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This contribution consists of two main parts. In the 
first part three different models of cluster analysis are 
presented based on scalar product relations. 

Model I: 
Let T = (tij) be a given (0,1 )·binary n X n-proximity­
matrix (Incidence Link Matrix, ILM) and further let 
X = (Xik) be a fitting (O,I)-binary n X p-object-cluster­
membership matrix. For disjunctive partitions X = (xik) 
has the orthogonality property 

n , {nk , if k=l, 
( )  L xikxiI = XkX, = 

0 th 
. k, I = I, ... , p, I 

i=l \0 erWlse, 

and 

describes a model for analysis of p mutual disjunctive 
clusters Xk, k = 1, . .  " p. 

Model II: 
The logical equivalent of the scalar product relation (2) 

p 
ti j .=:'Sij= U XiknXjk=xinxj, i,j== 1, .. .  ,fl, k"1 Xik E {O,I}, (3) 

U: logical disjunction, n: logical conjunction 

(with a given symmetrical, diagonal-dominant, (0,1)­
binary ILM) resp. the loss function can be fitted always 
perfectly 

n n 
a(X) = L L (t·· - s·-(X))' = 

i=l j=1 IJ I) 

n n P 
L L (t·· - U x 'k nX'k)' i=1 j=1 IJ k=1 I J 

(4) 

with a sufficiently large number p of overlapping com­
pact clusters Xk, k:::: I, . . " p. 

Model III: 
Let U = (Uij) be a given nonnegative symmetrical n X n· 
proximity matrix with nondiagonal elements Uij, i =1= j, 
which can be considered as the probabilities for the 
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events that two objects i and j are commonly included in 
one of the p clusters. Furthermore let Y == (Yik) be a metri­
cal n X p-object-c1uster-membership matrix the elements 
of which Yib O:S;;;; Yik :s;;;; 1 ,  are interpretable as probabil­
ities for the events, that the object i is elemel.1t of the 
cluster k. W ith application of the addition theorem (for 
disjunctive events) and the multiplication theorem (for 
independent events) of probabilities the stochastic 
founded model of cluster analysis can be derivated 

P 
uij�rij== L YikYjk==Y;Yj,i=l=j,i,j==I, . .. ,n, 

(5) k=l O:S;;;;Yik:S;;;;1. 
In the second part of this contribution different 
methods and algorithms are presented for the numerical 
treatment of these three scalar product models. 

A: Cluster Modelle 

A.I. Einleitung 

In letzter Zeit wurden erhebliche Anstrengungen unter­
nommen, Methoden der Clusteranalyse funktional zu 
begrUnden in Form von Modellfunktionen, ahnlich 
denen der klassischen Datenanalysetechniken (vgl. z.B. 
SHEPARD & ARABIE, 1979). Eine funktionale Modell­
begrUndung erlaubt: 
a) Schatzmethoden fUr die Parameter der Modellfunk· 

lion anzuwenden (z.B. Least-Squares- oder Maximum­
Likelihood·Methoden); 

b) die mit Hilfe der Modellfunktion erzeugten (reprodu­
zierten) Modellwerte mit den gegebenen Daten zu ver­
gleichen und die GUte der Modellanpassung einer ge­
gebenen Datenmenge zu beurteilen ; 

c) die fUr eine Analyse nach der Modellfunktion erfor· 
derliche Datenstruktur theoretisch zu beschreiben 
und Bedingungen flir die Existenz einer Lasung und 
deren Eigenschaften anzugeben. 

In diesem Beitrag soll, angeregt durch frOOere Arbeiten 
von Raymond B. CATTELL, der Versuch unternommen 
werden, verschiedene Klassen von Cluster-Analyse­
Modellen durch eine Skalarprodukt-Relation, verwandt 
der der Hauptkomponenten-Analyse, zu begrUnden. 

A.2. Dichotomes Skalarproduktmodell zur 
dil9uuktiven Clusteranalyse 

Die Zerlegung (Partition) einer Menge von n Objekten 
in p wechselseitig disjunkte Cluster kann mit einer 
(0,1 )-binaren n X p-Zuordnungs-Matrix X = (Xik) beschrie· 
ben werden, deren Zeilen zu den Objekten und deren 
Spalten zu den Clustern korrespondieren, d.h. es gilt 

_ { I, falls Objekt i zu Cluster Ck geMrt, 
xik - 0, sonst. 

FUr disjunkte Partitionen hat die binare Zugeharigkeits· 
Matrix X = (Xik) die "Orthogonalitiits-Eigenschaft", d.h. 
es gilt 

n , {nb falls k "I, 
L X'kX" = XkX, = 

i= 1 1 1 0, sonst, 

bzw. X'X = D1AG(nl' ... , np) , (I) 
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wobei nk die Anzahl der Elemente des Clusters Ck 
bezeichnet. Mit der Skalarprodukt-Relation 

p 
Sij = k�

l 
XikXjk = xixj bzw. S = XX' (2) 

wird eine n X n-Matrix S = (sii) von Modellwerten er­
zeugt, deren Elemente Sij anzeigen, ob die korrespon­
dierenden Zeilen- und Spaltenobjekte in einem gemein­
samen Cluster enthalten sind oder nicht, d.h. es gilt 

11, falls Objekt i und Objekt j in einem Cluster Ck 

sij = gemeinsam enthalten sind, 
0, sonst. 

Falls ein Objekt i Element eines Clusters C" k = I, ... , 
p, ist, ist das Diagonalelement sii von S gleich Eins. 
Bei erschopfenden (vollstandigen) Partitionen, bei 
denen jedes Objekt Element eines Clusters ist, gilt fUr 
aile Diagonalelemente von S 

Su = 1, i= 1, ... ,n. 

Sei T = (tij) eine gegebene n X n-Incidence-Link-Matrix 
(ILM), d.h. eine (O,I)-binare Proximitats-Matrix, deren 
Elemente tij angeben, ob zwei Objekte i und j einander 
ahnlich sind oder nicht, d.h. es gilt 

I I, falls die Objekte i und j ahnlich sind, 
tij = \ 0, falls die Objekte i und j unahnlich sind. 

Die ILM T = (tij) sei auflerdem symmetrisch und habe 
Eins-Diagonale 

tij = tji und tii = 1, fUr aile Cj = 1, . .  "n. 

Die ILM T = (tij) kann beispielsweise mit Schwellwert­
Dichotomisierung aus einer "metrischen" Proxirnitats­
oder Korrelations-Matrix abgeleitet werden. Dann be­
griindet folgende Modellrelation ein Schatzmodell der 
Clusteranalyse: 

Modell I: 

i,j = I, ... , n, (3) 
Xik E {O, l },k = I, ... ,p. 

Das Least-Squares-Fitkriterium 
n n 

u(X) = Spur (T - S),(T - S) = L L (t" - Sij(X))' i= 1 j= 1 J 
n n 

= L L (t .. - X�X-)' 
i= 1 j= 1 IJ I J (4) 

gibt wegen der binaren Form von S und T die Anzahl 
def Abweichungen korrespondierender Elemente in den 
Matrizen T = (tij) und S = (Sij) = XX' an. Fili einen per­
fekten Fit, u(X) = 0, ist neben einer hinreichend groflen 
Clusteranzahl p «n) notwendig, dafl sich die Zeilen 
und Spalten der ILM T = (ti;) zu einer B1ock-Diagonal­
Matrix permutieren lassen. 

A.3. Dichotomes Skaiarproduktmodell zur 
Uberlappenden Clusteranalyse 

Wenn die Skalarprodukt-Relation (2) durch das logische 
i\quivalent 
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p . 
Sij = U xik n Xjk, U: Vereinigung, n: Durchschnitt (5) k=l 

ersetzt wird, kann mit einer hinreichend groBen Anzahl 
p (i.a. > n) nichtdisjunkter (Ubedappender) kompakter 
Cluster stets ein perfekter Fit, u(X) = 0, zu einer belie­
bigen gegebenen ILM T = (tij) erreicht werden. Eine 
tibedappende Clusterstruktur erftill! jedoch nicht die 
Orthogonalitatseigenschaft ( I), auch wenn man die dort 
verwendete Skalarprodukt-Relation durch das logische 
i\quivalent (5) ersetz!. Foigende Modellrelation begrUn­
det das entsprechende Skalarproduktmodell der Cluster­
analyse. 

