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Notation

We summarize the symbols for reactor network modeling and the derived problem formu-
lations in Chapter 3 and 4. The symbols for the introduction part of nonlinear systems in
Chapter 2 and the symbols for reviewing different numerical optimization methods shown
in Chapter 5 are not presented here. The meaning of these symbols is always introduced
together with the corresponding texts.

Symbols for the reaction example

A propylene
B allyl chloride
C chlorine
cA, cB, cC concentration of component A, B or C
R gas constant
a1, a2, a3 reaction constants
H1, H2, H3 heat of reaction per mol
cp heat capacity
T temperature
V reactor volume
L reactor length
r1, r2, r3 reaction rates
RA, RB, RC reaction rates for component A, B, C
ṅ0
A, ṅ

0
B, ṅ

0
C mole flowrates of inlets

Q̇0 energy flowrate of inlets
Qh energy duty of heat exchanger
csysA , csysB , csysC concentration in system’s inlet
Esys energy density in system’s inlet
Nd number of discretized points of each PFR

Symbols for open-loop reactor network design

i index of subsystems
j index of outlet ports
k index of inlet ports
N total number of reactors
(i, j) index of the j-th outlet port of subsystem i
(i, k) index of the k-th inlet port of subsystem i
l(i, j) index of an inlet port, which is connected to (i, j)
h(i, k) index of an outlet port, which is connected to (i, k)
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List of Symbols

(i, j) � (i′, k′) pipe connection from (i, j) to (i′, k′)
l̄(i, j) index of a subsystem, one of its inlets is connected to (i, j)
h̄(i, k) index of a subsystem, one of its outlets is connected to (i, k)
Nc number of necessary chemical components to model reactions
xi states (concentrations, temperature) of reactor i
ui,k component flowrates and energy flowrate through inlet port (i, k)
qi,j volumetric flowrate through the (i, j)-th outlet port
pi design parameters of reactor i
fi(·) function for mass and energy balances of reactor i
yi,j component flowrates and energy flowrate through outlet port (i, j)
gi,j(·) function for reactor’s outlets
ysys component flowrates and energy flowrate in system’s outlet
psys molar concentration and energy density in the system’s feed
I index set of all reactors
Iid index set of idle reactors
Inid index set of non-idle reactors
Jtot Jacobian matrix of the open-loop reactor network
Jid Jacobian matrix of idle reactors
Jnid Jacobian matrix of non-idle reactors
J̄ a constructed matrix
c predefined constant for the upper bound of eigenvalue constraints
α(·) spectral abscissa function
Do definition domain of function αJnid

(·)
P ∗ steady state of the 2-reactor network example
ϕ objective function in optimization
πτ vector of uncertain variables
π̄τ nominal values of uncertain variables
Δπ̄τ uncertain range of uncertain variables
zi integer for the existence of reactor i
z a vector of zi, i = 1, ..., N
M sufficiently large positive constant in big-M method
I identity matrix
ψo degrees of freedom of the open-loop model
ε a small positive number

Symbols for simultaneous reactor network design and

control

u candidate MV of reactor network
y candidate CV of reactor network
e state variables of PI controllers
ū offset values of u
ȳ reference signals of y
q̄ offset values of q
ui candidate MV of reactor i (elements of pi)
di equipment design parameters of reactor i (elements of pi)
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Notation

up1 candidate MV, which belong to idle reactors
up2 candidate MV, which do not belong to idle reactors
nc dimension of y, i.e. total number of candidate CV
nm dimension of u, i.e. total number of candidate MV
(i, r) index of the r-th candidate measurement of reactor i

index of the (i, r)-th candidate PI controller
ni
c dimension of all candidate CV of reactor i

ei,r state variable of (i, r)-th PI controller
π variables in ψo, which are not in u
v location index for candidate MV

location index for rows of control gain matrix K
w location index for candidate CV

location index for columns of control gain matrix K
[u]v v-th element in vector u
[y]m m-th element in vector y
Θi index set for candidate MV of reactor i
yi,r r-th candidate CV of reactor i
φi,r(·) function for candidate CV
	(·, ·) function for transforming the subscripts of [y]m and y(i,r)
K proportional control gain matrix
[K]v,w (v, w)-th element in matrix K
Kv vector of variables in matrix K

K+, K−, K̂ auxiliary matrices for control structure selection
T integral control gain matrix
ti,r integral control gain for state ei,r
Tv vector of variables in matrix T
ψc degrees of freedom of the closed-loop model
U index set of all candidate MV
Uid index set of candidate MV, which are not subject to control
Unid index set of candidate MV, which are subject to control
C index set of all PI controllers
Cid index set of idle PI controllers
Cnid index set of non-idle PI controllers
zi,r integer for the existence of the (i, r)-th PI controller
zr a vector of zi (existence of reactors)
zc a vector of zi,r (existence of controllers)
xid states of idle reactors
xnid states of non-idle reactors
eid states of idle controllers
enid states of non-idle controllers
Jtot Jacobian matrix of the closed-loop reactor network model
Jid, J

′
id, Jnid, J

′
nid Submatrices in Jtot

Fid(·) state functions of all idle reactors and controllers
Fnid(·) state functions of all non-idle reactors and controllers
J̄ a constructed matrix

X

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


List of Symbols

Mathematical notations

R real line
Rn real n-dimensional space
Rn

+ non-negative orthant of Rn

C complex plane
Ck space of k-th order continuously differentiable functions
∂f
∂x

partial derivatives of function f(x) to x
B topological closure of a set B

Acronyms

NLP nonlinear optimization
MINLP mixed-integer nonlinear optimization
MILP mixed-integer linear optimization
MIDO mixed-integer dynamic optimization
GDP generalized disjunctive programming
MPCC mathematical programs with complementarity constraints
MPEC mathematical programs with equilibrium constraints
SIP semi-infinite programming
GSIP generalized semi-infinite programming
EVO eigenvalue optimization
SDP semi-definite programming
NSO non-smooth optimization
DOF degrees of freedom
SA spectral abscissa
NVA normal vector approach
CV controlled variable
MV manipulated variable
B&B branch and bound (with respect to binary variables)
sB&B spatial branch and bound
GBD generalized bender’s decomposition
VI variational inequalities
MFCQ Mangasarian Fromovitz constraint qualification
LICQ linear independence constraint qualification
KKT Karush Kuhn Tucker
SQP sequential quadratic programming
NCP nonlinear complementary problem
FB Fischer-Burmeister
BL bi-level
EPF elementary process functions
AR attainable region
PI proportional-integral
RGA relative gain array
SV singular values
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Notation

NI Niederlinski index
SSV structured singular value
MIMO multi-input multi-output
ODE ordinary differential equations
DAE differential algebraic equations
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Abstract

Typical continuous process flowsheets include reaction section, separation section and re-
cycles. The reaction section is often the most important part of a chemical process, which
may contain several interconnected reactors. The superstructure approach is a widely used
model-based process design method for reactor network synthesis. It starts from a reactor
network superstructure and uses mathematical models and optimization tools to select the
best process design. The superstructure approach results in an optimal process flowsheet
with determined connection patterns of reactors, reactor types, design parameters and
operating conditions of each reactor.
In this work, a systematic model-based approach for reactor network synthesis problems

with guaranteed robust dynamic performance will be presented. The work is based on the
superstructure approach, but in comparison to the classical methods, not only economic
optimality with respect to a static objective function, but also certain specified dynamic
properties, i.e. dynamic stability and response speed, are guaranteed simultaneously under
parametric uncertainty. Structural alternatives in the flowsheet, i.e., how reactors are
interconnected, as well as in the control system, i.e., how controlled and manipulated
variables are paired, are subject to design degrees of freedom. Moreover, it is allowed that
idle reactors and controllers can appear in the reactor network superstructure, so that a
fixed number of non-idle reactors and controllers does not have to be assumed as a priori.
The optimal reactor network design in either open- or closed-loop is determined by solving
a single optimization problem.
The proposed approach allows an integrated treatment of parametric uncertainties,

which may either result from model uncertainties, such as reaction kinetic constants or
heat transfer coefficients, or from process uncertainties, including slow disturbances in
load or the quality of raw materials. A robust eigenvalue constraint to guarantee the ro-
bust performance of the designed reactor network is formulated. Efficient formulations of
interconnecting reactors and novel complementarity-based constraints for control structure
selection are proposed. The method results in a semi-infinite mixed-integer nonlinear opti-
mization problem with complementarity constraints, disjunctions and a robust eigenvalue
constraint. A hybrid two-step solution method is proposed to solve the synthesis problem,
which integrates candidate solution algorithms of related optimization problems. The pro-
posed solution method is applied to a case study of allyl chloride production with up to
ten plug flow and continuous stirred tank reactors.
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Kurzfassung

Übliche kontinuierliche Prozesse enthalten einen Reaktionsteil, eine Trennsequenz und
Rückführungen. Der Reaktionsteil stellt meist den wichtigsten Teil eines chemischen
Prozesses dar, der aus vielen untereinander verknüpften Reaktoren bestehen kann. Der
Überstrukturansatz beschreibt eine oft genutzte, modellgestützte Methode zur Erstellung
von Reaktornetzwerken mit strukturellen Freiheitsgraden. Ausgehend von einer Überstruk-
tur des Reaktornetzwerkes werden mathematische Modelle und Optimierungswerkzeuge
genutzt, um den besten Prozessentwurf zu finden. Der Überstrukturansatz resultiert in
einem optimalen Prozessfließbild mit festgelegten Verknüpfungen der Reaktoren eines bes-
timmten Reaktortyps sowie mit den zugehörigen Designparametern und Betriebsbedingun-
gen für jeden Reaktor.
In dieser Arbeit wird ein systematischer, modellgestützter Ansatz für den Entwurf von

Reaktornetzwerken mit garantiert robusten dynamischen Eigenschaften präsentiert. Die
Arbeit basiert auf dem Überstrukturansatz. Im Vergleich zu konventionellen Methoden
wird jedoch nicht nur die ökonomische Optimalität in Bezug auf eine statische Zielfunktion,
sondern auch bestimmte spezifische dynamische Eigenschaften, insbesondere die dynamis-
che Stabilität und die Geschwindigkeit des Responses, gleichzeitig unter parametrischer
Unsicherheit garantiert. Strukturelle Fließbildalternativen, insbesondere die Verknüpfung
von Reaktoren untereinander und Alternativen in Bezug auf die Regelungsstruktur, d.h.
insbesondere die Kopplung von geregelten und manipulierten Variablen, zählen zu den
Freiheitsgraden des Entwurfsprozesses. Des Weiteren werden unbenutzte Reaktoren und
Regler im Netzwerk zugelassen, sodass a-priori keine feste Anzahl von benutzten Reak-
toren und Reglern vorgegeben werden muss. Der optimale Entwurf des Reaktornetzwerks
im offenen oder geschlossenen Regelkreis wird durch die Lösung eines einzelnen Opti-
mierungsproblems ermittelt.
Der vorgeschlagene Ansatz erlaubt eine integrierte Behandlung von parametrischen

Unsicherheiten, die entweder aus Modellunsicherheiten resultieren, wie z.B. Konstanten
in der Reaktionskinetik oder Wärmeübergangskoeffizienten, oder aus Prozessunsicher-
heiten, die auch langsame Veränderungen des Zuflusses oder der Qualität der Edukte
einschlieen. Es wird eine robuste Zwangsbedingung für die Eigenwerte formuliert, um
ein robustes Verhalten des entworfenen Reaktornetzwerkes zu garantieren. Effiziente For-
mulierungen zur Verknüpfung von Reaktoren und neue Zwangsbedingungen zur Auswahl
der Regelungsstruktur, die auf Komplementarität basieren, werden vorgeschlagen. Die
Methode resultiert in einem semi-infiniten gemischt-ganzzahligen nichtlinearen Opti-
mierungsproblem mit Komplementaritätsbdingungen, Disjunktionen, und einer robusten
Eigenwert-Nebenbedingung. Es wird eine hybride zweistufige Lösungsmethode vorgeschla-
gen, welche die Lösungsalgorithmen des verwandten Optimierungsproblems integriert. Die
vorgeschlagene Lösungsmethode wird auf eine Fallstudie der Allylchlorid-Produktion mit
bis zu zehn Rohrreaktoren bzw. Rührkesselreaktoren angewandt.
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1 Introduction

1.1 Reactor network synthesis

1.1.1 Motivation

Reactor network synthesis is a classical design problem in process systems engineering,
which is defined as follows [19]: “For given reaction stoichiometry, rate laws, a desired
objective and system constraints, what is the optimal reactor network structure and its flow
pattern? Where should mixing, heating, and cooling be introduced into the network?” The
essence of reactor network synthesis is to find the optimal reactor types, dimensions, oper-
ating conditions and the structural connections with respect to certain design objectives.

The reaction step is often the heart of a chemical process and the foundation for the
process design. The reaction chemistry determines the character of the entire process and
has a significant impact on its design [154]. The conversion rate of raw material, the
operating cost and also the dynamic properties of a process are largely influenced by its
reactors. For this reason, designing the reaction section of a flowsheet is one of the most
important tasks of process design.

However, because of nonlinearity, uncertain rate laws, and typically a large number
of reactor types and network structures, reactor network synthesis is one of the most
challenging problems for process engineers. In this work, we will focus on this topic and
propose a systemic method for open-loop and closed-loop reactor network synthesis. In this
section, we first review different design methods for open-loop reactor network synthesis.

1.1.2 Task

The task of reactor network synthesis includes the following three subtasks: (1) Determi-
nation of the reactor network structure, including the number and type of each reactors;
(2) determination of the operating points of each reactors; (3) determination of the design
parameters, e.g., operating and equipment design parameters. Note that, although we
have subdivided the task of reactor network synthesis into three subtasks, the decisions
made in one subtask influence the decisions in the others.

The determination of the reactor network structure is to design the connection patterns
of all reactors. Reactors can be arranged in parallel, in series or in a more complex manner.
One has also to determine the feed patterns of all reactors, i.e., how each reactor is fed
with raw materials. Raw materials may be fed into a single reactor, or into several reactors
simultaneously. Besides, a reactor network may be allowed to include different types of
reactors, e.g., CSTRs and PFRs, if better economical and operational performances can
be achieved. In this case, the number and the type of reactors have to determined in
this step. Recycles and bypasses may be also allowed. Hence, the determination of the
reactor network structure is an essential and probably the most complicated task of reactor
network synthesis.
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1 Introduction

The determination of the operating points of each reactor also fixes the steady state
of each reactor, i.e., the component concentrations and the reactor temperature. Due to
nonlinearity, a reactor may have different operating points when the same inlets and outlets
are presented. However, both the steady-state performance and the dynamic properties of
each reactor at a given operating point are not the same.

The determination of the design parameters is to specify, e.g., the working pressure
of each reactor, the reactor dimensions, or the heating/cooling capacities of the reactor
jacket. Note that the reactor network synthesis problem typically considers only the open-
loop design problem. The design of a closed-loop control system for the reactor network
is typically considered separately, refer to Section 1.3.

Task (1) can be referred as the design task of the entire network, while tasks (2) and (3)
refer to the design task of individual reactors. The reactor network synthesis problem is
much more complicated than designing a single reactor or a process flowsheet with fixed
structure due to task (1), which introduces a large number of extra design degrees of
freedom.

1.1.3 Methods

Methods for reactor network synthesis can be classified into heuristic methods, attainable
region methods, superstructure methods and methods based on elementary process func-
tions (EPF), refer to Fig. 1.1. A brief review of these methods can be found in [92, 133] for
example and in standard textbooks for reactor design and reaction engineering, including
[48, 141].

Figure 1.1: Reactor network synthesis methods.

Heuristic methods. Heuristic rules are often used to design chemical processes [35,
109, 110]. These rules are in general derived from reaction engineering knowledge. In
some cases, heuristic methods do lead to good design results, e.g. [150]. But as the
name “heuristic” indicates, these rules may not hold for any arbitrary reactor network
and often they lead to suboptimal designs. Furthermore, if a process is of significant
complexity, heuristic methods may become difficult or even impossible to be applied. For
these reasons, research focuses on non-heuristic design methods, which are introduced in
the following.
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1.2 Design of decentralized control systems

Attainable region methods. Attainable region (AR) methods are also called targeting
methods, because they aim at an achievable bound on the performance index of a system
irrespective of the actual reactor configuration [92]. AR methods were first proposed in [70]
and extended later in [39, 55, 68]. In classical AR methods, the attainable region is defined
as a convex hull of concentrations, which can be achieved starting from the feed point by
reaction and mixing. However, because a convex hull of the feasible region is derived
graphically, the classical AR approaches can only be applied to synthesis problems which
can be reduced to at most three dimensions [133]. Also, another difficulty in applying the
AR methods is their integration with other synthesis methods for complete process design
[133]. These properties restrict the application of AR methods. To overcome some of
the difficulties in applying classical AR methods, Biegler and co-workers proposed hybrid
methods [11, 12, 92, 147], which integrate the AR method with numerical optimization.

Superstructure approach. The superstructure approach for reactor network synthesis
has been under investigation for more than 30 years. The approach is based on rigorous
optimization. Depending on the type of the resulting optimization problem, the approach
can be classified into superstructure approach using static or dynamic optimization. The
first presentation of the superstructure approach can be dated back to [73]. Important
extensions have been reported in [1, 2, 86, 88]. In this approach, a superstructure of a
reactor network containing different candidates of connection patterns of the reactors is
postulated first. Based on the usage of numerical optimization tools, an optimal reactor
network which maximizes a given objective function is derived at the end.

The superstructure approach typically results in a complex mixed-integer nonlinear pro-
gram (MINLP), e.g. [86, 88], or a mixed-integer dynamic optimization (MIDO) problem,
e.g. [1, 2, 154]. These optimization problems are typically solved sequentially by appro-
priate numerical solvers. The key advantages of the superstructure approach are that it
allows an arbitrarily general network, and still determines the optimal reactor network
configuration and operating conditions [2]. However, this approach often leads to large
MINLP problems, which are very hard to solve even locally. Furthermore, a significant
limitation is that the optimal solution can only be as rich as the superstructure [154].

EPF methods. Elementary process function (EPF) methods [50, 133] have been pro-
posed recently for the design of optimal chemical reactors. Its basic idea is to track a fluid
element on its way through a reactor and optimize the reaction as well as mass transfer
fluxes along its way. The methods consider the best reaction route in the thermodynamic
state space. The optimal states of the fluid with respect to a certain objective function
change along the reaction coordinates and they follow an optimal route in state space [133].
To optimize the chosen objective, reaction conditions must always be accomplished and
the variables to control the states of the reacting fluid must also be changed along the
path of the fluid element. A great advantage of this type of method is that no specific
apparatus has to be assumed a priori. Hence, the method may suggest the development
of innovative reactor concepts.

1.2 Design of decentralized control systems

A dynamic system can be controlled either by centralized or decentralized control sys-
tems. This classification stresses the point whether there is a single central controller or
whether there are multiple decentralized controllers. Although decentralization can be
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1 Introduction

carried out in different ways, throughout this work we will restrict the discussion to fully
decentralized control systems with single-input single-output (SISO) proportional-integral
(PI) controllers. Hence, decentralized PI control results in a multi-input multi-output
(MIMO) system, in which each closed loop always couples a single CV and a single MV.

Decentralized PI control systems are most popular in industrial applications, because
centralized control systems are expected to come with large complexity and design cost,
leading to difficulties in implementation, tuning and maintenance [29]. Decentralized con-
trol is a favorable choice because of its low computational demand [10] and less mea-
surements and information are needed to be transmitted [157]. These properties make
decentralized control systems a preferred choice to control large and complex systems in
practice.

Decentralized PI control systems will be assumed in this work for simultaneous design
of a reactor network and its control system. Therefore, in this section we review the
fundamentals of designing decentralized control systems for a given process, while the task
of simultaneous process and control system design will be reviewed in the next section.

1.2.1 Tasks

The tasks of designing a decentralized control system include (1) the selection of candidate
CV and MV, (2) the determination of the control structure, i.e., the pairing of candidate
CV with MV, and (3) the tuning of control parameters. Note that, although we have
subdivided the task of designing a decentralized control system into three subtasks, the
decisions made in one subtask often influence the decisions in the others.

Selection of candidate CV and MV

Selection of candidate controlled variables (CV) and manipulated variables (MV) refers
to the decisions regarding the number and type of candidate CV and MV. This first step
of designing a decentralized control system answers the question which valves (candidate
MV) can be manipulated and which quantities (candidate CV) can be controlled. This
step is often based on an available process model and performed prior to the physical
realization of the plant. A comprehensive review of how to select candidate CV and MV
can be found in [176].

Candidate MV can be manipulated by controllers. They are physically identified as
valves, which can be opened or closed during the operation. Here, “candidate” stresses the
point that each single MV may or may not be manipulated in the final design. When a
candidate MV is not manipulated in the final design, this MV is actually a design parameter
and the corresponding valve position is fixed during process operation.

Candidate CV refer to quantities, which can be measured by sensors, including tem-
perature, pressure and concentration, and controlled by a reference signal. The measured
signal is fed to controllers, which in turn is used to manipulate valves. Likewise, “can-
didate” stresses here that each single candidate CV may or may not be measured and
controlled in the final design. When a candidate CV is not used in the final design, the
corresponding quantity does not need to be measured physically. Selection of candidate
MV and CV results in two sets of variables, which refer to candidate MV and CV, respec-
tively.
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1.2 Design of decentralized control systems

Determination of control structure

The determination of the structure of a decentralized PI control system refers to the task of
coupling individual candidate MV and CV, which are determined from the previous step.
It specifies which of the MV is manipulated by which of the CV. Because each coupling has
to be decided among multiple candidate MV and CV, this task leads to a combinatorial
problem. Selecting the best alternative is therefore challenging, even for a relative small
number of candidate MV and CV.

The determination of the control structure is critical because a poor decision may lead to
fundamental performance limitations of the controlled system, which can not be overcome
by controller turning. The decisions on pairing MV and CV is as important as controller
design itself.

Despite its importance, limited attention has been paid to the design of control struc-
tures [175]. In practice, this task is often done based on physical understanding of the
process. Therefore, there often exist a large number of possible pairings, which are not
carefully considered during design. The combinatorial nature of selecting a control struc-
ture underlines the need for a systematic procedure for choosing the best control structure.

Controller tuning

Controller tuning refers to the task of determining the parameters of the controllers. For PI
controllers, the parameters are the proportional and integral gains. The task of controller
tuning sometimes refers to “controller design” in literature, which assumes that the control
structure is known and fixed.

The ultimate goal of controller tuning is to realize desired dynamic closed-loop proper-
ties. Stability is a basic property, which must be ensured, but there exists other desired
properties, including no overshoot, response speed, or settling time. The task of controller
tuning is, however, not trivial, because the control parameters can not be related quanti-
tatively and directly to time domain performance. Furthermore, controller tuning should
be considered together with the determination of the control structure, because both tasks
influence the dynamic properties of the closed-loop system.

1.2.2 Methods

Methods to design decentralized control systems can be classified into heuristic methods,
indices-based methods and mathematical programming methods (cf. Fig. 1.2). Though
the task of designing decentralized control systems can be subdivided into three subtasks,
we will focus on only the last two subtasks, namely on control structure selection and
controller tuning. The first subtask, selecting candidate CV and MV, is typically restricted
by the available actuators and sensors in a given open-loop process.

Heuristic methods

Luyben et al. [109, 111] proposed a nine-step heuristic design procedure for plant-wide
control design. The proposed procedure results in an effective plant-wide control structure
for a given process flowsheet. Niederlinski [126] proposed a heuristic approach to the design
problem of linear multivariable interacting control systems. The proposed heuristics are
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1 Introduction

Figure 1.2: Methods for the design of decentralized control systems.

used to make decisions on the control structure and the controller settings. Konda et al.
[89] proposed an integrated framework of simulation and heuristics.

Indices-based methods

Indices-based methods rely on the use of an index, which is typically a real scalar derived
from a process model, to evaluate and compare different control designs. This type of
methods have mainly been developed for linear systems with a given operating point.
According to the types of indices used, e.g. relative gain array (RGA) [24], Niederlinski
index (NI) [126], singular values (SV) [85], or structured singular value (SSV) [93], indices-
based methods can be further classified. RGA constitutes the first systematic index for
interaction analysis and input-output pairing for linear multi-variable plants. It is still the
most widely used technique in industry. RGA is based on the steady-state gain matrix
of an open-loop plant, which can easily be obtained in practice by performing step tests.
RGA has also been extended and generalized to other useful RGA-based derivatives, e.g.,
to the dynamic gain array (DRGA) [184], or the generalized relative dynamic gain [51].
NI is similar to RGA and does actually not provide more information for control structure
selection [155]. The relationship between RGA and NI is explored in [29]. RGA and NI
were initially developed for stable processes, but they have also been extended for input-
output pairing of unstable MIMO systems [71]. A comprehensive review of RGA-based
methods is given in monograph [83].

Methods based on mathematical programming

Due to advances in computational techniques and due to increased computing power, con-
trol design methods based on mathematical programming [28, 62, 81, 90, 114, 117, 124]
emerge. In this class of methods, the control design problem is formulated as an opti-
mization problem, e.g., a mixed-integer linear program (MILP), a mixed-integer nonlinear
program (MINLP) or a mixed-integer dynamic optimization (MIDO) problem. The formu-
lated optimization problems are solved by appropriate numerical solvers, which generate
the optimal control design. The criteria guiding control design can either be based on
the trajectories of the closed-loop system [28, 62, 117, 124], or certain indices to assure
controllability (e.g. RGA) [28, 81, 90, 114]. The selected criteria are either the objective
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1.3 Simultaneous process and control system design

function to be minimized/maximized or they are required to take specific values, or to be
bounded.

Here we stress the formulation for control structure selection proposed by Narraway and
Perkins [124], on which many later works [28, 90, 117], as well as this work, are based. In
this formulation [124], decisions for pairing CV and MV are modeled by integer variables
to represent how single CV and MV are coupled. The formulation has been successfully
applied to some case studies. However, a major drawback of this formulation is that the
generated mixed-integer optimization problem contains a large number of integers and is
computationally demanding. In this work, we will propose an alternative formulation,
which is based on complementarity (cf. Section 4.1.2). The proposed formulation can be
treated more efficiently by numerical solvers.

A great advantage of the methods based on mathematical programming is that they
enable a straightforward integration of process and control system design (cf. Section 1.3).
A single optimization problem is typically formulated and solved at once, which determines
both the process and control system design parameters, cf. [28, 62, 117, 124].

1.3 Simultaneous process and control system design

Process and control system design are typically two separate sequential steps in designing
closed-loop processes. The goal of process design is to select a most economical process
flowsheet and an operating condition, while the goal of control design is to ensure de-
sired dynamic properties by selecting a control structure and its parameters. Because the
dynamic properties obtained in the second step (control design) depend on the design re-
sults from the first step (process design), this two-step procedure may lead to suboptimal
closed-loop solutions. Simultaneous process and control system design tries to treat these
problems simultaneously by integrating these two sequential steps into a single step.

1.3.1 Motivation

Process flowsheets are typically designed in two sequential steps: first the process design is
fixed and then the control system is added. In the first step (process design), an economical
cost function is optimized subject to a steady-state open-loop process model. Dynamic
properties such as stability and operability are typically not considered in this step and can
hence not be guaranteed. In the second step (control system design), the control system
is designed and closed-loop dynamic properties are taken into consideration. Because this
procedure ignores the interrelation between process and control system design, it may
result in an open-loop design which is difficult to control, and may hence results in an
unsatisfactory closed-loop design.

The motivation of simultaneous process and control design is to integrate these two
sequential steps. Both, static performance, e.g., economics, and dynamic performance,
e.g., stability and set-point tracking, are ensured in a single step. Process design decisions,
including flowsheet structure, equipment parameters, or operating conditions, and process
control decisions, including control structure or controller tuning, will be considered in an
integrated framework. Systematic methods for simultaneous process and control design
will be briefly reviewed next.
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1.3.2 Methods

Simultaneous process and control design is not a new topic; there rather exist already
hundreds of publications in this field. For a comprehensive overview of this topic, we refer
to recent review papers [144, 148, 156, 179, 188]. According to [179], methods for simulta-
neous process and control system design can be classified in two ways: approaches which
systematically examine the dynamic properties of alternative designs, so-called projecting
methods, and approaches which perform process and control design at once by solving
an optimization problem, so-called integrated optimization methods (cf. Fig. 1.3). Since
interrelated issues are often considered, there is no strict and agreed classification.

Projecting methods predict and compare process dynamics by means of controllability
indices for candidate design alternatives during the design phase. This class of methods
belong to the earliest methodologies reported in literature, which explicate and treat the
conflicts between process and control design. Projecting methods can be further classified
into methods based on input-output controllability, methods based on state controlla-
bility, process-oriented methods, methods based on steady-state multiplicity and methods
based on phenomenological models [179]. For methods based on input-output or state con-
trollability, different process alternatives are studied by optimizing a steady-state process
model economically with the consideration of open-loop controllability indices. Controlla-
bility indices used here are mainly focused on the effects of perturbations to the operating
constraints and their propagations through the process flowsheet [179]. Process-oriented
methods consider the task of simultaneous process and control design for specific pro-
cesses. Methods based on multiplicity come from steady-state multiplicity analysis and
focus on integrating operability with reactor design. Phenomenological methods apply
phenomenological knowledge of the process to distinguish the designs with best dynamic
performance, using sensibility analysis of the thermodynamic properties of the chemical
process or specifically passivity theory [179].

The integrated optimization methods introduce dynamic performance measures and use
them to formulate a comprehensive optimization problem for the determination of the
best economical and controllable plant including the design of a control system [179]. Inte-
grated optimization methods can be further characterized by the scope of design problems,
techniques to quantify dynamic performance, control strategies, the treatment of perturba-
tions/uncertainties and the types of the optimization problems formulated [179] (cf. Fig.
1.3). The derived optimization problems often consider different subsets of design deci-
sions, e.g., operating point, design parameters, flowsheet structure, controller types and
control structure.

Note that, although a number of methods exist in literature for simultaneous process
and control design, numerous issues still remain open for research. This is mainly due
to the joint and integrated nature of process and control design, in which many potential
possibilities and extensions considering different process/control design aspects exist. With
the advance of computational techniques, the reliable solution of the resulting numerical
problems becomes more and more mature.
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1.4 Content and goals of this work

In the above sections we have reviewed three topics, which relate closely to this work. We
were not able to cover every aspect, but based on the presented reviews, we have already
glimpsed at the motivation of this work. In this section, we will present a thorough overview
of this work, focusing on the new features and on its relation to others in literature.

1.4.1 Overview

This work presents a systematic approach to simultaneously design open- or closed-loop re-
actor networks with robust dynamic properties. Our goal is to find a process structure and
a steady-state operating point, in either open- or closed-loop, which is not only economi-
cally optimal but also possesses two eigenvalue-based dynamic properties, namely stability
and a specified response speed. Both, alternative flowsheet structures, i.e., how different
reactors are connected with each other, and the alternative PI control structure, i.e., dif-
ferent pairings of CV and MV (cf. Fig. 1.4), are simultaneously considered and optimized.
Process design parameters, i.e., reactor size, and control parameters, i.e., proportional
control gains, are determined through solving a single optimization problem. Parametric
uncertainties, which may either refer to model uncertainties, e.g., reaction kinetic constants
or heat transfer coefficients, or to process uncertainties, e.g., slow disturbances in load or
quality of raw materials, are also considered in this approach. By considering uncertainty,
it is guaranteed that the designed process is robust with respect to the specified dynamic
properties. Not only the nominal operating point of the designed process, but also the
operating points close to the nominal operating point are stable and/or have specified re-
sponse speed. The approach results in a robust steady-state process design, either open- or
closed-loop, which is economically optimal and has desired dynamic properties. We note
that, the proposed method has been developed for reactor networks but it carries over to
other (integrated) process and/or control synthesis problems. The presented formulation
becomes much simpler, if no/less structural alternatives are considered. Some important
features of this work will be discussed below in more detail.

Modeling of reactor networks

A structured modeling procedure for reactor network synthesis with the consideration of
both flowsheet and control structural alternatives is presented. The procedure results in
a compact dynamic model of reactor networks for open-loop and closed-loop design. The
open-loop model considers structural flowsheet alternatives, while the closed-loop model
for simultaneous process and control design considers control structure alternatives in
addition.

The proposed modeling procedure is based on a superstructure approach [19], but has the
following two new features: First, the procedure leads to a compact ODE model, which
has internal mathematical structure referring to the flow connections between reactors.
This compact ODE model, especially its internal mathematical connectivity structure, is
important for the analysis and the synthesis of eigenvalue-based dynamic properties of the
designed process. Second, the superstructure approach, which is typically used for open-
loop process synthesis, is extended to simultaneously treat control structure alternatives.
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Figure 1.4: A closed-loop reactor network superstructure with undetermined process and con-
trol structures for simultaneous process and control design. The figure illustrates the design
problem considered in this work. CSTR refers to a continuous stirred-tank reactor, PFR to
a plug flow reactor. M and S refer to mixers and splitters, respectively. C stands for a PI
controller. Solid arrows represent candidate flow connections, while dashed lines represent can-
didate couplings between MV and CV. Both, the flowsheet and control structures are not fixed
a priori.

The resulting closed-loop model can therefore handle both flowsheet and control structure
alternatives as degrees of freedom in the design.

To model open-loop reactor networks, we used the reactor network superstructure pre-
sented in [87] as a starting point for further development. This superstructure comprises
a fundamental setting, to which we will stick throughout this work. The superstructure
is similar to the one in Fig. 1.4, except that no control loops were included in [87]. The
superstructure consists of several reactors (either CSTR or PFR), which are connected
through candidate flow connections. Depending on the existence of any flow connection
in the final design, reactors can be connected in different ways. For example, reactors in
series or in parallel are two simple flowsheet structures, while there exist more complicated
connection patterns. We want to stress an important modeling trick proposed in this work
to model structural alternatives: The outlets of a reactor can be modeled by the product
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of a corresponding flowrate variable with a vector of component concentrations and energy
densities. By using this trick, one can distinguish between existent and non-existent flow
connections just by checking the values of the flowrate variables. This results in a dynamic
model of reactor networks, which has an internal mathematical structure for connectivity
without using integer variables. This trick also plays a central role in the eigenvalue-based
analysis of the derived model and influences the proposed reformulations.
The closed-loop reactor network model for simultaneous process and control design is

obtained by extending the open-loop model by additional decentralized PI control loops.
The basic problem setting of designing the structure of the decentralized PI control system
is taken from [124]. This work extends their work by simultaneously considering flow-
sheet alternatives and proposes an efficient complementarity-based formulation for control
structure selection. Candidate CV and MV are first defined by inspecting the open-loop
model; subsequently they are paired to form candidate decentralized control loops. The
modeling procedure of closed-loop reactor networks results in a dynamic model, in which
both flowsheet and control structure alternatives are degrees of freedom of the design.
Eigenvalue-based analysis of the dynamic properties of the closed-loop model is carried on
in a similar way as it is done for the open-loop reactor network model.

Robust eigenvalue constraints for dynamic properties

Another feature of this work is to ensure dynamic properties, namely stability and spec-
ified response speed, of the final design in either open- or closed-loop. This is achieved
by imposing so-called eigenvalue constraints. The considered dynamic properties are for-
mulated by using the eigenvalues of the Jacobian matrix of the reactor network model, or
more precisely, specifying an upper bound on the spectral abscissa (SA) of the system’s
Jacobian matrix. From nonlinear systems theory, we know that SA determines stability
and response speed (cf. Chapter 2). When SA is less than zero, a dynamic system is locally
stable; the more negative the SA, the faster a dynamic system responds to disturbances.
Therefore, by constraining the SA of a reactor network, stability and a specified response
speed in the final design can be ensured.
Parametric uncertainties are also taken into consideration. The type of parametric

uncertainty is adopted from [119], where it is assumed that uncertain parameters lie in a
certain uncertainty region around their nominal values. Input variables, disturbances and
reference signals are assumed to vary quasi-statically compared to the system dynamics
such that they can be also modeled in this way. The resulting robust eigenvalue constraint
guarantees that not only the nominal design, but also nearby designs, have the desired
dynamic properties.

Idle reactors and controllers

Considering idle reactors and controllers in the reactor network design problem is another
important feature of this work. The motivation to do this is to select the optimal number
and types of reactors and controllers in the final design, so that designers do not have to
define a fixed number of reactors and controllers a priori. Idle reactors (idle controllers)
refer to reactors (controllers) in the final design, which will not be physically implemented.
A reactor is idle, if it has no flow connections with other reactors, while a PI controller
is idle, if it is not involved in a closed loop. In the proposed model, idle reactors and
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controllers can be identified just by checking the values of flowrate variables and controller
gain parameters, respectively. So, one can start with a general superstructure, which
contains a sufficient number of reactors and controllers, and let the optimizer decide how
many and which reactors and controllers are idle in the final design.
The consideration of idle reactors and controllers makes the formulation and the analysis

of eigenvalue constraints for reactor network synthesis much more complicated, because
eigenvalue-based dynamic properties can not be formulated straightforwardly for the dy-
namic model of the superstructure by applying mathematical nonlinear systems theory.
Because only non-idle reactors and controllers will be implemented physically, the sub-
models of idle/non-idle reactors and controllers must be distinguished and considered sep-
arately. This results in four submodels for the closed-loop reactor network model, i.e., a
submodel for idle reactors, a submodel for idle controllers, a submodel for non-idle reactors
and a submodel for non-idle controllers. The Jacobian matrix of the total model also has
an internal structure corresponding to the submodels. Since we are only interested in the
dynamic properties of non-idle reactors and controllers, a novel formulation of an eigen-
value constraint is introduced, which refers only to the eigenvalues of non-idle reactors and
controllers.
Integer (binary) variables are introduced to represent the status (idle or non-idle) of each

reactor and controller. The proposed eigenvalue constraint for non-idle reactors and con-
trollers is found to be discontinuous. The discontinuity is caused by activation/deactivation
of idle reactors and controllers, which leads to a dimensional change of the eigenvalue spec-
trum of non-idle reactors and controllers. In order to use off-the-shell numerical toolboxes,
we transform the proposed eigenvalue constraint from a discontinuous into a continuous
function, which is smooth almost everywhere, by introducing integer variables. After this
transformation, the resulting mixed-integer eigenvalue constraint is smooth with respect
to its arguments almost everywhere and it can be treated by mixed-integer mathematical
programming and eigenvalue optimization (cf. Section 5). We find that the established
synthesis problem [87], where all reactors and controllers are assumed to be non-idle, is a
rather simple special case, for which no integer variables are needed to derive a continuous
eigenvalue constraint for reactor network design.

Problem formulation and solution method

In this work, we present two problem formulations. One is for open-loop reactor network
synthesis, and the other is for simultaneous reactor network and control design. The open-
loop design problem results in a semi-infinite MINLP with a robust eigenvalue constraint,
while the simultaneous closed-loop design problem constitutes a semi-infinite MINLP with
a robust eigenvalue constraint and additional complementarity constraints and disjunc-
tions. In both formulations, a nonlinear economic objective function is minimized, which
is subject to the steady-state process model either in open- or in closed-loop and a ro-
bust eigenvalue constraint for dynamic properties. Integers represent the existence of a
reactor and a controller in the final design. The number of introduced integers equals the
number of reactors and controllers included in the superstructure. Complementarity con-
straints appear in the simultaneous closed-loop design problem referring to the constraints
for control structure selection, i.e., the different pairings of candidate CV and MV.
The formulated problems are challenging to solve, because they combine features coming

from mixed-integer nonlinear programs (MINLP), mathematical programs with comple-
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mentarity constraints (MPCC), semi-infinite optimization (SIP) and eigenvalue optimiza-
tion (EVO) (cf. Section 5). To the author’s knowledge, the most challenging feature is the
treatment of robust eigenvalue constraints, which is rarely discussed in literature. Eigen-
value constraints are in general non-smooth. Hence, we need to find the global minimum
of a non-smooth function. Besides, one has to take care of integer variables and many
complementary constraints and disjunctions, which makes the solution task challenging
both theoretically and practically.

As a first pragmatic approach, we propose a two-step hybrid solution strategy to solve the
proposed optimization problem locally. The solution strategy solves first a deterministic
problem without considering uncertainties (step 1) and afterwards solves a semi-infinite
(uncertain) problem (step 2). In the first step, assuming smoothness of the eigenvalue
constraints near the local optimum or using smoothing techniques for eigenvalue constraints
(cf. Section 5.4), smooth optimization solvers, e.g., SNOPT [54], can be directly applied
to solve the derived deterministic problem. The applied smooth solvers can be multiply
initialized such that the global minimum can be approximated. In the second step, an
uncertain problem is derived by fixing the integer variables to the results of the first step.
The resulting uncertain problem is solved by applying the normal vector approach [120].
Advantage of this two-step hybrid solution strategy is that, the normal vector approach
in the second step can be properly initialized using the solutions of the first step. If the
global optimum can be approximately obtained in the first step (e.g., by using a multi
start strategy), the second step often leads to good local optimal solutions.

1.4.2 New features of this work

Having presented an overview of the content and goals of this work, the four new features
of this work are highlighted in Fig. 1.5. These features make this work an original con-
tribution to the literature. Although there may exist other works which consider some
of these features, to the author’s knowledge nobody has considered these features in an
integrated framework.

Figure 1.5: Four features in setting up the design problem of this work.
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Flowsheet and control structure alternatives are considered simultaneously in this work.
Flowsheet structure alternatives refer to different connection patterns of the reactors in a
reactor network, and control structure alternatives refer to different pairings of candidate
CV and MV to form a decentralized PI control system. Established methods in literature
typically consider only flowsheet structure alternatives without a control system, or only
control structure alternatives for fixed flowsheet structures and process designs. In this
work, however, we will consider the integrated case, in which both, the flowsheet and the
control system are designed simultaneously.
Eigenvalue-based dynamic properties are guaranteed in the final design. In contrast to

other characteristics which evaluate the performance of closed-loop systems, e.g., failure
tolerance, set-point tracking, or dead time, the spectral abscissa is selected as a design
criterion in this work. The spectral abscissa determines the stability and response speed
of a designed system in either open- or closed-loop. It results in an eigenvalue constraint
for the reactor network design problem. Idle reactors and controllers are considered in
formulating the eigenvalue constraint to guarantee dynamic properties. The consideration
of idle reactors and controllers makes it possible to determine the optimal number/type of
reactors and controllers in the final design. Hence, dynamic properties (stability and fast
response speed) of the final open-loop or closed-loop design are guaranteed by imposing
eigenvalue constraints.
Parametric uncertainty is considered in formulating the eigenvalue constraint, to result

in a robust design. In this work, parametric uncertainty is formulated in a non-probability
setting through a hyper-rectangular uncertainty region, which is assumed to be known a
priori. Although parametric uncertainty can be described in other ways, hyper-rectangular
regions are often used in literature for simplicity [9, 117, 120, 146]. Uncertain parameters
result in a robust eigenvalue constraint, which is challenging to be treated by numerical
solvers. It guarantees that the final open-loop or closed-loop design has the desired dynamic
properties in the uncertainty region around the normal operating point.

Relation to literature

Although there exist many papers which are relevant to the contents of this work, three
papers [87, 120, 124] are directly related.
The basic problem settings of (open-loop) reactor network synthesis are adopted from

[87]. The reactor network superstructure presented in [87] is directly used throughout this
work. In comparison to [87], however, several advances have been achieved. First, idle
reactors in open-loop superstructures are allowed and parametric uncertainties appear in
the problem formulation. Second, instead of treating eigenvalue constraints by a conserva-
tive approximation, this work evaluates eigenvalue constraints exactly or uses specialized
smoothing methods to approximate eigenvalue constraints (cf. Section 5.6). A more exact
treatment of eigenvalue constraints leads to more exact approximations of the feasible re-
gion. Third, plug flow reactors are included in the reactor network superstructure, which
allows an automatic decision on the use of different types of reactors.
The problem setting for designing decentralized control structures introduced in [124] is

adopted in this work. Narraway and Perkins [124] proposed an integer-based formulation
for control structure selection, which is adopted by many later works [28, 90, 117]. In this
work, however, we address the same problem of selecting control structure, but present an
alternative equivalent formulation. The presented formulation is based on complementarity
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constraints and can be treated by numerical optimization methods much more efficiently.
Moreover, this work extends the work of [124] in the sense that both flowsheet and control
structure alternatives are decided simultaneously.
Last but not least, the work of [120] has influenced this work. The formulation of

parametric uncertainty and the usage of eigenvalue-based criteria are directly adopted
from there. Also, in the proposed two-step solution strategy (cf. Section 5.6), we directly
use the normal vector approach proposed in [120] to solve the resulting uncertain problem
in the second step. However, this work differs from [120] because it considers flowsheet
and control structure alternatives. The modeling of reactor networks and the analysis
of eigenvalue-based properties in both open- and closed-loops are also independent from
[120]. Furthermore, the first step of the proposed two-step solution strategy presents an
alternative way to initialize the normal vector approach (cf. Section 5.6).
The content of our publications [189, 190] are re-used in this thesis. Major parts of

Chapter 3 and the open-loop case study shown in Section 6.1 are reproduced from [189].
Chapter 4 and the closed-loop case study shown in Section 6.2 are reproduced from [190].
The proposed two-step solution method presented in Section 5.6 has originally been pro-
posed in [190].
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2 Some Preliminaries

This chapter introduces some theoretical concepts related to dynamic systems. Fundamen-
tal results on dynamic systems will be introduced first. After that we discuss eigenvalue
and spectral abscissa functions. Lyapunov stability and response speed of dynamic systems
will be analyzed by the spectral abscissa function. The extension of the presented results
to differential-algebraic systems will be presented at the end.

2.1 Dynamic systems

Consider a nonlinear autonomous dynamic system represented by a set of ordinary differ-
ential equations (ODE),

ẋ = f(x), x(0) = x0, (2.1)

where x(t) ∈ Rm are the differential variables, or states, of the system. f : Rm → Rm

is a general, not necessarily smooth, function. x0 ∈ Rm denotes the initial condition.
ẋ = dx(t)/dt denote the derivatives of states x(t) with respect to time t. System (2.1) is
called autonomous, because f(·) is not explicitly a function of t.
x(t) is a solution of the initial value problem (2.1) on interval I = [0, t1), t1 > 0, if x(t)

is differentiable and
dx(t)

dt
≡ f(x(t)), ∀t ∈ I,

x(0) = x0.

Existence and uniqueness of solutions x(t) of Eq. (2.1) relate to two questions, which
should be addressed before looking for analytical or numerical solutions. It is known that
these properties can be ensured by imposing some conditions on the function f(x) [84]:
If f(x) is continuous, solutions of system (2.1) always exist and they are continuously
differentiable. Uniqueness of solutions can be guaranteed by imposing Lipschitz continuity
on f(x), which is defined as follows:

Definition 2.1.1 (Local Lipschitz continuity). A function f : Rm → Rn is called locally
Lipschitz continuous at a point x∗, if there exist a neighborhood Ux∗ of x∗ ∈ Rm and a
scalar L0 > 0, so that ∀x1, x2 ∈ Ux0

‖f(x1)− f(x2)‖ ≤ L0‖x1 − x2‖. (2.2)

A function f(x) is said to be locally Lipschitz on an open subset D ⊆ Rm, if f(x) is locally
Lipschitz at each individual point in D. Hence, L0 in Eq. (2.2) may not be the same for
different x∗. In contrary, global Lipschitz condition assumes that there is a uniform L > 0,
which does not depend on the specific reference point.

Definition 2.1.2 (Global Lipschitz continuity). A function f(x) is said to be globally
Lipschitz continuous on an open subset D ⊆ Rm, if there exists a (uniform) L > 0, so that

‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ D.
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Local/global Lipschitz continuity has a close relationship to continuity and first order
derivatives of f(x):

Lemma 2.1.1 (Local Lipschitz continuity, Lemma 2.3 in [84]). Let f(x) be continuous on
some domain D ⊆ Rm, if ∂f

∂x
exists and is continuous in D, then f is locally Lipschitz on

D.

Lemma 2.1.2 (Global Lipschitz continuity, Lemma 2.4 in [84]). Let f(x) be continuous
on Rm. If ∂f

∂x
exists and is continuous on Rm, then f is globally Lipschitz in Rm, if and

only if ∃K > 0, so that

‖∂f
∂x

(x)‖ < K, ∀x ∈ R
m.

That is, ∂f/∂x is uniformly bounded on Rm.

Existence and uniqueness of solutions of system (2.1) can be guaranteed by the following
theorems.

Theorem 2.1.3 (Local existence and uniqueness, Theorem 2.2 in [84]). If f(x) is locally
Lipschitz continuous at an initial point x0, then there exists a t1 > 0, so that the initial
value problem (2.1) has a unique solution x(t) for t ∈ [0, t1].

This theorem does not guarantee the existence of a solution x(t) for arbitrary t1. For
example,

ẋ = −x2, x(0) = −1,

has locally a unique solution x(t) = (t − 1)−1. But as t → 1, x(t) → ∞. So we can not
find solutions for t1 ≥ 1.
Global existence and uniqueness of the solutions can be ensured by imposing stronger

conditions. The following theorem establishes the existence of a unique solution for arbi-
trarily large t1.

Theorem 2.1.4 (Global existence and uniqueness, Theorem 2.3 in [84]). If f(x) is globally
Lipschitz continuous on Rm, then the initial value problem (2.1) has a unique solution x(t)
for t ∈ [0, t1], ∀t1 > 0.

Theorem 2.1.4 is strong because it is based on the simple concept of global Lipschitz
continuity. However, many dynamic system arising from engineering applications are mod-
eled by a f(·), which is not globally Lipschitz continuous. Furthermore, one can also easily
construct smooth problems, which are not globally Lipschitz, but which do have a unique
global solution. For this reason, less restrictive conditions are of interest.
Local Lipschitz continuity of a function is basically a requirement for smoothness, which

is implied by continuous differentiability. If we assume that models of physical systems
are locally Lipschitz continuous, the following theorem results in global existence and
uniqueness by imposing some additional properties of the solutions.

