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KNN-Entwicklung in der
Halbwarmumformung

D. Vasquez Ramirez, H. Wester, ]. Uhe, B.-A. Behrens

Die numerische Abbildung thermomechanischer Umform-
prozesse erfordert hohe Rechnerleistungen. Diese kdnnen
durch die Kombination von FE-Simulationen und kiinstlichen
neuronalen Netzen (KNN) reduziert werden, insbesondere

bei Prozessen, die eine Umformung und Warmebehandlung
umfassen. Es wird die Entwicklung eines KNN vorgestellt, mit
dem die Materialeigenschaften einer EN AW7075T6-Legierung
nach kathodischer Tauchlackierung in Abhangigkeit von der
Umformbhistorie vorhersagt werden kdnnen.
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1 Einleitung

Durch ihr geringeres Gewicht weisen 7xxx-er Aluminium-
legierungen bei dhnlicher Festigkeit im Vergleich zu Stahl ein
hohes Leichtbaupotenzial auf [1]. Aufgrund der hohen Festigkeit
und geringen Duktilitét ist die Umformbarkeit solcher Legierun-
gen bei Raumtemperatur (RT) jedoch begrenzt. Eine Moglichkeit
die Umformbarkeit zu verbessern ist die Erhchung der Tempera-
tur. Dabei erweist sich der Einsatz der Halbwarmumformung
(HWU) auch vor dem Hintergrund der Energieeffizienz als viel-
versprechend [2].

In der Automobilindustrie besteht die Prozessroute der HWU
von 7xxx-er Aluminium aus einer Erwdrmung, der temperierten
Umformung, dem Abschrecken im Werkzeug und einer anschlie-
Benden kathodischen Tauchlackierung (KTL). Die finalen
mechanischen Eigenschaften des Bauteils werden sowohl durch
den Umformprozess als auch die anschlieflende Wirmebehand-
lung wihrend der KTL beeinflusst. Zur effizienten Prozessaus-
legung hat sich die FE(Finite Elemente)-Simulation etabliert.
Allerdings erfordert die gekoppelte thermomechanische Betrach-
tung von HWU und KTL sehr hohe Rechenleistungen und
-zeiten. Grofles Potenzial bietet daher die Kombination von FE-
Simulation und kiinstlichen neuronalen Netz (KNN) um spezifi-
sche Materialeigenschaften vorherzusagen [3].

In der Umformtechnik gibt es aktuell nur wenige Arbeiten, die
sich mit dem Einsatz von KNN in der Umformtechnik beschifti-
gen, was den Forschungsbedarf in diesem Bereich verdeutlicht.
Maysam etal. [4] entwickelten ein KNN, welches das Forminde-
rungsverhalten eines Bleches bei einer Warmumformung anhand
von virtuellen biaxialen Experimenten in Form von Spannungs-
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ANN development in semi-hot forming

The numerical representation of thermomechanical forming
processes requires high computing power. This can be redu-
ced by combining FE simulation and artificial neural networks
(KNN), especially for processes involving forming and heat
treatment. The article presents the development of a KNN

to be used for predicting the material properties of an EN
AW-7075 T6 alloy after cathodic dip painting depending on
the forming history.

Dehnungs-Diagrammen vorhersagen kann. Eine Veroéffentlichung
von Decke etal. [5] befasst sich mit der Vorhersage des Form-
inderungsverhaltens von EN AW7075 mittels KNN auf Basis
von isothermen einachsigen Zugversuchen unter Variation der
Temperatur bis 400 °C, der Dehnrate und des Materialzustandes.

Im Rahmen dieses Beitrags soll die Kombination von KNN
mit der FE-Simulation zur Abbildung eines HWU-Prozesses bis
300°C mit integrierter KTL vorgestellt werden. Ubergeordnetes
Ziel des KNN ist die Vorhersage der Materialeigenschaften einer
EN AW7075 T6-Blechlegierung nach der KTL unter Beriicksich-
tigung der thermomechanischen Prozesshistorie einer vorange-
gangen HWU. Dabei soll im Gegensatz zu den vorgestellten Lite-
raturquellen nicht nur die Umformtemperatur und die Dehnrate,
sondern auch der eingebrachte Umformgrad und die Abkiihlrate
im Rahmen der Prozessgrenzen der HWU beriicksichtigt werden.
Fur das Training des KNN werden experimentelle Zugversuche
zur Aufbringung entsprechender thermomechanischer Belastun-
gen unter prozessrelevanten Bedingungen durchgefiihrt.

