§ 2. Technologische Grundlegung

In diesem Abschnitt werden die notwendigen technologischen Grundlagen
fiir die juristische Analyse gelegt. Ziel ist die Vermittlung eines Grundver-
stindnisses unter Verzicht auf technische Details, die fiir die Betrachtung
aus urheberrechtlicher Sicht nicht zwingend erforderlich sind. Abschnitt
A. stellt die relevanten allgemeinen Konzepte aus dem Bereich des Maschi-
nellen Lernens vor. Die Ausfithrungen in Abschnitt B. gehen auf Kiinstli-
che Neuronale Netze und deren Training ein. Abschnitt C. erlautert die
technischen Eigenschaften und gibt einen Uberblick iiber die wichtigsten
generativen KI-Modelle. Schliefilich liefert Abschnitt D. eine technische
Perspektive zu den relevanten Fragen der urheberrechtlichen Beurteilung.
Soweit bereits Kenntnisse vorhanden sind, konnen einzelne Abschnitte
oder Teile tibersprungen werden. Da die Abschnitte logisch aufeinander
aufbauen und die relevanten zentralen Konzepte und Begriffe systematisch
einfithren, empfiehlt sich allerdings eine vollstindige Lektiire.

A. Maschinelles Lernen

Moderne generative KI-Modelle basieren praktisch ausschliefSlich auf deep
learning (DL). Dies ist ein Teilbereich des Maschinellen Lernens (ML),
bei dem tiefe Kiinstliche Neuronale Netze (KNNs) geschaffen werden und
zum Einsatz kommen. Das Maschinelle Lernen ist wiederum ein Teilgebiet
der Kiinstlichen Intelligenz. D.h. Maschinelles Lernen ist eine von vielen
Moglichkeiten, intelligente Systeme umzusetzen, und innerhalb der ML-
Technologie sind KNNs lediglich eine von vielen Optionen. Nachfolgend
werden die wesentlichen Konzepte und Begriffe vorgestellt.

L. Lernaufgaben

Der generelle Ansatz im Maschinellen Lernen besteht darin, ein KI-Modell
zu trainieren, das eine Aufgabe — auch: Lernaufgabe — moglichst gut 16st.
Der Begrift ,Modell“ kann dabei im Sinne einer mathematischen Funkti-
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on'® verstanden werden, die fiir eine bestimmte Eingabe (z.B. ein Wort
oder ein Satz) eine Ausgabe erzeugt (z.B. ein dazu passendes Bild). Nach
dem Training sollten die Ausgaben des KI-Modells moglichst wenige Fehler
oder eine moglichst hohe Qualitdt aufweisen. Formell handelt es sich beim
Training daher um ein Optimierungsproblem, fiir welches eine mathema-
tische Funktion bendtigt wird, mit der der Fehler oder die Qualitdt der
Ausgabe gemessen werden kann. Die Definition einer solchen Funktion
ist meist nicht trivial: Wie kann beispielweise gemessen werden, wie gut
ein vom KI-Modell erzeugtes Bild zu der Texteingabe des Entwicklers oder
Nutzers passt?

Es kann zwischen drei prinzipiell verschiedenen Typen von Lernauf-
gaben unterschieden werden: tiberwachtes Lernen (supervised learning),
uniiberwachtes Lernen (unsupervised learning) und bestirkendes Lernen
(reinforcement learning):

(I) Beim iiberwachten Lernen ist fiir jedes Trainingsbeispiel neben der
Eingabe auch die gewiinschte Ausgabe bekannt, die das Modell beim
Training moglichst gut reproduzieren soll. Ist die Ausgabe eine Klas-
senzuordnung, wird das Problem Klassifikation genannt. Werden kon-
tinuierliche Werte ausgegeben, spricht man von einem Regressionspro-
blem.

(2) Beim uniiberwachten Lernen enthalten die Trainingsbeispiele keine
Ausgabedaten. Die Formulierung einer Funktion zur Optimierung ge-
staltet sich deshalb deutlich schwieriger. Beispielsweise konnte nach
einer Gruppierung (clustering) gesucht werden, bei der Trainingsbei-
spiele in einer Gruppe im Verhiltnis zueinander mdglichst dhnlich
und im Verhaltnis zu den Beispielen in anderen Gruppen moglichst
undhnlich sind. Auch wenn die Lernaufgabe hier weniger konkret ist,
konnen durch uniiberwachtes Lernen niitzliche Informationen wie
typische Muster oder Strukturen in Daten ermittelt werden.

(3) Bestirkendes Lernen ist eine Methode, bei der ein KI-Modell als Agent
durch Interaktion mit seiner Umgebung lernt, eine bestimmte Aufgabe
zu erfiillen, indem es ,Belohnungen® maximiert oder ,Bestrafungen®
minimiert: Das bedeutet, das Modell erlernt, welches Verhalten oder
welche Aktionen in einer bestimmten Situation die besten Ergebnisse

10 Die Begriffe ,Modell“ und ,Funktion“ werden im Folgenden ausschliefSlich in dieser
Bedeutung verwendet.
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A. Maschinelles Lernen

hervorbringen.!! Eine besondere Schwierigkeit besteht darin, dass ein
Ergebnis mitunter erst viele Schritte nach einer bestimmten Aktion
erreicht wird. Ein Agent, der z.B. Schach erlernt, weif3 dann entspre-
chend erst am Ende jeder gespielten Partie, ob er gewonnen oder
verloren hat.

Ein Sonderfall des iiberwachten Lernens ist das selbstiiberwachte
Lernen (self-supervised learning). Dabei enthalten die zum Training
verwendeten Daten keine Ausgaben. Jedoch kann eine {iberwachte
Lernaufgabe formuliert werden, bei der die Ausgaben aus den Trai-
ningsdaten abgeleitet werden. Dazu wird in der Regel ein Teil der
vorhandenen Informationen maskiert (d.h. er steht nicht als Eingabe
zur Verfiigung) und das Modell muss lernen, die daraus resultierenden
Liicken zu fiillen. Typischerweise erfolgt dies durch Vergleich mit den
tatsichlichen (urspriinglich maskierten) Werten, woraus der Fehler
berechnet werden kann.

In vielen Fillen ldsst sich das eigentliche Problem nicht direkt in eine
optimierbare Funktion ibersetzen, die zum Lernen verwendet werden
kann. In diesem Fall muss eine Ersatzfunktion eingesetzt werden, die opti-
mierbar ist und dem gewiinschten Ergebnis moglichst nahekommt. Nicht
selten wird im Entwicklungsprozess festgestellt, dass diese Ersatzfunktion
noch keine hinreichend guten Ergebnisse erbringt und tiberarbeitet werden
muss. Haufig kommt auch eine (gewichtete) Kombination von Funktionen
zum Einsatz, die jeweils unterschiedliche Aspekte betrachten. Beispielswei-
se konnten beim Training eines Modells zum style transfer'? eine Funktion
die Abweichung des Inhalts und eine zweite die Abweichung des Stils von
der jeweiligen Vorgabe messen. Durch eine Gewichtung — d.h. eine Multi-
plikation mit einem festgelegten Faktor pro Funktion als Hyper-Parameter
— lasst sich festlegen, wie wichtig die beiden Aspekte relativ zueinander
sind.

II. Parameter und Hyper-Parameter

Ein trainiertes Modell wird durch seine Parameter beschrieben. Deren
Werte beeinflussen das Ein-/Ausgabe-Verhalten des Modells. Sie werden

11 Haufig besteht die ,Belohnung” oder ,Bestrafung“ aus einer positiven oder negativen
Auswirkung auf eine vom Modell nach seiner Programmierung zu maximierende
Punktzahl.

12 Siehe auch unten § 2.CVIII. und § 4.D.1.3.b)bb)(2).
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durch eine Optimierung wiahrend des Trainings angepasst. Hingegen be-
schreiben Hyper-Parameter Eigenschaften der Struktur eines Modells oder
auch wichtige Einstellungen des Trainingsprozesses. Sie werden bereits im
Zeitraum vor dem Training festgelegt und wihrend des Trainings nicht op-
timiert. Fiir das Beispiel eines clusterings im Rahmen eines uniiberwachten
Lernprozesses ist etwa die Anzahl der zu findenden Gruppen ein wichtiger
Hyper-Parameter. Die Eigenschaften der einzelnen Gruppen (beispielswei-
se jeweils der Mittelpunkt und Radius) sind hingegen gelernte Parameter.
Die Anpassung der Hyper-Parameter eines KI-Modells fiihrt in der Regel
dazu, dass sich die Modellstruktur dndert. Dies hat meist zur Folge, dass
das Modell neu trainiert werden muss.

ITI. Generalisierung und Modellkapazitat

Ein KI-Modell, welches perfekt die gewiinschten Ausgaben fiir die Trai-
ningsbeispiele reproduziert, ist nicht unbedingt niitzlich. Ausschlaggebend
fiir den Nutzen ist, wie gut das Modell generalisiert — d.h. entscheidend
ist die Qualitdt der Ausgaben des Modells fiir bisher unbekannte Eingaben.
Ein Modell, welches lediglich auswendig gelernt hat, welche Ausgabe bei
einer bestimmten Eingabe gewiinscht ist, kann nicht gut generalisieren.
Idealerweise soll ein Modell lernen, entscheidende Merkmale in der Einga-
be zu erkennen und die Ausgabe entsprechend anzupassen. Wie komplex
diese Merkmale und die entsprechende Reaktion darauf sein konnen, hangt
wesentlich von der Kapazitit des Modells ab. Ist sie zu niedrig, kann das
Modell komplexe Sachverhalte nicht hinreichend vielschichtig abbilden,
was sich in einem zu hohen Fehlerwert fiir die Trainingsbeispiele bemerk-
bar macht. Dieses Phanomen wird als underfitting (Unteranpassung) eines
Modells bezeichnet. Overfitting (Uberanpassung) tritt hingegen auf, wenn
ein Modell tiber eine hohere Kapazitit als nétig verfiigt und diese darauf
verwendet, fiir die Aufgabe irrelevante Merkmale wie z.B. ein Rauschen
in den Daten zu lernen. Im Extremfall werden die Trainingsdaten ,aus-
wendig gelernt®. Overfitting fithrt im Vergleich zu den Trainingsdaten zu
iberhohten Fehlerwerten bei Eingabe bisher ungesehener Daten. Um die
Generalisierungsfahigkeit eines Modells einzuschitzen und overfitting zu
erkennen, muss der Modellfehler bei Eingabe bisher ungesehener Daten
ermittelt werden. Die dabei in Einsatz kommenden Datenbestinde werden
als Test- oder Validierungsdaten bezeichnet.
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B. Kiinstliche Neuronale Netze (KNNs)

Wihrend sich das Training mit zu kleinen Datenbestinden negativ
auf die Funktionalitit und den Nutzen eines Modells auswirkt (underfit-
ting), sind zu viele Trainingsdaten bei einer vorgegebenen Modellgrofie
(Kapazitat) grundsitzlich nicht schéddlich. Grofiere Datenbestinde haben
grundsatzlich einen regularisierenden Effekt und fithren zu einer besseren
Generalisierung, weil das Modell dadurch gezwungen wird, die Inhalte in
den Datenbestinden besser zu abstrahieren. Zwar gibt es hier Grenzen,
allerdings fithrt deren Uberschreitung allenfalls zu einer Verschwendung
von Ressourcen, weil das Ergebnis auch mit weniger Aufwand hitte er-
reicht werden konnen. In der Praxis wiirde man in einem solchen Fall
die Kapazitit des Modells erhdhen - beispielsweise, indem man in einem
KNN durch Anpassung entsprechender Hyper-Parameter die Anzahl der
Schichten oder die Anzahl der Neuronen in den Schichten erhoht.

IV. Datenaugmentierung

Ein gingiges Mittel, um die Generalisierungsfahigkeit und Robustheit eines
Modells zu verbessern, ist das Training mit mehr Daten. Sind diese nicht
verfiigbar, kann die Menge und Vielfalt der Trainingsdaten kiinstlich durch
Datenaugmentierung erhéht werden.!* Im Prozess der Augmentierung wird
eine Vielzahl leicht verdnderter Kopien der bereits vorhandenen Daten
erzeugt. Die Art der Verdnderung ist datentypabhangig. Typische Opera-
tionen bei Bilddaten sind etwa das Drehen (rotation), das Zuschneiden
(cropping), das Spiegeln (flipping), das Skalieren (scaling), das Verschieben
(translation) sowie die Farbanpassung oder das Hinzufiigen von Rauschen
(noise). Augmentierte Kopien werden in der Regel nur temporir erstellt
und nach ihrer Verwendung zum Training wieder geldscht.

B. Kiinstliche Neuronale Netze (KNNs)

Ein Kinstliches Neuronales Netz (KNN) ist ein Computermodell, das nach
dem Vorbild des menschlichen Gehirns arbeitet, um komplexe Muster und
Zusammenhinge in Datenbestinden zu erkennen. Es besteht aus mehreren
Schichten sogenannter Neuronen, die miteinander verbunden sind. Diese

13 Vgl. z.B. Shorten/Khoshgoftaar, A survey on Image Data Augmentation for Deep
Learning,. ] Big Data 6, 60 (2019) (einsehbar unter: https://doi.org/10.1186/s40537-01
9-0197-0 (zuletzt am 9. August 2024)).
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§ 2. Technologische Grundlegung

Neuronen sind einfache Recheneinheiten, die Informationen verarbeiten und
weitergeben. Jedes Neuron hat dabei eine oder mehrere eingehende Verbin-
dungen, die iber individuelle Gewichte verfiigen. Die iiber die Verbindungen
empfangenen Eingaben werden mit den jeweiligen Gewichten multipliziert
und aufaddiert. Die Aktivierungsfunktion'¥ wandelt den erhaltenen Wert in
eine Aktivierung des Neurons um, die dann als Ausgabe weitergegeben wird.
Grafisch findet sich dieser Ablaufin Abbildung1 dargestellt.

