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Starting out from Descartes’ and Lcibniz’ idea of a mathesis
universalis the achievements of modern mathematics are di-
vided into three major parts: The creation of algorithms, the
invention of proof’s, and the application of mathematics to the
description of nature. This applicability has repeatedly been
viewed as being just a miracle. One major idea to diminsh the
miraculous impression was to view mathematics as exploring
the vastarea of all kinds of abstract structures, thus establishing
a huge store of humanly possible thinking from which the
physicist has only to choose the structure appropriate for the
case before him. There rcmains, however, the problem of
mathematical overdetermination of physics: the structures suit-
able forapplication usually contain mathematical clements that
remain without physical interpretation. The true miracle then
seems to be that it is often very difficult, if not impossible, to
eliminate those uninterpreted elements from physical theory.
(Author)

1. The Dream of a mathesis universalis

As the title of my address indicates, [ am going to treat
a systematic subject, but in doing so I will not fail to take
Leibnizas my point of departure - which is indeed the very
least one may expect of an address designated to keynote
a convention dedicated to Leibniz. As we all know, the
numerous plans entertained - but never completed - by
Leibnizincluded also a planfora so-calledcharacteristica
universalis or lingua generalis, so let’s say: fora univer-
sal language with the wonderful properties that its mere
grammatical mastery would make one speak truths and
nothing but truths, including truths that would be novel
ones in a very essential sense. Earlier, Descartes had,
under certain conditions, dared

“to hope for a readily recognizable universal language, casy

to pronounce and to write, which, to mention the main point,

would also help the human intellect in presenting all objects

so clearly to it that it would be well-nigh impossible for it to

be deceived ( . . . ), and by means of which peasants could

el

judge on truth better than philosophers can now*'.

That was in 1629, and less than half a century later we
find Leibniz entertaining similar ideas:

“If one could find characters or symbols®, he says, “which

would be capable of expressing all our thoughts as clearly

and precisely as arithmetic expresses numbers and analytic

geometry expresses lines, then one would evidently be able

to do with all objects, insofar as they are subject to rational
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thinking, that which one docs in arithmetic and geometry*.

Hence the example after which the universal language
of thought is to be patterned is for Leibniz - as it was in a
sense for Descartes, too - mathematics, and it is also clear
just what it was about mathematics which one hoped to
exploit in the new, far more sweeping enterprise: the
things one desired to make philosophical capital of were
its proofs and its mechanically reproduceable calcula-
tions, of whose stringency and simplicity one wished that
even the very process of thinking itself should benefit.
What blissful state of rationality, once one had accom-
plished that!

“One would“, wrote Leibniz, “convince everyone of
one’s findings or discoveries, since the calculations could
easily be checked out (. ..). And if anyone should doubt
my words, I would tell him: ‘Let’s calculate, Sir!” and,
taking pen and ink, we would soon extricate our
embarassement‘?,

Leibniz also left us clues as to how he let himself be
guided by mathematics in constructing a characteristica
universalis. The mental germ-cell was some sort of a
principle of greater explicitness of language or the reduc-
tion of arbitrariness in the symbolic representation of
contents. Letus take, forexample-to follow Leibniz*- the
arithmetical fact that three times three equals nine. In the
decimal system we express this truth in a form by which
no one can tell how this equation came about. The correct
formulation of this equation in the decimal system is a
mere matter of designation: In the binary system, on the
other hand, this question is already disposed of with the
firsttwonumbers zero and one, and therepresentations of
the numbers three and nine are already expressions of
facts in thebinary system. In particular, when calculating
in the usual fashion we will obtain together with the
product also, in a way, its designation, Correspond-ingly,
in the case where non-mathematical and in particular
philosophical subjects are included, the intention prob-
ably wasto constructthe universal language in such a way
that in its formal structure it would become, to the highest
possible extent, an image of the contents of the objects it
was designed to express. As Leibniz gushed as late as
1695:

“If God grantsme enough time of life and freedom, I hope to

design akind of philosophy no one has yet seen the likeness

of, for it will rightly possess the clarity and certainty of
mathematics, containing as it will something similar to
calculation. Admittedly, it is not yet possible to decide all
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questions with its aid, but such dccisions as arc taken on this
basis arc indisputable. ( . .. ) Once the trail has been blazed,
posterity will march forward on it“.’

Has it so marched forward, and where do we stand
today? These are the questions on which I wish to say
something in the following - but not, mind you, as a
historian, which I am not, but in a reflection by a
philosopher of science®. In so doing I hope to be able to
proceed from the assumption that people like Descartes
and Leibniz positively felt that the mathematical disci-
plines of arithmetic and geometry, already available then
as more or less complete, self-contained systems, notonly
were capable of being developed furtherintrinsically, but
also still fell short of being representative for the entire
realm of the mathematically possible in the first place.
The development of mathematics in the 16th century was
certainly conducive to strengthening such a feeling in any
person. The new algebra, the beginnings of analytic
geometry and the invention of infinitesimal calculus were
clear indications of a beginning expansion of mathemat-
ics both in a methodical and an objective respect. It took
all the philosophical optimism of the epoch, however, to
jump right away to entertaining, and seriously pursuing,
the idea of a universal language of thought or a mathesis
universalis. Even in the present age of giant computers
and artificial intelligence we are far removed from imag-
ining that, in the end, a/l rational thinking is - let alone:
should be - mathematical thinking. But we can all the
more readily sympathize with the cxpectation of the time
that mathematics was about to undergo a ma jor expansion
knowing, as we do, with all the undeserved superiority
granted by historical hindsight, that that is exactly what
happened.

Our reflections in the following will not, however, be
restricted to the question of in how far thedreams inspired
by the mathematics ofthe epoch ofalingua generalis, and
ars inveniendi, a mathesis universalis have led at least to
a new and expanded vision of the mathematically possi-
ble.

