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Classification problems are quite. common in psychology, and
many classification procedures were developed and applied in
this specific branch of science. Some of these methods or groups
of methods, respectively, are introduced here. The mostly used
technique in psychology is factor analysis. We describe the under-
lying model of factor analysis, its indeterminacy problems, modi-
fications and extensions, and give some hints for application.
Next facet analysis is discussed, which is based on ideas from
variance and factor analysis. Another procedure is multidimen-
sional scaling (MDS), which can be used either as a preliminary
stage for other classification procedures or as a classification
method itself. A distinction is made between metric and non-
metric MDS-procedures, and between methods for proximity
data, dominance data, profile data, and conjoint measurement
data. Finally the models and applications of latent structure
analysis are discussed. (Author)

I. Aims

In the following we try to give a review of those meth-
ods, which are used in psychology for the purpose of
classification. It is self-evident that we cannot give a
complete description of these.techniques, since even a
bibliography on this topic would comprise thousands
of titles. Therefore we will give only a short introduc-
tion into each method. )

One might ask, whether it makes sense to consider
in particular classification techniques in psychology,
since e.g. cluster analysis and discriminant analysis are
well-known methods of numerical classification, which
are used not only in psychology but in many other
branches of science as well. But these methods were
adopted for the specific needs of psychology and their
behavior in the psychological context was investigated
by many authors. Other methiods, e.g. factor analysis,
multidimensional scaling, latent structure analysis, facet
theory, typal analysis etc., were developed primarily for
use in psychology, and only in g second step their useful-
ness for other fields was discovered. Because of this we
felt justified to restrict ourselves to classification meth-
ods used in psychology.

2. Concepts of classification

The term “classification” has been used in literature in
more than one meaning and it seems necessary to clarif'y
this matter before describing the different methods. If
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we have given a sample of n subjects and for each subject
the values of p variables, we might suspect that the n sub-
jects form certain distinct groups in the space of the p
variables. If we assume the existence of such a structure,
the groups are called clusters and methods of finding
such groups are called cluster analyses. In (16) the term
cluster analysis is reserved for the case, where gvery vari-
able is recorded for each individual. If the diz‘;ion into
subclasses is based on criteria, which may vary from one
class to another, the term classification anal ysis is used.

In (17) the term classification analysis is used in both
of the meanings above, and the term cluster analysis is
used, if one tries to identify groups of variables instead
of groups of subjects. Since in this latter case the aim is
for the most part to relate the (observed) manifest vari-
ables to a smaller number of (not observed) latent vari-
ables, it might be better to use instead the term analysis
of latent structure.

Up to now we assumed a hidden structure in the data,
whichpermits a division of the data into disjoint clusters.
But sometimes this assumption is unrealistic. It might be
sensible to differentiate between people, which are more
intelligent and others, which are less intelligent. But by
all we know, “intelligence” corresponds to a continuous
latent scale. The only way to distinguish between more
and less intelligent people is to define a cut-off point,
which is defined in such a way that people with an
“intelligence score” below this point are called less
intelligent, and people with a score above this point are
called more intelligent. This kind of classification, where
an artificial structure is imposed on the data, is called
dissection in (17). Of course, dissection is neither re-
stricted to only two groups nor to only one dimension.

In this context we should also discuss the concept of
a type. Methods by which such types can be identified
are called typal analyses. One definition of a type de-
scribes it as a subset of all those subjects, which form a
group due to their similarity. Many authors identify
therefore types with clusters. Other authors define types
as classes, which are not necessarily disjoint. But there
are many more definitions of types used in literature as
well. E.g., in (4) no fewer than 45 semantic usages of
type are given. But this list is by no means exhaustive.
Therefore we believe that it is necessary to discuss typal
analyses beside cluster analyses.

