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Abstract: Ensemble methods have received a great deal of atten-
tion in the past years in several disciplines. One reason for their
popularity is their ability to model complex relationships in large
volumes of data, providing performance improvements compared
to traditional methods. In this article, we implement and assess
ensemble methods’ performance on a critical predictive modeling
problem in marketing: predicting cross-buying behavior. The best
performing model, a random forest, manages to identify 73.3 %
of the cross-buyers in the holdout data while maintaining an ac-
curacy of 72.5 %. Despite its superior performance, researchers
and practitioners frequently mention the difficulty in interpreting
a random forest model’s results as a substantial barrier to its imple-
mentation. We address this problem by demonstrating the usage of
interpretability methods to: (i) outline the most influential variables
in the model; (ii) investigate the average size and direction of their
marginal effects; (iii) investigate the heterogeneity of their marginal
effects; and (iv) understand predictions for individual customers.
This approach enables researchers and practitioners to leverage the
superior performance of ensemble methods to support data-driven
decisions without sacrificing the interpretability of their results.

Keywords: machine learning, predictive modeling, interpretable machine learning, ensem-
ble methods, customer response, response modeling

Pradiktive Modellierung im Marketing: Ensemble-Methoden zur Modellierung von Kun-
denreaktionen

Zusammenfassung: Ensemble-Methoden haben in vielen Disziplinen grofse Popularitit
erlangt. Sie zeichnen sich durch ihre Fihigkeit aus, komplexe Beziehungen in grofSen
Datenmengen zu modellieren. Dies fihrt typischerweise dazu, dass sie im Vergleich zu
herkommlichen Methoden genauere Prognosen erzielen. Dieser Beitrag implementiert En-
semble-Methoden und bewertet ihre Prognosefihigkeit in Bezug auf eine wichtige Mar-
ketingfragestellung: die Vorhersage der Kundennachfrage nach zusitzlichen Produkten
(,Cross-Buying“). Das Modell mit der besten Prognoseleistung, ein ,Random-Forest®,
identifiziert 73,3% der Cross-Buyer in den Holdout-Daten und erreicht eine Genauigkeit
von 72,5%. Trotz seiner Uberlegenen Prognoseleistung stellen seine schwer interpretierba-
ren Ergebnisse noch eine hohe Hiirde fiir seine Einfithrung in die Marketingforschung und
Marketingpraxis dar. Um dies anzugehen, verwenden wir Interpretierbarkeitsmethoden
um: (i) die einflussreichsten Variablen im Modell darzustellen; (ii) die durchschnittliche
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Grofle und Richtung dieser Effekte zu visualisieren; (iii) die Heterogenitat dieser Effekte
zu untersuchen; und (iv) die Vorhersagen fiir einzelne Kunden zu verstehen. Dieser Ansatz
ermOglicht Forschern und Praktikern, die tiberlegene Prognoseleistung von Ensemble-Me-
thoden zu nutzen, um datenbasierte Entscheidungen zu unterstiitzen, ohne die Interpretier-
barkeit ihrer Ergebnisse zu beeintrachtigen.

Stichworter: maschinelles Lernen, pradiktive Modellierung, interpretierbares maschinelles
Lernen, Ensemble-Methoden, Kundenreaktion, Response-Modellierung

1. Introduction

Predictive modeling has established itself as a cornerstone of business decision-making.
With the increasing demand for data-driven decisions and the widespread collection of
fine-grained customer and transaction data, predictive modeling has acquired a central
role in marketing. Possible applications include sales forecasting, churn prevention, or
customer response modeling, among several others.

In some cases, one might be only interested in obtaining accurate predictions. However,
most applications in marketing also require understanding the resulting model. Besides
generating new insights, understanding the model’s inner workings is crucial to assess their
face validity and detect problems early on. This aspect is also essential if the model will
support managerial decisions, as its underlying logic often needs to be explained to stake-
holders. Consequently, choosing a suitable predictive modeling method usually requires a
balance between the resulting model’s performance and interpretability (Shmueli/Koppius,
2011).

Even though practitioners could benefit from using more complex machine learning
methods, they frequently mention the difficulty in explaining results and the risk of bias
as current barriers to implementing them (Bughin et al., 2018). As a result, many of them
still rely on regression-based methods, as one expert in the field vividly summarized on
Twitter: “When you’re fundraising, it’s Al [artificial intelligence]. When you’re hiring,
it’s ML [machine learning]; when you’re implementing, it’s linear regression.” (Schwarz,
2019). The posthoc interpretation of models resulting from ensemble methods, a class
of machine learning methods, is particularly cumbersome because they consist of several
weak models (typically hundreds).

Against this background, the goal of this article is to demonstrate how researchers and
practitioners can leverage the superior performance of ensemble methods without needing
to sacrifice the interpretability of their results. We do so by tackling the problem of
identifying customers who are more likely to cross-buy. Because cross-buying behavior has
a substantial impact on firm performance (Reinartz/Kumar, 2002), this is an important
response modeling problem in marketing.

