184

Knowl. Org. 45(2018)No.2

Reviews of Concepts in Knowledge Organization

Reviews of Concepts in Knowledge Organization

Series Editor: Birger Hjorland

Mathematical Theory of Classification

Daniel Parrochia

Universite Lyon III - Philosophy 1, rue de ’'Université Lyon, Lyon 69239, France,

<daniel.parrochia@wanadoo.fr>

Daniel Parrochia is honorary Professor of logic at the University Jean Moulin-Lyon 3. He started studying phi-
losophy, linguistics and mathematics in Lyon, joined CNRS (National Center for Scientific Research) in 1979
and got his PhD in 1987. Professor at the University of Toulouse-Le-Mirail (1990-97) and then at the University
Paul Valéry-Montpellier IIT (1997-2003), he collaborated with the CNES (National Center of Spatial Studies)
and the LIRMM (Laboratory of Computer Science, Robotics and Microelectronics in Montpellier). He was the
director of the CRATEIR (Research Center About Technology, Information and Networks) in Montpellier, and

of the CAF (Center for the Analysis of Forms) in Lyon.

Parrochia, Daniel. 2017. “Mathematical Theory of Classification.” Knowledge Organization 44(7): 184-201. 47 pages.

81 references. DOIL:10.5771/0943-7444-2018-2-184.

Abstract: One of the main topics of scientific research, classification is the operation consisting of distributing objects in classes or groups
which are, in general, less numerous than them. From Antiquity to the Classical Age, it has a long history where philosophers (Aristotle),
and natural scientists (Linnaeus), took a great part. But from the nineteenth century (with the growth of chemistry and information science)
and the twentieth century (with the arrival of mathematical models and computer science), mathematics (especially theory of orders and
theory of graphs or hypergraphs) allows us to compute all the possible pattitions, chains of partitions, covers, hypergraphs or systems of
classes we can construct on a domain. In spite of these advances, most of classifications are still based on the evaluation of ressemblances
between objects that constitute the empirical data. However, all these classifications remain, for technical and epistemological reasons we
detail below, very unstable ones. We lack a real algebra of classifications, which could explain their properties and the relations existing
between them. Though the aim of a general theory of classifications is surely a wishful thought, some recent conjecture gives the hope that

the existence of a metaclassification (or classification of all classification schemes) is possible.
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1.0 Introduction

Classification is the operation consisting of sharing, dis-
tributing or allocating objects in classes or groups which
are, in general, less numerous than them. It is also the re-
sult of this operation and one of the main topics of scien-
tific research and organization of knowledge (Dahlberg
2014; Hjorland 2017).

Inside science, and especially inside mathematics, what
we call a “classification” supposes the existence of an
equivalence relation & defined between the elements of a
set E, leading to the quotient set E/ R, the set of equiva-
lent classes that can be, afterall, hierarchised. The various

elements of the set E are usually compared by the means
of some invariant. For example, partitioning N, the set of
natural numbers, into odd and even numbers, supposes
you take for invariant their classes modulo two. Now, if
you want to classify the abstract sets in general, then you
will have to take for invariant their cardinals. In experi-
mental sciences (physics, chemistry, natural sciences, etc.),
there are more complex invariants, such as symmetry
groups, discrete groups, and so on. Invariants are, in fact,
kinds of criteria that allow us to tell whether the objects we
compatre are similar or not. However, in practical domains,
we cannot get always good invariants or indisputable crite-
ria for classifications. Indeed, even in those domains, a
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simple glance at the problem shows that classification
gains by being developed mathematically. Of course, we
can compare pairs of objects through their attributes, and
try to make classifications empirically as did, for example,
Michel Adanson. However, as soon as the number of ob-
jects to be classified exceeds a few dozen, processing the
operation of classification is very difficult.

Fortunately, since the 1950s, we can use computers.
This means that we must define in advance the notions of
“likeness” or “proximity” of two objects, concepts more
clearly expressed by a mathematical coefficient of similar-
ity, which is a kind of abstract notion of “distance.” This
latter, in turn, presupposes the notion of “metric space.”
And once we have built “sets” or “classes” with some
structures defined on them (quasiorder, order, topological
space, etc.) in order to make some groupings of the ob-
jects, we find ourselves again in pure mathematics. Mathe-
matics are also useful to compare these structures by the
means of powerful tools such as categories and functors.
So we get classifications of mathematical structures or, if
we make use of logic, especially model theory, classifica-
tions of their underlying theories. Finally, we reach funda-
tional problems. Building stable classifications raises a lot
of questions that are familiar to a mathematician: the
search for invariants, the quest for a metastructure that ex-
plains all forms of empirical or formal classifications, fi-
nally, the examination of a possible algebra able to reflect
the changes of classification schemes and the passage from
one classification to another over time. All these facts lead
to consider a mathematical theory of classification as a new
construction of the continuum (see section 9.3 below).
However, we must recognize that, currently, there is no
single theory of classification.

2.0 A brief history of mathematical classification

For a long time (say, from Plato and Aristotle to the sev-
enteenth and eighteenth centuries), building classifications
remained the work of natural scientists (in zoology,
botany, etc.) and, as the number of living beings was not
so important, did not require any mathematics at all to be
performed. However, many problems raised in the taxo-
nomic operations (see Dagognet 1970) and the necessity
of a comprehensive theory was already obvious. Indeed,
the idea of a general theory of classification, anticipated by
Kant’s logic ([1800] 1963) when it describes the possible
divisions of attributes, only began to appear in France with
Augustin-Pyrame de Candolle (théorie élémentaire de la
Botanique 1813), who intended to classify the classifica-
tions themselves (Drouin 1994; 2001), opposing artificial
classifications and natural ones. Then Auguste Comte in
his Cours de philosophie positive (lessons 36, 40 and 42) posed
a general theory based on the study of symmetries in na-

ture. He was himself influenced by the work of Gaspard
Monge in projective geometry (especially his classification
of surfaces). However, for a long time, modernity (with the
exception for library science in the USA, Europe and In-
dia) forgot this problem, which appeared again only in the
1960s. At this time, the Belgian logician Leo Apostel
(1963) and the Polish mathematicians Luszczewska-
Romahnowa and Batog (1965a; 1965b) published im-
portant papers on the subject. This revival was followed
by the new publication of the famous Birkhoff book on
lattice theory (1967), which had a certain resonance. In the
1970s, mathematical models of numerical taxonomy
(Sokal and Sneath 1973) and hierarchical classifications
were developed in the USA and in France with the books
of Barbut and Monjardet (1970), Lerman (1970), and
Benzécri (1973). All these works assumed of course the big
last century advances in mathematical order theory: espe-
cially the articles of Birkhoff (1935; 1949), Dubreil and
Jacotin (1939), Ore (1942; 1943), Krasner (1944) and
Riordan (1958). We must also mention the ancient work
of Kurepa (1935) on infinite ramified spaces and the nu-
merous papers of Saharon Shelah (now more than 1000)
on “classification theory” (see Shelah 1978) considered as
a part of model theory.