2 Experimentelle Versuchsdurchfiihrung
zur Erzeugung einer Datenbasis

Fir die Entwicklung und Training des KNN wurden experi-
mentelle Daten aus uniaxialen Zugversuchen mit miniaturisierten
Zugproben einer Blechdicke von 2 mm an einem Abschreck- und
Umformdilatometer generiert, siehe Bild 1 a) und b). Dabei
wurden die Zugversuche zuerst unter Variation von Umformtem-
peratur 7, Umformgrad ¢, Dehnrate ¢ und Abkiihlrate T
durchgefiithrt. Nach der initialen Umformung wurden die Proben
bis zur RT abgekiihlt und anschlieffend in einem Heiflluftofen bei
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Bild 1. a) Abschreck- und Umformdilatometer DIL 805/D+T; b) Zugprobe; c) Prozessroute Halbwarmumformung (HWU). Grafik: IFUM Hannover

Tabelle 1. Betrachtete Prozessparameter in den Zugversuchen zur Einbrin-
gung einer initialen Umformung.

Umformtemperatur 7, (°C) 125 150 175 200 225 275

Umformgrad ¢ (-) 0 0,05 0,1
Dehnrate ¢ (1/s) 0,01 0,1 0,1
Abkiihlrate ¢ (K/s) 30 60 100

Tabelle 2. Aufbau sowie feste und variable Hyperparameter des KNN.
Input-Schicht 6 Parameter
Output-Schicht 2 Parameter

Feste Hyperparameter

Netzwerktyp Mehrschichtiges Feedforward neuronales Netz
Aktivierung RelLU
Optimierer Adam

Verlustfunktion Mittlere quadratische Fehler

Variable Hyperparameter

Schichten 6

Neuronen 150 pro Schicht
Lernrate 0,001
Batch-GroRe 5000

Epochen 30

180°C fiir 20 min erwirmt, um eine KTL abzubilden. Der KTL-
Vorgang erfolgte ausschlieflich an den Proben, die bei der Um-
formung nicht versagt haben. Abschliefend wurden die vorumge-
formten Zugproben nach der KTL-Behandlung am Dilatometer
bei RT mit einer Dehnrate von 0,01 s°! bis zum Bruch gepriift.
Somit konnen die mechanischen Materialeigenschaften nach KTL
in Abhingigkeit von unterschiedlichen thermomechanischen Um-
formhistorien ermittelt werden. Die betrachtete Prozessroute ist
im Bild 1 c) schematisch skizziert.

Die Versuchsdaten in Form von Spannungs-Dehnungs-
Diagrammen nach der initialen Umformung wurden als Input
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und diejenigen nach der KTL als Output fiir das KNN verwendet.
Tabelle 1 zeigt die vier Parameter, die bei der initialen Umfor-
mung der Zugproben vollfaktoriell variiert wurden. Jeder Zug-
versuch wurde zur statistischen Absicherung drei Mal wiederholt.
Somit wurden insgesamt 486 Datensitze fiir das KNN generiert.
Da einige Proben bereits bei der initialen Umformung versagten,
reduzierte sich die verwendbare Anzahl fiir den Output auf
432 Spannungs-Dehnungs-Diagramme.

