Gutekriterien und Handlungsempfehlungen fir die
Entwicklung von Forschungssoftware in der
Kommunikations- und Medienwissenschaft

Mario Haim*

Die Entwicklung von Forschungssoftware ist fiir die empirische Kommunikations- und
Medienwissenschaft (KMW) aufgrund sozialer, gesetzlicher, normativer und technolo-
gischer Verinderungen unabdingbar. Forschungssoftware umfasst dabei Skripte und
Programme, die fiir den Zweck der Forschung und innerbalb des Fachs entwickelt wer-
den, deren Entwicklung in der KMW jedoch, im Gegensatz zu einigen anderen Diszi-
plinen, hiufig innerhalb einzelner Forschungsprojekte und nicht selten durch (autodi-
daktisch) programmierende Forschende erfolgt — ein Umstand, der zwar Innovation for-
dert, gleichzeitig aber einer Institutionalisierung von Forschungssoftware entgegensteht.
Dieser Beitrag leitet daber aus in dieser Hinsicht fortschrittlicheren Disziplinen neun
Giitekriterien fiir Forschungssoftware in der KMW ab: Forschungssoftware sollte dem-
nach zugéanglich, anschlussfibig, verstindlich, nachvollziehbar, antonom, strukturiert,
verifiziert, umsichtig und nutzbar sein. Daraunf aunfbawend schligt der Beitrag vier
Handlungsempfehlungen vor, um diese Giite auch nachhaltig zu institutionalisieren:
friihzeitige und gestirkte Methodenausbildung, angemessene Miglichkeiten der Sicht-
barkeit und Anerkennung, mebr und passendere Forderformate sowie institutionalisierte
Anreize, die eine professionelle Auseinandersetzung mit Forschungssoftware auch in
Karriereoptionen tibersetzen.

Schliisselworter: Methoden, Qualitit, Nachhaltigkeit, Computational Communication
Science, Computational Social Science

Quality Criteria and Recommendations for Developing Research Software
in Communication Science

The development of research software in communication science has become inevitable. Constant
changes of social, legal, normative, and technological predispositions render today’s media and com-
munication a moving research target, requiring perfectly suited methodological approaches and re-
spective research software. Research software are thereby understood as scripts and applications de-
veloped within the field and as means for research. In communication science, research software has
previously been developed within individual projects and oftentimes by individual (self-tanght) de-
veloping researchers. While such individuality is certainly beneficial to innovation, it also contradicts
the sustainability and thus institutionalization of research software. Building on findings and expe-
riences from other disciplines, this article lists nine quality criteria to foster a more sustainable re-
search-software landscape within communication science. That is, research software should be ac-
cessible, connectable, comprehensible, traceable, autonomous, structured, verified, cautious, and us-
able. In addition, this article compiles four recommendations to sustainably institutionalize high-

* Jun.-Prof. Dr. Mario Haim, Universitat Leipzig, Institut fir Kommunikations- und Medien-
wissenschaft, Nikolaistr. 27-29, Leipzig, Deutschland, mario.haim@uni-leipzig.de.
Der Autor bedankt sich bei den drei anonymen Gutachtenden sowie den Mitgliedern der DG-
PuK-Arbeitsgruppe Forschungssoftware fiir Anregungen und Feedback, insbesondere bei Ales-
sandro Belli, Annett Heft, Andreas Hepp, Florian Hohmann, Jakob Jiinger, Erik Koenen und
Julian Unkel.

DOI: 10.5771/1615-634X-2021-1-65 65

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

quality research software. That is, early and strengthened methodological training throunghout cur-
ricula, various opportunities for visibility and recognition of research software, more and more ap-
propriate funding formats to develop and maintain bhigh-quality research software, and institution-
alized incentives that help translate a professional approach to research software into academic career
options.

Keywords: methods, quality, sustainability, computational communication science, computational
social science

Die Erforschung digitaler Medien- und Informationsumgebungen unterliegt einem an-
haltenden Wandel. Mindestens vier Stromungen sind dabei von zentraler Relevanz: (1)
Soziale Verinderungen der Mediennutzung riicken immer neue Datenarten in den Fokus
(z. B. personalisierte Newsfeeds, Popularititshinweise, Geo-Informationen; vgl. auch
Hepp, 2016); (2) gesetzliche Veranderungen sehen bisweilen Anpassungen der Daten-
handhabung vor (z. B. DSGVO, Scraping; vgl. auch Rat fiir Sozial- und Wirtschaftsda-
ten, 2019); (3) normative Verinderungen verlangen immer haufiger nach nachhaltigerem
Datenmanagement (z. B. Anforderungen bei Fordermitteln, Open-Science-Bestrebun-
gen; vgl. auch Nosek et al., 2015); (4) technologische Verinderungen sorgen regelmiflig
fiir immer neue und effizientere Moglichkeiten, etwa fiir die Datenerhebung (z. B. agen-
tenbasierte Methoden, Tracking; vgl. auch Haim, 2020), erfordern gleichsam aber eine
stindige Anpassung, etwa durch verinderte Datenverfiigbarkeiten (z. B. API-Beschrin-
kungen, Zugangsbarrieren; vgl. auch Freelon, 2018).

Diese Entwicklungen machen eine anhaltende Adaption von Forschungsdesigns und
dem Umgang mit Daten nétig. Die Kommunikations- und Medienwissenschaft (KMW)
ist entsprechend laufend gefordert, ihre Forschungssoftware anzupassen. Dieser Bedarf
fuhrtin jingerer Zeit zu einer stetig wachsenden (van Atteveldt etal.,2019) und bisweilen
fragmentierten (fiir die Journalismusforschung vgl. z. B. Haim & Zamith, 2019) Land-
schaft an Forschungssoftware, tiber die im Rahmen der zunehmend populiren ,,Com-
putational Communication Science® als Teil einer ,,Computational Social Science” in-
ternational diskutiert wird (Lazer et al., 2020; van Atteveldt et al., 2019). Forschungs-
software wird je nach Anforderungen und verfiigharen Ressourcen vielerorts projekt-
bezogen entwickelt, dabei aber nur gelegentlich ver6ffentlicht und anderen zur Verfa-
gung gestellt, kaum durch Dritte begutachtet, und die Wartung oftmals mit Projektab-
schluss, spatestens aber mit dem Ausscheiden zentral Beteiligter, beendet. Gegen diese
projektbezogene Einzelfallentwicklung ist zunachst wenig einzuwenden. Im Gegenteil:
Innovative Vorstofle und explorative Bemithungen sind fiir den Fortschritt essenziell
(van Atteveldt & Peng, 2018). Gleichzeitig bedarf es perspektivisch einer professionel-
leren Forschungssoftwareentwicklung im Fach (Haim, 2018), um sowohl die Gtite nex-
er als auch den methodischen Fortschritt bestehender Forschungssoftware sicherzustel-
len.

Vor diesem Hintergrund wird Forschungssoftware hier sehr breit verstanden, als
innerhalb der Fachgemeinde entwickelte Computerprogramme fiir jegliche Zwecke ent-
lang des Forschungsprozesses. Forschungssoftware kann also fiir die Allgemeinheit ent-
wickelte R-Pakete (z. B. Chan et al., 2020; Unkel, 2019) und (Web-)Applikationen (z.
B. Hepp et al., 2018; Jinger & Keyling, 2017; Leiner, 2014) umfassen, ebenso wie spe-
zifische Skripte der Datenauswertung einzelner Projekte, solange sie nur innerhalb des
Fachs und fiir das Fach entwickelt wurden. Diese Einschrankung ,innerhalb des Fachs
und fiir das Fach® ist dabei notig, um Handlungsempfehlungen an verschiedene Ziel-
gruppen innerhalb der KMW geben zu konnen, die weder die Kompetenz der eigenen
Disziplin noch die der Entwicklungsintention tberschreiten. So folgen Gtitekriterien

66

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

auflerhalb der KMW bisweilen anderen Pramissen, etwa wenn es um die Lizenzierung
genutzter Drittsoftware fiir die kommerzielle Weiterverwendung, die Effektivitit ent-
wickelter Algorithmen fiir die informatische Medizin oder die Effizienz der entwickelten
Algorithmen fiir den informatischen Maschinenbau geht.

