
3. Three ideals of science

In this chapter three ideals about scientific methods, procedures, objectives

andwhat constitutes good science,which are assumed to bewidespread in the

public understanding of science, are explored in relation to climate science.

However, I would like to make clear here that the aim is not to present some

kind of sociological study that makes some general assessment of the public

understandingof science and fromthere establishes and categorises these ide-

als. Instead, Iwill takea top-downapproach to thisquestionandwill infer from

a number of instances from the history of climate science – as established in

the introduction to this book – where science sceptics were very effective in

discrediting particular climate research in the eyes of the public, that they ben-

efited from the general popularity of certain idealised assumptions about how

science operates.The primary objective of this chapter is to show, based on the

work of philosophers of science over the last century,why a failure of science in

general and climate science more specifically to live up to these ideals is not a

sign of inadequate science. Further, it will be analysed why the failure of these

ideals becomes particularly visible in the context of climate science.

3.1 Value-free science

3.1.1 Introduction: values in science

Science as a value-free endeavour has long been and continues to be an ideal

upheld by the public, scientists and (to a certain degree) philosophers alike as a

definition of what constitutes good science.This is no different when it comes

to climate science.Aswe have already seen in the introduction to this book, the

accusation that climate scientists are biased and, thus, not objective in their

research is at the core of many climate-change deniers’ arguments.
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40 A Heated Debate

The value-free ideal of science is often intertwined with a certain under-

standing of scientific objectivity, where objectivity is defined by the relationship

between science and (social) values. This kind of objectivity may take several

different forms. For a better understanding of how varied scientific objectivity

can be interpreted in relation to values, it is worthwhile to take a closer look at

this type of objectivity in Douglas’s classification of scientific objectivity intro-

duced in the last chapter (2004). Douglas argues that there are (at least) three

versions of this kind of scientific objectivity.Thefirst option to define objectiv-

ity in this way (that is, in relation to values) is to claim that values should not

be allowed to override evidence.This, asDouglas calls it, detached objectivity is by

comparisona rather broaddefinition. It doesnot completely rule out that there

is an appropriate role for values in science. However, there is also a narrower,

more common understanding of scientific objectivity which does exclude val-

ues in (almost1) any form.This value-free ideal is what I will primarily discuss in

this chapter.

The third kind of value-related understanding of scientific objectivity

which Douglas identifies is that of value-neutral objectivity, a view of science,

which acknowledges values in science (to a certain degree), but scientists are

urged to take a middle-ground position. This is a point of view on the role of

values in science that will not be discussed here in more detail. Suffice it to

say that taking no sides at all might be undesirable in certain situations, if

what lies on one side of the value spectrum is otherwise considered absolutely

unacceptable, such as racist or sexist positions.

In the following, I will discuss why the value-free ideal cannot be main-

tained in the case of climate science and science in general. To that end, I will

first outline the historic background. A look back in history helps to better un-

derstand the value-free ideal in general and how it has risen to such promi-

nence in the last century.Before actually turning to the debate about the role of

value judgements in climate science, I will also take a closer look at the discus-

sion of value judgements in the context of inductive-risk assessments, which

has taken up a prominent place in philosophical debates about the role of val-

ues in climate science.

1 Philosophers of science who advocate for this strict value-free ideal of science com-

monly acknowledge that there is a small number of “epistemic” values. These are con-

sidered to have an appropriate role in science compared to so-called “non-epistemic”

valueswhich are generally, according to this view of science, considered inappropriate;

a distinction which will be further discussed in this Chapter.
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3.1.1.1 The rise and fall of the value-free ideal

Historians and philosophers retrace the origins of the separation of values and

science to Francis Bacon and the beginning of modern science and philosophy

(Carrier, 2013; Douglas, 2009; Proctor, 1991). Bacon voices concern that moral

deliberations would deceive men in their pursuit of scientific knowledge and

prevent them from fully dedicating themselves to the advancement of science

(Bacon, [1620] 1863). Another forerunner of the value-free ideal, which is of-

ten cited and should at least bementioned here, is DavidHume’s distinction of

“ought”and“is”and thenotion that “ought“cannotbe inferred from“is” (Hume,

[1739–1740] 1888,p. 469).2However, itwas not until the late 19th century and the

rise of social science as a scientific discipline that the notion of value-free or

value-neutral science, as we know it now, emerged (Proctor, 1991, p. 65). At the

beginning of the 20th century the value-free ideal was prominently supported

by theGermansociologistMaxWeber.Weberwas the leading intellectual in the

Werturteilsstreit advocating for a strict separation of science (specifically social

science) from values.Hewas especially concerned about the university profes-

sor who might push their political ideals onto their ‘defenceless’ students and

pass them on as scientific facts. Value judgements can also have an undesir-

able effect on science itself, according to Weber, to the extent “that whenever

theman of science introduces his personal value judgment, a full understand-

ing of the facts ceases” (1946, p. 146).

But even though the value-free ideal had a prominent and committed advo-

cate in Weber, it did not prevail until the middle of the last century. As Dou-

glas (2009, pp. 44–46) has shown, there was still a lively debate about the rel-

evance and necessity of values in science and what form a value-free science

2 Proctor (1991, p. 65) remarks that Hume was not the first to make this distinction. He

also notes, referring to Hampshire (1949) andMacIntyre (1959), that Hume himself did

not fully separate “ought” from “is” and only ever meant that the former could not be

derived logically from the later. “But ideas live a life apart from the intent of their au-

thors. In the mid-twentieth century, Hume’s call for a separation between “ought” and

“is” became a rallying cry for scientists and philosophers defending the neutrality of

science” (Proctor, 1991, p. 61). Proctor also stresses that Bacon’s and Hume’s position

here must be seen in the context of a wider move from philosophers and scientists to

separate science from religion and questions of ethics as well as a new recognition of

subjectivity in science, which is most visible in the distinction between primary and

secondary qualities (Proctor, 1991, p. 54).
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should or could even take throughout the first half of the 20th century. Promi-

nentphilosophers of that time suchasRobertMertonandErnstNagel voicedat

leastmixed feelings about the topic.3 Others even argued that values in science

were unavoidable or even necessary.4 Particularly strongly debated were value

judgements in the contextof inductive risks.RichardRudner (1953) andC.West

Churchman (1948) argued that under certain circumstances scientists cannot

but must make value judgements in their scientific deliberations. They note

that whether or not scientists accept or reject a hypothesis depends not just

on the epistemic evidence but also on the severity of possible social and ethical

consequences of awrongdecision (a longer discussion of the inductive-risk ar-

gument follows in Chapter 3.1.2). Popular counterarguments against this rea-

soning are that such value judgements should be handed over to the public,

while the role of the scientists is only to ascribe probabilities to hypotheses (Jef-

frey, 1956), or that all value judgements scientists have to make can be solely

determined by inner-scientific “canons of interference”, i.e., epistemic values

that are the same for all members of the scientific community (Levi, 1960, p.

356).

Though there were still some debates about the proper role of values in science

at the middle of the last century, the debate, at least in the USA, soon died out

at the beginning of the 1960s in favour of the value-free ideal.While therewere

still some discussions ongoing about this topic elsewhere in the world,5 it is

worthwhile to consider why the value-free ideal spread so quickly in the USA

3 Despite arguing for disinterestedness as an “ethos of science”, Merton also sees science

as embedded in a wider societal context in such a way that scientists have to consider

the social and ethical implications of their work (Merton, 1973, pp. 267–278). Douglas

also points out that science “‘being value-free’ is nowhere among the norms” (2009, p.

46) put forward by Merton.

Nagel (1961) also discusses the impact of values on sciences in an inner- and outer-

scientific context in a variety ofways, though he does not regard the influence of values

in science as far reaching as Rudner andChurchmando. A similar point of view is voiced

by Hempel (1965); see also Douglas (2009, pp. 58–59).

4 Other examples of prominent philosophers of the time who, Douglas notes, did not

advocate for thinking about science as a fully value-free realm are, e.g., John Dewey

and Rudolf Carnap (Douglas, 2009, p. 47).

5 One might consider for instance, the second Werturteilstreit in Germany, which went

on until the 1970s, and focussed on the role of values in sociology.

https://doi.org/10.14361/9783839465806-005 - am 14.02.2026, 09:21:47. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839465806-005
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


3. Three ideals of science 43

in the 1960s. In the post–WorldWar II period the centre of discourse in philos-

ophy of science, as much as science itself, shifted to the United States, which

had, therefore, a global sphere of influence that didnot end at the boarder.Fur-

ther, it shows impressively how external (value-laden) pressure can influence

the direction science and philosophy of science takes.

Douglas identifies two factors why the value-free ideal gained so much in

popularity so quickly in theUnitedStates in the 60s.First,during the 1950s, the

political situation in the USA had shifted in a way that put increasing pressure

on all academics to distance themselves fromanything that could be construed

as support for communist ideas.Marxist philosophy traditionally sees science

as situated in society so that the social and the scientific are interconnected.

Fuelled by the McCarthy-era paranoia, many philosophers of science gave any

position that could be misunderstood as political a wide berth.

This, Douglas notes, went hand in hand with another shift in philosophy

of science already discussed in more details in Chapter 2.2: the separation of

context of discovery from context of justification. Following Reichenbach’s reason-

ing (1938), the formerwasdeemed tobephilosophically uninteresting and to be

a topic of discussion for sociologists and psychologists but not philosophers.6

Philosophy of science instead is supposed to focus on the logical justification

of the result of scientific research. This distinction demands a restriction of

the scope of research for philosophers of science, which was commonly inter-

preted to exclude a discussion about (social) values in science.The political sit-

uationmade it attractive for philosophers of science in theUSA to abandon any

wide reaching, non-specific discussion about science in wider social context,

Douglas argues, and instead “to professionalize their field, narrowing their ex-

pertise and focusing on a well-defined topic” (Douglas, 2009, p. 49).

The second factorDouglas cites as reason for the advancement of the value-

free-ideal is the influence thepublicationofThomasS.Kuhn’sThestructure of sci-

entific revolution in 1962 had on philosophy of science.While the book had been

hugely influential on philosophy of science in general, it also influenced the

6 In this context it might be interesting to note that Don Howard (2006) argues that Re-

ichenbach’s DJ distinction has to be interpreted as a way for Reichenbach to directly

distance himself from Otto Neurath and the idea that values have a legitimate role

in science. According to Howard, Reichenbach’s position is an attempt to exclude the

question of values by reducing philosophy of science to pure logic, whereas Neurath

saw certain values as an unavoidable byproduct of the underdetermination of theo-

ries in science.
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debate about values in science, according to Douglas. In the book Kuhn places

science in its ownhistorical context but also situates science outside of society.

The separation from society is what makes (natural)7 science, for Kuhn, such a

successful endeavour:

the insulation of the scientific community from society permits the individ-

ual scientists to concentrate his attention upon problems that he has good

reason to believe hewill be able to solve. Unlike the engineer, andmany doc-

tors, andmost theologians, the scientists need not choose problems because

they urgently need solutions and without regards for the tools available to

solve them. In this respect, also the contrast between natural scientists and

many social scientists proves instructive. The latter often tend, as the former

almost never do, to defend their choices of a research problem – e.g., the ef-

fects of racial discrimination or the causes of the business cycle – chiefly in

terms of social importance of achieving a solution. Which group would one

then expect to solve problems at a more rapid rate? (Kuhn, 1962, p. 163)

By the mid-1960s the value-free ideal had truly become mainstream. Douglas

writes that even inpost-McCarthyism times, the ideal of value-free sciencewas

very attractive to science and philosophy of science alike for several reasons.

For instance, the notion of the intrusion of values into science might ‘bring

back bad memories’ of periods in the history of science where unwarranted

outside forces interfered (see alsoRudner, 1953, p. 6), or theremight be concern

that “science will lose its general public authority if a role for social or ethical

values is admitted” (Douglas, 2009, p. 79).

The discussion about the role of values in science only gainedmomentumwith

the emergence of feminist philosophy of science. Feminist philosophers (for

7 Kuhn distinguishes here between natural and social sciences and sees the latter much

more situated in a social context than the former. This, according to Kuhn, already tran-

spires in the way that the training for future scientists is structured in the different dis-

ciplines: while the social scientists are required to study the original sources of previ-

ous scholarly disputes, where they learn to see different perspectives and arguments,

the student of natural sciences is presented with condensed versions of research re-

sults from textbooks. Only advanced students actually study research papers directly.

This “rigid education”, according to Kuhn, prepares the young scientists optimally (in

a period of normal science) for a (professional) life of puzzle solving (Kuhn, 1962, pp.

164–165).
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example, Helene Longino, Donna Haraway and Sandra Harding) raised con-

cern that there is no such thing as an objective, value-free “gaze fromnowhere”

(Haraway, 1989, p. 581).8 Rather, they argue, upholding the value-free ideal

would only hide the actual value judgements that come into play when doing

science. Instead, feminist philosophers have promoted an honest handling

andopen communication of (potential sources of) value-influence in science.A

popular proposal made by feminist philosophers of science to counterbalance

inadvertent value-laden background assumptions is amore pluralistically and

diverse organised science community (Longino, 1990). Although the feminist

criticism of the value-free ideal was first met with reservation by conventional

philosophy of science (see for example Kitcher, 1993), in the last two decades,

the thinking that value judgements are inevitable in science has come back

into the mainstream of philosophy of science. Particular the rediscovery of

Rudner’s 1953 paper has reactivated research interests into the question if and

when values are an appropriate feature of science (e.g., Carrier, 2013; Douglas,

2009; Wilholt, 2009).

3.1.1.2 Epistemic versus non-epistemic values

With the rise of the value-free ideal another distinction also arose: that be-

tween epistemic and non-epistemic values. While many philosophers argued for

value-free science, they also recognised that scientific theories on their ownare

underdetermined (see Chapter 3.2.2). To choose between two competing the-

ories, more than empirical evidence is required.The same empirical evidence

can support several even contradicting theories. Scientists, thus, need some-

thing more to make decisions between two or more equally well-established

theories; some kind of value judgement is needed. Some philosophers have,

therefore, suggested to make a distinction between appropriate, inner-scien-

tific values and those values that come from an outer-scientific realm that the

advocates of the value-free ideal try to keep out of science. Going back to Er-

nanMcMullin (1982), these two types of values are often referred to as epistemic

and non-epistemic values. More specifically, McMullin refers to five criteria de-

fined by Kuhn, which are to fulfil the role of epistemic values in science: accu-

8 Ironically, many of those who first advocated for a value-free science at the turn of the

last century made the (arguably value-laden) judgement that objectivity and value-

neutrality were male attributes and women were, therefore, deemed not suitable for

science (Proctor, 1991, p. 119).
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racy, consistency, scope, simplicity and fruitfulness (Kuhn, 1977, p. 322).9 Pro-

ponents of this distinction argue that epistemic values are distinct from non-

epistemic ones because they “are presumed to promote the truth-like charac-

ter of science” (McMullin, 1982, p. 702).Though they are “normative principles

[…] given an initial commitment to these principles, the scientist need not and

should not let his values, attitudes, and temperament influence his inferences

any further” (Levi, 1960, p. 346).

Thus, the value-free ideal as it manifested itself in the early part of the sec-

ond half of the last century is not a complete rejection of any kind of values, as

Douglas notes:

The ideal that has held sway since 1960 is a complex one. It does not hold

that science is a completely value-free enterprise, acknowledging that so-

cial and ethical values help to direct the particular projects scientists under-

take, and that scientists as humans cannot completely eliminate other value

judgements.However, the value judgments internal to science, involving the

evaluation and acceptance of scientific results at the heart of the research

process, are to be as free as humanly possible of all social and ethical val-

ues. Those scientific judgements are to be driven by values wholly internal

to the scientific community. Thus the value-free ideal is more accurately the

“Internal scientific values only when performing scientific reasoning” ideal.

(Douglas, 2009, p. 45)

By introducing this division between ‘good’ epistemic values and ‘bad’ non-

epistemic, social values, the image of science as a space free fromat least exter-

nal scientific influences appears to stay intact, even if one recognises the issue

of underdetermination.

But in what sense are these epistemic values actually distinct from non-

epistemic social, ethical or political values? Critics of this dichotomy have ar-

gued that many of the values that are traditionally seen as purely epistemic

do not strictly say anything about the truth of a theory (Laudan, 2004). For in-

stance, a theory can be true even when there is an alternative one with a wider

9 Although Kuhn states that these five criteria are not exhaustive, they are often treated

as the canon of epistemic values by philosophers of science. Rooney shows how

philosophers make slight differences in how they define and name those criteria but

finds that the “fact that there is no clear consensus about what is included among the

epistemic or constitutive values does not overly concern many of those who make the

distinction” (1992, p. 14).
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scope. Similar things can be said about the values of simplicity or fruitfulness.

That does notmean that these kinds of values are of no worth to science.There

is more to a ‘good’ theory than accuracy, as Laudan with reference to Bas van

Fraassen points out:

Bas van Fraassen famously argued that a theory does not have to be true to

be good. We can add to that dictum a new twist: a theory does not have to

be false to be bad. A theorymay be bad because it fails the test of possessing

the relevant nonepistemic virtues. In other words, we expect our theories to

do much work for us, work of a sort that most merely true statements fail to

do. (Laudan, 2004, p. 19)

Nor are epistemic values as universal as their advocates claim. Helen Longino

(1990, pp. 83–102, 2002, 2008) argues that one could easily imagine a set of al-

ternative epistemic values,whichwould also fill the gap left by the underdeter-

mination of theories. Onemight, for instance, substitute the values of simplic-

ity and scope by heterogeneity and mutuality. There is, after all, “no prior reason

to think the universe simple, that is, composed of very few things” (Longino,

2008, p. 73).

Besides empirical adequacy, Longino proposes feminist philosophers might

advocate for alternative epistemic values such as novelty, heterogeneity,mutual-

ity and decentralisation of power because they support feminist objectives in sci-

ence. Longino provides several examples from the history of science to argue

which specific values are observed can have actual social consequences. Such

instances aremedical research only done onwhitemales or economic theories

of the household assuming patriarchal structures, both adhering to an ideal of

simplicity (Longino, 2008, pp. 74–75).

Therefore,arguesLongino, thesekindsof values–the traditional epistemic

values andanykindof alternative values–are actually heuristics.Theseheuris-

tics are specific to particular scientific communities andmight shift over time

when they no longer serve their purpose.Thus, the alternative values Longino

proposes are not feminist in themselves, even though feminist might favour

them but “subordinat[e] to a broader cognitive goal” (2008, p. 78). Ergo, there

is nothing special about so-called ‘epistemic’ values:

The feminist and traditional virtues are on par, epistemologically. Both have

heuristic but not probative power. As heuristics, they help an investigator

identify pattern or order in the empirical world. They are often transmit-
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ted as part of an investigator’s training, as part of the common, taken-for-

granted-background. (Longino, 2008, p. 74)

Hence,opponents to thevalue-free ideal haveargued that theallegedepistemic

values are not purely epistemic in nature but emulate current dominant social

values. Feminist philosophers, for instance, have demonstrated in case studies

from the fields of biology, primate studies, economics andmedicine (amongst

others) how androcentric values are sometimes ‘hidden’ behind the apparent

‘objective’ epistemic values.10 Because of this some philosopher such as Lau-

dan (2004) and Douglas (2009) have argued that the term epistemic should be

dropped completely to describe values that help scientists in their reasoning

process and that themore appropriate word for these kinds of values would be

cognitive.Cognitive then refers to “those aspects of scientific work that help one

think through the evidential and inferential aspects of one’s theories and data.

Taking the label cognitive seriously, cognitive values embody the goal of assist-

ing scientists with their cognition on science” (Douglas, 2009, p. 93). Thereby,

cognitive values function as an “insurance policy” (Douglas, 2009, p. 107); they

increase the likelihood to find possible mistakes in the reasoning process.

But what about those virtues that are actually truth-conductive? Laudan

argues that ‘true’ epistemic values are a small subsection of the cognitive val-

ues (2004, p. 19). Douglas, however, suggests actual epistemic virtues such as

empirical adequacy or internal consistency should be viewed not as values but as

necessary criteria for any kind of scientific theory (2009, p. 94). For example,

it seems difficult to imagine a satisfying scientific theory that is not internally

consistent.

This way of defining the role of values in science paints a different picture

than the value-free-ideal.There is no longer a clear separationbetween ‘accept-

able’ epistemic values and ‘not acceptable’ non-epistemic values. Douglas ar-

gues one should instead imagine the different types of values as different areas

on a landscape that might intersect in certain places (Douglas, 2009, p. 91).

Inmyopinion Longino,Douglas, Laudan andothers have raised valid concerns

in respect to the dichotomy of epistemic and non-epistemic values.But onemight

aswell questionwhether the term cognitive is not equally badly defined and far-

reaching.Moreover, onemight even askwhether itmakesmuch sense tomake

10 See, e.g., Haraway (1989); Keller (1985); Longino (1990). For an overview, see also Dou-

glas (2009); Longino (2008); Rooney (1992).
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this distinction at all if one takes Longino’s claim serious that cognitive values

might actually be based on concepts external to science. I will, however, not

discuss this any further here as that controversy would lead us astray.

In order to avoid confusion over what the terms epistemic and, therefore,

non-epistemic values actually refer to, I will in the following use the term social

and ethical values.The allegations that climate scientists are biased and the sub-

sequent philosophical debate about the role of values in climate modelling fo-

cuses exactly on those values; the kinds of values that proponents of the value-

free ideal fear would ‘contaminate’ scientific research. The question what ac-

tually the appropriate place for values in climate science is and how severe the

value-ladenness of climate science actually is centres on social and ethical val-

ues.Theroleof epistemic or cognitive values in climate science,on theotherhand,

is normally not disputed.Though there are differences between social and eth-

ical values (Douglas, 2009, pp. 92–93) in general, I will not discuss these any

further here. As this chapter will show, the practice of climate modelling in-

volves a myriad of epistemically not fully constrained decisions and it is often

impossible to determine retroactively if andwhat values were relevant inmak-

ing those decisions.Thus, the question will be to what extent it can be argued

that these kinds of possible value-laden judgements are not inappropriate (as

the value-free ideal asserts) rather thanwhat constitutes the specific value. For

this reason I will refer to social values in short for social and ethical values as the

kind of values that are contrary to cognitive values and according to the value-

free ideal do not have a place in scientific reasoning processes.

Much of the current discussion about the relevance and unavoidability of

social values in science, including climate science, is built onwhat is known to-

day as the argument from inductive risks, specifically two forms of the argument

made by Rudner (1953) and Douglas (2009). Which is why I will now discuss

the inductive risk argument inmore detail before turning to the specific issues

raised by philosophers of climate science. In the following discussion of Rud-

ner’s and Douglas’ remarks on value judgements in the context of inductive

risks, I will specifically use the term ethical value where it supports the argu-

ment – contrary to the later discussion of the situation in climate modelling,

where such a differentiation is, as said above, not particularly helpful, (other-

wise I will continue to use the short version of social values, where both types of

values are concerned).
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3.1.2 Inductive risks and social values

Carl Hempel, who first introduced the term, defines inductive risks as the risk

of accepting an empirical law to the extent that “the presumptive law may not

hold in full generality, and that future evidence may lead scientists to mod-

ify or abandon it” (Hempel, 1965, p. 92). In these situations, opponents of the

value-free ideal contend that scientists sometimes cannot but must make so-

cial-value judgements.

In his widely discussed 1953 paper “the Scientists qua Scientists makes

value judgments” Richard Rudner argues that contrary to what the value-

free ideal proposes – that there is an appropriate, even necessary role for

social-value judgements within science, under the assumption that accepting

or rejecting hypotheses is a quintessential part of the scientist’s work.11 In a

nutshell the argument goes like this: when one accepts this premise and also

assumes that ultimately a scientific hypothesis can never be fully verified, then

one also has to assume that “in accepting a hypothesis the scientist mustmake

the decision that the evidence is sufficiently strong or that the probability is

sufficiently high to warrant the acceptance of the hypothesis” (Rudner, 1953, p.

2). In those cases where the research objective has a wider social application,

judging whether or not a hypothesis is sufficiently proven has to be done

under consideration of social values. Rudner demonstrates this with the now

often quoted example of the testing of drugs versus belt buckles before they

are released for sale.We require a much higher standard before we accept the

hypothesis of a drug containing a toxic ingredient, only in such a quantity

that it is still safe to use than we require of a load of belt buckles based on a

sample size because the stakes in the first case are somuch higher. Put slightly

differently, compared to the consequences of falsely accepting the hypothesis

that a drug is safe to use, a not properlyworking belt bucklemight be annoying

or embarrassing but has no (or only under exceptional circumstances) possible

deadly consequences.Thus, amuchmore thorough testing is required when it

comes to medicine than clothing accessories. This difference in requirements

for testing standards arises not because of epistemical but ethical considera-

tions. For this reason, Rudner concludes that the scientist cannot avoid value

judgement in their role as a scientist.

11 Similar opinions have been voiced by others at the time, such as Churchman (1948) and

Frank (1953). However, Rudner’s paper has been the one discussed the most in subse-

quent years.
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One might now be inclined to argue that the scientist can nevertheless hand

over the responsibility ofmaking value judgements to the public.This position,

commonly ascribed to Richard Jeffrey, who claims that the scientist themself

does not have to accept or reject a hypothesis but merely has to disclose the

probability for one. According to Jeffrey, the scientist, after all, could not pos-

sibly have insight into all the possible consequences of their acceptance or re-

jection of a hypothesis:

One cannot, by accepting or rejecting the hypothesis about the polio vac-

cine, do justice both to the problem of the physician who is trying to decide

whether to inoculate a child, and the veterinarianwho has a similar problem

about a monkey. To accept or reject that hypotheses once for all is to intro-

duce an unnecessary conflict between the interests of the physician and the

veterinarian. (Jeffrey, 1956, p. 245)

Thus, following Jeffrey, the scientists are in no way forced tomake judgements

about the acceptability of a hypothesis.This is something that can be passed on

to those who apply the information they get from the scientists in practice.

Rudner, on the other hand, argues that even just stating a probability for

a hypothesis requires value judgements, as stating a probability p for the oc-

currence of a hypothesisH requires “the acceptance by the scientist of the hypothesis

that the degree of confidence is p“ (1953, p. 4).That is, coming to the conclusion that

the probability ofH is p requires accepting a further hypothesisH’.Therefore, a

common counterargument to Jeffrey’s position is that the problemof the value

judgements is just transferred to another level.

The disagreement between Rudner’s and Jeffrey’s position regarding the

need for scientists to make value judgements is often framed as a disagree-

ment over the question of whether or not probabilities attributed to hypothe-

ses are actually something that can be accepted or if they constitute a degree of

belief in a conventional Bayesian sense (Steel, 2015; Winsberg, 2012). Accord-

ing to the latter position, personal probabilities are not something to be ac-

cepted but something one has, which may shift in light of new evidence but

does not usually involve a conscious decision process. From this point of view

the counterargument to Jeffrey that noting probabilities requires acceptance

of those does not hold up. However, it seems questionable to what extent sci-

entists can actually be described as perfect Bayesian actors. Steel (2015), for in-

stance, points out that scientists often hold vague degrees of belief. In Chapter

3.1.3 we will return to this issue with a climate-science specific argument first

made byWinsberg (2018, 2012).
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As discussed in Chapter 3.1.1.1, the position of (social-)value judgement

having no place in the scientist’s everyday life as scientists, prevailed in phi-

losophy of science in the subsequent years. In the last few decades, however,

Rudner’s paper emphasising the importance andunavoidability of social-value

judgements in cases of inductive risk assessment in science has seen a resurg-

ing interest. Specifically noteworthy here is Heather Douglas’s (2000) account

of how scientists often are confronted with a number of methodological deci-

sions that require social value judgements even before they accept or reject a

final hypothesis.While Douglas does not, as has been pointed out, directly re-

fute the Bayesian interpretation of Jeffrey’s argument (Steel, 2015; Winsberg,

2012, 2018, pp. 135–136; Parker and Winsberg, 2018), it is still worthwhile to

take a look a Douglas’ reasoning for two reasons. First, if one takes scientists

not to be perfect Bayesian actors, then it indicates that value judgements are a

common and necessary element to decision-making processes in science way

before scientists have to decide whether or not to accept the hypothesis. Sec-

ond,Douglas also concludes fromthis that one canassess theappropriateplace

of value judgements in science by distinguishing between a direct and indirect

role of values in science, a question we will also return to.

3.1.2.1 Social values and methodological considerations

Scientists do not only deal with inductive risks and thereby value judgements

when evaluating hypotheses at the end of a scientific project. Douglas identi-

fies three stages atwhich, she argues, social values can anddohave a legitimate

role in science-internal processes due to considerations of inductive risks12 –

which is not limited to the final evaluation of the hypothesis:

If one follows the general schema of the methodology from a scientific re-

search paper, significant inductive risk is present at each of the three "inter-

nal" stages of science: choice of methodology, gathering and characteriza-

tion of the data, and interpretation of the data. At each point, one can make

a wrong (i.e., epistemically incorrect) choice, with consequences following

12 Note that Douglas’ definition of the term inductive risks here is rather board and goes

beyond the risks of accepting or rejecting a hypotheses, but refers to errors more gen-

erally, i.e., making a “epistemically incorrect” decision at “’internal’ stages of science”

(Douglas 2000, p. 565). Harvard and Winsberg (2022) criticise this broad definition

of inductive risks and argue that differentiating between inductive risks and represen-

tational risks is useful, particular in the context of scientific modelling (see Chapter

3.1.3.1).
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from that choice. A chosenmethodology assumed to be reliablemay not be.

A piece of data accepted as soundmay be the product of error. An interpreta-

tion may rely on a selected background assumption that is erroneous. Thus,

just as there is inductive risk for accepting theories, there is inductive risk

for accepting methodologies, data, and interpretations. (Douglas, 2000, pp.

564–565)

Douglas rejects the assumption that in these cases the task of making value

judgements can simply be handed over to the public. She illustrates this with

the example of a case study of animal testing and the risk of dioxin inducing

cancer in rats.