We find that ensemble methods consistently improve the predictive performance of
predictive models. The best performing model, a random forest, improved all performance
measures in the holdout data compared to a logistic regression or a single classification
tree. But true to its reputation of being a “black box™, this model is difficult to interpret
on its own, as ensembles do not indicate the size nor direction of the effects.

To address this issue, we demonstrate how researchers and practitioners can use four
different interpretability methods to perform a thorough posthoc analysis of the model.

Die Unternehmung, 75. Jg., 3/2021 377

1P 216.73.216.60, am 26.01.2026, 03:43:22. © Urhebermechtiich geschitzter Inhaf 3
mit, 10r oder In KI-Systemen, Ki-Modellen oder Generativen Sprachmodellen.



https://doi.org/10.5771/0042-059X-2021-3-376

Artikel

Thereby, we provide valuable insights about the relationships uncovered by a highly
complex model and explain the predictions it generates for selected customers.

The remaining of this article is organized as follows. To help put our contributions
into perspective, we first outline previous literature’s main findings on cross-buying pre-
diction and customer response modeling with ensemble methods. Then, we describe our
methodological approach. Next, we present our empirical analysis of the demographic
and transaction data of 100,000 customers from a collaborating bank in Germany and
offer implications for researchers and practitioners.

2. Related Literature

Cross-buying refers to customers buying additional products from the same firm - for
example, when a customer starts a relationship with a bank, opening a savings account
and one year later opens a checking account. Some studies on cross-buying behavior fo-
cused on predicting which customers are more likely to cross-buy (Kamakura et al., 1991;
Verhoef et al., 2001), while others addressed the question of which product firms should
offer them next (Knott et al., 2002; Li et al., 2005). Interestingly, Knott et al. (2002) and
Li et al. (2005) also show that customers in the financial services industry often purchase
products in a natural sequence as they progress in different financial maturity stages.

Relevant Modeling o
Literature Data Method Main Findings
(Ifta:lmkum Financial panel, Multinomial Positive effect of income, age, education, and
(199'1) 1,517 individuals regressions employment status on financial maturity.
Verhoef et Insurance com- 4 4 probit Positive effect of direct mail, loyalty pro-
al. (2001) P30y 2,018 cus- regression gram, and price fairness relative to competi-
) tomers & tors. No main effect of satisfaction.
Logistic and
Knott et al Retail bank, multinomial re- Current product ownership followed by cus-
(2002) © 270,842 custom- gression, neural tomer value and demographics as most im-
ers networks, portant predictors of next-product-to-buy.
among others
l\i[:)l%)t;:?:iz_ Positive effect of cumulative purchases, cu-
Li et al. Retail bank, Sion (hiergarch- mulative balance, and satisfaction. Stronger
(2005) 1,201 households . effect for higher education level, gender
ical Bayesian 1 d higher i
framework) (male), and higher income.
Retailer, 3,000 . Positive effect of mailing and cross-selling ef-
Kumar et observations Random coeffi- f
. . orts (up to a threshold). Inverted U-shaped
al. (2008) from customer cient regression . . .
relationship for age and income.
cohort
Mende et Survey, 1,199 in- Multinomial lo- Positive effect of. income and preference for
surance custom- . . . closeness. Negative effect of age and attach-
al. (2013) gistic regression

ers

ment anxiety.

Table 1: Comparison of Empirical Studies on Cross-Buying Behavior
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Most studies find a significant effect of a firm’s marketing efforts, customer demographics,
perception of price fairness, and previous transaction behavior on cross-buying behavior.
Customer attachment styles, preference for closeness, and customer acquisition channels
are also important cross-buy drivers (Mende et al., 2013). As Table 1 shows, most studies
explaining cross-buying behavior use regression-based methods; (multinomial) logistic re-
gression is the most popular one.

Nevertheless, the increasing popularity of machine learning methods prompted further
studies investigating their applicability and predictive performance in marketing. Most of
them find that models built with ensemble methods consistently outperform single models
(whether regression, neural networks, or trees).

As a result, ensembles have been applied to predict customer churn and the profitability
of customer retention campaigns (e.g., Lariviere/Van den Poel, 2005; De Bock/Poel, 2011;
Lemmens/Gupta, 2020). However, somewhat surprisingly, the same tendency was not ob-
served in studies that address cross-buying behavior. As Table 2 shows, a limited number
of studies rely on ensemble methods to predict cross-buy, or more generally, customer
response.

Lsifelfgticrle Data Target Variable Methods Intﬁg Eﬁgijt;on
Kim/Street Insurance in- Customer re- Ensemblg of neurgl net- List of impor-
(2004) dustry, 9,822 Shonse works with genetic algo- tant variables

households P rithms for feature selection
Ha et al. ggtgg(e)r’cus_ Customer re- Ensemble of neural net- None
(2005) tor’ners sponse works
Lariviere/ Financial ser- Next-buy, Variable im-

Van den Poel
(2005)

vices, 100,000
customers

churn, profit
drop, profit

Random forests, logistic
and linear regression

portance, de-
scriptive stat-

evolution istics
Prinzie/ Retailer, Next-product- Random forests and ensem- Variable im-
Van den Poel 74,386 cus- P bles of multinomial logistic
to-buy . portance
(2008) tomers regressions
25 data sets Churn, cus- Random forest and
Lessmann et al. . . .
from different  tomer response, stochastic gradient boost-  None

