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X  Nomenklatur 
 

Nomenklatur 

Allgemeine Abkürzungen 

AOX Alkoholoxidase 
BMBF Bundesministerium für Bildung und Forschung 
BPRC Biomedical Primate Research Centre 
D1M1H Potentielles Malariavakzin, Fusionsprotein aus PfAMA1 und PfMSP1 
DCU Bioreaktor-Kontrolleinheit (Digital Control Unit) 
EMA European Medicines Agency 
FDA Food and Drug Administration 
HPLC High Performance Liquid Chromatography 
ICH International Conference on Harmonization 
IMAC Immobilized Metal chelate Affinity Chromatography 
MVDA Multivariate Datenanalyse 
NIR, NIRS Nahinfrarot, Nahinfrarotspektroskopie 
OPC Open Platform Communications 
PAT  Process Analytical Technology 
PCA Hauptkomponentenanalyse (Principle Component Analysis) 
PfAMA1 Plasmodium falciparum Apical Membrane Antigen 1 
PfMSP1 Plasmodium falciparum Merozoite Surface Protein 1 
PLSR Partial Least Squares Regression 
POD Peroxidase 
QbD Quality by Design 
RI Brechungsindex (refractive index) 
RTR Real-Time Release 
SCADA Supervisory Control and Data Acquisition 
SIMCA Soft Independent Modelling of Class Analogy 
SNV Standard Normal Variate 
SVM, SVR Support Vector Machines, Support Vector Regression 
UV/Vis Ultraviolett/Visuell, Wellenlängenbereich des elektromagnetischen Spektrums 
WHO World Health Organization 

Prozessgrößen 

AK UV/Vis- oder NIR-Absorptionsmessung im Teilsystem K [AU] 
aP1 Eigenwert der Produktbildungsrate [h-1] 
CIK Stoffmengenkonzentration von Komponente I in Teilsystem K [moll-1] 
CP2K AOX-Aktivität in Teilsystem K [Ul-1] 
cIK Massenkonzentration von Komponente I in Teilsystem K [gl-1] 
DA Gesamtverdünnungsfakor eines Aufschlussansatzes [-] 
d Schichtdicke [cm] 
EABTS Extinktionsmessung des Chromophors ABTS [-] 
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Nomenklatur XI 

eS1L Regeldifferenz der Glycerolkonzentration in der Flüssigphase [gl-1] 
EL Trübungsmessung in der Flüssigphase [AU] 
FK Volumenstrom in/aus Teilsystem K [lh-1] 
FnI Begasungsrate der Komponente I unter Normbedingungen [lh-1] 
gP2/X zellspezifische AOX-Aktivität [Ug-1] 
IK Raman-Intensitätsmessung in Teilsystem K [IU] 
JI Gütekriterium bei Anpassung einer Komponente I [div.] 
IUR volumetrische Aufnahmerate der Komponente I [gl-1h-1] 
KJ	 Verstärkungsfaktor eines Teilsystems J [div.] 
kLa volumetrischer Sauerstofftransferkoeffizient [h-1] 
kS1 Monod-Limitierungskonstante für Glycerol [gl-1] 
MI Molare Masse von Komponente I [gmol-1] 
mIK Masse von Komponente I in Teilsystem K [g] 
mK Masse von Teilsystem K [g] 
NSt Rührerdrehzahl [min-1] 
pG Überdruck in der Gasphase [bar] 
pH pH-Wert [-] 
pO2 relativer Gelöstsauerstoffpartialdruck [%] 
QI volumentrischer Massenstrom von Komponente I [gl-1h-1] 
qI/X zellspezifische Reaktionsrate der Komponente I [h-1] 
R Korrelationskoeffizient [-] 
RQ Respirationsquotient [molmol-1] 
SK Fluoreszenzmessung in Teilsystem K [RFU] 
s Eigenwert [h-1] 
t Zeit [h] 
TJ Zeitkonstante eines Teilsystems J [h] 
VK Volumen des Teilsystems K [l] 
VnM Molares Normvolumen [lmol-1] 
xIG Stoffmengenanteil von Komponente I in der Gasphase [-]  
yI/J Ausbeutekoeffizient der Komponente I aus Komponente J [gg-1] 
αZ/X Massenverhältnis von feuchten zu trockenen Zellen [gg-1] 
εABTS	 molarer Extinktionskoeffizient von ABTS [lμmol-1cm-1] 
ϑ	 Dämpfungsgrad [-] 
ϑL Temperatur in der Flüssigphase [°C] 
λ	 Wellenlänge [nm] 
μ	 Zellwachstumsrate [h-1] 
ν	 Wellenzahl [cm-1] 
ρK, ρZ Dichte des Teilsystems K, Dichte feuchter Zellen [gl-1] 
σ	 Abklingkonstante [h-1] 
ω	 Kreisfrequenz [h-1] 
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XII  Nomenklatur 
 

Prozessrelevante Indizes 

Komponenten 

Ac Säure (acid) P1 D1M1H (Zielprodukt) 
AF Antischaum (anti foam) P2 Alkoholoxidase (AOX) 
AIR Luft Ptot Gesamtprotein 
Al Base (alkali) S1 Glycerol (Substrat 1) 
C, CO2 Kohlenstoffdioxid S2 Methanol (Substrat 2) 
N2 Stickstoff X Biotrockenmasse 
O, O2 Sauerstoff Z Biofeuchtmasse 

Teilsysteme 

A Analyse, Aufschlussansatz R1 Glycerolvorlage 
B Puffersystem R2 Methanolvorlage 
G Gasphase R3 Medienvorlage 
H Ernte (harvest) S Probe (sample) 
L Flüssigphase (Kulturbrühe) T1 Säurevorlage 
M Medienphase (Überstand) T2 Basevorlage 

Laufindizes 

i Substrate, Zeitpunkte p Reaktoren  
j Zeitpunkte u Zeitpunkte 
k Batches/Zyklen, Zeitpunkte 

Zustände, Orte 

0 Anfangsbedingung n Normbedingungen 
ap aperiodisch nir Nahinfrarot 
at atline off offline 
cdw Biotrockenmasse on online 
em Emission op Arbeitspunkt (operating point) 
est estimiert P proportional, Periodendauer 
ex Anregung (exitation) pls vorhergesagt mit PLSR 
fia Fließinjektionsanalyse R Regler 
flu 2D-Fluoreszenz ram Raman 
gr Wachstumsanteil (growth) rel relativ 
hplc gemessen mit HPLC S Strecke 
I Integration svr vorhergesagt mit SVR 
in Eingang (inlet) tot total 
m Erhaltungsstoffwechsel turb Trübung (turbidity) 
max maximal w Sollwert 
min minimal zi Störgröße 
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Nomenklatur XIII 

Matrizen und Vektoren in der MVDA 

B (m ൈ	v) PLS-Regressionskoeffizientenmatrix 
bj (m ൈ	1) Spaltenvektor mit PLS-Regressionskoeffizienten 
D (n ൈ	m) Datenmatrix (Spektren oder Prozessdaten) 
dj (n ൈ	1) Spaltenvektor der Datenmatrix D 
E (n ൈ	m) Residuenmatrix des X-Datenraums 
F (n ൈ	v) Residuenmatrix des Y-Datenraums 
G (n ൈ	v) Residuenmatrix des PLS-Regressionsansatzes 
M (n ൈ	v) Messdatenmatrix (Zielgrößen bei der PLSR) 
P (m ൈ	r) Loadingmatrix des X-Datenraums 
pl (m ൈ	1) Loading-Spaltenvektor der Komponente l (X-Daten) 
Q (v ൈ	r) Loadingmatrix des Y-Datenraums 
ql (v ൈ	1) Loading-Spaltenvektor der Komponente l (Y-Daten) 
T (n ൈ	r) Scorematrix des X-Datenraums 
tl (n ൈ	1) Score-Spaltenvektor der Komponente l (X-Daten) 
U (n ൈ	r) Scorematrix des Y-Datenraums 
ul (n ൈ	1) Score-Spaltenvektor der Komponente l (Y-Daten) 
w (m ൈ	1) Wichtungs-Spaltenvektor der Entscheidungsfunktion (SVR) 
W (m ൈ	r) Weightmatrix eines PLSR-Modells 
wl (m ൈ	1) Weight-Spaltenvektor der Komponente l 
X (n ൈ	m) modifizierte Datenmatrix (Spektren oder Prozessdaten) 
xj (n ൈ	1) Spaltenvektor der Datenmatrix X 
Y (n ൈ	v) modifizierte Messdatenmatrix (Zielgrößen bei der PLSR und SVR) 
yh (n ൈ	1) Spaltenvektor der Messdatenmatrix Y 

MVDA-relevante Bezeichnungen 

b Bias der Entscheidungsfunktion (SVR) 
C Güteparameter zur Wichtung der Fehler bei der SVR 
c Koeffizient der inneren Beziehung eines PLSR-Modells 
DModX Distanz zum Modell im X-Datenraum (Ausreißerdetektion) 
EC Klassifizierungsfehler [%] 
F Wert einer F-Verteilung 
g Trennebene, Entscheidungsfunktion (SVR) 
K	 Kernel-Funktion (SVR) 
L, Ld Lagrange-Funktional (SVR) 
m Anzahl an Variablen/Spalten in der Datenmatrix X 
n Anzahl an Zeilen in der Datenmatrix X 
nK (allgemein) Anzahl an Beobachtungen in der Gruppe K 
r Anzahl an Komponenten/Spalten in der Scorematrix T 

2
cvR  Güte der Vorhersage der Kreuzvalidierung (cross validation cv) 
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XIV  Nomenklatur 
 

2
PR  Güte der Vorhersage der externen Validierung (prediction P) 
2
XR  Güte der Anpassung/erklärter Anteil der Varianz (Datenraum X) 
2
YR  Güte der Anpassung/erklärter Anteil der Varianz (Datenraum Y) 

RMSEcv Vorhersagefehler bei der Kreuzvalidierung [div.] 
RMSEP Vorhersagefehler bei der externen Validierung [div.] 
rTαl Radius einer Hotelling T2-Ellipse in Richtung der Komponenten l 
S Spanne zwischen den Eingangsdaten (SVR) 
sdi Zeilenstandardabweichung bezogen auf Datenmatrix D 
sdj Spaltenstandardabweichung bezogen auf Datenmatrix D 
Se Sensitivität eines Klassifikators 
Sp Spezifität eines Klassifikators 
SSY Maß für den Anteil erklärter Varianz des Y-Datenraums 
T2 Hotelling T2-Wert (Ausreißerdetektion) 
v Anzahl an Variablen/Spalten in der Datenmatrix Y 
VIP Variable Importance on Projection (Variablenselektion) 
α	 Irrtumswahrscheinlichkeit einer statistischen Hypothese 
αi, βi	 Lagrange-Multiplikatoren der Beobachtung i (SVR) 
βK Wahrscheinlichkeit der Zugehörigkeit zu einer Klasse K 
γ	 Parameter des Gauß‘schen RBF-Kernels (SVR) 
ε Fehlertolerenz-Parameter bei der SVR 

MVDA-relevante Indizes 

Laufindizes 

i Beobachtungen, Objekte l Haupt-/PLS-Komponenten 
j X-Variablen z Beobachtungen (SVR) 
h Y-Variablen  

Weitere Indizes und Zustände 

  ̅    Arithmetrischer Mittelwert opt optimal 
  ̂  Modellschätzwert p positiv (Klassenzugehörigkeit) 
abs absolut nor normiert 
av Mittelwert (average) n negativ (Klassenzugehörigkeit) 
crit kritischer Wert mc mittenzentriert 
CS Kalibrierdatensatz f falsch (Klassifizierung) 
cv Kreuzvalidierung de1 erste Ableitung 
P Vorhersage (prediction) t wahr (Klassifizierung) 
PS Vorhersagedatensatz sv Stützvektor (support vector) 
rel relativ tot total 
snv SNV-gefiltert uv autoskaliert (unit variance) 
te temporär VS Validierdatensatz  
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Kurzfassung XV 

Kurzfassung 

Jan-Patrick Voß 

Anwendung spektroskopischer Messverfahren  
und Multivariater Datenanalyse zur Bewertung 

und Beobachtung von Bioprozessen 

Die Process Analytical Technology (PAT) Initiative empfiehlt den Einsatz fortschrittlicher Ana-
lysensysteme in der pharmazeutischen Produktion. Die vorliegende Arbeit beschreibt wichtige 
Schritte bei der Etablierung von spektroskopischen Messverfahren in Bioprozessen. 

Ein erstes Ziel war die Entwicklung eines Qualitätsbewertungsverfahrens für Hefeextrakte, ba-
sierend auf NIR-Spektroskopie und multivariater Klassifizierung. Die gewählte Methode Soft 
Independent Modelling of Class Analogy (SIMCA) führte mit einem Klassifizierungsfehler von 
1,5 % zu einem sehr guten Ergebnis. 

Ein überwiegender Teil dieser Arbeit widmete sich der Beobachtung zyklischer Kultivierungs-
prozesse der methylotrophen Hefe Pichia pastoris zur Herstellung des potentiellen Malaria-
vakzins D1M1H. Hierbei wurde die Quantifizierung von Zelldichte und AOX-Gehalt sowie Gly-
cerol-, Ammonium- und Produktkonzentration mit Partial Least Squares Regression (PLSR), 
basierend auf NIR-, Raman- und 2D-Fluoreszenzspektren zunächst offline erprobt. 

Im Anschluss erfolgte eine Übertragung der erarbeiteten Methoden auf den Online-Betrieb. 
Dabei kam neben der PLSR auch das nichtlineare Verfahren Support Vector Regression 
(SVR) zum Einsatz. Dieses verbesserte unter anderem die Bestimmung der Glycerolkonzen-
tration mit Raman-Spektroskopie und erreichte einen Vorhersagefehler von ca. 3 %. 

Zur Regelung von Glycerol wurden Raman-Spektren und PLSR erfolgreich eingesetzt und 
damit die technische Relevanz der multivariaten Kalibrierung über eine reine Prozessbeob-
achtung hinaus demonstriert. Die Realisierung erfolgte mit einer Störgrößenaufschaltung und 
einer ergänzenden adaptiven Regelung der Abweichungen vom Sollwert. 

Bei der technischen Umsetzung kamen mit SIMATIC SIPAT, Umetrics SIMCA und MATLAB® 
eine Reihe industrierelevanter Softwarepakete innerhalb einer komplexen Prozess-EDV in 
einem zweistufigen Produktionsprozess zum Einsatz. 

Den Abschluss dieser Arbeit bildet die Anwendung multivariater Kalibrierverfahren auf nicht-
spektroskopische Online-Prozessgrößen. Hierbei wurden die obigen biotechnologischen Vari-
ablen über 15 klassische Online-Messgrößen eines Bioreaktorprozesses ermittelt. Eine Bereit-
stellung geeigneter Trainingsdaten erfolgte durch Simulation und Parameteridentifikation von 
Modellen mit Massenbilanzen zur Glättung von Offline-Analysen. 

Die daraus resultierende Bestimmung der Zielproduktkonzentration erreichte mit der nicht-
linearen SVR einen Vorhersagefehler von 3,2 %. Die Quantifizierung zellspezifischer Reak-
tionsraten für Zellmasse, Glycerol, Methanol, Sauerstoff und Produkt war auf diesem Wege 
ebenfalls erfolgreich. Mit einem Fehler von 2,7 % war die Prädiktion der Aufnahmerate von 
Methanol am besten. 

Schlüsselworte: Bioprozessmonitoring; Spektroskopie; Multivariate Datenanalyse; Chemo-
metrie; Process Analytical Technology; Pichia pastoris; Malariaimpfstoff  
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XVI  Abstract 
 

Abstract 

Jan-Patrick Voß 

Application of spectroscopic measurement methods 
and multivariate data analysis for evaluation 

and monitoring of bioprocesses 

The Process Analytical Technology (PAT) initiative proposes the application of advanced ana-
lysis systems in pharmaceutical production. This work describes important steps in establish-
ing spectroscopic measurement methods in bioprocesses. 

A first objective was the development of a quality evaluation system for yeast extracts based 
on NIR-spectroscopy and multivariate classification. The selected method Soft Independent 
Modelling of Class Analogy (SIMCA) gave excellent results by obtaining a classification error 
of 1.5 %. 

Most of the work was dedicated to the monitoring of cyclic cultivation processes of the methylo-
trophic yeast Pichia pastoris for production of the potential malaria vaccine D1M1H. First, 
quantification of cell density, AOX content as well as glycerol, ammonia and product concen-
tration with Partial Least Squares Regression (PLSR) based on NIR-, Raman- and 2D-fluores-
cence spectra was tested off-line. 

A transfer of developed methods to the on-line operation took place subsequently. Besides 
PLSR, the non-linear method Support Vector Regression (SVR) was also used on-line and 
enabled the improvement of glycerol determination with Raman-Spectroscopy. A prediction 
error of approx. 3 % was achieved. 

For glycerol control, Raman spectra and PLSR were successfully applied, thus demonstrating 
the technical relevance of multivariate calibration beyond mere process monitoring. The imple-
mentation was carried out with a feed-forward control and an additional adaptive compensation 
of the deviations from the setpoint. 

A complex data processing system, involving software with industrial relevance like SIMATIC 
SIPAT, Umetrics SIMCA and MATLAB®, was used for the technical implementation in a two-
stage production process. 

In conclusion of this work, multivariate calibration methods were applied to non-spectroscopic 
on-line process data. Here, the biotechnological variables mentioned above were determined 
using 15 classical on-line measurements of a bioreactor process. Suitable training data was 
provided by smoothing off-line measurements via simulation of models with mass balances 
and parameter identification. 

The resulting determination of target protein concentration with the non-linear SVR obtained 
an error of 3.2 %. In addition, quantification of cell specific reaction rates for cell mass, glycerol, 
methanol, oxygen and product was also successful in this context. With an error of 2.7 %, 
prediction of methanol uptake performed the best. 

Keywords: bioprocess monitoring; spectroscopy; multivariate data analysis; chemometrics; 
Process Analytical Technology; Pichia pastoris; malaria vaccine 
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Einleitung und Zielsetzung 1 

1. Einleitung und Zielsetzung 

1.1 PAT ‒ Ein Werkzeug moderner pharmazeutischer Produktion 

Die Herstellung pharmazeutischer Produkte unterliegt strengen Vorschriften durch Zulas-
sungsbehörden wie der U.S. Food and Drug Administration (FDA) und der European Medi-
cines Agency (EMA). Dabei stehen die Gewährleistung einer hohen reproduzierbaren Qualität 
und Effizienz der Arzneimittel und damit die Sicherheit des Patienten im Vordergrund. 

Auch kleinere Änderungen bestehender Produktionsprozesse bedürfen, auch bei technischen 
Fortschirtten, daher einer Genehmigung durch die FDA. Dem steht die Industrie aufgrund des 
damit verbundenen hohen finanziellen Aufwandes kritisch gegenüber. In der Vergangenheit 
hat dieser Umstand die Implementierung neuer Technologien und wissenschaftlicher Erkennt-
nisse in die Herstellung von Pharmaka nahezu unterbunden [RATHORE & WINKLE, 2009]. 

In den Jahren 2002 und 2003 kündigte die FDA den Start zweier Initiativen an, um Innovatio-
nen in den Unternehmen zu fördern und regulatorische Hürden dabei zu mindern [BONDI & 
DRENNEN, 2011]. Die finale Version der Initiative „Pharmaceutical CGMPs for the 21st Century 
- A Risk-Based Approach“ aus dem Jahre 2004 beschreibt einen systematischen Entwick-
lungsansatz der Herstellung von Pharmaka bei dem die Qualität des Produktes bereits bei 
dessen Herstellung sichergestellt werden soll [FDA, 2004b]. 

Eine fundamentale Annahme dieses Quality by Design (QbD) genannten Konzeptes liegt 
darin, dass die Produktqualität von der Prozessvariabilität abhängt und nur dann gesichert 
werden kann, wenn kritische Quellen dieser Variabilität identifiziert, verstanden und kontrolliert 
werden können [JAIN, 2014; YU et al., 2014]. 

Aus diesem Grund veröffentlichte die FDA zur Unterstützung der QbD-Initiative den Indus-
trieleitfaden „PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing 
and Quality Assurance”, der die Einbindung moderner Analyse- und Kontrollverfahren in die 
Prozessentwicklung behandelt [FDA, 2004a]. 

Beide Konzepte sind bereits international anerkannt und adaptiert, was durch eine Reihe von 
nachfolgenden Richtlinien der International Conference on Harmonization (ICH) dokumentiert 
wurde [ICH, 2005, 2008, 2009]. Die FDA hat damit einen starken Paradigmenwechsel in der 
pharmazeutischen Produktion angestoßen. 

Die Process Analytical Technology (PAT) Richtlinie beruht auf prozessbegleitenden, möglichst 
zeitnahen Messungen kritischer Qualitäts- und Leistungskenngrößen von Rohmaterialien, 
Zwischen- und Endprodukten sowie des ablaufenden Prozesses selbst. Sie dient damit der 
wichtigen Erzeugung von Produkt- und Prozessverständnis [JUNKER & WANG, 2006; GLASSEY 

et al., 2011]. 

Das Ziel von PAT ist letztlich eine Regelung von Prozesskenngrößen, um damit die finale Pro-
duktqualität ggf. dynamisch korrigieren zu können. Das Resultat soll der Real-Time Release 
(RTR) sein, bei dem die Qualität des Produktes nicht am Ende der Herstellung durch Labor-
analysen nachgewiesen werden muss, sondern bereits durch den Prozessverlauf sicher-
gestellt ist [STREEFLAND et al., 2013; RATHORE, 2014]. 
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2  Einleitung und Zielsetzung 
 

PAT stellt daher auch eine Sammlung an Werkzeugen (PAT Tools) zur Realisierung des QbD-
Konzeptes dar [GLASSEY et al., 2011]. Wie in Bild 1.1 angedeutet, werden insbesondere mo-
derne Prozessanalysatoren sowie multivariate Analyseverfahren zur Beherrschung großer 
Datenmengen empfohlen und gefördert [FDA, 2004a]. 

 
Bild 1.1: Werkzeuge und Ziele der PAT-Richtlinie [VALERO, 2013] 

In der chemisch-pharmazeutischen Industrie sind bereits einige einfache Prozesse, wie z.B. 
Vermahlungen oder Tablettierungen unter PAT-Aspekten zugelassen. Aus dem biopharma-
zeutischen Sektor sind dagegen nur sehr wenige Anwendungen bekannt [STREEFLAND et al., 
2013; RATHORE, 2014]. 

Als Ursache gilt weithin die hohe Komplexität biotechnologischer Kultivierungsprozesse, von 
denen die Produktqualität maßgeblich beeinflusst wird. Die Begasung und Durchmischung ae-
rober Prozesse, komplexe Kulturmedien, die Zellen selbst sowie nichtlineare Verläufe und Ab-
hängigkeiten der Prozesse erschweren eine robuste Messung relevanter Variablen. Eine hohe 
Stamm- und Prozessspezifität sowie Inhomogenitäten im großen Maßstab stehen einer indus-
triellen Umsetzung zusätzlich im Wege [MERCIER et al., 2014; SIMON et al., 2015]. 

1.2 Zielsetzung dieser Arbeit 

Das Ziel dieser Arbeit ist, einen Beitrag zur PAT-Initiative zu leisten. Dabei stand die Anwen-
dung spektroskopischer Messverfahren und der Multivariaten Datenanalyse (MVDA) als PAT-
Werkzeuge im Fokus. 

Eine erste Aufgabenstellung bestand in der Entwicklung eines Qualitätsbewertungssystems 
für verschiedene Hefeextrakte, basierend auf Nahinfrarotspektroskopie (NIRS). Hefeextrakte 
kommen als Medienbestandteil in Kultivierungsprozessen zum Einsatz und haben durch ihren 
hohen Nährstoffgehalt einen starken Einfluss auf das Wachstum der Zellen sowie die Produk-
tivität des Prozesses [KEIL & TILKINS, 2013; MOSSER et al., 2013]. 

Da jedoch eine Abhängigkeit von der Produktcharge besteht, ist eine Qualitätsprüfung des 
Rohmaterials notwendig. Durch den Einsatz der NIRS und der MVDA sollte daher unter PAT-
Aspekten ein schnelles Verfahren entwickelt werden, das keine aufwendigen Laboranalysen 
erfordert. 
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Am Forschungs- und Transferzentrum für Bioprozess- und Analysentechnik der HAW Ham-
burg wurden unter der Leitung von Prof. Dr.-Ing. R. Luttmann in den letzten Jahren zyklische 
Prozesse zur Herstellung des potentiellen Malariavakzins D1M1H mit der methylotrophen Hefe 
Pichia pastoris aufgebaut [MARTENS, 2014; FRICKE, 2014; LÖGERING, 2015] und unter QbD- 
sowie PAT-Aspekten weiterentwickelt und untersucht [FRICKE, 2014; BORCHERT, 2015]. 

Diese Arbeit sollte an die vorangegangen Forschungsergebnisse unter PAT-Gesichtspunkten 
anknüpfen. Daher beschäftigt sich ein überwiegender Teil mit der Online-Beobachtung der 
zyklischen Produktionsprozesse. Hierbei sollten nicht direkt online bestimmbare Variablen 
durch spektroskopische Messungen und mit Hilfe multivariater Kalibrierverfahren abgeschätzt 
werden. 

In einem ersten Schritt dieses Arbeitspaketes erfolgte anhand von spektralen Offline-Messun-
gen mit den Methoden Nahinfrarot, Raman sowie 2D-Fluoreszenz eine Machbarkeitsstudie 
zur Quantifizierung ausgewählter Zielgrößen. Hierbei handelt es sich um die Zelldichte (cXL) 
sowie um die Konzentrationen in der Flüssigphase von Glycerol (cS1L), Ammonium (CAltotL) und 
sekretiertem Gesamtprotein (cPtotL). Weiterhin sollte auch die Bestimmung des zellinternen Ge-
haltes gP2/X eines Stoffwechselenzyms der Hefe getestet werden. Als multivariates Regres-
sionsverfahren kommt dabei Partial Least Squares (PLSR) zum Einsatz. 

Durch die Offline-Analysen werden Störquellen, wie beispielsweise die Begasung in Verbin-
dung mit einer Durchmischung des Bioreaktors, ausgeschlossen. Zusätzlich ist eine Untersu-
chung des Einflusses von Zellen auf die multivariaten Kalibriermodelle möglich. Die 
Untersuchungen sollten daher optimale Einstellungen, beispielsweise hinsichtlich der Vorver-
arbeitung der Spektren oder des gewählten Spektralbereiches, hervorbringen. 

In einem zweiten Schritt waren erfolgreiche Methoden und gewonnene Erkenntnisse auf den 
Online-Betrieb zu übertragen. Zur Kompensation erwarter Störeinflüsse sollte hier auch die 
nichtlineare Regressionsmethode Support Vector Regression (SVR) erprobt und mit der PLSR 
verglichen werden. 

Als weiterer Schritt zur Etablierung einer PAT-Anwendung wurde die Regelung der Glycerol-
konzentration cS1L mit spektroskopischer Messung und PLSR zum Ziel gesetzt. Hierbei sollten 
eine Störgrößenaufschaltung sowie eine Adaption der Reglerparameter zum Einsatz kommen, 
um das stark nichtlineare Prozessverhalten zu kompensieren. 

Im letzten Teil dieser Arbeit war die Anwendung der multivariaten Regressionsverfahren PLSR 
und SVR auf nichtspektroskopische Prozessdaten auszuweiten. Ziel dabei war, ebenfalls eine 
Vorhersage nicht direkt messbarer Variablen zur Erweiterung des Prozessmonitorings nach 
PAT-Gesichtspunkten ohne komplexe spektrale Messungen zu erreichen. 

Neben Zustandsgrößen wie der Zelldichte, Substrat- oder Produktkonzentrationen sollte hier-
bei auch die Bestimmung zellspezifischer Reaktionsraten, wie beispielsweise die Zielprodukt-
bildung qP1/X, näher untersucht werden. Hierfür standen eine Reihe von Inline- und Online-
Messgrößen, wie beispielsweise Waagensignale oder die Ergebnisse einer Abgasbilanzierung 
aus hochinstrumentierten Bioreaktoren zur Verfügung. 
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2. Mikro- und molekularbiologische Grundlagen 

2.1 Das potentielle Malariavakzin D1M1H als Zielprodukt 

Malaria ist eine der gefährlichsten Infektionskrankheiten des Menschen. Trotz eines Rückgan-
ges von Infektionen und Todesfällen erkrankten im Jahr 2015 schätzungsweise 214 Millionen 
Menschen. Für 438 Tausend Patienten verlief die Krankheit tödlich [WHO, 2015]. 

An der Entwicklung möglicher Impfstoffe wird seit Jahrzehnten intensiv geforscht. Dennoch ist 
bisher kein Vakzin kommerziell erhältlich. Mit Mosquirix™, einem Produkt der Fa. Glaxo-
Smith-Kline, Brentford, UK, erhielt der erste Malariaimpfstoff im Juli 2015 eine Zulassung der 
Europäischen Arzneimittel-Agentur (EMA) [EMA, 2015]. 

Der Erreger Plasmodium nutzt eine Reihe von Mechanismen, um dem menschlichen Immun-
system zu entgehen. Hieraus erwachsen Schwierigkeiten bei der Entwicklung eines umfas-
send wirksamen Impfstoffes. Insbesondere weisen mögliche Antigene eine hohe Diversität 
zwischen den Stämmen einer Spezies auf. Eine Vakzinierung mit entsprechendem Antigen ist 
daher nicht gegen die gesamte Spezies, sondern nur stammspezifisch wirksam [KENNEDY et 
al., 2002; HEALER et al., 2004].  

 
Bild 2.1: Komponenten und vereinfachte Struktur von D1M1H [MARTENS, 2014] 

Bei dem in Bild 2.1 gezeigten artifiziellen Konstrukt D1M1H handelt es sich um ein potentielles 
Malariavakzin, das in dieser Arbeit als Zielprotein dient. Es hat eine Molekülmasse von 63 kDa 
und besteht aus den drei Komponenten D1, M1 und H wobei letztere für einen Hexahistidin-
schwanz (His-Tag) steht. Dieser vereinfacht die Aufreinigung und Quantifizierung des Produk-
tes mit der Metallchelat-Affinitätschromatographie (IMAC). 

Die Komponenten D1 und M1 sind von den Oberflächenproteinen Apical Membrane Antigen 1 
(PfAMA1) und Merozoite Surface Protein 1 (PfMSP1) abgeleitet. Sie entstammen Plasmodium 
falciparum, dem Erreger der besonders schweren Malaria tropica. Es handelt es sich um zwei 
aussichtsreiche Kandidaten möglicher Impfstoffe, die jedoch den beschriebenen Polymorphis-
mus aufweisen [NIKODEM & DAVIDSON, 2000; KOCKEN et al., 2002; MITCHELL et al., 2004]. 

Am Biomedical Primate Research Centre (BPRC), Rijswijk, Niederlande, wurde deshalb ein 
sogenannter Diversity-Covering (DiCo) Ansatz entwickelt, der für das PfAMA1 drei Varianten 
(D1, D2, D3) hervorbrachte. Diese decken den natürlichen Polymorphismus des Oberflächen-
proteins zu 97 % ab [REMARQUE et al., 2008]. 
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Durch Kombination der DiCo-Proteine mit zwei Versionen (M1, M2) eines 19 kDa schweren 
Fragmentes von PfMSP1 wurden darüber hinaus artifizielle Fusionsproteine geschaffen, die 
einen höheren Immunisierungserfolg erzielen als die Verabreichung einzelner Varianten der 
Antigene [FABER et al., 2007, 2013]. 

Zugunsten einer Produktivitätssteigerung mit dem gewählten Expressionssystem Pichia pas-
toris wurde das sich ergebende Gesamtkonstrukt D1M1D2M2D3 auf die beiden Untereinhei-
ten D1M1 und D2M2D3 aufgeteilt. Der Nachteil hierbei besteht in der Notwendigkeit, ein geeig-
netes Vakzingemisch zu entwickeln [MARTENS, 2014]. 

Eine detaillierte Beschreibung der Entwicklung und Eigenschaften der obigen Malariavakzin-
kandidaten befindet sich in [MARTENS, 2014]. 

2.2 Das eingesetzte Expressionssystem 

2.2.1 Die methylotrophe Hefe Pichia pastoris 

Die zu der Abteilung Ascomycota gehörende Hefe Pichia pastoris ist ein einzelliger Mikroorga-
nismus und eines der wichtigsten biotechnologischen Wirtssysteme zur Herstellung artfremder 
Proteine. 

Seit 1993 kann Pichia pastoris in akademischen Forschungs- und Entwicklungsarbeiten lizenz-
frei eingesetzt werden und gehört dadurch zu den am besten charakterisierten Expressions-
systemen. Weiterhin zeichnet sich die Hefe durch eine sehr gute Handhabbarkeit hinsichtlich 
gentechnischer Arbeiten sowie ihrer Kultivierung aus [HIGGINS & CREGG, 1998]. 

Weitere Vorteile von Pichia pastoris bei der Produktion rekombinanter Proteine bestehen zum 
einen in der Fähigkeit zur Sekretion, wodurch sich die Aufreinigung des Zielproduktes verein-
facht. Zum anderen beherrscht die eukaryotische Hefe viele posttranslationale Modifikationen 
und ist dadurch in der Lage, die meisten Proteine in ihrer biologisch aktiven Form herzustellen 
[CREGG et al., 2000]. 

Es handelt sich um einen fakultativ methylotrophen Organismus. Dies bedeutet, das Methanol 
als einzige Kohlenstoff- und Energiequelle genutzt werden kann. Für eine Verwertung von 
Methanol ist das Enzym Alkoholoxidase (AOX) hauptverantwortlich. Die Expression von AOX 
wird durch Methanol selbst induziert. Andere Substrate wie zum Beispiel Glucose oder 
Glycerol hemmen dagegen den Methanolstoffwechsel und werden bevorzugt metabolisiert 
[ELLIS et al., 1985]. 

Die Hefe besitzt zwei Gene, die für zwei Varianten der Alkoholoxidase (AOX1, AOX2) kodie-
ren. Bei Wachstum auf Methanol kann AOX bis zu 30 % des gelösten zellinternen Proteins 
ausmachen. Die Ursache ist eine geringe Affinität des Enzyms zum Edukt Sauerstoff, was mit 
einer verstärkten Expression kompensiert wird. Verantwortlich hierfür ist der sehr starke Pro-
motor PAOX1, der die Transkription des AOX1 kontrolliert. Letzteres ist somit für den Großteil 
des Methanolstoffwechsels verantwortlich [KOUTZ et al., 1989]. 

Unterstellt man der Kontrolle dieses Promotors das Gen eines heterologen Proteins kann 
Pichia pastoris für dessen biotechnologische Herstellung genutzt werden. Man erhält dann ein 
Expressionssystem, das sich besonders durch hohe Produktausbeuten auszeichnet. Durch 
den Induktionsmechanismus mit Methanol ist die Proteinexpression außerdem steuerbar, was 
eine flexible Prozessführung ermöglicht [TSCHOPP et al., 1987; ROMANOS, 1995]. 
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2.2.2 Transformation des Organismus 

Die gentechnische Modifizierung von Pichia pastoris erfolgte mit dem kommerziellen Vektor-
system Invitrogen™ pPICZA der Fa. Thermo Fisher Scientific, Waltham, USA. 

Nach der Klonierung des Zielgens in das ringförmige Plasmid, dessen Amplifikation in Esche-
richia coli erfolgt, sowie einer nachfolgenden Linearisierung des Vektors, ist eine Einschleu-
sung des genetischen Materials in Pichia pastoris durch Elektroporation vorzunehmen. Bild 
2.2 zeigt schematisch den Ablauf der Transformation. 

 
Bild 2.2: Transformation von Pichia pastoris KM71H zur Erzeugung eines Produktions-

stammes mit dem Phänotyp MutS [MARTENS, 2014] 

Das Plasmid enthält einen Großteil der Sequenz des AOX1-Promotors (PAOX1) in deren Bereich 
es zu einer Anlagerung an die homologe Wirts-DNA kommt. Durch ein sogenanntes Crossover 
wird die Expressionscassette stabil in das Genom von Pichia pastoris integriert [TSCHOPP 

et al., 1987; HIGGINS & CREGG, 1998]. 

Neben der Gensequenz des Zielproduktes D1M1H wird außerdem ein sekretorisches Signal 
(α-F) für dessen Ausschleusung sowie eine AOX1-Transkriptionsterminationssequenz (TT) 
und ein Zeocin™-Resistenzgen für die Isolation erfolgreicher Transformanden in das Erbgut 
der Hefe eingebracht. 

In der vorliegenden Arbeit kam der Stamm Pichia pastoris KM71H zum Einsatz. Bei diesem 
ist das AOX1-Gen durch eine Fremdsequenz (ARG4) ersetzt worden. Ein solcher Organismus 
kann Methanol nur noch mit Hilfe des AOX2 verwerten. Dies äußert sich in einer geringeren 
Wachstumsrate auf diesem Substrat. Der entsprechende Phänotyp der Hefe wird daher 
methanol utilization slow (MutS) genannt [HIGGINS & CREGG, 1998]. 
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3. Eingesetzte Bioprozesstechnik 

3.1 Kultivierung von Pichia pastoris 

3.1.1 Der klassische Herstellungsprozess rekombinanter Proteine 

Der in Bild 3.1 gezeigte klassische Prozessverlauf zur Herstellung rekombinanter Proteine mit 
Pichia pastoris besteht aus drei Phasen. 

In einem ersten Abschnitt wachsen die Zellen (cXL) unlimitiert auf dem Primärsubstrat Glycerol 
(cS1M). Dieses wird zu Beginn in einer bestimmten Menge vorgelegt und bis zum Ende der 
Batchphase vollständig verbraucht. In dem darauffolgenden Fed-Batch findet substratlimitier-
tes Wachstum statt. Durch ein exponentielles Profil der Glycerolzufütterrate FR1 wird die Zell-
teilungsrate μ in dieser Phase limitiert, aber konstant gehalten. 

Die beiden ersten Prozessphasen werden somit zur Erzeugung von Zellmasse genutzt. 

 
Bild 3.1: Beispiel eines klassischen Produktionsprozesses mit Pichia pastoris 

Durch eine Dereprimierung des AOX-Promotors unter glycerollimitierten Bedingungen kann 
eine Adaption der Zellen an die Verwertung von Methanol beschleunigt werden [HIGGINS & 
CREGG, 1998]. Deswegen dient der Glycerol-Fed-Batch auch der Vorbereitung der Induktion 
in der nachfolgenden Produktionsphase. 

Im diesem Prozessabschnitt wird die Expression und Sekretion des Zielproduktes (AP1M) durch 
Zufütterung des Sekundärsubstrates Methanol induziert. Die Regelung der Methanolkonzen-
tration cS2M vermeidet eine Substratlimitierung in der Produktionsphase. 

Die maximale Wachstumsrate auf Methanol erreichen die Zellen jedoch erst nach vollständiger 
Umstellung des Metabolismus. Dieser ist über den zellinternen AOX-Gehalt gP2/X beobachtbar. 

Eine Auflistung typischer Sollwerte geregelter Größen sowie die Zusammensetzung des ver-
wendeten Kulturmediums befinden sich im Anhang. 
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3.1.2 Intensivierung der Produktion durch zyklische Prozessführung 

Die maximal mögliche Dauer einer Produktionsphase und damit die Produktausbeute sind bei 
der oben beschriebenen Fahrweise aus verfahrenstechnischen Gründen oder aufgrund einer 
möglichen Produktinstabilität begrenzt [MARTENS, 2014]. 

Als Folge davon müssten kurze Prozesse durchgeführt werden, die jedoch einen hohen Vor-
bereitungsaufwand mit sich bringen, der wiederum hohe Kosten verursacht. Deshalb wurden 
zyklische Prozessführungsstrategien entwickelt, die ausführlich in [MARTENS, 2014] beschrie-
ben werden. 

Diese repetitive Fahrweise sieht eine mehrfache Wiederholung der vorgestellten Prozesspha-
sen ohne Neustart der Kultivierung vor. Dies wird dadurch realisiert, dass nach einer unvoll-
ständigen Ernte ein Rest der Kulturbrühe im Bioreaktor verbleibt und mit frischem Medium 
verdünnt als Inokulum eines weiteren Zyklus dient. 

Bei der in dieser Arbeit verwendeten Kultivierungsstrategie erfolgt zusätzlich vor Beginn einer 
jeden Produktionsphase (III) eine Verdünnung der Kulturbrühe auf eine einheitliche Zelldichte. 
Dies ist in Bild 3.2 gezeigt. 

 
Bild 3.2: Zyklische Prozessführung zur Herstellung von D1M1H 

Durch die identischen Startbedingungen bei einer zyklischen Produktion eignet sich diese 
Fahrweise auch für eine Prozessoptimierung mit statistischer Versuchsplanung (DoE) 
[MARTENS, 2014]. Eine vollständige Deaktivierung des Methanolstoffwechsels in den Glycerol-
Batch- und Fed-Batchphasen bewirkt zudem eine Regeneration der Zellen, was eine lang-
fristige Aufrechterhaltung einer derartigen Prozessführung ermöglicht [FRICKE, 2014]. 
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3.2 Die verwendete Bioreaktoreinheit 

Für einen Großteil der experimentellen Arbeiten wurde ein hochinstrumentierter Bioreaktor 
vom Typ BIOSTAT® C10 der Fa. B. Braun Biotech International, Melsungen, eingesetzt. Das 
Arbeitsvolumen des Edelstahl-Rührkesselreaktors beträgt 10 l. Bild 3.3 zeigt den eingesetzten 
Bioreaktor mit seiner erweiterten peripheren Ausstattung. 

 
Bild 3.3: Hochinstrumentierter Forschungsbioreaktor BIOSTAT® C10 

Eine Regelung der Standardmessgrößen Temperatur ϑL, pH-Wert, Begasungsraten FnI, Rüh-
rerdrehzahl NSt, Druck pG und Gelöstsauerstoffgehalt pO2 erfolgt über eine digitale Kontroll-
einheit (Mikro-DCU). 

Die SCADA-Software Multi Fermenter Control System for Windows (MFCS/win) der Fa. Sar-
torius Stedim Biotech, Guxhagen, ermöglicht über eine zugeschnittene Prozess-EDV eine Da-
tenerfassung und Datenverarbeitung sowie eine übergeordnete Steuerung des Bioreaktor-
systems. Sie erlaubt darüber hinaus die Einbindung weiterer peripherer Geräte. 

Beispielsweise verfügt der Bioreaktor zur vollständigen Bilanzierung des Prozesses über eine 
Reihe von Waagen. Tabelle 3.1 enthält eine Aufstellung der beteiligten Prozessgrößen und 
der vorhandenen peripheren Ausstattung der Anlage. 

Auf die Funktionsweise der erweiterten Messtechnik und auf die notwendige Prozessautoma-
tisierung wird im nächsten Abschnitt eingegangen. 
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Tabelle 3.1: Ausstattung des BIOSTAT® C10 

Prozessgröße Symbol Hersteller/Typ 

Methanolkonzentration cS2M Biotechnologie Kempe Alcoline® 

Silikonflachmembransonde 
rekombinantes Zielprodukt 
(Atline-HPLC) 

cP1Mat VWR-Hitachi LaChrom Elite®, Säule: 
GE Healthcare HisTrap™ Fast Flow 

Schaum im Reaktorkopfraum DF B. Braun Biotech kapazitive Sonde 

Trübung der Kulturbrühe EL optek-Danulat ASD25-BT-N-5 

zellfreie Probenahme FA TRACE Filtrationssonde, Gilson Minipuls 3 

Ernterate FH Watson-Marlow 604U, max. 165 min-1 

Begasungsrate Luft FnAIR Bronkhorst High Tech MFC, 0 - 20 lmin-1 
Begasungsrate N2 FnN2 Bronkhorst High Tech MFC, 0 - 20 lmin-1 
Begasungsrate O2 FnO2 Bronkhorst High Tech MFC, 0 - 20 lmin-1 
Glycerolzufütterung FR1 Watson-Marlow 101U/R, max. 32 min-1 
Methanolzufütterung FR2 Watson-Marlow 101U/R, max. 32 min-1 
Refreshmedienzugabe FR3 Watson-Marlow 503U, max. 220 min-1 
Masse Erntetank mH Sartorius LP32000 S, max. 32 kg 

Masse Flüssigphase mL Sartorius F300 S, max. 303 kg 

Masse Glycerolreservoir mR1 Sartorius BA 2100, max. 2.1 kg 

Masse Methanolreservoir mR2 Sartorius LP16000 S, max. 16 kg 

Masse Säurereservoir mT1 Sartorius BA 2100, max. 2.1 kg 

Masse Basereservoir mT2 Sartorius QA7DCE-S, max. 7.5 kg 
Rührerdrehzahl NSt 3 ൈ Sechsblatt-Scheibenrührer, 

Antrieb: Heidolph, 1.240 W, max. 1.500 min-1 
Druck im Reaktorkopfraum pG Phillips P13, 0 - 2,0 bar 
pH-Wert pH Hamilton EasyFerm PLUS K8 160, pH 0 - 14 
relativer Gelöstsauerstoffpegel pO2 Mettler-Toledo PN 52200103 
Abgas-Stoffmengenanteil CO2 xCO2 BlueSens BCP-CO2, 0 - 25 % 
Abgas-Stoffmengenanteil O2 xO2 BlueSens BCP-O2, 0 - 50 % 

Flüssigphasentemperatur ϑL B. Braun Biotech Pt100 

Doppelmanteltemperatur ϑDJ	 B. Braun Biotech Pt100 

3.3 Erweiterte MSR- und Automatisierungstechnik 

3.3.1 Automatisierungsaufgaben 

Durch Orientierung an der in Abschnitt 3.1.2 vorgestellten zyklischen Kultivierungsstrategie 
lassen sich drei wesentliche Arbeitsschritte identifizieren, die nicht allein mit der Standardin-
strumentierung zu bewältigen sind: 
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 Initialisierung und Steuerung der substratlimitierten Glycerolzufütterung FR1 
 Regelung der Methanolkonzentration cS2M in der Produktionsphase 
 Durchführung von Harvest- und Refreshoperationen FH bzw. FR3 

Daher ist der Bioreaktor mit einer, in Bild 3.4 beispielhaft gezeigten, erweiterten mess- und 
verfahrenstechnischen Ausstattung versehen, die eine Durchführung der notwendigen Ope-
rationen erlaubt. 

