
§ 2. Technologische Grundlegung

In diesem Abschnitt werden die notwendigen technologischen Grundlagen
für die juristische Analyse gelegt. Ziel ist die Vermittlung eines Grundver‐
ständnisses unter Verzicht auf technische Details, die für die Betrachtung
aus urheberrechtlicher Sicht nicht zwingend erforderlich sind. Abschnitt
A. stellt die relevanten allgemeinen Konzepte aus dem Bereich des Maschi‐
nellen Lernens vor. Die Ausführungen in Abschnitt B. gehen auf Künstli‐
che Neuronale Netze und deren Training ein. Abschnitt C. erläutert die
technischen Eigenschaften und gibt einen Überblick über die wichtigsten
generativen KI-Modelle. Schließlich liefert Abschnitt D. eine technische
Perspektive zu den relevanten Fragen der urheberrechtlichen Beurteilung.
Soweit bereits Kenntnisse vorhanden sind, können einzelne Abschnitte
oder Teile übersprungen werden. Da die Abschnitte logisch aufeinander
aufbauen und die relevanten zentralen Konzepte und Begriffe systematisch
einführen, empfiehlt sich allerdings eine vollständige Lektüre.

A. Maschinelles Lernen

Moderne generative KI-Modelle basieren praktisch ausschließlich auf deep
learning (DL). Dies ist ein Teilbereich des Maschinellen Lernens (ML),
bei dem tiefe Künstliche Neuronale Netze (KNNs) geschaffen werden und
zum Einsatz kommen. Das Maschinelle Lernen ist wiederum ein Teilgebiet
der Künstlichen Intelligenz. D.h. Maschinelles Lernen ist eine von vielen
Möglichkeiten, intelligente Systeme umzusetzen, und innerhalb der ML-
Technologie sind KNNs lediglich eine von vielen Optionen. Nachfolgend
werden die wesentlichen Konzepte und Begriffe vorgestellt.

I. Lernaufgaben

Der generelle Ansatz im Maschinellen Lernen besteht darin, ein KI-Modell
zu trainieren, das eine Aufgabe – auch: Lernaufgabe – möglichst gut löst.
Der Begriff „Modell“ kann dabei im Sinne einer mathematischen Funkti‐

23

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


on10 verstanden werden, die für eine bestimmte Eingabe (z.B. ein Wort
oder ein Satz) eine Ausgabe erzeugt (z.B. ein dazu passendes Bild). Nach
dem Training sollten die Ausgaben des KI-Modells möglichst wenige Fehler
oder eine möglichst hohe Qualität aufweisen. Formell handelt es sich beim
Training daher um ein Optimierungsproblem, für welches eine mathema‐
tische Funktion benötigt wird, mit der der Fehler oder die Qualität der
Ausgabe gemessen werden kann. Die Definition einer solchen Funktion
ist meist nicht trivial: Wie kann beispielweise gemessen werden, wie gut
ein vom KI-Modell erzeugtes Bild zu der Texteingabe des Entwicklers oder
Nutzers passt?

Es kann zwischen drei prinzipiell verschiedenen Typen von Lernauf‐
gaben unterschieden werden: überwachtes Lernen (supervised learning),
unüberwachtes Lernen (unsupervised learning) und bestärkendes Lernen
(reinforcement learning):

(1) Beim überwachten Lernen ist für jedes Trainingsbeispiel neben der
Eingabe auch die gewünschte Ausgabe bekannt, die das Modell beim
Training möglichst gut reproduzieren soll. Ist die Ausgabe eine Klas‐
senzuordnung, wird das Problem Klassifikation genannt. Werden kon‐
tinuierliche Werte ausgegeben, spricht man von einem Regressionspro‐
blem.

(2) Beim unüberwachten Lernen enthalten die Trainingsbeispiele keine
Ausgabedaten. Die Formulierung einer Funktion zur Optimierung ge‐
staltet sich deshalb deutlich schwieriger. Beispielsweise könnte nach
einer Gruppierung (clustering) gesucht werden, bei der Trainingsbei‐
spiele in einer Gruppe im Verhältnis zueinander möglichst ähnlich
und im Verhältnis zu den Beispielen in anderen Gruppen möglichst
unähnlich sind. Auch wenn die Lernaufgabe hier weniger konkret ist,
können durch unüberwachtes Lernen nützliche Informationen wie
typische Muster oder Strukturen in Daten ermittelt werden.

(3) Bestärkendes Lernen ist eine Methode, bei der ein KI-Modell als Agent
durch Interaktion mit seiner Umgebung lernt, eine bestimmte Aufgabe
zu erfüllen, indem es „Belohnungen“ maximiert oder „Bestrafungen“
minimiert: Das bedeutet, das Modell erlernt, welches Verhalten oder
welche Aktionen in einer bestimmten Situation die besten Ergebnisse

10 Die Begriffe „Modell“ und „Funktion“ werden im Folgenden ausschließlich in dieser
Bedeutung verwendet.

§ 2. Technologische Grundlegung

24

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


hervorbringen.11 Eine besondere Schwierigkeit besteht darin, dass ein
Ergebnis mitunter erst viele Schritte nach einer bestimmten Aktion
erreicht wird. Ein Agent, der z.B. Schach erlernt, weiß dann entspre‐
chend erst am Ende jeder gespielten Partie, ob er gewonnen oder
verloren hat.
Ein Sonderfall des überwachten Lernens ist das selbstüberwachte
Lernen (self-supervised learning). Dabei enthalten die zum Training
verwendeten Daten keine Ausgaben. Jedoch kann eine überwachte
Lernaufgabe formuliert werden, bei der die Ausgaben aus den Trai‐
ningsdaten abgeleitet werden. Dazu wird in der Regel ein Teil der
vorhandenen Informationen maskiert (d.h. er steht nicht als Eingabe
zur Verfügung) und das Modell muss lernen, die daraus resultierenden
Lücken zu füllen. Typischerweise erfolgt dies durch Vergleich mit den
tatsächlichen (ursprünglich maskierten) Werten, woraus der Fehler
berechnet werden kann.

In vielen Fällen lässt sich das eigentliche Problem nicht direkt in eine
optimierbare Funktion übersetzen, die zum Lernen verwendet werden
kann. In diesem Fall muss eine Ersatzfunktion eingesetzt werden, die opti‐
mierbar ist und dem gewünschten Ergebnis möglichst nahekommt. Nicht
selten wird im Entwicklungsprozess festgestellt, dass diese Ersatzfunktion
noch keine hinreichend guten Ergebnisse erbringt und überarbeitet werden
muss. Häufig kommt auch eine (gewichtete) Kombination von Funktionen
zum Einsatz, die jeweils unterschiedliche Aspekte betrachten. Beispielswei‐
se könnten beim Training eines Modells zum style transfer12 eine Funktion
die Abweichung des Inhalts und eine zweite die Abweichung des Stils von
der jeweiligen Vorgabe messen. Durch eine Gewichtung – d.h. eine Multi‐
plikation mit einem festgelegten Faktor pro Funktion als Hyper-Parameter
– lässt sich festlegen, wie wichtig die beiden Aspekte relativ zueinander
sind.

II. Parameter und Hyper-Parameter

Ein trainiertes Modell wird durch seine Parameter beschrieben. Deren
Werte beeinflussen das Ein-/Ausgabe-Verhalten des Modells. Sie werden

11 Häufig besteht die „Belohnung“ oder „Bestrafung“ aus einer positiven oder negativen
Auswirkung auf eine vom Modell nach seiner Programmierung zu maximierende
Punktzahl.

12 Siehe auch unten § 2.C.VIII. und § 4.D.I.3.b)bb)(2).

A. Maschinelles Lernen

25

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


durch eine Optimierung während des Trainings angepasst. Hingegen be‐
schreiben Hyper-Parameter Eigenschaften der Struktur eines Modells oder
auch wichtige Einstellungen des Trainingsprozesses. Sie werden bereits im
Zeitraum vor dem Training festgelegt und während des Trainings nicht op‐
timiert. Für das Beispiel eines clusterings im Rahmen eines unüberwachten
Lernprozesses ist etwa die Anzahl der zu findenden Gruppen ein wichtiger
Hyper-Parameter. Die Eigenschaften der einzelnen Gruppen (beispielswei‐
se jeweils der Mittelpunkt und Radius) sind hingegen gelernte Parameter.
Die Anpassung der Hyper-Parameter eines KI-Modells führt in der Regel
dazu, dass sich die Modellstruktur ändert. Dies hat meist zur Folge, dass
das Modell neu trainiert werden muss.

III. Generalisierung und Modellkapazität

Ein KI-Modell, welches perfekt die gewünschten Ausgaben für die Trai‐
ningsbeispiele reproduziert, ist nicht unbedingt nützlich. Ausschlaggebend
für den Nutzen ist, wie gut das Modell generalisiert – d.h. entscheidend
ist die Qualität der Ausgaben des Modells für bisher unbekannte Eingaben.
Ein Modell, welches lediglich auswendig gelernt hat, welche Ausgabe bei
einer bestimmten Eingabe gewünscht ist, kann nicht gut generalisieren.
Idealerweise soll ein Modell lernen, entscheidende Merkmale in der Einga‐
be zu erkennen und die Ausgabe entsprechend anzupassen. Wie komplex
diese Merkmale und die entsprechende Reaktion darauf sein können, hängt
wesentlich von der Kapazität des Modells ab. Ist sie zu niedrig, kann das
Modell komplexe Sachverhalte nicht hinreichend vielschichtig abbilden,
was sich in einem zu hohen Fehlerwert für die Trainingsbeispiele bemerk‐
bar macht. Dieses Phänomen wird als underfitting (Unteranpassung) eines
Modells bezeichnet. Overfitting (Überanpassung) tritt hingegen auf, wenn
ein Modell über eine höhere Kapazität als nötig verfügt und diese darauf
verwendet, für die Aufgabe irrelevante Merkmale wie z.B. ein Rauschen
in den Daten zu lernen. Im Extremfall werden die Trainingsdaten „aus‐
wendig gelernt“. Overfitting führt im Vergleich zu den Trainingsdaten zu
überhöhten Fehlerwerten bei Eingabe bisher ungesehener Daten. Um die
Generalisierungsfähigkeit eines Modells einzuschätzen und overfitting zu
erkennen, muss der Modellfehler bei Eingabe bisher ungesehener Daten
ermittelt werden. Die dabei in Einsatz kommenden Datenbestände werden
als Test- oder Validierungsdaten bezeichnet.

§ 2. Technologische Grundlegung

26

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Während sich das Training mit zu kleinen Datenbeständen negativ
auf die Funktionalität und den Nutzen eines Modells auswirkt (underfit‐
ting), sind zu viele Trainingsdaten bei einer vorgegebenen Modellgröße
(Kapazität) grundsätzlich nicht schädlich. Größere Datenbestände haben
grundsätzlich einen regularisierenden Effekt und führen zu einer besseren
Generalisierung, weil das Modell dadurch gezwungen wird, die Inhalte in
den Datenbeständen besser zu abstrahieren. Zwar gibt es hier Grenzen,
allerdings führt deren Überschreitung allenfalls zu einer Verschwendung
von Ressourcen, weil das Ergebnis auch mit weniger Aufwand hätte er‐
reicht werden können. In der Praxis würde man in einem solchen Fall
die Kapazität des Modells erhöhen – beispielsweise, indem man in einem
KNN durch Anpassung entsprechender Hyper-Parameter die Anzahl der
Schichten oder die Anzahl der Neuronen in den Schichten erhöht.

IV. Datenaugmentierung

Ein gängiges Mittel, um die Generalisierungsfähigkeit und Robustheit eines
Modells zu verbessern, ist das Training mit mehr Daten. Sind diese nicht
verfügbar, kann die Menge und Vielfalt der Trainingsdaten künstlich durch
Datenaugmentierung erhöht werden.13 Im Prozess der Augmentierung wird
eine Vielzahl leicht veränderter Kopien der bereits vorhandenen Daten
erzeugt. Die Art der Veränderung ist datentypabhängig. Typische Opera‐
tionen bei Bilddaten sind etwa das Drehen (rotation), das Zuschneiden
(cropping), das Spiegeln (flipping), das Skalieren (scaling), das Verschieben
(translation) sowie die Farbanpassung oder das Hinzufügen von Rauschen
(noise). Augmentierte Kopien werden in der Regel nur temporär erstellt
und nach ihrer Verwendung zum Training wieder gelöscht.

B. Künstliche Neuronale Netze (KNNs)

Ein Künstliches Neuronales Netz (KNN) ist ein Computermodell, das nach
dem Vorbild des menschlichen Gehirns arbeitet, um komplexe Muster und
Zusammenhänge in Datenbeständen zu erkennen. Es besteht aus mehreren
Schichten sogenannter Neuronen, die miteinander verbunden sind. Diese

13 Vgl. z.B. Shorten/Khoshgoftaar, A survey on Image Data Augmentation for Deep
Learning,. J Big Data 6, 60 (2019) (einsehbar unter: https://doi.org/10.1186/s40537-01
9-0197-0 (zuletzt am 9. August 2024)).

B. Künstliche Neuronale Netze (KNNs)

27

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0


Neuronen sind einfache Recheneinheiten, die Informationen verarbeiten und
weitergeben. Jedes Neuron hat dabei eine oder mehrere eingehende Verbin‐
dungen, die über individuelle Gewichte verfügen. Die über die Verbindungen
empfangenen Eingaben werden mit den jeweiligen Gewichten multipliziert
und aufaddiert. Die Aktivierungsfunktion14 wandelt den erhaltenen Wert in
eine Aktivierung des Neurons um, die dann als Ausgabe weitergegeben wird.
Grafisch findet sich dieser Ablauf in Abbildung 1 dargestellt.

 

 

 

 

 

 

Aufbau eines künstlichen Neurons

Es gibt eine Vielzahl an Möglichkeiten, wie Neuronen miteinander zu
Netzen verbunden werden können. Die dabei entstehenden Strukturen
werden als (Netzwerk-)Architekturen bezeichnet. Viele Forschungsprojekte
beschäftigen sich damit, passende Architekturen für bestimmte Probleme
zu finden. Beispielsweise eignen sich sogenannte Convolutional Neural
Networks (CNNs) besonders gut zur Verarbeitung von Bilddaten, wohin‐
gegen sogenannte Rekurrente Neuronale Netze (RNNs), Long Short-Term
Memory Netze (LSTMs) und Transformer gut mit Sequenzdaten umgehen
können. Die verschiedenen Netzwerk-Designmuster lassen sich nahezu be‐
liebig kombinieren und verschachteln, um komplexere Netzwerk-Architek‐
turen zu schaffen. Die in Abschnitt C. vorgestellten generativen Modelle

Abbildung 1:

14 Aktivierungsfunktionen sind in der Regel nicht-lineare Funktionen wie die logisti‐
sche Funktion oder die sogenannte ReLU-Aktivierung. Eine echte Schwellenwert‐
funktion, bei der ab einem bestimmten Eingabewert eine „1“ und sonst eine „0“ aus‐
gegeben wird, war früher in der KNN-Forschung verbreitet, findet heute aber wegen
ihrer unvorteilhaften Ableitung keine Anwendung mehr.

§ 2. Technologische Grundlegung

28

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


entsprechen einer höheren Abstraktionsebene – d.h., sie können intern
verschiedenste Basis-Architekturen verwenden und kombinieren, wobei de‐
ren Wahl häufig durch die Art der zu verarbeitenden Daten (Texte, Bilder,
Videos etc.) bestimmt wird.