Modell II: 
p , tij"'Sij= UXiknXjk=XinXj, i,j=I, .. . ,n, 

(6) k;;;1 r. I} Xik E ,-0, . 

A.4. Metrische Skalarproduktmodelle zur 
Clusteranalyse von Wahrscheinlichkeitsdaten 

Sei Y = (Yik) eine nichtnegative metrische n X p-Zuord­
nungs-Matrix, deren Elemente Yib 0.< Yik � 1, die 
Wahrscheinlichkeiten daflir sind, daB ein Objekt i Ele­
ment eines Clusters Ck ist 

Yik = Prob(i E Cd, 0 <:: Yik < I ,  

i = 1, .. " n, k = I, ... , p. 
(7a) 

Die Mitgliedschafts-Wahrscheinlichkeiten Yik der Objekte 
i zu den Clustern Ck k6nnen auch als relative (bzw. 
prozentuale) Mongenanteile interpretiert werden, also als 
relativer (bzw. prozentualer) Anteil der Gesamtmasse 
des Objektes i, der zum Cluster Ck geh6rt (vg!. Theorie 
dec "fuzzy sets"). 

Wenn man disjunkte Cluster, d.h. Partitionen, vor­
aussetzt, dann schlieBt die Mitgliedschaft eines Objektes 
i zum Cluster Ck die Mitgliedschaft des Objektes i in 
anderen Clustern aus, d.h. die Ereignisse sind unvertdig­
Iich und es gilt der Additionssatz flir Wahrscheinlich­
keiten 

p p 
L Yik < I bzw. L Yik = I, i = I, ... ,n. (7b) k=l k=l 

Die zweite Beziehung gilt flir vollstandige (ersch6pfende) 
Partitionen. Da die Zugeh6rigkeit eines Objektes i zu 
einem Cluster C" i.a. unabhangig ist von der Zugeh6rig­
keit eines anderen Objektes j zum Cluster Ck (ausgenom­
men gewisse restriktive Clustermodelle, bei denen z.B. 
die Zahl der Elemente in den Clustern a priori vorge­
geben ist), erhalt man als Wahrscheinlichkeit der Zuge­
hDrigkeit zweier verschiedener Objekte i und j zum 
Cluster Ck 

Prob(i E Ck 1\ j E C" = Prob(i E Ck) - ProbG E Ck), 

iioj, i,j=l,.:.,n, k-=l, ... ,p. 

Da die Mitgliedschaft zweier Objekte i und j zu einem 
Cluster Ck die Mitgliedschaft der beiden Objekte zu 
anderen Clustern ausschlieBt, gilt wiederum der Addi­
tionssatz flir Wahrscheinlichkeiten unvertraglicher Ereig­
nisse 
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bzw. 

P 
fi j = k�l YikYjk, i *" j ,  i = 1 ,  . .  " n .  (8) 

D ie Auller diagonalelemente r ij , i *j ,  der nichtnegati­
ven s ymmetr is chen n X n-Matr ix R = (r jj) s ind damit 
inter pr etier bar als Wahrs cheinlichk eiten dafiir , dall die 
k orr es pondier enden Zeilen- und Spaltenobjek te i und j 
einem def p Clus ter gemeins am angeh6r en. Man bes tatigt 
leicht ar ithmetis ch, dall 0 <;; rij <;; I gilt: 

Wegen 0 <;; Yik <;; I gilt y rk <;; Yik und daher mit ( 7b) 
p 2 P 

• � Yik< L Yik<l,l=l" . .  , n. k=l k=l 

Mit der CAUCHY-SCHWARZ-Ungleichung er halt man 
p lrr-;'VIP 2' "_ � YikYjk<;; V.� . Yik � Yjk<;;l,l,)-I, . . . , n. k=l k=l k:=l 

Zur Inter pr etation def D iagonalelemente Iii von R bieten 
s ich mindes tens dr ei Alter nativen <! n: 
( a) D ie D iagonalelemente r il wer den als quadr ier te 

Lange der Wahrs cheinlichk eits -Vek tor en 
Yi = (Yil , ... , Yip)' definier t 

p 
[ii = L Y�k' i = 1, . . .  , n. 

k=! ( 9a) 

( b) D ie D iagonalelemente r il wer den definier t als Wahr ­
s cheinlichk eiten dafiir, dal' Objek t i einem der p 
Clus ter angehor t 

P 
Iii = L Yib i = 1 ,  . .  " n .  k=l ( 9b) 

( c) D en D iagonaIelementen fii wir d k eine empir is che 
Bedeutung zugr undegelegt. Sie wer den in der 
Analys e nicht ber licks ichtigt. 

Sei U = (Uij) eine gegebene nichtnegative, s ymmetr is che 
n X n-Matr ix, der en AuBer diagonalemente uij. i *" j ,  
inter pr etier bar s ind als Wahrs cheinlichk eiten daflir , dall 
zwei vers chiedene Objek te i -4= j einem y on p Clus ter n 
gemeins arn angehor en und der en D iagonalelemente uii 

( a) als quadr ier te Langen von Wahrs cheinlichk eits-
Vek tor en Yi = (Yil, ... ) Yip)' inter pr etier bar s ind; 

( b) als Walus cheinlichk eiten damr , dall Objek t i einem 
der p Clus ter angehor t, inter pr etier bar s ind; 

( e) nicht naher s pezifizier t s ind ( miss ing elements ). 
Obwohl der Sk alar pr oduk t-Relation (8) der Aull er dia­
gonal-Elemente ents pr echend, s cheint die empir is che 
Er hebung von D iagonalelementen uil im F aile ( a) pr o­
blematis ch zu s ein. 1 m  F alle ( b) k ann haufig uil = I, 
i = I, . . .  , n, verlangt wer den, und im F aile (e) br aucht 
die D iagonale von U nicht gegeben zu s ein. 
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Ziel einer Clus ter analys e is t dann, eine n X p- Clus ter ­
s tr uk tur Y = (Yik) mit den Eigens chaften ( 7) s o  zu be­
s timmen, daB ein geeignetes Leas t-Squar es -F itkr iter ium 
o(Y) minimier t wir d : 

( a) 

( b) 

( c) 

a aCYl = Spur( U - R)'( U - R) = 
n n 

= � � ( ur - ri-Cy))2 = i=l j= 1 J J 
n n 

= � � (Ui' _ y;y.)2; i= 1 j= 1 J J 

Obey) = Spur( U - R)'( U - R) = 
n n 

= � � ( ur - rr(y))2 = i= 1 J= 1 J J 
n n , = f oF f (Uij - yiyj)2 + 

n 
+ .� ( Uil - Y; J)2 mit J = (I, ... , I)' ; 1=1 

n n 
oc( Y) ,,�

� �
( Uij - rij(y))2 = I � J 

n n 
= f oF f( uij - Y; Yj)2 . 

( lOa) 

(l Ob) 

( lOc) 

D ie Schii tzung der Clus ters tr uk tur Y = (Yik) s cheint 
bes onders pr oblematis ch aufgr und der Res trik tionen 

( 7a) und ( 7b). 1 m  F alle ( b) wir d eine Uis ung Y = (Yik), 
die obey) minimier t, die Bedingung ( 7b) zumindes t 
genaher t befr iedigen, da s ie dir ek t im zweiten Teil 
des F itkr iter iums ver langt wir d. Pr oblematis eher s cheint 
die Nichtnegativitats -Res tr ik tion ( 7a), die das Pr oblem 
der Schatzung der Clus ters tr uk tur Y wes entlieh von dem 
der F ak tor is ier ung der Matr ix U ( Hauptk omponenten­
analys e) unters cheidet. 

A.S . Metrische Skalarproduktmodelle zur 
numedschen Datenanalyse 

D as im vor igen Abs chnitt war hs cheinlichk eits theor etis ch 
begr li ndete Modell k ann fUr Zweck e der D atenanalys e 
er heblich abges chwacht wer den. Sei U = (Uij) eine ge­
gebene nichtnegative, s ymmetr is che ( diagonaldominante) 
n X n-Pr oximWi ts matr ix, der en Elemente Uij urn s o  
grOfl er s ind, je ahnlicher die k orr es pondier enden Objek te 
i und j einander s ind. D ann wir d eine nichtnegative n X p­
Clus ters tr uk tur Y = (Yik) der ar t ges ueht, dall die Sk alar­
pr oduk t-Modellwer te r[ j( Y) moglichs t gut im Sinne eines 
der dr ei F itkr iterien Oa( Y), ObeY), Oc(Y) diek orr es pon­
dier enden gegebenen Pr oximWi ten r epr oduzier en. 

