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Y Ausbeutekoeffizient der Komponente | aus Komponente J 997
Ay Massenverhaltnis von feuchten zu trockenen Zellen 997
EanTs molarer Extinktionskoeffizient von ABTS [lumolem™
9 Dampfungsgrad [-]
9, Temperatur in der Flussigphase [°C]
A Wellenlange [nm]
M Zellwachstumsrate h]
v Wellenzahl [cm™]
Pwr Pz Dichte des Teilsystems K, Dichte feuchter Zellen g
o Abklingkonstante h]
) Kreisfrequenz h™
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XIl

Nomenklatur

Prozessrelevante Indizes

Komponenten

Ac Saure (acid)

AF Antischaum (anti foam)
AIR Luft

Al Base (alkali)

C, C0O2 Kohlenstoffdioxid

N2 Stickstoff

0, 02 Sauerstoff

Teilsysteme

A Analyse, Aufschlussansatz
B Puffersystem

G Gasphase

H Ernte (harvest)

L Flussigphase (Kulturbriihe)
M Medienphase (Uberstand)
Laufindizes

i Substrate, Zeitpunkte

j Zeitpunkte

k Batches/Zyklen, Zeitpunkte

Zustande, Orte

0
ap
at
cdw
em
est
ex
fia
flu

max
min

Anfangsbedingung
aperiodisch

atline
Biotrockenmasse
Emission

estimiert

Anregung (exitation)
FlieRinjektionsanalyse
2D-Fluoreszenz
Wachstumsanteil (growth)
gemessen mit HPLC
Integration

Eingang (inlet)
Erhaltungsstoffwechsel
maximal

minimal

P1
P2
Ptot
S1
S2

R1
R2
R3

T
T2

nir
off
on

op

pls

ram
rel

svr
tot

turb

Zi
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D1M1H (Zielprodukt)
Alkoholoxidase (AOX)
Gesamtprotein
Glycerol (Substrat 1)
Methanol (Substrat 2)
Biotrockenmasse
Biofeuchtmasse

Glycerolvorlage
Methanolvorlage
Medienvorlage
Probe (sample)
Saurevorlage
Basevorlage

Reaktoren
Zeitpunkte

Normbedingungen
Nahinfrarot

offline

online

Arbeitspunkt (operating point)
proportional, Periodendauer
vorhergesagt mit PLSR
Regler

Raman

relativ

Strecke

vorhergesagt mit SVR

total

Tribung (turbidity)

Sollwert

Stoérgrole
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Nomenklatur Xl

Matrizen und Vektoren in der MVDA

B (m xv) PLS-Regressionskoeffizientenmatrix

b; (m x 1) Spaltenvektor mit PLS-Regressionskoeffizienten

D (n xm) Datenmatrix (Spektren oder Prozessdaten)

d; (nx1)  Spaltenvektor der Datenmatrix D

E (n xm) Residuenmatrix des X-Datenraums

F (n xv)  Residuenmatrix des Y-Datenraums

G (n xv)  Residuenmatrix des PLS-Regressionsansatzes

M (n xv)  Messdatenmatrix (ZielgroRen bei der PLSR)

P (m xr) Loadingmatrix des X-Datenraums

P, (m x 1) Loading-Spaltenvektor der Komponente | (X-Daten)

Q (vxr) Loadingmatrix des Y-Datenraums

q, (vx1) Loading-Spaltenvektor der Komponente | (Y-Daten)

T (nxr) Scorematrix des X-Datenraums

t (nx1)  Score-Spaltenvektor der Komponente | (X-Daten)

U (nxr) Scorematrix des Y-Datenraums

u, (nx1)  Score-Spaltenvektor der Komponente | (Y-Daten)

w (m x 1)  Wichtungs-Spaltenvektor der Entscheidungsfunktion (SVR)
w (m xr)  Weightmatrix eines PLSR-Modells

w, (m x 1) Weight-Spaltenvektor der Komponente |

X (n xm) modifizierte Datenmatrix (Spektren oder Prozessdaten)
X; (nx1) Spaltenvektor der Datenmatrix X

Y (n xv)  modifizierte Messdatenmatrix (ZielgroRen bei der PLSR und SVR)
Y (nx1)  Spaltenvektor der Messdatenmatrix Y

MVDA-relevante Bezeichnungen

b Bias der Entscheidungsfunktion (SVR)

(¢} Glteparameter zur Wichtung der Fehler bei der SVR

c Koeffizient der inneren Beziehung eines PLSR-Modells
DModX Distanz zum Modell im X-Datenraum (Ausrei3erdetektion)
Ec Klassifizierungsfehler [%]

F Wert einer F-Verteilung

g Trennebene, Entscheidungsfunktion (SVR)

K Kernel-Funktion (SVR)

L, Ly Lagrange-Funktional (SVR)

m Anzahl an Variablen/Spalten in der Datenmatrix X

n Anzahl an Zeilen in der Datenmatrix X

ny (allgemein) Anzahl an Beobachtungen in der Gruppe K

r Anzahl an Komponenten/Spalten in der Scorematrix T

Riv Giute der Vorhersage der Kreuzvalidierung (cross validation cv)
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XIV Nomenklatur

R?, Giite der Vorhersage der externen Validierung (prediction P)
Ri Glte der Anpassung/erklarter Anteil der Varianz (Datenraum X)
Rf, Gte der Anpassung/erklarter Anteil der Varianz (Datenraum Y)

RMSEcv Vorhersagefehler bei der Kreuzvalidierung [div.]
RMSEP Vorhersagefehler bei der externen Validierung [div.]

Ml Radius einer Hotelling T?Ellipse in Richtung der Komponenten |
S Spanne zwischen den Eingangsdaten (SVR)

Sgi Zeilenstandardabweichung bezogen auf Datenmatrix D
S Spaltenstandardabweichung bezogen auf Datenmatrix D
Se Sensitivitat eines Klassifikators

Sp Spezifitét eines Klassifikators

SSY MaR fir den Anteil erklarter Varianz des Y-Datenraums
T2 Hotelling T2-Wert (AusreiRerdetektion)

v Anzahl an Variablen/Spalten in der Datenmatrix Y

VIP Variable Importance on Projection (Variablenselektion)
a Irtumswahrscheinlichkeit einer statistischen Hypothese
o, B; Lagrange-Multiplikatoren der Beobachtung i (SVR)

Bk Wahrscheinlichkeit der Zugehdrigkeit zu einer Klasse K
% Parameter des Gaufi'schen RBF-Kernels (SVR)

Fehlertolerenz-Parameter bei der SVR

MVDA-relevante Indizes

Laufindizes

i Beobachtungen, Objekte | Haupt-/PLS-Komponenten
j X-Variablen z Beobachtungen (SVR)

h Y-Variablen

Weitere Indizes und Zustinde

Arithmetrischer Mittelwert opt optimal
" Modellschatzwert p positiv (Klassenzugehdorigkeit)
abs absolut nor normiert
av Mittelwert (average) n negativ (Klassenzugehdrigkeit)
crit kritischer Wert mc mittenzentriert
CS Kalibrierdatensatz f falsch (Klassifizierung)
cv Kreuzvalidierung de1 erste Ableitung
P Vorhersage (prediction) t wahr (Klassifizierung)
PS Vorhersagedatensatz sV Stutzvektor (support vector)
rel relativ tot total
snv SNV-gefiltert uv autoskaliert (unit variance)
te temporar VS Validierdatensatz
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Kurzfassung XV

Kurzfassung
Jan-Patrick VoR

Anwendung spektroskopischer Messverfahren
und Multivariater Datenanalyse zur Bewertung
und Beobachtung von Bioprozessen

Die Process Analytical Technology (PAT) Initiative empfiehlt den Einsatz fortschrittlicher Ana-
lysensysteme in der pharmazeutischen Produktion. Die vorliegende Arbeit beschreibt wichtige
Schritte bei der Etablierung von spektroskopischen Messverfahren in Bioprozessen.

Ein erstes Ziel war die Entwicklung eines Qualitdtsbewertungsverfahrens fir Hefeextrakte, ba-
sierend auf NIR-Spektroskopie und multivariater Klassifizierung. Die gewahlte Methode Soft
Independent Modelling of Class Analogy (SIMCA) fihrte mit einem Klassifizierungsfehler von
1,5 % zu einem sehr guten Ergebnis.

Ein Uberwiegender Teil dieser Arbeit widmete sich der Beobachtung zyklischer Kultivierungs-
prozesse der methylotrophen Hefe Pichia pastoris zur Herstellung des potentiellen Malaria-
vakzins D1M1H. Hierbei wurde die Quantifizierung von Zelldichte und AOX-Gehalt sowie Gly-
cerol-, Ammonium- und Produktkonzentration mit Partial Least Squares Regression (PLSR),
basierend auf NIR-, Raman- und 2D-Fluoreszenzspektren zunachst offline erprobt.

Im Anschluss erfolgte eine Ubertragung der erarbeiteten Methoden auf den Online-Betrieb.
Dabei kam neben der PLSR auch das nichtlineare Verfahren Support Vector Regression
(SVR) zum Einsatz. Dieses verbesserte unter anderem die Bestimmung der Glycerolkonzen-
tration mit Raman-Spektroskopie und erreichte einen Vorhersagefehler von ca. 3 %.

Zur Regelung von Glycerol wurden Raman-Spektren und PLSR erfolgreich eingesetzt und
damit die technische Relevanz der multivariaten Kalibrierung iber eine reine Prozessbeob-
achtung hinaus demonstriert. Die Realisierung erfolgte mit einer StérgréRenaufschaltung und
einer ergédnzenden adaptiven Regelung der Abweichungen vom Sollwert.

Bei der technischen Umsetzung kamen mit SIMATIC SIPAT, Umetrics SIMCA und MATLAB®
eine Reihe industrierelevanter Softwarepakete innerhalb einer komplexen Prozess-EDV in
einem zweistufigen Produktionsprozess zum Einsatz.

Den Abschluss dieser Arbeit bildet die Anwendung multivariater Kalibrierverfahren auf nicht-
spektroskopische Online-ProzessgroRen. Hierbei wurden die obigen biotechnologischen Vari-
ablen uber 15 klassische Online-MessgrofRen eines Bioreaktorprozesses ermittelt. Eine Bereit-
stellung geeigneter Trainingsdaten erfolgte durch Simulation und Parameteridentifikation von
Modellen mit Massenbilanzen zur Glattung von Offline-Analysen.

Die daraus resultierende Bestimmung der Zielproduktkonzentration erreichte mit der nicht-
linearen SVR einen Vorhersagefehler von 3,2 %. Die Quantifizierung zellspezifischer Reak-
tionsraten fiir Zellmasse, Glycerol, Methanol, Sauerstoff und Produkt war auf diesem Wege
ebenfalls erfolgreich. Mit einem Fehler von 2,7 % war die Pradiktion der Aufnahmerate von
Methanol am besten.

Schllsselworte: Bioprozessmonitoring; Spektroskopie; Multivariate Datenanalyse; Chemo-
metrie; Process Analytical Technology; Pichia pastoris; Malariaimpfstoff
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XVI Abstract

Abstract
Jan-Patrick Vo

Application of spectroscopic measurement methods
and multivariate data analysis for evaluation
and monitoring of bioprocesses

The Process Analytical Technology (PAT) initiative proposes the application of advanced ana-
lysis systems in pharmaceutical production. This work describes important steps in establish-
ing spectroscopic measurement methods in bioprocesses.

A first objective was the development of a quality evaluation system for yeast extracts based
on NIR-spectroscopy and multivariate classification. The selected method Soft Independent
Modelling of Class Analogy (SIMCA) gave excellent results by obtaining a classification error
of 1.5 %.

Most of the work was dedicated to the monitoring of cyclic cultivation processes of the methylo-
trophic yeast Pichia pastoris for production of the potential malaria vaccine D1M1H. First,
quantification of cell density, AOX content as well as glycerol, ammonia and product concen-
tration with Partial Least Squares Regression (PLSR) based on NIR-, Raman- and 2D-fluores-
cence spectra was tested off-line.

A transfer of developed methods to the on-line operation took place subsequently. Besides
PLSR, the non-linear method Support Vector Regression (SVR) was also used on-line and
enabled the improvement of glycerol determination with Raman-Spectroscopy. A prediction
error of approx. 3 % was achieved.

For glycerol control, Raman spectra and PLSR were successfully applied, thus demonstrating
the technical relevance of multivariate calibration beyond mere process monitoring. The imple-
mentation was carried out with a feed-forward control and an additional adaptive compensation
of the deviations from the setpoint.

A complex data processing system, involving software with industrial relevance like SIMATIC
SIPAT, Umetrics SIMCA and MATLAB®, was used for the technical implementation in a two-
stage production process.

In conclusion of this work, multivariate calibration methods were applied to non-spectroscopic
on-line process data. Here, the biotechnological variables mentioned above were determined
using 15 classical on-line measurements of a bioreactor process. Suitable training data was
provided by smoothing off-line measurements via simulation of models with mass balances
and parameter identification.

The resulting determination of target protein concentration with the non-linear SVR obtained
an error of 3.2 %. In addition, quantification of cell specific reaction rates for cell mass, glycerol,
methanol, oxygen and product was also successful in this context. With an error of 2.7 %,
prediction of methanol uptake performed the best.

Keywords: bioprocess monitoring; spectroscopy; multivariate data analysis; chemometrics;
Process Analytical Technology; Pichia pastoris; malaria vaccine
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Einleitung und Zielsetzung 1

1. Einleitung und Zielsetzung

1.1 PAT — Ein Werkzeug moderner pharmazeutischer Produktion

Die Herstellung pharmazeutischer Produkte unterliegt strengen Vorschriften durch Zulas-
sungsbehérden wie der U.S. Food and Drug Administration (FDA) und der European Medi-
cines Agency (EMA). Dabei stehen die Gewabhrleistung einer hohen reproduzierbaren Qualitat
und Effizienz der Arzneimittel und damit die Sicherheit des Patienten im Vordergrund.

Auch kleinere Anderungen bestehender Produktionsprozesse bediirfen, auch bei technischen
Fortschirtten, daher einer Genehmigung durch die FDA. Dem steht die Industrie aufgrund des
damit verbundenen hohen finanziellen Aufwandes kritisch gegentber. In der Vergangenheit
hat dieser Umstand die Implementierung neuer Technologien und wissenschaftlicher Erkennt-
nisse in die Herstellung von Pharmaka nahezu unterbunden [RATHORE & WINKLE, 2009].

In den Jahren 2002 und 2003 kiindigte die FDA den Start zweier Initiativen an, um Innovatio-
nen in den Unternehmen zu férdern und regulatorische Hirden dabei zu mindern [BONDI &
DRENNEN, 2011]. Die finale Version der Initiative ,Pharmaceutical CGMPs for the 21 Century
- A Risk-Based Approach” aus dem Jahre 2004 beschreibt einen systematischen Entwick-
lungsansatz der Herstellung von Pharmaka bei dem die Qualitdt des Produktes bereits bei
dessen Herstellung sichergestellt werden soll [FDA, 2004b].

Eine fundamentale Annahme dieses Quality by Design (QbD) genannten Konzeptes liegt
darin, dass die Produktqualitat von der Prozessvariabilitdt abhangt und nur dann gesichert
werden kann, wenn kritische Quellen dieser Variabilitat identifiziert, verstanden und kontrolliert
werden kénnen [JAIN, 2014; Yu et al., 2014].

Aus diesem Grund verdffentlichte die FDA zur Unterstilitzung der QbD-Initiative den Indus-
trieleitfaden ,PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing
and Quality Assurance”, der die Einbindung moderner Analyse- und Kontrollverfahren in die
Prozessentwicklung behandelt [FDA, 2004a].

Beide Konzepte sind bereits international anerkannt und adaptiert, was durch eine Reihe von
nachfolgenden Richtlinien der International Conference on Harmonization (ICH) dokumentiert
wurde [ICH, 2005, 2008, 2009]. Die FDA hat damit einen starken Paradigmenwechsel in der
pharmazeutischen Produktion angestof3en.

Die Process Analytical Technology (PAT) Richtlinie beruht auf prozessbegleitenden, mdéglichst
zeitnahen Messungen kritischer Qualitats- und Leistungskenngréflen von Rohmaterialien,
Zwischen- und Endprodukten sowie des ablaufenden Prozesses selbst. Sie dient damit der
wichtigen Erzeugung von Produkt- und Prozessverstandnis [JUNKER & WANG, 2006; GLASSEY
etal., 2011].

Das Ziel von PAT ist letztlich eine Regelung von ProzesskenngréRen, um damit die finale Pro-
duktqualitat ggf. dynamisch korrigieren zu kdénnen. Das Resultat soll der Real-Time Release
(RTR) sein, bei dem die Qualitat des Produktes nicht am Ende der Herstellung durch Labor-
analysen nachgewiesen werden muss, sondern bereits durch den Prozessverlauf sicher-
gestellt ist [STREEFLAND et al., 2013; RATHORE, 2014].
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2 Einleitung und Zielsetzung

PAT stellt daher auch eine Sammlung an Werkzeugen (PAT Tools) zur Realisierung des QbD-
Konzeptes dar [GLASSEY et al., 2011]. Wie in Bild 1.1 angedeutet, werden insbesondere mo-
derne Prozessanalysatoren sowie multivariate Analyseverfahren zur Beherrschung groRer
Datenmengen empfohlen und geférdert [FDA, 2004a].

Bild 1.1: Werkzeuge und Ziele der PAT-Richtlinie [VALERO, 2013]

In der chemisch-pharmazeutischen Industrie sind bereits einige einfache Prozesse, wie z.B.
Vermahlungen oder Tablettierungen unter PAT-Aspekten zugelassen. Aus dem biopharma-
zeutischen Sektor sind dagegen nur sehr wenige Anwendungen bekannt [STREEFLAND et al.,
2013; RATHORE, 2014].

Als Ursache gilt weithin die hohe Komplexitét biotechnologischer Kultivierungsprozesse, von
denen die Produktqualitdt maRgeblich beeinflusst wird. Die Begasung und Durchmischung ae-
rober Prozesse, komplexe Kulturmedien, die Zellen selbst sowie nichtlineare Verlaufe und Ab-
hangigkeiten der Prozesse erschweren eine robuste Messung relevanter Variablen. Eine hohe
Stamm- und Prozessspezifitat sowie Inhomogenitéten im groBen MafRstab stehen einer indus-
triellen Umsetzung zusétzlich im Wege [MERCIER et al., 2014; SIMON et al., 2015].

1.2 Zielsetzung dieser Arbeit

Das Ziel dieser Arbeit ist, einen Beitrag zur PAT-Initiative zu leisten. Dabei stand die Anwen-
dung spektroskopischer Messverfahren und der Multivariaten Datenanalyse (MVDA) als PAT-
Werkzeuge im Fokus.

Eine erste Aufgabenstellung bestand in der Entwicklung eines Qualitdtsbewertungssystems
fiir verschiedene Hefeextrakte, basierend auf Nahinfrarotspektroskopie (NIRS). Hefeextrakte
kommen als Medienbestandteil in Kultivierungsprozessen zum Einsatz und haben durch ihren
hohen Nahrstoffgehalt einen starken Einfluss auf das Wachstum der Zellen sowie die Produk-
tivitat des Prozesses [KEIL & TILKINS, 2013; MOSSER et al., 2013].

Da jedoch eine Abhangigkeit von der Produktcharge besteht, ist eine Qualitétsprifung des
Rohmaterials notwendig. Durch den Einsatz der NIRS und der MVDA sollte daher unter PAT-
Aspekten ein schnelles Verfahren entwickelt werden, das keine aufwendigen Laboranalysen
erfordert.
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Am Forschungs- und Transferzentrum fiir Bioprozess- und Analysentechnik der HAW Ham-
burg wurden unter der Leitung von Prof. Dr.-Ing. R. Luttmann in den letzten Jahren zyklische
Prozesse zur Herstellung des potentiellen Malariavakzins D1M1H mit der methylotrophen Hefe
Pichia pastoris aufgebaut [MARTENS, 2014; FRICKE, 2014; LOGERING, 2015] und unter QbD-
sowie PAT-Aspekten weiterentwickelt und untersucht [FRICKE, 2014; BORCHERT, 2015].

Diese Arbeit sollte an die vorangegangen Forschungsergebnisse unter PAT-Gesichtspunkten
ankniipfen. Daher beschaftigt sich ein Uberwiegender Teil mit der Online-Beobachtung der
zyklischen Produktionsprozesse. Hierbei sollten nicht direkt online bestimmbare Variablen
durch spektroskopische Messungen und mit Hilfe multivariater Kalibrierverfahren abgeschatzt
werden.

In einem ersten Schritt dieses Arbeitspaketes erfolgte anhand von spektralen Offline-Messun-
gen mit den Methoden Nahinfrarot, Raman sowie 2D-Fluoreszenz eine Machbarkeitsstudie
zur Quantifizierung ausgewahlter ZielgroRen. Hierbei handelt es sich um die Zelldichte (cy)
sowie um die Konzentrationen in der Flissigphase von Glycerol (cg,, ), Ammonium (C,, ) und
sekretiertem Gesamtprotein (cp,, ). Weiterhin sollte auch die Bestimmung des zellinternen Ge-
haltes g, eines Stoffwechselenzyms der Hefe getestet werden. Als multivariates Regres-
sionsverfahren kommt dabei Partial Least Squares (PLSR) zum Einsatz.

Durch die Offline-Analysen werden Stérquellen, wie beispielsweise die Begasung in Verbin-
dung mit einer Durchmischung des Bioreaktors, ausgeschlossen. Zuséatzlich ist eine Untersu-
chung des Einflusses von Zellen auf die multivariaten Kalibriermodelle mdglich. Die
Untersuchungen sollten daher optimale Einstellungen, beispielsweise hinsichtlich der Vorver-
arbeitung der Spektren oder des gewahlten Spektralbereiches, hervorbringen.

In einem zweiten Schritt waren erfolgreiche Methoden und gewonnene Erkenntnisse auf den
Online-Betrieb zu Ubertragen. Zur Kompensation erwarter Storeinflisse sollte hier auch die
nichtlineare Regressionsmethode Support Vector Regression (SVR) erprobt und mit der PLSR
verglichen werden.

Als weiterer Schritt zur Etablierung einer PAT-Anwendung wurde die Regelung der Glycerol-
konzentration ¢4, mit spektroskopischer Messung und PLSR zum Ziel gesetzt. Hierbei sollten
eine StoérgroRenaufschaltung sowie eine Adaption der Reglerparameter zum Einsatz kommen,
um das stark nichtlineare Prozessverhalten zu kompensieren.

Im letzten Teil dieser Arbeit war die Anwendung der multivariaten Regressionsverfahren PLSR
und SVR auf nichtspektroskopische Prozessdaten auszuweiten. Ziel dabei war, ebenfalls eine
Vorhersage nicht direkt messbarer Variablen zur Erweiterung des Prozessmonitorings nach
PAT-Gesichtspunkten ohne komplexe spektrale Messungen zu erreichen.

Neben ZustandsgrofRen wie der Zelldichte, Substrat- oder Produktkonzentrationen sollte hier-
bei auch die Bestimmung zellspezifischer Reaktionsraten, wie beispielsweise die Zielprodukt-
bildung qgp,x, néher untersucht werden. Hierflr standen eine Reihe von Inline- und Online-
MessgroRen, wie beispielsweise Waagensignale oder die Ergebnisse einer Abgasbilanzierung
aus hochinstrumentierten Bioreaktoren zur Verfiigung.
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4 Mikro- und molekularbiologische Grundlagen

2. Mikro- und molekularbiologische Grundlagen

21 Das potentielle Malariavakzin D1M1H als Zielprodukt

Malaria ist eine der gefahrlichsten Infektionskrankheiten des Menschen. Trotz eines Rickgan-
ges von Infektionen und Todesfallen erkrankten im Jahr 2015 schatzungsweise 214 Millionen
Menschen. Fiir 438 Tausend Patienten verlief die Krankheit todlich [WHO, 2015].

An der Entwicklung méglicher Impfstoffe wird seit Jahrzehnten intensiv geforscht. Dennoch ist
bisher kein Vakzin kommerziell erhaltlich. Mit Mosquirix™, einem Produkt der Fa. Glaxo-
Smith-Kline, Brentford, UK, erhielt der erste Malariaimpfstoff im Juli 2015 eine Zulassung der
Europaischen Arzneimittel-Agentur (EMA) [EMA, 2015].

Der Erreger Plasmodium nutzt eine Reihe von Mechanismen, um dem menschlichen Immun-
system zu entgehen. Hieraus erwachsen Schwierigkeiten bei der Entwicklung eines umfas-
send wirksamen Impfstoffes. Insbesondere weisen mdogliche Antigene eine hohe Diversitat
zwischen den Stammen einer Spezies auf. Eine Vakzinierung mit entsprechendem Antigen ist
daher nicht gegen die gesamte Spezies, sondern nur stammspezifisch wirksam [KENNEDY et
al., 2002; HEALER et al., 2004].

Hexahistidin

Bild 2.1: Komponenten und vereinfachte Struktur von D1M1H [MARTENS, 2014]

Bei dem in Bild 2.1 gezeigten artifiziellen Konstrukt D1M1H handelt es sich um ein potentielles
Malariavakzin, das in dieser Arbeit als Zielprotein dient. Es hat eine Molekilmasse von 63 kDa
und besteht aus den drei Komponenten D1, M1 und H wobei letztere flir einen Hexahistidin-
schwanz (His-Tag) steht. Dieser vereinfacht die Aufreinigung und Quantifizierung des Produk-
tes mit der Metallchelat-Affinitatschromatographie (IMAC).

Die Komponenten D1 und M1 sind von den Oberflachenproteinen Apical Membrane Antigen 1
(PfAMA1) und Merozoite Surface Protein 1 (PfMSP1) abgeleitet. Sie entstammen Plasmodium
falciparum, dem Erreger der besonders schweren Malaria tropica. Es handelt es sich um zwei
aussichtsreiche Kandidaten méglicher Impfstoffe, die jedoch den beschriebenen Polymorphis-
mus aufweisen [NIKODEM & DAVIDSON, 2000; KOCKEN et al., 2002; MITCHELL et al., 2004].

Am Biomedical Primate Research Centre (BPRC), Rijswijk, Niederlande, wurde deshalb ein
sogenannter Diversity-Covering (DiCo) Ansatz entwickelt, der fir das PfAMA1 drei Varianten
(D1, D2, D3) hervorbrachte. Diese decken den natirlichen Polymorphismus des Oberflachen-
proteins zu 97 % ab [REMARQUE et al., 2008].
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Durch Kombination der DiCo-Proteine mit zwei Versionen (M1, M2) eines 19 kDa schweren
Fragmentes von PfIMSP1 wurden darlber hinaus artifizielle Fusionsproteine geschaffen, die
einen héheren Immunisierungserfolg erzielen als die Verabreichung einzelner Varianten der
Antigene [FABER et al., 2007, 2013].

Zugunsten einer Produktivitatssteigerung mit dem gewahlten Expressionssystem Pichia pas-
toris wurde das sich ergebende Gesamtkonstrukt D1M1D2M2D3 auf die beiden Untereinhei-
ten D1M1 und D2M2D3 aufgeteilt. Der Nachteil hierbei besteht in der Notwendigkeit, ein geeig-
netes Vakzingemisch zu entwickeln [MARTENS, 2014].

Eine detaillierte Beschreibung der Entwicklung und Eigenschaften der obigen Malariavakzin-
kandidaten befindet sich in [MARTENS, 2014].

2.2 Das eingesetzte Expressionssystem

2.21 Die methylotrophe Hefe Pichia pastoris

Die zu der Abteilung Ascomycota gehérende Hefe Pichia pastoris ist ein einzelliger Mikroorga-
nismus und eines der wichtigsten biotechnologischen Wirtssysteme zur Herstellung artfremder
Proteine.

Seit 1993 kann Pichia pastoris in akademischen Forschungs- und Entwicklungsarbeiten lizenz-
frei eingesetzt werden und gehért dadurch zu den am besten charakterisierten Expressions-
systemen. Weiterhin zeichnet sich die Hefe durch eine sehr gute Handhabbarkeit hinsichtlich
gentechnischer Arbeiten sowie ihrer Kultivierung aus [HIGGINS & CREGG, 1998].

Weitere Vorteile von Pichia pastoris bei der Produktion rekombinanter Proteine bestehen zum
einen in der Fahigkeit zur Sekretion, wodurch sich die Aufreinigung des Zielproduktes verein-
facht. Zum anderen beherrscht die eukaryotische Hefe viele posttranslationale Modifikationen
und ist dadurch in der Lage, die meisten Proteine in ihrer biologisch aktiven Form herzustellen
[CREGG et al., 2000].

Es handelt sich um einen fakultativ methylotrophen Organismus. Dies bedeutet, das Methanol
als einzige Kohlenstoff- und Energiequelle genutzt werden kann. Fir eine Verwertung von
Methanol ist das Enzym Alkoholoxidase (AOX) hauptverantwortlich. Die Expression von AOX
wird durch Methanol selbst induziert. Andere Substrate wie zum Beispiel Glucose oder
Glycerol hemmen dagegen den Methanolstoffwechsel und werden bevorzugt metabolisiert
[ELLIS et al., 1985].

Die Hefe besitzt zwei Gene, die fiir zwei Varianten der Alkoholoxidase (AOX1, AOX2) kodie-
ren. Bei Wachstum auf Methanol kann AOX bis zu 30 % des gel6sten zellinternen Proteins
ausmachen. Die Ursache ist eine geringe Affinitat des Enzyms zum Edukt Sauerstoff, was mit
einer verstarkten Expression kompensiert wird. Verantwortlich hierfiir ist der sehr starke Pro-
motor P,.y,, der die Transkription des AOX1 kontrolliert. Letzteres ist somit fur den GroRteil
des Methanolstoffwechsels verantwortlich [KouTz et al., 1989].

Unterstellt man der Kontrolle dieses Promotors das Gen eines heterologen Proteins kann
Pichia pastoris fur dessen biotechnologische Herstellung genutzt werden. Man erhalt dann ein
Expressionssystem, das sich besonders durch hohe Produktausbeuten auszeichnet. Durch
den Induktionsmechanismus mit Methanol ist die Proteinexpression aulRerdem steuerbar, was
eine flexible Prozessfiihrung ermdéglicht [TSCHOPP et al., 1987; ROMANOS, 1995].
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222 Transformation des Organismus

Die gentechnische Modifizierung von Pichia pastoris erfolgte mit dem kommerziellen Vektor-
system Invitrogen™ pPICZaA der Fa. Thermo Fisher Scientific, Waltham, USA.

Nach der Klonierung des Zielgens in das ringférmige Plasmid, dessen Amplifikation in Esche-
richia coli erfolgt, sowie einer nachfolgenden Linearisierung des Vektors, ist eine Einschleu-
sung des genetischen Materials in Pichia pastoris durch Elektroporation vorzunehmen. Bild
2.2 zeigt schematisch den Ablauf der Transformation.

Prox1 go-F)D1IM1H, TT; Zeocin™ Linearized vector

l Transformation via electroporation

Paox1 go-F{D1M1H; TT | Zeocin™ y ARG4 § TT

Pichia pastoris phenotype Muf

Bild 2.2:  Transformation von Pichia pastoris KM71H zur Erzeugung eines Produktions-
stammes mit dem Phanotyp Mut® [MARTENS, 2014]

Das Plasmid enthalt einen GroRteil der Sequenz des AOX1-Promotors (P,q,) in deren Bereich
es zu einer Anlagerung an die homologe Wirts-DNA kommt. Durch ein sogenanntes Crossover
wird die Expressionscassette stabil in das Genom von Pichia pastoris integriert [TSCHOPP
etal., 1987; HIGGINS & CREGG, 1998].

Neben der Gensequenz des Zielproduktes D1M1H wird aulRerdem ein sekretorisches Signal
(a-F) fur dessen Ausschleusung sowie eine AOX1-Transkriptionsterminationssequenz (TT)
und ein Zeocin™-Resistenzgen fiir die Isolation erfolgreicher Transformanden in das Erbgut
der Hefe eingebracht.

In der vorliegenden Arbeit kam der Stamm Pichia pastoris KM71H zum Einsatz. Bei diesem
ist das AOX1-Gen durch eine Fremdsequenz (ARG4) ersetzt worden. Ein solcher Organismus
kann Methanol nur noch mit Hilfe des AOX2 verwerten. Dies auRert sich in einer geringeren
Wachstumsrate auf diesem Substrat. Der entsprechende Phanotyp der Hefe wird daher
methanol utilization slow (Mut®) genannt [HIGGINS & CREGG, 1998].
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3. Eingesetzte Bioprozesstechnik
31 Kultivierung von Pichia pastoris
3141 Der klassische Herstellungsprozess rekombinanter Proteine

Der in Bild 3.1 gezeigte klassische Prozessverlauf zur Herstellung rekombinanter Proteine mit
Pichia pastoris besteht aus drei Phasen.

In einem ersten Abschnitt wachsen die Zellen (c,, ) unlimitiert auf dem Primérsubstrat Glycerol
(cgqm)- Dieses wird zu Beginn in einer bestimmten Menge vorgelegt und bis zum Ende der
Batchphase vollsténdig verbraucht. In dem darauffolgenden Fed-Batch findet substratlimitier-
tes Wachstum statt. Durch ein exponentielles Profil der Glycerolzufiitterrate F, wird die Zell-
teilungsrate p in dieser Phase limitiert, aber konstant gehalten.

Die beiden ersten Prozessphasen werden somit zur Erzeugung von Zellmasse genutzt.

Jpax CxL Csim Csam Apim

[Ug Mgl [g1"][gl] [AU] fed

batch i
15071001 354 5.07 1.0 batch a”° prOdltlllcuon

)
R QR0
AR NN
g XRIY

120-{ 804 28-4.0- 0.8+
904 60 21-3.090.64

604 401 14-2.09 0.4+

304 204 7-1.090.24

o
3
=
0- 0- 0-0.0-0.0 @
PO, Fri 0
% [mih] th]
Bild 3.1: Beispiel eines klassischen Produktionsprozesses mit Pichia pastoris

Durch eine Dereprimierung des AOX-Promotors unter glycerollimitierten Bedingungen kann
eine Adaption der Zellen an die Verwertung von Methanol beschleunigt werden [HIGGINS &
CREGG, 1998]. Deswegen dient der Glycerol-Fed-Batch auch der Vorbereitung der Induktion
in der nachfolgenden Produktionsphase.

Im diesem Prozessabschnitt wird die Expression und Sekretion des Zielproduktes (A;,,,) durch
Zufitterung des Sekundarsubstrates Methanol induziert. Die Regelung der Methanolkonzen-
tration cg,, vermeidet eine Substratlimitierung in der Produktionsphase.

Die maximale Wachstumsrate auf Methanol erreichen die Zellen jedoch erst nach vollstandiger
Umstellung des Metabolismus. Dieser ist Gber den zellinternen AOX-Gehalt g, beobachtbar.

Eine Auflistung typischer Sollwerte geregelter GroRRen sowie die Zusammensetzung des ver-
wendeten Kulturmediums befinden sich im Anhang.
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3.1.2 Intensivierung der Produktion durch zyklische Prozessfiihrung

Die maximal mégliche Dauer einer Produktionsphase und damit die Produktausbeute sind bei
der oben beschriebenen Fahrweise aus verfahrenstechnischen Griinden oder aufgrund einer
mdglichen Produktinstabilitat begrenzt [MARTENS, 2014].

Als Folge davon missten kurze Prozesse durchgefiihrt werden, die jedoch einen hohen Vor-
bereitungsaufwand mit sich bringen, der wiederum hohe Kosten verursacht. Deshalb wurden
zyklische Prozessflihrungsstrategien entwickelt, die ausfiihrlich in [MARTENS, 2014] beschrie-
ben werden.

Diese repetitive Fahrweise sieht eine mehrfache Wiederholung der vorgestellten Prozesspha-
sen ohne Neustart der Kultivierung vor. Dies wird dadurch realisiert, dass nach einer unvoll-
standigen Ernte ein Rest der Kulturbriihe im Bioreaktor verbleibt und mit frischem Medium
verdiinnt als Inokulum eines weiteren Zyklus dient.

Bei der in dieser Arbeit verwendeten Kultivierungsstrategie erfolgt zusatzlich vor Beginn einer
jeden Produktionsphase (l1l) eine Verdinnung der Kulturbriihe auf eine einheitliche Zelldichte.
Dies ist in Bild 3.2 gezeigt.

9pox  CxL Csam Cpim
[Ug T [gr (g [gi™]

cycle 1 cycle 2
150~ 755.071.0
T M S m ]
(), ’
K 4
120- 60-4.040.8- Ot 4 Y,
904 4543.0
604 3042.0
304 1541.01 )
g
C o
04 040.040.0-Foomeaniieeg : ; i : A
42 62 82 102 122 142 162

Csm
[gl"] t[h]
Bild 3.2: Zyklische Prozessfihrung zur Herstellung von D1M1H

Durch die identischen Startbedingungen bei einer zyklischen Produktion eignet sich diese
Fahrweise auch fiir eine Prozessoptimierung mit statistischer Versuchsplanung (DoE)
[MARTENS, 2014]. Eine vollstédndige Deaktivierung des Methanolstoffwechsels in den Glycerol-
Batch- und Fed-Batchphasen bewirkt zudem eine Regeneration der Zellen, was eine lang-
fristige Aufrechterhaltung einer derartigen Prozessfiihrung ermdglicht [FRICKE, 2014].
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3.2 Die verwendete Bioreaktoreinheit

Fir einen GroRteil der experimentellen Arbeiten wurde ein hochinstrumentierter Bioreaktor
vom Typ BIOSTAT® C10 der Fa. B. Braun Biotech International, Melsungen, eingesetzt. Das
Arbeitsvolumen des Edelstahl-Rihrkesselreaktors betragt 10 I. Bild 3.3 zeigt den eingesetzten
Bioreaktor mit seiner erweiterten peripheren Ausstattung.

4 L
Bild 3.3: Hochinstrumentierter Forschungsbioreaktor BIOSTAT® C10

Eine Regelung der StandardmessgréRen Temperatur 9, pH-Wert, Begasungsraten F,, Rih-
rerdrehzahl Ng, Druck p; und Geldstsauerstoffgehalt pO, erfolgt lber eine digitale Kontroll-
einheit (Mikro-DCU).

Die SCADA-Software Multi Fermenter Control System for Windows (MFCS/win) der Fa. Sar-
torius Stedim Biotech, Guxhagen, ermdglicht Gber eine zugeschnittene Prozess-EDV eine Da-
tenerfassung und Datenverarbeitung sowie eine ibergeordnete Steuerung des Bioreaktor-
systems. Sie erlaubt darliber hinaus die Einbindung weiterer peripherer Gerate.

Beispielsweise verfligt der Bioreaktor zur vollstdndigen Bilanzierung des Prozesses Uber eine
Reihe von Waagen. Tabelle 3.1 enthalt eine Aufstellung der beteiligten Prozessgréfen und
der vorhandenen peripheren Ausstattung der Anlage.

Auf die Funktionsweise der erweiterten Messtechnik und auf die notwendige Prozessautoma-
tisierung wird im nachsten Abschnitt eingegangen.
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Tabelle 3.1: Ausstattung des BIOSTAT® C10

ProzessgroRe Symbol Hersteller/Typ
Methanolkonzentrafion ORIt il
rekombinantes Zielprodukt Chimat VWR-Hitachi LaChrom Elite®, Saule:
(Atline-HPLC) GE Healthcare HisTrap™ Fast Flow
Schaum im Reaktorkopfraum D B. Braun Biotech kapazitive Sonde
Trabung der Kulturbriihe = optek-Danulat ASD25-BT-N-5
zellfreie Probenahme Fa TRACE Filtrationssonde, Gilson Minipuls 3
Ernterate Fy Watson-Marlow 604U, max. 165 min™
Begasungsrate Luft Foar Bronkhorst High Tech MFC, 0 - 20 Imin™’
Begasungsrate N, Fonz Bronkhorst High Tech MFC, 0 - 20 Imin™’
Begasungsrate O, Fro2 Bronkhorst High Tech MFC, 0 - 20 Imin™
Glycerolzufutterung Fr Watson-Marlow 101U/R, max. 32 min™
Methanolzufltterung Fro Watson-Marlow 101U/R, max. 32 min™'
Refreshmedienzugabe Frs Watson-Marlow 503U, max. 220 min™
Masse Erntetank my, Sartorius LP32000 S, max. 32 kg
Masse Flissigphase m, Sartorius F300 S, max. 303 kg
Masse Glycerolreservoir Mg, Sartorius BA 2100, max. 2.1 kg
Masse Methanolreservoir mg, Sartorius LP16000 S, max. 16 kg
Masse Saurereservoir mo, Sartorius BA 2100, max. 2.1 kg
Masse Basereservoir my, Sartorius QA7DCE-S, max. 7.5 kg
Ruhrerdrehzahl Ng, 3 x Sechsblatt-Scheibenruhrer,

Antrieb: Heidolph, 1.240 W, max. 1.500 min™
Druck im Reaktorkopfraum Ps Phillips P13, 0 - 2,0 bar
pH-Wert pH Hamilton EasyFerm PLUS K8 160, pH 0 - 14
relativer Geléstsauerstoffpegel PO, Mettler-Toledo PN 52200103
Abgas-Stoffmengenanteil CO,  xqq, BlueSens BCP-CO2, 0 - 25 %
Abgas-Stoffmengenanteil O, Xop BlueSens BCP-02, 0 - 50 %
Flussigphasentemperatur 9 B. Braun Biotech Pt100
Doppelmanteltemperatur p, B. Braun Biotech Pt100
3.3 Erweiterte MSR- und Automatisierungstechnik

3.31

Automatisierungsaufgaben

Durch Orientierung an der in Abschnitt 3.1.2 vorgestellten zyklischen Kultivierungsstrategie
lassen sich drei wesentliche Arbeitsschritte identifizieren, die nicht allein mit der Standardin-
strumentierung zu bewaltigen sind:
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¢ |Initialisierung und Steuerung der substratlimitierten Glycerolzufiitterung Fg,
¢ Regelung der Methanolkonzentration cg,,, in der Produktionsphase
o Durchfiihrung von Harvest- und Refreshoperationen F,, bzw. F,

Daher ist der Bioreaktor mit einer, in Bild 3.4 beispielhaft gezeigten, erweiterten mess- und
verfahrenstechnischen Ausstattung versehen, die eine Durchfiihrung der notwendigen Ope-
rationen erlaubt.

Vi Fu I~
l A agltaég;r:rzﬁ)eed pO, control
X
Qop <] ofaas oz Ng Ij pO,,

Qcor=

F oz RQ balance o @
T Xco2 N, pO,

nOZ/NZ
Xozin XCOQm
Av product c
) P iMat
detection

A\Rw CSZM
nMR
E. cell density c
estimation i
FRZW CSZMW
Fro - mFrz
B A\
04>pH FTZw
i
R oo H Fri
Fe il pHA,,
o-—a
% K FT!
Mg, My,
methanol base
feed harvest
refresh
algorithm -
mRi _T’\
glycerol acid

feed media

refresh

Bild 3.4:  MSR Struktur des BIOSTAT® C10

In den folgenden Abschnitten werden die genannten Automatisierungsaufgaben sowie die
Uber eine Standardinstrumentierung hinausgehende Messtechnik kurz vorgestellt. Detaillierte
Beschreibungen der einzelnen Methoden finden sich in einer Reihe vorangegangener Arbeiten
[CORNELISSEN, 2004; PEUKER, 2006; KAISER, 2010; MARTENS, 2014; FRICKE, 2014; LOGERING,
2015; ELLERT, 2015; BORCHERT, 2015].

3.3.2 Der substratlimitierte Glycerol-Fed-Batch

Fir die automatische Aktivierung einer Glycerol-Fed-Batchphase ist zunachst eine Bestim-
mung des Startzeitpunktes t, notwendig. Hierbei ermdglicht eine Uberwachung des Gelost-
sauergehaltes pO, die Erkennung des Batchendes.

Ein plétzlicher Anstieg des geregelten pO, offenbart eine starke Reduktion des Sauerstoffbe-
darfs, die von dem vollstandigen Verbrauch des Substrates am Ende einer Batchphase her-
ruhrt. Ab diesem Zeitpunkt sollen substratlimitierte Bedingungen durch Steuerung der zellspe-
zifischen Wachstumsrate p,,,; auf Glycerol (Substrat S1) eingestellt werden.
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Die Realisierung erfolgt mit einer exponentiellen Nachfiihrung des Sollwertes F,,, der Gly-
cerolzufltterung,

My - (t —
Fan(t) = Foy-e ™ ( J), (3.1)

der mit seinem Startwert F,;,

(H1wj * Yxsigr 'qs1/><m)

Frij = Fa (tj) = O Wy (32)
Yx/s1gr " Cstr1

mit

t := Startzeitpunkt einer exponentiellen Zufitterungsphase [h]
Fry = Zufutterrate aus Reservoir R1 zum Startzeitpunkt t; [Ih"]
Hn, = Sollwert der geforderten Wachstumsrate bei t, [h]
¢y, = Zelldichte beit g
vy := Volumen der Fliissigphase bei t; 1
dsyxm = zellspezifische Glycerolaufnahmerate fiir den Erhaltungsstoffwechsel [h"]
Yustgr = Glycerol-Ausbeutekoeffizient fiir den Zellzuwachs []
Ceiry = Glycerolkonzentration im Reservoir R1 o',

online berechenbar ist. Die dafiir bendtigten reaktionskinetischen Parameter ggy,, und Yys1q
wurden der Arbeit von Martens [MARTENS, 2014] entnommen und sind im Anhang gegeben.

Das Reaktionsvolumen V/; lasst sich durch Wagung der Flissigphase zum Zeitpunkt t; online
bestimmen. Die Abschatzung der Zelldichte c,; erfolgt ebenfalls online und wird mit der im
nachsten Abschnitt vorgestellten Tribungsmessung realisiert.

