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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Zustandsspezifische Modelle zur universellen Prozessüberwachung

Modellbasierte Überwachung 
von Fräsprozessen

M. Mau, A. Puchta, J. Fleischer

Z U S A M M E N FA S S U N G  Die datenbasierte Prozessüber-
wachung ermöglicht es, Fräsprozesse präzise zu analysieren 
und Anomalien frühzeitig zu erkennen – ohne zusätzliche Sen-
sorik nachrüsten zu müssen. Durch den Einsatz spezialisierter 
Signalvorhersagemodelle und selbstlernender Mechanismen 
lassen sich variierende Produktionsbedingungen effizient 
 abbilden, wodurch die Gesamtanlageneffektivität und Ferti-
gungsqualität in Produktionsumgebungen mit hoher Varian-
tenvielfalt gesteigert werden können. 

Condition-specific models for universal 
process monitoring – Model-based 
 monitoring of milling processes

A B ST R A C T  Data-based process monitoring makes it 
 possible to precisely analyze milling processes and detect 
 anomalies at an early stage – without the need to retrofit addi-
tional sensors. By using specialized models and self-learning 
mechanisms, varying production conditions can be efficiently 
mapped, thereby increasing overall equipment effectiveness 
and manufacturing quality in production environments with 
a high number of variants.

1 Einleitung

Der demografische Wandel und die damit verbundenen Eng-
pässe an Fachkräften [1] stellen Unternehmen vor die dringende 
Aufgabe, ihre Produktionsprozesse sowie die Digitalisierung 
 dieser Prozesse effizienter zu gestalten, um mit sinkendem Perso-
naleinsatz weiterhin eine hohe Produktivität zu erreichen [2; 3]. 
Bei gleichbleibender Anzahl an Produktionsmaschinen sieht sich 
das Fachpersonal zunehmend mit einer wachsenden Anzahl zu 
überwachenden Maschinen konfrontiert. Die steigende Komplexi-
tät der Produktionsumgebung erhöht dabei das Risiko von Feh-
lern und verlängerten Ausfallzeiten [4]. Gleichzeitig erfordert die 
wachsende Nachfrage nach individualisierten Produkten und die 
immer kürzer werdenden Lebenszyklen von Produkten, dass 
Werkzeugmaschinen und ihre Überwachungsmodelle flexibel auf 
sich ändernde Produktionsanforderungen reagieren können [4]. 
Werden Anomalien in Fräsprozessen (Werkzeugbruch, Ver-
schleiß, Materialunregelmäßigkeiten etc.) erst spät detektiert, 
 reduzieren sich die Handlungsmöglichkeiten des Fachpersonals 
(Werkzeugwechsel, Abbruch des Fertigungsprozesses). Insbeson-
dere bei komplexen Werkstücken mit einer langen Bearbeitungs-
dauer kann dies zu hohen Ausschusskosten führen.

Um diesen Herausforderungen zu begegnen, sind präzise 
 Systeme zur Prozessüberwachung unverzichtbar. Sie tragen dazu 
bei, unvorhergesehene Störungen und Ausschuss zu minimieren, 
wodurch die Gesamtanlageneffektivität (Overall Equipment 
 Effectiveness, OEE) entscheidend verbessert werden kann.

Damit Überwachungssysteme auch an Bestandsmaschinen im 
Brownfield kostengünstig implementiert werden können, ist es 
vorteilhaft, wenn hierzu keine zusätzliche kostspielige Sensorik 

nachgerüstet werden muss, sondern auf vorhandene Maschinen-
daten zurückgegriffen werden kann. Insbesondere die Motor -
ströme der Hauptspindel- und Vorschubachsenantriebe eignen 
sich für eine Überwachung, da viele prozessbestimmende Fakto-
ren wie Prozesskraft, Drehmoment und Werkzeugverschleiß die 
Höhe der Ströme beeinflussen [5]. Je nach Maschinentyp und 
Steuerung lassen sich die Motorströme direkt aus der Steuerung 
auslesen. Ist dies nicht möglich, beispielsweise bei alten Bestands-
maschinen, kann ein Strommesssystem kostengünstig mit Strom-
wandlern nachgerüstet werden [6].