 
Bild 3.4: MSR Struktur des BIOSTAT® C10 

In den folgenden Abschnitten werden die genannten Automatisierungsaufgaben sowie die 
über eine Standardinstrumentierung hinausgehende Messtechnik kurz vorgestellt. Detaillierte 
Beschreibungen der einzelnen Methoden finden sich in einer Reihe vorangegangener Arbeiten 
[CORNELISSEN, 2004; PEUKER, 2006; KAISER, 2010; MARTENS, 2014; FRICKE, 2014; LÖGERING, 
2015; ELLERT, 2015; BORCHERT, 2015]. 

3.3.2 Der substratlimitierte Glycerol-Fed-Batch 

Für die automatische Aktivierung einer Glycerol-Fed-Batchphase ist zunächst eine Bestim-
mung des Startzeitpunktes tj notwendig. Hierbei ermöglicht eine Überwachung des Gelöst-
sauergehaltes pO2 die Erkennung des Batchendes. 

Ein plötzlicher Anstieg des geregelten pO2 offenbart eine starke Reduktion des Sauerstoffbe-
darfs, die von dem vollständigen Verbrauch des Substrates am Ende einer Batchphase her-
rührt. Ab diesem Zeitpunkt sollen substratlimitierte Bedingungen durch Steuerung der zellspe-
zifischen Wachstumsrate μ1wj auf Glycerol (Substrat S1) eingestellt werden. 
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Die Realisierung erfolgt mit einer exponentiellen Nachführung des Sollwertes FR1w der Gly-
cerolzufütterung, 

 1wj j
R1w R1j

t t
F (t) F e

  
  , (3.1) 

der mit seinem Startwert FR1j, 

   1wj X/S1gr S1/Xm
R1j R1 j XLj Lj

X/S1gr S1R1

y q
F F t c V

y c
  

   


 (3.2) 

mit 
tj ≔	Startzeitpunkt einer exponentiellen Zufütterungsphase [h] 
FR1j ≔ Zufütterrate aus Reservoir R1 zum Startzeitpunkt tj [lh-1] 
μ1wj ≔ Sollwert der geforderten Wachstumsrate bei tj [h-1] 
cXLj ≔ Zelldichte bei tj [gl-1] 
VLj ≔ Volumen der Flüssigphase bei tj [l] 
qS1/Xm ≔ zellspezifische Glycerolaufnahmerate für den Erhaltungsstoffwechsel [h-1] 
yX/S1gr ≔ Glycerol-Ausbeutekoeffizient für den Zellzuwachs [-] 
cS1R1 ≔ Glycerolkonzentration im Reservoir R1 [gl-1] , 

online berechenbar ist. Die dafür benötigten reaktionskinetischen Parameter qS1/Xm und yX/S1gr 
wurden der Arbeit von Martens [MARTENS, 2014] entnommen und sind im Anhang gegeben. 

Das Reaktionsvolumen VLj lässt sich durch Wägung der Flüssigphase zum Zeitpunkt tj online 
bestimmen. Die Abschätzung der Zelldichte cXLj erfolgt ebenfalls online und wird mit der im 
nächsten Abschnitt vorgestellten Trübungsmessung realisiert. 

Für die Detektion des Batchendes und die Umsetzung der nachfolgenden μ-Steuerung kam 
ein in Visual Basic programmiertes Zusatzprogramm (MFCS-Tool) zum Einsatz. Dieses ist in 
[ELLERT, 2015] näher beschrieben. 

3.3.3 Online-Estimierung der Zelldichte 

Mit einer Sonde der Fa. optek-Danulat, Essen, wird in der Flüssigphase des Bioreaktors eine 
Trübungsmessung durchgeführt. Diese beruht maßgeblich auf einer Abschwächung von Nah-
infrarotstrahlung durch dispergierte Zellen. 

Aus dem Trübungssignal EL wird die Zelldichte cXLturb, 

 2 L
XLturb 1

k E (t)c (t) k e 1    (3.3) 

mit 
EL ≔	Trübung der Flüssigphase [AU] 
k1 ≔	Zelldichteparameter [gl-1] 
k2 ≔ Trübungsparameter [AU-1] , 

mit Hilfe eines Exponentialansatzes approximiert. 

Die Parameter k1 und k2 der nichtlinearen Kennlinie sind postexperimentell durch eine Anpas-
sung von cXLturb an den Verlauf der offline ermittelten Zelldichte cXLcdw zu bestimmen. 
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Dies erfolgt durch Minimierung der Fehlerquadrate mit dem Simplex-Algorithmus von Nelder 
und Mead [NELDER & MEAD, 1965] mit der Software MATLAB®, The Mathworks, Natick, USA. 
Ein beispielhaftes Ergebnis ist in Bild 3.5 gezeigt. 

 
Bild 3.5: Bestimmung der Zelldichte cXLturb durch Trübungsmessung 

a) Kultivierungsverlauf, b) Kennlinien der Trübungsanpassung 

Durch eine Abhängigkeit des Trübungssignals EL von der Rührerdrehzahl NSt sowie aufgrund 
einer Morphologieänderung der Zellen bei Wechsel des Substrates empfiehlt es sich, die Be-
stimmung eines Parametersatzes für jede Prozessphase getrennt vorzunehmen. 

Durch Implementierung von Gl. (3.3) und Hinterlegung der Parameter k1 und k2 in MFCS/win 
steht damit eine Online-Bestimmung der Zelldichte zur Verfügung. 

3.3.4 Inline-Messung und Regelung der Methanolkonzentration 

Für die Messung der Methanolkonzentration cS2M kam eine Flachmembransonde der Fa. Bio-
technologie Kempe, Kleinmachnow, zum Einsatz. In [ELLERT, 2015] findet sich eine detaillierte 
Beschreibung der zugrunde liegenden Messmethode. 

Methanol diffundiert über eine Silikonmembran aus der Flüssigphase des Bioreaktors in den 
Innenraum der Sonde, wo es mit einem Trägergasstrom zu einem Gassensor (TGS2620) der 
Fa. FIGARO Engineering, Osaka, Japan, transportiert wird. 

Das Messprinzip beruht auf einer Veränderung der elektrischen Leitfähigkeit des Sensormate-
rials durch reduzierende Verbindungen. Daher lässt sich der messbare elektrische Widerstand 
für die Bestimmung der Methanolkonzentration heranziehen. 

Die Aufrechterhaltung einer konstanten Methanolkonzentration cS2M in der Produktionsphase 
wird unter Verwendung eines PI-Regelalgorithmus in MFCS/win umgesetzt. Das SCADA-Sys-
tem unterstützt hierfür die Einrichtung digitaler Regler. 

3.3.5 Atline-Quantifizierung des Zielproduktes 

In einer Induktionsphase ist vor allem die prozessnahe Beobachtung der Produktbildung von 
großem Interesse. Zu diesem Zweck kam eine Atline-HPLC zum Einsatz, deren Messaufbau 
in Bild 3.6 gezeigt ist. 
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Bild 3.6: Fließschema der Atline-HPLC zur Detektion des Zielproduktes, [MARTENS, 2014] 

Über eine Filtrationssonde (ESIP) der Fa. TRACE Analytics, Braunschweig, wird das Chroma-
tographiesystem (VWR-Hitachi, Radnor, USA) mit einem zellfreien Probenstrom aus dem Bio-
reaktor versorgt. Nach der Injektion der Probe erfolgt zunächst eine Entsalzung und Umpuf-
ferung mit einer Größenausschlusssäule (HiTrap™ Desalting, 5 ml, GE Healthcare, Chalfont 
St. Giles, UK). Danach bindet das Zielprodukt mit seinem His-Tag an eine Affinitätssäule 
(Nickel-IMAC, HisTrap™ Crude FF, 1 ml, GE Healthcare). 

Eine zweistufige Elution erlaubt die Quantifizierung sowohl des Zielproteins als auch auftre-
tender Spaltprodukte. Die Detektion erfolgt photometrisch im UV-Bereich bei einer Wellen-
länge von 280 nm. 

Die Entwicklung und Funktionsweise der Atline-Chromatographiemethode wird ausführlich in 
[MARTENS, 2014] dargestellt. 

3.3.6 Realisierung der zyklischen Fahrweise 

Für eine Umsetzung der Ernte- und Refresh-Operationen ist der Bioreaktor mit einem Medien- 
und einem Erntetank ausgestattet. Letzterer, sowie der Bioreaktor selbst, befinden sich auf 
Waagen (Sartorius, Göttingen). 

Durch Überwachung der Waagensignale sowie eine Ansteuerung zweier Pumpen (Watson-
Marlow, Wilmington, USA) wird eine automatische Durchführung der Prozeduren erreicht. Die 
Programmierung der dafür notwendigen Algorithmen erfolgt als Rezept nach dem ANSI/ISA 
S88 Standard in MFCS/win. 

3.3.7 Abgasanalyse und Gasbilanzen 

In der Abgasstrecke der Anlage sind Gasanalysatoren der Fa. BlueSens gas sensor, Herten, 
für Sauerstoff und Kohlenstoffdioxid installiert. Das Messprinzip des Sauerstoffsensors basiert 
auf einer elektrochemischen Sauerstoffpumpzelle. Die Messung des Kohlenstoffdioxids erfolgt 
dagegen über die Absorption von Infrarotstrahlung bei zwei Wellenlängen. 
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Mit Kenntnis der Begasungsrate FnG, des Reaktionsvolumens VL sowie der Stoffmengenanteile 
xOG und xCG im Ein- und Austritt der Begasung lässt sich eine Bilanzierung der beteiligten Gas-
komponenten O2 und CO2 durchführen. 

Die Bestimmung der volumetrischen Sauerstoffeintragsrate QO2, 

   OGin CG OG CGin
O2 O2max

OG CG

x (t) 1 x (t) x (t) 1 x (t)
Q (t) Q (t)

1 x (t) x (t)
    

 
 

, (3.4) 

und der Kohlenstoffdioxidaustragsrate QCO2, 

   CG OGin CGin OG
CO2 CO2max

OG CG

x (t) 1 x (t) x (t) 1 x (t)
Q (t) Q (t)

1 x (t) x (t)
    

 
 

, (3.5) 

mit ihren jeweiligen Maximalwerten QImax, 

nG I
Imax

nM L

F (t) M
Q (t)

V V (t)





 (3.6) 

mit 
QImax  ≔ theoretisch maximale volumetrische Eintragsrate, I ൌ O2, CO2 [gl-1h-1] 
MI  ≔ molare Masse, I ൌ O2, CO2 (32 gmol-1, 44 gmol-1) 
xIGin  ≔ Stoffmengenanteil in der Begasung, I ൌ O (O2), C (CO2) [-] 
xIG  ≔ Stoffmengenanteil im Abgas, I ൌ O (O2), C (CO2) [-] 
FnG  ≔ Gesamtbegasungsrate unter Normbedingungen [lh-1] 
VnM  ≔ molares Normvolumen (22,41 lmol-1) 
VL  ≔ Volumen der Flüssigphase [l] , 

sowie die Berechnung des molaren Respirationskoeffizienten RQ, 

O2 CO2

O2 CO2

M Q (t)
RQ(t)

Q (t) M





, (3.7) 

kann in MFCS/win online erfolgen, wodurch die Gasbilanzen eine Beobachtung des Zellstoff-
wechsels und eine Beurteilung der Zellaktivität erlauben. 

3.4 Prozessbegleitende Offline-Analysentechnik 

3.4.1 Probenahme 

Eine Beprobung der Prozesse erfolgte zumeist in unregelmäßigen Abständen gemäß des Pro-
benbedarfs des jeweiligen experimentellen Vorhabens. Die entnommene Kulturbrühe wurde 
aliquotiert, zentrifugiert und bis zur späteren Durchführung der Offline-Analytik in Kulturüber-
stand und Zellpellet getrennt bei -20 °C gelagert. 

3.4.2 Zelldichtebestimmung 

Für die Bestimmung der Zelldichte cXLcdw über die Biotrockenmasse wurden Zellpellets von 
1 ml Aliquots der Kulturbrühe bei 80 °C für 48 h getrocknet und anschließend gewogen. Durch 
Differenzbildung mit den Leermassen der Probengefäße erhält man die Biotrockenmasse, aus 
der sich die Zelldichte cXLcdw leicht berechnen lässt. 
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3.4.3 Glycerol- und Methanolanalytik 

Die Quantifizierung der Substratkonzentrationen cSiMhplc erfolgte über Ionenausschlusschroma-
tographie mit der Säule Rezex™ RHM-Monosacharide der Fa. Phenomenex®, Torrance, USA. 

Zur Durchführung kam ein HPLC-System der Serie LaChrom Elite® der Fa. VWR-Hitachi, Rad-
nor, USA, zum Einsatz. Dieses verfügt über ein Interface, ein Pumpenmodul (L-7100), einen 
Autosampler (L-7250) und einen Säulenofen (L-7360). Zur Detektion beider Analyten diente 
ein Brechungsindexdetektor (RI-Detektor, L-7490). Die Vermessung sowie Auswertung der 
Proben erfolgte mit der Software D-7000 HSM. 

Vor Injektion der Kulturüberstände wurden diese mit einem 0,22 μm Spritzenfilter von etwaigen 
Partikeln befreit. Das Injektionsvolumen betrug 40 μl. Als mobile Phase diente 10 mM Schwe-
felsäure, die mit einer Flussrate von 0,6 mlmin-1 befördert wurde. Die Säule erfordert eine Tem-
perierung auf 60 °C. 

Die Retentionszeit des Glycerols beträgt 14,1 min, wohingegen Methanol nach 18,7 min detek-
tiert werden kann. Für die Ermittlung der Konzentrationen wurde mit den jeweiligen Peakflä-
chen des RI-Signals für beide Substrate eine Zehnpunktkalibrierung durchgeführt. 

3.4.4 Ammoniummessung 

Das Fließinjektionsanalysensystem TAS 2000 der Fa. Jüke Systemtechnik, Altenberge, wurde 
für die Bestimmung der Ammoniumstoffmengenkonzentration CAltotMfia nach der Berthelot-
Methode eingesetzt. Die Messung basiert auf der Reaktion von Ammonium mit Hypochlorit 
und Salicylsäure zu Indophenolblau, das bei einer Wellenlänge von 605 nm photometrisch 
detektiert werden kann [KAISER, 2010]. 

3.4.5 Gesamtproteinbestimmung 

Zur Quantifizierung der Gesamtproteinkonzentration cPtotMoff im Medium kam das QuickStart™ 
Protein Assay Kit der Fa. Bio-Rad Laboratories, Hercules, USA, zum Einsatz. Dieses beruht 
auf der Methode von Bradford [BRADFORD, 1976]. Es wurde der Standardprozedur für Mikroti-
terplatten gemäß der Anleitung des Herstellers gefolgt. 

3.4.6 Enzymatischer Alkoholoxidasenachweis 

Zur Bestimmung der zellinternen Alkoholoxidaseaktivität gP2/Xoff wurde zunächst ein mecha-
nischer Zellaufschluss mit Glasperlen zur Freisetzung der Alkoholoxidase (AOX) durchgeführt. 
Darauf folgte ein gekoppeltes Enzymassay nach [JANSSEN & RUELIUS, 1968] unter Verwen-
dung des nichttoxischen ABTS™ (2,2′-Azino-bis(3-Ethylbenzothiazolin-6-Sulfonsäure) als al-
ternatives Chromophor [CHILDS & BARDSLEY, 1975]. 

Das Assay beruht auf einer Umsetzung von Methanol zu Wasserstoffperoxid durch AOX, 

. AOX
2 2 2Methanol O Formaldehyd H O   ., 

und der Oxidation von ABTS™ durch H2O2, 

PODTM TM
2 2 2 oxH O ABTS 2 H O ABTS    , 

mit Hilfe des Enzyms Peroxidase (POD). 
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Der oxidierte Zustand TM
oxABTS  ist über das Lambert-Beer’sche Gesetz bei einer Wellenlänge 

von 405 nm photometrisch quantifizierbar. 

Eine Einheit U der AOX-Aktivität ist definiert zu 1 μmol umgesetzten ABTS™ pro Minute. Die 
AOX-Aktivität CP2A im Aufschlussansatz A, 

Ai
P2Ai ABTSi

ABTS

DC E
d

 
 

  (3.8) 

mit 
i ≔	Probenindex [-] 
CP2Ai ≔	volumetrische AOX-Aktivität im Aufschlussansatz der Probe i [Ul-1] 
DAi ≔ Gesamtverdünnung des Aufschlussansatzes von Probe i [-] 

ABTSiE  ≔ zeitliche Extinktionsänderung ( TM
oxABTS ) der Probe i [min-1] 

εABTS ≔ molarer Extinktionskoeffizient ( TM
oxABTS ) ([KEESEY, 1987] 36,8 lμmol-1cm-1) 

d ≔ Schichtdicke des Reaktionsansatzes [cm] , 

ist demnach von der linearen Extinktionsänderung E  abhängig, deren Bestimmung mit Hilfe 
von zehn Extinktionsmessungen im Abstand von jeweils 30 Sekunden erfolgt. 

Die zeitlich zugeordnete zellspezifische AOX-Aktivität gP2/X, 

P2Ai
P2/X i

XAi

Cg (t )
c

   (3.9) 

mit 
gP2/X ≔ zellspezifische AOX-Aktivität zum Zeitpunkt ti [Ug-1] 
cXAi ≔ eingestellte Zelldichte im Aufschlussansatz der Probe i [gl-1] , 

ergibt sich aus der im Aufschlussansatz enthaltenen Zelldichte cXAi und wird in dieser Arbeit 
als Maß für den zellinternen AOX-Gehalt verwendet. 

3.4.7 Berechnung von Konzentrationen in der Flüssigphase 

Eine Offline-Bestimmung von Konzentrationen im Bioreaktor erfolgt meist im Kulturüberstand 
(Medienphase M). Soll die Konzentration auf die Kulturbrühe (Flüssigphase L) bezogen wer-
den, ist zu beachten, dass sich diese aus dem Medium M und der Biofeuchtphase Z zusam-
mensetzt. Dies ist bei hohen Zelldichten nicht zu vernachlässigen. 

Die Konzentration cIL einer Komponente I im Reaktionsraum (Flüssigphase L), 

Z/X
IL XL IM

Z
c (t) 1 c (t) c (t) 

     
 (3.10) 

mit 
cIK ≔ Konzentration der Komponente I in Phase K [gl-1]	
αZ/X ≔ Massenverhältnis von feuchten zu trockenen Zellen (3,7 gg-1) 
ρZ ≔ Dichte der feuchten Zellen (1.150 gl-1) , 

lässt sich aus der entsprechenden Konzentration cIM im Medium und der zugeordneten Zell-
dichte cXL berechnen.  
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4. Spektroskopische Messverfahren als erweiterte PAT-Werkzeuge 

4.1 Eine Übersicht über PAT-Analysatoren 

Die PAT-Initiative der FDA empfiehlt den Einsatz von Inline-, Online- und Atline-Analysatoren 
mit dem Ziel, das Verständnis und die Kontrolle über den betrachteten Bioprozess zu verbes-
sern. Der Begriff Analysator umfasst dabei Systeme, die physikalische, biochemische oder 
mathematische Analysen hervorbringen [FDA, 2004a]. 

Insbesondere steht die Qualität des Zielproduktes im Fokus von PAT. Daher sollen vor allem 
kritische Qualitäts- und Leistungskenngrößen von Rohmaterialien, Zwischen- und Endproduk-
ten sowie der ablaufenden Prozesse selbst analytisch erfasst werden [FDA, 2004a]. 

Offline-Analysen wie Bioassays sind bei der Überwachung von Bioprozessen hinsichtlich des 
Zielproduktes heutzutage häufig noch alternativlos. Werden diese Analysen jedoch zeit- und 
prozessnah durchgeführt und dienen der Erweiterung des Prozessverständnisses, so sind 
solche Methoden durchaus auch den PAT-Werkzeugen zuzuordnen [STREEFLAND et al., 2013]. 

Wie in Bild 4.1 gezeigt, umfassen PAT-Analysatoren von Bioprozessen demnach Offline- und 
Atline-Verfahren, modellgestützte mathematische Methoden sowie fortschrittliche Inline-Mess-
systeme. Hierzu gehört zum Beispiel eine Reihe von optischen Spektroskopieverfahren. 

 
Bild 4.1: Eine graphische Übersicht über mögliche PAT-Analysatoren 

Diese sind in der Bioprozesstechnik von besonderem Interesse. Sie haben den Vorteil, schnell, 
zerstörungsfrei und nichtinvasiv zu sein. Weiterhin können mit spektroskopischen Verfahren 
eine Vielzahl von physikalischen und chemischen Größen simultan gemessen werden [SKIB-
STED & ENGELSEN, 2010]. 

Technische Fortschritte, beispielsweise im Bereich der Lichtleitertechnik, haben zu der Ent-
wicklung von robusten und kostengünstigen Spektrometersystemen geführt, die flexibel in Her-
stellungsprozessen eingesetzt werden können [LOURENÇO et al., 2012]. Insbesondere die 
Nahinfrarotspektroskopie wurde bereits vielfach erfolgreich auch in Bioprozessen erprobt 
[HOEHSE et al., 2015]. 
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Aufgrund des komplexen Charakters und der Vielzahl verschiedener Bioprozesse mit unter-
schiedlichen zu beobachtenden Qualitäts- und Leistungskenngrößen besteht allerdings noch 
ein großer Forschungsbedarf. Diese Arbeit untersucht daher die Eignung verschiedener spek-
troskopischer Verfahren hinsichtlich ihrer Anwendung an Bioprozessen. 

Dabei wurden die drei Methoden Nahinfrarot, Raman und 2D-Fluoreszenz eingesetzt und 
miteinander verglichen. Diese Messverfahren werden in den folgenden Abschnitten näher be-
schrieben. 

4.2 Eingesetzte Spektroskopieverfahren 

4.2.1 Nahinfrarotspektroskopie 

Der infrarote Spektralbereich wird im elektromagnetischen Spektrum vom sichtbaren Licht und 
den Mikrowellen begrenzt. Er ist aufgeteilt in das nahe Infrarot (NIR, ca. 760 bis 3.000 nm), 
das mittlere Infrarot (MIR, ca. 3.000 nm bis 30 µm) und das ferne Infrarot (FIR, ca. 30 µm bis 
1.000 µm) [LOTTSPEICH & ENGELS, 2012]. 

Die IR-Spektroskopie basiert auf der Absorption von Infrarotstrahlung durch Materie. Dabei 
werden Moleküle zu Schwingungen angeregt. Die dafür notwendige Energie bzw. die Wellen-
länge der anregenden Strahlung ist abhängig von den jeweils schwingenden Massen und den 
entsprechenden Bindungsstärken. Deshalb sind IR-Absorptionsbanden charakteristisch für 
bestimmte funktionelle Gruppen und diese Methode somit für Analysezwecke geeignet. 

Voraussetzung für die Absorption von Infrarotstrahlung ist eine Änderung des Dipolmoments 
des Gesamtmoleküls im Verlauf einer Schwingung. Aufgrund dessen können allein heteronu-
kleare Moleküle detektiert werden. Homonukleare Verbindungen, die kein Dipolmoment besit-
zen, absorbieren keine Infrarotstrahlung. In Bild 4.2 sind mögliche Schwingungen in Wasser- 
und Kohlenstoffdioxidmolekülen gezeigt. 

 
Bild 4.2: Mögliche Schwingungsmodi von H2O- und CO2-Molekülen 

Aufgrund des Dipolcharakters können neben den sogenannten Fundamentalschwingungen 
auch Oberton- und Kombinationsschwingungen auftreten, für deren Anregung jedoch höhere 
Energiemengen notwendig sind. Weiterhin sind die Anregungswahrscheinlichkeiten geringer, 
sodass die Banden der Obertöne weniger stark ausgeprägt sind. In Bild 4.3 sind Molekül-
schwingungen anhand des Potentialfeldes eines anharmonischen Oszillators veranschaulicht. 
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Bild 4.3: Schwingungsniveaus im Potentialfeld eines anharmonischen Oszillators 

Die Nullpunktenergie E0 ist ungleich dem Energieminimum, da Moleküle selbst bei 0 K noch 
Schwingungen um ihre Ruhelage ausführen. Die Dissoziationsenergie ED führt zu einem Zer-
fall der Verbindung in ihre Radikale [SKRABAL, 2009]. Zwischen der Nullpunktenergie und der 
Dissoziationsgrenze können die Verbindungen bestimmte Schwingungsniveaus einnehmen. 
Die Höhe der Pfeile zeigt die zur Anregung notwendige Energie an. Die Breite der Pfeile steht 
für die Stärke der Absorptionsbanden im Spektrum. 

Die höchsten Dipolmomente und damit die höchsten Intensitäten weisen Moleküle mit Wasser-
stoffatomen auf. Diese Verbindungen absorbieren Strahlung im MIR-Bereich. Daher sind die 
Banden ihrer Oberton- und Kombinationsschwingungen häufig im NIR-Bereich zu finden. Das 
NIR-Spektrum wird demnach von CH-, OH-, SH- und NH-Gruppen dominiert und eignet sich 
folglich gut zur Analyse von organischen Substanzen [SIESLER, 2002]. 

Der Vorteil der NIR-Spektroskopie gegenüber der MIR-Spektroskopie besteht in den verhält-
nismäßig schwachen Absorptionsbanden. Daher kann auf eine aufwendige Probenvorbe-
reitung verzichtet werden [SIESLER, 2002]. 

Die Nachteile der NIR-Spektroskopie basieren auf der Vielzahl an Übergangsmöglichkeiten, 
die zu einer hohen Redundanz an Informationen in einem Spektrum führen. Folglich kommt 
es zur Überlagerung der ohnehin schon breit ausgeprägten Absorptionsbanden, was eine Aus-
wertung des Spektrums erschwert [MARTIN, 1992]. 

Wasser ist zudem ein starker Absorber, dessen erster Oberton in etwa bei 1.450 nm auftritt 
und häufig die Signale anderer Analyten überlagert. Dieser Umstand erschwert die Analyse 
biotechnologischer Prozesse. Hinzu kommt eine hohe Temperaturabhängigkeit der NIR-
Spektroskopie, was möglichst äquivalente Versuchsbedingungen erfordert. 

In dieser Arbeit wurde das Prozessspektrometersystem PSS 1720 der Fa. Polytec, Wald-
bronn, eingesetzt. Dieses enthält eine Wolfram-Halogenlampe als Lichtquelle sowie eine De-
tektoreinheit, die wiederum aus einem Polychromator (Prisma) und aus einen Diodenzeilen-
detektor besteht. Durch die Abwesenheit beweglicher Teile in der Detektoreinheit wird im in-
dustriellen Produktionsumfeld eine hohe Robustheit erzielt. Die gleichzeitige Abbildung aller 
Wellenlängen auf dem Detektor ermöglicht außerdem sehr kurze Messzeiten. 
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Über SMA-Lichtleiteranschlüsse können unterschiedliche Sondentypen mit dem Gerät verbun-
den werden. Bild 4.4 zeigt das Spektrometersystem sowie die beiden verwendeten Sonden-
typen. 

 
Bild 4.4: Prozessspektrometersystem der Fa. Polytec, a) Grundgerät PSS 1720, 

b) Transmissionssonde PSS-H-CT1, c) Reflexionssonde PSS-H-CR1 

Die Messung erfolgt abhängig von der Probenbeschaffenheit, entweder in Transmission oder 
diffuser Reflexion. Bei der Transmissionsmessung wird die Strahlung durch eine definierte 
Schichtdicke der Probe zum Detektor geleitet. Dies erlaubt bei der Auswertung die Heran-
ziehung des Lambert-Beer‘schen Gesetzes. Die Transmissionsmessung ist nur für flüssige 
und transparente Proben geeignet. 

Für intransparente, pulverförmige oder pastöse Proben sowie Suspensionen wird in diffuser 
Reflexion gemessen. Hierbei wird Licht in die Probe eingestrahlt und die von den Proben-
partikeln reflektierte Strahlung detektiert. Aus dieser werden die Absorptionseigenschaften der 
Probe extrahiert. In Bild 4.5 sind die beiden Messverfahren illustriert. 

 
Bild 4.5: Messverfahren bei der NIR-Spektroskopie, a) Transmissionsmessung, 

b) Messung in diffuser Reflexion 
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Ein Nachteil der Messung in diffuser Reflexion besteht in der Abhängigkeit der Reflexions-
eigenschaften von der Partikelgröße sowie von der Anregungswellenlänge des eingestrahlten 
Lichts. Eine direkte chemische Interpretation der Messergebnisse wird dadurch erschwert. 

Die Aufzeichnung der Spektren erfolgte in einem Wellenlängenbereich von 850 nm bis 
1.650 nm. Es wurde eine Schrittweite von 2 nm gewählt, wodurch die verwendeten NIR-
Spektren aus 401 Einzelmessungen bestehen. 

4.2.2 Raman-Spektroskopie 

Wie bei der NIR-Spektroskopie kommt es bei der Raman-Spektroskopie zur Anregung von 
Molekülschwingungen. Allerdings beruht die Raman-Spektroskopie nicht auf der Absorption 
sondern vielmehr auf der Streuung von Strahlung. 

In dem an einem Molekül gestreuten Licht können neben den Linien der Erregerstrahlung auch 
Begleitlinien mit geringeren Intensitäten beobachtet werden. Diese Linien weisen eine Ver-
schiebung der Wellenlänge gegenüber der Erregerstrahlung auf und werden als Raman-Linien 
bezeichnet [SKRABAL, 2009]. In Bild 4.6 ist das Auftreten des Raman-Effektes illustriert. 

 
Bild 4.6: Erklärungsmodell zum Auftreten des Raman-Effektes 

Das gängige Modell zur Erklärung des Raman-Effektes involviert virtuelle Energiezustände, in 
die ein Molekül durch Bestrahlung mit monochromatischem Licht gehoben werden kann. Diese 
instabilen Energieniveaus liegen zwischen dem Elektronengrundzustand E0 eines Moleküls 
mit den möglichen Schwingungsniveaus ν0 und einem angeregten Elektronenzustand E1. 

Beim Verlassen eines dieser Zustände emittiert das angeregte Molekül ein Photon. Wird dabei 
wieder der Grundzustand E0 erreicht, weist die emittierte Strahlung die gleiche Energie auf wie 
die Erregerstrahlung. In diesem Fall spricht man von Rayleigh-Streuung. Diese enthält keine 
chemische Information über die vorliegende Substanz. 

Fällt das Molekül jedoch auf einen Schwingungszustand oberhalb des Grundzustandes zu-
rück, besitzt das emittierte Photon eine niedrigere Energie als die Erregerstrahlung. Die resul-
tierende Streuung wird als Stokes-Streuung bezeichnet. Ebenso kann sich ein Molekül bereits 
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in einem angeregten Schwingungszustand befinden und nach weiterer Anregung wieder sei-
nen Grundzustand einnehmen. In diesem Fall, der Anti-Stokes-Streuung hat das emittierte 
Photon eine höhere Energie als die Erregerstrahlung. Stokes- und Anti-Stokes-Streuung bil-
den zusammen den Raman-Effekt [VANDENABEELE, 2013]. 

Da sich die auftretenden Energiedifferenzen bestimmten Schwingungsniveaus zuordnen las-
sen, enthält der Raman-Effekt chemische Information über das angeregte Molekül. Eine Vo-
raussetzung für das Auftreten von Molekülschwingungen in der Raman-Spektroskopie ist eine 
periodische Polarisierbarkeit der Moleküle. 

Die Polarisierbarkeit beschreibt das Maß, in dem sich Elektronen innerhalb eines Moleküls 
durch Anlegen eines elektrischen Feldes verschieben lassen. Dieses wird hier durch die elek-
tromagnetische Erregerstrahlung erzeugt. Eine Verschiebung der Elektronen in einem Molekül 
führt zu einer Deformation der Elektronenbahnen, was sich wiederum auf die Atomabstände 
und Bindungswinkel auswirkt und damit Molekülschwingungen induziert. 

Insbesondere homonukleare Gruppen wie C-C, C=C, oder S-S weisen eine hohe Polarisier-
barkeit und damit intensive Raman-Banden auf. Damit bildet die Raman-Spektroskopie den 
komplementären Teil zur IR-Spektroskopie, bei der ausschließlich heteronukleare Gruppen 
schwingen. Durch die Wahl der Erregerwellenlänge ist eine Ausrichtung auf die Untersuchung 
bestimmter funktioneller Gruppen möglich [PERKAMPUS, 1993]. 

In Raman-Spektren wird die Intensität der Raman-Banden gegen den sogenannten Raman-
Shift des Streulichtes in Wellenzahlen ν [cm-1] aufgetragen. Der Raman-Shift ist die Wellen-
zahldifferenz zur Erregerlinie. In der Regel wird sich auf die Auswertung der Stokes’schen 
Banden beschränkt, da die Anti-Stokes‘schen Banden wesentlich schwächer ausgeprägt sind. 
Stokes’sche Banden weisen niedrigere Wellenzahlen als die Erregerlinie auf. Deshalb befin-
den sie sich im Raman-Spektrum links von dieser. Der Raman-Shift wird folglich in absteigen-
der Reihenfolge dargestellt [BÖCKER, 1997]. 

Der Vorteil der Raman-Spektroskopie insbesondere im Vergleich mit der NIR-Spektroskopie 
besteht darin, dass die Spektren ein definierteres Bandenmuster aufweisen und somit che-
misch spezifischere Analysen erlauben. Weiterhin ist Wasser nicht Raman-aktiv, was eine 
Auswertung von Spektren aus Bioprozessen vereinfacht. 

Die Nachteile der Raman-Spektroskopie erwachsen aus den schwachen Banden des Raman-
Effektes. So weist die Raman-Spektroskopie eine vergleichsweise niedrige Sensitivität auf. 
Weiterhin werden Erregerstrahlungen mit hoher Intensität benötigt, um überhaupt Raman-
Streuung nachweisen zu können. Diese Strahlungen werden mit Lasern erzeugt, für die der 
Aspekt der Arbeitssicherheit zu berücksichtigen ist. Darüber hinaus kann die intensive Laser-
strahlung insbesondere organische Proben zur Fluoreszenz anregen, was die Auswertung der 
Spektren erheblich stört. 

In dieser Arbeit kamen die Geräte RamanRxn1™ und RamanRxn2™ der Fa. Kaiser Optical 
Systems, Ann Arbor, USA, zum Einsatz. Die Geräte unterscheiden sich hauptsächlich dahin-
gehend, dass an ersterem nur eine Sonde zurzeit betrieben werden kann, wohingegen es sich 
bei dem in Bild 4.7 gezeigten RamanRxn2™ um ein Mehrkanalspektrometer handelt, an dem 
über einen sogenannten Multiplexer bis zu vier Sonden gleichzeitig betrieben werden können. 
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Bild 4.7: RamanRxn2™ Mehrkanalspektrometer der Fa. Kaiser Optical Systems 

In beiden verwendeten Spektrometersystemen kamen NIR-Diodenlaser der Laserklasse 3B 
mit einer Anregungswellenlänge λex von 785 nm zum Einsatz. Die maximale Laserleistung be-
trägt 400 mW. Die Messungen wurden mit über Lichtleiter verbundenen bIO-LAB Tauch-
sonden (Kaiser) durchgeführt. 

Die Optik der Sonde fokussiert das parallele Laserlicht ca. 7 mm vor der Sondenspitze. Ähnlich 
zur NIR-Messtechnik der diffusen Reflexion wird die erzeugte Streustrahlung von derselben 
Optik aufgenommen und zum Detektor geleitet. Vor dem Detektor wird die intensive Rayleigh-
Streustrahlung herausgefiltert. 

Die Aufzeichnung der Spektren erfolgte mit einem Charge-Coupled-Device (CCD) Detektor im 
Wellenzahlbereich von 200 cm-1 bis 3.200 cm-1. Bei einem gewählten Inkrement von 1 cm-1 
ergeben sich daraus 3.001 Einzelmessungen für ein Raman-Spektrum. 

4.2.3 2D-Fluoreszenzspektroskopie 

Bei der Absorption von Strahlung können Moleküle in einen angeregten Elektronenzustand E1 
gehoben werden. Beim Übergang des Moleküls in seinen Ursprungszustand E0 kommt es zu 
einer Abgabe der zuvor aufgenommenen Energie. Erfolgt dies in Form ungerichteter elektro-
magnetischer Strahlung, wird dieser in Bild 4.8 illustrierte Vorgang Fluoreszenz genannt. In 
der Fluoreszenzspektroskopie wird diese Strahlung, anstelle des Intensitätsverlustes der 
Erregerstrahlung (Absorption), messtechnisch erfasst [LAKOWICZ, 2006]. 

 
Bild 4.8: Jablonski Diagramm zur Verdeutlichung der Fluoreszenz 
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Durch die Absorption von Strahlung im UV/Vis-Bereich werden Moleküle üblicherweise auf 
einen Schwingungszustand (ν1 ൐	0) des angeregten Elektronenzustandes E1 angehoben. In 
sehr kurzer Zeit (10-12 s) findet anschließend über intramolekulare Vibrations- und Rotations-
vorgänge eine strahlungslose Deaktivierung statt. Dabei verliert das Molekül Schwingungs-
energie bis zum Erreichen des niedrigsten Niveaus (ν1 ൌ	0) von E1 [LAKOWICZ, 2006]. 

Die eigentliche Fluoreszenzemission erfolgt dann in der Form von meist im visuellen Bereich 
liegender Strahlung. Auch im Elektronengrundzustand E0 nimmt das Molekül zunächst ein hö-
heres Schwingungsniveau (ν0 ൐	0) ein. Eine weitere Entspannung auf den Grundzustand 
(ν0 ൌ	0) erfolgt wieder in sehr kurzer Zeit. Durch die strahlungsfreien inneren Übergänge ist 
Fluoreszenzstrahlung üblicherweise energieärmer und dadurch langwelliger als die Erreger-
strahlung. Diese Energiedifferenz wird auch als Stokes-Shift bezeichnet [LAKOWICZ, 2006]. 

Typische Fluorophore sind aromatische Moleküle mit konjugierten Ringstrukturen. Andere or-
ganische Substanzen fluoreszieren in der Regel nicht. Im Bereich der Bioanalytik erlaubt die 
Fluoreszenzspektroskopie einen Nachweis von Proteinen, bei denen eine Fluoreszenzemis-
sion insbesondere durch die aromatischen Reste der Aminosäuren Tryptophan, Tyrosin und 
Phenylalanin hervorgerufen wird. Weiterhin sind auch die Co-Enzyme NADH und FAD fluo-
reszierend [LAKOWICZ, 2006]. 

Eine weit verbreitete und die in dieser Arbeit angewandte Methode ist die 2D-Fluoreszenz-
spektroskopie. Hierbei werden Emissionsspektren für verschiedene Anregungswellenlängen 
aufgenommen. Dieses Vorgehen hat den Vorteil, dass mehr Analyten gleichzeitig detektiert 
werden können. Ein weiterer Vorteil der Fluoreszenzspektroskopie ist eine im Allgemeinen 
hohe Sensitivität. 

Als Nachteil kann dagegen aufgeführt werden, dass viele Substanzen nicht fluoreszieren. Des 
Weiteren kann es innerhalb einer komplexen Messmatrix zu Wechselwirkungen kommen, die 
eine Interpretation und Auswertung der Fluoreszenzspektren erschweren. Ein Beispiel dafür 
sind sogenannte Quenching-Effekte, bei denen funktionelle Gruppen in der Nähe eines Fluoro-
phors die emittierte Strahlung absorbieren. 

In dieser Arbeit wurde das in Bild 4.9 dargestellte 2D-Fluoreszenzspektrometer BioView® der 
Fa. DELTA Light & Optics, Lyngby, Dänemark, verwendet. 

 
Bild 4.9: 2D-Fluoreszenzspektrometer von DELTA Light & Optics 
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Als Lichtquelle des verwendeten Spektrometers dient eine Xenon-Blitzlichtlampe. Die ent-
sprechenden Kombinationen aus Anregungs- und Emissionswellenlängen werden durch zwei 
unabhängige Filterräder realisiert. Als Detektor kommt ein Photomultiplier zum Einsatz. Licht-
quelle, Detektor, Filterräder sowie die zugehörige Mechanik und Elektronik sind in einem 
spritzwassergeschützten Edelstahlgehäuse untergebracht. 

Die Fluoreszenzanregung erfolgte im Wellenlängenbereich λex von 270 nm bis 550 nm mit ei-
ner Schrittweite von 20 nm. Die Fluoreszenzemission wurde mit gleichem Inkrement im Be-
reich λem von 310 nm bis 590 nm aufgezeichnet, wobei aufgrund des Stokes-Shift nur solche 
Emissionswellenlängen λem berücksichtigt werden, die größer sind als die jeweilige Anre-
gungswellenlänge. Daraus resultieren 150 Emissionswerte pro aufgenommenem 2D-Fluores-
zenzspektrum. 

4.3 Extraktion relevanter Informationen aus Spektren 

Wie bereits erwähnt, können Spektren eine Vielzahl an chemischen und physikalischen Infor-
mationen der vermessenen Probe enthalten. Allerdings liegen diese häufig redundant vor und 
können sich überlagern. Darüber hinaus ist der Informationsgehalt im Verhältnis zur Daten-
menge eher gering. 

Für eine Auswertung der Spektren sind demnach Methoden der Multivariaten Datenanalyse 
(MVDA) unumgänglich und werden von der FDA als eigenständiges Werkzeug für die Umsetz-
ung von PAT angesehen [FDA, 2004a; SMALL, 2006; SKIBSTED & ENGELSEN, 2010; MERCIER 

et al., 2014]. 

Für die Anwendung auf spektrale Daten werden vor allem dimensionsreduzierende Verfahren 
wie die Hauptkomponentenanalyse (PCA) verwendet. Dies wird insbesondere auf die Einfach-
heit und Effektivität dieser Verfahren zurückgeführt [RATHORE et al., 2011]. 

Weiterhin erlauben diese Methoden, anhand vielfältiger statistischer und grafischer Werkzeu-
ge, eine einfache Interpretation der Daten und tragen somit zur Erweiterung des Prozessver-
ständnisses bei [LOURENÇO et al., 2012]. Eine Einführung in die Multivariate Datenanalyse ist 
im folgenden Kapitel 5 gegeben. 

  

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


Einführung in die Multivariate Datenanalyse (MVDA) 27 

5. Einführung in die Multivariate Datenanalyse (MVDA) 

5.1 Zielsetzung bei der Anwendung der MVDA 

Das allgemeine Ziel der Multivariaten Datenanalyse (MVDA) ist die Verarbeitung großer Da-
tenmengen. Dabei soll eine Interpretation der Daten vereinfacht und relevante Informationen 
extrahiert werden. Eine grundlegende Technik der MVDA ist die sogenannte Hauptkomponen-
tenanalyse (PCA), die in Abschnitt 5.3 näher erläutert wird. 

Ein erstes Ziel dieser Arbeit war die Qualitätsbewertung von Hefeextrakten mittels NIR-Spek-
troskopie. Grundlage derartiger Methoden sind multivariate Klassifizierungsverfahren, die 
Variationen von Spektren derart herausarbeiten, dass eine Unterscheidung verschiedener 
Klassen ermöglicht wird. Das Konzept ist in Bild 5.1 illustriert. 

 
Bild 5.1: Klassifizierung von Hefeextrakten mit MVDA basierend auf NIR-Spektren 

Basierend auf dem Resultat der Klassifizierung kann eine Qualitätsbewertung erfolgen. Weit 
verbreitet ist das auf der PCA beruhende Verfahren Soft Independent Modelling of Class 
Analogy (SIMCA), das in Abschnitt 5.6.2 vorgestellt wird. 

Der überwiegende Teil dieser Arbeit widmet sich der Bestimmung von Bioprozessgrößen aus 
Spektren. Das Ziel dabei ist die Online-Beobachtung schwer messbarer Variablen zur Erwei-
terung des Bioprozessmonitorings. Bild 5.2 zeigt diesen Ansatz. 

 
Bild 5.2: Prädiktion von Bioprozessgrößen mit MVDA aus Spektren 
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Die Abschätzung von Prozessvariablen wird in der MVDA als Vorhersage bezeichnet. Hierfür 
sind multivariate Kalibrierverfahren erforderlich, die eine Beziehung zwischen den chemischen 
Informationen in den Spektren und den Referenzmessungen der entsprechenden Prozess-
größen herstellen. Die dabei eingesetzte Methode Partial Least Squares Regression (PLSR) 
ist eine Erweiterung der PCA und kann lineare Zusammenhänge zwischen Spektren und 
Analyten modellieren. Die PLSR wird in Abschnitt 5.4 erläutert. 

Neben der weit verbreiteten PLSR wurde in dieser Arbeit auch die Methode Support Vector 
Regression (SVR) untersucht. Die SVR ist in der Lage, auch nichtlineare Beziehungen abzu-
bilden. Diese Methode ist in Abschnitt 5.7 zu finden. 

5.2 Datenvorbereitung 

5.2.1 Struktur und Modifizierung multivariater Datensätze 

Vor Anwendung der MVDA werden die gemessenen Daten in einer Matrix D (n ൈ	m) abgelegt. 
Diese besteht aus i ൌ 1, 2, … n Zeilen (Beobachtungen) und j ൌ 1, 2, … m Spalten (Varia-
blen). Ein Datensatz von beispielsweise 50 NIR-Spektren hat folglich n ൌ 50 Zeilen und 
m ൌ 401 Spalten. 

Die Modifizierung der Rohdaten mit einer geeigneten Vorverarbeitungsmethode ist häufig 
zweckmäßig und kann ausschlaggebend für den Erfolg oder Misserfolg der MVDA sein. So 
können beispielsweise Störungen aus den Daten entfernt werden, die eine multivariate Modell-
bildung erschweren. Auch die Anwendung mehrerer Vorverarbeitungsmethoden auf densel-
ben Datensatz ist eine übliche Vorgehensweise. 