3.0 Examples of classifications and the problem
of their formalization

What we have in mind when we speak of classifications in
western countries is often a rigid diagram like those of the
classical age’s natural taxonomies, where organisms were
grouped together into “taxa,” these groups being given a
taxonomic rank. These diagrams are, in fact, typical exam-
ples of hierarchical classifications: see, for instance, the
classification of plants based on sexual organs (Linnacus
1758) (see Figure 1) or the classification of animals into
vertebrates and invertebrates (Lamarck 1801).

In life sciences, this hierarchical model, largely inherited
from Linnaeus (kingdom, phylum, class, order, family, ge-
nus, species), is always the same. From a mathematical
viewpoint, these ordered sequences of divisions are named
“chains of partitions.”

But we encounter also in many domains simple parti-
tions, i.e, divisions of a set into nonempty classes, such that
the intersection of any two of them is empty and their un-
ion is the set itself. Such are the classifications of conics in
mathematics (circle, ellips, parabola, hyperbola), or what
we can call in other domains “cross-partitions,” because of
the superposition of two or more of them: see, for example,
the Mendeleev table of elements in chemistry, formed by a
partition of the set of chemical substances into peri-
ods of growing weights (lines) and, simultaneously, into
chemical affinities (columns). On closer examination, we
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Figure 1. The Linnaean classification of plants.

can see that we may get, indeed, a lot of other forms of
classifications: pseudo- or quasi-hierarchies (ordering on
intersecting classes), or even simple “systems of classes”
(with no ordering on them). The reason for all this is that
we cannot get everywhere strong orders from empirical
data and that we must often settle for weaker structures.
In some domains, we even fail to get non-intersecting clas-
ses of the same level. It is the case in social sciences where
we sometimes encounter complex realities; these are often
difficult to put into non-overlapping classifications. In par-
ticular cases, non-empty intersections between classes of
the same level are essential. For example, librarians, in or-
der to optimize information retrieval, usually classify a
book in different places, because it is needed, for the
reader, to be able to access it by several entries. Formally
speaking, it means that one and the same document is lo-
cated at the intersection of multiple classes. This explains
why we must build more complicated schemes than simple
partitions or hierarchies. In many situations, “fuzzy” mod-
els (in the sense of Zadeh 1965) extended now to big rela-
tional databases (Meier et al. 2008), or “rough sets” (in the
sense of Pawlak 1982) are necessary. An object may belong
“more or less” to some class, and a “cloudy” organization
is sometimes better than none. In many domains, as well,

partial orders (semilattices or lattices) will be closer to the
facts than tree structures (see Figure 2).

Let us recall here that a (mathematical) tree is a con-
nected graph without any cycle, while a semilattice is just a
collection of sets where two ovetlapping sets belong to the
collection, so like the set of elements they have in com-
mon. A lattice is just both an upper semilattice and a lower
semilattice. These structures are very widespread in social
sciences or even urbanism (see Alexander 1965). Let us
give another example. Look at what the South American
writer Borges (1999) calls “the Chinese classification,”
which classifies the animals of the world into the following
classes: a) those that belong to the Emperor; b) those em-
balmed; c) those that are trained; d) suckling pigs; ) mer-
maids, etc. The French philosopher Foucault (1968) as-
sumes that such a classification is not a rational one and
refers to a culture completely different from ours. In fact,
we can only say that we are in front of a weak form of
classification. However, it can be mathematically ex-
pressed, thanks to a model where classes overlap (Figure
3). So, such a kind of organization is not irrational at all,
and does not necessarily belong to some exotic epistéme.

So we must accept, as modes of organization, different
types of classifications and many forms of orderings,
sometimes weaker than hierarchies, sometimes mote com-
plex (like, for example, #-cubes). In this context, we decide
to call “classifications in a large sense” structures such as
systems of classes, partitions, hypergraphs, hierarchies or
chains of partitions, semi-lattices, lattices, and so on.
Moreover, all these structures may be crossed with another
one and may be also fuzzified.

4.0 Extensional structures

Let us now give true definitions of all the structures previ-
ously mentioned. We shall begin with structures associated
to the weakest form of data organization and, from there,
go to stronger ones: mathematics allows us to begin with
very few axioms that define weak general structures. Af-
terwards, by adding new conditions, we can get other
properties and stronger models. In our case, the weakest
structure is just a hypergraph, in the sense of Berge (1970).

4.1 From weak to strong structures

Let E be a nonempty finite set, P(E) the powerset of E. A
hypergraph is a pair H = (E, P), where E is a set of vertices
(or nodes) and P a set of nonempty subsets called (hy-
pet)edges or links. Therefore, P is a subset of P(E)\@. In
such a structure, the set of edges, does not “cover” the set
X, because some node may have a degree zero, i.c., may
have no link to some edge (see Figure 4).
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Now, suppose we add the following condition:
(C,) EeP

In this case, we say that P is a cover (or covering) of the
set of vertices E.

Assume now that, for every element, its singleton is in P.
In symbols:

i) VxeP,{x}eP

then, we get a system of classes, in the sense of Brucker
and Barthélemy (2007).

Let us add now the new following conditions. For every
¢ belonging to P:

) cnNe. =@

(C.) wuc=E

Then P is a “partition” of E and the ¢ are the “classes” of
the partition P (Figure 5).

