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This contribution consists of two main parts. In the
first part three different models of cluster analysis are
presented based on scalar product relations.

Model I:

Let T =(t;) be a given (0,1)-binary n X n-proximity-
matrix (Incidence Link Matrix, ILM) and further let
X =(x;jx) be a fitting (0,1)-binary n X p-object-cluster-
membership matrix. For disjunctive partitions X = (x;y)
has the orthogonality property

8 oo [mi, ifk=1, _
|7-21 XikXjl = kal - {0 ‘Iotherwise’ k)l— 1: L) p)(l)
and

> XX,
foi 28 = Xikak j» 1 _] , I,
S = Xix € {0 1} @

describes a model for analysis of p mutual disjunctive
clusters X, k=1,...,p.

Model 1I:
The logical equivalent of the scalar product relation (2)

tU—Su— U xlkﬁx,k—X nX, i,j=1,.
Xik € {0 l} (3)
U: logical disjunction, N: logical conjunction
(with a given symmetrical, diagonal-dominant, (0,1)-
binary ILM) resp. the loss function can be fitted always
perfectly

0(0= 2 Z (1~ s(0) = @

with a sufficiently large number p of overlapping com-
pact clusters Xk, k=1,...,p.

Model III:

Let U= (u;;) be a given nonnegative symmetrical n X n-
proximity matrix with nondiagonal elements ujj, i #j,
which can be considered as the probabilities for the
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events that two objects i and j are commonly included in
one of the p clusters. Furthermore let Y =(y;x) be ametri-
cal n X p-object-cluster-membership matrix the elements
of which yji, 0 < y;x <1, are interpretable as probabil-
ities for the events, that the object i is element of the
cluster k. With application of the addition theorem (for
disjunctive events) and the multiplication theorem (for
independent events) of probabilities the stochastic
founded model of cluster analysis can be derivated

j_rlj_ 2 ylkY]k_YYj’l;!:] lsJ : cee N, (5
0<Yyix S )

In the second part of this contribution different
methods and algorithms are presented for the numerical
treatment of these three scalar product models.

A: Cluster Modelle
A.l. Einleitung

In letzter Zeit wurden erhebliche Anstrengungen unter-
nommen, Methoden der Clusteranalyse funktional zu .
begrinden in Form von Modellfunktionen, #hnlich
denen der klassischen Datenanalysetechniken (vgl. z.B.
SHEPARD & ARABIE, 1979). Eine funktionale Modell-
begriindung erlaubt:

a) Schitzmethoden fiir die Parameter der Modellfunk-
tion anzuwenden (z.B. Least-Squares- oder Maximum-
Likelihood-Methoden);

b) die mit Hilfe der Modellfunktion erzeugten (reprodu-
zierten) Modellwerte mit den gegebenen Daten zu ver-
gleichen und die Giite der Modellanpassung einer ge-
gebenen Datenmenge zu beurteilen;

c¢) die fiir eine Analyse nach der Modellfunktion erfor-
derliche Datenstruktur theoretisch zu beschreiben
und Bedingungen fiir die Existenz einer Losung und
deren Eigenschaften anzugeben.

In diesem Beitrag soll, angeregt durch friihere Arbeiten

von Raymond B. CATTELL, der Versuch unternommen

werden, verschiedene Klassen von Cluster-Analyse-

Modellen durch eine Skalarprodukt-Relation, verwandt

der der Hauptkomponenten-Analyse, zu begriinden.

A.2. Dichotomes Skalarproduktmodell zur
disjunktiven Clusteranalyse

Die Zerlegung (Partition) einer Menge von n Objekten
in p wechselseitig disjunkte Cluster kann mit einer
(0,1)-bindren n X p-Zuordnungs-Matrix X = (x k) beschrie-
ben werden, deren Zeilen zu den Objekten und deren
Spalten zu den Clustern korrespondieren, d .h. es gilt

x.. = 1, falls Objekt i zu Cluster Cy gehort,
k] 0, sonst.

Fiir disjunkte Partitionen hat die bindre Zugehorigkeits-

Matrix X = (xjk) die ,,Orthogonalitits-Eigenschaft®, d.h.

es gilt
n

i;zl XikXi1 = XX = {

bzw. X'X = DIAG(ny, . . .,

ny, fallsk =1,
0, sonst,

np), )
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wobei ny, die Anzahl der Elemente des Clusters Cy
bezeichnet. Mit der Skalarprodukt-Relation

P
Sij = k§1 XikXjk = XiX; bzw. S =XX' (2)

wird eine n X n-Matrix S =(s;;) von Modellwerten er-
zeugt, deren Elemente s;; anzeigen, ob die korrespon-
dierenden Zeilen- und Spaltenobjekte in einem gemein-
samen Cluster enthalten sind oder nicht, d.h. es gilt

1, falls Objekt i und Objekt j in einem Cluster Cy
Sij = gemeinsam enthalten sind,
0, sonst.

Falls ein Objekt i Element eines Clusters Cy., k=1,.. .,
p, ist, ist das Diagonalelement s;; von S gleich Eins.
Bei erschopfenden (vollstindigen) Partitionen, bei
denen jedes Objekt Element eines Clusters ist, gilt fiir
alle Diagonalelemente von S

Sii=1,i=1,...,ﬂ. o
Sei T =(t;;) eine gegebene n X n-Incidence-Link-Matrix
(ILM), d.h. eine (0,1)-bindre Proximitits-Matrix, deren
Elemente t;; angeben, ob zwei Objekte i und j einander
dhnlich sind oder nicht, d.h. es gilt

~ { 1, falls die Objekte i und j dhnlich sind,
i~ 0, falls die Objekte i und j unihnlich sind.

Die ILM T = (t;;) sei auflerdem symmetrisch und habe
Eins-Diagonale

tij=tj und t;;=1, firalei,j=1,...,n.

Die ILM T = (t;;) kann beispielsweise mit Schwellwert-
Dichotomisierung aus einer ,;metrischen® Proximitits-
oder Korrelations-Matrix abgeleitet werden. Dann be-
grindet folgende Modellrelation ein Schitzmodell der
Clusteranalyse:

Modell I:

P
ti.i :J-Sij = k§1 Xikxjk = X;XJ, l,_] =1,...,n, (3)

xik €0,11,k=1,...,p.

Das Least-Squares-Fitkriterium

gibt wegen der bindren Form von S und T die Anzahl
der Abweichungen korrespondierender Elemente in den
Matrizen T = (t;) und S =(s;j)=XX" an. Fiir einen per-
fekten Fit, o(X)= 0, ist neben einer hinreichend grofien
Clusteranzahl p (<n) notwendig, daf sich die Zeilen
und Spalten der ILM T = (t;;) zu einer Block-Diagonal-
Matrix permutieren lassen.

A .3. Dichotomes Skalarproduktmodell zur
iiberlappenden Clusteranalyse

Wenn die Skalarprodukt-Relation (2) durch das logische
Aquivalent
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8ij = kLZJl Xik N Xjk , U Vereinigung, N: Durchschnitt (5)
ersetzt wird, kann mit einer hinreichend grofien Anzahl
p (i.a. > n) nichtdisjunkter (iiberlappender) kompakter
Cluster stets ein perfekter Fit, g(X) =0, zu einer belie-
bigen gegebenen ILM T =(t;;) erreicht werden. Eine
iiberlappende Clusterstruktur erfiillt jedoch nicht die
Orthogonalititseigenschaft (1), auch wenn man die dort
verwendete Skalarprodukt-Relation durch das logische
Aquivalent (5) ersetzt. Folgende Modellrelation begriin-
det das entsprechende Skalarproduktmodell der Cluster-
analyse.

