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Machine Learning Anwendung beim Laserschneiden

Generalisierung eines maschinellen
Lemmodells fiir das Laserschneiden auf
verschiedenen Blechdicken

K. Leiner, D. Wall, ]. Kiihlem, M. Huber

ZUSAMMENFASSUNG In diesem Beitrag wird ein Ma-
chine-Learning-Modell auf Basis eines Autoencoders trainiert.
Das Ziel des Modells ist es, Fehlschnitte beim Laserschneiden
zu erkennen, da fehlerhafte Schnitte zu hohen Ausschussraten
fahren. Die Literatur zeigt, dass es moglich ist, mit Machine
Learning Fehler beim Laserschneiden zu erkennen. Eine noch
nicht vollstdndig geldste Problemstellung ist die Anwendung
eines Modells auf verschiedene Prozessparameter. In diesem
Beitrag wird ein Ansatz vorgestellt, wie sich ein trainiertes Mo-
dell auf verschiedenen Blechdicken anwenden lasst. Zu diesem
Zweck wird der Autoencoder mit einer erweiterten Verlustfunk-
tion trainiert. Das Modell ist dann in der Lage, einen Fehl-
schnitt generalisiert Giber mehrere Blechdicken zu erkennen.
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1 Einleitung

Seit den 1970er Jahren steigt die Nachfrage nach Laser-
schneidanlagen in der Blechbearbeitung [1] Die Maschinen- und
Anlagenbauer miissen die Werkzeugmaschinen stindig weiterent-
wickeln, um den sich dndernden Marktbedingungen und den
steigenden technologischen Anforderungen zu begegnen [2]. Die
Nachfrage nach Automatisierungslosungen und den dafiir bens-
tigten Sensorsystemen nimmt zu.

Die vorgestellten Versuche wurden an einer Flachbett-Laser-
schneidmaschine ,TruLaser5030“ der Firma Trumpf durchge-
fiihrt. Die Maschine ist in Bild 1 dargestellt. Die Maschine be-
steht aus zwei Hauptkomponenten. In der Mitte von Bild 1 ist
die Werkzeugmaschine zu sehen, auf der der Schneidvorgang
stattfindet. Links daneben befindet sich die Strahlquelle, in der
der Laserstrahl erzeugt wird. Uber einen Lichtleitkabel wird der
Laserstrahl zum Schneidkopf gefiihrt, der sich in der Werkzeug-
maschine befindet. Hinter der Maschine befindet sich der Palet-
tenwechsler. Hier belidt der Maschinenbediener die Maschine
mit den zu schneidenden Blechen. Nachdem die Bleche auf die
Palette geladen und in das Maschinengehiuse eingefahren wur-
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Generalising a machine learning model for
laser cutting on various sheet thicknesses

ABSTRACT In this work, a machine learning model is
trained on the basis of an autoencoder. The aim of the model
is to recognise faulty cuts during laser cutting, as faulty cuts
lead to high reject rates. The literature shows that it is possible
to recognise errors in laser cutting using machine learning.
One problem that has not yet been fully solved is the applicati-
on of a model to various process parameters. In this paper, an
approach is presented on how a trained model can be applied
to different sheet thicknesses. The autoencoder is trained with
an extended loss function. The model is then able to recognise
an incorrect cut generalised over several sheet thicknesses.

den, erfolgt der Schnitt automatisch. Aus Sicherheitsgriinden
kann der Maschinenbediener wihrend des Schneidvorgangs nicht
mehr in die Maschine eingreifen. Daraus ergibt sich die Notwen-
digkeit, den Schneidprozess zu tiiberwachen, da Fehler beim
Schneiden fiir den Maschinenbediener erst nachtraglich ersicht-
lich sind. Ein haufiger Fehler beim Laserschneiden ist der Fehl-
schnitt [4]. Ein Fehlschnitt ist eine unvollstindige Trennung des
Materials und fithrt zu Ausschussteilen.

