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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

KNN-Entwicklung in der 
 Halbwarmumformung 

D. Vasquez Ramirez, H. Wester, J. Uhe, B.-A. Behrens

Die numerische Abbildung thermomechanischer Umform -
prozesse erfordert hohe Rechnerleistungen. Diese können 
durch die Kombination von FE-Simulationen und künstlichen 
neuronalen Netzen (KNN) reduziert werden, insbesondere   
bei Prozessen, die eine Umformung und Wärmebehandlung 
umfassen. Es wird die Entwicklung eines KNN vorgestellt, mit 
dem die Materialeigenschaften einer EN AW7075 T6-Legierung  
nach kathodischer Tauchlackierung in Abhängigkeit von der 
Umformhistorie vorhersagt werden können. 

ANN development in semi-hot forming 

The numerical representation of thermomechanical forming 
processes requires high computing power. This can be redu-
ced by combining FE simulation and artificial neural networks 
(KNN), especially for processes involving forming and heat 
treatment. The article presents the development of a KNN  
to be used for predicting the material properties of an EN 
AW-7075 T6 alloy after cathodic dip painting depending on  
the forming history.

1 Einleitung

Durch ihr geringeres Gewicht weisen 7xxx-er Aluminium -
legierungen bei ähnlicher Festigkeit im Vergleich zu Stahl ein 
 hohes Leichtbaupotenzial auf [1]. Aufgrund der hohen Festigkeit 
und geringen Duktilität ist die Umformbarkeit solcher Legierun-
gen bei Raumtemperatur (RT) jedoch begrenzt. Eine Möglichkeit 
die Umformbarkeit zu verbessern ist die Erhöhung der Tempera-
tur. Dabei erweist sich der Einsatz der Halbwarmumformung 
(HWU) auch vor dem Hintergrund der Energieeffizienz als viel-
versprechend [2]. 

In der Automobilindustrie besteht die Prozessroute der HWU 
von 7xxx-er Aluminium aus einer Erwärmung, der temperierten 
Umformung, dem Abschrecken im Werkzeug und einer anschlie-
ßenden kathodischen Tauchlackierung (KTL). Die finalen 
 mechanischen Eigenschaften des Bauteils werden sowohl durch 
den Umformprozess als auch die anschließende Wärmebehand-
lung während der KTL beeinflusst. Zur effizienten Prozessaus -
legung hat sich die FE(Finite Elemente)-Simulation etabliert. 
 Allerdings erfordert die gekoppelte thermomechanische Betrach-
tung von HWU und KTL sehr hohe Rechenleistungen und 
 -zeiten. Großes Potenzial bietet daher die Kombination von FE-
Simulation und künstlichen neuronalen Netz (KNN) um spezifi-
sche Material eigenschaften vorherzusagen [3]. 

In der Umformtechnik gibt es aktuell nur wenige Arbeiten, die 
sich mit dem Einsatz von KNN in der Umformtechnik beschäfti-
gen, was den Forschungsbedarf in diesem Bereich verdeutlicht. 
Maysam et al. [4] entwickelten ein KNN, welches das Formände-
rungsverhalten eines Bleches bei einer Warmumformung anhand 
von virtuellen biaxialen Experimenten in Form von Spannungs-

Dehnungs-Diagrammen vorhersagen kann. Eine Veröffentlichung 
von Decke et al. [5] befasst sich mit der Vorhersage des Form -
änderungsverhaltens von EN AW7075 mittels KNN auf Basis 
von isothermen einachsigen Zugversuchen unter Variation der 
Temperatur bis 400 °C, der Dehnrate und des Materialzustandes. 

Im Rahmen dieses Beitrags soll die Kombination von KNN 
mit der FE-Simulation zur Abbildung eines HWU-Prozesses bis 
300 °C mit integrierter KTL vorgestellt werden. Übergeordnetes 
Ziel des KNN ist die Vorhersage der Materialeigenschaften einer 
EN AW7075 T6-Blechlegierung nach der KTL unter Berücksich-
tigung der thermomechanischen Prozesshistorie einer vorange-
gangen HWU. Dabei soll im Gegensatz zu den vorgestellten Lite-
raturquellen nicht nur die Umformtemperatur und die Dehnrate, 
sondern auch der eingebrachte Umformgrad und die Abkühlrate 
im Rahmen der Prozessgrenzen der HWU berücksichtigt werden. 
Für das Training des KNN werden experimentelle Zugversuche 
zur Aufbringung entsprechender thermomechanischer Belastun-
gen unter prozessrelevanten Bedingungen durchgeführt. 