Modell II:

tij = sj5 =

o
I Cro

Xik M Xjk =X{0Xj, i,j=1,...,n,
! Xik (S {0, 1} (6)

A.4. Metrische Skalarproduktmedelle zur
Clusteranalyse von Wahrscheinlichkeitsdaten

Sei Y = (yik) eine nichtnegative metrische n X p-Zuord-
nungs-Matrix, deren Elemente yj, O<y;x <1, die
Wahrscheinlichkeiten dafiir sind, dal ein Objekt i Ele-
ment eines Clusters Cy ist

Yik = Prob(i €Cg), O0<y, <1,
7
k=1,...,p. (72)

Die Mitgliedschafts-Wahrscheinlichkeiten y;, der Objekte
i zu den Clustern Cy, koénnen auch als relative (bzw.
prozentuale) Mengenanteile interpretiert werden, also als
relativer (bzw. prozentualer) Anteil der Gesamtmasse
des Objektes i, der zum Cluster Cy gehort (vgl. Theorie
der ,,fuzzy sets).

Wenn man disjunkte Cluster, d.h. Partitionen, vor-
aussetzt, dann schliefit die Mitgliedschaft eines Objektes
i zum Cluster Cy die Mitgliedschaft des Objektes i in
anderen Clustern aus, d .h. die Ereignisse sind unvertrig-
lich und es gilt der Additionssatz fiir Wahrscheinlich-
keiten

i=1,...,n,

ké[ Yik<1bzw‘ k=§1 Yil.(:l, i=1,...,n. (7b)
Die zweite Beziehung gilt fiir vollstidndige (erschépfende)
Partitionen. Da die Zugehorigkeit eines Objektes i zu
einem Cluster Cy, i.a. unabhingig ist von der Zugehorig-
keit eines anderen Objektes j zum Cluster Cy (ausgenom-
men gewisse restriktive Clustermodelle, bei denen z B.
die Zahl der Elemente in den Clustern a priori vorge-
geben ist), erhédlt man als Wahrscheinlichkeit der Zuge-
horigkeit zweier verschiedener Objekte i und j zum
Cluster Cy

PI'Ob(i S Ck /\j S Ck) = Pl'Ob(l S Ck) * Pl'Ob(j S Ck):

i-#:j, i,j=ly~:«,n, k=l,...,p.

Da die Mitgliedschaft zweier Objekte i und j zu einem
Cluster C, die Mitgliedschaft der beiden Objekte zu
anderen Clustern ausschliefit, gilt wiederum der Addi-
tionssatz fiir Wahrscheinlichkeiten unvertréglicher Ereig-
nisse
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p
Prob( U (€CATECY)

= 2 ProbieCp AjeCy) =

I}
[I M-c I

Prob (€C) - Prob(jC Ck)

bzw.

P . :
rij:k:‘jl YikYjks i#j, i=1,...,n. (8)
Die Auflerdiagonalelemente rjj, i #j, der nichtnegati-
ven symmetrischen n X n-Matrix R =(rj;) sind damit
interpretierbar als Wahrscheinlichkeiten dafiir, dafl die
korrespondierenden Zeilen- und Spaltenobjekte i und j
einem der p Cluster gemeinsam angehéren. Man be stétigt

leicht arithmetisch, da3 0 <rj; <1 gilt:

Wegen 0<y;x <1 gilt y& <y und daher mit (7b)

4 2
2 Yik <

E ksS1l,i=1,...,n
k k= Yik !

Mit der CAUCHY-SCHWARZ-Ungleichung erhidlt man

Y1kYJk VZ y.k ]/ 2 ka <Lij=1,...,n

Zur Interpretation der Diagonalelemente rj; von R bieten
sich mindestens drei Alternativen an:
(a) Die Diagonalelemente rj; werden as quadrierte
Lange de r Wahrscheinlichkeits-Vektoren
Y;=(Yi15- - - Yip) definiert

p
i = kz:l Y?k’ i=1,...,n (93)

(b) Die Diagonalelemente rj; werden definiert als Wahr-
scheinlichkeiten dafiir, da® Objekt i einem der p
Cluster angehort

P
i 2 Vi, i=1,...,0 (9b)
k=1

(c) Den Diagonalelementen rj; wird keine empirische
Bedeutung zugrundegelegt. Sie werden in der
Analyse nicht beriicksichtigt.

Sei U =(uj;) eine gegebene nichtnegative, symmetrische

n X n-Matrix, deren Auflerdiagonalemente uj, i#j,

interpretierbar sind als Wah rscheinlichkeiten dafiir, dafy

zwei verschiedene Objekte i #j einem von p Clustern
gemeinsam angehoren und deren Diagonalelemente uj;

(a) als quadrierte Lingen von Wahrscheinlichkeits-
Vektoren Y; = (yi1, . -« - yip)' interpretierbar sind;

(b) als Wahrscheinlichkeiten dafiir, daf3 Objekt i einem
der p Cluster angehort, interpretierbar sind;

(c) nicht niher spezifiziert sind (missing elements).

Obwohl der Skalarprodukt-Relation (8) der Auflerdia-

gonal-Elemente entsprechend, scheint die empirische

Erhebung von Diagonalelementen uj; im Falle (a) pro-

blematisch zu sein. Im Falle (b) kann haufig uj;=1,

i=1, ..., n, verlangt werden, und im Falle (c) braucht
die Diagonale von U nicht gegeben zu sein.
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Ziel einer Clusteranalyse ist dann, eine n X p-Cluster-
struktur Y = (y;) mit den Eigenschafien (7) so zu be-
stimmen, daf} ein geeignetes Least-Squares-Fitkriterium
o(Y) minimiert wird:

(2)
0a(Y) = Spur(U —R)'(U —R) =

= 2 3 (- V)’ = (102)
i=1 j=
n n
=2 Z (- YiYph
i=1 j=1
(®)
ob(Y) =Spur(U— R)(U-R) =
n n 2
= izzl j:zl (Uij - rij(Y)) =
S 3y - YiY)? (190)
- i £ (uu - j)
+éfl i — Vi) mitI= (1, .. 1);
(c) ‘n n
0.(Y) =2 Z(u;—r1;5(Y))? =
1+ (10c)
= 12¢ ]E(uu HYYJ)

Die Schidtzung der Clusterstruktur Y =(y;y) scheint
besonders problematisch aufgrund der Restiktionen
(7a) und (7b). Im Falle (b) wird eine Losung Y = (y;x),
die 0y,(Y) minimiert, die Bedingung (7b) zumindest
genidhert befriedigen, da sie direkt im zweiten Teil
des Fitkriteriums verlangt wird. Problematischer scheint
die Nichtnegativitits-Restriktion (7a), die das Problem
der Schiatzung der Clusterstruktur Y wesentlich von dem
der Faktorisierung der Matrix U (Hauptkomponenten-
analyse) unterscheidet.

A.S. Metrische Skalarproduktmodelle zur
numerischen Datenanalyse

Das im vorigen Abschnitt warhscheinlichkeitstheoretisch
begriindete Modell kann fiir Zwecke der Datenanalyse
erheblich abgeschwicht werden. Sei U = (u;) eine ge-
gebene nichtnegative, symmetrische (diagonaldominante)
n X nProximititsmatrix, deren Elemente uj; um so
grofer sind, je dhnlicher die korrespondierenden Objekte
i und j einander sind. Dann wird eine nichtnegative n X p-
Clusterstruktur Y = (y;y) derart gesucht, daf} die Skalar-
produkt-Modellwerte r;;(Y) moglichst gutim Sinne eines
der drei Fitkriterien 0,(Y), 0,(Y), o.(Y) die korrespon-
dierenden gegebenen Proximitidten reproduzieren.

