
Dritter Teil
Schutzmöglichkeiten für Modelle maschinellen Lernens im

Urheberrecht

Nachdem geklärt wurde, welche Voraussetzungen erfüllt sein müssen, um
ML-Modelle rechtmäßig zu trainieren, stellt sich die Frage, wie die trainierten
Modelle rechtlich geschützt sein könnten. Schließlich fließen viel Erfahrung,
Arbeitszeit, Geld und technische Ressourcen in die Entwicklung effizienter
und korrekt arbeitender Machine Learning-Modelle.202

In der Regel sind die trainierten Modelle das Ergebnis eines unter Um-
ständen langwierigen Prozesses des Trainingsdatensammelns, -auswertens
und -aufbereitens, der Modelleinstellung und -optimierung, des Modelltrai-
nings, der Ergebnisauswertung und ggf. iterativen Überarbeitung. Daher
sprechen sowohl die Wertschätzung der Arbeit der Entwickler maschineller
Lernmodelle bzw. Systeme als auch der Innovationsanreiz für einen solchen
Schutz.

Problematisch in der Diskussion um den Schutz von ML-Modellen scheint,
dass es bisher im juristischen Diskurs noch nicht greifbar genug war, was
ein trainiertes Modell ausmacht.

Schon bei der Betrachtung des Entstehungsprozesses eines trainierten
Modells wird klar, dass hier eine nicht unerhebliche menschliche Leistung
erforderlich ist, um zum gewünschten Ergebnis zu kommen. Es ist mitnichten
lediglich ein mathematischer Rechenvorgang, der das trainierte Modell er-
zeugt, sondern es ist Erfahrung in Bezug auf die Auswahl von Trainingsdaten
sowie insbesondere die Strukturierung des Modells erforderlich.

Wirtschaftlich gesehen, ist das trainierte Modell ein hochwertiges Werk-
zeug, das einerseits im Produktiveinsatz bestehen muss, andererseits aber –
ungeschützt – einfach kopiert und ausgebeutet werden kann.

Der urheberrechtliche Schutz des „Gehirns von KI“ – der Modelle ma-
schinellen Lernens – wurde bereits in einigen Veröffentlichungen diskutiert

202 Eine Übersicht der Entwicklung weltweiter Investitionen in KI kann z. B. dem AI
Index Report 2019 entnommen werden: Perrault et al., The AI Index 2019 Annual
Report, S. 94 ff.; vgl. außerdem Graf , Multitalent für Sprache (Spektrum.de vom
11.08.2020).
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bzw. zumindest angerissen,203 jedoch bisher an keiner der Autorin bekannten
Stelle ausreichend tiefgehend bzw. zutreffend mit Blick auf die tatsächlich
verwendete Technologie durchleuchtet. Dessen nimmt sich dieser Teil der
Arbeit an. Dazu werden die relevanten Bausteine von ML-Systemen identifi-
ziert (s. § 6) und daraufhin auf ihre Schutzfähigkeit kategorisch untersucht
(s. § 7).

Auch außerhalb der Vorschriften des Urheberrechtsgesetzes wird ein
Schutz für ML-Modelle diskutiert. So wird etwa ein Schutz als Geschäfts-
geheimnis im Sinne der GeschGeh-RL bzw. des GeschGehG angedacht,204

und auch das Wettbewerbsrecht könnte Anknüpfungspunkte205 bieten.
Vorgeschlagen wird zudem die Einführung eines Leistungsschutzrechts

für computergenerierte Erzeugnisse (mit dem Ziel, die errechneten „Trai-

203 Ehinger/Stiemerling, CR 12 2018, 761 ff.; Hauck/Cevc, ZGE 11 2019, 135 ff.;
Papastefanou, CR 4 2019, 209 ff.; Linke, GRUR Junge Wissenschaft 2019, 29 ff.;
Nebel/Stiemerling, CR 1 2016, 61 ff.; Hartmann/Prinz, WRP 12 2018, 1431 ff.;
Gomille, JZ Nr. 20 2019, 969, 970; Spindler, IIC 2019, 1049, 1050; Linke/Petrlik,
GRUR Int. 2020, 39 ff.; Grätz, Künstliche Intelligenz im Urheberrecht; Iglesias
Portela/Shamuilia/Anderberg, Intellectual Property and Artificial Intelligence: A
Literature Review: EUR 30017 EN, S. 9;.

204 Ehinger/Stiemerling, CR 12 2018, 761, 769 erwägen einen Geschäftsgeheimnisschutz
für „Trainingsergebnisse“ im Rahmen der GeschGeh-RL, ebenso sieht Gomille, JZ
Nr. 20 2019, 969, 970 einen Schutz gem. §§ 2 ff. GeschGehG einschlägig; vgl.
außerdem ausführlich Hauck/Cevc, ZGE 11 2019, 135, 163 f.; Söbbing, Fundamen-
tale Rechtsfragen zur künstlichen Intelligenz. (AI Law), S. 14; einen Schutz für
Modelle erwägend Apel/Kaulartz, RDi Nr.1 2020, 24, 29; insbesondere für „durch
ein deutlich höheres Maß an Autonomie bestimmter“ neuronaler Netzwerke auf
GeschGeh-Schutz verweisend Schricker/Loewenheim–Loewenheim/Leistner, Ur-
heberrecht, § 2 Rn. 41a, allerdings ist davon auszugehen, dass die Autoren nicht
den Schutz neuronaler Netze an sich meinen, sondern Erzeugnisse – für diese wäre
allerdings insbesondere im Zusammenhang der Erzeugung „künstlerischer“ Werke
fraglich, wie hier ein GeschGeh-Schutz anzubringen wäre: Denn die Komplexität
der neuronalen Netze ändert nach hiesiger Ansicht nichts an der Zurechenbarkeit
ihrer Erschaffung (also der Erschaffung der Netze) zum Entwickler.

205 Hauck/Cevc, ZGE 11 2019, 135, 166 f. nennen u. a. § 4 Nr. 3 UWG als Auffangtat-
bestand im Rahmen des lauterkeitsrechtlichen Nachahmungsschutzes.
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ningsergebnisse“ zu schützen).206 Naheliegend und bereits in der Praxis
angekommen ist zudem der Schutz im Patentrecht.207

Diese Arbeit fokussiert jedoch auf diejenigen Schutzmöglichkeiten, die
das UrhG bietet.

206 Ehinger/Stiemerling, CR 12 2018, 761, 769.
207 Ausführlich dazu Hauck/Cevc, ZGE 11 2019, 135 ff., die einen anwendungsbezoge-

nen Patentschutz für möglich halten; gegen einen patentrechtlichen Schutz: Gomille,
JZ Nr. 20 2019, 969, 970; Apel/Kaulartz, RDi Nr.1 2020, 24, 29, die ein Problem
insbesondere in Bezug auf die erforderliche Technizität sehen; auf europäischer
Ebene steigt die Zahl der (begehrten) Patentanmeldungen, vgl. Iglesias Portela/
Shamuilia/Anderberg, Intellectual Property and Artificial Intelligence: A Literature
Review: EUR 30017 EN, S. 6; das Europäische Patentamt hat Richtlinien zur Paten-
tierung von KI herausgegeben, vgl. z. B. https://www.epo.org/law-practice/legal-
texts/html/guidelines2018/e/g_ii_3_3_1.htm (Stand: 22.02.2021) und Craglia et al.,
Artificial intelligence: A European perspective, S. 66.
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§ 6 Technische Bestandsaufnahme

Ein großer Teil der divergierenden Aussagen über den urheberrechtlichen
Schutz von ML-Modellen könnte daher rühren, dass keine klare Vorstel-
lung davon existiert, was eigentlich geschützt werden soll, oder zumindest
nicht klar kommuniziert ist, was als Schutzgegenstand angenommen wird.
Im Folgenden werden daher die künstlichen neuronalen Netze und Ran-
dom Forest-Systeme – stellvertretend für eine große Zahl verschiedener
ML-Modelle – analytisch in ihre Bestandteile zerlegt, mit dem Ziel, klare
Schutzgegenstände zu identifizieren.

Um ML-Modelle einer im UrhG bestehenden Werkkategorie zuzuord-
nen, ist zunächst erforderlich, die Modelle näher zu betrachten, um anhand
der identifizierten einzelnen Bestandteile eine Kategorisierung vornehmen
zu können. Im Folgenden werden dazu die im Zeitpunkt der Entstehung
der Arbeit überwiegend verwendeten Frameworks bzw. Technologien analy-
siert, Gemeinsamkeiten herausgearbeitet und im nächsten Abschnitt auf ihre
urheberrechtliche Schutzfähigkeit hin untersucht.

A. Grundlegende Begriffe

Dieses Kapitel wird in die Strukturen und technischen Abläufe der Entstehung
von ML-Modellen eintauchen. Dabei werden einige, in der Softwareentwick-
lung übliche, grundlegende Begriffe verwendet, die dem juristischen Leser
möglicherweise nicht – oder nicht in diesem Kontext – geläufig sind und
daher zum besseren Verständnis nachfolgend eingeführt werden.
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§ 6 Technische Bestandsaufnahme

I. Frameworks und Bibliotheken

Frameworks und Bibliotheken208 sind zu verstehen als programmierspra-
chenspezifische Baukästen, die in ein bestehendes Programmierprojekt ein-
gebunden werden können, und dann eine Vielzahl an Funktionalitäten bereit-
stellen.209 Auf diese Funktionalitäten kann der Entwickler über vordefinierte
Schnittstellen bzw. Befehle zugreifen, diese sind in der Regel in sogenannten
Application Programming Interfaces (APIs) dokumentiert.

II. API

Die Abkürzung „API“ steht für Application Programming Interface und ist
die Bezeichnung für eine Schnittstelle zu einer Software-Anwendung, die
üblicherweise bereitgestellt wird, um die Kompatibilität von Programmen zu
ermöglichen, etwa durch Datenaustausch oder Programmerweiterungen.210

Häufig wird damit (unpräzise) auch eine Dokumentation aller in einem Fra-
mework oder einer Bibliothek vorhandenen Funktionen und Klassen bezeich-
net. Die „Schnittstelle“ besteht selbst aus Programmteilen, die zum Beispiel
über das Internet von anderen Programmen angesteuert werden können, oder
innerhalb des ausgeführten Programms, wenn die „Fremdanwendung“ bzw.
Bibliothek dort eingebunden wurde.

III. Objekte und Funktionen

Im Rahmen dieser Arbeit werden die Begriffe „Objekt“ und „Funktion“
häufig verwendet, weshalb an dieser Stelle ein Gefühl für die Bedeutung
derselben im Softwarekontext vermittelt werden soll. Grundsätzlich ist zu

208 Die Begriffe „Framework“ und „Bibliothek“ werden in dem Kontext nicht trenn-
scharf verwendet – so beschreibt etwa der Autor von Keras sein Projekt eher als
eine „Schnittstelle“ als ein „Framework“ (vgl. https://github.com/keras-team/keras/
issues/5050#issuecomment-272945570 (Stand: 22.02.2021)), während Wikipedia
Keras als „Bibliothek“ bezeichnet (vgl. https://de.wikipedia.org/wiki/Keras (Stand:
22.02.2021)) und auf der projekteigenen Website ist die Rede vom „most used deep
learning framework“(vgl. https://keras.io/ (Stand: 22.02.2021)). Vorliegend wird
deshalb auch das Begriffspaar Framework/Bibliothek verwendet.

209 Vgl. Gamma et al., Design Patterns, S. 26.
210 Vgl. auch Fischer/Hofer, Lexikon der Informatik, S. 45.

100

https://doi.org/10.5771/9783748912453-95 - am 12.01.2026, 11:19:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


A. Grundlegende Begriffe

Abbildung 6.1: „Objektorientierung“ im HGB, eigene Darstellung.

unterscheiden zwischen prozeduraler und objektorientierter Programmierung
(OOP). Im ML-Kontext kommt in der Regel OOP zum Einsatz. Diese lässt
sich für Juristen anhand einem übertragenden Beispiel aus dem Handelsge-
setzbuch erklären, vgl. dazu Abbildung 6.1211:

In § 105 HGB wird die offene Handelsgesellschaft (oHG) definiert. Dabei
werden ihr „Eigenschaften“ zugewiesen: Ihr Zweck ist auf den Betrieb eines
Handelsgewerbes unter gemeinschaftlicher Firma gerichtet. Außerdem ist
bei keinem der Gesellschafter die Haftung gegenüber den Gesellschafts-
gläubigern beschränkt. Zudem hat die oHG Fähigkeiten („Funktionen“): Sie
kann gem. § 124 Abs. 1 HGB unter ihrer Firma Rechte erwerben und Ver-
bindlichkeiten eingehen. Sie kann Eigentum und andere dingliche Rechte an
Grundstücken erwerben, vor Gericht klagen und verklagt werden. Das Gesetz
definiert also ein abstraktes Konstrukt, das im Rahmen objektorientierter
Programmierung als „Klasse“ bezeichnet würde.

211 „String“ bezeichnet den Typ der Eigenschaft „Firma“ und steht für einen Wert in
Form einer Zeichenkette bzw. „Text“. Ein „Array“ bezeichnet eine Sammlung von
Einzelwerten. () weisen auf eine Funktion hin.
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§ 6 Technische Bestandsaufnahme

Eine andere „Klasse“ im HGB ist die Kommanditgesellschaft (KG). Diese
wird in § 161 Abs. 1 HGB definiert, sie hat ebenfalls die „Eigenschaft“, dass
ihr Zweck auf den Betrieb eines Handelsgewerbes unter gemeinschaftlicher
Firma gerichtet ist. Außerdem ist bei einigen Gesellschaftern die Haftung
gegenüber den Gesellschaftsgläubigern auf den Betrag einer bestimmten Ver-
mögenseinlage beschränkt, während bei einem anderen Teil der Gesellschaf-
ter eine Beschränkung der Haftung nicht stattfindet. In § 161 Abs. 2 HGB
wird außerdem bestimmt, dass die Vorschriften, die für die oHG gelten, auch
für die KG Anwendung finden, wenn nicht in dem Abschnitt über die KG
etwas anderes bestimmt ist. In der objektorientierten Programmierung ließe
sich sagen: „Die Klasse KG erbt [“Eigenschaften„ und “Funktionen„] von der
Klasse oHG“, das gilt, solange in der Klasse KG nicht „Eigenschaften“ und
„Funktionen“ überschrieben werden („überschrieben“ wird eine Eigenschaft,
wenn ihr ein anderer Wert zugewiesen wird – wenn also der Gesetzgeber, um
beim Beispiel zu bleiben, für die KG speziellere Vorschriften festlegt, die für
die oHG nicht gelten). Wie in der Gesetzgebung werden auch in der OOP
Maßnahmen zur Vereinfachung dergestalt eingesetzt, dass soweit möglich
Redundanzen vermieden und Gemeinsamkeiten zentral geregelt werden212

(vgl. etwa auch den allgemeinen Teil gegenüber dem besonderen Teil einiger
Gesetze).

„Klassen“ sind in der OOP-Welt wie abstrakte Schablonen, „Objekte“
hingegen sind konkrete Instanzen einer „Klasse“.213 Beide bündeln „Funk-
tionen“ und „Eigenschaften“.214 Ein Unternehmen Müller, Meier, Schmidt
oHG wäre ein Objekt (mit ausgefüllten Eigenschaften) der „Klasse“ oHG
gem. § 105 HGB. Eine „Klasse“ gibt es innerhalb eines Projektes bzw. ei-
ner Bibliothek jeweils nur einmal, es kann aber unzählig viele „Objekte“
(Instanzen) dieser „Klasse“ geben.

„Funktionen“ (in Abbildung 6.1 durch runde Klammern gekennzeichnet,
teilweise auch „Methoden“ oder „Operationen“ genannt215) kann eine Viel-
zahl von Programmbefehlen zugeordnet werden. So könnte die Funktion
der oHG vertragSchließen() etwa die Vertragsparteien zu identifi-
zieren haben, die essentialia negotii dokumentieren, eine Anweisung an eine
Zahlungsstelle ausgeben etc.

212 Vgl. Gamma et al., Design Patterns, S. 15.
213 Vgl. Dies., Design Patterns, S. 14; „Instanz“ meint in der Softwareentwicklung einen

konkreten Gegenstand vom Typ der „Klasse“, so wäre die „Karl Friedrich oHG“
eine Instanz vom Typ „oHG“.

214 Vgl. Dies., Design Patterns, S. 11.
215 Vgl. Dies., Design Patterns, S. 11.
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B. Grundbausteine für ML-Modelle: Frameworks, Bibliotheken, APIs

B. Grundbausteine für ML-Modelle: Frameworks, Bibliotheken, APIs

Es ist heute nicht erforderlich, ein ML-Modell von Grund auf neu zu ent-
wickeln. Den Programmierern stehen zahlreiche Frameworks und Biblio-
theken zur Verfügung, die sie für die Umsetzung ihrer Konzepte nutzen
können. Beispiele für solche Machine Learning-Frameworks sind für die
Programmiersprache Python TensorFlow,216 Keras,217 PyTorch218 und Scikit-
Learn,219 für die Sprache R insbesondere das Paket randomForests220. Diese
Arbeit wird sich in den folgenden Kapiteln zur Analyse der ML-Modelle
stets auf diese vier Frameworks und Bibliotheken und das R-Paket beziehen,
um praxistaugliche Ergebnisse zu erzielen.

Mit diesen Frameworks können unterschiedlichste Arten von ML-
Modellen realisiert werden – künstliche neuronale Netze sind nur eine
davon. Insbesondere können auch mit den Python-Frameworks Random
Forest-Modelle erzeugt werden. Die Ausführungen mit Bezug zu den Fra-
meworks sind in der Regel für alle Modelltypen gültig, die mit diesen
Frameworks und Bibliotheken umgesetzt werden können. Es wird daher
einheitlich von ML-Modellen gesprochen. Eine Abgrenzung erfolgt lediglich
zu den Random Forests in R, da sich hier strukturelle Unterschiede zu den
Modellen in Python ergeben.

In Bezug auf die Frage nach dem Schutzgegenstand sind die Frameworks
und Bibliotheken jedoch der falsche Anknüpfungspunkt. Sie mögen zwar
ausschnittsweise in dem Programm enthalten sein, das letztendlich in der
Lage ist, die Aufgaben zu lösen, die dem ML-Modell gestellt wurden, jedoch
sind sie – für sich genommen – eher mit der Palette des Malers vergleichbar,
der für die Umsetzung seines Werkes daraus erst noch Farben, Intensität,
Anordnung und Motiv bestimmen muss. Wenngleich der Schutz der Fra-
meworks und Bibliotheken selbst auch diskutiert werden könnte221 ist dies
jedoch nicht Ziel dieser Arbeit, und wird daher nicht thematisiert.

216 Abadi et al., TensorFlow: A system for large-scale machine learning, 265 ff..
217 Chollet et al., Keras.
218 Paszke et al., Automatic differentiation in PyTorch.
219 Buitinck et al., API design for machine learning software: experiences from the

scikit-learn project.
220 Liaw/Wiener, R News 2 Nr. 3 2002.
221 Vgl. z. B. Dreier/Schulze–Dreier, UrhG, § 69a Rn. 23 zum Schutz von Interfaces;

Schricker/Loewenheim–Spindler, Urheberrecht, § 69a Rn. 11 zu Programmbiblio-
theken.
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§ 6 Technische Bestandsaufnahme

C. Quellcode

Sowohl in der Vorbereitung der Trainingsdaten als Input für ML-Modelle,
als auch im Training und dem Produktiveinsatz von KI spielt Quellcode – in
Abgrenzung zu Parameterwerten und Hyperparametern222 – eine wesentliche
Rolle. „Quellcode“ wird der vom Menschen geschriebene, menschenlesbare
Programmcode genannt, der dann von speziellen Programmen „verstanden“
werden und in Anweisungen an den Computer übersetzt werden kann.223 Er
ist erforderlich, um einem ML-Modell Gestalt zu verleihen, Daten einzulesen,
Daten zu bearbeiten bzw. vorzubereiten, vorgefertigte Modelle einzubinden,
diese mit Daten zu versehen und den Trainingsvorgang anzustoßen. Er ist
quasi das „Drehbuch“ für eine Vorhersage eines Wertes oder die Erzeugung
eines Bildes mittels eines ML-Modells. Er gibt die Akteure vor, ihre Gestalt,
wann sie die Bühne betreten und mit wem sie interagieren. Ist ein ML-Modell
trainiert, kann es mithilfe von Quellcode in die gewünschte Umgebung (etwa
eine Webseite oder eine umfangreiche Analysesoftware) eingebunden und
ausgeführt werden.

D. Trainiertes Modell in Python

Im Umgang mit ML-Modellen, die mit den beschrieben Python-Frameworks
bzw. Bibliotheken erzeugt werden, ist das Ziel der Entwicklung immer ein
fertiges, trainiertes ML-Modell, das schließlich zur Bilderkennung oder Bild-
generierung, Regression oder einer anderen zu Trainingsbeginn definierten
Aufgabe produktiv eingesetzt werden soll. Ein trainiertes Modell stellt mit-
unter den Kern eines neuen Produktes dar, mit dem ein Unternehmen in den
Markt einsteigen möchte. Es ist daher verständlich, dass ein großes Interesse
daran besteht, das Ergebnis exklusiv verwerten und andere von der Nutzung
ausschließen zu können. Fraglich erscheint jedoch, ob das Urheberrecht dies
leisten kann. Wenngleich die Zahl der Konflikte bisher noch überschaubar
sein mag (ein Großteil der Entwicklung von ML-Modellen bewegt sich im
Open Source-Sektor, zudem wird auch noch sehr viel an der Technologie
geforscht, sodass viele Entwickler bereit sind, ihre Ergebnisse freigiebig mit
anderen Forschern zu teilen) so ist es doch absehbar, dass in der Zukunft
durchaus Regelungsbedarf bestehen wird, insbesondere wenn Entwickler be-

222 Vgl. zur Begriffsklärung oben § 2 B.III.6..
223 Vgl. Fischer/Hofer, Lexikon der Informatik, S. 721.
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D. Trainiertes Modell in Python

ginnen, ihre Ergebnisse nicht mehr unter sehr liberale Open Source-Lizenzen
zu stellen (bisher kommen vor allem die MIT- und die BSD-Lizenz zum
Einsatz).224 Aber ist eine Lizenzierung überhaupt möglich? Besteht geistiges
Eigentum an einem fertig trainierten Modell? Oder können andere Rechte in
Anspruch genommen werden?

Um diese Frage zu beantworten, gilt es zunächst, den Begriff „trainiertes
ML-Modell“ genau zu umreißen. Hier wird als „ML-Modell“ jede Form
von Modellen225 erfasst, die unter Einsatz der genannten Frameworks und
Bibliotheken mit Python erzeugt werden können. Eine Beschränkung auf
künstliche neuronale Netze erfolgt nicht, weil die Ausführungen zwar auch,
aber nicht ausschließlich auf künstliche neuronale Netze zutreffen. Was ein
trainiertes ML-Modell technisch ausmacht, wird folgend in § 6 D.II. erläutert.