In der Vergangenheit wurden bereits Sensorsysteme entwi-
ckelt, um den Laserschneidprozess zu automatisieren, wie zum
Beispiel die Sensorkomponente Active Speed Control (ASC) [3].
Mithilfe der ASC ist es moglich den Schneidprozess optisch zu
iiberwachen. Dafiir werden mit einer Kamera Bilder des Schnitt-
spaltes aufgezeichnet und konventionell analysiert.

Das Ziel dieser Arbeit ist es, ein Machine Learning (ML)-Mo-
dell auf den Bildern der ASC zu trainieren, das Fehlschnitte auf
einer Laserschneidmaschine erkennt. Das Modell soll fiir ver-
schiedene Blechdicken anwendbar sein, die auf einer Maschine
geschnitten werden konnen.

Die Arbeit gliedert sich wie folgt: In Abschnitt 2 wird der
Stand der Technik niher erldutert. In Abschnitt 3 wird die
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Bild 1. Die ,TruLaser 50307 eine Laserschneidmaschine. Grafik: Trumpf [3]

Problembeschreibung definiert. Es folgt ein Uberblick iiber den
Versuchsaufbau in Abschnitt 4 und die Ergebnisse der Versuche
in Abschnitt 5. Der Beitrag endet mit einem Ausblick auf Folge-
arbeiten in Abschnitt 6.

2 Stand derTechnik

Wie im vorhergehenden Abschnitt 1 beschrieben, liegt der
Schwerpunkt dieser Arbeit auf der Erkennung von Fehlschnitten
beim Laserschneiden, wobei in diesem Abschnitt auf einschligige
Literatur hierzu Bezug genommen wird. Der zunehmende Einsatz
von ML-Methoden zur Prozessitberwachung beim Laserschnei-
den wird durch [5] belegt. Hier werden mehr als 20 Quellen
zitiert, die sich auf verschiedene Anwendungen des maschinellen
Lernens in der Laserbearbeitung beziehen. Diese unterscheiden
sich jedoch in der Anwendung und der zugrunde liegenden
Lasertechnologie.

Die Arbeiten [6-9] zeigen, dass eine Fehlschnitterkennung
mit ML umgesetzt werden kann. Dazu werden in [6-8] visuelle
Sensorsignale (Photodioden oder Kamerabilder) verwendet, wel-
che die Eingabedaten fiir das Trainieren Neuronaler Netze be-
reitstellen. Die Laserschneidmaschine ist eine vielseitige Werk-
zeugmaschine [10]. Das bedeutet, dass auf einer Maschine ver-
schiedene Prozesse geschnitten werden konnen. Die Prozesse un-
terscheiden sich dabei hinsichtlich der verwendeten Materialien,
Blechdicken, Schneidgase und vieles mehr. Die Prozessvarianz
kann zu Problemen bei der Verwendung von ML-Modellen fiih-
ren, da diese nicht ohne weitere Anpassungen iiber mehrere Pro-
zesse hinweg verallgemeinern kdnnen [1 1]. Fiir unsere Arbeit ist
die Ubertragung verschiedener Blechdicken relevant. Dieses
Transfer-Problem wird auch in den Arbeiten [6, 8] aufgegriffen,
jedoch nicht ginzlich gelost. Peghini et al. [8] zeigt, dass eine
Ubertragung von einem Datensatz mit einer Prozessvariante auf
einen anderen nicht moglich ist. Die Losung des Autors besteht
darin, den Datensatz mit den Prozessvarianten zu mischen, eine
Losung, die auch von den anderen Autoren vorgestellt wurde.
Dieser Losungsansatz fithrt zu einer Verringerung der Modellge-
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nauigkeit im Vergleich zu den Einzelmodellen und wird daher als
suboptimal eingestuft.

Zur Losung der Ubertragungsproblem von ML-Modellen
wurde das Themenfeld Transferlernen eingefithrt. In diesem
Kontext werden die Begriffe Ursprungs- und Zieldomine (engl.
Source und Target) eingefiihrt [12, 13]. Im vorliegenden Pro-
blemfall wire also eine Blechdicke von zum Beispiel 4 mm die
Ursprungsdomiine und bei der Ubertragung des Modells auf eine
andere Blechdicke mit beispielsweise 6 mm die Zieldoméne.