(2021)

sources and profitability ing (among others)

Table 2: Comparison of Empirical Studies Using Ensemble Methods to Predict Customer
Response

We believe that this sparse adoption is related to the subsequent difficulty in interpreting
the aggregated model. For example, Ha et al. (2005) conclude their study by outlining the
impossibility of understanding how each variable impacts the predicted response probabil-
ities or how they interact with each other in their model. In a recent study, Lessmann et
al. (2021) also stress the importance of clarifying how variables influence predictions in
“black-box” models.
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Some studies attempt to address this shortcoming by reporting variable importance
measures or descriptive statistics. However, to the best of our knowledge, no predictive
modeling study in marketing has yet explained the size and direction of effects or provided
insights on individual predictions from ensemble models.

Therefore, we contribute to the literature on predictive models in marketing by: (i)
implementing and assessing the performance of ensemble methods to predict cross-buying
behavior, (ii) explaining the size and direction of the underlying effects captured by the
ensemble model, and (iii) explaining individual predictions of the ensemble model.

3. Methodology

This section discusses the methods used in this study to model cross-buying behavior. We
start by describing classification trees, which will be the base model for the ensembles.
Then, we briefly introduce ensemble methods and describe those used in this study. Next,
we present the evaluation criteria we use to assess their predictive performance and the
interpretability methods used to interpret their results.

3.1. Classification Trees

Classification trees recursively partition the data into smaller subsets to predict a categor-
ical dependent variable. They start with a root node containing all the observations in
the data. The trees then split the observations into two or more subsets (child nodes) so
that the proportion of the dependent variable becomes more homogeneous (Breiman et
al., 1984). Nodes that split observations are decision nodes, and nodes that do not lead to
further splits are terminal nodes or leaves.

Classification trees can base their split decisions on significance tests or node purity
measures, such as the Gini Index (Gini, 1912). In the context of splitting decisions, the
Gini Index measures the homogeneity (or purity) of the observations in a node concerning
the dependent variable. The tree looks for a split at each decision node that maximizes the
decrease in node impurity, which implies minimizing the impurity in the child nodes. Due
to their top-down “divide and conquer” approach, classification trees are relatively fast,
even with large datasets. However, single classification trees are prone to overfitting, so it
is crucial to avoid that the tree grows to its maximum, a procedure known as pruning.

In our empirical application, we perform a random search over three pruning parame-
ters: the complexity parameter, the minimum number of observations in a node for a split
to be pursued, and the maximum tree depth. Another way of avoiding overfitting while
keeping most of the advantages inherent to classification trees is to use ensemble methods,
as we discuss in the following paragraphs.

3.2. Ensemble Methods

The idea behind ensemble models is to combine many “weak” models to produce a
more potent and stable model. For example, if we were to predict a game score, our
own opinion might only be a rough approximation. However, combining the opinion of
hundreds of different people will likely result in a much more accurate prediction.

Most ensembles found in the machine learning literature are based on bagging and
boosting. The term bagging stands for bootstrap aggregating and was proposed by
Breiman (1996) to improve accuracy and reduce instability in tree predictions. Bagging
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artificially generates “new” training datasets by generating bootstrap replicates of the
original dataset. The aggregated predictions over all the replicate datasets typically result
in a higher predictive performance, as the model learns from several “perturbed versions”
of the dataset.

Boosting was proposed by Freund/Schapire (1997) to make the models adapt and focus
on observations that are more difficult to predict. Boosting also combines a series of
“weak” models, but it builds the models sequentially. At first, all observations receive the
same weight. After building the first model, misclassified observations receive a higher
weight, so each subsequent model progressively focuses on predicting the observations
with higher weights. For the ensemble prediction, each model’s vote depends on its accura-
cy on the weighted training dataset.

A significant advantage of ensemble methods is their ability to reduce the variance of a
model. Results obtained by Bauer/Kohavi (1999) suggest that boosting methods are effect-
ive in reducing both variance and bias of a tree model. In the following, we will discuss
the two ensemble methods used in this study, random forests and gradient boosting, which
build upon bagging and boosting, respectively.

3.2.1. Random Forest

As proposed by Breiman (2001), random forests are ensembles of trees that introduce
randomization in two stages. The first one occurs at the observation level by training
each tree on a bootstrap replicate of the training data, such as in bagging. In contrast,
the second randomization occurs at the variable level, when only a random subsample of
the explanatory variables is considered to search for the best split at each node. Thereby,
random forests reduce the trees’ correlation by forcing them to split on different explana-
tory variables. Such as in bagging, the final prediction is aggregated for all trees through
averaging or majority voting. Breiman (2001) suggests setting the random subsample m
of the explanatory variables considered at each node as the square root of the number of
explanatory variables in the data, expressed by p. Nevertheless, the optimal value can vary
in each setting.

A nice aspect of random forests is that they estimate the generalization or out-of-bag
(OOB) error, which indicates how the model would perform on previously unseen data.
They do so using the observations that are part of the original training dataset but were
not part of the bootstrapped subsample used to train a given tree, the OOB observations.
These typically amount to one-third of the observations in the original training dataset.

