Dritter Teil
Schutzmoglichkeiten fiir Modelle maschinellen Lernens im
Urheberrecht

Nachdem geklért wurde, welche Voraussetzungen erfiillt sein miissen, um
ML-Modelle rechtméBig zu trainieren, stellt sich die Frage, wie die trainierten
Modelle rechtlich geschiitzt sein konnten. SchlieBlich flieBen viel Erfahrung,
Arbeitszeit, Geld und technische Ressourcen in die Entwicklung effizienter
und korrekt arbeitender Machine Learning-Modelle.?’?

In der Regel sind die trainierten Modelle das Ergebnis eines unter Um-
standen langwierigen Prozesses des Trainingsdatensammelns, -auswertens
und -aufbereitens, der Modelleinstellung und -optimierung, des Modelltrai-
nings, der Ergebnisauswertung und ggf. iterativen Uberarbeitung. Daher
sprechen sowohl die Wertschitzung der Arbeit der Entwickler maschineller
Lernmodelle bzw. Systeme als auch der Innovationsanreiz fiir einen solchen
Schutz.

Problematisch in der Diskussion um den Schutz von ML-Modellen scheint,
dass es bisher im juristischen Diskurs noch nicht greifbar genug war, was
ein trainiertes Modell ausmacht.

Schon bei der Betrachtung des Entstehungsprozesses eines trainierten
Modells wird klar, dass hier eine nicht unerhebliche menschliche Leistung
erforderlich ist, um zum gewiinschten Ergebnis zu kommen. Es ist mitnichten
lediglich ein mathematischer Rechenvorgang, der das trainierte Modell er-
zeugt, sondern es ist Erfahrung in Bezug auf die Auswahl von Trainingsdaten
sowie insbesondere die Strukturierung des Modells erforderlich.

Wirtschaftlich gesehen, ist das trainierte Modell ein hochwertiges Werk-
zeug, das einerseits im Produktiveinsatz bestehen muss, andererseits aber —
ungeschiitzt — einfach kopiert und ausgebeutet werden kann.

Der urheberrechtliche Schutz des ,,Gehirns von KI*“ — der Modelle ma-
schinellen Lernens — wurde bereits in einigen Veroffentlichungen diskutiert

202 Eine Ubersicht der Entwicklung weltweiter Investitionen in KI kann z. B. dem Al
Index Report 2019 entnommen werden: Perrault etal., The Al Index 2019 Annual
Report, S. 94 ff.; vgl. auBerdem Graf, Multitalent fiir Sprache (Spektrum.de vom
11.08.2020).

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

bzw. zumindest angerissen,??® jedoch bisher an keiner der Autorin bekannten
Stelle ausreichend tiefgehend bzw. zutreffend mit Blick auf die tatsdchlich
verwendete Technologie durchleuchtet. Dessen nimmt sich dieser Teil der
Arbeit an. Dazu werden die relevanten Bausteine von ML-Systemen identifi-
ziert (s. § 6) und daraufhin auf ihre Schutzfihigkeit kategorisch untersucht
(s.87).

Auch auBerhalb der Vorschriften des Urheberrechtsgesetzes wird ein
Schutz fiir ML-Modelle diskutiert. So wird etwa ein Schutz als Geschifts-
geheimnis im Sinne der GeschGeh-RL bzw. des GeschGehG angedacht,?*
und auch das Wettbewerbsrecht konnte Ankniipfungspunkte®” bieten.

Vorgeschlagen wird zudem die Einfiihrung eines Leistungsschutzrechts
fiir computergenerierte Erzeugnisse (mit dem Ziel, die errechneten ,,Trai-

203 Ehinger/Stiemerling, CR 12 2018, 761 ft.; Hauck/Cevc, ZGE 11 2019, 135 ff.;
Papastefanou, CR 4 2019, 209 ft.; Linke, GRUR Junge Wissenschaft 2019, 29 ff.;
Nebel/Stiemerling, CR 1 2016, 61 ff.; Hartmann/Prinz, WRP 12 2018, 1431 ft,;
Gomille, JZ Nr. 20 2019, 969, 970; Spindler, IIC 2019, 1049, 1050; Linke/ Petrlik,
GRUR Int. 2020, 39 ff.; Grdtz, Kiinstliche Intelligenz im Urheberrecht; Iglesias
Portela/ShamuilialAnderberg, Intellectual Property and Artificial Intelligence: A
Literature Review: EUR 30017 EN, S. 9;.

204 Ehinger/Stiemerling, CR 122018,761, 769 erwigen einen Geschiftsgeheimnisschutz
fiir ,,Trainingsergebnisse* im Rahmen der GeschGeh-RL, ebenso sieht Gomille, JZ
Nr. 20 2019, 969, 970 einen Schutz gem. §§ 2 ff. GeschGehG einschligig; vgl.
auferdem ausfiihrlich Hauck/Ceve, ZGE 11 2019, 135, 163 f.; Sobbing, Fundamen-
tale Rechtsfragen zur kiinstlichen Intelligenz. (Al Law), S. 14; einen Schutz fiir
Modelle erwigend Apel/Kaulartz, RDi Nr.1 2020, 24, 29; insbesondere fiir ,,durch
ein deutlich hoheres Maf} an Autonomie bestimmter* neuronaler Netzwerke auf
GeschGeh-Schutz verweisend Schricker/Loewenheim—Loewenheim/Leistner, Ur-
heberrecht, § 2 Rn. 41a, allerdings ist davon auszugehen, dass die Autoren nicht
den Schutz neuronaler Netze an sich meinen, sondern Erzeugnisse — fiir diese wire
allerdings insbesondere im Zusammenhang der Erzeugung ,.kiinstlerischer Werke
fraglich, wie hier ein GeschGeh-Schutz anzubringen wire: Denn die Komplexitit
der neuronalen Netze dndert nach hiesiger Ansicht nichts an der Zurechenbarkeit
ihrer Erschaffung (also der Erschaffung der Netze) zum Entwickler.

205 Hauck/Cevc, ZGE 11 2019, 135, 166 f. nennen u. a. § 4 Nr. 3 UWG als Auffangtat-
bestand im Rahmen des lauterkeitsrechtlichen Nachahmungsschutzes.

96

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

ningsergebnisse* zu schiitzen).?”® Naheliegend und bereits in der Praxis
angekommen ist zudem der Schutz im Patentrecht.’

Diese Arbeit fokussiert jedoch auf diejenigen Schutzmoglichkeiten, die
das UrhG bietet.

206 Ehinger/Stiemerling, CR 12 2018, 761, 769.

207 Ausfiihrlich dazu Hauck/Ceve, ZGE 11 2019, 135 ff., die einen anwendungsbezoge-
nen Patentschutz fiir moglich halten; gegen einen patentrechtlichen Schutz: Gomille,
JZ Nr. 20 2019, 969, 970; Apel/Kaulartz, RDi Nr.1 2020, 24, 29, die ein Problem
insbesondere in Bezug auf die erforderliche Technizitdt sehen; auf européischer
Ebene steigt die Zahl der (begehrten) Patentanmeldungen, vgl. Iglesias Portelal
ShamuilialAnderberg, Intellectual Property and Artificial Intelligence: A Literature
Review: EUR 30017 EN, S. 6; das Europédische Patentamt hat Richtlinien zur Paten-
tierung von KI herausgegeben, vgl. z. B. https://www.epo.org/law-practice/legal-
texts/html/guidelines2018/e/g_ii_3_3_1.htm (Stand: 22.02.2021) und Craglia etal.,

Artificial intelligence: A European perspective, S. 66.

97

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

Ein grofBler Teil der divergierenden Aussagen iiber den urheberrechtlichen
Schutz von ML-Modellen konnte daher rithren, dass keine klare Vorstel-
lung davon existiert, was eigentlich geschiitzt werden soll, oder zumindest
nicht klar kommuniziert ist, was als Schutzgegenstand angenommen wird.
Im Folgenden werden daher die kiinstlichen neuronalen Netze und Ran-
dom Forest-Systeme — stellvertretend fiir eine groe Zahl verschiedener
ML-Modelle — analytisch in ihre Bestandteile zerlegt, mit dem Ziel, klare
Schutzgegenstinde zu identifizieren.

Um ML-Modelle einer im UrhG bestehenden Werkkategorie zuzuord-
nen, ist zunéchst erforderlich, die Modelle nidher zu betrachten, um anhand
der identifizierten einzelnen Bestandteile eine Kategorisierung vornehmen
zu konnen. Im Folgenden werden dazu die im Zeitpunkt der Entstehung
der Arbeit liberwiegend verwendeten Frameworks bzw. Technologien analy-
siert, Gemeinsamkeiten herausgearbeitet und im néchsten Abschnitt auf ihre
urheberrechtliche Schutzfihigkeit hin untersucht.

A. Grundlegende Begriffe

Dieses Kapitel wird in die Strukturen und technischen Abldufe der Entstehung
von ML-Modellen eintauchen. Dabei werden einige, in der Softwareentwick-
lung iibliche, grundlegende Begriffe verwendet, die dem juristischen Leser
moglicherweise nicht — oder nicht in diesem Kontext — geldufig sind und
daher zum besseren Verstidndnis nachfolgend eingefiihrt werden.

99

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

I. Frameworks und Bibliotheken

Frameworks und Bibliotheken?”® sind zu verstehen als programmierspra-
chenspezifische Baukdisten, die in ein bestehendes Programmierprojekt ein-
gebunden werden konnen, und dann eine Vielzahl an Funktionalititen bereit-
stellen.?”” Auf diese Funktionalititen kann der Entwickler iiber vordefinierte
Schnittstellen bzw. Befehle zugreifen, diese sind in der Regel in sogenannten
Application Programming Interfaces (APIs) dokumentiert.

II. API

Die Abkiirzung ,,API* steht fiir Application Programming Interface und ist
die Bezeichnung fiir eine Schnittstelle zu einer Software-Anwendung, die
iiblicherweise bereitgestellt wird, um die Kompatibilitdt von Programmen zu
ermdglichen, etwa durch Datenaustausch oder Programmerweiterungen.?!
Hiufig wird damit (unprézise) auch eine Dokumentation aller in einem Fra-
mework oder einer Bibliothek vorhandenen Funktionen und Klassen bezeich-
net. Die ,,Schnittstelle” besteht selbst aus Programmteilen, die zum Beispiel
iiber das Internet von anderen Programmen angesteuert werden konnen, oder
innerhalb des ausgefiihrten Programms, wenn die ,,Fremdanwendung® bzw.
Bibliothek dort eingebunden wurde.

III. Objekte und Funktionen

Im Rahmen dieser Arbeit werden die Begriffe ,,Objekt™ und ,,Funktion*
hiufig verwendet, weshalb an dieser Stelle ein Gefiihl fiir die Bedeutung
derselben im Softwarekontext vermittelt werden soll. Grundsitzlich ist zu

208 Die Begriffe ,,Framework* und ,,Bibliothek* werden in dem Kontext nicht trenn-
scharf verwendet — so beschreibt etwa der Autor von Keras sein Projekt eher als
eine ,,Schnittstelle” als ein ,,Framework* (vgl. https://github.com/keras-team/keras/
issues/5050#issuecomment-272945570 (Stand: 22.02.2021)), wihrend Wikipedia
Keras als ,,Bibliothek* bezeichnet (vgl. https://de.wikipedia.org/wiki/Keras (Stand:
22.02.2021)) und auf der projekteigenen Website ist die Rede vom ,,most used deep
learning framework*“(vgl. https://keras.io/ (Stand: 22.02.2021)). Vorliegend wird
deshalb auch das Begriffspaar Framework/Bibliothek verwendet.

209 Vgl. Gamma etal., Design Patterns, S. 26.

210 Vgl. auch Fischer/Hofer, Lexikon der Informatik, S. 45.

100

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

A. Grundlegende Begriffe

oHG

firma:string

Eigenschaften - gesellschafter:string array

— Klasse

gesellschaftAnmelden()
eigentumErwerben()
vertragSchlieRen()
klagen()

Funktionen -

Lerbt von”

~ Klasse

iiberschriebene Funktion | EEES e E G COT)) § 162 | HGE:

eigentumErwerben()
geerbte vertragSchlieBen()
Funktionen n

Abbildung 6.1: ,,Objektorientierung* im HGB, eigene Darstellung.

unterscheiden zwischen prozeduraler und objektorientierter Programmierung
(OOP). Im ML-Kontext kommt in der Regel OOP zum Einsatz. Diese lisst
sich fiir Juristen anhand einem iibertragenden Beispiel aus dem Handelsge-
setzbuch erkliren, vgl. dazu Abbildung 6.12!!:

In § 105 HGB wird die offene Handelsgesellschaft (o0HG) definiert. Dabei
werden ihr ,,Eigenschaften® zugewiesen: Ihr Zweck ist auf den Betrieb eines
Handelsgewerbes unter gemeinschaftlicher Firma gerichtet. Aulerdem ist
bei keinem der Gesellschafter die Haftung gegeniiber den Gesellschafts-
gldubigern beschrinkt. Zudem hat die oHG Féhigkeiten (,,Funktionen®): Sie
kann gem. § 124 Abs. 1 HGB unter ihrer Firma Rechte erwerben und Ver-
bindlichkeiten eingehen. Sie kann Eigentum und andere dingliche Rechte an
Grundstiicken erwerben, vor Gericht klagen und verklagt werden. Das Gesetz
definiert also ein abstraktes Konstrukt, das im Rahmen objektorientierter
Programmierung als ,,Klasse* bezeichnet wiirde.

211 ,,String* bezeichnet den Typ der Eigenschaft ,,Firma“ und steht fiir einen Wert in
Form einer Zeichenkette bzw. ,,Text“. Ein ,,Array* bezeichnet eine Sammlung von
Einzelwerten. () weisen auf eine Funktion hin.

101

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. O

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

Eine andere ,,Klasse* im HGB ist die Kommanditgesellschaft (KG). Diese
wird in § 161 Abs. 1 HGB definiert, sie hat ebenfalls die ,,Eigenschaft®, dass
ihr Zweck auf den Betrieb eines Handelsgewerbes unter gemeinschaftlicher
Firma gerichtet ist. Auerdem ist bei einigen Gesellschaftern die Haftung
gegeniiber den Gesellschaftsgldaubigern auf den Betrag einer bestimmten Ver-
mogenseinlage beschrinkt, wihrend bei einem anderen Teil der Gesellschaf-
ter eine Beschrinkung der Haftung nicht stattfindet. In § 161 Abs. 2 HGB
wird aulerdem bestimmt, dass die Vorschriften, die fiir die oHG gelten, auch
fiir die KG Anwendung finden, wenn nicht in dem Abschnitt iiber die KG
etwas anderes bestimmt ist. In der objektorientierten Programmierung lief3e
sich sagen: ,,Die Klasse KG erbt [“Eigenschaften,, und “Funktionen,,] von der
Klasse oHG", das gilt, solange in der Klasse KG nicht ,,Eigenschaften und
,Funktionen® iiberschrieben werden (,,iiberschrieben‘ wird eine Eigenschaft,
wenn ihr ein anderer Wert zugewiesen wird — wenn also der Gesetzgeber, um
beim Beispiel zu bleiben, fiir die KG speziellere Vorschriften festlegt, die fiir
die oHG nicht gelten). Wie in der Gesetzgebung werden auch in der OOP
MalBnahmen zur Vereinfachung dergestalt eingesetzt, dass soweit moglich
Redundanzen vermieden und Gemeinsamkeiten zentral geregelt werden?!?
(vgl. etwa auch den allgemeinen Teil gegeniiber dem besonderen Teil einiger
Gesetze).

,,Klassen* sind in der OOP-Welt wie abstrakte Schablonen, ,,Objekte
hingegen sind konkrete Instanzen einer , Klasse“.23 Beide biindeln ,,Funk-
tionen‘ und ,,Eigenschaften“.zm Ein Unternehmen Miiller, Meier, Schmidt
oHG wire ein Objekt (mit ausgefiillten Eigenschaften) der ,,Klasse* oHG
gem. § 105 HGB. Eine ,,Klasse* gibt es innerhalb eines Projektes bzw. ei-
ner Bibliothek jeweils nur einmal, es kann aber unzihlig viele ,,Objekte*
(Instanzen) dieser ,,Klasse* geben.

,.Funktionen (in Abbildung 6.1 durch runde Klammern gekennzeichnet,
teilweise auch ,,Methoden* oder ,,Operationen* genannt>'>) kann eine Viel-
zahl von Programmbefehlen zugeordnet werden. So konnte die Funktion
der oHG vertragSchlieRen () etwa die Vertragsparteien zu identifi-
zieren haben, die essentialia negotii dokumentieren, eine Anweisung an eine
Zahlungsstelle ausgeben etc.

212 Vgl. Gamma et al., Design Patterns, S. 15.
213 Vgl. Dies., Design Patterns, S. 14; ,,Instanz* meint in der Softwareentwicklung einen
konkreten Gegenstand vom Typ der ,.Klasse®, so wire die ,,Karl Friedrich oHG*

eine Instanz vom Typ ,,oHG".
214 Vgl. Dies., Design Patterns, S. 11.
215 Vgl. Dies., Design Patterns, S. 11.

102

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Grundbausteine fiir ML-Modelle: Frameworks, Bibliotheken, APls

B. Grundbausteine fiir ML-Modelle: Frameworks, Bibliotheken, APIs

Es ist heute nicht erforderlich, ein ML-Modell von Grund auf neu zu ent-
wickeln. Den Programmierern stehen zahlreiche Frameworks und Biblio-
theken zur Verfiigung, die sie fiir die Umsetzung ihrer Konzepte nutzen
konnen. Beispiele fiir solche Machine Learning-Frameworks sind fiir die
Programmiersprache Python TensorFlow,*'® Keras,*'’ PyTorch*'® und Scikit-
Learn,?" fiir die Sprache R insbesondere das Paket randomForests**. Diese
Arbeit wird sich in den folgenden Kapiteln zur Analyse der ML-Modelle
stets auf diese vier Frameworks und Bibliotheken und das R-Paket beziehen,
um praxistaugliche Ergebnisse zu erzielen.

Mit diesen Frameworks konnen unterschiedlichste Arten von ML-
Modellen realisiert werden — kiinstliche neuronale Netze sind nur eine
davon. Insbesondere kénnen auch mit den Python-Frameworks Random
Forest-Modelle erzeugt werden. Die Ausfiihrungen mit Bezug zu den Fra-
meworks sind in der Regel fiir alle Modelltypen giiltig, die mit diesen
Frameworks und Bibliotheken umgesetzt werden konnen. Es wird daher
einheitlich von ML-Modellen gesprochen. Eine Abgrenzung erfolgt lediglich
zu den Random Forests in R, da sich hier strukturelle Unterschiede zu den
Modellen in Python ergeben.

In Bezug auf die Frage nach dem Schutzgegenstand sind die Frameworks
und Bibliotheken jedoch der falsche Ankniipfungspunkt. Sie mdgen zwar
ausschnittsweise in dem Programm enthalten sein, das letztendlich in der
Lage ist, die Aufgaben zu 16sen, die dem ML-Modell gestellt wurden, jedoch
sind sie — fiir sich genommen — eher mit der Palette des Malers vergleichbar,
der fiir die Umsetzung seines Werkes daraus erst noch Farben, Intensitit,
Anordnung und Motiv bestimmen muss. Wenngleich der Schutz der Fra-
meworks und Bibliotheken selbst auch diskutiert werden konnte??! ist dies
jedoch nicht Ziel dieser Arbeit, und wird daher nicht thematisiert.

216 Abadi etal., TensorFlow: A system for large-scale machine learning, 265 ff..

217 Chollet etal., Keras.

218 Paszke etal., Automatic differentiation in PyTorch.

219 Buitinck etal., API design for machine learning software: experiences from the
scikit-learn project.

220 Liaw/Wiener, R News 2 Nr. 3 2002.

221 Vgl. z. B. Dreier/Schulze—Dreier, UrhG, § 69a Rn. 23 zum Schutz von Interfaces;
Schricker/Loewenheim—Spindler, Urheberrecht, § 69a Rn. 11 zu Programmbiblio-
theken.

103

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

C. Quellcode

Sowohl in der Vorbereitung der Trainingsdaten als Input fiir ML-Modelle,
als auch im Training und dem Produktiveinsatz von KI spielt Quellcode — in
Abgrenzung zu Parameterwerten und Hyperparametern®?? — eine wesentliche
Rolle. ,,Quellcode* wird der vom Menschen geschriebene, menschenlesbare
Programmcode genannt, der dann von speziellen Programmen ,,verstanden*
werden und in Anweisungen an den Computer iibersetzt werden kann.??*> Er
ist erforderlich, um einem ML-Modell Gestalt zu verleihen, Daten einzulesen,
Daten zu bearbeiten bzw. vorzubereiten, vorgefertigte Modelle einzubinden,
diese mit Daten zu versehen und den Trainingsvorgang anzustofBen. Er ist
quasi das ,,.Drehbuch” fiir eine Vorhersage eines Wertes oder die Erzeugung
eines Bildes mittels eines ML.-Modells. Er gibt die Akteure vor, ihre Gestalt,
wann sie die Biihne betreten und mit wem sie interagieren. Ist ein ML-Modell
trainiert, kann es mithilfe von Quellcode in die gewiinschte Umgebung (etwa
eine Webseite oder eine umfangreiche Analysesoftware) eingebunden und
ausgefiihrt werden.

D. Trainiertes Modell in Python

Im Umgang mit ML-Modellen, die mit den beschrieben Python-Frameworks
bzw. Bibliotheken erzeugt werden, ist das Ziel der Entwicklung immer ein
fertiges, trainiertes ML-Modell, das schlieBlich zur Bilderkennung oder Bild-
generierung, Regression oder einer anderen zu Trainingsbeginn definierten
Aufgabe produktiv eingesetzt werden soll. Ein trainiertes Modell stellt mit-
unter den Kern eines neuen Produktes dar, mit dem ein Unternehmen in den
Markt einsteigen mochte. Es ist daher verstindlich, dass ein groBes Interesse
daran besteht, das Ergebnis exklusiv verwerten und andere von der Nutzung
ausschlieBen zu konnen. Fraglich erscheint jedoch, ob das Urheberrecht dies
leisten kann. Wenngleich die Zahl der Konflikte bisher noch iiberschaubar
sein mag (ein GroBteil der Entwicklung von ML-Modellen bewegt sich im
Open Source-Sektor, zudem wird auch noch sehr viel an der Technologie
geforscht, sodass viele Entwickler bereit sind, ihre Ergebnisse freigiebig mit
anderen Forschern zu teilen) so ist es doch absehbar, dass in der Zukunft
durchaus Regelungsbedarf bestehen wird, insbesondere wenn Entwickler be-

222 Vgl. zur Begriffskldrung oben § 2 B.IIL.6..
223 Vgl. Fischer/Hofer, Lexikon der Informatik, S. 721.

104

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainiertes Modell in Python

ginnen, ihre Ergebnisse nicht mehr unter sehr liberale Open Source-Lizenzen
zu stellen (bisher kommen vor allem die MIT- und die BSD-Lizenz zum
Einsatz).?** Aber ist eine Lizenzierung iiberhaupt mdglich? Besteht geistiges
Eigentum an einem fertig trainierten Modell? Oder konnen andere Rechte in
Anspruch genommen werden?

Um diese Frage zu beantworten, gilt es zunéchst, den Begriff , trainiertes
ML-Modell* genau zu umreilen. Hier wird als ,,ML-Modell* jede Form
von Modellen?? erfasst, die unter Einsatz der genannten Frameworks und
Bibliotheken mit Python erzeugt werden konnen. Eine Beschriankung auf
kiinstliche neuronale Netze erfolgt nicht, weil die Ausfiihrungen zwar auch,
aber nicht ausschlieBlich auf kiinstliche neuronale Netze zutreffen. Was ein
trainiertes ML-Modell technisch ausmacht, wird folgend in § 6 D.II. erlautert.

