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Machine Learning Anwendung beim Laserschneiden

Generalisierung eines maschinellen  
Lernmodells für das Laserschneiden auf  

verschiedenen Blechdicken
K. Leiner, D. Wall, J. Kühlem, M. Huber

ZUSAMMENFASSUNG  In diesem Beitrag wird ein Ma-
chine-Learning-Modell auf Basis eines Autoencoders trainiert. 
Das Ziel des Modells ist es, Fehlschnitte beim Laserschneiden 
zu erkennen, da fehlerhafte Schnitte zu hohen Ausschussraten 
führen. Die Literatur zeigt, dass es möglich ist, mit Machine 
Learning Fehler beim Laserschneiden zu erkennen. Eine noch 
nicht vollständig gelöste Problemstellung ist die Anwendung 
eines Modells auf verschiedene Prozessparameter. In diesem 
Beitrag wird ein Ansatz vorgestellt, wie sich ein trainiertes Mo-
dell auf verschiedenen Blechdicken anwenden lässt. Zu diesem 
Zweck wird der Autoencoder mit einer erweiterten Verlustfunk-
tion trainiert. Das Modell ist dann in der Lage, einen Fehl-
schnitt generalisiert über mehrere Blechdicken zu erkennen.

 Generalising a machine learning model for 
laser cutting on various sheet thicknesses

ABSTRACT  In this work, a machine learning model is 
 trained on the basis of an autoencoder. The aim of the model 
is to recognise faulty cuts during laser cutting, as faulty cuts 
lead to high reject rates. The literature shows that it is possible 
to recognise errors in laser cutting using machine learning. 
One problem that has not yet been fully solved is the applicati-
on of a model to various process parameters. In this paper, an 
approach is presented on how a trained model can be applied 
to different sheet thicknesses. The autoencoder is trained with 
an extended loss function. The model is then able to recognise 
an incorrect cut generalised over several sheet thicknesses.

1 Einleitung

Seit den 1970er Jahren steigt die Nachfrage nach Laser-
schneidanlagen in der Blechbearbeitung [1]. Die Maschinen- und 
Anlagenbauer müssen die Werkzeugmaschinen ständig weiterent-
wickeln, um den sich ändernden Marktbedingungen und den 
steigenden technologischen Anforderungen zu begegnen [2]. Die 
Nachfrage nach Automatisierungslösungen und den dafür benö-
tigten Sensorsystemen nimmt zu.

Die vorgestellten Versuche wurden an einer Flachbett-Laser-
schneidmaschine „TruLaser5030“ der Firma Trumpf durchge-
führt. Die Maschine ist in Bild 1 dargestellt. Die Maschine be-
steht aus zwei Hauptkomponenten. In der Mitte von Bild 1 ist 
die Werkzeugmaschine zu sehen, auf der der Schneidvorgang 
stattfindet. Links daneben befindet sich die Strahlquelle, in der 
der Laserstrahl erzeugt wird. Über einen Lichtleitkabel wird der 
Laserstrahl zum Schneidkopf geführt, der sich in der Werkzeug-
maschine befindet. Hinter der Maschine befindet sich der Palet-
tenwechsler. Hier belädt der Maschinenbediener die Maschine 
mit den zu schneidenden Blechen. Nachdem die Bleche auf die 
Palette geladen und in das Maschinengehäuse eingefahren wur-

den, erfolgt der Schnitt automatisch. Aus Sicherheitsgründen 
kann der Maschinenbediener während des Schneidvorgangs nicht 
mehr in die Maschine eingreifen. Daraus ergibt sich die Notwen-
digkeit, den Schneidprozess zu überwachen, da Fehler beim 
Schneiden für den Maschinenbediener erst nachträglich ersicht-
lich sind. Ein häufiger Fehler beim Laserschneiden ist der Fehl-
schnitt [4]. Ein Fehlschnitt ist eine unvollständige Trennung des 
Materials und führt zu Ausschussteilen.

