
Gütekriterien und Handlungsempfehlungen für die
Entwicklung von Forschungssoftware in der
Kommunikations- und Medienwissenschaft

Mario Haim*

Die Entwicklung von Forschungssoftware ist für die empirische Kommunikations- und
Medienwissenschaft (KMW) aufgrund sozialer, gesetzlicher, normativer und technolo-
gischer Veränderungen unabdingbar. Forschungssoftware umfasst dabei Skripte und
Programme, die für den Zweck der Forschung und innerhalb des Fachs entwickelt wer-
den, deren Entwicklung in der KMW jedoch, im Gegensatz zu einigen anderen Diszi-
plinen, häufig innerhalb einzelner Forschungsprojekte und nicht selten durch (autodi-
daktisch) programmierende Forschende erfolgt – ein Umstand, der zwar Innovation för-
dert, gleichzeitig aber einer Institutionalisierung von Forschungssoftware entgegensteht.
Dieser Beitrag leitet daher aus in dieser Hinsicht fortschrittlicheren Disziplinen neun
Gütekriterien für Forschungssoftware in der KMW ab: Forschungssoftware sollte dem-
nach zugänglich, anschlussfähig, verständlich, nachvollziehbar, autonom, strukturiert,
verifiziert, umsichtig und nutzbar sein. Darauf aufbauend schlägt der Beitrag vier
Handlungsempfehlungen vor, um diese Güte auch nachhaltig zu institutionalisieren:
frühzeitige und gestärkte Methodenausbildung, angemessene Möglichkeiten der Sicht-
barkeit und Anerkennung, mehr und passendere Förderformate sowie institutionalisierte
Anreize, die eine professionelle Auseinandersetzung mit Forschungssoftware auch in
Karriereoptionen übersetzen.

Schlüsselwörter: Methoden, Qualität, Nachhaltigkeit, Computational Communication
Science, Computational Social Science

Quality Criteria and Recommendations for Developing Research Software
in Communication Science

The development of research software in communication science has become inevitable. Constant
changes of social, legal, normative, and technological predispositions render today’s media and com-
munication a moving research target, requiring perfectly suited methodological approaches and re-
spective research software. Research software are thereby understood as scripts and applications de-
veloped within the field and as means for research. In communication science, research software has
previously been developed within individual projects and oftentimes by individual (self-taught) de-
veloping researchers. While such individuality is certainly beneficial to innovation, it also contradicts
the sustainability and thus institutionalization of research software. Building on findings and expe-
riences from other disciplines, this article lists nine quality criteria to foster a more sustainable re-
search-software landscape within communication science. That is, research software should be ac-
cessible, connectable, comprehensible, traceable, autonomous, structured, verified, cautious, and us-
able. In addition, this article compiles four recommendations to sustainably institutionalize high-

* Jun.-Prof. Dr. Mario Haim, Universität Leipzig, Institut für Kommunikations- und Medien-
wissenschaft, Nikolaistr. 27-29, Leipzig, Deutschland, mario.haim@uni-leipzig.de.
Der Autor bedankt sich bei den drei anonymen Gutachtenden sowie den Mitgliedern der DG-
PuK-Arbeitsgruppe Forschungssoftware für Anregungen und Feedback, insbesondere bei Ales-
sandro Belli, Annett Heft, Andreas Hepp, Florian Hohmann, Jakob Jünger, Erik Koenen und
Julian Unkel.

DOI: 10.5771/1615-634X-2021-1-65 65

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


quality research software. That is, early and strengthened methodological training throughout cur-
ricula, various opportunities for visibility and recognition of research software, more and more ap-
propriate funding formats to develop and maintain high-quality research software, and institution-
alized incentives that help translate a professional approach to research software into academic career
options.

Keywords: methods, quality, sustainability, computational communication science, computational
social science

Die Erforschung digitaler Medien- und Informationsumgebungen unterliegt einem an-
haltenden Wandel. Mindestens vier Strömungen sind dabei von zentraler Relevanz: (1)
Soziale Veränderungen der Mediennutzung rücken immer neue Datenarten in den Fokus
(z. B. personalisierte Newsfeeds, Popularitätshinweise, Geo-Informationen; vgl. auch
Hepp, 2016); (2) gesetzliche Veränderungen sehen bisweilen Anpassungen der Daten-
handhabung vor (z. B. DSGVO, Scraping; vgl. auch Rat für Sozial- und Wirtschaftsda-
ten, 2019); (3) normative Veränderungen verlangen immer häufiger nach nachhaltigerem
Datenmanagement (z. B. Anforderungen bei Fördermitteln, Open-Science-Bestrebun-
gen; vgl. auch Nosek et al., 2015); (4) technologische Veränderungen sorgen regelmäßig
für immer neue und effizientere Möglichkeiten, etwa für die Datenerhebung (z. B. agen-
tenbasierte Methoden, Tracking; vgl. auch Haim, 2020), erfordern gleichsam aber eine
ständige Anpassung, etwa durch veränderte Datenverfügbarkeiten (z. B. API-Beschrän-
kungen, Zugangsbarrieren; vgl. auch Freelon, 2018).

Diese Entwicklungen machen eine anhaltende Adaption von Forschungsdesigns und
dem Umgang mit Daten nötig. Die Kommunikations- und Medienwissenschaft (KMW)
ist entsprechend laufend gefordert, ihre Forschungssoftware anzupassen. Dieser Bedarf
führt in jüngerer Zeit zu einer stetig wachsenden (van Atteveldt et al., 2019) und bisweilen
fragmentierten (für die Journalismusforschung vgl. z. B. Haim & Zamith, 2019) Land-
schaft an Forschungssoftware, über die im Rahmen der zunehmend populären „Com-
putational Communication Science“ als Teil einer „Computational Social Science“ in-
ternational diskutiert wird (Lazer et al., 2020; van Atteveldt et al., 2019). Forschungs-
software wird je nach Anforderungen und verfügbaren Ressourcen vielerorts projekt-
bezogen entwickelt, dabei aber nur gelegentlich veröffentlicht und anderen zur Verfü-
gung gestellt, kaum durch Dritte begutachtet, und die Wartung oftmals mit Projektab-
schluss, spätestens aber mit dem Ausscheiden zentral Beteiligter, beendet. Gegen diese
projektbezogene Einzelfallentwicklung ist zunächst wenig einzuwenden. Im Gegenteil:
Innovative Vorstöße und explorative Bemühungen sind für den Fortschritt essenziell
(van Atteveldt & Peng, 2018). Gleichzeitig bedarf es perspektivisch einer professionel-
leren Forschungssoftwareentwicklung im Fach (Haim, 2018), um sowohl die Güte neu-
er als auch den methodischen Fortschritt bestehender Forschungssoftware sicherzustel-
len.

Vor diesem Hintergrund wird Forschungssoftware hier sehr breit verstanden, als
innerhalb der Fachgemeinde entwickelte Computerprogramme für jegliche Zwecke ent-
lang des Forschungsprozesses. Forschungssoftware kann also für die Allgemeinheit ent-
wickelte R-Pakete (z. B. Chan et al., 2020; Unkel, 2019) und (Web-)Applikationen (z.
B. Hepp et al., 2018; Jünger & Keyling, 2017; Leiner, 2014) umfassen, ebenso wie spe-
zifische Skripte der Datenauswertung einzelner Projekte, solange sie nur innerhalb des
Fachs und für das Fach entwickelt wurden. Diese Einschränkung „innerhalb des Fachs
und für das Fach“ ist dabei nötig, um Handlungsempfehlungen an verschiedene Ziel-
gruppen innerhalb der KMW geben zu können, die weder die Kompetenz der eigenen
Disziplin noch die der Entwicklungsintention überschreiten. So folgen Gütekriterien

M&K 69. Jahrgang 1/2021

66

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


außerhalb der KMW bisweilen anderen Prämissen, etwa wenn es um die Lizenzierung
genutzter Drittsoftware für die kommerzielle Weiterverwendung, die Effektivität ent-
wickelter Algorithmen für die informatische Medizin oder die Effizienz der entwickelten
Algorithmen für den informatischen Maschinenbau geht.