In the very spirit of the aforementioned classical au-
thors, the concept of the universality of the mathematical
includes more than doing justice to the full structural
richness in abstracto. It also includes the concrete occur-
rence of abstract structures in as many fields as possible
of reality - for example the far-reaching embodiment of
the mathematical in nature. Together with the question
“Just what is generally understood by the term mathemat-
ics?*, Descartes raises the further question “Why not only
(arithmetic and geometry), but also astronomy, music,
optics, mechanics and several other (branches of science)
are designated as mathematical disciplines“”. Today one
will be the most readily understood if alongside the
question of the scope and systematics of mathematics
itself one poses the question of its fundamental applicabil-
ityandthe extent of its actual application. Now right here
is the point where we have reached the main title of this
address, having crossed, as it were, the bridge leading to
it from Leibniz’s “Calculemus!“. The question at issue is
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how and to what extent the rationalistic claim of the
universality of the mathematical presumptuous though it
probably was at the time, has meanwhile been honored in
theory and practice.

In making a few remarks on this subject in the follow-
ing, and thus speaking about mathematics and also a little
bitaboutlogic, I will be speaking about something which
is not everyone’s cup of tea. Although everyone will at
some point in his or her life have come into contact with
mathematics, for many onc the upshot of this experience
will beno more than the recollection of seemingly endless
hours of mathematical lessons at school. Mathematics
and logic have entered into everyday language in seem-
ingly different ways. We hear people say that this or that
matter is just “higher mathematics* to them, or that some
other thing is just “logical“, meaning in the first case:
“This I don’t understand, it is beyond me*, and in the
second case: “that goes withoutsaying; it is crystal clear®.
Thus, logic seems to be making out even a little better in
popular language than does mathematics. In actual fact,
however, what is meant by the second locution is just as
little logical in the proper sense as the first one is
mathematical in the proper sense. Despite this, on the
whole, none too encouraging situation I may of course be
assured in this circle of Leibniz scholars and Leibniz fans
that the subject I have selected will not appear to be outof
place. In view of my ensuing remarks my references to
Leibniz will not be in the nature of a cloak coveringup a
merely casual interest of this great man in mathematics.

There is anice storyaboutHilbert, When at a gathering
everyone was asked to say what question he would ask
when being waked up from three hundred years’ sleep of
deathandbeing permitted to ask one single questionas to
how things had meanwhile progressed on earth, Hilbert
said he would ask whether Riemann’s conjecture had
meanwhile been proven. Now if Leibniz were given this
opportunity here and now, he might well ask us, I think,
how matters were with his mathesis universalis. So let’s
tell him!

2. Two Internal Achievements of Mathematics

To start with a formality: Wealready learned that from
ancient time mathematics was subdivided into arithmetic
and geometry. Added to them in the course of time were
a few fields of application we heard Descartes mention,
and in the 17th century mathematics in a narrower sense
was joined by algebra and infinitesimal calculus. As far
back as 1868, the yearbook on Progress in Mathematics
subdivides mathematics (including its fields of applica-
tion) into 12 subfields, followed, for greater clarity, by a
still more detailed subdivision into 38 fields. In the
Mathematical Reviews of 1979, two comparable subdivi-
sions produce 60 and approximately 3400 subfields re-
spectively®. Thus, particularly within the past 100 years,
we are confronted here with an expansion and dif ferentia-
tion of mathematics which actually defies description: An
absolutely fantastic development which even our bold
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prophets of a mathematical univeral science would cer-
tainly be rendered speechless. At the same time it is clear
that it would be simply ridiculous to try to present, in a
lecture, an adequate impression of the state of things, let
alone of their development. Nevertheless, in this second
part of my address, still with the whole of mathematics
before our eyes; I propose the following subdivision into
three for the consideration of us all. Unlike the classifica-
tions already mentioned, intended as means to organize
the immense mass of material, our division into three is
oriented to the question, just what, in a more qualitative
sense, mathematics accomplishes. And here the possibil-
ity suggests itself of distinguishing between an algorith-
mic, a demonstrative and a descriptive accomplishment.
This distinction is not one that has just become possible
for modern mathematics. All three accomplishments
have been known ever since antiquity, all of them arc
present in Leibniz’s design for a universal mathematics,
and each one of them has undergone a tremendous
expansion since then.

Algorithms are known to us all in the form of the four
fundamental rules of arithmetic with rational numbers in
the decimal system. Everyone knows how two natural
numbers are to be added, and if the numbers are not too
large, he or she is also able to actually perform the
addition. This is simply a matter of calculating the value
of a function for given values of the independent vari-
ables. Another function one is taught at school to calcu-
late is the function by which the greatest common divisor
of two natural numbers is obtained: one calculates this
with the aid of the so-called Euclidean algorithm. Quite
generally an algorithm is a - so it is said - purely
mechanical procedure which in a finite number of steps
yields a well-defined result from given data. The decisive
thing is that it has been prescribed by wholly unambigu-
ous instructions just how every single step and how the
sequence of steps is to be carried out. The availability of
an algorithm is in the given case the compliance with
Leibniz’s “Calculemus!“ Whilethe pertinent basic idea is
as old as elementary calculation, it is only since little more
than fifty years that we have a precise conception of the
algorithm?. The definition of this concept and thus the
establishment of a strict science of the calculable is, in this
first field of accomplishment of the mathematical, the
outstanding event par excellence since the 17th century.
The adequacy of the definition is expressed in Church’s
thesis that every intuitively calculable function is also
calculable in the sense of the precisc definition, a thesis
which today is accepted by every mathematician.