I. Aufbau und Struktur

Typischerweise werden die Neuronen in einem KNN in Schichten (layer)
organisiert. Eine besondere Rolle spielen dabei die Ein- und die Ausgabe‐
schicht, welche die Eingabewerte für das Netz entgegennehmen oder die
Ausgabe zurückgeben.  Alle anderen Schichten werden als  „versteckt“ be‐
zeichnet. Hier findet die Datenverarbeitung statt. Jede Schicht ist in der Lage,
Muster in der Ausgabe der darunterliegenden Schicht zu lernen. Die Kom‐
plexität  und Abstraktheit  der  erkannten Muster  nehmen von Schicht  zu
Schicht zu, weil sich „Muster von Mustern“ entwickeln und herausbilden.

Bei einem KNN sind die trainierbaren Parameter sämtliche Verbin‐
dungsgewichte.15 Typische (nicht-trainierbare) Hyper-Parameter sind z.B.
die Anzahl der Neuronen in einer Schicht oder die Anzahl der Schichten
des Netzes. Ein trainiertes Modell kann vollständig durch seine vordefinier‐
te Architektur und die gelernten Parameterwerte (Gewichte) beschrieben
werden. Es entspricht einer komplexen Funktion, die für gegebene Einga‐
ben bestimmte Ausgaben liefert. Bei der Berechnung der Ausgabe für eine
konkrete Eingabe entstehen viele Teilergebnisse: Angefangen von der Ein‐
gabeschicht, werden Schicht für Schicht die Aktivierungen der Neuronen
berechnet, bis schließlich die Ausgabe bestimmt ist. Es muss klar unter‐
schieden werden zwischen diesen Aktivierungen, die eine Reaktion auf eine
konkrete Eingabe darstellen, und den Gewichten, die zusammen mit der
Architektur das Modell beschreiben.

Je nach Architektur eines Netzes können Gruppen von Neuronen und
deren Aktivierungen in (mathematischen) Strukturen organisiert sein. Die
Aktivierungen einer Anzahl von n Neuronen in einer einfachen Schicht
können als ein n-dimensionaler Vektor betrachtet werden – vereinfacht:
als Liste von n Werten, deren Reihenfolge durch die der entsprechenden
Neuronen vorgegeben ist. Jeder dieser n-dimensionalen Aktivierungsvekto‐

15 Zusätzlich kann es sogenannte bias-Werte geben, welche die Basisaktivität eines
Neurons bestimmen, wenn dieses keine Eingaben erhält. Durch einfaches Umstellen
der Formeln können die bias-Werte aber auch wie Verbindungsgewichte behandelt
werden. Daher werden sie im Folgenden nicht gesondert betrachtet.

B. Künstliche Neuronale Netze (KNNs)

29

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


ren entspricht einem Punkt in einem n-dimensionalen Raum, der alle mög‐
lichen Kombinationen von n-dimensional definierten Werten umspannt.
Das bedeutet: Jede denkbare Eingabe in eine Schicht wird auf einen Punkt
in diesem Raum abgebildet. Dieser Punkt ist die interne Repräsentation
der Eingabe innerhalb dieser Schicht. Die nächste Schicht verwendet diese
interne Repräsentation der Eingabe in die vorangehende Schicht wiederum
als Eingabe und bildet diese auf ihre eigene interne Repräsentation ab.

Die unterschiedlichen, aufeinander folgenden Repräsentationen können
im Zuge der Kaskaden von Schicht zu Schicht zunehmend abstrakter
werden. Beispielsweise könnte ein KNN, welches Fotos von Gesichtern
analysiert, ein Eingabebild zunächst in Form von einfachen Kanten mit
unterschiedlicher Ausrichtung repräsentieren. Die nächste Schicht kann
daraus eine komplexere Repräsentation basierend auf Gesichtsteilen wie
Augen, Nase oder Mund ableiten, bis dann schließlich eine tiefe Schicht das
gesamte Gesicht modelliert.

Die Netzwerkparameter (Gewichte) bestimmen dabei jeweils, was durch
die Neuronen erfasst wird (Merkmal/Eigenschaft), und die Aktivierung
gibt an, wie stark die Ausprägung ist. Aus der Kombination aller Merkmale
und der Stärke ihrer Ausprägungen ergibt sich insgesamt eine sogenannte
verteilte Repräsentation, bei der selten nur einzelne Neuronen aktiv sind.
Welche der mehr oder weniger abstrakten Merkmale in den Datenbestän‐
den das KNN im Laufe des Trainings lernt zu repräsentieren, hängt im We‐
sentlichen von der Lernaufgabe ab. Was zur Lösung der Aufgabe notwendig
ist, wird gelernt.

Die Interpretation der internen Repräsentationen von KNNs ist alles
andere als trivial und in der IT-Wissenschaft ein sehr aktives Forschungs‐
feld. Der Mechanismus zur Berechnung der Aktivierungen in Abhängigkeit
von den trainierbaren Netzwerkparametern ist im Kern zwar einfach, aber
die langen Verkettungen in tiefen Netzen mit vielen Schichten und daraus
resultierenden, hochdimensionalen Räumen aufgrund des Einsatzes sehr
vieler Neuronen erweisen sich als Herausforderung für die Gewinnung ge‐
nauer Erkenntnisse über die gelernten Muster und das daraus resultierende
Verhalten eines KNNs. In der Sache sind die resultierenden Forschungsfra‐
gen durchaus vergleichbar mit dem Studium des menschlichen Gehirns.
Daher sind jedenfalls kurz- und mittelfristig keine belastbaren Aussagen
darüber zu erwarten, ob und wie ein KNN en détail funktioniert, wenn z.B.
der konkrete Stil eines Künstlers repräsentiert wird.

§ 2. Technologische Grundlegung

30

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


II. Embeddings und latent space

Als Sonderfälle für Repräsentationen werden in der Literatur sogenannte
embeddings und der latent space erwähnt:

Ein embedding ist (vereinfacht) eine Abbildung auf Vektoren mit konti‐
nuierlichen Werten in einem n-dimensionalen Raum. Dieser Zusammen‐
hang wurde bereits im vorhergehenden Abschnitt beschrieben. Der Begriff
wurde insbesondere im Kontext der sogenannten word embeddings16 popu‐
lär, wird aber auch für andere (meist diskrete) Eingabedaten verwendet.
Die entscheidende Besonderheit besteht darin, dass bei embeddings die
Vektoren die Ähnlichkeit und Beziehungen zwischen den Eingabedaten
erfassen sollen, was im Anschluss weitere Analysen ermöglicht. Ein Beispiel
hierfür findet sich in Abbildung 2 grafisch erläutert.

Beispiel eines zweidimensionalen word embeddings. Die
Positionen der embedding-Vektoren im Raum bilden die
Relation „König verhält sich zu Königin wie Mann zu Frau“ ab.

Abbildung 2:

16 Word embeddings bilden die Wörter des Vokabulars einer Sprache auf Vektoren in
einem n-dimensionalen Raum ab, wobei die räumlichen Positionen zueinander nach
Möglichkeit semantische Relationen widerspiegeln sollen. Siehe z.B. Mikolov/Chen/
Corrado/Dean, Efficient Estimation of Word Representations in Vector Space, Pro‐
ceedings of the International Conference on Learning Representations (ICLR) 2013
(einsehbar unter: https://doi.org/10.48550/arXiv.1301.3781 (zuletzt am 9. August
2024)).

B. Künstliche Neuronale Netze (KNNs)

31

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.1301.3781 
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Die  Bezeichnung  latent  space  leitet  sich  vom  Konzept  der  sogenannten
latenten Variablen aus der Wahrscheinlichkeitstheorie ab.17 Unter bestimmten
Voraussetzungen, welche die erforderlichen Eigenschaften von Wahrschein‐
lichkeitsverteilungen18 sicherstellen, können Aktivierungen von Neuronen
als Wahrscheinlichkeiten interpretiert werden. Am häufigsten findet dies bei
der KNN-Ausgabe bei Klassifikationsproblemen Anwendung: Hierbei gibt
jedes Neuron in der Ausgabeschicht für eine mögliche Klasse die entspre‐
chende Wahrscheinlichkeit aus, so dass die Gesamtheit aller Aktivierungen in
der Schicht eine Wahrscheinlichkeitsverteilung ergibt. Diese Wahrschein‐
lichkeiten sind dann direkt interpretierbar, weil sie sich auf gegebene Klassen
beziehen. Beim latent space wird hingegen durch die Aktivierungen in einer
bestimmten (Nicht-Ausgabe-)Schicht die Wahrscheinlichkeitsverteilung für
sogenannte  latente  Variablen  modelliert.  Das  Wort  „latent“  bedeutet  in
diesem Kontext „verborgen“ oder „unsichtbar“ und bezeichnet Merkmale, die
durch das Modell gelernt werden, um die zugrunde liegende Struktur der
Daten zu erfassen, ohne dass sie explizit in den Originaldaten sichtbar sind.
Insbesondere bekannt wurde das Konzept des latent space im Kontext der
KNNs mit der Einführung des nachfolgend noch näher erläuterten, soge‐
nannten variational autoencoders (VAE).19 Was genau ein Modell in seinen
latenten Variablen modelliert, hängt von seiner Trainingsaufgabe ab. VAEs
sollen z.B. einen latent space lernen, in welchem kleine Änderungen in den
Koordinaten zu kleinen Änderungen in den rekonstruierten oder generierten
Daten führen.20 Eine Interpretation der latenten Repräsentationen – insbe‐
sondere der Bedeutung der einzelnen Dimensionen des latenten Raumes – ist
nur schwer möglich. Auch hier erweisen sich die n-Dimensionalität und das
hohe Abstraktionsniveau als große Herausforderung.

17 Siehe z.B. Tomczak, Latent Variable Models, in: Deep Generative Modeling, 2022
(einsehbar unter: https://doi.org/10.1007/978-3-030-93158-2_4 (zuletzt am 9. August
2024)).

18 Aktivierungen von Neuronen können prinzipiell beliebige Werte haben. Wahrschein‐
lichkeiten dürfen hingegen nur Werte zwischen 0 und 1 annehmen und müssen sich
bei diskreten Verteilungen zu 1 summieren. Bei kontinuierlichen Verteilungen wird
statt der Summe das Integral über der Wahrscheinlichkeitsdichtefunktion gebildet.

19 Kingma/Welling, Auto-Encoding Variational Bayes, in: Proceedings of the 2nd Inter‐
national Conference on Learning Representations (ICLR) 2014 (einsehbar unter:
https://doi.org/10.48550/arXiv.1312.6114 (zuletzt am 9. August 2024)). Siehe zudem
unten § 2.C.V.

20 Insoweit besteht eine gewisse Ähnlichkeit zu den beschriebenen embeddings. Tatsäch‐
lich wird der Begriff auch im Zusammenhang mit dem latent space verwendet. Beim
latent space liegt der Fokus jedoch auf einer wahrscheinlichkeitstheoretischen Sicht,
welche bei embeddings in der Regel nicht gegeben ist.

§ 2. Technologische Grundlegung

32

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1007/978-3-030-93158-2_4
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-93158-2_4
https://doi.org/10.48550/arXiv.1312.6114


III. Training von KNNs

Beim Training eines KNNs werden dessen Parameter (Verbindungsgewich‐
te) so angepasst, dass der Trainingsfehler minimiert wird. Dies erfolgt
über eine Vielzahl von „Trainingsdurchgängen“. Der Ablauf eines derartigen
Trainings lässt sich im grafischen Überblick wie nachfolgend in Abbildung
3 darstellen.

 

 

 

 

 

 Schematische Darstellung des Trainingsprozesses eines KNNs

Die Funktion zur Bestimmung des Trainingsfehlers für das aktuelle Modell
und einen Stapel (batch) von Trainingsbeispielen hängt dabei von der
durch das Modell berechneten Funktion und der Fehlerfunktion (loss) ab,
welche die Ausgabe mit dem gewünschten Ergebnis vergleicht (vgl. Vorgang
1 und Vorgang 2 in der Grafik in Abbildung 3). Eine Bestimmung des
Optimums ist in der Regel aufgrund der Komplexität der Fehlerfunktion
unmöglich. Daher muss eine Heuristik angewendet werden, die zwar mit
hoher Wahrscheinlichkeit keine optimale, in der Regel aber eine ausrei‐
chende Lösung liefert. Konkret kommt dabei das sogenannte Gradienten‐
abstiegsverfahren zum Einsatz (vgl. Vorgang 4 in Abbildung 3): Dessen
Idee besteht darin, den Gradienten (d.h. die Ableitung) des Fehlers bezüg‐
lich der Modellparameter (Gewichte) zu bestimmen. Der Gradient gibt an,
in welche Richtung jeder Parameter geändert werden muss, damit sich der

Abbildung 3:

B. Künstliche Neuronale Netze (KNNs)

33

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Fehler am stärksten vergrößert. Mit einer Anpassung in die entgegengesetz‐
te Richtung kann der Fehler entsprechend verringert werden. Ausgehend
von einer (meist zufälligen) Initialisierung der Parameter folgt man beim
Training des Modells dann in vielen kleinen Schritten dem Gradienten
bis ein (lokales) Minimum erreicht ist, wo sich der Fehler nicht mehr
verringert, oder ein anderes Abbruchkriterium erreicht wurde.

Bildlich beschrieben ähnelt dies der Situation, dass ein Mensch beim
Wandern im Gebirge jeden seiner Schritte in die Richtung des lokal (!)
stärksten Abfalls des Geländes richtet. Die Hoffnung dabei ist, am Ende ein
Tal zwischen den Bergen zu erreichen. Die aktuelle Position auf der Karte
ist dabei durch die Werte der Modellparameter bestimmt und die Höhe
sowie das lokale Gefälle entsprechen dem Fehler und dessen Ableitung für
den aktuell zum Training eingesetzten batch im Bestand der Trainingsda‐
ten.21 Der jeweils zufällig zusammengestellte batch aus den Trainingsdaten
wechselt nach jedem Schritt, so dass das „Gelände“ des „Gebirges“ jedes
Mal anders aussieht.22 Bei modernen KNNs mit Milliarden von Parametern
hat die Karte des „Gebirges“ deshalb auch Milliarden von Dimensionen.
In jedem Schritt muss für jeden Parameter eine (partielle) Ableitung be‐
rechnet werden, die den Anstieg des Fehlers entlang der entsprechenden
Dimension im Raum beschreibt (vgl. Vorgang 3 in Abbildung 3). Mit dem
Backpropagation-Algorithmus können die zahlreichen partiellen Ableitun‐
gen besonders effizient berechnet werden. Dabei werden die Ableitungen
in umgekehrter Reihenfolge wie die Aktivierungen berechnet – also ausge‐
hend von der Ausgabe rückwärts, wobei bereits berechnete Zwischenergeb‐
nisse wiederverwendet werden können.

Mit dem beschriebenen Verfahren lassen sich beliebige KNNs mit be‐
liebigen Lernaufgaben (und entsprechenden Fehlerfunktionen) trainieren.
Voraussetzung ist lediglich, dass alle verwendeten mathematischen Opera‐
tionen differenzierbar und die Gradienten berechenbar sind. Theoretisch
kann nachgewiesen werden, dass ein ausreichend großes KNN mit mindes‐
tens einer versteckten Schicht in der Lage ist, jede stetige Funktion mit
beliebiger Genauigkeit zu approximieren. In der Praxis wurde für tiefe

21 Die „Karte“ ist jenseits der aktuellen Position weiß, weil die Fehlerwerte für andere
Modellparameterwerte unbekannt sind. Diese alle zu berechnen verbietet sich auf‐
grund der unfassbar großen Menge an möglichen Kombinationen.