Theorem 2.1.5 (Global existence and uniqueness, Theorem 2.4 in [84]). Let f(x) be locally
Lipschitz continuous in a domain D ⊂ Rm. Let W be a compact subset of D, x0 ∈ W , and
suppose it is known that every solution of (2.1) lies entirely in W . Then, there is a unique
solution of system (2.1) which is defined for t ∈ [0, t1], ∀t1 > 0.

Throughout this work, we assume that such a W always exists. Hence, system (2.1) has
a unique solution x(t) starting from x0 for t ∈ [0,+∞), if the conditions of Lemma 2.1.1
hold.
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2.2 Eigenvalue and spectral abscissa functions

Let Mn be a vector space of n × n real matrices, which is not necessarily symmetric.
Elements of this vector space are real square matrices. The zero vector of this vector space
is the zero matrix and the vector space Mn is of dimension n2. Equipped with any matrix
norm, Mn is a metric space. Therefore, smoothness of matrix-valued functions can be
defined.
LetM : Rm → Mn be a matrix-valued function. For x ∈ Rm, M(x) ∈ Mn with elements

Mi,j(x), i = 1, · · · , n, j = 1, · · · , n. If we assume thatMi,j : R
m → R are smooth functions,

the smoothness of function M(·) follows from the smoothness of functions Mi,j(·). In this
work, we always consider the case where Mi,j(·) are smooth functions of x.
The eigenvalues of M(x) are the roots of the n-th order polynomial

pM(x)(λ) := det(M(x)− λI),

where I is an n× n identity matrix. pM(x)(λ) is the so-called characteristic polynomial of
matrix M(x). From algebra, we know that pM(x) has n complex roots. Denote these roots
with λ1(x), · · · , λn(x) ∈ C, the polynomial can be represented by

pM(x)(λ) = (λ1(x)− λ) · · · (λn(x)− λ). (2.3)

λ1(x), · · · , λn(x) are called the eigenvalues of matrix M(x). Note that each eigenvalue
λi(x), i = 1, · · · , n, is a function of x, if matrix M(x) depends on x.
The spectrum of matrix M(x) is defined as a finite set, which contains all n eigenvalues

of M(x). It can be denoted as

ΛM(x)(x) := {λi(x), i = 1, · · · , n}. (2.4)

Note that, since matrix M(x) is a function of x, its spectrum is also a function of x.
Eigenvalue functions can be generally denoted as

φ(λ1(x), · · · , λn(x)), (2.5)

where φ : Cn → R denotes a smooth mapping. For example, an eigenvalue function of the
spectral radius of matrix M(x) can be formulated as

ρ(x) := max
i=1,··· ,n

|λi(x)|. (2.6)

In this work we consider the spectral abscissa (SA) function of matrix M(x), defined by

αM(x)(x) := max
i=1,··· ,n

Re(λi(x)). (2.7)

Re(λi) denotes the real part of λi, i = 1, · · · , n. α : Rm → R is a real-valued function.
Note that, we sometimes write αM∗ to denote the spectral abscissa of a constant matrix
M∗ ∈ Mn.
One of the most important properties of function αM(x)(x) in Eq. (2.7) is that, it is

continuous, but non-Lipschitz continuous [25]. Function αM(x)(x) is non-smooth at certain
points and the gradients at these points may approach infinity (i.e., the function may get
infinitely steep). An exemplary non-Lipschitz continuous function is

√
x in domain [0, 1].

Function
√
x gets infinitely steep at x = 0. We present next an example to demonstrate

the non-smoothness of the SA function. Related theoretical results on the smoothness of
SA functions will be reviewed.
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2 Some Preliminaries

Example 2.1. We demonstrate non-Lipschitz continuity of the SA function of a non-
symmetric matrix through a simple example adopted from [25]. Consider

M0(x) =

(
0 1
−1 −x

)
,

where x ∈ R.
The SA of M0(x) is plotted in Fig. 2.1 as a function of x ∈ [1, 3]. We see that αM0(x)(x) is

a smooth function of x almost everywhere, except for x = 2. At this non-smooth point x = 2
the function is non-Lipschitz continuous. If we examine the eigenvalues of M0(x = 2), we
find that M0(2) has two repeated eigenvalues, i.e., λ1 = λ2 = −1.

Figure 2.1: Spectral abscissa αM0(x)(x).

In the following lemma we establish continuity of the SA function αM(x)(x).

Lemma 2.2.1 (Continuity of λi(x)). If M : Rm → Mn is a continuous function, then all
eigenvalue functions λi(x), i = 1, · · · , n, are locally continuous.

Proof. Eigenvalues λi of matrix M(x) are the roots of polynomial pM(x)(λ). Because M
is a continuous function, all element functions Mi,j(x), i, j = 1, · · · , n are continuous, all
coefficients in the polynomial pM(x)(λ) are continuous. Hence, the roots of pM(x)(λ) are
also continuous as shown in Theorem 1.4 in [112].

From the above lemma, because αM(x)(x) is the largest of a finite number of continuous
functions Re(λi(·)), i = 1, · · · , n, αM(x)(x) is also continuous.
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2.2 Eigenvalue and spectral abscissa functions

To derive sufficient conditions for the smoothness of the SA function, we first introduce
the definition of simple eigenvalues. We use x∗ to denote a fixed point, while use i∗ to
denote a fixed index.

Definition 2.2.1 (Algebraic multiplicity). For i ∈ {1, · · · , n}, the algebraic multiplicity
of eigenvalue λi(x

∗) is defined as the multiplicity of root λi(x
∗) of polynomial pM(x∗)(λ),

which is the largest integer k∗ such that (λi(x
∗) − λ)k

∗

appears on the right hand side of
Eq. (2.3).

Definition 2.2.2 (Simple eigenvalue). An eigenvalue λi(x
∗), i ∈ {1, · · · , n}, is called a

simple eigenvalue of matrix M(x∗), if its algebraic multiplicity is one.

Simple eigenvalues are sometimes called non-repeated eigenvalues (in the sense of isolated
roots of the polynomial pM(x∗)(λ)).
The following theorem gives a sufficient condition for the smoothness of the eigenvalue

functions λi∗(x), i
∗ ∈ {1, · · · , n}. One may also refer to Theorem 2.1 in [168].

Theorem 2.2.2 (Smoothness of λi(x), a specialization of Theorem 2.1 in [4]). If λi∗(x
∗),

i∗ ∈ {1, · · · , n}, is a simple eigenvalue of M(x∗), and all elements in M(x) are smooth
functions of x, then λi∗(x) is locally smooth near x∗.

However, simple smooth eigenvalues do not directly result in the smoothness of the
SA function, because the spectrum ΛM(x)(x) in Eq. (2.4) may contain several simple
eigenvalues, whose real parts are the same and equal to αM(x)(x). For this reason, we need
the definition of active eigenvalues to derive a sufficient condition for the smoothness of
SA function.

Definition 2.2.3 (Active eigenvalues). An eigenvalue λi∗(x
∗), i∗ ∈ {1, · · · , n}, of matrix

M(x∗) ∈ Mn is active, if Re(λi∗(x
∗)) = αM(x∗)(x

∗).

Definition 2.2.4 (Lexicographic order). For any pair of complex numbers a, b ∈ C, we
denote a ≤ b to represent a lexicographic order of a and b. It means that either

(i) Re(a) < Re(b), or

(ii) Re(a) = Re(b), Im(a) ≤ Im(b).

Re(·) and Im(·) denote the real part and the imaginary part of a complex number.

Based on this definition, the sign “≤” will be used to denote lexicographic order of complex
numbers in the following.

Condition 2.2.1 (A sufficient condition for the smoothness of the SA function). Active
eigenvalues of matrix M(x∗) are either a real eigenvalue or a pair of conjugate complex
eigenvalues. Hence, without loss of generality, if we assume that all eigenvalues are in
lexicographic order, i.e.,

λ1(x
∗) ≤ · · · ≤ λn(x

∗), (2.8)

we have either

Re(λ1(x
∗)) ≤ · · · ≤ Re(λn−1(x

∗)) < Re(λn(x
∗)), if λn(x

∗) ∈ R,

or

Re(λ1(x
∗)) ≤ · · ·Re(λn−2(x

∗)) < Re(λn−1(x
∗)) = Re(λn(x

∗)), if λn(x
∗) ∈ C/R.
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2 Some Preliminaries

Corollary 2.2.3 (Smoothness of the SA function). If Condition 2.2.1 is satisfied at x = x∗,
then the SA function αM(x)(x) is locally smooth at x = x∗.

Proof. Condition 2.2.1 implies:
(1) If λn(x

∗) ∈ R, then λn(x
∗) is a simple eigenvalue. In this case, from the continuity of

eigenvalue functions (cf. refer to Lemma 2.2.1), there exists a neighborhood U of x∗, such
that

αM(x)(x) = Re(λn(x)), ∀x ∈ U. (2.9)

(2) If λn(x
∗) ∈ C/R, λn(x

∗) and λn−1(x
∗) are two simple eigenvalues, or more precisely, a

pair of conjugate complex numbers. Because of the continuity of each eigenvalue function,
there exist a neighborhood U such that

max{Re(λi(x)), i = 1, · · · , n− 2} < Re(λn−1(x)) = Re(λn(x)), ∀x ∈ U.

Hence we have

αM(x)(x) = Re(λn−1(x)) = Re(λn(x)), ∀x ∈ U. (2.10)

Smoothness of αM(x)(x) follows from Eqs. (2.9), (2.10) by using the smoothness property
of simple eigenvalues established in Theorem 2.2.2.

In summary, we have shown that although the SA function αM(x)(x) is in general non-
Lipschitz continuous (cf. Example 2.1), it is locally smooth under Condition 2.2.1.

Although the SA function is generally non-smooth at certain points, smoothness can be
expected typically at almost all points of the domain. We discuss next the expressions to
calculate the gradients of the SA function at smooth points.

Under the conditions of Corollary 2.2.3, first- and higher-order derivatives of the SA
function αM(x)(x) can be derived straightforwardly from the sensitivity analysis of simple
eigenvalue functions λi(x), i = 1, · · · , n, which have been discussed in [123]. Here, we
present a method based on the left and right eigenvectors. Note that the characterization
of the variational properties of SA functions at non-smooth points is still an active field of
research and therefore out of the scope of this work (cf. Section 5.4.2).

For x = x∗ and i∗ ∈ {1, · · · , n}, let vi∗ , ui∗ ∈ Cn be the right and left column eigenvectors
of matrix M(x∗) with respect to eigenvalue λi∗(x

∗). Hence, vi∗ and ui∗ satisfy

uT
i∗M(x∗) = λi∗u

T
i∗ ,

M(x∗)vi∗ = λi∗vi∗ .

Under the assumptions of Theorem 2.2.2, the first-order derivatives of λi∗(x) at x = x∗

can be evaluated [123] to

∂λi∗(x
∗)

∂xj

=
uT
i∗

∂M(x)
∂xj

|x=x∗vi∗

uT
i∗vi∗

, j = 1, · · · ,m. (2.11)

xj denotes the j-th element in vector x. ∂M(x)
∂xj

∈ Rn×n is the element-by-element partial

derivative of matrix M(x) with respect to xj. Note that, the derivatives are complex
functions since λi∗(x) is complex.
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2.3 Lyapunov stability

If the conditions in Corollary 2.2.3 are fulfilled, the first-order derivatives of the SA
function αM(x)(x) at x = x∗ can be evaluated from Eq. (2.11) to

∂αM(x)(x
∗)

∂xj

= Re
∂λn(x

∗)

∂xj

= Re(
uT
n
∂M(x)
∂xj

|x=x∗vn

uT
nvn

), j = 1, · · · ,m. (2.12)

As it has been defined in Eq. (2.11), vn, un ∈ Cn denote the right and left column eigenvec-
tors of matrix M(x∗) with respect to eigenvalue λn(x

∗), which is ordered lexicographically
by Eq. (2.8).

2.3 Lyapunov stability

Lyaponov stability is a concept related to the equilibrium points of system (2.1). A point
x∗ ∈ Rm is called an equilibrium point of system (2.1), if 0 = f(x∗) holds. Without
loss of generality, i.e. after transforming the coordinates, we can always assume x∗ = 0.
Equilibrium points are also called steady states of a dynamic system.
An equilibrium point is stable, if all solutions starting from nearby initial points stay in a

neighborhood of this equilibrium point. An equilibrium point is asymptotically stable, if all
solutions starting from nearby points stay not only in a neighborhood, but also converge
to the equilibrium point as time goes to infinity. This concept leads to the following
definitions:

Definition 2.3.1 (Stability). An equilibrium point x∗ = 0 is stable, if for any ε > 0, there
exists a positive number δ = δ(ε), such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

An equilibrium point is called unstable, if it is not stable.

Definition 2.3.2 (Asymptotical stability). An equilibrium point x∗ = 0 is asymptotically
stable, if there exists a positive number δ, such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ → x∗, as t → ∞.

Checking the stability of an equilibrium point using these definitions requires a solution
of system (2.1) for infinitely large t, which is inconvenient in practice. An attractive
stability result is based on the following theorem.

Theorem 2.3.1 (Lyaponov stability, Theorem 3.1 in [84]). Let x∗ = 0 be an equilibrium
point for system (2.1) and D ⊂ Rm be a domain containing x∗. Let V : D → R a
continuously differentiable function, such that

V (0) = 0 and V (x) > 0 in D/{0},
V̇ (x) ≤ 0 in D.

Then, x∗ is stable. Moreover, if
V̇ (x) < 0 in D,

then x∗ is asymptotically stable.
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2 Some Preliminaries

Note that the conditions in the above theorem are sufficient conditions. The theorem
provides an elegant way to check (asymptotic) stability. However, there does not exist a
systematic method to find Lyapunov functions for general dynamic systems [84].
Stability and asymptotic stability relate to the eigenvalues of the Jacobian matrix ∂f/∂x

of system (2.1). To see this relationship, let use first consider the linear case in the form
of a linear ODE

ẋ = Ax, x(0) = x0. (2.13)

A ∈ Rm×m is a given constant matrix. A is the Jacobian matrix of system (2.13).
Denote λ1, · · · , λm ∈ C as m eigenvalues of A. For any matrix A, there is a non-singular

matrix P ∈ Cm×m, so that

P−1AP = block diag(J1, · · · , Jp).

J1, · · · , Jp are the so-called Jordan blocks, which are in the form of

Jj =

⎡
⎢⎢⎢⎣

λj 1

λj
. . .
. . . 1

λj

⎤
⎥⎥⎥⎦ ∈ C

mj×mj , ∀j = 1, · · · , p

From the following theorem, stability and asymptotic stability of system (2.13) can be
assumed by inspection of the eigenvalues of A.

Theorem 2.3.2 (Lyaponov stability for linear systems, Theorem 3.5 in [84]). The equi-
librium point x∗ = 0 of system (2.13) is stable, iff all eigenvalues of A satisfy Re(λi) ≤ 0,
i ∈ {1, · · · ,m} and every eigenvalue with Re(λi) = 0, i ∈ {1, · · · ,m}, has an associ-
ated Jordan block of dimension one-by-one. The equilibrium point x∗ = 0 is (globally)
asymptotically stable, iff all eigenvalues of A satisfy Re(λi) < 0, i = 1, · · · ,m.

If all eigenvalues of A satisfy Re(λi) < 0, matrix A is called a stability or a Hurwitz matrix.
Now let us extend Theorem 2.3.2 to nonlinear dynamic systems (2.1). The link can be

built by using the following theorem, which is not restricted to stability analysis. The
theorem says that, near a (not necessarily stable) hyperbolic equilibrium point1 x∗, the
solutions of the nonlinear system (2.1) have the same qualitative properties as the ones of
the linear system (2.13) with

A =
∂f

∂x
|x=x∗ . (2.14)

Hence, eigenvalue-based conditions in Theorem 2.3.2 for linear systems can be extended
to check local (asymptotical) stability of the original nonlinear system.
To formally introduce the theorem, we assume that for each initial point x0 ∈ D′, system

(2.1) has a unique global solution x(t) = φt(x0) for all t > 0 (refer to Theorem 2.1.5 for
the existence of global solutions). We use the function φt(x0) to explicitly denote the
dependence of solution x(t) on the selected initial point x0. That is, φt(x0) denotes the
solution/trajectory of system (2.1), which is started from x(0) = x0. φt(x0) is also called a
flow of system (2.1). Furthermore, a function Ψ : X → Y between two topological spaces
X and Y is called a homeomorphism, if Ψ is a continuous bijection (one-to-one and onto)
and its inverse function Ψ−1 is also continuous. If a homeomorphism exists between two
topological spaces, these two spaces are said to be homeomorphic.

1A equilibrium point is called hyperbolic, if the Jacobian matrix of system (2.1) has no eigenvalues with
zero real parts at this point.
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2.4 Dynamic response

Theorem 2.3.3 (Hartman-Grobman Theorem, refer to Section 2.8 in [132]). Assume that
the origin x∗ = 0 is an equilibrium of system (2.1) and f(·) is continuous differentiable.
Suppose that A in Eq. (2.14) has no eigenvalues with zero real parts, then there exists a
homeomorphism Ψ of an open set U ⊂ Rm onto an open set V ⊂ Rm which contains the
origin, such that for each x0 ∈ U there is an open interval I0 = [0, t1], t1 > 0, such that
for ∀x0 ∈ U and ∀t ∈ I0

Ψ ◦ φt(x0) = eAtΨ(x0).

This theorem says that Ψ maps the trajectories of system (2.1) near the origin onto the
trajectories of system (2.13) near the origin, and it also preserves the parametrization in
time. Hence, if Theorem 2.3.3 holds, stability of the nonlinear system (2.1) can be assumed
by checking the stability of the linear system (2.13) with A defined in Eq. (2.14).

Corollary 2.3.4 (Lyapunov’s indirect method, refer to Theorem 3.7 in [84]). Consider
x∗ = 0 is an equilibrium point of system (2.1), let A be defined in Eq. (2.14). Then the
following statements hold:

1. If all eigenvalues of A have negative real parts, then the origin of system (2.1) is
asymptotically stable.

2. If one or more of the eigenvalues of A has positive real parts, then the origin of
system (2.1) is unstable.

According to this corollary, stability of nonlinear systems can be concluded by computing
the eigenvalues of matrix A. Note, if any eigenvalue has zero real part, stability can not
be decided using this corollary. In this case, more information, e.g. the Hessian matrix of
f , about the system is needed.
Corollary 2.3.4 is the basic theoretical foundation of this work, because one of our design

goals is to guarantee asymptotic stability of a designed equilibrium point of a reactor
network. In particular, we are looking for a reactor network and an equilibrium point x∗,
which minimizes a cost function, such that all eigenvalues of matrix A in Eq. (2.14) have
negative real parts.

2.4 Dynamic response

Consider nonlinear system (2.1), denote

A(x) =
∂f

∂x
(x) (2.15)

as the Jacobian matrix of system (2.1), which depends on the evaluation point x ∈ Rm.
According to Corollary 2.3.4 and the notations introduced in Section 2.2, system (2.1) is
asymptotically stable at an equilibrium point x∗, if the constraint on the SA,

αA(x)(x) = max
i=1,··· ,m

Re(λi(x)) < 0 (2.16)

holds for x = x∗. λi(x), i = 1, · · · ,m, denotes the eigenvalues of Jacobian matrix A(x) ∈
Rm×m. In this section, we discuss the dynamic properties of system (2.1), which is ensured
by imposing a negative upper bound −c < 0 to αA(x)(x), i.e.

αA(x)(x) = max
i=1,··· ,m

Re(λi)(x) ≤ −c, (2.17)
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where c > 0 is a selected real constant.
The following theorem states that c determines the response speed of system (2.1),

initialized from a nearby point.

Theorem 2.4.1 (Refer to Section 2.9 in [132]). If Eq. (2.17) holds for a steady-state x∗

of system (2.1), for any given ε > 0, there exist δ > 0 such that if ‖x0 − x∗‖ ≤ δ,

‖φt(x0)− x∗‖ < ε e−ct, ∀t > 0.

Hence, one can use c to measure how fast a trajectory converges to x∗, if system (2.1) is
initialized from x0 near x∗.
The consequence of Eq. (2.17) can be also illustrated from a different perspective.

Consider that f(·) in Eq. (2.1) also depends on an input vector u ∈ Rnu :

ẋ = f(x, u), x(0) = x0. (2.18)

After linearizing this system at a given steady state (x∗T , u∗T )T , the linearized system can
be denoted as

Δẋ = AΔx+ BΔu(t), Δx(0) = x′
0, (2.19)

where Δx(t) = x(t)−x∗, Δu(t) = u(t)−u∗ and x′
0 = x0−x∗. A = ∂f/∂x(x∗, u∗) ∈ Rm×nx

is the Jacobian matrix evaluated at (x∗T , u∗T )T , while B = ∂f/∂u(x∗, u∗) ∈ Rm×nu is the
input gain matrix evaluated at (x∗T , u∗T )T . To simply the notation, we can shift the origin
of the coordinates to (x∗T , u∗T )T , so that the symbol Δ in Eq. (2.19) can be omitted. This
results in an equivalent linear system

ẋ = Ax+ Bu(t), x(0) = x′
0. (2.20)

Note that x, u in Eq. (2.20) are not the same ones in Eq. (2.18).
The analytical solution of Eq. (2.20) is [106]

x(t) = eAtx′
0 +

t∫
0

eA(t−τ)Bu(τ)dτ. (2.21)

To illustrate the ensured dynamic response speed by using Eq. (2.17), we consider the
solution of the system (2.20) under impulsive and step inputs. If impulsive inputs

u(t) = ud(t) = (δ(t), · · · , δ(t))T ∈ R
nu (2.22)

are applied, where δ(t) denotes the Dirac delta function, we get from Eq. (2.21)

x(t) =eAtx′
0 +

t∫
0

eAτBud(τ − t)dτ

=eAtx′
0 + eAt B 1︸︷︷︸

:=b0

=eAt(x′
0 + b0),

(2.23)
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2.4 Dynamic response

where 1 ∈ Rnu×1 is the nu-dimensional column vector containing only 1 ∈ R at every
position. Note that the property

∞∫
−∞

g(τ)δ(τ − t)dτ = g(t)

has been used for the smooth function g(·) : R → R.
If step inputs are applied, i.e.,

u(t) = us(t) =

{
(1, · · · , 1)T ∈ Rnu , if t ≥ 0

(0, · · · , 0)T , otherwise (2.24)

denotes a vector of unit step functions. The solution of system (2.20) becomes

x(t) =eAtx′
0 +

t∫
0

eA(t−τ)b0dτ

=eAtx′
0 + A−1(eAtb0 − b0).

(2.25)

Lemma 2.4.2 (Corollary in Section 1.8 of [132]). ∀c0 ∈ Rm, ∀A ∈ Rm×m, each element
in vector eAtc0 is a linear combination of

ηi,k(t) = tkeRe(λi)tcos(Im(λi)t), ∀k = 0, · · · ,m− 1, ∀i = 1, · · · ,m, (2.26)

and

η′i,k(t) = tkeRe(λi)tsin(Im(λi)t), ∀k = 0, · · · ,m− 1, ∀i = 1, · · · ,m. (2.27)

λi, i = 1, · · · ,m, denote the eigenvalues of matrix A. Re(λi) and Im(λi) denote the real
and imaginary parts of λi, respectively.

Consequently, solutions of system (2.20) can be written as

x(t)− x∗
s = Σ(· · · , ηi,k(t), · · · , η′i,k(t), · · · )T︸ ︷︷ ︸

:=η(t)

,

if impulsive and step inputs are applied. x∗
s ∈ Rm refers to the new steady state after

applying ud(t) or us(t):

x∗
s =

{
0, if impulse inputs ud(t) are applied,

−A−1b0, if step inputs us(t) are applied.

Σ ∈ Rm×2m2

denotes a constant matrix, which is determined by the right hand sides of
Eqs. (2.23) or (2.25), respectively.
Consider that Eq. (2.17) is fulfilled for a certain c > 0, we then have

‖x(t)− x∗
s‖∞ = ‖Σ η(t)‖∞ ≤ ‖Σ‖∞ ‖η(t)‖∞ ≤ ‖Σ‖∞max{t0, · · · , tm−1}

ect
, ∀t ≥ 0.
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2 Some Preliminaries

Table 2.1: Estimating the decay time td from the spectral abscissa −c by using Eq. (2.31) for
μ = 0.01.

c = 10−4 c = 10−3 c = 10−2 c = 10−1

td [s] 46051.70 4605.17 460.51 46.05

It means that, in both cases the convergence to the new steady states x∗
s is bounded by

term p0(t)/e
ct, p0(t) := ‖Σ‖∞ max{t0, · · · , tm−1}. When c is close to zero, x(t) decays

slowly to the new steady state x∗
s. When c > 0 is far away from zero, the system converges

to the new steady state quickly.

In order to estimate the decay time for a given c, refer also to Section 3.4.3 in [49], we
consider the scalar linear system

˙̂x = −cx̂+ bû, x̂(0) = 0, (2.28)

where x̂(t), û(t), b ∈ R. For this system, −c denotes both the Jacobian matrix and
its spectral abscissa. After given a non-unit step input, i.e., û(t) = 0, for t < 0, and
û(t) = ū > 0, for t ≥ 0, the solution of Eq. (2.28) is

x̂(t)− x̂∗ = −x̂∗e−ct, (2.29)

where x̂∗ = bū/c denotes the new steady state. For μ ∈ (0, 1] as a given quantity, we define
the decay time td such that the error |x̂(td) − x̂∗| is equal to a fraction μ of the absolute
value of x̂∗, i.e.,

|x̂(td)− x̂∗| = μ |x̂∗|. (2.30)

Using Eqs. (2.29), (2.30),

td =
−ln μ

c
(2.31)

relates the decay time td to the spectral abscissa −c of system (2.28).

Eq. (2.31) can be used pragmatically to estimate the decay time td from the spectral
abscissa −c of Jacobian matrix A also for higher-dimensional systems. Table 2.1 lists the
the computed decay time td for different value of c.

To summarize, we have illustrated that eigenvalue constraint (2.17) can be used to
guarantee specified response speed of nonlinear system (2.1). The larger c in Eq. (2.17),
the shorter the decay time and therefore the faster the response. Note that, a positive c
guarantees automatically asymptomatic stability of the given steady state.

2.5 Extension to differential-algebraic systems

Before we extend the results for ODE to differential-algebraic equations (DAE), we first
introduce the Implicit Function Theorem. This theorem is one of the most fundamental
results in applied mathematics.
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2.5 Extension to differential-algebraic systems

Theorem 2.5.1 (Implicit Function Theorem, in Section 2.1.2 of [84]). Assume that f :
Rm ×Rn → Rm ∈ Ck, k ≥ 1, i.e., f is k-th order continuously differentiable, at each point
(x, y) of an open set D ⊂ Rm×Rn. Let (x∗, y∗) be a point in D for which f(x∗, y∗) = 0 and
for which the Jacobian matrix ∂f

∂x
(x∗, y∗) is non-singular. Then, there exist neighborhoods

U of x∗ and V of y∗ such that for each y ∈ V the equation f(x, y) = 0 has a unique solution
for x ∈ U . Moreover, this solution can be denoted by x = g(y), i.e.,

f(g(y), y) ≡ 0, ∀y ∈ V,

where g ∈ Ck at y = y∗, i.e., function g(·) is also k-th order continuously differentiable.

The Implicit Function Theorem says that, if the Jacobian matrix is non-singular, an equa-
tion system 0 = f(x, y) locally determines a function x = g(y) and the smoothness of this
function g(·) is the same as the smoothness of f(·).
Now we apply the Implicit Function Theorem to extend the results of ODE to a special

class of DAE systems, given as

ẋd = fd(xd, xa), xd(0) = xd
0,

0 = fa(xd, xa),
(2.32)

where xd ∈ Rm and xa ∈ Rn are the so-called differential and algebraic states. The
functions fd : Rm × Rn → Rm and fa : Rm × Rn → Rn, referring to the differential
and algebraic equations, are assumed to be sufficiently smooth. System (2.32) is called a
semi-explicit DAE system.
Although DAE systems are in general different from ODE systems [134], under certain

conditions semi-explicit DAE systems can be transformed equivalently to an ODE system.
Therefore one can directly extend the results of ODE systems to this type of DAE systems.
To do this, we assume that xd∗ ∈ Rm and xa∗ ∈ Rn satisfy 0 = fa(xd∗, xa∗) and

det(
∂fa

∂xa
|xd∗,xa∗) �= 0. (2.33)

From the Implicit Function Theorem 2.5.1, the algebraic equation 0 = fa(xd, xa) locally
determines a sufficiently smooth function g : Vxd∗ ⊂ Rm → Uxa∗ ⊂ Rn such that

0 ≡ fa(xd, g(xd)), ∀xd ∈ Vxd∗ .

Therefore, the solutions of differential states xd(t) can be represented locally by

ẋd = fd(xd, g(xd)), xd(0) = xd
0. (2.34)

Eq. (2.34) says that under condition (2.33) solutions of DAE system (2.32) are locally the
same as the solutions of the ODE system (2.34). Moreover, this result can be extended
globally, i.e., removing the condition about neighborhoods, by assuming that condition
(2.33) holds for all xd ∈ Rm and all xa ∈ Rn on the solution trajectory. Hence, the existing
theoretical results for ODE systems can be applied directly for semi-explicit DAE systems.
In this work, we consider only DAE systems, which can be transformed to ODE systems
by the above-mentioned procedures.
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3 Open-loop reactor network synthesis

Having presented an introduction and having reviewed related theoretical fundamentals of
dynamic systems, we will start to present the major contents of this work. The discussion
is organized in two parts. The first part (Chapter 3) is for reactor network design problems
in open-loops and the second part (Chapter 4) is for simultaneous closed-loop design of
reactor networks. Each chapter follows a similar way of presentation: first modeling and
afterwards problem formulation. Solution strategies to solve the derived design problems
will be discussed together in Chapter 5.
An example is introduced first, which will be used for illustration throughout the fol-

lowing chapter and will be solved as a case study in Chapter 6.

Example 3.1. Allyl chloride can be produced by means of non-catalytic chlorination of
propylene in the vapor phase [129]. The reaction mechanism is as follows:

Cl2︸︷︷︸
C

+CH2 − CHCH3︸ ︷︷ ︸
A

k1→ CH2 − CHCH2Cl︸ ︷︷ ︸
B

+HCl,

Cl2︸︷︷︸
C

+CH2 − CHCH2Cl︸ ︷︷ ︸
B

k2→ ClCH − CHCH2Cl +HCl,

Cl2︸︷︷︸
C

+CH2 − CHCH3︸ ︷︷ ︸
A

k3→ CH2ClCHClCH3.

We use A, B, C to denote propylene, allyl chloride and chlorine. A, C are raw materials, B
is the main product, while 1,3-dichloropropene and 1,2-dichloropropane are side products.
The reaction kinetics is modeled as

r1(cA, T ) = k1cAcC , r2(cB, T ) = k2cBcC , r3(cA, T ) = k3cAcC ,

k1 = a1e
−15840/RT , k2 = a2e

−23760/RT , k3 = a3e
−7920/RT .

(3.1)

T [K] denotes temperature, while cA, cB, cC [mol/m3] denote concentrations of A, B, C,
respectively. All parameters can be found in Table 3.1. The reaction rates for component
A, B, C are

RA = −r1 − r3, RB = r1 − r2, RC = −r1 − r2 − r3.

3.1 Structured modeling of reactor networks

In this section, we present a structured dynamic model of open-loop reactor networks.
The model allows an efficient treatment of eigenvalue-based dynamic properties for the
design of open-loop reactor networks. A structured modeling approach will be presented
below, which firstly models each individual reactor in a reactor network superstructure as
a separate subsystem and then builds the flow connections to form a connected network.
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3.1 Structured modeling of reactor networks

Table 3.1: Constants and reaction parameters for the allyl chloride example [129].

parameter value units
a1 1.5× 106 reaction constant 1/s
a2 4.4× 108 reaction constant 1/s
a3 1.0× 102 reaction constant l/mol s
R 1.987 gas constant cal/mol K
H1 118.82 reaction heat kJ/mol
H2 114.79 reaction heat kJ/mol
H3 183.03 reaction heat kJ/mol

3.1.1 A structured representation of reactor network models

Fig. 3.1 shows an open-loop superstructure of a N -reactor network [87], which will be used
throughout this work. The maximal number of reactors N in the superstructure has to be
fixed to a predefined number.
Raw materials are fed into the network and split into N reactor’s feed flows. Each

reactor, which can be either a CSTR or a PFR, has N inlet and N outlet flows. One of
the inlets is used as the raw material feed and the other inlets are connected to the outlets
of other reactors. All N reactor outlets have the same concentrations and temperature
but different flowrates. One of them contributes to the network’s outlet and the others
feed other reactors. The product mixer on the right hand side of the network generates a
product stream by mixing individual outlet streams of each of the reactors.
Except for the system’s inlet and outlet, all other (internal) inlet and outlet streams

are allowed to be removed from the superstructure. Likewise, not all reactors need to be
used in the final design. When a reactor is not used in the designed network, it is called
idle. All inlet and outlet streams of an idle reactor must show zero flowrates such that no
material is moved into or outside of the reactor.
By deciding on the existence of inlet and outlet streams as well as of reactors, the

superstructure realizes a rich set of structural alternatives with different kinds of bypass
and recycle streams. A bypass can be realized by feeding a reactor’s outlet to the product
mixer. In this way, the outlet to the product mixer becomes a bypass for the other reactors.
Recycles can be realized by first connecting several reactors in a sequence and then feeding
the reacted material from the last reactor into the first reactor of the sequence. Some
trivial structural alternatives such as reactors in series or in parallel are also contained in
the superstructure.
The reactor network in Fig. 3.1 is interpreted as a system of N + 2 subsystems shown

in Fig. 3.2. We use i = 1, · · · , N to index each subsystem corresponding to each reac-
tor (together with the mixer and the splitter before and after each reactor) in Fig. 3.1.
Subsystem N + 1 refers to the raw material splitter, while subsystem N + 2 refers to the
product mixer. For every subsystem, small gray boxes on the left represent “inlet ports”,
which are indexed by k = 1, · · · , N . Likewise, small white boxes on the right of each
subsystem represent “outlet ports” indexed by j = 1, · · · , N . These ports abstract nozzles
connecting the pipes to an apparatus. For subsystem i, i = 1, · · · , N , each subsystem has
N inlet ports and N outlet ports. Subsystem N+1 has an inlet port representing the inlet
of the network and N outlet ports, while subsystem N +2 has N inlet ports and an outlet
port representing the product outlet. Each subsystem is connected to others through solid
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3 Open-loop reactor network synthesis

Figure 3.1: An open-loop superstructure of an N -reactor network [87]. M and S refer to
mixing and splitting units. PFR and CSTR refer to plug flow reactor and continuous stirred-
tank reactor, respectively.

arrows, which abstract pipes delivering material in the reactor network. A pipe always
links an output port to an input port.

We define symbols to index ports and connections (pipes) as follows: (i, j) is used to
indicate the j-th outlet port of subsystem i, while (i, k) is used to indicate the k-th inlet port
of subsystem i. Here, symbol j and k always refer to inlet and outlet ports, respectively.
For every outlet port (i, j), we use the mapping l(i, j) = (i′, k′) to indicate the index of its
connected inlet port (i′, k′). (i′, k′) can be found by following a solid arrow starting from
outlet port (i, j). Similarly, we use h(i′, k′) = (i, j) to access the outlet port (i, j), which
is connected to the inlet port (i′, k′). The value of h(i′, k′) can be found by backtracking a
solid arrow pointing at inlet port (i′, k′). We also use the term “connection” or “pipe” to
refer to a material stream from an outlet port to an inlet port. A connection (pipe) from
outlet port (i, j) to inlet port (i′, k′) is denoted as (i, j) � (i′, k′). “�” here has the meaning
of “to”:

(i, j)︸︷︷︸
outlet
port

�︸︷︷︸
to

(i′, k′)︸ ︷︷ ︸
inlet
port

.

We further use the following convention to index outlet ports of subsystem N + 1 (the
raw material mixer):

h(i, N) = (N + 1, j∗)|j∗=i, ∀i = 1, ..., N. (3.2)
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3.1 Structured modeling of reactor networks

Figure 3.2: Subsystems, ports and connections in an open-loop N -reactor network superstruc-
ture. SS is short for subsystem. i is an index for a subsystem. j is an index for an outlet port.
k is an index for an inlet port.

Figure 3.3: Subsystems, ports and connections in an exemplary open-loop 2-reactor network.

Hence, the inlet port (i, N) of the i-th reactor is always connected to the i-th outlet port
of subsystem N + 1.

For an outlet (inlet) port, we sometimes do not need to indicate the index of its connected
inlet (outlet) port but to indicate the index of its connected subsystem (reactor). Therefore,
we introduce functions l̄(i, j) = i′ and h̄(i′, k′) = i. In particular, l̄(i, j) indicates subsystem
i′, whose k′-th inlet port is connected to outlet port (i, j). Similarly, h̄(i′, k′) indicates
subsystem i, whose j-th outlet port is connected to inlet port (i, j). Table 3.2 gives a
summary of the used symbols.

Example (continued). Subsystems, ports and connections for an exemplary network con-
sisting of 2 reactors are shown in Fig. 3.3. Subsystems 1 and 2 refer to reactors, subsystem
3 refers to a splitter splitting the raw material feed, while subsystem 4 refers to the product
mixer. For every subsystem, its outlet ports and inlet ports are labeled by j and k in the
figure, respectively. For example, subsystem 1 has two outlet ports (i = 1, j = 1) and
(i = 1, j = 2). Subsystem 1 also has two inlet ports (i = 1, k = 1) and (i = 1, k = 2). We
know that, e.g., l(i = 1, j = 2) = (i = 2, k = 1) and h(i = 2, k = 2) = (i = 3, j = 2).
l̄(1, 2) = 2 and h̄(2, 2) = 3.
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3 Open-loop reactor network synthesis

Table 3.2: Used symbols for modeling the reactor network.

symbols meaning
i a subsystem
j an outlet port
k an inlet port
(i, j) j-th outlet port of subsystem i
(i, k) k-th inlet port of subsystem i
l(i, j) an inlet port, connected to (i, j)
h(i, k) an outlet port, connected to (i, k)
(i, j) � (i′, k′) a pipe connection from (i, j) to (i′, k′)
l̄(i, j) a subsystem, one of its inlets is connected to (i, j)
h̄(i, k) a subsystem, one of its outlets is connected to (i, k)

3.1.2 Models of Subsystem 1 to N

In this subsection we set up the model for subsystems, which correspond to a reactor. We
limit the presentation to networks with only CSTR in the following and refer to Appendix A
for an extension to also include PFR. Denote the number of chemical components necessary
to describe the reactions in a reactor by Nc

1. If we use xi ∈ RNc+1 to represent the
Nc concentration in [mol/m3] of all modeled components and the temperature in [K]
inside the reactor and if we use ui,k ∈ RNc+1, k = 1, · · · , N , to represent Nc component
flowrates in [mol/s] and the energy flowrate in [J/s] through inlet port (i, k), subsystem
i, i ∈ {1, ..., N}, can be modeled by

ẋi = fi(xi, ui,1, · · · , ui,N , qi,1, · · · , qi,N , pi), xi(0) = x0
i . (3.3)

qi,j ∈ R, j = 1, · · · , N , is a positive scalar variable representing the volumetric flowrate
in [m3/s] of the material getting out of outlet port (i, j). The indices of q always refer to
outlet ports (we do not introduce variables qi,k, in which (i, k) refers to an inlet port). pi
is a vector of design parameters for reactor i, including for example the reactor volume or
its pressure. fi(·) ∈ C∞ is a smooth function resulting from mass and energy balances. x0

i

denotes initial conditions of xi. In terms of systems theory, xi are the state variables of
subsystem i, while ui,k are the inputs of subsystem i. qi,j and pi are design parameters of
subsystem i.
We use yi,j ∈ RNc+1 to denote the molar flowrates of each components in [mol/s] and

the energy flowrate in [J/s] through outlet port (i, j). yi,j has a dimension of Nc+1. Now
we present a fundamental trick, which will be used throughout this chapter to facilitate
the eigenvalue-based analysis and problem reformulation below. We propose that yi,j can
be modeled by

yi,j = qi,jgi,j(xi, pi), ∀j = 1, · · · , N. (3.4)

qi,j has been already defined as volumetric flowrate in [m3/s] through outlet port (i, j).
gi,j(·) ∈ C∞ is a vector-valued smooth function of xi and pi. Because the dimension and

1It is typically not necessary to model concentrations of all components in a reactor. For example, in the
allyl chloride example, only the concentrations of A, B, C are needed to model the reactor, while the
concentrations of other side products can be determined from mass balances. For this reason, we can
choose Nc = 3 for the allyl chloride example.
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3.1 Structured modeling of reactor networks

elements of yi,j and qi,j have already been defined, gi,j(xi, pi) should be of dimension Nc+1.
The first Nc elements of gi,j(xi, pi) refer to molar densities in [mol/m3] of each component
through outlet port (i, j) and another element refers to the energy density in [J/m3] of the
flow through outlet port (i, j). In systems theory, yi,j is called an output of subsystem i.
It is important to stress the multiplication on the right hand side of Eq. (3.4). From

a physical point of view, qi,j can be viewed as “valve position” which sets the flowrate in
pipe (i, j) � l(i, j). Hence, if qi,j = 0, then yi,j = 0 according to Eq. (3.4). The valve is
closed and there is no material passing through the pipe. If qi,j > 0, the valve is open
and yi,j represents the component and energy flows leaving reactor i through the pipe.
This way, qi,j is used to also make decisions on the existence of connections (pipes) in the
superstructure without introducing any discrete variables.
Note that the input vectors ui,k and output vectors yi,j are of the same type to facilitate

the realization of connections between every pair of outlet and inlet ports (i, j) and l(i, j),
respectively.

Example (continued). We consider a superstructure of the 2-reactor network in Fig. 3.3.
Each reactor is assumed to be a CSTR. The mass balance for component A in reactor 1 is

V1ċA1 = ṅ0
A1,1 + ṅ0

A1,2 − (q1,1 + q1,2)cA1 + V1RA1. (3.5)

cA1 denotes molar concentration in [mol/m3] of A inside reactor 1. ṅ0
A1,1 and ṅ0

A1,2 denote
molar flowrates in [mol/s] of A entering the reactor through inlet ports (1, 1) and (1, 2),
respectively. q1,1 and q1,2 are volumetric flowrates in [m3/s] leaving the reactor through
outlet ports (1, 1) and (1, 2), respectively. V1 denotes the reactor volume in [m3] and RA1

the reaction rate [mol/m3/s] of A. Similarly, we can formulate the mass balances for B
and C as

V1ċB1 = ṅ0
B1,1 + ṅ0

B1,2 − (q1,1 + q1,2)cB1 + V1RB1, (3.6)

V1ċC1 = ṅ0
C1,1 + ṅ0

C1,2 − (q1,1 + q1,2)cC1 + V1RC1. (3.7)

The energy balance for reactor 1 is given by

cpV1Ṫ1 = Q̇0
1,1 + Q̇0

1,2 − (q1,1 + q1,2)cpT1 + V1

∑
i=1,2,3

Hiri +Qh. (3.8)

T1 denotes the temperature in [K] in reactor 1, cp the volumetric heat capacity in [J/m3/K],
Q̇0

1,1 and Q̇0
1,2 the energy flowrates in [J/s] entering the reactor through inlet ports (1, 1)

and (1, 2), respectively, and H1, H2 and H3 the heats of reaction in [J/mol] (refer to Table
3.1). r1, r2 and r3 are defined in Eq. (3.1). Qh denotes energy duty in [J/s] of the reactor’s
heating or cooling jacket.
Reactor 1 has two outlets, which can be modeled by

y1,1 = (q1,1cA1, q1,1cB1, q1,1cC1︸ ︷︷ ︸
molar flowrates in [mol/s]

through outlet
port (1, 1)

, q1,1cpT1︸ ︷︷ ︸
energy flowrate in
[J/s] through

outlet port (1, 1)

)T , (3.9)

and similarly

y1,2 = (q1,2cA1, q1,2cB1, q1,2cC1, q1,2cpT1)
T . (3.10)

35

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


3 Open-loop reactor network synthesis

If we use the abbreviations

x1 : = (cA1, cB1, cC1, T )
T ,

u1,1 : = (ṅ0
A1,1, ṅ

0
B1,1, ṅ

0
C1,1, Q̇

0
1,1)

T ,

u1,2 : = (ṅ0
A1,2, ṅ

0
B1,2, ṅ

0
C1,2, Q̇

0
1,2)

T ,

p1 : = V1,

Eqs. (3.5)-(3.8) can be generally written by Eq. (3.3). If we furthermore define

g1,1(x1, p1) : = (cA1, cB1, cC1, cpT1)
T ,

g1,2(x1, p1) : = (cA1, cB1, cC1, cpT1)
T ,

Eqs. (3.9), (3.10) have the same structure as Eq. (3.4).
Obviously, we can write exactly the same kind of equations for reactor 2. To this end, we

have shown that Eqs. (3.3), (3.4) constitute an abstracted form of the subsystem models
in a 2-reactor network.
We discuss shortly the role of q1,1 and q1,2 in Eqs. (3.9), (3.10). When q1,1 = 0, y1,1 = 0,

the connection (1, 1)�(4, 1) does not carry any material flow. When q1,1 > 0, y1,1 ≥ 0, there
is a material and energy flow leaving the reactor through connection (1, 1) � (4, 1). Thus
q1,1 determines whether the connection (1, 1) � (4, 1) exists in the superstructure or not.
Similar interpretations hold for all other flowrate variables. This way, we have represented
structural alternatives of existent and non-existent connections by means of continuous
flowrate variables qi,j. No binary variables have been introduced so far.

3.1.3 Models of subsystems N + 1 and N + 2

There are two units, subsystem N + 1 and N + 2, which have not been modeled so far.
SubsystemN+1 represents the raw material splitter, which can be modeled by the algebraic
equations

yN+1,j = qN+1,jpsys, ∀j = 1, · · · , N. (3.11)

psys ∈ RNc+1 denotes molar concentration in [mol/m3] and the energy density in [J/m3]
in the feed. Hence, psys is of dimension Nc + 1. qN+1,j, j = 1, · · · , N , is a scalar variable
representing the volumetric flowrates in [m3/s] through outlet port (N + 1, j). Again,
qN+1,j can be interpreted also as “valve positions”. If qN+1,j = 0, the valve for connection
(N+1, j)� l(N+1, j) is fully closed, while qN+1,j > 0 means that, the valve is open. yN+1,j

represent the molar flowrates in [mol/s] and the energy flowrate in [J/s] through outlet
port (N + 1, j).
Subsystem N + 2 is a mixer, which generates the product flow. It can be modeled by

ysys =
∑

k=1,··· ,N

uN+2,k (3.12)

with uN+2,k ∈ RNc+1 having the same dimension and the same type of elements as other
ui,k presented before. uN+2,k represents the molar flowrates in [mol/s] of each components
and the energy flowrate in [J/s] through inlet port (N + 2, k). ysys ∈ RNc+1 has the same
dimension and the same type of elements as the other yi,j presented before.
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3.1 Structured modeling of reactor networks

Example (continued). Subsystem 3 in the 2-reactor network can be modeled by

y3,1 = q3,1(c
sys
A , csysB , csysC , Esys)T , (3.13)

y3,2 = q3,2(c
sys
A , csysB , csysC , Esys)T . (3.14)

csysA , csysB , csysC denote concentrations in [mol/m3] of components A, B, C and Esys the
energy density in [J/m3] in the feed to the reactor network. q3,1 and q3,2 are the material
streams in [m3/s] through outlet ports (3, 1) and (3, 2), respectively. y3,1 and y3,2 represent
the molar flowrates of each components and the energy density flowrate through these outlet
ports.
The output ysys of the product mixer can be formulated as

ysys =

⎡
⎢⎢⎣

ṅ0
A4,1 + ṅ0

A4,2

ṅ0
B4,1 + ṅ0

B4,2

ṅ0
C4,1 + ṅ0

C4,2

Q̇0
4,1 + Q̇0

4,2

⎤
⎥⎥⎦ (3.15)

with the molar flowrates ṅ0
A4,1, ṅ

0
B4,1, ṅ

0
C4,1, ṅ

0
A4,2, ṅ

0
B4,2, ṅ

0
C4,2 of components A, B, C in

[mol/s] and the energy flowrates Q̇0
4,1, Q̇

0
4,2 in [J/s] through inlet ports (4, 1) and (4, 2),

respectively. ysys denotes the molar component flowrates and the energy density flowrate
through outlet port (4, 1).
If we introduce

psys := (csysA , csysB , csysC , Esys)T , (3.16)

Eqs. (3.13), (3.14) have the same structure as Eq. (3.11). If furthermore

u4,1 := (ṅ0
A4,1, ṅ

0
B4,1, ṅ

0
C4,1, Q̇4,1)

T ,

u4,2 := (ṅ0
A4,2, ṅ

0
B4,2, ṅ

0
C4,2, Q̇4,2)

T ,

are defined as inputs of subsystem 4, the model of subsystem 4, Eq. (3.15), has the same
form as Eq. (3.12).

3.1.4 Modeling flow connections

Having introduced the models for the individual subsystems, i = 1, · · · , N + 2, we need
to specify connections to link subsystems. In the superstructure, each inlet port (i, k) is
connected to an outlet port h(i, k) through connection h(i, k) � (i, k). Because ui,k and
yh(i,k) are of the same type, connections are simply given by the equations

ui,k = yh(i,k), ∀i = 1, · · · , N, ∀k = 1, · · · , N, (3.17)

u(N+2,k) = yh(N+2,k), ∀k = 1, · · · , N. (3.18)

Eqs. (3.17), (3.18) connect all inlet ports of subsystems 1, · · · , N and N + 2. Subsystem
N + 1 does not need to be connected, because it only has the feed to the reactor network
as its input.