First of all, Douglas argues that in the specific case study onemethodolog-

ical decisions scientists have to make concerns the level for statistical signifi-

cance (2000, pp. 565–569). As the control group of rats will also show a natural

amountof cancer, the scientistmustdecideona standard for statistical signifi-

cance, beyondwhich the amount of cancer found in a rat population is consid-

ered the result of the exposure to dioxin. If they choose not to go along with

conventions of that particular research field,13 Douglas notes, scientist then

have to consider the consequences of false positive (that is falsely accepting a

hypothesis) or false negative (erroneously rejecting a hypothesis) errors when

defining the level for statistical significance. Depending on how low or high

the standard for statistical significance is set, one risks more false positive or

false negative results.When the toxicity is wrongly overestimated, it may have

anegative impact on the affected industries,whereaswhen scientists underes-

timate the possible toxicity, serious consequences for public health may arise.

Therefore, the decision to go one way or the other is a question of trade-offs.

Douglas emphasises that one can only reduce both the risk of false negative

and false positive errors under a significant increase of costs, that is, in this

case improving the experiment by increasing the number of research objects.

Thus, it comes down to the question how the scientists value the possible con-

sequences of both options:

In finding the appropriate balance between false positive and false negative

errors, wemust decide what the appropriate balance is in the consequences

13 It seems nevertheless reasonable to note that even when scientists follow these con-

ventions, onemight as well argue that in those cases scientists domake a value judge-

ment to go along with such conventions.
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of those errors: overregulation and underregulation. Selecting an appropri-

ate balance will depend on how we value the effects of those two conse-

quences […]. Finding the balance requires, among other things, weighing the

non-epistemic valuations of the potential consequences. (Douglas, 2000, p.

568)

That is, in situations of methodological uncertainty where the decision will

have political and social implications scientists cannot but refer to social val-

ues, Douglas argues.

Secondly, when it comes to the characterisation of data, evidence is rarely

unambiguous. In these instances and when the results have consequences for

public safety, scientists likewise have to consider the risks of false positives and

false negatives,Douglas notes (2000,pp. 569–572). In the dioxin cancer studies

Douglas examines, therewas a significantnumberof caseswhere the scientists

did not agree if the rat liver slides showed cancerous lesions. Different groups

of pathologistswho had evaluated the same samples at different points in time

came to different conclusions how those borderline cases should be classified.

In some situations, as Douglas points out, these types of discrepancies can be

circumvented to a certain degree by letting the pathologist examine the tissue

sample ‘blind’, so that they do not know whether the samples come from the

rats exposed to dioxin or the control group. Therefore, when scientists have

an evenly distributed tendency to false positives (or negatives), the errors in

judgement should (in theory) balance each other out. But this approach would

not work formost borderline tissue samples in Douglas’ case study as the liver

tissue samples of rats having been exposed to a high level of dioxin would also

show signs of acute liver toxicity, which the experienced pathologists evaluat-

ing the sampleswould recognize.Thus,Douglas concludes, inductive risks and

associated social-value considerations also do play a role in data assessment in

this particular case and beyond:

This case demonstrates that there is inductive risk in how one applies

categories used in data characterization and that such inductive risk can

be linked to non-epistemic consequences. […] The consequences of the

errors are identifiable and need to be weighed in order to determine which

errors are more acceptable. In other cases, inductive risk may be present in

the selection of the categories to be used as well as the application of the

categories in the characterization of the data. In addition, judgments are

made in science concerning whether to keep data or whether to discard the

data as unreliable. At all these decision points, there is the risk of error, and
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with that risk, the need to consider both the epistemic and non-epistemic

consequences of error. (Douglas, 2000, p. 572)

The third instance, where scientists have to consider inductive risks in their

daily work, is the interpretation of data, according to Douglas (2000, pp.

573–577). In the case of the dioxin-study, there was considerable disagreement

whether the result should be interpreted as there being a specific threshold

for the dose of dioxin after which it causes cancer or whether the response

increases consistently with the dosage.Thus,Douglas argues scientists have to

take the inductive risks into account and weigh the consequences of potential

errors in their judgement.Depending onwhether one chooses a thresholdmodel

or a linear extrapolation model, the acceptable dosage for human consumption

will be set differently. The consequences of a linear extrapolation model are

usually stricter regulations than of a threshold model. Which one is chosen

has consequences for the general public and the industry more specifically, as

a wrongly chosen thresholdmodel will most likely have negative consequences

for public health whereas if it turns out that one erroneously adopts a linear

extrapolation model industries will most likely be overly regulated.

Thus, in the case of socially sensitive research, scientists have to make so-

cial-value judgements at different stages in the science internal process, con-

cludesDouglas.Further, in those cases,where inductive risks areatplay“value-

free science is inadequate science” (Douglas, 2000, p. 559). And contrary to Jef-

frey’s claim, scientists are the most competent and often only option for mak-

ing these decisions, Douglas claims:

The most important reason is that it is doubtful anyone could fully take

over this function for scientists. Because science’s primary goal is to develop

knowledge, scientists invariably find themselves in uncharted territory.

While the science is being done, presumably only the scientist can fully

appreciate the potential implications of the work, and, equally important,

the potential errors and uncertainties in the work. And it is precisely these

potential sources of error, and the consequences that could result from

them, that someone must think about. The scientists are usually the most

qualified to do so. (Douglas, 2009, pp. 73–74)

In an attempt to clarify the appropriate role for social values in science, Dou-

glas also differentiates between the direct and indirect role of values (2009, pp.

95–108).At the early stageof a researchproject,value judgementsoftenhavean

(acceptable) direct role, Douglas points out.There are, e.g., legitimate reasons
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for ruling out certain methodological approaches for ethical reasons from the

beginning.We do not, for instance, endorse certain kinds of experimentations

on human beings for ethical reasons. In a similar fashion, ethical or social val-

ues may be relevant when determining the objective of a research project. For

example, governments might be more inclined to fund those projects which

have distinct social relevance. Douglas argues, in these sort of situations, at

the beginning of a scientific project, social valuesmay take a direct role in such

away that they “determine our decisions in and of themselves, acting as stand-

alone reasons tomotivate our choices” (2009,p. 96).Values having a place in es-

tablishing research objectives and setting ethical boundaries when it comes to

methodology, are widely accepted – even by proponents of the value-free ideal

–because these decisions are seen as still taking place at a stage of the research

project that has a ‘pre-scientific’ character.

Much more contested is what Douglas identifies as the indirect role of

values. It refers to the role of values in science we have primarily discussed so

far. Douglas applies this term to those instances during an ongoing research

project when scientists have to make decisions under uncertainty. They help

review whether there is sufficient evidence considering the specific circum-

stances, make decisions and weigh the consequences of potential errors in

judgement in the way discussed above. In this form, the role of values is con-

tingent upon the specific evidence at hand, Douglas contends.14 When new

evidence reduces the uncertainty, it also reduces the need and the place for

values.

Thus, Douglas argues, depending on what stage a scientific research

project is at, values may take up different roles. At an early stage, values can

legitimately direct our choices by putting value on it in itself, whereas during

the research project values should only take an indirect role and aid scientists

when they are facing uncertainties.

However, these roles are not as clear-cut as theymight seem at first glance,

Douglas concedes. Under certain circumstances, direct value judgements

might be inappropriate, even at an early stage of a scientific project. These,

notes Douglas, are those cases where “a direct role […] undermines the value

of science itself” (2009, p. 101). This might be the case when objective and

14 That the role of values should be limited to an indirect role, once a research project is

under way, also holds for cognitive values, according to Douglas (2009, pp. 107–108).

This will not be discussed in great detail here because social, not cognitive values are

at the centre of the argument concerning value judgements in climate science.
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methodology predetermine the result of a research project. Furthermore,

Douglas concludes that under certain (exceptional) circumstances, it may be

appropriate for values to interfere directly in the science-internal process.

Such might be the case, when scientists have to adjust their methodology,

because it turns out that the methodology chosen at the early stage of the re-

search project is in fact ethically not acceptable.We will return to the question

to what extent it makes sense to distinguish between a direct and indirect role

of values in science at the end of Chapter 3.1.

3.1.3 Social values in climate science

Oncewe turn our attention to scientific disciplineswhich have to deal with ad-

ditional epistemic challenges coming from the high complexity of the systems

under investigation, such as climate science, it becomes clear that the role of

values within the scientific process reaches even further than inductive-risk

assessments. In such cases, contrary to what the proponents of the value-free

ideal envisioned, the significance of social values cannot be reduced to the role

of setting goals at the beginning of the model-building process. Nor can the

roleof social-value judgements at internal stagesof the scientificprocessbe cut

down to, as Douglas argues, decisions under uncertainties. Rather, as Wins-

berg has shown, the possibility of social value-judgements lies deepwithin the

“nooks and crannies” (2012, p. 132) of climate science.

What differentiates the cases of social values in science discussed here so

far fromclimate scienceare the specific epistemic challenges rooted in thehigh

complexity of both system and models which entails a great deal of epistem-

ically not fully constrained decision making. Because of this, as we will see,

when it comes to the relevance of value judgements, “predictive preferences”

(Winsberg, 2012) gain in significance and “representational risks” arise (Har-

vard and Winsberg, 2022). In the following I will discuss the consequences of

this for the ways that social values might interfere in the model-building pro-

cess. It will be shown that the complexity of the climate models does not only

make it impossible to rule out that some science-internal decisionsweremade

under considerations of social values but even to retroactively (fully) disclose

them. In fact I will claim, this complexity is the reason why we do not have to

fear that bias andwishful thinking could impact themodels in an epistemically

untoward way.

https://doi.org/10.14361/9783839465806-005 - am 14.02.2026, 09:21:47. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839465806-005
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


58 A Heated Debate

3.1.3.1 Unconstrained decision making, predictive preferences

and cost restrictions

As argued before (see Chapter 2.1), there is no such thing as a fixed construc-

tionmanual for a climatemodel.On the contrary, there is a plurality ofmodels

concerning scale, complexity and objective (for an overview see Parker, 2018).

As has been pointed out, considering all idealisations and trade-offs, the qual-

ity of these kinds of models can only be assessed with respect to their purpose

(Chen et al., 2021; Parker, 2009). But evenwithmodels possessing a similar set

of goals, scale and complexity, there are numerous ways to construct a global

climatemodel. On amacroscopic level, Alexander and Easterbrook (2015) have

shown that there are different modelling traditions in Europe and America,

which are both epistemically equally well justified (see Chapter 2.1).The emer-

gence of these kinds of epistemically unforced methodological questions are

not singular events in the process of ‘assembling’ these kinds of computer sim-

ulations. It is not an uncommon occurrence in process of model construction

that there are several different options how to represent one and the same cli-

matemechanismwithin themodel depending on the particular objectives and

underlying modelling ‘philosophies’. In this context scientists are also often

faced with the question to what extent and in what way to include specific

processes. How these questions are answered depends on the purpose of the

model but also on cost-benefit deliberations.15 For instance, one might imag-

ine a hypothetical situationwhere three differentmodelling groups have to de-

cide how to implement a climate-relevant process into their model, which can

be represented either resolved or parametrised. One modelling group, for ex-

ample, might choose to represent a specific process in their new model by re-

lying on a parametrisation that they are well acquainted with, have used and

tested in a previous model because they are content with the performance of

themodel with said parametrisation. A different research groupmight decide

that it is worthwhile to invest in increasing the resolution of their new model

so that it is possible to integrate that specific process in their model directly in

a resolved way.The scientists conclude that this will hopefully result in a phys-

ically more accurate representation of the process. A third modelling group,

however, might make the decision to improve the existing parametrisation in

15 ‘Cost’ has to be understood in the broadest sense here, see below.
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their currentmodel because they think that thatprocess ismoreeffectively rep-

resented in the model in form of a new parametrisation.16

Similarly, it iswidely acknowledgedamongclimate scientists that there is a

variety of ways of how to tune amodel ormodel components. Tuning is the fix-

ingof certain,otherwisenot verywell constrainedparameter so that theoverall

model result fits better with scientists’ expectation based on observations and

expertise. Although there are some conventions, as it is not possible to tune

a model perfectly in respect to every variable, differences in priorities and in

well-establishedmodelling cultures at individual institutes also influencewhat

approach to the tuning process is taken (Chen et al., 2021, pp. 217–218; Mau-

ritsen et al., 2012). Even though scientists will have good reasons for choosing

the tuning method and objectives that they do, they are also aware that their

decision are not strictly epistemically constrained (Hourdin et al., 2017).17

In practice, how these decisions are made is often also dependent upon the

modelling culture at different research institutes and the specific histories of

the models. However, it should be emphasised here that these are decisions

where the scientists have good (epistemic andmethodological) reasons for de-

ciding theway theydo.But if theyhad chosenoneof the other paths,because of

16 In practice, as Helen Guillemot (2017) has shown, modelling groups only rarely invest

in improving existing parametrisations because the costs in terms of time and effort

are estimated to be too high compared to the benefit of the outcome. Even though

a new parametrisation in isolation might seem as an improvement, due to compen-

sating effects and tuning, it will inevitably perform worse than the old one when first

integrated into the model, which means additional work. See also Chapter 3.3.3.2 and

Chapter 2.1.

17 Historically, tuning has not been an issue that has been discussedmuch within the cli-

mate science community. Hourdin et al. (2017) point out two possible reasons for this.

On the one hand, tuning may be considered to be somewhat ‘unscientific’ and “more

engineering than science, an act of tinkering that does not merit recording in the sci-

entific literature” (2017, p. 590). On the other hand, there may be concerns that em-

phasising the necessity of tuningmay give ‘ammunition’ to climate change sceptics. So

that the climate science communitymay see thewhole process of tuning “indeed as an

unspeakable way to compensate for model errors” (Hourdin et al., 2017, p. 590). How-

ever, in the last decade there have been several attempts to bring the actual reasoning

process behind different tuning strategies to the forefront (Schmidt et al., 2017). Most

notably, in thewidely discussed paper fromMauritsen et al. (2012) the authors explore

as a case study what the effects are of different choices made in the tuning process of

their model.
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different objectives ormodelling cultures, that choice would have been equally

well justified.18

Considering the specific epistemic challenges of climate-model develop-

ment, particularly the difficulties in accessing analytical understanding (see

Chapter 2.1) and the long timeframe, these are not necessarily decisions that

can be made fully at an early stage when a new model is initiated. As will be

argued in the following, these are choices that have to made and (re-)assessed

continually during the process of constructing and evaluating climatemodels.

In the context of climate science the role of value judgements are mostly

discussed in the context of what EricWinsberg has termed “predictive prefer-

ences” (2012, p. 131, 2018, p. 138). As there is no such thing as a perfect climate

model representing every aspect of the global climate equally well, climate

models echo predictive preferences climate scientists have for specific vari-

ables or processes that they consider to be more significant for their research

questions (Tebaldi and Knutti, 2007, pp. 2045–2055). Trade-offs have to be

madewith respect to which aspects of the climate system are to be prioritised,

not just in respect to where one decides to invest time and money but also

purely on grounds of the intricate characteristics of the model building pro-

cess. Considering that the model show path dependency, specific modelling

choices will restrict what further options are available and impact how well

other aspects of the climate can be represented in the model. The setting of

priorities is also a necessary feature of climatemodel tuning (Mauritsen et al.,

2012).19 One cannot tune the perfect model; a model can only be tuned well

with respect to certain aspects. There are again trade-offs to be made to the

18 This is not unique to climate science; it also affects other scientific disciplines using

computer simulations of a similar complexity. A similar situation is, for instance, de-

scribed by Ruphy (2016, pp. 100–101) in relation to the use of computer simulations in

astrophysics.

19 Hourdin et al. describe what kind of different objectives these might be and what in-

fluences them: “different models may be optimized to perform better on a particular

metric, related to specific goals, expertise, or cultural identity of a givenmodelling cen-

ter. Groups more focused on the European climate may give more importance to the

ocean heat transport in the North Atlantic, whereas others may be more concerned

with tropical climate and convection. Some groups may put more weight on metrics

that measure the skill to reproduce the present-day mean climatology or observed

modes of variability, while others may privilege process-oriented metrics targeting

processes that are believed to dominate the climate change response to anthropogenic

forcing” (2017, p. 592). Note that possible tuning goals listed here do not just concern
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extent that tuningmodels to improve the representation of specific features of

the climate often goes hand in hand with a decline in the model performance

in respect to other aspects of the climate (Hourdin et al., 2017, p. 596). These

value judgements concerningwhat to prioritisewhen tuning amodel also can-

not be circumvented by relying on algorithmic (so-called objective)20 methods

to find optimal parameters for a specific target, because it still requires the

scientists to set goals for the tuning process. As Hourdin et al. point out: “An

objective algorithmmerely identifies those parts of the procedure that require

the subjective scientific expertise of the modeler” (2017, p. 594).

There are further ways in which social-value deliberationsmight influence

methodological decision-making in climate science. Often these kinds of de-

cisions are determined by considerations of costs. Costs have to be understood

here in a broad sense, it does not only include financial deliberation but also,

for instance,questions in respect to timeandeffortput intodevelopingamodel

or specific part of the model.21 These considerations are similar to predictive

preferences but are different in the primary goal, though a finite number of

resources will eventually also lead to predictive preferences.

Harvard andWinsberg (2022) argue that in the context of computermodelling

one ought to distinguish between inductive risks and representational risks.

Representational risks go beyond the risk of upholding a false fact. Harvard

andWinsberg emphasise that representational decisions are not questions of

right orwrong butwhether or not an adequate choice for the intendedpurpose

and considering all relevant epistemic agents ismade.This is an important dis-

tinction that does not just pertain to the here discussed occurrence of unforced

decisionmaking in climatemodelling.Harvard andWinsberg note that in the

context of complex computer simulations in general it is a well-established in-

sight that they often include elements that do not have a direct representation

in the ‘real’ world. It is not even uncommon in complex computer simulations

that a ‘false’ parameter might be the right choice as it adequately compensates

for inaccuracies elsewhere in the model. One example Harvard andWinsberg

point out from climate modelling are parameter values for cloud formation,

pure scientific research questions butmay also serve distinctly socio-political purposes

concerning dealing with anthropogenic climate change.

20 See Chapter 2.3 and Chapter 3.4.3.

21 In science time and effort of can, of course, again be translated into financial costs (see

also Knorr-Cetina, 1981, pp. 40–41).
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which are chosen to balance energy leaks in climate models at the top of the

atmosphere (2022, p. 15).

One might also ask the question to what extent different modelling cultures

influence how epistemically unforced decisions aremade.Differentmodelling

groups or institutes can develop different traditions concerning central ques-

tions in themodelling process (Skelton et al., 2017). Besides the differences be-

tween European and American model structures (Alexander and Easterbrook,

2015) already discussed here climate scientists have also stressed that there

are different approaches to tuning at different institutes (Hourdin et al., 2017;

Mauritsen et al., 2012). There can also be diverging attitudes towards basic

ideas about the future of climate modelling, e.g., whether to invest in better

parametrisation or in reducing the grid size so as to reduce the dependency of

models on parametrisations (Guillemot, 2017). This is similar to different ‘lab

cultures’ which are traditionally attributed to groups of scientists working in

laboratory settings (Knorr-Cetina, 1999; Latour andWoolgar, 1979).

At first glance these modelling cultures seem to resemble cognitive values,

insofar as they seem not to be affected by non-science related assumptions.

However, just as cognitive values might as well be fundamentally grounded

in political or ethical ideals (Longino, 2008), it does not seem too far-fetched

to question if this might not also be the case for these modelling cultures.

The belief that scientists should invest more time and energy into improving

parametrisation, for example, instead of being hell-bent on reducing the grid

size of models could also be influenced by the hope to thereby provide better,

policy-relevant results considering the time constraints.

While philosophers of sciencehavediscussed the role of values in climatemod-

elling extensively, one question that has so far has seen much less attention is

whether the collection and creation of observational data (sets) are similarly

affected by social value deliberations. But it is to be assumed that the situation

here is notmuch different to that in climatemodelling.Observational data are

often understood by laypersons as some kind of ‘objective’ benchmark against

which the quality of a theory or a model can be assessed. However, as will be

discussed inmoredetail inChapter 3.2.3, climatedata, just likemodels,are im-

pacted by a wide variety of uncertainties and inaccuracies. Therefore, a great

deal of processing in terms of filtering and homogenising has to be done to

create global data sets.This comes hand in hand with some degree of method-

ologicallynot fully constraineddecisionmaking (Parker,2018).As, for example,
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the case of satellite data shows (Chapter 3.2.3.1.2) there is somewiggle room in

how to interpret this kindof data, the possibility of some inductive risk consid-

eration taking place does not seem to be too far of. Further, Brönnimann and

Wintzer (2018) point out the context-dependency of climate data.That is, “cli-

mate data products carry imprints of social, political and economic contexts”

(Brönnigmann andWintzer, 2018, p. 4) of the circumstances under which they

were created. One place they note this can be observed is in the historical in-

equality in climate data coverage,which they argue “is not just a data problem,

but also one that affects climate justice” (Brönnigmann and Wintzer, 2018, p.

4). As will be further explicated in Chapter 3.2, climate models are not fully

theoretical constructs but are “data-laden” (Edwards, 1999), sowhat data is col-

lected and available also has an impact on the model-building process. Thus,

it has to be assumed that the decisions made in the process of the creation of

data sets (which do, as can be derived from Brönnimann andWintzer’s analy-

sis often resemble predictive preferences) are anchored deepwithin the “nooks

and crannies” (Winsberg, 2012, p. 130) of climate modelling.

Nowonemightbe inclined to furtherdiscuss inwhatparticularways social val-

ues are relevant in specific climate-science internal processes and what their

specific impact is. But, in my opinion, that would be somewhat missing the

point. What is of relevance here is not which specific values influence climate

modelling,but that there are, asWinsberghas pointed out, literally “thousands

of unforcedmethodological choices” (2012, p. 130), which require to set priori-

ties that cannot be determined purely on the basis of epistemic considerations

alone.

3.1.3.2 Non-traceability

In the debate about values in science, it has been argued that in those cases

where scientist have tomake judgements on the basis of social-value delibera-

tions scientists should take care of communicating what went into these deci-

sions as explicit as possible to policy makers and the general public to ensure

the integrity of science (Douglas, 2009, p. 136). Against the backdrop of the vast

number of epistemically unforced decisions and the different ways in which

social values may play a role in the construction of a climate model, the ques-

tion is whether this call for disclosure of all possible value-laden assumptions
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can still be met.22What complicates this even further is the fact that complex,

global climate models are not built by just one scientist or even one research

groupwith afixed small numberof scientists.Even though the traditional ideal

of a scientist is that of a lonely man working in his lab or at his desk, the no-

tion of science being a community effort is well established in philosophy of

science.What is relatively new to science and has so far not been examined by

philosophers asmuch is what has been called “radically collaborative research”

(Huebner et al., 2017; Kukla, 2012; Winsberg et al., 2014), where the research

is shared betweenmany different research groups.23 In climate science the re-

search is often not only scattered between different research centres but be-

tween different generations of scientists.24 No modern climate model is built

directly fromscratch.Climate scientist frequently rely onbits of codingor even

whole model parts that were originally developed for a predecessor of the cur-

rent model, often by a previous generation of scientists (Knutti et al., 2013).

Thus, decisions about how to model specific processes made ‘back in the days’

are still present in today’s models.How these past decisions influence the per-

formance ofmodels can be hidden inmany ways within themodels (Winsberg

2012). Further it is not, for the so inclined scientists, “foreseeable howmethod-

ological choices in model development will shape modeling results in the long

run“ (Parker andWinsberg, 2018, p. 141; for an example see Lenhard, 2018, pp.

839–840).

On top of the intricate model history, other features of climate modelling,

such as the high interdependency between different model parts, the fuzzy

modularity and the need for tuning, mean that ultimately the model can only

22 This argumentwas firstmade byWinsberg (2012), see also Parker andWinsberg (2017)

and Winsberg (2018, pp. 130–153).

23 Besides climate science, examples for this kind of fractured research can be found in

modern physics amongst other research fields. One might, for instance, think of med-

ical research (Kukla, 2012) or modern astrophysics. For an example from the field of

gravitational waves, as made by Collins (2014), see Chapter 4.2.1 and see also Collins

(2017).

24 Research centres usually develop their ownmodels although cooperation betweendif-

ferent institutes are, of course, taking place. One such example is the new ICONmod-

elling framework that the Max-Planck-Institute for Meteorology developed together

with the German Weather Service (Zängl et al., 2015). Furthermore, models might

also incorporate specific parts that were originally developed for othermodels (Parker,

2018).
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be fully evaluatedwithin the context of the completemodel. It is, therefore, of-

ten difficult to say whether adding a new element to the model delivers the

desired results because of the new component on its own or is not also the

outcome of some compensating effect resulting from the interdependency of

different elements of the model. This “epistemic opacity” or “analytic impen-

etrability” (Baumberger et al., 2017; Humphrey, 2004; Lenhard andWinsberg,

2010) of climate models also cannot (at least practically) be resolved by recon-

structing the model completely from the ground up, asWinsberg points out:

Of course the modeller could – in principle – rework the entire code. The

point is, however, that in evenmoderately complex cases, this is not a viable

option for practical reasons. At best, this would be far too tedious and time-

consuming. At worst, we would not even know how to proceed. (Winsberg,

2018, p. 143)

In this context it is evidential why any claim similar to that of Jeffrey’s that the

scientist, instead of making value judgements, should factor the uncertainty

estimates concerning different methodological options into their overall as-

sessment cannot be maintained in the context of complex computer simula-

tions.AsWinsberg (2012) notes, climate scientists (and scientistsmore broadly

(Steel, 2015)) cannot be viewed as perfect Bayesian actors.25Theclimate system

and the models that scientists work with are too complex for any one person

to have a complete understanding of the effect of all trade-offs and prioritising

on the model.26 Put in a different way, the high complexity of climate models

with its hundred thousands of lines of code, decade long construction history,

25 Winsberg (2018, 2012) points out that, contrary to Douglas’ (2000) claim that the need

for inductive risk assessment in the context ofmethodological decisionmaking, shows

the inevitably of social value judgements in science, this does not, in and of itself, re-

fute the assertion that scientist cannot avoid social value judgements. One might still

claim that the scientists only have to factor all issues with a particular methodological

choice into a probability assessment, which they can pass on as an expert judgement

to stakeholders, provided that we assume a classical Bayesian understanding of prob-

abilities and the actors holding them (see Chapter 3.1.2). Winsberg discusses this as

the “Bayesian response to Rudnerian and Douglasian arguments from inductive risk”

(BRAIR). For a more formal discussion of the Bayesian argument, see Steel (2015) and

why it fails in the context of social values in climate science, see Parker & Winsberg

(2018) and Winsberg (2018).

26 In practice, a insufficient documentation of different modelling steps can make the

models even more obscure (e.g., tuning, see Chapter 2.1).
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its “fuzzy modularity” (Lenhard and Winsberg, 2010) and ever further devel-

opmentmake it hard to imaginewhere scientists should even begin to disclose

thewhole reasoningprocessbehindeverydecisionevermade in themodel con-

struction process (Winsberg, 2018, p. 143). The labyrinthine way of the “nooks

and crannies” (Winsberg, 2012, p. 132) of climate modelling makes it impossi-

ble to fully trace the consequences of all possible social value judgementsmade

in the model building process.

To be clear, the crux here is not that every epistemic gap is necessarily filed

by social values but that,when reviewing awhole climatemodel, it is not possi-

ble to evaluate retroactively to what extent and at what point exactly what kind

of social values were a relevant factor in a decision-making process, as well as

in what way and if at all they have influenced today’s model outputs.

3.1.3.3 Coarser uncertainty quantification and other

possible counterarguments

Originally, the discussion about the influence of social values in climate sci-

ence mostly centred on uncertainty quantification derived fromMIPs. In this

context there has specifically been some disagreement about how severe the

influence of social values actually is.WhileWinsberg (2018, 2012, 2010) has ar-

gued for the possibility of social values filling the void left by epistemically un-

forced decisions in climate modelling, which cannot be (fully) accounted for

during the evaluation process of models, others (Parker, 2014; Schmidt and

Sherwood, 2015) have argued that this problem would be at least significantly

reducedwhen scientists are not forced to give a precise estimates of uncertain-

ties but rather are given the option to express uncertainty in ranges of proba-

bility. Such a more coarsely grained scheme for uncertainty quantification is

what is used by the IPCC for scientists to express their degree of certainty in

assessing the current state of climate research. In the Guidance Notes for Lead

Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties

(Mastrandrea et al., 2010) authors of the IPCC assessment report are given a

guidelinewhich they canandshould refer towhenconveyinguncertainties (see

Figure 2).27 Instead of requiring the scientists to express uncertainty estimates

in fixed and precise numbers, they are givenwider intervals.The issue of social

values in climate modelling can be mitigated this way, arguesWendy Parker:

27 A further discussion of the Guidance Notes for Lead Authors will follow in Chapter

3.3.3.3.2.
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even if social values sometimes do come into play in themodel development

process in the ways suggested byWinsberg, the influence of those values on

estimates of uncertainty will be reduced when coarser estimates are given.

The influence will be reduced insofar as choices in model development will

less often make a difference to the uncertainty estimates produced. (Parker,

2014, p. 28)

Figure 2: Likelihood scale from the Guidance Note for Lead Authors

for the 5th assessment report.

Source: Mastrandrea et.al., 2010, p. 3, Table 1

At first glance this might be a satisfying solution, but a closer look reveals

that it does not solve the underlying problem. It is likely that a coarser scale

for communicating uncertaintieswill reduce the influence of social values.But

the complexity of climatemodelling prevents us from evaluating howwell this

actually works. It is for the same reason that it is not feasible for scientists to

keep track of every possible way in which values might have an influence on

the model-developing process and then communicate resulting uncertainties

to policymakers and the public. The number of epistemically not fully deter-

mined decisions are so large and stretched over such a big timeframe that it

seems unimaginable how it should be possible tomonitor or quantify the deci-
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sion-makingprocess in all its details.Norwould it be a viable solution to advice

scientists to go on to develop every possible variety of a model and then evalu-

ate the impact of every single decisionmade on the performance of the model

with statistical methods. As it is usually a multiple year-long project to build

a climate model of the scale of an ESM, it is practically not possible to build

every thinkable versions of a model. Climate scientists do use model intercom-

parison projects (MIPs) to explore structural uncertainties, butMIPs are not sta-

tistical evaluation methods in the sense of, for instance, a Monte-Carlo study

(seeChapter 3.3.3.3).Theydonot sample fromthewhole spaceof allmodels. In-

stead, they are better described as “ensembles of opportunities”28 (e.g., Parker,

2010, pp. 270). Parker and Winsberg note in this context that climate models

are used precisely “because it can be very difficult to reason about such systems

without them“ (2018, p. 140).That is, when reasoning about the effects of some

modelling decision it often requires scientists tomake use of their previous ex-

perience with the available models. However this makes it questionable “how

‘escapable’ the model-based influence of nonepistemic values“ (Winsberg and

Parker, 2018, p. 140) is even if one resorts to giving coarser estimates.