Dieser Beitrag diskutiert Gütekriterien für Forschungssoftware und konkrete Hand-
lungsempfehlungen für verschiedene Zielgruppen und Stakeholder innerhalb der KMW.
Dafür werden zunächst gängige Praktiken der wissenschaftlichen Softwareentwicklung
anderer Disziplinen betrachtet, um daraus vier Pfeiler mit insgesamt neun Gütekriterien
für das Fach abzuleiten. Anschließend werden diese Gütekriterien in konkrete Hand-
lungsempfehlungen übertragen, wobei insbesondere auf die gängige Methodenausbil-
dung, die Planung, Förderung, Entwicklung und Veröffentlichung von Forschungssoft-
ware sowie die damit einhergehende Anerkennung eingegangen wird.

Gütekriterien

Forschungssoftware ist qua definitionem insbesondere in der Informatik Alltag. Dort
diskutierte Gütekriterien sind primär auf die Validierbarkeit möglichst belastbar und
effizient entwickelten Quellcodes sowie auf die Nachhaltigkeit entwickelter For-
schungssoftware ausgelegt. Daneben existieren in Informatik-nahen interdisziplinären
Fächern lebhafte Diskussionen um die Güte der jeweils fachspezifischen Forschungs-
software, etwa in der Bioinformatik („Computational Biology“), dem informatischen
Maschinenbau („Computational Engineering Science“) oder der informatischen Medi-
zin („Computational Medicine“) (Crouch et al., 2013). Von der Validierbarkeit abgese-
hen sind in diesen Disziplinen insbesondere Aspekte der Replizierbarkeit von großem
Interesse. Darüber hinaus und quer zu diesen fachdisziplinären Diskursen finden sich
immer häufiger fachübergreifende Diskussionen rund um die Open-Science-Bewegung
(z. B. Dienlin et al., 2020; Lewis, 2020). Zentral diskutierte Kriterien sind dabei erneut
die Replizierbarkeit sowie insbesondere die Transparenz. Ferner sehen auch die im Auf-
trag der Europäischen Kommission erarbeiteten „FAIR“-Prinzipien (findable, accessi-
ble, interoperable, reusable) akademischer Erzeugnisse insbesondere Transparenz, Re-
plizierbarkeit und Nachhaltigkeit vor (Almeida et al., 2017; Hasselbring et al., 2020;
Mons et al., 2017).

Diese insgesamt vier Diskussionsstränge – Transparenz, Replizierbarkeit, Validier-
barkeit und Nachhaltigkeit – werden hier als Pfeiler professioneller Forschungssoftware
verstanden. Innerhalb dieser Pfeiler sind für unterschiedliche Disziplinen unterschied-
liche Kriterien relevant. So wird etwa unter Validierbarkeit im informatischen Maschi-
nenbau die Sachrichtigkeit einzelner Software-Bestandteile priorisiert (Storer, 2017),
während die Bioinformatik unter Validierbarkeit zunächst die Entwicklung durchdach-
ter und nachvollziehbarer Testszenarien priorisiert (Zook et al., 2017). Entsprechend
werden im Folgenden neun Gütekriterien für Forschungssoftware deklariert, die sich
primär an den Anforderungen und Gegebenheiten der KMW orientieren (vgl. auch Ta-
belle 1).

Kriterien der Transparenz

Forschungssoftware in der KMW ist transparent, wenn sie zugänglich, anschlussfähig
und verständlich ist.

Zugänglich meint zunächst die auffindbare und persistente Veröffentlichung in eta-
blierten Repositorien (z. B. Harvard Dataverse, OSF; vgl. Stodden & Miguez, 2014). Zur
Veröffentlichung gehören dabei neben dem Code auch für den Einsatz der Forschungs-

1.

1.1

Haim · Gütekriterien und Handlungsempfehlungen

67

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


software nötige Dokumentationen, Daten, Materialien, Analysen und Beispiele (Bow-
man & Keene, 2018; Lewis, 2020). Widersprechen etwa rechtliche Rahmenbedingungen
(z. B. des geistigen Eigentums oder des Schutzes der Privatsphäre) einer Offenlegung,
soll die Zugänglichkeit der Forschungssoftware darunter nicht leiden; für solche Fälle
sei an dieser Stelle auf entsprechende Werkzeuge zur Anonymisierung verwiesen (Dien-
lin et al., 2020; van Atteveldt et al., 2020). Zugänglich meint ferner die Auffindbarkeit
veröffentlichter Forschungssoftware, um darüber in Austausch treten zu können. Dies
lässt sich etwa mithilfe regelmäßiger Überblicke verfügbarer Forschungssoftware un-
terstützen (Storer, 2017), etwa in Form von Review-Beiträgen oder „Kürzlich erschie-
nen“-Überblicken in den gängigen Fachzeitschriften. So würde über bewährte Kanäle
auch jener Teil der Forschungsgemeinschaft auf neue Forschungssoftware aufmerksam,
der bislang kaum Berührungspunkte mit den etablierten Repositorien hat.

Transparente Forschungssoftware soll zudem anschlussfähig sein, sich also an Nor-
men und Standards orientieren. Standards ergeben sich dabei aus Anforderungen der
Stakeholder (z. B. Drittmittelgebende, Fachzeitschriften; vgl. Blohowiak et al., 2013;
DFG, 2019), die etwa nach bestimmten Technologien verlangen. Als Normen im Sinne
gemeinhin akzeptierter Regeln und Leitlinien für die Forschungssoftware haben sich in
der wissenschaftlichen Softwareentwicklung und nicht zuletzt in der KMW insbeson-
dere die Nutzung von Python und R als Programmiersprachen etabliert, innerhalb von
R finden etwa die tidyverse-Werkzeuge immer größere Verbreitung (Unkel, 2020; van
Atteveldt et al., 2019; Wickham et al., 2019). Ferner haben sich Normen zur Formatie-
rung von Code, also etwa der genutzten Einrückungen und Zeilenumbrüche (z. B. „PEP
8“ in Python) (Nosek et al., 2015), herausgebildet, denen oftmals durch die Nutzung
integrierter Entwicklungsumgebungen (IDE) oder entsprechender Pakete beigekom-
men werden kann (z. B. RStudio und formatR für R, PyCharm und PEP-8 für Python).
Anschlussfähige Forschungssoftware stellt damit ein Mindestmaß an Lesbarkeit sicher
und schafft gleichzeitig einheitlichere Anforderungen an das Vorwissen. Und obwohl
sie damit eine leichte Einschränkung der Bewegungsfreiheit bedeutet, zumal im kreati-
ven Umfeld der Softwareentwicklung, ist die Anschlussfähigkeit essenzieller Bestandteil
professioneller Forschungssoftware, sowohl für die verständliche Nutzung bestehenden
Codes (Nosek et al., 2015) als auch für die Ausbildung des akademischen Nachwuchses.

