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Abstract

Cloud Computing, or the Cloud, became one of the most used technologies in today’s world,
right after its possibilities had been figured out. It is a renowned technology that enables ubiq‐
uitous access to tasks that need collaboration or remote monitoring. It is widely used in daily
lives as well as the industry. The paradigm uses Internet Technologies which rely on best‐effort
communication. Best‐effort communication limits the applicability of the technology in the do‐
mains where the timing is critical. Edge Computing is a paradigm that is seen as a complemen‐
tary technology to the Cloud. It is expected to solve the Quality of Service (QoS) and latency
problems that are raised due to the increased count of connected devices, and the physical dis‐
tance between the infrastructure and devices. The Edge Computing adds a new tier between
Information Technology (IT) and Operational Technology (OT) and brings the computing power
close to the source of the data. Computing power near devices reduces the dependency to
the Internet; hence, in case of a network failure, the computation can still continue. Close
proximity deployments also enable the application of Edge Computing in the areas where real‐
timeliness is necessary. Computation and communication in Edge Computing are performed
via Edge Servers. This thesis suggests a standardized and hardware‐independent software ref‐
erence architecture for Edge Servers that can be realized as a framework on servers, to be used
on domains where the timing is critical. The suggested architecture is scalable, extensible,
modular, multi‐user supported, and decentralized. In decentralized systems, several precau‐
tions must be taken into consideration, such as latencies, delays, and available resources of the
neighbouring servers. The resulting architecture evaluates these factors and enables real‐time
execution. It also hides the complexity of low‐level communication and automates the collab‐
oration between Edge Servers to enable seamless offloading in case of a need due to lack of
resources. The thesis also validates an exemplary instance of the architecture with at frame‐
work, called Real‐Time Execution Framework (RTEF), with multiple scenarios. The tasks used
are resource‐demanding and requested to be executed on an Edge Server in an Edge Network
comprising multiple Edge Servers. The servers can make decisions by evaluating their availabil‐
ities, and determine the optimal location to execute the task, without causing deadline misses.
Even under a heavy load, the decisions made by the servers to execute the tasks on time were
correct, and the concept is proven.

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


VIII

Kurzfassung

Cloud Computing, oder die Cloud, wurde zu einer der meistgenutzten Technologien in der
heutigen Welt, gleich nachdem ihre Möglichkeiten entdeckt wurden. Es handelt sich um eine
anerkannte Technologie, die einen ubiquitären Zugriff auf Aufgaben ermöglicht, die Zusam‐
menarbeit oder Fernüberwachung erfordern. Sie ist sowohl im täglichen Leben als auch in
der Industrie weit verbreitet. Das Paradigma nutzt Internet‐Technologien, die auf Best‐Effort‐
Kommunikation beruhen. Die Best‐Effort‐Kommunikation schränkt die Anwendbarkeit der
Technologie in den Bereichen ein, in denen das Timing kritisch ist. Edge Computing ist ein
Paradigma, das als eine ergänzende Technologie zur Cloud gesehen wird. Probleme mit der
Dienstgüte (QoS) und Latenzzeiten, die durch die steigende Anzahl angeschlossener Geräte
und der physischen Entfernung zwischen Infrastruktur und Geräten entstehen, sollen dadurch
gelöst werden. Das Edge Computing fügt eine neue Ebene zwischen der Informationstech‐
nologie (IT) und der Betriebstechnologie (OT) hinzu und bringt die Rechenleistung nahe an die
Quelle der Daten. Das Näherbringen der Geräte reduziert die Abhängigkeit vom Internet und
kann somit Berechnung auch bei einem Netzausfall sicherstellen. Ebenso kann dadurch das
Einsatzgebiet des Edge Computing um Bereiche erweitern, in denen Echtzeitfähigkeit gefordert
ist. Berechnung und Kommunikation im Edge Computing werden über Edge Server durchge‐
führt. Diese Dissertation schlägt eine standardisierte und hardwareunabhängige Software‐
Referenzarchitektur für Edge Server vor, die als Framework auf Servern realisiert werden kann,
um sie in zeitkritischen Domänen einzusetzen. Die vorgeschlagene Architektur ist skalierbar, er‐
weiterbar, modular, mehrbenutzerfähig und dezentralisiert. In dezentralen Systemen müssen
verschiedene Maßnahmen berücksichtigt werden, wie z.B. Latenzen, Verzögerungen und ver‐
fügbare Ressourcen der benachbarten Server. Die resultierende Architektur wertet diese Fak‐
toren aus und ermöglicht die Ausführung in Echtzeit. Sie kapselt auch die Komplexität der
Low‐Level‐Kommunikation und automatisiert die Zusammenarbeit zwischen Edge‐Servern, um
ein reibungsloses Offloading zu ermöglichen, falls ein Bedarf aufgrund von Ressourcenmangel
besteht. Die Dissertation validiert auch eine exemplarische Instanz der Architektur mit einem
Framework, genannt Real‐Time Execution Framework (RTEF), mit mehreren Szenarien. Die ver‐
wendeten Aufgaben sind ressourcenintensiv und sollen auf einem Edge‐Server in einem Edge‐
Netzwerk mit mehreren Edge‐Servern ausgeführt werden. Die Server können durch Auswer‐
tung ihrer Verfügbarkeiten Maßnahmen ergreifen und den optimalen Ort für die Ausführung
der Aufgabe bestimmen, ohne dass es zu Terminüberschreitungen kommt.
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1

1 Introduction

The Internet changed the way people live and how they have access to information. The way
how data is being processed and accessed has changed rapidly. This includes everyday tasks,
like reading emails, but also factory automation and device control. Thanks to the accessibility
and benefits that it brings into the lives, new technologies and uses are emerging. One of the
renowned technologies is the Internet of Things (IoT). IoT connects smart objects and builds a
more intelligent, adaptive, and self‐configurable system [APZ18]. The success of IoT leveraged
connected devices to the Internet, as well as the data generated and transferred through the
Internet, tremendously. However, this growth brings several issues which could degrade the
Quality of Service (QoS) and introduce delays. Due to bandwidth limitations, even failed re‐
quests can occur. Cyber‐Physical Systems (CPS) are systems that are composed of a computing
platform, the physical world, sensors and actuators [Na21]. Hence, design decisions have to
take several aspects into consideration: definition of an architecture, design and integration
of systems and components, connectivity, interoperability, safety, security, reliability, comput‐
ing, and storage. Smart grids, autonomous piloting systems in avionics or automotive, medical
surgery or industrial control systems can be given as examples to the CPS [KM15]. The primary
goal for CPS is an effective, reliable, accurate and real‐time control. In IoT, however, the goal is
better resource sharing and management, enabling interfacing among different networks, data
storage, data mining, data aggregation, and information exchange with high QoS.

In 1992, the Internet‐connected user device count was approximately one million, which went
up to 500 million in 2003, thanks to the increased usage of personal computers. From 2003,
IoT became even popular and reached three billions of connected devices. In 2012, wearable
devices raised this number even further to 8.7 billion. In 2018, this number went up to 11.2 bil‐
lion when home appliances are also became connected. The rapid growth in this number is due
to the involvement of traffic lights and small personal objects, such as toothbrushes and digital
watches. Finally, even door levers are expected to be part of the smart objects in 2020 [Ev11;
NC14]. The Internet, by its nature, provides best‐effort service. Therefore, Interned‐based so‐
lutions also rely on best‐effort communication. Thus, time‐critical applications cannot benefit
from the Internet. This limitation necessitates the introduction of an alternative approach for
interacting with time‐critical devices.

Integrating different technologies from multiple providers and merging them into a single in‐
frastructure is complex. The maintenance of such infrastructure is hard and costly. In case of
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a failure, relying on a single Information Technology (IT) infrastructure can also increase the
downtime of the communication, which causes non‐productive time. Cloud Computing can
scale well when resources are not enough to complete a task. It also balances server resource
usage by transferring (offloading) the tasks to other available servers. The load balancers also
perform the same when a server is out of service.

After a marked tendency towards Industry 4.0, formerly centralized computing is becoming
more decentralized by the involvement of CPS, IoT, and more intelligent components. Edge
Computing is a recent paradigm that is believed to solve time‐criticality and centralized com‐
puting problems, by providing enough computing power close to the source, namely the end
devices, or the devices at the field level [GUR18]. It combines multiple state‐of‐the‐art tech‐
nologies, including CPS and IoT, and it is placed closer to the end devices. Computation close
to the end devices also reduces the dependency of the systems to the Internet, making real‐
time computation and real‐time control possible, even after a network outage. It also enhances
system monitoring and gives more control over the data. Chemical industries, communication,
energy, and food industries, defence and emergency services, nuclear reactors, and airborne
vehicles can be given as examples to domains which are expected to benefit from Edge Comput‐
ing due to their critical timing and QoS requirements. A software architecture and framework
developed under the frame of Edge Computing will be beneficial if it is deployed in one of the
scenarios of the domains mentioned above. However, first, an accurate description of the Edge
Computing and its components is needed. Next, its requirements must be listed and concepts
must be defined. Lastly, the concepts must be realized and validated.

Zuehlke [Zu10] stated that focusing too much on the technology to accomplish a market ad‐
vantage and combining them into single devices limits the cost‐efficient solution with sufficient
quality measurement, due to shorter product cycles. Instead of eliminating the humans in the
production, creating self‐coordinating work teams and avoiding dreary job assignments helped
the companies increase the productivity and the quality of the product. This methodology is
called lean production. Lean means reducing complexity, unnecessary information, and tech‐
nologies [Zu10]. Edge Computing solutions that abstract the complexity of lower‐level technolo‐
gies and enable customizable deployments can be considered a part of lean production. These
kinds of solutions reduce the effort to start production and set the focus on the production
quality instead.

IoT concept in daily life can be realized by combining several technologies: smart devices, net‐
worked systems, mobility of devices, and utilization of standards. However, daily life and in‐
dustrial requirements vary. IoT in the factories requires – in addition to these technologies ‐
reliability and safety under industrial conditions [Zu10].

Technologie‐Initiative SmartFactory KL e.V1 (short: SmartFactory‐KL) is a non‐profit initiative
1Website: https://smartfactory.de
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Figure 1.1: A high‐level overview of the modular testbed demonstrator from SmartFactory‐KL.

that was established in 2005, to implement joint Industry 4.0 projects for the factories of the
future (FoF). Together with its consortium members, SmartFactory‐KL creates manufacturer‐
independent demonstrators in a realistic, industrial production environment. The first Industry
4.0 demonstrator built by the initiative is a modular, distributed, and plug‐and‐produce produc‐
tion platform (See Fig 1.1). Each module is built by different industrial partners and performs
one discrete step of the production. All modules work interoperably and produce a customiz‐
able and individualized product. However, there is no direct communication between the mod‐
ules. The modules are connected to each other via infrastructure boxes. These infrastructure
boxes seen in Fig. 1.1 are used only to supply power, pressured air, and network connection.
The production information is transferred using the memory integrated into the product itself.

The thesis follows the vision of SmartFactory‐KL by reusing the decentralized, scalable, interop‐
erable, and modular system idea and reduces the complexity of the system by abstracting and
encapsulating the low‐level functionalities. First, it shortly explains the history of well‐known
Cloud Computing and its benefits, together with some related work. Then, it makes a transi‐
tion to the Edge Computing paradigm, describing what it is and the problems it is believed to
solve. Next, the work introduces a conceptual software reference architecture for Edge Servers
to overcome these problems. According to this work, Edge Servers are physical computers in
which the architecture is installed. They are the main components of Edge Computing and
used to (pre‐)process, compute, and possibly store data requested by End Devices. End Devices
are resource‐limited devices with low or no computing power. They request tasks from any of
the connected Edge Servers. An End Device can be a smart sensor, machine, computer, mobile
phone, or worker assistance glasses. Connecting the Edge Servers and End Devices creates Edge
Networks. Separate Edge Networks can also be connected to each other. The overall system
which one ormultiple EdgeNetworks come together is called Edge Computing. Edge Computing
can also have the ability to communicate with the Cloud.

The dissertation explains how Edge Servers and their software components are networked to‐
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Figure 1.2: An example network consisting of three End Devices (ED) and two Edge Servers.
Dashed arrows depict best‐effort communication, whereas solid arrows are real‐
time capable connections. The aim is to execute tasks requested by EDs seamlessly
and collaboratively, without causing them to miss their deadlines.

gether for a collaborative execution. There is not a limitation on the network topology. Hence,
any of the available topologies or their combinations can be used to create Edge Networks. The
architecture aims to guarantee the response time, especially for real‐time applications such as
motion control or automation. When an End Device requests a task from an Edge Server in an
Edge Network, the execution is performed on any of the Edge Servers, seamlessly. If the Edge
Server that initially receives the task does not have enough resources to execute the task, it can
offload the request to another Edge Server in the network. If there are other tasks running in
the Edge Server, their execution also needs to be planned to avoid deadline misses. This pro‐
cess is performed without a centralized load balancer or resource monitor. Each server is able
to make independent decisions to choose a suitable server in case they are unable to perform
the task.

The network participants (Edge Servers) introduce themselves to each other automatically, in‐
cluding their functions and hardware specifications. Then, Edge Servers decide on where to
execute the task and return task output to the first requester. These decisions and the planning
of the execution are complicated processes. Each Edge Server needs to know the specifications,
available resources, and running tasks of the other neighbouring servers to yield a good result.
To achieve that, it is also necessary to introduce standard communication patterns that can be
understood and parsed by the Edge Servers. The dissertation also introduces decision making
method for offloading, a novel scheduling algorithm to plan execution of specific tasks, and pat‐
terns for inter‐communication of the Edge Servers. The precise positioning of the components
and an arbitrary network are pictured in Fig. 1.2.
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The proposed architecture enables decentralized, scalable, and multi‐user‐supported (real‐
time) execution. It neither uses nor endorses using any proprietary standards that limit the
interoperability. On the contrary, it is platform and hardware‐independent. Nevertheless, the
specifications of the hardware determine if the solution is real‐time capable or not. The archi‐
tecture also supports the integration of legacy software or programs that are developed towork
only on a single computer. After analysis of existing literature, no reference architectures real‐
izing these concepts were found. To validate the reference architecture, based on the concepts,
a software framework, called Real‐Time Edge Framework (RTEF), is realized. This validation was
performed using multiple scenarios and setups for correctness. In these scenarios, multiple
tasks with high load are requested from an Edge Server at different times. The tasks had strict
timing requirements, which an Edge Server alone would not be able to execute them on time.
The decisions made by the RTEF included execution on itself, throttling the load down, or of‐
floading to another server. If a manual test of the tasks is feasible, the RTEF was also able to
make the right decisions and execute the tasks on time, to meet their deadlines.

Chapter 2 will describe some of the existing concepts, technologies, and the related work. End
of each technology will explain how it is related to the reference architecture, what its equiva‐
lent is and how it is going to be used. The following section will define the problems of Cloud
Computing and explain why there is a need of another technology.

1.1 Problem Definition

Cloud Computing is a best‐effort technology. Frotzcher et al. [Fr14] collected the requirements
forwireless communications in industrial automation aswell as its available solutions. They also
showed the various cycle time requirements of different domains in their research. Depending
on the automation level, the response times can vary between 1microsecond (𝜇𝑠) and 1 second
(Fig. 1.3). Even though response times less than one second are theoretically achievable with
the Cloud, due to its nature, the Cloud cannot guarantee this timing at all times. Moreover,
sending raw sensor data to the Cloud, without protection of the sensitive information is not
desirable due to security reasons.

According to Satyanarayanan [Sa17], although direct fibre connections can overcome the la‐
tency and bandwidth problems, covering a large geographical area requires multiple access
points. Each of them introduces queuing and adds a delay which is not fixed due to themultiple
route possibility from the source. Virtual Reality (VR) applications can be given as an example
of daily life as a latency‐critical application. VR applications typically require less than 16 ms
latency to achieve adequate performance [Sa17].

In the industrial domain, there usually exist several safety‐critical computer systems or con‐
trollers to prevent real‐time deadline misses, or directly designed for controlling purposes. The
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6 Chapter 1: Introduction

Figure 1.3: Depending on the application area, the timing requirements of automation applica‐
tions vary from 1 microsecond (𝜇𝑠) to 1 second (Siemens, 2011).

most widely known controllers are Programmable Logic Controllers (PLC). They follow the IEC
61131 standard, which can be obtained for a fee [IE19]. PLCs provide real‐time solutions for
process controls where time‐critical scenarios exist. Current PLCs also have more processing
power than before, and they support networking. They also became multitasking, meaning
they provide prioritization or scheduling to plan executions of the tasks. Control applications
are usually vendor‐dependent, far from flexibility and reusability. PLC programs are also often
highly application‐specific and neither flexible nor reusable for other applications. If systems
need redundancy or fault‐tolerant applications, programming PLCs becomesmore complicated.
Moreover, when considering scalability, advanced process controls require more engineering
time and cost due to the complexity of the logic. Almost all of the PLC providers use propri‐
etary toolchains. Although the standards define how PLCs should behave, extensions made to
the standard by the companies obstruct the compatibility of a program written for a different
manufacturer. Therefore, having PLCs from multiple providers and seamless execution of the
same program is almost not possible. This limitation also prevents meeting the interoperability
and scalability requirements, which are two of the principles of Industry 4.0 [HPO16; Ma16].

Unlike PLCs, there also exist several programming platforms for industrial controllers from dif‐
ferent manufacturers. As an example, using CODESYS2 and logi.CAD with its runtime system
logi.RTS3, multiple different hardware platforms can be programmed per the IEC 61131 stan‐
dard. Although their programming toolkits are free to use, runtime systems require licence fees
per device.

The benefits of Cloud Computing could overcome some problems of traditional industrial con‐
trol technologies, but it comes with its own set of issues. That is why Edge Computing is an
alternative to Cloud Computing, which provides similar benefits, without the shortcomings. If

2Website: https://codesys.com
3Website: https://www.logicals.com/en/logi-cad/
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a problem requires a fault‐tolerant, distributed, decentralized, scalable, or interoperable solu‐
tion, then Edge Computing must be supported with a standardized and vendor‐independent
architecture. Currently, Cloud solutions provide offloading or load balancing in case more re‐
sources are needed. However, as of today, as Satyanarayanan [Sa17] mentioned, there are no
softwaremechanisms nor algorithms that enable collective control in decentralized computing,
hence, in Edge Computing.

This thesis proposes a software reference architecture for the Edge Servers in Edge Comput‐
ing to deal with the problems that Cloud Computing has. While inheriting the capabilities of
Cloud solutions such as scalability, decentralized computing, and resource sharing, Edge Com‐
puting helps reduce latency and dependency to the Internet. The work also tries to fill the
gaps for an interoperable and collaborative computing in the industrial domain by enabling
real‐time computing at the edge, with minimum effort. The proposed architecture combines
the benefits of other existing technologies and systems such as PLCs to meet the requirements
which will be specified in Sec. 2.1.2. As of today, state‐of‐the‐art lacks a reference architecture
and methodology, which enables execution of (legacy) real‐time tasks in decentralized environ‐
ments. This architecture and the proposed framework allows converts regular computer into
an Edge Server. These servers will then be able to share their resource information and work
collaboratively to perform the requests from End Devices. Edge Servers enable seamless execu‐
tion of such tasks within an Edge Network by abstracting low‐level communicationmethods and
help legacy software/programs work collaboratively on modern systems. From an End Device
perspective, the Edge Network will be seen as a single system. When an End Device requests
a task from an Edge Server, the task output will be returned to the requester, hiding the on‐
going low‐level activity. In the background, the Edge Servers will make decisions depending on
the resource availabilities such as load and distance, to come to a consensus about the optimal
location of execution. In case a server cannot execute the task on time, it will be offloaded to
another server. If a task can be executed on a server, set of algorithms will plan its execution,
depending on the type of the task. Unlike load balancing or offloading in Cloud Computing,
this thesis does not introduce a centralized load balancer. Instead, it enables this feature on all
Edge Servers. Since all available resources are known by the all participating servers, the server
selection is dynamic, i.e., updated real‐time based on the topology.

Calculation of the server to offload to and the time to execute the requested task depends
on multiple parameters and is challenging. In a decentralized environment, for collaboration,
all participants should be aware of the neighbouring resources and their current status. They
should also have standard communication patterns to share this information correctly. The the‐
sis, therefore, defines communication patterns for collaboration and presents decision mech‐
anisms to use internally on an Edge Server as well as externally between Edge Servers in the
Edge Network. The thesis also introduces a novel scheduling algorithm to execute legacy non‐
resumable and preemptible aperiodic tasks on timewithout missing their deadlines. Moreover,
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8 Chapter 1: Introduction

the thesis will implement the proposed architecture as a framework to validate the concepts.
Then, it will be tested using multiple scenarios and different setups by monitoring various task
sets. These task sets have manually been proven to be schedulable, in advance. Finally, the
framework behaviour will be analysed under heavy load and evaluated for correctness.

Thiswork brings several technologies and concepts together, such as the Internet of Things (IoT),
Cyber‐Physical Systems (CPS), grid computing, load balancing, virtualization, and collaborative
computing. These technologies will be detailed in Chapter 2. In the literature, there is not a
vendor‐independent and decentralized solution that provides enough flexibility to execute real‐
time tasks while monitoring system resources in a network for an optimal decision of execution
location. A decentralized system can enable fair use of resources in a network if well‐designed.
Moreover, it also increases the network’s fail‐safe functionality. The work also partially uses the
results of FAR‐EDGE4 and AUTOWARE5 European projects. These projects dealt with the real
industrial problems to enable Edge Computing in traditional factory environments.

The thesis also answers the following research questions:

Question 1: How to structure an interoperable, hardware‐agnostic, and operating system in‐
dependent reference architecture for Edge Computing, to overcome latency problems of Cloud
Computing?

Question 2: How to create a collaborative and decentralized Edge Network that allows task
offloading between Edge Servers?

The questions above also raise the following questions:

Question 3: How to exchange information between End Devices and the Edge Servers to enable
collaboration and resource‐awareness in the network?

Question 4: What kind of decisionmechanisms on the Edge Server side are necessary to execute
End Device tasks on time, without missing their deadlines, including legacy software/programs?
How can they be implemented?

All questions are going to be answered with the conceptual design of the software architecture
and validated in the implementation and validation section. The next section will explain the
objectives and what is to be achieved at the end of the research.

1.2 Objectives

Edge Computing paradigm has a great potential to benefit from Cloud technologies and solve
the limitations of Cloud Computing (Sec. 2.1). However, a deep understanding of the underly‐

4Website: http://faredge.eu/
5Website: https://autoware-eu.org/
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ing technologies is required to exploit the usage of the paradigm. This dissertation proposes a
software reference architecture for Edge Servers in the Edge Computing domain, to solve deci‐
sion problems for collaborative and decentralized computation given in Sec. 1.1. The proposed
solutions will be mathematically formulated, and they will be validated. Before introducing the
concepts, to ease the understanding, the objectives of the reference architecture are given be‐
low:

• Design a hardware‐agnostic and OS‐neutral software reference architecture for flexi‐
ble, self‐configurable, multi‐user‐enabled, interoperable, reliable, extensible, secure, and
scalable Edge Servers; to respond to the requests from End Devices or other Edge Servers
within the same network.

• Create an Edge Network with Edge Servers, to offload the tasks to the other Edge Servers
in case a server lacks resources for an on‐time execution.

• Create decision mechanisms to throttle the CPU usage of the tasks down to avoid pre‐
emption, or to schedule to avoid offloading — all to meet deadlines.

• Define standard introductory commands/patterns for automatically exchanging available
services and resources of Edge Servers.

• Enable execution of legacy software/programs on the Edge Servers by introducing wrap‐
pers.

• Implement the software reference architecture as a framework to realize the concepts.

The implemented framework is also going to be validated against multiple complex scenarios
to test its efficiency and success. The behaviours will be analysed under heavy load by testing
task sets, which are manually proven in advance for their schedulability. The scenarios will use
different setups.

Several aspects are out of scope of this thesis. For instance:

• This thesis does not cover task migration; moving a running task to another Edge Server
and asking for resumption from where it is left off. This is proposed as possible future
work in the outlook (Sec. 6.2).

• Combining periodic and aperiodic tasks requires using a schedule server. This work does
not implement one, and it requires isolation of periodic and aperiodic tasks for optimal
scheduling. Failing to do so may still schedule the tasks, but it does not guarantee the
best scheduling.

• The algorithms assume that there is no jitter and they cause no additional overhead dur‐
ing the calculation.

• The hardware is considered to be ideal, has infinite disk space andmemory, to reduce the
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10 Chapter 1: Introduction

complexity of the problem.

• The execution durations of the processes are known a priori.

Another aspect that is not considered in this thesis is the network communication. It is assumed
that the established communications are real‐time.

1.3 Approach

Figure 1.4: A summary of the approach to achieve the objectives.

To solve the problem explained in Sec. 1.1 and achieve the objectives mentioned in Sec. 1.2,
an approach to narrow down the domain is planned. First, the history of Cloud Computing is
explained, and some examples are given. Next, the issues on Cloud Computing are listed. Then,
Edge Computing is defined, and it is explained how Edge Computing is expected to solve the
issues of the Cloud Computing (Sec. 2.1). Combining Cloud Computing and Edge Computing,
requirements (Sec. 2.1.2) and enablers (Sec. 2.1.3) are listed. Further, another related do‐
main, Real‐Time Computing, is explained together with its challenges and possible scheduling
algorithms (Sec. 2.2). Next, a conceptual software reference architecture design is proposed
(Chapter 4). Lastly, this architecture is used to realize the concept as a framework. The frame‐
work; and thus the architecture is validated with multiple use cases (Chapter 5). This approach
to achieving the objectives is summarized in Fig 1.4.

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


11

2 State of the Art

This chapter is divided into three sections. Sec. 2.1 widens the definitions of Cloud Computing
and Edge Computing, and lists the existingwork in the same direction. Moreover, it explains the
requirements (Sec. 2.1.2) and enablers (Sec. 2.1.3) of Edge Computing for the thesis to reach
its goals. Sec. 2.2 moves into Real‐Time Computing domain, which the thesis aims to connect
with Edge Computing. It also explains its challenges (Sec. 2.2.1) and how the scheduling works
on real‐time operating systems (Sec. 2.2.2). The chapter is then finalized with a summary (Sec.
2.3).

2.1 Cloud Computing and Edge Computing

Computing has always switched between centralized and decentralized computing since the
1960s. In the 1960s, local terminals did not have enough computing power, and thus the com‐
putations were performed on hosts (servers). The optimizations were also focused on the lim‐
ited resources of the hosts [Ba14]. Until the 1980s, the computation was centralized. Central‐
ized systems tend to have lower administrative and operational costs, and their configurations
are more straightforward compared to the decentralized systems [Sa17]. From the 2000s, the
widespread use of personal computers and increased resources such as computing power on
these systems, enabled computation directly on the client machines, eliminating the need of a
centralized server [Ba14].

A decentralized system is a system in which each participant is controlled by itself, and the re‐
sults are aggregated to create a universal system response [Ea17]. It can be other mechanisms
that monitor decentralized participants, but the hierarchical structure is minimized. In case of a
failure, automatic recovery is only possible with a decentralized system. Decentralized systems
also increase flexibility, autonomy, and responsiveness [KDN17; Wa10]. However, the develop‐
ment, maintenance, and management of these systems are complex. This complexity pushed
the computing and storage back to the server‐side [Ba14]. The procedure of computation and
storage in remote servers is called Cloud Computing. Sharing the unused computing power
to balance the workload was one of the most significant advantages of Cloud Computing, or
”the Cloud”. Moreover, the Cloud reduced the marginal cost of the system administration and
expenditure to create a data centre.
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Cloud Computing [MG11], or only the Cloud, is an emerging technology and allows machines
and people to access the data ubiquitously. It enables on‐demand sharing of available comput‐
ing and storage resources among its users which could be either human or machine, or even
both. These resources are available in data centres. The data centres consist of one or more
physical servers located on‐site or in a distant physical location, in which they are accessed using
Internet technologies. From its first initial concepts in the 1960s, the idea was brought to life as
Remote Job Entry (RJE) [IB68]. Since then, different experimentations were made to exploit the
usage of large‐scale computing. The apparent success of the Cloud emerged new application
areas in the last decade. The Cloud iswell‐used for daily tasks, such as emails or for collaborative
work, file and data storage, finance, or remote monitoring.

Cloud Computing offers a Software‐as‐a‐Service (SaaS) approach over the Internet. Ser‐
vices that the Cloud can also provide are Hardware‐as‐a‐Service (HaaS), Platform‐as‐a‐Service
(PaaS), Infrastructure‐as‐a‐Service (IaaS) [Ar10], and Function‐as‐a‐Service (FaaS). Amazon Elas‐
tic Cloud Computing (EC2) and Microsoft Azure platforms can be given as examples to IaaS and
FaaS. In 2006, Amazon released its elastic Cloud platform, EC21, and in 2008, Microsoft also
entered in Cloud Computing with its Azure platform2. Both platforms present a wide range of
tools to create and manage Cloud servers and also to deploy user software in the Cloud. Ubiq‐
uitousness, scalability, and accessibility are some of the evidential reasons that make Cloud so
prevalent, which are also provided by these existing platforms. The available resources in the
Cloud enabled low‐powered or resource‐limited end devices to perform complex tasks in the
Cloud, saving exceptional computational time [HHG16]. The ubiquitousness of the Cloud al‐
lowed data to be accessed from anywhere and any time, as long as there is an active Internet
connection.

Similar to Information Technology (IT) domain, the manufacturing domain also switched be‐
tween centralized and decentralized production [KDN17]. It also proliferated its interest in the
Cloud and looked for new possibilities for using it. One of the paradigms using Cloud terms
in this domain is Cloud Manufacturing (CM). CM term was first introduced by Li et al. in 2010
[LS10]. Then, several authors [DS12; Xu12; Zh10a] have proposed their definitions of CM. How‐
ever, themanufacturing‐as‐a‐service concept was first seen in literature in 1990 by Goldhar and
Jelinok [GJ90]. They discussed the transformation of factories from a mechanical focused oper‐
ation to IT. They also discussed the possibility of mass‐customization with computer integrated
manufacturing (CIM).

The concept of CM is a combination of Cloud Computing, Internet of Things (IoT), Cyber‐Physical
Systems (CPS), service‐oriented architecture (SOA), service‐oriented manufacturing (SOM), vir‐
tual manufacturing, and the virtual enterprise [Re15]. One recent research on CM [SJ18] states
that many works define CM as an emerging concept of virtualization of distributed manufactur‐

1Website: https://aws.amazon.com/ec2
2Website: https://azure.microsoft.com
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ing and congregating resources to provide a reliable and high‐quality transaction of the manu‐
facturing process.

The CM concept was also seen in additional research done by different groups. Rajagopalan et
al. [Ra98] defined a system with clients, manufacturing services, and process brokers, which
enables multiple users to access a design software by the introduction of plug‐ins. Wu et al.
[DS13] defined the CM using the work of [MG11] and [Sm09]. According to their work, CM is
a customer‐oriented manufacturing model that provides on‐demand access to the shared col‐
lection of various and distributed manufacturing resources, to form temporary, reconfigurable
production lines, enabling increased efficiency and reducing product life cycle costs. In another
article, Wu et al. reported the vision and state‐of‐the‐art of CM in the fields of automation, in‐
dustrial control systems, service composition, flexibility, and proposed implementation models
in 2013 [Wu13].

In the scope of CM, there have also been several initiatives, some of which target fully auto‐
mated production. CloudFlow [HHG16] and CAxMan3 are two of the projects funded by the
European Commission that aim at task orchestration in the Cloud. In these projects, the soft‐
ware developers integrate their solutions in the Cloud using the provided tools. Then, users
create workflows that specify the order of execution of the Cloud services stored in a common
database. The workflows are started via the workflow manager (WFM) and executed seam‐
lessly. The final results are finally displayed to the user. The Cloud services communicate with
each other throughWFM, which acts as a broker. These projects aimed at implementing a plat‐
form to connect services from different providers and execute them to address the user needs.

As may be understood from the definition and the related work, CM does not target controlling
the factories remotely or performing real‐time computations from distant servers. Instead, it
provides access to a service pool, where participants find and choose the requested services.
It is defined as a parallel distributed system where all kinds of involved users throughout the
manufacturing life cycle are serviced, on‐demand [Zh10b]. Similar to many Cloud solutions that
can be deployed in a public, private, or hybrid cloud, CM can be deployed as a private cloud as
well.

Whether it is nearby or lies in a far distance, using a single infrastructure to keep a system
reliable may seem reasonable. However, in case of a failure in the infrastructure, the downtime
may be costly and hard to recover. Scaling this kind of systems may also be hard. Companies
and research institutes continuously seek solutions to avoid low Quality of Service (QoS) due
to insufficient hardware and network resources. Cloud solutions are supportive of catching the
competition on a global scale to create upgradeable solutions and eliminate these hardware
limitations swiftly [MUK00]. Data centres for Cloud solutions usually provide scalable hardware
to respond to the demands of their users. Usually, tasks in scalable systems are distributed via

3Website: https://caxman.eu
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load balancers to distribute the load equitably among servers (See Sec. 2.1.3). Nevertheless, a
failure in centralized load balancers also hinders productivity. Moreover, the physical distance
from the data source to the Cloud is one of the primary reasons for high latency and low QoS.
Edge Computing is an alternative approach to address these issues.

