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Classification problems are quite common in psychology, and 
many classification procedures were developed and applied in 
this specific branch of science. Some of these methods or groups 
of methods, respectively, are introduced here. The mostly used 
technique in psychology is factor analysis. We describe the under­
lying model of factor analysis, its ind'eterminacy problems, modi­
fications and extensions, and give .some hints for application. 
Next facet analysis is discussed, which is based on ideas from 
variance and factor analysis. Another procedure is multidimen­
sional scaling (MDS), which can be used either as a preliminary 
stage for other classification procedures or as a classification 
method itself. A distinction is made between metric and non­
metric MDS-procedures, and between methods for proximity 
data, dominance data, profile data. and conjoint measurement 
data. Finally the models and applications of latent structure 
analysis are discussed. (Author) 

I. Aims 

In the following we try to give a review of those meth­
ods, which are used in psychology for the purpose of 
classification. It is self-evident that we cannot give a 
complete description of these, techniques, since even a 
bibliography on this topic would comprise thousands 
of titles. Therefore we will give only a short introduc­
tion into each method. 

One might ask, whether it makes sense to consider 
in particular classification techniques in psychology, 
since e.g. cluster analysis an.d 'discriminant analYSIS are 
well-known methods of numerical classification, which 
are used not only in psychology but in many other 
branches of science as welL But these methods were 
adopted for the specific needs of psychology and their 
behavior in the psychologiql context was investigated 
by many authors. Other me:.ttiods, e.g. factor analysis, 
multidimensional scaling, laten-t structure analysis, facet 
theory, typal analysis etc., were developed primarily for 
use in psychology, and only in _a_second step their useful­
ness for other fields was discovered. Because of this we 
felt justified to restrict ourselves to classification meth­
ods used in psychology. 

2. Concepts of classification 

The term "classification" has been used in literature in 
more tha� one meaning and it seems necessary to clarify 
this matter before describing the different methods. If 
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we have given a sample of n subjects and for each subject 
the values of p variables, we might suspect that the n sub­
jects form certain distinct groups in the space of the p 
variables. If we assume the existence of such a structure 
the groups are called clusters and methods of findin� 
such groups are called cluster analyses. In (16) the term 
clust�r analysis is reserved for the case, where yvery vari­
able IS recorded for each individual. If the division into 
subclasses is based on criteria, which may vary from one 
class to another, the term classification analysis is used. 

In (17) the term classification analysis is used in both 
of the meanings above, and the term cluster analysis is 
used, if one tries to identify groups of variables instead 
of groups of subjects. Since in this latter case the aim is 
for the most part to relate the (observed) manifest vari· 
abIes to a smaller number of (not observed) latent vari­
ables, it might be better to use instead the term analysis 
of latent structure. 

Up to now we assumed a hidden structure in the data, 
whkhpermits a division of the data into disjoint clusters. 
But sometimes this assumption is unrealistic. It might be 
sensible to differentiate between people, which are more 
intelligent and others, which are less intelligent. But by 
all we know, "intelligence" corresponds to a continuous 
latent scale. The only way to distinguish between more 
and less intelligent people is to define a cut-off point, 
which is defined in such a way that people with an 
"intelligence score" - below this point are called less 
intelligent, and people with a score above this point are 
called more intelligent. This kind of classification, where 
an artificial structure is imposed on the data, is called 
dissection in (17). Of course, dissection is neither re­
stricted to only two groups nor to only one dimension. 

In this context we should also discuss the concept of 
a type. Methods by which such types can be identified 
are called typal analyses. One definition of a type de­
scribes it as a subset of all those subjects, which form a 
group due to their similarity. Many authors identify 
therefore types with clusters. Other authors define types 
as classes, which are not necessarily disjoint. But there 
are many more definitions of types used in literature as 
well. E.g., in (4) no fewer than 45 semantic usages of 
type are given. But this list is by no means exhaustive. 
Therefore we believe that it is necessary to discuss typal 
analyses beside cluster analyses. 