Modell IIL.a:
ujj o1 = E YikYjk mit yix =0, (11a)
firallei,j=1,...,n,k=1,...,p.
131

am 13.01.2026, 14:36:53.



https://doi.org/10.5771/0943-7444-1982-3-129
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

Modell IILb:[ 2
ode k_E yikyjk f'urlrf—'] mit Yik =0,

1
Uiy = Tij = él yik furi=jmityy =0,  (11b)
fur allei,j=1,...,n,k=1,...,p.

Modell III.c:

ujj 1 = é)l YikYjk firi #jmity;, >0, (11¢)

miti,j=1,...,n,k=1,...,p.

Die Skalarprodukt-Werte r;;(Y), i #j, sind umso grofer,
je grofer die Cluster-,,Ladungen® y; und Yk zweier
Objekte i und j auf gleichen Clustern Cx, k=1, ..., p,
sind. Die Elemente y;jx der n X p-Matrix Y konnen dann
als Mitgliedschafts-Gewichte bzw. Bedeutungen inter-
pretiert werden, die das Objekt i dem Cluster Cy zu-
weist. Diese Form eines Clusteranalyse-Modelles ist im
wesentlichen dquivalent einem restriktiven Modell
der Matrixfaktorisierung (Hauptkomponentenanalyse),
wobei die Nichtnegativitdts-Restriktionen der Cluster-
ladungen yjx orthogonale Clusterkomponenten i.a.
ausschliefdt.

Eine obere Schranke fir die nichtnegativen Cluster-
ladungen (vgl. Bedingung 0 <y;,x <1 beim Wahrschein-
lichkeits-Modell) braucht hier nicht beachtet zu wer-
den, da sich die relative Grofe der Proximitéten v;; aus
der relativen Grofie der Clusterladungen y;; ergibt und
umgekehrt. Mit einer positiven Konstante K gilt

p

K?u;;=K?ri(Y) = ké;l (Kyik) (Kyjk), K> 0, (12)
d.h. eine Dilation der Clusterladungen bez. K ist ver-
bunden mit einer Dilation der Skalarprodukt-Modell-
werte (und damit der gegebenen Proximititen) bez.
K2 Die Restriktion (7b) scheint fir Zwecke der Da-
tenanalyse nicht bedeutsam zu sein. Bedingung (7b)
wird zudem genidhert befriedigt, wenn Kriterium oy, (Y)
minimiert wird.

B: Cluster Methoden

B.1. Methode zur Bestimmung maximal
kompakter Gruppen

Von CATTELL & COULTER (1966), sowie CATTELL,
COULTER & TSUJIOKA (1966) wurde eine Methode
zur Aufdeckung sogenannter maximal kompakter Grup-
pen (MKG), dort genannt Phenomenal Cluster, Ph.Cl.)
auf Grundlage einer 'gegebenen (0,1)-bindren ILM ent-
wickelt, die im deutschsprachigen Raum besonders
durch das Buch von Urs BAUMANN (1971) bekannt
wurde.

Bezeichnung:
Eine Teilmenge .Cy = {ky,...,n, } der Objektmenge
Q={l, ..., n} nennt man eine MKG bez. einer gegebe-

nen n X n-ILM T = (t;;), wenn sie folgende Eigenschaften
besitzt:

132

(P1)Alle Elemente der MKG Cjy sind bez. der ILM
T = (ti;)paarweise dhnlich, d.h. fiir alle Paare
(k;, kj) € Cx X Cy gilt tki’kj =1.

(P2)Alle zur Restmenge Cy =Q\Cy gehorenden Ele-
mente miissen mindestens einem der zu Cy geho-
renden Elemente bez. der ILM T = (t;;) unéhnlich
sein, d.h. fiir jedes Element k; €Cy existiert wenig-
stens ein Element k; € Cy, fiir das gilt ty;, kj = 0.

Eine Teilmenge Cy, fiir die nur die Eigenschaft (P1)
gefordert wird, nennt man kompakte Gruppe (KG).

Sei Xy =(Xjk ... Xnk) der (0,1)-bindre Zuge-
horigkeits-Vektor einer MKG Cy bez. T=(t;;), dann
sind die Eigenschaften (P1), (P2) auch beschreibbar
in der Form:

(P1)Fiir alle Paare (i, j) fir die xjx=xj =1 gilt, gilt
auch t;; = 1.

-(P2) Fiir jedes Objekt j mit x;i = O existiert wenigstens

ein Objekt i mit x;; = 1 und t;; = 0.

Jede symmetrische, diagonaldominante (0,1)-binire
n X n-Matrix T = (t;;) beschreibt eine bestimmte Menge
von N verschiedenen, sich im allgemeinen iiberlappen-
den MKG Cy, die als Spaltenvektoren Xy in einer
n X N-Zuordnungs-Matrix X =(x;x) zusammengefafit
werden konnen. In ungiinstigen Fillen kann dabei die
Anzahl N der existierenden MKG sehr grofs sein (N > n).
Wegen t;;=>t;;=tj, j=1, ..., n, darf ein Diagonalele-
ment t;; von T nur dann verschwinden, wenn alle ande-
ren Elemente aus Zeile i und Spalte i auch verschwinden.
Dann ist das Objekt i in keiner MKG enthalten und kann
aus der Clusteranalyse ausgeschlossen werden. Falls
tii=1 und t;;= 0 fiir alle j # i, dann bildet Objekt i ein
singuldres Cluster (separates oder isoliertes Cluster).

Mit der Gesamtmenge der N MKG wird stets ein
perfekter Fit, o(X)=0, der gegebenen ILM T =(t;)
im Sinne des logischen Skalarprodukt-Modelles erreicht

o(X) =Spur (T-S)(T-9S) =
n n
= izzl j:zi (tij — (X)) 1)
mit Sij(X) = k{:)l Xik M Xjx = X; N Xj.

Von HARTMANN (1976a) wurde gezeigt, dafl die
Methode von CATTELL & COULTER (vgl. BAUMANN,
1971) im allgemeinen nicht fdhig ist, simtliche N MKG
aufzudecken. Hdufig erreicht sie zwar einen perfekten
Fit, 6(X)=0, aber die Menge der aufgedeckten Cluster
hingt im allgemeinen von der Reihenfolge der N Objekte
in der ILM T =(t;) ab. Bei HARTMANN (1976b)
wurde ein Algorithmus vorgeschlagen, der zwar stets
die vollstindige Menge aller N MKG einer ILM T = (t;;)
aufdeckt, der aber rechentechnisch nicht so effizient ist
wie der im folgenden beschriebene und von Peter
QUAAS, TU Dresden, entwickelte Algorithmus:
(a) In jedem Schritti des Algorithmus werden die MKG
gebildet, die sich aus den Objekten 1,. . .,i ergeben
aufgrund der entsprechenden i X i-Teil-ILM.

Int.Classif.9(1982)No.3 Hartmann - Cluster Analysis
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Die MKG fiir die Objekte 1, ..., 1,1+ 1 entstehen
durch Erweiterung der MKG der Objekte 1, . . ., i.
Die Analyse beginnt mit den ersten beiden Objek-
ten und endet, wenn alle n Objekte abgearbeitet
wurden, besteht also aus insgesamt n — 1 Schritten.
Falls die Objekte 1 und 2 dhnlich sind, t;; =1,
bilden sie eine Gruppe {1,2}, falls sie nicht
dhnlich sind, t; =0, bilden sie zwei singulire
Gruppen {1} und {2}.

(c) Angenommen, es liegen die MKG fiir die Objekte

(b)

1,...,i vor. Dann werden die Ahnlichkeiten (Links)
des Objektes i +1 zu den Objekten 1, ..., i be-
trachtet.

