

# Student-Organized Teaching

---

*Judith Bönisch, Frank Becker, Laurenz Blömer, Sanjeet Raj Pandey, Baiba Prüse, and Johannes Vollbehr*

## Definition

As student-organized teaching has until now been a poorly researched and documented field, we propose a working definition on the subject based on our experience as practitioners: Student-organized teaching can be defined as a form of learning and teaching at higher education institutions in which students actively and self-determinedly design learning processes for themselves and others. Thus, they are learners and teachers at the same time and shape their learning spaces and the learning environment of their universities. Student-organized teaching is opposite to the hierarchical approach of the knowing teacher and the unknowing student. Student-organized teaching follows the idea that knowledge can be self-acquired, jointly developed in a group, gained in social interaction, and oriented to a concrete object. On this basis, it demands individual power to shape the joint learning process.

The concept of student-organized teaching can be connected to a social constructivist approach of teaching and learning (Dudley-Marling 2012; Singer-Brodowski 2016, 109–12) and to student autonomy (for a discussion on autonomy see Holmes 2021). The extent to which this is permitted by study regulations and universities varies greatly and changes over time, and in the context of societal change as a whole.

The formats of student-organized teaching can be systematized according to various dimensions, e.g. degrees of freedom (can students decide about contents, methods, project goals, and scope of their work or just some of those?), disciplinary affiliation (discipline-based or inter- or transdisciplinary?), or integration into curricula (compulsory or elective?). Student-organized teaching can include different methods and learning concepts, so overlaps with project teaching, problem- and inquiry-based learning (Jonassen and Hung 2012; Pedaste et al. 2015), or service learning (Dolgon et al. 2017) are common. Tutors in student-organized teaching are usually other students.

As student-organized teaching is a heuristic and essentially self-designed form of teaching, the degrees of freedom represent a continuum: On the one end

courses exist in which students have complete freedom to choose their own content and methods and receive sufficient material and nonmaterial support from the university. The professional or didactic support of the students is primarily aimed at enabling them to act independently in and with a project group and to solve their self-defined problem, considering their individual knowledge, previous experience, and competencies. External control of the process, for example by professors, is not intended. Student-organized teaching on this side of the continuum is committed to self-determined (Blaschke 2012; Kenyon and Hase 2013) and self-organized learning (Harri-Augstein and Thomas 1991; Low and Jin 2012). On the other side, the degrees of freedom are rather low because, for example, content and methods are closely prescribed.

We consider the formats with the greater degrees of freedom to be more promising with regard to the context of transdisciplinary learning as reflection processes, e.g. on hierarchical structures, different needs and perspectives or communication patterns are necessary to a far greater extent in order to be able to manage these forms of student-organized teaching. Reflection processes like those are of fundamental importance for the acquisition of transdisciplinary competences (Pearce et al. 2018; Wiek et al. 2011).

## Background

In our experience, many student-organized courses and projects do not or not explicitly refer to any historic context or history as they last for a few years only (constrained by the capacities of the initiators, the manageable time frame of the initiators' education program, or the limited funding provided by universities). Student-organized teaching often happens without theorizing on their own chosen approach and with little documentation. Some projects, however, do explicitly refer to a historic background (e.g. Bönisch and Energieseminar 2021, 9). An appreciative stocktaking on a larger scale is certainly necessary here.

The student movement of the 1960s and the following politicization of the student body had a strong impact on self-organization processes and student organization in general (Altbach 2007, 329). The movement sought to open universities, to combine theory with practice, and to place knowledge and knowledge production in social contexts. From this starting point, numerous student initiatives, associations, and self-governance structures were established and tutoring structures were introduced or expanded (Bönisch 2021, 9; Della Porta et al. 2021, 19). At the same time, an ongoing discussion continued on whether replacing regular teaching staff by students could foster increasing economization of higher education institutions (Heyner 2014, 44; Topping 1996, 321). In these processes, university didactics and teaching staff argued that opportunities of innovation

and reform could get lost when student tutors just repeat the content of lectures (Heyner 2014, 44 and 50).

