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Strengthening of reinforced concrete beam-column 
joints to increase seismic resistance

The categorized literature review of retrofitting and strengthening methods of 
reinforced concrete (RC) beam-column joints clarified that non-disruptiveness; 
practical implementation, ductility and perseverance of lateral resistance   as well as 
economical issues still remain the most challenging aspects of seismically retrofitting 
the vulnerable existing RC beam-column joints. Current research attempted to 
observe the seismic design principals of RC frame structures in seismic retrofitting of 
the vulnerable frames as a strategy of retrofitting based on the capacity design 
concept. Accordingly, the beam sidesway mechanism was redefined for seismic 
retrofitting by relocating the beam plastic hinges far enough away from the joints. 
Consequently, with introducing innovative energy dissipation devices such as Multi 
Functional Corbels (HMFC) and Harmonica Damper Plates (HHDP), the innovative 
Retrofitting Techniques 1 and 2 (RT1 and RT2) were proposed. The introduced devices 
of HMFC and HHDP as a passive energy dissipation system absorb energy through 
inelastic deformations. The proposed RT1 and RT2 were experimentally evaluated 
through a series of 3/4-scale beam-column joint specimens under an extremely 
severe loading history. The excellent performance of retrofitted specimens through 
the experimental study confirmed that the proposed retrofitting techniques (RT1 and 
RT2) are able to retain structural integrity with the minimum strength and stiffness 
degradation. As intended, the energy dissipation capacity was dramatically increased 
and beam sidesway mechanism was actually formed. Furthermore, a series of non-
linear finite element analysis using ATENA was carried out on all reference and 
retrofitted specimens.  The FEM models were validated with experimental outcomes. 
Subsequently, the validated models were utilized to develop a new simplified method 
for upgrading based on the advantages of RT1 and RT2. In the new proposed 
innovative Retrofitting Technique 3 (RT3), HHDP was replaced by Frictional-Bending 
Damper Plate (HFBDP) which dissipates energy based on friction and bending. The 
effectiveness and reliability of the proposed RT3 was investigated through a 
numerical analysis. As confirmed through experimental and numerical investigation, 
all acceptance criteria of ACI Committee 374 [ACI 374.1-05] were effectively 
satisfied by the proposed retrofitting techniques.
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Abstract 
Current research attempted to explore the behaviour of critical regions of reinforced concrete 

frame structures under seismic loading to investigate the deficiencies and evaluate the 

performance of gravity load designed (GLD) reinforced concrete (RC) beam-column joints. 

The categorized literature review of retrofitting and strengthening methods of RC beam-

column joints clarified that non-disruptiveness; practical implementation, ductility and 

perseverance of lateral resistance   as well as economical issues still remain the most 

challenging aspects of seismically retrofitting the vulnerable existing RC beam-column joints.  

 

The seismic design principals of RC frame structures were observed in seismic retrofitting of 

the vulnerable frames as a strategy of retrofitting based on the capacity design concept. 

Accordingly, the beam sidesway mechanism was redefined for seismic retrofitting by 

relocating the beam plastic hinges far enough away from the joints. Afterwards, with 

introducing innovative energy dissipation devices such as Multi Functional Corbels (HMFC) 

and Harmonica Damper Plates (HHDP), the innovative Retrofitting Techniques 1 and 2 (RT1 

and RT2) were proposed. The introduced devices of HMFC and HHDP as a passive energy 

dissipation system absorb energy through inelastic deformations. For efficiently and 

extensively evaluating and arranging the anticipated hierarchy of strength in beam-column 

joints before and after retrofitting, the Strength and Failure Sequence Diagram (SFSD) was 

proposed in a new coordinate. To implement the proposed RT1 and RT2 and achieve the 

desired hierarchy of strength, the design procedures were presented. Subsequently, to clarify 

the behaviour and founding the proposed innovative devices and techniques a comprehensive 

numerical analysis was carried out by nonlinear finite element analysis software ATENA. 