Modell IlIa: 

p 
Uij '" rij = k�l YikYik mit Yik;:" 0, ( I l a) 

flir aile i , j:::: 1, . . .  , n, k::::l , . " ,  p. 
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Modell III. b:1 � ft. . � . . "'" YikYjk ur 1 ,.  J mIt Yik > 0, k= l  
uij "" rij = � .. . . . 

.""' Yik fur 1 = J mIt Yik � 0, k= l  

fUr aile i ,  j = I, . . .  , n ,  k = I ,  . . .  , p. 

Modell I1I.c: 

P 
llij � fij = L YikYjk fUr i =1= j mit Yik > 0, 

(l Ib) 

(l l c) k= l 
mit i , j = l "  . .  , n, k = l, . . .  , p. 

Die Skalarprodukt-Werte rij(Y)' i * j, sind umso grMer, 
je gr6Ber die Cluster-"Ladungen" Yik und Yjk zweier 
Objekte i und j auf gleichen Clustern Ck> k = I ,  . . .  , p, 
sind. Die Elemente Yik der n X p-Matrix Y konnen dann 
als Mitgliedschafts-Gewichte bzw. Bedeutungen inter­
pretiert werden, die das Objekt i dem Cluster Ck zu­
weist. Diese Form eines Clusteranalyse-Modelles ist im 
wesentlichen aquivalent einem restriktiven Modell 
der Matrixfaktorisierung (Hauptkomponentenanalyse), 
wobei die Nichtnegativitats-Restriktionen der Cluster­
ladunge.n Yik orthogonale Clusterkomponenten i.a. 
ausschlief!t. 

Eine obere Schranke ftir die niehtnegativen Cluster­
ladungen (vgl. Bedingung 0 "  Yik " I beim Wahrschein­
lichkeits-Modell) braucht hier nieht beachtet zu wer­
den, da sich die relative GroBe der Proximitaten llij aus 
der relativen Grof!e der Clustedadungen Yik ergibt und 
umgekehrt. Mit einer positiven Konstante K gilt 

p 
K2Uij '" K2rij(Y) = � (KYik) (KYjk), K > 0, (12) k= l  

d.h. eine Ditation der Clusterladungen bez. K ist ver­
bunden mit einer Dilation der Skalarprodukt-Modell­
werte (und damit der gegebenen Proximitaten) bez. 
K2. Die Restriktion (7b) scheint fUr Zwecke der Da­
tenanalyse nieht bedeutsam zu sein. Bedingung (7b) 
wird zudem genahert befriedigt, wenn Kriteriurn obey) 
minimiert wird. 

iI: Cluster Methoden 

B.1 .  Methode zur Bestimmung maximal 
kompakter Gruppen 

Von CATTELL & COULTER (1966), sowie CATTELL, 
COULTER & TSUJIOKA (1966) wurde eine Methode 
zur Aufdeckung sogenannter maximal kompakter Grup­
pen (MKG), dort genannt Phenomenal Cluster, Ph.Cl.) 
auf Grundlage einer ' gegebenen (O,I)-binaren ILM ent­
wickeIt, die im deutschsprachigen Raum besonders 
durch das Buch von Urs BAUMANN (1971) bekannt 
wurde. 

Bezeichnung: 

Eine Teilmenge ,Ck = {kl , . . .  , nnk} der Objektmenge 
Q = {1 , . .  " n} nennt man eine MKG bez. einer gegebe­
nen n X n-ILM T = (tij), wenn sie folgende Eigenschaften 
besitzt: 
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(PI)Alle Elemente der MKG Ck sind bez. der ILM 
T = (tij)paarweise ahnlich, d.h. fiir alle Paare 
(k;, kj) E Ck X Ck gilt tk;,kj = 1 .  

(P2)Alle zur Restmenge Ck = Q\Ck gehorenden Ele­
mente rnUssen mindestens einem dec zu Ck geh6-
renden Elemente bez. der ILM T = (tij) unahnlich 
sein, d.h. flir jedes Element kj E Ck existiert wenig­
stens ein Element ki E Ck, fur das gilt tk;. kj = 0. 

Eine Teilmenge Ck, fUr die nur die Eigenschaft (PI) 
gefordert wird, nennt man kompakte Gruppe (KG). 

Sei Xk = (Xl k' . . .  , Xnk)' der (O,I)-binare Zuge­
horigkeits-Vektor einer MKG Ck bez. T = (tij), dann 
sind die Eigenschaften (PI), (P2) auch beschreibbar 
in der Form: 
(PI)Fiir alle Paare (i, j) fiir die Xik = Xjk = I gilt, gilt 

auch tij = 1 .  
(P2) Ftir jedes Objekt j mit Xjk = ° existiert wenigstens 

ein Objekt i mit Xik = l und tij = 0. 
Jede symmetrische, diagonaldominante (O,I)-binare 
n X n-Matrix T = (tij) beschreibt eine bestimmte Menge 
von N verschiedenen, sich im allgemeinen tibedappen­
den MKG Ck, die als Spaltenvektoren Xk in einer 
n X N-Zuordnungs-Matrix X = (Xik) zusammengefaf!t 
werden konnen. In ungiinstigen Fallen kann dabei die 
Anzahl N der existierenden MKG sehr graf! sein (N > n). 
Wegen tii> tij = tji, j = 1 ,  " ', n, darf ein Diagonalele­
ment tii von T nur dann verschwinden, wenn aile ande­
ren Elemente aus Zeile i und Spalte i auch verschwinden. 
Dann ist das Objekt i in keiner MKG enthalten und kann 
aus der ClusteranaIyse ausgeschlossen werden. Falls 
tii = l und tij = ° fUr aile j * i, dann bildet Objekt i ein 
singulares Cluster (separates oder isoliertes Cluster). 

Mit der Gesamtmenge der N MKG wird stets ein 
perfekter Fit, d(x) = 0, der gegebenen ILM T = (t,) 
im Sinne des logischen Skalarpradukt-Modelles ecreicht 

o(X) = Spur (T - S)'(T - S) = 
n n 

= � � (t . . - S .. (X»2 (1) i= l  j= 1  IJ IJ 
N 

mit Si;CX) = k�l 
xik n Xjk = xi n Xj' 

Von HARTMANN (1976a) wurde gezeigt, daB die 
Methode von CATTELL & COULTER (vgl. BAUMANN, 
1971) im allgemeinen nicht fahig ist, samtliche N MKG 
aufzudecken. Haufig ecreicht sie zwar einen perfekten 
Fit, o(X) = 0, aber die Menge der aufgedeckten Cluster 
hangt im allgemeinen von der Reihenfolge der N Objekte 
in der ILM T = (tij) abo Bei HARTMANN (1976b) 
wurde ein Algorithmus Yorgeschlagen, der zwar stets 
die vollstandige Menge aller N MKG einer ILM T = (tij) 
aufdeckt, der aber rechentechnisch nicht so effizient ist 
wie der im folgenden beschriebene und von Peter 
QUAAS, TU Dresden, entwickelte Algorithmus: 
(a) In jedem Schritti des Algorithmus werden die MKG 

gebUdet, die sich aus den Objekten I ,  . . .  , i ergeben 
aufgrund der entsprechenden i X i-Teil-ILM. 
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Die MKG fliT die Objekte I ,  . . .  , i, i + I entstehen 
durch Erweiterung der MKG der Objekte I ,  . . .  , i . 
Die Analyse beginnt mit den ersten beiden Objek­
ten und endet, wenn aile n Objekte abgearbeitet 
wurden, besteht also aus insgesamt n - I Schritten. 

(b) Falls die Objekte l und 2 ahnlich sind, t21 � I ,  
bilden sie eine Gruppe {J , 2}, falls sie nicht 
iihnlich sind, t21 = 0, bilden sie zwei singuHire 
Gruppen {I} und {2} .  