Zu einer verständlichen Forschungssoftware tragen außerdem die Gestaltung von
Code und Daten sowie eine umfassende Dokumentation bei. So sollen Datenbezeich-
nungen eindeutig, mögliche Ausprägungen dokumentiert und Datensätze auf die Ana-
lyse zugeschnitten sein (Lewis, 2020; Wilson et al., 2017). Code ist im besten Fall selbst-
erklärend, was sich durch sinnvoll sprechende Bezeichnungen von Variablen und Funk-
tionen auszeichnet (Storer, 2017), und gehört in jedem Fall dokumentiert (Lewis, 2020),
idealerweise mit den in einer Programmiersprache üblichen Auszeichnungen (z. B.
roxygen2 in R, docstrings in Python). Die Dokumentation umfasst dabei einleitende
Kommentare zur Funktionalität eines Codes und beschreibt mindestens benötigte Pa-
rameter und erwartbare Rück- und Ausgabewerte (Wilson et al., 2017).

Kriterien der Replizierbarkeit

Forschungssoftware in der KMW ist replizierbar, wenn sie nachvollziehbar und auto-
nom ist.

Nachvollziehbar meint die lückenlose Beschreibung für Außenstehende, also etwa
die Schritte eines Auswertungsskripts von den Rohdaten bis zur finalen Analyse, die
Generierung eines Modells von der Vorverarbeitung bis zur Validierung oder die Funk-
tionsweise einer Anwendung von Anforderungen an die Laufzeitumgebung bis zur Be-

1.2

M&K 69. Jahrgang 1/2021

68

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


schreibung der Ausgabe. Damit einhergeht, sofern rechtlich möglich, die Veröffentli-
chung benötigter Ressourcen, etwa der Rohdaten selbst (Gentzkow & Shapiro, 2014).
Eine lückenlose Beschreibung einer Forschungssoftware umfasst ferner Verweise auf alle
eingesetzten Werkzeuge (z. B. Python- oder R-Pakete) sowie die Versionsnummern
selbiger (Wilson et al., 2014) – eine Anforderung, die mittlerweile auch erste Fachzeit-
schriften an Veröffentlichungen stellen (z. B. Social Science Computer Review).

Idealtypisch ermöglicht eine Forschungssoftware außerdem eine autonome Repli-
kation (Wilson et al., 2014, 2017). Im Fall eines Auswertungsskripts enthält die veröf-
fentlichte Forschungssoftware dafür ein eigenständig lauffähiges und gut dokumentier-
tes Skript, das die benötigten Werkzeuge inklusive Versionen spezifiziert und lädt (z. B.
über das devtools-Paket in R, über requirements.txt in Python) und anschließend die
Forschungssoftware Schritt für Schritt ausführt (Stodden & Miguez, 2014; van Atteveldt
et al., 2019; Wilson et al., 2017). Im Fall einer eigenständigen Anwendung lässt sich für
eine autonome Replikation die genaue Laufzeitumgebung etwa über eine Containervir-
tualisierung (z. B. Docker) oder entsprechende Konfigurationsdateien (z. B. Makefile,
requirements.txt) spezifizieren oder gar emulieren (Hasselbring et al., 2020; van Atte-
veldt et al., 2019).

Diese Bemühungen um idealtypische Forschungssoftware kommen derzeit aller-
dings auch in ihren Ursprungsdisziplinen, etwa der Informatik, nur bedingt zu vollem
Einsatz. Vielmehr zeichnen sich vielerorts Arbeitsgruppen ab, um fachspezifische Emp-
fehlungen für eine professionellere Forschungssoftware zu diskutieren (z. B. die DG-
PuK-Arbeitsgruppen für Forschungsdaten und Forschungssoftware). Zentrale Themen
sind dabei die direkt ausführbare Archivierung von Forschungssoftware, auch über Ver-
sionen und Plattformen hinweg (z. B. im Rahmen der Gesellschaft für Forschungssoft-
ware, in der sich insbesondere Entwickelnde für Forschungsgruppen engagieren; vgl.
de-rse.org), die automatisierte Prüfung von Forschungssoftware auf Funktionstüchtig-
keit im Vorfeld einer Publikation (vgl. Crouch, 2020) oder die Präregistrierung zur Be-
gutachtung von Forschungssoftware vor Durchführung einer Studie (vgl. Bowman &
Keene, 2018; Dienlin et al., 2020; Lewis, 2020).

Kriterien der Validierbarkeit

Forschungssoftware in der KMW ist validierbar, wenn sie strukturiert und verifiziert ist.
Strukturierte Forschungssoftware ist für andere lesbar und ermöglicht ein schnelles

Durchdringen des Quellcodes. Strukturieren lässt sich Software dabei einerseits inhalt-
lich anhand der zu erfüllenden Aufgaben (z. B. Kommunikation mit API-Schnittstelle,
Vorverarbeitung von Textdaten, Auswertung), andererseits technologisch anhand der
auszufüllenden Funktionen (z. B. Authentifizierung, Lemmatisierung, Bootstrapping).
Um beiden Aspekten bei adäquater Lesbarkeit gerecht zu werden, soll Forschungssoft-
ware nach Aufgaben modularisiert und innerhalb der Module nach Funktionen organi-
siert sein (Storer, 2017). R ermöglicht eine solche Modularisierung mithilfe von Ver-
zeichnissen, Dateien und dem source-Befehl oder durch das Auslagern in eigene Pakete;
eine Organisation innerhalb einzelner Dateien ist über Code-Sektionen, gekennzeichnet
etwa mithilfe von Markdown, möglich. Python erlaubt eine Modularisierung über Ver-
zeichnisse (in Python als „Packages“ bezeichnet), Dateien („Modules“) und die import-
Befehlspalette; die Organisation innerhalb eines Moduls ist mithilfe von Klassen mög-
lich. Eine solche Code-Struktur erlaubt ferner die konsequente Vermeidung von Re-
dundanzen – nicht zuletzt, um Fehlerquellen zu reduzieren und die Lesbarkeit zu ver-
bessern. Dafür gilt es auch, etablierte Bibliotheken und Pakete Dritter einzusetzen, Du-

1.3

Haim · Gütekriterien und Handlungsempfehlungen

69

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


plikate im Code durch wiederverwendbare Funktionen zu ersetzen und einzelne Funk-
tionen in zentrale Module auszulagern (Wilson et al., 2017).

Strukturierter Quellcode bietet schließlich die besten Voraussetzungen, um ange-
messen verifiziert zu werden, was nicht nur das manuelle Prüfen auf Plausibilität meint,
sondern insbesondere das automatisierte und iterative Testen. Tests lassen sich dabei im
Wesentlichen einteilen in „unit tests“, „integration tests“ und „acceptance tests“ (Stod-
den & Miguez, 2014). Ziel von „unit tests“ ist es, einzelne Funktionen und Module auf
ihre Sachrichtigkeit zu prüfen, mithin also die Eingabeparameter zu variieren und die
Rückgabewerte mit erwarteten Resultaten zu vergleichen. Demgegenüber stehen „inte-
gration tests“, die das Zusammenspiel von Modulen in den Blick nehmen, also etwa das
Scraping mit der anschließenden Verarbeitung der gesammelten Daten. Zuletzt werden
insbesondere für Anwendungen immer häufiger „acceptance tests“ durchgeführt, bei
denen Anwendende oder Auftraggebende die Forschungssoftware testen und anschlie-
ßend den Entwickelnden Bericht erstatten. Da „unit tests“ und „integration tests“ soft-
waregesteuert ablaufen, ist eine Vielzahl an Testumgebungen verfügbar, die sich meist
nahtlos in integrierte Entwicklungsumgebungen einfügen (z. B. testthat für R in RStudio,
pytest für Python in PyCharm).