Example (continued). For the 2-reactor network example considered before, the following
connections hold:

u1,1 = y2,1, u1,2 = y3,1,

u2,1 = y1,2, u2,2 = y3,2,

u4,1 = y1,1, u4,2 = y2,2.

(3.19)
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3 Open-loop reactor network synthesis

3.1.5 A dynamic model of the network

After introducing individual models for subsystems and their connections, we are ready to
formulate a dynamic model for the open-loop N -reactor network superstructure. To get a
compact form, we eliminate all internal ui,k and yi,j by replacing yi,j in Eqs. (3.17), (3.18)
by Eqs. (3.4), (3.11) and all ui,k in Eqs. (3.3), (3.12) by the resulting equations from the
previous step, which leads to

ẋi = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), ph̄(i,k)), · · ·︸ ︷︷ ︸
k=1,··· ,N−1

,

qN+1,ipsys, qi,1, · · · , qi,N , pi), ∀i = 1, · · · , N.

(3.20)

Note that, the indexing convention shown in Eq. (3.2) has been used to derive the term
qN+1,ipsys in the above equation. That is, the N -th inlet port of subsystem i is connected
to the outlet port i-th outlet port of the raw material splitter.
After eliminating uN+2,k in Eq.(3.12), the output ysys of the reactor network is

ysys =
∑

k=1,··· ,N

qh(N+2,k)gh(N+2,k)(xh̄(N+2,k), ph̄(N+2,k)). (3.21)

Eq. (3.20) constitutes the state equations of the N -reactor network, while Eq. (3.21)
refers to the output equation. An important feature of the structure of Eq. (3.20) is
that the values of qi,j determine the existence of connections in the superstructure without
introducing integer variables. The model (3.20), (3.21) contains variables summarized in
Table 3.3. The degrees of freedom, denoted as ψo, are given by q, p, and psys, i.e.,

ψo = (qT , pT , pTsys)
T . (3.22)

Table 3.3: State variables and design parameters in Eqs. (3.20), (3.21).

state variables: x := (xT
1 , · · · , xT

N)
T ∈ R

∑
i nxi .

design parameters: q := (q1,1, · · · , qN+1,N )
T ∈ RN(N+1),

p := (pT1 , · · · , pTN)T ∈ R
∑

i npi ,
psys ∈ RNc+1.

outputs variables: ysys ∈ RNc+1.

Example (continued). After eliminating the internal variables the following model for the
2-reactor network is obtained:

V1ċA1 = q3,1[psys]1 + q2,1cA2 − (q1,1 + q1,2)cA1 + V1RA1,

V1ċB1 = q3,1[psys]2 + q2,1cB2 − (q1,1 + q1,2)cB1 + V1RB1,

V1ċC1 = q3,1[psys]3 + q2,1cC2 − (q1,1 + q1,2)cC1 + V1RC1,

cpV1Ṫ1 = q3,1[psys]4 + q2,1cpT2 − (q1,1 + q1,2)cpT1 + V1

∑
i=1,2,3

Hiri +Qh1,

V2ċA2 = q3,2[psys]1 + q1,2cA1 − (q2,1 + q2,2)cA2 + V2RA2,

V2ċB2 = q3,2[psys]2 + q1,2cB1 − (q2,1 + q2,2)cB2 + V2RB2,

V2ċC2 = q3,2[psys]3 + q1,2cC1 − (q2,1 + q2,2)cC2 + V2RC2,

cpV2Ṫ2 = q3,2[psys]4 + q1,2cpT1 − (q2,1 + q2,2)cpT2 + V2

∑
i=1,2,3

Hiri +Qh2,

(3.23)
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3.1 Structured modeling of reactor networks

[psys]l, l = 1, · · · , 4, denotes the l-th element in vector psys, according to Eq. (3.16).

3.1.6 Idle reactors in open-loop reactor networks

Next we discuss the concept of idle reactors in open-loop reactor networks and formalize its
definition. The open-loop superstructure in Fig. 3.1 comprises a sufficiently large number
of fully connected reactors. It is the objective of optimization to determine how many
and which reactors are kept in the final design. Reactors in the superstructure are called
non-idle, if they are included in the optimal flowsheet. Otherwise, they are called idle
reactors.
An idle reactor i can be realized in the model by setting flowrate variables qi,j = 0,

∀j = 1, · · · , N , and qh(i,k) = 0, ∀k = 1, · · · , N . It physically represents the case that
all inlet and outlet ports are closed. Because material is neither getting in nor getting
out of reactor i in this case, an idle reactor i does not influence the other reactors in the
flowsheet. We can formalize the definition of idle reactors for the purpose of open-loop
reactor network synthesis as follows:

Definition 3.1.1 (Idle reactor in an open-loop reactor network). A subsystem i, i =
1, · · · , N , is an idle reactor, if there is neither material getting into nor material getting
out of the reactor. That is

q(i,j) = 0, ∀j = 1, · · · , N,

qh(i,k) = 0, ∀k = 1, · · · , N.
(3.24)

Otherwise, the reactor is called non-idle.

The definitions of idle reactors used throughout this chapter is illustrated by the example
considered before.

Example (continued). If reactor 1 in Fig. 3.3 is idle, Eq. (3.24) becomes

q3,1 = q2,1 = q1,1 = q1,2 = 0, (3.25)

to represent closing all inlet and outlet ports of reactor 1. Inserting Eq. (3.25) into Eq.
(3.23), the model of the idle reactor 1 becomes

ċA1 = RA1,

ċB1 = RB1,

ċC1 = RC1,

cpV1Ṫ1 = V1

∑
i=1,2,3

Hiri +Qh,

(3.26)

which is in fact a batch reactor model. If reactor 2 is non-idle, namely if

q3,2 > 0 or q2,2 > 0,

the model of reactor 2 becomes

V2ċA2 = q3,2[psys]1 − q2,2cA2 + V2RA2,

V2ċB2 = q3,2[psys]2 − q2,2cB2 + V2RB2,

V2ċC2 = q3,2[psys]3 − q2,2cC2 + V2RC2,

cpV2Ṫ2 = q3,2[psys]4 − q2,2cpT2 + V2

3∑
i=1

Hiri +Qh2.

(3.27)
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3 Open-loop reactor network synthesis

Obviously, model (3.26) of the idle reactor 1 is independent of model (3.27) of the non-
idle reactor 2. If we would increase the values of q3,1, q2,1, q1,1, or q1,2 to a positive
number, reactor 1 will be activated. This leads to a discontinuity of the opeo-loop reactor
network model and its Jacobian matrix, which is of great significance for formulating an
optimization problem in the next section.

3.2 Problem formulation

3.2.1 Eigenvalue constraint for open-loop reactor network synthesis

Although the network model (3.20) is a specialized form of the ODE system (2.1), for design
purposes we are not interested in the eigenvalue-based dynamic properties (i.e. stability
and response speed, refer to Chapter 2) of the whole network, but only interested in the
dynamic properties of interconnected non-idle reactors in the network. In this subsection,
we will present an eigenvalue constraint only for non-idle reactors, which will be used in
the problem formulation.

A reactor i is idle, if the flowrates qi,j = 0, ∀ j = 1, · · · , N , and qh(i,k) = 0, ∀ k =
1, · · · , N . Hence, idle and non-idle reactors can be easily distinguished by inspection of
q. Let I be the index set of all reactors, Iid(q) the index set for idle reactors and Inid(q)
the index set for non-idle reactors, which are determined from inspecting the values of q.
That is,

I = {i | i = 1, · · · , N}
Iid(q) = {i ∈ I | reactor i is idle},
Inid(q) = {i ∈ I | reactor i is non-idle}.

(3.28)

Because the cases where all reactors are either idle or non-idle are trivial, throughout this
paper, without explicitly mentioning, we assume that

Iid �= ∅ and Inid �= ∅. (3.29)

The open-loop network model (3.20) can now be split into a submodel with only idle
reactors and another submodel with any non-idle reactors. The submodel of idle reactors
is

ẋi = fi(xi, 0, · · · , 0︸ ︷︷ ︸
ui,k=0

, 0, · · · , 0︸ ︷︷ ︸
qi,j=0

, pi), ∀i ∈ Iid(q).
(3.30)

The submodel of non-idle reactors is

ẋi =fi(xi, · · · , qh(i,k)gh(i,k)(·), · · ·︸ ︷︷ ︸
if ui,k is connected

connected to
non-idle rectors

, · · · , 0, · · ·︸ ︷︷ ︸
if ui,k is

connected to
idle reactors

, qN+1,ipsys︸ ︷︷ ︸
system feed

,

· · · , qi,k, · · ·︸ ︷︷ ︸
if qi,j feeds
into non-idle

reactors

, · · · , 0, · · ·︸ ︷︷ ︸
if qi,j feeds

into idle reactors

, pi), ∀i ∈ Inid(q).
(3.31)
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3.2 Problem formulation

Note that, as already seen in the Eqs. (3.26), (3.27), the submodel of non-idle reactors
(3.31) is independent of the submodel of idle-reactors (3.30). This is a useful consequence
of the modeling approach which represents the output yi,j as a product of the flowrate
variables qi,j and the vector gi,j(·) in Eqs. (3.4), (3.11). This feature of the submodels
results later in a structured Jacobian matrix of the open-loop reactor network. The inner
submatrices change if a reactor transitions from idle to non-idle mode or vice versa, as
discussed in more detail below.
Let us use Jtot(x, q, p, psys) to denote the Jacobian matrix of the open-loop reactor net-

work model (3.20), Jid(x, q, p, psys) and Jnid(x, q, p, psys) to denote the Jacobian matrices
of the submodel (3.30) for idle reactors and the submodel (3.31) for non-idle reactors,
respectively. Because the submodel of idle reactors and the submodel of non-idle reactors
are independent to each other, with probably reordering the sequence of subsystems, we
have

Jtot =

[
Jid 0
0 Jnid

]
. (3.32)

Reactor network design with guaranteed eigenvalue-based properties should only con-
sider the eigenvalues of Jnid of non-idle reactors, but not the ones of Jtot of all reactors in
the network. So an eigenvalue constraint for guaranteeing dynamic properties of the open-
loop reactor network, i.e., stability and response speed (cf. Chapter 2), can be formulated
as

αJnid
(x, q, p, psys) < −c, (3.33)

in which αJnid
(·) denotes the spectral abscissa of matrix Jnid(x, q, p, psys). c > 0 is a given

constant. Note that αJnid
(·) is defined not only for the steady states of the dynamic system

(3.20). Do := Rnx ×Rnq ×Rnp ×R
npsys\{(xT , 0T , pT , pTsys)

T} is the domain of the function
αJnid

(·). Trivial points (xT , qT , pT , pTsys)
T with q = 0 are excluded, because they refer to

an empty Jnid (all reactors are idle). Hence, Eq. (3.33) is a well-defined constraint for
numerical optimization, although, as it will be seen in the next subsection, this constraint
is not continuous everywhere.

3.2.2 Continuity analysis of the proposed eigenvalue constraint

Before we analyze the continuity of the constructed constraint (3.33), we briefly review
the continuity property of the SA function αJtot(·) of matrix Jtot(·) (cf. Section 2.2). A
short conclusion is that, because all elements in Jtot(x, q, p, psys) are continuous functions
of its arguments, αJtot(x, q, p, psys) is a continuous function (not necessarily smooth) from
Rnx × Rnq × Rnp × R

npsys to R.
Although αJtot(·) is continuous, αJnid

(·) is, however, in general discontinuous. This is
because Jtot(·) is a matrix of a fixed dimension, while Jnid(·) may change its size depending
on different values of q. When an idle reactor i is activated by changing some values of
the flowrates q, Jnid increases its size. Here, we give a condition to check the continuity of
constraint (3.33).

Proposition 3.2.1 (Continuity of αJnid
(·)). If Jtot(x, q, p, psys) ∈ Rnx×Rnq×Rnp×R

npsys →
Rnx×nx is a continuous function of x, q, p and psys, assume that Eq. (3.29) holds at a point
(xT , qT , pT , pTsys)

T , αJnid
(x, q, p, psys) is locally continuous at this point, iff

αJid(x, q, p, psys) ≤ αJnid
(x, q, p, psys). (3.34)
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3 Open-loop reactor network synthesis

Table 3.4: A steady state P ∗ of the 2-reactor network example in Fig. 3.3. The system is fed
with 10 mol/s A and 10 mol/s C at temperature 300 K. q3,1[psys]1, q3,1[psys]2 and q3,1[psys]3
denote molar flowrates of components A, B, C, and q3,1[psys]4 the energy flowrate through port
(3, 1). Likewise, q3,2[psys]1, q3,2[psys]2 and q3,2[psys]3 denote molar flowrates of components A,
B, C, and q3,2[psys]4 the energy flowrate through port (3, 2).

variable value at P ∗ units
c1 (0, 0, 1/22.4)T [mol/l]
c2 (0.2246, 0.0035, 0.2246)T [mol/l]
T1 450 [K]
T2 450 [K]
V1 100 [l]
V2 100 [l]
Qh1 0 [MJ/s]
Qh2 -1.043 [MJ/s]
q1,1 0 [g/s]
q1,2 0 [g/s]
q2,1 0 [g/s]
q2,2 43.517 [l/s]
q3,1[psys]1 0 [mol/s]
q3,1[psys]2 0 [mol/s]
q3,1[psys]3 0 [mol/s]
q3,1[psys]4 0 [MJ/s]
q3,2[psys]1 10 [mol/s]
q3,2[psys]2 0 [mol/s]
q3,2[psys]3 10 [mol/s]
q3,2[psys]4 1.2 [MJ/s]

Proof. The proof of this proposition is given in Appendix B.

Some useful consequences of Proposition 3.2.1 can be stated as follows: (1) If all reactors
are non-idle, then αJnid

(·) = αJtot(·) is continuous. (2) If there are idle reactors and
condition (3.34) is not satisfied for an evaluation point, αJnid

(·) is locally discontinuous at
this point. We illustrate this through the following example.

Example (continued). Let us select a steady-state P ∗ of the 2-rector network (3.23), in
which reactor 1 is idle and reactor 2 is non-idle. We set cA1 = cB1 = 0 and cC1 = 1/22.4
[mol/l] to represent the case where reactor 1 contains only component C and thus there
are no reactions taking place. The steady state P ∗ is shown in Table 3.4.
Using Eq. (3.26), we can evaluate Jid at P ∗ as

Jid|P ∗ =

⎛
⎜⎜⎝

−0.002 0 0 0
0.0014 −0.0001 0 0

−0.0020 −0.0001 0 0
17.6416 0.1789 0 0

⎞
⎟⎟⎠ , (3.35)

with
αJid |P ∗ = 0. (3.36)
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3.2 Problem formulation

Actually, Jid at P
∗ has two zero eigenvalues. One corresponds to concentration cC1 and the

other to temperature T1. Note that, any other steady state of the idle reactor also results
in multiple zero eigenvalues.
Using Eq. (3.27), we can evaluate Jnid at P ∗ as

Jnid|P ∗ =

⎛
⎜⎜⎝

−0.4452 0 −0.0100 −0.0001
0.0068 −0.4355 0.0068 0.0001

−0.0100 −0.0003 −0.4452 −0.0001
88.7608 0.9002 88.7759 0.0281

⎞
⎟⎟⎠ ,

with

αJnid
|P ∗ = −0.0010. (3.37)

Obviously, the operating point P ∗ for reactor 2 is stable.
Now we illustrate the discontinuity of αJnid

(·) at P ∗ (refer also to the proof in Appendix
B). To show the discontinuity, we activate the idle reactor 1 by increasing the flowrate
variable q1,1 to a small positive number, i.e., q1,1 = ε > 0. We use P ′ to denote this new
operating point. At P ′, both reactors 1 and 2 are non-idle. So

Jnid|P ′ = Jtot ≈
(

Jid|P ∗ 0
0 Jnid|P ∗

)
. (3.38)

“≈” holds, because all elements in Jtot(·) are continuous functions. We see that, at P ∗ Jnid
is a 4× 4 matrix, while at P ′ Jnid is a 8× 8 matrix. So the size of Jnid is dependent on its
arguments. From Eq. (3.38), we have

αJnid
|P ′ ≈ max{αJid |P ∗ , αJnid

|P ∗} = 0. (3.39)

Denote εk > 0, k = 1, 2, · · · , as a sequence, which approaches 0. P ′
k, k = 1, 2, · · · , are

evaluation points with respect to q1,1 = εk. Because Eq. (3.39) always holds for any P ′
k,

lim
k→∞

αJnid
|P ′

k
= 0.

Combining with Eq. (3.37), we see that for the sequence P ′
k → P ∗, sequence αJnid

|P ′

k
does

not converge to αJnid
|P ∗. So αJnid

(·) is discontinuous at P ∗.
An important conclusion is that, if there are idle reactors in a final optimal design, the

eigenvalue constraint (3.33) is always at a discontinuous point. So, if we directly use Eq.
(3.33) as a constraint of an optimal design problem, this final design can not be found by
smooth optimization methods.

3.2.3 A direct problem formulation

In this subsection, we first propose a direct problem formulation by using the eigenvalue
constraint (3.33) for open-loop reactor network synthesis. Because of the difficulties to
treat the discontinuity of constraint (3.33), integer variables are introduced in the next
subsection to transform the direct problem formulation into an equivalent mixed-integer
optimization problem. A tailored two-step solution approach will be presented for the
transformed mixed-integer problem in Section 5.6.
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3 Open-loop reactor network synthesis

After introducing the stability constraint (3.33), we are ready to present the novel prob-
lem formulation for open-loop reactor network synthesis as follows:

minx,q,p,psysϕ(x, q, p, psys) (3.40a)

s.t. 0 = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), pi), · · · ,
qN+1,ipsys, qi,1, · · · , qi,N , pi), ∀i = 1, · · · , N, (3.40b)

−c ≥ αJnid
(x, q, p, psys), ∀πτ ∈ [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ], (3.40c)

0 ≥ h(x, q, p, psys). (3.40d)

Eq. (3.40a), with the economic cost function ϕ(·), is the objective of the design optimiza-
tion. Eq. (3.40b) refers to a steady-state of the model. Eq. (3.40c) is the so-called robust
eigenvalue constraint. πτ ∈ Rnπτ denotes a vector of uncertain parameters concatenating
some specific elements from the vector of design parameters (qT , pT , pTsys)

T . The nominal
values are π̄τ and the uncertainty is quantified by Δπ̄τ . c > 0 is a given constant. Eq.
(3.40c) guarantees that the SA of the Jacobian of non-idle model is less than −c for all
realizations πτ in the uncertain region [π̄τ ±Δπ̄τ ] and hence ensures robust dynamic prop-
erties of the final design. Eq. (3.40d) denotes other feasibility constraints on states and
parameters, such as non-negative flowrate variables, upper bounds on the reactor volume,
or ranges of temperature. Note that integer (binary) variables have not been introduced
in problem (3.40).
The solution of problem (3.40) is very difficult because of two related reasons. As

discussed in Section 3.1.6, the model is of variable structure because of the undetermined
flowrate qi,j , which results in a transition of reactors from non-idle to idle mode or vice
versa. Accordingly, the eigenvalue spectrum of the non-idle model and hence the SA of
non-idle subsystem change discontinuously. Even worse, if condition (3.34) is violated at
an optimal solution, refer also to Eqs. (3.36) and (3.37) for the allyl chloride example, this
solution will be exactly at a discontinuous point of Eq. (3.40c). Hence, any (standard)
local NLP solver would most likely not solve the problem properly.
Therefore, we will reformulate problem (3.40) in the next subsection into a MINLP

problem such that all of its constraints are continuous (smooth almost everywhere).

3.2.4 Problem reformulation

In this subsection, we present a mixed-integer reformulation of problem (3.40). The ob-
tained MINLP is equivalent to the original one (in the sense of having the same optimal
solution), but discontinuity in the eigenvalue constraint (3.40c) is replaced by disconti-
nuities introduced by integer variables. The obtained MINLP can be better treated by
smooth optimization methods, as detailed in Chapter 5.
We use integer variables zi ∈ {0, 1}, i = 1, · · · , N , to indicate whether reactor i is

non-idle (zi = 1) or idle (zi = 0). Denote z = (z1, · · · , zN)T . The disjunctions⎡
⎣ zi

N∑
j=1

qi,j +
N∑
k=1

qh(i,k) > 0

⎤
⎦ ∨

⎡
⎣ z̄i

qi,j = 0, ∀j = 1, · · · , N
qh(i,k) = 0, ∀k = 1, · · · , N

⎤
⎦ , ∀i = 1, · · · , N, (3.41)

represent idle or non-idle reactors. Because all qi,j are non-negative flowrate variables, in
case of a non-idle reactor (zi = 1) at least one qi,j or one qh(i,k) is positive. When all qi,j = 0
and all qh(i,k) = 0, the reactor is idle according to Definition 3.1.1.
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3.2 Problem formulation

We introduce a matrix J̄ defined by

J̄(x, q, p, psys, z) := Jtot(x, q, p, psys)−M ·

⎡
⎢⎣

(1− z1)I1 0 0

0
. . . 0

0 0 (1− zN)IN

⎤
⎥⎦ . (3.42)

J̄ has the same dimension as Jtot ∈ Rnx×nx . Ii ∈ Rnxi
×nxi , i = 1, · · · , N , is an identity

matrix. nxi
refers to the dimension of the state variables of xi and nx =

∑
i nxi

. M denotes
a sufficiently large positive constant.
According to the following proposition we can replace Jnid in problem (3.40) by J̄ to

obtain a continuous but still non-smooth eigenvalue constraint.

Proposition 3.2.2. Assume that the elements in Jtot(x, q, p, psys) are bounded. For suffi-
ciently large M , if Eq. (3.41) holds and if Inid(q) �= ∅, we have

αJnid
(x, q, p, psys) = αJ̄(x, q, p, psys, z). (3.43)

Proof. The proof of this proposition is shown in Appendix C. Note that condition Inid(q) �=
∅ is necessary, because Jnid is not defined for a reactor network with no non-idle reactors.

The left hand side of Eq. (3.43) is a discontinuous function of continuous variables,
while the right hand side of Eq. (3.43) is a continuous function of continuous and integer
variables. If we replace constraint (3.40c) in problem (3.40) by Eq. (3.43) and use Eq.
(3.41) as constraints, we obtain the reformulated problem

minx,q,p,psys,zϕ(x, q, p, psys) (3.44a)

s.t. 0 = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), pi), · · · ,
qh(N+1,i)psys, qi,1, · · · , qi,N , pi), ∀i = 1, · · · , N, (3.44b)

− c ≥ αJ̄(x, q, p, psys, z), ∀πτ ∈ [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ], (3.44c)⎡
⎣ zi

N∑
j=1

qi,j +
N∑
k=1

qh(i,k) > 0

⎤
⎦ ∨

⎡
⎣ z̄i

qi,j = 0, ∀j = 1, · · · , N
qh(i,k) = 0, ∀k = 1, · · · , N

⎤
⎦ , ∀i = 1, · · · , N,

(3.44d)

0 ≥ h(x, q, p, psys), (3.44e)

zi ∈ {0, 1}, ∀i = 1, · · · , N. (3.44f)

In problem (3.44) the reformulated constraint (3.44c) guarantees robust dynamic properties
of non-idle reactors. αJ̄(·) is a standard eigenvalue function, which is continuous (but
generally non-smooth) with respect to its arguments. Therefore, the methods to treat
standard eigenvalue constraints can applied, refer to Section 5.4. Problem (3.44) will be
solved by a two-step solution method proposed in Section 5.6.
A favorable feature of problem (3.44) is that the number of integer variables equals the

number of reactors in the superstructure. Because there are not too many reactors in
a typical reactor network, say less than 10, problem (3.44) contains typically only a few
integers. This makes the problem easier to solved.
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3 Open-loop reactor network synthesis

3.3 Summary

In this section, we have formulated an optimization problem (3.44) for the open-loop reactor
network synthesis problem with guaranteed dynamic performance. The basic problem
settings are adopted from [87], including the reactor network superstructure shown in Fig.
3.1. However, this work differs from and extends [87] in the following aspects.
First, idle reactors are allowed to appear in the superstructure. Designers can therefore

decide on the optimal number of non-idle reactors in the final design. Eq. (3.33) is derived
from Eq. (2.17), but they are not exactly the same. Eq. (3.33) measures the dynamic
properties of only non-idle reactors, allowing the treatment of the dynamic properties of
non-idle and idle reactors separately.
Second, parametric uncertainty is considered in the problem formulation, resulting in

a robust design. Not only the nominal operating point is required to have the specified
dynamic properties, but also the nearby operating points in the uncertainty region.
Third, in contrast to the conservative bounding method applied in [87], more advanced

methods for treating eigenvalue constraints are employed in this work (cf. Section 5.4 and
Section 5.6). This results in a more accurate treatment of the stability constraint and
less conservative computational results. Fourth, the proposed formulation carries over to
reactor network superstructures with both CSTR and PFR (cf. Appendix A), which allows
decision making on the used type of reactors.
The current approach for the open-loop reactor network synthesis problem is subject to

the following limitations. First, the eigenvalue constraint (3.44c) may get ill-conditioned
after applying the big-M reformulation (3.42), if a too large M is chosen. To avoid this
problem, a tight estimation of the smallest M is necessary. Second, there may exist other
alternative reformulation strategies, rather than the proposed big-M reformulation (3.43),
to treat the discontinuity problem of the formulated eigenvalue constraint (3.40c). Numer-
ical performance should be evaluated and compared for various possible reformulations.
Third, problem (3.44) is a MINLP problem with a non-smooth robust eigenvalue constraint
and disjunctions, which is very challenging to solve, even if only local minima are of inter-
est (cf. Section 5.6). One should therefore consider improving the solution procedure for
the derived optimization problem.
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4 Simultaneous design of reactor network and
its decentralized control system

The goal of simultaneous process and control design of reactor networks is to find the
optimal flowsheet structure, operating conditions, process design parameters, as well as
the control structure and control design parameters in an integrated step. The advantages
of using a simultaneous design approach have been discussed in Section 1.3. Major tasks of
simultaneous design of a reactor network and its control system are conceptually illustrated
in Fig. 1.4, in which both flowsheet and control structure alternatives of a reactor network
superstructure are degrees of freedom of the design problem.

This chapter is organized in a modeling and a problem formulation section. In the
modeling section, we use complementarity constraints and disjunctions to formulate the
selection of a decentralized control structure and its interaction with the selection of the
flowsheet structure for closed-loop reactor network synthesis. In the problem formulation
section, we first propose a robust eigenvalue constraint to ensure desired dynamic properties
of the closed-loop reactor network. Then we use this constraint to formulate a semi-infinite
MINLP for determining the optimal network design. This MINLP addresses the problem of
simultaneous process and control design for closed-loop reactor networks with guaranteed
robust dynamic properties. Solution methods for this optimization problem will be treated
in Section 5.6.

4.1 Modeling of reactor networks with decentralized

control structure

In this section, we present a closed-loop model for the simultaneous design of a reactor
network and its decentralized PI control system. The closed-loop model is obtained by
straightforwardly coupling multiple PI controllers to the open-loop reactor network model
(3.20). Two sets of constraints, referring to control structure selection and to structural
relations between reactors and controllers, will be introduced. Both flowsheet and control
structure alternatives will be considered simultaneously, resulting in decision making on
the process flowsheet and the control system structure.

4.1.1 A closed-loop reactor network model

We consider the open-loop model (3.20) to set up feedback control loops. Denote ui and
di as elements of vector pi, which refer to manipulated variables of reactor i in addition
to the flowrate variables and equipment design parameters of reactor i, respectively. The
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4 Simultaneous design of reactor network and its decentralized control system

open-loop model (3.20) can be rewritten as

ẋi = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), uh̄(i,k), dh̄(i,k)), · · ·︸ ︷︷ ︸
k=1,··· ,N−1

, qh(i,N)psys,

qi,1, · · · , qi,N , ui, di), ∀i = 1, · · · , N.

(4.1)

Now we extend model (4.1) by feedback control loops. We assume that all flowrate
variables q = (q1,1, · · · , qN,N , qN+1,1, · · · , qN+1,N )

T ∈ R(N+1)N , all ui, i = 1, · · · , N , and the
energy density in the feed to the reactor network corresponding to the last element of psys
can be manipulated. Therefore, we denote all the candidate MV of the reactor network by

u = (qT , uT
1 , · · · , uT

N , [psys]Nc+1)
T ∈ R

nm . (4.2)

Denote π as the vector

π = ([psys]1, · · · , [psys]Nc
, dT1 , · · · , dTN)T , (4.3)

which contains all equipment and process design parameters, which can not be manipu-
lated. [psys]l, l = 1, · · · , Nc + 1, denotes the l-th element of vector psys.
Denote [u]v as the v-th element in vector u, v = 1, · · · , nm. The following definition

relates (one or more) individual candidate MV to an individual reactor.

Definition 4.1.1 (Candidate MV of reactor i). A candidate MV, [u]v, v ∈ {1, · · · , nm},
is called a candidate MV of reactor i, if [u]v is an element of vector ui or vector
(qi,1, · · · , qi,N , qh(i,1), · · · , qh(i,N))

T .

We note that, although ui are candidate MV of a single reactor i, elements of
(qi,1, · · · , qi,N , qh(i,1), · · · , qh(i,N))

T , except for qh(i,N) (corresponding to the inlet connection
with the splitter) and qi,N (corresponding to the outlet connection with the mixer), are
candidate MV of two different reactors. Due to interconnections, qh(i,k) is a candidate MV
of both, reactors i and h̄(i, k). Similarly, qi,j is a candidate MV of both, reactors i and
l̄(i, j).
We define index sets Θi for reactor i, i = 1, · · · , N , so that if v∗ ∈ Θi, [u]v∗ is a candidate

MV of reactor i according to Definition 4.1.1. For i = 1, · · · , N , we introduce

Θi := {v ∈ {1, · · · , nm} | [u]v is a candidate MV of reactor i. }.
Obviously, because each qi,j belongs to the candidate MV of two reactors, Θi1 ∩ Θi2 �= ∅,
if i1 �= i2.
Denote yi,r ∈ R, i = 1, · · · , N , r = 1, · · · , ni

c, as a candidate control variable (CV). yi,r
refers to the r-th candidate CV of reactor i, which is physically measured. ni

c is the total
number of candidate CV of reactor i. Consider that

yi,r = φi,r(xi, di), i = 1, · · · , N, r = 1, · · · , ni
c, (4.4)

where φi,r(·) is a scalar-valued smooth function. Denote y = (y1,1, · · · , yN,nN
c
)T ∈ Rnc as

a vector containing all candidate CV yi,r for all reactors. nc =
∑

i n
i
c refers to the total

number of candidate CV of the network. We use the symbol w, w = 1, · · · , nc, to indicate
the w-th element [y]w in vector y. This index w can be related to the subindex (i, r) of yi,r
by introducing a function 	(i, r), so that yi,r is the 	(i, r)-th element in vector y, i.e.,

yi,r = [y]�(i,r), i = 1, · · · , N, r = 1, · · · , ni
c. (4.5)
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4.1 Modeling of reactor networks with decentralized control structure

We also use 	−1(·) to denote the inverse function of 	(·).
Any (not necessarily decentralized) feedback control system involving PI controllers can

be modeled by

ė = y − ȳ, (4.6a)

u = ū+K(y − ȳ + Te), (4.6b)

where ei,r ∈ R denotes the state variable of the (i, r)-th controller [124]. e :=
(e1,1, · · · , eN,nN

c
)T ∈ Rnc collects the states of all nc candidate PI controllers. K ∈ Rnm×nc

is the proportional control gain matrix, which is in general non-square. Index v, v =
1, · · · , nm, and index w, w = 1, · · · , nc, are used to indicate the rows and columns of ma-
trix K, respectively. T := diag(1/t1,1, · · · , 1/tN,nN

c
) ∈ Rnc×nc is the integral control gain

matrix, which is square and diagonal. ti,r ∈ R refers to the integral control gain of the
(i, r)-th controllers. ū ∈ Rnm denotes a vector of offset values of u and ȳ ∈ Rnc denotes a
vector of reference signals of y. Analogously, the offset values of the flow rates q (elements
of ū) are denoted by q̄. Note that the control structure embedded in Eq. (4.6) is not fixed.
It is rather determined by the zero/non-zero patterns of matrix K.

Combining Eqs. (4.1) and (4.6) and eliminating y through Eq. (4.4), a closed-loop model
of a reactor network with a flexible flowsheet and control structure can be formulated as

ẋi = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), uh̄(i,k), dh̄(i,k)), · · ·︸ ︷︷ ︸
k=1,··· ,N−1

, qh(i,N)psys,

qi,1, · · · , qi,N , ui, di), i = 1, · · · , N, (4.7a)

ėi,r = φi,r(xi, di)− ȳi,r, i = 1, · · · , N, r = 1, · · · , ni
c, (4.7b)

[u]v = [ū]v +
∑
∀(i,r)

[K]v,�(i,r)(φi,r(xi, di)− ȳi,r +
1

ti,r
ei,r), v = 1, · · · , nm, (4.7c)

where [K]v,�(i,r) denotes the (v, 	(i, r))-th element in matrix K.

We denote Kv = ([K]1,1, · · · , [K]nm,nc
)T ∈ Rnm·nc as a vector concatenating all variables

in matrix K and Tv := (t1,1, · · · , tN,nN
c
)T ∈ Rnc a vector concatenating all variables in

matrix T . Eq. (4.7) contains nx + nc + nm equations, referring to the dimensions of
variables x ∈ Rnx , e ∈ Rnc and u ∈ Rnm . The degrees of freedom of the closed-loop model
(4.7) are therefore

ψc = (πT , ūT , ȳT , KT
v , T

T
v )

T . (4.8)

System (4.7) models a closed-loop reactor network with flexible flowsheet and control
structures. By determining the degrees of freedom ψc, model (4.7) can realize different
flowsheet and control structures. As it will be shown later, the offset values q̄ (elements
in vector ū), which represent the nominal flowrates of flow connections, will be used to
determine the flowsheet structure, while variablesKv (variables in matrixK) will be used to
determine the structure of the decentralized control system. In the following subsections,
we will impose additional constraints, such that a decentralized control structure and
feasible structural relationships between reactors and controllers can be ensured in the
final design.
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4 Simultaneous design of reactor network and its decentralized control system

4.1.2 Complementarity constraints for control structure selection

By setting the elements of matrix K to zero or non-zero values, Eq. (4.6) can realize
different degrees of centralization or decentralization of the control system. For example,
a fully centralized control structure can be obtained by setting a dense matrix K, while
a partially decentralized control structure can be obtained by requiring K to comprise of
several non-zero and zero submatrices. In this subsection, we propose complementarity-
based design constraints which ensure a fully decentralized control structure.
In a fully decentralized control structure each single candidate MV (an element in the

vector u) is paired with a single candidate CV (an element in the vector y) and vice versa.
Each row and each column of matrix K has to contain at most one non-zero element [124].
Hence, the task of designing a decentralized control structure can be transformed into the
task of determining the locations of zero and non-zero elements in matrix K.
The following lemma is elementary and is straightforward to prove.

Lemma 4.1.1. Consider any vector ξ ∈ Rnξ , ξ ≥ 0. Denote [ξ]i as the i-th element of ξ,
i ∈ {1, · · · , nξ}. If the complementarity constraints

0 ≤ [ξ]i ⊥
∑
i′ �=i

[ξ]i′ ≥ 0, ∀i = 1, · · · , nξ, (4.9)

hold, then either ξ = 0 or there is at most one positive element in vector ξ.

Proof. If ξ = 0, then Eq. (4.9) holds. If [ξ]i∗ > 0 and [ξ]i′ = 0, ∀i′ �= i∗, i.e. exactly one
element of ξ is positive, then Eq. (4.9) holds. Assume now that [ξ]i1 > 0 and [ξ]i2 > 0,
i1 �= i2, i.e., at least two elements of ξ are positive. Because ξ ≥ 0, we have∑

i′ �=i1

[ξ]i′ ≥ ξi2 > 0,

∑
i′ �=i2

[ξ]i′ ≥ ξi1 > 0.
(4.10)

Therefore Eq. (4.9) is violated for both i = i1 and i = i2.

Denote K̂, K+, K− ∈ Rnm×nc as three matrices with the size of K. [K̂]v,w, [K
+]v,w and

[K−]v,w denote their (v, w)-th element. The proposed complementarity constraints are

[K]v,w = [K+]v,w − [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (4.11a)

[K̂]v,w = [K+]v,w + [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (4.11b)

0 ≤ [K+]v,w ⊥ [K−]v,w ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (4.11c)

0 ≤ [K̂]v,w ⊥
∑
w′ �=w

[K̂]v,w′ ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (4.11d)

0 ≤ [K̂]v,w ⊥
∑
v′ �=v

[K̂]v′,w ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc. (4.11e)

Eqs. (4.11a)-(4.11c) ensure that K+ contains only the positive elements of K, K− contains
only the absolute values of the negative elements of K, and K̂ contains the absolute values
of all elements of K. In particular, Eq. (4.11c) guarantees that both [K+]v,w and [K−]v,w
are non-negative, and at least one of them is zero. Eq. (4.11a) therefore guarantees that (i)
if [K]v,w ≥ 0, then [K+]v,w = [K]v,w ≥ 0, [K−]v,w = 0; (ii) if [K]v,w ≤ 0, then [K+]v,w = 0,

[K−]v,w = −[K]v,w ≥ 0. Hence, [K̂]v,w is equal to the absolute value of [K]v,w.
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4.1 Modeling of reactor networks with decentralized control structure

Since all elements in K̂ are non-negative, Eq. (4.9) applied to each rows and columns
of K̂ results in Eqs. (4.11d)-(4.11e). Eq. (4.11d) guarantees that each row of K̂ has at
most one positive element. Analogous arguments can be applied to Eq. (4.11e), which
guarantees that each column of K̂ has at most one positive element. Since K̂ contains the
absolute values of the elements of K, Eqs. (4.11d), (4.11e) guarantee that each row and
each column of K has at most one non-zero element.
Note that, Eq. (4.11) allows zero rows in matrix K. If the v∗-th row of K contains only

zeros, i.e., if
[K]v∗,w = 0, ∀w = 1, · · · , nc, (4.12)

[u]v∗ is not subject to any control (cf. Eq. (4.7c), [u]v∗ = [ū]v∗). Eq. (4.11) also allows
that certain columns of matrix K contain only zero values. If this is true, for the w∗-th
column, i.e., if

[K]v,w∗ = 0, ∀v = 1, · · · , nm,

then [y]w∗ is an unmeasured variable and it is not used to form any closed loop1. In the
extreme case, if K = 0 and therefore K+ = K− = K̂ = 0, the open-loop case is recovered.
Eq. (4.11) is equivalent to the integer-based formulation proposed in [124] for control

structure design. The authors formulate the same rules for pairing candidate MV and
CV, i.e., a single candidate MV is paired with at most one candidate CV, and vice versa.
However, in contrast to [124], Eq. (4.11) does not use any integer variables. Complemen-
tarity constraints allow a more efficient numerical treatment, including smoothing methods
[16, 56].

4.1.3 Idle reactors and controllers

The closed-loop reactor network model (4.7) contains N candidate reactors and nc can-
didate PI controllers. Idle reactors and controllers refer to the reactors and controllers
in the final design, which will not be physically realized. Therefore, one needs to figure
out how many and which reactors and controllers should be used in the final design. In
this subsection, we first adapt the definitions of idle reactors introduced in Section 3.1.6
to the case of closed-loop reactor network design and then formalize the definition of idle
controllers.

Definition 4.1.2 (Idle reactors in a closed-loop reactor network). A reactor i, i =
1, · · · , N , is idle, if

q̄i,j = 0, ∀j = 1, · · · , N,

q̄h(i,k) = 0, ∀k = 1, · · · , N.
(4.13)

Otherwise, reactor i is called non-idle.

q̄i,j denotes the offset value of flowrate variable qi,j (a candidate MV), which refers to
the j-th outlet of reactor i. q̄h(i,k) denotes the offset value of flowrate variable qh(i,k) (a
candidate MV), which refers to k-th inlet of reactor i. Eq. (4.13) requires that the offset
values of all inlet and outlet flowrates of idle reactor i are zero, which represents the fact
that reactor i has no inlets and outlets. Hence, fixing the real, non-negative values of q̄ to
zero or a positive quantity determines the flowsheet structure without the need for integers
as in the established synthesis approaches.

1In this case, the �−1(w∗)-th controller will not be physically realized, refer also to Definition 4.1.3.
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4 Simultaneous design of reactor network and its decentralized control system

We use (binary) integer variables zi ∈ {0, 1}, i = 1, · · · , N , to indicate whether reactor
i is idle (zi = 0) or non-idle (zi = 1). zr = (z1, · · · , zN )T encodes the existence or non-
existence of each reactor. Definition 4.1.2 leads to the disjunctions

⎡
⎣ zi

N∑
j=1

q̄i,j +
N∑
k=1

q̄h(i,k) > 0

⎤
⎦ ∨

⎡
⎣ z̄i

q̄i,j = 0, ∀j = 1, · · · , N
q̄h(i,k) = 0, ∀k = 1, · · · , N

⎤
⎦ , ∀i = 1, · · · , N. (4.14)

Note that, because q̄ are non-negative variables, Eq. (4.14) guarantees that, either at least
one q̄i,j or one q̄h(i,k) is positive, or all of them are zero.
Accordingly, idle controllers are the ones which are not included in the final design:

Definition 4.1.3 (Idle controller). For i ∈ {1, · · · , N}, r ∈ {1, · · · , ni
c}, the (i, r)-th PI

controller is idle, if the 	(i, r)-th column of matrix K is zero:

[K]v,�(i,r) = 0, ∀v = 1, · · · , nm. (4.15)

Otherwise, the (i, r)-th PI controller is called non-idle.

If the w∗-th column of matrix K is zero, a candidate CV [y]w∗ = y�−1(w∗) is not paired with
any MV. This quantity does not need to be measured and the corresponding 	−1(w∗)-th
PI controller will not be included in the final design. Hence, we can define idle controllers
by checking the columns of matrix K.
We use integer variables zi,r ∈ {0, 1}, i = 1, · · · , N and r = 1, · · · , ni

c, to indicate whether
the (i, r)-th controller is idle (zi,r = 0) or non-idle (zi,r = 1). Denote zc = (z1,1, · · · , zN,nN

c
)T

to encode the existence of each PI controller. Definition 4.1.3 leads to the disjunctions

⎡
⎣ zi,r

nm∑
v=1

[K̂]v,�(i,r) > 0

⎤
⎦ ∨

⎡
⎣ z̄i,r

nm∑
v=1

[K̂]v,�(i,r) = 0

⎤
⎦ , ∀i = 1, · · · , N, r = 1, · · · , ni

c. (4.16)

Due to Eq. (4.11), the elements of K̂ are equal to the absolute values of the elements
of K. Eq. (4.16) therefore guarantees that either at least an element in the 	(i, r)-th
column of matrix K is non-zero, or all elements in the 	(i, r)-th column of K are zero. For
later discussion, denote z = (zTr , z

T
c )

T = (z1, · · · , zN , z1,1, · · · , zN,nN
c
)T to collect all integer

variables indicating the existence of each reactor and controller.
For convenience, we introduce the index sets

I = {i|i = 1, · · · , N},
Iid(q̄) = {i ∈ I | reactor i is idle},
Inid(q̄) = {i ∈ I | reactor i is non-idle},

U = {v | v = 1, · · · , nm},
Uid(K) = {v ∈ U | [u]v is not subject to control},
Unid(K) = {v ∈ U | [u]v is subject to control},

C = {(i, r) | i = 1, · · · , N, r = 1, · · · , ni
c},

Cid(K) = {(i, r) ∈ C | controller (i, r) is idle},
Cnid(K) = {(i, r) ∈ C | controller (i, r) is non-idle}.
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4.1 Modeling of reactor networks with decentralized control structure

For given sets Iid, Inid, Cid, Cnid, we further define

xid : = (· · · , xT
i , · · · )T , i ∈ Iid,

xnid : = (· · · , xT
i , · · · )T , i ∈ Inid,

eid : = (· · · , ei,r, · · · )T , (i, r) ∈ Cid,
enid : = (· · · , ei,r, · · · )T , (i, r) ∈ Cnid.

(4.17)

xid and eid refer to the states of idle reactors and the states of idle controllers, respectively.
xnid and enid refer to the states of non-idle reactors and the states of non-idle controllers,
respectively.

4.1.4 Structural constraints

The constraints in the previous subsections encode different flowsheet and control structure
alternatives as well as decisions regarding idle reactors and controllers and their intercon-
nections by manipulating the flowrate offset variables q̄ and the control gain matrix K.
However, we are not allowed to choose q̄ and K in an arbitrary manner to ensure feasible
designs. For example, an inlet flowrate of an idle reactor should not be manipulated by a
CV of a non-idle reactor, or the coolant flowrate of a non-idle reactor should not be ma-
nipulated by the temperature measurement of an idle reactor. Hence, we need additional
design constraints, which ensure feasible and physically correct structural relationships
among reactors and controllers as well as a proper pairing of candidate CV and MV.
We propose two kinds of structural relationships, which are required to hold in the final

design:

1. All controllers belonging to idle reactors are idle:

i ∈ Iid ⇒ (i, r) ∈ Cid, ∀i = 1, · · · , N, ∀r = 1, · · · , ni
c. (4.18)

This relationship can be represented as

zi,r ≤ zi, r = 1, · · · , ni
c, i = 1, · · · , N, (4.19)

with zi and zi,r defined in Eqs. (4.14), (4.16) [140].

2. All candidate MV of idle reactors are not subject to control:

v ∈
⋃
i∈Iid

Θi ⇒ v ∈ Uid. (4.20)

This relationship can be represented by the disjunction

[
zi
∅
]
∨
⎡
⎣ z̄i

nc∑
w=1

[K̂]v,w = 0, ∀v ∈ Θi

⎤
⎦ , i = 1, · · · , N. (4.21)

Sometimes it is convenient to replace (4.18) by its contrapositive:

(i, r) ∈ Cnid ⇒ i ∈ Inid, ∀i = 1, · · · , N, ∀r = 1, · · · , ni
c. (4.22)

However, we stress that the backward direction of (4.18) is not true, i.e.,

(i, r) ∈ Cid � i ∈ Iid, (4.23)

because a non-idle reactor may have a measurement, which is not used to close a loop.
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4 Simultaneous design of reactor network and its decentralized control system

4.1.5 Structural properties of the closed-loop model

By imposing constraints (4.19) and (4.21) for the selection of q̄ and K, the closed-loop
model (4.7) has certain guaranteed structural properties, which are revealed in this sub-
section and allow for a decomposition of model (4.7).
Analysis of the formulations of candidate MV. We first analyze the formulation

of the candidate MV concatenated in vector u and presented in Eq. (4.7c). Denote

up1 := (· · · , [u]v, · · · )T , v ∈
⋃
i∈Iid

Θi, (4.24)

and up2 as the other variables in u. After probably reordering the sequence, we have

u = (uT
p1, u

T
p2)

T . (4.25)

up1 refers to the vector of candidate MV, which belong to at least one idle reactor. Rela-
tionship (4.20) or Eq. (4.21) guarantee that all elements in up1 are not subject to control.
Therefore, from Eq. (4.7c), we have

up1 = ūp1. (4.26)

up2 refers to the vector of candidate MV, which do not belong to the candidate MV of any
idle reactor. Note that, elements in up2 may or may not be subject to control, because
(4.18) or (4.20) do not impose any conditions on the rows of matrix K corresponding to
up2.
Consider [u]v∗ to be an element of up2. Then

[u]v∗ = [ū]v∗ +
∑

∀(i,r)∈Cnid

[K]v∗,�(i,r)(φi,r(xi, di)− ȳi,r +
1

ti,r
ei,r) (4.27)

holds according to Eqs. (4.7c), (4.16). Obviously, up2 only depends on xnid, enid and ψc.
In summary, up1 are always equal to their offset values ūp1, and the candidate MV up2 do

not depend on xid and eid. up1 refer to MV, which belong to at least one idle reactor. up2

refer to MV of non-idle reactors, which may or may not be subject to control. We will use
this property to analyze the structural relationships in the closed-loop model (4.7) later.
Submodels of the closed-loop reactor network. Next, we decompose the model

(4.7) into submodels. For given values of q̄ and K, we partition (4.7a), (4.7b) into state
equations for idle reactors, non-idle reactors, idle controllers and non-idle controllers and
eliminate u using Eq. (4.7c).
Consider that reactor i is idle. From Definition 4.1.1, qi,j, ∀j = 1, · · · , N , qh(i,k), ∀k =

1, · · · , N , and ui are the candidate MV of reactor i, and therefore they are elements of
vector up1 defined in Eq. (4.24). Using Eqs. (4.13), (4.26), the submodel of an idle reactor
i can then be represented by

ẋi =fi(xi, · · · , qh(i,k)︸ ︷︷ ︸
=0

gh(i,k)(xh̄(i,k), uh̄(i,k), dh̄(i,k)), · · · , qh(i,N)︸ ︷︷ ︸
=0

psys, qi,1︸︷︷︸
=0

, · · · , qi,N︸︷︷︸
=0

, ui︸︷︷︸
=ūi

, di)

:=fi(xid, ψc), i ∈ Iid.
(4.28)
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4.2 Problem formulation

Note that this submodel depends neither on the states of non-idle reactors xnid nor on the
states of controllers e.
Likewise, the submodel of a non-idle reactor i becomes

ẋi = fi(xi, · · · , 0, · · · ,︸ ︷︷ ︸
inlets from
idle reactors

· · · , qh(i,k′)gh(i,k′)(xh̄(i,k′), uh̄(i,k′), dh̄(i,k′)), · · · ,︸ ︷︷ ︸
inlets from

non-idle reactors

qh(i,N)psys︸ ︷︷ ︸
inlets from
system feed

, · · · , 0, · · · ,︸ ︷︷ ︸
outlets to

idle reactors

· · · , qi,j′ , · · ·︸ ︷︷ ︸
outlets to

non-idle reactors

, qi,N︸︷︷︸
outlet to

system output

, ui, di), i ∈ Inid.
(4.29)

In this equation, qh(i,k′) and qi,j′ refer to the flowrate of the k′-th inlet and the j′-th outlet
of reactor i that are connected with other non-idle reactors. Therefore, qh(i,k′) and qi,j′ are
not the candidate MV of any idle reactor and thus elements of vector up2. qh(i,N) refers to
the feed of raw material and qi,N refers to the product outlet stream of reactor i. Because
qh(i,N) and qi,N are the candidate MV of only reactor i (i.e. they are not candidate MV
of other reactors, cf. Definition 4.1.1), qh(i,N) and qi,N are elements of vector up2. ui and
uh̄(i,k′) refer to the candidate MV of reactor i and non-idle reactor h̄(i, k′), and therefore

they are elements in up2. xh̄(i,k′) refers to the states of non-idle reactor h̄(i, k′), while di
and dh̄(i,k′) refer to design parameters. The first Nc elements of psys are design parameters,
while the last element of psys is an element of up2 according to Definition 4.1.1 and Eq.
(4.24). Hence, all variables appearing on the right hand side of Eq. (4.29) are either state
variables of non-idle reactors, elements of vector up2 (up2 depends only on xnid, enid and
ψc, cf. Eq. (4.27)), or elements of ψc. The submodels of non-idle reactors do not depend
on the states of idle reactors xid or the states of idle controllers eid.
Accordingly, submodels of idle and non-idle controllers can be formulated as

ėi,r =φi,r(xi, di)− ȳi,r

:=φi,r(xid, xnid, ψc), (i, r) ∈ Cid,
(4.30)

and
ėi,r =φi,r(xi, di)− ȳi,r

:=φi,r(xnid, ψc), (i, r) ∈ Cnid,
(4.31)

respectively. We stress that submodel (4.30) of idle controllers may depend on both xid

and xnid, because xi may still be a state variable of a non-idle reactor, if (i, r) ∈ Cid (cf.
Eq. (4.23)). This is the case if a candidate CV of a non-idle reactor is not used in any
closed loop.
This discussion reveals the important property that the submodels of non-idle reactors

and controllers are independent of the submodels of idle reactors and controllers. However,
the inverse is not true. The submodels of idle reactors and controllers depend on the
submodels of non-idle reactors and controllers, as shown by Eq. (4.30).

