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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Bestimmung von mechanischen Blechkennwerten durch Maschinelles Lernen im offenen Beschnitt 

Einsatz von ML beim Scheren 
im offenen Schnitt

M. Görz, A. Schenek, M. Liewald, K. R. Riedmüller

Die Qualität der durch Umform- und Schneidprozesse herge-
stellten Bauteile wird durch schwankende mechanische Eigen-
schaften des verwendeten Blechmaterials beeinflusst. In dieser 
wissenschaftlichen Veröffentlichung wird eine neuartige, auf 
maschinellem Lernen basierende Methode zur Inline-Bestim-
mung von Werkstoffkennwerten vorgestellt. Diese soll es 
 erlauben, die mechanischen Kennwerte direkt aus den im offe-
nen Schnitt gemessenen Schneidkraftverläufen zu ermitteln.

Use of ML in shearing  
with an open cutting line

The quality of components produced by forming and stamping 
processes is affected by fluctuating mechanical properties of 
the sheet metal material. This scientific publication presents a 
novel method based on machine learning for the inline deter-
mination of material properties. It enables the determination 
of mechanical properties directly from the punching force cur-
ves measured when shearing with an open cutting line.

1 Einleitung und Motivation

Bei der Herstellung von Blechbauteilen werden meist mehrere 
Scher- und Umformoperationen kombiniert. Die Qualität der er-
zielten Bauteile hängt dabei stark von den Werkstoffparametern 
der verwendeten Halbzeuge ab. Typische Fehler, wie zum Beispiel 
das Reißen [1] der Teile beim Tiefziehen oder ein verändertes 
Rückfederungsverhalten des Fertigteils [2], können dabei in 
 vielen Fällen direkt mit schwankenden Werkstoffparametern in 
Verbindung gebracht werden [3]. Auch haben Untersuchungen 
im BMW-Presswerk Dingolfing gezeigt, dass solche chargenbe-
dingten Abweichungen der Materialparameter des Blechhalbzeugs 
nach wie vor eine Hauptursache für Qualitätsverluste und Pro-
zessausfälle bei der Herstellung von Blechbauteilen sind [4]. 
 Dabei können die mechanischen Werkstoffeigenschaften über die 
Coillänge [5] wie auch über die Coilbreite [6] schwanken. Um 
eine Null-Fehler-Produktion zu erreichen, wird daher versucht, 
schwankende Materialeigenschaften möglichst in Echtzeit und 
 inline zu bestimmen. Allerdings sind die meisten der heute einge-
setzten Messverfahren zur Bestimmung von Materialparametern 
nicht in der Lage, Materialkennwerte in situ zu messen.

Wegen der begrenzten Fähigkeit traditioneller Methoden zur 
Inline-Materialcharakterisierung wurden verschiedene neuartige 
Verfahren entwickelt, mit denen potenziell Materialeigenschaften 
in situ bestimmt werden können. Ružovič nutzt beispielsweise die 
Korrelation von mechanischen Eigenschaften des Materials mit 
durch das Wirbelstromverfahren gemessenen elektromagneti-
schen Eigenschaften, um entsprechende Werkstoffkennwerte zu 
bestimmen [7]. Diese Messmethode weist neben einer Sensitivität 
für Bandschwingungen und Verschmutzungen weitere Nachteile 
auf. So kann dieses Messprinzip nur für Stahlwerkstoffe ange-

wendet werden. Ferner haben Wiesenmayer et al. die Werkstoff -
parameter mittels linearer Korrelationen auf Basis von im Prozess 
gemessenen Schneidkraftverläufen bestimmt. Die Schneidkraft-
verläufe wurden durch Scheren im geschlossenen Schnitt be-
stimmt. Diese Untersuchungen wurden jedoch nur für den Werk-
stoff DP600 durchgeführt [8].