Die Entwicklung von Testszenarien ist dabei kaum zu unterschätzen, und ein per-
manenter Rollenwechsel zwischen kreativ entwickelnd und streng testend der Code-
Qualität äußerst zuträglich (Storer, 2017). Die Entwicklung von Tests sollte dabei selbst
den diskutierten Kriterien professioneller Forschungssoftware unterliegen, Testszena-
rien also selbst etwa verständlich und nachvollziehbar sein. Bei ausreichend Ressourcen
wird zudem zu fortlaufender gegenseitiger Begutachtung von Code (Kelly & Sanders,
2008), institutionalisiert etwa im Rahmen sogenannter „Merge Requests“/„Pull Re-
quests“ (vgl. auch den Abschnitt 1.4 zu Kriterien der Nachhaltigkeit), oder zum „pair
programming“, also dem Entwickeln zu zweit vor einem Rechner, geraten (Brown &
Wilson, 2018); auch Verfahren des lauten Denkens im Rahmen von Tests durch unbe-
teiligte Dritte vermögen die Qualität von Forschungssoftware zu verbessern. Insbeson-
dere letztere Empfehlungen zielen dabei auch darauf ab, Fehler als konstruktiven Teil
des Entwicklungsprozesses zu verstehen und einer solchen Fehlerkultur mit einer an-
gemessenen Testkultur zu begegnen (Kelly & Sanders, 2008; Wilson et al., 2014).

Kriterien der Nachhaltigkeit

Forschungssoftware in der KMW ist nachhaltig, wenn sie umsichtig und nutzbar ist.
Umsichtig meint dabei die möglichst weitreichende Beachtung äußerer Umstände

und verweist als solche zunächst auf die Implementierung von Fehler- und Ausnahme-
behandlung (Gentzkow & Shapiro, 2014). Mögliche erwartbare Fehlerquellen (z. B. das
Erreichen eines API-Limits) sollen im Code abgefangen und verarbeitet werden, bei
unerwarteten Ausnahmen sollen aktuelle Zwischenstände gespeichert und mögliche Ur-
sachen protokolliert werden. Dafür bietet sich die Ausnahmebehandlung einzelner Pro-
grammiersprachen an (z. B. tryCatch in R, try/except in Python). Umsichtig meint ferner
die Berücksichtigung zentraler Aspekte der Sicherheit und Forschungsethik, etwa im
Umgang mit personenbezogenen Daten (Zook et al., 2017). Dabei bieten sich Techno-
logien der Verschlüsselung und Verschleierung, der gesicherten Übertragung sowie der
Anonymisierung an. Für den forschungsethischen Umgang im Rahmen von For-
schungssoftware wird zudem häufig auf Ethik-Kommissionen (Institutional Review
Boards, IRB) sowie den innerdisziplinären Austausch verwiesen (Zook et al., 2017) –
beiden Wegen gemein ist dabei der Blick Dritter auf den Code und den Umgang mit
Daten.

1.4

M&K 69. Jahrgang 1/2021

70

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Gütekriterien professioneller Forschungssoftware

Kriterien der Transparenz
zugänglich – in etablierten Repositorien veröffentlicht

– im Fachdiskurs thematisiert
– Code, Daten, Dokumentation, Materialien, Analysen und Beispiele publi-

ziert (im Zweifel anonymisiert)
anschlussfähig – baut auf verbreitete Programmiersprachen auf (z. B. Python, R)

– setzt auf etablierte Bibliotheken und Pakete
– berücksichtigt Normen und Standards in Code und Dokumentation

(Code-Gestaltung, Code-Struktur, sichergestellt durch moderne IDE)
verständlich – dokumentiert sämtliche Daten, Variablen und Ausprägungen

– besteht aus selbsterklärendem Code (sinnvolle und sprechende Variablen-
und Funktionsnamen, rigide Formatierung)

– dokumentiert Zweck, Parameter und Rückgabe je Skript und Funktion
– dokumentiert in gängiger Auszeichnung (z. B. roxygen2, docstrings)

Kriterien der Replizierbarkeit
nachvollziehbar – lückenlos dokumentiert

– mitsamt nötigen Rohdaten und Ressourcen veröffentlicht
– auf eingesetzte Pakete und Versionsnummern verwiesen

autonom – lauffähiges und dokumentiertes Skript zur eigenständigen Ausführung der
Forschungssoftware veröffentlicht

– Laufzeitumgebung möglichst akkurat archiviert

Kriterien der Validierbarkeit
strukturiert – nach Aufgaben modularisiert

– innerhalb von Modulen nach Funktionen organisiert
– Code-Redundanzen entfernt

verifiziert – Funktionen im Rahmen von „unit tests“ kleinteilig verifiziert
– Module im Rahmen von „integration tests“ großflächig getestet
– Verifikationsszenarien mithilfe von Testumgebungen implementiert
– Dritte über Code-Begutachtung, paarweises Programmieren, lautes Den-

ken im Rahmen der Testszenarien und/oder „acceptance tests“ berück-
sichtigt

Kriterien der Nachhaltigkeit
umsichtig – Fehlerbehandlung für erwartbare Szenarien implementiert

– Fehlerbehandlung für Absturz der Forschungssoftware implementiert
(Zwischenstände werden gespeichert, Umstände protokolliert)

– zentrale Sicherheitsmaßnahmen berücksichtigt
– Forschungssoftware auf ethische Aspekte geprüft (z. B. durch IRB)

nutzbar – lizenziert (im Einklang mit genutzten Bibliotheken und Paketen)
– versioniert (z. B. Git, Subversion)
– Absichten und Pläne zu längerfristiger Wartung kommuniziert

Um Forschungssoftware nachhaltig nutzbar zu machen, ist neben den bereits genannten
Kriterien, etwa der Zugänglichkeit oder der Verständlichkeit, eine entsprechende Li-
zenzierung notwendig. Dabei gilt es, verwendete Bibliotheken und Pakete Dritter auf
ihre Lizenz hin zu prüfen, um sich nicht über deren Prämissen hinwegzusetzen, und
gegebenenfalls durch offenere Alternativen zu ersetzen (Stodden & Miguez, 2014). Da-
rauf aufbauend sollte Forschungssoftware die offenste unter den möglichen Lizenzen
erhalten (z. B. Apache, GNU, MIT) – einerseits, um für Klarheit im Rahmen der Nut-

Tabelle 1:

Haim · Gütekriterien und Handlungsempfehlungen

71

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


zung, Weiterentwicklung und Weiterverbreitung zu sorgen; andererseits, um die Nut-
zung, Weiterentwicklung und Weiterverbreitung auch zu ermöglichen (vgl. Haim &
Zamith, 2019). Eine entsprechend wünschenswerte Weiterentwicklung profitiert dabei
wiederum von einer umfassenden Dokumentation sowie der konsequenten Nutzung
einer kommentierten Versionsverwaltung (Stodden & Miguez, 2014). Moderne Versi-
onsverwaltungssysteme (z. B. Git, Subversion) erlauben auch die Institutionalisierung
gegenseitiger Code-Begutachtung („Merge Requests“/„Pull Requests“) sowie die Inte-
gration sogenannter „Pipelines“, die bei Code-Änderungen automatisiert die Durch-
führung vorab definierter Tests oder Formatierungsschritte ermöglichen. Zuletzt sollte
für eine nutzbare Forschungssoftware klar kommuniziert werden, ob und inwiefern die
Forschungssoftware aktiv gewartet wird; denn während Industriestandards konsistente
Wartung als Qualitätsmerkmal einer Software betrachten (z. B. in der Spezifizierung
nach ISO/IEC/IEEE 12207:2017), ist die langfristige Finanzierung der Wartung von
Forschungssoftware nur selten Gegenstand von Drittmitteln.