 

The proposed RT1 and RT2 were experimentally evaluated through a series of five 3/4-scale 

beam-column joint specimens including two units for reference and the three others for 

retrofitting. A particular loading setup was designed and fabricated in structural laboratory so 

that the applying of horizontal cyclic and vertical static loads became simultaneously possible.   

An extremely severe loading history including three cycles (push and pull) at every particular 

drift level as a displacement-controlled series of progressively increasing displacement 

amplitudes in accordance with [ACI 374.1-05] was imposed to every specimen. The excellent 

performance of retrofitted specimens through the experimental study confirmed that the 

proposed RT1 and RT2 are able to retain structural integrity with the minimum strength and 
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stiffness degradation. As intended, the energy dissipation capacity was dramatically increased 

and beam sidesway mechanism was actually formed.  

 

Finally, non-linear finite element analysis using ATENA was carried out on all reference and 

retrofitted specimens.  The FEM models were validated with experimental outcomes. 

Subsequently, the validated models were utilized to develop a new simplified method for 

upgrading based on the advantages of RT1 and RT2. In the new proposed innovative 

Retrofitting Technique 3 (RT3), HHDP was replaced by Frictional-Bending Damper Plate 

(HFBDP) which dissipates energy based on friction and bending. The effectiveness and 

reliability of the proposed RT3 was investigated through a numerical analysis. The results of 

simulation showed that RT3 could efficiently achieve the intention of seismic retrofitting too.  

 

At the end, as confirmed through experimental and numerical investigation, it is claimed that 

the all acceptance criteria of ACI Committee 374 [ACI 374.1-05] were effectively satisfied by 

the proposed retrofitting techniques. 

 

 

Keywords:      beam-column joint; retrofitting; seismic; analysis; design; energy dissipation; 

                     plastic hinge; inelastic deformation; corbel; friction  
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Kurzzusammenfassung 

 
Die Arbeit enthält eine kategorisierte Übersicht von Nachrüst- und Verstärkungsmethoden 

bewehrter Balken-Stützen-Verbindungen aus der Literatur. Es zeigt sich, dass sowohl 

baulicher Eingriff, praktische Ausführung, Duktilität und Dauerhaftigkeit bezüglich seitlichen 

Widerstands, als auch ökonomische Randbedingungen die herausforderndsten Aspekte 

seismischer Verstärkungen gefährdeter Balken-Stützen-Verbindungen aus Stahlbeton sind. 

 

Die seismischen Konstruktionsprinzipien von Stahlbetonrahmenkonstruktionen wurden 

entsprechend der Strategie für Nachrüstungen nach dem „capacity design concept“ untersucht. 

Dabei wurde der „beam sidesway mechanism“ für seismische Verstärkungen durch eine 

Verlagerung des plastischen Gelenks in geeigneter Entfernung zur Rahmenecke neu definiert. 

Danach werden durch Einführung innovativer Energiedissipationsgeräte, wie 

Multifunktionskonsole (HMFC) und Harmonika-Dämpfer-Platte (HHDP), innovative 

Verstärkungstechniken 1 und 2 (RT1 und RT2) vorgeschlagen. Die innovativen Geräte 

HMFC und HHDP als passives Energiedissipationssystem absorbieren Energie durch 

unelastische Verformung. Zur effizienten und ausgedehnten Bewertung und Anordnung 

erwarteter Widerstandshierarchie in Balken-Stützen-Verbindungen vor und nach der 

Verstärkung, wurde das Widerstands-Versagensfolge-Diagramm (SFSD) mit veränderter 

Ordinate vorgeschlagen. Zur Anwendung der eingeführten RT1 undRT2 und zum Erreichen 

der gewünschten Widerstandshierarchie wurde ein kompletter Entwurfsprozess präsentiert. 

Um das Verhalten und die Leistungsfähigkeit des vorgeschlagenen innovativen Geräts und 

Techniken zu untermauern, wurden umfassende numerische Analysen mit der nichtlinearen 

FE-Software ATENA durchgeführt. 