What is more, the option of a more coarsely grained uncertainty scales

brings with it its own new sort of value judgements. Scientists now have to

make a decision which kind of scale to use. And the underlying assumptions

might well be influenced by social values, asWinsberg argues:

it seems clear that at least sometimes it is a consideration of the likely appli-

cations of an uncertainty report that guide the choice between a wider and

more confident report and a narrower and somewhat less confident report.

Perhaps a narrower, even somewhat less confident interval is thought to be

more useful for policy makers. In such cases, social values are once again

playing a role. (Winsberg, 2018, p. 149)

On the other hand, one might also question whether the gaps left by method-

ologically unforced decisions are necessarily filled by social values. Parker ar-

gues that oftentimes pragmatic considerations instead of social values are the

decisive factor:

Suppose a group of climate scientists is further developing their climate

model now that more computing power is available. Which physical process

28 MIPs will be further discussed in Chapter 3.3.3.3.
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should they ‘‘add’’ to their model next? Suppose their choice is epistemi-

cally unforced, i.e. they cannot argue on purely epistemic grounds that one

process in particular should be added next. Must their choice then either

be arbitrary or determined by social values? No. Pragmatic factors can also

fill the gap. For instance, the scientists might already have in hand some

computer code for process P but not for processes Q, R, or S. Or they might

judge that it will be much easier to incorporate P than to incorporate Q or R

or S, given past choices inmodel building. Or theymight be experts on P but

havemuch less understanding of Q and R and S. Or itmight be that a leading

modeling group incorporated P for reasons like those just identified, and

now it is seen as de rigueur for state-of-the-art climate models to include

P. And so on. Indeed, it is plausible that pragmatic factors like these often

influence or even determine model development choices. (Parker, 2014,

p. 27)

It is quite plausible that pragmatic considerations can be significant in climate

model building.But is that sufficient to completely rule out the potential influ-

ence of social values in climate modelling? Clearly not.

First of all, one might ask what “pragmatic” in this context even means.

What exactly differentiates social from pragmatic values? And are social and

pragmatic necessarily mutually exclusive? Do not pragmatic and social con-

siderations sometimes overlap?Onemight verywell imagine a situationwhere

the decision to fall back on a pragmatic choice such as relying on a model part

that is already well known to some of the scientists involved might be influ-

enced by underlying social values. Those may be that a timely solution is val-

ued more even, if it is at the expense of a possibly more precise or detailed

answer, because climate change is an issue requiring urgent answers from sci-

ence. More generally speaking, the decision to go with a pragmatic solution

is always based on the (possibly social) value-laden decisions that a pragmatic

approach is justified in this situation, as Anna Leuschner rightly notes (2016, p.

79). Furthermore, Leuschner argues, even when a certain piece of code is cho-

sen on the basis of social-value-free pragmatic factors, it is still quite possible

that the development of thatmodel component or even just a part of themodel

component has been influenced by non-epistemic assumptions at one point or

another.

Here again it becomes apparent how deepwithin the “nooks and crannies”

(Winsberg, 2012, p. 130) of complex computermodelling value judgements can

lie. Pragmatic factors or not, the questions remain to what extent it is actually
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possible to mitigate the influence of social values and how one would even go

about measuring this. Retroactively, there is neither a way of knowing for cer-

tain how much influence social values had on a climate model nor is it in any

way possible to keep track of every thought that went into the construction of

a model. What is so significant is not the particular impact of social values in

climate modelling but that we have no way of fully tracing their influence.

But if we cannot retrace and evaluate the influence of social values, it

seems also not feasible to restrict exactly what kind of social values should

be allowed to impact the scientific process. Kirsten Intemann (2015) proposes

that social values can be considered adequate in climate modelling as long

as they are democratically supported beyond science. But it is not clear how

this could actually be put into practice, let alone be monitored, even if one

considers a less complex field of science than climate science. It should be

noted that Intemann does not expect scientists to consult the general public at

every step of the way. She argues that allowances should be made for a certain

flexibility how stakeholders are chosen and towhat extent their values actually

shouldmatch those ofwhom they represent so that “modeling decisions can be

more or less justified in degrees depending on the extent to which social and

epistemological aims are clear and there is evidence that theywould be broadly

endorsed“ (Intemann, 2015, p. 228). Further, she argues that the scientist is not

required to consult the stakeholders at every step of the way, rather scientist

and stakeholder are in “a process of interactive feedback loops” (Intemann,

2015, p. 288). Still, there is no way of knowing if just democratically deter-

mined values (even if only to varying degrees) are really the only ones that play

a role in the decision-making process in climate modelling. On the contrary,

it seems very questionable to me that they are all necessarily democratically

supported.The sheer number of methodological underdetermined decisions,

again, makes that very unlikely. After all, scientists are not a homogenous

group, so we can expect them to have a variety of values and, as epistemically

not fully constrained choices are a consistent feature of climate modelling,

it is questionable whether they actually check regularly if their choices are in

accordance with the wider societies’ values. But whatever might determine

those “thousands of methodologically unforced decisions” (Winsberg, 2012, p.

130), we might never entirely know for at least a significantly large number of

them.
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All this might lead one to question why some philosophers and even cli-

mate scientists29 are so determined to show that the influence of social values

in climatemodelling is eithernegligible or can somehowbe (democratically) le-

gitimised. I thinkWinsberg is right when he argues that at the root of this is a

misunderstanding and that value-ladenness “is not at all the same as the claim

that scientific conclusions are reached in a way that is systematically biased”

(Winsberg, 2018, p. 150). Mere value-ladenness is not does not mean outright

bias.

3.1.3.4 Systematic bias and wishful thinking

This leadsusback to themain concernof theproponents of the value-free ideal:

social values in sciencewill inevitably lead to bias andwishful thinking.At first

glance, this might seem to be a reasonable concern. After all, climate science

seems to be saturated with all sorts of possible social-value-type assumptions.

And as climate change is a highly political topic, one might assume that this

could give scientist plenty of opportunities to influence themodels consciously

or unconsciously in a way that suits them best. However, a closer look at the

situation shows that this concern is unwarranted.

First of all, the number of scientists involved in the development of a global

climate model (at least in the case of those of the complexity of an AOGCM or

ESM) make it highly unlikely for it to be possible for one scientist to single-

handedly ‘sabotage’ a model, at least not without being noticed by their col-

leagues.However, a follow-up claimmight thenbe that climate scientist collec-

tively consciously or unconsciously influence the model developing process in

away so themodels are in accordancewith their personal social convictions. In

the first case,wewould imply that there is a grand conspiracy at play involving

huge parts of the climate science community. If we disregard this rather out-

landish assumption, the second possibility is a little bit more complicate to re-

fute.This claim relies on the assumption that scientists are amonolithic group

in one way or another. Looking back at the history of public perception of cli-

mate science it has not been an uncommon occurrence for climate-change de-

niers to accuse scientists of being biased. Either because they (unconsciously)

fear that theirworkwould otherwise be redundant or because they cannot sep-

arate their work and their personal political convictions, as described in the

introduction to this book.

29 For examples of the former, see also Betz (2013) and for the latter, see Schmidt and

Sherwood (2015).
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The worry that the value-laden background assumptions of scientists can

have an inappropriate effect on scientific research in general is also voiced by

many feminist philosophers of science. Longino (2002, 1990), for instance, ad-

vocates for a pluralism of perspectives in science.The hope is not that,within a

diverse group of scientists with different backgrounds (social, racial, political,

and so forth) compared to a group of scientists with a homogeneous set of val-

ues, the influence of social values can be prevented but that their impactwill be

easier to detect. Leuschner (2012a) argues that the IPCC’s structure, regarding

the selection of scientists, is similar to such a kind of pluralism.30 As an in-

tergovernmental organisation the IPPC specifically selects the authors “taking

into account the range of scientific, technical and socio-economic views and

backgrounds, as well as geographical and gender balance“ (IPCC, 2023). This,

argues Leuschner (2012b, pp. 176–177), fulfils two purposes: on the one hand,

the hope is that all involved countries feel included and are, therefore,more in-

clined to implement mitigating climate policies. But on the other hand, there

is also the epistemic expectation that this will ensure that all relevant knowl-

edge and data is taken into account under the assumption that scientist have

unique and specific scientific, cultural and political knowledge about the re-

gion or country they come from. The IPCC itself also states that the reason

for diversifying the field of participating scientists is “to ensure that reports

are not biased towards the perspective of any one country or group of coun-

tries and thatquestionsof importance toparticular regionsarenotoverlooked”

(IPCC, 2023).The purposeful inclusion ofminorities in science is not an unsci-

entific act fuelled by social values but rather follows good epistemic consider-

ation.

30 To be more precise: Leuschner agrees with Longino on the necessity of a pluralist ap-

proach to science in order to reveal hidden value assumptions, but she also criticizes

that Longino’s idea how this should be implemented in practice “suffers from an in-

herent circularity” (Leuschner, 2012a, p. 197). Longino argues for a pluralism that si-

multaneously demands that everybody ought to be able to participate in the critique

of scientific discourse but also to exclude any unqualified opinions. This is contradic-

tory and circular, notes Leuschner, as it is not clear how any kind of standards defining

what qualifies contributors are is to be determined, without constricting the pluralis-

tic process of including as many perspectives as possible. Inspired by Kitcher’s concept

of “deliberators” (2001), Leuschner argues for a pragmatic and situation-specific solu-

tion for this problem including pluralistically organised but politically installed expert

groups, which would evaluate scientific practices and findings, such as it is the case

with the IPCC.
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However, it is not just the outer socio-scientific structure of organisations

like the IPCC that implement procedures to constrain bias, but also the com-

plexity of both the climate systemand themodels in andof itself that helps pre-

vent wishful thinking affecting research. Complex climate models of the scale

of an ESM or AOGCM are used for multiple purposes. Contrary to the public

perception, themain goal of climate science is not just to further pin down ex-

actly how the climatewill changeunder a certain emissions scenario but rather

advance the understanding of specific climate processes and the climate sys-

tem as a whole. Considering the amount ofmoney and effort going into devel-

oping a new model of this type, it seems obvious that scientists and financial

backers are very much interested in developing models that can be used for a

variety of purposes.31However, this alsomeans thatdifferent researchers or re-

search groups that are involved in the development process come with slightly

different agendas to the table.

What is more, the argument that climate scientists could just adjust the

models to their own preference loses in strength when one considers that var-

ious parameters of interest do not exist in isolation in the models. Quite often

changingoneparameter alsodirectly influences other.Thus,asnot all variables

and processes that the scientists would like to explore with the model can be

equally well represented, scientists are again confronted with having to make

trade-offs with respect to their competing preferences. Here again is a kind of

pluralism at play.32

Climate science, thus, gives us a perfect example why possible value-laden

deliberations within the inner-scientific process are by far not as much of a

threat to science as the discussion about them in philosophy of science lets

us believe. Not because they are so rare or obvious to spot. On the contrary,

there is a myriad of ways in which social values might influence scientific pro-

cesses, yet because of that they are not just unavoidable but also mostly epis-

temically harmless. Additionally, as this chapter has shown, fuzzy modular-

31 There is currently even a trend to develop models that can simultaneously be used

for climate modelling purposes as well as weather prediction. This was first done with

the Unified Model of the Met Office in the UK. In Germany, the Max-Planck-Institute

for Meteorology and the DeutscherWetterdienst (GermanWeather Service) have also

joint forces to develop a shared model framework (ICON).

32 Besides that, one has to remember that climate scientists rely onmore than ESM to as-

sess the impact of climate change, such as a variety of global models, regional models

and empirical data fromobservation and experiments fromdifferent fields of research

and expert judgement (see Chapter 3.3.3.4).
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ity, compensating effects and entailing trade-offs mean that it is simply im-

possible to tune the ‘perfect’ model. The complexity of the climate modelling

is simultaneously the reason why value-laden considerations may enter the

climate model building process as well as the very feature that protects cli-

mate science from unwanted (conscious or unconscious) political or social in-

fluence.The consequences of everymodelling decision can be somanifold and

inscrutable that itmakes it in factmuch harder to argue that it is even possible

for scientists to influence themodels effectively inaway that suits their ownso-

cial or political beliefs (Parker and Winsberg, 2018). Further, representational

risks, which are likely a bigger source of social value-laden decisionmaking in

climatemodelling than inductive risks do not constitute “influences thatmake

it more likely that one conclusion rather than another will be reached” (Wins-

berg, 2018, pp. 150).

3.1.4 Conclusion

Nowadays the vastmajority of philosophers of science accept that value judge-

ments are an unavoidable element of science. But there is a lively discussion

ongoing about what exactly the appropriate role of social values is and how

the non-epistemic, social realm can be constricted. While Intemann, for in-

stance, argues that “value judgments are legitimatewhen they promote demo-

cratically endorsed epistemological and social aims of research“ (2015, p. 217),

Douglas (2009) suggests that social values at stages internal to science should

be restricted to an indirect role. Both positions have in common that they ar-

gue that the influence of social valuesmust be restricted and limited to specific

cases one way or another.

When it comes to a differentiation between the direct and indirect role of

values, it seems questionable if that distinction is particularly helpful here.The

distinction thatDouglasmakes is fuzzy to beginwith.Douglas notes that there

are exemptions for both kinds of roles of values.Thus, values might play a di-

rect role in the inner-scientific process such as when the ethical implications

ofmethodologies have to be unexpectedly reassessed. In the sameway, accord-

ing to Douglas, social values might also be inappropriate in the pre-scientific

context when they undermine the core scientific goal of gaining knowledge.

Further, inductive-risks assessment isnot theonlyway inwhichvaluesplay

an unavoidable role in science-internal processes. As Harvard and Winsberg

(2022) note, when it comes to representational risks, determining the appro-

priate role for social values by distinguishing between a direct and indirect role
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of social values is no longer a viable route.33 Predictive preferences and cost de-

liberations interfere in amuchmoredirect form.Note that these kinds of value

judgements are not just decisions under uncertainty but, in fact, decisions of

scientific research objectives.

It has to be emphasised here that predictive preferences are not necessar-

ily priorities which are set before the model is developed.There might be cer-

tain priorities that scientists define before setting out to create a model. But

these have to be rather general as themodel cannot be planned in all its details

from the beginning. Climate modelling involves a certain degree of tinkering

and trying out whichmethod works best for the specificmodel (Held, 2005).34

The complexity of these kinds of models makes it impossible to anticipate ev-

ery decision necessary in its construction.Thus, the research goals and prior-

ities are constantly under some threat of having to be reset and readjusted (to

some degree at least). Further, the number of people involved, often over sev-

eral generations, makes it unlikely that they all share and abide by the same

interpretation of these priorities. This is further complicated by the fact that

by relying on model parts, whether whole parametrisations schemes or bits

of code originally developed for different models (in other words by not con-

structing the model from scratch) choices made decades ago will constrict the

modellingprocess.Therefore,one cannot simply view thesepredictive preferences

as pre-scientific goal setting, that is the kind of social-value interference that

even most proponents of the value-free ideal see as unproblematic (Douglas,

2009, p. 45).

The value-free ideal has always been an illusion, created by science to pro-

tect itself againstunwanted interference fromreligion (Rudner, 1953) or for fear

of losing its authority (Douglas, 2009, p. 79). As much as the supporters of the

value-free ideal have tried to deny it, values have always been part of science.

Science is neither all of a sudden overrun by social values nor has science be-

come unreliable and biased. Such a view of science overlooks the fact that this

is a state that science has always been in. The increase of complex systems as

the subject of research in science just makes the illusion of the value-freeness

of science that muchmore obvious.

33 Although the authors come to the conclusion that where the risk of endorsing as false

fact is concerned, limiting social value judgments to an indirect role at an internal sci-

entific stagemight still be a good way to rule out wishful thinking (Harvard andWins-

berg, 2022).

34 See also Chapter 4.2.2.
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It is, of course, quite understandable why some climate scientists have ini-

tially reacted hostile to the suggestion that social valuesmight be at play in cli-

mate modelling (e.g., Schmidt and Sherwood, 2015).35 After all, they are regu-

larly under fire from climate-change deniers, who accuse climate scientists of

being misled by their own personal convictions. As Proctor puts it:

Value-freedom is an ideology of science under siege – a defensive reaction to

threats to the autonomy of science from political tyrants, religious zealots,

secular moralists, government bureaucrats, methodological imperialists, or

industrial pragmatists asking that science be servile or righteous or politi-

cally correct or practical or profitable. (Proctor, 1991, p. 68)

Climate sciencehas verymuchbeensucha“scienceunder siege”. In sucha situ-

ation, itmightbe tempting (andoften initially successful) to insist on thevalue-

freeness of one’s own research, but scientists do science as a whole a disser-

vice when they keep insisting on practicing value-free science. Asserting that

the value-free ideal is still upheld – born out of an instance of self-defence –

chances are high that it will backfire in the long run because themore the com-

plexity of the systems that scientists investigate increases, the less likely it will

be that scientists can successfully hide behind an apparent value-freeness. Sci-

ence – asmost human enterprises – cannot, has never andwill never be value-

free.

While there might have been originally some scepticism from within the

climate-science communitywhen philosophers began to discuss the role of so-

cial values in climate modelling, it also has to be noted that the role of social

values in climate science are actually openly discussed in the latest IPCC re-

port. Particularly, predictive preferences (though not named as such) being an

unavoidable element of climate modelling are highlighted:

Social values are implicit in many choices made during the construction, as-

sessment and communication of climate science information (Heymann et

al., 2017a; Skelton et al., 2017). Some climate science questions are priori-

tized for investigation, or given a specific framing or context, because of their

35 Gundersen has shown in a small study of a group of Norwegian climate scientists that

many of them stand by the value-free ideal, although the scientists also note that it is

sometimes difficult to guarantee the value-freeness in practice. Gundersen remarks as

well that some scientists observe that “strict adherence to the value-free ideal can un-

dermine policymakers’ perception of the relevance of experts’ opinions“ (2020, p. 113)

when it makes them to be too cautious in conveying the significance of their findings.
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relevance to climate policy and governance. One example is the question

of how the effects of a 1.5°C global warming would differ from those of a

2°C warming. [...] Likewise, particular metrics are sometimes prioritized in

climate model improvement efforts because of their practical relevance for

specific economic sectors or stakeholders. [...] Sectors or groups whose inter-

ests do not influence research andmodelling prioritiesmay thus receive less

information in support of their climate-related decisions. (Chen et al., 2021,

p. 172)

Thisquote alsopoints us towardanother important distinction thatneeds tobe

made. I have arguedabove that value judgements in climate science are inmost

cases epistemically harmless; however, that does notmean that there are not at

the same time some non-epistemic risks that can arise out of predictive pref-

erences, to the extent that, e.g., a lack of attention towards the predictive pref-

erences of underprivileged community can cause harm when their need for a

particular kindof knowledge is not taken into account (Harvard andWinsberg,

2022; Parker and Winsberg, 2018). One way to mitigate this risk seems to be

(again) a pluralistically organised scientific community (Jebeile and Crucifix,

2021).

So far the discussion of social values in science has often centred on the

argument from inductive-risks. But, as has been shown in case of climate sci-

ence, representational risks are also an unavoidable part of developing a com-

plex computer simulation. Further, we have also seen that with the increasing

complexity of science it becomes more and more impossible to retroactively

make those value decisions explicit. As I have argued above, this should not be

seen as an epistemic problem. Instead value judgements ought to be regarded

as a necessary part of science. Particularly when it comes to complex computer

simulations, they fill gaps left by epistemic and methodological underdeter-

mination. While the complexity of the system introduces an inability to trace

the effects of social-value deliberations through themodel building processes,

it also works simultaneously as a safeguard against the directed value-laden

manipulation of the models or, in other words, the complexity ‘inoculates’ the

models against wrongful influence of this kind. On the one hand, the specific

values are so numerous and diverse and quite often do not even have the “right

form” (Winsberg, 2018, p. 151) to make the models biased in a specific way. On

the other hand, the number of scientists involved works as an insulation and

corrective tool against individual bad work. Particularly, when the group of

modellers is sufficiently diverse, it makes it more likely that “later choices in
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model development can ‘undo’ the effects of earlier ones“ (Parker and Wins-

berg,2018,p. 141, see also Jebeile andCrucifix,2021).Whatevermaybe the case,

the issue is not whether or not the scientist’s decisions are directly guided by

social consideration, but that we can no longer retroactively tell whether that

has been the case or not (Winsberg, 2012).

Under these circumstances it is also questionable if a distinction between

cognitive and social values is still useful to determine the appropriate role for

value judgments in science. Even if we were certain that all modelling deci-

sions were determined by cognitive values alone, one still cannot be sure that

these are not affected by the specific social context underwhich theywere con-

structed. Considering Longino’s (2008) claim that we can just as well imagine

alternative set of cognitive values, which are as well justified as the traditional

ones, one has to at least question if in a similar way specificmodelling cultures

might be in a hidden way informed by social or ethical background assump-

tions (see Chapter 3.1.1.2). So it does not even make sense in this context to

discriminate between some kind of science-internal, appropriate and extra-

scientific values that are only under very specific circumstances allowed to in-

terfere with scientific processes.

Though the fear of the influence of social values on science is historically

understandable, we need to change our perspective on values in science.

Against the backdrop of the vast number of epistemically not fully constrained

decisions and the new epistemic challenges of dealing with highly complex

systems, the discussion about values in sciencemust shift from a discussion of

what the appropriate role of values in science is to what an inappropriate role

would be. Douglas has argued that “values should never suppress evidence, or

cause the outright rejection (or acceptance) of a view regardless of evidence”

(2009,p. 113).Despite the vast variety of necessary roles that values judgements

can assume in the construction and evaluation of complex computer simula-

tions, this also seems to be a prudent approach for inductive risks. However,

predictive preferences, which seem to be the biggest source of possible social

value-laden assumptions, do not hold a clear risk for scientists to outright

disregard evidence as it is primarily a question of research objectives (see

Harvard andWinsberg, 2022). Here the bigger, non-epistemic concern is that

some underrepresented stakeholders might get less information concerning

their particular circumstances.Nevertheless, as has been argued above, froma

purely epistemic perspective, the risk of inappropriately influencing climate-
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model construction throughwishful thinking or deliberate bias does not seem

to be a particular high risk.36

3.2 Model, theory and observation

3.2.1 Introduction: from handmaiden to a life of their own

For a long time the experimental and practical part of science has been some-

what neglected by philosophy of science. Until well into the middle of the 20th

century the discourse in philosophy of science has focused primarily on a dis-

cussion of scientific theories. While Francis Bacon saw the experiment at the

centre of the scientific enterprise, by the time philosophy of science had be-

come a discipline of philosophy in its own rights, at the beginning of the 20th

century,observations andexperimentshadbeen cast into the role of the “hand-

maiden of theory” (Gooding, 2000, p. 119). Meaning that the primary purpose

of the empirical part of science was seen as to provide data to evaluate theo-

ries. According to this theory-focussed view of science, experiments and ob-

servations are only of relevance to science once a theory has been developed

and needs to be tested.Theywere considered to be of little philosophical inter-

est on their own.

This disregard of the experimental and observational element of science in the

history of philosophy of science becomes most apparent in the approach that

logical empiricism and critical rationalism take to this issue. While the log-

ical empiricists focused on the logical and theoretical foundation of science,

they reduced the empirical part of science to producing basic observational

sentences (Beobachtungssätze).

This indifference towards the practical part of science in the first half of

the 20th century did not just hold for logical empiricism. Karl Popper, who in

36 In effect, caseswhere climate-change deniers have argued againstmainstream science

qualify as exactly one of those situations where the deniers have neglected the evi-

dence in favour of personal beliefs. Naomi Oreskes and Eric M. Conway (2010) show

compellingly how a small subset of scientists, often paid by specific interest-groups,

such as oil companies, have disputed a variety of scientific claims from smoking caus-

ing cancer to climate change overmany decades because of their dislike of governmen-

tal regulations.
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many ways opposed the philosophy of the logical empiricism, still saw the ex-

perimenter as someone who does the legwork while being fully guided by the

theoretician:

The theoretician puts certain definite questions to the experimenter, and the

latter, by his experiments, tries to elicit a decisive answer to the questions,

and to no others. […] But it is a mistake to suppose that the experimenter

proceeds in this way ‘in order to lighten the task of the theoretician’, or per-

haps in order to furnish the theoretician with a basic for inductive general-

izations. On the contrary, the theoretician must long before have done his

work, or at least what is the most important part of his work: he must have

formulated his question as sharply as possible. Thus it is he who shows the

experimenter theway. But even the experimenter is not in themain engaged

inmaking exact observation; his work, too, is largely of theoretical kind. The-

ory dominates the experimental work from its initial planning up to the fin-

ishing touches in the laboratory. (Popper, [1935] 1959, p. 107)

Popper does not consider the work of the experimenters as completely super-

fluous, but he also does not see themas the oneswho take initiative.The exper-

imenter, according to Popper, is not in a position where they could contribute

anything substantially new to science on their own. On the contrary, the job

of the experimenter is seen here as only to confirm or falsify hypotheses as in-

structed by the theoretician.Thus, to Popper the experiment takes a subordi-

nate role to the theory. It provides evidence but cannot in itself provide new

scientific insight. It is for this reason that Popper gives the theory that much

more attention than the experiment in his writings.

Just as in the case of the rise of the value-free ideal this development coincides

with the risingpopularity of thedistinctionof the context of justification fromthe

context ofdiscoverymadebyReichenbach (1938).Asalreadydiscussed inmorede-

tail in Chapter 2.2, this distinction became very popular among philosophers

of science of the 20th century, when it came to separating the realm of phi-

losophy of science from that of psychology and social studies. Proponents of

this view are of the opinion that philosophy of science should focus on logical

justification of a scientific discovery, not the practical path leading to it. The

question of how a scientific fact, theory or law is discovered is thereby made

a matter of sociology or psychology but not philosophy. In that respect the DJ

distinction also played an important role in directing the attention of philoso-

phers of science towards theories (Schickore and Steinle, 2006a). Experiments
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and observations were seen to be only tangentially philosophically important

insofar as experiments are the way to provide empirical evidence for theories.

However, the process throughwhich the necessary data for this is acquiredwas

seenasbyand largenot appealing tophilosophical contemplations.Theexperi-

mental part of sciencewas, thus, (dis)regardedas (for themostpart) anelement

of the context of discovery and, thereby, cast aside as philosophically uninter-

esting.

For most of the 20th century the default position seemed to be to omit the ex-

perimental part of the scientific enterprise from the philosophical discourse,

or asGooding put it: “Experiment seems to be an epistemological football – es-

sential to the game, but of no intrinsic philosophical interest” (Gooding, 2000,

p. 122). However, beginning in the late 1970s, philosophers and sociologists of

science increasingly started to question the theory-dominant view of science

and set out to bring “studying scientific practice, what scientists actually do”

(Pickering, 1992, p. 2) back into the limelight. During what is today sometimes

described as the practical turn or the new experimentalism they began to explore

the different functions and characteristics of experiments and other aspects of

actual scientific practice (e.g., Ian Hacking, David C. Gooding, Allan Franklin,

Nancy Cartwright).Though they all highlighted the necessity to include exper-

imental scientific practice in philosophical discussion about science, there is a

certain disagreement to what extent experiments can be considered indepen-

dent from theory (Feest and Steinle, 2016; Gooding, 2000).

Ian Hacking for instance argues that experimentation can happen inde-

pendently from theories. By means of a number of examples from the history

of physics, Hacking shows in his well-known book Representing and Interven-

ing how varied the dynamic between theory and experiment in actual scien-

tific practice can be (1983, pp. 149–165). While sometimes the theory preceded

the experiment, quite often experiments were done independently of a spe-

cific theory. One example Hacking gives of such a case is the early days of op-

tics where experiments were done without any fully established theory. An-

other case concerns the discovery of cosmic background radiation which was

discovered experimentally independently of a corresponding theory that was

developed elsewhere at the same time by different scientists. For Hacking ex-

periments are as philosophically intriguing and important in knowledge gen-

eration as theories. Further, the experimentalist does not rely on the theorist
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to provide themwith a hypothesis to (dis-)confirm.37The experimental part of

science has, as Hacking puts it, “many lives of its own” (1983, p. 165).

Despite these more recent trends, there is still quantitatively more litera-

ture in philosophy of science about the theoretical part of science than about

the practical, empirical part. Somethingwhich can also be observed in the con-

text of philosophy of climate science. While much has been written and said

about the use of computer simulation in climate science, less can be said so

about the creation and evaluation of observational data.38

In the following I will argue that, in fact, the process of empirical observation

making in climate science is just as philosophically interesting as the computer

simulations used to model the climate system. Furthermore, a closer look at

the complex process of the production of climate data and the intricate rela-

tionship between observational data and climate models will reveal that con-

ventional ideals about the role of observations in science, similar to those ex-

pressed in the quote by Popper above, cannot bemaintained. Aswill be shown,

making observations and constructingmodels are neither fully separated pro-

cesses nor can it be said that observations provide irrefutable benchmarks to

distinguish good models from bad ones. Particularly, a widely discussed con-

troversy about satellite data will show how awidespread presence of these ide-

alisations of scientific procedures in the public’s understanding of science can

be capitalised on by climate-change sceptics and so inclined interest groups to

sow doubt about the trustworthiness of climate science.

I will begin in Chapter 3.2.2 with a short general philosophical debate of

some relevant philosophical concepts, particularly theory-ladenness and models

of data,before I turn to the specific caseof observational data in climate science.

Butbeforedoing so, it seemsprudent tofirst consider thedefinitionof the term

observation.

37 All this has, of course, to be understood in the context of Hacking’s entity realism, ac-

cording to which experiments can confirm the existence of entities independently

from theories. As he famously puts it in respect to the use of electrons in experiments:

“if you can spray them, they are real” (Hacking, 1983, p. 24).