Fir die Detektion des Batchendes und die Umsetzung der nachfolgenden p-Steuerung kam
ein in Visual Basic programmiertes Zusatzprogramm (MFCS-Tool) zum Einsatz. Dieses ist in
[ELLERT, 2015] naher beschrieben.

3.3.3 Online-Estimierung der Zelldichte

Mit einer Sonde der Fa. optek-Danulat, Essen, wird in der Flissigphase des Bioreaktors eine
Tribungsmessung durchgefiihrt. Diese beruht maRgeblich auf einer Abschwachung von Nah-
infrarotstrahlung durch dispergierte Zellen.

Aus dem Triibungssignal E, wird die Zelldichte ¢y,

S (t) = k,-(eF2 ELO) _y) (3.3)
mit

E, := Tribung der Flissigphase [AU]
K, = Zelldichteparameter o]
k, = Tribungsparameter [AUT,

mit Hilfe eines Exponentialansatzes approximiert.

Die Parameter k, und k, der nichtlinearen Kennlinie sind postexperimentell durch eine Anpas-
sung von ¢y, ., an den Verlauf der offline ermittelten Zelldichte ¢, ., zu bestimmen.
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Dies erfolgt durch Minimierung der Fehlerquadrate mit dem Simplex-Algorithmus von Nelder
und Mead [NELDER & MEAD, 1965] mit der Software MATLAB®, The Mathworks, Natick, USA.
Ein beispielhaftes Ergebnis ist in Bild 3.5 gezeigt.

a) CxL b) ¢y
9" lo"]
h .
3.01 95 batcl fb production 5
Jg phase k9" k, [AUT]
2.4 764 90" 76 batch 0.5638 1.891
fed batch 0.0368 3.198
184 57 57 production 0.0682 2.868
1.2 38- S 38-
0.6 191 194
0.04 0+~ : T T

i o4 80 9 112 128 05 10 15 20 25
t[h] E, [AU]
Bild 3.5:  Bestimmung der Zelldichte c,,,, durch Trlibungsmessung
a) Kultivierungsverlauf, b) Kennlinien der Triibungsanpassung

Durch eine Abhéangigkeit des Triibungssignals E, von der Rihrerdrehzahl Ng, sowie aufgrund
einer Morphologieénderung der Zellen bei Wechsel des Substrates empfiehlt es sich, die Be-
stimmung eines Parametersatzes fiir jede Prozessphase getrennt vorzunehmen.

Durch Implementierung von Gl. (3.3) und Hinterlegung der Parameter k, und k, in MFCS/win
steht damit eine Online-Bestimmung der Zelldichte zur Verfligung.

3.34 Inline-Messung und Regelung der Methanolkonzentration

Fir die Messung der Methanolkonzentration cg,,, kam eine Flachmembransonde der Fa. Bio-
technologie Kempe, Kleinmachnow, zum Einsatz. In [ELLERT, 2015] findet sich eine detaillierte
Beschreibung der zugrunde liegenden Messmethode.

Methanol diffundiert Gber eine Silikonmembran aus der Flissigphase des Bioreaktors in den
Innenraum der Sonde, wo es mit einem Tragergasstrom zu einem Gassensor (TGS2620) der
Fa. FIGARO Engineering, Osaka, Japan, transportiert wird.

Das Messprinzip beruht auf einer Veranderung der elektrischen Leitfahigkeit des Sensormate-
rials durch reduzierende Verbindungen. Daher Iasst sich der messbare elektrische Widerstand
fur die Bestimmung der Methanolkonzentration heranziehen.

Die Aufrechterhaltung einer konstanten Methanolkonzentration cg,,, in der Produktionsphase
wird unter Verwendung eines Pl-Regelalgorithmus in MFCS/win umgesetzt. Das SCADA-Sys-
tem unterstitzt hierfir die Einrichtung digitaler Regler.

3.3.5 Atline-Quantifizierung des Zielproduktes

In einer Induktionsphase ist vor allem die prozessnahe Beobachtung der Produktbildung von
groRem Interesse. Zu diesem Zweck kam eine Atline-HPLC zum Einsatz, deren Messaufbau
in Bild 3.6 gezeigt ist.
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Bild 3.6: FlieBschema der Atline-HPLC zur Detektion des Zielproduktes, [MARTENS, 2014]

Uber eine Filtrationssonde (ESIP) der Fa. TRACE Analytics, Braunschweig, wird das Chroma-
tographiesystem (VWR-Hitachi, Radnor, USA) mit einem zellfreien Probenstrom aus dem Bio-
reaktor versorgt. Nach der Injektion der Probe erfolgt zunachst eine Entsalzung und Umpuf-
ferung mit einer GroRenausschlusssaule (HiTrap™ Desalting, 5 ml, GE Healthcare, Chalfont
St. Giles, UK). Danach bindet das Zielprodukt mit seinem His-Tag an eine Affinitadtssaule
(Nickel-IMAC, HisTrap™ Crude FF, 1 ml, GE Healthcare).

Eine zweistufige Elution erlaubt die Quantifizierung sowohl des Zielproteins als auch auftre-
tender Spaltprodukte. Die Detektion erfolgt photometrisch im UV-Bereich bei einer Wellen-
lange von 280 nm.

Die Entwicklung und Funktionsweise der Atline-Chromatographiemethode wird ausfihrlich in
[MARTENS, 2014] dargestellt.

3.3.6 Realisierung der zyklischen Fahrweise

Fir eine Umsetzung der Ernte- und Refresh-Operationen ist der Bioreaktor mit einem Medien-
und einem Erntetank ausgestattet. Letzterer, sowie der Bioreaktor selbst, befinden sich auf
Waagen (Sartorius, Gottingen).

Durch Uberwachung der Waagensignale sowie eine Ansteuerung zweier Pumpen (Watson-
Marlow, Wilmington, USA) wird eine automatische Durchfiihrung der Prozeduren erreicht. Die
Programmierung der dafiir notwendigen Algorithmen erfolgt als Rezept nach dem ANSI/ISA
S88 Standard in MFCS/win.

3.3.7 Abgasanalyse und Gasbilanzen

In der Abgasstrecke der Anlage sind Gasanalysatoren der Fa. BlueSens gas sensor, Herten,
fur Sauerstoff und Kohlenstoffdioxid installiert. Das Messprinzip des Sauerstoffsensors basiert
auf einer elektrochemischen Sauerstoffpumpzelle. Die Messung des Kohlenstoffdioxids erfolgt
dagegen uber die Absorption von Infrarotstrahlung bei zwei Wellenlangen.
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Mit Kenntnis der Begasungsrate F , des Reaktionsvolumens V, sowie der Stoffmengenanteile
Xog UNd X im Ein- und Austritt der Begasung l&sst sich eine Bilanzierung der beteiligten Gas-
komponenten O, und CO, durchfiihren.

Die Bestimmung der volumetrischen Sauerstoffeintragsrate Q,,

'Xoem(t)'['l — Xoo()] = Xoa(t)-[1 = Xggin(1)]

Qop(t) = Qopmax(t) ; (34)
02 02ma 1= Xog(t) — Xgo(t)
und der Kohlenstoffdioxidaustragsrate Q,,
X (0'[1 — Xogi (t)] — Xcai (t)'[1 - XOG(t)]
Qeoz(t) = Quogmax(t) == . " , (35)
co2 CO2ma; 1= Xog(t) — Xgo(t)
mit ihren jeweiligen Maximalwerten Q...
Fs(t)-M
Q t) = e L 3.6
lmaX( ) VnM VL(t) ( )
mit
Quax = theoretisch maximale volumetrische Eintragsrate, | = 02, CO2 [g"'h ™
M, = molare Masse, | = 02, CO2 (32 gmol™, 44 gmol™)
Xiain := Stoffmengenanteil in der Begasung, | = O (O,), C (CO,) [
X := Stoffmengenanteil im Abgas, | = O (O,), C (CO,) []
Fo := Gesamtbegasungsrate unter Normbedingungen [Ih7]
Vo := molares Normvolumen (22,41 Imol™)
V. := Volumen der FlUssigphase [,
sowie die Berechnung des molaren Respirationskoeffizienten RQ,
RQ) = Moo Qeoall) (3.7)

Qoz(t) : Mcoz ’

kann in MFCS/win online erfolgen, wodurch die Gasbilanzen eine Beobachtung des Zellstoff-
wechsels und eine Beurteilung der Zellaktivitat erlauben.

3.4 Prozessbegleitende Offline-Analysentechnik

3.41 Probenahme

Eine Beprobung der Prozesse erfolgte zumeist in unregelméagigen Abstanden gemaR des Pro-
benbedarfs des jeweiligen experimentellen Vorhabens. Die enthommene Kulturbriihe wurde
aliquotiert, zentrifugiert und bis zur spateren Durchfiihrung der Offline-Analytik in Kulturiiber-
stand und Zellpellet getrennt bei -20 °C gelagert.

3.4.2 Zelldichtebestimmung

Fur die Bestimmung der Zelldichte ¢, ., Uber die Biotrockenmasse wurden Zellpellets von
1 ml Aliquots der Kulturbriihe bei 80 °C fiir 48 h getrocknet und anschliefend gewogen. Durch
Differenzbildung mit den Leermassen der Probengefafie erhalt man die Biotrockenmasse, aus
der sich die Zelldichte ¢, , leicht berechnen I&sst.
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343 Glycerol- und Methanolanalytik

Die Quantifizierung der Substratkonzentrationen Cg,, erfolgte tber lonenausschlusschroma-
tographie mit der Sdule Rezex™ RHM-Monosacharide der Fa. Phenomenex®, Torrance, USA.

Zur Durchfiihrung kam ein HPLC-System der Serie LaChrom Elite® der Fa. VWR-Hitachi, Rad-
nor, USA, zum Einsatz. Dieses verfugt tber ein Interface, ein Pumpenmodul (L-7100), einen
Autosampler (L-7250) und einen Saulenofen (L-7360). Zur Detektion beider Analyten diente
ein Brechungsindexdetektor (RI-Detektor, L-7490). Die Vermessung sowie Auswertung der
Proben erfolgte mit der Software D-7000 HSM.

Vor Injektion der Kulturiiberstdande wurden diese mit einem 0,22 um Spritzenfilter von etwaigen
Partikeln befreit. Das Injektionsvolumen betrug 40 pl. Als mobile Phase diente 10 mM Schwe-
felsaure, die mit einer Flussrate von 0,6 mimin™ beférdert wurde. Die Saule erfordert eine Tem-
perierung auf 60 °C.

Die Retentionszeit des Glycerols betragt 14,1 min, wohingegen Methanol nach 18,7 min detek-
tiert werden kann. Fur die Ermittlung der Konzentrationen wurde mit den jeweiligen Peakfla-
chen des RI-Signals fir beide Substrate eine Zehnpunktkalibrierung durchgefiihrt.

344 Ammoniummessung

Das FlieRinjektionsanalysensystem TAS 2000 der Fa. Jike Systemtechnik, Altenberge, wurde
fir die Bestimmung der Ammoniumstoffmengenkonzentration C,,.. Nach der Berthelot-
Methode eingesetzt. Die Messung basiert auf der Reaktion von Ammonium mit Hypochlorit
und Salicylsdure zu Indophenolblau, das bei einer Wellenlange von 605 nm photometrisch
detektiert werden kann [KAISER, 2010].

3.4.5 Gesamtproteinbestimmung

Zur Quantifizierung der Gesamtproteinkonzentration Cpyyy,. im Medium kam das QuickStart™
Protein Assay Kit der Fa. Bio-Rad Laboratories, Hercules, USA, zum Einsatz. Dieses beruht
auf der Methode von Bradford [BRADFORD, 1976]. Es wurde der Standardprozedur fur Mikroti-
terplatten geman der Anleitung des Herstellers gefolgt.
3.4.6 Enzymatischer Alkoholoxidasenachweis

Zur Bestimmung der zellinternen Alkoholoxidaseaktivitat gp, . wurde zunachst ein mecha-
nischer Zellaufschluss mit Glasperlen zur Freisetzung der Alkoholoxidase (AOX) durchgefiihrt.
Darauf folgte ein gekoppeltes Enzymassay nach [JANSSEN & RUELIUS, 1968] unter Verwen-
dung des nichttoxischen ABTS™ (2,2"-Azino-bis(3-Ethylbenzothiazolin-6-Sulfonsaure) als al-
ternatives Chromophor [CHILDS & BARDSLEY, 1975].

Das Assay beruht auf einer Umsetzung von Methanol zu Wasserstoffperoxid durch AOX,
.Methanol + 0,  —2%_, Formaldehyd + H,0, .,

und der Oxidation von ABTS™ durch H,0,,
H,0, + ABTS™ _F®_, 2.H,0 + ABTS,

mit Hilfe des Enzyms Peroxidase (POD).
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Der oxidierte Zustand ABTS])" ist iiber das Lambert-Beer'sche Gesetz bei einer Wellenldnge
von 405 nm photometrisch quantifizierbar.

Eine Einheit U der AOX-Aktivitat ist definiert zu 1 umol umgesetzten ABTS™ pro Minute. Die
AOX-Aktivitat C,,, im Aufschlussansatz A,

D .

Coza = ﬁ'EABTS\ (3.8)
mit

i = Probenindex [l
Cpon = volumetrische AOX-Aktivitat im Aufschlussansatz der Probe i [ur
Dy = Gesamtverdlinnung des Aufschlussansatzes von Probe i [
Easrss = zeitliche Extinktionsénderung (ABTS!") der Probe i [min""]
exprs = Molarer Extinktionskoeffizient (ABTSY')  ([KEESEY, 1987] 36,8 lumol'cm™)
d := Schichtdicke des Reaktionsansatzes [em],

ist demnach von der linearen Extinktionsanderung E abhangig, deren Bestimmung mit Hilfe
von zehn Extinktionsmessungen im Abstand von jeweils 30 Sekunden erfolgt.

Die zeitlich zugeordnete zellspezifische AOX-Aktivitat g,y

Geox(ti) = % (3.9)
XAi

mit

poix = zellspezifische AOX-Aktivitat zum Zeitpunkt t; [Ug™

Cxai = eingestellte Zelldichte im Aufschlussansatz der Probe i o,

ergibt sich aus der im Aufschlussansatz enthaltenen Zelldichte c,,; und wird in dieser Arbeit
als Maf flr den zellinternen AOX-Gehalt verwendet.

3.4.7 Berechnung von Konzentrationen in der Fliissigphase

Eine Offline-Bestimmung von Konzentrationen im Bioreaktor erfolgt meist im Kulturiiberstand
(Medienphase M). Soll die Konzentration auf die Kulturbriihe (Fliissigphase L) bezogen wer-
den, ist zu beachten, dass sich diese aus dem Medium M und der Biofeuchtphase Z zusam-
mensetzt. Dies ist bei hohen Zelldichten nicht zu vernachlassigen.

Die Konzentration ¢, einer Komponente | im Reaktionsraum (Flussigphase L),

ety = (1 - Zax -CXL(t)) C(t) (3.10)
Pz

mit

Ci := Konzentration der Komponente | in Phase K [oI"

Oz := Massenverhaltnis von feuchten zu trockenen Zellen (38,7997

0; := Dichte der feuchten Zellen (1150 gI"),

lasst sich aus der entsprechenden Konzentration c,,, im Medium und der zugeordneten Zell-
dichte c,, berechnen.
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4. Spektroskopische Messverfahren als erweiterte PAT-Werkzeuge

4.1 Eine Ubersicht iiber PAT-Analysatoren

Die PAT-Initiative der FDA empfiehlt den Einsatz von Inline-, Online- und Atline-Analysatoren
mit dem Ziel, das Verstandnis und die Kontrolle iber den betrachteten Bioprozess zu verbes-
sern. Der Begriff Analysator umfasst dabei Systeme, die physikalische, biochemische oder
mathematische Analysen hervorbringen [FDA, 2004a].

Insbesondere steht die Qualitat des Zielproduktes im Fokus von PAT. Daher sollen vor allem
kritische Qualitats- und LeistungskenngréfRen von Rohmaterialien, Zwischen- und Endproduk-
ten sowie der ablaufenden Prozesse selbst analytisch erfasst werden [FDA, 2004a].

Offline-Analysen wie Bioassays sind bei der Uberwachung von Bioprozessen hinsichtlich des
Zielproduktes heutzutage haufig noch alternativios. Werden diese Analysen jedoch zeit- und
prozessnah durchgefiihrt und dienen der Erweiterung des Prozessverstandnisses, so sind
solche Methoden durchaus auch den PAT-Werkzeugen zuzuordnen [STREEFLAND et al., 2013].

Wie in Bild 4.1 gezeigt, umfassen PAT-Analysatoren von Bioprozessen demnach Offline- und
Atline-Verfahren, modellgestiitzte mathematische Methoden sowie fortschrittliche Inline-Mess-
systeme. Hierzu gehort zum Beispiel eine Reihe von optischen Spektroskopieverfahren.

,

%
gﬂgﬁ:};f‘;;“ ultrasonic €3 >
measurement OZ'
process - %
simulation 'In-Ilne
microscopy
soft
Sensors Q0% 5, dielectric
bio 6\0 - % spectrometry
calorimetry ~ = v(\v
I = UVNVis
o @ spectroscopy
mass
spectrometry .l NIR/MIR
spectroscopy
flow
cytometry Raman
spectroscopy
9y atline HPLC
% bi 2D fluorescence
© ioassaysy spectroscopy
% biosensors

»
7

Bild 4.1: Eine graphische Ubersicht (iber mégliche PAT-Analysatoren

Diese sind in der Bioprozesstechnik von besonderem Interesse. Sie haben den Vorteil, schnell,
zerstorungsfrei und nichtinvasiv zu sein. Weiterhin kdnnen mit spektroskopischen Verfahren
eine Vielzahl von physikalischen und chemischen GroRRen simultan gemessen werden [SKIB-
STED & ENGELSEN, 2010].

Technische Fortschritte, beispielsweise im Bereich der Lichtleitertechnik, haben zu der Ent-
wicklung von robusten und kostengtinstigen Spektrometersystemen gefiihrt, die flexibel in Her-
stellungsprozessen eingesetzt werden kénnen [LOURENGO et al., 2012]. Insbesondere die
Nahinfrarotspektroskopie wurde bereits vielfach erfolgreich auch in Bioprozessen erprobt
[HOEHSE et al., 2015].
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Aufgrund des komplexen Charakters und der Vielzahl verschiedener Bioprozesse mit unter-
schiedlichen zu beobachtenden Qualitats- und LeistungskenngréfRen besteht allerdings noch
ein groRer Forschungsbedarf. Diese Arbeit untersucht daher die Eignung verschiedener spek-
troskopischer Verfahren hinsichtlich ihrer Anwendung an Bioprozessen.

Dabei wurden die drei Methoden Nahinfrarot, Raman und 2D-Fluoreszenz eingesetzt und
miteinander verglichen. Diese Messverfahren werden in den folgenden Abschnitten néher be-
schrieben.

4.2 Eingesetzte Spektroskopieverfahren

4.21 Nahinfrarotspektroskopie

Der infrarote Spektralbereich wird im elektromagnetischen Spektrum vom sichtbaren Licht und
den Mikrowellen begrenzt. Er ist aufgeteilt in das nahe Infrarot (NIR, ca. 760 bis 3.000 nm),
das mittlere Infrarot (MIR, ca. 3.000 nm bis 30 um) und das ferne Infrarot (FIR, ca. 30 ym bis
1.000 pm) [LOTTSPEICH & ENGELS, 2012].

Die IR-Spektroskopie basiert auf der Absorption von Infrarotstrahlung durch Materie. Dabei
werden Molekile zu Schwingungen angeregt. Die daflr notwendige Energie bzw. die Wellen-
lange der anregenden Strahlung ist abhangig von den jeweils schwingenden Massen und den
entsprechenden Bindungsstarken. Deshalb sind IR-Absorptionsbanden charakteristisch fir
bestimmte funktionelle Gruppen und diese Methode somit fiir Analysezwecke geeignet.

Voraussetzung fiir die Absorption von Infrarotstrahlung ist eine Anderung des Dipolmoments
des Gesamtmolekiils im Verlauf einer Schwingung. Aufgrund dessen kénnen allein heteronu-
kleare Molekule detektiert werden. Homonukleare Verbindungen, die kein Dipolmoment besit-
zen, absorbieren keine Infrarotstrahlung. In Bild 4.2 sind mdgliche Schwingungen in Wasser-
und Kohlenstoffdioxidmolekilen gezeigt.

| . |

O, QO O,

RN /N RN

H H H H H H
I'4 N I'4 NoX
symmetric antisymmetric ;

stretch stretch bending mode
OLC;O OLCLO ?_C_?
(IR-inactive)

Bild 4.2: Mégliche Schwingungsmodi von H,O- und CO,-Molekiilen

Aufgrund des Dipolcharakters kénnen neben den sogenannten Fundamentalschwingungen
auch Oberton- und Kombinationsschwingungen auftreten, fir deren Anregung jedoch héhere
Energiemengen notwendig sind. Weiterhin sind die Anregungswahrscheinlichkeiten geringer,
sodass die Banden der Obertdne weniger stark ausgepragt sind. In Bild 4.3 sind Molekiil-
schwingungen anhand des Potentialfeldes eines anharmonischen Oszillators veranschaulicht.
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Energy

\ dissociation limit

v, = 3, second overtone
v, = 2, first overtone E,

v, = 1, fundamental vibration

—] —T 1|
e

v, = 0, zero-point energy E,---—------

\
S, Bond length s

Bild 4.3: Schwingungsniveaus im Potentialfeld eines anharmonischen Oszillators

Die Nullpunktenergie E, ist ungleich dem Energieminimum, da Molekiile selbst bei 0 K noch
Schwingungen um ihre Ruhelage ausfiihren. Die Dissoziationsenergie E fiihrt zu einem Zer-
fall der Verbindung in ihre Radikale [SKRABAL, 2009]. Zwischen der Nullpunktenergie und der
Dissoziationsgrenze kénnen die Verbindungen bestimmte Schwingungsniveaus einnehmen.
Die Hohe der Pfeile zeigt die zur Anregung notwendige Energie an. Die Breite der Pfeile steht
fir die Starke der Absorptionsbanden im Spektrum.

Die hochsten Dipolmomente und damit die hochsten Intensitaten weisen Molekile mit Wasser-
stoffatomen auf. Diese Verbindungen absorbieren Strahlung im MIR-Bereich. Daher sind die
Banden ihrer Oberton- und Kombinationsschwingungen haufig im NIR-Bereich zu finden. Das
NIR-Spektrum wird demnach von CH-, OH-, SH- und NH-Gruppen dominiert und eignet sich
folglich gut zur Analyse von organischen Substanzen [SIESLER, 2002].

Der Vorteil der NIR-Spektroskopie gegeniiber der MIR-Spektroskopie besteht in den verhalt-
nismafRig schwachen Absorptionsbanden. Daher kann auf eine aufwendige Probenvorbe-
reitung verzichtet werden [SIESLER, 2002].

Die Nachteile der NIR-Spektroskopie basieren auf der Vielzahl an Ubergangsméglichkeiten,
die zu einer hohen Redundanz an Informationen in einem Spektrum fiihren. Folglich kommt
es zur Uberlagerung der ohnehin schon breit ausgeprégten Absorptionsbanden, was eine Aus-
wertung des Spektrums erschwert [MARTIN, 1992].

Wasser ist zudem ein starker Absorber, dessen erster Oberton in etwa bei 1.450 nm auftritt
und haufig die Signale anderer Analyten Uberlagert. Dieser Umstand erschwert die Analyse
biotechnologischer Prozesse. Hinzu kommt eine hohe Temperaturabhangigkeit der NIR-
Spektroskopie, was mdglichst aquivalente Versuchsbedingungen erfordert.

In dieser Arbeit wurde das Prozessspektrometersystem PSS 1720 der Fa. Polytec, Wald-
bronn, eingesetzt. Dieses enthélt eine Wolfram-Halogenlampe als Lichtquelle sowie eine De-
tektoreinheit, die wiederum aus einem Polychromator (Prisma) und aus einen Diodenzeilen-
detektor besteht. Durch die Abwesenheit beweglicher Teile in der Detektoreinheit wird im in-
dustriellen Produktionsumfeld eine hohe Robustheit erzielt. Die gleichzeitige Abbildung aller
Wellenlangen auf dem Detektor ermdglicht auRerdem sehr kurze Messzeiten.
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Uber SMA-Lichtleiteranschliisse kénnen unterschiedliche Sondentypen mit dem Gerat verbun-
den werden. Bild 4.4 zeigt das Spektrometersystem sowie die beiden verwendeten Sonden-

typen.

b)

Bild 4.4: Prozessspektrometersystem der Fa. Polytec, a) Grundgerat PSS 1720,
b) Transmissionssonde PSS-H-CT1, c) Reflexionssonde PSS-H-CR1

Die Messung erfolgt abhangig von der Probenbeschaffenheit, entweder in Transmission oder
diffuser Reflexion. Bei der Transmissionsmessung wird die Strahlung durch eine definierte
Schichtdicke der Probe zum Detektor geleitet. Dies erlaubt bei der Auswertung die Heran-
ziehung des Lambert-Beer'schen Gesetzes. Die Transmissionsmessung ist nur fir flissige
und transparente Proben geeignet.

Fir intransparente, pulverformige oder pastése Proben sowie Suspensionen wird in diffuser
Reflexion gemessen. Hierbei wird Licht in die Probe eingestrahlt und die von den Proben-
partikeln reflektierte Strahlung detektiert. Aus dieser werden die Absorptionseigenschaften der
Probe extrahiert. In Bild 4.5 sind die beiden Messverfahren illustriert.

a) b)

lamp detector lamp detector

probe shaft

J_gap 1 mm
=

probe shaft

quartz glass

! quartz glass
mﬁ_ r/\ .
/ reflected light

emitted light

particles

900000020 O
ggooﬂoO°ggﬂoo°o
02080650080

Bild 4.5: Messverfahren bei der NIR-Spektroskopie, a) Transmissionsmessung,
b) Messung in diffuser Reflexion
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Ein Nachteil der Messung in diffuser Reflexion besteht in der Abhéngigkeit der Reflexions-
eigenschaften von der Partikelgré3e sowie von der Anregungswellenlénge des eingestrahlten
Lichts. Eine direkte chemische Interpretation der Messergebnisse wird dadurch erschwert.

Die Aufzeichnung der Spektren erfolgte in einem Wellenldngenbereich von 850 nm bis
1.650 nm. Es wurde eine Schrittweite von 2 nm gewahlt, wodurch die verwendeten NIR-
Spektren aus 401 Einzelmessungen bestehen.

4.2.2 Raman-Spektroskopie

Wie bei der NIR-Spektroskopie kommt es bei der Raman-Spektroskopie zur Anregung von
Molekilschwingungen. Allerdings beruht die Raman-Spektroskopie nicht auf der Absorption
sondern vielmehr auf der Streuung von Strahlung.

In dem an einem Molekdl gestreuten Licht kdnnen neben den Linien der Erregerstrahlung auch
Begleitlinien mit geringeren Intensitdten beobachtet werden. Diese Linien weisen eine Ver-
schiebung der Wellenlange gegeniiber der Erregerstrahlung auf und werden als Raman-Linien
bezeichnet [SKRABAL, 2009]. In Bild 4.6 ist das Auftreten des Raman-Effektes illustriert.

v, =1
E, v,=0
virtual e
energy states
A T
v, =4
v, =3
- vibrational
| Vo energy states
v Vo Z
Eo Vo = 0

Infrared Rayleigh Stokes Anti-Stokes
absorption scattering scattering scattering
Raman effect
Bild 4.6: Erklarungsmodell zum Auftreten des Raman-Effektes

Das gangige Modell zur Erklarung des Raman-Effektes involviert virtuelle Energiezustande, in
die ein Molekl durch Bestrahlung mit monochromatischem Licht gehoben werden kann. Diese
instabilen Energieniveaus liegen zwischen dem Elektronengrundzustand E, eines Molekdls
mit den méglichen Schwingungsniveaus v, und einem angeregten Elektronenzustand E,.

Beim Verlassen eines dieser Zustande emittiert das angeregte Molekil ein Photon. Wird dabei
wieder der Grundzustand E erreicht, weist die emittierte Strahlung die gleiche Energie auf wie
die Erregerstrahlung. In diesem Fall spricht man von Rayleigh-Streuung. Diese enthalt keine
chemische Information Uber die vorliegende Substanz.

Fallt das Molekul jedoch auf einen Schwingungszustand oberhalb des Grundzustandes zu-
ruck, besitzt das emittierte Photon eine niedrigere Energie als die Erregerstrahlung. Die resul-
tierende Streuung wird als Stokes-Streuung bezeichnet. Ebenso kann sich ein Molekdl bereits
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in einem angeregten Schwingungszustand befinden und nach weiterer Anregung wieder sei-
nen Grundzustand einnehmen. In diesem Fall, der Anti-Stokes-Streuung hat das emittierte
Photon eine hohere Energie als die Erregerstrahlung. Stokes- und Anti-Stokes-Streuung bil-
den zusammen den Raman-Effekt [VANDENABEELE, 2013].

Da sich die auftretenden Energiedifferenzen bestimmten Schwingungsniveaus zuordnen las-
sen, enthélt der Raman-Effekt chemische Information iber das angeregte Molekul. Eine Vo-
raussetzung flr das Auftreten von Molekiilschwingungen in der Raman-Spektroskopie ist eine
periodische Polarisierbarkeit der Molekiile.

Die Polarisierbarkeit beschreibt das Maf, in dem sich Elektronen innerhalb eines Molekiils
durch Anlegen eines elektrischen Feldes verschieben lassen. Dieses wird hier durch die elek-
tromagnetische Erregerstrahlung erzeugt. Eine Verschiebung der Elektronen in einem Molekdil
fahrt zu einer Deformation der Elektronenbahnen, was sich wiederum auf die Atomabstande
und Bindungswinkel auswirkt und damit Molekulschwingungen induziert.

Insbesondere homonukleare Gruppen wie C-C, C=C, oder S-S weisen eine hohe Polarisier-
barkeit und damit intensive Raman-Banden auf. Damit bildet die Raman-Spektroskopie den
komplementéren Teil zur IR-Spektroskopie, bei der ausschlieBlich heteronukleare Gruppen
schwingen. Durch die Wahl der Erregerwellenlange ist eine Ausrichtung auf die Untersuchung
bestimmter funktioneller Gruppen mdglich [PERKAMPUS, 1993].

In Raman-Spektren wird die Intensitdt der Raman-Banden gegen den sogenannten Raman-
Shift des Streulichtes in Wellenzahlen v [cm™"] aufgetragen. Der Raman-Shift ist die Wellen-
zahldifferenz zur Erregerlinie. In der Regel wird sich auf die Auswertung der Stokes’schen
Banden beschrankt, da die Anti-Stokes'schen Banden wesentlich schwacher ausgepragt sind.
Stokes’sche Banden weisen niedrigere Wellenzahlen als die Erregerlinie auf. Deshalb befin-
den sie sich im Raman-Spektrum links von dieser. Der Raman-Shift wird folglich in absteigen-
der Reihenfolge dargestellt [BOCKER, 1997].

Der Vorteil der Raman-Spektroskopie insbesondere im Vergleich mit der NIR-Spektroskopie
besteht darin, dass die Spektren ein definierteres Bandenmuster aufweisen und somit che-
misch spezifischere Analysen erlauben. Weiterhin ist Wasser nicht Raman-aktiv, was eine
Auswertung von Spektren aus Bioprozessen vereinfacht.

Die Nachteile der Raman-Spektroskopie erwachsen aus den schwachen Banden des Raman-
Effektes. So weist die Raman-Spektroskopie eine vergleichsweise niedrige Sensitivitat auf.
Weiterhin werden Erregerstrahlungen mit hoher Intensitat benétigt, um Uberhaupt Raman-
Streuung nachweisen zu kdénnen. Diese Strahlungen werden mit Lasern erzeugt, fir die der
Aspekt der Arbeitssicherheit zu beriicksichtigen ist. Darliber hinaus kann die intensive Laser-
strahlung insbesondere organische Proben zur Fluoreszenz anregen, was die Auswertung der
Spektren erheblich stort.

In dieser Arbeit kamen die Gerate RamanRxn1™ und RamanRxn2™ der Fa. Kaiser Optical
Systems, Ann Arbor, USA, zum Einsatz. Die Geréate unterscheiden sich hauptsachlich dahin-
gehend, dass an ersterem nur eine Sonde zurzeit betrieben werden kann, wohingegen es sich
bei dem in Bild 4.7 gezeigten RamanRxn2™ um ein Mehrkanalspektrometer handelt, an dem
Uber einen sogenannten Multiplexer bis zu vier Sonden gleichzeitig betrieben werden kénnen.
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Bild 4.7: RamanRxn2™ Mehrkanalspektrometer der Fa. Kaiser Optical Systems

In beiden verwendeten Spektrometersystemen kamen NIR-Diodenlaser der Laserklasse 3B
mit einer Anregungswellenlange A, von 785 nm zum Einsatz. Die maximale Laserleistung be-
tragt 400 mW. Die Messungen wurden mit Uber Lichtleiter verbundenen blO-LAB Tauch-
sonden (Kaiser) durchgefihrt.

Die Optik der Sonde fokussiert das parallele Laserlicht ca. 7 mm vor der Sondenspitze. Ahnlich
zur NIR-Messtechnik der diffusen Reflexion wird die erzeugte Streustrahlung von derselben
Optik aufgenommen und zum Detektor geleitet. Vor dem Detektor wird die intensive Rayleigh-
Streustrahlung herausgefiltert.

Die Aufzeichnung der Spektren erfolgte mit einem Charge-Coupled-Device (CCD) Detektor im
Wellenzahlbereich von 200 cm™ bis 3.200 cm™. Bei einem gewéhlten Inkrement von 1 cm™
ergeben sich daraus 3.001 Einzelmessungen fiir ein Raman-Spektrum.

4.2.3 2D-Fluoreszenzspektroskopie

Bei der Absorption von Strahlung kénnen Molekiile in einen angeregten Elektronenzustand E,
gehoben werden. Beim Ubergang des Molekdls in seinen Ursprungszustand E, kommt es zu
einer Abgabe der zuvor aufgenommenen Energie. Erfolgt dies in Form ungerichteter elektro-
magnetischer Strahlung, wird dieser in Bild 4.8 illustrierte Vorgang Fluoreszenz genannt. In
der Fluoreszenzspektroskopie wird diese Strahlung, anstelle des Intensitatsverlustes der
Erregerstrahlung (Absorption), messtechnisch erfasst [LAKOwICz, 2006].

v, =3
A ) non-radiative 1_
T - Vi =
t t
;} ransitions v, =1
E, v, =0
energy difference
Stokes shift
v, =3
vy 0
- Vo =2  vibrational
vo=1 energy states
E, 2 vo=0

absorption  fluorescence

Bild 4.8: Jablonski Diagramm zur Verdeutlichung der Fluoreszenz
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Durch die Absorption von Strahlung im UV/Vis-Bereich werden Molekdle ublicherweise auf
einen Schwingungszustand (v, > 0) des angeregten Elektronenzustandes E, angehoben. In
sehr kurzer Zeit (107" s) findet anschlieRend {ber intramolekulare Vibrations- und Rotations-
vorgange eine strahlungslose Deaktivierung statt. Dabei verliert das Molekll Schwingungs-
energie bis zum Erreichen des niedrigsten Niveaus (v, = 0) von E, [LAkowICZ, 2006].

Die eigentliche Fluoreszenzemission erfolgt dann in der Form von meist im visuellen Bereich
liegender Strahlung. Auch im Elektronengrundzustand E, nimmt das Molekiil zun&chst ein hé-
heres Schwingungsniveau (v, > 0) ein. Eine weitere Entspannung auf den Grundzustand
(vo = 0) erfolgt wieder in sehr kurzer Zeit. Durch die strahlungsfreien inneren Ubergénge ist
Fluoreszenzstrahlung ublicherweise energiearmer und dadurch langwelliger als die Erreger-
strahlung. Diese Energiedifferenz wird auch als Stokes-Shift bezeichnet [LAKOwICZ, 2006].

Typische Fluorophore sind aromatische Molekile mit konjugierten Ringstrukturen. Andere or-
ganische Substanzen fluoreszieren in der Regel nicht. Im Bereich der Bioanalytik erlaubt die
Fluoreszenzspektroskopie einen Nachweis von Proteinen, bei denen eine Fluoreszenzemis-
sion insbesondere durch die aromatischen Reste der Aminosauren Tryptophan, Tyrosin und
Phenylalanin hervorgerufen wird. Weiterhin sind auch die Co-Enzyme NADH und FAD fluo-
reszierend [LAKOWICZ, 2006].

Eine weit verbreitete und die in dieser Arbeit angewandte Methode ist die 2D-Fluoreszenz-
spektroskopie. Hierbei werden Emissionsspektren fiir verschiedene Anregungswellenlangen
aufgenommen. Dieses Vorgehen hat den Vorteil, dass mehr Analyten gleichzeitig detektiert
werden kénnen. Ein weiterer Vorteil der Fluoreszenzspektroskopie ist eine im Allgemeinen
hohe Sensitivitat.

Als Nachteil kann dagegen aufgefiihrt werden, dass viele Substanzen nicht fluoreszieren. Des
Weiteren kann es innerhalb einer komplexen Messmatrix zu Wechselwirkungen kommen, die
eine Interpretation und Auswertung der Fluoreszenzspektren erschweren. Ein Beispiel dafiir
sind sogenannte Quenching-Effekte, bei denen funktionelle Gruppen in der Nahe eines Fluoro-
phors die emittierte Strahlung absorbieren.

In dieser Arbeit wurde das in Bild 4.9 dargestellte 2D-Fluoreszenzspektrometer BioView® der
Fa. DELTA Light & Optics, Lyngby, Danemark, verwendet.

Bild 4.9: 2D-Fluoreszenzspektrometer von DELTA Light & Optics
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Als Lichtquelle des verwendeten Spektrometers dient eine Xenon-Blitzlichtlampe. Die ent-
sprechenden Kombinationen aus Anregungs- und Emissionswellenlangen werden durch zwei
unabhangige Filterrader realisiert. Als Detektor kommt ein Photomultiplier zum Einsatz. Licht-
quelle, Detektor, Filterrdder sowie die zugehdrige Mechanik und Elektronik sind in einem
spritzwassergeschutzten Edelstahlgehause untergebracht.

Die Fluoreszenzanregung erfolgte im Wellenlangenbereich A,, von 270 nm bis 550 nm mit ei-
ner Schrittweite von 20 nm. Die Fluoreszenzemission wurde mit gleichem Inkrement im Be-
reich A, von 310 nm bis 590 nm aufgezeichnet, wobei aufgrund des Stokes-Shift nur solche
Emissionswellenlangen A, berlcksichtigt werden, die gréRer sind als die jeweilige Anre-
gungswellenlange. Daraus resultieren 150 Emissionswerte pro aufgenommenem 2D-Fluores-
zenzspektrum.

4.3 Extraktion relevanter Informationen aus Spektren

Wie bereits erwahnt, kdnnen Spektren eine Vielzahl an chemischen und physikalischen Infor-
mationen der vermessenen Probe enthalten. Allerdings liegen diese haufig redundant vor und
kénnen sich Uberlagern. Dariber hinaus ist der Informationsgehalt im Verhaltnis zur Daten-
menge eher gering.

Fir eine Auswertung der Spektren sind demnach Methoden der Multivariaten Datenanalyse
(MVDA) unumganglich und werden von der FDA als eigenstandiges Werkzeug fiir die Umsetz-
ung von PAT angesehen [FDA, 2004a; SMALL, 2006; SKIBSTED & ENGELSEN, 2010; MERCIER
etal., 2014].

Fir die Anwendung auf spektrale Daten werden vor allem dimensionsreduzierende Verfahren
wie die Hauptkomponentenanalyse (PCA) verwendet. Dies wird insbesondere auf die Einfach-
heit und Effektivitat dieser Verfahren zuriickgefiihrt [RATHORE et al., 2011].

Weiterhin erlauben diese Methoden, anhand vielfaltiger statistischer und grafischer Werkzeu-
ge, eine einfache Interpretation der Daten und tragen somit zur Erweiterung des Prozessver-
standnisses bei [LOURENCO et al., 2012]. Eine Einflhrung in die Multivariate Datenanalyse ist
im folgenden Kapitel 5 gegeben.
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5. Einfiihrung in die Multivariate Datenanalyse (MVDA)

5.1 Zielsetzung bei der Anwendung der MVDA

Das allgemeine Ziel der Multivariaten Datenanalyse (MVDA) ist die Verarbeitung grof3er Da-
tenmengen. Dabei soll eine Interpretation der Daten vereinfacht und relevante Informationen
extrahiert werden. Eine grundlegende Technik der MVDA ist die sogenannte Hauptkomponen-
tenanalyse (PCA), die in Abschnitt 5.3 naher erlautert wird.

Ein erstes Ziel dieser Arbeit war die Qualitdtsbewertung von Hefeextrakten mittels NIR-Spek-
troskopie. Grundlage derartiger Methoden sind multivariate Klassifizierungsverfahren, die
Variationen von Spektren derart herausarbeiten, dass eine Unterscheidung verschiedener
Klassen ermdglicht wird. Das Konzept ist in Bild 5.1 illustriert.
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Bild 5.1: Klassifizierung von Hefeextrakten mit MVDA basierend auf NIR-Spektren

Basierend auf dem Resultat der Klassifizierung kann eine Qualitatsbewertung erfolgen. Weit
verbreitet ist das auf der PCA beruhende Verfahren Soft Independent Modelling of Class
Analogy (SIMCA), das in Abschnitt 5.6.2 vorgestellt wird.

Der Uberwiegende Teil dieser Arbeit widmet sich der Bestimmung von Bioprozessgroen aus
Spektren. Das Ziel dabei ist die Online-Beobachtung schwer messbarer Variablen zur Erwei-
terung des Bioprozessmonitorings. Bild 5.2 zeigt diesen Ansatz.
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Bild 5.2: Pradiktion von BioprozessgroRen mit MVDA aus Spektren
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Die Abschéatzung von Prozessvariablen wird in der MVDA als Vorhersage bezeichnet. Hierfiir
sind multivariate Kalibrierverfahren erforderlich, die eine Beziehung zwischen den chemischen
Informationen in den Spektren und den Referenzmessungen der entsprechenden Prozess-
groRen herstellen. Die dabei eingesetzte Methode Partial Least Squares Regression (PLSR)
ist eine Erweiterung der PCA und kann lineare Zusammenhange zwischen Spektren und
Analyten modellieren. Die PLSR wird in Abschnitt 5.4 erlautert.

Neben der weit verbreiteten PLSR wurde in dieser Arbeit auch die Methode Support Vector
Regression (SVR) untersucht. Die SVR ist in der Lage, auch nichtlineare Beziehungen abzu-
bilden. Diese Methode ist in Abschnitt 5.7 zu finden.

5.2 Datenvorbereitung

5.21 Struktur und Modifizierung multivariater Datensatze

Vor Anwendung der MVDA werden die gemessenen Daten in einer Matrix D (n x m) abgelegt.
Diese besteht aus i =1, 2, ... n Zeilen (Beobachtungen) und j= 1, 2, ... m Spalten (Varia-
blen). Ein Datensatz von beispielsweise 50 NIR-Spektren hat folglich n =50 Zeilen und
m = 401 Spalten.

Die Modifizierung der Rohdaten mit einer geeigneten Vorverarbeitungsmethode ist haufig
zweckmaRig und kann ausschlaggebend fir den Erfolg oder Misserfolg der MVDA sein. So
kénnen beispielsweise Storungen aus den Daten entfernt werden, die eine multivariate Modell-
bildung erschweren. Auch die Anwendung mehrerer Vorverarbeitungsmethoden auf densel-
ben Datensatz ist eine Ubliche Vorgehensweise.

Durch eine Modifizierung werden die Daten in eine Matrix X (n x m) Uberfiihrt. Diese hat die
gleichen Dimensionen wie die nicht modifizierte Datenmatrix D und stellt den Eingangsdaten-
satz fur die eigentliche Anwendung der MVDA dar.

Einige Ubliche und in dieser Arbeit angewandte Vorbehandlungen werden in den folgenden
beiden Abschnitten vorgestellt.

5.2.2 Zentrierung und Skalierung

Eine der einfachsten Vorverarbeitungsmethoden ist die spaltenweise Zentrierung oder Mitten-
zentrierung (mean centering mc).

Zur Berechnung eines mittenzentrierten Messwertes X,

X d -d, (5.1)

ijmc = ij J

wird von dem Messwert d; der jeweilige Spaltenmittelwertaj ,

— 1 n
d =24 (5.2)
i=1
mit
n := Anzahl der Messwerte in Spalte j,
subtrahiert.
IP 218.73.216.36, am 21.01.2026, 03:37:49. © Inhalt.

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186293176

Einflhrung in die Multivariate Datenanalyse (MVDA) 29

Die Mittenzentrierung kann zu einer Reduktion der Modellkomplexitat beitragen und verbessert
insbesondere die Interpretierbarkeit multivariater Modelle, die auf der PCA beruhen [KESSLER,
2008]. Sie wird zumeist fiir spektrale Daten eingesetzt.

Wenn die Variablen der Datenmatrix D aus unterschiedlichen physikalischen Ablaufen stam-
men, weisen diese differierende numerische GréRen und damit auch Varianzen auf. Solche
fihren zu einer ungewollten und ungleichen Wichtung der Variablen bei der Bildung eines
multivariaten Modells.

Aus diesem Grund handelt es sich bei der sogenannten Autoskalierung um eine weit verbrei-
tete Vorbehandlungsmethode. Sie bewirkt eine Standardisierung der Daten auf eine einheit-
liche Varianz von 1 (unit variance uv).

Zur Berechnung eines autoskalierten Messwertes x

fjuv?

N _ G i (5.3)

(5.4)

dividiert.

Im Gegensatz zur Mittenzentrierung wird die Autoskalierung nicht fiir Spektren verwendet, da
dort die hohe Varianz einer Variablen der gesuchten chemischen Information entspricht. Eine
Autoskalierung irrelevanter Variablen mit niedriger Varianz ist demnach nicht zweckmaRig und
fuhrt lediglich zu einer Verstarkung des Rauschens. Spezielle Vorverarbeitungsmethoden fiir
spektrale Daten werden im nachsten Abschnitt behandelt.