2 Ansätze zur Prozessüberwachung

Klassische Verfahren der statistischen Prozesskontrolle basie-
ren auf der Auswertung von Referenzwerten aus Stichproben 
identisch gefertigter Bauteile. In einer modernen Produktionsum-
gebung mit niedrigen Stückzahlen – bis hin zur Losgröße 1 – 
eignet sich dieser Ansatz aufgrund der fehlenden Referenzwerte 
nicht mehr. Viele erforschte Ansätze zur flexibleren Prozess -
überwachung basieren auf der Integration zusätzlicher Sensorik 
wie einer Kraftmessplattform, Vibrationssensoren oder Kameras 
in der Maschine [7, 8, 9]. Die Anschaffung und Integration dieser 
Sensorik ist allerdings mit Kosten verbunden. Es existieren Ansät-
ze zur Vorhersage des Energieverbrauchs der Motoren für die 
Fahrt einzelner Sätze auf Basis des G-Codes [10; 11]. Kurze 
 Abweichungen im Stromverbrauch, wie das Fräsen durch einen 
Lunker, fallen mit diesem Ansatz nicht auf.

Aktuelle Forschungsansätze zielen darauf ab, Referenzwerte 
auf wiederkehrende geometrische Merkmale wie Taschen oder 
Nuten zurückzuführen [12]. Eine Überwachung, die unabhängig 
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von vorher gefertigten Werkstücken oder Konstruktionsmerk -
malen funktioniert, setzt jedoch die Möglichkeit voraus, 
 Referenzwerte für jeden Messzeitpunkt mit hoher zeitlicher Auf-
lösung vorherzusagen.

Ansätze, bei denen Überwachungsmodelle durch gezielte 
 Datenerhebung via Experimenten parametrisiert werden, haben 
signifikante Nachteile: Sie beanspruchen kostbare Maschinenzeit, 
reduzieren die OEE und führen zu erhöhtem Verbrauch an Mate-
rial und Energie. In agilen Produktionsumgebungen, die durch 
stark individualisierte Produkte und kleine Losgrößen gekenn-
zeichnet sind, ist das Sammeln solcher Datensätze für jede neue 
Produktvariante weder praktikabel noch effizient. Deshalb sind 
unter diesen Bedingungen neue, innovative Modellierungsstrate-
gien erforderlich, um eine effektive Prozessüberwachung zu ge-
währleisten.

Ströbel präsentiert einen Ansatz, Motorströme während eines 
Fräsprozesses in hoher zeitlicher Auflösung vorherzusagen [13]. 
Durch die hohe zeitliche Auflösung können konstante Anomalien, 
wie ein erhöhter Energiebedarf durch ein verschlissenes Werk-
zeug, von kurzen Anomalien, wie dem Fräsen durch einen Lun-
ker, detektiert und voneinander abgegrenzt werden. Hierzu wer-
den zunächst die Prozesskräfte und Materialabtragsrate unter 
Verwendung des G-Codes und der Werkstückgeometrie mithilfe 
einer Abtragssimulation berechnet. Diese berechneten Werte wer-
den mit der Geschwindigkeit und Beschleunigung genutzt, um 
datengetriebene Modelle auf Basis von Maschinellem Lernen zu 
bilden.

 
  

Gleichung 1: Ein- und Ausgangssignale der datenbasierten 
Stromsignalvorhersage nach Ströbel. Für jeden Motor der Vor-
schubachsen beziehungsweise Hauptspindel wird ein Modell 
 gebildet. Die Eingangssignale der Modelle enthalten auch die 

 Signale der anderen Achsen, damit das Modell Quereinflüsse be-
rücksichtigen kann.