 

Die vorgeschlagenen Verstärkungstechniken wurden experimentell mittels einer Serie von 5 

Balken-Stützen-Verbindungen im ¾-Maßstab evaluiert, wobei zwei Einheiten als Referenz 

ohne Verstärkung und drei mit Verstärkung getestet wurden. Es wurde eine spezielle  

Belastungseinrichtung im Labor konstruiert und hergestellt, so dass die Prüfstücke auf dem 

Boden stehen und seitliche zyklische Last, mit der Maßgabe einer vertikalen statischen Last, 

an den Proben angreifen. An allen Proben wurde eine extrem harte Belastungsgeschichte 

weggesteuert eingetragen, die in Übereinstimmung mit [ACI 374.1-05] aus progressiv 

ansteigenden Verschiebungsamplituden besteht, wobei drei Zyklen (Druck und Zug) auf 
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einem bestimmten Driftniveau liegen. Durch die experimentellen Untersuchungen bestätigt 

sich die exzellente Leistungsfähigkeit der verstärkten Probestücke sowie die Annahme, dass 

RT1 und RT2 in der Lage sind das Widerstandsvermögen mit einem Minimum an Festigkeits- 

und Steifigkeitsverlusten beizubehalten. Wie erwartet stieg die Kapazität zur 

Energiedissipation drastisch an und der „beam sidesway mechanism“ bildete sich tatsächlich 

aus. 

 

Letztlich wurde die nichtlineare FE-Analyse durch Benutzung von ATENA alle verstärkten 

und nicht verstärkten Proben angewendet. Das FE-Modell wurde durch die experimentellen 

Ergebnisse validiert. Anschließend wurden die validierten Modelle benutzt, um eine neue 

vereinfachte Methode zur Verbesserung zu entwickeln, die auf den Vorzügen von RT1 und 

RT2 basieren. In der neu vorgeschlagenen innovativen Verstärkungstechnik 3 (RT3) wurde 

das HHDP durch eine Biegereibungsdämpferplatte (HFBDP) ersetzt, welche Energie 

basierend auf Reibung und Biegung dissipiert. Die Effektivität und Funktionsfähigkeit der 

vorgeschlagenen RT3 wurde mit Hilfe numerischer Analysen untersucht. Die Ergebnisse der 

Simulation zeigten, dass RT3 die Intention seismischer Verstärkung ebenfalls effizient 

erzielen könnte. 

 

Letztlich, wie durch experimentelle und numerische Untersuchungen bestätigt, wird 

behauptet, dass alle geforderten Kriterien des ACI-Komitees [ACI 374.1-05] durch die 

vorgeschlagenen Verstärkungstechniken befriedigt wurden.   

 

 

Schlagworte: Balken-Stützen-Verbindungen; Nachrüstung; Seismisch; Analyse; 

Konstruktion; Energiedissipation; Plastisches Gelenke; unelastische Verformung; Konsole; 

Reibung  
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Notation 

 

𝐴𝑐ℎ cross-sectional area of a structural member measured to the outside edges of 

transverse reinforcement, mm2 

𝐴𝑒 effective joint cross-sectional area, mm2 

𝐴𝑔 gross area of concrete, mm2 

𝐴ℎ the area of the third cycle to the drift ratio of 3.5% 

𝐴𝑗 effective joint cross-sectional area, mm2, computed from joint depth (ℎ𝑐) times 

effective joint width (the  overall width of the column, except where a beam 

frames into a wider column, effective joint width shall not exceed the smaller 

of: a) beam width plus joint depth, b) twice the smaller perpendicular distance 

from longitudinal axis of beam to column side 

𝐴𝑠1 area of the beam top reinforcement, mm2 

𝐴𝑠2 area of the beam bottom reinforcement, mm2 

𝐴𝑠ℎ total cross-sectional area of transverse reinforcement including crossties within 

spacing s and perpendicular to dimension 𝑏𝑐, mm2 

𝐴𝑠𝑣,𝑖 total area of the intermediate bars placed in the relevant column faces between 