Another group of problems assumes that the exis-
tence of two or more populations is given and for each
population a sample of subjects (training sample). The
problem is to find a rule, which enables us to allot some
new subject to the correct population. This is termed a
problem of allocation or discrimination. If the allocation
rules are given by functions based on weights for the dif-
ferent variables, the term discriminant analysis is used.
There are several modifications of the discrimination
problem. For example, the allocation of the training
samples to the populations may not be known (cf. (5)).
We may also consider the case, where the populations
are known exactly, and the problem is to allot a new
subject to one of the populations. This problem is called
pattern recognition.

In (17) three reasons for discrimination are given. The
first one is lost information, i.e. for some reason or other
we know only the values of some variables for a subject
but no longer to which class it belongs. A second reason
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is unattainable information. This is the case in diagnos-
tics, where we must diagnose a disease from certain
equivocal symptoms. A last reason is prediction. Here we
use observations at a previous point of time to discrimi-
nate between certain types of behavior in the future.

In the following we describe some of the methods of
classification, which are used in psychology. We did not
try to organize the representation of these methods ac-
cording to the classification concepts given above, since
this leads to some difficulties caused by the fact that
some methods can be used for different purposes. The
procedures are therefore presented one after the other
with reference to other methods if necessary.

3. Factor analysis
3.1 Fundamental principles

We start from a sample of n subjects. For each subject
we measure p variables X, ..., X, the so-called mani-
fest variables, e.g. p test scores. These form a p-dimen-
sional column vector X. The hypothesis is that these p
variables can be explained in principle by q <p latent
variables Yy, ..., Y4, the so-called common factor
scores, which form the g-dimensional column vector Y.
In this way the originally p-dimensional space is reduced
to a g-dimensional space. One hopes that this reduction
can be done in such a way that each latent variable can
be explained by a group of certain manifest variables,
and that these groups are more or less disjoint. In this
way a classification of the manifest variables is derived.
The relation between latent and muifest variables is

given by linear equations
Xi=pit N Yithp Yot . +AqYg) +E i= 1, .., p.

By E; we denote the unique part of X;, which cannot
be explained by the common factors. Another interpre-
tation is that E; is an error term. But this last interpre-
tation becomes dubious, if there exists a latent factor
score, which is related to only one of the manifest vari-
ables we have considered. In other words, if a certain
manifest variable cannot be classified, i.e. related to a
common factor score, it should be considered as a rep-
resentative of a separate class.
By assuming

E[Xil=un;, i=1,...,p

for the expectation of X; we can without loss of gener-
ality take

E[Y;]1=E[E]]=0,i=1,...,p,j=1,...,q.

The coefficients Ay, ..., Ajq are constant parameters,
which form the (pxq)-matrix A of factor loadings. De-
noting by u the column vector of w;,..., up, and by E

the column vector of Ey, ..., E,;, we can combine the

p linear equations into one matrix equation
X=u+AY+E. .

We assume that the errors are uncorrelated, i.e.
Cov[E;Y;}=0, i#j,i=1,..,p,j=1...p,

and that the common factors and the errors are uncor-
related, i.e.

Cov|[E;,E;l=0,i=1,...,p,j=1...,q.
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Then the covariance matrix Xy of the manifest vari-
ables, which contains in the main diagonal the variances
of Xi,..., X, and in the other cells the covariances, is
given by

ZX = AzyA’ + EF,

with the covariance matrix Xy of the common factor
scores and the covariance matrix Xy of the errors. By
A’ the transpose of A is denoted. The matrix Zg is a
diagonal matrix of the variances of E;,..., E,, since
the covariances are zero. If we assume that Zy equals
the identity matrix 1, this means that we have standard-
ized common factor scores with variances equal to one,
which are uncorrelated or orthogonal, respectively. This
leads to

ZX:/\/\I+EE.