In our empirical application, we perform a random search over the following random
forest parameters: the number of trees, the number of explanatory variables randomly
selected for consideration at each split (), the minimum number of observations in a
terminal node, and the maximum number of terminal nodes.

3.2.2. Gradient Boosting

Freund/Schapire (1997) originally described boosting as a method that optimizes a loss
function. Moving further in this direction, Friedman (2001) proposes to use gradient
descent to optimize the loss function of a boosted model, the gradient boosting machine
(GBM). As gradient boosting fits many trees consecutively, overfitting can become a
problem.
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Therefore, one of its essential inputs is the learning rate, which determines how slow the
aggregated model learns from each tree. A low learning rate reduces a single tree’s impact
in the aggregated model, so the GBM takes many small steps towards the final prediction.
However, there is a trade-off between the learning rate and the convergence speed because
a slowly learning model requires a larger number of trees to achieve a good predictive
performance. Moreover, unlike in random forests, trees in gradient boosting are usually
small and often are simply stumps, i.e., trees with only one split.

In our empirical application, we perform a random search over the following gradient
boosting parameters: the number of trees, the learning rate, the maximal tree depth, the
minimum sum of weights in a terminal node, and lambda, a parameter for L2-regulariza-
tion on the leaf weights.

3.3. Performance Evaluation Criteria

To evaluate the models’ performance on the validation data, we use four criteria: recall,
the area under the precision-recall curve (AUC-PR), Fl-score, and accuracy. To ensure
comparability with previous studies, we also compare their performance with that of a
logistic regression.

Before we explain the motivation for these criteria, let us first consider the confusion
matrix for the binary prediction problem of cross-buy prediction (Table 3). The cells
of the confusion matrix provide the basis to compute the following measures: accuracy
((TN + TP)/Total), recall or sensitivity (TP/(TP + FN)), precision (TP/(TP + FP)),
and specificity (TN/(TN + FP)).

Prediction \ Actual No Cross-Buy Cross-Buy Sum
No Cross-Buy True negative (TN) False negative (FN) TN + FN
Cross-Buy False positive (FP) True positive (TP) FP + TP
Sum TN + FP FN + TP Total

Table 3: Confusion Matrix for Cross-Buy Prediction

While accuracy is a widespread evaluation criterion, it has the shortcoming of giving equal
importance to predicting positive and negative cases, which is problematic in imbalanced
data sets. For example, if 90 % of the customers do not cross-buy, a model that guesses
that no customer cross-buys has an accuracy of 90 %, but it would still be useless to
identify cross-buyers. Similarly, analyses based on the receiver operating characteristics
(ROC) curve are misleading for imbalanced data sets.

Therefore, we focus on evaluation criteria that are adequate for handling imbalanced
data sets and reflect our primary interest in distinguishing cross-buyers. We start with
recall, which denotes the share of true cross-buyers that the model correctly identifies.
We also rely on the precision-recall curve, which plots precision against recall for all
potential decision thresholds, outlining the performance trade-offs involved in selecting an
appropriate threshold. The decision threshold translates predicted probabilities into a class
prediction. Therefore, changing it can substantially affect the model’s performance and
implies a trade-off between decreasing one type of error at the other’s expense.
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Our third measure, the Fl-score, is the harmonic mean of precision and recall. It is
expressed as (2:x(precisionsrecall)/(precision + recall)), so it considers the compromise
between false positives and false negatives. For example, a model that predicts all cus-
tomers to be cross-buyers will have a perfect recall but a poor precision, which will
influence the F1-score. We also report accuracy to enable a comparison with the predictive
performance reported in previous cross-buy studies.

3.4. Interpretability Methods

Despite their superior performance, models generated using ensemble methods are chal-
lenging to interpret. They do not provide effect sizes as in a regression nor a simple graph-
ical representation of their structure, as in a classification tree. However, the machine
learning literature has flourished over the past years with several proposed methods to
shed light on “black-box” models. Table 4 provides an overview of the most popular
interpretability methods! described in more detail in this section.

Interpretation Question Method Literature
What are the most influential explana- Variable Importance Meas- Breiman et al. (1984),
tory variables in the model? ures (VIM) Breiman (2001)
What is the average size and direction Partial Dependence Plots Friedman (2001)
of the effect of an explanatory vari- (PDP)
able?
How heterogeneous is the effect of an Individual Conditional Expec- Goldstein et al. (2015)
explanatory variable? tation Plots (ICE)
Why was a particular customer pre-  Local Interpretable Mod- Ribeiro et al. (2016)
dicted as a (non)cross-buyer? el-Agnostic Explanations

(LIME)

Table 4: Overview of the Interpretability Methods Used in This Study

Variable Importance Measures (VIM) are among the first methods proposed to interpret
highly complex models. They compute a numerical measure that indicates how much
each explanatory variable influences the model predictions. One way to calculate them is
to consider the decrease in node impurity that follows from a split on the variable and
sum it within a tree and across all trees for ensembles. These measures are known as
impurity-based VIM.