The rapid and continuous shift frommass to individualized production changes production con‐
ditions. These are mainly due to market demands and shorter product cycles [Fe09]. Existing
paradigms in the industrial domain do not satisfy the increasing demand for adapting produc‐
tion systems to new product variants [Pa18]. Increasing digitalization and demand due to short
product‐cycles emerge new technologies. These new technologies focus on the flexibility and
scalability of the production systems [MUK00]. With the idea of flexible and scalable servicing,
Edge Computing also targets simplifying the execution of complex tasks seamlessly, without lim‐
iting their usability. Similarly, the Cloud Computing provides on‐demand resources to its users
to perform requested tasks on remote servers. However, assigning real‐time tasks to the Cloud
is infeasible since the Cloud follows a best‐effort approach through the Internet, rather than an
on‐time reaction. Moreover, in the case of a network failure, the computational power is lost.
To perform (near) real‐time computations and continue functioning even after a network out‐
age, the computation power needs to be close to the field or device tier. The paradigm, which
adds a tier between the Cloud and device tier, and moves the computational power near the
user as much as possible is called Edge Computing.

A layer is a logical organisation of a set of services, devices, or software with the same/similar
specific functionality, mainly defined for the abstraction of tasks. A tier is, however, a physical
deployment of layers for scalability, security and to balance performance [Lh05]. The tier cre‐
ated between the client and Cloud servers, where the computation is performed, and possibly
the data is stored, is called Edge Tier. Edge Computing enables decentralized computation in
this tier.

The roots of Edge Computing go back to the 1990s where Akamai Technologies introduced Con‐
tent Delivery Networks (CDN) to increase web performance [Di02]. They cached contents at the
Internet’s edge, aiming to reduce requests on the site’s own infrastructure and faster response
times for the users, by responding to their requests using nearby servers. Noble et al. [No97]
first demonstrated the potential of Edge Computing by realizing a speech recognition scenario
on resource‐limited devices. They offloaded the computation to a nearby server, and the re‐
sults delivered an adequate performance. In 2012, Bonomi et al. [Bo12] introduced a new
paradigm called Fog Computing. Unlike Edge Computing, its participants are distributed over a
broader network, similar to CDN. They also explain the need for a unifying platform to create a
distributed intelligence. In 2014, Chang et al. [Ch14] proposed a newmodel for Cloud Comput‐
ing, with the name Edge Cloud. Then, they tested the performance of their architecture with
indoor localization application to evaluate latency, and with video monitoring application to
measure the bandwidth. Their results showed a better performance compared to the existing
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Figure 2.1: Location of Edge Computing in an Automation Pyramid. Edge Computing is placed
at the intersection between OT and IT.

Cloud solutions.

Edge Computing is one recent technology that can help decentralize the control of the systems,
decrease the dependency on the Internet and a single central IT system, and increase flexibility
and scalability. It can be inserted where the IT intersects with Operation Technology (OT) in the
automation pyramid, as seen in Fig. 2.1. Below OT, all tasks are expected to give the expected
results at the expected time. In IT, however, the timing requirements are less critical; most of
the time, failures on timing reduce the QoS. Delivering the expected results at expected times
is the primary topic of real‐time computing. More on the real‐time computing will be explained
in Sec. 2.2.

Edge Computing can perform computations close to the devices, and it can also play a role as
a buffer to filter out the raw data and reduce the network traffic between the data source and
the Internet. It can also reduce privacy and security risks of the confidential data that is be‐
ing exposed to the Internet because data can be processed locally [Sh16]. There are several
available computers or gateways, which have pre‐installed operating systems (OS), platforms
and generic Inputs/Outputs (I/Os) to allow migration from legacy systems to this new tech‐
nology [Be21; CO21; De20; Kl21; TT16]. However, only a limited amount of the existing solu‐
tions support (near) real‐time execution. Besides, almost all of them are proprietary and not
optimized for working with solutions from other providers. Automation infrastructures from
different vendors often limit the interaction of solutions from different companies. Providers
usually administer their management interfaces, and solutions can establish networks only with
the solutions from the same provider. This may be the case to enforce the usage of their pro‐
prietary standards and products. Alternatively, this enforcement can be for safety or security
reasons, or both. A standard and unifying architecture to diminish the cumbersome installation
and configuration steps of a network consisting of multi‐vendor solutions is missing. As there
is no ”fit‐for‐all” guide for the setup, the preparation phase requires different solutions to be
analysed and well‐studied. The setup and learning phase also needs time and cost investment.
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Most of the time, field tier devices (or end devices) are resource‐limited, and not all operations
can be performed in the device tier. Especially, computationally heavy tasks such as Artificial
Intelligence (AI) or image processing jobs are often offloaded to more powerful computers for
completion. These can be other servers in the vicinity, or the Cloud.

Edge Computing targets reduced latencies and high QoS that are hindered by the Cloud solu‐
tions, mainly due to relying on the wide‐area network (WAN) connection and the physical dis‐
tance between the participants. While overcoming these problems, it also benefits from Cloud
Computing advantages. Different researches define Edge Computing as Edge Cloud, Fog Com‐
puting or Cloudlet [Bo12; Ch14]. Dolui and Datta [DD17] define Edge Computing as a superset
of Fog Computing, Cloudlet Computing, and Mobile‐Edge Computing. However, these terms
are interchangeable, and throughout this work, only Edge Computing will be used.

A lot of latency‐sensitive domains such as wearable cognitive assistance systems [Ha14] may
benefit from Edge Computing. Choi et al. [Ch17] lists the challenges that Fog Computing has
and how the research could be directed in the domain. Several research activities clearly indi‐
cate that there is a reasonable performance gain in latency and bandwidth‐intensive applica‐
tions thanks to Edge Computing [CDO17; Wa17; Yi17; Zh17]. McChesney et al. [MWT19] pro‐
posed a benchmarking suite that can evaluate the performance of Cloud‐only, Edge‐Cloud, and
Edge‐only systems. They execute several applications using these three setups and compare the
performance of communication latency, computation latency, and impact of concurrent users
on the latency. The improvements for using only Edge or Edge‐Cloud is also reported in their
work.

This thesis proposes a software reference architecture for Edge Servers to enable collaborative
and real‐time task executions using an Edge Computing approach, together with its require‐
ments and enablers. Edge Servers are physical hardware that are responsible for finding the
optimal server and executing the tasks requested by the End Devices, without missing their
deadlines. The architecture is designed to be hardware and operating system agnostic. It de‐
fines standards, decision, and execution mechanisms for Edge Servers to enable collaboration
and offloading in an Edge Network, including each other. As mentioned in the introduction
(Chapter 1), End Devices are resource‐limited devices with low or no computing power. They
can be sensors, end‐user devices, or smart modules. They request tasks from any of the con‐
nected Edge Servers. Then, the tasks are executed on the most available Edge Server, decided
by a common agreement of all Edge Server in the network. To enable collaborative execu‐
tion, one or more Edge Servers and End Devices establish a network together to create their
resource‐aware Edge Networks. An Edge Network needs at least an Edge Server and End De‐
vice to operate. However, there is no limitation on the network topology. More details of the
architecture will be elaborated in Chapter 4.

The thesis also introduces a new preemptive and online scheduling algorithm called Non‐
resumable And Preemptible Aperiodic TAsk (NAPATA) scheduling, which is integrated into the
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architecture to decide on the execution order with negligible overhead and low complexity.
This algorithm can also plan execution of non‐resumable legacy tasks for optimal scheduling.

Based on this conceptual architecture, the thesis realizes a framework, called Real‐Time Edge
Framework (RTEF). The framework is developed using the Java programming language. Finally,
the decision mechanisms are validated mathematically, and the framework is evaluated using
multiple scenarios for correctness. After literature research, no reference architectures nor
frameworkswere found that feature these specifications. The next sectionwill list set of existing
work that provide complete solutions for generic use, rather than application‐specific solutions.

2.1.1 Related Work

This section will list existing activities that follow Edge Computing approach to execute tasks in
the proximity of field devices with or without the help of the Cloud.

There have been several novel architecture proposals on the Cloud for big data analytics in the
process control industry [Go17] and also in the direction of Edge Computing. The constant rise
in the global competition of the manufacturing domain created new paradigms. CM is one of
the paradigms which was first introduced in 1990. It assumes that the modern manufacturing
industry is being transformed into globalmanufacturing networkswhose systems and resources
can commonly be used. It is considered one of the main directions in the development of the
manufacturing industry [YDC17].

The research activities mostly combine Cloud and Edge to deal with time‐sensitive tasks. Mo‐
hamed et al. [Mo17] proposed a service‐oriented middleware for CPS. It provides a service‐
based infrastructure to develop and operate CPS applications. The approach also enables the
integration of CPS with Cloud and Edge Computing.

Pallasch et al. [Pa18] introduced a concept to utilize Cloud and Edge Computing for industrial
control. They refer to the devices connected to field tier devices as Edge Devices (Edge Server
in this thesis). Their setup uses Amazon Web Services (AWS) Cloud services for non‐real‐time,
but computing‐intensive tasks. One Edge Device has a direct access to the AWS. This device
has several sensors serially connected to it. In the setup, two robots and two IoT devices (that
also act as Edge Devices) are connected. Instead of the robots, the IoT devices are connected
to the robot controllers and the data travels through these devices for robot controlling. The
research shows that industrial control using Edge Computing approach is a feasible solution, in
terms of aggregating and processing the collected data, and feedback control loops in the shop
floor. However, even though the setup has a network of Edge Devices, the IoT devices closest
to the robots can work only with the Edge Devices attached to them, and Edge Devices do not
provide task offloading. They act as gateways to forward the task to the Cloud and return the
response back to the original requester.
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Vicks et al. [Vi15] introduced a virtualized Robot Controller and a virtualized Programmable
Logic Controller (vPLC), to enable outsourcing control functions of an industrial robot. They
created Virtual Machines (VMs) to realize Programmable Logic Controllers (PLCs) and a VM in
the Cloud to perform control operations that demand lower real‐time requirements. Horn and
Krüger from the same group then tested the feasibility of this novel architecture [HK16]. They
performed this test using three different experiment setups. First, they changed the program of
existing hardware PLCs to use them only as connectors to the hardware. Second, they removed
the hardware PLCs and used microcontrollers as connectors. Lastly, they directly connected
the solution with the hardware. The results showed that the direct connection had the lowest
latency. However, the work was specific to this use case, and the offloading was not dynamic,
i.e. it did not automatically decide where to execute the task.

Elbamby et al. [EBS17] investigated the problems of Edge Computing and a cache‐enabled Edge
Network. They proposed a clustering method to group end‐users with the same interests on
specific tasks. The idea was to track end‐users and the popularity of the tasks that they re‐
quested and to compute the results in advance. The solution was simulated, and the results
gave 91% better latency results with guaranteed reliable computations. It allowed network
users to offload their tasks to any Edge Server in their vicinity. However, the servers were nei‐
ther allowed to offload the tasks to each other nor the Cloud. Furthermore, their intended to
achieve less latency on average, rather than real‐time computations.

Sonmez et al. evaluated the performance of three different possible generic Edge Comput‐
ing architectures: single‐tier, two‐tier, and two‐tier with a load balancer [SOE17b]. The eval‐
uation analysed the performance of each architecture on wireless communication, and it was
performed using a simulator based on CloudSim [CL19]. The results showed that the two‐tier
approach with load balancer had given the best results. However, this architecture needs a
centralized load balancer, which the task is first directed to. The load balancer is responsible
for transferring the task from the pool of Edge Servers to one of the available Edge Servers. In
the case of a load balancer failure, no recovery mechanism can balance the load or share the
tasks within the network. The scenario tested the feasibility of a latency‐intolerant application
but did not realize a real‐time use case.

Mayer et al. [Ma17] introduced an emulator to test Fog Computing applications without de‐
ploying them on large network topologies. The emulator is able to test the efficacy of differ‐
ent network topologies and allows the creation of topologies from scratch. The applications in
their emulator can run on Docker containers [Do21]. Containers make it easier for the devel‐
opers to evaluate their Fog applications in different setups, without actually deploying them on
real‐world environments. Another emulator that uses the Docker containers is contributed by
[Co18]. Coutinho et al. proposed a framework for Fog Computing that enables the deployment
of the Fog nodes as software containers. Their work allows the testing of components using
third‐party systems through standard interfaces. They claim that the framework can be used
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to test real‐world scenarios with minimal changes. Both of these activities [Co18; Ma17] follow
the same direction as this thesis. However, they do not focus on the real‐timeliness of the tasks
nor decision mechanisms for a collaborative and seamless execution.

Yi et al. [Yi15] analysed the goals and challenges in Fog Computing and implemented a platform
prototype for Fog Computing. They define Fog Computing as a geographically distributed com‐
puting architecture with a resource pool that contains one or more connected heterogeneous
devices at the edge of a network, and not exclusively backed by Cloud services. Their work
supports mobility, has offloading capability and location‐awareness. However, the implemen‐
tation determines the server to offload based on the user location, rather than a collaborative
decision of all available servers. When users leave the area covered by the current Fog system,
VMs that contain user‐related data must also be migrated to the active server. Bruneo et al.
[Br16] designed a Fog platform based on OpenStack. Their platform focuses on smart city ap‐
plications but goes in the direction of data mobility. Their framework enables code injection
at runtime through the Cloud. Nevertheless, neither it deals with resource‐intensive tasks nor
offers offloading between servers.

Cozzolino et al. [CDO17] introduced an Edge offloading architecture to run tasks at the edge of
the network. They used MirageOS unikernels4 to isolate and embed application logic in Xen5‐
bootable images. Cozzolino et al. then discussed the effect of local data on computation time
on different hardware. They also justified the limitations of the existing IoT hardware and vir‐
tualization platforms.

In addition to research work, some companies also proposed architectures and platforms in
the Edge Computing domain. The architecture proposed by IBM considers the requirements
for autonomy and self‐sufficiency of production sites. Their architecture is three‐layered to bal‐
ance the workload between the Edge (named as Proximity Network), Plant, and the Enterprise.
The challenges of the architecture are listed as productivity gains for high throughput, failure
prevention for a reliable system and high product quality, and flexibility while hiding the com‐
plexity and allowing reconfigurationwithoutmuch effort [IB17]. OpenFog Consortiumproposes
another reference architecture [Op17]. This architecture names the core principles as pillars.
Pillars group requirements and functionalities. These pillars are Security, Scalability, Openness,
Autonomy, Agility, and Programmability. OpenFog Reference Architecture is proposed after
covering requirements collected from industrial use cases. In 2018, it was accepted as an offi‐
cial standard for Fog Computing as IEEE 1934 [IE18a]. It lists several recommended aspects to
create a full‐featured Fog Infrastructure with use cases that have no real‐time requirements.

One of the commercial frameworks ready for the enterprise is called Everyware Software Frame‐
work6. It adds provisioning, advanced security, remote access, and diagnostics monitoring to

4Website: https://mirage.io
5Website: https://xenproject.org
6Website: https://esf.eurotech.com/

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


20 Chapter 2: State of the Art

IoT gateways. The framework supports field protocols to collect data, process it at the edge,
and publish it to the several IoT Cloud platforms. Nevertheless, the framework does not pro‐
vide offloading between the servers. If the Internet connection is lost, the servicing stops.

Another recent initiative to build a common platform for Industrial IoT Edge Computing is EdgeX
Foundry [Ed20]. It was launched by Linux Foundation and the initial contribution made by Dell.
EdgeX Foundry is a vendor‐neutral open‐source software platform that interacts at the Edge of
a network. It defines its requirements in architectural tenets. It is platform agnostic in terms of
hardware and operating system, flexible in terms of replaceability, augmentability, or scalability
up and down. It is also capable of storing or forwarding data, intelligent to deal with latency,
bandwidth, and storage issues, secure, and easily manageable. A similar framework is called
Liota. Firstly, it aims to be easy to use, install, andmodify. Secondly, it targets a general, modular
and enterprise‐level quality. This framework is governed by VMware and is also open source
[VM17].

There are also several works done for computation and control in the Cloud, combining hard‐
ware and software. A research project called ”pICASSO” focuses on the control of a robot using
a Cloud‐based control platform. The project implemented a platform and Cloud controller that
can perform motion planning and control for industrial robots [Kr16]. A work by Givehchi et
al. [Gi14] studied several industrial use cases for using virtual control service in a private Cloud.
Instead of using hardware PLC on the site, they used a computer containing multiple cores and
dedicated each core as a virtual PLC to control sensors and actuators. The solution suggests a
slightly lower performance software PLC, compared to the hardware PLCs, but it expands the
variety of useable software and improves the flexibility.

Goldschmidt et al. did another study on Cloud‐based control [GMS15]. Their work introduces
a new architecture for scalable and multi‐tenant Cloud‐based control, utilizing virtual PLCs.
It also considers and evaluates the architecture concerning its scheduling policies and time‐
sensitiveness. The Cloud architecture is located in a different physical location than the indus‐
trial site where the actual control is done, and the communication is performed through the
Internet. The results showed over 99% success rate for tasks requiring a response within one
second. They suggest that architecture is feasible for soft or firm real‐time applications. How‐
ever, as mentioned earlier, relying on an Internet connection is not a robust solution where the
timing is critical, especially for hard‐real time tasks.

Realizing an unproven concept in real environments without testing and validating is costly in
terms of engineering time andmonetary expenses. Failure in the designmay also be disastrous.
Nevertheless, virtual environments can simulate several hours of real environment tasks in a
couple of minutes and save much time.

CloudSim is a framework to model and simulate Cloud Computing infrastructures and their ser‐
vices. It supports modelling and simulation of large scale Cloud data centers, their application
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containers, costs as well as power consumption [CL19]. Another simulation tool to evaluate
the reliability of the system is called iFogSim, and it is implemented by Gupta et al. [Ha16]. It
is based on CloudSim and allows the addition of Fog or Edge devices, creation of topologies
and evaluation of resource management policies focusing on latencies [Ha16]. Sonmez et al.
[SOE17a] introduced another simulator on top of CloudSim, which is called EdgeCloudSim. It
adds a mobility model and non‐fixed delays into the network which is fixed in iFogSim. The
simulator also gives detailed information on resource usage as well as task success rates. In
both simulators, the data is passed to the Cloud in case there are no resources available in the
Edge/Fog Server. However, in this thesis, the Edge Servers can also offload the tasks to other
Edge Servers in the network, by considering their available resources, connection statuses, and
computation delays. Nevertheless, in the thesis, the End Devices do not have mobility; only the
data has.

Lera, Guerrero, and Juiz introduced another simulator for IoT scenarios in Fog Computing, called
YAFS [LGJ16]. They evaluated its performance compared to iFogSim using three different com‐
plex scenarios. Their work performed slightly better results than iFogSim. Similar to other sim‐
ulations, it did not consider real‐time tasks.

One of the biggest problems of Edge Computing is the non‐existence of common and widely‐
accepted standards for Edge Computing [Sh16]. Although there exist numerous researches on
the topic, there are no available simulators nor architectures in the literature that deal with
offloading the tasks of immobile End Devices between the Edge Servers nor a standard Edge
Server architecture which is capable of performing real‐time calculations. The aim of this re‐
search is not only to propose another architecture but also to analyse the existing architectures
and consider industrial requirements tomake up a generic software reference architecture. The
architecture must be decentralized, vendor‐independent, multi‐user‐supported, collaborative,
modular, extensible, and real‐time capable. This work also implements a framework based on
this novel architecture, providing a simulator to validate the correctness of the results.

Some of the notable features of existing work are also summarized in Table 2.1. Resource‐
awareness column shows whether a decision to offload is made considering the current server
or the network resource availability. User mobility is whether the data source moves physically.
Local server offloading means if the servers in the same network are able to offload the tasks
between each other, rather than the Cloud. Remotemaintenance column shows whether mon‐
itoring or configuration can be changed remotely. Latency modelling indicates the way how the
latency between the devices is calculated. This column is valid only for the solutions that provide
simulation functionality. Parallel execution presents if a task can be executed in parallel using
multiple servers. Load balancing states whether a load balancing mechanism is used for fair
task distribution. If yes, it defines whether it is a centralized or decentralized one. Simulation
functionality shows whether the solution can be used without deploying on hardware. Finally,
hardware‐ready column denotes whether the solution is ready to be deployed on hardware.
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Table 2.1: Comparison of state‐of‐the‐art solutions following Edge Computing approach
(!: Supported, ‐: Not supported).

Work

Resource‐awareness
User M

obility

Local Server Offl
oading

Rem
ote M

aintenance
Latency M

odelling
Parallel Execution
Real‐tim

eliness
Load Balancing

Sim
ulation Functionality

Hardware‐Ready

Chang et. al. [Ch14] ‐ ‐ ‐ ‐ random
latency ! ‐ ‐ ‐ !

Pallasch et. al. [Pa18] ‐ ‐ ‐ ‐ n/a ‐ ! ‐ ‐ !

Vicks et. al. [Vi15] ‐ ‐ ‐ ‐ n/a ‐ ! ‐ ‐ !

Elbamby et. al. [EBS17] ! ! ‐ ‐ probabilistic
latency ‐ ‐ ‐ ! ‐

EdgeCloudSim [SOE17a] ! ! ‐ ‐ probabilistic
latency ‐ ‐ centralized ! ‐

Yi et. al. [Yi15] ! ! ! ‐ n/a ‐ ‐ ‐ ‐ !

Bruneo et. al. [Br16] ‐ ! ‐ ‐ n/a ‐ ‐ ‐ ‐ !

Cozzolino et. al. [CDO17] ! ‐ ‐ ‐ n/a ‐ ‐ centralized ‐ !

IBM [IB17] ‐ ‐ ‐ ! n/a ‐ ‐ centralized ‐ !

OpenFog [Op17] ‐ ! ! ! n/a ‐ ‐ centralized/
decentralized ‐ !

Everyware [Eu21] ‐ ‐ ‐ ! n/a ‐ ‐ centralized ‐ !

EdgeXFoundry [Ed20] ! ‐ ! ! n/a ‐ ‐ centralized ‐ !

Liota [VM17] ‐ ‐ ‐ ! n/a ‐ ‐ ‐ ‐ !

pICASSO [Kr16] ‐ ‐ ‐ ‐ n/a ‐ ! ‐ ‐ !

YAFS [LGJ16] ! ! ! ‐ parameter‐
based ‐ ‐ decentralized ! ‐

This thesis ! ‐ ! !
parameter‐

based ‐ ! decentralized ! !
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The next sectionwill list the requirements tomeet, to enable the aforementioned features. The
requirements are collected from literature and Edge Computing projects such as FAR‐EDGE and
AUTOWARE that have directly worked with industrial partners.

2.1.2 Requirements

Requirements are set of necessary or desired functionalities or characteristics of a system, prod‐
uct, or service. The Cloud Computing and thus, the Edge Computing also introduce some re‐
quirements that are necessary for a flawless task execution. This section will recommend high‐
level requirements identified for the architectural design of an Edge Computing solution in in‐
dustrial contexts. The requirements were collected from the existing literature [Ge19], as well
as from the industrial companies that were part of two projects related to Edge Computing,
namely FAR‐EDGE7 and AUTOWARE8. These requirements were considered in this thesis, as the
resulting architecture aims to achieve a close performance to the industrial standards.

As mentioned in Chapter 1, solutions in IT cannot be directly applied to the industry. The in‐
dustrial domain has stricter requirements than the ones in the IT domain. The central part of
the thesis focuses on the real‐time capability of the solution with offloading functionality. In
this section, identified industrial requirements, some of which are commonwith the IT domain,
will be briefly explained. It may be the case that some specific industrial scenarios do not need
all of the listed requirements. However, the resulting architecture fulfils these requirements as
well.

Interoperability

Edge Servers communicate with other Edge Servers and various devices. The solution should
support widely‐used communication protocols and standards. Moreover, the solution should
also be hardware‐agnostic as much as possible. This flexibility will remove the technology bar‐
rier and avoid vendor lock‐in problems that may occur.

Scalability

Scalability is the physical expansion of the system. Unlike legacy systems, the solution should
be ready to scale in case more Edge Servers or End Devices are connected to the Edge Network.
It should always respond to the increasing demand. Newly added devices must be introduced
to the other components in the network.

7Website: http://faredge.eu/#/partners
8Website: https://autoware-eu.org/#partners
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Extensibility

Computing technology is developing rapidly. The solution should allow easy deployment of new
software and devices, with minimal (re‐)configuration. The reference architecture should also
support extensibility.

Time sensitiveness

As explained in the introduction (Chapter 1), below OT, the activities must be (near) real‐time.
Beginning of this chapter also stated that Cloud Computing provides best‐effort service. To
enable applicability on OT, an Edge Computing solution is expected to guarantee an on‐time
and predicted response.

Reliability

Similar to time sensitiveness, reliability is also a critical requirement for real‐time tasks. De‐
pending on the level of real‐timeliness, a failure may be fatal. Therefore, it is vital to have a
reliable system that reacts when it is needed and how it is needed. Fault‐tolerant systems also
fall into this category. If a controller of a running system fails to function, then, the backup
system should continue from where the task is left off. The physical reliability requirements
for Edge Servers providing services are similar to the ones in Cloud Computing: Harsh environ‐
ments, such as factories and construction yards, require water‐proof ceiling, fanless computers,
and dust‐proof systems. In power plants, a magnetic shield is also necessary.

Security and Privacy

Typical Cloud Computing solutions store sensitive data from enterprises (high‐technology or
manufacturing companies) or people from all over the world. However, leakage of these data
may cause significant financial loss for the companies, or personal data may be abused. The
usual practice is to send data to the Cloud after encryption. Edge Computing is at the factory
level; thus, the companies havemore control over the data. However, if Edge Servers can offload
the tasks to the Cloud, then the security considerations of Cloud Computing must also be taken
into account. Additionally, Edge Computing solution should prevent unauthorized users from
accessing the data.
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Intelligence

Edge Servers can have the ability to preprocess the data before sending it to the Cloud. The
preprocessing will save some bandwidth and reduce network traffic. The Edge Servers can also
complete calculations without sending them to the Cloud. Computation at the edge will also
keep the computing power alive when the Internet connection is lost. Close proximity also
means reduced latency. The integration of artificial intelligence (AI) or machine learning (ML)
methods also fall into this category.

Abstraction

Abstraction hides the complexity of the low‐level systems. When a solution is available, ab‐
stracting it via Application Programming Interfaces (APIs) ensures that the users can only ac‐
cess the provided functions, without breaking the integrity of the system. APIs also increase
backward compatibility in case the architecture sees a major change.

2.1.3 Enablers

This section will explain the existing technologies that have been in use for Cloud Computing
and adapted or used for Edge Computing.

Communication Protocols

Distributed systems require communication with multiple devices. To enable communication
of many devices with each other as much as possible, a choice of widely‐used communication
protocols must be given. Depending on where they are used, not all protocols may be suitable
for each application. Some of them are only good for low transfer rates (e.g. Universal asyn‐
chronous receiver‐transmitter, UART), and some of them only provide high speed in close dis‐
tances (e.g. Serial to Peripheral Interface, SPI [Bu18]). The eXtensible Messaging and Presence
Protocol (XMPP) is one of the protocols that enable the exchange of structured data between
two or more devices. However, it lacks a QoS mechanism, which makes it not suitable for real‐
time applications [Co15]. Constrained Application Protocol (CoAP) is a one‐to‐one communica‐
tion protocol, aimed for IoT devices to communicate over the Internet. Although it is designed
to work on microcontrollers with a meagre memory size, it does not guarantee a real‐time exe‐
cution by its original implementation. Nevertheless, by using a distributed time server, it is pos‐
sible to extend the protocol to enable real‐time behaviour [Ko16]. Message Queue Telemetry
Transport (MQTT) is a lightweight machine to machine (M2M) messaging protocol, but similar
to CoAP; it does not guarantee real‐time execution due to overheads.

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


26 Chapter 2: State of the Art

Figure 2.2: Comparison of seven layers of the OSI model and four layers of the TCP/IP model
[Br89].

Open Systems Interconnection (OSI) Model is a reference model that standardizes the commu‐
nication functions independent from the underlying technologies. The model is standardized
by the International Telecommunication Union (ITU) in 1983 as the standard ITU‐T X.200 and
by the International Organization for Standardization (ISO) in 1984 as standard ISO 7498 [IS94].
It is considered as a reference model for hardware and software vendors to create interopera‐
ble solutions by grouping a set of networking functions. The model is criticized for its inherent
implementation complexity that renders networking operations as inefficient and slow [Ru13].
The OSI model is seldom used in practice, but it is considered as a reference point in discussions
of other protocols.

Transmission Control Protocol/Internet Protocol (TCP/IP) suite was developed within the De‐
partment of Defense’s (DoD) Advanced Research Projects Agency (ARPA) Internet Program and
published in 1981, by Internet Engineering Task Force (IETF) as RFC‐793 [Po81]. The effort aimed
to build a nationwide packet data network. TCP is intended for use as a highly reliable host‐to‐
host protocol between hosts in packet‐switched computer communication networks and inter‐
connected systems of such networks [Po81]. TCP/IP is one of themostwidely‐used protocols for
transmitting and receiving information over one or more networks. The comparison of layers of
the OSI model between the TCP/IP model is depicted in Fig. 2.2. Application, Presentation, and
Session layers of the ISO OSI Model are combined into one layer in the TCP/IP Application layer.
Similarly, Data Link and Physical layers of the OSI model are also grouped as Link & Physical layer
or Network Interface Layer in TCP/ICP.

TCP/IP provides end‐to‐end connectivity specifying how data should be formatted, addressed,
transmitted, routed, and received at the other end. Its name is received from its third and
second layers. It can be used through the Internet and within the private networks. It is one of
the key enablers of Cloud Computing.
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Although TCP/IP is mostly designed for the transmission over WAN, there have been several
works [Ge09; PY98; ZT01] to reduce the maximum latency in local area networks (LAN). There
are even open‐source projects such as Xenomai9 and RTNet10 or commercial libraries such as
CoralReactor11 which can bring the maximum latency below 10 microseconds (𝜇𝑠).

TCP/IP enables a connection‐oriented delivery for which the communication requires an ac‐
knowledgement from the receiver. Moreover, it uses segment numbering, and the segments
are passed to the application in the same order. By introducing an error detection code, it can
check whether the data is corrupted, and verify its receipt by sending an acknowledgemessage.
It can also request retransmission of the data, in case they are lost during the transport due to
network congestion or errors.

Intercommunication protocols between the Edge Servers are out of the scope of this thesis.
However, the realization of the conceptual architecture in the framework is performed using
TCP/IP communication protocols to get the benefits required for reliable communication.

Sockets

A socket is a bi‐directional communication and data transfer mechanism. Sockets are used to
transfer data with minimum overhead between two processes. On a UNIX system, these two
processes can be running on the same system, by using Unix Domain Sockets (UDS) or TCP/IP
loopback, or on different systems.

For socket programming, programs can bewritten either using User DatagramProtocol (UDP) or
TCP. In TCP connection, for the communication to take place, a connection between the clients
and server is necessary. However, the UDP connection is not connection‐oriented, meaning
there is not an active session between the client and the server. UDP is a lightweight protocol,
faster than TCP, but it does not guarantee the delivery of the package. UDP is usually used for
high throughput, whereas TCP is used for guaranteed and ordered delivery.

Edge Servers of the framework based on this thesis use TCP socket communication to prevent
data loss. The communication is performed in the Transport layer, without additional overhead.
However, other communication protocols can also be utilized to have even better performance.
Real‐time communication between the Edge Servers is out of the scope of this thesis. Commu‐
nication between two Edge Servers and End Devices are further elaborated in Sec. 5.2.

9Website: https://xenomai.org
10Website: http://rtnet.org
11Website: http://www.coralblocks.com/index.php/category/coralreactor/
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Web Services

A service is a set of related software functionalities that can be reused for different purposes,
together with the policies that should control its usage (See: Definitions). Web Service is a
service offered via the World Wide Web (WWW) using Web technologies such as HyperText
Transfer Protocol (HTTP). According toW3C Consortium [HB04], it is a software systemdesigned
to support interoperable machine‐to‐machine interaction over a network. They provide their
functionality via methods available with service description languages. They generally do not
guarantee nor provide real‐time specifications. This thesis offers services for End Devices, and
they can be called by issuing commands. The services, then, call programs, software, or com‐
mands to complete the task requests. Services will be detailed in Sec. 4.2.

APIs

Application Programming Interfaces (APIs) are used to abstract the functionalities of lower‐level
operations.

APIs can beused for communicationwith the I/Os, enddevices, or the Cloud. AnAPI is necessary
to abstract the functionalities of other components. It enablesmore straightforward lower‐level
modifications in a system if a new software component is added, without requiring a complete
change in the system. It also guarantees that the requests cannot interfere with the internal
components since direct access to the individual modules or components is prohibited. One
goal of the proposed architecture is to keep the migration efforts at the minimum and improve
backward compatibility. Therefore, it is essential to have a reliable and standard API to make it
compatible with as many devices and software as possible. Having a lightweight yet stable API
helps achieve low latency requirements. Last but not least, the API should make sure that the
requests are always authorized.

The proposed architecture endorses the utilization of APIs for easier integration and interoper‐
ability. The recommended methods endowed with the API will be listed in Sec. 5.3.

Virtualization Technologies

The history of virtualization technologies (VT) goes back to themid‐1960s, where IBMM44/44X
experiment introduced the virtualmachine term [Ho08]. Later, in January 1966, the first OS that
can run multiple OSes on IBM System/360 Model 67, IBM CP‐40, was released [Co82; IB71].
Since then, due to the limited resources and intensive usage of these within control systems,
advancements and acceptance of the VT were slow [MSV14].