Durch eine Modifizierung werden die Daten in eine Matrix X (n ൈ	m) überführt. Diese hat die 
gleichen Dimensionen wie die nicht modifizierte Datenmatrix D und stellt den Eingangsdaten-
satz für die eigentliche Anwendung der MVDA dar. 

Einige übliche und in dieser Arbeit angewandte Vorbehandlungen werden in den folgenden 
beiden Abschnitten vorgestellt. 

5.2.2 Zentrierung und Skalierung 

Eine der einfachsten Vorverarbeitungsmethoden ist die spaltenweise Zentrierung oder Mitten-
zentrierung (mean centering mc). 

Zur Berechnung eines mittenzentrierten Messwertes xijmc, 

ijmc ij jx d d  , (5.1) 

wird von dem Messwert dij der jeweilige Spaltenmittelwert jd , 

n

j ij
i 1

1d d
n 

   (5.2) 

mit 
n ≔ Anzahl der Messwerte in Spalte j, 

subtrahiert. 
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Die Mittenzentrierung kann zu einer Reduktion der Modellkomplexität beitragen und verbessert 
insbesondere die Interpretierbarkeit multivariater Modelle, die auf der PCA beruhen [KESSLER, 
2008]. Sie wird zumeist für spektrale Daten eingesetzt. 

Wenn die Variablen der Datenmatrix D aus unterschiedlichen physikalischen Abläufen stam-
men, weisen diese differierende numerische Größen und damit auch Varianzen auf. Solche 
führen zu einer ungewollten und ungleichen Wichtung der Variablen bei der Bildung eines 
multivariaten Modells. 

Aus diesem Grund handelt es sich bei der sogenannten Autoskalierung um eine weit verbrei-
tete Vorbehandlungsmethode. Sie bewirkt eine Standardisierung der Daten auf eine einheit-
liche Varianz von 1 (unit variance uv). 

Zur Berechnung eines autoskalierten Messwertes xijuv, 

ij j
ijuv

dj

d d
x

s


 , (5.3) 

wird der mittenzentrierte Messwert durch die Spaltenstandardabweichung sdj, 

 
n 2

ij jdj
i 1

1 d ds
n 1 

 
  , (5.4) 

dividiert. 

Im Gegensatz zur Mittenzentrierung wird die Autoskalierung nicht für Spektren verwendet, da 
dort die hohe Varianz einer Variablen der gesuchten chemischen Information entspricht. Eine 
Autoskalierung irrelevanter Variablen mit niedriger Varianz ist demnach nicht zweckmäßig und 
führt lediglich zu einer Verstärkung des Rauschens. Spezielle Vorverarbeitungsmethoden für 
spektrale Daten werden im nächsten Abschnitt behandelt. 

5.2.3 Datenvorverarbeitung für Spektren 

Spektren können Störungen enthalten, die durch bestimmte mathematische Datenfilter ent-
fernt beziehungsweise korrigiert werden können. 

Eine häufig verwendete Methode für die Behandlung spektraler Daten ist das Standard Normal 
Variate (SNV) Filter. 

Ein SNV-gefilterter Messwert xijsnv, 

ij i
ijsnv

di

d d
x

s


 , (5.5) 

wird durch Subtraktion des Zeilenmittelwertes id , 

m

i ij
j 1

1d d
m 

   (5.6) 

mit 
m ≔ Anzahl der Messwerte in einer Zeile i,  
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vom Messwert dij und anschließender Division durch die Zeilenstandardabweichung sdi, 

 
m 2

ij idi
j 1

1 d ds
m 1 

 
  , (5.7) 

berechnet. 

Das SNV-Filter ist eine Zeilenoperation und nicht mit der Autoskalierung zu verwechseln, die 
basierend auf dem Spaltenvektor dj berechnet wird. 

Die SNV-Filterung führt zu einer Standardisierung der Spektren und korrigiert Basislinienver-
schiebungen sowie wellenlängenabhängige Streueffekte in Spektren partikelbehafteter Pro-
ben [KESSLER, 2008]. 

 
Bild 5.3: Vorverarbeitung von NIR-Spektren, a) unverändert, b) SNV-gefiltert, 

c) Modifizierung durch erste bzw. d) durch zweite Ableitung 

Bild 5.3a zeigt NIR-Spektren der Flüssigphase eines Bioreaktionsprozesses. In Bild 5.3b sind 
dagegen SNV-gefilterte Spektren dargestellt. Eine weitere häufig anzutreffende Vorverarbei-
tungsmethode ist die Ableitung von Spektren. Dies ist in Bild 5.3c und Bild 5.3d ebenfalls am 
Beispiel der NIR-Spektroskopie gezeigt. 

Die Ableitung stellt eine sehr effektive Methode zur Basislinienkorrektur dar und verbessert 
außerdem die spektrale Auflösung. Ein Nachteil ist die schlechtere chemische Interpre-
tierbarkeit, da sich das Erscheinungsbild der Spektren stark verändert [NAES, 2004]. 
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Ein durch Bildung der ersten Ableitung modifiziertes Element xijde1, 

ij ij 1 ij 1
ijde1

exj exj 1 exj 1

d d d
x  

 

 
 

   
, (5.8) 

entspricht z.B. bei der NIR-Spektroskopie der Absorptionssteigung bei der Anregungswellen-
länge λexj. 

Die numerische Differenzierung von Spektren wird in der Regel mit dem Verfahren von Savitz-
ky und Golay durchgeführt. Dieses beruht auf der Anpassung eines fortlaufenden Datenfen-
sters an ein Polynom nach der Methode der kleinsten Fehlerquadrate. Durch Differenzierung 
des Polynoms stehen dann auch die Ableitungen des betrachteten Signals zur Verfügung 
[SAVITZKY & GOLAY, 1964]. Die Größe des Datenfensters bestimmt dabei das Maß der Signal-
glättung, die mit dieser Methode automatisch erzielt wird. 

5.3 Die Hauptkomponentenanalyse (PCA) 

5.3.1 Dimensionsreduktion durch Hauptkomponenten 

Die Hauptkomponentenanalyse (Principle Component Analysis PCA) ist eine zentrale Metho-
de der MVDA. Viele weitere Verfahren basieren auf der PCA. Daher wird deren Funktions-
weise an dieser Stelle näher erläutert. 

Das Ziel der PCA besteht darin, eine Reduktion der Dimension der Ursprungsdaten zu errei-
chen, um eine Analyse und Interpretation dieser Daten zu vereinfachen. Dazu werden im Prin-
zip Variablen des betrachteten multivariaten Datensatzes mit ähnlichem Informationsgehalt in 
sogenannte Hauptkomponenten zusammengefasst. Diese werden daher auch latente Varia-
ble genannt. 

Zur Verdeutlichung wird im Folgenden ein Datensatz mit einer Variablenanzahl m von 3 be-
trachtet. Die Variablen x1, x2 und x3 sind die Spalten der modifizierten Datenmatrix X und bilden 
ein Koordinatensystem mit der Dimension m. Jede Beobachtung (Zeile) des Datensatzes kann 
innerhalb dieses in Bild 5.4a gezeigten dreidimensionalen Datenraums als ein Punkt darge-
stellt werden. 

 
Bild 5.4: a) Anordnung von Beobachtungen im dreidimensionalen Datenraum X, 

b) Beschreibung der Daten durch die Bildung von Hauptkomponenten 
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Die Beobachtungen weisen dort eine bestimmte räumliche Anordnung auf, die durch einen 
Quader angedeutet ist. Werden die Daten entlang der größten Varianz innerhalb dieser Anord-
nung durch eine Gerade beschrieben, so nennt man diese Gerade die erste Hauptkomponente 
t1. Die zweite Hauptkomponente t2 erhält man durch eine weitere Gerade, die orthogonal zur 
ersten verläuft und erneut ein Maximum der Varianz der Daten in dieser Richtung beinhaltet. 

Ist die Restvarianz der Daten vernachlässigbar klein, kann man auf die Berechnung der dritten 
Hauptkomponente t3 verzichten, sodass die gewünschte Dimensionsreduktion erreicht wird. 
Bild 5.4b deutet die Beschreibung der Daten durch die beiden Hauptkomponenten t1 und t2 an, 
die eine Fläche im dreidimensionalen Raum bilden. 

5.3.2 Das mathematische Modell der PCA 

In der allgemeinen Form des PCA-Modells wird die Datenmatrix X, 

TX T P E    (5.9) 

mit 
X ≔ (n ൈ m) modifizierte Datenmatrix 
n ≔ Anzahl an Beobachtungen bzw. Proben (Zeilen) in X 
m ≔ Anzahl an Variablen (Spalten) in X 
T ≔ (n ൈ r) Scorematrix 
r ≔ Anzahl gebildeter Hauptkomponenten (Spalten in T) 
PT ≔ (r ൈ m) transponierte Loadingmatrix 
E ≔ (n ൈ m) Residuenmatrix, 

in eine Scorematrix T, eine Loadingmatrix P und eine Residuenmatrix E zerlegt. 

Die Residuenmatrix E hat die gleichen Dimensionen wie die Datenmatrix X und enthält den 
Teil der Varianz in den Daten aus X, der nicht durch die gebildeten Hauptkomponenten be-
schrieben wird. 

Die Scorematrix T besteht aus n Zeilen und l ൌ 1, 2, …, r Spalten. Jeder berechneten Haupt-
komponente wird damit ein Wert (Score) für jede Beobachtung zugewiesen. Dadurch werden 
die Beobachtungen in einem neuen Koordinatensystem abgebildet. In Analogie zu den Spal-
tenvektoren (Variablen) xj wird der Begriff Hauptkomponente (latente Variable) häufig für die 
Spaltenvektoren tl verwendet. 

Die Loadingmatrix P besteht dagegen aus m Zeilen und r Spalten. Hier ist jeder Hauptkompo-
nente ein Wert (Loading) für die Variablen der Datenmatrix X zugewiesen. Die Spaltenvektoren 
pl sind die Richtungsvektoren der Hauptkomponenten im Originaldatenraum X. Die Loadings 
beschreiben somit die Orientierung der Hauptkomponenten in diesem Datenraum. 

Bild 5.5 illustriert die Bedeutung der Scores und Loadings. Es ist eine Anzahl n von 3 Beob-
achtungen sowie eine Hauptkomponente t1 in einem Raum gezeichnet, der aus einer Anzahl 
m von 2 Variablen xj besteht. Durch eine Untersuchung der geometrischen Struktur erkennt 
man, dass ein Loading pj1 dem Cosinus des Winkels zwischen der gewählten Variablen xj und 
der Hauptkomponenten t1 entspricht. 
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Bild 5.5: Verdeutlichung der Scores und Loadings bei der PCA 

5.3.3 Berechnung der Hauptkomponenten 

Die am häufigsten verwendete Methode zur Lösung der PCA ist der Nonlinear Iterative Partial 
Least Squares (NIPALS) Algorithmus. Es handelt sich dabei um ein Näherungsverfahren zur 
Berechnung der Scores und Loadings [WOLD, 1966]. Zur Berechnung einer Hauptkomponente 
tl beginnt das Verfahren mit einer beliebigen Lösung, die iterativ verbessert wird, bis sie eine 
definierte Fehlerschwelle unterschreitet. Der NIPALS-Algorithmus umfasst dabei eine Reihe 
von Arbeitsschritten, die im Folgenden vorgestellt werden sollen. 

1) Ausgangspunkt ist die Zuweisung des temporären Scorevektors tlte, 

lte jt x , (5.10) 

 mit dem Spaltenvektor xj der Datenmatrix X mit der höchsten Varianz 2
xjs , 

 
n 22

ij jxj
i 1

1 x xs
n 1 

 
  . (5.11) 

2) Zu diesem Scorevektor wird der zugehörige temporäre Loadingvektor plte, 

T
lte

lte T
lte lte

X t
p

t t





, (5.12) 

 durch Projektion der Datenmatrix X auf den Unterraum tlte berechnet. 

 Der gesuchte Richtungsvektor der Hauptkomponente pl, 

lte lte
l T

lte lte lte

p p
p

p p p
 


, (5.13) 

 ergibt sich durch Normierung des temporären Loadingvektors plte auf die Länge 1. 

3) Den zugehörigen korrigierten Scorevektor tl, 

l lt X p  , (5.14) 

erhält man wiederum durch Projektion der Matrix X auf den Unterraum pl. 
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4) Durch Bildung des Gütefunktionals Jl, 

 
n 2

lte l ilte ill
i 1

t t t tJ


    , (5.15) 

 wird im vierten Schritt der temporäre mit dem korrigierten Scorevektor über die Qua-
dratsumme der Differenzen verglichen. 

5) Bei Überschreiten eines vordefinierten Schwellenwertes Jcrit wird der temporäre Score-
vektor tlte, 

lte lt t , (5.16) 

 mit dem unter 3) berechneten Scorevektor tl belegt und es beginnt eine erneute Iteration 
des Algorithmus bei Schritt 2. 

 Anderenfalls ist die Berechnung der Hauptkomponente tl abgeschlossen und es wird mit 
Schritt 6 fortgefahren. 

6) Für die Berechnung einer weiteren Hauptkomponente mit l ൌ l + 1 wird zunächst die neue 
Residuenmatrix E, 

T
l lE X t p   , (5.17) 

 bestimmt, indem die durch die Hauptkomponente tl beschriebene Information aus der 
Datenmatrix X entfernt wird. 

7) In einem letzten Schritt wird die neue Datenmatrix X, 

X E , (5.18) 

 für den Neustart des Algorithmus bei Schritt 1 aus der unter 6) bestimmten Residuenmatrix 
E festgelegt. 

Die Schritte 1 bis 7 werden entweder so oft wiederholt, bis alle möglichen Hauptkomponenten 
berechnet wurden oder bis ein bestimmter Anteil der Gesamtvarianz durch das PCA-Modell 
erklärt ist. Die maximale Anzahl berechenbarer Hauptkomponenten entspricht der kleineren 
Anzahl an Beobachtungen n oder Variablen m.  

Die Schritte 2 und 3 zur Berechnung der Scores und Loadings des PCA-Modells stellen Lö-
sungen nach der Methode der kleinsten Fehlerquadrate (Least Squares) dar, von denen der 
Name des NIPALS-Algorithmus herrührt. 

5.4 Partial Least Squares Regression (PLSR) 

5.4.1 Multivariate Kalibrierung mittels PLSR 

Das Ziel der multivariaten Kalibrierung ist die Abschätzung, in der MVDA auch Vorhersage 
genannt, schwer messbarer Variablen anhand einer Reihe von Größen, die messtechnisch 
einfacher oder schneller zu erfassen sind. In dieser Arbeit werden dafür hauptsächlich Spek-
tren zur Prädiktion von Bioprozessgrößen verwendet. 

Für die Vorhersage wird ein mathematisches Modell benötigt, das den Zusammenhang zwi-
schen den Spektren und den Zielgrößen beschreibt. Ein Modell wird mit Hilfe geeigneter 
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Kalibrierdaten (Spektren und Referenzmessungen) erzeugt. Hierfür kann z.B. das Verfahren 
Partial Least Squares Regression (PLSR) zum Einsatz kommen. 

Auch bei der PLSR befinden sich die Spektren in der modifizierten Datenmatrix X mit den 
Dimensionen (n ൈ	m). Die Referenzwerte werden dagegen zunächst in einer Messdatenmatrix 
M zusammengefasst. Diese besteht auch aus n Zeilen, hat jedoch h ൌ 1, 2, …, v Spalten. Vor 
Verwendung dieser Daten werden sie ebenfalls einer Vorbehandlung unterzogen. In der Regel 
wird sich hier auf die in Abschnitt 5.2.2 beschriebene Autoskalierung beschränkt. Die modifi-
zierten Messdaten befinden sich dann in Matrix Y. 

Prinzipiell ist die PLSR dazu in der Lage mehrere Ziel- oder Y-Variablen gleichzeitig zu verar-
beiten (v ൒ 2). Dieser Ansatz wird PLS2 genannt. Meistens ist die Bildung separater PLSR-
Modelle für einzelne Y-Variablen (v ൌ 1) vorteilhaft, da dadurch eine individuellere Modellbil-
dung möglich ist [KESSLER, 2008]. 

Aus diesem Grund wurde in dieser Arbeit ausschließlich mit den sogenannten PLS1-Modellen 
gearbeitet. Die folgenden theoretischen Betrachtungen der PLSR behandeln jedoch den all-
gemeinen Fall der PLS2, in dem die PLS1 als Sonderfall enthalten ist. 

5.4.2 Das mathematische Modell der PLSR 

Bei der PLSR wird ein multivariater Ansatz verfolgt, mit dem die Zielgrößen in der Matrix Y, 

Y X B G    (5.19) 

mit 
Y ≔ (n ൈ v) autoskalierte Messdatenmatrix 
X ≔ (n ൈ m) modifizierte Datenmatrix 
B ≔ (m ൈ v) PLSR-Koeffizientenmatrix 
G ≔ (n ൈ v) Residuenmatrix des Regressionsansatzes, 

aus den Variablen in X abgeschätzt werden sollen. 

Das erste Ziel bei der Bildung eines PLS-Regressionsmodells ist die Bestimmung der darin 
enthaltenen Regressionskoeffizientenmatrix B. Bild 5.6 zeigt die dabei beteiligten Matrizen. 

 
Bild 5.6: Korrelation der Datenmatrizen X und Y durch eine PLS-Regression 
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Wie bereits erwähnt, basiert die PLSR auf der Hauptkomponentenanalyse. Im Prinzip wird für 
die Datenmatrix X, 

TX T P E    (5.20) 

mit 
X ≔ (n ൈ m) modifizierte Datenmatrix 
T ≔ (n ൈ r) Scorematrix von X 
PT ≔ (r ൈ m) transponierte Loadingmatrix von X 
E ≔ (n ൈ m) Residuenmatrix von X, 

sowie die Messdatenmatrix Y, 

TY U Q F    (5.21) 

mit 
Y ≔ (n ൈ v) autoskalierte Messdatenmatrix 
U ≔ (n ൈ r) Scorematrix von Y 
QT ≔ (r ൈ v) transponierte Loadingmatrix von Y 
F ≔ (n ൈ v) Residuenmatrix von Y, 

gleichzeitig eine PCA durchgeführt. 

Für die Herleitung der Koeffizientenmatrix B muss es dabei zu einem Informationsaustausch 
kommen, um beide Scorematrizen T und U aufeinander abzubilden. Dieser Austausch ist in 
Bild 5.6 durch Pfeile angedeutet. 

Die bei der PLSR berechneten latenten Variablen werden somit von beiden Datenräumen be-
einflusst. Dadurch unterscheiden sich die Scores T und die Loadings P von denen einer reinen 
PCA des X-Datenraumes. Aus diesem Grund spricht man im Falle der PLSR auch nicht von 
Hauptkomponenten sondern von PLS-Komponenten. Auch der Begriff Faktoren ist dabei ge-
bräuchlich. 

Ein weiteres wichtiges Element des PLSR-Modells ist die Weightmatrix W. Diese hat die glei-
chen Dimensionen wie die Loadingmatrix P und wird auch als gewichtete Loadingmatrix von 
X bezeichnet. Sie stellt die Verbindung zwischen den beiden beteiligten Datenräumen her 
[KESSLER, 2008]. 

Die Berechnung der PLS-Komponenten und damit der Scores T und U sowie der zugehörigen 
Loadings P und Q und den Weights W wird im nächsten Abschnitt ausführlich beschrieben. 

Es lässt sich zeigen, dass die gesuchte Regressionskoeffizientenmatrix B, 

  1T TB W P W Q


     (5.22) 

mit 
B ≔ (m ൈ v) PLSR-Koeffizientenmatrix 
W ≔ (m ൈ r) Weightmatrix der PLSR 
PT ≔ (r ൈ m) transponierte Loadingmatrix von X 
QT ≔ (r ൈ v) transponierte Loadingmatrix von Y, 

aus den Weight- und Loadingmatrizen W, P und Q berechnet werden kann [WOLD et al., 1993]. 
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5.4.3 Berechnung der PLS-Komponenten 

Die Berechnung der PLS-Komponenten wird mit einer modifizierten Variante des NIPALS-
Algorithmus durchgeführt [WOLD, 1975]. Dabei kommen einige lokale Modelle für X, 

TX T W E'    (5.23) 

und 

TX U W E''   , (5.24) 

sowie für Y, 

TY T Q F'   , (5.25) 

zur Anwendung, mit denen die entsprechenden Datenräume ebenfalls beschrieben werden 
können. 

Wie bei der Berechnung der Hauptkomponenten eines PCA-Modells umfasst der NIPALS-
Algorithmus zur Bestimmung einer PLS-Komponente einige Schritte, die ggf. iterativ wieder-
holt werden, bis eine Konvergenz erreicht wird. 

1) Der Algorithmus beginnt mit der Zuweisung des temporären Y-Scorevektors ulte, 

lte hu y , (5.26) 

 aus der Spalte h der Messdatenmatrix Y mit der höchsten Varianz. 

2) Über das lokale Modell in Gl. 5.24 und unter Vernachlässigung der Residuenmatrix E ''
wird daraus der temporäre Weightvektor wlte, 

T
lte

lte T
lte lte

X u
w

u u





, (5.27) 

 über einen Least-Squares-Ansatz berechnet. 

 Dieser wird durch Normierung auf die Länge 1 in den gesuchten Weightvektor wl, 

lte lte
l T

lte lte lte

w w
w

w w w
 


, (5.28) 

 transformiert. 

3) Über das lokales Modell in Gl. 5.23 und unter Vernachlässigung der Residuen E '  lässt 
sich daraus der Scorevektor tl, 

l lt X w  , (5.29) 

 durch Projektion der Matrix X auf den Unterraum wl berechnen. 

4) Der Scorevektor tl erlaubt einerseits eine Berechnung des X-Loadingvektors pl, 

T
l

l T
l l

X tp
t t





, (5.30) 
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 gemäß der allgemeinen Form des PCA-Modells (Gl. 5.20) und andererseits eine Berech-
nung des Y-Loadingvektors ql, 

T
l

l T
l l

Y tq
t t





, (5.31) 

 über das dritte lokale Modell (Gl. 5.25) der PLSR unter Vernachlässigung von F ' . 

5) In einem fünften Schritt wird der korrigierte Y-Scorevektor ul, 

l
l T

l l

Y qu
q q





, (5.32) 

 durch Projektion der Matrix Y auf den Unterraum ql bestimmt. 

6) Analog zum NIPALS Algorithmus der PCA wird wieder ein Gütefunktional Jl, 

 
n 2

lte l ilte ill
i 1

u u u uJ


    , (5.33) 

 berechnet, welches als Maß für die Konvergenz des Verfahrens herangezogen wird. 

7) Bei Überschreiten eines Schwellenwertes Jcrit wird dem temporären Scorevektor ulte, 

lte lu u , (5.34) 

 der zuvor berechneten Scorevektor ul zugewiesen und bei Schritt 2 eine weitere Iteration 
des Algorithmus begonnen. 

 Bei Unterschreiten des Schwellenwertes ist die Berechnung der aktuellen PLS-Kompo-
nente abgeschlossen und es folgt Schritt 8. 

8) Für die Berechnung einer weiteren PLS-Komponente mit l ൌ l + 1 erfolgt zunächst eine 
Neubestimmung der Residuenmatrizen E, 

T
l lE X t p   , (5.35) 

 und F, 

T
l lF Y u q   , (5.36) 

 indem die enthaltene Information in den Scores und Loadings tl und pl bzw. ul  und ql der 
aktuellen PLS-Komponente aus den Datenmatrizen X und Y entfernt wird. 

9) In einem letzten Schritt werden dann die Datenmatrizen X, 

X E , (5.37) 

und Y, 

Y F , (5.38) 

 für den Neustart des NIPALS-Algorithmus der PLSR bei Schritt 1 mit den Residuenma-
trizen E und F besetzt. 
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Auch bei der PLSR kann der Algorithmus nach der Bestimmung der benötigten Anzahl an 
Komponenten gestoppt werden. Die Anzahl erforderlicher Faktoren ist vom Vorhersagefehler 
abhängig und wird über diverse Methoden der Modellvalidierung (siehe Abschnitt 5.5.3) fest-
gelegt [KESSLER, 2008]. Nach Beendigung des NIPALS-Algorithmus erfolgt eine Berechnung 
der Regressionskoeffizientenmatrix B gemäß Gl. (5.22). 

5.5 Erstellung multivariater Modelle 

5.5.1 Generelle Anforderungen an das Datenmaterial 

Eine große Rolle bei der Bildung multivariater Modelle spielt das verwendete Datenmaterial. 
Dieses sollte repräsentative Beobachtungen enthalten, die den untersuchten Prozess mög-
lichst vollständig beschreiben. Der Informationsgehalt der Beobachtungen ist somit höher zu 
bewerten, als die Menge an Datenpunkten [KESSLER, 2008]. 

Im Falle eines PLSR-Modells zur Quantifizierung einer Substratkonzentration sollte beispiels-
weise der gesamte relevante Konzentrationsbereich in den zur Modellkalibrierung verwende-
ten Daten enthalten sein. Dabei ist weiterhin ein Maximum an Varianz weiterer möglicher Ein-
flussgrößen auf die Prädiktorvariablen (Spektren) abzubilden. Anzustreben ist außerdem eine 
uniforme Verteilung der Konzentrationswerte, um eine Wichtung des Modells auf bestimmte 
Zustände zu vermeiden [KESSLER, 2008]. 

Reale Datensätze erfüllen häufig nicht alle Anforderungen, da sie beispielsweise prozessbe-
gleitend erzeugt werden müssen. Dieser Umstand ist bei der Modellerstellung zu beachten 
und das erstellte Modell kritisch zu bewerten. 

5.5.2 Ausreißerdetektion für multivariate Daten 

Aufgrund des Ansatzes der kleinsten Fehlerquadrate bei PCA und PLSR können Ausreißer 
einen hohen Einfluss auf das resultierende multivariate Modell haben [WOLD et al., 1987]. Aus 
diesem Grund sollten die Daten gegebenenfalls von Ausreißern bereinigt werden. 

Eine Beobachtung, die sich stark von anderen unterscheidet, kann mit Hilfe des Hotelling T2-
Tests identifiziert werden. Die dafür notwendige Hotelling T2-Statistik stellt eine Generali-
sierung der Student t-Statistik für multivariate Daten dar und überprüft Beobachtungen hin-
sichtlich einer Normalverteilung [HOTELLING, 1951]. 

Der Hotelling T2-Wert einer Beobachtung i, 

 2r
il l2

i 2
l 1 tl

t t
T

s


   (5.39) 

mit 

ilt  ≔ Score der Komponente l für die Beobachtung i 

lt  ≔ Mittelwert des Scorevektors tl 
2
tls  ≔ Varianz der Scores von Komponente l, 

beschreibt den normierten Abstand der Beobachtung zum Schwerpunkt des Modells für alle 
berechneten Hauptkomponenten. 

Bei der Verwendung mittenzentrierter oder autoskalierter Daten ist der Score-Mittelwert lt  
jeder Komponente l gleich 0, wodurch sich der Schwerpunkt des Modells im Ursprung befindet. 

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


40  Einführung in die Multivariate Datenanalyse (MVDA) 
 

Bei einer Beobachtung mit einem Hotelling T2-Wert oberhalb des kritischen Wertes 2
critT  , 

 2
crit ( ,r,n r )

r n 1
T F

n r  

 
 


 (5.40) 

mit 
α ≔ gewählte Irrtumswahrscheinlichkeit 
r ≔ Anzahl berechneter Hauptkomponenten 
n ≔ Anzahl an Beobachtungen 
F(α,r,n-r) ≔ Kritischer Wert einer F-Verteilung mit einer Irrtumswahrscheinlichkeit α sowie r 

und n - r Freiheitsgraden, 

handelt es sich mit einer gewählten Irrtumswahrscheinlichkeit α um einen Ausreißer. Ein typ-
ischer Wert für α ist 5 %, woraus das übliche 95 % Vertrauensintervall resultiert. 

Der benötigte kritische F-Wert lässt sich aus der kumulativen Verteilungsfunktion einer F-Ver-
teilung in Abhängigkeit der Irrtumswahrscheinlichkeit α sowie den r und n - r Freiheitsgraden 
berechnen oder aus Tabellenwerken ablesen (z.B. [ROSS, 2006]). 

Als grafische Werkzeuge zur Identifizierung von Ausreißern mit Hilfe der Hotelling T2-Statistik 
kommen häufig sogenannte Score Scatter Plots zum Einsatz. In diesen sind die Scores einer 
Komponente gegen die Scores einer anderen Komponente aufgetragen und erlauben damit 
eine einfache grafische Analyse des multivariaten Modells. 

Beobachtungen mit ungewöhnlichen Eigenschaften erscheinen in den Randbereichen der sich 
ergebenden Punktwolke. Durch Einzeichnung einer Hotelling T2-Ellipse für die betrachteten 
Hauptkomponenten, lassen sich die Daten auf Ausreißer überprüfen. 

Bei einer gewählten Irrtumswahrscheinlichkeit α von 5 % handelt es sich bei Proben außerhalb 
der Ellipse demnach mit einer Wahrscheinlichkeit von 95 % um Ausreißer. Bild 5.7a zeigt einen 
Score Scatter Plot mit einer Hotelling T2-Ellipse für die Scorevektoren t1 und t2. 

 
Bild 5.7: a) Score Scatter Plot mit Hotelling T2-Ellipse als 95 % Vertrauensgrenze 

b) DModX als orthogonale Distanz einer Probe zur Modellebene 
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Die Radien der Hotelling T2-Ellipse rTαl, 

 
T l ( ,2,n 2) tl

2 n 1
r F s

n 2  

 
  


 (5.41) 

mit 
F(α,2,n-2) ≔ Kritischer Wert einer F-Verteilung mit einer Irrtumswahrscheinlichkeit α sowie 

2 und n - 2 Freiheitsgraden, 

ergeben sich aus der Wurzel des kritischen Wertes 2
critT  gemäß Gl. (5.40) für r ൌ 2 und aus 

den Standardabweichungen stl der beiden betrachteten Hauptkomponenten (z.B. l = 1, 2). 

Eine weitere Möglichkeit zur Identifikation von Ausreißern bietet die DModX (Distance to Model 
in X) genannte Kenngröße. Der DModX ist ein Maß für den orthogonalen Abstand einer Beob-
achtung zu der Modellebene (Hyperebene) im Originaldatenraum X (siehe Bild 5.7b). Er zeigt 
somit Abweichungen einer Beobachtung auf, die durch das Modell nicht beschrieben werden. 

Der DModX basiert auf der in der Literatur häufig anzutreffenden Q-Statistik und wird von der 
Software Umetrics SIMCA anstelle der Q-Residuen verwendet [ERIKSSON et al., 2001]. 

Die absolute Distanz DModXabsi einer Beobachtung i, 

m
2

absi ij
j 1

1DModX e
m r 

 
   (5.42) 

mit 
m ≔ Anzahl an Variablen in der Datenmatrix X 
r ≔ Anzahl an berechneten Hauptkomponenten 
eij ≔ Element der Residuenmatrix E bei der PCA, 

entspricht der residualen Standardabweichung einer Beobachtung i für alle Variablen. 

Mit Einführung der normierten Distanz DModXnori einer Beobachtung i, 

!
absi

nori i
av

DModX
DModX DModX

DModX
  , (5.43) 

wird eine Vergleichbarkeit der Distanzen für unterschiedliche Modelle erreicht. Im Weiteren 
wird diese normierte Distanz zum Modell allgemein mit DModX bezeichnet. 

Die für eine Normierung benötigte mittlere Distanz DModXav, 

n m
2

av ij
i 1 j 10

1DModX e
(n r r ) (m r)  

 
      (5.44) 

mit 
n ≔ Anzahl an Beobachtungen in der Datenmatrix X 
r0 ൌ 1 bei zentrierten Modellen, sonst 0 [ERIKSSON et al., 2001], 

stellt die residuale Standardabweichung aller n Beobachtungen dar. 

In Analogie zum Hotelling T2-Wert kann mit Hilfe einer F-Statistik ein kritischer Wert DmodXcritα 
für eine gewählte Irrtumswahrscheinlichkeit α berechnet werden [ERIKSSON et al., 2001], ober-
halb dessen eine Beobachtung als Ausreißer gilt. 
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5.5.3 Variablenselektion 

Für multivariate Modelle sollten nur solche X-Variablen herangezogen werden, die relevante 
Informationen enthalten. Irrelevante Prädiktoren erhöhen lediglich die Modellkomplexität und 
können messtechnisches Rauschen mit in das Modell einbringen. Beides verschlechtert zu-
meist die Leistung des Modells [KESSLER, 2008]. 

Eine Möglichkeit der Identifikation irrelevanter Variablen für PLSR-Modelle besteht in der Be-
trachtung der Regressionskoeffizienten im Spaltenvektor bj. Diese können zu diesem Zweck 
gegen den Variablenindex j aufgetragen werden. 

Regressionskoeffizienten mit einem Wert von oder nahe bei 0 deuten darauf hin, dass die 
zugehörige Variable keine Rolle bei der Quantifizierung der entsprechenden Zielgröße spielt. 
Ein Ausschluss der Variable sollte die Leistung des Modells also nicht direkt beeinflussen aber 
die Modellkomplexität senken. 

Vorsicht ist bei diesem Verfahren bei der Verwendung nichtskalierter X-Variablen geboten, da 
hier die Höhe des Wertes des Regressionskoeffizienten auch von der Höhe der Messwerte 
der entsprechenden Variable abhängt. Dies ist meist bei der Verwendung von Spektren der 
Fall, da diese nicht autoskaliert werden. 

Deshalb wurde von Wold et al. eine Variable Influence on Projection (VIP) genannte Kenn-
größe entwickelt, die den Beitrag einer X-Variablen an der durch das Modell erklärten Y-
Varianz beschreibt [WOLD et al., 1993; FARRÉS et al., 2015]. In dieser Arbeit wird eine durch 
[CHONG & JUN, 2005] modifizierte Form dieser Kenngröße genutzt. 

Zur Berechnung der Kenngröße VIP einer X-Variable j, 

 
r

2
l j lnor

l 1
j

tot

m SSY w
VIP

SSY


 



 (5.45) 

mit 
m ≔ Anzahl an X-Variablen 
r ≔ Anzahl berechneter PLS-Komponenten, 

werden die durch die PLS-Komponenten l erklärten Anteile der Y-Varianz SSYl, 

2 T
l l l lSSY c t t    (5.46) 

mit 
tl ≔ (n ൈ 1) X-Scorevektor der PLS-Komponente l 
cl ≔ Koeffizient der inneren Beziehung des PLSR-Modells für Komponente l, 

zu den entsprechenden normierten PLS-Weights wjlnor dieser Variable, 

jl
jlnor T

l l

w
w

w w
  (5.47) 

mit 
wjl ≔ Weight der Komponente l für die Variable j 
wl ≔ (m ൈ 1) Weight-Spaltenvektor der Komponente l, 
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in Beziehung gesetzt und dann auf ein Maß des insgesamt durch das Modell erklärten Anteils 
der Y-Varianz SSYtot, 

r

tot l
l 1

SSY SSY


  , (5.48) 

bezogen. 

Der in die Berechnung des Anteils erklärter Varianz SSYl mit eingehende Koeffizient der inne-
ren Beziehung cl, 

T
l l

l T
l l

u tc
t t





 (5.49) 

mit 
ul ≔ (n ൈ 1) Y-Scorevektor der PLS-Komponente l, 

kann aus den X- und Y-Scorevektoren des PLSR-Modells berechnet werden. 

5.5.4 Validierung multivariater Modelle 

Die Validierung ist einer der wichtigsten Arbeitsschritte bei der Erstellung multivariater Modelle, 
da sie die Entscheidungsgrundlage für die Anzahl zu berechnender Komponenten liefert. 

Der durch das Modell erklärte Anteil der Varianz 2
XR , 

n m
2 2
X ij2

i 1 j 1X

1R 1 e
n m s  

  
 

  (5.50) 

mit 
eij ≔	Element der Residuenmatrix E, 

an der Gesamtvarianz 2
Xs  der Datenmatrix X, 

 
n m 22

X ij
i 1 j 1

1s x X
n m  

  
   (5.51) 

mit 
xij ≔ Element der Datenmatrix X, 

ist ein Maß dafür, wie gut ein Modell die Eingangsdaten beschreibt und wird insbesondere für 
die Bewertung von PCA-Modellen verwendet. Der dabei berücksichtigte Mittelwert X , 

n m

ij
i 1 j 1

1X x
n m  

 
  , (5.52) 

ist der Gesamtmittelwert der Datenmatrix X. 

Bei der Untersuchung von PLSR-Modellen wird zusätzlich der erklärte Anteil der Varianz 2
YR ,  

n v
2 2
Y ih2

i 1 h 1Y

1R 1 f
n v s  

  
 

 , (5.53) 

an der Gesamtvarianz der Matrix Y betrachtet, der sich in Analogie zu 2
XR aus der Residuen-

matrix F mit den Dimensionen (n ൈ v) berechnet. 
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Die Größen 2
XR und 2

YR werden auch als Güte der Anpassung bezeichnet. Für PLSR-Modelle 
ist jedoch die Güte der Vorhersage von größerer Bedeutung. 

Das liegt darin begründet, dass durch die Berechnung weiterer Komponenten auch die erklärte 
Varianz ansteigt, bis hin zu einem Maximalwert von 1. Dabei wird jedoch auch zufällige Varianz 
in X oder Y beschrieben, bei der es sich zum Beispiel um messtechnisches Rauschen handeln 
kann. In einem solchen Fall spricht man von Überanpassung (Overfit) des Modells. 

Ein Overfit wirkt sich meist negativ auf die Leistung des Modells bei der Vorhersage unbekann-
ter Proben aus. Daher sollte eine Validierung von PLSR-Modellen mit Proben durchgeführt 
werden, die nicht an der eigentlichen Kalibrierung des Modells beteiligt sind. 

Mehr noch sollte ein unabhängiger Validierdatensatz (validation set VS) verwendet werden, 
der aus einer separaten Messreihe stammt. Dies wird auch als externe Validierung eines Mo-
dells der Zielgröße yh bezeichnet. 

Die Güte der Vorhersage (prediction P) 2
PhR  einer Variable h, 

 

 

VS

VS

n
2

VSih VSih
i 12

Ph n
2

VSih VSh
i 1

ˆy y
R 1

y y






 






 (5.54) 

nVS ≔ Anzahl an Beobachtungen im Validierdatensatz VS 

VSihy  ≔ Messwert der Zielgröße yh für das Objekt i in VS 

VSihŷ  ≔ Modellschätzwert der Zielgröße yh für das Objekt i in VS 

VShy  ≔ Mittelwert der Zielgröße yh in VS, 

entspricht dem Bestimmtheitsmaß R2 der linearen Anpassung einer Auftragung von Modell-
schätzwerten gegen ihre Referenzmessungen. 

Weiterhin erfolgt eine Bewertung von PLSR-Modellen anhand des mittleren Vorhersagefehlers 
(root mean square error of prediction) RMSEPh, 

 
VSn

2
h VSih VSih

i 1VS

1 ˆRMSEP y y
n 

   , (5.55) 

der als wichtigste Kenngröße bei der Validierung des Modells zur Prädiktion der Zielgröße yh 
betrachtet werden kann. 

Zum Zwecke der Vergleichbarkeit von Modellen unterschiedlicher Zielgrößen wird in dieser 
Arbeit außerdem ein auf den jeweiligen Kalibrierbereich (calibration set CS) normierter rela-
tiver Fehler RMSEPhrel, 

h
hrel

CShmax CShmin

RMSEPRMSEP 100%
y y

 


 (5.56) 

mit 
yCShmax ≔ maximaler Wert der Zielgröße yh im Kalibrierdatensatz CS 
yCShmin ≔ minimaler Wert von yh in CS, 

zur externen Validierung von PLSR-Modellen eingesetzt. 
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Steht kein geeigneter Validierdatensatz zur Verfügung, wird eine interne Validierungsmethode 
verwendet. Bei diesem Verfahren, auch Kreuzvalidierung (cross validation cv) genannt, wird 
jede Probe des Kalibrierdatensatzes genau einmal von der Modellbildung ausgeschlossen und 
dann anhand des so erzeugten Untermodells vorhergesagt. 

Im Falle der Kreuzvalidierung werden die vorgestellten Kenngrößen zur PLSR-Modellvalidie-
rung mit 2

cvR beziehungsweise RMSEcv bezeichnet. 

5.6 Multivariate Klassifizierung 

5.6.1 Allgemeine Informationen 

Multivariate Klassifizierungsverfahren haben ihren Ursprung in den 1930er Jahren in der klas-
sischen Statistik [FISHER, 1936]. Viele verschiedene Methoden entstanden parallel in den 
1970er Jahren vor allem in den aufstrebenden Fachgebieten der Informatik (maschinelles Ler-
nen) oder der chemischen Analytik (Chemometrie) [BRERETON, 2015]. Mögliche Anwendungen 
reichen von Gesichtserkennungssystemen, Überwachung der Qualität von Lebensmitteln bis 
hin zur medizinischen Diagnosefindung. 

In der Literatur werden die Begriffe Mustererkennung (pattern recognition) oder Diskriminanz-
analyse häufig synonym verwendet. 

Im folgenden Abschnitt wird die insbesondere im chemometrischen Umfeld weit verbreitete 
Methode SIMCA vorgestellt. 

5.6.2 Soft Independent Modelling of Class Analogy (SIMCA) 

Die multivariate Klassifizierungsmethode Soft Independent Modelling of Class Analogy (SIM-
CA) wurde von Svante Wold auf Basis der PCA entwickelt [WOLD, 1976; WOLD & SJÖSTRÖM, 
1977]. Es handelt sich um ein sogenanntes überwachtes Verfahren, bei dem für jede betrach-
tete Klasse ein unabhängiges PCA-Modell erstellt wird. 

Unter der Voraussetzung, dass die verwendeten Daten in der Lage sind, Unterschiede zwi-
schen den Klassen und Gemeinsamkeiten innerhalb einer Klasse zu beschreiben, eignet sich 
die SIMCA-Methode sehr gut zur Abschätzung der Klassenzugehörigkeit unbekannter Objekte 
(Proben) [ERIKSSON et al., 2001]. 

Entscheidend für die Einteilung einer unbekannten Probe i aus einem Vorhersagedatensatz 
(prediction set) PS zu einer Klasse K ist die Distanz der Probe i zum PCA-Modell dieser Klasse.  

Als Maß hierfür wird die erweiterte Distanz DModX+, 

2 2
KPSi KPSi KPSiDModX+ DModX DModT  , (5.57) 

herangezogen, die sich als die geometrische Länge aus der orthogonalen Distanz DModXKPSi 
der Probe zur Modellebene und einer hier als DModTKPSi bezeichneten Distanz der Probe zur 
Vertrauensgrenze in der Modellebene berechnet [ERIKSSON et al., 2001]. 

Basierend auf DModX+, dessen Konzept in Bild 5.8 veranschaulicht wird, lässt sich für jede 
unbekannte Probe i eine Wahrscheinlichkeit βKPSi für die Zugehörigkeit zu der betrachteten 
Klasse K berechnen [ERIKSSON et al., 2001]. Für die Klasseneinteilung wird zweckmäßig eine 
Grenzwahrscheinlichkeit βcrit von 0,5 verwendet. 
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Bild 5.8: Verdeutlichung der Klasseneinteilung anhand des DModX+ 

In Bild 5.8 sind zwei PCA-Modelle für die Klassen A (blau) und B (grün) gezeigt. Die Modelle 
bestehen jeweils aus zwei Hauptkomponenten und sind zum Zwecke der Veranschaulichung 
im Originaldatenraum D mit m ൌ 3 Variablen dargestellt. 

Die Modelle basieren auf den Daten ihrer jeweiligen Kalibrierdatensätze, wohingegen die bei-
den neuen Proben dPSi (rot) unbekannt sind. Die Probe dPS1 befindet sich in der Modelldomäne 
der Klasse A und würde somit in diese eingeteilt werden. Die Probe dPS2 liegt hingegen weit 
außerhalb beider Klassenmodelle. Daher ist sie keiner der beiden Klassen zuzuordnen. 

Das Konzept der orthogonalen Distanz zur Modellebene DModX wird vor allem zur Detektion 
von Ausreißern verwendet (siehe Abschnitt 5.5.2) und basiert auf der Betrachtung des modi-
fizierten Datenraums X. 

Die orthogonale Distanz DModXKPSi einer unbekannten Probe i zum PCA-Modell K, 

 
m 2

KPSi PSij KPSij
j 1Kav K

1 1 ˆDModX x x
DModX m r 

   
   (5.58) 

mit 
DModXKav ≔ mittlere Distanz zum PCA-Modell K (siehe Gl. (5.44)) 
rK ≔ Anzahl an Hauptkomponenten im Modell der Klasse K 

KPSijx̂  ≔ X-Schätzwert der Probe i und Variable j gemäß Klasse K, 

lässt sich aus den zur Probe i zugehörigen Messwerten xPSij und aus den zugeordneten 
Schätzwerten KPSijx̂  berechnen. 

Diese anhand des PCA-Modells der Klasse K bestimmten Schätzwerte KPSijx̂ , 

T
KPSij KPSi Kjx̂ t p   (5.59) 

mit 
T
Kjp  ≔	 (r ൈ 1) Spaltenvektor der transponierten Loadingmatrix PK des Modells K, 

d1

d2

d3

tB1

tB2

tA1

tA2

DModTBPS2

DModXBPS2DModX+BPS2
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class A members
class B members
new observations

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


Einführung in die Multivariate Datenanalyse (MVDA) 47 

ergeben sich aus den Scores tKPSi der unbekannten Probe i und mit den Loadings des PCA-
Modells K für die betrachtete Variable j. 

Der Score-Zeilenvektor tKPSi der unbekannten Probe im Modell K, 

KPSi PSi Kt x P   (5.60) 

mit 
tKPSi ≔ (1 ൈ r) Zeilenvektor der Scores einer unbekannten Probe i im Modell K 
xPSi ≔ (1 ൈ m) Zeilenvektor der Eingangsdaten (gemessen) einer unbekannten Probe i 
PK ≔ (m ൈ r) Loadingmatrix des PCA-Modells der betrachteten Klasse K, 

ist wiederum abhängig von den Messwerten xPSi der unbekannten Probe i und berechnet sich 
aus der Loadingmatrix PK der Klasse K. 

