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Bestimmung von mechanischen Blechkennwerten durch Maschinelles Lernen im offenen Beschnitt

Einsatz von ML beim Scheren
im offenen Schnitt

M. Gorz, A. Schenek, M. Liewald, K. R. Riedmiiller

Die Qualitat der durch Umform- und Schneidprozesse herge-
stellten Bauteile wird durch schwankende mechanische Eigen-
schaften des verwendeten Blechmaterials beeinflusst. In dieser
wissenschaftlichen Veroffentlichung wird eine neuartige, auf
maschinellem Lernen basierende Methode zur Inline-Bestim-
mung von Werkstoffkennwerten vorgestellt. Diese soll es
erlauben, die mechanischen Kennwerte direkt aus den im offe-
nen Schnitt gemessenen Schneidkraftverlaufen zu ermitteln.
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1 Einleitung und Motivation

Bei der Herstellung von Blechbauteilen werden meist mehrere
Scher- und Umformoperationen kombiniert. Die Qualitit der er-
zielten Bauteile hiingt dabei stark von den Werkstoffparametern
der verwendeten Halbzeuge ab. Typische Fehler, wie zum Beispiel
das Reiffen [1] der Teile beim Tiefziehen oder ein verdndertes
Riickfederungsverhalten des Fertigteils [2], konnen dabei in
vielen Fillen direkt mit schwankenden Werkstoffparametern in
Verbindung gebracht werden [3} Auch haben Untersuchungen
im BMW-Presswerk Dingolfing gezeigt, dass solche chargenbe-
dingten Abweichungen der Materialparameter des Blechhalbzeugs
nach wie vor eine Hauptursache fiir Qualititsverluste und Pro-
zessausfille bei der Herstellung von Blechbauteilen sind [4]
Dabei konnen die mechanischen Werkstoffeigenschaften iiber die
Coillinge [5] wie auch iiber die Coilbreite [6] schwanken. Um
eine Null-Fehler-Produktion zu erreichen, wird daher versucht,
schwankende Materialeigenschaften mdoglichst in Echtzeit und
inline zu bestimmen. Allerdings sind die meisten der heute einge-
setzten Messverfahren zur Bestimmung von Materialparametern
nicht in der Lage, Materialkennwerte in situ zu messen.

Wegen der begrenzten Fihigkeit traditioneller Methoden zur
Inline-Materialcharakterisierung wurden verschiedene neuartige
Verfahren entwickelt, mit denen potenziell Materialeigenschaften
in situ bestimmt werden konnen. Ruzovi¢ nutzt beispielsweise die
Korrelation von mechanischen Eigenschaften des Materials mit
durch das Wirbelstromverfahren gemessenen elektromagneti-
schen Eigenschaften, um entsprechende Werkstoffkennwerte zu
bestimmen [7]. Diese Messmethode weist neben einer Sensitivitit
fiir Bandschwingungen und Verschmutzungen weitere Nachteile
auf. So kann dieses Messprinzip nur fiir Stahlwerkstoffe ange-
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Use of ML in shearing
with an open cutting line

The quality of components produced by forming and stamping
processes is affected by fluctuating mechanical properties of
the sheet metal material. This scientific publication presents a
novel method based on machine learning for the inline deter-
mination of material properties. It enables the determination
of mechanical properties directly from the punching force cur-
ves measured when shearing with an open cutting line.

wendet werden. Ferner haben Wiesenmayer etal. die Werkstoft-
parameter mittels linearer Korrelationen auf Basis von im Prozess
gemessenen Schneidkraftverldufen bestimmt. Die Schneidkraft-
verldufe wurden durch Scheren im geschlossenen Schnitt be-
stimmt. Diese Untersuchungen wurden jedoch nur fiir den Werk-
stoff DP600 durchgefiihrt [8].