However, the demand for change in higher education institutions both to meet their social responsibility and to qualify students for the challenges of their future life can be discussed as a field of learning for these challenges and changes. The link between student-organized teaching and transdisciplinarity is established from a transdisciplinary competence dimension. Which competences are necessary to tackle current problems? Several attempts try to systematize “transdisciplinary competences”, such as the Inner Development Goals (Jordan 2021) or the Green Comp European competence framework (Bianchi et al. 2022). Key competences such as communicating, dealing with ambiguities, and self-reflexivity can be better acquired in a self-organized setting than in a traditional unidirectional course (see Hawtrey 2007). In self-organized teaching projects, students are confronted with negotiation processes on various levels, which they otherwise face rarely in their studies: students negotiate with students over the course contents, students work with academic teaching staff to implement the course, and students cooperate with professors in the final assessment of the performance achieved in these courses. In essence, student-organized teaching is a contribution to learning for a transdisciplinary practice: *My counterpart is not me. My values, goals and actions do not a priori coincide with those of my non-university partners.*

## Debate and criticism

Research on student-organized teaching at higher education institutions is rare, even though self-organized learning has been broadly discussed since the 1980s (Singer-Brodowski 2016, 112). This failure is due to the often-marginalized position of student-organized courses at higher education institutions and the lack of related scientific organs such as peer-reviewed journals or scientific societies.

Student-organized teaching is not beneficial per se. One should ask in what ways the different forms of self-organized teaching are useful and how they reflect the social conditions of research. What intentions are being pursued with a course? And are these intentions transparent to the students? According to our perception, at least in the Western world more and more models appear that claim to satisfy student-organized processes in one form or another. Whether specific degree programs provide sufficient freedom to integrate this demanding teaching-learning format is questionable – to put it bluntly: Are students “allowed” to make “mistakes” within the framework of their studies? Or is the study program determined by “credit points”? And do students have the courage, the necessary skills and reflection techniques, to enter this failure-based learning process in the performance-driven surroundings?

The question of failure results in the question of quality measurement and evaluation. For some education institutions, it is lack of a professor to guarantee the quality of a course, while others complain about too little technical depth in student-led courses. We suggest rethinking quality and quality measurement in student-organized courses: Can the quality of the learning process be measured in other ways than passing an exam in the end of the course? Should facts and figures really play such a central role in higher education? What are the success criteria?

In addition, universities rarely provide “blank spaces”, i.e. open spaces for teaching and learning that are not pre-structured, e.g. by narrow boundaries or the influence of teaching experts. We observe that “blank spaces” of self-organized teaching have recently been discovered as “didactically fillable voids”, whereby didactics comes across as a supposedly neutral tool. However, student-led self-organized teaching projects are usually the result of a debate between students and the university. Containing these spaces and projects didactically establishes a relation of power that impedes the development of students’ self-organization. We consider this to be non-emancipatory, as it does not correspond to the humanitarian world view universities are committed to. This development has monetary consequences as well: In education systems that do not appreciate open and student-led spaces, budgets are cut or projects no longer receive funding. Spaces for student-organized teaching are often in a precarious situation.

Apart from that, self-organized teaching empirically works with methods and skills, e.g. in moderation, presentation, or decision-making. The challenge for academic staff in supervising student-led courses is to develop a support structure to ensure that students receive information and support when needed without governing the self-organized structure of the students’ work.

There are also limits of self-orchestration. How is the framework defined that can be filled by student self-organized teaching? What is the role of student tutors? Do tutors decide on the grading of participants? Do tutors decide on content and outcome or is this a group decision?

Students’ self-organized teaching projects can turn out to be a benefit for universities: They can easily be used as an incubator for innovation in teaching and successful projects can be incorporated into regular teaching through appropriate processes.

## Current forms of implementation in higher education

As typologies of student-organized teaching, documentation of student-organized teaching is difficult to find and hardly a topic for peer-reviewed journals. As an example, the project lab *Sustainable Handprints* at TU Berlin is a four-semester student-organized platform for fellow students to work in interdisciplinary groups

on interest-driven projects regarding education for sustainable development in interaction with relevant stakeholders. Bachelor and master students from different universities engage in the course and work towards common solutions on how to implement sustainability in practical and playful ways. Socially and personally relevant topics are the subject of interest-driven research in the project lab. With skill- and knowledge-sharing methods all participants gain insights into various science disciplines and diverse perspectives on how to approach the complexity of sustainability. The project lab opens the space for knowledge exchange between students and relevant actors, such as experts of organizations, researchers, project lab alumni, teachers, and pupils (Project Lab Sustainable Handprints 2023).

Another example is based on an interdisciplinary course constructed around the concept of citizen science and local ecological knowledge at the University of Iceland. The way the students were involved in the learning process was different from traditional academic courses, as they were directly linked to the local communities as well as to the coauthors of the peer-reviewed studies. The course was available for international and Icelandic students at various study levels, including PhDs. In order to keep the interaction open among the tutor and the students, several ice-breaking methods were integrated into the teaching, including a common coffee break (informal) at the end of each class.

*Degree of guidance in "Sustainable Handprints":* In the beginning, a high degree of guidance was given by the tutors. In the later stages the room was opened for self-guided group work. With the autonomy and support provided through the tutors as well as the project lab community, groups created a strong drive to realize their project ideas. The tutors acted as coaches who guided the project groups during their interest-driven projects. To keep the balance between blank space and formally predefined guidelines was a great challenge for the tutors.