4.2 Problem formulation

Having introduced the closed-loop model (4.7), constraints (4.11) for decentralized control
structure selection and structural constraints (4.19), (4.21), we present a problem formu-
lation for simultaneous closed-loop reactor network synthesis in this section. We start by
formulating an eigenvalue constraint for the closed-loop reactor network synthesis problem
and then present the problem formulation.
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4 Simultaneous design of reactor network and its decentralized control system

4.2.1 Eigenvalue constraint for simultaneous reactor network and

control system synthesis

Let Jtot ∈ R(nx+ne)×(nx+ne) be the Jacobian matrix of the closed-loop system (4.7) with
respect to the states x and e. Since u are intermediate variables defined by Eq. (4.7c), Jtot
can be calculated straightforwardly by using the chain rule.
The right hand side of Eqs. (4.7a), (4.7b) fi(·) and φi′,r′ − ȳi′,r′ are used to define

Fid(·) : = (· · · , fi(·)T , · · ·︸ ︷︷ ︸
i∈Iid

, · · · , φi′,r′(·)− ȳi′,r′ , · · ·︸ ︷︷ ︸
(i′,r′)∈Cid

)T , (4.32a)

Fnid(·) : = (· · · , fi(·)T , · · ·︸ ︷︷ ︸
i∈Inid

, · · · , φi′,r′(·)− ȳi′,r′ , · · ·︸ ︷︷ ︸
(i′,r′)∈Cnid

)T . (4.32b)

Fid(·) and Fnid(·) refer to the state functions of all idle or non-idle reactors and controllers,
respectively. Let Jid and J ′

id be the Jacobian matrices of Fid(·), J ′
nid and Jnid be the

Jacobian matrices of Fnid(·) defined as

Jid : =
∂Fid(·)

∂(xT
id, e

T
id)

T
, J ′

id :=
∂Fid(·)

∂(xT
nid, e

T
nid)

T
,

Jnid : =
∂Fnid(·)

∂(xT
nid, e

T
nid)

T
, J ′

nid :=
∂Fnid(·)

∂(xT
id, e

T
id)

T
.

(4.33)

From the discussion in Section 4.1.5, we can conclude that

J ′
nid = 0.

Hence, after possible reordering of the sequence of subsystems, we obtain the Jacobian
matrix Jtot of the closed-loop reactor network

Jtot =

(
Jid J ′

id

0 Jnid

)
(4.34)

as an upper-triangular matrix.
Because idle reactors and controllers will not be physically realized, only the eigenvalue

spectrum of Jnid is of interest for design. Hence, we propose the eigenvalue constraint

αJnid
(x, e, u, ψc) ≤ −c (4.35)

for the design of closed-loop reactor networks. c > 0 is a predefined constant, which refers
to the required response speed of the designed system (cf. Eq. (2.17)). αJnid

(x, e, u, ψc)
denotes the spectral abscissa of matrix Jnid(x, e, u, ψc), the Jacobian of the submodels
comprising only the non-idle reactors and controllers. Note that the analytical expression
of Jnid can be obtained from its definition in Eqs. (4.7), (4.33).
We stress that constraint (4.35) is in general discontinuous, because the size of matrix

Jnid depends on the number of non-idle reactors and controllers, which may be inferred from
the values of q̄ and Kv (elements of the decision variables ψc). Analyzing the continuity
of constraint (4.35) rigorously is a challenging task. For illustration, consider that all
controllers in the closed-loop model are idle (K = 0), then the closed-loop reactor network
design problem reduces to the open-loop case, which is discussed in Section 3.2.2. In this
case, the solution will be exactly at a discontinuous point of function αJnid

(·) in Eq. (4.35),
if idle reactors appear in the final design.
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4.2 Problem formulation

Because of the difficulty to treat discontinuous constraints by numerical optimization,
one should not directly use Eq. (4.35). Following the idea of Proposition 3.2.2, we propose
a constraint equivalent to Eq. (4.35), which is continuous but may still be non-smooth at
certain points. Hence, it can be treated more easily by standard numerical optimization
methods.
To this end, we define

J̄ := Jtot −MH, (4.36)

where M ∈ R is a sufficiently large positive constant. H ∈ R(nx+ne)×(nx+ne) has the same
dimension as Jtot and is defined by

H := I − diag(z1 I1, · · · , zn IN , z1,1, · · · , zN,nN
c
),

where I ∈ R(nx+ne)×(nx+ne), Ii ∈ Rnxi
×nxi , i = 1, · · · , N , denote identity matrices. We can

now formulate

Proposition 4.2.1. Assume that Inid �= ∅. If the elements in Jtot are bounded and if Eqs.
(4.14), (4.16), (4.19), (4.21) hold, then

αJnid
(x, e, u, ψc) = αJ̄(x, e, u, ψc, z). (4.37)

The proof follows the idea of the proof of Proposition 3.2.2.
With this proposition, we can replace constraint (4.35) equivalently by

αJ̄(x, e, u, ψc, z) ≤ −c. (4.38)

4.2.2 Problem formulation

We can now formulate an optimization problem for simultaneous reactor and control system
synthesis:

min
x,e,u,ψc,z,K

+
v ,K−

v ,K̂v

φ(x, e, u, ψc, z) (4.39a)

s.t. 0 = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), uh̄(i,k), dh̄(i,k)), · · · , qh(i,N)psys,

qi,1, · · · , qi,N , ui, di), i = 1, · · · , N, (4.39b)

0 = φi,r(xi, di)− ȳi,r, i = 1, · · · , N, r = 1, · · · , ni
c, (4.39c)

0 = e, (4.39d)

0 = u− ū, (4.39e)

−c ≥ αJ̄(x, e, u, ψc, z), ∀πτ ∈ [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ], (4.39f)

ψU
c ≥ ψc ≥ ψL

c (4.39g)

[K]v,w = [K+]v,w − [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (4.39h)

[K̂]v,w = [K+]v,w + [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (4.39i)

0 ≤ [K+]v,w ⊥ [K−]v,w ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (4.39j)

0 ≤ [K̂]v,w ⊥
∑
w′ �=w

[K̂]v,w′ ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (4.39k)

0 ≤ [K̂]v,w ⊥
∑
v′ �=v

[K̂]v′,w ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (4.39l)
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4 Simultaneous design of reactor network and its decentralized control system

⎡
⎣ zi

N∑
j=1

q̄i,j +
N∑
k=1

q̄h(i,k) > 0

⎤
⎦ ∨

⎡
⎣ z̄i

q̄i,j = 0, ∀j = 1, · · · , N
q̄h(i,k) = 0, ∀k = 1, · · · , N

⎤
⎦ , ∀i = 1, · · · , N,

(4.39m)⎡
⎣ zi,r

nm∑
v=1

[K̂]v,�(i,r) > 0

⎤
⎦ ∨

⎡
⎣ z̄i,r

nm∑
v=1

[K̂]v,�(i,r) = 0

⎤
⎦ , ∀i = 1, · · · , N, r = 1, · · · , ni

c, (4.39n)

zi,r ≤ zi, r = 1, · · · , ni
c, i = 1, · · · , N, (4.39o)

[
zi
∅
]
∨
⎡
⎣ z̄i

nc∑
w=1

[K̂]v,w = 0, ∀v ∈ Θi

⎤
⎦ , i = 1, · · · , N. (4.39p)

πτ ∈ Rnπτ denote uncertain parameters, which are elements of π defined in Eq. (4.3). π̄τ

denote the nominal values of πτ and Δπ̄τ denote the size of the uncertainty region. We
have assumed that uncertain parameters πτ lie always in the region of [π̄τ ±Δπ̄τ ]. Upper
and lower bounds of the design parameters ψc are denoted by ψU

c and ψL
c , respectively.

Eq. (4.39a) is an economic cost function. Eqs. (4.39b)-(4.39e) define the steady states of
the closed-loop model (4.7). Eq. (4.39f) is the so-called robust eigenvalue constraint, which
guarantees robust dynamic properties. It requires that the spectral abscissa of matrix J̄ is
less than −c for all the nearby operating points, derived by varying uncertain parameters
πτ in the uncertain region [π̄τ ± Δπ̄τ ], cf. [119]. The larger c, the faster is the response
in the final design. Note that Eq. (4.39f) covers only the dynamic properties of non-
idle reactors and controllers. Therefore, the effect of idle reactors and controllers on the
dynamic properties of the designed network are ruled out.
Eq. (4.39g) are box constraints on decision parameters ψc, which include, for example,

bounds on reactor dimension and controller parameters. Eqs. (4.39h)-(4.39l) guarantee a
proper decentralized control structure and are reproduced from Eq. (4.11). Eqs. (4.39m),
(4.39n) define idle/non-idle reactors and controllers. Eqs. (4.39o), (4.39p) impose struc-
tural constraints on individual reactors, controllers and the usage of candidate CV. They
are reproduced from Eqs. (4.14), (4.16), (4.19), (4.21) accordingly.
Problem (4.39) formulates a closed-loop reactor network design problem with flexible

flowsheet and control structure. Optimal flowsheet and decentralized control structure can
be determined simultaneously through solving this single optimization problem. Paramet-
ric uncertainties are considered in the proposed formulation such that the final design has
robust dynamic properties. Moreover, problem (4.39) determines the optimal number of
reactors of each type (PFR or CSTR) as well as the optimal number of PI controllers in
the final design.
We note that we are not allowed to choose an arbitrary large value of c, because physical

systems always show inherent limitations of the response speed. Choosing a too large c
may render the optimization problem (4.39) infeasible.

4.3 Summary

In this section we have formulated optimization problem (4.39) for closed-loop reactor
network synthesis, in which both flowsheet and control structure alternatives are design
degrees of freedom. Idle reactors and controllers are allowed to appear in the problem
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4.3 Summary

formulation. Hence, solving problem (4.39) also determines the optimal number of non-
idle reactors and controllers in the final design. The eigenvalue constraint (4.39f) is used
to guarantee robust stability and a specified response speed, while complementarity con-
straints (4.39h)-(4.39l) and disjunctions (4.39m)-(4.39p) ensure a decentralized control
system and feasible structural relationships between reactors and controllers.
The presented formulation is directly based on the results of the open-loop reactor

network synthesis problem presented in Chapter 3. A decentralized control system is
added to the open-loop model (3.20). The idea of formulating eigenvalue constraint (4.38)
for the closed-loop reactor network is closely related to Eq. (3.33), and the proposed
reformulation strategy (4.36) to treat the discontinuity of eigenvalue constraint (4.35) is
derived from Eq. (3.42). Hence, this chapter presenting closed-loop reactor network design
can be considered as an extension of the open-loop reactor network design problem shown
in Chapter 3.
In contrast to the open-loop reactor network design problem, the complementarity con-

straints (4.11) and the structural relationships (cf. Section 4.1.4) are novel elements. Eq.
(4.11) presents an interesting complementarity-based formulation for decentralized control
structure selection. It can be treated by numerical optimization method more efficiently,
compared to the integer-based formulations proposed in [124]. This complementarity-based
formulation is very promising, because it has the potential to be applied to other control
structure selection problems. The structural relationships are proposed to ensure feasible
structures, if idle reactors and controllers appear in the final design.
The obtained optimization problem (4.39) is subject to the following limitations. First,

the spectral abscissa of the Jacobian matrix (cf. Eq. (4.39f)) is used as a single design
criterion for the closed-loop design. It may result in conservative designs, if, for example,
fast disturbances appear or the process shows strong nonlinearity. The consideration of
other design criteria should be investigated in the future. Second, the specified robustness
in Eq. (4.39f) is only defined on the steady states near the nominal operating point. The
attractive region U (cf. Theorem 2.3.3) may in certain cases be very small, and if this is
the case, any small disturbances will make the system converge to another steady state.
Third, the obtained optimization problem (4.39) is very difficult to solve, even for local
minima (cf. Section 5.5), because of the combined features of process nonlinearity, non-
smoothness of the eigenvalue constraint, complementarity constraints, integer variables,
disjunctions and parametric uncertainty. Finally, as in case of the open-loop synthesis
problem (cf. Section 3.3), the numerical performance of the big-M reformulation (4.36)
and the reformulation strategy regarding Eq. (4.37) should be further investigated.
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5 Solution methods

In previous chapters we derived two optimization problems, Eqs. (3.44) and (4.39), which
correspond to the open-loop and the closed-loop reactor network design problem, respec-
tively. Both problem formulations combine the features of mixed continuous/integer vari-
ables, disjunctions, complementarities, uncertain parameters and eigenvalue constraints.
To the author’s knowledge, there do not exist numerical solvers in literature or even the
open domain that can solve problems with all these features. In this chapter, we will first
review each related classes of optimization problems and then propose a two-step hybrid
solution strategy for the optimization problems (3.44) and (4.39).
Note that the symbols used in this chapter are not the same as those symbols used in

the modeling part of this work in Chapters 3 and 4. To simplify the notation, the meaning
of each of the symbols used in this chapter is always explained when they are introduced.

5.1 Discrete-continuous optimization

Mixed-integer nonlinear program (MINLP) and generalized disjunctive program (GDP)
are closed related. For this reason, we review these two classes of discrete-continuous
optimization problems in one section.

5.1.1 Mixed-integer nonlinear program

MINLP refers to mathematical programs with mixed continuous/discrete variables and
nonlinear objective function and/or constraints. A general form of a MINLP is

min f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X, y ∈ {0, 1}ny .

(5.1)

The functions f(x, y) and g(x, y) are nonlinear, twice continuously differentiable functions.
X ⊂ Rnx is a bounded polyhedral set. x is a vector of continuous decision variables, while
y is a vector of binary decision variables.
According to the convexity of the objective function and the constraints of a MINLP, we

can classify it into either convex or non-convex MINLP. Problem (5.1) is called a convex
MINLP, if the functions f(x, y) and g(x, y) are convex, otherwise, it is non-convex [17].
A convex MINLP is easier to solve than a non-convex MINLP. Bonami et al. [22] review
the state-of-the-art algorithms for solving convex MINLP and Tawarmalani and Sahinidis
[171] review global optimization algorithms for solving non-convex MINLP.

5.1.2 General concepts to solve MINLP

Two concepts that frequently appear in solving convex and non-convex MINLP are relax-
ation and constraint enforcement [17].
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5.1 Discrete-continuous optimization

Formally, an optimization problem min{fr(x) : x ∈ Sr} is called a relaxation of another
optimization problem min{f(x) : x ∈ S}, if Sr ⊇ S and fr(x) ≤ f(x), for all x ∈ S [17]:
A relaxed problem can be obtained by enlarging the feasible set and/or by replacing the
original objective function by its lower estimator. From this definition, there may exist
many different ways to relax a given MINLP. In practice, however, we are only interested
in relaxed problems which can be solved much more easily than the original one. Convex
nonlinear programs (NLP) and mixed-integer linear programs (MILP) qualify, because
both of them can be solved to global optimality by using local optimization algorithms. For
convex MINLP, convex NLP can be generated by relaxing integer variables, and MILP can
be generated by applying the outer approximation (OA) method, which linearly relaxes
nonlinear convex constraints. The benefits of relaxation are that, the obtained relaxed
problem guarantees a lower bound of the original one, and one can use this property in
different ways to exclude further investigation of the subproblems such that the optimal
solution of the original MINLP can be found in the end.
Constraint enforcement refers to a procedure which excludes solutions that are feasible

to the relaxed problem but not feasible to the original MINLP [17]. Constraint enforcement
can be accomplished by either relaxation refinement or branching [17]. Because solving a
relaxed problem may result in solutions which are not feasible for the original one, the goal
of constraint enforcement is to exclude these solutions such that the algorithm can even-
tually converge to a true solution of the original one. The method of relation refinement
usually tightens the relaxation by adding extra inequalities, while the method of branching
either branches an integer variable into 0 or 1, or branches the feasible domain of a continu-
ous variable into separate sub-domains. Branching continuous variables requires a division
of the feasible domain X of continuous variables into (typically) two sub-domains. Lower
bounds for these sub-domains, which do not include the solution of the original problem,
will eventually become larger than the upper bound1 determined by the algorithm. When
this happens, these sub-domains can be excluded from further search. Also by succes-
sive branching, sub-domains become smaller and smaller, one of them finally indicate the
location of the global minimum.

5.1.3 Solution methods for convex MINLP

Methods to solve convex MINLP include branch and bound (B&B) [31, 58], outer approxi-
mation (OA) [36, 42], generalized Bender’s decomposition (GBD) [52] and extended cutting
plane methods [183]. These approaches generally rely on successively solving multiple re-
laxed convex NLP (e.g., B&Bmethod) or relaxed MILP (e.g., OA method). Comprehensive
reviews of convex MINLP methods can be found in [17, 45, 128, 173].
For the sake of brevity, we only review the fundamentals of the B&B method2. Original,

the B&B method aimed at solving MILP [31]. Later the method was extended to the
convex nonlinear case [23, 58, 97]. In B&B, branching is done in the feasible space of
integer variables, i.e., integer variables are fixed to either 0 or 1. A sequence of relaxed
subproblems, which are convex NLP3, are solved to global optimality by using a local

1This upper bound is a feasible point of the original MINLP, but it is not necessarily optimal.
2In comparison to the terminology “spatial branch and bound” (sB&B) used in the literature of global
optimization, we use B&B to explicitly refer to solution algorithms for convex MINLP, which branch
only integer variables into 0 or 1.

3The NLP derived from a convex MINLP are convex.
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5 Solution methods

NLP solver. The B&B method starts by solving a root subproblem, in which all integer
variables y are relaxed by 0 ≤ y ≤ 1. Since, in general, discrete values of integer variables
can not be a solution of the root subproblem, a tree search of integer variables, namely
branching, is performed. Solving relaxed subproblems generates lower bounds, which can
be used to fathom subproblems. These subproblems do not have to be branched further.
B&B algorithms are suitable for optimization problems, in which there are not too many
integer variables and each subproblem can be solved efficiently.

5.1.4 Solution methods for non-convex MINLP

Solving non-convex MINLP is more challenging than solving convex MINLP, because it
is not straightforward to obtain valid lower bounds for the purpose of fathoming. Using
the relaxation strategy applied for solving convex MINLP, the generated subproblems are
generally non-convex. Valid lower bounds can only be produced if the subproblems are
solved to global optimality. This is problematic, because solving non-convex subproblems
to global optimality is as difficult as solving the original non-convex MINLP. For this rea-
son, new relaxation strategies are proposed in literature, which result in relaxed convex
subproblems, e.g., in convex NLP, MILP. These convex subproblems can be solved to global
optimality efficiently by using local solvers; therefore, valid lower bounds can be obtained
for fathoming. Note that the relaxation strategies used to solve non-convex MINLP are
closely related to global optimization methods [46]. A review of global optimization meth-
ods can be found in, e.g., [47]. For solving non-convex MINLP by global algorithms, we
refer to the textbook [171].

Two procedures are essential for solving non-convex MINLP globally. The first proce-
dure refers to the construction of convex relaxations. This can be done by using global
optimization methods for factorable functions. An objective function or a constraint is
called factorable, if it can be expressed as the sum of products of unary functions of
a finite set {sin, cos, exp, log, | · |}, whose arguments are variables, constraints, or other
functions, which are in turn factorable [17]. Different formulations have been proposed
to transform the unary functions and the operators of {+,×,÷, ˆ } into relaxed convex
forms, including LP relaxation for monomials of odd degree [100], or convex hull relaxation
for the products of two variables [3]. Using these formulations, non-convex MINLP can be
ultimately relaxed to convex subproblems, which can be solved to global optimality.

The second procedure partitions the feasible set by branching integers (to be either 0
or 1) and the feasible region of continuous variables. The global optimization community
refers to this procedure as spatial branch and bound (sB&B). Branching integers is the
same as discussed before in the context of the B&B method for convex MINLP. Partitioning
the feasible region of continuous variables means to spatially divide the feasible region of
continuous variables into two subsets. The derived subsets are typically disjoint from each
other to avoid searching optimal solutions in the same region. Branching and partitioning
yield two or more subproblems, which have smaller feasible sets and can be relaxed again
by using the same strategy as before. Each derived subproblem is solved to generate
tighter lower bounds and to update the upper bound. A subproblem can be fathomed,
if its lower bound is larger than the algorithm’s estimation of the upper bound for the
original MINLP. This procedure is repeated until the gap between the upper and lower
bounds lies in a certain tolerance interval.

62

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


5.1 Discrete-continuous optimization

5.1.5 Generalized disjunctive programming

Generalized disjunctive programming (GDP) [94, 95, 140] is closely related to MINLP.
GDP is a generalized from of disjunction programing [13] and represents a higher-level
representation of MINLP problems [173]. The basic idea of GDP is to use Boolean (true,
false) and continuous variables to formulate constraints. Any GDP problem can be re-
formulated as a mixed-integer problem, and any MINLP can be posed in the form of a
GDP [57]. However, it is more natural to start modeling with a GDP, as it captures more
directly both the qualitative (logical) and quantitative (equations) parts of a problem, and
then reformulate it into a mixed-integer problem [177].
A GDP is typically transformed to an MINLP by, e.g., the big-M method [125] or the

convex hull method [94, 95], and is then solved by algorithms designed for MINLP. The
basic ideas of the big-M method and the convex hull method are to replace the disjunc-
tive constraints by a set of algebraic constraints, which comprise binary and continuous
variables. The convex hull method has initially been developed for disjunctions with only
linear constraints [13]. Afterwards, it has been extended to the nonlinear convex [94] and
non-convex case [95]. As the name “convex hull” indicates, the motivation of the con-
vex hull method is to get the tightest convex relaxation of the feasible region, such that
tight lower bounds can be obtained. For more details on this method we refer to the
above-mentioned original works.
Here, we briefly present the major idea underlining the big-M method. Let us consider

the generalized form of a single disjunction

∨i∈D

[
Yi

θi(x) ≤ 0

]
,

Yi ∈ {true, false}.
(5.2)

D is a finite index set of i, x ∈ Rnx is a vector of continuous variables, Yi ∈ {true, false}
is a Boolean variable, and θi(x) is a vector-valued real function. The disjunction in Eq.
(5.2) contains several disjunctive terms [Yi; θi(x) ≤ 0]. The symbol ∨ refers to a logical
operator, which has the meaning of logical “or”. Enforcing Eq. (5.2) requires that at least
one disjunctive term is true, i.e., that there exists at least one i∗ such that Yi∗ = true and
θi∗(x) ≤ 0.
The big-M method reformulates Eq. (5.2) by using binary variables into the equivalent

form

θi(x) ≤ Mi(1− yi), (5.3a)∑
i∈D

yi ≥ 1, (5.3b)

yi ∈ {0, 1}. (5.3c)

Mi is a sufficiently large upper bound for constraint θi(x), and yi is an introduced binary
variable. When yi = 1, the inequality constraint (5.3a) becomes θi(x) ≤ 0. When yi = 0,
the inequality constraint (5.3a) becomes redundant, because it is satisfied for sufficiently
large Mi. Constraint (5.3b) guarantees that at least one binary variable equals 1. In
contrast to Eq. (5.2), Eq. (5.3) contains only algebraic constraints depending on binary
and continuous variables. Eq. (5.3) can be treated by MINLP algorithms straightforwardly.
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5 Solution methods

Note that Eq. (5.2) also represents a specialized form, which appears frequently in
engineering applications, namely

[
Y1

θ1(x) ≤ 0

]
∨
[

Y 1

θ2(x) ≤ 0

]
,

Y1 ∈ {true, false}.
(5.4)

Y1 denotes a Boolean variable, Ȳ1 denotes the negation of Y1. θ1(x) and θ2(x) are two
vector-valued functions. Because either Y1 = true or Ȳ1 = true, Eq. (5.4) represents one
and only one disjunctive term to be true. Using y1 and 1 − y1 to represent Y1 and Ȳ1,
respectively, Eq. (5.4) can be reformulated to

θ1(x) ≤ M1(1− y1),

θ2(x) ≤ M2y1,

yi ∈ {0, 1}.
(5.5)

5.2 Mathematical programs with complementarity

constraints

Mathematical programs with complementarity constraints (MPCC) can be formulated as

min f(x, y, z)

s.t. g(x, y, z) ≤ 0,

h(x, y, z) = 0,

0 ≤ y⊥z ≥ 0,

(5.6)

where x ∈ Rm, y ∈ Rp and z ∈ Rp are decision variables. g(·) and h(·) refer to inequality
and equality constraints, respectively. Constraints 0 ≤ y⊥z ≥ 0 are called complementarity
constraints. This notation is a short hand of

y ≥ 0,

z ≥ 0,

yi = 0 or zi = 0, ∀i = 1, · · · , p,

where yi and zi denote the i-th element of y and z, respectively. In the derived optimization
problem (4.39), Eqs. (4.39h)-(4.39l) are complementarity constraints. This section reviews
methods to treat optimization problems with complementarity constraints.

The complementarity constraints in MPCC (5.6) can be replaced by, e.g., any of the
following equivalent algebraic forms:

(i) y ≥ 0, z ≥ 0, yizi ≤ 0, ∀i = 1, · · · , p,
(ii) y ≥ 0, z ≥ 0, yT z = 0,

(iii) y ≥ 0, z ≥ 0, yT z ≤ 0.

(5.7)
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5.2 Mathematical programs with complementarity constraints

MPCC are closely related to mathematical programs with equilibrium constraints
(MPEC) [107]. MPCC is actually a special case of MPEC. An MPEC is a constrained
optimization problem, in which some or all of its constraints are defined as parametrized
variational inequalities (VI) [37]. MPEC take the general form

min f ′(x′, y′)

s.t. (x′, y′) ∈ Z ⊂ R
m+n,

y′ ∈ C(x′),

(v′ − y′)TF (x′, y′) ≥ 0, ∀v′ ∈ C(x′),

(5.8)

where x′ ∈ Rm and y′ ∈ Rn. Z denotes a feasible subset in Rm+n. C : Rm → Rm is a
set-valued function with closed convex values, i.e., ∀x′, C(x′) denotes a subset in Rn which
is closed and convex. Constraints (v′ − y′)TF (x′, y′) ≥ 0, y′ ∈ C(x′), ∀v′ ∈ C(x′), are the
so-called variational inequalities (VI), which are parametrized by x′.
Under some assumptions on the VI, i.e., if C(x′) = Rm

+ , MPEC (5.8) can be reformulated
to an equivalent MPCC [107]. From this perspective, it is not surprising that any MPCC
can also be reformulated backwards into a MPEC [16]. Because MPEC is more general than
MPCC, MPEC are generally more difficult to be solved. For a comprehensive discussions
of MPEC, we refer to the textbook [107].
In this work, we will focus on MPCC only. Properties of MPCC and relevant solution

methods will be discussed later. General reviews of MPCC are provided in [43, 98, 145].
A good introduction about the fundamentals of MPCC and its relationship to NLP can
be found in the introduction section of [178]. The material presented here follows the
discussion in [178].

5.2.1 MPCC versus NLP

Although any MPCC can be reformulated into an NLP by applying, e.g., Eq. (5.7),
MPCC is different from NLP, because the NLP reformulation resulting from application
of Eq. (5.7) does not fulfill regularity conditions, which are typically assumed for solving
NLP. In particular, Mangasarian-Fromovitz constraint qualification (MFCQ) (and thus
the stronger linear independence constraint qualification (LICQ)) is violated at all feasible
points of MPCC. Because constraint qualifications are needed to prove the convergence
of standard NLP algorithms, violation of constraint qualification means that the feasible
set of MPCC is ill-posed. Therefore, applying NLP algorithms directly to solve MPCC
becomes problematic.
Let us try to demonstrate this through a simple example taken from [178], which shows

that local minima of the original MPCC do not satisfy the KKT condition of the resulting
NLP.

Example 5.1.
min

y1,z1∈R
z1 − y1

s.t. y21 + z21 − 2z1 ≤ 0,

0 ≤ y1⊥z1 ≥ 0.

(5.9)

It is easy to see that the feasible set of MPCC (5.9) is

F = {y1 = 0, z1 ∈ [0, 1]} ⊂ R
2,
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and that its optimal solution is (y∗1, z
∗
1) = (0, 0).

If we use (iii) in Eq. (5.7) to reformulate MPCC (5.9), the NLP

min z1 − y1

s.t. y21 + z21 − 2z1 ≤ 0,

− y1 ≤ 0,

− z1 ≤ 0,

y1z1 ≤ 0,

(5.10)

is obtained.
First, it is not difficult to verify that MFCQ for problem (5.10) is violated at (y∗1, z

∗
1) =

(0, 0). Actually, MFCQ for problem (5.10) requires that there exists a vector d ∈ R2, such
that the gradients of all active inequalities, denoted as ∇gact, satisfy ∇gactd < 0. However,
at point (y∗1, z

∗
1) = (0, 0), where all four inequalities are active,

∇gact =

⎡
⎢⎢⎣

0 −2
−1 0
0 −1
0 0

⎤
⎥⎥⎦ ,

and we can not find such a d. Note that, because LICQ implies MFCQ, LICQ is not
fulfilled, either.
Second, we show that the optimal solution of MPCC (5.9), namely (y∗1, z

∗
1) = (0, 0), does

not satisfy the KKT condition of NLP (5.10). In this sense, if we use NLP algorithms, such
as sequential quadratic programming (SQP), which are designed to converge to the KKT
points of NLP (5.10), such algorithms will not converge to the correct solution (y∗1, z

∗
1) =

(0, 0) of the original MPCC (5.9). The KKT conditions of NLP (5.10) at (y∗1, z
∗
1) = (0, 0)

take the form

0 =

[ −1
1

]
+ λ1

[
0
−2

]
+ λ2

[ −1
0

]
+ λ3

[
0
−1

]
+ λ4

[
0
0

]
,

λ1, · · · , λ4 ≥ 0.

(5.11)

λ1, · · · , λ4 denote Lagrangian multipliers for each of the four constraints in NLP (5.10). It
is easy to verify that Eq. (5.11) contains no feasible solutions, because it requires λ2 = −1
and λ2 ≥ 0 simultaneously. Hence, it is problematic to solve MPCC by directly applying
KKT conditions to the reformulated NLP.

From this simple example, we see that, because of the avoidance of the regularity properties,
we can not use standard necessary optimality conditions (e.g. KKT conditions) of NLP
to characterize local minima of MPCC. To characterize local solutions of MPCC, different
stationarity concepts and constraint qualifications have been proposed in the literature.
Scheel and Scholtes [149] proposed four types of stationarity concepts. Among them,
the strongly stationarity concept is the strongest condition. There exist also a variety of
specialized constraint qualifications for MPCC. For example, MPCC-LICQ is the most
frequently used condition, which is also the easiest one to be verified [178]. For more
details, we refer to [107, 149, 186, 187].
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5.2 Mathematical programs with complementarity constraints

5.2.2 Solution methods for MPCC

Solution methods for MPCC (5.6) strongly relate to NLP solution methods. They can be
classified into regularization (smoothing) methods, penalty methods and methods based
on direct/adapted application of particular NLP algorithms, such as interior-point (IP),
or sequential quadratic programming (SQP) methods [178]. In this section, we first review
the penalty method, the SQP method and the interior-point method for MPCC, and then
discuss the regularization method.

Penalty method

The penalty method has originally been proposed to solve NLP. The general idea is to
replace the constrained optimization problem by a series of unconstrained problems. Under
proper conditions, the solutions of the derived unconstrained problem converge to the
solution of the original problem.

The idea of the penalty method can also be applied to solve MPCC: complementarity
constraints are transformed into a penalty term in the objective function. Instead of solving
the original MPCC (5.6), one solves the NLP

min f(x, y, z) +Mp(y, z)

s.t. g(x, y, z) ≤ 0,

h(x, y, z) = 0.

(5.12)

M is a constant, which is sufficiently large. p(y, z) denotes a penalty term. Differ-
ent researchers proposed different forms of p(y, z). For example, Luo et al. [108] used
p(y, z) = yTx and Scholtes and Stöhr [153] used a suitable extension of the l1-penalty term.
Interesting to note that, instead of providing convergence proof for specialized penalty
terms, Hu and Ralph [72] have proposed conditions on formulating functions p(y, z) to
ensure convergence.

Interior point method

The interior point method has also originally been developed to solve NLP. The general
idea of the interior point method (also called barrier method) is to use a barrier function
such that all iterations satisfy the inequalities of the original problem strictly, i.e., that all
solution iterates are located inside the interior of the feasible region.

The interior point method for MPCC was first proposed in [104], where the relaxed
barrier problem [178]

min f(x, y, z)− μ
∑

i=1,··· ,4,∀j

ln(si,j)

s.t. h(x, y, z) = 0,

− g(x, y, z) = s1,

y = s2,

z = s3,

εe− Y z = s4,

(5.13)
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is solved. Y = diag(y1, · · · , yp) ∈ Rp×p, μ > 0 is the barrier parameter, e = (1, · · · , 1)T ∈
Rp, ε > 0 denotes a relaxation parameter, and s1, · · · , s4 are the so-called slash variables.
si,j denotes the j-th element of si. ln(si,j), ∀i, j, refers to a barrier term, which requires
that si,j > 0 during all numerical iterations.
In the above formulation, both μ and ε need to be stepwise reduced to zero and a series

of problems in the form of Eq. (5.13) have to be solved. Liu and Sun [104] proposed a
shortcut procedure to simultaneously reduce μ ↓ 0 and ε ↓ 0. In particular, the barrier
parameter μ is selected to be a fraction of ε. Global convergence of the proposed algorithm
is proven under certain conditions.
In [138], a similar interior point approach is proposed and the analyzed barrier problem

is akin to problem (5.13) [178]. The interior point method proposed in [32] is different
from previous approaches. The authors use a two-sided relaxation, in which both comple-
mentarity and non-negativity constraints are relaxed.

SQP method

Because of the theoretical differences between MPCC and NLP (cf. Section 5.2.1), a
direct application of SQP algorithms designed originally for NLP to solve MPCC seems
problematic. However, Fletcher et al. [44] were able to show that an SQP method converges
quadratically near a strongly stationary point under mild conditions. In their work the
NLP reformulation

min f(x, y, z)

s.t. g(x, y, z) ≤ 0,

h(x, y, z) = 0,

yT z ≤ 0,

(5.14)

of the original MPCC (5.6) was studied. The authors discovered an equivalence relationship
between the strongly stationary conditions of MPCC and the KKT conditions of NLP
(5.14). It was proven that the sequence generated by applying the SQP method to NLP
(5.14) locally converges to the strongly stationary solutions of MPCC (5.6).
The work [44] is further extended by [5, 6]. Anitescu [5] suggested the so-called elastic

mode, which transforms a MPCC into a NLP with additional variables such that it has
an isolated stationary point and a local minimum at the solution of the original problem.
Anitescu et al. [6] studied the global convergence of this SQP method.
Consequently, the direct application of SQP algorithms to solve MPCC are quite promis-

ing. However, this approach can only be successful for MPCC with strongly stationary
solutions [178]. Next, we will review regularization (smoothing) approaches, which are not
subject to this restriction.

Regularization (smoothing) method

The idea of the regularization or smoothing method is to find a way to enlarge the feasible
set of MPCC such that regularity conditions of the derived optimization problems (e.g.
MFCQ, LICQ) can be achieved. A sequence of regularized NLP are typically generated
to approximate the original MPCC. Instead of solving the original MPCC, one solves the
generated sequence of regularized NLP. Under certain conditions it can be proven that the
limit points of the solutions of the regularized problems are the correct solutions of the
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5.2 Mathematical programs with complementarity constraints

original MPCC. In practice, regularized NLP are often generated by continuously reducing
an introduced parameter.
A great advantage of the regularization method is that one can use off-the-shelf NLP

solvers. One can directly implement a regularization method without too much program-
ming effort to large instances of MPCC. However, a disadvantage of this type of methods
is that, in order to find an approximate solution of the original MPEC, multiple NLP sub-
problems must be solved. Compared with relaxation-free approaches, such as exact penalty
methods, or the direct application of the SQP method, solving a sequence of subproblems
leads to inferior numerical performance.
Regularization methods for MPCC can be further classified into methods based on non-

linear complementarity problem (NCP) functions and non-NCP-based methods [178].

Definition 5.2.1. A function ϕ : R2 → R is called a NCP function, if ∀a, b ∈ R

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Exemplary NCP functions are the minimum function,

ϕmin(a, b) = min(a, b),

and the Fischer-Burmeister (FB) function,

ϕfb(a, b) = a+ b−
√
a2 + b2.

With some NCP functions ϕ(·), MPCC (5.6) can be reformulated to

min f(x, y, z)

s.t. g(x, y, z) ≤ 0,

h(x, y, z) = 0,

ϕ(yi, zi) = 0, ∀i = 1, · · · , p.

(5.15)

Problem (5.15) is equivalent to MPCC (5.6) in the sense that the feasible regions and the
optimal solutions of two problems are exactly the same. However, because NCP functions
are not differentiable at (0, 0), NLP algorithms can not be directly applied.
The idea of NCP-based methods is to use a positive parameter ε ∈ R to smoothen the

NCP function. For example, the minimum function ϕmin and the FB function ϕfb can be
smoothened by

ϕmin
ε =

1

2
(a+ b−

√
(a− b)2 + 4ε2),

ϕfb
ε = a+ b−

√
a2 + b2 + 2ε2.

For a given sequence εk > 0, εk ↘ 0 as k → ∞, smoothened NCP functions ϕεk can be
used to construct the sequence of smoothened MPCC

min f(x, y, z)

s.t. g(x, y, z) ≤ 0,

h(x, y, z) = 0,

ϕεk(yi, zi) = 0, ∀i = 1, · · · , p.

(5.16)
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Problem (5.16) is parametrized by εk. Because all functions are sufficiently smooth, it is
actually a classical NLP.
Therefore, instead of solving MPCC (5.6), one alternatively solves a sequence of NLP

(5.16), which is parametrized by εk. As εk ↘ 0, the feasible region of problem (5.16)
approximates the feasible region of MPCC (5.6). It can be proven that, under certain
conditions, the stationary points of problem (5.16) converge to the stationary points of
MPCC. For details, we refer to the original works [38, 74, 192].
Methods based on non-NCP functions use other relaxation schemes to reformulate the

complementarity constraints in MPCC. The general procedure is, however, the same as the
one used in NCP-based methods. That is, a sequence of relaxed NLP are generated and
solved, whose stationary points converge to the stationary points of the original MPCC.
Scholtes [152] proposed the following relaxation scheme to reformulate the complemen-

tarity constraint in MPCC (5.6):

y ≥ 0, z ≥ 0, yizi ≤ ε, ∀i = 1, · · · , p. (5.17)

He proved that, if MPCC-LICQ holds for MPCC, the accumulation points of the stationary
points of the relaxed NLP are C-stationary points of the original MPCC. If, in addition,
an approaching subsequence satisfies a second order necessary conditions of MPCC, the
accumulation points are M-stationary points. And if in addition, an upper level strict
complementarity condition hold, they are B-stationary. The work is further extended in
[139]. Theoretical results in these works are mainly about the relationship between the
reformulated NLP and the original MPCC, boundedness of Lagrange multipliers, local
uniqueness of the solutions and smoothness of the solution mapping. These issues are
explored under various assumptions on the original MPCC at local stationary points.
Lin and Fukushima [102] proposed the modified relaxation scheme

yizi ≤ ε2, ∀i = 1, · · · , p,
(yi + t)(zi + t) ≥ ε2, ∀i = 1, · · · , p.

The provided convergence proof is closely related to [152]. In this work, it is shown that
LICQ holds for the proposed relaxed problem under certain mild conditions. By consid-
ering the limiting behavior of the relaxed problem, the authors of [152] proved, that any
accumulation point of the stationary points of the relaxed problems is C-stationary to the
original MPCC if MPCC-LICQ holds, and that, if the Hessian matrices of the Lagrangian
functions of the relaxed problems are uniformly bounded below in the corresponding tan-
gent space, it is M-stationary.
Lin and Fukushima [101] analyzed another relaxation method. Denote e = (1, · · · , 1)T ∈

Rp as a vector containing only 1. Denote ej ∈ Rp as a vector, in which the j-th element is
1 and the other elements are 0. e0 = 0 ∈ Rp denotes a null vector. Define

ekj =
1

k
e+ kej, ∀j = 0, · · · , p.

The proposed relaxation of the complementarity constraint is

y ≥ 0,

(ekj − y)T z ≥ 0, ∀j = 0, · · · , p.
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Recently, Steffensen and Ulbrich [160] introduced a new relaxation method for MPCC.
Let θ(·) : D → R be a function on D = [−1, 1], which satisfies: (1) θ(·) is twice continuously
differentiable on [−1, 1]; (2) θ(1) = θ(−1) = 1; (3) θ′(1) = 1, θ′(−1) = −1; (4) θ′′(1) =
θ′′(−1) = 0; (5) θ is strictly convex in (−1, 1). An exemplary θ(·) is

θex(a) =
1

8
(a4 + 6a2 + 3),

where a ∈ R.
By introducing function φ : R× R× R+ → R defined by

φ(yi, zi, ε) =

{
|yi − zi|, if |yi − zi| ≥ ε

εθ(yi−zi
ε

), otherwise,

Steffensen and Ulbrich [160] proposed a relaxation of the complementarity constraints

y ≥ 0, z ≥ 0, yi + zi ≤ φ(yi, zi, ε), ∀i = 1, · · · , p.
The authors proved that, limit points of the stationary points of the relaxed NLP are
C-stationary, if they satisfy the so-called MPEC-constant rank constraint qualification.
Furthermore, they show if a limit point satisfies MPEC-LICQ and the stationary points
satisfy a second-order sufficient condition, this limit point is M-stationary.

5.2.3 Relationship to MINLP

Solution methods designed for MPCC can also be applied to solve MINLP. The basic idea
is to transform MINLP (5.1) into MPCC by replacing integer constraints y ∈ {0, 1}ny by
complementarity constraints

0 ≤ yi⊥(1− yi) ≥ 0, ∀i = 1, · · · , ny. (5.18)

This way, the MPCC methods can be directly applied to the resulting problem

min f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X,

0 ≤ yi⊥(1− yi) ≥ 0, ∀i = 1, · · · , ny.

(5.19)

Because all integer constraints in MINLP (5.1) have been replaced by complementarity
constraints, problem (5.19) is called complementarity-based reformulation of MINLP.
Problem (5.19) is a special type of MPCC. There are some works, which discuss solution

methods for this type of problems. Herty and Steffensen [63] studied some theoretical
issues of the reformulated problem (5.19), i.e., stationary conditions, feasibility, existence
and optimality of the limit points of a sequence of stationary points. Baumrucker et al.
[16] compared numerical performance of different smoothing methods for problem (5.19)
and investigated the wide application of MPCC in chemical engineering. Stein et al. [165]
considered the specialized continuous reformulation of integer constraints, which takes the
form of

(yi − 0.5)2 + ((1− yi)− 0.5)2 ≤ 0.5,

(yi − 0.5)2 + ((1− yi)− 0.5)2 ≥ (
1√
2
− ε)2,
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∀i = 1, · · · , ny. ε > 0 is a parameter for relaxation. The authors also extended the method
to treat GDP problems.
A great advantage of solving MPCC (5.19) instead of solving the original MINLP (5.1),

is that local minima4 of the original problem (5.1), which approximate its global minimum,
can be calculated in an efficient way. The complementarity-based reformulation (5.19) has
the property that one can use local solvers for MPCC to determine the optimal combination
of integer variables directly. In particular, one does not need to fix integer values a priori.
Local solvers can be initialized randomly for both continuous and integer variables, and
the optimal solution will be decided by the applied solver automatically. Furthermore,
multiple-start strategies can be applied to obtain a good local minimum. The reformulation
of Eq. (5.19) is especially useful, if the original MINLP is of large size and can not be
solved by global algorithms in reasonable time.

5.3 Semi-infinite programming

Semi-infinite programming (SIP) considers the optimization problem

min
x

f(x) (5.20a)

s.t. g(x, y) ≥ 0, ∀y ∈ T. (5.20b)

where x ∈ X ⊂ Rm and y ∈ Y ⊂ Rn, f : Rm → R, and g : Rm → R have second-order
continuous derivatives. T ⊂ Rn is a known compact set, which contains an infinite number
of elements. For simplicity, additional equality constraints are omitted. Problems of this
type arise in a variety of engineering applications. General reviews of SIP can be found in
[66, 105, 161, 180].
Problem (5.20) is called an “infinite” program, because the set T contains an infinite

number of elements. As a result, there are infinitely many constraints in Eq. (5.20b).
Hence, SIP contain a finite number of decision variables, i.e., x and y, but an infinite
number of constraints.
Constraint (5.20b) can be reformulated equivalently by

0 ≤ min
y∈T

g(x, y). (5.21)

So, we can define the feasible set of SIP (5.20) by

F = {x ∈ X | 0 ≤ min
y∈T

g(x, y)}. (5.22)

We also see that, if we denote

Q(x) : min
y∈T

g(x, y) (5.23)

as a parametrized optimization problem, Q(x) is actually an inner (lower-level) optimiza-
tion problem of the original SIP. Note that, however, to guarantee feasibility of SIP (5.20),
Q(x) must be solved to global optimality. Local minima of Q(x) are not sufficient to guar-
antee the feasibility of the original SIP. Therefore, solving SIP is more challenging than
solving NLP.

4Local minima of a non-convex MINLP refer to the local minima of the derived NLP, in which all integer
variables of the original MINLP are fixed to binary values (either 0 or 1).
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Problem (5.20) is a specialization of a so-called bi-level (BL) optimization problem. A
BL optimization problem takes the general form [163]

min
x,y

fb(x, y)

s.t.0 ≤ gb(x, y),

y ∈ arg min
y∈Tb

hb(x, y),

(5.24)

where fb, gb, hb have second-order continuous derivatives, Tb is a given compact set. arg
miny∈Tb

hb(x, y) denotes a set of points, for which the function hb(x, y) attains its global
minima with respect to y ∈ Tb.
Any SIP (5.20) can be equivalently transformed into a BL optimization problem (5.24)

[163], if we set
fb(x, y) = f(x),

gb(x, y) = g(x, y),

hb(x, y) = g(x, y),

Tb = T.

(5.25)

A more comprehensive review of the relation between SIP and BL optimization problems
can be found in [163].
Another more generalized form of SIP is the so-called generalized semi-infinite program

(GSIP), in which the set T is not fixed but depends on x. Then, the constraints of a GSIP
take the form g(x, y) ≤ 0, ∀y ∈ T (x), where T (·) is a set-valued function, T (x) ⊂ Rm. The
first impression is that GSIP is merely a slight generalization of standard SIP. However,
Jongen et al. [80] first indicated that the feasible set of GSIP may not be compact. This
makes GSIP significantly differ from SIP. A comparison of GSIP and SIP can be found
in [166], while general results about GSIP can be found in [162–164] and the references
therein. In this work, we only review the fundamentals of SIP.
A SIP (5.20) is also called an uncertain or a robust optimization problem in applications,

because variables x and y can be referred to certain and uncertain design parameters for
engineering purposes, respectively. The set T represents then the size of the uncertainty
region. Constraint (5.20b) represents a specific design requirement, e.g., feasibility or
stability. Satisfying constraint (5.20b) robustly guarantees that the design requirement is
fulfilled for any realization of uncertain parameter y in the uncertain region T .