Darüber hinaus wurde am Institut für Umformtechnik (IFU) 
ein neuartiges Verfahren zur Inline-Materialcharakterisierung 
 basierend auf maschinellem Lernen (ML) entwickelt, das auf 
dem Einsatz von Künstlichen Neuronalen Netzen (KNN) beruht 
[9, 10]. Mit einem vortrainierten KNN werden hierbei Korrela-
tionen zwischen dem Kraftbedarf für das Scherschneiden eines 
Bleches mit einem Rundstempel und dem Spannungs-Dehnungs-
Diagramm des entsprechenden Blechwerkstoffes genutzt, um des-
sen mechanische Kennwerte vorherzusagen. Die Autoren konnten 
zeigen, dass ein derart vortrainiertes KNN präzise Vorhersagen 
der Materialparameter erlaubt. Dabei wurde die vorgeschlagene 
Methode zur Inline-Materialcharakterisierung bislang ausschließ-
lich für Schneidprozesse mit kreisrunder (geschlossener) Schnitt-
linie erprobt. Konkrete Anwendungsfelder ergeben sich hierbei 
zum Beispiel für Positionslochungen, welche in schnelllaufenden 
Stanzwerkzeugen zur Ausrichtung des Blechstreifens verwendet 
werden. Im Großwerkzeugbau befinden sich entsprechende 
Lochgruppen zumeist tief im Inneren der Umformwerkzeuge, 
weshalb ein einfaches Nachrüsten der Werkzeuge mit der not-
wendigen Sensorik zur Messung des Schneidkraftbedarfs aus 
geometrischen Gründen (Platzbedarf, Kabelführung, etc.) oft nur 
schwer umsetzbar ist. Geometrisch zugänglicher sind meist die 
weiter außen liegenden Schneidmesser, welche für den Beschnitt 
der Bauteilumrandungen eingesetzt werden. 
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Eine weitere Möglichkeit besteht in der Implementierung der 
vorgeschlagenen Methode beim Platinenbeschnitt auf einer Plati-
nenschneidanlage. Eine direkte Schneidkraftmessung ist an den 
dabei eingesetzten Schneidmessern meist nicht möglich, weshalb 
eine indirekte Messung durch beispielsweise Dehnungsmessstrei-
fen (DMS) erfolgen muss. In den vorgestellten Untersuchungen 
wurde daher analysiert, inwiefern die Bestimmung von Werk-
stoffkennwerten auch auf Basis einer solchen indirekten Kraft-
messung an Schneidmessern möglich ist. Dazu wurde ein am IFU 
vorhandenes Schneidwerkzeug mit DMS ausgerüstet und damit 
die Deformation der Abtrennmesser im offenen Schnitt aufge-
zeichnet. Anhand dieser Daten und im Zugversuch bestimmter 
mechanischer Werkstoffkennwerte wurde danach ein ML-Modell 
trainiert und evaluiert. In den folgenden Abschnitten wird ge-
zeigt, dass der gewählte ML-basierte Ansatz eine vielversprechen-
de neue Methode für die Inline-Charakterisierung von mechani-
schen Blechwerkstoffkennwerten anhand des Kraftbedarfs beim 
offenen Platinenbeschnitt ist.

2 Methodik

Die in diesem Beitrag vorgestellten Untersuchungen basieren 
auf dem KDT-EA (Knowledge Discovery in Time Series for En-
gineering Applications)-Prozess [11, 12]. Dieses Vorgehens -
modell wurde entwickelt, um eine erfolgreiche Umsetzung zur 
Anwendung von ML-Modellen auf Basis von Zeitreihendaten zu 
gewährleisten. Der Prozess besteht aus fünf separaten Teilschrit-
ten, in denen beschrieben wird, wie Daten erfasst, vorbereitet, 
transformiert, als Eingangsgrößen für Modelle verwendet und 
schließlich die Ergebnisse der Modelle bewertet werden. 

Für die im Folgenden beschriebenen Analysen und die Ver -
arbeitung der erfassten Versuchsdaten wurde die Programmier-
sprache Python verwendet. Um Schneidkraftkurven oder daraus 
abgeleitete Features mit mechanischen Blechparametern zu kor-
relieren, wurden die Deep-Learning-Bibliotheken „TensorFlow“ 
(TF) und „Keras“ verwendet. Die Library Keras vereinfacht 
durch zusätzliche Tools und Funktionen das Training von ML-
Modellen. Weitere Python-Bibliotheken, die für die vorgestellten 
Untersuchungen verwendet wurden, sind „Numpy“ zur Datenauf-
bereitung, „Matplotlib“ zum Plotten der Daten, „Pandas“ zum 
Auslesen von Daten aus Messprotokollen und „Scikit-learn“ zur 
Durchführung von Principal Component Analysis (PCA), Stan-
dardisierung und Normalisierung.