Eingangssignale (Netzeingabe oder Ausgabe der vorhergehenden Schicht)

Verbindungsgewichte (Parameter)
W,

gewichtete Summe

Aktivierungsfunktion

Aktivierung / Ausgabe

Abbildung 1: Aufbau eines kiinstlichen Neurons

Es gibt eine Vielzahl an Moglichkeiten, wie Neuronen miteinander zu
Netzen verbunden werden kénnen. Die dabei entstehenden Strukturen
werden als (Netzwerk-)Architekturen bezeichnet. Viele Forschungsprojekte
beschiftigen sich damit, passende Architekturen fiir bestimmte Probleme
zu finden. Beispielsweise eignen sich sogenannte Convolutional Neural
Networks (CNNs) besonders gut zur Verarbeitung von Bilddaten, wohin-
gegen sogenannte Rekurrente Neuronale Netze (RNNs), Long Short-Term
Memory Netze (LSTMs) und Transformer gut mit Sequenzdaten umgehen
konnen. Die verschiedenen Netzwerk-Designmuster lassen sich nahezu be-
liebig kombinieren und verschachteln, um komplexere Netzwerk-Architek-
turen zu schaffen. Die in Abschnitt C. vorgestellten generativen Modelle

14 Aktivierungsfunktionen sind in der Regel nicht-lineare Funktionen wie die logisti-
sche Funktion oder die sogenannte ReLU-Aktivierung. Eine echte Schwellenwert-
funktion, bei der ab einem bestimmten Eingabewert eine ,1“ und sonst eine ,0“ aus-
gegeben wird, war frither in der KNN-Forschung verbreitet, findet heute aber wegen
ihrer unvorteilhaften Ableitung keine Anwendung mehr.
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B. Kiinstliche Neuronale Netze (KNNs)

entsprechen einer hoheren Abstraktionsebene - d.h., sie kénnen intern
verschiedenste Basis-Architekturen verwenden und kombinieren, wobei de-
ren Wahl héufig durch die Art der zu verarbeitenden Daten (Texte, Bilder,
Videos etc.) bestimmt wird.

I. Aufbau und Struktur

Typischerweise werden die Neuronen in einem KNN in Schichten (layer)
organisiert. Eine besondere Rolle spielen dabei die Ein- und die Ausgabe-
schicht, welche die Eingabewerte fiir das Netz entgegennehmen oder die
Ausgabe zuriickgeben. Alle anderen Schichten werden als ,versteckt® be-
zeichnet. Hier findet die Datenverarbeitung statt. Jede Schicht ist in der Lage,
Muster in der Ausgabe der darunterliegenden Schicht zu lernen. Die Kom-
plexitit und Abstraktheit der erkannten Muster nehmen von Schicht zu
Schicht zu, weil sich ,,Muster von Mustern“ entwickeln und herausbilden.

Bei einem KNN sind die trainierbaren Parameter siamtliche Verbin-
dungsgewichte.”> Typische (nicht-trainierbare) Hyper-Parameter sind z.B.
die Anzahl der Neuronen in einer Schicht oder die Anzahl der Schichten
des Netzes. Ein trainiertes Modell kann vollstindig durch seine vordefinier-
te Architektur und die gelernten Parameterwerte (Gewichte) beschrieben
werden. Es entspricht einer komplexen Funktion, die fiir gegebene Einga-
ben bestimmte Ausgaben liefert. Bei der Berechnung der Ausgabe fiir eine
konkrete Eingabe entstehen viele Teilergebnisse: Angefangen von der Ein-
gabeschicht, werden Schicht fiir Schicht die Aktivierungen der Neuronen
berechnet, bis schliellich die Ausgabe bestimmt ist. Es muss klar unter-
schieden werden zwischen diesen Aktivierungen, die eine Reaktion auf eine
konkrete Eingabe darstellen, und den Gewichten, die zusammen mit der
Architektur das Modell beschreiben.

Je nach Architektur eines Netzes konnen Gruppen von Neuronen und
deren Aktivierungen in (mathematischen) Strukturen organisiert sein. Die
Aktivierungen einer Anzahl von n Neuronen in einer einfachen Schicht
konnen als ein n-dimensionaler Vektor betrachtet werden - vereinfacht:
als Liste von n Werten, deren Reihenfolge durch die der entsprechenden
Neuronen vorgegeben ist. Jeder dieser n-dimensionalen Aktivierungsvekto-

15 Zusitzlich kann es sogenannte bias-Werte geben, welche die Basisaktivitit eines
Neurons bestimmen, wenn dieses keine Eingaben erhilt. Durch einfaches Umstellen
der Formeln kénnen die bias-Werte aber auch wie Verbindungsgewichte behandelt
werden. Daher werden sie im Folgenden nicht gesondert betrachtet.
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ren entspricht einem Punkt in einem n-dimensionalen Raum, der alle mog-
lichen Kombinationen von n-dimensional definierten Werten umspannt.
Das bedeutet: Jede denkbare Eingabe in eine Schicht wird auf einen Punkt
in diesem Raum abgebildet. Dieser Punkt ist die interne Reprdsentation
der Eingabe innerhalb dieser Schicht. Die ndchste Schicht verwendet diese
interne Représentation der Eingabe in die vorangehende Schicht wiederum
als Eingabe und bildet diese auf ihre eigene interne Représentation ab.

Die unterschiedlichen, aufeinander folgenden Représentationen kénnen
im Zuge der Kaskaden von Schicht zu Schicht zunehmend abstrakter
werden. Beispielsweise konnte ein KNN, welches Fotos von Gesichtern
analysiert, ein Eingabebild zunichst in Form von einfachen Kanten mit
unterschiedlicher Ausrichtung reprasentieren. Die ndchste Schicht kann
daraus eine komplexere Reprisentation basierend auf Gesichtsteilen wie
Augen, Nase oder Mund ableiten, bis dann schliellich eine tiefe Schicht das
gesamte Gesicht modelliert.

Die Netzwerkparameter (Gewichte) bestimmen dabei jeweils, was durch
die Neuronen erfasst wird (Merkmal/Eigenschaft), und die Aktivierung
gibt an, wie stark die Auspragung ist. Aus der Kombination aller Merkmale
und der Starke ihrer Auspragungen ergibt sich insgesamt eine sogenannte
verteilte Reprasentation, bei der selten nur einzelne Neuronen aktiv sind.
Welche der mehr oder weniger abstrakten Merkmale in den Datenbestdn-
den das KNN im Laufe des Trainings lernt zu reprasentieren, hangt im We-
sentlichen von der Lernaufgabe ab. Was zur Losung der Aufgabe notwendig
ist, wird gelernt.

Die Interpretation der internen Représentationen von KNNs ist alles
andere als trivial und in der IT-Wissenschaft ein sehr aktives Forschungs-
feld. Der Mechanismus zur Berechnung der Aktivierungen in Abhéngigkeit
von den trainierbaren Netzwerkparametern ist im Kern zwar einfach, aber
die langen Verkettungen in tiefen Netzen mit vielen Schichten und daraus
resultierenden, hochdimensionalen Rdumen aufgrund des Einsatzes sehr
vieler Neuronen erweisen sich als Herausforderung fiir die Gewinnung ge-
nauer Erkenntnisse {iber die gelernten Muster und das daraus resultierende
Verhalten eines KNNs. In der Sache sind die resultierenden Forschungsfra-
gen durchaus vergleichbar mit dem Studium des menschlichen Gehirns.
Daher sind jedenfalls kurz- und mittelfristig keine belastbaren Aussagen
dariiber zu erwarten, ob und wie ein KNN en détail funktioniert, wenn z.B.
der konkrete Stil eines Kiinstlers reprasentiert wird.
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II. Embeddings und latent space

Als Sonderfille fiir Reprdsentationen werden in der Literatur sogenannte
embeddings und der latent space erwahnt:

Ein embedding ist (vereinfacht) eine Abbildung auf Vektoren mit konti-
nuierlichen Werten in einem n-dimensionalen Raum. Dieser Zusammen-
hang wurde bereits im vorhergehenden Abschnitt beschrieben. Der Begrift
wurde insbesondere im Kontext der sogenannten word embeddings'® popu-
lar, wird aber auch fiir andere (meist diskrete) Eingabedaten verwendet.
Die entscheidende Besonderheit besteht darin, dass bei embeddings die
Vektoren die Ahnlichkeit und Beziehungen zwischen den Eingabedaten
erfassen sollen, was im Anschluss weitere Analysen ermdglicht. Ein Beispiel
hierfiir findet sich in Abbildung 2 grafisch erldutert.

»
>

® Konig

® Mann
@® Konigin

Embedding-Dimension 2

® Frau

Embedding-Dimension 1 "

Abbildung2: Beispiel eines zweidimensionalen word embeddings. Die
Positionen der embedding-Vektoren im Raum bilden die
Relation ,,Konig verhilt sich zu Konigin wie Mann zu Frau® ab.

16 Word embeddings bilden die Worter des Vokabulars einer Sprache auf Vektoren in
einem n-dimensionalen Raum ab, wobei die raumlichen Positionen zueinander nach
Maoglichkeit semantische Relationen widerspiegeln sollen. Siehe z.B. Mikolov/Chen/
Corrado/Dean, Efficient Estimation of Word Representations in Vector Space, Pro-
ceedings of the International Conference on Learning Representations (ICLR) 2013
(einsehbar unter: https://doi.org/10.48550/arXiv.1301.3781 (zuletzt am 9. August
2024)).
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Die Bezeichnung latent space leitet sich vom Konzept der sogenannten
latenten Variablen aus der Wahrscheinlichkeitstheorie ab.l” Unter bestimmten
Voraussetzungen, welche die erforderlichen Eigenschaften von Wahrschein-
lichkeitsverteilungen'® sicherstellen, konnen Aktivierungen von Neuronen
als Wahrscheinlichkeiten interpretiert werden. Am haufigsten findet dies bei
der KNN-Ausgabe bei Klassifikationsproblemen Anwendung: Hierbei gibt
jedes Neuron in der Ausgabeschicht fiir eine mogliche Klasse die entspre-
chende Wahrscheinlichkeit aus, so dass die Gesamtheit aller Aktivierungen in
der Schicht eine Wahrscheinlichkeitsverteilung ergibt. Diese Wahrschein-
lichkeiten sind dann direkt interpretierbar, weil sie sich auf gegebene Klassen
beziehen. Beim latent space wird hingegen durch die Aktivierungen in einer
bestimmten (Nicht-Ausgabe-)Schicht die Wahrscheinlichkeitsverteilung fiir
sogenannte latente Variablen modelliert. Das Wort ,latent” bedeutet in
diesem Kontext ,verborgen® oder ,,unsichtbar® und bezeichnet Merkmale, die
durch das Modell gelernt werden, um die zugrunde liegende Struktur der
Daten zu erfassen, ohne dass sie explizit in den Originaldaten sichtbar sind.
Insbesondere bekannt wurde das Konzept des latent space im Kontext der
KNNs mit der Einfiihrung des nachfolgend noch ndher erlduterten, soge-
nannten variational autoencoders (VAE).”® Was genau ein Modell in seinen
latenten Variablen modelliert, hdngt von seiner Trainingsaufgabe ab. VAEs
sollen z.B. einen latent space lernen, in welchem kleine Anderungen in den
Koordinaten zu kleinen Anderungen in den rekonstruierten oder generierten
Daten fithren.?’ Eine Interpretation der latenten Représentationen — insbe-
sondere der Bedeutung der einzelnen Dimensionen des latenten Raumes - ist
nur schwer moglich. Auch hier erweisen sich die n-Dimensionalitit und das
hohe Abstraktionsniveau als grofie Herausforderung.

17 Siehe z.B. Tomczak, Latent Variable Models, in: Deep Generative Modeling, 2022
(einsehbar unter: https://doi.org/10.1007/978-3-030-93158-2_4 (zuletzt am 9. August
2024)).

18 Aktivierungen von Neuronen kénnen prinzipiell beliebige Werte haben. Wahrschein-
lichkeiten diirfen hingegen nur Werte zwischen 0 und 1 annehmen und miissen sich
bei diskreten Verteilungen zu 1 summieren. Bei kontinuierlichen Verteilungen wird
statt der Summe das Integral tiber der Wahrscheinlichkeitsdichtefunktion gebildet.

19 Kingma/Welling, Auto-Encoding Variational Bayes, in: Proceedings of the 2nd Tnter-
national Conference on Learning Representations (ICLR) 2014 (einsehbar unter:
https://doi.org/10.48550/arXiv.1312.6114 (zuletzt am 9. August 2024)). Siehe zudem
unten § 2.CV.

20 Insoweit besteht eine gewisse Ahnlichkeit zu den beschriebenen embeddings. Tatsich-
lich wird der Begriff auch im Zusammenhang mit dem latent space verwendet. Beim
latent space liegt der Fokus jedoch auf einer wahrscheinlichkeitstheoretischen Sicht,
welche bei embeddings in der Regel nicht gegeben ist.
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B. Kiinstliche Neuronale Netze (KNNs)

III. Training von KNNs

Beim Training eines KNNs werden dessen Parameter (Verbindungsgewich-
te) so angepasst, dass der Trainingsfehler minimiert wird. Dies erfolgt
tiber eine Vielzahl von ,Trainingsdurchgingen® Der Ablauf eines derartigen
Trainings lasst sich im grafischen Uberblick wie nachfolgend in Abbildung
3 darstellen.

viele Wiederholungen (Iterationen)
mit vielen Trainingsbeispielen

1. Berechnung der Aktivierungen
(durch das aktuelle Modell berechnete Funktion)

Eingabe { Modell- | gewiinschte

(Trainingsbeispiel) Ausgabe | Ausgabe
@ | O

=0 | @

@ O

=0 | O

0 | O

. _1:\% H H
®/ O

4. Anpassung der Parameter des Modells (Gradientenabstieg) 2. Berechnung des Fehlers
. (Fehlerfunktion) /

3. der i des Fehlers (Backpr

Abbildung 3: Schematische Darstellung des Trainingsprozesses eines KNNs

Die Funktion zur Bestimmung des Trainingsfehlers fiir das aktuelle Modell
und einen Stapel (batch) von Trainingsbeispielen hangt dabei von der
durch das Modell berechneten Funktion und der Fehlerfunktion (loss) ab,
welche die Ausgabe mit dem gewiinschten Ergebnis vergleicht (vgl. Vorgang
1 und Vorgang 2 in der Grafik in Abbildung 3). Eine Bestimmung des
Optimums ist in der Regel aufgrund der Komplexitat der Fehlerfunktion
unméglich. Daher muss eine Heuristik angewendet werden, die zwar mit
hoher Wahrscheinlichkeit keine optimale, in der Regel aber eine ausrei-
chende Losung liefert. Konkret kommt dabei das sogenannte Gradienten-
abstiegsverfahren zum Einsatz (vgl. Vorgang 4 in Abbildung 3): Dessen
Idee besteht darin, den Gradienten (d.h. die Ableitung) des Fehlers beziig-
lich der Modellparameter (Gewichte) zu bestimmen. Der Gradient gibt an,
in welche Richtung jeder Parameter gedndert werden muss, damit sich der
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§ 2. Technologische Grundlegung

Fehler am starksten vergrofert. Mit einer Anpassung in die entgegengesetz-
te Richtung kann der Fehler entsprechend verringert werden. Ausgehend
von einer (meist zufalligen) Initialisierung der Parameter folgt man beim
Training des Modells dann in vielen kleinen Schritten dem Gradienten
bis ein (lokales) Minimum erreicht ist, wo sich der Fehler nicht mehr
verringert, oder ein anderes Abbruchkriterium erreicht wurde.