5.3.1 Local solution methods for SIP

Methods for solving SIP (to local minima) can be classified into local constraint reduction
methods, discretization methods and exchange methods [66], depending on how the sub-
problems are generated. An extensive survey can be found in [143]. Several more recent
methods are summarized in [161], which are based on specialized techniques of comple-
mentarity, lower-level Wolfe duality and semi-smooth approaches. In this work, we review
the classical approaches to find local minima of SIP.

Local constraint reduction methods

Like the solution algorithms for NLP, local constraint reduction algorithms for SIP can
be characterized by the property whether the algorithm is locally or globally convergent.
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Local convergence refers to the property that a local minimum can be found, if the initial
starting point lies sufficiently close to the local minimum. Global convergence refers to the
property that an algorithm can converge to local minima from remote starting points5.
Local/global convergence for the case of NLP can be found in [60, 99]. Because in practice
it is hard to know where the starting points should be selected, global convergence is
preferred.

Local constraint reduction methods with local convergence

The main idea of local constraint reduction methods is to locally solve a SIP by solving an
alternative finite optimization problem, i.e., an NLP. This goal is achieved by representing
the feasible set of the original SIP, which is defined by an infinite number of constraints
by a finite number of constraints. The finite number of constraints are derived from the
optimality conditions of the inner problem Q(x) in Eq. (5.23). The name “reduction”
comes from the fact that the number of constraints is “reduced” from an infinite to a finite
number. Local constraint reduction methods with local convergence can be dated back to
[65]. We briefly review the development presented there.

Denote point x̄ ∈ F as a feasible point of SIP (5.20), define

Ta(x̄) := {y ∈ Y | g(x̄, y) = 0}.

Ta(x̄) is called the active set of SIP at x̄. Note that, Ta(x̄) may not necessarily be a finite
set. We represent Ta(x̄) by

Ta(x̄) = {ȳk | k ∈ K} (5.26)

using an index set K, which is not necessarily finite. K actually depends on the reference
point x̄, but we still use K(x̄) = K, if not misleading.

In order to control the irregular behavior of Ta(x̄), two regularizing conditions are pro-
posed in [65]. One describes the structure of T and the other requires non-degeneracy of
the active set Ta(x̄).

Condition 5.3.1. (i) Set T can be described by a finite number of inequalities, i.e.

T = {y ∈ R
n | hl(y) ≤ 0, ∀l ∈ L},

where L is a finite index set. hl : R
m → R, l ∈ L, are C2-functions.

(ii) ∀y ∈ T , define

La(y) = {l ∈ L | hl(y) = 0}.
Assume that ∀y ∈ T , the gradients ∇yhl(y), l ∈ La(y), are linearly independent.

Under Condition 5.3.1, the inner problem Q(x), evaluated at x̄, can be denoted as

Q(x̄) : min
y

g(x̄, y) s.t. hl(y) ≤ 0, ∀l ∈ L.

Note that, from the definition of Ta(x̄), ȳk are global minima of Q(x̄).

The second proposed condition is as follows.

5One should not be confused with algorithms which attempt to find global minima.
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5.3 Semi-infinite programming

Condition 5.3.2. For any ȳk ∈ Ta(x̄), a second-order sufficient condition with strict
complementarity slackness for Q(x̄) holds at y = ȳk. That is, there exists real numbers
(multipliers) β̄k,l > 0 (strict complementarity slackness), l ∈ La(ȳk), such that

∇yg(x̄, ȳk) +
∑

l∈La(ȳk)

β̄k,l∇yhl(ȳk) = 0, (5.27)

and ∀δ ∈ Hk / {0}, where
Hk := {δ ∈ R

n|δT∇yhl(ȳk) = 0, l ∈ La(ȳk)}, (5.28)

we have
δT [∇yyg(x̄, ȳk) +

∑
l∈La(ȳk)

β̄k,l∇yyhl(ȳk)]δ > 0. (5.29)

Condition 5.3.1 and 5.3.2 lead to two important consequences: (i) Set K is finite, i.e.,
Ta(x̄) is a finite set. (ii) It is possible to describe the effect of variations of x̄ on the minima
ȳk in Q(x̄), as discussed in the following.
The KKT equation system of NLP Q(x̄) is,

0 =∇yg(x̄, yk) +
∑

l∈La(ȳk)

βk,l∇yhl(yk),

0 =hl(yk), l ∈ La(ȳk)

(5.30)

with solutions yk = ȳk and βk,l = β̄k,l > 0. The Jacobian matrix of Eq. (5.30) leads to the
following property

Lemma 5.3.1 (refer to Eq. (3.6) in [65]). Under Condition 5.3.1 and 5.3.2, the Jacobian
matrix of Eq. (5.30) with respect to yk and βk,l at yk = ȳk and βk,l = β̄k,l is non-singular.

This Lemma and the Implicit Function Theorem 2.5.1 guarantee that there exists a neigh-
borhood Ux̄ of x̄, such that for every k ∈ K, yk and βk,l are uniquely determined by x ∈ Ux̄.
In other words, there exist C1-functions yk : Ux̄ → Rn, βk,l : Ux̄ → R, ∀l ∈ La(ȳk) such that

0 ≡∇yg(x, yk(x)) +
∑

l∈La(ȳk)

βk,l(x)∇yhl(yk(x)),

0 ≡hl(yk(x)), l ∈ La(ȳk).

Since T is compact, there is a neighborhood Vx̄ ⊂ Ux̄ such that for every x ∈ Vx̄ the
global minima of Q(x) are contained in a finite set

{yk(x) | k ∈ K(x̄)}.
This makes it possible to exactly describe the feasible set F by a finite number of constraints
in the neighborhood Vx.

Theorem 5.3.2 (Local constraint reduction, refer to Constraint-Reduction-Lemma in
[65]). Let x̄ ∈ F , if Condition 5.3.1 and 5.3.2 hold, then there is a neighborhood Vx̄ of x̄,
and uniquely defined C1-functions yk : Vx̄ → Rn, k ∈ K (a finite set), so that

F ∩ Vx̄ = {x ∈ Vx̄ | g(x, yk(x)) ≥ 0, k ∈ K(x̄)}.
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The above theorem shows that, the feasible set F , which is originally described by an
infinite number of constraints in Eq. (5.22), can be described now by a finite number of
constraints. Hence, instead of treating an infinite number of constraints to identify local
minima x̄ of the original SIP, one can alternatively solve the finite optimization problem

min
x∈Vx̄

f(x)

s.t. g(x, yk(x)) ≥ 0, k ∈ K(x̄).
(5.31)

Furthermore, because yk(x) and βk,l(x), l ∈ La(ȳk), are implicitly defined by Eq. (5.30),
to numerically compute an optimal solution x̄ of SIP (5.20), under several additional
conditions [65], one can solve the following KKT system of Problem (5.31) by using e.g.
the Newton method:

0 =∇xf(x)−
∑
k∈K

λk∇xg(x, yk),

0 =g(x, yk), k ∈ K

0 =∇yg(x, yk) +
∑

l∈La(ȳk)

βk,l∇yhl(yk), k ∈ K

0 =hl(yk), l ∈ La(ȳk), k ∈ K.

(5.32)

Eq. (5.32) is obtained by explicitly formulating the KKT conditions of problems (5.31)
and Eq. (5.30) together. λk ≥ 0, k ∈ K, denote multipliers for the inequalities in problem
(5.31). Eq. (5.32) consists of an equal number of unknown variables (i.e. x, λk, yk, βk,l)
and nonlinear equations. If initial values of unknown variables are chosen sufficiently close
to the local minimum x̄ of the original problem, i.e., the inner optimal solution ȳk and
the corresponding multipliers λ̄k, β̄k,l, the Newton method applied to the equation system
(5.32) can be used to converge to the local minima x̄ of the original SIP. The convergence
rate should be at least superlinear.
In summary, the main idea of the local constraint reduction method is that, under

regular conditions, local minima of function g(x, y) with respect to y ∈ T can be expressed
by a finite number of C1-functions yk(x), k ∈ K(a finite set), in a neighborhood Vx of x.
Thus, one can reformulate constraint (5.20b) equivalently by a finite number of constraints
g(x, yk(x)) ≥ 0, k ∈ K and obtain a locally equivalent NLP in the form of (5.31). Note
that, however, the reformulation (5.31) is only valid in the neighborhood Vx of a reference
point x. Beyond this neighborhood, an adaptation of the index set K(x) may be needed.

Local reduction methods with global convergence

The procedure presented above has a significant drawback, since one needs a good initial
guess and also a correct guess of the index set K when constructing and solving Eq. (5.32).
Algorithms for SIP with global convergence try to avoid this drawback.
Globally convergent algorithms for SIP, also called globalized algorithms for short, are

adapted from globalized algorithms for NLP. To the author’s knowledge, [60] was one of
the first proposed globalized algorithms for NLP. A recent review on this topic can be
found in [99]. The basic idea to guarantee global convergence for NLP is to use penalty
functions so that a sequence of iteration points, which successively reduce the value of
the penalty function, can approach a local minimum of the original NLP. The globalized
algorithm presented in [60] is based on a constructed L1 exact penalty function. The author
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introduced a step-wise procedure, in which the step sizes are determined to maintain a
monotone decrease of the constructed penalty function. It is proven that this procedure
converges to a KKT point of the original NLP, starting from a remote initial point.
Since an SIP can be locally represented by NLP (5.31), globalized algorithms for SIP

are similar to the ones designed for NLP. However, because the index set K(x) is unknown
for SIP, a procedure to update the index set K(x) must be integrated in addition.
In the following, we outline a globalized algorithm for SIP [30] and demonstrate that it is

similar to the globalized algorithm proposed for NLP [60]. Note that, there are also other
globalized algorithms for SIP [131, 169, 170, 181]. These works differ from the above one
[30] in different ways, e.g., the construction of penalty functions, the update of the Hessian
matrix, or the calculation of decent directions/step-sizes. A comprehensive comparison of
globalized algorithms for SIP can be found in [143].
Coope and Watson [30] constructed a L1 exact penalty function for SIP. Since SIP (5.20)

is locally equivalent to NLP (5.31), the constructed L1 exact penalty function takes the
same form as the one used in [60]:

θ̃r(x) = f(x) + r
∑

k∈K(x)

[g(x, yk(x))]+, (5.33)

where r > 0 denotes a penalty constant. K(x), as it is defined before, denotes a finite set
containing the global minima of Q(x). [g(x, yk(x))]+ is equal to g(x, yk(x)), if g(x, yk(x)) ≥
0. Otherwise, [g(x, yk(x))]+ = 0. Global minima of Q(x) have been formulated by C1-
functions yk(x) such that the penalty function θ̃r(x) only depends on x.
We use j, j = 1, 2, · · · , to denote the major iterations of the algorithm proposed in [30].

Denote xj as the j-th iterate. Similarly, denote pj as the search direction and sj as the
step length for the j-th iteration. The proposed algorithm is similar to the procedure in
[60], except that the set K(xj) must be updated at each iterations, because the global
minima of Q(xj) depend on the current iteration point xj. In their approach, pj is selected
by solving a quadratic program, and it is proven that the pj obtained is always a decent
direction of the penalty function θ̃r(x). The step length sk is chosen to satisfy

θ̃r(xj + sjpj)− θ̃r(xj)

sj∂pj θ̃r(xj)
≥ ε, ∀j, (5.34)

where ∂pj θ̃r(xj) denotes the directional derivative of the penalty function θ̃r(xj) along
direction pj. ε > 0 is a given small constant. It is shown [30] that, under several reasonable
conditions, a limit point of the sequence xj is a stationary point of the original SIP.

Discretization method

The basic idea of discretization methods is to minimize the objective function of SIP (5.20),
which is subject to a carefully selected finite subset of the infinite set of original constraints.
By increasing the cardinality of the finite subset, i.e., by intensifying the discretization, a
sequence of finite problems (NLP) can be solved, whose solutions approach the solution of
the original SIP. Hence, discretization methods solve a sequence of discretized subproblems

min
x,y

f(x)

s.t.g(x, y) ≥ 0, ∀y ∈ Ti,
(5.35)
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where Ti ⊂ T is a finite subset of T . i = 1, · · · ,+∞ is an index for the generated sequence
of subproblems. Since problem (5.35) contains only a finite number of constraints, it can
be solved by NLP optimization algorithms.

A key task of discretization methods is to find a way to construct the sequence T1, T2,
· · · , so that solutions of subproblems (5.35) converge to the real solutions of the original
SIP (5.20) efficiently. There are generally two ways to do this: a pre-determined way
and an adapted way [96]. The pre-determined way discretizes the set T in a pre-defined
manner, which does not change during the solution of individual subproblems. Because
the set Ti may include too many unnecessary discretized points, this approach often leads
to big subproblems which are costly to solve. The adapted way, however, adapts the
discretization grids during the solution of the subproblems smartly, such that only a lower
number of discretization points are included in Ti. As a result, the subproblems can
be solved more efficiently. We refer to [64, 130, 136] for further discussions on adapted
discretization methods. Convergence proofs of discretization-based methods for SIP can
be found [135, 142, 167].

A great advantage of discretization methods is that they converge robustly under mild
conditions (compared to the local constraint reduction method) and one can directly use
off-the-shell NLP solvers. However, because convergence is typically guaranteed only for
dense discretization grids and in a limiting manner, the method experiences rapid growth
in the cardinality of the discretization set Ti, such that the resulting NLP are costly to
solve [18].

Two-phase hybrid method

The local constraint reduction method and the discretization method mentioned before
both have disadvantages. The local constraint reduction method globally convergences
under several assumptions, which have to be satisfied during iterations. In practice, these
assumptions may fail and as a result the entire algorithm may fail. The discretization
method can converge globally under weaker conditions and therefore behaves more robustly
in practice. However, a fine discretization leads to a large and ill-conditioned NLP and the
convergence rate of the discretization method near a local minimum is linear [182]. For
this reason, a two-phase hybrid method [59] has been proposed in the literature. This type
of methods tries to combine the benefits of the local constraint reduction method and the
discretization method.

The basic idea of two-phase hybrid methods is to use a discretization method to globally
approach a local minimum of SIP from a remote starting point (the first phase), and then
to use a local constraint reduction method, which is initialized using the result of the
first phase, to exactly identify the local minimum of the original SIP (the second phase).
The method is based on the understanding that the solution from the first phase are
typically close to a local minimum of the original SIP, and therefore quantifies suitable
initial approximations. A good guess of index set K can also often be obtained solving
the first phase problem. These approximations will be fed into the second phase. In case
that a bad approximation is obtained from the first phase, a finer discretization grid can
be applied. Because of these properties, a more robust convergence behavior of the second
phase can be expected in practice. Numerical experiments of two-phase hybrid methods
can be found in [137].
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An intrinsic difficulty of two-phase hybrid methods is the determination of a proper
discretization resolution in the first phase [143]. If a sequence of refined discretization
resolutions are used in the first phase, one also has to determine a proper switch from the
first to the second phase. Coarse grids in the first phase may lead to bad approximations
of the local minimum, while fine discretizations will generate computationally demanding
subproblems. From numerical experiments, it is observed that for lower dimensional prob-
lems the solution of a discretized problem on a coarse grid provides a good starting for
the second phase [143]. But for higher dimensional problems, when the inner problem has
multiple minimizers, it may be quite difficult to guess the correct number of constraints,
namely the set K, which should be included in the reduced problem (5.31) of the second
phase [143].

5.3.2 Global solution methods for SIP

In contrast to the local methods for SIP discussed before, global solution algorithms for
SIP aim to find a global minimum of SIP (5.20). To the author’s knowledge, there are
only few works on this topic, e.g., algorithms based on interval analysis [18] and algorithms
based on relaxing the right hand side [115]. For GSIP, global algorithms are also proposed
in literature [116]. In this work, we briefly review the algorithm based on interval analysis
[18].

An algorithm based on interval analysis

Bhattacharjee et al. [18] used a spatial branch-and-bound (sB&B) framework to generate
a convergent sequence of upper and lower bounds of the global minimum of SIP (5.20).
The algorithm converges in a finite number of iterations to ε-optimality6.
An upper-bounding problem is generated by replacing the infinite number of constraints

(5.20b) with a finite number of tightened constraints. Assume that the set T is a Cartesian
product of intervals, i.e., T = T1 × · · ·Tn, where each Ti, i = 1, · · · , n, is an interval in R.
Denote Tτ ∈ Rn as any interval subset of T . Note that it is allowed to choose Tτ = T .
Define function

ḡ(x, Tτ ) := {g(x, y) | y ∈ Tτ} = [gl(x, Tτ ), g
u(x, Tτ )],

where gl(x, Tτ ) denotes the lower-bound function and gu(x, Tτ ) denotes the upper-bound
function of g(x, y) with respect to y ∈ Tτ . The domain of function ḡ(x, Tτ ), as it is defined,
is a Cartesian production of values in Rm and interval subsets of T . The value of ḡ(x, Tτ )
is an interval in R.
In the proposed method, tightened constraints are constructed by using so-called in-

clusion functions. An interval-valued function G(x, Tτ ) is called an inclusion function of
g(x, y) with respect to y ∈ Tτ , if

ḡ(x, Tτ ) ⊆ G(x, Tτ ) := [Gl(x, Tτ ), G
u(x, Tτ )]

holds for all interval subsets Tτ of T . [Gl(x, Tτ ), G
u(x, Tτ )] ⊂ R is an interval, which is the

value of function G(·, ·).
6Definition of ε-optimality: If we denote LBk and UBk as sequences generated of upper and lower bounds
of the original SIP (5.20), then limk→+∞ LBk = limk→+∞ UBk is the minimal objective function value
of (5.20). In other words, ∀ε > 0, there exist a k∗ > 0 such that UBk − LBk ≤ ε, ∀k > k∗.
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To guarantee convergence of the proposed algorithm to ε-optimality, one has to make
sure additionally that the constructed inclusion function G(x, Tτ ) converges to ḡ(x, Tτ ) in
a certain sense. Denote

θ([al, au], [bl, bu]) := max{|al − bl|, |au − bu|}

as Hausdorf metric of two scalar intervals [al, au] and [bl, bu], al, au, bl, bu ∈ R. Convergence
of function ḡ(x, Tτ ) and function G(x, Tτ ) is in the sense that, ∀Tτ , as m(Tτ ) → 0,

m(G(x, Tτ )) → 0,

θ(ḡ(x, Tτ ), G(x, Tτ )) → 0.
(5.36)

m(·) is defined as a measure for the size of a n-dimensional interval, e.g., m(Tτ ) :=
max ||y1 − y2||, ∀y1, y2 ∈ Tτ .

A subdivision of T , denoted as S := {Tτ | τ ∈ K}, satisfies

T = ∪τ∈KTτ ,

int(Tτ1) ∩ int(Tτ2) = ∅, ∀τ1 �= τ2,

where K is a finite index set and it relates to the degree of refinement of subdivision S. A
subdivision S2 with index set K2 is a refinement of a subdivision S1 with index set K1, if:
(i) ∀Ti2 ∈ S2 there exist Ti1 ∈ S1, so that Ti2 ⊆ Ti1 , (ii) there exist T ∗

i2
∈ S2 and T ∗

i1
∈ S1

so that T ∗
i2
⊂ T ∗

i1
. That is, a refined subdivision S2 contains more elements, which are not

larger than the elements in the original subdivision S1. The above relationship between
S1 and S2 can be denoted by

K1 ≺ K2.

Consider a sequence of refinements Ki, i = 1, · · · , π, satisfying

K1 ≺ · · · ≺ Kπ,

the following property can be obtained by applying Eq. (5.36) [18]:

θ(ḡ(x, T ),∪τ∈Ki
G(x, Tτ )) → 0, as i → +∞. (5.37)

The approximation gets more accurate as the subdivision gets refined. In a limiting sense,
the union of the values of the inclusion functions ∪τ∈Ki

G(x, Tτ ) converges to ḡ(x, T ) in the
sense of Hausdorff metric θ. Eq. (5.37) implies for example that

min
τ∈Ki

Gl(x, Tτ ) ↗ min
y∈T

g(x, y), as i → ∞ . (5.38)

Eqs. (5.37), (5.38) provide a way to estimate the inner optimization problem (under the
assumption that function G(x, Tτ ) can be obtained). They will be used to approximate the
feasible region of the original SIP from inside (cf. problem (5.40)). Because the feasible
region gets smaller than the original SIP, upper bounds of the original SIP can be obtained.
This property will be integrated into the overall sB&B algorithm, which will be discussed
below.
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In the sB&B framework, branching is done to the space X of variable x. Branching
generates a binary tree of subproblems, which are referred as the nodes (leafs) of the binary
tree. For example, the root node (corresponding to the original SIP) can be branched into
two subnodes by splitting X into two subsets X1 and X2 with int(X1)∩ int(X2) = ∅. Each
subnode can be branched further in a similar way. The more deeply a node locates in the
tree, the smaller the feasible region of variable x. We denote q as an index of each node
and Xq as the branched feasible region of the q-th node. Then, each node in the tree refers
to the subproblem

min
x

f(x)

s.t. g(x, y) ≥ 0, ∀y ∈ T,

x ∈ Xq.

(5.39)

Note that problem (5.39) is still a SIP, but compared to the original SIP (5.20), it has a
smaller feasible region Xq.

For each problem (5.39), inclusion functions are applied in the proposed algorithm, which
leads to an upper-bounding problem in the form of

min
x

f(x) (5.40a)

s.t. Gl(x, Tτ ) ≥ 0, ∀τ ∈ Kφ(q), (5.40b)

x ∈ Xq. (5.40c)

φ(q) refers to the depth of the q-th node in the tree and Kφ(q) denotes the degree of
refinement of set T for the q-th node. The degree of refinement is selected in a way that it
is only dependent on the node’s depth, i.e., all nodes with the same depth have the same
degree of refinement and the more deeply a node locates in the tree, the more intensive the
set T is refined. Note that, since Kφ(q) is a finite set, problem (5.40) is a finite optimization
problem, which can be solved by local/global NLP algorithms.

Note also that, since the feasible set of problem (5.40) is smaller than the one of problem
(5.39) (cf. Eq. (5.38)), solutions of problem (5.40) are valid upper bounds of problem
(5.39). Furthermore, from Eq. (5.37) and the selected refinement strategy for Kφ(q) we
see that Eq. (5.40b) provides more and more tightened inner estimates of the feasible set
of problem (5.39) as the node’s depth φ(q) increases. As a result, the objective values of
problem (5.40) converge to the objective function values of problem (5.39) from above as
branching goes more deeply in the tree.

In the approach proposed in [18], the lower-bounding problems are generated by dis-
cretizing the set T . In the sB&B framework, each subproblem (5.39) for the q-th node is
lower-bounded by

min
x

f(x)

s.t. g(x, y) ≥ 0, ∀y ∈ T̄φ(q),

x ∈ Xq,

(5.41)

where φ(q), as it is defined before, denotes the depth of node q. T̄φ(q) ⊂ T is a finite
set containing discretization points of T . Because T̄φ(q) is a subset of T , the feasible set
of problem (5.41) is larger than the feasible set of problem (5.39). Therefore, the global
minima of problem (5.41) provide lower bounds of problem (5.39).
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To guarantee the convergence of the sB&B framework, T̄φ(q) is chosen such that

m(T̄φ(q), T ) → 0, as φ(q) → +∞.

Hence, as branching goes more deeply into the tree, denser discretization is applied. In
summary, the feasible set of problem (5.41) approximates the feasible set of problem (5.39)
from outside in a limiting sense. Therefore, the generated sequence of optimal solutions of
problem (5.41) approaches the solutions of problem (5.39) from below.
A practical difficulty is that problem (5.41) has to be solved to global optimality to

guarantee valid lower bounds. This requires considerable computational power in practice.
Even worse, the algorithm generates a tree of nodes and each of them corresponds to a
lower bounding problem in the form of Eq. (5.41), which means that subproblems have to
be solved to global optimality for multiple times.
The sB&B framework results in a binary tree of subproblems in the form of Eq. (5.39).

Each subproblem leads to an upper-bounding problem (5.40) and a lower-bounding prob-
lem (5.41). Denote uq and lq as the obtained upper and lower bounds for the q-th node by
solving problems (5.40) and (5.41), respectively. Denote j, j = 1, 2, · · · , as the index for
the major iterations of the algorithm. Denote UBj and LBj as the overall upper and lower
bounds for the original SIP. The overall sB&B algorithm includes nothing more than two
additional procedures: A procedure to update UBj and LBj by

UBj+1 = min(UBj, uq∗
1
, uq∗

2
),

LBj+1 = min(LBj, lq∗
1
, lq∗

2
),

where q∗1, q
∗
2 denote the indices for branched two subnodes of the q-th node; and a procedure

to fathom nodes, which are not needed to be branched further. A node q∗ can be fathomed
at any iteration j∗, if lq∗ ≥ UBj∗ . The algorithm terminates at iteration j∗, if |UBj∗ −
LBj∗| ≤ ε, where ε is a predefined small number for ε-optimality.

5.3.3 A robust design method: Normal vector approach

The normal vector approach (NVA) [113, 119] is a robust design method for dynamic sys-
tems. In this method, normal vectors of critical manifolds7 are used to robustly guarantee
design properties. Robust design constraints are transformed by using the normal vectors
into a set of certain design constraints, which can be treated directly by NLP solvers. Crit-
ical manifolds refer to points, at which the behavior of the system changes qualitatively,
including bifurcation points, or points at which state variable constraints and/or output
constraints are violated. NVA first considered stability manifolds, which resulted in a ro-
bustly stable design of dynamic systems. Later, the approach was extended to consider
other types of critical manifolds [53, 82, 121]. The NVA is closely related to the local con-
straint reduction method of SIP [34, 122]. This section first introduces the NVA based on
the geometric understanding of the feasible set of a special class of SIP (cf. also [113, 119]).
Local convergence of the NVA for the considered class of SIP will be established afterwards
in a rigorous way.

7Amanifold is a topological space that locally resembles Euclidean space near each point. A 2-dimensional
manifold in R3 is a hypersurface, while a 1-dimensional manifold in R3 is a line. Trivially, manifolds
can be understand as “boundaries” in higher dimensional spaces.
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5.3 Semi-infinite programming

Geometric Interpretation of the NVA

The NVA can be interpreted geometrically (cf. [113, 119]). Let us consider a special class
of SIP (5.20), taking the form

min
x,y

f(x, y) (5.42a)

s.t. g(x+ t, y) ≥ 0, ∀t ∈ T, (5.42b)

where x ∈ Rm, t ∈ Rm, y ∈ Rn, f(·, ·) ∈ C2 : Rm × Rn → R, g(·, ·) ∈ C2 : Rm × Rn → R.
Ck, k = 1, · · · ,∞, denotes the set of k times continuous differentiable functions.

T = {t ∈ R
m | tT t ≤ 1} (5.43)

is a fixed compact set. To simplify the discussion, no additional equality/inequality con-
straints in problem (5.42) are included. Problem (5.42) is denoted as P .

If one denotes w := x+t ∈ Rm, w can be interpreted as a vector of uncertain parameters.
x and t refer to the nominal values and the uncertainty part of w. y can be interpreted as
a vector of certain parameters, whose values are not subject to uncertainty. T represents
an uncertainty region of a m-dimensional unit ball in the uncertain parameter space of
w ∈ Rm. We note that the uncertainty region T can be used to approximate parametric
uncertainties, which appear frequently in engineering applications (cf. [119]). We note
also that although the NVA has been applied to treat more complicated SIP, where, e.g.,
function g(·) in Eq. (5.42b) is not explicitly given, this analysis will be restricted to discuss
problem (5.42).

Denote

M := {(wT , yT )T ∈ R
m+n | g(w, y) = 0} (5.44)

as the so-called critical manifold with respect to Eq. (5.42b). From functional analysis,
we know that, if condition

∇wg(w, y) �= 0 (5.45)

holds at a point (w̄T , ȳT )T , M is locally a (m + n − 1)-dimensional manifold in space
Rm+n. It is a high-dimensional hyperplane, which separates the regions {(wT , yT )T ∈
Rm+n | g(w, y) > 0} and {(wT , yT )T ∈ Rm+n | g(w, y) < 0} in Rm+n. The normal vector
of manifold M is

rm = ∇w,yg(w, y) ∈ R
m+n,

which is a (m+n)-dimensional vector. After projecting rm into the uncertainty parameter
space Rm, we can obtain the normalized normal vector

r(w, y) =
∇wg(w, y)

‖∇wg(w, y)‖ ∈ R
m. (5.46)

r(w, y) refers to the normal vector in the uncertain parameter space, which is used by the
NVA to guarantee robustness.
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5 Solution methods

Figure 5.1: A geometric illustration of the normal vector approach. The figure is drawn in
the space of uncertain parameters w ∈ R2 with fixed certain parameters y = y∗. w1 and w2

are two elements of vector w. The unit circle refers to the uncertainty region T with x as
its center. Solid lines refer to the critical manifold M. j = 1, 2, 3 are used to index critical
points ŵj. rj := r(ŵj, y∗) refers to the normal vector evaluated at critical point (ŵjT , y∗T )T .
dj represents the closest distance between the center of the uncertainty region and the j-th
critical point.

The solution of SIP P by the NVA can be illustrated by Fig. 5.1. The figure is drawn in
the uncertain parameter space by fixing y = y∗. For ease of representation, consider that
there are only two uncertain parameters, i.e., w = (w1, w2)

T ∈ R2. Shaded solid lines refer
to points satisfying g(w, y∗) = 0, which are the projections of the critical manifold M into
the uncertain parameter space. The critical points ŵj are indexed by j and there exists in
total J = 3 critical points. The dashed unit circle represents the uncertainty region T and
x corresponds to the center of uncertainty region. The robust constraint (5.42b) requires
that the unit circle should not overlap with the critical manifold.
The NVA reformulates the uncertainty constraint (5.42b) into a finite number of con-

straints by using normal vectors rj := r(ŵj, y∗). rj represents a direction, along which the
distance dj between the critical manifold and the center of the uncertainty circle attains its
minimum. Therefore by giving lower bounds to the distances dj, one can make sure that
the uncertainty circle does not cross the critical manifold. The NVA solves the following
finite optimization problem

min
x,y,ŵ,d

f(x, y) (5.47a)

s.t.0 = g(ŵj, y), j = 1, · · · , J, (5.47b)

x = ŵj + djr(ŵj, y), j = 1, · · · ., J, (5.47c)

dj ≥ 1, j = 1, · · · , J. (5.47d)

J refers to the total number of critical points ŵj, which satisfy Eq. (5.47b). ŵ :=
(ŵ1T , · · · , ŵJT )T . r(ŵj, y), j = 1, · · · , J , denote the projected normal vectors, defined
in Eq. (5.46). Eq. (5.47c) ensures that, the center of the dashed unit circle x is con-
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5.3 Semi-infinite programming

nected with the critical points ŵj, j = 1, · · · , J , along normal vector directions. dj ∈ R,
j = 1, · · · , J , represent the closest distances between the center of the unit circle and the
corresponding critical points. For compact reference, we introduce d := (d1, · · · , dJ)T . Eq.
(5.47d) guarantees that all these distances should be bigger than 1 for robustness.
In summary, Problem (5.47) actually represents the feasible set of SIP P by lower bounds

on the minimal distances between the center of the unit uncertainty circle to the critical
manifold.

On the local convergence of the NVA

To establish the local convergence of the NVA rigorously, we prove here that the feasible set
of the SIP P is locally identical to the feasible set of a derived finite optimization problem
(5.68) by using the normal vectors under the conditions that (1) the transversality condition
holds at the global minima of the inner NLP, and (2) the second-order sufficient optimality
condition of the inner NLP is fulfilled (cf. Theorem 5.3.10). In this sense, local minima of
the original infinitely-constrained optimization problem P are identical to the ones of the
derived finitely-constrained optimization problem (5.68), which can be identified by using
local NLP algorithms.
The main result is presented in Theorem 5.3.10, which is proved in Appendix E. To

introduce the notation, we present some relevant definitions and lemmata. Denote z =
(xT , yT )T ∈ Rm+n as the concatenation of x and y, and denote Vz as a neighborhood of z.
Denote the inner optimization problem of P as I(x, y). I(x, y) takes the form

min
t∈Rm

g(x+ t, y) s. t. tT t ≤ 1. (5.48)

Denote the Lagrange function of I(x, y) by

L(x, y, t, l) = g(x+ t, y) + l(tT t− 1), (5.49)

where l ∈ R is the Lagrange multiplier of I(x, y).
The feasible set of P is

F = {z = (xT , yT )T | g(x+ t, y) ≥ 0, ∀t ∈ T}. (5.50)

Define

Ta(x, y) = {t ∈ T | g(x+ t, y) = 0} (5.51)

as the active index set of g(x+ ·, y) = 0. Ta(x, y) can also be denoted by using

Ta(x, y) = {tj | j ∈ J },

where J = {1, · · · , J} is an index set (J can be an infinite set and in general the number
of elements in J depend on the evaluation point z). We always assume Ta(z) �= ∅. If
Ta(z) = ∅, ∀z ∈ F , problem P is locally unconstrained.
The following lemma is elementary and we omit the proof.

Lemma 5.3.3. If z̄ ∈ F , Ta(z̄) �= ∅, then any t̄ ∈ Ta(z) is a global minimum of the inner
problem I(z̄).
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Definition 5.3.1 (Transversality condition (TC)). The transversality condition (TC) holds
at z = z̄, if

∇xg(x̄+ t, ȳ) �= 0, ∀t ∈ Ta(x̄, ȳ). (5.52)

Note that for scalar-valued function g(·, y) : Rm → R, ∇xg(x, y) is a m-dimensional row
vector, while ∇T

x g(x, y) is a m-dimensional column vector. ∇xxg(x, y) is the m-by-m
Hessian matrix of g(·, y).
Denote

r(x+ t, y) =
∇T

x g(x+ t, y)

||∇xg(x+ t, y)|| , (5.53)

which is a function of x, y and t. r is the so-called normal vector of function g(x + t, y)
(cf. Eq. (5.46)). Obviously, under TC, the normal vectors are properly defined for all
t ∈ Ta(z̄) and they satisfy ||r|| = 1. Note that TC is the weakest condition to apply the
NVA, since if TC is violated the normal vectors r(x + t, y) are not defined. We note that
for vector-valued functions r(·, y) : Rm → Rm, ∇xr(x, y) is a m-by-m matrix.
An important consequence of TC is that, equation g′(t) = g(x̄+t, ȳ) = 0 locally defines a

(m−1)-dimensional hypersurface in Rm and g′(t) changes its sign across this hypersurface.
This is summarized in the following lemma:

Lemma 5.3.4. Assume that TC holds at z = z̄, then ∀t̄ ∈ Ta(z̄): (i) g
′(t) = g(x̄+t, ȳ) = 0

locally defines an (m− 1)-dimensional hypersurface in Rm, (ii) g′(t) changes its sign from
negative to positive at t = t̄ along the (normal vector) direction δ = r(x̄+ t̄, ȳ).

Proof. Because ∇tg
′(t̄) = ∇xg(x̄ + t̄, ȳ) �= 0, the results of (i) follows from the implicit

function theorem (IFT) (cf. Theorem 2.5.1). The results of (ii) can be derived by applying
Taylor series to g′(t) along the direction δ.

Lemma 5.3.5. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and TC holds at z = z̄. Then ∀ t̄ ∈ Ta(z̄),
||t̄|| = 1.

Proof. Assume that ∃ t′ ∈ Ta(z̄) with ||t′|| < 1. From Lemma 5.3.4, direction −δ =
−r(x̄ + t′, ȳ) is a decreasing direction of g′(t) = g(x̄ + t, ȳ). Hence, for ε > 0 sufficiently
small, t′ − ε δ ∈ T and g(x̄ + t′ − ε δ, ȳ) < g(x̄ + t′, ȳ) = 0, i.e. z̄ /∈ F , which is a
contradiction.

Lemma 5.3.6 (First-order optimality condition of the I(z̄)). Assume that z̄ ∈ F ,
Ta(z̄) �= ∅ and that TC holds at z = z̄, then ∀t̄ ∈ Ta(z̄): (i) Linear independence con-
straint qualification (LICQ) condition (cf. Definition D.1 in Appendix D) of I(z̄) holds,
(ii) strict complementarity (SC) condition (cf. Definition D.2 in Appendix D) of I(z̄)
holds, (iii) there exists a unique Lagrange multiplier

l̄ =
||∇tg(x̄+ t̄, ȳ)||

2
> 0, (5.54)

such that
∇tg(x̄+ t̄, ȳ) = −2 l̄ t̄T . (5.55)

Proof. From Lemma 5.3.3, t̄ is a local minimum. From Lemma 5.3.5, LICQ condition of
I(z̄) holds. Then there exists a unique Lagrange multiplier l̄ ≥ 0 such that Eq. (5.55) (cf.
Theorem D.1 in Appendix D). The value of l̄ can be derived by taking norms of both sides
of Eq. (5.55). Under TC, we have l̄ > 0, which indicates the fulfillment of SC condition of
I(z̄).
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5.3 Semi-infinite programming

Define

h(x, y, t, d) =

(
t+ d r(x+ t, y)

g(x+ t, y)

)
(5.56)

as a vector-valued function, where d ∈ R. Consider the following equation system

h(x, y, t, d) = 0, (5.57)

we now prove that under the second-order sufficient conditions (SOSC) of I(x, y) (cf.
Appendix D), Eq. (5.57) locally determines C-functions t(x, y) and d(x, y).
Denote

W (x, y, t, l) = ∇ttL(x, y, t, l) = ∇ttg(x+ t, y) + 2 l I, (5.58)

where I ∈ Rm×m is an identity matrix.

Definition 5.3.2 (Second-order sufficient conditions (SOSC) of I(x, y), cf. Theorem D.2
in Appendix D). The second-order sufficient condition (SOSC) of I(z̄) holds at t̄, if (t̄T , l̄)T
is a KKT point of I(z̄), namely they satisfy Eq. (5.55), t̄T t̄ ≤ 1 and l̄ ≥ 0, and if

sTW (x̄, ȳ, t̄, l̄)s > 0, ∀s ∈ {s ∈ R
m | t̄T s = 0, s �= 0}. (5.59)

Lemma 5.3.7. Assume that z̄ ∈ F , Ta(z̄) �= ∅, TC holds at z = z̄ and SOSC (5.59) of
I(z̄) holds, then: (i) any t̄ ∈ Ta(z̄) is a locally isolated (locally unique) local minimizer of
I(z̄), (ii) ∀t̄ ∈ Ta(z̄), the local minimum of I(z) can be locally described by a C-function
t(x, y) for t near t̄, (iii) Ta(z̄) is a finite set.

Proof. From Lemma 5.3.6, LICQ and SC of I(z) hold. The proofs of (i) and (ii) follow
directly from Theorem D.2 and D.3 in Appendix D. To prove (ii), because T is a compact
set and Ta(z̄) ⊆ T contains isolated points, Ta(z̄) must be a finite set.

Lemma 5.3.8. Assume z̄ ∈ F , Ta(z̄) �= ∅ and TC holds at z = z̄. ∀ t̄ ∈ Ta(z̄), we have

h(x̄, ȳ, t̄, d̄) = 0, (5.60)

with d̄ = 1.

Proof. From the definition of Ta(z̄), it is obvious that g(x̄+ t̄, ȳ) = 0, ∀t̄ ∈ Ta(z̄). Now we
prove that

t̄+ r(x̄+ t̄, ȳ) = 0. (5.61)

From Lemma 5.3.6, replacing l̄ in Eq. (5.55) by Eq. (5.54) leads to

∇tg(x̄+ t̄, ȳ) + ||∇tg(x̄+ t̄, ȳ)|| t̄T = 0.

Eq. (5.61) follows directly by using the property ∇tg(x̄+ t̄, ȳ) = ∇xg(x̄+ t̄, ȳ).

Lemma 5.3.9. Assume z̄ ∈ F , Ta(z̄) �= ∅ and TC holds at z = z̄. If the SOSC of I(z̄),
namely Eq. (5.59), is fulfilled ∀ t̄ ∈ Ta(z̄), then the Jacobian matrix of h(x, y, t, l) (with
respect to t, d) is non-singular at x = x̄, y = ȳ, t = t̄ and d = d̄ = 1, i.e.,

|∇t,dh(x̄, ȳ, t̄, d̄)| �= 0. (5.62)
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Proof. It is straightforward to see that

∇tr(x+ t, y) = ∇t

( ∇T
t g(x+ t, y)

‖∇tg(x+ t, y)‖
)

= ∇T
t g(x+ t, y)∇t

(
1

‖∇tg(x+ t, y)‖
)
+

∇ttg(x+ t, y)

‖∇tg(x+ t, y)‖
=

−∇T
t g∇tg∇ttg

‖∇tg‖3 +
∇ttg

‖∇tg‖ ,

(5.63)

and

∇t,dh(x̄, ȳ, t̄, d̄) =

(
I +∇tr(x̄+ t̄, y) r(x̄+ t̄, ȳ)
∇tg(x̄+ t̄, ȳ) 0

)
:= H.

Denote v = (sT1 , s2)
T with s1 ∈ Rm, s2 ∈ R. To prove Eq. (5.62), we need to prove that

v = 0 is the unique solution of H v = 0, i.e.

(I +∇tr)s1 + rs2 = 0, (5.64a)

∇tg s1 = 0, (5.64b)

have a unique solution of s1 = 0, s2 = 0. Assume that there exists a non-zero solution
v∗ = (s∗1, s

∗
2) with s∗1 = 0. Because r(x̄ + t̄, ȳ) �= 0 from TC, Eq. (5.64a) results in s∗2 = 0,

which is a contradiction. Assume now that there exists a non-zero solution v∗ = (s∗1, s
∗
2)

with s∗1 �= 0. From Eq. (5.64b) and Eqs. (5.54), (5.55), we have

t̄T s∗1 = 0. (5.65)

Multiplying Eq. (5.64a) by s∗T1 from the left side, we have

0 = s∗T1 (I +∇tr)s
∗
1

= s∗T1 (I +
∇ttg

‖∇tg‖)s
∗
1

= s∗T1 (I +
∇ttg

2l̄
)s∗1

=
1

2l̄
s∗T1 W (x̄, ȳ, t̄, l̄)s∗1,

(5.66)

where the first equality holds because s∗T1 r = 0 as it is required in Eq. (5.64b). The second
equality holds because of Eq. (5.63) and Eq. (5.64b). The third equality holds because of
Eqs. (5.54). Eqs. (5.65), (5.66) are contradictory to the SOSC (5.59) of I(x̄, ȳ).
From the previous lemma and if we denote

Ta(z̄) = {t1, · · · , tJ}, J < ∞,

as a finite set (cf. Lemma 5.3.7), Eq. (5.60) locally determines J C-functions tj(x, y),
dj(x, y), satisfying tj(x̄, ȳ) = tj, dj(x̄, ȳ) = 1, ∀ j = 1, · · · , J . Denote

F n = {z = (xT , yT )T | dj(x, y) ≥ 1, j ∈ 1, · · · , J}. (5.67)

Our main result is the following theorem:
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Theorem 5.3.10 (Normal vector reduction theorem). Assume z̄ ∈ F , Ta(z̄) �= ∅, TC
holds at z = z̄ and the SOSC (5.59) of I(x̄, ȳ) is fulfilled for all t̄ ∈ Ta(z̄). Then, there
exists a neighborhood Vz̄ of z̄, such that

Vz̄ ∩ F = Vz̄ ∩ F n.

Proof. This theorem follows as a direct consequence of Theorem E.1.6 and Theorem E.2.5,
proved in Appendix E.

Therefore, to locally identify the local minima of SIP P , one can solve Pn defined by

min
x,y

f(x, y)

s. t. dj(x, y) ≥ 1, ∀j = 1, · · · , J,
(5.68)

where dj(x, y) are implicitly defined by Eq. (5.56). If z̄ is a local minimum of the original
SIP P , it is also a local minimum of NLP Pn, and vice versa. This way, we reduce an
infinitely-constrained problem P to a finitely-constrained optimization problem Pn. Local
convergence to optimal solution z̄ of P can be therefore guaranteed by solving NLP Pn, if
the initialization point of Pn is sufficiently close to z̄ and proper convergence conditions of
NLP Pn are fulfilled at z̄ in addition. For example, if the second-order sufficient condition
of NLP Pn is filled at z̄, one can apply quasi-Newton iterations to identify z̄ by solving
the KKT system of Pn.
Problem Pn is closely related to the original presentation (5.47) presented by Mön-

nigmann and Marquardt [119]. dj(x, y) refer to the distances from a feasible point z =
(xT , yT )T to the critical point ŵj on the critical manifold M, defined in Eq. (5.44). It is
implicitly defined by the equation system (5.57) corresponding to Eqs. (5.47b), (5.47c).
For Pn, J refers to the total number of elements in set Ta(x, y), while for problem (5.47)
it refers to the total number of critical points (cf. Fig. 5.1).
We note at the end that the obtained results in Theorem 5.3.10 refer to local convergence

of the NVA, because the feasible set is only locally identical and we do not know how large
the neighborhood Vz̄ can be. The value of J depends also on the evaluation point z̄. In order
to identify the local minimum z̄ of P by solving Pn, the initial guess of z must be sufficiently
close to z̄. If remote initial points are selected, the solution of Pn may not converge to
the local minimium of P . Note also that to ensure the global convergence property, Mön-
nigmann and Marquardt [119] have proposed an iterative procedure to identify the local
minima of the original SIP from a remote starting point by detecting critical manifolds.
To the author’s knowledge, however, there does not exist a rigorous convergence proof.
Establishing the global convergence of the NVA is out of the scope of this work and it
remains an interesting question for the future.

5.4 Eigenvalue optimization

Optimization problems containing eigenvalue functions (2.5) in the general form are called
eigenvalue optimization (EVO) problems. In this section, we consider the following type
of EVO problems

min
x

f(x)

s.t. αM(x)(x) ≤ −c,
(5.69)
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where x ∈ Rm and M(x) ∈ Mn. Function f is sufficiently smooth. αM(x)(x), defined in
Eq. (2.7), denotes the spectral abscissa of matrix M(x). c ≥ 0 is a given constant. Other
nonlinear equality and inequality constraints are may be present but not explicitly shown
in problem (5.69) for simplicity.
We note that since smooth optimization techniques (both, local and global algorithms)

are based on the assumption that both the objective function and all constraints are
sufficiently smooth, non-Lipschitz continuity of αM(x)(x) (cf. Section 2.2) prevents the use
of standard smooth optimization techniques to solve problem (5.69).

5.4.1 Relation to semi-definite programming

Let Ms : Rm → Sn be a smooth function, where Sn denotes the vector space of all real
symmetric n× n matrices. Matrix Ms(x), x ∈ Rm, is called positive semi-definite, if

wTMs(x)w ≥ 0, ∀w ∈ R
n.

A positive semi-definite matrix Ms(x) is denoted as

Ms(x) � 0. (5.70)

Note that symmetric real matrices have only real eigenvalues and that a symmetric real
matrix is positive semi-definite, iff all of its (real) eigenvalues are non-negative. The defini-
tion of positive definite, negative semi-definite and negative definite can be introduced in
a similar way. For example, a symmetric real matrix Ms(x) ∈ Sn is called positive definite,
if

wTMs(x)w > 0, ∀w ∈ R
n, w �= 0. (5.71)

A positive definite matrix Ms(x) can be denote as

Ms(x) � 0. (5.72)

Nonlinear semi-definite programing (SDP) is an optimization problem, which considers
Eq. (5.70) as one of its constraints. Linear SDP, however, assumes that Ms(x) is a linear
function of x.
SDP with constraint (5.70) is a special case of an EVO problem (5.69), because Eq.

(5.70) can be written equivalently as

α−Ms(x)(x) ≤ 0.

Hence, existing methods for eigenvalue optimization problems can be directly applied to
SDP.
We refer to [172] and [185] for good reviews of linear and nonlinear SDP. The theory and

solution methods for linear SDP are already well developed, but the study of nonlinear
SDP is much more recent [185].

Transform EVO into SDP

We next review a method to transform the EVO problem (5.69) into a SDP. The trans-
formation is based on Lyapunov equations [84] and the motivation of the transformation
is based on the assumption that SDP can be solved more easily than EVO problems. The
transformation is, however, limited to a subclass of EVO problems (5.69). The general
treatment of EVO problems (5.69) will be discussed in Section 5.4.2 and 5.4.3.
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5.4 Eigenvalue optimization

The subclass of problem (5.69) considered is generated by setting c in Eq. (5.69) to a
very small constant, e.g., 1.0E−6. The eigenvalue constraint can be then approximately
written as

αM(x)(x) < 0. (5.73)

Optimization problems with constraint (5.73) appear often as stability problems in engi-
neering applications. In this sense, M(x) represents the Jacobian matrix of a nonlinear
dynamic system (cf. Section 2.3 and 2.4).
The following theorem introduces a link between the eigenvalue constraint (5.73) and

the semi-definite constraint (5.70).

Theorem 5.4.1 (Lyapunov equations, Theorem 3.6 in [84]). For any (non-symmetric)
real matrix X ∈ Mn, αX < 0, iff for any given positive definite symmetric matrix Q ∈ Sn

there exist a positive definite symmetric matrix P ∈ Sn that satisfies

PX +XTP +Q = 0. (5.74)

More over, if αX < 0, then P is a unique solution of Eq. (5.74).

Eq. (5.74) is called a Lyapunov equation. The above theorem says that, ∀Q � 0, Eq.
(5.73) is equivalent to the feasibility of the following equation system

PM(x) +M(x)TP +Q = 0, (5.75a)

P � 0. (5.75b)

In practice, one can choose Q as the identity matrix I ∈ Sn. Hence, using the Lyapunov
equation (5.75), eigenvalue constraint (5.73) involving a non-symmetric matrix M(x) can
be transformed to a set of nonlinear equalities and a positive definite constraint involv-
ing a symmetric matrix P . To obtain a SDP (with semi-definite inequalities), one can
approximately replace Eq. (5.75b) by

P � εI,

where ε > 0 is a small constant. Blanco and Bandoni [21] have first applied this SDP-based
reformulation to solve eigenvalue optimization problems with constraint (5.73).