3 Datenerfassung, Datenvorbereitung  
 und Datentransformation

Die Zugversuche zur Ermittlung der mechanischen Werkstoff-
kennwerte (Rm, Rp0.2/ Re, At, AG, n) der in den hier beschriebe-
nen Untersuchungen betrachteten Blechwerkstoffe (DP600. 
DP800, DP1000, DP1200) wurden auf einer „Roell + Korthaus 
RKM 100“ Universalprüfmaschine nach DIN EN ISO 6892–1 
durchgeführt. Die Zugproben wurden nach DIN 50125 im For-
mat H20 × 80 hergestellt. Schließlich wurden die mittels dieser 
Versuche ermittelten Materialkennwerte (Rm, Rp0.2/ Re, At, AG, n) 
als Zielgrößen für das spätere ML-Model verwendet.

Die Bestimmung der Eingangsgrößen für das spätere ML-
 Model erfolgte mit einem am IFU vorhanden Schneidwerkzeug. 
Bild 1 zeigt das Schneidwerkzeug im Original und als Rendering 
in der Schnittdarstellung. 

Die eingefügte Detailzeichnung zeigt das obere und untere 
 Abtrennmesser und die daran angebrachten Schneidleisten. Die 
markierten Bereiche 1 bis 4 wurden als potenzielle Bereiche zur 
Integration eines Dehnungsmesssensors anhand konzeptioneller 
Vorüberlegungen identifiziert. Aufgrund der Gefahr des Absche-
rens des Sensors durch das Schneidwerkzeug und der schlechten 
Zugänglichkeit wurden die Positionen 2, 3 und 4 in den hier vor-
gestellten Untersuchungen nicht weiter betrachtet. Im realen Ver-
suchswerkzeug wurde der Sensor daher auf der Außenseite des 
Werkzeugs an Position 1 angebracht. 

Zur Festlegung der Empfindlichkeit des Sensors und des not-
wendigen Messbereiches wurde eine Finite-Elemente-Simulation 
(FE) des Scherschneidens durchgeführt. Ziel dieser Simulation 
war es, die im oberen Abtrennmesser auftretenden Dehnungen zu 
bestimmen und auf Basis dieser Dehnungen einen geeigneten 
DMS auszuwählen. Um eine konservative Abschätzung treffen zu 
können, wurde der Versuchswerkstoff mit der geringsten Festig-
keit (DP600) für diese Simulationen verwendet, da er die ge-
ringsten Prozesskräfte und dadurch die geringsten Dehnungen im 
oberen Abtrennmesser hervorruft. Der Aufbau eines numerischen 
Simulationsmodells für das Scherschneiden zur Analyse der im 
oberen Abtrennmesser auftretenden Dehnungen wurde in der 
 Simulationssoftware „Deform 2D“ vorgenommen. Die Werkzeug-
komponenten Obermesser, Untermesser und Abstreifer wurden 
als nicht-deformierbare Starrkörper modelliert. Die Vernetzung 
der Platine wurde durch lokale Netzverfeinerung mit einer 
kleinsten Elementkantenlänge von circa 1,5 µm ausgeführt. Das 

Bild 1. Versuchswerkzeug (links), Rendering des Versuchswerkzeugs in Schnittdarstellung mit eingezeichneten möglichen Sensorpositionen (rechts).  
Foto: IFU
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Materialverhalten der Platine wurde elastisch-plastisch model-
liert. Um die beim Scherschneiden auftretenden Trenn- und 
Fließvorgänge präzise darzustellen, wurde die Fließkurve im 
 einachsigen Zugversuch bestimmt und diese ab der Gleichmaß-
dehnung mittels Extrapolation nach Hockett-Sherby erweitert. 
Zur Abbildung des blechwerkstoffspezifischen Fließ- und Trenn-
verhaltens wurde das Schädigungsmodell „Normalized Cockroft 
Latham“ eingesetzt und invers durch einen Abgleich mit experi-
mentell ermittelten Schnittflächenanteilen validiert. Die Schnitt -
flächenanteile wurden dabei durch optische Konturmessungen 
und metallurgische Schliffe bestimmt. Im Abgleich von Experi-
ment zu Simulation wurde eine geringe Abweichung von circa 
5 % festgestellt. 