(c) Angenommen, es liegen die MKG fUr die Objekte 
I ,  . . .  , i vor. Dann werden die Ahnlichkeiten (Links) 
des Objektes i + I zu den Objekten I ,  . . .  , i be­
trachtet. 
(c.l) Falls keine Links von Objekt i + I zu den 
Objekten I ,  . . .  , i bestehen, dann wird Objekt 
i + I als singulare Gruppe � + I }  notiert. 
(c.2) Sonst werden aile vorliegenden Gruppen ge­
prrnt: 
(c.2.1) Falls Objekt i + I allen Objekten einer vor­
liegenden Gruppe ahnlich ist, wird diese MKG urn 
Objekt i + I vergraBert. 
(c.2.2) Falls Objekt i + I nur zu einem Teil der 
Elemente einer vorliegenden Gruppe ahnlich ist, 
wird eine neue Gruppe gebildet, bestehend aus 
Objekt i + I und den Elementen der vorliegenden 
Gruppe, die zu i + I ahnlich sind. 
(c.3) Jede der mittels (c.2.2) neu entstandenen 
Gruppen wird geprlift, ob sie Teilmenge einer ande­
ren Gruppe mit Objekt i + l ist, d.h. einer Gruppe, 
die mittels (c.2.1) oder (c.2.2) gebildet wurde. 

Mit Hilfe der lagischen Durchschnitts- und Vereini­
gungs-Relatianen zwischen den (O,I)-binaren Cluster­
strukturen Xk und den Spalten Tj der Matrix T ist der 
Algorithmus auBerordentlich effizient programmierbar. 
Bis zu etwa n � 30 Objekten ist er auch durchaus mit 
Bleistift und Papier durchftihrbar. Einer der graBten 
Nachteile des Madells isl jedaeh die im allgemeinen 
sehr groBe Anzahl N sich leilweise slark liberlappender 
Cluster, die fUr einen perfekten Fit des Madelles (I) 
notig ist. 

B.2. Slrategien zur Vereinlgung maximal kompakter 
Gruppen 

B.2. 1 .  Motivation 

Es sind verschiedene Slralegien denkbar, ausgehend von 
der vollstandigen Menge ' der N MKG zu einer praktikab­
len Menge von p (liberlappenden) Clustern zu gelangen, 
die einersens einen magiichst guten Fit bez. a(X) garan­
tieren und andererseits eine m6glichst sparsame und 
relevante klassifikatarische Interpretation einer gege­
benen ILM erlauben. 
l .  Dureh ersatzlases Wegiassen von N - p MKG entsteht 

eine n X p-luordnullgs-Matrix X � (Xik)' die mil (I) 
eine Madellwerte-Matrix S;',(�ij) erzeugt, die im all­
gemeinen nur eine.Tei!menge'-der Links der gegebenen 
ILM T � (Iij) entllait,'Um einen maglichst guten Fit 
bez. a(X) zu erreichen, sail ten die N - p MKG gestri­
chen werden, die einen maglichst geringen Verlust 
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an Links in S � (sijJ gegenliber den gegebenen Links 
in T � (tij) bewirken. 

2. Durch Vereinigung von MKG entsteht eine n X p-lu­
ordnungs-Matrix X � (Xik), die mit (I) eine Modell­
werte-Matrix S � (sij) erzeugt, die die Links der ge­
gebenen ILM T � (tij) als Teilmenge enthalt. Um 
einen magiichst guten Fit bez. a(X) zu erreichen, 
sollten solche MKG vereinlgt werden, die einen 
magiichst geringen luwachs an Links in S � (sij) 
gegenliber den gegebenen Links in T � (tij)' bewir­
ken. 

Natlirlich sind aueh Strategien denkbar, bei denen so­
wahl MKG weggelassen als auch vereinigt werden. Da 
die MKG haufig sehr ahnlieh oder gar stark liberlappend 
sind, wurde hisher yor aHem die zweite Alternative def 
Clustervereinigung bevorzugt. 

Wenn als einziges Kriterium ZUI Vereinigung von 
Gruppen zu Cliquen der minimale Link-luwaehs in 
der reproduzierten ILM S � (Sij) gegenliber der gegebe­
nen ILM T � (tij) verwendet wlirde, d.h. schrittweise 
soIche Gruppen verwendet wiirden, die einen minimalen 
Fitverlust bez. a(X) bewirken, dann hatte diese Strate­
gie den offensichtliehen Nachteil, daB kleine (bzw. 
singulare) Gruppen bevorzugt vereinigt wlirden, auch 
wenn sie keine oder relativ wenige Links verbinden. 
GrOBere Gruppen hiitten geringere Chancen vereinigt 
zu werden, auch wenn sie hoch ahnlich oder gar stark 
liberlappend sind. Haufig waren die so entstehenden 
Cliquen ziemlich inhomogen. 

1m folgenden werden drei Strategien beschrieben, 
mit denen eine graBere Anzahl von N MKG naeh be­
stimmten Auswahlkriterien zu einer kleineren Anzahl 
von Cliquen vereinigt werden konnen. Die damit ver­
bundenen Algorithmen und Prinzipien ahneln einer­
seits dem von CATTELL & COULTER (1966) und 
andererseits denen der (sukzessiven) hierarchisehen 
Clusteranalyse (vgi. JOHNSON, 1967). 

B.2.2. Strategie der Clusterliberiappung 

Kriterium: 

Es werden solche MKG (phenomenal Cluster) zu Cliquen 
(Segregates) vereinigt, die eiIle MiIldestanzahl gemein­
samer Objekte (liberlappende Elemente, Nuclear Cluster) 
enthalten. 

Algorithmus: 

(a) Kanstruktion der N X N-Dberlappungs-Matrix 
U � (Ukl) aller Clusterpaare (Ck> CIl : 

k, l :::: 1 , . ' "  N, (2) 

Ukl : lahl der gemeinsamen Elemente der beiden 
MKG Ck und CI. (Flir die Diagonalelemente ukk gilt 
natlirlich ukk � nk, wobei nk die Anzahl der Ele­
mente der MKG Ck, k � 1 ,  . . . , N, bezeichnet.) 

(b) Sehwellwert-Dichotomisierung der Dberlappungs­
Matrix U � (Ukl) zur (O,I)-binaren Contiguity­
Matrix D � (ukIl: 
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_ 
{I ,  falls Uk' ;;" CONT, 

u k' : 
0, falls Uk' < CONT, k, I :  I ,  . . . , N, (3) 

CONT: gegebener Dichotornisierungs-Parameter, 
CONT > O. 

(c) Vereinigung der MKG·Paare mit mindestens CONT 
gerneinsarnen Elementen; 
(c. l )  Bestimmting einer N X p-ZugehOrigkeits·Matrix 
V :  (Vk,) der N MKG zu p Segregates durch suk· 
zessive Vereinigung der Spalten von D :  (Uk') 
mit nichtleerem Durchschnitt. 
(c.2) Bestimmung einer n X p-Zugehorigkeits-Matrix 
W :  (Wi') der n Objekte zu p Segregates durch Ver­
einigung der entsprechenden Spalten Xk der N X p­
Zugehorigkeits-Matrix X :  (Xik) der Objekte zu den 
MKG. 

Bemerkungen: 

L Das Kriterium zur Vereinigung von MKG zu Cliquen' 
berlicksichtigt nicht die totale Anzahl der Links, die 
zwischen den Elementen der beiden Cluster aufgrund 
der gegebenen ILM T :  (tij) bestehen. Die ZaW der 
Uberlappenden Elemente zweier Cluster ist daher im 
allgemeinen kein Mall der Ahnlichkeit der zwei 
Cluster. 

2. Das Kriterium zur Vereinigung von MKG zu Cliquen 
berlicksichtigt nicht die ZaW der Nicht-Links, die 
zwischen den Elementen def Clique nach Vereini­
gung aufgrund der gegebenen ILM T : (tij) bestehen. 
Die Zahl der liberlappenden Elemente zweier Cluster 
ist daher im allgemeinen keirr Mall der Homogenitiit 
der entstehenden Clique. 

3 .  Aufgrund des fest vorgegebenen ganzzahligen (jber­
lappungs-Schwellwertes CONT werden gralle Cluster 
bevorzugt zu Cliquen vereinigt. 