Dieser Beitrag diskutiert Giitekriterien fiir Forschungssoftware und konkrete Hand-
lungsempfehlungen fiir verschiedene Zielgruppen und Stakeholder innerhalb der KMW.
Dafiir werden zunachst gangige Praktiken der wissenschaftlichen Softwareentwicklung
anderer Disziplinen betrachtet, um daraus vier Pfeiler mit insgesamt neun Gutekriterien
fir das Fach abzuleiten. Anschlieffend werden diese Giitekriterien in konkrete Hand-
lungsempfehlungen tibertragen, wobei insbesondere auf die gingige Methodenausbil-
dung, die Planung, Forderung, Entwicklung und Veroffentlichung von Forschungssoft-
ware sowie die damit einhergehende Anerkennung eingegangen wird.

1. Giitekriterien

Forschungssoftware ist qua definitionem insbesondere in der Informatik Alltag. Dort
diskutierte Giitekriterien sind primir auf die Validierbarkeit moglichst belastbar und
effizient entwickelten Quellcodes sowie auf die Nachhaltigkeit entwickelter For-
schungssoftware ausgelegt. Daneben existieren in Informatik-nahen interdiszipliniren
Fichern lebhafte Diskussionen um die Giite der jeweils fachspezifischen Forschungs-
software, etwa in der Bioinformatik (,,Computational Biology“), dem informatischen
Maschinenbau (,,Computational Engineering Science®) oder der informatischen Medi-
zin (,Computational Medicine“) (Crouch et al., 2013). Von der Validierbarkeit abgese-
hen sind in diesen Disziplinen insbesondere Aspekte der Replizierbarkeit von groflem
Interesse. Dartiber hinaus und quer zu diesen fachdiszipliniren Diskursen finden sich
immer haufiger fachiibergreifende Diskussionen rund um die Open-Science-Bewegung
(z. B. Dienlin et al., 2020; Lewis, 2020). Zentral diskutierte Kriterien sind dabei erneut
die Replizierbarkeit sowie insbesondere die Transparenz. Ferner sehen auch die im Auf-
trag der Europiischen Kommission erarbeiteten ,, FAIR“-Prinzipien (findable, accessi-
ble, interoperable, reusable) akademischer Erzeugnisse insbesondere Transparenz, Re-
plizierbarkeit und Nachhaltigkeit vor (Almeida et al., 2017; Hasselbring et al., 2020;
Mons et al., 2017).

Diese insgesamt vier Diskussionsstringe — Transparenz, Replizierbarkeit, Validier-
barkeit und Nachhaltigkeit — werden hier als Pfeiler professioneller Forschungssoftware
verstanden. Innerhalb dieser Pfeiler sind fiir unterschiedliche Disziplinen unterschied-
liche Kriterien relevant. So wird etwa unter Validierbarkeit im informatischen Maschi-
nenbau die Sachrichtigkeit einzelner Software-Bestandteile priorisiert (Storer, 2017),
wihrend die Bioinformatik unter Validierbarkeit zunichst die Entwicklung durchdach-
ter und nachvollziehbarer Testszenarien priorisiert (Zook et al., 2017). Entsprechend
werden im Folgenden neun Giitekriterien fiir Forschungssoftware deklariert, die sich
primir an den Anforderungen und Gegebenheiten der KMW orientieren (vgl. auch Ta-

belle 1).

1.1 Kriterien der Transparenz

Forschungssoftware in der KMW ist transparent, wenn sie zuganglich, anschlussfahig
und verstandlich ist.

Zuginglich meint zunichst die auffindbare und persistente Veroffentlichung in eta-
blierten Repositorien (z. B. Harvard Dataverse, OSF; vgl. Stodden & Miguez, 2014). Zur
Veroffentlichung gehoren dabei neben dem Code auch fiir den Einsatz der Forschungs-

67

18.01.2026, 08:37:58.



https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

software notige Dokumentationen, Daten, Materialien, Analysen und Beispiele (Bow-
man & Keene, 2018; Lewis, 2020). Widersprechen etwa rechtliche Rahmenbedingungen
(z. B. des geistigen Eigentums oder des Schutzes der Privatsphire) einer Offenlegung,
soll die Zuginglichkeit der Forschungssoftware darunter nicht leiden; fiir solche Fille
sei an dieser Stelle auf entsprechende Werkzeuge zur Anonymisierung verwiesen (Dien-
lin et al., 2020; van Atteveldt et al., 2020). Zuginglich meint ferner die Auffindbarkeit
veroffentlichter Forschungssoftware, um dartiber in Austausch treten zu konnen. Dies
lisst sich etwa mithilfe regelmifiger Uberblicke verfiigbarer Forschungssoftware un-
terstiitzen (Storer, 2017), etwa in Form von Review-Beitriagen oder ,,Kiirzlich erschie-
nen“-Uberblicken in den gingigen Fachzeitschriften. So wiirde iiber bewihrte Kanile
auch jener Teil der Forschungsgemeinschaft auf neue Forschungssoftware aufmerksam,
der bislang kaum Berithrungspunkte mit den etablierten Repositorien hat.

Transparente Forschungssoftware soll zudem anschlussfibig sein, sich also an Nor-
men und Standards orientieren. Standards ergeben sich dabei aus Anforderungen der
Stakeholder (z. B. Drittmittelgebende, Fachzeitschriften; vgl. Blohowiak et al., 2013;
DFG, 2019), die etwa nach bestimmten Technologien verlangen. Als Normen im Sinne
gemeinhin akzeptierter Regeln und Leitlinien fiir die Forschungssoftware haben sich in
der wissenschaftlichen Softwareentwicklung und nicht zuletzt in der KMW insbeson-
dere die Nutzung von Python und R als Programmiersprachen etabliert, innerhalb von
R finden etwa die tidyverse-Werkzeuge immer grofiere Verbreitung (Unkel, 2020; van
Atteveldt et al., 2019; Wickham et al., 2019). Ferner haben sich Normen zur Formatie-
rung von Code, also etwa der genutzten Einrlickungen und Zeilenumbriiche (z. B. ,PEP
8“ in Python) (Nosek et al., 2015), herausgebildet, denen oftmals durch die Nutzung
integrierter Entwicklungsumgebungen (IDE) oder entsprechender Pakete beigekom-
men werden kann (z. B. RStudio und formatR fiir R, PyCharm und PEP-8 fur Python).
Anschlussfihige Forschungssoftware stellt damit ein Mindestmafl an Lesbarkeit sicher
und schafft gleichzeitig einheitlichere Anforderungen an das Vorwissen. Und obwohl
sie damit eine leichte Einschrinkung der Bewegungsfreiheit bedeutet, zumal im kreati-
ven Umfeld der Softwareentwicklung, ist die Anschlussfahigkeit essenzieller Bestandteil
professioneller Forschungssoftware, sowohl fiir die verstindliche Nutzung bestehenden
Codes (Nosek et al., 2015) als auch fiir die Ausbildung des akademischen Nachwuchses.