The problem in factor analysis is to estimate the matrix
Zx and the vector u by means of the p-dimensional
measurement vectors X for the n subjects, and then to
factorize Zx according to the equation above. By this
procedure we get estimates of the factor loadings A and
can express each manifest variable as a linear combina-
tion of latent variables and vice versa. If we have found a
solution A and multiply it by any non-singular orthonor-
mal (qxq)-matrix, we get another solution. By means of
such a rotation we can try to find a solution with a sim-
ple structure, i.e. with factor loadings, which are either
near one or near zero, respectively. If A is a matrix of
ones and zeros, we have a classification of the p manifest
variables into q disjoint classes. It is obvious that we can
achieve this aim even better by assuming a matrix Xy
different from1,i.e., if we allow for correlated or oblique,
respectively, common factor scores.

3.2 Indetermninacy problems

In (7) and elsewhere it has been pointed out that one
cannot expect unique solutions from factor analysis, i.e.
the same factor analytic model can result in many total-
ly different classifications of the variables. The first inde-
terminacy concerns the number q of common factors.
Values of q, which are either larger or smaller, respec-
tively, than the unknown number of “real” common fac-
tors, will lead to incorrect interpretations of the data. A
second indeterminacy concerns the matrix Zy of error
variances for a given number q of common factors. A
third indeterminacy concerns the matrix A of factor
loadings for given X and q. By using orthogonal and
oblique rotation we can get infinitely many matrices of
factor loadings leading-to different classifications of the
variables. Finally(even for given parameters q, Zg and
A there may exist different common factor scores Y.

3.3 Some precautions

In (9) several hints are given, which can in certain cir-
cumstances prevent wrong interpretations of factor ana-
lytical results. First it is proposed that there should be at
least three manifest variables for each common factor,
since otherwise we cannot expect a “good” rotational
solution. Second the manifest variables should not be
factorially complex, i.e. each manifest variable should
belong to a single common factor. Third it is better to
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choose the number q of common factors too great than
too small. If we have extracted more common factors
than can be actually assumed, we can delete them from
interpretation. Fourth the manifest variables used in fac-
tor analysis should be variables that are linearly indepen-
dent, since otherwise the correlation coefficients are
spurious. E.g. by usingsums and differences of the mani-
fest variables as additional variables we can produce
artifacts.

As a fifth point the population on which the analysis
is based, should be homogeneous, since otherwise we
cannot expect good estimates of Zx and u. Since the
estimation of Zy is the basis of the whole analysis, we
must try to get good estimates of the intercorrelations of
the manifest variables. Conditions for this are beside
others a large number n of subjects, very reliable mea-
surements and approximately linear relations between
these variables,

In (12) a four-stage approach for factor analysis was
proposed in order to get reliable classifications. In the
first stage exploratory factor analysis is used with the
aim of deriving the probable number.q of common fac-
tors. In a second stage the factors or classes, respectively,
are given names that are based on theoretical arguments,
and which are chosen in such a way that many research-
ers agree with respect to the manifest variables, which
should have high factor loadings on the factor with a
given name. In a third stage simple cross-validation on
many data sets is done based on confirmatory factor
analysis. This means that we test the goodness of fit of
the factor structure, which we found in the first stage.
The goodness of fit tests are based on the results for
samples of subjects different from the sample used in the
first stage and make the additional assumption that the
vector X of manifest variables is multivariate normal
with mean vector i and covariance matrix Zx (cf. (I)).
In the fourth stage a double cross-validation on samples
different from those used in the first and third stage is
performed. The goodness of fit of these data with re-
spect to the factor structure found in stage one and the
average parameter estimates found for the samples in
stage three is then tested.

3.4 Modifications and extensions

The majority of factor analyses is done in the way we
described in 3.1. The starting point is a data matrix of
n rows corresponding to the subjects and p columns cor-
responding to the variables. In the so-called R-technique
(cf. (3)), which we have considered up to now, the col-
umns of the matrix are correlated and the correlation
matrix is factorized. This leads to classes of variables. In
the Q-technique (cf. (30)) the rows of the matrix are
correlated and the corresponding correlation matrix is
factorized. This yields classes of subjects, i.e. we get a
classification of the subjects.