B.2.3. Str.tegie der Clusteriihnlichkeit 

Kriterium: 

Es werden (sukzessive) solehe Cluster zu Cliquen ver­
einigt, die einander jeweils am iihnlichsten sind, d.h. 
zwischen denen die relative (bzw. prazentuale) Link­
anzahl in der gegebenen ILM T :  (tij) maximal ist bzw. 
einen Schwellwert libersteigt. 

Algorithmus: 

(a) Konstruktion der N X N-Cluster-Ahnlichkeits-Matrix 
U :  (Uk'): 
(a.1) Seien Ck und C, zwei Cluster mit nk bzw. n, 
Elementen und biniiren ZugehOrigkeitsvektoren Xk 
bzw. X,. Dann enthiilt die (O,I)-biniire n X n-Matrix 
XkX; Elemente XikXil> die genau dann gleich Eins sind, 
wenn Objekt i zu Cluster Ck und Objekt j zu Cluster 
C, gehor!. Die n X n-Matrix enthiilt also genau nkn, 
Links in nk Zeilen und n,-Spalten. Die Links in der 
(O,I)-biniiren n X n-Matrix T n  (XkX;) zeigen an, dall 
zwischen einem zu Cluster Ck gehOrenden Objekt i und 
einem zu Cluster C, gehOrenden Objekt j ein Link in 
der gegebenen ILM T :  (tij) besteh!. Ein relatives (bzw. 
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prazentuales) Mall M\ Ahnlichkeit der beiden Cluster 
Ck und C, wird erha'lten, wenn die Linkanzahl von 
T n (XkX;) durch die maximal mogliche Linkanzahl 
ilkfil zwischen beiden Clustern dividiert wird. 
(a.2) In Summations-Notation gilt flir die relative 
Ahnlichkeit zweier Cluster Ck und C, 

1 _ 1 n n 
Uk' : -- L L t··': -- L L tiixikxi" (4) nknl iECk jECI IJ nkn, i=l j = l  

k, l :  I ,  . . . , N. 

Matrix U = (Uk') ist symmetrisch und es gilt 0 ';;; Uk' ';;; 1 .  
Dabei ist uk' = 0, falls zwischen keinem der Objektpaare 
i E Ck und j E C, ein Link in T = (tii) existiert, und es 
ist ukl.: I ,  falls zwischen allen Objektpaaren i E Ck 
und j E C, Links in T :  (tii) existieren. Die Diagonal­
elemente Ukk sind nur dann gleich Eins, wenn die 
korrespondierenden Cluster MKG sind. Die GroBe eines 
Diagonalelernentes Ukk ist ein Maf1 der HomogenWit 
des korrespondierenden Clusters Ck aufgrund der ge� 
gebenen ILM T :  (tii)' 
(b) Schwellwert-Vereinigungs-Algorithmus: 
(b . l )  Schwellwert-Dichotomisierung der N X N-Cluster­
Ahnlichkeits-Matrix" U = (Uk') zur (O,I )-biniiren Conti­
guity-Matrix D = (ukll aufgrund eines gegebenen metri­
schen Schwellwertes CONT, 0 ';;; CONT .;;; 1 ,  entspre­
chend Schritt (b) der Strategie von CATTELL & COUL­
TER (1966). 
(b.2) Bestimmung einer N X p-ZugehOrigkeits-Matrix 
V :  (Vk,) der N Cluster zu p Cliquen und Bestimmung 
einer n X p-ZugehOrigkeits-Matrix W = (Wi,) der n 
Objekte zu p Cliquen, entsprechend Schritt (c) der 
Strategie von CATTELL & COULTER ( 1 966). 
(c) Sukzessiver -Vereinigungs-Algorithmus: 
(c.1) Es werden die zwei Cluster Ck und C" k '" I, 
vereinigt, deren relative Ahnlichkeit ukI maximal ist. 
(c.2) In der Zugehorigkeits-Matrix X :  (Xik) wird an­
stelle des Clusters Ck das Cluster Ck U C, notiert und 
das Cluster C, gestrichen i 
(c.3) In der Cluster-Ahnlichkeits-Matrix U :  (Uk') wer­
den die k-te Zeile und Spalte neu berechnet und die I-te 
Zeile und Spalte gestrichen. 
(cA) Die Anzahl N der Cluster wird um Eins verringert 
und falls N noch groller als die gewlinschte Cluster­
anzahl p ist, wird der Vorgang bei (c. l )  wiederholt. 

B .2,4 Strategie der CIusterilomogenitiit 

Kriterium: 

Es werden (sukzessive) solehe Cluster zu Cliquen ver­
einigt, die erwarten lassen, dall die entstehende Clique 
am homogensten ist, d.h. die nach der Vereinigung 
eine maximaIe relative ·(bzw. prazentuale) Linkanzahl 
aufgrund der gegebenen ILM T = (tii) aufweisen wird. 

Algorithmus: 

(a)Konstruktion der N X N-Cluster-Homogenitats-
Matrix U"" (Uk'): 
(a. l )  Sei Ck1''= Ck U C, die Vereinigung zweier Cluster 
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Ck und CI mit nkl verschiedenen Elementen und dem 
binaren Zugeh6rigkeits-Vektor Xk U Xl' Dann enthalt 
die (O,I)-binare n X n-Matrix (Xk U Xr) (Xk U Xl)' 
Elemente (Xik U XiI) (Xik U XiI), die genau dann gleich 
Eins sind, wenn die beiden Objekte i und j zur Clique 
Ckl = Ck U CI gehoren. Die symmetrische n X n-Matrix 
enthalt also genau n�I Links in nki Zeilen und nki Spal­
ten. Die Links in der (O,I )-binaren n X n-Matrix 

(5) 

zeigen an, daB zwischen zwei zur Clique Ck1 gehorenden 
Objekten i und j ein Link in der gegebenen ILM T � (tii) 
besteht. Ein relatives (bzw. prozentuales) Mall der 
Homogenitat der Clique Cki wird erhalten, wenn die 
Linkanzahl von (5) durch die maximal m6g1iche Link­
anzahl n�1 zwischen den nkl Elementen der Clique divi­
diert wird. 
(a.2) In Summations-Notation gilt flir die relative 
Homogenitat einer Clique Cki � Ck U CI: 

I uki � - L L t . . � 
n�l iEekl jECkl I} 

I n n  
� ""2 . L . L tii(Xik U xiI) (xik U XjI) 

nkl 1= 1 j= 1 

k, l = 1, . . .  , N, (6) 

wobei Xik U Xii ,  i = 1, . . .  , n, die Elemente des Zuge­
h6rigkeits-Vektors Xk UXr  der Clique Ckl � Ck U CI 
sind. Matrix U � (Ukr) ist symmetrisch und es gilt 
0 <  Ukl ";; I. Dabei ist ukl � I ,  falls zwischen allen Ob­
jektpaaren i E CkI und j E Cki Links in T � (tii) bestehen, 
doh. falls die Clique Ckl kompakte Gruppe ist. 
(b) Vereinigungs-Algorithmen: 
Entsprechend den Punkten (b) und (c) der Strategie 
der maximalen Clusterahnlichkeit sind auch hier sowohl 
ein Schwellwert-Vereinigungs-Algorithmus als auch ein 
Sukzessiver-Vereinigungs-Algorithmus denkbat. Dabei 
wird analog zu den dort gegebenen Ausftihrungen ver­
fahren, wobei der Begriff der Cluster-Ahnlichkeit hier 
aber durch den der erwarteten Cluster-HomogeniHit 
ersetzt wird. 