Die Implementierung nach Ströbel ermöglicht bereits eine Vor-
hersage der Motorströme während eines Fräsprozesses, indem ein 
auf zuvor aufgezeichneten Daten trainiertes Modell verwendet 
wird. Dieses Modell liefert besonders dann zuverlässige Ergebnis-
se, wenn die Materialien und Werkstücke eine gewisse Ähnlich-
keit aufweisen. In hochflexiblen Produktionsumgebungen, in 
 denen eine große Bandbreite unterschiedlicher Werkstücke aus 
verschiedenen Werkstoffen und unter Verwendung verschiedens-
ter Werkzeuge gefertigt wird, stoßen solche Ansätze jedoch an 
 ihre Grenzen. Ein einzelnes Modell, das mit Daten aus stark 
 variierenden Fertigungsprozessen trainiert wurde, benötigt eine 
hohe Komplexität, um alle möglichen Szenarien abzudecken. Dies 
kann die Generalisierungsfähigkeit des Modells erheblich ein-
schränken, sodass neue Prozesse, für die es keine vergleichbaren 
Trainingsdaten gibt, ungenau vorhergesagt werden.

3 Erweiterung bestehender Modelle 

Eine vielversprechende Alternative ist die Verwendung mehre-
rer spezialisierter Regressionsmodelle zur Stromvorhersage, die 
jeweils auf spezifische Prozessbereiche fokussiert sind. Diese 
 Modelle besitzen keine globalen Gültigkeitsbereiche, die alle mög-
lichen Werte der Prozessparameter umfassen, sondern arbeiten 
innerhalb klar definierter lokaler Bereiche. Dadurch kann jedes 
Modell spezifische Prozesse mit höherer Genauigkeit vorhersa-
gen.

Ein anschauliches Beispiel für die Kombination mehrerer 
 Modelle mit begrenztem Gültigkeitsbereich ist die Unterschei-
dung zwischen dem normalen Fräsprozess und Bewegungen der 
Maschine im Eilgang. Bild 1 verdeutlicht dies. Für das Training 
von Modell A wurden Datenpunkte aus den aufgenommenen 
 Maschinendaten aus dem Datensatz [14] während hoher Vor-
schubgeschwindigkeit verwendet, während für das Training von 
Modell B Datenpunkte mit niedrigerer Vorschubgeschwindigkeit 

Bild 1. Beispielhafte Darstellung der Gültigkeitsbereiche einzelner Modelle. Modell A ist auf die Vorhersage des Motorstroms der X-Achse bei hohen 
 Vorschubgeschwindigkeiten spezialisiert, während Modell B bessere Ergebnisse für niedrigere Geschwindigkeiten liefert. Der untere Graph zeigt den 
 Vorhersagefehler der einzelnen Modelle. Grafik: KIT wbk
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genutzt wurden. Dies hat zur Folge, dass Modell A den Motor-
strom während einer Fahrt im Eilgang bedeutend präziser vor-
hersagen kann als Modell B. Während des Fräsprozesses ist ein 
gegenläufiger Effekt zu beobachten. Weder Modell A noch Modell 
B können den gesamten Prozess adäquat abbilden. Nutzt ein 
 Gesamtsystem beide Modelle jeweils in dem Bereich, für den die 
Modelle gebildet wurden, kann eine deutlich bessere Stromvor-
hersage erreicht werden.

Die Verwendung der Vorschubgeschwindigkeit ist nur ein Bei-
spiel, möglich sind auch andere Prozessgrößen beziehungsweise 
Kombinationen dieser, wie Beschleunigung, Prozesskräfte oder 
die Materialabtragsrate.