*Degree of guidance in "citizen science and local ecological knowledge":* The short time allocated for the course (one week) set some restrictions in terms of how much guidance was needed to be set by the tutor. The format of the final report and the layout for the note and question page was already pre-set for the students to directly dive into the subject. The success of the course was very much dependent on students' curiosity to question and summarize the discussions. Each lecture began with an online call with the experts (both academic and community level). In order to gain long-lasting benefit from the notes, the students were invited to co-organize a blog post which was later published on the eu.citizen.science web page (Gupta et al. 2022).

*Science communication and network in "Sustainable Handprints":* Starting with a creativity phase in which easily accessible information sources were consulted, a basic knowledge foundation of the sustainability topics being researched was created. Design Thinking (e.g. Brown 2008) elements, like creating personas, helped the students to empathize with different actor perspectives. This turned out to be a useful foundation to enable transdisciplinary knowledge transfer.

*Science communication and network in “citizen science and local ecological knowledge”:* The tutor opens up the network by connecting students with the authors of the articles the students were reading and community members. One way to achieve this was through collaboration on a blog post. The course involved an assessment which integrated the needs of researchers from the university as well as student interests. Besides providing the potential topics for the students, the researchers also joined the reporting session at the end of the course.

*Evaluation in “Sustainable Handprints”:* With accompanying reflections, students were bound to self-reflect their group process and constantly iterate their learning objectives. Applying feedback methods regularly made receptive adaptations possible and ensured constant improvement of the common learning process. At the end of every project lab semester, evaluation criteria were developed with the whole group and students were given the responsibility to grade each other’s project presentations. This shift in perspective and power relations between teacher and learner created an empowering experience for the students.

*Evaluation in “citizen science and local ecological knowledge”:* The students were given the opportunity to evaluate the course by anonymous feedback as well as discuss the teaching methods during the informal coffee break. As acknowledged by the students in the evaluation notes, this type of practice in terms of question-making helped them understand the method and see a difference in communicating between academics and non-academic knowledge-keepers.

In summary, in both initiatives credits in the European Credit Transfer and Accumulation System were offered to the students; however, the outcomes of the courses went way beyond academic confines. Evaluation as well as the equal importance of informal and formal communication was reflected in both cases.

Other examples of student-organized teaching activities can be found in various regions of the world, e.g. student-led seminars in universities in Europe (CEMUS 2023; Duke University School of Law 2023; Utrecht University 2023), or the United States (Loyola University 2023; University of California 2023), or student-organized symposiums (Boston University 2023). These examples vary in terms of disciplinary affiliation – with more examples that are rooted in a certain discipline and allow students to define content freely but set close boundaries in terms of the general framework. The benefits of student-organized teaching, the potential for solutions to the pressing problems of our time, and the potential emancipatory effects would justify putting more effort into this research.

## References

Altbach, Philip G. 2007. Student politics. Activism and culture. In *International handbook of higher education*, eds. James J. F. Forest and Philip G. Altbach, 329–45. Dordrecht: Springer.

Bianchi, Guia, Ulrike Psotis, and Marcelino Cabrera. 2022. *GreenComp. The European sustainability competence framework*. Publications Office of the European Union. Available from <https://publications.jrc.ec.europa.eu/repository/handle/JRC128040>.

Blaschke, Lisa Marie. 2012. Heutagogy and lifelong learning. A review of heutagogical practice and self-determined learning. *International Review of Research in Open and Distributed Learning* 13 (1): 56–71.

Bönisch, Judith, and Energieseminar. 2021. *Anders denken, gemeinsam handeln. Ein Konzept für Selbstorganisierte Lehre*. Hamburg: Tredition.

Boston University, ed. 2023. Bioinformatics student-organized symposium. Available from <https://www.bu.edu/bioinformatics/special-events/student-organized-symposium>.

Brown, Tim. 2008. Design thinking. *Harvard Business Review* 86 (6): 84–92.

CEMUS [Centre for Environment and Development Studies], ed. 2023. *Student-led education*. Available from <http://www.cemus.uu.se/about>.

Della Porta, Donatella, Lorenzo Cini, and César Guzmán. 2021. *Contesting higher education: Student movements against neoliberal universities*. Bristol: Bristol University Press.

Dolgon, Corey, Tania D. Mitchell, and Timothy K. Eatmann. 2017. *The Cambridge handbook of service learning and community engagement*. Cambridge: Cambridge University Press.

Dudley-Marling, Curt. 2012. Social construction of learning. In *Encyclopedia of the sciences of learning*, ed. Norbert M. Seel, 3095–98. Boston: Springer.