In der Literatur wird hinsichtlich eines trainierten Modells bisher häufig
entweder nur auf die „Trainingsergebnisse“ abgestellt226 oder implizit unter
dem Begriff „trainiertes künstliches neuronales Netz“ nur die Parameter
bzw. Gewichtungsinformationen berücksichtigt227. Übersehen wird dabei
jedoch, dass es für die Erzielung tauglicher Ergebnisse auch und gerade auf
die Hyperparameter ankommt228 und folglich diese möglicherweise in den
Begriff des trainierten Modells einzubeziehen sind.

I. Vorab: Einsatz eines trainierten Modells

In der Praxis wird beim Einsatz eines ML-Modells für die aufgabengemäße
Verwendung üblicherweise wie folgt vorgegangen, vgl. dazu auch den Teil

224 Vgl. MIT-Lizenz: https://spdx.org/licenses/MIT.html#licenseText (Stand:
22.02.2021); BSD-Lizenz: https://spdx.org/licenses/BSD-3-Clause (Stand:
10.02.2021); „liberal“ bedeutet in diesem Kontext, dass die Lizenzen es nicht
untersagen, den Quellcode in Projekte bzw. Produkte einzubinden, die den
Quellcode nicht für jedermann verfügbar offenlegen, es wird dann auch von
„Non-Copyleft-Lizenzen“ gesprochen, vgl. https://ifross.org/?q=welche-lizenztypen-
gibt-es-bei-open-source-software-und-unterscheiden-sie-sich (Stand: 22.02.2021).

225 Vgl. zum Begriff des Modells schon § 2 B.I.4..
226 Ehinger/Stiemerling, CR 12 2018, 761, 766 Rn. 45; Hauck/Cevc, ZGE 11 2019,

S. 161 ff..
227 Hartmann/Prinz, WRP 12 2018, 1431, 1437 Rn. 62.
228 Dies wird teilweise erkannt und als „Architektur“ oder „Topologie“ bezeichnet,

jedoch stets separat von den Parametern gesehen und nicht als ein Ganzes betrachtet,
vgl. z. B.Dies., WRP 12 2018, 1431, 1434.
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Aufgaben-
spezifiatin

Framewiri-
Auswahl

Daten-
sammlung

Abfassung des 
Quellcides

Daten-
aufereitung

Training Speichern des 
Midells

Midell laden

Input laden

Ausführung Ausgabe des 
Ergebnisses

PriduitveinsatzEntwicilung / Virbereitung / Training

Quellcide 2Quellcide 1

Midellilasse 
laden

Abbildung 6.2: Entstehung eines ML-Modells, vereinfachte, eigene Darstel-
lung.

„Produktiveinsatz“ in der Abbildung 6.2229, nachdem das ML-Modell trainiert
und gespeichert wurde:230

Es wird ein Programm (z. B. in der Programmiersprache Python) entwi-
ckelt, das – mindestens – erforderliche Bibliotheken lädt – vgl. in Abbil-
dung 6.2 Quellcode 2.

Zudem werden – je nach dem welche Elemente des ML-Modells gespei-
chert vorliegen – entweder die gesamte Konfiguration des Modells, also die
Hyperparameter und die Parameter, oder nur einzelne Informationen oder
Informationspakete (abhängig von dem verwendeten Framework) geladen
(„Modell laden“). Alternativ, wenn das gesamte zuvor trainierte ML-Modell-
Objekt im Binärformat gespeichert wurde, wird entsprechend das Objekt
geladen („Modell laden“). Zudem werden die Daten geladen, für die eine
Vorhersage durchgeführt werden soll („Input laden“).

Anschließend wird die Vorhersagefunktion (z. B. predict()) aufgeru-
fen, um das konkrete Problem oder die konkrete Aufgabe (etwa die Objekter-
kennung in einem Bild) zu lösen („Ausführung“). Erst nach der Ausführung
dieses Codes wird die Lösung der Aufgabe oder des Problems ausgegeben.

229 Abbildung 6.2 soll nur dazu dienen, wesentliche Schritte in der Modellentstehung
visuell nachzuverfolgen. Vernachlässigt werden dabei u. a. Prozessschritte iterativer
Überarbeitung und Anpassung sowie Test- und Evaluierungsphasen.

230 Vgl. z. B. für ein Minimalbeispiel in Scikit-Learn, das den hier dargestellten Ab-
lauf in Code umsetzt: https://scikit-learn.org/dev/modules/model_persistence.html#
python-specific-serialization (Stand: 22.02.2021).
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D. Trainiertes Modell in Python

II. Begriff des trainierten Modells

Für die konkrete Problemlösung kommt es also maßgeblich darauf an, was
am Ende der Ausführung von Quellcode 1 abgespeichert wurde, denn das Ab-
gespeicherte wird dann in Quellcode 2 geladen („Modell laden“). Andernfalls
müsste das Modell für jeden Einsatz vollständig neu trainiert werden. Je nach
verwendeter Programmiersprache und Framework stehen dem Entwickler
zum Abspeichern des Modells und seiner Bestandteile unterschiedliche Mög-
lichkeiten zur Verfügung. Die Technologie wird ständig weiterentwickelt,
eine Betrachtung der Möglichkeiten kann folglich nur eine Momentaufnahme
darstellen.

Dennoch ist es der urheberrechtlichen Bewertung zuträglich, sich mit den
bisherigen Möglichkeiten auseinanderzusetzen, um ein Grundverständnis
für die relevanten Vorgänge zu entwickeln. Es folgt daher eine Übersicht der
Speichervarianten jeweils in TensorFlow, Keras, PyTorch und Scikit-Learn.
Identifiziert werden soll dabei, in welcher Form die Ergebnisse gespeichert –
und dementsprechend auch wieder geladen – werden, um anschließend den
passenden urheberrechtlichen Schutz ermitteln zu können. Es werden nur
Lösungen basierend auf der Programmiersprache Python thematisiert, Ziel
ist es aber, am Ende dieses Kapitels auch auf andere Programmiersprachen
übertragbare Grundsätze zu entwickeln.

1. „Trainiertes Modell“ in TensorFlow

TensorFlow ist eine „End-to-End Open Source Machine Learning Plat-
form“.231 Es handelt sich um eine Software-Bibliothek, die seit November
2015232 von Google entwickelt wird und unter der Open Source-Lizenz
Apache License 2.0 für die Entwicklung von Machine Learning-Projekten
zur Verfügung steht. Die Plattform basiert auf der Programmiersprache
Python und ermöglicht es, mittels vorgefertigter Klassen und Funktionen,
ML-Projekte zügig umzusetzen.

TensorFlow bietet verschiedene Möglichkeiten, die durch das Training erar-
beiteten Fortschritte des Modells zu sichern. Zum einen speichert TensorFlow
während des Trainings immer wieder sogenannte Checkpoint-Dateien. Das

231 https://www.tensorflow.org (Stand: 22.02.2021).
232 Geht hervor aus der Versionsgeschichte auf GitHub, https://github.com/tensorflow/

tensorflow/commits/master/RELEASE.md (Stand: 22.02.2021).
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§ 6 Technische Bestandsaufnahme

sind Dateien im für Menschen nicht lesbaren Binärformat, die ein Verzeichnis
berechneter Tensoren,233 also Parameter bzw. Gewichtungsinformationen,
beinhalten.234

Mit jedem Trainingsvorgang wird die aktuellste Checkpoint-Datei geladen
und das Modell damit initialisiert, sodass eine Fortsetzung des Trainings
nach einer Unterbrechung möglich ist und nicht von vorne begonnen werden
muss.235

Ist das Training abgeschlossen, kann das Modell zum Beispiel mittels der
Funktion tf.saved_model.save() exportiert und im Anschluss mit-
tels tf.saved_model.load() wieder eingelesen werden.236 Das hat
zur Folge, dass eine sogenannte ProtocolBuffer-Datei (saved_model.pb) und
zwei Verzeichnisse namens „assets“ und „variables“ erzeugt werden.237 Das
Verzeichnis „variables“ enthält einen Training-Checkpoint, „assets“ enthält
zusätzliche Informationen (zum Beispiel Textdateien für Vokabeltabellen,
falls textverarbeitende Modelle entwickelt werden).238 TensorFlow stellt au-
ßerdem (noch, dies ist eine Funktion aus der TensorFlow Version 1) die
Funktionalität Saver.save() bereit, mit der bei entsprechender Einstel-
lung vier Dateien erzeugt werden können – eine enthält dann die Parameter
(.data), eine zweite weitere Informationen zum Checkpoint-Index (.index),
eine dritte eine Liste aller zu speichernden Checkpoints (.pb) und eine die
Graph-Struktur (.meta).239

Fraglich ist also, welche dieser bereitgestellten Funktionalitäten dem
Schutzgegenstand „trainiertes ML-Modell“ im Sinne dieser Arbeit entspricht.
Die Checkpoints enthalten keine Informationen über die Struktur des Mo-
dells, sind also nicht dazu einsetzbar, das Modell ohne anderweitige In-
formationen zu laden. Dazu sind hingegen grundsätzlich die Ergebnisse
von Saver.save() und tf.saved_model.save() geeignet. Diese
Arbeit stellt daher im weiteren Verlauf auf die Ergebnisse der Aufrufe von
tf.saved_model.save() sowie Saver.save() ab, wenn es um ein
„trainiertes Modell“ in TensorFlow geht.

233 Zum Begriff vgl. Fußnote 121; eine Einführung in Tensoren gibt auch TensorFlow:
https://www.tensorflow.org/guide/tensor (Stand: 22.02.2021).

234 https://www.tensorflow.org/guide/checkpoint (Stand: 22.02.2021).
235 Initialisierung: Setzen von Anfangswerten bei Start eines Programmes, vgl. auch

https://www.dwds.de/wb/Initialisierung (Stand: 22.02.2021).
236 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).
237 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).
238 Vgl. https://www.tensorflow.org/guide/saved_model (Stand: 22.02.2021).
239 Vgl. https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/Saver (Stand:

22.02.2021).
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D. Trainiertes Modell in Python

2. „Trainiertes Modell“ in Keras

Auf der Projekt-Website wird Keras beschrieben als „The Python Deep
Learning Library“, bzw. als „High-Level Neural Network API“, die auf Ten-
sorFlow aufsetzt.240 Keras stellt diverse Möglichkeiten bereit, ein trainiertes
Modell zu exportieren bzw. zu speichern.241

– model.save(<Dateipfad>) Erzeugt eine Datei im binären HDF5-
Format (*.h5), die die Architektur des Modells beinhaltet sowie die
berechneten Gewichte, die Trainingskonfiguration (etwa die Verlust-
und Optimierungsfunktion)242 sowie den Zustand des Optimierers243 im
Zeitpunkt des Abspeicherns.244 Mithilfe dieser Datei kann das Training
dort fortgesetzt werden, wo es unterbrochen wurde. Alternativ kann auch
das SavedModel-Format von TensorFlow verwendet werden.

– model.to_json() / model.to_yaml() Speichert nur die Ar-
chitektur des Modells in einem menschenlesbaren Format (nicht bi-
när, sondern strukturierte Textdaten entweder im JSON- oder YAML-
Format).245

– model.save_weights() Erzeugt eine .h5-Datei, die nur die Ge-
wichtsinformationen enthält.246 Diese können dann in ein Modell geladen
werden. Mithilfe der Layer-Namen können Inhalte – Gewichte – selektiert
werden.

– keras.callbacks.ModelCheckpoint(...) Damit kann das
Modell z. B. nach jeder Epoche gespeichert werden – die Funktion ruft
dann entweder model.save_weights() oder model.save() auf.247

240 Vgl. https://keras.io (Stand: 22.02.2021).
241 Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/guide/keras/

save_and_serialize?hl=en (Stand: 22.02.2021), bzw. Keras-API-Dokumentation,
https://keras.io/api/models/model_saving_apis/ (Stand: 22.02.2021).

242 Funktionen, die errechnen, wie weit das Modell vom gewünschten Zielwert – vorge-
geben z. B. durch die Labels der Trainingsdaten – entfernt ist, vgl. auch § 2 B.III.7..

243 Der „Optimierer“ ist eine Funktionalität, die zwischen Verlustfunktion und Modell
eine Rückkopplung herstellt und die Parameter des Modells entsprechend anpasst.

244 Vgl. Keras-Dokumentation, https://keras.io/api/models/model_saving_apis/#save-
method (Stand: 22.02.2021).

245 Vgl. Keras-Dokumentation, https://keras.io/api/models/model_saving_apis/#tojson-
method (Stand: 22.02.2021).

246 Vgl. https://keras.io/api/models/model_saving_apis/#saveweights-method (Stand:
22.02.2021).

247 Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/api_docs/
python/tf/keras/callbacks/ModelCheckpoint (Stand: 22.02.2021).
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§ 6 Technische Bestandsaufnahme

– keras.utils.plot_model(model, ...) Konvertiert ein Ke-
ras-Modell in ein Format, das eine grafische Ausgabe der Architektur
bzw. der Hyperparameter des Modells erzeugt.248

Dem „trainierten Modell“ im Sinne dieser Arbeit entspricht in Keras das
Ergebnis von model.save(<Dateipfad>), da hier alle Informationen,
die zur Ausführung des Modells erforderlich sind, abgelegt werden.

3. „Trainiertes Modell“ in PyTorch

Auf der PyTorch-Website wird PyTorch beschrieben als ein „Open Source
Machine Learning Framework, das den Weg vom Research Prototyping zum
Production Deployment beschleunigt“,249 also von der Entwicklung bis zum
Einsatz des fertig trainierten Modells in der Zielumgebung verwendet werden
kann.

Auch in PyTorch gibt es unterschiedliche Möglichkeiten, Trainingsergeb-
nisse bzw. ML-Modelle zu speichern:

– torch.save(the_model.state_dict(), PATH) speichert
und lädt nur die Modellparameter.250

– torch.save(the_model, PATH) speichert und lädt das gesamte
Modell als ein Objekt, dabei wird ein Tool verwendet, das sich „Pickle“
nennt.251

248 Vgl. TensorFlow-Keras-Dokumentation, https://www.tensorflow.org/api_docs/
python/tf/keras/utils/plot_model (Stand: 22.02.2021).

249 https://pytorch.org/ (Stand: 22.02.2021)
250 PyTorch-Dokumentation, https://pytorch.org/tutorials/beginner/saving_loading_

models.html (Stand: 22.02.2021).
251 Das Pickle-Modul in Python implementiert binäre Protokolle für die Serialisie-

rung und Deserialisierung von Python-Objektstrukturen. „Pickling“ ist der Vor-
gang durch den eine Python-Objekthierarchie in einen Byte-Stream umgewandelt
wird, und „unpickling“ ist der umgekehrte Vorgang, bei dem ein Byte-Stream
zurück in eine Objekthierarchie gewandelt wird. Der Dateiinhalt ist nicht „men-
schenlesbar“, sondern nur für das Laden in ein Programm vorgesehen; https:
//docs.python.org/3/library/pickle.html (Stand: 22.02.2021).
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D. Trainiertes Modell in Python

– torch.nn.Module.load_state_dict() Lädt die Parameter ei-
nes Modells in Form eines Dictionaries252 unter Verwendung eines dese-
rialisierten (also „unpickled“) state_dict-Objektes.253

Ein state_dict ist ein Python Dictionary-Objekt, das die Beziehungen
jeder Schicht des Modells zu ihrem Parameter-Tensor enthält.

Optimiererobjekte haben ebenfalls ein state_dict, das Informationen
über den Zustand des Optimierers enthält, sowie die verwendeten Hyperpa-
rameter.254

Das Ergebnis eines Aufrufs von torch.save(the_model, PATH)
entspricht dem, was hier als „trainiertes Modell“ verstanden wird, denn
die anderen beiden Funktionen speichern im Gegensatz dazu nur einzelne
Bestandteile des Modells und sind im Ergebnis nicht ausreichend, um das
Modell ohne weitere Informationen über die Architektur wiederherzustellen.

4. „Trainiertes Modell“ in Scikit-Learn

Scikit-Learn stellt simple und effiziente Tools für Data Mining und Da-
tenanalyse zur Verfügung, die frei zugänglich und unter der Open Source
BSD-Lizenz verfügbar sind.255 Bezüglich der Speicherung eines Modells
verweist die Dokumentation von Scikit-Learn zum einen auf die Pickle-
Funktionalität von Python, und erwähnt zum anderen die Möglichkeit, das
erstellte und trainierte Modell in andere Formate zu exportieren.256 Aus der
exportierten Form kann das Modell nicht weiter trainiert, sondern „nur noch“
für Vorhersagen – also den Produktiveinsatz – verwendet werden.257

252 Ein Dictionary-Objekt ist ein Objekt, das wie ein Nachschlagewerk funktioniert:
Unter Schlüsselwörtern (keys) sind Informationen abrufbar

253 PyTorch-Dokumentation, https://pytorch.org/tutorials/beginner/saving_loading_
models.html#save-load-state-dict-recommended (Stand: 22.02.2021).

254 Output der state_dict-Datei, insb. des Optimizer state dict einsehbar auf der
Website https://pytorch.org/tutorials/beginner/saving_loading_models.html, zuletzt
abgerufen am 22.02.2021.

255 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/index.html (Stand:
22.02.2021).

256 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model_
persistence.html (Stand: 22.02.2021).

257 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model_
persistence.html (Stand: 22.02.2021).
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Die Autoren von Scikit-Learn beschreiben den Prozess, ein mit zukünfti-
gen Versionen des Frameworks zuverlässig wiederherstellbares Modell zu
speichern: Es ist nicht nur das Modell zu speichern, sondern auch die Meta-
daten (hier: die Trainingsdaten, der Python-Quellcode mit dem das Modell
erstellt wurde, die Scikit-Learn-Version und eventuelle Abhängigkeiten zu
anderen Tools, sowie der Kreuzvalidierungswert der mit den Trainingsda-
ten erzielt wurde, damit geprüft werden kann, ob das Modell erfolgreich
wiederhergestellt wurde).258

Das Speichern eines „trainierten Modells“ im Sinne dieser Arbeit erfolgt
also wie schon in PyTorch mithilfe des Pickle-Moduls, eine Scikit-Learn-
spezifische Methode muss dafür nicht zum Einsatz kommen, sondern es
werden die „Bordmittel“ von Python eingesetzt.

III. Zusammenfassung und Definition

Ziel des Trainings eines ML-Modells ist es, ein Softwaregebilde zu schaffen,
das reproduzierbar und zuverlässig für den gleichen Input die gleichen Vor-
hersagen bzw. Ergebnisse (Output) liefert. Dies kann nur erreicht werden,
indem die während des Trainings noch manipulierbare Struktur des Modells
am Ende des Trainings eingefroren und wiederabrufbar gemacht wird. Dazu
unerlässlich sind

– Hyperparameter,
– Parameter, und
– Quellcode.

Die Hyperparameter sind erforderlich, weil sie das „Gerüst“ des Modells
beschreiben. Die Parameter sind erforderlich, weil sie das Gerüst des Modells
mit Werten füllen. Der passende Quellcode führt alles zusammen.

Ein trainiertes ML-Modell liegt also vor, wenn eine Dateistruktur exis-
tiert, die von einem Quellcode oder Script verwendet wird, wobei das daraus
entstehende Modellobjekt ohne weitere Zwischenschritte zur bei Entwick-

258 Vgl. Scikit-Learn-Dokumentation, https://scikit-learn.org/stable/modules/model_
persistence.html (Stand: 22.02.2021).
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E. Trainierter Random Forest in R
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Funkton speichert:

Technologie:

Abbildung 6.3: Überblick über Speichervarianten in den untersuchten Fra-
meworks, eigene Darstellung.

lung des Modells angestrebten Problemlösung eingesetzt werden kann.259

Grundsätzlich ist also immer ein aufrufender Quellcode bzw. ein aufrufendes
Skript erforderlich, sowie eine oder mehrere Dateien, die Informationen über
das Modell enthalten. Der Grad zwischen Quellcode bzw. Skript und Datei,
auf dem die Informationen verteilt sind, ist je nach verwendetem Framework
unterschiedlich. Für einen abschließenden Überblick vgl. Abbildung 6.3.

E. Trainierter Random Forest in R

Da sich für ein Random Forest-Modell, das nicht in Python, sondern in R
konzipiert und trainiert wurde,260 Unterschiede im Vergleich zur Implemen-
tierung in Python ergeben, erfolgt hier eine differenzierte Darstellung.

259 Theoretisch wäre es auch denkbar, ein trainiertes Modell zu erzeugen, das auch
ohne Ablage in Dateien im Arbeitsspeicher eines Rechners mit endloser Runtime
für immer existiert. Ein solches, doch eher fernliegendes, Konstrukt soll jedoch hier
von der Definition nicht erfasst sein.

260 Die Verwendung der Programmiersprache R scheint für Random Forests nahezu so
verbreitet wie Python, und soll deshalb hier auch Berücksichtigung finden.
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Ein trainiertes Random Forest-Modell enthält eine Vielzahl von unglei-
chen Entscheidungsbäumen.261 Jeder Entscheidungsbaum besteht aus einer
Vielzahl an Knoten, die jeweils ein Feature hinsichtlich eines Schwellwertes
überprüfen. „Trainiert“ werden die Schwellwerte, anhand derer entschieden
wird, ob ein Datensatz zum linken oder rechten Tochterknoten weitergeleitet
wird. Im Ergebnis entsteht eine als Tabelle abrufbare Datensammlung, die
– in der Implementierung des Pakets „randomForest“ in der Programmier-
sprache R – für jeden konstruierten Baum in sechs Spalten die Baumstruktur
enthält262.

Folgende sechs Spalten entstehen dabei:

– Linker Tochterknoten
– Rechter Tochterknoten
– Gewählte Split-Variable bzw.

Feature
– Split-Point bzw. Schwellenwert

– Status: handelt es sich um einen
Endknoten?

– Vorhersage (nur für Endknoten
relevant)

Diese Spalten enthalten alle Informationen, die zur Durchführung der
Vorhersagen für neue Daten erforderlich sind. Für den Produktiveinsatz
eines Random Forest in R ist folglich der Zugriff auf die so entstandene
Tabelle ausreichend, diese stellt für den weiteren Verlauf der Prüfung der
Schutzmöglichkeiten von mit R entwickelten Random Forest-Modellen den
Schutzgegenstand dar.