Zu einer verstindlichen Forschungssoftware tragen auflerdem die Gestaltung von
Code und Daten sowie eine umfassende Dokumentation bei. So sollen Datenbezeich-
nungen eindeutig, mégliche Ausprigungen dokumentiert und Datensitze auf die Ana-
lyse zugeschnitten sein (Lewis, 2020; Wilson et al., 2017). Code ist im besten Fall selbst-
erklirend, was sich durch sinnvoll sprechende Bezeichnungen von Variablen und Funk-
tionen auszeichnet (Storer, 2017), und gehort in jedem Fall dokumentiert (Lewis, 2020),
idealerweise mit den in einer Programmiersprache tblichen Auszeichnungen (z. B.
roxygen2 in R, docstrings in Python). Die Dokumentation umfasst dabei einleitende
Kommentare zur Funktionalitit eines Codes und beschreibt mindestens benotigte Pa-
rameter und erwartbare Riick- und Ausgabewerte (Wilson et al., 2017).

1.2 Kriterien der Replizierbarkeit

Forschungssoftware in der KMW ist replizierbar, wenn sie nachvollziehbar und auto-
nom ist.

Nachvollziehbar meint die lickenlose Beschreibung fir Auflenstehende, also etwa
die Schritte eines Auswertungsskripts von den Rohdaten bis zur finalen Analyse, die
Generierung eines Modells von der Vorverarbeitung bis zur Validierung oder die Funk-
tionsweise einer Anwendung von Anforderungen an die Laufzeitumgebung bis zur Be-

68

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

schreibung der Ausgabe. Damit einhergeht, sofern rechtlich moglich, die Veroffentli-
chung bendtigter Ressourcen, etwa der Rohdaten selbst (Gentzkow & Shapiro, 2014).
Eine liickenlose Beschreibung einer Forschungssoftware umfasst ferner Verweise auf alle
eingesetzten Werkzeuge (z. B. Python- oder R-Pakete) sowie die Versionsnummern
selbiger (Wilson et al., 2014) — eine Anforderung, die mittlerweile auch erste Fachzeit-
schriften an Veroffentlichungen stellen (z. B. Social Science Computer Review).

Idealtypisch ermoglicht eine Forschungssoftware auflerdem eine autonome Repli-
kation (Wilson et al., 2014, 2017). Im Fall eines Auswertungsskripts enthilt die verof-
fentlichte Forschungssoftware dafiir ein eigenstindig lauffihiges und gut dokumentier-
tes Skript, das die bendtigten Werkzeuge inklusive Versionen spezifiziert und ladt (z. B.
Uber das devtools-Paket in R, uiber requirements.txt in Python) und anschlieflend die
Forschungssoftware Schritt fiir Schritt ausfiihrt (Stodden & Miguez, 2014; van Atteveldt
etal., 2019; Wilson et al., 2017). Im Fall einer eigenstindigen Anwendung lasst sich fir
eine autonome Replikation die genaue Laufzeitumgebung etwa tiber eine Containervir-
tualisierung (z. B. Docker) oder entsprechende Konfigurationsdateien (z. B. Makefile,
requirements.txt) spezifizieren oder gar emulieren (Hasselbring et al., 2020; van Atte-
veldt et al., 2019).

Diese Bemithungen um idealtypische Forschungssoftware kommen derzeit aller-
dings auch in ihren Ursprungsdisziplinen, etwa der Informatik, nur bedingt zu vollem
Einsatz. Vielmehr zeichnen sich vielerorts Arbeitsgruppen ab, um fachspezifische Emp-
fehlungen fiir eine professionellere Forschungssoftware zu diskutieren (z. B. die DG-
PuK-Arbeitsgruppen fiir Forschungsdaten und Forschungssoftware). Zentrale Themen
sind dabei die direkt ausfithrbare Archivierung von Forschungssoftware, auch iiber Ver-
sionen und Plattformen hinweg (z. B. im Rahmen der Gesellschaft fiir Forschungssoft-
ware, in der sich insbesondere Entwickelnde fiir Forschungsgruppen engagieren; vgl.
de-rse.org), die automatisierte Prifung von Forschungssoftware auf Funktionstiichtig-
keit im Vorfeld einer Publikation (vgl. Crouch, 2020) oder die Priregistrierung zur Be-
gutachtung von Forschungssoftware vor Durchfithrung einer Studie (vgl. Bowman &
Keene, 2018; Dienlin et al., 2020; Lewis, 2020).

1.3 Kriterien der Validierbarkeit

Forschungssoftware in der KMW ist validierbar, wenn sie strukturiert und verifiziert ist.

Strukturierte Forschungssoftware ist fiir andere lesbar und ermoglicht ein schnelles
Durchdringen des Quellcodes. Strukturieren lisst sich Software dabei einerseits inhalt-
lich anhand der zu erfiillenden Aufgaben (z. B. Kommunikation mit API-Schnittstelle,
Vorverarbeitung von Textdaten, Auswertung), andererseits technologisch anhand der
auszufillenden Funktionen (z. B. Authentifizierung, Lemmatisierung, Bootstrapping).
Um beiden Aspekten bei adiquater Lesbarkeit gerecht zu werden, soll Forschungssoft-
ware nach Aufgaben modularisiert und innerhalb der Module nach Funktionen organi-
siert sein (Storer, 2017). R ermoglicht eine solche Modularisierung mithilfe von Ver-
zeichnissen, Dateien und dem source-Befehl oder durch das Auslagern in eigene Pakete;
eine Organisation innerhalb einzelner Dateien ist iiber Code-Sektionen, gekennzeichnet
etwa mithilfe von Markdown, moglich. Python erlaubt eine Modularisierung iiber Ver-
zeichnisse (in Python als ,,Packages® bezeichnet), Dateien (,Modules“) und die import-
Befehlspalette; die Organisation innerhalb eines Moduls ist mithilfe von Klassen mog-
lich. Eine solche Code-Struktur erlaubt ferner die konsequente Vermeidung von Re-
dundanzen - nicht zuletzt, um Fehlerquellen zu reduzieren und die Lesbarkeit zu ver-
bessern. Dafiir gilt es auch, etablierte Bibliotheken und Pakete Dritter einzusetzen, Du-

69

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

plikate im Code durch wiederverwendbare Funktionen zu ersetzen und einzelne Funk-
tionen in zentrale Module auszulagern (Wilson et al., 2017).

Strukturierter Quellcode bietet schliefflich die besten Voraussetzungen, um ange-
messen verifiziert zu werden, was nicht nur das manuelle Priifen auf Plausibilitit meint,
sondern insbesondere das automatisierte und iterative Testen. Tests lassen sich dabei im
Wesentlichen einteilen in ,,unit tests“, ,integration tests“ und ,,acceptance tests“ (Stod-
den & Miguez, 2014). Ziel von ,unit tests ist es, einzelne Funktionen und Module auf
ihre Sachrichtigkeit zu priifen, mithin also die Eingabeparameter zu variieren und die
Riickgabewerte mit erwarteten Resultaten zu vergleichen. Demgegentiber stehen ,,inte-
gration tests“, die das Zusammenspiel von Modulen in den Blick nehmen, also etwa das
Scraping mit der anschliefenden Verarbeitung der gesammelten Daten. Zuletzt werden
insbesondere fiir Anwendungen immer hiufiger ,acceptance tests“ durchgefiihrt, bei
denen Anwendende oder Auftraggebende die Forschungssoftware testen und anschlie-
end den Entwickelnden Bericht erstatten. Da ,,unit tests“ und ,,integration tests soft-
waregesteuert ablaufen, ist eine Vielzahl an Testumgebungen verfiigbar, die sich meist
nahtlos in integrierte Entwicklungsumgebungen einfiigen (z. B. testthat fiir R in RStudio,
pytest fir Python in PyCharm).