This statement on the theory of the matter cannot be
made without mentioning also the corresponding prac-
tice. It is well known that besides the, shall we say,
Platonic tradition of philosophy with its high esteem of
mathematics there has also been a tradition of a rather
anti-mathematical orientation and that e.g. Hegel has
found less than kind words on the mathematical activity
of the human mind. These negative judgments pertain
predominantly to the algorithmic accompl-ishment of
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mathematics, and in fact, of course, the mere adherence
to an algorithm, once one has it, is so stupid an affair that
one may assign it to a machine. On the other hand, we
know better today than any preceding generation that a
disavowal taking place in so isolated a fashion is totally
out of place. For on the one hand the computer revolution
we are witnessing today - and 1 believe we may really
speak of a revolution here - is not, on its part, a mere
algorithmic accomplishment. Rather it is a highly com-
plicated technological development based not only on
mathematical, but also on physical progress. And in any
event it is based indirectly, by way of physics, on a
mathematical progress which has nothing at all or little to
do with algorithms. On the other hand the fact remains
that the transformation of our world through the compu-
ter is based on a thoroughly effective integration of its
algorithmic capability with other accomplishments.

I need not describe here in greater detail what un-
dreamt-of influence modern computers are meanwhile
exerting not only on our everyday life, but also on the
progress of science. There is only one thing I wish to
mention expressly. Normally the use of computers for
scientific purposes has a conclusive character: within the
framework of a sizable project they furnish e.g. numerical
data which form a decisive part of the overall result, and
this they do also e.g. in computer-assisted proof's within
puremathematics, forexamplein proving the Four Color
Theorem'?, In addition, however, computers also play a
heuristic part inresearch. True, anars inveniendi such as
meant by Leibniz and held possible until well into the
19th century we consider today to be impossible. But that
the heuristic use of computers in the recent past has
brought research ahead cannot be overlooked.

Atypicalexample isthe theory of deterministicchaos'.
Here the problem is the description of processes which
obey a quite simple mathematical law, but which both in
the individual case and in their totality may take place in
an extremely complicated way, in a word: chaotically. To
obtain an overview of such processes seems to overtax
even the brains of trained mathematicians. A computer,
on the other hand, gives one quite rapidly a vivid impres-
sion of the processes going on and of essential structural
characteristics. Usually this is quite sufficient for the
physicists, and the mathematicians will find that the
theorems they will have to prove are now occurring to
them. Euler is reported to have said: “If I only had the
theorems already! I would have no trouble finding the
proofs“. At least in the first part of this task computers
have an essential part today.

So much about the algorithmic accomplishment of
mathematics. Now, as next thing, a word about its demon-
strative function. Mathematics - it is said - is the proving
science par excellence. What is a mathematical proof?
This, too, is something mostofus will probably have been
confronted with at least once at school. That, of course, is
not sufficient to give us an impression of the fact that the
finding of proofs is the main business of mathematicians,
orofhow they goabout it. Characteristically, however, all
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professional attempts undertaken so far to round up the
proofs of mathematicians under a precise concept have
failed to be as successful as they were in the case of the
algorithm'?, There is no Churchian theorem for the
conceptof ‘intuitive’ proof. Wehave several explications,
but the practice of proving is not identical with any of
them. In comparison, it would make little sense to apply
an algorithm without, however, striving to be absolutely
precise in doing so. If we want to know the exact sum of
two numbers, we must apply the rules of addition exactly.
In contrast, mathematical proofs are often more plausibel
when they do not exactly follow the rules of an explicit
proof concept.

Nevertheless it must now be said here, too, that certain
insights into the concept of proof which we have gained
in the past 100 years through explicatory attempts consti-
tuted a giant step forward when these efforts are viewed
in the light of Leibniz’s aspirations and compared with
the then state of things. The essential recognition was that
to a decisive, formerly under-estimated extent the math-
ematical proofis simply a logical inference. The drawing
oflogically correct inferences has first of all, like calcu-
lation, the formal aspect that it occurs according to
precise rules which can be combined to describe, in the
aggregate,a calculatory procedure - a procedure governed
by logic. Seen thus, the drawing of conclusions is, there-
fore, related to calculation. A big difference, however, is
that the rules of calculation prescribe what - step by step
- one is obligedto do, whereas those for drawing conclu-
sions prescribe only what one is permitted to do. Perinis-
sible - roughly stated - is anything which preserves the
truth - which, without limitation of the generality of
truthful premises, leads to a truthful inference. The
frcedom left the seer of proof within this framework, as
contrasted with the blind “thou shalt* of calculation, is at
the same time that which makes proving harder than
calculating.