5.2.3 Datenvorverarbeitung fiir Spektren

Spektren kénnen Stérungen enthalten, die durch bestimmte mathematische Datenfilter ent-
fernt beziehungsweise korrigiert werden kénnen.

Eine haufig verwendete Methode fiir die Behandlung spektraler Daten ist das Standard Normal
Variate (SNV) Filter.

Ein SNV-gefilterter Messwert x

ijsnv?

T R (5.5)

ijsnv

wird durch Subtraktion des Zeilenmittelwertes d,,

— 1 m
d = —->d 5.6
i m ; ij ( )
mit
m := Anzahl der Messwerte in einer Zeile i,
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vom Messwert d; und anschlieRender Division durch die Zeilenstandardabweichung s,

(5.7)

berechnet.

Das SNV-Filter ist eine Zeilenoperation und nicht mit der Autoskalierung zu verwechseln, die
basierend auf dem Spaltenvektor d, berechnet wird.

Die SNV-Filterung fiihrt zu einer Standardisierung der Spektren und korrigiert Basislinienver-
schiebungen sowie wellenlangenabhangige Streueffekte in Spektren partikelbehafteter Pro-
ben [KESSLER, 2008].
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Bild 5.3:  Vorverarbeitung von NIR-Spektren, a) unverandert, b) SNV-gefiltert,
¢) Modifizierung durch erste bzw. d) durch zweite Ableitung

Bild 5.3a zeigt NIR-Spektren der Flissigphase eines Bioreaktionsprozesses. In Bild 5.3b sind
dagegen SNV-gefilterte Spektren dargestellt. Eine weitere haufig anzutreffende Vorverarbei-
tungsmethode ist die Ableitung von Spektren. Dies ist in Bild 5.3c und Bild 5.3d ebenfalls am
Beispiel der NIR-Spektroskopie gezeigt.

Die Ableitung stellt eine sehr effektive Methode zur Basislinienkorrektur dar und verbessert
aulerdem die spektrale Auflosung. Ein Nachteil ist die schlechtere chemische Interpre-
tierbarkeit, da sich das Erscheinungsbild der Spektren stark verandert [NAES, 2004].
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Ein durch Bildung der ersten Ableitung modifiziertes Element Xiide1s

od, d;q — diy
Xiger = 6KU. ~ Iy ! =, (5.8)

exj exj+1 xexj—1

entspricht z.B. bei der NIR-Spektroskopie der Absorptionssteigung bei der Anregungswellen-
lange 2.
Die numerische Differenzierung von Spektren wird in der Regel mit dem Verfahren von Savitz-
ky und Golay durchgefihrt. Dieses beruht auf der Anpassung eines fortlaufenden Datenfen-
sters an ein Polynom nach der Methode der kleinsten Fehlerquadrate. Durch Differenzierung
des Polynoms stehen dann auch die Ableitungen des betrachteten Signals zur Verfiigung
[SAVITZKY & GOLAY, 1964]. Die GroRe des Datenfensters bestimmt dabei das Maf} der Signal-
glattung, die mit dieser Methode automatisch erzielt wird.

5.3 Die Hauptkomponentenanalyse (PCA)

5.3.1 Dimensionsreduktion durch Hauptkomponenten

Die Hauptkomponentenanalyse (Principle Component Analysis PCA) ist eine zentrale Metho-
de der MVDA. Viele weitere Verfahren basieren auf der PCA. Daher wird deren Funktions-
weise an dieser Stelle naher erlautert.

Das Ziel der PCA besteht darin, eine Reduktion der Dimension der Ursprungsdaten zu errei-
chen, um eine Analyse und Interpretation dieser Daten zu vereinfachen. Dazu werden im Prin-
zip Variablen des betrachteten multivariaten Datensatzes mit ahnlichem Informationsgehalt in
sogenannte Hauptkomponenten zusammengefasst. Diese werden daher auch latente Varia-
ble genannt.

Zur Verdeutlichung wird im Folgenden ein Datensatz mit einer Variablenanzahl m von 3 be-
trachtet. Die Variablen x,, x, und x; sind die Spalten der modifizierten Datenmatrix X und bilden
ein Koordinatensystem mit der Dimension m. Jede Beobachtung (Zeile) des Datensatzes kann
innerhalb dieses in Bild 5.4a gezeigten dreidimensionalen Datenraums als ein Punkt darge-
stellt werden.

) T b)

%[ o o

Bild 5.4:  a) Anordnung von Beobachtungen im dreidimensionalen Datenraum X,
b) Beschreibung der Daten durch die Bildung von Hauptkomponenten
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Die Beobachtungen weisen dort eine bestimmte rdumliche Anordnung auf, die durch einen
Quader angedeutet ist. Werden die Daten entlang der gréRRten Varianz innerhalb dieser Anord-
nung durch eine Gerade beschrieben, so nennt man diese Gerade die erste Hauptkomponente
t,. Die zweite Hauptkomponente t, erhélt man durch eine weitere Gerade, die orthogonal zur
ersten verlauft und erneut ein Maximum der Varianz der Daten in dieser Richtung beinhaltet.

Ist die Restvarianz der Daten vernachlassigbar klein, kann man auf die Berechnung der dritten
Hauptkomponente t; verzichten, sodass die gewlinschte Dimensionsreduktion erreicht wird.
Bild 5.4b deutet die Beschreibung der Daten durch die beiden Hauptkomponenten t, und t, an,
die eine Flache im dreidimensionalen Raum bilden.

5.3.2 Das mathematische Modell der PCA

In der allgemeinen Form des PCA-Modells wird die Datenmatrix X,

X =T-PT+E (5.9)
mit
X = (n x m) modifizierte Datenmatrix

n := Anzahl an Beobachtungen bzw. Proben (Zeilen) in X
m := Anzahl an Variablen (Spalten) in X
T :=(nXxr) Scorematrix

r = Anzahl gebildeter Hauptkomponenten (Spalten in T)
PT := (r x m) transponierte Loadingmatrix
E :=(n x m) Residuenmatrix,

in eine Scorematrix T, eine Loadingmatrix P und eine Residuenmatrix E zerlegt.

Die Residuenmatrix E hat die gleichen Dimensionen wie die Datenmatrix X und enthalt den
Teil der Varianz in den Daten aus X, der nicht durch die gebildeten Hauptkomponenten be-
schrieben wird.

Die Scorematrix T besteht aus n Zeilen und | = 1, 2, ..., r Spalten. Jeder berechneten Haupt-
komponente wird damit ein Wert (Score) fiir jede Beobachtung zugewiesen. Dadurch werden
die Beobachtungen in einem neuen Koordinatensystem abgebildet. In Analogie zu den Spal-
tenvektoren (Variablen) x; wird der Begriff Hauptkomponente (latente Variable) haufig fur die
Spaltenvektoren t, verwendet.

Die Loadingmatrix P besteht dagegen aus m Zeilen und r Spalten. Hier ist jeder Hauptkompo-
nente ein Wert (Loading) fiir die Variablen der Datenmatrix X zugewiesen. Die Spaltenvektoren
p, sind die Richtungsvektoren der Hauptkomponenten im Originaldatenraum X. Die Loadings
beschreiben somit die Orientierung der Hauptkomponenten in diesem Datenraum.

Bild 5.5 illustriert die Bedeutung der Scores und Loadings. Es ist eine Anzahl n von 3 Beob-
achtungen sowie eine Hauptkomponente t, in einem Raum gezeichnet, der aus einer Anzahl
m von 2 Variablen x; besteht. Durch eine Untersuchung der geometrischen Struktur erkennt
man, dass ein Loading p;; dem Cosinus des Winkels zwischen der gewahlten Variablen x; und
der Hauptkomponenten t, entspricht.
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Bild 5.5: Verdeutlichung der Scores und Loadings bei der PCA

5.3.3 Berechnung der Hauptkomponenten

Die am haufigsten verwendete Methode zur Lésung der PCA ist der Nonlinear Iterative Partial
Least Squares (NIPALS) Algorithmus. Es handelt sich dabei um ein Naherungsverfahren zur
Berechnung der Scores und Loadings [WOLD, 1966]. Zur Berechnung einer Hauptkomponente
t, beginnt das Verfahren mit einer beliebigen Losung, die iterativ verbessert wird, bis sie eine
definierte Fehlerschwelle unterschreitet. Der NIPALS-Algorithmus umfasst dabei eine Reihe
von Arbeitsschritten, die im Folgenden vorgestellt werden sollen.

1) Ausgangspunkt ist die Zuweisung des temporéren Scorevektors t,,,

t = x, (5.10)

te — j

mit dem Spaltenvektor x; der Datenmatrix X mit der hdchsten Varianz sij,

2 1T 3 ~\2
sy = ﬁ';(xu - %) (6.11)

2) Zu diesem Scorevektor wird der zugehdrige temporéare Loadingvektor p,,

Xt

Pre = 7= (5.12)
tIte : tlte

durch Projektion der Datenmatrix X auf den Unterraum t,, berechnet.

Der gesuchte Richtungsvektor der Hauptkomponente p,

b = Pre _ Pre (5.13)

. leteH . \/pl-[e'plte ‘

ergibt sich durch Normierung des temporéren Loadingvektors p,, auf die Lange 1.

3) Den zugehdrigen korrigierten Scorevektor t,
t = X-p, (5.14)

erhélt man wiederum durch Projektion der Matrix X auf den Unterraum p,.
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4) Durch Bildung des Glitefunktionals J,,

do= the - tIH = Zn:(tme - tn)21 (5.15)

i=1

wird im vierten Schritt der temporare mit dem korrigierten Scorevektor iUber die Qua-
dratsumme der Differenzen verglichen.

5) Bei Uberschreiten eines vordefinierten Schwellenwertes J
vektor t

wird der temporare Score-

crit

Ite?

te = 4, (5.16)

mit dem unter 3) berechneten Scorevektor t, belegt und es beginnt eine erneute lteration
des Algorithmus bei Schritt 2.

Anderenfalls ist die Berechnung der Hauptkomponente t, abgeschlossen und es wird mit
Schritt 6 fortgefahren.

6) Fur die Berechnung einer weiteren Hauptkomponente mit | = | + 1 wird zunachst die neue
Residuenmatrix E,
E =X-t-p, (5.17)
bestimmt, indem die durch die Hauptkomponente t, beschriebene Information aus der
Datenmatrix X entfernt wird.

7) In einem letzten Schritt wird die neue Datenmatrix X,
X =E, (5.18)

fiir den Neustart des Algorithmus bei Schritt 1 aus der unter 6) bestimmten Residuenmatrix
E festgelegt.

Die Schritte 1 bis 7 werden entweder so oft wiederholt, bis alle mdglichen Hauptkomponenten
berechnet wurden oder bis ein bestimmter Anteil der Gesamtvarianz durch das PCA-Modell
erklart ist. Die maximale Anzahl berechenbarer Hauptkomponenten entspricht der kleineren
Anzahl an Beobachtungen n oder Variablen m.

Die Schritte 2 und 3 zur Berechnung der Scores und Loadings des PCA-Modells stellen L6-
sungen nach der Methode der kleinsten Fehlerquadrate (Least Squares) dar, von denen der
Name des NIPALS-Algorithmus herrihrt.

5.4 Partial Least Squares Regression (PLSR)

5.4.1 Multivariate Kalibrierung mittels PLSR

Das Ziel der multivariaten Kalibrierung ist die Abschatzung, in der MVDA auch Vorhersage
genannt, schwer messbarer Variablen anhand einer Reihe von GroRen, die messtechnisch
einfacher oder schneller zu erfassen sind. In dieser Arbeit werden dafiir hauptséchlich Spek-
tren zur Pradiktion von Bioprozessgréf3en verwendet.

Fir die Vorhersage wird ein mathematisches Modell benétigt, das den Zusammenhang zwi-
schen den Spektren und den ZielgréRen beschreibt. Ein Modell wird mit Hilfe geeigneter
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Kalibrierdaten (Spektren und Referenzmessungen) erzeugt. Hierflr kann z.B. das Verfahren
Partial Least Squares Regression (PLSR) zum Einsatz kommen.

Auch bei der PLSR befinden sich die Spektren in der modifizierten Datenmatrix X mit den
Dimensionen (n x m). Die Referenzwerte werden dagegen zunachst in einer Messdatenmatrix
M zusammengefasst. Diese besteht auch aus n Zeilen, hat jedoch h =1, 2, ..., v Spalten. Vor
Verwendung dieser Daten werden sie ebenfalls einer Vorbehandlung unterzogen. In der Regel
wird sich hier auf die in Abschnitt 5.2.2 beschriebene Autoskalierung beschrankt. Die modifi-
zierten Messdaten befinden sich dann in Matrix Y.

Prinzipiell ist die PLSR dazu in der Lage mehrere Ziel- oder Y-Variablen gleichzeitig zu verar-
beiten (v > 2). Dieser Ansatz wird PLS2 genannt. Meistens ist die Bildung separater PLSR-
Modelle fiir einzelne Y-Variablen (v = 1) vorteilhaft, da dadurch eine individuellere Modellbil-
dung moglich ist [KESSLER, 2008].

Aus diesem Grund wurde in dieser Arbeit ausschlie3lich mit den sogenannten PLS1-Modellen
gearbeitet. Die folgenden theoretischen Betrachtungen der PLSR behandeln jedoch den all-
gemeinen Fall der PLS2, in dem die PLS1 als Sonderfall enthalten ist.

5.4.2 Das mathematische Modell der PLSR

Bei der PLSR wird ein multivariater Ansatz verfolgt, mit dem die Zielgréfen in der Matrix Y,

Y =XB+G (5.19)
mit
Y n x v) autoskalierte Messdatenmatrix

= (
X = (n x m) modifizierte Datenmatrix
B :=(m x v) PLSR-Koeffizientenmatrix
G :=(n xv) Residuenmatrix des Regressionsansatzes,

aus den Variablen in X abgeschéatzt werden sollen.

Das erste Ziel bei der Bildung eines PLS-Regressionsmodells ist die Bestimmung der darin
enthaltenen Regressionskoeffizientenmatrix B. Bild 5.6 zeigt die dabei beteiligten Matrizen.

=1 m =1 rmlﬂ roh=1 v

=1

i=1 i=1

X T B U Y

w Y=X-B+G

m
Bild 5.6: Korrelation der Datenmatrizen X und Y durch eine PLS-Regression
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Wie bereits erwahnt, basiert die PLSR auf der Hauptkomponentenanalyse. Im Prinzip wird fir
die Datenmatrix X,

X =T-PT+E (5.20)
mit

X = (n x m) modifizierte Datenmatrix

T :=(nxr) Scorematrix von X

P":= (r x m) transponierte Loadingmatrix von X

E :=(n x m) Residuenmatrix von X,

sowie die Messdatenmatrix Y,

Y =U-Q"+F (5.21)
mit

Y :=(n xv) autoskalierte Messdatenmatrix

U =(nxr) Scorematrix vonY

Q":=(rxv) transponierte Loadingmatrix von Y

F = (nxv) Residuenmatrix von',

gleichzeitig eine PCA durchgefihrt.

Fir die Herleitung der Koeffizientenmatrix B muss es dabei zu einem Informationsaustausch
kommen, um beide Scorematrizen T und U aufeinander abzubilden. Dieser Austausch ist in
Bild 5.6 durch Pfeile angedeutet.

Die bei der PLSR berechneten latenten Variablen werden somit von beiden Datenrdumen be-
einflusst. Dadurch unterscheiden sich die Scores T und die Loadings P von denen einer reinen
PCA des X-Datenraumes. Aus diesem Grund spricht man im Falle der PLSR auch nicht von
Hauptkomponenten sondern von PLS-Komponenten. Auch der Begriff Faktoren ist dabei ge-
brauchlich.

Ein weiteres wichtiges Element des PLSR-Modells ist die Weightmatrix W. Diese hat die glei-
chen Dimensionen wie die Loadingmatrix P und wird auch als gewichtete Loadingmatrix von
X bezeichnet. Sie stellt die Verbindung zwischen den beiden beteiligten Datenrdumen her
[KESSLER, 2008].

Die Berechnung der PLS-Komponenten und damit der Scores T und U sowie der zugehérigen
Loadings P und Q und den Weights W wird im nachsten Abschnitt ausfiihrlich beschrieben.

Es lasst sich zeigen, dass die gesuchte Regressionskoeffizientenmatrix B,

B =w-(P-w) Q" (5.22)
mit

B :=(m x v) PLSR-Koeffizientenmatrix

W = (m x r) Weightmatrix der PLSR

P":=(r x m) transponierte Loadingmatrix von X
Q":=(rxv) transponierte Loadingmatrix von Y,

aus den Weight- und Loadingmatrizen W, P und Q berechnet werden kann [WOLD et al., 1993].
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5.4.3 Berechnung der PLS-Komponenten

Die Berechnung der PLS-Komponenten wird mit einer modifizierten Variante des NIPALS-
Algorithmus durchgefiihrt [WoLD, 1975]. Dabei kommen einige lokale Modelle fir X,

X =T-W'+E' (5.23)
und

X =U-W'+ E", (5.24)
sowie flrY,

Y =T-Q" + F, (5.25)

zur Anwendung, mit denen die entsprechenden Datenrdume ebenfalls beschrieben werden
kénnen.

Wie bei der Berechnung der Hauptkomponenten eines PCA-Modells umfasst der NIPALS-
Algorithmus zur Bestimmung einer PLS-Komponente einige Schritte, die ggf. iterativ wieder-
holt werden, bis eine Konvergenz erreicht wird.

1) Der Algorithmus beginnt mit der Zuweisung des temporaren Y-Scorevektors u,,
Ue = Y (5.26)

aus der Spalte h der Messdatenmatrix Y mit der hochsten Varianz.
2) Uber das lokale Modell in Gl. 5.24 und unter Vernachléssigung der Residuenmatrix E"

wird daraus der temporare Weightvektor w,,

XT.
A (5.27)

T )
Uyt  Upe
Uber einen Least-Squares-Ansatz berechnet.

Dieser wird durch Normierung auf die Lange 1 in den gesuchten Weightvektor w;,

Wie  _ Wite ! (5.28)

w, = —€_ =
I Hw\teH le.lt—e “Wie

transformiert.

3) Uber das lokales Modell in Gl. 5.23 und unter Vernachlassigung der Residuen E' lasst
sich daraus der Scorevektor t,

t = X-w, (5.29)
durch Projektion der Matrix X auf den Unterraum w, berechnen.
4) Der Scorevektor t, erlaubt einerseits eine Berechnung des X-Loadingvektors p,,

X't

=1, 5.30
Ty (5:30)

P
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~
~

©
-

geman der allgemeinen Form des PCA-Modells (GI. 5.20) und andererseits eine Berech-
nung des Y-Loadingvektors q,

— YT‘tl

X 5.31
Tt (5.31)

G

Uber das dritte lokale Modell (Gl. 5.25) der PLSR unter Vernachlassigung von F'.

In einem flinften Schritt wird der korrigierte Y-Scorevektor u,

Y-q

= (5.32)
q| 'q|

Uy

durch Projektion der Matrix Y auf den Unterraum g, bestimmt.
Analog zum NIPALS Algorithmus der PCA wird wieder ein Gutefunktional J,,

J = Jue —uf = Zn:(uine - Uu)z! (5.33)

i=1
berechnet, welches als Mal fir die Konvergenz des Verfahrens herangezogen wird.

Bei Uberschreiten eines Schwellenwertes J_;, wird dem temporéren Scorevektor u,,

crit
Uge = Uy, (5.34)
der zuvor berechneten Scorevektor u, zugewiesen und bei Schritt 2 eine weitere Iteration
des Algorithmus begonnen.

Bei Unterschreiten des Schwellenwertes ist die Berechnung der aktuellen PLS-Kompo-
nente abgeschlossen und es folgt Schritt 8.

Fir die Berechnung einer weiteren PLS-Komponente mit | = | + 1 erfolgt zunachst eine
Neubestimmung der Residuenmatrizen E,

E =X-t-p, (5.35)
und F,
F =Y -u-q, (5.36)

indem die enthaltene Information in den Scores und Loadings t, und p, bzw. u, und q, der
aktuellen PLS-Komponente aus den Datenmatrizen X und Y entfernt wird.

In einem letzten Schritt werden dann die Datenmatrizen X,

X =E, (5.37)
und Y,
Y =F, (5.38)

fur den Neustart des NIPALS-Algorithmus der PLSR bei Schritt 1 mit den Residuenma-
trizen E und F besetzt.
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Auch bei der PLSR kann der Algorithmus nach der Bestimmung der benétigten Anzahl an
Komponenten gestoppt werden. Die Anzahl erforderlicher Faktoren ist vom Vorhersagefehler
abhangig und wird Uber diverse Methoden der Modellvalidierung (siehe Abschnitt 5.5.3) fest-
gelegt [KESSLER, 2008]. Nach Beendigung des NIPALS-Algorithmus erfolgt eine Berechnung
der Regressionskoeffizientenmatrix B gemaR Gl. (5.22).

5.5 Erstellung multivariater Modelle

5.5.1 Generelle Anforderungen an das Datenmaterial

Eine groRBe Rolle bei der Bildung multivariater Modelle spielt das verwendete Datenmaterial.
Dieses sollte reprasentative Beobachtungen enthalten, die den untersuchten Prozess mdg-
lichst vollstandig beschreiben. Der Informationsgehalt der Beobachtungen ist somit hoher zu
bewerten, als die Menge an Datenpunkten [KESSLER, 2008].

Im Falle eines PLSR-Modells zur Quantifizierung einer Substratkonzentration sollte beispiels-
weise der gesamte relevante Konzentrationsbereich in den zur Modellkalibrierung verwende-
ten Daten enthalten sein. Dabei ist weiterhin ein Maximum an Varianz weiterer méglicher Ein-
flussgroRRen auf die Pradiktorvariablen (Spektren) abzubilden. Anzustreben ist auRerdem eine
uniforme Verteilung der Konzentrationswerte, um eine Wichtung des Modells auf bestimmte
Zustande zu vermeiden [KESSLER, 2008].

Reale Datensatze erfiillen haufig nicht alle Anforderungen, da sie beispielsweise prozessbe-
gleitend erzeugt werden missen. Dieser Umstand ist bei der Modellerstellung zu beachten
und das erstellte Modell kritisch zu bewerten.

5.5.2 AusreiBerdetektion fiir multivariate Daten

Aufgrund des Ansatzes der kleinsten Fehlerquadrate bei PCA und PLSR kdnnen Ausreiller
einen hohen Einfluss auf das resultierende multivariate Modell haben [WoOLD et al., 1987]. Aus
diesem Grund sollten die Daten gegebenenfalls von Ausreilern bereinigt werden.

Eine Beobachtung, die sich stark von anderen unterscheidet, kann mit Hilfe des Hotelling T2
Tests identifiziert werden. Die dafiir notwendige Hotelling T2-Statistik stellt eine Generali-
sierung der Student t-Statistik fur multivariate Daten dar und Uberprift Beobachtungen hin-
sichtlich einer Normalverteilung [HOTELLING, 1951].

Der Hotelling T>Wert einer Beobachtung i,

2 r (ti\ 702
=2 (5.39)
=1 Sy
mit
t, = Score der Komponente | fiir die Beobachtung i

, = Mittelwert des Scorevektors t,
ﬁ := Varianz der Scores von Komponente |,

[

beschreibt den normierten Abstand der Beobachtung zum Schwerpunkt des Modells fir alle
berechneten Hauptkomponenten.

Bei der Verwendung mittenzentrierter oder autoskalierter Daten ist der Score-Mittelwert t,
jeder Komponente | gleich 0, wodurch sich der Schwerpunkt des Modells im Ursprung befindet.
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Bei einer Beobachtung mit einem Hotelling T?-Wert oberhalb des kritischen Wertes T2

crito. ?

L Ul = (5.40)

crito. (a,r,n-r)

n-r

mit

a = gewabhlte Irrtumswahrscheinlichkeit

r := Anzahl berechneter Hauptkomponenten

n = Anzahl an Beobachtungen

F = Kritischer Wert einer F-Verteilung mit einer Irrtumswahrscheinlichkeit a sowie r
und n - r Freiheitsgraden,

a,rn-r) "

handelt es sich mit einer gewahlten Irrtumswahrscheinlichkeit a um einen AusreiRer. Ein typ-
ischer Wert flr a ist 5 %, woraus das Ubliche 95 % Vertrauensintervall resultiert.

Der benétigte kritische F-Wert 13sst sich aus der kumulativen Verteilungsfunktion einer F-Ver-
teilung in Abhangigkeit der Irrtumswahrscheinlichkeit a sowie den r und n - r Freiheitsgraden
berechnen oder aus Tabellenwerken ablesen (z.B. [Ross, 2006]).

Als grafische Werkzeuge zur Identifizierung von Ausreiern mit Hilfe der Hotelling T-Statistik
kommen haufig sogenannte Score Scatter Plots zum Einsatz. In diesen sind die Scores einer
Komponente gegen die Scores einer anderen Komponente aufgetragen und erlauben damit
eine einfache grafische Analyse des multivariaten Modells.

Beobachtungen mit ungewdhnlichen Eigenschaften erscheinen in den Randbereichen der sich
ergebenden Punktwolke. Durch Einzeichnung einer Hotelling T>-Ellipse fiir die betrachteten
Hauptkomponenten, lassen sich die Daten auf AusreilRer Uberprifen.

Bei einer gewahlten Irrtumswahrscheinlichkeit a von 5 % handelt es sich bei Proben auRerhalb
der Ellipse demnach mit einer Wahrscheinlichkeit von 95 % um Ausreiler. Bild 5.7a zeigt einen
Score Scatter Plot mit einer Hotelling T?-Ellipse fiir die Scorevektoren t, und t,.

a)

95 % confidence limit
o propable outliers

o
o
o %o o o =
o]
o Q
oo & Q 9
° I ) 9
o° o ©
o
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g So

Bild 5.7:  a) Score Scatter Plot mit Hotelling T>-Ellipse als 95 % Vertrauensgrenze
b) DModX als orthogonale Distanz einer Probe zur Modellebene
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Die Radien der Hotelling T>-Ellipse ry,

2-(n-1
%'F(a,z,nfz) © Sy (5.41)

rTCL|

mit
Fu2nz = Kritischer Wert einer F-Verteilung mit einer Irrtumswahrscheinlichkeit « sowie
2 und n - 2 Freiheitsgraden,

ergeben sich aus der Wurzel des kritischen Wertes T2, gemaR Gl. (5.40) fir r = 2 und aus

den Standardabweichungen s, der beiden betrachteten Hauptkomponenten (z.B. | = 1, 2).

Eine weitere Mdglichkeit zur Identifikation von Ausreilern bietet die DModX (Distance to Model
in X) genannte Kenngréfe. Der DModX ist ein MaR fir den orthogonalen Abstand einer Beob-
achtung zu der Modellebene (Hyperebene) im Originaldatenraum X (siehe Bild 5.7b). Er zeigt
somit Abweichungen einer Beobachtung auf, die durch das Modell nicht beschrieben werden.

Der DModX basiert auf der in der Literatur haufig anzutreffenden Q-Statistik und wird von der
Software Umetrics SIMCA anstelle der Q-Residuen verwendet [ERIKSSON et al., 2001].

Die absolute Distanz DModX_, .. einer Beobachtung i,

absi

DModX,, ; (5.42)
mit
m = Anzahl an Variablen in der Datenmatrix X
r := Anzahl an berechneten Hauptkomponenten
=h := Element der Residuenmatrix E bei der PCA,
entspricht der residualen Standardabweichung einer Beobachtung i fir alle Variablen.
Mit Einflhrung der normierten Distanz DModX ; einer Beobachtung i,
DModX,, .. !
DModX . = DModX s = DModX;, (5.43)
DModX,,

wird eine Vergleichbarkeit der Distanzen fiir unterschiedliche Modelle erreicht. Im Weiteren
wird diese normierte Distanz zum Modell allgemein mit DModX bezeichnet.

Die fur eine Normierung benétigte mittlere Distanz DModX,,,

1 n m 2
DModX = |— e’ 5.44
a \/(n—r—r0)~(m—r) ;; I (544)
mit
n := Anzahl an Beobachtungen in der Datenmatrix X
Io = 1 bei zentrierten Modellen, sonst 0 [ERIKSSON et al., 2001],

stellt die residuale Standardabweichung aller n Beobachtungen dar.

In Analogie zum Hotelling T2-Wert kann mit Hilfe einer F-Statistik ein kritischer Wert DmodX .,
fir eine gewahlte Irrtumswahrscheinlichkeit a berechnet werden [ERIKSSON et al., 2001], ober-
halb dessen eine Beobachtung als Ausreiler gilt.
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5.5.3 Variablenselektion

Fir multivariate Modelle sollten nur solche X-Variablen herangezogen werden, die relevante
Informationen enthalten. Irrelevante Pradiktoren erhdhen lediglich die Modellkomplexitat und
kénnen messtechnisches Rauschen mit in das Modell einbringen. Beides verschlechtert zu-
meist die Leistung des Modells [KESSLER, 2008].

Eine Mdglichkeit der Identifikation irrelevanter Variablen fiir PLSR-Modelle besteht in der Be-
trachtung der Regressionskoeffizienten im Spaltenvektor b,. Diese kénnen zu diesem Zweck
gegen den Variablenindex j aufgetragen werden.

Regressionskoeffizienten mit einem Wert von oder nahe bei 0 deuten darauf hin, dass die
zugehdrige Variable keine Rolle bei der Quantifizierung der entsprechenden ZielgréRe spielt.
Ein Ausschluss der Variable sollte die Leistung des Modells also nicht direkt beeinflussen aber
die Modellkomplexitat senken.

Vorsicht ist bei diesem Verfahren bei der Verwendung nichtskalierter X-Variablen geboten, da
hier die Hohe des Wertes des Regressionskoeffizienten auch von der Hohe der Messwerte
der entsprechenden Variable abhangt. Dies ist meist bei der Verwendung von Spektren der
Fall, da diese nicht autoskaliert werden.

Deshalb wurde von Wold et al. eine Variable Influence on Projection (VIP) genannte Kenn-
groRe entwickelt, die den Beitrag einer X-Variablen an der durch das Modell erklarten Y-
Varianz beschreibt [WOLD et al., 1993; FARRES et al., 2015]. In dieser Arbeit wird eine durch
[CHONG & JUN, 2005] modifizierte Form dieser KenngréfRe genutzt.

Zur Berechnung der KenngréBe VIP einer X-Variable j,

.
m- (SSYI 'szlnor)
VI = (5:45)
) SSY,..
mit
m := Anzahl an X-Variablen
r := Anzahl berechneter PLS-Komponenten,

werden die durch die PLS-Komponenten | erklarten Anteile der Y-Varianz SSY,,

SSY, =ci -t (5.46)
mit

t, = (n x 1) X-Scorevektor der PLS-Komponente |

[ = Koeffizient der inneren Beziehung des PLSR-Modells fiir Komponente |,

zu den entsprechenden normierten PLS-Weights w,

jinor

dieser Variable,

w

w, S— (5.47)
jlnor \/T—
WI WI
mit
w; = Weight der Komponente | fir die Variable j
w, = (m x 1) Weight-Spaltenvektor der Komponente |,
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in Beziehung gesetzt und dann auf ein MaR des insgesamt durch das Modell erklarten Anteils
der Y-Varianz SSY,

tot?
r
SSY,., ZSSY , (5.48)
=1
bezogen.

Der in die Berechnung des Anteils erklarter Varianz SSY, mit eingehende Koeffizient der inne-
ren Beziehung ¢,

.
u -t
c =11 5.49
! th1, 649
mit
u, :=(nx 1) Y-Scorevektor der PLS-Komponente |,

kann aus den X- und Y-Scorevektoren des PLSR-Modells berechnet werden.

5.5.4 Validierung multivariater Modelle

Die Validierung ist einer der wichtigsten Arbeitsschritte bei der Erstellung multivariater Modelle,
da sie die Entscheidungsgrundlage fiir die Anzahl zu berechnender Komponenten liefert.

Der durch das Modell erklérte Anteil der Varianz R%,

1 n m
RZ =1 e’ (5.50)
X Cnem-s? .;; !
mit
e; = Element der Residuenmatrix E,

1

an der Gesamtvarianz si der Datenmatrix X,

£ - Zi( x)° (5.51)
n-m i=1j=1

mit

x. = Element der Datenmatrix X,

ij
ist ein MaR dafir, wie gut ein Modell die Eingangsdaten beschreibt und wird insbesondere fiir
die Bewertung von PCA-Modellen verwendet. Der dabei beriicksichtigte Mittelwert X ,

X =

Ms

>

i=1]j

i X, (5.52)
-m

ist der Gesamtmittelwert der Datenmatrix X.

Bei der Untersuchung von PLSR-Modellen wird zusatzlich der erklarte Anteil der Varianz Ri ,

1 n v
RZ =1 - : Z-Zij, (5.53)

an der Gesamtvarianz der Matrix Y betrachtet, der sich in Analogie zu Rf( aus der Residuen-
matrix F mit den Dimensionen (n X v) berechnet.
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Die GréRenR% und R werden auch als Giite der Anpassung bezeichnet. Fiir PLSR-Modelle
ist jedoch die Giite der Vorhersage von groRerer Bedeutung.

Das liegt darin begriindet, dass durch die Berechnung weiterer Komponenten auch die erklarte
Varianz ansteigt, bis hin zu einem Maximalwert von 1. Dabei wird jedoch auch zufallige Varianz
in X oder Y beschrieben, bei der es sich zum Beispiel um messtechnisches Rauschen handeln
kann. In einem solchen Fall spricht man von Uberanpassung (Overfit) des Modells.

Ein Overfit wirkt sich meist negativ auf die Leistung des Modells bei der Vorhersage unbekann-
ter Proben aus. Daher sollte eine Validierung von PLSR-Modellen mit Proben durchgefiihrt
werden, die nicht an der eigentlichen Kalibrierung des Modells beteiligt sind.

Mehr noch sollte ein unabhangiger Validierdatensatz (validation set VS) verwendet werden,
der aus einer separaten Messreihe stammt. Dies wird auch als externe Validierung eines Mo-
dells der ZielgroRe y, bezeichnet.

Die Glte der Vorhersage (prediction P) Rgh einer Variable h,

>
]

s

g

_ (yVSih - g’vsm)z
RZ, =1 - T EE— (5.54)
(Yvsin = Yusn)

>
<
&

nys = Anzahl an Beobachtungen im Validierdatensatz VS
Yvsin = Messwert der ZielgréRe vy, fiir das Objekt i in VS

Yysin = Modellschatzwert der ZielgréRe vy, fiir das Objekt i in VS
Yvsn = Mittelwert der ZielgroRe y, in VS,

entspricht dem BestimmtheitsmaR R? der linearen Anpassung einer Auftragung von Modell-
schatzwerten gegen ihre Referenzmessungen.

Weiterhin erfolgt eine Bewertung von PLSR-Modellen anhand des mittleren Vorhersagefehlers
(root mean square error of prediction) RMSEP,,

1 .
RMSER, = \/T'Z(yvsm _yVSih)2 ) (5.55)
vs i1

der als wichtigste KenngroRe bei der Validierung des Modells zur Prédiktion der Zielgrélie y,
betrachtet werden kann.

Zum Zwecke der Vergleichbarkeit von Modellen unterschiedlicher ZielgréRen wird in dieser
Arbeit aulRerdem ein auf den jeweiligen Kalibrierbereich (calibration set CS) normierter rela-
tiver Fehler RMSEP

hrel’

RMSEP,

RMSER,, = ————-100% (5.56)
Yoshmax ~ Ycshmin

mit

Yeshmax = maximaler Wert der ZielgroRe y, im Kalibrierdatensatz CS

Yeshmin = minimaler Wert von y, in CS,

zur externen Validierung von PLSR-Modellen eingesetzt.
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Steht kein geeigneter Validierdatensatz zur Verfiigung, wird eine interne Validierungsmethode
verwendet. Bei diesem Verfahren, auch Kreuzvalidierung (cross validation cv) genannt, wird
jede Probe des Kalibrierdatensatzes genau einmal von der Modellbildung ausgeschlossen und
dann anhand des so erzeugten Untermodells vorhergesagt.

Im Falle der Kreuzvalidierung werden die vorgestellten KenngréRen zur PLSR-Modellvalidie-
rung mit Riv beziehungsweise RMSEcv bezeichnet.

5.6 Multivariate Klassifizierung

5.6.1 Allgemeine Informationen

Multivariate Klassifizierungsverfahren haben ihren Ursprung in den 1930er Jahren in der klas-
sischen Statistik [FISHER, 1936]. Viele verschiedene Methoden entstanden parallel in den
1970er Jahren vor allem in den aufstrebenden Fachgebieten der Informatik (maschinelles Ler-
nen) oder der chemischen Analytik (Chemometrie) [BRERETON, 2015]. Mégliche Anwendungen
reichen von Gesichtserkennungssystemen, Uberwachung der Qualitat von Lebensmitteln bis
hin zur medizinischen Diagnosefindung.

In der Literatur werden die Begriffe Mustererkennung (pattern recognition) oder Diskriminanz-
analyse haufig synonym verwendet.

Im folgenden Abschnitt wird die insbesondere im chemometrischen Umfeld weit verbreitete
Methode SIMCA vorgestellt.

5.6.2 Soft Independent Modelling of Class Analogy (SIMCA)

Die multivariate Klassifizierungsmethode Soft Independent Modelling of Class Analogy (SIM-
CA) wurde von Svante Wold auf Basis der PCA entwickelt [WOLD, 1976; WOLD & SJOSTROM,
1977]. Es handelt sich um ein sogenanntes Gberwachtes Verfahren, bei dem fiir jede betrach-
tete Klasse ein unabhéngiges PCA-Modell erstellt wird.

Unter der Voraussetzung, dass die verwendeten Daten in der Lage sind, Unterschiede zwi-
schen den Klassen und Gemeinsamkeiten innerhalb einer Klasse zu beschreiben, eignet sich
die SIMCA-Methode sehr gut zur Abschatzung der Klassenzugehdrigkeit unbekannter Objekte
(Proben) [ERIKSSON et al., 2001].

Entscheidend fiir die Einteilung einer unbekannten Probe i aus einem Vorhersagedatensatz
(prediction set) PS zu einer Klasse K ist die Distanz der Probe i zum PCA-Modell dieser Klasse.

Als Mal hierfir wird die erweiterte Distanz DModX+,

DModX+,ps = J DModXZ.g, + DModTZg, | (5.57)

herangezogen, die sich als die geometrische Lange aus der orthogonalen Distanz DModX;
der Probe zur Modellebene und einer hier als DModT,.g; bezeichneten Distanz der Probe zur
Vertrauensgrenze in der Modellebene berechnet [ERIKSSON et al., 2001].

Basierend auf DModX+, dessen Konzept in Bild 5.8 veranschaulicht wird, lasst sich fir jede
unbekannte Probe i eine Wahrscheinlichkeit B, fiir die Zugehorigkeit zu der betrachteten
Klasse K berechnen [ERIKSSON et al., 2001]. Fir die Klasseneinteilung wird zweckmaRig eine
Grenzwahrscheinlichkeit Bcrit von 0,5 verwendet.
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d @ class Amembers

3 e @ class B members
L) .
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DModX+,,., / | PMOdXers:

Bild 5.8:  Verdeutlichung der Klasseneinteilung anhand des DModX+

In Bild 5.8 sind zwei PCA-Modelle fiir die Klassen A (blau) und B (griin) gezeigt. Die Modelle
bestehen jeweils aus zwei Hauptkomponenten und sind zum Zwecke der Veranschaulichung
im Originaldatenraum D mit m = 3 Variablen dargestelit.

Die Modelle basieren auf den Daten ihrer jeweiligen Kalibrierdatensatze, wohingegen die bei-
den neuen Proben dps;i (rot) unbekannt sind. Die Probe dps; befindet sich in der Modelldomane
der Klasse A und wirde somit in diese eingeteilt werden. Die Probe dps2 liegt hingegen weit
auBerhalb beider Klassenmodelle. Daher ist sie keiner der beiden Klassen zuzuordnen.

Das Konzept der orthogonalen Distanz zur Modellebene DModX wird vor allem zur Detektion
von AusreiRern verwendet (siehe Abschnitt 5.5.2) und basiert auf der Betrachtung des modi-
fizierten Datenraums X.

Die orthogonale Distanz DModX,g einer unbekannten Probe i zum PCA-Modell K,

m
DModX, s = DM;TKM . Jm%k.;(xpsu ~ Koy ) (5.58)
mit
DModX,,, := mittlere Distanz zum PCA-Modell K (siehe GlI. (5.44))
e = Anzahl an Hauptkomponenten im Modell der Klasse K
)”(KPSiJ = X-Schétzwert der Probe i und Variable j gemaR Klasse K,

lasst sich aus den zur Probe i zugehorigen Messwerten x.g; und aus den zugeordneten
Schatzwerten X,pg; berechnen.

Diese anhand des PCA-Modells der Klasse K bestimmten Schatzwerte )"(KF,Sij s

)‘iKPSij = typs; 'plj (5.59)
mit
pL = (rx 1) Spaltenvektor der transponierten Loadingmatrix P, des Modells K,
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ergeben sich aus den Scores t,pg der unbekannten Probe i und mit den Loadings des PCA-
Modells K fir die betrachtete Variable j.

Der Score-Zeilenvektor t,.g; der unbekannten Probe im Modell K,

tps = Xpsi Py (5.60)
mit

teesi = (1 xr) Zeilenvektor der Scores einer unbekannten Probe i im Modell K

Xpsi = (1 x m) Zeilenvektor der Eingangsdaten (gemessen) einer unbekannten Probe i
P = (mxr) Loadingmatrix des PCA-Modells der betrachteten Klasse K,

ist wiederum abhéngig von den Messwerten x.¢; der unbekannten Probe i und berechnet sich
aus der Loadingmatrix P, der Klasse K.

5.6.3 Validierung von Klassifikatoren

Die Bewertung eines Klassifikators erfolgt auf Basis von Konfusionsmatrizen. Diese Technik
stammt urspriinglich aus der Signalentdeckungstheorie [PETERSON et al., 1954]. Fur jede be-
trachtete Klasse ist eine solche Matrix, auch Kontingenztabelle genannt, zu erstellen. Bild 5.9
zeigt den Aufbau einer Konfusionsmatrix.

class member
positive  negative

nlp r-]fn
es
Y true false
predicted positive negative
member
nfp ntn
no
false true
positive negative

Bild 5.9: Konfusionsmatrix zur Bewertung eines Klassifikators

Eine Konfusionsmatrix fasst die Ergebnisse der Einteilung einer Gesamtanzahl von n Objekten
in die jeweilig betrachtete Klasse zusammen. Da es sich um einen Validierungsschritt handelt,
ist die Klassenzugehdrigkeit aller n Objekte bekannt.

Vorausgesetzt die Gesamtanzahl n,

n =n,+n, (5.61)
mit

n, = Anzahl klassenzugehtriger (positiver) Objekte

n, = Anzahl klassenfremder (negativer) Objekte,

setzt sich aus klassenzugehdrigen (n;) und klassenfremden (n,) Proben zusammen, ergeben
sich firr die Validierung eines Klassifikators vier mégliche Resultate.

Bei korrekter Zuordnung einer klassenzugehdérigen (positiven) Probe zur betrachteten Klasse,
wird das Ergebnis als true positive (tp) bezeichnet. Schlagt die Einteilung durch den Klassifi-
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kator dagegen fehl, lautet das Ergebnis false positive (fp). Analog dazu treten fir klassenfrem-
de (negative) Proben mit true negative (tn) und false negative (fn) zwei weitere mogliche
Ergebnisse auf.

Die auf diese Mdglichkeiten entfallenen Objektanzahlen werden in der Konfusionsmatrix no-
tiert und fir die Ableitung einer Reihe von KenngroRRen genutzt.

Die Sensitivitat Se eines Klassifikators,

n n

Se = LI (5.62)
N, + Ny, n,

mit

n, = Anzahl richtig eingeteilter positiver Objekte

n, = Anzahl falsch vorhergesagter positiver Objekte,

ist definiert zu dem Anteil korrekt vorhergesagter klassenzugehdriger Objekte.

Die Spezifitat Sp eines Klassifikators,

sp =" _ M (5.63)
nln + r"fn r"n

mit

n, = Anzahl richtig eingeteilter negativer Objekte

n,, = Anzahl falsch vorhergesagter negativer Objekte,

beschreibt dagegen wie gut klassenfremde Objekte abgelehnt werden.

Die Gesamtleistung eines Klassifikators kann in einem Fehler E. der Klassifizierung,

N +nN
E. = 7“’” m.100%, (5.64)

als Gesamtanteil falsch vorhergesagter Objekte zusammengefasst werden.

Die Nutzung von Kontingenztabellen setzt diskrete oder binare Klassifikatoren voraus, die eine
ja/nein-Entscheidung Uber die Klassenzugehdérigkeit liefern. Die meisten multivariaten Klassi-
fizierungsverfahren erzeugen jedoch kontinuierliche Grofken wie zum Beispiel eine Wahr-
scheinlichkeit B der Klassenzugehoérigkeit. Dies macht eine Definition geeigneter Grenzwerte
notwendig.

Andersherum betrachtet ergibt sich daraus jedoch auch die Méglichkeit einer Optimierung der
Klassifikatoren hinsichtlich der Sensitivitdt Se oder Spezifitat Sp, je nachdem ob ein eher
konservatives oder liberales Verhalten des Klassifikators erwiinscht ist [FAWCETT, 2004].

5.7 Support Vector Machines (SVM)

5.71 SVM als multivariates Klassifizierungsverfahren

Die Methodik der Support Vector Machines wurde von Vapnik und Chervonenkis im Rahmen
der statistischen Lerntheorie beschrieben [VAPNIK & CHERVONENKIS, 1974]. Der Methode ge-
lang in den 1990er Jahren der Durchbruch, nachdem einige Erweiterungen den Algorithmus
beispielsweise zur nichtlinearen multivariaten Regression befahigten [VAPNIK, 2000].
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Urspriinglich handelt es sich jedoch um ein multivariates Klassifizierungsverfahren, dessen
Funktionsweise im Folgenden erlautert werden soll.

