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Nomenclature

Abbreviations

ANN artificial neural network

CMO constant molar overflow

DMPC distributed model-predictive control
EQ  equilibrium stage

MPC model-predictive control

NEQ nonequilibrium stage

PDE partial differential equations

PI proportional-integral controller

PID proportional-integral-derivative controller
PLS partial least squares

QP  quadratic programming

RGA relative gain array

S-DMPC sensitivity-driven distributed model-predictive control
SP  setpoint

VLE vapor-liquid equilibrium

Greek letters

« observer tuning parameter, see Eq. (3.3)

o observer tuning parameter

ATf:d predicted temperature difference between two trays k& and m

*

0y deviation of the estimated vapor compositions from the estimated equilibrium com-
positions, see Eq. (3.6)

Ahro heat of vaporization

0T  vector of temperature differences, see Eq. (3.7)

ATy, temperature difference between two trays & and m

v,  activity coefficient of component 4
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Nomenclature

Aum, Ay parameters specifying liquid dynamics with respect to holdup and vapor flow rate
changes
L

vy liquid phase molar volume of component @

iLJ- fugacity coefficient of pure component i in the liquid phase
Xj fugacity coefficient of pure component ¢ in the vapor phase
P Jacobian of the vapor-liquid equilibrium function

&y, & correlation constants in pressure relation

Latin letters

f(z,t) majorant of f(x,,t), see Eq. (3.14)

T vector of all temperature differences in the plant, see Eq. (3.8)
Az, Au, Ad, Ay vector deviations in state equation, see Eq. (5.6)

D estimated mass transfer matrix, see Eq. (3.4)

H, F, A, B matrices in QP formulation, see Eq. (5.22)

Tz, Ta, Tu matrices in prediction equation, see Eq. (5.17)

£ (-) function specifying vapor component i

f¥e  vapor-liquid equilibrium function

A, B, C matrices in state equation of the plant, see Eq. (2.65)

A, Be, C., D, continuous-time matrices in state equation, see Eq. (5.7)
Aq, Bg, C4, Dy discrete-time matrices in state equation, see Eq. (5.12)
a; interfacial area between liquid and vapor phases on tray j

A1,y Buiy, Ciy, inner matrices in state equation of the plant, see Eq. (2.66)
rsits brsits Crsts hoins Foy si, SUb-matrices, see Bq. (2.67)

CY,CE efficiency factors with resistance on the vapor and liquid side, respectively
C, efficiency factor with resistance on the vapor or liquid side
Ejrvi; Murphree tray efficiency for component i on stage j

E)vj; multi-component Murphree tray efficiency on stage j

Eov,;; Murphree point efficiency for component 7 on stage j

Eov; multi-component Murphree point efficiency on stage j

3 flow rate through a valve

f(z,&,t) redefinition, see Eq. (3.11)

fY function specifying liquid dynamics

FjL feed liquid stream on stage j
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Nomenclature

Al
F].V
Fy
Fj
Fo
Fraz
h;o/,
hp
hr
hgr
hgv
hy
Jj
Ky

KY

J
L
MF

MY
my

M,
m sec

Ni;

function specifying vapor dynamics

feed vapor stream on stage j

distillate flow rate

side stream on stage j

bottom flow rate

maximum flow rate through a valve

total height of the liquid on tray j

enthalpy of feed stream F'

enthalpy of liquid stream L

enthalpy of stream S*

enthalpy of stream SV

enthalpy of vapor stream L

interphase stream on stage j

matrix of mass transfer coefficients in the liquid phase on tray j
matrix of mass transfer coefficients in the vapor phase on tray j
liquid stream leaving stage j

liquid holdup on stage j

vapor holdup on stage j

number of stages in column [ in-/excluding feed stages/condenser and reboiler
holdup of component ¢ on stage j

number of stages in a distillation column section

molar flux between the vapor and liquid phases of component ¢ on stage j

NTUp; matrix of numbers of transfer units for the liquid phase

NTUpy,; matrix of overall number of transfer units on tray j

sat

p;
Dj
q
Qc
Qr
qL,0
R
5y

gV

J

S

vapor pressure of component ¢
pressure on stage j

number of components in the mixture
heat flow out of condenser

heat flow into reboiler

thermal condition of the reflux flow
ideal gas constant

side liquid stream on stage j

side vapor stream on stage j

side stream on stage j
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Nomenclature

Sactuar Current valve stem position
T; boiling temperature on stage j

U; internal energy of both phases on stage j

V; vapor stream leaving stage j

x, y, z vectors of all liquid and vapor compositions in the plant, see Eq. (2.64)

a1, Y, 21 vectors of all liquid and vapor compositions in column [, see Eq. (2.63)
Tij, Yij, %, molar liquid, vapor or feed fraction of component 7 on stage j, page 12

Zj1, Y, 251 vectors of all liquid and vapor compositions in column [ on stage j, see
Eq. (2.62)

*

y vapor compositions in equilibrium with liquid

Mathematical symbols

o Hadamard product

() time derivative

R"™  vector space over R

R™™ n x m matrix space over R
L(-) linear function

N(-) nonlinear function

Subscripts, superscripts, accents
)™°™ nominal value
ree (-)s refers to a quantity in the rectifying or stripping distillation sections

true refers to a quantity in the plant replacement model

difference between estimated and measured quantities

(.
)
)
(-)j, stage number selected from all stages in the distillation column
()
() nominal value of the variable

()

an observer variable
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