0.82% -0.81% -0.38% -0.70% -0.77%
Kristen and Sara -0.67% -1.70% -0.31% -0.33% 0.02% -0.74%
Basketball Drill Text -0.24% -0.13% -0.23% -0.34% 0.04% 0.09%
China Speed -0.02% -0.42% -0.14% -0.21% -0.07% -0.52%
Slide Editing -0.04% -0.46% -0.22% -0.21% 0.12% 0.08%
Slide Show -0.08% -0.45% -0.28% 0.32% 0.13% 0.56%
Ball Under Water -1.42% -1.33% -2.33% -4.00% -1.86% -3.61%
Bookcase -0.69% -2.35% -0.10% -0.54% -0.27% -0.62%
Bricks and Bushes -0.68% -1.16% -0.27% -0.81% -0.08% -0.40%
Bricks Leaves -0.67% -1.39% -0.81% -1.57% -0.82% -1.44%
Bubbles Clear 0.00% -0.68% -2.41% -2.65% -2.39% -2.63%
Calming Water -1.06% -1.52% -1.52% -2.35% -1.30% -1.74%
Carpet -0.86% -1.43% -0.79% -1.32% -0.82% -0.95%
Drops on Water -1.06% -1.62% -1.32% -1.93% -1.16% -1.12%
Flowers 2 -1.19% -1.97% -0.33% -1.23% -0.29% -0.73%
Lamp Leaves -0.69% -1.22% -0.37% -0.90% -0.23% -0.53%
Painting Tilting -0.61% -1.18% -0.61% -1.14% -0.50% -0.83%
Plasma Free -0.47% -0.96% -1.78% -2.72% -1.14% -1.82%
Pond Dragonflies -0.64% -1.36% -0.37% -0.87% -0.15% -0.71%
Smoke Clear -0.65% 1.52% -1.03% -2.45% -1.60% -4.05%
Sparkler -0.53% -1.36% -2.27% -3.14% -1.92% -2.70%
Squirrel -0.63% -1.49% -0.85% -1.47% -0.62% -1.17%
Tree Willis -0.47% -0.91% -0.16% -0.49% -0.16% -0.40%
Bike 1 -0.99% -2.10% -0.34% -0.86% -0.23% -0.03%
Bike 2 -0.99% -0.82% -0.22% -0.79% 0.00% -0.13%
Bike 3 -0.23% -0.66% -0.47% -0.40% -0.04% 0.03%
Bike 4 -0.53% -0.88% -0.49% -1.36% -0.62% -1.49%
Bike 5 -1.68% -1.16% -0.08% -1.15% -0.30% -0.95%
Bike 6 -0.82% -1.44% -0.41% -0.31% -0.50% -0.47%
Bike 7 -0.61% -0.50% -0.66% -0.76% -0.57% -0.93%
Bike 8 -0.22% 0.32% -0.37% -0.57% -0.31% 0.12%
Bike 9 -0.68% -1.06% -0.43% -1.27% -0.49% -0.95%
Bike 10 -0.64% -0.82% -0.34% -0.04% -0.36% -0.32%
Bike 11 -0.79% -1.74% -0.18% -1.15% -0.18% -0.06%
Bike 12 -0.36% 0.50% -0.01% -0.16% 0.07% -0.03%
Bike 13 -1.16% -0.38% -0.26% -0.24% 0.04% -0.28%
Bike 14 -0.52% -2.66% -2.01% -5.00% -0.86% -4.10%
Mittelwert -0.54% -1.00% -0.56% -1.05% -0.42% -0.85%

Class A (4K) -0.63% -1.71% -0.36% -0.98% -0.24% -0.75%
Class B (1080p) -0.60% -1.36% -0.46% -0.80% -0.32% -0.89%
Class C (WVGA) -0.08% -0.59% -0.29% -0.93% -0.07% -0.45%
Class D (WQVGA) 0.10% -0.25% 0.01% -0.25% 0.09% -0.31%
Class E (720p) -0.53% -0.85% -0.43% -0.39% -0.35% -0.54%
Class F (Screen Content) -0.09% -0.37% -0.22% -0.11% 0.06% 0.05%
BVI-Textures (1080p) -0.72% -1.20% -1.02% -1.74% -0.90% -1.50%
User-generated (720p) -0.73% -0.96% -0.45% -1.00% -0.31% -0.69%

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

Class C (WVGA)

All Intra Random Access Low Delay

Class A (4K)

Class B (1080p)

115

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Tabelle 5.6: Mehrgewinn durch das stochastische Konturmodell im Vergleich mit
dem polynomiellen Konturmodell, jeweils in Kombination mit neu-
ronalen Netzwerken zur Abtastwertprädiktion. Es werden die Ände-
rungen der BD-Raten in Prozentpunkten angegeben. Negative Werte
zeigen eine gesteigerte Codierungseffizienz an. HR = Hohe Datenraten,
NR = Niedrige Datenraten.

Kategorie Sequenz HR NR HR NR HR NR
Traffic -0.15% -0.25% -0.10% -0.19% -0.04% -0.16%
People on Street -0.25% -0.38% -0.25% -0.40% -0.11% -0.27%
Nebuta -0.35% -0.51% -0.16% -0.24% 0.02% 0.21%
Steam Locomotive -0.14% 0.06% 0.47% 0.55% -0.08% 0.31%
Kimono -0.42% -0.52% -0.23% -0.41% 0.02% -0.31%
Park Scene -0.15% -0.34% -0.15% -0.36% -0.11% -0.52%
Cactus -0.08% -0.30% -0.10% -0.28% -0.10% -0.41%
BQ Terrace -0.06% -0.16% 0.01% 0.54% -0.05% -0.27%
Basketball Drive -0.31% -1.02% -0.36% -0.76% -0.14% -0.56%
Race Horses -0.22% 0.36% 0.03% 0.05% 0.01% -0.25%
BQ Mall 0.05% 0.49% -0.29% -0.74% -0.01% -0.31%
Party Scene -0.14% -0.73% -0.05% -0.05% -0.12% -0.45%
Basketball Drill 0.10% -1.01% 0.02% -0.04% 0.17% -0.64%
Race Horses -0.17% -0.62% -0.01% -0.71% -0.16% -0.68%
BQ Square 0.13% -0.07% 0.41% 0.58% 0.17% -0.32%
Blowing Bubbles 0.12% -0.42% 0.11% -0.15% 0.06% -0.19%
Basketball Pass -0.06% 0.02% 0.12% 0.00% 0.26% -0.29%
Four People 0.11% 0.08% -0.23% -0.04% 0.04% 0.49%
Johnny -0.81% -0.13% -0.23% -0.20% -0.07% -0.12%
Kristen and Sara -0.23% -0.93% -0.45% -0.32% 0.13% -0.20%
Basketball Drill Text -0.32% -0.16% 0.03% 0.11% -0.05% -0.13%
China Speed 0.15% -0.17% 0.00% -0.21% -0.05% -0.18%
Slide Editing -0.18% -0.71% -0.45% 0.00% -0.08% -0.03%
Slide Show 0.04% -1.35% -0.35% 0.18% 0.20% 0.04%
Ball Under Water -0.42% 0.54% -0.65% -0.83% -0.44% -0.32%
Bookcase -0.14% -1.03% 0.09% 0.01% -0.19% -1.22%
Bricks and Bushes -0.29% -0.35% -0.06% -0.22% -0.05% 0.03%
Bricks Leaves -0.20% 0.02% -0.19% -0.22% -0.14% 0.05%
Bubbles Clear 0.03% -0.64% -0.58% -0.80% -0.60% -0.85%
Calming Water -0.42% -1.03% -0.68% -1.12% -0.63% -0.91%
Carpet -0.58% -0.99% -0.60% -1.17% -0.39% -1.18%
Drops on Water -0.29% -0.55% -0.54% -0.90% -0.50% -0.47%
Flowers 2 -0.60% -1.22% -0.14% -0.81% -0.05% -0.51%
Lamp Leaves -0.14% -0.21% -0.13% -0.27% -0.08% -0.12%
Painting Tilting -0.30% -0.45% -0.31% -0.57% -0.29% -0.49%
Plasma Free -0.53% -0.76% -1.01% -1.42% -0.67% -1.19%
Pond Dragonflies -0.30% -0.75% -0.09% -0.17% -0.06% -0.39%
Smoke Clear -0.50% 1.04% -0.65% -0.68% -0.31% 0.49%
Sparkler -0.17% 0.25% -0.48% -1.27% -0.36% -1.04%
Squirrel -0.28% -0.66% -0.12% -0.45% -0.25% -0.49%
Tree Willis -0.19% -0.28% -0.08% -0.04% -0.04% -0.05%
Bike 1 -0.37% -0.11% 0.07% 0.16% -0.35% 0.04%
Bike 2 -0.07% -0.18% -0.01% 0.56% 0.20% 0.68%
Bike 3 -0.30% 1.38% -0.17% 0.40% 0.34% 0.25%
Bike 4 -0.15% -0.76% 0.08% -0.07% -0.08% -0.13%
Bike 5 -0.44% -0.30% 0.11% 0.25% 0.02% 0.40%
Bike 6 -0.26% 0.01% -0.03% 0.19% -0.03% 0.47%
Bike 7 0.24% 0.41% -0.20% -0.71% -0.01% -0.12%
Bike 8 -0.05% 0.07% -0.04% 0.28% 0.21% 0.36%
Bike 9 -0.06% 0.18% -0.06% -0.02% -0.20% -0.06%
Bike 10 -0.31% 0.55% 0.18% 0.70% 0.05% 0.14%
Bike 11 -0.15% -0.15% 0.30% 0.37% 0.19% 0.74%
Bike 12 -0.51% 0.07% 0.11% 0.26% 0.17% -0.01%
Bike 13 -0.14% 0.12% 0.03% 0.43% 0.05% 0.12%
Bike 14 -0.15% -0.36% 0.42% 0.76% 0.58% 0.41%
Mittelwert -0.21% -0.27% -0.14% -0.19% -0.07% -0.19%

Class A (4K) -0.22% -0.27% -0.01% -0.07% -0.05% 0.02%
Class B (1080p) -0.21% -0.47% -0.16% -0.26% -0.08% -0.41%
Class C (WVGA) -0.05% -0.22% -0.07% -0.20% 0.01% -0.41%
Class D (WQVGA) 0.01% -0.27% 0.16% -0.07% 0.08% -0.37%
Class E (720p) -0.31% -0.32% -0.30% -0.19% 0.03% 0.06%
Class F (Screen Content) -0.08% -0.60% -0.20% 0.02% 0.01% -0.07%
BVI-Textures (1080p) -0.31% -0.42% -0.37% -0.64% -0.30% -0.51%
User-generated (720p) -0.19% 0.07% 0.06% 0.25% 0.08% 0.23%

Class C (WVGA)

All Intra Random Access Low Delay

Class A (4K)

Class B (1080p)

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

116

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

5.2 integration in einen videocodec

Tabelle 5.7: Verwendungshäufigkeit des vorgeschlagenen Verfahrens. Es wird an-
gegeben, welcher Anteil der codierten Pixel mit dem CoMIC-Verfahren
codiert wird. HR = Hohe Datenraten, NR = Niedrige Datenraten.