In der Vergangenheit wurden bereits Sensorsysteme entwi-
ckelt, um den Laserschneidprozess zu automatisieren, wie zum 
Beispiel die Sensorkomponente Active Speed Control (ASC) [3]. 
Mithilfe der ASC ist es möglich den Schneidprozess optisch zu 
überwachen. Dafür werden mit einer Kamera Bilder des Schnitt-
spaltes aufgezeichnet und konventionell analysiert. 

Das Ziel dieser Arbeit ist es, ein Machine Learning (ML)-Mo-
dell auf den Bildern der ASC zu trainieren, das Fehlschnitte auf 
einer Laserschneidmaschine erkennt. Das Modell soll für ver-
schiedene Blechdicken anwendbar sein, die auf einer Maschine 
geschnitten werden können. 

Die Arbeit gliedert sich wie folgt: In Abschnitt 2 wird der 
Stand der Technik näher erläutert. In Abschnitt 3 wird die 
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 Problembeschreibung definiert. Es folgt ein Überblick über den 
Versuchsaufbau in Abschnitt 4 und die Ergebnisse der Versuche 
in Abschnitt 5. Der Beitrag endet mit einem Ausblick auf Folge-
arbeiten in Abschnitt 6.

2 Stand der Technik

Wie im vorhergehenden Abschnitt 1 beschrieben, liegt der 
Schwerpunkt dieser Arbeit auf der Erkennung von Fehlschnitten 
beim Laserschneiden, wobei in diesem Abschnitt auf einschlägige 
Literatur hierzu Bezug genommen wird. Der zunehmende Einsatz 
von ML-Methoden zur Prozessüberwachung beim Laserschnei-
den wird durch [5] belegt. Hier werden mehr als 20 Quellen 
 zitiert, die sich auf verschiedene Anwendungen des maschinellen 
Lernens in der Laserbearbeitung beziehen. Diese unterscheiden 
sich jedoch in der Anwendung und der zugrunde liegenden 
 Lasertechnologie. 

Die Arbeiten [6–9] zeigen, dass eine Fehlschnitterkennung 
mit ML umgesetzt werden kann. Dazu werden in [6–8] visuelle 
Sensorsignale (Photodioden oder Kamerabilder) verwendet, wel-
che die Eingabedaten für das Trainieren Neuronaler Netze be-
reitstellen. Die Laserschneidmaschine ist eine vielseitige Werk-
zeugmaschine [10]. Das bedeutet, dass auf einer Maschine ver-
schiedene Prozesse geschnitten werden können. Die Prozesse un-
terscheiden sich dabei hinsichtlich der verwendeten Materialien, 
Blech dicken, Schneidgase und vieles mehr. Die Prozessvarianz 
kann zu Problemen bei der Verwendung von ML-Modellen füh-
ren, da diese nicht ohne weitere Anpassungen über mehrere Pro-
zesse hinweg verallgemeinern können [11]. Für unsere Arbeit ist 
die Übertragung verschiedener Blechdicken relevant. Dieses 
Transfer-Problem wird auch in den Arbeiten [6, 8] aufgegriffen, 
jedoch nicht gänzlich gelöst. Peghini et al. [8] zeigt, dass eine 
Übertragung von einem Datensatz mit einer Prozessvariante auf 
einen anderen nicht möglich ist. Die Lösung des Autors besteht 
darin, den Datensatz mit den Prozessvarianten zu mischen, eine 
Lösung, die auch von den anderen Autoren vorgestellt wurde. 
Dieser  Lösungsansatz führt zu einer Verringerung der Modellge-

nauigkeit im Vergleich zu den Einzelmodellen und wird daher als 
suboptimal eingestuft. 

Zur Lösung der Übertragungsproblem von ML-Modellen 
wurde das Themenfeld Transferlernen eingeführt. In diesem 
Kontext werden die Begriffe Ursprungs- und Zieldomäne (engl. 
Source und Target) eingeführt [12, 13]. Im vorliegenden Pro-
blemfall wäre also eine Blechdicke von zum Beispiel 4 mm die 
Ursprungsdomäne und bei der Übertragung des Modells auf eine 
andere Blechdicke mit beispielsweise 6 mm die Zieldomäne. 