4.2. The lattice of partitions

Call now x Py, the relation “x belongs to the same class as
»” and denote P(E) the set of partitions of a set E. A par-
tition P is finer than a partition P'if x Py = x P"y. This
relation allows us to define a partial order on P(E) that we
shall denote P < P’ We can see immediately that (P(E), <)
is a lattice because 1) it is a partial order; and, 2) moreover,

Figure 5. A partition.

{{a},{bc}

every pair (P, P) has a greatest lower bound P A P and a
least upper bound P V P. In Figure 3, the first one is the
discrete partition, whose classes are singletons. The second
is the partition with one class, say . One proves that P(E)
is complemented, semi-modular and atomic (if the initial
data E is a non atomic set, we can, under reasonable con-
ditions, reduce the data to the atomic elements of E).

Example: The lattice of partitions for |E| = 3 (see Fig-
ure 0).

In this context, a hierarchical classification, i.e, a chain
C of partitions of the lattice P(E£), is a totally ordered subset
of P(E). We have: C = {P;, P, ..., P,} with P, <P, < ... <
P, and:

P e P(E)

Example: Correspondence between chains and hierar-
chical classifications (see Figure 7).
Note that the whole set of chains C(E£) has itself a math-
ematical structure: it is a semilattice for set intersection.
This model allows us to get all the possible partitions of
P(E) and all the possible chains of C(E). The problem is
that the partitions are very numerous (Table 1).

|[E)  [1|2|3|4 |5 6 | 7 | 8 9

[PE) | 1]2|5|15] 52203 | 877 | 4140 | 21147

Table 1.

4.3 The case of covers

It is not very easy to examine which classification is the
best one among, say, several thousands of them. The situ-
ation is worse with weaker structures like covers or even
minimal covers. Recall that a family I of nonempty subsets

{a,b,c}

{{ab}.{.c} {{ac},{b}

{{a},{b},{c}}

Figure 6. The lattice of partition for a 3-clement set.
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{{a,c

t{a},{b}.{c}} aj

c} ib} 0

Figure 7. A classification (right) as a chain of partitions (left).

of a set E, whose union contains the given set E (and
which contains no duplicated subsets) is called a cover (or
a covering) of E. A particular kind of cover is the minimal
cover. A minimal cover is a cover for which the removal
of one member destroys the covering property. Of course,
we can make orderings on covers and build hierarchies of
covers or minimal covers (Parrochia and Neuville 2013).
But if the set L(E) of minimal covers is a lattice for the
refinement relation, the set R(E) of all covers has no inter-
esting properties: it is only a preorder (or a quasi-order) for
the refinement relation (that we define in the same way as
for the partition ordering). Moreover, computing the cov-
ers of a set leads immediately to big numbers (see Table 2).
So it becomes rapidly impossible to examine the very nu-
merous possible chains of covers.

|E] 1 2 3 4
R(E) 1 5 109 32297
Table 2.

5.0 Methods for building empirical classifications

How can we get classes, partitions, hierarchies, pseudo- or
quasi-hierarchies and so on? Generally, in the real world,
the rough data presents itself as a non-structured set E of
objects (animals, plants, books, etc.) sharing (or not) some
attributes or properties (shape, size, color, etc.). In order
to make classes, we must first give a sense to the notion of
“similarity” between two elements of E, the set of objects
to be classified.

5.1 Distance, metric and ultrametric

We introduce first a mapping 4, from E X E into R* which
must satisfy some of the following axioms:

1. d(x, y) = dpy, x)

2.d(x,y) =0iffx=y
3.d(z) Sdlxy) +dp, %)

4. d(x,z) < Max[d(x, y), dy, 3)]

If 1 and 2 are satisfied, 4 is a distance. If, moreover, 3 is
satisfied, 4is a metric. And if 4 is also satisfied, then dis an
ultrametric. One proves (Lerman 1970; Benzécri, 1973)
that it is possible to associate an ultrametric with integer
values to any chain of partitions. Now if #is an ultrametric
on E, any function f{d) such that:

1./0) =0
2). fdd) > fid)if A > 1 and d # 0

is also an ultrametric on E. A chain of partition associated
with an ultrametric 4 = f{d), where 4 is the number of the
partitions and / a monotonically increasing function, is
named an indexed hierarchy. As said above, any ultramet-
ric is associated with a matrix of distances: the distance be-
tween two elements x and y on the tree is the first level
wherte the elements are in the same class. Of coutse, we
have d(x,x) = 0 for all x and d(x,3) > 0 when x # . So, we
get a total equivalence between chains of partitions, ultra-
metrics and matrices of distances.
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Example: The chain of partitions in Figure 6 admits the
matrix of distances of Table 3:

al|lb| ¢
al|l0]2]1
b1210]|2
c|1]2]0

Table 3.

Interpreted as an ultrametric matrix, a chain of pattitions
is the semi-ring:

(R U{40},B,9)

where @ is interpreted by min and ® by max (Gondran
1976). This structure is named “dioid” in Gondran and
Minoux (2002). It may be transposed to the set of all ultra-
metric matrices (see also Gondran et Minoux 1979 and

1984).
5.2 Algorithms for chains of partitions

In order to build concrete hierarchical classification, we
must first, carefully define the objects to be classified. Sec-
ond, obsetve on any individual some variables from which
we shall define a distance S(x, y) between them. Finally,
define a new distance A(x, y) between the classes them-
selves, such that A(x, y) gives S(x, y) when those classes are
reduced to one element. These tedious calculations are
now catried out by computers. In the course of history,
three kinds of methods held taxonomists’ attention: hier-
archical bottom-up methods, hierarchical top-down meth-
ods and, finally, non-hierarchical methods (for instance,
aggregation around moving centroids). Hierarchical meth-
ods imply that relations between classes are ordered. Non-
hierarchical methods are only concerned with the con-
struction of partitions where classes are unordered (so they
keep away from the construction of actual classifications).
Top-down methods are necessarily working according to
independently specified criteria. Non-hierarchical meth-
ods do not use necessarily a notion of distance. Let us ex-
amine all that.

5.2.1. Bottom-up methods

Usually, one considers that bottom-up methods are those
that give the best and most reliable results (Roux 1985).
Let us see now how these last methods are working in the
case of binary chains.