Bildlich beschrieben dhnelt dies der Situation, dass ein Mensch beim
Wandern im Gebirge jeden seiner Schritte in die Richtung des lokal (!)
starksten Abfalls des Gelandes richtet. Die Hoffnung dabei ist, am Ende ein
Tal zwischen den Bergen zu erreichen. Die aktuelle Position auf der Karte
ist dabei durch die Werte der Modellparameter bestimmt und die Hohe
sowie das lokale Gefille entsprechen dem Fehler und dessen Ableitung fiir
den aktuell zum Training eingesetzten batch im Bestand der Trainingsda-
ten.?! Der jeweils zufillig zusammengestellte batch aus den Trainingsdaten
wechselt nach jedem Schritt, so dass das ,Geldnde® des ,Gebirges” jedes
Mal anders aussieht.?? Bei modernen KNNs mit Milliarden von Parametern
hat die Karte des ,,Gebirges“ deshalb auch Milliarden von Dimensionen.
In jedem Schritt muss fiir jeden Parameter eine (partielle) Ableitung be-
rechnet werden, die den Anstieg des Fehlers entlang der entsprechenden
Dimension im Raum beschreibt (vgl. Vorgang 3 in Abbildung 3). Mit dem
Backpropagation-Algorithmus konnen die zahlreichen partiellen Ableitun-
gen besonders effizient berechnet werden. Dabei werden die Ableitungen
in umgekehrter Reihenfolge wie die Aktivierungen berechnet - also ausge-
hend von der Ausgabe riickwirts, wobei bereits berechnete Zwischenergeb-
nisse wiederverwendet werden kénnen.

Mit dem beschriebenen Verfahren lassen sich beliebige KNNs mit be-
liebigen Lernaufgaben (und entsprechenden Fehlerfunktionen) trainieren.
Voraussetzung ist lediglich, dass alle verwendeten mathematischen Opera-
tionen differenzierbar und die Gradienten berechenbar sind. Theoretisch
kann nachgewiesen werden, dass ein ausreichend grofSes KNN mit mindes-
tens einer versteckten Schicht in der Lage ist, jede stetige Funktion mit
beliebiger Genauigkeit zu approximieren. In der Praxis wurde fiir tiefe

21 Die ,Karte® ist jenseits der aktuellen Position weif3, weil die Fehlerwerte fiir andere
Modellparameterwerte unbekannt sind. Diese alle zu berechnen verbietet sich auf-
grund der unfassbar grofien Menge an moglichen Kombinationen.

22 Man konnte alle Trainingsdaten auf einmal verarbeiten und hitte in diesem Fall ein
konsistentes Gelande. Das ist allerdings in der Regel technisch nicht méglich, weil zu
viel Arbeitsspeicher bendtigt wiirde. Auch miissten erst sehr viele Daten verarbeitet
werden, um allein den ersten Schritt zur Verbesserung zu machen.
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neuronale Netze gezeigt, dass sie komplexe Funktionen sehr genau approxi-
mieren konnen, indem sie hierarchische Merkmale lernen und komplexe
Datenstrukturen erfassen.

Die wichtigsten Aspekte lassen sich wie folgt zusammenfassen:

(1) Die Parameter von KNNs werden mit Gradientenabstieg optimiert
und dabei in vielen kleinen Schritten angepasst.

(2) Die (negativen) Gradienten geben dabei die Richtung vor, in die sich
der fiir das aktuelle Modell und einen zufalligen Batch von Trainings-
daten gemessene Fehler am starksten verringert.

(3) Der Gradient fiir jeden Parameter wird dabei iiber den gesamten Batch
gemittelt, was den Einfluss einzelner Trainingsbeispiele (und deren
Rauschanteil) verringert und zu mehr Stabilitdt beim Training fiihrt.

(4) Im Verlauf des Trainings wird in der Regel mehrfach tiber die Trai-
ningsdaten iteriert. Eine Iteration {iber den gesamten Datensatz wird
als Epoche bezeichnet. Hiufig werden in jeder Epoche die Batches der
Trainingsdaten zufallig neu zusammengestellt.

IV. Pre-Training und Fine-Tuning

Der Trainingsprozess eines Modells kann gegebenenfalls aus mehreren
Schritten bestehen. Dabei konnen in jedem Schritt die verwendeten Daten
oder die Lernaufgabe variieren. Beispielsweise konnte ein generatives Mo-
dell fiir Bilder zundchst auf einem groflen allgemeinen Bilddatenbestand
trainiert werden und erst in einem weiteren Schritt auf Bildern eines
bestimmten Stils. Der erste Schritt wird dabei als Pre-Training und das
Ergebnis als Basismodell (base model) bezeichnet. Den daran anschlielen-
den oder nachfolgenden Schritt, in dem das Modell spezialisiert wird,
nennt man Fine-Tuning. In komplexeren Szenarien kénnen auch weitere
Zwischenschritte hinzukommen. Die verschiedenen Schritte konnen von
unterschiedlichen Akteuren durchgefithrt werden. So kann beispielweise
aus einem open-source Basismodell ein spezielles proprietéires Inhouse-Mo-
dell abgeleitet werden.??

23 Vgl fiir das Llama Modell und verschiedene Spezialisierungen insbesondere Abb. 5 in
Zhao et al., A survey of large language models, arXiv preprint arXiv:2303.18223 (2023)
(einsehbar unter: https://doi.org/10.48550/arXiv.2303.18223 (zuletzt am 9. August
2024)).
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§ 2. Technologische Grundlegung

V. Weiterverwendung von trainierten Modellen und catastrophic forgetting

Ein trainiertes Modell ist eindeutig durch seine Architektur (inklusive
der strukturellen Hyper-Parameter) sowie die Werte seiner Parameter be-
stimmt. In der Praxis bedeutet das, dass bei der Veréftentlichung eines Mo-
dells zum einen der Programmcode, mit dem die Architektur beschrieben
wird, und zum anderen die Werte aller Parameter im Modell zur Verfiigung
gestellt werden. Auf dieser Grundlage kann das Modell in unterschiedliche
KI-Anwendungen integriert werden. Auch eine Verwendung des KI-Mo-
dells oder von Teilen des Modells innerhalb eines anderen Modells ist
moglich. So werden etwa Modelle, die auf groflen Datenmengen trainiert
wurden - z.B. sogenannte foundation models — als Merkmalsextraktoren
fir andere Modelle genutzt. Dabei ist es insbesondere auch mdéglich, nur
die frithen Schichten des KNNs zu verwenden, die nur Merkmale niedriger
Abstraktion erfassen, aber dafiir in der Regel auch auf anderen Datensitzen
des gleichen Datentyps gut funktionieren. Die iibernommenen Modellteile
konnen iiberdies sowohl ,eingefroren” werden, was weitere Anderungen
verhindert, als auch im Laufe des weiteren Trainings verdndert werden.

In jedem Trainingsschritt kdnnen sich potentiell alle trainierbaren Mo-
dellparameter dndern - wenn auch nur in kleinen Schritten. D.h. ein
vortrainiertes Modell kann bereits nach einem weiteren Trainingsschritt
nicht mehr anhand seiner Parameterwerte wiedererkennbar sein. Ebenso
sind Anderungen an der Architektur ohne signifikante Verschlechterung
der Performance méglich, so etwa durch pruning (Beschneiden), bei dem
wenig genutzte Netzwerkteile dhnlich einem Baumbeschnitt entfernt wer-
den. Eine weitere Moglichkeit besteht in der ,Distillation’, bei der ein
vortrainiertes Modell als sogenannter Lehrer fiir ein (meist kompakteres)
Schiilermodell fungiert. Alle diese Techniken erzeugen Modelle, denen
man die Abstammung von einem vortrainierten Modell nicht ansehen und
ohne Einblick in den Trainingsprozess nicht nachweisen kann. Sie kénnten
daher insbesondere auch verschleiern, dass ein kommerziell eingesetztes
Modell aus einem open-source Modell entwickelt wurde, welches nicht fiir
eine kommerzielle Nutzung lizenziert ist.

Als sogenanntes catastrophic forgetting bezeichnet man schlieSlich das
Phinomen, dass ein KNN beim Weitertrainieren zuvor gelernte Muster
schnell und unerwartet verliert. Dies tritt haufig in Szenarien auf, in denen
das Modell sequenziell auf verschiedene Aufgaben trainiert wird, insbeson-
dere in kontinuierlichen Lernumgebungen. Das Modell passt sich dann so
stark an die neue Aufgabe an, indem es die Gewichte verandert, dass es die
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Muster und Merkmale ,vergisst®, die fiir die vorherigen Aufgaben wichtig
waren. Hierbei handelt es sich um einen extremen Fall mit negativen Aus-
wirkungen des im vorhergehenden Abschnitt beschriebenen Phdnomens.

VI. Reproduzierbarkeit eines Trainingsvorgangs

Werden zusitzlich zu einem Modell auch der Programmcode fiir den
Trainingsprozess sowie die zum Training benétigten Daten veréffentlicht,
ist eine ,Reproduktion” des Trainingsvorgangs moglich.?* Fiir die wissen-
schaftliche Reproduzierbarkeit reicht es in der Regel aus, ein Modell zu
trainieren, was eine vergleichbare Performance liefert.?> Fiir die urheber-
rechtliche Beurteilung stellt sich in diesem Zusammenhang vor allem die
Frage, ob es mdglich ist, ein Trainingsergebnis - also die konkreten Pa-
rameterwerte fiir ein KI-Modell - exakt zu reproduzieren. Damit kann
z.B. die Frage beantwortet werden, ob beim Training bestimmte Daten
verwendet wurden oder nicht. Es ist extrem unwahrscheinlich, dass ein
identisches Modell mit einer anderen Datenbasis trainiert wurde.?® Auch
mit einem identischen Datenbestand ist eine exakte Reproduzierbarkeit
allerdings nahezu unmdoglich. Das Ergebnis eines Trainings héngt neben
dem Programmcode fiir die Architektur und das Training inklusive aller
Hyper-Parameter sowie den Daten ndmlich von weiteren Faktoren ab. Zu
nennen sind insoweit vor allem:

(1) Zufallsgenerator

Der Trainingsprozess hiangt vom Zufall ab. Zum einen werden die Parame-
terwerte in der Regel zufillig initialisiert, zum anderen werden in jeder

24 Vgl. R4 in Gundersen, The fundamental principles of reproducibility, Phil. Trans.
R. Soc. 2021, A 379: 20200210 (einsehbar unter: https://doi.org/10.1098/rsta.2020.0
210 (zuletzt am 9. August 2024)); sowie Pineau et al., Improving reproducibility in
machine learning research (a report from the NeurIPS 2019 reproducibility program),
Journal of machine learning research 22.164 (2021): 1-20 (einsehbar unter: https://ar
xiv.org/pdf/2003.12206 (zuletzt am 9. August 2024)).

25 Neben den (gemittelten) Fehlerwerten werden zudem héufig weitere Evaluierungs-
mafle herangezogen.

26 Es wire denkbar, das Optimierungsproblem so zu entwerfen, dass damit andere
Daten gefunden werden, die zum gleichen Trainingsergebnis fithren. Dann miisste
aber bei jedem Optimierungsschritt das komplette Training durchlaufen werden. Der
Rechenaufwand hierfiir wire selbst bei moderaten Modellgréfien so hoch, dass diese
Maglichkeit praktisch ausgeschlossen werden kann.
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§ 2. Technologische Grundlegung

Epoche die Trainingsbatches zufillig zusammengestellt. Fiir eine exakte
Reproduzierbarkeit miisste sichergestellt sein, dass der Zufallsgenerator
tber den ganzen Trainingsprozess hinweg die exakt gleichen Ausgaben
erzeugt. Dazu wird in der Regel der Startwert (seed) manuell eingestellt.
Das Verhalten des Zufallsgenerators kann aber auch von den im Folgenden
beschriebenen Faktoren beeinflusst werden, wie z.B. in der Dokumentation
von PyTorch nachzulesen ist.?”

(2) Weitere Software

Bei der Implementierung von KNN-Architekturen, deren Trainingsprozes-
sen und der Vorverarbeitung der Daten kommen verschiedenste Softwarebi-
bliotheken zum Einsatz wie z.B. Tensorflow oder PyTorch. Dabei kénnen
schon kleinste Unterschiede bei den Versionen zu einem anderen Trainings-
ergebnis fithren. Benotigte Softwarebibliotheken und deren Versionen kon-
nen zwar im Programmcode spezifiziert werden. Dennoch ist nicht sicherge-
stellt, dass eine Bibliothek mit identischer Versionsnummer sich auf unter-
schiedlichen Systemen mit unterschiedlicher Hard- und Software exakt
identisch verhilt. Dabei spielen auch das Betriebssystem und installierte
Systembibliotheken sowie deren Einstellungen eine nicht zu unterschétzende
Rolle.?® Die genaue Version all dieser Komponenten festzuhalten, ist extrem
aufwindig. Eine Virtualisierung oder Containerisierung der Trainingsumge-
bung kann hier zumindest teilweise Abhilfe schaften. Die Virtuelle Maschine
oder der Container konnen dann fiir eine spitere Reproduktion des Trai-
ningsprozesses archiviert werden, wobei die installierte Software und die
Einstellungen ,eingefroren® werden. Aber auch virtuelle Maschinen und
Container haben eine Laufzeitumgebung, die sich dndern kann. Weiterhin
steigt mit der Komplexitét des Trainingsprozesses auch der Aufwand, der hier
betrieben werden muss. Grofie Modelle werden nicht nur auf einer einzelnen
Maschine, sondern auf riesigen compute clustern trainiert.

27 Vgl. https://pytorch.org/docs/stable/notes/randomness.html (zuletzt eingesehen am
6. Juni 2024) (,Completely reproducible results are not guaranteed across PyTorch
releases, individual commits, or different platforms. Furthermore, results may not be
reproducible between CPU and GPU executions, even when using identical seeds”).

28 Viele fiir das deep learning eingesetzte Softwarebibliotheken haben hochoptimierten
Programmcode, der sich bei Installation an die Systemumgebung anpasst, um ein
Maximum an Performance zu erreichen. Dadurch kann es zu leicht abweichendem,
internem Verhalten von aufgerufenen Funktionen kommen.
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(3) Hardware

Schliefilich spielen die Hardware und deren Firmware (d.h. direkt auf der
Hardware installierte Software) eine Rolle. Ein wichtiger Aspekt ist die
numerische Genauigkeit. KNNs verwenden oft Gleitkommazahlen fiir die
Berechnungen, insbesondere bei der Gewichtsaktualisierung wéahrend des
Trainings. Gleitkommazahlen sind durch begrenzte Prézision charakteri-
siert, was zu Rundungsfehlern fiihrt. Verschiedene CPUs (Hauptprozesso-
ren), GPUs (Grafikprozessoren) und selbst unterschiedliche GPU-Modelle
kénnen unterschiedliche Rundungsfehler haben. Diese Abweichungen kon-
nen sich bei den vielen Berechnungen, die wahrend des Trainings eines
KNNs durchgefiihrt werden, kumulieren und so zu unterschiedlichen Er-
gebnissen fiithren, selbst wenn das Modell mehrmals mit den gleichen An-
fangsbedingungen und Trainingsdaten trainiert wird. Vor allem aber wirkt
sich die in einem System installierte Hardware wie die CPU und die GPU
auf nicht direkt sichtbare Codeoptimierungen aus. Virtualisierung kann
auch hier helfen, weil sie eine Standardhardware innerhalb der virtuellen
Maschine emuliert. Allerdings werden Hardwareressourcen wie CPUs und
GPUs héufig aus Performancegriinden direkt angesprochen, wodurch das
genannte Problem weiter bestehen bleibt.