Dariiber hinaus wurde am Institut fiir Umformtechnik (IFU)
ein neuartiges Verfahren zur Inline-Materialcharakterisierung
basierend auf maschinellem Lernen (ML) entwickelt, das auf
dem Einsatz von Kiinstlichen Neuronalen Netzen (KNN) beruht
[9, 10]. Mit einem vortrainierten KNN werden hierbei Korrela-
tionen zwischen dem Kraftbedarf fiir das Scherschneiden eines
Bleches mit einem Rundstempel und dem Spannungs-Dehnungs-
Diagramm des entsprechenden Blechwerkstoffes genutzt, um des-
sen mechanische Kennwerte vorherzusagen. Die Autoren konnten
zeigen, dass ein derart vortrainiertes KNN prizise Vorhersagen
der Materialparameter erlaubt. Dabei wurde die vorgeschlagene
Methode zur Inline-Materialcharakterisierung bislang ausschlief3-
lich fiir Schneidprozesse mit kreisrunder (geschlossener) Schnitt-
linie erprobt. Konkrete Anwendungsfelder ergeben sich hierbei
zum Beispiel fiir Positionslochungen, welche in schnelllaufenden
Stanzwerkzeugen zur Ausrichtung des Blechstreifens verwendet
werden. Im GrofSwerkzeugbau befinden sich entsprechende
Lochgruppen zumeist tief im Inneren der Umformwerkzeuge,
weshalb ein einfaches Nachriisten der Werkzeuge mit der not-
wendigen Sensorik zur Messung des Schneidkraftbedarfs aus
geometrischen Griinden (Platzbedarf, Kabelfithrung, etc.) oft nur
schwer umsetzbar ist. Geometrisch zuginglicher sind meist die
weiter auflen liegenden Schneidmesser, welche fiir den Beschnitt
der Bauteilumrandungen eingesetzt werden.
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Bild 1. Versuchswerkzeug (links), Rendering des Versuchswerkzeugs in Schnittdarstellung mit eingezeichneten mdglichen Sensorpositionen (rechts).

Foto: IFU

Eine weitere Moglichkeit besteht in der Implementierung der
vorgeschlagenen Methode beim Platinenbeschnitt auf einer Plati-
nenschneidanlage. Eine direkte Schneidkraftmessung ist an den
dabei eingesetzten Schneidmessern meist nicht moglich, weshalb
eine indirekte Messung durch beispielsweise Dehnungsmessstrei-
fen (DMS) erfolgen muss. In den vorgestellten Untersuchungen
wurde daher analysiert, inwiefern die Bestimmung von Werk-
stoffkennwerten auch auf Basis einer solchen indirekten Kraft-
messung an Schneidmessern moglich ist. Dazu wurde ein am [FU
vorhandenes Schneidwerkzeug mit DMS ausgeriistet und damit
die Deformation der Abtrennmesser im offenen Schnitt aufge-
zeichnet. Anhand dieser Daten und im Zugversuch bestimmter
mechanischer Werkstoffkennwerte wurde danach ein ML-Modell
trainiert und evaluiert. In den folgenden Abschnitten wird ge-
zeigt, dass der gewidhlte ML-basierte Ansatz eine vielversprechen-
de neue Methode fiir die Inline-Charakterisierung von mechani-
schen Blechwerkstoffkennwerten anhand des Kraftbedarfs beim
offenen Platinenbeschnitt ist.

2 Methodik

Die in diesem Beitrag vorgestellten Untersuchungen basieren
auf dem KDT-EA (Knowledge Discovery in Time Series for En-
gineering Applications)-Prozess [11, 12]. Dieses Vorgehens-
modell wurde entwickelt, um eine erfolgreiche Umsetzung zur
Anwendung von ML-Modellen auf Basis von Zeitreihendaten zu
gewihrleisten. Der Prozess besteht aus fiinf separaten Teilschrit-
ten, in denen beschrieben wird, wie Daten erfasst, vorbereitet,
transformiert, als Eingangsgrofen fiir Modelle verwendet und
schlielich die Ergebnisse der Modelle bewertet werden.

Fir die im Folgenden beschriebenen Analysen und die Ver-
arbeitung der erfassten Versuchsdaten wurde die Programmier-
sprache Python verwendet. Um Schneidkraftkurven oder daraus
abgeleitete Features mit mechanischen Blechparametern zu kor-
relieren, wurden die Deep-Learning-Bibliotheken ,TensorFlow*
(TF) und ,Keras“ verwendet. Die Library Keras vereinfacht
durch zusitzliche Tools und Funktionen das Training von ML-
Modellen. Weitere Python-Bibliotheken, die fiir die vorgestellten
Untersuchungen verwendet wurden, sind ,Numpy* zur Datenauf-
bereitung, ,Matplotlib“ zum Plotten der Daten, ,Pandas“ zum
Auslesen von Daten aus Messprotokollen und ,Scikit-learn“ zur
Durchfithrung von Principal Component Analysis (PCA), Stan-
dardisierung und Normalisierung.
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3 Datenerfassung, Datenvorbereitung
und Datentransformation