Ausgegangen wird zunachst von zwei sich nicht Gberlappenden, linear separierbaren Klassen
A und B im m-dimensionalen Raum der Eingangsdaten X. Gesucht wird eine optimale Trenn-
ebene g,,. Bild 5.10a illustriert dies anhand von m = 2 X-Variablen.

a) b)
o classA © class B T y

optimal sepa- | - | ol

rationplane /| o, ° | | | IS T

X,

Bild 5.10:  a) Nicht Gberlappende, linear trennbare Klassen fiir m = 2 Dimensionen
b) Ubertragung des Problems in den m + 1 dimensionalen Raum

Entsprechend seiner Klassenzugehdrigkeit wird jeder Beobachtung x; der Eingangsdaten einer
von zwei méglichen Werten y, € {-1, +1} zugewiesen. Diese Information der Klassentrennung
Ubertragt das Klassifizierungsproblem in einen m + 1 dimensionalen Raum, welcher in Bild
5.10b dargestellt ist.

Fur die Einteilung eines Objektes i lasst sich eine lineare Entscheidungsfunktion g,

gx) =V, = %W +b = X; W, + XpW, + ...+ X, -W, + b (5.65)
mit

Y, := Schatzwert der Klassenzugehdrigkeit

X; = (1 x m) Daten-Zeilenvektor des Objektes i

w = (m x 1) Wichtungs-Spaltenvektor

b := Bias der Entscheidungsfunktion,

definieren, welche eine (Hyper-) Ebene innerhalb dieses Raums beschreibt.

Die Klasse einer unbekannten Beobachtung Xqg;,

A Yps <O

class(xpg) = { (5.66)

B, Ve > 0’

kann anhand des Vorzeichens des Schatzwertes ¥, bestimmt werden.

Der unbekannte Wichtungsvektor w und der Bias b der Entscheidungsfunktion sind Uber das
Modelltraining mit den Daten x; und y, zu ermitteln.
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5.7.2 Berechnung einer optimalen Trennebene

Es existiert eine unendliche Anzahl méglicher Trennebenen. Dies ist in Bild 5.10a angedeutet.
Gesucht wird die optimale Trennebene g, welche eine maximale Spanne S, zwischen den
Eingangsdaten aufweist.

Die Spanne wird auf jeder Seite durch mindestens ein Objekt der entsprechenden Klasse be-
grenzt. Diese Beobachtungen der Trainingsdaten werden Stltzvektoren genannt und sind fur
die Methode namensgebend.

Fir einen Stiitzvektor x,, soll damit sein Schatzwert y

ysvi = Xgi W+ b = Youi € =1 +1} (5.67)
dem gegebenen Wert seiner Klassenzugehdrigkeit y, ; entsprechen.

Mit dieser Bedingung lasst sich zeigen, dass die zu maximierende Spanne S,

2 2
S = = , 5.68
W~ ot (5:68)
von der Lange des Wichtungsvektors w abhangt.
Aus numerischer Zweckmafigkeit wird daraus das zu minimierende Gutekriterium Jg,
1 2 1 7 1 & 2
J = —JwlF = = whw = =->w?, 5.69
o =gl =2 2w (5.69)

abgeleitet [KECMAN, 2005].

Aufgrund der in Gl. (5.67) beschriebenen Voraussetzung muss die gesuchte optimale Trenn-
ebene g, aulerdem die Nebenbedingung,

Yio(X-w + b) =1, (5.70)

fur die Trainingsdaten x; und y, erfiillen.

Dies stellt ein klassisches quadratisches Optimierungsproblem dar, welches Uber den Sattel-
punkt eines Lagrange-Funktionals L,

L(w,b,a) = %-wTw =Y o[y (x-w + b) - 1] (5.71)
i=1

mit

n = Anzahl Beobachtungen im Datensatz X

o := Langrange-Multiplikator der Beobachtung i,

gelost werden kann [KECMAN, 2005].
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Dabei werden zunéchst die unbekannten o; durch Maximierung eines dualen Lagrange-Funk-
tionals L,

n
- Y -

n
zai‘az'Yi‘yZ‘xi‘XI (5.72)

z=1

I\)\—‘
M-

iz
mit
z = weiterer Zahlindex der Objekte, z=1,2, ..., n

und mit den Nebenbedingungen,
Yoy, =0 (5.73)

und

o >0, (5.74)

1
aus den Trainingsdaten identifiziert.

Bei allen Beobachtungen mit einem o, > 0 handelt es sich um Stiitzvektoren. Alle (ibrigen
Objekte haben demnach ein «; von 0.

Die gesuchten Parameter der optimalen Trennebene, der Wichtungsvektor w,

oYX (5.75)

W= i i

“

und der Bias b,

1 “v
b = ysw — Xsvi® ) (576)
nSV i=1
mit
n., := Anzahl der Stiitzvektoren,

sv

lassen sich dann berechnen.

Anhand GI. (5.72) ist zu erkennen, dass bei der Berechnung der optimalen Trennebene die
Eingangsdaten X in Form von Skalarprodukten eingehen.

Damit hat die Dimensionalitat (Anzahl der Variablen m) von X keinen starken Einfluss auf den
bendtigten Rechenaufwand. Dieser ist dagegen maRgeblich von der Anzahl n an Beobachtun-
gen im Kalibrierdatensatz abhéngig, da ebenso viele Lagrange-Multiplikatoren «; identifiziert
werden missen. Support Vector Machines sind demnach besonders fir hochdimensionale
Daten mit verhaltnismaRig wenigen Objekten geeignet.

Fur die Identifizierung der o; kommen spezielle Algorithmen zur Lésung des quadratischen
Optimierungsproblems zum Einsatz. Haufig verwendet wird der Sequential Minimal Opti-
mization (SMO) Algorithmus [PLATT, 1999].
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5.7.3 Kernel-Funktionen zur Abbildung nichtlinearer Beziehungen

In Bild 5.11a sind zwei Klassen A und B mit einer nichtlinearen Klassengrenze in einem Raum
zweier X-Variablen gezeigt. In einem solchen Fall ist die direkte Anwendung eines linearen
Ansatzes fiir die Trennebene ungeeignet.

a) b) .
o classA o classB s - : . -
X, Frewr 9 y
F+1
| w3, =

o 7 i
real class o q‘%}" ;;

o -
a0 boundary

;o

@

e *® 3_

%, X,
Bild 5.11:  a) Zwei Klassen mit nichtlinearer Klassengrenze fiir m = 2 Dimensionen
b) Entscheidungsfunktion der Klassifizierung als nichtlineare Oberflache

Durch mathematische Transformationen der Eingangsdaten X lasst sich dieser (n x m) dimen-
sionale Datenraum in einem Merkmalsraum F (n x M) abbilden. Die Anzahl M der Variablen
(Merkmale) dieses Raums kann dabei beliebig hoch gewahlt werden.

Die Idee ist, dass sich durch die Wahl einer geeigneten Abbildungsvorschrift ® ein linearer
Ansatz der Entscheidungsfunktion g,

g (X) = O(X)-wp + b, (65.77)
auf den Raum F anwenden lasst, wodurch der zur Klassentrennung bendétigte nichtlineare
Verlauf von g, erzeugt wird. Dies ist in Bild 5.11b illustriert.

Das fiir die Lésung dieses Problems zu maximierende duale Lagrange-Funktional L,
n

0‘i""z'Yi'yz'd)(xi)'(DT(XZ)‘ (578)

z=1

M-

Ly(a) =)o - =

N[ =

n
i=1

beinhaltet analog zu GlI. (5.72) die Skalarprodukte der in F abgebildeten Objekte d(x;).

Bei sehr hoher Dimension M des Merkmalsraumes benétigt die Berechnung dieser Skalarpro-
dukte (sowie die Ausfiihrung der Abbildung @ selbst) einen sehr hohen Rechenaufwand.

Dieser wird durch die Verwendung sogenannter Kernel-Funktionen K,
K(x.X,) = @(x) @' (x,), (5.79)

umgangen, welche ausschlieRlich mit den Eingangsdaten in X operieren.
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Dadurch wird sogar die Verwendung, unendlichdimensionaler Eigenschaftsraume ermdglicht,
die beispielsweise durch die Gauly’'sche radiale Basisfunktion (RBF),

1 1
o e (xx) (% %)
K(x,x,) =e 7 =e 7 (5.80)
mit
Yy := Parameter des Gaufl‘schen RBF-Kernels,

erzeugt werden.

Bei dieser muss der Parameter y Uber eine Kreuzvalidierung ermittelt werden. Fir stark ver-
rauschte Daten erzeugt ein kleiner Wert fir y eine komplexe Trennebene und kann damit zu
einem Overfit fllhren [KECMAN, 2005].

Es existieren verschiedene Kernel-Funktionen. Einige sind in Tabelle 5.1 aufgelistet. In dieser
Arbeit wurde jedoch ausschlieRlich mit dem Gaufy’'schen RBF-Kernel gearbeitet.

Tabelle 5.1: Haufig verwendete Kernel-Funktionen [KECMAN, 2005]

Kernel-Funktion Beschreibung

K(x,X,) = X;-X] Linearer Kernel

K(x;.x,) = (%] + 1)d Polynom vom Grad d

K(x.x,) = tanh(xi»xl + c) Mehrlagiges Perzeptron

K(Xi,XZ) _ (Hxi _XZHZ . ﬁ)_% Inverse multiquadratische Funktion

Bei der Verwendung nichtlinearer Kernel ist eine explizite Darstellung des Wichtungsvektors
w nicht mehr méglich. Stattdessen kann die Entscheidungsfunktion g,

a(x) =¥ = > oy -K(x,x), (5.81)

Vi

direkt mit den Trainingsdaten und der verwendeten Kernel-Funktion notiert werden.

Abhangig von der Art des verwendeten Kernels kann der Bias b entweder vernachlassigt oder
implizit in der Kernel-Funktion bertcksichtigt werden [KECMAN, 2005].

5.7.4 Erweiterung zur Support Vector Regression (SVR)

Das prinzipielle Vorgehen bei der Entwicklung eines Regressionsverfahrens mittels Support
Vector Machines entspricht dem bei der Entwicklung eines Klassifikators.

Ausgehend von einer linearen Beziehung, wird eine Regressionsfunktion f,
f(X) =y =X-w + b, (5.82)
allgemein als linearer Zusammenhang im multivariaten Raum X definiert.

Jede Beobachtung i der Trainingsdaten besitzt anstelle diskreter Werte der Klassenzugeho-
rigkeit jedoch einen kontinuierlichen, autoskalierten Messwert y,.
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Fur die Berechnung der Regressionsfunktion soll Giber das Gltekriterium Ji,

b= Wl s COYEXY) (5.83)
i=1

mit

C = Guteparameter zur Wichtung der Fehler, C > 0,

auch die Summe der Kalibrierfehler minimiert werden.

Der Fehler E einer Beobachtung i,

- f(x) - e, = f(x) < ¢
E(x.y) = b = 15) b = 10) (5.84)
0, otherwise
mit
€ = akzeptierte Fehlertoleranz,

beschreibt die absolute Abweichung von der Regressionsfunktion unter Berlicksichtigung ei-
ner Fehlertoleranz e.

Diese muss zusammen mit dem Parameter C zur Wichtung der Kalibrierfehler vom Anwender
gewahlt oder in einer Kreuzvalidierung ermittelt werden. Kleine Werte von € sowie grof3e Werte
von C erzeugen ein komplexes Modell und kdnnen somit zu einem Overfit fihren.

Das im Falle der Regression zu l6sende quadratische Optimierungsproblem fiihrt zur einem
dualen Lagrange-Funktional L,

33 - B) o - B)xx] (5.85)

1z=1

s—y zn:s+y
i=

M:

La(o.B) = -

|
-

welches mit den Nebenbedingungen,

M-

(cx - B) = (5.86)

und
C=>o,p 20, (5.87)

durch Identifikation der Lagrange-Multiplikatoren o; und B; zu maximieren ist.

Im Vergleich mit einem SVM-Klassifikator miissen bei der SVR demnach doppelt so viele Pa-
rameter bestimmt werden.

Da die Trainingsdaten x; auch hier als Skalarprodukt in L, eingehen (siehe Gl. (5.85)), kénnen
auch bei der Regression Kernel-Funktionen zur Modellierung nichtlinearer Beziehungen ohne
weitere MaBnahmen eingesetzt werden.

Beobachtungen mit einem o, oder §; > 0 sind Stiitzvektoren. Fiir alle anderen Objekte sind
beide Lagrange-Multiplikatoren gleich 0.
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Der Wichtungsvektor w der Regressionsfunktion,
woo=Y (o = B, (5.88)
i=1

wird deshalb nur von den Stitzvektoren beeinflusst.

Diese liegen entweder oberhalb (o; > 0) oder unterhalb (8, > 0) des Toleranzbandes der Re-
gressionsfunktion, welches eine Weite von 2¢ besitzt. Bild 5.12 zeigt Stiitzvektoren und ein -
Toleranzband bei der Modellierung eines nichtlinearen Verlaufes mit SVR fiir eine X-Variable.

y

Gaussian RBF Kernel
C=30 ¢=01 y=1

training data

support vectors
original function

—— SVR predicted
¢ tolerance

Bild 5.12:

Mit SVR modellierter, nichtlinearer Verlauf (m = 1)

Stltzvektoren, dessen Lagrange-Multiplikatoren einen Wert < C aufweisen, werden freie
Stiitzvektoren genannt. Alle anderen heiRen gebundene Stltzvektoren.

Die Berechnung des Bias b der Regressionsfunktion,

"w [y — X W — g C>a >0
b =L'Z Yi i 2 & (5.89)
New Y — W + & C>p >0
mit
Ny := Anzahl freier Stiitzvektoren,

erfolgt durch Mittelung (iber diese freien Stltzvektoren [KECMAN, 2005].

5.8 Eingesetzte MVDA-Software

In dieser Arbeit wurden zwei Softwarepakete flr die Erstellung multivariater Modelle genutzt.
Die Software SIMCA 13.0.3 der Fa. MKS data analytics solutions (ehemals Umetrics), Umea,
Schweden, wurde fiir die Berechnung von PLS-Regressionsmodellen und SIMCA-Klassifika-
tionsmodellen verwendet.

Fir die Berechnung von Modellen, basierend auf Support Vector Machines (SVR), kam die
PLS_Toolbox 8.1.1 von Eigenvector Research, Manson, USA, zum Einsatz. Hierbei handelt
es sich um eine Zusatzsoftware fur MATLAB®, The Mathworks, Natick, USA, das in der Version
8.5.0/R2015a zur Verfigung stand. SVR-Modelle werden hierin mit einer Implementierung der
LIBSVM-Bibliothek berechnet [CHANG & LIN, 2011].
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6. Qualitatsbewertung von Hefeextrakten mit NIR-Spektroskopie

6.1 Motivation und Zielsetzung

Hefeextrakt wird zumeist aus dem Lysat von Zellen der Spezies Saccharomyces cerevisiae
gewonnen. Durch die Wahl und Steuerung des Aufschlussverfahrens (z.B. Autolyse, Ther-
molyse) kdnnen unterschiedliche Produktklassen gewonnen werden, die sich in ihrer Zusam-
mensetzung unterscheiden. Nach Abtrennung unléslicher Zellbestandteile wird das Extrakt in
flissiger oder in spriihgetrockneter Pulverform weiterverarbeitet.

Ein Einsatzgebiet von Hefeextrakt ist die biotechnologische Produktion, in der es als Bestand-
teil von Kulturmedien zum Einsatz kommt. Neben verschiedenen Kohlenstoffquellen enthalt
es unter anderem Aminosauren und Spurenelemente, womit ein breites Spektrum des Nahr-
stoffbedarfes verschiedener Mikroorganismen abgedeckt wird.

Hefeextrakt kann damit das Wachstum aber auch die Produktivitat verschiedener biotechnolo-
gischer Hostsysteme positiv beeinflussen [KEIL & TILKINS, 2013; MOSSER et al., 2013]. Eine
Maximierung mikrobiellen Wachstums konnte mit Variation des Extraktes oder durch die Ver-
wendung einer optimalen Mischung verschiedener Klassen erreicht werden [WILMES, 2012].

Der Vertrieb solcher stamm- oder produktspezifisch optimierter Mischungen kénnte ein loh-
nendes Geschaftsfeld kleinerer Hefeextraktproduzenten sein, die sich auf Kunden aus dem
biotechnologischen Umfeld fokussieren.

Ein Hindernis bei der Herstellung derartig spezialisierter Produkte ist die naturliche Chargen-
schwankung, die bei der Produktion der Grundklassen beobachtet wird. Hieraus kann char-
genabhangig unterschiedliches mikrobielles Wachstum resultieren [WILMES, 2012].

Das Ziel dieser Arbeit war die Entwicklung eines Bewertungsverfahrens fur drei Hefeextrakt-
klassen. Als Qualititsmerkmal wurde dabei die Ubereinstimmung einer Charge mit den mittle-
ren Eigenschaften ihrer entsprechenden Klasse herangezogen. Der Ausschluss abweichender
Chargen bei der Herstellung spezialisierter Mischungen wiirde deren Qualitat gewahrleisten.

Die Durchfiihrung umfangreicher Analysen, hinsichtlich relevanter Komponenten der Hefeex-
trakte, stellt eine sehr zeit- und kostenintensive Aufgabe dar. Darlber hinaus sind viele Inhalts-
stoffe unbekannt oder sind aufgrund des komplexen Charakters der Hefeextrakte nur schwer
isolier- und quantifizierbar.

Es konnte gezeigt werden, dass Nahinfrarotspektren von Hefeextrakten mit dem Kultivierungs-
erfolg von Mikroorganismen in Beziehung gesetzt werden kénnen [KASPROW et al., 1998].
Daher wurde auf die Bestimmung spezifischer Inhaltsstoffe verzichtet und als Analyenmethode
einzig die Nahinfrarotspektroskopie (NIRS) gewahlt. Diese hat den Vorteil schnell und zersto-
rungsfrei zu arbeiten und kaum Probenvorbereitung zu benétigen [BLANCO & VILLARROYA,
2002].

Fir die Entwicklung der Qualitadtsbewertung basierend auf NIRS kam in dieser Arbeit das multi-
variate Klassifizierungsverfahren Soft Independent Modelling of Class Analogy (SIMCA) zum
Einsatz (siehe Abschnitt 5.6.2).
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6.2 Stand der Wissenschaft

Multivariate Klassifizierungsverfahren wurden zusammen mit der NIRS bereits erfolgreich ein-
gesetzt. Insbesondere eine Qualitdtsbewertung von Nahrungsmitteln wurde auf diese Art
bereits mehrfach realisiert [ BERRUETA et al., 2007; HUANG et al., 2008; WooDCOCK et al., 2008].

Hier kann auf einen breiten Erfahrungsschatz zurlickgegriffen werden, der sich in einer hohen
Anzahl an Verdffentlichungen niederschlagt. Die Methodik wurde zum Beispiel zur Authenti-
zitatsprifung von Weinen [ARVANITOYANNIS et al., 1999], zur Qualitdtsbewertung von Weizen-
mehlen [COCCHI et al., 2005], oder der schnellen Detektion von Aflatoxin B1 in Getreiden
[FERNANDEZ-IBANEZ et al., 2009] eingesetzt.

Die Untersuchung von Rohmaterialien im pharmazeutischen Umfeld mit NIR-Spektroskopie
stellt ein klassisches Beispiel einer PAT-Anwendung dar [SKIBSTED & ENGELSEN, 2010]. Dies
wurde jedoch auch schon vor der Veréffentlichung der PAT-Initiative erfolgreich praktiziert.
Gemperline et al. nutzen bereits 1989 NIR-Reflexionsspektren mit der Methode SIMCA, um
die Eignung verschiedener Rohmaterialen bei der Herstellung von Tabletten zu bewerten
[GEMPERLINE et al., 1989].

Fir die Zeit nach Erscheinen der PAT-Initiative kdnnen jedoch vergleichsweise wenig Litera-
turstellen aus dem biopharmazeutischen Sektor gefunden werden. Kirdar et al. nutzten NIRS
und PCA, um den Erfolg von Zellkulturen auf die Chargenschwankungen der pulverférmigen
Zellkulturmedien zuriickzufithren [KIRDAR et al., 2009]. Mark et al. konnten die Qualitét eines
Zwischenproduktes bei der Antibiotikaproduktion mittels NIRS tiberwachen [MARK et al., 2010].

6.3 Der gewéhlte Messaufbau

Die pulverférmigen Hefeextraktproben wurden in einem speziellen Gefal vorgelegt und auf
dem Kontaktmesskopf PSS-H-BO1 der Fa. Polytec, Waldbronn, wie in Bild 6.1 gezeigt, posi-
tioniert. Die Messung erfolgte mit der Methode der diffusen Reflexion.

Bild 6.1: Messaufbau mit dem Reflexionskontaktmesskopf PSS-H-B01

Das Probengefall wurde individuell von der Fa. Quarzglas Komponenten und Service QCS,
Maintal, angefertigt. Es verfugt Uber einen plangeschliffenen Boden aus Quarzglas und ist
damit fir Anwendungen mit Nahinfrarotspektroskopie geeignet.
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Fir eine Messung wurden etwa 10 g Hefeextraktpulver benétigt. Die Vermessung der Proben
erfolgte in Dreifachbestimmung. Zwischen diesen Messungen wurde das Gefall grob gesau-
bert und die Probe neu vorgelegt. Zwischen der Vermessung unterschiedlicher Proben erfolgte
eine grundliche Reinigung.

Die Messungen fanden bei den Standardmesseinstellungen des Spektrometers statt. Die Inte-
grationszeit betrug 15 ms und es wurden 100 Akkumulationen aufgenommen. Eine Dunkel-
korrektur und der WeiRabgleich erfolgten automatisch Giber SchlieBmechanismen des Detek-
tors und des Kontaktmesskopfes.

6.4 Vorstellung des Probenpools

Das Qualitatsbewertungsverfahren sollte fir die drei Hefeextraktklassen A, B und C eines Her-
stellers entwickelt werden. Klasse A ist von einem hohen Gehalt freier Aminosauren gekenn-
zeichnet, wahrend die Klassen B und C einen hohen Peptidgehalt aufweisen. Klasse B weist
zudem einen relativ hohen Gehalt an Nukleotiden auf.

Es standen 93 Hefeextraktproben zur Verfugung. Wie in Tabelle 6.1 dargestellt, teilen sich
diese zu je 32 auf die Klassen A und C auf. Auf die Klasse B entfallen 26 Proben. Zusatzlich
wurden drei externe Proben vermessen, die bei der Modellvalidierung als Negativbeispiele
verwendet werden sollten. Bei diesen Proben handelt es sich um kommerziell erhaltliche
Hefeextrakte anderer Hersteller.

Tabelle 6.1: Probenpool fiir die Entwicklung von NIR- und MVDA-Bewertungsverfahren

Klasse Probenanzahl Einzelmessungen
A 32 96
B 26 78
C 32 96
extern 3 9
Gesamt 93 279
6.5 Vorverarbeitung der Spektraldaten

Als Methode der Datenvorverarbeitung wurde das Standard Normal Variate (SNV) Filter ge-
wahlt. AuBerdem erfolgte eine Mittenzentrierung der NIR-Spektren.

Das SNV-Filter ist deshalb fir die Spektren der pulverférmigen Hefeextrakte geeignet, da ins-
besondere die bei Messungen in diffuser Reflexion an partikularem Probenmaterial auftreten-
den Streueffekte von dieser Methode kompensiert werden [KESSLER, 2008]. Die Uberlegenheit
des SNV-Filters gegenuber anderen Methoden in ahnlichen Anwendungen der NIR-Spektros-
kopie wurde bereits gezeigt [CANDOLFI et al., 1999a; CHEN et al., 2006].

6.6 Explorative Datenanalyse und Probenselektion

Zum Zwecke der Analyse der Hefeextraktspektren wurde zunéachst ein auf allen Proben basie-
rendes PCA-Modell erstellt. Dieses Modell besteht aus zwei Hauptkomponenten, die ge-
meinsam eine Varianz der Spektraldaten Ri von 92,1 % beschreiben.
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In dem fiir diese beiden Hauptkomponenten in Bild 6.2 gezeigten Score Scatter Plot ist bereits
eine gute Trennung der Klasse A (rot) von den anderen beiden Klassen zu erkennen. Die
Klassen B (blau) und C (griin) weisen eine gewisse Uberlappung auf. Die als graue Dreiecke
gekennzeichneten externen Proben zeigen zum Teil Ahnlichkeiten mit den Klassen B und C,
liegen aber eher abseits der Hauptgruppen.

t, [-] oA oB oC external 95 % confidence limit
1.6
0.8
* @
0.0 e o
-0.84
-1.64
T T T T T T T T T
-2.4 -1.2 0.0 1.2 24

Bild 6.2: Score Scatter Plot des PCA-Modells aller Hefeextraktproben

Kleinere Gruppen von jeweils drei Symbolen entsprechen den Dreifachmessungen der Pro-
ben. Einige ungewohnliche Objekte, die relativ weit von der Hauptgruppe entfernt positioniert
sind, kénnen insbesondere der Klasse A zugeordnet werden.

Ein multivariates Klassifizierungsmodell fiir eine Qualitadtsbewertung sollte auf Proben basie-
ren, die den mittleren Eigenschaften der Klasse entsprechen. Aus diesem Grund wurden in
einem nachsten Schritt PCA-Modelle der einzelnen Klassen erzeugt und diese auf Ausreil3er
untersucht.

Fir die PCA-Klassenmodelle wurden jeweils so viele Hauptkomponenten berechnet, um min-
destens 95 % der Varianz in den Spektraldaten zu beschreiben. Diese Grenze wurde frei ge-
wahlt. Wies eine Probe einen Hotelling T?-Wert auBerhalb des 95 % Konfidenzintervalls auf,
so wurde diese Probe als AusreilRer erachtet und folglich von der Modellbildung ausge-
schlossen.

Bild 6.3a zeigt den Score Scatter Plot und Bild 6.3b den Hotelling T? Plot eines PCA-Modells
mit zwei Hauptkomponenten fiir alle 32 Proben der Klasse A.

Es ist eine relativ kompakte Gruppe in der Mitte des Score Scatter Plots zu erkennen, von
denen sich einige ungewohnliche Proben abheben. Diese sind durch ihre Probennummer als
potentielle Ausreifier kenntlich gemacht.
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Bild 6.3: PCA-Modell der Klasse A zur Ausreiferdetektion, n = 96 (32), r = 2,
a) Score Scatter Plot, b) Hotelling T? Plot

Allerdings konnte nur die Probe AQO5 als eindeutiger AusreiRer identifiziert werden, da die
anderen markierten Proben innerhalb oder auf der Vertrauensgrenze liegen. Folglich wurde
zunéchst nur diese Probe von der Modellbildung ausgeschlossen und ein neues PCA-Modell
gebildet.

Basierend auf diesem aktualisierten Modell konnten zwei weitere Proben als Ausreil3er identi-
fiziert werden. Dieses Vorgehen wurde mit dem weiter reduzierten Datensatz so oft wiederholt,
bis keine Probe mehr als Ausreifier zu erkennen war und eine homogene Verteilung der Pro-
ben im Score Scatter Plot erreicht wurde. Das endgiiltige Resultat mit 26 von 32 Proben ist in
Bild 6.4 gezeigt.

a) b) _,
t [ 95 % confidence limit T[] 95 % confidence limit
15
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14 07 00 07 14 sample index i

t
Bild 6.4: PCA-Modell der Klasse A ohne Ausreiller, n = 78 (26), r = 2,
a) Score Scatter Plot, b) Hotelling T2 Plot

Alle sechs in Bild 6.3 als potentielle Ausreier hervorgehobenen Proben wurden auch tat-
sachlich als AusreiRer erkannt und von der Bildung des multivariaten Klassifizierungsmodells
fur Klasse A ausgeschlossen.

Das gleiche Vorgehen fir die Klassen B und C flhrte zu der Erkennung von zwei bzw. finf
AusreilRern.
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6.7 Entwicklung eines SIMCA-Klassifizierungsmodells

Ein SIMCA-Klassifizierungsmodell besteht aus je einem PCA-Modell fir jede der betrachteten
Klassen und bestimmten Entscheidungsregeln fiir die Klassifizierung. Diese Entscheidungs-
regeln kénnen im Voraus festgelegt werden. Die Konfidenzintervalle fiir den Hotelling T?-Wert
und des DmodX+ wurden zu 95 % gewahlt. Die Grenzwahrscheinlichkeit Bt fiir die Einteilung
in eine Klasse betrug 0,5.

Die jeweilige Anzahl erforderlicher Hauptkomponenten der PCA-Klassenmodelle muss dage-
gen gesondert ermittelt werden. Die Schwierigkeit dieser Aufgabe ist bekannt, da keine gene-
rellen Regeln gegeben sind [CANDOLFI et al., 1999b]. Haufig kommen hierbei Kreuzvalidie-
rungsverfahren, angewandt auf die einzelnen PCA-Modelle, zum Einsatz.

Dieses Vorgehen optimiert eine generelle Beschreibung der Klassen-Spektraldaten durch die
einzelnen PCA-Modelle, nicht aber die Giite eines vollstdndigen SIMCA-Klassifikators. In die-
ser Arbeit wurde deshalb ein Ansatz verfolgt, bei dem das gesamte SIMCA-Modell einer Kreuz-
validierung unterzogen wird. Dabei stellt der Klassifizierungsfehler E. (siehe Abschnitt 5.6.3)
das entscheidende Kriterium dar.

Es wurden vier Kreuzvalidierungsdurchgange durchgefiihrt und sichergestellt, dass jede Pro-
be nur einmal als Teil eines Validierdatensatzes zum Einsatz kam sowie keine Trennung der
Dreifachmessungen erfolgte. Zuvor als Ausreiller deklarierte Proben (siehe Abschnitt 6.6)
waren ebenfalls genau einmal Teil einer der sich ergebenen vier Validierdatensatze. Die drei
externen Proben wurden bei diesem Vorgehen nicht berlcksichtigt.

Diese Kreuzvalidierungsprozedur wurde fir acht SIMCA-Klassifizierungsmodelle durchge-
fuhrt, in denen die drei PCA-Klassenmodelle jeweils die gleiche Anzahl an Hauptkomponenten
beinhalten (r=1 ... 8).

Die Klassifizierungsergebnisse jedes dieser acht Modelle lassen sich in je einer Konfusions-
matrix fiir die drei Klassen zusammenfassen. Diese sind am Beispiel des SIMCA-Modells mit
jeweils r = 1 in Tabelle 6.2 gezeigt.

Tabelle 6.2: Konfusionsmatrizen der drei Klassen eines SIMCA-Modells mit r = 1 fur alle
PCA-Klassenmodelle, Auswertung aller Einzelmessungen

Klasse A Klasse B Klasse C

positiv eingeteilt pos | neg pos | neg pos | neg
ja 78 0 66 30 75 10

nein 0 192 6 168 6 179
s(n=270)| | 78 [ 192 | | 72 [ 198 | | 81 | 180 |

Den Konfusionsmatrizen lasst sich entnehmen, dass fiir die Klasse A bereits ein perfekter
Klassifikator mit nur einer Hauptkomponente erzeugt werden konnte. Alle Proben (78 Mes-
sungen) der Klasse A wurden korrekt in diese eingeteilt. Darliber hinaus wurde keine der klas-
senfremden Proben (192 Messungen) falschlicher Weise der Klasse A zugewiesen. Im Ge-
gensatz dazu weisen die Klassen B und C fiir dieses SIMCA-Modell noch einige Fehlklassi-
fizierungen auf.
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Beispielsweise wurden je zwei Proben (sechs Messungen) nicht ihrer jeweiligen Klasse zuge-
wiesen. Fir Klasse B handelt es sich hierbei um die Proben B02 und B06 (siehe Bild 6.5).

Weiterhin wurden der Klasse B falschlicher Weise zehn negative Proben (30 Messungen) zu-
gewiesen. Bild 6.5 kann entnommen werden, dass diese Proben ausschlieRlich Vertreter der
Klasse C sind. Hierzu sind die entsprechenden Proben rechts oben im Bild anhand ihrer Pro-
bennummer hervorgehoben.
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Bild 6.5: Wahrscheinlichkeit Bg der Zugehorigkeit zur Klasse B aller Proben fiir ein
SIMCA-Modell mit r = 1 fir alle PCA-Klassenmodelle

In obiger Abbildung sind die Wahrscheinlichkeiten B der Zugehdrigkeit zur Klasse B fiir alle
Proben dargestellt. Bei Uberschreiten der gewahlten Grenzwahrscheinlichkeit B, von 0,5
werden die Proben in Klasse B eingeteilt. Viele Proben der Klasse C (griin) befinden sich
oberhalb dieser Grenze. Die beiden Ausreif3er der Klasse B, B24 und B25 (orange), wurden
dagegen Kkorrekt als nicht klassenzugehdrig erkannt.

Analog dazu stammen die zehn falsch-positiven Zuweisungen der Klasse C (siehe Tabelle
6.2) ausschlieRlich aus Klasse B (nicht gezeigt). Dies lasst darauf schlieen, dass eine Haupt-
komponente nicht zur Trennung der Klassen B und C ausreicht, da diese starke Ahnlichkeiten
aufweisen. Dieser Eindruck entstand bereits bei Betrachtung des Score Scatter Plots des
Gesamt-PCA-Modells in Bild 6.2.

Ein Ubersichtlicherer Vergleich der getesteten SIMCA-Klassifikatoren mit unterschiedlicher
Komponentenanzahl kann anhand der in Abschnitt 5.6.3 vorgestellten Charakteristiken erfol-
gen. Hierzu sind in Bild 6.6 die Selektivitdt Se und die Spezifitdt Sp fir die drei Klassen in
Abhangigkeit der Anzahl r verwendeter Hauptkomponenten gezeigt.

In Bild 6.6a ist zu erkennen, dass die Selektivitat Se fiir alle Klassen mit steigender Kompo-
nentenanzahl abnimmt. Dies bedeutet, dass ein sinkender Anteil an klassenzugehérigen
Proben korrekt in die entsprechende Klasse eingeteilt wird. Dieses Verhalten deutet auf einen
Overfit der PCA-Klassenmodelle bei hohen Komponentenanzahlen hin.
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Bild 6.6: Bewertung der Klassifizierung anhand a) der Selektivitat Se und b) der Spezifitat
Sp der drei Klassen abhangig von der Anzahl r berechneter Hauptkomponenten

Die Spezifitat Sp, gezeigt in Bild 6.6b, steigt in der Tendenz fiir die Klassen B und C mit der
Komponentenanzahl r an und liegt fur alle Klassen ab vier Hauptkomponenten auf ihrem
Maximalwert 1. Fir viele berechnete Hauptkomponenten ist es also sehr unwahrscheinlich,
Proben in die falsche Klasse einzuteilen.

Vor dem Hintergrund der angestrebten Entwicklung eines Qualitatsbewertungsverfahrens soll-
ten, um falsch-positive Ergebnisse zu vermeiden, Klassifikatoren mit hoher Spezifitat gewahit
werden. Auf eine maximale Selektivitdt kann dagegen verzichtet werden, da bei der vorliegen-
den Fragestellung und unter Vernachlassigung ékonomischer Erwagungen, falsch-negative
Einteilungen eher toleriert werden kdnnen.

Die Ergebnisse lassen sich fiir die Festlegung der optimalen Anzahl an Hauptkomponenten
anhand des Klassifizierungsfehlers E, zusammenfassen, der in Bild 6.7 in Abhéngigkeit der
Anzahl berechneter Hauptkomponenten gezeigt ist.
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Bild 6.7: Klassifizierungsfehler E der drei Klassen in Abh&ngigkeit von r
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GemaR der durchgefiihrten Kreuzvalidierungsprozedur haben die Klassen A (1), B (2) und
C (3) eine unterschiedliche Hauptkomponentenanzahl r fir minimale Klassifizierungsfehler E
des Gesamtmodells. Folglich wurden diese Werte gewahlt, damit der SIMCA-Klassifikator opti-
male Ergebnisse erzielen kann. Tabelle 6.3 zeigt die finalen Konfusionsmatrizen des
gewahlten SIMCA-Modells.

Tabelle 6.3: Konfusionsmatrizen der drei Klassen des finalen SIMCA-Modells mitr, = 1,
rs = 2, rc = 3, Auswertung aller Einzelmessungen

Klasse A Klasse B Klasse C

positiv eingeteilt pos | neg pos | neg pos | neg

ja 78 0 63 0 75 0

nein 0 192 9 198 6 189
s(n=270)| | 78 [192| [ 72 [108 ] [ 81 [ 189 ]

Fir die Klasse A bleibt der perfekte Klassifikator erhalten. Von Klasse B wurden dagegen drei
Proben (neun Messungen) und von Klasse C zwei Proben (sechs Messungen) als nicht klas-
senzugehorig erkannt. Wie bereits erwahnt ist dieses Verhalten jedoch akzeptabel. Erfreulich
ist, dass flir die Klassen B und C, trotz der beobachteten Gemeinsamkeiten, keine falsch-
positiven Einteilungen mehr auftreten.

6.8 Externe Validierung des Modells

Zur abschlieRenden Bewertung des im vorherigen Abschnitt entwickelten SIMCA-Klassifika-
tors soll eine externe Validierung durchgefiihrt werden. Da flr die Arbeiten kein weiteres als
das bereits beschriebene Probenmaterial zur Verfligung stand, wurden Kalibrier- und Validier-
datensatze aus den vorhandenen Daten mit Hilfe des Kennard-Stone-Algorithmus erzeugt.

Dieser nutzt die euklidische Lange von Vektoren, um uniform verteilte Objekte mit den groRten
Abstanden in einem Datenraum nacheinander fiir den Kalibrierdatensatz einer multivariaten
Modellbildung auszuwahlen. Der Algorithmus arbeitet sequentiell und wird zweckmafig nach
einer vorher festgelegten Anzahl an Objekten gestoppt [KENNARD & STONE, 1969].

Die Aufteilung der Proben mit dem Kennard-Stone-Algorithmus erfolgte separat fur jede Klas-
se mit den vorverarbeiteten sowie von Ausreif3ern bereinigten Daten. Ca. 60 % der Proben
wurden dabei fiir den Kalibrierdatensatz ausgewahlt und Dreifachmessungen nicht getrennt.

Die Ubrigen Proben sind dann positive Exemplare des Validierdatensatzes. Als Negativbei-
spiele enthalt dieser zusatzlich die in Abschnitt 6.6 detektierten Ausreiller der entsprechenden
Klasse sowie alle Proben der anderen Klassen und die drei Extrakte externer Hersteller.

Das Resultat des Kennard-Stone-Algorithmus ist in Bild 6.8 anhand eines Score Scatter Plots
eines PCA-Modells der Klasse A gezeigt. In roter Farbe sind die algorithmisch bestimmten
Proben des Kalibrierdatensatzes dargestellt. Diese spannen den Datenraum gleichmaRig auf.
Positive Vertreter des Validierdatensatzes (grau) liegen verteilt dazwischen.
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Bild 6.8: Verteilung von Proben der Klasse A auf Kalibrier- und Validierdatensatze durch
den Kennard-Stone-Algorithmus

Basierend auf dem oben vorgestellten Kalibrierdatendatensatz wurde ein neues SIMCA-
Klassifizierungsmodell geman der im vorherigen Abschnitt ermittelten optimalen Einstellungen
erzeugt und mit dem Validierdatensatz Uberprtift. Die Ergebnisse sind in Tabelle 6.4 zusam-
mengefasst.

Tabelle 6.4: KenngroRen des finalen SIMCA-Klassifikators fur die externe Validierung

Klasse r Se[] Sp[] Ec [%] Ncs (pgg’;iv) (ner;\gtiv)
A 1 1 0,99 074  48(16) 30(10) 105 (35)
B 2 1 0,98 148  45(15)  27(9) 108 (36)
c 3 1 1 0 51(17)  30(10) 105 (35)
o 1 0,99 074 ; ] -

Fir alle Klassen wurde eine Selektivitat Se von 1 erzielt. Dieses sehr gute Ergebnis ist auch
auf die Auswahl reprasentativer Datensatze durch den Kennard-Stone-Algorithmus zurtick-
zufiihren, da dieser Extrapolationen bei der Validierung verhindert.

Auch fiir die Spezifitat Sp aller Klassen wurden hohe Werte erreicht. Lediglich eine Einzelmes-
sung eines AusreilRers der Klasse A konnte nicht korrekt eingeteilt werden. Der Klasse B
wurden zwei Einzelmessungen einer Probe der Klasse C falschlicherweise zugewiesen.

Hierin besteht ein Unterschied zu der Kreuzvalidierung, bei der die Spezifitdt maximiert wurde.
Die externe Validierung zeigt auf, dass dies nicht dem realen Verhalten des Klassifikators ent-
spricht. Eine umfassende Validierung empfiehlt sich daher in jedem Fall.

Abschlielend sei hervorgehoben, dass der Klassifizierungsfehler E; im Durchschnitt aller
Klassen bei unter 1 % liegt. Dies stellt ein sehr gutes Ergebnis dar.
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7. Offline-Pradiktion relevanter Variablen in Bioreaktionsprozessen

71 Eine Machbarkeitsstudie anhand von Offline-Analysen

Dieser Abschnitt stellt die Ergebnisse einer Machbarkeitsstudie fir die Quantifizierung rele-
vanter BioprozessgroRen mit spektroskopischen Methoden und multivariater Datenanalyse an
einem zyklischen Produktionsprozess mit Pichia pastoris dar.

Das Ziel der Untersuchungen war ein Vergleich der drei verwendeten Spektroskopiearten NIR,
Raman und 2D-Fluoreszenz sowie eine generelle Bewertung der Eignung dieser Methoden
fur die Quantifizierung ausgewahlter ZielgréRen.

Dartiber hinaus sollten die Arbeiten Strategien zur Bildung von PLSR-Modellen hervorbringen.
Dies beinhaltet unter anderem die Wahl geeigneter Vorverarbeitungsmethoden sowie die Be-
stimmung relevanter Spektralbereiche. Weiterhin war der Einfluss von Zellen in der vermes-
senen Matrix auf das Quantifizierungsergebnis zu untersuchen.

Die spektralen Messungen fanden offline, das heilt nach Ablauf des Prozesses, statt. Durch
den Verzicht auf eine Inline-Messung wurden damit zunachst mégliche Stérquellen, wie zum
Beispiel die Begasung in Verbindung mit einer starken Durchmischung der Kulturbriihe, aus-
geschlossen. Der Inline-Betrieb wird in einem spateren Teil der Arbeit ndher untersucht.

7.2 Stand der Wissenschaft

Die Beobachtung von Kultivierungsprozessen mit spektroskopischen Messverfahren und mul-
tivariater Datenanalyse gilt heutzutage als typisches Beispiel fir eine PAT-Anwendung.
Ahnlich wie bei der Klassifizierung von Rohmaterialien wurde dies jedoch auch schon vor der
Veroffentlichung der PAT-Initiative betrieben.

Insbesondere die NIR- und die 2D-Fluoreszenzspektroskopie kamen dabei zum Einsatz. Es
konnten verschiedene Grofien in Prozessen mit Escherichia coli [HALL et al., 1996], Saccha-
romyces cerevisiae [LINDEMANN et al., 1998], Insektenzellen [RILEY et al., 1997] sowie Strep-
tomyceten [ARNOLD et al., 2000] mithilfe multivariater Verfahren beobachtet werden.

Nach 2004 stieg die Anzahl an Verdffentlichungen in diesem Themenfeld stark an [POMERANT-
SEV & RODIONOVA, 2012].

In Produktionsprozessen rekombinanter Proteine mit Pichia pastoris konnte die Zelldichte, so-
wie Substrat- und Produktkonzentrationen aus NIR- bzw. 2D-Fluoreszenzspektren vorherge-
sagt werden [CROWLEY et al., 2005; SURRIBAS et al., 2006].

Auch Saugetierzellkulturen zur Produktion monoklonaler Antikdrper wurden mit NIR- und 2D-
Fluoreszenzspektroskopie uberwacht [HENRIQUES et al., 2009; JOSE et al., 2011]. Fur die
Beobachtung multipler ProzessgréRen in CHO-Zell-Prozessen wurde insbesondere die Ra-
man-Spektroskopie eingesetzt [ABU-ABSI et al., 2011; BERRY et al., 2015; WHELAN et al., 2012].
Craven et al. nutzten PLSR-Modelle in einem solchen Versuchsaufbau zu Regelung der Glu-
kosekonzentration [CRAVEN et al., 2014].

Paul et al. untersuchten die Eignung der Raman-Spektroskopie in Verbindung mit der PLSR
zur Bestimmung verschiedener Gréf3en eines Prozesses mit Pichia pastoris anhand artifizieller
Proben [PAUL et al., 2016]. Darlber hinaus existieren nur wenige Publikationen, die sich mit
der Anwendung der Raman-Spektroskopie an Bakterien- oder Hefeprozessen befassen.
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Ein Review aus dem Jahre 2012 gibt einen guten Uberblick (iber Veréffentlichungen hinsicht-
lich der Beobachtung von Bioprozessen mit den drei in dieser Arbeit untersuchten spektros-
kopischen Verfahren [LOURENGO et al., 2012]. Eine Zusammenfassung auch aktueller Ver-
offentlichungen hinsichtlich der Verwendung der NIR-Spektroskopie in Kultivierungsprozessen
findet sich in [HOEHSE et al., 2015].

Die am haufigsten verwendete chemometrische Methode zur Pradiktion von Bioprozessgro-
Ren ist die PLSR [POMERANTSEV & RODIONOVA, 2012]. Aber auch Methoden wie Multiple Line-
are Regression (MLR) [SMALL, 2006], Principle Component Regression (PCR) [RHEE & KANG,
2007] oder nichtlineare Methoden wie Kinstliche Neuronale Netze (ANN) [LUCHNER et al.,
2015] wurden bereits erfolgreich eingesetzt.