5.4.2 Solution methods for EVO: Non-smooth optimization

Having introduced an SDP-based reformulation to treat a subclass of the EVO (5.69), we
next review solution methods for EVO (5.69). We classify the methods into non-smooth
optimization techniques (Section 5.4.2) and smoothing techniques (Section 5.4.3). Non-
smooth optimization attempts to treat the non-smoothness of eigenvalue constraints di-
rectly, while smoothing techniques try to approximate the original non-smooth eigenvalue
constraints by smoothing. From the application point of view and with respect to robust-
ness of the solution methods, smoothing techniques seem to be more favorable, because
one can use off-the-shelf NLP solvers, which are efficient and reliable.
Non-smooth optimization (NSO) refers to an optimization problem, in which the ob-

jective function and/or the constraints are typically not differentiable. Because of the
non-differentiability, classical techniques developed for smooth optimizations may fail to
find local optimal points of NSO.
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The state-of-the-art optimization algorithms for NSO are mainly restricted to uncon-
strained NSO in the form of

min
x

fn(x), (5.76)

where x ∈ Rm and fn is locally Lipschitz continuous [8]. When a constrained NSO is
supposed to be solved, one can utilize exact penalty functions to transform the constrained
into an unconstrained NSO (cf. Chapter 16 in [8]). Consider the constrained NSO

min
x

fn(x)

s.t. hn
i (x) = 0, i = 1, · · · , p,

gnj (x) ≤ 0, j = 1, · · · , q.
(5.77)

fn, hn
i , and gnj are locally Lipschitz continuous functions. The l1 exact penalty function

for problem (5.77) is defined by

Pr(x) = fn(x) + r

( ∑
i=1,··· ,p

|hn
i (x)|+

∑
j=1,··· ,q

max{0, gnj (x)}
)
.

An important feature of the exact penalty function Pr(x) is that, if r > 0 is large enough,
local minimizers of Pr(x) are exactly the same as the local minimizers of the constrained
problem (5.77). Hence, using exact penalty functions allows us to only consider solution
methods for the unconstrained NSO (5.76).
We have to stress that the current status of NSO is restricted to Lipschitz continuous

functions [8]. Therefore the EVO problem (5.69), in which the spectral abscissa function
(2.7) is non-Lipschitz continuous, can not be directly treated. There exist, however, some
successful attempts [25, 27], which solve EVO by using the methods developed for NSO.
But to the author’s knowledge, a convergence proof is still missing.

Subgradient and an optimality condition

We briefly review next the fundamentals of subgradients and optimality conditions for
NSO [8]. Like in smooth optimization, NSO uses generalized forms of “gradients”, i.e., the
subgradients and the generalized subgradients, to characterize local minima of NSO.

Definition 5.4.1 (Subdifferential and subgradient). The subdifferential of a convex func-
tion f : Rm → R is the set ∂cf of vectors v ∈ Rm such that

∂cf(x) = {v ∈ R
m|f(y) ≥ f(x) + vT (y − x), ∀y ∈ R

m}. (5.78)

Each vector v ∈ ∂cf(x) is called a subgradient of f at x.

Definition 5.4.2 (Generalized subdifferential and subgradient). Let f : Rm → R be locally
Lipschitz continuous at point x ∈ Rm, then the generalized subdifferential of f at x is the
set ∂f of vectors v ∈ Rn such that

∂f = {v ∈ R
m| lim sup

y→x,t↘0

f(y + td)− f(y)

t︸ ︷︷ ︸
:=fo(x,d)

≥ vTd, ∀d ∈ R
m}.

Each vector v ∈ ∂f(x) is called a generalized subgradient of f at x.
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5.4 Eigenvalue optimization

f o(x, d) is the so-called generalized directional derivative of f(·) at x in direction d.
The generalized subdifferential is a generalization of the classical gradient of smooth

non-convex functions. Hence, if f(·) is continuously differentiable at x, then ∂f = {∇f}.
Furthermore, the generalized subdifferential degenerates to the subdifferential, if the con-
sidered function f(·) is convex. If f(·) is a convex function, then

∂cf = ∂f.

Note that, because every convex function is locally Lipschitz, both subgradients and gener-
alized subgradients are defined for Lipschitz continuous functions. Therefore subgradients
and generalized subgradients can not be applied to the eigenvalue function (2.7), which is
non-Lipschitz continuous.
Now let us return to NSO (5.76). Generalized subdifferentials will lead to a direct way

to characterize the local minima of NSO.

Theorem 5.4.2 (A necessary optimality condition for NSO [8]). Assume that fn(·) in
NSO (5.76) attains a local minimum at x∗, and it is locally Lipschitz continuous at x∗,
then

(1) 0 ∈ ∂fn(x∗),

(2) f o(x∗, d) ≥ 0, ∀d ∈ R
m.

(5.79)

From this theorem, we can see that, finding point x∗ that satisfies condition (5.79) is
different from finding solutions of the KKT conditions of NLP. This is because ∂fn(x∗) is in
general a non-finite set. The full description of ∂fn(x∗) can not easily be obtained during
numerical iterations. Typically, only a random element, i.e., a generalized subgradient,
belonging to set ∂fn(x∗) can be numerically calculated [8]. Therefore, the set ∂fn(x∗) is
not completely known. This is a major difference between algorithms for NSO and NLP.

A solution algorithm: the bundle method

Solution algorithms of NSO include subgradient methods, cutting plane methods, bundle
methods and gradient sampling methods. All of them are local methods, i.e., they do not
attempt to find the global minimum. These algorithms are based on the assumption that
only the objective function value and an arbitrary (generalized) subgradient are available
at each iteration point. For a comprehensive review of these algorithms, we refer to [8].
Here we outline the major features of the bundle methods only.
Bundle methods are regarded as the most effective and reliable methods for NSO [8].

The basic idea of bundle methods is to approximate the subdifferential of the objective
function by gathering subgradients from previous iterations. More information about the
local behavior of the objective function can be obtained, compared to the case where an
arbitrary subgradient is evaluated at each iteration.
Denote xk, k = 1, 2, · · · , as iteration points. Denote yj, j = 1, 2, · · · , as the points from

the past iterations, where a subgradient vj ∈ ∂f(yj) is already evaluated. Jk is a nonempty
index set of {1, · · · , k}. Denote

f̂n
k (x) = max

j∈Jk
{fn(yj) + vTj (x− yj)}

as a linear function, which approximates the objective function fn(x).
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At each iteration k, bundle methods, more exactly proximal bundle methods and bundle
trust methods, compute a descent direction dk and step sizes t1k and t2k such that

xk+1 = xk + t1kdk,

yk+1 = xk + t2kdk.

The descent direction dk in proximal bundle methods is computed by

dk ∈ arg min
d∈Rm

f̂n
k (xk + d) +

1

2
ukd

Td,

where uk > 0 is a properly selected weighting parameter, which guarantees the existence
of a solution dk. The descent direction dk in bundle trust methods is computed by

dk ∈ arg min
d∈Rm

f̂n
k (xk + d), s.t. dTd ≤ σk,

where σk > 0 denotes the radius of the trust region. For properly selected step sizes t1k and
t2k, the proximal bundle methods and the bundle trust methods are proven to be globally
convergent [8].

Trials to solve eigenvalue problems

Because the SA function in Eq. (2.7) violates the assumption of Lipschitz continuity, upon
which the above-mentioned NSO techniques are based, their direct application to solve
EVO (5.69) is problematic. However, there exist some trials [25, 27] which utilize NSO
techniques to solve EVO.
A random gradient bundle method, which is inspired by the gradient bundle method, is

proposed to solve matrix stability problems [25]. Burke et al. [27] proposed also a gradient
sampling algorithm, which is applied to solve some eigenvalue problems. The authors
claimed that the developed methods behave robustly in solving eigenvalue problems.
However, to the author’s knowledge, a convergence proof for EVO with non-Lipschitz

continuous constraints is still missing. The proposed algorithms in [25, 27] are only proven
to be convergent for Lipschitz-continuous functions. To summarize, although there exist
some successfully trials in solving EVO by using state-of-the-art NSO techniques, solving
EVO by non-smooth techniques still needs further theoretical developments.

5.4.3 Solution methods for EVO: Smoothing techniques

In contrast to the non-smooth optimization techniques, smoothing techniques try to
smoothen the eigenvalue function (2.7) and derive NLP problems which approximate the
original EVO. Instead of solving the non-smooth EVO, one solves the derived smooth NLP,
whose solution approximates the solution of the original EVO. In this section, we review
three different smoothing techniques. The smoothing method based on H2-type function
[174] is used to solve the presented case studies later.

A method based on pseudospectral abscissa

The ε-pseudospectrum of matrix M(x) ∈ Mn, denoted as Λε
M(x), is a subset of the complex

plane. This subset contains all eigenvalues of complex matrices, which are within a distance
ε to matrix M(x) in the metric space Mn [26]. Hence,

Λε
M(x) = {λ ∈ C | λ ∈ ΛX , where ||X −M(x)||2 ≤ ε, X ∈ Mn},
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5.4 Eigenvalue optimization

where ΛX denotes the eigenvalue spectrum of X.

The ε-pseudospectral abscissa of M(x), denoted as αε
M(x)(x), is defined as the maximal

real part of the elements in Λε
M(x). Hence,

αε
M(x)(x) = sup{Re(λ) | λ ∈ Λε

M(x)}.

αε
M(x)(x) is sometimes called the “robust” spectral abscissa of M(x), because for any x,

αε
M(x)(x) > αM(x)(x), ∀ε > 0, (5.80)

lim
ε↘0

αε
M(x)(x) = αM(x). (5.81)

Therefore, if αε
M(x)(x) ≤ −c holds at point x for any ε > 0, it is guaranteed that

αM(x)(x) ≤ −c

holds robustly in a neighborhood U of x.

One of the important properties of pseudospectral abscissa is that it is Lipschitz-
continuous under mild conditions [26]. Hence, by using pseudospectral abscissa we can
smoothen the spectral abscissa function from a non-Lipschitz-continuous function to a
Lipschitz-continuous function. Hence, we can apply the existing techniques of non-smooth
optimization, reviewed in Section 5.4.2 to approximately solve EVO (5.69)8. For exam-
ple, Burke et al. [25] have used a non-smoothing optimization technique (gradient bundle
method) to minimize the pseudospectral abscissa.

Definition 5.4.3 (Geometric multiplicity). Denote λi∗(x) as an eigenvalue of matrix
M(x) ∈ Mn, geometric multiplicity is the dimension of the following vector space

{v ∈ C
n | (M(x)− λi∗(x)I)v = 0}. (5.82)

Definition 5.4.4 (Non-derogatory eigenvalues). An eigenvalue of matrix M(x) ∈ Mn is
non-derogatory, if it has geometric multiplicity of one.

Lipschitz continuity of pseudospectral abscissa can be derived from the following theo-
rem.

Theorem 5.4.3 (Lipschitz continuity of pseudospectral abscissa, Corollary 8.3 in [26]). If
all active eigenvalues of a matrix M(x) ∈ Mn are non-derogatory, then for all small ε > 0,
the pseudospectral abscissa αε

M(x)(x) is locally Lipschitz continuous in a neighborhood of x.

The pseudospectral abscissa of matrix M0(x) in Example 2.1 is calculated by using the
codes provided by Kressner and Vandereycken [91]. The results are presented in Fig. 5.2.
As it can be seen from the figure, the pseudospectral abscissa of M0(x) is at least Lipschitz
continuous. Note that, at the non-smooth point x = 2, two eigenvalues are the same,
which are both active and non-derogatory.

8Note that current non-smooth optimization techniques are limited to Lipschitz-continuous functions.
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5 Solution methods

Figure 5.2: Pseudospectral abscissa with ε = 0.001 and spectral abscissa of M0(x).

A method based on H2-type cost function

Here we present a method based on a relaxed H2-type cost function to obtain a smoothened
function of the spectral abscissa function [174]. A important advantage of this method is
that the smoothened function has at least first-order continuous derivatives such existing
smooth optimization techniques can be directly applied. To the author’s experience, the
smoothing method is efficient and reliable, when treating matrices of moderate size.
∀X ∈ Mn and s ∈ R, define

φ(X, s) =

∞∫
0

||e(X−sI)t||2Fdt, (5.83)

where F denotes the Frobenius norm of matrices, i.e. ||X||2F = trace(XTX). I ∈ Mn

denotes an identify matrix. φ(X, s) is a real scalar-valued function. The name H2-type
cost function comes from the fact that φ(X, s) refers to a square-weighted H2 norm of a
dynamic system with transfer function Hs(z) = (zI − (A− sI))−1.
It is proven in [174], that if s > αX∗ , the range of function φ(X∗, s) takes all positive

real numbers. That is, ∀X∗ ∈ Mn,

{φ(X∗, s) | s > αX∗} = R+/{0}. (5.84)

Furthermore, if s > αX∗ ,
∂φ(X∗, s)

∂s
< 0. (5.85)

According to Eqs. (5.84), (5.85), f(X∗, s) is a monotonic decreasing function of s in the
region {s ∈ R | s > αX∗}. From the fact that φ(X∗, s) takes the range of all positive
numbers and that it is monotonic, we have

φ(X∗, s) → +∞, as s ↘ αX∗ . (5.86)
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Now let us consider the following equation

φ(X, s) =
1

ε∗
, (5.87)

where ε∗ > 0. Because of Eq. (5.85), we can apply the Implicit Function Theorem 2.5.1 to
Eq. (5.87) in order to calculate s from X. Hence, for any X ∈ Mn, the solution s of Eq.
(5.87) with s > αX is uniquely determined. Hence, ∀ε∗ > 0, Eq. (5.87) explicitly defines a
function s(X) : Mn → R, for s > αX . This function satisfies

φ(X, s(X)) ≡ 1

ε∗
.

Considering that function φ is sufficiently smooth, function s(X) is therefore also smooth.
Furthermore, from Eq. (5.86), we also know that ∀X ∈ Mn,

s(X) ↘ αX , as ε∗ ↘ 0.

Hence, for sufficient small ε∗, the implicitly defined smooth function s(X) approximates
the spectral abscissa of matrix X.
If we additionally consider X to be a function of variable x ∈ Rm, i.e., X = M(x), and

if we denote the implicitly defined function s(M(x)) through Eq. (5.87) as ᾱε∗

M(x)(x), then

ᾱε∗

M(x)(x) is the proposed smoothened function of αM(x)(x) [174].

The remaining task is to evaluate the function ᾱε
M(x)(x) and its derivatives for a given

smoothing grade ε∗ and a given point x∗. Instead of integrating Eq. (5.83) directly, Van-
biervliet et al. [174] provided a formula that can do this task more efficiently. Evaluating
ᾱε∗

M(x)(x) at x = x∗ means to solve the nonlinear function (5.87) for X∗ = M(x∗). This can

be done efficiently by using standard root-finding methods, if the value of φ(X∗, s) and
its gradients to X can be computed in an efficient way. It is proven by Vanbiervliet et al.
[174] that

φ(X, s) = trace(P ) = trace(Q),

∂φ(X, s)

∂s
= −2trace(QP ) = −2trace(PQ),

∂φ(X, s)

∂X
= 2QP.

(5.88)

P and Q are n× n symmetric real matrices, satisfying the Lyapunov equations

0 = (X − sI)P + P (X − sI)T + I,

0 = (XT − sI)Q+Q(XT − sI)T + I.
(5.89)

Note that, Eq. (5.88) gives a formula to calculate the derivatives with respect to each
element of X. If we consider X = M(x) to be a smooth function of x, the derivatives of
φ(M(x), s) with respect to x can be calculated straightforwardly by the chain rule.
The gradients of ᾱε∗

X with respect to X can be evaluated from

∂ᾱε∗

X

∂X
=

QP

trace(QP )
, (5.90)

where Q, P satisfy the Lyapunov equations (5.89) with s = ᾱε∗

X . The gradients of function
ᾱε∗

M(x)(x) with respect to x can be calculated similarly by the chain rule.
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In summary, the evaluation of the smoothened spectral abscissa ᾱε∗

M(x)(x) can be per-
formed at the cost of solving Lyapunov equations multiple times and the evaluation of
its gradients comes at the cost of solving a Lyapunov equation twice. Considering that
there exist already efficient methods to solve Lyapunov equations, the proposed formulas
allow an efficient evaluation of the smoothened spectral abscissa function ᾱε

M(x)(x) and its
gradients. The proposed smoothened method can be integrated into a derivative-based
smooth optimization framework straightforwardly.

A method based on mollifiers

We present next another smoothing method based on mollifiers [77, 78]. This method is
not restricted to only smoothing the spectral abscissa function, but that it can be applied
to any locally integrable functions, such as spectral radius (2.6). However, a practical dis-
advantage of this method is that it requires the evaluation of a multi-dimensional integral,
which is computationally demanding. To the author’s knowledge, the method has been
applied to approximate the feasible set of semi-infinite optimization problem and nonlin-
ear optimization problems [77, 78], but it has not been applied to smoothen the spectral
abscissa function.
Let x ∈ Rm and ||x||2 denote the Euclidean norm of x. The standard mollifier is a

C∞-function

η(x) =

{
κe(||x||

2
2
−1)−1

, if ||x||2 < 1,

0, if ||x||2 ≥ 1,

where κ > 0 is a constant such that ∫
Rm

η(x)dx = 1.

For ε > 0, define

ηε(x) =
1

εm
η(

x

ε
),

and let
B(0, ε) = {x ∈ R

m | ||x||2 < ε}
be an open ball with radius ε. For any set, we use overline notation to denote its topological
closure. It can be proven that ηε(x) is also a C∞-function. Its support {x ∈ Rm|ηε(x) �= 0}
is a closed ball B(0, ε).
For any locally integrable function β : Rm → R and ε > 0, we define

βε(x) = ηε(x) ∗ β(x) =
∫
Rm

ηε(z)β(x− z)dz =

∫
B(0,ε)

ηε(z)β(x− z)dz.

Hence, βε(x) is a convolution, denoted as “∗”, of ηε(x) and β(x). It is proven that βε(x) is
a C∞-function (cf. Theorem 2.7 of [77]). For ε ↘ 0, function βε(x) converges to function
β(x) in a certain sense.
Because the spectral abscissa function is continuous and therefore locally integrable, we

can use mollifiers ηε(x) to smoothen the spectral abscissa function. Hence,

α̃ε(x) := ηε(x) ∗ αM(x)(x) =

∫
B(0,ε)

ηε(z)αM(x−z)(x− z)dz, (5.91)
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5.5 Challenges of solving the derived reactor network synthesis problem

where α̃ε(x) denotes the spectral abscissa smoothened by mollifiers. M : Rm → Mn, as
defined before, denotes a matrix-valued function.
The first-order gradients of α̃ε(x) with respect to the j-th element xj of x can be com-

puted from
∂α̃ε(x)

∂xj

=

∫
B(0,ε)

∂ηε

∂zj
(z)αM(x−z)(x− z)dz, j = 1, · · · ,m.

This equation is obtained by using the formula for derivatives of a general convolution.
Hence, for any differentiable function a(x) and any possibly non-differentiable function
b(x), if c(x) = a(x) ∗ b(x), we have

∂c(x)

∂xj

=
∂a(x)

∂xj

∗ b(x), j = 1, · · · ,m.

As it can be seen from Eq. (5.91), evaluation of α̃ε(x) requires multi-dimensional in-
tegration over a closed ball B(0, ε) ⊂ Rm. If the dimension m is bigger than say 10, it
is computationally problematic. However, a great advantage of this method is that, it is
based on a rather mild conditions, i.e., on local integrability of function β(x), and therefore
it can be applied to smoothen a broad class of non-smooth functions.

5.5 Challenges of solving the derived reactor network

synthesis problem

Having reviewed all relevant optimization problems, we are ready to discuss the solution
strategy to solve problem (3.44) and (4.39). For the sake of brevity, the discussion will be
targeted to problem (4.39), because compared with problem (3.44) it contains additional
complementarity constraints, and therefore problem (4.39) is more general and difficult
to solve than problem (3.44). The proposed solution strategy can be adapted to solve
problem (3.44) straightforwardly.
Problem (4.39) is a semi-infinite mixed-integer nonlinear program (MINLP) with com-

plementarity constraints, disjunctions and robust eigenvalue constraints. Integers and
disjunctions can be treated by using the methods reviewed in Section 5.1. Complementar-
ity constraints, robust/uncertain constraints and eigenvalue constraints can be treated by
using the methods reviewed in Section 5.2, 5.3 and 5.4, respectively. However, when all
these features come together as in problem (4.39), the problem becomes very difficult to
solve even to local optimality.
The difficulty to solve problem (4.39) is mainly due to Eq. (4.39f), which combines

the features of parametric uncertainty and the non-smoothness of eigenvalue constraints.
To the author’s knowledge, a semi-infinite optimization (SIP) with an embedded non-
smooth inner optimization problem has rarely been discussed in literature. Moreover,
discrete decisions on integer variables, disjunctions and complementarity constraints make
the solution of this optimization problem even more difficult. Problem size, i.e., the number
of variables and constraints, is another practical issue when solving problem (4.39), since
reactor network synthesis problems typically result in large optimization problems. Hence,
it is very challenging to get even a local minimum of problem (4.39) properly.
In the next section, we propose a two-step hybrid solution approach. Solving problem

(4.39) to global optimality is very challenging and out of the scope of this work.

99

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035
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5.6 A proposed two-step hybrid solution method

Because we were not able to find an existing algorithm for problem (4.39), a two-step
hybrid method is pragmatically proposed here. Denote Pπτ=π̄τ

as the optimization prob-
lem, which is derived from problem (4.39) by fixing the uncertain parameters πτ to their
normal values π̄τ . Pπτ=π̄τ

is therefore a MINLP with a deterministic eigenvalue constraint,
complementarity constraints and disjunctions.

Denote S0 as any subset of {(v, w)|v = 1, · · · , nm, w = 1, · · · , nc}, i.e.,

S0 ⊆ {(v, w) | v = 1, · · · , nm, w = 1, · · · , nc}.

By “fixing the (not necessarily decentralized) control structure according to S0”, we mean
that we require the constraints

[K]v,w = 0, ∀(v, w) ∈ S0, (5.92)

to hold.

Denote Pz=z0,S0
as the optimization problem, which is derived from problem (4.39) by

fixing the integer variable z = z0 and the control structure according to S0. Pz=z0,S0
is a SIP

(without integer variables). We note that both Pπτ=π̄τ
and Pz=z0,S0

contain a non-smooth
eigenvalue constraint, which results from Eq. (4.39f).

The general framework of the proposed two-step solution approach is:

• Step 1: Solve Pπτ=π̄τ
to obtain z0 and S0 as the optimal solutions of integer variables

and the control structure, respectively.

• Step 2: Solve Pz=z0,S0
, initialized by the solution of step 1, to satisfy the robustness

property.

We suggest to solve Pπτ=π̄τ
in step 1 to global optimality, or at least approximate the

global minimum to obtain reasonably good solutions at the end.

We note that this two-step approach is based on the assumption that the solutions of
the original problem (4.39) and problem Pπτ=π̄τ

are “close” in some sense: (i) they have
the same solution of flowsheet and control structures, namely integer variables and set S0;
(ii) the continuous variables of both solutions are in a certain small neighborhood. This
assumption is reasonable, if the uncertainty region [π̄τ −Δπ̄τ , π̄τ + Δπ̄τ ] is not too large,
because problem (4.39) reduces to problem Pπτ=π̄τ

when there is no parametric uncertainty.
However, we must note that, if the above assumptions are not valid any more, this two-step
approach may result in sub-optimal solutions.

Note also that this two-step approach closely relates to the two-phase hybrid method
reviewed in Section 5.3.1. However, to keep the problem solvable in reasonable time, in
the first phase only the nominal point in the uncertainty region is sampled. In the second
phase, we do not use the local reduction method, but apply the normal vector approach
(cf. Section 5.3.3).

The following subsections provide further detail on the solution strategies in steps 1 and
2.
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5.6 A proposed two-step hybrid solution method

5.6.1 Step 1: Mixed-integer problem without uncertainty

There exist different strategies to solve Pπτ=π̄τ
, depending on the selection of the com-

bination of ways to treat integer variables, complementarity, disjunctive and eigenvalue
constraints. Alternative strategies are presented in Section 5.1 to 5.4. We next talk about
our choice to solve the presented case study shown in Chapter 6.
Complementarity constraints can be treated by using the penalty method, the interior

point method, the SQP method or the regularization (smoothing) method (cf. Section 5.2).
In this work, we apply the regularization method (cf. Eq. (5.17) in Section 5.2.2) to refor-
mulate the complementary constraints (4.39h)-(4.39l) into a set of nonlinear constraints.
More precisely, any single complementarity constraint in Eqs. (4.39h)-(4.39l),

0 ≤ a ⊥ b ≥ 0, a, b ∈ R,

is transformed into the set of nonlinear constraints

a ≥ 0, b ≥ 0, ab ≤ εc, (5.93)

where εc > 0 ∈ R is a small constant.
Integer variables can be treated by the Branch and Bound (B&B) method (cf. Section

5.1.1) or by the complementarity-based reformulation method (cf. Section 5.2.3). The
B&B method generates a search tree of subproblems through relaxing and fixing integer
variables. However, if the generated subproblems are difficult or time consuming to solve,
the B&B method may become costly. In this work therefore we apply the complementarity-
based reformulation method, refer to Eq. (5.18), which transforms the integer variables
into complementarity constraints. Denote [z]i ∈ {0, 1} as the i-th element of z, i =
1, · · · , N + nc. The integer variable [z]i ∈ {0, 1} is first relaxed into a continuous variable
zi ∈ R, which is required to fulfill

0 ≤ [z]i, 1− [z]i ≥ 0, [z]i(1− [z]i) ≤ εz, (5.94)

where εz > 0 ∈ R is a selected small positive scalar. This reformulation method results in
a single NLP without integer variables.
Disjunctions can be treated by using the big-M method or the convex hull method (cf.

Section 5.1.5). In this work, we apply the big-M method, refer to Eq. (5.5), to transform
the disjunctions in Eqs. (4.39m), (4.39n), (4.39p) into a set of nonlinear constraints. For
any single disjunction in Eqs. (4.39m), (4.39n), (4.39p) written as

[
[z]i

θ1(·) ≤ 0

]
∨
[

[z]i
θ2(·) ≤ 0

]
, [z]i ∈ {0, 1}, (5.95)

with the general functions θ1(·) and θ2(·), the big-M method results in

θ1(·) ≤ M(1− [z]i),

θ2(·) ≤ M [z]i,

[z]i ∈ {0, 1},
(5.96)

where M > 0 ∈ R is a selected constant which is big enough.
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Last but not least, treating the non-smooth eigenvalue constraint (4.38) remains a major
challenge of solving Pπτ=π̄τ

properly. To solve the open-loop case study (cf. Section 6.1),
we assumed that the active eigenvalues of matrix J̄ are either a single real eigenvalue or a
single pair of conjugate complex eigenvalues at the local minimum. Under this assumption
the eigenvalue constraint is locally smooth with respect to its arguments (cf. Section
2.2 and corollary 2.2.3) and can be treated locally as a smooth nonlinear constraint. In
contrast to this direct way of treating the eigenvalue constraint to solve the closed-loop
case study (cf. Section 6.2), we apply the smoothing method based on the H2-type cost
function (cf. Section 5.4.3). If we denote αεe

J̄
(·) as the smoothened function of the original

eigenvalue function αJ̄(·), where εe > 0 ∈ R is a sufficiently small constant, Eq. (4.39f)
evaluated at nominal points is replaced by

−c ≥ αεe
J̄
(x, e, u, ψc, z), (5.97)

resulting in a reformulated MINLP in which all constraints are smooth. Compared with
the direct way to treat the eigenvalue function, the smoothing method allows to employ a
smooth NLP optimizer such as SNOPT [54], which can converge more robustly. However,
we note that this is at the cost of higher computational effort of evaluating αε

J̄
(·) and its

gradients.

To summarize, we use Eqs. (5.93), (5.94), (5.96), (5.97) to treat complementarity con-
straints, integer variables, disjunctions and eigenvalue constraints and therefore replace
Pπτ=π̄τ

by Pεc,εz ,εe
πτ=π̄τ

. For sufficiently small εc, εz and εe, we can expect that the local solu-
tions of Pεc,εz ,εe

πτ=π̄τ
approximate the local solutions of Pπτ=π̄τ

.

A good approximation of the global minimum is required in step 1, because the eigenvalue
constraint (4.38) has to be satisfied not only for the nominal but also for the uncertain
case. To the author’s experiences, it is still very challenging to solve Pπτ=π̄τ

or Pεc,εz ,εe
πτ=π̄τ

to
global optimality because of the non-smoothness of the eigenvalue constraint. To this end,
we apply a multi-start strategy to solve Pεc,εz ,εe

πτ=π̄τ
. The best obtained solution will be fed

into step 2 to fix the flowsheet and the control structure, and to initialize all continuous
variables.

5.6.2 Step 2: Robust optimization problem

After successfully solving Pπτ=π̄τ
in step 1, we denote the optimal values of

the integer variables as z0, the optimal values of the continuous variables X =
(xT , eT , uT , ψT

c , K
+T
v , K−T

v , K̂T
v )

T as X0 and define the control structure set

S0 := {(v, w) | [K]v,w|X=X0
= 0}, (5.98)

which contains the indices of the zero elements in matrix K in the optimal solution of
step 1. We note that if problem Pπτ=π̄τ

is feasible, S0 must correspond to a decentralized
control structure.

In step 2, we solve problem Pz=z0,S0
, which is derived from the original problem (4.39)

by fixing the integer variables z = z0 and the control structure according to S0. More
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5.6 A proposed two-step hybrid solution method

precisely, Pz=z0,S0
takes the form

min
x,e,u,ψc,K

+
v ,K−

v ,K̂v

ϕ(x, e, u, ψc, z0) (5.99a)

s.t. 0 = fi(xi, · · · , qh(i,k)gh(i,k)(xh̄(i,k), uh̄(i,k), dh̄(i,k)), · · · ,
qh(i,N)psys, qi,1, · · · , qi,N , ui, di), i = 1, · · · , N, (5.99b)

0 = φi,r(xi, di)− ȳi,r, i = 1, · · · , N, r = 1, · · · , ni
c, (5.99c)

0 = e, (5.99d)

0 = u− ū, (5.99e)

−c ≥ αJ̄(x, e, u, ψc, z0), ∀πτ ∈ [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ], (5.99f)

ψU
c ≥ ψc ≥ ψL

c (5.99g)

[K]v,w = [K+]v,w − [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (5.99h)

[K̂]v,w = [K+]v,w + [K−]v,w, v = 1, · · · , nm, w = 1, · · · , nc, (5.99i)

0 ≤ [K+]v,w ⊥ [K−]v,w ≥ 0, v = 1, · · · , nm, w = 1, · · · , nc, (5.99j)

[K]v,w = 0, ∀(v, w) ∈ S0, (5.99k)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
j=1

q̄i,j +
N∑
k=1

q̄h(i,k) > 0, if zi|z=z0 = 1, i = 1, · · · , N,[
q̄i,j

q̄h(i,k)

]
= 0, ∀j, k = 1, · · · , N, if zi|z=z0 = 0, i = 1, · · · , N,

(5.99l)

nm∑
v=1

[K̂]v,�(i,r) > 0, if zi,r|z=z0 = 1, ∀i = 1, · · · , N, r = 1, · · · , ni
c. (5.99m)

Comparing problems (4.39) and (5.99), the integer variables in the objective function
(4.39a) and in the constraints (4.39b)-(4.39g) are evaluated at z = z0, which results in
Eqs. (5.99a)-(5.99g). Eqs. (5.99h)-(5.99j) are reproduced from Eqs. (4.39h)-(4.39j), while
Eqs. (4.39k)-(4.39l) are replaced by Eq. (5.99k)9. Eq. (4.39m) is evaluated at z = z0,
which results in Eq. (5.99l). Eq. (4.39n) is evaluated at z = z0, which results in Eq.
(5.99m)10. Analogously, Eq. (4.39p) does not appear in problem (5.99), because it holds
automatically11. Note that Eqs. (5.99l), (5.99m) need to be included to prevent any
non-idle reactor or controller to become idle after solving (5.99).
Problem (5.99) is a SIP (cf. Section 5.3) with complementarity constraints (5.99h)-

(5.99j) and a robust non-smooth eigenvalue constraint (5.99f). However, it does not contain
any integer variables. Using the smoothing method, Eq. (5.93), we can transform the
complementarity constraints into a set of nonlinear constraints. We denote the resulting
SIP problem by Pεc

z=z0,S0
, where εc > 0 is a properly selected small number.

Problem Pεc
z=z0,S0

contains a robust eigenvalue constraint (5.99f), but no integer, dis-
junction or complementarity constraint are included. General reviews of SIP are already

9Because S0 corresponds to a decentralized control structure, Eq. (5.99k) ensures the satisfaction of Eqs.
(4.39k), (4.39l) automatically.

10If zi,r|z=z0 = 0, from Eq. (5.99k), [K]v,�(i,r) = 0, ∀v = 1, · · · , nm. Because of Eqs. (5.99h)-(5.99j),∑nm

v=1[K̂]v,�(i,r) = 0 holds automatically.
11Consider reactor i∗ is idle (zi∗ = 0), i∗ ∈ {1, · · · , N}. Because S0 corresponds to a feasible solution of

Pπτ=π̄τ
, ∀v ∈ Θi∗ , we have (v, 1), · · · , (v, nc) ∈ S0. From Eqs. (5.99h)-(5.99k) we have [K̂]v,w = 0,

∀v ∈ Θi∗ , ∀w = 1, · · · , nc.
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presented in Section 5.3, including its local and global solution methods. However, due
to the non-smoothness of eigenvalue constraint (5.99f), it is still very challenging to solve
Pεc

z=z0,S0
properly. In this work, we solve the resulting SIP Pεc

z=z0,S0
to local optimality by

using the NVA (cf. Section 5.3.3).
An important advantage of the proposed two-step solution approach is the initialization

of the NVA by the obtained optimal continuous variables X0 in step 1. Typically, X0

locates exactly on the critical manifold, where the eigenvalue constraint (4.38) is active,
i.e.,

αJ̄(x, e, u, ψc, z0))|X=X0
= −c.

To satisfy the robustness constraint (5.99f), one needs to find an optimal solution X ∗, which
keeps a distance from the critical manifolds. If the uncertain region [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ]
is not too large, it is reasonable to assume that X0 is a good approximation of X ∗.
According to our computational experience, this strategy works well for small reactor

networks, say for N ≤ 3. When large reactor networks are computed, the NVA needs
more accurate initial points. Therefore, we suggest the following procedure to generate
more accurate initial points. Let πk

τ ∈ [π̄τ − Δπ̄τ , π̄τ + Δπ̄τ ], k = 1, · · · , Nsp, be Nsp

random samples of the uncertain parameters. After step 1, we solve problem (5.99) with
the robust constraint (5.99f) being replaced by Nsp nonlinear constraints

−c ≥ αεe
J̄
(x, e, u, ψc, z0)), ∀πτ = πk

τ , k = 1, · · · , Nsp. (5.100)

The derived optimization problem is a classical NLP, but with many derived deterministic
eigenvalue constraints, which can be initialized by X0. Denote the solution of this derived
optimization problem as X sp

0 . Typically, X sp
0 does not locate on the critical manifolds any

more and the robust constraint (5.99f) holds approximately. Hence, X sp
0 provides a better

estimate of the optimal solution of problem (5.99) than X0, and it is therefore used to
initialize the NVA. Note that this procedure is limited by the dimension of the space of
uncertain parameters.

5.7 Implementation

We implement the proposed two-step method using the software package TOMLAB [69] in
the MATLAB environment on a Windows server equipped with an Intel Xeon CPU (3.47
GHz) and 96 GB RAM. TOMLAB is used as a fundamental programming environment for
implementation, because it offers a flexible MATLAB-based interface to set up optimization
problems, construct eigenvalue constraints and access numerical solvers. SNOPT [54] is
used as a local NLP optimizer, which is called through the TOMLAB command tomRun
to solve the derived optimization problems.
To solve the derived MINLP problem in the first step of the proposed solution method,

a key task is to evaluate the eigenvalue constraint αJ̄(x, e, u, ψc, z) in Eq. (4.39f) and
its gradients, and provide them to the applied numerical solver. This task is fulfilled
by using the symbolic calculation command derivative and the code generation command
mcode provided by TOMLAB. The system’s Jacobian matrix is computed first symbolically
and then a .m file is generated, which returns the evaluated Jacobian matrix for given
arguments x, e, u, ψc, z. TOMLAB command sym2prob is used to generate optimization
problems. If the direct way of evaluating the eigenvalue constraint and its gradients is
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5.7 Implementation

applied, eigenvalues and its gradients (cf. Eq. (2.12)) can be computed by using eigenvalue
computation command eig straightforwardly. The evaluated eigenvalue function and its
gradients are provided to the generated optimization problems through external functions.
This way, the eigenvalue constraint can be treated by SNOPT as a typical nonlinear
inequality constraint.
In contrast to the direct way of evaluating the eigenvalue constraint and its gradients,

i.e., using Eq. (2.12), we also implement the smoothing method based on the H2-type cost
function (cf. Section 5.4.3). The smoothing method requires to solve a nonlinear equation
(5.87) and the Lyapunov equations (5.89). The nonlinear equation (5.87) is solved by using
MATLAB command fminbnd, while the Lyapunov equation is solved by using MATLAB
command lyap. To our computational experiences, the applied smoothing method is quite
robust, at least for εe ≥ 10−15. The computed smoothened eigenvalue function and its
gradients are provided to SNOPT by TOMLAB command sym2prob as external functions,
just as the direct way of treating eigenvalue constraint.
The NVA approach (step 2 of the proposed solution approach) is implemented also in

MATLAB, but under the assumption that the total number of critical boundaries is one
(this assumption is true in our computed case studies, refer to the numerical continuation
figures shown in Chapter 6.). Since the optimal solutions after implementing step 1 typi-
cally locate exactly on the critical boundaries, one can know the type and location of critical
boundaries by checking the eigenvalue spectrum of the Jacobian matrix straightforwardly.
At the beginning of the study, the author implemented the NVA for the critical manifolds

for both the saddle node and the Hopf bifurcations in MATLAB. However, it was realized
later that the developed code is not robust for large design problems and it can not be
easily automated. To simplify the implementation, we consider the following approximated
robust eigenvalue constraint

−c ≥ αεe
J̄
(x(ψc), e(ψc), u(ψc), ψc, z0) = αεe

J̄
(ψc), ∀πτ ∈ [π̄τ −Δπ̄τ , π̄τ +Δπ̄τ ], (5.101)

and implement the NVA for it. αεe
J̄

denotes the smoothened spectral abscissa of J̄ by
using the H2-type cost function (cf. Section 5.4.3). x(ψc), e(ψc), u(ψc) are functions of
ψc, which are implicitly determined by the steady-state equations of the closed-loop model
(4.7)12. Note that by taking εe sufficiently small, it is reasonable to assume that the critical
boundaries defined by Eq. (5.101) approximate the ones of the original non-smooth robust
constraint (5.99f).
A significant advantage of considering the critical boundaries defined by Eq. (5.101) is

that their normal vectors can be computed straightforwardly by applying Eqs. (5.46) and
(5.90), and therefore the resulting normal vector constraints (cf. Eqs. (5.47b)-(5.47d))
become simpler than the ones for the saddle node and Hopf bifurcations (cf. [119]). More-
over, the normal vectors of the robust constraint (5.101) are always pointing from the
critical boundary to the feasible nominal point (cf. Lemma 5.3.4), which simplifies the
programming task.
For large reactor networks, the sampling method presented in Eq. (5.100) is applied

before implementing the NVA. Due to the limited computational capacity, only the ver-
tices of the uncertainty region are sampled. In our case study, after solving the derived

12The steady states of the closed-loop model (4.7) can be denoted as 0 = F(x, u, e, ψc), where F :
Rnx+nu+ne+nψc → Rnx+nu+ne . Therefore, if the conditions in the IFT hold, x, u, e are implicitly-
defined by ψc.
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5 Solution methods

optimization problem only one vertice locates on the critical boundary and therefore this
vertice is used to specify the location of the critical boundary and to initialize the NVA.
Initialization of the normal vector is done by using the difference between the vertice on
the critical boundary and the nominal operation point in the uncertain parameter spaces.

106

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


6 Case study of allyl chloride production

We consider the case study of allyl chloride production, which has been already presented
in the Example 3.1 of Chapter 3. Allyl chloride can be produced by means of non-catalytic
chlorination of propylene in the vapor phase [129] and its reaction rates are modeled in Eq.
(3.1). In this chapter we first present the computational results for open-loop (cf. Chapter
3) and then for closed-loop reactor network synthesis (cf. Chapter 4).

6.1 Open-loop reactor network design with robust

stability

The open-loop reactor network synthesis problem (3.44) is solved in this section for allyl
chloride production by applying the modeling procedure presented in Section 3 and the
two-step solution method proposed in Section 5.6. Since we want to guarantee robust
stability for the open-loop case, c = 10−4 is chosen in Eq. (3.44c). By solving problem
(3.44) we aim to find an optimal robustly stable open-loop reactor network flowsheet,
including its design parameters and steady-state operating point.

6.1.1 Problem setting

The superstructure shown in Fig. 3.1 is used, which consists of both PFR and CSTR.
For comparison, we consider superstructures with different numbers of N PFR and CSTR.
When N is an even number, the superstructure contains an equal number of CSTR and
PFR. When N is an odd number, the superstructure contains (N−1)/2 PFR and (N+1)/2
CSTR. Without loss of generality, we consider reactors i, i = 1, · · · , !N/2", to be PFR,
while reactors i, i = !N/2" + 1, · · · , N are CSTR. The total numbers of PFR and CSTR
are !N/2" and #N/2$, respectively. All reactors are allowed to be idle or non-idle, such
that one can determine the optimal number and type of used reactors in the final design.
A 2-reactor network model in open-loop is already presented in Eq. (3.23). This model
illustrates the modeling procedure for superstructures consisting of N reactors. Due to
limited computational power, for open-loop reactor network synthesis we assume N ≤ 10,
i.e. the superstructure contains at most 5 PFR and 5 CSTR.

To optimally design an open-loop reactor network, we maximize the profit function [129]

φ = Crev − Craw − Csep − Cequ − Chc, (6.1)

where Crev, Craw, Csep, Cequ and Chc denote product revenue, raw material cost, separation
cost, equipment cost and energy cost in [$/year], respectively. These terms are computed
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6 Case study of allyl chloride production

Table 6.1: Constants and ranges of design variables for the allyl chloride case study.

Parameter Value Description Unit
pA 0.0215 price of A $/mol
pB 0.1287 price of B $/mol
pC 0.0154 price of C $/mol
ph 0.0288 price of heating $/kWh
pc 0.0025 price of cooling $/kWh
Tyear 3.06× 107 annual working time s/year
Ti [450, 600] temperature of reactor i K
Vi [500, 1000] volume of CSTR i l
Li [0.5, 10] length of PFR i m
Si [0, 0.1] cross section of PFR i m2

Tsys [300, 600] feed temperature K

as:

Crev = pBTyear[ysys]2,

Craw = pATyear(
∑
j

qN+1,j[psys]1 − [ysys]1) + pCTyear(
∑
j

qN+1,j[psys]3 − [ysys]3),

Csep = 105 · ([ysys]1 + [ysys]2 + [ysys]3),

Cequ = 4.2× 106(
∑
i

Vi)
0.63,

Chc = Tyear(
∑

i,Qhi>0

phQhi +
∑

i,Qci>0

pcQci).

A, B and C refer to component propylene, allyl chloride and chlorine, respectively. pA,
pB and pC are molar prices in [$/mol] of components A, B and C. ph and pc denote the
prices for heating and cooling in [$/kWh], respectively. Tyear denotes the annual operating
hours in [h]. Csep is an estimate of the annual separating cost to cover the contribution of
the separation part of the process, which is not included in the reactor network. Csep is
proportional to the total molar flowrate of components A, B and C in the system’s outlet.
Cequ is an estimate of the annual capital cost of equipment, which is related to the total
volume of the reactors. The values of all parameters are listed in Table 6.1. psys and ysys
refer to the system inlet and outlet of the reactor network (cf. Eqs. (3.16) and (3.15)).
qN+1,j denotes the flowrate of the j-th outlet of the system’s mixer.
The reactor network is fed with raw materials A and C. Each has a maximal flowrate

of 10 [mol/s], i.e.
0 ≤fA

sys ≤ 10 mol/s,

0 ≤fC
sys ≤ 10 mol/s,

(6.2)

where fA
sys and fC

sys refer to the flowrates of component A and C in the system’s feed in
[mol/s]. The feed temperature Tsys is 300 K, and if necessary it can be heated to 600 K,
i.e.

300 ≤ Tsys ≤ 600 K. (6.3)

The volume of each CSTR should be within [500, 1000] l, i.e.

500 ≤ Vi ≤ 1000 l, i = !N/2"+ 1, · · · , N. (6.4)

108

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


6.1 Open-loop reactor network design with robust stability

Table 6.2: Uncertain parameters for the allyl chloride case study.

uncertain parameter unit nominal value uncertainty
fA
sys mol/s s.t. optimization ± 0.2 mol/s
fC
sys mol/s s.t. optimization ± 0.2 mol/s
a1 1/s 1.5× 106 ± 5%
a2 1/s 4.4× 108 ± 5%
a3 l/mol/s 1.0× 102 ± 5%

Table 6.3: Open-loop process design parameters for the allyl chloride case study.

CSTR PFR network
Vi Li fA

sys, f
C
sys,Tsys

Qhi Si q
Qhi z

The length and each cross section area of the PFR should be in the range of [0.5, 10] m
and less than 0.1 m2, respectively, i.e.

0.5 ≤Li ≤ 10 m, i = 1, · · · , !N/2",
0 ≤Si ≤ 0.1 m2, i = 1, · · · , !N/2". (6.5)

The operating temperature of both, CSTR and PFR, should be within [450, 600] K, i.e.

450 ≤ Ti ≤ 600 K, i = 1, · · · , N. (6.6)

The feed rates fA
sys and fC

sys of raw materials A and C and the reaction rate constants
a1, a2 and a3 are considered as uncertain parameters, i.e.

πτ = (fA
sys, f

C
sys, a1, a2, a3)

T ∈ R
5. (6.7)

Their nominal values and uncertainty regions are summarized in Table 6.2. fA
sys and fC

sys

correspond to process uncertainties in the system’s feeding stream. We take the assumption
that these process uncertainties are subject to slow disturbances [118], i.e., the actual values
of fA

sys(t) and fC
sys(t) change much slower than the time scale of the system. a1, a2 and a3

correspond to model uncertainties. Their accurate values are not known exactly a priori.
For an N reactor network, the total number of uncertain parameters is 5. The nominal
values of fA

sys and fC
sys are subject to optimization, while their uncertainties are ± 0.2

mol/s. The nominal values of reaction constants a1, a2 and a3 are fixed, but each of them
is subject to 5% uncertainty of their nominal values.

The process design parameters of the open-loop rector network synthesis, which are the
degrees of freedom ψo defined in Eq. (3.22) of the open-loop design problem (3.44), are
summarized in Table 6.3. Process design parameters include both design parameters of
individual reactors as well as design parameters related to the flowsheet structure, i.e.,
flowrates of interconnections, feed rates of raw materials in the system’s inlet, as well as
the existence of each reactor.
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6 Case study of allyl chloride production

6.1.2 Design results

The proposed two-step solution approach in Section 5.6 is applied to solve problem (3.44)
for the allyl chloride case study. To compare the design results we also solve the nominal
reactor network synthesis problem without considering the eigenvalue constraint. This
problem is in the form of Eq. (3.44) but without constraint (3.44c) and parametric un-
certainty. It is solved straightforwardly by using the NLP solver SNOPT. A multi-start
strategy is applied to search for the global minimum.

Fig. 6.1 shows the optimal values of the objective function φ according to Eq. (6.1)
as a function of the total number of reactors N , N = 1, · · · , 10, in the superstructure.
The triangular points refer to the nominal designs without eigenvalue constraints. After
checking the eigenvalues of the system’s Jacobian matrix, we find that all these designs are
unstable. The square points refer to the optimal designs with eigenvalue constraints, which
are robustly stable with respect to parameter uncertainty, i.e., the solutions of problem
(3.44). The difference between the triangular and square points represents the cost of
ensuring robust stability.

Figure 6.1: Optimal profits φ in [M$/year] of open-loop unstable designs and robustly stable
designs for different numbers N of reactors in a superstructure. (i, j) denotes that there exist
i non-idle CSTR and j non-idle PFR.