Die Entwicklung von Testszenarien ist dabei kaum zu unterschitzen, und ein per-
manenter Rollenwechsel zwischen kreativ entwickelnd und streng testend der Code-
Qualitit duflerst zutriglich (Storer, 2017). Die Entwicklung von Tests sollte dabei selbst
den diskutierten Kriterien professioneller Forschungssoftware unterliegen, Testszena-
rien also selbst etwa verstindlich und nachvollziehbar sein. Bei ausreichend Ressourcen
wird zudem zu fortlaufender gegenseitiger Begutachtung von Code (Kelly & Sanders,
2008), institutionalisiert etwa im Rahmen sogenannter ,Merge Requests“/,,Pull Re-
quests (vgl. auch den Abschnitt 1.4 zu Kriterien der Nachhaltigkeit), oder zum ,,pair
programming®, also dem Entwickeln zu zweit vor einem Rechner, geraten (Brown &
Wilson, 2018); auch Verfahren des lauten Denkens im Rahmen von Tests durch unbe-
teiligte Dritte vermogen die Qualitit von Forschungssoftware zu verbessern. Insbeson-
dere letztere Empfehlungen zielen dabei auch darauf ab, Fehler als konstruktiven Teil
des Entwicklungsprozesses zu verstehen und einer solchen Fehlerkultur mit einer an-
gemessenen Testkultur zu begegnen (Kelly & Sanders, 2008; Wilson et al., 2014).

1.4 Kriterien der Nachhaltigkeit

Forschungssoftware in der KMW ist nachhaltig, wenn sie umsichtig und nutzbar ist.

Umsichtig meint dabei die moglichst weitreichende Beachtung duflerer Umstinde
und verweist als solche zunichst auf die Implementierung von Fehler- und Ausnahme-
behandlung (Gentzkow & Shapiro, 2014). Mogliche erwartbare Fehlerquellen (z. B. das
Erreichen eines API-Limits) sollen im Code abgefangen und verarbeitet werden, bei
unerwarteten Ausnahmen sollen aktuelle Zwischenstinde gespeichert und mogliche Ur-
sachen protokolliert werden. Dafiir bietet sich die Ausnahmebehandlung einzelner Pro-
grammiersprachen an (z. B. tryCatch in R, try/except in Python). Umsichtig meint ferner
die Bertcksichtigung zentraler Aspekte der Sicherheit und Forschungsethik, etwa im
Umgang mit personenbezogenen Daten (Zook et al., 2017). Dabei bieten sich Techno-
logien der Verschliisselung und Verschleierung, der gesicherten Ubertragung sowie der
Anonymisierung an. Fir den forschungsethischen Umgang im Rahmen von For-
schungssoftware wird zudem hiufig auf Ethik-Kommissionen (Institutional Review
Boards, IRB) sowie den innerdiszipliniren Austausch verwiesen (Zook et al., 2017) —
beiden Wegen gemein ist dabei der Blick Dritter auf den Code und den Umgang mit
Daten.

70

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - Gutekriterien und Handlungsempfehlungen

Tabelle 1: Giitekriterien professioneller Forschungssoftware

Kriterien der Transparenz
zugénglich - in etablierten Repositorien verdffentlicht
- im Fachdiskurs thematisiert
- Code, Daten, Dokumentation, Materialien, Analysen und Beispiele publi-
ziert (im Zweifel anonymisiert)
anschlussfihig - baut auf verbreitete Programmiersprachen auf (z. B. Python, R)
- setzt auf etablierte Bibliotheken und Pakete
- berticksichtigt Normen und Standards in Code und Dokumentation
(Code-Gestaltung, Code-Struktur, sichergestellt durch moderne IDE)
verstindlich - dokumentiert simtliche Daten, Variablen und Ausprigungen
- besteht aus selbsterklirendem Code (sinnvolle und sprechende Variablen-
und Funktionsnamen, rigide Formatierung)
- dokumentiert Zweck, Parameter und Riickgabe je Skript und Funktion
— dokumentiert in gingiger Auszeichnung (z. B. roxygen2, docstrings)

Kriterien der Replizierbarkeit
nachvollziehbar ~ — lickenlos dokumentiert
— mitsamt néotigen Rohdaten und Ressourcen verdffentlicht
— auf eingesetzte Pakete und Versionsnummern verwiesen
autonom — lauffihiges und dokumentiertes Skript zur eigenstindigen Ausfithrung der
Forschungssoftware veréffentlicht
- Laufzeitumgebung moglichst akkurat archiviert

Kriterien der Validierbarkeit
strukturiert - nach Aufgaben modularisiert
- innerhalb von Modulen nach Funktionen organisiert
— Code-Redundanzen entfernt
verifiziert — Funktionen im Rahmen von ,unit tests“ kleinteilig verifiziert
— Module im Rahmen von ,integration tests“ grof}flichig getestet
- Verifikationsszenarien mithilfe von Testumgebungen implementiert
— Dritte iiber Code-Begutachtung, paarweises Programmieren, lautes Den-
ken im Rahmen der Testszenarien und/oder ,acceptance tests“ bertick-
sichtigt

Kriterien der Nachhaltigkeit
umsichtig - Fehlerbehandlung fiir erwartbare Szenarien implementiert

— Fehlerbehandlung fiir Absturz der Forschungssoftware implementiert

(Zwischenstinde werden gespeichert, Umstinde protokolliert)

— zentrale Sicherheitsmafinahmen berticksichtigt

- Forschungssoftware auf ethische Aspekte gepriift (z. B. durch IRB)
nutzbar - lizenziert (im Einklang mit genutzten Bibliotheken und Paketen)

— versioniert (z. B. Git, Subversion)

— Absichten und Pline zu lingerfristiger Wartung kommuniziert

Um Forschungssoftware nachhaltig nutzbar zu machen, ist neben den bereits genannten
Kriterien, etwa der Zuginglichkeit oder der Verstandlichkeit, eine entsprechende Li-
zenzierung notwendig. Dabei gilt es, verwendete Bibliotheken und Pakete Dritter auf
ithre Lizenz hin zu prifen, um sich nicht tber deren Primissen hinwegzusetzen, und
gegebenenfalls durch offenere Alternativen zu ersetzen (Stodden & Miguez, 2014). Da-
rauf aufbauend sollte Forschungssoftware die offenste unter den moglichen Lizenzen
erhalten (z. B. Apache, GNU, MIT) - einerseits, um fur Klarheit im Rahmen der Nut-

71

18.01.2026, 08:37:58.



https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

zung, Weiterentwicklung und Weiterverbreitung zu sorgen; andererseits, um die Nut-
zung, Weiterentwicklung und Weiterverbreitung auch zu ermoglichen (vgl. Haim &
Zamith, 2019). Eine entsprechend wiinschenswerte Weiterentwicklung profitiert dabei
wiederum von einer umfassenden Dokumentation sowie der konsequenten Nutzung
einer kommentierten Versionsverwaltung (Stodden & Miguez, 2014). Moderne Versi-
onsverwaltungssysteme (z. B. Git, Subversion) erlauben auch die Institutionalisierung
gegenseitiger Code-Begutachtung (,Merge Requests“/,,Pull Requests“) sowie die Inte-
gration sogenannter ,,Pipelines®, die bei Code-Anderungen automatisiert die Durch-
fithrung vorab definierter Tests oder Formatierungsschritte ermoglichen. Zuletzt sollte
fiir eine nutzbare Forschungssoftware klar kommuniziert werden, ob und inwiefern die
Forschungssoftware aktiv gewartet wird; denn wihrend Industriestandards konsistente
Wartung als Qualititsmerkmal einer Software betrachten (z. B. in der Spezifizierung
nach ISO/IEC/IEEE 12207:2017), ist die langfristige Finanzierung der Wartung von
Forschungssoftware nur selten Gegenstand von Drittmitteln.