F. Trainierte Parameter

Ein zentrales Element von ML-Modellen sind die Werte, die vielfach „Ge-
wichte“, „Gewichtungsinformationen“ oder „Trainingsergebnisse“ genannt
werden. In den einschlägigen Frameworkbeschreibungen ist hingegen ne-

261 Für eine ausführlichere Erklärung vgl. § 2 B.II.1..
262 Liaw/Wiener, R News 2 Nr. 3 2002, S. 4.
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G. Hyperparameter

ben „Weights“263 auch von Parametern,264 bzw. trainierbaren Parametern265

die Rede. Diese werden stets kontrastiert mit „Hyperparametern“,266 oder
auch „System-“ oder „Metaparametern“.267 Es handelt sich um Werte, die
sich in einem Modell-Optimierungsprozess („Training“) nicht (automatisch)
verändern.268

Trainierte Parameter, die aus dem Training eines Modells mit sorgfältig
ausgewählten Trainingsdaten und einer entsprechenden Architektur hervor-
gehen, füllen das Modell mit Inhalt. Ohne die richtigen Parameter kann ein
Modell nicht die richtigen Vorhersagen treffen. Es liegt daher nahe, auch die
Sammlung der Parameterwerte als Schutzgegenstand ins Auge zu fassen.

G. Hyperparameter

Als Schutzgegenstand diskutiert werden auch die Hyperparameter, auch „To-
pologie des Netzes“269 genannt. Wie bereits erläutert,270 hat die korrekte
Auswahl der Anzahl zu verwendender Schichten, der Menge Neuronen je
Schicht, verwendeter Funktionen und Rückkopplungen innerhalb der Struktur
einen wesentlichen Einfluss darauf, wie gut das KNN gestellte Aufgaben
lösen kann.271 Hyperparameter sind außerdem nicht nur für KNNs relevant,
sondern für verschiedenste ML-Modelle – auch die Struktur von Random
Forests wird unter anderem die maximale Baumtiefe, die Anzahl ausge-
werteter Features etc. durch Hyperparameter vorgegeben. Eine sorgfältige
Auswahl der passendsten Hyperparameter verleiht einem Modell die Struktur,
die es braucht, um taugliche Ergebnisse zu produzieren. Die Hyperparame-

263 Weights: Keras, https://keras.io/api/models/model_saving_apis/ (Stand:
22.02.2021), TensorFlow, https://www.tensorflow.org/guide/saved_model?hl=en
(Stand: 22.02.2021).

264 TensorFlow, https://www.tensorflow.org/guide/checkpoint?hl=en (Stand:
22.02.2021), PyTorch https://pytorch.org/tutorials/beginner/saving_loading_
models.html (Stand: 22.02.2021).

265 PyTorch, https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-
is-a-state-dict (Stand: 22.02.2021).

266 Vgl. z. B. Osinga, Deep Learning Cookbook, S. 21; Nielsen, Neural Networks and
Deep Learning, Kap. 1.

267 Ertel, Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, S. 304.
268 Vgl. zur Begriffsklärung auch schon oben § 2 B.III.6..
269 Hartmann/Prinz, WRP 12 2018, 1431, 1434.
270 S. oben § 2 B.II.2..
271 Vgl. auch Nielsen, Neural Networks and Deep Learning, Kapitel „Implementing our

network to classify digits“.
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§ 6 Technische Bestandsaufnahme

ter werden mitunter immer weiter angepasst, sodass sie das Ergebnis eines
langwierigen Entwicklungsprozesses darstellen können. Dementsprechend
könnten auch die vom Entwickler gewählten Hyperparameter urheberrecht-
lichen Schutzes bedürfen, und sind im weiteren Verlauf als eigenständiger
Schutzgegenstand aufzufassen.

H. Zusammenfassung

Ziel dieses Kapitels war es, Klarheit zu schaffen in Bezug auf die Bestandteile
von ML-Modellen, um unmissverständliche Schutzgegenstände zu identifi-
zieren, die im nächsten Kapitel auf ihre Schutzfähigkeit untersucht werden
können. Dafür wurden zunächst die Grundbausteine für ML-Modelle iden-
tifiziert, für die sich keine (urheberrechtlichen) Besonderheiten gegenüber
den Grundbausteinen anderer Software ergeben.

Sodann wurde der Begriff des „trainierten Modells“ untersucht, und was
darunter je nach eingesetzter Technologie zu verstehen ist. Aus den Erkennt-
nissen wurde eine die Gemeinsamkeiten der untersuchten Technologien her-
vorhebende allgemeine Definition für den Begriff des „trainierten Modells“
aufgestellt: Als „trainiertes Modell“ versteht diese Arbeit eine Dateistruk-
tur (also permanent gespeicherte Informationen), die von einem Quellcode
(Quellcode 2 in Abbildung 6.2) verwendet wird, wobei das daraus entste-
hende Modellobjekt ohne weitere Zwischenschritte zur bei Entwicklung des
Modells angestrebten Problemlösung eingesetzt werden kann. Neben dem
Objekt „trainiertes Modell“ wurden zudem die einzelnen Bestandteile Quell-
code, Hyperparameter und Parameter der Modelle als mögliche unabhängige
Schutzgegenstände identifiziert. Für in der Sprache R entwickelte Random
Forests bzw. Entscheidungsbaummodelle ist wesentlicher Schutzgegenstand
die durch das Training ermittelte bzw. ermittelbare Tabelle.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten
Schutzrechten

A. Einleitung

I. Forschungsstand

Bisher wird Schutz für ML-Modelle insbesondere unter dem Dach des Com-
puterprogrammschutzes diskutiert,272 teilweise wird dies auch strikt abge-
lehnt273 oder es erfolgt eine differenzierte274 Betrachtung. Andere diskutieren
zwar eine Einordnung als Datenbank (insbesondere im Lichte des Leistungs-
schutzrechtes), kommen hier jedoch entweder zu keinem einen Schutz be-
jahenden Ergebnis,275 oder wagen den Versuch einer Subsumtion erst gar
nicht276. Wieder andere ziehen sogar den Tonträgerschutz als Möglichkeit
heran, Modellen doch noch zu einem Schutz zu verhelfen, wenngleich unklar
ist, wie dies in der Praxis auszusehen hätte.277

II. Hier gewählter Lösungsansatz

An dieser Stelle erfolgt daher unter Berücksichtigung der zuvor dargestellten
technischen Gegebenheiten ein Perspektivwechsel, der Klarheit hinsichtlich
der Schutzmöglichkeiten schaffen soll. Berücksichtigt wird neben den im

272 Iglesias Portela/Shamuilia/Anderberg, Intellectual Property and Artificial Intelli-
gence: A Literature Review: EUR 30017 EN, S. 9; Linke, GRUR Junge Wissenschaft
2019, S. 47.

273 Sehr verallgemeinernd z. B. Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn.
21; KI auf Algorithmen reduzierend Hauck/Cevc, ZGE 11 2019, 135, 159; nur sehr
eingeschränkt den Datenbankschutz für möglich haltend Apel/Kaulartz, RDi Nr.1
2020, 24, 28 f..

274 Gomille, JZ Nr. 20 2019, 969, 970; Ehinger/Stiemerling, CR 12 2018, 761, 765
Rn. 41; Hartmann/Prinz, WRP 12 2018, 1431, 1436; BT-Drs. 19/23700 S. 69
(Bericht der Enquete-Kommission KI).

275 Hauck/Cevc, ZGE 11 2019, 135, 161 f.; Hartmann/Prinz, WRP 12 2018, 1431, 1437;
Loewenheim–Leistner/Zurth, Handbuch Urheberrecht, § 49 Rn. 146; Haberstumpf ,
GRUR 2003, 14, 19.

276 Kaulartz/Braegelmann, Rechtshandbuch Artificial Intelligence, Kap. 7.1 Rn. 24 ff..
277 Nägele/Apel in Dies., Rechtshandbuch Artificial Intelligence, Kap. 7.1 Rn. 50.

117

https://doi.org/10.5771/9783748912453-95 - am 12.01.2026, 11:19:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

Urheberrecht infrage kommenden Vorschriften über den Schutz als Daten-
bankwerk (§ 4 Abs. 2 UrhG), als Computerprogramm (§ 69a UrhG) und
als sonstiges Werk (§ 2 UrhG) auch ein Schutz durch das Datenbankher-
stellerrecht (§§ 87a ff. UrhG). Ermittelt wird ein Schutz für die folgenden
zuvor erläuterten Schutzgegenstände: trainiertes ML-Modell in Python (insb.
trainiertes KNN), trainierter Random Forest in R, trainierte Parameter, Hy-
perparameter, sowie das untrainierte Modell (in Kombination aus Hyper-
parametern und Parametern). Dabei wird jeder Schutzgegenstand für sich
genommen anhand der infrage kommenden Vorschriften geprüft, und zwar
das trainierte Modell in Python in § 7 B., der trainierte Random Forest in
§ 7 C., die trainierten Parameter in § 7 D., die Hyperparameter in § 7 E. und
das untrainierte Modell in § 7 F..

B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

Aus den vorangegangenen Erläuterungen278 geht hervor, dass der Entwickler
eines ML-Modells entscheiden kann, was am Ende des Trainingsvorgangs in
einer Datei abgelegt wird. In einem nächsten Schritt gilt es nun, herauszu-
finden, ob die so abgelegten Modellbestandteile einem urheberrechtlichen
Schutz zugänglich sind.

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG

Um einen urheberrechtlichen Schutz im Sinne von § 4 Abs. 2 UrhG zu genie-
ßen, müsste eine Datenbank folgende Voraussetzungen erfüllen: Erforderlich
ist ein Datenbankwerk in Form einer Sammlung voneinander unabhängiger
Elemente, die systematisch oder methodisch angeordnet und einzeln mit
Hilfe elektronischer Mittel oder auf andere Weise zugänglich sind. Ferner
muss die Sammlung aufgrund der Auswahl oder Anordnung eine persönliche
geistige Schöpfung darstellen.

278 S. oben § 6 D..
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

1. Datenbankwerk

Gemäß der Legaldefinition in § 4 Abs. 2 UrhG ist ein Datenbankwerk ein
Sammelwerk, dessen Elemente systematisch oder methodisch angeordnet
und einzeln mit Hilfe elektronischer Mittel oder auf andere Weise zugänglich
sind. Sammelwerk wiederum ist eine Sammlung von Werken, Daten oder an-
deren unabhängigen Elementen, die aufgrund der Auswahl oder Anordnung
der Elemente eine persönliche geistige Schöpfung darstellen (§ 4 Abs. 1 Ur-
hG). Zunächst ist also zu klären, ob ein trainiertes Netz die strukturellen
Anforderungen an ein Datenbankwerk grundsätzlich erfüllt. Die Betrachtung
hinsichtlich der Werkqualität des trainierten Netzes erfolgt in einem zweiten
Schritt.

a) Sammlung

Ein trainiertes KNN müsste folglich eine Sammlung von Elementen darstel-
len. Elemente können gem. § 4 Abs. 1 UrhG Werke im Sinne von § 2 Abs. 2 Ur-
hG, aber auch Daten und andere unabhängige Elemente sein.279 Eine Samm-
lung ist eine Zusammenstellung mehrerer solcher Elemente. Den Elementen
einer Sammlung muss kein Werkcharakter anhaften, es genügt, dass sie
lediglich informationellen Wert aufweisen.280

Analog zum Vorgehen bei den eingangs präsentierten vier Frameworks
wird erneut eine Untersuchung hinsichtlich der für die Sammlung infrage
kommenden Elemente vorgenommen.

aa) TensorFlow

In TensorFlow könnte zum einen auf die durch jeden Aufruf von Sa-
ver.save() erzeugten vier Dateien abgestellt werden.281 Es wird mithin
nicht darauf rekurriert, dass – bzw. ob – ein einzelner Parameter bzw. eine
einzelne „Gewichtungsinformation“ als Elemente anzusehen sind, sondern
ob die genannten Dateien insgesamt Elemente einer Sammlung darstellen.

279 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 9; Wandtke/Bullinger–Marquardt, PK UrhR,
§ 4 Rn. 4.

280 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 9; Wandtke/Bullinger–Marquardt, PK UrhR,
§ 4 Rn. 4.

281 Vgl. Ausführungen in § 6 D.II.1..
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

In TensorFlow gibt es darüber hinaus die Möglichkeit, mit der SavedMo-
del-Variante alle Informationen gesammelt in einer Protocol Buffer-Datei
zu speichern (*.pb / *.pbtxt).282 In beiden Fällen wären die Elemente jeweils
zumindest die Graph-Struktur (also Hyperparameter) und die Parameter (Ge-
wichtungsinformationen), für Variante 1 kommen noch der Checkpoint-Index
sowie eine Liste der erstellten Checkpoints hinzu, die Sammlungen bestünden
entweder in der durch Saver.save() erzeugten Zusammenstellung oder
aber der Protocol Buffer-Datei.

bb) Keras

Der Sammlung entspricht in Keras die mit model.save(Dateipfad)
erstellte .h5-Datei. In der Datei liegen sämtliche Informationen vor, die da-
zu benötigt werden, das trainierte Netz wiederherzustellen. Elemente der
Sammlung sind die Architektur des Modells (die dazugehörigen Hyperpara-
meter), die Parameter (die „Gewichte“), die Trainingskonfiguration sowie
der Zustand des Optimierers.283 Auch hier wird nicht auf die einzelnen Ge-
wichtsinformationen als Elemente abgestellt, sondern auf deren Sammlung
in der .h5-Datei.

cc) PyTorch

PyTorch stellt mit torch.save(...) eine Funktion bereit, mit der das
ganze KNN-Modell in serialisierter Form in einer Datei abgelegt wird. Dabei
wird das Python-Tool „Pickle“284 eingesetzt. Dies hat allerdings auch zur
Folge, dass etwa die Modellklasse285 nicht „gepicklet“ wird, sondern nur
eine Referenz zu der Datei, in der die Klasse definiert ist. Diese darf nicht
verändert werden, wenn das Modell erfolgreich wieder geladen werden soll.
Die Elemente entsprechen auch hier wieder den verschiedenen Hyperpara-
metern und Parametern, und der Untersuchungsgegenstand „Sammlung“ ist

282 S. oben § 6 D.II.1..
283 Vgl. § 6 D.II.2..
284 Name abgeleitet aus dem Englischen to pickle – konservieren / einlegen, vgl. „pickle“,

Merriam-Webster.com, 2019, https://www.merriam-webster.com, zuletzt abgerufen
am 22.02.2021.

285 Also die abstrakte Definition der Modellart – vgl. zur Erklärung des Begriffs der
„Klasse“ § 6 A.III..
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

die durch Ausführung der Funktion torch.save(...) bewirkte Zusam-
menstellung dieser Elemente.

dd) Scikit-Learn

Unter Zuhilfenahme von joblib.dump(...) oder pickle.dump(...)
kann das gesamte mit Scikit-Learn erstellte Modell gespeichert werden. Das
Modell – in Scikit-Learn repräsentiert als ein einzelnes Objekt – enthält in
den ihm zugewiesenen Eigenschaften die Hyperparameter und Parameter,
mithin die Elemente des trainierten KNN als Datensammlung.

ee) Zusammenfassung und Subsumtion

Entgegen der andernorts vorgenommenen Einschränkung auf die Gewich-
tungsinformationen eines KNN286 werden diese hier explizit nur als ein
Element der Sammlung verstanden. Die Sammlung „trainiertes Modell“
besteht vielmehr aus den folgenden Elementen:

– Architektur des Modells (repräsentiert durch eine Kombination von Hy-
perparametern – Anzahl Schichten, Anzahl Neuronen je Schicht etc.),

– sonstige Hyperparameter (etwa die Aktivierungsfunktionen)
– sowie Parameter (als ein Element).

Fraglich erscheint, ob auch der Quellcode oder ein Skript zur Initialisierung
des Netzes als Bestandteil der Sammlung eingeordnet werden müsste. Dieser
ist jedoch erforderlich, um auf die Daten überhaupt zugreifen zu können. Ihn
als Bestandteil der Sammlung zu verstehen, wäre mithin widersprüchlich,
und ist gem. § 4 Abs. 2 S. 2 UrhG außerdem ausgeschlossen. Der Quell-
code wird hier folglich aus der Begriffsdefinition des trainierten Netzes
herausgenommen. Dennoch kann dieser freilich unabhängig davon einem
Computerprogrammschutz gem. § 69a UrhG zugänglich sein.287

Funktionen, die lediglich zum Training des KNN erforderlich sind, gehören
ebenfalls nicht zur Sammlung „trainiertes Modell“. Nur dann, wenn das KNN
zur Weiterentwicklung bereitgestellt werden sollte, könnte es sinnvoll sein,

286 Vgl. etwa Ehinger/Stiemerling, CR 12 2018, 768 f..
287 Vgl. dazu aa).
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

auch diese Hyperparameter in die Sammlung aufzunehmen. Gleiches gilt
dann entsprechend auch für den Quellcode.

b) Unabhängige Elemente

Fraglich erscheint, ob den einzelnen Elementen der Sammlung ein von den
anderen Elementen unabhängiger Informationsgehalt zukommen muss. Dass
sie selbst nicht auch Werke sein müssen, geht aus § 4 Abs. 1 S. 1 UrhG hervor,
der explizit von „Werken“, „Daten“ und „anderen unabhängigen Elementen“
spricht.

Nach dem Wortlaut des § 4 Abs. 1 S. 1 UrhG müssen sämtliche Elemente
jedenfalls „unabhängig“ sein, wobei zu klären ist, welche Qualität diese
Unabhängigkeit aufweisen muss.

Grundsätzlich sind die Elemente einer Sammlung unabhängig, wenn sie
sich trennen lassen, ohne dass der Wert ihres informativen, literarischen,
künstlerischen, musikalischen oder sonstigen Inhalts dadurch beeinträchtigt
wird. 288 Dieses Kriterium soll unter anderem verhindern, dass etwa Mu-
sikstücke als Sammelwerk ihrer Töne, oder ein Buch als Sammelwerk der
Buchstaben geschützt würde.289 In diesen Fällen gewinnen die einzelnen
Bestandteile ihren Sinn erst aus dem Kontext mit den anderen Elementen:
Ein einzelner Ton etwa ergibt für den Hörer noch keinen „Sinn“, im Gegen-
satz zum Abspielen einer Phrase oder des gesamten Stücks (ggf. wäre zu
untersuchen, ob sich diese Argumentation auch hält, wenn ein umfassendes
Musikwerk – etwa eine Sinfonie – mit ihren einzelnen Passagen betrachtet
wird, sodass die Bestandteile nicht einzelne Töne, sondern etwa musikalische
Motive wären – auch Kombinationen können zumindest nach europäischer
Rechtsprechung Elemente darstellen 290). Die Elemente dürfen also nicht erst
aus der Gesamtschau, sondern müssen auch alleinstehend Sinn ergeben,291 je-
doch kann der Sinn auch durch ein „formales Anordnungsprinzip erzeugt“292

288 EuGH GRUR 2005, 254, 255, Rn. 29 – Fixtures-Fußballspielpläne II;
Schricker/Loewenheim–Leistner, Urheberrecht, § 4 Rn. 18.

289 Nordemann/Fromm–Czychowski, UrhR, § 4 Rn. 24; Dreier/Schulze–Dreier, UrhG,
§ 4 Rn. 10.

290 EuGH GRUR 2005, 254, 255, Rn. 35 – Fixtures-Fußballspielpläne II; EuGH MMR
2016, 51, 52, Rn. 20 f. – Verlag Esterbauer.

291 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 10; Schricker/Loewenheim–Leistner, Urhe-
berrecht, § 4 Rn. 18.

292 Nordemann/Fromm–Czychowski, UrhR, § 4 Rn. 28.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

werden. Als Beispiel wird etwa eine Sammlung von Postleitzahlen herange-
zogen:293 eine einzelne fünfstellige Zahlenfolge, wie etwa 70839, ergibt für
sich genommen wenig Sinn. Erst das Wissen darüber, dass es sich um eine
Postleitzahl handelt, eröffnet Informationen darüber, dass etwa bestimmte
Straßen diesem Postleitzahlenbereich zugeordnet sein könnten.

Bezüglich des Informationsgehaltes eines Elements ist darüber hinaus
nicht maßgeblich, welcher Informationsgehalt dem Element nach der Zweck-
bestimmung der Sammlung zukäme, sondern jeder denkbare Informations-
wert.294

Das Abrufen einzelner, wie oben definierter Elemente (abgestellt wird
nicht nur auf die trainierten Parameter, sondern auch auf die Hyperparameter,
vgl. ee)) aus einem KNN liefert Informationen über die verwendeten Aktivie-
rungsfunktionen, die Anzahl der Schichten und alle weiteren Informationen,
die in der Sammlung „trainiertes Modell“ enthalten sein können. Jedes ein-
zelne Element trifft dabei eine Aussage über das betreffende Modell. Diese
Elemente haben also jeweils einen eigenen Aussage- bzw. Informationsgehalt
und sind mithin unabhängig.295

Fraglich könnte sein, ob die Elemente einer Datenbank gleichartig sein
müssen: Die Elemente der Sammlung „trainiertes Modell“ können nicht
nur Zahlenwerte sein („Anzahl Schichten“, „Anzahl Neuronen“ etc.) son-
dern auch Funktionsnamen (Art der Aktivierungsfunktion, Kostenfunktion
etc.) und auch Zusammenstellungen vieler Zahlenwerte in einem Element
(Parameter). Denkbar wäre zu argumentieren, es handele sich bei allen Infor-
mationen zu einem einzigen trainierten KNN um lediglich einen Datensatz,
und nur bei einer Zusammenstellung mehrerer trainierter Modelle könne
von einer Sammlung gesprochen werden. Dem ist zu entgegnen, dass zwar
in einer Briefmarkensammlung bestimmte Briefmarken gesammelt, und in
einer Zeitschriftendatenbank bestimmte Zeitschriften erfasst sind, dass aber
Sammlungen sich auch mit einem bestimmten Thema befassen können, das
alle Elemente verbindet, so unterschiedlich diese im Einzelnen auch sein
mögen, wie es etwa in Ausstellungen296 üblicherweise der Fall ist. Ferner
kann auch schon ein einzelnes topografisches Datenblatt eine Datenbank

293 Nordemann/Fromm–Czychowski, UrhR, § 4 Rn. 26.
294 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 18.
295 Die Unabhängigkeit „der Elemente“ ablehnend Apel/Kaulartz, RDi Nr.1 2020, 24,

29, ohne jedoch die Elemente tiefergehend zu analysieren.
296 Vgl. z. B. LG München I ZUM-RD 2003, 492, 498 f. – Jemen-Ausstellung.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

darstellen.297 Die Verschiedenheit der Art der Elemente steht demzufolge
hier einem Schutz nicht entgegen.