In contrast to the R-and Q-techniques, which involve
a population of subjects, the P- and O-techniques are ap-
plied to a single subject. P-technique starts by measuring
a set of variables on one subject and repeats these mea-
surements on a sufficient number of occasions. Then the
correlation matrix of the variables is. factorized yielding
classes of variables, which tend to change with time in
the same way. By inverting P-technique in the same way,
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as we inverted R-technique to get Q-technique, we derive
O-technique. This means that we correlate points of time
or occasions instead of variables and get classes of occa-
sions.

In S- and T-technique we consider only one variable
but several subjects and several occasions. The correla-
tion matrix of occasions leads to T-technique yielding
classes of occasions, while S-technique, which is the in-
version of T-technique, is based on the correlations of
subjects and leads to classes of subjects.

All the modifications of factor analysis considered
above are based on a two-dimensional data matrix, from
which a covariance matrix is derived, which is then fac-
torized. In (34) a three-mode factor analysis was consid-
ered, which can be used, if we have a three-dimensional
data space, which results, e.g., if subjects, variables, and
occasions are considered. Generalizations to more than
three dimensions are obvious. An extension to four-
mode matrices is given in (22). Of particular interest is
the use of three-mode factor analysis for factors of
change (cf. (33)). Nowadays multivariate change struc-
tures are also analysed by means of the so-called LISREL
model of Joreskog (cf. (21)). This modell as well as the
so-called AVOCS-model are special cases of general co-
variance structure analysis, which is reviewed in (14).
Common factor analysis is a special case of such models
as well, as has been discussed in (2) in detail.

One of the basic assumptions of common factor anal-
ysis is the assumption of linear relations between mani-
fest and latent variables, though it is obviously seldom
realistic to expect linear relations. Even monotonic rela-
tions cannot be always assumed. In (25) an approach
to this problem based on orthonormal polynomials is
proposed.

3.4 Relationship to other procedures

The common origins of factor analysis and latent struc-
ture analysis are discussed in (8), while in (35) relations
between three-mode factor analysis and multidimension-
al scaling are given. Empirical comparisons of factor anal-
ysis with cluster analysis are given in (27), while in (18)
empirical comparisons with order analysis are discussed.

In (36) the method of covariance selection, which
was developed in (6), is proposed as an alternative for
factor analysis. Just as in common factor analysis the
starting point is a data matrix for n subjects and p vari-
ables. It is observed that the elements of the inverse of
the covariance matrix of the p variables, which are called
concentrations, are multiples of the corresponding par-
tial correlation coefficients. This means that a concentra-
tion of zero is equivalent with a zero partial correlation
coefficient of the corresponding pair of variables. By
means of an iterative process based on the assumption of
a multivariate normal distribution that covariance selec-
tion model is sought, i.e. that concentration matrix with
a given pattern of zeros, which fits the data in a best
way. This yields a classification of the p variables into
subgroups of variables. Variables in different subgroups
are either identical or conditionally independent.

4. Facet analysis

In (10) the principles of facet theory are discussed. First
hypotheses about the general properties of the subjects
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are formulated, the so-called facets. For example, one
can consider the two facets I = intellectual abilities with
five elements and C =content with three elements. By
the Cartesian product IC is meant the set of ordered
pairs ic, where i is an element of I and ¢ an element of C.
In our example we have 5 x 3 =15 of these structuples
(= element combinations). For each structuple ic an item
is constructed and for each item a score Yp;. is observed
for each subject p of a population. Following (26) it is
assumed that Y. is alinear function of aset of latent
variables given by