Mit dem so kalibrierten Simulationsmodell wurde dann die zu 
erwartende maximale Stempelkraft und die resultierende maxi-
male Dehnung des oberen Abtrennmessers berechnet. Dafür wur-
de im Anschluss an die konventionelle Scherschneidsimulation 
mit Starrkörpern eine „Die Stress Study“ durchgeführt. Im Zuge 
dieser Simulationsmethode wurde der Starrkörper des Schneid-
messers durch einen elastischen und vernetzten Körper 
 (E- Modul: 210 GPa) ersetzt. Die in der Starrkörpersimulation 
berechneten Knotenkräfte wurden dann mittels Force-Interpola-
tion auf den elastischen Körper übertragen. Somit war es mög-
lich, die im Schneidmesser auftretenden Dehnungen für einen 
Zeitschritt der Starrkörpersimulation zu bestimmen. Um die 
 maximal auftretende vertikale Dehnung im Schneidmesser zu 
 bestimmen, wurde der Zeitschritt mit der maximal vertikalen 
Schneidkraft ausgewählt. Bild 2 zeigt das Ergebnis der „Die 
Stress Study“ für das obere Abtrennmesser, wobei die berechne-
ten Dehnungen im Falschfarbenplot dargestellt sind. 

Wie zu sehen, stellt sich im Bereich 1 eine konstante negative 
Dehnung über einen großen Bereich des Obermessers ein. Die 
Dehnungsbeträge befinden sich im Wertebereich von –1,00e-4 bis 
–2,00e-4. Auf Basis dieser Simulationsergebnisse wurde der Sen-
sor SLB700A/06VA1 der Firma HBM ausgewählt, welcher einen 

Nennmessbereich von 0 bis 5,00e-4 mm/mm und einen minima-
len Arbeitsbereich von 0 bis 5,00e-5 mm/mm aufweist [13].

Mit dem zur Dehnungsmessung befähigten Werkzeug wurden 
sodann experimentelle Untersuchungen zur Bestimmung der 
Dehnung im oberen Abtrennmesser durchgeführt. Die Messung 
der Dehnung im oberen Abtrennmesser wurde mit einer 
 Frequenz von 19 kHz ausgeführt. Der Schneidspalt der Schneid-
stufe wurde auf 10 % eingestellt und die Verrundung der 
Schneidleiste mit 20 µm ausgeführt. Diese Parameter waren für 
alle beschriebenen Untersuchungen konstant. Für jeden Blech-
werkstoff wurden mehrere Wiederholungen durchgeführt, so dass 
insgesamt ein Datensatz mit circa 700 Messungen erstellt wurde. 
Die aufgezeichneten Kurven wurden anschließend mit einem 
 erstellten Skript bearbeitet und der eigentliche Schervorgang aus 
den Zeitreihen extrahiert. Dieser Schritt bewirkte neben einer 
Reduktion der zu verarbeitenden Datenmenge auch eine Verbes-
serung der später mit dem KNN erzielten Vorhersagequalität, da 
nur die physikalisch relevanten Bereiche des aufgezeichneten 
Messsignals betrachtet wurden.

Abschließend erfolgte eine Transformation der aufgezeichne-
ten Daten mit PCA (Principal Component Analysis)-Verfahren. 
PCA ist eine Methode zur Reduzierung eines Datensatzes und 
zur Extraktion von Features, welche die individuellen Unterschie-
de des Prozesses beschreiben [14]. Vorherige Untersuchungen 
hatten gezeigt, dass die Anwendung der PCA auf ein ähnliches 
Problem gute Ergebnisse lieferte [10]. In den hier vorgestellten 
Untersuchungen wurde die PCA mit den durch Schneidversuche 
bestimmten Datensatz durchgeführt, um einen reduzierten 
 Datensatz auf der Basis von Features zu identifizieren, der die ur-
sprünglichen Daten in einem niedrigdimensionalen Unterraum 
mit einem möglichst geringen Verlust an Informationen repräsen-
tiert. Diese Dimensionsreduktion erfolgt durch eine Hauptach-
sentransformation. Die PCA wurde so durchgeführt, dass durch 
die ermittelten Features 95 % der Varianz des Ausgangsdatensat-
zes beschrieben wurden. Diese Bedingung konnte mit fünf Merk-
malen erreicht werden, welche durch den PCA-Algorithmus 

Bild 2. Methode zur Bestimmung der Dehnungen am Abtrennmesser oben. Grafik: IFU
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 bestimmt wurden. Nach Abschluss dieser Schritte zur Daten -
erfassung, -vorbereitung und -transformation lag ein Datensatz 
mit fünf durch die PCA bestimmten Eingangsgrößen und fünf 
Aus gabegrößen (Rm, Rp0.2/ Re, At, AG, n) vor.