Fig. 6.1 shows that increasing the total number of reactors in the superstructure results
in a higher profit. For the unstable designs (triangular points), the optimal profit increases
for N ≤ 8. For the robustly stable designs (square points), the optimal profit increases
consistently for N ≤ 3. After that, the superstructures with N = 4, 5 does not seem to
offer any better solution than the 3-reactor network. However, if more than 6 reactors
are included, a better solution can be found. This phenomenon can also be observed for
designs with N = 6, 7 and N = 8, 9, 10.
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6.1 Open-loop reactor network design with robust stability

Table 6.4: Design parameters for the unstable reactor network design shown in Fig. 6.2.

var. Li Si Vi Qhi

unit [m] [m2] [l] [MJ/s]
PFR 1 6.96 0.008 - -0.241
PFR 2 1.58 0.014 - -0.352
PFR 3 3.54 0.045 - -0.142
PFR 4 1.82 0.017 - -0.477
CSTR 5 - - 500 0.398
CSTR 6 - - 500 -0.121
CSTR 7 - - 500 0
CSTR 8 - - 500 -0.066

Table 6.5: Reactor states for the unstable reactor network design shown in Fig. 6.2. States
of PFR refer to the outlet of the tube.

var. propylene allyl chloride chlorine temperature
unit [mol/l] [mol/l] [mol/l] [K]
PFR 1 0.4890 1.3327 0.3544 464.3
PFR 2 0.6065 0.8679 0.5323 473.6
PFR 3 0.3640 1.9282 0.1428 450.0
PFR 4 0.4169 0.3009 0.3962 501.4
CSTR 5 0.0722 0.0172 0.0714 546.7
CSTR 6 0.2014 1.5596 0.0081 450.0
CSTR 7 0.0034 0.0179 0.0013 450.0
CSTR 8 0.1016 0.3119 0.0698 450.1

Fig. 6.1 also indicates the optimal combinations of the total numbers of used (non-idle)
PFR and CSTR. (i, j) in the figure refers to the number of i non-idle CSTR and j non-idle
PFR in the optimal design. For example, for the reactor network superstructure containing
4 CSTR and 3 PFR (refer to point N = 7 in the figure), (2, 3) on the dashed line means
that the final unstable design contains 2 non-idle CSTR and 3 non-idle PFR; thus, 2 CSTR
are idle.
Fig. 6.2 shows the optimal unstable open-loop design for the reactor network superstruc-

ture containing N = 10 reactors. It is computed by solving the nominal design problem
without eigenvalue constraints. The design refers to N = 8, 9, 10 in Fig. 6.1 of the tri-
angular points. This is the best open-loop design results we obtained so far, which has
an objective function value of 13.2665 [M$/year]. However, because no eigenvalue con-
straint is considered, the design is unstable. As we can see from the figure, it contains 4
non-idle CSTR and 4 non-idle PFR, which are connected in a non-trivial pattern. Design
parameters and states of each reactor are summarized in Tables 6.4 and 6.5, respectively.
After implementing step 1 of the proposed 2-step solution approach, the obtained op-

timal design is presented in Fig. 6.3. There are 4 non-idle CSTR and 3 non-idle PFR
included with an objective function value of 12.7742 M$/year. The design is stable,
because eigenvalue constraint is considered. However, it is not robustly stable, because
parametric uncertainty is not considered in this step. Design parameters and states of
each reactor of this design are summarized in Tables 6.6 and 6.7, respectively.
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6 Case study of allyl chloride production

Table 6.6: Design parameters for the stable design shown in Fig. 6.3.

var. Li Si Vi Qhi

unit [m] [m2] [l] [MJ/s]
PFR 1 0.70 0.099 - 0
PFR 2 1.92 0.068 - -0.412
PFR 3 0.50 0.100 - -0.130
PFR 4 1.98 0.027 - -0.533
CSTR 5 - - 500 -0.377
CSTR 6 - - 500 -0.054
CSTR 7 - - 500 -0.198

Table 6.7: Reactor states for the stable design shown in Fig. 6.3. States of PFR refer to the
outlet of the tube.

var. propylene allyl chloride chlorine temperature
unit [mol/l] [mol/l] [mol/l] [K]
PFR 1 0.1844 0.0249 0.1836 558.69
PFR 2 0.3036 0.6335 0.2359 478.89
PFR 3 0.0329 0.0220 0.0312 450.00
PFR 4 0.2542 0.1694 0.2409 527.65
CSTR 5 0.2936 1.1227 0.1642 450.28
CSTR 6 0.0162 0.0187 0.0153 458.64
CSTR 7 0.4034 2.6140 0.0703 450.00

To illustrate the satisfaction of the eigenvalue constraint, we visualize the critical (sta-
bility) boundaries in the uncertain parameter spaces through applying the numerical con-
tinuation toolbox Matcont [33] in Fig. 6.4. The solid lines refer to the computed critical
boundaries, where the spectral abscissa is αJ̄ = −c with c = 10−4. On one side of these
boundaries αJ̄ < −c, while on the other side of these boundaries αJ̄ > −c. Since c is
a very small number, crossing these boundaries will easily result in a change of stability.
The solid points refer to the nominal operating point, which is obtained after implementing
step 1. It locates exactly on the boundaries, which indicates that the nominal operating
point is stable and the eigenvalue constraint (3.44c) is active. From the figure, we also see
that the obtained nominal design is stable, but not robustly stable, because if parametric
uncertainty is present the operating point may move inside the unstable region.
The robustly stable design shown in Fig. 6.5 is obtained by implementing step 2. This

design consists of 3 non-idle CSTR and 4 non-idle PFR and has an objective function
value of 12.4509 [M$/year]. The design is robustly stable, since parametric uncertainty
is considered in this step. Design parameters and states of each reactor are summarized
in Tables 6.8 and 6.9, respectively. This design is as complex with non-trivial connection
patterns involving CSTR and PFR as the one shown in Fig. 6.2.
Numerical continuation of the critical boundaries for the robustly stable design shown

in Fig. 6.5 is implemented, refer to Fig. 6.6. Three pairs of uncertain parameters are
selected for continuation, as it is done in Fig. 6.4. The solid lines refer to the computed
critical boundaries, on where the spectral abscissa αJ̄ = −c, c = 1e − 4. On one side of
these boundaries αJ̄ < −c, while on the other side of these boundaries αJ̄ > −c. The
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6.1 Open-loop reactor network design with robust stability

Figure 6.4: Numerical continuation study of the stability boundaries for the stable design
shown in Fig. 6.3. Continuation is done for 3 selected pairs of uncertain parameters.
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6.1 Open-loop reactor network design with robust stability

Table 6.8: Design parameters for the robustly stable design shown in Fig. 6.5.

var. Li Si Vi Qhi

unit [m] [m2] [l] [MJ/s]
PFR 1 1.07 0.099 - 0.003
PFR 2 2.34 0.067 - -0.383
PFR 3 0.50 0.100 - -0.013
PFR 4 4.23 0.027 - -0.516
CSTR 5 - - 595 -0.400
CSTR 6 - - 500 -0.148
CSTR 7 - - 500 -0.219

solid points refer to the nominal operating point, which locates inside the stable region
and keeps a distance from the boundaries. Shaded boxes refer to the uncertainty region
defined in Eq. (3.44c), while the cycles refer to the overestimated uncertainty region by
using the NVA. We see that, for all realization of the uncertain parameters the operating
point always locates inside the stable region, which indicates that the nominal operating
point is robustly stable.
We note that there are in total 5 uncertain parameters (cf. Table 6.2) and therefore

the critical boundary is in 5-dimensional space. To visualize the critical boundaries in 2D,
one has to select a pair of uncertain parameters each time and fix the rest 3 uncertain
parameters. In Fig. 6.6, the remaining 3 uncertain parameters are fixed to their nominal
values. This way, we actually project the 5-dimensional critical boundary into a selected
2-dimensional subspace. Note also that the overestimated uncertainty cycles in Fig. 6.6
do not touch the critical boundary. This is because the closest distance from the nominal
operating point to the critical boundary is not in the selected 2-dimensional subspace, but
along the normal vector direction r ∈ R5.
Comparing the design parameters and the reactor states between the stable and robustly

stable designs (cf. Fig. 6.3 and Fig. 6.5) from step 1 and 2 of the proposed 2-step solution
approach, refer to Tables 6.6, 6.7, 6.8 and 6.9, we find that both designs have very similar
configurations. The design parameters are very close to each other except for the length of
PFR 4 and the temperature of CSTR 5. The reactor states have also similar values except
for PFR 3. This phenomenon has already been expected by the proposed 2-step solution
solutions (cf. Section 5.6). That is, if the uncertainty region is not very large, the nominal
operating point from step 1 will just back off of the critical boundaries, which results in
an optimal solution that locates not far away from the nominal optimal solution of step 1.
Comparing the optimal unstable nominal design in Fig. 6.2 and the robustly stable

design in Fig. 6.5, both designs show similar economic performance. The selectivity of
propene to allyl chloride is 74.93% and 77.59% for the nominal design and the robustly
stable design, respectively. More than 80% of the cost accounts for material cost Craw,
about 15% for separation cost Csep and less than 5% for energy cost Cheat and equipment
cost Cequ. Most reactors in the nominal design are cooled, which applies also to the robust
design. The difference in the objective function values is 0.8156 [M$/year], which is 6.15%
of the optimal profit of the nominal design. The relatively low extra cost for guaranteeing
stability is accomplished by a much more complex superstructure, compared to previous
work [87], and a more accurate treatment of the eigenvalue constraint.
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6 Case study of allyl chloride production

Figure 6.6: Numerical continuation study of the critical boundaries for the robustly stable
design in Fig. 6.5 in selected uncertain parameter spaces.
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6.1 Open-loop reactor network design with robust stability

Table 6.9: Reactor states for the robustly stable design shown in Fig. 6.5. States of PFR refer
to the outlet of the tube.

var. propylene allyl chloride chlorine temperature
unit [mol/l] [mol/l] [mol/l] [K]
PFR 1 0.1496 0.0235 0.1485 555.46
PFR 2 0.2649 0.5236 0.2062 485.75
PFR 3 0.0026 0.0017 0.0025 450.00
PFR 4 0.1685 0.1116 0.1589 527.54
CSTR 5 0.2912 1.1978 0.1395 450.28
CSTR 6 0.0392 0.0268 0.0369 458.64
CSTR 7 0.4258 2.6140 0.0739 450.00
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6 Case study of allyl chloride production

6.2 Simultaneous reactor network and control system

design for fast response

The closed-loop reactor network synthesis problem (4.39) is solved in this section for allyl
chloride production by applying the modeling procedure shown in Chapter 4 and the two-
step solution method proposed in Section 5.6. Since we want to guarantee a specified
response speed for the closed-loop design, c = 0.1 in Eq. (4.39f) is chosen. By solving
problem (4.39) we aim to find an optimal closed-loop reactor network flowsheet in which
the decentralized PI control structure, the process design parameters and the operating
point are simultaneously determined.

6.2.1 Closed-loop reactor network modeling

The reactor network superstructure consisting of N reactors, refer to Fig. 3.1, is considered
again. Each reactor is either a PFR or a CSTR. To illustrate the modeling procedure,
we present a closed-loop reactor network model with only 2 CSTR. Reactor networks
consisting of more than 2 reactors can be modeled in an analogous way.

The open-loop model of the 2 reactor network superstructure has already been presented
in Eq. (3.23). To get its closed-loop model, the duties of the heat exchangers, namely Qh1

and Qh2, the flowrate variables q, and the energy density [psys]4 in the feed are considered
as candidate MV of the network, i.e.,

u = (Qh1, Qh2, q
T , [psys]4)

T ∈ R
9. (6.8)

According to Def. 4.1.1, the candidate MV of reactor 1 and 2 are Qh1, q1,1, q1,2, q2,1,
q3,1, and Qh2, q1,2, q2,1, q2,2, q3,2, respectively. And therefore,

Θ1 = {1, 3, 4, 5, 7}, and Θ2 = {2, 4, 5, 6, 8}, (6.9)

which denote the index sets of candidate MV of reactors 1 and 2. Obviously, because
Θ1 ∩Θ2 = {4, 5}, [u]4 = q1,2 and [u]5 = q2,1 are common candidate MV of both reactors.

From Eq. (4.3), we obtain

π = ([psys]1, · · · , [psys]3, V1, V2)
T ∈ R

5,

which refers to the process or equipment design parameters of the open-loop model.

We consider only the temperatures of each reactor to be measurable. Therefore n1
c = 1,

n2
c = 1, i.e., each reactor has a single measurement, and the candidate CV are y =

(y1,1, y2,1)
T = (T1, T2)

T ∈ R2. Since [y]1 = y1,1 and [y]2 = y2,1, 	(1, 1) = 1, 	(2, 1) = 2
relate the subindex (i, r) of yi,r to the location of the w-th element [y]w in vector y (cf. Eq.
(4.5)).
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6.2 Simultaneous reactor network and control system design for fast response

Two candidate PI controllers can be now formulated according to Eqs. (4.7b), (4.7c),

ė1,1 = T1 − T̄1,

ė2,1 = T2 − T̄2,

Qh1 = Q̄h1 +K1,1(T1 − T̄1 +
1

t1,1
e1,1) +K1,2(T2 − T̄2 +

1

t2,1
e2,1),

Qh2 = Q̄h2 +K2,1(T1 − T̄1 +
1

t1,1
e1,1) +K2,2(T2 − T̄2 +

1

t2,1
e2,1),

q1,1 = q̄1,1 +K3,1(T1 − T̄1 +
1

t1,1
e1,1) +K3,2(T2 − T̄2 +

1

t2,1
e2,1),

... =
...

q3,2 = q̄3,2 +K8,1(T1 − T̄1 +
1

t1,1
e1,1) +K8,2(T2 − T̄2 +

1

t2,1
e2,1),

[psys]4 = [p̄sys]4 +K9,1(T1 − T̄1 +
1

t1,1
e1,1) +K9,2(T2 − T̄2 +

1

t2,1
e2,1).

(6.10)

e = (e1,1, e2,1)
T refers to the state of the control system. T̄1 and T̄2 refer to the reference

values of the candidate CV, and Q̄h1, · · · , [p̄sys]4 refer to the offset values of the candidate
MV. Let

K =

⎛
⎜⎝

K1,1 K1,2
...

...
K9,1 K9,2

⎞
⎟⎠ ∈ R

9×2, T = diag(1/t1,1, 1/t2,1) ∈ R
2×2 (6.11)

be the proportional and the integral control gain matrices with parameters Ki,j ∈ R,
i = 1, · · · , 9, j = 1, 2, and t1,1, t2,1 ∈ R.

Eqs. (3.23), (6.10) refer to the closed-loop model of the 2-reactor network, which spe-
cializes Eq. (4.7). The decision variables are

ψc = (π, Q̄h1, Q̄h2, q̄
T , [p̄sys]4︸ ︷︷ ︸

=ūT

, T̄1, T̄2︸ ︷︷ ︸
=ȳT

, KT
v , T

T
v )

T , (6.12)

where Kv := (K1,1, · · · , K9,2)
T ∈ R18 and Tv := (t1,1, t2,1)

T ∈ R2 concatenate all variables
in K and T .

Complementarity constraints for control structure selection are derived straightforwardly
by applying Eq. (4.11) to Eq. (6.11).

Idle reactors can be identified from Definition 4.1.2. According to Eqs. (3.23), (6.10),
variables q̄1,1, q̄1,2, q̄2,1, q̄3,1 are used to identify the existence of reactor 1, and variables q̄1,2,
q̄2,1, q̄2,2, q̄3,2 are used to identify the existence of reactor 2. Hence, Eq. (4.14) becomes

[
z1

q̄1,1 + q̄1,2 + q̄2,1 + q̄3,1 > 0

]
∨
[

z̄1
q̄1,1 = q̄1,2 = q̄2,1 = q̄3,1 = 0

]
,

[
z2

q̄1,2 + q̄2,1 + q̄2,2 + q̄3,2 > 0

]
∨
[

z̄2
q̄1,2 = q̄2,1 = q̄2,2 = q̄3,2 = 0

]
,

(6.13)

where z1, z2 ∈ {0, 1} denote the existence of reactor 1 and 2, respectively.
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6 Case study of allyl chloride production

We apply Definition 4.1.3 to distinguish idle and non-idle controllers. Eq. (4.16) results
in ⎡

⎣ z1,1
9∑

j=1

K̂j,1 > 0

⎤
⎦ ∨

⎡
⎣ z̄1,1

9∑
j=1

K̂j,1 = 0

⎤
⎦ ,

⎡
⎣ z2,1

8∑
j=1

K̂j,2 > 0

⎤
⎦ ∨

⎡
⎣ z̄2,1

8∑
j=1

K̂j,2 = 0

⎤
⎦ ,

(6.14)

where z1,1, z2,1 ∈ {0, 1} denote the existence of PI controller (1, 1) and (2, 1), respectively.
Structural constraints for a general N -reactor network are formulated by Eqs. (4.19),

(4.21). Applying Eq. (4.19) to the 2-reactor network model leads to

z1,1 ≤ z1,

z2,1 ≤ z2.
(6.15)

These relations guarantee that: (i) controller (1, 1) must be idle, if reactor 1 is idle, and
that (ii) controller (2, 1) must be idle, if reactor 2 is idle.
Applying Eq. (4.21) to the 2-reactor network leads to

[
z1
∅
]
∨
[

z̄1
K̂v,1 + K̂v,2 = 0, ∀v ∈ Θ1

]
,

[
z2
∅
]
∨
[

z̄2
K̂v,1 + K̂v,2 = 0, ∀v ∈ Θ2

]
,

(6.16)

in which Θ1 and Θ1 are defined by Eq. (6.9). For example, if z1 = 0, then all the v-th
rows of matrix K̂, v ∈ Θ1, are set to zero. This represents the case where the candidate
MV Qh1, q1,1, q1,2, q2,1, q3,1 of reactor 1 are not allowed to be manipulated.

6.2.2 Problem setting

This subsection illustrates the optimization problem (4.39) for networks with more than
two reactors. The candidate CV of the N -reactor network including both CSTR and PFR
are suitable temperatures in each reactor. The temperature of a CSTR is measured inside
the reactor, while the temperature of a PFR is measured at its outlet. Hence, an N -
reactor network has N candidate CV. The candidate MV include the flowrate variables q
and the heating/cooling rates Qh of each reactor and the feed temperature Tsys. Because
an N -reactor network has N(N + 1) flowrate variables and N heat exchangers, we have
N(N + 1) + N + 1 candidate MV in total. For a 6-reactor network, the total number of
candidate CV is 6 and the total number of candidate MV is 49, which already leads to a
large number of control structure alternatives.
The reactor network is fed with raw materials A and C. Each has a maximal flowrate

of 10 mol/s, refer to Eq. (6.2). The feed temperature Tsys [K] is 300 K and, if necessary,
it can be heated to 600 K, refer to Eq. (6.3). The volume Vi of the CSTR i, the length Li

of the PFR i and their cross section areas Si are bounded as in the open-loop case, refer
to Eqs. (6.4), (6.5). The operating temperature Ti of both, CSTR and PFR, should be
within [450, 600] K, refer to Eq. (6.6). We maximize the same profit function (6.1) which
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6.2 Simultaneous reactor network and control system design for fast response

Table 6.10: Process and control design parameters of the simultaneous design.

CSTR i PFR i controller network
Vi Li K fA

sys

Q̄hi Si T fC
sys

Q̄hi K+ T̄sys

K− q̄

K̂ z

has been used in the open-loop case. The objective function comprises product revenue,
material cost, separation cost, equipment cost and energy cost. The feed rates fA

sys and
fC
sys of raw materials A and C and the reaction rate constants a1, a2 and a3 are considered
as uncertain parameters, as for the open-loop case, refer to Eq. (6.7) and Table 6.2.

The process and control design parameters of the closed-loop reactor network are sum-
marized in Table 6.10. Design parameters of CSTR i, i = !N/2" + 1, · · · , N , include
the reactor volume Vi and the heat exchange duty Q̄hi. Design parameters of PFR i,
i = 1, · · · , !N/2", include reactor length Li, cross section area Si and the offset value
of the heat exchange duty Q̄hi. The control design parameters include the elements of
the control gain matrices K and T and of the auxiliary matrices K+, K− and K̂ for the
determination of the decentralized control structure. There are other design parameters,
including the flowrate of interconnections q̄, the flowrate of the raw materials fA

sys, f
C
sys,

the temperature of the feed T̄sys as well as the integers related to the existence of each
reactor and controller.

For comparison, we apply the proposed method to design reactor networks with different
numbers N of reactors included in the reactor network superstructure. To limit the com-
putational effort, we set N ≤ 6, i.e., the largest reactor network superstructure contains
at most 3 PFR and 3 CSTR.

6.2.3 Results and discussion

Fig. 6.7 shows the optimal objective values φ (cf. Eq. (6.1)) for a varying number
of reactors. The triangular symbols refer to open-loop (unstable) design results, which
are obtained by maximizing φ subject to the open-loop reactor network model (4.1) (cf.
Fig. 6.1). The square symbols refer to the simultaneous closed-loop design results with
guaranteed robustness. c = 0.1 is chosen in Eq. (4.39f), which not only results in robust
stability but also in a specified response speed. According to Table 2.1, the estimated
decay time is td = 46 [s]. Triplets (i, j, k) in the figure indicate how many non-idle CSTR,
non-idle PFR and non-idle PI controllers are included in the final design. As we can see
from the figure that an increase of the total number of reactors leads to higher profits for
both, the open-loop and the closed-loop designs. However, for a given N there is always a
gap between the triangular and square symbols, which indicates the profit loss for ensuring
stability and a specified response speed.

Fig. 6.8 presents the closed-loop design for a 6-reactor network superstructure (3 PFR
and 3 CSTR). The design contains 3 non-idle PFR, 1 non-idle CSTR and 4 non-idle PI
controllers. Flowrates and temperatures of the feed and product streams are listed in Table
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6 Case study of allyl chloride production

Figure 6.7: Optimal design of reactor network superstructures in open- and closed-loop. Tri-
angular symbols refer to open-loop unstable designs. Square symbols refer to simultaneous
closed-loop designs with robustly guaranteed response speed (c = 0.1 in Eq. (4.39f)). Triplets
(i, j, k) indicate i non-idle CSTR, j non-idle PFR and k non-idle PI controllers in the closed-loop
designs.

Table 6.11: Flowrates and temperatures of the feed and product streams for the closed-loop
design of a 6-reactor network superstructure (3 PFR and 3 CSTR).

variable value unit
fA
sys 10 mol/s
fC
sys 10 mol/s
Tsys 538.51 K
fA
out 2.79 mol/s
fB
out 5.67 mol/s
fC
out 2.03 mol/s
Tout 450 mol/s

6.11. State variables and design parameters of all reactors are listed in Table 6.12. The
controller gains of all PI controllers are listed in Table 6.13.

To show that the closed-loop design in Fig. 6.8 satisfies the robust eigenvalue constraint
(4.39f), we visualize the location of the critical boundaries in the space of uncertain pa-
rameters fA

sys and fC
sys in Fig. 6.9, and of a1 and a2 in Fig. 6.10. Note that there are 5

uncertain parameters in total (cf. Eq. (6.7)). Fig. 6.9 and 6.10 are projections of the
critical boundary in 5-dimensional space into the selected 2-dimensional subspace. Certain
parameters and the other 3 uncertain parameters are fixed to their nominal values.

In Fig. 6.9 the solid black point inside the shaded rectangular represents the nominal
operating point. The shaded rectangular around it refers to the uncertainty region defined
by Eq. (4.39f). The dashed ellipse refers to an over-estimated uncertainty region used in
the NVA. The solid curve represents the critical boundary, at which the spectral abscissa
of matrix J̄ equals exactly −c. One can check that, points above this critical boundary
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6.2 Simultaneous reactor network and control system design for fast response

Figure 6.8: The optimal closed-loop design from the 6-reactor network superstructure with
guaranteed robust response speed. This design achieves an objective function value of 11.04
M$/year and it has 3 non-idle PFR, 1 non-idle CSTR and 4 non-idle PI controllers. 10 mol/s
A and 10 mol/s C with temperature of 538.51 K are fed into the system. The product stream
contains 2.79 mol/s A, 5.67 mol/s B, 2.03 mol/s C at temperature 450 K.

Table 6.12: State variables and design parameters of all reactors shown in Fig. 6.8.

var. cA cB cC T Li Si Vi Qhi

unit mol/l mol/l mol/l K m m2 l MJ/s
PFR 1 0.1885 0.1169 0.1793 525.43 1.77 0.0612 - -0.659
PFR 2 0.5307 1.0764 0.3857 450 0.79 0.0600 - -0.639
PFR 3 0.0372 0.0418 0.0324 453.99 0.50 0.0050 - -0.100
CSTR 4 0.0157 0.0251 0.0125 450 - - 500 -0.023

satisfy αJ̄ < −c, while points below this critical boundary satisfy αJ̄ > −c. Therefore, to
guarantee the satisfaction of the robust eigenvalue constraint (4.39f) one needs to make
sure that the solid black point locates above the critical boundary and keeps a distance
from it. As we can see from the figure, for the presented nominal operating point the
eigenvalue constraint αJ̄ < −c holds for all realizations of uncertain parameters fA

sys and
fC
sys in the uncertainty region. Similar discussion applies to Fig. 6.10.

To verify the design results, simulation studies of the closed-loop design shown in Fig.
6.8 have been carried out by using the closed-loop model (4.7). To demonstrate the guar-
anteed robust dynamic properties, we select a number of operating points near the nominal
operating point by randomly choosing Nrd = 10 different values of uncertain parameters
πτ in the uncertainty region. According to Eq. (4.39f), cf. also [119], all these operating
points should satisfy Eq. (4.38), i.e., all these points have the specified dynamic properties.
Disturbances are applied in simulations for all selected operating points to check whether
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6 Case study of allyl chloride production

Table 6.13: Parameters for PI controllers shown in Fig. 6.8. TCi, i = 1, · · · , 4, refer to
the temperature controllers of reactor i. CVi and MVi refer to the control and manipulated
variables of controller TCi. ki and ti refer to the proportional and integral gains of controller
TCi.

TCi CVi MVi ki ti
TC1 T1 [K] Qh3 [J/s] 3.9e2 6.169
TC2 T2 [K] Qh2 [J/s] 4.9e4 2.239
TC3 T3 [K] Tsys [K] 1.2e-2 15.74
TC4 T4 [K] Qh4 [J/s] 1.8e2 0.679

Figure 6.9: Nominal operating point, uncertainty region and critical boundary of the optimal
closed-loop design are visualized in the space of uncertain parameters fA

sys and fC
sys.

the specified dynamic properties are fulfilled. We assume that the feed flowrates fA
sys and

fC
sys, the feed temperature Tsys and the heat exchange rates Qh1, · · · , Qh4 are subject to
rectangular disturbances.

dfA
sys(t) =

{
5%fA,0

sys , if 10 ≤ t ≤ 11 [s]

0, otherwise
,

dfC
sys(t) =

{
5%fC,0

sys , if 10 ≤ t ≤ 11 [s]

0, otherwise
,

dTsys(t) =

{
2 [K], if 10 ≤ t ≤ 11 [s]

0, otherwise
,

dQhi(t) =

{
2%Q0

hi, if 10 ≤ t ≤ 11 [s]

0, otherwise
, i = 1 · · · , 4.

(6.17)
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6.2 Simultaneous reactor network and control system design for fast response

Figure 6.10: Nominal operating point, uncertainty region and critical boundary of the optimal
closed-loop design are visualized in the space of uncertain parameters a1 and a2.

Simulation results are presented in Fig. 6.11. The system responds in a similar way
for the selected operating points, as it is expected. We note that the product outlet
temperature Tout does not change much for different values of the uncertain parameters,
because Tout is controlled by a PI controller. Note also that the closed-loop system needs
about 60 seconds to settle down, which nicely corresponds to the estimated decay time
corresponding to c = 0.1 (cf. Table 2.1).

6.2.4 Comparison with established sequential design

To demonstrate the power of the suggested simultaneous design, at least for the presented
case study, we apply the established sequential control system design to an open-loop
unstable 6-reactor network. This open-loop unstable design is shown in Fig. 6.12 (removing
all control loops) and it is derived by maximizing the same objective function (4.39a)
but subject only to steady states of the open-loop system (4.1) and feasibility constraint
(4.39g). No eigenvalue constraints or parametric uncertainties are considered. The open-
loop unstable design corresponds to the triangular symbol at N = 6 in Fig. 6.7 with an
objective function value of 12.03 M$/year. 10 mol/s A and 10 mol/s C with temperature
of 490.7 K are fed into the system. The outlet contains 1.26 mol/s A, 6.50 mol/s B, 0.52
mol/s C at temperature of 450 K.

We linearize the open-loop model at the optimal unstable point to obtain the linearized
system

Δẋ = AΔx+ BΔu,

Δy = CΔx.
(6.18)

127

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


6 Case study of allyl chloride production

Figure 6.11: Simulation study of the simultaneous closed-loop design shown in Fig. 6.8.
Disturbances in Eq. (6.17) are applied to the designed system for Nrd = 10 randomly selected
values of uncertain parameters. fA

out, f
B
out, and fC

out refer to the flowrates of components A, B,
C in the product outlet. Tout refers to the temperature of the product.

Δx(t), Δu(t) and Δy(t) refer to the differences of x(t), u(t) and y(t) from the operating
point. We couple the open-loop model (6.18) with nc candidate PI controllers,

ė = Δy, Δu = K(Δy + Te), (6.19a)

where e ∈ Rnc , K ∈ Rnm×nc and T ∈ Rnc×nc refer to the states, proportional and integral
gain matrices of the controllers. The Jacobian matrix of the obtained closed-loop system
is

J =

(
A+BKC BKT

C 0

)
. (6.20)

We formulate and solve the optimization problem

min
Kv ,K

+
v ,K−

v ,K̂v ,Tv ,zc

αJ̄(Kv, Tv, zc) (6.21a)

s.t. Eqs. (4.11), (4.16), (6.21b)

Kmin
v ≤ Kv ≤ Kmax

v , (6.21c)

Tmin
v ≤ Tv ≤ Tmax

v , (6.21d)

zc ∈ {0, 1}nc . (6.21e)

where

J̄ := J −M

(
0 0
0 I0 − diag(zc)

)

128

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


6.2 Simultaneous reactor network and control system design for fast response

refers to the Jacobian considering only non-idle PI controllers (cf. Eq. (4.36) and Lemma
4.2.1). zc ∈ {0, 1}nc is a vector of integer variables denoting the existence of PI controllers
as defined before. I0 ∈ Rnc×nc is an identity matrix. Kv, K

+
v , K

−
v , K̂v and Tv denote

the variables in matrices K, K+, K−, K̂ and T , respectively, as introduced before. Kmin
v ,

Kmax
v , Tmin

v and Tmax
v refer to the lower and upper bounds of Kv and Tv. Eq. (4.11) defines

the decentralized control structure and Eq. (4.16) specifies idle and non-idle controllers.

Problem (6.21) is a mixed-integer problem with complementarity constraints, disjunc-
tions and a non-smooth eigenvalue objective function. It is simpler than problem (4.39),
since nonlinear steady-state constraints (4.39b) and parametric uncertainty πτ do not ap-
pear. We apply the solution techniques presented in Section 5.6.1. In particular, Eqs.
(5.93), (5.94), (5.5), (5.97) are used to treat complementarity constraints, integer variables,
disjunctions and eigenvalue constraints to transform problem (6.21) into an approximate
smooth NLP.

If problem (6.21) can be solved to global optimality, one can straightforwardly check
whether there exists a decentralized control structure satisfying Eq. (4.38) for the given
open-loop unstable operating point. Here we again apply a multi-start strategy to ap-
proximate the global minimum. Fig. 6.12 shows the best obtained solution of (6.21) for a
random choice of 104 starting points. The spectral abscissa of the optimal design shown
in Fig. 6.12 is −0.0089. For the open-loop operating point there does not seem to exist
a decentralized PI control system such that the performance specified by Eq. (4.38) for
−c = −0.1 can be reached. In other words, if the established sequential design approach
is applied, one may not be able to find any decentralized control structure satisfying the
specified response speed.

Figure 6.12: Closed-loop design obtained by a sequential design procedure. The operating
point is fixed to the open-loop unstable design, which corresponds to the triangular point
N = 6 in Fig. 6.7.

To compare the system’s response of the simultaneous design shown in Fig. 6.8 and
the sequential design in Fig. 6.12, another simulation study has been carried out. The
disturbances defined in Eq. (6.17) are applied to the design obtained by the sequential
approach. We see that the system needs about 800 s to settle down, which approximates
the estimated decay time in Table 2.1 with the same order of magnitude. Compared with
simulation results presented in Fig. 6.11, the response of the closed-loop system resulting
from sequential design is apparently much slower.

129

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


6 Case study of allyl chloride production

Table 6.14: State variables and design parameters of each reactors in Fig. 6.12. The state
variables of PFR refer to the outlet of the tube.

var. cA cB cC T Li Si Vi Qhi

unit mol/l mol/l mol/l K m m2 l MJ/s
PFR 1 0.2599 0.6118 0.2045 450 2.27 0.10 - -0.386
PFR 2 0.1261 0.0903 0.1209 450 10 0.10 - -0.874
PFR 3 0.1424 0.7346 0.0596 450 10 0.10 - -0.192
CSTR 4 0.0368 0.0325 0.0347 529.93 - - 1000 -0.090
CSTR 5 0.0516 0.0480 0.0484 450 - - 1000 -0.196

Figure 6.13: Simulation study of the closed-loop design shown in Fig. 6.12 by applying the
disturbances defined in Eq. (6.17). fA

out, f
B
out, and fC

out refer to the flowrates of component A,
B, C in the system’s outlet. Tout refers to the temperature of the system’s outlet.

6.3 Computational experience

Although we have proposed the 2-step solution strategy in Section 5.6, which decomposes
the task of solving problem (3.44) or (4.39) into a two-step sequential procedure, solving
each derived subproblem for large reactor networks is still not a trivial task. This sec-
tion summarizes the computational experience gained during solving problems (3.44) and
(4.39).

In the first step of the proposed solution approach, a MINLP problem is solved without
considering parametric uncertainty. For both the open-loop and the closed-loop synthesis
problems, M = 1000 is chosen for the reformulated eigenvalue constraint (3.44c), (4.39f)
and integer variables are reformulated by using Eq. (5.94), in which εz = 10−6 is selected.
Disjunctions are reformulated through the big-M method (5.96), in which M = 1000 is
chosen.
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For the open-loop reactor network synthesis, the eigenvalue constraint (3.44c) is assumed
to be locally smooth with respect to its arguments (cf. Section 2.2 and Corollary 2.2.3).
This allows the eigenvalue constraint to be treated as a smooth constraint locally. For
the closed-loop reactor network synthesis, we apply the smoothing method based on the
H2-type cost function (cf. Section 5.4.3 and Eq. (5.97)). A multiple starting strategy is
applied for each computed superstructure with at least 50 samples.

To our computational experiences, the convergence of the applied NLP solver in step
1 is more robust, if the problem is initialized from a steady state of the reactor network
model (3.44b) or (4.39b). This is probably because of the discretization of PFR, which
generates a large number of nonlinear constraints (we have found that the convergence
behavior of the NLP solver is more robust for reactor network synthesis problems with
only CSTR). To initialize the problem, different (local) optimal solutions of the open-loop
unstable designs are used to initialize the states and design parameters of the reactors,
the flowrates of connections and the system parameter psys. Other design parameters, e.g.
the control gain and the integer variables, are selected to be initialized randomly. We note
that the eigenvalue constraint may get violated if such initialization strategy is applied.
However, according to our computational experiences, SNOPT converges very often. For
a reactor network superstructure with N = 10 reactors, solving the derived optimization
problem of step 1 for the open-loop case takes typically less than 2 hours. For a reactor
network superstructure with N = 6 reactors, solving the derived optimization problems of
step 1 for the closed-loop case takes typically less than 5 hours.

In the second step, the NVA is applied to solve problem (3.44) or (4.39) with fixed
reactor network and control structure. The optimal solution of the first step is used to
initialize the NVA (cf. Section 5.6.2). The location and type of the critical boundaries
can be checked straightforwardly, because the optimal solution from the first step typically
locates on the critical boundaries (cf. e.g. Fig. 6.4).

The current implementation of the normal vector approach is based on Eq. (5.101).
Compared to the first step, the second step is computationally much more demanding,
which may take up to 2 days to converge for large reactor networks. A first reason is
that functions x(ψc), e(ψc) and u(ψc) in Eq. (5.101) are implicitly defined. Therefore, the
evaluation of these functions and their gradients need to solve the nonlinear steady-state
equations of the closed-loop model (4.7). Furthermore, the computation of the normal
vectors of constraint (5.101) needs the evaluation of the partial gradients ∂αεe

J̄
(ψc)/∂πτ (cf.

Eq. (5.46)). According to Eq. (5.90), this requires to solve the nonlinear equation (5.87)
and to compute the Lyaponov function (5.89) repeatedly. Finally, the gradients of the
normal vector constraint (5.47b)-(5.47d) and the second-order gradients of the smoothed
eigenvalue constraint αεe

J̄
(·) need to be computed. However, to the author’s knowledge,

analytical forms of such second-order gradients are still unknown (cf. [174]). In practice
therefore, costly finite difference method need to be applied.

For complex reactor networks, the sampling method for treating the SIP (cf. Eq. (5.100))
is applied before applying the normal vector approach. This intermediate step is also
computationally extremely demanding, which may take up to several days to finish. This
is mainly because the number of sampled points πk

τ , k = 1, · · · , Nsp, in the uncertainty
region grows exponentially as the dimension of uncertain parameters. Eq. (5.100) may
easily result in a large number of nonlinear smoothened eigenvalue constraints, which are
costly to evaluate.
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6 Case study of allyl chloride production

Although the solution of the two subproblems derived from the proposed two-step solu-
tion strategy is computationally demanding and non-trivial, problem (6.21) can be solved
in a very efficient manner. For the reactor network shown in Fig. 6.12, the open-loop Jaco-
bian matrix J has a dimension of 68× 68, the candidate CV Δy is a 5-dimensional vector,
while the candidate MV is a 15-dimensional vector, refer to Eq. (6.18). The derived opti-
mization problem (6.21) can be solved typically by SNOPT in less than 5 minutes, starting
from randomly selected initial points. The convergence behavior of the applied NLP solver
is also satisfactory. This observation suggests again that the large computational load of
solving problems (3.44) or (4.39) is, most likely, due to the appearance of a large number
of nonlinear constraints resulting from the discretization of PFR.
We note that a relatively low number of discretization points is chosen to approximate

the PFR in our case studies due to limited computational power. Each PFR is discretized
by only 5 points so that a treatable size of the system’s Jacobian matrix can be obtained.
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7 Summary and outlook

7.1 Contributions and summary of this work

In this work, a novel methodology is presented for open-loop and closed-loop reactor net-
work design with guaranteed robust dynamic properties. Both flowsheet and control struc-
tural alternatives are parametrized by continuous and discrete design degrees of freedom,
which are determined by solving a single optimization problem. The method has been
successfully applied to an allyl chloride case study, in which up to 5 PFR and CSTR are
included in the reactor network superstructure.

A structured modeling procedure is proposed to formulate the open-loop model of the
reactor network. Each reactor in the reactor network superstructure is modeled by a set
of differential equations; the connections of the reactor inlets and outlets are modeled by
algebraic equations. This modeling procedure results in a dynamic model which covers
flowsheet structural information of the open-loop reactor network. In formulating the
closed-loop model for simultaneous process and control design, decentralized PI controllers
are added to the open-loop reactor network. The paring of candidate CV and MV is
not assumed a priori, such that the control structure is not fixed and also subject to
optimization. The obtained dynamic model for closed-loop design can therefore determine
both flowsheet and control structural alternatives simultaneously.

Idle/non-idle reactors and controllers are allowed to appear in the final design. Idle/non-
idle reactors are identified by a zero or non-zero values of the flowrate variables q, which
physically represent the valve positions in connecting pipes. Idle/non-idle controllers are
identified by the controller gain matrix K, which physically represents the coupling of
candidate CV and MV. Both, the flowrate variables and the control gain matrix, are design
degrees of freedom. Hence, manipulating their values changes the status of each reactor or
controller from idle to non-idle, or vice versa. This trick is central to the formulation and
discussion presented in this work, in particular to the analysis of the eigenvalue constraints
for reactor network design. A great advantage of considering idle/non-idle reactors and
controllers is that the optimal number and type of used reactors and controllers in the final
design can be decided.

Eigenvalue-based constraints guarantee the dynamic properties of stability and response
speed in this work. The spectral abscissa of the system’s Jacobian matrix quantifies the
Lyapunov stability and the response speed of an operating point with respect to slow
disturbances and control signals. If the spectral abscissa is negative, the system is asymp-
totically stable. The more negative the spectral abscissa is, the faster the response speed.
Constraining the spectral abscissa of the Jacobian matrix by a negative upper bound there-
fore results in the so-called eigenvalue constraint for the design of dynamic systems with
specified dynamic properties.

Although the derived dynamic models for open-loop and closed-loop reactor network
design are in the form of ODE systems, we can not directly apply the standard theory
of dynamic systems to formulate an eigenvalue constraint for the entire reactor network
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model. This is because idle reactors or controllers may exist in the final design, though
we are interested only in the dynamic properties determined by the submodels of non-
idle reactors and controllers. To adapt the eigenvalue constraint for the entire reactor
network model to an eigenvalue constraint for the submodels of only non-idle reactors and
controllers, structural relationships between idle and non-idle reactors and controllers are
analyzed. An important finding in this work reveals that the system’s Jacobian matrix has
an upper-triangular structure. This finding allows the formulation of a novel eigenvalue
constraint which takes the dynamic properties of only non-idle reactor and controllers into
account.
Two semi-infinite MINLP with disjunctions, complementarity and robust eigenvalue

constraints are formulated for the open-loop and the closed-loop reactor network design
problems. In both problem formulations, an economical objective function is maximized
subject to the steady-state process model, feasibility constraints and a robust eigenvalue
constraint. Integer variables represent the existence of reactors and PI controllers. The
number of introduced integers equals the total number of reactors and controllers. Para-
metric uncertainty may either result from model uncertainties such as reaction kinetic
constants or heat transfer coefficients, or from process uncertainties including slow dis-
turbances in load or quality of raw materials. We assume that uncertain parameters are
located in an uncertainty region around their nominal values. Complementarity constraints
are proposed to select the control structure and disjunctions correspond to the definitions of
idle/non-idle reactors and controllers. The robust eigenvalue constraint guarantees robust
stability and a specified response speed. For the open-loop case, the derived optimization
problem determines the optimal process design variables, operating point and flowsheet
structure. For the closed-loop case, the control structure and controller parameters are
determined in addition.
Besides modeling and problem formulation, another major challenge encountered in this

work is the solution of the derived optimization problems, because no existing solution al-
gorithm or software can be applied readily. After reviewing related optimization problems,
we proposed a two-step hybrid method to solve the resulting semi-infinite MINLP. In the
first step, we solve an optimization problem, in which all uncertain variables are assumed
to be at their nominal values. In the second step, we solve a robust problem, in which
all integers are fixed to the results of the first step and parametric uncertainty of uncer-
tain variables is considered. The problem in the first step is solved by established local
smooth solvers, which either assume that the eigenvalue constraint is smooth at the local
minima or which rely on smoothing techniques for the eigenvalue constraints. A multiple-
start strategy is applied to approximate the global minimum of the strongly nonlinear and
non-convex optimization problem. The problem in the second step is solved by applying
the normal vector approach, which guarantees robust dynamic properties. A great advan-
tage of applying this two-step hybrid method is that, the normal vector approach can be
properly initialized using the results of the first step such that good local solutions of the
original semi-infinite MINLP can be obtained.
A case study of allyl chloride production is finnally presented, in which both PFR and

CSTR are included in the reactor network superstructure. Design results derived by apply-
ing the proposed method are presented. Numerical continuation of critical boundaries is
performed to illustrate the robustness of guaranteed dynamic properties. The simultaneous
design results, computed by the proposed method, are also compared with an established
design result derived from the sequential design approach by using simulations. Simulation
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studies show that the simultaneous design responds significantly faster than the sequential
design. This observation demonstrates the power of the proposed method in designing
closed-loop reactor networks.
We would like to stress two important modeling tricks, which play a key role in this work.

These two tricks render the numerical solution of the formulated optimization problems
much more efficient. They also reduce the number of integers included in the problem
formulation significantly.
The first trick refers to Eq. (3.4), which assumes that each reactor outlet can be modeled

by multiplying a scalar flowrate variable qi,j , which belong to the degrees of freedom of
the reactor network model, with a vector gi,j(·). This way, one can cut off the connections
between reactors by simply manipulating the continuous design degrees of freedom q in the
reactor network model. This useful property leads directly to a structured Jacobian matrix
Jtot with diagonal submatrices for the open-loop reactor network, refer to in Eq. (3.32).
The discovery of the inner structure of the Jacobian matrix Jtot leads to the important
conclusion that the spectral abscissa of the Jacobian matrix with respect to only non-idle
reactors is discontinuous.
The second trick refers to Eq. (4.11), which models decentralized control structure alter-

natives, i.e., the different ways of pairing candidate CV and MV, by using complementarity
constraints. Compared with previous suggested integer-based formulation [124], our for-
mulation does not include any integer variables to model decentralized control structure
alternatives. Since complementarity constraints can be treated more efficiently than inte-
ger variables by local optimization solvers, the novel formulation significantly reduces the
computational demand. Therefore, this formulation makes it possible to handle control
structure selection problems with a relatively larger number of candidate CV and MV. Ac-
cording to our computational experiences, the method works for control structure selection
problems with tens of candidate CV and MV. The formulation has also robust numerical
performance and it has potential to be applied to other control design problems.

7.2 Future research directions

7.2.1 Extensions regarding to the guaranteed robust dynamic

properties

In the proposed problem formulations (3.44) and (4.39), only the spectral abscissa of an
analyzed nonlinear system is considered as a design criterion, which guarantees stability
and provides bounds on the decay rate. However, we need to stress that the proposed
method assumes that the nonlinear system can be approximated well by linearization. If
this is not the case, the actual response of the studied nonlinear system may deviate largely
from its linearized system, easily leading to stability loss or unexpected dynamic behavior.
Therefore, the proposed method in this work may result in unsatisfactory designs. To
avoid this problem, one may need to consider for example the transient solution or other
design criteria of nonlinear dynamic systems as well.
The proposed method guarantees not only dynamic properties at the nominal operat-

ing point, but also dynamic properties in the uncertainty region. However, the presented
formulations are restricted to treat parametric uncertainties, e.g., reaction kinetic param-
eters, or quantities that can be modeled by parametric uncertainty, e.g., slow disturbances
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in the input variables, disturbances and reference signals. Fast disturbances, which are
often present in chemical processes, have not been considered in this work. To model slow
disturbances as parametric uncertainties, we assumed that they can be partitioned into a
mean value and a bounded time-dependent variation, which varies quasi-statically com-
pared to the system dynamics (cf. [119]). Eqs. (3.44c), (4.39f) are derived as a consequence
of this assumption. They ensure the satisfaction of the specified dynamic properties for all
uncertain parameters πτ locating in the uncertainty region. To extend the current work
to consider fast disturbances in the future, one may need to consider the non-steady state
transient behavior for the robust design of nonlinear systems presented in [53].

7.2.2 Extensions regarding optimization methods

Properly solving problem (3.44) and (4.39) to local and global minima remains an unsolved
task in mathematical programming. It is currently very difficult even to get local minima
reliably and extremely challenging to get the global one. The proposed two-step hybrid
solution method in Section 5.6 may result in sub-optimal solutions and the solution method
may fail, if for example the uncertainty region is too large. If one aims to solve more
complicated design problems of reactor network synthesis, in the author’s opinion, properly
solving the optimization problems in the form of Eq. (4.39) is one of the most urgent tasks.
One of the most difficult challenges of solving problem (3.44) and (4.39) is to reliably

solve the eigenvalue optimization (EVO) problems to local and global optimality. This is,
however, not trivial, since developing local solution methods for EVO problems is still an
active research field (cf. Section 5.4). The eigenvalue constraint is non-Lipschitz continu-
ous (cf. Section 2.2) and the state-of-the-art results of non-smooth optimization techniques
assume Lipschitz continuity (cf. Section 5.4.2 and [8]). For non-Lipschitz functions, its
gradient information is not defined mathematically, and it is not covered by the general-
ized subdifferential or subgradient (cf. Definition 5.4.2). Without properly defining the
gradient information of eigenvalue constraints, it is almost impossible to formulate the
local optimality condition of EVO problems. Due to this issue, the existing non-smooth
optimization algorithms can not be directly applied either. Global solutions of EVO or
non-smooth optimization problems, to the author’s knowledge, are rarely addressed in the
literature.
Another major challenge is the solution of the semi-infinite optimization (SIP) embed-

ded with a non-smooth inner EVO problem. Because for SIP global optimality of the
inner optimization problem is required, the inner EVO problem must be solved to global
optimality, which is a challenge task. If the local reduction method or the discretiza-
tion (cf. Section 5.3.1) is going to be applied, convergence must be proven for SIP with
a non-smooth inner optimization problem. A practical way to do this is to apply the
smoothing techniques of eigenvalue constraints (cf. Section 5.4.3), which results in a SIP
with a smooth inner NLP. Global solution of the smoothened eigenvalue problems should
be addressed in this case first. Note that the situation of solving problem (3.44) and (4.39)
will get more complicated, if complementarity constraints and disjunctions are included in
addition.
For the applied NVA, the local convergence property is rigorously proved in Theorem

5.3.10 for the considered type of SIP (5.42). Global convergence of the NVA should be es-
tablished afterwards. Local convergence ensures that the developed algorithm can converge
to a local minimum of the original SIP, if an initial point is selected which is sufficiently
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7.2 Future research directions

close to a local minimum. Global convergence ensures that the convergence is independent
of the selection of the initial point and therefore remote initial points can be selected (cf.
also the local and global convergence issue of the local reduction method presented in Sec-
tion 5.3.1). In the original work on the NVA [119], the authors provided a mechanism of
detecting and updating critical boundaries, which relates to the global convergence issue of
the NVA. However, in the author’s opinion, the global convergence property of this mech-
anism has not been proven rigorously. To work on this topic, one may start again from
analyzing the simplified SIP (5.42), in which all constraints are smooth and no equality
constraints are present, and try to establish global convergence of the NVA. The penalty
function (5.33), the mechanism of detecting critical manifolds (namely updating the index
set K in Eq. (5.32) or J in problem (5.68)) and the selection of step length in Eq. (5.34),
which are developed originally for the local reduction method of general SIP, may be reused
and adapted.

7.2.3 Extension to control structure selection for linear system

In this work, we have presented a problem formulation (4.39) for the simultaneous process
and control system design problem. According to our computational experience and the
previous discussion, we find that the presented problem is still too complicated to be
solved. Even the local minima can not be obtained properly and getting the global minima
is extremely challenging. Motivated by this fact, we present here an interesting problem
formulation for control structure selection for linear dynamic systems. The formulation
is based on the proposed complementarity constraints (4.11) and it aims to determine an
optimal decentralized control structure, including the controller gain parameters, such that
a given cost function is minimized. Compared with problem (4.39), this problem is much
simpler and we expect that there is a good chance to solve it efficiently.