corners of the column including bars contributing to the longitudinal 

reinforcement of columns, mm2 

𝐴𝑇𝑗ℎ total area of the horizontal hoops in a beam-column joint, mm2 

𝑏𝑏 width of the longitudinal beam, mm 

𝑏𝑐 width of the column, mm 

𝑏𝑗 effective joint width, mm, should not exceed the smallest of (𝑏𝑏+𝑏𝑐
2

, 𝑏𝑏 +

∑𝑚ℎ𝑐
2

, 𝑏𝑐), where beam-column eccentricity exceeds 𝑏𝑐/8, m=0.3, otherwise 

m=0.5 

𝑏𝑗𝑗 effective joint width, if 𝑏𝑐>𝑏𝑤: 𝑏𝑗𝑗= min{𝑏𝑐; (𝑏𝑤 + 0.5ℎ𝑐)}; if 𝑏𝑐 < 𝑏𝑤: 𝑏𝑗𝑗= 

min{𝑏𝑤; (𝑏𝑐 + 0.5ℎ𝑐)} 

𝑏𝑤 width of beam web, mm 

𝑑𝑏 nominal diameter of bar, mm 

𝐸0 initial elastic modulus for concrete, MPa 

𝐸𝑐 secant elastic modulus at the peak stress for concrete, MPa 

𝐸1 the peak lateral resistance for the positive lateral loading direction 
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𝐸2 the peak lateral resistance for the negative lateral loading direction 

𝑓𝑐𝑑 design value of concrete compressive strength, MPa 

𝐹𝑝𝑠 post-tensioning force of the bottom corbel, N 

𝑓𝑐′ specified compressive strength of concrete, MPa 

𝑓𝑐
′ 𝑒𝑓  concrete effective compressive strength, MPa 

𝑓′𝑡
𝑒𝑓 the effective tensile strength, MPa 

𝑓𝑐𝑑 design value of concrete compressive strength, MPa 

 

𝑓𝑐𝑘 strength of concrete, MPa 

𝑓𝑐𝑡𝑑 design value of the tensile strength of concrete, MPa 

𝑓𝑐𝑡𝑚 mean value of tensile strength of concrete, given as 0.3𝑓𝑐
′(0.667) 

𝑓𝑦 specified yield strength of reinforcement, MPa 

𝑓𝑦𝑑 design value of yield strength, MPa 

𝑓𝑦𝑡 specified yield strength of transverse reinforcement, MPa 

𝑓𝑦𝑤𝑑 design value of the yield strength of the transverse reinforcement, MPa 

ℎ𝑐 overall cross-sectional depth of column, mm 

ℎ𝑗𝑐 distance between extreme layers of column reinforcement, mm 

ℎ𝑗𝑤 distance between the top and the bottom reinforcement of the beam, mm 

ℎ𝑣 vertical distance of horizontal LVDTs at the end of beam or HMFC, mm 

ℎℎ horizontal distance of vertical LVDTs at the end of column, mm 

ℎ𝑥 Max. center-to-center spacing of crosstie legs on all faces of the column, mm 

𝐽2 second invariant of stress deviator tensor 

k shape parameter the relation of Stress-strain for concrete 

𝑙𝑐 story height, length of column, measured center-to-center of the top and bottom 

beams, mm 

𝑙𝑐𝑛 clear length of the column, mm 

𝑙𝑏 span length of beam, measured center-to-center of the column, mm 

𝑙𝑑 development length in tension of deformed bar based on the building codes, 

mm 

𝑙𝑑ℎ development length in tension of deformed bar with a standard hook, measured 

from critical section to outside end of hook, mm 

𝑙𝑛𝑏 clear length of beam from face of columns, mm 
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𝑀𝑏𝑐 Joint moment at the beam joint interface, N.m 

𝑀�𝑏𝑐 joint moment capacity of the exterior beam-column joint at the beam joint 

interface, N.m 

𝑀𝑛𝑏𝑐 beam bending moment capacity or beam yielding at joint interface, N.m 

𝑀𝑛𝑐𝑏 column bending moment capacity or column yielding at joint interface, N.m 

𝑁 column axial load, N 

𝑁𝐸𝑑 design axial force from the analysis for the seismic design (the minimum value 

from load combination), is assumed positive when compressive, N 

𝑠 center-to-center spacing of transverse reinforcement within the joint, mm  

𝑟𝑒𝑐 reduction factor of the compressive strength 

ret

 
reduction factor of the tensile strength 

 

