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Abstract

Abstract

Current research attempted to explore the behaviour of critical regions of reinforced concrete
frame structures under seismic loading to investigate the deficiencies and evaluate the
performance of gravity load designed (GLD) reinforced concrete (RC) beam-column joints.
The categorized literature review of retrofitting and strengthening methods of RC beam-
column joints clarified that non-disruptiveness; practical implementation, ductility and
perseverance of lateral resistance as well as economical issues still remain the most

challenging aspects of seismically retrofitting the vulnerable existing RC beam-column joints.

The seismic design principals of RC frame structures were observed in seismic retrofitting of
the vulnerable frames as a strategy of retrofitting based on the capacity design concept.
Accordingly, the beam sidesway mechanism was redefined for seismic retrofitting by
relocating the beam plastic hinges far enough away from the joints. Afterwards, with
introducing innovative energy dissipation devices such as Multi Functional Corbels (HMFC)
and Harmonica Damper Plates (HHDP), the innovative Retrofitting Techniques 1 and 2 (RT1
and RT2) were proposed. The introduced devices of HMFC and HHDP as a passive energy
dissipation system absorb energy through inelastic deformations. For efficiently and
extensively evaluating and arranging the anticipated hierarchy of strength in beam-column
joints before and after retrofitting, the Strength and Failure Sequence Diagram (SFSD) was
proposed in a new coordinate. To implement the proposed RT1 and RT2 and achieve the
desired hierarchy of strength, the design procedures were presented. Subsequently, to clarify
the behaviour and founding the proposed innovative devices and techniques a comprehensive

numerical analysis was carried out by nonlinear finite element analysis software ATENA.

The proposed RT1 and RT2 were experimentally evaluated through a series of five 3/4-scale
beam-column joint specimens including two units for reference and the three others for
retrofitting. A particular loading setup was designed and fabricated in structural laboratory so
that the applying of horizontal cyclic and vertical static loads became simultaneously possible.
An extremely severe loading history including three cycles (push and pull) at every particular
drift level as a displacement-controlled series of progressively increasing displacement
amplitudes in accordance with [ACI 374.1-05] was imposed to every specimen. The excellent
performance of retrofitted specimens through the experimental study confirmed that the

proposed RT1 and RT2 are able to retain structural integrity with the minimum strength and
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stiffness degradation. As intended, the energy dissipation capacity was dramatically increased

and beam sidesway mechanism was actually formed.

Finally, non-linear finite element analysis using ATENA was carried out on all reference and
retrofitted specimens. The FEM models were validated with experimental outcomes.
Subsequently, the validated models were utilized to develop a new simplified method for
upgrading based on the advantages of RT1 and RT2. In the new proposed innovative
Retrofitting Technique 3 (RT3), HHDP was replaced by Frictional-Bending Damper Plate
(HFBDP) which dissipates energy based on friction and bending. The effectiveness and
reliability of the proposed RT3 was investigated through a numerical analysis. The results of

simulation showed that RT3 could efficiently achieve the intention of seismic retrofitting too.

At the end, as confirmed through experimental and numerical investigation, it is claimed that
the all acceptance criteria of ACI Committee 374 [ACI 374.1-05] were effectively satisfied by

the proposed retrofitting techniques.

Keywords:  beam-column joint; retrofitting; seismic; analysis; design; energy dissipation;

plastic hinge; inelastic deformation; corbel; friction
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Kuzzusammenfassung

Kurzzusammenfassung

Die Arbeit enthilt eine kategorisierte Ubersicht von Nachriist- und Verstirkungsmethoden
bewehrter Balken-Stiitzen-Verbindungen aus der Literatur. Es zeigt sich, dass sowohl
baulicher Eingriff, praktische Ausfithrung, Duktilitdt und Dauerhaftigkeit beziiglich seitlichen
Widerstands, als auch Okonomische Randbedingungen die herausforderndsten Aspekte

seismischer Verstiarkungen gefahrdeter Balken-Stiitzen-Verbindungen aus Stahlbeton sind.

Die seismischen Konstruktionsprinzipien von Stahlbetonrahmenkonstruktionen wurden
entsprechend der Strategie fiir Nachriistungen nach dem ,,capacity design concept® untersucht.
Dabei wurde der ,beam sidesway mechanism“ fiir seismische Verstidrkungen durch eine
Verlagerung des plastischen Gelenks in geeigneter Entfernung zur Rahmenecke neu definiert.
Danach  werden durch Einfilhrung innovativer Energiedissipationsgerdte, wie
Multifunktionskonsole (HMFC) und Harmonika-Déampfer-Platte (HHDP), innovative
Verstarkungstechniken 1 und 2 (RT1 und RT2) vorgeschlagen. Die innovativen Geréte
HMFC und HHDP als passives Energiedissipationssystem absorbieren Energie durch
unelastische Verformung. Zur effizienten und ausgedehnten Bewertung und Anordnung
erwarteter Widerstandshierarchie in Balken-Stiitzen-Verbindungen vor und nach der
Verstarkung, wurde das Widerstands-Versagensfolge-Diagramm (SFSD) mit verdnderter
Ordinate vorgeschlagen. Zur Anwendung der eingefiihrten RT1 undRT2 und zum Erreichen
der gewiinschten Widerstandshierarchie wurde ein kompletter Entwurfsprozess prasentiert.
Um das Verhalten und die Leistungsfdhigkeit des vorgeschlagenen innovativen Gerdts und
Techniken zu untermauern, wurden umfassende numerische Analysen mit der nichtlinearen

FE-Software ATENA durchgefiihrt.