Kategorie Sequenz HR NR HR NR HR NR
Traffic 12.8% 20.0% 0.28% 0.47% 0.28% 0.47%
People on Street 13.4% 21.6% 2.47% 3.35% 2.19% 3.23%
Nebuta 21.8% 24.0% 2.18% 0.89% 2.00% 0.80%
Steam Locomotive 23.9% 26.1% 1.60% 1.10% 1.30% 1.10%
Kimono 23.2% 30.4% 2.96% 3.34% 1.64% 2.19%
Park Scene 14.8% 21.6% 1.01% 1.44% 0.63% 0.96%
Cactus 12.2% 17.7% 1.42% 1.93% 1.06% 1.73%
BQ Terrace 5.53% 9.60% 0.24% 0.22% 0.17% 0.20%
Basketball Drive 9.63% 15.2% 2.66% 3.36% 2.54% 3.67%
Race Horses 8.85% 17.1% 1.42% 2.34% 1.25% 2.22%
BQ Mall 5.18% 13.3% 0.72% 1.32% 0.67% 1.39%
Party Scene 3.78% 11.3% 0.96% 1.48% 0.86% 1.45%
Basketball Drill 4.57% 7.61% 1.16% 1.87% 1.05% 1.71%
Race Horses 10.4% 16.8% 2.18% 3.18% 1.95% 3.16%
BQ Square 2.23% 4.81% 0.03% 0.08% 0.03% 0.10%
Blowing Bubbles 8.45% 20.2% 1.44% 1.92% 1.52% 2.10%
Basketball Pass 2.87% 14.4% 0.37% 0.69% 0.20% 0.44%
Four People 7.90% 17.6% 0.23% 0.39% 0.18% 0.34%
Johnny 6.26% 10.6% 0.13% 0.22% 0.11% 0.19%
Kristen and Sara 6.47% 10.3% 0.18% 0.25% 0.14% 0.26%
Basketball Drill Text 2.88% 5.58% 0.93% 1.49% 0.85% 1.39%
China Speed 4.27% 7.35% 1.85% 1.84% 1.74% 1.98%
Slide Editing 0.60% 2.57% 0.03% 0.10% 0.02% 0.08%
Slide Show 0.86% 1.35% 0.11% 0.19% 0.14% 0.25%
Ball Under Water 4.89% 5.27% 6.79% 5.91% 7.44% 7.65%
Bookcase 8.09% 15.0% 0.28% 0.53% 0.28% 0.60%
Bricks and Bushes 23.7% 32.7% 0.93% 1.06% 0.55% 0.81%
Bricks Leaves 23.1% 32.8% 1.04% 1.28% 0.94% 1.35%
Bubbles Clear 1.07% 2.31% 2.14% 2.27% 2.01% 2.49%
Calming Water 33.9% 38.1% 36.0% 28.0% 37.5% 34.6%
Carpet 25.7% 28.6% 0.43% 0.51% 0.49% 0.57%
Drops on Water 33.1% 36.8% 39.7% 31.9% 40.2% 37.7%
Flowers 2 26.7% 35.6% 0.42% 0.60% 0.42% 0.59%
Lamp Leaves 19.8% 27.8% 2.46% 2.80% 1.35% 1.93%
Painting Tilting 24.3% 37.9% 0.30% 0.51% 0.40% 0.54%
Plasma Free 3.83% 6.02% 2.86% 3.40% 2.72% 3.77%
Pond Dragonflies 16.3% 25.3% 0.23% 0.38% 0.25% 0.41%
Smoke Clear 6.93% 4.86% 6.42% 2.59% 6.67% 3.18%
Sparkler 3.61% 7.63% 7.59% 9.75% 6.95% 9.82%
Squirrel 22.7% 26.6% 0.32% 0.36% 0.34% 0.42%
Tree Willis 14.3% 20.7% 0.20% 0.29% 0.22% 0.31%
Bike 1 14.4% 17.9% 2.99% 2.53% 2.10% 1.51%
Bike 2 12.6% 17.2% 2.06% 2.16% 1.46% 1.26%
Bike 3 11.1% 8.64% 3.03% 2.44% 2.38% 1.48%
Bike 4 15.1% 19.3% 4.62% 3.74% 4.29% 3.28%
Bike 5 23.5% 28.8% 12.6% 7.65% 11.5% 7.61%
Bike 6 19.4% 23.1% 9.08% 6.72% 8.46% 6.71%
Bike 7 17.0% 15.2% 7.76% 6.19% 7.63% 6.69%
Bike 8 8.84% 12.5% 9.22% 8.95% 8.70% 8.81%
Bike 9 15.4% 20.9% 4.53% 4.06% 4.14% 3.75%
Bike 10 13.5% 17.4% 6.59% 7.39% 6.21% 6.79%
Bike 11 16.5% 21.9% 6.99% 7.20% 7.17% 8.15%
Bike 12 7.30% 8.28% 1.73% 1.56% 1.50% 1.17%
Bike 13 13.9% 16.5% 4.05% 3.75% 3.17% 2.65%
Bike 14 16.6% 22.9% 7.57% 4.30% 9.09% 5.60%
Mittelwert 12.9% 17.9% 3.95% 3.53% 3.80% 3.70%

Class A (4K) 18.0% 22.9% 1.63% 1.46% 1.44% 1.40%
Class B (1080p) 13.1% 18.9% 1.66% 2.06% 1.21% 1.75%
Class C (WVGA) 5.59% 12.3% 1.06% 1.75% 0.96% 1.69%
Class D (WQVGA) 5.99% 14.0% 1.01% 1.47% 0.93% 1.45%
Class E (720p) 6.88% 12.9% 0.37% 0.29% 0.15% 0.26%
Class F (Screen Content) 2.15% 4.21% 0.73% 0.91% 0.69% 0.93%
BVI-Textures (1080p) 17.2% 22.6% 6.36% 5.42% 6.39% 6.28%
User-generated (720p) 14.6% 17.9% 5.91% 4.90% 5.56% 4.68%

Class C (WVGA)

All Intra Random Access Low Delay

Class A (4K)

Class B (1080p)

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

117

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

experimentelle untersuchung und bewertung

Tabelle 5.8: Komplexitätssteigerung durch die vorgeschlagenen Verfahren. Die
Berechnung erfolgt durch die Encoder- und Decoderlaufzeiten.

Kategorie Sequenz Encoder Decoder Encoder Decoder Encoder Decoder
Traffic 1567 2973 615 723 544 521
People on Street 1239 4493 427 3071 275 2315
Nebuta 3383 6638 715 1006 814 852
Steam Locomotive 3663 7021 1386 1265 668 646
Kimono 652 907 213 724 212 827
Park Scene 1482 4646 513 1304 376 840
Cactus 1246 2444 548 1497 336 852
BQ Terrace 1583 2428 652 371 333 192
Basketball Drive 824 1107 145 763 126 768
Race Horses 1032 1014 480 2583 256 1206
BQ Mall 1392 798 492 785 587 1106
Party Scene 1759 686 1362 1573 718 1096
Basketball Drill 1164 392 550 1413 276 839
Race Horses 1143 1005 427 1130 298 952
BQ Square 1499 349 913 56 789 62
Blowing Bubbles 1683 1204 621 1401 365 1052
Basketball Pass 983 331 439 473 251 244
Four People 1286 1566 533 390 544 444
Johnny 654 602 300 133 223 108
Kristen and Sara 780 727 300 148 279 143
Basketball Drill Text 1254 292 421 795 331 781
China Speed 1438 344 549 702 442 697
Slide Editing 1385 126 1099 55 929 66
Slide Show 929 79 444 86 252 108
Ball Under Water 336 173 74 668 71 903
Bookcase 1030 1234 292 215 261 344
Bricks and Bushes 2460 7812 887 2159 937 1446
Bricks Leaves 2221 9769 1016 2427 1379 6435
Bubbles Clear 492 148 105 752 107 912
Calming Water 903 1730 164 5800 119 3334
Carpet 788 826 348 112 236 135
Drops on Water 956 2086 124 4819 100 3966
Flowers 2 711 1510 387 242 241 171
Lamp Leaves 2155 5672 599 3046 438 1679
Painting Tilting 2545 1834 1791 252 1149 170
Plasma Free 886 1029 99 24 169 2391
Pond Dragonflies 1563 3677 211 2488 453 342
Smoke Clear 365 270 620 317 75 822
Sparkler 713 831 72 593 167 4192
Squirrel 1755 4876 127 2980 933 814
Tree Willis 3182 6648 1257 555 1013 524
Bike 1 1012 1267 894 473 267 987
Bike 2 1268 2037 453 2575 265 758
Bike 3 507 301 283 1328 265 758
Bike 4 1045 1432 302 1489 189 553
Bike 5 954 1669 208 1893 165 1458
Bike 6 996 1500 156 2730 126 2415
Bike 7 492 659 187 3061 176 3075
Bike 8 931 855 141 1816 116 1714
Bike 9 1664 2813 148 2046 126 2033
Bike 10 821 863 322 3041 307 2741
Bike 11 664 1125 202 2637 184 2350
Bike 12 930 710 213 778 148 511
Bike 13 693 766 177 1210 124 765
Bike 14 1151 1999 163 1478 96 1182
Mittelwert 1277 2005 476 1390 375 1211

Class A (4K) 2463 5281 786 1516 575 1084
Class B (1080p) 1157 2306 414 932 277 696
Class C (WVGA) 1337 722 721 1589 459 1062
Class D (WQVGA) 1327 722 600 765 426 577
Class E (720p) 907 965 377 224 349 232
Class F (Screen Content) 1252 210 628 410 489 413
BVI-Textures (1080p) 1356 2949 481 1615 462 1681
User-generated (720p) 938 1285 275 1897 182 1521

Class D (WQVGA)

Class E (720p)

Class F (Screen Content)

BVI-Textures (1080p)

User-generated (720p)

Class C (WVGA)

All Intra Random Access Low Delay

Class A (4K)

Class B (1080p)

118

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

6
Z U S A M M E N FA S S U N G

Die Ausgangssituation für diese Arbeit ergab sich aus der Beobachtung,
dass die für die Übertragung von Videos benötigte Übertragungskapazi-
tät wesentlich schneller wächst als die hierfür zur Verfügung stehende
Kanalkapazität. Hieraus entsteht die Notwendigkeit einer stetigen Ver-
besserung der Codierungsverfahren für die verwendeten Videocodecs.

Moderne Videocodecs beruhen in der Regel auf dem Prinzip der Hy-
bridcodierung, also der Kombination von einer Prädiktion mit einer
Transformationscodierung des Prädiktionsfehlers. Die Prädiktionsverfah-
ren können grob in Intra- und Inter-Prädiktion unterschieden werden.
Während die Intra-Codierung ausschließlich örtliche Redundanz im je-
weiligen zu codierenden Bild ausnutzt, wird bei der Inter-Codierung
zusätzlich die zeitliche Redundanz zwischen aufeinander folgenden Bil-
dern mittels einer bewegungskompensierenden Prädiktion ausgenutzt.
Im Rahmen dieser Arbeit sollte die Intra-Prädiktion verbessert werden.

In den eigenen Vorarbeiten [65] und [69] wurde ein als CoMIC bezeich-
netes Codierungsverfahren zur Verbesserung der Intra-Prädiktion vorge-
schlagen. Diese Vorarbeiten beruhen auf der Detektion von Konturen im
bereits codierten Referenzbereich, der Modellierung dieser Konturen mit
polynomiellen Modellen gefolgt von einer Konturextrapolation in den zu
codierenden Block in Kombination mit einem als Along-contour bezeich-
neten Verfahren zur Abtastwertprädiktion, bei dem die Randabtastwerte
entlang der extrapolierten Konturen fortgesetzt werden. Durch diese
beiden Verfahren konnten im Gegensatz zu dem zugrunde liegenden
Referenzverfahren, der Intra-Prädiktion des HEVC-Standards, mehrere
unterschiedliche Konturrichtungen innerhalb eines Blocks extrapoliert
werden, welche zusätzlich nicht nur linear sondern auch nichtlinear
verlaufen konnten.

Im Rahmen der vorliegenden Arbeit wurde das CoMIC-Verfahren wei-
terentwickelt. Hierfür wurden zwei neue Verfahren vorgeschlagen:

1. Ein stochastisches Konturmodell zur Modellierung und Extrapola-
tion der detektierten Konturen, welches das polynomielle Kontur-
modell ersetzt.