B.3. Methode zur Analyse disjunkter Cluster 

Ausgehend von einer vollstandigen Menge von MKG 
einer gegebenen ILM T � (tii), die beispielsweise mit 
der in B . 1 .  beschriebenen Methode bestimmt wurde, 
ermittelt der im folgenden vorgeschlagene Algorithmus 
eine Struktur disjunkter Cluster, die unter bestimmten 
Voraussetzungen einen relativ guten Fit des Least­
Squares-Kriteriums a(X) reprasentiert. Der Algorith­
mus besteht aus folgenden Teilschritlen:  
(a) Die gr61lte Menge Ck wird als erstes Cluster Dr  
der disjunkten Clusterstruktur definiert. 
(b) 1m p-ten Schritt des Algorithmus liegen p dis­
junkte Cluster Dr , " ' , Dp vor, die durch Behand­
lung von p MKG Ckr , . . .  , Ckp zusammengestellt wur­
den. Die disjunkten Cluster Dk enthalten mk>  k � I, _ . .  , 
p, Elemente. Die Objektmengen Do bzw. Do 
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p 
Do � U Dk bzw. Do � Q\Do k= l  

(7) 

enthalten die den disjunkten Clustern bereits zuge­
ordneten bzw. noch nicht zugeordneten Objekte der 
Gesamt-Objekt-Menge Q � {I, . . .  , n}. 
(c) 1m (p + I )ten Schritt des Algorithmus wird aus 
den noch nicht behandelten MKG Ck,p+ I ausgewahlt ,  
die die meisten noch nicht Do zugeordneten Objekte 
enthalt, d.h. flir die die Elementanzahl der Menge 

(8) 

maximal ist. Der nichtzugeordnete Teil des Clusters 
Ck,p + r  bildet also das (p + I)te Cluster Dp+r  mit 
mp+ 1 Elementen. 
(d) Wenn alle in den MKG enthaltenen Objekte auch 
Objekte der disjunkten Cluster sind, endet der Algorith­
mus mit p vorlaufigen disjunkten Clustern D"  . . .  , Dp 
nach p Schritten. 
( e) Nachbehandlung der vorlaufigen disjunkten Clu­
sterstruktur: Wenn mittels Vereinigung von jeweils 
zwei disjunkten Clustern der Wert des Least-Squares­
Fitkriteriums a(X) verringert werden kann, dann wird 
durch sukzessive Vereinigung soleher Clusterpaare die 
Zahl der disjunkten Cluster verringert und der Fit der 
Clusterstruktur bez. der gegebenen ILM T � (tii) ver­
bessert. N ach Berechnung einer p X p-Matrix LI � (Ii kr) 
der Veranderungeit likl des LS-Fitwertes a(X) bei Ver­
einigung zweier disjunkter Cluster Dk und DI wird ein 
Algorithmus aquivalent zu dem in B.2. vorgeschlagenen 
Sukzessiven-Vereinigungs-Algorithmus empfohlen. 

Bemerkungen: 

I. Veranderung des Wertes von a(X) in den p Auswahl­
schritten des Algorithmus: 
Da die p Cluster Dk disjunkt und als Teilmengen von 
MKG kompakte Gruppen sind, gelten die folgenden 
Relationen 

p 
L L (tii - L Xilxil)' � L L (tik - I)' 

� 0, iEDk jEDk 1=" 1  iEDk jE D k  
P L .>-L (tii - L XilXil)' � L .>-L tt;, iEDk j'FDk 1= 1 iEDk j'F Dk 

� n P n 2 
.'" _ . L (tii - L XilXjI)' 

� � . L tii' 1EDO J= 1 1=1 iE DO )=1 

Andererseits ist das Least-Squares-Fitkriterium 

(9) 

fUr disjunkte Cluster D r ,  . . .  , Dp zerlegbar in der Form 
p p 

a(X) � L <. L _ L (tii - L Xilxil)' 
k = l  IEDk JEDk 1 = 1  

p 

+ iE�k i$�k 
(tii - I:; XilXir)') 

(10) 
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n P 
+ . � . � (tij - � XilXjl)' 

IEDO r= 1 1= 1 
P n 

2 
n 

2 :;: 2; L L t . .  + L L t  . . k= !  iEDk j=l IJ iEDO j= l IJ 
P 

2 � � � t · ·  k= l iEDk jEDk IJ 
n n 

2 
P 

2 = � � t·· - � � � t·· i= 1 j= l  IJ k= I iEDk jEDk IJ 
n Ii P 

2 = � � e: - � mk, i= 1 j= l  IJ k= I 

wobei mk die Anzahl der Elemente des Clusters Dk 
bezeichnet. Vor dem ersten Teilschritte des Algorith­
mus betragt der Wert des LS-Fitkriteriums 

n n 
°o(X) = iz.; jz.; tf; (i l) 
und nach dem p-ten Auswahlschritt betragt der Wert 
des LS-FitkIiteriums 

(i2) 

Bei jedem Auswahlschritt p des Algorithmus verringert 
sich der Wert des LS-Fitkriteriums urn 

� � t? = m2. (i3) iEDp jEDp IJ P 

Das begrtindet, warum in jedem Auswahlschritt p eine 
kompakte Gruppe Dp mit maglichst vielen Elementen 
ffip ausgewahlt wird. 
2. Veranderung des Wertes von o(X) bei Vereinigung . 
zweier disjunkter Cluster Dk und DI: 
a) Sei o,(X) das LS-Fitkriteriurn fUr den Fall, das die 
beiden Cluster Dk und DI noch nicht vereinigt sind. 
Dann ist o,(X) zerlegbar in der Form 

+ � ( � tf; + � (tij - I )' '' � tf;) (i4a) 
iED t  jEDk JED l jEDjkUDl 

+ � ( �  t2. + � t2. + � (t .. - £ X· X· )' ) iEDkuDI jEDk IJ JEDl I} jED kUDl J 8= 1 IS JS '
. 

b) Sei ObeX) das LS-Fitkriterium fUr den Fall, dall die 
beiden Cluster Dk und DI zu einern Cluster vereinigt 
sind. Dann ist ObeX) zerlegbar in der Form 
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+ � ( � (tij - I)' + � (Iij - I)' + iEDt jEDk JED} 

(14b) 

+ � t2.) + jEDk U D r  IJ 

+ � ( � t2. + � t2. + iEDk U D ,  jEDk IJ JED( IJ 
P 

+ � (tij - � XisXjs)')· jEDk U D r  8= 1 

c) Bei Vereinigung zweier disjunkter Cluster Dk und 
DI andert sich der Wert des LS-Fitkriteriums o(X) urn 

Dkl = o,(X) - ObeX) = 

= � ( �  t2. - � (tij - I)') +  iEDk JEDI IJ JED} 

+ � ( � t2. _ . � (tij - I)') 
iEnt jEDk IJ tEDk 

= 2  � . �  (2tij - I), k , I = I , . . .  , p. 
lEDk JEDt 

(IS) 

Das bedeutet: Je mehr Links tij = I, i E Dk> j E Db 
zwischen den Elementen der beiden Cluster Dk und DI 
bestehen, umso graller wird D kl und falls Dk l>O, wird 
mit Vereinigung der beiden Cluster Dk und DI der Wert 
des LS-Fitkriteriums o(X) verringert, d.h. der Fit der 
Clusterstruktur zu den Daten T = (ti) verbesser!. 
d) Nach Berechnung der symmetrischen Matrix C. = (Dkl) 
sollten sukzessive solche Cluster Dk und Dl vereinigt 
werden, fUr die die Fitverbesserung Dk l  maximal und 
positiv is!. Nach Vereinigung zweier Cluster Dk und DI 
brauchen nur die l)-Werte zwischen dem neu entstan­
denen Cluster Dk U DI und den res!lichen Clustern be- . 
stimmt und in die entsprechende Zeile und Spalte von 
Matrix C. eingesetzt zu werden. Die Ordnung der Matrix 
C. verringert sich bei jedem Vereinigungsschritt urn 
Eins. Sobald max Dkl < O· ist, sollte der Vereinigungs­
prozell abgebrochen werden, da keine weitere Fit­
verbesserung durch Clustervereinigung maglich is!. 
3. Die Minimierung des LS-Fitkriteriums o(X) ist aqui­
valent dazu, eine Struktur X = (Xik) von p disjunkten 
Clustern Dk so zu bestimmen, dall die n X n-Matrix 
S = (Sij)mit 

p 
s· ·  = � x·kx·k bzw. S = XX' IJ k= 1 I J 
der reproduzierten Skalarproduktwerte (Modellwerte) 
eine gegebene ILM T = (tij) bestmaglich anpall!. 

Bei den p Auswahlschritten des hier vorgeschlagenen 
Algorithmus wird die Matrix S = (sij) ausgehend von 
einer Nullmatrix in jedern Auswahlschritt k urn solehe 
Links Sij = I ,  i E Dk> j E Dk , angereichert, die auch Links 
in der gegebenen ILM T = (tij) sind. Die Menge der 
Links in S nimmt zwar bei jedem Auswahlschritt an 
Urnfang zu, bleibt aber stets eine Teilmenge der Links 
in T = (tti). 

