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1. Introduction

Artificial intelligence is a discipline within computer science that deals with the
development of software-based systems that provide functions which require the
execution of what is typically called (human) intelligence. However, since there is
no widely accepted definition of human intelligence, there is also no widely ac-
cepted for artificial intelligence, sometimes also called machine intelligence (Legg,
2007). Al uses methods and tools from logic, probability theory, and continuous
mathematics in order to provide perception, reasoning, learning, and action via
software-based systems (Russell, 2016). And it provides already numerous prac-
tical applications in transportation, energy supply, health services, finance and
banking as well as law and regulation: “AI technologies already pervade our lives.
As they become a central force in society, the field is shifting from simply building
systems that are intelligent to building intelligent systems that are human-aware
and trustworthy.” (Stone, 2016)

Fig. 1: Functional components in AI by Hammond (2016): Recognition of speech (Sr),
audio (Ar), face (Fr) and image (Ir) and general recognition (Gr), Identification of speech
(Si), audio (Ai), face (Fi) and image (Ii) and general identification (Gi); Data analytics
(Da) and Text extraction (Te); Predictive inference (Pi), Planning (Pl), Explanatory
inference (Ei), Problem solving (Ps), Synthetic reasoning (Sr), and Decision making
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(Dm); Language generation (Lg) and understanding (Lu); Relationship learning (RI),
Category learning (Cl) and Knowledge refinement (Kr); Mobility at large (MI) and at
small (Ms); Manipulation (Ma), Communication (Cm) and Control (Cn), which can be
used standalone or in combination e.g. to predict future events by recognizing sounds
of technical systems and/or identifying images representing system states and/or
correlating data and recognizing specific facts.

Technologies that are used to build AI by machine learning (in short ML), which is
about improving problem solving accuracy or efficiency by learning to do some-
thing better, are numerous. Machine learning can e.g. be grouped along the learn-
ing type into methods for supervised, unsupervised or semi-supervised learning
or along the knowledge extraction by symbolic computation or sub-symbolic pro-
cessing. They can also be grouped along the principal approach, e.g. into regres-
sion, instance-based, regularization, decision tree, Bayesian, clustering, neural
network, deep learning, and quite many other algorithms. Based on these, like-
wise numerous Al applications can be developed. Hammond (2016) presented a
first taxonomy of Al functional components (Fig. 1). No matter which functional
components are being used, Al-based systems are realized by use of software or
also by use of sensors and actuators for the interconnection with the environment
(Fig. 2). The software uses data which are interpreted by algorithms in order to
provide automatisms for parts of or for entire processes in technical systems like
in car engine control or in socio-technical systems like in autonomous driving.

Fig. 2: Elements of software-based systems (WBGU, 2019). Sensors are part of the
Internet of Things and generate different kinds of data such as measurements, series

of measurements or data streams. Algorithms use these data in their computations or
as training data. The algorithms are constrained by complexity, computability, and
performance limits and possibly by the (in-)correctness of the implemented computation
logic and by the (un-)biased (training) data. In result, software-based systems offer
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automatisms for which it is essential to agree (and assure) decision sovereignty,
traceability and fairness. Any decision in respect to the environment can finally be fed
via software (into the cyberspace) and via actuators (into the environment).

2. Software Verification and Validation

Since any Al is also a software-based system, it is to be seen to which extent Al can
be verified and validated with the established verification and validation (in short
V&V) methods for software in general. V&V methods for software were revealed
already with the software crisis back in 1968 (Wirth, 2008), when the term soft-
ware engineering was coined. It pointed at the difficulties to design and develop
useful and trustworthy software with the given resources and within the given
time: “The major cause of the software crisis is that the machines have become
several orders of magnitude more powerful! ...(A)s long as there were no ma-
chines, programming was no problem at all; when we had a few weak comput-
ers, programming became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.” (Dijkstra, 1972). And the
newly coined term pointed at the necessity to develop practical and scalable engi-
neering methods for software development. Since then, constructive and analyt-
ic methods for software quality engineering have been developed. They include
methods for software engineering processes, software engineering tools and for
software as such. A rough overview on these methods is given in Fig. 3.