Pan und Yang [13] unterteilen das Transferlernen in drei Ka-
tegorien: induktives Transferlernen, transduktives Transferlernen
und uniiberwachtes Transferlernen. Fiir jede Kategorie gibt es
verschiedene Ansitze zur Bewiltigung des Transferproblems. Die
oben erwihnten Arbeiten [6, 8] fallen in die Kategorie des trans-
duktiven Transferlernens, da hier die Modellanforderung in der
Ursprungs- und Zieldoméne bestehen bleibt. Diese ist: die Klassi-
fikation in gute und schlechte Schnitte. Der von [6, 8] gewihlte
Ansatz zum transduktiven Transferlernen ist der Ansatz des In-
stanztransfers. Nach [13] werden beim Instanztransfer die Ge-
wichte des urspriinglichen Modells so verindert, dass die Quelle
und das Ziel gleichermaflen abgebildet werden. Im Falle von
[6, 8] geschieht dies durch das Zusammenfuhren des Datensatzes,
also vor dem Training des Modells. Grundsitzlich kénnen im
Rahmen des Instanztransfers auch nachtriglich die Gewichte des
Modells auf die Zieldomane angepasst werden.

Netzer et. al. [12] beschreibt den Einsatzbereich von Transfer-
lernen im industriellen Anlagenbau. Der Fokus des industriellen
Transferlearnings liegt jedoch auf der einmaligen Ubertragung
von Modellen auf verschiedene Maschinen oder Maschinenkom-
ponenten. Unsere Arbeit unterscheidet sich dahingehend, dass der
Transfer von Prozessen an jeder Maschine und zu jeder Zeit
stattfinden muss.

In [13] wird ein alternativer Ansatz des Instanztransfers vor-
geschlagen: der Feature-Reprisentations-Transfer. Dieser eignet
sich besonders fiir Regressionsmodelle, bei denen nach einer
Merkmalsraumreprisentation gesucht wird, die sowohl fiir die
Ursprungs- als auch fiir die Zieldoméne geeignet ist. Die Autoren
Zhiyi et al. [14] zeigen einen Feature-Reprisentations-Transfer-
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Ansatz fiir die Adaption eines Autoencoders bei der Fehlerdiag-
nose von Lagern. Hierbei besteht der Transfer in der Ubertra-
gung eines Modells auf zwei verschiedene Maschinen. Zu diesem
Zweck wird in Zhiyi et al. die Aktivierungsfunktion durch eine
skalierte exponentielle Lineareinheit ersetzt und die Verlustfunk-
tion (engl loss function) durch einen nicht-negativen Neben-
bedingungsterm modifiziert. Die Verwendung von Autoencoder
Modellen ist eine verbreitete Wahl, um Anomalien zu detektieren
und findet auch im Kontext der Werkzeugmaschinen Anwen-
dung, wie zum Beispiel in [15].

3 Problembeschreibung

Nach der im vorherigen Kapitel erfolgten Analyse relevanter
Methoden, wird in dieser Arbeit der Feature-Reprisentations-
Transfer-Ansatz zur Problemlosung gewihlt. Als Modellarchitek-
tur wird ein Autoencoder gewihlt, wofiir ein Regressionsproblem
definiert wird. Bei der Regression klassifiziert das Modell die
Eingangsdaten nicht zu diskreten Labeln, sondern sagt eine kon-
Diese soll in unserem Fall
(Schneid-) Qualititslabel genannt werden. Je grofer der Wert
desto eher liegt ein Fehlschnitt vor.

Ziel der Arbeit ist es, mit dem trainierten Autoencoder eine

tinuierliche Variable voraus.