Pan und Yang [13] unterteilen das Transferlernen in drei Ka-
tegorien: induktives Transferlernen, transduktives Transferlernen 
und unüberwachtes Transferlernen. Für jede Kategorie gibt es 
verschiedene Ansätze zur Bewältigung des Transferproblems. Die 
oben erwähnten Arbeiten [6, 8] fallen in die Kategorie des trans-
duktiven Transferlernens, da hier die Modellanforderung in der 
Ursprungs- und Zieldomäne bestehen bleibt. Diese ist: die Klassi-
fikation in gute und schlechte Schnitte. Der von [6, 8] gewählte 
Ansatz zum transduktiven Transferlernen ist der Ansatz des In-
stanztransfers. Nach [13] werden beim Instanztransfer die Ge-
wichte des ursprünglichen Modells so verändert, dass die Quelle 
und das Ziel gleichermaßen abgebildet werden. Im Falle von 
[6, 8] geschieht dies durch das Zusammenfuhren des Datensatzes, 
also vor dem Training des Modells. Grundsätzlich können im 
Rahmen des Instanztransfers auch nachträglich die Gewichte des 
Modells auf die Zieldomäne angepasst werden. 

Netzer et. al. [12] beschreibt den Einsatzbereich von Transfer-
lernen im industriellen Anlagenbau. Der Fokus des industriellen 
Transferlearnings liegt jedoch auf der einmaligen Übertragung 
von Modellen auf verschiedene Maschinen oder Maschinenkom-
ponenten. Unsere Arbeit unterscheidet sich dahingehend, dass der 
Transfer von Prozessen an jeder Maschine und zu jeder Zeit 
stattfinden muss. 

In [13] wird ein alternativer Ansatz des Instanztransfers vor-
geschlagen: der Feature-Repräsentations-Transfer. Dieser eignet 
sich besonders für Regressionsmodelle, bei denen nach einer 
Merkmalsraumrepräsentation gesucht wird, die sowohl für die 
Ursprungs- als auch für die Zieldomäne geeignet ist. Die Autoren 
Zhiyi et al. [14] zeigen einen Feature-Repräsentations-Transfer-

Bild 1. Die „TruLaser 5030“, eine Laserschneidmaschine. Grafik: Trumpf [3]
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Ansatz für die Adaption eines Autoencoders bei der Fehlerdiag-
nose von Lagern. Hierbei besteht der Transfer in der Übertra-
gung eines Modells auf zwei verschiedene Maschinen. Zu diesem 
Zweck wird in Zhiyi et al. die Aktivierungsfunktion durch eine 
skalierte exponentielle Lineareinheit ersetzt und die Verlustfunk-
tion (engl. loss function) durch einen nicht-negativen Neben -
bedingungsterm modifiziert. Die Verwendung von Autoencoder 
Modellen ist eine verbreitete Wahl, um Anomalien zu detektieren 
und findet auch im Kontext der Werkzeugmaschinen Anwen-
dung, wie zum Beispiel in [15].

3 Problembeschreibung

Nach der im vorherigen Kapitel erfolgten Analyse relevanter 
Methoden, wird in dieser Arbeit der Feature-Repräsentations-
Transfer-Ansatz zur Problemlösung gewählt. Als Modellarchitek-
tur wird ein Autoencoder gewählt, wofür ein Regressionsproblem 
definiert wird. Bei der Regression klassifiziert das Modell die 
Eingangsdaten nicht zu diskreten Labeln, sondern sagt eine kon-
tinuierliche Variable voraus. Diese soll in unserem Fall 
(Schneid-) Qualitätslabel genannt werden. Je größer der Wert 
desto eher liegt ein Fehlschnitt vor. 