Virtual Machine Monitor (VMM), or hypervisor, is a software, firmware, or hardware that cre‐
ates and runs the Virtual Machines (VMs). Popek and Goldberg [PG74] grouped VMMs in two
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types:

Type‐1 hypervisors run directly on the host’s hardware.

Type‐2 hypervisors depend on an OS to run, similar to other programs.

The advancements in the multi‐core technology improved the VMM technologies as well. Cen‐
tral Processing Unit (CPU) VT (e.g., Intel‐VT and AMD‐V) and network VT (e.g., VMware NSX and
openvSwitch) boosted virtualization performances, tremendously [AA06].

In the telecommunication domain, there has been a rise in the interest in employing virtualiza‐
tion technologies because of the cost and power consumption reduction aspects of the technol‐
ogy [Pa09]. Patnaik et al. [Pa09] analysed the performance implications of hosting IP telephony
infrastructure in virtualized environments. They use Xen12 virtualization technology for the ex‐
periments. Then, they discuss the challenges after deployment of the infrastructure in multi‐
core systems. Menon et al. [Me05] present a debugging tool to evaluate the performance of
Xen on uni‐ and multi‐processor systems to increase its performance. Mahmud et al. [MSV14]
evaluated the industrial applicability of virtualization on a distributedmulti‐processor platform.
Mahmud et al. use various open‐source solutions and check the feasibility of application in the
industrial control systems.

ESXi, Workstation, and Server products of VMware13, and VM VirtualBox14 from Oracle can
be given examples to the Type‐2 hypervisors. In addition to hypervisors, in recent years, a
container‐based virtualization software, Docker became known. Unlike hypervisors, container‐
based virtualization tools use the same hardware and OS to isolate processes from each other
at fewer resource costs. They provide applications with separate run spaces but share the same
hardware resources [Do21]. Another recent technology that uses containers is Kubernetes
[Li20b]. Containers are useful to distribute and run applications on several platforms. How‐
ever, in a production environment, when a container fails, a backup solution must be started to
avoid downtime. Kubernetes overcomes these issues and can run distributed systems reliably.
It provides services discovery and load balancing features. LinuX Containers (LXC) are another
OS‐level virtualization technology that creates isolated environments on a single host. It uses
control groups (cgroups) functionalities to create containers and to execute the applications
[Ca20a].

The architecture in this thesis does not use multiple OSes on an Edge Server for virtualization
nor container‐based virtualization. Instead, it uses Virtual Processors (VPs) to isolate tasks and
manipulate their resource usage, such as CPU utilization. For example, if the server consists of
multiprocessors, the tasks can be assigned to different CPUs. VPs are similar to cgroups func‐
tionality on Linux systems. More on cgroups are explained in Sec. 2.2.2 and VPs in Sec. 5.1.7.

12Website: https://xenproject.org
13Website: https://vmware.com
14Website: https://virtualbox.org
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Grid Computing

Grid computing is a computer network in which each computer’s resource is shared with other
computers in the same network. Themetaphor as utility computingwas firstmentioned in 1961
by John McCarthy [Ga99]. McCarthy foresaw computing as a public utility, similar to a phone
system.

In grid computing, resources are made available in a resource pool in which all participating
computers can access. Grid computing can also be called distributed computing. Unlike High‐
Performance Computing (HPC), grid computing does not only contain locally connected proces‐
sors. It also does not guarantee low latency. Ideal grid computing shares all resources to speed
up the computation. Although any computer can be upgraded in terms of CPU, memory, or
storage to achieve a performance increase, grid computer scales it even better, allowing this
upgrade to be used by other participants as well.

Today, many systems that utilize grid computing rely on proprietary software and tools. This
limitation makes different systems using different protocols hard or even impossible to collabo‐
rate. Coordinating tasks within the grid is a cumbersome task. Grid computing usually requires
a central server, which is also called a control node. This node is responsible for administrative
tasks. Moreover, it also requires a grid computing software to be installed on all participating
computers. The participating computers can run the same or different operating systems. One
of the concerns of grid computing is data privacy and security.

Microsoft, IBM, The Organization for the Advancement of Structured Information Standards
(OASIS), and The Globus Alliance created an open forum for grid computing, called The Open
Grid Forum (OGF)15. The OGF created a set of standards called Open Grid Services Architecture
(OGSA).

There are several projects taking advantage of unused computer processing power. SETI insti‐
tute analyses the gathered radio communication data to search and explain the origins of life
[SE19]. Folding@Home project by the Pande Group in Stanford University’s chemistry depart‐
ment studies proteins combining idle resources of thousands of personal computers [Fo19].
Additionally, BOINC16 and Einstein@Home17 can also be given as examples to grid computing,
which are still active. Grid computing is an enabler for Cloud Computing, Edge Computing, as
well as the architecture for this research. The aim of grid computing is, however, to achieve
higher performance, rather than providing low latency. Therefore, it cannot be used for real‐
time computing as in its current state. Nevertheless, the grid computing idea is considered in
the proposed architecture. The unused computing power of available Edge Servers is broadcast
in the Edge Network and taken into consideration in decision mechanisms for offloading.

15Website: http://ogf.org
16Website: https://boinc.berkeley.edu/
17Website: https://einsteinathome.org/
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Load Balancing

Efficient usage of parallel computing systems requires that the tasks are optimally partitioned
over these systems [ISB86]. The distribution of these tasks is called load balancing.

Load balancing usually works with computers that have the same functionality. It optimizes
the workloads of the participating computers in a network, by distributing tasks across multiple
computers, efficiently. It also provides flexibility to add to or remove servers from the network.
Round‐robin, client‐side random load balancing, server‐side load balancing, and Domain Name
Service (DNS) delegation are some of the load balancing methods.

Round‐robin does not need any special software or hardware. It merely assigns the client one
of the available IP addresses in round‐robin fashion. In client‐side random load balancing, each
client receives a list of available IP addresses and the client randomly chooses one. In DNS
delegation, one address is pointed to multiple IP addresses. Depending on the criteria (e.g.,
proximity of the computer), one of them is chosen and sent to the client. However, if the chosen
server is down, the DNS will not respond, failing to continue servicing.

The load balancer itself can also be dedicated hardware to perform its task. In this case, the
hardware usually has software in it, with access to the back‐end servers. These load balancers
receive a response from the back‐ends and deliver it to the clients. The clients do not notice
the difference since their only contact is with the load balancer. This kind of load balancers has
several methods to distribute the load across all back‐ends. Round‐robin, random choice, or
least connections are some of them [Ne17]. Additionally, they may have more sophisticated
methods that make decisions based on the load, uptime, distance, and so on. Once a request
is diverted to a server, the load balancer keeps track of the session, sending the responses back
to the originating client. The session information is stored in a file or storage until it expires.

Although this hardware solution has many advantages such as control of the data, attack pre‐
vention, health checking, and firewall, when the load balancer is down, the session information
and the communication between clients and the back‐ends are lost. This thesis uses the load
balancing idea and gives each participating Edge Server the ability to balance the load, in a
decentralized manner. Each server becomes aware of the resources of its neighbouring Edge
Servers, and they can make a decision based on these resources, including the distance to the
servers and the end user. Since there is no limitation on the topology, if a server is down, an‐
other server can receive the request and complete it. The response is also sent back to the
originating caller after the request is handled in the optimal location. This approach will be
explained in Sec. 4.3.
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2.2 Real‐Time Computing

A real‐time system is a system that has to respond to a request within a finite and predictable
time. The system behaviour depends on the logical results of the computations and real‐world
time when these results are produced [We04].

Real‐time systems are often part of larger (embedded) systems and have to model parallelism
(concurrency) that exists in the real‐world objects they are controlling ormonitoring. They have
significant roles in the process control, manufacturing support, command and control areas.
They are also often required in the automotive, aerospace industry or production domains.
Moreover, they interact tightly with physical environments such as sensors and actuators. Since
the timing is critical, the resource efficiency must be at maximum, and the importance of safety
is even higher than other approaches.

The real‐time termhas severalmisconceptions, including its usage. In computer time, the speed
of the tasks depends on the computer itself. Unlike computer time, in real‐time, the environ‐
ment and physical objects control the speed. Therefore, the system must adapt itself to its
environment since the speed of the objects or physics cannot be changed. Simply, using the
term ”fast” does not reflect real‐timeliness. Speed is a relative term which is environment‐
dependent. If the environment changes, the correct reaction may require an even ”faster” re‐
sponse. In real‐time systems, average values are also not used. Even though one peak valuemay
not affect the average value too much, it could be fatal to the system. This peak value must be
considered during design and implementation. Finally, performance testing is even not enough.
The system must be proven and formally verified to guarantee real‐time behaviour.

Figure 2.3: The usefulness of the task results after deadline miss for soft, firm, and hard real‐
time systems.

Depending on the criticality of the failure, real‐time systems can be divided into three cate‐
gories. They are explained below, and an example graph to reflect the usefulness of their results
when they miss their deadlines is given in Fig. 2.3.
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1. Soft Real‐Time: This category groups the real‐time applications which are less critical and
have wider deadline intervals for acceptance. For example, interruptions in voice calls or
video streams are tolerated in case some data packages are lost. Even though a higher
loss rate degrades the performance, it is not irreversible as in a firm real‐time.

2. Firm Real‐Time: A real‐time category between hard and soft real‐time. It tolerates some
deadline misses, but an increase in the misses degrades the service, in the end causing
unacceptable results [KLB06]. Missorting the colours of the parts can be given as an ex‐
ample [GMS15].

3. Hard Real‐Time: Failure in the system is mostly fatal. For example, if an airbag in a car
deflates before or after the specified timeframe (between 100 ms and 300 ms, within 10
ms), it loses its protective impact [OD08]. The results after deadline misses are fatal.

OSes can be for general purposes or real‐time. General‐purpose operating systems (GPOS) are
focused on high throughput. They tend to execute numerous tasks, rather than executing one
high priority task. They usually contain non‐preemptible kernels, i.e. calls from kernel often
override processes and threads. GPOS usually provide adequate performance for general use.

However, real‐time operating systems (RTOS) are focused on priorities. They preempt a low
priority task if a higher priority task comes, provided that the tasks are also preemptible. Their
kernel is also preemptible, meaning kernel processes and threads are also considered as exter‐
nal user processes. RTOS always perform the predicted behaviour. Solutions such as VXWorks18,
QNX19, and Windows Embedded Compact20 (former Windows CE) can be given as examples to
RTOS. Additionally, RTOS such as FreeRTOS21 or RTOS‐UH22 can also be directly programmed in
microprocessors. RTOS aim to be precise at timing, rather than yielding a high throughput.

Linux is one of the open‐source kernels for operating systems [Li19a]. Vanilla Linux is a GPOS by
its design. However, there have been several initiatives to make the kernel real‐time capable.
One of the well‐known initiatives to convert vanilla kernel into an RTOS is RT‐Linux [Gl17]. There
are also other development activities that focus on improving real‐time support on Linux. Xeno‐
mai23 supports the Linux kernel with a co‐kernel running together with the Linux. This co‐kernel
deals with all time‐critical activities such as scheduling and interrupt handling. It is the first ex‐
tension that supports Real‐Time Drive Model (RTDM) [Ki05]. Real‐Time Application Interface
(RTAI)24 is another open‐source project, and it brings real‐time capabilities into the Linux kernel
by extending it. It introduces a hardware abstraction layer (HAL) and is used to acquire data or

18Website: https://windriver.com/products/vxworks/
19Website: https://blackberry.qnx.com/en
20Website: https://docs.microsoft.com/en-us/previous-versions/windows/embedded/gg154201

(v=winembedded.80)
21Website: https://freertos.org/
22Website: http://www.rtos.iep.de/indexe.htm
23Website: https://xenomai.org
24Website: https://www.rtai.org/
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control hardware supported by Comedi [Co19]. RTAI allows a set of specific hardware to work
in real‐time.

Many real‐time systems play a significant role in critical systems, such as chemical plants,
aerospace industry, and many more. The criticality of the roles in these areas defines the re‐
quirements of the systems. A real‐time systemwill often communicate with the real‐world. For
example, a program that requires high interaction with the hardware and environment needs
to continue operation reliably, even under a heavy load. It must attempt to tolerate faults and
make the environment safe before shutting the system down. Due to the time‐critical nature
of the devices, direct access to the device instead of through a layer of an OS function can give
more control on the device behaviour.

Two of the essential characteristics of a real‐time system are the reliability and response time.
It is quite challenging to design and implement a system that guarantees the expected output
at the expected time in all conditions. To achieve this problem, real‐time systems contain a
”spare” capacity which ensures that ”worst‐case behaviour” does not delay the critical oper‐
ations. Supplying sufficient power and run‐time support, the following parameters must be
provided [We04]:

• times that the action must be performed and completed.

• respond to situations when timing requirements cannot be met, and when the timing
requirements are changed.

These parameters ensure that system behaviour is predictable.

The architecture proposed in this dissertation is OS‐ and programming language‐neutral. How‐
ever, the realization of the framework based on this architecture is performed employing the
Java programming language. The framework is then tested on Linux‐based RTOS to meet the
timing requirements. The communication between Edge Servers uses event‐based synchro‐
nization. During the design and testing, the hardware is considered to be ideal and real‐time
capable.

The sections of this chapter will explain the challenges and characteristics of the real‐time sys‐
tems. They will also focus on scheduling algorithms for real‐time systems, which is one of the
challenges.

2.2.1 Challenges in Real‐Time Systems

Criticality, in general, brings its challenges, almost in any domain. The number of challenges
in real‐time systems increases as the criticality of a task raises. This section will explain the
challenges in real‐time systems and how they can be overcome.
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If a real‐time system is going to be designed with the assistance of an OS and if the hardware
is not a custom‐design, then real‐time proven hardware must be chosen. The OS must also be
real‐time capable of supporting the hardware. The hardware selection for the real‐time envi‐
ronment is a critical part, as not all hardware is suitable for real‐time operations. Interrupt han‐
dling, caches, memory allocation/access, Central Processing Unit (CPU) power management,
hardware timers, and latencies vary from hardware to hardware. Besides, the number of CPUs
must also be considered as having multiple cores may cause additional problems such as cache
incoherency. Hence, the chosen hardware impacts the way that the system operates.

If the solution is based on distributed or decentralized systems, then synchronization between
participants may also be necessary. Synchronization can be either event‐based and time‐based.
Typically, when a task is split across participants, if the tasks are supposed tomerge, both should
arrive at the expected moment to further continue or give the correct results. For instance, in
microcontrollers, multiplication always requiresmore cycles than an addition. To preventwrong
results, before continuing the computation, the addition result must wait for the calculation of
themultiplication. Thiswaiting continues until themultiplication event is completed. Contrarily,
if the participants are working individually and performing the same task, then they should be
aware of the statuses of each other. For example, a power plant withmultiple generators, which
supply power to the grid, require that their Alternating Current (AC) phases are aligned. To
achieve that, they need a strict time synchronization between each other. Not doing so would
decrease efficiency.

Poorly written programs can result in endless loops affecting the whole system; making it un‐
responsive. Additionally, expecting a real‐time performance from devices that are not formally
verifiedmay cause problems depending on the criticality of the task. If the hardware to be used
for real‐time is not formally verified, even random or long tests giving 100% success rates do
not guarantee a lifetime real‐time response. If the hardware is real‐time dedicated, or formally
verified for real‐time, then, the software within or the installed OS is also required to support
real‐time. For example, a Linux‐based OS with RT‐patch installed can preempt running tasks
if a higher priority task arrives. It comprises only a few kernel calls that are not preemptible.
The rest can be preempted, even the kernel itself [Li18b]. All other calls are treated as external
processes.

Time‐driven communication in distributed control systems requires high accuracy of clock syn‐
chronization. Due to the nature of communication, the message delay is inevitable. The devi‐
ation of time in distributed systems causes synchronization error. There are several algorithms
found to overcome these problems [Fl89; KO87; Ma04; WL88]. In distributed systems, using a
global time to synchronize participants is sub‐optimal. Due to the propagation delays, it takes
a finite amount of time to deliver a message from one end to another. The farther the distance
is, the later the message is delivered. A protocol that can calculate or estimate the variance
could partially solve this problem. Network Time Protocol (NTP) is one of the protocols us‐
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Figure 2.4: A critical section is the location where access to a shared resource during execution
occurs.

ing this approach. IEEE 1588 Precision Time Protocol (PTP) is another protocol used for clock
synchronization [IE08]. Both of these protocols have, however, error bounds. Corbet et al.
[Co12] achieved minimizing the time offset across distributed database servers by using Global
Positioning System (GPS) receivers and atomic clocks, which is called TrueTime. Tavakoli et al.
[Ta15] introduced a quantum algorithm that can achieve clock synchronization using only a sin‐
gle quantum system, without propagation delay.

Two of the encountered problems in real‐time systems are race condition and deadlock, which
may also exist in non‐real‐time software development. However, in real‐time systems, they are
more critical to be solved. Understanding these problems requires explanation of what a critical
section is. As can be seen in Fig. 2.4, a critical section is where a shared resource or variable is
accessed. A scheduling algorithm can swap between threads at any time. Since it is not known
which thread attempts to access the shared resource at any moment, the value read for that
thread may be different than desired, or even not accessible. Therefore, the threads race to
access or change the value/resource. This situation is called a race condition.

Ideally, a process works with shared resources using three steps: (1) it requests, (2) uses, and
then (3) releases it. During its use, the process also blocks access to the same resource until
the process completes using it. If this resource can only be accessed by one process, other
processes cannot use it when it is in use. As an example, two processes, each using a shared
resource, can be considered. Assuming that these tasks require each other’s shared resources
in the next cycle, if these shared resources are never released, a deadlock can arise. Deadlock
is a situation where a set of processes wait for each other due to one or more of them holding
(or using) a shared resource.

There are several ways to overcome each of the problems mentioned earlier. One simple solu‐
tion is called busy waiting. This is accomplished by creating an empty loop, cycling until a condi‐
tion holds, such as until the resource is available. Mutual exclusion (mutex) is another solution
for multi‐threaded software. They protect the critical regions and thus prevent race conditions
of the threads that belong to a process. A further solution is introducing semaphores inside
the software. Semaphores were designed by E. W. Dijkstra in 1965 [Ma08]. On the OS‐level,
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they are set by two atomic functions that limit the usage of shared resources. Under Linux,
these functions are namely wait() and signal(). These atomic functions are provided by
the OS and cannot be interrupted or modified at the same time. They are used for signalling
between threads and processes. Other kernels may have different names that are used to rep‐
resent these functions. Unlike mutexes, semaphore values can be changed by any process that
acquires or releases the resource. However, mutexes can only be released by the process or its
threads that lock the mutex. Semaphores can also be used for conditional synchronization. For
example, if a part of a function in one process needs to be executed until the second individual
process is executed, two atomic functions simply make this possible. An additional solution to
solve deadlock problems includes adding a timeout to the process or thread that is using the
shared resource, or preemption.

Preemption requires that the scheduling algorithm, the kernel, and the process to be pre‐
emptible. Kernel preemption under Linux can be enabled by compiling the kernel with support
for kernel preemption. This allows not only user applications to be preempted, but also the
kernel if a higher‐priority process comes into play. There are additional concepts to care about
while dealing with real‐time systems. Memory management with profiling and debugging are
also two of them.

Depending on the functions they provide, Input/Output (I/O) devices may be significantly
slower than the processors or internal hardware components. While a device is busy with per‐
forming a task, the CPU may wait for many cycles before the device becomes ready. The status
of the I/O devicemust bemonitored to detect whether it has finished the task and ready for an‐
other transaction. The CPU monitors the status of the device repeatedly. However, it does not
perform any other tasks during this process. This monitoring process is also called busy‐waiting
or polling.

The interrupts can also implement preemption. While a slow transaction is being performed
on an I/O device, the CPU can work on other tasks. When the transaction of the I/O device is
completed, it signals the CPU using interrupts to notify its availability. Whenever an interrupt
is signalled, the running program on the CPU is suspended, and the interrupt handler is called.
After the operation is completed, the CPU switches back to the suspended program.

In a typical system, there will be more than one I/O device. The interrupt handler is expected to
distinguish the source of the interrupts and treat themaccording to their urgency. There are two
interrupt mechanisms for multiple I/O devices: interrupt priorities that specify which interrupt
is more critical than others and interrupt vectors that tell the CPU which service routine must
be called to handle the request. Interrupt mechanism brings some overheads to the CPU time,
e.g. context switching, hardware‐level program counter jump, interrupt acknowledgement.

Typical memory operations are performed by the CPU. When a buffered I/O is used, repeatedly
performing this operation brings a significant overhead. Since CPU cannot perform another

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


38 Chapter 2: State of the Art

Figure 2.5: Results of latency tests ran for 8 hours on (a) stock kernel and (b) real‐time patched
kernel under Raspberry Pi 3B+.

operation during the data transfer, its efficiency is reduced. This problem can be solved using
Direct Memory Access (DMA). When a memory operation is to be performed, the CPU initiates
the DMA transfer via the DMA controller. During the transfer process, the CPU can perform
other tasks. When the transfer is completed, the controller signals the CPU with an interrupt.

Real‐time systems are usually built using dedicated custom hardware. However, custom hard‐
ware is expensive andprone to errors. They are usually designed for custom tasks, and they have
reduced reusability. Besides, upgrades are also hard to perform and expensive. Another way
of building a real‐time system is by using a mix of hardware and an RTOS. With this approach,
the development and maintenance times, therefore costs, are also reduced. The approach also
reduces the burden on upgrades. Wolter and Albert [AWG03; WAG03] analyse some of the
existing real‐time systems and buses by introducing a method based onWalsh correlation. Cus‐
tomhardware for dedicated tasks is formally verified to ensure the functionality in all situations.
However, it is quite hard to verify sophisticated hardware designed for multi‐purposes formally.
In these circumstances, long tests are performed to increase the detection of problems. One
of the test sets that can be performed under Linux is called Worst‐Case Latency Test Scenar‐
ios [Li18a]. They generate workloads and heavy loads to test a system with real‐time patch
enabled. Fig. 2.5 shows the latencies of (a) stock and (b) real‐time patched Linux 4.14 kernel
performed under Raspberry Pi 3B+25. Eight hours of running the latency tests showed a max‐
imum latency of 467 𝜇𝑠 on the stock kernel and 93 𝜇𝑠 on the real‐time patched kernel. The
maximum latencies were seen only in one sample of 100 million samples, but these values are
taken as a basis while calculating latencies for the worst‐case scenario. Repeating tests multiple
times yielded the same results. However, as mentioned before, the tests do not guarantee a
life‐time real‐time response. This should be considered while using hardware on hard real‐time
applications.

25Website: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
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During the validation of the architecture, hence the framework, the tasks are implemented in
such away that they avoid the problems explained before. Moreover, while designing the archi‐
tecture, it is assumed that hardware to be ideal. To achieve a hassle‐free real‐time execution,
software developers should address these issues during development. The next section will
explain how scheduling for real‐time processing can be planned to avoid deadline misses.

2.2.2 Scheduling for Real‐Time Processing

A modern computer allows performing several tasks at the same time. Modern OSes support
multitasking. For instance, a piece of music can play in the background while surfing on the
Web. Windows started supporting multitasking since its 386 version in May 1988 [In18; Mi14].
Linux kernel added support formultitasking from its first release version 0.1, in September 1991
[To91]. Multitasking, however, does not necessarily mean parallelism. A single CPU can execute
one instruction per clock cycle. In a single core (or CPU) system, having multiple task running
means that the tasks are switched in away that the user thinks that theywork in parallel. Unless
the system comprises more than one CPU, true parallelism is not possible.

In practice, hardware resources are not unlimited. Running processes compete with each other
to get more resources. Misbehaving processes may affect the whole system, causing other
processes to fail as well. To prevent this, the processes must be given enough resources to
execute, and they must be isolated from each other to avoid interference [Ma08].

The kernel of an OS is responsible for giving CPU time to a thread, for execution. Switching,
or giving thread their turns are performed by the scheduler component in the kernel. The pro‐
cess of changing turns is called scheduling. By considering several properties of a thread, the
scheduler chooses the next task and maintains the order of other tasks. Under Linux, the pro‐
cesses can be grouped to be affected by the same scheduler policy. This is performed via control
groups (cgroups) which will be explained in Sec. 2.2.2.

All Portable Operating System Interface (POSIX)‐oriented OSes implement priority‐based
scheduling [IE18b]. Each task with higher priority runs earlier than lower ones. Voluntarily giv‐
ing up the CPU resources for other processes is called cooperative multitasking. Involuntarily
suspending a running process or thread after a specific time is called preemption. The scheduler
policy determines preemption and CPU time allocation [Ma08].

According to their arrival pattern, tasks, in general, can be classified into three categories [Au91;
SSL89]. Periodic tasks are the tasks that arrive at a constant rate. Thetimebetween activations is
called a period. They have an infinite sequence of identical activities. Aperiodic tasks are usually
event‐driven. They can run once or infinite times, but their inter‐arrival time is not bound to
any value. During design time, their arrival times are not known a priori. Sporadic tasks are
aperiodic tasks, but the inter‐arrival times are bounded by a minimal inter‐arrival time.
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According to Garey and Johnson [GJ79], general scheduling problems are NP‐hard. In practice,
it means that, if the number of tasks rises, the time for finding a feasible schedule grows ex‐
ponentially. In this thesis, it is assumed that the computations for finding a scheduling graph
have no or negligible overheads, regardless of the task count. For real‐time applications, the
scheduling is more critical, especially for hard real‐time tasks. GPOS do not provide real‐time
support. Linux vanilla kernel is also not shipped with real‐time support. Therefore, OSes using
Linux vanilla kernel are also GPOS and need to be patched to support real‐time computation.

The scheduler is activated whenever a timer interrupt is activated. In POSIX systems, this value
is set to 1microsecond. This value is tied to the high‐resolution hardware timer value. Hardware
without a high‐resolution timer cannot guarantee this timing [IE18b]. Thus, hardware support
is also necessary to enhance the schedulability.

The schedulers defined in the following sections require several properties of the processes
known in advance. One of them is the worst‐case execution time (WCET). Determining this
value is quite intricate and requires in‐depth analysis. Structural analysis is one of the analyses
that can be performed on the source code, object code, or the assembly code. Each of these
has both advantages and disadvantages. Source code analysis requires access to the source
code of the process. It is the purest form and easier to understand compared to the other two
structures. However, the analysis may not give concrete results, as the program depends on the
preprocessors, linkers, macros, and the compiler. Object code analysis is done on the code after
compiling optimizations are done. However, it is harder to analyse as much information is lost.
Assembly code has the same issues listed for object code. This makes the analysis even harder
due to assembly being lower‐level. TheWCET analysis also requires a deep understanding of the
hardware that the software is running on. The interaction between the software and hardware
and the hardware properties of the processors are two of them. In this thesis, it is assumed that
the WCET values of the processes are known a priori.

There are many algorithms to find an optimal schedule. Rate Monotonic (RM), DeadlineMono‐
tonic (DM), Least Slack Time (LST), and Earliest Deadline First (EDF) are among the known
scheduling algorithms used in real‐time computing [KK12; SB17]. There exist also other algo‐
rithms such as Earliest Deadline Critical Laxity (EDCL) [KY08], Latest Release Time (LRT), and
Earliest Due Date First (EDD) [Ja55] that yield optimal scheduling diagrams. The algorithms are
initially applied for uniprocessor systems. With the increased usage ofmulti‐core systems, some
of these algorithms were optimized to be applied to multi‐core systems or new ones became
available. RateMonotonic Next Fit Scheduling (RMNFS) and RateMonotonic First Fit Scheduling
(RMFFS) by [DL78] and Least Slack Time Rate First (LSTRF) by [HCK11] can be given as examples
to the scheduling algorithms for multi‐core environments. Upcoming sections will explain two
of the widely‐used scheduling algorithms in real‐time computing as well as in this thesis: LST
and EDF.

The schedulers can be classified according to several categories. A scheduler may be placed in

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


2.2 Real‐Time Computing 41

more than one group. They are grouped by:

The time that the scheduling decision ismade: Offline schedulers organize the scheduling table
before the system is activated and store the results in a table. At run‐time, the execution is per‐
formed by referring to this table. They are suitable for deterministic systems. As they have full
knowledge about when the tasks are going to be executed, the optimizations can be performed
in advance. The overhead during runtime is quite low and requires a few instructions to im‐
plement. However, it does not apply to event‐based systems or dynamically changing systems.
Online schedulers decide which task to execute at runtime. It also increases flexibility during
design time. Compared to offline schedulers, they add additional overhead during runtime,
depending on the complexity of the algorithm. They are useful for event‐based systems.

Decision mode: Preemptive schedulers can preempt tasks at any time for several parameters.
They reduce the response time for higher priority tasks and enable higher CPU utilization. How‐
ever, they may switch task context more than necessary, causing preemption delay. This con
can be expensive with modern processors due to the total number of cores. Non‐preemptive
schedulers select a task to execute and execute it until the task finishes execution.

Priority assignment: Fixed task priority schedulers assign a fixed priority to all jobs of a task,
and this priority never changes at run‐time (Fixed Task Priority Scheduling, FPS). Although they
are simpler to implement, from the analysis point of view, they are suboptimal. Dynamic task
priority schedulers can assign different, but fixed‐job priorities for all jobs of a task, or each
priority may change at run‐time, even during its execution (Dynamic Job Priority Scheduling,
DPS). These schedulers are harder to implement but provide optimal scheduling.

Conservatism: This kind of schedulers ensure that a processor never runs idle when there are
existing jobs ready to run.

Optimality: Optimal schedulers find theminimal cost function based on the scheduling criteria.
Heuristic schedulers satisfy the criteria; however, they do not provide the best schedule.

The next sections will detail the challenges in scheduling and explain two of the significant
scheduling algorithms. It will also explain why there is a need for another novel scheduling
algorithm in the proposed architecture. This scheduling algorithm is going to be detailed in Sec.
3.1.

Challenges in Scheduling

Scheduling to plan the execution order of real‐time tasks is challenging. Due to stochastic ex‐
ecution times of the tasks, schedule plans cannot use average values. Moreover, the WCET
of tasks can be significantly longer than their average execution times. Even in a high load of
CPU, the scheduling algorithm is expected to be stable, to prevent deadline misses for real‐time
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tasks. However, the algorithms usually have overloads which may cause deadline misses. To
avoid that, real‐time systems often introduce a priority task dispatcher. Two of the conventional
approaches to solving the stability problem are assigning priorities according to tasks’ impor‐
tances or creating a set of time‐division multiplexing (TDM) slots and categorizing the tasks into
these slots [SLR87].

Typically, when task priorities are assigned for real‐time operation, the load is tested using the
WCET of tasks. If a deadline is missed, or the CPU load is not optimal, the priority adjustments
are made until the targeted utilization is achieved [SLR87]. Depending on the characteristics
of a scheduling algorithm, there exist several scenarios where the priority model is violated.
One of these scenarios is priority inversion. One of the publications on priority inversion was
published in 1980 by Lampson and Redell [LR80]. It happens when lower priority tasks block a
high priority task due to unreleased resources.

Consider two tasks with a high priority (H) and low priority (L) and a resource (R) which only one
task can access it simultaneously. If L is using R, H can only access it once L releases. In a good
design, this can be avoided by relinquishing R when H needs it and preempting L. However, if
a third medium priority task (M), which does not require R runs before H is executed, it can
preempt L, causing H to be unable to run until it completes its execution. One of the real‐world
examples of this issue was seen in 1997 by the Mars Pathfinder lander project [JP98]. Similar
to the example above, low priority Atmospheric Structure Instrument/Meteorology (ASI/MET)
task of Pathfinder project was preempted during its use of a shared resource, by independent
medium priority tasks, and the higher priority task could not be executed. This was later solved
by uploading a small program to activate the priority inversion.

It is possible that priority inversion does not cause a critical failure. The blocked process of high
priority tasks can still miss their deadlines, even with an unnoticeable delay. However, resource
starvation must be taken care of during the design time, by using pre‐defined corrective mea‐
sures such as resetting the (part of the) system using watchdogs. A similar issue can be seen in
EDF scheduling, called deadline interchange, where deadlines of the tasks set the priorities.

There are many existing solutions to prevent or solve priority inversion. For instance, disallow‐
ing process preemption in critical sections prevents the issue. However, if the duration of the
critical section is long, the high priority taskmaymiss its deadline. If amaximumduration (time‐
out) to access and stay in the critical section is defined, the task scheduling can be calculated
considering this duration as well. This solution works both with fixed and dynamic priorities.

Another solution is using a priority inheritance method. This method elevates the assigned
priority of a lower task to the highest one that waits the shared resource until the task goes out
of the critical section. Using the same example above, with priority inheritance, L will get the
same priority as H until it releases R. Later, it will awaken H and return to its original priority.
This solution is also applicable to systems both with fixed and dynamic priorities. In EDF, it can
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be named as deadline inheritance.

Priority ceiling protocol is another method to avoid priority inversion, and also the deadlock
problem. This method assigns a priority to each shared resource, which is equal to the highest
priority of a task that may lock the resource. In certain circumstances, it may require raising the
priorities of tasks temporarily. Therefore, it needs a scheduler that supports dynamic priority
scheduling [Re14]. Priority ceiling can, however, deny the execution of tasks even when the
resource is available.