38 Some noteworthy exemptions are Edwards (2010); Guillemot (2017, 2010); Lloyd

(2012); Parker (2020, 2017). Edwards (2010) specifically writes an extensive historical

account of the development of a meteorological and climatological infrastructure.
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3.2.1.2 Observation

In the context of the empirical part of climate science, scientists usually de-

scribe their work as making and processing observations. But what actually de-

fines observations andwhatmakes them distinct from experiments? And to what

extent can this distinction be made at all? To answer this question let us first

take a look at a short history of the term, as recounted by Daston (2011) and

Daston and Lunbeck (2011).

Fromahistorian’sperspective, theuseandmeaningof the terms observation

and experiment in science itself has changed more than once over the last four

centuries from synonyms to antonyms, as Daston explains:

In the period from the early seventeenth to themid-nineteenth century, the

relationship between observation and experiment shifted not once, but sev-

eral times: from rough synonyms, as in the phrase “observations and exper-

iments” that had become current in the early seventeenth century, to com-

plementary and interlocking parts of a single method of inquiry throughout

much of the eighteenth and early nineteenth century, to distinct procedures

opposed as “passive observation” and “active experiment” by the mid-nine-

teenth century. (Daston, 2011, p. 82)

While empirical science as such becomes gradually more relevant in the late

17th century, the term experiment becomes narrower and now refers to “delib-

erate manipulation” (Daston, 2011, p. 85) or what Bacon called artificial exper-

iment; the term observation becomes wider. Observation making, disregarded

bymedieval scholars “with conjecture because its results were uncertain” (Das-

ton, 2011, p. 104), had become an activity so relevant to science by the middle

of the 18th century that it had become “a way of life” for many in the scientific

community, dictating their daily routine (Daston, 2011, pp. 101–104).

Towards the end of the century, notes Daston (2011), observations had be-

come a full-fledged ‘instrument’ of thinking and reasoning in its own right,

including repetition of observations and comparison to others. Observation

making as a whole had taken a distinct, methodological, systematic and com-

munal character. It had become something which most scientists saw central

to their work and reasoning processes.

In the 19th century the terminology underwent a new shift, which singled

out the experiment as the activity requiring real talent and training, contrary

to observations:
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starting in the 1820s, prominent scientific writers began to oppose observa-

tions to experiment, and to vaunt the prestige of the latter over the former.

In this new scheme of things, experiment was active and observation was

passive: whereas experiment demanded ideas and ingenuity of the part of

a creative researcher, observation was reconceived as the mere registration

of data, which could, some claimed, be safely left to untrained assistants.

(Daston and Lunbeck, 2011, p. 3)

Seeing observationmaking as a passive exercise that could also be done by the

untrained was not a degradation of the relevance of observation to science but

interpreted as an advantage to science. By being able to outsource observation

making to ‘untrained forces’, scientists hoped to make sure that the data re-

mained ‘objective’ and unspoiled by the scientist’s theories.This attitude is also

reflected in 20th century philosophy of science, according to Daston and Lun-

beck.The attempt of the philosophers of logical empiricism to create a scien-

tific system in which any theory can be retraced to observational protocol sen-

tences “would render observation in a language as close as possible to the raw

data of perception” (Daston and Lunbeck, 2011, p. 5).

Thesedays twodifferentbut at the same timeoverlappingdefinitionsof the two

terms are very common.Today scientists usually loosely ascribe the term obser-

vation to data collection in a fixed target system, whereas experiments in sci-

ence traditionally includemanipulations of the target system. Both can be un-

derstood as empirical, scientific practices from different ends of a spectrum.

While experimentation demands active intervention by the scientists, usually

in a laboratory setting, making observations is seen as a much more passive

activity requiring often the skilful application of measuring instruments but

no interference with nature.

There is also anotheruseof the term observation, that is not aswidespread in

science but highly prevalent in philosophy of science.This definition also sees

observation as a passive activity but narrows it down even further. Here obser-

vation refers to the sheer perception or detection of data, quite often as part

of an experiment but also as detection of natural phenomena with or without

instruments.39 This definition of the term will have specific relevance in the

context of the following discussion of theory-ladenness of observations.40

39 For the difference in the use of the term observation see, also Shapere (1982).

40 Hacking incidentally, though dedicating a whole chapter in Representing and Interven-

ing to the topic of observations, is rather imprecise in his use of the term observation.
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One common feature of both definitions is that they both seem to have re-

tained the notion of observation as a passive and experiments as an active un-

dertaking. But as we will see in the following in the case of climate science,

disregarding observations as just passive perception overlooks how much ac-

tive knowledge of the matter at hand and training in the use of instruments

are required in scientific observation making.

3.2.2 Theory-ladenness, underdetermination and models of data

The notion that theories are underdetermined by observations, meaning that

there can always be an alternative theory to explain an observation, was first

introduced by Pierre Duhem (1906) for theories in physics.W.V.O. Quine (1951)

extended this idea to any kind of knowledge claim. Today underdetermination

is often understood as the Quine-Duhem problem, as a problem of confirma-

tional holism to the extent that every hypothesis is accompanied by auxiliary

hypotheses (Stanford, 2023). That is, when a hypothesis is found not to be in

accordancewith the empirical observations, the hypothesis cannot be (by logic

alone) deemed wrong, as it could also be the case that one of the auxiliary hy-

potheses is wrong.

Norwood Russell Hanson (1958, pp. 4–30) was the first to introduce the phrase

of theory-laden observations. Hanson argues that two scientists can observe the

same object but ‘see’ different things. Assuming a proponent of the heliocen-

tric and one of a geocentric worldview watch the sun rise together, he poses

the question: do they see different things?Hanson argues that this is in fact the

case.When scientists speak of ‘seeing’ something, they do not refer to themere

process of physiological perception or, as Hanson put it, “seeing is an experi-

ence. […] People, not their eyes, see” (1958, p. 6). So looking at the sun is more

than the reception of photon particles on the retina of the scientist’s eyes. Two

He mainly refers to observation in the context of data detection, but occasionally he

gravitates towards a definition that is closer to a definition of observation as exper-

iments with fixed target systems (1983, pp. 155–156, 180). As Malik (2017) points out,

by (in effect) also defining experiments as the creation of phenomena in a pure state,

Hacking omits great parts of science, which then fall neither into the category of ob-

servation, experiment nor theory, such asmedical research. Hacking can onlymaintain

this narrowdefinition of experiments by almost exclusively referring to examples from

physics.
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people having the same physical premises (e.g., both have equally well func-

tioninghumaneyes) andobserving the samephysical object canstill ‘see’differ-

ent things, according to Hanson. In this sense, the heliocentrist would look at

the sun and see an object at the centre of our solar system, and the geocentrist

sees an object circling the earth. How scientists ‘see’ the world and data they

extract from it are, arguesHanson, influenced by their specific background as-

sumptions.

Figure 3: Necker Cube

This, Hanson insists, is not just a kind of interpretation of data: “To inter-

pret is to think, to do something; seeing is an experiential state” (Hanson, 1958,

p. 11). The scientist looking at a lab sees various instruments such as specific

microscopes or other special instruments. The scientist does not think to in-

terpret the instruments as such, they just see.The layperson, on the contrary,

only sees a number of cables and lenses and so forth. “The knowledge is there

in the seeing and not an adjunct of it” (Hanson, 1958, p. 22). Hanson compares

this to the way we perceive ambiguous images (Hanson, 1958, pp. 8–14).When

we look at the Necker Cube (Figure 3), for example, some might see it as from

above,others as frombelow.Butwe cannot see it in bothways at the same time.

Nor would we describe the way we see the cube as an interpretation of twelve

specific linesonapaper.We just see it;we seeacube fromaboveorbelow,respec-

tively. And someonewho has never been taught orwho does not have the phys-

ical ability to see how twelve lines of the same size, ordered in a specific way,

can look like a cube will only see twelve lines. Our prior knowledge guides how

andwhat we see, argues Hanson. It is a one-step process. Seeing and knowing
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go together, insofar as the way one observes depends on the individual back-

ground assumptions and knowledge. Imagine, for instance, a physicist and a

child both looking at the drawing of anX-ray tube butwhich to a childwho has

not been told otherwise just looks like a scribble of circular and straight lines

(Hanson, 1958, pp. 15–19).Howwe observe theworld is context-dependent and

observations are theory-laden in the sense that an “[o]bservation of x is shaped

by knowledge of x” (Hanson, 1958, p. 19).

Similar sentiments to Hanson’s were also voiced not much later by other

philosophers of science like Kuhn (1962) and Feyerabend (1959). It is, therefore,

worth mentioning here that, although the concept of theory-ladenness has

subsequently been well-established in philosophy of science, not all philoso-

phers follow Hanson’s view that all observation is necessarily theory-laden

(Feest and Steinle, 2016).Hacking, for example, argues that there are instances

in the history of science where scientific discoveries were made without nec-

essarily having the right background assumptions, such asWilliamHerschel’s

discovery of radiant heat (1983, pp. 167–185).41 Hacking tells the story how

Herschel, after initially noticing how different filters he had used on his tele-

scope transmitted different amounts of heat depending on their colour, began

to further experiment with a prism and a thermometer, measuring the heat

of rays of light and made further measurements with all sorts of filters. He

did, argues Hacking, all of this without having a fixed idea what was actually

going on.42 In the end, Herschel abandoned the experiment. But the reason

why he gave up, according to Hacking, was not that he had no satisfying

theory but experimental difficulties that he could not overcome. To Hacking

being a good observer is much more a question of being skilled at specific

observation-making practices than having background assumptions about

what is observed, an aspect of observation making that I will come back to in

Chapter 4.43

41 Hacking here applies a rather narrow concept of theory and defines it as “a word best

reserved for some fairly specific body of speculation and propositions with a defined

subject matter” (1983, p. 175).

42 ThoughHacking notes that Herschel’s first guess of a partially visible spectrum of light

coming from the sun was close to our current understanding of what causes radiant

heat (1983, pp. 176–177).

43 Hacking invokes the examples of lab technicianwithout a university degree or the abil-

ity of William Herschel’s sister Caroline to detect comets (1983, pp. 179–180).
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3.2.2.1 Models of data

The idea of models of data has been well-established in philosophy of science

since it was first introduced by Patrick Suppes (1962). Suppes notes that where

the evaluation of theories is concerned one does not simply compare theories

to raw observations:

Theoretical notions are used in the theory which have no direct observable

analogue in the experimental data. In addition, it is common for models of

a theory to contain continuous functions or infinite sequences although the

confirming data are highly discrete and finitistic in character. (Suppes, 1962,

p. 253)

Instead, scientists compare models of theory to models of data. These data mod-

els are usually interpreted to be the statistical analysis of the experimental re-

search results.44 In this sense a model of theory is a specific “realization of the

theory” and amodel of data is a “possible realization of data” (Suppes, 1962, pp.

252–253).

Two examples will show how this translates into scientific practice. The first

example,weather forecasting,whichwill also give us a first glimpse at how the

notion ofmodels of data will be relevant to climate science is given by Baas van

Fraassen (2008):

On the weather forecast website I consult I can find a graph depicting yes-

terday’s temperature plotted against time. This was constructed from data

gathered at various stations in the region, at various times during the day

– this graph is a smoothed-out summary of the information that emerged

from all these data, it is a data model. The question about the daytime tem-

peratures in this region of one day ago is answered with a measurement out-

come, certainly – but that is the graph in question, which is a datamodel con-

structed from an analysis of the raw data. (van Fraassen, 2008, p. 166)

Van Fraassen also emphasises that – whether a single measurement outcome

or statistically processed models of data are considered – the data is also

44 Suppes specifies amodel of data as “designed to incorporate all the information about

the experiment which can be used in statistical tests of the adequacy of the theory”

(1962, p. 258). This interpretation of models of data as statistical models can be prob-

lematic, as Leonelli (2019) points out, because this excludes certain types of data such

as images.
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shaped by the circumstances under which the measurements are taken. One

has to look at the result as “this is what the object looks like in this measurement set-

up” (van Fraassen, 2008, p. 167).

A similar point of view as far as the role of observation in science is concerned

is expressedbyRonaldGiere (2006).He argues that every observation,whether

done with our own eyes or through instruments, are done from a specific per-

spective.That is, the use of scientific instruments does not give us a more ‘ob-

jective’ understanding of the world, in the sense that it provides a view from

nowhere, free from the personal perspective of the scientists. There might be

ways inwhich scientific instruments can reducehuman influenceand, thereby,

make observationmore stable, but they cannot represent theworld fromauni-

versal perspective, argues Giere:

The inescapable, even if banal, fact is that scientific instruments and theories

are human creations. We simply cannot transcend our human perspective,

however much some may aspire to a God’s-eye view of the universe. (Giere,

2006, p. 15)

That is, instruments canonlyprovideuswith apictureof theworld that is taken

from a specific point of view.45 One example of this, Giere (2006, pp. 41–49)

provides, are modern telescopes as they are used by astrophysicists. First of

all, there is a variety of different kind of telescopesmeasuring different things:

radiotelescopes, gamma ray telescopes,X-ray telescopes, optical telescopes, to

name only a few.46 Furthermore, the actual physical position of the telescope is

relevant: e.g., here on earth or in space. All of these telescopes would measure

something differently even ifwewere to point themat the samepart of the sky.

That means, argues Giere, they show us a particular perspective of the same

part of space. On the flip side, this also means that these instruments are also

45 This, of course, also holds for humans themselves. Humans have, as Giere points out,

a specific (trichromatic) colour vision of the world that is the result of the interaction

of our body (the perception of light rays on the retina in our eyes) with some physical

processes and features of the objects (chemical setup of the object and radiation of

light), which not all animals share because they are, e.g., dichromats or tetrachromats

(2006, pp. 17–40).

46 Modern telescopes such as the Hubble Space Telescope carry instruments that can mea-

sure a wide range of wavelengths, but scientists and technician operating them must

still make a decision which wavelengths are relevant for their research questions.

https://doi.org/10.14361/9783839465806-005 - am 14.02.2026, 09:21:47. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839465806-005
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


90 A Heated Debate

always ‘blind’ in some respects. Gamma-ray detectors in a telescope are tuned

to, well, gamma rays and cannot detect radio waves.

Secondly, the data produced by these telescopes looks at first nothing like

the pretty, colourful images we know from magazines or sci-fi films. Before

they are useful to scientific research, this data also has to be transmitted,

filtered, evaluated and corrected for background noise and measuring er-

rors among other things.47 All this is done by relying heavily on theoretical

background assumptions. The Hubble Space Telescope, for instance, produces

images through gravitational lensing. That means that scientists rely on the

assumption that, according to the theory of general relativity, mass bends

light in such a way that one can observe objects that are further away than

the object the telescope is pointed at. The Compton Gamma Ray Observatory,

by contrast, operates on the assumption that the decay of different elements

releases gamma rays at specific energies, which can be detected in a rather

indirect fashion by making use of the Compton scattering that the gamma

rays will trigger in the detectors.48

Neither one of these telescopes produces the one ‘right picture’ nor does

any of them produce a wrong one.They rather all show different perspectives

of the same object, argues Giere:

Scientific observation is always mediated by the nature of instruments

through which we interact with selected aspects of reality. In this sense,

scientific observation is always perspectival. (Giere, 2006, p. 43)

Depending on the instruments used and how this data is evaluated, one will

end up with a different ‘picture’ of the world, even with the same input.49That

is, one will inevitably end up with differentmodels of data. To compare the data

to the theory, Giere (2006, pp. 68–69), following Suppes, argues that we only

comparemodels of theory tomodels of data.That means, just as models of data

represent a specific perspective of an object, so domodels of theory represent a

47 Furthermore, many telescopes do not even measure wavelengths within the visible

range. And all the more for it because they give us information on the universe that

we could not otherwise gain.

48 The Compton Gamma Ray Observatory, which Giere gives as an example, was aban-

doned in 2000, but other observatories operate on similar principles.

49 This, of course, is not just the case for telescopes but all kinds of scientific instruments.

Another example that Giere discusses are brain scans. Depending onwhich technology

(CAT, PET,MRI, etc.) is applied, a distinct image of the brain depicting different aspects

of the brain is obtained (Giere, 2006, pp. 49–57).
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specific point of view as well. A model is never a complete replica of the object

or phenomenon it represents. It only has a fit that we consider good enough

given the circumstances. Depending on the use of a model, the requirements

the model has to fulfil will change. Giere (2006, pp. 72–81) compares this to

the way we use maps. The same place can be displayed in very different ways

depending on the map’s purpose. Take, for example, the task of mapping the

earth. Transferring a spherical object onto a two-dimensional map will natu-

rally cause a problem for the geographer.While thewell-knownMercator projec-

tion serves the purpose to give sailors a navigational tool, it also drastically dis-

torts the actual relative size ofdifferent countries andcontinentsdependingon

where they are located on themap.Greenland, for instance, appears to bemore

than 14 times bigger than its actual relative size,making it as large as thewhole

continent of Africa. Alternatives like the Peters projection or the Robinson projec-

tion correct for this particular problembut on the flip side have tomake conces-

sionwith respect to other aspects.The Peters projection shows the landmasses at

its right proportions but with distorted shapes.The Robinson projection tries to

combine the advantages of both those maps as best as possible but does so by

curving the longitude lines andwould, therefore, not be very useful for naviga-

tion.Thus, each of these different maps is useful for different objectives.They

all show a unique perspective of the world: “representation is representation

for a purpose” (Giere, 2006, p. 80). None of these maps can give a fully accurate

representation of all aspects of the surface of the earth.Maps are not copies of

the place they display. But then again that is, arguably, not the point of maps.

Maps just like scientific models are, as Giere points out, tools that represent

the world in a certain respect, in a way that is helpful to our specific (scientific)

endeavour. This is by no means giving in to total relativism, as Giere empha-

sises. Scientists can very well determine that one of two of the same kind of

instruments is faulty if they produce completely contradictory data.50 Equally,

when an object can be detected from different perspectives (e.g., with differ-

ent instruments), then this canbeunderstood,arguesGiere, tomean that there

50 To stay with Giere’s example of the telescopes: if we were to point a gamma-ray tele-

scope and a radio telescope at the same object and both deliver different observation,

this would usually not be seen as a sign that one of the instruments is malfunctioning.

But if instead there were two gamma-ray detectors that both are supposed to mea-

sure within the same range of wavelength registering something differently, scientists

would, of course, conclude that at least one of the instruments is defective.
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is “good evidence that there is something there, but this need not to be under-

stood as knowledge in an ‘absolute objectivist’ sense” (Giere, 2006, pp. 57–58).51

Meaning we cannot find the one ‘objectively’ true perspective of the object in

question, in the sense of a ‘view from nowhere’.

3.2.3 Observations in climate science

The climate system is a global system. Collecting and processing climate data,

thus, is a global task. Having access to global data is crucial in gaining knowl-

edge and understanding of the climate system.

This is not a new insight. Predicting the weather has been an age-old hu-

man endeavour. Success in such diverse aspects of public life from farming to

warfare are dependent on knowledge of how theweatherwill develop. In order

to do so, since the 19th century scientists have tried to establish an infrastruc-

ture that would enable them to collect data on a global scale. It is, therefore,

not surprising thatmeteorology–and subsequently climate science–were big

data science early on and the first to develop “systems for producing globalists

information” (Edwards, 2010, p. 24).

As noted in the introduction to this book, one line of argument frequently

used by climate-change sceptics is that the models must be false because they

seem to disagree with the observational data. Climate scientists, however,

counter that observational data just as the models are affected by uncertain-

ties.

Just as much as the climate system is complex, the observational data

retrieved from it is also complex. Complex systems produce complex data

in more than one way: for one, in respect to the amount of data and, for

another, in respect to the methods of acquisition, processing and evaluation.

Traditionally, observational data has often been viewed as providing a form of

context-independent confirmation of theories.The example of climate science

will show in the following how this separation clearly cannot be upheld in

actual scientific practice. Observations are neither as independent nor self-

51 Giere applies a very narrow and specific definition of scientific objectivity here. As we

have seen in Chapter 2.3, this term has a rich history and even today a variety of in-

terpretations. It might, therefore, be very well possible that Giere’s perspectivism is

‘objective’ in a different sense. An interpretation of scientific objectivity which does not

imply a ‘view from nowhere’, similar to, e.g., Longino’s (1990) definition of objectivity

as something that is achieved through diversity and a plurality of perspectives, would

be much more compatible with Giere’s perspectivism.
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vindicating as climate-change sceptics often claim. On the contrary, Paul

Edwards shows that in climate science data is “model-filtered” and models

are “data-laden” (1999, p. 437).The lines between theory or model, respectively,

and observation are (at least to a certain degree) blurry. The complexity of

the climate system lays bare the interdependency between those two sides

of science traditionally treated as distinct. Creating global climate data sets

requires much more than just ‘collecting’ data. Or to quote Edwards: “if you

want global data, you have to make it” (2010, p. 321).

In the following, I will discuss what constitutes climate data, how this data

is collected and processed as well as the difficulties arising in the process. I

will then examine what this means for the evaluation of climate models with

observational data and our understanding of the relationship betweenmodels

and observations in general.

3.2.3.1 Climate data

What actually constitutes climate data and couldwe not just collect all weather

observations from the last few centuries and be donewith it? After all, weather

observations have beenmade for centuries now.

Unfortunately, it is not that simple. One way to approach the difficulties

of creating climate data is to look at the specific historical differences in the

requirements for data in weather forecasting and climate science. As Edwards

(2010, p. 292) points out what traditionally distinguishes one from the other is

their purpose – in a nutshell it is a matter of speed versus stability.

The purpose of weather data is to forecast the weather of the next few days.

Reliable, easily accessible datawhich ‘arrives’within the time limits of the fore-

casting cycle is required. Weather data, which is retrieved only after the new

forecast has been made, is of little use for making forecasts. By contrast, the

purpose of climate data is to create a statistically useful account of the climate

over a longer period of time. For this one does not so much require data that

is accessible within a specific timeframe but shows consistency in the way it is

collected over a long period of time.52

To visualise this difference, one might look at what meteorologist and cli-

mate scientists usually focus on when they discuss temperature. While mete-

orologists making weather forecasts are in search of the absolute temperature

valueof a specificmoment in time,e.g., the temperature inBochumtomorrow,

52 For a good overview of the specific (historic) differences between weather and climate

data, see Edwards (2010, pp. 294–295).
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climate scientists, on the contrary, are traditionally interested in temperature

anomalies, i.e., the deviation from the average temperature of a reference pe-

riod.

3.2.3.1.1 Observations and uncertainties

To establish a comprehensive picture of the change in the earth’s climate, a

huge amount data drawn from a variety of sources is necessary. Besides data

from hundreds of land-based observational stations, climate scientists also

rely, for instance, on ships and buoys, to obtain observational data from the

ocean and radiosondes deployed on weather balloons, airplanes and satellites

to get information about the climate from different altitudes (Chen et al.,

2021, pp. 174–177). For insight into the state of the climate before the begin-

ning of systematic observations in the 19th century, scientists also make use of

proxy data, such as tree rings or ice-cores (Chen et al., 2021, pp. 177–178). The

processes of creating homogenous data sets out of the different types of data

are intricate and epistemically challenging undertakings.

In the following, someof the difficulties that arise from the complexity and

plurality of the observational climate data will be highlighted.The objective is

to show why the ideal of raw observations providing clear-cut, context-inde-

pendent and ‘objective’ evidence of the validity of amodel or theory is so detri-

mental, specifically in the context of climate science. As we will see, observa-

tions in climate science are distinctly theory-laden so that it can be really mis-

leading to even speak of such a thing as ‘raw data’.

Coherent, long-termobservationsof thepast climate areparamount toun-

derstanding how the climate might change due to increased anthropogenic

forcing.

Although first attempts of infrastructural coordination of weather and cli-

mate observation date back to themiddle of the 19th century, up until fairly re-

cently, the need of weather data has often taken precedence over climate data,

as Edwards points out (2010, p. 287).The value of consistent long-term climate

data was only fully appreciated in the second half of the 20th century. Scien-

tists, for the most part, just did not foresee that there would be the need for

dependable long-term data in the future and observations records were often

not kept. Traditionally,meteorologists seldomhad use for ‘old’ data in the pro-

cess of weather forecasting and for a long time storage space for that amount

of data had been very expensive.
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Figure 4: Change in percentage of possible sampled area for

land records (top panel) andmarine records (lower panel).

Land data come fromGHCNv3.2.0 andmarine data from

the ICOADS in situ record

Source: Hartmann et al., 2013 p. 2SM-14 , Figure 2.SM.2

There are also often critical gaps in the recordings. Major historical world

events candisrupt data records.There is, for instance,a lack of sea surface tem-

perature (SST) data for the time of bothworldwars; see Figure 4.Most recently

the COVID-19 pandemic has affected the amount of specific types of obser-

vational data collected during this time period because of a drop in air travel

and ship traffic as well as interruptions in the regular maintenance of instru-

ments.While the full effects of the pandemic on climate data records is not yet

fully known, the consequences might not as bad as originally feared (Chen et

al., 2021, p. 212).

Even when there is historical data at hand, there might also be gaps in infor-

mation about the circumstances under which the data was collected, namely
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which specific instruments were used and whether there were environmen-

tal and structural circumstances thatmight have systematically influenced the

data in one way or another.53

Fortunately, many inconsistencies are random and, therefore, cancel one

another out over time. When, for instance, the temperature is measured at

a significantly large number of stations, measurement errors will most likely

deviate in both directions. But sometimes inconsistencies have systematic

causes. One example is the overall change of position of instruments in the

Alps during the 19th century from on and at buildings to open space (Böhm et

al., 2001; Edwards, 2010, p. 299). Another case are systematic changes to the

instruments used.A prominent example for this is the change inmaterial used

for the buckets employed to measure ocean temperature. The ‘evolution’ of

buckets, from simple wooden ones, over canvas buckets54 tomodern insulated

ones meant that there were temperature differences up to 1 °C, depending on

seasonal and local variables (Folland and Parker, 1995).55

The specific circumstances under which observations were made can be

difficult to reconstruct. In certain cases, scientists can refer to metadata, such

53 For examples from sea surface temperature measurements, see Kennedy (2014).

54 The wooden buckets are actually “relatively well insulated and tend to have larger vol-

umes leading to smaller temperature changes” compared to buckets made out of can-

vas (Kent et al., 2010, p. 719).

55 There are also other factors contributing to temperature differences in bucket mea-

surements that have to be corrected for, such as “the size of the buckets (inner diameter

and initial water depth for the canvas bucket model and bucket wall thickness for the

wooden bucket model), the time the bucket was exposed on deck, the relative wind

speed (which depends on the ship speed, the true wind speed and the degree of shel-

tering of the bucket) and the exposure of the bucket to solar radiation, all of whichmay

vary from ship to ship and with time“ (Kent et al., 2010, p. 723).

In some cases, measurements of SST are not taken by buckets but also through so

called engine room intake, i.e., the seawater that is ultimately used to cool the engines of

the ship. This kind ofmeasurement also has awarmbias compared to buckets. Thomp-

son et al. (2008) note that changes in the ships country of origin in 1945 led to an ap-

parent temperature drop in SST: “Between January 1942 and August 1945, 80% of the

observations are from ships of US origin and 5% are from ships of UK origin; between

late 1945 and 1949 only 30% of the observations are of US origin and about 50% are of

UK origin. [...] in August 1945 US ships relied mainly on engine room intake measure-

ments whereas UK ships used primarily uninsulated bucket measurements“ (Thomp-

son et al., 2008, p. 648).
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as usermanuals of the instruments used and the likes, but those are not neces-

sarily preserved (Edwards, 2010, pp. 317–319). Lack of this kind of information

can constrict the accuracy of the ‘picture’ that can be drawn of the climate of

the past from instrumental records.

Edwards (2010,pp. 17–28) argues that the creationof global-climatedata sets is

a question of infrastructure and insight into this infrastructure. Creating ob-

servational climate data sets requires having access to a globally organisednet-

work. From the 19th century onwards scientists slowly began creating a global

observational network. Making use of this data requires climate scientists to

do what Edwards calls an “infrastructural inversion” (2010, pp. 22–23): they

have to turn the infrastructure ‘upside down’ to assess how the data was origi-

nally produced.However, evenwith an improved observational infrastructure,

the problems described above are not purely issues of the past, as Edwards ar-

gues:

Weather stations come and go. They move to new locations, or they move

their instruments, or trees and buildings rise around them, or cities engulf

their once rural environs. They get new instruments made by different man-

ufacturers. Weather services change their observing hours and their ways of

calculating monthly averages. These and dozens of other changes make to-

day’s data different not only fromdata collected 20 years ago, or even (some-

times) last week. It’s like trying tomake amovie out of still photographs shot

bymillions of different photographers using thousands of different cameras.

Can we reconcile the differences, at least well enough to create a coherent

image? Yes we can, scientists believe. But it isn’t easy, and it is never finished.

(Edwards, 2010, p. 6)

All in all, the need for long term, stable and global datamake the creation of cli-

mate data sets a far form straightforward affair. Just collectingmillions of sin-

gle data points does not suffice; a great deal of data processing has to be done

in terms of, reconstructing and homogenisation. Furthermore, climate mod-

elling often requires gridded data meaning that the data points are spatially

evenly distributed on a (virtual) grid. How this is done in practice calls for fur-

ther methodological choices diversifying the approach that scientists can take

(Parker, 2018).
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3.2.3.1.2 Satellite data

Satellites as meteorological and climatological measurement facilities are

a relatively recent invention. Images taken with the help of satellites were

first used in the 1960s. But at first they were difficult to interpret and only

marginally useful to local forecasting. Nevertheless, they were helpful in sci-

ence communication as they provided visual aids for weather reports on TV, as

Edwards (2010, p. 274) recounts. At the end of the 1960s, satellites carried the

first instruments (radiometers) that were installed specifically to provide data

for weather predictions. But it took a while until scientists had learnt how to

implement this new data source into numerical weather predictions.Not until

the 1990s, they actually substantially improved weather forecasting.56

These days satellite data are an essential part of weather forecasting and

climate-change assessment. In the last decade, satellite data, notably a con-

troversy about data from satellites equipped with so-called microwave sound-

ing units (MSU), has also received some explicit attention from philosophy of

science (see especially Edwards, 2010, pp. 273–279, 413–418; Lloyd, 2012). Even

within the intricate sphere of climate data analysis, satellite data can be par-

ticularly complicated to ‘read’, which made integrating this data resource into

meteorology and climate science such a difficult undertaking in the first place.