22 Man könnte alle Trainingsdaten auf einmal verarbeiten und hätte in diesem Fall ein
konsistentes Gelände. Das ist allerdings in der Regel technisch nicht möglich, weil zu
viel Arbeitsspeicher benötigt würde. Auch müssten erst sehr viele Daten verarbeitet
werden, um allein den ersten Schritt zur Verbesserung zu machen.

§ 2. Technologische Grundlegung

34

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


neuronale Netze gezeigt, dass sie komplexe Funktionen sehr genau approxi‐
mieren können, indem sie hierarchische Merkmale lernen und komplexe
Datenstrukturen erfassen.

Die wichtigsten Aspekte lassen sich wie folgt zusammenfassen:

(1) Die Parameter von KNNs werden mit Gradientenabstieg optimiert
und dabei in vielen kleinen Schritten angepasst.

(2) Die (negativen) Gradienten geben dabei die Richtung vor, in die sich
der für das aktuelle Modell und einen zufälligen Batch von Trainings‐
daten gemessene Fehler am stärksten verringert.

(3) Der Gradient für jeden Parameter wird dabei über den gesamten Batch
gemittelt, was den Einfluss einzelner Trainingsbeispiele (und deren
Rauschanteil) verringert und zu mehr Stabilität beim Training führt.

(4) Im Verlauf des Trainings wird in der Regel mehrfach über die Trai‐
ningsdaten iteriert. Eine Iteration über den gesamten Datensatz wird
als Epoche bezeichnet. Häufig werden in jeder Epoche die Batches der
Trainingsdaten zufällig neu zusammengestellt.

IV. Pre-Training und Fine-Tuning

Der Trainingsprozess eines Modells kann gegebenenfalls aus mehreren
Schritten bestehen. Dabei können in jedem Schritt die verwendeten Daten
oder die Lernaufgabe variieren. Beispielsweise könnte ein generatives Mo‐
dell für Bilder zunächst auf einem großen allgemeinen Bilddatenbestand
trainiert werden und erst in einem weiteren Schritt auf Bildern eines
bestimmten Stils. Der erste Schritt wird dabei als Pre-Training und das
Ergebnis als Basismodell (base model) bezeichnet. Den daran anschließen‐
den oder nachfolgenden Schritt, in dem das Modell spezialisiert wird,
nennt man Fine-Tuning. In komplexeren Szenarien können auch weitere
Zwischenschritte hinzukommen. Die verschiedenen Schritte können von
unterschiedlichen Akteuren durchgeführt werden. So kann beispielweise
aus einem open-source Basismodell ein spezielles proprietäres Inhouse-Mo‐
dell abgeleitet werden.23

23 Vgl. für das Llama Modell und verschiedene Spezialisierungen insbesondere Abb. 5 in
Zhao et al., A survey of large language models, arXiv preprint arXiv:2303.18223 (2023)
(einsehbar unter: https://doi.org/10.48550/arXiv.2303.18223 (zuletzt am 9. August
2024)).

B. Künstliche Neuronale Netze (KNNs)

35

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2303.18223


V. Weiterverwendung von trainierten Modellen und catastrophic forgetting

Ein trainiertes Modell ist eindeutig durch seine Architektur (inklusive
der strukturellen Hyper-Parameter) sowie die Werte seiner Parameter be‐
stimmt. In der Praxis bedeutet das, dass bei der Veröffentlichung eines Mo‐
dells zum einen der Programmcode, mit dem die Architektur beschrieben
wird, und zum anderen die Werte aller Parameter im Modell zur Verfügung
gestellt werden. Auf dieser Grundlage kann das Modell in unterschiedliche
KI-Anwendungen integriert werden. Auch eine Verwendung des KI-Mo‐
dells oder von Teilen des Modells innerhalb eines anderen Modells ist
möglich. So werden etwa Modelle, die auf großen Datenmengen trainiert
wurden – z.B. sogenannte foundation models – als Merkmalsextraktoren
für andere Modelle genutzt. Dabei ist es insbesondere auch möglich, nur
die frühen Schichten des KNNs zu verwenden, die nur Merkmale niedriger
Abstraktion erfassen, aber dafür in der Regel auch auf anderen Datensätzen
des gleichen Datentyps gut funktionieren. Die übernommenen Modellteile
können überdies sowohl „eingefroren“ werden, was weitere Änderungen
verhindert, als auch im Laufe des weiteren Trainings verändert werden.

In jedem Trainingsschritt können sich potentiell alle trainierbaren Mo‐
dellparameter ändern – wenn auch nur in kleinen Schritten. D.h. ein
vortrainiertes Modell kann bereits nach einem weiteren Trainingsschritt
nicht mehr anhand seiner Parameterwerte wiedererkennbar sein. Ebenso
sind Änderungen an der Architektur ohne signifikante Verschlechterung
der Performance möglich, so etwa durch pruning (Beschneiden), bei dem
wenig genutzte Netzwerkteile ähnlich einem Baumbeschnitt entfernt wer‐
den. Eine weitere Möglichkeit besteht in der „Distillation“, bei der ein
vortrainiertes Modell als sogenannter Lehrer für ein (meist kompakteres)
Schülermodell fungiert. Alle diese Techniken erzeugen Modelle, denen
man die Abstammung von einem vortrainierten Modell nicht ansehen und
ohne Einblick in den Trainingsprozess nicht nachweisen kann. Sie könnten
daher insbesondere auch verschleiern, dass ein kommerziell eingesetztes
Modell aus einem open-source Modell entwickelt wurde, welches nicht für
eine kommerzielle Nutzung lizenziert ist.

Als sogenanntes catastrophic forgetting bezeichnet man schließlich das
Phänomen, dass ein KNN beim Weitertrainieren zuvor gelernte Muster
schnell und unerwartet verliert. Dies tritt häufig in Szenarien auf, in denen
das Modell sequenziell auf verschiedene Aufgaben trainiert wird, insbeson‐
dere in kontinuierlichen Lernumgebungen. Das Modell passt sich dann so
stark an die neue Aufgabe an, indem es die Gewichte verändert, dass es die

§ 2. Technologische Grundlegung

36

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Muster und Merkmale „vergisst“, die für die vorherigen Aufgaben wichtig
waren. Hierbei handelt es sich um einen extremen Fall mit negativen Aus‐
wirkungen des im vorhergehenden Abschnitt beschriebenen Phänomens.

VI. Reproduzierbarkeit eines Trainingsvorgangs

Werden zusätzlich zu einem Modell auch der Programmcode für den
Trainingsprozess sowie die zum Training benötigten Daten veröffentlicht,
ist eine „Reproduktion“ des Trainingsvorgangs möglich.24 Für die wissen‐
schaftliche Reproduzierbarkeit reicht es in der Regel aus, ein Modell zu
trainieren, was eine vergleichbare Performance liefert.25 Für die urheber‐
rechtliche Beurteilung stellt sich in diesem Zusammenhang vor allem die
Frage, ob es möglich ist, ein Trainingsergebnis – also die konkreten Pa‐
rameterwerte für ein KI-Modell – exakt zu reproduzieren. Damit kann
z.B. die Frage beantwortet werden, ob beim Training bestimmte Daten
verwendet wurden oder nicht. Es ist extrem unwahrscheinlich, dass ein
identisches Modell mit einer anderen Datenbasis trainiert wurde.26 Auch
mit einem identischen Datenbestand ist eine exakte Reproduzierbarkeit
allerdings nahezu unmöglich. Das Ergebnis eines Trainings hängt neben
dem Programmcode für die Architektur und das Training inklusive aller
Hyper-Parameter sowie den Daten nämlich von weiteren Faktoren ab. Zu
nennen sind insoweit vor allem:

(1) Zufallsgenerator
Der Trainingsprozess hängt vom Zufall ab. Zum einen werden die Parame‐
terwerte in der Regel zufällig initialisiert, zum anderen werden in jeder

24 Vgl. R4 in Gundersen, The fundamental principles of reproducibility, Phil. Trans.
R. Soc. 2021, A 379: 20200210 (einsehbar unter: https://doi.org/10.1098/rsta.2020.0
210 (zuletzt am 9. August 2024)); sowie Pineau et al., Improving reproducibility in
machine learning research (a report from the NeurIPS 2019 reproducibility program),
Journal of machine learning research 22.164 (2021): 1–20 (einsehbar unter: https://ar
xiv.org/pdf/2003.12206 (zuletzt am 9. August 2024)).

25 Neben den (gemittelten) Fehlerwerten werden zudem häufig weitere Evaluierungs‐
maße herangezogen.

26 Es wäre denkbar, das Optimierungsproblem so zu entwerfen, dass damit andere
Daten gefunden werden, die zum gleichen Trainingsergebnis führen. Dann müsste
aber bei jedem Optimierungsschritt das komplette Training durchlaufen werden. Der
Rechenaufwand hierfür wäre selbst bei moderaten Modellgrößen so hoch, dass diese
Möglichkeit praktisch ausgeschlossen werden kann.

B. Künstliche Neuronale Netze (KNNs)

37

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.1098/rsta.2020.0210
https://arxiv.org/pdf/2003.12206
https://arxiv.org/pdf/2003.12206
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.1098/rsta.2020.0210
https://arxiv.org/pdf/2003.12206
https://arxiv.org/pdf/2003.12206


Epoche die Trainingsbatches zufällig zusammengestellt. Für eine exakte
Reproduzierbarkeit müsste sichergestellt sein, dass der Zufallsgenerator
über den ganzen Trainingsprozess hinweg die exakt gleichen Ausgaben
erzeugt. Dazu wird in der Regel der Startwert (seed) manuell eingestellt.
Das Verhalten des Zufallsgenerators kann aber auch von den im Folgenden
beschriebenen Faktoren beeinflusst werden, wie z.B. in der Dokumentation
von PyTorch nachzulesen ist.27

(2) Weitere Software
Bei der Implementierung von KNN-Architekturen, deren Trainingsprozes‐
sen und der Vorverarbeitung der Daten kommen verschiedenste Softwarebi‐
bliotheken zum Einsatz wie z.B. Tensorflow oder PyTorch. Dabei können
schon kleinste Unterschiede bei den Versionen zu einem anderen Trainings‐
ergebnis führen. Benötigte Softwarebibliotheken und deren Versionen kön‐
nen zwar im Programmcode spezifiziert werden. Dennoch ist nicht sicherge‐
stellt, dass eine Bibliothek mit identischer Versionsnummer sich auf unter‐
schiedlichen  Systemen  mit  unterschiedlicher  Hard-  und  Software  exakt
identisch verhält.  Dabei  spielen auch das Betriebssystem und installierte
Systembibliotheken sowie deren Einstellungen eine nicht zu unterschätzende
Rolle.28 Die genaue Version all dieser Komponenten festzuhalten, ist extrem
aufwändig. Eine Virtualisierung oder Containerisierung der Trainingsumge‐
bung kann hier zumindest teilweise Abhilfe schaffen. Die Virtuelle Maschine
oder der Container können dann für eine spätere Reproduktion des Trai‐
ningsprozesses archiviert werden, wobei die installierte Software und die
Einstellungen  „eingefroren“  werden.  Aber  auch  virtuelle  Maschinen und
Container haben eine Laufzeitumgebung, die sich ändern kann. Weiterhin
steigt mit der Komplexität des Trainingsprozesses auch der Aufwand, der hier
betrieben werden muss. Große Modelle werden nicht nur auf einer einzelnen
Maschine, sondern auf riesigen compute clustern trainiert.

27 Vgl. https://pytorch.org/docs/stable/notes/randomness.html (zuletzt eingesehen am
6. Juni 2024) („Completely reproducible results are not guaranteed across PyTorch
releases, individual commits, or different platforms. Furthermore, results may not be
reproducible between CPU and GPU executions, even when using identical seeds.”).

28 Viele für das deep learning eingesetzte Softwarebibliotheken haben hochoptimierten
Programmcode, der sich bei Installation an die Systemumgebung anpasst, um ein
Maximum an Performance zu erreichen. Dadurch kann es zu leicht abweichendem,
internem Verhalten von aufgerufenen Funktionen kommen.

§ 2. Technologische Grundlegung

38

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://pytorch.org/docs/stable/notes/randomness.html
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://pytorch.org/docs/stable/notes/randomness.html


(3) Hardware
Schließlich spielen die Hardware und deren Firmware (d.h. direkt auf der
Hardware installierte Software) eine Rolle. Ein wichtiger Aspekt ist die
numerische Genauigkeit. KNNs verwenden oft Gleitkommazahlen für die
Berechnungen, insbesondere bei der Gewichtsaktualisierung während des
Trainings. Gleitkommazahlen sind durch begrenzte Präzision charakteri‐
siert, was zu Rundungsfehlern führt. Verschiedene CPUs (Hauptprozesso‐
ren), GPUs (Grafikprozessoren) und selbst unterschiedliche GPU-Modelle
können unterschiedliche Rundungsfehler haben. Diese Abweichungen kön‐
nen sich bei den vielen Berechnungen, die während des Trainings eines
KNNs durchgeführt werden, kumulieren und so zu unterschiedlichen Er‐
gebnissen führen, selbst wenn das Modell mehrmals mit den gleichen An‐
fangsbedingungen und Trainingsdaten trainiert wird. Vor allem aber wirkt
sich die in einem System installierte Hardware wie die CPU und die GPU
auf nicht direkt sichtbare Codeoptimierungen aus. Virtualisierung kann
auch hier helfen, weil sie eine Standardhardware innerhalb der virtuellen
Maschine emuliert. Allerdings werden Hardwareressourcen wie CPUs und
GPUs häufig aus Performancegründen direkt angesprochen, wodurch das
genannte Problem weiter bestehen bleibt.

Folglich ist die exakte Reproduktion eines Trainingsprozesses schwer
zu erreichen. Es ist jedoch denkbar, dass gesetzliche Vorgaben und Anfor‐
derungen einen Entwicklungsprozess anstoßen, der mittelfristig zu neuen
Werkzeugen und standardisierten Prozessen führt, welche die exakte Re‐
produzierbarkeit mit vertretbarem Aufwand ermöglichen. Erste Vorschläge
für entsprechende Prozesse, die standardisiert werden könnten, existieren
bereits29 und das Thema der Reproduzierbarkeit ist bereits auf die Agenda
der IT-Wissenschaft gelangt.30

C. Generative KI-Modelle

Generatives Training ist ein Prozess, bei dem ein KI-Modell darauf trainiert
wird, neue Daten zu erzeugen, die den Trainingsdaten ähneln. Anstatt

29 Vgl. z.B. Chen et al., Towards training reproducible deep learning models, Proceed‐
ings of the 44th International Conference on Software Engineering (2022) (einsehbar
unter: https://doi.org/10.1145/3510003.3510163 (zuletzt am 9. August 2024)).

30 Editorial, Moving towards reproducible machine learning, Nat. Comput. Sci. 1, 629–
630 (2021) (einsehbar unter: https://doi.org/10.1038/s43588-021-00152-6 (zuletzt am
9. August 2024)).

