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Abstract
The fatigue behavior of many structural components in civil engineering needs to be
investigated in detail to proof the safety and reliability. The existing concepts of structural
testing machines are not sufficient to fulfill the requirements regarding an economic and
reliable experimental procedure for these tests on large structural elements. The focus
of this thesis is the development of a concept for an efficient and adoptable design of
a resonant testing setup to realize fatigue tests in the very high cycle fatigue range. A
resonant testing system applies a harmonic excitation load from an imbalance rotor to a
specimen with a low damping factor at its eigenfrequency which results in an amplified
stress. To achieve a constant stress level under continuous changing properties of the
test object a closed loop control was developed that refers an arbitrary reference for
the dynamic load level (e.g. force, strain or mechanical stress amplitude) to a generalized
control reference. For the synchronization of the rotation angle of the uncoupled imbalance
rotors an angular positioning method based on a state machine was developed, that only
depends on simple position sensors. A complete digital model of the resonant testing
system that simulates the mechanical, electrical and control behavior can be used to
perform the test virtually before the realization of the test stand. The described simulation
environment can be used to analyze the feasibility of the planned tests and the quality of
the stress generation. Three dynamic effects are examined that results from the interaction
between imbalance rotor and the vibration movement of the specimen. The design concept
is implemented on three fatigue test stands. A reinforced concrete beam has been tested
in the very high cycle range of 1, 0 · 108 load cycles. The utilisation of the test concept to
railroad railway fatigue tests significantly lowered the duration of the test by the factor
4 and the energy consumption by the factor 792 in comparison with hydraulic testing
systems. The requirements for continuous vibration tests are reached for both simulations
and realized test stands.

Keywords:
fatigue, resonance, control, structural testing, simulation, digital twin
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Zusammenfassung
Für viele Bauteilkonstruktionen im Bauingenieurwesen sind Untersuchungen des Ermü-
dungsverhaltens essentiell zum Nachweis von Sicherheit und Zuverlässigkeit erforderlich.
Die dafür existierenden Konzepte für dynamische Prüfmaschinen reichen jedoch nicht
aus, um den Anforderungen an eine wirtschaftliche und gleichzeitig qualitativ hochwertige
Versuchsdurchführung an großen Bauteilen zu entsprechen. Im Mittelpunkt dieser Arbeit
steht die Entwicklung eines Konzepts zur effizienten und individuell an jede Versuchs-
konfiguration anpassbare Auslegung von Resonanzversuchsständen, um Ermüdungsun-
tersuchungen an großen Bauteilen im Langzeitfestigkeitsbereich zu realisieren. Bei einem
Resonanzversuchsstand wird der schwingungsfähige Probekörper durch eine harmonische
Kraftanregung mittels Unwuchtantrieben nahe der Eigenfrequenz belastet und aufgrund
der schwachen Dämpfung des Schwingungssystems eine Vervielfachung der Beanspruchung
des Bauteils erzeugt. Um trotz der sich bei Ermüdung stetig ändernden Bauteileigenschaf-
ten konstante Lastschwingbreiten zu erzeugen, wurde ein Regelungsansatz entwickelt,
bei dem die beliebig gewählte Führungsgröße (z. B. Kraft-, Dehnungs- oder Spannungs-
schwingbreite) auf die dynamisch erzeugte Kraft als generalisierte Regelgröße überführt
wird. Zur elektrischen Synchronisation von Unwuchtantrieben wurde ein auf der Theorie
der Zustandsautomaten basierendes Bestimmungsverfahren der Winkeldifferenz zwischen
zwei Antrieben entwickelt, dass mit einfachen Positionssensoren realisierbar ist.
Durch die entwickelte Simulationsumgebung kann bei jeder Versuchsauslegung ein kom-
plettes digitales Modell des Resonanzversuchsstands erstellt werden, dass das elektrische,
regelungstechnische und mechanische Verhalten des geplanten Experiments virtuell vor
der Umsetzung simuliert und so die Realisierbarkeit mit den gewählten Antriebskompo-
nenten und die Qualität der Beanspruchungserzeugung geprüft werden. Es wurden drei
dynamische Effekte mit dieser Simulation untersucht, die sich aus der Interaktion zwi-
schen dem schwingenden Bauteil und den Unwuchtantrieben ergeben.
Das Resonanzversuchsstandskonzept wurde erfolgreich an drei Resonanzversuchsständen
realisiert. Es wurde ein Stahlbetonbalken im Langzeitfestigkeitsbereich mit 1, 0 · 108 Last-
wechseln untersucht und nachgewiesen, dass auch bei niedrigen Spannungsschwingbreiten
Ermüdungsschädigung auftritt. Durch die Anwendung dieser Prüftechnik auf die Untersu-
chung der Gestaltsfestigkeit von Eisenbahnschienen wurde die Prüfdauer um den Faktor
4 verkürzt und der Energiebedarf um den Faktor 792 im Vergleich zu konventioneller
hydraulischer Prüftechnik reduziert. Sowohl in der Simulation, als auch am realen Ver-
suchsstand konnte die Einhaltung der normativen Anforderungen an einen Schwingfestig-
keitsversuch belegt werden.