(c.l) Falls keine Links von Objekt i+1 zu den
Objekten 1, ..., i bestehen, dann wird Objekt
i + 1 als singuldre Gruppe {i + 1} notiert.
(c.2) Sonst werden alle vorliegenden Gruppen ge-
priift:
(c.2.1) Falls Objekt i + 1 allen Objekten einer vor-
liegenden Gruppe dhnlich ist, wird diese MKG um
Objekt i+ 1 vergrofert.
(c.2.2) Falls Objekt i+ 1 nur zu einem Teil der
Elemente einer vorliegenden Gruppe dhnlich ist,
wird eine neue Gruppe gebildet; bestehend aus
Objekt i +1 und den Elementen der vorliegenden
Gruppe, die zu i + 1 dhnlich sind.
(c.3) Jede der mittels (c.2.2) neu entstandenen
Gruppen wird gepriift, ob sie Teilmenge einer ande-
ren Gruppe mit Objekt i + 1 ist, d.h. einer Gruppe,
die mittels (c.2.1) oder (c.2.2) gebildet wurde.
Mit Hilfe der logischen Durchschnitts- und Vereini-
gungs-Relationen zwischen den (0,1)-bindren Cluster-
strukturen Xy und den Spalten T; der Matrix T ist der
Algorithmus auflerordentlich effizient programmierbar.
Bis zu etwa n =30 Objekten ist er auch durchaus mit
Bleistift und Papier durchfiihrbar. Einer der grofiten
Nachteile des Modells ist jedoch die im allgemeinen
sehr grofle Anzahl N sich teilweise stark iiberlappender
Cluster, die fiir einen perfekten Fit des Modelles (1)
notig ist.

B.2. Strategien zur Vereinigung maximal kompakter
Gruppen

B.2.1. Motivation

Es sind verschiedene Strategien denkbar, ausgehend von
der vollstindigen Menge der N MKG zu einer praktikab-
len Menge von p (iiberlappenden) Clustern zu gelangen,
die einerseits einen moglichst guten Fit bez. o(X)garan-
tieren und andererseits eine moglichst sparsame und
relevante klassifikatorische Interpretation einer gege-
benen ILM erlauben.

1. Durch ersatzloses Weglassen von N — p MKG entsteht
eine n X p-Zuordnungs-Matrix X = (xj), die mit (1)
eine Modellwerte-Matrix S = (sjj) erzeugt, die im all-
gemeinen nur eine:Teilmenge” der Links der gegebenen
ILM T = (t;;) enthilt.Um einen méglichst guten Fit
bez. o(X) zu erreichen, sollten die N — p MKG gestri-
chen werden, die einen moglichst geringen Verlust
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an Links in S =(s;;) gegeniiber den gegebenen Links

in T = (t;;) bewirken.

2. Durch Vereinigung von MKG entsteht eine n X p-Zu-
ordnungs-Matrix X =(x;y), die mit (1) eine Modell-
werte-Matrix S =(s;;) erzeugt, die die Links der ge-
gebenen ILM T=(t;) als Teilmenge enthilt. Um
einen moglichst guten Fit bez. o(X) zu erreichen,
sollten solche MKG vereinigt werden, die einen
moglichst geringen Zuwachs an Links in S =(sy)
gegeniiber den gegebenen Links in T = (t;;)-bewir-
ken.

Natiirlich sind auch Strategien denkbar, bei denen so-

wohl MKG weggelassen als auch vereinigt werden. Da

die MKG hiufig sehr dhnlich oder gar stark iiberlappend
sind, wurde bisher vor allem die zweite Alternative der

Clustervereinigung bevorzugt.

Wenn als einziges Kriterium zur Vereinigung von
Gruppen zu Cliquen der minimale Link-Zuwachs in
der reproduzierten ILM S = (s;;) gegeniiber der gegebe-
nen ILM T =(t;;) verwendet wiirde, d.h. schrittweise
solche Gruppen verwendet wiirden, die einen minimalen
Fitverlust bez. o(X) bewirken, dann hitte diese Strate-
gie den offensichtlichen Nachteil, daf kleine (bzw.
singuldre) Gruppen bevorzugt vereinigt wiirden, auch
wenn sie keine oder relativ wenige Links verbinden.
Groflere Gruppen hitten geringere Chancen vereinigt
zu werden, auch wenn sie hoch dhnlich oder gar stark
iiberlappend sind. Haufig wiren die so entstehenden
Cliquen ziemlich inhomogen.

Im folgenden werden drei Strategien beschrieben,
mit denen eine gréfere Anzahl von N MKG nach be-
stimmten Auswahlkriterien zu einer kleineren Anzahl
von Cliquen vereinigt werden konnen. Die damit ver-
bundenen Algorithmen und Prinzipien #hneln einer-
seits dem von CATTELL & COULTER (1966) und
andererseits denen der (sukzessiven) hierarchischen
Clusteranalyse (vgl. JOHNSON, 1967).

B.2.2. Strategie der Clusteriiberlappung
Kriterium:

Es werden solche MKG (Phenomenal Cluster) zu Cliquen
(Segregates) vereinigt, die eine ‘Mindestanzahl gemein-
samer Objekte (iiberlappende Elemente, Nuclear Cluster)
enthalten.

Algorithmus:

(a) Konstruktion der N X N-Uberlappungs-Matrix
U = (uy,) aller Clusterpaare (Cy, Cp):

n
1..11(1-"'--['2?E XX = XX, k,1=1,...,N, )
i=

uy): Zahl der gemeinsamen Elemente der beiden
MKG Cy und C;. (Fiir die Diagonalelemente uy gilt
natiirlich uy, =ny, wobei ny die Anzahl der Ele-
mente der MKG Cy,k =1, .. ., N, bezeichnet.)

(b) Schwellwert-Dichotomisierung der Uberlappungs-
Matrix U=(uy;) zur (0,1)-bindren Contiguity-
Matrix U = (Ty)):

133

am 13.01.2026, 14:36:53.



https://doi.org/10.5771/0943-7444-1982-3-129
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

1, falls uy = CONT,
-{ as Ukl k1=1,..,N, (3

Ukl 7o, falls uy < CONT,
CONT: gegebener Dichotomisierungs-Parameter,
CONT > 0.

(c) Vereinigung der MKG-Paare mit mindestens CONT
gemeinsamen Elementen;
(c.1) Bestimmuingeiner N X p-Zugehorigkeits-Matrix
V = (vys) der N MKG zu p Segregates durch suk-
zessive Vereinigung der Spalten von U= (Uj)
mit nichtleerem Durchschnitt.
(c.2) Bestimmung einer n X p-Zugehorigkeits-Matrix
W = (wj,) der n Objekte zu p Segregates durch Ver-
einigung der entsprechenden Spalten X der N X p-
Zugehorigkeits-Matrix X = (xjy) der Objekte zu den
MKG.

Bemerkungen:

1. Das Kriterium zur Vereinigung von MKG zu Cliquen’

beriicksichtigt nicht die totale Anzahl der Links, die
zwischen den Elementen der beiden Cluster aufgrund
der gegebenen ILM T = (t;;) bestehen. Die Zahl der
liberlappenden Elemente zweier Cluster ist daher im
allgemeinen kein Maf der Ahnlichkeit der zwei
Cluster.

2. Das Kriterium zur Vereinigung von MKG zu Cliquen
beriicksichtigt nicht die Zahl der Nicht-Links, die
zwischen den Elementen der Clique nach Vereini-
gung aufgrund der gegebenen ILM T = (t;;) bestehen.
Die Zahl der {iberlappenden Elemente zweier Cluster
ist daher im allgemeinen kein Maf} der Homogenitit
der entstehenden Clique.

3. Aufgrund des fest vorgegebenen ganzzahligen {Jber-
lappungs-Schwellwertes CONT werden grof3e Cluster
bevorzugt zu Cliquen vereinigt.

B.2.3. Strategie der Clusteridhnlichkeit
Kriterium:

Es werden (sukzessive) solche Cluster zu Cliquen ver-
einigt, die einander jeweils am &hnlichsten sind, d.h.
zwischen denen die relative (bzw. prozentuale) Link-
anzahl in der gegebenen ILM T = (t;;) maximal ist bzw.
einen Schwellwert iibersteigt.