2 Experimentelle Versuchsdurchführung  
 zur Erzeugung einer Datenbasis

Für die Entwicklung und Training des KNN wurden experi-
mentelle Daten aus uniaxialen Zugversuchen mit miniaturisierten 
Zugproben einer Blechdicke von 2 mm an einem Abschreck- und 
Umformdilatometer generiert, siehe Bild 1 a) und b). Dabei 
wurden die Zugversuche zuerst unter Variation von Umformtem-
peratur Tu, Umformgrad φ, Dehnrate   und Abkühlrate   
durchgeführt. Nach der initialen Umformung wurden die Proben 
bis zur RT abgekühlt und anschließend in einem Heißluftofen bei 
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180 °C für 20 min erwärmt, um eine KTL abzubilden. Der KTL-
Vorgang erfolgte ausschließlich an den Proben, die bei der Um-
formung nicht versagt haben. Abschließend wurden die vorumge-
formten Zugproben nach der KTL-Behandlung am Dilatometer 
bei RT mit einer Dehnrate von 0,01 s-1 bis zum Bruch geprüft. 
Somit können die mechanischen Materialeigenschaften nach KTL 
in Abhängigkeit von unterschiedlichen thermomechanischen Um-
formhistorien ermittelt werden. Die betrachtete Prozessroute ist 
im Bild 1 c) schematisch skizziert. 

Die Versuchsdaten in Form von Spannungs-Dehnungs-
 Diagrammen nach der initialen Umformung wurden als Input 

und diejenigen nach der KTL als Output für das KNN verwendet. 
 Tabelle 1 zeigt die vier Parameter, die bei der initialen Umfor-
mung der Zugproben vollfaktoriell variiert wurden. Jeder Zug-
versuch wurde zur statistischen Absicherung drei Mal wiederholt. 
Somit wurden insgesamt 486 Datensätze für das KNN generiert. 
Da  einige Proben bereits bei der initialen Umformung versagten, 
reduzierte sich die verwendbare Anzahl für den Output auf 
432 Spannungs-Dehnungs-Diagramme.

3 Aufbau und Verifizierung des KNN

Um eine unabhängige Open Source Lösung zu entwickeln, 
wurde für die Modellierung und das Training des KNN die Pro-
grammiersprache Python in der Entwicklungsumgebung Spyder 
verwendet. Als Netztyp wurde ein Feed-Forward neuronales 
Netz ausgewählt, in dem die Informationen von Input in Rich-
tung Output ohne Rückkopplungen laufen. Das Netz wurde aus 
sechs Input- und zwei Output-Parametern aufgebaut. Als Input 
wurden die initialen Umformparameter (Tu, φ,  ,  ) sowie 
Spannung und Dehnung vor KTL, als Output Spannung und 
Dehnung nach KTL definiert (Bild 1 c). 80 % der Gesamtdaten 
wurden für das Training, 10 % für die Validierung und 10 % für 
das Testing verwendet. Die Trainingsdaten dienten zum Aufbau 
des Berechnungsalgorithmus zwischen den Input-, Output- und 
Zwischenschichten. Die Validierungsdaten dienten zur Bestim-
mung der Vorhersagegenauigkeit des trainierten Netzes bei 
gleichzeitiger Anpassung der variablen Hyperparameter, wobei 
für die experimentellen Inputdaten der Output vom KNN vor-
hergesagt wurde. Zur abschließenden Überprüfung der Vorher -
sagegenauigkeit ohne Anpassung der Hyperparameter wurde der 
Testdatensatz verwendet, bei dem analog zum Validierungsdaten-
satz der Output der experimentellen Inputdaten durch KNN vor-
hergesagt wurde. Durch den Vergleich des vorhergesagten und 
experimentellen Outputs wurde die Vorhersagegenauigkeit so-
wohl der Validierungs- als auch der Testdatensätze bestimmt [4]. 