Fig. 3: Overview on software quality engineering methods. Software quality begins
with the software design that is represented by software architectures which can make
use of software patterns. Programs can be (partially) generated from these software
designs and/or refined. The programs use typically high-level programming languages
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which offer guidelines for best practice programming and which are supported by
programming frameworks and tools. The achieved software quality is typically tested,
checked by simulation or proven formally. The running software can be monitored and
watch-dogs can check for constraint violations at run-time. All these analytic methods
can also be automated by V&V frameworks and tools. Three specific (sets) of methods
can be used both constructively and analytically: that is the use of model in software
engineering, the early prototyping of software (or of V&V software) and the piloting of
software (or of V&V solutions).

The software (program or code) tells the computer what to do, “but that may be
much different from what you had in mind”. (Joseph Weizenbaum, Computer Scien-
tist, 1923-2008). However, by the systematic use of software quality engineering
methods, software can be developed such that it is safe, secure, and trustworthy
and that it can analyze and compute more data than any person and can do this
more reliably.

Numerous international software engineering standards put the ground for
software quality such as ISO/IEC 25010 (ISO, 2011) for software quality require-
ments and evaluation (SQuaRE) and software quality models. It argues about
quality in use, external quality and internal quality of software and differentiates
between functional suitability, reliability, usability, security, compatibility, porta-
bility, maintainability and performance/efficiency.

While these are all important software quality aspects that evolved over de-
cades, interestingly, new aspects arise for Al in their use within socio-technical
systems. Apparently,

- understandability, i.e. users and operators can get to know the features and
services of the systems,

« interpretability, i.e. users and concerned people have access to clarifications of
outcomes and their potential impacts,

- traceability, i.e. users and concerned people have access to more detailed anal-
ysis of outcomes in relation to a given situation/problem statement,

- explainability, i.e. usersand concerned people receive descriptions, reasoning
and justifications on the outcomes, as well as

. fairness, i.e. concerned people are treated the same wrt. commonly agreed
rules for treatment, gain much more momentum.
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3. Al Verification and Validation

Indeed, Al requires to quite some extent additional methods and tools for V&V
(Van Wesel, 2017) since well-established testing technologies are short in V&V of
Al This is not only true because of the additional socio-technical quality aspects
(see above), but also due to the different nature of logic-based software (most of
the software in general so far and some of AI) and statistics-based software (most
of Al in particular in machine learning). Testing has limitations with respect to
the dynamics of ML, the sheer size of the problem domain and the underlying
oracle problem (Xie, 2011).

In addition, most of the Al is controlled by data. In this sense, a neural net-
work is a generic function approximator whose structure reflects the actual func-
tionality only to a very small extent. Hence, source code-oriented V&V techniques
such as static analysis or white-box tests are only of limited use in this context.
On the other hand, the trustworthiness and quality of the data becomes a central
issue for the overall quality of the systems.

However, since systematic dynamic testing of software is the best-known
and most effective V&V method, it will most probably also form the main basis
for testing ML. In recent decades, research has developed industrial-grade tech-
niques for increasing the quality, efficiency and reliability of testing. This includes
in particular, automation strategies for dynamic testing such as automating test
executions with test technologies like TTCN-3 (Testing and Test Control Notation
[Grabowski, 2003]), for model-based testing to automate the generation of tests
(MBT [Utting, 2012]), as well as the use of search and optimization algorithms
for automated test selection and test suite reduction (Harman, 2015). Moreover,
the combination of dynamic testing with verification approaches like source code
analysis, model checking and symbolic execution allows for improvements in
testing, that combines the rigor of verification processes with the scalability of dy-
namic testing (Godefroid, 2018). These techniques are applied to testing for func-
tional as well as extra-functional properties like performance or security (Schiefer-
decker, 2012). Finally, the close integration of testing with system development
processes and risk management (Felderer, 2014) improved the efficiency and
transparency of testing so that testing has matured as one of the most important
software quality measures in industry. Still, test automation as well as the use
of models in testing are still underexplored: although a strong test automation
is required, less than 14% of software testing professionals say that they use MBT
(Binder, 2015). The potential of risk-based testing to steer test processes based on
uncertainties has been shown especially in the area of critical system in terms of
security and safety, which will likewise be applicable to AI (Erdogan, 2014).
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Fig. 4: The AI VSV pyramid. Al-based systems are to be verified and validated both in
predeployment phases and at runtime. A combination of V&V methods from formal
verification and dynamic testing is recommended, in particular for safety- and security
critical AI-based systems. V&V will help to assure both quality and explainability
requirements as well as enable the justification of bias in the (training) data used in Al