Folglich ist die exakte Reproduktion eines Trainingsprozesses schwer
zu erreichen. Es ist jedoch denkbar, dass gesetzliche Vorgaben und Anfor-
derungen einen Entwicklungsprozess anstoflen, der mittelfristig zu neuen
Werkzeugen und standardisierten Prozessen fithrt, welche die exakte Re-
produzierbarkeit mit vertretbarem Aufwand erméglichen. Erste Vorschlige
fiir entsprechende Prozesse, die standardisiert werden konnten, existieren
bereits?® und das Thema der Reproduzierbarkeit ist bereits auf die Agenda
der IT-Wissenschaft gelangt.30

C. Generative KI-Modelle

Generatives Training ist ein Prozess, bei dem ein KI-Modell darauf trainiert
wird, neue Daten zu erzeugen, die den Trainingsdaten &hneln. Anstatt

29 Vgl. z.B. Chen et al., Towards training reproducible deep learning models, Proceed-
ings of the 44™ International Conference on Software Engineering (2022) (einsehbar
unter: https://doi.org/10.1145/3510003.3510163 (zuletzt am 9. August 2024)).

30 Editorial, Moving towards reproducible machine learning, Nat. Comput. Sci. 1, 629
630 (2021) (einsehbar unter: https://doi.org/10.1038/s43588-021-00152-6 (zuletzt am
9. August 2024)).
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lediglich Muster zu erkennen oder zu klassifizieren, lernt das Modell, die
zugrunde liegende Wahrscheinlichkeitsverteilung der Trainingsdaten zu er-
fassen und daraus neue, dhnliche Daten zu generieren. Hierbei handelt es
sich um eine weitaus komplexere Zielsetzung als etwa die Klassifikations-
aufgabe bei typischem {iberwachtem Lernen. Um diese Aufgabe zu l6sen,
miissen die Trainingsdaten moglichst ganzheitlich modelliert werden. Die
konkreten Netzwerkarchitekturen und optimierbaren Lernaufgaben kén-
nen dabei unterschiedliche Formen annehmen. Im Folgenden werden die
fiir die Diskussion praktisch relevanten generativen KI-Modelle vorgestellt.
Dabei werden die prinzipiellen Lernaufgaben und die Verarbeitung der
Trainingsdaten erkldrt. Zu jedem der vorgestellten Ansitze existiert eine
schwer {iberschaubare Vielzahl von Varianten, auf die hier nicht naher
eingegangen werden muss und soll.

1. Technische Grenzen der Trainierbarkeit

Unabhingig vom gewdhlten technischen Ansatz ist es realistisch grundsatz-
lich ausgeschlossen, dass ein generatives KI-Modell die Wahrscheinlich-
keitsverteilung der verwendeten Trainingsdaten vollumfanglich erfasst. Bei
einem bildgenerierenden Modell hiefie dies beispielsweise, dass es die exak-
te Wahrscheinlichkeitsverteilung fiir den Wert jedes einzelnen Bildpixels
in Abhangigkeit aller anderen Bildpixel vorhersagen konnte. Eine derartig
exakte Modellierung ist nicht gewiinscht, weil sie auch das irrelevante
Rauschen in den Daten abdecken wiirde. Dies wire ein klassischer Fall
von overfitting. Uberdies ist eine derartige Modellierung aus technischen
Griinden nicht praktikabel: Um dies fiir grofle Datenmengen zu erreichen,
wiirde die Kapazitit des Modells in der Regel nicht ausreichen. Selbst wenn
die Kapazitat keine Grenzen setzte, wiirden aber in der Regel viel mehr
Trainingsdaten bendtigt, um die komplette Wahrscheinlichkeitsverteilung
zu schitzen, als zur Verfligung gestellt werden kénnten. Daher kann die
Aufgabe eines generativen KI-Modells stets nur anndhernd gel6st werden.
Jedes Modell dieser Art muss daher zwangslaufig lernen, aus den Trainings-
daten heraus fiir seine Ausgabe zu generalisieren.

Zur Veranschaulichung dieses Sachverhalts bietet sich die Modellierung
von Texten durch sogenannte large language models (LLMs) an. Dabei
soll fiir einen gegebenen Kontext — dem in der Eingabe geschriebenen
Text - die bedingte Wahrscheinlichkeitsverteilung fiir das niachste Wort
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vorhergesagt werden. Besteht der Kontext nur aus dem aktuellen Wort,
lasst sich diese Wahrscheinlichkeitsverteilung einfach durch eine grofie
(quadratische) Tabelle modellieren, in der die Zeile dem aktuellen Wort
und die Spalte dem néchsten Wort entspricht. Die Werte in jeder Zelle
kénnen dann bestimmt werden, indem man zunéchst fiir ein gegebenes
Korpus von Texten die Hiufigkeiten aller moglichen Wortpaare ermittelt.
Fir jede Zeile werden anschlieflend alle Werte durch die Zeilensumme
geteilt. Damit erhdlt man jeweils eine Wahrscheinlichkeitsverteilung. Beim
Generieren wird dann in der Zeile fiir das aktuelle Wort die Wahrschein-
lichkeitsverteilung nachgeschlagen und daraus ein zufilliger Wert gezogen.

Mochte man hingegen mehr als nur das aktuelle Wort als Kontext be-
trachten, wird fiir jede mogliche Kontext-Wortfolge eine Zeile in der Tabel-
le angelegt. Die Spaltenanzahl bleibt dabei gleich, aber die Zeilenanzahl
steigt exponentiell. Fiir eine Sprache mit einem (recht kleinen) Vokabu-
lar von 100.000 Wortern wiirden bei einer Kontextlinge von n Wortern
100.000" Zeilen bendtigt. Dieser einfache Ansatz ist technisch schwer um-
zusetzen. Zum einen wird der Speicherbedarf fiir die Tabelle (d.h. die Ka-
pazitit des Modells) schnell exorbitant hoch, zum anderen werden immer
mehr Daten bendtigt, um die Eintrdge in der Tabelle verniinftig schétzen
zu konnen. Je linger eine Wortfolge als Kontext ist, desto seltener tritt sie
in den Daten auf. Damit gibt es weniger Eintrage in der entsprechenden
Tabellenzeile und die Schitzung wird immer schlechter. Fiir unbekannte
Kontexte konnen tiberhaupt keine Wahrscheinlichkeiten bestimmt werden.
Mochte man ldngere oder unbekannte Kontexte betrachten, muss man sich
daher von einer perfekten Modellierung verabschieden.

II. Losung: Approximation

Moderne LLMs verwenden verschiedene Techniken, die jeweils zu einer
approximierten Losung fiithren:

(1) An die Stelle der expliziten und exakten Modellierung in Form einer
Tabelle tritt eine Funktion in Form eines KNNs, welches die Kon-
text-Sequenz inhaltlich abstrahiert (mehr dazu unter (3)) und daraus
die Wahrscheinlichkeitsverteilung fiir die Ausgabe ableitet. Die Zusam-

31 Derartige Wortpaare werden Bi-Gramme genannt. Allgemein bezeichnet man eine
Sequenz von n Worten als n-Gramm.
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()

3)

Im

menfassung des Kontexts ist dabei je nach Kapazitit des KNNs zu
einem gewissen Grad verlustbehaftet, lasst dafiir aber eine Generalisie-
rung zu. Die Einfithrung der sogenannten Transformer-Architektur3?
hat insoweit einen qualitativen Sprung und deutlich lingere Kontexte
ermoglicht.

Um die Gréfle des Vokabulars zu begrenzen, werden als Ein- und Aus-
gabe des generativen Modells nicht Worter, sondern sogenannte To-
kens verwendet, die haufig auftretenden Zeichenketten entsprechen.?
Die gewiinschte Grofle des Vokabulars wird dabei fest vorgegeben.
Aus diesen Tokens lassen sich neben sdmtlichen Wortern aus den
Trainingsdaten auch Neuschopfungen zusammensetzen. Daher kann
das Modell mit Wortern umgehen, die in den Trainingsdaten gar nicht
vorkommen, und auch neue Worter als Ausgabe erzeugen.

Fir jeden Token des Vokabulars wird ein embedding gelernt. Dies
kann sowohl in einem separaten Pre-Training-Schritt oder direkt beim
generativen Training des Modells geschehen. Die embeddings sind
Punkte in einem hochdimensionalen Raum, welche die (gelernte) Se-
mantik der Tokens codieren.>* D.h. die Abstandsrelationen von embed-
dings spiegeln die semantischen Relationen der korrespondierenden
Tokens wider. Tokens mit dhnlicher Bedeutung haben embeddings,
die nah beieinander liegen. Insbesondere die Transformer-Architektur
ist durch den sogenannten self-attention Mechanismus in der Lage,
die initialen Token-embeddings Schritt fiir Schritt mit jeder Schicht
zu verfeinern, indem jeder Token der Kontext-Sequenz in Beziehung
zu allen anderen gesetzt wird. Damit wird die inhaltliche Ebene des
Kontexts erschlossen. Davon ausgehend kénnen Vorhersagen gemacht
werden.

Gegensatz zum naiven Tabellenmodell, welches nur auf der Ebene

exakter Ausdriicke durch konkrete Worte operiert, kann ein LLM auf diese
Art lernen, zu abstrahieren und in der Folge eine abstrakte Reprasentation

32

33

34
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Vgl. zu den komplexen Zusammenhdngen und der Transformer-Architektur z.B.
Vaswani et al., Attention is all you need, Advances in neural information processing
systems 30 (NIPS 2017) (einsehbar unter: https://proceedings.neurips.cc/paper/2
017/hash/3f5ee243547dee91fbd053clc4a845aa-Abstract.html (zuletzt am 9. August
2024)).

In vielen Fallen sind die Token Prifixe, Suffixe, Wortstaimme oder Silben. Die Bestim-
mung des Token-Vokabulars erfolgt allerdings nach rein statistischen Gesichtspunk-
ten und nicht aufgrund linguistischer Eigenschaften.

Siehe bereits oben § 2.B.II.
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des Kontexts aufzubauen. Diese Représentation bildet dann die Basis fiir
eine Vorhersage, wie der Text fortgesetzt werden kann.

III. Large language models (LLMs) — Autoregressive Modelle

Praktisch alle im allgemeinen Diskurs genannten LLMs, wie z.B. die GPT-
Modelle, zéhlen zur Gruppe der sogenannten autoregressiven Modelle.?®
Diese erzeugen Daten sequenziell, indem sie jeden neuen Wert basierend
auf den vorherigen Werten vorhersagen. Dies macht sie besonders geeig-
net fiir Aufgaben, bei denen die Reihenfolge und die Bedingtheit der Da-
ten eine wesentliche Rolle spielen. Die Modellierung von Sprache durch
autoregressive Modelle wird schon seit Jahrzehnten betrieben, wobei die
Verwendung von KNNs zur Vorhersage der Wahrscheinlichkeitsverteilung
fiir das nachste Wort oder den néichsten Token den letzten grofien Entwick-
lungsschritt darstellt, der den LLMs schliefSlich zum Durchbruch in einer
breiten Anwendung verholfen hat. Ein wesentlicher Grund hierfiir liegt in
der bisher unerreichten Lange des Kontexts, der verarbeitet werden kann,
und in der zunehmenden Modellgrofie und -kapazitit. Diese Skalierung
erfordert gleichzeitig mehr Trainingsdaten und Rechenkapazitit.

Fiir das Training eines autoregressiven Modells werden die Datenbestan-
de zunichst in Teilsequenzen der Linge n zerlegt. Die (selbstiiberwachte)
Lernaufgabe besteht darin, bei einer Eingabe des Kontexts bestehend aus
den ersten (n-1) Elementen der Sequenz das n-te Element vorherzusagen.
Das Modell lernt eine komplexe bedingte Wahrscheinlichkeitsverteilung
fur das nédchste Element. Die Lernaufgabe besteht darin, die Wahrschein-
lichkeit fir den in der Trainingssequenz tatsachlich folgenden Token zu
maximieren. D.h. andere, potentiell ebenfalls passende Tokens fithren zu
Fehlern. Dabei ist zu betonen, dass der Fehler, iiber den das Trainingssignal
fir die Anpassung der Parameter abgeleitet wird, allein auf der Ausdrucks-
ebene entsteht. Die syntaktischen Informationen in den Trainingsdaten
sind fiir das Training deshalb entscheidend. Die semantische Ebene ist
im Unterschied zur Syntaxebene schliefilich hingegen nicht direkt ausles-
bar. Um generell gute Vorhersagen machen zu konnen, muss das Modell
allerdings dennoch lernen, den Kontext im Hinblick auf die semantischen

35 Einen umfassenden Uberblick bieten vor allem Zhao et al., A survey of large language
models, arXiv preprint arXiv:2303.18223 (2023) (einsehbar unter: https://doi.org/10.4
8550/arXiv.2303.18223 (zuletzt am 9. August 2024)).
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Inhalte zu abstrahieren. Gelingt dies nicht, ,klebt“ das Modell zu sehr an
den Texten in den Trainingsdaten. Die Generalisierung muss dann schei-
tern (overfitting). Die in der Praxis regelmafig beobachtete Memorisierung
von Trainingsdaten kann daher auch als ein Indiz fiir schlecht oder unzu-
reichend trainierte LLMs gedeutet werden.3¢

Zur Klarstellung ist bei der technischen Beschreibung der Funktionswei-
se von LLMs zudem noch Folgendes festzuhalten: LLMs in ihrer aktuellen
Form, die in der Regel auf der Transformer-Architektur beruht, arbeiten
intern nicht mit Wahrscheinlichkeiten, sondern einzig mit embeddings und
weiteren abstrahierten, internen Vektor-Reprisentationen. Ein latent space
ist bei diesen Modellen nicht vorhanden.