Another possibility is to consider the decrease in predictive accuracy resulting from a
permutation of the explanatory variable. If the variable is essential in the model, permut-
ing its values should increase the prediction error. Such measures are known as permuta-
tion-based VIM. In random forests, this approach is implemented using the out-of-bag
(OOB) observations in each tree (Breiman, 2001).

Even though variable importance measures are a starting point to identify influential
variables, they provide no insight into the effects’ size or direction. Friedman (2001) closes
this gap with Partial Dependence Plots (PDP), which show how the model predictions

1 SHapley Additive exPlanations (SHAP) (Lundberg/Lee, 2017) are also a popular interpretability
method. For the sake of brevity, we do not discuss it in our study.
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change for different values of a given variable. Because PDP keep all other variables at
their mean values in the sample, we can interpret them as a depiction of the average
marginal effect of the respective variable in the model. Consequently, PDP can be mislead-
ing whenever the effects are highly heterogeneous across the observations.

To address this problem, Goldstein et al. (2015) propose Individual Conditional Expec-
tation Plots (ICE). ICE are rooted in a similar principle as PDP, but instead of estimating
the average marginal effect, they estimate an explanatory variable’s effect for each obser-
vation. To do so, ICE vary the value of the given explanatory variable to compute the
model’s predictions for each observation but keeping the other variables at their actual
values. Therefore, ICE plots have as many paths as the number of observations in the data
set.

The ICE paths’ average corresponds precisely to the PDP, so visualizing both methods’
results indicates whether the average marginal effects provided by the PDP are a good ap-
proximation for the entire data set. Nevertheless, both PDP and ICE may give misleading
results in the presence of strong interaction effects because they assume that the variable
of interest is independent of the other ones.

Overall, these methods provide insights into the size and influence of different explana-
tory variables in the model. However, we might also want to know why the model
predicts specific customers to have a high or low cross-buying probability. Local Inter-
pretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) tackle this challenge
by translating the complex decisions of a “black-box” model into a set of interpretable
rules.

To do so, LIME fit a surrogate model to explain the predictions of the complex model.
They create a synthetic version of the training data set through small changes (e.g., add
one year to a customer’s age) and generate predictions for these data using the complex
model. Based on these data, LIME use a simple model to interpret the complex model’s
decisions locally. The complex model’s predictions on the perturbed data become the
dependent variable for this simpler model, while the distances between the actual and the
perturbed observations become weights in the model.

Our empirical application relies on these interpretability methods to uncover the mod-
el’s underlying relationships and understand individual predictions.

4. Empirical Application

We conduct our empirical study in collaboration with one of the largest financial services
providers in Germany. As in other industries, customers usually exhibit sequential buying
patterns when they progressively enhance their relationship with their financial services
provider. Therefore, cross-buying is an important step to strengthen the customers’ rela-
tionship with the firm.

Li et al. (2005) show that checking accounts play a central role in the relationship be-
tween customers and their financial services providers since they tend to “open the door”
to acquire more advanced financial services. Against this background, our collaborating
firm would like to run a cross-sell campaign and incentivize customers who do not yet
have a checking account to open one. Thereby, the firm must concentrate its marketing
efforts on customers who are more likely to cross-buy and open a checking account.
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4.1. Data Sampling and Description

Because our goal is to predict customers’ likelihood of opening a checking account in
the future, we first identify all customers of the collaborating firm who do not yet own
a checking account. Based on this cross-section, we obtain a random sample of 10,000
customers who opened a checking account within the follow-up period of six months and
90,000 who did not. Figure 1 outlines this sampling strategy.

The empirical data set with 100,000 customers contains 34 explanatory variables that
describe customer demographics, transaction behavior, and the firm’s marketing efforts.
We collect these at the initial period (T), so the customer’s cross-buy decision in the
follow-up period cannot influence them. The dependent variable cross-buy is binary and
receives the value one for customers who opened a checking account within six months
and zero otherwise. A description of all the variables in the data set is available in the
Online Appendix A.

10,000 customers

Customers
with no

checking account Customers
Random Ll 90,000 customers
Sample checking account

To T

0 + 6 months

Figure 1: Data Sampling Strategy

We randomly split this data set into two parts and use 80 % of the observations as
training data and 20 % as test data. Because many studies find that class imbalance
affects predictive models’ performance (Prinzie/Van den Poel, 2008), we follow previous
literature and undersample the non-cross-buyers in the training data until we achieve a
50 %-50 % split. However, we do not change the class imbalance in the test data to avoid
overly optimistic model performance measures?.

Because the random forest implementation used does not support missing values, we
imputed those using random forest proximities, as described by Breiman/Cutler (2004).
We implement this procedure using five runs, each with 500 trees. We use the imputed
train and test datasets for the random forest models and the logistic regression. As a ro-
bustness check, we also impute the train and dataset using the median values for numeric
variables and the most frequent class for categorical variables.

2 We thank an anonymous reviewer for this suggestion.
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4.2. Model Building

We build the models using the discussed methods in the open-source software R. For the
classification trees, we use the package rpart (Therneau et al., 2019), which implements
the CART algorithm (Breiman et al., 1984) with the Gini Index as the splitting criterion.
Surrogate variables handle the missing values. We tune the following hyperparameters:
complexity parameter (cp), the minimum number of observations in a node (minsplit), and
the maximum tree depth (maxdepth).