Handlungsempfehlungen

Um die Gütekriterien in Handlungsempfehlungen überführen zu können, ist zunächst
erneut festzuhalten, dass die Entwicklung von Forschungssoftware meist im Rahmen
und für den begrenzten Zeitraum einzelner Forschungsprojekte erfolgt und gefördert
wird. Langfristige Projekte mit dem Ziel, entwickelte Forschungssoftware der Allge-
meinheit zur Verfügung zu stellen und auch zu warten, sind in der deutschen Kommu-
nikations- und Medienwissenschaft (KMW) nur in Ausnahmefällen zu beobachten.
Ähnlich wie in anderen Ländern ist eine Veröffentlichung oder Wartung von For-
schungssoftware vielmehr auf das Bestreben einzelner Beteiligter zurückzuführen (van
Atteveldt et al., 2019).

Mit Blick in die akademische Softwareentwicklung verschiedener Disziplinen
(Storer, 2017) bewegt sich die KMW damit in der Kategorie (1) unprofessioneller Skript-
entwicklung, etwa durch (autodidaktisch) programmierende Forschende. Während die-
se Kategorie größtmögliche kreative Flexibilität erlaubt, ist sie gleichzeitig auf das Wissen
und die Motivation Einzelner angewiesen. Auch bekanntere Beispiele in der KMW, etwa
der „Facepager“ (Jünger & Keyling, 2017), „SoSci Survey“ (Leiner, 2014) oder das
„tidycomm“-Paket (Unkel, 2019), sind unmittelbar mit ihren Entwicklern verknüpft.
Eine solche Form der Entwicklung vermag also gerade in einer frühen Phase For-
schungssoftware voranzubringen, sie eignet sich aber nur bedingt für die nachhaltige
Institutionalisierung entwickelter Werkzeuge. Um dieser Kreativität nicht nur weiterhin
Raum zu geben, sondern sie auch stärker zu fördern, lassen sich vermehrt Aspekte und
Gütekriterien professioneller Forschungssoftwareentwicklung in die Ausbildung des
wissenschaftlichen Nachwuchses integrieren. Ferner bedarf es sowohl einer kurz- und
mittelfristigen extrinsischen Motivation als auch der langfristigen Perspektive, sich ver-
mehrt mit der Entwicklung von Forschungssoftware auseinanderzusetzen.

Im Gegensatz zu Entwicklungen durch Einzelpersonen binden (2) professionelle in-
neruniversitäre Entwicklungen explizit Programmierende in Forschungsgruppen ein,
um mehrere Projekte versorgen und Ressourcen wiederverwenden zu können (Storer,
2017). Die an der London School of Economics and Political Science ansässige und ERC-
geförderte Entwicklung und Wartung der unterschiedlichen R-Pakete um das „quante-
da“-Projekt zur Analyse von Textdaten (Benoit et al., 2018) fällt beispielsweise in diese
Kategorie. Während in der deutschsprachigen KMW kaum entsprechende Beispiele aus-
zumachen sind (eine Ausnahme bilden etwa Hepp et al., 2018), wurde diese Entwicklung
im Fach zuletzt über die Schaffung erster Methodenprofessuren mit dezidierter „Com-

2.

M&K 69. Jahrgang 1/2021

72

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


putational“-Denomination angestoßen – eine deutliche Incentivierung, deren Auswir-
kung sich aber erst noch abzeichnen muss. Um eine solche Entwicklung weiter voran-
zutreiben, ist neben entsprechenden Drittmittelformaten insbesondere eine gewisse
Grundausbildung seitens der Antragstellenden nötig.

Zuletzt sieht die (3) institutionalisierte Entwicklung die außeruniversitäre Umset-
zung und Wartung kollaborativ im Fach nutzbarer Software-Infrastruktur vor, die le-
diglich wissenschaftlich initiiert, begleitet und genutzt wird (Storer, 2017). Wenngleich
ein solches Auslagern einem gewissen Risiko des Kontrollverlusts unterliegt, stellt es für
zentrale Infrastruktur-Anforderungen eines Fachs eine durchaus lohnenswerte Alter-
native zur fachinternen Entwicklung dar. Beispielhaft ist hier etwa „Media Cloud“ als
Archiv von Online-Nachrichten zu nennen, das durch seine US-Förderung aber den
Fokus zunächst auf englischsprachige Nachrichten legt; vergleichbare Infrastruktur-
Förderungen in der deutschsprachigen KMW sind nicht bekannt. Auch hierfür wären
neben einer gewissen Grundausbildung seitens der Antragstellenden insbesondere ent-
sprechende Drittmittelformate für die Projektplanung erforderlich.

Methodenausbildung stärken

Die Methodenausbildung wie auch die Anwendung empirischer Methoden gehört in der
KMW zu allen gängigen Curricula (Matthes, 2019; Matthes et al., 2011). Innerhalb dieser
wie auch im Rahmen von Abschlussarbeiten können Gütekriterien professioneller For-
schungssoftware Platz finden, um so bereits in Bachelor- und Masterstudiengängen
Grundsteine für spätere Arbeiten zu legen. Einen niederschwelligen Einstieg in eine
professionellere Entwicklung von Forschungssoftware ermöglicht dabei die Datenaus-
wertung, zumal alle gängigen Programme der Datenauswertung den Fokus auf Skripte
erlauben. Für die Vermittlung von Gütekriterien lassen sich die Skripte selbst zunächst
zu einer Prüfungsleistung in Veranstaltungen der Datenanalyse oder der Statistik erklä-
ren. Diese Skripte sollen, in den Gütekriterien professioneller Forschungssoftware ge-
sprochen, anschlussfähig, verständlich, nachvollziehbar, strukturiert und verifiziert sein.
Studierende sind so frühzeitig dazu angehalten, ordentlichen und selbsterklärenden
Code zu schreiben, ausführlich zu dokumentieren, zu modularisieren, zu strukturieren
und zu testen. Darauf aufbauend können solche Skripte unter den Studierenden ge-
tauscht und einer gegenseitigen Begutachtung unterzogen werden.

Ferner lassen sich Kriterien einer zugänglichen, anschlussfähigen, umsichtigen und
nutzbaren Forschungssoftware in Forschungsseminare einbetten. Hierbei kann etwa auf
bestehende Daten und Software aufgebaut werden, beispielsweise im Rahmen von Re-
plikationsstudien, die Studierende zur detaillierten Auseinandersetzung mit zugängli-
chen Ressourcen zwingen. Darüber hinaus können sowohl die längerfristige Nutzbar-
machung der eigenen Forschungssoftware sowie die Einbindung fremder Bibliotheken
und Pakete zu zentralen Herausforderungen der Datenerhebung oder Auswertung ge-
macht werden, um ein Bewusstsein für die Anschlussfähigkeit von Forschungssoftware
zu schaffen. Es bietet sich außerdem an, Fragen der Fehler- und Ausnahmebehandlung
sowie Aspekte der Datensicherheit und Forschungsethik im Rahmen eines umsichtigen
Forschungsprozesses zu thematisieren.

Auch in Abschlussarbeiten kann die Anwendung der Gütekriterien professioneller
Forschungssoftware selbstverständlich(er) werden, indem etwa Skripte der Datenaus-
wertung anschlussfähig, nachvollziehbar, strukturiert und verifiziert, die Daten ent-
sprechend zugänglich und verständlich sein sollen. Ferner kann auch die Entwicklung
neuer, die Validierung bestehender oder der Vergleich unterschiedlicher Forschungs-
software bisweilen zum zentralen Gegenstand erhoben werden. Hierbei ließen sich ne-

2.1

Haim · Gütekriterien und Handlungsempfehlungen

73

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


ben den genannten Gütekriterien auch Aspekte der Anwendungsfreundlichkeit berück-
sichtigen. Eine solche Ausdifferenzierung käme wohl auch den zweifellos unterschied-
lichen Zielgruppen unter den Studierenden entgegen. So ist neben einer wohl auch hier
zu erwartenden Gruppe (autodidaktisch) Programmierender sicherlich auch von einer
Gruppe tiefergehend Interessierter auszugehen, denen es zwar an konkreteren Pro-
grammierkenntnissen, jedoch nicht an Motivation mangelt, sowie von einer Gruppe eher
oberflächlich Interessierter, die Forschungssoftware zwar nutzen, aber vermutlich nicht
selbst entwickeln würden.