In such a case, we look for a pair (4, 4) such that d(a, b)
has the smallest value. We aggregate these two elements,
that is, the first partition P; is obtained from the discrete
partition Py by the operation:

ﬁ =[H: - (aa b)l va
with:
a=aub

To any partition corresponds the aggregation of two par-
ticular subsets. This aggregation is represented by a node
in the tree (associated with the chain of partitions). We de-
note 7(a, f), the node corresponding to the aggregation of
a and . To any node may be associated an index I(#) =
Do, ). So, we get an indexed hierarchy of partitions. In
order to define the best among those partitions, one must
define on them an objective function. Then we have to
maximize the values of this function for all possible parti-
tions, and finally choose the partition corresponding with
the greatest value. But nothing assures us that all “optimal”
partitions constitute a chain.

Many kinds of distances may be used (Lerman 1970;
Parrochia and Neuville 2013, 79-80). But when we have a
representation of the elements of E in the form of a cloud
of points—each of them being assigned a certain weight
and located in a metric space—a center of gravity and an
inertia can be calculated for each subcloud. It is then nat-
ural to look for pairs of points whose aggregation de-
creases the less the dispersion of the cloud, that is to say,
its inertia. In this case, it is shown that the distance to be
used is:

d mlmt 2
d*(x,y)= ——||x=yl|
m +m

There exist also different strategies of aggregation (Roux
1985; Gordon 1996). For example: nearest neighbour
method, diameter hierarchy, or average distance. One of
the most simple expressions of the average strategy is:

A(x,y)= 1

(d(x,y
CardX CardY E : »)

X
ey

5.2.2 Top-down methods

This type of classification is performed by successive di-
chotomies, and so, at every step of the algorithm, there are
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two rules to be applied in order to determine: 1) the choice
of the class to split; and, 2) the object’s assighment mode
in each of the subclasses.

One of the oldest top-down algorithms is that of Wil-
liams and Lambert (1959), who chose to split the class with
the largest number of objects. Others, like Hubert (1973),
prefer dividing the class of the larger diameter (remember
that the diameter of a class is the distance between the two
farthest points in it). None of the above processes is really
justified and the right answer, seems to be taking the class
maximum dispersion. But many formulas can still express
1t.

5.2.3 Non-hierarchical methods

Non-hierarchical methods are particulatly useful in classi-
fication problems of pattern recognition issues. In this do-
main, the main difficulty comes from our ignorance as to
the underlying structure of the space. Should we make an
assumption of separability, a probabilistic hypothesis, a
metric hypothesis? One way to give an answer is to make
a classification on a set T, called “learning set,” ignoring
the actual forms wy, ..., wn. So, one gets @, ..., @} classes
which are only neighboring of classes wy, ..., w,, in order
that, in the w’ classes, one w’ class is dominant. There will
be thus p 2 #, and w’, ..., w} will be called “recognizable
forms.” This classification, that can use several types of
metrics, can therefore afford to make a realistic assump-
tion about the structure of the space. The problem is then
to use that structure for assigning an individual x to one of
the w’ classes.

5.2.3.1 k-means classifications

One example of this method is the “k-means” classifica-
tion. It helps highlight nuclei A;, ..., A4, (symbolic descrip-
tion) for each of the recognizable forms w’, ..., w’ and dis-
tances d(x, ;) between individuals and nuclei. Nuclei act-
ing as labeled and the distance d play the role of a mem-
bership function. So, we are reduced to a fuzzy pattern
recognition problem.

The “k-means” classification was introduced by
MacQueen in 1967. Other similar algorithms were devel-
oped by Forgey (1965) (see “mobile centers”) or by Diday
(1971) (see “dynamic clouds method”). These kind of
methods have the following advantages: 1) An object can
be assigned to a class during an iteration, then changes
class to the next iteration. This is not possible with the hi-
erarchical clustering, for which an assignment is irreversi-
ble; 2) By multiplying the starting points and repetitions,
one can explore several possible solutions. The disad-
vantage of them is that they do not find out what can be a
consistent number of classes, or how to visualize the prox-

imity between classes or objects. The definition of an av-
erage between the data, as well as the calculation of the
averages, which are very sensitive to outliers, are other lim-
its of this model.

5.2.3.2 Other non hierarchical algorithms

In order to solve this last problem (the sensibility to outli-
ers), other kinds of algorithms have been developed. One
of them is the PAM-algorithm (partition around medioids)
(Kaufman and Rousseuw 1990). In this method, each class
is represented by one of its members named “medioid,”
and not by a centroid, average of the set of its members.
After a random choice of initial k medioids, the algorithm
reviews all the pairs of individuals such as one is a medioid
and the other not, evaluating whether the exchange of the
two objects improves the objective function. In the end,
the different objects are assigned to the closest medioid
class. However, the renunciation of the centroids induces
a certain algorithmic complexity and long computational
times (each iteration is in O (&(n-£)). But it is possible to
use some variant like CLARANS (Clustering large applica-
tions based upon randomized seatrch) to reduce to a com-
plexity in O (1). Other methods based on the study of the
dispersion of classes, on their density, on the quantifica-
tion by grid, on the direct construction of dendograms
complete the above possibilities. More recently, methods
derived from biology (neural networks, genetic algorithms)
or physics (super-paramagnetic clustering) have emerged,
as well as methods for comparing these classifications
(Boubou 2007).

Another type of non-hierarchical method, sometimes
useful in the domain of imagery, is the Peano scan, a gen-
eral technique for continuous scanning of multidimen-
sional data by a spacefilling curve (see Peano 1890). Hilbert
(1891) presented a simplified version of Peano curves in
terms of binary divisions (see examples of Hilbert (left)
and Peano (right) curves of order 2 in Figure 8), and, then,
generalized algorithms for images of arbitrary size have
been invented by many authors.

.
~

g
-

-

Figure 8. A Peano scan.

- am 18.01.2028, 03:20:16.


https://doi.org/10.5771/0943-7444-2018-2-184
https://www.inlibra.com/de/agb
https://www.inlibra.com/de/agb

192

Knowl. Org. 45(2018)No.2

Reviews of Concepts in Knowledge Organization

These methods immediately apply to classification. Let R”
be an #-dimensional space, i.c., an object represented by #
measurements. Assume R’ is divided into 7 hypercubes
H, rand p for varying accuracy. One sequentially explores
these Hs with a “Peano scan” of order p. As we can define
it now in a very general way, a Peano scan is indeed an
addressing technique built by a recursive procedure on p.
In this particular case, it is a technical addressing of the
hypetcube (7/#)" with an address (&1, &2, ..., £,).