Die Zugversuche zur Ermittlung der mechanischen Werkstoff-
kennwerte (R,, R,/ R, Ay Ag, n) der in den hier beschriebe-
nen Untersuchungen betrachteten Blechwerkstoffe (DP600.
DP800, DP1000, DPlZOO) wurden auf einer ,Roell + Korthaus
RKM 100“ Universalpriifmaschine nach DIN EN ISO 6892-1
durchgefiithrt. Die Zugproben wurden nach DIN 50125 im For-
mat H20 x 80 hergestellt. Schlieflich wurden die mittels dieser
Versuche ermittelten Materialkennwerte (R, Ryo2/ Rey Ay Ag, 1)
als Zielgroflen fiir das spitere ML-Model verwendet.

Die Bestimmung der Eingangsgroflen fiir das spitere ML-
Model erfolgte mit einem am [FU vorhanden Schneidwerkzeug.
Bild 1 zeigt das Schneidwerkzeug im Original und als Rendering
in der Schnittdarstellung.

Die eingefiigte Detailzeichnung zeigt das obere und untere
Abtrennmesser und die daran angebrachten Schneidleisten. Die
markierten Bereiche 1 bis 4 wurden als potenzielle Bereiche zur
Integration eines Dehnungsmesssensors anhand konzeptioneller
Voriiberlegungen identifiziert. Aufgrund der Gefahr des Absche-
rens des Sensors durch das Schneidwerkzeug und der schlechten
Zuginglichkeit wurden die Positionen 2, 3 und 4 in den hier vor-
gestellten Untersuchungen nicht weiter betrachtet. Im realen Ver-
suchswerkzeug wurde der Sensor daher auf der Auflenseite des
Werkzeugs an Position 1 angebracht.

Zur Festlegung der Empfindlichkeit des Sensors und des not-
wendigen Messbereiches wurde eine Finite-Elemente-Simulation
(FE) des Scherschneidens durchgefiithrt. Ziel dieser Simulation
war es, die im oberen Abtrennmesser auftretenden Dehnungen zu
bestimmen und auf Basis dieser Dehnungen einen geeigneten
DMS auszuwihlen. Um eine konservative Abschitzung treffen zu
konnen, wurde der Versuchswerkstoff mit der geringsten Festig-
keit (DP600) fiir diese Simulationen verwendet, da er die ge-
ringsten Prozesskrifte und dadurch die geringsten Dehnungen im
oberen Abtrennmesser hervorruft. Der Aufbau eines numerischen
Simulationsmodells fiir das Scherschneiden zur Analyse der im
oberen Abtrennmesser auftretenden Dehnungen wurde in der
Simulationssoftware ,Deform 2D“ vorgenommen. Die Werkzeug-
komponenten Obermesser, Untermesser und Abstreifer wurden
als nicht-deformierbare Starrkdrper modelliert. Die Vernetzung
der Platine wurde durch lokale Netzverfeinerung mit einer
kleinsten Elementkantenlinge von circa 1,5 pm ausgefiihrt. Das

385

am 19.01.2026, 04:24:55.



https://doi.org/10.37544/1436-4980-2023-10-6
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

TITELTHEMA - FACHAUFSATZ

| Starrkérpersimulation zum Zeitpunkt

Stress - Mean (MPa)

der maximalen vertikalen Schneidkraft
Stress - Effective (MPa)
“n

— Abtrennmesser oben

400

l Abstreifer
0.000

Knoten-
krafte

[
Abtrennmesser unten

1000 I

500

0.000 .

-500

-1000

,Force-Interpolation”

Ubertrag der Knotenkrafte mittels

Knotenkrifte

Bild 2. Methode zur Bestimmung der Dehnungen am Abtrennmesser oben. Grafik: IFU

Materialverhalten der Platine wurde elastisch-plastisch model-
liert. Um die beim Scherschneiden auftretenden Trenn- und
Fliefvorgange prizise darzustellen, wurde die Flieffkurve im
einachsigen Zugversuch bestimmt und diese ab der Gleichmaf-
dehnung mittels Extrapolation nach Hockett-Sherby erweitert.
Zur Abbildung des blechwerkstoffspezifischen Flie}- und Trenn-
verhaltens wurde das Schidigungsmodell ,Normalized Cockroft
Latham® eingesetzt und invers durch einen Abgleich mit experi-
mentell ermittelten Schnittflichenanteilen validiert. Die Schnitt-
flichenanteile wurden dabei durch optische Konturmessungen
und metallurgische Schliffe bestimmt. Im Abgleich von Experi-
ment zu Simulation wurde eine geringe Abweichung von circa
5% festgestellt.