For the random forests, we use the package developed by Liaw/Wiener (2002) and tune
the following hyperparameters: the number of trees (ntree), the number of explanatory
variables randomly selected at each split (mtry), the minimum number of observations in a
terminal node (nodesize), and the maximum number of terminal nodes (maxnodes).

Finally, we implement the boosting framework proposed by Chen/Guestrin (2016) and
implemented in R by Chen et al. (2020). We tune the following hyperparameters: the
number of trees (nrounds), the tree’s maximal depth (max_depth), the minimum sum of
weights in a terminal node (min_child_weight), the learning rate (eta), and the parameters
for L2-regularization on the leaf weights (lambda).

For all methods, we perform a simultaneous® parameter optimization with 10-fold
cross-validation. We define a grid of values for each parameter, as outlined in Table 5. To
speed up the tuning process, we use a random search algorithm that randomly chooses 50
parameter combinations from those defined in our hyperparameter space.

Classification Tree Random Forest Extreme Gradient Boosting
¢p: [0.0005, 0.015] mtry: [6, 30] lambda: [0.1, 1]
minsplit: [10, 50] ntree: (100, 1000] eta: [0.05, 0.3]
maxdepth: |5, 30] nodesize: |5, 30] max.depth: [1, 6]

- maxnodes: [5, 500] nrounds [100, 1000]

- - min_child_weight: [1, 10]

Table 5: Intervals of the Hyperparameters for Tuning the Classification Tree, Random
Forest, and Extreme Gradient Boosting Models

As the cross-buy response is highly imbalanced, we use the AUC-PR to select the best
hyperparameter combination for each method based on the estimates cross-validated dur-
ing the model training. Then, we evaluate these models’ performance in the test fold
during the cross-validation and in the test dataset using four criteria: recall, the area
under the precision-recall curve (AUC-PR), Fl-score, and accuracy. Finally, we estimate a
logistic regression using the imputed training dataset to make our results comparable with
previous cross-buying behavior studies.

3 An alternative is to optimize each parameter separately. However, as there is a trade-off among
different parameters, doing so does not guarantee that their combination will deliver an optimal
performance.
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5. Results
5.1. Model Performance Evaluation

For the classification tree, the model with the highest average AUC-PR (71.1 %) in the test
folds during the cross-validation has a complexity parameter of approximately 0.001, a
minimum of 28 observations in a node, and 12 as maximum tree depth.

In contrast, the random forest model with the highest average AUC-PR (74.6 %) in
the test folds shows a slight but relevant improvement relative to a single classification
tree. This model has 556 trees, 11 explanatory variables randomly selected at each split,
a minimum of 29 observations in a terminal node, and a maximum of 464 terminal
nodes. Figure 2 shows that a higher number of trees generally leads to marginally better
performance, as long as the tree complexity remains conservative.

Furthermore, a gradient boosting model with the following parameters had the highest
AUC-PR (75.4 %) in the test folds: 160 trees, a learning rate of 0.07, a maximal depth
of 3, a minimum sum of weights in a terminal node of 3.31, and a L2-regularization
parameter of 0.53. Despite the surprisingly low number of trees, this model performs well
because the other parameters effectively regularize it and avoid unnecessary splits.

Tuning Results for Random Forest (Random Search)
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Figure 2: Mean Area Under the Precision-Recall Curve (AUC-PR) in the Test Folds for
Selected Hyperparameter Combinations of the Random Forest

Our predictions consider a cutoff threshold of 0.5. Therefore, we classify all customers
with a predicted cross-buy probability of 0.5 or higher as cross-buyers. While a different
threshold could deliver better results, we find that this improvement does not generalize
beyond the training data set. Table 6 shows the average performance of the highest
AUC-PR models in the test folds (cross-validation in the training phase), which should
provide a fair indication of their expected performance on new data. We also benchmark
these models with a logistic regression, including all explanatory variables.
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Average Cross-Validated Measures (Test Fold in the Training Phase)

Model AUC-PR Recall F1 Score Accuracy
Logistic Regression 71.4 % 65.3 % 66.3 % 66.8 %
Classification Tree 71.1 % 65.5 % 67.0 % 67.8 %
Random Forest 74.6 % 65.2 % 67.5 % 68.6 %
Gradient Boosting 75.4 % 66.9 % 68.1 % 68.7 %

Table 6: Comparison of the Average Performance Measures of the Best Performing Mod-
els in the Test Folds

Despite having a slight advantage on the AUC-PR, the random forest and the gradient
boosting model seem to have a similar performance across the other criteria in the test
folds when compared to a single classification tree or a logistic regression. However, Table
7 shows that the performance differences become more substantial in the holdout data
(test dataset with 20 % of the observations). As the test data set has a more realistic
distribution of the dependent variable (10 % cross-buyers — 90 % non-cross-buyers), there
is a substantial decrease in some performance measures®.