C. Generative KI-Modelle

39

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1038/s43588-021-00152-6
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1038/s43588-021-00152-6


lediglich Muster zu erkennen oder zu klassifizieren, lernt das Modell, die
zugrunde liegende Wahrscheinlichkeitsverteilung der Trainingsdaten zu er‐
fassen und daraus neue, ähnliche Daten zu generieren. Hierbei handelt es
sich um eine weitaus komplexere Zielsetzung als etwa die Klassifikations‐
aufgabe bei typischem überwachtem Lernen. Um diese Aufgabe zu lösen,
müssen die Trainingsdaten möglichst ganzheitlich modelliert werden. Die
konkreten Netzwerkarchitekturen und optimierbaren Lernaufgaben kön‐
nen dabei unterschiedliche Formen annehmen. Im Folgenden werden die
für die Diskussion praktisch relevanten generativen KI-Modelle vorgestellt.
Dabei werden die prinzipiellen Lernaufgaben und die Verarbeitung der
Trainingsdaten erklärt. Zu jedem der vorgestellten Ansätze existiert eine
schwer überschaubare Vielzahl von Varianten, auf die hier nicht näher
eingegangen werden muss und soll.

I. Technische Grenzen der Trainierbarkeit

Unabhängig vom gewählten technischen Ansatz ist es realistisch grundsätz‐
lich ausgeschlossen, dass ein generatives KI-Modell die Wahrscheinlich‐
keitsverteilung der verwendeten Trainingsdaten vollumfänglich erfasst. Bei
einem bildgenerierenden Modell hieße dies beispielsweise, dass es die exak‐
te Wahrscheinlichkeitsverteilung für den Wert jedes einzelnen Bildpixels
in Abhängigkeit aller anderen Bildpixel vorhersagen könnte. Eine derartig
exakte Modellierung ist nicht gewünscht, weil sie auch das irrelevante
Rauschen in den Daten abdecken würde. Dies wäre ein klassischer Fall
von overfitting. Überdies ist eine derartige Modellierung aus technischen
Gründen nicht praktikabel: Um dies für große Datenmengen zu erreichen,
würde die Kapazität des Modells in der Regel nicht ausreichen. Selbst wenn
die Kapazität keine Grenzen setzte, würden aber in der Regel viel mehr
Trainingsdaten benötigt, um die komplette Wahrscheinlichkeitsverteilung
zu schätzen, als zur Verfügung gestellt werden könnten. Daher kann die
Aufgabe eines generativen KI-Modells stets nur annähernd gelöst werden.
Jedes Modell dieser Art muss daher zwangsläufig lernen, aus den Trainings‐
daten heraus für seine Ausgabe zu generalisieren.

Zur Veranschaulichung dieses Sachverhalts bietet sich die Modellierung
von Texten durch sogenannte large language models (LLMs) an. Dabei
soll für einen gegebenen Kontext – dem in der Eingabe geschriebenen
Text – die bedingte Wahrscheinlichkeitsverteilung für das nächste Wort

§ 2. Technologische Grundlegung

40

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


vorhergesagt werden. Besteht der Kontext nur aus dem aktuellen Wort,
lässt sich diese Wahrscheinlichkeitsverteilung einfach durch eine große
(quadratische) Tabelle modellieren, in der die Zeile dem aktuellen Wort
und die Spalte dem nächsten Wort entspricht. Die Werte in jeder Zelle
können dann bestimmt werden, indem man zunächst für ein gegebenes
Korpus von Texten die Häufigkeiten aller möglichen Wortpaare31 ermittelt.
Für jede Zeile werden anschließend alle Werte durch die Zeilensumme
geteilt. Damit erhält man jeweils eine Wahrscheinlichkeitsverteilung. Beim
Generieren wird dann in der Zeile für das aktuelle Wort die Wahrschein‐
lichkeitsverteilung nachgeschlagen und daraus ein zufälliger Wert gezogen.

Möchte man hingegen mehr als nur das aktuelle Wort als Kontext be‐
trachten, wird für jede mögliche Kontext-Wortfolge eine Zeile in der Tabel‐
le angelegt. Die Spaltenanzahl bleibt dabei gleich, aber die Zeilenanzahl
steigt exponentiell. Für eine Sprache mit einem (recht kleinen) Vokabu‐
lar von 100.000 Wörtern würden bei einer Kontextlänge von n Wörtern
100.000n Zeilen benötigt. Dieser einfache Ansatz ist technisch schwer um‐
zusetzen. Zum einen wird der Speicherbedarf für die Tabelle (d.h. die Ka‐
pazität des Modells) schnell exorbitant hoch, zum anderen werden immer
mehr Daten benötigt, um die Einträge in der Tabelle vernünftig schätzen
zu können. Je länger eine Wortfolge als Kontext ist, desto seltener tritt sie
in den Daten auf. Damit gibt es weniger Einträge in der entsprechenden
Tabellenzeile und die Schätzung wird immer schlechter. Für unbekannte
Kontexte können überhaupt keine Wahrscheinlichkeiten bestimmt werden.
Möchte man längere oder unbekannte Kontexte betrachten, muss man sich
daher von einer perfekten Modellierung verabschieden.

II. Lösung: Approximation

Moderne LLMs verwenden verschiedene Techniken, die jeweils zu einer
approximierten Lösung führen:

(1) An die Stelle der expliziten und exakten Modellierung in Form einer
Tabelle tritt eine Funktion in Form eines KNNs, welches die Kon‐
text-Sequenz inhaltlich abstrahiert (mehr dazu unter (3)) und daraus
die Wahrscheinlichkeitsverteilung für die Ausgabe ableitet. Die Zusam‐

31 Derartige Wortpaare werden Bi-Gramme genannt. Allgemein bezeichnet man eine
Sequenz von n Worten als n-Gramm.

C. Generative KI-Modelle

41

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


menfassung des Kontexts ist dabei je nach Kapazität des KNNs zu
einem gewissen Grad verlustbehaftet, lässt dafür aber eine Generalisie‐
rung zu. Die Einführung der sogenannten Transformer-Architektur32

hat insoweit einen qualitativen Sprung und deutlich längere Kontexte
ermöglicht.

(2) Um die Größe des Vokabulars zu begrenzen, werden als Ein- und Aus‐
gabe des generativen Modells nicht Wörter, sondern sogenannte To‐
kens verwendet, die häufig auftretenden Zeichenketten entsprechen.33

Die gewünschte Größe des Vokabulars wird dabei fest vorgegeben.
Aus diesen Tokens lassen sich neben sämtlichen Wörtern aus den
Trainingsdaten auch Neuschöpfungen zusammensetzen. Daher kann
das Modell mit Wörtern umgehen, die in den Trainingsdaten gar nicht
vorkommen, und auch neue Wörter als Ausgabe erzeugen.

(3) Für jeden Token des Vokabulars wird ein embedding gelernt. Dies
kann sowohl in einem separaten Pre-Training-Schritt oder direkt beim
generativen Training des Modells geschehen. Die embeddings sind
Punkte in einem hochdimensionalen Raum, welche die (gelernte) Se‐
mantik der Tokens codieren.34 D.h. die Abstandsrelationen von embed‐
dings spiegeln die semantischen Relationen der korrespondierenden
Tokens wider. Tokens mit ähnlicher Bedeutung haben embeddings,
die nah beieinander liegen. Insbesondere die Transformer-Architektur
ist durch den sogenannten self-attention Mechanismus in der Lage,
die initialen Token-embeddings Schritt für Schritt mit jeder Schicht
zu verfeinern, indem jeder Token der Kontext-Sequenz in Beziehung
zu allen anderen gesetzt wird. Damit wird die inhaltliche Ebene des
Kontexts erschlossen. Davon ausgehend können Vorhersagen gemacht
werden.

Im Gegensatz zum naiven Tabellenmodell, welches nur auf der Ebene
exakter Ausdrücke durch konkrete Worte operiert, kann ein LLM auf diese
Art lernen, zu abstrahieren und in der Folge eine abstrakte Repräsentation

32 Vgl. zu den komplexen Zusammenhängen und der Transformer-Architektur z.B.
Vaswani et al., Attention is all you need, Advances in neural information processing
systems 30 (NIPS 2017) (einsehbar unter: https://proceedings.neurips.cc/paper/2
017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (zuletzt am 9. August
2024)).

33 In vielen Fällen sind die Token Präfixe, Suffixe, Wortstämme oder Silben. Die Bestim‐
mung des Token-Vokabulars erfolgt allerdings nach rein statistischen Gesichtspunk‐
ten und nicht aufgrund linguistischer Eigenschaften.

34 Siehe bereits oben § 2.B.II.

§ 2. Technologische Grundlegung

42

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


des Kontexts aufzubauen. Diese Repräsentation bildet dann die Basis für
eine Vorhersage, wie der Text fortgesetzt werden kann.

III. Large language models (LLMs) – Autoregressive Modelle

Praktisch alle im allgemeinen Diskurs genannten LLMs, wie z.B. die GPT-
Modelle, zählen zur Gruppe der sogenannten autoregressiven Modelle.35

Diese erzeugen Daten sequenziell, indem sie jeden neuen Wert basierend
auf den vorherigen Werten vorhersagen. Dies macht sie besonders geeig‐
net für Aufgaben, bei denen die Reihenfolge und die Bedingtheit der Da‐
ten eine wesentliche Rolle spielen. Die Modellierung von Sprache durch
autoregressive Modelle wird schon seit Jahrzehnten betrieben, wobei die
Verwendung von KNNs zur Vorhersage der Wahrscheinlichkeitsverteilung
für das nächste Wort oder den nächsten Token den letzten großen Entwick‐
lungsschritt darstellt, der den LLMs schließlich zum Durchbruch in einer
breiten Anwendung verholfen hat. Ein wesentlicher Grund hierfür liegt in
der bisher unerreichten Länge des Kontexts, der verarbeitet werden kann,
und in der zunehmenden Modellgröße und -kapazität. Diese Skalierung
erfordert gleichzeitig mehr Trainingsdaten und Rechenkapazität.

Für das Training eines autoregressiven Modells werden die Datenbestän‐
de zunächst in Teilsequenzen der Länge n zerlegt. Die (selbstüberwachte)
Lernaufgabe besteht darin, bei einer Eingabe des Kontexts bestehend aus
den ersten (n-1) Elementen der Sequenz das n-te Element vorherzusagen.
Das Modell lernt eine komplexe bedingte Wahrscheinlichkeitsverteilung
für das nächste Element. Die Lernaufgabe besteht darin, die Wahrschein‐
lichkeit für den in der Trainingssequenz tatsächlich folgenden Token zu
maximieren. D.h. andere, potentiell ebenfalls passende Tokens führen zu
Fehlern. Dabei ist zu betonen, dass der Fehler, über den das Trainingssignal
für die Anpassung der Parameter abgeleitet wird, allein auf der Ausdrucks‐
ebene entsteht. Die syntaktischen Informationen in den Trainingsdaten
sind für das Training deshalb entscheidend. Die semantische Ebene ist
im Unterschied zur Syntaxebene schließlich hingegen nicht direkt ausles‐
bar. Um generell gute Vorhersagen machen zu können, muss das Modell
allerdings dennoch lernen, den Kontext im Hinblick auf die semantischen

35 Einen umfassenden Überblick bieten vor allem Zhao et al., A survey of large language
models, arXiv preprint arXiv:2303.18223 (2023) (einsehbar unter: https://doi.org/10.4
8550/arXiv.2303.18223 (zuletzt am 9. August 2024)).

C. Generative KI-Modelle

43

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223


Inhalte zu abstrahieren. Gelingt dies nicht, „klebt“ das Modell zu sehr an
den Texten in den Trainingsdaten. Die Generalisierung muss dann schei‐
tern (overfitting). Die in der Praxis regelmäßig beobachtete Memorisierung
von Trainingsdaten kann daher auch als ein Indiz für schlecht oder unzu‐
reichend trainierte LLMs gedeutet werden.36

Zur Klarstellung ist bei der technischen Beschreibung der Funktionswei‐
se von LLMs zudem noch Folgendes festzuhalten: LLMs in ihrer aktuellen
Form, die in der Regel auf der Transformer-Architektur beruht, arbeiten
intern nicht mit Wahrscheinlichkeiten, sondern einzig mit embeddings und
weiteren abstrahierten, internen Vektor-Repräsentationen. Ein latent space
ist bei diesen Modellen nicht vorhanden.

IV. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) haben spätestens seit der Verstei‐
gerung des GAN-generierten Gemäldes „Portrait of Edmond de Belamy“
allgemeine Bekanntheit erreicht.37 Mittlerweile sind GANs beispielsweise in
der Lage, hochaufgelöste, fotorealistische Bilder von Gesichtern zu erzeu‐
gen.38 Sie werden u.a. auch auf der Webseite Artbreeder39 als interaktives,
kreatives Werkzeug zur kollaborativen Erzeugung von Bildern verwendet.

Der Generator-Bestandteil eines GANs besteht aus einem KNN, das zu‐
fälliges Rauschen auf der Eingabeseite in eine Ausgabe umwandelt, die den
Trainingsdaten ähnelt und im Idealfall nicht von diesen zu unterscheiden
ist. Das Lernproblem lässt sich daher umschreiben als: „Generiere Daten,
die wie echt aussehen!“ Es ist allerdings in der Regel nicht trivial, eine
geeignete Fehlerfunktion für dieses Lernproblem zu finden. Daher bedient
man sich eines Tricks und ersetzt die Fehlerfunktion durch ein zweites
KNN, den sogenannten Diskriminator-Bestandteil. Dieser wird mit der
Lernaufgabe trainiert, die echten Trainingsdaten von den generierten Da‐
ten zu unterscheiden. Hierbei handelt es sich um ein einfaches Klassifikati‐
onsproblem, für das die gewünschten Ausgabewerte (echt oder generiert)

36 Siehe hierzu unten § 2.D.III.
37 Alleyne, A sign of things to come? AI-produced artwork sells for $433K, smashing

expectations, CNN, October 25, 2018 (einsehbar unter: https://edition.cnn.com/sty
le/article/obvious-ai-art-christies-auction-smart-creativity/index.html (zuletzt am
9. August 2024)).

38 Siehe z.B. unter https://thispersondoesnotexist.com (zuletzt am 9. August 2024).
39 Vgl. unter https://www.artbreeder.com (zuletzt am 9. August 2024).

§ 2. Technologische Grundlegung

44

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://edition.cnn.com/style/article/obvious-ai-art-christies-auction-smart-creativity/index.html
https://edition.cnn.com/style/article/obvious-ai-art-christies-auction-smart-creativity/index.html
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://edition.cnn.com/style/article/obvious-ai-art-christies-auction-smart-creativity/index.html
https://edition.cnn.com/style/article/obvious-ai-art-christies-auction-smart-creativity/index.html


bekannt sind. Der Generator soll lernen, den Diskriminator zu täuschen.
D.h. der Wert seiner Fehlerfunktion wird kleiner, je häufiger der Diskrimi‐
nator getäuscht werden kann und die generierten Daten als echt klassifi‐
ziert. Beide KNNs werden beim Training zunächst zufällig initialisiert. Die
Verbesserung der Performance des einen Bestandteils führt dazu, dass sich
auch der andere in seiner Leistungsfähigkeit steigern muss. Idealerweise
wird dieser Prozess aufrechterhalten, bis die generierten Daten nicht mehr
von den echten Trainingsdaten zu unterscheiden sind. Der Diskriminator
wird dann nicht mehr benötigt und der Generator kann als generatives
Modell verwendet werden.