Randomboosting is anothermethodusedby the scheduler inMicrosoftWindows to avoid dead‐
locks due to priority inversion. Priorities of the threads holding shared resource locks are ran‐
domly increased to allow them to exit the critical section [CW97].

Usually, I/O devices are slower than internal calculations. This creates another problem of
shared I/O usage of tasks. Most of the time, First In First Out (FIFO) approach is used to schedule
data concerning I/Os. Sha et al. [SLR87] test several other approaches to increase the utilization
concerning the I/O usage. Moreover, they also introduce a refined version of the EDF algorithm,
calling it propagated deadline scheduling algorithm. Assuming that all tasks are periodic, their
deadlines are equal to their periods, and the data related to the tasks are brought by DMA and
sent back to DMA after calculation, their novel algorithm gave the best results reaching up to
90% utilization.

The scheduling algorithms mentioned in this chapter are theoretical. Each algorithm is highly
dependent on the time; they need a hardware clock with a precise resolution that generates
interrupts at a constant frequency. The interrupts can be used at the start of each task’s period,
or for preemption. Additionally, context switching, interrupt handling, algorithm overhead, and
jitter are threats for ideal scheduling. When the bus between the processor and memory is
sharedwith the hardware deviceswhich use DMA, the calculation ofworst‐case execution times
becomes difficult.

Choice ofwhether a fixed or dynamic priority preemptive scheduling depends on the application
use. It is usually true that the implementation of the former is more straightforward than the
latter. However, theoreticalmaximumutilization that can be achievedwith EDF is 100%whereas
it is 69% in RM scheduling. This thesis uses online, dynamic priority preemptive schedulers for
scheduling. It also assumes that the software and programs used are free of issues such as
priority inversion. Moreover, scheduling overheads and jitters are also assumed to be negligible.

The following sections will explain two of the scheduling algorithms mentioned above that are
taken into consideration in this thesis.
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Least Slack Time (LST) Scheduling

Slack timemeans the remaining spare time of a task at a time 𝑡. In the Least Slack Time (LST) or
Least Laxity First (LLF) scheduling, the shorter slack time receives higher priority and executed.
A task is run until its slack time reaches zero (0) to avoid context switching. If a task 𝑇𝑖 has an
arrival time of 𝑎𝑖, the worst‐case execution time of 𝑥𝑖, relative deadline of 𝑑𝑖 and the remaining
time of 𝑚𝑖, the remaining execution time is then 𝑚𝑖 = 𝑥𝑖 − (𝑡 − 𝑎𝑖). The slack time then
becomes 𝑡𝑠𝑙𝑎𝑐𝑘,𝑖 = 𝑑𝑖 −𝑡−𝑚𝑖. LST can run online; however, it can only work with preemptible
tasks, and the implementation is not easy.

An example of LST is given in Table 2.2.
Table 2.2: An example list of tasks for the Least Slack Time (LST) Scheduling.

Task 𝑎 𝑥 𝑑
𝑇1 0 4 20
𝑇2 8 3 15
𝑇3 9 4 15

Task 𝑇1 arrives at 𝑡 = 0 and ends at 𝑡 = 4. Since there are no task arrivals, it is not necessary to
compute the slack time. Then at time 8, 𝑇2 is executed until time 9. At 𝑡 = 9, both 𝑇2 and 𝑇3
slack times are calculated to decide the next task.

At 𝑡 = 9

For 𝑇2:

𝑡𝑠𝑙𝑎𝑐𝑘,2 = 15 − 9 − (3 − (9 − 8)) (2.1)

𝑡𝑠𝑙𝑎𝑐𝑘,2 = 4

For 𝑇3:

𝑡𝑠𝑙𝑎𝑐𝑘,3 = 15 − 9 − (4 − (9 − 9)) (2.2)

𝑡𝑠𝑙𝑎𝑐𝑘,3 = 2
(2.3)

Since Eq. 2.2 is less than Eq. 2.1, 𝑇3 is executed. At 𝑡 = 13, the waiting task is rechecked for its
slack time.
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At 𝑡 = 13

For 𝑇2:

𝑡𝑠𝑙𝑎𝑐𝑘,2 = 15 − 13 − (2) (2.4)

𝑡𝑠𝑙𝑎𝑐𝑘,2 = 0
(2.5)

As Eq. 2.4 shows, the slack time is zero, meaning the task has no spare time. Therefore, 𝑇2 is
executed.

Although this algorithm provides optimal scheduling diagram for aperiodic tasks, as mentioned
at the beginning of the section, it cannot work with non‐resumable tasks. Another schedul‐
ing algorithm is needed for scheduling both preemptible and non‐resumable aperiodic tasks
together. Therefore, the thesis introduces a novel online scheduling algorithm, called Non‐
resumable And Preemptible Aperiodic TAsk (NAPATA) scheduling, to overcome this problem.
This algorithm will be explained in Sec. 3.1.

Earliest Deadline First (EDF) Scheduling

Liu and Layland introduced Rate Monotonic (RM) [LL73] algorithm in 1973. The RM algorithm
assigns the priorities based on the activation frequencies of the tasks. A task with higher fre‐
quency than existing ones are given a higher priority. Therefore, a task received a priority in‐
versely proportional to its period.

RM algorithm is based on the task model, introduced by its inventors:

1. Tasks run periodic, and their deadlines are equal to their periods.

2. Tasks are released at the beginning of their period.

3. Tasks are independent of each other.

4. Tasks do not suspend/terminate themselves.

5. Tasks have known execution times.

6. The scheduling overhead is negligible.

Earliest Deadline First (EDF) Scheduling is a dynamic priority real‐time scheduling algorithm. As
its name suggests, the earliest deadline gets the highest priority. EDF is also based on Liu and
Layland task model, which is defined for RM algorithm, thus, based on the same assumptions.

EDF is an optimal scheduling algorithm on preemptive uniprocessors. That means, if there ex‐
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ists any scheduling plan by any algorithm that ensures all the jobs in a collection of tasks are
executed without missing their deadlines, the EDF can schedule them as well. However, if jobs
are non‐preemptible, then the EDF is not an optimal algorithm.

In Deadline Monotonic (DM) scheduling, priorities are static, meaning that they never change
on the tasks when assigned. Considering two tasks — 𝑇1, with a period of 4 and deadline of
4 and 𝑇2, with a period of 10 and deadline of 10 — 𝑇1 would always get the highest priority.
However, in EDF, after 𝑇1’s third period, the absolute of the deadline for 𝑇1 is 12 whereas it is
10 for 𝑇2. This creates problems with the feasibility test of DM; thus, EDF requires a different
feasibility test.

The basic idea of the EDF feasibility test is to check if the system has enough CPU time for each
absolute deadline of a task set.

Let 𝑇 = {(𝑥, 𝑃 ) ∣ 𝑥, 𝑃 ∈ ℝ+} be a task where 𝑃 is the period, and 𝑥 is the worst‐case
execution time. Assuming tasks having their periods equal to their deadlines as required by
the model, a necessary and sufficient schedulability test 𝑈 can be calculated for the task set
𝑆 = {𝑇𝑖 ∣ 𝑖 ∈ 𝑁+} by the Eq. 2.6, where 𝑃𝑖 is the period, and 𝑥𝑖 is the worst‐case execution
time of task 𝑖.

𝑈 =
𝑛

∑
𝑖=1

𝑥𝑖
𝑃𝑖

≤ 1 (2.6)

The task set repeats itself after the current time reaches the hyperperiod. Hyperperiod 𝐻 for
the task set 𝑆 can be calculated by finding the least commonmultiple (LCM) of periods of tasks,
as given by Eq. 2.7.

𝐻 = 𝐿𝐶𝑀(𝑃𝑗, ..., 𝑃𝑘), where ∀𝑃 ∈ 𝑆 (2.7)

As an example, assume that there are three tasks, 𝑇1, 𝑇2, and 𝑇3 in a task set 𝑆1. Also, assume
that each task executes 1 time unit in the worst‐case and their periods are 2, 3, and 4 time units,
respectively. Then, the 𝑆1 can be written as in Eq. 2.8.

𝑆1 = {(1, 2), (1, 3), (1, 4)} (2.8)

By using Eq. 2.6, the schedulability test 𝑈1 yields:
𝑥1
𝑃1

+ 𝑥2
𝑃2

+ 𝑥3
𝑃3

≤ 1
1
2 + 1

3 + 1
4 ≤ 1

11
12 ≤ 1 (2.9)

Since the inequality 2.9 holds, the task is schedulable by the EDF.

The hyperperiod 𝐻1 of 𝑆1 is then:

𝐻1 = 𝐿𝐶𝑀(2, 3, 4) = 12 (2.10)
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Table 2.3: An example list of tasks for the feasibility test of the Earliest Deadline First (EDF)
scheduling.

Task 𝑥 𝑃 𝑑
𝑇1 1 3 2
𝑇2 2 4 3
𝑇3 2 2 11

The feasibility test shown as Eq. 2.6 works only if deadlines of the tasks are equal to their
periods. However, the tasks may have their deadlines earlier than their periods. In this case,
another feasibility test is used.

This test uses two known mathematical functions: ceil and floor. Ceil function ⌈𝑥⌉ gives the
smallest integer that is greater than or equal to 𝑥. Floor function ⌊𝑥⌋ gives the largest integer
less than or equal to 𝑥.

Let 𝑅 be the current system time. The result of ⌈ 𝑅
𝑃𝑖

⌉ tells how many times that a task’s period
is started, whereas the result of ⌊ 𝑅

𝑃𝑖
⌋ shows howmany complete periods have occurred. Then,

the floor function ⌊ 𝑅
𝑃𝑖

⌋ gives the completed period count. If𝐿 is any time between zero and the
hyperperiod, then, the number of repetitions (periods) of a task 𝑇𝑖 that have deadline before
and at 𝐿 is equal to ⌊𝐿−𝑑𝑖

𝑃𝑖
⌋ + 1, where 𝑑𝑖 is the relative deadline of task 𝑖.

Defining 𝐿 to be the total execution time required by all 𝑛 tasks with deadlines before or at 𝐿,
the CPU demand 𝐸 can be calculated as in Eq. 2.11.

𝐸 =
𝑛

∑
𝑖=1

(⌊𝐿 − 𝑑𝑖
𝑃𝑖

⌋ + 1) 𝑥𝑖 (2.11)

Since the floor function Eq. 2.11 changes only when 𝐿 is a multiple of 𝑑𝑖, the calculation can
be computed only for the absolute deadlines of the task 𝑇𝑖. As the schedule repeats after the
hyperperiod, the absolute deadlines are only considered up to the hyperperiod.

Let 𝐴 be set of different absolute deadlines up to the hyperperiod 𝐻 . Then,

𝐴 = {𝑑𝑗, ..., 𝑑𝑘}, where 𝑑𝑗 ≠ 𝑑𝑘 and ∀𝑑 ≤ 𝐻 (2.12)

Provided that ∀𝐿 ∈ 𝐴, the feasibility test will be as seen in inequality 2.13:

𝐿 ≥
𝑛

∑
𝑖=1

(⌊𝐿 − 𝑑𝑖
𝑃𝑖

⌋ + 1) 𝑥𝑖 (2.13)

Test performed using inequality 2.13 is necessary and sufficient for schedulability of task set
using EDF. An example set of tasks to this test is given in Table 2.3.

The hyperperiod of the tasks is 12 (𝐿𝐶𝑀(3, 4, 2))). Absolute deadlines for a task is calculated
bymultiplying the number of iteration of the period by period and adding the relative deadline.
The iteration of the period is zero‐based. For 𝑇1, they are 2 (0 ⋅ 3 + 2), 5 (1 ⋅ 3 + 2), 8 (2 ⋅ 3 + 2),
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and 11 (2 ⋅ 3 + 2). Similarly, for 𝑇2, they are 3, 7, and 11. Lastly, for 𝑇3, it is only 11. This yields
𝐴 = {2, 3, 5, 7, 8, 11}. For each absolute deadline in 𝐴, we perform the feasibility test.

For 𝐿 = 2,

2 ≥
3

∑
𝑖=1

(⌊2 − 𝑑𝑖
𝑃𝑖

⌋ + 1) 𝑥𝑖 (2.14)

2 ≥ (⌊2 − 2
3 ⌋ + 1) 1 + (⌊2 − 3

4 ⌋ + 1) 2 + (⌊2 − 11
12 ⌋ + 1) 2 (2.15)

2 ≥ 1 + 0 + 0 (2.16)

Since inequality 2.16 holds, the task set is feasible at time unit 2. Similarly, the same test is
performed for 𝐿 = 3.

3 ≥ (⌊3 − 2
3 ⌋ + 1) 1 + (⌊3 − 3

4 ⌋ + 1) 2 + (⌊3 − 11
12 ⌋ + 1) 2 (2.17)

3 ≥ 1 + 2 + 0 (2.18)

The inequality 2.18 holds, therefore, the task set at time unit 3 is also feasible.

Moving on to 𝐿 = 5,

5 ≥ (⌊5 − 2
3 ⌋ + 1) 1 + (⌊5 − 3

4 ⌋ + 1) 2 + (⌊5 − 11
12 ⌋ + 1) 2 (2.19)

5 ≥ 2 + 2 + 0 (2.20)

Since the inequality 2.20 also holds, the procedure continues with 𝐿 = 7.

7 ≥ (⌊7 − 2
3 ⌋ + 1) 1 + (⌊7 − 3

4 ⌋ + 1) 2 + (⌊7 − 11
12 ⌋ + 1) 2 (2.21)

7 ≥ 2 + 4 + 0 (2.22)

This member of 𝐴 also holds as seen in inequality 2.20. Iterating further on the next member,
at 𝐿 = 8,

7 ≥ (⌊8 − 2
3 ⌋ + 1) 1 + (⌊8 − 3

4 ⌋ + 1) 2 + (⌊8 − 11
12 ⌋ + 1) 2 (2.23)

7 ≥ 2 + 4 + 0 (2.24)

the inequality 2.24 also holds. Finally, the last member 𝐿 = 11 is also tested.

11 ≥ (⌊11 − 2
3 ⌋ + 1) 1 + (⌊11 − 3

4 ⌋ + 1) 2 + (⌊11 − 11
12 ⌋ + 1) 2 (2.25)

11 ≥ 4 + 6 + 2 (2.26)

The inequality 2.26 does not hold. Hence, the task set is not feasible. The result means that the
deadline at time 11, for 𝑇𝑖 will be missed. The left side of the inequality shows how many time
units are available for the current time. The right side of the inequality shows how many time
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units are needed for the tasks running at the current time.

EDF scheduler has to update the schedule each time a new job is activated. Compared to FPS
algorithms, this seems to have a more significant overhead. However, if context switches are
also considered, compared to FPS such as RM, EDF has a smaller run‐time overhead.

In EDF scheduler, the exact schedulability analysis can be performed with a complexity of 𝑂(𝑛)
whereas the analysis on RM is pseudo‐polynomial. Besides, EDF can fully exploit the processor,
while RM can only achieve up to 69% utilization [LDG04].

Several kernels implement EDF algorithm. Some examples of open‐source implementations
can be given as, S.Ha.R.K. [SH21], Erika Enterprise26, AQuoSA [Aq10], Xen [DSS21], Plan 9 OS
[Ja21], Linux [Li19b], MaRTE OS [Ko09], RTEMS [RT21], Litmus‐RT (no planned updates as of
2018) [Bj20], and The Everyman Kernel [Wa14].

EDF is going to be used in the proposed architecture for preemptible periodic tasks.

Scheduling Servers

Mainly, server algorithms were invented to enhance the handling of sporadic and aperiodic
tasks when periodic tasks also run at the same time. Scheduling servers are basically periodic
tasks running at a specified rate. They improve the responsiveness and guarantee a particular
bandwidth for each task without harming schedulabilities of themselves and other tasks. The
server algorithms can be based on FPS or DPS algorithms. When the execution of an aperi‐
odic task is not critical, usually they are treated as background tasks. If they are also critical, a
common approach is to create a periodic server to service these tasks. This approach is called
the polling approach [SLR87]. Aperiodic tasks create incompatibilities with periodic servers due
to the polling approach. Aperiodic tasks arrive at bursts, rather than in a periodic way. The
algorithms that overcome this problem are called bandwidth preserving algorithms [Ca84].

Polling Server (PS), Deferrable Server (DS), Priority Exchange Server (PES), and Sporadic Server
(SS) can be given as examples to servers that use FPS algorithms. Adapted fixed‐priority servers,
Total Bandwidth Server (TBS), and Constant Bandwidth Server (CBS) are examples to the servers
that utilize DPS algorithms.

In addition to the scheduling servers above, there have been extended versions of the algo‐
rithms. Spuri and Buttazo [SB96] introduced five new online algorithms for servicing soft ape‐
riodic tasks in real‐time systems, where a set of hard periodic tasks is scheduled using the EDF
algorithm. Their algorithms achieve full processor utilization, but they assume that the ape‐
riodic tasks have no deadlines. Dynamic Priority Exchange from Spuri et al. is the extended
version of PES [LSS87], which trades its run‐time with the run‐time of the lower priority peri‐

26Website: http://erika.tuxfamily.org/

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


50 Chapter 2: State of the Art

odic tasks in case no aperiodic task requests are pending. It eliminates the wasted time and
improves processor utilization.

The proposed reference architecture does not optimally schedule the combination of aperiodic
and periodic tasks, when they are running together. However, this is considered as possible
future work. For an optimal scheduling, the arrival times of the different type of tasks must be
planned in advance or CPUs must be isolated. The architecture supports changing CPU affinity
before or during runtime. Process affinities will be explained further below.

Process Life Cycle

A process is a runnable instance of a program (See Definitions). Occasionally, the process has to
wait for events from external sources, such as keyboard input or input from a peripheral device.

To switch the processes, the scheduler must know the status of each process. A process can be
in one of the following states at a time [Ma08]:

• Running: The process is being executed at the moment.

• Waiting: The process is able to run, but the CPU does not allow execution as it is allocated
to another process. The scheduler can change the status when this process is the next to
run.

• Sleeping: The process is waiting for an external event to run. The scheduler cannot select
this process at the next task switch. Once the external event is triggered, it can only go
to the ”waiting” state.

All processes are saved in a process table. Once the execution is completed, the process state
goes to ”stopped.” Then, the allocated resources are released (memory, connection to periph‐
erals, and CPU) and process entries are removed from the process table. However, even if the
resources are released, they may be leftovers in the process table for a process. This process is
then called a ”zombie” process.

The architecture in this thesis assigns an internal status to its active tasks during their life cycles,
namely, running, paused, and stopped. These are assigned after retrieving the thread and pro‐
cess status. Waiting and sleeping tasks are considered as paused tasks. The tasks are assumed
never to become a zombie.

Process and Interrupt Affinity

Each thread and interrupt in a computer system has a processor affinity. Together with pol‐
icy and priority settings, affinities can help achieve maximum performance. Running processes
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always race with other processes and interrupts for resources, principally for CPU time. Multi‐
tasking systems are more exposed to be indeterministic. As happened in the Mars Pathfinder
Lander project [Sy13], a high priority task may be forced to wait while another low priority task
to leave the critical section. Moreover, on multiprocessor (or multi‐core) systems, migration of
processes or threads from one CPU to another can be expensive due to cache invalidation.

Multi‐threaded applications tend to run related threads on the same core. With affinities, all
threads can be assigned to one core, as well. Affinity value is used by the scheduler of the
OS to determine which threads and interrupts run on which CPU. If not specified, the threads
and interrupts use the maximum affinity number, which means they have access to all CPUs.
Linux kernel and many OSes, e.g., Solaris [Or11], OS X [Ap07], Windows [Mi18] support affinity
settings. On Linux, affinity and bandwidth can be combined by using cgroups.

Under UNIX‐compliant systems and Windows, affinity is defined as a bitmask, having values
between 1 and 2𝑁 − 1, where 𝑁 is the number of available cores. The bitmask is converted to
the available CPUs by writing the number in the base‐2 system and checking the bit locations.
A one (1) in the bit location means that this CPU is available for use, whereas a zero (0) means
that the CPU is not available. CPU numbering is a zero‐based numbering. The first CPU’s ID is 0.
For example, if there exists hardware with one processor and four cores, then the bitmask can
have values between 1 and 15. Assuming that a thread has an affinity of 13, the available CPUs
for the thread can be calculated as seen in Eq. 2.27.

(13)10 = (1011)2 (2.27)

As seen in the Eq. 2.27, bit locations 0, 1, and 3 are 1. This means that CPU 0, CPU 1, and CPU
3 can be utilized for the execution.

In multi‐core systems, one of the typical affinity settings is assigning one core for all system pro‐
cesses and allow applications to run on the other cores, with one core per application thread.
However, the affinity settings must be designed in conjunction with the program/software/‐
command and its related settings. The usual practice to set affinity on a real‐time system is first
to determine howmany cores are needed to run an application, then isolate those cores. Under
Linux, setting affinities can be done by using taskset command. Entries in /proc file system
must be modified to change the affinities of interrupts.

The proposed architecture in this thesis supports assigning and limiting threads/processes to
use dedicated CPUs, to improve scheduler optimization. This process can be done during design
time, or while the tasks are running. As the architecture does not support optimal scheduling
for running a combination of periodic and aperiodic tasks on the same core (See Scheduling
Servers), affinities can be used to isolate them. More on this topic will be explained in Sec. 4.2.
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Control Groups (cgroups)

Real‐time means determinism, meaning whenever a process or group of processes start, they
must rely on a set of determined parameters, such as CPU time, which is also called CPU band‐
width. Although these parameters can be assigned individually for each process or a thread, the
choices can also be left to the other kernel components. Under Linux, control groups (cgroups)
enable setting these parameters to specialize the behaviour of threads, processes, and their
children tasks, by grouping [Li20d]. cgroups are beneficial if resource planning needs hierar‐
chy. For example, if low priority tasks should be allowed to use only 10% of the CPU at any
time, a group with CPU utilization of 10% can be created. The sum of CPU utilization of all tasks
assigned to this group will not exceed 10%, equally sharing the usage among the number of
active tasks and giving more CPU time to higher importance tasks. CPU affinities of the groups
can also be changed with cgroups. cgroups are called as credit scheduler in Xen [Ze13].

Linux kernel also features a scheduling group for real‐time tasks called rt‐group‐sched based on
cgroups. The bandwidth in rt‐group‐sched has a lower limit — the minimum guarantee— and
an upper limit for execution. It defines how much time can be spent running a task in a given
period. For each period, a process is run for the allocated runtime. The rest of the time is given
for the processes outside of this group. These groups lack the complete implementation of EDF
scheduling. Similar to priority inheritance (PI) for priority‐based schedulers, EDF needs deadline
inheritance to be implemented to prevent blocking problems. However, Linux PI mechanism is
one of the most complex pieces of code in the kernel source [Li20a]. Therefore, it is a challenge
to integrate this approach into the Linux kernel.

The proposed architecture in this thesis allows the creation of Virtual Processors (VPs) to deter‐
mine the execution capacity of a task and change affinities by using the approach of cgroups.
Multiple tasks can also be assigned to the same VP to create a hierarchy. Under Linuxmachines,
VPs can directly work with cgroups. VPs will be explained in Sec. 5.1.7.

Scheduling on Multiprocessor Systems

Until the year 2002, there was an increase in the processor clock frequency for faster calcula‐
tion [PH13]. However, the clock frequency had a hardware limit due to heat dissipation and
power consumption. Computing power was increased without increasing the processor clock
by the introduction of multiple cores. Multiprocessor or multi‐core systems contain more than
one CPU. Generally, they are considered in two groups: Symmetric multiprocessing (SMP) in
which all processors are equal and the communication is via shared memory, and asymmetric
multiprocessing (AMP) in which the processors are separate and used for specific tasks. AMP
communication is usually carried out through message‐passing. An example to the AMP is an
audio player device. It is an embedded device that has different computing units, e.g., Digital
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Signal Processing (DSP) unit and a hardware encoder/decoder for audio.

Using multicore brings additional challenges and requirements:

• Load balancing: All processors should be used with the same amount of work.

• Scheduling: Scheduling must be done so that all CPUs can work efficiently.

• Synchronization: Synchronization is required for the CPUs to schedule and prevent inco‐
herent data sharing.

• Communication: Processes running in different CPUs must communicate. Additionally,
the software/program must be designed to exploit multicore programming.

Moreover, multiprocessor systems can have two types of access to memory, namely uniform
memory access (UMA) and non‐uniform memory access (NUMA). In UMA, the access time to
the memory is roughly the same, whereas in NUMA, the CPU physically closest to the memory
has the shortest access time.

In sharedmemory processors, the performance is increased by the introduction of local caches.
The shared data is migrated and replicated in these caches to increase the access speed. How‐
ever, caching the shared memory may cause cache incoherency. Cache coherence protocols
maintain the coherency of the caches. In these protocols, cache controllers keep track of the
cached data and update them whenever the values are changed.

The scheduling issues on multiprocessor systems were being addressed since the early 1960s
[Gr69; He61; Ri60]. Muntz and Coffman [MC70] introduced a preemptive and efficient schedul‐
ing algorithm for tree‐structured computations. They assume all CPUs are identical, and all com‐
putations are specified as a set of tasks. They also accept that the task computations are acyclic,
directed graphs, and they have known execution time. Tasks can also depend on each other.
The research gives an efficient algorithm for tree‐structured computations. In the late 1990s
and early 2000s, several algorithms to schedule on multiprocessor systems are also proposed
[BK01; Bu95; ELA94; MM98; MMR98; O‐97].

In 2003, Lee et al. [LHK03] introduced an algorithm to schedule real‐time tasks online, onmulti‐
processor systems. They evaluated their algorithm through simulation, and the results showed
better values compared to the conventional fixed number of processor algorithms. Their al‐
gorithm uses an extensive search within the tasks list in the system. To reduce complexity,
they introduced a heuristic approach. Lee et al. assumed that all processors are identical, the
real‐time tasks are non‐preemptible, independent from each other, aperiodic, and scalable. A
task is scalable if it is executed faster when its execution is distributed into multiple processors.
They assumed the tasks to be non‐preemptible due to the cost of implementing preemptive
scheduling algorithms when I/O scheduling comes into the play. Additionally, the amount of
extra overhead of this kind of algorithms was bigger, which is neglected in the theoretical phase
[JSM91].
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Unlike it might be expected, increasing the core count does not linearly decrease the execution
time of scalable tasks. Contrarily, the execution efficiency is reduced as parallel execution brings
more execution overhead due to communication, load distribution, and contention [LHK03].

As explained in the beginning of the chapter, the thesis introduces a novel scheduling algo‐
rithm, called Non‐resumable And Preemptible Aperiodic TAsk (NAPATA) scheduling. This algo‐
rithm does not automatically manipulate CPU affinity of the tasks on multiprocessor systems
during runtime. Similarly, the EDF scheduling will also be used as it is. CPU allocation must be
performed during the design or execution time, by the user. The NAPATA scheduling will be
explained in detail in Sec. 3.1.

2.3 Summary

This chapter explained the terms Cloud Computing and Edge Computing (Sec. 2.1), relatedwork
(Sec. 2.1.1) done in both areas with explanations of their differences from this thesis. Later, the
chapter specified the requirements (Sec. 2.1.2) considered in the thesis and the enablers (Sec.
2.1.3) of which the thesis is inspired. The thesis aims to create a software reference archi‐
tecture for Edge Servers, satisfying interoperability, extensibility, time sensitiveness, software
reliability, security, privacy, and abstraction requirements. It is also influenced by several tech‐
nologies such as TCP, APIs, virtualization, grid computing, and load balancing. The proposed
architecture does not solely use these enablers, but also adapt them to the needs. TCP allows
communication between Edge Computing components; APIs abstract low‐level complexity; vir‐
tualization isolates tasks while keeping their performance at the desired level; grid computing
establishes resource sharing among network, and load balancing offloads tasks depending on
resource availability in the Edge Network.

Furthermore, this chapter continued with Real‐Time Computing (Sec. 2.2) and its challenges
(Sec. 2.2.1) while working with tasks or systems that require real‐time execution. It elaborated
how scheduling is performed under real‐time computing, and explained two of the available
schedulers (Sec. 2.2.2). The proposed architecture uses the Earliest Deadline First (EDF) for pe‐
riodic task scheduling. For aperiodic tasks, Least Slack Time (LST) cannot be used, as it cannot
schedule non‐resumable aperiodic tasks optimally. To overcome this problem, the thesis intro‐
duces a novel scheduling algorithm which is going to be explained in Sec. 3.1 in detail. Optimal
scheduling for a combination of periodic and aperiodic tasks is only possible by using schedul‐
ing servers. The proposed architecture, however, does not utilize any of them. Instead, it in‐
troduces Virtual Processors (VPs) to isolate cores of different type of tasks for optimal schedul‐
ing. This isolation is based on process affinities and follows the approach of control groups
(cgroups).
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3 Scheduling and Decision Making
Methodology

In the previous chapters, existing technologies on Cloud Computing, Edge Computing and Real‐
Time Computing were clarified and the state‐of‐the‐art technologies were listed. This chapter
will introduce a novel scheduling algorithm (Sec. 3.1), explaining why there is a need for it.
Moreover, based on the problem defined in Sec. 1.1, problem during selection of the server
to offload will be formulated (Sec. 3.2), and the procedural approach (Sec. 1.3) to solve the
problems will be shown.

3.1 NAPATA Scheduling

Limited hardware resources require a fair distribution of resources among all tasks on an Edge
Server. The orchestrator that prevents resource starvation, enables fair resource usage, and
switches the turn of the tasks is called scheduler (See Sec. 2.2.2). In the thesis scheduling is
used as a fallback solution and performed if the tasks cannot be offloaded to alternative servers,
or they are likely to miss their deadlines.

As defined in Sec. 2.2.2, there are three types of tasks in the computing domain: periodic, ape‐
riodic, and sporadic. For periodic tasks, one of the scheduling algorithms developed for periodic
tasks can be used. To schedule tasks in Periodic type, the thesis will use the Earliest Deadline
First (EDF) scheduling (Sec. 2.2.2). For aperiodic tasks, Least Slack Time (LST) (Sec. 2.2.2) can
be used. However, LST cannot optimally schedule non‐resumable tasks. A non‐resumable task
cannot be resumed if paused by another higher priority task. Instead, it is restarted. This thesis
also aims to work with legacy tasks and execute them without missing their deadlines. It also
aims to improve the efficiency by enabling a combination of non‐resumable and preemptible
tasks to run together. This requires another scheduling algorithm.

The dissertation introduces a novel simple scheduling algorithm, called Non‐resumable And
Preemptible Aperiodic TAsk (NAPATA) scheduling. As its name suggests, its used to schedule
non‐resumable (legacy) and preemptible aperiodic tasks. NAPATA scheduling provides an on‐
line, dynamic priority, and preemptive scheduler with negligible overhead, and it uses counting
sort with the complexity of𝑂(𝑛+𝑘) [Mo20]. NAPATA scheduling can work with non‐resumable
and preemptible tasks together. Instead of slack time, NAPATA scheduling uses only the remain‐
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ing times of the active tasks. If a non‐resumable task needs to be preempted, the algorithm can
terminate it if it can still be completed on time and start it from the beginning to complete
execution.

Let 𝑇𝑖 be the only task running on an Edge Server. Also, let 𝑥𝑖 be the worst‐case execution time
and 𝑑𝑖 be the relative deadline of this task. On an idle server 𝑁 with enough computing power,
if 𝑥𝑖 ≤ 𝑑𝑖 holds, this task can be executed on this server before its deadline. If the task starts at
the time 𝑎𝑖, then, the absolute deadline of the 𝑇𝑖 becomes 𝑑𝑖 +𝑎𝑖. Nevertheless, the inequality
for feasibility does not change as 𝑎𝑖 on both sides cancel themselves out (𝑎𝑖 + 𝑥𝑖 ≤ 𝑑𝑖 + 𝑎𝑖).

Figure 3.1: Calculation of the remaining execution time for a task 𝑇𝑖 at time 𝑡.

At any time 𝑡, the feasibility may be rechecked, regardless of the need. As seen in Fig. 3.1, if
the feasibility at the time 𝑡 is to be calculated, the remaining execution time of the task can be
used, which should be between 𝑡 and 𝑑𝑖 + 𝑎𝑖.

If 𝑟𝑖 is the runtime since 𝑎𝑖 and until 𝑡, and 𝑚𝑖 the remaining execution time of the task until
completion, Eq. 3.1 and 3.2 can be used to find them out.

𝑟𝑖 = 𝑡 − 𝑎𝑖 (3.1)

𝑚𝑖 = 𝑥𝑖 − 𝑟𝑖 (3.2)

𝑥𝑖 ≤ 𝑑𝑖 can also be written in terms of 𝑡 as seen in equations 3.3 to 3.8.

𝑡 = 𝑟𝑖 + 𝑎𝑖 (3.3)

𝑟𝑖 = 𝑥𝑖 − 𝑚𝑖 (3.4)

(3.5)

inserting 𝑟𝑖 in Eq. 3.3

𝑡 = 𝑥𝑖 − 𝑚𝑖 + 𝑎𝑖 (3.6)
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and solving for 𝑥𝑖

𝑥𝑖 = 𝑡 + 𝑚𝑖 − 𝑎𝑖 (3.7)
yields

𝑡 + 𝑚𝑖 ≤ 𝑑𝑖 + 𝑎𝑖 (3.8)
(3.9)

However, if tasks are preemptible, equations 3.1 and 3.2 may not reflect the actual runtime or
remaining time, as the task may be preempted at any time (𝑘𝑖,𝑗) between 𝑎𝑖 and 𝑑𝑖 + 𝑎𝑖. This
case is illustrated in Fig. 3.2.