Ein KNN besteht grundsätzlich aus festen und variablen 
 Hyperparametern, dargestellt in Tabelle 2. 

Im Folgenden werden die festen Hyperparameter vorgestellt. 
Da das Lernen des KNN auf einem stochastischen Gradienten -
abstiegsverfahren basiert, ist eine differenzierbare Aktivierungs-
funktion erforderlich. Als Aktivierungsfunktion wurde die ReLU-
Funktion (englisch: Rectified Linear Units) ausgewählt, welche in 
der Input- und Zwischenschicht implementiert wurde [6]. Ein 
weiterer fester Hyperparameter, der Optimierungsalgorithmus, 

Tabelle 1. Betrachtete Prozessparameter in den Zugversuchen zur Einbrin-
gung einer initialen Umformung.

Umformtemperatur Tu (°C)

Umformgrad φ (-)

Dehnrate   (1/s)

Abkühlrate   (K/s)

125

0

0,01

30

150 175

0,05

0,1

60

200 225

0,1

0,1

100

275

Bild 1. a) Abschreck- und Umformdilatometer DIL 805/D+T; b) Zugprobe; c) Prozessroute Halbwarmumformung (HWU). Grafik: IFUM Hannover

Tabelle 2. Aufbau sowie feste und variable Hyper parameter des KNN.

Input-Schicht

Output-Schicht

Feste Hyperparameter

Netzwerktyp

Aktivierung

Optimierer

Verlustfunktion

Variable Hyperparameter

Schichten

Neuronen

Lernrate

Batch-Größe

Epochen

6 Parameter

2 Parameter

Mehrschichtiges Feedforward neuronales Netz

ReLU

Adam

Mittlere quadratische Fehler

6

150 pro Schicht

0,001

5000

30
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dient zur iterativen Berechnung individueller adaptiver Lernraten 
für verschiedene Parameter, in diesem Fall für die Biases und 
 Gewichten des Netzes, basierend auf dem Trainingsdatensatz. 
 Somit wirkt Adam (englisch: ADAptive Moment estimation) als 
die Optimierung einer skalar parametrisierten Zielfunktion, die 
eine Maximierung oder Minimierung in Bezug auf die Parameter, 
 Input- und Zielgrößen durchführt [7]. 

Die variablen Hyperparameter wurden durch die Variation der 
einzelnen Werte bestimmt, bis die angestrebten Grenzwerte der 
Genauigkeit und des mittleren quadratischen Fehlers (englisch: 
Mean Square Error – MSE) erreicht wurden [3]. Dies enthält die 
Anzahl der Schichten und Neuronen pro Schicht, welche als 
Grundkonstruktion des Netzes dienen, sowie die Lernrate, die die 
Schrittgröße der Fehlerminimierung bestimmt. Dazu gehören 
auch die Batch-Größe, welche die Anzahl der Trainingsdaten in 
einem Durchlauf definiert, und die Epochen, welche die Anzahl 
der Durchläufe aller Trainingsdaten in der entsprechenden Batch-
Größe beschreiben [3].

Anhand der Genauigkeit der Vorhersage sowie des MSE wur-
den die festen und variablen Hyperparameter ermittelt und verifi-
ziert. In Bild 2 a) und b) sind jeweils die Genauigkeit und der 

MSE-Wert über die Epochen für die Trainings- und Validie-
rungsdaten dargestellt. Die Genauigkeit beschreibt die Präzision 
der Vorhersagen beim Training und bei der Validierung. Es wird 
eine höchstmögliche Genauigkeit angestrebt. Der MSE-Wert gibt 
die quadratische Differenz zwischen den experimentellen und den 
vom KNN vorhergesagten Ergebnissen beim Training und bei 
der Validierung an. Ziel ist ein möglichst geringer MSE-Wert. 
Mit den ausgewählten festen und variablen Hyperparametern 
konnte eine Genauigkeit von 94 % und ein MSE-Wert von 0,03 
erreicht werden, was auf ein sehr gut trainiertes Netz hindeutet 
[3]. 