Extrinsische Motivation fördern

Über die Ausbildung hinaus ist neben dem Wissen über professionelle Forschungssoft-
ware wohl insbesondere die kurz- und mittelfristige extrinsische Motivation, sich damit
zu beschäftigen, entscheidend. Ein maßgeblicher Hebel dafür ist die institutionalisierte
Anerkennung, die sich im Wissenschaftssystem insbesondere in Zitationen bemisst. Sie
erfolgt allem voran über Fachzeitschriften, die dadurch auch in die Lage versetzt werden,
professionelle Standards zu setzen, zu fordern und zu fördern.

Dabei scheint für Zeitschriften in unserem Fach Innovation im Umgang mit For-
schungssoftware derzeit insbesondere zu bedeuten, Publikationen, die Open-Science-
Standards der Transparenz von Daten oder der Präregistrierung folgen, mit sogenannten
„Badges“ hervorzuheben (Blohowiak et al., 2013). Solche Bemühungen sind lobenswert
und erfordern gleichzeitig minimalen Aufwand in ihrer Implementierung. Sie bergen
aber die Gefahr, unterschiedliche Motive miteinander zu vergleichen – ist die präregis-
trierte Befragung mit Badge wertvoller als die Inhaltsanalyse oder der Theoriebeitrag
ohne Badge?

Ergänzend wäre deshalb ein fundierterer Umgang mit Forschungssoftware wün-
schenswert, der nicht nur die Transparenz von Forschungssoftware über Badges lobt,
sondern sie schlicht voraussetzt. Derartige Forderungen können von Fachzeitschriften
selbst erhoben, sie können aber auch im Begutachtungsprozess eingefordert werden.
Auch die Validierbarkeit von Forschungssoftware könnte unter bestimmten Vorausset-
zungen, etwa wenn neue Forschungssoftware zum Einsatz kommt, zu einem zentralen
Kriterium werden, das es ebenfalls zu begutachten gilt. Ein solches System wäre gleich-
zeitig einer nachhaltigeren Landschaft an Forschungssoftware zuträglich, was gleichsam
Entwickelnden messbare akademische Anerkennung (Zitationen) einbrächte. Die not-
wendige Begutachtung von Code würde ferner, entsprechende Anforderungen an den
Code vorausgesetzt, der Anschlussfähigkeit und Verständlichkeit der Forschungssoft-
ware entgegenkommen.

Im Umkehrschluss bedeutet ein solches System, dass es begutachteter Möglichkeiten
der Publikation von Forschungssoftware bedarf. Diese bestehen bisweilen bereits in den
bekannten Fachzeitschriften mit methodischem Schwerpunkt (z. B. Computational
Communication Research, Communication Methods and Measures), sie unterliegen
aber den im Fach üblichen Charakteristika wissenschaftlicher Publikationen. Damit be-
deuten sie in ihrer aktuellen Form zusätzlichen Aufwand für die Entwickelnden. Im
Sinne einer professionelleren Forschungssoftwarelandschaft wären indes auch Publika-
tionsformen nötig, die etwa Anleitungen enthalten (z. B. mit Videos), Tests erlauben
(z. B. über Pipelines) oder Laufzeitumgebungen spezifizieren (z. B. über require-
ments.txt). Selbst die Implementierung von Versionen wäre denkbar, um etwa das nach-
trägliche Beheben kleinerer Fehler, nicht aber das nachträgliche Integrieren neuer Funk-
tionen, im Rahmen einer Publikation zu ermöglichen.

2.2

M&K 69. Jahrgang 1/2021

74

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Drittmittel ermöglichen

Im weiteren Feld kurz- und mittelfristiger extrinsischer Motivation liegen sicherlich
auch Drittmittel. Sie sollen im Idealfall eine Möglichkeit bieten, sich durch die Entwick-
lung und Wartung einer angemessen der Forschungsgemeinschaft zur Verfügung ge-
stellten Forschungssoftware verdient zu machen. Dafür bedarf es insbesondere entspre-
chender Förderformate, wie sie bislang nur gelegentlich in Einzelaufrufen formuliert
werden (z. B. das „IDEAS“-Programm des ERC). Sie können einerseits entwickelnde
Forschende ermutigen, mit Forschungssoftware lohnend zum Diskurs beizutragen; an-
dererseits erhöht eine solch dezidierte Förderung mittelfristig wohl auch die Güte jener
Forschung, die von so geförderter Forschungssoftware profitiert.

Letzteres lässt sich etwa mit Storer (2017) zeigen, der in einem systematischen Über-
blick über Fallstudien akademischer Softwareentwicklung feststellt, dass insbesondere
fehlende Informationen (Transparenz), eine nur lückenhaft nachvollziehbare Anwen-
dung (Replizierbarkeit) sowie eine nicht (Validierbarkeit) oder nicht mehr (Nachhaltig-
keit) intakte Funktionalität die Neuentwicklung von originär bereits bestehender For-
schungssoftware notwendig machen. Andere, stärker inhaltlich fokussierte Drittmittel-
anträge sind entsprechend immer wieder gezwungen, die Entwicklung notwendiger
Forschungssoftware selbst vorzusehen. Ein mühsames und kostspieliges Unterfangen,
das aufgrund von projektspezifischen Perspektiven und Rahmenbedingungen auch einer
Vergleichbarkeit im Weg steht.

Dieser Punkt lässt sich erneut am Beispiel „quanteda“ (Benoit et al., 2018) verdeut-
lichen: Quantitative Inhaltsanalysen sind Teil vieler Forschungsprojekte in der KMW,
die zunehmend wachsenden Textmengen machen eine zumindest teilweise Automati-
sierung der Auswertung nötig; eine Entwicklung der Forschungssoftware zu einer sol-
chen Auswertung ist aufwendig und bedarf zahlreicher methodischer Entscheidungen
(Günther & Quandt, 2016) – Entscheidungen, die das in diesem Fall über acht Jahre
ERC-geförderte Projekt in einem transparenten Prozess bereits getroffen hat. Und ob-
schon es in einzelnen Forschungsprojekten Gründe für oder gegen einzelne solcher
Entscheidungen geben mag, etwa wie Begriffe auf ihre Wortstämme zu reduzieren oder
die Dokumententropie zu berechnen sind, so schafft eine derart verbreitete Forschungs-
software wie „quanteda“ Normen und Standards für solche Verfahren und damit eine
Infrastruktur für einen methodischen Konsens.