Ziel der Arbeit ist es, mit dem trainierten Autoencoder eine 
Repräsentation der Daten zu finden, die alle Blechdicken abdeckt 
und in erster Linie die Aufgabe der Fehlschnitterkennung löst. 
Dem Autoencoder werden hierfür Bilddaten mit bekannten 
 Qualitätslabeln zur Verfügung gestellt. Die Bilder bekommen ein 
zweites zusätzliches Label, welches die Dicke der geschnittenen 
Bleche angibt. Es werden vier verschiedene Baustahldicken 
 betrachtet, diese sind: 4 mm, 6 mm, 8 mm und 10 mm.

Somit steht für diese Arbeit ein Datensatz D = {xi, Yi}, 
i = 1...n, für jede Blechdicke zur Verfügung. Durch das Multi-
 Label-Problem ist Yi eine Menge von Labeln Yi = {y1i, y2i}, wobei 
y1 Î {0, 0.5, 1} und y2 Î {4, 6, 8, 10}. Die genaue Ermittlung von 
y1 Î {0, 0.5, 1} wird in Abschnitt 4 genauer erläutert.

Für jede Blechdicke existiert ein eigener Datensatz, wobei der 
Index für die Blechdickenzuordnung steht: D4, D6, D8, D10. Zu 
 jedem Datensatz existiert ein unabhängiger Testdatensatz: T4, T6, 
T8, T10. Unabhängig bedeutet in diesem Fall, dass jeder Testda-
tensatz aus eigenständigen Schnittversuchen gewonnen wurde 
und nicht, wie häufig üblich zufällig, aus einem gemeinsamen 
Trainingsdatensatz D extrahiert wurde. Auf den Datensätzen  
D Ê D4, D6, D8, D10 wird das Modell trainiert. Dabei ist die Aus-
gabe eine Menge von Labeln,  . Die Ausgabe  1 wird für 
die Fehlschnitterkennung, beziehungsweise das Qualitätslabel 
verwendet und  2 für die Blechdickenzugehörigkeit.

4 Versuchsaufbau

Dieser Abschnitt beginnt mit einer Beschreibung der Daten -
erfassung und -verarbeitung. Es folgt eine Erläuterung des ver-
wendeten Autoencoders.

4.1 Datenaufnahme und Labeling

Die Versuche wurden an der „TruLaser5030“ der Firma 
Trumpf im Brennschnitt durchgeführt. Der Schneidkopf ist mit 
dem ASC-Sensor ausgestattet. Dies ermöglicht die Aufnahme von 
Prozesslichtbildern beim Laserschneiden. Diese Bilder zeigen 
 optische Emissionen eines bestimmten Wellenlängenbereichs, die 

beim Schneiden auftreten. Das Bild 2 zeigt Bilder der Trainings-
daten. Vergleicht man die dargestellten Bilder, wird der Einfluss 
von Blechdicke und Qualitätswert deutlich. Wird einem Bild das 
Qualitätslabel 0 zugeordnet, handelt es sich um einen Gutschnitt. 
Wird dem Bild ein Qualitätslabel von 1 zugeordnet handelt es 
sich um einen Fehlschnitt. Das Qualitätslabel 0.5 zeigt einen 
Schnitt der nicht ideal, aber auch kein Fehlschnitt ist. Es muss 
mit einer Qualitätsminderung der Schneidproben gerechnet 
 werden. Die dargestellten Bilder sind gemittelte Bilder eines 
 Qualitätswerts und Dicke aus D. Es ist zu erkennen, dass die 
 Bilder heller erscheinen, wenn ein Fehlschnitt auftritt. Es ist auch 
zu erkennen, dass das Prozesslicht in den Bildern mit zunehmen-
der Blechdicke großflächiger erscheint.

Für die Datenaufnahme wurden Linearschnitte durchgeführt. 
Die Geschwindigkeit der Schnitte wurde kontinuierlich erhöht, 
wodurch ab einer gewissen Geschwindigkeit ein Fehlschnitt her-
beigeführt wird. Dies liegt daran, dass nicht mehr genügend 
Energie in den Prozess eingebunden wird und das geschmolzene 
Material im Schnittspalt nicht mehr herausgeblasen werden kann.