4 Ergebnisse

Bild 3 a) zeigt exemplarisch einige Spannungs-Dehnungs-
Diagramme von vorumgeformten Zugproben vor der KTL. 

Demgegenüber sind in Bild 3 b) die Spannungs-Dehnungs-
Diagramme der vorumgeformten und KTL behandelten Zug -
proben gestellt, die anschließend bis zum Bruch geprüft wurden. 
Die Definition der Prozessroute (Bild 1 c) erfolgte anhand der in 
Tabelle 1 dargestellten Parameter. Es werden exemplarisch Span-

Bild 2. a) Genauigkeit und b) MSE (Mean Square Error)-Wert über die Epochen zur Beurteilung der Vorhersagegenauigkeit des künstlichen neuronalen 
 Netzes (KNN)  bei Trainings- und Validierungsdaten. Grafik: IFUM Hannover

Bild 3. Spannungs-Dehnungs-Diagramme von a) vorumgeformten Zugproben vor der kathodischen Tauchlackierung (KTL)-Behandlung und b) bis zum 
Bruch geprüften Zugproben nach der KTL-Behandlung. Grafik: IFUM Hannover
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nungs-Dehnungs-Diagramme unter Variation der Umformtempe-
ratur, zwischen 125 und 275 °C, gezeigt, wobei der Umformgrad, 
die Dehn- und die Abkühlrate der initialen Umformung konstant 
gehalten wurden. Die Farben der Spannungs-Dehnungs-Verläufe 
in Bild 3 b entsprechen den Parametern der initialen Umformung 
zur physikalischen Simulation des thermomechanischen Um-
formprozesses vor der KTL in Bild 3 a). 

Zunächst zeigt sich, wie zu erwarten, ein deutlicher Einfluss 
der Umformtemperatur auf das Formänderungsverhalten 
(Bild 3 a). Mit steigender Temperatur sinkt die resultierende 
Spannung deutlich. Die Analyse der vorumgeformten und danach 
KTL-behandelten Proben zeigt dahingegen nur einen geringen 
Einfluss der vorangegangenen Umformhistorie auf die finalen 
mechanischen Eigenschaften für die betrachteten Umformpara-
meter (Bild 3 b). Mit Ausnahme der bei 275 °C vorumgeformten 
Probe liegt sowohl die Zugfestigkeit als auch die Restdehnung 
nach KTL auf einem vergleichbaren Niveau. Somit zeigt eine 
 Variation der Umformtemperatur bis einschließlich 225 °C unter 
konstanten Umformparametern keinen signifikanten Einfluss auf 
die finalen mechanischen Eigenschaften. 

Die bei 275 °C vorumgeformte Probe weist ein deutlich gerin-
geres Spannungsniveau auf. Diese Entfestigung kann durch stark 
vergröberte Ausscheidungen aufgrund der vergleichsweise hohen 
Umformtemperatur verursacht werden. Hierbei tritt ein starker 
Härteabfall und somit auch eine Festigkeitsverringerung auf [8]. 
Eine solche Bildung vergröberter Ausscheidungen wurde in einer 
ähnlichen Untersuchung der Legierung EN AW7075 T6 bereits 
bei 250 °C beobachtet [9]. Gleichartiges Werkstoffverhalten 
konnte bei den Zugversuchen mit Vorumformgraden von 0 und 
0,1 beobachtet werden (siehe Tabelle 2). Zum genaueren Ver-
gleich sind in Tabelle 3 die temperaturabhängigen Kennwerte 
der Streckgrenze, Zugfestigkeit und Restdehnung der in Bild 3 a) 
und b) dargestellten Spannungs-Dehnungs-Diagramme jeweils 
vor und nach KTL angegeben.