2. Ein auf neuronalen Netzwerken basierendes Verfahren zur Abtast-
wertprädiktion, welches das Along-contour-Verfahren ersetzt.

119

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

zusammenfassung

Der erste Beitrag in dieser Arbeit, das vorgeschlagene Verfahren zur
Konturmodellierung, verarbeitet im Referenzbereich detektierte Kontu-
ren. Diese Konturen werden mit dem Canny-Algorithmus [12] detektiert.
Die Hyperparameter des Canny-Algorithmus werden signaladaptiv mit-
tels des Otsu-Verfahrens [26, 96] bestimmt. Aus dem binären Konturbild
nach der Konturdetektion werden mit dem von Suzuki und Be vorgeschla-
genen Verfahren [117] Vektoren mit den Koordinaten der Konturpunkte
erzeugt. Für die weitere Verarbeitung werden nur Konturen berücksich-
tigt, die an den zu codierenden Block angrenzen.

Die Konturkoordinaten liegen nur in Ganz-Pel-Genauigkeit vor. Für
eine gleichmäßigere Kontur wird versucht diese zu glätten, indem sie
als kontinuierliche Funktion angenähert wird. Die Konturglättung wird
nur eingesetzt, wenn der mittlere resultierende Fehler kleiner als 1 Pel
ist, also im Rahmen der Konturgenauigkeit liegt. Andernfalls werden die
detektierten Konturpunkte mit der gröberen Auflösung verwendet.

Die Modellierung der detektierten Kontur erfolgt mittels eines Gauß-
Prozesses. Wurde die Kontur erfolgreich geglättet, dann wird ein rausch-
freier Gauß-Prozess verwendet. War die Konturglättung aufgrund eines
hierbei entstehenden zu großen Fehlers nicht möglich, dann wird der
Gauß-Prozess unter der Annahme, dass die Konturpunkte mit Ganz-Pel-
Genauigkeit aus einer Kontur mit kontinuierlichen Koordinaten durch die
Überlagerung von unkorreliertem Rauschen entstanden sind, formuliert.

Der Prior-Gauß-Prozess wurde mit dem Defacto-Standard für Gauß-
Prozess-Kovarianzfunktionen, dem sogenannten Squared Exponential
Kernel, formuliert. In der Wahl der Kovarianzfunktion werden die Erwar-
tungen an die zu modellierenden Konturen ausgedrückt. Die gewählte
Funktion passt zu den in den durch die Partitionierung entstehenden
Blöcken erwarteten glatten Konturverläufen.

Der Posterior-Gauß-Prozess ergab sich aus dem Prior-Gauß-Prozess
durch Optimierung der Hyperparameter der Kovarianzfunktion für jede
Kontur. Hierfür wurde die Log-Marginal-Likelihood iterativ maximiert.
Für die Konturextrapolation wurde eine multivariate Gauß-Verteilung
für alle Konturpunkte formuliert. Von diesen Konturpunkten sind für
manche beide Koordinaten bekannt (für die detektierte Kontur) während
für manche nur eine Koordinate bekannt ist (für die zu extrapolierenden
Stellen). Basierend auf dieser Formulierung wurden die extrapolierten
Konturpunkte als bedingte Verteilung, gegeben der Punkte der detektier-
ten Kontur und gegeben der Stellen für die Extrapolation, formuliert. Die
Prädiktion für den Konturverlauf ergibt sich aus dem Mittelwert dieser
Verteilung und die Unsicherheit der Prädiktion aus der Varianz dieser
Verteilung.

120

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

zusammenfassung

Der zweite Beitrag in dieser Arbeit ist ein auf neuronalen Netzwerken
basierendes Verfahren zur Abtastwertprädiktion. Mit den neuronalen
Netzwerken werden die benachbarten Referenzabtastwerte (vier Blöcke
mit der gleichen Größe wie der zu codierende Block) sowie das Ergebnis
der Konturmodellierung und -extrapolation als Eingabedaten verarbeitet,
um eine Prädiktion der Abtastwerte des zu codierenden Blocks zu erzeu-
gen. Die Konturen werden für die Abtastwertprädiktion benötigt. Die
neuronalen Netzwerke wurden mit einer Autoencoder-Architektur ent-
worfen. Autoencoder erhalten die wesentlichen Merkmale des Eingangs-
signals und verarbeiten diese gegebenenfalls weiter. Diese Eigenschaft
passt zu der zu lösenden Aufgabe, welche darin besteht, die wesentlichen
Signalcharakteristiken des Referenzbereichs zu erkennen und basierend
auf ihnen das zu codierende Signal zu prädizieren.

Für das Training der neuronalen Netzwerke wurden Trainingsdaten
basierend auf der RAISE-Bilddatenbank erstellt. Die Netzwerke wurden
mittels der Summe der absoluten transformierten Differenzen (SATD),
also der Summe der Koeffizientenbeträge nach einer Hadamard-Transfor-
mation, als Kostenfunktion trainiert. Unter der Annahme mittelwertfreier
und Laplace-verteilter Prädiktionsfehlerkoeffizienten, wie sie für Video-
codecs typisch sind, ist diese Kostenfunktion proportional zu der für die
Übertragung des Prädiktionsfehlers benötigten Datenrate. Das prädizierte
Signal, also im Fall des vorgeschlagenen Verfahrens das Ausgangssignal
des neuronalen Netzwerkes, wird nie angezeigt, sondern ergibt erst zu-
sammen mit dem übertragenen Prädiktionsfehler das letztlich angezeigte
rekonstruierte Bild. Deshalb ist es bedeutender die Datenrate des Prädik-
tionsfehlers zu optimieren, anstatt den Fokus der Optimierung auf die
Qualität des prädizierten Signals zu legen.

Für die experimentelle Untersuchung erfolgte die Integration der bei-
den Verfahren in den selbstentwickelten Bildcodec CoMIC sowie in die
Referenzsoftware HM. Die beiden Implementierungen verfolgten unter-
schiedliche Ziele. Während die Implementierung in dem Bildcodec die
gezielte Betrachtung einzelner Verfahren ermöglichte, konnte mit der
Implementierung in der Referenzsoftware die Codierungseffizienz im
Zusammenspiel mit einem modernen Videocodierungsstandard evaluiert
werden. In der Referenzsoftware wurden die entwickelten Verfahren
als zusätzlicher Mode implementiert, der auf CU-Ebene durch die RD-
Optimierung ausgewählt werden kann, wenn er im Vergleich mit den
anderen zur Verfügung stehenden Codierungsverfahren die geringsten
RD-Kosten verursacht. Als Vergleichsverfahren wurden jeweils die eige-
nen Vorarbeiten verwendet. In diesen Vorarbeiten wurde bereits gezeigt,
dass die Verfahren aus diesen Vorarbeiten besser als vergleichbare Ver-

121

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

zusammenfassung

fahren aus der Literatur sind und durch sie die Codierungseffizienz von
HEVC weiter gesteigert werden konnte.

Sowohl in dem selbstentwickelten Bildcodec als auch in der Refe-
renzsoftware des HEVC-Standards ergab sich durch die Verwendung der
vorgeschlagenen Verfahren eine Steigerung der Codierungseffizienz. Un-
ter den Laborbedingungen des Bildcodecs, in dem die vorgeschlagenen
Verfahren aus dieser Arbeit jeweils mit den korrespondierenden Verfah-
ren aus den eigenen Vorarbeiten verglichen wurden, ergab sich durch
das vorgeschlagene Konturmodell eine Verbesserung um im Mittel bis zu
1,9% und durch das vorgeschlagene Verfahren zur Abtastwertprädiktion
um im Mittel bis zu 8,8% - jeweils in Abhängigkeit von der Blockgröße.

Die Codierungseffizienz des Videocodecs HEVC wurde um bis zu 5%
gesteigert. Gemittelt über alle 55 Testsequenzen ergaben sich für die All
Intra-Konfiguration BD-Raten von �0, 54% für hohe Datenraten und in
Höhe von �1, 0% für niedrige Datenraten. Durch den Einsatz des stochas-
tischen Konturmodells anstelle des polynomiellen Konturmodells aus der
eigenen Vorarbeit — jeweils in Kombination mit dem vorgeschlagenen
Verfahren zur Abtastwertprädiktion — wurde eine zusätzliche Steigerung
der Codierungseffizienz um 0, 21 Prozentpunkte für hohe Datenraten
und um 0, 27 Prozentpunkte für niedrige Datenraten erzielt.

Die Codierungsgewinne sind für hochauflösende Videos (4K und
1080p) sowie für User-generated Content höher als für sehr niedrig auflö-
sende Videos (416⇥240) sowie computergenerierte Videos. Die höheren
Codierungsgewinne für hochauflösende Videos lassen sich vermutlich
auf das Vorkommen dieser Auflösungen in den Trainingsdaten der Netz-
werke zurückführen. Bilder mit niedriger Auflösung sowie computerge-
nerierte Signale kamen in den Trainingsdaten nicht vor, weswegen die
geringere Codierungseffizienz hierfür nicht überraschend ist. Die höheren
Gewinne für niedrige Datenraten und für User-generated Content lassen
sich vermutlich auf die verwendete Kostenfunktion für das Training der
neuronalen Netzwerke zurückführen.

Der Anstieg der Rechenzeit durch die vorgeschlagenen Verfahren ist
nicht gering. Ansätze zur Beschleunigung sowohl für den Encoder als
auch für den Decoder sind denkbar, beispielsweise durch eine Berech-
nung der Netzwerk-Inferenz auf GPUs. Zur zusätzlichen Steigerung der
Codierungseffizienz gibt es noch Verbesserungspotential. Beispielswei-
se könnten unterschiedliche Netzwerkmodelle vorgehalten werden und
adaptiv in Abhängigkeit der Charakteristik der zu codierenden Videos
ausgewählt werden.

Abschließend lässt sich schlussfolgern, dass das in dieser Arbeit ver-
folgte Ziel, die Entwicklung einer effizienteren Intra-Codierung, durch
die beiden vorgeschlagenen Verfahren erreicht wurde.

122

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

L I T E R AT U R

[1] Mauricio Alvarez-Mesa, Chi Ching Chi, Ben Juurlink, Valeri Ge-
orge und Thomas Schierl. „Parallel video decoding in the emer-
ging HEVC standard“. In: 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, März 2012,
S. 1545–1548. isbn: 978-1-4673-0046-9. doi: 10.1109/ICASSP.2012.
6288186. url: http://ieeexplore.ieee.org/document/6288186/
(siehe S. 26).

[2] Hadi Asheri, Hamid Rabiee, Nima Pourdamghani und Mohammad
Ghanbari. „Multi-directional Spatial Error Concealment using
Adaptive Edge Thresholding“. In: IEEE Transactions on Consu-
mer Electronics 58.3 (Aug. 2012), S. 880–885. issn: 0098-3063. doi:
10.1109/TCE.2012.6311331 (siehe S. 4).

[3] Oscar C. Au und S.-H. Gary Chan. „Edge-Directed Error Con-
cealment“. In: IEEE Transactions on Circuits and Systems for Vi-
deo Technology 20.3 (März 2010), S. 382–395. issn: 1051-8215. doi:
10.1109/TCSVT.2009.2035839 (siehe S. 4).

[4] Dzmitry Bahdanau, Kyunghyun Cho und Yoshua Bengio. „Neural
Machine Translation by Jointly Learning to Align and Translate“.
In: International Conference on Machine Learning (ICLR). Sep. 2015.
arXiv: 1409.0473 (siehe S. 33).

[5] Jim Bankoski, Paul Wilkins und Yaowu Xu. „Technical overview
of VP8, an open source video codec for the web“. In: 2011 IEEE
International Conference on Multimedia and Expo. IEEE, Juli 2011,
S. 1–6. isbn: 978-1-61284-348-3. doi: 10.1109/ICME.2011.6012227
(siehe S. 2).