Der weitestgehend automatisierte Labelprozess zur Generie-
rung von wird in Bild 3 gezeigt. Der obere Teil von Bild 3 zeigt 
die Prozesslichtkurve, das heißt die Bildintensität der während 
des Schneidens aufgenommenen Bilder. Darunter ist das ge-
schnittene Blech zu sehen. Befindet sich Material in der Schnitt-
fuge, werden die Bilder in diesem Bereich mit dem Qualitätslabel 
1 (blau) gekennzeichnet. Bilder die sich im Bereich davor befin-
den und einen guten Schnitt darstellen werden mit dem Quali-
tätslabel 0, grün, bezeichnet. Da der Schnitt kontinuierlich 
schlechter wird, wurde im Übergangsbereich das Qualitätslabel 
0.5, gelb, eingeführt. Zur Ermittlung des Übergangsbereichs wur-
de ein weiteres Merkmal zum Labeln eingeführt, welches in Bild 
3 als hellblaue Kurve dargestellt ist. Die Tests haben gezeigt, dass 
die Intensität der Bilder über den Schnittverlauf im Gutschnitt -
bereich schwanken. Die Schwankungen werden über die hellblaue 
Linie visualisiert. Der Übergangsbereich wird an dem Wende-
punkt der hellblauen Linie, der dem Schnittabriss am nächsten 
ist, definiert (hier circa bei Bild 600).

Für jede Blechdicke wurden 2,000 Bilder pro Qualitätswert 
aufgenommen. Dies ergibt eine Gesamtgröße von 24,000 Bildern 
für den Datensatz. Für den Testdatensatz T wurden 200 Bilder 

Bild 2. Einfluss von Qualitätswert und Blechdicke auf die Trainingsbilder. 
Grafik: Trumpf 
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pro Qualitätswert und Blechdicke aufgenommen, was eine Ge-
samtgröße von 2,400 Bildern für T ergibt.

4.2 Der Autoencoder

Ein Autoencoder basiert auf dem Prinzip der Faltungsnetze 
(engl. convolutional neural networks) und wird auch als Enco-
der-Decoder-Architektur bezeichnet [16]. Der Name leitet sich 
von der in Bild 4 dargestellten Struktur ab. Die Hauptkompo-
nenten des Autoencoders sind:
• Der Encoder ist die erste Komponente des Autoencoders. Hier 
wird die Eingangsvariable X in eine komprimierte Darstellung 
F(X) konvertiert. F(X) wird auch als latenter Raum bezeich-
net. Diese Repräsentation dient als Eingangsvariable für den 
Decoder. [16, 17]

•  Die zentrale Schicht, beziehungsweise der latente Raum F(X) 
des Autoencoders, ist durch eine Schicht gekennzeichnet, die 
deutlich kleiner als die Eingangs- oder Ausgangsschicht ist 
[16]. Dies bewirkt, dass der Autoencoder gezwungen ist mög-
lichst aussagekräftige latente Merkmale zu lernen, um die 
 Daten neu zu repräsentieren [17].

•  Der Decoder verwendet die Repräsentation F(X) des Encoders 
und wandelt sie in die Ausgabe   um. Die Ausgabe   hängt von 

der zu lösenden Aufgabe ab, kann aber zum Beispiel das mög-
lichst originalgetreu rekonstruierte Bild X′ des Eingangsbildes 
X sein. Die Architektur des Decoders entspricht üblicherweise 
der des Encoders [16].

Je nach Aufgabenstellung kann nur der Encoder-Teil eines Auto-
encoders verwendet werden, zum Beispiel zur Merkmalsredukti-
on. Ebenfalls kann nur der Decoder verwendet werden, zum Bei-
spiel zur synthetischen Datengenerierung [16].