Another group of problems assumes that the exis­
tence of two or more popUlations is given and for each 
PQPulation a sample of subjects (training sample). The 
problem is to find a rule, which enables us to allot some 
new subject to the correct population. This is termed a 
problem of allocation or discrimination. If the allocation 
rules are given by fUIlctions based on weights for the dif· 
ferent variables, the term discriminant analysis is used. 
There are several modifications of the discrimination 
problem. For example, the allocation of the training 
samples to the populations may not be known (cf. (5)). 
We. may also consider the case, where the populations 
are known exactly, and the problem is to allot a new 
subject to one of the populations. This problem is called 
pattern recognition. 

In (17) t,hree reasons for discrimination are given. The 
first one is lost infonnation, i.e. for some reason or other 
we know only the values of some variables for a subject 
but no longer to which class it belongs. A second reason 
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is unattainable information. This is the case in diagnos­
tics, where we must diagnose a disease from certain 
equivocal symptoms. A last reason is prediction Here we 
use observations at a previous point of time to discrimi­
nate between certain types of behavior in the future. 

In the following we describe some of the methods of 
classification, which are used in psychology. We did not 
try to organize the representation of these methods ac­
cording to the classification concepts given above, since 
this leads to some difficulties caused by the fact that 
some methods can be used for different purposes. The 
procedures are therefore presented one after the other 
with reference to other methods if necessary. 

3. Factor analysis 

3.1 Fundamental principles 

We start from a sample of n subjects. For each subject 
we measure p variables Xl . '  .. , XP' the so-called mani­
fest variables, e.g. p test scores. These form a p-dimen­
sional column yector X. The hypothesis is that these p 
variables can be explained in principle by q < p latent 
variables Yb . . . , Yq, the so-called commOIl factor 
scores, which form the q-dimensional column vector Y. 
In this way the originally p-dimensional space is reduced 
to a q-dimensional space. One hopes that this reduction 
can be d�one in such a way that each latent variable can 
be explained by a group of certain manifest variables, 
and that these groups are more or less disjoint. In this 
way a classification of the manifest vtiHiables is derived. 
The relation between latent and I11m11tcst variables is 
given by linear equations 

Xi = /1i + (Ail Y1 +Ai2 Y,+ ... +Aiq Yq) + Ei, i = 1, . . . , p .  

By Ej we denote the unique part of Xj, which cannot 
be explained by the common factors. Another interpre­
tation is that Ei is an error term. But this last interpre­
tation becomes dubious, if there exists a latent factor 
score, which is related to only one of the manifest vari­
ables we have considered.  In other words, if a certain 
manifest variable cannot be classified, i.e. related to a 
common factor score, it should be considered as a rep­
resentative of a separate class. 

By assuming 

E[XiJ=/1j, i=l, . . .  , p  

for the expectation of Xi we can withou t loss of gener­
ality take 

E[Yj]=E[EiJ=O, i=J, . . .  , p ,  j=l, .. .  , q . 

The coefficients AiI, ... , Aiq are constant parameters, 
which form the (pxq)-matrix II of factor loadings. De­
noting by /1 the column vector of /11, . . . , /1p and by E 
the column vector of Eb ... , Ep, we can combine the 
p linear equations in!o one matrix equation 

X=/1+IIY+E. 

We assume that the errors are uncorrelated, i.e. 

Cov [Ej,Y;l = 0, i "" j ,  i = 1, . . .  , p, j = 1, . . . p , 

and that the common factors and the errors are uncor­
related, I.e. 

Cov [E"Ej] = 0, i = I ,  . .  _ ,  p ,  j = I, . . .  , q . 
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Then the covariance matrix Lx of the manifest vari­
ables, which contains in the main diagonal the variances 
of Xl, ... , Xp and in the other cells the covariances, is 
given by 

kX = IIkyll' + kE 
with the covariance matrix Ly of the common factor 
scores and the covariance matrix L£ of the errors. By 
A' the transpose of;\ is denoted. The matrix LE is a 
diagonal matrix of the variances of EI, . . .  , Ep, since 
the covariances are zero. If we assume that Ly equals 
the identity matrix 1, this means that we have standard­
ized common factor scores with variances equal to one, 
which are uncorrelated or orthogonal, respectively. This 
leads to 