5.6.3 Validierung von Klassifikatoren 

Die Bewertung eines Klassifikators erfolgt auf Basis von Konfusionsmatrizen. Diese Technik 
stammt ursprünglich aus der Signalentdeckungstheorie [PETERSON et al., 1954]. Für jede be-
trachtete Klasse ist eine solche Matrix, auch Kontingenztabelle genannt, zu erstellen. Bild 5.9 
zeigt den Aufbau einer Konfusionsmatrix. 

 
Bild 5.9: Konfusionsmatrix zur Bewertung eines Klassifikators 

Eine Konfusionsmatrix fasst die Ergebnisse der Einteilung einer Gesamtanzahl von n Objekten 
in die jeweilig betrachtete Klasse zusammen. Da es sich um einen Validierungsschritt handelt, 
ist die Klassenzugehörigkeit aller n Objekte bekannt. 

Vorausgesetzt die Gesamtanzahl n, 

p nn n n   (5.61) 

mit 
np ≔ Anzahl klassenzugehöriger (positiver) Objekte 
nn ≔ Anzahl klassenfremder (negativer) Objekte, 

setzt sich aus klassenzugehörigen (np) und klassenfremden (nn) Proben zusammen, ergeben 
sich für die Validierung eines Klassifikators vier mögliche Resultate. 

Bei korrekter Zuordnung einer klassenzugehörigen (positiven) Probe zur betrachteten Klasse, 
wird das Ergebnis als true positive (tp) bezeichnet. Schlägt die Einteilung durch den Klassifi- 
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kator dagegen fehl, lautet das Ergebnis false positive (fp). Analog dazu treten für klassenfrem-
de (negative) Proben mit true negative (tn) und false negative (fn) zwei weitere mögliche 
Ergebnisse auf. 

Die auf diese Möglichkeiten entfallenen Objektanzahlen werden in der Konfusionsmatrix no-
tiert und für die Ableitung einer Reihe von Kenngrößen genutzt. 

Die Sensitivität Se eines Klassifikators, 

tp tp

tp fp p

n n
Se

n n n
 


 (5.62) 

mit 
ntp ≔ Anzahl richtig eingeteilter positiver Objekte 
nfp ≔ Anzahl falsch vorhergesagter positiver Objekte, 

ist definiert zu dem Anteil korrekt vorhergesagter klassenzugehöriger Objekte. 

Die Spezifität Sp eines Klassifikators, 

tn tn

tn fn n

n n
Sp

n n n
 


 (5.63) 

mit 
ntn ≔ Anzahl richtig eingeteilter negativer Objekte 
nfn ≔ Anzahl falsch vorhergesagter negativer Objekte, 

beschreibt dagegen wie gut klassenfremde Objekte abgelehnt werden. 

Die Gesamtleistung eines Klassifikators kann in einem Fehler EC der Klassifizierung, 

fp fn
C

n n
E 100%

n


  , (5.64) 

als Gesamtanteil falsch vorhergesagter Objekte zusammengefasst werden. 

Die Nutzung von Kontingenztabellen setzt diskrete oder binäre Klassifikatoren voraus, die eine 
ja/nein-Entscheidung über die Klassenzugehörigkeit liefern. Die meisten multivariaten Klassi-
fizierungsverfahren erzeugen jedoch kontinuierliche Größen wie zum Beispiel eine Wahr-
scheinlichkeit β der Klassenzugehörigkeit. Dies macht eine Definition geeigneter Grenzwerte 
notwendig. 

Andersherum betrachtet ergibt sich daraus jedoch auch die Möglichkeit einer Optimierung der 
Klassifikatoren hinsichtlich der Sensitivität Se oder Spezifität Sp, je nachdem ob ein eher 
konservatives oder liberales Verhalten des Klassifikators erwünscht ist [FAWCETT, 2004]. 

5.7 Support Vector Machines (SVM) 

5.7.1 SVM als multivariates Klassifizierungsverfahren 

Die Methodik der Support Vector Machines wurde von Vapnik und Chervonenkis im Rahmen 
der statistischen Lerntheorie beschrieben [VAPNIK & CHERVONENKIS, 1974]. Der Methode ge-
lang in den 1990er Jahren der Durchbruch, nachdem einige Erweiterungen den Algorithmus 
beispielsweise zur nichtlinearen multivariaten Regression befähigten [VAPNIK, 2000]. 
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Ursprünglich handelt es sich jedoch um ein multivariates Klassifizierungsverfahren, dessen 
Funktionsweise im Folgenden erläutert werden soll. 

Ausgegangen wird zunächst von zwei sich nicht überlappenden, linear separierbaren Klassen 
A und B im m-dimensionalen Raum der Eingangsdaten X. Gesucht wird eine optimale Trenn-
ebene gopt. Bild 5.10a illustriert dies anhand von m ൌ 2 X-Variablen. 

 
Bild 5.10: a) Nicht überlappende, linear trennbare Klassen für m ൌ 2 Dimensionen 

b) Übertragung des Problems in den m + 1 dimensionalen Raum 

Entsprechend seiner Klassenzugehörigkeit wird jeder Beobachtung xi der Eingangsdaten einer 
von zwei möglichen Werten yi ∊	{-1, +1} zugewiesen. Diese Information der Klassentrennung 
überträgt das Klassifizierungsproblem in einen m + 1 dimensionalen Raum, welcher in Bild 
5.10b dargestellt ist. 

Für die Einteilung eines Objektes i lässt sich eine lineare Entscheidungsfunktion g, 

i i i i1 1 i2 2 im mˆg(x ) y x w b x w x w ... x w b             (5.65) 

mit 

iŷ  ≔ Schätzwert der Klassenzugehörigkeit 
xi ≔ (1 ൈ m) Daten-Zeilenvektor des Objektes i 
w ≔ (m ൈ 1) Wichtungs-Spaltenvektor 
b ≔ Bias der Entscheidungsfunktion, 

definieren, welche eine (Hyper-) Ebene innerhalb dieses Raums beschreibt. 

Die Klasse einer unbekannten Beobachtung xPSi, 

 PSi
PSi

PSi

ˆA, y 0
class(x )

ˆB, y 0
 


, (5.66) 

kann anhand des Vorzeichens des Schätzwertes PSiŷ  bestimmt werden. 

Der unbekannte Wichtungsvektor w und der Bias b der Entscheidungsfunktion sind über das 
Modelltraining mit den Daten xi und yi zu ermitteln. 
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5.7.2 Berechnung einer optimalen Trennebene 

Es existiert eine unendliche Anzahl möglicher Trennebenen. Dies ist in Bild 5.10a angedeutet. 
Gesucht wird die optimale Trennebene gopt, welche eine maximale Spanne Smax zwischen den 
Eingangsdaten aufweist. 

Die Spanne wird auf jeder Seite durch mindestens ein Objekt der entsprechenden Klasse be-
grenzt. Diese Beobachtungen der Trainingsdaten werden Stützvektoren genannt und sind für 
die Methode namensgebend. 

Für einen Stützvektor xsvi soll damit sein Schätzwert sviŷ , 

!

svi svi sviŷ x w b y { 1, 1}       , (5.67) 

dem gegebenen Wert seiner Klassenzugehörigkeit ysvi entsprechen. 

Mit dieser Bedingung lässt sich zeigen, dass die zu maximierende Spanne S, 

T

2 2S
w w w

 


, (5.68) 

von der Länge des Wichtungsvektors w abhängt. 

Aus numerischer Zweckmäßigkeit wird daraus das zu minimierende Gütekriterium Jg, 

m2 T 2
g j

j 1

1 1 1J w w w w
2 2 2 

        , (5.69) 

abgeleitet [KECMAN, 2005]. 

Aufgrund der in Gl. (5.67) beschriebenen Voraussetzung muss die gesuchte optimale Trenn-
ebene gopt außerdem die Nebenbedingung, 

 i iy x w b 1    , (5.70) 

für die Trainingsdaten xi und yi erfüllen. 

Dies stellt ein klassisches quadratisches Optimierungsproblem dar, welches über den Sattel-
punkt eines Lagrange-Funktionals L, 

 
n

T
i i i

i 1

1L(w,b, ) w w y x w b 1
2 

              (5.71) 

mit 
n ≔ Anzahl Beobachtungen im Datensatz X 
αi ≔ Langrange-Multiplikator der Beobachtung i, 

gelöst werden kann [KECMAN, 2005]. 
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Dabei werden zunächst die unbekannten αi durch Maximierung eines dualen Lagrange-Funk-
tionals Ld, 

n n n
T

d i i z i z i z
i 1 i 1 z 1

1L ( ) y y x x
2  

             (5.72) 

mit 
z ≔ weiterer Zählindex der Objekte, z ൌ 1, 2, …, n, 

und mit den Nebenbedingungen, 

n

i i
i 1

y 0


    (5.73) 

und 

i 0  , (5.74) 

aus den Trainingsdaten identifiziert. 

Bei allen Beobachtungen mit einem αi ൐ 0 handelt es sich um Stützvektoren. Alle übrigen 
Objekte haben demnach ein αi von 0. 

Die gesuchten Parameter der optimalen Trennebene, der Wichtungsvektor w, 

n
T

i i i
i 1

w y x


    , (5.75) 

und der Bias b, 

 
svn

svi svi
i 1sv

1b y x w
n 

     (5.76) 

mit 
nsv ≔ Anzahl der Stützvektoren, 

lassen sich dann berechnen. 

Anhand Gl. (5.72) ist zu erkennen, dass bei der Berechnung der optimalen Trennebene die 
Eingangsdaten X in Form von Skalarprodukten eingehen. 

Damit hat die Dimensionalität (Anzahl der Variablen m) von X keinen starken Einfluss auf den 
benötigten Rechenaufwand. Dieser ist dagegen maßgeblich von der Anzahl n an Beobachtun-
gen im Kalibrierdatensatz abhängig, da ebenso viele Lagrange-Multiplikatoren αi identifiziert 
werden müssen. Support Vector Machines sind demnach besonders für hochdimensionale 
Daten mit verhältnismäßig wenigen Objekten geeignet. 

Für die Identifizierung der αi kommen spezielle Algorithmen zur Lösung des quadratischen 
Optimierungsproblems zum Einsatz. Häufig verwendet wird der Sequential Minimal Opti-
mization (SMO) Algorithmus [PLATT, 1999]. 
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5.7.3 Kernel-Funktionen zur Abbildung nichtlinearer Beziehungen 

In Bild 5.11a sind zwei Klassen A und B mit einer nichtlinearen Klassengrenze in einem Raum 
zweier X-Variablen gezeigt. In einem solchen Fall ist die direkte Anwendung eines linearen 
Ansatzes für die Trennebene ungeeignet. 

 
Bild 5.11: a) Zwei Klassen mit nichtlinearer Klassengrenze für m ൌ 2 Dimensionen 

b) Entscheidungsfunktion der Klassifizierung als nichtlineare Oberfläche 

Durch mathematische Transformationen der Eingangsdaten X lässt sich dieser (n ൈ	m) dimen-
sionale Datenraum in einem Merkmalsraum F (n ൈ M) abbilden. Die Anzahl M der Variablen 
(Merkmale) dieses Raums kann dabei beliebig hoch gewählt werden. 

Die Idee ist, dass sich durch die Wahl einer geeigneten Abbildungsvorschrift   ein linearer 
Ansatz der Entscheidungsfunktion gF, 

F F Fg (X) (X) w b    , (5.77) 

auf den Raum F anwenden lässt, wodurch der zur Klassentrennung benötigte nichtlineare 
Verlauf von gF erzeugt wird. Dies ist in Bild 5.11b illustriert. 

Das für die Lösung dieses Problems zu maximierende duale Lagrange-Funktional Ld, 

   
n n n

T
d i i z i z i z

i 1 i 1 z 1

1L ( ) y y x x
2  

            , (5.78) 

beinhaltet analog zu Gl. (5.72) die Skalarprodukte der in F abgebildeten Objekte i(x ) .	

Bei sehr hoher Dimension M des Merkmalsraumes benötigt die Berechnung dieser Skalarpro-
dukte (sowie die Ausführung der Abbildung   selbst) einen sehr hohen Rechenaufwand. 

Dieser wird durch die Verwendung sogenannter Kernel-Funktionen K, 

     T
i z i zK x ,x x x   , (5.79) 

umgangen, welche ausschließlich mit den Eingangsdaten in X operieren. 
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Dadurch wird sogar die Verwendung, unendlichdimensionaler Eigenschaftsräume ermöglicht, 
die beispielsweise durch die Gauß’sche radiale Basisfunktion (RBF), 

 
   2 T

i z i z i z

i z

1 1x x x x x x
K x ,x e e

       
    (5.80) 

mit 
γ	 	 ≔ Parameter des Gauß‘schen RBF-Kernels, 

erzeugt werden. 

Bei dieser muss der Parameter γ über eine Kreuzvalidierung ermittelt werden. Für stark ver-
rauschte Daten erzeugt ein kleiner Wert für γ eine komplexe Trennebene und kann damit zu 
einem Overfit führen [KECMAN, 2005]. 

Es existieren verschiedene Kernel-Funktionen. Einige sind in Tabelle 5.1 aufgelistet. In dieser 
Arbeit wurde jedoch ausschließlich mit dem Gauß’schen RBF-Kernel gearbeitet. 

Tabelle 5.1: Häufig verwendete Kernel-Funktionen [KECMAN, 2005] 

Kernel-Funktion Beschreibung 

  T
i z i zK x ,x x x   Linearer Kernel 

   dT
i z i zK x ,x x x 1    Polynom vom Grad d 

   T
i z i zK x ,x tanh x x c    Mehrlagiges Perzeptron 

   
1

2 2
i z i zK x ,x x x


     Inverse multiquadratische Funktion 

Bei der Verwendung nichtlinearer Kernel ist eine explizite Darstellung des Wichtungsvektors 
w nicht mehr möglich. Stattdessen kann die Entscheidungsfunktion g, 

 
n

i i i
i 1

ˆg(x) y y K x ,x


     , (5.81) 

direkt mit den Trainingsdaten und der verwendeten Kernel-Funktion notiert werden. 

Abhängig von der Art des verwendeten Kernels kann der Bias b entweder vernachlässigt oder 
implizit in der Kernel-Funktion berücksichtigt werden [KECMAN, 2005]. 

5.7.4 Erweiterung zur Support Vector Regression (SVR) 

Das prinzipielle Vorgehen bei der Entwicklung eines Regressionsverfahrens mittels Support 
Vector Machines entspricht dem bei der Entwicklung eines Klassifikators. 

Ausgehend von einer linearen Beziehung, wird eine Regressionsfunktion f, 

ˆf(X) y X w b    , (5.82) 

allgemein als linearer Zusammenhang im multivariaten Raum X definiert. 

Jede Beobachtung i der Trainingsdaten besitzt anstelle diskreter Werte der Klassenzugehö-
rigkeit jedoch einen kontinuierlichen, autoskalierten Messwert yi. 
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Für die Berechnung der Regressionsfunktion soll über das Gütekriterium Jf, 

n
T

f i i
i 1

1J w w C E(x , y )
2 

      (5.83) 

mit 
C ≔ Güteparameter zur Wichtung der Fehler, C ൐ 0, 

auch die Summe der Kalibrierfehler minimiert werden. 

Der Fehler E einer Beobachtung i, 

i i i i
i i

y f(x ) , y f(x )
E(x ,y )

0, otherwise

       


 (5.84) 

mit 
ε   ≔ akzeptierte Fehlertoleranz, 

beschreibt die absolute Abweichung von der Regressionsfunktion unter Berücksichtigung ei-
ner Fehlertoleranz ε. 

Diese muss zusammen mit dem Parameter C zur Wichtung der Kalibrierfehler vom Anwender 
gewählt oder in einer Kreuzvalidierung ermittelt werden. Kleine Werte von ε sowie große Werte 
von C erzeugen ein komplexes Modell und können somit zu einem Overfit führen. 

Das im Falle der Regression zu lösende quadratische Optimierungsproblem führt zur einem 
dualen Lagrange-Funktional Ld, 

   
n n

T
d i i i i z z i z

i 1 z 1

1L ( , ) x x
2  

               (5.85) 

   
n n

i i i i
i 1 i 1

y y
 

         , 

welches mit den Nebenbedingungen, 

 
n

i i
i 1

0


     (5.86) 

und 

i iC , 0    , (5.87) 

durch Identifikation der Lagrange-Multiplikatoren αi und βi zu maximieren ist. 

Im Vergleich mit einem SVM-Klassifikator müssen bei der SVR demnach doppelt so viele Pa-
rameter bestimmt werden. 

Da die Trainingsdaten xi auch hier als Skalarprodukt in Ld eingehen (siehe Gl. (5.85)), können 
auch bei der Regression Kernel-Funktionen zur Modellierung nichtlinearer Beziehungen ohne 
weitere Maßnahmen eingesetzt werden. 

Beobachtungen mit einem αi oder βi ൐ 0 sind Stützvektoren. Für alle anderen Objekte sind 
beide Lagrange-Multiplikatoren gleich 0. 
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Der Wichtungsvektor w der Regressionsfunktion, 

 
n

T
i i i

i 1
w x



     , (5.88) 

wird deshalb nur von den Stützvektoren beeinflusst. 

Diese liegen entweder oberhalb (αi ൐ 0) oder unterhalb (βi ൐ 0) des Toleranzbandes der Re-
gressionsfunktion, welches eine Weite von 2ε besitzt. Bild 5.12 zeigt Stützvektoren und ein ε-
Toleranzband bei der Modellierung eines nichtlinearen Verlaufes mit SVR für eine X-Variable. 

 
Bild 5.12: Mit SVR modellierter, nichtlinearer Verlauf (m ൌ 1) 

Stützvektoren, dessen Lagrange-Multiplikatoren einen Wert ൏ C aufweisen, werden freie 
Stützvektoren genannt. Alle anderen heißen gebundene Stützvektoren. 

Die Berechnung des Bias b der Regressionsfunktion, 

fsvn
i i i

i 1 i i ifsv

y x w , C 01b
y x w , C 0n 

      
         

  (5.89) 

mit 
nfsv ≔ Anzahl freier Stützvektoren, 

erfolgt durch Mittelung über diese freien Stützvektoren [KECMAN, 2005]. 

5.8 Eingesetzte MVDA-Software 

In dieser Arbeit wurden zwei Softwarepakete für die Erstellung multivariater Modelle genutzt. 
Die Software SIMCA 13.0.3 der Fa. MKS data analytics solutions (ehemals Umetrics), Umeå, 
Schweden, wurde für die Berechnung von PLS-Regressionsmodellen und SIMCA-Klassifika-
tionsmodellen verwendet. 

Für die Berechnung von Modellen, basierend auf Support Vector Machines (SVR), kam die 
PLS_Toolbox 8.1.1 von Eigenvector Research, Manson, USA, zum Einsatz. Hierbei handelt 
es sich um eine Zusatzsoftware für MATLAB®, The Mathworks, Natick, USA, das in der Version 
8.5.0/R2015a zur Verfügung stand. SVR-Modelle werden hierin mit einer Implementierung der 
LIBSVM-Bibliothek berechnet [CHANG & LIN, 2011].  

  training data
  support vectors   SVR predicted
  original function    tolerance

Gaussian RBF Kernel
C = 30      = 0.1      = 1

y

x
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6. Qualitätsbewertung von Hefeextrakten mit NIR-Spektroskopie 

6.1 Motivation und Zielsetzung 

Hefeextrakt wird zumeist aus dem Lysat von Zellen der Spezies Saccharomyces cerevisiae 
gewonnen. Durch die Wahl und Steuerung des Aufschlussverfahrens (z.B. Autolyse, Ther-
molyse) können unterschiedliche Produktklassen gewonnen werden, die sich in ihrer Zusam-
mensetzung unterscheiden. Nach Abtrennung unlöslicher Zellbestandteile wird das Extrakt in 
flüssiger oder in sprühgetrockneter Pulverform weiterverarbeitet.  

Ein Einsatzgebiet von Hefeextrakt ist die biotechnologische Produktion, in der es als Bestand-
teil von Kulturmedien zum Einsatz kommt. Neben verschiedenen Kohlenstoffquellen enthält 
es unter anderem Aminosäuren und Spurenelemente, womit ein breites Spektrum des Nähr-
stoffbedarfes verschiedener Mikroorganismen abgedeckt wird. 

Hefeextrakt kann damit das Wachstum aber auch die Produktivität verschiedener biotechnolo-
gischer Hostsysteme positiv beeinflussen [KEIL & TILKINS, 2013; MOSSER et al., 2013]. Eine 
Maximierung mikrobiellen Wachstums konnte mit Variation des Extraktes oder durch die Ver-
wendung einer optimalen Mischung verschiedener Klassen erreicht werden [WILMES, 2012]. 

Der Vertrieb solcher stamm- oder produktspezifisch optimierter Mischungen könnte ein loh-
nendes Geschäftsfeld kleinerer Hefeextraktproduzenten sein, die sich auf Kunden aus dem 
biotechnologischen Umfeld fokussieren. 

Ein Hindernis bei der Herstellung derartig spezialisierter Produkte ist die natürliche Chargen-
schwankung, die bei der Produktion der Grundklassen beobachtet wird. Hieraus kann char-
genabhängig unterschiedliches mikrobielles Wachstum resultieren [WILMES, 2012].  

Das Ziel dieser Arbeit war die Entwicklung eines Bewertungsverfahrens für drei Hefeextrakt-
klassen. Als Qualitätsmerkmal wurde dabei die Übereinstimmung einer Charge mit den mittle-
ren Eigenschaften ihrer entsprechenden Klasse herangezogen. Der Ausschluss abweichender 
Chargen bei der Herstellung spezialisierter Mischungen würde deren Qualität gewährleisten. 

Die Durchführung umfangreicher Analysen, hinsichtlich relevanter Komponenten der Hefeex-
trakte, stellt eine sehr zeit- und kostenintensive Aufgabe dar. Darüber hinaus sind viele Inhalts-
stoffe unbekannt oder sind aufgrund des komplexen Charakters der Hefeextrakte nur schwer 
isolier- und quantifizierbar. 

Es konnte gezeigt werden, dass Nahinfrarotspektren von Hefeextrakten mit dem Kultivierungs-
erfolg von Mikroorganismen in Beziehung gesetzt werden können [KASPROW et al., 1998]. 
Daher wurde auf die Bestimmung spezifischer Inhaltsstoffe verzichtet und als Analyenmethode 
einzig die Nahinfrarotspektroskopie (NIRS) gewählt. Diese hat den Vorteil schnell und zerstö-
rungsfrei zu arbeiten und kaum Probenvorbereitung zu benötigen [BLANCO & VILLARROYA, 
2002].  

Für die Entwicklung der Qualitätsbewertung basierend auf NIRS kam in dieser Arbeit das multi-
variate Klassifizierungsverfahren Soft Independent Modelling of Class Analogy (SIMCA) zum 
Einsatz (siehe Abschnitt 5.6.2). 
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6.2 Stand der Wissenschaft 

Multivariate Klassifizierungsverfahren wurden zusammen mit der NIRS bereits erfolgreich ein-
gesetzt. Insbesondere eine Qualitätsbewertung von Nahrungsmitteln wurde auf diese Art 
bereits mehrfach realisiert [BERRUETA et al., 2007; HUANG et al., 2008; WOODCOCK et al., 2008]. 

Hier kann auf einen breiten Erfahrungsschatz zurückgegriffen werden, der sich in einer hohen 
Anzahl an Veröffentlichungen niederschlägt. Die Methodik wurde zum Beispiel zur Authenti-
zitätsprüfung von Weinen [ARVANITOYANNIS et al., 1999], zur Qualitätsbewertung von Weizen-
mehlen [COCCHI et al., 2005], oder der schnellen Detektion von Aflatoxin B1 in Getreiden 
[FERNÁNDEZ-IBAÑEZ et al., 2009] eingesetzt. 

Die Untersuchung von Rohmaterialien im pharmazeutischen Umfeld mit NIR-Spektroskopie 
stellt ein klassisches Beispiel einer PAT-Anwendung dar [SKIBSTED & ENGELSEN, 2010]. Dies 
wurde jedoch auch schon vor der Veröffentlichung der PAT-Initiative erfolgreich praktiziert. 
Gemperline et al. nutzen bereits 1989 NIR-Reflexionsspektren mit der Methode SIMCA, um 
die Eignung verschiedener Rohmaterialen bei der Herstellung von Tabletten zu bewerten 
[GEMPERLINE et al., 1989]. 

Für die Zeit nach Erscheinen der PAT-Initiative können jedoch vergleichsweise wenig Litera-
turstellen aus dem biopharmazeutischen Sektor gefunden werden. Kirdar et al. nutzten NIRS 
und PCA, um den Erfolg von Zellkulturen auf die Chargenschwankungen der pulverförmigen 
Zellkulturmedien zurückzuführen [KIRDAR et al., 2009]. Märk et al. konnten die Qualität eines 
Zwischenproduktes bei der Antibiotikaproduktion mittels NIRS überwachen [MÄRK et al., 2010]. 

6.3 Der gewählte Messaufbau 

Die pulverförmigen Hefeextraktproben wurden in einem speziellen Gefäß vorgelegt und auf 
dem Kontaktmesskopf PSS-H-B01 der Fa. Polytec, Waldbronn, wie in Bild 6.1 gezeigt, posi-
tioniert. Die Messung erfolgte mit der Methode der diffusen Reflexion. 

 
Bild 6.1: Messaufbau mit dem Reflexionskontaktmesskopf PSS-H-B01 

Das Probengefäß wurde individuell von der Fa. Quarzglas Komponenten und Service QCS, 
Maintal, angefertigt. Es verfügt über einen plangeschliffenen Boden aus Quarzglas und ist 
damit für Anwendungen mit Nahinfrarotspektroskopie geeignet. 
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Für eine Messung wurden etwa 10 g Hefeextraktpulver benötigt. Die Vermessung der Proben 
erfolgte in Dreifachbestimmung. Zwischen diesen Messungen wurde das Gefäß grob gesäu-
bert und die Probe neu vorgelegt. Zwischen der Vermessung unterschiedlicher Proben erfolgte 
eine gründliche Reinigung. 

Die Messungen fanden bei den Standardmesseinstellungen des Spektrometers statt. Die Inte-
grationszeit betrug 15 ms und es wurden 100 Akkumulationen aufgenommen. Eine Dunkel-
korrektur und der Weißabgleich erfolgten automatisch über Schließmechanismen des Detek-
tors und des Kontaktmesskopfes. 

6.4 Vorstellung des Probenpools 

Das Qualitätsbewertungsverfahren sollte für die drei Hefeextraktklassen A, B und C eines Her-
stellers entwickelt werden. Klasse A ist von einem hohen Gehalt freier Aminosäuren gekenn-
zeichnet, während die Klassen B und C einen hohen Peptidgehalt aufweisen. Klasse B weist 
zudem einen relativ hohen Gehalt an Nukleotiden auf. 

Es standen 93 Hefeextraktproben zur Verfügung. Wie in Tabelle 6.1 dargestellt, teilen sich 
diese zu je 32 auf die Klassen A und C auf. Auf die Klasse B entfallen 26 Proben. Zusätzlich 
wurden drei externe Proben vermessen, die bei der Modellvalidierung als Negativbeispiele 
verwendet werden sollten. Bei diesen Proben handelt es sich um kommerziell erhältliche 
Hefeextrakte anderer Hersteller. 

Tabelle 6.1: Probenpool für die Entwicklung von NIR- und MVDA-Bewertungsverfahren 

Klasse Probenanzahl Einzelmessungen 

A 32 96 

B 26 78 

C 32 96 

extern 3 9 

Gesamt 93 279 

6.5 Vorverarbeitung der Spektraldaten 

Als Methode der Datenvorverarbeitung wurde das Standard Normal Variate (SNV) Filter ge-
wählt. Außerdem erfolgte eine Mittenzentrierung der NIR-Spektren. 

Das SNV-Filter ist deshalb für die Spektren der pulverförmigen Hefeextrakte geeignet, da ins-
besondere die bei Messungen in diffuser Reflexion an partikulärem Probenmaterial auftreten-
den Streueffekte von dieser Methode kompensiert werden [KESSLER, 2008]. Die Überlegenheit 
des SNV-Filters gegenüber anderen Methoden in ähnlichen Anwendungen der NIR-Spektros-
kopie wurde bereits gezeigt [CANDOLFI et al., 1999a; CHEN et al., 2006]. 

6.6 Explorative Datenanalyse und Probenselektion 

Zum Zwecke der Analyse der Hefeextraktspektren wurde zunächst ein auf allen Proben basie-
rendes PCA-Modell erstellt. Dieses Modell besteht aus zwei Hauptkomponenten, die ge-
meinsam eine Varianz der Spektraldaten 2

XR  von 92,1 % beschreiben.  
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In dem für diese beiden Hauptkomponenten in Bild 6.2 gezeigten Score Scatter Plot ist bereits 
eine gute Trennung der Klasse A (rot) von den anderen beiden Klassen zu erkennen. Die 
Klassen B (blau) und C (grün) weisen eine gewisse Überlappung auf. Die als graue Dreiecke 
gekennzeichneten externen Proben zeigen zum Teil Ähnlichkeiten mit den Klassen B und C, 
liegen aber eher abseits der Hauptgruppen. 

 
Bild 6.2: Score Scatter Plot des PCA-Modells aller Hefeextraktproben 

Kleinere Gruppen von jeweils drei Symbolen entsprechen den Dreifachmessungen der Pro-
ben. Einige ungewöhnliche Objekte, die relativ weit von der Hauptgruppe entfernt positioniert 
sind, können insbesondere der Klasse A zugeordnet werden. 

Ein multivariates Klassifizierungsmodell für eine Qualitätsbewertung sollte auf Proben basie-
ren, die den mittleren Eigenschaften der Klasse entsprechen. Aus diesem Grund wurden in 
einem nächsten Schritt PCA-Modelle der einzelnen Klassen erzeugt und diese auf Ausreißer 
untersucht. 

Für die PCA-Klassenmodelle wurden jeweils so viele Hauptkomponenten berechnet, um min-
destens 95 % der Varianz in den Spektraldaten zu beschreiben. Diese Grenze wurde frei ge-
wählt. Wies eine Probe einen Hotelling T2-Wert außerhalb des 95 % Konfidenzintervalls auf, 
so wurde diese Probe als Ausreißer erachtet und folglich von der Modellbildung ausge-
schlossen. 

Bild 6.3a zeigt den Score Scatter Plot und Bild 6.3b den Hotelling T2 Plot eines PCA-Modells 
mit zwei Hauptkomponenten für alle 32 Proben der Klasse A. 

Es ist eine relativ kompakte Gruppe in der Mitte des Score Scatter Plots zu erkennen, von 
denen sich einige ungewöhnliche Proben abheben. Diese sind durch ihre Probennummer als 
potentielle Ausreißer kenntlich gemacht. 
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Bild 6.3: PCA-Modell der Klasse A zur Ausreißerdetektion, n ൌ 96 (32), r ൌ 2, 

a) Score Scatter Plot, b) Hotelling T2 Plot 

Allerdings konnte nur die Probe A05 als eindeutiger Ausreißer identifiziert werden, da die 
anderen markierten Proben innerhalb oder auf der Vertrauensgrenze liegen. Folglich wurde 
zunächst nur diese Probe von der Modellbildung ausgeschlossen und ein neues PCA-Modell 
gebildet. 

Basierend auf diesem aktualisierten Modell konnten zwei weitere Proben als Ausreißer identi-
fiziert werden. Dieses Vorgehen wurde mit dem weiter reduzierten Datensatz so oft wiederholt, 
bis keine Probe mehr als Ausreißer zu erkennen war und eine homogene Verteilung der Pro-
ben im Score Scatter Plot erreicht wurde. Das endgültige Resultat mit 26 von 32 Proben ist in 
Bild 6.4 gezeigt. 

 
Bild 6.4: PCA-Modell der Klasse A ohne Ausreißer, n ൌ 78 (26), r ൌ 2, 

a) Score Scatter Plot, b) Hotelling T2 Plot 

Alle sechs in Bild 6.3 als potentielle Ausreißer hervorgehobenen Proben wurden auch tat-
sächlich als Ausreißer erkannt und von der Bildung des multivariaten Klassifizierungsmodells 
für Klasse A ausgeschlossen. 

Das gleiche Vorgehen für die Klassen B und C führte zu der Erkennung von zwei bzw. fünf 
Ausreißern. 
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6.7 Entwicklung eines SIMCA-Klassifizierungsmodells 

Ein SIMCA-Klassifizierungsmodell besteht aus je einem PCA-Modell für jede der betrachteten 
Klassen und bestimmten Entscheidungsregeln für die Klassifizierung. Diese Entscheidungs-
regeln können im Voraus festgelegt werden. Die Konfidenzintervalle für den Hotelling T2-Wert 
und des DmodX+ wurden zu 95 % gewählt. Die Grenzwahrscheinlichkeit βcrit für die Einteilung 
in eine Klasse betrug 0,5. 

Die jeweilige Anzahl erforderlicher Hauptkomponenten der PCA-Klassenmodelle muss dage-
gen gesondert ermittelt werden. Die Schwierigkeit dieser Aufgabe ist bekannt, da keine gene-
rellen Regeln gegeben sind [CANDOLFI et al., 1999b]. Häufig kommen hierbei Kreuzvalidie-
rungsverfahren, angewandt auf die einzelnen PCA-Modelle, zum Einsatz. 

Dieses Vorgehen optimiert eine generelle Beschreibung der Klassen-Spektraldaten durch die 
einzelnen PCA-Modelle, nicht aber die Güte eines vollständigen SIMCA-Klassifikators. In die-
ser Arbeit wurde deshalb ein Ansatz verfolgt, bei dem das gesamte SIMCA-Modell einer Kreuz-
validierung unterzogen wird. Dabei stellt der Klassifizierungsfehler EC (siehe Abschnitt 5.6.3) 
das entscheidende Kriterium dar. 

Es wurden vier Kreuzvalidierungsdurchgänge durchgeführt und sichergestellt, dass jede Pro-
be nur einmal als Teil eines Validierdatensatzes zum Einsatz kam sowie keine Trennung der 
Dreifachmessungen erfolgte. Zuvor als Ausreißer deklarierte Proben (siehe Abschnitt 6.6) 
waren ebenfalls genau einmal Teil einer der sich ergebenen vier Validierdatensätze. Die drei 
externen Proben wurden bei diesem Vorgehen nicht berücksichtigt. 

Diese Kreuzvalidierungsprozedur wurde für acht SIMCA-Klassifizierungsmodelle durchge-
führt, in denen die drei PCA-Klassenmodelle jeweils die gleiche Anzahl an Hauptkomponenten 
beinhalten (r ൌ 1 … 8). 

Die Klassifizierungsergebnisse jedes dieser acht Modelle lassen sich in je einer Konfusions-
matrix für die drei Klassen zusammenfassen. Diese sind am Beispiel des SIMCA-Modells mit 
jeweils r ൌ 1 in Tabelle 6.2 gezeigt. 

Tabelle 6.2: Konfusionsmatrizen der drei Klassen eines SIMCA-Modells mit r ൌ 1 für alle 
PCA-Klassenmodelle, Auswertung aller Einzelmessungen 

  Klasse A  Klasse B  Klasse C 

positiv eingeteilt  pos neg  pos neg  pos neg 

ja  78 0  66 30  75 10 

nein  0 192  6 168  6 179 
          

∑ (n ൌ 270)  78 192  72 198  81 189 

Den Konfusionsmatrizen lässt sich entnehmen, dass für die Klasse A bereits ein perfekter 
Klassifikator mit nur einer Hauptkomponente erzeugt werden konnte. Alle Proben (78 Mes-
sungen) der Klasse A wurden korrekt in diese eingeteilt. Darüber hinaus wurde keine der klas-
senfremden Proben (192 Messungen) fälschlicher Weise der Klasse A zugewiesen. Im Ge-
gensatz dazu weisen die Klassen B und C für dieses SIMCA-Modell noch einige Fehlklassi-
fizierungen auf. 
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Beispielsweise wurden je zwei Proben (sechs Messungen) nicht ihrer jeweiligen Klasse zuge-
wiesen. Für Klasse B handelt es sich hierbei um die Proben B02 und B06 (siehe Bild 6.5). 

Weiterhin wurden der Klasse B fälschlicher Weise zehn negative Proben (30 Messungen) zu-
gewiesen. Bild 6.5 kann entnommen werden, dass diese Proben ausschließlich Vertreter der 
Klasse C sind. Hierzu sind die entsprechenden Proben rechts oben im Bild anhand ihrer Pro-
bennummer hervorgehoben. 

 
Bild 6.5: Wahrscheinlichkeit βB der Zugehörigkeit zur Klasse B aller Proben für ein 

SIMCA-Modell mit r ൌ 1 für alle PCA-Klassenmodelle 

In obiger Abbildung sind die Wahrscheinlichkeiten βB der Zugehörigkeit zur Klasse B für alle 
Proben dargestellt. Bei Überschreiten der gewählten Grenzwahrscheinlichkeit βcrit von 0,5 
werden die Proben in Klasse B eingeteilt. Viele Proben der Klasse C (grün) befinden sich 
oberhalb dieser Grenze. Die beiden Ausreißer der Klasse B, B24 und B25 (orange), wurden 
dagegen korrekt als nicht klassenzugehörig erkannt. 

Analog dazu stammen die zehn falsch-positiven Zuweisungen der Klasse C (siehe Tabelle 
6.2) ausschließlich aus Klasse B (nicht gezeigt). Dies lässt darauf schließen, dass eine Haupt-
komponente nicht zur Trennung der Klassen B und C ausreicht, da diese starke Ähnlichkeiten 
aufweisen. Dieser Eindruck entstand bereits bei Betrachtung des Score Scatter Plots des 
Gesamt-PCA-Modells in Bild 6.2. 

Ein übersichtlicherer Vergleich der getesteten SIMCA-Klassifikatoren mit unterschiedlicher 
Komponentenanzahl kann anhand der in Abschnitt 5.6.3 vorgestellten Charakteristiken erfol-
gen. Hierzu sind in Bild 6.6 die Selektivität Se und die Spezifität Sp für die drei Klassen in 
Abhängigkeit der Anzahl r verwendeter Hauptkomponenten gezeigt. 

In Bild 6.6a ist zu erkennen, dass die Selektivität Se für alle Klassen mit steigender Kompo-
nentenanzahl abnimmt. Dies bedeutet, dass ein sinkender Anteil an klassenzugehörigen 
Proben korrekt in die entsprechende Klasse eingeteilt wird. Dieses Verhalten deutet auf einen 
Overfit der PCA-Klassenmodelle bei hohen Komponentenanzahlen hin. 
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Bild 6.6: Bewertung der Klassifizierung anhand a) der Selektivität Se und b) der Spezifität 

Sp der drei Klassen abhängig von der Anzahl r berechneter Hauptkomponenten 

Die Spezifität Sp, gezeigt in  Bild 6.6b, steigt in der Tendenz für die Klassen B und C mit der 
Komponentenanzahl r an und liegt für alle Klassen ab vier Hauptkomponenten auf ihrem 
Maximalwert 1. Für viele berechnete Hauptkomponenten ist es also sehr unwahrscheinlich, 
Proben in die falsche Klasse einzuteilen. 

Vor dem Hintergrund der angestrebten Entwicklung eines Qualitätsbewertungsverfahrens soll-
ten, um falsch-positive Ergebnisse zu vermeiden, Klassifikatoren mit hoher Spezifität gewählt 
werden. Auf eine maximale Selektivität kann dagegen verzichtet werden, da bei der vorliegen-
den Fragestellung und unter Vernachlässigung ökonomischer Erwägungen, falsch-negative 
Einteilungen eher toleriert werden können. 

Die Ergebnisse lassen sich für die Festlegung der optimalen Anzahl an Hauptkomponenten 
anhand des Klassifizierungsfehlers EC zusammenfassen, der in Bild 6.7  in Abhängigkeit der 
Anzahl berechneter Hauptkomponenten gezeigt ist. 

 
Bild 6.7: Klassifizierungsfehler EC der drei Klassen in Abhängigkeit von r 
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Gemäß der durchgeführten Kreuzvalidierungsprozedur haben die Klassen A (1), B (2) und 
C (3) eine unterschiedliche Hauptkomponentenanzahl r für minimale Klassifizierungsfehler EC 
des Gesamtmodells. Folglich wurden diese Werte gewählt, damit der SIMCA-Klassifikator opti-
male Ergebnisse erzielen kann. Tabelle 6.3 zeigt die finalen Konfusionsmatrizen des 
gewählten SIMCA-Modells. 

Tabelle 6.3: Konfusionsmatrizen der drei Klassen des finalen SIMCA-Modells mit rA ൌ 1, 
rB ൌ 2, rC ൌ 3, Auswertung aller Einzelmessungen 

  Klasse A  Klasse B  Klasse C 

positiv eingeteilt  pos neg  pos neg  pos neg 

ja  78 0  63 0  75 0 

nein  0 192  9 198  6 189 
          

∑ (n ൌ 270)  78 192  72 198  81 189 

Für die Klasse A bleibt der perfekte Klassifikator erhalten. Von Klasse B wurden dagegen drei 
Proben (neun Messungen) und von Klasse C zwei Proben (sechs Messungen) als nicht klas-
senzugehörig erkannt. Wie bereits erwähnt ist dieses Verhalten jedoch akzeptabel. Erfreulich 
ist, dass für die Klassen B und C, trotz der beobachteten Gemeinsamkeiten, keine falsch-
positiven Einteilungen mehr auftreten.  

6.8 Externe Validierung des Modells 

Zur abschließenden Bewertung des im vorherigen Abschnitt entwickelten SIMCA-Klassifika-
tors soll eine externe Validierung durchgeführt werden. Da für die Arbeiten kein weiteres als 
das bereits beschriebene Probenmaterial zur Verfügung stand, wurden Kalibrier- und Validier-
datensätze aus den vorhandenen Daten mit Hilfe des Kennard-Stone-Algorithmus erzeugt. 

Dieser nutzt die euklidische Länge von Vektoren, um uniform verteilte Objekte mit den größten 
Abständen in einem Datenraum nacheinander für den Kalibrierdatensatz einer multivariaten 
Modellbildung auszuwählen. Der Algorithmus arbeitet sequentiell und wird zweckmäßig nach 
einer vorher festgelegten Anzahl an Objekten gestoppt [KENNARD & STONE, 1969]. 

Die Aufteilung der Proben mit dem Kennard-Stone-Algorithmus erfolgte separat für jede Klas-
se mit den vorverarbeiteten sowie von Ausreißern bereinigten Daten. Ca. 60 % der Proben 
wurden dabei für den Kalibrierdatensatz ausgewählt und Dreifachmessungen nicht getrennt. 

Die übrigen Proben sind dann positive Exemplare des Validierdatensatzes. Als Negativbei-
spiele enthält dieser zusätzlich die in Abschnitt 6.6 detektierten Ausreißer der entsprechenden 
Klasse sowie alle Proben der anderen Klassen und die drei Extrakte externer Hersteller. 

Das Resultat des Kennard-Stone-Algorithmus ist in Bild 6.8 anhand eines Score Scatter Plots 
eines PCA-Modells der Klasse A gezeigt. In roter Farbe sind die algorithmisch bestimmten 
Proben des Kalibrierdatensatzes dargestellt. Diese spannen den Datenraum gleichmäßig auf. 
Positive Vertreter des Validierdatensatzes (grau) liegen verteilt dazwischen. 
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Bild 6.8: Verteilung von Proben der Klasse A auf Kalibrier- und Validierdatensätze durch 

den Kennard-Stone-Algorithmus 

Basierend auf dem oben vorgestellten Kalibrierdatendatensatz wurde ein neues SIMCA-
Klassifizierungsmodell gemäß der im vorherigen Abschnitt ermittelten optimalen Einstellungen 
erzeugt und mit dem Validierdatensatz überprüft. Die Ergebnisse sind in Tabelle 6.4 zusam-
mengefasst. 

Tabelle 6.4: Kenngrößen des finalen SIMCA-Klassifikators für die externe Validierung 

Klasse r Se [-] Sp [-] EC [%] nCS 
nVS 

(positiv) 
nVS 

(negativ) 
A 1 1 0,99 0,74 48 (16) 30 (10) 105 (35) 

B 2 1 0,98 1,48 45 (15) 27 (9) 108 (36) 

C 3 1 1 0 51 (17) 30 (10) 105 (35) 

Ø  1 0,99 0,74 - - - 

Für alle Klassen wurde eine Selektivität Se von 1 erzielt. Dieses sehr gute Ergebnis ist auch 
auf die Auswahl repräsentativer Datensätze durch den Kennard-Stone-Algorithmus zurück-
zuführen, da dieser Extrapolationen bei der Validierung verhindert. 

Auch für die Spezifität Sp aller Klassen wurden hohe Werte erreicht. Lediglich eine Einzelmes-
sung eines Ausreißers der Klasse A konnte nicht korrekt eingeteilt werden. Der Klasse B 
wurden zwei Einzelmessungen einer Probe der Klasse C fälschlicherweise zugewiesen. 

Hierin besteht ein Unterschied zu der Kreuzvalidierung, bei der die Spezifität maximiert wurde. 
Die externe Validierung zeigt auf, dass dies nicht dem realen Verhalten des Klassifikators ent-
spricht. Eine umfassende Validierung empfiehlt sich daher in jedem Fall. 

Abschließend sei hervorgehoben, dass der Klassifizierungsfehler EC im Durchschnitt aller 
Klassen bei unter 1 % liegt. Dies stellt ein sehr gutes Ergebnis dar.  
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7. Offline-Prädiktion relevanter Variablen in Bioreaktionsprozessen 

7.1 Eine Machbarkeitsstudie anhand von Offline-Analysen 

Dieser Abschnitt stellt die Ergebnisse einer Machbarkeitsstudie für die Quantifizierung rele-
vanter Bioprozessgrößen mit spektroskopischen Methoden und multivariater Datenanalyse an 
einem zyklischen Produktionsprozess mit Pichia pastoris dar. 