Perspektive schaffen

Über Zitationen und Drittmittel hinaus bedarf es zuletzt einer langfristigen Perspektive,
um sich im Fach mit Forschungssoftware zu beschäftigen. Diese Perspektiven sind zu-
letzt im Zuge einer „Computational Communication Science“ sowie einer „Computa-
tional Social Science“ stark gewachsen (Lazer et al., 2020; van Atteveldt et al., 2019):
Entsprechende Fachgruppen haben sich herausgebildet oder ausgerichtet (z. B. Metho-
den-Fachgruppe in der DGPuK, „Computational Methods“-Interessensgruppe in der
ICA), Arbeitsgruppen und Diskussionsrunden sind allerorts anzutreffen (z. B. waren
allein im ersten Quartal des Jahres 2020 innerhalb der DGPuK mehrere entsprechende
Initiativen aktiv, etwa zum Umgang mit Forschungsdaten, Forschungssoftware und
Computational Communication Science in der Lehre), Fachzeitschriften mit originärem
Methodenbezug sind zentraler Bestandteil der Fachliteratur (z. B. Communication Me-
thods and Measures, Computational Communication Research), Ausschreibungen für
Drittmittel mit – wenngleich primär inhaltlichem – „Computational“-Bezug in der
KMW immer wieder verfügbar (z. B. KI-Initiative der DFG, Computational-Social-

2.3

2.4

Haim · Gütekriterien und Handlungsempfehlungen

75

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Science-Bemühungen der Volkswagenstiftung, AI-Impact-Challenge von Google). Mit
dieser Dynamik einher geht einerseits eine höhere Sichtbarkeit, andererseits wohl auch
ein erhöhter Bedarf entsprechender Kompetenz und Erfahrung (vgl. die anderen drei
Handlungsempfehlungen).

Damit zeigt sich in Grundzügen auch eine zentralere Verschiebung im Feld: Herrsch-
te bislang die Meinung vor, die eigene wissenschaftliche Karriere nicht durch Methoden
voranbringen zu können (Matthes, 2019), so scheinen Computational Methods einen
Grundstein einer stärker institutionalisierten Perspektive zu legen. So haben inzwischen
einige wenige Universitäten entsprechende (Junior-)Professuren der Computational
Methods implementiert und geben so der professionellen Beschäftigung mit Methoden
– und damit zu einem ganz wesentlichen Teil mit Forschungssoftware – einen institu-
tionellen Rahmen. Sich innerhalb der KMW professionell mit Forschungssoftware aus-
einanderzusetzen, entwickelt sich langsam zur Karriereoption.

Fazit

Eine ständige Entwicklung digitaler Medien- und Informationsumgebungen macht die
fortlaufende Anpassung von Forschungssoftware – innerhalb der Fachgemeinde entwi-
ckelte Computerprogramme für jegliche Zwecke entlang des Forschungsprozesses –
nötig. Dabei finden Entwicklung und Wartung in der Kommunikations- und Medien-
wissenschaft (KMW) häufig innerhalb einzelner Forschungsprojekte und oftmals durch
(autodidaktisch) programmierende Forschende statt. Ein Umstand, der Innovation und
Kreativität ermöglicht, gleichzeitig aber keiner nachhaltigen Institutionalisierung ent-
wickelter Werkzeuge zuträglich ist.

Der Beitrag schlägt daher neun Gütekriterien professioneller Forschungssoftware
vor, die für sich genommen niederschwellig im Rahmen der Entwicklung umsetzbar sind
(Tabelle 1). Forschungssoftware sollte demnach zugänglich, anschlussfähig, verständ-
lich, nachvollziehbar, autonom, strukturiert, verifiziert, umsichtig und nutzbar sein.
Diese Gütekriterien ergeben sich aus den vier zentralen Pfeilern der Entwicklung von
Forschungssoftware – Transparenz, Replizierbarkeit, Validierbarkeit und Nachhaltig-
keit –, die sich in Disziplinen mit fortgeschrittener Diskussion um die Güte von For-
schungssoftware (z. B. Informatik, Bioinformatik, informatischer Maschinenbau, infor-
matische Medizin) abgezeichnet haben.

Für eine längerfristige Qualitätssicherung der Forschungssoftware in der KMW ist
neben diesen Gütekriterien indes wohl eine Veränderung einiger Rahmenbedingungen
nötig. Der Beitrag schlägt dafür vier konkrete Handlungsempfehlungen vor:

(1) Möglichst früher Kontakt der Studierenden mit der Entwicklung professioneller
Forschungssoftware, etwa im Rahmen von Datenanalysekursen, Forschungssemi-
naren oder Abschlussarbeiten; so sollen Berührungsängste abgebaut und gleichzeitig
der Grundstein für einen professionelleren Umgang mit Skripten und Programmie-
rung in der Forschung gelegt werden.

(2) Angemessene Möglichkeiten der Veröffentlichung und Zitation, etwa durch einge-
forderte Standards, adäquate Begutachtungsprozesse und flexiblere Publikations-
formate; sie sollen Sichtbarkeit, Qualitätsstandards und eine entsprechende Repu-
tation von Entwickelnden sicherstellen.

(3) Förderformate, die das Einwerben von Drittmitteln durch die Entwicklung und
Wartung von Forschungssoftware ermöglichen; so soll Entwicklung gefördert und
gleichzeitig das Fach stärker mit entsprechender Infrastruktur ausgestattet werden.

3.

M&K 69. Jahrgang 1/2021

76

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


(4) Institutionalisierte Anreize, die eine professionelle Auseinandersetzung mit For-
schungssoftware auch in Karriereoptionen übersetzen (z. B. Methodenprofessuren).

Empirische Forschung soll durch professionellere Forschungssoftware nicht einge-
schränkt werden. Das Gegenteil ist der Fall: Zugängliche und verständliche Werkzeuge,
strukturierte, nachvollziehbare und autonome Skripte der Datenauswertung, verifizierte
und umsichtige Applikationen sind das methodische Rückgrat einer vertrauenswürdigen
empirischen Wissenschaft. Die Güte eingesetzter Forschungssoftware soll kein notwen-
diges Beiwerk, sondern selbstverständliche Voraussetzung sein. Ist eine entwickelte
Forschungssoftware zudem nutzbar und anschlussfähig, ermöglicht sie darüber hinaus
eine gegenseitige Bezugnahme, Anerkennung, Weiterentwicklung und Wertschätzung,
um mittel- und langfristig nicht nur auf intrinsisch motivierte Einzelpersonen, sondern
auch auf eine institutionalisierte Infrastruktur an Forschungssoftware zurückgreifen zu
können.

Literatur
Almeida, A. V. de, Borges, M. M., & Roque, L. (2017). The European Open Science Cloud: A new

challenge for Europe. Proceedings of the 5th International Conference on Technological Ecosys-
tems for Enhancing Multiculturality, 1–4. https://doi.org/10.1145/3144826.3145382.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). quante-
da: An R package for the quantitative analysis of textual data. Journal of Open Source Soft-
ware, 3(30), 774. https://doi.org/10.21105/joss.00774.

Blohowiak, B. B., Cohoon, J., de-Wit, L., Eich, E., Farach, F. J., Hasselman, F., Holcombe, A. O.,
Humphreys, M., Lewis, M., & Nosek, B. A. (2013). Badges to acknowledge open practices.
https://osf.io/tvyxz/.

Bowman, N. D., & Keene, J. R. (2018). A layered framework for considering open science practices.
Communication Research Reports, 35(4), 363–372. https://doi.org/10.1080/08824096.2018.
1513273.

Brown, N. C. C., & Wilson, G. (2018). Ten quick tips for teaching programming. PLOS Compu-
tational Biology, 14(4), e1006023. https://doi.org/10.1371/journal.pcbi.1006023.

Chan, C., Zeng, J., Wessler, H., Jungblut, M., Welbers, K., Bajjalieh, J., van Atteveldt, W., & Althaus,
S. (2020). Reproducible extraction of cross-lingual topics. Communication Methods & Mea-
sures. https://doi.org/10.1080/19312458.2020.1812555

Crouch, S. (2020, Januar 20). Software design in just 20 questions. Software Sustainability Institute.
https://software.ac.uk/blog/2020-01-20-software-design-just-20-questions [11.11.2020].