Durch die Umformung vor KTL und die anschließende KTL-
Behandlung wurden allerdings die Grundmaterialeigenschaften 
deutlich verändert. Die unbehandelte Referenzzugprobe, geprüft 
bis zum Bruch bei RT und 0,01 s-1, erreichte eine Zugfestigkeit 
von 553,1 MPa und eine Restdehnung von 11 %. Somit wurde 
die Zugfestigkeit durch die Halbwarmumformung und anschlie-
ßende KTL-Behandlung bei Temperaturen zwischen 125–225 °C 
um circa 30 MPa und bei 275 °C um circa 140 MPa gegenüber 
der Referenz reduziert. Die verbleibende Restdehnung bis zum 
Bruch wurde bei allen vorumgeformten Proben trotz der unter-

schiedlichen Umformtemperaturen auf circa 8–6 % Restdehnung 
im Vergleich zu der Referenz reduziert. 

Die vor und nach KTL erzeugten Spannungs-Dehnungs-
 Diagramme wurden jeweils als Input und Output für das KNN 
verwendet, das mit den Parametern in Tabelle 2 entwickelt wur-
de. Nach dem erfolgreichen Training des Netzes, wie in Kapitel 3 
beschrieben, erfolgte die Verifizierung der Netzvorhersage durch 
die Gegenüberstellung der vorhergesagten und experimentellen 
Validierungsdaten nach KTL für verschiedene Umformparameter, 
veranschaulicht im Bild 4. 

Bild 4 a) und b) zeigen eine sehr gute Übereinstimmung der 
vorhergesagten Spannungs-Dehnungs-Diagramme mit den expe-
rimentellen Ergebnissen. Dabei konnte eine gute Identifikation 
der Hookeschen Gerade sowie eine sehr gute Vorhersage der 
Zugfestigkeit erreicht werden. Allerdings ist die Abweichung der 
vorhergesagten Restdehnung im Verhältnis zur vorhergesagten 
Zugfestigkeit deutlich höher, was auf eine größere Streuung der 
experimentellen Daten hinsichtlich der Restdehnung im Vergleich 
zur Zugfestigkeit zurückzuführen ist. Die Spannungs-Dehnungs-
Diagramme in Bild 4 c) und d) zeigen hingegen eine stark von 
den Experimenten abweichende Vorhersage. 

Der Grund liegt in der Qualität der Daten. Die Verwendung 
von experimentellen Ergebnisdaten, die eine starke Streuung auf-
wiesen, hat zu ungenauen Ergebnissen geführt. Die Material- und 
Messschwankungen äußern sich vor allem in einer streuenden 
Restdehnung sowie nicht-linearen Verläufen der Hookeschen 
 Gerade, wie in den experimentellen Verläufen in Bild 4 c und d 
zu sehen. Bei der Messung der Längenänderung des elastischen 
Bereichs treten teilweise Schwankungen aufgrund der Trägheit 
der Schubstangen auf. Diese sind im Verlauf der Hookeschen 
 Gerade sichtbar. 

Zudem konnte bei der Versuchswiederholung bei geringen 
Dehnraten und Umformgraden keine gute Reproduzierbarkeit 
des Umformgrades und somit der Restdehnung gewährleistet 
werden. Bei diesen Versuchsparametern lag die hydraulische Zug -
regelung, gesteuert durch die Ziel-Längenänderung, an der un-
tersten Grenze. Daher wurde bei der Restdehnung eine hohe Er-
gebnisstreuung in den Versuchswiederholungen festgestellt. Somit 
wurde gezeigt, dass die Qualität der Daten einen größeren Ein-
fluss auf die Vorhersagegenauigkeit als die Quantität besitzt. 
 Dennoch konnte anhand der dargestellten Ergebnisse in Bild 4 a 
und b gezeigt werden, dass ein trainiertes KNN in der Lage ist, 
vollständige Spannungs-Dehnungs-Diagramme als Input zu 

Tabelle 3. Temperaturabhängige Kennwerte der Streckgrenze, Zugfestigkeit und Restdehnung von vorumgeformten Zugproben vor KTL im Bild 3 a) und bis 
zum Bruch geprüften Zugproben nach KTL im Bild 3 b).

