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Notations

The following overview of the notations of this thesis is limited to the most common

abbreviations and symbols regarding the overall context of this work. Some of the symbols

are also used as part of subscripts and superscripts.

Abbreviations

CTRA Constant Turn Rate and Acceleration (motion model)

DST Dempster–Shafer Theory of evidence [34, 35, 111]

FOV Field Of View

GPU Graphics Processing Unit

GTAM Grid-based Tracking And Mapping [118]

ID Identifier

OCS Object Coordinate System

RMSE Root Mean Square Error

UKF Unscented Kalman Filter [55]

VRU Vulnerable Road User (pedestrians, cyclists, etc.)

Cell Individual grid cell c of the discretized grid representation

Map Accumulated dynamic grid map Mt of the occupancy grid mapping

Particle Individual particle filter hypothesis χ of the low-level particle tracking

Track Individual object track instance τ of the high-level object tracking

Symbols

General

t,∆t Time instance t and time difference ∆t between two time instances

v Velocity component

x, y Position components, partly summarized as 2-D position vector x = [xx, xy]

z Measurement

η Normalization coefficient

Γ Specified threshold

N (µ, σ2) Normal distribution with mean µ and variance σ2 (evaluation: N ( · ;µ, σ2))

U(· , ·) Uniform distribution with specified lower and upper bounds of the interval

p(·), p(· | ·) Probability density function p, with conditional probability p(· | ·)
E(·)[·] Expected value of a random variable

[·]T Transpose of a vector or matrix

Rφ Rotation matrix with angle φ

VIII

https://doi.org/10.51202/9783186272089-I - Generiert durch IP 216.73.216.36, am 22.01.2026, 04:16:53. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186272089-I


Evidential Occupancy Grid Representation

c Cell of the discretized grid structure

dc Grid cell size (square with dc × dc)

xc Position of the center of cell c

A(c) Spatial area (2-D interval) of the cell c with center position xc

G Grid structure, describing the set of all individual cells c, i.e., c ∈ G
F, S,D Hypotheses of freespace (F ), static occupancy (S), dynamic occupancy (D)

O Hypothesis of occupancy, abbreviation for {S,D}, i.e., O = {S,D}
{F,D} Hypothesis of passable area (freespace or dynamic occupancy)

{S,D} Hypothesis of occupancy (static or dynamic occupied)

Θ,Θz Frame of discernment (full set), with Θ = {F, S,D}, Θz = {F,O}
2Θ Hypotheses power set of all combinations of the different hypotheses of Θ

θ Arbitrary hypothesis subset of Θ, with θ ∈ 2Θ

m(·) Basic belief assignment (evidence mass) of a specified hypothesis set

m(· | ·⊕ ·) Evidence mass based on the evidential combination (⊕) of two sources

bel(·) Belief of a specified hypothesis set

pl(·) Plausibility of a specified hypothesis set

ζ(· , ·) Conflict mass between two sources

Dynamic Grid Mapping and Low-Level Particle Tracking

Mt Accumulated dynamic grid map with the individual evidence masses m(·)
Mt Predicted dynamic grid map

M̂t Particle-based map prediction of the dynamic part

M′
t Adapted map prediction of the non-dynamic part

Mz,t Fused measurement grid

Mz∗,t Fused measurement grid enhanced by additional occupancy classification

fD Function for the particle-based convergence toward dynamic occupancy (D)

βS, βD Sensor-based occupancy classification coefficients for S and D, respectively

γD Assignment uncertainty parameter of {D} based on {F,D} and {S,D}
λ
(·)
(·) Individual terms of the adapted evidential occupancy filtering

χ Individual particle hypothesis (position xχ, velocity vχ, occupancy value oχ)

X , X̂ Total population of all particles χ ∈ X and corresponding prediction X̂
|X c| Number of particles in a cell c

nmax Maximum number of particles per grid cell

∆nχ Difference between the number of existing particles and its target in a cell

νc
t Mean particle-based 2-D velocity estimate of a grid cell c

vR, vT Radial and tangential velocity component, respectively

wχ Particle (velocity) weight based on radar and camera measurement data
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Notations