kX = 1111' + kE' 
The problem in factor analysis is to estimate the matrix 
Lx and the vector 11 by means of the p-dimensional 
measurement vectors X for the n subjects, and then to 
factorize Lx according to the equation above. By this 
procedure we get estimates of the factor loadings A and 
can express each manifest variable as a linear combina­
tion of latent variables and vice versa. Ifwe have found a 
solution A and multiply it by any non-singular orthonor­
mal (qxq)-matrix, we get another solution. By means of 
such a rotation we can try to find a solution with a sim­
ple structure, I.e. with factor loadings, which are either 
near one or near zero, respectively . If A is a matrix of 
ones and zeros, we have a classification of the p manifest 
variables into q disjoint classes. It is obvious that we can 
achieve this aim even better by assuming a matrix Ly 
different from I ,  i.e., if we allow for correlated or oblique, 
respectively, common factor scores. 

3.2 Indetenninacy problems 

In (7) and elsewhere it has been pointed out that one 
cannot expect unique solutions from factor analysis, i.e. 
the same factor analytic model can result in many total­
ly different classifications of the variables. The first inde­
terminacy concerns the number q of common factors. 
Values of q, which are either larger or smaller, respec­
tively, than the unknown number of "real" common fac­
tors, will lead to incorrect interpretations of the data. A 
second indeterminacy concerns the matrix L£ of error 
variances for a given number q of common factors. A 
third indeterminacy concerns the matrix A of factor 
loadings for given kE and q. By using orthogonal and 
oblique rotation we can get infinitely many matrices of 
factor loadings lea.�ing�to different cl.assifications of the 
variables. Finally(even for given parameters q, :LE and 
A there may exist different common factor scores Y. 

3.3 Some precautions 

In (9) several hints are given, which can in certain cir­
cumstances prevent wrong interpretations of factor ana­
lytical results. First it is proposed that there should be at 
least three manifest variables for each common factor, 
since otherwise we cannot expect a "good" rotational 
solution. Second the manifest variables should not be 
factorially complex, i.e. each manifest variable should 
belong to a single common factor. Third it is better to 

127 

https://doi.org/10.5771/0943-7444-1981-3-126 - am 13.01.2026, 13:06:46. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/0943-7444-1981-3-126
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


choose the number q of common factors too great than 
too smalL If we have extracted more common factors 
than can be actually assumed, we can delete them from 
interpretation. Fourth the manifest variables used in fac­
tor analysis should -be variables that are linearly indepen­
dent, since otherwise the correlation coefficients are 
spurious. E.g. by using sums and differences of the mani­
fest variables as additional variables we can produce 
artifacts. 

As a fifth point the population on which the analysis 
is based, should be homogeneous, since otherwise we 
cannot expect good estimates of Lx and /1. Since the 
estimation of Lx is the basis of the whole analysis, we 
must try to get good estimates of the intercorrelations of 
the manifest variables. Conditions for this are beside 
others a large n umber n of subjects, very reliable mea­
surements and approximately linear relations between 
these variables. 

In (12) a fOUf·stage approach for factor analysis was 
proposed in order to get reliable classifications. In the 
first stage exploratory factor analysis is used with the 
aim of deriving the probable numbeLq of common fac­
tors. In a second stage the factors or classes, respectively, 
are given names that are based on theoretical arguments, 
and which are chosen in such a way that many research­
ers agree with respect to the manifest variables, which 
should have high factor loadings on the factor with a 
given name. In a third stage simple cross-validation on 
many data sets is done base d on confirmatory factor 
analysis. This means that we test the goodness of fit of 
the factor structure, which we found in the first stage. 
The goodness of fit tests are based on the results for 
samples of subjects different from the sample used in the 
first stage and make the additional assumption that the 
vector X of manifest variables is multivariate normal 
with mean vector!1 and covariance matrix Lx (cf. (I)). 
In the fourth stage a double cross-validation on samples 
different from those used in the first and third stage is 
performed. The goodness of fit of these data with re· 
spect to the factor structure found in stage one and the 
average parameter estimates found for the samples in 
stage three is then tested. 

3.4 Modifications and extensions 

The majority of factor analyses is done in the way we 
described in 3 . 1 .  The �tal"ting point is a data matrix of 
n rows corresponding to the s ubjects and p columns cor­
responding to the variables. In the so·called R·technique 
(c[. (3)), which we have considered up to now, the col· 
umns of the matrix are correlated and the correlation 
matrix is factorized. This leads to classes of variables. In 
the Q·teclmique (cf. (30)) the rows of the matrix are 
correlated and the corresponding correlation matrix is 
factorized. This yields classes of subjects, i.e. we get a 
classification of the subjects. 

