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ω Wanderfeldwinkel Grad 
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okklusion 
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Ctube Complinace des Pumpenschlauches m³/Pa, ml/bar 

C‘tube längenbezogene Complinace des Pumpenschlauches m³/Pa/m, 
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ctube,s Ersatzfedersteife, quasi-statisch N/m, N/mm 

ctube,d Ersatzfedersteife, dynamisch N/m, N/mm 

ctube,d,l Ersatzfedersteife, dynamisch, Lastkraft in Pumpeneinheit N/m, N/mm 

d Dämpfungskonstante N·s/m 

dh hydraulischer Ersatzdurchmesser m, mm 

di Durchmesser des Rückflusselements m, mm 

dr Durchmesser Biegestab m, mm 

ds Wegelement m, mm 
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Er Elastizitätsmodul Biegestab Pa 

Etube Elastizitätsmodul Schlauchmaterial Pa 

Etube,max maximales Elastizitätsmodul Schlauchmaterial Pa 

Etube,min minimales Elastizitätsmodul Schlauchmaterial Pa 

exሬሬሬ⃗  Einheitsvektor in x-Richtung  

eyሬሬሬ⃗  Einheitsvektor in y-Richtung  

f Erregungsfrequenz, Oszillationsfrequenz Hz 

F Kraft, Kraftbetrag N 

F Kraftvektor Reluktanzkraft N 
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fc Grenzfrequenz Hz 

fe,res Eigenfrequenz Resistor Hz 

fHb Masseanteil freies Plasmahämoglobin pro Plasmavolumen mg/dl 

Fl Lastkraftvektor in Pumpeneinheit N 

Fl,x x-Komponente Lastkraft in Pumpeneinheit N 

Fl,y y-Komponente Lastkraft in Pumpeneinheit N 

fmax maximale Oszillationsfrequenz Hz 

Ftube Rückstellkraft Schlauch N 

Ftube,l Rückstellkraft Schlauch in Pumpeneinheit N 

Fx x-Komponente Kraftvektor N 

Fx,max Maximalwert der x-Komponente Kraftvektor N 

Fy y-Komponente Kraftvektor N 

Hct Hämatokritgehalt % 

I elektrische Stromstärke A 

Ipeak Spitzenwert elektrische Stromstärke A 

l Länge m 

l1 Länge unteres Segment Biegestab m, mm 

l2 Länge oberes Segment Biegestab m, mm 

L hydraulische Induktivität Pa/(m³/s²) 

Lhy hydraulische Induktivität Pa/(m³/s²) 

li Länge des Rückflusselements m, mm 

Li hydraulische Induktivität, Rückflusselement Pa/(m³/s²) 

Ll hydraulische Induktivität, Schlauch ausgangsseitig Pa/(m³/s²) 

ls,0 Länge Resistorfeder entspannt m, mm 
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XII Symbolverzeichnis 

ls,op Länge Resistorfeder im Arbeitspunkt m, mm 

Ml Lastmoment in Pumpeneinheit Nm 

mres Masse bewegte Resistorelemente kg, g 

n natürliche Zahl  

NIH Normierter Hämolyseindex g/100 l 

nr Rotordrehzahl 1/min, Hz 

o relative Okklusion % 

p Druck Pa, mbar, mmHg 

p0 Normaldruck Pa 

p1, p2 gemessener Druck Pa 

pback Gegendruck Pa 

pmax maximaler Druck Pa 

pmin minimaler Druck Pa 

pout Druck am Pumpenausgang Pa 

pQ durch Volumenverdrängung erzeugter Druckunterschied Pa 

Q Volumenstrom, Fluss m³/s, ml/min 

Qback Rückfluss m³/s, ml/min 

Qdisp durch Verdrängung erzeugter Volumenstrom m³/s, ml/min 

Qin Volumenstrom eingangsseitig m³/s, ml/min 

Qosc oszillierender Volumenstromanteil m³/s, ml/min 

Qout Volumenstrom ausgangsseitig m³/s, ml/min 

Qm mittlerer Volumenstrom m³/s, ml/min 

Qmax maximaler Volumenstrom m³/s, ml/min 

Qmin minimaler Volumenstrom m³/s, ml/min 
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Qpeak Spitzenwert des Volumenstromes m³/s, ml/min 