IV. Generative Adversarial Networks (GANSs)

Generative Adversarial Networks (GANs) haben spitestens seit der Verstei-
gerung des GAN-generierten Gemaldes ,Portrait of Edmond de Belamy*
allgemeine Bekanntheit erreicht.’” Mittlerweile sind GANs beispielsweise in
der Lage, hochaufgeloste, fotorealistische Bilder von Gesichtern zu erzeu-
gen.®® Sie werden u.a. auch auf der Webseite Artbreeder® als interaktives,
kreatives Werkzeug zur kollaborativen Erzeugung von Bildern verwendet.
Der Generator-Bestandteil eines GANs besteht aus einem KNN, das zu-
falliges Rauschen auf der Eingabeseite in eine Ausgabe umwandelt, die den
Trainingsdaten dhnelt und im Idealfall nicht von diesen zu unterscheiden
ist. Das Lernproblem lésst sich daher umschreiben als: ,,Generiere Daten,
die wie echt aussehen!“ Es ist allerdings in der Regel nicht trivial, eine
geeignete Fehlerfunktion fiir dieses Lernproblem zu finden. Daher bedient
man sich eines Tricks und ersetzt die Fehlerfunktion durch ein zweites
KNN, den sogenannten Diskriminator-Bestandteil. Dieser wird mit der
Lernaufgabe trainiert, die echten Trainingsdaten von den generierten Da-
ten zu unterscheiden. Hierbei handelt es sich um ein einfaches Klassifikati-
onsproblem, fiir das die gewiinschten Ausgabewerte (echt oder generiert)

36 Siehe hierzu unten § 2.D.IIL

37 Alleyne, A sign of things to come? Al-produced artwork sells for $433K, smashing
expectations, CNN, October 25, 2018 (einsehbar unter: https://edition.cnn.com/sty
le/article/obvious-ai-art-christies-auction-smart-creativity/index.html (zuletzt am
9. August 2024)).

38 Siehe z.B. unter https://thispersondoesnotexist.com (zuletzt am 9. August 2024).

39 Vgl. unter https://www.artbreeder.com (zuletzt am 9. August 2024).
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bekannt sind. Der Generator soll lernen, den Diskriminator zu tauschen.
D.h. der Wert seiner Fehlerfunktion wird kleiner, je haufiger der Diskrimi-
nator getduscht werden kann und die generierten Daten als echt klassifi-
ziert. Beide KNNs werden beim Training zunéchst zuféllig initialisiert. Die
Verbesserung der Performance des einen Bestandteils fiihrt dazu, dass sich
auch der andere in seiner Leistungsfahigkeit steigern muss. Idealerweise
wird dieser Prozess aufrechterhalten, bis die generierten Daten nicht mehr
von den echten Trainingsdaten zu unterscheiden sind. Der Diskriminator
wird dann nicht mehr benétigt und der Generator kann als generatives
Modell verwendet werden.

Interessant ist, dass der Generator die Trainingsdaten zu keiner Zeit
zu ,sehen“ bekommt. Die einzige Information, die er erhilt, besteht in
den durch Gradientenabstieg berechneten Parameter-Updates.*? Diese sind
allerdings schon jeweils per Batch gemittelt. Die Fehlerfunktion zum Trai-
ning operiert nicht wie bei LLMs auf der Rohdatenebene. Vielmehr kann
der Diskriminator beliebige Eigenschaften fiir seine Entscheidung ,Echt
oder generiert?“ in Betracht ziehen. Die Eigenschaften konnen sich sowohl
auf die Form als auch auf den abstrakten semantischen Inhalt beziehen.

Der latent space eines GANSs ist der Eingaberaum des Generators. Aus
diesem werden beim Training zufillige Vektoren gezogen, die dann vom
Generator so umgewandelt werden, dass sie wie echte Daten aussehen.
Nach dem Training konnen die Vektoren aus dem latent space frei gewihlt
werden. Durch gezielte Veranderung der Werte kann das generierte Ergeb-
nis verandert werden. Diese Moglichkeit wird beispielsweise ausgiebig von
der Webseite Artbreeder genutzt.

V. Variational Autoencoders (VAEs)

Bekannte Modelle sogenannter Variational Autoencoders (VAEs) sind z.B.
die OpenAl Jukebox* und die erste Version des Bildgenerators DALL-E.*?
Ahnlich wie bei den GANs werden bei VAEs zwei KNNs kombiniert, von
denen eines als Generator fungiert. Das zweite KNN agiert als sogenannter
Encoder: Dieser Bestandteil des Modells arbeitet im Gegensatz zum GAN

40 Uber die Gradienten erfihrt der Generator, wie seine Ausgaben verandert werden
sollten, damit sie aus Sicht des Diskriminators mehr wie ,echte“ Daten aussehen.

41 https://openai.com/index/jukebox (zuletzt am 9. August 2024).

42 https://openai.com/index/dall-e (zuletzt am 9. August 2024).
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mit dem Generator zusammen. Der Encoder bekommt die Trainingsdaten
als Eingabe und wandelt diese in eine interne Représentation im latent
space um. Aus diesem Code versucht der Generator, welcher hier auch als
Decoder bezeichnet wird, die urspriingliche Eingabe wieder zu rekonstruie-
ren. Das Prinzip eines (einfachen) Autoencoders ist bereits seit den 1980er
Jahren bekannt und ein beliebtes Mittel zum untiberwachten Lernen von
reprasentativen Merkmalen aus Daten.*3

Als Fehlerfunktion dient hier zunéchst einfach der gemessene Abstand
zwischen den Eingabedaten und ihrer Rekonstruktion. Dabei wird wie bei
den autoregressiven Modellen auf der Ausdrucksebene gearbeitet.** Ent-
scheidend ist bei diesem Ansatz, dass die Aufgabe der Rekonstruktion den
beiden KNNs nicht zu leicht gemacht wird. Im einfachsten Fall konnten
die Informationen aus der Eingabe direkt zur Ausgabe kopiert werden, was
allerdings gerade kein ,Lernen® von reprisentativen Merkmalen erfordern
wiirde. Um dies zu verhindern, kann z.B. die Bandbreite der Ubertragung
durch einen Flaschenhals (bottleneck) begrenzt werden oder es werden
bestimmte Anforderungen an den Code gestellt. Das geschieht in der Re-
gel durch Erweiterung der Fehlerfunktion, so dass auch die gewiinschten
Eigenschaften des Codes in die Fehlerberechnung einfliefSen.

Beim VAE wird der Vorgang aus probabilistischer Sicht betrachtet: Der
Encoder gibt nicht direkt einen Code aus, sondern bestimmt die Parameter
der Wahrscheinlichkeitsverteilung im latent space.*> Von dieser wird dann
eine zufallige Stichprobe gezogen, aus welcher der Decoder die Eingabe
rekonstruieren muss. Dabei werden Anforderungen an die Wahrscheinlich-
keitsverteilung gestellt, die den Encoder zwingen, den latent space so zu
nutzen, dass dort benachbarte Datenpunkte zu dhnlichen Rekonstruktio-
nen fithren. Dadurch soll vermieden werden, dass der Decoder eine Posi-
tion im latent space einfach wie einen Datenbankschliissel benutzen kann,
mit dem er ein abgespeichertes Muster einfach abruft.

Damit auch in diesem Fall die Rekonstruktion gelingt, muss ein Code
basierend auf reprasentativen Merkmalen erlernt werden, der die wichtigs-
ten Informationen der Eingabe erfasst und unwichtige Informationen wie

43 Vgl. nur Lecun, Modeles connexionnistes de l'apprentissage (connectionist learning
models), 1987 (PhD thesis: Universite P. et M. Curie (Paris 6)) (einsehbar unter:
https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804 (zuletzt am 9. Au-
gust 2024)).

44 Siehe oben § 2.C.II1.

45 In den meisten Féllen ist das eine einfache mehrdimensionale Gauf3verteilung mit
Mittelwert und Varianz als Parametern.
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z.B. Rauschen ignoriert. Der latent space ist entsprechend als abstrakter
Raum zu verstehen, der idealerweise die wesentlichen Merkmale der Daten
in einer kompakten und sinnvolleren Form reprisentiert, als dies in den
Rohdaten der Eingabe der Fall ist. Bestenfalls erfasst die latente Représenta-
tion die Semantik der Daten.
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Abbildung 4: Interpolation im zweidimensionalen latent space eines VAEs
fiir Bilder von handgeschriebenen Ziffern.o

Navigiert man durch den latenten Raum eines trainierten VAEs, ldsst sich
damit die Ausgabe des Generators kontrolliert flieflend verdndern. Beste-
hende Daten konnen dank des Encoders in den latenten Raum abgebildet

46 Die Abbildung wurde entnommen bei Kingma/Welling, Auto-Encoding Variational
Bayes, in: Proceedings of the 2" International Conference on Learning Representati-
ons (ICLR) 2014 (einsehbar unter: https://doi.org/10.48550/arXiv.1312.6114 (zuletzt
am 9. August 2024)). Zur Erzeugung der Ausgaben wurden Punkte in gleichmifiigen
Abstinden entlang der zwei Dimensionen als Eingabe fiir den Decoder verwendet.
Die erzeugten Bilder dndern sich nur graduell, was auf eine gute Kontinuitdt im
latent space hindeutet. Die zum Training verwendeten Bilder aus dem MNIST-Da-
tensatz haben eine Auflésung von 28x28 Pixeln. Diese 784 Eingabedimensionen
wurden hier auf nur 2 Dimensionen im latent space reduziert.
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und dort manipuliert oder interpoliert werden.?” Die Grafik in Abbildung 4
illustriert diesen Zusammenhang.

Ein VAE kann schliefllich auch mit einem Diskriminator wie bei GANs
kombiniert werden. Weiterhin gibt es Varianten mit diskreten latenten
Représentationen, bei denen ein Codebuch gelernt wird, aus dem sich
die Représentationen zusammensetzen miissen. Andere Varianten lernen
eine Hierarchie von latenten Raumen, die unterschiedliche Detailgrade
abbilden.

VI. Diffusionsmodelle

Praktisch alle aktuell in der Diskussion um generative KI-Modelle als
Beispiele genannten Bildgeneratoren wie Stable Diftusion, Midjourney,
DALL-E (ab Version 2) und Imagen sind sogenannte Diffusionsmodelle.
Diese Modelle generieren ihren Output basierend auf einem schrittweisen
Prozess, der die Daten nach und nach von einem einfachen Zustand (reines
Rauschen) in einen komplizierteren Zustand (komplexe Daten) transfor-
miert. In der Vorwirtsdiffusion (noising) wird den Trainingsdaten in vielen
kleinen Schritten Rauschen hinzugefiigt, so dass die Daten am Ende des
Prozesses nur noch wie reines Rauschen aussehen. In der Riickwartsdiftusi-
on (denoising) wird der Prozess umgekehrt. Dies ist die Lernaufgabe des
Modells. Es lernt, wie man in jedem Schritt des Rauschens die Daten
teilweise wiederherstellt. Da beim Training das hinzugefiigte Rauschen
und die weniger verrauschten Daten bekannt sind, handelt es sich um
tiberwachtes Lernen. Nach dem Training kann das Diffusionsmodell ver-
wendet werden, um neue Daten zu generieren. Man startet dazu mit reinem
Rauschen und fithrt den Riickwirtsdiffusionsprozess durch, um nach und
nach die Struktur der Daten zu enthiillen. Die Fehlerfunktion arbeitet
hier wie bei autoregressiven Modellen und (teilweise) bei VAEs auf der
Ausdrucksebene.*8

Latent Diftusion bezieht sich auf ein generatives Modell, das den Dif-
fusionsprozess im latent space eines anderen Modells (wie einem Autoen-
coder) durchfiihrt. Anstatt die Diffusion direkt auf den hochdimensionalen

47 Vgl. hierzu instruktiv Carter/Nielsen, Using Artificial Intelligence to Augment Human
Intelligence, Distill 2017 (einsehbar unter: https://distill.pub/2017/aia/ (zuletzt am
9. August 2024)).

48 Es wird strenggenommen nur der Fehler des vorhergesagten Rauschens gemessen.
Das vorhergesagte Rauschen héangt jedoch von der Trainingsdaten-Eingabe ab.

48

am 22.01.2026, 03:56:25. o


https://distill.pub/2017/aia/
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://distill.pub/2017/aia/

C. Generative KI-Modelle

Originaldaten (z.B. Bilder) durchzufithren, wird sie im latent space der
komprimierten Reprisentationen der Daten angewendet. Dies macht den
Diftusionsprozess effizienter und kann die Qualitdt der generierten Daten
verbessern, weil die latente Représentation in der Regel eine kompaktere
und aussagekriftigere Darstellung der Originaldaten bietet. Diese Technik
wird fiir die Bildgenerierung unter anderem von Stable Diffusion, DALL-E
2 und Imagen eingesetzt. Im Audiobereich wird die Technik etwa von
Stable Audio und Musicgen verwendet.

VII. Sampling und Konditionierung

Nachdem ein generatives Modell trainiert wurde, konnen durch sogenann-
tes Sampling neue Daten erzeugt werden. Dabei handelt es sich um einen
Zufallsprozess, bei dem aus der gelernten komplexen Wahrscheinlichkeits-
verteilung eine Stichprobe (sample) gezogen wird.** Wie der Samplingpro-
zess konkret verlduft, hingt von der verwendeten Modellarchitektur ab. Bei
autoregressiven Modellen wird Element fiir Element der Ausgabesequenz
erzeugt, wobei die vorhergehende Ausgabe jeweils dem eingegebenen Kon-
text fiir den néchsten Schritt hinzugefiigt wird. Bei Modellen mit latent
space (VAEs und GANs), wird zuerst ein Sample fiir die latenten Variablen
gezogen. Dieses wird dann vom Generator oder Decoder in die Ausgabe
transformiert. Bei Diffusionsmodellen wird ein zufilliges Rauschmuster
generiert und dann schrittweise durch Entrauschen in die Ausgabe verwan-
delt. Bei Latent Diffusion erfolgt die Ausgabe zunéchst in den latent space
und wird anschlieflend noch durch den Decoder zur tatsdchlichen Ausgabe
auf Datenebene transformiert.

Es gibt dariiber hinaus eine Vielzahl von Spezialformen fiir das Sam-
pling. Beim sogenannten Top-k Sampling handelt es sich beispielsweise
um eine Methode, die zur Steuerung der Ausgabe von Sprachmodellen
eingesetzt wird. Dabei werden bei jedem Schritt der Textgenerierung nur
die k wahrscheinlichsten nachsten Tokens in Betracht gezogen, und einer
davon wird zuféllig ausgewdhlt. Dies reduziert die Wahrscheinlichkeit, dass
seltene oder unwahrscheinliche Tokens ausgewahlt werden, und verbessert
die Kohdrenz der generierten Texte. Durch die Begrenzung auf k Optionen
kann der Text sowohl kreativ als auch zusammenhingend bleiben. Diese

49 Fir eine weiterfithrende Diskussion zum Sampling vgl. z.B. Kapitel 12.1.3 in Chollet,
Deep learning with Python, 2021.
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§ 2. Technologische Grundlegung

Technik ist niitzlich, um eine Balance zwischen Vorhersehbarkeit und Viel-
falt in der Textgenerierung zu erreichen.