Reprisentation der Daten zu finden, die alle Blechdicken abdeckt
und in erster Linie die Aufgabe der Fehlschnitterkennung l6st.
Dem Autoencoder werden hierfir Bilddaten mit bekannten
Qualititslabeln zur Verfiigung gestellt. Die Bilder bekommen ein
zweites zusitzliches Label, welches die Dicke der geschnittenen
Bleche angibt. Es werden vier verschiedene Baustahldicken
betrachtet, diese sind: 4 mm, 6 mm, 8§ mm und 10 mm.

Somit steht fiir diese Arbeit ein Datensatz D = {x, Y},
i=1.n, fir jede Blechdicke zur Verfiigung. Durch das Multi-
Label-Problem ist Y; eine Menge von Labeln Y; = {yy; y,, wobei
y1 € {0,0.5,1} und y, € {4,6,8,10]. Die genaue Ermittlung von
y1 € {0,0.5,1} wird in Abschnitt 4 genauer erldutert.

Fiir jede Blechdicke existiert ein eigener Datensatz, wobei der
Index fiir die Blechdickenzuordnung steht: Dy, D¢, Dg, Dy Zu
jedem Datensatz existiert ein unabhéngiger Testdatensatz: T,, T,
Tg, T,o- Unabhingig bedeutet in diesem Fall, dass jeder Testda-
tensatz aus eigenstindigen Schnittversuchen gewonnen wurde
und nicht, wie hiufig iblich zufillig, aus einem gemeinsamen
Trainingsdatensatz D extrahiert wurde. Auf den Datensitzen
D oD,, Dy, D, D,, wird das Modell trainiert. Dabei ist die Aus-
gabe eine Menge von Labeln, Y={3,,9,}. Die Ausgabe §, wird fiir
die Fehlschnitterkennung, beziehungsweise das Qualititslabel
verwendet und ¥, fiir die Blechdickenzugehérigkeit.

4 Versuchsaufbau

Dieser Abschnitt beginnt mit einer Beschreibung der Daten-
erfassung und -verarbeitung. Es folgt eine Erlduterung des ver-
wendeten Autoencoders.

4.1 Datenaufnahme und Labeling

Die Versuche wurden an der ,Trulaser5030“ der Firma
Trumpf im Brennschnitt durchgefiihrt. Der Schneidkopf ist mit
dem ASC-Sensor ausgestattet. Dies erméglicht die Aufnahme von
Prozesslichtbildern beim Laserschneiden. Diese Bilder zeigen
optische Emissionen eines bestimmten Wellenlidngenbereichs, die

248

Blechdicke

8mm 10mm

0.5

Qualititslabel

Bild 2. Einfluss von Qualitdtswert und Blechdicke auf die Trainingsbilder.
Grafik: Trumpf

beim Schneiden auftreten. Das Bild 2 zeigt Bilder der Trainings-
daten. Vergleicht man die dargestellten Bilder, wird der Einfluss
von Blechdicke und Qualititswert deutlich. Wird einem Bild das
Qualititslabel 0 zugeordnet, handelt es sich um einen Gutschnitt.
Wird dem Bild ein Qualitatslabel von 1 zugeordnet handelt es
sich um einen Fehlschnitt. Das Qualititslabel 0.5 zeigt einen
Schnitt der nicht ideal, aber auch kein Fehlschnitt ist. Es muss
mit einer Qualititsminderung der Schneidproben gerechnet
werden. Die dargestellten Bilder sind gemittelte Bilder eines
Qualitiatswerts und Dicke aus D. Es ist zu erkennen, dass die
Bilder heller erscheinen, wenn ein Fehlschnitt auftritt. Es ist auch
zu erkennen, dass das Prozesslicht in den Bildern mit zunehmen-
der Blechdicke grofflichiger erscheint.

Fiir die Datenaufnahme wurden Linearschnitte durchgefiihrt.
Die Geschwindigkeit der Schnitte wurde kontinuierlich erhoht,
wodurch ab einer gewissen Geschwindigkeit ein Fehlschnitt her-
beigefithrt wird. Dies liegt daran, dass nicht mehr geniigend
Energie in den Prozess eingebunden wird und das geschmolzene
Material im Schnittspalt nicht mehr herausgeblasen werden kann.