Figure 3.2: Calculation of the remaining execution time of a preemptible task.

In this case, actual runtime 𝑅𝑖 of the task 𝑇𝑖 until time instance 𝑡 from the first arrival time 𝑎𝑖
can be calculated as seen in Eq. 3.10.

𝑅𝑖 =
𝑡

∑
𝑗=0

𝑟𝑖,𝑗 =
𝑡

∑
𝑗=0

(𝑘𝑖,𝑗 − 𝑎𝑖,𝑗) (3.10)

Then, the remaining execution time 𝑀𝑖 for task 𝑇𝑖 becomes:

𝑀𝑖 = 𝑥𝑖 − 𝑅𝑖 (3.11)

If there is more than one task request on an Edge Server, at each time instance 𝑡 where a task
request is made, it is necessary to check if any of the tasks miss their deadlines. In this scenario,
the algorithm first sorts the active tasks at 𝑡 by their absolute deadlines (𝑑𝑖 +𝑎𝑖). Similar to EDF
scheduling, the earliest deadline receives the highest priority. Then, starting from the highest
priority task, for each task, the algorithm sums up the remaining times of the tasks with the
same or higher priority, adds the current measurement time 𝑡, and compares the sum with the
absolute deadline of the current task. If the sum is less than or equal to the deadline, the task
is schedulable at time instance 𝑡. If the sum is greater than the deadline, the algorithm stops as
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the task is not schedulable.

Based on inequality 3.8, the NAPATA feasibility algorithm 𝐹𝑖 for task 𝑇𝑖 is summarised in Eq.
3.12. The algorithm calculates the schedulability of task 𝑇𝑖 with 𝑁 running tasks at time 𝑡,
whose priorities are equal to or higher than task 𝑇𝑖. The left side of the inequality represents
the minimal time required to execute the task 𝑇𝑖.

𝐹𝑖 = 𝑡 +
𝑁

∑
𝑛=1

𝑀𝑛 ≤ 𝑑𝑖 + 𝑎𝑖 (3.12)

Let task 𝑇𝑖 = {𝑎𝑖, 𝑥𝑖, 𝑑𝑖} have an arrival time of 𝑎𝑖, an execution time of 𝑥𝑖, and a relative
deadline of 𝑑𝑖. Also, assume two tasks 𝑇1 and 𝑇2 as seen in Eq. 3.13 arrive at 𝑡 = 0.

𝑇1 = {0, 2, 5}
𝑇2 = {0, 3, 4} (3.13)

If theywere periodic taskswhose deadlines are equal to their periods, using the feasibility equa‐
tion for EDF given given in Eq. 2.6 would yield:

𝑥1
𝑑1

+ 𝑥2
𝑑2

≤ 1 (3.14)

2
5 + 3

4 ≤ 1
23
20 ≤ 1 (3.15)

As inequality 3.15 does not hold, according to EDF Scheduling, the tasks are not schedulable.
However, if these tasks are not periodic, Eq. 3.12 can be applied to test the feasibility. If the tasks
are in aperiodic type, they run only once, and they will not be requested again in a predictable
time. For 𝑇2 having a higher priority than 𝑇1, first, 𝑇2 will be calculated. Both tasks request
execution at time zero (𝑡 = 0). The calculation of feasibility 𝐹2 for 𝑇2 is shown in Eq. 3.16.

𝐹2 = 𝑡 + (𝑥2 − 𝑅2) ≤ 𝑑2 + 𝑎2

𝐹2 = 0 + (3 − 0) ≤ 4 (3.16)

Since the inequality 3.16 holds, the calculation is repeated for other tasks (in this case 𝑇1) that
are requested at 𝑡 = 0. Calculation of 𝐹1 for 𝑇1 will also require 𝑇2 values as 𝑇1 has a higher
priority than 𝑇1.

𝐹1 = (0 + (2 − 0)) + (0 + (3 − 0)) ≤ 5 (3.17)

Inequality 3.17 also holds. This means that these tasks can be scheduled if they are known as
aperiodic.

One important remark here is that, as mentioned, preemptible tasks can continue from where
they left off, keeping their remaining times as they are preempted. However, preempting non‐
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resumable tasks means that they are terminated. Hence, their running time resets — also their
remaining times. The following example will demonstrate another scenario with different task
types.

Assume that the tasks arrive at an Edge Server as shown in Table 3.1.
Table 3.1: An example set of tasks with mixed types for the Non‐resumable And Preemptible

Aperiodic TAsk (NAPATA) scheduling.

Task 𝑎 𝑥 𝑑 𝑑 + 𝑎 Type
𝑇1 0 2 8 8 Non‐resumable aperiodic
𝑇2 1 1 3 4 Non‐resumable aperiodic
𝑇3 2 2 3 5 Preemptible aperiodic
𝑇4 1 1 3 4 Preemptible aperiodic

Unlike the first example, this example cannot directly use Eq. 2.6, due to arrival times of tasks
being different. Moreover, the tasks are also not periodic. However, NAPATA scheduling can be
used to check whether they meet their deadlines.

There are three arrival times: 0, 1, and 2. The algorithmwill be repeated at each arrival for each
task that is active in these times, whether it is in running or preempted state.

At 𝑡 = 0

𝐹1 = 0 + (2 − 0) ≤ 8 + 0 (3.18)
(3.19)

At 𝑡 = 0 only 𝑇1 is active, and the inequality 3.18 holds. Then, 𝑇1 is executed until 𝑡 = 1,
since there is another arrival at that time point. At 𝑡 = 1, 𝑇1, 𝑇2, and 𝑇4 are active. Sorting
them by their absolute deadlines gives the following order: 𝑇2, 𝑇4, 𝑇1. Until this point, 𝑇1 ran
for one unit, and one unit execution remains, however, there are higher priority tasks which
require 𝑇1 to be preempted. 𝑇1 has the non‐resumable type, meaning, when preempted, at
each resumption, the remaining time resets to its original execution time. Other tasks have
just arrived; hence they have remaining times equal to their execution times. 𝑇2 and 𝑇4 have
equal priorities. Any of them can be picked first, but their remaining timesmust be addedwhen
checking each of them. Starting from the highest priority:
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At 𝑡 = 1

𝐹2 = 1 + (1) + 1 ≤ 3 + 1 (3.20)

3 ≤ 4
𝐹4 = 1 + (1) + 1 ≤ 3 + 1 (3.21)

3 ≤ 4
𝐹1 = 1 + (2) + 1 + 1 ≤ 8 + 0 (3.22)

5 ≤ 8

Inequalities from 3.20 to 3.22 hold. In this example, 𝑇2 is chosen to be executed until 𝑡 = 2.

At 𝑡 = 2, 𝑇3 also arrives. At this time point, 𝑇2 completes execution, and the server contains
three active tasks. Similarly, sorting the tasks by their absolute deadlines gives: 𝑇4, 𝑇3, 𝑇1. Fol‐
lowing the algorithm:

At 𝑡 = 2

𝐹4 = 2 + (1) ≤ 3 + 1 (3.23)

3 ≤ 4
𝐹3 = 2 + (2) + 1 ≤ 3 + 2 (3.24)

5 ≤ 5
𝐹1 = 2 + (2) + 2 + 1 ≤ 8 + 0 (3.25)

7 ≤ 8

Inequalities from 3.23 to 3.25 also hold. Since there are no more task arrivals, using the al‐
gorithm, it can be ensured that the tasks will be scheduled on time. The resulting scheduling
diagram is shown in Fig. 3.3.

Figure 3.3: Resulting scheduling diagram of the NAPATA scheduling example.
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If 𝑇1 were to be a preemptible type instead of non‐resumable, inequality 3.25 would be written
as shown in inequality 3.26 and 𝑇1 would be finished at 𝑡 = 6 instead of 𝑡 = 7.

𝐹1 = 2 + (1) + 2 + 1 ≤ 8 (3.26)

6 ≤ 8 (3.27)

Preemptible tasks always satisfy 𝑀𝑖 ≤ 𝑥𝑖 condition. As seen in Eq. 3.26, the time required to
execute 𝑇1 is less than the value in Eq. 3.25.

Next section will address server selection problem and how the thesis plans to solve it.

3.2 Problem Formulation on Server Selection

Almost all operating systems (OS) introduce schedulers to plan the execution optimally. In a de‐
centralized environment, an offloading requires further precautions. Problem definition (Sec.
1.1) briefly mentioned decisions that should be made to execute tasks in a decentralized envi‐
ronment collaboratively. Each Edge Server needs to know the resources of other Edge Servers
in the Edge Network. Moreover, this information should always be kept up‐to‐date to avoid
wrong decisions. This section will exemplify the execution of a periodic task using the Earliest
Deadline First (EDF) scheduling on an Edge Server to answer the fourth question from the prob‐
lem definition (Sec. 1.1). It will show how an Edge Server is different than an ordinary computer
by formulating some additional parameters. It will also show how an Edge Server calculates the
feasibility of multiple task executions based on the task parameters. Finally, it will summarize
the formulations in a table, leaving the solutions to the upcoming chapters.

Let 𝐶 be a set of computers (Eq. 3.28) and 𝑅 be a set of resources in an Edge Network 𝑁 (Eq.
3.29). Also let 𝑆 be a set of services, which are wrappers to define behaviours of programs,
software or commands, and let 𝑌 be a pre‐defined set of service types defined as in Eq. 3.30.

𝐶 = {𝐶𝑖 ∣ 𝑖 ∈ ℕ+} (3.28)

𝑅 = {(𝑝, 𝑚, 𝑐, 𝑠) ∣ 𝑝, 𝑚, 𝑐, 𝑠 ∈ ℕ+} (3.29)

𝑌 = {𝐿𝐸𝐺𝐴𝐶𝑌 , 𝑆𝐼𝑀𝑃𝐿𝐸, 𝑆𝐼𝑀𝑃𝐿𝐸_𝑃𝐸𝑅𝐼𝑂𝐷𝐼𝐶} (3.30)

where

• 𝑝: maximum execution speed in millions of instructions per second (MIPS)

• 𝑚: total available memory

• 𝑐: total core count
• 𝑠: total disk space
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and

𝑆 = {(𝑎, 𝑥, 𝑑, 𝑜, 𝑤, 𝑙, 𝑓, 𝑌𝑦) ∣ 𝑎 ∈ ℕ, 𝑥, 𝑑, 𝑜, 𝑤 ∈ ℕ+, ∀𝑦 ∈ 𝑌 , 𝑥 ≤ 𝑑, 𝑙 ∈ ℝ>0, 𝑙 ≤ 1} (3.31)

where

• 𝑎: arrival time instance of this request

• 𝑥: worst‐case execution time in terms of millions of instructions (MI) for this service

• 𝑑: relative deadline of the service (in seconds)

• 𝑜: required memory throughout the execution

• 𝑤: required disk space throughout the execution

• 𝑙: allowed load w.r.t. CPU usage (0 < 𝑙 ≤ 1)
• 𝑓 : list of allowed CPUs that this task can use (|𝑓| ≤ |𝑐|)

Using the definitions and the equations 3.30 through 3.31, the Edge Server𝐸 set can be defined
as:

𝐸 = {(𝑅𝑖, 𝑄𝑖) ∣ 𝑖 ∈ 𝐶, 𝑄𝑖 ⊆ 𝑆} (3.32)

To define the Edge Network 𝑁 as seen in Eq. 3.34, the connection set 𝐵 is denoted as shown
in Eq. 3.33.

𝐵 = {𝑂𝑖 ∣ 𝑖 ∈ 𝐸, 𝑂𝑖 ⊆ 𝐸} (3.33)

𝑁 = {(𝐾𝑖, 𝑋𝑖, 𝐷𝑖) ∣ 𝑖 ∈ 𝐸, 𝐾𝑖 ⊆ 𝐸, 𝐷 ∈ ℝ>0} (3.34)

𝑇 = {(𝑆𝑧, 𝐸𝑖) ∣ 𝑧 ∈ 𝑆 and 𝑆𝑧 ∈ 𝑄𝑧 and 𝑖 ∈ 𝐸} (3.35)

where 𝐷 is the delay between two 𝐸 that are connected to each other. Each available 𝑆 in 𝐸 is
executed as task 𝑇 (See Eq. 3.35). To check whether a task 𝑇 can be executed in 𝐸, a feasibility
check must be performed. Depending on the service type (hence the task type) 𝑌 , one of
the scheduling algorithms explained in Sec. 2.2.2 can be chosen. To reduce the complexity of
the problem, it is assumed that memory (𝑚) and disk space (𝑠) are unlimited. Moreover, the
scheduling algorithms are considered to have no overhead and hardware executing the task is
assumed to be ideal and real‐time proven.

Assuming that the service types are periodic and that they satisfy the requirements by Liu and
Layland task model [LL73], if EDF Scheduling is chosen (Sec. 2.2.2), the schedulability test 𝐹 for
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𝑛 tasks can be performed as shown in Eq. 3.36. Let

𝐹 =
𝑛

∑
𝑗=1

𝑥𝑗
𝑝𝐸𝑖

𝑑𝑗
≤ 1 (3.36)

where 𝑥𝑗 and 𝑑𝑗 are worst‐case execution time and deadline, respectively, of task 𝑇𝑗, where 𝑇
is a running task set on an Edge Server 𝐸𝑖 with one core, and 𝑝𝐸𝑖

is the maximum execution
speed of 𝐸𝑖.

With the assumptions mentioned earlier, if the inequality in Eq. 3.36 holds, then the tasks can
be scheduled using EDF. However, if the Edge Server has multiple cores, then the tasks can have
different CPU affinities. In this case, the utilization 𝑈𝑐𝑖,𝑚

for the 𝑚𝑡ℎ core of 𝐸𝑖 — 𝑐𝑖,𝑚 — can
be calculated as:

𝑈𝑐𝑖,𝑚
= ∑

𝑇

𝑥𝑗𝑘𝑖
𝑝𝐸𝑖

𝑑𝑗
where 𝑘𝑖 =

⎧{
⎨{⎩

1 if 𝑐𝑖,𝑚 ∈ 𝑓𝑗

0 otherwise
(3.37)

Then, the sum of all utilizations of all 𝑐 cores of 𝐸𝑖 (Eq. 3.38),

𝐹𝐸𝑖
=

𝑐
∑
𝑚=1

𝑈𝑐𝑖,𝑚
≤ 𝑐 (3.38)

decides if a task set can be scheduled with the current CPU affinities. If the CPU load 𝑙𝑗 of each
task is to be considered and 𝑇 tasks have been running at a time, then Eq. 3.37 becomes as in
Eq. 3.39.

𝑈𝑐𝑖,𝑚
= ∑

𝑇

𝑥𝑗𝑘𝑖𝑙𝑗
𝑝𝐸𝑖

𝑑𝑗
where 𝑘𝑖 =

⎧{
⎨{⎩

1 if 𝑐𝑖,𝑚 ∈ 𝑓𝑗

0 otherwise
(3.39)

If 𝐹𝐸𝑖
≤ 𝑐, then the tasks can be scheduled on that server, but only if their CPU affinity tests

pass. The affinities to the CPUs are tested using Eq. 3.38 for each CPU in one Edge Server. If
∀𝑈𝑐𝑖,𝑚

≤ 1, then the tasks can be scheduled on this Edge Server. If ∃𝑈𝑐𝑖,𝑚
> 1, then the

tasks can be scheduled only if their affinities are changed. However, if Eq. 3.38 is not satisfied,
another alternative server must be searched for the execution. The decisions based on results
are summarized in Table 3.2.
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Table 3.2: The feasibility table to determine the schedulability of the tasks within an Edge
Server.

if 𝐹𝐸𝑖
≤ 𝑐

Satisfied Not Satisfied

if ∀𝑈𝑐𝑖,𝑚
≤ 1 Satisfied Schedulable

Not Satisfied Change affinity Not schedulable on this server

Eq. 3.38 and 3.39 can be used on a single Edge Server. If a task is not feasible for scheduling on
an Edge Server, it may still be possible to execute on another server within the Edge Network
𝑁 . However, it is necessary to know that server’s current resource information. If there are
multiple servers, a decision must also be made to pick the location for the execution of this
task. First, the load (𝑙𝑗) of task 𝑗 can be throttled down if its absolute deadline allows it. Besides,
each service type requires different handling for the correct scheduling. Then, a trade‐off stems
between the execution time and CPU utilization. During the calculation, delays𝐷 between Edge
Servers must also be considered. The decision making to choose an adequate 𝐸 in 𝑁 , and the
execution utilization of task set 𝑇 are two of the problems that are to be solved in this thesis.
Moreover, planning the execution order of the non‐resumable (legacy) and preemptible tasks
is another contribution of the work. The proposed software reference architecture deals with
these problems and defines the methodology on how to achieve optimal performance. The
solutions are given in Chapter 4 and validated in Chapter 5.

3.3 Summary

This chapter explained why there is a need of another scheduling algorithm for non‐resumable
and preemptible aperiodic tasks and introduced an online and preemptive novel scheduling
algorithm (Sec. 3.1). Moreover, Sec. 3.2 represented an Edge Server as mathematical formula
and then formulated an example of offloading problem of multiple periodic tasks. To address
this problem, the following chapter will explain how a software reference architecture can be
built based on the previous knowledge.
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4 Software Reference Architecture

This chapter describes a software reference architecture for Edge Servers to put Edge
Computing benefits such as real‐time execution, self‐configuration, extensibility, and resource‐
awareness as defined in Chapter 2.1 into practice.

Figure 4.1: Subsets and supersets of Edge Computing, as defined in this thesis.

Edge Computing components are illustrated as subsets and supersets in Fig. 4.1. In this thesis,
Edge Computing is seen as the superset of Edge Network, which consists of End Devices and
Edge Servers. Services define how tasks behave when run and tasks are instances of services,
linked with the programs/software/commands to execute them.

Terms used throughout the chapters are further explained in the chapter and also summarized
in the Appendix A.3 to avoid ambiguities. These terms and a high‐level overview of an example
Edge Network are shown in Fig. 4.2. As seen from the figure, Edge Servers have direct ac‐
cess to the End Devices or each other using real‐time communication methods. An End Device
is a resource‐limited device, which can be a smart sensor, machine, computer, mobile phone,
smart glasses, or more. In this thesis, its role is to request tasks from Edge Servers. Edge Servers
are physical computers, which can perform computations and store data. They need to imple‐
ment the defined software reference architecture in this thesis to exploit the benefits of Edge
Computing. It is also possible to connect Edge Servers with the Cloud. However, in this case,
best‐effort communication will be established due to the nature of the Internet.

The architecture or thesis does not recommend a specific network topology. A single topology
or combination of topologies are possible as long as the servers and End Devices have enough
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Figure 4.2: An example Edge Network and its participants (nodes). Dashed arrows show best‐
effort communication due to the behaviour of Cloud Computing, whereas solid ar‐
rows show real‐time capable communications.

network interfaces to connect with. An End Device or Edge Server can establish as many con‐
nections to other Edge Servers as possible. Once a request is made, underlying decisionmecha‐
nisms will evaluate several options choose an optimal Edge Server to complete this request and
return its response to the initial requester. The options are throttling the Central Processing
Unit (CPU) utilization of the tasks, scheduling them or offloading to their neighbouring servers.
This process will be seamless, and the End Device will not need to implement anything special
for this to happen. As it might be noted, the execution of the tasks is called ”requesting” tasks
instead of ”starting” tasks. The reason for this is because the decision of executionmoment and
location being under the control of the decentralized Edge Servers. The optimal server location
will be determined by the Edge Server that first receives the task request. Then, that optimal
server will execute the task when it is appropriate.

Even though each server is independent, when there is an activity on a server, this activity is
shared with all other connected servers. This information exchange continues until all servers
are informed about this activity. As a result, whether Edge Servers have direct access to each
other or via another Edge Server, each of them is aware of the currently available resources of all
servers. Moreover, thanks to the synchronized information, the choices and results are always
the same, regardless of the server. As it alsomight be noticed in Fig. 4.2, tasks are different from
program/software/command (PSC). Tasks are instances of Services that define the execution
behaviour of PSCs (See Sec. 4.2). Execution behaviours (See Sec. 4.2.5) are parameters such
as execution time, deadline, CPU utilization, allowed CPUs, and so on. PSCs are developed

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


67

independently from the architecture using programming languages to connect the Edge Servers
with the physical device, control it, or perform various computations on the Edge Server. A PSC
can have multiple services defined for it to have different behaviours. Once a task is requested,
the task itself will call the PSC that is linked with its service via command line parameter when
it is time to start the task. All components and decision mechanisms are going to be explained
in the upcoming sections.

The architecture is designed to be open, operating system (OS) neutral, and to have no pro‐
prietary standards which can hinder the usability or create vendor lock‐in problems. It is also
designed to be flexible, and scalable, allowing new servers to be connected with minimum ef‐
fort. Moreover, the architecture supports multiple user interaction by separating each session
but sharing the resources. Once it is deployed, it works with other participants in the Edge Net‐
work, interoperably. To fully exploit the features of the architecture and enable collaboration
among the participants, all Edge Servers in the vicinity need to be incorporated into a shared
network. This integration is abstracted from the lower‐level operations by the introduced stan‐
dard Application Programming Interface (API) methods.

The architecture suggests two roles for users: (1) framework users, or operators, who are al‐
lowed to set up the Edge Network, configure Edge Servers, and add/remove services, (2) end‐
users that are End Devices, or persons who use these End Devices. The following steps are
endorsed for a successful setup for the operators:

1. Implement a framework based on the software reference architecture defined in this the‐
sis and deploy it on the servers that are expected to participate in the network.

2. On these servers, install the user PSCs that should be available for End Devices.

3. Create services to specify the execution behaviour of each installed PSC.

4. Leave these services public or make private, deciding whether they should be accessible
by other Edge Servers or not.

5. Connect Edge Servers to create the desired Edge Topology.

The steps above summarize the preparation phase of the Edge Network. A Cloud server can also
run the same framework to participate in the execution. However, as mentioned before, the
deployment in the Cloud will provide only best‐effort service rather than a real‐time response.

To completely establish connections between two Edge Servers or Edge Server to End Device,
authentication is necessary to prevent unauthorized access. The authentication requires the
creationof users in each server. These usersmust be created individually in the servers, together
with their access levels. Once a user logs in, they are allowed to perform further actions.

During establishing set of connections between Edge Servers, each server shares its resources
and public services with other participants automatically, to create a joint ”knowledge base.” An
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End Device can request tasks from any of its connected Edge Servers; however, as mentioned
earlier, the task will be instantiated on themost suitable Edge Server after a decision of location
is made. This decision is made by performing different calculations on the initial Edge Server
that receives the request (Sec. 4.3). If the chosen server is not authenticated, that server is not
available for execution; hence, it will not be considered during the decision making. Requested
tasks call and run the PSCs whose execution behaviours are defined by their services. These
services can explicitly inform about execution duration, relative deadline, CPU affinity, and CPU
execution capacity of each PSC. Once an Edge Server receives the request, first, the availability
of this PSC within the network is queried, including the current server. Based on the behaviour
of the service such as its deadline, the most suitable server in the network is chosen, again,
also considering the current server. The initial server also evaluates whether the task is going
to complete its execution until its defined deadline (See Sec. 4.3). The chosen server can have
a direct or indirect connection to the original requester. Regardless of how they are connected,
if the task sends a response upon execution, it will also be delivered back to the requester
using the same connection path. All of these steps are going to be performed seamlessly. The
requester will get serviced without noticing the underlying process.

Following sections explain the concepts to design such a software reference architecture to be‐
have as described above. The architecture explained in this chapter is realized with a novel
framework called Real‐Time Edge Framework (RTEF) (Chapter 5). The RTEF is tested in a simu‐
lation environment, but it is implemented in such a way that it requires minimal modifications
to work on hardware when deployed. During the tests, the hardware is assumed to be ideal,
and the decisions mechanisms to have no overheads. The tests are going to be explained in
detail in Chapter 5.

4.1 Edge Server and End Device Concepts

An Edge Network consists of End Devices, which the job requests are originated from, and Edge
Servers, which execute these jobs. End Devices can be any source or destination device that re‐
quests a task in the architecture (See Definitions). The only requirement of being an End Device
is to have a network interface to communicate with Edge Server(s). Edge Servers are physical
hardware and communicate with the End Devices and other Edge Servers using a connection‐
oriented communication protocol. They can also be used as hubs to connect multiple devices
together. These servers are regular computers, but converted into Edge Servers after they run
a framework, developed based on the reference architecture explained in this chapter. If they
are formally verified for real‐timeliness, then, they can execute real‐time jobs. Whether they
are real‐time capable or not, the servers will work collaboratively to handle the requests. The
thesis aims to orchestrate the execution of real‐time tasks in a decentralized environment; non‐
real‐time task executions are out of the scope. To accomplish the objectives defined in Sec. 1.2,
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Figure 4.3: Handshaking, after establishing a connection between an End Device (ED) and Edge
Server (ES).

the software reference architecture explained in this chapter needs to be instantiated.

Before or after an Edge Network is set up, the user PSCs on Edge Servers are installed. These
software or programs can be installed on all Edge Servers, or some of them. Services, which can
be thought of as wrappers for the PSCs, define how PSCs run when they are executed. They
also enable interoperability between other Edge Servers. Whether the PSC is optimized for
decentralization or not, the services allow execution of user PSCs from any of the available Edge
Servers in the same network. Each service has several parameters, which need to be set. These
parameters also include the PSC executable to link the service. These will be further discussed
in the next section (Sec. 4.2). Once a service is created, it can be set as public and broadcast to
the Edge Network so that other servers are also aware of this service. It is also possible to set
the services as private, allowing only execution from the End Device that is directly connected
to an Edge Server. Public is the default access type of services.

An Edge Network can be set up with at least one computer. The computer should also have
network interface(s) to communicate with the End Devices. The architecture is designed to be
realized on limited‐resource computers. A deployable instance of an architecture is called a
framework. When a framework based on the reference architecture is installed on a computer
and run, this computer is considered as an Edge Server. To enable interworking, more than one
Edge Server within the same network is necessary. Each Edge Server or End Device in an Edge
Network is also called a node. Each node should have a unique identifier that is to be used
for communication among all other servers. There is no limitation on the network topology,
meaning the Edge Topology can be created using any of the available network topologies. To
create an Edge Topology, the Edge Servers establish connections between each other using a
connection‐oriented communication method. The servers do not introduce discovery methods
to find each other. Instead, one Edge Server initiates a connection using a set ofmessages. After
each successful connection, the latest topology is updated and stored in each Edge Server. Once
a connection is established, whether it is between an Edge Server and End Device or another
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Figure 4.4: Handshaking, after establishing a connection between two Edge Servers (ES).

Edge Server, a handshaking process is initiated. The new connection is shared between all active
participants of the network. The handshaking informs the nodes about their available resources
(if any) before preparing them for collaborative work. If the connection is between an End
Device and Edge Server, the handshaking is done as seen in Fig. 4.3. In this connection type,
the connection initiator starts the handshake by sending a message to the Edge Server. Then,
the Edge Server responds to this message by sending its unique identifier back. The initiator
also sends its unique identifier to identify itself. At this stage, the topology is updated by adding
the new End Device. Next, the server sends specifications such as CPU speed and core count of
all known servers in the network. The End Device can ignore this message or use it for internal
purposes. Then, it completes the handshaking process. Finally, the login process begins, and
the user is authorized for further operations if the login is successful.

Establishing a connection between two Edge Servers is similar to the one with Edge Server and
End Device connection. As seen from Fig. 4.4, handshaking follows the same procedure until
the connected server sends its server specifications. In this case, server specifications are stored
and used to determine the optimal location for requests. They are also used to estimate the
execution time for a possible offloading to that server. Since the initiator is also an Edge Server,
this time, instead of completing the handshake, it also sends its specifications to inform that it
is a server with computing capability. Besides, the initiator further sends all known public ser‐
vices with their available locations. Naturally, if this is the first connection that the Edge Server
is establishing, the only services sent will be its public services. Once the connected server
receives the list, it updates its known service list and also informs other connected servers (if
any) with the new services and their locations. This process is repeated until all servers contain
up‐to‐date service information. Later, the connected server responds with the latest known
service list. Finally, the handshake is completed, and the server proceeds with the login pro‐
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cess. The login process is the same as the one for End Devices. It could be either username and
password‐based or automated, using key‐based authentication methods. The topology infor‐
mation, available services, and resources are also updated whenever a change on the servers is
detected, not on a polling basis for the best accuracy.

As it might be noticed, all nodes, including Edge Servers, need to be authorized for further
operations, right after a connection is established. Authorization can be password‐based for
manual input, or via shared keys. At the current status of thework, the users of a server are local.
They are not stored in any database nor shared with other servers. At each server, users must
be manually created and assigned an access level. However, in the future, it will be possible to
use authentication servers or user directories to share users among the servers. End‐users can
perform only read‐only operations and request tasks. Operators, on top of end‐user rights, can
change configurations, add, remove or modify services and users. No actions are allowed if the
session is not yet authorized.

The architecture gives the control of the task execution to Edge Servers. From the End Device
perspective, the architecture is seen as a whole. End Devices are not allowed to start tasks di‐
rectly on the desired Edge Server. Instead, they request task execution from one of the directly
connected Edge Servers. The execution is then performed seamlessly, and the task response
is sent back to the caller if required. The reason for this is to give the decision rights to the
Edge Servers for determining the most appropriate location to execute the task and to mini‐
mize the decision errors that could have been made by the End Devices. When a request ar‐
rives, the location of the execution is chosen based on several aspects such as the availability of
the service, availability of the hardware resources of the servers, delay between the servers and
requester, deadline of the service, etc. The static parameters are collected and stored during
the handshake phase. However, as the resource availabilities, delays, and latencies depend on
the load and network activity, this information is updated and broadcast to other neighbouring
servers whenever a new task activity is detected. Since all information is up‐to‐date, a server
can calculate and determine the optimal location to execute the task, without consulting other
neighbouring servers. Requesting instead of executing also abstracts the complexity of execu‐
tion procedure from the End Device. This abstraction requires the introduction of a task request
method by the Edge Server, rather than to start one. An example of a task execution procedure
is shown in Fig. 4.5.

Assume that End Device 1would like to execute Program/Software/Command A (PSC A) as seen
in Fig. 4.5. To achieve that, first, it (1) requests Service 1, which defines the behaviour of PSC A,
from Edge Server 1. Since this server does not contain this service, but only Edge Server 2, the
request is (2) passed to Edge Server 2, which then (3) instantiates Task 1. Finally, Task 1 (4) runs
the PSC A. During the request passing, delays of each hop are also added to the total execution
time, hence calculated to prevent deadline misses of the tasks.

Similarly, assume that End Device 2 (5) requests Service 1, from Edge Server 3 to execute PSC A,
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Figure 4.5: An arbitrary connection example to illustrate requesting a task in an Edge Network,
containing three Edge Servers and two End Devices. Communicationwith the target
server always follows the shortest path.

after Task 1 completes its execution. This time, the request (6) follows Edge Server 1 and then
(7) Edge Server 2 path, instead of going directly over Edge Server 2. This is due to a bigger delay
between Edge Server 3 and Edge Server 2. Later, another instance of Service 1 is (8) instantiated
with a new task (Task 2), and the PSC A is (9) run. This example is a very brief introduction to
show how seamless the execution from the End Device perspective is. There are more under‐
lying decision mechanisms that deal with resource availability issues in case multiple tasks are
requested. These mechanisms are going to be introduced in Sec. 4.3.

4.2 Service and Task

A service is a piece of software that is reusable to perform a specific work (See Definitions). In
this thesis, services specify the behaviours of a program, software, or command. Services must
be created manually at each Edge Server where they are intended for use, by the operators.
Once a service is created, it is permanent and available until deliberately removed. A task is an
instance of a service, in the running or paused state. Services are linked to PSCs and tracked
by the tasks. Instead of services, tasks execute the PSCs and control their lifecycle, after they
have been requested. Each task receives a unique identification number after being requested.
This number is used to find them during their lifecycle. Each new task instance increments this
number, and the last number is stored until the Edge Server is rebooted. These numbers are
unique only on the same server. The same number can be used as long as it is on another
server. Tasks are automatically removed after they complete execution or they are terminated.
Tasks can be used only once. Each request creates another task instance with a unique number.
However, services can be reused. Multiple End Devices can request execution of a PSC multiple
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times, using the same service.

Unlike End Devices, some other physical devices (e.g., a simple sensor or simple lights) may
only accept inputs and/or return outputs. These devices may not have an ability to request
tasks from Edge Servers. In such cases, a PSC will make the linkage between the Edge Server
and physical device directly. Depending on the connection types that the Edge Server supports,
such as OPC‐UA or digital input/output, the PSC can be implemented as it would normally be
developed for another environment. Its request must then be initiated locally on the server or
by another End Device. A PSC can also be a package directly deployed as a Docker container.
However, it should be noted that this may cause additional overheads and require more time
to start it. If a container is used, its service should be linked with the container command that
will directly start the PSC.