In der Literatur wird hinsichtlich eines trainierten Modells bisher hiufig
entweder nur auf die ,.Trainingsergebnisse* abgestellt**® oder implizit unter
dem Begriff ,trainiertes kiinstliches neuronales Netz* nur die Parameter
bzw. Gewichtungsinformationen beriicksichtigt??’. Ubersehen wird dabei
jedoch, dass es fiir die Erzielung tauglicher Ergebnisse auch und gerade auf
die Hyperparameter ankommt>?® und folglich diese moglicherweise in den
Begriff des trainierten Modells einzubeziehen sind.

I. Vorab: Einsatz eines trainierten Modells

In der Praxis wird beim Einsatz eines ML-Modells fiir die aufgabengemifle
Verwendung iiblicherweise wie folgt vorgegangen, vgl. dazu auch den Teil

224 Vgl. MIT-Lizenz: https://spdx.org/licenses/MIT.html#licenseText (Stand:
22.02.2021); BSD-Lizenz: https://spdx.org/licenses/BSD-3-Clause (Stand:
10.02.2021); ,liberal*“ bedeutet in diesem Kontext, dass die Lizenzen es nicht
untersagen, den Quellcode in Projekte bzw. Produkte einzubinden, die den
Quellcode nicht fiir jedermann verfiigbar offenlegen, es wird dann auch von
,.Non-Copyleft-Lizenzen* gesprochen, vgl. https:/ifross.org/?q=welche-lizenztypen-
gibt-es-bei-open-source-software-und-unterscheiden-sie-sich (Stand: 22.02.2021).

225 Vgl. zum Begrift des Modells schon § 2 B.1.4..

226 Ehinger/Stiemerling, CR 12 2018, 761, 766 Rn. 45; Hauck/Cevc, ZGE 11 2019,
S. 161 ff..

227 Hartmann/Prinz, WRP 12 2018, 1431, 1437 Rn. 62.

228 Dies wird teilweise erkannt und als ,,Architektur oder ,,Topologie* bezeichnet,
jedoch stets separat von den Parametern gesehen und nicht als ein Ganzes betrachtet,
vgl. z. B.Dies., WRP 12 2018, 1431, 1434.

105

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

Modellklasse
laden

Modell laden

Abfassung des Quellcode 1 Quellcode 2
Quellcodes

> e >

Framework-
Auswahl

Aufgaben-
spezifikation

Training Speichern des

Modells

Ausfiihrung Ausgabe des

Ergebnisses

Daten-
sammlung

Daten-
aufbereitung

Abbildung 6.2: Entstehung eines ML-Modells, vereinfachte, eigene Darstel-
lung.

,Produktiveinsatz* in der Abbildung 6.2?2°, nachdem das ML-Modell trainiert
und gespeichert wurde:?*°

Es wird ein Programm (z. B. in der Programmiersprache Python) entwi-
ckelt, das — mindestens — erforderliche Bibliotheken lddt — vgl. in Abbil-
dung 6.2 Quellcode 2.

Zudem werden — je nach dem welche Elemente des ML-Modells gespei-
chert vorliegen — entweder die gesamte Konfiguration des Modells, also die
Hyperparameter und die Parameter, oder nur einzelne Informationen oder
Informationspakete (abhédngig von dem verwendeten Framework) geladen
(,,Modell laden*). Alternativ, wenn das gesamte zuvor trainierte ML-Modell-
Objekt im Bindrformat gespeichert wurde, wird entsprechend das Objekt
geladen (,,Modell laden®). Zudem werden die Daten geladen, fiir die eine
Vorhersage durchgefiihrt werden soll (,,Input laden*).

AnschlieBend wird die Vorhersagefunktion (z. B. predict ()) aufgeru-
fen, um das konkrete Problem oder die konkrete Aufgabe (etwa die Objekter-
kennung in einem Bild) zu 16sen (,,Ausfithrung*). Erst nach der Ausfiihrung
dieses Codes wird die Losung der Aufgabe oder des Problems ausgegeben.

229 Abbildung 6.2 soll nur dazu dienen, wesentliche Schritte in der Modellentstehung
visuell nachzuverfolgen. Vernachlissigt werden dabei u. a. Prozessschritte iterativer
Uberarbeitung und Anpassung sowie Test- und Evaluierungsphasen.

230 Vgl. z.B. fiir ein Minimalbeispiel in Scikit-Learn, das den hier dargestellten Ab-
lauf in Code umsetzt: https://scikit-learn.org/dev/modules/model_persistence.html#
python-specific-serialization (Stand: 22.02.2021).

106

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainiertes Modell in Python

II. Begriff des trainierten Modells

Fiir die konkrete Problemlosung kommt es also maB3geblich darauf an, was
am Ende der Ausfiihrung von Quellcode 1 abgespeichert wurde, denn das Ab-
gespeicherte wird dann in Quellcode 2 geladen (,,Modell laden*). Andernfalls
miisste das Modell fiir jeden Einsatz vollstindig neu trainiert werden. Je nach
verwendeter Programmiersprache und Framework stehen dem Entwickler
zum Abspeichern des Modells und seiner Bestandteile unterschiedliche Mog-
lichkeiten zur Verfiigung. Die Technologie wird stindig weiterentwickelt,
eine Betrachtung der Moglichkeiten kann folglich nur eine Momentaufnahme
darstellen.

Dennoch ist es der urheberrechtlichen Bewertung zutrédglich, sich mit den
bisherigen Moglichkeiten auseinanderzusetzen, um ein Grundverstindnis
fiir die relevanten Vorgiinge zu entwickeln. Es folgt daher eine Ubersicht der
Speichervarianten jeweils in TensorFlow, Keras, PyTorch und Scikit-Learn.
Identifiziert werden soll dabei, in welcher Form die Ergebnisse gespeichert —
und dementsprechend auch wieder geladen — werden, um anschlieSend den
passenden urheberrechtlichen Schutz ermitteln zu konnen. Es werden nur
Losungen basierend auf der Programmiersprache Python thematisiert, Ziel
ist es aber, am Ende dieses Kapitels auch auf andere Programmiersprachen
iibertragbare Grundsitze zu entwickeln.

1. ,Trainiertes Modell“ in TensorFlow

TensorFlow ist eine ,,End-to-End Open Source Machine Learning Plat-
form*.23! Es handelt sich um eine Software-Bibliothek, die seit November
2015%2 von Google entwickelt wird und unter der Open Source-Lizenz
Apache License 2.0 fiir die Entwicklung von Machine Learning-Projekten
zur Verfiigung steht. Die Plattform basiert auf der Programmiersprache
Python und ermoglicht es, mittels vorgefertigter Klassen und Funktionen,
ML-Projekte ziigig umzusetzen.

TensorFlow bietet verschiedene Moglichkeiten, die durch das Training erar-
beiteten Fortschritte des Modells zu sichern. Zum einen speichert TensorFlow
wihrend des Trainings immer wieder sogenannte Checkpoint-Dateien. Das

231 https://www.tensorflow.org (Stand: 22.02.2021).
232 Geht hervor aus der Versionsgeschichte auf GitHub, https://github.com/tensorflow/
tensorflow/commits/master/RELEASE.md (Stand: 22.02.2021).

107

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

sind Dateien im fiir Menschen nicht lesbaren Bindrformat, die ein Verzeichnis
berechneter Tensoren,?* also Parameter bzw. Gewichtungsinformationen,
beinhalten.?**

Mit jedem Trainingsvorgang wird die aktuellste Checkpoint-Datei geladen
und das Modell damit initialisiert, sodass eine Fortsetzung des Trainings
nach einer Unterbrechung moglich ist und nicht von vorne begonnen werden
muss.??

Ist das Training abgeschlossen, kann das Modell zum Beispiel mittels der
Funktion t f. saved_model.save () exportiert und im Anschluss mit-
tels t £ . saved_model.load () wieder eingelesen werden.?*® Das hat
zur Folge, dass eine sogenannte ProtocolBuffer-Datei (saved_model.pb) und
zwei Verzeichnisse namens ,,assets” und ,,variables erzeugt werden.??” Das
Verzeichnis ,,variables* enthilt einen Training-Checkpoint, ,,assets* enthilt
zusitzliche Informationen (zum Beispiel Textdateien fiir Vokabeltabellen,
falls textverarbeitende Modelle entwickelt werden).?® TensorFlow stellt au-
Berdem (noch, dies ist eine Funktion aus der TensorFlow Version 1) die
Funktionalitit Saver.save () bereit, mit der bei entsprechender Einstel-
lung vier Dateien erzeugt werden konnen — eine enthélt dann die Parameter
(.data), eine zweite weitere Informationen zum Checkpoint-Index (.index),
eine dritte eine Liste aller zu speichernden Checkpoints (.pb) und eine die
Graph-Struktur (.meta).?*

Fraglich ist also, welche dieser bereitgestellten Funktionalititen dem
Schutzgegenstand ,,trainiertes ML-Modell*“ im Sinne dieser Arbeit entspricht.
Die Checkpoints enthalten keine Informationen iiber die Struktur des Mo-
dells, sind also nicht dazu einsetzbar, das Modell ohne anderweitige In-
formationen zu laden. Dazu sind hingegen grundsétzlich die Ergebnisse
von Saver.save () und tf.saved_model.save () geeignet. Diese
Arbeit stellt daher im weiteren Verlauf auf die Ergebnisse der Aufrufe von
tf.saved_model.save () sowie Saver.save () ab, wenn es um ein
wtrainiertes Modell“ in TensorFlow geht.

233 Zum Begriff vgl. Fulnote 121; eine Einfiihrung in Tensoren gibt auch TensorFlow:
https://www.tensorflow.org/guide/tensor (Stand: 22.02.2021).

234 https://www.tensorflow.org/guide/checkpoint (Stand: 22.02.2021).

235 Initialisierung: Setzen von Anfangswerten bei Start eines Programmes, vgl. auch
https://www.dwds.de/wb/Initialisierung (Stand: 22.02.2021).

236 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).

237 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).

238 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).

239 Vgl. https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/Saver (Stand:
22.02.2021).

108

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

2.

D. Trainiertes Modell in Python

,JTrainiertes Modell“ in Keras

Auf der Projekt-Website wird Keras beschrieben als ,,The Python Deep
Learning Library®, bzw. als ,,High-Level Neural Network API*, die auf 7en-
sorFlow aufsetzt.>** Keras stellt diverse Moglichkeiten bereit, ein trainiertes

Modell zu exportieren bzw. zu speichern.

241

model .save (<Dateipfad>) Erzeugteine Datei im biniren HDF5-
Format (*.h5), die die Architektur des Modells beinhaltet sowie die
berechneten Gewichte, die Trainingskonfiguration (etwa die Verlust-
und Optimierungsfunktion)®*> sowie den Zustand des Optimierers*** im
Zeitpunkt des Abspeicherns.?** Mithilfe dieser Datei kann das Training
dort fortgesetzt werden, wo es unterbrochen wurde. Alternativ kann auch
das SavedModel-Format von TensorFlow verwendet werden.
model.to_json() / model.to_yaml () Speichert nur die Ar-
chitektur des Modells in einem menschenlesbaren Format (nicht bi-
ndr, sondern strukturierte Textdaten entweder im JSON- oder YAML-
Format).>*

model.save_weights () Erzeugt eine .h5-Datei, die nur die Ge-
wichtsinformationen enthilt.*® Diese konnen dann in ein Modell geladen
werden. Mithilfe der Layer-Namen konnen Inhalte — Gewichte — selektiert
werden.

keras.callbacks.ModelCheckpoint (...) Damit kann das
Modell z. B. nach jeder Epoche gespeichert werden — die Funktion ruft
dann entweder model.save_weights() oder model.save() auf.>*’

240

241

242

243

244

245

246

247

Vgl. https://keras.io (Stand: 22.02.2021).

Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/guide/keras/
save_and_serialize?hl=en (Stand: 22.02.2021), bzw. Keras-API-Dokumentation,
https://keras.io/api/models/model_saving_apis/ (Stand: 22.02.2021).

Funktionen, die errechnen, wie weit das Modell vom gewiinschten Zielwert — vorge-
geben z. B. durch die Labels der Trainingsdaten — entfernt ist, vgl. auch § 2 B.IIL.7..
Der ,,Optimierer* ist eine Funktionalitét, die zwischen Verlustfunktion und Modell
eine Riickkopplung herstellt und die Parameter des Modells entsprechend anpasst.

Vgl. Keras-Dokumentation, https://keras.io/api/models/model_saving_apis/#save-
method (Stand: 22.02.2021).

Vgl. Keras-Dokumentation, https://keras.io/api/models/model_saving_apis/#tojson-
method (Stand: 22.02.2021).

Vgl. https://keras.io/api/models/model_saving_apis/#saveweights-method (Stand:
22.02.2021).

Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/api_docs/
python/tf/keras/callbacks/ModelCheckpoint (Stand: 22.02.2021).

109

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

— keras.utils.plot_model (model, ...) Konvertiertein Ke-
ras-Modell in ein Format, das eine grafische Ausgabe der Architektur
bzw. der Hyperparameter des Modells erzeugt.?*8

Dem ,trainierten Modell* im Sinne dieser Arbeit entspricht in Keras das
Ergebnis von model . save (<Dateipfad>), da hier alle Informationen,
die zur Ausfiihrung des Modells erforderlich sind, abgelegt werden.

3. ,Trainiertes Modell“ in PyTorch

Auf der PyTorch-Website wird PyTorch beschrieben als ein ,,Open Source
Machine Learning Framework, das den Weg vom Research Prototyping zum
Production Deployment beschleunigt“,?** also von der Entwicklung bis zum
Einsatz des fertig trainierten Modells in der Zielumgebung verwendet werden
kann.

Auch in PyTorch gibt es unterschiedliche Moglichkeiten, Trainingsergeb-

nisse bzw. ML-Modelle zu speichern:

— torch.save (the_model.state_dict (), PATH) speichert
und l4dt nur die Modellparameter.?°

— torch.save (the_model, PATH) speichert und lidt das gesamte
Modell als ein Objekt, dabei wird ein Tool verwendet, das sich ,,Pickle*
nennt.>!

248 Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/api_docs/
python/tf/keras/utils/plot_model (Stand: 22.02.2021).

249 https://pytorch.org/ (Stand: 22.02.2021)

250 PyTorch-Dokumentation, https://pytorch.org/tutorials/beginner/saving_loading_

models.html (Stand: 22.02.2021).

Das Pickle-Modul in Python implementiert bindre Protokolle fiir die Serialisie-

rung und Deserialisierung von Python-Objektstrukturen. ,,Pickling* ist der Vor-

gang durch den eine Python-Objekthierarchie in einen Byte-Stream umgewandelt

wird, und ,,unpickling® ist der umgekehrte Vorgang, bei dem ein Byte-Stream

zuriick in eine Objekthierarchie gewandelt wird. Der Dateiinhalt ist nicht ,,men-

schenlesbar®, sondern nur fiir das Laden in ein Programm vorgesehen; https:

//docs.python.org/3/library/pickle.html (Stand: 22.02.2021).

25

—_

110

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainiertes Modell in Python

— torch.nn.Module.load_state_dict () Ladtdie Parameter ei-
nes Modells in Form eines Dictionaries?>? unter Verwendung eines dese-
rialisierten (also ,,unpickled”) st ate_dict-Objektes.>>

Ein state_dict ist ein Python Dictionary-Objekt, das die Beziehungen
jeder Schicht des Modells zu ihrem Parameter-Tensor enthalt.

Optimiererobjekte haben ebenfalls ein state_dict, das Informationen
iber den Zustand des Optimierers enthélt, sowie die verwendeten Hyperpa-
rameter.”>*

Das Ergebnis eines Aufrufs von torch.save (the_model, PATH)
entspricht dem, was hier als ,trainiertes Modell* verstanden wird, denn
die anderen beiden Funktionen speichern im Gegensatz dazu nur einzelne
Bestandteile des Modells und sind im Ergebnis nicht ausreichend, um das
Modell ohne weitere Informationen iiber die Architektur wiederherzustellen.

4. | Trainiertes Modell* in Scikit-Learn

Scikit-Learn stellt simple und effiziente Tools fiir Data Mining und Da-
tenanalyse zur Verfiigung, die frei zugédnglich und unter der Open Source
BSD-Lizenz verfiigbar sind.?>® Beziiglich der Speicherung eines Modells
verweist die Dokumentation von Scikit-Learn zum einen auf die Pickle-
Funktionalitdt von Python, und erwihnt zum anderen die Moglichkeit, das
erstellte und trainierte Modell in andere Formate zu exportieren.”>® Aus der
exportierten Form kann das Modell nicht weiter trainiert, sondern ,,nur noch*
fiir Vorhersagen — also den Produktiveinsatz — verwendet werden.?’

252 Ein Dictionary-Objekt ist ein Objekt, das wie ein Nachschlagewerk funktioniert:
Unter Schliisselwortern (keys) sind Informationen abrufbar

253 PyTorch-Dokumentation, https://pytorch.org/tutorials/beginner/saving_loading_
models.html#save-load-state-dict-recommended (Stand: 22.02.2021).

254 Output der state_dict-Datei, insb. des Optimizer state dict einsehbar auf der
Website https://pytorch.org/tutorials/beginner/saving_loading_models.html, zuletzt
abgerufen am 22.02.2021.

255 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/index.html (Stand:
22.02.2021).

256 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model
persistence.html (Stand: 22.02.2021).

257 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model_
persistence.html (Stand: 22.02.2021).

111

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

Die Autoren von Scikit-Learn beschreiben den Prozess, ein mit zukiinfti-
gen Versionen des Frameworks zuverlédssig wiederherstellbares Modell zu
speichern: Es ist nicht nur das Modell zu speichern, sondern auch die Meta-
daten (hier: die Trainingsdaten, der Python-Quellcode mit dem das Modell
erstellt wurde, die Scikit-Learn-Version und eventuelle Abhédngigkeiten zu
anderen Tools, sowie der Kreuzvalidierungswert der mit den Trainingsda-
ten erzielt wurde, damit gepriift werden kann, ob das Modell erfolgreich
wiederhergestellt wurde).?®

Das Speichern eines ,.trainierten Modells* im Sinne dieser Arbeit erfolgt
also wie schon in PyTorch mithilfe des Pickle-Moduls, eine Scikit-Learn-
spezifische Methode muss dafiir nicht zum Einsatz kommen, sondern es
werden die ,,Bordmittel*“ von Python eingesetzt.

III. Zusammenfassung und Definition

Ziel des Trainings eines ML-Modells ist es, ein Softwaregebilde zu schaffen,
das reproduzierbar und zuverlissig fiir den gleichen Input die gleichen Vor-
hersagen bzw. Ergebnisse (Output) liefert. Dies kann nur erreicht werden,
indem die wihrend des Trainings noch manipulierbare Struktur des Modells
am Ende des Trainings eingefroren und wiederabrufbar gemacht wird. Dazu
unerlésslich sind

— Hyperparameter,
— Parameter, und
— Quellcode.

Die Hyperparameter sind erforderlich, weil sie das ,,Geriist” des Modells
beschreiben. Die Parameter sind erforderlich, weil sie das Geriist des Modells
mit Werten fiillen. Der passende Quellcode fiihrt alles zusammen.

Ein trainiertes ML-Modell liegt also vor, wenn eine Dateistruktur exis-
tiert, die von einem Quellcode oder Script verwendet wird, wobei das daraus
entstehende Modellobjekt ohne weitere Zwischenschritte zur bei Entwick-

258 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model_
persistence.html (Stand: 22.02.2021).

112

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

E. Trainierter Random Forest in R

Technologie:
\ Keras PyTorch TensorFlow Scikit-learn
Funktion speichert:

| Hyperparameter |

model.to json() /.

model.to_yaml()

orch save({,optimizer_sta
te dict”:
optimizer.state_dict()},
PATH) oder
optimizer.state_dict() als
JSON speichern

export_meta_graph() -
die Hyperparameter
kénnen als Collection aus
dem importierten Objekt
abgerufen werden

Dateiendung also .meta

Evtl. mit Pickle leeres
Objekt speichern

model.save_weights() &

torch.save(the model.stat
e_dict(), PATH

speichert und ladt nur die
Parameter

Saver.save() » *.data-
Datei

Speichern der Parameter
mit JSON

model.save(filepath

= .h5-Datei

Inhalt:
Architektur d. Modells
Gewichte des Modells

torch.save(the_model,

PATH

speichert und ladt das

gesamte Modell als ein
serialisiertes Objekt

SavedModel /
SavedModelBuilder

- speichert alles in einer
.pb-Datei und
dazugeharigen Ordnern

joblib.dump(...) /
pickle.dumpl...

(Pickle) (Parameter separat)
Saver.save() erzeugt 4
Dateien:
*.meta (Graph-
Struktur)
*.data (Parameter)
*.index
Checkpoint-Datei

Trainingskonfig. (Loss,
Optimizer)
Zustand Optimierer

keras.utils.plot_modelf....

Abbildung 6.3: Uberblick iiber Speichervarianten in den untersuchten Fra-
meworks, eigene Darstellung.

lung des Modells angestrebten Problemlsung eingesetzt werden kann.?°

Grundsitzlich ist also immer ein aufrufender Quellcode bzw. ein aufrufendes
Skript erforderlich, sowie eine oder mehrere Dateien, die Informationen iiber
das Modell enthalten. Der Grad zwischen Quellcode bzw. Skript und Datei,
auf dem die Informationen verteilt sind, ist je nach verwendetem Framework
unterschiedlich. Fiir einen abschlieBenden Uberblick vgl. Abbildung 6.3.

E. Trainierter Random Forest in R
Da sich fiir ein Random Forest-Modell, das nicht in Python, sondern in R

konzipiert und trainiert wurde,?** Unterschiede im Vergleich zur Implemen-
tierung in Python ergeben, erfolgt hier eine differenzierte Darstellung.

259 Theoretisch wire es auch denkbar, ein trainiertes Modell zu erzeugen, das auch
ohne Ablage in Dateien im Arbeitsspeicher eines Rechners mit endloser Runtime
fiir immer existiert. Ein solches, doch eher fernliegendes, Konstrukt soll jedoch hier
von der Definition nicht erfasst sein.

260 Die Verwendung der Programmiersprache R scheint fiir Random Forests nahezu so
verbreitet wie Python, und soll deshalb hier auch Beriicksichtigung finden.

113

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

Ein trainiertes Random Forest-Modell enthilt eine Vielzahl von unglei-
chen Entscheidungsbiumen.?®! Jeder Entscheidungsbaum besteht aus einer
Vielzahl an Knoten, die jeweils ein Feature hinsichtlich eines Schwellwertes
iiberpriifen. ,,Trainiert werden die Schwellwerte, anhand derer entschieden
wird, ob ein Datensatz zum linken oder rechten Tochterknoten weitergeleitet
wird. Im Ergebnis entsteht eine als Tabelle abrufbare Datensammlung, die
—in der Implementierung des Pakets ,,randomForest” in der Programmier-
sprache R — fiir jeden konstruierten Baum in sechs Spalten die Baumstruktur
enthilt®®?,

Folgende sechs Spalten entstehen dabei:

— Linker Tochterknoten — Status: handelt es sich um einen

— Rechter Tochterknoten Endknoten?

— Gewihlte Split-Variable bzw. — Vorhersage (nur fiir Endknoten
Feature relevant)

— Split-Point bzw. Schwellenwert

Diese Spalten enthalten alle Informationen, die zur Durchfiihrung der
Vorhersagen fiir neue Daten erforderlich sind. Fiir den Produktiveinsatz
eines Random Forest in R ist folglich der Zugriff auf die so entstandene
Tabelle ausreichend, diese stellt fiir den weiteren Verlauf der Priifung der
Schutzmoglichkeiten von mit R entwickelten Random Forest-Modellen den
Schutzgegenstand dar.