[6] Eric B. Baum und David Haussler. „What Size Net Gives Valid
Generalization?“ In: Neural Computation 1.1 (März 1989), S. 151–
160. issn: 0899-7667. doi: 10.1162/neco.1989.1.1.151 (siehe
S. 31).

[7] Gisle Bjontegaard. VCEG-M33: Calculation of average PSNR diffe-
rences between RD-curves. ITU-T SG 16 Q 6. 13th Meeting, Austin,
Texas, USA. 2001 (siehe S. 89, 108).

[8] Gisle Bjøntegaard. VCEG-AI11: Improvements of the BD-PSNR model.
ITU-T SG 16 Q 6. 35th Meeting, Berlin, Germany. 2008 (siehe S. 89,
108).

123

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[9] Gisle Bjontegaard, Thomas Davies, Arild Fuldseth und Steinar
Midtskogen. „The Thor Video Codec“. In: 2016 Data Compression
Conference (DCC). IEEE, März 2016, S. 476–485. isbn: 978-1-5090-
1853-6. doi: 10.1109/DCC.2016.74 (siehe S. 2).

[10] Frank Bossen. JCTVC-L1100: Common test conditions and softwa-
re reference configurations. 12th Meeting of the Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11. Geneva, CH. 2013 (siehe S. 103, 108).

[11] Jill M. Boyce, Yan Ye, Jianle Chen und Adarsh K. Ramasubra-
monian. „Overview of SHVC: Scalable Extensions of the High
Efficiency Video Coding Standard“. In: IEEE Transactions on Cir-
cuits and Systems for Video Technology 26.1 (Jan. 2016), S. 20–34. issn:
1051-8215. doi: 10.1109/TCSVT.2015.2461951 (siehe S. 2).

[12] John Canny. „A Computational Approach to Edge Detection“.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 8.6 (Nov. 1986), S. 679–698. issn: 0162-8828. doi: 10.1109/
TPAMI . 1986 . 4767851. url: http : / / ieeexplore . ieee . org /
lpdocs/epic03/wrapper.htm?arnumber=4767851 (siehe S. 50,
53, 120).

[13] Alfredo Canziani, Adam Paszke und Eugenio Culurciello. „An
Analysis of Deep Neural Network Models for Practical Applicati-
ons“. In: (Mai 2016). arXiv: 1605.07678. url: http://arxiv.org/
abs/1605.07678 (siehe S. 35).

[14] M. Augustine Cauchy. „Méthode générale pour la résolution
des systèmes d’équations simultanées. Übersetzt von Richard
Pulskamp, 2010.“ In: Compte rendu des séances de l’académie des
sciences (1847), S. 536–538. url: https://cs.uwaterloo.ca/{~}
y328yu/classics/cauchy-en.pdf (siehe S. 41).

[15] Jianle Chen, Elena Alshina, Gary J. Sullivan, Jens-Rainer Ohm und
Jill Boyce. JVET E1001: Alogorithm Description of Joint Exploration
Test Model 5 (JEM 5). 5th Meeting of the Joint Video Exploration Team
(JVET) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11. Geneva,
CH. 2017 (siehe S. 3).

[16] Yue Chen u. a. „An Overview of Core Coding Tools in the AV1
Video Codec“. In: 2018 Picture Coding Symposium (PCS). IEEE, Juni
2018, S. 41–45. isbn: 978-1-5386-4160-6. doi: 10.1109/PCS.2018.
8456249 (siehe S. 2).

124

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[17] Yi-jen Chiu, Lidong Xu, Wenhao Zhang und Hong Jiang. „Decoder-
side Motion Estimation and Wiener filter for HEVC“. In: 2013 Vi-
sual Communications and Image Processing (VCIP). IEEE, Nov. 2013,
S. 1–6. isbn: 978-1-4799-0290-3. doi: 10.1109/VCIP.2013.6706446
(siehe S. 17).

[18] Cisco. The Zettabyte Era: Trends and Analysis (white paper). 2017.
doi: 1465272001812119. url: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-
index-vni/vni-hyperconnectivity-wp.html (siehe S. 1).

[19] Duc Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter
und Giulia Boato. „RAISE - A raw images dataset for digital
image forensics“. In: Proceedings of the 6th ACM Multimedia Sys-
tems Conference, MMSys 2015. New York, New York, USA: As-
sociation for Computing Machinery, Inc, März 2015, S. 219–224.
isbn: 9781450333511. doi: 10.1145/2713168.2713194. url: http:
//dl.acm.org/citation.cfm?doid=2713168.2713194 (siehe S. 67,
68).

[20] Jan De Cock, Aditya Mavlankar, Anush Moorthy und Anne Aaron.
„A large-scale video codec comparison of x264, x265 and libvpx
for practical VOD applications“. In: Applications of Digital Image
Processing XXXIX. Hrsg. von Andrew G. Tescher. San Francisco,
CA, US: International Society for Optics und Photonics, Sep. 2016,
S. 997116. doi: 10.1117/12.2238495 (siehe S. 1, 2).

[21] Li Deng u. a. „Recent advances in deep learning for speech re-
search at Microsoft“. In: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, Mai 2013, S. 8604–
8608. isbn: 978-1-4799-0356-6. doi: 10.1109/ICASSP.2013.6639345
(siehe S. 33).

[22] Piotr Dollar und C. Lawrence Zitnick. „Fast Edge Detection Using
Structured Forests“. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 37.8 (Aug. 2015), S. 1558–1570. issn: 0162-8828.
doi: 10.1109/TPAMI.2014.2377715. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6975234 (sie-
he S. 52).

[23] Chao Dong, Chen Change Loy, Kaiming He und Xiaoou Tang.
„Image Super-Resolution Using Deep Convolutional Networks“.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
38.2 (Feb. 2016), S. 295–307. issn: 0162-8828. doi: 10.1109/TPAMI.
2015.2439281 (siehe S. 33).

125

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[24] Sebastian Drath. Deep Learning-basierte Intraprädiktion für die Video-
codierung. Masterarbeit, Institut für Informationsverarbeitung, Leibniz
Universität Hannover. Betreuer: Thorsten Laude. 2020 (siehe S. 7, 69).

[25] David Kristjanson Duvenaud. „Automatic Model Construction
with Gaussian Processes David“. Diss. University of Cambridge,
2014, S. 144. url: https://www.cs.toronto.edu/{~}duvenaud/
thesis.pdf (siehe S. 58).

[26] Mei Fang, Guang Xue Yue und Qing Cang Yu. „The Study on an
Application of Otsu Method in Canny Operator“. In: Proceedings
of the 2009 International Symposium on Information Processing (ISIP).
2009 (siehe S. 55, 120).

[27] Alhussein Fawzi, Horst Samulowitz, Deepak Turaga und Pascal
Frossard. „Image inpainting through neural networks hallucinati-
ons“. In: 2016 IEEE 12th Image, Video, and Multidimensional Signal
Processing Workshop (IVMSP). IEEE, Juli 2016, S. 1–5. isbn: 978-1-
5090-1929-8. doi: 10.1109/IVMSPW.2016.7528221 (siehe S. 6, 7,
33).

[28] David Flynn, Detlev Marpe, Matteo Naccari, Tung Nguyen, Chris
Rosewarne, Karl Sharman, Joel Sole und Jizheng Xu. „Overview
of the Range Extensions for the HEVC Standard: Tools, Profiles,
and Performance“. In: IEEE Trans. Cir. and Sys. for Video Technol.
26.1 (Jan. 2016), S. 4–19. issn: 1051-8215. doi: 10.1109/TCSVT.
2015.2478707 (siehe S. 1).

[29] Carl F. Gauß. Theory of the combination of observations least subject to
error. 1821 (siehe S. 34).

[30] Bernd Girod. „The Efficiency of Motion-Compensating Prediction
for Hybrid Coding of Video Sequences“. In: IEEE Journal on Se-
lected Areas in Communications 5.7 (Aug. 1987), S. 1140–1154. issn:
0733-8716. doi: 10.1109/JSAC.1987.1146632 (siehe S. 2).

[31] Ian J. Goodfellow, Yoshua Bengio und Aaron Courville. Deep
Learning. Hrsg. von Thomas Dietterich. Cambridge, MA, USA:
The MIT Press, 2016 (siehe S. 5, 28–32, 38–43).

[32] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud
und Vinay Shet. „Multi-digit Number Recognition from Street
View Imagery using Deep Convolutional Neural Networks“. In:
International Conference on Learning Representations. Dez. 2014. ar-
Xiv: 1312.6082 (siehe S. 33).

[33] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezen-
de und Daan Wierstra. DRAW: A Recurrent Neural Network For
Image Generation. Feb. 2015. arXiv: 1502.04623 (siehe S. 6, 7, 33).

126

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[34] Dan Grois, Tung Nguyen und Detlev Marpe. „Coding efficiency
comparison of AV1/VP9, H.265/MPEG-HEVC, and H.264/MPEG-
AVC encoders“. In: 2016 Picture Coding Symposium (PCS). IEEE,
2016, S. 1–5. isbn: 978-1-5090-5966-9. doi: 10.1109/PCS.2016.
7906321 (siehe S. 1).

[35] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya Itzhaky und
Ofer Hadar. „Performance comparison of H.265/MPEG-HEVC,
VP9, and H.264/MPEG-AVC encoders“. In: 2013 Picture Coding
Symposium (PCS). IEEE, Dez. 2013, S. 394–397. isbn: 978-1-4799-
0294-1. doi: 10.1109/PCS.2013.6737766 (siehe S. 1).

[36] Kushagr Gupta, Suleman Kazi und Terry Kong. DeepPaint: A Tool
for Image Inpainting. 2016. url: http://cs231n.stanford.edu/
reports/2016/pdfs/211{_}Report.pdf (siehe S. 6, 7, 33).

[37] Jingning Han, Ankur Saxena und Kenneth Rose. „Towards jointly
optimal spatial prediction and adaptive transform in video/image
coding“. In: 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2010, S. 726–729. isbn: 978-1-4244-4295-
9. doi: 10.1109/ICASSP.2010.5495043. url: http://ieeexplore.
ieee.org/document/5495043/ (siehe S. 24).

[38] Philippe Hanhart, Martin Rerabek, Francesca De Simone und
Touradj Ebrahimi. „Subjective quality evaluation of the upcoming
HEVC video compression standard“. In: SPIE Optical Engineering +
Applications. Okt. 2012, S. 84990V. doi: 10.1117/12.946036 (siehe
S. 1).

[39] Donald O. Hebb. The Organization of Behavior. New York, NY, USA:
Wiley, 1949 (siehe S. 34).

[40] Geoffrey Hinton u. a. „Deep Neural Networks for Acoustic Mode-
ling in Speech Recognition: The Shared Views of Four Research
Groups“. In: IEEE Signal Processing Magazine 29.6 (Nov. 2012),
S. 82–97. issn: 1053-5888. doi: 10.1109/MSP.2012.2205597 (siehe
S. 33).

[41] Daniel Holden, Jun Saito und Taku Komura. „A deep learning
framework for character motion synthesis and editing“. In: ACM
Transactions on Graphics 35.4 (Juli 2016), S. 1–11. issn: 07300301.
doi: 10.1145/2897824.2925975 (siehe S. 33).

[42] Kurt Hornik, Maxwell Stinchcombe und Halbert White. „Mul-
tilayer feedforward networks are universal approximators“. In:
Neural Networks 2.5 (Jan. 1989), S. 359–366. issn: 0893-6080. doi: 10.
1016/0893-6080(89)90020-8. url: https://www.sciencedirect.
com/science/article/pii/0893608089900208 (siehe S. 41).