Die Sammlung „trainiertes Modell“ besteht also aus unabhängigen Ele-
menten im Sinne von § 4 Abs. 1 S. 1 UrhG.298

c) Systematische oder methodische Anordnung

Gem. § 4 Abs. 2 S. 1 UrhG müssten die Elemente nicht nur unabhängig,
sondern auch systematisch oder methodisch angeordnet sein. Erforderlich ist
also, dass der Anordnung ein gewisses System zugrunde liegt, das auch in
einem Ordnungsschema oder einer Klassifizierung bestehen kann, oder die
Anordnung müsste – methodisch – auf einer ordnenden Handlungsanweisung
oder einem Plan basieren.299

Wenn die Elemente in einer für das erneute Einlesen vorgesehenen Datei
gesammelt vorliegen, ist bereits evident, dass eine Struktur vorhanden sein
muss: Sonst wäre ein Abrufen der Daten nicht möglich. Die Strukturierung
innerhalb der Dateien ergibt sich entweder aus Indizes oder aus Schlüssel-
wörtern, mit denen die einzelnen Elemente adressiert werden können. Wenn
mehrere Dateien vorliegen, kann sich die Anordnung auch aus der Ordner-
bzw. Verzeichnisstruktur ergeben.

297 LG München I GRUR 2006, 225, 227 – Topografische Kartenblätter;
Wandtke/Bullinger–Hermes, PK UrhR, § 87a Rn. 32.

298 Randbemerkung: auch wenn eine einzelne Gewichtungsinformation (die stets in
einer Kombination aus die dazugehörigen Neuronen identifizierenden Indizes aus-
gegeben wird) abgerufen würde, informiert diese immerhin darüber, wie an einer
bestimmten Stelle des KNN die Verbindung zwischen zwei Neuronen gewichtet ist
(ähnlich einer Postleitzahl in einer Postleitzahlenliste) – ein einzelner Parameter –
etwa als Zahl 0,42 – ergibt also zwar alleinstehend keinen tieferen Sinn. Wenn die
Wahrnehmende allerdings weiß, dass es sich um einen Parameter eines KNN handelt,
ist zumindest klar, dass in dem KNN an einer Stelle der Output eines Neurons mit
dem Gewicht 0,42 als Input des darauffolgenden Neurons weitergeleitet wird, und
könnte möglicherweise ebenso als unabhängiges Element angesehen werden. Dies
kann vorliegend jedoch zunächst dahinstehen.

299 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 17, Wandtke/Bullinger–Marquardt, PK UrhR,
§ 4 Rn. 10.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

d) Zugänglichkeit der Elemente

§ 4 Abs. 2 S. 1 UrhG fordert ferner, dass die Elemente einzeln mit Hilfe elek-
tronischer Mittel oder auf andere Weise zugänglich sind. Die Zugänglichkeit
ist gegeben, wenn es möglich ist, auf die Elemente unter Berücksichtigung
der Anordnungskriterien zuzugreifen und sie abfragen zu können.300

Jede Framework-Variante stellt Methoden bzw. Funktionen bereit, mithilfe
derer die Elemente einzeln abgerufen werden können. Teils ist dieses fra-
meworkübergreifend möglich, teilweise kann ein KNN nur genau so wieder
geladen werden, wie es auch gespeichert wurde. Für alle gilt jedoch, dass der
Vorgang des Abspeicherns darauf angelegt ist, die Daten wieder zu laden und
zugreifbar zu machen. Erwähnung finden sollte an dieser Stelle noch, dass
die KNNs ganz üblicherweise nicht als gepackte ausführbare Dateien (wie
z. B. eine „Word.exe“, die nach einen Doppelklick das Programm startet) das
Endergebnis des Trainingsvorgangs darstellen, sondern sie müssen – durch
einen Aufruf in Code oder Skript – geladen werden und sind dann auch
zugänglich und veränderbar.

e) Zwischenergebnis

An anderer Stelle wird die Datenbankqualität eines neuronalen Netzes kate-
gorisch abgelehnt mit dem Argument, die „Daten der Verarbeitungsschicht“
– die Gewichte der Neuronen – interessierten den Endnutzer nicht, ferner
sei „ihr Wert als solcher für ihn auch keine verwertbare Information“.301

Hierbei wird jedoch übersehen, dass der „Endnutzer“, zum Beispiel also der
Verwender des trainierten DeepDream-Modells,302 nicht zwingend die hier
zu betrachtende Zielgruppe darstellt.

Richtig ist, dass etwa die Verwenderin eines KNN zur Bildbearbeitung
nicht an den einzelnen Neuronenwerten interessiert ist. Anders jedoch ist
die Lage für den Entwickler, der ein vortrainiertes Netz – oder einzelne
Schichten daraus – weiterverwenden möchte. Zudem wird verkannt, dass
nicht nur die Neuronengewichte als Datenbankinhalt relevant sind, sondern
die gesamte Netzwerkstruktur. Möglicherweise hat sich in den vergangenen
20 Jahren303 jedoch auch der Stand der Technik derart verändert, dass die

300 Nordemann/Fromm–Czychowski, UrhR, § 4 Rn. 36.
301 Grützmacher, Datenbanken, S. 66; Ehinger/Stiemerling, CR 12 2018, 761, 769.
302 Vgl. § 10 C.I..
303 Die Aussagen von Grützmacher sind von 1999.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

Sichtweise nun eine andere zu sein hat. Insbesondere werden heute wohl
häufig vortrainierte Modelle verwendet, es sind zahlreiche für bestimmte
Analysezwecke (wie etwa die Gesichtserkennung) spezialisierte Modelle
verfügbar, die den individuellen Anforderungen angepasst werden können.
Insofern ist auch nicht (mehr) nur auf den Endnutzer im Sinne eines nicht
an der Entwicklung beteiligten Benutzers abzustellen, sondern vielmehr auf
Entwickler, die sich das Modell heraussuchen, das für ihre Zwecke besonders
gut geeignet ist. Und für diese kann es mitunter sehr interessant sein, die „Da-
ten der Verarbeitungsschicht“ in Augenschein zu nehmen. Zudem ermöglicht
eine rückwirkende Analyse dieser Daten einen Einblick in die Arbeitsweise
des verwendeten Modells, etwa zur Fehlersuche oder zur Vermeidung von
unzutreffenden Vorhersagen, die auf schlecht gewählten Trainingsdaten ba-
sieren: Im Rahmen dieser „KI-Erkläransätze“ (Stichwort: „Explainable AI“)
können auch einzelne bzw. Gruppen von Neuronenwerten interessieren.304

Nicht zuletzt ist auch der Telos des Datenbankwerkschutzes zu berücksich-
tigen: Es ist nicht das Ziel, anhand der Qualität der Elemente einer Sammlung
einen neuen Schutz der enthaltenen Elemente zu konstruieren. Das Gegenteil
ist der Fall: Der Fokus liegt auf dem, was durch Auswahl und Anordnung
geschaffen wird, und was gerade mehr als die Summe seiner Teile sein kann.
Eine denkbare Parallele zu dem ungewünschten Zerlegen eines Buches oder
Musikwerkes in seine Einzelteile ergibt sich hier nicht, denn die untersuchten
ML-Modelle sind gerade nicht als Ganzes anderweitig urheberrechtlichem
Schutz unterstellt. Vielmehr kommt ihnen aus den dargelegten Ausführun-
gen viel eher der Charakter einer Datenbank zu, die Informationen enthält,
die schlussendlich von Computerprogrammcode eingelesen und für die Er-
zeugung neuer Bilder oder Tonfolgen oder der Zuordnung von Kategorien
eingesetzt werden.

Wie gezeigt, kann – bei entsprechender Definition des Begriffs des trai-
nierten KNN – grundsätzlich eine Datenbank vorliegen. Die Werkqualität im
Sinne einer persönlichen geistigen Schöpfung ist jedoch gesondert zu prüfen.

304 Vgl. z. B. die sog. „Sentiment-Analysis“ zur Erkennung negativer Formulierungen
in Texten, die die Gewichte einer „Attention“-Schicht besonders hervorhebt, https:
//traversals.com/blog/explainable-ai-for-sentiment-analysis/ (Stand: 22.02.2021)
Gewichte mit dem Wert 0 können u. a. darauf hinweisen, dass zu untersuchende
Eigenschaften gar nicht vorlagen bzw. Pfade im Netz blockiert sind, Ancona et al.,
Gradient-Based Attribution Methods, S. 179.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

2. Persönliche geistige Schöpfung

Spätestens bei der Anforderung der persönlichen geistigen Schöpfung schei-
tern bisherige Subsumtionsversuche,305 die ihre Prüfung jedoch auf eine
Sammlung von Parametern (Gewichtungsinformationen) beschränken. Mög-
licherweise ergibt sich ein anderes Ergebnis, wenn das wie hier beschriebene
gesamte trainierte KNN als Untersuchungsgegenstand herangezogen wird.

Die Anforderung der Werkqualität für Datenbankwerke ergibt sich – wenn
nicht schon aus dem Begriff – zumindest daraus, dass § 4 Abs. 2 UrhG Da-
tenbankwerke als Sammelwerke mit erweiterten Eigenschaften definiert. Die
Sammelwerke wiederum finden ihre Legaldefinition in § 4 Abs. 1 UrhG, und
dort heißt es: „Sammelwerke sind Sammlungen von Werken, (. . . ) die auf-
grund der Auswahl oder Anordnung der Elemente eine persönliche geistige
Schöpfung sind.“

a) Persönliche oder eigene geistige Schöpfung?

In Art. 3 Abs. 1 Datenbank-RL ist hingegen von einer „eigenen geistigen
Schöpfung“ die Rede, sodass zu fragen ist, ob hierin ein Unterschied zur
„persönlichen geistigen Schöpfung“ besteht und worin dieser liegt. Grütz-
macher306 war noch der Ansicht, dass hierin ein maßgeblicher Unterschied
bestünde, inzwischen ist jedoch weitgehend geklärt, dass der deutsche Ge-
setzgeber es schlicht nicht für erforderlich hielt, den Wortlaut in § 4 UrhG
anzupassen (anders als in § 69a Abs. 3 UrhG, in den die „eigene“ geistige
Schöpfung Eingang gefunden hat), mit der Begründung, dass bereits vor
Erlass der Richtlinie keine erhöhten Anforderungen (erhöht im Sinne ei-
ner „persönlichen“ gegenüber einer „eigenen“ geistigen Schöpfung) gestellt
wurden.307 Inzwischen hat auch der EuGH in der Football Dataco/Yahoo-
Entscheidung308 die Anforderungen an den Datenbankschutz explizit in die-

305 Ehinger/Stiemerling, CR 12 2018, Rn. 62 lassen es letztendlich an der persönlichen
geistigen Schöpfung scheitern, Hartmann/Prinz, WRP 12 2018, Rn. 62 steigen
schon bei der Anforderung an die Unabhängigkeit der Elemente aus und prüfen die
persönliche geistige Schöpfung nicht mehr.

306 Grützmacher, Datenbanken, S. 181 ff..
307 Ahlberg/Götting–Ahlberg, BeckOK-UrhG, § 4 Rn. 25; Dreier/Schulze–Dreier, UrhG,

§ 4 Rn. 11; BT-Drs. 13/7385.
308 EuGH GRUR 2012, 386, 387– Football Dataco/Yahoo.
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sem Sinne geklärt. Fraglich ist also nur, welche Anforderungen diesbezüglich
an die hier untersuchten elektronischen Datenbankwerke zu stellen sind.

b) Schöpfung in Auswahl oder Anordnung

Gem. §4 Abs. 2 UrhG i. V. m. § 4 Abs. 1 UrhG müssten die Anordnung oder
Auswahl der Elemente die persönliche geistige Schöpfung begründen.

aa) Auswahl

Auswahl ist das Sichten, Sammeln, Bewerten und Zusammenstellen unter
Berücksichtigung besonderer Auslesekriterien,309 wobei ein Entscheidungs-
spielraum hinsichtlich der Auswahlmöglichkeit erforderlich ist, damit ein
Datenbankwerk im Sinne einer geistigen Schöpfung entstehen kann.310

bb) Anordnung

Anordnung hingegen meint die Einteilung, Präsentation und Zugänglichma-
chung der ausgewählten Elemente nach einem oder mehreren Ordnungssys-
temen.311

cc) Anordnung für Datenbankwerke i. d. R. programmseitig vorgegeben

Naturgemäß ergibt sich die konkrete Anordnung der Elemente von Daten-
bankwerken aus den technischen Gegebenheiten und ist bei „klassischen“
elektronischen Datenbanken überwiegend von der Datenbanksoftware vor-
gegeben.312 Es wird daher auf das Ausgabeformat der Daten abgestellt, also
darauf, wie die Daten in der Ausgabe angeordnet sind. Die Elemente müssten
systematisch und methodisch zugänglich sein,313 sodass es für die Anord-

309 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 11.
310 Wandtke/Bullinger–Marquardt, PK UrhR, § 4 Rn. 9.
311 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 11.
312 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 19.
313 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 19.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

nung auf die Schöpfungshöhe der Ausgabe- und Verknüpfungsmöglichkeiten
ankommt.314

Spätestens an dieser Stelle könnte fraglich erscheinen, wie das oben mühe-
voll konstruierte ML-Datenbank„werk“ überhaupt mit einer elektronischen
Datenbank, wie sie allgemein in der Vorstellung existiert, zu vergleichen sein
könnte, entspricht eine Speicherung von Objekten im Binärformat doch nicht
der klassischen Interpretation des Begriffes „Datenbank“, bei dem Daten in
einer Eingabemaske gesucht oder in Form eines Indexes dargestellt werden
können.

Das Verständnis erleichtert ein Blick hinter die Kulisse einer solchen
„klassischen“ Datenbank: Auch diese legt Informationen gewöhnlicherweise
in einer oder mehreren Dateien ab, die dann – bei Aufruf – eingelesen und
etwa einem im Code definierten Tabellenobjekt zugewiesen werden (wenn
nicht schon Tabellenobjekte in serialisierter Form abgelegt wurden – dann
ist die Parallele noch offensichtlicher). Dieses Tabellenobjekt enthält dann
Informationen unter anderem darüber, wie es heißt, wie viele Spalten es
enthält, wie diese Spalten heißen, und was ihr Inhalt ist. Wie diese Datenbank
vom Menschen wahrgenommen werden kann, hängt davon ab, wie sie zum
Beispiel im Browser präsentiert wird.

Folglich könnte auch ein trainiertes KNN, das als Objekt oder anderweitig
in Dateien abgelegt wurde, in einer Form wiedergegeben werden, die es ver-
mutlich einfacher machen würde, darin eine Datenbank zu erkennen. Auch
bei trainierten KNN hat der Entwickler aber bis auf die Auswahl der ver-
wendeten Frameworks keinen oder wenig Einfluss darauf, wie die Elemente
angeordnet werden, sodass es für die persönliche geistige Schöpfung auf die
Auswahl der Elemente ankommen muss.

dd) Schöpfungsspielraum in der Auswahl

Hinsichtlich dieser Auswahl ist die Konzeption derselben entscheidend, nicht
jedoch, dass der Urheber die zur Durchführung der Auswahl erforderlichen
Schritte selbst vornimmt.315

314 Dreier/Schulze–Dreier, UrhG, § 4 Rn. 19, Schricker/Loewenheim–Leistner, UrhR,
§ 4 Rn. 34.

315 BGH GRUR 2007, 685 Rn. 19, 23 – Gedichttitelliste I; Dreier/Schulze–Dreier,
UrhG, § 4 Rn. 19.
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Der Ersteller eines trainierten KNN ist in der Regel nicht Urheber der
Abfragemöglichkeiten (diese Funktionalität wird durch die Frameworks be-
reitgestellt und vorgegeben). Durch die Auswahl der Speichervariante und
des Frameworks wird jedoch zumindest insoweit Einfluss auf die „Abfrage-
und Verknüpfungsmöglichkeiten“ genommen, als es bei den zur Wahl ste-
henden Frameworks Unterschiede in dieser Hinsicht gibt. Zudem könnte
differenziert werden, ob der Entwickler die Default-Speichervariante wählt –
dann würde die Auswahl der zu speichernden Elemente durch das Framework
getroffen, was gegen eine persönliche geistige Schöpfung spräche – oder ob
etwa Variablen gezielt benannt und zur Speicherung ausgewählt werden.

Allerdings kann für diese Prüfung durchaus auch auf einen noch früheren
Zeitpunkt abgestellt werden: Der Entwickler wählt die Architektur des Net-
zes, die Funktionen, die Anzahl Trainingsdurchläufe etc. selbst aus, sodass
sich das trainierte KNN als Ganzes als das Werk präsentiert, dessen Elemente
einzeln abrufbar sind. Dem Argument, die Auswahlmöglichkeiten seien doch
auf die infrage kommenden Werte für die Hyperparameter beschränkt, ist
entgegenzuhalten, dass auch in der Musik der Tonraum im Wesentlichen auf
8 Töne (in verschiedenen Oktaven) beschränkt ist. Dennoch ergeben sich
durch das Hinzuziehen von Rhythmus und Dynamik einzigartige Kombina-
tionen, die als geistige Schöpfungen anerkannt sind. Insbesondere die Wahl
der Hyperparameter hat wesentlichen Einfluss auf die Leistungsfähigkeit
des Netzes und erfordert geistige Anstrengung und Kreativität, denn der
Entwickler des KNN hat in der Regel eine konkrete Vorstellung davon, was
das KNN leisten können soll, und nimmt aufwendige Anpassungen vor, die
sich letztendlich in der Kombination aus Hyperparametern und Parametern
niederschlagen. Mithin ist auch ein tagelanges Training eines KNN nutzlos,
wenn die Hyperparameter nicht sorgfältigst gewählt wurden.

Solange der Entwickler sich also nicht Automatismen bedient, um Hy-
perparameter zu optimieren, sondern diese selbst wählt, dem KNN-Objekt
zuweist, dieses „trainiert“ und das gesamte Ergebnis der Reproduzierbarkeit
halber speichert, spielt in einem trainierten KNN die Auswahl der Datenbank-
inhalte durch den Entwickler selbst eine derart bedeutende Rolle, dass beim
Ergebnis i. d. R. von einer persönlichen geistigen Schöpfung ausgegangen
werden kann. Selbstverständlich kann hier die Prüfung in Einzelfällen zu
anderen Ergebnissen kommen, wenn etwa ein vortrainiertes Netz verwen-
det und angepasst wird, oder wenn der Beitrag des Urhebers nicht über die
Reproduktion bekannter banaler Strukturen hinausgeht.
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3. Ergebnis

Ein wie hier definiertes trainiertes KNN – ohne den aufrufenden Quellcode –
erfüllt alle Anforderungen an ein Datenbankwerk und kann in der Auswahl
der Elemente auch eine persönliche geistige Schöpfung darstellen, sodass
es dem Schutz für Datenbankwerke gem. § 4 Abs. 2 UrhG grundsätzlich
zugänglich ist.

4. Wer ist der Urheber?, oder: Schutzumfang und Folgen

Sobald die grundsätzliche Schutzfähigkeit festgestellt wurde, stellt sich un-
weigerlich die nächste Frage: wem gebührt der Schutz? Das Vorliegen einer
persönlichen geistigen Schöpfung wurde bejaht aufgrund der Auswahl der
Hyperparameter. Urheber ist folglich, wer die Netzwerkstruktur, Aktivie-
rungsfunktion etc. festlegt (nicht, wer eine vorgegebene Architektur lediglich
umsetzt). Zu überlegen wäre noch, inwiefern eine ggf. davon verschiedene
Person, die die Trainingsdaten auswählt, unter Umständen als Miturheber
anzusehen ist. Bei einer Personenmehrheit muss an der Stelle allerdings
berücksichtigt werden, dass die Auswahl (und ggf. auch die Aufbereitung
bzw. Vorbereitung) der Trainingsdaten höchstens einen Rahmen setzen kann.
Die geistige Schöpfung liegt immer noch darin, die an die Trainingsdaten an-
gepasste und die zur Erreichung der Aufgabenstellung optimale Kombination
an Netzwerkeinstellungen auszuwählen.

Der Schutzumfang ist sorgfältig zu begrenzen, um ihn nicht in einen
Ideenschutz ausufern zu lassen. Sinnvoll erscheint eine Begrenzung auf
die konkrete Gestalt des trainierten KNN. Welche Gestalt dieses annehmen
kann, wurde zu Beginn des Kapitels bereits dargestellt. Die beschriebenen
Formen – in der Regel Computerdateien, eine einzelne oder mehrere – sind
der Gegenstand, den es vor Vervielfältigung zu schützen gilt.

II. Investitionsschutz gem. §§ 87a ff. UrhG

Mit den Regelungen in §§ 87a ff. UrhG wird in Umsetzung der Datenbank-
RL demjenigen, der eine Datenbank unter Aufwendung einer nach Art oder
Umfang wesentlichen Investition erschafft, ein 15-jähriger sui-generis-Schutz
gewährt. Dieser kann grundsätzlich auch neben einem urheberrechtlichen
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Schutz aus § 4 Abs. 2 UrhG i. V. m. § 4 Abs. 1 UrhG bestehen.316 Folglich
sollen seine Voraussetzungen auch hier für trainierte KNN geprüft werden.
Auch hier wird der aufrufende Quellcode wieder außer Acht gelassen. Zu
prüfen ist, ob eine Datenbank sowie ein Investitionsgegenstand im Sinne des
§ 87a UrhG vorliegen und ob die Wesentlichkeit der Investition gegeben ist.

1. Datenbank

Während die Datenbank-RL einen einheitlichen Datenbankbegriff für den
urheberrechtlichen ebenso wie den sui-generis-Schutz verwendet, umschreibt
der deutsche Gesetzgeber Datenbanken in § 4 UrhG und § 87a UrhG jeweils
unterschiedlich, die Voraussetzungen stimmen letztendlich jedoch überein.317

Wenn eine Datenbank nach § 4 UrhG gegeben ist, kann also auch für § 87a Ur-
hG vom Vorliegen einer Datenbank ausgegangen werden.

Im Rahmen der urheberrechtlichen Prüfung in e) wurde bereits festgestellt,
dass ein trainiertes künstliches neuronales Netz Datenbankqualität aufweist,
insofern erübrigt sich die Prüfung an dieser Stelle.

2. Investitionsgegenstand

Zusätzlich muss für § 87a UrhG im Rahmen der Beschaffung, Sammlung,
Überprüfung oder Darstellung der Datenbankinhalte eine nach Art oder
Umfang wesentliche Investition anfallen (§ 87a Abs. 1 S. 1 UrhG). Sowohl
finanzielle Mittel als auch der Einsatz von Zeit, Arbeit und Energie können
die Investitionen ausmachen.318 Nicht berücksichtigt werden Kosten für die
Erzeugung von Daten.319

Für die Identifizierung der Investition in die KNN-Entwicklung bzw. in
die Erstellung eines KNN-Modells – also der Datenbank – ist es hilfreich,
den Entstehungsprozess erneut unter die Lupe zu nehmen.