F. Trainierte Parameter
Ein zentrales Element von ML-Modellen sind die Werte, die vielfach ,,Ge-

wichte®, ,,Gewichtungsinformationen* oder ,,Irainingsergebnisse® genannt
werden. In den einschlidgigen Frameworkbeschreibungen ist hingegen ne-

261 Fiir eine ausfiihrlichere Erkldrung vgl. § 2 B.IL.1..
262 Liaw/Wiener, R News 2 Nr. 3 2002, S. 4.

114

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

G. Hyperparameter

ben ,Weights“?%3 auch von Parametern,?** bzw. trainierbaren Parametern®®’
die Rede. Diese werden stets kontrastiert mit ,,Hyperparametern‘,>*¢ oder
auch ,,System-* oder ,,Metaparametern‘*.?*’ Es handelt sich um Werte, die
sich in einem Modell-Optimierungsprozess (,,[raining*) nicht (automatisch)
verindern.2%

Trainierte Parameter, die aus dem Training eines Modells mit sorgfiltig
ausgewihlten Trainingsdaten und einer entsprechenden Architektur hervor-
gehen, fiillen das Modell mit Inhalt. Ohne die richtigen Parameter kann ein
Modell nicht die richtigen Vorhersagen treffen. Es liegt daher nahe, auch die
Sammlung der Parameterwerte als Schutzgegenstand ins Auge zu fassen.

G. Hyperparameter

Als Schutzgegenstand diskutiert werden auch die Hyperparameter, auch ,,To-
pologie des Netzes*?®® genannt. Wie bereits erldutert,>’" hat die korrekte
Auswahl der Anzahl zu verwendender Schichten, der Menge Neuronen je
Schicht, verwendeter Funktionen und Riickkopplungen innerhalb der Struktur
einen wesentlichen Einfluss darauf, wie gut das KNN gestellte Aufgaben
16sen kann.?”! Hyperparameter sind auBerdem nicht nur fiir KNNs relevant,
sondern fiir verschiedenste ML-Modelle — auch die Struktur von Random
Forests wird unter anderem die maximale Baumtiefe, die Anzahl ausge-
werteter Features etc. durch Hyperparameter vorgegeben. Eine sorgfiltige
Auswabhl der passendsten Hyperparameter verleiht einem Modell die Struktur,
die es braucht, um taugliche Ergebnisse zu produzieren. Die Hyperparame-

263 Weights: Keras, https://keras.io/api/models/model_saving_apis/ (Stand:
22.02.2021), TensorFlow, https://www.tensorflow.org/guide/saved_model ?hl=en
(Stand: 22.02.2021).

264 TensorFlow, https://www.tensorflow.org/guide/checkpoint?hl=en (Stand:
22.02.2021), PyTorch https://pytorch.org/tutorials/beginner/saving loading_
models.html (Stand: 22.02.2021).

265 PyTorch, https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-
is-a-state-dict (Stand: 22.02.2021).

266 Vgl. z. B. Osinga, Deep Learning Cookbook, S. 21; Nielsen, Neural Networks and
Deep Learning, Kap. 1.

267 Ertel, Grundkurs Kiinstliche Intelligenz: Eine praxisorientierte Einfiihrung, S. 304.

268 Vgl. zur Begriffskldarung auch schon oben § 2 B.IIL6..

269 Hartmann/Prinz, WRP 12 2018, 1431, 1434.

270 S.oben §2 B.IL.2..

271 Vgl. auch Nielsen, Neural Networks and Deep Learning, Kapitel ,,Implementing our
network to classify digits*.

115

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 6 Technische Bestandsaufnahme

ter werden mitunter immer weiter angepasst, sodass sie das Ergebnis eines
langwierigen Entwicklungsprozesses darstellen konnen. Dementsprechend
konnten auch die vom Entwickler gewéhlten Hyperparameter urheberrecht-
lichen Schutzes bediirfen, und sind im weiteren Verlauf als eigenstiandiger
Schutzgegenstand aufzufassen.

H. Zusammenfassung

Ziel dieses Kapitels war es, Klarheit zu schaffen in Bezug auf die Bestandteile
von ML-Modellen, um unmissversténdliche Schutzgegenstinde zu identifi-
zieren, die im nichsten Kapitel auf ihre Schutzfiahigkeit untersucht werden
konnen. Dafiir wurden zunichst die Grundbausteine fiir ML-Modelle iden-
tifiziert, fiir die sich keine (urheberrechtlichen) Besonderheiten gegeniiber
den Grundbausteinen anderer Software ergeben.

Sodann wurde der Begriff des ,trainierten Modells* untersucht, und was
darunter je nach eingesetzter Technologie zu verstehen ist. Aus den Erkennt-
nissen wurde eine die Gemeinsamkeiten der untersuchten Technologien her-
vorhebende allgemeine Definition fiir den Begriff des ,.trainierten Modells*
aufgestellt: Als ,.trainiertes Modell* versteht diese Arbeit eine Dateistruk-
tur (also permanent gespeicherte Informationen), die von einem Quellcode
(Quellcode 2 in Abbildung 6.2) verwendet wird, wobei das daraus entste-
hende Modellobjekt ohne weitere Zwischenschritte zur bei Entwicklung des
Modells angestrebten Problemldsung eingesetzt werden kann. Neben dem
Objekt , trainiertes Modell”“ wurden zudem die einzelnen Bestandteile Quell-
code, Hyperparameter und Parameter der Modelle als mogliche unabhiingige
Schutzgegenstinde identifiziert. Fiir in der Sprache R entwickelte Random
Forests bzw. Entscheidungsbaummodelle ist wesentlicher Schutzgegenstand
die durch das Training ermittelte bzw. ermittelbare Tabelle.

116

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzmoglichkeiten im Urheberrecht und den verwandten
Schutzrechten

A. Einleitung
I. Forschungsstand

Bisher wird Schutz fiir ML-Modelle insbesondere unter dem Dach des Com-
puterprogrammschutzes diskutiert,?’? teilweise wird dies auch strikt abge-
lehnt?”® oder es erfolgt eine differenzierte>’* Betrachtung. Andere diskutieren
zwar eine Einordnung als Datenbank (insbesondere im Lichte des Leistungs-
schutzrechtes), kommen hier jedoch entweder zu keinem einen Schutz be-
jahenden Ergebnis,””> oder wagen den Versuch einer Subsumtion erst gar
nicht*’®. Wieder andere ziehen sogar den Tontriigerschutz als Moglichkeit
heran, Modellen doch noch zu einem Schutz zu verhelfen, wenngleich unklar
ist, wie dies in der Praxis auszusehen hitte.?”’

II. Hier gewihlter Losungsansatz
An dieser Stelle erfolgt daher unter Beriicksichtigung der zuvor dargestellten

technischen Gegebenheiten ein Perspektivwechsel, der Klarheit hinsichtlich
der Schutzmdoglichkeiten schaffen soll. Beriicksichtigt wird neben den im

272 Iglesias Portela/ShamuilialAnderberg, Intellectual Property and Artificial Intelli-
gence: A Literature Review: EUR 30017 EN, S. 9; Linke, GRUR Junge Wissenschaft
2019, S. 47.

273 Sehr verallgemeinernd z. B. Wandtke/Bullinger—Griitzzmacher, PK UrhR, § 69a Rn.
21; KI auf Algorithmen reduzierend Hauck/Ceve, ZGE 11 2019, 135, 159; nur sehr
eingeschrinkt den Datenbankschutz fiir moglich haltend Apel/Kaulartz, RDi Nr.1
2020, 24, 28 f..

274 Gomille, JZ Nr. 20 2019, 969, 970; Ehinger/Stiemerling, CR 12 2018, 761, 765
Rn. 41; Hartmann/Prinz, WRP 12 2018, 1431, 1436; BT-Drs. 19/23700 S. 69
(Bericht der Enquete-Kommission KI).

275 Hauckl/Ceve, ZGE 11 2019, 135, 161 f.; Hartmann/Prinz, WRP 12 2018, 1431, 1437,
Loewenheim—Leistner/Zurth, Handbuch Urheberrecht, § 49 Rn. 146; Haberstumpf,
GRUR 2003, 14, 19.

276 Kaulartz/Braegelmann, Rechtshandbuch Artificial Intelligence, Kap. 7.1 Rn. 24 ff..

277 Nagele/Apel in Dies., Rechtshandbuch Artificial Intelligence, Kap. 7.1 Rn. 50.

117

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Urheberrecht infrage kommenden Vorschriften iiber den Schutz als Daten-
bankwerk (§ 4 Abs. 2 UrhG), als Computerprogramm (§ 69a UrhG) und
als sonstiges Werk (§ 2 UrhG) auch ein Schutz durch das Datenbankher-
stellerrecht (§§ 87a ff. UrhG). Ermittelt wird ein Schutz fiir die folgenden
zuvor erlduterten Schutzgegenstinde: trainiertes ML-Modell in Python (insb.
trainiertes KNN), trainierter Random Forest in R, trainierte Parameter, Hy-
perparameter, sowie das untrainierte Modell (in Kombination aus Hyper-
parametern und Parametern). Dabei wird jeder Schutzgegenstand fiir sich
genommen anhand der infrage kommenden Vorschriften gepriift, und zwar
das trainierte Modell in Python in § 7 B., der trainierte Random Forest in
§ 7C., die trainierten Parameter in § 7 D., die Hyperparameter in § 7 E. und
das untrainierte Modell in § 7F..

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

Aus den vorangegangenen Erliuterungen®’® geht hervor, dass der Entwickler
eines ML-Modells entscheiden kann, was am Ende des Trainingsvorgangs in
einer Datei abgelegt wird. In einem néichsten Schritt gilt es nun, herauszu-
finden, ob die so abgelegten Modellbestandteile einem urheberrechtlichen
Schutz zuginglich sind.

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG

Um einen urheberrechtlichen Schutz im Sinne von § 4 Abs. 2 UrhG zu genie-
Ben, miisste eine Datenbank folgende Voraussetzungen erfiillen: Erforderlich
ist ein Datenbankwerk in Form einer Sammlung voneinander unabhéngiger
Elemente, die systematisch oder methodisch angeordnet und einzeln mit
Hilfe elektronischer Mittel oder auf andere Weise zugénglich sind. Ferner
muss die Sammlung aufgrund der Auswahl oder Anordnung eine personliche
geistige Schopfung darstellen.

278 S.oben §6D..

118

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

1. Datenbankwerk

Gemail der Legaldefinition in § 4 Abs. 2 UrhG ist ein Datenbankwerk ein
Sammelwerk, dessen Elemente systematisch oder methodisch angeordnet
und einzeln mit Hilfe elektronischer Mittel oder auf andere Weise zugénglich
sind. Sammelwerk wiederum ist eine Sammlung von Werken, Daten oder an-
deren unabhéngigen Elementen, die aufgrund der Auswahl oder Anordnung
der Elemente eine personliche geistige Schopfung darstellen (§ 4 Abs. 1 Ur-
hG). Zunichst ist also zu kliren, ob ein trainiertes Netz die strukturellen
Anforderungen an ein Datenbankwerk grundsitzlich erfiillt. Die Betrachtung
hinsichtlich der Werkqualitit des trainierten Netzes erfolgt in einem zweiten
Schritt.

a) Sammlung

Ein trainiertes KNN miisste folglich eine Sammlung von Elementen darstel-
len. Elemente konnen gem. § 4 Abs. 1 UrhG Werke im Sinne von § 2 Abs. 2 Ur-
hG, aber auch Daten und andere unabhiingige Elemente sein.?”® Eine Samm-
lung ist eine Zusammenstellung mehrerer solcher Elemente. Den Elementen
einer Sammlung muss kein Werkcharakter anhaften, es geniigt, dass sie
lediglich informationellen Wert aufweisen.?%

Analog zum Vorgehen bei den eingangs prisentierten vier Frameworks
wird erneut eine Untersuchung hinsichtlich der fiir die Sammlung infrage
kommenden Elemente vorgenommen.

aa) TensorFlow

In TensorFlow konnte zum einen auf die durch jeden Aufruf von Sa-
ver.save () erzeugten vier Dateien abgestellt werden.?®! Es wird mithin
nicht darauf rekurriert, dass — bzw. ob — ein einzelner Parameter bzw. eine
einzelne ,,Gewichtungsinformation* als Elemente anzusehen sind, sondern
ob die genannten Dateien insgesamt Elemente einer Sammlung darstellen.

279 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 9; Wandtke/Bullinger—-Marquardt, PK UrhR,
§ 4 Rn. 4.

280 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 9; Wandtke/Bullinger—-Marquardt, PK UrhR,
§ 4 Rn. 4.

281 Vgl. Ausfiihrungen in § 6 D.IL.1..

119

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

In TensorFlow gibt es dariiber hinaus die Moglichkeit, mit der SavedMo—
del-Variante alle Informationen gesammelt in einer Protocol Buffer-Datei
zu speichern (*.pb / *.pbtxt).?8? In beiden Fillen wiren die Elemente jeweils
zumindest die Graph-Struktur (also Hyperparameter) und die Parameter (Ge-
wichtungsinformationen), fiir Variante 1 kommen noch der Checkpoint-Index
sowie eine Liste der erstellten Checkpoints hinzu, die Sammlungen bestiinden
entweder in der durch Saver.save () erzeugten Zusammenstellung oder
aber der Protocol Buffer-Datei.

bb) Keras

Der Sammlung entspricht in Keras die mit model . save (Dateipfad)
erstellte .h5-Datei. In der Datei liegen samtliche Informationen vor, die da-
zu benodtigt werden, das trainierte Netz wiederherzustellen. Elemente der
Sammlung sind die Architektur des Modells (die dazugehoérigen Hyperpara-
meter), die Parameter (die ,,Gewichte*), die Trainingskonfiguration sowie
der Zustand des Optimierers.”®* Auch hier wird nicht auf die einzelnen Ge-
wichtsinformationen als Elemente abgestellt, sondern auf deren Sammlung
in der .h5-Datei.

cc) PyTorch

PyTorch stellt mit torch.save (. ..) eine Funktion bereit, mit der das
ganze KNN-Modell in serialisierter Form in einer Datei abgelegt wird. Dabei
wird das Python-Tool ,,Pickle“?®* eingesetzt. Dies hat allerdings auch zur
Folge, dass etwa die Modellklasse®®® nicht ,,gepicklet* wird, sondern nur
eine Referenz zu der Datei, in der die Klasse definiert ist. Diese darf nicht
veridndert werden, wenn das Modell erfolgreich wieder geladen werden soll.
Die Elemente entsprechen auch hier wieder den verschiedenen Hyperpara-
metern und Parametern, und der Untersuchungsgegenstand ,,Sammlung*® ist

282 S.oben §6 D.IL1..

283 Vgl. §6 D.IL.2..

284 Name abgeleitet aus dem Englischen fo pickle —konservieren / einlegen, vgl. ,,pickle,
Merriam-Webster.com, 2019, https://www.merriam-webster.com, zuletzt abgerufen
am 22.02.2021.

285 Also die abstrakte Definition der Modellart — vgl. zur Erklidrung des Begriffs der
»Klasse™ § 6 A.IIL..

120

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

die durch Ausfiihrung der Funktion torch.save (.. .) bewirkte Zusam-
menstellung dieser Elemente.

dd) Scikit-Learn

Unter Zuhilfenahme von joblib.dump(...) oderpickle.dump(...)
kann das gesamte mit Scikit-Learn erstellte Modell gespeichert werden. Das
Modell — in Scikit-Learn représentiert als ein einzelnes Objekt — enthilt in
den ihm zugewiesenen Eigenschaften die Hyperparameter und Parameter,
mithin die Elemente des trainierten KNN als Datensammlung.

ee) Zusammenfassung und Subsumtion

Entgegen der andernorts vorgenommenen Einschriankung auf die Gewich-
tungsinformationen eines KNN2% werden diese hier explizit nur als ein
Element der Sammlung verstanden. Die Sammlung ,,trainiertes Modell*
besteht vielmehr aus den folgenden Elementen:

— Architektur des Modells (reprisentiert durch eine Kombination von Hy-
perparametern — Anzahl Schichten, Anzahl Neuronen je Schicht etc.),

— sonstige Hyperparameter (etwa die Aktivierungsfunktionen)

— sowie Parameter (als ein Element).

Fraglich erscheint, ob auch der Quellcode oder ein Skript zur Initialisierung
des Netzes als Bestandteil der Sammlung eingeordnet werden miisste. Dieser
ist jedoch erforderlich, um auf die Daten iiberhaupt zugreifen zu kénnen. Thn
als Bestandteil der Sammlung zu verstehen, wire mithin widerspriichlich,
und ist gem. § 4 Abs. 2 S. 2 UrhG auBlerdem ausgeschlossen. Der Quell-
code wird hier folglich aus der Begriffsdefinition des trainierten Netzes
herausgenommen. Dennoch kann dieser freilich unabhiingig davon einem
Computerprogrammschutz gem. § 69a UrhG zugiinglich sein.?%
Funktionen, die lediglich zum Training des KNN erforderlich sind, gehdren
ebenfalls nicht zur Sammlung ,.trainiertes Modell*“. Nur dann, wenn das KNN
zur Weiterentwicklung bereitgestellt werden sollte, konnte es sinnvoll sein,

286 Vgl. etwa Ehinger/Stiemerling, CR 12 2018, 768 f..
287 Vgl. dazu aa).

121

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

auch diese Hyperparameter in die Sammlung aufzunehmen. Gleiches gilt
dann entsprechend auch fiir den Quellcode.

b) Unabhingige Elemente

Fraglich erscheint, ob den einzelnen Elementen der Sammlung ein von den
anderen Elementen unabhingiger Informationsgehalt zukommen muss. Dass
sie selbst nicht auch Werke sein miissen, geht aus § 4 Abs. 1 S. 1 UrhG hervor,
der explizit von ,,Werken*, ,,Daten und ,,anderen unabhéngigen Elementen*
spricht.

Nach dem Wortlaut des § 4 Abs. 1 S. 1 UrhG miissen samtliche Elemente
jedenfalls ,,unabhéngig® sein, wobei zu kliren ist, welche Qualitit diese
Unabhingigkeit aufweisen muss.

Grundsitzlich sind die Elemente einer Sammlung unabhéngig, wenn sie
sich trennen lassen, ohne dass der Wert ihres informativen, literarischen,
kiinstlerischen, musikalischen oder sonstigen Inhalts dadurch beeintrichtigt
wird. 28 Dieses Kriterium soll unter anderem verhindern, dass etwa Mu-
sikstiicke als Sammelwerk ihrer Tone, oder ein Buch als Sammelwerk der
Buchstaben geschiitzt wiirde.?® In diesen Fiillen gewinnen die einzelnen
Bestandteile ihren Sinn erst aus dem Kontext mit den anderen Elementen:
Ein einzelner Ton etwa ergibt fiir den Horer noch keinen ,,Sinn*, im Gegen-
satz zum Abspielen einer Phrase oder des gesamten Stiicks (ggf. wire zu
untersuchen, ob sich diese Argumentation auch hilt, wenn ein umfassendes
Musikwerk — etwa eine Sinfonie — mit ihren einzelnen Passagen betrachtet
wird, sodass die Bestandteile nicht einzelne Tone, sondern etwa musikalische
Motive wiren — auch Kombinationen kdnnen zumindest nach europédischer
Rechtsprechung Elemente darstellen >°°). Die Elemente diirfen also nicht erst
aus der Gesamtschau, sondern miissen auch alleinstehend Sinn ergeben,”! je-
doch kann der Sinn auch durch ein ,,formales Anordnungsprinzip erzeugt*?°>

288 EuGH GRUR 2005, 254, 255, Rn. 29 — Fixtures-Fufballspielpline II;
Schricker/Loewenheim—Leistner, Urheberrecht, § 4 Rn. 18.

289 Nordemann/Fromm-Czychowski, UrhR, § 4 Rn. 24; Dreier/Schulze—Dreier, UrhG,
§ 4 Rn. 10.

290 EuGH GRUR 2005, 254, 255, Rn. 35 — Fixtures-Fufsballspielpldne 11; EuGH MMR
2016, 51, 52, Rn. 20 f. — Verlag Esterbauer.

291 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 10; Schricker/Loewenheim—Leistner, Urhe-
berrecht, § 4 Rn. 18.

292 Nordemann/Fromm—Czychowski, UrhR, § 4 Rn. 28.

122

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

werden. Als Beispiel wird etwa eine Sammlung von Postleitzahlen herange-
zogen: > eine einzelne fiinfstellige Zahlenfolge, wie etwa 70839, ergibt fiir
sich genommen wenig Sinn. Erst das Wissen dariiber, dass es sich um eine
Postleitzahl handelt, er6ffnet Informationen dariiber, dass etwa bestimmte
Stralen diesem Postleitzahlenbereich zugeordnet sein konnten.

Beziiglich des Informationsgehaltes eines Elements ist dariiber hinaus
nicht mafigeblich, welcher Informationsgehalt dem Element nach der Zweck-
bestimmung der Sammlung zukéme, sondern jeder denkbare Informations-
wert.2%*

Das Abrufen einzelner, wie oben definierter Elemente (abgestellt wird
nicht nur auf die trainierten Parameter, sondern auch auf die Hyperparameter,
vgl. ee)) aus einem KNN liefert Informationen iiber die verwendeten Aktivie-
rungsfunktionen, die Anzahl der Schichten und alle weiteren Informationen,
die in der Sammlung ,.trainiertes Modell* enthalten sein kdnnen. Jedes ein-
zelne Element trifft dabei eine Aussage iiber das betreffende Modell. Diese
Elemente haben also jeweils einen eigenen Aussage- bzw. Informationsgehalt
und sind mithin unabhiingig.?>

Fraglich konnte sein, ob die Elemente einer Datenbank gleichartig sein
miissen: Die Elemente der Sammlung ,trainiertes Modell* konnen nicht
nur Zahlenwerte sein (,,Anzahl Schichten®, ,,Anzahl Neuronen‘ etc.) son-
dern auch Funktionsnamen (Art der Aktivierungsfunktion, Kostenfunktion
etc.) und auch Zusammenstellungen vieler Zahlenwerte in einem Element
(Parameter). Denkbar wire zu argumentieren, es handele sich bei allen Infor-
mationen zu einem einzigen trainierten KNN um lediglich einen Datensatz,
und nur bei einer Zusammenstellung mehrerer trainierter Modelle konne
von einer Sammlung gesprochen werden. Dem ist zu entgegnen, dass zwar
in einer Briefmarkensammlung bestimmte Briefmarken gesammelt, und in
einer Zeitschriftendatenbank bestimmte Zeitschriften erfasst sind, dass aber
Sammlungen sich auch mit einem bestimmten Thema befassen konnen, das
alle Elemente verbindet, so unterschiedlich diese im Einzelnen auch sein
mogen, wie es etwa in Ausstellungen®* iiblicherweise der Fall ist. Ferner
kann auch schon ein einzelnes topografisches Datenblatt eine Datenbank

293 Nordemann/Fromm—Czychowski, UrhR, § 4 Rn. 26.
294 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 18.
295 Die Unabhingigkeit ,,der Elemente* ablehnend Apel/Kaulartz, RDi Nr.1 2020, 24,

29, ohne jedoch die Elemente tiefergehend zu analysieren.
296 Vgl. z.B. LG Miinchen I ZUM-RD 2003, 492, 498 f. — Jemen-Ausstellung.

123

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

darstellen.?’ Die Verschiedenheit der Art der Elemente steht demzufolge

hier einem Schutz nicht entgegen.
Die Sammlung ,,trainiertes Modell* besteht also aus unabhéngigen Ele-
menten im Sinne von § 4 Abs. 1 S. 1 UrhG.?®

¢) Systematische oder methodische Anordnung

Gem. § 4 Abs. 2 S. 1 UrhG miissten die Elemente nicht nur unabhingig,
sondern auch systematisch oder methodisch angeordnet sein. Erforderlich ist
also, dass der Anordnung ein gewisses System zugrunde liegt, das auch in
einem Ordnungsschema oder einer Klassifizierung bestehen kann, oder die
Anordnung miisste — methodisch — auf einer ordnenden Handlungsanweisung
oder einem Plan basieren.?*

Wenn die Elemente in einer fiir das erneute Einlesen vorgesehenen Datei
gesammelt vorliegen, ist bereits evident, dass eine Struktur vorhanden sein
muss: Sonst wire ein Abrufen der Daten nicht moglich. Die Strukturierung
innerhalb der Dateien ergibt sich entweder aus Indizes oder aus Schliissel-
wortern, mit denen die einzelnen Elemente adressiert werden konnen. Wenn
mehrere Dateien vorliegen, kann sich die Anordnung auch aus der Ordner-
bzw. Verzeichnisstruktur ergeben.