Der weitestgehend automatisierte Labelprozess zur Generie-
rung von wird in Bild 3 gezeigt. Der obere Teil von Bild 3 zeigt
die Prozesslichtkurve, das heifdt die Bildintensitit der wihrend
des Schneidens aufgenommenen Bilder. Darunter ist das ge-
schnittene Blech zu sehen. Befindet sich Material in der Schnitt-
fuge, werden die Bilder in diesem Bereich mit dem Qualititslabel
1 (blau) gekennzeichnet. Bilder die sich im Bereich davor befin-
den und einen guten Schnitt darstellen werden mit dem Quali-
titslabel 0, griin, bezeichnet. Da der Schnitt kontinuierlich
schlechter wird, wurde im Ubergangsbereich das Qualititslabel
0.5, gelb, eingefithrt. Zur Ermittlung des Ubergangsbereichs wur-
de ein weiteres Merkmal zum Labeln eingefiihrt, welches in Bild
3 als hellblaue Kurve dargestellt ist. Die Tests haben gezeigt, dass
die Intensitit der Bilder iiber den Schnittverlauf im Gutschnitt-
bereich schwanken. Die Schwankungen werden iiber die hellblaue
Linie visualisiert. Der Ubergangsbereich wird an dem Wende-
punkt der hellblauen Linie, der dem Schnittabriss am nichsten
ist, definiert (hier circa bei Bild 600).

Fur jede Blechdicke wurden 2,000 Bilder pro Qualititswert
aufgenommen. Dies ergibt eine Gesamtgréfle von 24,000 Bildern
fiir den Datensatz. Fiir den Testdatensatz 7 wurden 200 Bilder
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Bild 3. Darstellung des Label Verfahrens, oben: Prozesslicht der Bilder tiber den Verlauf eines Schnittes. Darstellung gefilterter Schwankung der Bildintensi-
taten in hellblau. Unten: Bild eines geschnittenen Blechs mit Schlackenaustritt. Grafik: Trumpf
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Bild 4. Die Architektur eines Autoencoders. Grafik: Lanquillon und Schacht [16], Text angepasst

pro Qualititswert und Blechdicke aufgenommen, was eine Ge-
samtgrofie von 2,400 Bildern fiir 7 ergibt.

4.2 Der Autoencoder

Ein Autoencoder basiert auf dem Prinzip der Faltungsnetze
(engl. convolutional neural networks) und wird auch als Enco-
der-Decoder-Architektur bezeichnet [16]. Der Name leitet sich
von der in Bild 4 dargestellten Struktur ab. Die Hauptkompo-
nenten des Autoencoders sind:

+ Der Encoder ist die erste Komponente des Autoencoders. Hier
wird die Eingangsvariable X in eine komprimierte Darstellung
F(X) konvertiert. F/(X) wird auch als latenter Raum bezeich-
net. Diese Reprisentation dient als Eingangsvariable fiir den
Decoder. [16, 17]

+ Die zentrale Schicht, beziehungsweise der latente Raum F' (X)
des Autoencoders, ist durch eine Schicht gekennzeichnet, die
deutlich kleiner als die Eingangs- oder Ausgangsschicht ist
[16]. Dies bewirkt, dass der Autoencoder gezwungen ist mog-
lichst aussagekriftige latente Merkmale zu lernen, um die
Daten neu zu reprisentieren [17].

+ Der Decoder verwendet die Reprisentation (X) des Encoders
und wandelt sie in die Ausgabe § um. Die Ausgabe § hingt von

WT WERKSTATTSTECHNIK BD. 114 (2024) NR.5

der zu losenden Aufgabe ab, kann aber zum Beispiel das mog-
lichst originalgetreu rekonstruierte Bild X' des Eingangsbildes
X sein. Die Architektur des Decoders entspricht tiblicherweise

der des Encoders [16].