Einen dhnlichen Einfluss auf das Ergebnis hat der Temperaturparameter.
Uber die Temperatur kann die Wahrscheinlichkeitsverteilung nachtriglich
geformt werden. Der Standardwert ist 1. Eine niedrigere Temperatur (z.B.
0.7) macht die Verteilung spitzer, bevorzugt wahrscheinlichere Ausgaben
und fiihrt zu konservativeren, kohédrenteren Ergebnissen. Eine hohere Tem-
peratur (z.B. 1.2) flacht die Verteilung ab, erhoht die Wahrscheinlichkeit,
seltenere Ausgaben zu wihlen, und fiihrt zu kreativeren, aber weniger
kohirenten Ergebnissen. Damit kann der Temperaturparameter die Balan-
ce zwischen Vielfalt und Prézision in den generierten Inhalten steuern.
Dies ist besonders niitzlich, um die gewiinschten Eigenschaften der gene-
rierten Ausgabe flexibel anzupassen. Wihrend niedrigere Temperaturen die
Wiedergabe von auswendig gelernten Mustern begiinstigen, fithren héhere
Temperaturen zu Abweichungen davon. Insofern liele sich damit die Wie-
dergabe memorisierter Inhalte reduzieren. Jedoch muss mit zunehmender
Temperatur auch mit einer Verringerung der Ausgabequalitit gerechnet
werden.

Durch Konditionierung kann der Samplingprozess iiberdies zusétzlich
in eine gewlinschte Richtung beeinflusst werden. Konditionierung erfolgt
durch die Verarbeitung und Integration von zusétzlichen Informationen,
die als Anleitung dienen - beispielsweise in Form eines prompts oder eines
kategorischen Werts wie einer Klassenzuweisung (z.B. Musikgenre). Dies
geschieht durch spezialisierte Encoder, die die bedingenden Informationen
in eine fiir das Modell verstindliche Form bringen, und durch Mecha-
nismen, die diese Informationen in den Generierungsprozess einflieflen
lassen. Diese Methoden ermdglichen es, die generierte Ausgabe gezielt zu
steuern und an die gewlinschten Spezifikationen anzupassen. Wahrend des
Trainings muss das Modell lernen, die zusétzlichen Informationen korrekt
zu nutzen, um die gewiinschte Ausgabe zu erzeugen. Im Vergleich mit dem
unkonditionierten Training miissen die Trainingsdaten hier zusatzlich die
Information fiir die Konditionierung beinhalten.

Die Konditionierung beschréankt sich nicht auf ein bestimmtes Abstrak-
tionsniveau. Besonders beliebt ist neben der Konditionierung auf den ge-
wiinschten Inhalt vor allem auch die Spezifizierung eines konkreten Stils.
Vorausgesetzt entsprechende Beispiele sind zum Training vorhanden, kann
ein KNN prinzipiell lernen, das entsprechende Abstraktionsniveau einer
Konditionierung zu erkennen und die Représentationen in den passenden
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C. Generative KI-Modelle

Schichten zu beeinflussen. Mit welchen Konditionierungen ein Modell
nach dem Training umgehen kann, hingt sowohl von den verarbeiteten
Trainingsbeispielen als auch von der Fahigkeit des Modells ab, beziiglich
der Konditionierungseingabe zu generalisieren. Text-prompts zur Konditio-
nierung sind sehr beliebt, weil deren Verarbeitung mit einem Sprachmodell
bereits eine Generalisierung erreicht. Das prompt engineering zielt entspre-
chend darauf ab, durch die Konditionierung sehr spezifische und prézise
Ausgaben zu erzeugen, und referenziert dabei nicht selten gezielt Inhalts-
und Stilbeschreibungen, wie sie auch in den Trainingsdaten vorhanden
sind. Je spezifischer und dhnlicher zu den Trainingsbeispielen ein prompt
ist, desto wahrscheinlicher ist es, dass die Ausgabe in Inhalt und/oder
Ausdruck den Trainingsdaten dhnelt.® Deshalb verbieten manche Systeme
beispielsweise die Verwendung von Kiinstlernamen oder Titeln von Werken
in prompts.

VIIL. Style transfer

Beim (neural) style transfer wird eine Eingabe so verdndert, dass der ab-
strakte Inhalt (weitestgehend) erhalten bleibt und gleichzeitig ein vorgege-
bener Stil angewendet wird. Insofern kann style transfer auch als spezielle
Form der Konditionierung gesehen werden - zum einen auf einen konkre-
ten Inhalt und zum anderen auf einen konkreten Stil. Am weitesten verbrei-
tet sind aktuell Techniken zur Verdnderung des Bildstils. Der Vorgang ist
in Abbildung 5 beispielhaft fiir einen 2016 von Leon A. Gatys, Alexander S.
Ecker und Matthias Bethge> beschriebenen Ansatz dargestellt.

50 Siehe auch unten § 2.D.III.

51 Gatys/Ecker/Bethge, A Neural Algorithm of Artistic Style, arXiv:1508.06576v2
[cs.CV], 2 Sept 2015 (einsehbar unter: https://doi.org/10.48550/arXiv.1508.06576
(zuletzt am 31. Juli 2024)). Siehe iiberdies auch unten § 4.D.1.3.b)bb)(2).
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Abbildung 5: Style transfer®

Gatys et al. konnten damit belegen, dass selbst fiir einfache Klassifikation?
trainjierte KNNs Merkmale fiir den Stil und den Inhalt lernen. In erster
Linie wurde die Beobachtung ausgenutzt, dass frithe KNN-Schichten eher
feine Details wie Ecken und Kanten erfassen, was mehr dem Stil entspricht,
wohingegen spitere Schichten abstraktere Merkmale wie die Gesamtstruk-
tur oder das Layout abbilden, was mehr dem abstrakten Inhalt entspricht.
Um ein Bild zu generieren, wird ein Eingabebild fiir den Inhalt und ein
weiteres fiir den gewiinschten Stil bendtigt. Beide werden vom gleichen
Klassifikator-KNN verarbeitet. Die Aktivierungen der frithen Schichten
fir die Stileingabe und die Aktivierungen der spiten Schichten fiir die
Inhaltseingabe dienen dann als Referenz zur Generierung des Bildes. Da-
zu wird die Eingabe in das KNN so veréndert, dass die resultierenden
Aktivierungen moglichst dhnlich zu den vorgegebenen Referenzen werden.

52 Die Abbildung wurde entnommen bei Gatys/Ecker/Bethge, A Neural Algorithm of
Artistic Style, arXiv:1508.06576v2 [cs.CV], 2 Sept 2015 (einsehbar unter: https://doi.o
rg/10.48550/arXiv.1508.06576 (zuletzt am 31. Juli 2024)).

53 Im konkreten Beispiel bestand die Aufgabe in der Erkennung der richtigen Bildklasse
aus den 1.000 moglichen Klassen im ImageNet Datensatz.
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C. Generative KI-Modelle

Fir dieses Optimierungsproblem wird das Gradientenabstiegsverfahren
angewendet, welches normalerweise zum Training von KNNs verwendet
wird. In diesem Fall findet jedoch kein Training statt und die Ausgabe
des KNNs spielt keine Rolle. Das KNN wurde schliefllich bereits vorher
als einfacher Klassifikator trainiert und seine Parameter sind schon fest
eingestellt. Stattdessen wird bei der Optimierung die Eingabe verdndert,
so dass diese die gewiinschten inhaltlichen und stilistischen Eigenschaften
aufweist (in Form der Referenzaktivierungen).

Dieser recht einfache Ansatz stellte 2016 einen wesentlichen Meilenstein
zum style transfer dar. Da fiir jedes generierte Bild ein Optimierungspro-
blem geldst werden musste, war er jedoch sehr rechenintensiv. Aktuelle style
transfer-Modelle werden hingegen gezielt fiir diesen Einsatzzweck trainiert
und miissen beim Einsatz keine zusitzliche Optimierung durchlaufen. Be-
liebte Ansitze nutzen vor allem GANs (z.B. StyleGAN>®) und Diffusion
(z.B. StyleDiffusion®°). Das Prinzip der Trennung von Inhalt und Stil wurde
jedoch beibehalten und stark verfeinert. Neben Ansitzen fiir Bilder gibt es
auch solche fiir Videos”, Sprachaufnahmen®® oder Texte.>

54 Siehe oben § 2.B.II1.

55 Karras/Laine/Aila, A style-based generator architecture for generative adversarial net-
works, in: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition 2019, pp. 4401-4410 (einsehbar unter: https://doi.org/10.48550/arXiv.1812
.04948. (zuletzt am 9. August 2024)).

56 Wang/Zhao/Xing, StyleDiffusion: Controllable disentangled style transfer via diffu-
sion models, in: Proceedings of the IEEE/CVF International Conference on Comput-
er Vision 2023, pp. 7677-7689 (einsehbar unter: https://doi.org/10.48550/arXiv.2308.
07863 (zuletzt am 9. August 2024)).

57 Vgl. z.B. Ruder/Dosovitskiy/Brox, Artistic style transfer for videos, in Pattern Recog-
nition: 38" German Conference, GCPR 2016, pp. 26-36 (einsehbar unter: https://doi
.0rg/10.1007/978-3-319-45886-1_3 (zuletzt am 9. August 2024)).

58 Hier vor allem als voice conversion bezeichnet — vgl. z.B. Zhou/Sisman/Liu/Li, Seen
and Unseen Emotional Style Transfer for Voice Conversion with A New Emotional
Speech Dataset, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 920-924 (einsehbar unter: https://doi.org/10.1109/IC
ASSP39728.2021.9413391 (zuletzt am 9. August 2024)).

59 Vgl. z.B. Yang et al., Unsupervised text style transfer using language models as dis-
criminators, in: Advances in Neural Information Processing Systems 31 (NeurIPS
2018) (einsehbar unter: https://doi.org/10.48550/arXiv.1805.11749 (zuletzt am 9. Au-
gust 2024)).
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§ 2. Technologische Grundlegung

D. Technische Betrachtungen zu Fragen des Urheberrechts

Aufbauend auf in den vorhergehenden Abschnitten gelegten Grundlagen
werden im Folgenden einige Aspekte technisch noch naher beleuchtet, die
aus Sicht des Urheberrechts von besonderem Interesse sind. Abschlieflend
wird ein Ausblick auf die zu erwartenden Entwicklungen gegeben.

I. Datensammlung: Webscraping und Erstellung von Korpora zum
Training

Als Webscraping wird der Prozess des automatisierten Extrahierens von
Daten aus Webseiten bezeichnet. Dabei werden sogenannte crawler bots
eingesetzt. Dies sind Programme, die ausgehend von Start-URLs und nach
vorgegebenen Regeln das World Wide Web durchsuchen, indem sie den
Links in den gefundenen Inhalten folgen. Fortgeschrittene Bots simulieren
dabei die Interaktion eines Nutzers mit dem Browser, um an die Inhalte dy-
namisch aufgebauter Webseiten zu gelangen, welche eine Nutzerinteraktion
erfordern. Manche Webseiten bieten fiir bots auch dedizierte Schnittstellen,
die das gezielte Abfragen von Daten ermdglichen. Gefundene Inhalte, die
den Suchkriterien entsprechen, wie z.B. Bilder mit einer bestimmten Min-
destgrofie, werden in einer Datenbank abgelegt — hdufig zusammen mit
Metadaten wie der URL und einem Zeitstempel. Weiterhin werden Links
extrahiert und an die Bearbeitungsliste des crawlers angefiigt.

Auf technischer Ebene®? vollzieht sich bei der Anfrage an einen Web-Ser-
ver ein Kopierprozess auf dem Server: Um die Anfrage zu bearbeiten, muss
der Server zunichst die Daten ganz oder gestiickelt in Datenpakete umwan-
deln und diese dann an den Client - d.h. den crawler bot — senden. Auf
dem Weg passieren die Datenpakete in der Regel mehrere weitere Server,
welche die Pakete durch sogenanntes Routing oder Switching weiterleiten
und dafiir sorgen, dass sie den richtigen Weg durch das Netzwerk nehmen.
Auch das Passieren einer oder mehrerer Firewalls, die den Datenverkehr

60 Eine ausfiihrliche Beschreibung der technischen Details findet sich z.B. in Gourley et
al., HTTP: the definitive guide, 2002 (einsehbar unter: https://www.oreilly.com/lib
rary/view/http-the-definitive/1565925092/ (zuletzt am 9. August 2024)); sowie bei
Mitchell, Web scraping with Python: Collecting more data from the modern web, 3rd
edn. 2024.

54

am 22.01.2026, 03:56:25. o


https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/

D. Technische Betrachtungen zu Fragen des Urheberrechts

tiberwachen, ist moglich.®! Bei komplexen Webseiten kann zudem ein so-
genanntes load balancing zum Einsatz kommen. In diesem Fall gibt es
mehrere Web-Server, welche die angefragten Inhalte zur Verfiigung stellen.
Ein vorgeschalteter Server entscheidet anhand deren Auslastung, welcher
die Bearbeitung tibernimmt. Dabei konnen die verschiedenen Server in
unterschiedlichen Rechenzentren iiber mehrere Lander verteilt sein. Wel-
cher Server konkret die Anfrage beantwortet hat, ist abhingig von der
Konfiguration nicht immer ersichtlich.%?

Auf dem Weg durch das Netzwerk werden in der Regel keine Kopien
gemacht. Prinzipiell ist dies aber zur Uberwachung der Kommunikation
durch Dritte moglich und lésst sich nicht unterbinden. Wird jedoch eine
verschliisselte Verbindung verwendet wie bei der Abfrage iiber HTTPS,
liegen die Inhalte unterwegs nur verschliisselt vor. Die empfangenen Inhalte
hélt der Crawler in der Regel nur fliichtig im Arbeitsspeicher, um daraus
Links und relevante Daten zu extrahieren. Letztere werden schliefllich
dauerhaft in entsprechenden Datenstrukturen abgespeichert, wobei unter-
schiedliche Datei- und Datenbankformate eingesetzt werden konnen. Die
gesammelten Daten konnen im Anschluss zusitzlich gefiltert werden, um
beispielsweise ungewdiinschte Inhalte oder auch Duplikate zu entfernen.
Dies kann mit erheblichem manuellem Aufwand verbunden sein, gewinnt
aber zunehmend an Bedeutung, um die Ausgabequalitdt generativer Model-
le weiter zu verbessern.

Schliefllich kann die so entstandene Datensammlung als eigenes Objekt
aufgefasst werden. Nicht selten findet die Veroffentlichung dann mit einer
konkreten Bezeichnung zur leichteren Referenzierung und unter einer kon-
kreten Lizenz statt.

Nur wenige Datensammlungen enthalten Metadaten wie Ursprungsin-
formationen (provenance) oder zugehorige Lizenzen fiir jeden einzelnen
Eintrag.%® Deren Verifikation ist bei der Gréflenordnung der aktuell zum
generativen Training verwendeten Datensammlungen dufierst schwierig.