Therealizationthatproofs areessentially logical infer-
ences - only inferences - seems to reduce mathematics to
applied logic, which is something mathematicians loathe
to hear. In addition to that, there is the fact that the proof
of a thesis, although not being an algorithm per se, may,
in certain cases, quite well be replaced by one - by a
decision procedure, as they call it here. That this
trivialization of mathematics does not come to pass in the
more interesting cases is expressed by a limitation theo-
remofGodel . The dream ofa complete algorithmization
of mathematics, which Leibniz, too, entertained, has been
dreamt to its unsuccessful conclusion. The
metamathematical analysis of proofs and possibilities of
proof must, however, not be regarded anyway as an
attempt to describe what mathematicians actually do.
Rather, the sole issue at hand is the problem of relating
mathematical proofs to a concept so that, on the basis of
this proof concept, essential parts of mathematics should
become reconstructible. The aforementioned solution by
having recourse to logic is the best solution we know™,
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It may well come as a surprise to the outsider that the
reconstruction of mathematics’ proof-producing appara-
tus as being a logical apparatus is an insight that was
gained only in the post-Leibniz period, in fact only little
more than 100 years ago. Was not logic invented by as
ancient a community as the Greeks, and had not, since
Euclid’s opus, the demonstratio more geometricobecome
a paradigm of scientific thinking? Both, the one and the
other are perfectly true, and indeed logic and mathematics
have continued since then to be felt time and time again
to be somehow related. But this does not yet mean - far
from it - that e.g. the proof given by Euclid had been
expressly based on logic as it was known then. As we
know today, the underdeveloped status of Greek logic at
the time completely ruled out this happening in the first
place. It is only toward the end of the 19th centuy, first
and foremost in Hilbert’s Grundlagen der Geometrie
(Fundations of Geometry), that it becomes transparent
that the mathematical share in geometric proofs consists
of no more thgan logical conclusions from the axioms of
geometry™. The step forward taken in this connection was
a step of logic, not of mathematics. For the possibility of
logical deduction is based on the occurrence, in the
propositions connected by a proof; mponents of purely
logical significance, such as e.g. the words ‘and’, ‘or’,
‘not’. Burfortheformulation of mathematical statements
and the insight into their logical interrelationships it is
only the correct treatment of generality and existence -
hence of the logical components of statements we express
in everyday language with ‘for all’ and ‘there is’ - which
is absolutely decisive. Now these statements had, how-
ever, since Aristotle, hence for more than 2000 years,
been explicated only rudimentarily in the syllogistic basic
forms *Bappliestoall A’ and ‘B appliestosome A’. Even
the simplest theorems of geometry arc not correctly
analyzable syllogistically. Unbelievable though it may
sound, it was not until close to the end of the 19th century,
that the mathematically fully relevant use of generality
and existence was correctly recognized, particularly
through the works of Frege'S, to which this and that was
added later, but which undoubtely constituted the break-
through.

3. The Description of Nature

The characterization given so far of the demonstrative
power and accomplishments of mathematics is possibly
incomplete. When a mathematician is asked what the
purpose of a proof is it will be natural for him or her to
answer that the purpose is the insight acquired in the truth
of the theorem proven. He (or she) might also say that the
purpose is the establishment of a logical implication: the
theorem proven follows from these or those other theo-
rems. This latter answer would definitely close our sub-
ject. But the former answer, the one putting the truth issue
in the foreground , is heard more frequently. For those
mathematicians are probably in the majority who believe
that they are dealing with a mathematical subject sui
generis and unearthing truths about it. However, a proof

Knowl. Org. 23(1996)No.2

Erhard Scheibe: The Problem of the Application of Logic and Mathematics

https://dol.org/10.5771/0843-7444-1996-2-67 - am 13.01.2028, 07:07:48. Acce



https://doi.org/10.5771/0943-7444-1996-2-67
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

as described so far leads only - and this as a matter of
principle - to a shift or a postponement of the truth
question rather than to its resolution. For in every case the
question of the truth of those propositions remains open
Jjirom which, as premises, the proof was arrived at. If one
wants more than that, the description of the demonstra-
tive accomplishment becomes dependent of the question
as to the object of mathematics. With this question one
penetrates right into the center of the philosophic discus-
sion of mathematics - to the question as to the - as I will
call it -descriptive power of mathematics, which question
will as of now occupy us until the end. In this third section
we will first of all examine the separate, subordinated
question ofto what extent mathematics itself will be able
to provide us with an answer.

The answer, one keeping strictly within the framework
of mathematics, I will give to the question as to its subject
and descriptive power, will - in accordance with this dual
formulation - be a twofold one. For onething, the descrip-
tive power of mathematics is essentially - to put it some-
what paradoxically - an abstractive power which, in far-
reaching independence of the object, presents only some
such thing as its form and the form of what can be said
aboutit, this, however, with a certain completeness in that
all possible forms susceptible to application are indicated.
In the terminology that has become customary for this
accomplishment of mathematics one might express this
also by saying that mathematics considers structures
types of structures in abstracto . And, as we already did
before in the case of algorithms and proof's, we can now
also say with respect to structures and types of structures
which we have developed for them in our 20th century a
conceptuality granting us expanses and depths of vision
which would have made the heart of a Leibniz beat faster.
Similar to and in connection with the concept of proof, it
again is the expansion of logic and of its languages which
has made this new perspective possible. But, again, we
find that here, too, the conceptuality of structure has not
been definitely settled. Forthis, too, we have no Churchian
thesis. Yet the exactness of this conceptuality will leave
everything far behind it which is understood elsewhere by
‘structures’ - a vogue-word, a fashionable expression of
the 20th century.

Above all, however, we are truly confronted here with
amathesis universalis: an incredibly wide formal descrip-
tion framework which leaves the contents to a large extent
open. This framework is far wider than what Descartes
understood by order and measure when he said “that, to
be precise, everything must be considered as mathematics
which is marked by a search for order and measure*".
And when he continues “that it does not at all matter here
whether this measure is to be looked for in the numbers or
in the figures or the stars or in the tones or in any other
object®, then we can, with far more right, say the same
thing of the modern mathematics of abstract structures.
Somewhat pithier to our understanding and illustrative of
developments since then is how George Boole expressed
himself 200 years later with the words:
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“Anyone familiar with the present status of symbolic alge-
bra knows that the validity of the operations of mathematical
analysis does not depend on the interpretation of the sym-
bols used (...). Every interpretation which leaves the truth of
the assumcd relationships intact is equally admissible, and
it is in this sense that the same operation constitutes in one
interpretation the solution of a problem on properties of
numbers, in another one of a geometric problem, and in a
third one of a problem of dynamics or optics.“'"

But Boole, too, is standing - in the mid-19th century -
only at the beginning of the uninterrupted upswing to-
ward the universal mathematics of structure. This up-
swing was only made possible by Cantor’s theory of sets
or aggregates and Hilbert’s formalistic program. Under
the influence of Hilbert, including his interest for the
physical applications of mathematics, it thereupon was
the Gottingen school of mathematicians, particularly
Emmy Noether and her students, who contributed essen-
tially to the development of the new views. Van der
Waerden’s Moderne Algebra of 1936 probably was the
first textbook in the new style, with Bourbaki’s math-
ematical encyclopaedia of the 1950s and 1960s forming
the crowning conclusion®,