We may now define what is a #* neighbouring. Let H
and H’be two hypercubes, whose respective addresses are
(kiy Rz, ...y Ry)and (R, B2, ..., B).

H and H’are #-neighbors means:

Zlk,—-k',l <1
-l

One shows that two Peano scans are sufficient to get the
neigbourhings and we do not need any kind of distance to
build the classification.

5.3 Algorithms for covers and weak structures

Let O be a cover on a set E and O € P(E) the powerset of
E. Q is associated with the binary relation:

(Vx,yeE): xQy x,yeQ'
A cover ( is said to be finer than a cover Q’if:
xQy=>xQ'y
for all x,y EE.

Let us now define a sequence O, &, ..., (,... of covers on
E, totally ordered by decreasing fineness. This sequence
meets the similarities between objects if the first index 4,
for which any two given objects of E are combined in one
part of O is even smaller than the similarity of the two
objects, is large. An algorithm built by Lerman (1970, 73)
allows obtaining, naturally, a finite family of totally ordered
sequences of covers. Each respects plainly, for a given de-
gree of fineness, the similarities between objects.

Let w be a preorder whose classes are By, By,..., By As-
sume we already got a chain of partitions (Py, P;,..., Py). To
each partition P, we associate now a sequence of covers in
the following way: for some 4, 2 member of the cover O’
will be any class E; of partitions P, or any class ¢, of the
partition corresponding to the cover of order 4. Since, in
practice, we are mainly interested in low-overlapping cov-

ers, Lerman proposes to determine, along with the previ-
ous sequence (Py, P,..., P,), the sequence (0", O',..., O',1),
the O';being defined from P;and B;. For example, suppose
we got the following chain of partitions (Py , P;, Ps, P3),
with:

Py = {{f}) {ab {d} {e} b} et}
I {{f}l {a, d}, {0, ¢}, {e}}
P, = {{a, d,ﬂ, {b) 2 e}}
Ps={abcdeft}

Let us remember that, in a chain of covers, the discrete
cover is the discrete partition and the rough cover is the
rough partition: so, only the intermediate levels are modi-
fied. In this example, we get:

O = Aa d f1.4b b b e} }
Q’Z) = {{g) d)ﬂ){by 2 8},{d, 6}}

5.4 Unsolved problems

Despite the fact that the previous methods are widespread,
they are still not convincing, because they lead to relatively
unstable classifications. There are two kinds of instability:
an intrinsic instability, due to the plurality of methods (dis-
tances, algorithms, etc.) that can be used to classify the ob-
jects, and an extrinsic instability (our knowledge is chang-
ing), so the definitions of objects (or attributes) are evolv-
ing over time.

Intrinsic instability comes from the possibility of choos-
ing different formulas for expressing the distance between
objects and different kinds of algorithms for aggregating
classes. In general, the objects of the world have no ultra-
metric distances between them. The “rough data” is gen-
erally a numeric table which crosses objects and properties
(predicates or attributes), these ones presenting sometimes
different modalities. Objects can share some common
properties, but they can also have specific ones. How may
we choose a “good” formula to express this distance (or
similarity measure)? In order to compare different similar-
ity measures, Lerman (1970) defines the following varia-
bles:

— s number of attributes which are common to the object
x and to the object y (= what x and y are)

— £ number of attributes which are not possessed by x
and by y (= what x and y are not)

— u: number of attributes possessed by the object x and
not by the object y (= specificity of x)

— v number of attributes possessed by the object y and

not by the object x (= specificity of y)

T: Sum of all the attributes (T <5 + # + ).
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Now a “similarity measure” is a function S, from E X E
into N, such that, for all (x)) of E X E, we have S(x) =
S (5, u, ) € N’. The problem is that we can define S in
many ways. In principle, to solve the problem, we would
have to compare all the possible distances that can be cho-
sen and measure the proximity of each of them to an ul-
trametric. Unfortunately, this is not possible, except for
very small samples. So we are led to use approximative al-
gorithms, which suppose, at their turn, new more or less
arbitrary choices: nearest neighbour, diameter, average
link, center of gravity, dispersion of elements within a
class, etc. All that gives at the end very different results, so
the final classification is quite unstable.

Let us say now some words about extrinsic instability.
This instability is due either to the quantitative variations
of the populations of objects to be classified, or to the
qualitative changes concerning the knowledge of their
properties in the course of time. For instance, initial ob-
jects may be imprecise (Apostel 1963); new objects can
also arrive (Lambert 1984) or old objects can disappear;
moreover, unusual or strange objects (“monsters”) may
appear in the course of time (Dagognet, 1970); finally, a
discovery of new properties for some apparently well-
known objects (resp. rejection of old ones) may also hap-
pen.

As an answer to intrinsic instability, Lerman (1970)
proved that, if the number of attributes (or properties)
possessed by the objects of a set E is constant, the associ-
ated quasi-order given by any “natural” metric is the same.
But when the sample variance of the number of attributes
is a big one, of course, the stability is lost. Similatly, if we
classify the attributes, instead of classifying the objects, the
reverse proposition is not true.

For extrinsic instability, the answers are more difficult
to find. Of course, we may think of methods used in library
decimal classifications (UDC, Dewey, etc.), which make
possible infinite ramified extensions; starting with ten big
classes, you divide each of them into ten others, and so on.
Then, after having used integers, associated with the larger
classes, it may be useful to introduce decimal points and to
transform the first into decimal numbers. A decimal num-
ber being a periodic or aperiodic unlimited symbol, it is
always possible to add new indices, and so, new classes, in
the classification. But these classifications assume that
higher levels are invariant and they have also the disad-
vantage to be enumerative and to degenerate rapidly into
simple lists. Pseudo-complemented structures (see Hill-
man 1965) also exist with some kinds of waiting boxes (or
compartments) for indexing things that have not yet been
classified. We can get, as well, structures whose transfor-
mations obey certain rules that have been fixed in advance.
That is the case of Hopcroft 3-2 trees, for instance (see
Larson and Walden 1979). But these systems are not abso-

lutely convincing; in both cases, the problem of justifying
the underlying topology or the transformation rules re-
mains unsolved.