297 LG Miinchen I GRUR 2006, 225, 227 - Topografische Kartenblitter;
Wandtke/Bullinger—Hermes, PK UrhR, § 87a Rn. 32.

298 Randbemerkung: auch wenn eine einzelne Gewichtungsinformation (die stets in
einer Kombination aus die dazugehorigen Neuronen identifizierenden Indizes aus-
gegeben wird) abgerufen wiirde, informiert diese immerhin dariiber, wie an einer
bestimmten Stelle des KNN die Verbindung zwischen zwei Neuronen gewichtet ist
(dhnlich einer Postleitzahl in einer Postleitzahlenliste) — ein einzelner Parameter —
etwa als Zahl 0,42 — ergibt also zwar alleinstehend keinen tieferen Sinn. Wenn die
Wahrnehmende allerdings weif3, dass es sich um einen Parameter eines KNN handelt,
ist zumindest klar, dass in dem KNN an einer Stelle der Output eines Neurons mit
dem Gewicht 0,42 als Input des darauffolgenden Neurons weitergeleitet wird, und
konnte moglicherweise ebenso als unabhédngiges Element angesehen werden. Dies

kann vorliegend jedoch zunichst dahinstehen.
299 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 17, Wandtke/Bullinger-Marquardt, PK UrhR,
§ 4 Rn. 10.

124

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

d) Zuginglichkeit der Elemente

§ 4 Abs. 2 S. 1 UrhG fordert ferner, dass die Elemente einzeln mit Hilfe elek-
tronischer Mittel oder auf andere Weise zugénglich sind. Die Zuginglichkeit
ist gegeben, wenn es moglich ist, auf die Elemente unter Beriicksichtigung
der Anordnungskriterien zuzugreifen und sie abfragen zu kénnen.3®

Jede Framework-Variante stellt Methoden bzw. Funktionen bereit, mithilfe
derer die Elemente einzeln abgerufen werden konnen. Teils ist dieses fra-
meworkiibergreifend moglich, teilweise kann ein KNN nur genau so wieder
geladen werden, wie es auch gespeichert wurde. Fiir alle gilt jedoch, dass der
Vorgang des Abspeicherns darauf angelegt ist, die Daten wieder zu laden und
zugreifbar zu machen. Erwédhnung finden sollte an dieser Stelle noch, dass
die KNNs ganz iiblicherweise nicht als gepackte ausfiihrbare Dateien (wie
z.B. eine ,,Word.exe*, die nach einen Doppelklick das Programm startet) das
Endergebnis des Trainingsvorgangs darstellen, sondern sie miissen — durch
einen Aufruf in Code oder Skript — geladen werden und sind dann auch
zuginglich und verédnderbar.

e) Zwischenergebnis

An anderer Stelle wird die Datenbankqualitét eines neuronalen Netzes kate-
gorisch abgelehnt mit dem Argument, die ,,Daten der Verarbeitungsschicht*
— die Gewichte der Neuronen — interessierten den Endnutzer nicht, ferner
sei ,,ihr Wert als solcher fiir ihn auch keine verwertbare Information*.3°!
Hierbei wird jedoch iibersehen, dass der ,,Endnutzer*, zum Beispiel also der
Verwender des trainierten DeepDream-Modells,** nicht zwingend die hier
zu betrachtende Zielgruppe darstellt.

Richtig ist, dass etwa die Verwenderin eines KNN zur Bildbearbeitung
nicht an den einzelnen Neuronenwerten interessiert ist. Anders jedoch ist
die Lage fiir den Entwickler, der ein vortrainiertes Netz — oder einzelne
Schichten daraus — weiterverwenden mochte. Zudem wird verkannt, dass
nicht nur die Neuronengewichte als Datenbankinhalt relevant sind, sondern
die gesamte Netzwerkstruktur. Moglicherweise hat sich in den vergangenen
20 Jahren®® jedoch auch der Stand der Technik derart verindert, dass die

300 Nordemann/Fromm—Czychowski, UrhR, § 4 Rn. 36.

301 Griitzmacher, Datenbanken, S. 66; Ehinger/Stiemerling, CR 12 2018, 761, 769.
302 Vgl. § 10 C.IL.

303 Die Aussagen von Griitzmacher sind von 1999.

125

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Sichtweise nun eine andere zu sein hat. Insbesondere werden heute wohl
haufig vortrainierte Modelle verwendet, es sind zahlreiche fiir bestimmte
Analysezwecke (wie etwa die Gesichtserkennung) spezialisierte Modelle
verfiigbar, die den individuellen Anforderungen angepasst werden konnen.
Insofern ist auch nicht (mehr) nur auf den Endnutzer im Sinne eines nicht
an der Entwicklung beteiligten Benutzers abzustellen, sondern vielmehr auf
Entwickler, die sich das Modell heraussuchen, das fiir ihre Zwecke besonders
gut geeignet ist. Und fiir diese kann es mitunter sehr interessant sein, die ,,Da-
ten der Verarbeitungsschicht in Augenschein zu nehmen. Zudem ermoglicht
eine riickwirkende Analyse dieser Daten einen Einblick in die Arbeitsweise
des verwendeten Modells, etwa zur Fehlersuche oder zur Vermeidung von
unzutreffenden Vorhersagen, die auf schlecht gewéhlten Trainingsdaten ba-
sieren: Im Rahmen dieser ,,KI-Erkldransitze (Stichwort: ,,Explainable AI*)
konnen auch einzelne bzw. Gruppen von Neuronenwerten interessieren.>*

Nicht zuletzt ist auch der Telos des Datenbankwerkschutzes zu berticksich-
tigen: Es ist nicht das Ziel, anhand der Qualitét der Elemente einer Sammlung
einen neuen Schutz der enthaltenen Elemente zu konstruieren. Das Gegenteil
ist der Fall: Der Fokus liegt auf dem, was durch Auswahl und Anordnung
geschaffen wird, und was gerade mehr als die Summe seiner Teile sein kann.
Eine denkbare Parallele zu dem ungewiinschten Zerlegen eines Buches oder
Musikwerkes in seine Einzelteile ergibt sich hier nicht, denn die untersuchten
ML-Modelle sind gerade nicht als Ganzes anderweitig urheberrechtlichem
Schutz unterstellt. Vielmehr kommt ihnen aus den dargelegten Ausfiihrun-
gen viel eher der Charakter einer Datenbank zu, die Informationen enthilt,
die schlussendlich von Computerprogrammcode eingelesen und fiir die Er-
zeugung neuer Bilder oder Tonfolgen oder der Zuordnung von Kategorien
eingesetzt werden.

Wie gezeigt, kann — bei entsprechender Definition des Begriffs des trai-
nierten KNN — grundsitzlich eine Datenbank vorliegen. Die Werkqualitit im
Sinne einer personlichen geistigen Schopfung ist jedoch gesondert zu priifen.

304 Vgl. z.B. die sog. ,,Sentiment-Analysis* zur Erkennung negativer Formulierungen
in Texten, die die Gewichte einer ,,Attention“-Schicht besonders hervorhebt, https:
/Itraversals.com/blog/explainable-ai- for-sentiment-analysis/ (Stand: 22.02.2021)
Gewichte mit dem Wert O konnen u. a. darauf hinweisen, dass zu untersuchende
Eigenschaften gar nicht vorlagen bzw. Pfade im Netz blockiert sind, Ancona etal.,
Gradient-Based Attribution Methods, S. 179.

126

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

2. Personliche geistige Schopfung

Spitestens bei der Anforderung der personlichen geistigen Schopfung schei-
tern bisherige Subsumtionsversuche,*® die ihre Priifung jedoch auf eine
Sammlung von Parametern (Gewichtungsinformationen) beschrinken. Mog-
licherweise ergibt sich ein anderes Ergebnis, wenn das wie hier beschriebene
gesamte trainierte KNN als Untersuchungsgegenstand herangezogen wird.

Die Anforderung der Werkqualitit fiir Datenbankwerke ergibt sich — wenn
nicht schon aus dem Begriff — zumindest daraus, dass § 4 Abs. 2 UrhG Da-
tenbankwerke als Sammelwerke mit erweiterten Eigenschaften definiert. Die
Sammelwerke wiederum finden ihre Legaldefinition in § 4 Abs. 1 UrhG, und
dort heifit es: ,,Sammelwerke sind Sammlungen von Werken, (...) die auf-
grund der Auswahl oder Anordnung der Elemente eine personliche geistige
Schopfung sind.*

a) Personliche oder eigene geistige Schopfung?

In Art. 3 Abs. 1 Datenbank-RL ist hingegen von einer ,,eigenen geistigen
Schopfung® die Rede, sodass zu fragen ist, ob hierin ein Unterschied zur
,,personlichen geistigen Schopfung* besteht und worin dieser liegt. Griitz-
macher*® war noch der Ansicht, dass hierin ein maBgeblicher Unterschied
bestiinde, inzwischen ist jedoch weitgehend geklirt, dass der deutsche Ge-
setzgeber es schlicht nicht fiir erforderlich hielt, den Wortlaut in § 4 UrhG
anzupassen (anders als in § 69a Abs. 3 UrhG, in den die ,,eigene* geistige
Schopfung Eingang gefunden hat), mit der Begriindung, dass bereits vor
Erlass der Richtlinie keine erhohten Anforderungen (erhoht im Sinne ei-
ner ,,personlichen‘ gegeniiber einer ,,eigenen® geistigen Schopfung) gestellt
wurden.?"” Inzwischen hat auch der EuGH in der Football Dataco/Yahoo-
Entscheidung®® die Anforderungen an den Datenbankschutz explizit in die-

305 Ehinger/Stiemerling, CR 12 2018, Rn. 62 lassen es letztendlich an der personlichen
geistigen Schopfung scheitern, Hartmann/Prinz, WRP 12 2018, Rn. 62 steigen
schon bei der Anforderung an die Unabhingigkeit der Elemente aus und priifen die
personliche geistige Schopfung nicht mehr.

306 Griitzmacher, Datenbanken, S. 181 ff..

307 Ahlberg/Gotting—Ahlberg, BeckOK-UrhG, § 4 Rn. 25; Dreier/Schulze—Dreier, UrhG,
§ 4 Rn. 11; BT-Drs. 13/7385.

308 EuGH GRUR 2012, 386, 387— Football Dataco/Yahoo.

127

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

sem Sinne gekldrt. Fraglich ist also nur, welche Anforderungen diesbeziiglich
an die hier untersuchten elektronischen Datenbankwerke zu stellen sind.

b) Schopfung in Auswahl oder Anordnung

Gem. §4 Abs. 2 UrhGi. V.m. § 4 Abs. 1 UrhG miissten die Anordnung oder
Auswabhl der Elemente die personliche geistige Schopfung begriinden.

aa) Auswahl

Auswahl ist das Sichten, Sammeln, Bewerten und Zusammenstellen unter
Beriicksichtigung besonderer Auslesekriterien,®® wobei ein Entscheidungs-
spielraum hinsichtlich der Auswahlmoglichkeit erforderlich ist, damit ein
Datenbankwerk im Sinne einer geistigen Schopfung entstehen kann.3!°

bb) Anordnung

Anordnung hingegen meint die Einteilung, Prisentation und Zugénglichma-
chung der ausgewihlten Elemente nach einem oder mehreren Ordnungssys-
temen.’!!

cc) Anordnung fiir Datenbankwerke i. d. R. programmseitig vorgegeben

Naturgemal ergibt sich die konkrete Anordnung der Elemente von Daten-
bankwerken aus den technischen Gegebenheiten und ist bei ,,klassischen*
elektronischen Datenbanken iiberwiegend von der Datenbanksoftware vor-
gegeben.?'? Es wird daher auf das Ausgabeformat der Daten abgestellt, also
darauf, wie die Daten in der Ausgabe angeordnet sind. Die Elemente miissten
systematisch und methodisch zugiinglich sein,'? sodass es fiir die Anord-

309 Dreier/Schulze-Dreier, UrhG, § 4 Rn. 11.
310 Wandtke/Bullinger—-Marquardt, PK UrhR, § 4 Rn. 9.
311 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 11.
312 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 19.
313 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 19.

128

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

nung auf die Schopfungshohe der Ausgabe- und Verkniipfungsmoglichkeiten
ankommt.?!*

Spétestens an dieser Stelle konnte fraglich erscheinen, wie das oben miihe-
voll konstruierte ML-Datenbank,,werk* iiberhaupt mit einer elektronischen
Datenbank, wie sie allgemein in der Vorstellung existiert, zu vergleichen sein
konnte, entspricht eine Speicherung von Objekten im Binérformat doch nicht
der klassischen Interpretation des Begriffes ,,Datenbank®, bei dem Daten in
einer Eingabemaske gesucht oder in Form eines Indexes dargestellt werden
konnen.

Das Verstindnis erleichtert ein Blick hinter die Kulisse einer solchen
,.klassischen* Datenbank: Auch diese legt Informationen gewohnlicherweise
in einer oder mehreren Dateien ab, die dann — bei Aufruf — eingelesen und
etwa einem im Code definierten Tabellenobjekt zugewiesen werden (wenn
nicht schon Tabellenobjekte in serialisierter Form abgelegt wurden — dann
ist die Parallele noch offensichtlicher). Dieses Tabellenobjekt enthilt dann
Informationen unter anderem dariiber, wie es heif3t, wie viele Spalten es
enthilt, wie diese Spalten heiflen, und was ihr Inhalt ist. Wie diese Datenbank
vom Menschen wahrgenommen werden kann, hiangt davon ab, wie sie zum
Beispiel im Browser présentiert wird.

Folglich konnte auch ein trainiertes KNN, das als Objekt oder anderweitig
in Dateien abgelegt wurde, in einer Form wiedergegeben werden, die es ver-
mutlich einfacher machen wiirde, darin eine Datenbank zu erkennen. Auch
bei trainierten KNN hat der Entwickler aber bis auf die Auswahl der ver-
wendeten Frameworks keinen oder wenig Einfluss darauf, wie die Elemente
angeordnet werden, sodass es fiir die personliche geistige Schopfung auf die
Auswahl der Elemente ankommen muss.

dd) Schopfungsspielraum in der Auswahl
Hinsichtlich dieser Auswahl ist die Konzeption derselben entscheidend, nicht

jedoch, dass der Urheber die zur Durchfiihrung der Auswahl erforderlichen
Schritte selbst vornimmt.*'3

314 Dreier/Schulze—Dreier, UrhG, § 4 Rn. 19, Schricker/Loewenheim—Leistner, UrhR,
§ 4 Rn. 34.

315 BGH GRUR 2007, 685 Rn. 19, 23 — Gedichttitelliste I;, Dreier/Schulze—Dreier,
UrhG, § 4 Rn. 19.

129

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Der Ersteller eines trainierten KNN ist in der Regel nicht Urheber der
Abfragemoglichkeiten (diese Funktionalitdt wird durch die Frameworks be-
reitgestellt und vorgegeben). Durch die Auswahl der Speichervariante und
des Frameworks wird jedoch zumindest insoweit Einfluss auf die ,,Abfrage-
und Verkniipfungsmoglichkeiten* genommen, als es bei den zur Wahl ste-
henden Frameworks Unterschiede in dieser Hinsicht gibt. Zudem koénnte
differenziert werden, ob der Entwickler die Default-Speichervariante wihlt —
dann wiirde die Auswahl der zu speichernden Elemente durch das Framework
getroffen, was gegen eine personliche geistige Schépfung spréiche — oder ob
etwa Variablen gezielt benannt und zur Speicherung ausgewdhlt werden.

Allerdings kann fiir diese Priifung durchaus auch auf einen noch friitheren
Zeitpunkt abgestellt werden: Der Entwickler wihlt die Architektur des Net-
zes, die Funktionen, die Anzahl Trainingsdurchldufe etc. selbst aus, sodass
sich das trainierte KNN als Ganzes als das Werk présentiert, dessen Elemente
einzeln abrufbar sind. Dem Argument, die Auswahlmoglichkeiten seien doch
auf die infrage kommenden Werte fiir die Hyperparameter beschrinkt, ist
entgegenzuhalten, dass auch in der Musik der Tonraum im Wesentlichen auf
8 Tone (in verschiedenen Oktaven) beschrinkt ist. Dennoch ergeben sich
durch das Hinzuziehen von Rhythmus und Dynamik einzigartige Kombina-
tionen, die als geistige Schopfungen anerkannt sind. Insbesondere die Wahl
der Hyperparameter hat wesentlichen Einfluss auf die Leistungsfahigkeit
des Netzes und erfordert geistige Anstrengung und Kreativitit, denn der
Entwickler des KNN hat in der Regel eine konkrete Vorstellung davon, was
das KNN leisten kdnnen soll, und nimmt aufwendige Anpassungen vor, die
sich letztendlich in der Kombination aus Hyperparametern und Parametern
niederschlagen. Mithin ist auch ein tagelanges Training eines KNN nutzlos,
wenn die Hyperparameter nicht sorgfiltigst gewéhlt wurden.

Solange der Entwickler sich also nicht Automatismen bedient, um Hy-
perparameter zu optimieren, sondern diese selbst wahlt, dem KNN-Objekt
zuweist, dieses ,.trainiert” und das gesamte Ergebnis der Reproduzierbarkeit
halber speichert, spielt in einem trainierten KNN die Auswahl der Datenbank-
inhalte durch den Entwickler selbst eine derart bedeutende Rolle, dass beim
Ergebnis i. d. R. von einer personlichen geistigen Schopfung ausgegangen
werden kann. Selbstverstiandlich kann hier die Priifung in Einzelféllen zu
anderen Ergebnissen kommen, wenn etwa ein vortrainiertes Netz verwen-
det und angepasst wird, oder wenn der Beitrag des Urhebers nicht iiber die
Reproduktion bekannter banaler Strukturen hinausgeht.

130

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

3. Ergebnis

Ein wie hier definiertes trainiertes KNN — ohne den aufrufenden Quellcode —
erfiillt alle Anforderungen an ein Datenbankwerk und kann in der Auswahl
der Elemente auch eine personliche geistige Schopfung darstellen, sodass
es dem Schutz fiir Datenbankwerke gem. § 4 Abs. 2 UrhG grundsitzlich
zugénglich ist.

4. Wer ist der Urheber?, oder: Schutzumfang und Folgen

Sobald die grundsitzliche Schutzfihigkeit festgestellt wurde, stellt sich un-
weigerlich die nichste Frage: wem gebiihrt der Schutz? Das Vorliegen einer
personlichen geistigen Schopfung wurde bejaht aufgrund der Auswahl der
Hyperparameter. Urheber ist folglich, wer die Netzwerkstruktur, Aktivie-
rungsfunktion etc. festlegt (nicht, wer eine vorgegebene Architektur lediglich
umsetzt). Zu iiberlegen wire noch, inwiefern eine ggf. davon verschiedene
Person, die die Trainingsdaten auswihlt, unter Umstidnden als Miturheber
anzusehen ist. Bei einer Personenmehrheit muss an der Stelle allerdings
beriicksichtigt werden, dass die Auswahl (und ggf. auch die Aufbereitung
bzw. Vorbereitung) der Trainingsdaten hochstens einen Rahmen setzen kann.
Die geistige Schopfung liegt immer noch darin, die an die Trainingsdaten an-
gepasste und die zur Erreichung der Aufgabenstellung optimale Kombination
an Netzwerkeinstellungen auszuwéhlen.

Der Schutzumfang ist sorgfiltig zu begrenzen, um ihn nicht in einen
Ideenschutz ausufern zu lassen. Sinnvoll erscheint eine Begrenzung auf
die konkrete Gestalt des trainierten KNN. Welche Gestalt dieses annehmen
kann, wurde zu Beginn des Kapitels bereits dargestellt. Die beschriebenen
Formen — in der Regel Computerdateien, eine einzelne oder mehrere — sind
der Gegenstand, den es vor Vervielfiltigung zu schiitzen gilt.

II. Investitionsschutz gem. §§ 87a ff. UrhG
Mit den Regelungen in §§ 87a ff. UrhG wird in Umsetzung der Datenbank-
RL demjenigen, der eine Datenbank unter Aufwendung einer nach Art oder

Umfang wesentlichen Investition erschafft, ein 15-jéhriger sui-generis-Schutz
gewihrt. Dieser kann grundsétzlich auch neben einem urheberrechtlichen

131

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Schutz aus § 4 Abs. 2 UrhG i. V.m. § 4 Abs. 1 UrhG bestehen.?'® Folglich
sollen seine Voraussetzungen auch hier fiir trainierte KNN gepriift werden.
Auch hier wird der aufrufende Quellcode wieder auler Acht gelassen. Zu
priifen ist, ob eine Datenbank sowie ein Investitionsgegenstand im Sinne des
§ 87a UrhG vorliegen und ob die Wesentlichkeit der Investition gegeben ist.

1. Datenbank

Wihrend die Datenbank-RL einen einheitlichen Datenbankbegriff fiir den
urheberrechtlichen ebenso wie den sui-generis-Schutz verwendet, umschreibt
der deutsche Gesetzgeber Datenbanken in § 4 UrhG und § 87a UrhG jeweils
unterschiedlich, die Voraussetzungen stimmen letztendlich jedoch iiberein.?!”
Wenn eine Datenbank nach § 4 UrhG gegeben ist, kann also auch fiir § 87a Ur-
hG vom Vorliegen einer Datenbank ausgegangen werden.

Im Rahmen der urheberrechtlichen Priifung in e) wurde bereits festgestellt,
dass ein trainiertes kiinstliches neuronales Netz Datenbankqualitiit aufweist,
insofern eriibrigt sich die Priifung an dieser Stelle.

2. Investitionsgegenstand

Zusitzlich muss fiir § 87a UrhG im Rahmen der Beschaffung, Sammlung,
Uberpriifung oder Darstellung der Datenbankinhalte eine nach Art oder
Umfang wesentliche Investition anfallen (§ 87a Abs. 1 S. 1 UrhG). Sowohl
finanzielle Mittel als auch der Einsatz von Zeit, Arbeit und Energie knnen
die Investitionen ausmachen.*'® Nicht beriicksichtigt werden Kosten fiir die
Erzeugung von Daten.*"

Fiir die Identifizierung der Investition in die KNN-Entwicklung bzw. in
die Erstellung eines KNN-Modells — also der Datenbank — ist es hilfreich,
den Entstehungsprozess erneut unter die Lupe zu nehmen.

Der Entwickler wihlt anhand der Aufgabenstellung und seiner Erfahrung
initiale Hyperparameter aus, mithilfe derer das Modell trainiert wird. Am
Ende des Trainingsvorgangs wird evaluiert, ob die Ergebnisse den Vorstel-
lungen geniigen. In diesem Zeitpunkt entsteht bereits eine erste Vorstufe

316 Dreier/Schulze—Dreier, UrhG, Vorbemerkung zu § 87a, Rn. 8.
317 Dreier/Schulze—Dreier, UrhG, § 87a Rn. 3.

318 ErwGr. 40 Datenbank-RL

319 Vgl. Dreier/Schulze—Dreier, UrhG, § 87a Rn. 13.

132

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

der Datenbank. Anschlieend passt der Entwickler die Hyperparameter an
und wiederholt den Trainingsvorgang, und wiederholt diesen Prozess, bis
die Ergebnisse passen (z. B. bis die Genauigkeit einer bestimmten Mindest-
prozentzahl entspricht, bzw. bis der Entwickler den Eindruck hat, dass das
Modell seine geistige Vorstellung der Problemldsung hinreichend abbildet).
Insofern konnte dieser Vorgang als Datenbeschaffung oder Datensammlung
(Daten sind hier nicht die Trainingsdaten, sondern eben die Elemente der
entstehenden Datenbank) bezeichnet werden. Die eigentliche, persistente,
nutzbare Datenbank entsteht erst, wenn der Entwickler sich dazu entschlieft,
die gesammelten Daten nicht zu verwerfen, indem zumindest Checkpoints*2°
erstellt werden bzw. am Ende des Trainingsprozesses das Modell reprodu-
zierbar im Speicher ablegt wird.