𝑉𝑏 shear force across the beam, N 

𝑉𝑐 shear force in the column above the joint, from the analysis in the seismic 

design situation, N 

𝑉𝑐𝑜𝑙 shear force in the column above the joint, N 

𝑉�𝑐𝑜𝑙 story shear capacity of the as-built exterior beam-column jointcorresponding to 

the certain strength, N 

𝑉�𝑐𝑜𝑙 story shear capacity of the retrofitted exterior beam-column jointcorresponding 

to the certain strength, N 

𝑣𝑑 normalized design axial force of column 

𝑉𝑗ℎ𝑑 horizontal shear force acting on the concrete core of the exterior joint, N 

𝑉𝑗ℎ horizontal shear force acting on the concrete core of the exterior joint, N 

𝑉𝑛𝑏 beam shear strength, N 

𝑉𝑛𝑐 column shear strength, N 

w the crack opening, mm 

wc crack opening at the complete release of stress, mm 

x normalized strain 

𝑧𝑏 internal moment arm in the beam, mm 

𝑧𝑝𝑠 proper moment arm of the bottom corbel post-tensioning, mm 

𝛼 stress multiplier for beam longitudinal bars 

𝛽 relative energy dissipation ratio 

γ joint shear strain 

𝛾𝑅𝑑 model uncertainty factor for the design value of resistance for beam 
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longitudinal bars, given as 1.2  

𝛾𝑥𝑧 shear strain 

𝜀 normal strain 

𝜀𝑐  strain at the peak stress 𝑓𝑐
′ 𝑒𝑓 

𝜀𝑥 normal strain of joint panel in the x direction 

𝜀𝑧 normal strain of joint panel in the z direction 

𝜀𝜑 strain in joint panel in an arbitrary direction (diagonal) with an angle of φ 

measured counter clockwise from the x axis 

 

Ө′1 drift ratio in positive direction 

Ө′2 drift ratio in negative direction 

𝜎𝑐
𝑒𝑓 concrete compressive stress for the relation of Stress-strain for concrete, MPa 

𝜂 reduction factor on concrete compressive strength due to tensile strain in 

transverse direction 

�𝑀
𝑛𝑐

 sum of nominal flexural strength of columns framing into the joint, N.mm 

�𝑀
𝑛𝑏

 sum of nominal flexural strength of beams framing into the joint, N.mm 

  

  

  

ACI American Concrete Institute 

ASCE American Society of Civil Engineers 

BD Bond Deficiency 

CFRP Carbon Fiber-Reinforced Polymer 

CORDIS Community Research and Development Information Service 

CSA Canadian Concrete Design Code 

DIN Deutsches Institut für Normung 

DTAM Digital World Tectonic Activity Map 

FRP Fiber-Reinforced Polymer 

EN Europäisiche Norm 

HFBDP Hayatrouhi Frictional-Bending Damper Plate 

HHDP Hayatrouhi Harmonica Damper Plate 

HMFC Hayatrouhi Multi Functional Corbel 
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HPFRC High-Performance Fiber-Reinforced Concrete 

GFRP Glass Fiber-Reinforced Polymer 

GLD Gravity Load Designed 

GSHAP Global Seismic Hazard Assessment Program 

LVDT Linear Variable Distance Transducer 

NASA National Aeronautics and Space Administration 

NPO Non Profit Organisationen 

NSM  Near-Surface-Mounted 

RC Reinforced Concrete 

RT1 Retrofitting Technique 1 

RT2 Retrofitting Technique 2 

RT3 Retrofitting Technique 3 

SD Shear Deficiency 

SRP Steel Fiber-Reinforced Polymer 

SFSD Strength and Failure Sequence Diagram 

UNIDO United Nations Industrial Development Organization 

USGS Unite States Geological Survey 
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