Der Entwickler wählt anhand der Aufgabenstellung und seiner Erfahrung
initiale Hyperparameter aus, mithilfe derer das Modell trainiert wird. Am
Ende des Trainingsvorgangs wird evaluiert, ob die Ergebnisse den Vorstel-
lungen genügen. In diesem Zeitpunkt entsteht bereits eine erste Vorstufe

316 Dreier/Schulze–Dreier, UrhG, Vorbemerkung zu § 87a, Rn. 8.
317 Dreier/Schulze–Dreier, UrhG, § 87a Rn. 3.
318 ErwGr. 40 Datenbank-RL
319 Vgl. Dreier/Schulze–Dreier, UrhG, § 87a Rn. 13.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

der Datenbank. Anschließend passt der Entwickler die Hyperparameter an
und wiederholt den Trainingsvorgang, und wiederholt diesen Prozess, bis
die Ergebnisse passen (z. B. bis die Genauigkeit einer bestimmten Mindest-
prozentzahl entspricht, bzw. bis der Entwickler den Eindruck hat, dass das
Modell seine geistige Vorstellung der Problemlösung hinreichend abbildet).
Insofern könnte dieser Vorgang als Datenbeschaffung oder Datensammlung
(Daten sind hier nicht die Trainingsdaten, sondern eben die Elemente der
entstehenden Datenbank) bezeichnet werden. Die eigentliche, persistente,
nutzbare Datenbank entsteht erst, wenn der Entwickler sich dazu entschließt,
die gesammelten Daten nicht zu verwerfen, indem zumindest Checkpoints320

erstellt werden bzw. am Ende des Trainingsprozesses das Modell reprodu-
zierbar im Speicher ablegt wird.

Es wird hier insbesondere nicht auf die Berechnung und Optimierung
der Parameter abgestellt im Sinne einer Erzeugung neuer Daten. Die dafür
entstehenden Kosten wären kein tauglicher Investitionsgegenstand. Vielmehr
wird davon ausgegangen, dass die Zusammenhänge, die der Entwickler in
den Daten vermutet, bereits bestehen und lediglich greifbar gemacht werden
müssen, um daraus zum Beispiel Aussagen für die Zukunft treffen zu können.
Die Muster in den Daten, mit denen die ML-Modelle arbeiten, werden nicht
erst hergestellt, sondern aufgefunden.

3. Wesentlichkeit der Investition

Sodann ist zu klären, welche Kosten im Zusammenhang mit der Datenbank-
herstellung im Machine Learning-Kontext entstehen. Wird davon ausgegan-
gen, dass lediglich Zusammenhänge zwischen bestehenden Daten ermittelt
werden, so wären zumindest die Kosten für das „Ermittlungsprogramm“ –
also den Algorithmus, bzw. die Entwicklung des Modells, sowie die erfor-
derliche (Spezial-)Hardware (oder alternativ gemietete Online-Ressourcen)
und das Gehalt für die das Modell trainierenden Data Scientists – zu berück-
sichtigen. Ferner dürften auch die Kosten für die Bereitstellung des Modells
in Ansatz zu bringen sein. Auch die Beschaffung der Trainingsdaten – so

320 Checkpoints bezeichnen Speicherungen des Modells bzw. seiner Parameter, die die
Wiederaufnahme des Trainings zu einem späteren Zeitpunkt ermöglichen, vgl. z. B.
https://www.tensorflow.org/guide/checkpoint (Stand: 22.02.2021).
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sie entgeltlich erfolgt – und damit auch der Aufwand für ihre Sammlung,
dürften relevante Kosten darstellen.321

Anforderungen an das Merkmal der Wesentlichkeit, bzw. ab welchem
Betrag, welchem Zeitaufwand oder welcher Qualität an Investition Wesent-
lichkeit gegeben ist, gehen weder aus § 87a UrhG noch aus der Datenbank-RL
hervor.322 Die Auslegung dieses unbestimmten Rechtsbegriffs ist vielmehr
als „flexibles Kriterium“323 der Rechtsprechung überlassen. Es liegt nahe, die
Auslegung an dem Ziel der Datenbank-RL zu orientieren, und einen Schutz
zu schaffen, der einen Anreiz für die Entwicklung solcher Speicher- und Ver-
arbeitungssysteme bietet, und damit die Schwelle zur Wesentlichkeit nicht
zu hoch anzusetzen,324 sodass lediglich sog. „Allerweltsinvestitionen“325

nicht erfasst sein sollen. Insbesondere sind keine Investitionen von substanti-
ellem Gewicht vorausgesetzt.326 Es sind also Einzelfallentscheidungen zur
Auslegung des Wesentlichkeitskriteriums erforderlich.327

Es ist jedoch davon auszugehen, dass in Anbetracht des nicht unerheblichen
finanziellen und zeitlichen Entwicklungsaufwands zumindest für komplexe,
tiefere neuronale Netze die Wesentlichkeit der Investition gegeben sein dürfte.
Im Zweifel muss es hier auf eine Einzelfallbetrachtung ankommen.

321 So wird etwa über die einzigartige Zusammenstellung von Informationen zu global
erteilten Patenten von IFSCLAIMS berichtet, dass beispielsweise die Vereinheit-
lichung der Firmennamen besonders aufwendig sei, die im Rahmen der Standar-
disierung der Trainingsdaten vorzunehmen ist – so sei durch jahrelange Arbeit
ein einzigartiges Datenset entstanden, vgl. https://www.cmswire.com/information-
management/machine-learning-datasets-build-or-buy/ (Stand: 22.02.2021); auch
der Zugang zu wertvollen Datensammlungen wie etwa die Inhalte von Beck-Online
oder Juris erfordert in der Regel kostenpflichtige Abonnements.

322 Dreier/Schulze–Dreier, UrhG, § 87a Rn. 11; Wandtke/Bullinger–Hermes, PK UrhR,
§ 87a Rn. 52.

323 Wandtke/Bullinger–Hermes, PK UrhR, § 87a Rn. 52.
324 BGH GRUR 2011, 724, 725 – Zweite Zahnarztmeinung II; OLG Hamburg CR 2018,

22.
325 Wandtke/Bullinger–Hermes, PK UrhR, § 87a Rn. 54.
326 BGH GRUR 2011, 724, 725 – Zweite Zahnarztmeinung II Rn. 23; Dreier/Schulze–

Dreier, UrhG, § 87a Rn. 14; Haberstumpf , GRUR 2003, 20, 26.
327 BT-Drs. 13/7385 S. 45.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

4. Ergebnis

Der Hersteller eines trainierten KNN kann also als Datenbankhersteller auch
in den Genuss des sui-generis-Datenbankherstellerschutzes gem. § 87a UrhG
kommen.328 Dieser erstreckt sich nicht auf den Quellcode.

5. Schutzumfang und Folgen

Der Schutzumfang des Datenbankherstellerrechtes ergibt sich aus § 87b
Abs. 1 UrhG. Danach hat der Datenbankhersteller das ausschließliche Recht,
die Datenbank insgesamt oder einen nach Art oder Umfang wesentlichen
Teil der Datenbank zu vervielfältigen, zu verbreiten und öffentlich wiederzu-
geben. Datenbankhersteller ist, wer „die Initiative ergreift [die Datenbank
herzustellen] und das Investitionsrisiko trägt“,329 mithin ist der Schutzinhaber
nicht notwendigerweise identisch mit dem Urheber des Datenbankwerkes
gem. § 4 Abs. 2 UrhG – ein Beispiel wäre ein Arbeitgeber-Arbeitnehmer-
Verhältnis, in dem der Arbeitgeber eine Idee für ein ML-Modell und eine
zu erfüllende Aufgabe entwickelt, aber seine Entwicklungsabteilung mit der
Konzeption, der Datensammlung und dem Training des ML-Modells betraut.

III. Schutz als Computerprogramm gem. § 69 a UrhG

Möglicherweise kommt einem trainierten ML-Modell in Python auch
der Schutz für Computerprogramme gem. § 69a UrhG zu.330 In der oben
(§ 6 D.III.) gefundenen Definition für trainierte KNN ist der Quellcode als
ein wesentlicher Bestandteil des trainierten Modells genannt, wurde jedoch
für den Datenbank(werk)schutz nicht berücksichtigt. Für den Schutz nach
§ 69a UrhG hingegen ist der Code – wie sich zeigen wird – von hoher
Relevanz.

328 So wohl auch Söbbing, MMR 2021, 111, 114.
329 Erw.-Gr. 41 Datenbank-RL; Dreier/Schulze–Dreier, UrhG, § 87a Rn. 19.
330 Diskutiert wird das unter anderem von Hartmann/Prinz, WRP 12 2018, 1431, 1436

Rn. 47 ff.. und Ehinger/Stiemerling, CR 12 2018, 761, 764, Rn. 34 ff., insb. S. 767
Rn. 51, sowie Grätz, Künstliche Intelligenz im Urheberrecht, S. 46 ff..
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1. Trainiertes Modell als Computerprogramm

Damit ein Schutz nach § 69a UrhG in Betracht kommt, muss ein Compu-
terprogramm vorliegen. Weder das UrhG noch die durch §§ 69a ff. UrhG
umgesetzte Computerprogramm-RL stellen eine Erklärung für die Bedeutung
des Begriffes bereit, § 69a Abs. 1 UrhG spricht lediglich von „Programmen
in jeder Gestalt“. Infolgedessen sind andere Quellen für eine mögliche Defi-
nition zu suchen.

a) Begriffsklärung Computerprogramm

Anhaltspunkte liefern die DIN 44300 sowie die Definition der WIPO und
das IEEE Standard Glossary:

– Ein Computerprogramm ist „eine Folge von Befehlen, die nach Aufnahme
in einen maschinenlesbaren Träger fähig sind zu bewirken, dass eine
Maschine mit informationsverarbeitenden Fähigkeiten eine bestimmte
Funktion oder Aufgabe oder ein bestimmtes Ergebnis anzeigt, ausführt
oder erzielt.“331

– Ein Computerprogramm ist „eine zur Lösung einer Aufgabe vollständige
Anweisung zusammen mit allen erforderlichen Vereinbarungen.“332

– Ein Computerprogramm ist „eine Kombination aus Computerinstruk-
tionen und Datendefinitionen, die Computerhardware dazu befähigen,
berechnende oder kontrollierende Funktionen auszuführen.“333

Mancherorts wird „Computerprogramm“ zudem abgegrenzt zu „Software“.
Software soll dann alle digitalisierten Daten erfassen, also zwar auch Com-
puterprogramme „im technischen Sinne“, aber darüber hinaus auch Texte,
Grafiken, Musikdateien und andere Daten.334 Einigkeit scheint darüber zu be-

331 WIPO-Mustervorschriften, GRUR 1979, 306, § 1 (i); ebenso BGH GRUR 1985,
1041, 1047 – Inkasso-Programm.

332 Vgl. DIN 44300; Spindler/Schuster–Wiebe, Recht der elektronischen Medien, § 69a
Rn. 3.

333 Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Soft-
ware Engineering Terminology, S. 19.

334 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 2; Software als auch Com-
puterprogramme umfassender, aber weiterer Begriff Institute of Electrical and Elec-
tronics Engineers, IEEE Standard Glossary of Software Engineering Terminology,
S. 66.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

stehen, dass es zur Abgrenzung für das Vorliegen eines Computerprogramms
maßgeblich auf das „Vorhandensein von Befehls- und Steuerungsfunktionen“
ankommt,335 so verlangen auch die genannten Definitionen „eine Folge von
Befehlen“ bzw. eine „Anweisung“.

b) (Keine) Einordnung von ML-Modellen als Computerprogramm in der
Literatur

Teilweise wird der Schutz insbesondere künstlicher neuronaler Netze als
Computerprogramm in einer Parallele zur Wissensbasis von Expertensyste-
men336 kategorisch abgelehnt, ohne eine weitere Prüfung vorzunehmen.337

An dieser Stelle soll jedoch eine differenziertere Betrachtung erfolgen.
Andernorts wird kritisiert, dass die „bestimmte Funktion“, die die Definiti-

on der WIPO und damit auch der BGH verlangen, durch das „trainierte Netz“
nicht gegeben sei, da sich die „Funktion“ des „trainierten Netzes“ im Rahmen
des Trainingsvorgangs verändere.338 Das scheint schon deshalb unpräzise,
weil mit dem „trainierten Netz“ der finale Zustand des KNN gemeint ist, und
nicht der, der sich im Rahmen des Trainings noch verändert.339

Zudem seien die „Ausgabeparameter allein von den Eingangswerten ab-
hängig“,340 weshalb das trainierte Netz dem „Datenaufbereiter“ zuzurechnen
sei.341

Möglicherweise wird hier zum einen verkannt, dass das „trainierte Netz“
(zumindest nach dem hiesigen Verständnis des trainierten Modells) eben
nicht nur – einmalig und flüchtig – in Form des Maschinencodes oder By-
tecodes vorliegt, sondern vielmehr auf die Elemente abzustellen ist, die es

335 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 3; Dreier/Schulze–Dreier,
UrhG, § 69a Rn. 12; DKM–Kotthoff , HK-UrhG, § 69a Rn. 5; OLG Rostock MMR
2008, 116.

336 Vgl. § 2 B.IV.2..
337 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 21.
338 Hartmann/Prinz, WRP 12 2018, 1431, 1436; Linke, GRUR Junge Wissenschaft

2019, S. 42.
339 Ein Unterschied könnte sich allenfalls im sogenannten „Online-Learning“ ergeben:

In dieser Variante wird ein Modell trainiert und implementiert, das dann aber im
Praxiseinsatz weiter dazulernt (zur Begriffsklärung „online“ in diesem Kontext vgl.
Goodfellow et al., Deep Learning Handbuch, S. 310). Aber auch in diesem Fall
müsste die „bestimmte Funktion“ für den tauglichen Einsatz bereits bestehen.

340 Hartmann/Prinz, WRP 12 2018, 1431, 1437.
341 Dies., WRP 12 2018, 1431, 1437.
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ermöglichen, das trainierte Netz auch einzusetzen. Das Verhältnis zwischen
den Komponenten des wie hier definierten trainierten KNN und dem im
Zuge der Ausführung entstehenden Maschinencode ist nicht anders zu beur-
teilen als das Verhältnis zwischen regulärem Quellcode und Maschinencode
anderer Programme.

Zum anderen wird nicht berücksichtigt, dass die Ausgabeparameter zwar
zu einem großen Teil von den Trainingsdaten abhängen, dass aber die Hyper-
parameter bzw. die Modellstruktur auch einen maßgeblichen Teil zum Ergeb-
nis beitragen. Die Leistung allein auf den „Datenaufbereiter“ zu begrenzen
und dabei die Expertise unter anderem desjenigen, der die Hyperparameter
wählt, außer Acht zu lassen, scheint zu kurz gegriffen.

c) Berücksichtigung der Bestandteile eines trainierten Modells für den
Computerprogrammbegriff

Zu klären ist deshalb erneut, allerdings diesmal konkret in Bezug auf den
Computerprogrammschutz, auf welche Komponente(n) des trainierten Mo-
dells bei einer Subsumtion unter § 69a UrhG abzustellen ist. Denkbare An-
knüpfungspunkte wären der Quellcode, die erzeugten Dateien, sowie eine
zur Laufzeit kombinierte Variante (im Ergebnis ähnlich Maschinencode)
derselben. Für den Quellcode ist sauber zu trennen zwischen dem Quellco-
de, der für das Training des Modells verwendet wird, und dem Quellcode,
der das trainierte Modell lädt und einsetzt. Für den Schutz des trainierten
KNN als Computerprogramm ist ausschließlich letzterer relevant, denn das
andere Programm hat eine ganz andere Zielrichtung bzw. Zwecksetzung,
und möglicherweise auch eine sehr verschiedene Komplexität: Während der
Code zur Erzeugung eines Modells Anweisungen zur Aufbereitung der Trai-
ningsdaten, evtl. auch zu Funktionalitäten der einzelnen Modellbestandteile
sowie Testprozeduren enthält, genügen für den Quellcode, der das trainier-
te Modell einsetzt, mitunter wenige Zeilen Programmcode, in denen das
Modell und die Eingabedaten geladen und eine Vorhersage ausgeführt und
ausgegeben wird (teilweise ist sogar eine einzeilige Skripteingabe in einer
Kommandozeile ausreichend342, allerdings hängt die Komplexität sowohl des
Trainings- als auch des Ausführungscodes stark von der Aufgabenstellung
und der individuellen Implementierung ab).

342 Vgl. https://www.tensorflow.org/guide/saved_model#run_command (Stand:
22.02.2021).
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1   # neural network simple example
2   from numpy import loadtxt
3   from keras.models import load_model
4   # load the dataset
5   dataset = loadtxt('dataset.csv', delimiter=',')
6   #split into input (X) and output (y) variables
7   X = dataset[:,0:8]
8   y = dataset[:,8]
9   # define the keras model

10   model = load_model('my_model.h5')
11   # compile the keras model
12   model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
13   # make class predictions with the model
14   predictions = model.predict_classes(X)
15   # summarize the first 5 cases
16   for i in range(5):
17   print ('%s => %d (expected %d)' % (X[i].tolist(), predictions[i], y[i]))

Abbildung 7.1: Einfaches Beispiel in Keras: Laden ei-
nes Modells aus .h5-Datei, Quelle (leicht abgewandelt):
https://machinelearningmastery.com/tutorial-first-neural-network-python-
keras/, 22.02.2021.

In Bezug auf den besagten Quellcode ergeben sich verschiedene Gestal-
tungsmöglichkeiten: So kann dieser die für den Produktiveinsatz erforderliche
Struktur des Modells aufbauen, in dem der Programmierer die im Training
ermittelten und optimierten Hyperparameter im Code fest vorgibt, und ledig-
lich die Parameter aus Dateien nachladen, oder aber auch die Hyperparameter
etwa im JSON-Format343 bereitgestellt bekommen. Auch eine dritte Variante
ist denkbar, aber praxisfern, bzw. nur für Testzwecke praktikabel: Der Pro-
grammierer könnte im Code zum einen die Hyperparameter festlegen, zum
anderen das Modell zufällig mit Parametern versehen, das Training durchfüh-
ren und im Anschluss (ohne das Modell persistent zu speichern) das Modell
direkt zum vorgesehenen Einsatzzweck verwenden. Dies hätte allerdings
eine enorm begrenzte, wenn nicht gar unmögliche Reproduzierbarkeit dieses
Ergebnisses zur Folge. Das Beispiel soll nur verdeutlichen, welche Rolle
der Quellcode beim Einsatz eines trainierten Modells einnehmen kann. Der
Unterschied der dargestellten Varianten schlägt sich naturgemäß vor allem in
der Komplexität des Codes nieder.

Abbildung 7.1 zeigt ein Minimalbeispiel für Quellcode in Keras, bei dem
das Modell zuvor in einer .h5-Datei gespeichert wurde. In Zeile 6 werden die
Testdaten eingelesen, die zuvor im CSV-Format (Comma-Separated-Values-

343 JSON (Java Script Object Notation) ist ein verbreitetes Format zur Strukturie-
rung von Daten zur Datenbereitstellung bzw. Datenaustausch, das von vielen
Programmiersprachen verarbeitet werden kann, für weitere Informationen vgl.
https://www.json.org/json-de.html (Stand: 22.02.2021).

139

https://doi.org/10.5771/9783748912453-95 - am 12.01.2026, 11:19:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

Format) zusammengetragen wurden. Diese werden für eine Vorhersage in
Zeile 14 verwendet. X repräsentiert eine Sammlung von Testdaten, y die
dazugehörigen Labels. In Zeile 10 wird das gespeicherte Modell eingelesen.
Resultat ist bzw. sind die vom Modell gefundenen Labels für die eingegebenen
Testdaten X.344

Ziel des folgenden Abschnitts ist, herauszustellen, welche Kombination
von Elementen eines trainierten Modells mindestens gegeben sein muss, da-
mit die Anforderungen an ein „Computerprogramm“ im Sinne des § 69a Ur-
hG erfüllt sind.

aa) Quellcode

Es liegt nahe, den Quellcode für die Subsumtion unter § 69a UrhG heran-
zuziehen. Quellcode meint dabei nur den für die konkrete Problemlösung
entworfenen Code, die verwendeten („importierten“) Frameworks mit ihren
Klassen und Funktionen sind hier grundsätzlich außer Acht zu lassen, in Be-
zug auf diese kann nur die Auswahl der eingesetzten Klassen und Funktionen
relevant sein, da die Implementierung durch andere Entwickler erfolgte.

Die aus unterschiedlicher Herangehensweise potenziell resultierende Kom-
plexität ist erst für die Beantwortung der Frage, ob eine geistige Schöpfung
vorliegt, von Relevanz.

Der Quellcode enthält in der Regel auch in seiner simpelsten Form eine
Folge von aufgabenspezifischen Befehlen an eine Maschine, sei es der Im-
port der notwendigen Frameworks (vgl. Abbildung 7.1 Zeilen 2 und 3), die
Initialisierung eines Netzwerk-Objektes (vgl. Abbildung 7.1 Zeile 10) oder
das Laden von Dateiinhalten.

Ein Computerprogramm im Sinne des § 69a Abs. 1 UrhG dürfte mithin
im Rahmen des Quellcodes grundsätzlich gegeben sein.

344 In der Praxis müsste das Modell noch für den Einsatz in einer Anwendung vorbereitet
werden – die Bereitstellung könnte z. B. über Tensor Flow Serving erfolgen, dafür
würde das Modell noch mittels der Tensor Flow-Methoden vorbereitet, vgl. z. B.
Ausführungen hier https://towardsdatascience.com/deploying-keras-models-using-
tensorflow-serving-and-flask-508ba00f1037 (Stand: 22.02.2021).
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bb) Hyperparameter und Parameter

Schon dem Begriff nach fällt es schwer, Daten, Datenbanken und Dateistruk-
turen – und damit also auch Hyperparameter – als Computerprogramme im
Sinne des § 69a UrhG aufzufassen, zumal sie auch in den §§ 4 und 87a UrhG
implizit aus dem Schutz ausgenommen werden.345 Jedoch wird auch Quell-
code in Dateien gespeichert, und auch kompilierter Code kann in Dateiform
vorliegen. An dieser Stelle ist also zu klären, ob die in Dateien ausgelager-
ten Parameter und Hyperparameter ein Computerprogramm im Sinne des
§ 69a UrhG darstellen, oder doch zumindest ein Computerprogramm-Teil.

Wenngleich der Gedanke naheliegt, dass gespeicherte Parameter und Hy-
perparameter letztlich doch gespeicherten Steuerbefehlen ähneln könnten, so
ist doch vernünftigerweise davon auszugehen, dass es sich lediglich um Infor-
mationen handelt, die von Steuerbefehlen verwendet werden, im Unterschied
zu (kompiliertem) Code, der so, wie er vorliegt, an ein (Ausführ-) Programm
übergeben und ausgeführt werden kann. Anders sieht dies Grätz, der unter
Annahme eines weiten Begriffsverständnis von Computerprogrammen, das
keine Steuerungsfunktion fordert, davon ausgeht, dass auch „Trainingsergeb-
nisse“ (hier: Parameter) als Computerprogramm zu verstehen sind.346 Dem
ist nicht zuzustimmen. Hierbei wird übersehen, dass Trainingsergebnisse für
sich nur eine Sammlung von Werten sind, die nicht ausgeführt werden kön-
nen. Selbst wenn keine Steuerungsfunktion gefordert wird, fehlt den Daten
eine für Computerprogramme übliche Struktur.