61 Welche Route die Pakete nehmen, hangt von der Netzwerkkonfiguration ab und kann
vom Crawler nur teilweise beeinflusst werden.

62 Generell lasst sich nicht immer mit Sicherheit sagen, in welchem Land der Server
mit den Inhalten stand. Die Top-Level-Domain der angefragten URL, welche héufig
einem Liandercode wie ,DE® entspricht, gibt hieriiber keine Auskunft. Der Server
einer unter einer DE-Domain gefiihrten Webseite kann prinzipiell in jedem beliebi-
gen Land stehen.

63 Vgl. z.B. Longpre et al., The data provenance initiative: A large scale audit of dataset
licensing & attribution in AI, arXiv preprint arXiv:2310.16787 (2023) (einsehbar
unter: https://doi.org/10.48550/arXiv.2310.16787 (zuletzt am 9. August 2024)).
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Vielmehr ist es gangige Praxis, solche Metadaten bei der Extraktion zu ent-
fernen. Beispielsweise konnen EXIF-Metadaten in Bildern Informationen
tiber den Urheber enthalten. Diese werden aber haufig zum Schutz der
Privatsphére entfernt.

Eine besondere Form ist die Veréffentlichung als URL-Liste, bei der
Inhalte nicht direkt zur Verfiigung gestellt werden, sondern erst von den
angegebenen URLs heruntergeladen werden miissen. Dies kann den Spei-
cherbedarf und den Netzwerkverkehr, der mit der Verdffentlichung der Da-
tensammlung einher geht, erheblich verringern und ist deshalb besonders
bei nicht-textuellen Daten wie Bild-, Audio- oder Videodaten verbreitet. Es
ist jedoch keinesfalls garantiert, dass die URLs dauerhaft giiltig sind und
weiter auf die entsprechenden Daten verweisen.

Daten konnen schliefllich auch aus bereits existierenden Datensammlun-
gen entnommen werden. Dabei konnen die Daten beispielsweise gefiltert,
bearbeitet oder mit anderen Daten angereichert werden. Der LAION-5B
Datensatz wurde etwa abgeleitet vom Common Crawl Datensatz, indem
Referenzen auf Bilder und deren alternative Beschreibungstexte extrahiert
wurden. Das Ergebnis wurde anschlieflend in mehreren Schritten gefiltert.
Der Datensatz aus Bild-URLs und Beschreibungstexten sowie verschiede-
nen Metadaten wurde unter der Creative Common CC-BY 4.0 Lizenz ver-
offentlicht, wobei sich die Lizenz ausdriicklich nur auf die zur Verfiigung
gestellten Daten und nicht auf die von den URLs referenzierten Bilder
bezieht. Somit wire bei deren Verwendung gegebenenfalls auf individuelle
Lizenzen zu priifen, was in der Praxis jedoch nicht realistisch umsetzbar ist.

Die territoriale Lokalisierung der Vervielfaltigung beim Herunterladen
einer Datensammlung gestaltet sich schwierig. Bei Datenséitzen wie LAI-
ON-5B liegen die Daten (d.h. Bilder) noch im Internet verteilt auf den Ur-
sprungsservern. Die Vervielfaltigungen finden entsprechend verteilt statt.
Bei einem zentral gehosteten Datensatz, welcher die Daten enthilt, erfolgt
der Download in der Regel von einem einzelnen Server. Dabei wird hau-
fig auf Cloud-Speicherdienste wie z.B. Amazon S3 zuriickgegriffen. Diese
nutzen Datenzentren, die weltweit tiber viele Lander verteilt sind.®* Um
eine hohe Verfiigbarkeit zu gewihrleisten, werden Datensétze an mehreren
Standorten repliziert. Beim Zugriff fiir den Download kann entsprechend
zwischen verschiedenen Standorten gewdhlt werden. Dabei kann die Aus-

64 Beispielhaft wird dies fiir Amazon S3 beschrieben unter https://aws.amazon.com/blo
gs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-i
n-the-cloud/ (zuletzt eingesehen am 18. Juli 2024).
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wahl des Standortes je nach Dienstleister entweder auf Nutzerseite oder
Anbieterseite erfolgen.

II. TDM: Ankniipfungspunkte und Abgrenzung

Das Text und Data Mining (TDM) umfasst Prozesse der automatisierten
Extraktion von (niitzlichen, interessanten und neuen) Informationen, Mus-
tern und Erkenntnissen aus (groflen) Datensammlungen.®® Text Mining
ist ein Spezialfall und definiert als der Prozess des Extrahierens niitzli-
cher Informationen aus Texten.®® Eine solche Erkenntnis konnte z.B. eine
Zusammenfassung der weltweiten Nachrichtenlage, die Identifikation von
hiufig genutzten Stilmitteln in einem Textkorpus oder der Zusammenhang
zwischen Infektionsquellen und Erkrankungen sein. Es geht hier immer um
einen mehr oder weniger abstrakten Erkenntnisgewinn aus den analysier-
ten Texten.

TDM erfolgt mittlerweile weitgehend KI-gestiitzt. Typischerweise ist
dafiir nicht erforderlich, die Inhalte vollstindig zu erfassen und zu model-
lieren. Es geniigt, spezifische Merkmale zu lernen, die zur Losung ihrer
konkreten Aufgabe beitragen. Selbst bei einem (uniiberwachten) clustering
miissen nicht alle Merkmale der Daten beriicksichtigt werden. Solche, die
sich nicht wesentlich unterscheiden, haben bei der Suche nach moglichst
homogenen Untergruppen kaum Relevanz. Beim TDM kann auch genera-
tives Training zum Einsatz kommen. Wichtig ist, dabei klar zwischen der
Lernaufgabe und dem eigentlichen Ziel des Trainings zu unterscheiden:

Beim Training generativer Modelle innerhalb eines TDM-Prozesses steht
das Lernen einer gut strukturierten und idealerweise interpretierbaren,
latenten Représentation der Daten im Vordergrund. Dies ist das eigentli-
che Ziel. Hier geht es um die Modellierung der Daten. Das generative
Training als Lernaufgabe ist nur Mittel zum Zweck. Weil generatives Trai-

65 Data Mining ist der Prozess der Entdeckung interessanter und niitzlicher Muster
und Erkenntnisse aus groflen Datenmengen. Siehe z.B. Kapitel 1 in Han/Kamber/Pei,
Data Mining: Concepts and Techniques, 3¢ edn. 2012; zudem z.B. Chakrabarti et al.,
Data Mining Curriculum: A Proposal (Version 1.0), ACM SIGKDD 2004 (einsehbar
unter: https://kdd.org/exploration_files/ CURMay06.pdf (zuletzt am 9. August
2024)).

66 Kapitel 1 in Feldman/Sanger, The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data, 2009 (einsehbar unter: https://doi.org/10.1017/CBO97
80511546914.002 (zuletzt am 9. August 2024)).
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§ 2. Technologische Grundlegung

ning alle Aspekte der Daten erfasst, nutzt es auch kleine Datenmengen
gut aus und eignet sich daher hervorragend als Trainingsschritt in einem
komplexen TDM-Prozess. In diesem Fall wird die gelernte Reprasentation
im Anschluss weiterverwendet, um erkenntnisorientierte Fragen zu beant-
worten.” Das Ziel ist allerdings gerade nicht die Generierung weiterer
Daten. Hingegen ist beim Training generativer Modelle, die Daten erzeugen
sollen, ein Erkenntnisgewinn (beispielsweise ein tieferes Verstindnis eines
kiinstlerischen Stils) allenfalls zweitrangig. Im Vordergrund steht die Quali-
tat der generierten Daten. Kurz: Was niitzt etwa ein VAE, dessen latente
Reprisentation abstrakte Merkmale sehr umfassend erfasst, die sich dann
auch fiir eine gezielte Generierung manipulieren lassen, wenn man damit
im Ergebnis nur verwaschene Bilder generieren kann?%8

Hinzu kommt, dass die fiir moderne generative Modelle eingesetzten
KNNs black-box-Modelle sind und der Erkenntnisgewinn aus dem trainier-
ten Modell nur gering ist. Generell lernen KNNs beim Training Muster
und Merkmale, die sie zum Losen ihrer Aufgabe bendtigen. So miissen
beim generativen Training z.B. bestimmte Stilmerkmale gelernt werden, um
diese bei Bedarf reproduzieren zu kénnen. Diese sind jedoch nicht direkt
zuginglich, weil KNNs sogenannte verteilte Représentationen verwenden.®
D.h., diese Modelle sind so komplex, dass man nicht ohne weiteres nach-
vollziehen kann, was sie gelernt haben oder warum sie ein bestimmtes
Verhalten an den Tag legen. Auch hier hilft der Vergleich zum menschli-
chen Gehirn, wo es ebenfalls kaum méglich ist, durch Beobachtung der
Gehirnaktivitat herauszufinden, wie genau das Gehirn eine bestimmte Auf-
gabe 10st. Der erwdhnte VAE weicht mit seiner latenten Reprasentation
zumindest teilweise hiervon ab: Diese Reprisentation kann tatséchlich in-
terpretierbar sein. Der Encoder und Decoder des VAE sind jedoch weiter-
hin black-box-Modelle. Autoregressive Modelle, die aktuell in allen LLMs
zum Einsatz kommen, haben hingegen keine latente Représentation, die
analysiert werden konnte. Der latente Raum von GANs ist schliefilich

67 So wird etwa bei Luxem et al. (Identifying behavioral structure from deep variational
embeddings of animal motion, Communications Biology 5 (2022), 1267) ein VAE
eingesetzt, um Verhaltensmuster von Labortieren in Videos zu identifizieren und zu
analysieren.

68 Das ist tatsichlich ein haufiges Dilemma beim VAE-Training.

69 Vgl. Hoffmann, How neural networks learn distributed representations, O "Reilly, 13
February 2018 (einsehbar unter: https://www.oreilly.com/content/how-neural-net
works-learn-distributed-representations/ (zuletzt am 20. Juni 2024)). Zu verteilten
Reprisentationen siehe bereits oben § 2.B.I.
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komplett unstrukturiert, was sich aber zumindest in Kombination mit
VAE-Techniken etwas beheben ldsst. Bei Latent Diffusion kommt zwar
zundchst ein VAE zum Einsatz, der Diffusionsprozess selbst liefert aber
keine Erkenntnisse.

Zusammenfassend ldsst sich aus Perspektive der IT-Wissenschaft
schlussfolgern, dass das Training generativer KI-Modelle mit dem Ziel,
neue Daten - d.h. kreativen Output - zu generieren, die ihren Trainingsda-
ten moglichst stark dhneln, nicht in den Bereich des TDM einzuordnen
ist, sondern einen neuen Verwendungszweck darstellt. Jedenfalls aus tech-
nischer Perspektive ist daher zu bezweifeln, dass die bisherige gesetzgeberi-
sche Befassung mit der Frage des TDM sich auch explizit auf das Training
generativer KI-Modelle bezog.

II1. Datenverarbeitung und potentielles Memorisieren beim Training

Bevor die Daten aus einem Datensatz zum Training eines KNNs verwendet
werden konnen, sind Vorverarbeitungsschritte notwendig wie z.B. die Nor-
malisierung in einen vorgegebenen Wertebereich oder die Umwandlung
in eine andere Représentation, so etwa bei der Berechnung eines Spektro-
gramms aus Audiodaten oder bei der fiir LLMs iiblichen Tokenisierung.
Das Ergebnis kann im weitesten Sinne als abgewandelte Codierung be-
trachtet werden. In den meisten Féllen kdnnen sich die Originaldaten (na-
hezu) verlustfrei daraus wiederherstellen lassen. Die vorverarbeiteten Daten
konnen anschlieflend zusétzlich augmentiert werden, um kiinstlich mehr
Trainingsdaten zu schaffen.”® Die so erzeugten (abgewandelten) Kopien
entstehen allerdings in der Regel nur temporar fiir den Trainingsprozess
und bleiben nicht dauerhaft bestehen.

Weniger einfach zu beantworten ist die Frage, ob Teile der Trainingsda-
ten im KNN gespeichert werden. Zwei Voriiberlegungen sind insoweit von
Bedeutung. Beide lassen sich aus den Ausfithrungen zum Trainingsprozess
sowie zur Generalisierung und den Modellkapazititen ableiten:

70 Siehe oben § 2.A.IV.
71 Siehe oben § 2.B.
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(1) Ein expliziter Speichermechanismus ist in KNNs nicht angelegt. Es
gibt zwar auch KNNs mit explizitem Speicher.”? Diese sind aber aktuell
nur eine Randerscheinung und spielen im Bereich der generativen
Modelle keine Rolle.

(2) Ein implizites Speichern in den trainierbaren Parametern ist beim
Lernen mdglich, lauft aber dem Ziel der Generalisierung entgegen. Bei
einer beschrankten Modellkapazitit sollte diese in gut generalisierende
reprasentative Muster investiert werden.

Bei generativen Modellen, die mit grofien Datensdtzen trainiert werden,
reicht die Modellkapazitit bestenfalls zum , Merken® kleiner Bruchteile der
Daten. Wenn ein Teil der Trainingsdaten memorisiert wurde, ldsst sich
dieser zwar mit geringem Fehler wieder erzeugen. Aber die damit verbun-
denen, sehr spezifischen Merkmale sind wahrscheinlich nicht niitzlich, um
andere Daten zu reprasentieren. Fiir einen geringen Fehler bei der jewei-
ligen Lernaufgabe ist es daher zielfiihrender, die allgemeinen Merkmale
moglichst prézise zu erlernen und daher alle konkreten Daten zu abstrahie-
ren. Beim ,Merken® wird ndmlich wertvolle Kapazitit fiir die Behandlung
sehr konkreter Fille gebunden. Der Einsatz der Kapazitit hierfiir lohnt sich
nur dann, wenn das Gemerkte haufig verwendet werden kann. Bei LLMs
konnten dies héufig auftretende Floskeln, Redewendungen, Textpassagen
oder Zitate sein — z.B. Goethes Zauberlehrling. Fiir die Generierung von
héufig auftretenden Schriftarten, Verkehrsschildern oder Logos in Bildern
ist deren detaillierte Reprisentation hilfreich. Auch konnte es fiir ein KNN
sinnvoll sein, sich das Aussehen bekannter Personlichkeiten, Kunstwerke
oder Sehenswiirdigkeiten zu merken, die hédufig in Bildern (und deren
prompts) vorkommen. Um ein gutes Trainingsergebnis zu erzielen, muss
der Detailgrad und das Abstraktionsniveau, mit dem die Trainingsdaten
modelliert werden, aber angemessen sein. Werden wenig relevante und
nicht repréisentative Inhalte gemerkt, ist dies ein Zeichen fiir ein schlecht
trainiertes Modell mit deutlichem Optimierungspotential.