Interessant ist, dass der Generator die Trainingsdaten zu keiner Zeit
zu „sehen“ bekommt. Die einzige Information, die er erhält, besteht in
den durch Gradientenabstieg berechneten Parameter-Updates.40 Diese sind
allerdings schon jeweils per Batch gemittelt. Die Fehlerfunktion zum Trai‐
ning operiert nicht wie bei LLMs auf der Rohdatenebene. Vielmehr kann
der Diskriminator beliebige Eigenschaften für seine Entscheidung „Echt
oder generiert?“ in Betracht ziehen. Die Eigenschaften können sich sowohl
auf die Form als auch auf den abstrakten semantischen Inhalt beziehen.

Der latent space eines GANs ist der Eingaberaum des Generators. Aus
diesem werden beim Training zufällige Vektoren gezogen, die dann vom
Generator so umgewandelt werden, dass sie wie echte Daten aussehen.
Nach dem Training können die Vektoren aus dem latent space frei gewählt
werden. Durch gezielte Veränderung der Werte kann das generierte Ergeb‐
nis verändert werden. Diese Möglichkeit wird beispielsweise ausgiebig von
der Webseite Artbreeder genutzt.

V. Variational Autoencoders (VAEs)

Bekannte Modelle sogenannter Variational Autoencoders (VAEs) sind z.B.
die OpenAI Jukebox41 und die erste Version des Bildgenerators DALL-E.42

Ähnlich wie bei den GANs werden bei VAEs zwei KNNs kombiniert, von
denen eines als Generator fungiert. Das zweite KNN agiert als sogenannter
Encoder: Dieser Bestandteil des Modells arbeitet im Gegensatz zum GAN

40 Über die Gradienten erfährt der Generator, wie seine Ausgaben verändert werden
sollten, damit sie aus Sicht des Diskriminators mehr wie „echte“ Daten aussehen.

41 https://openai.com/index/jukebox (zuletzt am 9. August 2024).
42 https://openai.com/index/dall-e (zuletzt am 9. August 2024).

C. Generative KI-Modelle

45

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://openai.com/index/jukebox%20(zuletzt%20am%209.%20August%202024)
https://openai.com/index/dall-e%20(zuletzt%20am%209.%20August%202024)
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://openai.com/index/jukebox%20(zuletzt%20am%209.%20August%202024)
https://openai.com/index/dall-e%20(zuletzt%20am%209.%20August%202024)


mit dem Generator zusammen. Der Encoder bekommt die Trainingsdaten
als Eingabe und wandelt diese in eine interne Repräsentation im latent
space um. Aus diesem Code versucht der Generator, welcher hier auch als
Decoder bezeichnet wird, die ursprüngliche Eingabe wieder zu rekonstruie‐
ren. Das Prinzip eines (einfachen) Autoencoders ist bereits seit den 1980er
Jahren bekannt und ein beliebtes Mittel zum unüberwachten Lernen von
repräsentativen Merkmalen aus Daten.43

Als Fehlerfunktion dient hier zunächst einfach der gemessene Abstand
zwischen den Eingabedaten und ihrer Rekonstruktion. Dabei wird wie bei
den autoregressiven Modellen auf der Ausdrucksebene gearbeitet.44 Ent‐
scheidend ist bei diesem Ansatz, dass die Aufgabe der Rekonstruktion den
beiden KNNs nicht zu leicht gemacht wird. Im einfachsten Fall könnten
die Informationen aus der Eingabe direkt zur Ausgabe kopiert werden, was
allerdings gerade kein „Lernen“ von repräsentativen Merkmalen erfordern
würde. Um dies zu verhindern, kann z.B. die Bandbreite der Übertragung
durch einen Flaschenhals (bottleneck) begrenzt werden oder es werden
bestimmte Anforderungen an den Code gestellt. Das geschieht in der Re‐
gel durch Erweiterung der Fehlerfunktion, so dass auch die gewünschten
Eigenschaften des Codes in die Fehlerberechnung einfließen.

Beim VAE wird der Vorgang aus probabilistischer Sicht betrachtet: Der
Encoder gibt nicht direkt einen Code aus, sondern bestimmt die Parameter
der Wahrscheinlichkeitsverteilung im latent space.45 Von dieser wird dann
eine zufällige Stichprobe gezogen, aus welcher der Decoder die Eingabe
rekonstruieren muss. Dabei werden Anforderungen an die Wahrscheinlich‐
keitsverteilung gestellt, die den Encoder zwingen, den latent space so zu
nutzen, dass dort benachbarte Datenpunkte zu ähnlichen Rekonstruktio‐
nen führen. Dadurch soll vermieden werden, dass der Decoder eine Posi‐
tion im latent space einfach wie einen Datenbankschlüssel benutzen kann,
mit dem er ein abgespeichertes Muster einfach abruft.

Damit auch in diesem Fall die Rekonstruktion gelingt, muss ein Code
basierend auf repräsentativen Merkmalen erlernt werden, der die wichtigs‐
ten Informationen der Eingabe erfasst und unwichtige Informationen wie

43 Vgl. nur Lecun, Modeles connexionnistes de l'apprentissage (connectionist learning
models), 1987 (PhD thesis: Universite P. et M. Curie (Paris 6)) (einsehbar unter:
https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804 (zuletzt am 9. Au‐
gust 2024)).

44 Siehe oben § 2.C.III.
45 In den meisten Fällen ist das eine einfache mehrdimensionale Gaußverteilung mit

Mittelwert und Varianz als Parametern.

§ 2. Technologische Grundlegung

46

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.persee.fr/doc/intel_0769-4113_1987_num_2_1_1804


z.B. Rauschen ignoriert. Der latent space ist entsprechend als abstrakter
Raum zu verstehen, der idealerweise die wesentlichen Merkmale der Daten
in einer kompakten und sinnvolleren Form repräsentiert, als dies in den
Rohdaten der Eingabe der Fall ist. Bestenfalls erfasst die latente Repräsenta‐
tion die Semantik der Daten.

Interpolation im zweidimensionalen latent space eines VAEs
für Bilder von handgeschriebenen Ziffern.46

Navigiert man durch den latenten Raum eines trainierten VAEs, lässt sich
damit die Ausgabe des Generators kontrolliert fließend verändern. Beste‐
hende Daten können dank des Encoders in den latenten Raum abgebildet

Abbildung 4:

46 Die Abbildung wurde entnommen bei Kingma/Welling, Auto-Encoding Variational
Bayes, in: Proceedings of the 2nd International Conference on Learning Representati‐
ons (ICLR) 2014 (einsehbar unter: https://doi.org/10.48550/arXiv.1312.6114 (zuletzt
am 9. August 2024)). Zur Erzeugung der Ausgaben wurden Punkte in gleichmäßigen
Abständen entlang der zwei Dimensionen als Eingabe für den Decoder verwendet.
Die erzeugten Bilder ändern sich nur graduell, was auf eine gute Kontinuität im
latent space hindeutet. Die zum Training verwendeten Bilder aus dem MNIST-Da‐
tensatz haben eine Auflösung von 28x28 Pixeln. Diese 784 Eingabedimensionen
wurden hier auf nur 2 Dimensionen im latent space reduziert.

C. Generative KI-Modelle

47

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1312.6114


und dort manipuliert oder interpoliert werden.47 Die Grafik in Abbildung 4
illustriert diesen Zusammenhang.

Ein VAE kann schließlich auch mit einem Diskriminator wie bei GANs
kombiniert werden. Weiterhin gibt es Varianten mit diskreten latenten
Repräsentationen, bei denen ein Codebuch gelernt wird, aus dem sich
die Repräsentationen zusammensetzen müssen. Andere Varianten lernen
eine Hierarchie von latenten Räumen, die unterschiedliche Detailgrade
abbilden.

VI. Diffusionsmodelle

Praktisch alle aktuell in der Diskussion um generative KI-Modelle als
Beispiele genannten Bildgeneratoren wie Stable Diffusion, Midjourney,
DALL-E (ab Version 2) und Imagen sind sogenannte Diffusionsmodelle.
Diese Modelle generieren ihren Output basierend auf einem schrittweisen
Prozess, der die Daten nach und nach von einem einfachen Zustand (reines
Rauschen) in einen komplizierteren Zustand (komplexe Daten) transfor‐
miert. In der Vorwärtsdiffusion (noising) wird den Trainingsdaten in vielen
kleinen Schritten Rauschen hinzugefügt, so dass die Daten am Ende des
Prozesses nur noch wie reines Rauschen aussehen. In der Rückwärtsdiffusi‐
on (denoising) wird der Prozess umgekehrt. Dies ist die Lernaufgabe des
Modells. Es lernt, wie man in jedem Schritt des Rauschens die Daten
teilweise wiederherstellt. Da beim Training das hinzugefügte Rauschen
und die weniger verrauschten Daten bekannt sind, handelt es sich um
überwachtes Lernen. Nach dem Training kann das Diffusionsmodell ver‐
wendet werden, um neue Daten zu generieren. Man startet dazu mit reinem
Rauschen und führt den Rückwärtsdiffusionsprozess durch, um nach und
nach die Struktur der Daten zu enthüllen. Die Fehlerfunktion arbeitet
hier wie bei autoregressiven Modellen und (teilweise) bei VAEs auf der
Ausdrucksebene.48

Latent Diffusion bezieht sich auf ein generatives Modell, das den Dif‐
fusionsprozess im latent space eines anderen Modells (wie einem Autoen‐
coder) durchführt. Anstatt die Diffusion direkt auf den hochdimensionalen

47 Vgl. hierzu instruktiv Carter/Nielsen, Using Artificial Intelligence to Augment Human
Intelligence, Distill 2017 (einsehbar unter: https://distill.pub/2017/aia/ (zuletzt am
9. August 2024)).

48 Es wird strenggenommen nur der Fehler des vorhergesagten Rauschens gemessen.
Das vorhergesagte Rauschen hängt jedoch von der Trainingsdaten-Eingabe ab.

§ 2. Technologische Grundlegung

48

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://distill.pub/2017/aia/
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://distill.pub/2017/aia/


Originaldaten (z.B. Bilder) durchzuführen, wird sie im latent space der
komprimierten Repräsentationen der Daten angewendet. Dies macht den
Diffusionsprozess effizienter und kann die Qualität der generierten Daten
verbessern, weil die latente Repräsentation in der Regel eine kompaktere
und aussagekräftigere Darstellung der Originaldaten bietet. Diese Technik
wird für die Bildgenerierung unter anderem von Stable Diffusion, DALL-E
2 und Imagen eingesetzt. Im Audiobereich wird die Technik etwa von
Stable Audio und Musicgen verwendet.

VII. Sampling und Konditionierung

Nachdem ein generatives Modell trainiert wurde, können durch sogenann‐
tes Sampling neue Daten erzeugt werden. Dabei handelt es sich um einen
Zufallsprozess, bei dem aus der gelernten komplexen Wahrscheinlichkeits‐
verteilung eine Stichprobe (sample) gezogen wird.49 Wie der Samplingpro‐
zess konkret verläuft, hängt von der verwendeten Modellarchitektur ab. Bei
autoregressiven Modellen wird Element für Element der Ausgabesequenz
erzeugt, wobei die vorhergehende Ausgabe jeweils dem eingegebenen Kon‐
text für den nächsten Schritt hinzugefügt wird. Bei Modellen mit latent
space (VAEs und GANs), wird zuerst ein Sample für die latenten Variablen
gezogen. Dieses wird dann vom Generator oder Decoder in die Ausgabe
transformiert. Bei Diffusionsmodellen wird ein zufälliges Rauschmuster
generiert und dann schrittweise durch Entrauschen in die Ausgabe verwan‐
delt. Bei Latent Diffusion erfolgt die Ausgabe zunächst in den latent space
und wird anschließend noch durch den Decoder zur tatsächlichen Ausgabe
auf Datenebene transformiert.

Es gibt darüber hinaus eine Vielzahl von Spezialformen für das Sam‐
pling. Beim sogenannten Top-k Sampling handelt es sich beispielsweise
um eine Methode, die zur Steuerung der Ausgabe von Sprachmodellen
eingesetzt wird. Dabei werden bei jedem Schritt der Textgenerierung nur
die k wahrscheinlichsten nächsten Tokens in Betracht gezogen, und einer
davon wird zufällig ausgewählt. Dies reduziert die Wahrscheinlichkeit, dass
seltene oder unwahrscheinliche Tokens ausgewählt werden, und verbessert
die Kohärenz der generierten Texte. Durch die Begrenzung auf k Optionen
kann der Text sowohl kreativ als auch zusammenhängend bleiben. Diese

49 Für eine weiterführende Diskussion zum Sampling vgl. z.B. Kapitel 12.1.3 in Chollet,
Deep learning with Python, 2021.

C. Generative KI-Modelle

49

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Technik ist nützlich, um eine Balance zwischen Vorhersehbarkeit und Viel‐
falt in der Textgenerierung zu erreichen.

Einen ähnlichen Einfluss auf das Ergebnis hat der Temperaturparameter.
Über die Temperatur kann die Wahrscheinlichkeitsverteilung nachträglich
geformt werden. Der Standardwert ist 1. Eine niedrigere Temperatur (z.B.
0.7) macht die Verteilung spitzer, bevorzugt wahrscheinlichere Ausgaben
und führt zu konservativeren, kohärenteren Ergebnissen. Eine höhere Tem‐
peratur (z.B. 1.2) flacht die Verteilung ab, erhöht die Wahrscheinlichkeit,
seltenere Ausgaben zu wählen, und führt zu kreativeren, aber weniger
kohärenten Ergebnissen. Damit kann der Temperaturparameter die Balan‐
ce zwischen Vielfalt und Präzision in den generierten Inhalten steuern.
Dies ist besonders nützlich, um die gewünschten Eigenschaften der gene‐
rierten Ausgabe flexibel anzupassen. Während niedrigere Temperaturen die
Wiedergabe von auswendig gelernten Mustern begünstigen, führen höhere
Temperaturen zu Abweichungen davon. Insofern ließe sich damit die Wie‐
dergabe memorisierter Inhalte reduzieren. Jedoch muss mit zunehmender
Temperatur auch mit einer Verringerung der Ausgabequalität gerechnet
werden.

Durch Konditionierung kann der Samplingprozess überdies zusätzlich
in eine gewünschte Richtung beeinflusst werden. Konditionierung erfolgt
durch die Verarbeitung und Integration von zusätzlichen Informationen,
die als Anleitung dienen – beispielsweise in Form eines prompts oder eines
kategorischen Werts wie einer Klassenzuweisung (z.B. Musikgenre). Dies
geschieht durch spezialisierte Encoder, die die bedingenden Informationen
in eine für das Modell verständliche Form bringen, und durch Mecha‐
nismen, die diese Informationen in den Generierungsprozess einfließen
lassen. Diese Methoden ermöglichen es, die generierte Ausgabe gezielt zu
steuern und an die gewünschten Spezifikationen anzupassen. Während des
Trainings muss das Modell lernen, die zusätzlichen Informationen korrekt
zu nutzen, um die gewünschte Ausgabe zu erzeugen. Im Vergleich mit dem
unkonditionierten Training müssen die Trainingsdaten hier zusätzlich die
Information für die Konditionierung beinhalten.