An der Steuerungsfunktion aber fehlt es: Hyperparameter und Parameter
sind letztendlich nur Werte, die nach dem Laden der Datei durch den Quellco-
de im Programm Variablen zugewiesen werden können, aber es handelt sich
eben nicht um eigenständige Steuerbefehle. Damit verfängt auch das Argu-
ment nicht, dass außerhalb des Quellcodes gespeicherte Werte das Verhalten
des Computers auf gleiche Weise steuern wie im Code selbst hinterlegte
Werte, weshalb auch die ausgelagerten Werte genauso Teil des Computerpro-
gramms seien.347 Die ausgelagerten Hyperparameter für sich sind faktisch
nämlich nicht in der Lage, den Computer zu steuern.

345 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 17.
346 Grätz, Künstliche Intelligenz im Urheberrecht, S. 52.; einen weiten Computerpro-

grammbegriff ebenso erwägend, aber den Schutz aufgrund fehlender geistiger Schöp-
fung ablehnend Ehinger/Stiemerling, CR 12 2018, 761, 768; das OLG Hamburg
setzt ebenfalls für die Annahme eines Schutzes voraus, dass die fragliche Datei
Steuerbefehle enthält, s. OLG Hamburg MMR 1999, 230, 231 – Superfun.

347 Nebel/Stiemerling, CR 1 2016, S. 66.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

Allerdings erfasst § 69a UrhG auch Entwurfsmaterial, und damit vorgela-
gerte Ausdrucksformen eines Programms, wie zum Beispiel Flussdiagramme
oder andere Vorstufen des Computerprogramms.348 Es könnte daran gedacht
werden, die im JSON- oder ähnlichen Format abgelegten Hyperparameter
(nicht jedoch die errechneten bzw. optimierten Parameter) über diese Vor-
schrift in den Schutz einzubeziehen, stellen sie doch in gewisser Weise den
„Entwurf“ des trainierten Netzwerkes dar, dergestalt dass sie den Aufbau des
entstehenden KNN bestimmen.

Nach den Erwägungsgründen der für die Entstehung von § 69a UrhG
maßgeblichen Computerprogramm-RL muss das am Schutz teilnehmende
Entwurfsmaterial zur Entwicklung (oder zur Vorbereitung) eines Compu-
terprogramms dienen, wobei die Art der vorbereitenden Arbeit die spätere
Entstehung eines Computerprogramms zulassen muss.349 Problematisch
erscheint, dass die Hyperparameter nicht zur Vorbereitung auf die Entwick-
lung eines Programms dienen, sondern lediglich abstrakt das KNN (ohne
die Gewichtungsinformationen) abbilden. Entwurfscharakter haben sie also
allenfalls für das entstehende KNN, nicht aber für ein konkretes Computer-
programm. Die Subsumtion unter den Begriff „Entwurfsmaterial“ will hier
demzufolge nicht so recht passen.350 Vielmehr sind sie als computeranwei-
sungslose Daten einzuordnen, die keinen Schutz als Computerprogramm
genießen.351

Weder die abgespeicherten Parameter noch die Hyperparameter sind folg-
lich – für sich betrachtet – dem Schutz nach § 69a UrhG zugänglich.

cc) Kombination zur Laufzeit

Möglicherweise können die in Dateien ausgelagerten Informationen jedoch
anderweitig in den Schutz aus § 69a UrhG einbezogen werden: Die Parameter
und Hyperparameter werden aus den Dateien eingelesen und im flüchtigen
Arbeitsspeicher mit den aus dem Quellcode generierten Steueranweisungen
im Bytecode zusammengeführt. § 69a UrhG erfasst jede Ausdrucksform

348 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 14.
349 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 7; Erwägungsgrund 7 und

Art. 1 Abs. 1 S. 2 Computerprogramm-RL.
350 Gegen einen Schutz als Entwurfsmaterial auch Hartmann/Prinz, WRP 12 2018,

1431, 1435 f..
351 Vgl. dazu Dreier/Schulze–Dreier, UrhG, § 69a Rn. 12.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

eines Computerprogramms, auch den Maschinen- und Objektcode.352 Damit
könnte also unter Umständen auf das nur flüchtig existierende Endprodukt
als Schutzobjekt abgestellt werden, wobei jedoch fraglich ist, ob dies eine
ausreichend manifestierte Form darstellt. Grundsätzlich reicht jedoch die
(auch einmalige) Wahrnehmbarkeit, eine permanente Fixierung ist nicht er-
forderlich.353 Die entstehende „Kombination zur Laufzeit“ ist eine andere
Ausdrucksform des Computerprogramms, das bereits durch den Quellcode
geschützt ist. Der entstehende Bytecode ist also, sofern er überhaupt außer-
halb des Programmablaufs erreichbar ist – ebenso wie bereits der Quellcode –
Computerprogramm im Sinne des § 69a Abs. 1 UrhG, jedoch nicht zusätzlich
zum Quellcode, sondern in dessen Rahmen geschützt.

dd) Sonstige Schutzgegenstände

In Bezug auf KNN wird häufig auch „der Algorithmus“ als Schutzgegenstand
diskutiert,354 wobei es wesentlich darauf ankommt, was als „der Algorithmus“
verstanden wird.355 Der „Algorithmus“ im Sinne des aus dem Quellcode
entstehenden Programms wurde bereits abgehandelt.356 Es ist möglich, das
Verständnis eines KNN auf die zugrundeliegenden statistischen Rechenre-
geln zu reduzieren. Diese wären sodann als Algorithmus im mathematischen
Sinne aufzufassen und als Ideen und Grundsätze gem. § 69a Abs. 2 UrhG
nicht schutzfähig. Die hier verwendete Definition eines KNN rekurriert je-
doch nicht auf diese abstrakten Rechenregeln, sondern auf deren konkreter
Umsetzung durch die in § 6 D.III. erläuterten Bestandteile eines trainierten
Modells, sodass es allein auf deren Schutzfähigkeit ankommt. Eine Diskus-
sion der Schutzfähigkeit des Algorithmus als gesonderter Schutzgegenstand
ist also entbehrlich.

352 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 11; Dreier/Schulze–Dreier,
UrhG, § 69a Rn. 19.

353 Wandtke/Bullinger–Grützmacher, PK UrhR, § 69a Rn. 11.
354 Vgl. z. B. Hauck/Cevc, ZGE 11 2019, 135, 160; Linke, GRUR Junge Wissenschaft

2019, S. 36 ff., S. 40 f..
355 Zur begrifflichen Ambivalenz vgl. Dreier/Schulze–Dreier, UrhG, § 69a Rn. 22; zur

Einordnung in § 69a UrhG vgl. Söbbing, CR 4 2020.
356 Vgl. oben aa) und cc).
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ee) Zusammenfassung: infrage kommende Schutzgegenstände

Für den Schutz als Computerprogramm kommt folglich nur der das Mo-
dell ladende und ausführende Quellcode, sowie damit auch der entstehende
Bytecode infrage.

2. Eigene geistige Schöpfung

Als Schutzgegenstand wurde der das trainierte KNN ladende und ausführende
Quellcode identifiziert. Für einen Schutz gem. § 69a UrhG muss diesem die
Qualität eines individuellen Werkes im Sinne eines Ergebnisses einer eigenen
geistigen Schöpfung des Urhebers zukommen (§ 69a Abs. 3 S. 1 UrhG). Auf-
fällig ist hier, dass nicht – wie etwa in § 2 Abs. 2 UrhG – eine „persönliche“,
sondern eine „eigene“ geistige Schöpfung gefordert wird. Dies ist jedoch
der Umsetzung der Computerprogramm-RL, und damit der Absenkung der
vormals noch deutlich höheren Schutzvoraussetzungen,357 geschuldet,358 es
besteht Einigkeit darüber, dass – unabhängig vom Wortlaut in § 69a Abs. 3
S. 1 UrhG – eine individuelle persönliche geistige – menschliche – Schöp-
fung im Sinne des § 2 Abs. 2 UrhG erforderlich ist.359 Folglich ist auch hier
eine menschlich-gestalterische Tätigkeit erforderlich, die „einen geistigen
Gehalt aufweist, zu einer Formgestaltung geführt hat und eine hinreichende
Individualität erkennen lässt“.360

a) Menschlich-gestalterische Tätigkeit

Das Kriterium der menschlich-gestalterischen Tätigkeit dürfte – sofern nicht
modellprogrammerzeugende Algorithmen eingesetzt werden – unproblema-
tisch für den Quellcode-Anteil trainierter Modelle vorliegen. Dieser wird auch
nicht automatisiert geändert, die automatisierten Einfügungen der Parame-
terwerte und Hyperparameter erfolgen zum einen durch den Programmierer
initiiert, und zum anderen erst bei Programmablauf. Abzustellen ist aber auf
den Zeitpunkt der Herstellung des Quellcodes.

357 BGH GRUR 1985, 1041, 1047 – Inkasso-Programm
358 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 25.
359 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 25; Nordemann/Fromm–Czychowski, UrhR,

§ 69a Rn. 16; Ahlberg/Götting–Kaboth/Spies, BeckOK-UrhG, § 69a Rn. 13.
360 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

Ferner müsste der Quellcode einen geistigen Gehalt aufweisen, zu einer
Formgestaltung geführt haben und eine hinreichende Individualität erkennen
lassen.361

b) Geistiger Gehalt

Geistigen Gehalt weist das Computerprogramm auf, wenn in ihm der mensch-
liche Geist zum Ausdruck kommt362 – die Idee, das Konzept, das der Pro-
grammierer oder Softwareentwickler umsetzen möchte, muss sich also in
dem Quellcode wiederfinden. Im Quellcode eines trainierten KNN bedient
sich der Programmierer einer Reihe verfügbarer Frameworks (sofern – wie im
Regelfall – nicht der gesamte Quellcode neu geschrieben, also quasi „das Rad
neu erfunden“ wird). Schon die Auswahl derselben und daran anschließend
die Wahl der Objekttypen, die Art des KNN, und die Netzwerkarchitektur,
also die Auswahl der Anzahl der Schichten, der Aktivierungsfunktionen
etc. sind ein Abbild der Idee, mit dem der Entwickler sein Ziel zu erreichen
gedenkt, und mithin Ausdruck seines Geistes.

c) Wahrnehmbarkeit

Das Computerprogramm müsste ferner als Ergebnis der schöpferischen Tä-
tigkeit des Programmierers der Wahrnehmung durch die menschlichen Sinne
zugänglich sein,363 es handelt sich bei Quellcode um niedergeschriebenen
Text, der vom Menschen gelesen werden kann, und in der ausgeführten Fas-
sung durch Interaktionsmöglichkeiten (Eingabe von zu analysierenden Daten,
Ausgabe der Vorhersagen oder generierten Erzeugnisse) auch durch Nicht-
Entwickler wahrnehmbar ist, auch dieses Merkmal liegt also unproblematisch
vor.

d) Individualität

Möglicherweise scheitert die Subsumtion jedoch an der nötigen erforderli-
chen Individualität, also der „eigenpersönlichen Ausnutzung des bestehenden

361 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
362 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
363 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
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Gestaltungsspielraumes“364. Diese Schlussfolgerung liegt nahe, wenn berück-
sichtigt wird, dass der Vorgang der Initialisierung eines KNN (also Quellcode
2 in Abbildung 6.2) für unterschiedlichste Anwendungszwecke sehr ähnlich
bis identisch ausfallen kann.

Das wird umso deutlicher anhand eines Beispiels: Entwickler A möchte
ein KNN darauf trainieren, Autos in Bildern zu erkennen, und verwendet
dafür einen Datensatz mit Bildern von Autos sowie ein ML-Modell in einer
bestimmten Konfiguration. Entwickler B möchte ein KNN darauf trainieren,
Bäume in Bildern zu erkennen. Dafür verwendet er einen gänzlich ande-
ren Datensatz mit Bildern von Bäumen, aber die gleiche Konfiguration des
KNN. Der Quellcode für beide Modelle kann mithin identisch ausfallen, ob-
gleich eine vollkommen andere Aufgabe erfüllt wird (und sich die trainierten
Parameter auch wesentlich unterscheiden).

Möglicherweise existiert also ein „Basisbefehlssatz“, der für eine Vielzahl
unterschiedlicher Aufgabenstellungen identisch und zugleich unerlässlich
sein kann, insbesondere wenn die Hyperparameter in eine Datei ausgelagert
wurden, und für den folglich ein Freihaltebedürfnis im Sinne der „Building
Blocks“ eines ML-Modells bestehen könnte.

Zugleich darf jedoch die Schwelle der Individualität nicht zu hoch ange-
setzt werden.365 Es verbietet sich an dieser Stelle eine pauschale Beurteilung,
der Quellcode kann mitunter auch sehr individuell ausfallen. Zudem kann ein
Programm, das zwar mit dem bis auf Dateipfade identischen Quellcode wie
ein anderes Programm abläuft, dem aber gänzlich verschiedene Trainings-
daten und Hyperparameter zugrunde liegen, eine gänzlich andere Aufgabe
oder eine gleiche Aufgabe mit höherer Präzision durchführen, sodass die
Individualität auch in der Zusammenschau mit anderen Bestandteilen des
Computerprogramms liegen kann.

Es wird vielmehr auf eine Einzelfallbetrachtung ankommen müssen. Nach
der in § 7 B.I. und § 7 B.II. vorgeschlagenen Vorgehensweise (Schutz der
Hyperparameter bzw. des trainierten KNN als Datenbank(werk)) dürfte es
für den Entwickler, der einen „Standardquellcode“ zum Aufruf des KNN ver-
wendet, jedoch auch nicht schädlich sein, wenn dieser nicht gem. § 69a UrhG
geschützt werden kann, weil dann ein großer Teil seiner geistigen Schöpfung
bereits Datenbankwerkschutz genießt. In vielen Fällen wird der Entwickler
jedoch vermutlich zumindest einige Anpassungen des „Standardquellcodes“

364 Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
365 Dies gilt grundsätzlich für den Computerprogrammschutz, vgl. BGH GRUR 2005,

860, 861 – Fash 2000; Dreier/Schulze–Dreier, UrhG, § 69a Rn. 26.
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B. Trainiertes ML-Modell in Python (insb. trainiertes KNN)

vornehmen müssen, sodass dann – aufgrund der sehr niedrigen Schutzanfor-
derungen – auch dafür ein Schutz nach § 69a UrhG angenommen werden
kann.366

3. Ergebnis

Trainierte ML-Modelle sind dem Computerprogrammschutz nach § 69a Ur-
hG zugänglich, wenn der Quellcode als zentraler Schutzgegenstand herange-
zogen wird.

Inwiefern der urheberrechtliche Computerprogrammschutz für ein trai-
niertes Modell relevant ist, hängt zu großen Teilen davon ab, ob der Quell-
code selbst die zentralen Funktionalitäten enthält, oder ob ein minimaler
„Standardquellcode“ verwendet wird, während die eigentliche „Magie“ des
trainierten Modells in ausgelagerten Hyperparametern und Parametern liegt.
In letzterem Fall dürfte dem Schutzsuchenden wohl der Datenbank- und ggf.
Datenbankherstellerschutz besser dienen;367 wenn jedoch eine wesentliche
Leistung des Entwicklers in der Implementierung des Quellcodes besteht,
schützt der Computerprogrammschutz vor der Übernahme insbesondere
der Gesamtstruktur und auch von (für sich als schutzfähig zu befindenden)
Programmteilen.368

IV. Zusammenfassung

Trainierte ML-Modelle sind durch die verschiedenen infrage kommenden
Schutzgegenstände in unterschiedlicher Weise urheberrechtlich schutzfä-
hig. Sofern der Fokus der Betrachtung auf dem Quellcode liegt, kommt ein
Computerprogrammschutz nach § 69a UrhG infrage. Für die gewählten und
gespeicherten Hyperparameter und Parameter kommt in der Kombination
außerdem Datenbankwerkschutz gem. § 4 Abs. 2, Abs. 1 UrhG sowie das
sui-generis Datenbankherstellerrecht gem. §§ 87a ff. UrhG in Betracht.

366 Einen Computerprogrammschutz nur im Einzelfall für möglich haltend Apel/
Kaulartz, RDi Nr.1 2020, 24, 28.

367 Vgl. dazu § 7 B.I. und § 7 B.II..
368 Vgl. Dreier/Schulze–Dreier, UrhG, § 69a Rn. 21, 23.
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Abbildung 7.2: Die ersten 20 Einträge eines Baumes in einem Random Forest
in Tabellen- und Baumform, Quelle: eigene Darstellung.

C. Trainierter Random Forest in R

Das Konzept der Random Forests wurde bereits in § 2 B.II.1. eingeführt,
hier folgt eine Veranschaulichung anhand eines Beispiels in der Program-
miersprache R, um die urheberrechtliche Analyse und insbesondere die sich
von den dargestellten Python-Modellen unterscheidende Behandlung besser
nachvollziehen zu können.

Abbildung 7.2 zeigt in tabellarischer Darstellung einen „Baum“ aus einem
Random Forest, der auf einem Trainingsdatenset über portugiesische Schü-
ler369 und deren Erfolgsquote im Schuljahr trainiert wurde.370 Anhand dieser
Abbildung kann die Funktionsweise eines Entscheidungsbaums nachvollzo-
gen werden: Aufgabe des Modells ist es, für einen Studierenden vorherzusa-
gen, ob er die Jahresabschlussklausur bestehen wird oder nicht. Der Datensatz
enthält Informationen unter anderem über die Schule, das Geschlecht, das
Alter, die Adresse, die Berufe der Eltern, bisheriges Nichtbestehen von Klau-
suren, Anfahrtszeiten zur Schule und Freizeitaktivitäten.

Das Modell wurde in der Programmiersprache R entwickelt. Die Tabelle
zeigt aus Praktikabilitätsgründen hier nur die ersten 20 Zeilen des Baumes
an und ist wie folgt zu lesen:

369 Datensatz: https://archive.ics.uci.edu/ml/datasets/Student+Performance (Stand:
22.02.2021); Carvalho Brito, 15th European Concurrent Engineering Conference
2008, ECEC ’2008 [and] 5th Future Business Technology Conference, FUBUTEC
’2008: April 9 - 11, 2008, Porto, Portugal.

370 Beispiel entwickelt anhand von https://www.machinegurning.com/rstats/deploying_
models/ (Stand: 22.02.2021).
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Der oberste Knoten (1) hat zwei Kindknoten („left daughter“ = Knoten Nr.
2 und „right daughter“ = Knoten Nr. 3). Die Eigenschaft der untersuchten
Schüler, die im ersten Knoten überprüft wird („split var“), ist „G2“ – die in
Prozent gemessene Note des zweiten Leistungsmessungszeitraums. Wenn
die erreichte Note über 50 Prozent (0.5) lag, wird zum Knoten 2 gesprungen,
es geht dann also in Zeile 2 weiter, ansonsten zu Knoten 3. Knoten 2 hat die
Kindknoten 4 und 5, und überprüft auf das Kriterium der Ausbildung des
Vaters („Fedu“). Knoten 3 hat die Kindknoten 6 und 7, und überprüft, wieviel
Alkohol der Schüler am Wochenende konsumiert („Walc“). Für einen Alko-
holkonsumwert unter 0.125 geht es bei Knoten 7 weiter, bei dem hier zum
ersten Mal in der Spalte „prediction“ ein Wert angegeben ist: Der Schüler
hätte also bei der Kombination gute zweite Klausur (G2) und wenig Alkohol-
konsum am Wochenende vermutlich die Schuljahresendklausur bestanden.371

Die Tabelle in Abbildung 7.2 zeigt, dass in einem Random Forest-Modell –
bzw. für Entscheidungsbäume im Allgemeinen – die trainierte Baumstruktur
bereits ausreicht, um Vorhersagen für neue Daten treffen zu können. Die
Tabellen aller Bäume in einem Random Forest können dann in eine Tabel-
le zusammengefasst und für Vorhersagen verwendet werden. Ein erneutes
Einlesen in ein Programm in der Ausgangsprogrammiersprache ist nicht
erforderlich, die Informationen können schlicht in einer „klassischen“ Daten-
bank gespeichert und mit einem beliebigen Computerprogrammcode, der die
Tabelle versteht, ausgelesen werden – dabei ist dies nicht einmal zwingend
erforderlich, sondern reduziert lediglich den zeitlichen Aufwand für den
Menschen. Insofern gilt für ein Random Forest-Modell in R – im Unterschied
zu Python-Modellen – dass ein trainiertes Modell und die trainierten Para-
meter nicht auseinanderfallen. Eine separate Prüfung erübrigt sich deshalb,
es gelten die Aussagen, die diesbezüglich sogleich zum Schutz trainierter
Parameter getroffen werden.372 Die Prüfung erfolgt zusammengefasst mit
den trainierten Parametern der Python-Modelle, um hier den Kontrast besser
herauszustellen.

371 Die Split-Werte sind nicht als absolute Werte zu lesen (so ergibt der „Alkoholkon-
sumwert 0.125“ ohne weitere Informationen keinen Sinn): Für die Berechnung und
Optimierung der Split-Werte werden die in allen betrachteten Datensätzen gefun-
denen Werte berücksichtigt, der größte Wert entspricht dann 1.0 und der kleinste
Wert 0.0, alle anderen Werte liegen proportional dazwischen. So könnte etwa ein
Konsum von 2 Liter Alkohol am Wochenende dem Wert 1.0 entsprechen, 0 Liter
würde dann der Wert 0.0 zugeordnet.

372 Vgl. § 7 D..
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Insbesondere gibt es zudem keinen Quellcode, der zwangsläufig Bestand-
teil des trainierten Random Forest-Modells in R ist. Dessen ungeachtet kann
in der Anwendung des trainierten Modells ein schutzfähiger Quellcode zum
Einsatz kommen, und auch für den Quellcode, mithilfe dessen der trainierte
Random Forest erzeugt wird, kommt ein Schutz nach § 69a UrhG infrage.

D. Trainierte Parameter

Bereits geklärt wurde die urheberrechtliche Schutzfähigkeit trainierter Py-
thon-ML-Modelle, für die die Parameter jeweils nur ein Element des zu
schützenden Werkes darstellen. Für Random Forests in R wurde festgestellt,
dass das trainierte Modell (also die entstehende Tabelle) den trainierten Pa-
rametern entspricht. Für die Prüfung der Schutzfähigkeit der Tabelle wurde
insofern auf die Prüfung trainierter Parameter verwiesen.