Object Extraction and Association

Cτ,t Set of dynamic occupied cells associated to a track τ

Ck
τ,t Sub-cluster of the set Cτ,t

GD,t Set of currently dynamic occupied grid cells above a threshold ΓD
min

Gζ∅
D,t Set of unassociated dynamic occupied grid cells, with Gζ∅

D,t ⊆ GD,t

GO,t Set of currently occupied grid cells above a threshold ΓO
min

τ Individual object track, τ ∈ Tt

Tt Set of currently tracked objects

fa(c) Association function for each grid cell c

lχ Particle label that connects a particle χ to a track τ

X τ
t Particle population of all particles linked to a track τ

ζ∅ Symbol for denoting no association

N c
ε ε-neighborhood of a cell c for density-based clustering

Object State Estimation

a Acceleration state component, a = v̇

gτ Geometric state of a track τ (bounding box size)

l Length of the bounding box

sτ,t Dynamic state of a track τ at time t

w Width of the bounding box

φ Orientation state component

ω Turn rate state component, ω = φ̇

IX
φ Particle-based confidence interval of the assumed object orientation

k Specific object class instance, k ∈ K
K Set of possible classes (car, truck, pedestrian, cyclist, motorcycle, other)

rF (A) Ratio of the freespace evidence within a defined grid area A
ϑe
z Edge visibility of the measurement box, e ∈ {front, rear, left, right}

ν Weighted mean cell velocity vector of all associated cells
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Abstract

Mobile robots require an accurate environment perception to plan intelligent maneuvers

and avoid collisions with traffic participants or obstacles. To obtain a robust model of

the current surroundings, measurement data of multiple sensors have to be processed in

different ways. This includes several tasks, such as abstracting object instances, data

association, temporal filtering, and sensor data fusion. Popular approaches are commonly

based on a sensor-individual object tracking with an early-stage object abstraction and a

late-stage sensor fusion. However, that procedure causes significant information loss of the

raw measurement data for the subsequent processing steps, potentially resulting in object

ambiguities and thus in an error-prone high-level object fusion. This is particularly critical

for autonomous driving in complex urban scenarios with densely moving traffic, partial

occlusions, and unstructured parts of the static environment.

This thesis proposes a novel multi-sensor environment estimation strategy – the Grid-

Based Object Tracking. The fundamental idea of this work is to fuse and temporally filter

measurement data by a low-level environment model based on the generic concept of dy-

namic occupancy grids, whereas the object estimation is performed subsequently based

on that grid representation. That way, objects are extracted robustly and consistently by

using the full information of the fused and temporally accumulated data of all sensors,

without requiring any early-stage object abstraction. Moreover, this approach fully com-

prises and combines tracking moving objects and mapping the static environment, taking

into account all measurement detections, which overall ensures that all occurring objects

and obstacles are reliably contained in the resulting environment representation.

In this work, measurement data of lidar, radar, and camera sensors are processed. They

are modeled in a uniform occupancy grid representation with uncertainties using an evi-

dential Dempster–Shafer model, which is further extended by separate velocity and classifi-

cation grid layers. The sensor fusion is performed cell-wise based on the grid cell discretiza-

tion. For the temporal accumulation, a new dynamic grid mapping approach combined

with a low-level particle filter tracking is proposed, resulting in accurate cell velocity es-

timates and a differentiation of static and dynamic occupancy over time. Finally, moving

objects are extracted based on the dynamic grid estimation, which thereby serves as a track-

before-detect strategy that enables a generic detection of arbitrary-shaped moving objects

primarily by identifying their cell-wise occupancy motion. To utilize the full potential of

the overall approach, also new concepts for the object state estimation and association are

presented that benefit from the grid-based representation as well, e.g., by evaluating the

current object visibility based on the additional freespace information of the grid.

The proposed approach is evaluated with real sensor data and test vehicles, demonstrat-

ing that it is well suited for real-time multi-sensor environment perception applications,

especially in the context of autonomous driving in challenging urban environments.
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Abstract

Zusammenfassung

Mobile Roboter benötigen eine genaue Umgebungswahrnehmung zur intelligenten Fahr-

manöverplanung und Kollisionsvermeidung mit Verkehrsteilnehmern oder Hindernissen.