2. Handlungsempfehlungen

Um die Giitekriterien in Handlungsempfehlungen tiberfithren zu konnen, ist zunachst
erneut festzuhalten, dass die Entwicklung von Forschungssoftware meist im Rahmen
und fiir den begrenzten Zeitraum einzelner Forschungsprojekte erfolgt und gefordert
wird. Langfristige Projekte mit dem Ziel, entwickelte Forschungssoftware der Allge-
meinheit zur Verfigung zu stellen und auch zu warten, sind in der deutschen Kommu-
nikations- und Medienwissenschaft (KMW) nur in Ausnahmefillen zu beobachten.
Ahnlich wie in anderen Lindern ist cine Verdffentlichung oder Wartung von For-
schungssoftware vielmehr auf das Bestreben einzelner Beteiligter zuriickzufiihren (van
Atteveldt et al., 2019).

Mit Blick in die akademische Softwareentwicklung verschiedener Disziplinen
(Storer, 2017) bewegt sich die KMW damit in der Kategorie (1) unprofessioneller Skript-
entwicklung, etwa durch (autodidaktisch) programmierende Forschende. Wihrend die-
se Kategorie grofitmogliche kreative Flexibilitat erlaubt, ist sie gleichzeitig auf das Wissen
und die Motivation Einzelner angewiesen. Auch bekanntere Beispiele in der KMW, etwa
der ,Facepager” (Junger & Keyling, 2017), ,SoSci Survey“ (Leiner, 2014) oder das
ytidycomm®“-Paket (Unkel, 2019), sind unmittelbar mit ihren Entwicklern verkniipft.
Eine solche Form der Entwicklung vermag also gerade in einer frithen Phase For-
schungssoftware voranzubringen, sie eignet sich aber nur bedingt fiir die nachhaltige
Institutionalisierung entwickelter Werkzeuge. Um dieser Kreativitat nicht nur weiterhin
Raum zu geben, sondern sie auch stirker zu fordern, lassen sich vermehrt Aspekte und
Gitekriterien professioneller Forschungssoftwareentwicklung in die Ausbildung des
wissenschaftlichen Nachwuchses integrieren. Ferner bedarf es sowohl einer kurz- und
mittelfristigen extrinsischen Motivation als auch der langfristigen Perspektive, sich ver-
mehrt mit der Entwicklung von Forschungssoftware auseinanderzusetzen.

Im Gegensatz zu Entwicklungen durch Einzelpersonen binden (2) professionelle in-
neruniversitire Entwicklungen explizit Programmierende in Forschungsgruppen ein,
um mehrere Projekte versorgen und Ressourcen wiederverwenden zu konnen (Storer,
2017). Die an der London School of Economics and Political Science ansissige und ERC-
geforderte Entwicklung und Wartung der unterschiedlichen R-Pakete um das ,,quante-
da“-Projekt zur Analyse von Textdaten (Benoit et al., 2018) fillt beispielsweise in diese
Kategorie. Wihrend in der deutschsprachigen KMW kaum entsprechende Beispiele aus-
zumachen sind (eine Ausnahme bilden etwa Hepp et al., 2018), wurde diese Entwicklung
im Fach zuletzt Giber die Schaffung erster Methodenprofessuren mit dezidierter ,,Com-

72

18.01.2026, 08:37:58.



https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

putational “~-Denomination angestoflen — eine deutliche Incentivierung, deren Auswir-
kung sich aber erst noch abzeichnen muss. Um eine solche Entwicklung weiter voran-
zutreiben, ist neben entsprechenden Drittmittelformaten insbesondere eine gewisse
Grundausbildung seitens der Antragstellenden notig.

Zuletzt sieht die (3) institutionalisierte Entwicklung die aufleruniversitire Umset-
zung und Wartung kollaborativ im Fach nutzbarer Software-Infrastruktur vor, die le-
diglich wissenschaftlich initiiert, begleitet und genutzt wird (Storer, 2017). Wenngleich
ein solches Auslagern einem gewissen Risiko des Kontrollverlusts unterliegt, stellt es fiir
zentrale Infrastruktur-Anforderungen eines Fachs eine durchaus lohnenswerte Alter-
native zur fachinternen Entwicklung dar. Beispielhaft ist hier etwa ,,Media Cloud“ als
Archiv von Online-Nachrichten zu nennen, das durch seine US-Forderung aber den
Fokus zunichst auf englischsprachige Nachrichten legt; vergleichbare Infrastruktur-
Forderungen in der deutschsprachigen KMW sind nicht bekannt. Auch hierfiir wiren
neben einer gewissen Grundausbildung seitens der Antragstellenden insbesondere ent-
sprechende Drittmittelformate fir die Projektplanung erforderlich.

2.1 Methodenausbildung stirken

Die Methodenausbildung wie auch die Anwendung empirischer Methoden gehort in der
KMW zu allen gingigen Curricula (Matthes, 2019; Matthes et al., 2011). Innerhalb dieser
wie auch im Rahmen von Abschlussarbeiten konnen Giitekriterien professioneller For-
schungssoftware Platz finden, um so bereits in Bachelor- und Masterstudiengingen
Grundsteine fir spitere Arbeiten zu legen. Einen niederschwelligen Einstieg in eine
professionellere Entwicklung von Forschungssoftware ermdglicht dabei die Datenaus-
wertung, zumal alle gingigen Programme der Datenauswertung den Fokus auf Skripte
erlauben. Fiir die Vermittlung von Gtitekriterien lassen sich die Skripte selbst zunichst
zu einer Priifungsleistung in Veranstaltungen der Datenanalyse oder der Statistik erkla-
ren. Diese Skripte sollen, in den Giitekriterien professioneller Forschungssoftware ge-
sprochen, anschlussfihig, verstandlich, nachvollziehbar, strukturiert und verifiziert sein.
Studierende sind so frithzeitig dazu angehalten, ordentlichen und selbsterklirenden
Code zu schreiben, ausfiihrlich zu dokumentieren, zu modularisieren, zu strukturieren
und zu testen. Darauf aufbauend konnen solche Skripte unter den Studierenden ge-
tauscht und einer gegenseitigen Begutachtung unterzogen werden.

Ferner lassen sich Kriterien einer zuganglichen, anschlussfahigen, umsichtigen und
nutzbaren Forschungssoftware in Forschungsseminare einbetten. Hierbei kann etwa auf
bestehende Daten und Software aufgebaut werden, beispielsweise im Rahmen von Re-
plikationsstudien, die Studierende zur detaillierten Auseinandersetzung mit zugangli-
chen Ressourcen zwingen. Dariiber hinaus konnen sowohl die lingerfristige Nutzbar-
machung der eigenen Forschungssoftware sowie die Einbindung fremder Bibliotheken
und Pakete zu zentralen Herausforderungen der Datenerhebung oder Auswertung ge-
macht werden, um ein Bewusstsein fiir die Anschlussfihigkeit von Forschungssoftware
zu schaffen. Es bietet sich auflerdem an, Fragen der Fehler- und Ausnahmebehandlung
sowie Aspekte der Datensicherheit und Forschungsethik im Rahmen eines umsichtigen
Forschungsprozesses zu thematisieren.

Auch in Abschlussarbeiten kann die Anwendung der Giitekriterien professioneller
Forschungssoftware selbstverstandlich(er) werden, indem etwa Skripte der Datenaus-
wertung anschlussfihig, nachvollziehbar, strukturiert und verifiziert, die Daten ent-
sprechend zuginglich und verstindlich sein sollen. Ferner kann auch die Entwicklung
neuer, die Validierung bestehender oder der Vergleich unterschiedlicher Forschungs-
software bisweilen zum zentralen Gegenstand erhoben werden. Hierbei lieflen sich ne-

73

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

ben den genannten Gtitekriterien auch Aspekte der Anwendungsfreundlichkeit bertick-
sichtigen. Eine solche Ausdifferenzierung kime wohl auch den zweifellos unterschied-
lichen Zielgruppen unter den Studierenden entgegen. So ist neben einer wohl auch hier
zu erwartenden Gruppe (autodidaktisch) Programmierender sicherlich auch von einer
Gruppe tiefergehend Interessierter auszugehen, denen es zwar an konkreteren Pro-
grammierkenntnissen, jedoch nicht an Motivation mangelt, sowie von einer Gruppe eher
oberflichlich Interessierter, die Forschungssoftware zwar nutzen, aber vermutlich nicht
selbst entwickeln wiirden.