Es wird hier insbesondere nicht auf die Berechnung und Optimierung
der Parameter abgestellt im Sinne einer Erzeugung neuer Daten. Die dafiir
entstehenden Kosten wiren kein tauglicher Investitionsgegenstand. Vielmehr
wird davon ausgegangen, dass die Zusammenhénge, die der Entwickler in
den Daten vermutet, bereits bestehen und lediglich greifbar gemacht werden
miissen, um daraus zum Beispiel Aussagen fiir die Zukunft treffen zu konnen.
Die Muster in den Daten, mit denen die ML-Modelle arbeiten, werden nicht
erst hergestellt, sondern aufgefunden.

3. Wesentlichkeit der Investition

Sodann ist zu kldren, welche Kosten im Zusammenhang mit der Datenbank-
herstellung im Machine Learning-Kontext entstehen. Wird davon ausgegan-
gen, dass lediglich Zusammenhénge zwischen bestehenden Daten ermittelt
werden, so wiren zumindest die Kosten fiir das ,,Ermittlungsprogramm* —
also den Algorithmus, bzw. die Entwicklung des Modells, sowie die erfor-
derliche (Spezial-)Hardware (oder alternativ gemietete Online-Ressourcen)
und das Gehalt fiir die das Modell trainierenden Data Scientists — zu beriick-
sichtigen. Ferner diirften auch die Kosten fiir die Bereitstellung des Modells
in Ansatz zu bringen sein. Auch die Beschaffung der Trainingsdaten — so

320 Checkpoints bezeichnen Speicherungen des Modells bzw. seiner Parameter, die die
Wiederaufnahme des Trainings zu einem spéteren Zeitpunkt ermdglichen, vgl. z. B.
https://www.tensorflow.org/guide/checkpoint (Stand: 22.02.2021).

133

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

sie entgeltlich erfolgt — und damit auch der Aufwand fiir ihre Sammlung,
diirften relevante Kosten darstellen.**!

Anforderungen an das Merkmal der Wesentlichkeit, bzw. ab welchem
Betrag, welchem Zeitaufwand oder welcher Qualitit an Investition Wesent-
lichkeit gegeben ist, gehen weder aus § 87a UrhG noch aus der Datenbank-RL
hervor.*?? Die Auslegung dieses unbestimmten Rechtsbegriffs ist vielmehr
als ,flexibles Kriterium‘*>* der Rechtsprechung iiberlassen. Es liegt nahe, die
Auslegung an dem Ziel der Datenbank-RL zu orientieren, und einen Schutz
zu schaffen, der einen Anreiz fiir die Entwicklung solcher Speicher- und Ver-
arbeitungssysteme bietet, und damit die Schwelle zur Wesentlichkeit nicht
zu hoch anzusetzen,*** sodass lediglich sog. ,,Allerweltsinvestitionen‘*?’
nicht erfasst sein sollen. Insbesondere sind keine Investitionen von substanti-
ellem Gewicht vorausgesetzt.? Es sind also Einzelfallentscheidungen zur
Auslegung des Wesentlichkeitskriteriums erforderlich.*?

Es ist jedoch davon auszugehen, dass in Anbetracht des nicht unerheblichen
finanziellen und zeitlichen Entwicklungsaufwands zumindest fiir komplexe,
tiefere neuronale Netze die Wesentlichkeit der Investition gegeben sein diirfte.
Im Zweifel muss es hier auf eine Einzelfallbetrachtung ankommen.

321 So wird etwa iiber die einzigartige Zusammenstellung von Informationen zu global
erteilten Patenten von IFSCLAIMS berichtet, dass beispielsweise die Vereinheit-
lichung der Firmennamen besonders aufwendig sei, die im Rahmen der Standar-
disierung der Trainingsdaten vorzunehmen ist — so sei durch jahrelange Arbeit
ein einzigartiges Datenset entstanden, vgl. https://www.cmswire.com/information-
management/machine-learning-datasets-build-or-buy/ (Stand: 22.02.2021); auch
der Zugang zu wertvollen Datensammlungen wie etwa die Inhalte von Beck-Online
oder Juris erfordert in der Regel kostenpflichtige Abonnements.

322 Dreier/Schulze—Dreier, UrhG, § 87a Rn. 11; Wandtke/Bullinger—Hermes, PK UrhR,
§ 87a Rn. 52.

323 Wandtke/Bullinger—Hermes, PK UrhR, § 87a Rn. 52.

324 BGH GRUR 2011, 724, 725 — Zweite Zahnarztmeinung II; OLG Hamburg CR 2018,
22.

325 Wandtke/Bullinger—Hermes, PK UrhR, § 87a Rn. 54.

326 BGH GRUR 2011, 724, 725 — Zweite Zahnarztmeinung Il Rn. 23; Dreier/Schulze—

Dreier, UrhG, § 87a Rn. 14; Haberstumpf, GRUR 2003, 20, 26.
327 BT-Drs. 13/7385 S. 45.

134

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

4. Ergebnis

Der Hersteller eines trainierten KNN kann also als Datenbankhersteller auch
in den Genuss des sui-generis-Datenbankherstellerschutzes gem. § 87a UrhG
kommen.*?® Dieser erstreckt sich nicht auf den Quellcode.

5. Schutzumfang und Folgen

Der Schutzumfang des Datenbankherstellerrechtes ergibt sich aus § 87b
Abs. 1 UrhG. Danach hat der Datenbankhersteller das ausschlieBliche Recht,
die Datenbank insgesamt oder einen nach Art oder Umfang wesentlichen
Teil der Datenbank zu vervielfiltigen, zu verbreiten und 6ffentlich wiederzu-
geben. Datenbankhersteller ist, wer ,,die Initiative ergreift [die Datenbank
herzustellen] und das Investitionsrisiko triigt**,>>” mithin ist der Schutzinhaber
nicht notwendigerweise identisch mit dem Urheber des Datenbankwerkes
gem. § 4 Abs. 2 UrhG - ein Beispiel wire ein Arbeitgeber-Arbeitnehmer-
Verhiltnis, in dem der Arbeitgeber eine Idee fiir ein ML-Modell und eine
zu erfiillende Aufgabe entwickelt, aber seine Entwicklungsabteilung mit der
Konzeption, der Datensammlung und dem Training des ML-Modells betraut.

III. Schutz als Computerprogramm gem. § 69 a UrhG

Moglicherweise kommt einem trainierten ML-Modell in Python auch
der Schutz fiir Computerprogramme gem. § 69a UrhG zu.*° In der oben
(§ 6 D.III.) gefundenen Definition fiir trainierte KNN ist der Quellcode als
ein wesentlicher Bestandteil des trainierten Modells genannt, wurde jedoch
fiir den Datenbank(werk)schutz nicht beriicksichtigt. Fiir den Schutz nach
§ 69a UrhG hingegen ist der Code — wie sich zeigen wird — von hoher
Relevanz.

328 So wohl auch Sobbing, MMR 2021, 111, 114.

329 Erw.-Gr. 41 Datenbank-RL; Dreier/Schulze—Dreier, UrhG, § 87a Rn. 19.

330 Diskutiert wird das unter anderem von Hartmann/Prinz, WRP 12 2018, 1431, 1436
Rn. 47 ff.. und Ehinger/Stiemerling, CR 12 2018, 761, 764, Rn. 34 ff., insb. S. 767
Rn. 51, sowie Grdtz, Kiinstliche Intelligenz im Urheberrecht, S. 46 ff..

135

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

1. Trainiertes Modell als Computerprogramm

Damit ein Schutz nach § 69a UrhG in Betracht kommt, muss ein Compu-
terprogramm vorliegen. Weder das UrhG noch die durch §§ 69a ff. UrhG
umgesetzte Computerprogramm-RL stellen eine Erklérung fiir die Bedeutung
des Begriffes bereit, § 69a Abs. 1 UrhG spricht lediglich von ,,Programmen
in jeder Gestalt®. Infolgedessen sind andere Quellen fiir eine mogliche Defi-
nition zu suchen.

a) Begriffsklarung Computerprogramm

Anhaltspunkte liefern die DIN 44300 sowie die Definition der WIPO und
das IEEE Standard Glossary:

— Ein Computerprogramm ist ,,eine Folge von Befehlen, die nach Aufnahme
in einen maschinenlesbaren Trager fahig sind zu bewirken, dass eine
Maschine mit informationsverarbeitenden Fahigkeiten eine bestimmte
Funktion oder Aufgabe oder ein bestimmtes Ergebnis anzeigt, ausfiihrt
oder erzielt.*3?!

— Ein Computerprogramm ist ,,eine zur Losung einer Aufgabe vollstidndige
Anweisung zusammen mit allen erforderlichen Vereinbarungen. ‘3>

— Ein Computerprogramm ist ,,eine Kombination aus Computerinstruk-
tionen und Datendefinitionen, die Computerhardware dazu befihigen,
berechnende oder kontrollierende Funktionen auszufiihren. ‘333

Mancherorts wird ,,Computerprogramm* zudem abgegrenzt zu ,,Software*.
Software soll dann alle digitalisierten Daten erfassen, also zwar auch Com-
puterprogramme ,,im technischen Sinne®, aber dariiber hinaus auch Texte,
Grafiken, Musikdateien und andere Daten.*** Einigkeit scheint dariiber zu be-

331 WIPO-Mustervorschriften, GRUR 1979, 306, § 1 (i); ebenso BGH GRUR 1985,
1041, 1047 — Inkasso-Programm.

332 Vgl. DIN 44300; Spindler/Schuster—Wiebe, Recht der elektronischen Medien, § 69a
Rn. 3.

333 Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Soft-
ware Engineering Terminology, S. 19.

334 Wandtke/Bullinger—Griitzzmacher, PK UrhR, § 69a Rn. 2; Software als auch Com-
puterprogramme umfassender, aber weiterer Begriff Institute of Electrical and Elec-
tronics Engineers, IEEE Standard Glossary of Software Engineering Terminology,
S. 66.

136

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

stehen, dass es zur Abgrenzung fiir das Vorliegen eines Computerprogramms
maBgeblich auf das ,,Vorhandensein von Befehls- und Steuerungsfunktionen*
ankommt,?*? so verlangen auch die genannten Definitionen ,,eine Folge von
Befehlen® bzw. eine ,,Anweisung*.

b) (Keine) Einordnung von ML-Modellen als Computerprogramm in der
Literatur

Teilweise wird der Schutz insbesondere kiinstlicher neuronaler Netze als
Computerprogramm in einer Parallele zur Wissensbasis von Expertensyste-
men*® kategorisch abgelehnt, ohne eine weitere Priifung vorzunehmen.?*’
An dieser Stelle soll jedoch eine differenziertere Betrachtung erfolgen.

Andernorts wird kritisiert, dass die ,,bestimmte Funktion®, die die Definiti-
on der WIPO und damit auch der BGH verlangen, durch das , trainierte Netz*
nicht gegeben sei, da sich die ,,Funktion* des ,trainierten Netzes* im Rahmen
des Trainingsvorgangs verindere.**® Das scheint schon deshalb unprizise,
weil mit dem ,,trainierten Netz* der finale Zustand des KNN gemeint ist, und
nicht der, der sich im Rahmen des Trainings noch verindert.*’

Zudem seien die ,,Ausgabeparameter allein von den Eingangswerten ab-

hiingig*,’” weshalb das trainierte Netz dem ,,Datenaufbereiter zuzurechnen

sei. !

Moglicherweise wird hier zum einen verkannt, dass das ,trainierte Netz*
(zumindest nach dem hiesigen Verstdndnis des trainierten Modells) eben
nicht nur — einmalig und fliichtig — in Form des Maschinencodes oder By-

tecodes vorliegt, sondern vielmehr auf die Elemente abzustellen ist, die es

335 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 3; Dreier/Schulze—Dreier,
UrhG, § 69a Rn. 12; DKM—Korthoff, HK-UrhG, § 69a Rn. 5; OLG Rostock MMR
2008, 116.

336 Vgl. §2 B.IV.2..

337 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 21.

338 Hartmann/Prinz, WRP 12 2018, 1431, 1436; Linke, GRUR Junge Wissenschaft
2019, S. 42.

339 Ein Unterschied konnte sich allenfalls im sogenannten ,,Online-Learning* ergeben:
In dieser Variante wird ein Modell trainiert und implementiert, das dann aber im
Praxiseinsatz weiter dazulernt (zur Begriffskldrung ,,online* in diesem Kontext vgl.
Goodfellow etal., Deep Learning Handbuch, S. 310). Aber auch in diesem Fall
miisste die ,,bestimmte Funktion* fiir den tauglichen Einsatz bereits bestehen.

340 Hartmann/Prinz, WRP 12 2018, 1431, 1437.

341 Dies., WRP 12 2018, 1431, 1437.

137

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

ermoglichen, das trainierte Netz auch einzusetzen. Das Verhiltnis zwischen
den Komponenten des wie hier definierten trainierten KNN und dem im
Zuge der Ausfiihrung entstehenden Maschinencode ist nicht anders zu beur-
teilen als das Verhéltnis zwischen reguldrem Quellcode und Maschinencode
anderer Programme.

Zum anderen wird nicht beriicksichtigt, dass die Ausgabeparameter zwar
zu einem groBBen Teil von den Trainingsdaten abhédngen, dass aber die Hyper-
parameter bzw. die Modellstruktur auch einen maf3geblichen Teil zum Ergeb-
nis beitragen. Die Leistung allein auf den ,,Datenaufbereiter” zu begrenzen
und dabei die Expertise unter anderem desjenigen, der die Hyperparameter
wihlt, auer Acht zu lassen, scheint zu kurz gegriffen.

c) Beriicksichtigung der Bestandteile eines trainierten Modells fiir den
Computerprogrammbegriff

Zu kldren ist deshalb erneut, allerdings diesmal konkret in Bezug auf den
Computerprogrammschutz, auf welche Komponente(n) des trainierten Mo-
dells bei einer Subsumtion unter § 69a UrhG abzustellen ist. Denkbare An-
kniipfungspunkte wiren der Quellcode, die erzeugten Dateien, sowie eine
zur Laufzeit kombinierte Variante (im Ergebnis dhnlich Maschinencode)
derselben. Fiir den Quellcode ist sauber zu trennen zwischen dem Quellco-
de, der fiir das Training des Modells verwendet wird, und dem Quellcode,
der das trainierte Modell 1adt und einsetzt. Fiir den Schutz des trainierten
KNN als Computerprogramm ist ausschlieBlich letzterer relevant, denn das
andere Programm hat eine ganz andere Zielrichtung bzw. Zwecksetzung,
und moglicherweise auch eine sehr verschiedene Komplexitit: Wihrend der
Code zur Erzeugung eines Modells Anweisungen zur Aufbereitung der Trai-
ningsdaten, evtl. auch zu Funktionalititen der einzelnen Modellbestandteile
sowie Testprozeduren enthilt, geniigen fiir den Quellcode, der das trainier-
te Modell einsetzt, mitunter wenige Zeilen Programmcode, in denen das
Modell und die Eingabedaten geladen und eine Vorhersage ausgefiihrt und
ausgegeben wird (teilweise ist sogar eine einzeilige Skripteingabe in einer
Kommandozeile ausreichend®¥, allerdings hiingt die Komplexitiit sowohl des
Trainings- als auch des Ausfiihrungscodes stark von der Aufgabenstellung
und der individuellen Implementierung ab).

342 Vgl. https://www.tensorflow.org/guide/saved_model#run_command (Stand:
22.02.2021).

138

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

neural network simple example
from numpy import loadtxt
from keras.models import load _model
load the dataset
dataset = loadtxt(, delimiter=)
#split into input (X) and output (y) variables
X = dataset[:,0:8]
y = dataset[:,8]
define the keras model
model = load model(5%)
compile the keras model
model.compile(loss= , optimizer= , metrics=[]
make class predictions with the model
predictions = model.predict classes(X)
summarize the first 5 cases
for i in range(5):
print (% (X[1].tolist(), predictions[i], y[il]))

e el el
NOURARWNROOONOUAWNKH

Abbildung 7.1: Einfaches Beispiel in Keras: Laden ei-
nes Modells aus .h5-Datei, Quelle (leicht abgewandelt):
https://machinelearningmastery.com/tutorial-first-neural-network-python-
keras/, 22.02.2021.

In Bezug auf den besagten Quellcode ergeben sich verschiedene Gestal-
tungsmoglichkeiten: So kann dieser die fiir den Produktiveinsatz erforderliche
Struktur des Modells aufbauen, in dem der Programmierer die im Training
ermittelten und optimierten Hyperparameter im Code fest vorgibt, und ledig-
lich die Parameter aus Dateien nachladen, oder aber auch die Hyperparameter
etwa im JSON-Format** bereitgestellt bekommen. Auch eine dritte Variante
ist denkbar, aber praxisfern, bzw. nur fiir Testzwecke praktikabel: Der Pro-
grammierer konnte im Code zum einen die Hyperparameter festlegen, zum
anderen das Modell zufillig mit Parametern versehen, das Training durchfiih-
ren und im Anschluss (ohne das Modell persistent zu speichern) das Modell
direkt zum vorgesehenen Einsatzzweck verwenden. Dies hitte allerdings
eine enorm begrenzte, wenn nicht gar unmdégliche Reproduzierbarkeit dieses
Ergebnisses zur Folge. Das Beispiel soll nur verdeutlichen, welche Rolle
der Quellcode beim Einsatz eines trainierten Modells einnehmen kann. Der
Unterschied der dargestellten Varianten schlégt sich naturgemif vor allem in
der Komplexitit des Codes nieder.

Abbildung 7.1 zeigt ein Minimalbeispiel fiir Quellcode in Keras, bei dem
das Modell zuvor in einer . h 5-Datei gespeichert wurde. In Zeile 6 werden die
Testdaten eingelesen, die zuvor im CSV-Format (Comma-Separated-Values-

343 JSON (Java Script Object Notation) ist ein verbreitetes Format zur Strukturie-
rung von Daten zur Datenbereitstellung bzw. Datenaustausch, das von vielen
Programmiersprachen verarbeitet werden kann, fiir weitere Informationen vgl.
https://www.json.org/json-de.html (Stand: 22.02.2021).

139

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Format) zusammengetragen wurden. Diese werden fiir eine Vorhersage in
Zeile 14 verwendet. X reprisentiert eine Sammlung von Testdaten, y die
dazugehorigen Labels. In Zeile 10 wird das gespeicherte Modell eingelesen.
Resultat ist bzw. sind die vom Modell gefundenen Labels fiir die eingegebenen
Testdaten X.3**

Ziel des folgenden Abschnitts ist, herauszustellen, welche Kombination
von Elementen eines trainierten Modells mindestens gegeben sein muss, da-
mit die Anforderungen an ein ,,Computerprogramm* im Sinne des § 69a Ur-
hG erfiillt sind.

aa) Quellcode

Es liegt nahe, den Quellcode fiir die Subsumtion unter § 69a UrhG heran-
zuziehen. Quellcode meint dabei nur den fiir die konkrete Problemlosung
entworfenen Code, die verwendeten (,,importierten*) Frameworks mit ihren
Klassen und Funktionen sind hier grundsitzlich auler Acht zu lassen, in Be-
zug auf diese kann nur die Auswahl der eingesetzten Klassen und Funktionen
relevant sein, da die Implementierung durch andere Entwickler erfolgte.

Die aus unterschiedlicher Herangehensweise potenziell resultierende Kom-
plexitét ist erst fiir die Beantwortung der Frage, ob eine geistige Schopfung
vorliegt, von Relevanz.

Der Quellcode enthilt in der Regel auch in seiner simpelsten Form eine
Folge von aufgabenspezifischen Befehlen an eine Maschine, sei es der Im-
port der notwendigen Frameworks (vgl. Abbildung 7.1 Zeilen 2 und 3), die
Initialisierung eines Netzwerk-Objektes (vgl. Abbildung 7.1 Zeile 10) oder
das Laden von Dateiinhalten.

Ein Computerprogramm im Sinne des § 69a Abs. 1 UrhG diirfte mithin
im Rahmen des Quellcodes grundsitzlich gegeben sein.

344 In der Praxis miisste das Modell noch fiir den Einsatz in einer Anwendung vorbereitet
werden — die Bereitstellung konnte z. B. liber Tensor Flow Serving erfolgen, dafiir
wiirde das Modell noch mittels der Tensor Flow-Methoden vorbereitet, vgl. z. B.
Ausfiihrungen hier https://towardsdatascience.com/deploying-keras-models-using-
tensorflow-serving-and-flask-508ba00f1037 (Stand: 22.02.2021).

140

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

bb) Hyperparameter und Parameter

Schon dem Begriff nach féllt es schwer, Daten, Datenbanken und Dateistruk-
turen — und damit also auch Hyperparameter — als Computerprogramme im
Sinne des § 69a UrhG aufzufassen, zumal sie auch in den §§ 4 und 87a UrhG
implizit aus dem Schutz ausgenommen werden.>** Jedoch wird auch Quell-
code in Dateien gespeichert, und auch kompilierter Code kann in Dateiform
vorliegen. An dieser Stelle ist also zu kldren, ob die in Dateien ausgelager-
ten Parameter und Hyperparameter ein Computerprogramm im Sinne des
§ 69a UrhG darstellen, oder doch zumindest ein Computerprogramm-Teil.

Wenngleich der Gedanke naheliegt, dass gespeicherte Parameter und Hy-
perparameter letztlich doch gespeicherten Steuerbefehlen dhneln konnten, so
ist doch verniinftigerweise davon auszugehen, dass es sich lediglich um Infor-
mationen handelt, die von Steuerbefehlen verwendet werden, im Unterschied
zu (kompiliertem) Code, der so, wie er vorliegt, an ein (Ausfiihr-) Programm
ibergeben und ausgefiihrt werden kann. Anders sieht dies Grdrz, der unter
Annahme eines weiten Begriffsverstindnis von Computerprogrammen, das
keine Steuerungsfunktion fordert, davon ausgeht, dass auch ,,Trainingsergeb-
nisse** (hier: Parameter) als Computerprogramm zu verstehen sind.*** Dem
ist nicht zuzustimmen. Hierbei wird iibersehen, dass Trainingsergebnisse fiir
sich nur eine Sammlung von Werten sind, die nicht ausgefiihrt werden kon-
nen. Selbst wenn keine Steuerungsfunktion gefordert wird, fehlt den Daten
eine fiir Computerprogramme iibliche Struktur.

An der Steuerungsfunktion aber fehlt es: Hyperparameter und Parameter
sind letztendlich nur Werte, die nach dem Laden der Datei durch den Quellco-
de im Programm Variablen zugewiesen werden konnen, aber es handelt sich
eben nicht um eigenstindige Steuerbefehle. Damit verfingt auch das Argu-
ment nicht, dass auBerhalb des Quellcodes gespeicherte Werte das Verhalten
des Computers auf gleiche Weise steuern wie im Code selbst hinterlegte
Werte, weshalb auch die ausgelagerten Werte genauso Teil des Computerpro-
gramms seien.**’ Die ausgelagerten Hyperparameter fiir sich sind faktisch
niamlich nicht in der Lage, den Computer zu steuern.

345 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 17.

346 Gritz, Kiinstliche Intelligenz im Urheberrecht, S. 52.; einen weiten Computerpro-
grammbegriff ebenso erwigend, aber den Schutz aufgrund fehlender geistiger Schop-
fung ablehnend Ehinger/Stiemerling, CR 12 2018, 761, 768; das OLG Hamburg
setzt ebenfalls fiir die Annahme eines Schutzes voraus, dass die fragliche Datei
Steuerbefehle enthélt, s. OLG Hamburg MMR 1999, 230, 231 — Superfun.

347 Nebel/Stiemerling, CR 12016, S. 66.

141

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Allerdings erfasst § 69a UrhG auch Entwurfsmaterial, und damit vorgela-
gerte Ausdrucksformen eines Programms, wie zum Beispiel Flussdiagramme
oder andere Vorstufen des Computerprogramms.**® Es konnte daran gedacht
werden, die im JSON- oder @hnlichen Format abgelegten Hyperparameter
(nicht jedoch die errechneten bzw. optimierten Parameter) {iber diese Vor-
schrift in den Schutz einzubeziehen, stellen sie doch in gewisser Weise den
~Entwurf* des trainierten Netzwerkes dar, dergestalt dass sie den Aufbau des
entstehenden KNN bestimmen.