To execute a task (hence a PSC) through a service, the service must have been created in the
Edge Server. Once the service is available, it can be broadcast inside the Edge Network to be
known by other Edge Servers. Only services defined as public can be broadcast in the network.
Private services can only be accessed if the End Device has a direct connection to that Edge
Server. A created service is set as a public service by default. Services have unique names
for their identifications later on. Although each task instance gets a new incremented unique
identifier, services use the same name for reference. If a different name is used on another Edge
Server, it cannot be used for offloading. Services are linked with one or bi‐directional PSCs. This
parameter is also used to calculate the delay, which is added up to the execution time of the
PSC. If a PSC requires inputs only from one end and gives no response, it is defined as a one‐
directional service. However, if a response must be sent, then, it is defined as a bi‐directional
service. The responses of bi‐directional services must be sent to the original caller, which are
End Devices. The delivery of this response is done by the Edge Servers, not the service or PSC
itself.

Tasks cannot change service parameters permanently, but only temporarily, as long as they are
active. Tasks implement a pausemethod that pauses a PSC’s thread group if they are running,
a resumemethod that resumes the paused threads and a stopmethod that terminates its exe‐
cution. Services work on tasks instead of directly dealing with the PSC that is tracked. Multiple
services can be linked with a single PSC. For example, two services can be created for a PSC, one
for running it as a single‐threaded process and the other one withmulti‐threaded, bymodifying
its command line parameter.

Tasks in the proposed architecture have four states: (1) active or requested when they arrive,
(2) started or running when the execution of the linked PSC begins, (3) paused or preempted,
when a higher priority task is executed, and (4) terminated, when their execution is complete.
Unique identifiers of tasks are assigned as soon as a task instance is created. Once a task is
terminated, it is no more accessible.
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A PSC is assumed to have the following properties for the architecture to function properly:

• All threads of the PSC start at the same time as the main process.

• All threads of the PSC stop execution at the same time as the main process.

• PSC is independent of other running PSCs, e.g., when preempted, it does not cause a
critical section issue.

As mentioned in Sec. 2.2.2, according to arrival patterns, tasks in computing domain are clas‐
sified in three categories: (1) periodic tasks that arrive at a constant rate and have an infinite
sequence of identical activities, (2) aperiodic tasks that are usually event‐driven and have no
bound inter‐arrival times, and (3) sporadic tasks that are aperiodic tasks with bounded inter‐
arrival times [Au91]. These categories define the relevant scheduling algorithms for the tasks.
Based on these categories, this thesis defines three service types that are mapped with the
tasks. These types are, namely, Legacy, Simple, and Simple Periodic. Each of them is explained
below.

4.2.1 Legacy

Legacy services are for non‐resumable PSCs. This kind of services can also be considered as
wrappers for aperiodic tasks. Pausing this kind of tasks implies terminating the execution of
PSC; thus, they cannot continue from the paused state. Regardless of the duration of the service
ran until this point, resuming it starts from the beginning, ignoring the former execution time.
Once the execution is completed, its task is removed.

4.2.2 Simple

Simple services are for the PSCs that get continuous or streaming data, or that can be paused.
Similar to Legacy services, they also wrap aperiodic tasks. Different from Legacy services, they
can be paused. Once they are started, pausing does not cause them to reset the execution time
until that point. Resuming these tasks enables them to complete their remaining time. For
example, a video application can be wrapped with a Simple service.

4.2.3 Simple Periodic

Simple Periodic services are repeating Simple services. As their name suggests, they wrap pe‐
riodic tasks. They are usually used, e.g. to get status from a sensor or device, or for control
loops. Since they are expected to arrive always at the specified intervals, the scheduling al‐
gorithm keeps enough resources allocated for these tasks at all times. Pausing their instances
keeps their remaining times untouched, and they can be resumed.
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Figure 4.6: An example of the execution behaviours of independent PSCs in Legacy (A), Simple
(B) and Simple Periodic (C) service types on three different computers when they
are preempted at 𝑡 = 2 and resumed at 𝑡 = 3.

4.2.4 Service Behaviours

Previous sections explained the service types defined in the architecture and how tasks behave
based on their types. This section will give a simple example of how services define PSC
behaviour based on their types.

Table 4.1: A list of example PSCs with different service types.

PSC Service Type WCET Period Relative Deadline
𝐴 Legacy 3 N/A 6
𝐵 Simple 3 N/A 6
𝐶 Simple Periodic 3 6 6

Table 4.1 lists three PSC examples, each defined with a different type of service. Assume that A,
B, and C are independent PSCs having the sameworst‐case execution times (WCET) and running
alone on different computers. As described, Legacy and Simple services do not have periods and
their inter‐arrival times are not known a priori. Then, if they are preempted at time 𝑡 = 2 and
resumed at 𝑡 = 3, they are expected to run as illustrated in Fig. 4.6. As seen from the figure,
when preempted, the previous runtime of 𝐴 in Legacy service type is lost, causing it to run
another three units until its completion at 𝑡 = 6. 𝐵 in Simple type remembered the runtime,
causing it to run only one more unit until completion at 𝑡 = 4. Similarly, 𝐶 in Simple Periodic
completed execution at 𝑡 = 4 and its second period started at 𝑡 = 6, idling the CPU for two
units of time.

To simplify the complexity of the problem, throughout the thesis, PSCs defined by the services
are assumed to be independent of each other, and they do not allow preemption in the critical
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section where other waiting tasks may attempt access. As it may also be noticed, sporadic tasks
are not mentioned in the service types. The thesis considers sporadic tasks as aperiodic tasks.
Each new task instance is assumed as a different task, and each task is taken into consideration
during scheduling. There is no difference between creating a new task at arbitrary times or
limiting a minimum task arrival time from the scheduler perspective.

While creating services, it is crucial to know the PSC characteristics that are to be linked with.
For example, the type, duration, and deadline of the PSC must be validated before creating
its service. These characteristics are set during service creation phase using parameters. The
required parameters are explained in the next section.

4.2.5 Service Parameters

Services define how a PSC should behave. In addition to the PSC characteristics, services also
define some parameters that are used for decisions as well as to improve the efficiency of these
decisions. Some of these parameters can be changed during service design, or even during
runtime. Others that are related to the PSC characteristics cannot be changed. In Sec. 3.2, the
definition of a service (denoted as 𝑆) was depicted in Eq. 3.31. This section will recapitulate
these definitions and include other parameters that are required in the proposed architecture,
to solve decision and offloading problems.

The command is one of the parameters to define in services, to specifywhich program, software,
or command to link/run, when a task instance is requested. This parameter can only be set
during the creation of the service. The command can also specify command line parameters for
the PSCs. This enables changing PSC behaviour by directly calling another service that is linked
with the same PSC. For example, an argument in the command line can change whether the
PSC is single‐threaded or multi‐threaded.

The service parameters that can be manipulated by the operators or the architecture itself dur‐
ing runtime are listed below:

• Name: This parameter is the identifier of a service. It is distributed all over the Edge
Network with its location(s) to inform all Edge Servers. Each Edge Server can contain only
one service with the same name, but other servers can use the same name for the same
or different PSCs. Requesting tasks require this name as an argument. As long as the
name is the same, different behaviours can be specified on different Edge Servers. If the
name is different on other servers, it will not be found for offloading.

• Publicity: This value enables or disables the public use of the service. If a service is public,
it is broadcast on the network and is available for use by all Edge Servers and End Devices.
If private, it is available for use only by the directly connected End Devices. By default, all
created services are set as public.
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• CPU utilization: It defines how much CPU time in percentage should be given to this PSC
when it is being executed. It must be greater than zero and less than or equal to 100.
CPU utilization and execution time are inversely proportional. Reducing the utilization by
a factor increases the execution time in the same ratio.

• CPU mask: This parameter defines which CPUs are allowed to be used by this PSC. It can
be a bitmask or list of CPUs. If the PSC is multi‐threaded, each allowed CPU executes the
same number of threads.

PSC‐related characteristics that cannot be changed are usually known in advance by performing
in‐depth analysis. Their service parameter equivalents are shown below:

• Type: It defines the type of PSC; hence, the service, as described in Sec. 4.2. Service type
determines which scheduling algorithm is used when needed. Type can be one of Legacy,
Simple, or Simple Periodic.

• Direction: It is used to determine whether the PSC sends a response after the execution
is completed. The value is also used to calculate the delay to deliver the request and
response. The service is either one or bi‐directional.

• WCET: Worst‐case execution time (WCET) is used to determine the longest execution du‐
ration of a PSC. The algorithms in this thesis use millions of instructions (MI) to calculate
this value. For example, if an Edge Server’s millions of instructions per second (MIPS)
value is 1000, a PSC with the WCET of 10000 will be completed in 10 seconds. MIPS is a
widely‐known parameter to measure processor speed.

• Relative deadline: It defines the deadline of a task, relative to the arrival time. Arrival
time is added to this value to determine the absolute deadline. Absolute deadline is
the latest possible completion time that a PSC can run without missing its deadline. The
thesis focuses only on execution of real‐time tasks. However, keeping this value as high as
possible enables execution of non‐real‐time tasks as well. In the architecture, this value
is written in terms of seconds.

• Memory: The maximum amount of memory usage of this PSC when it is run. As men‐
tioned in Sec. 3.2, this parameter is neglected due to the difficulty of its estimation dur‐
ing runtime and to reduce the complexity of the problem. However, it is considered as a
parameter to be used in future work.

• Thread per core: This parameter defines how many threads for this PSC are going to run
at each core of the Edge Server. Total thread count can be found by multiplying the core
count of the server and this parameter value. Assuming that the CPU utilization is 100%,
there are 2 allowed CPUs, and thread per core value is 2. CPU utilization for each core
will be 100%, allocating 50% utilization for each thread in each core. However, the WCET
will not be affected.
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Thread per core parameter may seem to hinder wrapping a single‐threaded legacy PSC. How‐
ever, setting this parameter to 1 (one) and also limiting the CPU affinity to only one CPU defines
a single‐threaded PSC.

4.3 Decision Making

After a secure communication is established, End Devices are allowed to request tasks. An End
Device requests a task by sending a request to one of its connected Edge Servers. However, that
server may not have enough resources, power, or bandwidth to complete the request. The final
server to execute this task is determined by the Edge Server that initially receives the request.
If the initial server is not likely to execute this task on time, the task is forwarded to another
server in the Edge Network. Forwarding a task request to another server is called offloading.
Offloading arises due to limited resource availability, power limitation, mobility of the End De‐
vice, or network limitation [Sa96]. Decision mechanisms play a vital role during offloading for
optimal performance.

Figure 4.7: The flowchart of the decision mechanisms for selection of an optimal server to of‐
fload the task. Plan execution has its own flowchart depicted in Fig. 4.8.
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The architecture suggests and follows the following steps in order to choose the most conve‐
nient server for task execution. If a step cannot determine a single server, the next step evalu‐
ates the situation. The steps are also shown as a flowchart in Fig. 4.7.

1. Since each Edge Server has a list of the available resources and services together with
their locations, first, the current server queries the possible locations for the requested
task, including itself.

2. If the current server does not contain the service for this task or does not have enough
resources, then, an alternative server in the Edge Network is looked up.

3. In case multiple alternatives can execute the task on time, the server which can execute
the task in the shortest time is chosen (the most idle server).

4. If the resources are the same, then, the server with the smallest delay is chosen.

5. If delays are also the same, then, one of the servers is chosen randomly.

6. If no server found that can execute the task, then the current server tries to plan the
execution, following ”no” in multiple alternatives branch. In this case, the chosen server
will be itself.

Step (1) lists the possible servers for the requested task without any further actions. Step (2)
checks whether this task can be executed on time using the available servers. This check uses
the latest information about the resource availability such as CPU usage and the server speci‐
fications. If there are multiple alternatives whose resources are enough, steps (3), (4), and (5)
decide which server to be used for offloading. Once the task request is offloaded, if the chosen
server is busy with other tasks, an execution plan shown in Fig. 4.8 is devised. The possible
plans are to scale down the CPU utilization of the newly requested task, already running tasks,
or all tasks; or to schedule the running tasks in the server. WCET (denoted as 𝑥) is in MI unit
and the maximum execution speed of the Edge Server 𝑗 (denoted as 𝑝𝐸𝑗

) is in MIPS unit. How‐
ever, relative deadlines (denoted as 𝑑) are in seconds. For a basic comparison, it is necessary
to equal both sides of the inequality. Since a relative deadline must be greater than or equal
to the execution duration,

𝑥
𝑝𝐸𝑗

≤ 𝑑 can be used for comparison. 𝑥, 𝑑, 𝑝𝐸𝑗
and execution uti‐

lization percentages denoted as 𝑢 (where 0% < 𝑢 ≤ 100%) of tasks are set during service
definition and known a priori. If the new execution capacity (CPU utilization) of a task 𝑖 is 𝑢′

𝑖,
where 0% < 𝑢′

𝑖 ≤ 100%, the new WCET 𝑥′
𝑖 can be calculated as in Eq. 4.1.

𝑥′
𝑖 = 𝑥𝑖𝑢𝑖

𝑢′
𝑖

(4.1)

With the new 𝑥′
𝑖 value, if

𝑥′
𝑖

𝑝𝐸𝑗

≤ 𝑑𝑖 holds, then the new execution capacity does not cause task

𝑖 to miss its deadline.
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Figure 4.8: The flowchart of planning execution on a server, when a server is not entirely avail‐
able for task execution.
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The worst‐case happens when
𝑥′

𝑖
𝑝𝐸𝑗

= 𝑑𝑖. In this case, the worst‐case execution utilization

(WCEU) 𝑢″
𝑖 can be calculated by replacing 𝑥′

𝑖 with 𝑝𝐸𝑗
𝑑𝑖 and using Eq. 4.1 for each CPU that the

task has an affinity to (Sec. 4.2.5).

𝑢″
𝑖 = 𝑥𝑖𝑢𝑖

𝑝𝐸𝑗
𝑑𝑖

(4.2)

With the new WCEU(s) calculated using Eq. 4.2, if the sum of utilizations for the running tasks
does not exceed 100%, the tasks can continue execution, and the new task can also be executed.
If not, the tasks need to be scheduled.

Scheduling the tasks is a fallback situation, in the case that downscaling does not yield a fea‐
sible solution. To schedule tasks in Periodic type, the architecture uses the Earliest Deadline
First (EDF) scheduling (Sec. 2.2.2). For tasks in Legacy and Simple type, Non‐resumable And
Preemptible Aperiodic TAsk (NAPATA) scheduling (Sec. 3.1) is used. Although the architecture
currently introduces two schedulers, additional schedulers can also be implemented and in‐
tegrated. They are required to implement two methods to: (1) return whether a task set is
schedulable or not and (2) return the sorted task list. This procedure is followed after a server
is chosen to complete the request. The execution plan above is also depicted in Fig. 4.8. If the
scheduling is also not possible, the task fails to execute. At the moment, no precautions are
taken if such a situation occurs. However, as future work, termination of lower priority tasks
can be considered.

After the reception of the request, the server also follows the same steps to evaluate the sit‐
uation, to check whether it is still the best server to continue execution. Prior to execution,
each server uses decision mechanism to choose and validate the optimal server. Step (2) uses
a satisfactory equation to determine the possible alternative servers that can execute the task.
To find the most convenient server 𝐸 which contains the task 𝑗 in the network 𝑁 , when an End
Device 𝐴 requests the task 𝑇𝑖, the satisfaction equation (𝑆) seen in Eq. 4.3 and Eq. 4.4 can be
used. The equation calculates the maximum duration to execute a task on a server, including
the delay and currently used CPUs. Below, this satisfaction equation is explained. Assume

∀𝐸 ∈ 𝑁 ⟹ 𝑆𝑗(𝐸𝑗, 𝑇𝑖) (4.3)

where
𝑆𝑗(𝐸𝑗, 𝑇𝑖) = 𝑚𝑎𝑥 ({( 𝑥𝑖𝑢𝑖

𝑝𝑗𝐹𝑘,𝑗
+ 𝑤𝑖𝐷𝐴,𝑗) 𝑓𝑖,𝑘 ∶ 𝑘 = 1 … 𝑐}) (4.4)

and where 𝐹𝑘,𝑗 is the free available CPU percentage of core 𝑘 in server 𝑗, 𝐷𝐴,𝑗 is the minimum
delay between the task requester 𝐴 and Edge Server 𝐸𝑗. 𝑓𝑖,𝑘 is 1 if 𝑇𝑖 has an affinity to core 𝑘,
0 if not. 𝑤𝑖 is the delay multiplier, and 1 if 𝑇𝑖 is one‐directional, or 2 if bi‐directional. 𝑥𝑖 is the
WCET of the task in terms of MI, 𝑝𝑗 is the total speed of the server 𝑗 in terms of MIPS, and 𝑢𝑖 is
the CPU utilization allowed for task 𝑖, where 0% < 𝑢𝑖 ≤ 100%.
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Assume that 𝑆′ is a subset of all 𝑆 that satisfies 𝑆𝑗 ≤ 𝑑𝑖 + 𝑎𝑖 (absolute deadline), where 𝑑𝑖
is the relative deadline of the task 𝑖 in terms of seconds and 𝑎𝑖 is the arrival time instance of
the request (in seconds) at the first receiving server. Then, the index of 𝑚𝑖𝑛(𝑆′) defines which
server should be chosen for execution.

If there are more than one indices that provide the same 𝑚𝑖𝑛(𝑆′) value, as stated in step (3),
Edge Server 𝐸𝑗 giving 𝑚𝑖𝑛(𝐷𝐴,𝑗) receives the task. Finally, if step (3) also has multiple results,
then the server with the smallest delay is chosen (step 4). If step (4) also has multiple alterna‐
tives, an arbitrary server is chosen. In any case, the chosen server will plan the execution for the
new task; either downscaling or scheduling as defined above. Although not considered in this
thesis, it is also possible to implement other decision algorithms. For example, current CPU uti‐
lization of the alternative servers can be ignored; only taking the server speed value from the
specifications into consideration and choosing the most powerful server. Alternatively, mini‐
mum delay first or minimum hop first to reach the target server can be considered. Moreover,
if the initial receiving server is planned to be used as a load balancer, others‐first can be imple‐
mented to prioritize other servers and fallback to the current server in case other servers are
not available.

As mentioned at the problem formulation (Sec. 3.2), the calculations are assumed to have no
overhead, and the hardware is ideal. The decision using the equation gives a correct result at
the time that the request is made. However, in real life, this calculation takes some time, which
may use outdated information due to, e.g. a new execution of a task on another server. There
are several research activities on offloading [Li15; Yo18], each focusing on possible policies such
as power consumption, response time, availability of the server, or computing capability. These
mostly focus on reducing the delay using probabilities and average values of the computation
timing, which is not applicable in a real‐time scenario.

4.4 Summary

This chapter explained how a technology and OS‐independent architecture is to be designed to
fulfil the requirements listed in Sec. 2.1.2. It described in detail how Edge Computing partici‐
pants (also called nodes), namely Edge Servers and End Devices should communicate with each
other to enable an interoperable, collaborative, and scalable Edge Network (Sec. 4.1). It fur‐
ther elaborated on what a Service or Task (Sec. 4.2) means for the architecture, and how they
behave according to their characteristics. Moreover, the chapter explained how the servers are
chosen for execution and the decision mechanisms used for offloading (Sec. 4.3). This chapter
is a summary of the methods of the critical elements to realize a modular, collaborative, and
extensible architecture for Edge Computing, which is the main contribution of the thesis.
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Previous chapters explained how technology and operating system (OS) independent software
reference architecture could be designed for Edge Servers in the Edge Computing domain. The
presented architecture enables execution of real‐time tasks in a scalable, extensible, and col‐
laborative Edge Network, with minimal effort. The final chapter of this thesis constitutes an
implementation of the elaborated concepts from the previous chapters, by instantiating it as a
framework. The created framework is later validated with two complex scenarios. This frame‐
work is called Real‐Time Edge Framework (RTEF) and implemented using the Java programming
language.

5.1 Edge Server Components

Edge Servers are physical computers that respond to the requests received from End Devices.
They are the vital parts for the architecture to function. Chapter 4 explained how Edge Servers
should behave to address these requests in a decentralized, but collaborative Edge Network.
To realize the concepts defined in the previous chapter, Edge Servers need to implement sev‐
eral functions. No matter how complex the underlying decisions are, from the End Device per‐
spective, this complexity must be hidden as much as possible. Moreover, Edge Servers in a
network are expected to introduce themselves automatically and exchange information in case
an offloading is necessary. Automation during communication requires them to implement a
standard communication syntax, which needs to be understood by all nodes in the network.
All of these concepts are realized in an exemplary framework called Real‐Time Edge Frame‐
work (RTEF). The RTEF must be deployed and run under a Real‐Time Operating System (RTOS),
installed on a computer.

The framework groups its functionalities in components. Each component is able to interact
with others when needed. Some of them are configurable and can be disabled as per user re‐
quest. These components are shown in Fig. 5.1 and namely, Configurator, Message Router, Se‐
curity Protocols, Servers, Resource Monitor, Virtual Processors, Cache, Storage/Database, and
Orchestrator along with its sub‐components, Queue Manager, Scheduler, and Scaler. The RTEF
is implemented using Java programming language. This section will introduce the components
that are implemented or adapted/customized for RTEF, in detail.
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Figure 5.1: Software components of the proposed Edge Server architecture and their simplified
communication.
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5.1.1 Configurator

The Edge Servers configure themselves automatically as soon as they are started. However,
manual configuration and tweaks may be necessary during runtime. This component handles
automatic and manual configuration, as well as the detection of other Edge Servers in the Edge
Network. Additionally, the Configurator logs server activities and stores them.

An Edge Server running RTEF requires aminimumof four specific configuration keys to function.
These keys are reserved and case‐sensitive:

• ID: A unique identifier number for the Edge Server. This number is going to be used in the
Edge Network for referencing.

• PORT: A port number of the Edge Server, which will listen for connections and commands
during TCP socket communication.

• NAME: A user‐friendly name to be displayed on the console and logs.

• TOPOLOGYFILE: The full path to a file that is used to store/read the Edge Network topol‐
ogy.

Each Edge Server and End Device in Edge Computing is also called a node. TOPOLOGYFILE points
to a simple text file that lists available nodes in the Edge Network and how they are connected.
This file can be created manually using a plain text file or graphically via the Topology Designer
which will be explained in Sec. 5.5. To fully automate the topology generation without human
intervention, the file can also be left empty. If no topology file exists in the server or the file
specified in TOPOLOGYFILE is empty, it is generated automatically as the connections are estab‐
lished. In the file, a hash ”#” character at the beginning of each line is considered as a comment.
Information about each node on each line should have the following format:

Node, <Unique Node ID>, <Node Name>[, <Free Text>]

The Node in the first field is a reserved keyword to let Configurator parse this line to define an
Edge Server or End Device. Commas separate other inline fields. Field values are received from
the reserved configuration keys for the current server. For other nodes in the Edge Network,
this information is entered manually or retrieved during the handshake phase, automatically.
As connections are established, during handshake phase, each node sends their unique iden‐
tifier (See Sec. 4.1 and more in Sec. 5.2). If a name is also appended, then this information
will be stored into the Node Name field of the topology file. During the handshaking phase,
node type (either Edge Server or End Device) is also detected. If the name is omitted, it will be
automatically generated based on the unique identifier of node and node type.

To specify a connection between nodes for creation of an Edge Network, the following format
is used:
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Figure 5.2: An example Edge Network consisting of four End Devices and three Edge Servers.

Connection, <From Node ID>, <To Node ID>, <Delay>[, <Free Text>]

Similarly, the Connection field is a reserved keyword to inform the Configurator to parse the
line as connection information. Likewise, fields are separated by commas. From Node ID spec‐
ifies who initiated the connection, which can be either End Device or Edge Server, To Node ID
defines the target Edge Server to connect to, and Delay is the transmission delay inmilliseconds
(ms) required to transfer the data.

The topology file will be updated each time a new device added or removed. Similarly, chang‐
ing connections will also update the file. This file is also used for decision mechanisms while
calculating the delays among nodes. If a server is rebooted, all previous connections are lost. To
re‐establish pre‐defined connections stated in TOPOLOGYFILE, Configurator accepts a reserved
AUTOCONNECT key. This key takes a true or false value, which is false if not defined. If this
key is true and the pre‐defined connections are establishable, the TOPOLOGYFILE is read, and
servers are reconnected to each other. To achieve that, the Node linesmust be slightlymodified.
Free Text is an optional field to be used as an inline comment or note. If this field is replaced
with @IP:PORT, when a server is booted up, it establishes connections provided that the target
Edge Servers are up and the RTEF is running. An Edge Server cannot initiate a connection with
an End Device; it should be other way around (See Sec. 4.1 and Sec. 5.2). An End Device should
implement its own reconnection mechanisms to Edge Servers. Automatic connection is only
possible between Edge Servers; therefore, it does not apply to End Devices.

Fig. 5.2 shows an example Edge Network consisting of four End Devices and three Edge Servers.
This setup is also going to be used in Sec. 5.7 for validating the architecture.

Assuming delays between nodes are identical and 1 ms, the topology file to create the network
seen in Fig. 5.2 can be defined in a file similar to Source code 5.1. Note that the definition of
Node 3 includes its address in the Free Text field (Line 7). If a connection to this server is
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detected in the file, it will be automatically established, in case AUTOCONNECT key is set to true.
This is the casewhen To Node IDmatcheswith this server ID in any of the Connection strings,
similar to Line 20. Swapping server IDs (namely 2 and 3) in that line would not re‐establish the
connection automatically because no address of the Edge Server 2 is given.

Source code 5.1: Topology file to define the example Edge Network shown in Fig. 5.2.

1 # Defining available Edge Servers
2 ### Node, ID, Server Name, Optional Comment
3
4 Node, 1, Edge Server 1, Server 1
5 Node, 2, Edge Server 2, Server 2
6 #### 192.168.1.3 is an example IP to reach Edge Server 3, and 9093 is the

↪ Port that is listened by the RTEF
7 Node, 3, Edge Server 3, @192.168.1.3:9093
8
9 # Defining available End Devices (ED)

10 Node, 10, ED 1, End Device 1
11 Node, 20, ED 2
12 Node, 30, ED 3
13 Node, 40, ED 4
14
15 # Adding connections
16 ### Connection, From Node ID, To Node ID, Delay, Opt. Comment
17
18 ## Edge Server to Edge Server connections
19 Connection, 1, 2, 1.0, My connection comment
20 Connection, 2, 3, 1.0, This connection will be auto-established if

↪ AUTOCONNECT is true
21
22 ## End Device to Edge Server connections
23 Connection, 10, 1, 1.0
24 Connection, 20, 1, 1.0
25 Connection, 30, 1, 1.0
26 Connection, 40, 2, 1.0

The topology file is read as a whole and then parsed by the Configurator. Therefore, line or‐
dering is not important. Moreover, each connection of pairs needs to be written only once. If
AUTOCONNECT is false, valueswritten in From Node ID and To Node ID are also interchange‐
able. For the example above, node 10 (End Device 1) is given for From Node ID and node 1
(Edge Server 1) for To Node ID (Line 23). However, connections are bi‐directional. There‐
fore, another line containing node 1 as ”from” and node 10 as ”to” device makes no difference;
hence, it can be omitted. However, if AUTOCONNECT is true, servers who are given in To Node
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ID field must define their addresses and ports in the appropriate lines. Otherwise, automatic
reconnection will not be possible.

5.1.2 TCP Server

Edge Servers need a communication protocol to communicate with End Devices, introduce
themselves to other nodes in the Edge Network, exchange resource information, get informed
about current tasks, and offload tasks to other servers in the network. Transmission Control
Protocol (TCP) is one of the communication protocols that enable connection‐oriented delivery,
providing error detection and same‐order transmission. In RTEF, TCP is chosen as the commu‐
nication protocol because it empowers a reliable transmission, and it is a widely‐used standard
(See Sec. 2.1.3).

TCP Server is a software component in RTEF to enable communication with other Edge Servers
or End Devices. Inter‐communication between nodes is performed via raw TCPmessages, with‐
out additional overheads. The End Devices must implement their TCP clients to communicate
with the Edge Servers, either directly or using adapters/wrappers.

The TCP Server is the door to outside communication. The pre‐login handshaking for resource
introduction (defined in Sec. 4.1) is the responsibility of the TCP server. After login procedure,
all commands received or sent are passed through this component. The TCP Server parses
the received commands, translates them to internal API methods, and redirects them to the
Message Router. Accepted commands by the server are going to be explained in Sec. 5.3.

This component also keeps the list of all connected End Devices or Edge Servers. Whenever a
change in resource usage or services is detected, these changes are delivered to all concerned
devices. If a connection drops unexpectedly, it is automatically re‐established. If a node is
permanently disconnected, it informs the Configurator to update the topology. If this server
is rebooted, pre‐defined connections are re‐established in case AUTOCONNECT is enabled (See
Sec. 5.1.1).

5.1.3 Message Router

The Message Router receives the parsed commands from the TCP Server and redirects them
to their responsible components or Edge Servers. If the command is a task request from an
End Device, it communicates with the Resource Monitor and Orchestrator to receive the Edge
Server identifier that is decided to offload the request and execute the task. If the chosen Edge
Server is not the current one, the task request is forwarded to the relevant Edge Server. If there
are multiple alternative Edge Servers, the choice is made using the satisfaction equation shown
in Sec. 4.3. If there is no direct connection with the target Edge Server, the shortest path to
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the target is calculated using Dijkstra’s algorithm, and the request is delivered to its destination
via intermediate Edge Servers. This component also informs the End Device with the location
EdgeServerID where the requested task serviceName is being executed on and its unique
task identifier UniqueTaskID. This message uses the following format:

RUNNING:serviceName@EdgeServerID,UniqueTaskID

After execution is completed, TASKCOMPLETED message is also sent back to the End Device. If
the task is definedwith a bi‐directional service, the task results are also appended, separated by
commas. Again, if there is no direct link between the Edge Server and End Device, the message
follows the same route back. If one or more servers on the route are no more available, it is
delivered using an alternative route. Each intermediate server that receives a command ormes‐
sage calculates the shortest distance also using Dijkstra’s algorithm considering only currently
available Edge Servers.

5.1.4 Security Protocols

Giving external access to any server without any proper authorization is an extremely high risk.
The role of the Security Protocols component is to perform authentication and maintain secure
communication between the nodes. It introducesmethods to add/remove users, set user roles,
log a user in and out. After login, instead of carrying the password throughout the active session,
it generates and assigns a unique token to the logged user. Whenever a method is to be called,
this token is validated against active user token. Then, the user role is checked, and the com‐
mand is forwarded. The sessions are invalidated if the client disconnects or the connection is
broken. However, if AUTOCONNECT is enabled, the connection is re‐established when available.
As defined in Chapter 4, the architecture introduces two user roles. During user creation, either
an operator or end‐user role should be chosen along with a unique username. Created users on
a server are local and not shared with other Edge Servers in the network. Consequently, each
server should define its own users. In the future, user directories or other alternative methods
can be used for authentication. Users can change their passwords. A successful change in the
password keeps the connection intact but generates a new token.

5.1.5 Resource Monitor

Resource Monitor (RM) keeps track of available resources of the current Edge Server and other
Edge Servers within the Edge Network, whether they are directly connected or not. Further‐
more, it contains information about all public services in the network and how the Edge Topol‐
ogy is structured. Active tasks, whether they are in the running or paused state, are also tracked
by this component and can be accessed via commands. Each change in the resource usage in‐
forms the TCP Server component, which later updates other connected Edge Servers. RM pre‐
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pares execution plans defined in Sec. 4.3 in conjunction with Orchestrator. RM performs the
simple initial check whether the available resources of the current Edge Server are enough to
execute the task until its deadline without any further actions, such as downscaling or schedul‐
ing. Two cases allow a direct execution: (1) The requested task is the only task to execute on
that Edge Server, and there are no other running tasks on the same server. (2) There exist other
running tasks on this server, but as defined in Sec. 4.2.5, the running tasks are defined to be
executed on different Central Processing Unit (CPU) to avoid over 100% CPU utilization.

If further actions are required, the RM consults the Orchestrator for the last decision.

5.1.6 Orchestrator

RM evaluates the execution possibility based on the server specifications and resource avail‐
ability. However, Orchestrator performs a more in‐depth analysis to check whether this task
can be executed on this server, on time. It is the last component that decides whether the task
is executed here or not. Orchestrator itself is composed of three sub‐components: (1) Scaler,
(2) Scheduler, and (3) Queue Manager. Sub‐components are called in order to evaluate the
feasibility of running all tasks, including the requested one, without causing any deadline miss.

Scaler

Scaler is the first called sub‐component of Orchestrator. It is called to check if the requested
task or/and running tasks can be downscaled and still meet their absolute deadlines. The scaler
uses downscaling formulas written as Eq. 4.1 and Eq. 4.2. The formula calculates the mini‐
mum execution utilization of a task in percentage, by using its relative deadline and runtime.
The Scaler searches for a solution in three iterations. First, the possibility of downscaling of the
requested task is evaluated. If an on‐time execution is not possible, then, only other running
tasks are considered for downscaling, using the same formula. If this iteration also fails to yield
a successful execution plan, finally, all tasks, including the requested task, are evaluated for
their minimum execution capacity. In case this repetition does not provide an adequate plan as
well, the Scheduler component is called, to plan the execution order. Scaler upscales the down‐
scaled tasks when possible, back to their original CPU execution capacities, as soon asmore CPU
is available. It does not, however, upscale them more than their CPU utilization values defined
in their services parameters, even if it possible. By default, Scaler is enabled. It can be disabled
during the configuration phase of the Edge Server via setScalerEnabled=false configura‐
tion. Then, the tasks will directly be passed to the Scheduler, without analysing the possibility
of downscaling. If Scaler is desired to be disabled only for specific tasks, worst‐case execution
time (WCET) of such tasks should be set equal to their relative deadlines during service creation.