7.3 Untersuchte ProzessgroBen und vorhandenes Probenmaterial

Gegenstand der ersten Untersuchungen war hauptsachlich eine Kultivierung des Wildtypstam-
mes DSM 70382 von Pichia pastoris, die gemaf der in Abschnitt 3.1.2 vorgestellten zyklischen
Kultivierungsstrategie durchgefiihrt wurde. Die starke Beprobung eines dieser Zyklen erzeugte
das notwendige Datenmaterial fir eine multivariate Kalibrierung. Die Kultivierung mit der
internen Kennzeichnung NM3213 ist in Bild 7.1 gezeigt.
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Bild 7.1: Verlauf von Offline-Analysedaten in der Kultivierung NM3213

Dargestellt sind die Offline-Analysen der Zelldichte c,, ., (schwarz), der Glycerolkonzentration
Csimnpic (9rin), der Methanolkonzentration Cgypy, (rot), der Ammoniumkonzentration C oy
(blau) sowie der zellspezifischen Alkoholoxidaseaktivitat gp,x. (Orange). Diese GroRen waren
mit spektroskopischen Methoden zu quantifizieren.

Insgesamt ergaben sich aus dem untersuchten Zyklus 50 Proben, die jeweils in Dreifachbe-
stimmung mit den drei getesteten spektroskopischen Methoden vermessen wurden.
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Die Wahl eines Wildtypstammes lag darin begriindet, dass Zellmaterial zu Analysezwecken
fur ein anderes Projekt an ein kooperierendes Labor ohne S1-Akkreditierung geliefert wurde.
Aus diesem Grund war kein rekombinantes Produkt in dieser Kultivierung vorhanden.

Die Quantifizierung des sekretierten Gesamtproteins ¢, wurde dagegen anhand der in Bild
7.2 gezeigten Kultivierung SM0313 durchgefiihrt. Flr diese kam der rekombinante Stamm
Pichia pastoris KM71H D1M1H zum Einsatz. In fiinf Zyklen wurden insgesamt 120 Proben
genommen, von denen 65 spektral vermessen werden konnten.
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Bild 7.2: Verlauf der Kultivierung SM0313 in flinf Zyklen

Dartiber hinaus kam dieser Prozess auch fiir eine externe Validierung des Kalibriermodells
der Glycerolkonzentration cg,,, in der Medienphase (erstellt mit NM3213) zum Einsatz, da es
sich bei dieser speraraten Kultivierung um ein unabhangiges Testset handelt.

7.4 Entwicklung von PLSR-Modellen

7.41 Der komplexe Prozess der PLSR-Modellentwicklung
Wichtige Faktoren fiir die Vorhersagekraft von PLSR-Modellen sind die An- bzw. Abwesenheit
von Ausreiflern, die gewahlte Datenvorverarbeitung, der verwendete Spektralbereich sowie
vor allem die Anzahl der berechneten PLS-Komponenten.
Die entsprechenden Einstellungen sind vom Benutzer zu ermitteln. Die Schwierigkeit in der
Erstellung bzw. Optimierung eines PLSR-Modells besteht aber darin, dass die genannten
Faktoren voneinander abhangen. So kann die Wahl des Spektralbereiches beispielweise
beeinflussen, ob eine bestimmte Beobachtung als Ausrei3er identifiziert wird oder nicht.
Die Entwicklung und Optimierung von PLSR-Modellen zur Quantifizierung bestimmter GréRen
mit Hilfe spektraler Daten ist demnach ein komplexer und iterativer Prozess und l&sst sich nur
schwer nach einem gleichen Schema durchfiihren, da der Ablauf dieses Prozesses von der

jeweiligen Problemstellung abhangt.
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Durch geeignete Annahmen kann die Modellbildung beschleunigt werden. Das setzt jedoch
eine gute Kenntnis des vorliegenden Datenmaterials und des zugrundeliegenden Biopro-
zesses voraus.

Der folgende Abschnitt soll anhand des Beispiels der Vorhersage der Glycerolkonzentration
Csqy im Kulturiiberstand mit Hilfe der NIR-Spektroskopie das in dieser Arbeit prinzipielle Vor-
gehen bei der Entwicklung von PLSR-Modellen verdeutlichen.

7.4.2 Eine exemplarische Darstellung bei der PLSR-Modellentwicklung

Dafir stehen prinzipiell die 50 Proben der Kultivierung NM3213 zur Verfligung. Ein Grof3teil
davon stammt jedoch aus der Produktionsphase des Prozesses und weist somit eine Glycerol-
konzentration von 0 gl auf.

Um eine Wichtung des zu erzeugenden PLSR-Modells auf diesen Zustand zu vermeiden, wur-
de sich auf die 21 Proben aus der Batchphase und der Glycerol-Fed-Batchphase beschrankt.
Bild 7.3 zeigt die NIR-Spektren vom Uberstand dieser Kultivierung.
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Bild 7.3:  NIR-Transmissionsspektren des Uberstandes gefarbt nach cg,y

Eine Korrelation zwischen den Absorptionswerten A, der Spektren und der Glycerolkonzen-
tration cg;,,, ist insbesondere im hervorgehobenen Bereich gut zu erkennen. Es fallt weiterhin
auf, dass das Spektrum der Probe N16 von den anderen abweicht.

Vor der Erstellung eines PLSR-Modells sollten die Spektraldaten daher auf AusreilRer unter-
sucht werden. Dies wird anhand eines PCA-Modells mithilfe der in Abschnitt 5.5.2 vorge-
stellten KenngréRen durchgefihrt. Um maogliche Unterschiede zwischen den Spektren durch
Basislinienverschiebungen zu eliminieren, kamen die nach der Wellenlange abgeleiteten (und
mittenzentrierten) Spektren zum Einsatz.

PCA-Modelle zur AusreilRerdetektion basieren in dieser Arbeit auf so vielen Hauptkomponen-
ten, dass mindestens 95 % der Varianz in den Spektraldaten (R% ) beschrieben wird. Dies ist
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zumeist bereits mit zwei Hauptkomponenten der Fall, wodurch sich der Score Scatter Plot der
ersten beiden Hauptkomponenten (t,, t,) gut zur Ausreilerdetektion eignet.

Im Zweifelsfall (wie im folgenden Beispiel) und bei mehreren Hauptkomponenten wurden zu-
sétzlich die DModX- und Hotelling-T2-Werte des Gesamtmodells betrachtet.

Bild 7.4a zeigt den Score Scatter Plot eines PCA-Modells. Alle Einzelmessungen der Probe
N1 haben hohe Hotelling-T%-Werte und liegen auBerhalb des 95 % Konfidenzintervalls. Es
handelt sich mit einer Wahrscheinlichkeit von 95 % also um einen Ausreiller. Daher wurde
diese Probe von der weiteren Modellbildung ausgeschlossen.

a) b)
t,10° -] 95 % confidence limits DModX [-] 95 % confidence limits
1.0
2.8 2 N1
N16
° g 0.8 o s
1.44 o
o
0.6
0.0- g B
: ) g% 5
s 0.4
-1.4+ @
0.2 &
N1
-2.8- o
T T T T T 0.0_$@D T T T
-12 -06 00 06 12 0 3 6 9 12 15
t10%[] T[]

Bild 7.4: a) Score Scatter Plot eines PCA-Modells mit r = 2, Ri =0,982
b) Auftragung des DModX gegen Hotelling-T?

Die Probe N16 liegt auf der Grenze des Hotelling-T%-Konfidenzintervalls und kann folglich bei
ausschlieRlicher Betrachtung des Score Scatter Plots nicht eindeutig als AusreilRer identifiziert
werden. Eine Betrachtung von Bild 7.4b zeigt jedoch, dass die Probe N16 zusatzlich einen
sehr hohen DModX aufweist. Aus diesem Grund wurde sie ebenfalls als Ausreiler erachtet
und von der Modellbildung ausgeschlossen.

Nach der Entfernung von AusreifRern wird mit den verbliebenen Daten ein weiteres PCA-Mo-
dell erstellt, um sie, wie oben beschrieben, erneut auf Ausreier zu untersuchen. Dieses Ver-
fahren ist notwendig, da sich durch das veranderte Datenmaterial ein neues Modell ergibt.

Im vorliegenden Beispiel konnten keine weiteren Ausreiller identifiziert werden. Daher kamen
die verbliebenen 19 Proben nun zur Berechnung des finalen PLSR-Modells zum Einsatz. Da-
bei wurde zunéachst die gleiche Vorverarbeitungsmethode (Ableitung und Mittenzentrierung)
wie bei der PCA genutzt.

Zur Festlegung der Anzahl r an PLS-Komponenten ist im Idealfall der Vorhersagefehler
RMSEP der externen Validierung in Abhangigkeit von r zu betrachten. Steht kein unabhan-
giger Testdatensatz zur Verfligung ist man auf den Fehler RMSEcv der Kreuzvalidierung ange-
wiesen. Dieser Weg soll hier demonstriert werden.
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In Bild 7.5 weist der Fehler RMSEcv ein Minimum bei flinf PLS-Komponenten auf. Daher wurde

zunachst ein solches Modell gebildet. Allerdings sollte dieses einer weiteren Prifung
unterzogen werden, um einen moglichen Overfit aufzudecken.

RMSE [gI"]
35
]

3.04 "

\

\

\
254

b\
2.0- \‘\O(RMSECV
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1.0 T

12345678910

ri-l
Bild 7.5: Vorhersagefehler RMSEcv in Abhangigkeit der PLS-Komponentenanzahl r

Im vorliegenden Fall weisen z.B. die in Bild 7.6 dargesteliten PLS-Regressionskoeffizienten b;
einen stark schwankenden Verlauf in Abhangigkeit des Variablenindex j auf. Dieses Verhalten
deutet auf einen Overfit hin.

b;

[nMAU™ r=5
200

100+

-1004

-200

-300

850 1050 1250 1450 1650
=1 j= 201

j=401
A [nm]
Bild 7.6: PLS-Regressionskoeffizienten b, in Abhéngigkeit des Variablenindex j
(£ Wellenlénge )
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In NIR-Spektren sind Absorptionswerte benachbarter Wellenlangen meist stark korreliert und
weisen einen gleichmaRigen Verlauf auf. Demnach sollten auch entsprechende PLS-Regres-
sionskoeffizienten aufeinander folgender Variablen ein ahnliches Verhalten zeigen. Bei stark
schwankenden Koeffizienten wird daher davon ausgegangen, dass das PLSR-Modell mess-
technisches Rauschen beschreibt, welches den ungleichmaRigen Verlauf verursacht.

Nach Betrachtung der Regressionskoeffizienten der PLSR-Modelle mit einer Faktorenanzahl
r von 2 bis 4, wurde sich fir das Modell mit 3 PLS-Komponenten entschieden.

Die Regressionskoeffizienten b; dieses so Uberarbeiteten Modells sind in Bild 7.7 zu sehen.
Fur den vorderen Bereich des NIR-Spektrums weisen die b, nun viel kleinere Werte und einen
gleichmaRigeren Verlauf auf. Die macht das Vorliegen eines Overfits weniger wahrscheinlich.

b, VIP;
[nmAU] r=3 [
150
754
0 '\WW\/V/\/‘/\\/\/\/
754
-150 5.0
VIPCH( B 4.0
[ ] selected variable range L 3.0
(1300 - 1650 nm)
2.0
1.0
T T T 0-0
850 1050 1250 1450 1650
j=1 j=201 j =401

A [nm]
Bild 7.7: PLS-Regressionskoeffizienten b; und Variable Importance in Projection VIP; zur
Variablenselektion aufgetragen gegen den Index j

Im hinteren Bereich zeigen sich dagegen zusammenhéngende Bereiche héherer Werte. Diese
haben den groRten Einfluss auf eine Vorhersage mit diesem Modell, was eine Mdglichkeit zur
Variablenselektion aufzeigt. Bei zusétzlicher Betrachtung des VIP, (GI. (5.45)), ebenfalls in Bild
7.7 gezeigt, bestatigt sich die geringe Bedeutung des vorderen Spektralbereiches fir die Vor-
hersage der Glycerolkonzentration cg,y.

Durch eine Auswahl des Spektralbereiches von 1.300 nm bis 1.650 nm konnte die Variablen-
anzahl m von 401 auf 176 reduziert werden. Der Vorhersagefehler RMSEcv eines entsprech-
enden Modells verbesserte sich bei unverandertem r (3) dabei von 1,84 gl auf 1,59 g™

Nach der Variablenselektion ist wiederum eine Ausreilerpriifung vorzunehmen, da sich das
Datenmaterial erneut verandert hat. Diese verlief hier allerdings negativ.

Ist die Entwicklung des Modells iber die vorgestellten Schritte abgeschlossen, sollten noch
weitere grafische Werkzeuge zurate gezogen werden, die eine Beurteilung des Modells er-
mdglichen oder auf Fehlerquellen hinweisen kénnen. Eine solche Grafik ist in Bild 7.8 gezeigt.
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Hierin sind die durch Kreuzvalidierung vorhergesagten Glycerolkonzentrationen cg,y,,, 9egen
ihre Referenzwerte Cgyyn,c aufgetragen.
-1
Cs 1 o] cross validation
56
Commr = —0-37191" +1.00 - Cg e
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Bild 7.8:

CS1Mhp\c [g|71]
Vorhersage Cgyy, aufgetragen gegen die Referenzwerte Cg g
Im Idealfall liegen die Punkte auf einer Geraden durch den Ursprung mit der Steigung eins.

Bei einem nichtlinearen Verlauf kénnen ein Wechsel der Vorverarbeitungsmethode oder die
Berechnung weiterer Faktoren Abhilfe schaffen. Ist dies nicht der Fall, sollte die Eignung der
verwendeten Methode (z.B. PLSR) angezweifelt werden.

Bild 7.9 zeigt die Vorhersagen und deren Offline-Referenzwerte im Kultivierungsverlauf.
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Bild 7.9:

tih]
Vorhersage Cgqy, im Uberstand im Rahmen einer Kreuzvalidierung
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Die Glycerolkonzentration cg,,, in der Batch- und der Fed-Batchphase kann gut vorhergesagt
werden (rot). Etwas starkere Abweichungen sind bei der Vorhersage der Produktionsphase
(griin) zu erkennen. Entsprechende Proben waren nicht an der Modellbildung beteiligt.

Ein Schwachpunkt des vorliegenden Modells liegt in der Verteilung der Konzentrationswerte.
So ist anhand von Bild 7.8 und Bild 7.9 zu erkennen, dass einige Proben mit einer Glycerol-
konzentration von 0 gI”' Teil des Kalibrierdatensatzes waren. Weiterhin sind hohe Konzentra-
tionen von Uiber 40 gl™" ebenfalls relativ haufig. Kleinere Werte sind dagegen nur selten vertre-
ten. Die Verteilung der Daten weist also nicht die geforderte Uniformitat auf. Dies lasst sich
jedoch mit der aquidistanten Probenahme im untersuchten Wachstumsprozess begriinden.

Eine externe Modellvalidierung mit einem unabhangigen Validierdatensatz ist hier mit den
Proben der in Bild 7.10 gezeigten Kultivierung SM0313 zusétzlich mdglich. Stiinde ein solcher

Datensatz nicht zur Verfigung, ware die Modellbildung an dieser Stelle fir die gewahite Art
der Datenvorverarbeitung abgeschlossen.

Aber auch hier weisen viele Proben eine Glycerolkonzentration cg;,, von 0 gl auf. In Bild 7.10

sind die Vorhersagen der meisten dieser Proben in griin dargestellt. Sie wurden jedoch nicht
zur externen Validierung herangezogen.

g Near-infrared: RMSEP = 1.92 gl (3.57 %)
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Bild 7.10:

Vorhersage Cgyy, im Uberstand fiir ein unabhéngiges Testset
Der Fehler RMSEP der externen Validierung wurde nur mit den in rot dargestellten Vorhersa-
gen berechnet und dabei zu 1,92 gl™" ermittelt. Die Vorhersagegiite des Modells ist damit fiir
Proben des unabhéngigen Testsets etwas schlechter als fiir Proben des Kalibrierdatensatzes

(RMSEcv = 1.59 gI'"). Dieses Verhalten ist aufgrund der Unabhangigkeit der beiden Daten-
satze zu erwarten.

Abschlielend soll das gebildete Modell noch einmal im Hinblick auf die Anzahl r zu berech-
nender PLS-Komponenten untersucht werden. Dazu ist in Bild 7.11 neben dem Vorhersage-

fehler RMSEcv der Kreuvalidierung auch der Vorhersagefehler RMSEP in Abhangigkeit von r
aufgetragen.
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Bild 7.11:

rl

Fehler RMSEcv und RMSEP in Abhangigkeit der PLS-Komponentenanzahl r

Dieser weist ein Minimum bei drei PLS-Komponenten auf. Dies entspricht der zuvor gewahlten

Komponentenanzahl. Fir Modelle mit mehr als drei PLS-Komponenten liegt, aufgrund des
hoheren Fehlers, wahrscheinlich ein Overfit vor.

Bei dem vorgestellten Vorgehen der PLSR-Modellentwicklung wurde die Vorverarbeitungsme-
thode zu Beginn festgelegt. Zur Erzeugung eines optimierten Modells, sollten aber auch ande-
re Verfahren getestet werden. Tabelle 7.1 fast die KenngréRen des vorgestellten Modells
(de1 + mc) zusammen und stellt auRerdem einen Vergleich mit der Verwendung des SNV-
Filters (snv + mc) und der alleinigen Verwendung der Mittenzentrierung (mc) an.

Tabelle 7.1:  Vergleich unterschiedlicher Vorverarbeitungsmethoden bei der Vorhersage von

Cgyy im Uberstand mit der NIR-Spektroskopie

mc de1+ mc snv + mc
Spektralbereich komplett 1300 - 1650 nm 1300 - 1650 nm
N [ 57 (19) 57 (19) 57 (19)
r [ 4 3 3
R2 [ 0,999 0,999 0,999
RZ [ 0,991 0,997 0,997
RS [ 0,982 0,995 0,995
RMSEcv  [gI] 2,92 1,59 1,58
RMSEcv,,, [%] 5,43 2,96 2,94
nys" [] 78 (26) 78 (26) 78 (26)
R2 [ 0,982 0,991 0,992
RMSEP  [gI] 5,25 1,92 2,11
RMSEP,, [%] 9,77 3,57 3,93
") Die Klammern geben die Anzahl unabhéngiger Proben an
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Eine Spektrenvorverarbeitung, die nur auf Mittenzentrierung (mc) beruht, brachte das schlech-
teste Ergebnis hervor. Die Modellentwicklung flihrte dabei nicht zu einer Eingrenzung des
Spektralbereiches. Die Verwendung eines SNV-Filters (snv + mc) lieferte beinahe identische
Ergebnisse zur ersten Ableitung (de1 + mc). Im vorliegenden Fall fiel die Wahl weiterhin auf
diese Methode, da mit ihr das beste Ergebnis bei der externen Validierung erzielt wurde.

743 Schwierigkeiten bei Betrachtung der zellhaltigen Fliissigphase L

Zum Zweck der Bewertung des Storeinflusses von Zellen bei der PLSR-Modellentwicklung
kamen Spektren von der zellbehafteten Kulturbriihe zum Einsatz. Als ZielgroRRe diente dabei
die Glycerolkonzentration cg,, in der Flissigphase.

Wie fur das Modell fir cg,,, wurden zunéchst nur die Proben N1 bis N21 aus den Batch- und
Fed-Batchphasen genutzt, um eine mdéglichst uniform verteilte ZielgréRe zu gewahrleisten. Es
wurde der gleiche Spektralbereich (1.300 - 1.650 nm) gewahlt und die gleiche Vorverarbeitung
(de1 + mc) darauf angewandt. Ausreil3er konnten hier nicht entdeckt werden.

Mit diesen Daten konnte ein Modell mit nur einer PLS-Komponente gebildet werden, das einen
mittleren Vorhersagefehler der Kreuzvalidierung RMSEcv von 2,76 gl”" erreichte.

Die Vorhersage der Proben N1 bis N21 (rot), gezeigt in Bild 7.12, weist eine gute Anpassung
an die Referenzwerte in der Batchphase auf. Dies verleitet zunachst zu der Schlussfolgerung,
dass die Glycerolkonzentration cg,, in der zellhaltigen Fliissigphase quantifiziert werden kann.

Der héhere Vorhersagefehler RMSEcv dieses Modells im Vergleich mit dem Modell der Me-
dienphase M (1,59 gI) Iasst sich sowohl durch die Présenz stérender Zellen in der Matrix, als
auch durch den notwendigen Wechsel des Messverfahrens von Transmission auf diffuse Re-
flexion begriinden.
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Bild 7.12:  Versuch der Vorhersage von cg,,_in der Flissigphase mit der NIR-Spektros-

kopie im Vergleich mit der Zelldichte c,,
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Tatsachlich gibt dieses Ergebnis jedoch eine véllig falsche Einschatzung der Modellgiite ab.
Dies wird anhand der Vorhersagen in der Glycerol-Fed-Batchphase und insbesondere in der
Produktionsphase anhand der Pradiktion (griin) von nicht an der Modellbildung beteiligten Pro-
ben deutlich.

Insgesamt weist der Verlauf von cg,, ,, €ine horizontale Spiegelsymmetrie mit der ebenfalls in
Bild 7.12 gezeigten Zelldichte c,, auf. Dies zeigt eindrucksvoll, dass die Zelldichte in dem
erzeugten Glycerolmodell offensichtlich die dominierende Rolle spielt.

Ursache hierfir ist, dass Zellen einerseits ein starkes Signal im NIR-Spektrum hervorrufen
(siehe Abschnitt 7.5) und andererseits, dass Zelldichte und Glycerolkonzentration in einer
Batchphase proportional zueinander verlaufen und damit hoch korreliert sind. Fir alle 21 an
der Modellbildung beteiligten Proben aus der Batchphase und der Glycerol-Fed-Batchphase
wurde ein Korrelationskoeffizient R von -0,977 ermittelt.

Diese Korrelation lasst sich fiir eine indirekte Quantifizierung von cg,,, bewusst heranziehen.
Ein entsprechendes Modell ist jedoch nur fir die Batchphase eines immer gleich laufenden
(z.B. zyklischen) Prozesses gliltig, da das PLSR-Modell nicht auf tatsachlichen Signalen des
Glycerols im Spektrum beruht.

Aus diesem Grund wurden in einem weiteren Modell alle 50 Proben der Kultivierung NM3213
verwendet, um die Korrelation R von ¢,, und cg, auf einen Wert von -0,529 zu reduzieren und
das Modell méglichst auf einem Signal des Glycerols basieren zu lassen. Diese MaRhahme
geht allerdings weiter zulasten der Uniformitét der ZielgréRenverteilung, da hierbei die Anzahl
an Proben mit cg,, von 0 gl stark ansteigt.

Die Vorhersage mit diesem Modell ist in Bild 7.13 gezeigt und wird mit einem Fehler RMSEcv
von 7,20 gI"" bewertet. Es wird deutlich, dass auch dieses Modell nicht von praktischem Nutzen
ist. Allerdings wird auf diese Weise eine zu optimistische Einschatzung der Modellgite bei
hauptséachlicher Verwendung korrelierender Proben aus der Batchphase vermieden.
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Bild 7.13:  Vorhersage von cg,, in der Flissigphase mit der NIR-Spektroskopie
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7.5 Pradiktion der Zelldichte

Optische Verfahren sind etablierte Methoden zur Bestimmung der Zelldichte. So wird bei-
spielsweise die Tribungsmessung konventionell am Bioprozess eingesetzt (sieche Abschnitt
3.3.3). Eine Quantifizierung der Zelldichte mit den getesteten spektroskopischen Verfahren
sollte daher gut mdglich sein.

In Bild 7.14 sind die nach der Zelldichte c,, gefarbten NIR-Spektren der Kulturbriihe gezeigt.
Ein Zusammenhang zwischen c,, und den Verlaufen der Spektren ist deutlich zu erkennen.
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Bild 7.14:  NIR-Reflexionsspektren im Prozessverlauf gefarbt nach der Zelldichte ¢,

Die Abnahme der Absorptionswerte mit steigender Zelldichte lasst sich durch die Verwendung
des Messprinzips der diffusen Reflexion erklaren, die hier zum Einsatz kam. Zellfreies Kultur-
medium reflektiert nicht und weist hier somit die hochsten (vermeintlichen) Absorptionswerte
auf.

Die Ergebnisse der Modellbildung sind in Bild 7.15 dargestellt. Fur alle drei spektroskopischen
Verfahren kann der Verlauf der Zelldichte sehr gut wiedergegeben werden.

Bei der Bildung eines PLSR-Modells zur Bestimmung der Zelldichte mit der NIR-Spektroskopie
benétigt ein optimales Modell nur zwei PLS-Komponenten. Der Vorhersagefehler der Kreuz-

validierung RMSEcyv,,, wurde zu 4,37 % ermittelt.

Ein &hnliches Ergebnis, mit einem Fehler RMSEcyv,,, von 4,40 %, konnte mit der Raman-Spek-
troskopie und mit drei PLS-Komponenten erzielt werden. Die 2D-Fluoreszenzspektroskopie
brachte das beste Modell hervor, das mit fiinf PLS-Komponenten jedoch auch das komplex-

este ist. Es hat einen Vorhersagefehler RMSEcv,, von 3,16 %.
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Bild 7.15:  Vorhersage der Zelldichte c,, mit verschiedenen spektroskopischen Verfahren

Alle Einstellungen und KenngréfRen der gebildeten Modelle sind in Tabelle 7.2 aufgelistet.

Tabelle 7.2:  Vergleich der Vorhersage von c,, mit spektroskopischen Verfahren

Nahinfrarot Raman 2D-Fluoreszenz

Spektralbereich komplett komplett komplett
Vorverarbeitung snv + mc de1l + mc mc

N [-] 150 (50) 150 (50) 150 (50)

r [ 2 3 5

R} [ 0,994 0,972 0,999

R} [ 0,972 0,975 0,988

RZ, [ 0,974 0,971 0,985
RMSEcv  [gl"] 3,21 3,23 2,32
RMSEcv,, [%] 4,37 4,40 3,16

D Die Klammern geben die Anzahl unabhangiger Proben an

Bei Betrachtung von Bild 7.16a kann man erkennen, dass mit der NIR-Spektroskopie hohe
Konzentrationen schlechter als kleinere vorhergesagt werden. Eine mdgliche Ursache hierfiir
koénnten nichtoptimale Messeinstellungen sein, die zu einer Sattigung des NIR-Detektors bei

hoéheren Zelldichten fiihrten.
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Bild 7.16:  Vorhersagen der Zelldichte c,, aufgetragen gegen die Referenzwerte c,, .,
a) NIR-Spektroskopie b) Raman-Spektroskopie

Fir die Raman-Spektroskopie ist in Bild 7.16b zu sehen, dass besonders im Bereich kleiner
Zelldichten kein linearer Zusammenhang zwischen der Vorhersage ¢, ,, und den Referenz-
werten ¢, ., vorliegt. Dies konnte auch durch eine Anderung der Modelleinstellungen nicht
behoben werden.

Eine Bestimmung der Zelldichte ist mit allen drei getesteten spektroskopischen Verfahren wie
erwartet moéglich. Die Modellglite ist vergleichbar, wobei jede Spektroskopieart ihre Vor- und
Nachteile hat. So weist z.B. das gebildete NIR-Modell Schwachen bei hohen und das Raman-
Modell Schwachen bei niedrigen Zelldichten auf. Das 2D-Fluoreszenzmodell liefert das beste
Ergebnis bei gleichzeitig hochster Modellkomplexitat.

7.6 Pradiktion der Glycerolkonzentration

Die Mdglichkeit zur Verwendung der NIR-Spektroskopie zur Quantifizierung der Glycerolkon-
zentration wurde in Abschnitt 7.4 ausfihrlich dargelegt. Der folgende Abschnitt stellt die Ergeb-
nisse der anderen getesteten spektroskopischen Verfahren, insbesondere der Raman-Spek-
troskopie, dar.

Bei Betrachtung der Raman-Spektren in Bild 7.17 ist ein deutlicher Zusammenhang zwischen
der Hohe des Signals im Spektrum und der Glycerolkonzentration cg,,, gegeben. Insbesondere
der Doppelpeak in der Nahe der Wellenzahl v von 2.900 cm™ weist eine hohe Korrelation mit
Cqqw auf. Dieses Signal wird wahrscheinlich durch Streckschwingungen der C-C-Bindungen
innerhalb des Glycerolmolekiils verursacht [VANDENABEELE, 2013].

Eine Untersuchung der PLS-Regressionskoeffizienten b, und der Variable Importance in
Projection VIP; anhand von Bild 7.18 fuhrte zu einer Einschrankung des Raman-Spektrums
auf den Bereich zwischen 2.750 cm™ und 3.050 cm™". Durch diese Manahme konnte die X-
Variablenanzahl m von 3.001 auf 301 reduziert werden.
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Bild 7.17:  Raman-Spektren im Prozessverlauf gefarbt nach der Glycerolkonzentration cg,
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Bild 7.18:  Variablenselektion bei der Modellerstellung zur Vorhersage von cg,,

Nach der Variablenselektion wurde mit nur einer PLS-Komponente ein optimales Modell er-
stellt. Der Vorhersagefehler der Kreuzvalidierung RMSEcyv,, betrégt 2,87 %. Bild 7.19 zeigt die
gute Anpassung an die Referenzdaten anhand des Verlaufs der vorhergesagten Glycerol-
konzentration Cg;y,am (blau). Auch nicht an der Modellbildung beteiligte Proben mit Konzentra-
tionen von 0 gI"' (orange) werden gut vorhergesagt.
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Bild 7.19:
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Vorhersage Cg;yrarm im Uberstand im Rahmen einer Kreuzvalidierung

Die externe Validierung des Modells mit den Proben der Kultivierung SM0313, dargestellt in
Bild 7.20, bestatigt das gute Ergebnis der Modellierung. Der Vorhersagefehler RMSEP , ist,
wie erwartet, mit 3,70 % hoher als der Vorhersagefehler der Kreuzvalidierung.
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Bild 7.20:

Vorhersage Cqyyam iM Uberstand fiir ein unabhéngiges Testset

t[h]

Die Referenzwerte der in orange dargestellten Vorhersagen weisen Konzentrationen von 0 gl
auf und waren nicht teil der Validierung, um eine Wichtung des RMSEP auf diesen Zustand zu

vermeiden.
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Zur Vorhersage der Glycerolkonzentration cg, in der zellhaltigen Kulturbriihe mit Raman-
Spektroskopie wurde ein Modell mit allen 50 Proben der Kultivierung NM3213 entwickelt (vgl.
Abschnitt 7.4.3). Dies benétigt im Vergleich zum Modell von Cg, . im Uberstand, anstelle von
einer, eine Anzahl von drei PLS-Komponenten. Bild 7.21 zeigt die Vorhersage von Cg; ;am-

-1
Csq [91] Raman: RMSEcv = 1.79 gI'! (3.32 %)
56 - batch fed production
Emg\q batch
D\
44 Y
g
\T
32+ i
CsiLram
AI
201 ‘Q
1
n

NM3213

47 57 67 77 87 97 107
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Bild 7.21:  Vorhersage Cg . in der Kulturbriihe im Rahmen einer Kreuzvalidierung

Der Vorhersagefehler RMSEcv,,, der Kreuzvalidierung betragt 3,32 % und ist damit, wie erwar-
tet, etwas hoher als fiir das Modell ohne stérende Zellen in der Matrix. Konzentrationen im
Bereich von 0 gI"' werden ebenfalls zufriedenstellend vorhergesagt.

Bei Betrachtung von Bild 7.22 erkennt man, dass mit Raman-Spektroskopie im Gegensatz zur
Zelldichte (siehe Bild 7.16b) zwischen Vorhersage und Referenzwerten der Glycerolkonzen-
tration cg,,_ein linearer Zusammenhang besteht.

-1
c |
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56
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R? =0.998
444 «
324
20+
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Bild 7.22:  Vorhersage cg;, ., aufgetragen gegen die Referenzwerte Cgy
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Die Quantifizierung der Glycerolkonzentrationen cg,,, und cg, mit den drei eingesetzten spek-
troskopischen Verfahren sind anhand Ublicher KenngréRen in Tabelle 7.3 fir den
Kulturliberstand und in Tabelle 7.4 fiir die Kulturbriihe zusammengefasst.

Tabelle 7.3:  Vergleich spektroskopischer Verfahren zur Vorhersage von cg,,, im Uberstand

Nahinfrarot Raman 2D-Fluoreszenz
Spektralbereich 1300 - 1650 nm 3050 - 2750 cm”™” komplett
Vorverarbeitung de1+mc snv + mc mc
N 1 57 (19) 60 (20) 60 (20)
r [ 3 1 3
R} 8] 0,999 0,991 0,994
R 3| 0,997 0,996 0,976
RS 3| 0,995 0,995 0,961
RMSEcv  [gI] 1,59 1,56 4,40
RMSEcv,, [%] 2,96 2,87 8,11
nys" 1 78 (26) 78 (26) 78 (26)
R 3| 0,991 0,997 0,712
RMSEP  [gI] 1,92 2,01 56,0
RMSEP,, [%] 3,57 3,70 103

" Die Klammern geben die Anzahl unabhangiger Proben an

Tabelle 7.4: Vorhersage von cg,, in der Kulturbrihe mit NIR- und Raman-Spektroskopie

Nahinfrarot Raman

Spektralbereich 1300 - 1650 nm 3050 - 2750 cm’™

Vorverarbeitung de1 +mc snv + mc
N’ [ 150 (50) 150 (50)
r H 4 2

RZ [ 0,999 0,951
RY [ 0,908 0,992
R [ 0,859 0,998
RMSEcv  [glI"] 7,20 1,79
RMSEcv,,, [%] 13,3 3,32

") Die Klammern geben die Anzahl unabhangiger Proben an

Eine erfolgreiche Nutzung der 2D-Fluoreszenzspektroskopie zur Quantifizierung der Glycerol-
konzentration cg,,, wurde nicht erwartet, da Glycerol nicht fluoresziert. Zu Testzwecken wurde
dennoch versucht ein valides Modell zu erstellen. Dies schlug im Rahmen einer externen
Validierung jedoch voéllig fehl.
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Der Vorhersagefehler RMSEP wird im Uberstand zu 56,0 gI”" berechnet und ist damit héher
als die maximale Glycerolkonzentration im Kalibrierdatensatz (54,3 gI'"). Auf eine weitere Mo-
dellbildung flir Messungen in der Flissigphase mit 2D-Fluoreszenz wurde daher verzichtet.

Wahrend Vorhersagen der Glycerolkonzentration tber PLSR-Modelle aus NIR- und Raman-
Spektren des Uberstandes gut méglich sind, ist die 2D-Fluoreszenzspektroskopie damit fiir
diese Aufgabe ungeeignet.

Zellen in der vermessenen Matrix stéren die spektralen Messungen unterschiedlich stark.
Wahrend eine Messung in der zellhaltigen Kulturbriihe mit der NIR-Spektroskopie nicht sinn-
voll erscheint, eignet sich die Raman-Spektroskopie jedoch sehr gut, da entsprechende Mo-
delle nur geringfuigig hohere Fehler aufweisen als solche fir den Kulturiiberstand.

7.7 Pradiktion der Ammoniumkonzentration

Vor der Modellbildung zur Quantifizierung der Ammoniumkonzentration wurden vier Proben
hinsichtlich ihrer Offline-Referenzmessungen als Ausreiler identifiziert.

Furdie in Bild 7.23 gezeigte Vorhersage der Ammoniumkonzentration C ., mit der NIR-Spek-
troskopie wurde im Uberstand ein relativer Fehler RMSEcv,,, von 11,5 % erreicht.
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Bild 7.23:  Vorhersage von C,, im Uberstand mit der NIR-Spektroskopie

Trotz dieses hohen Fehlers kann der tendenzielle Verlauf von C, ., relativ gut vorhergesagt
werden. Vor dem Hintergrund der stark fehlerbehafteten Referenzwerte und in Ermangelung
einer Online-Messung kénnte ein derartiges Modell dennoch einen Mehrwert fir die Prozess-
beobachtung liefern.

Die in Bild 7.24 dargestellte Pradiktion der Ammoniumkonzentration C,,, in der Flussigphase
bildet mit einem Fehler von 7,24 % unerwarteter Weise die Referenzdaten besser ab. Dies
aulRert sich auch in einem glatteren Verlauf im Vergleich mit der Vorhersage von C  in der
Medienphase.
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Bild 7.24:  Vorhersage von C,, in der Kulturbriihe mit der NIR-Spektroskopie

Der Grund fiir diese Verbesserung liegt wahrscheinlich an einem starken Einfluss der Zellen
auf die Spektren und der hohen Korrelation von C,, mit der Zelldichte ¢,, (R =-0,806, vgl.
Abschnitt 7.4.3). Die Vorhersage von C,,, in der Flissigphase beruht demnach wahrschein-
lich auf einer indirekten Quantifizierung und ist folglich kritisch zu betrachten.

Das gleiche Verhalten mit weiter verminderten Fehlern konnte bei der Untersuchung der
Raman-Spektroskopie beobachtet werden. Fir die 2D-Fluoreszenzspektroskopie ergeben
sich die schlechtesten Ergebnisse bei gleichzeitig hdchster Modellkomplexitat.

Die KenngroRRen aller gebildeten Modelle zur Vorhersage der Ammoniumkonzentration sind in
Tabelle 7.5 (C,,y) und Tabelle 7.6 (C,, ) aufgefihrt.

Tabelle 7.5:  Vergleich spektroskopischer Vorhersagen von C,, im Kulturiiberstand

Nahinfrarot Raman 2D-Fluoreszenz
Spektralbereich 1300 - 1650 nm komplett komplett
Vorverarbeitung de1+mc mc mc
N [] 132 (44) 138 (46) 138 (46)
r [ 3 2 6
R [l 0,999 0,981 0,999
R2 [ 0,778 0,825 0,794
R t 0,754 0,784 0,659
RMSEcv  [mM] 2,63 2,51 3,16
RMSEcv,, [%] 11,5 11,0 13,8

" Die Klammern geben die Anzahl unabhangiger Proben an
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Tabelle 7.6:  Vergleich spektroskopischer Vorhersagen von C, ., in der Flissigphase

Nahinfrarot Raman 2D-Fluoreszenz
Spektralbereich 1300 - 1650 nm komplett komplett
Vorverarbeitung de1l +mc mc mc
Nes” [ 138 (46) 138 (46) 138 (46)
r [ 3 4 6
R [ 0,999 0,999 0,999
R2 [l 0,913 0,947 0,874
RZ, [ 0,887 0,930 0,826
RMSEcv  [mM] 2,67 2,1 3,32
RMSEcv,, [%] 7,24 5,72 9,00

D Die Klammern geben die Anzahl unabhangiger Proben an

7.8 Pradiktion der Gesamtproteinkonzentration

Modelle zur Pradiktion der Gesamtproteinkonzentration ¢, in der Medienphase basieren auf
maximal 62 Proben der Kultivierung SM0313. Eine externe Validierung dieser Modelle oder
eine Untersuchung der Flussigphase war leider nicht méglich.

In Bild 7.25 sind Offline-Analysen von ¢, und die Vorhersagen mit der Raman-Spektrosko-
pie gezeigt.
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Bild 7.25:  Vorhersage von Cp,,, im Uberstand mit der Raman-Spektroskopie

Eine Quantifizierung von ¢, ist trotz des vergleichsweise hohen Wertes des relativen Vor-
hersagefehler RMSEcv,,, von 10,3 % durchaus méglich. Dies gilt auch fir das etwas schlech-
tere Ergebnis mit der NIR-Spektroskopie (nicht gezeigt).
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Es ist allerdings wahrscheinlich, dass Korrelationen mit anderen Substanzen in der Medien-
phase zu einer indirekten Vorhersage fiihren, da Proteine im relevanten Konzentrationsbereich
kein eigenes verwertbares Signal im Raman-Spektrum liefern [PAUL et al., 2016].

Das beste Resultat fiir die Quantifizierung von ¢y, mit spektroskopischen Verfahren liefert in
dieser Arbeit die 2D-Fluoreszenzspektroskopie mit einem relativen Vorhersagefehler
RMSEcyv,, von 6,69 %. Ursache hierflir ist ein in Bild 7.26 deutlich zu erkennendes Signal der
im Medium geldsten Proteine im 2D-Fluoreszenzspektrum.
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Bild 7.26:  2D-Fluoreszenzspektren gefarbt nach der Gesamtproteinkonzentration ¢y,

Bild 7.27 zeigt die Vorhersage von ¢, mit 2D-Fluoreszenzspektroskopie aufgetragen gegen
ihre Referenzmessungen. Es ist ein linearer Zusammenhang zu erkennen.
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Bild 7.27:  Vorhersage cpq, aufgetragen gegen die Referenzwerte ooy
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In Bild 7.28 ist dagegen die Vorhersage Cp,.yq, im Kultivierungsverlauf dargestellt.
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Bild 7.28:
Auffallig sind geringere Schwankungen der Mehrfachmessungen u

Vorhersage von Cpyy, im Uberstand mit 2D-Fluoreszenzspektroskopie

nd kleinere Fehler bei ho-

hen Konzentrationswerten im Vergleich zur Vorhersage mit Raman-Spektroskopie (Bild 7.25).
Eine Schwéache der Trainingsdaten ist ein Mangel an hohen Gesamtproteinkonzentrationen.
Dies ist durch die Prozessdynamik bei konstanter Probenahmefrequenz begriindet.

Ein Vergleich der Modelleinstellungen und Vorhersageergebnisse der drei untersuchten spek-

troskopischen Verfahren ist in Tabelle 7.7 gegeben.

Tabelle 7.7:  Vergleich spektroskopischer Verfahren zur Vorhersage von cp,, im Uberstand

2D-Fluoreszenz

Nahinfrarot Raman

Spektralbereich 1300 - 1650 nm 1800 - 200 cm’™ komplett
Vorverarbeitung de1+ mc mc mc
N [ 186 (62) 183 (61) 153 (51)
r [ 4 4 4
R% [ 0,999 0,999 0,982
R? [ 0,778 0,858 0,938
R?, gl 0,811 0,887 0,939
RMSEcv  [mgl] 49,0 40,5 26,3
RMSEcv,,, [%] 12,5 10,3 6,69

" Die Klammern geben die Anzahl unabhangiger Proben an
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7.9 Pradiktion des zellinternen Alkoholoxidasegehaltes

Die zellspezifische AOX-Aktivitat gp,, gibt Aufschluss lber den Induktionszustand der Zellen
von Pichia pastoris. Eine Online-Quantifizierung von g, ist daher fir die Prozessentwicklung
von groRem Interesse. Aus diesem Grund wurden PLSR-Modelle mit 2D-Fluoreszenzspek-
troskopie erstellt. Auf eine Darstellung von NIR- und Raman-Spektroskopie wird verzichtet, da
diese Messverfahren keine validen Modelle hervorbrachten.

Zunéchst sollte geklart werden, ob eine Modellbildung prinzipiell méglich ist und 2D-Fluores-
zenzspektren von Zellsuspensionen Signale zur Quantifizierung von gg,x enthalten.

Dazu wurden Zellpellets der Proben mit Phosphatpuffer auf eine einheitliche Zelldichte ¢,z von
2,5 gI"" in der Pufferphase B eingestellt und offline vermessen. Da es sich bei dem AOX-Gehalt
Opyx UM eine zellspezifische GréRe handelt, bleibt diese dabei konstant. Eine Beeinflussung
der Modellbildung durch unterschiedliche Zelldichten wird auf diese Weise vermieden.

Bild 7.29 zeigt die Pradiktion von g, fiir die derart angepassten (adjusted) Proben.
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Bild 7.29:  Vorhersage von g, der angepassten Proben (adj) im Puffersystem B

Das Modell erreicht einen relativ hohen Vorhersagefehler RMSEcyv,,, von 14,6 %. Dennoch
kann der prinzipielle Verlauf des AOX-Gehaltes g, gut wiedergegeben werden. Indizien fiir
ein Overfit gibt es nicht. Daraus kann geschlussfolgert werden, dass eine Offline-Quanti-
fizierung des zellinternen Enzymgehaltes g,y prinzipiell méglich ist.

Im nachsten Schritt sollte ein PLSR-Modell zur Préadiktion von g, direkt aus den originaren
Messungen in der Flissigphase L erstellt werden.

Zu diesem Zweck wurde eine virtuelle AOX-Aktivitat Cp, .« in der Flissigphase,

Crator (1) = Cxiogw (1) Gporxorr (1), (7.1)

definiert, die aus den Offline-Daten der zellspezifischen AOX-Aktivitat gp, . SOWie der ent-
sprechenden Zelldichte ¢, ., berechnet werden kann.
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Diese theoretische GroRe wurde der nachfolgenden Modellbildung unterzogen. Ein Nachteil
dabei ist, dass C,, und die Zelldichte c,, mit einem Koeffizienten R von 0,733 relativ stark
korrelieren (vgl. Abschnitt 7.4.3). Die direkte Vorhersage von C,,, ist in Bild 7.30 gezeigt.
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Bild 7.30:  Vorhersage Cy, g, der virtuellen AOX-Aktivitat in der Fliissigphase L

Die in Bild 7.31 gezeigte Vorhersage gp,x;, der zellspezifischen AOX-Aktivitéat,

CP2Lﬂu(t) ; (72)
CXLﬂu(t)

kann dann aus den Vorhersagen Cp, 5, und ¢y, (siehe Abschnitt 7.5) leicht berechnet werden.

Geaxau(t) =

Ipax [UG™] 2D-fluorescence: RMSEcv = 31.9 Ug™' (15.8 %)
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Bild 7.31:  Vorhersage von g, aus Fluoreszenzmessungen in der Kulturbriihe L
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Der AOX-Gehalt wird zu Beginn des Prozesses nur schlecht vorhergesagt. Auch die Abwei-
chungen der Mehrfachmessungen sind dort sehr hoch. Dies ist vermutlich darauf zuriick-
zuflihren, dass die Spektren durch niedrige Zelldichten in dieser Prozessphase nur geringe
Signale zur Quantifizierung von g, enthalten.