Ypic = Mic t 6icSp * picRpi t YicGpe ¥ 0YicRGpic + Epjc -

In this equation y;. is the mean score of the item in the
population of subjects. The parameters oj¢, pjc, ¥ic, and
pvYic are loadings specific to the structuple ct. The other
terms denote latent random variables. S, is the score
on ageneral latent variable, Rp,; and G, are the scores
on latent variables specific to the element i of the facet I
and the element c of the facet C, and RGy;, is the score
on a latent variable specific to the combination ofi and
c. By Epjc an error score is denoted. Since RGp;. and
E,ic cannot be separated without replications, the last
two terms can be combined into one term Ep;.. In (26)
other restrictions of the parameters are considered as
well. Here and in (15) covariance structure analysis is
used for performing facet analyses. In (29) the so-called
smallest space analysis of Guttman (11) is used for test-
ing the structural hypothesis. In particular the items are
classified into subsets and order relations among subsets
of items are established.

5. Multidimensional scaling
5.1 Definition

Following (31) a multidimensional scale is defined in the
following way. We assume that we have an empirical re-
lational system, i.e. a st of empirical objcts on which a
set of m empirical relations is defined. Further we as-
sume the existence of an r-dimensional numerical vector
relational system, ie. a st of rdimensional vectors with
components that are real numbers and a set of m rela-
tions on the vectors. A multidimensional scale is then
defined as an r-dimensional homomorphism that maps
the empirical relational system onto a subsystem of the
numerical relational system. An r-dimensional homo-
morphism assigns to each empirical objct a numerical
vector in such a way that whenever an empirical relation
holds, the corresponding numerical relation holds as
well, and that whenever an empirical relation does not
hold, the corresponding numerical relation does not
hold.

5.2 Relation to classification

Multidimensional scaling or MDS can be used in classifi-
cation in different ways. On the one hand MDS can be
necessary for the performance of cluster or typal analy-
ses, which in most cases are based on r-dimensional data
vectors for each objgct. In particular, if the data are not
given in the form of real-valued vectors, but e.g. in form
of preference data, an MDS must precede any cluster
analysis. On the other hand MDS can be used directly as
a method of classification. Since the dimension r of the
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space into which the empirical objcts are mapped is not
known, this number, which corresponds to the number
of factors in factor analysis, must be determined. The
dimensions, which are identified in MDS, correspond to
the factors in factor analysis. If the objcts are subjcts,
one gets results similar to Q-factor analysis. while in case
of objcts, which are variables, results similar to R-factor

‘analysis are derived. The scores of the objcts on the

latent dimensions correspond to factor loadings. Objects
with high scores with respect to a certain dimension
form a class.

5.3 Types of data

It is possible to divide the different MDS-procedures into
four classes according to the data. These may be proxim-
ity data, dominance data, profile data or conjoint mea-
surement data. We follow here closely the classification
given in (28).

5.3. 1 Proximity data

In most cases an (nxn)-matrix is given for n objcts.
Each cell of this matrix contains a measure of proximity
between two objects, e.g. a measure of similarity or a
measure of dissimilarity. This measure may be given on a
numerical or on a merely ordinal scale. Sometimes the
cell entries in the main diagonal describing the proximity
of identical objects are missing and for symmetrical mea-
sures of proximity even the entries of the triangular
above-diagonal half can be missing. It is assumed that the
proximity data are monotonically related to distances in
some underlying latent space, where the monotonic
function is decreasing in the case of measures of similar-
ity and increasing for measures of dissimilarity.

Sometimes only the measures of proximity between
two different sets of n or m objects, respectively, are
given. This yields an (nxm)-data matrix. This matrix
can be regarded as a comer submatrix of the complete
(nt+m) x (n+m) proximity matrix. It is assumed that
the two sets of n and m points are embedded in the
same space in such a way that for any object in one set
the given measures of proximity between that objct
and all objects in the other set are monotonically related
to the corresponding distances of the point correspond-
ing to the one object to all points in the other set.

It is possible to consider even more incomplete prox-
imity matrices by considering only comparisons of cer-
tain pairs of objcts. An example is the case, where the
pairs under consideration are linked by pairs with one
objct in common.