4 Modellbildung und -evaluation

Zur Modellierung des Regressionsproblems wurde ein künst -
liches neuronales Netz (KNN) eingesetzt. Dieses wurde ausge-
wählt, da KNN durch gezieltes Training beliebige, in der Daten-
struktur verborgene Funktionen approximieren („lernen“) kön-
nen [15, 16]. Vor allem Nichtlinearitäten und Abhängigkeiten 
zwischen den Eingangsparametern können diese Modelle gut 
 abbilden. Die Auswahl angemessener Modellhyperparameter ist 
 dabei von entscheidender Bedeutung, um Probleme wie Überan-
passung oder Unteranpassung zu vermeiden und eine gute Gene-
ralisierungsfähigkeit in Bezug auf unbekannte Daten zu gewähr-
leisten. 

Hyperparameter haben einen entscheidenden Einfluss auf ML-
Modelle und bestimmen neben der Struktur auch das Verhalten 
des Modells. Diese Parameter müssen vor dem Start des Trai-
ningsprozesses festgelegt werden. Typische Hyperparameter sind 
etwa Anzahl der versteckten Schichten, Anzahl der Neuronen je 
versteckter Schicht und Art der verwendeten Aktivierungsfunkti-
on. Im Gegensatz zu den Modellgewichten werden Hyperparame-
ter nicht direkt aus den Trainingsdaten gelernt und müssen durch 
den Anwender oder durch einen Optimierungsalgorithmus fest-
gelegt werden. In den Untersuchungen erfolgte die Optimierung 
der Hyperparameter des ML-Modells mit dem in Keras integrier-
ten Optimierungsalgorithmus „Hyperband“ [17]. Hyperband trai-

niert verschiedene Hyperparameterkonfigurationen für wenige 
Epochen und bricht schlechte Konfigurationen frühzeitig ab. Er 
fokussiert sich auf vielversprechendere Parameterkonfiguratio-
nen, um Ressourcen zu sparen und die Leistung zu verbessern. 
Optimierungsgrößen sind die Anzahl der versteckten Schichten, 
die Anzahl der Neuronen je versteckter Schicht und die Art der 
verwendeten Aktivierungsfunktion. Die Tabelle gibt eine Über-
sicht über die Parameter und die untersuchten Parameterräume. 

Die durchgeführte Optimierung führte zu folgender Topologie 
des KNNs: Das KNN besteht aus einer Eingangsschicht mit fünf 
Neuronen, fünf versteckten Schichten mit 40, 40, 20, 30, 
45 Neuronen und einer Ausgabeschicht mit fünf Neuronen zur 
Vorhersage der Werkstoffkennwerte Rm, Rp0.2/ Re, At, AG, n.

Die Bewertung des KNNs erfolgte schließlich durch das Be-
stimmtheitsmaß R2, welches gemäß

 

aus den durch das Modell bestimmten Werten und den im Zug-
versuch experimentell ermittelten Werten der Testdaten gebildet 
wurde. Das Bestimmtheitsmaß wird aus den Messwerten yi, dem 
empirischen Mittelwert y und den durch das Modell prognosti-
zierten Werten ŷi gebildet. [18]

5 Ergebnisse und Diskussion

Das Training des KNN wurde in 77 Epochen ausgeführt und 
durch ein Early-Stopping-Kriterium beendet. Bild 3 zeigt eine 
Evaluation des erstellten Modells. 