3 Aufbau und Verifizierung des KNN

Um eine unabhingige Open Source Losung zu entwickeln,
wurde fiir die Modellierung und das Training des KNN die Pro-
grammiersprache Python in der Entwicklungsumgebung Spyder
verwendet. Als Netztyp wurde ein Feed-Forward neuronales
Netz ausgewihlt, in dem die Informationen von Input in Rich-
tung Output ohne Riickkopplungen laufen. Das Netz wurde aus
sechs Input- und zwei Output-Parametern aufgebaut. Als Input
wurden die initialen Umformparameter (7,, ¢, ¢, T;qb) sowie
Spannung und Dehnung vor KTL, als Output Spannung und
Dehnung nach KTL definiert (Bild 1c). 80% der Gesamtdaten
wurden fiir das Training, 10% fiir die Validierung und 10% fiir
das Testing verwendet. Die Trainingsdaten dienten zum Aufbau
des Berechnungsalgorithmus zwischen den Input-, Output- und
Zwischenschichten. Die Validierungsdaten dienten zur Bestim-
mung der Vorhersagegenauigkeit des trainierten Netzes bei
gleichzeitiger Anpassung der variablen Hyperparameter, wobei
fiir die experimentellen Inputdaten der Output vom KNN vor-
hergesagt wurde. Zur abschlieRenden Uberpriifung der Vorher-
sagegenauigkeit ohne Anpassung der Hyperparameter wurde der
Testdatensatz verwendet, bei dem analog zum Validierungsdaten-
satz der Output der experimentellen Inputdaten durch KNN vor-
hergesagt wurde. Durch den Vergleich des vorhergesagten und
experimentellen Outputs wurde die Vorhersagegenauigkeit so-
wohl der Validierungs- als auch der Testdatensitze bestimmt [4]

Ein KNN besteht grundsitzlich aus festen und variablen
Hyperparametern, dargestellt in Tabelle 2.

Im Folgenden werden die festen Hyperparameter vorgestellt.
Da das Lernen des KNN auf einem stochastischen Gradienten-
abstiegsverfahren basiert, ist eine differenzierbare Aktivierungs-
funktion erforderlich. Als Aktivierungsfunktion wurde die ReLU-
Funktion (englisch: Rectified Linear Units) ausgewihlt, welche in
der Input- und Zwischenschicht implementiert wurde [6] Ein
weiterer fester Hyperparameter, der Optimierungsalgorithmus,
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Bild 2. a) Genauigkeit und b) MSE (Mean Square Error)-Wert tiber die Epochen zur Beurteilung der Vorhersagegenauigkeit des kiinstlichen neuronalen

Netzes (KNN) bei Trainings- und Validierungsdaten. Grafik: IFUM Hannover

Parameter Vorumformung vor KTL
T, in°C:
125 150 17175 200 W225 W275
@ =ca. 0,05
600 ¢=0,011/s

s 500 - T,»=30 K/s

=

= 400

2 300

=)

€ 200

ok,

? 100

O T T T T
a) 0 2 4 6 8

Dehnung in %

Umformparameter vor KTL
T, in °C:
W125 M150 17175 200 225 W275
¢ =ca. 0,05
¢ =0,011/s
600 T.»=30 K/s
=
2
2 Zugversuch nach KTL
s T,=20°C
» 100 A ¢ = bis Bruch
¢=0,011/s
0 17 T T T
b) 0 2 4 6 8

Dehnung in %

Bild 3. Spannungs-Dehnungs-Diagramme von a) vorumgeformten Zugproben vor der kathodischen Tauchlackierung (KTL)-Behandlung und b) bis zum

Bruch gepriften Zugproben nach der KTL-Behandlung. Grafik: IFUM Hannover

dient zur iterativen Berechnung individueller adaptiver Lernraten
fiir verschiedene Parameter, in diesem Fall fiir die Biases und
Gewichten des Netzes, basierend auf dem Trainingsdatensatz.
Somit wirkt Adam (englisch: ADAptive Moment estimation) als
die Optimierung einer skalar parametrisierten Zielfunktion, die
eine Maximierung oder Minimierung in Bezug auf die Parameter,
Input- und Zielgréfen durchfiihrt [7].

Die variablen Hyperparameter wurden durch die Variation der
einzelnen Werte bestimmt, bis die angestrebten Grenzwerte der
Genauigkeit und des mittleren quadratischen Fehlers (englisch:
Mean Square Error -~ MSE) erreicht wurden [3]. Dies enthilt die
Anzahl der Schichten und Neuronen pro Schicht, welche als
Grundkonstruktion des Netzes dienen, sowie die Lernrate, die die
Schrittgrofle der Fehlerminimierung bestimmt. Dazu gehoren
auch die Batch-Grofle, welche die Anzahl der Trainingsdaten in
einem Durchlauf definiert, und die Epochen, welche die Anzahl
der Durchldufe aller Trainingsdaten in der entsprechenden Batch-
Grofe beschreiben [3].