Algorithmus:

(a) Konstruktion der N X N-Cluster-Ahnlichkeits-Matrix
U = (uy):

(a.l1) Seien Cy und C; zwei Cluster mit n, bzw. n;
Elementen und bindren Zugehorigkeitsvektoren X
bzw. X;. Dann enthilt die (0,1)-bindre n X n-Matrix
XX Elemente xjyx;j;, die genau dann gleich Eins sind,
wenn Objekt i zu Cluster Cy und Objekt j zu Cluster
C; gehort. Die n X n-Matrix enthdlt also genau nyn
Links in nj Zeilen und n;-Spalten. Die Links in der
(0,1)-bindren n X n-Matrix T N (X, X{) zeigen an, daf}
zwischen einem zu Cluster C, gehorenden Objekt i und
einem zu Cluster C; gehorenden Objekt j ein Link in
der gegebenen ILM T = (t;;) besteht. Ein relatives (bzw.
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prozentuales) Maf3 der Ahnlichkeit der beiden Cluster
Cx und C; wird erhalten, wenn die Linkanzahl von
T N (XkX;) durch die maximal mégliche Linkanzahl
ety zwischen beiden Clustern dividiert wird.

(a.2) In Summationd-Notation gilt fiir die relative
Ahnlichkeit zweier Cluster Cy und C;

.1 B =1
=—— 2 X ti=—— 2 T tiiXikXil 4
Ukt = ey iECk jEC, 4 meny ;5 Pl )
k,1=1,..,N.

Matrix U = (uyy) ist symmetrisch und es gilt 0 <u <1.
Dabei ist uy;= 0, falls zwischen keinem der Objektpaare
i€ Cy und jEC; ein Link in T =(t;;) existiert, und es
ist up =1, falls zwischen allen Objektpaaren i€ Cy
und j€C; Links in T = (t;;) existieren. Die Diagonal-
elemente uy, sind nur dann gleich Eins, wenn die
korrespondierenden -Cluster MKG sind. Die Grofle eines
Diagonalelementes uy, ist ein Mafs der Homogenitit
des korrespondierenden Clusters Cy aufgrund der ge-
gebenen ILM T = (t;;).

(b) Schwellwert-Vereinigungs-Algorithmus:

(b.1) Schwellwert-Dichotomisierung der N X N-Cluster-
Ahnlichkeits-Matrix~ U = (uy,) zur (0,1)-bindren Conti-
guity-Matrix U = (u) aufgrund eines gegebenen metri-
schen Schwellwertes CONT, 0 <<CONT <1, entspre-
chend Schritt (b) der Strategie von CATTELL & COUL-
TER (1966).

(b.2) Bestimmung einer N X p-Zugehorigkeits-Matrix
V = (vy,) der N Cluster zu p Cliquen und Bestimmung
einer n X p-Zugehorigkeits-Matrix W =(wj;) der n
Objekte zu p Cliquen, entsprechend Schritt (c) der
Strategie von CATTELL & COULTER (1966).
(c)Sukzessiver-Vereinigungs-Algorithmus:

(c.1) Es werden die zwei Cluster C, und Cy, k #1,
vereinigt, deren relative Ahnlichkeit u,; maximal ist.
(c2) In der Zugehorigkeits-Matrix X = (x;) wird an-
stelle des Clusters C, das Cluster C, U C; notiert und
das Cluster C gestrichen.’

(c.3) In der Cluster-Ahnlichkeits-Matrix U = (uy,) wer-
den die k-te Zeile und Spalte neu berechnet und die 1-te
Zeile und Spalte gestrichen.

(c4) Die Anzahl N der Cluster wird um Eins verringert
und falls N noch grofler als die gewiinschte Cluster-
anzahl p ist, wird der Vorgang bei (c.l) wiederholt.

B 2.4 Strategie der Clusterhomogenitit
Kriterium:

Es werden (sukzessive) solche Cluster zu Cliquen ver-

einigt, die erwarten lassen, daf} die entstehende Clique

am homogensten ist, d.h. die nach der Vereinigung
eine maximale relative (bzw. prozentuale) Linkanzahl
aufgrund der gegebenen ILM T = (t;;) auf weisen wird.

Algorithmus:

(a)Konstruktion  der
Matrix U =(uy):
(a.1) Sei Cy;=Cy UC; die Vereinigung zweier Cluster

N X N-Cluster-Homogenitits-
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Cx und C; mit ny; verschiedenen Elementen und dem
bindren Zugehoérigkeits-Vektor Xy U X). Dann enthalt
die (0,1)-binire n X n-Matrix (XxUX;)) (XxUX))
Elemente (xjx U X)) (xjx Ux;;), die genau dann gleich
Eins sind, wenn die beiden Objekte i und j zur Clique
Cx1=Cx UC, gehodren. Die symmetrische n X n-Matrix
enthilt also genau nf; Links in ny; Zeilen und ny; Spal-
ten. Die Links in der (0,1)-bindren n X n-Matrix

T N{(X U Xp) (X UXp') (%)

zeigen an, dafy zwischen zwei zur Clique Cy; geh6renden
Objekten i und j ein Link in der gegebenen ILM T = (t;)
besteht. Ein relatives (bzw. prozentuales) Maf} der
Homogenitit der Clique Cy; wird erhalten, wenn die
Linkanzahl von (5) durch die maximal mogliche Link-
anzahl n; zwischen den ny; Elementen der Clique divi-
diert wird.
(a.2) In Summations-Notation gilt fir die relative
Homogenitit einer Clique Cyy=Cy U Cy:

1
il n, iEZC;kI iezc:kl fu

1

n
2 le tii(Xik Y Xit) (Xjk Y xj1)

1
nkp t=1

k,I1=1,.. N, (6)

wobei X; UX;, i=1, ..., n, die Elemente des Zuge-
horigkeits-Vektors Xy, UX; der Clique Cy;=Cy UC
sind. Matrix U =(uy) ist symmetrisch und es gilt
0 <uy;< 1. Dabei ist uy; =1, falls zwischen allen Ob-
jektpaaren i € Cyjund j € Cy Links in T = (t;;) bestehen,
d.h. falls die Clique Cykompakte Gruppe ist.

(b) Vereinigungs-Algorithmen:

Entsprechend den Punkten (b) und (c) der Strategie
der maximalen Clusterdhnlichkeit sind auch hier sowohl
ein Schwellwert-Vereinigungs-Algorithmus als auch ein
Sukzessiver-Vereinigungs-Algorithmus™ denkbat. Dabei
wird analog zu den dort gegebenen Ausfihrungen ver-
fahren, wobei der Begriff der Cluster-Ahnlichkeit hier
aber durch den der erwarteten Cluster-Homogenitit
ersetzt wird.

B.3. Methode zur Analyse disjunkter Cluster

Ausgehend ‘von einer vollstindigen Menge von MKG
einer gegebenen ILM T=(t;;), die beispielsweise mit
der in B.1. beschriebenen Methode bestimmt wurde,
ermittelt der im folgenden vorgeschlagene Algorithmus
eine Struktur disjunkter Cluster, die unter bestimmten
Voraussetzungen einen relativ guten Fit des Least-
Squares-Kriteriums o(X) reprdsentiert. Der Algorith-
mus besteht aus folgenden Teilschritten:

(a) Die grofite Menge Cy wird als erstes Cluster Dy
der disjunkten Clusterstruktur definiert.

(b) Im p-ten Schritt des Algorithmus liegen p dis-
junkte Cluster Dy, ..., D, vor, die durch Behand-
lung von p MKG Cyy, ..., Cyp zusammengestellt wur-
den. Die disjunkten Cluster Dy enthalten my, k=1, .. .,
p, Elemente. Die Objektmengen Dy bzw. Do
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p
Dg = l_J Dy bzw. Dy =Q\Dg )

k=1

enthalten die den disjunkten Clustern bereits zuge-
ordneten bzw. noch nicht zugeordneten Objekte der
Gesamt-Objekt-Menge Q= {1, ...,n}.