Test Data Set Measures

Model AUC-PR Recall F1 Score Accuracy
Logistic Regression 251 % 66.2 % 29.0 % 68.1 %
Best Classification Tree 23.6 % 67.4 % 311 % 70.7 %
Best Random Forest 38.9 % 73.3 % 34.4 % 72.5 %
Best Gradient Boosting 30.4 % 69.0 % 31.8 % 70.9 %

Table 7: Comparison of the Performance of the Best Performing Models in the Test Data
Set

Overall, the models can identify a significant share of true cross-buyers. The performance
of the logistic regression is similar to previous cross-buy and next-buy studies. For exam-
ple, Knott et al. (2002) find an accuracy ranging from 38.3 % to 55.1 % for different
model specifications, whereas Kumar et al. (2008) find a 71 % accuracy in the holdout
sample. On the other hand, Lariviere/Van den Poel (2005) obtain a 74.5 % accuracy with
the logistic regression. In their case, random forests also show a slight but consistently
higher performance.

4 We note that the choice of imputation method does not influence the qualitative results in Table 6 and
Table 7. In all cases, the ordering of the models in all performance measures remains unaffected.
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5.2. Model Interpretation
5.2.1. Most Influential Explanatory Variables in the Model

We compute the permutation variable importance measures (VIM) for our tuned random
forest using 50 Monte Carlo iterations and resampling with replacement. Figure 3 displays
the ten most important variables.

Variable Importance for the Tuned Random Forest Model
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Figure 3: Raw and Percentage Permutation Variable Importance Measures for the Tuned
Random Forest Model

Age and occupation are among the most important variables in the model. The purchase
power in a customer’s neighborhood, a proxy for income, also appears among the ten
most important variables. These results corroborate previous findings that demographic
characteristics are important predictors of cross-buying behavior (e.g., Kamakura et al.,
1991; Knott et al., 2002; Kumar et al., 2008; Mende et al., 2013).

Furthermore, the number of days since the customer opened another type of account,
the number of logins from a desktop and a mobile device in the previous six months,
and the volume of inflows into saving accounts also contribute to the model. Previous
studies also show that recency, frequency, and monetary value (RFM) variables influence
customers’ propensity to cross-buy (Knott et al., 2002; Li et al., 2005).

Interestingly, we find additional characteristics associated with cross-buying behavior:
the city’s size in which the customer lives and the average number of years people live
in the customer’s residential building. To the best of our knowledge, these effects do not
appear in previous literature. They provide novel insights, as well as an interesting avenue
for future research.

5.2.2. Average Size, Direction, and Heterogeneity of the Effects

Even though the VIM provide a first glance at the most influential variables in the random
forest model, they do not indicate the direction or the size of the effects. Therefore, we
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resort to Partial Dependence Plots (PDP) and Individual Conditional Expectation Plots
(ICE) to visualize the average marginal effect and the marginal effect for each observation,
respectively. For brevity, we illustrate this approach for the two most important explana-
tory variables identified by the VIM and display the results in Figure 4. A representation
from the third to the tenth most important variable is available in the Online Appendix B.

Predicted Cross-Buy Probability

Predicted Cross-Buy Probability
o ° )

Figure 4: Effect of Age and Days Since Opening the Last Account on the Predicted
Cross-Buy Probability

The black lines represent the effects estimated by the ICE for each observation in the data
set, while the grey lines represent the average effect estimated by the PDP. The rugged
bars below the graphs indicate the number of observations in each region. We find that
customers approaching 30 years old experience a substantial decrease in their predicted
cross-buying probability. The negative effect stabilizes around 40 years old. These results
support previous findings from Mende et al. (2013) in the financial industry. Furthermore,
an average negative marginal effect of age is also consistent with the framework outlined
by Kamakura et al. (1991). Interestingly, the effect of age is heterogeneous across different
customers, as demonstrated by the black lines.

The number of days since opening the last account has an average negative effect
on cross-buy propensity, but it is heterogeneous. For customers with a high cross-buy
propensity, it is modest and only present after about 6,000 days. However, for customers
with a low predicted cross-buy probability, the first 2,000 days induce an abrupt negative
effect, after which the predicted cross-buy probability approaches zero.

The PDP in Figure 5 displays the interaction effect between both variables — young new
customers have a higher predicted cross-buy likelihood. Interestingly, we see that after
customers older than 35 years old pass a threshold around 2,000 days since opening their
last account, they reach and stay at a very low cross-buy probability.
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Figure 5: Average Interaction Effect between Age and Days since Opening the Last Ac-
count

5.2.3. Explaining Individual Predictions

Understanding individual predictions is a crucial step to assess the model’s face validity
and uncover possible biases. To illustrate how Local Interpretable Model-agnostic Expla-
nations (LIME) can be used to achieve this goal, we randomly select two actual cross-buy-
ers in the test data, one correctly and the other incorrectly predicted.

Figure 6 indicates that the random forest correctly classified customer 11,739 as a
cross-buyer because he is a male with a positive balance between €6,899 and €25,810
across different products and an inflow to his savings accounts between €150 and €3,000
in the previous six months. However, the model incorrectly classified customer 12,421 as
a non-cross-buyer because she has a joint bank account, had less than €150 inflows to the
savings accounts in the previous six months and opened another type of account between
3,550 and 5,588 days ago.