First of all, many instruments mounted on satellites only provide indi-

rect measurements. Instead of temperature, MSU measure the microwave

radiation emitted by oxygen molecules (radiance), from which then under

the premise of a variety of physical and mathematical background assump-

tions the temperature of different layers of the atmosphere can be inferred.57

Further, adjustments have to be made not just to filter out noise from the

stratosphere but also to account for methodological issues. Especially con-

sidering that the MSUs are sequentially calibrated, the effects of orbital and

instrumental decay have to be factored in (Wentz and Schabel, 2000). All of

this comeswith a variety of uncertainties and in practice requires complicated

algorithms to account for those.That is, the ‘raw’ data is open to some degree

56 For a more detailed account of the history of satellite data in weather forecasting, see

Edwards (2010, pp. 274–276).

57 To be more specific, the different frequencies of radiation are measured in distinctive

‘channels’ that can then be related, in a non-trivial way, to the temperature of differ-

ent ‘layers’ of the atmosphere. In the case discussed here, scientists were interested

in ‘Channel 2’ that measures radiance of the troposphere with some noise from the

stratosphere.
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of interpretations so that depending on the decisions made in this process

different data sets can be obtained.

In the 1990s, an argument arose among climate scientists about the warming

in the tropical troposphere. Models predicted that the tropical troposphere

would show significant warming due to the increasing greenhouse gas emis-

sions of the 20th century. But scientists Roy Spencer and John Christy (1990)

claimed that the satellite data set developed by their research group, known as

the UAH (University of Alabama at Huntsville) data set, evaluated with the help

of radiosonde data actually disproved this. They argued that the radiosondes

(on weather balloons) provided particularly reliable data as they are, contrary

to satellite data, actually equipped with thermometers and measure the tem-

perature of troposphere directly. However, other climate scientists, instead of

discarding the model, questioned the reliability of the radiosonde data for the

purpose of validating satellite data (e.g.,Gaffen et al., 2000; Santer et al., 1999).

They note that radiosondes are, in fact, prone to inconsistencies because they

are exchanged frequently and their distribution is patchy. Lloyd (2012) points

out that, contrary to what Christy and Spencer seemed to imply, radiosonde

data does not provide a direct representation of ‘reality’. The apparent evi-

dence of cooler temperatures in the tropical troposphere that the radiosonde

and UAH data sets were showing were misleading. Reconstructing MSU data

in accordance with the radiosonde data set does not supply ‘independent’

evidence for the correct interpretation of the satellite data but relies instead

on the (false) background assumption that radiosonde data could provide

such.

In fact, it turned out that the same satellite data taking into account all

methodological uncertainties couldbeprocessed inaway that createddata sets

that actually were much more compatible with the models: as was done in the

case of the RSS (Remote Sensing Systems) and UMd (University of Maryland) data

sets (Mears et al., 2003; Vinnikov and Grody, 2003). Eventually the dispute was

settled, as far as the wider scientific community was concerned, at least to the

extent that considering all uncertainties (observations and models) “there is

no reasonable evidence of a fundamental disagreement between tropospheric

temperature trends frommodels and observations“ (Thorne et al., 2011, p. 66).

However, research into these uncertainties continues to reduce the underlying
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shortcomings of both models and data sets (Chen et al., 2021, p. 175; Santer et

al., 2017).58

3.2.3.1.3 Paleoclimate data and proxies

For information about the climate before the beginning of structured instru-

mental recording, scientistsmake use of so-called proxy data.This term refers

to “any biophysical property of materials formed during the past that is inter-

preted to represent some combination of climate-related variations back in

time” (IPCC, 2021a, p. 2245). From the width of tree rings, for instance, it is

possible to infer whether it has been a particular warm or rainy year. Similarly,

scientist can gather information about the state of the climatemanymillennia

ago from the amount of oxygen, and the distribution of dust particles or pollen

trapped in ice through ice-coredrilling.Further scientists alsomakeuse of his-

torical documents that go beyond weather station records.

Diaries, farmers’ and ship logs, travellers’ accounts, official documents and

newspaper articles may provide information not just directly on the weather

but also informationon times of harvest, crop yield,droughts, frosts or vegeta-

tion in general which can give indications of past climate developments (Chen

et al., 2021, pp. 177–178).

Further, recently, indigenous knowledge has been recognised more and

more as a source of information, such as, e.g., Aboriginal knowledge about sea

level rise in Australia passed on through oral traditions over 7000 years (Nunn

and Reid, 2016).

So there are a number of sources for paleoclimate data evenwhen there are

no direct observational records, presenting scientists with information about

climate variables somegoingbackmillennia.Still,particularlyproxydatamust

be interpreted with care and reconstructing the climate of the past with the

58 Santer et al. (2008), however, also concede that itmight never be fully possible to solve

the discrepancies in the observational data sets: “We may never completely reconcile

the divergent observational estimates of temperature changes in the tropical tropo-

sphere. We lack the unimpeachable observational records necessary for this task. The

large structural uncertainties in observations hamper our ability to determine how

well models simulate the tropospheric temperature changes that actually occurred

over the satellite era. A truly definitive answer to this question may be difficult to ob-

tain“ (p. 1719). Note, however, that this disagreement between models and observa-

tions is not considered by Santer et al. to mean that the models are necessarily wrong.

The authors much more emphasise the uncertainties in observations.
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help of proxy data hosts a variety of challenges. Here are just some of them

(Frank et al., 2010; Parker, 2018; Schmidt, 2007):

For one, it can be difficult to accurately date proxy data. Some types of data

has a yearly resolution (such as tree rings and ice cores), others can only be

dated on a decadal scale (e.g., some pollen records or ocean sediment cores).

Even with the more precisely datable data, there can be issues regarding allo-

cating those data points to specific years, such as when it comes to the inter-

pretation of tree ring growth (Mann, 2018).

Furthermore,most proxies are not equallywell locally distributed. Ice-core

data can only be sourced at the poles and tree ring growth is subject to seasonal

differences.

There is also the issue that some proxies can be impacted by more than

one factor. Plant growth for example, can be affected by temperature but also

changes in soil and precipitation etc. So it is up to the scientists to figure out

how to interpret the data and tofindproxies that are less likely to be influenced

by other factors.

And although proxy data is often calibrated against instrumental records

of the recent past, sufficient instrumental records are only available from the

last few centuries onwards, and the climatic circumstances of the earlier past

might be outside the range of what we have instrumental records for.

While “sparse and noisy data are likely the underlying cause for the high

methodological sensitivity” (Frank et al., 2010, p. 510) in paleoclimate records,

proxies provide invaluable insight into past climate developments beyond in-

strumental records.

3.2.3.1.4 Reanalysis data

To fill the gaps of ‘traditional’ climate data, a new idea arose in the early 1980s

to collect all available data of the last decades (or even centuries) and feed it

into a weather model.The hope was to create a new, full-fledged data set that

would provide a full “history of the weather, at every altitude, every grid point,

every place on the planet” (Edwards, 2010, p. 323). After some years of search-

ing for and assembling of data from all over the world, the first reanalysis

projects started in the 1990s.59 For this, climate scientists put this data retro-

spectively through a 4-D data assimilation as originally developed for weather

59 For a more detailed historical account of the development of the first reanalysis

projects from the idea to execution, see Edwards (2010, pp. 323–336).
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forecasting.60 Themodels used for this have to be frozen so that changes and

improvements that are consistently done in weather modelling would not

interfere with the process.The first data sets coming out of reanalysis projects

covered only a timespan of between five and 35 years (Edwards, 2010, p. 326).

These days reanalysis projects like version 3 of 20CR (short for TwentiethCentury

Reanalysis) of the National Oceanic and Atmospheric Administration (NOAA) and

the Cooperative Institute for Research in Environmental Sciences (CIRES) produce

data for the years between 1836 to 2015 (Slivinski et al., 2019).61

Using data that has been produced by heavily relying onweathermodels to

evaluate climate models has provoked initially some concern of philosophers

that one would run into a problem of circularity “since weather-forecasting

60 Data assimilation models originated in weather forecasting. The predecessor of these

models, before numerical weather predictions (NWP) ‘were a thing’, was the so-called

analysis. This consisted of handmade plotting of current data on maps from which

scientists were literarily ‘drawing’, relying on their knowledge and expertise of the

weather system, the forecast. With the introduction of NWPs gridded data became

necessary. This gridded data was first produced by interpolating from the observa-

tional data by hand. Eventually, however, scientists began investing into so-called ‘ob-

jective analysis’, i.e., algorithmic process of interpolation. Then scientists started to in-

tegrate NWP forecasts as a ‘first guess’ for the time of observation. This had the ad-

vantage that scarcity of data in certain regions could be counterbalanced. Combining

observations and forecast in data assimilation meant that uncertainties in model and

data couldbeweighted and factored in. Soon scientistsmoved from three-dimensional

assimilation to adding a fourth dimension: ‘time’. This opened up the opportunity to

integrate data lying outside of specific ‘observing hours’.

Edwards emphasises that data assimilation has become much more than a “sophisti-

cated version of interpolation” considering that “[a]ssimilationmodels are full-fledged

atmospheric simulations; if run with no observational input at all, they would keep

right on going day after day, month after month, generating physically consistent

global data images. Where observations are available, they constrain the model, but

they do not determine their output in any ordinary sense of ‘determine’” (Edwards,

2010, p. 279). For a more detailed account of the development of data assimilation,

see Edwards (2010, pp. 254–273).

61 What timespan different reanalysis projects comprise depends, in practice, on the spe-

cific objectives, the available computing power and on what kind of data are used.

The ERA-interim atmospheric reanalysis from the European Centre for Medium-Range

Weather Forecasts (ECMWF) only goes back to 1979 when satellite data became avail-

able for assimilation (Dee et al., 2011). On the other hand, the 20CR data set, covering

the years 1836 to 2015, is created assimilating only surface pressure observation in or-

der to avoid issues of inconsistencies with the availability of observational sources for

that timespan (Slivinski et al., 2019).
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models include a number of assumptions about the physics of the atmosphere

that are similar, if not identical, to those included in state-of-the-art climate

models [...][and thus] the fit between reanalysis data sets and simulations of

past climate [...] will be artificially inflated“ (Parker, 2011, p. 587). Leuschner,

however, argues that precisely the close relationship between climate and

weather models provides a good argument not to be particularly concerned

about reanalysis data insofar as “if an assumption works reliably in a weather

model this can well be considered as an indicator for the adequacy of the

assumption“ (Leuschner, 2015, p. 370). She further notes that the assimilation

models used for reanalysis projects are, for one,well-tested in their function in

weather predictions and, for another, that reanalysis data are usually applied

in conjunction with conventional climate observations.

Reanalysis data sets are now widely in use in climate science and are often

treated and referred to the same as ‘normal’ observational data. From a philos-

ophy-of-science perspective, Parker argues that reanalysis actually constitutes

a form of complex measuring procedure, albeit it is a “measurement practice

that is still under development” (2017, p. 294). She adds this caveat not because

of a worry that there is something innately wrong with using computer simu-

lations to produce data but because reanalysis data to date “are not subjected

to a rigorous process of calibration that provides well-motivated uncertainty

estimates“ (Parker, 2017, p. 300) as one would expect for ‘ordinary’ measuring

instruments and observation making. Parker particularly points out that part

of the measuring process in reanalysis involves some difficulties that are spe-

cific to the use of computer simulations, such as numerical discretisation that

is not part of conventional measuring practices and needs to be accounted for

in order for reanalyses to be full-fletched measurement practices in their own

right.

3.2.3.2 Model-data interdependency

What has been shown so far is that creating global climate data involves much

more than simply collecting data from a variety of instruments at a variety of

locations. These data sets are “models of data” (Suppes, 1962) and a great deal

of work goes into constructing them. Before the ‘raw data’ is of any use to cli-

mate scientists, they have to be extensively processed.That is, climate data sets

are, as Edwards calls it,model-filtered insofar as they are created with the help

of “what we might call ‘intermediate models’ […][which] include models of in-

strumental behaviour, interpolation techniques […], techniques for automatic
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rejection of anomalous data points” and so forth (Edwards, 1999, p. 450). ‘Raw’

climate data on its own is patchy, inconsistent and sometimes conflicting.This

is also a well-established insight in climate science: “[m]odel-filtered data can

be trusted to the extent towhich themodels used to correct and extend thedata

have been independently tested and are confirmed” (Baumberger et al., 2017,

p. 6). Or, to paraphrase Edwards: climate data has to be made (2010, p. 321).

However, Edwards also points out that the relationship between models

and data is distinctly interdependent. Climate models are also “data-laden”

(Edwards, 1999). Models are not just evaluated with the help of observations,

they also contain in themselves a fair amount of observations. Specifically, the

development of parametrisations requires scientists to consult observational

data (Guillemot, 2010). For this reason parametrisations are also sometimes

described as having a “semi-empirical” (Edwards, 1999, p. 449) character.

Tuning is another way in whichmodels become data-laden. In the process

of tuning models are calibrate with the help of observational data. There is

some specific concern that this relationship might be questionable when the

models are tuned to the same data they are later evaluated against.This prac-

tice, dubbed double counting, has sparked a discussion among climate scientists

and philosophers. Scientists on the whole seem at least sceptical that this pro-

cedure could be considered adequate.Mauritsen et al. contend that evaluating

quantities addressed in tuning are “of little value” (2012, p. 3) and the fifth IPCC

Assessment Report (AR5) states that “quantities that are tuned cannot be used

inmodel evaluation” (Flato et al., 2013,p. 749).A commonstrategy to avoiddou-

ble counting in practice is data splitting: to use one half of the data set for tuning

purposes and the other half for evaluation (Baumberger et al., 2017). Philoso-

phers Katie Steele and Charlotte Werndl (2013), however, argue that from the

point of view of Bayesian confirmation theory there is little difference between

relying on the same data for tuning and evaluation and conventional meth-

ods of testing of hypotheses.Other philosophers and climate scientists (Frisch,

2015; Schmidt and Sherwood, 2015) have subsequently voiced criticism of this

view. Frisch argues that, tuning has some confirmatory power but still con-

cludes that “fit with data not used in tuning is a superior test of a model’s per-

formance“ (2015, p. 174).

Edwards has called the connection between models and observation “symbi-

otic” (Edwards, 1999, p. 453). Contrary to the traditional ideal, there is neither a

clear separation between data and model nor a clear-cut hierarchy where one
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of the two takes precedence. It is “a mutually beneficial but also mutually de-

pendent relationship” (Edwards, 1999, p. 453):

The picture that I hope is emerging here is that all knowledge about climate

change depends fundamentally on modeling. It’s not that there is no such

thing as an observation separate frommodeling. It’s that putting together a

trustworthy and detailed data image of the global climate – getting enough

observations, over a long time span – requires you to model the data, to

make them global. It’s not that climate simulations models are perfectly re-

liable, any more than weather forecast models always get it right. Instead,

it’s that simulations already include a lot of data in their parameters; they

are precisely not pure theories, but theories already partially adjusted to the

conditions we observe in the real world. That’s model-data symbiosis. (Ed-

wards, 2010, p. 352)

This symbiotic relationship can be understood in two ways, Parker (2020)

points out. On the one hand, it can be a mere reference to the instance that in

general a model is created with the help of a data set which was created inde-

pendently from this type of model, which in turn is used to process another

kind of data set. But there is no direct, two-way exchange between one specific

data set and one specific model. On the other hand, occasionally there are,

Parker notes, also cases where the relationship is more direct – to the extent

that one data set is created with the help of a model, which is then evaluated

with the help of this specific data set.62

62 One possible example for such a case, according to Parker, would be a model used to

create synthetic data, which is then used to evaluate homogenising algorithm for find-

ing, non-climate-change related inconsistencies in observational data. A direct symbi-

otic relationship may arise when the model producing the synthetic data is later eval-

uated against an observational data set, which was created with the help of the ho-

mogenising algorithm, which in turn was tested with the synthetic data. This kind of

symbiotic relationship in general, argues Parker, does run a particular high risk of turn-

ing circularly in a self-affirming way, as the model “has no direct role in producing the

climate data set; it merely plays a supporting role in efforts to evaluate methods for

removing artifacts when producing the data set“ (Parker, 2020, p. 815). Parker comes

to the conclusion that reanalysis is one case where one might have more reason to be

concerned that this relationship is problematic, to the extent that as “weather-fore-

castingmodels (used in data assimilation) and climatemodels take a similar approach

to representing physical processes in the atmosphere, it could be that reanalysis data

sets and climate simulations have some shared errors“ (Parker, 2020, p. 816). However,
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3.2.3.3 Verification and validation

One issue that arises in the context of evaluation of climatemodel concerns the

applicability of the concept of validation and verification. Traditionally, the pro-

cess of verification and validation (commonly shortened to V&V) is drawn upon

to establish confidence in computer simulations:

Verification is said to be the process of determiningwhether the output of the

simulation approximates the true solutions to the differential equations of

the original model. Validation, on the other hand, is said to be the process of

determining whether the chosen model is a good enough representation of

the real-world system for the purpose of the simulation. (Winsberg, 2019)

Both are commonly treated as distinct in execution and in conceptual classifi-

cation. While verification is considered to be a question of mathematics and

the accuracy of the numerical solution, validation concerns physics and the

question whether the underlying equations of the model are an adequate rep-

resentation of the target system. Both pose two separate questions:

First, are the solutions that the computer provides close enough to the actual

(but unavailable) solutions to be useful? [...] Second, do the computational

models that are the basis of the simulations represent the target system cor-

rectly? (Frigg and Reiss, 2009, p. 602)

Although this conception is popular with scientists (Winsberg, 2018, pp.

156–157), philosophers have raised concerns that applying these terms to

scientific models is problematic because “it is impossible to demonstrate the

truth of any proposition, except in a closed system“ (Oreskes et al., 1994, p. 641):

a requirement that only purely logical or mathematical models can meet.63

There is some disagreement within the philosophy of science community

about the extent to which this concern about the entanglement of verification

Parker notes that current research does not show that reanalysis data sets are ‘closer’

to models than conventional observational data.

63 Oreskes et al. come to the conclusion that in this instance instead of verification or vali-

dation the best that might be accomplished is confirmation, that is, there is an increas-

ingly good match between increasingly diverse observations and the model output:

“The greater the number and diversity of confirming observations, the more probable

it is that the conceptualization embodied in the model is not flawed. But confirming

observations do not demonstrate the veracity of a model or hypothesis, they only sup-

port its probability“ (Oreskes et al., 1994, p. 643).
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and validation holds in actual scientific practice and for which kinds of com-

putermodels (Jebeile andArdourel, 2019;Morrison, 2015).Although it has been

noted that practices concerning either primarily verification or validation are

part and parcel of climate modelling (Winsberg, 2018, p. 157; Lenhard, 2018).

Philosophers concerned with the peculiarities of complex computer simula-

tions of the type of ESM have pointed out some features of these models that

should make us sceptical about V&V as an epistemological concept of two

separable procedures fully grounding our trust in these simulations. Why is

that?

Lenhard (2018) argues that the applicability of V&V is limited in simula-

tions of the type of global climate models because it would require to separate

model structure and parameter. However, climate models necessarily also in-

clude parametrisations schemes with adjustable parameters, so that the ade-

quacy of a model cannot be assessed without already having determined the

parameter value.That is, “without assignment of parameters neither the ques-

tion about representational adequacy nor the question about behavioral fit can

be addressed“ (Lenhard, 2018, p. 842). For this reason, he concludes that “[i]t is

not possible to first verify that a simulationmodel is ‘right’ before tackling the

‘external’ question whether it is the right model“ (Lenhard, 2018, p. 842).

Winsberg (2018, pp. 156–160) comes to the same conclusion from a slightly

different angle. He points out that these models rather have a “life cycle” than

undergo a “linear development” (2018, p. 158). Tuning, the need for parametri-

sations and a fuzzymodularity,means that the process of model development

is an “iterative process” (Guillemot, 2010, p. 249;Winsberg, 2018, p. 158),where

the model is consistently tested and further developed. New elements are

added to the model, for instance, in form of new parametrisations and/or the

discretization scheme is modified.That is, there are constantly changes made

to both the underlying model and the implementation in a trial-and-error

fashion, not just based on basic well-accepted physical and mathematical

principles and theories, but also “physical intuition, phenomenology, local

empirical finding, lore accumulated from parallel modelling successes, etc.”

(Winsberg, 2018, p. 158).Winsberg particular points out that this process leads

to the possibility of unknown compensating effects so that:

[w]hen a climatemodel succeeds at passing whatever test we subject it to, it

might be because the underlying model is ideal and the algorithm in ques-

tion finds solutions to that underlying model. Or it might be because of a

“balance of approximations.” This is likely the case when a model is delib-
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erately tailored to counterbalance what are known to be limitations in the

schemas used to transform the model into an algorithm. […] And when suc-

cess is achieved in virtue of this kind of back-and-forth, trial and error piece-

meal adjustment, it is hard to even know what it means to say a model is

separately verified and validated. (Winsberg, 2018, pp. 159–160)

But Winsberg (2018, p. 160) also argues that this amalgamation of improve-

ments efforts, constricting the model from different perspectives and objec-

tives, are exactly what can substantiate the confidence that the models are ad-

equate for a specific purpose.

Further, thenotion that verificationandvalidationcannotbekept fully sep-

arate does not mean that procedures targeting one or the other do not have

an important place in the practice of climate modelling. As Lenhard notes the

holism underlying the problem with V&V in complex computer simulations

“comes in degrees” (2018, p. 842).

3.2.4 Conclusion

Contrary to conventional ideals about how science should operate this chapter

has shown that in climate science the relationship between models and data

is rather complicated and interdependent. For one, observational or experi-

mental data is not just consulted at the end of the ‘scientific process’ to con-

firm or refute a theory or a model. Instead observations are a vital and intri-

cate part in the climate-model building process.Not only are parametrisations

often significantly based on observational data, but models are also continu-

ally calibrated, evaluated and further developed with the help of observations.

These models are not just simply a representation of theory. They do not fit

into the traditional theory-focussednarrativeof science,wherebyobservations

only play aminor character in the scientific process by verifying theories in the

end.

Some philosophers like Hacking worrying that the experimental part of

science was neglected have argued for the independence of the experimenter’s

work fromthat of the theorist’s.However,whenscience isdealingwith systems

that are as complex as the climate system, it becomes increasingly undeniable

that this separation into an empirical and theoretical part of science can no

longer bemaintained. Climatemodels are not just pure theory.They are laden

with data through parametrisation schemes, tuning and evaluation processes.

Similarly, observational data are clearly theory-laden.Thepure, ‘raw’measure-
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ment, the direct instrument readingwithout any processing, usually says little

about the quality of the model.64 Theory and observation are neither fully in-

dependent nor does one take precedence over the other. As Edwards (1999) has

rightly pointed out, models and data have a “symbiotic” relationship. Impor-

tantly, this should not be confused with the claim that models and data would

be interchangeable or in some way ‘the same’: “Interdependence is not iden-

tity; data sets are still derived primarily fromobservation, andmodels primarily

from theory” (1999, p. 454).

Nevertheless, when the assumption of ‘independent observations’ provid-

ing irrefutable evidence for a theory or model is widespread in the public un-

derstanding of science, it makes it easier for science sceptics or particular in-

terest groups to undermine trust in scientific research. Edwards (2010) and

Lloyd (2012) have shown that in the case of the controversy about the interpre-

tation of the MSU satellite data discussed above, the debate was not just held

within the scientific community but also eagerly picked up by climate science

sceptics frompolitics and thewider society as anargument against the reliabil-

ity of climatemodels.Theclaimthat theUHAdata set,because itwas calibrated

with the help of radiosonde data, could serve as a kind of independent repre-

sentation of ‘reality’, functioning as a benchmark against which the quality of

models could irrefutably be judged, was also brought forward in hearings in

front of theHouseRepresentatives in theUnitedStates.And the apparent ‘mis-

match’ between the models and observations was presented as a failure of the

scientists to do “sound science” (Edwards, 2010, p. 414, see also Chapter 3.3.1).

Instead what the case of the MSU data has shown is that, taking into ac-

count that observations just as models come with some degree of uncertain-

ties, onemismatch with some specific data set does not necessarily mean that

models ought to be disregarded right away.

Considering the controversy about the UHA data sets Lloyd (2012) intro-

duces the distinction between direct and complex empiricism. From the point

of view of direct empiricist ‘raw’ data are “windows on theworld, as reflections

64 In fact, Edwards notes that themeaning of data itself has changed in climate science. In

the early days of climate modelling, scientists used to separate between data gained

from simulations and that coming directly from observations. But this turned out to

be “linguistically awkward” (Edwards, 2010, p. 283), so it became common practice to

refer also to model output just as data. While many philosophers have been critical

about the term rawdata in general (Harris, 2003; Leonelli, 2019), computer simulations

and techniques like reanalysis have expanded the definition of ‘measurement’ (Parker,

2017).
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of reality, without any art, theory, or construction interfering with that reflec-

tion.This claimof adirect connection to reality is very important to their views“

(Lloyd, 2012, p. 392). Lloyd argues that instead a “complex empiricism”, which

allows for the idea that data is theory-laden, in need of extensive processing

and is to a certain degree open to interpretation, would be more appropriate.

But, of course, despite all these difficulties, climate models are, nonetheless,

broadly and continuously evaluated in respect to their fit with observations.

But as observational data sets are, on the one hand, model-filtered and, on

the other hand, models are data-laden in terms of tuning and semi-empirical

parametrisations, it can be difficult to determine what a ‘good’ fit of models

with observational data actually means. In this respect, climate scientists set

much store by the adequacy-for-purpose principle (Parker, 2009; see also: Notz,

2015; Knutti, 2018; Chen et al., 2021, p. 221). While in general the models con-

stantly get better at representing the climate of the past, they, nevertheless,

do not, as we have seen in Chapter 3.1.3, display all relevant variables and

processes equally well. So it has to be established what specific variables and

processes are relevant for the model to be adequate for a specific purpose.

Thus, “[t]he challenge […] is to determinewhich instances of fit do support and

which instances ofmisfit do undermine an adequacy-for-purpose hypothesis”

(Baumberger et al., 2017, p. 6). However, even if the properties of fit amodel is

required to display for a specific purpose are determined, a model showing a

good fit in this respect still does not necessarily warrant that themodel will be

adequate for making predictions about the future, as:

[i]nstances of fit could be the result of compensating biases, or overfitting,

or could simply be unimportant if the evaluated quantity is unrelated to the

prediction of interest. Instances of misfit could result from the fact that the

model simulates a different quantity than that observed or from biases in

observations, or of different processes in models and observations. (Knutti,

2018, p. 331)

This means, that it is not possible to simply extrapolate from an adequate

representation of current and past climate that the models will necessarily

be able to represent future climate states with high anthropogenic forcing

equally well.That is, the climate of the futuremight lie outside the boundaries
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of what we currently have data for, so that feedbacks65 or other processes

might emerge that are not accounted for by evaluating the model with regard

to their fit to the available data (Baumberger et al., 2017, pp. 8–9).66 Further,

it might very well be that (unknown) compensating effects within the model

contribute to a good fit to observations that might not hold under future

climate change conditions because, for instance, feedback processes might

accelerate in unforeseen ways.

On the other hand, when a model is not able to represent a feature of the

climate of the recent past, then it can be said that it is highly unlikely that

the model is adequate for projecting that feature of the climate in the future

(Parker, 2009). Therefore, a good fit of the model with observational data has

become a necessary but not sufficient condition for the model to be adequate

for theparticular purpose. Inotherwords,“empirical accuracy ofmodel results

should […] be understood as premises” (Baumberger et al., 2017, p. 7).

For these reasons, a goodunderstanding of different climate processes and

the system as a whole are considered by climate scientists key to estimating to

what extent these processes are adequately represented in themodels (Bony et

al., 2013, p. 20). Based on this assumption, scientists specifically highlight the

necessity of a proper understanding of the innerworkings of themodels them-

selves when onewants to draw any conclusions about themodels’ applicability

for climate change predictions:

We need to make sure the models do the right thing for the right reason,

because we want to use them beyond the range they have been evaluated.

We have greatest confidence in models where we understand the processes

behind the results, andwherewe can argue thatmodels represent themwell

enough. (Knutti, 2018, p. 346)

Knutti also argues that “process understanding” (2018, pp. 334–338) is central

to the adequate-for-purpose question. That means having an insight into

whether the emergent component of the model arising out of the inner model

65 Climate feedbacks refers to those processes in the climate system where a change in

quantity a also impacts another quantity b, which leads to further change in quantity a.

In general these interactive relationships can, depending on the specific process, have

an accelerating (positive feedback) or decelerating (negative feedback) in the context

of climate change. Important feedbacks concern, for example, clouds, the carbon cycle

and ice-albedo.

66 Oneway that climate scientists dealwith these problems is establishing so called emer-

gent constraints (this will be further explored in Chapter 3.3.3.4).
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structure, are similar to the target system. Further, process understanding

requires that the interactions of the emergent elements in the model are well

enough understood, so it is reasonable to believe that, firstly, it will remain like

that over a significantly long period of time and outside the range that can be

evaluated and, secondly, that no other relevant feature ismissing.Only if all of

this is accomplished, argues Knutti, one could consider a model adequate for

purposes that lie outside the range for which the models can be tested. Thus,

mitigating the epistemic opacity of the models through background informa-

tion that climate scientists have acquired both about the inner-workings of

the model and the target system and understanding to what extent specific

climate processes are adequately represented in the model is seen as an es-

sential aspect in improving climate model projections (see also Baumberger

et al., 2017).

All of this requiresmuchmore than puremodel-data comparison. Instead,

as will be further examined in Chapter 3.3.3.4, what makes climate scientists

confident inusingmodels for specificpurposes areusually a varietyofdifferent

factors that go well beyond simply being in accordance with observations; the

model fit is just one aspect amongmany.