(¢) Im (p+* 1)ten Schritt des Algorithmus wird aus
den noch nicht behandelten MKG Cy ., ausgewihlt,
die die meisten noch nicht Dy zugeordneten Objekte
enthilt, d.h. fiir die die Elementanzahl der Menge

Dyps+1 =Dy NCypi (®)

maximal ist. Der nichtzugeordnete Teil des Clusters
Cy,p+1 bildet also das (p+ D)te Cluster Dy4; mit
mp, ; Elementen.

(d) Wenn alle in den MKG enthaltenen Objekte auch
Objekte der disjunkten Cluster sind, endet der Algorith-
mus mit p vorldufigen disjunkten Clustern Dy, ..., D,
nach p Schritten.

(e) Nachbehandlung der vorldufigen disjunkten Clu-
sterstruktur: Wenn mittels Vereinigung von jeweils
zwei disjunkten Clustern der Wert des Least-Squares-
Fitkriteriums o(X) verringert werden kann, dann wird
durch sukzessive Vereinigung solcher Clusterpaare die
Zahl der disjunkten Cluster verringert und der Fit der
Clusterstruktur bez. der gegebenen ILM T = (t;;) ver-
bessert. Nach Berechnung einer p X p-Matrix 4 = (8y)

- der Verdnderungen &) des LS-Fitwertes 0(X) bei Ver-

einigung zweier disjunkter Cluster Dy und D; wird ein
Algorithmus dquivalent zu dem in B.2. vorgeschlagenen
Sukzessiven-Vereinigungs-Algorithmus empfohlen.

Bemerkungen:

1. Verdnderung des Wertes von o(X) in den p Auswahl-
schritten des Algorithmus:

Da die p Cluster Dy disjunkt und als Teilmengen von
MKG kompakte Gruppen sind, gelten die folgenden
Relationen

Z z (tule Xllle) = 2 > (t,k-—l) =0,

iEDg JEDk i€EDy JEDg
2 tij — E Xixi)? = z td,
i€Dy JdEDk( ij il JI) 1EDk_1dEDk ij
p %)

T (- 2 )= 2 z th,
1EDO =1 1= IEDO

T t¥= 2t2 T t3i=1,...n,k=1,...,p
#pg U =1 i€y

Andererlseits ist das Least-Squares-Fitkriterium
(X)) = ty; — Xi1X;
() i=1j=l(u =1 il ]i)

fur disjunkte Cluster Dy, . . ., D, zerlegbar in der Form

= - E
U(X) kzl (iEDk Je%k (tu 1=1 x“x’]) (10)
tij — Z Xj1X
+1€123:k1e£123:k( = & Xl i)
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p
+ 2 2 ti; — EXX;
16511(” =1 'l’)
p n
= X X thj T 2t
k=1 i€Dy j=1 i€Dg j=1 Y
p
- T th
k=1i€Dy jEDy
n n 2 p 2
=2 Zti- 2 T Tt
i=1j=1 Y k=1 ieDy jeDy Y
n n p
=2 2tt- 2 mZ,
i=1j=1 Y k=1

wobei my die Anzahl der Elemente des Clusters Dy
bezeichnet. Vor dem ersten Teilschritte des Algorith-
mus betrdgt der Wert des LS-Fitkriteriums.
n n 2
0o(X)= 2 2t (11)
i=1 j=1
und nach dem p-ten Auswahlschritt betragt der Wert
des LS-Fitkriteriums
{2 =

EEE

Up(X):O'U(X) k=1 i€D JED| ij

p
=ge(X)— Z mﬁ. (12)
k=1
Bei jedem Auswahlschritt p des Algorithmus verringert
sich der Wert des LS-Fitkriteriums um

2.2
'E%p Je%p K i mp (13)
Das begriindet, warum in jedem Auswahlschritt p eine
kompakte Gruppe D, mit méglichst vielen Elementen
my, ausgewihlt wird.
2. Veridnderung des Wertes von o(X) bei Vereinigung
zweier disjunkter Cluster Dy und D;:
a) Sei 0,(X) das LS-Fitkriterium fir den Fall, das die
beiden Cluster Dy und D; noch nicht vereinigt sind.
Dann ist 0,(X) zerlegbar in der Form

X)= T (X (;-1)? 24 03 t2

Ua( ) €D, (ED (u ) JE%ItJ €D L UDy 1}

+ t + 2 ti; — 1) + 14a
iezl:)l (je%k ( i — 1) jEDJk ) (142)

+ Tt2+ D tA+ 2 - - Xid)?
leszUDl(jEDku j€py U jEDkUDl( ij s=21 XisXjs) )'A

b) Sei oy, (X) das LS-Fitkriterium fiir den Fall, daf} die
beiden- Cluster Dy und Dy zu einem Cluster vereinigt
sind..Dann ist oy(X) zerlegbar in der Form

0p(X) = lEDk (]ED (t;; — 1)* .|. E (tu e
'+,EDkU . th) + (14b)
+'EEDI (JED (tij = )* +jEED1 (t;— 1)* +
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+ X t2) +

JEDK VU Dp i

2+ T t2+
ij =

+ 2z (z

i€EDK U D) €Dk

t 2
JEDK U Dp

p
(tij — 5;21 XisXjs)?)-

c) Bei Vereinigung zweier disjunkter Cluster Dy und
D, dndert sich der Wert des LS-Fitkriteriums o(X) um

Sk1 = 05(X) — 0p(X) =

Z (2 - (t.,—1)2)+
i€

iEDy jJED)

(15)

-+

T (Z t-2»—i

i€p; jepy Y

S e 2
2 (=1

2.2 T (-1,

{EDy JED)

k,1=1,...,p.

Das bedeutet: Je mehr Links t;;=1, i€Dy, jED,,

zwischen den Elementen der beiden Cluster Dy und Dy
bestehen, umso grofer wird 8y und falls 6, >0, wird
mit Vereinigung der beiden Cluster Dy und D der Wert
des LS-Fitkriteriums o(X) verringert, d.h. der Fit der
Clusterstruktur zu den Daten T = (t;;) verbessert.

d) Nach Berechnung der symmetrischen Matrix A = (8y,)
sollten sukzessive solche Cluster Dy und D, vereinigt
werden, fir die die Fitverbesserung 6, maximal und
positiv ist. Nach Vereinigung zweier Cluster Dy und Dy
brauchen nur die §-Werte zwischen dem neu entstan-
denen Cluster Dy U D, und den restlichen Clustern be- .
stimmt und in die entsprechende Zeile und Spalte von
Matrix A eingesetzt zu werden. Die Ordnung der Matrix
A verringert sich bei jedem Vereinigungsschritt um
Eins. Sobald max &, <0 ist, sollte der Vereinigungs-
prozefd abgebrochen werden, da keine weitere Fit-
verbesserung durch Clustervereinigung moglich ist.

3. Die Minimierung des LS-Fitkriteriums o(X) ist dqui-
valent dazu, eine Struktur X =(x;x) von p disjunkten
Clustern Dy so zu bestimmen, daf3 die n X n-Matrix

S = (sjj) mit
P '
Sij = kgl Xikak bzw. S = XX

der reproduzierten Skalarproduktwerte (Modellwerte)
eine gegebene ILM T = (t;;) bestméglich anpafit.

Bei den p Auswahlschritten des hier vorgeschlagenen
Algorithmus wird die Matrix S =(s;;) ausgehend von
einer Nullmatrix in jedem Auswahlschritt k um solche
Links sj;= 1,1 €Dy, j € Dy, angereichert, die auch Links
in der gegebenen ILM T =(t;;) sind. Die Menge der
Links in S nimmt zwar bei jedem Auswahlschritt an
Umfang zu, bleibt aber stets eine Teilmenge der Links
in T = (t;;).