Nowwhatare structures and species of structures inthe
sense of modern mathematics? With a view to traditional
mathematics one will assume that e.g. geometric figures
- straight lines, circles, polyhedrons, etc. - are mathemati-
cal structures, as are, without a doubt, the natural num-
bers of arithmetic. That is quite correct, too, if in addition
the following essential consideration is made: When we
say of a geometric figure that it is a circle, or of a number
that it is a primenumber, then in doing so we are referring
to a larger entity - to the system of all numbers or to space
as a whole -, while furthermore applying certain universal
structures to these entities - e.g. multiplication, or the
function of distance - , and without our doing this we
would be wholly unable to say anything about the indi-
vidual structures, so familiar to us, of number and figure.
Structures in the sense of modern mathematics are,
therefore, fairly comprehensive, usually infinite forma-
tions consisting of one or more basic domains whose
elements, subsets, etc. are structured by properties and
relationships. Against traditional logic, the matter to be
particularly emphasized here is themany-termed (proper)
relation, which to understand was a source of dif ficulties
until far into the 19th century. Here in the descriptive
field, matters are exactly the same as they are in the
logical field with respect to existence and generality:
Without including proper relations in our considerations
a reconstruction worthy of the name of scientific asser-
tions is out of the question. The second essential insight
which made the modem concept of structure possible was
the inclusion into the considerations of properties and
relations of higher order™®. The property of being a prime
number is in the system of natural numbers a property of
the I st order, sinceitconcerns theelementsofthis system.
On the otherhand, the property of being a circle no longer
concerns the points of the given space, butitssubsets. Her
we are dealing with a concept of the 2nd order, and even
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concepts of a still higher order are continually being used
today in applications of mathematics. Many-termed con-
cepts and concepts of higher order form today the germ
cell for a recursive procedure for introducing within a
theory of sets or a logic of types the general concept of
structure'.

Now to what extent is use being made within and
outside mathematics of this newly-acquired generality?
When we look first of all to the applications, the answer,
in a strict sense, must be: to an‘infinitesimal extent. In all
strictness, however, this is only intended to mean that by
the very nature of things we can only make a finite use of
a potentially infinite diversity of types of structures, and
in principle there is nothing at all we can do to change this
ratio. But in comparison with the situation in the 17th
century the situation existing then has meanwhile been
considerably expanded. First ofall there have been expan-
sions in the sense that wholly new types of structures have
had to be resorted to in order to arrive at an adequate
description of the objects of application. The most im-
pressive examples of this are furnished us by physics, still
constituting as it does the most mathematics-oriented
empirical science we have. In generalizing the Newtonian
space-time, but simultaneously in deviating from it, the
general relativity theory has led us to consider the so-
called Lorentzian manifolds. A particularly dramatic
turn was brought about by the quantum theory, when
Hildert spaces and Banach algebras were used to describe
states or properties of anatom or clementary particle. This
marked the first time that, to the great surprise of physi-
cists, non-commutative algebras were introduced into
physics. Likewise, the classic probability spaces resorted
to to describe common statistical phenomena must be
included in the list of novel structures frequently being
applied today - far beyond physics - in the empirical
sciences?’,

Whereas these expansions occupied physicists par-
ticularly in the first half of this century, we are since
recently confronted with the realization that internal
expansions of already known types of structures arc
becoming physically relevant. As an example we may
mention number-theoretical structures. To the outsider
this may sound surprising, thinking as he does that, if
anything, the natural numbers have been populating
physics for a long time. This is undoubtely correct, but
only in the sense that, from a mathematical point-of -view,
the number structures that had found application were
fairly uninteresting ones. Number theory in the narrower
sense has always been the 1’art-pour-1’art show-ob ject of
mathematics. The British. number theoretician Hardy
even prided himself of the utter uselessness of his doings,
and in the Anglo-Saxon realm onespeaks of Hardyism as
the attitude that claims the self-sufficiency of mathemat-
ics?!. But things have changed since recently, and Steven
Weinberg reported only the other day of his statisfaction
over having been able, in a paper on the string theory of
the elementary particles, to quote Hardy, whose determi-
nation of the so-called partitio numerorwm - the number
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of additive splittings-up ofa natural number - he hasused
in his work (23). But also into a field so close to life as
room acoustics - to mention only one finther example -
number-theoretical structures have penetrated. To im-
prove acoustics in modern concert halls with a too low
ceiling, aceiling profile hasbeen proposed which follows
the powers of a primitive root of a Galois field (24).

Another class of structures whose recent appearance in
physics came as a surprise are the so-called fiactals (25).
If a hundred years ago mathematicians had made bets on
what mathematical structures would most certainly never
find application outside mathematics, highly plausible
candidates for such bets would have been, for example,
the so-called Cantor sets or the function, found by
Weierstrass, that is continuous everywhere but nowhere
differentiable. Now how do such adventurous structures
ever find application? The Greeks never made even so
much as a starton physics, since the natural goings-on on
carthappearedimmeasurable complicated to them. Newer
physics lived for 300 years off the discovery that these
complicated goings-on nevertheless obey simple laws.
Now that we have come quite far already in knowing and
understanding the laws of nature, interest is increasingly
being directed toward the contingent happenings in all
their complexity. And there we find e.g. in the determin-
istic chaos theory already mentioned that for characteriz-
ing the solution behavior of quite simple equations such
exotic sets offer themselves as e.g. the aforementioned
Cantorian sets (26). Such a set is arrived at by starting
from a finite interval which is divided into three equal
parts, of which one leaves out the middle one (without its
end points), following which one performs exactly the
same procedure with the two remaining intervals, then
again with the intervals remaining after this second
round, and so forth. The residual set will cover the
original interval as thinly as desired, yet it still contains
exactly as many points as the original material. The
discovery of such a monstrosity was worthy of a Cantor.
What we are confronted with is the problem why we find
such structures in textbooks of mathematical physics.