127

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[43] Farzad Husain, Babette Dellen und Carme Torras. „Scene Under-
standing Using Deep Learning“. In: Handbook of Neural Computa-
tion. Hrsg. von Pijush Samui, Sanjiban Sekhar und Valentina E.
Balas. Academic Press, Jan. 2017, S. 373–382. isbn: 9780128113189.
doi: 10.1016/B978-0-12-811318-9.00020-X. url: https://www.
sciencedirect.com/science/article/pii/B978012811318900020X
(siehe S. 33).

[44] ISO/IEC 14496–10. Coding of Audiovisual Objects-Part 10: Advanced
Video Coding/ITU-T Recommendation H.264 Advanced video coding for
generic audiovisual services. 2003 (siehe S. 1).

[45] ISO/IEC JTC 1/SC 29. ISO/IEC 11544: Information technology -
Coded representation of picture and audio information - Progressive
bi-level image compression. Techn. Ber. 1993, S. 1–77 (siehe S. 4).

[46] ISO/IEC. 10918-1 - Information technology - Digital compression and
coding of continuous-tone still images. 1994 (siehe S. 4).

[47] ITU-T Recommendation H.265/ ISO/IEC 23008-2:2013 MPEG-H Part
2: High Efficiency Video Coding (HEVC). 2013 (siehe S. 1, 19).

[48] ITU-T. Recommendation T.81 - Information technology - Digital com-
pression and coding of continuous-tone still images. 1992 (siehe S. 4).

[49] ITU-T. Recommendation T.82 : Information technology - Coded repre-
sentation of picture and audio information - Progressive bi-level image
compression. 1993 (siehe S. 4).

[50] Sergey Ioffe und Christian Szegedy. „Batch Normalization: Acce-
lerating Deep Network Training by Reducing Internal Covariate
Shift“. In: Proceedings of The 32nd International Conference on Machine
Learning. 2015, S. 448–456 (siehe S. 6, 77).

[51] Alexey G. Ivakhnenko. „Polynomial theory of complex systems“.
In: Transactions on Systems, Man and Cybernetics 4 (1971), S. 364–378
(siehe S. 34).

[52] Alexey G. Ivakhnenko und Valentin G. Lapa. „Cybernetic Pre-
dicting Devices“. In: CCM Information Corporation (1965) (siehe
S. 34).

[53] Justin Johnson, Alexandre Alahi und Li Fei-Fei. „Perceptual Los-
ses for Real-Time Style Transfer and Super-Resolution“. In: Euro-
pean Conference on Computer Vision (ECCV). Springer, Cham, 2016,
S. 694–711. doi: 10.1007/978-3-319-46475-6_43 (siehe S. 33).

128

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[54] Joint Video Exploration Team (JVET) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11. JVET-G1010: JVET common test con-
ditions and software reference configurations. 7th Meeting: Torino, IT,
13–21 July. 2017 (siehe S. 27).

[55] Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Jung Kwon Lee und
Kyoung Mu Lee. „Accurate Image Super-Resolution Using Very
Deep Convolutional Networks“. In: Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, Juni 2016, S. 1646–1654. isbn:
978-1-4673-8851-1. doi: 10.1109/CVPR.2016.182 (siehe S. 33).

[56] Diederik Kingma und Jimmy Ba. „Adam: A Method for Stochastic
Optimization“. In: ArXiv preprint: 1412.6980 (Dez. 2014). arXiv:
1412.6980. url: http://arxiv.org/abs/1412.6980 (siehe S. 78).

[57] Sven Klomp. Decoderseitige Bewegungsschätzung in der Videocodie-
rung. Düsseldorf: Fortschritt-Berichte VDI : Reihe 10, Informatik,
Kommunikation, VDI Verlag, 2012, S. 1–98. isbn: 978-3-18-382010-
8 (siehe S. 17).

[58] Sven Klomp, Marco Munderloh und Jorn Ostermann. „Block size
dependent error model for motion compensation“. In: 2010 IEEE
International Conference on Image Processing. IEEE, Sep. 2010, S. 969–
972. isbn: 978-1-4244-7992-4. doi: 10.1109/ICIP.2010.5649414
(siehe S. 17).

[59] Sven Klomp, Marco Munderloh und Jörn Ostermann. „Decoder-
Side Motion Estimation Assuming Temporally or Spatially Con-
stant Motion“. In: ISRN Signal Processing 2011 (Juni 2011), S. 1–10.
issn: 2090-5041. doi: 10.5402/2011/956372 (siehe S. 17).

[60] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou,
Klaus Neymeyr und Thomas Hofmann. „Exponential convergence
rates for Batch Normalization: The power of length-direction
decoupling in non-convex optimization“. In: (Mai 2018). arXiv:
1805.10694. url: http://arxiv.org/abs/1805.10694 (siehe
S. 77).

[61] Alex Krizhevsky, Ilya Sutskever und Geoffrey E. Hinton. „Image-
Net Classification with Deep Convolutional Neural Networks“.
In: Advances in Neural Information Processing Systems. 2012, S. 1097–
1105 (siehe S. 6, 32, 34).

[62] Jani Lainema und Woo-Jin Han. „Intra-Picture Prediction in HEVC“.
In: High Efficiency Video Coding (HEVC): Algorithms and Architec-
tures. Hrsg. von Vivienne Sze, Madhukar Budagavi und Gary J.
Sullivan. Cham: Springer International Publishing, 2014, S. 91–112.
isbn: 978-3-319-06895-4. doi: 10.1007/978-3-319-06895-4_4.

129

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

url: https://doi.org/10.1007/978-3-319-06895-4{_}4 (siehe
S. 24).

[63] Jani Lainema, Frank Bossen, Woo-Jin Han, Junghye Min und
Kemal Ugur. „Intra Coding of the HEVC Standard“. In: IEEE
Transactions on Circuits and Systems for Video Technology 22.12 (Dez.
2012), S. 1792–1801. issn: 1051-8215. doi: 10.1109/TCSVT.2012.
2221525 (siehe S. 3, 16, 22, 23).

[64] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda und
Radu Horaud. „A Comprehensive Analysis of Deep Regression“.
In: (März 2018). arXiv: 1803.08450. url: http://arxiv.org/abs/
1803.08450 (siehe S. 32).

[65] Thorsten Laude und Jörn Ostermann. „Contour-based Multidi-
rectional Intra Coding for HEVC“. In: Proceedings of 32nd Picture
Coding Symposium (PCS). Nuremberg, Germany: IEEE, 2016. doi:
10.1109/PCS.2016.7906319 (siehe S. 5–7, 9, 53, 55, 65, 93, 119).

[66] Thorsten Laude und Jörn Ostermann. „Deep learning-based intra
prediction mode decision for HEVC“. In: Proceedings of 32nd Picture
Coding Symposium (PCS). Nuremberg, Germany: IEEE, 2016. doi:
10.1109/PCS.2016.7906399 (siehe S. 27, 32, 71).

[67] Thorsten Laude, Yannick Richter und Jörn Ostermann. „Neural
Network Compression using Transform Coding and Clustering“.
In: NIPS Compact Deep Neural Network Representation with Industrial
Applications Workshop. Montreal, Canada, Dez. 2018. arXiv: 1805.
07258 (siehe S. 49).

[68] Thorsten Laude, Holger Meuel, Yiqun Liu und Jorn Ostermann.
„Motion blur compensation in scalable HEVC hybrid video co-
ding“. In: 2013 Picture Coding Symposium (PCS). San Jose, CA,
USA: IEEE, 2013, S. 313–316. isbn: 978-1-4799-0294-1. doi: 10.
1109/PCS.2013.6737746. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6737746 (siehe S. 105).

[69] Thorsten Laude, Jan Tumbrägel, Marco Munderloh und Jörn Oster-
mann. „Non-linear contour-based multidirectional intra coding“.
In: APSIPA Transactions on Signal and Information Processing 7.11
(Okt. 2018). issn: 2048-7703. doi: 10.1017/ATSIP.2018.14 (siehe
S. 2, 3, 5–7, 9, 53, 55, 59, 64, 65, 89, 93, 109, 119).

[70] Thorsten Laude, Yeremia Gunawan Adhisantoso, Jan Voges, Mar-
co Munderloh und Jörn Ostermann. „A Comprehensive Video
Codec Comparison“. In: APSIPA Transactions on Signal and Informa-
tion Processing 8 (Nov. 2019), e30. issn: 2048-7703. doi: 10.1017/
ATSIP.2019.23 (siehe S. 105).

130

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[71] Yann LeCun, Yoshua Bengio und Geoffrey Hinton. „Deep lear-
ning“. In: Nature 521.7553 (Mai 2015), S. 436–444. issn: 0028-0836.
doi: 10.1038/nature14539 (siehe S. 5).

[72] Christian Ledig u. a. „Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network“. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, Juli 2017,
S. 105–114. isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.19
(siehe S. 33).

[73] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus und Shimon Scho-
cken. „Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function“. In: Neural Net-
works 6.6 (Jan. 1993), S. 861–867. issn: 0893-6080. doi: 10.1016/
S0893-6080(05)80131-5. url: https://www.sciencedirect.com/
science/article/pii/S0893608005801315 (siehe S. 41).

[74] Jian-Liang Lin, Yi-Wen Chen, Yu-Wen Huang und Shaw-Min Lei.
„Motion Vector Coding in the HEVC Standard“. In: IEEE Journal of
Selected Topics in Signal Processing 7.6 (Dez. 2013), S. 957–968. issn:
1932-4553. doi: 10.1109/JSTSP.2013.2271975 (siehe S. 17).

[75] Dong Liu, Xiaoyan Sun und Feng Wu. „Edge-Based Inpainting and
Texture Synthesis for Image Compression“. In: IEEE International
Conference on Multimedia and Expo (ICME). Juli 2007, S. 1443–1446.
isbn: 1-4244-1016-9. doi: 10.1109/ICME.2007.4284932 (siehe S. 4–
6, 8).

[76] Dong Liu, Xiaoyan Sun, Feng Wu, Shipeng Li und Ya-Qin Zhang.
„Image Compression With Edge-Based Inpainting“. In: IEEE Tran-
sactions on Circuits and Systems for Video Technology 17.10 (Okt. 2007),
S. 1273–1287. issn: 1051-8215. doi: 10.1109/TCSVT.2007.903663
(siehe S. 4, 6, 8).

[77] Dong Liu, Xiaoyan Sun, Feng Wu und Ya-Qin Zhang. „Edge-
oriented Uniform Intra Prediction.“ In: IEEE Transactions on Image
Processing 17.10 (Okt. 2008), S. 1827–36. issn: 1057-7149. doi: 10.
1109/TIP.2008.2002835 (siehe S. 4–6, 8).

[78] Christian Lottermann und Eckehard Steinbach. „Modeling the bit
rate of H.264/AVC video encoding as a function of quantization
parameter, frame rate and GoP characteristics“. In: 2014 IEEE
International Conference on Multimedia and Expo Workshops (ICMEW).
IEEE, Juli 2014, S. 1–6. isbn: 978-1-4799-4717-1. doi: 10.1109/
ICMEW.2014.6890567 (siehe S. 4).

[79] Bradley J. Lucier. True Color Kodak Images. url: http://r0k.us/
graphics/kodak/ (besucht am 17. 04. 2020) (siehe S. 87).

131

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[80] Detlef Marpe, Thomas Wiegand und Gary J. Sullivan. „The H.264/MPEG4
advanced video coding standard and its applications“. In: IEEE
Communications Magazine 44.8 (Aug. 2006), S. 134–143. issn: 0163-
6804. doi: 10.1109/MCOM.2006.1678121 (siehe S. 1).

[81] W. McCulloch und W. Pitts. „A logical calculus of the ideas im-
manent in nervous activity“. In: Bulletin of Mathematical Biophysics
7 (1943), S. 115–133 (siehe S. 34).