Mit dem so kalibrierten Simulationsmodell wurde dann die zu
erwartende maximale Stempelkraft und die resultierende maxi-
male Dehnung des oberen Abtrennmessers berechnet. Dafiir wur-
de im Anschluss an die konventionelle Scherschneidsimulation
mit Starrkodrpern eine ,Die Stress Study” durchgefiihrt. Im Zuge
dieser Simulationsmethode wurde der Starrkorper des Schneid-
messers durch einen elastischen und vernetzten Korper
(E-Modul: 210 GPa) ersetzt. Die in der Starrkorpersimulation
berechneten Knotenkrifte wurden dann mittels Force-Interpola-
tion auf den elastischen Korper tibertragen. Somit war es mog-
lich, die im Schneidmesser auftretenden Dehnungen fiir einen
Zeitschritt der Starrkorpersimulation zu bestimmen. Um die
maximal auftretende vertikale Dehnung im Schneidmesser zu
bestimmen, wurde der Zeitschritt mit der maximal vertikalen
Schneidkraft ausgewihlt. Bild 2 zeigt das Ergebnis der ,Die
Stress Study” fiir das obere Abtrennmesser, wobei die berechne-
ten Dehnungen im Falschfarbenplot dargestellt sind.

Wie zu sehen, stellt sich im Bereich 1 eine konstante negative
Dehnung iiber einen groflen Bereich des Obermessers ein. Die
Dehnungsbetrige befinden sich im Wertebereich von —-1,00e bis
-2,00e. Auf Basis dieser Simulationsergebnisse wurde der Sen-
sor SLB700A/06VA1 der Firma HBM ausgewihlt, welcher einen
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Nennmessbereich von 0 bis 5,00e* mm/mm und einen minima-
len Arbeitsbereich von 0 bis 5,00e> mm/mm aufweist [13].

Mit dem zur Dehnungsmessung befihigten Werkzeug wurden
sodann experimentelle Untersuchungen zur Bestimmung der
Dehnung im oberen Abtrennmesser durchgefithrt. Die Messung
der Dehnung im oberen Abtrennmesser wurde mit einer
Frequenz von 19 kHz ausgefiihrt. Der Schneidspalt der Schneid-
stufe wurde auf 10% eingestellt und die Verrundung der
Schneidleiste mit 20 um ausgefiihrt. Diese Parameter waren fiir
alle beschriebenen Untersuchungen konstant. Fiir jeden Blech-
werkstoff wurden mehrere Wiederholungen durchgefiihrt, so dass
insgesamt ein Datensatz mit circa 700 Messungen erstellt wurde.
Die aufgezeichneten Kurven wurden anschliefend mit einem
erstellten Skript bearbeitet und der eigentliche Schervorgang aus
den Zeitreihen extrahiert. Dieser Schritt bewirkte neben einer
Reduktion der zu verarbeitenden Datenmenge auch eine Verbes-
serung der spiter mit dem KNN erzielten Vorhersagequalitit, da
nur die physikalisch relevanten Bereiche des aufgezeichneten
Messsignals betrachtet wurden.

Abschlieffend erfolgte eine Transformation der aufgezeichne-
ten Daten mit PCA (Principal Component Analysis)-Verfahren.
PCA ist eine Methode zur Reduzierung eines Datensatzes und
zur Extraktion von Features, welche die individuellen Unterschie-
de des Prozesses beschreiben [14]. Vorherige Untersuchungen
hatten gezeigt, dass die Anwendung der PCA auf ein #hnliches
Problem gute Ergebnisse lieferte [10]. In den hier vorgestellten
Untersuchungen wurde die PCA mit den durch Schneidversuche
bestimmten Datensatz durchgefithrt, um einen reduzierten
Datensatz auf der Basis von Features zu identifizieren, der die ur-
spriinglichen Daten in einem niedrigdimensionalen Unterraum
mit einem moglichst geringen Verlust an Informationen représen-
tiert. Diese Dimensionsreduktion erfolgt durch eine Hauptach-
sentransformation. Die PCA wurde so durchgefiihrt, dass durch
die ermittelten Features 95% der Varianz des Ausgangsdatensat-
zes beschrieben wurden. Diese Bedingung konnte mit fiinf Merk-
malen erreicht werden, welche durch den PCA-Algorithmus
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Tabelle. Untersuchte Hyperparameter und Parameterrdume der Hyperpara-
meteroptimierung.