R hydraulischer Widerstand Pa/(m³/s) 

rc Radius Koppelglied m, mm 

rc‘ winkelabhängiger Radius Koppelglied m, mm 

Rel elektrischer Widerstand Ω 

rh Radius Widerlager m, mm 

Rhy hydraulischer Widerstand Pa/(m³/s) 

ri Radius Integrationsweg m, mm 

Ri hydraulischer Innenwiderstand Pa/(m³/s) 

Ri‘ wirksamer hydraulischer Innenwiderstand Pa/(m³/s) 

Rl hydraulischer Widerstand, Schlauch Pa/(m³/s) 

Rload hydraulischer Lastwiderstand Pa/(m³/s) 

rosc radiale Oszillationsamplitude m, mm, µm 

rosc,m radiale Oszillationsamplitude, Mittelwert m, mm 

rosc,max radiale Oszillationsamplitude, Maximalwert m, mm 

rosc,min radiale Oszillationsamplitude, Minimalwert m, mm 

Rres hydraulischer Widerstand, Resistor Pa/(m³/s) 

rw mittlerer Radius der Schlauchwindung m, mm 

s Schlauchquetschung m, mm 

sop Arbeitspunkt der Schlauchquetschung m, mm 

t Zeit, Zeitpunkt s 

tsim Simulationszeit s 

u Umfang m, mm 

U elektrische Spannung V 
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utube,i innerer Umfang des Schlauchquerschnitts m, mm 

vdisp Relativgeschwindigkeit zwischen Koppelglied und Pumpme-
dium 

m/s 

V Volumen m³, ml 

Vb Blutvolumen m³, l 

vpulse Pulswellengeschwindigkeit m/s 

Vrev Verdrängungsvolumen pro Umdrehung m³, ml 

Vr Eintauchvolumen m³, ml 

wg Nutbreite im Betrieb m, mm 

wg,i,min minimale Breite Spaltöffnung des Pumpenschlauches im 
Betriebszustand 

m, mm 

wg0 Nutbreite im Ruhezustand m, mm 

wgap Restspalt infolge der Teilokklusion m, mm 

wmax maximale Schlauchbreite m, mm 

wmin minimale Schlauchbreite m, mm 

wop Schlauchbreite im Arbeitspunkt m, mm 

wres Schlauchbreite bzw. Spaltbreite m, mm 

wtube Schlauchwanddicke m, mm 

x x-Komponente, Weg m, mm 

xd x-Komponente, Verschiebung Koppelglied m, mm 

y y-Komponente, Weg m, mm 

yd y-Komponente, Verschiebung Koppelglied m, mm 

z Rollenanzahl  
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Abkürzungsverzeichnis 

Abkürzung Bedeutung 

CFD Computational Fluid Dynamics 

ECLS Extracorporeal Life Support 

ECMO Extracorporeal Membrane Oxygenation 

FEM Finite-Elemente-Methode 

HLM Herz-Lungen-Maschine 

MKS Mehrkörpersimulation 

PVC Polyvinylchlorid 

TAH Total Artificial Heart 

VAD Ventricular Assist Device 

WHF Weithalsflasche 
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XVI Kurzfassung 

Kurzfassung 

Das Ziel dieser Arbeit ist der Entwurf eines neuartigen Pumpprinzips auf Basis einer Schlauch-
pumpe, welches die Förderleistung ohne vollständige Schlauchokklusion (Schlauchquetschung) 
erzeugt. Dadurch wird die mechanische Belastung des Fluids reduziert und somit, beispielswei-
se bei der Anwendung als Blutpumpe, eine verringerte Blutschädigung erreicht. 