As a consequence, the impossibility of solving the prob-
lem of instability of classifications invites us to look for
some clear composition laws to be defined on the set of
classifications over a set and to a good algebra of classifi-
cations, if it one exists. This search is all the more crucial
as a theorem proved by Kleinberg (2002) shows that one
cannot hope to find a classifying function which would be
together scale invariant, rich enough and consistent. This
result explains that we cannot find, in fact, empirical stable
classifications by using traditional clustering methods,
even if computer science produces every year a lot of new
algorithms or tries to solve the problem in many ways, in-
cluding decompositions into subproblems supposedly
leading to better approximations (Veloso and Meira 2011).

6.0 Intensional methods

Since its birth, classical logic has always admitted two types
of interpretation: extensional and intensional. “All men are
mortal” may mean in fact either that the class of men is
contained in the class of mortals, or that the predicate of
“mortality” is implied by the existence of the predicate of
“humanity.” For years, this question has divided the logi-
cians, as evidenced by the numerous discussions between
Plato and Aristotle, Pascal and Ramus, Jevons and Joseph,
etc. More recently, the development of computer science
brought back this view, since for declarative languages and
particularly object-oriented ones, pure extensional classes
are rather uncommon. In this context, the preference is
now given to the intensional approach.

In the intensional interpretation, a class is in corre-
spondence with one or several properties which define its
elements. Generally, the way the properties are found is
not specified. It may be manually done or by using some
technical approach like Galois lattice and conceptual anal-
ysis (Ganter and Wille 1999). The requirements that must
be satisfied to make a good (hierarchical) classification
have been posed by Apostel (1963). A division (or parti-
tion) is essential, and there are no individuals having one
of the QOrproperties without having property P. A classifi-
cation is a sequence of implicative-disjunctive proposi-
tions; everything which has the property P has also one of
the n properties O ... O, Everything which has the prop-
erty O, has also the property 5, and so on (Apostel 1963,
188). A “natural” classification is such that the definition
of the domain to be classified determines in a unique way
the criteria’s choice of classification. The intensional
weight w(P) of a property Pis the set of properties’ disjunc-
tions that this property implies. A partition immediately
follows another one if, for all P-properties of the first and
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all O-properties of the second, disjunctively implied by
these first; there are no properties R disjunctively implied
by P and impliying disjunctively Q. An intensional optimal
classification would have to satisfy the following require-
ments.

1. Each level has a partition basis.

2. No new partition basis is introduced before the previ-
ous is depleted.

3. Each partition is essential.

4. The classification tree is regular.

5. The succession of partitions is obvious.

In a natural intensional classification, a scope definition to
classify must determine in one and the same way the
choice of classification criteria. Finally, the partition that
follows immediately the trivial partition should be essen-
tial. The problem is how to get essential partitions and how
to obtain stable classifications given the constant flow of
information generated by an undefinitely growing
knowledge.

7.0 Classifications and flows of information.

During the 1970s, Barwise and Seligman (1997) wanted to
create a new theory of information, involving the idea that
information flow is made possible by “regularities” in sys-
tems. Rather than develop a machinery for analyzing those
regularities, they built instead a mathematical theory based
on their mere existence. The starting point is precisely the
notion of classification, which thus appears in a new light.
For the authors (see Devlin 2001), a classification is a
structure A = (A, 2A4,| = A), where A is a set of objects
to be classified, called the “tokens” of A. XA is a set of
objects used to classify the tokens, called the “types” of A,
and |=A is a binary relation between A4 and XA which
determines which tokens are classified by which types. A
familiar example to logicians is when the types are sen-
tences of first-order logic and the tokens are mathematical
structures, @ | = a being the relationship that the structure
ais a “model” of the sentence a. The authors then develop
a machinery for discussing the “logic” by means of which
the system can support the flow of information.

What is interesting for us in this project is, first, the no-
tion of “informorphism” the authors define between two
classifications. For example, let 4 = (4, 24, |=A4)and C
= (C, 2C, |=C ) be two classifications. An “info-
morphism” between A and Cis a pair /= (, /¥) of func-
tions that makes the following diagram commute:

A

P Yo
Fa Fc

A

f"c

This means that for all tokens ¢ of C and all types a of A:

SIE) | =aadfe |=C1a)

One usually refers to ' as “f-up” and /¥ as “f-down.” One
takes account of the fact that the functions /' and /¥ act in
opposite directions by writing .4 F) C. It may be the
fact, for example, of two mathematical theories.

Now an information channel consists of an indexed fam-
ily C= {f: A; =2 C}i€l of infomorphisms with a common
codomain C, called the “core” of the channel. The intuition
is that the 4, are individual components of the larger system
C, and it is by virtue of being parts of the system C that the
constituents 4; can carry information about one another.
Suppose A and B are constituent classifications in an infor-
mation channel with core C. A token « being of type ain A
carties the information that a token 41is of type fin B relative
to the channel Cif 2 and b ate connected in C and the trans-
lation of a entails the translation of g in Th(C) (Th(C) is the
theory of the channel core). It is clear that the types in C
provide the logical structure (the regularities) that gives rise
to information flow, but information only flows in the con-
text of a particular token ¢ of C, i.e., a particular object.

Then, Barwise and Seligman make use of category the-
ory, and particulatly of the notion of “colimit,” for getting
a method for combining classifications. Given classifica-
tions .4 and B, one defines the colimit .A+B as follows.
The tokens of A+B consist of pairs (a, b) of tokens from
each. The types of A + B consists of the types of both,
except that, if there are any types in common, one must
make two distinct (indexed) copies in order not to confuse
them. There are natural infomorphisms a4: .4 F) [A+
Bj and oB: B ;) [A + B] defined thus:

1. 0"A(a) = aA (the A-copy of a), for each type a of A

2. o"B(B) = BB, for each type f of B

3. For each token (a,b) of A+B, 0"4((a,b)) = a and o"s((a,b))
=b.

The classification .4+B has the property that, given any
classification C and infomorphisms /A4 ;} C gaB F)
C, there is a unique infomorphism 4 = f+ g such that the
following diagram commutes:
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A o A+ B 5 B

All that is good mathematics and explains well how infor-
mation constraints may translate from a classification to
another. However, it supposes we already get some classi-
fications and have a complete theory of domain C. If not,
the extended theory is more complicated. In this case, one
must use a “local logic” to show how one can catch partial
information. Then the theory explains more how the
agents reason about information than how the real world
actually works. It may be a complement for Shannon the-
oty of information, but not a theory of classifications as
such.