Parameter Parameterraum

Anzahl der versteckten Schichten 1-10
Neuronen pro versteckter Schicht 5 to 50 (Schrittweite 5)
Aktivierungsfunktion Sigmoid, relu

bestimmt wurden. Nach Abschluss dieser Schritte zur Daten-
erfassung, -vorbereitung und -transformation lag ein Datensatz
mit finf durch die PCA bestimmten Eingangsgréflen und fiinf
Ausgabegrofen (R, Ry,/ Re, A, Ag, n) vor.

4 Modellbildung und -evaluation

Zur Modellierung des Regressionsproblems wurde ein kiinst-
liches neuronales Netz (KNN) eingesetzt. Dieses wurde ausge-
wihlt, da KNN durch gezieltes Training beliebige, in der Daten-
struktur verborgene Funktionen approximieren (,lernen®) kon-
nen [15, 16]. Vor allem Nichtlinearititen und Abhingigkeiten
zwischen den Eingangsparametern konnen diese Modelle gut
abbilden. Die Auswahl angemessener Modellhyperparameter ist
dabei von entscheidender Bedeutung, um Probleme wie Uberan-
passung oder Unteranpassung zu vermeiden und eine gute Gene-
ralisierungsfihigkeit in Bezug auf unbekannte Daten zu gewihr-
leisten.

Hyperparameter haben einen entscheidenden Einfluss auf ML-
Modelle und bestimmen neben der Struktur auch das Verhalten
des Modells. Diese Parameter miissen vor dem Start des Trai-
ningsprozesses festgelegt werden. Typische Hyperparameter sind
etwa Anzahl der versteckten Schichten, Anzahl der Neuronen je
versteckter Schicht und Art der verwendeten Aktivierungsfunkti-
on. Im Gegensatz zu den Modellgewichten werden Hyperparame-
ter nicht direkt aus den Trainingsdaten gelernt und miissen durch
den Anwender oder durch einen Optimierungsalgorithmus fest-
gelegt werden. In den Untersuchungen erfolgte die Optimierung
der Hyperparameter des ML-Modells mit dem in Keras integrier-
ten Optimierungsalgorithmus ,Hyperband® [17]. Hyperband trai-
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niert verschiedene Hyperparameterkonfigurationen fiir wenige
Epochen und bricht schlechte Konfigurationen frithzeitig ab. Er
fokussiert sich auf vielversprechendere Parameterkonfiguratio-
nen, um Ressourcen zu sparen und die Leistung zu verbessern.
Optimierungsgroflien sind die Anzahl der versteckten Schichten,
die Anzahl der Neuronen je versteckter Schicht und die Art der
verwendeten Aktivierungsfunktion. Die Tabelle gibt eine Uber-
sicht iiber die Parameter und die untersuchten Parameterraume.

Die durchgefiihrte Optimierung fiihrte zu folgender Topologie
des KNNs: Das KNN besteht aus einer Eingangsschicht mit finf
Neuronen, fiinf versteckten Schichten mit 40, 40, 20, 30,
45 Neuronen und einer Ausgabeschicht mit fiinf Neuronen zur
Vorhersage der Werkstoffkennwerte R, R0,/ R, A, Ag, n.

Die Bewertung des KNNs erfolgte schlieflich durch das Be-
stimmtheitsmafl R?, welches gemiR

iy 9)
Ti(yy)

aus den durch das Modell bestimmten Werten und den im Zug-

R’=1-

versuch experimentell ermittelten Werten der Testdaten gebildet
wurde. Das Bestimmtheitsmafl wird aus den Messwerten y;, dem
empirischen Mittelwert y und den durch das Modell prognosti-
zierten Werten ¥; gebildet. [18]

5 Ergebnisse und Diskussion

Das Training des KNN wurde in 77 Epochen ausgefithrt und
durch ein Early-Stopping-Kriterium beendet. Bild 3 zeigt eine
Evaluation des erstellten Modells.