Anhand der Genauigkeit der Vorhersage sowie des MSE wur-
den die festen und variablen Hyperparameter ermittelt und verifi-
ziert. In Bild 2a) und b) sind jeweils die Genauigkeit und der
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MSE-Wert iiber die Epochen fiir die Trainings- und Validie-
rungsdaten dargestellt. Die Genauigkeit beschreibt die Prizision
der Vorhersagen beim Training und bei der Validierung. Es wird
eine hochstmogliche Genauigkeit angestrebt. Der MSE-Wert gibt
die quadratische Differenz zwischen den experimentellen und den
vom KNN vorhergesagten Ergebnissen beim Training und bei
der Validierung an. Ziel ist ein moglichst geringer MSE-Wert.
Mit den ausgewihlten festen und variablen Hyperparametern
konnte eine Genauigkeit von 94 % und ein MSE-Wert von 0,03
erreicht werden, was auf ein sehr gut trainiertes Netz hindeutet

[3]:
4 Ergebnisse

Bild 3 a) zeigt exemplarisch einige Spannungs-Dehnungs-
Diagramme von vorumgeformten Zugproben vor der KTL.

Demgegeniiber sind in Bild 3 b) die Spannungs-Dehnungs-
Diagramme der vorumgeformten und KTL behandelten Zug-
proben gestellt, die anschliefend bis zum Bruch gepriift wurden.
Die Definition der Prozessroute (Bild 1 c) erfolgte anhand der in
Tabelle 1 dargestellten Parameter. Es werden exemplarisch Span-
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Tabelle 3. Temperaturabhéngige Kennwerte der Streckgrenze, Zugfestigkeit und Restdehnung von vorumgeformten Zugproben vor KTL im Bild 3 a) und bis

zum Bruch gepriften Zugproben nach KTL im Bild 3 b).

Vor KTL

TineC Streckgrenze Zugfestigkeit

R,0,2% in MPa R, in MPa

125 434,7 +12,4 4674 + 8,1
150 3935+4,7 430,4 + 13,9
175 350,2 + 13 384,7+8,9
200 2975+ 1 3252+15
225 259,9+0,5 2825+1,7

275 179,6 + 6,5 184,11

nungs-Dehnungs-Diagramme unter Variation der Umformtempe-
ratur, zwischen 125 und 275 °C, gezeigt, wobei der Umformgrad,
die Dehn- und die Abkiihlrate der initialen Umformung konstant
gehalten wurden. Die Farben der Spannungs-Dehnungs-Verlidufe
in Bild 3 b entsprechen den Parametern der initialen Umformung
zur physikalischen Simulation des thermomechanischen Um-
formprozesses vor der KTL in Bild 3 a).

Zunichst zeigt sich, wie zu erwarten, ein deutlicher Einfluss
der Umformtemperatur auf das Forminderungsverhalten
(Bild 3a). Mit steigender Temperatur sinkt die resultierende
Spannung deutlich. Die Analyse der vorumgeformten und danach
KTL-behandelten Proben zeigt dahingegen nur einen geringen
Einfluss der vorangegangenen Umformhistorie auf die finalen
mechanischen Eigenschaften fiir die betrachteten Umformpara-
meter (Bild 3 b). Mit Ausnahme der bei 275 °C vorumgeformten
Probe liegt sowohl die Zugfestigkeit als auch die Restdehnung
nach KTL auf einem vergleichbaren Niveau. Somit zeigt eine
Variation der Umformtemperatur bis einschlieflich 225 °C unter
konstanten Umformparametern keinen signifikanten Einfluss auf
die finalen mechanischen Eigenschaften.