So far I have spoken of the descriptive power of
mathematics only insofar as it can be left open where the
structures come from in concreto which mathematics
considers in abstracto. Atthe close of this section a word
is still needed on whether mathematics itself does not
already furnish us structures. Two iemarks on this ques-
tion must suffice us forthe following. On the one hand the
remark that models of a theory of sets answer this
question adequately at least when in the spirit of the
purpose of this address present-day mathematics is re-
garded in the light of the idea of a mathesis universalis®.
Evidently this answer is not unequivocal, but each one of
its intended specifications would permit, in a super-
abundant measure as far as the applications are con-
cerned, a uniform construction of mathematical struc-
tures. In this connection it is not necessary at all - and here
comes the second remark - to visualize a model based on
the theory of sets as a platonic heaven. Sufficient to us is
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the empirical fact that man is capable of the mental
constructions concerned. No matter how he may have
reached this point, we can furthermore note that in this
spiritual world truths apply which we are able to realize
withoutresorting to experience, without experiments and
without observations on material objects and which reali-
zations are accompanied by an uncommon measure of
certainty. Now what, under these assumptions and in the
light of everything said so far, does the application of
mathematics to nature look like?

4. The ‘Unreasonable Effectiveness’ of Mathematics

Ever since the beginning of modern physics, physicists
have been convinced that - as Galileo already put it - “the
book of nature is writtcn in the language of mathematics*
(30). Furthermore, it has been expressed time and time
again that the positive usability of mathematics for our
understanding of nature borders on the miraculous. To
Kepler and Galileo this miracle consisted in our being
able here, if anywhere, to directly read God’s thoughts. A
modern physicist, Eugen Wigner, says: “The enormous
usefulnss of mathematics in the natural sciences is some-
thing bordering on the mysterious, and there is no rational
explanation for it“ (31). The only possibility of an expla-
nation thereuponsuggested by Wigner is an aesthetic one,
adopted by him from Einstein: “The observation which
comes closest, to an explanation (...) is Einstein’s state-
ment that the only physical theories which we are willing
to accept are the beautiful ones“. But Einstein still had
other things to say on the matter, and in this final section
I will take up his cuc and that voiced in a parallel remark
by Steven Weinberg, one of the founders of the theory of
electroweak interaction.

Einstein and Weinberg likcwise make no secret of the
fact that they find themselves confronted here with a
miracle of sorts. Einstein speaks of the

“riddle which has troubled researchers of all times so
much. How is it possible that mathematics, which after all
is a product of human thinking independent of all expe-
rience (and whose theorems are absolutely certain and
indisputable), fits the objects of the real world so per-
fectly? (32).

Weinberg presents as it were an empirical confirma-
tion of the miracle in enumerating the many cases in
which a sspecies of structures used by physics had been
found already before by the -mathematicians and now
merely needed to be correctly applied.

“It is positively spooky®, says Weinberg, “how the

physicist finds the mathematician has been there before
him or her*®.

- The mathematician becoines so-to-speak the physi-
cist’s Man Friday. Is there any explanation for this team-
play?

Einstein has tried to solve this riddle through his now
famous statement: “Insofar as the theorems of mathemat-
icsrefer to reality they arc not certain, and insofar as they
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arc certain they do not refer to reality”. Weinberg offers
us, in contrast, the following explanation:

“Mathematics is the science of order; so perhaps the
reason the mathematician discovers kinds of order which
are of importannce in physics is that there are only so
many kinds of order*.

These two explanations seem to state wholly different
things. In actual fact, however, they form part of the same
picture and complement each other. Each is associated
with a specific basic feature of modern universal math-
ematics as I pictured it: The attempted reduction of the
mathematical in the proper sense to the logical-formal
drawing of conclusions, thus simultaneously gaining the
immense richness of possible structures which lend them-
selves to such drawing of conclusions. Einstein elucidates
his view by remarking that it was only through modern,
axiomaticly-oriented mathematics that we received abso-
lute clarity as to the fact “that through it a clean break was
achieved between the logical-formal and the objective
(....) contents (and that). only the logical-formal (....)
(forms) the object of mathematics®. It is thus precisely
through this isolation that mathematics acquires its much
admired certainty. But as soon as we take mathematics out
of this isolation and apply it to reality it loses this
certainty, or, to put it more precisely, it acquires as
applied mathematics an uncertainty: the uncertainty,
namely, of the decision which ones of the infinitely many
species of structures that can find application we should
select in a concrete application case. This, now, is the
point where Weinberg’s statement intervenes. Formu-
lated roughly, his statement says: Some kind of structure
will do the job. It is like shopping in a department store:
Some suit will fit. Modern mathematics offers us, in its
present-day form, afl forms of exact thinking man is
capable of . By selecting one ofthem to use, we do the one
and only thing we are in a position to do at all. And the
choice we have is gigantic. Small wonder that we find the
right thing,

Does the Einstein-Weinberg view explain the pre-
established harmony of mathematics and reality? On this,
many a thing could be said: I would like to conclude my
address with the attempt to describe a difficulty which'is
left out in this explanation and which still surrounds the
functioning of the matter with the aura of the miraculous,
To begin with, it is of course correct that in comparison
with the traditional stock of mathematics the immense
structural richness of present-day mathematics scales
down the miracle of its applicability. In the 17th century
the rejection of geometry would have meant the rejection
of the entire half of mathematics. One would not have
known at all what to put in its place. Once,however, the
new universal-mathematical perspective had been gained,
the abandonment of the old geometry in favor of another
one appears simply as a transition of one kind of structure
to the next one. This does not mean that we or our
descendants will never have to be astonished again. No
one can tell whether we won’t find ourselves compelled
some day, for reasons coming e.g. from physics, to
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abandon the af oredescribed contents-oriented mathemat-
ics in favor of an alternative. In quantum field theory, and
thus in a solid piece of fundamental physics, a variety of
‘mathematics’ isused today which does not possess a set-
theoretical model, thus constituting insofar a riddle.
Likewise, we are acquainted today with mathematically
or physically motivated expeditions into border areas of
mathematics in the contemporary sense such as €.g. non-
standard analysis, non-Cantorian theory of sets,
multivalued logic, quantum logic andthe like?. But on a
mathematics of quantumfield theory westill lack eventhe
beginning of an idea, and the other undertakings have
not, inany case, led sofar to a revolution of mathematized
science which one would be compelled to follow.