In contrast to the R- and Q-techniques, which involve 
a popUlation of subjects, the p. and O·techniques are ap' 
plied to a single subject. P·technique starts by measuring 
a set of variables on one ,subject and re peats these mea­
surements on a sufficient number of occ�sions. Then the 
correlation matrix of the variables is. factorized yielding 
classes of variables, which tend to change with time in 
the same way. By inverting P-technique in the same way, 
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as we inverted R-technique to get Q-technique, we derive 
O-technique. This means that we correlate points of time 
or occasions instead of variables and get classes of occa­
sions. 

In S- and T-technique we consider only one variable 
but several subjects and several occasions. The correla­
tion matrix of occasions leads to T-technique yielding 
classes of occasions, while S-technique, which is the in­
version of T-technique, is based on the correlations of 
subjects and leads to classes of subjects. 

All the modifications of factor analysis considered 
above are based on a two-dimensional data matrix, from 
which a covariance matrix is derived, which is then fac­
torized. In (34) a three-mode factor analysis was consid­
ered, which can be used, if we have a three-dimensional 
data space, which results, e.g., if subjects, variables, and 
occasions are considered. Generalizations to more than 
three dimrnsions are obvious. An extension to four­
mode matrices is given in' (22). Of particular interest is 
the use of three-mode factor analysis for factors of 
change (cf. (33)). Nowadays multivariate change struc· 
tures are also analysed by means of the so·called L1SREL 
model of Jbreskog (cf. (21)). This modell as well as the 
so·called A YOCS·model are sp'ecial cases of general co· 
variance structure analysis, which is reviewed in (14). 
Common factor analysis is a special case of such models 
as well, as has been discussed in (2) in detail. 

One of the basic assumptions of common factor anal­
ysis is the assumption of linear relations between mani­
fest and latent variables, though it is obviously seldom 
realistic to expect linear relations. Even monotonic rela­
tions cannot be always assumed. In (25) an approach 
to this problem based on orthonormal polynomials is 
proposed. 

3.4 Relationship to other procedures 

The common origins of factor analysis and latent struc­
tUre analysis are discussed in (8), while in (35) relations 
between three-mode factor analysis and multidimension­
al scaling are given.  Empirical comparisons of factor anal­
ysis with cluster analysis are given in (27), while in (18) 
empirical comparisons with order analysis are discussed. 

In (36) the method of covariance selection, which 
was developed in (6), is proposed as an alternative for 
factor analysis. Just as in common factor analysis the 
starting point is a data matrix for n subjects and p vari­
ables. It is observed that the elements of the inverse of 
the covariance matrix of the p variables, which are called 
concentrations, are multiples of the corresponding par­
tial correlation coefficients. This means that a concentra­
tion of zero is equivalent with a zero partial correlation 
coefficient of the corresponding pair of variables. By 
means of an iterative process based on the assumption of 
a multivariate normal distribution that covariance selec­
tion model is sought, i.e. that concentration matrix with 
a given pattern of zeros, which fits the data in a best 
way. This yields a classification of the p variables into 
subgroups of variables. Variables in different subgroups 
are either identical or conditionally inde pendent. 

4. Facet analysis 

In (10) the principles of facet theory are discussed. First 
hypotheses about the general properties of the subjects 
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are formulated, the so-called facets. For example, one 
can consider the two facets I = intellectual abilities with 
five elements and C = content with three elements. By 
the Cartesian product IC is meant the set of ordered 
pairs ic, where i is an element of I and c an element of C.  
In  our example we have 5 x 3 = 15 of these structuples 
(= element combinations). For each structuple ic an item 
is constructed and for each item a score Ypic is observed 
for each subject p of a population. Following (26) it is 
assumed that Ypic is a linear function of a set of latent 
variables given by 

Ypic = Pic + OicSp + PicRpi + 'YicGpc + P'YicRGpic + Epic ' 