Die Konditionierung beschränkt sich nicht auf ein bestimmtes Abstrak‐
tionsniveau. Besonders beliebt ist neben der Konditionierung auf den ge‐
wünschten Inhalt vor allem auch die Spezifizierung eines konkreten Stils.
Vorausgesetzt entsprechende Beispiele sind zum Training vorhanden, kann
ein KNN prinzipiell lernen, das entsprechende Abstraktionsniveau einer
Konditionierung zu erkennen und die Repräsentationen in den passenden

§ 2. Technologische Grundlegung

50

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Schichten zu beeinflussen. Mit welchen Konditionierungen ein Modell
nach dem Training umgehen kann, hängt sowohl von den verarbeiteten
Trainingsbeispielen als auch von der Fähigkeit des Modells ab, bezüglich
der Konditionierungseingabe zu generalisieren. Text-prompts zur Konditio‐
nierung sind sehr beliebt, weil deren Verarbeitung mit einem Sprachmodell
bereits eine Generalisierung erreicht. Das prompt engineering zielt entspre‐
chend darauf ab, durch die Konditionierung sehr spezifische und präzise
Ausgaben zu erzeugen, und referenziert dabei nicht selten gezielt Inhalts-
und Stilbeschreibungen, wie sie auch in den Trainingsdaten vorhanden
sind. Je spezifischer und ähnlicher zu den Trainingsbeispielen ein prompt
ist, desto wahrscheinlicher ist es, dass die Ausgabe in Inhalt und/oder
Ausdruck den Trainingsdaten ähnelt.50 Deshalb verbieten manche Systeme
beispielsweise die Verwendung von Künstlernamen oder Titeln von Werken
in prompts.

VIII. Style transfer

Beim (neural) style transfer wird eine Eingabe so verändert, dass der ab‐
strakte Inhalt (weitestgehend) erhalten bleibt und gleichzeitig ein vorgege‐
bener Stil angewendet wird. Insofern kann style transfer auch als spezielle
Form der Konditionierung gesehen werden – zum einen auf einen konkre‐
ten Inhalt und zum anderen auf einen konkreten Stil. Am weitesten verbrei‐
tet sind aktuell Techniken zur Veränderung des Bildstils. Der Vorgang ist
in Abbildung 5 beispielhaft für einen 2016 von Leon A. Gatys, Alexander S.
Ecker und Matthias Bethge51 beschriebenen Ansatz dargestellt.

50 Siehe auch unten § 2.D.III.
51 Gatys/Ecker/Bethge, A Neural Algorithm of Artistic Style, arXiv:1508.06576v2

[cs.CV], 2 Sept 2015 (einsehbar unter: https://doi.org/10.48550/arXiv.1508.06576
(zuletzt am 31. Juli 2024)). Siehe überdies auch unten § 4.D.I.3.b)bb)(2).

C. Generative KI-Modelle

51

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1508.06576


 

 

 

 Style transfer52

Gatys et al. konnten damit belegen, dass selbst für einfache Klassifikation53

trainierte KNNs Merkmale für den Stil und den Inhalt lernen. In erster
Linie wurde die Beobachtung ausgenutzt, dass frühe KNN-Schichten eher
feine Details wie Ecken und Kanten erfassen, was mehr dem Stil entspricht,
wohingegen spätere Schichten abstraktere Merkmale wie die Gesamtstruk‐
tur oder das Layout abbilden, was mehr dem abstrakten Inhalt entspricht.

Um ein Bild zu generieren, wird ein Eingabebild für den Inhalt und ein
weiteres für den gewünschten Stil benötigt. Beide werden vom gleichen
Klassifikator-KNN verarbeitet. Die Aktivierungen der frühen Schichten
für die Stileingabe und die Aktivierungen der späten Schichten für die
Inhaltseingabe dienen dann als Referenz zur Generierung des Bildes. Da‐
zu wird die Eingabe in das KNN so verändert, dass die resultierenden
Aktivierungen möglichst ähnlich zu den vorgegebenen Referenzen werden.

Abbildung 5:

52 Die Abbildung wurde entnommen bei Gatys/Ecker/Bethge, A Neural Algorithm of
Artistic Style, arXiv:1508.06576v2 [cs.CV], 2 Sept 2015 (einsehbar unter: https://doi.o
rg/10.48550/arXiv.1508.06576 (zuletzt am 31. Juli 2024)).

53 Im konkreten Beispiel bestand die Aufgabe in der Erkennung der richtigen Bildklasse
aus den 1.000 möglichen Klassen im ImageNet Datensatz.

§ 2. Technologische Grundlegung

52

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1508.06576
https://doi.org/10.48550/arXiv.1508.06576


Für dieses Optimierungsproblem wird das Gradientenabstiegsverfahren54

angewendet, welches normalerweise zum Training von KNNs verwendet
wird. In diesem Fall findet jedoch kein Training statt und die Ausgabe
des KNNs spielt keine Rolle. Das KNN wurde schließlich bereits vorher
als einfacher Klassifikator trainiert und seine Parameter sind schon fest
eingestellt. Stattdessen wird bei der Optimierung die Eingabe verändert,
so dass diese die gewünschten inhaltlichen und stilistischen Eigenschaften
aufweist (in Form der Referenzaktivierungen).

Dieser recht einfache Ansatz stellte 2016 einen wesentlichen Meilenstein
zum style transfer dar. Da für jedes generierte Bild ein Optimierungspro‐
blem gelöst werden musste, war er jedoch sehr rechenintensiv. Aktuelle style
transfer-Modelle werden hingegen gezielt für diesen Einsatzzweck trainiert
und müssen beim Einsatz keine zusätzliche Optimierung durchlaufen. Be‐
liebte Ansätze nutzen vor allem GANs (z.B. StyleGAN55) und Diffusion
(z.B. StyleDiffusion56). Das Prinzip der Trennung von Inhalt und Stil wurde
jedoch beibehalten und stark verfeinert. Neben Ansätzen für Bilder gibt es
auch solche für Videos57, Sprachaufnahmen58 oder Texte.59

54 Siehe oben § 2.B.III.
55 Karras/Laine/Aila, A style-based generator architecture for generative adversarial net‐

works, in: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition 2019, pp. 4401–4410 (einsehbar unter: https://doi.org/10.48550/arXiv.1812
.04948. (zuletzt am 9. August 2024)).

56 Wang/Zhao/Xing, StyleDiffusion: Controllable disentangled style transfer via diffu‐
sion models, in: Proceedings of the IEEE/CVF International Conference on Comput‐
er Vision 2023, pp. 7677–7689 (einsehbar unter: https://doi.org/10.48550/arXiv.2308.
07863 (zuletzt am 9. August 2024)).

57 Vgl. z.B. Ruder/Dosovitskiy/Brox, Artistic style transfer for videos, in Pattern Recog‐
nition: 38th German Conference, GCPR 2016, pp. 26–36 (einsehbar unter: https://doi
.org/10.1007/978-3-319-45886-1_3 (zuletzt am 9. August 2024)).

58 Hier vor allem als voice conversion bezeichnet – vgl. z.B. Zhou/Sisman/Liu/Li, Seen
and Unseen Emotional Style Transfer for Voice Conversion with A New Emotional
Speech Dataset, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 920–924 (einsehbar unter: https://doi.org/10.1109/IC
ASSP39728.2021.9413391 (zuletzt am 9. August 2024)).

59 Vgl. z.B. Yang et al., Unsupervised text style transfer using language models as dis‐
criminators, in: Advances in Neural Information Processing Systems 31 (NeurIPS
2018) (einsehbar unter: https://doi.org/10.48550/arXiv.1805.11749 (zuletzt am 9. Au‐
gust 2024)).

C. Generative KI-Modelle

53

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.1812.04948
https://doi.org/10.48550/arXiv.1812.04948
https://doi.org/10.48550/arXiv.2308.07863
https://doi.org/10.48550/arXiv.2308.07863
https://doi.org/10.1007/978-3-319-45886-1_3
https://doi.org/10.1007/978-3-319-45886-1_3
https://doi.org/10.1109/ICASSP39728.2021.9413391
https://doi.org/10.1109/ICASSP39728.2021.9413391
https://doi.org/10.48550/arXiv.1805.11749
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1812.04948
https://doi.org/10.48550/arXiv.1812.04948
https://doi.org/10.48550/arXiv.2308.07863
https://doi.org/10.48550/arXiv.2308.07863
https://doi.org/10.1007/978-3-319-45886-1_3
https://doi.org/10.1007/978-3-319-45886-1_3
https://doi.org/10.1109/ICASSP39728.2021.9413391
https://doi.org/10.1109/ICASSP39728.2021.9413391
https://doi.org/10.48550/arXiv.1805.11749


D. Technische Betrachtungen zu Fragen des Urheberrechts

Aufbauend auf in den vorhergehenden Abschnitten gelegten Grundlagen
werden im Folgenden einige Aspekte technisch noch näher beleuchtet, die
aus Sicht des Urheberrechts von besonderem Interesse sind. Abschließend
wird ein Ausblick auf die zu erwartenden Entwicklungen gegeben.

I. Datensammlung: Webscraping und Erstellung von Korpora zum
Training

Als Webscraping wird der Prozess des automatisierten Extrahierens von
Daten aus Webseiten bezeichnet. Dabei werden sogenannte crawler bots
eingesetzt. Dies sind Programme, die ausgehend von Start-URLs und nach
vorgegebenen Regeln das World Wide Web durchsuchen, indem sie den
Links in den gefundenen Inhalten folgen. Fortgeschrittene Bots simulieren
dabei die Interaktion eines Nutzers mit dem Browser, um an die Inhalte dy‐
namisch aufgebauter Webseiten zu gelangen, welche eine Nutzerinteraktion
erfordern. Manche Webseiten bieten für bots auch dedizierte Schnittstellen,
die das gezielte Abfragen von Daten ermöglichen. Gefundene Inhalte, die
den Suchkriterien entsprechen, wie z.B. Bilder mit einer bestimmten Min‐
destgröße, werden in einer Datenbank abgelegt – häufig zusammen mit
Metadaten wie der URL und einem Zeitstempel. Weiterhin werden Links
extrahiert und an die Bearbeitungsliste des crawlers angefügt.

Auf technischer Ebene60 vollzieht sich bei der Anfrage an einen Web-Ser‐
ver ein Kopierprozess auf dem Server: Um die Anfrage zu bearbeiten, muss
der Server zunächst die Daten ganz oder gestückelt in Datenpakete umwan‐
deln und diese dann an den Client – d.h. den crawler bot – senden. Auf
dem Weg passieren die Datenpakete in der Regel mehrere weitere Server,
welche die Pakete durch sogenanntes Routing oder Switching weiterleiten
und dafür sorgen, dass sie den richtigen Weg durch das Netzwerk nehmen.
Auch das Passieren einer oder mehrerer Firewalls, die den Datenverkehr

60 Eine ausführliche Beschreibung der technischen Details findet sich z.B. in Gourley et
al., HTTP: the definitive guide, 2002 (einsehbar unter: https://www.oreilly.com/lib
rary/view/http-the-definitive/1565925092/ (zuletzt am 9. August 2024)); sowie bei
Mitchell, Web scraping with Python: Collecting more data from the modern web, 3rd

edn. 2024.

§ 2. Technologische Grundlegung

54

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/
https://www.oreilly.com/library/view/http-the-definitive/1565925092/


überwachen, ist möglich.61 Bei komplexen Webseiten kann zudem ein so‐
genanntes load balancing zum Einsatz kommen. In diesem Fall gibt es
mehrere Web-Server, welche die angefragten Inhalte zur Verfügung stellen.
Ein vorgeschalteter Server entscheidet anhand deren Auslastung, welcher
die Bearbeitung übernimmt. Dabei können die verschiedenen Server in
unterschiedlichen Rechenzentren über mehrere Länder verteilt sein. Wel‐
cher Server konkret die Anfrage beantwortet hat, ist abhängig von der
Konfiguration nicht immer ersichtlich.62

Auf dem Weg durch das Netzwerk werden in der Regel keine Kopien
gemacht. Prinzipiell ist dies aber zur Überwachung der Kommunikation
durch Dritte möglich und lässt sich nicht unterbinden. Wird jedoch eine
verschlüsselte Verbindung verwendet wie bei der Abfrage über HTTPS,
liegen die Inhalte unterwegs nur verschlüsselt vor. Die empfangenen Inhalte
hält der Crawler in der Regel nur flüchtig im Arbeitsspeicher, um daraus
Links und relevante Daten zu extrahieren. Letztere werden schließlich
dauerhaft in entsprechenden Datenstrukturen abgespeichert, wobei unter‐
schiedliche Datei- und Datenbankformate eingesetzt werden können. Die
gesammelten Daten können im Anschluss zusätzlich gefiltert werden, um
beispielsweise ungewünschte Inhalte oder auch Duplikate zu entfernen.
Dies kann mit erheblichem manuellem Aufwand verbunden sein, gewinnt
aber zunehmend an Bedeutung, um die Ausgabequalität generativer Model‐
le weiter zu verbessern.

Schließlich kann die so entstandene Datensammlung als eigenes Objekt
aufgefasst werden. Nicht selten findet die Veröffentlichung dann mit einer
konkreten Bezeichnung zur leichteren Referenzierung und unter einer kon‐
kreten Lizenz statt.

Nur wenige Datensammlungen enthalten Metadaten wie Ursprungsin‐
formationen (provenance) oder zugehörige Lizenzen für jeden einzelnen
Eintrag.63 Deren Verifikation ist bei der Größenordnung der aktuell zum
generativen Training verwendeten Datensammlungen äußerst schwierig.

61 Welche Route die Pakete nehmen, hängt von der Netzwerkkonfiguration ab und kann
vom Crawler nur teilweise beeinflusst werden.

62 Generell lässt sich nicht immer mit Sicherheit sagen, in welchem Land der Server
mit den Inhalten stand. Die Top-Level-Domain der angefragten URL, welche häufig
einem Ländercode wie „DE“ entspricht, gibt hierüber keine Auskunft. Der Server
einer unter einer DE-Domain geführten Webseite kann prinzipiell in jedem beliebi‐
gen Land stehen.

63 Vgl. z.B. Longpre et al., The data provenance initiative: A large scale audit of dataset
licensing & attribution in AI, arXiv preprint arXiv:2310.16787 (2023) (einsehbar
unter: https://doi.org/10.48550/arXiv.2310.16787 (zuletzt am 9. August 2024)).

D. Technische Betrachtungen zu Fragen des Urheberrechts

55

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2310.16787
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2310.16787


Vielmehr ist es gängige Praxis, solche Metadaten bei der Extraktion zu ent‐
fernen. Beispielsweise können EXIF-Metadaten in Bildern Informationen
über den Urheber enthalten. Diese werden aber häufig zum Schutz der
Privatsphäre entfernt.

Eine besondere Form ist die Veröffentlichung als URL-Liste, bei der
Inhalte nicht direkt zur Verfügung gestellt werden, sondern erst von den
angegebenen URLs heruntergeladen werden müssen. Dies kann den Spei‐
cherbedarf und den Netzwerkverkehr, der mit der Veröffentlichung der Da‐
tensammlung einher geht, erheblich verringern und ist deshalb besonders
bei nicht-textuellen Daten wie Bild-, Audio- oder Videodaten verbreitet. Es
ist jedoch keinesfalls garantiert, dass die URLs dauerhaft gültig sind und
weiter auf die entsprechenden Daten verweisen.