8.0 Towards a general theory of classifications

When we ask how to build good concrete classifications,
the answer is also a mathematical approach of the prob-
lem. But the solution does not consist in using computers
and running programs without thinking anymore. We
have, before all, to get a sound mathematical basis in order
to make stable classifications. To this aim, we can first take
a glance at mathematical classifications themselves.

8.1 Classifications inside mathematics

Mathematics has dealt with classification for a long time. A
quite common situation in this domain is: 1) the existence
of a collection of objetcs X; and, 2) an equivalence relation
R on X. Now a complete classification of X up to & con-
sists of: a) a set of invariants [; and, b) a map & X — | such
that x R y < ¢(x) = ¢(y). We can give a lot of examples when
this method is working very well (the most famous case is
the classification of finite semisimple groups into seventeen
infinite families plus the sporadic groups). Most often (Ke-
chris 2002), the collection of objects to be classified may be
viewed as forming a “nice” space, for example a standard
Borel space. In this case, the theory of Borel equivalence re-
lations allows us to study the set-theoretic nature of possible
(complete) invariants and to develop a mathematical frame-
work for measuring the complexity of classification prob-
lems. This way of approaching these problems in mathemat-
ics, has become, for some years, a new area under active in-
vestigation. The question of cataloging a class of mathemat-
ical objects up to some notion of equivalence by invariants,

and the closely related theory of descriptive dynamics, i.e.,
the theoty of definable actions of Polish groups on Polish
spaces, have been developed by several authors in a very
promising manner (though some impossibily results have
been encountered in a few cases). Of course, by the means
of category theory and automorphism groups, we can al-
ways find a very general method to compare mathematical
structures, and so, we should be theoretically able to classify
a lot of them (groups, rings, matrices, etc.), as Pierce (1970)
has already shown. However, in the details, many problems
arise, especially conterning big collections of very general
structures (graphs, fields, varieties and so on). One could
think it possible to turn around the problem in using logic.
Generally speaking, mathematical structures satisfy some
axiomatics and, as such, may be described as logical theories.
Model theory—and in model theory, particulatly the so-
called “classification theory” created by Shelah (1978)—tries
to classify those abstract logical theories by studying the re-
lations existing between them and their mathematical inter-
pretations (or models). But, to pursue this aim, classification
theory must often deal with an infinite number of structures,
and the way the infinite is defined takes a great importance,
and very much influences the results we get in the end.
Moteover, some theoties cannot be classified at all, because
they are not stable and do not have good structure theorems.

8.2 Searching an algebra of classifications

So, we need an algebra of classifications, which can explain
all their transformations. The problem is that such an al-

gebra should be:

— commutative (if z and 4 are classes, a * b = b * a);
— nonassociative (if  * (b ® ¢) is a classification, (@ * b) * ¢
is not the same classification). So, we have necessarily:

av(bec)¥ (@avh) e

This recalls nonassociative products of Wedderburn-Ether-
ington (see Comtet 1970). We can improve this notation by
suppressing parentheses if we write for instance e ® a* in-
stead of a ¢ (b * ¢) (Reverse Polish Notation (or RPN) in-
vented by Lukasiewicz in the 1920s). Let us give some ex-
amples of classifications written in RPN. In words, we have:

a, ab®, abec®, abecd*, abcesdess.

Here are the corresponding diagrams (see Figure 9).

We get the following results (Parrochia and Neuville 2013):
Proposition 1 (RPN-classification correspondence): A

classification can be attached to each RPN sentence but
the reverse is false.
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Figure. 9. Diagrams of classifications written in RPN.

Proof: To prove this, it is sufficient to choose a classi-
fication whose partitions are not covering themselves.
For instance, let C ={(abede), (a, bed, ¢), (a, b, ¢ d, ¢)}.
There is no RPN sentence for such a classification. (As
usual, in order to simplify writing, we have replaced
{Hab (b {6} } with (@ b, 0))

Definition 1 (notion of “magma”): Let E be a set of var-
iables, representing classes. Let * be an internal law of
composition, i.e, a mapping from E X E into E. Ac-
cording to Bourbaki, (E,*) is a “magma.”

Proposition 2 (classification as a magma): Each classifica-

tion (written in RPN) is a commutative and non associ-

ative magma:

1.a€E,bEE, a*b=0b*a (commutativity);

2. a€E,bEE,c€EE: (a*b)ocFa(b*c) (non
associativity).

This structure can be extended to the set of all classifi-
cations over a set (which is also a non-associative
magma).

Proposition 3 (isomorphic classifications): Two classifica-
tions with # elements are “isomorphic” if their connect-
ors are located in the same place (when we use RPN
notation).

Example: abecs and b*ac® are obviously isomorphic.
Definition 2 (extension of a classification): A classifica-
tion 4 with # elements extends a classification B with p
elements if B is included in 4.

Example: abeced* extends abece.

We need an algebra of classifications, because we would
like to combine classifications between themselves and to
generate complex classifications from more simple ones—
as Barwise and Seligman do in the case of information
flows. The problem is that the compound of two classifi-
cations is not necessarily a classification, because the order
structure on the levels may be lost when we go from one
to the other.

Intuitively, in order to be joined with a classification Cj,
a classification C; may have a structure which, even if it

extends the structure of C;, however, must also respect this
very structure. So, the operation € may be admitted as an
internal composition law only if C; = C; @D C, remains a
classification. To express that, we need a particular algebra.
But it is not, in fact, easy to find.