Nach den Erwigungsgriinden der fiir die Entstehung von § 69a UrhG
malBgeblichen Computerprogramm-RL muss das am Schutz teilnehmende
Entwurfsmaterial zur Entwicklung (oder zur Vorbereitung) eines Compu-
terprogramms dienen, wobei die Art der vorbereitenden Arbeit die spitere
Entstehung eines Computerprogramms zulassen muss.** Problematisch
erscheint, dass die Hyperparameter nicht zur Vorbereitung auf die Entwick-
lung eines Programms dienen, sondern lediglich abstrakt das KNN (ohne
die Gewichtungsinformationen) abbilden. Entwurfscharakter haben sie also
allenfalls fiir das entstehende KNN, nicht aber fiir ein konkretes Computer-
programm. Die Subsumtion unter den Begriff ,,Entwurfsmaterial will hier
demzufolge nicht so recht passen.*® Vielmehr sind sie als computeranwei-
sungslose Daten einzuordnen, die keinen Schutz als Computerprogramm
genieBen.®!

Weder die abgespeicherten Parameter noch die Hyperparameter sind folg-
lich — fiir sich betrachtet — dem Schutz nach § 69a UrhG zuginglich.

cc) Kombination zur Laufzeit

Moglicherweise konnen die in Dateien ausgelagerten Informationen jedoch
anderweitig in den Schutz aus § 69a UrhG einbezogen werden: Die Parameter
und Hyperparameter werden aus den Dateien eingelesen und im fliichtigen
Arbeitsspeicher mit den aus dem Quellcode generierten Steueranweisungen
im Bytecode zusammengefiihrt. § 69a UrhG erfasst jede Ausdrucksform

348 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 14.

349 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 7; Erwidgungsgrund 7 und
Art. 1 Abs. 1 S. 2 Computerprogramm-RL.

350 Gegen einen Schutz als Entwurfsmaterial auch Hartmann/Prinz, WRP 12 2018,
1431, 1435 f..

351 Vgl. dazu Dreier/Schulze—Dreier, UrhG, § 69a Rn. 12.

142

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

eines Computerprogramms, auch den Maschinen- und Objektcode.*>> Damit
konnte also unter Umstinden auf das nur fliichtig existierende Endprodukt
als Schutzobjekt abgestellt werden, wobei jedoch fraglich ist, ob dies eine
ausreichend manifestierte Form darstellt. Grundsitzlich reicht jedoch die
(auch einmalige) Wahrnehmbarkeit, eine permanente Fixierung ist nicht er-
forderlich.?>? Die entstehende ,, Kombination zur Laufzeit“ ist eine andere
Ausdrucksform des Computerprogramms, das bereits durch den Quellcode
geschiitzt ist. Der entstehende Bytecode ist also, sofern er iiberhaupt auf3er-
halb des Programmablaufs erreichbar ist — ebenso wie bereits der Quellcode —
Computerprogramm im Sinne des § 69a Abs. 1 UrhG, jedoch nicht zusitzlich
zum Quellcode, sondern in dessen Rahmen geschiitzt.

dd) Sonstige Schutzgegenstinde

In Bezug auf KNN wird héufig auch ,.der Algorithmus* als Schutzgegenstand
diskutiert,>* wobei es wesentlich darauf ankommt, was als ,,der Algorithmus*
verstanden wird.*> Der ,,Algorithmus* im Sinne des aus dem Quellcode
entstehenden Programms wurde bereits abgehandelt.*® Es ist moglich, das
Verstiandnis eines KNN auf die zugrundeliegenden statistischen Rechenre-
geln zu reduzieren. Diese wiren sodann als Algorithmus im mathematischen
Sinne aufzufassen und als Ideen und Grundsitze gem. § 69a Abs. 2 UrhG
nicht schutzfihig. Die hier verwendete Definition eines KNN rekurriert je-
doch nicht auf diese abstrakten Rechenregeln, sondern auf deren konkreter
Umsetzung durch die in § 6 D.III. erlduterten Bestandteile eines trainierten
Modells, sodass es allein auf deren Schutzfihigkeit ankommt. Eine Diskus-
sion der Schutzfihigkeit des Algorithmus als gesonderter Schutzgegenstand
ist also entbehrlich.

352 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 11; Dreier/Schulze-Dreier,
UrhG, § 69a Rn. 19.

353 Wandtke/Bullinger—Griitzmacher, PK UrhR, § 69a Rn. 11.

354 Vgl. z.B. Hauck/Cevc, ZGE 11 2019, 135, 160; Linke, GRUR Junge Wissenschaft
2019, S. 36 ff., S. 40 f..

355 Zur begrifflichen Ambivalenz vgl. Dreier/Schulze—Dreier, UrhG, § 69a Rn. 22; zur
Einordnung in § 69a UrhG vgl. Sobbing, CR 4 2020.

356 Vgl. oben aa) und cc).

143

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

ee) Zusammenfassung: infrage kommende Schutzgegenstéinde

Fiir den Schutz als Computerprogramm kommt folglich nur der das Mo-
dell ladende und ausfiihrende Quellcode, sowie damit auch der entstehende
Bytecode infrage.

2. Eigene geistige Schopfung

Als Schutzgegenstand wurde der das trainierte KNN ladende und ausfiihrende
Quellcode identifiziert. Fiir einen Schutz gem. § 69a UrhG muss diesem die
Qualitét eines individuellen Werkes im Sinne eines Ergebnisses einer eigenen
geistigen Schopfung des Urhebers zukommen (§ 69a Abs. 3 S. 1 UrhG). Auf-
fillig ist hier, dass nicht — wie etwa in § 2 Abs. 2 UrhG - eine ,,personliche®,
sondern eine ,,eigene* geistige Schopfung gefordert wird. Dies ist jedoch
der Umsetzung der Computerprogramm-RL, und damit der Absenkung der
vormals noch deutlich héheren Schutzvoraussetzungen,®’ geschuldet,* es
besteht Einigkeit dariiber, dass — unabhingig vom Wortlaut in § 69a Abs. 3
S. 1 UrhG - eine individuelle personliche geistige — menschliche — Schop-
fung im Sinne des § 2 Abs. 2 UrhG erforderlich ist.*>° Folglich ist auch hier
eine menschlich-gestalterische Tatigkeit erforderlich, die ,,einen geistigen
Gehalt aufweist, zu einer Formgestaltung gefiihrt hat und eine hinreichende

Individualitiit erkennen lisst*.30

a) Menschlich-gestalterische Tatigkeit

Das Kriterium der menschlich-gestalterischen Tétigkeit diirfte — sofern nicht
modellprogrammerzeugende Algorithmen eingesetzt werden — unproblema-
tisch fiir den Quellcode-Anteil trainierter Modelle vorliegen. Dieser wird auch
nicht automatisiert geidndert, die automatisierten Einfiigungen der Parame-
terwerte und Hyperparameter erfolgen zum einen durch den Programmierer
initiiert, und zum anderen erst bei Programmablauf. Abzustellen ist aber auf
den Zeitpunkt der Herstellung des Quellcodes.

357 BGH GRUR 1985, 1041, 1047 — Inkasso-Programm

358 Dreier/Schulze-Dreier, UrhG, § 69a Rn. 25.

359 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 25; Nordemann/Fromm—Czychowski, UrhR,
§ 69a Rn. 16; Ahlberg/Gotting—Kaboth/Spies, BeckOK-UrhG, § 69a Rn. 13.

360 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.

144

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

Ferner miisste der Quellcode einen geistigen Gehalt aufweisen, zu einer
Formgestaltung gefiihrt haben und eine hinreichende Individualitét erkennen
lassen. 3!

b) Geistiger Gehalt

Geistigen Gehalt weist das Computerprogramm auf, wenn in ihm der mensch-
liche Geist zum Ausdruck kommt*? — die Idee, das Konzept, das der Pro-
grammierer oder Softwareentwickler umsetzen mochte, muss sich also in
dem Quellcode wiederfinden. Im Quellcode eines trainierten KNN bedient
sich der Programmierer einer Reihe verfiigbarer Frameworks (sofern — wie im
Regelfall — nicht der gesamte Quellcode neu geschrieben, also quasi ,,das Rad
neu erfunden‘ wird). Schon die Auswahl derselben und daran anschlieend
die Wahl der Objekttypen, die Art des KNN, und die Netzwerkarchitektur,
also die Auswahl der Anzahl der Schichten, der Aktivierungsfunktionen
etc. sind ein Abbild der Idee, mit dem der Entwickler sein Ziel zu erreichen
gedenkt, und mithin Ausdruck seines Geistes.

¢) Wahrnehmbarkeit

Das Computerprogramm miisste ferner als Ergebnis der schopferischen Ta-
tigkeit des Programmierers der Wahrnehmung durch die menschlichen Sinne
zuginglich sein,*? es handelt sich bei Quellcode um niedergeschriebenen
Text, der vom Menschen gelesen werden kann, und in der ausgefiihrten Fas-
sung durch Interaktionsmoglichkeiten (Eingabe von zu analysierenden Daten,
Ausgabe der Vorhersagen oder generierten Erzeugnisse) auch durch Nicht-
Entwickler wahrnehmbar ist, auch dieses Merkmal liegt also unproblematisch
VOr.

d) Individualitat

Moglicherweise scheitert die Subsumtion jedoch an der notigen erforderli-
chen Individualitit, also der ,,eigenpersonlichen Ausnutzung des bestehenden

361 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.
362 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.
363 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.

145

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Gestaltungsspielraumes****. Diese Schlussfolgerung liegt nahe, wenn beriick-
sichtigt wird, dass der Vorgang der Initialisierung eines KNN (also Quellcode
2 in Abbildung 6.2) fiir unterschiedlichste Anwendungszwecke sehr dhnlich
bis identisch ausfallen kann.

Das wird umso deutlicher anhand eines Beispiels: Entwickler A mochte
ein KNN darauf trainieren, Autos in Bildern zu erkennen, und verwendet
dafiir einen Datensatz mit Bildern von Autos sowie ein ML-Modell in einer
bestimmten Konfiguration. Entwickler B mochte ein KNN darauf trainieren,
Biume in Bildern zu erkennen. Dafiir verwendet er einen génzlich ande-
ren Datensatz mit Bildern von Bidumen, aber die gleiche Konfiguration des
KNN. Der Quellcode fiir beide Modelle kann mithin identisch ausfallen, ob-
gleich eine vollkommen andere Aufgabe erfiillt wird (und sich die trainierten
Parameter auch wesentlich unterscheiden).

Moglicherweise existiert also ein ,,Basisbefehlssatz®, der fiir eine Vielzahl
unterschiedlicher Aufgabenstellungen identisch und zugleich unerlisslich
sein kann, insbesondere wenn die Hyperparameter in eine Datei ausgelagert
wurden, und fiir den folglich ein Freihaltebediirfnis im Sinne der ,,Building
Blocks* eines ML-Modells bestehen konnte.

Zugleich darf jedoch die Schwelle der Individualitét nicht zu hoch ange-
setzt werden.?® Es verbietet sich an dieser Stelle eine pauschale Beurteilung,
der Quellcode kann mitunter auch sehr individuell ausfallen. Zudem kann ein
Programm, das zwar mit dem bis auf Dateipfade identischen Quellcode wie
ein anderes Programm ablduft, dem aber ginzlich verschiedene Trainings-
daten und Hyperparameter zugrunde liegen, eine ginzlich andere Aufgabe
oder eine gleiche Aufgabe mit hoherer Prizision durchfiihren, sodass die
Individualitét auch in der Zusammenschau mit anderen Bestandteilen des
Computerprogramms liegen kann.

Es wird vielmehr auf eine Einzelfallbetrachtung ankommen miissen. Nach
der in § 7 B.I. und § 7 B.II. vorgeschlagenen Vorgehensweise (Schutz der
Hyperparameter bzw. des trainierten KNN als Datenbank(werk)) diirfte es
fiir den Entwickler, der einen ,,Standardquellcode zum Aufruf des KNN ver-
wendet, jedoch auch nicht schédlich sein, wenn dieser nicht gem. § 69a UrhG
geschiitzt werden kann, weil dann ein grof3er Teil seiner geistigen Schopfung
bereits Datenbankwerkschutz genief3t. In vielen Féllen wird der Entwickler
jedoch vermutlich zumindest einige Anpassungen des ,,Standardquellcodes

364 Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.
365 Dies gilt grundsitzlich fiir den Computerprogrammschutz, vgl. BGH GRUR 2005,
860, 861 — Fash 2000; Dreier/Schulze—Dreier, UrhG, § 69a Rn. 26.

146

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

vornehmen miissen, sodass dann — aufgrund der sehr niedrigen Schutzanfor-
derungen — auch dafiir ein Schutz nach § 69a UrhG angenommen werden
kann.36®

3. Ergebnis

Trainierte ML-Modelle sind dem Computerprogrammschutz nach § 69a Ur-
hG zuginglich, wenn der Quellcode als zentraler Schutzgegenstand herange-
zogen wird.

Inwiefern der urheberrechtliche Computerprogrammschutz fiir ein trai-
niertes Modell relevant ist, hdngt zu groflen Teilen davon ab, ob der Quell-
code selbst die zentralen Funktionalititen enthilt, oder ob ein minimaler
,.Standardquellcode® verwendet wird, wihrend die eigentliche ,,Magie* des
trainierten Modells in ausgelagerten Hyperparametern und Parametern liegt.
In letzterem Fall diirfte dem Schutzsuchenden wohl der Datenbank- und ggf.
Datenbankherstellerschutz besser dienen;**’ wenn jedoch eine wesentliche
Leistung des Entwicklers in der Implementierung des Quellcodes besteht,
schiitzt der Computerprogrammschutz vor der Ubernahme insbesondere
der Gesamtstruktur und auch von (fiir sich als schutzfahig zu befindenden)
Programmteilen.6®

IV. Zusammenfassung

Trainierte ML.-Modelle sind durch die verschiedenen infrage kommenden
Schutzgegenstinde in unterschiedlicher Weise urheberrechtlich schutzfi-
hig. Sofern der Fokus der Betrachtung auf dem Quellcode liegt, kommt ein
Computerprogrammschutz nach § 69a UrhG infrage. Fiir die gewéhlten und
gespeicherten Hyperparameter und Parameter kommt in der Kombination
auBBerdem Datenbankwerkschutz gem. § 4 Abs. 2, Abs. 1 UrhG sowie das
sui-generis Datenbankherstellerrecht gem. §§ 87a ff. UrhG in Betracht.

366 Einen Computerprogrammschutz nur im Einzelfall fiir moglich haltend Apel/
Kaulartz, RDi Nr.1 2020, 24, 28.

367 Vgl.dazu § 7 B.I. und § 7 B.II..

368 Vgl. Dreier/Schulze—Dreier, UrhG, § 69a Rn. 21, 23.

147

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

I> getTree(fmodel, k=2, labelvar = TRUE) %>%

head(20)
left daughter right daughter split var split point status prediction
2 3 G2 ©.50000000

.

1

2 4 5 Fedu ©.37500000 1
3 6 7 Walc 0.12500000
4 8 9 health 0.37500000
5 10 11 G2 ©0.44736842
6 12 13 activities 1.00000000
7 o o <NA> ©.00000000
8 14 15 age 0.64285714
9 16 17 absences 0.01333333
10 18 19 health ©.12500000
11 20 21 Mjob 6.00000000
12 o o <NA> ©.00000000
13 22 23 guardian 1.00000000
13 o o <NA> ©.00000000
15 o o <NA> ©.06000000
16 o o <NA> ©.00000000
17 24 25 guardian 3.00000000
18 26 27 absences ©.01333333
19 o o <NA> ©.00000000
20 28 29 activities 1.00000000

>0,375 <0,125

\ health H G2 \ \activities H pass \
<10 [>10

Abbildung 7.2: Die ersten 20 Eintréige eines Baumes in einem Random Forest
in Tabellen- und Baumform, Quelle: eigene Darstellung.

C. Trainierter Random Forest in R

Das Konzept der Random Forests wurde bereits in § 2 B.IL.1. eingefiihrt,
hier folgt eine Veranschaulichung anhand eines Beispiels in der Program-
miersprache R, um die urheberrechtliche Analyse und insbesondere die sich
von den dargestellten Python-Modellen unterscheidende Behandlung besser
nachvollziehen zu konnen.

Abbildung 7.2 zeigt in tabellarischer Darstellung einen ,,Baum* aus einem
Random Forest, der auf einem Trainingsdatenset iiber portugiesische Schii-
ler*® und deren Erfolgsquote im Schuljahr trainiert wurde.?”® Anhand dieser
Abbildung kann die Funktionsweise eines Entscheidungsbaums nachvollzo-
gen werden: Aufgabe des Modells ist es, fiir einen Studierenden vorherzusa-
gen, ob er die Jahresabschlussklausur bestehen wird oder nicht. Der Datensatz
enthilt Informationen unter anderem iiber die Schule, das Geschlecht, das
Alter, die Adresse, die Berufe der Eltern, bisheriges Nichtbestehen von Klau-
suren, Anfahrtszeiten zur Schule und Freizeitaktivitéiten.

Das Modell wurde in der Programmiersprache R entwickelt. Die Tabelle
zeigt aus Praktikabilitétsgriinden hier nur die ersten 20 Zeilen des Baumes
an und ist wie folgt zu lesen:

369 Datensatz: https://archive.ics.uci.edu/ml/datasets/Student+Performance (Stand:
22.02.2021); Carvalho Brito, 15th European Concurrent Engineering Conference
2008, ECEC ’2008 [and] 5th Future Business Technology Conference, FUBUTEC
’2008: April 9 - 11, 2008, Porto, Portugal.

370 Beispiel entwickelt anhand von https://www.machinegurning.com/rstats/deploying
models/ (Stand: 22.02.2021).

148

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

C. Trainierter Random Forest in R

Der oberste Knoten (1) hat zwei Kindknoten (,,left daughter* = Knoten Nr.
2 und ,,right daughter* = Knoten Nr. 3). Die Eigenschaft der untersuchten
Schiiler, die im ersten Knoten tiberpriift wird (,,split var®), ist ,,G2* — die in
Prozent gemessene Note des zweiten Leistungsmessungszeitraums. Wenn
die erreichte Note iiber 50 Prozent (0.5) lag, wird zum Knoten 2 gesprungen,
es geht dann also in Zeile 2 weiter, ansonsten zu Knoten 3. Knoten 2 hat die
Kindknoten 4 und 5, und iiberpriift auf das Kriterium der Ausbildung des
Vaters (,,Fedu*). Knoten 3 hat die Kindknoten 6 und 7, und iiberpriift, wieviel
Alkohol der Schiiler am Wochenende konsumiert (,,Walc*). Fiir einen Alko-
holkonsumwert unter 0.125 geht es bei Knoten 7 weiter, bei dem hier zum
ersten Mal in der Spalte ,,prediction® ein Wert angegeben ist: Der Schiiler
hitte also bei der Kombination gute zweite Klausur (G2) und wenig Alkohol-
konsum am Wochenende vermutlich die Schuljahresendklausur bestanden.?”!

Die Tabelle in Abbildung 7.2 zeigt, dass in einem Random Forest-Modell —
bzw. fiir Entscheidungsbdume im Allgemeinen — die trainierte Baumstruktur
bereits ausreicht, um Vorhersagen fiir neue Daten treffen zu konnen. Die
Tabellen aller Baume in einem Random Forest konnen dann in eine Tabel-
le zusammengefasst und fiir Vorhersagen verwendet werden. Ein erneutes
Einlesen in ein Programm in der Ausgangsprogrammiersprache ist nicht
erforderlich, die Informationen konnen schlicht in einer ,,klassischen‘ Daten-
bank gespeichert und mit einem beliebigen Computerprogrammcode, der die
Tabelle versteht, ausgelesen werden — dabei ist dies nicht einmal zwingend
erforderlich, sondern reduziert lediglich den zeitlichen Aufwand fiir den
Menschen. Insofern gilt fiir ein Random Forest-Modell in R — im Unterschied
zu Python-Modellen — dass ein trainiertes Modell und die trainierten Para-
meter nicht auseinanderfallen. Eine separate Priifung eriibrigt sich deshalb,
es gelten die Aussagen, die diesbeziiglich sogleich zum Schutz trainierter
Parameter getroffen werden.*’? Die Priifung erfolgt zusammengefasst mit
den trainierten Parametern der Python-Modelle, um hier den Kontrast besser
herauszustellen.

371 Die Split-Werte sind nicht als absolute Werte zu lesen (so ergibt der ,,Alkoholkon-
sumwert 0.125* ohne weitere Informationen keinen Sinn): Fiir die Berechnung und
Optimierung der Split-Werte werden die in allen betrachteten Datensitzen gefun-
denen Werte beriicksichtigt, der gro3te Wert entspricht dann 1.0 und der kleinste
Wert 0.0, alle anderen Werte liegen proportional dazwischen. So konnte etwa ein
Konsum von 2 Liter Alkohol am Wochenende dem Wert 1.0 entsprechen, O Liter

wiirde dann der Wert 0.0 zugeordnet.
372 Vgl. §7D..

149

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

Insbesondere gibt es zudem keinen Quellcode, der zwangslédufig Bestand-
teil des trainierten Random Forest-Modells in R ist. Dessen ungeachtet kann
in der Anwendung des trainierten Modells ein schutzfihiger Quellcode zum
Einsatz kommen, und auch fiir den Quellcode, mithilfe dessen der trainierte
Random Forest erzeugt wird, kommt ein Schutz nach § 69a UrhG infrage.

D. Trainierte Parameter

Bereits geklédrt wurde die urheberrechtliche Schutzfihigkeit trainierter Py-
thon-ML-Modelle, fiir die die Parameter jeweils nur ein Element des zu
schiitzenden Werkes darstellen. Fiir Random Forests in R wurde festgestellt,
dass das trainierte Modell (also die entstehende Tabelle) den trainierten Pa-
rametern entspricht. Fiir die Priifung der Schutzfihigkeit der Tabelle wurde
insofern auf die Priifung trainierter Parameter verwiesen.

In einem néchsten Schritt ist also zu kldren, ob auch die trainierten Para-
meter schutzfihig sind. Zum einen ist dabei zwischen trainierten Parametern,
die nur einen Teil eines trainierten Modells in Python ausmachen, und trai-
nierten Parametern, die das gesamte trainierte Random Forest-Modell in
R darstellen, zu unterscheiden ist, zum anderen bestehen aber auch struk-
turelle Unterschiede zwischen Random Forest-Modellen und kiinstlichen
neuronalen Netzen, die sich etwa auf den Datenbankcharakter auswirken
konnten.

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG

Fiir einen Schutz als Datenbankwerk miisste die Ansammlung von trainierten
Parametern gem. § 4 Abs. 2 UrhGi. V.m. § 4 Abs. 1 UrhG einem Sammelwerk
entsprechen, dessen Elemente systematisch oder methodisch angeordnet und
einzeln mit Hilfe elektronischer Mittel oder auf andere Weise zugiinglich
sind, und das aufgrund der Anordnung oder Auswahl der Elemente eine
geistige Schopfung darstellt.