In this equation /lic is the mean score of the item in the 
population of subjects. The parameters 0ic, Pic, 'Yic, and 
P'Yic are loadings specific to the structuple ct. The other 
terms denote latent random variables. Sp is the score 
on a general latent variable, Rpj and Gpc are the scores 
on latent variables specific to the element i of the facet I 
and the element c of the facet C, and RGpic is the score 
on a latent variable specific to the combination ofi and 
c. By E pic an error score is denoted. Since RGpic and 
Epi'c cannot be separated without replications, the last 
two terms can be combined into one term E pic' In  (26) 
other restrictions of the parameters are considered as 
well. Here and i n  (15) covariance structure analysis is 
used for performing facet analyses. In (29) the so·called 
sm�llest space analysis of Guttman (11) is used for test· 
ing the structural hypothesis. In particular the items are 
classified into subsets and order relations among subsets 
of items are established. 

5. Multidimensional scaling 

5.1 Definition 

Following (31) a multidimensional scale is defined in the 
following way. We assume that we have an empirical re­
lational system, i . e. a set of empirical objects on which a 
set of m empirical relations is defined. Further we as­
sume the existence of an I-dimensional numerical vector 
relational system, i.e. a set of r-dimensional vectors with 
components that are real numbers and a set of m rela­
tions on  the vectors. A multidimensional scale is then 
defined as an r-dimensional homomorphism that maps 
the empirical relational system onto a subsystem of the 
numerical relational system. An r-dimensional homo­
morphism assigns to each empirical object a numerical 
vector in such a way that whenever an empirical relation 
holds, the corresponding numerical relation holds as 
well, and that whenever an empirical relation does not 
hold, the corresponding numerical relation does not 
hold. 

5.2 Relation to classification 

M ultidimensional scaling or MDS can b e  used in classifi­
cation in different ways. On the one hand MDS can b e  
necessary for the performance of cluster or typal analy­
ses, which in most cases are based on  r-dimensional data 
vectors for each object. In particular, if the data are not 
given in the form of real-valued vectors, but e.g. in form 
of preference data, an MDS must precede any cluster 
analysis. On the other hand MDS can b e  used directly as 
a m ethod of classification. Since the dimension r of the 
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space in to which the empirical objects are mapped is not 
known, this number, which corresponds to the number 
of factors in factor analysis, must be determined, The 
dimensions, which are identified in MDS, correspond to 
the factors in factor analysis. If the objects are subjects, 
one gets results similar to Q-factor analysis. while in case 
of objects, which are variables, results similar to R-factor . 
analysis are derived. The scores of the objects on  the 
latent dimensions correspond to factor loadings. Objects 
with high scores with respect to a certain dimension 
form a class. 

5.3 Types of data 

It is possible to divide the different MDS·procedures into 
four classes according to the data. These may be proxim­
ity data, dominance data, profile data or conjoint m ea� 
surement data. We follow h ere closely the classification 
given in (28). 

5.3.1 Proximity data 

In most cases an (nxn)-matrix is given fOI n objects. 
Each cell of this matrix contains a m easure of proximity 
between two objects, e.g. a measure of similarity or a 
measure of dissimilarity. This measure may b e  given on a 
numerical or on  a merely ordinal scale. Sometimes the 
cell entries in the main diagonal describing the proximity 
of identical objects are missing and for symmetrical mea­
sures of proximity even the entries of the triangular 
above-diagonal half can b e  missing. It is assumed that the 
proximity data are monotonically related to distances in 
some underlying latent space, where the monotonic 
function is decreasing in the case of measures of similar­
ity and increasing for measures of dissimilarity. 

Sometimes only the measures of proximity between 
two different sets of n or m objects, respectively, are 
given. This yields an (nxm)·data matrix. This matrix 
can be regarded as a corner submatrix of the complete 
(n +m) x (n +m) proximity matrix. It is assumed that 
the two sets of n and m points are emb edded in the 
same space in such a way that for any object in one set 
the given measures of proximity b etween that object 
and all objects in the other set are monotonically related 
to the corresponding distances of the point correspond­
ing to the one object to all points in the other set. 

It is possible to consi der even more incomplete prox­
imity matrices by considering only comparisons of cer­
tain pairs of objects. An example is the case, where the 
pairs under consideration are linked by pairs with one 
object in common. 