Das Ziel der Untersuchungen war ein Vergleich der drei verwendeten Spektroskopiearten NIR, 
Raman und 2D-Fluoreszenz sowie eine generelle Bewertung der Eignung dieser Methoden 
für die Quantifizierung ausgewählter Zielgrößen. 

Darüber hinaus sollten die Arbeiten Strategien zur Bildung von PLSR-Modellen hervorbringen. 
Dies beinhaltet unter anderem die Wahl geeigneter Vorverarbeitungsmethoden sowie die Be-
stimmung relevanter Spektralbereiche. Weiterhin war der Einfluss von Zellen in der vermes-
senen Matrix auf das Quantifizierungsergebnis zu untersuchen. 

Die spektralen Messungen fanden offline, das heißt nach Ablauf des Prozesses, statt. Durch 
den Verzicht auf eine Inline-Messung wurden damit zunächst mögliche Störquellen, wie zum 
Beispiel die Begasung in Verbindung mit einer starken Durchmischung der Kulturbrühe, aus-
geschlossen. Der Inline-Betrieb wird in einem späteren Teil der Arbeit näher untersucht. 

7.2 Stand der Wissenschaft 

Die Beobachtung von Kultivierungsprozessen mit spektroskopischen Messverfahren und mul-
tivariater Datenanalyse gilt heutzutage als typisches Beispiel für eine PAT-Anwendung. 
Ähnlich wie bei der Klassifizierung von Rohmaterialien wurde dies jedoch auch schon vor der 
Veröffentlichung der PAT-Initiative betrieben. 

Insbesondere die NIR- und die 2D-Fluoreszenzspektroskopie kamen dabei zum Einsatz. Es 
konnten verschiedene Größen in Prozessen mit Escherichia coli [HALL et al., 1996], Saccha-
romyces cerevisiae [LINDEMANN et al., 1998], Insektenzellen [RILEY et al., 1997] sowie Strep-
tomyceten [ARNOLD et al., 2000] mithilfe multivariater Verfahren beobachtet werden. 

Nach 2004 stieg die Anzahl an Veröffentlichungen in diesem Themenfeld stark an [POMERANT-
SEV & RODIONOVA, 2012]. 

In Produktionsprozessen rekombinanter Proteine mit Pichia pastoris konnte die Zelldichte, so-
wie Substrat- und Produktkonzentrationen aus NIR- bzw. 2D-Fluoreszenzspektren vorherge-
sagt werden [CROWLEY et al., 2005; SURRIBAS et al., 2006]. 

Auch Säugetierzellkulturen zur Produktion monoklonaler Antikörper wurden mit NIR- und 2D-
Fluoreszenzspektroskopie überwacht [HENRIQUES et al., 2009; JOSE et al., 2011]. Für die 
Beobachtung multipler Prozessgrößen in CHO-Zell-Prozessen wurde insbesondere die Ra-
man-Spektroskopie eingesetzt [ABU-ABSI et al., 2011; BERRY et al., 2015; WHELAN et al., 2012]. 
Craven et al. nutzten PLSR-Modelle in einem solchen Versuchsaufbau zu Regelung der Glu-
kosekonzentration [CRAVEN et al., 2014]. 

Paul et al. untersuchten die Eignung der Raman-Spektroskopie in Verbindung mit der PLSR 
zur Bestimmung verschiedener Größen eines Prozesses mit Pichia pastoris anhand artifizieller 
Proben [PAUL et al., 2016]. Darüber hinaus existieren nur wenige Publikationen, die sich mit 
der Anwendung der Raman-Spektroskopie an Bakterien- oder Hefeprozessen befassen. 
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Ein Review aus dem Jahre 2012 gibt einen guten Überblick über Veröffentlichungen hinsicht-
lich der Beobachtung von Bioprozessen mit den drei in dieser Arbeit untersuchten spektros-
kopischen Verfahren [LOURENÇO et al., 2012]. Eine Zusammenfassung auch aktueller Ver-
öffentlichungen hinsichtlich der Verwendung der NIR-Spektroskopie in Kultivierungsprozessen 
findet sich in [HOEHSE et al., 2015]. 

Die am häufigsten verwendete chemometrische Methode zur Prädiktion von Bioprozessgrö-
ßen ist die PLSR [POMERANTSEV & RODIONOVA, 2012]. Aber auch Methoden wie Multiple Line-
are Regression (MLR) [SMALL, 2006], Principle Component Regression (PCR) [RHEE & KANG, 
2007] oder nichtlineare Methoden wie Künstliche Neuronale Netze (ANN) [LUCHNER et al., 
2015] wurden bereits erfolgreich eingesetzt. 

7.3 Untersuchte Prozessgrößen und vorhandenes Probenmaterial 

Gegenstand der ersten Untersuchungen war hauptsächlich eine Kultivierung des Wildtypstam-
mes DSM 70382 von Pichia pastoris, die gemäß der in Abschnitt 3.1.2 vorgestellten zyklischen 
Kultivierungsstrategie durchgeführt wurde. Die starke Beprobung eines dieser Zyklen erzeugte 
das notwendige Datenmaterial für eine multivariate Kalibrierung. Die Kultivierung mit der 
internen Kennzeichnung NM3213 ist in Bild 7.1 gezeigt. 

 
Bild 7.1: Verlauf von Offline-Analysedaten in der Kultivierung NM3213 

Dargestellt sind die Offline-Analysen der Zelldichte cXLcdw (schwarz), der Glycerolkonzentration 
cS1Mhplc (grün), der Methanolkonzentration cS2Mhplc (rot), der Ammoniumkonzentration CAltotMfia 
(blau) sowie der zellspezifischen Alkoholoxidaseaktivität gP2/Xoff (orange). Diese Größen waren 
mit spektroskopischen Methoden zu quantifizieren. 

Insgesamt ergaben sich aus dem untersuchten Zyklus 50 Proben, die jeweils in Dreifachbe-
stimmung mit den drei getesteten spektroskopischen Methoden vermessen wurden. 
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Die Wahl eines Wildtypstammes lag darin begründet, dass Zellmaterial zu Analysezwecken 
für ein anderes Projekt an ein kooperierendes Labor ohne S1-Akkreditierung geliefert wurde. 
Aus diesem Grund war kein rekombinantes Produkt in dieser Kultivierung vorhanden. 

Die Quantifizierung des sekretierten Gesamtproteins cPtotM wurde dagegen anhand der in Bild 
7.2 gezeigten Kultivierung SM0313 durchgeführt. Für diese kam der rekombinante Stamm 
Pichia pastoris KM71H D1M1H zum Einsatz. In fünf Zyklen wurden insgesamt 120 Proben 
genommen, von denen 65 spektral vermessen werden konnten. 

 
Bild 7.2: Verlauf der Kultivierung SM0313 in fünf Zyklen 

Darüber hinaus kam dieser Prozess auch für eine externe Validierung des Kalibriermodells 
der Glycerolkonzentration cS1M in der Medienphase (erstellt mit NM3213) zum Einsatz, da es 
sich bei dieser speraraten Kultivierung um ein unabhängiges Testset handelt. 

7.4 Entwicklung von PLSR-Modellen 

7.4.1 Der komplexe Prozess der PLSR-Modellentwicklung 

Wichtige Faktoren für die Vorhersagekraft von PLSR-Modellen sind die An- bzw. Abwesenheit 
von Ausreißern, die gewählte Datenvorverarbeitung, der verwendete Spektralbereich sowie 
vor allem die Anzahl der berechneten PLS-Komponenten. 

Die entsprechenden Einstellungen sind vom Benutzer zu ermitteln. Die Schwierigkeit in der 
Erstellung bzw. Optimierung eines PLSR-Modells besteht aber darin, dass die genannten 
Faktoren voneinander abhängen. So kann die Wahl des Spektralbereiches beispielweise 
beeinflussen, ob eine bestimmte Beobachtung als Ausreißer identifiziert wird oder nicht. 

Die Entwicklung und Optimierung von PLSR-Modellen zur Quantifizierung bestimmter Größen 
mit Hilfe spektraler Daten ist demnach ein komplexer und iterativer Prozess und lässt sich nur 
schwer nach einem gleichen Schema durchführen, da der Ablauf dieses Prozesses von der 
jeweiligen Problemstellung abhängt. 
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Durch geeignete Annahmen kann die Modellbildung beschleunigt werden. Das setzt jedoch 
eine gute Kenntnis des vorliegenden Datenmaterials und des zugrundeliegenden Biopro-
zesses voraus. 

Der folgende Abschnitt soll anhand des Beispiels der Vorhersage der Glycerolkonzentration 
cS1M im Kulturüberstand mit Hilfe der NIR-Spektroskopie das in dieser Arbeit prinzipielle Vor-
gehen bei der Entwicklung von PLSR-Modellen verdeutlichen. 

7.4.2 Eine exemplarische Darstellung bei der PLSR-Modellentwicklung 

Dafür stehen prinzipiell die 50 Proben der Kultivierung NM3213 zur Verfügung. Ein Großteil 
davon stammt jedoch aus der Produktionsphase des Prozesses und weist somit eine Glycerol-
konzentration von 0 gl-1 auf. 

Um eine Wichtung des zu erzeugenden PLSR-Modells auf diesen Zustand zu vermeiden, wur-
de sich auf die 21 Proben aus der Batchphase und der Glycerol-Fed-Batchphase beschränkt. 
Bild 7.3 zeigt die NIR-Spektren vom Überstand dieser Kultivierung. 

 
Bild 7.3: NIR-Transmissionsspektren des Überstandes gefärbt nach cS1M 

Eine Korrelation zwischen den Absorptionswerten AMi der Spektren und der Glycerolkonzen-
tration cS1M ist insbesondere im hervorgehobenen Bereich gut zu erkennen. Es fällt weiterhin 
auf, dass das Spektrum der Probe N16 von den anderen abweicht. 

Vor der Erstellung eines PLSR-Modells sollten die Spektraldaten daher auf Ausreißer unter-
sucht werden. Dies wird anhand eines PCA-Modells mithilfe der in Abschnitt 5.5.2 vorge-
stellten Kenngrößen durchgeführt. Um mögliche Unterschiede zwischen den Spektren durch 
Basislinienverschiebungen zu eliminieren, kamen die nach der Wellenlänge abgeleiteten (und 
mittenzentrierten) Spektren zum Einsatz. 

PCA-Modelle zur Ausreißerdetektion basieren in dieser Arbeit auf so vielen Hauptkomponen-
ten, dass mindestens 95 % der Varianz in den Spektraldaten ( 2

XR ) beschrieben wird. Dies ist 
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zumeist bereits mit zwei Hauptkomponenten der Fall, wodurch sich der Score Scatter Plot der 
ersten beiden Hauptkomponenten (t1, t2) gut zur Ausreißerdetektion eignet. 

Im Zweifelsfall (wie im folgenden Beispiel) und bei mehreren Hauptkomponenten wurden zu-
sätzlich die DModX- und Hotelling-T2-Werte des Gesamtmodells betrachtet. 

Bild 7.4a zeigt den Score Scatter Plot eines PCA-Modells. Alle Einzelmessungen der Probe 
N1 haben hohe Hotelling-T2-Werte und liegen außerhalb des 95 % Konfidenzintervalls. Es 
handelt sich mit einer Wahrscheinlichkeit von 95 % also um einen Ausreißer. Daher wurde 
diese Probe von der weiteren Modellbildung ausgeschlossen. 

 
Bild 7.4: a) Score Scatter Plot eines PCA-Modells mit r ൌ 2, 2

XR  ൌ 0,982 
b) Auftragung des DModX gegen Hotelling-T2 

Die Probe N16 liegt auf der Grenze des Hotelling-T2-Konfidenzintervalls und kann folglich bei 
ausschließlicher Betrachtung des Score Scatter Plots nicht eindeutig als Ausreißer identifiziert 
werden. Eine Betrachtung von Bild 7.4b zeigt jedoch, dass die Probe N16 zusätzlich einen 
sehr hohen DModX aufweist. Aus diesem Grund wurde sie ebenfalls als Ausreißer erachtet 
und von der Modellbildung ausgeschlossen. 

Nach der Entfernung von Ausreißern wird mit den verbliebenen Daten ein weiteres PCA-Mo-
dell erstellt, um sie, wie oben beschrieben, erneut auf Ausreißer zu untersuchen. Dieses Ver-
fahren ist notwendig, da sich durch das veränderte Datenmaterial ein neues Modell ergibt. 

Im vorliegenden Beispiel konnten keine weiteren Ausreißer identifiziert werden. Daher kamen 
die verbliebenen 19 Proben nun zur Berechnung des finalen PLSR-Modells zum Einsatz. Da-
bei wurde zunächst die gleiche Vorverarbeitungsmethode (Ableitung und Mittenzentrierung) 
wie bei der PCA genutzt. 

Zur Festlegung der Anzahl r an PLS-Komponenten ist im Idealfall der Vorhersagefehler 
RMSEP der externen Validierung in Abhängigkeit von r zu betrachten. Steht kein unabhän-
giger Testdatensatz zur Verfügung ist man auf den Fehler RMSEcv der Kreuzvalidierung ange-
wiesen. Dieser Weg soll hier demonstriert werden. 
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In Bild 7.5 weist der Fehler RMSEcv ein Minimum bei fünf PLS-Komponenten auf. Daher wurde 
zunächst ein solches Modell gebildet. Allerdings sollte dieses einer weiteren Prüfung 
unterzogen werden, um einen möglichen Overfit aufzudecken. 

 
Bild 7.5: Vorhersagefehler RMSEcv in Abhängigkeit der PLS-Komponentenanzahl r 

Im vorliegenden Fall weisen z.B. die in Bild 7.6 dargestellten PLS-Regressionskoeffizienten bj 
einen stark schwankenden Verlauf in Abhängigkeit des Variablenindex j auf. Dieses Verhalten 
deutet auf einen Overfit hin. 

 
Bild 7.6: PLS-Regressionskoeffizienten bj in Abhängigkeit des Variablenindex j 
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In NIR-Spektren sind Absorptionswerte benachbarter Wellenlängen meist stark korreliert und 
weisen einen gleichmäßigen Verlauf auf. Demnach sollten auch entsprechende PLS-Regres-
sionskoeffizienten aufeinander folgender Variablen ein ähnliches Verhalten zeigen. Bei stark 
schwankenden Koeffizienten wird daher davon ausgegangen, dass das PLSR-Modell mess-
technisches Rauschen beschreibt, welches den ungleichmäßigen Verlauf verursacht. 

Nach Betrachtung der Regressionskoeffizienten der PLSR-Modelle mit einer Faktorenanzahl 
r von 2 bis 4, wurde sich für das Modell mit 3 PLS-Komponenten entschieden. 

Die Regressionskoeffizienten bj dieses so überarbeiteten Modells sind in Bild 7.7 zu sehen. 
Für den vorderen Bereich des NIR-Spektrums weisen die bj nun viel kleinere Werte und einen 
gleichmäßigeren Verlauf auf. Die macht das Vorliegen eines Overfits weniger wahrscheinlich. 

 
Bild 7.7: PLS-Regressionskoeffizienten bj und Variable Importance in Projection VIPj zur 

Variablenselektion aufgetragen gegen den Index j 

Im hinteren Bereich zeigen sich dagegen zusammenhängende Bereiche höherer Werte. Diese 
haben den größten Einfluss auf eine Vorhersage mit diesem Modell, was eine Möglichkeit zur 
Variablenselektion aufzeigt. Bei zusätzlicher Betrachtung des VIPj (Gl. (5.45)), ebenfalls in Bild 
7.7 gezeigt, bestätigt sich die geringe Bedeutung des vorderen Spektralbereiches für die Vor-
hersage der Glycerolkonzentration cS1M. 

Durch eine Auswahl des Spektralbereiches von 1.300 nm bis 1.650 nm konnte die Variablen-
anzahl m von 401 auf 176 reduziert werden. Der Vorhersagefehler RMSEcv eines entsprech-
enden Modells verbesserte sich bei unverändertem r (3) dabei von 1,84 gl-1 auf 1,59 gl-1. 

Nach der Variablenselektion ist wiederum eine Ausreißerprüfung vorzunehmen, da sich das 
Datenmaterial erneut verändert hat. Diese verlief hier allerdings negativ. 

Ist die Entwicklung des Modells über die vorgestellten Schritte abgeschlossen, sollten noch 
weitere grafische Werkzeuge zurate gezogen werden, die eine Beurteilung des Modells er-
möglichen oder auf Fehlerquellen hinweisen können. Eine solche Grafik ist in Bild 7.8 gezeigt. 
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Hierin sind die durch Kreuzvalidierung vorhergesagten Glycerolkonzentrationen cS1Mnir gegen 
ihre Referenzwerte cS1Mhplc aufgetragen. 

 
Bild 7.8: Vorhersage cS1Mnir aufgetragen gegen die Referenzwerte cS1Mhplc 

Im Idealfall liegen die Punkte auf einer Geraden durch den Ursprung mit der Steigung eins. 
Bei einem nichtlinearen Verlauf können ein Wechsel der Vorverarbeitungsmethode oder die 
Berechnung weiterer Faktoren Abhilfe schaffen. Ist dies nicht der Fall, sollte die Eignung der 
verwendeten Methode (z.B. PLSR) angezweifelt werden. 

Bild 7.9 zeigt die Vorhersagen und deren Offline-Referenzwerte im Kultivierungsverlauf. 

 
Bild 7.9: Vorhersage cS1Mnir im Überstand im Rahmen einer Kreuzvalidierung 
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Die Glycerolkonzentration cS1M in der Batch- und der Fed-Batchphase kann gut vorhergesagt 
werden (rot). Etwas stärkere Abweichungen sind bei der Vorhersage der Produktionsphase 
(grün) zu erkennen. Entsprechende Proben waren nicht an der Modellbildung beteiligt. 

Ein Schwachpunkt des vorliegenden Modells liegt in der Verteilung der Konzentrationswerte. 
So ist anhand von Bild 7.8 und Bild 7.9 zu erkennen, dass einige Proben mit einer Glycerol-
konzentration von 0 gl-1 Teil des Kalibrierdatensatzes waren. Weiterhin sind hohe Konzentra-
tionen von über 40 gl-1 ebenfalls relativ häufig. Kleinere Werte sind dagegen nur selten vertre-
ten. Die Verteilung der Daten weist also nicht die geforderte Uniformität auf. Dies lässt sich 
jedoch mit der äquidistanten Probenahme im untersuchten Wachstumsprozess begründen. 

Eine externe Modellvalidierung mit einem unabhängigen Validierdatensatz ist hier mit den 
Proben der in Bild 7.10 gezeigten Kultivierung SM0313 zusätzlich möglich. Stünde ein solcher 
Datensatz nicht zur Verfügung, wäre die Modellbildung an dieser Stelle für die gewählte Art 
der Datenvorverarbeitung abgeschlossen. 

Aber auch hier weisen viele Proben eine Glycerolkonzentration cS1M von 0 gl-1 auf. In Bild 7.10 
sind die Vorhersagen der meisten dieser Proben in grün dargestellt. Sie wurden jedoch nicht 
zur externen Validierung herangezogen. 

 
Bild 7.10: Vorhersage cS1Mnir im Überstand für ein unabhängiges Testset 

Der Fehler RMSEP der externen Validierung wurde nur mit den in rot dargestellten Vorhersa-
gen berechnet und dabei zu 1,92 gl-1 ermittelt. Die Vorhersagegüte des Modells ist damit für 
Proben des unabhängigen Testsets etwas schlechter als für Proben des Kalibrierdatensatzes 
(RMSEcv = 1.59 gl-1). Dieses Verhalten ist aufgrund der Unabhängigkeit der beiden Daten-
sätze zu erwarten. 

Abschließend soll das gebildete Modell noch einmal im Hinblick auf die Anzahl r zu berech-
nender PLS-Komponenten untersucht werden. Dazu ist in Bild 7.11 neben dem Vorhersage-
fehler RMSEcv der Kreuvalidierung auch der Vorhersagefehler RMSEP in Abhängigkeit von r 
aufgetragen. 
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Bild 7.11: Fehler RMSEcv und RMSEP in Abhängigkeit der PLS-Komponentenanzahl r 

Dieser weist ein Minimum bei drei PLS-Komponenten auf. Dies entspricht der zuvor gewählten 
Komponentenanzahl. Für Modelle mit mehr als drei PLS-Komponenten liegt, aufgrund des  
höheren Fehlers, wahrscheinlich ein Overfit vor. 

Bei dem vorgestellten Vorgehen der PLSR-Modellentwicklung wurde die Vorverarbeitungsme-
thode zu Beginn festgelegt. Zur Erzeugung eines optimierten Modells, sollten aber auch ande-
re Verfahren getestet werden. Tabelle 7.1 fast die Kenngrößen des vorgestellten Modells 
(de1 + mc) zusammen und stellt außerdem einen Vergleich mit der Verwendung des SNV-
Filters (snv + mc) und der alleinigen Verwendung der Mittenzentrierung (mc) an. 

Tabelle 7.1:  Vergleich unterschiedlicher Vorverarbeitungsmethoden bei der Vorhersage von 
cS1M im Überstand mit der NIR-Spektroskopie  

 mc de1 + mc snv + mc 

Spektralbereich komplett 1300 - 1650 nm 1300 - 1650 nm 

nCS
1) [-] 57 (19) 57 (19) 57 (19) 

r [-] 4 3 3 
2
XR  [-] 0,999 0,999 0,999 
2
YR  [-] 0,991 0,997 0,997 
2
cvR  [-] 0,982 0,995 0,995 

RMSEcv [gl-1] 2,92 1,59 1,58 
RMSEcvrel [%] 5,43 2,96 2,94 

nVS
1) [-] 78 (26) 78 (26) 78 (26) 

2
PR  [-] 0,982 0,991 0,992 

RMSEP [gl-1] 5,25 1,92 2,11 
RMSEPrel [%] 9,77 3,57 3,93 
1) Die Klammern geben die Anzahl unabhängiger Proben an 
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Eine Spektrenvorverarbeitung, die nur auf Mittenzentrierung (mc) beruht, brachte das schlech-
teste Ergebnis hervor. Die Modellentwicklung führte dabei nicht zu einer Eingrenzung des 
Spektralbereiches. Die Verwendung eines SNV-Filters (snv + mc) lieferte beinahe identische 
Ergebnisse zur ersten Ableitung (de1 + mc). Im vorliegenden Fall fiel die Wahl weiterhin auf 
diese Methode, da mit ihr das beste Ergebnis bei der externen Validierung erzielt wurde. 

7.4.3 Schwierigkeiten bei Betrachtung der zellhaltigen Flüssigphase L 

Zum Zweck der Bewertung des Störeinflusses von Zellen bei der PLSR-Modellentwicklung 
kamen Spektren von der zellbehafteten Kulturbrühe zum Einsatz. Als Zielgröße diente dabei 
die Glycerolkonzentration cS1L in der Flüssigphase. 

Wie für das Modell für cS1M wurden zunächst nur die Proben N1 bis N21 aus den Batch- und 
Fed-Batchphasen genutzt, um eine möglichst uniform verteilte Zielgröße zu gewährleisten. Es 
wurde der gleiche Spektralbereich (1.300 - 1.650 nm) gewählt und die gleiche Vorverarbeitung 
(de1 + mc) darauf angewandt. Ausreißer konnten hier nicht entdeckt werden. 

Mit diesen Daten konnte ein Modell mit nur einer PLS-Komponente gebildet werden, das einen 
mittleren Vorhersagefehler der Kreuzvalidierung RMSEcv von 2,76 gl-1 erreichte. 

Die Vorhersage der Proben N1 bis N21 (rot), gezeigt in Bild 7.12, weist eine gute Anpassung 
an die Referenzwerte in der Batchphase auf. Dies verleitet zunächst zu der Schlussfolgerung, 
dass die Glycerolkonzentration cS1L in der zellhaltigen Flüssigphase quantifiziert werden kann. 

Der höhere Vorhersagefehler RMSEcv dieses Modells im Vergleich mit dem Modell der Me-
dienphase M (1,59 gl-1) lässt sich sowohl durch die Präsenz störender Zellen in der Matrix, als 
auch durch den notwendigen Wechsel des Messverfahrens von Transmission auf diffuse Re-
flexion begründen. 

 
Bild 7.12: Versuch der Vorhersage von cS1L in der Flüssigphase mit der  NIR-Spektros-

kopie im Vergleich mit der Zelldichte cXL 
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Tatsächlich gibt dieses Ergebnis jedoch eine völlig falsche Einschätzung der Modellgüte ab. 
Dies wird anhand der Vorhersagen in der Glycerol-Fed-Batchphase und insbesondere in der 
Produktionsphase anhand der Prädiktion (grün) von nicht an der Modellbildung beteiligten Pro-
ben deutlich. 

Insgesamt weist der Verlauf von cS1Lnir eine horizontale Spiegelsymmetrie mit der ebenfalls in 
Bild 7.12 gezeigten Zelldichte cXL auf. Dies zeigt eindrucksvoll, dass die Zelldichte in dem 
erzeugten Glycerolmodell offensichtlich die dominierende Rolle spielt. 

Ursache hierfür ist, dass Zellen einerseits ein starkes Signal im NIR-Spektrum hervorrufen 
(siehe Abschnitt 7.5) und andererseits, dass Zelldichte und Glycerolkonzentration in einer 
Batchphase proportional zueinander verlaufen und damit hoch korreliert sind. Für alle 21 an 
der Modellbildung beteiligten Proben aus der Batchphase und der Glycerol-Fed-Batchphase 
wurde ein Korrelationskoeffizient R von -0,977 ermittelt. 

Diese Korrelation lässt sich für eine indirekte Quantifizierung von cS1M bewusst heranziehen. 
Ein entsprechendes Modell ist jedoch nur für die Batchphase eines immer gleich laufenden 
(z.B. zyklischen) Prozesses gültig, da das PLSR-Modell nicht auf tatsächlichen Signalen des 
Glycerols im Spektrum beruht. 

Aus diesem Grund wurden in einem weiteren Modell alle 50 Proben der Kultivierung NM3213 
verwendet, um die Korrelation R von cXL und cS1L auf einen Wert von -0,529 zu reduzieren und 
das Modell möglichst auf einem Signal des Glycerols basieren zu lassen. Diese Maßnahme 
geht allerdings weiter zulasten der Uniformität der Zielgrößenverteilung, da hierbei die Anzahl 
an Proben mit cS1L von 0 gl-1 stark ansteigt. 

Die Vorhersage mit diesem Modell ist in Bild 7.13 gezeigt und wird mit einem Fehler RMSEcv 
von 7,20 gl-1 bewertet. Es wird deutlich, dass auch dieses Modell nicht von praktischem Nutzen 
ist. Allerdings wird auf diese Weise eine zu optimistische Einschätzung der Modellgüte bei 
hauptsächlicher Verwendung korrelierender Proben aus der Batchphase vermieden. 

 
Bild 7.13: Vorhersage von cS1L in der Flüssigphase mit der NIR-Spektroskopie 
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7.5 Prädiktion der Zelldichte 

Optische Verfahren sind etablierte Methoden zur Bestimmung der Zelldichte. So wird bei-
spielsweise die Trübungsmessung konventionell am Bioprozess eingesetzt (siehe Abschnitt 
3.3.3). Eine Quantifizierung der Zelldichte mit den getesteten spektroskopischen Verfahren 
sollte daher gut möglich sein. 

In Bild 7.14 sind die nach der Zelldichte cXL gefärbten NIR-Spektren der Kulturbrühe gezeigt. 
Ein Zusammenhang zwischen cXL und den Verläufen der Spektren ist deutlich zu erkennen. 

 
Bild 7.14: NIR-Reflexionsspektren im Prozessverlauf gefärbt nach der Zelldichte cXL 

Die Abnahme der Absorptionswerte mit steigender Zelldichte lässt sich durch die Verwendung 
des Messprinzips der diffusen Reflexion erklären, die hier zum Einsatz kam. Zellfreies Kultur-
medium reflektiert nicht und weist hier somit die höchsten (vermeintlichen) Absorptionswerte 
auf. 

Die Ergebnisse der Modellbildung sind in Bild 7.15 dargestellt. Für alle drei spektroskopischen 
Verfahren kann der Verlauf der Zelldichte sehr gut wiedergegeben werden. 

Bei der Bildung eines PLSR-Modells zur Bestimmung der Zelldichte mit der NIR-Spektroskopie 
benötigt ein optimales Modell nur zwei PLS-Komponenten. Der Vorhersagefehler der Kreuz-
validierung RMSEcvrel wurde zu 4,37 % ermittelt. 

Ein ähnliches Ergebnis, mit einem Fehler RMSEcvrel von 4,40 %, konnte mit der Raman-Spek-
troskopie und mit drei PLS-Komponenten erzielt werden. Die 2D-Fluoreszenzspektroskopie 
brachte das beste Modell hervor, das mit fünf PLS-Komponenten jedoch auch das komplex-
este ist. Es hat einen Vorhersagefehler RMSEcvrel von 3,16 %. 
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Bild 7.15: Vorhersage der Zelldichte cXL mit verschiedenen spektroskopischen Verfahren 

Alle Einstellungen und Kenngrößen der gebildeten Modelle sind in Tabelle 7.2 aufgelistet. 

Tabelle 7.2: Vergleich der Vorhersage von cXL mit spektroskopischen Verfahren 

 Nahinfrarot Raman 2D-Fluoreszenz 

Spektralbereich komplett komplett komplett 

Vorverarbeitung snv + mc de1 + mc mc 

nCS
1) [-] 150 (50) 150 (50) 150 (50) 

r [-] 2 3 5 
2
XR  [-] 0,994 0,972 0,999 
2
YR  [-] 0,972 0,975 0,988 
2
cvR  [-] 0,974 0,971 0,985 

RMSEcv [gl-1] 3,21 3,23 2,32 
RMSEcvrel [%] 4,37 4,40 3,16 
1) Die Klammern geben die Anzahl unabhängiger Proben an 

Bei Betrachtung von Bild 7.16a kann man erkennen, dass mit der NIR-Spektroskopie hohe 
Konzentrationen schlechter als kleinere vorhergesagt werden. Eine mögliche Ursache hierfür 
könnten nichtoptimale Messeinstellungen sein, die zu einer Sättigung des NIR-Detektors bei 
höheren Zelldichten führten. 

47 57 67 77 87 97 107
-5

10

25

40

55

70

85

Near-infrared Raman 2D-fluorescence
RMSEcv = 3.21 gl-1 (4.37 %), 3.23 gl-1 (4.40 %), 2.32 gl-1 (3.16 %)

cXLcdw

t [h]

cXL [gl-1]

cXLram
cXLnir

cXLflu

N
M

32
13

batch fed
batch

production

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


80  Offline-Prädiktion relevanter Variablen in Bioreaktionsprozessen 
 

 
Bild 7.16: Vorhersagen der Zelldichte cXL aufgetragen gegen die Referenzwerte cXLcdw 

a) NIR-Spektroskopie b) Raman-Spektroskopie 

Für die Raman-Spektroskopie ist in Bild 7.16b zu sehen, dass besonders im Bereich kleiner 
Zelldichten kein linearer Zusammenhang zwischen der Vorhersage cXLram und den Referenz-
werten cXLcdw vorliegt. Dies konnte auch durch eine Änderung der Modelleinstellungen nicht 
behoben werden. 

Eine Bestimmung der Zelldichte ist mit allen drei getesteten spektroskopischen Verfahren wie 
erwartet möglich. Die Modellgüte ist vergleichbar, wobei jede Spektroskopieart ihre Vor- und 
Nachteile hat. So weist z.B. das gebildete NIR-Modell Schwächen bei hohen und das Raman-
Modell Schwächen bei niedrigen Zelldichten auf. Das 2D-Fluoreszenzmodell liefert das beste 
Ergebnis bei gleichzeitig höchster Modellkomplexität. 

7.6 Prädiktion der Glycerolkonzentration 

Die Möglichkeit zur Verwendung der NIR-Spektroskopie zur Quantifizierung der Glycerolkon-
zentration wurde in Abschnitt 7.4 ausführlich dargelegt. Der folgende Abschnitt stellt die Ergeb-
nisse der anderen getesteten spektroskopischen Verfahren, insbesondere der Raman-Spek-
troskopie, dar. 

Bei Betrachtung der Raman-Spektren in Bild 7.17 ist ein deutlicher Zusammenhang zwischen 
der Höhe des Signals im Spektrum und der Glycerolkonzentration cS1M gegeben. Insbesondere 
der Doppelpeak in der Nähe der Wellenzahl ν von 2.900 cm-1 weist eine hohe Korrelation mit 
cS1M auf. Dieses Signal wird wahrscheinlich durch Streckschwingungen der C-C-Bindungen 
innerhalb des Glycerolmoleküls verursacht [VANDENABEELE, 2013]. 

Eine Untersuchung der PLS-Regressionskoeffizienten bj und der Variable Importance in 
Projection VIPj anhand von Bild 7.18 führte zu einer Einschränkung des Raman-Spektrums 
auf den Bereich zwischen 2.750 cm-1 und 3.050 cm-1. Durch diese Maßnahme konnte die X-
Variablenanzahl m von 3.001 auf 301 reduziert werden. 

-5 10 25 40 55 70 85
-5

10

25

40

55

70

85

 

1
XLnir XLcdw

2
cv

c 2.26 gl 1.09 c

R 0.974

   



a)
cXLnir [gl-1] cross validation

 diagonal
 linear fit

cXLcdw [gl-1]
-5 10 25 40 55 70 85

-5

10

25

40

55

70

85

 diagonal
 linear fit

cXLcdw [gl-1] 

cXLram [gl-1]

1
XLram XLcdw

2
cv

c 0.809 gl 0.963 c

R 0.971

  



cross validation
b)

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


Offline-Prädiktion relevanter Variablen in Bioreaktionsprozessen 81 

 
Bild 7.17: Raman-Spektren im Prozessverlauf gefärbt nach der Glycerolkonzentration cS1M 

 
Bild 7.18: Variablenselektion bei der Modellerstellung zur Vorhersage von cS1M 

Nach der Variablenselektion wurde mit nur einer PLS-Komponente ein optimales Modell er-
stellt. Der Vorhersagefehler der Kreuzvalidierung RMSEcvrel beträgt 2,87 %. Bild 7.19 zeigt die 
gute Anpassung an die Referenzdaten anhand des Verlaufs der vorhergesagten Glycerol-
konzentration cS1Mram (blau). Auch nicht an der Modellbildung beteiligte Proben mit Konzentra-
tionen von 0 gl-1 (orange) werden gut vorhergesagt. 
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Bild 7.19: Vorhersage cS1Mram im Überstand im Rahmen einer Kreuzvalidierung 

Die externe Validierung des Modells mit den Proben der Kultivierung SM0313, dargestellt in 
Bild 7.20, bestätigt das gute Ergebnis der Modellierung. Der Vorhersagefehler RMSEPrel ist, 
wie erwartet, mit 3,70 % höher als der Vorhersagefehler der Kreuzvalidierung. 

 
Bild 7.20: Vorhersage cS1Mram im Überstand für ein unabhängiges Testset 

Die Referenzwerte der in orange dargestellten Vorhersagen weisen Konzentrationen von 0 gl-1 
auf und waren nicht teil der Validierung, um eine Wichtung des RMSEP auf diesen Zustand zu 
vermeiden. 
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Zur Vorhersage der Glycerolkonzentration cS1L in der zellhaltigen Kulturbrühe mit Raman-
Spektroskopie wurde ein Modell mit allen 50 Proben der Kultivierung NM3213 entwickelt (vgl. 
Abschnitt 7.4.3). Dies benötigt im Vergleich zum Modell von cS1Mram im Überstand, anstelle von 
einer, eine Anzahl von drei PLS-Komponenten. Bild 7.21 zeigt die Vorhersage von cS1Lram. 

 
Bild 7.21: Vorhersage cS1Lram in der Kulturbrühe im Rahmen einer Kreuzvalidierung 

Der Vorhersagefehler RMSEcvrel der Kreuzvalidierung beträgt 3,32 % und ist damit, wie erwar-
tet, etwas höher als für das Modell ohne störende Zellen in der Matrix. Konzentrationen im 
Bereich von 0 gl-1 werden ebenfalls zufriedenstellend vorhergesagt. 

Bei Betrachtung von Bild 7.22 erkennt man, dass mit Raman-Spektroskopie im Gegensatz zur 
Zelldichte (siehe Bild 7.16b) zwischen Vorhersage und Referenzwerten der Glycerolkonzen-
tration cS1L ein linearer Zusammenhang besteht. 

 
Bild 7.22: Vorhersage cS1Lram aufgetragen gegen die Referenzwerte cS1Lhplc 
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Die Quantifizierung der Glycerolkonzentrationen cS1M und cS1L mit den drei eingesetzten spek-
troskopischen Verfahren sind anhand üblicher Kenngrößen in Tabelle 7.3 für den 
Kulturüberstand und in Tabelle 7.4 für die Kulturbrühe zusammengefasst. 

Tabelle 7.3: Vergleich spektroskopischer Verfahren zur Vorhersage von cS1M im Überstand 

 Nahinfrarot Raman 2D-Fluoreszenz 

Spektralbereich 1300 - 1650 nm 3050 - 2750 cm-1 komplett 

Vorverarbeitung de1 + mc snv + mc mc 

nCS
1) [-] 57 (19) 60 (20) 60 (20) 

r [-] 3 1 3 
2
XR  [-] 0,999 0,991 0,994 
2
YR  [-] 0,997 0,996 0,976 
2
cvR  [-] 0,995 0,995 0,961 

RMSEcv [gl-1] 1,59 1,56 4,40 
RMSEcvrel [%] 2,96 2,87 8,11 

nVS
1) [-] 78 (26) 78 (26) 78 (26) 

2
PR  [-] 0,991 0,997 0,712 

RMSEP [gl-1] 1,92 2,01 56,0 
RMSEPrel [%] 3,57 3,70 103 
1) Die Klammern geben die Anzahl unabhängiger Proben an 

Tabelle 7.4: Vorhersage von cS1L in der Kulturbrühe mit NIR- und Raman-Spektroskopie 

 Nahinfrarot Raman 

Spektralbereich 1300 - 1650 nm 3050 - 2750 cm-1 

Vorverarbeitung de1 + mc snv + mc 

nCS
1) [-] 150 (50) 150 (50) 

r [-] 4 2 
2
XR  [-] 0,999 0,951 
2
YR  [-] 0,908 0,992 
2
cvR  [-] 0,859 0,998 

RMSEcv [gl-1] 7,20 1,79 
RMSEcvrel [%] 13,3 3,32 
1) Die Klammern geben die Anzahl unabhängiger Proben an 

Eine erfolgreiche Nutzung der 2D-Fluoreszenzspektroskopie zur Quantifizierung der Glycerol-
konzentration cS1M wurde nicht erwartet, da Glycerol nicht fluoresziert. Zu Testzwecken wurde 
dennoch versucht ein valides Modell zu erstellen. Dies schlug im Rahmen einer externen 
Validierung jedoch völlig fehl. 
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Der Vorhersagefehler RMSEP wird im Überstand zu 56,0 gl-1 berechnet und ist damit höher 
als die maximale Glycerolkonzentration im Kalibrierdatensatz (54,3 gl-1). Auf eine weitere Mo-
dellbildung für Messungen in der Flüssigphase mit 2D-Fluoreszenz wurde daher verzichtet. 

Während Vorhersagen der Glycerolkonzentration über PLSR-Modelle aus NIR- und Raman-
Spektren des Überstandes gut möglich sind, ist die 2D-Fluoreszenzspektroskopie damit für 
diese Aufgabe ungeeignet. 

Zellen in der vermessenen Matrix stören die spektralen Messungen unterschiedlich stark. 
Während eine Messung in der zellhaltigen Kulturbrühe mit der NIR-Spektroskopie nicht sinn-
voll erscheint, eignet sich die Raman-Spektroskopie jedoch sehr gut, da entsprechende Mo-
delle nur geringfügig höhere Fehler aufweisen als solche für den Kulturüberstand. 

7.7 Prädiktion der Ammoniumkonzentration 

Vor der Modellbildung zur Quantifizierung der Ammoniumkonzentration wurden vier Proben 
hinsichtlich ihrer Offline-Referenzmessungen als Ausreißer identifiziert. 

Für die in Bild 7.23 gezeigte Vorhersage der Ammoniumkonzentration CAltotM mit der NIR-Spek-
troskopie wurde im Überstand ein relativer Fehler RMSEcvrel von 11,5 % erreicht. 

 
Bild 7.23: Vorhersage von CAltotM im Überstand mit der NIR-Spektroskopie 

Trotz dieses hohen Fehlers kann der tendenzielle Verlauf von CAltotM relativ gut vorhergesagt 
werden. Vor dem Hintergrund der stark fehlerbehafteten Referenzwerte und in Ermangelung 
einer Online-Messung könnte ein derartiges Modell dennoch einen Mehrwert für die Prozess-
beobachtung liefern. 

Die in Bild 7.24 dargestellte Prädiktion der Ammoniumkonzentration CAltotL in der Flüssigphase 
bildet mit einem Fehler von 7,24 % unerwarteter Weise die Referenzdaten besser ab. Dies 
äußert sich auch in einem glatteren Verlauf im Vergleich mit der Vorhersage von CAltotM in der 
Medienphase. 
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Bild 7.24: Vorhersage von CAltotL in der Kulturbrühe mit der NIR-Spektroskopie 

Der Grund für diese Verbesserung liegt wahrscheinlich an einem starken Einfluss der Zellen 
auf die Spektren und der hohen Korrelation von CAltotL mit der Zelldichte cXL (R ൌ -0,806, vgl. 
Abschnitt 7.4.3). Die Vorhersage von CAltotL in der Flüssigphase beruht demnach wahrschein-
lich auf einer indirekten Quantifizierung und ist folglich kritisch zu betrachten. 

Das gleiche Verhalten mit weiter verminderten Fehlern konnte bei der Untersuchung der 
Raman-Spektroskopie beobachtet werden. Für die 2D-Fluoreszenzspektroskopie ergeben 
sich die schlechtesten Ergebnisse bei gleichzeitig höchster Modellkomplexität. 

Die Kenngrößen aller gebildeten Modelle zur Vorhersage der Ammoniumkonzentration sind in 
Tabelle 7.5 (CAltotM) und Tabelle 7.6 (CAltotL) aufgeführt. 

Tabelle 7.5: Vergleich spektroskopischer Vorhersagen von CAltotM im Kulturüberstand 

 Nahinfrarot Raman 2D-Fluoreszenz 

Spektralbereich 1300 - 1650 nm komplett komplett 

Vorverarbeitung de1 + mc mc mc 

nCS
1) [-] 132 (44) 138 (46) 138 (46) 

r [-] 3 2 6 
2
XR  [-] 0,999 0,981 0,999 
2
YR  [-] 0,778 0,825 0,794 
2
cvR  [-] 0,754 0,784 0,659 

RMSEcv [mM] 2,63 2,51 3,16 
RMSEcvrel [%] 11,5 11,0 13,8 
1) Die Klammern geben die Anzahl unabhängiger Proben an 
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Tabelle 7.6: Vergleich spektroskopischer Vorhersagen von CAltotL in der Flüssigphase 

 Nahinfrarot Raman 2D-Fluoreszenz 

Spektralbereich 1300 - 1650 nm komplett komplett 

Vorverarbeitung de1 + mc mc mc 

nCS
1) [-] 138 (46) 138 (46) 138 (46) 

r [-] 3 4 6 
2
XR  [-] 0,999 0,999 0,999 
2
YR  [-] 0,913 0,947 0,874 
2
cvR  [-] 0,887 0,930 0,826 

RMSEcv [mM] 2,67 2,11 3,32 
RMSEcvrel [%] 7,24 5,72 9,00 
1) Die Klammern geben die Anzahl unabhängiger Proben an 

7.8 Prädiktion der Gesamtproteinkonzentration 

Modelle zur Prädiktion der Gesamtproteinkonzentration cPtotM in der Medienphase basieren auf 
maximal 62 Proben der Kultivierung SM0313. Eine externe Validierung dieser Modelle oder 
eine Untersuchung der Flüssigphase war leider nicht möglich. 

In Bild 7.25 sind Offline-Analysen von cPtotM und die Vorhersagen mit der Raman-Spektrosko-
pie gezeigt. 

 
Bild 7.25: Vorhersage von cPtotM im Überstand mit der Raman-Spektroskopie 

Eine Quantifizierung von cPtotM ist trotz des vergleichsweise hohen Wertes des relativen Vor-
hersagefehler RMSEcvrel von 10,3 % durchaus möglich. Dies gilt auch für das etwas schlech-
tere Ergebnis mit der NIR-Spektroskopie (nicht gezeigt). 
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Es ist allerdings wahrscheinlich, dass Korrelationen mit anderen Substanzen in der Medien-
phase zu einer indirekten Vorhersage führen, da Proteine im relevanten Konzentrationsbereich 
kein eigenes verwertbares Signal im Raman-Spektrum liefern [PAUL et al., 2016]. 

Das beste Resultat für die Quantifizierung von cPtotM mit spektroskopischen Verfahren liefert in 
dieser Arbeit die 2D-Fluoreszenzspektroskopie mit einem relativen Vorhersagefehler 
RMSEcvrel von 6,69 %. Ursache hierfür ist ein in Bild 7.26 deutlich zu erkennendes Signal der 
im Medium gelösten Proteine im 2D-Fluoreszenzspektrum. 

 
Bild 7.26: 2D-Fluoreszenzspektren gefärbt nach der Gesamtproteinkonzentration cPtotM 

Bild 7.27 zeigt die Vorhersage von cPtotM mit 2D-Fluoreszenzspektroskopie aufgetragen gegen 
ihre Referenzmessungen. Es ist ein linearer Zusammenhang zu erkennen. 

 
Bild 7.27: Vorhersage cPtotMflu aufgetragen gegen die Referenzwerte cPtotMoff 
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In Bild 7.28 ist dagegen die Vorhersage cPtotMflu im Kultivierungsverlauf dargestellt. 

 
Bild 7.28: Vorhersage von cPtotM im Überstand mit 2D-Fluoreszenzspektroskopie 

Auffällig sind geringere Schwankungen der Mehrfachmessungen und kleinere Fehler bei ho-
hen Konzentrationswerten im Vergleich zur Vorhersage mit Raman-Spektroskopie (Bild 7.25). 
Eine Schwäche der Trainingsdaten ist ein Mangel an hohen Gesamtproteinkonzentrationen. 
Dies ist durch die Prozessdynamik bei konstanter Probenahmefrequenz begründet. 