In einem nächsten Schritt ist also zu klären, ob auch die trainierten Para-
meter schutzfähig sind. Zum einen ist dabei zwischen trainierten Parametern,
die nur einen Teil eines trainierten Modells in Python ausmachen, und trai-
nierten Parametern, die das gesamte trainierte Random Forest-Modell in
R darstellen, zu unterscheiden ist, zum anderen bestehen aber auch struk-
turelle Unterschiede zwischen Random Forest-Modellen und künstlichen
neuronalen Netzen, die sich etwa auf den Datenbankcharakter auswirken
könnten.

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG

Für einen Schutz als Datenbankwerk müsste die Ansammlung von trainierten
Parametern gem. § 4 Abs. 2 UrhG i. V. m. § 4 Abs. 1 UrhG einem Sammelwerk
entsprechen, dessen Elemente systematisch oder methodisch angeordnet und
einzeln mit Hilfe elektronischer Mittel oder auf andere Weise zugänglich
sind, und das aufgrund der Anordnung oder Auswahl der Elemente eine
geistige Schöpfung darstellt.

1. Datenbankwerk

An dieser Stelle wird nicht kategorisch zwischen ML-Modellen in Python
und Random Forests in R unterschieden, sondern zwischen KNN und Ran-
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D. Trainierte Parameter

dom Forests an sich, da die Unterschiede der Modelle in Bezug auf die
trainierbaren Parameter hier besonders hervortreten.

a) Künstliches neuronales Netz

Elemente der Sammlung trainierter Parameter eines KNN sind die einzelnen
Werte, die indizieren, mit welcher Gewichtung der Output eines Neurons an
das nächste Neuron weitergeleitet wird. Der Abruf eines einzelnen Wertes
eröffnet darüber hinaus auch Informationen über die Position im Netzwerk,
für die dieser Wert gilt (diese Information muss zwangsläufig enthalten sein,
denn ansonsten könnten die Werte nicht wieder eingelesen werden, um das
Training fortzusetzen bzw. das trainierte Netz produktiv zu verwenden).
Analog zur Postleitzahl373 könnte dadurch auch dem einzelnen trainierten
Parameter ein Informationswert zuzusprechen sein.374 Die methodische bzw.
systematische Anordnung und die einzelne Zugänglichkeit, die schon für
das Zusammenspiel zwischen abgespeicherten Parametern und Quellcode
unerlässlich sind, liegen ebenfalls vor. Mithin sind nicht nur die Kriterien der
systematischen bzw. methodischen Anordnung sowie der einzelnen Zugäng-
lichkeit, sondern insbesondere aufgrund ihres jeweils vorhandenen eigenen
Informationswerts auch das der Unabhängigkeit der Elemente erfüllt.

b) Random Forest

Elemente eines trainierten Random Forest-Modells könnten die einzelnen
Bäume oder – eine Ebene tiefer – die Knoten samt ihrer Schwellwerte und
Feature-Information darstellen. Der Knoten als Element gibt also Auskunft
über ein in dem zugehörigen Baum untersuchtes Feature sowie den ermittelten
Schwellwert (im Beispiel der portugiesischen Schüler: untersuchtes Feature
könnte die am Wochenende konsumierte Alkoholmenge sein, der Schwellwert
ist dann die auf einen Wert zwischen 0 und 1 skalierte Alkoholmenge, die im
weiteren Verlauf voraussichtlich zu einem Nichtbestehen führt). Die Elemente
sind folglich unabhängig informierend. Die Sammlung erfolgt zwangsläufig
strukturiert, und die Elemente sind einzeln abrufbar.

373 Vgl. wieder Nordemann/Fromm–Czychowski, UrhR, § 4 Rn. 26; b).
374 A.A. Hartmann/Prinz, WRP 12 2018, Rn. 62.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

c) Zwischenergebnis

Das Vorliegen einer Datenbank im Sinne des § 4 Abs. 2 UrhG kann also
sowohl für Random Forests als auch für KNN angenommen werden.

2. Persönliche geistige Schöpfung

Es bleibt zu klären, ob jeweils auch eine persönliche geistige Schöpfung im
Sinne des § 4 Abs. 1 UrhG vorliegt. An dieser Stelle genügt die Differenzie-
rung zwischen KNN und Random Forest nicht mehr, sondern es ist anhand
der verwendeten Technologie zu unterscheiden: Bei der Entwicklung von
Random Forests in R nimmt die Parametersammlung eine andere Form an als
in Python, jedoch können auch in Python Random Forests trainiert werden.
Die weitere Prüfung unterscheidet daher zwischen ML-Modellen in Python
und Random Forests in R.

a) ML-Modell in Python

In Python werden die betreffenden Parameter-Werte unzweifelhaft durch
einen Computer erzeugt bzw. errechnet.375 Anknüpfungspunkt für die per-
sönliche geistige Schöpfung ist die Anordnung oder Auswahl der Elemente.
Auch die Anordnung der Parameter wird vom Framework vorgegeben und
durch den Computer vorgenommen, ohne dass der Mensch einzugreifen
braucht. Auf die Auswahl hat der Mensch allenfalls beschränkten Einfluss
durch die Auswahl der Hyperparameter und indem er bestimmt, wann er
den Trainingsprozess für abgeschlossen erklärt (denn erst dann verändern
sich die Parameter nicht mehr). In keinem Fall jedoch wählt der Mensch die
Parameter gezielt selbst aus.

Die Idee, die der Entwickler mit dem KNN umsetzen möchte, ist fer-
ner nicht (allein) in der Parametersammlung verkörpert. Das beabsichtigte
Ergebnis kann beim Einsatz der vorgestellten Python-Frameworks erst im Zu-
sammenwirken mit den ausgewählten Hyperparametern erzielt werden. Die
trainierten Parameter sind – auch als Sammlung – für sich genommen also
keine persönliche geistige Schöpfung des Entwicklers, sondern lediglich ein

375 Vgl. zur Berechnung im Rahmen des Trainingsvorgangs z. B. oben § 3 A.II..
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D. Trainierte Parameter

Bestandteil einer umfassenderen Schöpfung, ohne selbst dieses Erfordernis
zu erfüllen.

b) Random Forest in R

Eine differenzierte Betrachtung ist in Bezug auf Random Forest-Modelle
in R geboten. Es besteht die Möglichkeit, das Ergebnis eines Trainingsvor-
gangs – also „den Random Forest“ – in einer „klassischen“ elektronischen
Datenbank zu speichern und – ohne eine erneute Initialisierung eines Ran-
dom Forest-Objektes in der ursprünglichen Programmiersprache – damit
bereits Vorhersagen zu treffen. Mitunter entsprechen also die trainierbaren
Parameter eines Random Forest-Modells dem trainierten Modell. Allerdings
werden die Bäume und Knoten ebenfalls durch den Computer ermittelt. Die
vom Entwickler gewählten Hyperparameter haben lediglich begrenzende
Wirkung (bspw. kann eine maximale Baumtiefe vorgegeben werden). Der
Entwickler überlässt es aber dem Algorithmus, die optimale Konfiguration
zu finden. Die einzige Auswahlleistung des Menschen besteht erneut darin,
zu bestimmen, wann das computergenerierte Ergebnis ausreichend den eige-
nen Vorstellungen entspricht. Aber auch hierbei wählt der Entwickler nicht
gezielt Parameter, sondern bestimmt in der Regel anhand einer Metrik (wie
zum Beispiel durch Anwendung einer Verlustfunktion, oder andere gängige,
in der Regel nicht selbst entwickelte sondern in Entwicklerkreisen bewährte
Funktionen, die die Abweichung der Vorhersage von der aufgrund der Labels
erwarteten Vorhersage berechnen), wie nah das Ergebnis an das Optimum
heranreicht, und lässt das Modell die Parameter so lange optimieren, bis ihm
das Gesamtergebnis genau genug erscheint.

Fraglich könnte aber sein, ob der Computer von einem Menschen steuernd
als Hilfsmittel bzw. Werkzeug zur Erzeugung der Struktur eingesetzt wurde.
In diesem Fall könnte eine persönliche geistige Schöpfung bejaht werden,
denn dann könnte eine menschlich-gestalterische Handlung des Entwicklers
vorliegen.376 Wenn etwa der Entwickler alle Rechenschritte, die der Computer
durchführen soll, vorgibt, und diese dann lediglich automatisiert ausgeführt
werden, könnte von einem Einsatz als Werkzeug gesprochen zu sprechen sein.
Zwar gibt es bei Random Forest-Modellen auch eine Zufallskomponente,
auf die der Entwickler keinen Einfluss hat: So werden etwa die Features

376 Schricker/Loewenheim–Loewenheim, UrhR, Rn. 39f., Dreier/Schulze–Schulze, Ur-
hG, § 2 Rn. 8.
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der einzelnen Bäume durch den Algorithmus zufällig ausgewählt, ebenso
die Datensätze, die die Bäume durchlaufen. Sowohl die Features als auch
die Datensätze haben einen maßgeblichen Einfluss auf bzw. bestimmen die
berechneten Knotenwerte, sodass die Leistung des Entwicklers vermeintlich
verblasst. Jedoch legt der Entwickler – durch Anwendung besagter Metriken,
und aus eigener Erfahrung – fest, wann das trainierte Modell seinen Vor-
stellungen entspricht, und gibt damit zum Ausdruck, dass in dem Ergebnis,
also dem trainierten Random Forest-Modell in Form der durch das als Werk-
zeug eingesetztes Computerprogramm ausgewählten Werten in der Tabelle,
seine persönliche geistige Schöpfung zum Ausdruck kommt. Die Prüfung
gestaltet sich insofern ähnlich der Prüfung, die später für Erzeugnisse von
ML-Modellen vorzunehmen sein wird:377 Der Entwickler wählt – für die
Auswahl der Elemente seiner Sammlung, um die es hier als Bezugspunkt
der geistigen Schöpfung geht – ein Framework aus, setzt begrenzende Para-
meter, und wählt aus mehreren Ergebnissen eines aus. Dies ist für trainierte
Random Forests in R aus den genannten Gründen der Fall, im Unterschied
zu trainierten Parametern eines Modells in Python, die nur einen Teil des
Ergebnisses darstellen.

Folglich liegt in der Auswahl der Elemente der Sammlung „trainierte
Random Forests in R“ eine persönliche geistige Schöpfung des Entwicklers
bzw. Data Scientists.

3. Ergebnis

Im Ergebnis ist zu differenzieren zwischen trainierten Parametern der ML-
Modelle in Python und den Ergebnistabellen trainierter Random Forest-
Modelle in R. Während für erstere der Schutz spätestens am Vorliegen einer
persönlichen geistigen Schöpfung scheitert, kann eine solche für Random
Forests in R angenommen werden, mit der Folge des urheberrechtlichen
Schutzes der Tabellen als Datenbankwerk nach § 4 Abs. 2 UrhG i. V. m. § 4
Abs. 1 UrhG.

377 S. unten d); dort in Anlehnung an Dreier, FS Kitagawa, S. 881.
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II. Investitionsschutz gem. §§ 87a ff. UrhG

Wenngleich ein Schutz nach § 4 UrhG zumindest für ML-Modelle in Python
nicht in Betracht kommt, so könnte für die trainierten Parameter doch ein
sui-generis-Datenbankherstellerschutz gem. §§ 87a ff. UrhG einschlägig sein.
Im Gegensatz zu einem Schutz nach § 4 Abs. 2 UrhG ist hierfür gerade keine
persönliche geistige Schöpfung erforderlich, sondern eine Investition in die
Beschaffung, Sammlung, Überprüfung, Aufbereitung und Darbietung des
Inhalts der Datenbank.378

1. Vorliegen einer Datenbank

Sowohl für die trainierten Parameter eines KNN als auch für die Baumstruktur
eines Random Forest-Modells wurde die Datenbankqualität bereits untersucht
und bejaht (vgl. § 7 D.I.1.).

2. Investition

Zusätzlich muss für § 87a UrhG eine im Rahmen der Beschaffung, Über-
prüfung oder Darstellung der Datenbankinhalte anfallende, sowie nach Art
oder Umfang wesentliche Investition vorliegen (§ 87a Abs. 1 S. 1 UrhG).
Für die Berechnung der trainierten Parameter sowie der Baumstruktur sind
mitunter teure Hardwarekomponenten sowie erheblicher Zeitaufwand erfor-
derlich (unter anderem für die Sammlung der Trainingsdaten, Rechenzeit
und manuelle Optimierung der Hyperparameter). Zu prüfen ist, in wieweit
sich diese Aufwände den in § 87a UrhG aufgeführten Investitionszwecken
zuordnen lassen.

a) Gegenstand der Investition

Als Bezugspunkte der Investition nennt § 87a UrhG die Beschaffung, Über-
prüfung oder Darstellung der Datenbankinhalte. Dabei bezieht sich die Be-
schaffung stets auf bereits bestehende Elemente, nicht auf die Erzeugung

378 Dreier/Schulze–Dreier, UrhG, § 87a Rn. 1.

155

https://doi.org/10.5771/9783748912453-95 - am 12.01.2026, 11:19:09. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.5771/9783748912453-95
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb


§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

derselben.379 Dies ergibt sich auch schon aus den Erwägungsgründen zur
Datenbank-RL: Es sollen Lösungen geschützt werden, die dazu beitragen,
durch Informationsmanagementsysteme der wachsenden Datenmenge Herr
zu werden – und nicht solche, die die Datenmenge erweitern.380 Dies bekräf-
tigt auch der EuGH in British Horeseracing Board, wenn er das Schutzziel der
Richtlinie damit beschreibt, dass durch den sui-generis-Schutz ein Anreiz da-
für geschaffen werden sollte, Systeme für die Speicherung und Verarbeitung
vorhandener Informationen zu errichten, und eben nicht für die Erzeugung
neuer Elemente, die dann „später in einer Datenbank zusammengestellt wer-
den können“.381

Fraglich ist folglich, ob vorliegend neue Elemente erzeugt werden.

aa) Berechnung bzw. Optimierung der Parameter

Die berechneten Parameter bzw. die Baumstruktur könnten möglicherweise
als eine kondensierte Verkörperung der relevanten Informationen und Ge-
meinsamkeiten aus der Gesamtmenge der Trainingsdaten (also Bilder, Texte,
. . . ) anzusehen sein. Dann dienen gerade die berechneten bzw. optimierten
Werte dazu, die aus den Massen an zur Verfügung stehenden Daten gewonnen
Erkenntnisse zu fixieren, also den größtmöglichen Nutzen daraus zu ziehen,
ohne dass dabei die ursprüngliche Datenmenge erweitert wird.382 Es könnte
dann von einer „Beschaffung“ als tauglichem Investitionsgegenstand ausge-
gangen werden. Hetmank/Lauber-Rönsberg kommen zu dem Ergebnis, dass
– sofern die zugrundeliegenden (Trainings-)Daten allgemein zugänglich sind
– die Investition in die Analyse derselben durch ML-Modelle dem Schutz
nach § 87a UrhG zugänglich sein müsste.383 Eine begriffliche Abgrenzung
zwischen bereits vorhandenen und neu erzeugten Daten trifft Wiebe: „Bereits
vorhandene Daten sind allgemein verfügbar und können daher grundsätzlich
von jedem Dritten mit gleichem Aufwand gesammelt werden, während er-

379 EuGH GRUR 2005, 244 – British Horseracing Board, BHB-Pferdewetten; BGH
GRUR 2005, 857 – Hit Bilanz; Dreier/Schulze–Dreier, UrhG, § 87a Rn. 12.

380 Vgl. ErwGr 10 Datenbank-RL.
381 EuGH GRUR 2005, 244, 247 Rn. 31 – British Horseracing Board, BHB-

Pferdewetten.
382 So wohl auch Ahlberg/Götting–Vohwinkel, BeckOK-UrhG, § 87a Rn. 49.
383 Hetmank/Lauber-Rönsberg, GRUR 2018, 574, 578.
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zeugte Daten ’ihrer Natur nach’ niemandem außer dem Datenerzeuger selbst
bekannt sind.“384

Die in der Literatur und Rechtsprechung erkennbare Neigung, den Investi-
tionsbegriff im Kontext des Machine Learning zunehmend weiter auszule-
gen,385 ist auch auf EU-Ebene nicht unbemerkt geblieben.386 In einer im Jahr
2018 veröffentlichten zweiten Evaluierung der Datenbank-RL wird explizit
Bezug auf maschinengenerierte Daten genommen – wenngleich eine kon-
krete Erörterung zu Machine Learning leider ausbleibt. Machine-Generated
Databases werden gleich zu Beginn als nach allgemeinem Verständnis vom
sui-generis-Recht ausgeschlossen bezeichnet.387 Sodann wird jedoch in Aus-
wertung einer durchgeführten Umfrage und nicht zuletzt auch im Lichte des
Autobahnmaut-Urteils des BGH388 zumindest festgestellt, dass – während
das Verständnis des Investitionsgegenstands weiter eng zu fassen ist – eine
Beobachtung der Situation erforderlich sei.389 Im Rahmen der durchgeführten
Studie wird zudem angezweifelt, ob das sui-generis-Recht bzw. die tatbe-
standlichen Voraussetzungen noch wirtschaftlich optimal angelegt sind.390

Wenngleich im Rahmen dieser europäischen Untersuchung also keine eindeu-
tige Tendenz zu einem weiteren Investitionsbegriff zu erkennen ist, bieten die
Erörterungen vor dem Hintergrund der gebotenen „Beobachtung der Situati-
on“ doch Anlass dazu, einen genaueren Blick auf die Parametersammlung
im Machine Learning-Prozess zu werfen.

Nach dem bisher Gesagten muss es wesentlich darauf ankommen, ob die
Parametersammlung als Sammlung vorbestehender Informationen oder als
Zusammenstellung erzeugter Informationen einzuordnen ist.

Vielleicht ist Machine Learning grundsätzlich als Informationsextrahie-
rungsprozess391 zu begreifen – dies implizierte, dass keine neuen Informa-
tionen bzw. Daten erzeugt, sondern lediglich vorhandene Informationen aus
bestehenden Daten extrahiert und in maschinenlesbare Form gebracht wür-

384 Wiebe, GRUR 2017, 338, 341; vgl. auch Leistner, KuR 9 2007, 457, 460; zweifelnd
noch im Jahr 2005 Sendrowski, GRUR 2005, 369, 372.

385 Vgl. Fußnote 384 sowie z. B. LG Köln MMR 2002, 689 – Online-Fahrplanauskunft.
386 Europäische Kommission, Evaluation DB-RL, S. 35, dort Fn. 184.
387 Dies., Evaluation DB-RL, S. 35.
388 BGH GRUR 2010, 1004 – Autobahnmaut.
389 Europäische Kommission, Evaluation DB-RL, S. 37.
390 Dies., Evaluation DB-RL, S. 40.
391 Dies legen die Definitionen des Machine Learning durchaus nahe, vgl. die Ausfüh-

rungen zur Abgrenzung zu TDM in § 2 B.IV.1..
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den.392 Dann läge ein nach dem traditionellen Begriffsverständnis tauglicher
Investitionsgegenstand vor.393

Ordnet man aber – wie eingangs bewusst vorsichtig im Konjunktiv ange-
deutet – die aus den Daten gewonnenen Informationen als in den Parametern
repräsentiert ein, wird verkannt, dass die aufzudeckenden Zusammenhänge
für den Fall der Python-Modelle gerade nicht nur durch die Parameter er-
fassbar sind, sondern dass erst im Zusammenspiel mit Hyperparametern und
Quellcode bzw. Skriptaufruf eine Verkörperung dieser Erkenntnisse plausi-
bel erscheint. Die Parameter selbst sind nur Zahlenwerte, die jeweils für sich
genommen das Gewicht einer durch das Modell geleiteten Information in
Bezug auf das Folgeneuron oder den Folgeknoten enthalten. Die dadurch in
einem Parameter enthaltene Information (z. B. „gewichte alle eingehenden
Werte mit dem Gewicht 0,42“) entsteht erst im Laufe des Trainingsprozesses
und existiert in dieser Form vorher nicht.

Insofern ist grundsätzlich davon auszugehen, dass es sich bei den Para-
metern allenfalls um neue, also hergestellte, Datenbankelemente handelt.
Die Investition in die Erzeugung in Form der Berechnung bzw. Optimierung
derselben ist folglich kein tauglicher Gegenstand des § 87a UhrG.

Noch eindeutiger ist die Situation, wenn ein ML-Modell nicht Zusammen-
hänge aus vorbestehenden Daten ermittelt, sondern – wie etwa im Fall von
sogenannten Generative Adversarial Networks394 – aus „weißem Rauschen“
lernt, ein Bild zu erzeugen. Zwar ist der adversariale Part des Modells ein
„klassisch“ trainiertes Modell, aber der generative Part optimiert seine Para-
meter aufgrund des Feedbacks des adversarialen Teils. Die Parameter des
generativen Parts sind mithin nicht eine Repräsentation vorhandener Infor-
mationen, sondern stehen für durch das Modell im Trial-and-Error-Prozess
erlerntes „Wissen“. Die gespeicherten Parameterwerte sind mithin als neue,
„hergestellte“ Informationen einzuordnen.

392 Vgl. auch BGH GRUR 2005, 857, 859 – HIT BILANZ – die „Feststellung vor-
handener Vorgänge“ wird als Ermittlung vorhandener Informationen eingeordnet;
Schricker/Loewenheim–Vogel, Urheberrecht, § 87a Rn. 57 – Abfassung von Zei-
tungsartikeln könnte als Erfassung von Daten „aus dem Leben“ einzuordnen sein;
Wiebe, GRUR 2017, 338, 341 – für einen Schutz nach § 87a UrhG, wenn lediglich
„in der Natur bereits vorhandene Daten“ gesammelt werden, die „von jedem Dritten
mit gleichem Aufwand gesammelt werden können“.

393 Dagegen aber Wandtke/Bullinger–Hermes, PK UrhR, § 87a Rn. 41, der grundsätzlich
Ergebnisse Big Data-Anwendungen als „Spin-Off“-Datenbanken und damit als nicht
schutzfähig einordnet.