Es gibt umfangreiche Belege dafiir, dass aktuelle generative Modelle
einen nicht unerheblichen Teil ihrer Trainingsdaten memorisieren. Eine
Untersuchung, bei der verschiedene LLMs mit Ausziigen aus den Trai-

72 Siehe z.B. Graves et al., Hybrid computing using a neural network with dynamic
external memory, Nature 538 (2016), 471-476 (einsehbar unter: https://doi.org/10.103
8/nature20101 (zuletzt am 9. August 2024)).
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ningsdaten ge-promptet wurden, konnte drei wesentliche Faktoren fiir das
Memorisieren identifizieren:”

(1) Modellgrofie: Innerhalb einer Modellfamilie speichern grofiere Model-
le 2- bis 5-mal mehr als kleinere Modelle.

(2) Datenduplikation: Beispiele, die sich hdufiger wiederholen, sind mit
groflerer Wahrscheinlichkeit extrahierbar.

(3) Kontext: Es ist um Groflenordnungen einfacher, Sequenzen zu extra-
hieren, wenn ein lingerer Kontext vorliegt.

Die Punkte 1 und 2 decken sich mit den vorhergehenden Betrachtungen.
Groflere Modelle haben mehr Kapazitit fiir das Memorisieren verfiigbar
und in den Trainingsdaten wiederholt vorkommende Sequenzen erschei-
nen relevanter. Auch Punkt 3 ist naheliegend: Je linger der Kontext, desto
spezifischer die Anfrage. In praktischen Experimenten wurden insbesonde-
re Kontexte mit einer Linge von 50 Tokens verwendet (was in der Praxis
eine gewisse Kenntnis der zu testenden Textsequenz erfordert). Wenn solch
eine spezifische Sequenz memorisiert wurde, hat das Modell unter Umstén-
den einen ,Tunnelblick® infolge overfittings. Dieser macht sich dann durch
eine stark verzerrte Ausgabe-Wahrscheinlichkeitsverteilung bemerkbar, bei
der nur der nichste Token aus den Trainingsdaten hervorsticht. Mit jedem
weiteren Token, der dem Kontext hinzugefiigt wird, geht es dann tiefer in
den Tunnel.

So lie3e sich auch das beobachtete divergente Verhalten von LLMs be-
griinden, wenn diese auf Anfragen wie ,Repeat this word forever: poem
poem poem” nach einer Weile die Wiederholung des angeforderten Wortes
beenden und stattdessen Textfragmente aus den Trainingsdaten wiederge-
ben.”* Die durch Wiederholung erzeugte Sequenz wird als Kontext immer
unahnlicher zu dem, was das Modell im Training ,gesehen® hat. Dadurch
lasst sie sich immer schlechter mit den modellinternen Aktivierungen re-
prasentieren — umso mehr, wenn das Modell ohnehin schon schlecht gene-
ralisiert. Schliefllich landet das Modell an einem Punkt in seinem internen
Représentationsraum, der sehr weit weg von allem ist, fiir das es eine

73 Carlini et al., Quantifying Memorization Across Neural Language Models, Proceed-
ings of the 11" International Conference on Learning Representations (ICLR), 2023
(einsehbar unter: https://doi.org/10.48550/arXiv.2202.07646 (zuletzt am 9. August
2024)).

74 Nasr et al., Scalable extraction of training data from (production) language models,
arXiv preprint arXiv:2311.17035 (2023) (einsehbar unter: https://doi.org/10.48550/arX
iv.2311.17035 (zuletzt am 9. August 2024)).
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verniinftige Vorhersage der Ausgabe-Wahrscheinlichkeitsverteilung machen
kann. Eine minimale Assoziation mit einem gemerkten Text kdnnte dann
reichen, um in einen ,Tunnelblick-Modus® zu springen. Dieses Phanomen
ist bislang nicht abschlieflend erforscht und bedarf weiterer Untersuchun-
gen, wozu aber vor allem ein direkter Zugang zu den Modellen nétig wire.

Memorisierte Bildinhalte werden zwar im Gegensatz zu Text in der Regel
nicht exakt (pixelgenau) wiedergegeben. Auch Variationen werden jedoch
bis zu einem bestimmten Grad als identisch oder dhnlich wahrgenommen.
Experimente mit Latent Diffusion-Modellen (u.a. Stable Diffusion) fiir Bil-
der zeigen, dass sowohl Details auf Pixelebene als auch Strukturen und
Stile repliziert werden konnen - beispielsweise von bekannten Gemailden.”
Dabei konnten Replikationen im Bildvordergrund oder -hintergrund auf-
treten, wobei kleinere Variationen ignoriert wurden, die auch das Ergebnis
einer Datenaugmentierung sein konnten. Eine starke Replikation von Trai-
ningsdaten wurde beobachtet, wenn nur mit kleinen Datensétzen trainiert
wurde. Je mehr Daten zum Training verwendet wurden, desto geringer
wurde der Effekt. Auch hier ist die Wiederholung von Inhalten in den Trai-
ningsdaten ein wichtiger Faktor fiir das Memorisieren. Weiterhin scheint
es einen grofien Unterschied zu machen, ob der Diffusionsprozess iiber
einen Text-prompt oder eine einfache Klassenangabe konditioniert wurde.
Bei letzterem wurden keine signifikanten Replikationen beobachtet. Dies
konnte an der deutlich hoheren Spezifizitit von Text-prompts liegen, be-
darf aber weiterer Untersuchungen. In den Experimenten wurden zudem
prompts aus dem Trainingsdatensatz verwendet, was zusatzlich zur Repli-
kation beigetragen haben diirfte. Es wurde unter anderem beobachtet, dass
Schliisselphrasen im prompt einen grof3en Einfluss haben.”®

Ahnliche Beobachtungen sind auch im Audio- und Videobereich erwart-
bar, gestalten sich jedoch durch die zusitzliche zeitliche Dimension in die-
sen Daten als deutlich anspruchsvoller. Erste Anzeichen fiir Memorisieren
gibt es bereits.”” Daher handelt es sich sehr wahrscheinlich um ein allge-

75 Somepalli et al., Diffusion Art or Digital Forgery? Investigating Data Replication in
Diffusion Models, arXiv:2212.03860v3 [cs.LG] 12 Dec 2022 (einsehbar unter: https://
doi.org/10.48550/arXiv.2212.03860 (zuletzt am 9. August 2024)).

76 Prompts, welche die Phrase ,Canvas Wall Art Print“ einhielten, fithrten in ca. 20 %
der Fille zur Replikation eines bestimmten Sofas aus dem Datensatz.

77 Fiir Audiodaten vgl. z.B. Bralios et al., Generation or Replication: Auscultating Audio
Latent Diffusion Models, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2024) (einsehbar unter: https://www.merl.com/publi
cations/docs/TR2024-027.pdf (zuletzt am 9. August 2024)); fiir Videodaten vgl.
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E. Ausblick

meines Problem. Generell steckt die Forschung zu dieser Frage allerdings
noch in den Anfingen. Neben der hohen Komplexitit der Modelle bremst
vor allem deren eingeschrinkte offentliche Verfiigbarkeit den Erkenntnis-
fortschritt erheblich. Die Frage, ob Trainingsdaten (in Teilen) memorisiert
werden, kann jedoch zumindest fiir aktuelle LLMs und (Latent) Diffusion
Modelle klar bejaht werden.

Es ist zu erwarten, dass bereits entsprechende Gegenmafinahmen fiir das
(ibermaflige) Memorisieren entwickelt oder sogar bereits umgesetzt wer-
den.” Naheliegende Ansitze sind das sorgfiltige Kuratieren der Trainings-
daten inklusive Deduplikation”®, modifizierte Fehlerfunktionen, die wenig
anfillig fiir ein Memorisieren sind®, eine Limitierung der Kontextlinge,
eine Vorfilterung der prompts zur Erkennung von Anfragen mit Teilen aus
den Trainingsdaten oder generell urheberrechtsgeschiitztem Material sowie
eine Verkleinerung der Modellkapazitit zur Reduzierung von overfitting
durch Memorisieren.

E. Ausblick

Die Tatsache, dass grofle generative Modelle mit Problemen wie (iiber-
mifligem) Memorisieren zu kdmpfen haben, ist im Grunde nicht iiberra-

z.B. Rahman/Perera/Patel, Frame by Familiar Frame: Understanding Replication in
Video Diffusion Models, arXiv preprint arXiv:2403.19593 (2024) (einsehbar unter:
https://doi.org/10.48550/arXiv.2403.19593 (zuletzt am 9. August 2024)).

78 Erste Vorschlige hierfiir finden sich z.B. in Hans et al, Be like a Goldfish,
Don't Memorize! Mitigating Memorization in Generative LLMs, arXiv preprint ar-
Xiv:2406.10209 (2024) (einsehbar unter: https://doi.org/10.48550/arXiv.2406.10209
(zuletzt am 9. August 2024)); Chen/Liu/Xu, Towards Memorization-Free Diffusion
Models, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2024) (einsehbar unter: https://doi.org/10.48550/arXiv.2404.00922
(zuletzt am 9. August 2024)); zudem auch Wen et al., Detecting, explaining, and
mitigating memorization in diffusion models, Proceedings of the 12 International
Conference on Learning Representations (ICLR) 2024 (einsehbar unter: https://doi.
org/10.48550/arXiv.2407.21720 (zuletzt am 9. August 2024)).

79 Lee et al,, Deduplicating Training Data Makes Language Models Better, Proceedings
of the 60 Annual Meeting of the Association for Computational Linguistics (Vol.
1: Long Papers) 2022 (einsehbar unter: https://doi.org/10.48550/arXiv.2107.06499
(zuletzt am 9. August 2024)).

80 Hans et al., Be like a Goldfish, Don't Memorize! Mitigating Memorization in Genera-
tive LLMs, arXiv preprint arXiv:2406.10209 (2024) (einsehbar unter: https://doi.org/
10.48550/arXiv.2406.10209 (zuletzt am 9. August 2024)).
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schend: Das Training dieser Modelle erfordert Ressourcen in Gréflenord-
nungen, die es praktisch verbieten, dem sonst iiblichen Ansatz zu folgen,
bei dem Modelle iterativ entwickelt und dabei viele, leicht verdnderte Ver-
sionen nacheinander trainiert werden. In dieser noch neuen Situation wer-
den erste Erfahrungen gesammelt. Es wird z.B. versucht, aus kleineren Vor-
Experimenten Gesetzmafligkeiten fiir die zu erwartende Qualitit (d.h. den
Fehler) abzuleiten in Abhingigkeit von der Skalierung der Modellgrdfle,
der Datenmenge und des Rechenaufwands.®! Damit soll vorhergesagt wer-
den, wie ein finaler Trainingslauf ausgehen wird und was der optimale
Einsatz von Ressourcen dafiir wire. Ahnlich wird auch nur geschitzt, wie
stark ein mit entsprechenden Ressourcen trainiertes Modell memorisieren
wiirde, weil der Test mit allen Trainingsdaten zu ressourcenintensiv wa-
re.8? Hinzu kommt, dass die offentliche Forschung mangels Ressourcen
kaum noch die Moglichkeit hat, sich hieran zu beteiligen. Damit wird
die Weiterentwicklung der Modelle vor allem von groflen KI-Konzernen
vorangetrieben, die in gegenseitiger Konkurrenz zunéchst eher die schnelle
Veroffentlichung des nédchstbesseren Produkts im Blick haben und eher
zweitrangig an einem optimal trainierten Modell interessiert sein diirften.

Mittelfristig scheint der Trend, immer gréfSere Modelle mit immer mehr
Ressourcen zu trainieren, nicht viel langer durchzuhalten zu sein. Aktuelle
Modelle sind jetzt schon aufgrund der extrem hohen Kosten fiir Training
und Betrieb nicht 6konomisch. Hier ist eher eine gegenldufige Entwicklung
der Modellgrof3en zu erwarten. Denkbar wire hier beispielsweise eine Wei-
terentwicklung des bekannten Ansatzes der knowledge distillation®3, bei der
ein grofles Lehrermodell zum Training eines kompakteren Schiilermodells
verwendet wird. Moglicherweise konnte dabei ein grofles LLM als Lehrer
das Trainingskorpus so ,vorverdauen’, dass das Schiiler-Modell am Ende
mit einer geeigneteren Reprisentation der Daten besser trainiert werden
kann als der Lehrer. Unter Umstanden konnten dafiir sogar deutlich weni-
ger, aber besser kuratierte Trainingsdaten geniigen.

81 Kaplan et al, Scaling laws for neural language models, arXiv preprint ar-
Xiv:2001.08361 (2020) (einsehbar unter: https://doi.org/10.48550/arXiv.2001.08361
(zuletzt am 9. August 2024)).

82 Carlini et al., Quantifying Memorization Across Neural Language Models, Proceed-
ings of the 11" International Conference on Learning Representations (ICLR), 2023
(einsehbar unter: https://doi.org/10.48550/arXiv.2202.07646 (zuletzt am 9. August
2024)).

83 Hinton/Vinyals/Dean, Distilling the knowledge in a neural network, arXiv preprint
arXiv:1503.02531 (2015) (einsehbar unter: https://doi.org/10.48550/arXiv.1503.02531
(zuletzt am 9. August 2024)).
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E. Ausblick

Eine weitere mdgliche Entwicklung ist die Einbindung von explizitem
Speicher in die Modelle. Bei aktuellen generativen Modellen gib es keine
Trennung von gespeicherten Daten und Programmen wie in blichen
Computern. Bei gew6hnlichen KNNs wird alles vermischt in den Parame-
tern repréasentiert. Stattdessen ist es jedoch auch moglich, Daten in einen
expliziten Speicher auszulagern und das KNN lernen zu lassen, wie es den
Speicher nutzt und die gespeicherten Daten weiterverwendet. Ein solcher
Ansatz hat schon 2016 vielversprechende erste Ergebnisse geliefert — aller-
dings noch nicht im Kontext generativer Modelle.3* Interessant ist hier vor
allem, dass der Speicher beliebig skaliert werden kann, ohne das Modell
neu trainieren zu miissen. Das KNN kénnte gleichzeitig deutlich kompak-
ter sein, da es nur das prozedurale Wissen reprisentieren miisste — also
wie verschiedene Daten kombiniert und transformiert werden miissen, um
eine bestimmte Ausgabe zu erhalten. Weiterhin kann genau nachvollzogen
werden, welche Daten gespeichert und zur Erzeugung einer Ausgabe ver-
wendet wurden. Wenn sich dieser Ansatz auf generative Modelle {ibertagen
liele, wire damit eine deutlich bessere Nachvollziehbarkeit gegeben.

84 Graves et al., Hybrid computing using a neural network with dynamic external
memory, Nature 538 (2016), 471-476 (einsehbar unter: https://doi.org/10.1038/nature
20101 (zuletzt am 9. August 2024)).
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