2.2 Extrinsische Motivation fordern

Uber die Ausbildung hinaus ist neben dem Wissen iiber professionelle Forschungssoft-
ware wohl insbesondere die kurz- und mittelfristige extrinsische Motivation, sich damit
zu beschaftigen, entscheidend. Ein mafigeblicher Hebel dafiir ist die institutionalisierte
Anerkennung, die sich im Wissenschaftssystem insbesondere in Zitationen bemisst. Sie
erfolgt allem voran tiber Fachzeitschriften, die dadurch auch in die Lage versetzt werden,
professionelle Standards zu setzen, zu fordern und zu férdern.

Dabei scheint fir Zeitschriften in unserem Fach Innovation im Umgang mit For-
schungssoftware derzeit insbesondere zu bedeuten, Publikationen, die Open-Science-
Standards der Transparenz von Daten oder der Priregistrierung folgen, mit sogenannten
,Badges“ hervorzuheben (Blohowiak et al., 2013). Solche Bemiihungen sind lobenswert
und erfordern gleichzeitig minimalen Aufwand in ihrer Implementierung. Sie bergen
aber die Gefahr, unterschiedliche Motive miteinander zu vergleichen — ist die priregis-
trierte Befragung mit Badge wertvoller als die Inhaltsanalyse oder der Theoriebeitrag
ohne Badge?

Erginzend wire deshalb ein fundierterer Umgang mit Forschungssoftware wiin-
schenswert, der nicht nur die Transparenz von Forschungssoftware tiber Badges lobt,
sondern sie schlicht voraussetzt. Derartige Forderungen konnen von Fachzeitschriften
selbst erhoben, sie kénnen aber auch im Begutachtungsprozess eingefordert werden.
Auch die Validierbarkeit von Forschungssoftware konnte unter bestimmten Vorausset-
zungen, etwa wenn neue Forschungssoftware zum Einsatz kommt, zu einem zentralen
Kriterium werden, das es ebenfalls zu begutachten gilt. Ein solches System wire gleich-
zeitig einer nachhaltigeren Landschaft an Forschungssoftware zutraglich, was gleichsam
Entwickelnden messbare akademische Anerkennung (Zitationen) einbrichte. Die not-
wendige Begutachtung von Code wiirde ferner, entsprechende Anforderungen an den
Code vorausgesetzt, der Anschlussfihigkeit und Verstindlichkeit der Forschungssoft-
ware entgegenkommen.

Im Umkehrschluss bedeutet ein solches System, dass es begutachteter Moglichkeiten
der Publikation von Forschungssoftware bedarf. Diese bestehen bisweilen bereits in den
bekannten Fachzeitschriften mit methodischem Schwerpunkt (z. B. Computational
Communication Research, Communication Methods and Measures), sie unterliegen
aber den im Fach uiblichen Charakteristika wissenschaftlicher Publikationen. Damit be-
deuten sie in ihrer aktuellen Form zusitzlichen Aufwand fir die Entwickelnden. Im
Sinne einer professionelleren Forschungssoftwarelandschaft wiren indes auch Publika-
tionsformen nétig, die etwa Anleitungen enthalten (z. B. mit Videos), Tests erlauben
(z. B. uber Pipelines) oder Laufzeitumgebungen spezifizieren (z. B. iber require-
ments.txt). Selbst die Implementierung von Versionen wire denkbar, um etwa das nach-
tragliche Beheben kleinerer Fehler, nicht aber das nachtrigliche Integrieren neuer Funk-
tionen, im Rahmen einer Publikation zu erméglichen.

74

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

2.3 Drittmittel ermoglichen

Im weiteren Feld kurz- und mittelfristiger extrinsischer Motivation liegen sicherlich
auch Drittmittel. Sie sollen im Idealfall eine Moglichkeit bieten, sich durch die Entwick-
lung und Wartung einer angemessen der Forschungsgemeinschaft zur Verfiigung ge-
stellten Forschungssoftware verdient zu machen. Dafiir bedarf es insbesondere entspre-
chender Forderformate, wie sie bislang nur gelegentlich in Einzelaufrufen formuliert
werden (z. B. das ,JDEAS“-Programm des ERC). Sie konnen einerseits entwickelnde
Forschende ermutigen, mit Forschungssoftware lohnend zum Diskurs beizutragen; an-
dererseits erhoht eine solch dezidierte Férderung mittelfristig wohl auch die Giite jener
Forschung, die von so geférderter Forschungssoftware profitiert.

Letzteres lisst sich etwa mit Storer (2017) zeigen, der in einem systematischen Uber-
blick iiber Fallstudien akademischer Softwareentwicklung feststellt, dass insbesondere
fehlende Informationen (Transparenz), eine nur liicckenhaft nachvollziehbare Anwen-
dung (Replizierbarkeit) sowie eine nicht (Validierbarkeit) oder nicht mehr (Nachhaltig-
keit) intakte Funktionalitit die Neuentwicklung von originir bereits bestehender For-
schungssoftware notwendig machen. Andere, stirker inhaltlich fokussierte Drittmittel-
antrige sind entsprechend immer wieder gezwungen, die Entwicklung notwendiger
Forschungssoftware selbst vorzusehen. Ein mithsames und kostspieliges Unterfangen,
das aufgrund von projektspezifischen Perspektiven und Rahmenbedingungen auch einer
Vergleichbarkeit im Weg steht.

Dieser Punkt ldsst sich erneut am Beispiel ,,quanteda® (Benoit et al., 2018) verdeut-
lichen: Quantitative Inhaltsanalysen sind Teil vieler Forschungsprojekte in der KMW,
die zunehmend wachsenden Textmengen machen eine zumindest teilweise Automati-
sierung der Auswertung notig; eine Entwicklung der Forschungssoftware zu einer sol-
chen Auswertung ist aufwendig und bedarf zahlreicher methodischer Entscheidungen
(Gtlinther & Quandt, 2016) — Entscheidungen, die das in diesem Fall iiber acht Jahre
ERC-geférderte Projekt in einem transparenten Prozess bereits getroffen hat. Und ob-
schon es in einzelnen Forschungspm]ekten Griinde fiir oder gegen einzelne solcher
Entscheidungen geben mag, etwa wie Begriffe auf ihre Wortstimme zu reduzieren oder
die Dokumententropie zu berechnen sind, so schafft eine derart verbreitete Forschungs-
software wie ,quanteda“ Normen und Standards fir solche Verfahren und damit eine
Infrastruktur fir einen methodischen Konsens.

2.4 Perspektive schaffen

Uber Zitationen und Drittmittel hinaus bedarf es zuletzt einer langfristigen Perspektive,
um sich im Fach mit Forschungssoftware zu beschiftigen. Diese Perspektiven sind zu-
letzt im Zuge einer ,,Computational Communication Science“ sowie einer ,,Computa-
tional Social Science® stark gewachsen (Lazer et al.,, 2020; van Atteveldt et al., 2019):
Entsprechende Fachgruppen haben sich herausgebildet oder ausgerichtet (z. B. Metho-
den-Fachgruppe in der DGPuK, ,,Computational Methods“-Interessensgruppe in der
ICA), Arbeitsgruppen und Diskussionsrunden sind allerorts anzutreffen (z. B. waren
allein im ersten Quartal des Jahres 2020 innerhalb der DGPuK mehrere entsprechende
Initiativen aktiv, etwa zum Umgang mit Forschungsdaten, Forschungssoftware und
Computational Communication Science in der Lehre), Fachzeitschriften mit originirem
Methodenbezug sind zentraler Bestandteil der Fachliteratur (z. B. Communication Me-
thods and Measures, Computational Communication Research), Ausschreibungen fiir
Drittmittel mit — wenngleich primir inhaltlichem — ,,Computational“-Bezug in der
KMW immer wieder verfiigbar (z. B. KI-Initiative der DFG, Computational-Social-

75

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

Science-Bemithungen der Volkswagenstiftung, AI-Impact-Challenge von Google). Mit
dieser Dynamik einher geht einerseits eine hohere Sichtbarkeit, andererseits wohl auch
ein erhohter Bedarf entsprechender Kompetenz und Erfahrung (vgl. die anderen drei
Handlungsempfehlungen).