Je nach Aufgabenstellung kann nur der Encoder-Teil eines Auto-
encoders verwendet werden, zum Beispiel zur Merkmalsredukti-
on. Ebenfalls kann nur der Decoder verwendet werden, zum Bei-
spiel zur synthetischen Datengenerierung [16].

In dem hier vorgestellten Fall wird der gesamte Autoencoder
trainiert, aber nur der Encoder wird im weiteren Verlauf verwen-
det. Eine weitere Besonderheit des hier verwendeten Autoenco-
ders ist die angepasste Verlustfunktion, welche es erméglicht, die
Anordnung im latenten Raum F(X) vorzugeben. Bei dem hier
vorgestellten Problemfall handelt es sich somit um ein tiberwach-
tes Lernproblem, im Gegensatz zu den iiblichen Autoencodern,
die dem halb- oder uniiberwachten Lernen zugerechnet werden
[16]. Die Verlustfunktion wird fiir die Modellanpassung wihrend
des Trainingsprozesses benotigt und basiert in diesem Fall auf
dem mittleren quadratischen Fehler (engl. Mean Squared Error)
[16]. Sie lasst sich in die folgenden drei Terme aufteilen:

1 n
Li=o ) G5, (1)
=1
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Bild 5. Entwicklung des Latenten Feature Raumes liber 20 Trainings Epochen des trainierten Encoders. Das Modell lernt die Blechdicken auf der y-Achse zu

trennen und skaliert die Schneidqualitat auf der x-Achse. Grafik: Trumpf

I,
LZ:E§ (yli-yli) )
1

v,
L3=HZl(y2i-y2i) (3)

Die Verlustfunktion L1 reprisentiert den Rekonstruktionsfehler
der Bilder, die Verlustfunktion L2 den Fehler der Qualitits-Vor-
hersage, und L3 den der Blechdicken-Vorhersage. Die Verlust-
werte L1, L2, L3 aus den Gleichungen (1)-(3) werden mit ei-
nem Faktor gewichtet und zu einer Verlustfunktion aufaddiert:

()

Die nicht-negativen Gewichtungsfaktoren a, b und ¢ aus Glei-
chung (4) werden experimentell ermittelt.

(2)

L=a'Li+b Ly+c Ly
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5 Ergebnisse

Fiir das verwendete Modell wurde, wie in Kapitel 4 beschrie-
ben, ein Autoencoder implementiert und trainiert. Der Encoder
besteht aus drei Faltungsschichten mit einer Filteranzahl von vier,
acht und 16. Der Decoder besteht aus zwei Faltungsschichten mit
einer Filteranzahl von vier und eins. Die Filtergrofle betrigt
jeweils drei. Die zentrale Schicht besteht aus zwei Neuronen, ein
Neuron fiir die Kodierung der Blechdicke und ein Neuron fiir die
Kodierung der Qualitit. Fir das Training wird ein Adam Optimi-
zer mit der Standard-Lernrate von 0.001 verwendet. Die Verlust-
funktion wird, durch die in Gleichung (4) beschriebene ange-
passte Verlustfunktion ersetzt, dabei sind die gewihlten Gewich-
tungsfaktoren a = 1, b = 0.02 und ¢ = 0.1. Das Modell wird iiber
20 Epochen trainiert und eine Batch-Grofle von 32 wurde
gewihlt. Die Parameter des Autoencoders wurden mithilfe eines
Parameter-Tunings, also der automatisierten Suche performanter
Parameter, ermittelt.
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Bild 6. Visualisierung der Modelvorhersage auf einem unabhéngigen Test-
datensatz 7 Das Modell ist in der Lage, die Blechdicke und die Schneidqua-
litdt im Latenten Raum zu trennen. Grafik: Trumpf