3.1 Selbstlernende Prozessanpassung

Damit sich das Prozessüberwachungssystem selbstständig an 
neue Prozesse anpassen kann, ist ein selbstlernender Aspekt 
 erforderlich. Die grundlegende Funktionsweise eines solchen 
 Systems ist in Bild 2 dargestellt. Nachdem für jeden Messpunkt 
aus den Maschinendaten die Prozesskräfte und Materialabtrags-
rate berechnet wurden, wird ein passendes Regressionsmodell 
ausgewählt. Dies geschieht durch die Auswahl des Modells, dessen 
Definitionsbereich bestmöglich zu den Werten der Prozessgrößen 
des Messpunktes passt. Unter Verwendung des ausgewählten 
 Modells werden die Motorströme der Maschine vorhergesagt und 
mit den gemessenen Stromwerten verglichen. Wird aufgrund der 
Differenz zwischen den vorhergesagten Strömen und den gemes-
senen Strömen aus den Maschinendaten eine Anomalie vermutet, 
wird der Fräsprozess von einem Facharbeiter überprüft. Wenn die 
Anomalie tatsächlich auf einen Prozessfehler (zum Beispiel 
 Lunker im Werkstück, Werkzeugverschleiß) zurückzuführen ist, 
 können entsprechende Maßnahmen eingeleitet werden. Liegt hin-
gegen kein Fehler vor, muss das System angepasst werden, um die 
Vorhersagegenauigkeit zu verbessern.

Ein zentrales Element des selbstlernenden Ansatzes ist die 
 Bildung neuer lokaler Modelle. Diese Modelle werden gezielt für 
Prozesse erstellt, die von bestehenden Modellen nicht präzise ab-
gebildet werden können. Ein Algorithmus analysiert die relevan-
ten Prozessgrößen und definiert aus diesen einen Gültigkeitsbe-
reich, der von keinem existierenden Modell abgebildet wird. Die 
Datenpunkte in diesem Bereich werden dann zum Training eines 
neuen lokalen Modells verwendet. Zukünftige Vorhersagen inner-
halb dieses Bereichs werden dann von dem lokalen Modell über-
nommen, wodurch die Vorhersagequalität in diesem Bereich 
 signifikant verbessert wird. Je länger das System in einem varian-
tenreichen Produktionsumfeld eingesetzt wird, desto mehr lokale 
Modelle werden in der Modelldatenbank abgespeichert. Hier-
durch können auch bei neuen Produktionsprozessen schnell prä-
zise Vorhersagen der Motorströme getroffen und hierdurch eine 
Prozessüberwachung realisiert werden. Im Gegensatz zum Online 
Machine Learning, bei dem alle neu erfassten Datenpunkte 
 unmittelbar zur Anpassung des Modells verwendet werden, wer-
den in diesem Ansatz ausschließlich jene Datenpunkte herangezo-
gen, bei denen das bestehende Modell keine zufriedenstellende 
Vorhersage liefert. Dadurch wird gewährleistet, dass ein allmähli-
cher Werkzeugverschleiß nicht als Normalzustand erlernt wird, 
sondern als Anomalie erkannt wird.

3.2 Technische Voraussetzungen

Damit ein Einsatz des modellbasierten Überwachungssystems 
wirtschaftlich eingesetzt werden kann, müssen Training und Ein-
satz der Modelle dateneffizient auf gängigen Industrie-PCs 
 möglich sein. Die Tabelle gibt einen Überblick über die wesentli-
chen technischen Parameter der Trainingsphasen für die Modelle 
A und B aus Bild 1. Als Hardware wurde ein Prozessor des Typs 
„Intel Core i7-1360P“ eingesetzt, als Modellarchitektur wurden 
Extra-Trees mit 100 Estimators verwendet [15].

Bild 2. Informationsflussdiagramm des selbstlernenden Prozessüberwachungssystems. Grafik: KIT wbk
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Entsprechend den Werten aus der Tabelle lässt sich abschät-
zen, dass auch deutlich komplexe Gesamtsysteme mit einer Viel-
zahl einzelner, vergleichbarer Modelle auf gängigen Industrie-PCs 
problemlos eingesetzt werden können.

