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Abstract

In industrial practice, conceptual process design is typically conducted by repetitive simu-
lation studies, which require detailed design specifications in an early design phase. Guided
by heuristics, these iterative solution procedures result in high manual effort and, in addi-
tion, no guarantee concerning the quality of the solution can be given. Optimization-based
design methods provide a tremendous potential to accelerate and improve conceptual pro-
cess design.

Various authors have therefore suggested the use of surrogate models, which do not re-
quire detailed specifications. Others have developed methods for the optimization-based
process design by means of superstructure optimization. Marquardt, Kossack and Kraemer
(2008) proposed a framework for an optimization-based design of hybrid separation pro-
cesses, which combines shortcut and rigorous evaluation steps. This framework has been
successfully demonstrated for conceptual design of various processes (see, e.g., Krämer,
Harwardt, Bronneberg and Marquardt, 2011).

In this thesis, the process design framework of Marquardt et al. (2008) is extended
towards the optimization-based design of reaction-separation processes. For this purpose,
powerful shortcut and rigorous evaluation methods for reactor networks and reaction-
separation processes are proposed. It is important to emphasize that all of these methods
are developed to be computationally efficient in order to allow an optimization-based design
and analysis of large-scale processes. As a consequence, cost-optimal process solutions
can be obtained with considerably less effort compared to the use of tedious repetitive
simulation studies. It also has to be stressed that the performance of all methods is
validated by large-scale industrial case studies. Thus, it is shown that the process design
framework can contribute decisively towards the sustainable solution of today’s challenging
design problems in chemical engineering.
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Kurzfassung

Die Verknappung fossiler Rohstoffe, steigender Wettbewerbsdruck und die Forderung nach
nachhaltiger Produktion treiben die Suche nach effizienteren Produktionsprozessen an.
Diese Prozesse werden in einem kreativen Entwurfsprozess entwickelt, wobei heutzutage
neue Prozessvarianten häufig anhand von Erfahrungswissen und Heuristiken generiert und
anschließend mit Hilfe von Synthesewerkzeugen evaluiert werden. Alternativ bieten op-
timierungsbasierte Entwurfsmethoden das Potential die Entwicklung neuer, innovativer
Prozesse zu unterstützen.

Bei der Optimierung von Reaktions- und Trennprozessen mit rigorosen Modellen entste-
hen sehr große Gleichungssysteme, die auf Grund ihrer starken Nichtlinearität nur schwer
zu lösen sind. Um die Komplexität der Modelle zu reduzieren, können in einem ersten
Schritt Näherungsverfahren verwendet werden. Hierdurch kann zunächst die strukturelle
Vielfalt der Prozessvarianten reduziert werden. Diese Herangehensweise bietet den Vorteil
einer sehr kompakten Formulierung der Optimierungsprobleme. Bei der Optimierung von
Reaktions- und Trennverfahren mit Näherungsverfahren werden üblicherweise Gleichge-
wichtsreaktoren modelliert und das dafür nötige Reaktionsgleichgewicht mit Hilfe ther-
modynamischer Gleichungen bestimmt. Der optimale Betriebspunkt kann jedoch von
diesem Reaktionsgleichgewicht abweichen. Daher wird in dieser Arbeit ein kinetik-basiertes
Näherungsverfahren für Reaktornetzwerke vorgestellt, welches das, durch eine Verschal-
tung beliebiger Reaktortypen, erreichbare Gebiet abbilden kann. Darauf aufbauend wird
eine systematische Initialisierung der rigorosen Modelle vorgestellt, mit deren Hilfe die
Robustheit und Effizienz der rigorosen Optimierung verbessert werden kann.

Um den Entwurf von katalytischen Prozessen zu unterstützen wird anschließend eine
Heuristik für die Generierung von katalytischen Prozessvarianten entwickelt. Diese Heuris-
tik integriert nicht nur die Entscheidungen, die an die Auswahl des Katalysators gekoppelt
sind, in den Entwurfsprozess. Sie adressiert auch die für den Entwurfsprozess notwendigen
Laborexperimente und dient somit als Forschungswerkzeug zur Planung und Auswertung
von Laborversuchen.

Zuletzt werden die Schlussfolgerungen über die Bedeutung und Anwendbarkeit von
Näherungsverfahren und rigorosen Optimierungsmethoden für den Entwurf von Reaktions-
und Trennprozessen zusammengefasst und offene Fragestellungen abgeleitet.
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