To summarise it can be said that what has been stated in this chapter about

the relationship between the empirical and theoretical part in science holds,

specifically for instance,where science deals with highly complex systems.But

it would be an illusion to say that these two spheres of science can be fully sep-

arated, even when science is concerned with less complex systems. And as sci-

ence turns tomoreandmore complexproblems, thiswill just becomemoreand

more obvious. On the other hand, as we have seen Chapter 3.2.2, philosophers

and sociologists have long been pointing out the complex role of observations

in science and climate science is here no different than other sciences (Guille-

mot, 2010).67

One reason why the ideal that observations provide a readily available

irrevocable benchmark against which theories can very easily be evaluated has

to be assumed to be rooted in the fact that so far the need for and difficulties

of processing and handling of data has not been particularly noticeable from

67 Guillemot particularly notes that compared to many other sciences the “data mal-

leability is of a much higher degree in the climate sciences, due to the extensive use of

computers on all levels“ (Guillemot, 2010, p. 249).
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outside of science. The wish to clearly separate one from the other is under-

standable. Vindicating climate models would be much easier and debates

about the specific impact as well as scale of anthropogenic climate change

could be settled much quicker if there was some kind of irrevocable method

of providing evidence in the form of observations telling us instantly if the

models were right or wrong. If we come to the table with these expectations,

then it seems altogether unsatisfying to hear that the only possible statement

about themodel is whether increased confidence in the adequacy of themodel

for a specific purpose is warranted. But things are rarely as neat in science

as outsiders and often even scientists themselves wish them to be. Science is

messy and complicated.This is not a denial of climate change nor a dismissal

of science itself. As illustrated above in the case of the MSU data, even in situ-

ations where there is disagreement on the interpretation of the data at first,

over time a consensus will be found within the community. Scientists, in the

end, are often able to settle these kinds of debates. But this takes time as well

as effort and will always be accompanied by some (never fully disappearing)

uncertainties.

3.3 Predictability

3.3.1 Introduction: predictability and uncertainty

Thewish topredict the future, to produce forecasts ofwhat is to come is an age-

old human endeavour. In ancient Rome, animals, specifically birds, were ob-

served to divine some knowledge about the will of the gods. In ancient Greek,

the oracle of Delphi was consulted, before wars were fought, and astrological

readings of the stars can be found in many cultures going back millennia.

As far as science is concerned, making predictions as an integral, central

function of science turned into an essential part of the definition of science

in the 17th century, including “the conviction that any discipline that does not

make successful predictions thereby fails to make good its claims to providing

scientifically adequate understanding” (Rescher, 1988, p. 25).The emphasis on

prediction making in this conception of science only gained in intensity over

the next centuries with Newtonian physics and enlightenment being driving

forces. The hope was that science would progress to supply ever more precise

predictions. However as Rescher notes, the rise of the predictability ideal in

science, took a hit in the wake of the French Revolution and only came back “as
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science of nature gave way as source of inspiration to the science of society”

(Rescher, 1988, p. 25) in the 19th century.

In the post–WorldWar II period, the public and political ‘appetite’ for pre-

dictions reached a new high (Rescher, 1988, p. 28). At the same time advance-

ments in computer power and the rise of computer simulations in the second

half of the 20th century increased the abilities of science to fulfil these expec-

tations. The first weather models came out of the effort put into simulating

the explosion of nuclear weapons at the beginning of the ColdWar when John

vonNeumann recognised that the insight acquired there could also be applied

to weather forecasting (Weart, 2010, p. 209).68Theuse of computer simulation

spread tomultiple otherfields of science over the rest of the century.Computer

simulations now have a wide variety of applications, such as economics, epi-

demiology, engineering, cosmology and much more. Further, the progress in

computer modelling did not only meet the request for information about the

future, it also facilitated it, as Heymann et al. point out: “models helped both

to create and furnish social demands for predictive knowledge” (2017b, p. 6).

However, while at once the demand for predictions increased from the

middle of the last century onwards, at the same time, with this increasing

relevance of science in public life, the pressure for science to provide clear,

irrefutable or, to bemore specific, uncertainty-free predictions also increased.

From the middle of the last century onwards it became a popular and very

effective strategy of some interest groups to undermine research results in-

convenient to them, by arguing that there are still too many uncertainties to

take actions, and that, before any action can be taken, there first needs to be

more research done (Oreskes and Conway, 2010).

A helpful way of thinking about these two somewhat contradictory expecta-

tions about what science ought to deliver is in terms of the concept of cultures

of predictions as applied by Heymann et al. (2017a).69 This framing will be use-

68 It still took a long time from that initial idea to any kind of weather simulation that

could be used for actual forecasting purposes. Two names that should be mentioned

here are Jules Charney, who was engaged by Neumann to lead the group that would

develop the first weathermodel and Lewis Fry Richardson, who developed the numeri-

cal system based on Bjerknes equations (Chapter 2.1), which was used to build the first

weather model (Richardson, 1922). For a longer recount of the history of weather and

climate modelling see Weart (2010) and Edwards (2010).

69 The concept of “culture[s] of prediction” was not invented by Heymann et al. (2017a)

as the authors themselves state. For instance, Fine (2010) first applies the phrase “cul-
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ful to understand the way the social and the scientific spheres are intercon-

nected through reliance on the predictiveness of science, the difficulties that

come with the interdependency of these two spheres and how this specifically

translates to the case of public perception and expectation of climate science.

Heymann et al. characterise the cultures of prediction in five steps in order

to show “the broad-ranging and pervasive role of predictive efforts in postwar

modern society” (2017b, p. 6):

1. the social role of prediction;

2. the character and significance of computational practices;

3. the domestication of uncertainty;

4. the degree of institutionalization and professionalization of predictive ex-

pertise;

5. the cultural impact of predictive practices and claims (Heymann et al.,

2017b, pp. 6–7).

Firstly, predictions fulfil a significant social role. The general expectations for

science to provide knowledge about what the future will bring extend to most

aspects of society. Heymann et al. (2017a, pp. 20–22) note that this also means

that prediction making can sometimes take precedence over understanding

the system, a prioritisation that is not uncontroversial within the scientific

community.This is also a discussion that has been taking place in climate sci-

ence (Bony et al., 2013). However, it has to be said that, as will be further dis-

cussed below, it is questionable whether understanding the systems and the

simulations, and improvements in predictions making skills can be fully sep-

arated. Consequently, some climate scientists advocate to put the focus of cli-

mate science towards finding ways to mitigate the epistemic opacity of the

models (e.g., Baumberger et al., 2017).

Secondly,with the vast demand for predictions, scientists increasingly rely

on computer simulations (Heymann et al., 2017a, pp. 22–26).This comes along

with specific epistemic challenges,many ofwhich have already been discussed

in the previous chapters (see particularly Chapter 2.1).

ture of prediction” in his in-depth study of AmericanWeather Forecasting Institutions,

while Johnson (2017) uses the term to explore the role of mathematics in prediction

making. Heymann et al. say they specifically use the plural here to emphasise “the lo-

cal origin and socially contingent character of the cultural formations built around the

construction and use of computer models for predictive purposes” and that there is “a

multitude of distinct cultures of predictions” (Heymann et al., 2017b, p. 6).
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Thirdly, predictionmaking usually comes hand in hand with uncertainties

science has to deal with alongside the public’s cravings for certainty (Heymann

et al., 2017a, pp. 26–29).The specific kinds of uncertainties climate modellers

face will be discussed further in the following. As already noted in the intro-

duction to this book, in the context of climate science uncertainties often get

misrepresented in public debates as ‘evidence’ that nothing can be said about

anthropogenic climate change at all. The question of how to deal with uncer-

tainties also has to do with the first characteristic of cultures of predictions as

climate scientists argue that uncertainties can be reduced by increasing back-

ground knowledge about the models and the target system (Bony et al., 2013;

Knutti, 2018).

Fourthly, roughly in the last seventy years, the increasing demand for sci-

entific predictions has also led to the creation of a variety of institutionswhose

primary concern is to provide predictive knowledge. In the case of climate sci-

ence,arguably themost significant oneof those institutions is the IPCC,whose

role in assessing and communicating climate changewill also be discussed be-

low (Heymann et al., 2017a, pp. 29–32).

Last but not least, the focus on predictions in the last century also had a

wider cultural impact. One prominent example is howmuch the public mind-

set has been directed towards climate change. The cultural impact and the

power are such, argue Heymann et al. (2017a, pp. 32–36), that we are usually

not aware how the cultures of prediction permeate everyday life and direct our

view of the world.

Heymann et al. argue that “cultures of prediction represent cultures of

power” (2017b, p. 7). However, they also note that the power attributed to

science in its abilities to make predictions, does not necessarily translate to

political actions. On the contrary, it can halter or even undermine political ac-

tions. In the context of climate science, this can be exemplifiedwith help of the

phrase ‘sound science’. It relates to an argument against taking up a stronger

climate-change mitigation policy, brought forward by climate science scep-

tics.That is that there are still toomany uncertainties and that, unless they are

eliminated, it would be an overreaction to act. As Oreskes and Conway (2010,

pp. 136–163) have shown, the method to call for ‘sound science’ as a premise

before any political action should be taken first arose as a strategy of tobacco

companies in order to discredit research showing connections between sec-

ond-hand smoking and cancer, and to avoid further regulations in the early

1990s. A strategy that was quickly adopted and reapplied to argue against,

among other issues, regulations of CO2 emissions, as Oreskes and Conway
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further show (pp. 169–215). By the mid 1990s, the claim that climate scientists

were not doing “sound science” but “junk science” found its way to hearings

at the US House of Representatives and Senate (Edwards, 2010, pp. 411–414).

In Chapter 3.2. we have seen that the demand for ‘sound science’, alluding

that there is an apparent discrepancy between observations and models, can

function as an embodiment of the ideals that observations provide irrefutable

evidence for or against the models. On the other hand, the call for ‘sound

science’ also puts the emphasis on the uncertainties that come along with

making predictions. As Supran & Oreskes (2017) have shown in an analysis of

internal communication of Exxon Mobile Cooperation insinuating that there

is not yet sufficient evidence of global warmingwas awell-established tactic to

thwart stricter climate policy.They conclude that in order to avoid regulations

the company relied on a publicity strategy that “overwhelmingly emphasized

only the uncertainties, promoting a narrative inconsistent with the views of

most climate scientists, including ExxonMobil’s own“ in order to “undermin[e]

public understanding of scientific knowledge“ (Supran and Oreskes, 2017, p.

15).

Thus, while the post–World War II period increased the relevance of sci-

ence in the public sphere and the expectation but also ability (through rising

computing power) to provide predictive knowledge, it also brought with it the

expectation of science to deliver binary, clear-cut and uncertainty-free predic-

tions.Thereby, science risks becoming trapped in the conflict between the self-

awareness that knowledge is preliminary and the public expectation to provide

clear-cut answers to questions of the future.When themisconception that un-

certainties are a sign of bad science or not fully matured science is widespread

in the public perception of science, this can quickly become a problem.While

scientists whose work is under public scrutiny, like climate science, are often

verymuchaware that the complexity and the impactof their researchdoeswar-

rant caution, as the following will show, they also have to navigate, on the one

hand, public expectations to provide meaningful answers and, on the other

hand, the knowledge that any misplaced overconfidence on their part can be

misconstrued as a sign of the overall corruption of their field of research.

Considering the structure of this subchapter, I will first discuss robustness anal-

ysis (RA) as it has become central to the debate in philosophy of science on how

todealwith theuncertainties occurring inmodellingandspecifically in climate

modelling. I will, then, go on to discuss uncertainties in climate science more

explicitly, how they are communicated to policymakers and stakeholders and
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how the argument about RA plays out here.This analysis of uncertainties and

RA, on the one hand, will show that the sources of uncertainties climate sci-

entists are confronted with are multifaceted and intricate so that the demand

for climate science to reduce these uncertainties is often easier said than done.

But, on the other hand, this does notmean that these uncertainties fully debil-

itates climate science and render it impossible to make any kind of statement

about the way the climate will alter due to anthropogenic forcing. It will be

shown how, despite all kinds of uncertainties, it is possible for climate scien-

tists to assess specific hypotheses.This will be done byway of example of Equi-

libriumClimate Sensitivity (ECS) which is one of themost important variables

to determine the effects of anthropogenic climate change.

3.3.2 Robustness

The notion of RA of models was first introduced in philosophy of science by

Richard Levins (1966). As a biologist, Levins observes thatmanymodels in pop-

ulation biology, his field of research, include idealisations and simplifications

due to the complex nature of the systems in question.This, in turn,means that

the models also include elements that are not ‘truthful’ representations of the

world.

Because the systems are often too complex to model these systems with a

“naïve, brute force approach […] which is a faithful, one-to-one reflection of

this complexity” (Levins, 1966, p. 421) to be feasible in practice, the question

arises howwe can still infer knowledge about a specific phenomenon from the

models despite these idealisations.That is, howdoweknow that amodel result

is due to “the essential of amodel or […] the details of the simplifying assump-

tions” (Levins, 1966, p. 423).

Levins’ proposal for a solution to this conundrum is to use a variety of dif-

ferent models with different idealisations that, nevertheless, share a common

core regarding the phenomena:

we attempt to treat the same problem with several alternative models each

with different simplifications but with a common […] assumption. Then, if

thesemodels, despite their different assumptions, lead to similar results we

have what we can call a robust theoremwhich is relatively free of the details

of themodel. Hence our truth is the intersection of independent lies. (Levins,

1966, p. 423)
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Levins concludes that, whenmodels complement each other to the extent that

they are “coordinate alternative models for the same set of phenomena” (1966,

p. 431) and generate matching results, this constitutes a robust theorem. Mean-

ing a common, reliable prediction, even though every singlemodel is wrong in

respect to the representation of some aspect of the target system.

Levins’ account of robustness has subsequently been criticised by Orzack and

Sober for asserting “that a statement’s robustness, as distinct from its observa-

tional confirmation, can be evidence for its truth” (1993, p. 538). They criticise

Levins’ concept of RA for seeming to provide, as Weisberg put it “a novel,

nonempirical form of confirmation“ (2006, p. 732). Orzack and Sober provide

a more formalised account of RA. They begin by identifying the specific cir-

cumstances under which, they say, a clear relationship between robustness

and truth can be established:

There is a special case inwhich the connection between robustness and truth

is clear. Suppose we know that one of a set of Models M1, M2, …, Mn is true,

but we do not know which. If R is a robust theorem with respect to this set,

then Rmust be true. (Orzack and Sober, 1993, p. 538)

However, while in this specific situation the premise is that one of the models

in the set is true, Levins’ assumption is that all models are “lies” one way or

another. Orzack and Sober argue, that unless we know that at least one of the

models in the set is true, we cannot infer from the fact that themodels predict

the same that it is true.

Otherwise it might very well be the case that a robust theorem arises be-

cause of a common denominator in the form of a shared assumption within

the model, which might or might not be a lie that all models have in common.

From this point of view, a robust theoremmight reflect more about the conve-

niences of the model building process than its truth (Orzack and Sober, 1993,

p. 538).70

70 Orzack and Sober also consider what independence of models means. Like Levins they

regard the independence of models in a set as a necessary premise for robustness

(1993, pp. 539–540). They argue that there are two ways in which the models could be

considered independent: logical or statistical.With regards to the first case, it has to be

said that “competingmodels are not logically independent“ (Orzack and Sober, 1993, p.

539), andwith regard to the second case, there remains the question of how onewould

sample from the whole set of models. That is, reason Orzack and Sober, both kinds of

independence cannot be applied to RA of models in scientific practice.
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Levins, subsequently, has defended his approach to robustness from Orzack

and Sober’s attack by pointing out that RA as he understands it does not forego

empirical observations:

Orzack and Sober are worried that the robustness strategy seems to propose

a way to truth independent of observation. This is not the case. Observation

enters first in the choice of the coremodel and the selection of plausible vari-

able parts, and later in the testing of the predictions that follow from the core

model. (Levins, 1993, p. 554)

ThewayRA is represented byOrzack andSober does not take this into account,

Levins argues.71 He notes that seeking robust theorems “reflects the strategy

of determining howmuch we can get away with not knowing, and still under-

stand the system“ (1993, p. 554), though asWeisberg points out Levins “does not

tell us how it helps to confirmmodels and their predictions” (2006, p. 732).

Building on this discussion,MichaelWeisberg (2006) offers a new approach to

RA.Weisberg’s goal is to show that “robustness analysis is effective at identify-

ing robust theorems, andwhile it is not itself a confirmation procedure, robust

theorems are likely to be true“ (2006, p. 732). To do so requires amore differen-

tiated understanding of the concepts of robustness theorem and robustness analy-

sis, arguesWeisberg.72 To that end he proposes to see RA as the following four-

step procedure (Weisberg, 2006, pp. 737–738):

1. Finding a robust property that is a shared result amonganensemble ofmo-

dels

2. Studying the models to find a common structure that creates the robust

property

71 Lloyd, whose account of RA in the context of climate models will be discussed further

below in Chapter 3.3.3.4, argues that the differences between Orzack and Sober, and

Levin are the divergent objectives: “Orzack and Sober had a different goal, namely pre-

dictive inference to the model’s outcome […] about which they were likely correct […].

Levin, in contrast, emphasised the key empirical evidence for the model structure un-

der consideration” (Lloyd, 2015, p. 59).

72 Weisberg presents his concept of RA in the context of the example of a predator-prey

model. I will just introduce his argument here in an abstract form as I will discuss an

application of Weisberg’s four-step robustness scheme to climate modelling by Lloyd

(2015, 2010, 2009) in Chapter 3.3.3.4.
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3. Determining how the given mathematical model structure is to be empir-

ically interpreted

4. Undertaking stability analyses by examining how the robustness theorem

will fare if the models in the ensemble change somewhat

The first two steps, argues Weisberg, go hand in hand. Once (or often while)

a robust property (that is a common predictive result the models generate) is

found in “a sufficiently diverse set ofmodels” (Weisberg, 2006, p. 737), the core

structurewhichbrings about the robust property has bedetermined.Weisberg

calls this the common structure. In the most basic case, the common structure

has the samemathematical form in everymodel, but this is not necessarily the

case.73 After the first two steps a specific mathematical description has been

obtained but not yet any connection to an empirically observable phenomenon

has been made. This follows in the third step. Without determining this em-

pirical description, the robust property might as well be just a mathematical

construct to be found in all models but does not tell us anything about the real-

world systemwe are interested in,Weisberg points out.

These three steps culminate, he argues, in the formulation of the robustness

theorem, which has the following general conditional form:

Ceteris paribus, if [common causal structure] obtains, then [robust property]

will obtain. (Weisberg, 2006, p. 738)

In a concluding fourth step of Weisberg’s definition of RA, different kinds of

stability analyses are performed in order to investigate what happens to the

robust theorem when the circumstances characterized in the models change

slightly.

This is, according to Weisberg, the four-step process of RA. But Weisberg

also states that RA has some epistemic power. However, he emphasises that,

while RA is applied in science to further knowledge and understanding about

real-world phenomena, determining a robust theorem by itself is not suffi-

cient:

73 Weisberg adds that, in those cases where the common structure has not the same

mathematical form, it can make the identification and analysis of the common struc-

ture much more difficult and may lead to situations “in which theorists rely on judg-

ment and experience, not mathematics or simulation, to make such determinations”

(2006, p. 738).
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A common reason theorists engage in robustness analysis is to increase

the quality of their predictions and explanations about real phenom-

ena. Although useful for both of these purposes, the theorems generated

by robustness analysis cannot fulfill either role alone because they are

conditional statements, further attenuated with ceteris paribus clauses. Ex-

plaining a real-world phenomenon or predicting its occurrence requires us

to know that the common structure is actually being instantiated and that

no other causal factor is preempting the efficacy of the common structure.

(Weisberg, 2006, p. 739)

Todo so, onewould usually turn to empirical testing.However,Weisberg notes

that RA is often done in instances where options to do so are lacking. He sees

RA as a procedure that under certain circumstances is still informative and

“can give us good reasons to believe the predictions and explanations of robust

theorems“ (Weisberg, 2006, p. 739). To be, thus, epistemically informative, two

questions have to be answered,Weisberg argues:

1. How frequently is the common structure instantiated in the relevant kind

of system?

2. How equal do things have to be in order for the core structure to give rise

to the robust property? (Weisberg, 2006, p. 739)

In the absence of empirical data, the first question can be answered, at least to

a certain degree, bymaking sure that a “sufficiently heterogeneous set of situa-

tions is covered in the set ofmodels” (Weisberg, 2006, p. 739).Weisberg argues

that, once it has been determined that a satisfactorily large and varied number

ofmodels show the same causal structure and respective robust property, then

one can assume that it is likely that the same causal structure is at play when

the aforesaid robust property is detected in the real world.

The second question is dealt with in step four of RA, where the question to

what extent the robust property is stable under varying background assump-

tions is addressed.

Weisberg’s goal is to show that Orzack and Sober’s concern that RA

promises a non-empirical kind of confirmation is unfounded. He notes that

the third step in his interpretation of the RA-process constitutes the kind of

jump from a pure mathematical statement to an empirical one, which Orzack

and Sober criticised.However,Weisberg counters that this process “is actually

part of a well-accepted theoretical practice that is so common, it is rarely

discussed explicitly“ (Weisberg, 2006, p. 740). He argues that there is often an
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implicit step in the confirmation process before the empirical confirmation,

where the scientists ask the question whether, if the causal connection actu-

ally holds in the real world, the model would actually be able to represent this

process appropriately.Weisberg calls this “low-level confirmation”:

Despite rarely being discussed explicitly, theorists' confidence in their abil-

ity to represent phenomena with their models did not come for free. It

was minimally established by demonstrating that the relevant mathemat-

ics could be deployed to make correct predictions. It may also have been

investigated explicitly by mathematicians. These investigations result in

what I will call low-level confirmation, confirmation of the fact that certain

mathematical structures can adequately represent properties of target

phenomena. (Weisberg, 2006, p. 740)

Weisberg argues that in his conception of RA low-level confirmation is an ele-

ment of the third step. It allows us, he argues, to draw a conclusion about the

causal relationship between the robust property and themodel structure.That

is, low-level confirmation is helpful to make the step from a description of a

pure mathematical relationship to some empirical assumption.

Herein lies for Weisberg the strength of RA. In those cases where empiri-

cal confirmations are difficult due to the complexity of the system, “it identi-

fies hypotheseswhose confirmationderives from the low-level confirmation of

themathematical framework inwhich they are embedded“ (Weisberg, 2006,p.

741).

AlthoughWeisberg does not give it a great deal of attention,much of his argu-

ment hinges on the condition of a “sufficiently heterogeneous set of models”

(2006, p. 739). However, the subsequent discussion (Schupbach, 2018), specif-

ically about the applicability of RA to climate modelling (Lloyd, 2010; Parker,

2011; Winsberg, 2018), centre on the question of what constitutes “sufficiently

heterogeneous”.

Before Iwill turn to thisdebate, Iwill sketchoutwhatkindsofuncertainties

climate scientists face andhowclimate science dealswith this, to seewhy some

philosophers of science have voiced doubt whether RA as outlined above can

be applied to climate modelling and if there are alternative routes to establish

robust evidence for climate science hypotheses.
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3.3.3 Uncertainties in climate science

There are many sources of uncertainties in climate science. This is not to say

that there is actually serious doubt in the scientific community that anthro-

pogenic climate change is indeed happening or that its consequences, even

with conservative estimates of temperature rise, would not be severe, as ev-

ery new edition of the IPCC report demonstrates. After all,many relevant pro-

cesses of the climate and climate change are well understood. Particularly, the

link between an increase of carbon dioxide emission and the rise of General

Mean Surface Temperature (GMST) has been known about for well over a cen-

tury (Arrhenius, 1896).Nevertheless,uncertainties play amajor role in the pub-

lic climate-change discourse. So before turning to what makes climate scien-

tists confident in their work despite uncertainties, let us take a look at what

causes these uncertainties and how they are communicated.

Broadly speaking sources of uncertainties in climatemodelling can be cat-

egorised into three different types (Lehner et al., 2020):

1. Model uncertainty

2. Climate variability uncertainty

3. Scenario uncertainty

Model uncertainty is of an epistemic nature (Knutti, 2018, p. 329); that is, not

inherent to the system but arises due to our lack of understanding of and lack

of means to represent the climate system. These will be explored in more de-

tail below divided into structural and numerical uncertainties, and parameter

uncertainty.

On the other hand, uncertainties coming from the internal variability are

innate to the climate system.The climate systemdoes not just deviate from the

mean state due to external anthropogenic (e.g., greenhouse gases) or natural

forcing (e.g., volcanic eruptions) but also internal (e.g., the El Niño-Southern

Oscillation) processes. When it comes to assessing climate change with the

help of models, internal variability becomes an issue, particular on a shorter

time scale, when (disregarding all model uncertainty) it is not clear if a change

in the climate is due to external forcing or some random internal variability.

These effects can be dealt with by running the model multiple times while
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varying the initial conditions74 and by averaging the relevant climate variables

over a longer time period.However, due to the computational costs of making

enough model runs to sufficiently explore internal variability it can remain a

significant source of uncertainty particularly for shorter timescales.

I will not discuss uncertainties about possible emission scenarios here in

any detail. However, they are by nomeans unimportant. Quite the contrary, as

climate models only project how the climate will change under specific emis-

sions scenarios, they are vital to questions of climate-change policy. But these

are uncertainties that are directly dependent on human behaviour, not natural

laws and lack of knowledge thereof and, therefore, will not be examined here

in detail.75

Climate models are also not free from the effects of observational uncer-

tainties considering the “symbiotic” nature of the relationship betweenmodels

and data (Edwards, 2010, 1999).The variety of sources of data uncertainties has

been examined in Chapter 3.2.3 and should also be kept inmind in the context

of issues concerning model evaluation.

74 When it comes to climate projection as compared to predictions, it is commonly said

that these are independent of initial conditions as models for projections are not run

from observation-based initial conditions but from an assumed preindustrial state. As

climate projections are used to explore the impact of external forcing on the climate

system in general, the specific initial conditions are less relevant. Internal variability

is sometimes nevertheless referred to as initial-condition uncertainty in the context of

projections – when there is uncertainty regarding the question if the model spread is

due to external forcing or ‘normal’ internal variability because themodel performance

has not been explored systematically enough in respect to varying initial conditions.

However, from a philosophical perspective to what extent it can be said that climate

projections are or are not affected by initial conditions uncertainty hinges on the pre-

cise definition of the term asWerndl points out. (For internal conditions in the context

of predictions and projections, see Werndl, 2019; for the difference of the significance

of internal variability to weather forecasting and climate projections, see also Wins-

berg, 2018).

75 Climate scientists usually consider human behaviour to be external to the climate sys-

tem. One might speculate whether this has a more fundamental reason that goes be-

yond pure practical considerations about the models as Parker writes: “Classifying hu-

man activities as external to the climate system seems to be a pragmatic choice—it is

easier, and a reasonable first approximation, to represent anthropogenic greenhouse

gas emissions as exogenous variables in climate models—though it may also reflect a

deeper ambivalence about whether humans are part of nature” (Parker, 2018).
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3.3.3.1 Numerical approximation and structural uncertainty

No climate model is a perfect and complete copy of the real climate system.

There are two reasons for this.76 On the one hand, climatemodels are numeri-

calmodels.At the coreofESMsandsimilarmodels are fundamental partial dif-

ferential equations (see Chapter 2.1).The problem is that these equations can-

not be solved analytically. Computermodels can only offer numerical approxi-

mations,whereby the globe is divided into (digital) grid cells and the equations

are solvedapproximately indiscrete timesteps.Thismakes it even theoretically

impossible – that is, if onewas in a position inwhich one could integrate every

single process of the climate system into the model – to develop a computer

model that creates a perfectly digital copy of the climate system.

On the other hand, from a practical point of view, not all parts of the cli-

mate systemcanstructurally be representedequallywellwithin amodel.When

developing a climatemodel, scientists have tomake concessions, in oneway or

another, regardingwhichprocesses are (better) represented andwhich arenot.

Idealisations are a necessary part of any climatemodel.This is not a newdevel-

opment in science. After all, our common definition of model usually implies

that it is an idealisation of something (Cartwright, 1983).77 This is usually not

considered a deficit but a clear advantage of models. Whether or not specific

idealisations of a model are an asset depends on the particular purpose. For

certain (e.g., educational) purposes, the Bohr model of the atom, which envi-

sions the electron to circle thenucleus in aperfect circle, is sufficient.However,

when one discusses more complex atom structures than the hydrogen atoms,

for instance, to explain the Zeeman effect, one has to make use of other more

advanced models. Still, for other purposes atoms need not be considered as

more than a point charge, as in the kinetic theory of gases. This does not just

hold for theuseofmodels inphysics.For example,ecological or economicmod-

els are well known for simplifying and reducing very complex systems.

The difference between climate models or many other kinds of computer

simulations that deal with added epistemic challenges due to a high complex-

76 Strictly speaking, both aspects, numerical approximation and structural uncertainty,

actually do represent two distinct kinds of uncertainties, which, nevertheless, are so

interconnected that in practice they are difficult to handle separately (Winsberg, 2018,

p. 91).

77 Model in this context should be understood in a broad sense (asGiere, 2006 for instance,

does), not as a physical object or computer representation of a system but as a specific

representation of a more abstract theory.
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ity in the target system (see Chapter 2.1) and the examples above is the increas-

ing difficulty to pin down exactly what effects these idealisations have on the

model output. What one has to keep in mind is that a ‘good’ fit with observa-

tions cannot necessarily be traced back to a ‘truthful’ representation of the cli-

mate system by the model (see Chapter 3.2.4). It might very well that the good

fit is due to compensating effects within the model, following from character-

istic features of the model building process such as the fuzzy modularity and

the tuning ofmodels.As shown inChapter 2.1,when assessing the ‘quality’ of a

climate model, scientists face (at least) serious obstacles in gaining “analytical

understanding” (Lenhard andWinsberg, 2010, p. 254).This is an issue that also

affects the possibility of the application of RA to climate modelling, as will be

discussed further below.

All of thismakes it harder to pinpoint errorswithin themodel and, in turn,

to assess the uncertainties relating to themodel structure. Onemethod, as we

will see, that climate scientists rely on to explore the structural uncertainty are

multi-model ensemble studies (see Chapter 3.3.3.3).

3.3.3.2 Parameter uncertainty

Many processes relevant for the climate system concerning for instance cloud

formation, radiation or vegetation growth cannot be resolved directly in the

models. Any kind of process taking place on a subgride scale can only be inte-

grated into the model in the form of parametrisations (McFarlane, 2011).