Bei den Vereinigungsschritten des hier vorgeschlage-
nen Algorithmus wird die Matrix S=(s;;) bei jeder
Vereinigung zweier Cluster Dy und D; auch um solche
Links sij=s;;=1, i €Dy, j € Dy, angereichert, die nicht
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Links der gegebenen ILM T =(t;;) sind. Wegen der
Forderung 64;>0 gibt es bei jedem Vereinigungs-
schritt mehr Positionen (i, j) bzw. (j, i), i €Dy, j € Dy,
auf derien die hinzukommenden Links in S mit Links in
der gegebenen ILM T = (t;;) zusammentreffen.

Etwas unscharf kann man das so ausdriicken: Bei
den Auswahlschritten des Algorithmus werden die
Links in S ,,von unten* an die Links in T angepafit und
bei den Vereinigungsschritten des Algorithmus werden
die Links in S ,,von oben‘ an die Links in T angepafit.

B.4. Methoden zum Fit der
metrischen Skalarproduktmodelle

Sei U = (uj;) eine gegebene nichtnegative, symmetrische

(diagonaldominante) n X n-Proximititsmatrix, deren Au-

ferdiagonalelemente ujj,i # j, betrachtet werden konnen

als empirisch erhobene Wahrscheinlichkeiten (sub-
jective probabilities) fiir das Ereignis, da die beiden

Objekte i und j einem von p Clustern gemeinsam ange-

horen, und deren Diagonalelemente uj;

(a) als quadrierte Lingen von Cluster-Zugehorigkeits-
Vektoren Y; betrachtet werden konnen;

(b) als Wahrscheinlichkeiten dafiir, dafl ein Objekt i
einem der p Cluster angehort, betrachtet werden
konnen;

(c) nicht néher spezifiziert sind (missing elements).

Das Problem einer Clusteranalyse der im Abschnitt A.S.

abgeleiteten Modellrelationen (11.a)—(11.c) besteht dann

darin, eine nichtnegative (metrische) n X p-Matrix

Y=(yix) von Objekt-Cluster-Zugehorigkeitsanteilen

Yik=>0 so zu bestimmen, dal je nach der Bedeutung

der Diagonalelemente von U eines der folgenden Least-

Squares-Fitkriterien minimiert wird:

0= 2 2 ), (16:)

n P
op(Y)= Zi:qé ?(Uij — ()P + i:Zi (ug ~ 3 Yik)*,

(16.b)
o (Y)= % " Z{uy; — l'ij(Y))2> (16.c)
i
wobei mit
p 3
5(Y)= k§l YikYik = Y;Y; (17)

die Skalarprodukt-Modellrelation bezeichnet wird.

Dies sind drei Probleme der nichtlinearen Optimie-
rung mit besonders einfachen Schranken-Zwingen
(Nichtnegativitit) an die Variablen. Mittels der Varia-
blentransformation

Z4 =vyik, i=1,..,n k=1,..,p, (18)
und der verdnderten Skalarproduktrelation

P
ni(2)= Z ziz (19)

werden die drei restriktiven Least-Squares-Fitprobleme
(16) in Y zu nichtrestriktiven Least-Squares-Fitkriterien
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04(2), 0y(Z), 0,(Z), die fiir z;; € R zu minimieren sind.
Mittels einer nichtrestriktiven Optimierungsmethode
wird zunichst eine n X p-Matrix Z = (zj,) bestimmt, die
ein Least-Squares-Fitkriterium ¢(Z) lokal minimiert.
Uber die Variablentransformation (18) wird anschlie-
fend eine lokal optimale n X p-Matrix Y = (yjy) erhal-
ten, deren Elemente yj natiirlich nichtnegativ sind.
Wihrend die Least-Squares-Probleme o(Y) in (16) die
Parameter yjy als Polynom vierten Grades enthalten
sind, sind die Parameter z;, in den Least-Squares-Krite-
rien ¢(Z) in Form eines Polynoms achten Grades ent-
halten. Der Vorteil der unkomplizierteren nichtrestrikti-
ven Optimierung der Probleme ¢(Z) wird also mit einer
wesentlichen Erhohung der Nichtlinearitidt der objekti-
ven Funktion bezahlt. Dies hat wiederum eine erhéhte
Sensibilitdit der numerischen iterativen Optimierungs-
verfahren beziiglich lokaler aber nicht globaler Optima
zur Folge.

Als notwendige Bedingung dafiir, da eine Parameter-
menge X* ein Least-Squares-Fitkriterium minimiert, wird
verlangt, dafl der an der Stelle X* bewertete Gradien-
tenvektor g(o(X)) der partiellen Ableitungen von o(X)
verschwindet. Fiir das Kriterium ¢,(Y) in (16.a) erhilt
man so

n
do/dy;x = —4 j=21 (5 —r(Yy =0 (20)
und entsprechend fiir das Kriterium g,(Z)
n
00/0z; = —8ziy j_El (uj; — rij(Z))z]?k =0 21

jeweils ein System von np Normalengleichungen, wobei
die Normalengleichungen (20) algebraische Gleichungen
3. Grades in der Variablen yj, und die Normalenglei-
chungen (21) algebraische Gleichungen 7. Grades in den
Variablen z;, sind. (Man erkennt leicht, daf} zj =0
fiir alle i, k, eine Losung der Normalengleichungen (21)
ist, die 0,(Z) aber nicht minimiert.)

Die bekanntesten Verfahren zur nichtrestriktiven
Minimierung von o(Z) sind Gradienten-Methoden,
Newton- oder Quasi-Newton-Methoden, konjugierte-
Gradienten-Methoden und Levenberg-Marquardt-Metho-
den. Die Levenberg-Marquardt-Methode ist speziell
geeignet zur Minimierung nichtrestriktiver nichtlinearer
Least-Squares-Fitprobleme

M
o(X) = 2 f2(X)= IF(X)II’, XERN, (22)
i=

In der Umgebung eines Punktes X, € RN kénnen die
M nichtlinearen Funktionen fj(X) durch eine Taylor-
Reihe approximiert werden

~ g; ofy
filXo tP) =~ i(xo)‘*j=1 B, Pj

bzw. (23)

F(Xg +P) = F(Xg) + JoP

of;
wobei Jg =(a—x'(X0)) die M X N-Jacobi-Matrix der
i
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partiellen Ableitungen der M Funktionen fy(X) bez.
der N Variablen x; bewertet am Punkt X, bezeich-
net. Die lineare Taylor-Reihen-Approximation gilt
natiirlich nur in einer hinreichend kleinen Umgebung
des Punktes X, die umso kleiner ist je nichtlinearer
die Funktionen fy(X) sind. Ein hinreichend kleiner
Korrekturvektor PE RN der Approximation X, des
lokalen Minimums X* von ¢(X) sollte also so bestimmt
werden, dafd fiir eine gegebene diagonale Skalierungs-
matrix Dg = DIAG(dy, ..., dy) und eine gegebene
positive Schranke Ag > 0

M Noof; N ) )
o(P)= 2 (fiXo) + 2 3-"pj)* +A( Z (djp)” — Lo)
i=1 i=1 0X; i=1

bzw. (24)

@(P) = IF(Xo) + JoPII> + A(IIDoPII2 —

minimiert wird. Dabei bezeichnet A =0 einen Lagrange-
Parameter, der die Linge des skalierten Korrekturvek-
tors DoP beschrinkt mit