Scheduler

If scaling does not create a feasible plan to execute all tasks on time, another possibility is to
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schedule them. The Scheduler is responsible for creating an internal scheduling plan for the ex‐
ecution of all tasks. This component is calledwhen the sumofWorst‐Case ExecutionUtilizations
(WCEUs) of all tasks exceed 100%, and the Edge Server cannot guarantee an on‐time execution
only by downscaling (Eq. 4.2). The RTEF implements two types of schedulers: EDF scheduler
(Sec. 2.2.2) for tasks defined with Periodic services and NAPATA scheduler (Sec. 3.1) for tasks
defined with Legacy and Simple services. Running a combination of multiple service types on a
single computer requires the implementation of a schedule server (See Sec. 2.2.2). The current
framework does not implement one; thus, it is not yet fully supported. Nevertheless, this is
proposed as future work. Currently, this can be achieved by limiting their allowed CPUs, setting
a different CPU affinity for each type during service creation.

Onmultiprocessor systems, schedulers can change the CPU that the thread is running on. How‐
ever, on hardware and OS level, changing CPUs of the processes/threads during their runtime
can be costly due to context switching. Increasing the available CPU count for tasks also in‐
creases the parallel execution overheads, reducing efficiency [LHK03]. Moreover, finding an
optimal scheduling diagram on multiprocessors is NP‐hard [LW82]. Lee et al. [LHK03] intro‐
duced a scheduling algorithm for multiprocessor systems, which can schedule aperiodic tasks
on‐line. However, this requires the tasks to be non‐preemptible and decomposable into sub‐
tasks. Since tasks in this thesis are both preemptible and non‐resumable, slightly deviating from
the plan in [GUR18], schedulers are prevented from modifying CPU affinities during execution,
leaving this decision to service creator during creation time. The schedulers, then, calculate the
scheduling possibilities for each core, retrieving the current activity information from the RM.

The architecture currently implements two schedulers, but additional schedulers can also be im‐
plemented and integrated. A scheduler is required to provide two methods: (1) A schedule()
method which requires a list of tasks containing their WCETs and absolute deadlines as input,
and returns true or false depending on the schedulability, (2) a sort() method which re‐
turns the sorted scheduling diagram of all tasks. The schedulers must be implemented in a way
that they consider the CPU affinities of the tasks as well.

If tasks, including the newly requested task, can be scheduled, the sorted task list (scheduling
diagram) will be passed to the Queue Manager and the task at the beginning of the list will be
executed. Otherwise, the task request is immediately forwarded to an alternative Edge Server
that contains the same service name, via Message Router. This alternative server, then, acti‐
vates its Orchestrator, to repeat downscaling and scheduling procedures. The server selection
mechanisms used by Message Router are elaborated in Sec. 4.3. If no alternative is found, the
task cannot be executed. Nevertheless, this can be another topic to cover in future work. An al‐
gorithm can be implemented to determinewhat to do in such circumstances. Depending on the
deadline, runtime, or remaining time of existing tasks, one or more of them can be terminated
to allow execution of a more urgent task.

Queue Manager
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Instead of storing the sorted list of tasks in the schedulers, a separate component, called Queue
Manager, is created to enable access to the list by all schedulers aswell as the ResourceMonitor.

Schedulers pick the first task from the list and execute it. Tasks are executed only if they are on
that list, and it is their turn to execute. Periodic tasks are automatically added to the list again
when their next period starts. Tasks in Legacy and Simple types are removed from the list after
they complete execution.

5.1.7 Virtual Processors

Services define how a program/software/command (PSC) behaves. These behaviours are set by
the service parameters explained in Sec. 4.2.5. One of the parameters is the CPU mask, which
defines the list of usable CPUs by the PSC. Similar to CPU set definition in UNIX‐based systems
[Li21b], in RTEF, this value is a bitmask between 1 and 2𝑛 − 1, where 𝑛 is the CPU count of an
Edge Server. The locations of ones after conversion of this value to the base‐2 system specifies
which CPUs are allowed to execute the task. For example, in a serverwith four (4) CPUs, the CPU
mask can be between 1 and 15 (24 − 1). If a value of 14 is written, converting this number into
the base‐2 system gives (1110)2. If CPU indexing starts with zero (0), the task and its threads
can use CPU 1, 2, and 3 for the execution, but not CPU 0. The scheduling algorithms calculate
the feasibilities considering these CPU masks.

Virtual Processors (VPs) work in a similar fashion to control groups (cgroups) in Linux as briefly
explained in Sec. 2.2.2. cgroups organize a set of processes into hierarchical groups to limit
their resource usage and monitor them. Likewise, VPs assign tasks to the CPUs and limit their
execution capacities. A new VP can simply be added using Configurator. A name to call later,
a period value to set a reference CPU unit of time, a runtime value to determine maximum
allowed duration within each period, and a CPU mask in the format explained above are pro‐
vided as input. After each period, the runtime resets. Result of 𝑟𝑢𝑛𝑡𝑖𝑚𝑒/𝑝𝑒𝑟𝑖𝑜𝑑 determines
the maximum allowed CPU load.

Multiple VPs can reuse the same CPUmask(s). This can be useful to allow tasks to use the same
CPU(s) with different loads. For instance, assuming two tasks run using the same CPU, in five
CPU units of time (period), one task can be given two, and the other task can be given three CPU
time (runtime) for execution. The former task will then have 0.4 (= 2

5 ) as load and the latter

0.6 (= 3
5 ). In terms of CPU utilization, these will be equivalent to 40% and 60%, respectively.

Runtime and period values in RTEF are used to calculate the CPU utilization. Therefore, un‐
like stated in [Li21a], the runtime value in RTEF cannot exceed the period value, meaning
𝑟𝑢𝑛𝑡𝑖𝑚𝑒/𝑝𝑒𝑟𝑖𝑜𝑑 cannot be greater than 1. A task can only be executed up at full load (1.0), or
100% CPU utilization. VPs can also be used to separate Periodic services from Legacy and Sim‐
ple services from using the same CPU, as running a combination of all types is not entirely yet
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supported. Tasks can be assigned to the VPs using a command after they start running or during
service creation. This command requires the running task identifier stored in the RM, followed
by the VP name that is given during creation. DEFAULT is a reserved VP name that removes
the limitations, giving 100% execution capacity and access to all CPUs. To restore tasks to their
original CPU(s) and CPU utilization, the VP assignment can also be removed. In this case, only
the task identifier is given with the command.

As expected, a task can be assigned to only one VP at a time. Assigning another VPwill invalidate
the previous assignment, and the last given VP will be used instead. VPs assign the threads of
a PSC by sorting them by their creation time. A specific choice for thread assignment is not
possible at the moment.

5.1.8 Other Components

There are also other components such as Cache or Storage/Database. These components do
not require anything specific to function and are indirectly used as they are. Moreover, the
complexity of the problem is reduced by assuming the storage capacity in the Edge Servers is
unlimited (See Sec. 3.2). Topology created by the Configurator is stored as a file. However, as
an alternative, a database can also be used.

5.2 Communication

For inter‐communication between nodes (End Devices or Edge Servers), first, they need to be
connected. TCP Server component enables this communication via TCP messages. Communi‐
cation between nodes is performed using raw TCP socket messages.

Each communication between nodes starts with handshaking. The handshaking between an
End Device and Edge Server communication had been depicted in Fig. 4.3 and the one between
two Edge Servers in Fig. 4.4. Following the concept in the reference architecture (See Sec. 4.1),
Fig. 5.3 further explains how it is realized in RTEF.

During communication, the connection initiator (the ”from” device) is considered as a client.
When a connection between two Edge Servers is established, the server that initiates the con‐
nection also acts as a client. Consequently, the initial communication sequence (or handshak‐
ing) is valid for both connection types: between End Device and Edge Server or two Edge
Servers. As seen in Fig. 5.3, after a connection is established, the client first sends a plain
HELLO message to an Edge Server to initiate the pre‐login process. Then, the Edge Server re‐
sponds with an OLLEH: appending its unique identifier (ID) and name, separating them using
a colon ”:”. These values are used during the generation of the topology file and for further
referencing. Next, the client responds to this message by sending its ID starting with ”ID:”, and
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from : From Device

from: From Device

es: Edge Server

es: Edge Server

!connect,esIP,esPort

a l t [p reL o g in ]

HELLO

OLLEH:<ServerID>:<ServerName>

ID:<EndDeviceID>:<EndDeviceName>

MIPS:<MIPS1>+<CoreCount1>@<ServerId1>,
<MIPS2>+...

addLink(ed, es, latency)

updateTopology()

o p t [ if  F ro m  D ev ice  is  Ed g e Server]

MIPS:<MIPS1>+<CoreCount1>@<ServerId1>,
<MIPS2>+...

SERVERASCLIENTSERVICES:
<KnownServiceList@LocatedServerId>

The format should be:
service1+direction1+deadline1+mips1+CPUutil1
+CPUmask1@serverId1@serverId2,serviceX...@serverIdX

updateServiceList()

SERVERSERVICES:
<KnownServiceList@LocatedServerId>

RDY

Enter username:

[ lo g in ]

<usernam e>

Please enter password:

<password>

checkCredentials()

a l t [ lo g in Su ccess]

RDY

[ lo g in F a iled ]

Wrong credentials. Try  again!

Figure 5.3: Initial communication sequence diagram between an End Device/Edge Server (as
From Device) and Edge Server.
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appending its name. The Edge Server validates whether other nodes in the Edge Network use
this ID. Following, the connected Edge Server sends specifications of all known Edge Servers in
the network. In RTEF, speed of servers is measured in terms of Millions of Instructions Per Sec‐
ond (MIPS). The value list starts with ”MIPS:”, followed by the MIPS value of one server, a plus
”+” sign to separate the field and the core count of that server. To specify the server that these
specifications belong to, an ”@” character is appended, and the server ID is written. Finally, a
comma ”,” is used to separate each server. If the communication is between two Edge Servers,
the initiator also responds with all known specifications back to the connected server, using the
same format. The whole line sent is similar to below:

MIPS1Value+CoreCount1@ServerID1,MIPS2Value+CoreCount2@ServerID2,...

It is essential that all known specifications are exchanged, instead of only the current server.
With this information exchange, all Edge Servers become aware of available Edge Servers and
their specifications, even if they are not directly connected. After exchanging the specifications
and topology update, if the client is an Edge Server, it sends all known public services starting
with ”SERVERASCLIENTSERVICES:”, followed by the service name, separating each manda‐
tory service parameter by ”+” and appending ”@” characters to specify each located server ID.
Mandatory service parameters to be used for decisions are whether the service is one or bi‐
directional, its deadline, WCET value and the maximum allowed CPU utilization. A comma ”,”
also separates each public service. Parameter exchange is also necessary, as each Edge Server
can define service behaviour differently. Concatenated information is sent in a single message
and shown below:

SERVERASCLIENTSERVICES:serviceName1+direction1+deadline1+wcet1
+CPUutil1+CPUmask1@serverId1@serverIdX,serviceNameX...

This line shows that serviceName1 is available both on serverId1 and serverIdX. The Edge
Server receiving the services updates its service list along with their locations, broadcasts this
information to all other connected servers, and responds to the client with its public services,
using ”SERVERSERVICES:” message, and following the same format. If the communication is
between an End Device and an Edge Server, then, the service exchange is skipped, and the End
Device completes the pre‐login process by sending RDY to the Edge Server.

After the pre‐login process is completed, the Edge Server asks for username and password to
authorize the client to allow further commands. The client first sends its username, then sends
the password associated with this username. If the authentication is successful, the server
sends RDY message, enabling access to commands. Handshake messages with real information
while setting up the validation environment is shown in Fig. 5.11.

The client initiates disconnection by sending QUIT message to the server. The server responds
with QUIT and closes the connection. All transmitted messages are case‐sensitive.
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5.3 Standard Commands

One of the objectives of the RTEF is to abstract low‐level operations without limiting the func‐
tionality. As stated in Sec. 2.1.3, Application Programming Interfaces (APIs) increase backward
compatibilities and provide standardized commands. These commands prevent incompatibili‐
ties with components when their behaviours or functionalities change.

The RTEF introduces several commands to be used both by the EndDevices and the Edge Servers
that participate in the Edge Network. The framework introduces two types of commands: (1)
client‐side commands and (2) remote commands. Client‐side commands can be executed on
the server locally, whether the connection is established or not. However, to execute remote
commands, a connection with another Edge Server must be established. The client‐side com‐
mands are entered using an interactive console provided by the framework when run. They
start with an exclamation mark ”!” and are followed by the command. Remote commands can
be entered on the same interactive console on the servers after a connection is established or
using a remote terminal. One Edge Server can be connected to multiple Edge Servers. Remote
commands, therefore, start with the remote server ID, then the command, and followed by the
arguments. In both command types, each argument of the command is separated by commas
”,”. The client‐side commands and generic remote command syntax are summarized in Table
5.1.
Table 5.1: List of client‐side commands that can be executed on the local server, with or

without a connection to another server.

Command Description Example
!help Prints available commands. !help
!bye Stops getting input from user. !bye

!connect,IP,PORT
Connects to the Edge Server at
IP:PORT.

!connect,192.168.1.27,9090

!hosts
Prints the ID(s) of connected
server(s).

!hosts

!id Prints the ID of the client. !id
!disconnect,ID Disconnects from the server ID. !disconnect,1

ID,COMMAND
Executes a remote COMMAND on
server ID.

1,getServices

Table 5.2 lists the remote commands that can be executed on an Edge Server through a client.
The commandswith an asterisk (*) can only be executed if the loggeduser is an operator. Similar
to handshaking messages, all commands are also case‐sensitive.
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5.4 Requesting Tasks

One of the vital roles of an Edge Server is to execute a requested task on time. This execution
should be performed on the current server, or the request should be offloaded to an alternative
server. As stated in Sec. 4.1, execution moment and location is decided by the Edge Servers.
Hence, the tasks and therefore user PSCs cannot be started by the End Devices directly, but
only their executions can be requested. The End Device only sends requestTask command to
one of the Edge Servers that it is connected to and appends the service name that this task is
defined as. Then, the RTEF supervises the complete execution.

Starting a task follows a specific path within the Edge Server after the requestTask remote
command is received. First, the Security Protocols component validates the authenticity of the
incoming command. Next, the Message Router asks RM if the requested service is available on
the current server. If not found, it locates the service within the Edge Network, through the RM
and steps described in Sec. 4.3 are followed. If there are multiple alternatives, the request is
forwarded to the Edge Server, which can execute the task on time. If there are multiple alter‐
natives which contain this service, then the satisfaction equation (Eq. 4.4) is used to determine
the optimal server. If the satisfaction equation yields the same results for more than one server,
the one with minimum delay is chosen. If the delays are also the same, then the request is of‐
floaded to an arbitrarily‐chosen server. If there are no services available for the requested task,
then the task fails to execute.

Offloadingmeans asking for task execution from another server by forwarding the task request.
An Edge Server offloads a request by using the same remote command as the End Device,
requestTask. This means that an Edge Server can also be used as a client to execute remote
commands on another server.

In the case that the service name is found in the current Edge Server, first, the availability of
the resources is evaluated (See Sec. 4.3). If the task can be executed with the defined service
parameters on time, it is directly executed. If the server is partially busy or the task can only
be executed after planning, first, the Scaler component analyses whether the new, existing, or
all tasks can be downscaled (See Sec. 5.1.6). Downscaling reduces the CPU usage by limiting a
task’s utilization factor and increases the runtime of the task, but no longer than its deadline.
If all tasks can be downscaled without causing any deadlines misses, then, this step is taken.
Otherwise, the Scheduler component goes active. Depending on the Service type of the task,
Scheduler uses the Earliest Deadline First (EDF) or Non‐resumable And Preemptible Aperiodic
TAsk (NAPATA) scheduling algorithm to schedule the running tasks considering their deadlines.
If the tasks are schedulable according to Eq. 3.39 (for EDF), or Eq. 3.12 (for NAPATA), then,
the Queue Manager stores the execution order. Once the execution of a high priority task is
completed, Queue Manager notifies the next task to be executed. If a task is to be preempted,
the Scheduler monitors and acts as a supervisor.
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ed: EndDevice

ed: EndDevice

es1: EdgeServer #1

es1: EdgeServer #1

esX: EdgeServer #X

esX: EdgeServer #X

available service: serviceA

available service: serviceB

connect()

connect() ed is connected to es1 and
es1 is connected to esX

requestTask(serviceA)

requestTask,serviceA

whereToExecute(serviceA)

requestTask(serviceA)

scaleIfNeeded(serviceA)

scheduleIfNeeded(serviceA)

execute(serviceA)

RUNNING,serviceA@es1,uniqueTaskId

broadcastResources()

TASKCOMPLETED

broadcastResources()

requestTask(serviceB)

requestTask,serviceB

whereToExecute(serviceB)

requestTask,serviceB

whereToExecute(serviceB)

requestTask(serviceB)

scaleIfNeeded(serviceB)

scheduleIfNeeded(serviceB)

execute(serviceA)

RUNNING,serviceA@esX,uniqueTaskId

broadcastResources()

RUNNING,serviceA@esX,uniqueTaskId

TASKCOMPLETED

broadcastResources()

TASKCOMPLETED

Figure 5.4: Simplified sequence diagram to show the process before and after starting a task,
and after the task executes its completion.
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Whenever a task is executed, the chosen server directly calls the PSC that the service is linked
with. Then, the server announces its server ID and task ID to the task initiator (See Sec. 5.1.3).
It also delivers its resource usage information to its neighbours. They are broadcast among all
available Edge Servers in the network as soon as a change is detected. When the task execu‐
tion is complete, the resource usage is broadcast again to keep all servers up‐to‐date. At the
moment, only the CPU utilizations are broadcast as the memory is assumed to be unlimited to
reduce problem complexity (See Sec. 3.2). At each task request, only the latest values are used
for computations. CPU utilizations are broadcast via messages using the following format:

CPULOAD:CPU0UsePercentage,CPU1UsePercentage,...@EdgeServerID1,
CPU0UsePercentage@EdgeServerIDX

At any time, the CPU activity diagram of an Edge Server can be written into a file using the
remote command printExecutionActivity (See Table 5.2). This command is also useful to
check if the CPUs are fully utilized or to change service parameters for better optimization. If
the user is an operator, this command creates two different files in the working directory. The
file names are generated following YYYYMMDDhhmmss format defined by W3C [WW97], where
YYYY is four‐digit year, MM is two‐digit month (01 through 12), DD is two‐digit day of month (01
through 31), hh is two digits of hour (00 through 23), mm is two digits of minute (00 through
59), and ss is two digits of second (00 through 59). If the command is executed on ”29.12.2020
13:30:58”, then the filenames will be ”20201229133058”. One file is with DAT extension, and it
lists the task execution and CPU load information as a readable text. This file has four columns,
and each one is separated with space. The columns are:

1. Relevant CPU ID: Zero‐based CPU index on which the activity is detected.

2. The relative timestamp for this task activity: The time passed since the previous change
in CPU load.

3. CPU load: The current load of the current CPU at the timestamp written in (2). A value
between 0 and 1 (1 meaning 100% utilization).

4. The task ID: ID of the task that caused the CPU activity.

For each data, a separate line is used. An example data file generated by the command is shown
in Source code 5.2.
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Source code 5.2: An example data file generated automatically using the
printExecutionGraph command.

1 # 20201229133058.dat
2 0 0 1 0
3 1 0 1 0
4 0 1 0.5 0
5 1 1 0.5 0
6 0 1 0.5 1
7 1 1 0.5 1
8 0 20000 0 0
9 1 20000 0 0

10 0 40000 0 1
11 1 40000 0 1

The second file created is a script file to convert this data into an interactive graph and has DEM
extension. This file can be used with gnuplot1, an open‐source graphing utility, to display an
interactive visual graph. The script file created automatically to parse and visualise the example
data in Source code 5.2 file is shown in Source code 5.3.

Source code 5.3: An automatically created script file to parse Source code 5.2 and display an
interactive visual graph.

1 # 20201229133058.dem
2 set datafile missing NaN
3 set offset graph 0.05, graph 0.05
4 set ylabel "CPU Load"
5 set xlabel "Time"
6 set key outside right
7 set grid y x
8 set xtics rotate
9 set style data linespoints

10 set autoscale noextend
11 set border back
12 set term qt
13 #set term png
14 #set output "executiongraph.png"
15 cpus = "0 1"
16 i = 0
17 set multiplot layout 2,1
18 do for [i in cpus] {
19 set title sprintf("CPU %s", i)
20 plot \

1Website: http://gnuplot.info
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21 '20201229133058.dat' using (column(1) == i && column(4) == 0 ? $2 : NaN) :
↪ 3 with steps lw 2 title "Task 0", \

22 '20201229133058.dat' using (column(1) == i && column(4) == 2 ? $2 : NaN) :
↪ 3 with steps lw 2 title "Task 1", \

23 }
24 unset multiplot
25 pause -1 "Hit return to continue"
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Figure 5.5: An example CPU activity diagram created using gnuplot. The required files can be
created using printExecutionGraph remote command.

The activity diagram based on the data given in Source code 5.2 and parsed using Source code
5.3 is shown in Fig 5.5. It can be seen that Task 1 is executed right after Task 0 has started and
Task 0 CPU utilization is reduced to 50% due to downscaling. Then, both of the tasks run at
50% utilization until their executions are complete. It can also be seen that Task 0 completes
execution at timestamp 20000, and Task 1 at timestamp 40000. From the figure, it is also clear
that the tasks are multi‐threaded, as both of them are seen in both CPUs. Finally, it can also be
understood that the CPU utilization parameter for Task 1 is set to 50% during service creation,
as no upscaling after Task 0 completes execution is seen. Otherwise, Scaler would upscale the
utilization back to its original value.

It should be noted that the diagram of the CPU activity is reported only for the server that
receives the command. If the tasks are executed on another server in the network, the
printExecutionGraph command must be executed on that server instead.
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Figure 5.6: The user interface of Topology Designer used to create RTEF compatible topology
file.

5.5 Topology Designer

As explained in Sec. 5.1.1, an Edge topology can be createdmanually by creating a plain text file
and specifying the nodes, together with their connections. Alternatively, it is also possible to
let topology be created automatically, as the connections between the nodes are established.
A third way to create a topology compatible with the architecture is using the Edge Topology
Designer, developed along with the thesis. It is based on jGraphX library2 andwas implemented
in Java programming language. Its graphical interface can be seen in Fig. 5.6.

Using the designer is not different fromusing a drawing tool. Dragging the components from the
list and dropping them into the canvas automatically assigns unique node IDs to them. These
IDs can be changed by right‐clicking on the desired node or using F3 from the keyboard. It is
also possible to rename the nodes by double‐clicking on their names, via the context menu or
using F2 shortcut from the keyboard. Holding the left mouse button on a node and dragging it
starts a link. Releasing the mouse button on another node creates a link between two nodes
and a dialogue window to set the delay is shown. Similar to names, delays can also be modified

2Website: https://github.com/jgraph/jgraphx
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Figure 5.7: Result of minimum delay between End Device #10 and Edge Server #4 seen in the
topology.

by double‐clicking on them. If the mouse is released on a blank space, it creates another node
of the same type with a unique name. Lastly, the Free Text field in the topology file can be set
by right‐clicking or choosing a node and pressing F4. This text will then be visible when hovered
by the mouse and also when the topology file is saved. Multiple nodes and connections can be
chosen by dragging a rectangle around them. Nodes or connections can be deleted by choosing
one or more and pressing the Delete key on the keyboard or using the context menu.

Topology Designer provides several utilities to assist during topology creation. One of them is
used to calculate the shortest route between two nodes. In complex topologies, it can be useful
to figure out the path that the architecture would choose in the same scenario. This utility can
be accessed via the Analyze menu. Fig. 5.7 shows the delay of the shortest route between
End Device #10 and Edge Server #4 seen in the very same figure. In the same menu, another
utility checks if all nodes have at least one connection. This is useful, especially in complex
topologies. Tools menu provides utilities to make complementary connections of the existing
ones, by inverting them. Moreover, other utility in this menu can make missing connections.

If participant count in a network raises, it becomes harder to manage the topology and the
connections. The designer allows the creation of sub‐topologies via groups. Chosen nodes can
be grouped together and named. Their colour or images can also be specified to differentiate
from others.
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Figure 5.8: Pseudocode to create an Edge Server using RTEF in Java.

The topology can be printed or saved for editing later. If the topology is saved in Edge Topology
Designer (ETD) format, it will be parsed by the Edge Servers and converted into a plain topology
file. ETD file is in eXtensible Meta Language (XML) format and can be reopened with the de‐
signer to modify the topology later on, graphically. The content of the ETD file of the topology
depicted in Fig. 5.6 can be seen in Source code A.1.

The Topology Designer also allows saving the topology as a plain topology file as defined in Sec.
5.1.1. During conversion, the repetition of the node IDs is checked and displayed as errors. It
should be noted that the conversion from ETD file into the plain topology file is one‐directional.
Once it is saved as a plain file, it cannot be opened again by the Topology Designer as some of
the cosmetic parameters are lost. These parameters are such as positioning of the nodes, sizes
and their icons. Lastly, the topology can also be saved as an image file in PNG or JPG formats.

5.6 Edge Server Creation

A software reference architecture as a solution to the problems of Cloud Computing and deci‐
sion making in decentralized environments is defined in Chapter 4. The functionalities of this
architecture are grouped into several components, as detailed in Sec. 5.1. All components of
the software reference architecture and their functionalities are combined as a framework. This
framework is called Real‐Time Edge Framework (RTEF) and developed using the Java program‐
ming language.

https://doi.org/10.51202/9783186874108 - Generiert durch IP 216.73.216.60, am 24.01.2026, 06:09:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186874108


106 Chapter 5: Implementation and Validation

To exploit the benefits of the RTEF, a computer is converted into an Edge Server by running an
instance of the framework. It can be achieved by creating a class with a mainmethod and defin‐
ing somemandatory properties. Pseudocode to set up and start an Edge Server is shown in Fig.
5.8. First, an Edge Server requires its resources, called Core Resources, to be defined. Those
resources are the speed of the server in MIPS, total core count, maximum available memory
in megabytes (MB), maximum allowed memory usage in percentage, maximum allowed band‐
width upload/download capacities in percentage, maximum allowed bandwidth utilization in
percentage, and allowed maximum total disk space in MB. Even though only speed and total
core count values are used at the moment, other definitions are still mandatory for forward
compatibility. Next, the Edge Server needs at least a username and password pair for authenti‐
cation. As explained before, the user creation is local; therefore, each server must create their
own users. If a server does not have a valid user, it cannot be used for remote executions or
offloading. Following, the server needs a Configurator with the four keys defined as seen in
Sec. 5.1.1, namely a unique ID, name, port, and the path to a topology file to be used for cre‐
ation or reading from it. To broadcast the Edge Server in the network for collaborative use,
registerServer() method should be used. Then, local services can be defined for the PSCs,
following the parameter description in Sec. 4.2.5. It is also possible to skip service definition
and add them during runtime, using the addService remote command shown in Table 5.2.
Finally, the server is run with the run() method. This method creates a TCP server to listen
for remote commands coming from port defined in the configuration. If this method is omit‐
ted, registerServer() method is invalidated, as message exchange between Edge Servers
are also performed using the TCP Server. Once this class file is run, the RTEF will be started, and
the Edge Server will listen for the connections on port, defined in the configuration.

A minimal working example of creating an Edge Server is shown in Source code A.2. Inline com‐
ments describe each line of the code. In the working example, one local service and Virtual Pro‐
cessors (VPs) are also created for demonstration. However, creation of these is not mandatory,
if not desired. Furthermore, logging settings are shown for possible debugging. The framework
provides extensive API documentation, describing all methods, arguments, and parameters in
detail. RTEF provides a loadGenerator, to be linkedwith the services, to create a dummy load.
This internal load generator creates a task with the given parameters, such as runtime, thread
count, and deadline. The next section will create several Edge Servers using the template seen
in Source code A.2 with slight modifications. The servers will be using internal load genera‐
tor to have an ideal execution environment. The concepts, architecture, and framework using
different experimental setups will be validated.
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5.7 Validation of Framework

This section is going to validate the framework, defining two different scenarios. As described in
Sec. 4.2.5, services are linkedwith PSCs to call themwhen it is time to execute using defined pa‐
rameters. For validation, instead of using a PSC, to have a setup close to an ideal environment,
an internal load generator is implemented. The load generator is a dummy command that cre‐
ates a CPU load with the given parameters, such as WCET, allowed CPU(s), and the number of
threads, as defined in Sec. 4.2.5. This utility is integrated with the RTEF and used to test the
architecture in different scenarios. The load generator can create a different type of tasks for
all type of services; Legacy, Simple, or Periodic. The test environment uses this load generator
and creates an Edge Network consisting of two Edge Servers and four End Devices.

Figure 5.9: Experiment setup for an EdgeNetwork using four End Devices and two Edge Servers.

Computers are converted into Edge Servers using classes similar to Source code A.2. As End
Devices, simple TCP clients were used to send and receive TCP messages. Any TCP client can be
used or implemented to behave as an End Device. In the experiments, PuTTY3 is chosen.

The validation was performed on Linux‐based systems with the real‐time enabled kernel. The
hardware that the RTEF working on is simulated using virtualization software and assumed to
be ideal and real‐time capable. The experiment setup and plan is summarized in Fig. 5.9. First
server has two identical CPUs and the second server has only a single CPU. Each CPU at each
server is running at a speed of 1 MIPS. The first server is connected to the second server, and

3Website: https://putty.org
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Figure 5.10: The console log of the Edge Server 1 created for the validation after it is started.

the delay between them is one time unit. The first server also has connections with the first
three End Devices and the second server with the fourth one. The delays between the End
Devices and their directly connected servers are neglected. The load generator is defined with
services 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 each with different parameters listed in Table 5.3. All tasks, hence
their services are one‐directional. Services 𝐴 and 𝐵 are defined as Legacy services, 𝐶 and 𝐷
as Simple Periodic services, 𝐸 and 𝐹 as Simple services. Service 𝐴 is created in both servers,
using the same parameters. Services 𝐵, 𝐶, 𝐷, and 𝐸 are created only on the first server, and
Service 𝐹 only on the second server.

Figure 5.11: Handshaking to establish a connection to the Edge Server 1 (with ID: 1) from an
End Device 1 (with ID: 10) using PuTTY. The messages sent by the End Device (in
this example by PuTTY) have a bounding box.

Fig. 5.10 shows the console log of the Edge Server 1 after RTEF is started. Connection to the
Edge Server 1 from End Device 1 is established using PuTTY as described in Sec. 5.2 and seen
in Fig. 5.11. Other connections between nodes are established using the same handshaking
messages seen in the figure, only using different IDs during the introduction. Green rectangles
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surround the messages sent by the End Device. Remaining messages are received from the
connected Edge Server.

As seen from the experiment setup (Fig. 5.9), End Device 1, 2, and 3 request a task from Edge
Server 1 at time zero (𝑡 = 0) to execute 𝐴, 𝐵 and 𝐸, respectively. At the same time, End
Device 4 requests 𝐹 from Edge Server 2. At 𝑡 = 3, End Device 1 also requests an instance of
𝐶 and End Device 2 requests 𝐷. As explained in Sec. 2.2.2, the architecture does not support
running periodic tasks together with non‐periodic tasks (Legacy and Simple) at the same time.
Therefore, the experiment was carefully set up to avoid such cases. Parameters of the services
and Edge Servers hosting these services are analysed in advance. With these considerations,
EDF scheduling is used for tasks with Periodic services and NAPATA scheduling for non‐periodic
services.

Table 5.3: An example set of pre‐defined services with defined execution behaviours of tasks.
All tasks are one‐directional.

Service WCET Rel. Deadline Type CPU Mask Max. CPU Util. % Thread/Core Available on
𝐴 6 8 Legacy 1 100 1 1,2
𝐵 3 3 Legacy 1 100 1 1
𝐶 4 8 S.Periodic 3 100 1 1
𝐷 3 6 S.Periodic 3 100 1 1
𝐸 2 5 Simple 2 100 1 1
𝐹 2 9 Simple 1 100 1 2

At 𝑡 = 0, multiple tasks arrive. The execution order of the tasks based on their deadlines on
Edge Server 1 is 𝐵, 𝐸, and 𝐴. 𝐸 uses CPU 2; however, 𝐴 and 𝐵 share the same CPU: CPU 1.
𝐵 has higher priority than 𝐴. As there is no free resource at the only allowed CPU (CPU 1) to
execute 𝐴 before its deadline, the possibility of scaling is evaluated. Since the WCEU of 𝐵 is
100% (= 3

3100), the downscaling of 𝐵 will not be possible. If Edge Server 1 were to be the
only server in the network, NAPATA scheduling could have been used to evaluate whether it is
possible to schedule these tasks. Although there is an alternative server (Edge Server 2) that
can possibly execute this task, it is possible to evaluate the scheduling on Edge Server 1. 𝐵 has
higher priority than 𝐴, hence, the feasibility check starts with task 𝐵.

𝐹𝐵 = 0 + 𝑀𝐵 ≤ 𝑑𝐵 + 𝑎𝐵 (5.1)

= 0 + 3 ≤ 3 + 0 (5.2)

= 3 ≤ 3 (5.3)

Inequality 5.3 holds. The algorithm then proceeds with task 𝐴.