Ein Vergleich der Modelleinstellungen und Vorhersageergebnisse der drei untersuchten spek-
troskopischen Verfahren ist in Tabelle 7.7 gegeben. 

Tabelle 7.7: Vergleich spektroskopischer Verfahren zur Vorhersage von cPtotM im Überstand 

 Nahinfrarot Raman 2D-Fluoreszenz 

Spektralbereich 1300 - 1650 nm 1800 - 200 cm-1 komplett 

Vorverarbeitung de1 + mc mc mc 

nCS
1) [-] 186 (62) 183 (61) 153 (51) 

r [-] 4 4 4 
2
XR  [-] 0,999 0,999 0,982 
2
YR  [-] 0,778 0,858 0,938 
2
cvR  [-] 0,811 0,887 0,939 

RMSEcv [mgl-1] 49,0 40,5 26,3 
RMSEcvrel [%] 12,5 10,3 6,69 
1) Die Klammern geben die Anzahl unabhängiger Proben an 
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7.9 Prädiktion des zellinternen Alkoholoxidasegehaltes 

Die zellspezifische AOX-Aktivität gP2/X gibt Aufschluss über den Induktionszustand der Zellen 
von Pichia pastoris. Eine Online-Quantifizierung von gP2/X ist daher für die Prozessentwicklung 
von großem Interesse. Aus diesem Grund wurden PLSR-Modelle mit 2D-Fluoreszenzspek-
troskopie erstellt. Auf eine Darstellung von NIR- und Raman-Spektroskopie wird verzichtet, da 
diese Messverfahren keine validen Modelle hervorbrachten. 

Zunächst sollte geklärt werden, ob eine Modellbildung prinzipiell möglich ist und 2D-Fluores-
zenzspektren von Zellsuspensionen Signale zur Quantifizierung von gP2/X enthalten. 

Dazu wurden Zellpellets der Proben mit Phosphatpuffer auf eine einheitliche Zelldichte cXB von 
2,5 gl-1 in der Pufferphase B eingestellt und offline vermessen. Da es sich bei dem AOX-Gehalt 
gP2/X um eine zellspezifische Größe handelt, bleibt diese dabei konstant. Eine Beeinflussung 
der Modellbildung durch unterschiedliche Zelldichten wird auf diese Weise vermieden. 

Bild 7.29 zeigt die Prädiktion von gP2/X für die derart angepassten (adjusted) Proben. 

 
Bild 7.29: Vorhersage von gP2/X der angepassten Proben (adj) im Puffersystem B 

Das Modell erreicht einen relativ hohen Vorhersagefehler RMSEcvrel von 14,6 %. Dennoch 
kann der prinzipielle Verlauf des AOX-Gehaltes gP2/X gut wiedergegeben werden. Indizien für 
ein Overfit gibt es nicht. Daraus kann geschlussfolgert werden, dass eine Offline-Quanti-
fizierung des zellinternen Enzymgehaltes gP2/X prinzipiell möglich ist. 

Im nächsten Schritt sollte ein PLSR-Modell zur Prädiktion von gP2/X direkt aus den originären 
Messungen in der Flüssigphase L erstellt werden. 

Zu diesem Zweck wurde eine virtuelle AOX-Aktivität CP2Loff in der Flüssigphase, 

P2Loff XLcdw P2/XoffC (t) c (t) g (t)  , (7.1) 

definiert, die aus den Offline-Daten der zellspezifischen AOX-Aktivität gP2/Xoff sowie der ent-
sprechenden Zelldichte cXLcdw berechnet werden kann. 
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Diese theoretische Größe wurde der nachfolgenden Modellbildung unterzogen. Ein Nachteil 
dabei ist, dass CP2L und die Zelldichte cXL mit einem Koeffizienten R von 0,733 relativ stark 
korrelieren (vgl. Abschnitt 7.4.3). Die direkte Vorhersage von CP2L ist in Bild 7.30 gezeigt. 

 
Bild 7.30: Vorhersage CP2Lflu der virtuellen AOX-Aktivität in der Flüssigphase L 

Die in Bild 7.31 gezeigte Vorhersage gP2/Xflu der zellspezifischen AOX-Aktivität, 
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 , (7.2) 

kann dann aus den Vorhersagen CP2Lflu und cXLflu (siehe Abschnitt 7.5) leicht berechnet werden. 

 
Bild 7.31: Vorhersage von gP2/X aus Fluoreszenzmessungen in der Kulturbrühe L 

47 57 67 77 87 97 107
-0.5

1.5

3.5

5.5

7.5

9.5
2D-fluorescence:

t [h]

RMSEcv = 0.691 kUl-1 (8.30 %)CP2L [kUl-1]

N
M

32
13

CP2Lflu

CP2Loff

batch fed
batch

production

47 57 67 77 87 97 107
-30

20

70

120

170

220
2D-fluorescence:

t [h]

RMSEcv = 31.9 Ug-1 (15.8 %)gP2/X [Ug-1]

N
M

32
13

gP2/Xflu

gP2/Xoff

batch fed
batch

production

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


92  Offline-Prädiktion relevanter Variablen in Bioreaktionsprozessen 
 

Der AOX-Gehalt wird zu Beginn des Prozesses nur schlecht vorhergesagt. Auch die Abwei-
chungen der Mehrfachmessungen sind dort sehr hoch. Dies ist vermutlich darauf zurück-
zuführen, dass die Spektren durch niedrige Zelldichten in dieser Prozessphase nur geringe 
Signale zur Quantifizierung von gP2/X enthalten. 

Der weitere Verlauf des Prozesses zeigt eine bessere Übereinstimmung mit den gemessen 
Werten. Die starken Schwankungen bei ca. 90 h können nicht wiedergegeben werden. Es ist 
nicht auszuschließen, dass es sich dabei um Messfehler der Referenzwerte handelt. 

Insgesamt kann ein relativer Vorhersagefehler RMSEcvrel von 15,8 % ermittelt werden. Dieser 
Wert liegt nur geringfügig oberhalb des Fehlers bei der Vorhersage von gP2/X aus den ange-
passten Proben (Bild 7.29). Im Vergleich dazu fallen außerdem die Abweichungen der Mehr-
fachmessungen weniger stark aus. 

Besonders hervorzuheben ist, dass ein leichter Anstieg des AOX-Gehaltes in der Glycerol-
Fed-Batchphase richtig vorhergesagt wird. Dieser kommt durch eine Dereprimierung des 
AOX-Promotors bei einer Glycerollimitierung zustande. Eine Vorhersage dieses Verhaltens 
lässt auf eine gewisse Sensitivität dieses Bestimmungsverfahrens schließen. 

In Tabelle 7.8 sind die Ergebnisse der Vorhersage von gP2/X noch einmal zusammengefasst. 

Tabelle 7.8: Vergleich verschiedener Ansätze zur Vorhersage der AOX-Aktivität gP2/X 

Messmatrix Puffer B Flüssigphase L berechnet aus L 

Größe gP2/Xadj CP2Lflu gP2/Xflu 

Spektralbereich komplett komplett - 

Vorverarbeitung mc mc - 

nCS
1) [-] 147 (49) 150 (50) - 

r [-] 3 4 - 
2
XR  [-] 0,826 0,999 - 
2
YR  [-] 0,883 0,955 - 
2
cvR  [-] 0,796 0,938 0,907 

RMSEcv [div.] 29,5 Ug-1 0,691 kUl-1 31,9 Ug-1 
RMSEcvrel [%] 14,6 8,30 15,8 
1) Die Klammern geben die Anzahl unabhängiger Proben an 
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8. Online-Monitoring mit spektroskopischen Verfahren 

8.1 Der untersuchte zweistufige Produktionsprozess 

8.1.1 Die verwendete Bioreaktoranlage 

Im Cluster BIOKATALYSE 2021 wurde Im Rahmen eines BMBF-Forschungsprojektes 

„Entwicklung vollautomatischer integrierter Bioprozesse in einer industriekompatiblen 
Pilotanlage zur Herstellung rekombinanter Enzyme“ 

die in Bild 8.1 gezeigte Anlage zur Herstellung der rekombinanten Lipase CALB mit Pichia 
pastoris aufgebaut. In weiteren Forschungsprojekten wurde diese auch zur Herstellung des 
Malariavakzins D1M1H eingesetzt. 

 
Bild 8.1: Downscale-Pilotanlage zur Herstellung rekombinanter Proteine 

Es handelt sich dabei um eine hochinstrumentierte Forschungsanlage zur Entwicklung und 
Optimierung industrieller Produktionsprozesse im Downscale. Das Gesamtkonzept ist auf die 
Durchführung integrierter Bioprozesse ausgerichtet. Daher sind Komponenten für Upstream- 
sowie für Downstream-Operationen vorhanden. 

Hierbei ist beispielsweise eine Zellabtrennung durch Separation vorgesehen (rechts im Bild). 
Die Aufreinigung rekombinanter Proteine war jedoch nicht Teil dieser Arbeit. Deshalb wird auf 
die Dowstream-Operationen nicht näher eingegangen. Sie werden jedoch im Zuge der Ent-
wicklung und Erprobung der Gesamtanlage ausführlich in [LÖGERING, 2015] und [BORCHERT, 
2015] beschrieben. 

Im Upstream-Bereich besteht die Anlage aus zwei Bioreaktoren, die über eine Rohrleitung fest 
miteinander verbunden sind. Hierüber wird der Transfer zur Durchführung einer zweistufigen 
Prozessführung mittels Überdruck im ersten Kessel realisiert. Bild 8.2 zeigt die Kopplung der 
beiden Edelstahlreaktoren über ein Ernteventil. 
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Bild 8.2: Schematische Darstellung des Anlagenaufbaus 

Ein BIOSTAT® ED10 der Fa. B. Braun Biotech International, Melsungen, dient mit einem Ar-
beitsvolumen von 10 l als Zellanzuchtbioreaktor. Für die Produktion kommt ein BIOSTAT® C30 
der Fa. Sartorius Stedim Biotech, Guxhagen, der bis zu 30 l beinhalten kann, zum Einsatz. 

Die Ausstattung beider Reaktorsysteme entspricht der in Abschnitt 3.2 vorgestellten Aus-
rüstung des BIOSTAT® C10. Eine detaillierte Auflistung der verwendeten peripheren Gerät-
schaften befindet sich in [BORCHERT, 2015]. 

Die Grundautomatisierung der Bioreaktoren erfolgt über digitale Kontrolleinheiten (DCU II, 
DCU III) und MFCS/win. In dem SCADA-System wurden außerdem Rezepte nach dem 
ANSI/ISA Standard S88 zur Automatisierung der zyklischen Teilprozesse der zweistufigen 
Produktion hinterlegt. 

Für eine übergeordnete Automatisierung und insbesondere die Einbindung der Komponenten 
für Downstream-Operationen in den Gesamtprozess wurde weiterhin das Prozessleitsystem 
SIMATIC PCS 7, Siemens, München, implementiert [LÖGERING, 2015]. 

8.1.2 Die parallel/sequentielle Prozessführung 

Die parallel/sequentielle Prozessführung basiert auf der in Abschnitt 3.1.2 vorgestellten zykli-
schen Kultivierungsstrategie. Im Gegensatz dazu wurde hier jedoch auf die Durchführung 
eines substratlimitierten Glycerol-Fed-Batches verzichtet, da eine einfache industrierelevante 
Prozessführung das Ziel der Entwicklungsarbeiten war [LÖGERING, 2015]. 

Zur Erläuterung der zweistufigen Fahrweise ist in Bild 8.3 ein vollständiger Kulturzyklus einer 
längeren Produktionskampagne zur Herstellung des Malariavakzins D1M1H dargestellt. Er 
besteht aus einer sequentiellen Zellanzucht mit Vorinduktion und einer Proteinexpression, die 
voneinander entkoppelt in zwei Bioreaktoren ablaufen [BORCHERT, 2015]. 
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Bild 8.3: Vollständiger Produktionszyklus der zweistufigen Prozessführung 

Der Zellanzuchtprozess findet im Bioreaktor BIOSTAT® ED10 statt. Hier wachsen die Zellen 
zunächst unlimitiert auf dem Primärsubstrat Glycerol an. Nach Abschluss der etwa elfstün-
digen Batchphase erfolgt durch eine Methanolzufütterung die Umstellung des Zellmetabolis-
mus auf den Methanolstoffwechsel. Diese auch als Vorinduktion bezeichnete Prozessphase 
ist an dem anfänglich fehlenden Zellwachstum zu erkennen. 

Nach Abschluss eines solchen Zellanzuchtzyklus wird ca. 80 % der Kulturbrühe vom BIO-
STAT® ED10 auf den Produktionsreaktor BIOSTAT® C30 transferiert. Hier wird zunächst die 
gewünschte Startzelldichte cXL20 mit frischem Basismedium ohne Glycerol und ohne Methanol 
eingestellt. Die folgende Produktionsphase dient ausschließlich der Expression des Zielpro-
teins D1M1H und verläuft mit bereits vollständig induzierten Zellen in einem methanolgere-
gelten Fed-Batchprozess. 

Die verbliebenen 20 % des Zellmaterials im Anzuchtreaktor werden mit frischem glycerolhal-
tigen Medium auf die Startzelldichte cXL10 verdünnt und als Inokulum des nächsten Zellanzucht-
zyklus verwendet. Dies entspricht dem bekannten Vorgehen bei einer sequentiellen Fahrwei-
se. Die aktuelle Zellanzucht und der Produktionsprozess laufen nun parallel in beiden Reak-
toren ab. Dies ist in Bild 8.4 illustriert. 

Vor jedem Zyklus wird der Produktionsbioreaktor vollständig entleert und die so geerntete 
Kulturbrühe dem Downstream zugeführt. Damit wird der Beginn eines weiteren Produktions-
laufes mit frischen Zellen aus dem Anzuchtreaktor vorbereitet. Durch die Wahl einer Zyklus-
dauer von 24 Stunden, inklusive Zelltransfer- und Refresh-Operationen, wiederholen sich die 
parallelen Zyklen dann täglich. Eine detaillierte Beschreibung der zweistufigen Prozessführung 
findet sich in [LÖGERING, 2015]. 
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Bild 8.4: Zweistufiger, paralleler Produktionsprozess [LÖGERING, 2015] 

Die Kultivierungsstrategie zeichnet sich durch eine hohe Reproduzierbarkeit aus, die eine Pro-
duktion mit gleichebleibender Qualität über einen Zeitraum von mehreren Wochen erlaubt 
[BORCHERT, 2015]. Es wird außerdem eine hohe Flexibilität erreicht, da durch die Entkopplung 
der Teilprozesse und mit unveränderter Zellanzucht, stamm- oder produktspezifische Produk-
tionsbedingungen im zweiten Reaktor erprobt werden können. 

Weiterhin eignet sich die Prozessführung zur Optimierung der Proteinexpression, da durch die 
sequentielle Zellanzucht zu Beginn eines jeden Produktionszyklus gleiche Ausgangsbedin-
gungen vorliegen [LÖGERING et al., 2011]. 

8.1.3 Die erweiterte Prozess-EDV zur Anwendung der MVDA 

Die Online-Anwendung der MVDA, beispielsweise zur Vorhersage von Substratkonzentratio-
nen aus Spektren, stellt einige Anforderungen an die Prozess-EDV. So müssen benötigte Ein-
gangsdaten multivariater Modelle in einem geeigneten Format bereitgestellt und eine Rück-
führung erzeugter Ergebnisse an die Prozessleittechnik sichergestellt werden. 

Zu diesem Zweck wurde in vorangegangenen Arbeiten eine komplexe Datenverarbeitung auf-
gebaut, deren Struktur für den gesamten integrierten Bioprozess in Bild 8.5 gezeigt ist. Dabei 
wurde die bereits vorhandene Prozess-EDV sowohl um benötigte Softwarepakete als auch um 
neue Computerhardware ergänzt [BORCHERT, 2015]. 

Die beteiligten Geräte stammen von verschiedenen Herstellern, weisen ein unterschiedliches 
Alter auf und wurden zu unterschiedlichen Zeitpunkten in das System integriert. Der Aufbau 
des Netzwerkes ist daher historisch gewachsen und erfordert die Nutzung unterschiedlicher 
Anschlusstechnologien, wie z.B. Ethernet, ProfiBus und die seriellen Schnittstellen RS232 und 
RS422. 
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Bild 8.5: Vernetzung der erweiterten Prozess-EDV [BORCHERT, 2015] 

Auf der linken Seite der Abbildung befinden sich die Mess- und Stelleinheiten (M&C) der 
beiden Bioreaktoren C30 und ED10, die neben der Filtrationseinheit XFlow an ihre jeweilige 
digitale Kontrolleinheit DCU II bzw. DCU III angeschlossen sind. 

Zusammen mit einer Atline-HPLC und einem 2D-Fluoreszenzspektrometer sind die beiden 
DCU mit dem Rechner BPA 327 verbunden, der hauptsächlich für den Betrieb des SCADA-
Systems MFCS/win zur Datenerfassung und einer Automatisierung der beiden Teilprozesse 
des Upstreams verantwortlich ist. 

Im Zentrum des Netzwerks befindet sich auf dem Rechner BPA 110 das übergeordnete Pro-
zessleitsystem SIMATIC PCS 7, welches den Upstreamprozess mit den Downstreameinheiten 
Separator und Äkta Purifier (unten im Bild) zusammenführt und damit eine Integration (IP) des 
Bioprozesses erlaubt. Weiterhin wird über das Labornetzwerk (Ethernet) mit Hilfe von PCS 7 
eine Kommunikation verschiedener beteiligter Rechnersysteme mit dem OPC-Protokoll er-
möglicht. 

Eine detaillierte Darstellung der bis zu diesem Punkt beschriebenen Prozess-EDV befindet 
sich in [LÖGERING, 2015]. 

Entscheidend für die Einbindung der MVDA ist die speziell für PAT-Anwendungen entwickelte 
Software SIMATIC SIPAT, Siemens, München, die auf dem Prozessrechner BPA 309 instal-
liert wurde. SIPAT sammelt Daten unterschiedlicher Quellen und legt diese in einem MVDA-
gerechten Format in einer Datenbank ab. Unter Verwendung individueller Treiber und Schnitt-
stellen ist dabei auch die Verarbeitung spektraler Daten (z.B. Raman, NIR) unterschiedlicher 
Gerätehersteller möglich, die oft verschiedene Strategien bei der Datenverarbeitung verfolgen. 

Weiterhin ist SIPAT dazu in der Lage, modellgestützte Berechnungen durch externe Software-
systeme auszulösen. Unterstützt werden beispielsweise die MVDA-Software SIMCA, MKS 
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data analytical solutions, Umeå, Schweden, sowie die numerische Entwicklungsumgebung 
MATLAB®, The Mathworks, Natick, USA. 

Die dafür benötigten Modelldateien werden auf Arbeitsplatzrechnern (BPA xxx) erstellt und in 
SIPAT eingebettet, wo über sogenannte Methoden eine Steuerung und Automatisierung der 
Berechnungen umgesetzt wird. Durch eine Verteilung über OPC-Anbindungen werden damit 
erzeugte Werte im Labornetzwerk zur Verfügung gestellt und können durch die Prozessleit-
technik beispielsweise für Monitoring- und Controlzwecke genutzt werden. 

Auf einem weiteren Rechner (BPA 310) ist die Software SIMCA-online installiert, die eine Re-
gelung von Prozessqualitätsattributen durch Model Predictive Multivariate Control (MPMC) er-
laubt. Dies war nicht Teil dieser Arbeit und ist in [LUTTMANN et al., 2015] beschrieben. 

In [BORCHERT, 2015] befindet sich darüber hinaus eine detaillierte Beschreibung von SIPAT 
sowie eine Dokumentation von dessen Einbindung in die Prozess-EDV inklusive der Verwen-
dung von SIMCA und MATLAB®. 

8.2 Skizzierung des Versuchsaufbaus 

Das Online-Monitoring mit spektroskopischen Messverfahren wurde in der oben beschriebe-
nen zweistufigen Anlage erprobt. Es standen je ein NIR- und 2D-Fluoreszenzspektrometer mit 
Einzelsonden sowie ein Raman-Gerät mit zwei Sonden zur Verfügung (siehe Abschnitt 4.2.2). 
Bild 8.6 zeigt den Versuchsaufbau aus Sicht des Produktionsbioreaktors der zweistufigen 
Anlage. 

 
Bild 8.6: Spektroskopische Verfahren im zweistufigen Upstream-Prozess 
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Die erste Raman-Sonde kam im Zellanzuchtreaktor zum Einsatz. Die zweite Sonde sowie die 
NIR- und 2D-Fluoreszenzsonden wurden dagegen im Produktionsreaktor verbaut. Im Gegen-
satz zu den Offline-Analysen der Machbarkeitsstudie (siehe Kapitel 7) wurden die Spektrome-
ter bei diesen Arbeiten inline betrieben. Eine Mehrfachmessung einzelner Proben entfällt da-
durch. 

Die Messeinstellungen der verwendeten Spektrometersysteme ergaben sich aus Erfahrungs-
werten der Machbarkeitsstudie sowie weiterer Vorversuche. Weiterhin richten sich die Mess-
zeiten nach der angestrebten Datenaufzeichnungsfrequenz, die für die PAT-Software SIPAT 
mit drei Minuten festgelegt wurde. 

Für das Raman-Gerät hat sich hinsichtlich der Sättigung des Detektors eine optimale Integra-
tionszeit von 35 Sekunden herausgestellt. Durch die Wahl von fünf Akkumulationen und unter 
Berücksichtigung eines gewissen Zeitüberhangs für die Datenverarbeitung wurde das dreimi-
nütige Messintervall nicht überschritten. Bei parallelem Betrieb beider Sonden verdoppelt sich 
dieses jedoch auf etwa sechs Minuten. 

Für das NIR-Spektrometer wurde eine Integrationszeit von 15 Millisekunden gewählt. Die 
Durchführung von 10.000 Akkumulationen stellt ein sehr gutes Signal-zu-Rausch-Verhältnis 
her und führt zu einem Messintervall von 2,5 Minuten, was ebenfalls Raum für die nötige 
Datenverarbeitung lässt. 

Eine Messung mit dem 2D-Fluoreszenzspektrometer nimmt in etwa 1,3 Minuten in Anspruch. 
Mit zwei Akkumulationen zwecks Signalglättung wurde auch hier das angestrebte Messinter-
vall von drei Minuten nicht überschritten. 

8.3 Prädiktion der Zelldichte und der Glycerolkonzentration 

8.3.1 Bereitstellung geeigneten Datenmaterials 

Der Zellanzuchtprozess RL0415 wurde für die Modellentwicklung zur Vorhersage der Zelldich-
te cXL1 und der Glycerolkonzentration cS1L1 verwendet. Auf Grund der Tatsache, dass der Zell-
anzuchtreaktor nur über einen Anschluss einer Spektralmessung verfügt, kam für die Vorher-
sage der beiden Zielgrößen ausschließlich die Raman-Spektroskopie zum Einsatz. 

Zur Erzeugung geeigneter Referenzmessungen wurden die fünf in Bild 8.7 gezeigten Zyklen 
intensiv beprobt und auf einen Kalibrierdatensatz CS, bestehend aus den Zyklen 1_0, 1_4 und 
1_6 sowie einen Validierdatensatz VS aufgeteilt, der die Zyklen 1_2 und 1_3 beinhaltet. 

Bei den Zyklen 1_2 und 1_6 handelt es sich um normale Zellanzuchtzyklen, wie sie gemäß 
der in Abschnitt 8.1.2 vorgestellten Fahrweise vorgesehen sind. Zyklus 1_0 folgt dagegen 
direkt dem Animpfen des Bioreaktors (Startup-Zyklus) und unterscheidet sich daher von einem 
normalen Zyklus in der anfänglichen Glycerolkonzentration cS1L10, der Startzelldichte cXL10 
sowie in der Dauer der durchlaufenen Prozessphasen. 

Einen besonderen Ablauf zeigen die Zyklen 1_3 und 1_4. Mit dem Ziel die Korrelation der 
beiden untersuchten Variablen zu reduzieren (siehe Abschnitt 7.4.3) wurden hier Glycerol-
Spikes durchgeführt. Das heißt, dass dem laufenden Prozess eine definierte Menge Glycerol 
zugegeben wurde, was zu einem starken Anstieg (Spike) der Glycerolkonzentration cS1L1 
führte. 
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Bild 8.7: Verlauf von fünf Zyklen der Kultivierung RL0415 

Der erste Spike wurde während der Batchphase ca. fünf Stunden nach Beginn des jeweiligen 
Zyklus durchgeführt. Die insgesamt eingesetzte Menge an Glycerol entspricht der eines nor-
malen Zyklus. Damit wurde die Dauer der Batchphase nicht verändert. 

Der zweite Spike fand ca. 17 h nach Zyklusbeginn während der Induktionsphase statt. Hierzu 
wurde zunächst die Methanolregelung deaktiviert und der Spike erst nach vollständiger Meta-
bolisierung des verbliebenen Methanols durchgeführt. Nach Verbrauch des zugegebenen Gly-
cerols erfolgte eine Reaktivierung der Methanolzufütterung. 

8.3.2 Ergebnisdarstellung 

Für das Online-Monitoring von Zelldichte cXL1 und Glycerolkonzentration cS1L1 mittels Raman-
Spektroskopie wurden jeweils die in der Machbarkeitsstudie ermittelten Einstellungen der 
PLSR-Modelle verwendet. Diese konnten als optimal für den Online-Betrieb bestätigt werden. 
Lediglich die Anzahl berechneter PLS-Komponenten unterscheidet sich jeweils für beide be-
trachteten Zielgrößen. 

Die absoluten Vorhersagefehler für das Online-Modell von cXL1 sind niedriger als die des Off-
line-Modells. Aufgrund eines kleineren Kalibrierbereichs der Online-Daten fallen die relativen 
Fehler jedoch höher aus. 

Beim Online-Modell von cS1L1 sind auch die absoluten Vorhersagefehler höher. Dies war zu 
erwarten, da bei spektroskopischer Inline-Messung mit Signalstörungen zu rechnen ist. Diese 
beeinträchtigen die Vorhersagekraft multivariater Modelle. 

Bild 8.8 zeigt die Vorhersagen im Verlauf der drei Zyklen des Kalibrierdatensatzes, während 
in Bild 8.9 das Ergebnis der externen Validierung dargestellt ist. Der prinzipielle Verlauf beider 
Prozessgrößen kann wiedergegeben werden. Hohe Glycerolkonzentrationen und Werte von 
0 gl-1 werden allerdings nicht gut vorhergesagt. 
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Bild 8.8: Prädiktion von cXL1 und cS1L1 für den Kalibrierdatensatz CS 

 
Bild 8.9: Prädiktion von cXL1 und cS1L1 für den Validierdatensatz VS 

Schlechter ist jedoch die Vorhersage der Zelldichte zu bewerten, dessen Verlauf nicht der 
wahren Prozessdynamik (z.B. exponentielle Zunahme) entspricht. 

Dies ist auch anhand von Bild 8.10a zu erkennen. Die vorhergesagte Zelldichte cXL1ram aufge-
tragen gegen die Referenzwerte cXLcdw weist insbesondere bei niedrigen Werten einen nicht-
linearen Verlauf auf. Dies wurde schon in der Machbarkeitsstudie (Abschnitt 7.5) beobachtet. 
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Bild 8.10: Mit PLSR vorhergesagte Zielgrößen aufgetragen gegen ihre Referenzwerte 

a) Zelldichte cXL1ram b) Glycerolkonzentration cS1L1ram 

Bild 8.10b verdeutlicht dagegen, dass die Raman-Spektroskopie in Verbindung mit PLSR bes-
ser für die Vorhersage der Glycerolkonzentration cS1L1 geeignet ist. So lässt sich hier für den 
gesamten betrachteten Konzentrationsbereich ein linearer Zusammenhang herstellen. 

In Tabelle 8.1 sind abschließend die Einstellungen sowie die Kenngrößen der erzeugten 
Online-PLSR-Modelle den entsprechenden Werten der Offline-Modelle gegenübergestellt. 
Positiv hervorzuheben ist, dass für beide Zielgrößen ein besseres Ergebnis bei der externen 
Validierung erzielt werden konnte. Dies macht einen Overfit eher unwahrscheinlich. 

Tabelle 8.1: Offline- und Online-Vorhersage von cXL1 und cS1L1 mit Raman-Spektroskopie 

 Zelldichte cXL1 Glycerolkonzentration cS1L1 

 offline online offline online 

nCS
1) [-] 150 (50) 90 (90) 150 (50) 90 (90) 

r [-] 3 2 2 3 
2
XR  [-] 0,972 0,976 0,951 0,972 
2
YR  [-] 0,975 0,964 0,992 0,987 
2
cvR  [-] 0,971 0,963 0,998 0,986 

RMSEcv [gl-1] 3,23 2,54 1,79 2,07 
RMSEcvrel [%] 4,40 6,03 3,32 3,98 

nVS
1) [-] - 74 (74) - 69 (69) 

2
PR  [-] - 0,970 - 0,978 

RMSEP [gl-1] - 2,11 - 1,85 
RMSEPrel [%] - 5,01 - 3,56 
1) Die Klammern geben die Anzahl unabhängiger Proben an 
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8.4 Prädiktion des zellinternen Alkoholoxidasegehaltes 

8.4.1 Bereitstellung geeigneter Kalibrierdaten 

In Abschnitt 7.9 wurde die Möglichkeit aufgezeigt, den zellinternen AOX-Gehalt gP2/X mit 2D-
Fluoreszenzspektroskopie offline zu quantifizieren. An dieser Stelle soll eine Übertragung des 
dort entwickelten Modells auf den Online-Betrieb erprobt werden. 

Dazu wurde in den in Bild 8.11 gezeigten Zyklen 2_2 und 2_3 der Kultivierung XX0415 im 
Produktionsbioreaktor jeweils zu Beginn eine Phase unlimitierten Wachstums auf Glycerol 
eingerichtet, um eine Abnahme des zellinternen AOX-Gehaltes zu bewirken. Damit sollte die 
für eine PLSR-Modellerstellung benötigte Varianz in den Daten erzeugt werden. 

 
Bild 8.11: Prozesszyklen zur Bildung von PLSR-Modellen für die Quantifizierung von gP2/X 

Wie in Abschnitt 7.9 beschrieben, kam auch hier als Zielgröße die virtuelle AOX-Aktivität CP2L2 
in der Flüssigphase zum Einsatz, die aus dem zellinternen AOX-Gehalt gP2/X2off und der Zell-
dichte cXL2cdw berechnet wurde. 

8.4.2 Ergebnisdarstellung 

Für die Vorhersage der AOX-Aktivität CP2L2 in der Flüssigphase konnte kein valides Online-
Modell erstellt werden. 

Für den relativen Vorhersagefehler RMSEcvrel wurde mit 6,62 % zwar ein niedrigerer Wert als 
für das Offline-Modell (8,30 %, siehe Abschnitt 7.9) erzielt, jedoch zeigt die in Bild 8.12 dar-
gestellte Vorhersage einen unerwarteten Verlauf, der eine schlechte Anpassung an die experi-
mentellen Daten darstellt. 
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Bild 8.12: Online-Prädiktion von CP2L2 in der Flüssigphase mit 2D-Fluoreszenz 

Bis auf die Anzahl verwendeter PLS-Komponenten stimmen die Modelleinstellungen für die 
Offline- und Online-Anwendungen überein. Eine Änderung der Einstellungen des Online-Mo-
dells führte stets zu einer weiteren Verschlechterung des Ergebnisses. 

Daraus muss der Schluss gezogen werden, dass eine Online-Quantifizierung des zellinternen 
AOX-Gehaltes nicht in dieser Form erfolgen kann. Als mögliche Ursachen können Störungen 
im Online-Betrieb (Begasung, Durchmischung) oder auch ein Overfit im Offline-Modell mit 
indirekter Quantifizierung genannt werden. 

Auf eine Berechnung des AOX-Gehaltes gP2/X2flu aus der Vorhersage der virtuellen AOX-Akti-
vität CP2L2flu in der Flüssigphase wurde daher verzichtet, da weitere Fehler bei der Vorhersage 
eines Online-Signals der Zelldichte eine Verschlechterung des Ergebnisses erwarten lässt. 

8.5 Prädiktion der Gesamtproteinkonzentration 

Eine Online-Prädiktion der Gesamtproteinkonzentration cPtotL2 war leider auch nicht erfolgreich.  

Mit der Durchführung von Spikes mit bovinem Serumalbumin (BSA), analog zum Vorgehen 
bei der Online-Vorhersage der Glycerolkonzentration cS1L1 (Abschnitt 8.3), wurde ein Daten-
satz erzeugt, der durch eine minimierte Korrelation von cPtotL und cXL möglichst valide Modelle 
hervorbringen sollte. 

Keine der drei untersuchten spektroskopischen Verfahren war in der Lage, die damit erzeugten 
stufenförmigen Verläufe von cPtotL abzubilden. Vielmehr wurde anhand der Vorhersagen deut-
lich, dass die Modelle trotz der oben beschriebenen Bemühungen von Signalen der Zellen in 
der Spektren der Kulturbrühe dominiert werden. 

Eine Anwendung der Methode zur Prädiktion von sekretierten Proteinen erscheint daher nicht 
sinnvoll.  
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8.6 Anwendung der nichtlinearen SVR 

Für die Untersuchung der Support Vector Regression (SVR) zur Vorhersage der Zelldichte 
cXL1 und Glycerolkonzentration cS1L1 kamen dieselben Datensätze (CS, VS) wie zur Bildung 
von PLSR-Modellen zum Einsatz (siehe Abschnitt 8.3). 

Als spektrale Vorverarbeitungsmethode für beide Variablen diente das SNV-Filter. Auf eine 
zusätzliche Mittenzentrierung wurde verzichtet, da bei der SVR die Vorteile in Bezug auf die 
Modellinterpretierbarkeit entfallen. Die Prädiktion von cXL1 erfolgte mit den vollständigen  
Raman-Spektren, wohingegen sich für cS1L1 der Bereich 2.750 - 3.050 cm-1 als sinnvoll erwies. 

Der Ablauf der Modellbildung ist in den wesentlichen Schritten für beide Variablen gleich. Da-
her wird an dieser Stelle nur die Modelloptimierung für die Zelldichte cXL1 dargestellt. 

Zur Ermittlung möglicher Vorhersagefehler sowie sinnvoller Wertebereiche der Parameter γ, 
C und ε wurden einige Voruntersuchungen durchgeführt. Dabei wurde der Parameter ε zu-
nächst auf einen beliebig gewählten Wert von 0,02 eingestellt und für die anderen beiden 
Parameter eine Rastersuche durchgeführt. 

Hierfür erfolgte eine logarithmische Variation der Parameter γ und C in sehr großen Bereichen 
sowie eine Modellbildung für jede Kombination mit anschließender externer Validierung. 
Dadurch konnte der RMSEP in Abhängigkeit beider Parameter in einem Contourplot (siehe 
Bild 8.13) dargestellt werden. In diesem kann man erkennen, dass drei lokale Minima des 
Fehlers RMSEP in dem durch die zwei Modellparameter aufgespannten Suchraum existieren. 
Diese sind als Kreuze gekennzeichnet. 

 
Bild 8.13: Contourplot des Vorhersagefehlers RMSEP für die Vorhersage der Zelldichte 

cXL1 mit SVR bei logarithmischer Variation der Parameter γ und C 

Für die weitere Modellbildung wurde der Parametersatz mit dem niedrigsten Vorhersagefehler 
ausgewählt. Dieser liegt in Bild 8.13 auf der rechten Seite bei einem log γ von -2,4  und einem 
log C von 2,5. 
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In einem weiteren Schritt erfolgte mit diesen Werten und bei logarithmischer Variation des 
dritten Modellparameters ε eine in Bild 8.14 dargestellte Untersuchung der Vorhersagefehler 
RMSEcv und RMSEP sowie der Anzahl nsv genutzter Stützvektoren.  

 
Bild 8.14: Vorhersagefehler RMSEcv und RMSEP sowie Anzahl nsv benötigter Stützvek-

toren in Abhängigkeit des Parameters ε bei der Vorhersage von cXL1 mit SVR 

Es ist zu erkennen, dass für ein log ε von	-1 sehr niedrige Werte der Vorhersagefehler vorliegen 
und wenig Stützvektoren benötigt werden. Deren Anzahl sollte so gering wie möglich gehalten 
werden. Erhöht man ε über 0,1 so steigen die Vorhersagefehler drastisch an, während bei 
abfallendem ε die Anzahl der nötigen Stützvektoren nsv in die Höhe gehen. 

Daher wurde für den letzten Schritt ein ε von 0,1 gemeinsam mit den zuvor festgelegten Wer-
ten für γ und C als Startpunkt für eine finale Modelloptimierung mit dem Simplex-Verfahren 
von Nelder und Mead gewählt [NELDER & MEAD, 1965]. 

Das dafür verwendete Gütekriterium Jsvr, 

sv
svr

svr sv max

n ( ,C, )RMSEP( ,C, )J ( ,C, )
a n

  
     (8.1) 

mit 
asvr   ≔ Wichtungsfaktor bei der SVR-Modelloptimierung 
nsvmax   ≔ maximale Anzahl an Supportvektoren, 

sorgt für eine simultane Minimierung des Vorhersagefehlers RMSEP sowie der Anzahl nsv be-
nötigter Stützvektoren, deren maximale Anzahl nsvmax von 90 gleich der Anzahl an Proben im 
Kalibrierdatensatz nCS ist. Der Wichtungsfaktor asvr wurde dagegen mit einem Wert von 3 frei 
gewählt. 

Die Modelloptimierung führte zu den in Tabelle 8.2 gezeigten Parametersätzen für die SVR-
Modelle der Zelldichte cXL1 und der Glycerolkonzentration cS1L1. 
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Tabelle 8.2: Ermittelte Parameter der SVR-Modelle zur Vorhersage von cXL1 und cS1L1 

Parameter cXL1 cS1L1 

γ	 [-] 3,27·10-3 0,112 

C [-] 407 3,43 

ε [-] 8,42·10-2 4,70·10-2 
nsv [-] 24 35 

Die Vorhersagen beider Größen für den Kalibrierdatensatz sind in Bild 8.15 im Vergleich mit 
den Ergebnissen der PLSR (grau) gezeigt. In beiden Fällen konnte eine deutliche Verbesse-
rung erzielt werden.  

 
Bild 8.15: Vorhersage beider Zielgrößen mit der SVR für den Kalibrierdatensatz  

Die Zelldichte cXL1svr spiegelt mit ihrem exponentiellen Anstieg in den Batchphasen sowie sowie 
mit dem Abfall während des Umbaus vom Glycerol- auf den Methanolstoffwechsel das 
Wachstumsverhalten hervorragend wieder. Der exponentielle Abfall der Glycerolkonzentration 
cS1L1 in den Batchphasen sowie Glycerol-Spikes werden ebenfalls gut dargestellt. Auch die 
Phasen ohne Glycerol sind relativ gut getroffen. 

Bei der Betrachtung der externen Validierung, gezeigt in Bild 8.16, ist die Verbesserung 
weniger ausgeprägt. Die Zelldichte cXL1 wird nur in Zyklus 1_3 sehr gut vorhergesagt. In Zyklus 
1_2 liegt die Prädiktion allerdings oberhalb der Offline-Messwerte cXL1cdw. Dennoch reduziert 
sich der Fehler RMSEP von 2,11 gl-1 (PLSR) auf 1,23 gl-1 (SVR). 

Das wahre Prozessverhalten wird ebenfalls viel besser mit SVR dagestellt. Dies ist auch in 
Bild 8.17a zu erkennen, in der die Prädiktion cXL1svr nahezu mit ihren Referenzwerten cXL1cdw 
übereinstimmt. 

0 12 24 108 120 156 168
0.0

1.0

2.0

3.0

4.0

5.0

cS2M1

cXL1cdw

cS1L1hplc

t [h]

cycle 1_0 cycle 1_6cycle 1_4
cXL1

[gl-1]

cS1L1

[gl-1]

R
L0

41
5

cS2M1

[gl-1]

cS1L1pls

cXL1pls

cS1L1svr

cXL1svr 

ind.batch inductionbatch

glycerol
spikes

batch induction

-6

6

18

30

42

54

 

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


108  Online-Monitoring mit spektroskopischen Verfahren 
 

 
Bild 8.16: Vorhersage beider Zielgrößen mit der SVR für den Validierdatensatz 

 
Bild 8.17: Vorhersagen beider Zielgrößen mit der SVR aufgetragen gegen ihre 

Referenzwerte a) Zelldichte cXL1svr b) Glycerolkonzentration cS1L1svr  

Im Vergleich zu der entsprechenden Abbildung des PLSR-Modells (Abschnitt 8.3.2, Bild 8.10a) 
ist ein deutlicher linearer Zusammenhang zwischen der Vorhersage cXL1svr und den 
Referenzwerten zu erkennen. 

Die Darstellung des prinzipiellen Verhaltens der Glycerolkonzentration cS1L1 wird ebenfalls 
verbessert. Der Vorhersagefehler RMSEP verringerte sich von 1,85 gl-1 (PLSR) auf 1,58 gl-1 
(SVR). Jedoch wird dies hauptsächlich auf die genauere Abbildung glycerolfreier Phasen zu-
rückgeführt. 
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Hohe Werte von cS1L1 werden dagegen zu niedrig vorhergesagt. Dies ist auch anhand von Bild 
8.17b zu erkennen, in der zwar ein linearer Zusammenhang zwischen der Vorhersage cS1L1svr 
mit den Referenzwerten besteht, die Gerade jedoch eine Steigung von ൏ 1 aufweist. 

Ein Vergleich der SVR mit der PLSR für die Online-Prädiktion von cXL1 und cS1L1 mit Raman-
Spektroskopie ist abschließend anhand üblicher Kenngrößen in Tabelle 8.3 gegeben. 

Tabelle 8.3: Vergleich der SVR und der PLSR bei Vorhersage von cXL1 und cS1L1 

 Zelldichte cXL1 Glycerolkonzentration cS1L1 

 PLSR SVR PLSR SVR 

nCS [-] 90 90 90 90 
2
cvR  [-] 0,963 0,992 0,986 0,996 

RMSEcv [gl-1] 2,54 1,23 2,07 1,22 
RMSEcvrel [%] 6,03 2,92 3,98 2,35 

nVS [-] 74 74 69 69 
2
PR  [-] 0,970 0,992 0,978 0,993 

RMSEP [gl-1] 2,11 1,23 1,85 1,58 
RMSEPrel [%] 5,01 2,92 3,56 3,04 
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9. Regelung der Glycerolkonzentration 

9.1 Das Regelungskonzept 

In diesem Kapitel soll die Regelung der Glycerolkonzentration cS1L im Bioreaktor als mögliche 
PAT-Anwendung näher untersucht werden. 

Diese fand im Zellanzuchtbioreaktor BIOSTAT® ED10 statt, da entsprechende multivariate Mo-
delle für diesen Teil der zweistufigen Anlage entwickelt wurden (siehe Abschnitt 8.3). Da der 
Produktionsbioreaktor nicht Gegenstand dieser Untersuchungen war, wird auf die Kennzeich-
nung der Reaktornummer (p = 1) im Index betrachteter Größen verzichtet. 

Bild 9.1 zeigt den verwendeten Bioreaktor mit den wichtigsten für die Glycerolregelung benö-
tigten Gerätschaften. 

 
Bild 9.1: Zellanzuchtbioreaktor BIOSTAT® ED10, 1) Bioreaktor, 2) Raman-Sonde, 

3) Raman-Spektrometer (Rückseite), 4) Glycerolreservoir, 5) Substratpumpe, 
6) Abgas-Analysesystem 

Als Regelgröße wird die aus Raman-Spektren IL und durch ein PLSR-Modell vorhergesagte 
Glycerolkonzentration cS1Lram herangezogen. Bild 9.2 zeigt eine schematische Darstellung des 
Regelungskonzeptes. 

 
Bild 9.2: Schematische Darstellung des Konzeptes zur Regelung von cS1L 
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Glycerol wird im Bioreaktor von den Hefezellen mit der volumetrischen Aufnahmerate S1UR 
verbraucht. Ein Vergleich von cS1Lram mit dem Sollwert cS1Lw wird über einen Regelalgorithmus 
in das Stellsignal FR1w einer Substratpumpe überführt. Diese fördert Glycerollösung mit der 
Konzentration cS1R1 aus einem Reservoir R1 in den Bioreaktor, um die Regelung von cS1L zu 
bewirken. 

9.2 Theoretische Betrachtung des Regelungsproblems 

9.2.1 Elemente des Regelkreises 

In Bild 9.3 ist ein Blockschaltbild mit den vier Teilsystemen des Regelkreises gezeigt. 

 
Bild 9.3: Regelungstechnisches Ersatzschaltbild zur Glycerolregelung 

Der Bioreaktor stellt die Regelstrecke dar, die systemtheoretisch betrachtet die Zufütterrate 
FR1 in die Glycerolkonzentration cS1L in der Flüssigphase transformiert. Bei dem Messsystem 
handelt es sich um das Raman-Spektrometer mit nachfolgender Datenverarbeitung, das alle 
drei Minuten einen Messwert cS1Lram der Glycerolkonzentration zur Verfügung stellt. Für den 
Regler wurde ein PI-Algorithmus gewählt. 

9.2.2 Charakterisierung des Streckenverhaltens 

Als erster Schritt bei den theoretischen Untersuchungen des Regelkreises erfolgt eine mathe-
matische Beschreibung der Regelstrecke. Diese beruht auf der Massenbilanz des Substrates 
Glycerol (S1) in der Flüssigphase L, 

S1L R1 S1R1 S1/X XLm (t) F (t) c q (t) c (t)     

L S1L L S1LV (t) c (t) V (t) c (t)      (9.1) 

mit 
VL  ≔ Volumen der Flüssigphase L [l] 
cS1L  ≔ Glycerolkonzentration in L [gl-1] 
FR1  ≔ Glycerolzufütterrate aus Reservoir R1 [lh-1] 
cS1R1  ≔ Glycerolkonzentration in R1 [gl-1] 
qS1/X  ≔ zellspezifische Glycerolaufnahmerate [h-1] 
cXL  ≔ Zelldichte (cdw) in L [gl-1] . 