Für diese Evaluation wurden die 5 % zurückgestellten Test -
daten verwendet. Es werden die durch das KNN vorhergesagten 
mechanischen Werkstoffkennwerte, auf der Ordinate, verglichen 
mit den im Zugversuch gemessenen mechanischen Werkstoff-
kennwerten, auf der Abszisse. Die zusätzlich in Rot eingezeichne-
te Linie markiert die Übereinstimmung von Vorhersage zu im 
Versuch gemessenen Werten. Je geringer der Abstand eines Punk-
tes zur roten Linie, desto genauer ist die Vorhersage. Liegt der 
Wert oberhalb der roten Linie, ist die Vorhersage des Modells zu 
hoch. Liegt der Wert unter der roten Linie, ist der vorhergesagte 
Wert zu gering. Die vorhergesagten Werte liegen zum Großteil 

Bild 3. Vergleich zwischen den durch das ML (maschinelles Lernen)-Modell vorhergesagten Werten (Ordinate) und den Zielwerten aus Zugversuchen für den 
Testdatensatz (Abszisse) für die Größen Rm, Rp0.2/ Re, At, AG, n-Wert. Grafik: IFU

Tabelle. Untersuchte Hyperparameter und Parameterräume der Hyperpara-
meteroptimierung.

Parameter

Anzahl der versteckten Schichten

Neuronen pro versteckter Schicht

Aktivierungsfunktion

Parameterraum

1 – 10

5 to 50 (Schrittweite 5)

Sigmoid, relu
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auf der Linie der optimalen Vorhersage, lediglich einige Ausreißer 
weisen etwas größere Abweichungen auf. Diese gute Vorhersage-
genauigkeit des erstellten KNN wird durch das im Bild 3 zusätz-
lich eingezeichnete, hohe Bestimmtheitsmaß von 0,9618 bestä-
tigt. Das Ergebnis zeigt, dass die in Kapitel 1 formulierte Zielset-
zung erreicht wurde. Die generelle Erkenntnis ist, dass eine 
 Bestimmung von mechanischen Werkstoffkennwerten auf Basis 
von beim Scheren im offenen Schnitt gemessenen Dehnungs -
verläufen möglich ist.

6 Zusammenfassung und Ausblick

Blechteile werden üblicherweise in mehreren Umform- und 
Scherschneidvorgängen gefertigt. Die Qualität der hergestellten 
Bauteile hängt dabei maßgeblich von den mechanischen Eigen-
schaften des verwendeten Blechwerkstoffs ab. Schwankungen in 
den mechanischen Eigenschaften des Blechwerkstoffs, zum Bei-
spiel aufgrund von Chargenschwankungen, sind Hauptursachen 
für Qualitätsmängel wie Versagen durch Riss, Formabweichungen 
oder Oberflächenfehler an Blechbauteilen. Diese Abweichungen 
der mechanischen Eigenschaften können sowohl in Bezug auf die 
Coillänge als auch auf die Coilbreite variieren. 

Aufgrund der Tatsache, dass die bestehenden Methoden zur 
Materialcharakterisierung entweder nicht vollständig inline-fähig 
sind oder teure Messgeräte erfordern, wurde in den hier vorge-
stellten Untersuchungen eine neue, praxisorientiertere Methode 
zur Inline-Materialcharakterisierung entwickelt. Das Konzept 
dieser Methode basiert auf Analogien zwischen den während des 
Prozesses gemessenen Dehnungen in einer Abtrennstufe und den 
im Zugversuch gemessenen mechanischen Werkstoffkennwerten. 
Durch den Einsatz eines vortrainierten Neuronalen Netzes, das 
die Beschreibung von nichtlinearen Zusammenhängen reprodu-
zierbar macht, konnte eine Vorhersage der Materialkennwerte 
auf Basis der gemessenen Dehnungen im Obermesser der Ab-
trennstufe mit hoher Genauigkeit erzielt werden.

Um die in diesem Beitrag vorgestellten Forschungsarbeiten 
weiterzuführen, werden aktuell am IFU darauf aufbauende 
 Untersuchungen durchgeführt. Neben der Übertragbarkeit der 
verwendeten Modelle auf andere Pressen und Schneidwerkzeuge 
soll in diesen Untersuchungen auch die Übertragbarkeit auf ande-
re Materialklassen wie Kupfer oder Aluminium bewertet werden. 
Zudem soll der Einfluss des Verschleißes der Werkzeugteile auf 
die Vorhersagequalität der Modelle mittels Dauerlauftests unter-
sucht werden. Weiterhin kann die vorgestellte Methode als 
Grundlage für eine Inline-Prozessüberwachung und gegebenen-
falls als Sensor zur Messung von Eingangsgrößen für die Rege-
lung von Umformprozessen eingesetzt werden.
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