5.3.2 Dominance data

For n objcts an (nxn)-matrix is given. Each cell con-
tains a measure of the extent to which the row object
dominates the column object. This measure can take the
purely dichotomous form, if we record only whether
one objct dominates the other one. It is assumed that
each object is represented by a score on a unidimension-
al scale in such a way that, if object i dominates object
j, then object i has a higher score than object j.

In the multidimensional case we consider m of these
(nxn)-dominance matrices. Each matrix describes the
manifest dominance structure of n objects under differ-
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ent conditions, e.g. for m different subjects. It is as-
sumed that each object can be represented by a point in
a space of two or more dimensions. The conditions are
represented by directions in this space. If an objct i
dominates an object j in a particular matrix, then the
point for objct i falls beyond the point for objct j in
the corresponding direction.

5.3.3 Profile data

Here n objects and m variables are considered yielding
an (nxm)-matrix, The entries give the measured values
of the objects with respect to the variables. The entries
of'a row are interpreted as a profile of the objct in
question. By using a measure of profile similarity or dis-
similarity any matrix of profile data can be transformed
into a proximity or dominance matrix. It is assumed that
the objcts can be represented as n points in a space, and
that by some rule the profile of an object determines the
position of the corresponding point in the space.

5.3.4 Conjoint measurement data

An (nxm)-matrix is given, where the rows correspond to
n levels of one variable and the m columns to m levels of
another variable, An entry of this matrix describes the
magnitude of the effect, which results for the combina-
tion of the corresponding row and column level. It is as-
sumed that the levels of one variable can be represented
as points on one unidimensional scale and the levels of
the other variable as points on another unidimensional
scale. This is done in such a way that each entry is a
simple function of the scaled values associated with the
levels in question. While matrices of proximity, domi-
nance or profile data are always two-way matrices, ma-
trices of conjoint measurement data can immediately
by extended to more than two variables, which jointly
contribute to an effect.

5.4 A selection of MDS-procedures

A distinction is made between metric and nonmetric
MDS-procedures. A nonmetric procedure yields results
that are invariant under monotonic transformations of
the data. This means that nonmetric procedures are ap-
propriate for merely ordinal data. Metric procedures
assume interval scaled data, i.e. we have only invariance
of the results with respect to linear transformations.

5.4.1 Methods for proximity data

In classical metric MDS (cf. (32)) the proximity data
are related to the distances of points by means of a func-
tion of a specified form. Indirect methods assume that
the proximity data arise from comparisons of subjctive
magnitudes, which are normally distributed. This yields
estimates of the distances. Direct methods assume that
the proximity data are directly related to the distances
by a specified monotonic function. The first step is in
both cases the estimation of the distances by means of
the proximity data. In a second step these estimates are
used to determine dimensionality, and in a third step the
coordinates for the points in space are derived.

In nonmetric MDS proximity data are related to dis-
tances by a monotonic function. Using an initial configu-
ration of points the coordinates are iteratively adjusted
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in such a way that a measure of goodness of fitis mini-
mized.

In (19) the so-called stress is defined as a measure of
goodness of fit in the following way. First the proximity
measures 6, which are assumed to measure dissimilarity
of the objects, are ranked in strictly ascending order. It
is assumed that the dimension of the space, in which the
objects are to be represented, is given by t. Now suppose
that n objects are represented by n points in the t-dimen-
sional space, i.e. by a so-called configuration. For each
pair of points a distance d can be calculated. Now for
each distance d a number d is sought, such that the d's
have the same ranking as the dissimilarities 6. This is
done in such a way that the square root of

Z(d—d)*/zd?,

L]
where the summation is over all pairs of objects, is mini-
mized. The result is the so-called stress for a fixed con-
figuration. The next step is to find that configuration
with minimal stress. In further steps that dimension t
and that distance measure is looked for, which yield the
smallest stress values. In this way it is possible to iden-

tify the structure of the space, which fits the data best
in the sense of stress.