Fur diese Evaluation wurden die 5% zuriickgestellten Test-
daten verwendet. Es werden die durch das KNN vorhergesagten
mechanischen Werkstoffkennwerte, auf der Ordinate, verglichen
mit den im Zugversuch gemessenen mechanischen Werkstoff-
kennwerten, auf der Abszisse. Die zusitzlich in Rot eingezeichne-
te Linie markiert die Ubereinstimmung von Vorhersage zu im
Versuch gemessenen Werten. Je geringer der Abstand eines Punk-
tes zur roten Linie, desto genauer ist die Vorhersage. Liegt der
Wert oberhalb der roten Linie, ist die Vorhersage des Modells zu
hoch. Liegt der Wert unter der roten Linie, ist der vorhergesagte
Wert zu gering. Die vorhergesagten Werte liegen zum Grofteil
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Bild 3. Vergleich zwischen den durch das ML (maschinelles Lernen)-Modell vorhergesagten Werten (Ordinate) und den Zielwerten aus Zugversuchen fir den

Testdatensatz (Abszisse) fiir die GroBen R, R, o/ Ro, A, A, n-Wert. Grafik: IFU

WT WERKSTATTSTECHNIK BD. 113 (2023) NR. 10

387

am 19.01.2026, 04:24:55.


https://doi.org/10.37544/1436-4980-2023-10-6
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

TITELTHEMA - FACHAUFSATZ

auf der Linie der optimalen Vorhersage, lediglich einige Ausreifler
weisen etwas groflere Abweichungen auf. Diese gute Vorhersage-
genauigkeit des erstellten KNN wird durch das im Bild 3 zusitz-
lich eingezeichnete, hohe Bestimmtheitsmaff von 0,9618 besti-
tigt. Das Ergebnis zeigt, dass die in Kapitel 1 formulierte Zielset-
zung erreicht wurde. Die generelle Erkenntnis ist, dass eine
Bestimmung von mechanischen Werkstoffkennwerten auf Basis
von beim Scheren im offenen Schnitt gemessenen Dehnungs-
verldufen moglich ist.

6 Zusammenfassung und Ausblick

Blechteile werden iiblicherweise in mehreren Umform- und
Scherschneidvorgingen gefertigt. Die Qualitit der hergestellten
Bauteile hingt dabei mafigeblich von den mechanischen Eigen-
schaften des verwendeten Blechwerkstoffs ab. Schwankungen in
den mechanischen Eigenschaften des Blechwerkstoffs, zum Bei-
spiel aufgrund von Chargenschwankungen, sind Hauptursachen
fiir Qualititsmangel wie Versagen durch Riss, Formabweichungen
oder Oberfliachenfehler an Blechbauteilen. Diese Abweichungen
der mechanischen Eigenschaften konnen sowohl in Bezug auf die
Coillange als auch auf die Coilbreite variieren.

Aufgrund der Tatsache, dass die bestehenden Methoden zur
Materialcharakterisierung entweder nicht vollstindig inline-fahig
sind oder teure Messgerite erfordern, wurde in den hier vorge-
stellten Untersuchungen eine neue, praxisorientiertere Methode
zur Inline-Materialcharakterisierung entwickelt. Das Konzept
dieser Methode basiert auf Analogien zwischen den wihrend des
Prozesses gemessenen Dehnungen in einer Abtrennstufe und den
im Zugversuch gemessenen mechanischen Werkstoffkennwerten.
Durch den Einsatz eines vortrainierten Neuronalen Netzes, das
die Beschreibung von nichtlinearen Zusammenhingen reprodu-
zierbar macht, konnte eine Vorhersage der Materialkennwerte
auf Basis der gemessenen Dehnungen im Obermesser der Ab-
trennstufe mit hoher Genauigkeit erzielt werden.

Um die in diesem Beitrag vorgestellten Forschungsarbeiten
weiterzufithren, werden aktuell am IFU darauf aufbauende
Untersuchungen durchgefiihrt. Neben der Ubertragbarkeit der
verwendeten Modelle auf andere Pressen und Schneidwerkzeuge
soll in diesen Untersuchungen auch die Ubertragbarkeit auf ande-
re Materialklassen wie Kupfer oder Aluminium bewertet werden.
Zudem soll der Einfluss des Verschleifes der Werkzeugteile auf
die Vorhersagequalitit der Modelle mittels Dauerlauftests unter-
sucht werden. Weiterhin kann die vorgestellte Methode als
Grundlage fiir eine Inline-Prozessiiberwachung und gegebenen-
falls als Sensor zur Messung von Eingangsgroflen fiir die Rege-
lung von Umformprozessen eingesetzt werden.
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