Damit zeigt sich in Grundziigen auch eine zentralere Verschiebung im Feld: Herrsch-
te bislang die Meinung vor, die eigene wissenschaftliche Karriere nicht durch Methoden
voranbringen zu konnen (Matthes, 2019), so scheinen Computational Methods einen
Grundstein einer stirker institutionalisierten Perspektive zu legen. So haben inzwischen
einige wenige Universititen entsprechende (Junior-)Professuren der Computational
Methods implementiert und geben so der professionellen Beschiftigung mit Methoden
- und damit zu einem ganz wesentlichen Teil mit Forschungssoftware — einen institu-
tionellen Rahmen. Sich innerhalb der KMW professionell mit Forschungssoftware aus-
einanderzusetzen, entwickelt sich langsam zur Karriereoption.

3. Fazit

Eine stindige Entwicklung digitaler Medien- und Informationsumgebungen macht die
fortlaufende Anpassung von Forschungssoftware — innerhalb der Fachgemeinde entwi-
ckelte Computerprogramme fiir jegliche Zwecke entlang des Forschungsprozesses —
notig. Dabet finden Entwicklung und Wartung in der Kommunikations- und Medien-
wissenschaft (KMW) haufig innerhalb einzelner Forschungsprojekte und oftmals durch
(autodidaktisch) programmierende Forschende statt. Ein Umstand, der Innovation und
Kreativitit ermoglicht, gleichzeitig aber keiner nachhaltigen Institutionalisierung ent-
wickelter Werkzeuge zutriglich ist.

Der Beitrag schlidgt daher neun Giitekriterien professioneller Forschungssoftware
vor, die fir sich genommen niederschwellig im Rahmen der Entwicklung umsetzbar sind
(Tabelle 1). Forschungssoftware sollte demnach zuginglich, anschlussfihig, verstind-
lich, nachvollziehbar, autonom, strukturiert, verifiziert, umsichtig und nutzbar sein.
Diese Giitekriterien ergeben sich aus den vier zentralen Pfeilern der Entwicklung von
Forschungssoftware — Transparenz, Replizierbarkeit, Validierbarkeit und Nachhaltig-
keit —, die sich in Disziplinen mit fortgeschrittener Diskussion um die Giite von For-
schungssoftware (z. B. Informatik, Bioinformatik, informatischer Maschinenbau, infor-
matische Medizin) abgezeichnet haben.

Fir eine lingerfristige Qualititssicherung der Forschungssoftware in der KMW ist
neben diesen Giitekriterien indes wohl eine Verinderung einiger Rahmenbedingungen
notig. Der Beitrag schligt dafiir vier konkrete Handlungsempfehlungen vor:

(1) Moglichst frither Kontakt der Studierenden mit der Entwicklung professioneller
Forschungssoftware, etwa im Rahmen von Datenanalysekursen, Forschungssemi-
naren oder Abschlussarbeiten; so sollen Bertihrungsingste abgebaut und gleichzeitig
der Grundstein fiir einen professionelleren Umgang mit Skripten und Programmie-
rung in der Forschung gelegt werden.

(2) Angemessene Moglichkeiten der Veroffentlichung und Zitation, etwa durch einge-
forderte Standards, adiquate Begutachtungsprozesse und flexiblere Publikations-
formate; sie sollen Sichtbarkeit, Qualititsstandards und eine entsprechende Repu-
tation von Entwickelnden sicherstellen.

(3) Forderformate, die das Einwerben von Drittmitteln durch die Entwicklung und
Wartung von Forschungssoftware ermoglichen; so soll Entwicklung gefordert und
gleichzeitig das Fach stirker mit entsprechender Infrastruktur ausgestattet werden.

76

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

(4) Institutionalisierte Anreize, die eine professionelle Auseinandersetzung mit For-
schungssoftware auch in Karriereoptionen tibersetzen (z. B. Methodenprofessuren).

Empirische Forschung soll durch professionellere Forschungssoftware nicht einge-
schrinkt werden. Das Gegenteil ist der Fall: Zugingliche und verstindliche Werkzeuge,
strukturierte, nachvollziehbare und autonome Skripte der Datenauswertung, verifizierte
und umsichtige Applikationen sind das methodische Ruckgrat einer vertrauenswirdigen
empirischen Wissenschaft. Die Giite eingesetzter Forschungssoftware soll kein notwen-
diges Beiwerk, sondern selbstverstindliche Voraussetzung sein. Ist eine entwickelte
Forschungssoftware zudem nutzbar und anschlussfahig, ermoglicht sie dartiber hinaus
eine gegenseitige Bezugnahme, Anerkennung, Weiterentwicklung und Wertschitzung,
um mittel- und langfristig nicht nur auf intrinsisch motivierte Einzelpersonen, sondern
auch auf eine institutionalisierte Infrastruktur an Forschungssoftware zuriickgreifen zu
konnen.

Literatur

Almeida, A. V. de, Borges, M. M., & Roque, L. (2017). The European Open Science Cloud: A new
challenge for Europe. Proceedings of the 5th International Conference on Technological Ecosys-
tems for Enhancing Multiculturality, 1-4. https://doi.org/10.1145/3144826.3145382.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Miiller, S., & Matsuo, A. (2018). quante-
da: An R package for the quantitative analysis of textual data. Journal of Open Source Soft-
ware, 3(30), 774. https://doi.org/10.21105/j0ss.00774.

Blohowiak, B. B., Cohoon, J., de-Wit, L., Eich, E., Farach, F. J., Hasselman, F., Holcombe, A. O.,
Humphreys, M., Lewis, M., & Nosek, B. A. (2013). Badges to acknowledge open practices.
https://osf.io/tvyxz/.

Bowman, N. D., & Keene, J. R. (2018). A layered framework for considering open science practices.
Communication Research Reports, 35(4), 363-372. https://doi.org/10.1080/08824096.2018.
1513273.

Brown, N. C. C., & Wilson, G. (2018). Ten quick tips for teaching programming. PLOS Compu-
tational Biology, 14(4), e1006023. https://doi.org/10.1371/journal.pcbi.1006023.

Chan, C., Zeng,J., Wessler, H., Jungblut, M., Welbers, K., Bajjalich, J., van Atteveldt, W., & Althaus,
S.(2020). Reproducible extraction of cross-lingual topics. Communication Methods & Mea-
sures. https://doi.org/10.1080/19312458.2020.1812555

Crouch, S. (2020, Januar 20). Software design in just 20 questions. Software Sustainability Institute.
https://software.ac.uk/blog/2020-01-20-software-design-just-20-questions [11.11.2020].

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., Carr, L., De Roure, D.,
Goble, C., & Parsons, M. (2013). The software sustainability institute: Changing research soft-
ware attitudes and practices. Computing in Science Engineering, 15(6), 74-80. https://doi.org/
10.1109/MCSE.2013.133.