Die bei 275 °C vorumgeformte Probe weist ein deutlich gerin-
geres Spannungsniveau auf. Diese Entfestigung kann durch stark
vergroberte Ausscheidungen aufgrund der vergleichsweise hohen
Umformtemperatur verursacht werden. Hierbei tritt ein starker
Harteabfall und somit auch eine Festigkeitsverringerung auf [8].
Eine solche Bildung vergroberter Ausscheidungen wurde in einer
dhnlichen Untersuchung der Legierung EN AW7075 T6 bereits
bei 250°C beobachtet [9]. Gleichartiges Werkstoffverhalten
konnte bei den Zugversuchen mit Vorumformgraden von 0 und
0,1 beobachtet werden (siehe Tabelle 2). Zum genaueren Ver-
gleich sind in Tabelle 3 die temperaturabhingigen Kennwerte
der Streckgrenze, Zugfestigkeit und Restdehnung der in Bild 3 a)
und b) dargestellten Spannungs-Dehnungs-Diagramme jeweils
vor und nach KTL angegeben.

Durch die Umformung vor KTL und die anschliefende KTL-
Behandlung wurden allerdings die Grundmaterialeigenschaften
deutlich verindert. Die unbehandelte Referenzzugprobe, gepriift
bis zum Bruch bei RT und 0,01 s7!, erreichte eine Zugfestigkeit
von 553,1 MPa und eine Restdehnung von 11%. Somit wurde
die Zugfestigkeit durch die Halbwarmumformung und anschlie-
fende KTL-Behandlung bei Temperaturen zwischen 125-225°C
um circa 30 MPa und bei 275°C um circa 140 MPa gegeniiber
der Referenz reduziert. Die verbleibende Restdehnung bis zum
Bruch wurde bei allen vorumgeformten Proben trotz der unter-
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Nach KTL
Streckgrenze Zugfestigkeit Restdehnung
R,0,2% in MPa R, in MPa Apes I %
4849 +3,4 516,01 + 9,3 86 +1,1
482,9+2,3 520,1+3,8 8,1+0,9
480,1+78 510,6 + 6,5 6,4+1,2
4778 £ 8,7 5177 + 11,1 6,3+2
483,1+6 523,56+ 6,4 6+1
3779+ 14,7 408,6 + 30,7 6,1+1,6

schiedlichen Umformtemperaturen auf circa 8-6 % Restdehnung
im Vergleich zu der Referenz reduziert.

Die vor und nach KTL erzeugten Spannungs-Dehnungs-
Diagramme wurden jeweils als Input und Output fir das KNN
verwendet, das mit den Parametern in Tabelle 2 entwickelt wur-
de. Nach dem erfolgreichen Training des Netzes, wie in Kapitel 3
beschrieben, erfolgte die Verifizierung der Netzvorhersage durch
die Gegeniiberstellung der vorhergesagten und experimentellen
Validierungsdaten nach KTL fiir verschiedene Umformparameter,
veranschaulicht im Bild 4.

Bild 4 a) und b) zeigen eine sehr gute Ubereinstimmung der
vorhergesagten Spannungs-Dehnungs-Diagramme mit den expe-
rimentellen Ergebnissen. Dabei konnte eine gute Identifikation
der Hookeschen Gerade sowie eine sehr gute Vorhersage der
Zugfestigkeit erreicht werden. Allerdings ist die Abweichung der
vorhergesagten Restdehnung im Verhiltnis zur vorhergesagten
Zugfestigkeit deutlich hoher, was auf eine groflere Streuung der
experimentellen Daten hinsichtlich der Restdehnung im Vergleich
zur Zugfestigkeit zuriickzufiithren ist. Die Spannungs-Dehnungs-
Diagramme in Bild 4 ¢) und d) zeigen hingegen eine stark von
den Experimenten abweichende Vorhersage.

Der Grund liegt in der Qualitit der Daten. Die Verwendung
von experimentellen Ergebnisdaten, die eine starke Streuung auf-
wiesen, hat zu ungenauen Ergebnissen gefiihrt. Die Material- und
Messschwankungen #duflern sich vor allem in einer streuenden
Restdehnung sowie nicht-linearen Verliufen der Hookeschen
Gerade, wie in den experimentellen Verlaufen in Bild 4 ¢ und d
zu sehen. Bei der Messung der Lingendnderung des elastischen
Bereichs treten teilweise Schwankungen aufgrund der Trigheit
der Schubstangen auf. Diese sind im Verlauf der Hookeschen
Gerade sichtbar.