Bei den Vereinigungsschritten des hier vorgeschlage­
nen Algorithmus wird die Matrix S = (sij) bei jeder 
Vereinigung zweier Cluster Dk und DI auch urn solehe 
Links Sij = Sji = 1 ,  i E Dk, j E Db angereichert, die nicht 
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Links der gegebenen ILM T = (tij) sind. Wegen der 
Forderung ok!> 0 gibt es bei jedem Vereinigungs· 
schritt mehr Positionen (i, j) bzw. G, i), i E Db J E D" 
auf derren die hinzukommenden Links in S mit Links in 
der gegebenen ILM T = (tij) zusammentreffen. 

Etwas unscharf kann man das so ausdrlicken: Bei 
den Auswahlschritten des A1gorithmus werden die 
Links in S "von unten" an die Links in T angepaBt und 
bei den Vereinigungsschritten des A1gorithmus werden 
die Links in S "von oben" an die Links in T angepaBt. 

B.4. Methoden zum Fit der 
metrischen Skalarproduktmodelle 

Sei U :::: (Uij) eine gegebene nichtnegative, symrnetrische 
(diagonaldominante) n X n·Proximitatsmatrix, deren Au· 
Berdiagonalelemente liij, i  * j ,  betrachtet werden konnen 
als empirisch erhobene Wabrscheinlichkeiten (sub· 
jective probabilities) fUr das Ereignis, daB die beiden 
Objekte i und j einern von p Clustern gemeinsam ange­
horen, und deren Diagonalelemente un 
(a) als quadrierte Langen von Cluster·Zugeh6rigkeits' 

Vektoren Yi betrachtet werden konnen; 
(b) als Wabrscheinlichkeiten dafOr, daB ein Objekt i 

einem der p Cluster angeh6rt, betrachtet werden 
kbnnen; 

(c) nicht naher spezifiziert sind (missing elements). 
Das Problem einer Cluster analyse der im Abschnitt A.5. 
abgeleiteten Modellrelationen (I  I .a)-(I I .c) besteht dann 
darin, eine nichtnegative (metrische) n X p·Matrix 
Y = (Yik) von Objekt·Cluster·Zugeh6rigkeitsanteilen 
Yik > 0 so zu bestimmen, daB je nach def Bedeutung 
der Diagonalelemente von U eines der folgenden Least· 
Squares-Fitkriterien minimiert wird: 

wobei mit 
P , r . .  (Y) = � Y'kY'k = Y.v. IJ k= 1 1 J I J 

die Skalarprodukt·Modellrelation bezeichnet wird. 

( l6 .a) 

(16.c) 

(17) 

Dies sind drei Probleme der nichtlinearen Optimie· 
rung mit besonders einfachen Schranken·Zwangen 
(Nichtnegativitat) an die Variablen. Mittels der Varia· 
bIen transformation 

Z' -ik - Yik . i = 1 ,  . . .  , n k = 1 ,  . .  " p ,  

und der veranderten Skalarproduktrelation 
p 

rij(Z) = � zfkzfk k= 1  

(18) 

(19) 

werden die drei restriktiven Least·Squares·Fitprobleme 
(16) in Y zu nichtrestriktiven Least·Squares·Fitkriterien 
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ua(Z), Ub(Z), u,(Z), die fOr zik E R zu minimieren sind. 
Mittels einer nichtrestriktiven Optimierungsmethode 
wird zunachst eine n X p·Matrix Z = (Zik) bestimmt, die 
ein Least·Squares·Fitkriterium u(Z) lokal minimiert. 
Dber die Variablentransformation (18) wird anschlie· 
Bend eine lokal optimale n X p·Matrix Y = (Yik) erhal· 
ten, deren Elemente Yik natlirlich nichtnegativ sind. 
Wiihrend die Least·Squares·Probieme u(Y) in (16) die 
Parameter Yik als Polynom vierten Grades enthalten 
sind, sind die Parameter zik in den Least-Squares-Krite­
rien u(Z) in Form eines Polynoms achten Grades ent· 
halten. Der Vorteil der unkomplizierteren nichtrestrikti· 
ven Optimierung der Probleme u(Z) wird also mit einer 
wesentliehen Erh6hung der Nichtlinearitat der objekti· 
ven Funktion bezablt. Dies hat wiederum eine erhohte 
SensibilWit def numerischen iterativen Optimierungs­
verfabren bezOglich lokaler aber nieht globaler Optima 
ZUI Folge. 

Ais notwendige Bedingung daftir, daB eine Parameter· 
rnenge X* ein Least-Squares-Fitkriterium minimiert, wird 
verlangt, daB der an der Stelle X' bewertete Gradien· 
tenvektor g( u(X» der partiellen Ableitungen von u(X) 
verschwindet. FUr das Kriterium ua(Y) in ( l6 .a) erhalt 
man so 

n 
aU/aYik = -4 i� (Uij - rij(Y»)Yjk = 0 (20) 

und entsprechend fOr das Kriterium ua(Z) 

n 
aU/aZik = -8Zik i� (uij - rij(Z» z}k = 0 (21) 

jeweils ein System von np Normalengleichungen, wobei 
die Normalengleichungen (20) algebralsche Gleiehungen 
3 .  Grades in der Variablen Yik und die Normalenglei· 
chungen (2 i )  algebraische Gleiehungen 7.  Grades in den 
Variablen zik sind. (Man erkenn! leicht, dall zik = 0 
flir alle i, k, eine L6sung der Normalengleichungen (21) 
ist, die ua(Z) aber nicht minimiert.) 

Die bekanntesten Verfabren ZUI nichtrestriktiven 
Minimierung von u(Z) sind Gradienten·Methoden, 
Newton· oder Quasi·Newton·Methoden, konjugierte· 
Gradienten·Methoden und Levenberg·Marquardt·Metho· 
den. Die Levenberg·Marquardt·Methode ist speziell 
geeignet zur Minimierung nichtrestriktiver nichtlinearer 
Least·Squares·Fitprobleme 

M 
u(X) = � ff(X) = IIF(X)II' , X E RN i= l 

(22) 

In der Umgebung eines Punktes Xo E RN k6nnen die 
M nichtlinearen Funktionen fi(X) durch eine Taylor· 
Reihe approximiert werden 

N of. 
f;eXo + P) "" fi(XO) + � ,--t- Pi j= l uXj 
bzw. 

F(Xo + P) "" F(Xo) + JoP 

(23) 

( Of. ) 
wobei Jo = �Xo) die M X N·Jacobi·Matrix der 
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partiellen Ableitungen der M Funktionen fi(X) bez. 
der N Variablen Xj bewertet am Punkt Xo bezeich­
net. Die line are Taylor-Reihen-Approxirnation gilt 
nattirlich nur in einer hinreichend kleinen Umgebung 
des Punktes Xo, die umso kleiner ist je nichtIinearer 
die Funktionen fi(X) sind. Ein hinreichend kleiner 
Korrekturvektor P E RN der Approximation Xo des 
lokalen Minimums X' von u(X) sollte also so bestimmt 
werden, dall fUr eine gegebene diagonale Skalierungs­
matrix Do � D1AG(d1 , . . .  , dN) und eine gegebene 
positive Schranke Llo > 0 

M N af. N ",(P)� . L  (f;(Xo) + L  -a '. Pj)' H( L (djpj)' - LI�) 1=1 J=1 XJ j = 1  

bzw. (24) 

",(P) � IIF(Xo) + JOPII2 + A(IIDoPII2 - LI�) 

minimiert wird. Dabei bezeichnet A >  0 einen Lagrange­
Parameter, der die Lange des skalierten Korrekturvek­
tors DoP beschrankt mit 

I�PI12 < � . G5) 
Die Forderung (25) bedeutet fUr eine nichtsingulare 
diagonale Skalierungsmatrix Do , dall P in einem achsen­
parallelen Hyperellipsoid urn den Punkt Xo liegt und die 
Lange der j-ten Halbachse betragt Llo/dj, j � I ,  . . .  , N. 
Nach Nullsetzen der partiellen Ableitungen von (24) 
bez. P. erhalt man ein System von N NormaJengieichun­
gen bez. P 

. M 
a",/api � 2 L i= 1 

N af. af. 
(fi(XO) + . L -a ' Pj) -a ' + 2AdfPi � 0 J=1  Xj Xl 

bzw. 