Das Bild 5 zeigt die Entwicklung des latenten Raums F'(X)
des Encoders tiber den Trainingsprozess. Es sind insgesamt
zwanzig Einzelbilder zu sehen. Jedes Bild gehort zu einer Epoche
des Trainingsprozesses. Die Bilder wurden anschliefend mit den
bekannten Qualititslabeln, aus dem Labelverfahren aus Abschnitt
4, eingefirbt. Dies zeigt, dass der Autoencoder eine Merkmals-
raumreprasentation /(X) erstellen kann, in der sowohl das Quali-
titslabel als auch die Blechdicke erkannt wird. Obwohl die Blech-
dickenerkennung kein Ziel dieser Arbeit ist, ist es sinnvoll diese
durch das Multi-Klassen Problem visualisieren zu konnen.
Dadurch kann sichergestellt werden, dass der Parameter Blech-
dicke vom Modell sinnvoll verwertet wird.

Der Encoder wurde anhand des unabhingigen Testdatensatzes
getestet, und die Ergebnisse sind in Bild 6 dargestellt. Auf der
y-Achse ist die vorhergesagte Blechdicke §, € R aufgetragen, auf
der x-Achse die das Qualititslabel §, € [0, 1]. Die Bilder werden
zur Uberpriifung entsprechend ihrer bekannten Qualititswertbe-
zeichnung aus dem Labelprozess (vgl. Abschnitt 4) eingefarbt.

Fur die Verwendung auf der Maschine muss fiir die Fehl-
schnitterkennung ein Schwellwert eingefithrt werden. Auf Basis
der Erkenntnisse von Bild 6 ist ein Schwellwert fiir den Fehl-
schnitt von 0.6 sinnvoll.

Es fillt auf, dass die vorhergesagte Blechdicke leicht nach oben
und unten schwankt. Zum Beispiel kann ein Bild mit einer Blech-
dicke von 4 mm auch fiir eine Blechdicke von 4.5 mm vorherge-
sagt werden. Auflerdem ist auffillig, dass mit zunehmender
Blechdicke das Qualititslabel fiir den Fehlschnitt nach rechts
driftet, also bei niedrigeren y,-Werten auftritt. Dieser Effekt
konnte auch bei der Datenaufnahme festgestellt werden. So findet
beim Schneiden von diinneren Blechen ein abrupter Schnittabriss
statt. Bei dickerem Blech entspricht diese eher einer zunehmen-
den Verschlackung des Schnittspaltes, also einem schleichendem
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Schnittabrisses. Dieses Verhalten erklirt auch, warum die Uber-
tragung unterschiedlicher Blechdicken fiir ein ML-Modell mit
Problemen verbunden ist.

6 Zusammenfassung und Ausblick

Im Gegensatz zum Stand der Technik wurde ein Ansatz vor-
gestellt, bei dem anstelle eines Klassifikationsproblems, eine
Regression genutzt wurde, um Fehlschnitte beim Laserschneiden
zu ermitteln. Zur Problemlésung wurde ein Autoencoder verwen-
det. Besonders hervorzuheben ist, dass es gelungen ist, ein Modell
fiir verschiedene Blechdicken zu generalisieren. Der gewihlte
Autoencoder zeigt eine korrekte Einteilung der Qualititslabel im
latenten Raum des Encoders, sodass dieser fiir die Anwendung
auf der Maschine zum Einsatz kommen kann. Zur Erkennung
des Fehlschnitts konnen Schwellwerte eingefiihrt werden.

Die vorgestellte Methode kann auch fiir andere Prozessinde-
rungen verwendet werden, zum Beispiel fiir das Schneiden mit
unterschiedlichen Gasarten oder Diisen. Eine Untersuchung des
Kompromisses zwischen der Genauigkeit und der Anzahl der
Prozessidnderungen wire interessant. Es sollte untersucht werden,
ob es besser ist, so viele Prozessinderungen wie moglich mit
einem Modell abzudecken oder mehrere Modelle fiir gebiindelte
Prozessinderungen zu verwenden. Denkbar wire, dem Modell
die Parameter beziehungsweise die Prozessinformationen als
Input zur Verfiigung zu stellen. Diese miissen aber nicht zwangs-
weise auch als Ausgabe zur Verfiigung stehen.
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