It is often the case that there are different options of how a specific process

can be parametrised. Depending on how well the underlying mechanical

processes are understood and can be expressed in terms of physical laws,

parametrisations can be primarily derived from these and can be akin to a

small model within the model with some empirically acquired parameters or

basedmostly on observationally derived approximations. As with the creation

of models themselves, there are usually different options how to parametrise

specific processes. In practice, parameter uncertainty is intertwined with

structural uncertainty because the choice of a parameter value is very much

contingent upon both the resolution of the model and the general model

structure. The size of the grid cells will influence optimal parameter values

and whether a certain process even necessarily needs to be parametrised.

On the other hand, the overall model structure can influence the choice of

parameter, for the particular interdependencies within the model might

change what the best parameter values is. This is why the process of creating
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parametrisation (as well as tuning) is sometimes liked to being an “art form”

(Edwards, 1999, p. 445).78

Improvements in the resolution can reduce the necessity to parameterise

certain processes. However, this usually goes hand in hand with a significant

increase in demand of computing power. Many non-negligible climate pro-

cesses take place on a scale of a few kilometres,meters or way below that, such

as those concerning the cloud microphysics. Current state-of-the-art ESMs

have a resolution that is still far from that kind of resolution (see Chapter 2.1).

Parametrisations are deeply entrenched in themodels.The consequence is

that parametrisation schemes are not necessarily replaced or improvedwithin

aworkingmodel, evenwhen there is a ‘better’ alternative available.As exchang-

ing parametrisations require careful adjustments and tuning, doing so can be

a costly undertaking (Guillemot, 2017).

However, it is not always computing powerwhich limits scientists’ abilities

to resolve all relevant processes. Certain, specifically small-scale, processes are

often not understoodwell enough to be resolved even if the scale of themodels

were small enough.AsKnutti puts it: “There is simplyno fundamental equation

to describe how a tree grows” (Knutti, 2018, p. 328).

3.3.3.3 Second-order uncertainty

Why is it so complicated to pinpoint these uncertainties? Could one not just

simply compare the model to observations? But as we have seen in Chapter

3.2.3, the available observational datasets themselves are generally extensively

processed and come with a variety of uncertainties. Furthermore, one cannot

simply interpolate from today’s climate to that of the future under anthro-

pogenic forcing. Structural epistemic obstacles such as not fully understood

feedback processes make this impossible.Therefore, understanding the mod-

els, their strength, their shortcomings and, specifically for the purpose of cli-

mate-change projections, how all of this manifests in uncertainty estimates is

paramount.

78 A more in-depth discussion of the application of the term art to certain methods in

climate modelling will following in Chapter 4.2.2.
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3.3.3.3.1 Ensemble studies

Oneway to explore these uncertainties are so-called ensemble studies (see Fig-

ure 5). To investigate uncertainties in the model structure, scientists compare

different models under a fixed emission scenario with each other in so-called

multi-model ensemble studies (MIPs).There is variety of model-intercomparison

projects for all types of models.Themost well-known among these is the Cou-

pled Model Intercomparison Project (CMIP), which has been running since

1995 and is now in its 6th phase. The CMIP assessment of climate model un-

certainty is an important contribution to the IPCC assessment reports. The

uncertainty of parameter values can be investigated in a similar fashion. In

perturbed physics ensemble studies (PPE) parameter values are varied in a model

within the realm of what scientists consider reasonable to assess how this af-

fects the overall model performance. A prominent example of such a project is

done by climateprediction.net. In this project scientists have engaged the pub-

lic so that they offer up free computing power on their private computers to

run different versions of the samemodel (Stainforth et al., 2005). A newer de-

velopment are Initial Condition Ensembles (ICE), which are ensembles based on

one model with varying initial states under an otherwise fixed scenario, used

to explore simulated internal variability (Chen et al., 2021, p. 222).

Particular MIPs have attracted the attention of philosophers of science,

as they at first glance might seem similar to conventional statistical sampling

methods but are not. For one, this would usually require sampling indepen-

dently from the whole space of possible models. But as others (Parker, 2010;

Winsberg, 2012) have pointed out, it is hard to imagine how one would even

go about doing so.What is more, one would not even want to sample from the

whole space of possible models. Introducing models of which we know that

they are unrealistic into the uncertainty estimation seems to be contradictory

to the purpose (Winsberg, 2012).

In addition climate models are also not truly independent of each other in

the way it would commonly be required for statistical analysis. As we have al-

ready seen in Chapter 3.1.3.2, climate models have shared histories. Climate

models are generally not entirely built from scratch but are usually at their

core related to othermodels and contain parts (everything from lines of code to

whole parametrisations schemes) also used in other models (Boé, 2018; Knutti

et al., 2013).
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Figure 5: Illustration of common types of model ensemble,

simulating the time evolution of a quantity Q (such as global

mean surface temperature)79

Source: Chen et al., 2021, p. 222, Figure 1.21

79 (a) Multi-model ensemble, where each model has its own realization of the processes

affecting Q, and its own internal variability around the baseline value (dashed line).

The multi-model mean (black) is commonly taken as the ensemble average. (b) Ini-

tial condition ensemble, where several realizations from a singlemodel are compared.

These differ only byminute (‘micro’) perturbations to the initial conditions of the simu-

lation, such that over time, internal variability will progress differently in each ensem-

ble member. (c) Perturbed physics ensemble, which also compares realizations from

a single model, but where one or more internal parameters that may affect the simu-

lations of Q are systematically changed to allow for a quantification of the impact of

those quantities on the model results. Additionally, each parameter set may be taken

as the starting point for an initial condition ensemble. In this figure, each set has three

ensemble members.

https://doi.org/10.14361/9783839465806-005 - am 14.02.2026, 09:21:47. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839465806-005
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


3. Three ideals of science 131

While MIPs might give the impression that it is an ‘objective’ approach to

quantifying uncertainties, as Winsberg points out (2018, pp. 96–100), it is not

an objective method in the sense of complete independence from the expert

judgement of the scientists.Therefore, objective here essentially cannot mean

anymore than ‘not done by hand’.80

Traditionally, it is assumed that in an ensemble all models are equal and

therefore areweighted the same.But considering that,one the onehand,mod-

els are often related to one another and, on the other hand, not all models are

equally goodat representingall aspects of the climate equallywell, the assump-

tion that all models in an ensemble should get the same ‘vote’ is questionable.

Some attempts have indeed been made to weigh models according to perfor-

mance and independence (e.g.,Knutti et al., 2017), but there is no clear consen-

sus among climate scientists on how this ought to be done (Chen et al., 2021,

p. 226).

Further, philosophers and sociologists of science have in the past been at-

testing scientists a “herd mentality” (Winsberg, 2012; see also Sundberg, 2011)

when it comes to constructing and evaluating climate models.81 As the model

development is not fully epistemically constricted, it is not uncommon that

new models are matched to those that are well established. Social structures

within the scientific communitywork in suchaway thatmodellinggroupsusu-

ally try to avoid being the ‘odd one’ with a model standing out from the mass.

Mikaela Sundberg (2011) argues model agreement creates a kind of “social au-

thority” that scientists follow and adjust new models to in order to be taken

seriously.82

‘Subjective’ estimates about the quality of the ensemble study in order to

gain a full picture of all uncertainties are a necessary feature of climate-model

assessment (Parker, 2014;Winsberg, 2018, pp. 96–102).83Nevertheless, ensem-

80 Note that understanding objectivity in this way is similar to a definition of objectivity

that is actually widespread in climate science, e.g., to describe specific algorithms (see

Chapter 2.3 and Chapter 3.4.3).

81 Winsberg actually compares this toWalter A. Shewhart’s assessment of historic speed

of light measurements, which converged despite being far from the right value (2012,

p. 100, see also Shewhart and Deming, 1939).

82 Sundberg argues that this kind of “social authority” does not just affectMIPs in climate

science but also intercomparison projects in other fields of science that heavily rely on

complex computer simulations such as astrophysics (2011).

83 There is of course also the risk of a kind of herd mentality in more general terms when

it comes to expert judgements. The IPCC remarks on this in the Guidance Note for Lead
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ble studies are considered to be an essential element in exploring structural

and parameter uncertainty in climate models and to investigate the effects of

climate change.We will come back to this further below.

3.3.3.3.2 The quantification problem

Despite of all these uncertainties, policymakers often expect climate scientists

to give clear and precise estimates of how the climate will change under what

conditions. This is understandable; after all, in order to tackle the problem of

climate change; it is useful to have as clear anunderstanding as possible ofwho

and what is affected to what extent.

This, however, can potentially put scientists in a difficult situation when

they try to stay true to their assessment of uncertainties and still convey help-

ful and concrete uncertainty estimates. But not providing any uncertainty es-

timates would not be feasible either as it bears the risk that someone less qual-

ifiedmight feel called to fill the gap.

To tackle this issue the Intergovernmental Panel onClimateChange (IPCC)

has created a framework for its authors instructing themon how to communi-

cate uncertainties.TheGuidance Note for Lead Authors of the IPCC Fifth Assessment

Report onConsistent Treatment of Uncertainties, which functioned as a baseline for

both AR5 and AR6 (Chen et al., 2021, p. 169), gives the authors two options on

how to convey the certainty or uncertainty of their findings:

The AR5 will rely on two metrics for communicating the degree of certainty

in key findings:

• Confidence in the validity of a finding, based on the type, amount, quality,

and consistency of evidence (e.g., mechanistic understanding, theory, data,

models, expert judgment) and the degree of agreement. Confidence is

expressed qualitatively.

• Quantifiedmeasures of uncertainty in a finding expressed probabilistically

(based on statistical analysis of observations or model results, or expert

judgment). (Mastrandrea et al., 2010, p. 1)

Authors where the authors are advised to be “aware of a tendency for a group to con-

verge on an expressed view and become overconfident in it“ (Mastrandrea et al., 2010,

p. 2).
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Figure 6: A depiction of evidence and agreement statements and their relationship

to confidence. Confidence increases towards the top-right corner as suggested by the

increasing strength of shading.

Source: Mastrandrea et al., 2010, p. 3, Figure 1

The IPCC accompanies this with two helpful charts,which further demon-

strate how confidence and likelihood should to be understood and communi-

cated (Figure 6 and the likelihood scale already introduced in Chapter 3.1.3.3

Figure 2).

On the one hand, scientists can express confidence in a qualitative way as

relating to evidence and agreement. It is stressed in the Guidance Notes that

confidence should not be interpreted probabilistically. On the other hand, the

authors are encouraged when they come to the conclusion that evidence and

confidence is sufficient to articulate assumptions about the certainty of spe-

cific events or results as likelihood. Here, specific terms to convey findings of

likelihood (such as Very Likely, Likely, Unlikely) are assigned to margins of out-

come probability (90–100 %, 66–100 %, 0–33 %), as shown in Figure 2.

Therefore, the authors of the IPCC assessment report are given a frame-

work that is at the same time calibrated but also somewhat flexible to account

for the specificities of a particular hypothesis and the evidence for it. Never-

theless, the Guidance Note for Lead Authors also advices the authors of the IPCC

report to consider potential pitfalls in how thewording of their findingsmight

be misinterpreted:

Be aware that the way in which a statement is framed will have an effect on

how it is interpreted (e.g., a 10% chance of dying is interpreted more neg-

atively than a 90% chance of surviving). Consider reciprocal statements to
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avoid value-laden interpretations (e.g., report chances both of dying and of

surviving). (Mastrandrea et al., 2010)

TheIPCCas theUN’s organisation that is entrustedwith gathering and assess-

ing the current state of climate science is, as Edwards puts it, a unique “hybrid

scientific/political organization” (1999, p. 460).Therefore, it has to be particular

careful when it comes to communication uncertainties as the reports are not

just read by members of the scientific community who are familiar with the

conventions but also outsiders whomight misread those writings.

However, despite this strict framework, several studies have shown that

assessments made according to these guidelines are often misunderstood by

laypersons. Particularly wider uncertainty intervals are often misinterpreted

tomean that the scientistswere less certain thanwhen the intervalwas smaller

(Løhre et al., 2019). How the scientists’ assessments are interpreted can also

be dependent upon cultural backgrounds (Harris et al., 2013). While AR6 still

makes use of the framework given in the Guidance Note originally developed

for AR5, the difficulties with communicating uncertainties is also acknowl-

edged there (Chen et al., 2021, p. 171).

After having established, first, the different sources of uncertainty that

come along with climate modelling, second, the difficulties in determining

how strong these uncertainties are and, third, the language the IPCCapplies in

communication these uncertainties, the question now remains how the IPCC

comes to conclusions, despite all these uncertainties, about the likelihood of

(and confidence in) hypotheses about the various effects of increased climate

forcing. In order to discuss this question, we will return to RA.

3.3.3.4 Robustness revisited

Returning to RA, the central questions now are: what should be inferred from

the fact that projections from different climate models agree? And can we tell

if the models agree because of some common essential and true core of the

models or because of some specific idealisations of the models? As discussed

above, ensembles are not statistical sampling methods. Philosophers and cli-

mate scientists generally agree that due to the lack of interdependence ofmod-

els ensembles cannot be regarded as statistical samplingmethods (e.g., Knutti

et al., 2017; Parker, 2018; Winsberg, 2018). But is there still some kind of epis-

temic significance to ensembles of models? The follow-up to this question is:

canmoremodels increase confidence in their output?

https://doi.org/10.14361/9783839465806-005 - am 14.02.2026, 09:21:47. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839465806-005
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


3. Three ideals of science 135

Some philosophers have indeed expressed hope that, in a certain respect,

RAmight be of help here (Lloyd, 2010, 2009;Winsberg, 2018),while others have

been less convinced (Parker, 2011).

In the context of climate modelling RA was first discussed by Elisabeth Lloyd

(2009). She argues thatWeisberg’s (2006) version of model robustness, as rep-

resented in Chapter 3.3.2, could also be applied to climate model ensembles.

Onemight, for instance, find in respect to an ensemble of models that

in all of them [the models] there is a significant role played by greenhouse

gases in the late twentieth-century warming of the global climate, and that

these are linked to the surface temperature rising in the equations, despite

the fact that climatemodels vary in their assumptions about other aspects of

climate. Thus, we would have an analysis isolating greenhouse gases linked

to temperature rise (the common structure), and a robust theorem linking

greenhouse gases to the robust property, the outcome of rising global mean

temperature. (Lloyd, 2009, p. 220)84

However, even if all models show a connection between rising temperatures

and greenhouse gases, the question still remains how can we be certain that

greenhouse gas emission is the relevant factor. To answer this, Lloyd notes,

Weisberg makes an “implicit appeal” to a variety of evidence argument:

he is explicitly appealing to a range of instances of fit of the model over dif-

ferent parameter values, parameter space, or laws. It is against this back-

ground of differing model constructions that the core structure occurs and

causes the robust property to appear, and it is the degree of this variety of

fit for which the model has been verified that determines how confident we

should be in the causal connection. (Lloyd, 2010, p. 981)

Lloyd concludes that when a diverse set of models agree so that a robust theo-

rem can be formulated and they also show other instances of fit, we have good

reason to be confident in regards to the robust property. Besides a good fit

with observations of GMST of the 20th century, different climate models, even

84 The robustness theorem then would be: "Ceteris paribus, if [Greenhouse gases relate

in lawlike interaction with the energy budget of the earth] obtains, then [increased

global mean temperature] will obtain" (Lloyd, 2010, p. 950).
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of a specific type, contain a variety of different background assumptions,85

parametrisations and parameter values which are, while sometimes contra-

dictory, in themselves empirically supported, Lloyd argues (see also Lloyd

2015). Thus, Lloyd contends that model robustness in this context can have

a confirmatory, not just heuristic dimension when not only multiple models

with the same causal core converge towards a specific result, but when there

are also a variety of diverse but empirically supportedmodelling assumptions.

Wendy Parker (2011), by contrast, argues that ensembles of climate models on

their own do not warrant any conclusions about the truthfulness of or confi-

dence in an ensemble result. Building on Orzack and Sober’s argument (1993),

Parker reconstructs RA for an ensemble of climate models as follows:

1. It is likely that one of the models in this collection is true.

2. Each of the models in this collection logically entails hypothesis H.

It is likely that H. (Parker, 2011, p. 583)

Parker notes that such an argument is problematic in the context of scientific

models,as idealisationsandsimplificationsareanunavoidable feature. In fact,

idealisations are what make models models.Thus, in some way, a model is al-

ways false.

However, one can transform the argument in such a way that only the

“likely adequacy” (Parker, 2011, p. 584) of a model for a specific purpose is

required:

1
’
. It is likely that at least one simulation in this collection is indicating cor-

rectly regarding hypothesis H.

2
’
. Each of the simulations in this collection indicates the truth of H.

It is likely that H. (Parker, 2011, p. 584)

However, Parker argues that today’s climate models neither in respect to the

ensemble’s performance nor its construction can fulfil the likely-adequacy

condition. Concerning the latter, Parker points out that (as already discussed

above) ensembles do not sample from the whole space of possible model but

are ensembles of opportunities. Therefore, it cannot be argued that it is likely

that one of the models in an ensemble is indicating correctly regarding H

85 Lloyd argues that evenmodels with limited changes in themodel structure can be con-

sidered sufficiently diverse in the case of climatemodels, as the non-linearity and feed-

back process will sufficiently diversify the model output (2015, p. 65)
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as the ensemble does not reflect the whole range uncertainty. And as far as

model performance is concerned, Parker is also sceptical that a good fit with

observations in respect to a particular variable can be rightfully interpreted as

an indication that it is likely that one model in the ensemble comes close to

predicting the true value of that variable at some point in the future because

of the intricate ways of model-data interdependency (see Chapter 3.2).86

Eric Winsberg (2018, p. 179) interprets the reason that Lloyd and Parker

come to such different conclusions about the applicability of RA to climate sci-

ence is that they essentially ask twodifferent questions. Lloyd’s goal, according

to Winsberg, is to explore whether models plus other evidence could support

a climate science hypothesis, whereas Parker’s approach to RA focuses only on

models. Considering these different premises,Winsberg comes to the conclu-

sion, as we will see in the following, that both Parker and Lloyd make valid

points concerning RA.

Winsberg begins his analysis of RA (2018, pp. 183–206) by expanding the no-

tion of RA beyondmodels to a variety of types of evidence coming from a com-

bination of different sources, such as experiments and observations. Further,

stemming from the question what is actually meant by “sufficiently diverse”

(Weisberg, 2006) for a set ofmodels or/and other evidence to be considered for

RA,Winsberg sets out to look for a concept of RA-diversity that also “acknowl-

edges that science at best offers grounds for increasing one’s degree of belief

in a hypothesis” (2018, p. 185). Inspired by Schupach (2018) Winsberg argues

that as all climate models share at least some common assumptions (and one

would hope so), they cannot be considered to be (fully) independent of one an-

other, one would need a concept of RA-diversity that is not, as is commonly

assumed, built on a notion of “probabilistic independence”.That is, one would

need to find a kind of RA-diversity that also holds for those cases where there

is some kind of entanglement either among the pieces of evidence ormethod-

ology. Jonah Schupbach (2018) provides such concept of RA-diversity. Study-

ing the application of RA in the context of different scientific practices such

86 Parker further explores whether “increased confidence in H is warranted” or “the secu-

rity of a claim to have evidence forH is enhanced” (Parker, 2011, p. 581), instead of “likely

adequacy”, might be more successful approaches. But for similar reasons to those al-

ready discussed, Parker argues that these weaker requirements do not suffice to con-

sider RA successful in the case of climate model ensemble studies.
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as experiments, observations andmodels (computer and other kinds), Schup-

bach asks the question “what is accomplished in successful RAs by introducing

diverse means of detection“ (2018, pp. 286–287). He answers this question by

arguing that these diverse detection methods provide ideally “competing ex-

planations”. He proposes a concept of RA-diversity that is characterised by in-

creased confidence in a hypothesis when a new piece of evidence is added. It is

defined in the following way:

Explanatory RA-diversity: Means of detecting R are RA diverse with respect

to potential explanations (target hypothesis)H and its competitors to the ex-

tent that their detection (R1, R2, …, Rn) can be put into a sequence for which

any member is explanatory discriminating between H and some compet-

ing explanation(s) not yet ruled out by the prior members of that sequence.

(Schupbach, 2018, p. 288)

Based on this,Winsberg calls it the “cumulative epistemic power” (2018, p. 185)

of a set of models or other types of evidence when it is rational to assume that

every new piece of evidence increases our confidence in a hypothesis.

Appling this concept of RA-diversity to climate modelling, as Winsberg does

(2018, pp. 192–193), one might assume a model that ‘detects’ that equilibrium

climate sensitivity (ECS), that is, in short the change of the globalmean surface

temperature after a doubling ofCO2 in the atmosphere, is above 2 °C.However,

the question arises if there are no other explanation for thismodel result other

than that thehypothesis is correct suchas somekindofdistortion in themodel,

for example, the particular grid size or thewrong cloud parametrisation.Thus,

one has to ask what other detection procedures exist that could rule out these

other competing explanations, e.g., by trying out an ensemble of models with

different grid sizes or other cloud parametrisations.This process, asWinsberg

points out, requires making specific case-dependent decisions about whether

or not the competing hypotheses are sufficiently dismissed.

This alsomeans,Winsbergnotes, that,whether a set ofmodels is adequately

RA-diverse, can only be determined with respect to a specific hypothesis and

with respect to the question asked and to what extent one can rule out com-

peting explanations. Nor would saying that a set of models and/or other lines

of evidence is RA-diverse necessarily be a statement on whether or not to ac-
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cept a hypothesis. It is only a sign for cumulative epistemic power, concludes

Winsberg, that is, being on the right track.87

Though RA defined in this way is applicable to all sorts of lines of evidence,

it may also be applied to justmodels.Whether or not an ensemble ofmodels is

considered RA-diverse is only a question of the particular hypothesis, argues

Winsberg: “You can make an ensemble of opportunity RA diverse without al-

tering the ensemble by altering the hypothesis” (Winsberg, 2018, p. 202).

Further, establishing explanatory RA-diversity will frequently require an

understanding of the underlying structure of the model and the climate sys-

tem in general with respect to the relevant processes, as we will see in the fol-

lowing.88

AsanexampleofhowthisdefinitionofRA-reasoningcanbeapplied to climate-

change hypotheses,Winsberg examines in a case study the problems of estab-

lishing a value for ECS (2018, pp. 194–206). He particularly focuses on an esti-

mate from CMPI5 of ECS being between 2.1 °C and 4.7 °C, as reported in AR5

(Flato et al., 2013, p. 818).89 The difficulty in estimating ECS can be attributed

to the fact that it is not just the outcome of increased CO2 in the atmosphere

but also several feedback processes, with cloud feedbacks considered to be the

biggest issue.

Feedbacks are also at the root of whyWinsberg is sceptical that ensembles

of opportunity (on their own) can provide robust evidence, that is, it cannot be

demonstrated that the ensemble is sufficiently RA-diverse when it comes an

estimate of ECS in the sense of the hypothesis above. Let’s see why. First of all,

87 It is important to stress that RA-diverse is different from sufficiently diverse insofar as

RA-diverse does only imply that a model set “gets better as it gets larger” (Winsberg,

2018, p. 186). Whether or not to accept a specific hypothesis is, then, context-depen-

dent and among other things a question of inductive risks (see Chapter 3.1).

88 Winsberg links this to Knutti’s definition of process understanding (Knutti, 2018, see

also Chapter 3.2.4). In fact,Winsberg claims “gaining process understanding is not nec-

essarily a separate kind of epistemic activity fromRA, and the two are complementary,

rather than competing, accounts of how we gain confidence in model results” (Wins-

berg, 2018, p. 202).

89 While the latest IPCC report (AR6) does no longer directly consider models for assess-

ing ECS, it is nevertheless helpful for the questions asked here, that is, how RA can be

applied tomodels as well as other sources of evidence, to take a look atWinsberg’s ap-

praisal of the reasoning process behind the AR5 assessment of ECS, even if it is some-

what out-dated.
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taking into account all we knowabout the challenges of creatingESM,allmod-

els agreeing on a particular estimated range of ECS could still be an “artefact

of the systematic failure of all the models to accurately capture all of the feed-

backs – with cloud feedbacks being an especially likely candidate” (Winsberg,

2018,p. 196).Further, even if themodelsfitwellwith the available observational

data of the relevant feedback process, this does not necessarily mean – as we

have seen in Chapter 3.2.4 – that themodels would also necessarily adequately

capture the effect of feedbacks for a possible future climate that differs signif-

icantly from what we currently have observations for. It might as well be that

themodels only fit so well with the available data because of some compensat-

ing errors in the models that will cease to compensate in the same way under

future climate change conditions.Thus, considering the significance of cloud

feedbacks to assessing ECS,Winsberg concludes that for the models of an en-

semble to be RA-diverse regarding a hypothesis about ECS, they would have to

not just accurately model the cloud feedbacks with respect to the observable

past; one would also have to eliminate the possibility of the model fitting well

with the data due to error compensation. Only if this were accomplished, ar-

guesWinsberg, then “there is a high probability that we are correctly detecting

a hypothesis about cloud feedback in the future climate” (2018, p. 197).

In this contextWinsberg also points out amore recent trend in climate-change

assessment to tackleECSandsimilarproblems: trying tofindsocalled emergent

constraints (Chen et al., 2021, p. 225; Winsberg, 2018, pp. 197–201). The goal of

thismethod is to reduce uncertainties in climate-change projections by estab-

lishing a relationship between a future climate-change response and present-

day observations. Let us assume we are interested in a variable b (also called

the predictand), e.g., the intensity of a specific feedback process that models

in the ensemble projection do not agree on. However, we suspect that there

is a correlating relationship between variable b and another variable a (also

called predictor) of a process that is taking place on timescale for which there

are good observations. Such a relationship might, for instance, be the snow-

albedo feedback (that is, the increase in absorption of solar radiationdue to the

increase of ice melting because the surface is warming) which is taking place

both in a seasonal cycle and under (longer term) forcing conditions (Hall and

Qu, 2006).This relationship is then established by running the ensemble once

over a short time period to determine the model spread of variable a and once

under a long-term forcing scenario to determine the model spread of variable

b.The model output for both variables is plotted, with variable a on the x-axis
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and variable b on the y-axis, and every point on the graph representing one

model (see Figure 7).90 An emergent constraint is considered to be “trustworthy”

(Caldwell et al., 2018) or “confirmed” (Hall et al., 2019) when it can be further

argued that the mechanical process behind the correlation of a and b is well

understood and the emergent constraint is tested ‘out of sample’ with an en-

semble that was not used in finding the emergent constraint, so as to rule out

that the emergent relationship is not just a coincidence, as a result of compen-

sating errors and lack of diversity ofmodels in the ensemble (Hall et al., 2019).91

Winsberg argues that the reasoning process behind emergent constraints

can be considered “one of the best RA reasoning […] in climate science” (2018,p.

197) to the extent that it is a way to systematically rule out alternative explana-

tions for a hypothesis by establishing and testing the stability of the particular

underlying process (2018, p. 201).

While this has been done successfully, e.g., in the case of the snow-albedo

feedback (Hall and Qu, 2006), this kind of reasoning is much more difficult

to establish when it comes to ECS, which is affected by many different kinds

of feedback processes. Thus, returning back to the question if an ensemble

of models can be considered explanatory RA-diverse concerning a hypothesis

aboutECS,Winsberg argues that this requires that it is first demonstrated suf-

ficiently that the ensemble is exploratory RA-diverse in the sense of an emer-

gent-constraint reasoning process in respect to every single feedback effect

that gives rise to ECS.

That is why Winsberg is sceptical that a robust reasoning concerning a

hypothesis about ECS could be arrived at based on an ensemble of models

alone (2018, p. 199). However, Winsberg’s definition of explanatory RA is not

restricted to models. Thus, if one takes into account that scientists also have

access to other detection methods in the form of instrumental records and

proxy paleoclimate data as independent lines of evidence then one can see

how the authors of AR5 nevertheless come to the following conclusion:

90 This, of course, requires that the range of observations is within the interval of the

model spread for variable a, so that variable b can actually be constrained.

91 If all models in the ensemble are related to each other too much, then the suspicion

that the emergent relationship might be an artefact of model error is more pressing

than when the models are more independent (Brient, 2020).
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Figure 7: The principle of emergent constraints.
92

Source: Chen et al., 2021, p. 225, Figure 1.23

Based on the combined evidence from observed climate change including

the observed 20th century warming, climatemodels, feed-back analysis and

92 An ensemble of models (blue dots) defines a relationship between an observable

mean, trend or variation in the climate (x-axis) and an uncertain projection, climate

sensitivity or feedback (y-axis). An observation of the x-axis variable can then be com-

bined with the model-derived relationship to provide a tighter estimate of the cli-

mate projection, sensitivity or feedback on the y-axis. Figure adapted from Eyring et

al. (2019).
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paleoclimate, ECS is likely in the range 1.5°C to 4.5°C with high confidence. The

combined evidence increases the confidence in this final assessment com-

pared to that based on the observed warming and paleoclimate only. ECS

is positive, extremely unlikely less than 1°C (high confidence), and very unlikely

greater than 6°C (medium confidence). (Collins et al., 2013, p. 1111)

This statement is based on a set of detectionmethods that is RA diverse,Wins-

berg argues, for the following reason (2018, pp. 202–206): models, instrumen-

tal records and paeleoclimate data applied as detection methods for ECS all

come alongwith specific uncertainties.However, if not all lines of evidence are

susceptible to the same uncertainties (or at least not to the same degree) and

one treats “each of these sources of uncertainty […] as alternative possible ex-

planations of various hypotheses detections” (Winsberg, 2018, p. 205), then it

is possible to see how scientists can rule out different alternative explanations

one after another and provide robust evidence for a likely range of ECS as well

as the possible upper and lower limits,Winsberg concludes.