5.3.2 Dominance data 

For n objects an (nxn)-matrix is given. EacR cell con� 
tains a measure of the ext ent to which the row object 
dominates the column object. This m easure can take the 
purely dichotomous form, if we record only whether 
one object dominates the other one, It is assumed that 
each object is represented by a score on a unidimension­
al scale in such a way that, if object i dominates object 
j, then object i has a higher score than object j .  

In  the multidimensional case we consider m of these 
(nx n)-dominance matrices. Each matrix describes the 
manifest dominance structure of n objects under differ-
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ent conditions, e.g. for m different subjects. It is as­
sumed that each object can b e  represented by a point in 
a space of two or more dimensions. The conditions are 
represented by directions in this space. If an object i 
dominates an object j in a particular matrix, then the 
point for object i falls b eyond the point for object j in 
the corresponding direction. 

5.3.3 Profile da ta 

Here n objects and m variables are considered yielding 
an  (nxm)-matrix. The entries give the measured values 
of the objects with respect to the variables. The entries 
of' a row are interpreted as a profile of the object in 
question. By using a measure of profile similarity or dis­
similarity any matrix of profile data can be transformed 
into a proximity or dominance matrix. It is assumed that 
the objects can b e  represented as n points in a space, and 
that by some rule the profile of an object determines the 
position of the corresponding point in the space. 

5.3.4 Conjoint measurement data 

An (nxm)-matrix is given, where the rows correspond to 
n levels of one variable and the m columns to m levels of 
another variable. An entry of this matrix describes the 
magnitude of the effect, which results for the combina­
tion of the corresponding row and column level. It is as­
sumed that the l evels of one variable can be represented 
as points on one unidim ensional scale and the l evels of 
the other variable as points on another unidimensional 
scale. This is done in such a way that each entry is a 
simple function of the scaled values associated with the 
l evels in question. While matrices of proximity, domi­
nance or profile data are always two-way matrices, ma­
trices of conjoint measurement data can immediately 
by extended to more than two variables, which jointly 
contribute to an effect. 

SA A selection of MDS-procedures 

A distinction is made b etween metric and nonmetric 
MDS-procedures. A nonmetric procedure yields results 
that are invariant under monotonic transformations of 
the data. This means that nonmetric procedures are ap­
propriate for merely ordinal data. Metric procedures 
assume interval scaled data·, i .e. we have only invariance 
of the results with respect to linear transformations. 

5.4.1 Methods for proximity data 

I n  classical metric MDS (cf. (32)) the proximity data 
are related to the distances of points by means of a func­
tion of a specified form. Indirect methods assume that 
the proximity data arise from comparisons of subjective 
magnitudes, which are normally distrib uted. This yields 
estimates of the distances. Direct methods assume that 
the proximity data are directly related to the distances 
by a specified monotonic function. The first step is in 
both cases the estimation of the distances by means of 
the proximity data. In a second step these estimates are 
used to determine dimensionality, and in a third step the 
coordinates for the points in space are derived. 

I n  nonmetric MDS proximity data are related to dis­
tances by a monotonic function. Using an initial configu­
ration of points the coordinates are iteratively adj usted 
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in such a way that a measure of goodness of fit is mini­
mized. 

In (19) the so-called stress is defined as a measure of 
goodness of fit in the following way. First the proximity 
m easures 0 ,  which are assumed to measure dissimilarity 
of the objects, are ranked in strictly ascending order. It 
is assumed that the dimension of the space, in which the 
objects are to be represented, is given by t. Now suppose 
that n objects are represented by n points in the t-dimen­
sional space, i . e. by a so-called configuration. For each 
pair of points a distance d can b e  calculated. Now for 
each distance d a number a is sought, such that the dis 
have the same ranking as the dissimilarities O .  This is 
done in such a way that the square root of 

L(d-ClY/Ld' , 
• 

where the summation is over all pairs of objects, is mini-
mized. The result is the so-called stress for a fixed con­
figuration. The next step is to find that configuration 
with minimal stress. In  further steps that dim ension t 
and that distance measure is looked for, which yield the 
smallest stress values. In this way it is possible to iden­
tify the structure of the space, which fits the data b est 
in the sense of stress. 