But also with respect to our present-day understanding
of the subject there remains, as stated before, a rest, I will
call it the phenomenon of the mathematical
overdetermination of physics*. Roughly put, it consists
in our having, in the theories of physics, frequently more
mathematics than we can interpret physically. Let us get
the genesis of this surplus straight in a very simple case,
e.g. that of the state equation of a gas. With a gas equation
the physicist would like to formulate a lawlike relation,
valid for many gases, between pressure, volume and
temperature. Although united in one gas, these quantities
are rather dissimilar in nature, and at first glance it is not
evident at all where a possibility should come from to
formulate a relationship - any relationship - between
them. The trick by which this is de facto done goes as
follows: pressure, volume and temperature have this in
common that their values can be described by number:s.
Through this uniforming, that which first seemed impos-
sible now all of a sudden becomes possible: the entire
fulness of three-termed relations between numbers is
available for the formulation of a gas equation. However,
a price must be paid for this: these relations between
numbers likewise do not gratuitously fall down from
heaven; rather, they are based on the elementary calcula-
tory operations and on the limiting processes possibly
involved. And the mathematical entities thereby appear-
ing on the scene have no significance in the gas theory
arrived at in the given case. Hence we did net acquire our
physical law here by reconstruing it as a proposition in
concepts that are physically understandable throughout.
Instead, we have acquired the physical structures sought
for by imbedding them into richer structures at the price
that their elements will, and even should remain physi-
cally unintelligible. And that we obtain physically useful
laws in this fashion is really a miracle.

Nevertheless this miracle would not have to upset us if
itwere an isolated case here. In fact, however, this is only
a description of what happens normally. 1t is wholly
normal that in physical theories - semantically formu-
lated - terms occur for which no physical significance,
however indirect a significance may be, has ever been
even so much as intended, although these terms occur in
a descriptive position. Anyone not knowing how the
formalism is to be interpreted in the first place might well
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regard these de facto non-interpreted terms with equal
justification as interpreted as the actually interpreted
ones. For this reason there can, at first glance and without
further consideration, be no question of the borderline
between form and contents coinciding, according to Ein-
stein’s ideas, with thatbetween mathematics and physical
reality. Rather, theories formulated in this fashion are
mixed forms which describe a material world by relating
it to a mathematical one.

Do we now also have an explanation for the phenom-
enon of mathematical overdetermination? It is notewor-
thy that the attempts at an explanation have mainly
consisted in causing the phenomenon to disappear, i.e. in
showing that theories manifesting it possess physically
equivalent formulations from which it is eliminated?’.
Paradigmatic for this continues to be, even to this day,
Euclidean geometry. Its modern version, preferred in
physics, asanalytic geometry employs coordinate systems
in space and thus numbers. It can be shown, however, that
one can also do without this analytical apparatus and that
an equally strong formulation in purely geometric con-
cepts exists?®, We will consider another case somewhat
moreprecisely. Geometry is, inthecommon view, equipped
with a distance concept which lets the distance between
any two points in space be an unequivocally determined
number. This distance structure contains somewhat more
than is given in a physically objective fashion. We will
obtain a specific number only if we arbitrarily lay down
a unit of measure. Objectively given is only the equality
of two distances: the socalled congruency. Now it is
indeed posssible to present a formulation of Euclidean
geometry which proceeds exclusively from the congru-
ency and betweenness relations and from which distance
numbers have disappeared. What has thereby been
achieved? When we say thatthe distance from Hannover
to Heidelberg measures some400 kmwe haveinterrelated
two places on our planet by a number, It is difficult to
argue the fact out of existence that into this distance
relationship the number concerned enters in exactly the
same fashion as the two spatial partners. Now two places
materially defined in space are just as certainly physical
realities as a number - the third partner in our relationship
- isnot. Why is it necessary to talk in physics, besides on
material realities (in a broad sense), also something
entirely different, e.g. on numbers? One is tempted to
answer that there is something wrong here already in the
very question - that the numbers do in fact play a dif ferent
role in the given theory than its actual objects. That may
well be so. But unfortunately we do not possess a recon-
struction which would make this difference plain andthus
explain our phenomenon. In the given case we can instead
make the phenomenon disappear: as stated before, things
will work here also without distance numbers. But is this
answer satisfactory and will this always work?