In dem hier vorgestellten Fall wird der gesamte Autoencoder 
trainiert, aber nur der Encoder wird im weiteren Verlauf verwen-
det. Eine weitere Besonderheit des hier verwendeten Autoenco-
ders ist die angepasste Verlustfunktion, welche es ermöglicht, die 
Anordnung im latenten Raum F(X) vorzugeben. Bei dem hier 
vorgestellten Problemfall handelt es sich somit um ein überwach-
tes Lernproblem, im Gegensatz zu den üblichen Autoencodern, 
die dem halb- oder unüberwachten Lernen zugerechnet werden 
[16]. Die Verlustfunktion wird für die Modellanpassung während 
des Trainingsprozesses benötigt und basiert in diesem Fall auf 
dem mittleren quadratischen Fehler (engl. Mean Squared Error) 
[16]. Sie lässt sich in die folgenden drei Terme aufteilen:

  (1)

Bild 3. Darstellung des Label Verfahrens, oben: Prozesslicht der Bilder über den Verlauf eines Schnittes. Darstellung gefilterter Schwankung der Bildintensi-
täten in hellblau. Unten: Bild eines geschnittenen Blechs mit Schlackenaustritt. Grafik: Trumpf 

Bild 4. Die Architektur eines Autoencoders. Grafik: Lanquillon und Schacht [16], Text angepasst

https://doi.org/10.37544/1436-4980-2024-05-82 - am 24.01.2026, 17:01:59. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.37544/1436-4980-2024-05-82
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


250

B M B F  –  P R O D U K T I O N S F O R S C H U N G  

WT WERKSTATTSTECHNIK BD. 114 (2024) NR. 5

  (2)

  (3)

Die Verlustfunktion L1 repräsentiert den Rekonstruktionsfehler 
der Bilder, die Verlustfunktion L2 den Fehler der Qualitäts-Vor-
hersage, und L3 den der Blechdicken-Vorhersage. Die Verlust-
werte L1, L2, L3 aus den Gleichungen (1)-(3) werden mit ei-
nem Faktor gewichtet und zu einer Verlustfunktion aufaddiert:

L = a . L1 + b  . L2 + c  . L3. (4)

Die nicht-negativen Gewichtungsfaktoren a, b und c aus Glei-
chung (4) werden experimentell ermittelt.

5 Ergebnisse

Für das verwendete Modell wurde, wie in Kapitel 4 beschrie-
ben, ein Autoencoder implementiert und trainiert. Der Encoder 
besteht aus drei Faltungsschichten mit einer Filteranzahl von vier, 
acht und 16. Der Decoder besteht aus zwei Faltungsschichten mit 
einer Filteranzahl von vier und eins. Die Filtergröße beträgt 
 jeweils drei. Die zentrale Schicht besteht aus zwei Neuronen, ein 
Neuron für die Kodierung der Blechdicke und ein Neuron für die 
Kodierung der Qualität. Für das Training wird ein Adam Optimi-
zer mit der Standard-Lernrate von 0.001 verwendet. Die Verlust-
funktion wird, durch die in Gleichung (4) beschriebene ange-
passte Verlustfunktion ersetzt, dabei sind die gewählten Gewich-
tungsfaktoren a = 1, b = 0.02 und c = 0.1. Das Modell wird über 
20 Epochen trainiert und eine Batch-Größe von 32 wurde 
 gewählt. Die Parameter des Autoencoders wurden mithilfe eines 
Parameter-Tunings, also der automatisierten Suche performanter 
Parameter, ermittelt.