The control structure selection problem for linear dynamic systems can be formulated
as

min
Kv ,K

+
v ,K−

v ,Tv ,p
ϕ(x(t), e(t), u(t), y(t), Kv, Tv, p) (7.1a)

s.t. ẋ = A(p)x+ B(p)u+ C(p)d0(t), (7.1b)

y = D(p)x+ E(p)u+ F (p)d0(t), (7.1c)

ė = y, (7.1d)

u = K(y + Te), (7.1e)

[K]v,w = [K+]v,w − [K−]v,w, v = 1, ..., nm, w = 1, ..., nc, (7.1f)

[K̂]v,w = [K+]v,w + [K−]v,w, v = 1, ..., nm, w = 1, ..., nc, (7.1g)

0 ≤ [K+]v,w ⊥ [K−]v,w ≥ 0, v = 1, ..., nm, w = 1, ..., nc, (7.1h)

0 ≤ [K̂]v,w ⊥
∑
w′ �=w

[K̂]v,w′ ≥ 0, v = 1, ..., nm, w = 1, ..., nc, (7.1i)

0 ≤ [K̂]v,w ⊥
∑
v′ �=v

[K̂]v′,w ≥ 0, v = 1, ..., nm, w = 1, ..., nc, (7.1j)

x(0) = x0, e(0) = e0, t ∈ [0, tf ], (7.1k)
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7 Summary and outlook

where x(t) ∈ Rnx , y(t) ∈ Rnc , u(t) ∈ Rnm denote the state variables, the candidate
CV and the candidate MV of linear system (7.1b), (7.1c). p ∈ Rnp denote the design
parameters. d0(t) denote typical disturbances, which are assumed to be known a priori.
These disturbances may either be slow disturbances, whose time scales are considerably
slower than the time scales of the process (low frequency disturbances), or fast disturbances,
whose time scales are similar to the time scales of the process (high frequency disturbances).
A(p), · · · , F (p) are matrices with proper dimensions, which depend on parameter p.

e ∈ Rnc denote the state variables of nc candidate PI controllers. K ∈ Rnm×nc is the
proportional control gain matrix. T := diag(1/t1, · · · , 1/tnc

) ∈ Rnc×nc is the integral
control gain matrix, where ti ∈ R, i = 1, · · · , nc, refers to the integral control gain of the
i-th controllers (cf. Eq. (4.6)). [K]v,w, [K

+]v,w and [K−]v,w denote the (v, w)-th element of
matrices K, K+ and K− (cf. Eq. (4.11)). Kv, K

+
v , K

−
v and Tv concatenate the variables

in matrices K, K+, K− and T , respectively. x0 and e0 denote initial conditions. tf denotes
the time period over which the optimization is carried out.
Eqs. (7.1b)-(7.1e) refer to a classical multi-input multi-output closed-loop linear system.

Eqs. (7.1b), (7.1c) refer to the open-loop system, while Eqs. (7.1d), (7.1e) refer to the state
equations of nc PI controllers and the coupling of candidate CV and MV (not necessarily
decentralized). Eqs. (7.1f)-(7.1j) are reproduced from Eq. (4.11), which ensure that
each row and each column of matrix K have at most one non-zero element. This way, a
decentralized PI control structure can be guaranteed. Eq. (7.1a) is a generalized objective
function, which is dependent on the transient solution of the closed-loop system (7.1b)-
(7.1e) for t ∈ [0, tf ].
Problem (7.1) is a dynamic optimization problem with complementarity constraints

(but without integer variables). Dynamic optimization refers to mathematical programs
in which the objective function and constraints depend on the solution of differential equa-
tions. By solving problem (7.1), we aim to find an optimal decentralized PI control struc-
ture (embedded in the optimal solution of matrix K), integral control gain matrix T and
design parameters p such that the objective function ϕ(·) is minimized, when disturbances
d0(t) are present to the system. Note that one does not have to use all candidate CV or
MV to form closed-loops. Solving problem (7.1) also determines how many PI controllers
should be included in the final design.
The solution strategies for dynamic optimization problems can be classified into indirect

and direct methods. Binder et al. [20] provide a literature review of this topic and a
comparison between the indirect and direct methods. Indirect methods require knowledge
on the structure of the optimal control profiles in order to derive the boundary value
problem representing the first-order necessary conditions of optimality [159]. They often
results in a two-point boundary value problem and this may be as difficult to solve as
the original optimization problem [191]. In case of nonlinear path constrained problems
involving states and controls, as they are frequently encountered in chemical engineering
applications, the solution structure is not known a priori [7]. Thus, the application of
the indirect approaches is rather cumbersome or even impossible [20]. Direct methods
rely on a discretization of the optimal control problem and apply nonlinear programming
techniques to solve the resulting finite-dimensional NLP. There are two main approaches
to the discretization, the sequential approach in which only the decision variables (control
parameters) are discretized and the simultaneous approach, in which both decision and
state variables are discretized [191]. Direct approaches have been proven to efficiently
solve large-scale optimal control and nonlinear model predictive control problems [61].
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7.2 Future research directions

Future works should focus on solving problem (7.1) to local or even global optimality. For
global solutions of dynamic optimization problems we refer to the works of [103, 158, 191]
and the references therein. To solve problem (7.1) properly, however, one should also
take care of the complementarity constraints (7.1f)-(7.1j). For a first investigation, one
may consider using the regularization methods presented in Section 5.2.2. Computational
performances of solving (7.1) and solving the control structure selection problem based on
integer variables [124] can be compared. Solving problem (7.1) efficiently and reliably is
an interesting task for control system design.

7.2.4 Other possible extensions and improvements

In this work, we use the big-M formulations (3.42) and (4.36) to reformulate the discon-
tinuous eigenvalue constraints (3.33) and (4.35) into continuous ones. There may exist,
however, other ways to treat the numerical difficulty caused by discontinuity. The current
big-M formulations have the drawback that in practice the value of M can not be chosen
arbitrarily large, because it will make the derived eigenvalue constraints ill-conditioned. A
tight estimation of M is therefore needed. However, this is not a trivial task, because the
estimation of the smallest M is itself a global eigenvalue optimization problem.
The presented case study considers PFR in the reactor network superstructure. However,

because of limited computational capacity, each PFR is discretized only by 5 points along
the tube (One may also consider that each PFR is approximated by 5 CSTR.). This way,
the calculated results may not be sufficiently accurate. To have more accurate results, one
may need a finer discretization. Future work should readdress this issue, if an efficient
numerical optimizer becomes available.
Reaction-separation-recycle is a typical flowsheet structure of chemical processes, which

is frequently used in practice. This work focuses only on the reaction part and neglects
the effects caused by the separation part and the recycles. It is an interesting task, if one
can include distillation columns and recycles into the proposed design framework. This
way, robust designs of entire process flowsheets with guaranteed dynamic properties can
be addressed. However, this problem is computationally much more complicated than the
current problem. We would therefore not suggest to look at this problem in the near future,
but suggest to first develop reliable and efficient numerical solvers for the current problem
of reactor network synthesis or even simplified ones.
Complementarity constraints can be used to offer an alternative way of formulating

logic and discrete relationships, which are traditionally done by using integer variables and
disjunctions (cf. Section 5.1). For example, the complementarity constraint (4.9) is an
alternative representation of

[
zi

[ξ]i > 0

]
∨
[

z̄i
[ξ]i = 0

]
, i = 1, · · · , nξ,

∑
i=1,··· ,nξ

zi ≤ 1,

zi ∈ {0, 1},

(7.2)

where [ξ]i denotes the i-th element of vector ξ ∈ Rnξ (cf. Eq. (4.9)). zi is an integer
variable, representing whether [ξ]i is positive or zero. Eq. (7.2) ensures that at most
one element of ξ can be positive, which is equivalent to the relationship ensured by Eq.

139

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


7 Summary and outlook

(4.9). In other words, the disjunctions and the integer constraints (7.2) can be represented
equivalently by the complementarity constraints (4.9).
Motivated by this example, there may exist other mixed-integer constraints and/or dis-

junctions, which can be formulated equivalently by complementarity constraints. There
exists already some related work [14] [15] [16]. However, a systematic framework to au-
tomatically transform mixed-integer constraints and disjunctions into complementarity
constraints has not been rigorously proposed. Because the logics and relationships formu-
lated by complementarity constraints are not as straightforward as the ones formulated
by disjunctions and integer constraints, it is more convenient for people to start modeling
using disjunctions and integer constraints, and then transform them into complementarity
constraints for numerical computation. If this is the case, computational performance of
complementary-based formulations should be compared with the formulations based on
disjunctions and integer constraints.
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A Extension of the reactor network model to
PFR

Plug flow reactors (PFR) represent tubular reactors, where the velocity of the fluid is
assumed to be constant across any cross-section perpendicular to the flow direction in
the tube. Here, we demonstrate how the partial differential equation (PDE) model of a
PFR can be transcribed into an ODE model by the Method of Lines [151]. After this
transcription, the PFR model is the same as Eqs. (3.3), (3.4), the models of the reactors
in the network. Hence, the proposed synthesis method can be applied straightforwardly
to reactor network superstructures including CSTR and PFR.

Assume that the i-th reactor in a reactor network superstructure, Fig. 3.1, is a PFR.
Denote Li as the length of the PFR and denote μ′ ∈ [0, Li] as the axial coordinate of the
PFR. Li is the length of PFR i. Let us firstly scale μ′ ∈ [0, Li] into [0, 1] for convenience
by

μ = μ′/Li, μ ∈ [0, 1]. (A.1)

PFR i can be modeled by

∂xi

∂t
= fi(

∂2xi

∂μ2
,
∂xi

∂μ
, qi,1, · · · , qi,N , pi), (A.2)

with initial conditions

xi(μ, 0) = xi0(μ), (A.3)

and boundary conditions

xi(0, t) = w(ui,1(t), · · · , ui,N (t), qi,1, · · · , qi,N , pi), (A.4a)

∂xi

∂μ
(1, t) = 0. (A.4b)

The definitions and physical units of xi and ui,k, k = 1, · · · , N , are the same as in Eq. (3.3).
However, the state variables xi(μ, t) is not only a function of time, but also a function of
axial position μ. qi,j, j = 1, · · · , N , denote volumetric flowrate in [m3/s] through outlet
port (i, j) of the PFR and pi denotes design parameters of PFR i, including the length Li

of the reactor, its cross section, etc. Input variables ui,k enter the left boundary conditions
through a smooth function w(·).
Each PFR has N outlets, which are fed into other reactors in the network. The j-th

outlet of the PFR can be represented by

yi,j(t) = qi,jgi,j(xi(1, t), pi), (A.5)

where yi,j is of the same type as in Eq. (3.4).
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We use the methods of lines to transcribe the PDE system (A.2)-(A.4) into an ODE
system. The function xi(μ, t) is discretized in the spatial coordinate μ in [0, 1], such that
the discretized solution only depends on time. Nd + 2 positions μ0, · · · , μNd+1 are selected
along the spatial [0, 1] with μ0 = 0 and μNd+1 = 1. Thus, we can introduce

xs
i (t) = xi(μs, t), s = 0, · · · , Nd + 1,

to approximate xi(μ, t) by the set

{x0
i (t), · · · , xNd+1

i (t)}.
In this work, we use central differences to approximate derivatives ∂xi/∂μ and ∂2xi/∂μ

2

to first order accuracy at points s = 1, · · · , Nd to result in the ODE system

ẋ1
i (t) = fi(x

0
i , x

1
i , x

2
i , qi,1, · · · , qi,N , pi), x1

i (0) = x1
i0,

...

ẋNd

i (t) = fi(x
Nd−1
i , xNd

i , xNd+1
i , qi,1, · · · , qi,N , pi), xNd

i (0) = xNd

i0 .

(A.6)

Note that Eqs. (A.6) do not include state equations for ẋ0
i and ẋNd+1

i , because they are
already fixed by the boundary conditions Eq. (A.4). With Eq. (A.4), we replace x0

i and
xNd+1
i in Eq. (A.6) by

x0
i = xi(0, t) = w(ui,1(t), · · · , ui,N (t), qi,1, · · · , qi,N , pi),

and

0 =
∂xi

∂μ
(1, t) ≈ xNd+1

i (t)− xNd

i (t)

Δμ
.

The resulting set of Nd ODE is

ẋs
i = f(xi, ui,1, · · · , ui,N , qi,1, · · · , qi,N , pi), xs

i (0) = xs
i0, ∀s = 1, · · · , Nd. (A.7)

After discretization, Eq. (A.5) can be written as

yi,j(t) = qi,jgi,j(x
Nd

i (t), pi). (A.8)

If we use xi := (x1T
i , · · · , xNT

i )T to denote the state variables, Eq. (A.7) has exactly the
same form as Eq. (3.3), and Eq. (A.8) has the same form as Eq. (3.4).

Example (continued, refer to Example 3.1 in Chapter 3). Consider that the i-th reactor
is a PFR. The mass balance of component A is

∂ciA(μ
′, t)

∂t
= kd

∂2ciA(μ
′, t)

∂μ′2
− 1

Si

N∑
j=1

qi,j · ∂ciA(μ
′, t)

∂μ′
+RA, (A.9)

where Si denotes the cross section area in [m2], Li the length of the reactor in [m]. kd is
a mass dispersion coefficient.
Initial and boundary conditions are

ciA(μ
′, 0) = ciA0(μ

′), (A.10)
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A Extension of the reactor network model to PFR

ciA(0, t) =

N∑
k=1

ṅ0
Ai,k

N∑
j=1

qi,k

,

∂ciA
∂μ′

(Li, t) = 0.

(A.11)

ṅ0
Ai,k [mol/s] denotes the molar flowrate of A through inlet port (i, k) and

N∑
j=1

qi,k [m3/s]

the volumetric flowrate in the PFR. The mass balances for B and C are set up in the same
way.
The energy balance is

cp
∂Ti(μ

′, t)

∂t
=kc

∂2Ti(μ
′, t)

∂μ′2
− 1

Si

N∑
j=1

qi,j · cp∂Ti(μ
′, t)

∂μ′

+
∑

j=1,2,3

Hjrj +Qh/Si/Li,

(A.12)

with the heat capacity cp [J/m3/K], the energy dispersion coefficient kc [J/K/m/s], the
heat exchange rate with the reactor jacket Qh [J/s]. The heats of reaction Hj are already
defined in Table 3.1.
Initial and boundary conditions for energy balance are

Ti(μ
′, 0) = Ti0(μ

′), (A.13)

Ti(0, t) =

N∑
k=1

Q̇0
i,k

cp
N∑
j=1

qi,k

,

∂Ti

∂μ′
(Li, t) = 0,

(A.14)

with energy flowrate Q̇0
i,k [J/s] entering the reactor through inlet port (i, k).

The output variables yi,j are

yi,j(t) = qi,j(cA(Li, t), cB(Li, t), cC(Li, t), cpT (Li, t))
T . (A.15)

If we denote
xi = (cAi, cBi, cCi, Ti)

T ,

ui,j = (ṅ0
Ai,j, ṅ

0
Bi,j , ṅ

0
Ci,j , Q̇

0
i,j)

T ,
(A.16)

and use Eq. (A.1) to scale the position variables μ′, the PDE model (A.9)-(A.15) is exactly
the same as Eqs.(A.2)-(A.5).
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B Proof of Proposition 3.2.1

Proof. Here, we prove that Eq. (3.34) is a sufficient condition for the continuity of αJnid
(·).

Denote y = (xT , qT , pT , pTsys)
T and denote Uy∗ as a neighborhood of y∗. Because in a

sufficiently small neighborhood Uy∗ any non-zero flowrate variables evaluated at point y∗

(elements of q in vector y) remain non-zero inside Uy∗ and only zero flowrate variables
evaluated at point y∗ may become non-zero inside Uy∗ , we have

Inid(y
′) ⊇ Inid(y

∗), ∀y′ ∈ Uy∗ . (B.1)

In other words, the size of matrix Jnid(y
′) evaluated at y′ is not smaller than the size of

matrix Jnid(y
∗) at y∗.

At point y∗, without loss of generality, assume that reactors 1, · · · , θ∗ are idle, while
reactors θ∗ + 1, · · · , N are non-idle. Then in Uy∗/{y∗} there exist maximal N∗ = 2θ

∗

ways
to activate the θ∗ idle reactors. For example, no idle reactor is activated, only reactor i,
i ∈ {1, · · · , θ∗}, is activated or some reactors of the θ∗ idle reactors are activated. Thus,
we can denote

Uy∗/{y∗} = Ω1 ∪ · · · ∪ ΩN , (B.2)

where Ωk, k = 1, · · · , N∗, containing points y, refer to the different ways of activation and
in each Ωk the modes (idle or non-idle) of each reactors do not change. Ωk has the property
that Ωk1 �= Ωk2 , if k1 �= k2. Note that, this partition of Uy∗/{y∗} by using Ωk shown in Eq.
(B.2) is always valid, for any arbitrarily small neighborhood Uy∗ . Note also that, each Ωk

does not contain point y∗.
At y∗, denote

Jid(y
∗) =

⎡
⎢⎣

A∗
1 0

. . .

0 A∗
θ∗

⎤
⎥⎦ , (B.3)

where A∗
i ∈ Mnxi

, i = 1, · · · , θ∗, refers to the Jacobian matrix of idle reactor i. Mnxi

denote the vector space of nxi
-by-nxi

real matrix. The inner structure of Jid(y
∗) with

diagonal block submatrices follows from the idle-reactor model (3.30).
Consider any k′ ∈ {1, · · · , N∗} and set Ωk′ . From the definition of Ωk′ , we know that

the index set Inid(y) does not change, for all y ∈ Ωk′ . So we can denote that

Inid(y) ≡ Ik′

nid, ∀y ∈ Ωk′ . (B.4)

Without loss of generality, we assume that in Ωk′ , reactors 1, · · · , θ∗ −m∗ remain idle and
reactors θ∗ −m∗ + 1, · · · , θ∗ become non-idle.
Because of (B.4), ∀y ∈ Ωk′ , Jnid(y) has a fixed dimension1 and it can be determined

from the non-idle reactor model (3.31) analytically. That is, ∀y ∈ Ωk′ ,

Jnid(y) = [
∂fi
∂xj

] ∈ Ml∗ , i, j ∈ Ik′

nid. (B.5)

1Note that, Jnid(y), however, may change size for y ∈ Uy∗ .

145

https://doi.org/10.51202/9783186952035 - Generiert durch IP 216.73.216.36, am 18.01.2026, 21:11:22. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186952035


B Proof of Proposition 3.2.1

l∗ is a constant, not depending on different y ∈ Ωk′ .
Because the right hand side of Eq. (B.5) is a smooth function of y, we can take the limit

of it, which results in

Jnid(y) →

⎡
⎢⎢⎢⎣

A∗
θ∗−m∗+1 0

. . .

A∗
θ∗

0 Jnid(y
∗)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
:=B∗

, as y → y∗ and y ∈ Ωk′ . (B.6)

Furthermore, because of Eq. (B.3) and Eq. (3.34), we have

αJnid
(y∗) = αB∗ .

So, applying Lemma 2.2.1 to Eq. (B.6) results in

αJnid
(y) → αB∗ = αJnid

(y∗), as y → y∗ and y ∈ Ωk′ .

In other words, ∀ε > 0, there exist a δk
′

> 0 so that if |y − y∗| ≤ δk
′

and y ∈ Ωk′ ,
|αJnid

(y)− αJnid
(y∗)| < ε.

Now, define
δ∗ = min

k′=1,··· ,N∗

δk
′

;

because N∗ is a finite number, we have δ∗ > 0. So if |y− y∗| ≤ δ∗, y either equals to y∗ or
belongs to a set Ωk′ , k′ ∈ {1, · · · , N}. In both cases, |αJnid

(y)− αJnid
(y∗)| < ε.

Next, we will prove that Eq. (3.34) is a necessary condition of the continuity of αJnid
(·).

Assume that at y∗, Eq. (3.34) is not satisfied, i.e.

αJid(y
∗) > αJnid

(y∗). (B.7)

Construct the following sequences

qk := q∗ + εk,

yk := (x∗T , qTk , p
∗T , p∗Tsys)

T ,

where εk > 0 ∈ Rnq , εk → 0, and hence, yk is a sequence approaching y∗. Also, for any q∗,
qk can be selected so that all elements in qk are not equal to zero, ∀k = 1, · · · ,∞. Hence,
all reactors evaluated at points yk, k = 1, · · · ,∞, are non-idle. So

Jnid(yk) = Jtot(yk), k = 1, · · · ,∞. (B.8)

We will prove that for the constructed sequence yk with yk → y∗, αJnid
(yk) � αJnid

(y∗).
Because αJtot(·) is a continuous function (Lemma 2.2.1), we have

αJtot(yk) → αJtot(y
∗), k → ∞. (B.9)

Also from Eq. (3.32) and Eq. (B.7), we have

αJtot(y
∗) = max{αJid(y

∗), αJnid
(y∗)} = αJid(y

∗). (B.10)
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Now, if we replace αJtot(y
∗) in Eq. (B.9) by using Eq. (B.10), we obtain

αJtot(yk) → αJid(y
∗), k → ∞. (B.11)

Use Eq. (B.8), we have
αJnid

(yk) → αJid(y
∗), k → ∞.

From Eq. (B.7), we have αJnid
(yk) � αJnid

(y∗). This is in contradiction to the continuity
of αJnid

(·).
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C Proof of Proposition 3.2.2

To prove Proposition 3.2.2, let us first introduce a lemma.

Lemma C.1. The spectral abscissa of a matrix G ∈ Rn×n can be estimated by

αG ≤ max
j=1,··· ,n

{Gjj +
∑
i�=j

|Gij|}.

This lemma is formulated and proved as Theorem 2 in [87]. Now we can prove Proposition
3.2.2 as follows.

Proof. Let us first consider the trivial case, i.e., at point y∗ := (x∗T , q∗T , p∗T , p∗Tsys, z
∗T )T ,

Iid(y
∗) = ∅. In this case,

αJ̄(y
∗) = αJtot(y

∗) = αJnid
(y∗).

For the non-trivial case, i.e., at point y∗ where Iid(y
∗) �= ∅. From Eq. (3.32), if z∗ =

(z∗1 , · · · , z∗N)T satisfies Eq. (3.41), then

J̄(y∗) =

[
Jid(y

∗)−M · I 0
0 Jnid(y

∗)

]
,

where I is an identity matrix with the same dimension as Jid(y
∗). Because the elements

in Jtot(y
∗) are bounded, elements in Jid(y

∗) and Jnid(y
∗) are bounded, too. Hence, ∃b∗ ≥ 0

such that
|αJnid

(y∗)| ≤ b∗,

max
j

{(Jid(y∗))jj +
∑
i�=j

|(Jid(y∗))ij|} ≤ b∗. (C.1)

Furthermore,

α(Jid−M ·I)(y
∗) ≤ max

j
{−M + (Jid(y

∗))jj +
∑
i�=j

|(Jid(y∗)−M · I)ij|}

= max
j

{−M + (Jid(y
∗))jj +

∑
i�=j

|(Jid(y∗))ij|}

≤ −M + b∗.

(C.2)

For M > 2b∗, combining Eqs. (C.1), (C.2) results in

α(Jid−M ·I)(y
∗) < −b∗ ≤ αJnid

(y∗).

Thus, αJ̄(y
∗) = max{α(Jid−M ·I)(y

∗), αJnid
(y∗)} = αJnid

(y∗).
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D Parametric optimization problems

For x ∈ Rm, v ∈ Rn, denote P (x) as an optimization problem depending on parameter x
[40, 41, 75, 76, 79]. P (x) takes the form of

min
v

g(x, v) (D.1a)

s.t. hi(x, v) = 0, i = 1, · · · , N, (D.1b)

lj(x, v) ≥ 0, j = 1, · · · ,M. (D.1c)

N and M are fixed integers. Functions g : Rm × Rn → R, hi : Rm × Rn → R, lj :
Rm ×Rn → R are twice continuously differentiable. For each fixed x = x̄, P (x̄) minimizes
the objective function g(x̄, v) subject to constraints (D.1b)-(D.1c), evaluated at x = x̄. We
are interested here in the local minima of P (x), when x is subject to variation.
Denote I = {1, · · · , N} and J = {1, · · · ,M} as the index sets for equality and inequality

constraints. Denote
A(x, v) = {j ∈ J | lj(x, v) = 0} (D.2)

as the index set of active inequality constraints, which depends on the evaluation point
(xT , vT )T . Define

L(x, v, λ, μ) = g(x, v) +
∑
i∈I

λihi(x, v)−
∑
j∈J

μjlj(x, v) (D.3)

as the Lagrange function of P (x), where λi ∈ R, i ∈ I, and μj ∈ R, j ∈ J . Denote
λ = (λ1, ..., λN )

T ∈ RN and μ = (μ1, ..., μM )T ∈ RM as the Lagrangian multipliers for
equality and inequality constraints, respectively.

Definition D.1 (LICQ of P (x̄)). For fixed x = x̄, linear independence constraint qualifi-
cation (LICQ) is said to hold for P (x̄) at v = v̄, if the vectors ∇vhi(x̄, v̄), i ∈ I, ∇vlj(x̄, v̄),
j ∈ A(x̄, v̄) are linearly independent.

Theorem D.1 (First-order necessary optimality condition, refer to e.g. Theorem 12.1 in
[127]). For fixed x = x̄, assume v∗ is a local minimum of P (x̄) and assume LICQ holds at
v = v∗. Then, there exist unique λ∗ ∈ RNand μ∗ ∈ RM , such that

0 = ∇vL
T (x̄, v∗, λ∗, μ∗), (D.4a)

0 = hi(x̄, v
∗), ∀i ∈ I, (D.4b)

0 = lj(x̄, v
∗), ∀j ∈ A(x̄, v∗), (D.4c)

0 = μ∗
j , ∀j /∈ A(x̄, v∗), (D.4d)

0 ≤ lj(x̄, v
∗), ∀j ∈ J , (D.4e)

0 ≤ μ∗
j , ∀j ∈ J . (D.4f)

Eq. (D.4) is the so-called KKT necessary optimality condition of P (x). Vector
(v∗T , λ∗T , μ∗T )T is called a KKT point of P (x̄), if it satisfies Eq. (D.4).
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D Parametric optimization problems

Definition D.2 (Strict complementarity (SC) condition). For fixed x = x̄, assume that
(v∗T , λ∗T , μ∗T )T is a KKT point of P (x̄), the strict complementarity (SC) condition is said
to hold, if

μ∗
j > 0, ∀j ∈ A(x̄, v∗). (D.5)

Theorem D.2 (Second-order sufficient conditions (SOSC) for a local isolated minimizing
point of P (x̄), Lemma 2.1 in [40]). If there exist (Lagrange multipliers) vectors λ∗ ∈ RN ,
μ∗ ∈ RM such that the KKT condition (D.4) holds for x = x̄ and v = v∗, and further if

sT∇vvL(x̄, v
∗, λ∗, μ∗)s > 0,

for all s �= 0 such that

∇vlj(x̄, v
∗)s ≥ 0, for all j, where lj(x̄, v

∗) = 0,

∇vlj(x̄, v
∗)s = 0, for all j, where μ∗

j > 0,

∇vhi(x̄, v
∗)s = 0, i = 1, · · · , N,

(D.6)

then v∗ is a local isolated (locally unique) minimizer of P (x̄)

Note that under SC condition, Eq. (D.6) is equivalent to

∇vlj(x̄, v
∗)s = 0, ∀ j ∈ A(x̄, v∗),

∇vhi(x̄, v
∗)s = 0, i = 1, · · · , N.

(D.7)

Theorem D.3 (Local minimizer v∗ under second-order sufficient conditions, Theorem 2.1
in [40]). If (i) the SOSC in Theorem D.2 for a local minimum of P (x̄) holds at v∗ with
associated Lagrange multipliers λ∗ and μ∗, (ii) LICQ condition of P (x̄) holds at v = v∗,
(iii) SC condition of P (x̄) holds at v = v∗, then:
(a) v∗ is a local isolated minimizing point of P (x̄) and the associated Lagrange multipliers

λ∗ and μ∗ are unique.
(b) For x in a neighborhood of x̄, there exists a unique once continuously differentiable

function (v(x), λ(x), μ(x)) satisfying the SOSC for a local minimum of problem P (x) such
that v(x̄) = v∗, λ(x̄) = λ∗, μ(x̄) = μ∗, and, hence, v(x) is a locally unique local minimum
of P (x) with associated unique Lagrange multipliers λ(x) and μ(x).
(c) SC condition and LICQ hold at v(x) for x near x̄.
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E Proof of Theorem 5.3.10

The proof of Theorem 5.3.10 is separated into two parts, which are stated in Theorem E.1.6
and Theorem E.2.5. In Section E.1, we present a related parametric problem and prove
that the feasible set F of the original SIP (5.42), denoted as P , is locally the same as the
feasible set Fm defined by using this introduced parametric problem (cf. Theorem E.1.6).
In Section E.2, we prove that the feasible set Fm is locally the same as F n (cf. Theorem
E.2.5). Combining the results, Theorem 5.3.10 can be obtained straightforwardly. Note
taht because we are only interested in the feasible set of P , the objective function f(·) of
P is of no interest.

E.1 A related parametric problem

Denote set

Y (x, y) = {t ∈ R
m | g(x+ t, y) = 0},

x ∈ Rm and y ∈ Rn are variables as they are defined before. Let us consider the following
parametric problem It(x, y),

min
t∈Y (x,y)

tT t. (E.1)

Note that since Y (x, y) may not be a compact set, It(x, y) may not attain its minimum.
Define

Fm = {z = (xT , yT )T | tT t ≥ 1, ∀ t ∈ Y (x, y)}. (E.2)

Lemma E.1.1. If Ta(z̄) �= ∅ and the TC holds at z = z̄, then there exists a neighborhood
Vz̄ such that Y (x, y) �= ∅, ∀z ∈ Vz̄.

Proof. It is obvious that if t̄ ∈ Ta(z̄), t̄ ∈ Y (x̄, ȳ). Hence, from Ta(z̄) �= ∅ follows Y (x̄, ȳ) �= ∅
directly. Select any t̄ ∈ Ta(z̄), denote x′ = x̄ + t̄, we have g(x′, ȳ) = 0. From TC, without
loss of generality, assume that ∇x1

g(x′, ȳ) �= 0, where xi, i = 1, · · · ,m, refers to the i-th
element of x. From the IFT, g(x, y) = 0 locally determines an at least continuous function
x1(x2, · · · , xm, y) for xi sufficiently closed to x′

i, i = 2, · · · ,m, and y sufficiently closed to
ȳ, and

g
(
( x1(x2, · · · , xm, y), x2, · · · , xm)

T , y
) ≡ 0.

Therefore, for any (x, y) in the neighborhood Vz̄, define t′ =
(x1(x2, · · · , xm, y), x2, · · · , xm)

T − x, we then have g(x+ t′, y) = 0, i.e. t′ ∈ Y (x, y).

Lemma E.1.2. If Ta(z̄) �= ∅ and TC holds at z = z̄ for any t̄ ∈ Ta(z̄), then there exists a
neighborhood Vz̄ such that ∀z ∈ Vz̄ problem It(x, y) attains its minimum.

Proof. From Lemma E.1.1, select a t′ ∈ Y (x, y) �= ∅. Define set

C = {t ∈ R
m | |t| ≤ |t′|}.
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E Proof of Theorem 5.3.10

C is obviously a compact set. It is elementary to prove that the global minima of problem
It(x, y) are identical as the global minima of

min
t∈Y (x,y)∩C

tT t. (E.3)

Moreover, because Y (x, y) is a closed set1 and C is a compact set, problem (E.3) attains
its global minima from the extreme value theorem.

Lemma E.1.3. Assume that Ta(z̄) �= ∅ and the TC holds at z = z̄, we have

z̄ ∈ F ⇒ z̄ ∈ Fm.

Proof. Assume that z̄ /∈ Fm, i.e. ∃ t′ ∈ Rm, such that

g(x̄+ t′, ȳ) = 0, (E.4)

t′T t′ < 1. (E.5)

Eq. (E.4) indicates that t′ ∈ Ta(z̄). Eq. (E.5) is therefore a contradiction to the conclusion
of Lemma 5.3.5.

Note that under the conditions in the above lemma, z̄ ∈ Fm � z̄ ∈ F . An exemplary
function is g0(·, ·), satisfying

⎧⎪⎨
⎪⎩

g0(x̄+ t, ȳ) < 0, if tT t < 1

g0(x̄+ t, ȳ) = 0, if tT t = 1

g0(x̄+ t, ȳ) > 0, if tT t > 1

.

Lemma E.1.4. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and the TC holds at z = z̄. Then there
exists a neighborhood Vz̄, such that: (i) Vz̄ ∩ F̄ �= ∅, (ii) Vz̄ ∩ F̄m �= ∅.

Proof. (i) Assume that t̄ ∈ Ta(z̄). Denote δ = −r(x̄ + t̄, ȳ) as a unit direction (δ is well
defined because the normal vector r is well defined under TC.). Denote z̄′ = (x̄′T , ȳ′T )T

with x̄′ = x̄ + ε δ and ȳ′ = ȳ. ε > 0 ∈ R. It is obvious that z̄′ → z̄, as ε → 0. So we need
to prove that for ε > 0 sufficiently small, z̄′ /∈ F . Because

g(x̄′ + t̄, ȳ′) = g(x̄+ t̄+ ε δ, ȳ)

= g(x̄+ t̄, ȳ)− ε||∇xg(x̄+ t̄, ȳ)||+ o(ε),

and ||∇xg(x̄ + t̄, ȳ)|| > 0 (cf. TC), g(x̄′ + t̄, ȳ′) < g(x̄ + t̄, ȳ) = 0 for sufficiently small ε.
Moreover, because t̄ ∈ T , this leads to z̄′ /∈ F .

(ii) Assume that t̄ ∈ Ta(z̄). Denote x′ = x̄ + εt̄, y′ = x̄, ε > 0. We prove that
z′ = (x′T , y′T )T ∈ F̄m for sufficiently small ε. Denote t∗ = t̄ − εt̄, we have g(x′ + t∗, y′) =
g(x̄+ t̄, ȳ) = 0, i.e. t∗ is feasible to It(x′, y′). Moreover, t∗T t∗ = (1− ε)2t̄T t̄ = (1− ε)2 < 1
(t̄T t̄ = 1 from Lemma 5.3.5). Therefore z′ /∈ Fm, for ε sufficiency small.

1This can be proved straightforwardly, since a closed set can be defined as a set which contains all its
limit points.
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E.1 A related parametric problem

Lemma E.1.5. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and TC holds at z = z̄. Select z′ =
(x′T , y′T )T ∈ Vz̄ ∩ F̄m (such z′ can always be found due to Lemma E.1.4) and denote t′ as
any global minimum of problem It(x′, y′) defined in Eq. (E.1) (t′ can be attained due to
Lemma E.1.2.). Then for Vz̄ sufficiently small, we have

∇xg(x
′ + t′, y′) �= 0. (E.6)

Proof. Denote V k
z̄ = {z ∈ Rm+n | ||z − z̄|| ≤ 1/k}, k = 1, · · · ,∞, as a sequence of neigh-

borhoods. Select z′k ∈ V k
z̄ ∩ F̄m and denote t′k as any global minimum of It(x′

k, y
′
k). It is

obvious that

x′
k → x̄, (E.7a)

y′k → ȳ, (E.7b)

g(x′
k + t′k, y

′
k) = 0. (E.7c)

Assume that Eq. (E.6) does not hold, i.e., for k sufficiently large, we can always find x′
k

and global minimum t′k satisfying

∇xg(x
′
k + t′k, y

′
k) = 0. (E.8)

Because z′k ∈ F̄m, we have t′Tk t′k < 1. Therefore, t′k, k = 1, · · · ,∞, is a bounded
sequence. Hence, there exists a sub-sequence Ω ⊆ {1, · · · ,∞} such that t′k, k ∈ Ω and
k → ∞, is convergent (cf. Bolzano-Weierstrass theorem). Denote t̄′ as the limit value of
this subsequence, i.e., t′k → t̄′, for k ∈ Ω and k → ∞.
From the continuity of g(·, ·) and Eq. (E.7c), we have

g(x̄+ t̄′, ȳ) = 0. (E.9)

And from the continuity of ∇xg(·, ·) and Eq. (E.8), we have

∇xg(x̄+ t̄′, ȳ) = 0. (E.10)

Eq. (E.9) and Eq. (E.10) is a contradiction to the TC.

Note that Eq. (E.6) indicates that LICQ condition of It(z) holds for z sufficiently closed
to z̄. Under the second-order sufficient conditions, this result can be actually obtained
for more general parametric optimization problems (cf. Theorem D.3 in Appendix D).
However, Lemma E.1.5 does not use the second-order sufficient conditions.
The following theorem builds up a link between the feasible set F of the the original SIP

P with set Fm.

Theorem E.1.6. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and the TC holds at z = z̄. Then for Vz̄

sufficiently small, we have
Vz̄ ∩ F = Vz̄ ∩ Fm.

Proof. (i) We first prove Vz̄ ∩ Fm ⊆ Vz̄ ∩ F , or equivalently Vz̄ ∩ F ⊆ Vz̄ ∩ Fm. From set
operations

Vz̄ ∩ F = V̄z̄ ∪ F̄ = V̄z̄ ∪ (F̄ /V̄z̄) = V̄z̄ ∪ (F̄ ∩ Vz̄), (E.11)

Vz̄ ∩ Fm = V̄z̄ ∪ F̄m = V̄z̄ ∪ (F̄m/V̄z̄) = V̄z̄ ∪ (F̄m ∩ Vz̄), (E.12)
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E Proof of Theorem 5.3.10

so we only need to prove z ∈ F̄ ∩ Vz̄ ⇒ z ∈ F̄m ∩ Vz̄ for Vz̄ sufficiently small.
From Lemma 5.3.5, we have 0 /∈ Ta(z̄) and therefore g(x̄, ȳ) = g(x̄ + 0, ȳ) > 0. ∀ z′ =

(x′T , y′T )T ∈ F̄ ∩ Vz̄ (From Lemma E.1.4, F̄ ∩ Vz̄ �= ∅ and therefore we can always select z′

for any sufficiently small Vz̄.), because of the continuity of g(·, ·), for sufficiently small Vz̄

we have
g(x′, y′) > 0. (E.13)

Moreover, because z′ ∈ F̄ (i.e., z′ is infeasible to P), there exists a t′ ∈ T satisfying

g(x′ + t′, y′) < 0, (E.14a)

t′T t′ ≤ 1. (E.14b)

From Eqs. (E.13), (E.14a) and applying the mean value theorem, there exists a γ ∈ (0, 1)
such that

g(x′ + γt′, y′) = 0. (E.15)

Because γ2t′T t′ < t′T t′ ≤ 1, from the definition of Fm and Eq. (E.15), z′ = (x′T , y′T )T /∈
Fm. Moreover, because z′ is selected to to be in Vz̄, we have z′ ∈ F̄m ∩ Vz̄.
(ii) We then prove Vz̄ ∩ F ⊆ Vz̄ ∩ Fm, or equivalently Vz̄ ∩ Fm ⊆ Vz̄ ∩ F . From Eq.

(E.11), we only need to prove z ∈ F̄m ∩ Vz̄ ⇒ z ∈ F̄ ∩ Vz̄, for Vz̄ sufficiently small.
From Lemma E.1.4, for sufficiently small Vz̄, F̄

m ∩ Vz̄ �= ∅ and therefore one can always
select z′ = (x′T , y′T )T ∈ F̄m ∩ Vz̄. ∀z′ ∈ F̄m ∩ Vz̄, denote t′ as any global minimium of
problem It(x′, y′) (t′ can be attained due to Lemma E.1.2). Because z′ ∈ F̄m,

t′T t′ < 1. (E.16)

From Lemma E.1.5, Eq. (E.6) holds. Denote

δ =
∇T

x g(x
′ + t′, y′)

||∇xg(x′ + t′, y′)|| ,
t′′ = t′ − εδ.

We have
g(x′ + t′′, y′) = g(x′ + t′ − εδ, y′)

= g(x′ + t′, y′)− ε∇xg(x
′ + t′, y′)δ + o(ε)

= −ε||∇xg(x
′ + t′, y′)||+ o(ε)

< 0,

(E.17)

for ε > 0 sufficiently small.
Moreover, because of Eq. (E.16), for ε sufficiently small, ||t′′|| < 1, i.e. t′′ is feasible to

P . Therefore, from Eq. (E.17), z′ /∈ F . Because z′ is selected to to be in Vz̄, we have
z′ ∈ F̄ ∩ Vz̄.

E.2 Local equivalence of Fm and Fn

Having established the local equivalence between F and Fm through Theorem E.1.6. We
now establish the local equivalence between Fm and F n. Combining these two results will
lead to Theorem 5.3.10 straightforwardly. Define

Gt(z) = {t ∈ R
m | t is a global minimum of It(z)}.
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E.2 Local equivalence of Fm and F n

Lemma E.2.1. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and the TC holds at z = z̄, we have

Gt(z̄) = Ta(z̄).

Proof. (i) We first prove that Ta(z̄) ⊆ Gt(z̄). ∀t̄ ∈ Ta(z̄), g(x̄+ t̄, ȳ) = 0 (cf. the definition
of Ta(z̄)) and ||t̄|| = 1 (cf. Lemma 5.3.5). Assume that t̄ /∈ Gt(z̄). Then there exists a t̄′

such that g(x̄ + t̄′, ȳ) = 0 and ||t̄′|| < ||t̄|| = 1. This is contradictory to the conclusion of
Lemma 5.3.5.
(ii) We then prove that Gt(z̄) ⊆ Ta(z̄). If t̄

′ is a global minimizer of It(z̄), i.e., t̄′ ∈ Gt(z̄),
then t̄′ is feasible to It(x̄, ȳ), i.e.

g(x̄+ t̄′, ȳ) = 0. (E.18)

Moreover, because any t̄ ∈ Ta(z̄) is feasible to problem It(z̄),

||t̄′|| ≤ ||t̄|| = 1, i.e., t̄′ ∈ T. (E.19)

So from Eqs. (E.18), (E.19), t̄′ ∈ Ta(z̄).

Denote the KKT system of NLP It(z) as (cf. Theorem D.1 in Appendix D)

ht(x, y, t, β) =

(
2tT + β∇xg(x+ t, y)

g(x+ t, y)

)
= 0, (E.20)

where β ∈ R denotes the Lagrange multiplier for It(z). Note that we have used the
property that ∇tg(x+ t, y) = ∇xg(x+ t, y).

Lemma E.2.2. Assume that z̄ ∈ F , Ta(z̄) �= ∅ and the TC holds at z = z̄. We have:
(i) LICQ and SC condition of It(z̄) hold, ∀t̄ ∈ Ta(z̄), i.e., there exists a unique Lagrange
multiplier β̄ = 2/||∇xg(x̄ + t̄, ȳ)|| < 0 such that h(x̄, ȳ, t̄, β̄) = 0, ∀t̄ ∈ Ta(z̄). (ii) If we
assume the SOSC (5.59) of I(z̄) holds in addition, ∀t̄ ∈ Ta(z̄), then the SOSC of It(z̄)
holds, ∀t̄ ∈ Ta(z̄).

Proof. (i) From Lemma E.2.1, any t̄ ∈ Ta(z̄) is a local minimizer of It(z̄). LICQ condition
of It(z̄) holds due to TC. From Theorem D.1 in Appendix D, there exists a unique Lagrange
multiplier β̄ satisfying Eq. (E.20). Because ||t̄|| = 1 (cf. Lemma 5.3.5), from the first
equation in Eq. (E.20) we have

|β̄| = 2

||∇xg(x̄+ t̄, ȳ)|| .

The rest task is to prove that β̄ > 0. Because

g(x̄+ t̄− εt̄, ȳ) = g(x̄+ t̄, ȳ)− ε∇xg(x̄+ t̄, ȳ)t̄+ o(ε)

=
2ε

β̄
t̄T t̄+ o(ε)

=
2ε

β̄
+ o(ε),

if we assume that β̄ < 0, for ε > 0 sufficiently small, g(x̄ + (1 − ε)t̄, ȳ) < g(x̄ + t̄, ȳ) = 0.
This is contradictory to z̄ ∈ F .
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E Proof of Theorem 5.3.10

(ii) Since SC condition holds, we need to prove that (cf. Eq. (D.7) in Appendix D)
sT∇ttL

t(x̄, ȳ, t̄, β̄)s > 0, for all s �= 0 such that ∇tg(x̄ + t̄, ȳ)s = 0, where Lt(x, y, t, β) =
tT t+ βg(x+ t, y) is the Lagrange function of It(z). From Eqs. (5.55), (5.54),

{s ∈ R
m | t̄T s = 0, s �= 0} = {s ∈ R

m | ∇tg(x̄+ t̄, ȳ)s = 0, s �= 0}.

Moreover,

∇ttL
t(x̄, ȳ, t̄, β̄) = 2I + β̄∇ttg(x̄+ t̄, ȳ) = 2I +

∇ttg(x̄+ t̄, ȳ)

l̄
=

W (x̄, ȳ, t̄, l̄)

l̄
,

where l̄ is defined in Eq. (5.54) and W (·) is defined in Eq. (5.58). The SOSC of It(z̄)
follows directly from the SOSC of I(z̄).
If the assumptions in the previous lemma hold, we can denote Ta(z̄) = {t̄1, · · · , t̄J} as a

finite set (cf. Lemma 5.3.7), where t̄j are global minima of It(z̄) (cf. Lemma E.2.1). Denote
β̄j, j = 1, · · · , J , as the associated Lagrange multipliers of t̄j. By applying Theorem D.3
in Appendix D to It(x, y), Eq. (E.20) therefore locally determines C-functions t̃j(x, y),
βj(x, y), satisfying t̃j(x̄, ȳ) = t̄j, βj(x̄, ȳ) = β̄j, ∀ j = 1, · · · , J . Moreover, t̃j(x, y) are
unique local minima of It(x, y) with associated unique Lagrange multipliers βj(x, y).

Corollary E.2.3. From the assumptions in Lemma E.2.2, there exists a neighborhood Vz̄

such that

Vz̄ ∩ Fm = Vz̄ ∩ {z = (xT , yT )T | t̃jT (x, y)t̃j(x, y) ≥ 1, j = 1, · · · , J}, (E.21)

where t̃j(·, ·), j = 1, · · · , J , are implicitly defined by Eq. (E.20).

Proof. Directly from the local reduction theorem 3.3.3 in [67].

Recall that tj(x, y), dj(x, y), j = 1, · · · , J , are implicitly defined functions of
h(x, y, t, d) = 0 in Eq. (5.56), we have the following lemma.

Lemma E.2.4. Assume z̄ ∈ F , Ta(z̄) �= ∅, TC holds at z = z̄ and the SOSC (5.59) of I(z̄)
is fulfilled for all t̄ ∈ Ta(z̄). Then there exists a neighborhood Vz̄ such that ∀(xT , yT )T ∈ Vz̄,

t̃j(x, y) = tj(x, y), j = 1, · · · , J,

βj(x, y) =
2dj(x, y)

||∇xg(x+ tj(x, y), y)|| , j = 1, · · · , J, (E.22)

or equivalently,

tj(x, y) = t̃j(x, y), j = 1, · · · , J,
dj(x, y) =

1

2
βj(x, y)||∇xg(x+ t̃j(x, y), y)||, j = 1, · · · , J. (E.23)

Proof. We prove only Eq. (E.22). Eq. (E.23) follows straightforwardly from Eq. (E.22).
Denote

X j(x, y) = (t̃jT (x, y), βj(x, y))T , j = 1, · · · , J,
Yj(x, y) = (tjT (x, y), 2dj(x, y)/||∇xg(x+ tj(x, y), y)||)T , j = 1, · · · , J.
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E.2 Local equivalence of Fm and F n

From the definition of t̃j(·) and βj(·),

ht(x, y,X j(x, y)) = 0.

Assume now that Eq. (E.22) does not hold, i.e. X j(·, ·) �= Yj(·, ·). Because tj(x, y), dj(x, y)
satisfy Eq. (5.56), one can straightforwardly check that

X j(x̄, ȳ) = Yj(x̄, ȳ),

ht(x, y,Yj(x, y)) = 0.

That is, both functions X j(x, y) and Yj(x, y) fulfill ht(x, y, ·, ·) = 0 and they have the same
value at z = z̄. According to the IFT, however, Eq. (E.20) locally uniquely determines an
implicitly function near z = z̄, which is a contradiction.

Theorem E.2.5. Assume z̄ ∈ F , Ta(z̄) �= ∅, TC holds at z = z̄ and the SOSC (5.59) of
I(x̄, ȳ) is fulfilled for all t̄ ∈ Ta(z̄), there exists a neighborhood Vz̄ such that

Vz̄ ∩ Fm = Vz̄ ∩ F n. (E.24)

Proof. We prove that there exists a neighborhood Vz̄ such that

dj(x, y) = ||t̃j(x, y)||, j = 1, · · · , J. (E.25)

From Eq. (E.20), we have

|βj(x, y)| = 2||t̃j(x, y)||
||∇xg(x+ t̃j(x, y), y)|| .

Because βj(x̄, ȳ) = 2/||∇xg(x̄+ t̄j, ȳ)|| > 0 (cf. Lemma E.2.2), from the IFT the implicitly
defined funtion

βj(x, y) =
2||t̃j(x, y)||

||∇xg(x+ t̃j(x, y), y)|| .

Substitute this equation into Eq. (E.23) will lead to Eq. (E.25).

Theorem 5.3.10 follows as a direct consequence of Theorem E.2.5 and Theorem E.1.6.
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