DFG (2019, Juni 18). Qualititssicherung von Forschungssoftware durch ibre nachhaltige Nutzbar-
machung. Deutsche Forschungsgemeinschaft. https://www.dfg.de/foerderung/info_wissen
schaft/2019/info_wissenschaft_19_44/index.html

Dienlin, T., Johannes, N., Bowman, N. D., Masur, P. K., Engesser, S., Kiimpel, A. S., Lukito, J.,
Bier, L. M., Zhang, R., Johnson, B. K., Huskey, R., Schneider, F. M., Breuer, J., Parry, D. A,,
Vermeulen, 1., Fisher, ]J. T., Banks, J., Weber, R., Ellis, D. A., ... de Vreese, C. H. (2020). An
agenda for open science in communication. Journal of Communication. https://doi.org/
10.1093/joc/jqz052.

Freelon, D. (2018). Computational research in the post-API age. Political Communication, 35(4),
665—668. https://doi.org/10.1080/10584609.2018.1477506.

Gentzkow, M., & Shapiro, J. M. (2014). Code and data for the social sciences: A practitioner’s
guide. University of Chicago Press. http://web.stanford.edu/~gentzkow/research/CodeAnd-
Data.pdf [11.11.2020].

77

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

M&K 69. Jahrgang 1/2021

Giinther, E., & Quandt, T. (2016). Word counts and topic models. Automated text analysis methods
for digital journalism research. Digital Journalism, 4(1), 75-88. https://doi.org/
10.1080/21670811.2015.1093270.

Haim, M. (2018). Mehr methodischer Mut, bitte! Aviso, 66, 8.

Haim, M. (2020). Agent-based testing: An automated approach toward artificial reactions to human
behavior. Journalism Studies, 21(7), 895-911. https://doi.org/10.1080/1461670X.2019.1702892.

Haim, M., & Zamith, R. (2019). Open-source trading zones and boundary objects: Examining
GitHub as a space for collaborating on ,,news“. Media and Communication, 7(4), 80. https://
doi.org/10.17645/mac.v714.2249.

Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research
data toward FAIR and open research software. It — Information Technology, 62(1), 39-47.
https://doi.org/10.1515/itit-2019-0040.

Hepp, A. (2016). Kommunikations- und Medienwissenschaft in datengetriebenen Zeiten. Publi-
zistik, 61(3), 225-246. https://doi.org/10.1007/511616-016-0263-y.

Hepp, A., Breiter, A., Hasebrink, U., & Loosen, W. (2018). Me-Software: Software for qualitative
media and communication research. https://mesoftware.org/ [11.11.2020].

Jinger, J., & Keyling, T. (2017). Facepager. An application for generic data retrieval through APIs.
hteps://github.com/strohne/Facepager/ [11.11.2020].

Kelly, D., & Sanders, R. (2008, Mai). Assessing the quality of scientific software. First International
Workshop on Software Engineering for Computational Science & Engineering, Leipzig.
https://se4science.org/workshops/secse08/Papers/Kelly.pdf [11.01.2021].

Lazer,D.M.]., Pentland, A., Watts, D.J., Aral, S., Athey, S., Contractor, N., Freelon, D., Gonzalez-
Bailon, S., King, G., Margetts, H., Nelson, A., Salganik, M. J., Strohmaier, M., Vespignani, A.,
& Wagner, C. (2020). Computational social science: Obstacles and opportunities. Science,
369(6507), 1060-1062. https://doi.org/10.1126/science.aaz8170.

Leiner, D. (2014). Convenience samples from online respondent pools: A case study of the SoSci
Panel [Working paper]. https://www.researchgate.net/publication/259669050 [11.11.2020].
Lewis, N. A.Jr.(2020). Open communication science: A primer on why and some recommendations
for how. Communication Methods and Measures, 14(2), 71-82. https://doi.org/

10.1080/19312458.2019.1685660.

Matthes, J. (2019). Viel Luft nach oben. Eine kritische Reflexion zum Stellenwert der Methoden in
der Kommunikationswissenschaft. In H. Schramm, J. Matthes, & C. Schemer (Hrsg.), Emotions
Meet Cognitions. Zum Zusammenspiel von emotionalen und kognitiven Prozessen in der Me-
dienrezeptions- und Medienwirkungsforschung (S.93-103). Springer. https://link.sprin
ger.com/chapter/10.1007/978-3-658-25963-1_8 [11.11.2020].

Matthes, J., Kuhlmann, C., Gehrau, V., Jandura, O., Mohring, W., Vogelgesang, J., & Wiinsch, C.
(2011). Zur Methodenausbildung in kommunikationswissenschaftlichen Bachelor- und Mas-
terstudiengingen. Publizistik, 56(4), 461-481. https://doi.org/10.1007/s11616-011-0133-6.

Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L. O. B., & Wilkinson, M. D.
(2017). Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the Euro-
pean Open Science Cloud. Information Services & Use, 37(1), 49-56. https://doi.org/10.3233/
ISU-170824.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S.D., Breckler, S.J., Buck, S.,
Chambers, C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J.,
Glennerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M., ... Yarkoni, T. (2015).
Promoting an open research culture. Science, 348(6242), 1422-1425. https://doi.org/10.1126/
science.aab2374.

Rat fiir Sozial- und Wirtschaftsdaten (2019). Big Data in den Sozial-, Verhaltens- und Wirtschafts-
wissenschaften: Datenzugang und Forschungsdatenmanagement. RatSWD Output, 4(6).
https://do1.0rg/10.17620/02671.39.

Stodden, V., & Miguez, S. (2014). Best practices for computational science: Software infrastructure
and environments for reproducible and extensible research. Journal of Open Research Soft-
ware, 2(1), 1-6. https://doi.org/10.5334/jors.ay.

Storer, T. (2017). Bridging the chasm: A survey of software engineering practice in scientific pro-
gramming. ACM Computing Surveys, 50(4), 1-32. https://doi.org/10.1145/3084225.

78

18.01.2026, 08:37:58.



https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

Haim - GUtekriterien und Handlungsempfehlungen

Unkel, J. (2019). tidycomm: Data Modification and Analysis for Commaunication Research. https://
github.com/joon-e/tidycomm [11.11.2020].

Unkel, J. (2020). Computational Methods in der politischen Kommunikationsforschung. https://
bookdown.org/joone/ComputationalMethods/ [11.11.2020].

van Atteveldt, W., & Peng, T.-Q. (2018). When communication meets computation: Opportunities,
challenges, and pitfalls in computational communication science. Communication Methods and
Measures, 12(2-3), 81-92. https://doi.org/10.1080/19312458.2018.1458084.

van Atteveldt, W., Strycharz, J., Trilling, D., & Welbers, K. (2019). Toward open computational
communication science: A practical road map for reusable data and code. International Journal
of Communication, 19, 3935-3954.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., Francois, R., Grolemund, G.,
Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Miiller, K., Ooms,
J., Robinson, D., Seidel, D., Spinu, V., ... Yutani, H. (2019). Welcome to the Tidyverse. Journal
of Open Source Software, 4(43), 1686. https://doi.org/10.21105/j0ss.01686.

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock,
S.H. D., Huff, K. D., Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., & Wilson, P.
(2014). Best practices for scientific computing. PLoS Biology, 12(1), €1001745. https://doi.org/
10.1371/journal.pbio.1001745.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough
practices in scientific computing. PLOS Computational Biology, 13(6), €1005510. https://
doi.org/10.1371/journal.pcbi.1005510.

Zook, M., Barocas, S., boyd, D. M., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A.,
Hollander, R., Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A., & Pasquale, F. (2017). Ten
simple rules for responsible big data research. PLOS Computational Biology, 13(3), e1005399.
https://doi.org/10.1371/journal.pcbi.1005399.

79

18.01.2026, 08:37:58.


https://doi.org/10.5771/1615-634X-2021-1-65
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