For instance, paleoclimate data is not much prone to errors coming from

internal variationsbutmostprobablywill suffer fromhighermeasurementun-

certainty andmight rest on a different base state asmanymillions of years ago

the climate might have been quite different to our current.The latter does not

affect instrumental records andwhen the hypothesis is broad enough (as, e.g.,

that ECS is between 1.5 °C and 4.5 °C, see above) measurement uncertainties

are also less of a concern here. Both types of detection methods are also less

susceptible tomodel errors, as simulations of the type of ESMare, and so on.93

This kind of reasoning is at the heart of the statement about ECS in AR5,Wins-

berg argues.94

93 Winsberg also notes that RA reasoning is also helpful to understand why it is so dif-

ficult to constrict ECS at the upper end. Considering the question if there are alter-

native explanations for why the current detection methods do not project a higher

value, there could, for instance, be a yet unknown feedback process, which instrumen-

tal records do not yet detect.Winsberg concludes, thatwe “would probably only expect

to see it in the millions-of-year-scale paleodata – but those data sets have enough un-

certainty that they are poor at eliminating such a hypothesis” (2018, pp. 206), which

makes constricting ECS at the upper end so difficult.

94 For a more in-depth analysis of the argument of the applicability of the idea of RA to

the reasoning about the value of ECS, see Winsberg (2018, pp. 203–206). He follows

the scientific argument made in Knutti and Hegerl (2008).
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In this context it is worthwhile to mention that compared to the assessment

of AR5 the authors of AR6 actually do consider emergent constraints, alongside

instrumental records,paleoclimatesandunderstandingof the climateprocesses as lines

of evidence for the following assessment of ECS:

Based on multiple lines of evidence, the very likely range of equilibrium cli-

mate sensitivity is between 2°C (high confidence) and 5°C (medium confi-

dence). The AR6 assessed best estimate is 3°C with a likely range of 2.5°C to

4°C (high confidence), compared to 1.5°C to 4.5°C in AR5, which did not pro-

vide a best estimate. (IPCC, 2021b)

With respect to the discussion above a few things are noteworthy here. First of

all, while emergent constraints are now considered a line of evidence, they are

not the only line of evidence.95 The authors particularly point out that emer-

gent constraints in AR6 are not combined “to provide very strong evidence on

ECS” because there are still cross-dependencies between different emergent

constraints and it is still too new a technique to rule out that there may not be

unaccounted systematic biases (Forster et al., 2021, p. 1005).

Secondly, models are no longer a direct line of evidence and find their

way into the assessment only indirectly (for instance, through emergent con-

straints and because they inform process understanding of feedbacks). The

authors cite issues pertaining to the specifics of climate-model construction

discussed in this chapter, such as lack of model independency, analytical in-

tractability and the difficulties of evaluating and weighing models adequately

as reasons for this (Forster et al., 2021, pp. 1007–1009).

Last but not least, the authors argue that one reason for the improvements

in the assessment of ECS from AR5 to AR6 was the application of a new struc-

tured (Bayesian) approach of taking different lines of evidence96 into account

95 In respect to Winsberg’s argument it is interesting to note that authors of AR6 differ-

entiate between two kinds of emergent constraints on ECS: “(i) those that are based

on global or near-global indices, such as global surface temperature and the TOA en-

ergy budget; and (ii) those that are more focussed on physical processes, such as the

fidelity of phenomena related to low-level cloud feedbacks or present-day climate bi-

ases” (Forster et al., 2021, pp. 1004–1005). Only the first kind of emergent constraints

are taken into account in the assessment of ECSwith the authors citing concerns about

possible biases.

96 Sherwood at al. (2020) base their assessment only on three lines of evidence: instru-

mental record, paleoclimate data and process understanding. Emergent constraints

are not considered as a distinct line of evidence.
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as done by Sherwood et al. (2020). Sherwood et al. note that the broad agree-

ment of lines of evidence works as “mutual reinforcement” (2020, pp. 73–74;

see also Forster et al., 2021, p. 993). They apply what Stevens et al. (2016) have

calleda storyline-approach to combinedifferent linesof evidenceby laying“out

all the circumstances that would have to hold for the climate sensitivity to be

very low or high given all the evidence“ (Sherwood et al., 2020, p. 2).This shows

some similarities toWinsberg’s concept of RA in the sense that it is not just an

appraisal ofmodels but different types of evidence andmore importantly, that

it is a systematic approach to rule out alternatives (though in this case alterna-

tive storylines, not alternative explanations for a hypothesis).97

3.3.4 Conclusion

There are, as we have seen in this chapter, considerable obstacles to be navi-

gated in order for climate scientists tomake any kind of assumption about the

future of the climate. However, while the sources of uncertainty are manifold

and often not easy to assess or minimise, this does not mean that the uncer-

tainties are so overwhelming that no conclusion about the anthropogenic cli-

mate change can be made. Quite to the contrary, many of the essential vari-

ables and processes that determine how the climate changes are well under-

stood. Take, for example, the case of ECS discussed in this chapter. While the

estimate of the range has been refined since the assessment in the famous so

called Charney Report in 1979, the estimate that it lies between 1.5 °C and 4 °C

has been consistently confirmed (Charney et al., 1979; Forster et al., 2021, pp.

1006–1007).

In public debates about climate change it has often been argued that the

models are not good enough, that the models disagree with the data or that

there is still to much uncertainty. But a central insight fromWinsberg’s anal-

ysis of the applicability of RA in climate science that I think is important to

highlight here is that the question of whether or not an ensemble of models is

robust is the wrong question to ask. Instead the question ought to be whether

or not a specific hypothesis can be supported or refuted with the help of very

hypothesis-specific detection methods. More broadly speaking, the question

97 For another similarity note that concerning the unavoidability of expert judgement

in the whole process Sherwood et al. also point out “solid qualitative understanding

of how the evidence stacks up is at least as important as any probabilities we assign”

(2020, p. 73).
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whether or not there are good reasons for accepting or rejecting a specific hy-

pothesis about climate change isusuallynot aquestionofmodel ordataor even

models versus data but a elaborated reasoning process based on a combination

of different lines of evidence.

Theargument thathasbeenmadehere is that,despite the complexity of the

climate system and all epistemic challenges, many important questions con-

cerning the future of the climate can be dealt with with careful reasoning. But

what climate science (and science in general, for that matter) cannot provide

are fully uncertainty-free answers to every question in an irrefutable way and

without any doubt. This sometimes clash with public expectation. However,

when scientists are faced with demands to only make yes-or-no-statements

giving in to these demands does not just misrepresent the scale of scientific

knowledgeaccumulatedbutalsobears the riskofdelaying takingaction tomit-

igate climate change, as Isaac points out:

Typically, policy-relevant issues are publicly discussed in binary terms […] yet

the relevant science is more appropriately framed in terms of degrees of cer-

tainty or evidential support […] A public rhetoric of bivalence obscures the

nature of the scientific contribution to our knowledge of the world and un-

dermines its effective use in policy choice. (Isaac, 2014, p. 43)

In public discourse the demand for ‘better’ science is often framed as a neces-

sity in order to assess whether or not costly mitigationmeasures actually have

to be taken. In practice, though, this has often been misused as a stalling tac-

tic by particular interest groups to advocate against policies which would be

to their disadvantage (Howe, 2014; Oreskes and Conway, 2010). Heymann et

al. (2017b) interpret this attitude towards uncertainties in science as a conse-

quence of a view of science which emphasises prediction making as a major

trait of science:

As a consequence of their political, cultural, and economic status and value,

tremendous resources flow towards the establishment and operation of cul-

tures of prediction. These investments do not always serve the support or

justification of decision making and politics, but can also serve to delay or

replace decision making and politics – particularly in the case of contested

issues with strong inherent political risks. A commonplace argument for the

replacement of effective politics is the call for further research, for example,

due to perceived or alleged uncertainty and the lack of sufficient knowledge

apparently required tomake strident decisions. (Heymann et al., 2017b, p. 8)
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Thus, the ‘sound science’-argument can quickly turn into a ‘throwing out the

baby with the bathwater’ type of reasoning as it neglects the many questions

which can be answered with a broad consensus among climate scientists:

chiefly amongst them that anthropogenic climate change is happening. But

the knowledge that scientists have accumulated about climate change goes

way beyond that.Nevertheless, estimating uncertainties is an intricate process

where many assumptions have to be made and lines of evidence have to be

weighed and examined requiring carful reasoning.98

3.4 Looking back and a tentative look forward

Thischapterhas shownwhy three specificwidespread ideals abouthowscience

does and should operate are inadequate to describe actual scientific practice,

particularly when there are, like in climate science, additional epistemic chal-

lenges due to the high complexity of the target system. All three ideals have a

history of being upheld as signs for good, reliable, adequate science. Science

being, firstly, a value-free enterprise that, secondly,workswith theories which

are easily and unambiguously assessable with the help of experiments or ob-

servations and, thirdly, that provides clear binary predictions about the future

is commonly considered to be hallmarks of good science. In the past, following

these ideals has often been considered to be what makes science special and

distinguishes science from other human endeavours.

In the context of science dealing with highly complex systems it becomes

apparent what has always been the case: science cannot, has never and, most

importantly, does not have to live up to these ideals. But what does the inade-

quacy of these ideals mean for our ability, specifically from the perspective of

an outsider to the scientific community, to draw conclusions about the quality

or credibility of the methods and hypotheses of, for example, climate science?

Is there another way to ground our trust in science? Fortunately, I think there

is. It requires shifting the focus fromthe characteristics of either the individual

98 The IPCC here functions specifically as an organisation that screens and assesses all

existing research. It also provides policymakers and the general publicwith summaries

and estimates of uncertainties. It should be pointed out that the IPCC is an unusual

institution that has only few equivalents in other sciences. The existence of the IPCC is

not just a sign of the relevance of climate research for society but also of the complexity

of the system as well as the overall issue.
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scientist or the research on to the social structures of science. This reasoning

and what follows from this will be further explored in the next chapter.

Here, however, I want to first take a quick look back. In Chapter 2, I have

introduced three different ‘recurring themes’ as preliminary remarks: the epis-

temic challenges of highly complex systems, theDJdistinction and scientific objectivity.

I stated that theses concepts would reappear in the in our examination of the

three ideals.Now Iwill revisit these concepts and see how they pan out, specif-

ically in the context of climate science.We will see that these themes were not

just contributing factors to the development and implementation of the ideals

and that they are a turn of conflict for these ideals with actual science practice

but also that the issues with these concepts will also give a first indication of a

way out of this dilemma.

3.4.1 Complexity and understanding

Chapter 2.1 gave an introduction to the complexity of the climate system and

how scientists navigate this complexity with help of computer simulations.

One concernwhichwas raised there is thatmodelerswill inevitably have todeal

with some degree of “epistemic opacity” (Baumberger et al., 2017; Humphrey,

2004) or “analytical intractability” (Lenhard and Winsberg, 2010) due to the

complexity of the system and models. One question that follows from this is

what thismeans for our ability to achieve understanding.While it has tradition-

ally been a primary aim and motivation for scientists to understand ‘why the

things are the way they are’ or ‘how things work’, Johannes Lenhard (2020) ar-

gues that computer simulations have shifted our perception of what science

can and cannot accomplish in terms of acquiring understanding. He comes to

the conclusion that, while complex climate models, like ESMs, are employed

by climate scientists to explore and gain knowledge about the global climate

system, they also contribute to a reduction in access to understanding due to

their high complexity. On the one hand, many essential aspects of the model

performance derive from the physical principles and fundamental equations

that the model is based on. On the other hand, the models consist, of course,

of much more than just these basic equations. ESMs display an intricate re-

lationship between fundamental equations, semi-empirical parametrisations

and tuning that is further intertwined through the iterative process of model

construction and improvement (see Chapter 3.2.3.3). Because of this Lenhard

argues that the conventional strategies for acquiring understanding in science

by dealing with the complexity through “stripping off aspects until only the
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essence remains” (Lenhard, 2020, p. 2) cannot be applied.This is what Lenhard

refers to as the “dilemma of growth” (2020, p. 2); While increasing complexity

is a necessary feature of themodels to live up to the high complexity of the cli-

mate system, the high complexity of themodels limits the extent to which it is

possible to reach the aimof “getting to the essence of themechanism” (Manabe,

2006; as quoted in Lenhard, 2020, p. 2).99

Nevertheless, Lenhard observes that climate scientists often develop a

“feeling” for the model and its behaviour. Scientists regularly rely on the ex-

perience they have with the model and derive some informal knowledge of

how certain adjustments will most likely affect the performance of the model

in question even though the exact inner-model processes that generate this

model behaviour are not fully transparent. Inspired by Max Weber’s concept

of verstehendes Erklären (understanding-explanation (1913))100, Lenhard argues

that this is a way to circumvent what he calls elsewhere the “complexity bar-

rier” (2019) preventing scientists from going the more established route to

understanding:

99 Lenhard notes that one possible strategy to deal with the “dilemma of growth” might

turn out to be resorting to a ‘hierarchy of models’: “The hope is that small and well-

understoodmodels can be knitted together in larger hierarchies so that understanding

extends to the whole. However, the prospects of this approach are not yet clear, in part

because modularity tends to erode in larger simulation models, leading to a problem

of ‘holism’” (Lenhard, 2020, p. 2). In respect to the problem of finding a ‘hierarchy of

models’ see also Held (2005).

100 In this, as Lenhard argues, two different approaches to conceptualising understanding

in philosophy of science are combined. Both centre on the terms explanation and under-

standing but define the relationship differently. On the one hand, there is the notion

that understanding can be gained once an explanation in form of a (logical) derivation

from basic principles is reached. On the other hand, there is the view – coming from

a hermeneutical perspective – that sees explanation and understanding as belong-

ing to two different research fields. Explanation is what can be achieved in science.

Understanding, though, belongs to the humanities, where understanding is reached

when something, or rather someone, behaves in a way that matches what one has an-

ticipated.

Lenhard argues that both derivation and match can be found in Weber’s conception of

verstehendes Erklären and in the kind of understanding that is reached in climate mod-

elling. The equivalent to matching in climate modelling is the “feeling” that Lenhard

remarks climate scientists develop for their models, but to some degree, there is also

an element of derivation because at its core the models are, despite semi-empirical

parametrisations and tuning, still built on some fundamental equations.
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Such acquaintance with model behavior can be a work-around for building

an adequate “inner” representation […] when simplification/idealization

strategies are not available—as in the case of ESM. However, this work-

around does not lead to understanding in the traditional sense. There are

no simple models involved that would enable understanding by “capturing

the essence of a phenomenon” (Held, 2005, 1609). Nevertheless, simulation

provides understanding—if only in the weaker, pragmatic sense of getting

acquainted with model behavior. (Lenhard, 2020, p. 3)

Lenhard contrasts this with a more conventional conception of explaining and

understanding that is based fully on “analytic derivation from first principles“

(Lenhard, 2020, p. 3), which in the context of climate modelling (at least at

this point)101 cannot be accomplished. However, Lenhard argues, what can be

achieved is a pragmatic conception of understanding that might function as

a substitute so long as no other, more satisfying, conceptualisation of under-

standing can realised (see also van Fraassen, 1980).

3.4.2 Discovery and justification

Another concept introduced in Chapter 2.2was the distinction between context

of discovery and context of justification. The DJ-distinction was of relevance both

for the emergence of the value-free ideal and the theory-centred view of phi-

losophy of science.

Although theaftermathof thebrief popularity of thedistinctionat themid-

dle of the last century can still be felt (see Chapter 2.2), it is a conception that

does not seem to have gained much traction in current philosophy of science.

For example, in the edited collection Revisiting Discovery and Justification edited

by Jutta Schickore and Friedrich Steinle (2006b), none of the authors argues to

uphold the distinction as a dichotomy in any strong interpretation of the con-

cept. On the contrary, many claim that a context distinction going beyond a

weak form in the sense of Hoyningen-Huene’s differentiation between a nor-

mative anddescriptive viewof science cannot bemaintained (seeChapter 2.2).

Specifically, the claim that justification is “‘the other’ or ‘the opposite’ of the-

ory construction, experimentation or indeed discovery” is rejected by theses

authors (Schickore and Steinle, 2006a, p. xiii). On the contrary, Schickore and

101 It should be pointed out here that Lenhard notes that his argument is not that this con-

cept of pragmatic understanding “should or in fact must become the goal” in climate

science (2020, p. 3).
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Steinle note in the introduction of the aforementioned book that “[d]iscovery,

in any meaningful understanding of the concept, is a prolonged activity that

involves both the generation and fixation of knowledge claims” (2006a, p. xiii).

In this sense, e.g., Steinle (2006) andArabatzis (2006) argue that discovery and

justification in scientific practice go hand in hand. Steinle argues that this is,

especially, the case in the event of exploratory experiments:

Exploratory experimentation is concerned with developing regularities and

appropriate concepts. If it is successful, this success consists in formulating

evermore general laws. Onemaywell askwhether such laws have then been

discovered or justified: after all, in common languagewe often speak of laws

as having been “discovered” by Galileo, Boyle, Hooke, or Mariotte, for exam-

ple. As soon as we try to clarify our concepts, however, such talk immediately

becomes inappropriate: at the moment when laws are formulated in the re-

search process, they are discovered and justified at the same time. Even if

a researcher had initially just a speculation of a possible empirical law, she

would conceive this law as being “discovered” only in the moment when it

was fully supported, i.e., justified. (Steinle, 2006, p. 187)

The notion that we usually only talk of something (such as a theory, phenom-

ena, object) as being ‘discovered’, when the belief in it is also considered to be

justified by the particular scientific community, is also stated by Arabatzis:

Amerehypothesis to the effect that a newentity existswould not qualify as a

discovery of that entity. The justification of that hypothesis would be a con-

stitutive characteristic of that discovery. The context of discovery is “laden”

with the context of justification because “discovery” is a termwhich refers to

an epistemic achievement: if one succeeds in discovering something then,

no doubt, this something exists. (Arabatzis, 2006, p. 217)

For instance, as Arabatzis (2006,p. 217) points out, these days onewould hardly

claim that phlogiston was discovered in the 18th century even though at the

timemany scholars regarded it to be a substantial discovery in chemistry.

Arabatzis argues that there is a distinction to be made between discovery

and generation or construction. The difference, he argues, between these terms

is their relationship to truth.While generation and construction might lead to

truth, discovery already “implies truth” (2006, p. 218), which, Arabatzis con-

cludes,makes discovery an “extended process, which involves both generation

and justification” (Arabatzis, 2006, p. 226).
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However, this also leads many authors of the above-mentioned volume to

the conclusion that theDJ distinction can still be upheld in the sense that there

is a difference between “original historicalmodel of hypothesis generation and

the ‘final’ form of justification” (Arabatzis, 2006, p. 218). Steinle, specifically,

notes that though in practice scientists are very well “aware of the historical

nature of their enterprise” (2006, p. 189), retroactively, scientists generally re-

move, asmuch as possible, any kind of reference to the process once it comes to

communicating research achievements to others scientists and thewider pub-

lic, such as in journal articles or textbooks – a process also noted by Reichen-

bach himself (1938, p. 6).This “process of decontextualizing” is also an attempt

toportray theobtainedknowledgeas secure aspossible,“i.e., stripped fromthe

specific time, place, and process by which it has be generated” (Steinle, 2006,

p. 189).102 In this sense, Steinle argues, is the DJ distinction part of science it-

self.103

When it comes to climate science which substantially relies on highly com-

plex computer simulations, the notion that a theory or hypothesis can be val-

idated (at some point) independently from understanding the circumstances

under which it was generated is not so easy to sustain. As shown at several

stages throughout this chapter, the behaviour of a model is often intricately

dependent upon its history.Understanding the history of themodels is, there-

fore, constitutive to knowing to what extent a ‘good’ model output is actually

rooted in a good representation of the relevant process in the model or just

an artefact of some unknown interference between different elements of the

model or some effect from tuning. However, this is easier said than done. As

102 Steinle (2006, pp. 190–193), however, also remarks that the wider conceptual frame-

work of a theory cannot be seen as independent of its historical origin. While these

overall concepts (an example from history of science is the concept of absolute space

in physics) are unconsciously followed in daily scientific practice, they are also broadly

contingent upon the (social) context in which theywere established. Nevertheless, de-

pending on the point of view, Steinle argues, a theory can be considered to be justified

separately from the context of its generation (that is, when the contextual framework

is not taken into account).

103 Steinle sees a form of Hoyningen-Huene’s lean version in this insofar as scientists are

posing two different questions: “how did a certain insight (a theory, law, fact, …) come

about? Andwhy should we believe it, what are the reasons for support?” (Steinle, 2006,

p. 188) once they turn from the research process to communicating and teaching their

findings.
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we have seen in this chapter, global climate models have some degree of opac-

ity to them, which entails that conventional methods of justification such as a

‘simple’fit to observations ormore complex ones such asV&Vonly have limited

applicability.

On the other hand, Winsberg (2018, p. 160, 2003) argues, with reference

to Hacking (1983), that the techniques applied in complex computer simula-

tions,104 as used in climate science, have “a life of their own”;meaning that they

are justified not just by theory alone but also because they are understood to be

well-established procedures:

Whenever these techniques and assumptions are employed successfully,

that is, whenever they produce results that fit well into the web of our

previously accepted data, our observations, the results of our paper and

pencil analyses, and our physical intuitions, whenever they make successful

predictions or produce engineering accomplishments, their credibility as

reliable techniques or reasonable assumptions grows.

That is, the next time simulationists build a model, the credibility of that

model comes not only from the credentials supplied to it by the governing

theory, but also from the antecedently established credentials of the model

building techniques developed over an extended tradition of employment.

(Winsberg, 2003, p. 122)

Thus, in Hacking’s (1983) words, these techniques are “self-vindicating” or, as

Winsberg puts it, “they carry their own credentials” (2003, p. 121).That is, sim-

ilar to Hacking’s claim about experiments, the credibility of these techniques

lies, according to Winsberg – at least to some parts – in their historical suc-

cessful application.

In practice, a certain knowledge about the history of the model can also be

beneficial insofar as it can reduce the opacity computer simulations of this

104 Winsberg specifies that by “techniques“ he is “referring to the whole host of activities,

practices, and assumptions that go into carrying out a simulation. This includes as-

sumptions about what parameters to include or neglect, rules of thumb about how

to overcome computational difficulties—what model assumptions to use, what dif-

ferencing scheme to employ, what symmetries to exploit—graphical techniques for

visualizing data, and techniques for comparing and calibrating simulation results to

known experimental and observational data“ (Winsberg, 2003, pp. 121–122).
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type bring along.105 If within a community of modellers the knowledge about

some past modelling decisions gets lost over time, it can lead to problems in

the future when some new adjustment results in a seemingly unexplainable

change in the model’s behaviour.There might be a situation, where a haphaz-

ardly constructed model implementation due to limited computing power is

introduced to the model at a certain moment in time but forgotten after some

generation of scientists as it has not interferednegativelywith any othermodel

adjustments in the meantime. Lack of knowledge of the history of the model

can become a significant obstacle for scientists when a new improvement to a

model component all of a sudden does interfere with the previous imperfect

and forgotten adjustment and leads to an unexpected badmodel performance

(Lenhard, 2018, pp. 839–840 describes an example of such a case). If one sees

models as instruments applied to gain knowledge about the climate system, as

many climate scientists do (Chen et al., 2021, p. 215), then knowledge about the

history of the model can strengthening the confidence in the instrument.

All of this makes it questionable if the notion that the procedure of justi-

fication can be fully uncoupled from the historical circumstance is still viable.

It also shows how the expertise and experience that scientists have acquired

throughout working with these models and the techniques employed to de-

velop them are key to assessing the models and resulting hypotheses.

3.4.3 Scientific objectivity

The third concept that was pointed out in Chapter 2.3 was scientific objectivity.

The ideal of value-free science is often closely connected with the concept of

‘objective’ science.The problems of this interpretation of objectivitywere exam-

ined inChapter 3.1. It was shown that a definition of scientific objectivity as com-

plete value-freeness of science cannot be maintained in actual scientific prac-

tice.Analternative definitionof scientific objectivity that is derived fromaplu-

rality of perspectives has been shown to have more chances of being success-

ful (Leuschner, 2012a; Longino, 1990). Another related application of the terms

objective and subjective we have seen in this chapter refers to the fact that no

105 That disclosing the specific circumstances andmethods ofmodel development can im-

prove model evaluations has also been raised by scientists themselves. For instance,

Mauritsen et al. (2012) advocate for making the tuning process more explicit in inner-

scientific discussions and communications.
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perfect model exists and some subjective decisions have to be made concern-

ing which and how specific processes are included (Tebaldi and Knutti, 2007).

A further use of the term objective we came across in this chapter concerns a

simplified description of the relationship between observations and theories,

where observations supposedly provide ‘objective’, irrefutable evidence that a

theory (or model) is right or wrong.

Here however, I would like to take another look at a somewhat more specific

conception of scientific objectivity, which is more common in climate science.

Climate scientists particularly evoke the term objectivity when describing

mathematical or automatic procedures. Subjective approaches are marked by

being ‘done by hand’ and relying on expert judgement. This distinction of

objectivity and subjectivity for instance is often used in descriptions of the

tuning process (see also Chapter 4.2.2). By objective method “one means that

a well-founded mathematical or statistical framework is used to perform the

model tuning, for instance, by defining and minimizing a cost function or by

introducing a Bayesian formulation of the calibration problem“ (Hourdin et

al., 2017, p. 594). Contrary to this, the more common approach to tuning is

described by climate scientists as “subjective” and is more directly guided by

the expert judgement of the scientists.However, as scientists note, application

of the afore mentioned objective procedure still has subjective components

to the extent that “[a]ny such objective tuning algorithm requires a subjective

choice of a cost function and this involves weighting trade-offs against one

another“ (Mauritsen et al., 2012, p. 16).

Although the scientists note that subjective judgements (at this moment)

are unavoidable, it is also discernible that objectivity for the scientist has a pos-

itive connotation and is to be preferred to subjective methods. The hope put

into objective procedures is to find a way to exclude personal influence on re-

search. Subjective methods imply that the scientist has to make some kind of

judgement.Tomake these judgements scientists have to rely on their expertise

and experience. But the worry is that this inevitable reliance on this expertise-

led decision-making will, considering the general complexity of climate mod-

elling further “an unfortunate reduction in transparency“ (Schmidt et al., 2017,

p. 3208). Appealing to objective methods is linked to the wish to bring trans-

parency, traceability and reproducibility into these processes.
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3.4.4 Conclusion: what now?

What these three concepts have in common that they allude to the relevance

of another element of doing climate science that, again, is not new to science

but has been gaining significance in the context of the epistemic challenges

rooted in the increasing complexity in science: the experience of scientists in

their field in general and especially in dealing with the particular instruments

andmethods (for example, the specific simulations they use).

This experience is what Lenhard (2018) describes as the “feeling” scientists

have for themodels,which can only be acquired in practice, inworking in their

area of expertise and in working with the models.

Ina similar vein,onemight interpret the emphasisphilosophers andscien-

tists placeonunderstanding thehistory of themodels andmodellingpractices.

Computer simulations of this kind cannot be epistemically grounded fully in

an ahistorical way. On the one hand, as Winsberg has pointed out, the credi-

bility of the model is based in part on the techniques and practices of model

construction through the tradition of their application. On the other hand,

knowledge about the history of the models themselves can be crucial to cir-

cumventing, at least to some extent, the opacity the complexity of the models

causes. Both cases highlight the relevance of the experience that the scientists

havewith handling themodels in practice to increasing the credibility ofmod-

els andmodelling techniques.

Climate scientists themselves have also observed the significance of expe-

rience to their work (Tebaldi and Knutti, 2007). However, as we have seen in

this chapter, in this context the notion of expertise, experience or expert judge-

ment is also often associatedwith subjectivity.Though there is often a negative

connotation to subjective decision-making, climate scientists also note its un-

avoidability.

But,whenexperiencehas sucha significant relevance, then threequestions

have to be asked:

1. about the nature of this experience

2. how it is acquired

3. how it is justified.

These questions will be discussed in the next chapter. I will argue that a crucial

element of this experience is tacit knowledge. A fundamental part in gaining

expertise in any subject is grounded in experience, in having practiced in the
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specific field in question and often learning fromworking in close proximity to

others alreadyhaving someexpertise. It requires aknowledge that ismore than

what can be learnt from books and it is not easily put into words without any

kind of ‘showing’ either. I will employ a broad interpretation of the term tacit

knowledge that does not only apply to knowledge which cannot be expressed

in principle but also the kind of knowledge that is not expressed in practice

for whatever reasons. Tacit knowledge is not new to science, however, so far it

has lived amostly inconspicuous life in science. But, as I will argue in the next

chapter, it gains greater significance in the context of highly complex systems

where traditional approaches to knowledge acquisition are challenged.

The relevance of tacit knowledge also steers the focus onto the institutions

that are at the centre of the scientific community because they are the place

where this tacit knowledge is acquired, taught and communicated. Institutions

has to be understood here in a broad sense, not just as specific organisations

but as the extensive structures that make the scientific endeavour possible.

Winsberg (2018) has made a similar point by arguing for philosophy of cli-

mate science to turn its attention to the social structures of science. But he

comes to this conclusion from a slightly different angle. Winsberg concludes,

because of all of the epistemic problems and obstacles in climate science al-

ready discussed in this chapter,

that philosophers do better to paint a picture in which we urge trust in the

consensus of the scientific community, based on features of that commu-

nity’s social organization, then to try to provide a normative framework from

which we can demonstrate the reliability (or its absence) of such-and-such

modelling results. (Winsberg, 2018, p. 161)

By this Winsberg does not negate that it is, for instance, possible that “a sim-

ulation modeler could explain to his peers why it was legitimate and ratio-

nal to use a certain approximation technique to solve a particular problem“

(Goodwin, 2015, pp. 342–343; Winsberg, 2018, p. 161). But this kind of inner-

scientific process of legitimising certain techniques, methods or hypotheses

is always local and specifically context-dependent. Instead of trying to find

schemes that would ground climate models normatively, philosophers,Wins-

berg argues, should rather focus on the social structures as “climate science is,

in a thorough-going way, a socially organized kind of science, and […] many

features of its epistemology need to be surveyed at the social level in order to

be properly understood” (Winsberg, 2018, pp. 209–210).
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In the following I will also argue for turning the attention to the social or-

ganisation of science. For one, I agree with Winsberg that the social structure

of science – specifically one that is as scattered between so many different in-

dividual scientists and institutions, dealing with highly complex systems and

resulting epistemic problemas climate science– is significant to comprehend-

ing and grounding our trust in it. But I will argue as well that the increasing

significance of tacit knowledge, orwhat Lenhard calls a “feeling” for themodel,

will also give new epistemic significance to the social structures in science.
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