Research on dedicated methods for verification and validation of ML is still at its
beginning. Even so, testing is already part of the overall training set-up in ML,
most testing is done to achieve more accurate models with respect to the initial
training objectives. In supervised learning for example, test and validation data
sets are used to provide evaluation of the ML model. Validation data sets are typ-
ically used during training to fine-tune the model parameters while test data sets
are used on the final model to measure generalization errors. However, since in-
dividual test sets only provide a single evaluation of the model and have limited
ability to characterize the uncertainty in the results, more advanced statistical
testing approaches like cross-validation are used for model selection.

Ghosh et al (2016) combine ML and model checking in such a way that if the
desired logical properties are not satisfied by a trained model, the model (‘model
repair’) or the data from which the model is learned is modified systematically
(‘data repair’). Fulton and Platzer (2018) propose to combine formal verification
with verified runtime monitoring so that safe learning can be guaranteed. The ap-
proach intervenes in the learning process whenever safety properties are violated
and guides the learning process so that the result is compliant with the verifica-
tion model. Approaches like DeepXplore (Pei, 2017), DLFuzz (Guo, 2018) and Ten-
sorFuzz (Odena, 2018) provide metrics for the quantification of neural coverage
and simplify test automation. DeepTest (Tian, 2018) enables systematic testing of
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neural networks under realistically changing environmental conditions especially
for use in the automotive domain.

One of the socio-technical limitations of ML is the lack of transparency, i.e. its
black box-approach. In order to address it, different approaches have been pro-
posed such as

« modelinterpretation for image classifications, e.g. by understanding the acti-
vation maximization with saliency maps (Simonyan, 2013),

- model explanation by sensitivity analysis and local explanation vectors to pro-
vide reasons for the decisions of any classification method (Baehrens, 2010),

- model decomposition for interpreting generic multilayer neural networks by
decomposing the network classification decision into contributions of its in-
put elements (Montavon, 2017),

. extraction of decision trees from input data generated from trained neuronal
networks (Krishnan, 1999),

« relevance propagation by pixel-wise decomposition of non-linear classifiers
(Bach, 2015), and

- deconvolution methods to give insight into the function of intermediate fea-
ture layers and the operation of classifiers (Zeiler, 2014).

Another well-established way is to use test scenarios, i.e. test cases and their test
data, for explaining ML decisions. The other socio-technical limitation of ML is
the potential lack of fairness, i.e. the potential bias. Here, systematic generation
of (training) data that cover well required categories and properties as known
from test data generation is of help (Nguyen, 2016).

The ability to effectively test AI will be fundamental for the acceptance in
broad scale and central for safety-critical areas like transportation and automo-
tive, healthcare, or industrial automation. The provisioning of test technologies,
tools, test scenarios with test cases and test data for AI will not only be a solid
basis for V&V but also help in explaining AI and making them more transparent
and unbiased. They can also be used to ensure safety and security of AI during
runtime.

And last but not least, the tools for safeguarding Al contribute also to the de-
mocratization of Al: They are the basis for confirming or witnessing outcomes
whenever Al-based systems are to be accounted. They can also become a digital
common for the comparison and benchmarking of Al-based systems and by that
contribute to a shared knowledge basis of Al
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