3.3 Vermeidung von Überanpassung

Ein potenzielles Risiko bei der Bildung von lokalen Modellen 
ist die Überanpassung (engl. Overfitting) durch immer kleiner 
werdende Gültigkeitsbereiche. Solche hoch spezialisierten Model-
le könnten die Generalisierungsfähigkeit des Gesamtsystems 
 beeinträchtigen. Um dem entgegenzuwirken, muss die Größe der 
Gültigkeitsbereiche begrenzt werden. Ziel ist es, eine Balance 
zwischen der Genauigkeit der Modellvorhersagen und der Breite 
der abgedeckten Prozessbereiche zu finden. Neue Modelle sollten 
daher nur dann gebildet werden, wenn sie einen klaren Mehrwert 
für die Gesamtleistung des Systems bieten.

Ein optimal konfiguriertes System nutzt die Vorteile sowohl 
globaler als auch lokaler Modelle. Globale Modelle bieten eine 
grundlegende Abdeckung über alle Prozesse hinweg, während 
 lokal definierte Modelle spezifische Prozesse präzise adressieren. 
Entsprechend der Prozessgrößen wird nach einem auf die vorlie-
genden Werte spezialisierten lokal gültigen Modell gesucht. Exis-
tiert ein solches Modell, wird dieses verwendet, um die Motor-
ströme mit bestmöglicher Präzision vorherzusagen. Umfasst kein 
Definitionsbereich der vorhandenen lokal gültigen Modelle die 
Prozessgrößen einer Aufnahme, wird ein global gültiges Modell 
genutzt, wobei davon ausgegangen wird, dass die Vorhersage eine 
geringere Präzision als die eines spezialisierten Modells erreicht. 
Die aufgenommenen Daten werden dann für die Bildung eines 
neuen, lokal gültigen Modells verwendet.

Durch diese Kombination wird eine effektive und effiziente 
Prozessüberwachung ermöglicht, die sich flexibel an neue Anfor-
derungen anpassen kann.

4 Zusammenfassung und Ausblick

Die vorgestellten Ansätze bieten eine Grundlage, um ein 
selbstlernendes Prozessüberwachungssystem zu entwickeln, das 
sich an die Anforderungen variabler und flexibler Produktions-
umgebungen anpasst. Durch die Kombination von datengetriebe-
nen Modellen mit auf bestimmte Definitionsbereiche spezialisier-
ten Modellen können Vorhersagen für unterschiedliche Prozess-
bereiche präzisiert werden, ohne dass umfangreiche manuelle 
 Anpassungen notwendig sind.

Ein entscheidender Aspekt ist die kontinuierliche Anpassung 
des Systems an neue Prozesse. Hierfür ist es notwendig, dass das 
System Anomalien zuverlässig erkennt, durch Anwenderfeedback 
bewertet und durch den Einsatz neuer Daten weiterentwickelt 
werden kann. Der Fokus liegt darauf, eine Balance zwischen 
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 Präzision und Generalisierungsfähigkeit zu finden, um eine nach-
haltige Leistungsfähigkeit des Gesamtsystems sicherzustellen.

Langfristig hat das Konzept das Potenzial, die Prozessüberwa-
chung nicht nur präziser, sondern auch effizienter zu machen. 
Besonders in hochflexiblen Produktionsumgebungen kann ein 
solches System dazu beitragen, Ausschuss und Ausfallzeiten zu 
 reduzieren, die Produktionsqualität zu steigern und den Ressour-
cenverbrauch zu senken. Gleichzeitig könnte der Ansatz auch für 
andere Fertigungsprozesse weiterentwickelt werden, wodurch er 
über die reine Fräsprozessüberwachung hinaus Einsatzmöglich-
keiten bietet.

Der vorgestellte Ansatz soll in den nächsten Schritten anhand 
realer Produktionsprozesse validiert und in ein funktionsfähiges 
System übertragen werden.

Tabelle. Übersicht der Datensatzgröße, Trainingsdauer und Modellgröße 
für Modelle A und B aus Bild 1.

Trainingsdatensatz

Trainingsdauer

Modellgröße

Modell A

1,5 KB

0,04 s

465 KB

Modell B

42 KB

0,12 s

11,3 MB
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