8.3 Some candidates among the algebras

As we have seen, an algebra of classifications should be
commutative and non-associative. But there are very few
algebras like that. Indeed, most of the algebraic structures
are associative ones. Getting such an algebra is a very dif-
ficult problem and it is the reason why, for the moment,
we get only some candidates but no real answer: Among
the well-known existing algebras, we have: K-algebras,
Hopf algebras, Dendriform algebras, right-symmetric alge-
bras, etc. Some of them are working well on trees, but not
necessarily on classification trees. For example, that is the
case of the Dzhumadil’daev and Lofwall algebra (2002):
most of the time, we cannot interpret its tree-combina-
tions in the view of taxonomic transformations. However,
more recently, Drensky and Holtkamp (2008) have con-
nected trees, nonassociative algebras and K-algebras. More
precisely, they described free non-associative algebras in
terms of labeled reduced planar rooted trees, an approach
that can certainly be applied to classifications.

8.4 A common construction for tree-like
classifications and hypercube-like
classifications

Instead of the missing algebra of classifications, let us in-
troduce some elements of graph theory. As Mulder (2016)
shows, the simplest way to obtain a tree from a smaller one
is by adding a pendant vertex (a vertex of degree 1). Sup-
pose we can cover a tree-like classification Cwith two sub-
tree-like classifications C*;, and C*; that have exactly a ver-
tex in common. To obtain a larger (tree-like) classification,
we take two disjoint copies of these (subtree-like) classifi-
cations C; and Cy, as is shown in Figure7 (right), and then
join the vertices in these subtree-like classifications that
correspond to the common vertex in C*;, and C*,. We ob-
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tain an expansion with respect to the covering tree-like
classifications C*;, and C*; (see Figure 10).

Each tree-like classification can be obtained by a succes-
sions of such expansions from the one vertex graphe Kj,
but we know also that hypercubes can be obtained in a sim-
ilar manner by expansion, as depicted on the Figure 11.

One covers the 7-cube on the left by two subcubes,
both of which equal to the whole #-cube. One takes two
disjoint copies of these two subcubes and join respective
vertices in the two copies. Thus, one gets a hypercube of
dimension #+7. Every hypercube can also be obtained by
a finite sequence of such expansions, starting from the one
vertex graphe Ki. So this construction is a common prop-

erty of tree-like classifications and hypercube-like classifi-
cations. We shall not give its true formalization, but it can
be rigorously expressed (see Mulder 2016, 155-56).

9.0 Conclusions

9.1 The missing theory

At this time, a general algebra of classifications on a set is
not known. However, we are invited to search it, for two
reasons: 1) the world is not completely chaotic and our

knowledge is evolving according to some laws; and, 2)
there exist, for sure, quasi-invariant classifications in phys-

Figure 10. Expansion of a classification.

Figure 11. Expansion of a hypercube
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ics (elementary particle classification) in chemistry (Men-
deleev table of elements), in crystallography (the 232 crys-
tallographic groups), etc. Most of these “good” classifica-
tions are founded on some mathematical structures (Lie
groups, discrete groups, etc.). It is therefore not absolutely
unrealistic to think that the “dream” of a general theory
for classifications will come true, as anything that has a
structure can be explained mathematically.

9.2 A “philosophical” view

To sum up the question of a classification theory, we may
propose the scheme in Figure 12.

1) When our mathematical tools apply to sense data, we get
only “phenomenal” classifications (by clustering meth-
ods);

2) When our mathematical tools deal with crystallographic
or quantum structures, we get “noumenal” classifications
(for instance, by invariance of discrete groups or Lie
Groups). Of course “noumenons” never give “things in
themselves.” Even for Immanuel Kant, they are only
negative or problematic ideas (see Kant [1781] 1998, 348-
9). Let us recall that, for Kant, a noumenon would be the
idea of the thing in itself, if this idea existed. But it does
not exist, at least in a positive form. However, the French
philosopher Gaston Bachelard (19306) has further weak-
ened this Kantian notion of “noumenon” in that of

“metric noumenon,” ie, a noumenon telating to the
power of our scientific instruments, or more generally, to
the power of our theoretical knowledge; the same Gas-
ton Bachelard (1933, 140) used to say that, very often, a
scientific instrument is but a reified theorem. We, there-
fore, mean by “noumenal classifications” those classifi-
cations based on mathematical structures and robust as-
sumptions of our theoretical knowledge.

3) When we look for a general theory of classifications (fi-
nite and infinite), we are in the domain of pure mathe-
matics and face the problem of the construction of the
continuum; for example, under the continuum hypoth-
esis, one proves that the infinite set of partitions P(E),
defined on a countable set E, is an uncountable set with
the same cardinality as R, the set of real numbers. But
other hypotheses can be admitted, and there are many
ways, in mathematics, to see the continuum and to per-
form the construction of it.

9.3 Final remarks: from continuum to empirical data

Today, one has forgotten that Cantor’s mathematical re-
search on the sets of points debouched on a conception of
matter and a classification of everything which was in-
tended as a general theory of the construction of events.
His aim was to build a kind of mapping between mathe-
matical elements and natural phenomena through the con-
cept of the “power of a set” (See Cantor (1885) reprinted

Foundation of Mathematics

Metaclassification

Sense data

Constraint

Mathemalt'rcal Conshnitions Physical reality
constructions of tion Mathematical
practice

Phenomenal classifications
(or clustering)

Noumenal classification

Construction of the Continuum

Figure 12. The whole domain of classification theory.
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in Cantor (1932) and a letter from Canter to Mittag-Leffler
(Meschkowski 1967)).

At the present, of course, we cannot anymore accept
Cantor’s ideas on classification of natural phenomena.
However, it still exists a natural correspondence between
mathematics and concrete classifications. A well-known
example is Fisher’s data set, collecting the morphologic
variation of Iris flowers of three related species: Iris setosa,
Iris virginica and Iris versicolor (Fisher 1936). It shows
that the length (L)) and width () of sepals and petals,
measured in centimetres, were sufficient to classify Iris
flowers. If 1.< 2.45, then they belong to |. setosa. If not,
one considers W. If I < 1.75, then the Iris is vVersicolot.
If not, it is virginica. Crucial values of L. (2.45) or IV (1.75)
are real numbers and indices of classifications.

A recent conjecture (see Parrochia and Neuville 2013)
is that all classifications on a set (represented by non-inter-
secting ellipsoids in a #-space) are convergent in one and
the same point, which is the index of the classification. So,
without any additional hypothesis, the infinite set of all
classifications is but the continuum of the real line.
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