Both questions, I am afraid, must be denied. The newer
field theories, including the quantum field theories, have
all been formulated with space-time coordinate systems
being resorted to. Now even many physicists have a
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tendencyto keep the further developmentof'thesc theories
free of coordinates. But this does not remove the sting
placed here in thc very beginning. From the part of
philosophy of science, the attempt was recently made to
eliminate, by the same process as just outlined for the
distance function, numerical values also from true field
functions (37). The result is in these cases of appalling
complexity. A preferred object of reaxiomatizing at-
tempts has been furthermore, ever since ist physical
establishment 60 years ago, quantum mechanics. Its
original formulation, used today in all textbooks, pos-
sesses anot even particularly conspicuous, but - in its con-
sequences - far-rcaching mathematical overdetermination
in the form of complex Hilbert space. Here the refor-
mulations have frequently been attempted for wholly
different purposes and, accordingly, have yielded nothing
that would help us in our question. Other attempts have
not yet been sufficiently clarified to permit a clear deci-
sion as to their success®. Fromthe point of view of physics
as a whole, all these undertakings are only punctual in
nature, even though the points where they are undertaken
may be crucial ones. If nevertheless we wish to draw a
lesson from them already now, we seem to find the rule
confirmed that the attempted economizing on ontological
assumptions, hence here the avoidance of mathematical
entitites in the position of objects - if practicable at all -
frequently leads to undesirable complications. But this
rule, too, cannot yet be considered as fully understood.

Where - so I ask in definite conclusion - has this
investigation led us? I have tried to outline in what the
decisive advancements of logic, mathematics and their
applications since Leibniz’s times can be seen to lie if
developments arc viewed in the light of the idea of a
universal language and universal science. For this pur-
pose, three domains of accomplishment or power were
distinguished.

The algorithmic success is the most conspicuous one:
Leibniz’s little calculation machine has beenreplaced by
our worldwide, even satellite-widc integrated large-scale
computing systems. And these systems can calculate
anything regarded as theoretically calculable today.

The success achieved in the field of proof theory
consists above all in logic having caught up with math-
ematics, so that appreciable parts of the latter can now be
treated axiomatically. This did not involve, however, a
completc reduction of mathematics to logic.

Noteworthy, finally is the immense gain in descriptive
potency and the updating thereof, which appear to ex-
press the universality of present-day mathematics most
clearly. Quite a few things have come to pass here which
no one could foresee in the 17th century.

Other hoped-for things have not been realized. In all,
mathematics has achieved greater independence vis-a-vis
other forms of knowledge, thus netting us the so-called
application problem. This wide-branching problem I
have pursued only along one line. Starting out from the
amazement at the “unreasonable effectiveness of math-
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ematics®, as Wigner calls it, I have described an attempt
at a solution which starts out from the universalistic gains
achieved by modern mathematics. We found, however,
that dif ficulties are encountered here, which to overcome
has,admittedly, been attempted butnot yet really achieved.
The difficulty here is that mathematics is more than logic
and shows us its teeth on the descriptive level. Thus an
important idea, which Leibniz, as an early forerunner of
logicism, had entertained, too, has not been fulfilled.
That, too, we would have therefore have to tell him in our
story. Ifhe werenotmerelyable to ask us the one question
we started out by permitting him to ask, but also capable
of counseling us in this situation, we would not be
assembled here and now in so large a number without
lending him our ears.

Notes
*  Translation of the paper Calculenus! Das Problem der
Amvendung von Logik und Mathematik given at the Leibniz
Congress 1988 and printed in Studia Leibnitiana, Suppl. XXVIIL.
Stuttgart: Franz Steincr Verlag 1990. p.201-216. Wc gratefully
acknowledge permission to translate and print the article by both,
author and publisher.

The translation was accomplished by Dipl.Met. Jacqucs
Zwart, Laubestr. 39, D-60594 Frankfurt
1 R.Descartcs, Oeuvres, cd. by Ch.Adam and P.Tannery, Paris
1897-NewEd. ibid. 1974-.Here: vol.I,p.80-. Cf. alsoG.W.Lcibniz,
Vorausedition der Philosophischen Schriften, Fasc.7, Miinster
1988, p.1480-.
2 G.W.Leibniz, Opuscules et fragments inédits, cd. by L.
Couturat, Paris 1903, Hildesheim 1961. Here: p.155
3 Ibid. p.156. Sec also ibid. p.176 and C.[Gerhardt, Die
philosophischen Schriften von G.W.Leibniz, Berlin 1890,
Hildesheim 1961. Here: p.124-, 198-. I owe the reference to the
collection of Calculemus citations to Hidé Ishiguro.
4 Leibniz, op.cit. no.2, p.284-.
5 G.W.Lllcibniz, Samtliche Schriften und Briefe (Akademie-
Ausgabe), ser.I, vol.1 1, Berlin 1982. Here: 420-
6  For an interpreation of the relevant undertakings of Leibniz
and his contemporaries see (1) and compare also (2).
7  Descartes, op.cit. no.1, vol.X, p.377
8 Sec(3)
9  Scc(4)and (5) where the basic works have been printed. See
also (6)
10 See (7)
11 See for instance (8)
12 Asanintroduction into the “many faces" of logic (9) is useful
and for further reading take e.g. (10).
13 Seethereferences of note no.9.
14 On the concept of rational reconstruction in comparison to
history of science sec (11)
15 Sec D.Hilbert in (12) and compare the description of the
development in (13).
16 See Frcge in (14) and (15)
17 Descartcs, op.cit. no.l, vol.X, p.378
18 We owe Frege a modern understanding of rclations and the
introduction of concepts of a higher order, see Note 16 as well as
later on Whitehcad and Russell in (19).
19 For a set-theoretical introduction see Bourbaki (20), for a
modeltheoretical introduction see (10) vol.I, Ch.4.
20 Textbooks of theoretical physics consider the modern under-
standing of mathematics too, see e.g. (21).
21 See Hardy (22) as well as (3).
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22 See e.g. Jensen (29)

23 Compare (23)p.725-, sec also (33)

24 Physicists (rightfully) disrcgard this circumstance, as they arc
verysuccessfial with their method in the (so-called)renormalization
theories.

25 Compare here the references under note 12.

26 Conceming the following see (34).

27 Thisreaxiomatization was firstformulatcd as aprogram in the
beginning of reference (35).

28 On this and on the following case see e.g. (36)

29 In this regard I am thinking abovc all of Ludwig (38).
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