Die vorgeschlagenen Verstirkungstechniken wurden experimentell mittels einer Serie von 5
Balken-Stiitzen-Verbindungen im %-Mafistab evaluiert, wobei zwei Einheiten als Referenz
ohne Verstdrkung und drei mit Verstirkung getestet wurden. Es wurde eine spezielle
Belastungseinrichtung im Labor konstruiert und hergestellt, so dass die Priifstiicke auf dem
Boden stehen und seitliche zyklische Last, mit der Maf3gabe einer vertikalen statischen Last,
an den Proben angreifen. An allen Proben wurde eine extrem harte Belastungsgeschichte
weggesteuert eingetragen, die in Ubereinstimmung mit [ACI 374.1-05] aus progressiv

ansteigenden Verschiebungsamplituden besteht, wobei drei Zyklen (Druck und Zug) auf

il
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einem bestimmten Driftniveau liegen. Durch die experimentellen Untersuchungen bestitigt
sich die exzellente Leistungsfihigkeit der verstirkten Probestiicke sowie die Annahme, dass
RT1 und RT2 in der Lage sind das Widerstandsvermdgen mit einem Minimum an Festigkeits-
und Steifigkeitsverlusten beizubehalten. Wie erwartet stieg die Kapazitit zur
Energiedissipation drastisch an und der ,,beam sidesway mechanism* bildete sich tatséchlich

aus.

Letztlich wurde die nichtlineare FE-Analyse durch Benutzung von ATENA alle verstirkten
und nicht verstérkten Proben angewendet. Das FE-Modell wurde durch die experimentellen
Ergebnisse validiert. AnschlieBend wurden die validierten Modelle benutzt, um eine neue
vereinfachte Methode zur Verbesserung zu entwickeln, die auf den Vorziigen von RT1 und
RT2 basieren. In der neu vorgeschlagenen innovativen Verstarkungstechnik 3 (RT3) wurde
das HHDP durch eine Biegereibungsddmpferplatte (HFBDP) ersetzt, welche Energie
basierend auf Reibung und Biegung dissipiert. Die Effektivitit und Funktionsfahigkeit der
vorgeschlagenen RT3 wurde mit Hilfe numerischer Analysen untersucht. Die Ergebnisse der
Simulation zeigten, dass RT3 die Intention seismischer Verstirkung ebenfalls effizient

erzielen konnte.

Letztlich, wie durch experimentelle und numerische Untersuchungen bestdtigt, wird
behauptet, dass alle geforderten Kriterien des ACI-Komitees [ACI 374.1-05] durch die

vorgeschlagenen Verstarkungstechniken befriedigt wurden.

Schlagworte: ~ Balken-Stiitzen-Verbindungen;  Nachriistung;  Seismisch;  Analyse;
Konstruktion; Energiedissipation; Plastisches Gelenke; unelastische Verformung; Konsole;

Reibung
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Notation

Notation

cross-sectional area of a structural member measured to the outside edges of
transverse reinforcement, mm?

effective joint cross-sectional area, mm?

gross area of concrete, mm?

the area of the third cycle to the drift ratio of 3.5%

effective joint cross-sectional area, mm?, computed from joint depth (h,) times
effective joint width (the overall width of the column, except where a beam
frames into a wider column, effective joint width shall not exceed the smaller
of: a) beam width plus joint depth, b) twice the smaller perpendicular distance
from longitudinal axis of beam to column side

area of the beam top reinforcement, mm?

area of the beam bottom reinforcement, mm?

total cross-sectional area of transverse reinforcement including crossties within
spacing s and perpendicular to dimension b, mm?

total area of the intermediate bars placed in the relevant column faces between
corners of the column including bars contributing to the longitudinal
reinforcement of columns, mm?

total area of the horizontal hoops in a beam-column joint, mm?

width of the longitudinal beam, mm

width of the column, mm
bp

effective joint width, mm, should not exceed the smallest of ( ;b”,bb +

X mhc
2

m=0.5
effective joint width, if b.>b,,: b;;= min{b.; (b,, + 0.5h.)}; if be < by,: bj;=
min{b,,; (b, + 0.5h.)}