5.4.2 Methods for dominance data

In the metric case each dominance matrix corresponds
to an axis in a latent space and the projections of the
points on this axis are related to the entries of the domi-
nance matrix in question. In the nonmetric case only the
order of the projections is considered. Methods for
determining the number of dimensions and the rank
order of the projections on the axes are called unfolding-
techniques (cf. (13), (37)).

5.4.3 Methods for profile data

In the metric case factor analysis can be used. in the
nonmetric case one can use nonmetric factor analysis
(20). This latter method assumes that each of the m
values in a profile is a monotonic function of the coprdi-
nates of a latent space.

5.4.4 Methods for conjoint measurement data

It is assumed that each entry of the data matrix can be
represented as a simple function of its latent row and
column values. The latent values are estimated by an
iterative adjustment of values for each of the rows and
columns, such that a measure of overall departure from
the model is minimized.

6. Latent structure analysis-. -
6.1 Model '

The general latent structure model can be formulated in
the following form (8). We assume n manifest (observed)
variables X;,...,Xn and m <n latent (not observed)
variables Y,,...,Yy, and a conditional probability
distribution f(xy,..., Xylys, ..., ¥ym) of the X's for
given Y’s. The function f is a probability density for
continuous X’s and a set of probabilities for discrete
X’s. In a similar way we denote the marginal distribu-
tion of the Y's by g(yy,,..-,¥m). Then we get the
marginal distribution of the X's by
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wXn) =[x, . o Xnly, o0 Ym)
gyis- - Ym)dyy ... dym.
For a subject with the values xg¢,...,X¢n for the

manifest variables we get by means of Bayes’ formula
the distribution for its latent values by

h(Xl, .

k(er ey lexol’ ey xOn)
= f(XOI; ] xOn'Yl) R ] Ym)g(}'l: M) Ym)
h(xg15 - - - Xon) -

Using the maximum likelihood approach we can assign
a subject with the values (Xgg, ... Xon) oOf the mani-
fest variables to that point (yg;, ..., Yom) in the latent
space for which the function k is maximum.

In the first equation above at most the distribution h
of the manifest variables is known, while f and g are un-
known and cannot be deduced from h. Therefore we
need additional assumptions about the form of f and g.
A general assumption is that the exiom of local indepen-
dence holds, i.e. for given values of the latent variables
the manifest variables are independent. This yields

f(X15 - XnlY1s e oy Ym)
= f}(X] |y|, .oy ym) - fn(xn|y1, . ey ym) .

The functions on the right side of the equation are called
trace functions or trace lines, respectively, and it is as-
sumed that a least their form is known though there may
be unknown parameters in these functions.

6.2 General procedure

In (23) a scheme of 9 steps is discussed, in which way a
latent structure analysis can be performed. The first step
concerns the selection and specification of the model.
Here assumptions about the form of the trace lines and
of the function g, i.e. about the distribution of the latent
variables are made. In a second step the so-called ac-
counting equations, which relate the distribution of the
manifest variables with that of the latent variables, are
formulated for the specific model. In a third step the
conditions of reducibility are studied. These result
from the fact that in the more complex models we have
more accounting equations than latent parameters. The
system of accounting equations can only be solved ex-
actly, if the additional equations hold for the data as
well. In a fourth step the identifiability of the latent
parameters must be checked. The accounting equations
are only in part independent, since many manifest para-
meters can be calculated from other manifest parameters.
Therefore one cannot always be sure that it is possible
to identify all latent parameters by means of the ob-
served data.

The fifth step concerns the identification of the
model, i.e. the accounting equations are solved for the
latent parameters. In the sixth step the model is fitted to
the data. In this step, which can be used for concrete
data instead of the fifth step, we allow for random fluc-
tuations of the data. In step number seven the goodness
of fit is tested, i.e. it is investigated how well the data
agree with the fitted model. In the eighth step the re-
cruitment pattern is determined. For each response pat-
tern of manifest variables there exists a recruitment pat-
tern of the probabilities that a subject with this response
pattern is located in a certain region of the latent space.
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In the last step the classification of the subjects is per-
formed. If, e.g., the latent variables are discrete, and if
the maximum likelihood approach is used, i.e. if each
subject is assigned to that point of the latent space for
which the probability is maximum, then we have a classi-
fication of the subjects to a set of disjoint latent classes.
Another interpretation of this step is that scale values
are assigned to the subjects.