Duke University School of Law, ed. 2023. *Ad hoc seminars*. Available from <https://law.duke.edu/study/adhoc>.

Gupta, Parnika, Hlynur Steinsson, Theresa Henke, Walter L. Brent van der Hell, Moira Aileen Brennan, Diana Sól Editudóttir, Kayla Maureen Þorbjörnsdóttir, Lina Andrea Johansson, Marina Ermina, Aron Alexander Þorvarðarson, Guðrún Heiður Ísaksdóttir, Bjargey Anna Guðbrandsdóttir, and Baiba Prūse. 2022. *Reflections from the first ever course on Citizen science and Local ecological knowledge at the University of Iceland*. Available from <https://eu-citizen.science/blog/2022/04/20/reflections-first-ever-course-citizen-science-and-local-ecological-knowledge-university-iceland>.

Harri-Augstein, Sheila, and Laurie Thomas. 1991. *Learning conversations: The self-organized learning way to personal and organizational growth*. London: Routledge.

Hawtrey, Kim. 2007. Using experiential learning techniques. *Journal of Economic Education* 38 (2): 143–52.

Heyner, Marco. 2014. Zur Aktualität historischer tutorieller Konzepte. Universität Hamburg. *Universitätskolleg-Schriften* 5: 43–57.

Holmes, Andrew G. D. 2021. Can we actually assess learner autonomy? The problematic nature of assessing student autonomy. *Shanlax International Journal of Education* 9 (3): 8–15.

Jonassen, David, and Woei Hung. 2012. Problem-based learning. In *Encyclopedia of the sciences of learning*, ed. Norbert M. Seel, 2687–90. Boston: Springer.

Jordan, Thomas. 2021. *The inner development goals: Background, method and the IDG framework*. Available from [https://static1.squarespace.com/static/600d80b-3387b98582a60354a/t/627bb821f4978468f9f311ba/1652275238451/220511\\_IDG\\_Report\\_Full.pdf](https://static1.squarespace.com/static/600d80b-3387b98582a60354a/t/627bb821f4978468f9f311ba/1652275238451/220511_IDG_Report_Full.pdf).

Kenyon, Chris, and Stewart Hase. 2013. Heutagogy fundamentals. In *Self-determined learning: Heutagogy in action*, eds. Stewart Hase and Chris Kenyon, 7–17. London: Bloomsbury.

Loyola University, ed. 2023. *Student-led seminars*. Available from <https://www.loyola.edu/department/center-humanities/grants-funded-opportunities/student/student-led-seminars>.

Low, Renae, and Putai Jin. 2012. Self-organized learning. In *Encyclopedia of the sciences of learning*, ed. Norbert M. Seel, 3008–10. Boston: Springer.

Pearce, BinBin, Carolina Adler, Lisette Senn, Pius Krütsli, Michael Stauffacher, and Christian Pohl. 2018. Making the link between transdisciplinary learning and research. In *Transdisciplinary theory, practice and education: The art of collaborative research and collective learning*, eds. Dena Fam, Lina Neuhauser, and Paul Gibbs, 167–84. Cham: Springer.

Pedaste, Margus, Mario Mäeots, Leo A. Siiman, Ton de Jong, Siswa A. N. van Riesen, Ellen T. Kamp, Constantinos C. Manoli, Zacharias C. Zacharia, and Eleftheria Tsourlidaki. 2015. Phases of inquiry-based learning: Definitions and the inquiry cycle. *Educational Research Review* 14: 47–61.

Project Lab Sustainable Handprints, ed. 2023. *Sustainable Handprints*. Available from <https://naha.app>.

Singer-Brodowski, Mandy. 2016. *Studierende als GestalterInnen einer Hochschulbildung für nachhaltige Entwicklung. Selbstorganisierte und problembasierte Nachhaltigkeitskurse und ihr Beitrag zur überfachlichen Kompetenzentwicklung Studierender*. Berlin: Berliner Wissenschafts-Verlag.

Topping, Keith. 1996. The effectiveness of peer tutoring in further and higher education. A typology and review of literature. *Higher Education* 32: 321–45.

University of California, ed. 2023. *Student-organized seminars*. Available from <https://neuroscience.ucdavis.edu/student-organized-seminars>.

Utrecht University, ed. 2023. *Student-led honours seminar*. Available from <https://students.uu.nl/en/university-college-utrecht/academics/curriculum-enrichment-options/student-led-honours-seminar>.

Wiek, Arним, Lauren Withycombe, and Charles L. Redman. 2011. Key competencies in sustainability. A reference framework for academic program development. *Sustainability Science* 6: 203–18.