We perform this analysis for all the cross-buyers in the test data set and find a similar
pattern. Figure 7 shows that age, gender, and the number of days since opening another
type of account play a crucial role in correctly identifying cross-buyers. In particular, the
random forest attributed these customers a high cross-buying likelihood because they are
32 years old or younger, are male, or have opened another type of account less than 570
days ago.

These results indicate that demographic characteristics and RFM variables previously
identified in the literature explain the customers’ random forest model predictions, sug-
gesting the face validity of the relationships captured by the “black-box” model.
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Figure 6: Explanation of the Predictions for Two Customers using Local Interpretable
Model-Agnostic Explanations
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Figure 7: Explanation of the Predictions for Cross-Buyers Correctly Identified by the
Model in the Test Data
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Note: For better visualization, this figure includes only the ten most relevant explanations
that explain the predictions for at least three cross-buyers and have an absolute minimum
weight of 0.1 in the simple model.

6. Discussion

In line with previous studies on customer response (e.g., Kim/Street, 2004; Lariviere/Van
den Poel, 2005), our study shows that ensemble methods consistently improve the predic-
tions of cross-buying behavior. A random forest performs better in all evaluation measures
in the holdout data than a logistic regression or a classification tree. However, true to its
“black box” reputation, this model is difficult to interpret.

Using permutation-based variable importance measures (VIM), we find several charac-
teristics that influence customers’ predicted cross-buy propensity in the random forest
model and reflect previous findings in the cross-buy literature. Furthermore, the random
forest model seems to have uncovered novel relationships. We find that the city’s size
where the customers live and the average number of years people live in the customers’
residential building are also important predictors. Even though their effects are not very
substantial in our data (less than 3 % higher or lower propensity to cross-buy), they
provide an exciting avenue for future investigations.

The ICE show that the effects of the two most important variables (according to the
VIM) are highly heterogeneous across the customers investigated. For some customers,
age’s negative impact on the propensity to cross-buy is modest and remains mostly stable
once they approach 40 years old. However, for most customers, there is a steep decrease
in cross-buying probability until they reach the end of their thirties. These results suggest
that managers should prioritize customers of the critical age groups in their cross-selling
efforts.

This decreasing propensity to cross-buy and open a checking account is consistent with
the idea that customers purchase financial services in a natural sequence (Knott et al.,
2002; Li et al., 2005). As customers grow older and progress in different financial matu-
rity stages, they become less likely to open a checking account. However, for customers
with a high propensity to cross-buy, the ICE uncover that age has an inverted U-shaped
effect in the model. Kumar et al. (2008) also find an inverted U-shaped effect of age on the
propensity to cross-buy in a retail setting.

Furthermore, we find that the predicted propensity to cross-buy decreases substantially
with the number of days since customers opened their last account. This effect is in line
with previous studies that find a significant effect of recency on cross-buying behavior
(Knott et al., 2002; Li et al., 2005). However, we find that this effect is heterogeneous
among the analyzed customers. There is a steep negative effect for customers with a low
propensity cross-buy: after 2,000 days since opening the last account, their propensity to
cross-buy approaches zero. For customers with a high propensity to cross-buy, the effect
is less pronounced and emerges much later, after about 6,000 days since opening the last
account.

Interestingly, the PDP also show a significant interaction effect between both variables.
This finding suggests that the firm managers should not waste resources by targeting
customers who are both in their late thirties or older and have opened their last account
more than 5,5 years ago, as they have a low probability of cross-buying (on average, only
30 %).
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In addition, we find that customers who use online banking more often are more likely
to cross-buy. The positive relationship is present for both desktop and mobile devices but
is much stronger for mobile device logins. Customers with more than 200 logins from
a mobile device within six months (slightly more than once a day) have a 30 % higher
propensity to cross-buy than customers who do not use online banking. Previous studies
also find that mobile channel usage positively affects customers’ subsequent purchases in
other settings (Gensler et al., 2012; Steinboff et al., 2019).

Finally, we zoom into the predictions for selected customers to understand why the
model predicted them to be cross-buyers. This investigation helps us assess the results’ face
validity and detect potential biases or inconsistencies in the model.

7. Conclusion

This study demonstrates how managers and researchers can leverage ensemble methods
for cross-buying predictions. The best performing model, a random forest, manages to
identify 73.3 % of the cross-buyers in the holdout data while maintaining an accuracy
of 72.5 %. Therefore, it identifies cross-buyers without mistakenly targeting too many
non-cross-buyers, which is crucial for an efficient cross-selling strategy.

We contribute to the marketing literature by demonstrating the benefits of using ensem-
ble methods for predictive models of cross-buying behavior. Furthermore, we address
an important shortcoming of these models: the difficulty in interpreting their results.
We employ four interpretability methods that enable us to: identify the most influential
explanatory variables in the model; assess the average size, the direction, and the hetero-
geneity of their effects; and explain predictions for individual customers.

Our results should encourage practitioners and researchers to leverage ensemble meth-
ods to support their data-driven decisions without the fear of sacrificing the interpretabili-
ty of their results. While we implement ensemble and interpretability methods to tackle
cross-buy prediction, the presented approach applies to any predictive modeling setting.
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