Sometimes one is also interested in the dual problem
of scaling or classifying the manifest variables. In this
case scale values are assigned to the manifest variables
indicating how much a single manifest variable contrib-
utes to the scale values of the subjects or how much a
single manifest variable discriminates between subjects
located at different points of the latent space, respec-
tively.

6.3 Modifications

By making specific assumptions with respect to the trace
lines and the latent distribution g we derive submodels
of the general latent structure model (cf. (24)). The best
known and mostly used model is the latent class model.
This assumes only one discrete latent variable Y. The
values of Y are called latent classes. It is assumed that g
corresponds to a multinomial distribution, and that the
trace lines are the conditional probabilities that the
manifest variables take certain values, if the subject be-
longs to a certain latent class.

The latent polynomial model assumes one continuous
latent variable Y, trace lines that are polynomials and in
most cases that g corresponds to a beta distribution. In
particular, linear and quadratic trace lines were consid-
ered. For polynomial trace lines and a discrete distribu-
tion g the so-called located class model results. By as-
suming certain exponential functions for the trace lines
and a uniform distribution on the interval between zero
and one or alternatively the beta distribution for g the
latent content model is derived. If the trace lines are
certain step functions, the latent distance model results.
If g corresponds to a standard normal distribution, and
the trace lines are densities of normal distributions with
unknown parameters, we get the classical test theory
model. For logistic trace lines the probabilistic test
theory models of Rasch and Birnbaum result.

In the latent profile model a discrete latent variable
Y is assumed and continuous manifest variables but no
specific assumptions with respect to the trace lines. For
each manifest variable the existence of a latent profile
is assumed, which is defined as the vector of the condi-
tional expectations of that variable for given latent
classes.
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Call ForPapers COLING 82

The Ninth Conference on Computational Linguistics
will be held July 5th—10th, 1982 in Prague, Czecho-
slovakia. It is sponsored by the International Committee
on Computational Linguistics in association with: Lin-
guistic Institute of L. Stur, Slovak Academy of Science,
Bratislava and Faculty of Mathematics and Physics,
Charles University, Prague.
Papers are invited for presentation especially from the
following domains:
— theories, methods and problems of computational lin-
guistics
- relations of computational linguistics to computer
science, mathematics, linguistics, artificial intelligence
etc.
— representation of knowledge and inf erencmg as they
relate to language understanding o
- applications of natural language processing:
Authors wishing to present a paper should submit 4 copi-
es of a 3 to 4 page summary, double spaced, by Decem-
ber Ist, 1981, to COLING 82 MFF UK, Linguistics,
Malostranské n. 25, 118 00 PRAGUE 1, CZECHOSLO-
VAKIA.

NATO Advanced Study Institute on Numerical
Taxonomy

This Institute will be held from 4 July to 16 July 1982
at Bad Windsheim, Federal Republic of Germany. It will
present a review of the entire field of numerical taxo-
nomy ranging from systematic theory through method-
ology and covering phenetic approaches as well as phylo-
genetic inference. Moming sessions will present state-of -
the-art review lectures by a carefully chosen panel of
international experts; the afternoons will present recent
research results alternating with panel discussions at the
end of each subject segment of the ASI; several evening
lectures will round out the program. The intended audi-
ence will be largely postdoctoral with a few predoctoral
participants.

Full particulars of the program are available from the
Institute Director, Dr. Robert R. Sokal, Department of
Ecology and Evolution, State University of New York at
Stony Brook, Long Island, N.Y. 11794, USA. Tel.
516-246-6162.
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