[82] J. Min, S. Lee, I. Kim, W.-J. Han, J. Lainema und K. Ugur. Unificati-
on of the Directional Intra Prediction Methods in TMuC, JCTVC-B100,
Geneva, Switzerland, July. 2010 (siehe S. 3, 23).

[83] Richard von Mises. Mathematical Theory of Probability and Statistics.
Hrsg. von Hilda Geiringer. New York und London: Academic
Press, 1964 (siehe S. 62).

[84] Kiran Misra, Andrew Segall, Michael Horowitz, Shilin Xu, Arild
Fuldseth und Minhua Zhou. „An Overview of Tiles in HEVC“. In:
IEEE Journal of Selected Topics in Signal Processing 7.6 (Dez. 2013),
S. 969–977. issn: 1932-4553. doi: 10.1109/JSTSP.2013.2271451
(siehe S. 21).

[85] Tom M. Mitchell. Machine Learning. New York, NY, USA: McGraw-
Hill, 1997. isbn: 0070428077 (siehe S. 28).

[86] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingning Han,
John Koleszar, Paul Wilkins, Yaowu Xu und Ronald Bultje. „The
latest open-source video codec VP9 - An overview and prelimina-
ry results“. In: 2013 Picture Coding Symposium (PCS). IEEE, Dez.
2013, S. 390–393. isbn: 978-1-4799-0294-1. doi: 10.1109/PCS.2013.
6737765 (siehe S. 2).

[87] Debargha Mukherjee, Hui Su, James Bankoski, Alex Converse,
Jingning Han, Zoe Liu und Yaowu Xu. „An overview of new
video coding tools under consideration for VP10: the successor to
VP9“. In: SPIE Optical Engineering + Application 9599 (Sep. 2015).
Hrsg. von Andrew G. Tescher. doi: 10.1117/12.2191104 (siehe
S. 2).

[88] Matthias Narroschke. Adaptive Prädiktionsfehlercodierung für die
Hybridcodierung von Videosignalen. Fortschritt-Berichte VDI Reihe
10 Nr. 786. Düsseldorf: VDI Verlag, 2008. isbn: 978-3-18-378610-7
(siehe S. 24, 80, 105).

[89] Netflix. Internet Connection Speed Recommendations (https://help.-
netflix.com/en/node/306, abgerufen am 06.05.2020). 2020 (siehe S. 105).

132

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[90] Andrew Y. Ng und Michael I. Jordan. „On Discriminative vs. Ge-
nerative Classifiers: A comparison of logistic regression and naive
Bayes“. In: Advances in Neural Information Processing Systems 14
(NIPS 2001). Hrsg. von T.G. Dietterich, S. Becker und Z. Ghahrama-
ni. Neural Information Processing Systems Foundation, Inc., 2001,
S. 841–848 (siehe S. 29).

[91] Tung Nguyen, Philipp Helle, Martin Winken, Benjamin Bross,
Detlev Marpe, Heiko Schwarz und Thomas Wiegand. „Transform
Coding Techniques in HEVC“. In: IEEE Journal of Selected Topics in
Signal Processing 7.6 (Dez. 2013), S. 978–989. issn: 1932-4553. doi:
10.1109/JSTSP.2013.2278071 (siehe S. 24).

[92] Jens-Rainer Ohm. Multimedia Communication Technology : Represen-
tation, Transmission and Identification of Multimedia Signals. Sprin-
ger Berlin Heidelberg, 2004, S. 859. isbn: 9783642187506. doi:
10.1007/978-3-642-18750-6 (siehe S. 2).

[93] Jens-Rainer Ohm und Mathias Wien. „Status and Perspectives
of Video Coding“. In: International Brodcasting Convention (2017)
(siehe S. 3).

[94] Jens-Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng
Tan und Thomas Wiegand. „Comparison of the Coding Efficiency
of Video Coding Standards—Including High Efficiency Video
Coding (HEVC)“. In: IEEE Transactions on Circuits and Systems for
Video Technology 22.12 (Dez. 2012), S. 1669–1684. issn: 1051-8215.
doi: 10.1109/TCSVT.2012.2221192 (siehe S. 1).

[95] Jörn Ostermann, Jan Bormans, Peter List, Detlef Marpe, Matthias
Narroschke, Fernando Pereira, Thomas Stockhammer und Tho-
mas Wedi. „Video coding with H.264/AVC: tools, performance,
and complexity“. In: IEEE Circuits and Systems Magazine 4.1 (2004),
S. 7–28. issn: 1531-636X. doi: 10.1109/MCAS.2004.1286980 (siehe
S. 1, 16).

[96] Nobuyuki Otsu. „A Threshold Selection Method from Gray-Level
Histograms“. In: IEEE Transactions on Systems, Man and Cybernetics
9.1 (1979), S. 62–66 (siehe S. 55, 120).

[97] Miltiadis Alexios Papadopoulos, Fan Zhang, Dimitris Agrafiotis
und David Bull. „A Video Texture Database for Perceptual Com-
pression and Quality Assessment“. In: International Conference on
Image Processing (ICIP). Quebec, Canada, 2015 (siehe S. 105).

[98] Vilfredo Pareto und Alfred N. Page. Manuale di economia politica
("Handbuch der politischen Ökonomie"). Hrsg. von A.M. Kelley. 1971.
isbn: 978-0-678-00881-2 (siehe S. 32).

133

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[99] Omkar M Parkhi, Andrea Vedaldi und Andrew Zisserman. „Deep
Face Recognition“. In: British Machine Vision Conference. Swansea,
UK, 2015 (siehe S. 32).

[100] Carl Edward Rasmussen und Christopher K. I. Williams. Gaussian
Processes for Machine Learning. Cambridge, MA, USA: MIT Press
MIT Press, 2006. url: http://www.gaussianprocess.org/gpml/
chapters/RW.pdf (siehe S. 57, 58, 60–62).

[101] Christoph Reinders, Hanno Ackermann, Michael Ying Yang und
Bodo Rosenhahn. „Object Recognition from very few Training
Examples for Enhancing Bicycle Maps“. In: 2018 IEEE Intelli-
gent Vehicles Symposium (IV). IEEE, Juni 2018, S. 1–8. isbn: 978-
1-5386-4452-2. doi: 10 . 1109 / IVS . 2018 . 8500469. url: https :
//ieeexplore.ieee.org/document/8500469/ (siehe S. 48).

[102] Frank Rosenblatt. „The perceptron: a probabilistic model for in-
formation storage and organization in the brain“. In: Psychological
review 65.6 (1958), S. 386 (siehe S. 34).

[103] Olga Russakovsky u. a. „ImageNet Large Scale Visual Recognition
Challenge“. In: (Sep. 2014). arXiv: 1409.0575 (siehe S. 32).

[104] Arthur L. Samuel. „Some studies in machine learning using the
game of checkers“. In: IBM Journal of Research and Development
3.3 (Jan. 1959). issn: 0018-8646. doi: 10.1147/rd.441.0206 (siehe
S. 27).

[105] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas und Aleksander
Madry. „How Does Batch Normalization Help Optimization?“ In:
Advances in Neural Information Processing Systems 31. Hrsg. von
S. Bengio and H. Wallach and H. Larochelle and K. Grauman
and N. Cesa-Bianchi and R. Garnett. Montreal, Canada, 2018,
S. 2487–2497. url: http://papers.nips.cc/paper/7515-how-
does-batch-normalization-help-optimization (siehe S. 77).

[106] Jürgen Schmidhuber. „Deep learning in neural networks: An
overview“. In: Neural Networks (Okt. 2014), S. 88. issn: 08936080.
doi: 10.1016/j.neunet.2014.09.003. arXiv: 1404.7828 (siehe
S. 31, 34).

[107] Heiko Schwarz, Detlev Marpe und Thomas Wiegand. „Analysis
of Hierarchical B Pictures and MCTF“. In: 2006 IEEE International
Conference on Multimedia and Expo. IEEE, Juli 2006, S. 1929–1932.
isbn: 1-4244-0366-7. doi: 10.1109/ICME.2006.262934. url: http:
//ieeexplore.ieee.org/document/4037003/ (siehe S. 16).

134

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[108] Heiko Schwarz, Thomas Schierl und Detlev Marpe. „Block Struc-
tures and Parallelism Features in HEVC“. In: 2014, S. 49–90. doi:
10.1007/978-3-319-06895-4_3 (siehe S. 21).

[109] Kasiviswanathan S. Shanmugam. „Comments on Discrete Cosine
Transform“. In: IEEE Transactions on Computers C-24.7 (Juli 1975),
S. 759–759. issn: 0018-9340. doi: 10.1109/T-C.1975.224301 (siehe
S. 18).

[110] Or Sharir, Barak Peleg und Yoav Shoham. „The Cost of Training
NLP Models: A Concise Overview“. In: (2020). arXiv: 2004.08900.
url: http://arxiv.org/abs/2004.08900 (siehe S. 48).

[111] Rickard Sjoberg, Ying Chen, Akira Fujibayashi, Miska M. Han-
nuksela, Jonatan Samuelsson, Thiow Keng Tan, Ye-Kui Wang und
Stephan Wenger. „Overview of HEVC High-Level Syntax and
Reference Picture Management“. In: IEEE Transactions on Circuits
and Systems for Video Technology 22.12 (Dez. 2012), S. 1858–1870.
issn: 1051-8215. doi: 10.1109/TCSVT.2012.2223052 (siehe S. 22).

[112] Irwin Sobel. An Isotropic 3x3 Image Gradient Operator. Feb. 2014
(siehe S. 50).

[113] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutske-
ver und Ruslan Salakhutdinov. „Dropout: a simple way to prevent
neural networks from overfitting“. In: The Journal of Machine Lear-
ning Research 15.1 (2014), S. 1929–1958. issn: 1532-4435 (siehe S. 6,
80, 82).

[114] Jacob Ström, Kenneth Andersson, Rickard Sjöberg, Andrew Segall,
Frank Bossen, Gary J. Sullivan und Jens-Rainer Ohm. JVET-Q2016-
v4: Summary information on BD-rate experiment evaluation practices.
17th Meeting of the Joint Video Experts Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11. Brussels, BE. 2020 (siehe
S. 108).

[115] Gary J. Sullivan und Thomas Wiegand. „Rate-distortion optimiza-
tion for video compression“. In: IEEE Signal Processing Magazine
15.6 (1998), S. 74–90. issn: 10535888. doi: 10.1109/79.733497
(siehe S. 27).

[116] Gary J Sullivan, Jens-Rainer Ohm, Woo-jin Han und Thomas
Wiegand. „Overview of the High Efficiency Video Coding (HEVC)
Standard“. In: IEEE Transactions on Circuits and Systems for Video
Technology 12 (2012) (siehe S. 1, 19).

135

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[117] Satoshi Suzuki und Keiichia Be. „Topological Structural Analysis
of Digitized Binary Images by Border Following“. In: Computer Vi-
sion, Graphics, and Image Processing 30.1 (Apr. 1985), S. 32–46. issn:
0734189X. doi: 10.1016/0734-189X(85)90016-7. url: http://
www.sciencedirect.com/science/article/pii/0734189X85900167
(siehe S. 55, 120).

[118] Vivienne Sze und Madhukar Budagavi. „High Throughput CA-
BAC Entropy Coding in HEVC“. In: IEEE Transactions on Circuits
and Systems for Video Technology 22.12 (Dez. 2012), S. 1778–1791.
issn: 1051-8215. doi: 10.1109/TCSVT.2012.2221526 (siehe S. 19).

[119] Vivienne Sze, Madhukar Budagavi und Gary J. Sullivan, Hrsg.
High Efficiency Video Coding (HEVC). Integrated Circuits and Sys-
tems. Cham: Springer International Publishing, 2014. isbn: 978-3-
319-06894-7. doi: 10.1007/978-3-319-06895-4 (siehe S. 1).