Daten können schließlich auch aus bereits existierenden Datensammlun‐
gen entnommen werden. Dabei können die Daten beispielsweise gefiltert,
bearbeitet oder mit anderen Daten angereichert werden. Der LAION-5B
Datensatz wurde etwa abgeleitet vom Common Crawl Datensatz, indem
Referenzen auf Bilder und deren alternative Beschreibungstexte extrahiert
wurden. Das Ergebnis wurde anschließend in mehreren Schritten gefiltert.
Der Datensatz aus Bild-URLs und Beschreibungstexten sowie verschiede‐
nen Metadaten wurde unter der Creative Common CC-BY 4.0 Lizenz ver‐
öffentlicht, wobei sich die Lizenz ausdrücklich nur auf die zur Verfügung
gestellten Daten und nicht auf die von den URLs referenzierten Bilder
bezieht. Somit wäre bei deren Verwendung gegebenenfalls auf individuelle
Lizenzen zu prüfen, was in der Praxis jedoch nicht realistisch umsetzbar ist.

Die territoriale Lokalisierung der Vervielfältigung beim Herunterladen
einer Datensammlung gestaltet sich schwierig. Bei Datensätzen wie LAI‐
ON-5B liegen die Daten (d.h. Bilder) noch im Internet verteilt auf den Ur‐
sprungsservern. Die Vervielfältigungen finden entsprechend verteilt statt.
Bei einem zentral gehosteten Datensatz, welcher die Daten enthält, erfolgt
der Download in der Regel von einem einzelnen Server. Dabei wird häu‐
fig auf Cloud-Speicherdienste wie z.B. Amazon S3 zurückgegriffen. Diese
nutzen Datenzentren, die weltweit über viele Länder verteilt sind.64 Um
eine hohe Verfügbarkeit zu gewährleisten, werden Datensätze an mehreren
Standorten repliziert. Beim Zugriff für den Download kann entsprechend
zwischen verschiedenen Standorten gewählt werden. Dabei kann die Aus‐

64 Beispielhaft wird dies für Amazon S3 beschrieben unter https://aws.amazon.com/blo
gs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-i
n-the-cloud/ (zuletzt eingesehen am 18. Juli 2024).

§ 2. Technologische Grundlegung

56

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/
https://aws.amazon.com/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/


wahl des Standortes je nach Dienstleister entweder auf Nutzerseite oder
Anbieterseite erfolgen.

II. TDM: Anknüpfungspunkte und Abgrenzung

Das Text und Data Mining (TDM) umfasst Prozesse der automatisierten
Extraktion von (nützlichen, interessanten und neuen) Informationen, Mus‐
tern und Erkenntnissen aus (großen) Datensammlungen.65 Text Mining
ist ein Spezialfall und definiert als der Prozess des Extrahierens nützli‐
cher Informationen aus Texten.66 Eine solche Erkenntnis könnte z.B. eine
Zusammenfassung der weltweiten Nachrichtenlage, die Identifikation von
häufig genutzten Stilmitteln in einem Textkorpus oder der Zusammenhang
zwischen Infektionsquellen und Erkrankungen sein. Es geht hier immer um
einen mehr oder weniger abstrakten Erkenntnisgewinn aus den analysier‐
ten Texten.

TDM erfolgt mittlerweile weitgehend KI-gestützt. Typischerweise ist
dafür nicht erforderlich, die Inhalte vollständig zu erfassen und zu model‐
lieren. Es genügt, spezifische Merkmale zu lernen, die zur Lösung ihrer
konkreten Aufgabe beitragen. Selbst bei einem (unüberwachten) clustering
müssen nicht alle Merkmale der Daten berücksichtigt werden. Solche, die
sich nicht wesentlich unterscheiden, haben bei der Suche nach möglichst
homogenen Untergruppen kaum Relevanz. Beim TDM kann auch genera‐
tives Training zum Einsatz kommen. Wichtig ist, dabei klar zwischen der
Lernaufgabe und dem eigentlichen Ziel des Trainings zu unterscheiden:

Beim Training generativer Modelle innerhalb eines TDM-Prozesses steht
das Lernen einer gut strukturierten und idealerweise interpretierbaren,
latenten Repräsentation der Daten im Vordergrund. Dies ist das eigentli‐
che Ziel. Hier geht es um die Modellierung der Daten. Das generative
Training als Lernaufgabe ist nur Mittel zum Zweck. Weil generatives Trai‐

65 Data Mining ist der Prozess der Entdeckung interessanter und nützlicher Muster
und Erkenntnisse aus großen Datenmengen. Siehe z.B. Kapitel 1 in Han/Kamber/Pei,
Data Mining: Concepts and Techniques, 3rd edn. 2012; zudem z.B. Chakrabarti et al.,
Data Mining Curriculum: A Proposal (Version 1.0), ACM SIGKDD 2004 (einsehbar
unter: https://kdd.org/exploration_files/CURMay06.pdf (zuletzt am 9. August
2024)).

66 Kapitel 1 in Feldman/Sanger, The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data, 2009 (einsehbar unter: https://doi.org/10.1017/CBO97
80511546914.002 (zuletzt am 9. August 2024)).

D. Technische Betrachtungen zu Fragen des Urheberrechts

57

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://kdd.org/exploration_files/CURMay06.pdf
https://doi.org/10.1017/CBO9780511546914.002
https://doi.org/10.1017/CBO9780511546914.002
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://kdd.org/exploration_files/CURMay06.pdf
https://doi.org/10.1017/CBO9780511546914.002
https://doi.org/10.1017/CBO9780511546914.002


ning alle Aspekte der Daten erfasst, nutzt es auch kleine Datenmengen
gut aus und eignet sich daher hervorragend als Trainingsschritt in einem
komplexen TDM-Prozess. In diesem Fall wird die gelernte Repräsentation
im Anschluss weiterverwendet, um erkenntnisorientierte Fragen zu beant‐
worten.67 Das Ziel ist allerdings gerade nicht die Generierung weiterer
Daten. Hingegen ist beim Training generativer Modelle, die Daten erzeugen
sollen, ein Erkenntnisgewinn (beispielsweise ein tieferes Verständnis eines
künstlerischen Stils) allenfalls zweitrangig. Im Vordergrund steht die Quali‐
tät der generierten Daten. Kurz: Was nützt etwa ein VAE, dessen latente
Repräsentation abstrakte Merkmale sehr umfassend erfasst, die sich dann
auch für eine gezielte Generierung manipulieren lassen, wenn man damit
im Ergebnis nur verwaschene Bilder generieren kann?68

Hinzu kommt, dass die für moderne generative Modelle eingesetzten
KNNs black-box-Modelle sind und der Erkenntnisgewinn aus dem trainier‐
ten Modell nur gering ist. Generell lernen KNNs beim Training Muster
und Merkmale, die sie zum Lösen ihrer Aufgabe benötigen. So müssen
beim generativen Training z.B. bestimmte Stilmerkmale gelernt werden, um
diese bei Bedarf reproduzieren zu können. Diese sind jedoch nicht direkt
zugänglich, weil KNNs sogenannte verteilte Repräsentationen verwenden.69

D.h., diese Modelle sind so komplex, dass man nicht ohne weiteres nach‐
vollziehen kann, was sie gelernt haben oder warum sie ein bestimmtes
Verhalten an den Tag legen. Auch hier hilft der Vergleich zum menschli‐
chen Gehirn, wo es ebenfalls kaum möglich ist, durch Beobachtung der
Gehirnaktivität herauszufinden, wie genau das Gehirn eine bestimmte Auf‐
gabe löst. Der erwähnte VAE weicht mit seiner latenten Repräsentation
zumindest teilweise hiervon ab: Diese Repräsentation kann tatsächlich in‐
terpretierbar sein. Der Encoder und Decoder des VAE sind jedoch weiter‐
hin black-box-Modelle. Autoregressive Modelle, die aktuell in allen LLMs
zum Einsatz kommen, haben hingegen keine latente Repräsentation, die
analysiert werden könnte. Der latente Raum von GANs ist schließlich

67 So wird etwa bei Luxem et al. (Identifying behavioral structure from deep variational
embeddings of animal motion, Communications Biology 5 (2022), 1267) ein VAE
eingesetzt, um Verhaltensmuster von Labortieren in Videos zu identifizieren und zu
analysieren.

68 Das ist tatsächlich ein häufiges Dilemma beim VAE-Training.
69 Vgl. Hoffmann, How neural networks learn distributed representations, O´Reilly, 13

February 2018 (einsehbar unter: https://www.oreilly.com/content/how-neural-net
works-learn-distributed-representations/ (zuletzt am 20. Juni 2024)). Zu verteilten
Repräsentationen siehe bereits oben § 2.B.I.

§ 2. Technologische Grundlegung

58

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://www.oreilly.com/content/how-neural-networks-learn-distributed-representations
https://www.oreilly.com/content/how-neural-networks-learn-distributed-representations
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://www.oreilly.com/content/how-neural-networks-learn-distributed-representations
https://www.oreilly.com/content/how-neural-networks-learn-distributed-representations


komplett unstrukturiert, was sich aber zumindest in Kombination mit
VAE-Techniken etwas beheben lässt. Bei Latent Diffusion kommt zwar
zunächst ein VAE zum Einsatz, der Diffusionsprozess selbst liefert aber
keine Erkenntnisse.

Zusammenfassend lässt sich aus Perspektive der IT-Wissenschaft
schlussfolgern, dass das Training generativer KI-Modelle mit dem Ziel,
neue Daten – d.h. kreativen Output – zu generieren, die ihren Trainingsda‐
ten möglichst stark ähneln, nicht in den Bereich des TDM einzuordnen
ist, sondern einen neuen Verwendungszweck darstellt. Jedenfalls aus tech‐
nischer Perspektive ist daher zu bezweifeln, dass die bisherige gesetzgeberi‐
sche Befassung mit der Frage des TDM sich auch explizit auf das Training
generativer KI-Modelle bezog.

III. Datenverarbeitung und potentielles Memorisieren beim Training

Bevor die Daten aus einem Datensatz zum Training eines KNNs verwendet
werden können, sind Vorverarbeitungsschritte notwendig wie z.B. die Nor‐
malisierung in einen vorgegebenen Wertebereich oder die Umwandlung
in eine andere Repräsentation, so etwa bei der Berechnung eines Spektro‐
gramms aus Audiodaten oder bei der für LLMs üblichen Tokenisierung.
Das Ergebnis kann im weitesten Sinne als abgewandelte Codierung be‐
trachtet werden. In den meisten Fällen können sich die Originaldaten (na‐
hezu) verlustfrei daraus wiederherstellen lassen. Die vorverarbeiteten Daten
können anschließend zusätzlich augmentiert werden, um künstlich mehr
Trainingsdaten zu schaffen.70 Die so erzeugten (abgewandelten) Kopien
entstehen allerdings in der Regel nur temporär für den Trainingsprozess
und bleiben nicht dauerhaft bestehen.

Weniger einfach zu beantworten ist die Frage, ob Teile der Trainingsda‐
ten im KNN gespeichert werden. Zwei Vorüberlegungen sind insoweit von
Bedeutung. Beide lassen sich aus den Ausführungen zum Trainingsprozess
sowie zur Generalisierung und den Modellkapazitäten ableiten71:

70 Siehe oben § 2.A.IV.
71 Siehe oben § 2.B.

D. Technische Betrachtungen zu Fragen des Urheberrechts

59

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


(1) Ein expliziter Speichermechanismus ist in KNNs nicht angelegt. Es
gibt zwar auch KNNs mit explizitem Speicher.72 Diese sind aber aktuell
nur eine Randerscheinung und spielen im Bereich der generativen
Modelle keine Rolle.

(2) Ein implizites Speichern in den trainierbaren Parametern ist beim
Lernen möglich, läuft aber dem Ziel der Generalisierung entgegen. Bei
einer beschränkten Modellkapazität sollte diese in gut generalisierende
repräsentative Muster investiert werden.

Bei generativen Modellen, die mit großen Datensätzen trainiert werden,
reicht die Modellkapazität bestenfalls zum „Merken“ kleiner Bruchteile der
Daten. Wenn ein Teil der Trainingsdaten memorisiert wurde, lässt sich
dieser zwar mit geringem Fehler wieder erzeugen. Aber die damit verbun‐
denen, sehr spezifischen Merkmale sind wahrscheinlich nicht nützlich, um
andere Daten zu repräsentieren. Für einen geringen Fehler bei der jewei‐
ligen Lernaufgabe ist es daher zielführender, die allgemeinen Merkmale
möglichst präzise zu erlernen und daher alle konkreten Daten zu abstrahie‐
ren. Beim „Merken“ wird nämlich wertvolle Kapazität für die Behandlung
sehr konkreter Fälle gebunden. Der Einsatz der Kapazität hierfür lohnt sich
nur dann, wenn das Gemerkte häufig verwendet werden kann. Bei LLMs
könnten dies häufig auftretende Floskeln, Redewendungen, Textpassagen
oder Zitate sein – z.B. Goethes Zauberlehrling. Für die Generierung von
häufig auftretenden Schriftarten, Verkehrsschildern oder Logos in Bildern
ist deren detaillierte Repräsentation hilfreich. Auch könnte es für ein KNN
sinnvoll sein, sich das Aussehen bekannter Persönlichkeiten, Kunstwerke
oder Sehenswürdigkeiten zu merken, die häufig in Bildern (und deren
prompts) vorkommen. Um ein gutes Trainingsergebnis zu erzielen, muss
der Detailgrad und das Abstraktionsniveau, mit dem die Trainingsdaten
modelliert werden, aber angemessen sein. Werden wenig relevante und
nicht repräsentative Inhalte gemerkt, ist dies ein Zeichen für ein schlecht
trainiertes Modell mit deutlichem Optimierungspotential.

Es gibt umfangreiche Belege dafür, dass aktuelle generative Modelle
einen nicht unerheblichen Teil ihrer Trainingsdaten memorisieren. Eine
Untersuchung, bei der verschiedene LLMs mit Auszügen aus den Trai‐

72 Siehe z.B. Graves et al., Hybrid computing using a neural network with dynamic
external memory, Nature 538 (2016), 471–476 (einsehbar unter: https://doi.org/10.103
8/nature20101 (zuletzt am 9. August 2024)).

§ 2. Technologische Grundlegung

60

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101


ningsdaten ge-promptet wurden, konnte drei wesentliche Faktoren für das
Memorisieren identifizieren:73

(1) Modellgröße: Innerhalb einer Modellfamilie speichern größere Model‐
le 2- bis 5-mal mehr als kleinere Modelle.

(2) Datenduplikation: Beispiele, die sich häufiger wiederholen, sind mit
größerer Wahrscheinlichkeit extrahierbar.

(3) Kontext: Es ist um Größenordnungen einfacher, Sequenzen zu extra‐
hieren, wenn ein längerer Kontext vorliegt.

Die Punkte 1 und 2 decken sich mit den vorhergehenden Betrachtungen.
Größere Modelle haben mehr Kapazität für das Memorisieren verfügbar
und in den Trainingsdaten wiederholt vorkommende Sequenzen erschei‐
nen relevanter. Auch Punkt 3 ist naheliegend: Je länger der Kontext, desto
spezifischer die Anfrage. In praktischen Experimenten wurden insbesonde‐
re Kontexte mit einer Länge von 50 Tokens verwendet (was in der Praxis
eine gewisse Kenntnis der zu testenden Textsequenz erfordert). Wenn solch
eine spezifische Sequenz memorisiert wurde, hat das Modell unter Umstän‐
den einen „Tunnelblick“ infolge overfittings. Dieser macht sich dann durch
eine stark verzerrte Ausgabe-Wahrscheinlichkeitsverteilung bemerkbar, bei
der nur der nächste Token aus den Trainingsdaten hervorsticht. Mit jedem
weiteren Token, der dem Kontext hinzugefügt wird, geht es dann tiefer in
den Tunnel.