T in °C

125

150

175

200

225

275

Vor KTL

Streckgrenze  
Rp0,2% in MPa

434,7 ± 12,4

393,5 ± 4,7

350,2 ± 13

297,5 ± 1

259,9 ± 0,5

179,6 ± 6,5

Zugfestigkeit  
Rm in MPa

467,4 ± 8,1

430,4 ± 13,9

384,7 ± 8,9

325,2 ± 1,5

282,5 ± 1,7

184,1 ± 1

Nach KTL

Streckgrenze  
Rp0,2% in MPa

484,9 ± 3,4

482,9 ± 2,3

480,1 ± 7,8

477,8 ± 8,7

483,1 ± 6

377,9 ± 14,7

Zugfestigkeit  
Rm in MPa

516,01 ± 9,3

520,1 ± 3,8

510,6 ± 6,5

517,7 ± 11,1

523,5 ± 6,4

408,6 ± 30,7

Restdehnung  
Arest in %

8,5 ± 1,1

8,1 ± 0,9

6,4 ± 1,2

6,3 ± 2

6 ± 1

6,1 ± 1,6
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 erkennen und ebenfalls als Output in Abhängigkeit von den Um-
formparametern vorherzusagen. 

5 Fazit und Ausblick

In dieser Studie wurde die Modellierung und das Training 
 eines mehrschichtigen Feedforward künstlichen neuronalen 
 Netzes mit dem Ziel vorgenommen, die finalen mechanischen 
Materialeigenschaften in Abhängigkeit der thermomechanischen 
Umformhistorie vorherzusagen. Dies erfolgte am Beispiel einer 
Prozesskette der Halbwarmumformung mit integrierter kathodi-
scher Tauchlackierung für die hochfeste Aluminiumlegierung 
EN AW7076 T6. 

Zur Ermittlung der Materialeigenschaften wurden Versuchs-
daten in Form von Spannungs-Dehnungs-Diagrammen aus 

 experimentellen Zugversuchen an einem Umformdilatometer ent-
sprechend der Prozessroute einer Halbwarmumformung erzeugt. 
Die Spannungs-Dehnungs-Diagramme nach einer initialen Um-
formung sowie die verwendeten Umformparameter dienen als 
 Input. Die Spannungs-Dehnungs-Diagramme nach der kathodi-
schen Tauchlackierung, welche die finalen mechanischen Materi-
aleigenschaften beschreiben, wurden als Output verwendet. Insge-
samt konnte das entwickelte neuronale Netz die Zugfestigkeit 
sehr gut vorhersagen. Die Bestimmung der Restdehnung sowie 
die genaue Nachbildung der Hookeschen Gerade zeigte aber teil-
weise deut liche Abweichungen von den Experimenten. Die ist 
zum einen auf die Streuungen des Materials hinsichtlich der Rest-
dehnung zurückzuführen, welche in den drei Wiederholungs -
versuchen  beobachtet wurden. Zum anderen führen Messschwan-

Bild 5. Kombination zwischen dem Finite-Elemente-Modell einer HWU und dem vollständig entwickelten KNN zur Vorhersage der mechanischen Material -
eigenschaften nach KTL in Abhängigkeit von der Umformhistorie. Grafik: IFUM Hannover

Bild 4. Vom KNN vorhergesagte und experimentell ermittelte Spannungs-Dehnungs-Diagramme für verschiedene Umformparameter nach KTL.  
Grafik: IFUM Hannover
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kungen wie ein nicht linearer Verlauf der Hookeschen Gerade zu 
falschen Vorhersagen. 

Zusammenfassend konnte festgestellt werden, dass die Daten-
qualität einen größeren Einfluss auf die Vorhersagegenauigkeit 
hat als die Datenmenge. Aus diesem Grund wird für die weitere 
Entwicklung des KNN eine automatisierte Vorprüfung der 
 Datenqualität umgesetzt, um die Qualität des KNN weiter zu 
steigern. Des Weiteren wird das entwickelte künstliche neuronale 
Netz mit dem FE-Modell des Halbwarmumformprozesses kombi-
niert, sodass die Materialeigenschaften nach der kathodischen 
Tauchlackierung in Abhängigkeit von der Umformhistorie vor-
hergesagt werden können, wie in Bild 5 veranschaulicht.
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