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., Carr, L., De Roure, D.,
Goble, C., & Parsons, M. (2013). The software sustainability institute: Changing research soft-
ware attitudes and practices. Computing in Science Engineering, 15(6), 74–80. https://doi.org/
10.1109/MCSE.2013.133.

DFG (2019, Juni 18). Qualitätssicherung von Forschungssoftware durch ihre nachhaltige Nutzbar-
machung. Deutsche Forschungsgemeinschaft. https://www.dfg.de/foerderung/info_wissen
schaft/2019/info_wissenschaft_19_44/index.html

Dienlin, T., Johannes, N., Bowman, N. D., Masur, P. K., Engesser, S., Kümpel, A. S., Lukito, J.,
Bier, L. M., Zhang, R., Johnson, B. K., Huskey, R., Schneider, F. M., Breuer, J., Parry, D. A.,
Vermeulen, I., Fisher, J. T., Banks, J., Weber, R., Ellis, D. A., … de Vreese, C. H. (2020). An
agenda for open science in communication. Journal of Communication. https://doi.org/
10.1093/joc/jqz052.

Freelon, D. (2018). Computational research in the post-API age. Political Communication, 35(4),
665–668. https://doi.org/10.1080/10584609.2018.1477506.

Gentzkow, M., & Shapiro, J. M. (2014). Code and data for the social sciences: A practitioner’s
guide. University of Chicago Press. http://web.stanford.edu/~gentzkow/research/CodeAnd-
Data.pdf [11.11.2020].

Haim · Gütekriterien und Handlungsempfehlungen

77

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Günther, E., & Quandt, T. (2016). Word counts and topic models. Automated text analysis methods
for digital journalism research. Digital Journalism, 4(1), 75–88. https://doi.org/
10.1080/21670811.2015.1093270.

Haim, M. (2018). Mehr methodischer Mut, bitte! Aviso, 66, 8.
Haim, M. (2020). Agent-based testing: An automated approach toward artificial reactions to human

behavior. Journalism Studies, 21(7), 895–911. https://doi.org/10.1080/1461670X.2019.1702892.
Haim, M., & Zamith, R. (2019). Open-source trading zones and boundary objects: Examining

GitHub as a space for collaborating on „news“. Media and Communication, 7(4), 80. https://
doi.org/10.17645/mac.v7i4.2249.

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research
data toward FAIR and open research software. It – Information Technology, 62(1), 39–47.
https://doi.org/10.1515/itit-2019-0040.

Hepp, A. (2016). Kommunikations- und Medienwissenschaft in datengetriebenen Zeiten. Publi-
zistik, 61(3), 225–246. https://doi.org/10.1007/s11616-016-0263-y.

Hepp, A., Breiter, A., Hasebrink, U., & Loosen, W. (2018). Me-Software: Software for qualitative
media and communication research. https://mesoftware.org/ [11.11.2020].

Jünger, J., & Keyling, T. (2017). Facepager. An application for generic data retrieval through APIs.
https://github.com/strohne/Facepager/ [11.11.2020].

Kelly, D., & Sanders, R. (2008, Mai). Assessing the quality of scientific software. First International
Workshop on Software Engineering for Computational Science & Engineering, Leipzig.
https://se4science.org/workshops/secse08/Papers/Kelly.pdf [11.01.2021].

Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., Contractor, N., Freelon, D., Gonzalez-
Bailon, S., King, G., Margetts, H., Nelson, A., Salganik, M. J., Strohmaier, M., Vespignani, A.,
& Wagner, C. (2020). Computational social science: Obstacles and opportunities. Science,
369(6507), 1060–1062. https://doi.org/10.1126/science.aaz8170.

Leiner, D. (2014). Convenience samples from online respondent pools: A case study of the SoSci
Panel [Working paper]. https://www.researchgate.net/publication/259669050 [11.11.2020].

Lewis, N. A. Jr. (2020). Open communication science: A primer on why and some recommendations
for how. Communication Methods and Measures, 14(2), 71–82. https://doi.org/
10.1080/19312458.2019.1685660.

Matthes, J. (2019). Viel Luft nach oben. Eine kritische Reflexion zum Stellenwert der Methoden in
der Kommunikationswissenschaft. In H. Schramm, J. Matthes, & C. Schemer (Hrsg.), Emotions
Meet Cognitions. Zum Zusammenspiel von emotionalen und kognitiven Prozessen in der Me-
dienrezeptions- und Medienwirkungsforschung (S. 93–103). Springer. https://link.sprin
ger.com/chapter/10.1007/978-3-658-25963-1_8 [11.11.2020].

Matthes, J., Kuhlmann, C., Gehrau, V., Jandura, O., Möhring, W., Vogelgesang, J., & Wünsch, C.
(2011). Zur Methodenausbildung in kommunikationswissenschaftlichen Bachelor- und Mas-
terstudiengängen. Publizistik, 56(4), 461–481. https://doi.org/10.1007/s11616-011-0133-6.

Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L. O. B., & Wilkinson, M. D.
(2017). Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the Euro-
pean Open Science Cloud. Information Services & Use, 37(1), 49–56. https://doi.org/10.3233/
ISU-170824.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S.,
Chambers, C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J.,
Glennerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M., … Yarkoni, T. (2015).
Promoting an open research culture. Science, 348(6242), 1422–1425. https://doi.org/10.1126/
science.aab2374.

Rat für Sozial- und Wirtschaftsdaten (2019). Big Data in den Sozial-, Verhaltens- und Wirtschafts-
wissenschaften: Datenzugang und Forschungsdatenmanagement. RatSWD Output, 4(6).
https://doi.org/10.17620/02671.39.

Stodden, V., & Miguez, S. (2014). Best practices for computational science: Software infrastructure
and environments for reproducible and extensible research. Journal of Open Research Soft-
ware, 2(1), 1–6. https://doi.org/10.5334/jors.ay.

Storer, T. (2017). Bridging the chasm: A survey of software engineering practice in scientific pro-
gramming. ACM Computing Surveys, 50(4), 1–32. https://doi.org/10.1145/3084225.

M&K 69. Jahrgang 1/2021

78

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


Unkel, J. (2019). tidycomm: Data Modification and Analysis for Communication Research. https://
github.com/joon-e/tidycomm [11.11.2020].

Unkel, J. (2020). Computational Methods in der politischen Kommunikationsforschung. https://
bookdown.org/joone/ComputationalMethods/ [11.11.2020].

van Atteveldt, W., & Peng, T.-Q. (2018). When communication meets computation: Opportunities,
challenges, and pitfalls in computational communication science. Communication Methods and
Measures, 12(2–3), 81–92. https://doi.org/10.1080/19312458.2018.1458084.

van Atteveldt, W., Strycharz, J., Trilling, D., & Welbers, K. (2019). Toward open computational
communication science: A practical road map for reusable data and code. International Journal
of Communication, 19, 3935–3954.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G.,
Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms,
J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal
of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock,
S. H. D., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P.
(2014). Best practices for scientific computing. PLoS Biology, 12(1), e1001745. https://doi.org/
10.1371/journal.pbio.1001745.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough
practices in scientific computing. PLOS Computational Biology, 13(6), e1005510. https://
doi.org/10.1371/journal.pcbi.1005510.

Zook, M., Barocas, S., boyd, D. M., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A.,
Hollander, R., Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A., & Pasquale, F. (2017). Ten
simple rules for responsible big data research. PLOS Computational Biology, 13(3), e1005399.
https://doi.org/10.1371/journal.pcbi.1005399.

Haim · Gütekriterien und Handlungsempfehlungen

79

https://doi.org/10.5771/1615-634X-2021-1-65 - am 18.01.2026, 09:37:58. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