IDoPII? < A2

Die Forderung (25) bedeutet fiir eine nichtsinguldre
diagonale Skalierungsmatrix Dg, dafd P in einem achsen-
parallelen Hyperellipsoid um den Punkt X, liegt und die
Linge der j-ten Halbachse betrigt Ag/dj, j=1, ..., N.
Nach Nullsetzen der partiellen Ableitungen von (24)
bez. P. erhilt man ein System von N Normalengleichun-
gen bez. P

2
4o)

(25)

N of,

dolop=2 3 (fi(Xe)+ 2 20 a—fi+2>\d2 =
p/0py = 2z (fi(Xo) 4 axjpj) a1 1P =

bzw.
(YoJo + ADD,)P = —JoF,

af; . .
Jo = (&— (X)) , M X N-Jacobi-Matrix,

die bei emer nichtsinguldren Skaherungsmatrlx Dy mit
§=1D5%in der Form

(Jofo + ANDDP = — Ty F, ©(26)
geschrieben werden konnen. Man zeigt leicht (vgl.
MORE, 1978), daf3 IDP(A)II*> fiir A =0 monoton Ffillt
und es gilt
A > o0

IDP(A)(? —— 0. 27
Um moglichst grofie Korrekturschritte DP(A) zu erhal-
ten, mu A =0 moglichst klein gewdhlt werden. Aus
dem linearen System (26) bestimmt man daher A und P
so, daf® einerseits A =0 so klein wie moglich ist, aber
andererseits DP(N) die Bedingung (25) erfiillt.

Vom Autor wurde ein FORTRAN-Programm zur
Implementation der Levenberg-Marquardt-Methode ge-
schrieben, das im wesentlichen auf MORE (1978) ba-
siert, aber auch rangdefiziente Jacobi-Matrizen J erlaubt,
Rang (J,) < N. Dieses Programm wurde an einem so-
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genannten synthetischen (konstruiertem) Beispiel zur
Minimierung des stark nichtlinearen nichtrestriktiven
Least-Squares-Problems 6.(Z) erprobt. Bei einem synthe-
tischen Beispiel ist die global optimale Parametermenge
Z* bekannt. In Tab. 2 ist eine Clusterstruktur. Y* = (y}} )
von n =15 Objekten in p =4 Clustern gegeben, aus der
iiber die Transformation (18) leicht die Clusterstruktur
Z* = (z{",) durch Quadrieren ermittelt wird. Neben einer
mehr oder weniger guten Anfangsschitzung Z© wird
dem FORTRAN-Programm die in Tab. 1 prisente Skalar-
produktmatrix als Datenmatrix eingegeben. Das Pro-
gramm ermittelt dann iterativ eine Folge Z®} von
sukzessive verbesserten Schdtzungen von (Z*, flir die
o2&+ D) < g (20 gilt.,

Tab. 1: Skalarproduktmatrix U = (uy;)
(Dezimalpunkte weggelasseni

vl
1

2 0

3 00

4 0 0O

S 9010 0 0

6 108010 017

7 0108010 116

8 0 01090 0 117

9 7020 10 0652410 1

10 206020 0245222 228

11 0206020 22252241024

12 0102070 1102465 41028

13 503020 0483119 2433218 7

14 1040401013 37 3713193434192S5
15 0203050 2193148 71832431225

Tab. 2: Clusterstruktur Y* = (y})
(Dezimalpunkte weggelassen

Y*

T{00 o0 0 o0
2 0 100 "0 0
3 0 0 100 O
4 0 0 0 100
s| 90 10 o o
6| 10 80 10 0
7 0 10 80 10
8 0 0 10 90
9] 70 20 10 0
10| 20 60 20 o0
11 0 20 60 -20
12 0 10 20 70
13| so 30 20 o
14| 10 40 40 107
15 0 20 30 50

Obwohl fiir die unverzerrte Datenmatrix U = (u;;) ein
perfekter Fit 0.(Z*)= 0 méglich ist, beendet das Pro-
gramm den Iterationsproze®, wenn mit der zuletzt
erhaltenen Iterierten keine signifikante Fitverbesserung
erreicht werden konnte. Trotz des stark nichtlinearen
Problemes zeigte sich das Programm erstaunlich fihig,
in relativ wenigen Iterationsschritten die globaloptimale
Lésung Z* mit hoher Genauigkeit zu bestimmen. Je
nach der Wahl der Anfangsschitzung Z©@ waren die
Spalten der Losungsmatrix Z verschieden permutiert.
Beispielsweise wurde mit einer Anfangsschitzung
20 =025 firallei=1, ..., 15, k=1, ..., 4, bereits
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nach 17 Iterationen eine Ldsung Y7 ermittelt, die in
den ersten vier Dezimalstellen mit der exakten Cluster-
struktur Y*, vgl. Tab. 2, iibereinstimmt. Das Programm
reagierte jedoch empfindlich bei falsch plazierten ver-
schwindenden Anfangsschitzungen z{Y) = 0,0 und fiihrte
dann zu einem entsprechenden lokalen (aber nicht
globalen) Minimum, bei dem die Anfangsschidtzungen
Zi(g) = (0,0 in den Resultaten wiederkehrten. Die Losung
war auch erstaunlich stabil beziiglich einer mit normalem
Zufallsfehler gestorten Datenmatrix U = (ui;)

ﬁij =ug;t €ijs €ij € N(0, 0). (28)

Auf die Rechenresultate kann hier aus Platzmangel leider
nicht ndher eingegangen werden.

Es kann angenommen werden, daf} die iterativen
numerischen Methoden bei der Minimierung der stark
nichtlinearen nichtrestriktiven Probleme ¢ (Z) empfind-
licher sind beziiglich lokaler aber nicht globaler Minima
als die Methoden zur Minimierung der wesentlich weni-
ger nichtlinearen Probleme ¢(Y)mit Schranken-Zwingen
Y =2 0. Aus diesem Grunde ist vom Autor die Imple-
mentation einer Kombination der Levenberg-Marquardt-
Methode mit der active-set-Methode (vgl. FLETCHER,
1982, Band II) geplant zur restriktiven Minimierung
von Least-Squares-Problemen mit linearen Zwingen
der Form

aX'= 0, iE€E,
aX>0, i€l

(29)

wobei die Vektoren aiERN als unabhingig vorausge-
setzt werden. Die aktiven Zwinge bei einem Punkt
Xo werden charakterisiert durch die Indexmenge

oo =57(Xo) = {i: 3;Xo = 0} (30)

Fiir den Fall, daf} nur Gleichheits-Zwénge vorkommen,
I1=¢, ist die Aktivmenge =/ konstant und in jedem
Iterationsschritt wird ein mittels verallgemeinerter
Variablenelimination reduziertes (quadratisches oder
lineares) Minimierungsproblem gel6st. Wenn Ungleich-
heits-Zwinge vorkommen, dann dndert sich die Aktiv-
menge 7/ im allgemeinen in jedem Iterationsschritt,
indem entweder ein Ungleichheits-Zwang p zu s addiert
oder ein Ungleichheits-Zwang q aus & entfernt wird.

Int.Classif.9(1982)No.3 Hartmann - Cluster Analysis

(Dabei sollte Ziggzagging vorgebeugt werden, vgl. FLET-
CHER, 1981, Band IL) In Verbindung mit der Leven-
berg-Marquardt-Methode und bei Nichtnegativitits-
Zwingen X =0 besteht die Variablenelimination darin,
daf} in jedem Iterationssschritt die bei der aktuellen
Aktivimenge ./ angezeigten Variablen p; in den linearen
Problemen (24) bzw. (26) Null gesetzt werden. Darum
scheint eine Erweiterung des vorliegenden Levenberg-
Marquardt-Programmes mit der active-set-Methode (vgl.
(11.2.2) und (11.34) bei FLETCHER, 1981, Band II)
zur Behandlung der Nichtnegativititszwinge X = 0 rela-
tiv einfach zu sein. Leider konnen hier noch keine
Resultate prisentiert werden.
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