[120] Vivienne Sze und Detlev Marpe. „Entropy Coding in HEVC“. In:
High Efficiency Video Coding (HEVC): Algorithms and Architectures.
Hrsg. von Vivienne Sze, Madhukar Budagavi und Gary J. Sullivan.
Heidelberg, 2014, S. 209–274. isbn: 978-3-319-06894-7. doi: 10.
1007/978-3-319-06895-4_8 (siehe S. 26).

[121] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, Jian-
Hao Luo, Jianxin Wu und Weiyao Lin. „Efficient Processing of
Deep Neural Networks: A Tutorial and Survey“. In: Proceedings
of the IEEE 105.12 (Dez. 2017), S. 2295–2329. issn: 0018-9219. doi:
10.1109/JPROC.2017.2761740 (siehe S. 35, 36).

[122] Christian Szegedy, Pierre Sermanet, Scott Reed, Dragomir Angue-
lov, Dumitru Erhan, Vincent Vanhoucke und Andrew Rabinovich.
„Going deeper with convolutions“. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, Juni 2015,
S. 1–9. isbn: 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.7298594
(siehe S. 6).

[123] The HDF Group. Hierarchical data format version 5. 2000-2010. url:
http://www.hdfgroup.org/HDF5 (siehe S. 70).

[124] Lucas Theis und Matthias Bethge. „Generative Image Modeling
Using Spatial LSTMs“. In: NIPS. MIT Press Cambridge, 2015,
S. 1927–1935 (siehe S. 6, 7, 33).

[125] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vin-
cent, David Minnen, Shumeet Baluja, Michele Covell und Rahul
Sukthankar. Variable Rate Image Compression with Recurrent Neural
Networks. Nov. 2015. arXiv: 1511.06085 (siehe S. 2, 7).

136

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[126] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang,
David Minnen, Joel Shor und Michele Covell. Full Resolution Image
Compression with Recurrent Neural Networks. Aug. 2016. arXiv: 1608.
05148 (siehe S. 2, 7).

[127] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun und
Christoph Bregler. „Efficient object localization using Convolu-
tional Networks“. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Bd. 07-12-
June-2015. IEEE Computer Society, Okt. 2015, S. 648–656. isbn:
9781467369640. doi: 10.1109/CVPR.2015.7298664. arXiv: 1411.
4280 (siehe S. 82).

[128] Alexander Toshev und Christian Szegedy. „DeepPose: Human
Pose Estimation via Deep Neural Networks“. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2014, S. 1653–1660. doi: 10.1109/CVPR.2014.214 (siehe S. 32).

[129] Jan Tumbrägel. Nichtlineare Kantenextrapolation für die Prädiktion in
der Bildcodierung. Diplomarbeit, Institut für Informationsverarbeitung,
Leibniz Universität Hannover, Betreuer: Jörn Ostermann. 2016 (siehe
S. 6).

[130] Jean-Marc Valin, Timothy B. Terriberry, Nathan E. Egge, Tho-
mas Daede, Yushin Cho, Christopher Montgomery und Michael
Bebenita. Daala: Building A Next-Generation Video Codec From Un-
conventional Technology. Aug. 2016. arXiv: 1608.01947 (siehe S. 2).

[131] Fjodor van Veen. The Neural Network Zoo. 2016. url: https://
www.asimovinstitute.org/neural-network-zoo/ (besucht am
18. 02. 2019) (siehe S. 39).

[132] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio
und Pierre-Antoine Manzagol. „Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a Local
Denoising Criterion“. In: Journal of Machine Learning Research 11.12
(2010), S. 3371–3408. issn: ISSN 1533-7928 (siehe S. 33).

[133] Gregory K. Wallace. „The JPEG Still Picture Compression Stan-
dard“. In: IEEE Transactions on Consumer Electronics 38.1 (1992).
doi: 10.1109/30.125072 (siehe S. 4).

[134] Xiaolong Wang, Rui Guo und Chandra Kambhamettu. „Deeply-
Learned Feature for Age Estimation“. In: 2015 IEEE Winter Confe-
rence on Applications of Computer Vision. IEEE, Jan. 2015, S. 534–541.
isbn: 978-1-4799-6683-7. doi: 10.1109/WACV.2015.77 (siehe S. 32).

[135] Allan G. Weber. SIPI Image Database. url: http://sipi.usc.edu/
database/ (besucht am 17. 04. 2020) (siehe S. 87).

137

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[136] Allan G. Weber. The USC-SIPI Image Database: Version 6. Techn. Ber.
2018. url: http://netpbm.sourceforge.net/ (siehe S. 87).

[137] Paul J. Werbos. „Applications of advances in nonlinear sensitivity
analysis“. In: Proceedings of the 10th IFIP Conference. 1981, S. 762–
770 (siehe S. 34).

[138] Bernard Widrow und Marcian Hoff. „Associative storage and
retrieval of digital information in networks of adaptive neurons“.
In: Biological Prototypes and Synthetic Systems 1 (1962), S. 160 (siehe
S. 34).

[139] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard und Ajay
Luthra. „Overview of the H.264/AVC video coding standard“. In:
IEEE Transactions on Circuits and Systems for Video Technology 13.7
(Juli 2003), S. 560–576. issn: 1051-8215. doi: 10.1109/TCSVT.2003.
815165. url: http://ieeexplore.ieee.org/document/1218189/
(siehe S. 16).

[140] Mathias Wien. „High Efficiency Video Coding - Coding Tools and
Specification“. In: Springer (2015) (siehe S. 1, 12, 19–21, 23, 104).

[141] David H. Wolpert und William G. Macready. „No Free Lunch
Theorems for Optimization“. In: Trans. Evol. Comp 1.1 (Apr. 1997),
S. 67–82. issn: 1089-778X. doi: 10.1109/4235.585893 (siehe S. 32).

[142] Lonce Wyse. „Audio Spectrogram Representations for Processing
with Convolutional Neural Networks“. In: Proceedings of the First
International Conference on Deep Learning and Music. Anchorage,
US, Juni 2017, S. 37–41. arXiv: 1706.09559. url: http://arxiv.
org/abs/1706.09559 (siehe S. 71).

[143] Junyuan Xie, Linli Xu und Enhong Chen. „Image Denoising and
Inpainting with Deep Neural Networks“. In: Conference on Neural
Information Processing Systems (NIPS). 2012, S. 341–349 (siehe S. 33).

[144] Jizheng Xu, Rajan Joshi und Robert A. Cohen. „Overview of the
Emerging HEVC Screen Content Coding Extension“. In: IEEE Tran-
sactions on Circuits and Systems for Video Technology 26.1 (Jan. 2016),
S. 50–62. issn: 1051-8215. doi: 10.1109/TCSVT.2015.2478706
(siehe S. 2, 24).

[145] Xiaozhong Xu, Shan Liu, Tzu-Der Chuang, Yu-Wen Huang, Shaw-
Min Lei, Krishnakanth Rapaka, Chao Pang, Vadim Seregin, Ye-Kui
Wang und Marta Karczewicz. „Intra Block Copy in HEVC Screen
Content Coding Extensions“. In: IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 6.4 (Dez. 2016), S. 409–419.
issn: 2156-3357. doi: 10.1109/JETCAS.2016.2597645 (siehe S. 16).

138

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

literatur

[146] Yule Yuan und Xiaohang Sun. „Edge Information Based Effective
Intra Mode Decision Algorithm“. In: 2012 IEEE International Con-
ference on Signal Processing, Communication and Computing (ICSP-
CC). IEEE, Aug. 2012, S. 628–633. isbn: 978-1-4673-2193-8. doi:
10.1109/ICSPCC.2012.6335602 (siehe S. 4).

[147] Soumaya Zaghbani, Noureddine Boujneh und Med Salim Bouhlel.
„Age estimation using deep learning“. In: Computers & Electrical
Engineering 68 (Mai 2018), S. 337–347. issn: 0045-7906. doi: 10.
1016/J.COMPELECENG.2018.04.012 (siehe S. 32).

[148] Heiga Ze, Andrew Senior und Mike Schuster. „Statistical para-
metric speech synthesis using deep neural networks“. In: 2013
IEEE International Conference on Acoustics, Speech and Signal Proces-
sing. IEEE, Mai 2013, S. 7962–7966. isbn: 978-1-4799-0356-6. doi:
10.1109/ICASSP.2013.6639215 (siehe S. 33).

[149] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng und Lei
Zhang. „Beyond a Gaussian Denoiser: Residual Learning of De-
ep CNN for Image Denoising“. In: IEEE Transactions on Image
Processing 26.7 (Juli 2017), S. 3142–3155. issn: 1057-7149. doi:
10.1109/TIP.2017.2662206 (siehe S. 33).

[150] Li Zhang, Xiaoyu Xiu, Jianle Chen, Marta Karczewicz, Yunwen
He, Yan Ye, Jizheng Xu, Joel Sole und Woo-Shik Kim. „Adaptive
Color-Space Transform in HEVC Screen Content Coding“. In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
6.4 (Dez. 2016), S. 446–459. issn: 2156-3357. doi: 10.1109/JETCAS.
2016.2599860. url: http://ieeexplore.ieee.org/document/
7553470/ (siehe S. 11).

[151] Barret Zoph und Quoc V. Le. „Neural Architecture Search with
Reinforcement Learning“. In: ICLR. Nov. 2017. arXiv: 1611.01578
(siehe S. 48).

139

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

V E R Ö F F E N T L I C H U N G E N

Während der Zeit am Institut für Informationsverarbeitung sind die
folgenden Veröffentlichungen entstanden:

zeitschriftenartikel

[1] Thorsten Laude, Jan Tumbrägel, Marco Munderloh und Jörn Oster-
mann. „Non-linear contour-based multidirectional intra coding“.
In: APSIPA Transactions on Signal and Information Processing 7.11
(Okt. 2018). issn: 2048-7703. doi: 10.1017/ATSIP.2018.14.

[2] Thorsten Laude, Yeremia Gunawan Adhisantoso, Jan Voges, Mar-
co Munderloh und Jörn Ostermann. „A Comprehensive Video
Codec Comparison“. In: APSIPA Transactions on Signal and Informa-
tion Processing 8 (Nov. 2019), e30. issn: 2048-7703. doi: 10.1017/
ATSIP.2019.23.

konferenzbeiträge

[1] Thorsten Laude, Felix Haub und Jörn Ostermann. „HEVC Inter
Coding using Deep Recurrent Neural Networks and Artificial
Reference Pictures“. In: Picture Coding Symposium (PCS). Nov.
2019.

[2] Thorsten Laude und Jörn Ostermann. „Copy Mode for Static
Screen Content Coding with HEVC“. In: IEEE International Con-
ference on Image Processing (ICIP). Sep. 2015, S. 1930 –1934. doi:
10.1109/ICIP.2015.7351137.

[3] Thorsten Laude und Jörn Ostermann. „Contour-based Multidi-
rectional Intra Coding for HEVC“. In: Proceedings of 32nd Picture
Coding Symposium (PCS). Dez. 2016. doi: 10.1109/PCS.2016.
7906319.

[4] Thorsten Laude und Jörn Ostermann. „Deep learning-based intra
prediction mode decision for HEVC“. In: Proceedings of 32nd Picture
Coding Symposium (PCS). Dez. 2016. doi: 10.1109/PCS.2016.
7906399.

140

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

veröffentlichungen

[5] Thorsten Laude, Yannick Richter und Jörn Ostermann. „Neural
Network Compression using Transform Coding and Clustering“.
In: NIPS Compact Deep Neural Network Representation with Industrial
Applications Workshop. Montreal, Canada, Dez. 2018. arXiv: 1805.
07258.

[6] Thorsten Laude, Holger Meuel, Yiqun Liu und Jörn Ostermann.
„Motion Blur Compensation in Scalable HEVC Hybrid Video
Coding“. In: Proceedings of 30th Picture Coding Symposium. Dez.
2013, S. 313–316. doi: 10.1109/PCS.2013.6737746.