,b.), where beam-column eccentricity exceeds b./8, m=0.3, otherwise

width of beam web, mm

nominal diameter of bar, mm

initial elastic modulus for concrete, MPa

secant elastic modulus at the peak stress for concrete, MPa

the peak lateral resistance for the positive lateral loading direction
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Notation

fcd
ps
fe
e
c
ref
t
fcd
fck

fctd
fctm

fyd

the peak lateral resistance for the negative lateral loading direction
design value of concrete compressive strength, MPa
post-tensioning force of the bottom corbel, N

specified compressive strength of concrete, MPa

concrete effective compressive strength, MPa
the effective tensile strength, MPa

design value of concrete compressive strength, MPa

strength of concrete, MPa

design value of the tensile strength of concrete, MPa

mean value of tensile strength of concrete, given as 0.3 ]2’(0'667)

specified yield strength of reinforcement, MPa

design value of yield strength, MPa

specified yield strength of transverse reinforcement, MPa

design value of the yield strength of the transverse reinforcement, MPa

overall cross-sectional depth of column, mm

distance between extreme layers of column reinforcement, mm

distance between the top and the bottom reinforcement of the beam, mm
vertical distance of horizontal LVDTs at the end of beam or HMFC, mm
horizontal distance of vertical LVDTs at the end of column, mm

Max. center-to-center spacing of crosstie legs on all faces of the column, mm
second invariant of stress deviator tensor

shape parameter the relation of Stress-strain for concrete

story height, length of column, measured center-to-center of the top and bottom
beams, mm

clear length of the column, mm

span length of beam, measured center-to-center of the column, mm
development length in tension of deformed bar based on the building codes,
mm

development length in tension of deformed bar with a standard hook, measured
from critical section to outside end of hook, mm

clear length of beam from face of columns, mm
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Notation

Vcal

<l

col

<l

col

YRra

Joint moment at the beam joint interface, N.m

joint moment capacity of the exterior beam-column joint at the beam joint
interface, N.m

beam bending moment capacity or beam yielding at joint interface, N.m
column bending moment capacity or column yielding at joint interface, N.m
column axial load, N

design axial force from the analysis for the seismic design (the minimum value
from load combination), is assumed positive when compressive, N
center-to-center spacing of transverse reinforcement within the joint, mm

reduction factor of the compressive strength

reduction factor of the tensile strength

shear force across the beam, N

shear force in the column above the joint, from the analysis in the seismic
design situation, N

shear force in the column above the joint, N

story shear capacity of the as-built exterior beam-column jointcorresponding to
the certain strength, N

story shear capacity of the retrofitted exterior beam-column jointcorresponding
to the certain strength, N

normalized design axial force of column

horizontal shear force acting on the concrete core of the exterior joint, N

horizontal shear force acting on the concrete core of the exterior joint, N

beam shear strength, N

column shear strength, N

the crack opening, mm

crack opening at the complete release of stress, mm
normalized strain

internal moment arm in the beam, mm

proper moment arm of the bottom corbel post-tensioning, mm
stress multiplier for beam longitudinal bars

relative energy dissipation ratio

joint shear strain

model uncertainty factor for the design value of resistance for beam
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Notation

ACI
ASCE
BD
CFRP
CORDIS
CSA
DIN
DTAM
FRP
EN
HFBDP
HHDP
HMEFC

longitudinal bars, given as 1.2
shear strain

normal strain

strain at the peak stress f, ef

normal strain of joint panel in the x direction

normal strain of joint panel in the z direction

strain in joint panel in an arbitrary direction (diagonal) with an angle of ¢

measured counter clockwise from the x axis

drift ratio in positive direction
drift ratio in negative direction

concrete compressive stress for the relation of Stress-strain for concrete, MPa

reduction factor on concrete compressive strength due to tensile strain in
transverse direction

sum of nominal flexural strength of columns framing into the joint, N.mm

sum of nominal flexural strength of beams framing into the joint, N.mm

American Concrete Institute

American Society of Civil Engineers

Bond Deficiency

Carbon Fiber-Reinforced Polymer
Community Research and Development Information Service
Canadian Concrete Design Code

Deutsches Institut fir Normung

Digital World Tectonic Activity Map
Fiber-Reinforced Polymer

Européisiche Norm

Hayatrouhi Frictional-Bending Damper Plate
Hayatrouhi Harmonica Damper Plate

Hayatrouhi Multi Functional Corbel
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Notation

HPFRC
GFRP
GLD
GSHAP
LVDT
NASA
NPO
NSM
RC
RT1
RT2
RT3
SD
SRP
SFSD
UNIDO
USGS

High-Performance Fiber-Reinforced Concrete
Glass Fiber-Reinforced Polymer

Gravity Load Designed

Global Seismic Hazard Assessment Program
Linear Variable Distance Transducer

National Aeronautics and Space Administration
Non Profit Organisationen
Near-Surface-Mounted

Reinforced Concrete

Retrofitting Technique 1

Retrofitting Technique 2

Retrofitting Technique 3

Shear Deficiency

Steel Fiber-Reinforced Polymer

Strength and Failure Sequence Diagram

United Nations Industrial Development Organization

Unite States Geological Survey
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