5.4. 2 Methods for dominance data 

In the metric case each dominance matrix corresponds 
to an axis in a laten t space and the proj ections of the 
points on this axis are related to the entries of the domi­
nance matrix i n  question. In the nonmetric case only the 
order of the projections is considered. M ethods for 
determining the number of dimensions and the rank 
order of the projections on the axes are called unfolding­
techniques (cf. (13), (37)). 

5.4.3 Methods for profile data 

In the metric case factor analysis can b e  used. In the 
nonmetric case one can use nonmetric factor analysis 
(20). This latter method assumes that each of the m 
values in a profi le is a monotonic function of the coordi­
nates of a latent space. 

5.4.4 Methods for conjoint measurement data 

It is assumed that each entry of the data matrix can be 
represented as a simple function  of its latent row and 
column values. The" latent values are estimated by an 
iterative a djustment of values for each of the rows and 
columns, such that a measure of overall departure from 
the model is minimized. 

6. Latent stmcture analysis-

6.1 Model 

The general latent structure model can b e  formulated in 
the fol lowing form (8). We assume n manifest (observed) 
variables XI " ' "  Xn and m < n  latent (not observed) 
variables Y b . . .  , Y m , and a conditional probability 
distribution f(x" . . .  , xn ly" . . .  , Ym) of the X's for 
given Y's. The function f is a probability density for 
continuous XiS and a se.,t of probabilities for discrete 
X's. I n  a similar way we denote the marginal distribu­
tion of the Y's by g(Yl, " . , Ym). Then we get the 
marginal distribution of the X's by 
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h(x" . . . , xn) � ff(x" . . .  , xn l y" . . .  , Ym) 
g(Yj , · · · , Ym ) dyj . . .  dYm · 

For a subject with the values xO I " " , xOn for the 
manifest variables we get by means of Bayes' formula 
the distribution for its latent values by 

k (YI, " ., Ym 1xo, , · ·  " xon) 

� f(xo,, · . . , xon IY j , · · · , Ym) g(y" . . .  , Ym) 

h(xo" . . .  , xon) . 

Using the ma�imum likelihood approach we can assign 
a subject with the values (XOI , " " xon) of the mani­
fest variables to that point (Yo" . . .  , Yom) in the latent 
space for which the function k is maximum. 

In the first equation above at most the distribution h 
of the manifest variables is known, while f and g are un� 
known and cannot be deduced from h. Therefore we 
need additional assumptions about the form of f and g. 
A general assumption is that the axiom of local indepen­
dence holds," i.e. for given values of the latent variables 
the manifest variables are independent. This yields 

f(x" . . .  , xn l y" . . .  , Ym) 
� fl (xI IY j , . . .  , Ym) . . .  fn (xn Iy" . . .  , Ym ) . 

The fMnctions on the right side of the equation are called 
trace [unctions or trace lines, respectively, and it is as­
sumed that a least their form is known though there may 
be unknown parameters in these functions. 

6.2 General procedure 

In (23) a scheme of 9 steps is discussed, in which way a 
latent structure analysis can be performed. The first step 
concerns the selection and specification of the model. 
Here assumptions about the form of the trace lines and 
of the function g, i.e. about the distribution of the latent 
variables are made. In a second step the so-called ac­
counting equations, which relate the distribution of the 
manifest variables with that of the latent variables, are 
formulated for the specific model. In a third step the 
conditions of reducibility are studied. These result 
from the fact that in the more complex models we have 
more accounting equations than latent parameters. The 
system of accounting equations can only be solved ex­
actly, if the additional equations hold for the data as 
well. In a fourth step the identifiability of the latent 
parameters must be checked. The accounting equations 
are only in part independent, since many manifest para­
meters can be calculated from other manifest parameters. 
Therefore one cannot always be sure that it is possible 
to i dentify all latent parameters by means of the ob­
served data. 