Der weitere Verlauf des Prozesses zeigt eine bessere Ubereinstimmung mit den gemessen
Werten. Die starken Schwankungen bei ca. 90 h kénnen nicht wiedergegeben werden. Es ist
nicht auszuschliel3en, dass es sich dabei um Messfehler der Referenzwerte handelt.

Insgesamt kann ein relativer Vorhersagefehler RMSEcv,,, von 15,8 % ermittelt werden. Dieser
Wert liegt nur geringfiigig oberhalb des Fehlers bei der Vorhersage von g, aus den ange-
passten Proben (Bild 7.29). Im Vergleich dazu fallen auerdem die Abweichungen der Mehr-
fachmessungen weniger stark aus.

Besonders hervorzuheben ist, dass ein leichter Anstieg des AOX-Gehaltes in der Glycerol-
Fed-Batchphase richtig vorhergesagt wird. Dieser kommt durch eine Dereprimierung des
AOX-Promotors bei einer Glycerollimitierung zustande. Eine Vorhersage dieses Verhaltens
|asst auf eine gewisse Sensitivitat dieses Bestimmungsverfahrens schlieRen.

In Tabelle 7.8 sind die Ergebnisse der Vorhersage von g, noch einmal zusammengefasst.

Tabelle 7.8:  Vergleich verschiedener Ansatze zur Vorhersage der AOX-Aktivitéat gp, ¢

Messmatrix Puffer B Flissigphase L berechnet aus L
Grole Ip2/xadi Cratiu Ip2rxfiu
Spektralbereich komplett komplett -
Vorverarbeitung mc mc -
nes” [ 147 (49) 150 (50) -

r [ 3 4 -

R% [l 0,826 0,999 -

R} [l 0,883 0,955 -

RZ, [ 0,796 0,938 0,907
RMSEcv  [div.] 29,5 Ug™ 0,691 kUI" 31,9 Ug™
RMSEcy,, [%] 14,6 8,30 15,8

D Die Klammern geben die Anzahl unabhangiger Proben an
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8. Online-Monitoring mit spektroskopischen Verfahren
8.1 Der untersuchte zweistufige Produktionsprozess
8.1.1 Die verwendete Bioreaktoranlage

Im Cluster BIOKATALYSE 2021 wurde Im Rahmen eines BMBF-Forschungsprojektes

+Entwicklung vollautomatischer integrierter Bioprozesse in einer industriekompatiblen
Pilotanlage zur Herstellung rekombinanter Enzyme*

die in Bild 8.1 gezeigte Anlage zur Herstellung der rekombinanten Lipase CALB mit Pichia
pastoris aufgebaut. In weiteren Forschungsprojekten wurde diese auch zur Herstellung des
Malariavakzins D1M1H eingesetzt.

—

Bild 8.1: Downscale-Pilotanlage zur Herstellung rekombinanter Proteine

Es handelt sich dabei um eine hochinstrumentierte Forschungsanlage zur Entwicklung und
Optimierung industrieller Produktionsprozesse im Downscale. Das Gesamtkonzept ist auf die
Durchflihrung integrierter Bioprozesse ausgerichtet. Daher sind Komponenten fiir Upstream-
sowie fir Downstream-Operationen vorhanden.

Hierbei ist beispielsweise eine Zellabtrennung durch Separation vorgesehen (rechts im Bild).
Die Aufreinigung rekombinanter Proteine war jedoch nicht Teil dieser Arbeit. Deshalb wird auf
die Dowstream-Operationen nicht néher eingegangen. Sie werden jedoch im Zuge der Ent-
wicklung und Erprobung der Gesamtanlage ausfihrlich in [LOGERING, 2015] und [BORCHERT,
2015] beschrieben.

Im Upstream-Bereich besteht die Anlage aus zwei Bioreaktoren, die lber eine Rohrleitung fest
miteinander verbunden sind. Hierliber wird der Transfer zur Durchfiihrung einer zweistufigen
Prozessfithrung mittels Uberdruck im ersten Kessel realisiert. Bild 8.2 zeigt die Kopplung der
beiden Edelstahlreaktoren Uber ein Ernteventil.
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Bild 8.2: Schematische Darstellung des Anlagenaufbaus

Ein BIOSTAT® ED10 der Fa. B. Braun Biotech International, Melsungen, dient mit einem Ar-
beitsvolumen von 10 | als Zellanzuchtbioreaktor. Fiir die Produktion kommt ein BIOSTAT® C30
der Fa. Sartorius Stedim Biotech, Guxhagen, der bis zu 30 | beinhalten kann, zum Einsatz.

Die Ausstattung beider Reaktorsysteme entspricht der in Abschnitt 3.2 vorgestellten Aus-
ristung des BIOSTAT® C10. Eine detaillierte Auflistung der verwendeten peripheren Gerét-
schaften befindet sich in [BORCHERT, 2015].

Die Grundautomatisierung der Bioreaktoren erfolgt tiber digitale Kontrolleinheiten (DCU II,
DCU Ill) und MFCS/win. In dem SCADA-System wurden aulerdem Rezepte nach dem
ANSVI/ISA Standard S88 zur Automatisierung der zyklischen Teilprozesse der zweistufigen
Produktion hinterlegt.

Fir eine Ubergeordnete Automatisierung und insbesondere die Einbindung der Komponenten
fir Downstream-Operationen in den Gesamtprozess wurde weiterhin das Prozessleitsystem
SIMATIC PCS 7, Siemens, Minchen, implementiert [LOGERING, 2015].

8.1.2 Die parallel/sequentielle Prozessfiihrung

Die parallel/sequentielle Prozessfiihrung basiert auf der in Abschnitt 3.1.2 vorgestellten zykli-
schen Kultivierungsstrategie. Im Gegensatz dazu wurde hier jedoch auf die Durchfiihrung
eines substratlimitierten Glycerol-Fed-Batches verzichtet, da eine einfache industrierelevante
Prozessfiihrung das Ziel der Entwicklungsarbeiten war [LOGERING, 2015].

Zur Erlauterung der zweistufigen Fahrweise ist in Bild 8.3 ein vollstéandiger Kulturzyklus einer
langeren Produktionskampagne zur Herstellung des Malariavakzins D1M1H dargestellt. Er
besteht aus einer sequentiellen Zellanzucht mit Vorinduktion und einer Proteinexpression, die
voneinander entkoppelt in zwei Bioreaktoren ablaufen [BORCHERT, 2015].
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Bild 8.3: Vollstandiger Produktionszyklus der zweistufigen Prozessflihrung

Der Zellanzuchtprozess findet im Bioreaktor BIOSTAT® ED10 statt. Hier wachsen die Zellen
zunachst unlimitiert auf dem Primarsubstrat Glycerol an. Nach Abschluss der etwa elfstiin-
digen Batchphase erfolgt durch eine Methanolzufitterung die Umstellung des Zellmetabolis-
mus auf den Methanolstoffwechsel. Diese auch als Vorinduktion bezeichnete Prozessphase
ist an dem anfanglich fehlenden Zellwachstum zu erkennen.

Nach Abschluss eines solchen Zellanzuchtzyklus wird ca. 80 % der Kulturbriihe vom BIO-
STAT® ED10 auf den Produktionsreaktor BIOSTAT® C30 transferiert. Hier wird zunéchst die
gewiinschte Startzelldichte ¢, ,, mit frischem Basismedium ohne Glycerol und ohne Methanol
eingestellt. Die folgende Produktionsphase dient ausschlieRlich der Expression des Zielpro-
teins D1M1H und verlauft mit bereits vollstandig induzierten Zellen in einem methanolgere-
gelten Fed-Batchprozess.

Die verbliebenen 20 % des Zellmaterials im Anzuchtreaktor werden mit frischem glycerolhal-
tigen Medium auf die Startzelldichte ¢, ,, verdiinnt und als Inokulum des néchsten Zellanzucht-
zyklus verwendet. Dies entspricht dem bekannten Vorgehen bei einer sequentiellen Fahrwei-
se. Die aktuelle Zellanzucht und der Produktionsprozess laufen nun parallel in beiden Reak-
toren ab. Dies ist in Bild 8.4 illustriert.

Vor jedem Zyklus wird der Produktionsbioreaktor vollstdndig entleert und die so geerntete
Kulturbrihe dem Downstream zugefiihrt. Damit wird der Beginn eines weiteren Produktions-
laufes mit frischen Zellen aus dem Anzuchtreaktor vorbereitet. Durch die Wahl einer Zyklus-
dauer von 24 Stunden, inklusive Zelltransfer- und Refresh-Operationen, wiederholen sich die
parallelen Zyklen dann taglich. Eine detaillierte Beschreibung der zweistufigen Prozessfiihrung
findet sich in [LOGERING, 2015].
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Bild 8.4: Zweistufiger, paralleler Produktionsprozess [LOGERING, 2015]

Die Kultivierungsstrategie zeichnet sich durch eine hohe Reproduzierbarkeit aus, die eine Pro-
duktion mit gleichebleibender Qualitdt Uber einen Zeitraum von mehreren Wochen erlaubt
[BORCHERT, 2015]. Es wird auRerdem eine hohe Flexibilitat erreicht, da durch die Entkopplung
der Teilprozesse und mit unveranderter Zellanzucht, stamm- oder produktspezifische Produk-
tionsbedingungen im zweiten Reaktor erprobt werden kénnen.

Weiterhin eignet sich die Prozessfiihrung zur Optimierung der Proteinexpression, da durch die
sequentielle Zellanzucht zu Beginn eines jeden Produktionszyklus gleiche Ausgangsbedin-
gungen vorliegen [LOGERING et al., 2011].

8.1.3 Die erweiterte Prozess-EDV zur Anwendung der MVDA

Die Online-Anwendung der MVDA, beispielsweise zur Vorhersage von Substratkonzentratio-
nen aus Spektren, stellt einige Anforderungen an die Prozess-EDV. So miissen benétigte Ein-
gangsdaten multivariater Modelle in einem geeigneten Format bereitgestellt und eine Riick-
flihrung erzeugter Ergebnisse an die Prozessleittechnik sichergestellt werden.

Zu diesem Zweck wurde in vorangegangenen Arbeiten eine komplexe Datenverarbeitung auf-
gebaut, deren Struktur fir den gesamten integrierten Bioprozess in Bild 8.5 gezeigt ist. Dabei
wurde die bereits vorhandene Prozess-EDV sowohl um benétigte Softwarepakete als auch um
neue Computerhardware erganzt [BORCHERT, 2015].

Die beteiligten Gerate stammen von verschiedenen Herstellern, weisen ein unterschiedliches
Alter auf und wurden zu unterschiedlichen Zeitpunkten in das System integriert. Der Aufbau
des Netzwerkes ist daher historisch gewachsen und erfordert die Nutzung unterschiedlicher
Anschlusstechnologien, wie z.B. Ethernet, ProfiBus und die seriellen Schnittstellen RS232 und
RS422.
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Bild 8.5: Vernetzung der erweiterten Prozess-EDV [BORCHERT, 2015]
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Auf der linken Seite der Abbildung befinden sich die Mess- und Stelleinheiten (M&C) der
beiden Bioreaktoren C30 und ED10, die neben der Filtrationseinheit XFlow an ihre jeweilige
digitale Kontrolleinheit DCU Il bzw. DCU Il angeschlossen sind.

Zusammen mit einer Atline-HPLC und einem 2D-Fluoreszenzspektrometer sind die beiden
DCU mit dem Rechner BPA 327 verbunden, der hauptséachlich fur den Betrieb des SCADA-
Systems MFCS/win zur Datenerfassung und einer Automatisierung der beiden Teilprozesse
des Upstreams verantwortlich ist.

Im Zentrum des Netzwerks befindet sich auf dem Rechner BPA 110 das lbergeordnete Pro-
zessleitsystem SIMATIC PCS 7, welches den Upstreamprozess mit den Downstreameinheiten
Separator und Akta Purifier (unten im Bild) zusammenfiihrt und damit eine Integration (IP) des
Bioprozesses erlaubt. Weiterhin wird Uber das Labornetzwerk (Ethernet) mit Hilfe von PCS 7
eine Kommunikation verschiedener beteiligter Rechnersysteme mit dem OPC-Protokoll er-
maoglicht.

Eine detaillierte Darstellung der bis zu diesem Punkt beschriebenen Prozess-EDV befindet
sich in [LOGERING, 2015].

Entscheidend fiir die Einbindung der MVDA ist die speziell fir PAT-Anwendungen entwickelte
Software SIMATIC SIPAT, Siemens, Miinchen, die auf dem Prozessrechner BPA 309 instal-
liert wurde. SIPAT sammelt Daten unterschiedlicher Quellen und legt diese in einem MVDA-
gerechten Format in einer Datenbank ab. Unter Verwendung individueller Treiber und Schnitt-
stellen ist dabei auch die Verarbeitung spektraler Daten (z.B. Raman, NIR) unterschiedlicher
Geratehersteller mdglich, die oft verschiedene Strategien bei der Datenverarbeitung verfolgen.

Weiterhin ist SIPAT dazu in der Lage, modellgestiitzte Berechnungen durch externe Software-
systeme auszuldésen. Unterstiitzt werden beispielsweise die MVDA-Software SIMCA, MKS
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data analytical solutions, Umea, Schweden, sowie die numerische Entwicklungsumgebung
MATLAB®, The Mathworks, Natick, USA.

Die dafiir bendtigten Modelldateien werden auf Arbeitsplatzrechnern (BPA xxx) erstellt und in
SIPAT eingebettet, wo liber sogenannte Methoden eine Steuerung und Automatisierung der
Berechnungen umgesetzt wird. Durch eine Verteilung tber OPC-Anbindungen werden damit
erzeugte Werte im Labornetzwerk zur Verfligung gestellt und kdnnen durch die Prozessleit-
technik beispielsweise fiir Monitoring- und Controlzwecke genutzt werden.

Auf einem weiteren Rechner (BPA 310) ist die Software SIMCA-online installiert, die eine Re-
gelung von Prozessqualitatsattributen durch Model Predictive Multivariate Control (MPMC) er-
laubt. Dies war nicht Teil dieser Arbeit und ist in [LUTTMANN et al., 2015] beschrieben.

In [BORCHERT, 2015] befindet sich dariiber hinaus eine detaillierte Beschreibung von SIPAT
sowie eine Dokumentation von dessen Einbindung in die Prozess-EDV inklusive der Verwen-
dung von SIMCA und MATLAB®.

8.2 Skizzierung des Versuchsaufbaus

Das Online-Monitoring mit spektroskopischen Messverfahren wurde in der oben beschriebe-
nen zweistufigen Anlage erprobt. Es standen je ein NIR- und 2D-Fluoreszenzspektrometer mit
Einzelsonden sowie ein Raman-Geréat mit zwei Sonden zur Verfligung (siehe Abschnitt 4.2.2).
Bild 8.6 zeigt den Versuchsaufbau aus Sicht des Produktionsbioreaktors der zweistufigen
Anlage.
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Bild 8.6: Spektroskopische Verfahren im zweistufigen Upstream-Prozess
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Die erste Raman-Sonde kam im Zellanzuchtreaktor zum Einsatz. Die zweite Sonde sowie die
NIR- und 2D-Fluoreszenzsonden wurden dagegen im Produktionsreaktor verbaut. Im Gegen-
satz zu den Offline-Analysen der Machbarkeitsstudie (siehe Kapitel 7) wurden die Spektrome-
ter bei diesen Arbeiten inline betrieben. Eine Mehrfachmessung einzelner Proben entféllt da-
durch.

Die Messeinstellungen der verwendeten Spektrometersysteme ergaben sich aus Erfahrungs-
werten der Machbarkeitsstudie sowie weiterer Vorversuche. Weiterhin richten sich die Mess-
zeiten nach der angestrebten Datenaufzeichnungsfrequenz, die flir die PAT-Software SIPAT
mit drei Minuten festgelegt wurde.

Fir das Raman-Gerat hat sich hinsichtlich der Sattigung des Detektors eine optimale Integra-
tionszeit von 35 Sekunden herausgestellt. Durch die Wahl von fiinf Akkumulationen und unter
Bericksichtigung eines gewissen Zeitiiberhangs fir die Datenverarbeitung wurde das dreimi-
niitige Messintervall nicht Gberschritten. Bei parallelem Betrieb beider Sonden verdoppelt sich
dieses jedoch auf etwa sechs Minuten.

Flr das NIR-Spektrometer wurde eine Integrationszeit von 15 Millisekunden gewahlit. Die
Durchfiihrung von 10.000 Akkumulationen stellt ein sehr gutes Signal-zu-Rausch-Verhaltnis
her und fuhrt zu einem Messintervall von 2,5 Minuten, was ebenfalls Raum fir die nétige
Datenverarbeitung |asst.

Eine Messung mit dem 2D-Fluoreszenzspektrometer nimmt in etwa 1,3 Minuten in Anspruch.
Mit zwei Akkumulationen zwecks Signalglattung wurde auch hier das angestrebte Messinter-
vall von drei Minuten nicht Uberschritten.

8.3 Pradiktion der Zelldichte und der Glycerolkonzentration

8.3.1 Bereitstellung geeigneten Datenmaterials

Der Zellanzuchtprozess RL0415 wurde fiir die Modellentwicklung zur Vorhersage der Zelldich-
te ¢, , und der Glycerolkonzentration cg, , verwendet. Auf Grund der Tatsache, dass der Zell-
anzuchtreaktor nur Uber einen Anschluss einer Spektralmessung verfiigt, kam flr die Vorher-
sage der beiden ZielgroRen ausschlieBlich die Raman-Spektroskopie zum Einsatz.

Zur Erzeugung geeigneter Referenzmessungen wurden die finf in Bild 8.7 gezeigten Zyklen
intensiv beprobt und auf einen Kalibrierdatensatz CS, bestehend aus den Zyklen 1_0, 1_4 und
1_6 sowie einen Validierdatensatz VS aufgeteilt, der die Zyklen 1_2 und 1_3 beinhaltet.

Bei den Zyklen 1_2 und 1_6 handelt es sich um normale Zellanzuchtzyklen, wie sie geman
der in Abschnitt 8.1.2 vorgestellten Fahrweise vorgesehen sind. Zyklus 1_0 folgt dagegen
direkt dem Animpfen des Bioreaktors (Startup-Zyklus) und unterscheidet sich daher von einem
normalen Zyklus in der anfanglichen Glycerolkonzentration cg, ,,, der Startzelldichte c, 4,
sowie in der Dauer der durchlaufenen Prozessphasen.

Einen besonderen Ablauf zeigen die Zyklen 1_3 und 1_4. Mit dem Ziel die Korrelation der
beiden untersuchten Variablen zu reduzieren (siehe Abschnitt 7.4.3) wurden hier Glycerol-
Spikes durchgefiihrt. Das heil}t, dass dem laufenden Prozess eine definierte Menge Glycerol
zugegeben wurde, was zu einem starken Anstieg (Spike) der Glycerolkonzentration cgy, 4
flhrte.
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[gl][g|] 1.0 1.2 1.3 14 1.6
554 5.0
44 4.0
33 3.0
224 2.0
114 1.0
v
3
=
0- 0.0 : =y ' -
c,, 0 168
[o

Bild 8.7: Verlauf von fliinf Zyklen der Kultivierung RL0415

Der erste Spike wurde wahrend der Batchphase ca. finf Stunden nach Beginn des jeweiligen
Zyklus durchgefiihrt. Die insgesamt eingesetzte Menge an Glycerol entspricht der eines nor-
malen Zyklus. Damit wurde die Dauer der Batchphase nicht verandert.

Der zweite Spike fand ca. 17 h nach Zyklusbeginn wéhrend der Induktionsphase statt. Hierzu
wurde zunachst die Methanolregelung deaktiviert und der Spike erst nach vollstéandiger Meta-
bolisierung des verbliebenen Methanols durchgefiihrt. Nach Verbrauch des zugegebenen Gly-
cerols erfolgte eine Reaktivierung der Methanolzufitterung.

8.3.2 Ergebnisdarstellung

Fur das Online-Monitoring von Zelldichte c,, , und Glycerolkonzentration cg,, , mittels Raman-
Spektroskopie wurden jeweils die in der Machbarkeitsstudie ermittelten Einstellungen der
PLSR-Modelle verwendet. Diese konnten als optimal fiir den Online-Betrieb bestatigt werden.
Lediglich die Anzahl berechneter PLS-Komponenten unterscheidet sich jeweils fiir beide be-
trachteten ZielgroRen.

Die absoluten Vorhersagefehler fiir das Online-Modell von ¢, , sind niedriger als die des Off-
line-Modells. Aufgrund eines kleineren Kalibrierbereichs der Online-Daten fallen die relativen
Fehler jedoch héher aus.

Beim Online-Modell von cg,, , sind auch die absoluten Vorhersagefehler héher. Dies war zu
erwarten, da bei spektroskopischer Inline-Messung mit Signalstérungen zu rechnen ist. Diese
beeintrachtigen die Vorhersagekraft multivariater Modelle.

Bild 8.8 zeigt die Vorhersagen im Verlauf der drei Zyklen des Kalibrierdatensatzes, wahrend
in Bild 8.9 das Ergebnis der externen Validierung dargestellt ist. Der prinzipielle Verlauf beider
ProzessgroRen kann wiedergegeben werden. Hohe Glycerolkonzentrationen und Werte von
0 gI'" werden allerdings nicht gut vorhergesagt.
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C)(L1 CSQM1
[g|'1] [gl'ﬂ] cycle 1_0 cycle 1_4 cycle 1_6

54+ 5.0 batch ind. batch induction batch induction

'S1L1hplc

424 4.0

'S1L1ram

304 3.0
XL1ram

184 2.0

64 1.0

RL0415

-6' 00 T T T - / T T T
c 0 12 108 156 168
St glycerol
[ spikes t[h]
Bild 8.8:  Pradiktion von ¢, , und cg, 4 fir den Kalibrierdatensatz CS

Cxit Csomn 1 2 13
[g|‘1] [gl’w] cycle 1_ cycle 1_
544 5.0 batch induction batch induction
42 4.0
30 3.0+
184 2.0
64 1.0
2]
64 00— — e
c 49 61 73
ST glycerol
[9I"] spikes t[h]

Bild 8.9:  Préadiktion von ¢, , und cg, , flr den Validierdatensatz VS

Schlechter ist jedoch die Vorhersage der Zelldichte zu bewerten, dessen Verlauf nicht der
wahren Prozessdynamik (z.B. exponentielle Zunahme) entspricht.

Dies ist auch anhand von Bild 8.10a zu erkennen. Die vorhergesagte Zelldichte ¢,y ,,,., aufge-
tragen gegen die Referenzwerte c,, ., Weist insbesondere bei niedrigen Werten einen nicht-
linearen Verlauf auf. Dies wurde schon in der Machbarkeitsstudie (Abschnitt 7.5) beobachtet.
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a) 4 b) 1
CxLtram [917] cross validation Cs1Ltram [91] cross validation
55 55
Coram = 0.737 g1 +0.964 - C 10, Coriyam = 0.198 g1 +0.988 - gy p1c
454 |R%, =0.963 00 454 RS
354 354
25+ 254
154 154
diagonal O g7 diagonal
51 linear fit 5 linear fit
_5 < T T T T T -5 T T T T T
5 5 15 25 35 45 55 5 5 15 25 35 45 55
Cxttcaw [917] Coittthpio [91']

Bild 8.10:  Mit PLSR vorhergesagte Zielgroen aufgetragen gegen ihre Referenzwerte
a) Zelldichte ¢, ..., b) Glycerolkonzentration Cgy\ 1am

Bild 8.10b verdeutlicht dagegen, dass die Raman-Spektroskopie in Verbindung mit PLSR bes-
ser flr die Vorhersage der Glycerolkonzentration cg, , geeignet ist. So Iasst sich hier fir den
gesamten betrachteten Konzentrationsbereich ein linearer Zusammenhang herstellen.

In Tabelle 8.1 sind abschlieRend die Einstellungen sowie die KenngrofRen der erzeugten
Online-PLSR-Modelle den entsprechenden Werten der Offline-Modelle gegentibergestellt.
Positiv hervorzuheben ist, dass flr beide ZielgroRen ein besseres Ergebnis bei der externen
Validierung erzielt werden konnte. Dies macht einen Overfit eher unwahrscheinlich.

Tabelle 8.1:  Offline- und Online-Vorhersage von ¢, , und ¢, , mit Raman-Spektroskopie

Zelldichte ¢y, Glycerolkonzentration cg 4

offline online offline online
ngs” [ 150 (50) 90 (90) 150 (50) 90 (90)
r [ 3 2 2 3
R% 8] 0,972 0,976 0,951 0,972
Ry [l 0,975 0,964 0,992 0,987
R 8] 0,971 0,963 0,998 0,986
RMSEcv  [glI"] 3,23 2,54 1,79 2,07
RMSEcv,,, [%] 4,40 6,03 3,32 3,98
nys" [ - 74 (74) - 69 (69)
RZ [ - 0,970 - 0,978
RMSEP  [gI] - 2,11 - 1,85
RMSEP,, [%] - 5,01 - 3,56

") Die Klammern geben die Anzahl unabhangiger Proben an
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8.4 Pradiktion des zellinternen Alkoholoxidasegehaltes

8.4.1 Bereitstellung geeigneter Kalibrierdaten

In Abschnitt 7.9 wurde die Mdglichkeit aufgezeigt, den zellinternen AOX-Gehalt g, mit 2D-
Fluoreszenzspektroskopie offline zu quantifizieren. An dieser Stelle soll eine Ubertragung des
dort entwickelten Modells auf den Online-Betrieb erprobt werden.

Dazu wurde in den in Bild 8.11 gezeigten Zyklen 2_2 und 2_3 der Kultivierung XX0415 im
Produktionsbioreaktor jeweils zu Beginn eine Phase unlimitierten Wachstums auf Glycerol
eingerichtet, um eine Abnahme des zellinternen AOX-Gehaltes zu bewirken. Damit sollte die
fur eine PLSR-Modellerstellung bendtigte Varianz in den Daten erzeugt werden.

Cx2 Cpaiz
[g|-1] [kUI'W] cycle 2_2 cycle 2_3
atch induction batch induction
48
CxL2cdw ) éoxo 00 dojp
s " A\ [0}
200140 4.0 5 fjod)\éﬂtﬁodqoé)é S ] J P s
g g R ¢ ¢
P %Cpmoﬂ |' ‘Dé 4
1504 304 3.0 2 Pt 1Y i
2\ ] = :' qu & ?0
o . ?"‘ f g ~
1004204204 & '$° o)
CY § E/Csmnp\c ]
| &
50104 1.0 °
wn
3
X
0- 0400 <

Csi1L2 Csam2
glycerol
lo" [gi" spikes t[h]
Bild 8.11:  Prozesszyklen zur Bildung von PLSR-Modellen fiir die Quantifizierung von gp,x

Wie in Abschnitt 7.9 beschrieben, kam auch hier als ZielgroRe die virtuelle AOX-Aktivitat Cp,, ,
in der Flissigphase zum Einsatz, die aus dem zellinternen AOX-Gehalt gp,/x,. und der Zell-
dichte ¢y 5.4, berechnet wurde.

8.4.2 Ergebnisdarstellung

Fir die Vorhersage der AOX-Aktivitat C,,, , in der Flissigphase konnte kein valides Online-
Modell erstellt werden.

Fir den relativen Vorhersagefehler RMSEcyv,, wurde mit 6,62 % zwar ein niedrigerer Wert als
fur das Offline-Modell (8,30 %, siehe Abschnitt 7.9) erzielt, jedoch zeigt die in Bild 8.12 dar-
gestellte Vorhersage einen unerwarteten Verlauf, der eine schlechte Anpassung an die experi-
mentellen Daten darstellt.
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Cpyi, [KUI] cycle 2_2 cycle 2_3
45 batch induction batch induction

3.54
R o

2.59

1.5+ (o CPQLZﬂu

<>\
00 CPQLZoﬂ
0.5 $
X0
-05 T T T T T T T
73 85 97 109 121
t[h]

Bild 8.12:  Online-Pradiktion von C,, , in der Flissigphase mit 2D-Fluoreszenz

XX0415

Bis auf die Anzahl verwendeter PLS-Komponenten stimmen die Modelleinstellungen fiir die
Offline- und Online-Anwendungen (berein. Eine Anderung der Einstellungen des Online-Mo-
dells flhrte stets zu einer weiteren Verschlechterung des Ergebnisses.

Daraus muss der Schluss gezogen werden, dass eine Online-Quantifizierung des zellinternen
AOX-Gehaltes nicht in dieser Form erfolgen kann. Als mdgliche Ursachen kénnen Stérungen
im Online-Betrieb (Begasung, Durchmischung) oder auch ein Overfit im Offline-Modell mit
indirekter Quantifizierung genannt werden.

Auf eine Berechnung des AOX-Gehaltes gp, 4,5, aus der Vorhersage der virtuellen AOX-Akti-
vitét Cp, 4, in der Flissigphase wurde daher verzichtet, da weitere Fehler bei der Vorhersage
eines Online-Signals der Zelldichte eine Verschlechterung des Ergebnisses erwarten lasst.

8.5 Pradiktion der Gesamtproteinkonzentration
Eine Online-Pradiktion der Gesamtproteinkonzentration ¢, , war leider auch nicht erfolgreich.

Mit der Durchfiihrung von Spikes mit bovinem Serumalbumin (BSA), analog zum Vorgehen
bei der Online-Vorhersage der Glycerolkonzentration cg,, , (Abschnitt 8.3), wurde ein Daten-
satz erzeugt, der durch eine minimierte Korrelation von ¢, und ¢, méglichst valide Modelle
hervorbringen sollte.

Keine der drei untersuchten spektroskopischen Verfahren war in der Lage, die damit erzeugten
stufenférmigen Verlaufe von c,,, abzubilden. Vielmehr wurde anhand der Vorhersagen deut-
lich, dass die Modelle trotz der oben beschriebenen Bemiihungen von Signalen der Zellen in
der Spektren der Kulturbriihe dominiert werden.

Eine Anwendung der Methode zur Pradiktion von sekretierten Proteinen erscheint daher nicht
sinnvoll.
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8.6 Anwendung der nichtlinearen SVR

Fir die Untersuchung der Support Vector Regression (SVR) zur Vorhersage der Zelldichte
Cy 4 und Glycerolkonzentration cg, , kamen dieselben Datenséatze (CS, VS) wie zur Bildung
von PLSR-Modellen zum Einsatz (siehe Abschnitt 8.3).

Als spektrale Vorverarbeitungsmethode fiir beide Variablen diente das SNV-Filter. Auf eine
zusatzliche Mittenzentrierung wurde verzichtet, da bei der SVR die Vorteile in Bezug auf die
Modellinterpretierbarkeit entfallen. Die Pradiktion von ¢, , erfolgte mit den vollstdndigen
Raman-Spektren, wohingegen sich fiir ¢, , der Bereich 2.750 - 3.050 cm™ als sinnvoll erwies.

Der Ablauf der Modellbildung ist in den wesentlichen Schritten fir beide Variablen gleich. Da-
her wird an dieser Stelle nur die Modelloptimierung fiir die Zelldichte ¢, , dargestellt.

Zur Ermittlung maoglicher Vorhersagefehler sowie sinnvoller Wertebereiche der Parameter vy,
C und ¢ wurden einige Voruntersuchungen durchgefiihrt. Dabei wurde der Parameter ¢ zu-
nachst auf einen beliebig gewahlten Wert von 0,02 eingestellt und fir die anderen beiden
Parameter eine Rastersuche durchgefihrt.

Hierfir erfolgte eine logarithmische Variation der Parameter y und C in sehr groRen Bereichen
sowie eine Modellbildung fiir jede Kombination mit anschlieRender externer Validierung.
Dadurch konnte der RMSEP in Abhangigkeit beider Parameter in einem Contourplot (siehe
Bild 8.13) dargestellt werden. In diesem kann man erkennen, dass drei lokale Minima des
Fehlers RMSEP in dem durch die zwei Modellparameter aufgespannten Suchraum existieren.
Diese sind als Kreuze gekennzeichnet.

log v [-] £=0.02 RMSEP [gI'']
0 2.0

1.8

log C [-]
Bild 8.13:  Contourplot des Vorhersagefehlers RMSEP fiir die Vorhersage der Zelldichte
Cy 4 Mit SVR bei logarithmischer Variation der Parameter y und C

Fur die weitere Modellbildung wurde der Parametersatz mit dem niedrigsten Vorhersagefehler
ausgewahlt. Dieser liegt in Bild 8.13 auf der rechten Seite bei einem log y von -2,4 und einem
log C von 2,5.
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In einem weiteren Schritt erfolgte mit diesen Werten und bei logarithmischer Variation des
dritten Modellparameters ¢ eine in Bild 8.14 dargestellte Untersuchung der Vorhersagefehler
RMSEcv und RMSEP sowie der Anzahl n , genutzter Stiitzvektoren.

Msv RM_?E y =3.98-10°
[ o] C =316
1004 3.0

80 2.6

60 2.2

nS\/
404 1.8
204 1_4-%
\%EP\/
0- 1.0 T T T T
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

log & [-]
Bild 8.14:  Vorhersagefehler RMSEcv und RMSEP sowie Anzahl n,, benétigter Stiitzvek-
toren in Abhangigkeit des Parameters ¢ bei der Vorhersage von ¢,  ; mit SVR

Es ist zu erkennen, dass flr ein log € von -1 sehr niedrige Werte der Vorhersagefehler vorliegen
und wenig Stutzvektoren bendtigt werden. Deren Anzahl sollte so gering wie mdglich gehalten
werden. Erhéht man ¢ Gber 0,1 so steigen die Vorhersagefehler drastisch an, wahrend bei
abfallendem ¢ die Anzahl der nétigen Stiitzvektoren ng, in die Hohe gehen.

Daher wurde fiir den letzten Schritt ein £ von 0,1 gemeinsam mit den zuvor festgelegten Wer-
ten fir y und C als Startpunkt fir eine finale Modelloptimierung mit dem Simplex-Verfahren
von Nelder und Mead gewahlt [NELDER & MEAD, 1965].

Das daflir verwendete Gitekriterium J

svr?

RMSEP(y,C,¢) N n, (v.C,€)

Jor(1.Cie) = a n (8.1)
svr svmax

mit

a,, = Wichtungsfaktor bei der SVR-Modelloptimierung

Ngymax := maximale Anzahl an Supportvektoren,

sorgt fir eine simultane Minimierung des Vorhersagefehlers RMSEP sowie der Anzahl n_, be-
nétigter Stltzvektoren, deren maximale Anzahl ng,.... von 90 gleich der Anzahl an Proben im
Kalibrierdatensatz n.q ist. Der Wichtungsfaktor a, wurde dagegen mit einem Wert von 3 frei
gewahlt.

Die Modelloptimierung fiihrte zu den in Tabelle 8.2 gezeigten Parametersatzen fir die SVR-
Modelle der Zelldichte c,, , und der Glycerolkonzentration cg,,.
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Tabelle 8.2:  Ermittelte Parameter der SVR-Modelle zur Vorhersage von ¢, , und cg,

Parameter Cy1 Csi1L1

Y [-] 3,27-10° 0,112

c M 407 3,43

€ [l 8,42:102 4,70-10°
n, [ 24 35

Die Vorhersagen beider GréRen flr den Kalibrierdatensatz sind in Bild 8.15 im Vergleich mit
den Ergebnissen der PLSR (grau) gezeigt. In beiden Fallen konnte eine deutliche Verbesse-
rung erzielt werden.

Cxi1 Csawm
[gl"1] [g|.1] cycle 1_0 cycle 1_4 cycle 1_6
54+ 5.0 batch ind. batch induction batch induction
421 4.0
301 3.04
184 2.0
CxLi1svr
6 1.0
CxL1cdw r 2
[ | R | 3
-6' 00 T T i T L LJ T - T ID:
c 0 12 24 108 120 156 168
81_51 glyzl:erol
[gI"] spikes t [h]

Bild 8.15:  Vorhersage beider ZielgroRen mit der SVR fir den Kalibrierdatensatz

Die Zelldichte ¢ ,,,, spiegelt mitihnrem exponentiellen Anstieg in den Batchphasen sowie sowie
mit dem Abfall wahrend des Umbaus vom Glycerol- auf den Methanolstoffwechsel das
Wachstumsverhalten hervorragend wieder. Der exponentielle Abfall der Glycerolkonzentration
Cs14 in den Batchphasen sowie Glycerol-Spikes werden ebenfalls gut dargestellt. Auch die
Phasen ohne Glycerol sind relativ gut getroffen.

Bei der Betrachtung der externen Validierung, gezeigt in Bild 8.16, ist die Verbesserung
weniger ausgepragt. Die Zelldichte ¢, , wird nur in Zyklus 1_3 sehr gut vorhergesagt. In Zyklus
1_2 liegt die Pradiktion allerdings oberhalb der Offline-Messwerte ¢, ,.,,. Dennoch reduziert
sich der Fehler RMSEP von 2,11 gl (PLSR) auf 1,23 gI'" (SVR).

Das wahre Prozessverhalten wird ebenfalls viel besser mit SVR dagestellt. Dies ist auch in
Bild 8.17a zu erkennen, in der die Pradiktion c,, ., nahezu mit ihren Referenzwerten ¢, 4,
Ubereinstimmt.
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Cxi1 Csamt

[g|-1] [g|'1] cycle 1_2 cycle 1_3

544 5.0 batch induction batch induction
424 4.04 Ddﬁyumm

30 3.0

RL0415

-6- 0.0 L T .L = \ T
c 49 61 73 l 85 1 97
S1L1
glycerol

[9i" spikes t[h]
Bild 8.16: Vorhersage beider ZielgroRen mit der SVR fiir den Validierdatensatz

b
Cxrav [917] external validation CotLrswr [917] external validation
55 55
Crirme = 0197 g1 +1.01-C, 1, Ciier =0.290 g1 +0.905 - Cgy 0
454 R:  =0.992 454 RZ =0.993
35 35
251 254
151 154
diagonal diagonal
51 — linear fit 51 — linear fit
-5 T T T T T -5 T T T T T
-5 5 15 25 35 45 55 -5 5 15 25 35 45 55
Cxttcaw [917] CstLinpic [917]

Bild 8.17:  Vorhersagen beider ZielgréRen mit der SVR aufgetragen gegen ihre
Referenzwerte a) Zelldichte ¢, ,,, b) Glycerolkonzentration cgy .,

Im Vergleich zu der entsprechenden Abbildung des PLSR-Modells (Abschnitt 8.3.2, Bild 8.10a)
ist ein deutlicher linearer Zusammenhang zwischen der Vorhersage c, ., und den
Referenzwerten zu erkennen.

Die Darstellung des prinzipiellen Verhaltens der Glycerolkonzentration cg,, , wird ebenfalls
verbessert. Der Vorhersagefehler RMSEP verringerte sich von 1,85 gl (PLSR) auf 1,58 gl
(SVR). Jedoch wird dies hauptséachlich auf die genauere Abbildung glycerolfreier Phasen zu-
riickgefihrt.
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Hohe Werte von cg,, , werden dagegen zu niedrig vorhergesagt. Dies ist auch anhand von Bild
8.17b zu erkennen, in der zwar ein linearer Zusammenhang zwischen der Vorhersage Cqq ;¢

mit den Referenzwerten besteht, die Gerade jedoch eine Steigung von < 1 aufweist.

Ein Vergleich der SVR mit der PLSR fiir die Online-Pradiktion von ¢, , und cg, , mit Raman-

Spektroskopie ist abschlieRend anhand ublicher KenngréRen in Tabelle 8.3 gegeben.

Tabelle 8.3:  Vergleich der SVR und der PLSR bei Vorhersage von ¢, , und cg,,,

Zelldichte ¢, , Glycerolkonzentration cg, 4
PLSR SVR PLSR SVR
Nes [-] 90 90 90 90
RZ, [ 0,963 0,992 0,986 0,996
RMSEcv  [gl] 2,54 1,23 2,07 1,22
RMSEcv,, [%] 6,03 2,92 3,98 2,35
Nys [-] 74 74 69 69
R2 [ 0,970 0,992 0,978 0,993
RMSEP  [gI"] 2,11 1,23 1,85 1,58
RMSEP,, [%] 5,01 2,92 3,56 3,04
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9. Regelung der Glycerolkonzentration

9.1 Das Regelungskonzept

In diesem Kapitel soll die Regelung der Glycerolkonzentration cg,, im Bioreaktor als mégliche
PAT-Anwendung naher untersucht werden.

Diese fand im Zellanzuchtbioreaktor BIOSTAT® ED10 statt, da entsprechende multivariate Mo-
delle fir diesen Teil der zweistufigen Anlage entwickelt wurden (siehe Abschnitt 8.3). Da der
Produktionsbioreaktor nicht Gegenstand dieser Untersuchungen war, wird auf die Kennzeich-
nung der Reaktornummer (p = 1) im Index betrachteter Gréfen verzichtet.

Bild 9.1 zeigt den verwendeten Bioreaktor mit den wichtigsten fiir die Glycerolregelung bend-
tigten Geratschaften.

Bild 9.1:
3) Raman-Spektrometer (Riickseite), 4) Glycerolreservoir, 5) Substratpumpe,
6) Abgas-Analysesystem

Als RegelgroRe wird die aus Raman-Spektren | und durch ein PLSR-Modell vorhergesagte
Glycerolkonzentration cg,, ., herangezogen. Bild 9.2 zeigt eine schematische Darstellung des
Regelungskonzeptes.

Av4
Fei | SUR L’ glycerol | Csitram
o Coul c/ prediction
—
§ FR1 |
W glycerol
(J control

Csir1 I;y
Csiiw

Bild 9.2: Schematische Darstellung des Konzeptes zur Regelung von cg,.

1P 216.73.216:36, am 21.01.2026, 03:37:49. ©
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186293176

Regelung der Glycerolkonzentration 111

Glycerol wird im Bioreaktor von den Hefezellen mit der volumetrischen Aufnahmerate S,UR
verbraucht. Ein Vergleich von cg,, ., mit dem Sollwert cg, ,, wird Gber einen Regelalgorithmus
in das Stellsignal Fg,, einer Substratpumpe uberfiihrt. Diese fordert Glycerolldsung mit der
Konzentration cg,5, aus einem Reservoir R1 in den Bioreaktor, um die Regelung von cg,, zu
bewirken.

9.2 Theoretische Betrachtung des Regelungsproblems

9.21 Elemente des Regelkreises

In Bild 9.3 ist ein Blockschaltbild mit den vier Teilsystemen des Regelkreises gezeigt.

Fai Regel- | %s1 Mess- CsiLram
strecke system
Stellglied Pl-Regler [«— -
FRﬂw CS1Lw

Bild 9.3: Regelungstechnisches Ersatzschaltbild zur Glycerolregelung

Der Bioreaktor stellt die Regelstrecke dar, die systemtheoretisch betrachtet die Zufltterrate
Fg, in die Glycerolkonzentration cg,, in der Flussigphase transformiert. Bei dem Messsystem
handelt es sich um das Raman-Spektrometer mit nachfolgender Datenverarbeitung, das alle
drei Minuten einen Messwert cq, ..., der Glycerolkonzentration zur Verfligung stellt. Fir den
Regler wurde ein Pl-Algorithmus gewahit.

9.2.2 Charakterisierung des Streckenverhaltens

Als erster Schritt bei den theoretischen Untersuchungen des Regelkreises erfolgt eine mathe-
matische Beschreibung der Regelstrecke. Diese beruht auf der Massenbilanz des Substrates
Glycerol (S1) in der FlUssigphase L,

Mgy (1) = Fry(t) Cory — Agmx () Cx (1)

= V(1) gy (t) + V() Ggy (1) 9.1)
mit
v, := Volumen der Fliissigphase L 1
Co1L := Glycerolkonzentration in L 9]
Fr = Glycerolzufiitterrate aus Reservoir R1 [Ih"]
Cs1r1 := Glycerolkonzentration in R1 [g"]
dsyx = zellspezifische Glycerolaufnahmerate ™
. = Zelldichte (cdw) in L oI

Mit Annahme einer idealisierten Fed-Batch-Kultivierung,
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und Einfiihrung der volumetrischen Glycerolaufnahmerate S;UR,

SUR(t) = qgyx(t)Cy (1), (9.3)

erhalt man die Beschreibung einer nichtlinearen Streckendynamik,

Cor(t) = 5?1((:))'[081R1 - CS1L(t)] - SUR(Y), (9.4)
L

in der cg,_die Regelgrofe, Fg, die SteuergrofRe sowie V, eine messbare und S,UR eine nicht
direkt messbare Storgrofie darstellen.

Im Weiteren soll S;,UR in Gl. (9.4) durch die indirekt messbare volumetrische Sauerstoff-
aufnahmerate OUR,

OUR(t) = Guo(t)Co (1) (9.5)
mit

OUR = volumetrische O,-Aufnahmerate [gI"'h ™
Q1o := zellspezifische O,-Aufnahme mit Substrat S1 [n,

ersetzt werden.

Diese wird Uber das quasistationare volumetrische O,-FlieBgleichgewicht,

Qq,(t) = OTR(t) = OUR(t) (9.6)

mit

Qo := O,-Versorgungsrate aus der Gasphase [g'h]

OTR = O,-Transferrate von der Gas- in die Flissigphase [gl'*h’1] ,
ermittelt.

Die volumetrische O,-Versorgungsrate Q,, wird aus den sechs messbaren Prozessgréfien
Foe Vi Xogins Xcain Xog UNd X (siehe Abschnitt 3.3.7) bilanziert und ersetzt die unbekannte
O,-Aufnahmerate OUR.