1. Datenbankwerk

An dieser Stelle wird nicht kategorisch zwischen ML-Modellen in Python
und Random Forests in R unterschieden, sondern zwischen KNN und Ran-

150

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainierte Parameter

dom Forests an sich, da die Unterschiede der Modelle in Bezug auf die
trainierbaren Parameter hier besonders hervortreten.

a) Kiinstliches neuronales Netz

Elemente der Sammlung trainierter Parameter eines KNN sind die einzelnen
Werte, die indizieren, mit welcher Gewichtung der Output eines Neurons an
das néchste Neuron weitergeleitet wird. Der Abruf eines einzelnen Wertes
ero6ffnet dariiber hinaus auch Informationen iiber die Position im Netzwerk,
fiir die dieser Wert gilt (diese Information muss zwangsléufig enthalten sein,
denn ansonsten konnten die Werte nicht wieder eingelesen werden, um das
Training fortzusetzen bzw. das trainierte Netz produktiv zu verwenden).
Analog zur Postleitzahl*”* kénnte dadurch auch dem einzelnen trainierten
Parameter ein Informationswert zuzusprechen sein.’’* Die methodische bzw.
systematische Anordnung und die einzelne Zuginglichkeit, die schon fiir
das Zusammenspiel zwischen abgespeicherten Parametern und Quellcode
unerldsslich sind, liegen ebenfalls vor. Mithin sind nicht nur die Kriterien der
systematischen bzw. methodischen Anordnung sowie der einzelnen Zugéing-
lichkeit, sondern insbesondere aufgrund ihres jeweils vorhandenen eigenen
Informationswerts auch das der Unabhéngigkeit der Elemente erfiillt.

b) Random Forest

Elemente eines trainierten Random Forest-Modells konnten die einzelnen
Baume oder — eine Ebene tiefer — die Knoten samt ihrer Schwellwerte und
Feature-Information darstellen. Der Knoten als Element gibt also Auskunft
tiber ein in dem zugehorigen Baum untersuchtes Feature sowie den ermittelten
Schwellwert (im Beispiel der portugiesischen Schiiler: untersuchtes Feature
konnte die am Wochenende konsumierte Alkoholmenge sein, der Schwellwert
ist dann die auf einen Wert zwischen O und 1 skalierte Alkoholmenge, die im
weiteren Verlauf voraussichtlich zu einem Nichtbestehen fiihrt). Die Elemente
sind folglich unabhingig informierend. Die Sammlung erfolgt zwangslaufig
strukturiert, und die Elemente sind einzeln abrufbar.

373 Vgl. wieder Nordemann/Fromm—Czychowski, UrhR, § 4 Rn. 26; b).
374 A.A. Hartmann/Prinz, WRP 12 2018, Rn. 62.

151

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

c) Zwischenergebnis

Das Vorliegen einer Datenbank im Sinne des § 4 Abs. 2 UrhG kann also
sowohl fiir Random Forests als auch fiir KNN angenommen werden.

2. Personliche geistige Schopfung

Es bleibt zu klédren, ob jeweils auch eine personliche geistige Schopfung im
Sinne des § 4 Abs. 1 UrhG vorliegt. An dieser Stelle geniigt die Differenzie-
rung zwischen KNN und Random Forest nicht mehr, sondern es ist anhand
der verwendeten Technologie zu unterscheiden: Bei der Entwicklung von
Random Forests in R nimmt die Parametersammlung eine andere Form an als
in Python, jedoch konnen auch in Python Random Forests trainiert werden.
Die weitere Priifung unterscheidet daher zwischen ML-Modellen in Python
und Random Forests in R.

a) ML-Modell in Python

In Python werden die betreffenden Parameter-Werte unzweifelhaft durch
einen Computer erzeugt bzw. errechnet.’’> Ankniipfungspunkt fiir die per-
sonliche geistige Schopfung ist die Anordnung oder Auswahl der Elemente.
Auch die Anordnung der Parameter wird vom Framework vorgegeben und
durch den Computer vorgenommen, ohne dass der Mensch einzugreifen
braucht. Auf die Auswahl hat der Mensch allenfalls beschrinkten Einfluss
durch die Auswahl der Hyperparameter und indem er bestimmt, wann er
den Trainingsprozess fiir abgeschlossen erkldrt (denn erst dann veréindern
sich die Parameter nicht mehr). In keinem Fall jedoch wihlt der Mensch die
Parameter gezielt selbst aus.

Die Idee, die der Entwickler mit dem KNN umsetzen mochte, ist fer-
ner nicht (allein) in der Parametersammlung verkorpert. Das beabsichtigte
Ergebnis kann beim Einsatz der vorgestellten Python-Frameworks erst im Zu-
sammenwirken mit den ausgewidhlten Hyperparametern erzielt werden. Die
trainierten Parameter sind — auch als Sammlung — fiir sich genommen also
keine personliche geistige Schopfung des Entwicklers, sondern lediglich ein

375 Vgl. zur Berechnung im Rahmen des Trainingsvorgangs z. B. oben § 3 A.IlL..

152

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainierte Parameter

Bestandteil einer umfassenderen Schopfung, ohne selbst dieses Erfordernis
zu erfiillen.

b) Random Forest in R

Eine differenzierte Betrachtung ist in Bezug auf Random Forest-Modelle
in R geboten. Es besteht die Moglichkeit, das Ergebnis eines Trainingsvor-
gangs — also ,,den Random Forest* — in einer ,,klassischen* elektronischen
Datenbank zu speichern und — ohne eine erneute Initialisierung eines Ran-
dom Forest-Objektes in der urspriinglichen Programmiersprache — damit
bereits Vorhersagen zu treffen. Mitunter entsprechen also die trainierbaren
Parameter eines Random Forest-Modells dem trainierten Modell. Allerdings
werden die Biume und Knoten ebenfalls durch den Computer ermittelt. Die
vom Entwickler gewihlten Hyperparameter haben lediglich begrenzende
Wirkung (bspw. kann eine maximale Baumtiefe vorgegeben werden). Der
Entwickler iiberlisst es aber dem Algorithmus, die optimale Konfiguration
zu finden. Die einzige Auswahlleistung des Menschen besteht erneut darin,
zu bestimmen, wann das computergenerierte Ergebnis ausreichend den eige-
nen Vorstellungen entspricht. Aber auch hierbei wihlt der Entwickler nicht
gezielt Parameter, sondern bestimmt in der Regel anhand einer Metrik (wie
zum Beispiel durch Anwendung einer Verlustfunktion, oder andere giingige,
in der Regel nicht selbst entwickelte sondern in Entwicklerkreisen bewahrte
Funktionen, die die Abweichung der Vorhersage von der aufgrund der Labels
erwarteten Vorhersage berechnen), wie nah das Ergebnis an das Optimum
heranreicht, und lidsst das Modell die Parameter so lange optimieren, bis ihm
das Gesamtergebnis genau genug erscheint.

Fraglich konnte aber sein, ob der Computer von einem Menschen steuernd
als Hilfsmittel bzw. Werkzeug zur Erzeugung der Struktur eingesetzt wurde.
In diesem Fall konnte eine personliche geistige Schopfung bejaht werden,
denn dann konnte eine menschlich-gestalterische Handlung des Entwicklers
vorliegen.?”® Wenn etwa der Entwickler alle Rechenschritte, die der Computer
durchfiihren soll, vorgibt, und diese dann lediglich automatisiert ausgefiihrt
werden, konnte von einem Einsatz als Werkzeug gesprochen zu sprechen sein.
Zwar gibt es bei Random Forest-Modellen auch eine Zufallskomponente,
auf die der Entwickler keinen Einfluss hat: So werden etwa die Features

376 Schricker/Loewenheim—Loewenheim, UrhR, Rn. 39f., Dreier/Schulze—Schulze, Ur-
hG, § 2 Rn. 8.

153

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

der einzelnen Biume durch den Algorithmus zufillig ausgewihlt, ebenso
die Datensitze, die die Baume durchlaufen. Sowohl die Features als auch
die Datensitze haben einen maB3geblichen Einfluss auf bzw. bestimmen die
berechneten Knotenwerte, sodass die Leistung des Entwicklers vermeintlich
verblasst. Jedoch legt der Entwickler — durch Anwendung besagter Metriken,
und aus eigener Erfahrung — fest, wann das trainierte Modell seinen Vor-
stellungen entspricht, und gibt damit zum Ausdruck, dass in dem Ergebnis,
also dem trainierten Random Forest-Modell in Form der durch das als Werk-
zeug eingesetztes Computerprogramm ausgewihlten Werten in der Tabelle,
seine personliche geistige Schopfung zum Ausdruck kommt. Die Priifung
gestaltet sich insofern dhnlich der Priifung, die spiter fiir Erzeugnisse von
ML-Modellen vorzunehmen sein wird:*’” Der Entwickler wihlt — fiir die
Auswahl der Elemente seiner Sammlung, um die es hier als Bezugspunkt
der geistigen Schopfung geht — ein Framework aus, setzt begrenzende Para-
meter, und wihlt aus mehreren Ergebnissen eines aus. Dies ist fiir trainierte
Random Forests in R aus den genannten Griinden der Fall, im Unterschied
zu trainierten Parametern eines Modells in Python, die nur einen Teil des
Ergebnisses darstellen.

Folglich liegt in der Auswahl der Elemente der Sammlung ,.trainierte
Random Forests in R* eine personliche geistige Schopfung des Entwicklers
bzw. Data Scientists.

3. Ergebnis

Im Ergebnis ist zu differenzieren zwischen trainierten Parametern der ML-
Modelle in Python und den Ergebnistabellen trainierter Random Forest-
Modelle in R. Wihrend fiir erstere der Schutz spétestens am Vorliegen einer
personlichen geistigen Schopfung scheitert, kann eine solche fiir Random
Forests in R angenommen werden, mit der Folge des urheberrechtlichen
Schutzes der Tabellen als Datenbankwerk nach § 4 Abs. 2 UrhGi.V.m. § 4
Abs. 1 UrhG.

377 S.unten d); dort in Anlehnung an Dreier, FS Kitagawa, S. 881.

154

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainierte Parameter

II. Investitionsschutz gem. §§ 87a ff. UrhG

Wenngleich ein Schutz nach § 4 UrhG zumindest fiir ML-Modelle in Python
nicht in Betracht kommt, so konnte fiir die trainierten Parameter doch ein
sui-generis-Datenbankherstellerschutz gem. §§ 87a ff. UrhG einschlégig sein.
Im Gegensatz zu einem Schutz nach § 4 Abs. 2 UrhG ist hierfiir gerade keine
personliche geistige Schopfung erforderlich, sondern eine Investition in die
Beschaffung, Sammlung, Uberpriifung, Aufbereitung und Darbietung des
Inhalts der Datenbank.”

1. Vorliegen einer Datenbank

Sowohl fiir die trainierten Parameter eines KNN als auch fiir die Baumstruktur
eines Random Forest-Modells wurde die Datenbankqualitit bereits untersucht
und bejaht (vgl. § 7 D.I.1.).

2. Investition

Zusitzlich muss fiir § 87a UrhG eine im Rahmen der Beschaffung, Uber-
priifung oder Darstellung der Datenbankinhalte anfallende, sowie nach Art
oder Umfang wesentliche Investition vorliegen (§ 87a Abs. 1 S. 1 UrhG).
Fiir die Berechnung der trainierten Parameter sowie der Baumstruktur sind
mitunter teure Hardwarekomponenten sowie erheblicher Zeitaufwand erfor-
derlich (unter anderem fiir die Sammlung der Trainingsdaten, Rechenzeit
und manuelle Optimierung der Hyperparameter). Zu priifen ist, in wieweit
sich diese Aufwinde den in § 87a UrhG aufgefiihrten Investitionszwecken
zuordnen lassen.

a) Gegenstand der Investition
Als Bezugspunkte der Investition nennt § 87a UrhG die Beschaffung, Uber-

priifung oder Darstellung der Datenbankinhalte. Dabei bezieht sich die Be-
schaffung stets auf bereits bestehende Elemente, nicht auf die Erzeugung

378 Dreier/Schulze—Dreier, UrhG, § 87a Rn. 1.

155

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

derselben.’” Dies ergibt sich auch schon aus den Erwiigungsgriinden zur
Datenbank-RL: Es sollen Losungen geschiitzt werden, die dazu beitragen,
durch Informationsmanagementsysteme der wachsenden Datenmenge Herr
zu werden — und nicht solche, die die Datenmenge erweitern.*®* Dies bekrif-
tigt auch der EuGH in British Horeseracing Board, wenn er das Schutzziel der
Richtlinie damit beschreibt, dass durch den sui-generis-Schutz ein Anreiz da-
fiir geschaffen werden sollte, Systeme fiir die Speicherung und Verarbeitung
vorhandener Informationen zu errichten, und eben nicht fiir die Erzeugung
neuer Elemente, die dann ,,spiter in einer Datenbank zusammengestellt wer-
den konnen* 38!

Fraglich ist folglich, ob vorliegend neue Elemente erzeugt werden.

aa) Berechnung bzw. Optimierung der Parameter

Die berechneten Parameter bzw. die Baumstruktur konnten moglicherweise
als eine kondensierte Verkorperung der relevanten Informationen und Ge-
meinsamkeiten aus der Gesamtmenge der Trainingsdaten (also Bilder, Texte,
...) anzusehen sein. Dann dienen gerade die berechneten bzw. optimierten
Werte dazu, die aus den Massen an zur Verfiigung stehenden Daten gewonnen
Erkenntnisse zu fixieren, also den groBtmoglichen Nutzen daraus zu ziehen,
ohne dass dabei die urspriingliche Datenmenge erweitert wird.**? Es konnte
dann von einer ,,Beschaffung® als tauglichem Investitionsgegenstand ausge-
gangen werden. Hetmank/Lauber-Ronsberg kommen zu dem Ergebnis, dass
— sofern die zugrundeliegenden (Trainings-)Daten allgemein zugénglich sind
— die Investition in die Analyse derselben durch ML-Modelle dem Schutz
nach § 87a UrhG zugiinglich sein miisste.*®* Eine begriffliche Abgrenzung
zwischen bereits vorhandenen und neu erzeugten Daten triftt Wiebe: ,.Bereits
vorhandene Daten sind allgemein verfiigbar und konnen daher grundsatzlich
von jedem Dritten mit gleichem Aufwand gesammelt werden, wihrend er-

379 EuGH GRUR 2005, 244 — British Horseracing Board, BHB-Pferdewetten; BGH
GRUR 2005, 857 — Hit Bilanz; Dreier/Schulze—Dreier, UrhG, § 87a Rn. 12.

380 Vgl. ErwGr 10 Datenbank-RL.

381 EuGH GRUR 2005, 244, 247 Rn. 31 — British Horseracing Board, BHB-
Pferdewetten.

382 So wohl auch Ahlberg/Gétting—Vohwinkel, BeckOK-UrhG, § 87a Rn. 49.

383 Hetmank/Lauber-Ronsberg, GRUR 2018, 574, 578.

156

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainierte Parameter

zeugte Daten “ihrer Natur nach’ niemandem aufler dem Datenerzeuger selbst
bekannt sind.*3%*

Die in der Literatur und Rechtsprechung erkennbare Neigung, den Investi-
tionsbegriff im Kontext des Machine Learning zunehmend weiter auszule-
gen,*® ist auch auf EU-Ebene nicht unbemerkt geblieben.**® In einer im Jahr
2018 veroffentlichten zweiten Evaluierung der Datenbank-RL wird explizit
Bezug auf maschinengenerierte Daten genommen — wenngleich eine kon-
krete Erorterung zu Machine Learning leider ausbleibt. Machine-Generated
Databases werden gleich zu Beginn als nach allgemeinem Verstindnis vom
sui-generis-Recht ausgeschlossen bezeichnet.*®” Sodann wird jedoch in Aus-
wertung einer durchgefiihrten Umfrage und nicht zuletzt auch im Lichte des
Autobahnmaut-Urteils des BGH® zumindest festgestellt, dass — wihrend
das Verstindnis des Investitionsgegenstands weiter eng zu fassen ist — eine
Beobachtung der Situation erforderlich sei.*® Im Rahmen der durchgefiihrten
Studie wird zudem angezweifelt, ob das sui-generis-Recht bzw. die tatbe-
standlichen Voraussetzungen noch wirtschaftlich optimal angelegt sind.>*
Wenngleich im Rahmen dieser europiischen Untersuchung also keine eindeu-
tige Tendenz zu einem weiteren Investitionsbegriff zu erkennen ist, bieten die
Erorterungen vor dem Hintergrund der gebotenen ,,Beobachtung der Situati-
on‘ doch Anlass dazu, einen genaueren Blick auf die Parametersammlung
im Machine Learning-Prozess zu werfen.

Nach dem bisher Gesagten muss es wesentlich darauf ankommen, ob die
Parametersammlung als Sammlung vorbestehender Informationen oder als
Zusammenstellung erzeugter Informationen einzuordnen ist.

Vielleicht ist Machine Learning grundsitzlich als Informationsextrahie-
rungsprozess>’!' zu begreifen — dies implizierte, dass keine neuen Informa-
tionen bzw. Daten erzeugt, sondern lediglich vorhandene Informationen aus
bestehenden Daten extrahiert und in maschinenlesbare Form gebracht wiir-

384 Wiebe, GRUR 2017, 338, 341; vgl. auch Leistner, KuR 9 2007, 457, 460; zweifelnd
noch im Jahr 2005 Sendrowski, GRUR 2005, 369, 372.

385 Vgl. FuBinote 384 sowie z. B. LG Koln MMR 2002, 689 — Online-Fahrplanauskunfft.

386 Europdische Kommission, Evaluation DB-RL, S. 35, dort Fn. 184.

387 Dies., Evaluation DB-RL, S. 35.

388 BGH GRUR 2010, 1004 — Autobahnmaut.

389 Europdische Kommission, Evaluation DB-RL, S. 37.

390 Dies., Evaluation DB-RL, S. 40.

391 Dies legen die Definitionen des Machine Learning durchaus nahe, vgl. die Ausfiih-
rungen zur Abgrenzung zu TDM in § 2 B.IV.1..

157

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

den.**? Dann liige ein nach dem traditionellen Begriffsverstiindnis tauglicher
Investitionsgegenstand vor.>*?

Ordnet man aber — wie eingangs bewusst vorsichtig im Konjunktiv ange-
deutet — die aus den Daten gewonnenen Informationen als in den Parametern
reprasentiert ein, wird verkannt, dass die aufzudeckenden Zusammenhénge
fiir den Fall der Python-Modelle gerade nicht nur durch die Parameter er-
fassbar sind, sondern dass erst im Zusammenspiel mit Hyperparametern und
Quellcode bzw. Skriptaufruf eine Verkorperung dieser Erkenntnisse plausi-
bel erscheint. Die Parameter selbst sind nur Zahlenwerte, die jeweils fiir sich
genommen das Gewicht einer durch das Modell geleiteten Information in
Bezug auf das Folgeneuron oder den Folgeknoten enthalten. Die dadurch in
einem Parameter enthaltene Information (z. B. ,,gewichte alle eingehenden
Werte mit dem Gewicht 0,42°) entsteht erst im Laufe des Trainingsprozesses
und existiert in dieser Form vorher nicht.

Insofern ist grundsitzlich davon auszugehen, dass es sich bei den Para-
metern allenfalls um neue, also hergestellte, Datenbankelemente handelt.
Die Investition in die Erzeugung in Form der Berechnung bzw. Optimierung
derselben ist folglich kein tauglicher Gegenstand des § 87a UhrG.

Noch eindeutiger ist die Situation, wenn ein ML-Modell nicht Zusammen-
hinge aus vorbestehenden Daten ermittelt, sondern — wie etwa im Fall von
sogenannten Generative Adversarial Networks®*** — aus ,,weiem Rauschen’
lernt, ein Bild zu erzeugen. Zwar ist der adversariale Part des Modells ein
,klassisch* trainiertes Modell, aber der generative Part optimiert seine Para-
meter aufgrund des Feedbacks des adversarialen Teils. Die Parameter des
generativen Parts sind mithin nicht eine Reprisentation vorhandener Infor-
mationen, sondern stehen fiir durch das Modell im Trial-and-Error-Prozess
erlerntes ,,Wissen®. Die gespeicherten Parameterwerte sind mithin als neue,
,hergestellte* Informationen einzuordnen.

13

392 Vgl. auch BGH GRUR 2005, 857, 859 — HIT BILANZ - die ,,Feststellung vor-
handener Vorginge* wird als Ermittlung vorhandener Informationen eingeordnet;
Schricker/Loewenheim—Vogel, Urheberrecht, § 87a Rn. 57 — Abfassung von Zei-
tungsartikeln konnte als Erfassung von Daten ,,aus dem Leben* einzuordnen sein;
Wiebe, GRUR 2017, 338, 341 — fiir einen Schutz nach § 87a UrhG, wenn lediglich
,»in der Natur bereits vorhandene Daten* gesammelt werden, die ,,von jedem Dritten

mit gleichem Aufwand gesammelt werden konnen*.
393 Dagegen aber Wandtke/Bullinger—Hermes, PK UrhR, § 87a Rn. 41, der grundsitzlich

Ergebnisse Big Data-Anwendungen als ,,Spin-Off*-Datenbanken und damit als nicht

schutzfihig einordnet.
394 Vgl. §2 B.IL3..

158

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

D. Trainierte Parameter

Wie bereits angedeutet, ist die Lage fiir trainierte Parameter von Random
Forest-Modellen, die mit R erzeugt wurden, anders zu beurteilen. An dieser
Stelle sei nochmals an die Abbildung 7.2 erinnert: Ergebnis des Trainingsvor-
gangs ist in R eine Baumstruktur, die in Tabellenform vorliegen kann. Diese
Tabelle kann — zwar unter je nach Tabellengrofie und Baumtiefe nicht uner-
heblichem Aufwand — bereits dazu eingesetzt werden, Zusammenhinge aus
den Trainingsdaten auszulesen. Sie dokumentiert also Gemeinsamkeiten von
Daten und zeigt Informationen auf, die auch ohne Einsatz des ML-Modells
— oder unter Einsatz anderer Modelle — aufgedeckt werden kénnen. Mithin
spricht vieles dafiir, die darin enthaltenen Informationen als bereits ,,in der
Natur* (bzw. in den Trainingsdaten) vorhanden anzusehen und die entste-
hende Tabelle lediglich als eine Sammlung und Sichtbarmachung dieser
Informationen zu verstehen. Damit kommt fiir solche Modelle als Investiti-
onsgegenstand auch die Investition in die Erzeugung dieser Ergebnistabelle
in Betracht. Allerdings ist hier abzuwarten, wie sich die Rechtsprechung
dazu duBlert — oder ob seitens der EU noch weitere Klarstellungen erfolgen.

bb) Andere Investitionsgegenstinde

Moglicherweise konnen jedoch andere Investitionsgegenstinde, die im Zu-
sammenhang mit der Herstellung der Parameterdatenbank anfallen, beriick-
sichtigt werden. Neben der Beschaffung sind auch die Uberpriifung und die
Darstellung der Daten beriicksichtigungsfiahig (§ 87a Abs. 1 S. 1 UrhG). Die
Parameter werden in der Regel nicht dargestellt, hier kommt also keine be-
riicksichtigungsfihige Investition infrage. Fiir die Uberpriifung der Parameter
gilt Ahnliches wie fiir die Ergebnisausgabe: Die Uberpriifung der Parameter
auflerhalb des Modells ist nicht relevant, denn erst mit den Hyperparametern
konnen die Parameter liberhaupt evaluiert werden. Insofern ist wieder auf das
gesamte ,trainierte Modell* abzustellen, und nicht separat auf die Parameter.
Ein anderer Investitionsgegenstand kommt also nicht in Betracht.

cc) Zwischenergebnis
Als Investitionsgegenstand kommt nur die Wissensextraktion aus den Trai-
ningsdaten im Rahmen des Trainings von Random Forests in R in Betracht.

Fiir ML-Modelle in Python kann hier fiir den isolierten Schutz der Parameter
kein tauglicher Investitionsgegenstand festgestellt werden.

159

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

b) Wesentlichkeit

Ferner miisste fiir den Fall der Random Forests in R die Investition in die
Wissensextraktion — also in das Training — wesentlich sein. Es diirfte sich also
nicht um eine ,,Allerweltsinvestition* handeln. Hier gilt im wesentlichen das
Gleiche wie schon fiir die Wesentlichkeit der Investition in trainierte KNN
festgestellt wurde:*> , Es kommt darauf an*, aber fiir tiefe und aufwendige

Modelle ist von der Wesentlichkeit der Investition auszugehen.

3. Ergebnis

Zumindest fiir trainierte Random Forests in R ist ein Schutz im Rahmen
des Datenbankherstellerrechtes gem. §§ 87a ff. UrhG denkbar, wihrend
der Schutz fiir trainierte Parameter in ML-Modellen, die unter Einsatz der
beschriebenen Python-Bibliotheken bzw. Frameworks optimiert bzw. erzeugt
wurden, nicht infrage kommt.

4. Bewertung und praktische Relevanz

In der Praxis hat die Ubernahme nur der Parameter eines Modells in Python,
sei es KNN oder Random Forest, keine Relevanz: ohne die dazugehorigen
Hyperparameter sind die Informationen nutzlos.