[7] Thorsten Laude, Xiaoyu Xiu, Jie Dong, Yuwen He, Yan Ye und
Jörn Ostermann. „Improved Inter-Layer Prediction for the Scalable
Extensions of HEVC“. In: Data Compression Conference (DCC). März
2014, S. 412. doi: 10.1109/DCC.2014.45.

[8] Thorsten Laude, Xiaoyu Xiu, Jie Dong, Yuwen He, Yan Ye und
Jörn Ostermann. „Scalable Extension of HEVC Using Enhanced
Inter-Layer Prediction“. In: IEEE International Conference on Image
Processing (ICIP). 2014, S. 3739–3743. doi: 10.1109/ICIP.2014.
7025759.

[9] Thorsten Laude, Yeremia Gunawan Adhisantoso, Jan Voges, Mar-
co Munderloh und Jörn Ostermann. „A Comparison of JEM and
AV1 with HEVC: Coding Tools, Coding Efficiency and Comple-
xity“. In: Proceedings of the IEEE Picture Coding Symposium (PCS).
Juni 2018.

[10] Bastian Wandt, Thorsten Laude, Yiqun Liu, Bodo Rosenhahn und
Jörn Ostermann. „Extending HEVC Using Texture Synthesis“. In:
IEEE Visual Communications and Image Processing (VCIP). Dez. 2017.
doi: 10.1109/VCIP.2017.8305034.

[11] Bastian Wandt, Thorsten Laude, Bodo Rosenhahn und Jörn Oster-
mann. „Detail-aware image decomposition for an HEVC-based
texture synthesis framework“. In: Data Compression Conference
(DCC). März 2018.

[12] Bastian Wandt, Thorsten Laude, Bodo Rosenhahn und Jörn Os-
termann. „Extending HEVC with a Texture Synthesis Framework
using Detail-aware Image Decomposition“. In: Proceedings of the
Picture Coding Symposium (PCS). Juni 2018.

141

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

veröffentlichungen

patente

[1] Thorsten Laude, Xiaoyu Xiu, Jie Dong, Yan Ye und Yuwen He.
„Inter-layer Prediction for Scalable Video Coding“. In: United States
Patent US10148971B2 (Dez. 2018). url: https://patents.google.
com/patent/US10148971B2.

standardisierungsbeiträge

[1] R. Joshi, Y.-K. Wang, G. Tech, T. Laude, J. Chen, J. Xu, G. Sullivan, S
Liu und Y. Ye. „JCTVC-V0031: Proposed editorial improvements to
HEVC Screen Content Draft Text 4“. In: Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 and ISO/IEC JTC1/SC29/WG11,
22th Meeting (2015).

[2] Thorsten Laude. „JCTVC-R0113: Non-SCCE3: Improved Palette In-
dex Coding with Contextualization“. In: Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 and ISO/IEC JTC1/SC29/WG11,
18th Meeting (2014).

[3] Thorsten Laude. „JCTVC-S0074: CE6: Results for Test B3 on Im-
proved Palette Index Coding with Contextualization“. In: Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 and
ISO/IEC JTC1/SC29/WG11, 19th Meeting (2014).

[4] Thorsten Laude. „JCTVC-S0075: Copy Mode for Static Screen
Content“. In: Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 and ISO/IEC JTC1/SC29/WG11, 19th Meeting (2014).

[5] Thorsten Laude. „JCTVC-T0138: Copy mode for static screen
content coding“. In: Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 and ISO/IEC JTC1/SC29/WG11, 20th Meeting
(2015).

[6] Thorsten Laude. „JCTVC-U0119: On slice segment freeze signal-
ling for screen content coding“. In: Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 and ISO/IEC JTC1/SC29/WG11, 21th
Meeting (2015).

[7] Thorsten Laude. „JCTVC-V0032: Minor editorial improvements
for HEVC SCC.“ In: Joint Collaborative Team on Video Coding(JCT-
VC) of ITU-T SG16and ISO/IEC JTC1/SC29/WG11, 22th Meeting. Okt.
2015.

142

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

veröffentlichungen

patentanträge

[1] Erfinder: Thorsten Laude, Felix Haub und Jörn Ostermann. Inter
Coding using Deep Recurrent Neural Networks and Artificial Reference
Pictures (62/772,100, US, anhängig). 2019.

[2] Erfinder: Thorsten Laude, Florian Mehringer und Jörn Ostermann.
Anmelder und Erfinder: Zhijie Zhao. Encoder- and Decoder-side De-
vice for Machine Learning-based Signal Coding (PCT/EP2019/052342,
anhängig). 2019.

[3] Erfinder: Thorsten Laude, Marco Munderloh und Jörn Ostermann.
Anmelder und Erfinder: Zhijie Zhao. Apparatus and Method for
Encoding an Image (PCT/EP2016/079663, anhängig). 2016.

[4] Erfinder: Thorsten Laude, Marco Munderloh und Jörn Oster-
mann. Improved Screen Content and Mixed Content Coding (PC-
T/IB2015/051821, anhängig). 2015.

[5] Erfinder: Thorsten Laude, Jörn Ostermann, Marco Munderloh
und Haoping Yu. Improved Method for Screen Content Coding (PC-
T/US2015/020505, anhängig). 2015.

[6] Erfinder: Thorsten Laude, Stella Grasshof, Marco Munderloh und
Jörn Ostermann. Devices and Methods for Video Coding Using Intra
Prediction (PCT/EP2016/066988, anhängig). 2016.

[7] Erfinder: Bastian Wandt, Yiqun Liu, Thorsten Laude, Jörn Os-
termann und Bodo Rosenhahn. Anmelder und Erfinder: Zhijie
Zhao. Frequency Adjustment for Texture Synthesis in Video Coding
(PCT/EP2017/082071, anhängig). 2017.

[8] Erfinder: Bastian Wandt, Yiqun Liu, Thorsten Laude, Jörn Os-
termann und Bodo Rosenhahn. Anmelder und Erfinder: Zhijie
Zhao. Polynomial Fitting for Motion Compensation and Luminance
Reconstruction in Texture Synthesis (PCT/EP2017/082072, anhängig).
2017.

[9] Erfinder: Bastian Wandt, Yiqun Liu, Thorsten Laude, Jörn Os-
termann und Bodo Rosenhahn. Anmelder und Erfinder: Zhijie
Zhao. Cluster Refinement for Texture Synthesis in Video Coding (PC-
T/EP2018/057477, anhängig). 2018.

143

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Thorsten Laude

Persönliche Daten

Geburtsjahr: 1988

Geburtsort: Hannover

E-Mail: thorstenlaude@mailbox.org

Beruflicher Werdegang

Seit 2020 Landeskriminalamt Niedersachsen

2013 – 2020 Wissenschaftlicher Mitarbeiter,

Institut für Informationsverarbeitung,

Leibniz Universität Hannover,

Betreuer: Prof. Dr.-Ing. Jörn Ostermann

2013 Interdigital Communications, San Diego, USA

2012 Studentische Hilfskraft,

Institut für Informationsverarbeitung,

Leibniz Universität Hannover

2010 – 2012 Studentische Hilfskraft,

Institut für Kommunikationstechnik,

Leibniz Universität Hannover

Ausbildung

2008 – 2013 Studium der Elektrotechnik,

Leibniz Universität Hannover,

Spezialisierung: Nachrichtentechnik,

Abschluss: Diplom-Ingenieur

2008 Abitur, Gymnasium Langenhagen

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

RZ_VV_AZ_WerdenAutor_A5.indd 1 12.07.19 13:08

Veröffentlichen Sie die Ergebnisse Ihrer interdisziplinären technikorientierten
Spitzenforschung in der renommierten Schriftenreihe Fortschritt-Berichte VDI.
Ihre Dissertationen, Habilitationen und Forschungsberichte sind hier bestens platziert:

• Kompetente Beratung und editorische Betreuung
• Vergabe einer ISBN-Nr.
• Verbreitung der Publikation im Buchhandel
• Wissenschaftliches Ansehen der Reihe Fortschritt-Berichte VDI
• Veröffentlichung mit Nähe zum VDI
• Zitierfähigkeit durch Aufnahme in einschlägige Bibliographien
• Präsenz in Fach-, Uni- und Landesbibliotheken
• Schnelle, einfache und kostengünstige Abwicklung

PRoFItIeReN SIe VoN UNSeRem ReNommee!
www.vdi-nachrichten.com/autorwerden

Werden Sie Autor
im VDI Verlag!

Publizieren Sie
in „Fortschritt-
Berichte VDI“

PI
TS
TO
PS
ER

VE
R

Cyan Magenta Yellow Black
Preflight Lx3 am Dezember 15, 2020 | 09:24:02 | 350 mm x 250 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 2

L_201886_Reihe_10_871_Umschlag.pdf · Seite 2
2

2

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

Black TNT_Logo_Cover_und_Innen.qxd.pdfM?rz 18, 2015 | 08:13:46 1

Fortschritt-Berichte VDIFortschritt-Berichte VDI

Dipl.-Ing. Thorsten Laude,
Langenhagen

Nr. 871Nr. 871

Informatik/
Kommunikation

Reihe 10Reihe 10

Konturbasierte Konturbasierte
multidirektionale multidirektionale
Intra-Prädiktion für Intra-Prädiktion für
die Videocodierungdie Videocodierung

La
ud

e
 C

oM
IC

Co
M

IC
R

ei
he

 1
010
 ·

 N
r.

 8
7187
1

D ie Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-38711087110-0
Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

Institut für Informationsverarbeitung
www.tnt.uni-hannover.de

TNT_Logo_Cover und Innen_TNT_Logo_Cover und Innen.qxd 18.03.2015 09:12 Seite 1

Cyan Magenta Yellow Black PANTONE Process Blue CP
Preflight Lx3 am Dezember 15, 2020 | 09:24:02 | 350 mm x 250 mm

L_
20

18
86

_R
ei

he
_1

0_
87

1_
U

m
sc

hl
ag

.p
df

 ·
S

ei
te

 1

L_201886_Reihe_10_871_Umschlag.pdf · Seite 1
1

1

https://doi.org/10.51202/9783186871107 - Generiert durch IP 216.73.216.60, am 24.01.2026, 04:00:51. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186871107

	Cover
	1 Einleitung
	1.1 Motivation
	1.2 Stand der Forschung
	1.3 Ungelöste Probleme
	1.4 Ziele der Arbeit
	1.5 Aufbau der Arbeit

	2 Grundlagen
	2.1 Videocodierung
	2.2 Maschinelles Lernen
	2.3 Konturdetektion

	3 Verfahren zur Modellierung von Konturen
	3.1 Konturdetektion
	3.2 Konturglättung
	3.3 Modellierung der Kontur
	3.4 A-Priori-Gauß-Prozess
	3.5 Posterior-Gauß-Prozess
	3.6 Konturextrapolation
	3.7 Einbettung in das Gesamtsystem

	4 Verfahren zur Abtastwertprädiktion mittels maschinellen Lernens
	4.1 Einordnung in das Gesamtsystem
	4.2 Datenbasis
	4.3 Architekturen
	4.4 Training

	5 Experimentelle Untersuchung und Bewertung
	5.1 Integration in einen Bildcodec
	5.1.1 Mehrwert des vorgeschlagenen Konturmodells
	5.1.2 Mehrwert der vorgeschlagenen Abtastwertprädiktion
	5.1.3 Einordnung von Effizienz und Komplexität

	5.2 Integration in einen Videocodec
	5.2.1 Polynomielles Konturmodell und Abtastwertprädiktion mit neuronalen Netzwerken
	5.2.2 Stochastisches Konturmodell und Abtastwertprädiktion mit neuronalen Netzwerken

	6 Zusammenfassung
	Literatur