Bild 5. Entwicklung des Latenten Feature Raumes über 20 Trainings Epochen des trainierten Encoders. Das Modell lernt die Blechdicken auf der y-Achse zu 
trennen und skaliert die Schneidqualität auf der x-Achse. Grafik: Trumpf 
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Das Bild 5 zeigt die Entwicklung des latenten Raums F(X) 
des Encoders über den Trainingsprozess. Es sind insgesamt 
zwanzig Einzelbilder zu sehen. Jedes Bild gehört zu einer Epoche 
des Trainingsprozesses. Die Bilder wurden anschließend mit den 
 bekannten Qualitätslabeln, aus dem Labelverfahren aus Abschnitt 
4, eingefärbt. Dies zeigt, dass der Autoencoder eine Merkmals-
raumrepräsentation F(X) erstellen kann, in der sowohl das Quali-
tätslabel als auch die Blechdicke erkannt wird. Obwohl die Blech-
dickenerkennung kein Ziel dieser Arbeit ist, ist es sinnvoll diese 
durch das Multi-Klassen Problem visualisieren zu können. 
 Dadurch kann sichergestellt werden, dass der Parameter Blech -
dicke vom Modell sinnvoll verwertet wird. 

Der Encoder wurde anhand des unabhängigen Testdatensatzes 
getestet, und die Ergebnisse sind in Bild 6 dargestellt. Auf der 
y-Achse ist die vorhergesagte Blechdicke  2 Î R aufgetragen, auf 
der x-Achse die das Qualitätslabel  1 Î [0, 1]. Die Bilder werden 
zur Überprüfung entsprechend ihrer bekannten Qualitätswertbe-
zeichnung aus dem Labelprozess (vgl. Abschnitt 4) eingefärbt. 

Für die Verwendung auf der Maschine muss für die Fehl-
schnitterkennung ein Schwellwert eingeführt werden. Auf Basis 
der Erkenntnisse von Bild 6 ist ein Schwellwert für den Fehl-
schnitt von 0.6 sinnvoll.

Es fällt auf, dass die vorhergesagte Blechdicke leicht nach oben 
und unten schwankt. Zum Beispiel kann ein Bild mit einer Blech-
dicke von 4 mm auch für eine Blechdicke von 4.5 mm vorherge-
sagt werden. Außerdem ist auffällig, dass mit zunehmender 
Blechdicke das Qualitätslabel für den Fehlschnitt nach rechts 
 driftet, also bei niedrigeren y1-Werten auftritt. Dieser Effekt 
konnte auch bei der Datenaufnahme festgestellt werden. So findet 
beim Schneiden von dünneren Blechen ein abrupter Schnittabriss 
statt. Bei dickerem Blech entspricht diese eher einer zunehmen-
den Verschlackung des Schnittspaltes, also einem schleichendem 

Schnittabrisses. Dieses Verhalten erklärt auch, warum die Über-
tragung unterschiedlicher Blechdicken für ein ML-Modell mit 
Problemen verbunden ist.

6 Zusammenfassung und Ausblick

Im Gegensatz zum Stand der Technik wurde ein Ansatz vor-
gestellt, bei dem anstelle eines Klassifikationsproblems, eine 
 Regression genutzt wurde, um Fehlschnitte beim Laserschneiden 
zu ermitteln. Zur Problemlösung wurde ein Autoencoder verwen-
det. Besonders hervorzuheben ist, dass es gelungen ist, ein Modell 
für verschiedene Blechdicken zu generalisieren. Der gewählte 
 Autoencoder zeigt eine korrekte Einteilung der Qualitätslabel im 
latenten Raum des Encoders, sodass dieser für die Anwendung 
auf der Maschine zum Einsatz kommen kann. Zur Erkennung 
des Fehlschnitts können Schwellwerte eingeführt werden. 

Die vorgestellte Methode kann auch für andere Prozessände-
rungen verwendet werden, zum Beispiel für das Schneiden mit 
unterschiedlichen Gasarten oder Düsen. Eine Untersuchung des 
Kompromisses zwischen der Genauigkeit und der Anzahl der 
Prozessänderungen wäre interessant. Es sollte untersucht werden, 
ob es besser ist, so viele Prozessänderungen wie möglich mit 
 einem Modell abzudecken oder mehrere Modelle für gebündelte 
Prozessänderungen zu verwenden. Denkbar wäre, dem Modell 
die Parameter beziehungsweise die Prozessinformationen als 
 Input zur Verfügung zu stellen. Diese müssen aber nicht zwangs-
weise auch als Ausgabe zur Verfügung stehen.
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