So ließe sich auch das beobachtete divergente Verhalten von LLMs be‐
gründen, wenn diese auf Anfragen wie „Repeat this word forever: poem
poem poem“ nach einer Weile die Wiederholung des angeforderten Wortes
beenden und stattdessen Textfragmente aus den Trainingsdaten wiederge‐
ben.74 Die durch Wiederholung erzeugte Sequenz wird als Kontext immer
unähnlicher zu dem, was das Modell im Training „gesehen“ hat. Dadurch
lässt sie sich immer schlechter mit den modellinternen Aktivierungen re‐
präsentieren – umso mehr, wenn das Modell ohnehin schon schlecht gene‐
ralisiert. Schließlich landet das Modell an einem Punkt in seinem internen
Repräsentationsraum, der sehr weit weg von allem ist, für das es eine

73 Carlini et al., Quantifying Memorization Across Neural Language Models, Proceed‐
ings of the 11th International Conference on Learning Representations (ICLR), 2023
(einsehbar unter: https://doi.org/10.48550/arXiv.2202.07646 (zuletzt am 9. August
2024)).

74 Nasr et al., Scalable extraction of training data from (production) language models,
arXiv preprint arXiv:2311.17035 (2023) (einsehbar unter: https://doi.org/10.48550/arX
iv.2311.17035 (zuletzt am 9. August 2024)).

D. Technische Betrachtungen zu Fragen des Urheberrechts

61

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.2311.17035
https://doi.org/10.48550/arXiv.2311.17035
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.2311.17035
https://doi.org/10.48550/arXiv.2311.17035


vernünftige Vorhersage der Ausgabe-Wahrscheinlichkeitsverteilung machen
kann. Eine minimale Assoziation mit einem gemerkten Text könnte dann
reichen, um in einen „Tunnelblick-Modus“ zu springen. Dieses Phänomen
ist bislang nicht abschließend erforscht und bedarf weiterer Untersuchun‐
gen, wozu aber vor allem ein direkter Zugang zu den Modellen nötig wäre.

Memorisierte Bildinhalte werden zwar im Gegensatz zu Text in der Regel
nicht exakt (pixelgenau) wiedergegeben. Auch Variationen werden jedoch
bis zu einem bestimmten Grad als identisch oder ähnlich wahrgenommen.
Experimente mit Latent Diffusion-Modellen (u.a. Stable Diffusion) für Bil‐
der zeigen, dass sowohl Details auf Pixelebene als auch Strukturen und
Stile repliziert werden können – beispielsweise von bekannten Gemälden.75

Dabei konnten Replikationen im Bildvordergrund oder -hintergrund auf‐
treten, wobei kleinere Variationen ignoriert wurden, die auch das Ergebnis
einer Datenaugmentierung sein könnten. Eine starke Replikation von Trai‐
ningsdaten wurde beobachtet, wenn nur mit kleinen Datensätzen trainiert
wurde. Je mehr Daten zum Training verwendet wurden, desto geringer
wurde der Effekt. Auch hier ist die Wiederholung von Inhalten in den Trai‐
ningsdaten ein wichtiger Faktor für das Memorisieren. Weiterhin scheint
es einen großen Unterschied zu machen, ob der Diffusionsprozess über
einen Text-prompt oder eine einfache Klassenangabe konditioniert wurde.
Bei letzterem wurden keine signifikanten Replikationen beobachtet. Dies
könnte an der deutlich höheren Spezifizität von Text-prompts liegen, be‐
darf aber weiterer Untersuchungen. In den Experimenten wurden zudem
prompts aus dem Trainingsdatensatz verwendet, was zusätzlich zur Repli‐
kation beigetragen haben dürfte. Es wurde unter anderem beobachtet, dass
Schlüsselphrasen im prompt einen großen Einfluss haben.76

Ähnliche Beobachtungen sind auch im Audio- und Videobereich erwart‐
bar, gestalten sich jedoch durch die zusätzliche zeitliche Dimension in die‐
sen Daten als deutlich anspruchsvoller. Erste Anzeichen für Memorisieren
gibt es bereits.77 Daher handelt es sich sehr wahrscheinlich um ein allge‐

75 Somepalli et al., Diffusion Art or Digital Forgery? Investigating Data Replication in
Diffusion Models, arXiv:2212.03860v3 [cs.LG] 12 Dec 2022 (einsehbar unter: https://
doi.org/10.48550/arXiv.2212.03860 (zuletzt am 9. August 2024)).

76 Prompts, welche die Phrase „Canvas Wall Art Print“ einhielten, führten in ca. 20 %
der Fälle zur Replikation eines bestimmten Sofas aus dem Datensatz.

77 Für Audiodaten vgl. z.B. Bralios et al., Generation or Replication: Auscultating Audio
Latent Diffusion Models, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2024) (einsehbar unter: https://www.merl.com/publi
cations/docs/TR2024-027.pdf (zuletzt am 9. August 2024)); für Videodaten vgl.

§ 2. Technologische Grundlegung

62

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2212.03860
https://doi.org/10.48550/arXiv.2212.03860
https://www.merl.com/publications/docs/TR2024-027.pdf
https://www.merl.com/publications/docs/TR2024-027.pdf
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2212.03860
https://doi.org/10.48550/arXiv.2212.03860
https://www.merl.com/publications/docs/TR2024-027.pdf
https://www.merl.com/publications/docs/TR2024-027.pdf


meines Problem. Generell steckt die Forschung zu dieser Frage allerdings
noch in den Anfängen. Neben der hohen Komplexität der Modelle bremst
vor allem deren eingeschränkte öffentliche Verfügbarkeit den Erkenntnis‐
fortschritt erheblich. Die Frage, ob Trainingsdaten (in Teilen) memorisiert
werden, kann jedoch zumindest für aktuelle LLMs und (Latent) Diffusion
Modelle klar bejaht werden.

Es ist zu erwarten, dass bereits entsprechende Gegenmaßnahmen für das
(übermäßige) Memorisieren entwickelt oder sogar bereits umgesetzt wer‐
den.78 Naheliegende Ansätze sind das sorgfältige Kuratieren der Trainings‐
daten inklusive Deduplikation79, modifizierte Fehlerfunktionen, die wenig
anfällig für ein Memorisieren sind80, eine Limitierung der Kontextlänge,
eine Vorfilterung der prompts zur Erkennung von Anfragen mit Teilen aus
den Trainingsdaten oder generell urheberrechtsgeschütztem Material sowie
eine Verkleinerung der Modellkapazität zur Reduzierung von overfitting
durch Memorisieren.

E. Ausblick

Die Tatsache, dass große generative Modelle mit Problemen wie (über‐
mäßigem) Memorisieren zu kämpfen haben, ist im Grunde nicht überra‐

z.B. Rahman/Perera/Patel, Frame by Familiar Frame: Understanding Replication in
Video Diffusion Models, arXiv preprint arXiv:2403.19593 (2024) (einsehbar unter:
https://doi.org/10.48550/arXiv.2403.19593 (zuletzt am 9. August 2024)).

78 Erste Vorschläge hierfür finden sich z.B. in Hans et al., Be like a Goldfish,
Don't Memorize! Mitigating Memorization in Generative LLMs, arXiv preprint ar‐
Xiv:2406.10209 (2024) (einsehbar unter: https://doi.org/10.48550/arXiv.2406.10209
(zuletzt am 9. August 2024)); Chen/Liu/Xu, Towards Memorization-Free Diffusion
Models, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2024) (einsehbar unter: https://doi.org/10.48550/arXiv.2404.00922
(zuletzt am 9. August 2024)); zudem auch Wen et al., Detecting, explaining, and
mitigating memorization in diffusion models, Proceedings of the 12th International
Conference on Learning Representations (ICLR) 2024 (einsehbar unter: https://doi.
org/10.48550/arXiv.2407.21720 (zuletzt am 9. August 2024)).

79 Lee et al., Deduplicating Training Data Makes Language Models Better, Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Vol.
1: Long Papers) 2022 (einsehbar unter: https://doi.org/10.48550/arXiv.2107.06499
(zuletzt am 9. August 2024)).

80 Hans et al., Be like a Goldfish, Don't Memorize! Mitigating Memorization in Genera‐
tive LLMs, arXiv preprint arXiv:2406.10209 (2024) (einsehbar unter: https://doi.org/
10.48550/arXiv.2406.10209 (zuletzt am 9. August 2024)).

E. Ausblick

63

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2403.19593
https://doi.org/10.48550/arXiv.2406.10209
https://doi.org/10.48550/arXiv.2404.00922
https://doi.org/10.48550/arXiv.2407.21720
https://doi.org/10.48550/arXiv.2407.21720
https://doi.org/10.48550/arXiv.2107.06499
https://doi.org/10.48550/arXiv.2406.10209
https://doi.org/10.48550/arXiv.2406.10209
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2403.19593
https://doi.org/10.48550/arXiv.2406.10209
https://doi.org/10.48550/arXiv.2404.00922
https://doi.org/10.48550/arXiv.2407.21720
https://doi.org/10.48550/arXiv.2407.21720
https://doi.org/10.48550/arXiv.2107.06499
https://doi.org/10.48550/arXiv.2406.10209
https://doi.org/10.48550/arXiv.2406.10209


schend: Das Training dieser Modelle erfordert Ressourcen in Größenord‐
nungen, die es praktisch verbieten, dem sonst üblichen Ansatz zu folgen,
bei dem Modelle iterativ entwickelt und dabei viele, leicht veränderte Ver‐
sionen nacheinander trainiert werden. In dieser noch neuen Situation wer‐
den erste Erfahrungen gesammelt. Es wird z.B. versucht, aus kleineren Vor-
Experimenten Gesetzmäßigkeiten für die zu erwartende Qualität (d.h. den
Fehler) abzuleiten in Abhängigkeit von der Skalierung der Modellgröße,
der Datenmenge und des Rechenaufwands.81 Damit soll vorhergesagt wer‐
den, wie ein finaler Trainingslauf ausgehen wird und was der optimale
Einsatz von Ressourcen dafür wäre. Ähnlich wird auch nur geschätzt, wie
stark ein mit entsprechenden Ressourcen trainiertes Modell memorisieren
würde, weil der Test mit allen Trainingsdaten zu ressourcenintensiv wä‐
re.82 Hinzu kommt, dass die öffentliche Forschung mangels Ressourcen
kaum noch die Möglichkeit hat, sich hieran zu beteiligen. Damit wird
die Weiterentwicklung der Modelle vor allem von großen KI-Konzernen
vorangetrieben, die in gegenseitiger Konkurrenz zunächst eher die schnelle
Veröffentlichung des nächstbesseren Produkts im Blick haben und eher
zweitrangig an einem optimal trainierten Modell interessiert sein dürften.

Mittelfristig scheint der Trend, immer größere Modelle mit immer mehr
Ressourcen zu trainieren, nicht viel länger durchzuhalten zu sein. Aktuelle
Modelle sind jetzt schon aufgrund der extrem hohen Kosten für Training
und Betrieb nicht ökonomisch. Hier ist eher eine gegenläufige Entwicklung
der Modellgrößen zu erwarten. Denkbar wäre hier beispielsweise eine Wei‐
terentwicklung des bekannten Ansatzes der knowledge distillation83, bei der
ein großes Lehrermodell zum Training eines kompakteren Schülermodells
verwendet wird. Möglicherweise könnte dabei ein großes LLM als Lehrer
das Trainingskorpus so „vorverdauen“, dass das Schüler-Modell am Ende
mit einer geeigneteren Repräsentation der Daten besser trainiert werden
kann als der Lehrer. Unter Umständen könnten dafür sogar deutlich weni‐
ger, aber besser kuratierte Trainingsdaten genügen.

81 Kaplan et al., Scaling laws for neural language models, arXiv preprint ar‐
Xiv:2001.08361 (2020) (einsehbar unter: https://doi.org/10.48550/arXiv.2001.08361
(zuletzt am 9. August 2024)).

82 Carlini et al., Quantifying Memorization Across Neural Language Models, Proceed‐
ings of the 11th International Conference on Learning Representations (ICLR), 2023
(einsehbar unter: https://doi.org/10.48550/arXiv.2202.07646 (zuletzt am 9. August
2024)).

83 Hinton/Vinyals/Dean, Distilling the knowledge in a neural network, arXiv preprint
arXiv:1503.02531 (2015) (einsehbar unter: https://doi.org/10.48550/arXiv.1503.02531
(zuletzt am 9. August 2024)).

§ 2. Technologische Grundlegung

64

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.1503.02531


Eine weitere mögliche Entwicklung ist die Einbindung von explizitem
Speicher in die Modelle. Bei aktuellen generativen Modellen gib es keine
Trennung von gespeicherten Daten und Programmen wie in üblichen
Computern. Bei gewöhnlichen KNNs wird alles vermischt in den Parame‐
tern repräsentiert. Stattdessen ist es jedoch auch möglich, Daten in einen
expliziten Speicher auszulagern und das KNN lernen zu lassen, wie es den
Speicher nutzt und die gespeicherten Daten weiterverwendet. Ein solcher
Ansatz hat schon 2016 vielversprechende erste Ergebnisse geliefert – aller‐
dings noch nicht im Kontext generativer Modelle.84 Interessant ist hier vor
allem, dass der Speicher beliebig skaliert werden kann, ohne das Modell
neu trainieren zu müssen. Das KNN könnte gleichzeitig deutlich kompak‐
ter sein, da es nur das prozedurale Wissen repräsentieren müsste – also
wie verschiedene Daten kombiniert und transformiert werden müssen, um
eine bestimmte Ausgabe zu erhalten. Weiterhin kann genau nachvollzogen
werden, welche Daten gespeichert und zur Erzeugung einer Ausgabe ver‐
wendet wurden. Wenn sich dieser Ansatz auf generative Modelle übertagen
ließe, wäre damit eine deutlich bessere Nachvollziehbarkeit gegeben.

84 Graves et al., Hybrid computing using a neural network with dynamic external
memory, Nature 538 (2016), 471–476 (einsehbar unter: https://doi.org/10.1038/nature
20101 (zuletzt am 9. August 2024)).

E. Ausblick

65

https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101


https://doi.org/10.5771/9783748949558-23 - am 22.01.2026, 03:56:25. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748949558-23
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

	A. Maschinelles Lernen
	I. Lernaufgaben
	II. Parameter und Hyper-Parameter
	III. Generalisierung und Modellkapazität
	IV. Datenaugmentierung

	B. Künstliche Neuronale Netze (KNNs)
	I. Aufbau und Struktur
	II. Embeddings und latent space
	III. Training von KNNs
	IV. Pre-Training und Fine-Tuning
	V. Weiterverwendung von trainierten Modellen und catastrophic forgetting
	VI. Reproduzierbarkeit eines Trainingsvorgangs

	C. Generative KI-Modelle
	I. Technische Grenzen der Trainierbarkeit
	II. Lösung: Approximation
	III. Large language models (LLMs) – Autoregressive Modelle
	IV. Generative Adversarial Networks (GANs)
	V. Variational Autoencoders (VAEs)
	VI. Diffusionsmodelle
	VII. Sampling und Konditionierung
	VIII. Style transfer

	D. Technische Betrachtungen zu Fragen des Urheberrechts
	I. Datensammlung: Webscraping und Erstellung von Korpora zum Training
	II. TDM: Anknüpfungspunkte und Abgrenzung
	III. Datenverarbeitung und potentielles Memorisieren beim Training

	E. Ausblick