Zudem konnte bei der Versuchswiederholung bei geringen
Dehnraten und Umformgraden keine gute Reproduzierbarkeit
des Umformgrades und somit der Restdehnung gewihrleistet
werden. Bei diesen Versuchsparametern lag die hydraulische Zug-
regelung, gesteuert durch die Ziel-Lingeninderung, an der un-
tersten Grenze. Daher wurde bei der Restdehnung eine hohe Er-
gebnisstreuung in den Versuchswiederholungen festgestellt. Somit
wurde gezeigt, dass die Qualitit der Daten einen grofleren Ein-
fluss auf die Vorhersagegenauigkeit als die Quantitit besitzt.
Dennoch konnte anhand der dargestellten Ergebnisse in Bild 4 a
und b gezeigt werden, dass ein trainiertes KNN in der Lage ist,

vollstindige Spannungs-Dehnungs-Diagramme als Input zu
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Bild 4. Vom KNN vorhergesagte und experimentell ermittelte Spannungs-Dehnungs-Diagramme fiir verschiedene Umformparameter nach KTL.

Grafik: IFUM Hannover

erkennen und ebenfalls als Output in Abhingigkeit von den Um-
formparametern vorherzusagen.

5 Fazit und Ausblick

In dieser Studie wurde die Modellierung und das Training
eines mehrschichtigen Feedforward kiinstlichen neuronalen
Netzes mit dem Ziel vorgenommen, die finalen mechanischen
Materialeigenschaften in Abhingigkeit der thermomechanischen
Umformhistorie vorherzusagen. Dies erfolgte am Beispiel einer
Prozesskette der Halbwarmumformung mit integrierter kathodi-
scher Tauchlackierung fiir die hochfeste Aluminiumlegierung
EN AW7076 Té.

Zur Ermittlung der Materialeigenschaften wurden Versuchs-
daten in Form von Spannungs-Dehnungs-Diagrammen aus

experimentellen Zugversuchen an einem Umformdilatometer ent-
sprechend der Prozessroute einer Halbwarmumformung erzeugt.
Die Spannungs-Dehnungs-Diagramme nach einer initialen Um-
formung sowie die verwendeten Umformparameter dienen als
Input. Die Spannungs-Dehnungs-Diagramme nach der kathodi-
schen Tauchlackierung, welche die finalen mechanischen Materi-
aleigenschaften beschreiben, wurden als Output verwendet. Insge-
samt konnte das entwickelte neuronale Netz die Zugfestigkeit
sehr gut vorhersagen. Die Bestimmung der Restdehnung sowie
die genaue Nachbildung der Hookeschen Gerade zeigte aber teil-
weise deutliche Abweichungen von den Experimenten. Die ist
zum einen auf die Streuungen des Materials hinsichtlich der Rest-
dehnung zuriickzufithren, welche in den drei Wiederholungs-
versuchen beobachtet wurden. Zum anderen fithren Messschwan-

Umformung Materialeigenschaften KTL-Behandlung Materialeigenschaften
vor KTL nach KTL
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Bild 5. Kombination zwischen dem Finite-Elemente-Modell einer HWU und dem vollstdndig entwickelten KNN zur Vorhersage der mechanischen Material-
eigenschaften nach KTL in Abhéngigkeit von der Umformhistorie. Grafik: IFUM Hannover
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kungen wie ein nicht linearer Verlauf der Hookeschen Gerade zu
falschen Vorhersagen.

Zusammenfassend konnte festgestellt werden, dass die Daten-

qualitit einen grofleren Einfluss auf die Vorhersagegenauigkeit
hat als die Datenmenge. Aus diesem Grund wird fiir die weitere
Entwicklung des KNN eine automatisierte Vorpriifung der
Datenqualitit umgesetzt, um die Qualitit des KNN weiter zu

steigern. Des Weiteren wird das entwickelte kiinstliche neuronale
Netz mit dem FE-Modell des Halbwarmumformprozesses kombi-
niert, sodass die Materialeigenschaften nach der kathodischen
Tauchlackierung in Abhingigkeit von der Umformbhistorie vor-

hergesagt werden konnen, wie in Bild 5 veranschaulicht.
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