Zur Beschreibung von S;UR muss das in Bild 9.4 gezeigte Reaktionsschema herangezogen
werden.

glycerol

Qixixm = Yxstgr * Astrxm

oxygen
Bild 9.4: Reaktionsschema mit zeitinvarianten Parametern
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Im Allgemeinen werden die zellinternen Reaktionen fiir Zellwachstum sowie Substrat- und
Sauerstoffaufnahme,

Axix() = Vst - Asux(t) = Yixio(t) - Gropx(t) (9.7)
mit

Qixx = zellspezifische Zellreaktionsrate auf Glycerol hM
Yxis1 := Zell/Substrat-Ausbeute bei Wachstum auf Glycerol [
Yixio := Zell/Sauerstoff-Ausbeute bei Wachstum auf Glycerol 1,

durch Ausbeutekoeffizienten verkniipft, deren Zeitvarianz durch die Aufnahmeraten des Erhal-
tungsstoffwechsels (maintenance) qg,x, flr Substrat und q,ox, fur Sauerstoff verursacht
werden. In Bild 9.4 ist dieser Einfluss auf das Zellzuwachsverhalten berticksichtigt.

Die zellspezifische Glycerolaufnahmerate qg, .,

dsyx(t) = dgyxgr(t), (9.8)
dient zuné&chst vollstandig dem Zuwachs an Zellmasse,

Arxrxgr(t) = Yxsigr - dsux (), (9.9)
der durch den zeitinvarianten Zellzuwachs-Ausbeutekoeffizienten yys, . charakterisiert wird.
Ein Teil des umgesetzten Substrates S1 geht allerdings durch die Zellverlustrate q,y .,

YQix/xm = Yxssigr - strxm > (9.10)

wieder verloren, die zeitinvariant und proportional zur Substratmaintenancerate qg, ., ange-
nommen wird.

Die beobachtbare zellspezifische Zellreaktionsrate q,y,

Anx () = Aixixgr (D) = Gixrxm = Yxustgr (Asyx(t) = Asyxm) (9.11)

beinhaltet somit den Zuwachs durch die Substrataufnahmerate qg,,, und den Verlust durch die
Substratmaintenancerate qg; -

Die zellspezifische O,-Aufnahmerate q,,, auf Glycerol,
Gox(t) = Aioyxgr(t) + Gioxm = Yaxiogr " Gixixgr (V) + Grorxm » (9.12)

beinhaltet hingegen den Sauerstoffbedarf bei Aufnahme von S1, als auch den der Energie-
gewinnung fiir den Erhaltungsstoffwechsel.

Uberfiihrt man dieses Reaktionsverhalten in das volumetrische Reaktionsgleichgewicht,
Yysr(t) - SUR(L) = yix0(t)- OUR(Y), (9.13)

so erhalt man nach einigen Umformungen die Beschreibung der Stérgrée S,UR,

SUR(®) = Yixiogr Gix(D) + Yysigr - Asixm Qg (1), (9.14)
Ywstgr Gx(t) + Yasigr “Gsuxm + Yixsogr * Yiosxm

durch die O, -Eintragsrate Q,.
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Da die Glycerolregelung durch die Wahl eines Sollwertes cg,,,, von 10 gl eine unlimitierte und
hohe Wachstumsrate q,,, gewahrleistet, ist der Einfluss der Sauerstoffmaintenancerate q,q .,
vernachlassigbar.

Ermittelt man aus Vorversuchen die beiden Wachstums-Ausbeutekoeffizienten, so ist aus dem
stochiometrischen Glycerol/Sauerstoff-Quotienten yg; 4.,

y r
Yswogr = X (9.15)
Yx/s1gr
die unbekannte StérgréRe S,UR,
SUR(t) = Ysyog - Qoa(t), (9.16)

nunmehr direkt berechenbar und bei der Auslegung des Regelkreises zu bericksichtigen.

Die fur eine Berechnung des Parameters yg; o, bendtigten Ausbeutekoeffizienten yy;s, . und
Yixiogr WUrden der Arbeit von Martens entnommen und sind in Tabelle 9.1 aufgefihrt.

Tabelle 9.1: Globale Reaktionsparameter zur Berechnung der Glycerolaufnahmerate S,UR
aus der Sauerstoffeintragsrate Q,, aus [MARTENS, 2014]

Yxistgr Yixogr Ys1/ogr
0,887 2,47 2,78

Abschlielend sei die finale Streckendynamik,

. F
Cor (t) = \;{1((:))'[CS1R1 - CS1L(t)] = Ysiogr " Qoa(t)

= f(Csw, Frn Vi Qozr 1), (9.17)
nochmals in Abhangigkeit der vier Streckenvariablen notiert.

9.2.3 Einfiihrung des linearisierten Streckenmodells

Das Streckenverhalten weist ein hohes nichtlineares Verhalten auf. Zum einen sind die Steu-
ergrofe Fr, und die Regelgrofe cg,, multiplikativ verkniipft und zum anderen steigen die Stér-
gréflen V, und Qg,, beide bedingt durch ansteigenden Substrat- und Sauerstoffbedarf, expo-
nentiell an.

Um dieses Verhalten zu beherrschen und damit die Substratkonzentration konstant zu halten,
bedirfen die erforderlichen Reglerparameter einer Nachfiihrung.

Die klassische Regelungstheorie beruht allerdings auf linearem Systemverhalten um einen
festen Arbeitspunkt des Regelkreises mit zeitinvarianten Prozessparametern.

Dies wird hier erreicht, indem die Streckendifferentialgleichung um einen gleitenden Arbeits-
punkt linearisiert wird und die Strecken- sowie die Reglerparameter in zeitdiskreten Abstanden
nachgefiihrt werden.
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Der Arbeitspunkt eines Regelkreises wird so definiert, dass zu einem Zeitpunkt t,, die Regel-
grole cg,,,

Co(top) = Conwltey) = Csiiops (9.18)
ihrem aktuellen Sollwert entspricht und die zeitliche Ableitung ¢, ,

- _ _ FR1op _

CS1L(top) = fop =1 I:CS1R1 - CS1Lop:| - yS1/Ogr 'Qozop =0, (9-19)

Vv,

Lop
verschwindet.

Bei einem gleitenden Arbeitspunkt sind zu diskreten Zeitpunkten t, die aktuellen Werte,

Vi = Vb)) = Vi (9.20)
Qozep = Quolt) = Qo (9.21)
CsiLop = Co(t) = Copus (9.22)

aus der Sollwertvorgabe und den Messwerten von V, und Q, bekannt.

Hieraus ist die erforderliche Zufltterrate Fr,,,,

Yswogr * Vik - Qo
Friop = Frp = ’ (9:23)
Csir1 ~ Cstwk
online berechenbar.

Mit der Definition des Systems der Abweichungen,

ACgy (t) = Cor(t) = Corumes (9.24)
Abgy (t) = Ggq (1), (9.25)
AFgy(t) = Fy(t) — Fraes (9.26)
AV = V(1) = V., (9.27)
AQuy(t) = Qup(t) — Qupes (9.28)

lasst sich nun durch eine Taylor-Reihenentwicklung mit Vernachlassigung der Ableitungen ho-
herer Ordnung,

. of of
ACgy () = fy + Acgy (1) + F AR, (1)
ogih Csn op Rilop
v s 220 aag,, (9.29)
oV, 0Q,
op op
eine lineare Streckendifferentialgleichung herleiten.
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Damit Iasst sich die regelungstechnische Normalform der Regelstrecke,
Tox - Agy (1) + Acgy (1) = Kg - (AFgq(t) + Koy - AV (1) + K 5 - AQq, (1)), (9.30)

notieren.

Es handelt sich um ein Verzégerungszeitsystem 1. Ordnung mit drei proportionalen Eingan-
gen.

Die Streckenzeitkonstante Tg,

VLk
= Ltk | (9.31)
. FR’\k
und die Streckenstellverstarkung Kg,,
Kg = Csr1 _— Cotwk (9.32)

FR1k

bestimmen jeweils bei t, die Auslegung der Reglerparameter, wéhrend die Volumenstérver-
starkung K,
F

Koo =- VLS: (9.33)

und die Stérverstarkung der O,-Aufnahme K,

-V,
K = - Ystogr * Vik ‘ (9.34)

Cstr1 ~ Cstwk

das Stérlibertragungsverhalten des Regelkreises beeinflussen.

9.24 Vernachlassigung der Dynamik des Messsystems

Im Falle der Regelungsversuche nimmt die Erzeugung eines neuen Messwertes mit dem
Raman-Spektrometer eine Zeit von drei Minuten in Anspruch. Der vorhergehende Messwert
wird wahrend dieser Zeit beibehalten. Diese Funktionsweise wird als Sample-And-Hold (SAH)
bezeichnet.

Vergleicht man die Haltezeit T, von 0,05 h mit der minimalen Streckenzeitkonstante Tg;.,

AV 8l
T — imin _ = 40h, 9.35
Smin F, 0.21h™ (9:35)

Rimax

wird deutlich, dass man die Dynamik des Messverfahrens bei der Auslegung des Regelkreises
vernachlassigen kann.
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9.2.5 Regel- und Stellverhalten

Fur die Substratregelung wird ein PI-Regler eingesetzt. Bild 9.5 verdeutlicht das Regel- und

Stellverhalten.
CsiL
T—~ AFR1w FR1w ideales Stell-
. PI \f verhalten
SiLwk
Fra

Bild 9.5: Zusammenhang zwischen Reglerausgang und ProzesssteuergroRe

R1

Der Sollwert Acg,,,, im System der Abweichungen,

ACs1Lw(t) = CS1Lw(t) ~ Cswk = 0, (9.36)
ist im nachgefiihrten Regelkreis immer null.
Die Regeldifferenz eq,,

esi(t) = Copu — Con(t) = —Acg (1), (9.37)
entspricht somit der negativen Regelgrofe -Acg,, .

Der Reglerausgang, die StellgroRe AFg,,,
1 t
AFgp (1) = —Kge | Acgy (1) + T IAcs1L(r)dr , (9.38)
Ik
t

wird daher bei zyklischer Aktualisierung des Arbeitspunktes Fg,, durch Ricksetzung des I-
Anteils bei t, zunachst nur vom P-Anteil bestimmt.

Der Sollwert der nachfolgenden Zufitterrate Fg,,,,

Fr() = Frye + ARgy, (1), (9.39)
wird durch Addition der Stellgréfie AF,,, und des aktuellen Arbeitspunktes Fp,, eingestellt.
Die Dynamik der Prozesssteuergréfe, die Zufiitterrate Fg,,

Fat) = Fra (), (9.40)
wird durch Annahme eines idealisierten Stellgliedes (Zufiitterpumpe) vernachlassigt.
Allerdings ist in der Praxis die Zufitterrate mit

Fra(t) € [0, FR1max]7
durch die Pumpe beschrankt.

Dadurch wird der Stellbereich des Reglers,
AFR1w(t) € [_ FR1kv FR1max - FR’\k] = [AFR1min’ AFR1max]’

eingeengt.
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9.3 Untersuchung der Dynamik des Regelungsproblems

9.3.1 Ubertragungsfunktionen des Regelkreises

Zur Bewertung und Vorgabe des dynamischen Verhaltens des Regelkreises werden die ener-
giefreien Teilsysteme in den Bildbereich Laplace-transformiert. Das dynamische Verhalten des

Regelkreises ist aus Bild 9.6 zu entnehmen.

AV,
S K, I
GSk
AQo, K, ! Ksk ACgy
Tges + 1
AFg, K 1+ Tys
T T, +
k ACS1Lw =0
GRK
Bild 9.6: Blockschaltbild der Substratregelung im Bildbereich
Die Streckenubertragungsfunktion G,
K A
Gy (s) = s - Doal®) (9.41)
Tgo-s + 1 AFg,(s)
mit
Kge = bei t, ermittelte Verstarkung der linearisierten Regelstrecke [gh?]
Tge = bei t, ermittelte Verzégerungszeitkonstante der Regelstrecke [h1,
lUbertragt die SteuergréBe AFg,(s) auf die Regelgréie Acg, (s).
Die Regelstrecke besitzt mit
S (9.42)
2k -I-Sk ’
einen zeitvarianten Eigenwert (Pol).
Der PI-Regler mit der Reglerlibertragungsfunktion Gg,,
1+ T, -s
Gre(s) = Kgg les (9.43)
mit
Kre = beit, nachzufiihrende Reglerverstarkung [’g"h™]
Ty = bei t, nachzufiihrende Integrationszeitkonstante [h],
besitzt mit
P, =0, (9.44)
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einen zeitinvarianten Pol und mit

z, = -—, (9.45)

Ik

—

die nachzufiihrende Nullstelle des Regelkreises.

Mit der komplexen Ubertragungsfunktion des offenen Regelkreises Gy,

Koe (1 + Ty -9)

Gy(s) = ———————, 9.46
(%) Te-s-(1+ Ty -9) ©.49)
mit der zugehorigen Kreisverstarkung K,
Kok = Ky "Kres (9.47)
ist die Dynamik des Regelkreises bereits festgelegt.
Die Fiihrungsiibertragungsfunktion des geschlossenen Regelkreises G,
G Ko - (1 + Ty -s
G, (s) = wl®) T ( i S) , (9.48)
T+ Gp(s) Ty T -s” + (1 + Kge) Ty s + Ky
beschreibt ein PD-T,-Verhalten mit der Proportionalverstérkung K,
Ko =1, (9.49)
und der Differentialverstérkung Kp,,,,
Kowe = Ti- (9.50)
Die komplexe Stériibertragungsfunktion G, der jeweiligen Storgrofie z;,
K Kge - Ty -
Gyls) =~ S (9.51)
ohi(s)
mit
K, = beit ermittelte Storverstérkung des Stéreinflusses z,

besitzt den gleichen Nenner wie G, und beschreibt ein D-T,-Verhalten.

Eine sprungférmige Stérung erzeugt somit nur eine gegen Null gehende transiente Stérant-
wort, wahrend bei einer sprungférmigen Flhrungsénderung der Istwert Acg,, in dem neuen
Sollwert Acg,,,, enden wird.

9.3.2 Eigenwerte des geschlossenen Regelkreises

Der Nenner o/,
oh(s) = Ty T 8® + (1 + Ky ) Tiews + Ky (9.52)

stellt das charakteristische Polynom des Regelkreises dar und bestimmt bei Vorgabe von T,
und Kg, sowie durch die Wahl von T, und K, das Regelverhalten.
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Dieses lasst sich anhand der beiden Losungen, den Eigenwerten s, ,, des geschlossenen Re-
gelkreises,

S12k = - ,
" 2-T.
sk

2
_1 + KOK + \/(1 * Kﬂk) KOk (953)
4'Tszk le 'TSK

als T,-Verhalten bestimmen und ist bei positiven Parametern global stabil.

Sind beide Eigenwerte negativ und reell, so ist der Regelkreis zudem nicht schwingungsfahig.
Ist die Diskriminante in Gl. (9.53) negativ, so erhalt man eine konjugiert komplexe Lésung mit
negativem Realteil. In diesem Fall schwingt sich der Regelkreis stabil ein.

Bei Kenntnis von Kg, und T, sowie Vorgabe von T, héngen die Lésungen s, ,, von der Wahl
von Kg, ab. Dieses Verhalten, mit K, parametriert, ist aus den beiden Wurzelortskurven in Bild
9.7 gut abzulesen.

a) Ty > Ty . b) Ty < Ta .
Jo Jo

-1 -1
T T c °
o zeroz
X pole p, root loci s,
X pole p, root loci s,

Bild 9.7:  Wurzelortskurven in Abhangigkeit der Wahl von T

In Bild 9.7a wurde T, > T, gewéhlt. Mit wachsendem K, bleiben die Eigenwerte (Pole) in der
linken s-Halbebene. Der erste Pol wandert bei K, = « in die Nullstelle z, und der zweite Pol
gegen minus unendlich. Der Regelkreis schwingt in keinem Fall.

Wird T, < T, gewéhlt, so wechselt, wie in Bild 9.7b gezeigt, das Regelkreisverhalten. Fir
Kok € [0, Kokapr] Und Ky = Koo, verhélt er sich aperiodisch, wéhrend er fur Ky, € K01, Kokapal
schwingt.

Mit der Bedingung T, < Tg, kdnnen die Kreisverstarkungen K., fur den aperiodischen
Grenzfall,

Okap1,2

_ z.TTSK_[1 o 1o g] 1 ©54)

Ik TSK

aus der dann verschwindenen Diskriminante in Gl. (9.53) berechnet werden.
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9.3.3 Schwingungsverhalten des Regelkreises

Die klassische Notation des charakteristischen Polynoms fiir ein schwingendes T,-Verhalten
und der Vergleich mit o,
Kok

2 1+ Ko oy -0, (9.55)
TSk le 'TSk

§ + 2.9 0y S+ 05 =S
beinhaltet die Kreisfrequenz w,, des ungedampften Systems,

T (9.56)
Sk
und den Dampfungsgrad 9,,

1 Kee T

8, = -
20Ky Tac

(9.57)

der im Bereich Ky, € JKqyq01, Kokapol Unter 1 liegt.

Die Losungen von Gl. (9.55), die Eigenwerte s, ,, des geschlossenen Regelkreises,

Sioc = Ope * Joge = — Yo = jy1 - 95 " Woy s (9.58)

beschreiben mit der Abklingkonstanten og,,

1+ K
p = — o0k (9.59)
2-Tg,

und der Eigenkreisfrequenz wg, des gedampften Systems,

1+ K, )
P L _ e Zﬂk) , (9.60)
le'TSk 4'Tsk

das Verhalten eines schwingenden Regelkreises.

9.34 Vorgabe des Regelkreisverhaltens

Fir die Berechnung der Reglerparameter eines schwingungsfahigen Systems wird zweck-
maBiger Weise einer der Reglerparameter, K oder T, sowie der Dampfungsgrad 9 festgelegt.
Mit 9 > 1 erhalt man ein nicht schwingendes System und mit 9 < 1 ein schwingendes System.

Von besonderem Interesse sind solche Reglereinstellungen, bei denen gerade kein Schwin-
gungsverhalten mehr auftritt. Dieser aperiodische Grenzfall wird bei einem Dampfungsgrad
von 9 = 1 erreicht.

Mit der Online-Ermittlung der beiden Streckenparameter T, (Gl. (9.31)) und K¢, (Gl. (9.32)) zu
festen Zeitpunkten t, ist eine Auslegung des Verhaltens der Substratregelung mit den vor-
gestellten theoretischen Grundlagen leicht méglich.

Ein Ziel kdnnte ein nichtschwingendes Verhalten (reelle negative Eigenwerte) mit schnellem
transienten Abklingen (hohe negative Realteile) sein. Die Losung wére eine Einstellung von
T, geringfligig Uber T4, mit einem hohen K, (siehe Bild 9.7a).
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Dies war in der Praxis allerding nicht mdglich, da die Regler der Anlage eine Eingabe von T,
oberhalb von Tg .. = 40 h nicht zulieRen.

Daher war ein gegeniiber Tg, kleines T, (hoher I-Anteil des Reglers) zu wahlen, um die Rege-
lung in der N&he des zweiten aperiodischen Grenzfalles K, (siehe Bild 9.7b) zu halten.

Hierfur boten sich zwei Méglichkeiten an. In beiden Strategien wurde die Reglerverstarkung
Kg fixiert und damit die Verstarkung des offenen Regelkreises K,

Koo = Kg Kg, (9.61)
proportional zur Streckenverstarkung Kg, eingestellt.

Ein nichtschwingendes Verhalten wurde dann mit Vorgabe des aperiodischen Grenzfalls
(9 = 1) durch Anpassung von T, erzwungen.

Die dafiir erforderliche Integrationszeitkonstante T,

T =T, = M (9.62)
(1 + Kg -Kg,)

wird dann zusammen mit F,, jeweils bei t, verandert.

Will man hingegen bei festem K Schwingungen mit einer definierten Periodendauer T,

T, - 2% (9.63)

DRk

zulassen, soist T,

L 4 Ke Ko To To (9.64)
(4T )+ (1 K Kg )P T2

mit einer anderen Vorschrift nachzufiihren. Das Abklingverhalten o, wird sich dann entspre-
chend GI. (9.59) verhalten.

Diese beiden Methoden wurden experimentell erprobt. Die erforderlichen Malnahmen zur Re-
alisierung werden im Weiteren erlautert.

Andere Adaptionsmdglichkeiten, z.B. Vorgabe von o oder der Uberschwingweite tber den
Sollwert sind aus Gl. (9.60) oder der Literatur zu entnehmen.

9.4 Technische Vorgaben der Glycerolregelung

9.4.1 Prozesstechnische Umsetzung

In den folgenden Abschnitten soll auf die technische Umsetzung der Glycerolregelung, insbe-
sondere im Hinblick auf die verwendete Prozess-EDV, naher eingegangen werden. Die in Bild
9.8 gezeigte erweiterte schematische Darstellung des Regelungskonzeptes zeigt die flr eine
Glycerolregelung notwendigen Operationen.

Dabei kann insbesondere die Erzeugung der Regelgréfe durch Messung von Raman-Spek-
tren und der Anwendung eines PLSR-Modells als ein erster Schritt hervorgehoben werden.
Das Vorgehen hierbei wird in Abschnitt 9.4.2 beschrieben.
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Bild 9.8: Schematische Darstellung der erweiterten Ausstattung zur Regelung der
Glycerolkonzentration

Eine weitere wichtige Aufgabe ist die Nachfiihrung des Arbeitspunktes bzw. die Adaption der
Reglerparameter und die dafiir benétigte Berechnung der Sauerstoffeintragsrate Q,, durch
eine Abgasbilanzierung. Darauf wird in Abschnitt 9.4.3 naher eingegangen.

In Abschnitt 9.4.4 findet sich abschlieRend eine Beschreibung der Interaktion beteiligter Soft-
waresysteme sowie eine detaillierte Auflistung der verwendeten Programme.

9.4.2 Bereitstellung der RegelgroBe durch ein PLSR-Modell

Das verwendete Online-PLSR-Modell unterscheidet sich in seinem Aufbau und der Vorher-
sageglite von dem in Abschnitt 8.3.2 dargestellten finalen Modell. Dies liegt darin begriindet,
dass aufgrund einer auslaufenden Leihfrist des Raman-Spektrometers, die Modellentwick-
lungsarbeiten zum Zeitpunkt der Regelungsexperimente noch nicht abgeschlossen waren.

Der hauptséachliche Unterschied der Online- und Offline-Modelle besteht in der Variablenaus-
wabhl. Bei der Bildung des Online-Modells wurden die kompletten Raman-Spektren verwendet
und nicht eingegrenzt. Dies filhrte zu einem Vorhersagefehler RMSEP von 3,91 gl im Ver-
gleich zu 1,85 gI"" des finalen Offline-Modells.

Die Entwicklung des verwendeten PLSR-Modells wurde mit der Software SIMCA durchgefiihrt.
Fir die Anwendung des PLSR-Modells zur Online-Pradiktion der Glycerolkonzentration cg;, .,
kam das Programm SIMCA-Q zum Einsatz. Hierbei handelt es sich um ein reines Berech-
nungsmodul, das Uber keine grafische Oberflache verfiigt.

Die Aufnahme der Raman-Spektren erfolgte mit der Spektrometer-Software iC Raman. Zur
Ubertragung der Spektren an SIMCA-Q war die Zusatzsoftware Kaiser Data Link notwendig
Uber die auRerdem eine Einbindung der SIMCA-Modelldatei erfolgte.

Eine weitere wichtige Funktion von Kaiser Data Link bestand darin, die von SIMCA-Q berech-
nete RegelgroRe cg;,, ., im Labornetzwerk (iber das OPC-Protokoll fiir weitere beteiligte EDV-
Systeme zur Verfligung zu stellen.

1P 216.73.216:36, am 21.01.2026, 03:37:49. © Inhal.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186293176

124 Regelung der Glycerolkonzentration

9.4.3 Durchfiihrung notwendiger Online-Berechnungen

Die Nachfiihrung des Arbeitspunktes der Glycerolregelung bzw. die Online-Berechnung der
im Arbeitspunkt benétigten Glycerolzufiitterrate Fr,,, und damit die Anpassung der Regelkreis-
parameter Tg,, Kg, und T,, wurde mit einem MATLAB-Skript realisiert. Die dafiir notwendige
Abgasbilanzierung mit der Berechnung der Sauerstoffeintragsrate Q, wurde ebenfalls online
Uber ein MATLAB-Skript durchgefihrt.

Die Ausflihrung der Berechnungsskripte wurde durch die PAT-Software SIMATIC SIPAT orga-
nisiert. Dort erfolgten eine Einbindung der Skriptdateien sowie deren Versorgung mit den je-
weils bendtigten Eingangsdaten. Diese werden von SIPAT aus dem Netzwerk Uber das OPC-
Protokoll eingelesen. Auch eine Verteilung der Berechnungen im Netzwerk fand tiber die OPC-
Funktionalitat statt.

SIPAT wurde so konfiguriert, dass alle drei Minuten der aktualisierte Wert der Glycerolzufitter-
rate Fp,. im Arbeitspunkt sowie der adaptierte Reglerparameter T, fir die Regelung mit
MFCS/win zur Verfigung stand. Das Berechnungsintervall deckt sich dabei mit dem Mess-
intervall des Raman-Spektrometers.

9.4.4 Vernetzung beteiligter Softwaresysteme

Eine wichtige Rolle bei der Glycerolregelung spielt das SCADA-System MFCS/win. Der ver-
wendete PI-Regelalgorithmus wurde hier eingerichtet. Auch die Berechnung der SteuergrofRe
Frw aus der benétigten Zufltterrate im Arbeitspunkt F,, und dem Reglerausgang AFg,,, sowie
die Ansteuerung der Glycerolpumpe fanden in MFCS/win statt.

Weiterhin erfolgte dort auch die Aufnahme der fiir die Online-Berechnungen benétigten Varia-
blen, wie zum Beispiel die GrolRen der Abgasbilanzierung sowie deren Verteilung Uber das
OPC-Protokoll im Netzwerk der Anlage.

Eine besondere Funktion im Zusammenspiel aller beteiligten Softwaresysteme nimmt dabei
das Programm SIMATIC WinCC ein, das mit seiner umfangreichen OPC-Server-Funktionalitat
die Organisation der Datenstréme im Labornetzwerk ibernimmt [LOGERING, 2015]. Bild 9.9
illustriert die Vernetzung der bei der Glycerolregelung beteiligten Computerprogramme.

Raman spectra

T T T N | acquisition PLSR model
: process :o—L, iC Raman development
N g Data Link = [e----------- SIMCA
v "~ SIMCAQ | PLS model
L application
FI'\G FR1w
X CsitLrams Csttram control parameter
adaptation
TGS Fracr Krio T WincC Fraer K Tie SIPAT
win (OPC server) MATLAB
Vi, Fues Xi6 Vi Faaio Xiak

data acquisition and data distribution exhaust gas
process control management balancing

Bild 9.9:  Vernetzung und Aufgaben der beteiligten Softwaresysteme
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Abschlieffend sind die verwendeten Computerprogramme in Tabelle 9.2 nochmals detailliert
aufgefuhrt.

Tabelle 9.2: Detaillierte Auflistung der beteiligten Softwaresysteme

Software Version Hersteller
Kaiser Data Link 1.1 Kaiser Optical Systems, Ann Arbor, USA
iC Raman 3.0 Kaiser Optical Systems, Ann Arbor, USA
MATLAB 8.3.0 (R2014a)  The Mathworks, Natick, USA
MFCS/win 3.0 (Level 32) Sartorius Stedim Systems, Guxhagen
SIMATIC SIPAT 4.0.0.0 Siemens, Miinchen
SIMATIC WinCC 7.0 + SP2 Siemens, Miinchen
SIMCA 13.0.3 Data Analytical Solutions, Umea, Schweden
SIMCA-Q 13.0.3 Data Analytical Solutions, Umea, Schweden
9.5 Experimentelle Erprobung der Substratregelung
9.5.1 Regelung im aperiodischen Grenzfall

Im Folgenden werden zwei unterschiedliche Experimente zur Erprobung der Regelung von
Cgy diskuiert.

In Bild 9.10 ist der Verlauf der StérgréRen V|, und Q,,, sowie die Arbeitspunkte Tg,, Kg, und
Fri der linearisierten Strecke gezeigt.
TSK KSK VLk QOZk FRWK

(] [kghi?] [ [gF"h"10h™] Kr=0.04 Pg'h"  cginy =500 gl
2707 2048.7593.590.5

216-168.6072.80.4

162-128.452.14 0.3

108 848.301.4-0.2

544 4-8.1540.740.11

RL2115

0- 0-8.00-0.0-0.0 T T T T T T T
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t[h]

N

Bild 9.10:  Verlauf der Parameter im Arbeitspunkt der linearisierten Strecke
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Der Arbeitspunkt der Zufitterrate F,, (Gl. (9.23)) verlauft proportional zur Sauerstoffmassen-
transferrate mgy, ,

Mome = Vi - Qoax: (9.65)
die unabhangig vom Volumen V,, ist.

Die gewahlte Strategie des laufenden Arbeitspunktes Fg,, entspricht somit einem Feed-For-
ward Control, um das exponentielle Wachstum der Zellmasse m,, im Reaktor zu erflillen.

Beim ersten Experiment wurde Ky auf 0,04 I°g™'h™ fixiert und T, auf dem Wert des aperiodi-

schen Grenzfalles T, (Gl. (9.62)) nachgefiihrt. In Bild 9.11 ist der Verlauf der Regelung dar-
gestellt.

Tiap Cxt Csit Fry

(] [g" [gI"] [h] Conw =100 Kg=0.04 Pg'h  cgyps =500 gl
1.954 40416.07 0.5

o

c o
SiLram
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[u] P e T l,-0"]

1.874 24+ 9.64 0.3 s

Csiw

1.91432-12.84 0.4

1.831

1.794

RL2115
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w
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w
N

t[h]
Bild 9.11:  Verlauf der adaptiven aperiodischen Substratregelung

Bei t = 25 h erreicht die RegelgroRe cg,, ., den Sollwert cg,,,. Der Regler befindet sich somit
im Arbeitspunkt und wird aktiviert. Damit sind die SteuergréRe Fg, und die Zieltrajektorie Fg,,
dort identisch.

Fir die folgenden vier Stunden ist das erwartete Regelungsverhalten zu beobachten, dass
durch deutliche, von der Regeldifferenz eq, abhangige, SteuergréRenspriinge AFg,,, gekenn-
zeichnet ist. Diese sind auf die relativ hohe Reglerverstarkung Ky zurtickzufiihren.

Die erforderliche aperiodische Integrationszeitkonstante T, (Gl. (9.62)) ist viel kleiner als die
im Verlauf des Prozesses abfallende Streckenzeitkonstante Tg,.

Da die Streckenverstarkung Kg, und damit K, ebenfalls abfallen, bedarf es einer geringen
positiven Korrektur von T, um den aperiodischen Grenzfall bei K, beizubehalten.

Ab t = 27,5 h (bersteigt die RegelgroRe cg, ., ihren Sollwert cg, . Der Regler fiihrt die
SteuergroRe Fp, zurlick, sodass sie unterhalb der erforderlichen Zielgré3e Fg,, liegt.
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Die damit verbundene Abnahme von cg, wird zunéchst allerdings nur im Verlauf des Offline-
Referenzwertes Cg;y ., Dei t = 29,2 h, deutlich.

Die spektrale Messung cg,, . folgt diesem Verhalten hingegen nur langsam. Nach Unter-
schreiten des Sollwertes fahrt der Regler F, kréftig hoch, bis die maximale Zufltterrate F
der Pumpe erreicht wird.

R1max

Die Offline-Messung zeigt das wahre Prozessverhalten. Der Prozesswert Cg,,, Steigt weit
Gber den Sollwert an.

Die Vorhersage cg, ., Mit Raman-Spektroskopie hingegen versagt. Sie fallt immer weiter ab
und fiihrt somit zu einem instabilen Regelverhalten.
Die Fehimessung verdeutlicht, dass sich das Online-PLSR-Modell an den Spektralanteilen der
Zelldichte orientiert. Da letztere ab etwa t = 30 h stark ansteigt, fiihrt dies zu einem Versagen
der Prédiktion eines geregelten Verlaufes von cg, .

Dieses Verhalten konnte womdglich mit der Verwendung des finalen Modells (siehe Abschnitt
8.3.2) verhindert werden.

9.5.2 Regelung der Glycerolkonzentration im Schwingfall

Zur Erprobung der Vorgabe des Regelverhaltens wurde auch eine Regelung im abklingenden
Schwingfall mit konstanter Periodendauer T, gewahit. Auch hierbei wurde mit einem K von
0,012 I’g"'h™" eine konstante Reglerverstarkung, allerdings viel kleiner als beim aperiodischen
Grenzfall, eingestellt.

Die Integrationszeitkonstante T, wurde dabei aus Tg,, Kg,, Kz und T, mit T (Gl. (9.64)) in
einer oszillierenden Regelung nachgefiihrt.

In Bild 9.12 ist der Verlauf der Arbeitspunkte der linearisierten Strecke im zweiten Experiment
gezeigt. Die StorgroBen V|, und Qg,, sind vergleichbar zur ersten Erprobung.

TSK KSk VLk QOZk FRWK

(] [kghi] [ [gr"h"]0h"] To=2 h  Kg=0012 Pg'h  cgpp =600 gl
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22041848.3041.4-40.24
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Bild 9.12:  Verlauf der Parameter im Arbeitspunkt der linearisierten Strecke
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Durch Wahl von cg,, zu 600 gl verlauft Fy,, allerdings auf einem niedrigeren Niveau. Damit
werden die Streckenparameter Tg, und Kg, nahezu verdoppelt.

In Bild 9.13 ist der Verlauf der Regelung mit einer festen Periodendauer T, von 2 h gezeigt.
Diese wurde bei t = 47,8 h aktiviert und zeigte zunachst das gewlinschte Verhalten. Die
erreichte Periodendauer ist mit zwei senkrechten Linien angedeutet.

Tikose Cxt CsiL Fri

17 1Al 11
(I [OFTIgrTIh™T o =10 To=2h Kg=0012 Pg'h'  cgpm =600 g
0.109740416.0570.5

0.107432412.840.4+

Cs1Lram D/CSWLWC
[ib/ D.—"r(_""E et § Qe
0.1059244 9.640.34 [ " e, L~ T a "
0.1034164 6.440. [
0.1014 84 3.2-o.
n
~
3
0.0994 04 0.0-0. ©
48 49 50 51 52 53 54 55 56

t[h]
Bild 9.13:  Verlauf der Regelung mit vorgegebener Oszillation

Im spéateren Verlauf des Prozesses ist das gleiche Fehlverhalten wie bei der aperiodischen
Regelung zu beobachten. Die spektral bestimmte Regelgréfe cg, ., folgt nicht mehr den
realen Prozesswerten (Cg;,,) Und fihrt zu einer Uberfiitterung. Daher wurde das Experiment
bei t = 55,3 h beendet.

Abschliefend ist zu bemerken, dass eine Substratregelung auf der Basis des hier verwende-
ten PLSR-Modells nicht zum Erfolgt fiihrte. Die Erprobung komplexerer Modellbildungen war
aufgrund der bereits erwahnten auslaufenden Leihdauer des Raman-Gerates leider nicht mehr
maoglich.
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10. Anwendung der MVDA auf nichtspektroskopische Daten

10.1 Préadiktion nicht direkt messbarer Prozessgrofen

In diesem Abschnitt wird die Anwendung der MVDA auf nicht spektroskopische Prozessdaten
beschrieben. Ziel war auch dabei die Online-Bestimmung von Prozessvariablen, wie zum Bei-
spiel die Produktkonzentration. Weiterhin sollte auch die Ermittlung von zellspezifischen Reak-
tionsraten getestet werden.

Die Untersuchungen wurden unter Verwendung des aus Abschnitt 7.3 bekannten zyklischen
Prozesses durchgefiihrt, der in Bild 10.1 anhand ausgewahlter GréRRen dargestellt ist.

Cx. Frarel Csav Cpim

-11 T0, -1 -1
[9"] [%] [9"T[9"] cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

754 454 6.0 1.0
9
K Qo2 $ ? i
60 364 4.840.84 /g K A
v s Q n
él I' DD n ,I
? ) g
454 27 3.640.645 4| /¢ i '
1
WY I
304 184 2.440.4 , N
g 1 Gf)
1
154 94 12402 6 Coa |
\ ) Lsel
5 | 3
i | =
04 0- 0.040.0+= ; T 7 @
e 9 Q 42 102 162 222 282 342
S1IM VL 02
t[h]

[9r" [*CllgI"h™]
Bild 10.1:  Ausgewahlte BioprozessgroRen im Verlauf der untersuchten Kultivierung

Als X-Variablen sollten hier anstelle von Spektren Inline- oder Online-MessgroRen des Bio-
reaktionsprozesses verwendet werden. Beispiele sind die Tribungsmessung, Waagensignale
oder die Ergebnisse einer Abgasbilanzierung. Details zu der Auswahl verwendeter Variablen
sowie der Erzeugung der benétigten Datensétze fir die MVDA befinden sich in Abschnitt 10.2.

Als Methoden der multivariaten Kalibrierung sollten hier die PLSR sowie die SVR eingesetzt
und verglichen werden. Beide Methoden wurden bereits erfolgreich bei der Entwicklung der-
artiger black box soft sensor Modelle eingesetzt.

Le et al. nutzen PLSR- und SVR-Modelle zur Vorhersage von Produkt- und Laktatkonzentra-
tionen am Ende eines Prozesses zur Herstellung von Antikérpern mit CHO Zellen anhand von
35 Offline- und Online-Prozessgrofen [LE et al., 2012].

Mehrere Quellen verglichen black box soft sensor SVR-Modelle mit anderen nichtlinearen Me-
thoden, wie z.B. kiinstliche neuronale Netze (ANN), in Kultivierungsprozessen verschiedener
Hostsysteme. Hierbei stellte sich eine Uberlegenheit der SVR-Methodik heraus [DESAI et al.,
2006; LI & YUAN, 2006; WANG et al., 2006].
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Borchert nutzte in seiner Dissertation Online-ProzessgroRen zur Pradiktion der Zelldichte, der
Glycerolkonzentration und der Produktkonzentration in einem zyklischen Produktionsprozess
mit Pichia pastoris. Aus diesen Vorhersagen konnten dann zellspezifische Reaktionsraten
online berechnet werden [BORCHERT, 2015].

Dieses Kapitel soll an die Arbeiten von Borchert ankniipfen. Hinsichtlich der Bestimmung zell-
spezifischer Reaktionsraten wird jedoch ein anderer Ansatz verfolgt, der darin besteht, diese
mittels multivariater Modelle direkt vorherzusagen. Hierbei war eine andere Bereitstellung
geeigneter Kalibrierdaten zu finden.

10.2 Vorbereitung der Modellerstellung

10.2.1 Gewadhlte ZielgroRen

Primar sollten die geplanten Untersuchungen zunachst multivariate Modelle zur Vorhersage
der Zustandsgroéfen Zelldichte ¢, , Glycerolkonzentration cg,,, sowie der Zielproduktkonzen-
tration ¢y, hervorbringen. Weiterhin sollte auch eine Pradiktion des zellinternen Alkoholoxi-
dasegehaltes g,y mit dem Blackbox-Ansatz untersucht werden. Ein besonderes Interesse
bestand dann in der Entwicklung multivariater Modelle fiir die direkte Vorhersage der zellspe-
zifischen Reaktionsraten q,. In Tabelle 10.1 sind die gewahlten ZielgréRen aufgefihrt.

Tabelle 10.1: Auflistung der gewahlten ZielgréRen und Herkunft der Kalibrierdaten

h ZielgroRe vy, Erzeugung geeigneter Kalibrierdaten

N

-1
Cx (9] Anpassung von Simulationsverldaufen durch

2 Corm [9"]  Modellbildung, Simulation und Parameter-

3 oy oM identifizierung

4 Teox [Ug™  Interpolierte Werte eines enzymatischen Assays

5  Oxx [h]

6 dox [h]

7 (h] Bilanzierung des Bioreaktionsprozesses unter
Gs1ix . Verwendung der simulierten Prozessgréfien

8  Qsax [h]

9 Yp1/x [h]

Ein wichtiger Aspekt ist die Bereitstellung geeigneter Kalibrierdaten. Fur die untersuchten
ZustandsgroRen standen vergleichsweise wenige Referenzmessungen zur Verfligung, die zu-
satzlich messtechnische Fehler beinhalten. Dieser Umstand erschwert insbesondere die
Erzeugung von Kalibrierdaten fiir die zellspezifischen Reaktionsraten gy, da deren Berech-
nungen die zeitlichen Ableitungen der ZustandsgroRen des Prozesses bendtigen.

Aus diesem Grund wurden fir diese Untersuchungen differenzierbare Kalibrierdaten durch
Simulation der ZielgréRen erzeugt. Darauf wird detailliert in Abschnitt 10.2.3 eingegangen. Im
Folgenden werden zunéachst die Rechenvorschriften der zellspezifischen Reaktionsraten q,y,
die aus einer Bilanzierung des Bioreaktionssystems hervorgehen, hergeleitet.
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10.2.2 Berechnung zellspezifischer Reaktionsraten

Die Darstellung der Zellteilungsrate qy in einem Fed-Batchprozess,

Fin(t) — FA CXL(t)

Axx(1) v () + e (D) (10.1)
mit

Fin = Eingangsvolumenstrom [Ih"]
Fa = zeitinvarianter zellfreier Atline-Analysenstrom [Ih™
v, := Volumen der Fliissigphase 1]
¢, = Zelldichte in der Flissigphase lor".

lasst sich leicht aus der allgemeinen Bilanz fiir die Zellmasse my, herleiten.

Die Verdiinnung der Zelldichte c,, durch den Eingangsvolumenstrom F,,

Fa(D) = Fy(t) + Fro(t) + Fry(t) (10.2)
mit

Fry = Glycerolzufitterate [h"
Fro = Methanolzufitterate ih™
Fr, := Volumenstrom der Titration mit Base [Ih'1] s

wird darin als Summe der eingehenden Teilvolumenstrome bericksichtigt.

Der zellfreie Atline-Analysenstrom F, flihrt zu einer Konzentrierung der Zelldichte. Die Ver-
dampfung der Medienphase mit gleichem Effekt wird dagegen vernachlassigt.

Eine Berechnung der zellspezifischen Sauerstoffaufnahmerate qg,

Qg (1)

t) = 10.3
mit
Q,, = Sauerstoffeintragsrate [g"'h ™,

ist bei Annahme eines quasi-stationaren FlieRgleichgewichtes sehr einfach, da alle konvekti-
ven Strome vernachléssigbar und die benétigten GroRen ¢, und Q,, online berechenbar sind.

Fur weitere Berechnungen ist das Volumen der Medienphase V,,,

a
Vu(t) = (1 - pZ’X ‘CXL(t)]'VL(t) (10.4)
z
mit
Vi = Volumen des Teilsystems K, K=M, L 1l
ayy = Verhaltnis von Biofecht- zu Biotrockenmasse [-]
p; = Dichte der Biofeuchtphase [,

sowie die durch das Zellwachstum hervorgerufene Volumenverlustrate F, der Medienphase,

F () = “;’x (1) Gy (1) VL (1), (10.5)

z

erforderlich.
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Die zellspezifischen Substrataufnahmeraten qg,, miti = 1 fir Glycerol und i = 2 fiir Methanol,

ex(t) = Frt) o Fa(-F(t) coult)  Vu(t) Cem(t) (10.6)
VL(t)-Cx (1) Vi (t) Cy (1) VL) ey (t)
mit
Csri = Konzentration des Substrates Si im entsprechenden Reservoir Ri [g"]
Csim := Konzentration des Substrates Si in der Medienphase M g,
sowie die zellspezifische Zielproduktbildungsrate qpy,
Fa-F(®) Com(®) , Vi) Com(®) (10.7)

t) = e () V(D) (D)
qPq/x() VL(t) CXL(t) VL(t) CXL(t)

kénnen aus der allgemeinen Bilanzgleichung einer Komponente | in der Medienphase M eines
Dreiphasensystems hergeleitet werden [CORNELISSEN, 2004].

10.2.3 Bereitstellung idealisierter Kalibrierdaten

Aus dem vorherigen Abschnitt geht hervor, dass fiir die Berechnung der zellspezifischen Reak-
tionsraten die Ableitungen der Zustandsgréfien c,,, cg;, und c,,,, bendtigt werden. Eine Diffe-
rentiation gemessener Werte ist numerisch jedoch sehr sensitiv und verstarkt etwaige Fehler
gemessener Eingangsdaten [AHNERT & ABEL, 2007].

Aus diesem Grund wurden die ZustandsgroRen durch Simulation an die entsprechenden
Offline- oder Atline-Messsignale angepasst. Dieses Vorgehen ermdglicht die Berechnung der
Ableitungen ohne numerische Differentiation der Originalmessdaten. In Bild 10.2 ist das
Ergebnis der Anpassung der idealisierten Variablen ¢, grafisch dargestellt.

CxL Cpim

-1
9] cycle 1 cycle 2

S1FB

= T T = .
42 56 70 84 103 117 131 145 159
t[h]

Bild 10.2:  Anpassung der Zelldichte ¢, ., der Glycerolkonzentration ¢4, und der
Produktkonzentration ;. @n inre Referenzmessungen in zwei Zyklen
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Eine Simulation der Methanolkonzentration cg,,, war dabei nicht notwendig, da diese sehr gut
geregelt wurde und somit aus c,, und der Methanolzufiitterate Fy, die Berechnung eines wenig
verrauschten Verlaufes der Methanolaufnahmerate qg,,, moglich war.

In einem ersten Schritt wurden die Zelldichte c,, ., und die Glycerolkonzentration gy, in den
Glycerol-Batch- und Fed-Batchphasen lber ein einfaches Modell des Bioreaktionsprozesses
durch Identifikation von Reaktionsparametern und Anfangswerten angepasst.