Mit Annahme einer idealisierten Fed-Batch-Kultivierung, 

L R1V (t) F (t) , (9.2) 

 

Mess-
system

PI-ReglerStellglied

Regel-
strecke

S1Lc S1Lramc

S1LwcR1wF

R1F
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und Einführung der volumetrischen Glycerolaufnahmerate S1UR, 

1 S1/X XLS UR(t) q (t) c (t)  , (9.3) 

erhält man die Beschreibung einer nichtlinearen Streckendynamik, 

 R1
S1R1 S1LS1L 1

L

F (t) c c (t)c (t) S UR(t)
V (t)

   , (9.4) 

in der cS1L die Regelgröße, FR1 die Steuergröße sowie VL eine messbare und S1UR eine nicht 
direkt messbare Störgröße darstellen. 

Im Weiteren soll S1UR in Gl. (9.4) durch die indirekt messbare volumetrische Sauerstoff-
aufnahmerate OUR, 

1O/X XLOUR(t) q (t) c (t)   (9.5) 

mit 
OUR  ≔ volumetrische O2-Aufnahmerate [gl-1h-1] 
q1O/X  ≔ zellspezifische O2-Aufnahme mit Substrat S1 [h-1] , 

ersetzt werden. 

Diese wird über das quasistationäre volumetrische O2-Fließgleichgewicht, 

O2Q (t) OTR(t) OUR(t)   (9.6) 

mit 
QO2  ≔ O2-Versorgungsrate aus der Gasphase [gl-1h-1] 
OTR  ≔ O2-Transferrate von der Gas- in die Flüssigphase [gl-1h-1] , 

ermittelt. 

Die volumetrische O2-Versorgungsrate QO2 wird aus den sechs messbaren Prozessgrößen 
FnG, VL, xOGin, xCGin, xOG und xCG (siehe Abschnitt 3.3.7) bilanziert und ersetzt die unbekannte 
O2-Aufnahmerate OUR. 

Zur Beschreibung von S1UR muss das in Bild 9.4 gezeigte Reaktionsschema herangezogen 
werden. 

 
Bild 9.4: Reaktionsschema mit zeitinvarianten Parametern 
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Im Allgemeinen werden die zellinternen Reaktionen für Zellwachstum sowie Substrat- und 
Sauerstoffaufnahme, 

1X/X X/S1 S1/X 1X/O 1O/Xq (t) y (t) q (t) y (t) q (t)     (9.7) 

mit 
q1X/X  ≔ zellspezifische Zellreaktionsrate auf Glycerol [h-1] 
yX/S1  ≔ Zell/Substrat-Ausbeute bei Wachstum auf Glycerol [-] 
y1X/O  ≔ Zell/Sauerstoff-Ausbeute bei Wachstum auf Glycerol [-] , 

durch Ausbeutekoeffizienten verknüpft, deren Zeitvarianz durch die Aufnahmeraten des Erhal-
tungsstoffwechsels (maintenance) qS1/Xm für Substrat und q1O/Xm für Sauerstoff verursacht 
werden. In Bild 9.4 ist dieser Einfluss auf das Zellzuwachsverhalten berücksichtigt. 

Die zellspezifische Glycerolaufnahmerate qS1/X, 

S1/X S1/Xgrq (t) q (t) , (9.8) 

dient zunächst vollständig dem Zuwachs an Zellmasse, 

1X/Xgr X/S1gr S1/Xq (t) y q (t)  , (9.9) 

der durch den zeitinvarianten Zellzuwachs-Ausbeutekoeffizienten yX/S1gr charakterisiert wird. 

Ein Teil des umgesetzten Substrates S1 geht allerdings durch die Zellverlustrate q1X/Xm, 

1X/Xm X/S1gr S1/Xmq y q  , (9.10) 

wieder verloren, die zeitinvariant und proportional zur Substratmaintenancerate qS1/Xm ange-
nommen wird. 

Die beobachtbare zellspezifische Zellreaktionsrate q1X/X, 

 1X/X 1X/Xgr 1X/Xm X/S1gr S1/X S1/Xmq (t) q (t) q y q (t) q     , (9.11) 

beinhaltet somit den Zuwachs durch die Substrataufnahmerate qS1/X und den Verlust durch die 
Substratmaintenancerate qS1/Xm. 

Die zellspezifische O2-Aufnahmerate q1O/X auf Glycerol, 

1O/X 1O/Xgr 1O/Xm 1X/Ogr 1X/Xgr 1O/Xmq (t) q (t) q y q (t) q     , (9.12) 

beinhaltet hingegen den Sauerstoffbedarf bei Aufnahme von S1, als auch den der Energie-
gewinnung für den Erhaltungsstoffwechsel. 

Überführt man dieses Reaktionsverhalten in das volumetrische Reaktionsgleichgewicht, 

X/S1 1 1X/Oy (t) S UR(t) y (t) OUR(t)   , (9.13) 

so erhält man nach einigen Umformungen die Beschreibung der Störgröße S1UR, 

1X/Ogr 1X/X X/S1gr S1/Xm
1 O2

X/S1gr 1X/X X/S1gr S1/Xm 1X/Ogr 1O/Xm

y q (t) y q
S UR(t) Q (t)

y q (t) y q y q
 

  
   

, (9.14) 

durch die O2-Eintragsrate QO2. 
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Da die Glycerolregelung durch die Wahl eines Sollwertes cS1Lw von 10 gl-1 eine unlimitierte und 
hohe Wachstumsrate q1X/X gewährleistet, ist der Einfluss der Sauerstoffmaintenancerate q1O/Xm 
vernachlässigbar. 

Ermittelt man aus Vorversuchen die beiden Wachstums-Ausbeutekoeffizienten, so ist aus dem 
stöchiometrischen Glycerol/Sauerstoff-Quotienten yS1/Ogr, 

 1X/Ogr
S1/Ogr

X/S1gr

y
y

y
 , (9.15) 

die unbekannte Störgröße S1UR, 

1 S1/Ogr O2S UR(t) y Q (t)  , (9.16) 

nunmehr direkt berechenbar und bei der Auslegung des Regelkreises zu berücksichtigen. 

Die für eine Berechnung des Parameters yS1/Ogr benötigten Ausbeutekoeffizienten yX/S1gr und 
y1X/Ogr wurden der Arbeit von Martens entnommen und sind in Tabelle 9.1 aufgeführt. 

Tabelle 9.1: Globale Reaktionsparameter zur Berechnung der Glycerolaufnahmerate S1UR 
aus der Sauerstoffeintragsrate QO2, aus [MARTENS, 2014] 

yX/S1gr y1X/Ogr yS1/Ogr 

0,887 2,47 2,78 

Abschließend sei die finale Streckendynamik, 

 R1
S1R1 S1LS1L S1/Ogr O2

L

F (t) c c (t)c (t) y Q (t)
V (t)

     

 S1L R1 L O2c , F , V , Q , tf , (9.17) 

nochmals in Abhängigkeit der vier Streckenvariablen notiert. 

9.2.3 Einführung des linearisierten Streckenmodells 

Das Streckenverhalten weist ein hohes nichtlineares Verhalten auf. Zum einen sind die Steu-
ergröße FR1 und die Regelgröße cS1L multiplikativ verknüpft und zum anderen steigen die Stör-
größen VL und QO2, beide bedingt durch ansteigenden Substrat- und Sauerstoffbedarf, expo-
nentiell an. 

Um dieses Verhalten zu beherrschen und damit die Substratkonzentration konstant zu halten, 
bedürfen die erforderlichen Reglerparameter einer Nachführung. 

Die klassische Regelungstheorie beruht allerdings auf linearem Systemverhalten um einen 
festen Arbeitspunkt des Regelkreises mit zeitinvarianten Prozessparametern.  

Dies wird hier erreicht, indem die Streckendifferentialgleichung um einen gleitenden Arbeits-
punkt linearisiert wird und die Strecken- sowie die Reglerparameter in zeitdiskreten Abständen 
nachgeführt werden. 
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Der Arbeitspunkt eines Regelkreises wird so definiert, dass zu einem Zeitpunkt top die Regel-
größe cS1L, 

 S1L op S1Lw opc (t ) c (t )   ≕  S1Lopc , (9.18) 

ihrem aktuellen Sollwert entspricht und die zeitliche Ableitung S1Lc , 

R1op
S1R1 S1LopS1L op op S1/Ogr O2op

Lop

F
c cc (t ) f y Q 0

V
        , (9.19) 

verschwindet. 

Bei einem gleitenden Arbeitspunkt sind zu diskreten Zeitpunkten tk die aktuellen Werte, 

Lop L kV V (t )  ≕		 LkV , (9.20) 

O2op O2 kQ Q (t )  ≕		 O2kQ , (9.21) 

S1Lop S1L kc c (t )  ≕		 S1Lwkc , (9.22) 

aus der Sollwertvorgabe und den Messwerten von VL und QO2 bekannt. 

Hieraus ist die erforderliche Zufütterrate FR1op, 

S1/Ogr Lk O2k
R1op R1k

S1R1 S1Lwk

y V Q
F F

c c
 

 


, (9.23) 

online berechenbar. 

Mit der Definition des Systems der Abweichungen, 

S1L S1L S1Lwkc (t) c (t) c   , (9.24) 

S1L S1Lc (t) c (t)   ,  (9.25) 

R1 R1 R1kF (t) F (t) F   , (9.26) 

L L LkV (t) V (t) V   , (9.27) 

O2 O2 O2kQ (t) Q (t) Q   , (9.28) 

lässt sich nun durch eine Taylor-Reihenentwicklung mit Vernachlässigung der Ableitungen hö-
herer Ordnung, 


1 1

S1L op S1L R1
S1L R1 opop0 gl h

f fc (t) f c (t) F (t)
c F

 

 
       

 
  

L O2
L O2op op

f fV (t) Q (t)
V Q
 

     
 

, (9.29) 

eine lineare Streckendifferentialgleichung herleiten. 
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Damit lässt sich die regelungstechnische Normalform der Regelstrecke, 

 Sk S1L S1L Sk R1 z1k L z2k O2T c (t) c (t) K F (t) K V (t) K Q (t)             , (9.30) 

notieren. 

Es handelt sich um ein Verzögerungszeitsystem 1. Ordnung mit drei proportionalen Eingän-
gen. 

Die Streckenzeitkonstante TSk, 

Lk
Sk

R1k

VT
F

 , (9.31) 

und die Streckenstellverstärkung KSk, 

S1R1 S1Lwk
Sk

R1k

c c
K

F


 , (9.32) 

bestimmen jeweils bei tk die Auslegung der Reglerparameter, während die Volumenstörver-
stärkung Kz1k, 

R1k
z1k

Lk

FK
V

  , (9.33) 

und die Störverstärkung der O2-Aufnahme Kz2k, 

S1/Ogr Lk
z2k

S1R1 S1Lwk

y V
K

c c


 


, (9.34) 

das Störübertragungsverhalten des Regelkreises beeinflussen. 

9.2.4 Vernachlässigung der Dynamik des Messsystems 

Im Falle der Regelungsversuche nimmt die Erzeugung eines neuen Messwertes mit dem 
Raman-Spektrometer eine Zeit von drei Minuten in Anspruch. Der vorhergehende Messwert 
wird während dieser Zeit beibehalten. Diese Funktionsweise wird als Sample-And-Hold (SAH) 
bezeichnet. 

Vergleicht man die Haltezeit TH von 0,05 h mit der minimalen Streckenzeitkonstante TSmin, 

Lmin
Smin 1

R1max

V 8lT 40h
F 0.2lh   , (9.35) 

wird deutlich, dass man die Dynamik des Messverfahrens bei der Auslegung des Regelkreises 
vernachlässigen kann. 
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9.2.5 Regel- und Stellverhalten 

Für die Substratregelung wird ein PI-Regler eingesetzt. Bild 9.5 verdeutlicht das Regel- und 
Stellverhalten. 

 
Bild 9.5: Zusammenhang zwischen Reglerausgang und Prozesssteuergröße 

Der Sollwert ∆cS1Lw im System der Abweichungen, 

S1Lw S1Lw S1Lwkc (t) c (t) c 0    , (9.36) 

ist im nachgeführten Regelkreis immer null. 

Die Regeldifferenz eS1L, 

S1L S1Lwk S1L S1Le (t) c c (t) c (t)     , (9.37) 

entspricht somit der negativen Regelgröße -∆cS1L. 

Der Reglerausgang, die Stellgröße ∆FR1w, 

R1w Rk S1L S1L
Ik

k

t1F (t) K c (t) c ( ) d
T

t

 
         
  
 

  , (9.38) 

wird daher bei zyklischer Aktualisierung des Arbeitspunktes FR1k durch Rücksetzung des I-
Anteils bei tk zunächst nur vom P-Anteil bestimmt. 

Der Sollwert der nachfolgenden Zufütterrate FR1w, 

R1w R1k R1wF (t) F F (t)   , (9.39) 

wird durch Addition der Stellgröße ∆FR1w und des aktuellen Arbeitspunktes FR1k eingestellt. 

Die Dynamik der Prozesssteuergröße, die Zufütterrate FR1, 

R1 R1wF (t) F (t) , (9.40) 

wird durch Annahme eines idealisierten Stellgliedes (Zufütterpumpe) vernachlässigt. 

Allerdings ist in der Praxis die Zufütterrate mit 

 R1maxR1 0, FF (t)  , 

durch die Pumpe beschränkt. 

Dadurch wird der Stellbereich des Reglers, 

   R1k R1max R1kR1w R1min R1maxF , F FF (t) F , F      , 

eingeengt. 

S1Lc

S1Lwkc

R1wF R1wF R1F

R1kF

ideales Stell-
verhaltenPI
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9.3 Untersuchung der Dynamik des Regelungsproblems 

9.3.1 Übertragungsfunktionen des Regelkreises 

Zur Bewertung und Vorgabe des dynamischen Verhaltens des Regelkreises werden die ener-
giefreien Teilsysteme in den Bildbereich Laplace-transformiert. Das dynamische Verhalten des 
Regelkreises ist aus Bild 9.6 zu entnehmen. 

 
Bild 9.6: Blockschaltbild der Substratregelung im Bildbereich 

Die Streckenübertragungsfunktion GSk, 

Sk S1L
Sk

Sk R1

K c (s)
G (s)

T s 1 F (s)
 

 



 (9.41) 

mit 
KSk ≔ bei tk ermittelte Verstärkung der linearisierten Regelstrecke  [ghl-2] 
TSk ≔ bei tk ermittelte Verzögerungszeitkonstante der Regelstrecke [h] , 

überträgt die Steuergröße FR1(s) auf die Regelgröße cS1L(s). 

Die Regelstrecke besitzt mit 

2k
Sk

1p
T

  , (9.42) 

einen zeitvarianten Eigenwert (Pol). 

Der PI-Regler mit der Reglerübertragungsfunktion GRk, 

Ik
Rk Rk

Ik

1 T sG (s) K
T s
 

 


 (9.43) 

mit 
KRk ≔ bei tk nachzuführende Reglerverstärkung [l2g-1h-1] 
TIk ≔ bei tk nachzuführende Integrationszeitkonstante [h] , 

besitzt mit 

1p 0 , (9.44) 
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einen zeitinvarianten Pol und mit 

1k
Ik

1z
T

  , (9.45) 

die nachzuführende Nullstelle des Regelkreises. 

Mit der komplexen Übertragungsfunktion des offenen Regelkreises G0k, 

 
 

0k Ik
0k

SkIk

K 1 T s
G (s)

1 T sT s
  


  

, (9.46) 

mit der zugehörigen Kreisverstärkung K0k, 

0k Sk RkK K K  , (9.47) 

ist die Dynamik des Regelkreises bereits festgelegt. 

Die Führungsübertragungsfunktion des geschlossenen Regelkreises Gwk, 

 
 

0k Ik0k
wk 2

0k 0kIk Sk Ik 0k

K 1 T sG (s)
G (s)

1 G (s) 1 KT T s T s K
  

 
      

, (9.48) 

beschreibt ein PD-T2-Verhalten mit der Proportionalverstärkung KPw, 

PwK 1 , (9.49) 

und der Differentialverstärkung KDwk, 

Dwk IkK T . (9.50) 

Die komplexe Störübertragungsfunktion Gzik der jeweiligen Störgröße zi, 

zik Sk Ik
zik

k

K K T s
G (s)

(s)
  


N

 (9.51) 

mit 
Kzik ≔ bei tk ermittelte Störverstärkung des Störeinflusses zi, 

besitzt den gleichen Nenner wie Gwk und beschreibt ein D-T2-Verhalten. 

Eine sprungförmige Störung erzeugt somit nur eine gegen Null gehende transiente Störant-
wort, während bei einer sprungförmigen Führungsänderung der Istwert ∆cS1L in dem neuen 
Sollwert ∆cS1Lw enden wird. 

9.3.2 Eigenwerte des geschlossenen Regelkreises 

Der Nenner Nk , 

 2
0kk Ik Sk Ik 0k1 K(s) T T s T s K      N , (9.52) 

stellt das charakteristische Polynom des Regelkreises dar und bestimmt bei Vorgabe von TSk 
und KSk sowie durch die Wahl von TIk und KRk das Regelverhalten. 
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Dieses lässt sich anhand der beiden Lösungen, den Eigenwerten s1,2k des geschlossenen Re-
gelkreises, 

 20k0k 0k
1,2k 2

Sk Ik SkSk

1 K1 K K
s

2 T T T4 T


   
 

, (9.53) 

als T2-Verhalten bestimmen und ist bei positiven Parametern global stabil. 

Sind beide Eigenwerte negativ und reell, so ist der Regelkreis zudem nicht schwingungsfähig. 
Ist die Diskriminante in Gl. (9.53) negativ, so erhält man eine konjugiert komplexe Lösung mit 
negativem Realteil. In diesem Fall schwingt sich der Regelkreis stabil ein. 

Bei Kenntnis von KSk und TSk sowie Vorgabe von TIk hängen die Lösungen s1,2k von der Wahl 
von KRk ab. Dieses Verhalten, mit K0k parametriert, ist aus den beiden Wurzelortskurven in Bild 
9.7 gut abzulesen. 

  
Bild 9.7: Wurzelortskurven in Abhängigkeit der Wahl von TIk 

In Bild 9.7a wurde TIk ൐	TSk gewählt. Mit wachsendem K0k bleiben die Eigenwerte (Pole) in der 
linken s-Halbebene. Der erste Pol wandert bei K0k ൌ	∞ in die Nullstelle z1 und der zweite Pol 
gegen minus unendlich. Der Regelkreis schwingt in keinem Fall. 

Wird TIk ൏ TSk gewählt, so wechselt, wie in Bild 9.7b gezeigt, das Regelkreisverhalten. Für 
K0k ∊	[0, K0kap1] und K0k ൒	K0kap2 verhält er sich aperiodisch, während er für K0k ∊	]K0kap1, K0kap2[ 
schwingt. 

Mit der Bedingung TIk ൏ TSk können die Kreisverstärkungen K0kap1,2 für den aperiodischen 
Grenzfall, 

Sk Ik
0kap1,2

Ik Sk

2 T TK 11 1
T T

 
     

 
, (9.54) 

aus der dann verschwindenen Diskriminante in Gl. (9.53) berechnet werden. 
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9.3.3 Schwingungsverhalten des Regelkreises 

Die klassische Notation des charakteristischen Polynoms für ein schwingendes T2-Verhalten 
und der Vergleich mit Nk , 

2 2 2 0k 0k
k 0k 0k

Sk Ik Sk

1 K K
s 2 s s s 0

T T T


            


, (9.55) 

beinhaltet die Kreisfrequenz ω0k des ungedämpften Systems, 

0k
0k

Ik Sk

K
T T

 


, (9.56) 

und den Dämpfungsgrad ϑk, 

0k Ik
k

Sk0k

1 K T
T2 K


  


, (9.57) 

der im Bereich K0k ∊ ]K0kap1, K0kap2[ unter 1 liegt. 

Die Lösungen von Gl. (9.55), die Eigenwerte s1,2k des geschlossenen Regelkreises, 

2
1,2k Rk Rk k 0k k 0ks j j 1              , (9.58) 

beschreiben mit der Abklingkonstanten σRk, 

0k
Rk

Sk

1 K
2 T


  


, (9.59) 

und der Eigenkreisfrequenz ωRk des gedämpften Systems, 

 20k0k
Rk 2

Ik Sk Sk

1 KK
T T 4 T


  

 
, (9.60) 

das Verhalten eines schwingenden Regelkreises. 

9.3.4 Vorgabe des Regelkreisverhaltens 

Für die Berechnung der Reglerparameter eines schwingungsfähigen Systems wird zweck-
mäßiger Weise einer der Reglerparameter, KR oder TI, sowie der Dämpfungsgrad ϑ festgelegt. 
Mit ϑ ൒ 1 erhält man ein nicht schwingendes System und mit ϑ ൏ 1 ein schwingendes System. 

Von besonderem Interesse sind solche Reglereinstellungen, bei denen gerade kein Schwin-
gungsverhalten mehr auftritt. Dieser aperiodische Grenzfall wird bei einem Dämpfungsgrad 
von ϑ ൌ 1 erreicht. 

Mit der Online-Ermittlung der beiden Streckenparameter TSk (Gl. (9.31)) und KSk (Gl. (9.32)) zu 
festen Zeitpunkten tk ist eine Auslegung des Verhaltens der Substratregelung mit den vor-
gestellten theoretischen Grundlagen leicht möglich. 

Ein Ziel könnte ein nichtschwingendes Verhalten (reelle negative Eigenwerte) mit schnellem 
transienten Abklingen (hohe negative Realteile) sein. Die Lösung wäre eine Einstellung von 
TIk geringfügig über TSk mit einem hohen KRk (siehe Bild 9.7a). 
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Dies war in der Praxis allerding nicht möglich, da die Regler der Anlage eine Eingabe von TI 
oberhalb von TSmin ൌ 40 h nicht zuließen. 

Daher war ein gegenüber TSk kleines TIk (hoher I-Anteil des Reglers) zu wählen, um die Rege-
lung in der Nähe des zweiten aperiodischen Grenzfalles K0kap2 (siehe Bild 9.7b) zu halten. 

Hierfür boten sich zwei Möglichkeiten an. In beiden Strategien wurde die Reglerverstärkung 
KR fixiert und damit die Verstärkung des offenen Regelkreises K0k, 

0k R SkK K K  , (9.61) 

proportional zur Streckenverstärkung KSk eingestellt. 

Ein nichtschwingendes Verhalten wurde dann mit Vorgabe des aperiodischen Grenzfalls 
(ϑ ൌ 1) durch Anpassung von TI erzwungen. 

Die dafür erforderliche Integrationszeitkonstante TIk, 

 
Sk R Sk

Ik Ikap 2
R Sk

4 T K K
T T

1 K K
  

 
 

, (9.62) 

wird dann zusammen mit FR1k jeweils bei tk verändert. 

Will man hingegen bei festem KR Schwingungen mit einer definierten Periodendauer TP, 

P
Rk

2T  



, (9.63) 

zulassen, so ist TIk, 

   

2
R Sk Sk P

Ik Ikosc 22 2
R SkSk P

4 K K T T
T T

1 K K4 T T
   

 
     

, (9.64) 

mit einer anderen Vorschrift nachzuführen. Das Abklingverhalten σRk wird sich dann entspre-
chend Gl. (9.59) verhalten. 

Diese beiden Methoden wurden experimentell erprobt. Die erforderlichen Maßnahmen zur Re-
alisierung werden im Weiteren erläutert. 

Andere Adaptionsmöglichkeiten, z.B. Vorgabe von σR oder der Überschwingweite über den 
Sollwert sind aus Gl. (9.60) oder der Literatur zu entnehmen. 

9.4 Technische Vorgaben der Glycerolregelung 

9.4.1 Prozesstechnische Umsetzung 

In den folgenden Abschnitten soll auf die technische Umsetzung der Glycerolregelung, insbe-
sondere im Hinblick auf die verwendete Prozess-EDV, näher eingegangen werden. Die in Bild 
9.8 gezeigte erweiterte schematische Darstellung des Regelungskonzeptes zeigt die für eine 
Glycerolregelung notwendigen Operationen. 

Dabei kann insbesondere die Erzeugung der Regelgröße durch Messung von Raman-Spek-
tren und der Anwendung eines PLSR-Modells als ein erster Schritt hervorgehoben werden. 
Das Vorgehen hierbei wird in Abschnitt 9.4.2 beschrieben. 
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Bild 9.8: Schematische Darstellung der erweiterten Ausstattung zur Regelung der 

Glycerolkonzentration 

Eine weitere wichtige Aufgabe ist die Nachführung des Arbeitspunktes bzw. die Adaption der 
Reglerparameter und die dafür benötigte Berechnung der Sauerstoffeintragsrate QO2 durch 
eine Abgasbilanzierung. Darauf wird in Abschnitt 9.4.3 näher eingegangen. 

In Abschnitt 9.4.4 findet sich abschließend eine Beschreibung der Interaktion beteiligter Soft-
waresysteme sowie eine detaillierte Auflistung der verwendeten Programme. 

9.4.2 Bereitstellung der Regelgröße durch ein PLSR-Modell 

Das verwendete Online-PLSR-Modell unterscheidet sich in seinem Aufbau und der Vorher-
sagegüte von dem in Abschnitt 8.3.2 dargestellten finalen Modell. Dies liegt darin begründet, 
dass aufgrund einer auslaufenden Leihfrist des Raman-Spektrometers, die Modellentwick-
lungsarbeiten zum Zeitpunkt der Regelungsexperimente noch nicht abgeschlossen waren. 

Der hauptsächliche Unterschied der Online- und Offline-Modelle besteht in der Variablenaus-
wahl. Bei der Bildung des Online-Modells wurden die kompletten Raman-Spektren verwendet 
und nicht eingegrenzt. Dies führte zu einem Vorhersagefehler RMSEP von 3,91 gl-1 im Ver-
gleich zu 1,85 gl-1 des finalen Offline-Modells. 

Die Entwicklung des verwendeten PLSR-Modells wurde mit der Software SIMCA durchgeführt. 
Für die Anwendung des PLSR-Modells zur Online-Prädiktion der Glycerolkonzentration cS1Lram 
kam das Programm SIMCA-Q zum Einsatz. Hierbei handelt es sich um ein reines Berech-
nungsmodul, das über keine grafische Oberfläche verfügt. 

Die Aufnahme der Raman-Spektren erfolgte mit der Spektrometer-Software iC Raman. Zur 
Übertragung der Spektren an SIMCA-Q war die Zusatzsoftware Kaiser Data Link notwendig 
über die außerdem eine Einbindung der SIMCA-Modelldatei erfolgte. 

Eine weitere wichtige Funktion von Kaiser Data Link bestand darin, die von SIMCA-Q berech-
nete Regelgröße cS1Lram im Labornetzwerk über das OPC-Protokoll für weitere beteiligte EDV-
Systeme zur Verfügung zu stellen. 
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9.4.3 Durchführung notwendiger Online-Berechnungen 

Die Nachführung des Arbeitspunktes der Glycerolregelung bzw. die Online-Berechnung der 
im Arbeitspunkt benötigten Glycerolzufütterrate FR1k, und damit die Anpassung der Regelkreis-
parameter TSk, KSk und TIk, wurde mit einem MATLAB-Skript realisiert. Die dafür notwendige 
Abgasbilanzierung mit der Berechnung der Sauerstoffeintragsrate QO2 wurde ebenfalls online 
über ein MATLAB-Skript durchgeführt. 

Die Ausführung der Berechnungsskripte wurde durch die PAT-Software SIMATIC SIPAT orga-
nisiert. Dort erfolgten eine Einbindung der Skriptdateien sowie deren Versorgung mit den je-
weils benötigten Eingangsdaten. Diese werden von SIPAT aus dem Netzwerk über das OPC-
Protokoll eingelesen. Auch eine Verteilung der Berechnungen im Netzwerk fand über die OPC-
Funktionalität statt. 

SIPAT wurde so konfiguriert, dass alle drei Minuten der aktualisierte Wert der Glycerolzufütter-
rate FR1k im Arbeitspunkt sowie der adaptierte Reglerparameter TIk für die Regelung mit 
MFCS/win zur Verfügung stand. Das Berechnungsintervall deckt sich dabei mit dem Mess-
intervall des Raman-Spektrometers. 

9.4.4 Vernetzung beteiligter Softwaresysteme 

Eine wichtige Rolle bei der Glycerolregelung spielt das SCADA-System MFCS/win. Der ver-
wendete PI-Regelalgorithmus wurde hier eingerichtet. Auch die Berechnung der Steuergröße 
FR1w aus der benötigten Zufütterrate im Arbeitspunkt FR1k und dem Reglerausgang ∆FR1w sowie 
die Ansteuerung der Glycerolpumpe fanden in MFCS/win statt. 

Weiterhin erfolgte dort auch die Aufnahme der für die Online-Berechnungen benötigten Varia-
blen, wie zum Beispiel die Größen der Abgasbilanzierung sowie deren Verteilung über das 
OPC-Protokoll im Netzwerk der Anlage. 

Eine besondere Funktion im Zusammenspiel aller beteiligten Softwaresysteme nimmt dabei 
das Programm SIMATIC WinCC ein, das mit seiner umfangreichen OPC-Server-Funktionalität 
die Organisation der Datenströme im Labornetzwerk übernimmt [LÖGERING, 2015]. Bild 9.9 
illustriert die Vernetzung der bei der Glycerolregelung beteiligten Computerprogramme. 

 
Bild 9.9: Vernetzung und Aufgaben der beteiligten Softwaresysteme 
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Abschließend sind die verwendeten Computerprogramme in Tabelle 9.2 nochmals detailliert 
aufgeführt. 

Tabelle 9.2: Detaillierte Auflistung der beteiligten Softwaresysteme 

Software Version Hersteller 

Kaiser Data Link 1.1 Kaiser Optical Systems, Ann Arbor, USA 

iC Raman 3.0 Kaiser Optical Systems, Ann Arbor, USA 

MATLAB 8.3.0 (R2014a) The Mathworks, Natick, USA 

MFCS/win 3.0 (Level 32) Sartorius Stedim Systems, Guxhagen 

SIMATIC SIPAT 4.0.0.0 Siemens, München 

SIMATIC WinCC 7.0 + SP2 Siemens, München 

SIMCA 13.0.3 Data Analytical Solutions, Umeå, Schweden 

SIMCA-Q 13.0.3 Data Analytical Solutions, Umeå, Schweden 

 

9.5 Experimentelle Erprobung der Substratregelung 

9.5.1 Regelung im aperiodischen Grenzfall 

Im Folgenden werden zwei unterschiedliche Experimente zur Erprobung der Regelung von 
cS1L diskuiert. 

In Bild 9.10 ist der Verlauf der Störgrößen VLk und QO2k sowie die Arbeitspunkte TSk, KSk und 
FR1k der linearisierten Strecke gezeigt. 

 
Bild 9.10: Verlauf der Parameter im Arbeitspunkt der linearisierten Strecke 
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Der Arbeitspunkt der Zufütterrate FR1k (Gl. (9.23)) verläuft proportional zur Sauerstoffmassen-
transferrate OTkm , 

OTk Lk O2km V Q  , (9.65) 

die unabhängig vom Volumen VLk ist. 

Die gewählte Strategie des laufenden Arbeitspunktes FR1k entspricht somit einem Feed-For-
ward Control, um das exponentielle Wachstum der Zellmasse mXL im Reaktor zu erfüllen. 

Beim ersten Experiment wurde KR auf 0,04 l2g-1h-1 fixiert und TI auf dem Wert des aperiodi-
schen Grenzfalles TIkap (Gl. (9.62)) nachgeführt. In Bild 9.11 ist der Verlauf der Regelung dar-
gestellt. 

 
Bild 9.11: Verlauf der adaptiven aperiodischen Substratregelung 

Bei t = 25 h erreicht die Regelgröße cS1Lram den Sollwert cS1Lw. Der Regler befindet sich somit 
im Arbeitspunkt und wird aktiviert. Damit sind die Steuergröße FR1 und die Zieltrajektorie FR1k 
dort identisch. 

Für die folgenden vier Stunden ist das erwartete Regelungsverhalten zu beobachten, dass 
durch deutliche, von der Regeldifferenz eS1L abhängige, Steuergrößensprünge ∆FR1w gekenn-
zeichnet ist. Diese sind auf die relativ hohe Reglerverstärkung KR zurückzuführen. 

Die erforderliche aperiodische Integrationszeitkonstante TIkap (Gl. (9.62)) ist viel kleiner als die 
im Verlauf des Prozesses abfallende Streckenzeitkonstante TSk. 

Da die Streckenverstärkung KSk und damit K0k ebenfalls abfallen, bedarf es einer geringen 
positiven Korrektur von TIk, um den aperiodischen Grenzfall bei K0kap2 beizubehalten. 

Ab t = 27,5 h übersteigt die Regelgröße cS1Lram ihren Sollwert cS1Lw. Der Regler führt die 
Steuergröße FR1 zurück, sodass sie unterhalb der erforderlichen Zielgröße FR1k liegt. 
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Die damit verbundene Abnahme von cS1L wird zunächst allerdings nur im Verlauf des Offline-
Referenzwertes cS1Lhplc, bei t = 29,2 h, deutlich. 

Die spektrale Messung cS1Lram folgt diesem Verhalten hingegen nur langsam. Nach Unter-
schreiten des Sollwertes fährt der Regler FR1 kräftig hoch, bis die maximale Zufütterrate FR1max 
der Pumpe erreicht wird. 

Die Offline-Messung zeigt das wahre Prozessverhalten. Der Prozesswert cS1Lhplc steigt weit 
über den Sollwert an. 

Die Vorhersage cS1Lram mit Raman-Spektroskopie hingegen versagt. Sie fällt immer weiter ab 
und führt somit zu einem instabilen Regelverhalten. 

Die Fehlmessung verdeutlicht, dass sich das Online-PLSR-Modell an den Spektralanteilen der 
Zelldichte orientiert. Da letztere ab etwa t = 30 h stark ansteigt, führt dies zu einem Versagen 
der Prädiktion eines geregelten Verlaufes von cS1L. 

Dieses Verhalten könnte womöglich mit der Verwendung des finalen Modells (siehe Abschnitt 
8.3.2) verhindert werden. 

9.5.2 Regelung der Glycerolkonzentration im Schwingfall 

Zur Erprobung der Vorgabe des Regelverhaltens wurde auch eine Regelung im abklingenden 
Schwingfall mit konstanter Periodendauer TP gewählt. Auch hierbei wurde mit einem KR von 
0,012 l2g-1h-1 eine konstante Reglerverstärkung, allerdings viel kleiner als beim aperiodischen 
Grenzfall, eingestellt. 

Die Integrationszeitkonstante TIk wurde dabei aus TSk, KSk, KR und TP mit TIkosc (Gl. (9.64)) in 
einer oszillierenden Regelung nachgeführt. 

In Bild 9.12 ist der Verlauf der Arbeitspunkte der linearisierten Strecke im zweiten Experiment 
gezeigt. Die Störgrößen VLk und QO2k sind vergleichbar zur ersten Erprobung. 

 
Bild 9.12: Verlauf der Parameter im Arbeitspunkt der linearisierten Strecke 

48 49 50 51 52 53 54 55 56
0.0

0.1

0.2

0.3

0.4

0.5

t [h]

[gl-1h-1]
QO2k

[l]
VLk

[kghl-2]
KSk

[h]
TSk

QO2k VLk

KSk
TSk

FR1k

0.0

0.7

1.4

2.1

2.8

3.5
TP = 2  h      KR = 0.012  l2g-1h-1     cS1R1 = 600  gl-1

R
L2

11
5

8.00

8.15

8.30

8.45

8.60

8.75

0

9

18

27

36

45
[lh-1]
FR1k

0

110

220

330

440

550

https://doi.org/10.51202/9783186293176 - Generiert durch IP 216.73.216.36, am 21.01.2026, 03:37:49. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186293176


128  Regelung der Glycerolkonzentration 
 

Durch Wahl von cS1R1 zu 600 gl-1 verläuft FR1k allerdings auf einem niedrigeren Niveau. Damit 
werden die Streckenparameter TSk und KSk nahezu verdoppelt. 

In Bild 9.13 ist der Verlauf der Regelung mit einer festen Periodendauer TP von 2 h gezeigt. 
Diese wurde bei t = 47,8 h aktiviert und zeigte zunächst das gewünschte Verhalten. Die 
erreichte Periodendauer ist mit zwei senkrechten Linien angedeutet. 

 
Bild 9.13: Verlauf der Regelung mit vorgegebener Oszillation 

Im späteren Verlauf des Prozesses ist das gleiche Fehlverhalten wie bei der aperiodischen 
Regelung zu beobachten. Die spektral bestimmte Regelgröße cS1Lram folgt nicht mehr den 
realen Prozesswerten (cS1Lhplc) und führt zu einer Überfütterung. Daher wurde das Experiment 
bei t = 55,3 h beendet. 

Abschließend ist zu bemerken, dass eine Substratregelung auf der Basis des hier verwende-
ten PLSR-Modells nicht zum Erfolgt führte. Die Erprobung komplexerer Modellbildungen war 
aufgrund der bereits erwähnten auslaufenden Leihdauer des Raman-Gerätes leider nicht mehr 
möglich. 
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10. Anwendung der MVDA auf nichtspektroskopische Daten 

10.1 Prädiktion nicht direkt messbarer Prozessgrößen 

In diesem Abschnitt wird die Anwendung der MVDA auf nicht spektroskopische Prozessdaten 
beschrieben. Ziel war auch dabei die Online-Bestimmung von Prozessvariablen, wie zum Bei-
spiel die Produktkonzentration. Weiterhin sollte auch die Ermittlung von zellspezifischen Reak-
tionsraten getestet werden. 

Die Untersuchungen wurden unter Verwendung des aus Abschnitt 7.3 bekannten zyklischen 
Prozesses durchgeführt, der in Bild 10.1 anhand ausgewählter Größen dargestellt ist. 

  
Bild 10.1: Ausgewählte Bioprozessgrößen im Verlauf der untersuchten Kultivierung 

Als X-Variablen sollten hier anstelle von Spektren Inline- oder Online-Messgrößen des Bio-
reaktionsprozesses verwendet werden. Beispiele sind die Trübungsmessung, Waagensignale 
oder die Ergebnisse einer Abgasbilanzierung. Details zu der Auswahl verwendeter Variablen 
sowie der Erzeugung der benötigten Datensätze für die MVDA befinden sich in Abschnitt 10.2. 

Als Methoden der multivariaten Kalibrierung sollten hier die PLSR sowie die SVR eingesetzt 
und verglichen werden. Beide Methoden wurden bereits erfolgreich bei der Entwicklung der-
artiger black box soft sensor Modelle eingesetzt. 

Le et al. nutzen PLSR- und SVR-Modelle zur Vorhersage von Produkt- und Laktatkonzentra-
tionen am Ende eines Prozesses zur Herstellung von Antikörpern mit CHO Zellen anhand von 
35 Offline- und Online-Prozessgrößen [LE et al., 2012]. 

Mehrere Quellen verglichen black box soft sensor SVR-Modelle mit anderen nichtlinearen Me-
thoden, wie z.B. künstliche neuronale Netze (ANN), in Kultivierungsprozessen verschiedener 
Hostsysteme. Hierbei stellte sich eine Überlegenheit der SVR-Methodik heraus [DESAI et al., 
2006; LI & YUAN, 2006; WANG et al., 2006]. 
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Borchert nutzte in seiner Dissertation Online-Prozessgrößen zur Prädiktion der Zelldichte, der 
Glycerolkonzentration und der Produktkonzentration in einem zyklischen Produktionsprozess 
mit Pichia pastoris. Aus diesen Vorhersagen konnten dann zellspezifische Reaktionsraten 
online berechnet werden [BORCHERT, 2015]. 

Dieses Kapitel soll an die Arbeiten von Borchert anknüpfen. Hinsichtlich der Bestimmung zell-
spezifischer Reaktionsraten wird jedoch ein anderer Ansatz verfolgt, der darin besteht, diese 
mittels multivariater Modelle direkt vorherzusagen. Hierbei war eine andere Bereitstellung 
geeigneter Kalibrierdaten zu finden. 

10.2 Vorbereitung der Modellerstellung 

10.2.1 Gewählte Zielgrößen 

Primär sollten die geplanten Untersuchungen zunächst multivariate Modelle zur Vorhersage 
der Zustandsgrößen Zelldichte cXL, Glycerolkonzentration cS1M sowie der Zielproduktkonzen-
tration cP1M hervorbringen. Weiterhin sollte auch eine Prädiktion des zellinternen Alkoholoxi-
dasegehaltes gP2/X mit dem Blackbox-Ansatz untersucht werden. Ein besonderes Interesse 
bestand dann in der Entwicklung multivariater Modelle für die direkte Vorhersage der zellspe-
zifischen Reaktionsraten qI/X. In Tabelle 10.1 sind die gewählten Zielgrößen aufgeführt. 

Tabelle 10.1: Auflistung der gewählten Zielgrößen und Herkunft der Kalibrierdaten 

h  Zielgröße yh Erzeugung geeigneter Kalibrierdaten 

1  cXL [gl-1] Anpassung von Simulationsverläufen durch 
Modellbildung, Simulation und Parameter-
identifizierung 

2  cS1M [gl-1] 
3  cP1M [gl-1] 
4  gP2/X [Ug-1] Interpolierte Werte eines enzymatischen Assays 

5  qX/X [h-1] 

Bilanzierung des Bioreaktionsprozesses unter 
Verwendung der simulierten Prozessgrößen 

6  qO/X [h-1] 
7  qS1/X [h-1] 
8  qS2/X [h-1] 
9  qP1/X [h-1] 

Ein wichtiger Aspekt ist die Bereitstellung geeigneter Kalibrierdaten. Für die untersuchten 
Zustandsgrößen standen vergleichsweise wenige Referenzmessungen zur Verfügung, die zu-
sätzlich messtechnische Fehler beinhalten. Dieser Umstand erschwert insbesondere die 
Erzeugung von Kalibrierdaten für die zellspezifischen Reaktionsraten qI/X, da deren Berech-
nungen die zeitlichen Ableitungen der Zustandsgrößen des Prozesses benötigen. 

Aus diesem Grund wurden für diese Untersuchungen differenzierbare Kalibrierdaten durch 
Simulation der Zielgrößen erzeugt. Darauf wird detailliert in Abschnitt 10.2.3 eingegangen. Im 
Folgenden werden zunächst die Rechenvorschriften der zellspezifischen Reaktionsraten qI/X, 
die aus einer Bilanzierung des Bioreaktionssystems hervorgehen, hergeleitet. 
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10.2.2 Berechnung zellspezifischer Reaktionsraten 

Die Darstellung der Zellteilungsrate qX/X in einem Fed-Batchprozess,  

in A XL
X/X

L XL

F (t) F c (t)q (t)
V (t) c (t)


 


 (10.1) 

mit 
Fin ≔ Eingangsvolumenstrom [lh-1] 
FA ≔ zeitinvarianter zellfreier Atline-Analysenstrom [lh-1] 
VL ≔ Volumen der Flüssigphase [l] 
cXL ≔ Zelldichte in der Flüssigphase [gl-1] , 

lässt sich leicht aus der allgemeinen Bilanz für die Zellmasse mXL herleiten. 

Die Verdünnung der Zelldichte cXL durch den Eingangsvolumenstrom Fin, 

in R1 R2 T2F (t) F (t) F (t) F (t)    (10.2) 

mit 
FR1 ≔ Glycerolzufütterate [lh-1] 
FR2 ≔ Methanolzufütterate [lh-1] 
FT2 ≔ Volumenstrom der Titration mit Base [lh-1] , 

wird darin als Summe der eingehenden Teilvolumenströme berücksichtigt. 

Der zellfreie Atline-Analysenstrom FA führt zu einer Konzentrierung der Zelldichte. Die Ver-
dampfung der Medienphase mit gleichem Effekt wird dagegen vernachlässigt. 

Eine Berechnung der zellspezifischen Sauerstoffaufnahmerate qO/X, 

O2
O/X

XL

Q (t)
q (t)

c (t)
  (10.3) 

mit 
QO2 ≔ Sauerstoffeintragsrate [gl-1h-1] , 

ist bei Annahme eines quasi-stationären Fließgleichgewichtes sehr einfach, da alle konvekti-
ven Ströme vernachlässigbar und die benötigten Größen cXL und QO2 online berechenbar sind. 

Für weitere Berechnungen ist das Volumen der Medienphase VM, 

Z/X
M XL L

Z
V (t) 1 c (t) V (t) 

     
 (10.4) 

mit 
VK ≔ Volumen des Teilsystems K, K = M, L [l] 
αZ/X ≔ Verhältnis von Biofecht- zu Biotrockenmasse [-] 
ρZ ≔ Dichte der Biofeuchtphase [gl-1] , 

sowie die durch das Zellwachstum hervorgerufene Volumenverlustrate FZ der Medienphase, 

Z/X
Z X/X XL L

Z
F (t) q (t) c (t) V (t)

   


, (10.5) 

erforderlich. 
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Die zellspezifischen Substrataufnahmeraten qSi/X mit i = 1 für Glycerol und i = 2 für Methanol, 

Ri SiRi SiM SiMin Z M
Si/X

L XL L XL L XL

F (t) c c (t) c (t)F (t) F (t) V (t)q (t)
V (t) c (t) V (t) c (t) V (t) c (t)

 
    




 (10.6) 

mit 
cSiRi ≔ Konzentration des Substrates Si im entsprechenden Reservoir Ri [gl-1] 
cSiM ≔ Konzentration des Substrates Si in der Medienphase M [gl-1] , 

sowie die zellspezifische Zielproduktbildungsrate qP1/X, 

in Z P1M M P1M
P1/X

L XL L XL

F (t) F (t) c (t) V (t) c (t)q (t)
V (t) c (t) V (t) c (t)


   


, (10.7) 

können aus der allgemeinen Bilanzgleichung einer Komponente I in der Medienphase M eines 
Dreiphasensystems hergeleitet werden [CORNELISSEN, 2004]. 