Schlüsselworte:
Ermüdung, Resonanz, Regelung, Bauteiluntersuchung, Simulation, digitaler Zwilling
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d Dämpfungskoeffizient in Ns
m
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D Lehrsches Dämpfungsmaß
e Abstand zwischen Massenmittelpunkt und

Drehachse
E E-Modul eines Materials
e⃗ Abstandsvektor zwischen Drehachse und

Schwerpunkt der Unwuchtmasse
Epot potentielle Energie eines Systems
Ekin kinetische Energie eines Systems
f0 Eigenfrequenz eines Probekörpers f0 = ω0

2π

Fzf Betrag der Zentrifugalkraft bei Unwuchtan-
trieben

Fu erzeugte resultierende Kraft mehrerer Un-
wuchtantriebe

f1 elektrische Frequenz des Drehstromnetzes
Fdyn Betrag der dynamsch erzeugten Kraft
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Ju Trägheitsmoment der Unwuchtmasse bei Ro-
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tät e

k Federsteifigkeit
k∗ Ersatzsteifigkeit des äquivalenten Einmassen-
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L1h Hauptinduktivität der Statorspule
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ωmech mechanische Kreisfrequenz bzw. Winkelge-
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ω elektrische Kreisfrequenz des Rotors
p Anzahl der Statorpole
ϱ Dichte eines Werkstoffes
R Außenradius der Unwuchtscheibe
r Innenradius der Unwuchtscheibe
R1 el. Widerstand der Statorwicklung
R2 el. Widerstand der Rotorwicklung
s komplexwertige Laplace-Variable der Übertra-

gungsfunktion
m1 Strangzahl des Stators
s Schlupf
t Zeit
TE elektromagnetisch erzeugtes Drehmoment, in-

neres Drehmoment
T Zeitkonstante
TL dem Antriebmoment entgegenwirkendes Last-

moment bzw. Gegenmoment
TJ Moment, aufgrund des Trägheitsmoments bei
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Ta beschleunigend wirkendes Drehmoment, An-
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TA Anlaufmoment
TK Kippmoment der ASM am starren Netz
V Vergrößerungsfunktion bei dynamischer Anre-

gung
∆ϕ Winkeldifferenz zwischen den Rotorlagen

zweier Antriebe
x(t) zeitabhängige Auslenkung
ẍ(t) zeitabhängige Beschleunigung
ẋ(t) zeitabhängige Geschwindigkeit
ϕ̈(t) zeitabhängige Winkelbeschleunigung
ϕ(t) zeitabhängiger Drehwinkel
ϕ̇(t) zeitabhängige Winkelgeschwindigkeit
γu Verdrehwinkel zwischen den Unwuchtscheiben
x⃗ Vektor der Systemzustände
u⃗ Vektor der Systemeingänge
y⃗ Vektor der Systemausgänge
˙⃗x Ableitung des Vektors der Systemzustände
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