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Abstract

An important task in visual recognition systems, aiming on the extraction and in-
terpretation of information in images or videos, is the detection of objects. In this
process, all instances of a specified object class are requested to be localized in the
visual input data. Object detection is essential for many applications that require a
more comprehensive scene understanding, like advanced driver assistance systems or
self-driving cars. The utilized object detectors are often created by machine learning
algorithms that follow the paradigm of learning from examples. In a computational
expensive training process, the algorithms learn the characteristics and visual ap-
pearance of the object class from training examples but the created detector has to
work very fast and efficiently. Frequently, the object characteristics are not directly
extracted from the observations but from a feature representation of the input data
that gives a guiding principle on how to identify distinctive structures.

This thesis addresses the problem of visual object detection based on machine-
learned classifiers. A distributed machine learning framework is developed to learn
detectors for several object classes creating cascaded ensemble classifiers by the
Adaptive Boosting algorithm. Methods are proposed that enhance several compo-
nents of an object detection framework to improve its performance:

At first, the thesis deals with augmenting the training data in order to improve
the performance of object detectors learned from sparse training sets. This problem
frequently arises in industrial applications when highly specialized detectors are
learned for e.g. quality assurance.

Secondly, methods are proposed to enhance the feature set that is utilized in the
detector learning and its application. Feature mining strategies are introduced in
order to create feature sets that are customized to the object class to be detected. By
adapting to distinctive object structures, more representative features are assembled
in a set of manageable size that enables an efficient detector learning. Furthermore,
a novel class of fractal features is proposed that allows to represent a wide variety
of shapes.

Thirdly, improvements are proposed to the post-processing that is performed after
applying the learned detector to further work up its output. Commonly, this involves
the assignment of confidences, merging detections that are very close to each other
and dropping detections having low confidence. A method is introduced that models
and combines internal confidences and uncertainties of the cascaded detector using
Dempster’s theory of evidence in order to increase the quality of the post-processing.

Keywords: Object Detection, Feature Mining, Fractal Features, Data Augmenta-
tion, Machine Learning, Adaptive Boosting, Distributed Computing
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Kurzfassung

Die Objektdetektion ist eine wichtige Teilaufgabe im maschinellen Sehen, welches
die Extraktion von Informationen aus Bildern oder Videos und deren Interpreta-
tion zum Ziel hat. Hierbei sollen sämtliche Instanzen einer Objektklasse in den
visuellen Eingangsdaten lokalisiert werden. Die Detektion von Objekten ist eine
elementare Voraussetzung für weitergehende Verfahren wie Fahrerassistenzsysteme
oder selbstfahrende Autos, die eine umfassendere Wahrnehmung ihrer Umgebung
erfordern. Die eingesetzten Objektdetektoren sind häufig durch maschinelle Lernal-
gorithmen erstellt worden, die dem Paradigma des Lernens anhand von Beispielen
folgen. Der Algorithmus lernt hierbei in einem rechenintensiven Trainingsprozess das
charakteristische Aussehen der Objektklasse anhand von Trainingsbeispielen. Der
erstellte Detektor hingegen muss sehr schnell und effizient arbeiten. Häufig werden
die Objektcharakteristiken nicht direkt aus den wahrgenommenen Eingangsdaten
sondern aus einer Merkmalsdarstellung extrahiert, die Richtlinien zur Identifizierung
markanter Strukturen vorgibt.

Diese Dissertation befasst sich mit der visuellen Objektdetektion durch maschinell
gelernte Klassifikatoren. Ein verteiltes maschinelles Lernsystem ist entwickelt wor-
den, um mit Hilfe des Adaptive Boosting Algorithmus Ensemble-Klassifikatoren für
unterschiedliche Objektklassen anzulernen. Es werden Verfahren zur Verbesserung
verschiedener Komponenten eines Objektdetektionssystems vorgestellt, um die De-
tektionsleistung des Gesamtsystems zu erhöhen:

Als Erstes beschäftigt sich diese Arbeit mit der Anreicherung der Trainingsdaten,
um die Leistung von Detektoren zu steigern, welche auf kleinen Trainingsmengen
angelernt werden. Diese Problematik tritt häufiger bei industriellen Anwendungen
auf, wenn hoch spezialisierte Detektoren beispielsweise für die Qualitätssicherung
erstellt werden sollen.

Der zweite Beitrag der Dissertation stellt Verfahren zur Verbesserung der Merk-
malsmengen vor, die beim Anlernen eines Detektors und während der Detektion
genutzt werden. Es werden Methoden zur gezielten Generierung von Merkmals-
mengen entwickelt. Hierdurch können die Merkmalsmengen an die Charakteristiken
der zu detektierenden Objektklasse angepasst werden, sodass eine Menge von aus-
sagekräftigeren Merkmalen entsteht, die gleichzeitig überschaubar ist und somit ein
effizientes Anlernen erlaubt. Weiterhin wird eine neue Klasse von Fraktalmerkmalen
vorgestellt, die vielfältige Strukturen repräsentieren kann.

Drittens werden Verbesserungen für die Detektionsnachverarbeitung entwickelt.
Üblicherweise werden den Detektionen in diesem Schritt Konfidenzen zugewiesen,
nah beieinander gelegene Detektionen verschmolzen und Detektionen mit niedriger
Konfidenz verworfen. Ein Verfahren wird vorgestellt, dass interne Konfidenzen und
Unsicherheiten der Detektorkaskade mit Hilfe der Evidenztheorie modelliert und
kombiniert, um die Qualität der Nachverarbeitung zu erhöhen.

Stichworte: Objektdetektion, Merksmalsextraktion, Fraktalmerkmale, Datenaug-
mentation, Maschinelles Lernen, Adaptive Boosting, Verteiltes Rechnen
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