10.2.3 Bereitstellung idealisierter Kalibrierdaten 

Aus dem vorherigen Abschnitt geht hervor, dass für die Berechnung der zellspezifischen Reak-
tionsraten die Ableitungen der Zustandsgrößen cXL, cSiM und cP1M benötigt werden. Eine Diffe-
rentiation gemessener Werte ist numerisch jedoch sehr sensitiv und verstärkt etwaige Fehler 
gemessener Eingangsdaten [AHNERT & ABEL, 2007]. 

Aus diesem Grund wurden die Zustandsgrößen durch Simulation an die entsprechenden 
Offline- oder Atline-Messsignale angepasst. Dieses Vorgehen ermöglicht die Berechnung der 
Ableitungen ohne numerische Differentiation der Originalmessdaten. In Bild 10.2 ist das 
Ergebnis der Anpassung der idealisierten Variablen cIKest grafisch dargestellt. 

 
Bild 10.2: Anpassung der Zelldichte cXLest, der Glycerolkonzentration cS1Mest und der 

Produktkonzentration cP1Mest an ihre Referenzmessungen in zwei Zyklen 
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Eine Simulation der Methanolkonzentration cS2M war dabei nicht notwendig, da diese sehr gut 
geregelt wurde und somit aus cXL und der Methanolzufütterate FR2 die Berechnung eines wenig 
verrauschten Verlaufes der Methanolaufnahmerate qS2/X möglich war. 

In einem ersten Schritt wurden die Zelldichte cXLest und die Glycerolkonzentration cS1Mest in den 
Glycerol-Batch- und Fed-Batchphasen über ein einfaches Modell des Bioreaktionsprozesses 
durch Identifikation von Reaktionsparametern und Anfangswerten angepasst. 

Für die Berechnung der Zelldichte cXLest in Zyklus k, 

in A
XLest X/X XLest

L

F (t) Fc (t) q (t) c (t)
V (t)

 
   

 
  (10.8) 

mit 

 XLest 0k XL0kc t c , (10.8a) 

wird eine reaktionskinetische Beschreibung der Zellteilungsrate qX/X, 

S1Mest
X/X 1maxk

S1Mest S1

c (t)
q (t)

c (t) k
  


 (10.9) 

mit 
μ1maxk  ≔ maximale Zellwachstumsrate auf Glycerol in Zyklus k [h-1] 
kS1  ≔ Monod-Limitierungskonstante für Glycerol [gl-1] , 

benötigt, die in der Simulation einer einfachen Monod-Substratkinetik ohne Maintenacerate 
qS1/Xm folgen soll. 

Die simulierte Glycerolaufnahmerate qS1/X, 

X/X
S1/X

X/S1k

q (t)q (t)
y

  (10.10) 

mit 
yX/S1k  ≔ Zellausbeutekoeffizient für Glycerol in Zyklus k [-] , 

verläuft unter Annahme eines zeitinvarianten Ausbeutekoeffizienten yX/S1k proportional zur Zell-
teilungsrate und ermöglicht über die Bilanz der Glycerolkonzentration, 

R1 in Z L
S1Mest S1R1 S1Mest S1/X XLest

M M M

F (t) F (t) F (t) V (t)c (t) c c (t) q (t) c (t)
V (t) V (t) V (t)


        (10.11) 

mit 

 S1Mest 0k S1M0kc t c , (10.11a) 

eine Berechnung der Glycerolkonzentration cS1Mest in der Medienphase. 

Die Bilanz des Flüssigvolumens VL, 

L R1 R2 T2 A SV (t) F (t) F (t) F (t) F F      (10.12) 

mit 
FS ≔ zeitinvarianter gemittelter Probenahmevolumenstrom [lh-1] 
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und mit 

 L 0k L0kV t V , (10.12a) 

setzt sich aus den ein- und austretenden Volumenströmen zusammen und wird zur Berech-
nung von VM und FZ gemäß Gl. (10.4) und Gl. (10.5) benötigt. 

Die Glycerolzufütterrate FR1, 

 
0k jk

R1 1wk jk
R1jk jk 0k 1

0 , t t t
F (t) t t

F e , t t t 

 
    
   

 (10.13) 

mit 
t0k ≔ Startzeitpunkt des Zyklus k [h] 
tjk ≔ Beginn der Zufütterung in Zyklus k [h] 
μ1wk ≔ fester Sollwert der Wachstumsrate in Zyklus k [h-1] , 

nimmt am Ende der jeweiligen Batchphase zum Zeitpunkt tjk den Wert der initialen Glycerol-
zufütterrate FR1jk, 

1wk
R1jk R1 jk XL jk L jk

X/S1k S1R1
F F (t ) c (t ) V (t )

y c


   


, (10.14) 

an und wird im weiteren Verlauf bis t0k+1 mit einem exponentiellen Profil nachgeführt. 

Das Ende der Batchphase ist durch den Verbrauch des Substrates charakterisiert. Die Zeit tjk 
des Beginns der Glycerolzufütterung ist aus numerischen Gründen zu dem Zeitpunkt definiert, 
an dem die Glycerolkonzentration cS1Mest, 

 
!

S1Mest jk S1c t 0,1 k  , (10.15) 

ein Zehntel der angenommenen Limitierungskonstante kS1 unterschreitet. 

Während die Methanolzufütterung FR2 in den Batch- und Fed-Batchphasen unberücksichtigt 
bleibt, wird der Basevolumenstrom FT2, 

T2
T2

T2

m (t)F (t)  



 (10.16) 

mit 
mT2 ≔ Masse des Basereservoirs [g] 
ρT2 ≔ Dichte des Basereservoirs [gl-1] , 

durch numerische Differentiation mit der Methode nach Savitzky und Golay [SAVITZKY & 
GOLAY, 1964] aus dem entsprechenden Online-Waagensignal mT2 approximiert. Dies ist hier 
möglich, da das Waagensignal ein hohes Signal-zu-Rauschverhältnis aufweist. 

Die Anpassung der Simulationsverläufe der Zelldichte cXLest und der Substratkonzentration 
cS1Mest an die Offline-Messwerte erfolgte durch Minimierung des Gütefunktionals JXSk, 

Bk
22n 1

S1Mest uk S1Mhplc ukXLest uk XLcdw uk
XSk

u 0 XLmaxk S1Mmaxkk

c (t ) c (t )c (t ) c (t )
J min

c cp





             
  (10.17) 
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mit 
pk ≔	 	Vektor der unbekannten Parameter und Anfangswerte in Zyklus k [div.] 
nBk ≔  Anzahl der Offline-Messwerte in der Glycerol-Batch- und 

Fed-Batchphase des betrachteten Zyklus k [-] 
tuk ≔  Offline-Messzeitpunkte innerhalb von Zyklus k [h] 
cXLcdw ≔	 	Offline-Messwert der Zelldichte [gl-1] 
cS1Mhplc ≔	 	Offline-Messwert der Glycerolkonzentration [gl-1] 
cIKmaxk ≔	 	Maximalwerte der Offline-Messwerte zur Wichtung der Variablen [gl-1] , 

für jeden der fünf betrachteten Kultivierungszyklen separat durch Identifizierung der unbekan-
nten Modellparameter μ1maxk, μ1wk, yX/S1k sowie der Startwerte cXL0k und cS1M0k. 

Als Optimierungsmethode wurde der Simplex-Algorithmus von Nelder und Mead gewählt 
[NELDER & MEAD, 1965]. In Tabelle 10.2 sind die identifizierten Modellparameter aller Zyklen 
aufgelistet. Tabelle 10.3 enthält dagegen die zyklusunabhängigen Parameter. 

Tabelle 10.2: Modellparameter für die Erzeugung idealisierter Kalibrierdaten 

Parameter k ൌ 1 2 3 4 5 

μ1maxk [h-1] 0,233 0,186 0,147 0,181 0,221 

μ1wk [h-1] 0,0533 0,0577 0,0614 0,0614 0,0769 
yX/S1k [-] 0,678 0,662 0,699 0,711 0,631 

cXL0k [gl-1] 2,16 2,25 3,81 3,71 2,23 

cS1M0k [gl-1] 52,5 54,0 53,5 53,4 54,7 

Tabelle 10.3: Zyklusunabhängige Modellparameter  

Parameter Wert  Parameter Wert 

cS1R1 [gl-1] 400 αZ/X [-] 3,7 

cS2R2 [gl-1] 790 ρR2 [gl-1] 790 

FA [lh-1] 0,015 ρT2 [gl-1] 950 

FS [lh-1] 0,010 ρZ [gl-1] 1050 

kS1 [gl-1] 0,2   

Eine Simulation der Zelldichte während der Produktionsphase ist nicht zuverlässig möglich. 
Die Gründe hierfür liegen vor allem in der komplexen Natur der Induktionsmechanismen bei 
Umschaltung vom Glycerol- auf den Methanolstoffwechsel. Darüber hinaus ist Abnahme der 
Zellteilungsrate gegen Ende einiger Zyklen beobachtbar, jedoch nicht erklärbar. 

Aus diesem Grund wurde in der Produktionsphase die Zelldichte cXLest, 

     2 3
XLest 0k 1k 0k 2k 0k 3k 0kc (t) d d t t d t t d t t           (10.18) 

mit 
t0k ≔ Startzeitpunkt der Produktionsphase des Zyklus k [h] , 

für jeden Zyklus k mit einem Polynom dritten Grades approximiert. 
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Dieses Vorgehen erlaubt eine analytische Berechnung der Änderung von cXLest, 

   2XLest 1k 2k 0k 3k 0kc (t) d 2 d t t 3 d t t         . (10.19) 

Der Koeffizientenvektor dk des Polynoms, 

  1T T
k k k k kd X X X y


    , (10.20) 

lässt sich durch Lösung des überbestimmten Gleichungssystems, 

 
 

 

     

     Pk Pk PkPk

XLcdw 0k 0k
2 3

1k 0k 1k 0k 1k 0kXLcdw 1k 1k

2k
2 3

(n 1)k 0k (n 1)k 0k (n 1)k 0kXLcdw (n 1)k 3k

kk

1 0 0 0c t d

1 t t t t t tc t d

... ... ... ...... d

1 t t t t t tc t d

Xy

  

   
   

     
    
   
   

         
kd

 
 
 
 
 
 
  

, (10.21) 

mit einem Ansatz der kleinsten Fehlerquadrate, 

 
Pkn 1

2
Xk XLest uk XLcdw uk

u 0k

J min c (t ) c (t )
d





   (10.22) 

mit 
dk ≔	Vektor der unbekannten Koeffizienten djk in Zyklus k [gl-1h-j] 
nPk ≔	Anzahl der Offline-Messwerte in der Produktionsphase von Zyklus k [-] , 

für jeden Zyklus k leicht berechnen. Die Koeffizienten sind in Tabelle 10.4 aufgelistet. 

Tabelle 10.4: Koeffizienten der Polynome zur Berechnung von cXLest in der Produktionsphase 

Parameter k ൌ 1 2 3 4 5 

t0k [h] 66,5 127,1 187,1 245,8 305,8 

d0k [gl-1] 28,7 27,9 26,2 27,7 26,5 

d1k [gl-1h-1] -0,495 -0,482 -0,318 -0,564 -0,325 

d2k [gl-1h-2] 6,76·10-2 6,55·10-2 2,55·10-2 7,21·10-2 6,24·10-2 
d3k [gl-1h-3] -4,37·10-4 -4,51·10-4 9,55·10-5 -6,05·10-4 -6,10·10-4 

Unter Verwendung der Zelldichte cXLest lässt sich die Produktkonzentration cP1Mest im Medium, 

in Z L
P1Mest P1Mest P1/X XLest

M M

F (t) F (t) V (t)c (t) c (t) q (t) c (t)
V (t) V (t)


       (10.23) 

mit 

 P1Mest 0k P1M0kc t c , (10.23a) 

durch Simulation dieser Bilanzgleichung berechnen. Die zeitliche Ableitung ergibt sich dann 
direkt aus Gl. (10.23). 
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Die in der Produktionsphase relevante Methanolzufütterrate FR2, 

R2
R2

R2

m (t)F (t)  



 (10.24) 

mit 
mR2  ≔ Masse des Methanolreservoirs [g] 
ρR2  ≔ Dichte des Methanolreservoirs [gl-1] , 

wird analog zu FT2 (Gl. (10.16)) aus dem Signal der Methanolreservoirwaage mR2 ermittelt. 

Die zellspezifische Produktbildungsrate qP1/Xest, 

 P1/Xest P1k P1/Xmaxk P1/Xestq (t) a q q (t)    (10.25) 

mit 

  1
P1/Xest 0kq t 0 h  (10.25a) 

und mit 
aP1k  ≔ Eigenwert der Produktbildungsrate in Zyklus k [h-1] 
qP1/Xmaxk  ≔ maximale Produktbildungsrate in Zyklus k [h-1] , 

wird als P-T1-Element simuliert und stellt damit eine vereinfachte Beschreibung des Induktions-
vorganges dar. 

Die Anpassung des Simulationsverlaufes der Produktkonzentration cP1Mest in der Medienphase 
an die Messwerte der Atline-Analytik erfolgte durch Minimierung des Gütefunktionals JP1k, 

 
Akn 1

2
P1k P1Mest ik P1Mat ik

i 0P1k P1/Xmaxk P1M0k

J min c (t ) c (t )
a , q , c





   (10.26) 

mit 
nAk ≔	Anzahl der Atline-Messwerte des Zielproduktes in Zyklus k [-] 
tik ≔ Atline-Messzeitpunkte innerhalb von Zyklus k [h] , 

für jeden der fünf betrachteten Kultivierungszyklen durch Identifikation der Parameter qP1/Xmaxk, 
aP1k sowie der Startwerte cP1M0k. Diese sind in Tabelle 10.5 dargestellt. 

Tabelle 10.5: Identifizierte Parameter zur Simulation des Zielproduktes 

Parameter k = 1 2 3 4 5 

t0k [h] 66,5 127,1 187,1 245,8 305,8 

aP1k [h-1] 1,34 1,05 0,599 0,810 0,855 

qP1/Xmaxk [h-1] 0,405 0,309 0,186 0,270 0,351 

cP1M0k [mgl-1] 12,6 9,66 5,43 8,51 17,0 

Die Produktkonzentration cP1Mest in den Glycerol-Batch- und Fed-Batchphasen wurde als kon-
stant angenommen und dem identifizierten Startwert cP1M0k in der Produktionsphase des ent-
sprechenden Zyklus gleichgesetzt. 

Geeignete Kalibrierdaten für die zellspezifische AOX-Aktivität gP2/Xest wurden durch lineare 
Interpolation aus den Offline-Messdaten (siehe Abschnitt 3.4.6) erzeugt.  
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10.2.4 Auswahl und Bereitstellung der Prädiktorvariablen 

Als mögliche Prädiktorvariablen wurden zunächst alle online am Prozess erhobenen Größen 
in Betracht gezogen. Hierbei kann es sich beispielsweise um Inline-Messungen von Tempe-
ratur und pH-Wert als auch um Waagensignale der Substrat- und Titrationsvorlagen handeln. 
Auch online leicht berechenbare Größen wie die Ergebnisse der Abgasbilanzierung (z.B. O2-
Eintragsrate QO2) wurden als X-Variablen berücksichtigt. 

Größen, die während des gesamten Prozesses unverändert bleiben, enthalten keine relevan-
ten Informationen zur Vorhersage der Zielgrößen und fallen deshalb als X-Variablen aus. Aller-
dings kommen diese Größen ggf. bei der Berechnung anderer Prädiktoren zum Einsatz. Bei-
spiele sind die Begasungsrate FnG und der Gelöstsauerstoffpegel pO2. 

Weiterhin blieben das Flüssigvolumen VL und der Respirationskoeffizient RQ unberücksichtigt, 
da diese eine Verschlechterung der Vorhersagekraft der multivariaten Modelle verursachten. 
Dies konnte in Voruntersuchungen festgestellt werden. 

Insgesamt kamen 15 Online-Prozessgrößen für die Vorhersage der vorgestellten Zielvariablen 
zum Einsatz. Diese sind in Tabelle 10.6 aufgeführt. 

Tabelle 10.6: Auflistung der eingesetzten Online-Prädiktorvariablen 

j Variable Beschreibung Erzeugung der Werte 

1 EL [AU] Trübung 

Inline-Messungen 
2 cS2M [gl-1] Methanolkonzentration 

3 ϑL [°C] Temperatur 

4 pH [-] pH-Wert 

5 ∆mR1 [g] Masse Glycerolreservoir 
Online-Wägung (Zurücksetzung vor 
jedem Zyklus) 

6 ∆mR2 [g] Masse Methanolreservoir 

7 ∆mT2 [g] Masse Basereservoir 

8 FR1w [lh-1] Glycerolzufütterrate 
Sollwerte von kaskadierten Pumpen 
bzw. Folgeregler 

9 FR2w [lh-1] Methanolzufütterrate 

10 NStw [min-1] Rührerdrehzahl 

11 xOG [-] Sauerstoffgehalt 
Online-Abgasanalysen 

12 xCG [-] Kohlenstoffdioxidgehalt 

13 QO2 [gl-1h-1] O2-Eintragsrate Abgasbilanzierungen mit 
xOGin, xCGin, xOG, xCG, FnG, VL 14 QCO2 [gl-1h-1] CO2-Austragsrate 

15 kLa [h-1] O2-Transferkoeffizient Berechnung aus QO2, ϑL, pG, pO2, xOG 

10.2.5 Erzeugung benötigter Datensätze und Datenvorverarbeitung 

Durch die Generierung simulierter Y-Variablen und die Herkunft der X-Variablen aus Inline- 
und Online-Messungen oder Berechnungen stehen mehrere Tausend Beobachtungen für die 
fünf Zyklen des untersuchten Prozesses zur Verfügung. 
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Da der Rechenaufwand bei der SVR mit der Anzahl n an Beobachtungen stark ansteigt und 
dieses Regressionsverfahren mit der PLSR verglichen werden sollte, wurde die Beobachtun-
gen auf eine Anzahl reduziert, die für eine SVR-Modellerstellung noch praktisch sinnvoll ist. 

Durch lineare Interpolation wurden aus den Vektoren der estimierten Zielgrößen sowie der 
gemessenen X-Variablen insgesamt 380 Zeitpunkte als Beobachtungen für die Modellbildung 
ausgewählt. Diese haben innerhalb der Zyklen jeweils einen Abstand von ca. 45 Minuten. 

Die Prozessgrößen des X-Datenraumes wurden im Folgenden mit Hilfe einer PCA auf Ausrei-
ßer untersucht und zwei Datenpunkte von der Modellbildung ausgeschlossen. Zur Durchfüh-
rung einer externen Validierung wurden die Zyklen 3, 4 und 5 als Kalibrierdatensatz gewählt. 
Die Zyklen 1 und 2 dienen folglich als Validierdatensatz. 

Für beide getesteten Verfahren wurde als Datenvorverarbeitungmethode des X- und des Y-
Datenraums die Autoskalierung gewählt. Im Falle der PLSR wurden die X-Variablen zusätzlich 
mittenzentriert. 

10.3 Ergebnisdarstellung 

10.3.1 Prädiktion von Zustandsgrößen 

Bild 10.3 zeigt die Vorhersagen der Zelldichte cXL sowie der Glycerolkonzentration cS1M mit der 
PLSR im Rahmen einer Kreuzvalidierung. In der Tendenz können die Größen vorhergesagt 
werden, jedoch werden zu Beginn der Zyklen, insbesondere in 3 und 4, die Zelldichte zu 
niedrig und die Glycerolkonzentration zu hoch vorhergesagt. 

 
Bild 10.3: PLSR-Vorhersagen cXLpls und cS1Mpls für den Kalibrierdatensatz 

Die PLSR war somit nicht dazu in der Lage, die exponentiellen Verläufe dieser Zustandsgrö-
ßen mit den gewählten X-Variablen zufriedenstellend abzubilden, da die Vorhersagen eher 
lineare Verläufe zeigen. Zusätzlich wurden Konzentrationen cS1Mest von 0 gl-1 in den Glycerol- 
und den Methanol-Fed-Batchphasen nur schlecht abgeschätzt. 
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Ein besseres Ergebnis lässt sich mit der SVR erzielen. Dies ist in Bild 10.4 dargestellt. Die 
exponentiellen Verläufe beider Zielgrößen können durch die nichtlineare Methode in der Regel 
sehr gut wiedergegeben werden. 

 
Bild 10.4: SVR-Vorhersagen cXLsvr und cS1Msvr für den Kalibrierdatensatz 

Bild 10.5 zeigt im Vergleich dazu die Vorhersagen mit der SVR für den Validierdatensatz. Hier 
weist cS1Msvr zu Beginn beider Zyklen Schwächen auf. Weiterhin wird der Zelldichtezuwachs 
im Glycerol-Fed-Batch des Zyklus 1 als zu stark vorhergesagt. 

 
Bild 10.5: SVR-Vorhersagen cXLsvr und cS1Msvr für den Validierdatensatz 
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Die Unterschiede beider Regressionsmethoden werden bei Betrachtung der folgenden Abbil-
dungen anhand der Prädiktion von cS1M deutlich. Für die PLSR (Bild 10.6a) zeigt sich ein klar 
nichtlinearer Zusammenhang zwischen Vorhersage cS1Mpls und den Referenzwerten cS1Mest. 
Dieser ist im Fall der SVR (Bild 10.6b) wesentlich weniger stark ausgeprägt. Daher ist die SVR 
in diesem Fall besser für die Anwendung auf Online-Prozessdaten geeignet als die PLSR.  

 
Bild 10.6: Vorhergsagen von cS1M aufgetragen gegen ihre Referenzwerte, a) PLSR, b) SVR 

Auch für die Vorhersage der Zielproduktkonzentration cP1M und des zellinternen AOX-Gehaltes 
gP2/X werden unterschiedliche Resultate erzielt. Bild 10.7 zeigt die besseren Vorhersagen mit 
der SVR, während auf eine grafische Darstellung der Ergebnisse mit der PLSR verzichtet wird. 

 
Bild 10.7: SVR-Vorhersagen cP1Msvr und gP2/Xsvr für den Kalibrierdatensatz 
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Eine gute Prädiktion für die Zielproduktkonzentration cP1M wird insbesondere in den Zyklen 3 
und 5 erzielt. Niedrige Konzentrationen in den Wachstumsphasen auf Glycerol sowie der 
exponentielle Anstieg in den Produktionsphasen können sehr gut wiedergegeben werden. 

Der prinzipielle Verlauf des AOX-Gehaltes gP2/Xest ist auch durch die SVR darstellbar. Schwä-
chen zeigt das Modell allerdings bei der Abbildung der Höhe und der exponentiellen Abnahme 
von gP2/Xest zu Beginn der Glycerol-Batchphasen und weist dort auch eher lineare Verläufe auf. 

In Bild 10.8 sind die Vorhersagen von cP1M und von gP2/X der SVR-Modelle für den Validierda-
tensatz gezeigt. Diese weisen sehr ähnliche Verläufe, wie bei der Kreuzvalidierung auf. 

 
Bild 10.8: SVR-Vorhersagen cP1Msvr und gP2/Xsvr für den Validierdatensatz 

Die folgenden beiden Tabellen enthalten abschließend alle Kenngrößen der PLSR-Modelle 
(Tabelle 10.7) und der SVR-Modelle (Tabelle 10.8) für die untersuchten Zustandsgrößen. 

Tabelle 10.7: Kenngrößen von PLSR-Modellen der Zustandsgrößen, nCS ൌ 231, nVS ൌ 147  

 cXL cS1M cP1M gP2/X 

r [-] 5 6 6 6 
2
XR  [-] 0,988 0,978 0,983 0,990 
2
YR  [-] 0,987 0,978 0,971 0,919 
2
cvR  [-] 0,986 0,973 0,968 0,913 

RMSEcv [div.] 1,84 gl-1 2,95 gl-1 18,3 mgl-1 9,61 Ug-1 

RMSEcvrel [%] 2,87 5,47 4,02 8,65 
2
PR  [-] 0,985 0,977 0,972 0,918 

RMSEP [div.] 2,30 gl-1 2,99 gl-1 18,1 mgl-1 9,52 Ug-1 

RMSEPrel [%] 3,58 5,54 3,99 8,56 
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Tabelle 10.8: Kenngrößen von SVR-Modellen der Zustandsgrößen, nCS ൌ 231, nVS ൌ 147 

 cXL cS1M cP1M gP2/X 

nsv [-] 104 86 112 111 

C [-] 4,22 0,962 4,64 3,48 

γ [-] 9,08·10-3 1,14·10-1 4,65·10-3 1,61·10-2 

ε [-] 3,70·10-2 1,17·10-2 7,18·10-2 1,44·10-1 
2
cvR  [-] 0,990 0,993 0,981 0,949 

RMSEcv [div.] 1,59 gl-1 1,50 gl-1 14,4 mgl-1 7,52 Ug-1 

RMSEcvrel [%] 2,49 2,86 3,17 6,77 
2
PR  [-] 0,981 0,995 0,984 0,964 

RMSEP [div.] 2,01 gl-1 1,60 gl-1 14,6 mgl-1 7,71 Ug-1 

RMSEPrel [%] 3,14 2,96 3,21 6,94 

Diese Tabellen zeigen noch einmal eindruckvoll, dass für alle vier Variablen bessere Ergeb-
nisse mit der nichtlinearen Methode SVR erzielt werden konnten. 

10.3.2 Prädiktion zellspezifischer Reaktionsraten 

Die Vorhersagen mittels SVR für die Zellteilungsrate qX/X und die zellspezifische Sauerstoff-
aufnahmerate qO/X sind in Bild 10.9 für den Kalibrierdatensatz gezeigt. 

 
Bild 10.9: SVR-Vorhersagen qX/Xsvr und qO/Xsvr für den Kalibrierdatensatz 
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werte erreichen. Eine Ursache hierfür konnte nicht identifiziert werden. Möglich ist jedoch, dass 
das reale Verhalten eher diesem Verlauf entspricht, als dem der idealisierten Trainingsdaten.  

Bei der externen Validierung, gezeigt in Bild 10.10, sind diese Schwankungen etwas stärker 
ausgeprägt. Bei der Verwendung eines unabhängigen Testsets sind jedoch höhere Fehler zu 
erwarten. Insgesamt wird die Zellteilungsrate zufriedenstellend abgebildet. 

 
Bild 10.10: SVR-Vorhersagen qX/Xsvr und qO/Xsvr für den Validierdatensatz 

Die Sauerstoffaufnahmerate qO/X kann hervorragend wiedergegeben werden. Abgesehen von 
Zyklus 1 des Validierdatensatzes werden sehr gute Übereinstimmungen mit den Referenz-
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getroffen. In diesen Prozessabschnitten zeigen sich die höchsten Abweichungen im Zyklus 1 
der externen Validierung (Bild 10.12). 

Die Vorhersage der Zielproduktbildungsrate qP1/X zeigt dagegen in Zyklus 2 des Validierdaten-
satzes den größten Fehler. Der Grund für dieses Verhalten könnte in der individuellen Erzeu-
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Bild 10.11: SVR-Vorhersagen qSi/Xsvr und qP1/Xsvr für den Kalibrierdatensatz 

 
Bild 10.12: SVR-Vorhersagen qSi/Xsvr und qP1/Xsvr für den Validierdatensatz 
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In den folgenden beiden Tabellen sind die Kenngrößen der PLSR-Modelle (Tabelle 10.9) und 
der vorgestellten SVR-Modelle (Tabelle 10.10) für die zellspezifischen Reaktionsraten qI/X 
abschließend aufgeführt. 

Auch bei der Vorhersage von qI/X erzielt die SVR die besseren Ergebnisse als die PLSR. 

Tabelle 10.9: Kenngrößen von PLSR-Modellen für die zellspezifischen Reaktionsraten qI/X 
nCS ൌ 231, nVS ൌ 147 

 qX/X qO/X qS1/X qS2/X qP1/X 

r [-] 4 5 4 4 5 
2
XR  [-] 0,962 0,981 0,959 0,961 0,968 
2
YR  [-] 0,925 0,904 0,935 0,955 0,935 
2
cvR  [-] 0,915 0,890 0,931 0,953 0,930 

RMSEcv [h-1] 1,91·10-2 9,61·10-3 2,98·10-2 9,26·10-3 3,09·10-5

RMSEcvrel [%] 8,10 6,91 8,62 8,05 9,80 
2
PR  [-] 0,936 0,809 0,961 0,959 0,954 

RMSEP [h-1] 2,17·10-2 1,41·10-3 3,14·10-2 9,25·10-3 3,79·10-5

RMSEPrel [%] 9,20 10,1 9,03 8,04 12,0 

Tabelle 10.10: Kenngrößen von SVR-Modellen für die zellspezifischen Reaktionsraten qI/X 
nCS ൌ 231, nVS ൌ 147 

 qX/X qO/X qS1/X qS2/X qP1/X 

nsv [-] 59 86 104 31 74 

C [-] 87,5 311 19,6 28,7 652 

γ [-] 5,11·10-2 3,76·10-2 3,48·10-1 4,65·10-2 1,75·10-2 

ε [-] 7,69·10-2 3,45·10-2 1,55·10-2 7,69·10-2 3,22·10-2 
2
cvR  [-] 0,979 0,973 0,962 0,994 0,964 

RMSEcv [h-1] 9,70·10-3 4,77·10-3 2,20·10-2 3,18·10-3 2,26·10-2 
RMSEcvrel [%] 4,11 3,43 6,33 2,76 7,16 

2
PR  [-] 0,973 0,935 0,966 0,996 0,962 

RMSEP [h-1] 1,32·10-2 9,14·10-3 2,57·10-2 3,15·10-3 3,22·10-2 
RMSEPrel [%] 5,58 6,57 7,38 2,74 10,2 
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11. Zusammenfassung 

Die Process Analytical Technology (PAT) Initiative der U.S. Food and Drug Administration 
(FDA) empfiehlt den Einsatz fortschrittlicher Analysensysteme in pharmazeutischen Produk-
tionsprozessen. Durch den Nachweis einer gesteigerten Prozesskenntnis und einer wissens-
basierten Prozessführung sollen Zulassungsverfahren beschleunigt und durch den Einsatz 
technischer Innovationen die Produktqualität sichergestellt werden. 

Als erste Aufgabe dieser Arbeit wurde die Entwicklung eines Qualitätsbewertungssystems für 
Hefeextrakte, basierend auf Messungen mit NIR-Spektroskopie und multivariater Klassifizie-
rung vorgenommen. Eine solche Prüfung von Rohmaterialien stellt eine typische PAT-Anwen-
dung dar.  

Die Methode Soft Independent Modelling of Class Analogy (SIMCA) brachte ein sehr gutes 
Klassifikationsmodell hervor, dessen Fehler EC für alle drei untersuchten Hefeextraktsorten 
unter 1,5 % liegt. Der Schwachpunkt hierbei war das nur in begrenztem Umfang vorhandene 
Probenmaterial. 

Der überwiegende Teil dieser Arbeit widmet sich der Beobachtung von pharmazeutischen 
Kultivierungsprozessen der methylotrophen Hefe Pichia pastoris zur Herstellung des poten-
tiellen Malariavakzins D1M1H. 

Dabei wurden nicht direkt bestimmbare Prozessgrößen über spektroskopische Messungen 
und multivariate Kalibrierverfahren online quantifiziert. Diese Erweiterung des Bioprozess-
monitorings erhöht das Prozessverständnis und stellt damit einen wichtigen Schritt bei der 
Etablierung von PAT dar.  

In einem ersten Abschnitt dieses Arbeitspaketes wurden im Rahmen einer Machbarkeitsstudie 
die NIR-, die Raman- und die 2D-Fluoreszenzspektroskopie hinsichtlich Ihrer Eignung bei der 
Vorhersage von fünf Bioprozessgrößen mit der multivariaten Regressionsmethode Partial 
Least Squares (PLSR) in einem zyklischen Produktionsprozess untersucht und verglichen. 

Die spektralen Messungen fanden hier zunächst offline, also nach Abschluss des Prozesses 
statt. Aufgrund des Verzichts auf Inline-Messung wurden dadurch einige Störquellen, wie die 
Begasung in Verbindung mit einer starken Durchmischung des Bioreaktors, ausgeschlossen. 
Weiterhin erlaubte die Offline-Methode eine Untersuchung des Einflusses der Zellen auf die 
PLSR-Modelle. 

Diese Arbeiten brachten optimale Einstellungen für Kalibriermodelle, beispielsweise hinsicht-
lich der Vorverarbeitung der Spektren, des gewählten Spektralbereiches sowie der Anzahl zu 
berechnender PLS-Komponenten, hervor. 

Gute Ergebnisse mit relativen Vorhersagefehlern RMSErel von ൏ 5 % konnten für die Zelldichte 
cXL mit allen getesteten Spektroskopiearten erreicht werden. Die niedrigsten Fehler für Kon-
zentrationen von Glycerol (cS1L) und Ammonium (CAltotL) in der Flüssigphase L wurden dagegen 
mit Raman-Spektroskopie erzielt. Dabei stellt die Vorhersage von cS1L mit einem Fehler von 
3,3 % ein besonders gutes Ergebnis dar. 

Die 2D-Fluoreszenzspektroskopie ergab die besten Resultate bei der Vorhersage der Gesamt-
proteinkonzentration cPtotM in der Medienphase mit einem Fehler von 6,7 %. Auch die Prädik-
tion der zellspezifischen Alkoholoxidaseaktivität gP2/X war mit diesem Messverfahren möglich. 
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In einer weiteren Phase dieser Arbeit wurden die Erkenntnisse der Machbarkeitsstudie auf den 
Online-Betrieb am Bioreaktor mit spektroskopischer Inline-Messung in einem zweistufigen 
Produktionsprozess übertragen. 

Die Modellbildung für cXL und cS1L fokussierte sich auf die Raman-Spektroskopie. Neben der 
linearen Regressionsmethode PLSR wurde dabei auch das nichtlineare Verfahren Support 
Vector Regression (SVR) erprobt. Die SVR erlaubte eine Verbesserung der Vorhersage im 
Vergleich mit der PLSR und erreichte für beide Variablen sehr gute Ergebnisse mit Fehlern 
von etwa 3 %. 

Während eine Übertragung der Vorhersage obiger Variablen auf den Online-Betrieb erfolg-
reich war, schlug die Umsetzung der Quantifizierung der Gesamtproteinkonzentration cPtotL 
und von gP2/X leider fehl. Eine wahrscheinliche Ursache liegt in dem hohen Einfluss der Zell-
dichte auf die spektralen Messungen und damit auf die Leistung der Kalibriermodelle. 

Die prinzipielle Eignung gebildeter Online-PLSR-Modelle für eine prozesstechnische Anwen-
dung unter PAT-Gesichtspunkten konnte durch die Regelung der Glycerolkonzentration cS1L, 
basierend auf Raman-Messungen, aufgezeigt werden. 

Hierzu erfolgten zunächst eine theoretische Beschreibung des Regelungsproblems und die 
Entwicklung einer Strategie mit einer Störgrößenaufschaltung und einer adaptiven Nachfüh-
rung der Reglerparameter zur Kompensation der nichtlinearen Streckendynamik. 

Dies wurde mit Hilfe einer umfangreichen Prozess-EDV umgesetzt, in der die PAT-Software 
SIMATIC SIPAT für die Steuerung und Ausführung von Berechnungen sowohl der spektralen 
Regelgröße cS1Lram mit der MVDA-Software SIMCA-Q als auch für die adaptive Steuerung der 
Zufüttertrajektorie FR1k und des Reglerparameters TIk mit MATLAB® verantwortlich ist. 

Sowohl im aperiodischen Grenzfall ohne Schwingungen als auch mit einer gewählten Perio-
dendauer TP im Schwingfall war eine Regelung von cS1L für einen Zeitraum von etwa drei Stun-
den erfolgreich. Im weiteren Verlauf beider Experimente versagte die Glycerolmessung mit 
Raman-Spektroskopie, was auf eine zu starke Beeinflussung des Kalibriermodells durch die 
exponentiell ansteigende Zelldichte zurückzuführen ist. 

Zum Abschluss dieser Arbeit wurde die Anwendung der MVDA auf nichtspektroskopische Pro-
zessdaten untersucht. Ziel dabei war ebenfalls die Vorhersage nicht direkt messbarer Variab-
len zur Erweiterung des Prozessmonitorings. 

Hierbei kamen 15 klassische Inline- und Online-Messgrößen, wie beispielsweise Waagensig-
nale oder das Ergebnis einer Abgasbilanzierung, anstelle der Spektren zum Einsatz. Multiva-
riate Kalibriermodelle für neun verschiedene Zielgrößen wurden daraus mit den Verfahren 
PLSR und SVR erstellt. 

Insbesondere mit der nichtlinearen SVR konnten sehr gute Ergebnisse erzielt werden. So 
lagen relative Vorhersagefehler RMSErel für die Zelldichte cXL sowie die Konzentrationen von 
Glycerol cS1M und des Zielproduktes cP1M in der Medienphase bei etwa 3 %. 

Auch die Vorhersage des Verlaufes zellspezifischer Reaktionsraten war auf diesem Wege 
möglich. Die geringste Abweichung zeigte die Methanolaufnahmerate qS2/X mit 2,7 %. Die Bil-
dungsrate qP1/X des Zielproduktes konnte mit einem Fehler von 10,2 % immer noch zufrieden-
stellend wiedergegeben werden. 
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12. Anhang 

12.1 Kulturmedien 

Als Vorkultur-, Bioreaktor- und Refreshmedium kamen die drei in Tabelle 12.1 gezeigten Vari-
anten des Grundsalzmediums FM22 zum Einsatz. Das verwendete Medium sowie die zu Pro-
zessbeginn eingesetzte Glycerolkonzentration cS1M0 sind vom Prozessschritt bzw. der 
Reaktoranlage abhängig und können Tabelle 12.2 entnommen werden. 

Die Zugabe der Biotin- und PTM4-Stammlösungen erfolgt nach der Sterilisation des Mediums 
bei 121 °C für mindestens 20 min. 

Tabelle 12.1: Varianten des Kulturmediums FM22, modifiziert nach [STRATTON et al., 1998] 
(Grundsalzmedium ohne Kohlenstoffquelle) 

Komponente 
Konzentration [gl-1] 

Variante 1 Variante 2 Variante 3 

KH2PO4 25,7 7,00 12,9 

(NH4)2SO4 5,00 5,00 2,50 

K2SO4 8,60 2,00 4,30 

CaSO4 · 2 H2O  1,40 0,80 0,70 

MgSO4 · 7 H2O 16,4 8,00 8,20 

Na3-citrate · 2 H2O 5,90 5,00 2,90 

Biotin-Stammlsg. 8,0 mll-1 8,0 mll-1 8,0 mll-1 

PTM4-Stammlsg. 4,0 mll-1 4,0 mll-1 4,0 mll-1 

 
Tabelle 12.2: Medienvarianten und Glycerolkonzentrationen cS1M0 

Prozessschritt Medien-
variante 

Konzentration 
[gl-1] 

Vorkultur 1 30,0 

Batch C10 2 54,0 

Produktion C10 2 0 

Startup ED10 3 47,6 

Zyklus ED10 3 43,6 

Zyklus C30 3 0 

Die Rezepturen der Stammlösungen sind in Tabelle 12.3 gegeben. Nach dem Ansatz in der 
angegebenen Reihenfolge erfolgt eine Sterilfiltration mit 0,22 μm Porendurchmesser und eine 
Lagerung der Stammlösungen bei 4 °C. 

Tabelle 12.4 enthält eine Auflistung eingesetzter Zusatzstoffe und Reservoir-Konzentrationen. 
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Tabelle 12.3: Spurenelement- und Vitaminstammlösungen 

PTM4  Biotin 

Komponente Konzentration  Komponente Konzentration 

CuSO4 · 5 H2O  2,0 gl-1  C10H16N2O3S  0,20 gl-1 

NaI  8,0·10-2 gl-1    

MnSO4 · H2O  3,0 gl-1    

Na2MoO4 · 2 H2O  0,20 gl-1    

H3BO4  2,0·10-2 gl-1    

CaSO4  0,50 gl-1    

CoCl2 · 6 H2O  0,50 gl-1    

ZnSO4 · 7 H2O  7,0 gl-1    

FeSO4 · 7 H2O  22 gl-1    

H2SO4 (96 %)  1,0 mll-1    

Tabelle 12.4: Eingesetzte Zusatzstoffe und Reservoirkonzentrationen 

Reservoir Symbol Substanz Konzentration 

R1 (Glycerol) cS1R1 C3H8O3 400 - 600 gl-1 

R2 (Methanol) cS2R2 CH3OH 790 gl-1 

T1 (Säure) - H3PO4 2,0 M 

T2 (Base) - NH4OH 12,5 % 

AF (Antischaum) - Struktol® J673 100 % 

12.2 Kultivierungsbedingungen 

Gewählte Kultivierungsbedingungen sind Tabelle 12.5 und Tabelle 12.6 zu entnehmen. 

Tabelle 12.5: Typische Sollwerte geregelter Prozessgrößen im BIOSTAT® C10 

Prozesssollwerte Symbol Batch Fed-Batch Induktion 

Methanolkonzentration cS2Mw [gl-1] 0 0 1,0 

Begasungsrate FnGw [lmin-1] 12 12 12 

Überdruck im Kopfraum pGw [mbar] 0 0 0 

pH-Wert pHw [-] 5,0 5,0 5,6 

relativer Gelöstsauerstoffgehalt pO2w [%] 25 25 25 

Temperatur der Flüssigphase ϑLw [°C] 30 30 22 
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Tabelle 12.6: Sollwerte in der zweistufigen Anlage (abweichend zum BIOSTAT® C10) 

Prozesssollwerte Symbol Batch 
(ED10) 

Induktion 
(ED10) 

Induktion
(C30) 

Begasungsrate FnGw [lmin-1] 10 10 25 

Überdruck im Kopfraum pGw [mbar] 500 500 500 

12.3 Reaktionskinetische Parameter 

Reaktionskinetische Parameter des in dieser Arbeit verwendeten Pichia pastoris Stammes zur 
Herstellung von D1M1H sind Tabelle 12.7 zu entnehmen. 

Tabelle 12.7: Zeitinvariante Reaktionsparameter für zellspezifische Reaktionsraten und Aus-
beutekoeffizienten des D1M1H-Produktionsstammes nach [MARTENS, 2014]  

Parameter 
Substrat 

Glycerol (i ൌ 1) Methanol (i ൌ 2) 

qiX/Xmax [h-1] 0,240 4,13·10-2 

qiX/Xm [h-1] 1,35·10-2 - 

qSi/Xmax [h-1] 0,286 0,102 

qSi/Xm [h-1] 1,52·10-2 - 

yX/Simax [-] 0,840 0,406 

yX/Sigr [-] 0,887 - 

qiO/Xmax [h-1] 0,112 8,64·10-2 

qiO/Xm [h-1] 9,60·10-3 - 

yiX/Omax [-] 2,14 0,478 

yiX/Ogr [-] 2,47 - 

12.4 Offline-Messungen 

Bestimmung des Gesamtproteingehalts (Bradford-Test) 

Zur Bestimmung der Gesamtproteinkonzentration cPtotMoff wurde ein Bradford-Test in Mikroti-
terplatten durchgeführt. Lösungen: 

A  Standards:  Quick StartTM Bovine γ-Globulin Standard Set (Bio-Rad) 

B  Reaktionslösung:  Quick StartTM Bradford Dye Reagent (Bio-Rad) 

Unter Verwendung von A wurde im Bereich von 12,5 bis 200 μgml-1 BGG in PBS eine Kali-
briergerade erstellt. Es wurden 20 μl Leerprobe (PBS), Standard oder Probe (ggf. verdünnt in 
PBS) mit 300 μl B gemischt, wobei jeweils eine Dreifachbestimmung durchgeführt wurde. 
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Zellaufschluss 

Zur Bestimmung des intrazellulären Gehaltes an Alkoholoxidase gP2/X wurde zuvor ein mecha-
nischer Zellaufschluss unter Verwendung von Glas-Beads® (Carl Roth) mit 0,5 mm Durch-
messer durchgeführt. Lösungen: 

A Aufschlusspuffer: 1 mM EDTA in PBS 

B Zellsuspension:  100 gl-1 Zellen in A 

C Aufschlussansatz: 1 g Glasbeads, 100 μl B in 900 μl A 

D Proteaseinhibitor: 1 mM PMSF in C, kurz vor Gebrauch ansetzen 

Nach Ansetzen der jeweiligen Lösung A wurden die Zellpellets darin für 10 min bei 2.000 rpm 
auf einem Vibrax resuspendiert (Lösung B). Aus der Zellsuspension erfolgte eine BTM-Be-
stimmung sowie die Herstellung von Lösung C in Mikroreaktionsgefäßen.  

Unter Verwendung von Proteaseinhibitoren (D) wurden die Zellen für 20 min bei 2.000 rpm auf 
einem Vibrax aufgeschlossen. Nach Zentrifugation für 30 min bei 14.000 min-1 und 4 °C konnte 
der Überstand für die jeweilige Analyse verwendet oder bei -20 °C gelagert werden. 

AOX-Bestimmung 

Nach einem mechanischen Zellaufschluss erfolgt die Bestimmung der Aktivität von Alkohol-
oxidase in einem enzymatischen Assay. Lösungen: 

A Kaliumphosphatpuffer: 100 mM KPi 

B Wasserstoffperoxid: 0,003 % H2O2, kurz vor Gebrauch ansetzen 

C Peroxidase: 2.500 Uml-1, aliquotiert bei -20 °C lagern 

D Reaktionslösung: 2,2 mM ABTS, 5 % B, 0,05 % C in A 
kurz vor Gebrauch ansetzen 

E Substratlösung: 1 % Methanol in A 

Es wurden jeweils 50 μl Probe (in geeigneter Verdünnung in A) in einer Mikrotiterplatte mit 
200 μl D gemischt und 0,5 h bei 30 °C inkubiert. Die Reaktion wurde durch Zufügen von 50 μl 
E gestartet und die Absorption bei 405 nm in einem Mikroplattenphotometer (Sunrise, Tecan) 
über 4,5 min alle 30 s gemessen. 
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