𝐹𝐴 = 0 + 𝑀𝐴 + 𝑀𝐵 ≤ 𝑑𝐴 + 𝑎𝐴 (5.4)

= 0 + 6 + 3 ≤ 8 + 0 (5.5)

= 9 ≤ 8 (5.6)
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The feasibility test fails since inequality 5.6 does not hold. As scheduling 𝐴 after 𝐵 would cause
𝐴 to miss its deadline, the task would have failed. However, with the current setup, another
alternative server within the network is searched. Meanwhile, 𝐸 and 𝐵 start execution on
Edge Server 1 and 𝐹 on Edge Server 2. Edge Server 2 also has service 𝐴 and the request can
be forwarded to that server. The transfer of the request takes one time unit due to the delay
between the servers. Then, the first request of 𝐴 at Edge Server 2 occurs at 𝑡 = 1. However, as
the initial request was on Edge Server 1, this delay must be subtracted from absolute deadline
calculation. Hence, the arrival time of 𝐴 (𝑎𝐴) used on Edge Server 2 is zero (0). The scheduling
diagram between 𝑡 = 0 and 𝑡 = 1 is seen in Fig. 5.12.

Figure 5.12: Scheduling diagram of the first scenario between 𝑡 = 0 and 𝑡 = 1.

At 𝑡 = 1 on Edge Server 2, the possibility of on‐time execution of tasks 𝐹 and 𝐴 are calculated
using Eq. 3.12 from NAPATA scheduling. Sorting them by their priorities from high to low gives
𝐴 and 𝐹 . Starting from the highest priority, the feasibility calculation of task 𝐴 (𝐹𝐴):

𝐹𝐴 = 1 + 𝑀𝐴 ≤ 𝑑𝐴 + 𝑎𝐴 (5.7)

= 1 + 6 ≤ 8 + 0 (5.8)

= 7 ≤ 8 (5.9)

passes. Similarly, feasibility of task 𝐹 (𝐹𝐹 ):

𝐹𝐹 = 1 + 𝑀𝐹 + 𝑀𝐴 ≤ 𝑑𝐹 + 𝑎𝐹 (5.10)

= 1 + 1 + 6 ≤ 9 + 0 (5.11)

= 8 ≤ 9 (5.12)

is satisfied. As scheduling is feasible, task 𝐹 is preempted at 𝑡 = 1 for having a lower deadline
than task 𝐴. After 𝐴 completes its execution, 𝐹 will be resumed to complete its remaining
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Figure 5.13: Scheduling diagram of the first scenario at 𝑡 = 3, until 𝐶 and 𝐷 arrive.

execution time. 𝐶 and 𝐷 task requests arrive at 𝑡 = 3. The scheduling diagram between 𝑡 = 0
and until the time when two tasks arrive at 𝑡 = 3 is seen in Fig. 5.13. Meanwhile, the task 𝐸
completes its execution at 𝑡 = 2 and task 𝐵 at 𝑡 = 3.

Both 𝐶 and 𝐷 have one thread at each CPU due to their CPU affinities and thread per core pa‐
rameters. At 𝑡 = 3, Edge Server 1 is available as𝐸 and𝐵 complete their executions. Both tasks,
𝐶 and 𝐷 can be scheduled according to EDF scheduling. However, the server downscales them
first, as scheduling is considered as a fallback solution. Downscaling WCEUs of 𝐶 (

4
8100) and

𝐷 (
3
6100) without missing their deadlines yields 50% CPU utilization, which doubles execution

times of both tasks. The scheduling diagram until 𝑡 = 7 where 𝐴 completes execution is shown
in Fig 5.14. From this moment, 𝐹 will be resumed until its completion.

𝐹 completes its execution at 𝑡 = 8; 𝐶 at 𝑡 = 11, and 𝐷 at 𝑡 = 9. Since 𝐶 and 𝐷 are defined as
Periodic services, they start execution again as soon as they complete execution. The complete
scheduling diagram is shown in Fig. 5.15.

As soon as the tasks start execution, each Edge Server returns the ID of the server running
the task and the unique task ID, back to the original End Device (Sec. 5.1.3). Assuming that
that 𝐹 has an ID of 1 and 𝐴 of 2, for example, at 𝑡 = 1, End Device 1 would then receive
RUNNING:A@2,2. This is interpreted as Service 𝐴 is running on Edge Server 2, with task ID 2.
Similarly, End Device 4 would receive ”RUNNING:F@2,1”, meaning Service 𝐹 is running on Edge
Server 2, with task ID 1.
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Figure 5.14: Scheduling diagram of the first scenario from the beginning until 𝑡 = 7.

Figure 5.15: Resulting scheduling diagram based on the example defined in Fig. 5.9 and Table
5.3 on Edge Server 1 and Edge Server 2.
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The operators are expected to create a feasible distribution of tasks in Edge Servers during ser‐
vice creation. If the example above had a shorter deadline for𝐹 (e.g., at 𝑡 = 7), then scheduling
𝐹 would not be feasible. Since there is not another alternative server to execute 𝐹 , it would
miss its deadline. An alternative fallback would be a Cloud server connected to the Edge Servers
with RTEF installed; however, in that case, the execution would have beenmade using the best‐
effort approach. Another possibility would be terminating lower priority tasks, if any. However,
task termination is not considered in this thesis. Instead, it is listed as an open point for future
work.

In the example above, the downscaling of tasks 𝐶 and 𝐷 was possible. However, if the Scaler
was disabled (See Sec. 5.1.6), the only way to plan execution would be by scheduling these
tasks. Since the tasks arrive at the same time and they are periodic, the Eq. 3.36 could be used.
The feasibility equation for these tasks results in 1 (= 4

8 + 3
6 ) for each core, meaning that the

tasks could be scheduled, without changing the affinity.

Figure 5.16: A second example scenario that adds another Edge Server to the Edge Network
and connects it to the Edge Server 2 with a delay of 1 unit.

As the second experiment, another identical Edge Server with ID 3 is added, and the test is
repeated. As seen in Fig. 5.16, the newly added server is only connected to the Edge Server 2
with the delay of one time unit. Similar to Edge Server 2, this server also has a single CPU with
1 MIPS speed. Likewise, it has 𝐴 and 𝐹 as public services.

Theoretically, there are two possible solutions to this scenario. One solution is not using Edge
Server 3 at all, as the previous scheduling was feasible, facilitating only two Edge Servers, as
seen in Fig. 5.15. However, with the existence of Edge Server 3, the decision mechanism comes
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into the play (See Sec. 4.3) as the second solution. The decision mechanism will evaluate the
resource availabilities of the servers and choose the most available server first, using the satis‐
faction equation (Eq. 4.4).

Evaluating the availabilities of each three server using Eq. 4.4 for the service 𝐴 gives:

𝑆1(𝐸1, 𝑇1) = 𝑚𝑎𝑥 ({( 𝑥1100
(1)𝐹𝑘,1

+ (1)(0)) 𝑓1,𝑘 ∶ 𝑘 = 1, 2}) (5.13)

= 𝑚𝑎𝑥 ({((6)(100)
(1)(0) + (1)(0)) 1, ((6)(100)

(1)(0) + (1)(0)) 0}) (5.14)

= Not Feasible (5.15)

𝑆2(𝐸2, 𝑇1) = 𝑚𝑎𝑥 ({( 𝑥1100
(1)𝐹𝑘,1

+ (1)(1)) 𝑓1,𝑘 ∶ 𝑘 = 1}) (5.16)

= 𝑚𝑎𝑥 ({((6)(100)
(1)(0) + (1)(1)) 1}) (5.17)

= Not Feasible (5.18)

𝑆3(𝐸3, 𝑇1) = 𝑚𝑎𝑥 ({( 𝑥1100
(1)𝐹𝑘,3

+ (1)(2)) 𝑓1,𝑘 ∶ 𝑘 = 1}) (5.19)

= 𝑚𝑎𝑥 ({((6)(100)
(1)(100) + (1)(2)) 1}) (5.20)

= 8 ≤ 8 + 0 (5.21)

As seen in the results of Eq. 5.13 and Eq. 5.16, Edge Server 1 and Edge Server 2 have no available
CPU for another task, but only Edge Server 3. Therefore, when 𝐴 is requested from Edge Server
1 at 𝑡 = 0, Edge Server 3 is chosen. The delay between End Device 1 and Edge Server 2 is one
time unit whereas between End Device 1 and Edge Server 3 is two time units. Consequently, 𝐴
arrives at Edge Server 3 at 𝑡 = 2 when this server is chosen. However, initially, the task arrived
at Edge Server 1 at 𝑡 = 0. Hence, while calculating the absolute deadline, this value is taken
into consideration. Task 𝐴 can be executed on Edge Server 3 since its absolute deadline (8 + 0)
allows it. Meanwhile, 𝐹 completes its execution at 𝑡 = 2, instead of 𝑡 = 8. The complete
diagrams of Edge Server 2 and Edge Server 3 can be seen in Fig. 5.17. The scheduling diagram
of Edge Server 1 is not changed, hence, omitted.

These two scenarios validated the solutions for the problems defined in the earlier chapters.
These problemswere offloading decisions in decentralized environments and scheduling of non‐
resumable and preemptible aperiodic tasks. The scenarios were completed successfully and
the validation gave the expected results. Therefore, the conceptual architecture was proven for
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Figure 5.17: Resulting scheduling diagram based on the example defined in Fig. 5.16 and Table
5.3 on Edge Server 2 and Edge Server 3. Edge Server 1 results are omitted since
they stayed the same.

correctness. The next chapter will conclude the thesis and give an outlook for future research.

5.8 Summary

This chapter explained how the software reference architecture described in Chapter 4 is real‐
ized as a framework, called Real‐Time Edge Framework (RTEF). It also explained its components
(Sec. 5.1), how the communication between the nodes can be performed (See Sec. 5.2), com‐
mands implemented by the framework (Sec. 5.3), and how the End Devices can request tasks
(Sec. 5.4). The chapter continued explaining another contribution of the thesis, the Topology
Designer (Sec. 5.5) together with its features. Moreover, this chapter exemplified the creation
of an Edge Server using the framework (Sec. 5.6). Finally, the chapter was concluded by vali‐
dating the concept using two different scenarios (Sec. 5.7).
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6 Conclusion and Outlook

This thesis introduced a concept to create a modular, and extensible architecture for the Edge
Servers in the Edge Computing domain, to handle real‐time task requests, and execute these
tasks on‐time in a decentralized environment.

The thesis began with an introduction to Edge Computing and continued with a problem defini‐
tion, objectives of the thesis, and followed by the approach in Chapter 1. Chapter 2 started from
Cloud Computing history and listed some issues that started arising due to the increased device
count connected to the Cloud. Then, the same chapter moved to Edge Computing history, to‐
gether with its advantages, and initial ideas of the domain. Further, it elaborated on the related
work done both in Cloud Computing and Edge Computing, followed by enablers and require‐
ments of Edge Computing. Later, it moved to the real‐time computing domain where the thesis
is mostly focused on. It defined the real‐time term, listed its challenges, problems, and how
they can be overcome. Chapter 3 brought the first three chapters together, introduced the
novel scheduling algorithm, called Non‐resumable And Preemptible Aperiodic TAsk (NAPATA)
scheduling, and formulated one of the problems: server selection on decentralized environ‐
ments. Chapter 4 explained the conceptual idea of the architecture, explaining the concepts of
Edge Servers, End Devices, real‐time task execution, and decision mechanisms. In Chapter 5,
the concepts were proven creating a framework based on the reference architecture and using
two complex scenarios.

This final chapter of the thesis concludes the findings of the thesis, highlights the features of the
reference architecture, and lists assumptions and limitations to be considered for the realization
of the theory. Furthermore, the chapter concludes with an outlook for future research.

6.1 Conclusion

Edge Computing is a recent paradigm to overcome the limitations and issues of Cloud Comput‐
ing, due to the increasing number of connected devices, and the amount of data transferred
to the Cloud. It adds a new tier between Operational Technology (OT) and Information Tech‐
nology (IT). Thanks to the closeness to the source of the data, the data owners have more con‐
trol over the sensitive information and reduced latency. Moreover, with the computing power
added closer to the devices, dependency to the Internet is reduced. However, there exists no
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accepted standard that can perform real‐time calculations in the Edge, nor a widely‐accepted
definition of Edge Computing in literature. This makes it hard to create interoperable and flex‐
ible intercommunication methods for the devices, which could otherwise benefit from Edge
Computing.

Edge Servers perform computation at the edge, and they can be close to the source as much
as possible. This also enables more critical tasks to be executed on these Edge Servers. There
exist several reference architectures from different initiatives in the domain; however, none of
them deals with real‐time characteristics of the actors. The ability to execute real‐time tasks on
these servers increase the reliability of the systems in case of resource starvation.

The main contribution of this thesis is a software reference architecture for Edge Servers to
create an Edge Network with a framework featuring decentralization, modularity, and scala‐
bility. The architecture proposes several concepts to enable real‐time execution of tasks on
Edge Servers. These servers can execute the tasks on them, or offload the task requests to
their neighbouring servers using decentralized decisions. Regardless of the execution location,
the results of the tasks are also sent back to their original requesters. Offloading is performed
when an Edge Server is expected tomiss the deadline of a real‐time task, or if the server is over‐
loaded. Tasks run a program/software/command (PSC) when executed. Their behaviours are
defined using services. The PSCs can also be containers which include the complete stack for
an application. However, to have a full control on the PSC and to avoid additional overheads, it
must be used with caution.

The thesis followed the assumptions below to fulfil the requirements of a real‐time execution
in a decentralized Edge Network:

• The hardware to realize the architecture is ideal, meaning formally verified for real‐time
computing.

• The hardware has identical processors if consisting of multiple cores.

• The used hardware has enough storage and memory to handle all requests.

• The scheduling algorithms have no overhead, which may delay the calculation.

• Decision mechanisms have no overhead, which may delay the calculation.

• The worst‐case execution time (WCET) of a PSC is known a priori.

• The PSC does not suspend itself before its execution is completed.

• Running PSCs are independent of each other, and they have protection for critical section
usage.

• The network message exchange is real‐time, e.g. uses real‐time communication tech‐
nologies such as Time‐Sensitive Networking (TSN).
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The contributed architecture is realized as an exemplary framework. This framework imple‐
mented all features of the architecture and tested the correctness of the theoretical approach.
The framework can be used as a simulator with its integrated dummy load generator features
or can be run on a computer, which complies with the hardware assumptions listed above.

To create an Edge Network, first Edge Servers establish a connectionwith each other. After each
connection, all known information by an Edge Server is shared among all participants. When an
End Device requests a task execution from any Edge Server, the server first calculates whether
the execution of the received task within its deadline is possible, by evaluating its resources. If
not, the task request is forwarded to another server, which can execute this task in the short‐
est time. If the timings are the same, then the request is passed to the server with minimum
delay. To choose a server, the server initially received the request checks whether the task can
be executed on time, without any behaviour change, including other running tasks (if any) on
that server. If not, the possibility of scaling down the processor utilization is evaluated. When
the scaling down causes a deadline miss, then the running tasks are scheduled according to the
service type that the task belongs to, using an appropriate scheduling algorithm. Depending
on the periodicity of the tasks, two scheduling algorithms are supported in the architecture
and the framework. For periodic tasks, it uses the Earliest Deadline First (EDF) scheduling al‐
gorithm. Preemptive scheduling of aperiodic tasks is performed using a novel scheduling algo‐
rithm, called Non‐resumable And Preemptible Aperiodic TAsk (NAPATA) scheduling, contributed
by this thesis. This scheduling algorithm is an online scheduler that prioritizes aperiodic tasks
according to their deadlines and types.

The architecture and framework that the architecture is based of, are tested with two complex
scenarios, to prove whether they solve the problem defined in Sec. 1.1 and formulated in Sec.
3.2. The scenario results were the same as expected in the theoretical calculations; thus, the
concept was proven. As a result, if Edge Servers are defined in accordance with the architecture
concepts, they can collaboratively work to execute real‐time tasks on time.

6.2 Outlook

The limitations and assumptions of this thesis can be used as a guide for further research in the
Edge Computing domain. This section will include the possible extension topics for the thesis.

Task migration is a way of moving a running task into another computer for completion. Mi‐
gration can be performed for a higher priority task, or to speed up the completion of the task,
if another server has more resources than the current one. In this thesis, task migration is not
possible, meaning once a server starts a task, only that server can complete it. Additionally,
optimal scheduling of the combination of Legacy, Simple, and Simple Periodic tasks cannot be
performed. Currently, the processor affinities must be set by the operator during service cre‐
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ation time manually, to prevent such circumstances. An optimal algorithm that can schedule
multiple types of tasks or a schedule server to allow such conditions is desirable.

At themoment, if no alternative server is found for the newly arriving task, it fails to execute. An
algorithm can be implemented to determine whether an existing task should be terminated to
enable execution of the new task, based on the properties, deadline, or priority. Furthermore,
the delays between Edge Servers and End Devices are considered to be static. However, the
load on the network traffic affects the transmission time. The decision mechanisms can also
model the network and make decisions analysing the traffic as well. The tasks running in the
framework are considered to be independent. Nevertheless, tasks may request, execute a task,
or depend on another task. Currently, this dependency has to be handled at the End Device
side. This work can also be extended by introducing artificial intelligence (AI) or machine learn‐
ing (ML) for decision mechanisms and the prediction of the server resources. Moreover, the
resulting framework can be deployed on the hardware. Although the architecture is hardware
and operating system (OS) agnostic, the framework was implemented in the Java programming
language. The performance of the architecture and the framework on different hardware can
be evaluated.

Finally, although the required time to offload the task is calculated, the overheads of the
scheduling and decision making algorithms are neglected. When the framework is deployed
on hardware, the durations that these algorithms require can be evaluated for a better time
estimation.
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A Appendix

A.1 Edge Topology Designer File Example

Source code A.1: Edge Topology Designer file that can be reopened with Topology Designer.
The contents are from the topology seen in Fig. 5.6.

1 <mxGraphModel>
2 <root>
3 <mxCell id="0" />
4 <mxCell id="1" parent="0" />
5 <mxCell id="2" parent="1" serverid="1" style="image;image=/com/mxgraph

↪ /examples/swing/images/server.png" value="Edge Server #1" vertex="1"
↪ warningmessage="Using auto-generated Server ID: 1">

6 <mxGeometry as="geometry" height="50.0" width="50.0" x="100.0" y="
↪ 320.0" />

7 </mxCell>
8 <mxCell id="3" parent="1" serverid="2" style="image;image=/com/mxgraph

↪ /examples/swing/images/server.png" value="Edge Server #2" vertex="1"
↪ warningmessage="Using auto-generated Server ID: 2">

9 <mxGeometry as="geometry" height="50.0" width="50.0" x="230.0" y="
↪ 320.0" />

10 </mxCell>
11 <mxCell id="5" parent="1" serverid="3" style="image;image=/com/mxgraph

↪ /examples/swing/images/server.png" value="Edge Server #3" vertex="1"
↪ warningmessage="Using auto-generated Server ID: 3">

12 <mxGeometry as="geometry" height="50.0" width="50.0" x="350.0" y="
↪ 320.0" />

13 </mxCell>
14 <mxCell edge="1" id="9" parent="1" source="2" style="" target="3"

↪ value="1">
15 <mxGeometry as="geometry" relative="1">
16 <mxPoint as="sourcePoint" x="130.0" y="350.0" />
17 <mxPoint as="targetPoint" x="260.0" y="350.0" />
18 </mxGeometry>
19 </mxCell>
20 <mxCell edge="1" id="10" parent="1" source="3" style="" target="5"

↪ value="1">
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21 <mxGeometry as="geometry" relative="1">
22 <mxPoint as="sourcePoint" x="260.0" y="350.0" />
23 <mxPoint as="targetPoint" x="360.0" y="350.0" />
24 </mxGeometry>
25 </mxCell>
26 <mxCell id="11" parent="1" serverid="10" style="image;image=/com/

↪ mxgraph/examples/swing/images/telephone.png" value="End Device #10"
↪ vertex="1" warningmessage="Using auto-generated ID: 10">

27 <mxGeometry as="geometry" height="50.0" width="50.0" x="100.0" y="
↪ 460.0" />

28 </mxCell>
29 <mxCell edge="1" id="12" parent="1" source="11" style="" target="2"

↪ value="1">
30 <mxGeometry as="geometry" relative="1">
31 <mxPoint as="sourcePoint" x="130.0" y="490.0" />
32 <mxPoint as="targetPoint" x="110.0" y="370.0" />
33 </mxGeometry>
34 </mxCell>
35 <mxCell id="13" parent="1" serverid="4" style="image;image=/com/

↪ mxgraph/examples/swing/images/server.png" value="Edge Server #4"
↪ vertex="1" warningmessage="Using auto-generated Server ID: 4">

36 <mxGeometry as="geometry" height="50.0" width="50.0" x="350.0" y="
↪ 220.0" />

37 </mxCell>
38 <mxCell edge="1" id="14" parent="1" source="5" style="" target="13"

↪ value="1">
39 <mxGeometry as="geometry" relative="1">
40 <mxPoint as="sourcePoint" x="370.0" y="350.0" />
41 <mxPoint as="targetPoint" x="380.0" y="270.0" />
42 </mxGeometry>
43 </mxCell>
44 <mxCell edge="1" id="15" parent="1" source="2" style="" target="13"

↪ value="5">
45 <mxGeometry as="geometry" relative="1">
46 <mxPoint as="sourcePoint" x="130.0" y="350.0" />
47 <mxPoint as="targetPoint" x="360.0" y="240.0" />
48 <Array as="points">
49 <mxPoint x="130.0" y="240.0" />
50 </Array>
51 </mxGeometry>
52 </mxCell>
53 </root>
54 </mxGraphModel>
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A.2 Creation of an Edge Server Using RTEF: An Example

Source code A.2: A minimal working example to create an Edge Server using RTEF.

1 import java.io.IOException;
2 import java.util.HashMap;
3
4 import de.dfki.edgesim.edgeserver.Configurator;
5 import de.dfki.edgesim.edgeserver.CoreNode;
6 import de.dfki.edgesim.edgeserver.CoreResource;
7 import de.dfki.edgesim.edgeserver.SecurityProtocol.Role;
8 import de.dfki.edgesim.service.Service;
9 import de.dfki.edgesim.utils.SimLogger;

10
11 /**
12 * This class is a minimal example to create an Edge Server using RTEF.

↪ Each line is explained in-line. Comments starting with [OPTIONAL]
↪ defines that they are not mandatory for the Edge Server to function.

13 */
14 public class TestEdgeServer {
15
16 /**
17 * Creates an Edge Server and starts its listening server.
18 *
19 * @param args for terminal arguments.
20 * @throws IOException in case an important config parameter is not set.
21 */
22 public static void main(final String[] args) throws IOException {
23 /**
24 * Logging level. INFO is for production, FINE and above are for debugging.

↪ As a parameter, a filename can also be given to log into a file as
↪ well. E.g. SimLogger.setFormatting("INFO", "log.log");

25 */
26 SimLogger.setFormatting("INFO");
27 /**
28 * Define the core resources
29 */
30 final CoreResource coreResources = new CoreResource(
31 10000, // speed of the server in MIPS, to calculate task execution time.
32 2, // total CPU count of this server
33 10240, // maximum available memory in MB, Not Implemented Yet
34 100, // maximum allowed memory usage in percentage, Not Implemented Yet
35 100, // bandwidth allowed upload capacity in percentage, Not Implemented

↪ Yet
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36 100, // bandwidth allowed download capacity in percentage, Not
↪ Implemented Yet

37 100, // maximum allowed bandwidth utilization in percentage, Not
↪ Implemented Yet

38 102400 // available disk space in MB, Not Implemented Yet
39 );
40
41 /**
42 * Each Core Node needs at least one user name password pair for login.
43 *
44 */
45 final HashMap<String, String> userCredentials = new HashMap<>();
46 userCredentials.put("username", "password"); // Action only with those

↪ credentials possible.
47
48 /**
49 * Additional users can be added later on.
50 */
51 // userCredentials.put("seconduser", "password2"); // Username should be

↪ unique.
52
53 /**
54 * Set some pair of configurations with at least one user credentials pair.

↪ The
55 * Core must have at least ID, NAME, PORT, and TOPOLOGYFILE keys. See class

↪ document for more details.
56 */
57 final Configurator configurator = new Configurator(userCredentials);
58 configurator.setUserRole("username", Role.OPERATOR); // Change user role

↪ to OPERATOR for full access
59 configurator.setConfig("ID", "1"); // Mandatory unique ID
60 configurator.setConfig("NAME", "Edge #1"); // A name for referencing
61 configurator.setConfig("PORT", 9091); // Listening port for remote

↪ commands
62 configurator.setConfig("TOPOLOGYFILE", "src/latMatrixConv"); // The file

↪ to store available nodes and their connections
63 configurator.setConfig("AUTOCONNECT", "false"); // [OPTIONAL] if set to

↪ true, known connections are reestablished if connection drops.
64
65 /**
66 * Combine core resources and configuration values together and create the

↪ server.
67 */
68 final CoreNode coreNode = new CoreNode(configurator, coreResources);
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69 /**
70
71 * [OPTIONAL] Create two VPs each assigning to one CPU and giving 50% and

↪ 100% execution capacity, respectively.
72 */
73 coreNode.addVirtualProcessor("VP0", 50, 100, 3); // All CPUs are allowed

↪ with 50% execution cap.
74 coreNode.addVirtualProcessor("VP1", 100, 100, 1); // Only CPU0 is allowed

↪ with 100% execution cap.
75
76 /**
77 * [OPTIONAL] If there exists a topology file created using Topology

↪ Designer it can be parsed using the following command.
78 */
79 // coreNode.parseTopologyDesignerFile("src/latencyExample.etd");
80
81 /**
82 * Register the Server in the network. Whenever a change in resources is

↪ detected, the network is informed with the changes.
83 */
84 coreNode.registerServer();
85
86 /**
87 * [OPTIONAL] Create local services. Services can be created while

↪ instantiating the Edge Server or added later using remote commands.
88 * If no CPU mask is used, then all CPUs are allowed for execution
89 * If publicity is not set, it is a public and can be accessed by other

↪ servers.
90 *
91 * MIPS: 10000, Relative Deadline: 30000, Type: SIMPLE, Direction: ONE
92 */
93 final Service service1 = new Service(Service.Type.SIMPLE, // Type
94 Service.Direction.ONE, // Direction: ONE no response needed.
95 30000, // Relative deadline in terms of MIPS.
96 10000, // WCET of the task in MI. In this server it will take:

↪ 10000/10000 = 1 second to execute if free.
97 1024, // Required Memory. Not Implemented Yet
98 1, // Thread per core. Creates a thread on each core
99 "loadGenerator",// Command to execute. loadGenerator uses internal load

↪ generator. This parameter is used to link the service to an actual
↪ software/program/command.

100 100, // How much percentage of the CPU is allowed for the
↪ execution.

101 "TestService" // Name to recall later. Used also to request tasks.
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102 );
103
104 /**
105 * If a service created in the code, creating them do not integrate them

↪ directly into the current server. Services must be added using
↪ addService(service). However, creating services via remote commands
↪ perform this automatically. If a service is to be created using a
↪ remote command, this line can also be omitted.

106 */
107 coreNode.addService(service1);
108
109 /**
110 * Start core node with a server thread. If used, a TCP server is created.

↪ If not used, the server only executes commands/methods defined in
↪ the main() method. In this case, if collaborative execution is
↪ desired, it is also necessary to establish connections via coreNode.
↪ connectTo(...) method and create links using coreNode.addLink(...)
↪ method. See method documentation for details.

111 */
112 coreNode.run();
113
114 /**
115 * [OPTIONAL] Scaler provides editable settings. See related component

↪ description for details. They can be omitted. Default values are
↪ given below.

116 */
117 // coreNode.setScalerEnabled(true);
118
119 }
120 }

A.3 Definitions

In IT and engineering, the meaning of some terms may differ from other domains or their daily
usage. Even in the same domain, some termsmay be used in different contexts. To avoid confu‐
sion and prevent ambiguity, in this section, some terms are explained. Whenever these terms
are used, the meanings defined in this section should be considered, unless stated otherwise.
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Edge Computing

According to the Oxford dictionary [Ox20], an edge is the outside limit of an object; the outside
border. When two objects intersect, their edges contact each other.

Edge Computing then means the computation at the borders. In this thesis, it means the com‐
putation performed at the point where the IT meets Operation Technology (OT) (Fig. 2.1). Edge
Computing is also named as Edge Cloud, Fog Computing, or Cloudlets [GUR18]. However, in
this thesis, only the term Edge Computing will be used.

Edge Server

A server is a software or hardware that provides functionalities to one or multiple programs or
devices. Servers can be hosting databases, files, or mails.

Edge Server in this thesis is hardware that utilizes a Real‐Time Edge Framework (RTEF) and pro‐
vides its functionalities to End Devices.

End Device

A source or destination device in a network is called an End Device [Th21]. An End Device in
the RTEF is a resource‐limited end‐user device that requests execution of jobs through Edge
Servers. It may have computing power, or only provide input to the Edge Server. In RTEF, they
communicate with the servers via a socket communication. An End Device can be a sensor, a
smart sensor, a machine, a computer, a mobile phone, or smart glasses. They can also be called
clients. They are allowed to have connections to multiple Edge Servers, but they ask for a job
only from one server. They also must obey the decisions made by the Edge Server.

Edge Network

A network, in general, is the interconnection of units to share information [Pe21]. A computer
network is a digital communication network that allows computing units to share resourceswith
each other via data links. The data links are established over cable media such as wires or optic
cables, or wireless media such as Wi‐Fi.

An Edge Network in this thesis is the collection of Edge Servers and End Devices which commu‐
nicate with each other using cable media to request jobs and/or respond to jobs.
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Edge Topology

Network topology is the arrangement of the set of participants in a network by creating links
between them and creating a network structure. Edge Topology in this thesis is the creation of
the network structure by linking Edge Servers and End Devices in the Edge Network. Network
topologies can be classified as point‐to‐point, bus, star, ring, mesh, daisy chain, and hybrid. This
thesis does not limit the Edge Topology, and the network can be organized using any of the
available topologies.

Process and Thread

A process is an instance of a runnable program, which consists of an executable object code,
usually read from some hard media and loaded into memory [SBG09].

A thread, which is also known as a ”light‐weight process”, is an execution context. Each process
contains at least one thread. Once a process contains several execution threads, it is said to
be a multi‐threaded process. Multiple threads allow concurrent programming. On multi‐core
systems, this is called true parallelism [BC05].

Each process gets a unique ID as soon as it is executed. If the process is single‐threaded, the
process ID is equal to the thread ID. In the multi‐threaded process, each thread gets a unique ID
[Li20c], but they share their address spaces between each other. This allows them to commu‐
nicate with each other without using any kind of Inter‐Process Communication (IPC) methods;
thus, context switching is inexpensive and fast.

To illustrate the different kind of threads, a POSIX‐compliant system can be considered. Under
these systems, there are two types of threads: User threads and kernel threads. User threads
that work on user‐space are created with user‐level library Application Programming Interface
(API) method, pthread [IE18b; IS09]. Kernel threads, however, work in the kernel space and
are created by the kernel itself. They reside solely in the kernel space. Nevertheless, similar to
user threads, they can be scheduled and preempted. The only difference of kernel threads is
that they do not have a limited address space [Lo10].

Service

A service is a piece of software that is reusable to perform a specific work. According to Rus‐
sell [Ru14], a service is a combination of reusable software functionalities and the policies that
define its usage. In this work, a service is the wrapper of a program that defines the program’s
behaviours and how it should be executed. One program may have several service definitions,
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each with a different execution behaviour. A program cannot be executed in an Edge Server if
it does not have a service definition for it. A service has several parameters to be set, based on
the software characteristics such as execution duration, relative deadline, execution capacity,
Central Processing Unit (CPU) affinities, etc. A service also announces the Edge Server that this
program exists and is available for use. These parameters will be discussed in further detail in
Sec. 4.2.5.

The architecture defines three types of services: Legacy, Simple, and Simple Periodic. Legacy
and Simple services assume that the program runs once, but they slightly differ from each other.
Once the Legacy services are preempted, their execution starts from the beginning. However,
Simple services can resume execution after being preempted, and their runtime since the be‐
ginning is remembered. As the name suggests, Periodic services assume the program runs re‐
peatedly, and each repetition starts after its period. They are also preemptible. More details
on services and their types are explained in Sec. 4.2.

Task

The definition of the task is ambiguous. Itmaymean a process, a thread, the process of a thread,
or a set of threads.

In this thesis, tasks are the individual running instances of services; hence, the programs. They
carry out requests that are defined by services. Tasks may request execution of a single com‐
mand or process, or multiple processes.

Another term that falls under the task category is ”multitasking.” Multitasking is an ability to
run multiple tasks by switching between the tasks during their life cycles. This is different from
parallelism; hence, it does not necessarily require multiple cores. During multitasking, only a
single task is active, and the other tasks are paused or suspended. Task switching is performed
seamlessly without the user noticing.

Jobs

In real‐life, a job is a set of tasks [Ca20b]. However, in IT, the definition of the job is ambiguous.
Based on the operating system (OS) concepts, a job may also mean a set of tasks or each step
of a task. In this thesis, the job has the same meaning as the task.
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