The fifth step concerns the identification of the 
model, Le. the accounting equations are solved for the 
latent parameters. In the sixth step the model is fitted to 
the data. In this step, which can be used for concrete 
data instead of the fifth step, we allow for random fluc­
tuations of the data. In step number seven the goodness 
of fit is tested, i.e. it is investigated how well the data 
agree with the fitted model. In the eighth step the re­
cruitment pattern is determined. For each response pat­
tern of manifest variables there exists a recruitment pat­
tern of the probabilities that a subject with this response 
pattern is located in a certain region of the latent space. 
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In the last step the classification of the subjects is per­
formed. If, e.g., the latent variables are discrete, and if 
the maximum likelihood approach is used, i.e. if each 
subject is assigned to that point of the latent space for 
which the probability is maximum, then we have a classi­
fication of the subjects to a set of disjoint latent classes. 
Another interpretation of this step is that scale values 
are assigned to the subjects. 

Sometimes one is also interested in the dual problem 
of scaling or classifying the manifest variables. In this 
case scale values are assigned to the manifest variables 
indicating how much a single manifest variable contrib­
utes to the scale values of the subjects or how much a 
single manifest variable discriminates between subjects 
located at different points of the latent space, respec­
tively. 

6.3 Modifications 

By making specific assumptions with respect to the trace 
lines and the latent distribution g we derive submodels 
of the general latent structure model (cf. (24)). The best 
known and mostly used model is the latellt class model. 
This assumes only one discrete latent variable Y. The 
values of Y are called latent classes. It is assumed that g 
corresponds to a multinomial distribution, and that the 
trace lines are the conditional probabilities that the 
manifest variables take certain values, if the subject be­
longs to a certain latent class. 

The latent polynomial model assumes one continuous 
latent variable Y, trace lines that are polynomials and in 
most cases that g corresponds to a beta distribution. In 
particular, linear and quadratic trace lines were consid­
ered. For polynomial trace lines and a discrete distribu­
tion g the so-called located class model results. By as­
suming certain exponential functions for the trace lines 
and a uniform distribution on the interval between zero 
and one or alternatively the beta distribution for g the 
latent content model is derived. If the trace lines are 
certain step functions, the latent distance model results. 
If g corresponds to a standard normal distribution, and 
the trace lines are densities of normal distributions with 
unknown parameters, we get the classical test theory 
model. For logistic trace lines the probabilistic test 
theory models of Rasch and Birnbaum result. 

In the latent profile model a discrete latent variable 
Y is assumed and continuous manifest variables but no 
specific assumptions with respect to the trace lines. For 
each manifest variable the existence of a latent profile 
is assumed, which is defined as the vector of the condi­
tional expectations of that variable for given latent 
classes. 
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Call For Papers COLING 82 
The Ninth Conference on Computational Linguistics 
will be held July 5th-10th, 1982. in . Prague, Czecho­
slovakia. It is sponsored by the International Committee 
on Computational Linguistics in association with: Lin­
guistic Institute of L. Stur, Slovak Academy of Science, 
Bratislava and Faculty of Mathematics and Physics, 
Charles University, Prague. 

Papers are invited for presentation especially from the 
following domains: 

theories, methods and problems of computational lin­
guistics 
relations of computational linguistics to computer 
science, mat�ematics, linguistics, artificial intelligence, 
etc. 
representation of knowledge and inferencing as they 
relate to language understanding 

. 

applications of natural language p-roces�ing: 
Authors wishing to present a paper should submit 4 copi­
es of a 3 to 4 page summary, double spaced, by Decem­
ber 1st, 1981 , to COLING 82 MFF UK, Linguistics, 
Malostranske n .  25,  1 1 8 00 PRAGUE 1 ,  CZECHOSLO­
VAKIA. 

NATO Advanced Study Institute on Numerical 
Taxonomy 
This Institute will be held from 4 July to 1 6  July 1982 
at Bad Windsheim, Federal Republic of Germany. It will 
present a review of the entire field of numerical taxo­
nomy ranging from systematic theory through method­
ology and covering phenetic approaches as well as phylo­
genetic inference. Morning sessions will present state-of­
the-art review lectures by a carefully chosen panel of 
international experts; the afternoons will present ,recent 
research results alternating with panel discussions at the 
end of each subject segment of the ASI; several evening 
lectures will round out the program. The intended audi­
ence will be largely postdoctoral with a few predoctoral 
participants. 

Full particulars of the program are available from the 
Institute Director, Dr. Robert R. Sakal, Department of 
Ecology and Evolution, State University of New York at 
Stony Brook, Long Island, N.Y. 1 1 794, USA. Tel.: 
5 16-246-6162. 
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