394 Vgl. § 2 B.II.3..
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Wie bereits angedeutet, ist die Lage für trainierte Parameter von Random
Forest-Modellen, die mit R erzeugt wurden, anders zu beurteilen. An dieser
Stelle sei nochmals an die Abbildung 7.2 erinnert: Ergebnis des Trainingsvor-
gangs ist in R eine Baumstruktur, die in Tabellenform vorliegen kann. Diese
Tabelle kann – zwar unter je nach Tabellengröße und Baumtiefe nicht uner-
heblichem Aufwand – bereits dazu eingesetzt werden, Zusammenhänge aus
den Trainingsdaten auszulesen. Sie dokumentiert also Gemeinsamkeiten von
Daten und zeigt Informationen auf, die auch ohne Einsatz des ML-Modells
– oder unter Einsatz anderer Modelle – aufgedeckt werden können. Mithin
spricht vieles dafür, die darin enthaltenen Informationen als bereits „in der
Natur“ (bzw. in den Trainingsdaten) vorhanden anzusehen und die entste-
hende Tabelle lediglich als eine Sammlung und Sichtbarmachung dieser
Informationen zu verstehen. Damit kommt für solche Modelle als Investiti-
onsgegenstand auch die Investition in die Erzeugung dieser Ergebnistabelle
in Betracht. Allerdings ist hier abzuwarten, wie sich die Rechtsprechung
dazu äußert – oder ob seitens der EU noch weitere Klarstellungen erfolgen.

bb) Andere Investitionsgegenstände

Möglicherweise können jedoch andere Investitionsgegenstände, die im Zu-
sammenhang mit der Herstellung der Parameterdatenbank anfallen, berück-
sichtigt werden. Neben der Beschaffung sind auch die Überprüfung und die
Darstellung der Daten berücksichtigungsfähig (§ 87a Abs. 1 S. 1 UrhG). Die
Parameter werden in der Regel nicht dargestellt, hier kommt also keine be-
rücksichtigungsfähige Investition infrage. Für die Überprüfung der Parameter
gilt Ähnliches wie für die Ergebnisausgabe: Die Überprüfung der Parameter
außerhalb des Modells ist nicht relevant, denn erst mit den Hyperparametern
können die Parameter überhaupt evaluiert werden. Insofern ist wieder auf das
gesamte „trainierte Modell“ abzustellen, und nicht separat auf die Parameter.
Ein anderer Investitionsgegenstand kommt also nicht in Betracht.

cc) Zwischenergebnis

Als Investitionsgegenstand kommt nur die Wissensextraktion aus den Trai-
ningsdaten im Rahmen des Trainings von Random Forests in R in Betracht.
Für ML-Modelle in Python kann hier für den isolierten Schutz der Parameter
kein tauglicher Investitionsgegenstand festgestellt werden.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

b) Wesentlichkeit

Ferner müsste für den Fall der Random Forests in R die Investition in die
Wissensextraktion – also in das Training – wesentlich sein. Es dürfte sich also
nicht um eine „Allerweltsinvestition“ handeln. Hier gilt im wesentlichen das
Gleiche wie schon für die Wesentlichkeit der Investition in trainierte KNN
festgestellt wurde:395 „Es kommt darauf an“, aber für tiefe und aufwendige
Modelle ist von der Wesentlichkeit der Investition auszugehen.

3. Ergebnis

Zumindest für trainierte Random Forests in R ist ein Schutz im Rahmen
des Datenbankherstellerrechtes gem. §§ 87a ff. UrhG denkbar, während
der Schutz für trainierte Parameter in ML-Modellen, die unter Einsatz der
beschriebenen Python-Bibliotheken bzw. Frameworks optimiert bzw. erzeugt
wurden, nicht infrage kommt.

4. Bewertung und praktische Relevanz

In der Praxis hat die Übernahme nur der Parameter eines Modells in Python,
sei es KNN oder Random Forest, keine Relevanz: ohne die dazugehörigen
Hyperparameter sind die Informationen nutzlos.

Anders sieht es aus für Random Forest-Baumstrukturen in R: Diese sind
auch ohne Hyperparameter mittels Datenbankabfragen für Vorhersagen nutz-
bar, sodass ein Schutzbedarf für die reinen trainierten Parameter besteht. Die
Rechte, die dem Datenbankhersteller396 gem. § 87b UrhG zustehen, umfassen
nach § 87b Abs. 1 S. 1 UrhG das ausschließliche Recht zu Vervielfältigung,
Verbreitung und öffentlichen Wiedergabe der gesamten Datenbank oder ei-
nes wesentlichen Teils davon. In Bezug auf die Verwendung unwesentlicher
Teile der Datenbank gesteht § 87b Abs. 1 S. 2 UrhG dem Datenbankher-
steller ebenfalls ausschließliche Rechte zu, wenn die Nutzung wiederholt
und systematisch erfolgt und einer normalen Auswertung der Datenbank
zuwiderläuft oder die berechtigten Interessen des Datenbankherstellers unzu-
mutbar beeinträchtigt. Insbesondere der Vervielfältigungsschutz dürfte in der

395 S. § 7 B.II.3..
396 Vgl. § 7 B.II.5.
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E. Hyperparameter

Praxis relevant sein, denn eine umfangreiche und sorgfältig optimierte Ran-
dom Forest-Struktur kann zum Beispiel einem Expertensystem als wertvolle
Wissensbasis dienen.

III. Zusammenfassung

Auch für trainierte Parameter kommt ein Schutz nach § 4 Abs. 2 UrhG sowie
nach §§ 87a ff. UrhG – in Betracht, sofern es sich um die trainierten Parameter
eines Random Forest-Modell in einer R-Implementierung handelt. Mithilfe
der eingangs beschriebenen Python-Frameworks bzw. Bibliotheken erzeugte
Parametersammlungen können an dem Schutz jedoch nicht partizipieren.

E. Hyperparameter

Die rechtliche Lage bzgl. der trainierten Parameter und der trainierten Model-
le wurde bereits geklärt. Offen ist noch, ob auch die Hyperparameter allein
schutzfähig sein könnten. Ein Schutzbedürfnis besteht jedenfalls insofern,
als anhand der Hyperparameter und der entsprechenden Trainingsdatenbasis
die trainierten Parameter reproduziert werden können. Zudem nimmt die
Bedeutung von Hyperparameterkombinationen sowie die Übertragbarkeit
auf andere Anwendungskontexte zu: Es ist etwa denkbar, einzelne Schichten
eines KNN zu definieren, die zum Beispiel Inputdaten in Form von Bildern
besonders gut auf Kanten oder Formen untersuchen können. Selbst wenn die
Hyperparameter auf einem Trainingsdatensatz A trainiert wurden, können
diese mitunter in andere, umfangreichere Netzstrukturen integriert und für
Trainingsdatensatz B eingesetzt werden.397 Während die trainierten Para-
meter zumindest im Falle künstlicher neuronaler Netze alleinstehend wenig
Wert haben dürften, so muss demzufolge ein Gleiches nicht unbedingt für
die Hyperparameter gelten.

Als Schutzmöglichkeiten kommen wieder der Datenbankwerkschutz so-
wie das Datenbankherstellerrecht in Betracht, Computerprogrammschutz
wurde bereits mangels Computerprogrammqualität der Hyperparameter ab-
gelehnt.398 Ein Schutz als Entwurfsmaterial im Rahmen des Computerpro-
grammschutzes für das trainierte Modell kommt im Übrigen auch nicht

397 Vgl. z. B. Goodfellow et al., Deep Learning Handbuch, S. 363.
398 Vgl. bb).
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

in Betracht, weil die alleinstehende Hyperparametersammlung zwar von
dem Quellcode verwendet wird, aber nicht als Vorbereitung desselben dient.
Vielmehr entsteht die Hyperparametersammlung erst mit der konkreten Um-
setzung des (Trainings-)Programmcodes und wird dann vom (Produktiv-)
Programmcode verwendet.399

I. Schutz als Datenbankwerk gem. § 4 Abs. 2 UrhG

1. Datenbank

Die Datenbankqualität gespeicherter Hyperparameter entspricht dem oben
bereits Gesagten,400 es handelt sich um eine Sammlung unabhängiger und
einzeln abrufbarer Elemente in Form von Informationen zur Modellstruktur,
wie etwa die Größe und Anzahl verwendeter Schichten und eingesetzter
Funktionen, sowie oben auch der errechneten Parameter, die schon aus tech-
nischer Erforderlichkeit heraus systematisch angeordnet und einzeln mithilfe
der Framework- bzw. Bibliotheksfunktionen abrufbar sind. Alleiniger Unter-
schied ist an dieser Stelle bei der Betrachtung der Hyperparameterdatenbank,
dass die Parameter als Sammlungselement nicht mehr berücksichtigt wer-
den. Dies ändert jedoch nichts daran, dass das Vorliegen einer Datenbank
anzunehmen ist.

2. Persönliche geistige Schöpfung

Fraglich ist jedoch, ob auch ohne die trainierten Parameter eine geistige
Schöpfung des Entwicklers gegeben ist, weil ohne die Parameter die Mani-
festierung der Idee des Urhebers unvollständig sein könnte. Auch hier muss
in der Auswahl oder Anordnung der Elemente die Idee des Entwicklers Aus-
druck finden. Wie schon bei den Parametern ist auch die Anordnung der
Hyperparameter durch die technischen Gegebenheiten vorgegeben. Es muss
also wieder auf die Auswahl der Elemente, also der einzelnen Hyperparame-
ter, ankommen.

399 Gegen einen Schutz als Entwurfsmaterial auch Hartmann/Prinz, WRP 12 2018,
1431, 1435 Rn. 38.

400 Vgl. § 7 D.I.1. bzw. § 7 B.I.1..
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E. Hyperparameter

Diese werden durch den Entwickler so gewählt, dass bei Anwendung des
Modells auf die Trainingsdaten die Parameter optimal berechnet werden.

Die Idee des Entwicklers kann sich mithin auch schon in der Wahl der
Hyperparameter manifestieren, die im Zusammenspiel mit den Trainingsda-
ten letztendlich die Parameter berechnen helfen, bevor die Parameter durch
den Ablauf des Trainingsprozesses festgelegt sind. Die Hyperparameter sind
insofern unabhängig von den trainierten Parametern, als sie letztlich den
Grundstock für diese legen (während andersherum die Parameter vollständig
von den Hyperparametern und den Trainingsdaten abhängig sind). Wichtig ist
an dieser Stelle allerdings die Verbindung mit den Trainingsdaten: verschiede-
ne Trainingsdaten können mitunter zu unterschiedlichen Parametern führen
(je größer die Menge an Trainingsdaten, umso weniger relevant ist jedoch
eine Veränderung derselben etwa durch Wegnahme einzelner Datenpunkte).

Wenn die isolierte Sammlung von Hyperparametern urheberrechtlich
geschützt sein soll, ist jedoch – wie auch in allen anderen Bereichen des
Urheberrechts – zu verhindern, dass sich ein solcher Schutz auch auf triviale
und in Fachkreisen bekannte, nichtoriginelle Hyperparameterkonfigurationen
erstreckt. Zwar dürfen auch nach der Datenbank-RL nicht allzu hohe Anfor-
derungen an die Schöpfungshöhe gestellt werden,401 jedoch ist eben „nach
unten“ genug Freiraum für weitere Innovationen zu lassen. Das Schutzbedürf-
nis besteht insbesondere bei aufwendigen, nicht lediglich zu Lehrzwecken
vereinfachten, vielschichtigen und komplexen Modellen. So ist es denkbar,
ein Bilderkennungsmodell zu konzipieren, das aus hunderten Schichten be-
steht, die auf unterschiedlichste Weise konfiguriert sind, um etwa ein Bild
auf Farbe, Muster, Körperteile, Helligkeit, Komposition etc. zu untersuchen.
In solch einem Fall muss auch die Sammlung der Hyperparameter ohne
die errechneten Parameter bereits als schutzfähige Sammlung qualifiziert
werden.

3. Ergebnis

Es wird also auf eine Einzelfallentscheidung ankommen müssen, um den
Schutz nach § 4 Abs. 2 UrhG für Hyperparameter zu bestimmen. Der Schutz
ist jedoch nicht von vorneherein ausgeschlossen.

401 ErwGr. 16 Datenbank-RL.
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

II. Investitionsschutz gem. §§ 87a ff. UrhG

Auch für Hyperparameter könnten Datenbankherstellerrechte gem. §§ 87a ff. Ur-
hG infrage kommen.

1. Datenbank

Dass die Hyperparameter eine Datenbank im Sinne des § 4 Abs. 2 UrhG
darstellen, wurde bereits festgestellt,402 damit liegen in der Hinsicht auch die
Voraussetzungen für § 87a UrhG vor.

2. Wesentliche Investition

Ferner müsste eine wesentliche Investition in die Datenbank getätigt worden
sein. Auch hier wird eine Einzelfallbetrachtung erforderlich: Handelt es sich
um Hyperparameter, die zu Beginn des Trainings lediglich aus Erfahrungs-
sätzen geschätzt werden, wurden weder Zeit noch Geld in ihre Sammlung
gesteckt. Insofern kann keine wesentliche Investition vorliegen. Handelt es
sich um die im Rahmen eines Trainingsprozesses erarbeiteten bzw. gesam-
melten Hyperparameter, müssen die gleichen Erkenntnisse gelten wie sie
für trainierte Modelle bereits festgestellt wurden: Der Prozess kann mitunter
sehr viele Ressourcen fordern.403 Es könnte beispielsweise passieren, dass
ein Set an Hyperparametern in einem komplexen Modell über mehrere Tage
getestet wird, woraufhin sich herausstellt, dass die Hyperparameter nicht op-
timal gewählt sind. Daraufhin werden die Hyperparameter angepasst und ein
erneuter Trainingsvorgang wird gestartet. Dieser Prozess kann sich mehrfach
wiederholen, also zeit- und kostenintensiv sein. Es handelt sich dann um
wesentliche Investitionen in die Beschaffung und Überprüfung der Daten-
bankinhalte. Festzustellen ist zudem, dass die Hyperparameter-Sammlung
nicht maschinell erzeugt, sondern jeder Wert durch den Menschen gewählt
wird. Es handelt sich also um einen gem. § 87a UrhG berücksichtigungsfähi-
gen Investitionsgegenstand. Darüber hinaus können Kosten entstehen, wenn

402 Vgl. § 7 E.I..
403 Vgl. Graf , Multitalent für Sprache (Spektrum.de vom 11.08.2020) – die Kosten für

das Training von GPT-3 wurden dort etwa mit 5 Millionen Dollar beziffert, zudem
werden die CO2-Emissionen betont, die durch die intensive Hochleistungsrechner-
nutzung entstehen.
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F. Untrainiertes Modell

etwa ganze Schichten aus anderen bewährten KNN übernommen werden
sollen – sofern diese urheberrechtlich geschützt und nicht frei zur Verfü-
gung gestellt worden sind, können Lizenzkosten anfallen. Damit läge eine
Investition in die Beschaffung von Daten vor.

3. Ergebnis

Auch eine Sammlung an Hyperparametern kann folglich dem Schutz der
§§ 87a ff. UrhG unterfallen.

III. Zusammenfassung

Für gewählte Hyperparameter kommt – unabhängig von der Implementie-
rung in R oder Python – ein Schutz gem. §§ 4 Abs. 2, Abs. 1 und 87a ff. Ur-
hG in Betracht, wobei jeweils Einzelfallbetrachtungen erforderlich werden
hinsichtlich des Vorliegens einer geistigen Schöpfung in Bezug auf das Da-
tenbankwerk sowie hinsichtlich des Vorliegens einer wesentlichen Investition
bzgl. § 87a UrhG.

F. Untrainiertes Modell

Zuvor wurde bereits auf den Schutz trainierter Modelle eingegangen.404 Die
Frage des Schutzes „untrainierter“ Modelle liegt also nahe. Fraglich ist hier
allerdings bereits, inwiefern diese sich begrifflich von der Struktur bzw. der
grundlegenden Architektur der Modelle, also der soeben diskutierten Hyper-
parametersammlung unterscheiden: Wenn hiermit ein bereits konfiguriertes,
aber noch „leeres“ Modell ohne trainierte Parameter zum Beginn bzw. vor
Beginn des Trainingsvorgangs gemeint ist, müssen die Aussagen über die
Hyperparameter Anwendung finden. Es liegt nahe, das „untrainierte Modell“
wie auch das trainierte Modell405 als eine Kombination aus Parametern, Hy-
perparametern und Quellcode aufzufassen, wobei die Parameter lediglich
zufällig gewählte Werte sind und sowohl Parameter als auch Hyperparameter
nicht notwendig bereits in Dateien abgelegt wurden. Auch das Modell selbst

404 Vgl. § 7 B..
405 Vgl. § 6 D.III..
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§ 7 Schutzmöglichkeiten im Urheberrecht und den verwandten Schutzrechten

1   # simple neural network with keras
2   from numpy import loadtxt
3   from keras.models import Sequential
4   from keras.layers import Dense
5   # load the dataset
6   dataset = loadtxt('dataset.csv', delimiter=',')
7   # split into input (X) and output (y) variables
8   X = dataset[:,0:8]
9   y = dataset[:,8]

10   # define the keras model
11   model = Sequential()
12   model.add(Dense(12, input_dim=8, activation='relu'))
13   model.add(Dense(8, activation='relu'))
14   model.add(Dense(1, activation='sigmoid'))
15   # compile the keras model
16   model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['Accuracy'])
17   # fit the keras model on the dataset
18   model.fit(X, y, epochs=150, batch_size=10, verbose=0)
19   #save the model
20   model.save('my_model.h5')

Abbildung 7.3: Beispiel eines einfachen Quellcodes zur
Erstellung eines Modells mit Keras, in Anlehnung an
https://machinelearningmastery.com/tutorial-first-neural-network-python-
keras/, 22.02.2021.

liegt – im untrainierten Zustand – in der Regel nicht in Dateiform vor. Viel-
mehr wird das untrainierte Modell in Form von Quellcode gegeben sein, der
die Modellstruktur definiert, und ggf. am Ende noch Befehle zum Trainieren
und Speichern des Modells beinhaltet.

Veranschaulicht wird dies durch Abbildung 7.3. Ergebnis des ausgeführten
Codes ist ein gespeichertes trainiertes Modell. Der Code selbst definiert
jedoch zu Beginn ein untrainiertes Modell, außerdem liegt vor Ausführung
noch kein trainiertes Modell vor, anhand dessen (z. B. durch Interaktion mit
dem Nutzer) ein Einsatz etwa zur Klassifikation von Bildern erfolgen könnte.
Stattdessen wird das Modell zunächst in Zeile 11 initialisiert, in den Zeilen 12
bis 14 werden die Schichten – also die Hyperparameter, bzw. die Topologie –
definiert. Jeder Schicht wird eine Anzahl Neuronen zugewiesen sowie die
für jedes Neuron der Schicht zu verwendenden Aktivierungsfunktionen. Das
Trainingsdatenset, das in Zeile 6 geladen wurde, enthält Daten (X) und Labels
(y), die dann in Zeile 18 für das Training des Modells dem Modell zugeführt
werden.

Als Schutzgegenstand des untrainierten Modells kommt folglich nur der
Quellcode infrage, mithin also nur Computerprogrammschutz gem. § 69a Ur-
hG. Dass im Nachhinein ggf. noch Anpassungen – auch an den Hyperparame-
tern – vorzunehmen sind, ist unerheblich. Auch der Code für ein untrainiertes
Modell erfüllt bereits einen Zweck, nämlich ein Modell zu trainieren (und
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F. Untrainiertes Modell

ggf. zu evaluieren – hier nicht im Code-Beispiel enthalten) und enthält Steue-
rungsanweisungen. Auch die eigene geistige Schöpfung des Entwicklers –
nämlich, einen Weg zu finden, ein Modell für die gewählte Trainingsaufgabe
programmatisch festzulegen – liegt in dem Quellcode vor. Für den Schutz
gem. § 69a UrhG ergeben sich keine Unterschiede zu dem, was bereits über
den Schutz des Quellcodes eines trainierten KNN gesagt wurde406 – ein
Schutz als Computerprogramm ist also auch für das untrainierte Modell
zumindest in Bezug auf den Quellcode regelmäßig anzunehmen.

406 Vgl. dazu oben aa).
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§ 8 Ergebnis des dritten Teils

Der Schutz von Modellen maschinellen Lernens ist, wie gezeigt, komplexer
als auf den ersten Blick vermutet und bisher in der rechtswissenschaftlichen
Literatur diskutiert. Es ist zu differenzieren zwischen den unterschiedlichen
Komponenten der Modelle.407 Als potenzielle Schutzgegenstände identifi-
ziert wurden trainierte ML-Modelle in Python, trainierte Random Forests
in R, trainierte Parameter, Hyperparameter sowie untrainierte ML-Modelle.
Diese wurden in Bezug auf ihre Schutzfähigkeit gem. §§ 4, 87a ff. und
69a UrhG untersucht.

Dabei wurde festgestellt, dass ein trainiertes Modell in Python durch
die Eigenschaften seiner Komponenten (Hyperparameter- und Parameter-
sammlung, Quellcode) potenziell Schutz sowohl als Datenbankwerk gem.
§ 4 Abs. 2 UrhG sowie auch als Computerprogramm gem. § 69a UrhG genießt
und außerdem ein Datenbankherstellerrechtsschutz gem. §§ 87a ff. UrhG
infrage kommt.408

Trainierte Parameter der Random Forests unterscheiden sich bei der Im-
plementierung in R wesentlich von der Form, in der trainierte Parameter der
Python-Modelle vorliegen, insofern kommt die Prüfung zu unterschiedli-
chen Ergebnissen: Trainierten Parametern der ML-Modelle in Python kommt
weder Schutz als Datenbankwerk, noch im Rahmen des Datenbankherstel-
lerrechtes Schutz zu (zum einen mangelt es an der persönlichen geistigen
Schöpfung, zum anderen am tauglichen Investitionsgegenstand). Die trai-
nierten Parameter der Random Forest-Modelle in R stellen jedoch zugleich
das trainierte Random Forest-Modell dar, weshalb sowohl eine persönliche
geistige Schöpfung als auch ein tauglicher Investitionsgegenstand vorliegt.409

Isoliert abgespeicherte Hyperparameter lassen sich als Datenbank cha-
rakterisieren und dürften im Regelfall sowohl gem. § 4 UrhG als auch gem.
§§ 87a ff. UrhG schutzfähig sein.410

Für untrainierte Modelle kommt nur ein Computerprogrammschutz gem.
§ 69a UrhG in Bezug auf den Quellcode infrage.411

407 Zur Diskussion der Modellbestandteile s. oben § 6.
408 S. oben § 7 B.IV..
409 S. oben § 7 D.
410 S. dazu § 7 E..
411 S. oben § 7 F..
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§ 8 Ergebnis des dritten Teils

§ 4 UrhG §§ 87a ff. UrhG § 69a UrhG

Trainiertes Python-ML-Modell + + +

Trainierter Random Forest in R (RF) Verweis auf trainierte Parameter

Trainierte Parameter - / + (RF) - / + (RF) n/a

Hyperparameter + + n/a

Untrainiertes Modell n/a n/a +

Abbildung 8.1: Übersicht über die Ergebnisse für den Modellschutz, jeweils
unter Vorbehalt einer Einzelfallbetrachtung. Quelle: eigene Darstellung.

Abbildung 8.1 stellt die Ergebnisse im Überblick dar. Ohne Schutz dürften
nach dem Resultat dieser Prüfung nur gänzlich banale Modelle bleiben,
ansonsten steht insbesondere der Datenbankschutz im Vordergrund.
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