Im Gegensatz zu konventionellen Schlauchpumpen, welche nach dem Verdrängerprinzip und 
fast ausschließlich mit vollständiger Okklusion arbeiten, ermöglicht das neuartige Pumpprinzip 
infolge der Teilokklusion einen Rückfluss im Pumpenschlauch. Dies führt zu einem Wider-
spruch zwischen der zu erbringenden hydraulischen Leistung und der Reduzierung der mecha-
nischen Belastung des Fluids. Dieser Widerspruch kann durch eine Vergrößerung des wirksa-
men hydraulischen Innenwiderstands mit Hilfe eines dynamischen Durchflussresistors am Pum-
penausgang gelöst werden. Ein Schwingankerantrieb stellt die für das Pumpprinzip benötigte 
umlaufende exzentrische Oszillation bereit und stimuliert dadurch den Pumpenschlauch perio-
disch. 

Die Modellierung des betrachteten Pumpprinzips besteht aus mehreren Teilmodellen. Das durch 
Nutzung der elektrisch-hydraulischen Analogie aufgebaute hydraulische Ersatzschaltbild be-
steht aus Volumenstromquelle, Rückflusswiderstand und druckabhängigem Durchflusswider-
stand am Pumpenausgang. Ein mit einer FEM-Simulation (Finite-Elemente-Methode) des elek-
tromechanischen Wandlers gekoppeltes MKS-Modell (Mehrkörpersimulation) ermöglicht die 
Dimensionierung des Schwingankerantriebs und die Vorhersage der auftretenden Oszillations-
frequenzen und -amplituden zum Stimulieren des Pumpenschlauches. 

Im experimentellen Teil der Arbeit erfolgt die Verifizierung der Simulationsmodelle mit Hilfe 
eines aufgebauten Funktionsmusters anhand von Pumpenkennlinien und transienten Signalen. 
Mit Hilfe eines Phasendiagramms werden außerdem die komplexen Zusammenhänge der Funk-
tionsweise des Pumpprinzips, bestehend aus Schlauchstimulation, Pulswellenausbreitung und 
dynamischem Verhalten des Durchflussresistors veranschaulicht. Ein weiteres Experiment mit 
Schweineblut zeigt, dass das nicht-okklusive Pumpprinzip 55 % weniger Blutschädigung in 
Form von Hämolyse verursacht als eine vergleichbare, normalerweise benutzte konventionelle 
Rollenpumpe. 

Als Abschluss der Arbeit werden Richtlinien für den Entwurf einer nicht-okklusiven Schlauch-
pumpe formuliert, welche, zusammen mit den erarbeiteten Simulationsmodellen, als Entwurfs-
werkzeug für die Dimensionierung zukünftiger Pumpen nutzbar sind.  
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Abstract 

The aim of this thesis is the design of a novel pumping principle based on a peristaltic pump 
that generates a flow without complete tube occlusion. This decreases the mechanical stress on 
the transported fluid and can, for example, reduce red blood cell damage when used as a blood 
pump. 

The new principle enables a backflow inside the tube because of the partial occlusion. This is in 
contrast to conventional peristaltic pumps, which work according to the displacement principle 
and almost exclusively with complete occlusion. Obviously, there is a contradiction between a 
high hydraulic power and the reduction of the mechanical stress on the fluid. This contradiction 
can be solved by increasing the effective hydraulic internal resistance by means of a dynamic 
flow resistor at the pump outlet. An electrical motor with oscillatory motion provides the cir-
cumferential eccentric oscillation to drive the pump by periodically stimulating the tube. 

The modelling of the pumping principle consists of several submodels. The first one is an 
equivalent circuit diagram, built up by using the electro-hydraulic analogy, and consisting of 
volume flow source, return flow resistance and pressure-dependent flow resistance at the pump 
outlet. A multibody simulation (MBS) model coupled with a finite element analysis of the elec-
tromechanical converter allows dimensioning of the actuator for the generation of required os-
cillation frequencies and amplitudes used to stimulate the pump tube. 

In the last part of this thesis, the simulation models are verified by experiments with a functional 
model of the pump using performance curves and transient signals. A phase diagram illustrates 
the complex interrelations of tube stimulation, pulse wave propagation, and dynamic behaviour 
of the flow resistor. In an experiment with pig blood, it can be shown that the non-occlusive 
pumping principle causes 55 % less blood damage in form of hemolysis than a comparable, 
normally used, conventional roller pump. 

Finally, this thesis provides guidelines for the design of non-occlusive peristaltic pumps. In 
combination with the developed simulation models, they can be used as a design tool for such 
pumps. 
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