Um ein robustes Modell der aktuellen Umgebung zu erhalten, müssen Messdaten mehrerer

Sensoren verarbeitet werden. Dies beinhaltet verschiedene Schritte, wie etwa die Abstrakti-

on von Objekten, die Datenassoziation, die zeitliche Filterung und die Sensordatenfusion.

Bekannte Ansätze basieren üblicherweise auf einem sensorindividuellen Objekt-Tracking

mit einer frühen Abstraktion der Messdaten zu Objektinstanzen und einer späten Fusi-

on der Sensordaten. Allerdings führt diese Vorgehensweise zu einem deutlichen Informa-

tionsverlust der Messdaten für die darauffolgenden Verarbeitungsschritte, was potenziell

Objekt-Mehrdeutigkeiten und somit eine fehleranfällige Sensorfusion auf Objektebene zur

Folge haben kann. Dies ist insbesondere für autonomes Fahren in komplexen urbanen Sze-

narien mit dichtem Straßenverkehr, teilweisen Verdeckungen und einer unstrukturierten

statischen Umgebung kritisch.

Diese Thesis stellt eine neuartige Strategie zur Multi-Sensor Umgebungsschätzung vor –

genannt Grid-Based Object Tracking. Die Grundidee dieser Arbeit besteht darin, Messda-

ten in einem Low-Level Umgebungsmodell zu fusionieren und zeitlich zu filtern, basierend

auf dem generischen Konzept von Dynamic Occupancy Grids. Die Objektschätzung erfolgt

hingegen erst aufbauend auf dieser Grid-Repräsentation. Dies ermöglicht eine robuste und

konsistente Extraktion von Objekten, da hierbei die vollständigen Informationen der fu-

sionierten und zeitlich akkumulierten Messdaten aller Sensoren betrachtet werden, ohne

dass diese zuvor zu Objektinstanzen abstrahiert werden müssen. Zudem kombiniert dieser

Ansatz vollumfänglich die Schätzung von sich bewegenden Objekten mit der Schätzung

der statischen Umgebung und berücksichtigt dabei alle Messdetektionen. Insgesamt wird

somit sichergestellt, dass in der resultierenden Umgebungsrepräsentation alle auftretenden

Objekte und Hindernisse zuverlässig enthalten sind.

In dieser Arbeit werden Messdaten von Lidar-, Radar-, und Kamerasensoren verar-

beitet. Diese werden in einer einheitlichen Occupancy Grid Darstellung mit Unsicher-

heiten mithilfe eines Dempster–Shafer Evidenzmodells sowie weiterer Grid-Ebenen für

Geschwindigkeits- und Klassifikationsinformationen modelliert. Die Sensorfusion erfolgt

dabei zellweise basierend auf der Grid-Zelldiskretisierung. Für die zeitliche Akkumulation

wird ein neuer Dynamic Grid Mapping Ansatz vorgestellt, der mit einer Partikelfilter-

basierten Dynamikschätzung kombiniert ist. Hieraus resultiert eine genaue Schätzung von

Geschwindigkeiten der Grid-Zellen sowie eine Unterscheidung von statischer und dynami-

scher Belegung über die Zeit. Bewegte Objekte werden dann aufbauend auf dieser Dynamic-

Grid-Repräsentation extrahiert, die dabei als Track-Before-Detect Strategie dient und eine

generische Detektion beliebiger Objekte primär durch die Erkennung der Bewegung derer

Occupancy-Zellen ermöglicht. Um das volle Potenzial dieses Ansatzes zu entfalten, wer-

den zudem neue Konzepte für die Objektzustandsschätzung und -assoziation vorgestellt,

die ebenfalls von der Grid-basierten Darstellung profitieren, z. B. wird die Sichtbarkeit der

Objekte anhand der zusätzlichen Freiraum-Information des Occupancy Grids bestimmt.

Der Ansatz wurde mit realen Sensordaten und Testfahrzeugen evaluiert; die Ergebnisse

demonstrieren eine erfolgreiche Anwendung als Multi-Sensor-Umgebungsschätzung, insbe-

sondere im Kontext des autonomen Fahrens in komplexen urbanen Umgebungen.
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