Fur die Berechnung der Zelldichte ¢, ., in Zyklus k,

: _ Fin(t)—FA}

Cyrest(t) = | Ayx(t) = = | Cyreq(t 10.8
XL ( ) |: X/X( ) VL(t) XL ( ) ( )
mit

Cxest (tox) = Cxeok» (10.8a)

wird eine reaktionskinetische Beschreibung der Zellteilungsrate gy,

CS1Mest (t)

Bl Himar Comest(t) + Kgy (10.9)
mit

Mg maxk := maximale Zellwachstumsrate auf Glycerol in Zyklus k h"]
Ks1 := Monod-Limitierungskonstante fiir Glycerol [g|'1] ,

benétigt, die in der Simulation einer einfachen Monod-Substratkinetik ohne Maintenacerate
Js1xm fOlgen soll.

Die simulierte Glycerolaufnahmerate qq .

t
Guelt) = Dex® (10.10)
Yxisik
mit
Yustk := Zellausbeutekoeffizient fiir Glycerol in Zyklus k [1,

verlauft unter Annahme eines zeitinvarianten Ausbeutekoeffizienten y, s, proportional zur Zell-
teilungsrate und ermdglicht Gber die Bilanz der Glycerolkonzentration,

. Feo(t F (t)-F,(t V (t

CS1Mest(t) = \;ﬂgt;'csw - %'%mwm - VL((t))'qswx(t)'CXLest(t) (10.11)
M M M

mit

CS’IMest(tok): Csimok » (10.11a)

eine Berechnung der Glycerolkonzentration cg,,,. in der Medienphase.

Die Bilanz des Flissigvolumens V,,

VL(t) = Fay(t) + Feplt) + Frp(t) = Fy — Fg (10.12)

mit

Fg = zeitinvarianter gemittelter Probenahmevolumenstrom [Ih'1]
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und mit

Vi (to) = Viok (10.12a)

setzt sich aus den ein- und austretenden Volumenstromen zusammen und wird zur Berech-
nung von V,, und F, gemaR Gl. (10.4) und Gl. (10.5) bendtigt.

Die Glycerolzufiitterrate Fg,,

0 t St<ty
Ful) = (10.13)
o o (t =t

Fagc e ™ (t = ) by St<ty,
mit
o = Startzeitpunkt des Zyklus k (]
ty := Beginn der Zufutterung in Zyklus k [h]
Ry = fester Sollwert der Wachstumsrate in Zyklus k ',

nimmt am Ende der jeweiligen Batchphase zum Zeitpunkt t, den Wert der initialen Glycerol-
zufitterrate Fry,

F

Rijk

= Falty) = —HM . (t,)- VL (t,), (10.14)

Yxistk * Cstra
an und wird im weiteren Verlauf bis t, ,, mit einem exponentiellen Profil nachgefiihrt.

Das Ende der Batchphase ist durch den Verbrauch des Substrates charakterisiert. Die Zeit t;,
des Beginns der Glycerolzufutterung ist aus numerischen Griinden zu dem Zeitpunkt definiert,
an dem die Glycerolkonzentration Cgq e

CsMest (tjk)% 0,1-Kkgy, (10.15)

ein Zehntel der angenommenen Limitierungskonstante kg, unterschreitet.

Wahrend die Methanolzufitterung Fg, in den Batch- und Fed-Batchphasen unberlcksichtigt
bleibt, wird der Basevolumenstrom F,,

Y t
Fro(t) = _Mr(t) (10.16)
Pr2
mit
My, := Masse des Basereservoirs [a]
Pra := Dichte des Basereservoirs loi",

durch numerische Differentiation mit der Methode nach Savitzky und Golay [SAVITZKY &
GOLAY, 1964] aus dem entsprechenden Online-Waagensignal m;, approximiert. Dies ist hier
moglich, da das Waagensignal ein hohes Signal-zu-Rauschverhaltnis aufweist.

Die Anpassung der Simulationsverlaufe der Zelldichte ¢, und der Substratkonzentration
Csimest @N die Offline-Messwerte erfolgte durch Minimierung des Glitefunktionals J,g,,

2 2
g = min z |:[CXLest tu) - CXLcdw(tuk)j + (CS1Mest(tuk) - cS1MhpIc(tuk)J :| (10.17)

Py u=0 Cxtmaxk CS1Mmaxk
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mit
P = Vektor der unbekannten Parameter und Anfangswerte in Zyklus k [div.]
Ny = Anzahl der Offline-Messwerte in der Glycerol-Batch- und

Fed-Batchphase des betrachteten Zyklus k [
tu = Offline-Messzeitpunkte innerhalb von Zyklus k [h]
Cyicaw = Offline-Messwert der Zelldichte [g"]
Csunpc = Offline-Messwert der Glycerolkonzentration [g"]
Cxmaxk = Maximalwerte der Offline-Messwerte zur Wichtung der Variablen [o",

fur jeden der finf betrachteten Kultivierungszyklen separat durch Identifizierung der unbekan-
nten Modellparameter p, .. Moo Yxisi SOWie der Startwerte ¢, o, und Cgyygy-

Als Optimierungsmethode wurde der Simplex-Algorithmus von Nelder und Mead gewahlt
[NELDER & MEAD, 1965]. In Tabelle 10.2 sind die identifizierten Modellparameter aller Zyklen
aufgelistet. Tabelle 10.3 enthalt dagegen die zyklusunabhangigen Parameter.

Tabelle 10.2: Modellparameter fir die Erzeugung idealisierter Kalibrierdaten

Parameter k=1 2 3 4 5
Wimase  [07] 0,233 0,186 0,147 0,181 0,221
T [h] 0,0533 0,0577 0,0614 0,0614 0,0769
Yt -] 0,678 0,662 0,699 0,711 0,631
Caoe 19 2,16 2,25 3,81 3,71 2,23
Csmox O] 52,5 54,0 53,5 53,4 54,7

Tabelle 10.3: Zyklusunabhangige Modellparameter

Parameter Wert Parameter Wert
Csre 91 400 Az [ 37
Come  [91 790 Pre [9] 790
Fa [hM 0,015 Pry g 950
Fs I 0,010 Py g 1050
s 9] 02

Eine Simulation der Zelldichte wahrend der Produktionsphase ist nicht zuverlassig moglich.
Die Griinde hierfir liegen vor allem in der komplexen Natur der Induktionsmechanismen bei
Umschaltung vom Glycerol- auf den Methanolstoffwechsel. Darliber hinaus ist Abnahme der
Zellteilungsrate gegen Ende einiger Zyklen beobachtbar, jedoch nicht erklarbar.

Aus diesem Grund wurde in der Produktionsphase die Zelldichte ¢,

2 3
Cyrost(t) = dge + dy - (t—tg ) + dyy - (t—tg )" + dg - (t—tg,) (10.18)
mit
tox = Startzeitpunkt der Produktionsphase des Zyklus k [h],

fir jeden Zyklus k mit einem Polynom dritten Grades approximiert.
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Dieses Vorgehen erlaubt eine analytische Berechnung der Anderung von ¢, .,

. 2

Curest(t) = dy + 2:dy - (t—tg ) + 3-dyg - (t—1ty )" (10.19)
Der Koeffizientenvektor d, des Polynoms,

d = (XT-x) "Xy, (10.20)

Iasst sich durch Lésung des iberbestimmten Gleichungssystems,

CxLedw (tOk) 1 0 0 0 dox
2 3
Cotoaw (i) _ T (b —to) (tw —to) (ty — to) _ dy , (10.21)
dye
2 3
Cxtedw (t(nPH)k) 1 (t(npﬂ)k - tOk) (t(npkfw)k - tOk) (t(nqu)k - tok) d3k
Yk Xy d
mit einem Ansatz der kleinsten Fehlerquadrate,
np, -1 2
Jx = min Z (CXLesl(tuk) = Cxteaw(tuc )) (10.22)
dk u=0
mit
d, = Vektor der unbekannten Koeffizienten d in Zyklus k [gr"h]
ng, = Anzahl der Offline-Messwerte in der Produktionsphase von Zyklus k [-1,

fur jeden Zyklus k leicht berechnen. Die Koeffizienten sind in Tabelle 10.4 aufgelistet.

Tabelle 10.4: Koeffizienten der Polynome zur Berechnung von ¢, ., in der Produktionsphase

Parameter k=1 2 3 4 5

tox [l 665 127,1 187,1 245,8 305,8

doe [0 287 27,9 26,2 27,7 26,5

dy [g"h™  -0,495 -0,482 -0,318 -0,564 -0,325
dy [9I"h?] 6,76:102 6,55-107 2,55-107 7,21-102 6,24-107
dy [9I"h7] -4,37-10* -4,51-10" 9,55:-10° -6,05-10" -6,10-10"

Unter Verwendung der Zelldichte ¢, ., lésst sich die Produktkonzentration ¢,y im Medium,

. F.()—-F,(t) V(1)

Comea(®) = — T2 oy L ) e (10.23)
PiMest V() PiMest v, () XLest

mit

Comest (tok) = Crmok » (10.23a)

durch Simulation dieser Bilanzgleichung berechnen. Die zeitliche Ableitung ergibt sich dann
direkt aus Gl. (10.23).
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Die in der Produktionsphase relevante Methanolzufiitterrate Fp,,

Y t
Fro(t) = ——m;2( ) (10.24)
R2
mit
Mg, := Masse des Methanolreservoirs [l
Pro := Dichte des Methanolreservoirs loI".

wird analog zu F, (GI. (10.16)) aus dem Signal der Methanolreservoirwaage mg, ermittelt.

Die zellspezifische Produktbildungsrate qp,;yes

Geuxest) = Bpi (Tpyxmaxk — Gpuxest(t) (10.25)
mit

prxest (o) = 00 (10.25a)
und mit

Apyy := Eigenwert der Produktbildungsrate in Zyklus k [h'1]
Upixmaxk = Maximale Produktbildungsrate in Zyklus k h,

wird als P-T-Element simuliert und stellt damit eine vereinfachte Beschreibung des Induktions-
vorganges dar.

Die Anpassung des Simulationsverlaufes der Produktkonzentration ¢, in der Medienphase
an die Messwerte der Atline-Analytik erfolgte durch Minimierung des Gutefunktionals J,,,

ny -1

oy = min 2. (Comest(tic) = Compar(tic ))2 (10.26)
Bp1ks Apy/xmaxks Cpimok =0

mit

Nak = Anzahl der Atline-Messwerte des Zielproduktes in Zyklus k [

te = Atline-Messzeitpunkte innerhalb von Zyklus k [h],

flr jeden der flinf betrachteten Kultivierungszyklen durch Identifikation der Parameter qp, xaxc
apq, sowie der Startwerte Cp,,- Diese sind in Tabelle 10.5 dargestellt.

Tabelle 10.5: Identifizierte Parameter zur Simulation des Zielproduktes

Parameter k=1 2 3 4 5

tox [h] 66,5 1271 187,1 245,8 305,8
Apy [h™] 1,34 1,05 0,599 0,810 0,855
Gprxmaxe  [N7] 0,405 0,309 0,186 0,270 0,351
Comox  [MgI™] 12,6 9,66 5,43 8,51 17,0

Die Produktkonzentration cp,y. in den Glycerol-Batch- und Fed-Batchphasen wurde als kon-
stant angenommen und dem identifizierten Startwert c,,,,, in der Produktionsphase des ent-
sprechenden Zyklus gleichgesetzt.

Geeignete Kalibrierdaten fir die zellspezifische AOX-Aktivitat gp, ., Wurden durch lineare
Interpolation aus den Offline-Messdaten (siehe Abschnitt 3.4.6) erzeugt.
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10.2.4  Auswahl und Bereitstellung der Pradiktorvariablen

Als mégliche Pradiktorvariablen wurden zunachst alle online am Prozess erhobenen Gréen
in Betracht gezogen. Hierbei kann es sich beispielsweise um Inline-Messungen von Tempe-
ratur und pH-Wert als auch um Waagensignale der Substrat- und Titrationsvorlagen handeln.
Auch online leicht berechenbare GréRen wie die Ergebnisse der Abgasbilanzierung (z.B. O,-
Eintragsrate Q,,) wurden als X-Variablen bericksichtigt.

GroRen, die wahrend des gesamten Prozesses unverandert bleiben, enthalten keine relevan-
ten Informationen zur Vorhersage der ZielgroRen und fallen deshalb als X-Variablen aus. Aller-
dings kommen diese Grofien ggf. bei der Berechnung anderer Pradiktoren zum Einsatz. Bei-
spiele sind die Begasungsrate F , und der Gelostsauerstoffpegel pO,.

Weiterhin blieben das Flissigvolumen V| und der Respirationskoeffizient RQ unberticksichtigt,
da diese eine Verschlechterung der Vorhersagekraft der multivariaten Modelle verursachten.
Dies konnte in Voruntersuchungen festgestellt werden.

Insgesamt kamen 15 Online-ProzessgroRen fir die Vorhersage der vorgestellten Zielvariablen
zum Einsatz. Diese sind in Tabelle 10.6 aufgefiihrt.

Tabelle 10.6: Auflistung der eingesetzten Online-Pradiktorvariablen

j  Variable Beschreibung Erzeugung der Werte
1 E_ [AU]  Tribung
2 Cem [g"  Methanolkonzentration
. Inline-Messungen
3 9 [°C]  Temperatur
4 pH [-] pH-Wert
5 Amg, [a] Masse Glycerolreservoir
. Online-Wéagung (Zurticksetzung vor
6  Amg, [91 Masse Methanolreservoir
jedem Zyklus)
7  Amg, [l  Masse Basereservoir
8 Frn [ Glycerolzufiitterrate

Sollwerte von kaskadierten Pumpen

9 F Ih"]  Methanolzufiitterrat
raw [N efhanoizulutierrate bzw. Folgeregler

10 Ng, [min™  Rihrerdrehzahl

11 Xog [1  Sauerstoffgehalt
Online-Abgasanalysen
12 Xeg [[1  Kohlenstoffdioxidgehalt
13 Qu, I[g"h"] O, Eintragsrate Abgasbilanzierungen mit
14 Qg [g'h"]  CO,-Austragsrate Xosin' Xcain' Xoer Xea Fagr Vi
15 ka [l O,-Transferkoeffizient Berechnung aus Qg,, 9, P, PO,, Xog

10.2.5 Erzeugung benétigter Datensatze und Datenvorverarbeitung

Durch die Generierung simulierter Y-Variablen und die Herkunft der X-Variablen aus Inline-
und Online-Messungen oder Berechnungen stehen mehrere Tausend Beobachtungen fiir die
flinf Zyklen des untersuchten Prozesses zur Verfligung.
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Da der Rechenaufwand bei der SVR mit der Anzahl n an Beobachtungen stark ansteigt und
dieses Regressionsverfahren mit der PLSR verglichen werden sollte, wurde die Beobachtun-
gen auf eine Anzahl reduziert, die fiir eine SVR-Modellerstellung noch praktisch sinnvoll ist.

Durch lineare Interpolation wurden aus den Vektoren der estimierten ZielgroRen sowie der
gemessenen X-Variablen insgesamt 380 Zeitpunkte als Beobachtungen fir die Modellbildung
ausgewahlt. Diese haben innerhalb der Zyklen jeweils einen Abstand von ca. 45 Minuten.

Die Prozessgréfien des X-Datenraumes wurden im Folgenden mit Hilfe einer PCA auf Ausrei-
Rer untersucht und zwei Datenpunkte von der Modellbildung ausgeschlossen. Zur Durchfiih-
rung einer externen Validierung wurden die Zyklen 3, 4 und 5 als Kalibrierdatensatz gewahit.
Die Zyklen 1 und 2 dienen folglich als Validierdatensatz.

Fir beide getesteten Verfahren wurde als Datenvorverarbeitungmethode des X- und des Y-
Datenraums die Autoskalierung gewabhlt. Im Falle der PLSR wurden die X-Variablen zusatzlich
mittenzentriert.

10.3 Ergebnisdarstellung

10.3.1 Pradiktion von ZustandsgroBen

Bild 10.3 zeigt die Vorhersagen der Zelldichte c,, sowie der Glycerolkonzentration cg,,, mit der
PLSR im Rahmen einer Kreuzvalidierung. In der Tendenz kdnnen die GréRen vorhergesagt
werden, jedoch werden zu Beginn der Zyklen, insbesondere in 3 und 4, die Zelldichte zu
niedrig und die Glycerolkonzentration zu hoch vorhergesagt.

Ox PLSR cross validation Csam
[91"] [g1"]
65 cycle 3 (58.8 h) cycle 4 (50.8 h) cycle 5 (58.6 h) 5
S1B S1 S2 FB ]
Csimpls Cxtest FB %
5047 by ;’aﬂ. I/Cs1Mes| L4
v CS1Mest
354 i -3
39
201 Cxipis Cs1mpls Cxtols -2
Cs1Mhplc
Csov  [OF i Ot Csom
5' . ) . ][\ 1
- L m—
-10

0
T T T T T T T T
c 163 183 203 223 243 263 282 302 322 342

S1M
9] t[h]

Bild 10.3:  PLSR-Vorhersagen ¢y, und Cg; s fur den Kalibrierdatensatz

Die PLSR war somit nicht dazu in der Lage, die exponentiellen Verlaufe dieser Zustandsgro-
Ren mit den gewahlten X-Variablen zufriedenstellend abzubilden, da die Vorhersagen eher
lineare Verldufe zeigen. Zusétzlich wurden Konzentrationen Cq;yes von 0 gl in den Glycerol-
und den Methanol-Fed-Batchphasen nur schlecht abgeschatzt.
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Ein besseres Ergebnis lasst sich mit der SVR erzielen. Dies ist in Bild 10.4 dargestellt. Die
exponentiellen Verlaufe beider Zielgréen kdnnen durch die nichtlineare Methode in der Regel
sehr gut wiedergegeben werden.

Cx. SVR cross validation Csam
A 1
[g|5 ] cycle 3 (58.8 h) cycle 4 (50.8 h) cycle 5 (58.6 h) [g; ]
S1B S1  S2FB
FB
50- i L4
354 3
CxLsvr
201 F2
5 Csam L4
_1 0 T T T T T T T T 0
c 163 183 203 223 243 263 282 302 322 342
S1M
t[h]

[
Bild 10.4: SVR-Vorhersagen ¢, und Cg,s,, flr den Kalibrierdatensatz

Bild 10.5 zeigt im Vergleich dazu die Vorhersagen mit der SVR fiir den Validierdatensatz. Hier
weist Cg,yq,r ZU Beginn beider Zyklen Schwéchen auf. Weiterhin wird der Zelldichtezuwachs
im Glycerol-Fed-Batch des Zyklus 1 als zu stark vorhergesagt.

Ox SVR external validation Csam
-1 -1
9] cycle 1 (52.0 h) cycle 2 (55.1 h) 9]
65 5
S1B S1 S2FB ;
%CSﬂ\Aest FB
50* -4
351 CxLcdw 3
Cxusvr
CxLest
204 F2
Csom
s}/ 1 | S—
-[ Cs1Mhplc
'1 0 T T T T T T T 0
42 56 70 84 103 17 131 145 159
Csim h]
lor"]
Bild 10.5:  SVR-Vorhersagen ¢y, und cg,,,, flr den Validierdatensatz
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Die Unterschiede beider Regressionsmethoden werden bei Betrachtung der folgenden Abbil-
dungen anhand der Pradiktion von cg,,, deutlich. Fir die PLSR (Bild 10.6a) zeigt sich ein klar
nichtlinearer Zusammenhang zwischen Vorhersage Cgyy,s Und den Referenzwerten Cg;yeq-
Dieser ist im Fall der SVR (Bild 10.6b) wesentlich weniger stark ausgepragt. Daher ist die SVR
in diesem Fall besser fiir die Anwendung auf Online-Prozessdaten geeignet als die PLSR.

b

Cs1mpls [gM external validation ~ Csimsvr [o" external validation
65 65
Csps = 0474 gl +1.03 - Cgyyen E]E Comer =0.677 g +1.01-Coppeqe
504 50 RE =0995
354 354
20 20
54 54
diagonal diagonal
linear fit linear fit
'1 0 T T T '1 0 T T T T
-10 20 35 50 65 -10 5 20 35 50 65
Csimtest [917] Csivest [917]
Bild 10.6: Vorhergsagen von cg,, aufgetragen gegen ihre Referenzwerte, a) PLSR, b) SVR

Auch fiir die Vorhersage der Zielproduktkonzentration c,,, und des zellinternen AOX-Gehaltes
Opox Werden unterschiedliche Resultate erzielt. Bild 10.7 zeigt die besseren Vorhersagen mit
der SVR, wahrend auf eine grafische Darstellung der Ergebnisse mit der PLSR verzichtet wird.

Cpim SVR cross validation Ip2ix
-1 -1
[mgl] cycle 3 (58.8 h) cycle 4 (50.8 h) cycle 5 (58.6 h) [Vg']
560 -—110
<><> S1B St S2 FB
A FB
440+ ¢ 480
320_‘;../ Ip2/Xoff L 50
200 20
CPstvr
F-10
CPiMest
T T -40
163 183 203 223 243 263 282 302 322 342
t[h]

Bild 10.7:  SVR-Vorhersagen Cp,ye, UNd gpy e, flr den Kalibrierdatensatz
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Eine gute Pradiktion fiir die Zielproduktkonzentration c,,, wird insbesondere in den Zyklen 3
und 5 erzielt. Niedrige Konzentrationen in den Wachstumsphasen auf Glycerol sowie der
exponentielle Anstieg in den Produktionsphasen kénnen sehr gut wiedergegeben werden.

Der prinzipielle Verlauf des AOX-Gehaltes gp, /., ist auch durch die SVR darstellbar. Schwé-
chen zeigt das Modell allerdings bei der Abbildung der Héhe und der exponentiellen Abnahme
VON gpyxest ZU Beginn der Glycerol-Batchphasen und weist dort auch eher lineare Verlaufe auf.

In Bild 10.8 sind die Vorhersagen von ¢y, und von g, der SVR-Modelle fiir den Validierda-
tensatz gezeigt. Diese weisen sehr ahnliche Verlaufe, wie bei der Kreuzvalidierung auf.

Ceim SVR external validation 9p2/x
[mg] cycle 1 (52.0 h) cycle 2 (55.1 h) [Ug’]
560 T 110
S1B S1FB S2FB ",Q
4404 L 80
320! As0
200 ) /4 / L 20
801 A;X CpiMat F-10
CPiMest
-40 T T T T T T T -40
42 56 70 84 103 117 131 145 159

t[h]

Bild 10.8: SVR-Vorhersagen Cpye, UNd gp, s, flr den Validierdatensatz

Die folgenden beiden Tabellen enthalten abschlieBend alle KenngréRen der PLSR-Modelle
(Tabelle 10.7) und der SVR-Modelle (Tabelle 10.8) fiir die untersuchten Zustandsgréfien.

Tabelle 10.7: Kenngréften von PLSR-Modellen der ZustandsgréRen, n.g = 231, n,q = 147

CxL Cs1m Cpim Ipaix
r 8] 5 6 6 6
R} [ 0,988 0,978 0,983 0,990
R2 [ 0,987 0,978 0,971 0,919
R2, [ 0,986 0,973 0,968 0,913
RMSEcv  [div.] 1,84 gl 2,95gl" 18,3 mgl” 9,61 Ug™”
RMSEcv,,, [%] 2,87 5,47 4,02 8,65
R3 [ 0,985 0,977 0,972 0,918
RMSEP  [div.] 2,30 gI"" 2,99 g 18,1 mg!” 9,52 Ug™
RMSEP,, [%] 3,58 5,54 3,99 8,56

1P 216.73.216:36, am 21.01.2026, 03:37:49. ©
m

mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186293176

Anwendung der MVDA auf nichtspektroskopische Daten 143

Tabelle 10.8: Kenngréfen von SVR-Modellen der Zustandsgréfien, nqg = 231, n,g = 147

CxL Cs1m Cpim Ip2/x
Ny [] 104 86 112 111
c [ 4,22 0,962 4,64 3,48
Y [ 9,08-10° 1,14-10" 4,65:10° 1,61:102
€ [ 3,70-10° 1,17-102 7,18-107 1,44-10"
R 8] 0,990 0,993 0,981 0,949
RMSEcv  [div.] 1,59 gl 1,50 gI! 14,4 mgl” 7,52 Ug™
RMSEcv,, [%] 2,49 2,86 3,17 6,77
R 8] 0,981 0,995 0,984 0,964
RMSEP  [div] 2,01 gl 1,60 gl 14,6 mgl” 7,71 Ug™
RMSEP,, [%] 3,14 2,96 3,21 6,94

Diese Tabellen zeigen noch einmal eindruckvoll, dass fiir alle vier Variablen bessere Ergeb-
nisse mit der nichtlinearen Methode SVR erzielt werden konnten.
10.3.2 Pradiktion zellspezifischer Reaktionsraten

Die Vorhersagen mittels SVR fiir die Zellteilungsrate q,,, und die zellspezifische Sauerstoff-
aufnahmerate q, sind in Bild 10.9 fiir den Kalibrierdatensatz gezeigt.

Axx SVR cross validation
-1
(] cycle 3 (58.8 h) cycle 4 (50.8 h) cycle 5 (58.6 h)
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'0036 T T T T T T T T
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O/X
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(]
Bild 10.9:  SVR-Vorhersagen qys,, Und Qg s, fir den Kalibrierdatensatz

Es fallt auf, dass die Vorhersage qy.,, Wahrend der Glycerol-Batchphasen im Vergleich zu
den anderen Prozessabschnitten stark schwanken, im Mittel jedoch die Héhe ihrer Referenz-
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werte erreichen. Eine Ursache hierfiir konnte nicht identifiziert werden. Méglich ist jedoch, dass
das reale Verhalten eher diesem Verlauf entspricht, als dem der idealisierten Trainingsdaten.

Bei der externen Validierung, gezeigt in Bild 10.10, sind diese Schwankungen etwas starker
ausgepragt. Bei der Verwendung eines unabhangigen Testsets sind jedoch héhere Fehler zu
erwarten. Insgesamt wird die Zellteilungsrate zufriedenstellend abgebildet.

Axix SVR external validation
-1
(1 cycle 1(52.0 h) cycle 2 (55.1 h)
0.315
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0.175+
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42 56 70 84 103 117 131 145 159
Yoix tth
h" (h]

Bild 10.10: SVR-Vorhersagen qyy,,, und g, flr den Validierdatensatz

Die Sauerstoffaufnahmerate g, kann hervorragend wiedergegeben werden. Abgesehen von
Zyklus 1 des Validierdatensatzes werden sehr gute Ubereinstimmungen mit den Referenz-
daten erreicht.

Bild 10.11 und Bild 10.12 enthalten die entsprechenden SVR-Vorhersagen der zellspezifi-
schen Substrataufnahmeraten qg;, und der Zielproduktbildungsrate qp .

Die Pradiktion der Glycerolaufnahmerate qq,, zeigt in den Batchphasen ein &hnlich schwan-
kendes Verhalten wie die Zellteilungsrate qy,,. Der Verlauf in den Glycerol- und Methanol-
Fed-Batchphasen wird, insbesondere fiir die Kreuzvalidierung (Bild 10.11), dagegen sehr gut
getroffen. In diesen Prozessabschnitten zeigen sich die hochsten Abweichungen im Zyklus 1
der externen Validierung (Bild 10.12).

Die Vorhersage der Zielproduktbildungsrate q., zeigt dagegen in Zyklus 2 des Validierdaten-
satzes den grofRten Fehler. Der Grund fir dieses Verhalten kdnnte in der individuellen Erzeu-
gung der Referenzdaten fiir jeden Zyklus liegen. Der prinzipielle Verlauf stimmt jedoch auch
hier mit dem der estimierten Referenzwerte qg, 4., Uberein. Insgesamt wird die Pradiktion von
Opyx als zufriedenstellend erachtet.
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Gsirx SVR cross validation
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Bild 10.11: SVR-Vorhersagen qgx,, Und 0pyxs, flr den Kalibrierdatensatz
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Bild 10.12: SVR-Vorhersagen qg;ys,, UNd 0pyxs, flr den Validierdatensatz
Das beste Ergebnis konnte fur die zellspezifische Methanolaufnahmerate qg,, erzielt werden.
Sowohl fur die interne als auch fir die externe Validierung wurden relative Vorhersagefehler

von unter 3 % ermittelt. AuRerdem unterscheidet sich das Ergebnis fiir die beiden Zyklen des
Validierdatensatzes nicht.
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In den folgenden beiden Tabellen sind die KenngréfRen der PLSR-Modelle (Tabelle 10.9) und
der vorgestellten SVR-Modelle (Tabelle 10.10) fur die zellspezifischen Reaktionsraten q
abschlieRend aufgefihrt.

Auch bei der Vorhersage von g, erzielt die SVR die besseren Ergebnisse als die PLSR.

Tabelle 10.9: KenngréRen von PLSR-Modellen fiir die zellspezifischen Reaktionsraten gy
Ngs = 231, nyg = 147

Axx doix sx Qsax Apx
r 8] 4 5 4 4 5
R% [ 0,962 0,981 0,959 0,961 0,968
R} ] 0,925 0,904 0,935 0,955 0,935
R, [ 0,915 0,890 0,931 0,953 0,930
RMSEcv  [h] 1,91-107 9,61-10% 2,98-10? 9,26-10° 3,09-10°
RMSEcv,, [%] 8,10 6,91 8,62 8,05 9,80
R2 [ 0,936 0,809 0,961 0,959 0,954
RMSEP  [h] 2,17-10? 1,41-10° 3,14-10? 9,25-10° 3,79-10°
RMSEP,, [%] 9,20 10,1 9,03 8,04 12,0

Tabelle 10.10: KenngréRen von SVR-Modellen fir die zellspezifischen Reaktionsraten g,
Ngs = 231, nyg = 147

Aix Yoix As1/x As2/x Ap1ix
Nsy [ 59 86 104 31 74
o] H 87,5 311 19,6 28,7 652
Y [ 5,11-107 3,76:107 3,48:10" 4,65-102 1,75-102
€ [] 7,69:107 3,45-107 1,55-10 7,69:107 3,22:107
R [l 0,979 0,973 0,962 0,994 0,964
RMSEcv  [h] 9,70-10 4,77-10° 2,20-10% 3,18-10° 2,26-10%
RMSEcv,,, [%] 4,11 3,43 6,33 2,76 7,16
R? [ 0,973 0,935 0,966 0,996 0,962
RMSEP  [h] 1,32:10% 9,14-10° 2,57:10% 3,15-10° 3,22:1072
RMSEP,,, [%] 5,58 6,57 7,38 2,74 10,2
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1. Zusammenfassung

Die Process Analytical Technology (PAT) Initiative der U.S. Food and Drug Administration
(FDA) empfiehlt den Einsatz fortschrittlicher Analysensysteme in pharmazeutischen Produk-
tionsprozessen. Durch den Nachweis einer gesteigerten Prozesskenntnis und einer wissens-
basierten Prozessfiihrung sollen Zulassungsverfahren beschleunigt und durch den Einsatz
technischer Innovationen die Produktqualitat sichergestellt werden.

Als erste Aufgabe dieser Arbeit wurde die Entwicklung eines Qualitatsbewertungssystems fiir
Hefeextrakte, basierend auf Messungen mit NIR-Spektroskopie und multivariater Klassifizie-
rung vorgenommen. Eine solche Prifung von Rohmaterialien stellt eine typische PAT-Anwen-
dung dar.

Die Methode Soft Independent Modelling of Class Analogy (SIMCA) brachte ein sehr gutes
Klassifikationsmodell hervor, dessen Fehler E,, fiir alle drei untersuchten Hefeextraktsorten
unter 1,5 % liegt. Der Schwachpunkt hierbei war das nur in begrenztem Umfang vorhandene
Probenmaterial.

Der Uberwiegende Teil dieser Arbeit widmet sich der Beobachtung von pharmazeutischen
Kultivierungsprozessen der methylotrophen Hefe Pichia pastoris zur Herstellung des poten-
tiellen Malariavakzins D1M1H.

Dabei wurden nicht direkt bestimmbare Prozessgréfien Uber spektroskopische Messungen
und multivariate Kalibrierverfahren online quantifiziert. Diese Erweiterung des Bioprozess-
monitorings erhéht das Prozessversténdnis und stellt damit einen wichtigen Schritt bei der
Etablierung von PAT dar.

In einem ersten Abschnitt dieses Arbeitspaketes wurden im Rahmen einer Machbarkeitsstudie
die NIR-, die Raman- und die 2D-Fluoreszenzspektroskopie hinsichtlich lhrer Eignung bei der
Vorhersage von flinf BioprozessgréRen mit der multivariaten Regressionsmethode Partial
Least Squares (PLSR) in einem zyklischen Produktionsprozess untersucht und verglichen.

Die spektralen Messungen fanden hier zunachst offline, also nach Abschluss des Prozesses
statt. Aufgrund des Verzichts auf Inline-Messung wurden dadurch einige Stérquellen, wie die
Begasung in Verbindung mit einer starken Durchmischung des Bioreaktors, ausgeschlossen.
Weiterhin erlaubte die Offline-Methode eine Untersuchung des Einflusses der Zellen auf die
PLSR-Modelle.

Diese Arbeiten brachten optimale Einstellungen fir Kalibriermodelle, beispielsweise hinsicht-
lich der Vorverarbeitung der Spektren, des gewahlten Spektralbereiches sowie der Anzahl zu
berechnender PLS-Komponenten, hervor.

Gute Ergebnisse mit relativen Vorhersagefehlern RMSE ., von < 5 % konnten fiir die Zelldichte
¢y, Mit allen getesteten Spektroskopiearten erreicht werden. Die niedrigsten Fehler fir Kon-
zentrationen von Glycerol (cg, ) und Ammonium (C,,. ) in der Flissigphase L wurden dagegen
mit Raman-Spektroskopie erzielt. Dabei stellt die Vorhersage von cg,, mit einem Fehler von
3,3 % ein besonders gutes Ergebnis dar.

Die 2D-Fluoreszenzspektroskopie ergab die besten Resultate bei der Vorhersage der Gesamt-
proteinkonzentration ¢, in der Medienphase mit einem Fehler von 6,7 %. Auch die Pradik-
tion der zellspezifischen Alkoholoxidaseaktivitat gp,,, war mit diesem Messverfahren maéglich.
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In einer weiteren Phase dieser Arbeit wurden die Erkenntnisse der Machbarkeitsstudie auf den
Online-Betrieb am Bioreaktor mit spektroskopischer Inline-Messung in einem zweistufigen
Produktionsprozess ubertragen.

Die Modellbildung fiir c,, und cg, fokussierte sich auf die Raman-Spektroskopie. Neben der
linearen Regressionsmethode PLSR wurde dabei auch das nichtlineare Verfahren Support
Vector Regression (SVR) erprobt. Die SVR erlaubte eine Verbesserung der Vorhersage im
Vergleich mit der PLSR und erreichte flr beide Variablen sehr gute Ergebnisse mit Fehlern
von etwa 3 %.

Wahrend eine Ubertragung der Vorhersage obiger Variablen auf den Online-Betrieb erfolg-
reich war, schlug die Umsetzung der Quantifizierung der Gesamtproteinkonzentration cp,.,
und von g, leider fehl. Eine wahrscheinliche Ursache liegt in dem hohen Einfluss der Zell-
dichte auf die spektralen Messungen und damit auf die Leistung der Kalibriermodelle.

Die prinzipielle Eignung gebildeter Online-PLSR-Modelle fiir eine prozesstechnische Anwen-
dung unter PAT-Gesichtspunkten konnte durch die Regelung der Glycerolkonzentration cg,,,
basierend auf Raman-Messungen, aufgezeigt werden.

Hierzu erfolgten zunéchst eine theoretische Beschreibung des Regelungsproblems und die
Entwicklung einer Strategie mit einer StorgroRenaufschaltung und einer adaptiven Nachfiih-
rung der Reglerparameter zur Kompensation der nichtlinearen Streckendynamik.

Dies wurde mit Hilfe einer umfangreichen Prozess-EDV umgesetzt, in der die PAT-Software
SIMATIC SIPAT fur die Steuerung und Ausfiihrung von Berechnungen sowohl der spektralen
RegelgroRe cg,, ,,m Mit der MVDA-Software SIMCA-Q als auch fiir die adaptive Steuerung der
Zufiittertrajektorie Fr,, und des Reglerparameters T, mit MATLAB® verantwortlich ist.

Sowohl im aperiodischen Grenzfall ohne Schwingungen als auch mit einer gewahlten Perio-
dendauer T, im Schwingfall war eine Regelung von cg,, flir einen Zeitraum von etwa drei Stun-
den erfolgreich. Im weiteren Verlauf beider Experimente versagte die Glycerolmessung mit
Raman-Spektroskopie, was auf eine zu starke Beeinflussung des Kalibriermodells durch die
exponentiell ansteigende Zelldichte zurlickzufiihren ist.

Zum Abschluss dieser Arbeit wurde die Anwendung der MVDA auf nichtspektroskopische Pro-
zessdaten untersucht. Ziel dabei war ebenfalls die Vorhersage nicht direkt messbarer Variab-
len zur Erweiterung des Prozessmonitorings.

Hierbei kamen 15 klassische Inline- und Online-MessgroRen, wie beispielsweise Waagensig-
nale oder das Ergebnis einer Abgasbilanzierung, anstelle der Spektren zum Einsatz. Multiva-
riate Kalibriermodelle fir neun verschiedene ZielgroRen wurden daraus mit den Verfahren
PLSR und SVR erstellt.

Insbesondere mit der nichtlinearen SVR konnten sehr gute Ergebnisse erzielt werden. So
lagen relative Vorhersagefehler RMSE ., fiir die Zelldichte c,, sowie die Konzentrationen von
Glycerol cg,,, und des Zielproduktes cp,,, in der Medienphase bei etwa 3 %.

Auch die Vorhersage des Verlaufes zellspezifischer Reaktionsraten war auf diesem Wege
moglich. Die geringste Abweichung zeigte die Methanolaufnahmerate qg,,, mit 2,7 %. Die Bil-
dungsrate g, des Zielproduktes konnte mit einem Fehler von 10,2 % immer noch zufrieden-
stellend wiedergegeben werden.
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12. Anhang

121 Kulturmedien

Als Vorkultur-, Bioreaktor- und Refreshmedium kamen die drei in Tabelle 12.1 gezeigten Vari-
anten des Grundsalzmediums FM22 zum Einsatz. Das verwendete Medium sowie die zu Pro-
zessbeginn eingesetzte Glycerolkonzentration cg,,, Sind vom Prozessschritt bzw. der
Reaktoranlage abhangig und kdnnen Tabelle 12.2 entnommen werden.

Die Zugabe der Biotin- und PTM4-Stammldsungen erfolgt nach der Sterilisation des Mediums

bei 121 °C fir mindestens 20 min.

Tabelle 12.1: Varianten des Kulturmediums FM22, modifiziert nach [STRATTON et al., 1998]
(Grundsalzmedium ohne Kohlenstoffquelle)

Konzentration [gI™"]

Komponente

Variante 1 Variante 2 Variante 3
KH,PO, 25,7 7,00 12,9
(NH,),S0O, 5,00 5,00 2,50
K,SO, 8,60 2,00 4,30
CasSO, - 2 H,0 1,40 0,80 0,70
MgSO, - 7 H,0 16,4 8,00 8,20
Na,-citrate - 2 H,0 5,90 5,00 2,90
Biotin-Stammlsg. 8,0 miI" 8,0 mil” 8,0 mil"
PTM4-Stammisg. 4,0 mir 4,0 mir' 4,0 mir!

Tabelle 12.2: Medienvarianten und Glycerolkonzentrationen cgyo

Prozessschritt Meqien- Konzen_}ration
variante [gI"]
Vorkultur 1 30,0
Batch C10 2 54,0
Produktion C10 2 0
Startup ED10 3 47.6
Zyklus ED10 3 43,6
Zyklus C30 3 0

Die Rezepturen der Stammldsungen sind in Tabelle 12.3 gegeben. Nach dem Ansatz in der
angegebenen Reihenfolge erfolgt eine Sterilfiltration mit 0,22 um Porendurchmesser und eine
Lagerung der Stammldsungen bei 4 °C.

Tabelle 12.4 enthalt eine Auflistung eingesetzter Zusatzstoffe und Reservoir-Konzentrationen.
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Tabelle 12.3: Spurenelement- und Vitaminstammlésungen
PTM4 Biotin
Komponente Konzentration Komponente Konzentration

Cus0, - 5 H,0 2,0 gl CyoH1eN0;58 0,20 gl

Nal 8,0-102 gl

MnSO, - H,0 3,0 gl

Na,MoO, - 2 H,0 0,20 gl

H,BO, 2,0:102 gl

CaSO, 0,50 g’

CoCl, - 6 H,0 0,50 g

ZnS0, - 7 H,0 7,0 g’

FeSO, - 7 H,0 22 gl

H,S0O, (96 %) 1,0 mil”

Tabelle 12.4: Eingesetzte Zusatzstoffe und Reservoirkonzentrationen

Reservoir Symbol Substanz Konzentration
R1 (Glycerol) Co1ri C;HgO4 400 - 600 gl
R2 (Methanol) Csora2 CH,OH 790 gl
T1 (S&ure) - H;PO, 2,0M
T2 (Base) - NH,OH 12,5 %
AF (Antischaum) - Struktol® J673 100 %

12.2

Kultivierungsbedingungen

Gewahlte Kultivierungsbedingungen sind Tabelle 12.5 und Tabelle 12.6 zu entnehmen.

Tabelle 12.5: Typische Sollwerte geregelter Prozessgrofen im BIOSTAT® C10

Prozesssollwerte Symbol Batch Fed-Batch  Induktion
Methanolkonzentration Csomw g 0 0 1,0
Begasungsrate Fiow [minT] 12 12 12
Uberdruck im Kopfraum Pow [mbar] 0 0 0
pH-Wert pH,, [ 5,0 5,0 5,6
relativer Geldstsauerstoffgehalt  pO,,, [%] 25 25 25
Temperatur der Flissigphase 9 [°C] 30 30 22
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Tabelle 12.6: Sollwerte in der zweistufigen Anlage (abweichend zum BIOSTAT® C10)

Prozesssollwerte Symbol Batch Induktion Induktion
Y (ED10) (ED10) (C30)
Begasungsrate Foow [IminT] 10 10 25
Uberdruck im Kopfraum Pow [mbar] 500 500 500
12.3 Reaktionskinetische Parameter

Reaktionskinetische Parameter des in dieser Arbeit verwendeten Pichia pastoris Stammes zur
Herstellung von D1M1H sind Tabelle 12.7 zu entnehmen.

Tabelle 12.7: Zeitinvariante Reaktionsparameter fiir zellspezifische Reaktionsraten und Aus-
beutekoeffizienten des D1M1H-Produktionsstammes nach [MARTENS, 2014]

Substrat
Parameter
Glycerol (i=1)  Methanol (i = 2)
Gxxmax [N7] 0,240 4,13-102
G [07] 1,35:107 -
Asixmax [N7] 0,286 0,102
Asirxm [ 1,52:102 -
Ysimax [-] 0,840 0,406
Yxssigr [-] 0,887 _
Gommax  [N7] 0,112 8,64-102
Yiorxm ] 9,60-103 -
Yixjomax [l 2,14 0,478
Yixiogr [ 2,47 -

12.4 Offline-Messungen

Bestimmung des Gesamtproteingehalts (Bradford-Test)
Zur Bestimmung der Gesamtproteinkonzentration ¢ Wurde ein Bradford-Test in Mikroti-
terplatten durchgefiihrt. Losungen:
A Standards: Quick Start™ Bovine y-Globulin Standard Set (Bio-Rad)
B Reaktionslésung:  Quick Start™ Bradford Dye Reagent (Bio-Rad)
Unter Verwendung von A wurde im Bereich von 12,5 bis 200 pgml BGG in PBS eine Kali-

briergerade erstellt. Es wurden 20 pl Leerprobe (PBS), Standard oder Probe (ggf. verdiinnt in
PBS) mit 300 ul B gemischt, wobei jeweils eine Dreifachbestimmung durchgefihrt wurde.
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Zellaufschluss

Zur Bestimmung des intrazellulédren Gehaltes an Alkoholoxidase g, wurde zuvor ein mecha-
nischer Zellaufschluss unter Verwendung von Glas-Beads® (Carl Roth) mit 0,5 mm Durch-
messer durchgefiihrt. Lésungen:

A Aufschlusspuffer: 1 mM EDTA in PBS

B Zellsuspension: 100 glI"' Zellen in A

C Aufschlussansatz: 1 g Glasbeads, 100 pl B in 900 ul A

D Proteaseinhibitor: 1 mM PMSF in C, kurz vor Gebrauch ansetzen
Nach Ansetzen der jeweiligen Lésung A wurden die Zellpellets darin fir 10 min bei 2.000 rpm

auf einem Vibrax resuspendiert (Losung B). Aus der Zellsuspension erfolgte eine BTM-Be-
stimmung sowie die Herstellung von Lésung C in Mikroreaktionsgefalien.

Unter Verwendung von Proteaseinhibitoren (D) wurden die Zellen fiir 20 min bei 2.000 rpm auf
einem Vibrax aufgeschlossen. Nach Zentrifugation fiir 30 min bei 14.000 min-'und 4 °C konnte
der Uberstand fiir die jeweilige Analyse verwendet oder bei -20 °C gelagert werden.

AOX-Bestimmung

Nach einem mechanischen Zellaufschluss erfolgt die Bestimmung der Aktivitdt von Alkohol-
oxidase in einem enzymatischen Assay. Losungen:

A Kaliumphosphatpuffer: 100 mM KP;

B Wasserstoffperoxid: 0,003 % H,0,, kurz vor Gebrauch ansetzen
C Peroxidase: 2.500 Uml™, aliquotiert bei -20 °C lagern
D Reaktionslésung: 2,2mMABTS, 5% B, 0,05% CinA

kurz vor Gebrauch ansetzen
E Substratlésung: 1 % Methanol in A
Es wurden jeweils 50 pl Probe (in geeigneter Verdiinnung in A) in einer Mikrotiterplatte mit
200 ul D gemischt und 0,5 h bei 30 °C inkubiert. Die Reaktion wurde durch Zufligen von 50 pl

E gestartet und die Absorption bei 405 nm in einem Mikroplattenphotometer (Sunrise, Tecan)
Uber 4,5 min alle 30 s gemessen.
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