Anders sieht es aus fiir Random Forest-Baumstrukturen in R: Diese sind
auch ohne Hyperparameter mittels Datenbankabfragen fiir Vorhersagen nutz-
bar, sodass ein Schutzbedarf fiir die reinen trainierten Parameter besteht. Die
Rechte, die dem Datenbankhersteller®*® gem. § 87b UrhG zustehen, umfassen
nach § 87b Abs. 1 S. 1 UrhG das ausschlielliche Recht zu Vervielfiltigung,
Verbreitung und 6ffentlichen Wiedergabe der gesamten Datenbank oder ei-
nes wesentlichen Teils davon. In Bezug auf die Verwendung unwesentlicher
Teile der Datenbank gesteht § 87b Abs. 1 S. 2 UrhG dem Datenbankher-
steller ebenfalls ausschlieBliche Rechte zu, wenn die Nutzung wiederholt
und systematisch erfolgt und einer normalen Auswertung der Datenbank
zuwiderlduft oder die berechtigten Interessen des Datenbankherstellers unzu-
mutbar beeintréichtigt. Insbesondere der Vervielfiltigungsschutz diirfte in der

395 S.§7B.IL3..
396 Vgl. §7B.ILS.

160

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

E. Hyperparameter

Praxis relevant sein, denn eine umfangreiche und sorgfiltig optimierte Ran-
dom Forest-Struktur kann zum Beispiel einem Expertensystem als wertvolle
Wissensbasis dienen.

III. Zusammenfassung

Auch fiir trainierte Parameter kommt ein Schutz nach § 4 Abs. 2 UrhG sowie
nach §§ 87a ff. UrhG —in Betracht, sofern es sich um die trainierten Parameter
eines Random Forest-Modell in einer R-Implementierung handelt. Mithilfe
der eingangs beschriebenen Python-Frameworks bzw. Bibliotheken erzeugte
Parametersammlungen kénnen an dem Schutz jedoch nicht partizipieren.

E. Hyperparameter

Die rechtliche Lage bzgl. der trainierten Parameter und der trainierten Model-
le wurde bereits geklirt. Offen ist noch, ob auch die Hyperparameter allein
schutzfahig sein konnten. Ein Schutzbediirfnis besteht jedenfalls insofern,
als anhand der Hyperparameter und der entsprechenden Trainingsdatenbasis
die trainierten Parameter reproduziert werden kdnnen. Zudem nimmt die
Bedeutung von Hyperparameterkombinationen sowie die Ubertragbarkeit
auf andere Anwendungskontexte zu: Es ist etwa denkbar, einzelne Schichten
eines KNN zu definieren, die zum Beispiel Inputdaten in Form von Bildern
besonders gut auf Kanten oder Formen untersuchen konnen. Selbst wenn die
Hyperparameter auf einem Trainingsdatensatz A trainiert wurden, konnen
diese mitunter in andere, umfangreichere Netzstrukturen integriert und fiir
Trainingsdatensatz B eingesetzt werden.**” Wiihrend die trainierten Para-
meter zumindest im Falle kiinstlicher neuronaler Netze alleinstehend wenig
Wert haben diirften, so muss demzufolge ein Gleiches nicht unbedingt fiir
die Hyperparameter gelten.

Als Schutzmoglichkeiten kommen wieder der Datenbankwerkschutz so-
wie das Datenbankherstellerrecht in Betracht, Computerprogrammschutz
wurde bereits mangels Computerprogrammqualitit der Hyperparameter ab-
gelehnt.’*® Ein Schutz als Entwurfsmaterial im Rahmen des Computerpro-
grammschutzes fiir das trainierte Modell kommt im Ubrigen auch nicht

397 Vgl. z. B. Goodfellow et al., Deep Learning Handbuch, S. 363.
398 Vgl. bb).

161

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

in Betracht, weil die alleinstehende Hyperparametersammlung zwar von
dem Quellcode verwendet wird, aber nicht als Vorbereitung desselben dient.
Vielmehr entsteht die Hyperparametersammlung erst mit der konkreten Um-
setzung des (Trainings-)Programmcodes und wird dann vom (Produktiv-)
Programmcode verwendet.>*

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG
1. Datenbank

Die Datenbankqualitiit gespeicherter Hyperparameter entspricht dem oben
bereits Gesagten,*® es handelt sich um eine Sammlung unabhiingiger und
einzeln abrufbarer Elemente in Form von Informationen zur Modellstruktur,
wie etwa die GroBBe und Anzahl verwendeter Schichten und eingesetzter
Funktionen, sowie oben auch der errechneten Parameter, die schon aus tech-
nischer Erforderlichkeit heraus systematisch angeordnet und einzeln mithilfe
der Framework- bzw. Bibliotheksfunktionen abrufbar sind. Alleiniger Unter-
schied ist an dieser Stelle bei der Betrachtung der Hyperparameterdatenbank,
dass die Parameter als Sammlungselement nicht mehr beriicksichtigt wer-
den. Dies dndert jedoch nichts daran, dass das Vorliegen einer Datenbank
anzunehmen ist.

2. Personliche geistige Schopfung

Fraglich ist jedoch, ob auch ohne die trainierten Parameter eine geistige
Schopfung des Entwicklers gegeben ist, weil ohne die Parameter die Mani-
festierung der Idee des Urhebers unvollstéindig sein konnte. Auch hier muss
in der Auswahl oder Anordnung der Elemente die Idee des Entwicklers Aus-
druck finden. Wie schon bei den Parametern ist auch die Anordnung der
Hyperparameter durch die technischen Gegebenheiten vorgegeben. Es muss
also wieder auf die Auswahl der Elemente, also der einzelnen Hyperparame-
ter, ankommen.

399 Gegen einen Schutz als Entwurfsmaterial auch Hartmann/Prinz, WRP 12 2018,
1431, 1435 Rn. 38.
400 Vgl. §7D.I.1.bzw. § 7 B.I.1..

162

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

E. Hyperparameter

Diese werden durch den Entwickler so gewihlt, dass bei Anwendung des
Modells auf die Trainingsdaten die Parameter optimal berechnet werden.

Die Idee des Entwicklers kann sich mithin auch schon in der Wahl der
Hyperparameter manifestieren, die im Zusammenspiel mit den Trainingsda-
ten letztendlich die Parameter berechnen helfen, bevor die Parameter durch
den Ablauf des Trainingsprozesses festgelegt sind. Die Hyperparameter sind
insofern unabhiingig von den trainierten Parametern, als sie letztlich den
Grundstock fiir diese legen (wihrend andersherum die Parameter vollstindig
von den Hyperparametern und den Trainingsdaten abhingig sind). Wichtig ist
an dieser Stelle allerdings die Verbindung mit den Trainingsdaten: verschiede-
ne Trainingsdaten konnen mitunter zu unterschiedlichen Parametern fiihren
(je groBer die Menge an Trainingsdaten, umso weniger relevant ist jedoch
eine Verdnderung derselben etwa durch Wegnahme einzelner Datenpunkte).

Wenn die isolierte Sammlung von Hyperparametern urheberrechtlich
geschiitzt sein soll, ist jedoch — wie auch in allen anderen Bereichen des
Urheberrechts — zu verhindern, dass sich ein solcher Schutz auch auf triviale
und in Fachkreisen bekannte, nichtoriginelle Hyperparameterkonfigurationen
erstreckt. Zwar diirfen auch nach der Datenbank-RL nicht allzu hohe Anfor-
derungen an die Schopfungshohe gestellt werden,**! jedoch ist eben ,,nach
unten‘‘ genug Freiraum fiir weitere Innovationen zu lassen. Das Schutzbediirf-
nis besteht insbesondere bei aufwendigen, nicht lediglich zu Lehrzwecken
vereinfachten, vielschichtigen und komplexen Modellen. So ist es denkbar,
ein Bilderkennungsmodell zu konzipieren, das aus hunderten Schichten be-
steht, die auf unterschiedlichste Weise konfiguriert sind, um etwa ein Bild
auf Farbe, Muster, Korperteile, Helligkeit, Komposition etc. zu untersuchen.
In solch einem Fall muss auch die Sammlung der Hyperparameter ohne
die errechneten Parameter bereits als schutzfahige Sammlung qualifiziert
werden.

3. Ergebnis
Es wird also auf eine Einzelfallentscheidung ankommen miissen, um den

Schutz nach § 4 Abs. 2 UrhG fiir Hyperparameter zu bestimmen. Der Schutz
ist jedoch nicht von vorneherein ausgeschlossen.

401 ErwGr. 16 Datenbank-RL.

163

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

II. Investitionsschutz gem. §§ 87a ff. UrhG

Auch fiir Hyperparameter konnten Datenbankherstellerrechte gem. §§ 87a ff. Ur-
hG infrage kommen.

1. Datenbank

Dass die Hyperparameter eine Datenbank im Sinne des § 4 Abs. 2 UrhG
darstellen, wurde bereits festgestellt,**> damit liegen in der Hinsicht auch die
Voraussetzungen fiir § 87a UrhG vor.

2. Wesentliche Investition

Ferner miisste eine wesentliche Investition in die Datenbank getitigt worden
sein. Auch hier wird eine Einzelfallbetrachtung erforderlich: Handelt es sich
um Hyperparameter, die zu Beginn des Trainings lediglich aus Erfahrungs-
sdtzen geschitzt werden, wurden weder Zeit noch Geld in ihre Sammlung
gesteckt. Insofern kann keine wesentliche Investition vorliegen. Handelt es
sich um die im Rahmen eines Trainingsprozesses erarbeiteten bzw. gesam-
melten Hyperparameter, miissen die gleichen Erkenntnisse gelten wie sie
fiir trainierte Modelle bereits festgestellt wurden: Der Prozess kann mitunter
sehr viele Ressourcen fordern.*>* Es konnte beispielsweise passieren, dass
ein Set an Hyperparametern in einem komplexen Modell iiber mehrere Tage
getestet wird, worauthin sich herausstellt, dass die Hyperparameter nicht op-
timal gewihlt sind. Darauthin werden die Hyperparameter angepasst und ein
erneuter Trainingsvorgang wird gestartet. Dieser Prozess kann sich mehrfach
wiederholen, also zeit- und kostenintensiv sein. Es handelt sich dann um
wesentliche Investitionen in die Beschaffung und Uberpriifung der Daten-
bankinhalte. Festzustellen ist zudem, dass die Hyperparameter-Sammlung
nicht maschinell erzeugt, sondern jeder Wert durch den Menschen gewéhlt
wird. Es handelt sich also um einen gem. § 87a UrhG beriicksichtigungsfihi-
gen Investitionsgegenstand. Dariiber hinaus kdnnen Kosten entstehen, wenn

402 Vgl. § 7E.L.

403 Vgl. Graf, Multitalent fiir Sprache (Spektrum.de vom 11.08.2020) — die Kosten fiir
das Training von GPT-3 wurden dort etwa mit 5 Millionen Dollar beziffert, zudem
werden die CO2-Emissionen betont, die durch die intensive Hochleistungsrechner-
nutzung entstehen.

164

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

F. Untrainiertes Modell

etwa ganze Schichten aus anderen bewéhrten KNN iibernommen werden
sollen — sofern diese urheberrechtlich geschiitzt und nicht frei zur Verfii-
gung gestellt worden sind, konnen Lizenzkosten anfallen. Damit ldge eine
Investition in die Beschaffung von Daten vor.

3. Ergebnis

Auch eine Sammlung an Hyperparametern kann folglich dem Schutz der
§§ 87a ff. UrhG unterfallen.

III. Zusammenfassung

Fiir gewihlte Hyperparameter kommt — unabhingig von der Implementie-
rung in R oder Python — ein Schutz gem. §§ 4 Abs. 2, Abs. 1 und 87a ff. Ur-
hG in Betracht, wobei jeweils Einzelfallbetrachtungen erforderlich werden
hinsichtlich des Vorliegens einer geistigen Schopfung in Bezug auf das Da-
tenbankwerk sowie hinsichtlich des Vorliegens einer wesentlichen Investition
bzgl. § 87a UrhG.

F. Untrainiertes Modell

Zuvor wurde bereits auf den Schutz trainierter Modelle eingegangen.*** Die
Frage des Schutzes ,,untrainierter Modelle liegt also nahe. Fraglich ist hier
allerdings bereits, inwiefern diese sich begrifflich von der Struktur bzw. der
grundlegenden Architektur der Modelle, also der soeben diskutierten Hyper-
parametersammlung unterscheiden: Wenn hiermit ein bereits konfiguriertes,
aber noch ,.leeres* Modell ohne trainierte Parameter zum Beginn bzw. vor
Beginn des Trainingsvorgangs gemeint ist, miissen die Aussagen iiber die
Hyperparameter Anwendung finden. Es liegt nahe, das ,,untrainierte Modell*
wie auch das trainierte Modell** als eine Kombination aus Parametern, Hy-
perparametern und Quellcode aufzufassen, wobei die Parameter lediglich
zufillig gewihlte Werte sind und sowohl Parameter als auch Hyperparameter
nicht notwendig bereits in Dateien abgelegt wurden. Auch das Modell selbst

404 Vgl. §7B..
405 Vgl. § 6 D.IIL.

165

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 7 Schutzméglichkeiten im Urheberrecht und den verwandten Schutzrechten

simple neural network with keras

from numpy import loadtxt

from keras.models import Sequential

from keras.layers import Dense

load the dataset

dataset = loadtxt(, delimiter=)
split into input (X) and output (y) variables
X = dataset[:,0:8]

y = dataset[:,8]

10 | # define the keras model

11 | model = Sequential()

12 | model.add(Dense(12, input dim=8, activation=))
13 | model.add(Dense(8, activation=

CoOoONOUEWNE

14 | model.add(Dense(1, activation=))
15 | # compile the keras model
16 model.compile(loss= , optimizer= , metrics=[1)

17 | # fit the keras model on the dataset

18 | model.fit(X, y, epochs=150, batch_size=10, verbose=0)
19 #save the model

20 | model.save()

Abbildung 7.3: Beispiel eines einfachen Quellcodes zur
Erstellung eines Modells mit Keras, in Anlehnung an
https://machinelearningmastery.com/tutorial-first-neural-network-python-
keras/, 22.02.2021.

liegt — im untrainierten Zustand — in der Regel nicht in Dateiform vor. Viel-
mehr wird das untrainierte Modell in Form von Quellcode gegeben sein, der
die Modellstruktur definiert, und ggf. am Ende noch Befehle zum Trainieren
und Speichern des Modells beinhaltet.

Veranschaulicht wird dies durch Abbildung 7.3. Ergebnis des ausgefiihrten
Codes ist ein gespeichertes trainiertes Modell. Der Code selbst definiert
jedoch zu Beginn ein untrainiertes Modell, aulerdem liegt vor Ausfiihrung
noch kein trainiertes Modell vor, anhand dessen (z. B. durch Interaktion mit
dem Nutzer) ein Einsatz etwa zur Klassifikation von Bildern erfolgen konnte.
Stattdessen wird das Modell zunichst in Zeile 11 initialisiert, in den Zeilen 12
bis 14 werden die Schichten — also die Hyperparameter, bzw. die Topologie —
definiert. Jeder Schicht wird eine Anzahl Neuronen zugewiesen sowie die
fiir jedes Neuron der Schicht zu verwendenden Aktivierungsfunktionen. Das
Trainingsdatenset, das in Zeile 6 geladen wurde, enthilt Daten (X) und Labels
(y), die dann in Zeile 18 fiir das Training des Modells dem Modell zugefiihrt
werden.

Als Schutzgegenstand des untrainierten Modells kommt folglich nur der
Quellcode infrage, mithin also nur Computerprogrammschutz gem. § 69a Ur-
hG. Dass im Nachhinein ggf. noch Anpassungen — auch an den Hyperparame-
tern — vorzunehmen sind, ist unerheblich. Auch der Code fiir ein untrainiertes
Modell erfiillt bereits einen Zweck, ndmlich ein Modell zu trainieren (und

166

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

F. Untrainiertes Modell

ggf. zu evaluieren — hier nicht im Code-Beispiel enthalten) und enthilt Steue-
rungsanweisungen. Auch die eigene geistige Schopfung des Entwicklers —
namlich, einen Weg zu finden, ein Modell fiir die gewihlte Trainingsaufgabe
programmatisch festzulegen — liegt in dem Quellcode vor. Fiir den Schutz
gem. § 69a UrhG ergeben sich keine Unterschiede zu dem, was bereits iiber
den Schutz des Quellcodes eines trainierten KNN gesagt wurde*® — ein
Schutz als Computerprogramm ist also auch fiir das untrainierte Modell
zumindest in Bezug auf den Quellcode regelméfBig anzunehmen.

406 Vgl. dazu oben aa).

167

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 8 Ergebnis des dritten Teils

Der Schutz von Modellen maschinellen Lernens ist, wie gezeigt, komplexer
als auf den ersten Blick vermutet und bisher in der rechtswissenschaftlichen
Literatur diskutiert. Es ist zu differenzieren zwischen den unterschiedlichen
Komponenten der Modelle.*”” Als potenzielle Schutzgegenstinde identifi-
ziert wurden trainierte ML-Modelle in Python, trainierte Random Forests
in R, trainierte Parameter, Hyperparameter sowie untrainierte ML-Modelle.
Diese wurden in Bezug auf ihre Schutzfihigkeit gem. §§ 4, 87a ff. und
69a UrhG untersucht.

Dabei wurde festgestellt, dass ein trainiertes Modell in Python durch
die Eigenschaften seiner Komponenten (Hyperparameter- und Parameter-
sammlung, Quellcode) potenziell Schutz sowohl als Datenbankwerk gem.
§ 4 Abs. 2 UrhG sowie auch als Computerprogramm gem. § 69a UrhG genief3t
und auferdem ein Datenbankherstellerrechtsschutz gem. §§ 87a ff. UrhG
infrage kommt.**

Trainierte Parameter der Random Forests unterscheiden sich bei der Im-
plementierung in R wesentlich von der Form, in der trainierte Parameter der
Python-Modelle vorliegen, insofern kommt die Priifung zu unterschiedli-
chen Ergebnissen: Trainierten Parametern der ML-Modelle in Python kommt
weder Schutz als Datenbankwerk, noch im Rahmen des Datenbankherstel-
lerrechtes Schutz zu (zum einen mangelt es an der personlichen geistigen
Schopfung, zum anderen am tauglichen Investitionsgegenstand). Die trai-
nierten Parameter der Random Forest-Modelle in R stellen jedoch zugleich
das trainierte Random Forest-Modell dar, weshalb sowohl eine personliche
geistige Schdpfung als auch ein tauglicher Investitionsgegenstand vorliegt.*"

Isoliert abgespeicherte Hyperparameter lassen sich als Datenbank cha-
rakterisieren und diirften im Regelfall sowohl gem. § 4 UrhG als auch gem.
§§ 87a ff. UrhG schutzfihig sein.*!°

Fiir untrainierte Modelle kommt nur ein Computerprogrammschutz gem.
§ 69a UrhG in Bezug auf den Quellcode infrage.*!!

407 Zur Diskussion der Modellbestandteile s. oben § 6.
408 S.oben §7 B.IV..

409 S. oben §7D.

410 S.dazu §7E..

411 S.oben §7F..

169

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

§ 8 Ergebnis des dritten Teils

§ 4 UrhG §§ 87a ff. UrhG § 69a UrhG
Trainiertes Python-ML-Modell + + +
Trainierter Random Forest in R (RF) Verweis auf trainierte Parameter
Trainierte Parameter -/ + (RF) -/ + (RF) n/a
Hyperparameter + + n/a
Untrainiertes Modell n/a n/a +

Abbildung 8.1: Ubersicht iiber die Ergebnisse fiir den Modellschutz, jeweils
unter Vorbehalt einer Einzelfallbetrachtung. Quelle: eigene Darstellung.

Abbildung 8.1 stellt die Ergebnisse im Uberblick dar. Ohne Schutz diirften
nach dem Resultat dieser Priifung nur génzlich banale Modelle bleiben,
ansonsten steht insbesondere der Datenbankschutz im Vordergrund.

170

hittps://doLorg/10.5771/5783748012453-95 - am 12.01.2026, 11:10:09. https://wwInllbra.com/de/agh - Open Access - TN

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

	§ 6 Technische Bestandsaufnahme
	A. Grundlegende Begriffe
	I. Frameworks und Bibliotheken
	II. API
	III. Objekte und Funktionen

	B. Grundbausteine für ML-Modelle: Frameworks, Bibliotheken, APIs
	C. Quellcode
	D. Trainiertes Modell in Python
	I. Vorab: Einsatz eines trainierten Modells
	II. Begriff des trainierten Modells
	1. „Trainiertes Modell“ in TensorFlow
	2. „Trainiertes Modell“ in Keras
	3. „Trainiertes Modell“ in PyTorch
	4. „Trainiertes Modell“ in Scikit-Learn

	III. Zusammenfassung und Definition

	E. Trainierter Random Forest in R
	F. Trainierte Parameter
	G. Hyperparameter
	H. Zusammenfassung

	§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten
	A. Einleitung
	I. Forschungsstand
	II. Hier gewählter Lösungsansatz

	B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)
	I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG
	1. Datenbankwerk
	a) Sammlung
	aa) TensorFlow
	bb) Keras
	cc) PyTorch
	dd) Scikit-Learn
	ee) Zusammenfassung und Subsumtion

	b) Unabhängige Elemente
	c) Systematische oder methodische Anordnung
	d) Zugänglichkeit der Elemente
	e) Zwischenergebnis

	2. Persönliche geistige Schöpfung
	a) Persönliche oder eigene geistige Schöpfung?
	b) Schöpfung in Auswahl oder Anordnung
	aa) Auswahl
	bb) Anordnung
	cc) Anordnung für Datenbankwerke i. d. R. programmseitig vorgegeben
	dd) Schöpfungsspielraum in der Auswahl

	3. Ergebnis
	4. Wer ist der Urheber?, oder: Schutzumfang und Folgen

	II. Investitionsschutz gem. §§ 87a ff. UrhG
	1. Datenbank
	2. Investitionsgegenstand
	3. Wesentlichkeit der Investition
	4. Ergebnis
	5. Schutzumfang und Folgen

	III. Schutz als Computerprogramm gem. § 69 a UrhG
	1. Trainiertes Modell als Computerprogramm
	a) Begriffsklärung Computerprogramm
	b) (Keine) Einordnung von ML-Modellen als Computerprogramm in der Literatur
	c) Berücksichtigung der Bestandteile eines trainierten Modells für den Computerprogrammbegriff
	aa) Quellcode
	bb) Hyperparameter und Parameter
	cc) Kombination zur Laufzeit
	dd) Sonstige Schutzgegenstände
	ee) Zusammenfassung: infrage kommende Schutzgegenstände

	2. Eigene geistige Schöpfung
	a) Menschlich-gestalterische Tätigkeit
	b) Geistiger Gehalt
	c) Wahrnehmbarkeit
	d) Individualität

	3. Ergebnis

	IV. Zusammenfassung

	C. Trainierter Random Forest in R
	D. Trainierte Parameter
	I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG
	1. Datenbankwerk
	a) Künstliches neuronales Netz
	b) Random Forest
	c) Zwischenergebnis

	2. Persönliche geistige Schöpfung
	a) ML-Modell in Python
	b) Random Forest in R

	3. Ergebnis

	II. Investitionsschutz gem. §§ 87a ff. UrhG
	1. Vorliegen einer Datenbank
	2. Investition
	a) Gegenstand der Investition
	aa) Berechnung bzw. Optimierung der Parameter
	bb) Andere Investitionsgegenstände
	cc) Zwischenergebnis

	b) Wesentlichkeit

	3. Ergebnis
	4. Bewertung und praktische Relevanz

	III. Zusammenfassung

	E. Hyperparameter
	I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG
	1. Datenbank
	2. Persönliche geistige Schöpfung
	3. Ergebnis

	II. Investitionsschutz gem. §§ 87a ff. UrhG
	1. Datenbank
	2. Wesentliche Investition
	3. Ergebnis

	III. Zusammenfassung

	F. Untrainiertes Modell

	§ 8 Ergebnis des dritten Teils