(J' J" , o 0 + ADODo)P � -JoFo, 

Jo � (��. (Xo)) , M X N-Jacobi-Matrix, 
J 

die bei einer nichtsingularen Skalierungsmatrix Do mit 
j � JDo1in der Form 

(j�jo + AI)DoP � -j�Fo (26) 

geschrieben werden konnen. Man zeigt leicht (vgl. 
MORE, 1978), dall IIDP(A)II' fUr A ;'  0 monoton fallt 
und es gilt 

IIDP(A)112 � O. (27) 

Urn moglichst grolle Korrekturschritte DP(A) zu erhal­
ten, mull A ;'  0 moglichst klein gewahlt werden. Aus 
dem linearen System (26) bestimmt man daher A und P 
so, da� einerseits A >  0 so klein wie mog1ich ist, aber 
andererseits DP(A) die Bedingung (25) erfillit. 

Vom Autor wurde ein FORTRAN-Programm zur 
Implementation der Levenberg-Marquardt-Methode ge­
schrieben, das im wesentlichen auf MORE (1978) ba­
siert, aber auch rangdefiziente Iacobi-Matrizen J erlaubt, 
Rang (10) < N. Dieses Programm wurde an einem so-
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genannten synthetischen (konstruiertem) Beispiel zur 
Minimierung des stark nichtlinearen nichtrestriktiven 
Least-Squares-Problems uc(Z) erprobt. Bei einem synthe­
tischen Beispiel ist die global optimale Parametermenge 
Z* bekannt. In Tab. 2 ist eine Clusterstruktur ,Y* � (ytk ) 
von n � 15 Objekten in p � 4 Clustern gegeben, aus der 
tiber die Transformation (18) leicht die Clusterstruktur 
Z* � (ztk) durch Quadrieren ermittelt wird. Neben einer 
mehr oder weniger guten Anfangsschatzung Z(O) wird 
dem FORTRAN-Programm die in Tab. I prasente Skalar­
produktmatrix als Datenmatrix eingegeben. Das Pro­
gramm ermittelt dann iterativ eine Foige {Z(k)} von 
sukzessive verbesserten SchiHzungen von \Z*. fUr die 
uc(Z(k+ i)) < uc(Z(k)) gilt. 

Tab. 1: Skalarproduktmatrix U = (Uij) 
(Dezimalpunkte weggeiassen) 

U 
I 
2 0 
3 0 0 
4 0 0 0  
5 90 10 0 0 
6 10 80 1 0  0 1 7 
7 0 10 80 10 I 16 
8 0 0 10 90 0 I 1 7  
9 70 20 10 0 65 24 1 0  

1 0  20 6 0  2 0  0 2 4  5 2  2 2  2 28 
1 1  0 20 6 0  20 2 22 52 24 1 0  24 
12 0 10 20 70 I 10 24 65 4 10 28 
1 3  50 30 20 0 48 3 1  19 2 43 3 2  1 8  7 
1 4  10 40 40 1 0 1 3  37 37 13 19 34 34 1 9  25 
1 5  0 20 30 50 2 19 31 48 7 1 8  3 2  4 3  12 25 

Tab. 2: Clusterstruktur y* = (yik) 
(Dezimalpunkte weggelassen 

y' 
I 100 0 0 0 
2 0 100 0 0 
3 0 0 100 0 
4 0 0 0 100 
5 90 10 0 0 
6 10 80 1 0  0 
7 0 10 80 10 
8 0 0 10 90 
9 70 20 10 0 

10 20 60 20 0 
1 1  0 20 60 20 
12 0 10 20 70 
13 50 30 20 0 
14 10 40 ' 40 10 
15 0 20 30 50 

ObwohJ fUr die unverzerrte Datenmatrix U � (Uij) ein 
perfekter Fit uc(Z*) � 0 maglich ist, beendet das Pro­
gramm den Iterationsprozel1, wenn mit der zuletzt 
erhaltenen Iterierten keine signifikante Fitverbesserung 
erreicht werden komite. Tratz des stark nichtlinearen 
Problemes zeigte sich da, Programm erstaunlich fahig, 
in relativ wenigen Iterationsschritten die globaloptimale 
Lasung Z* mit hoher Genauigkeit zu bestimmen. Je 
nach der Wahl der Anfangsschatzung Z(O) waren die 
Spalten der Losungsmatrix Z verschieden permutiert. 
Beispielsweise wurde mit einer Anfarigsschatzung 
zig) � 0,25 fUr aile i � 1 ,  . . .  , 15 ,  k � 1 ,  . . .  , 4, bereits 
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nach 1 7  Iterationen eine Losung y(17) ermittelt, die in 
den ersten vier Dezimalstellen mit der exakten Cluster­
struktur Y* , vgl. Tab. 2, tibereinstimmt. Das Programm 
reagierte jedoch empfindlich bei falsch plazierten ver­
schwindenden Anfangsschatzungen zl�) = 0,0 und ftihrte 
dann zu einem entsprechenden lokalen (aber nicht 
globalen) Minimum, bei dem die Anfangsschatzungen 
zf�) :::: 0,0 in den ResuItaten wiederkehrten. Die Lasung 
war auch erstaunlich stabil beztiglich einer mit normalem 
Zufallsfehler gestorten Datenmatrix D = (tiij) 

(28) 

Auf die Rechenresultate kann hier aus Platzmangel leider 
nicht naher eingegangen werden. 

Es kann angenommen werden, dal1 die iterativen 
numerischen Methoden bei der Minimierung der stark 
nichtlinearen nichtrestriktiven Probleme a (Z) empfind­
licher sind bezliglich lokaler aber nicht globaler Minima 
als die Methoden zur Minimierung def wesentlich weni­
ger nichtlinearen Probleme a(Y) mit Schranken-Zwangen 
Y > O. Aus diesem Grunde ist yom Autor die Imple­
mentation einer Kombination def Levenberg-Marquardt­
Methode mit der active-set-Methode (vgl. FLETCHER, 
1982, Band II) geplant zur restriktiven Minimierung 
von Least-Squares-Problernen mit linearen Zwangen 
der Form 

a';X'= 0, i E E, 
(29) 

a;X � O, i E I , 

wobei die Vektoren ai E RN als unabhangig vorausge­
setzt werden. Die aktiven Zwange bei einem Punkt 
Xo werden charakterisiert durch die Indexmenge 

do =d(Xo) = {i: a;Xo = O} (30) 

Flir den Fall, daJl nur Gleichheits-Zwange vorkommen, 
1 =  ¢, ist die Aktivmenge .xI konstant und in jedem 
Iterationsschritt wird ein mittels verallgemeinerter 
Variablenelimination reduziertes (quadratisches oder 
lineares) Minimierungsproblem ge16st. Wenn Ungleich­
heits-Zwange vorkommen, dann andert sich die Aktiv­
menge ,9/ im allgemeinen in jedem Iterationsschritt, 
indem entweder ein Ungleichheits-Zwang p zu d addiert 
oder ein Ungleichheits-Zwang q aus ,<¥, entfernt wird. 
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(Dabei sollte Ziggzagging vorgebeugt werden, vgl. FLET­
CHER, 1981 ,  Band II.) In Verbindung mit der Leven­
berg-Marquardt-Methode und bei Nichtnegativitats­
Zwangen X >  0 besteht die Variablenelimination darin, 
daJl in jedem Iterationssschritt die bei der aktuellen 
Aktivrnenge s# angezeigten Variablen Pj in den linearen 
Problemen (24) bzw. (26) Null gesetzt werden. Darum 
scheint eine Erweiterung des vorliegenden Levenberg­
Marquardt-Programmes mit der active-set-Methode (vgl. 
( 1 1 .2.2) und ( 1 1 .3.4) bei FLETCHER, 198 1 ,  Band II) 
zur Behandlung der Nichtnegativitatszwange X >  0 rela­
tiv einfach zu sein. Leider k6nnen hier noch keine 
Resultate prasentiert werden. 
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