Fortschritt-Berichte VDI

iy

Reihe 8
Mess-, Dipl.-Inf. David Kampert,
Steuerungs- und Stuttgart

Regelungstechnik

Nr. 1256 Operative Verwendung
merkmalbasierter
Information in der
Automatisierung

Lehrstuhl fir
Prozessleittechnik

AACHENER der RWTH Aachen



https://doi.org/10.51202/9783186256089

Inhak.

am 20,01.2026, 08:53:31. @
m

tar

mit, fr oder In KI-


https://doi.org/10.51202/9783186256089

Operative Verwendung merkmalbasierter Information in der

Automatisierung

Von der Fakultit fiir Georessourcen und Materialtechnik der

Rheinisch-Westfadlischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genchmigte Dissertation

vorgelegt von Dipl.-Inf.

David Kampert

aus Diepholz

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Christian Diedrich

Tag der miindlichen Priifung: 06. Mérz 2017

am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

Inhak.

am 20,01.2026, 08:53:31. @
m

tar

mit, fr oder In KI-


https://doi.org/10.51202/9783186256089

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- Dipl.-Inf. David Kampert,
und Regelungstechnik  Stuttgart

[Nr. 1256 | Operative Verwendung
merkmalbasierter
Information in der
Automatisierung

Lehrstuhl fir
Prozessleittechnik
A AC E

N E R der RWTH Aachen



https://doi.org/10.51202/9783186256089

Kampert, David

Operative Verwendung merkmalbasierter Information in der
Automatisierung

Fortschr-Ber. VDI Reihe 8 Nr. 1256. Dusseldorf: VDI Verlag 2017.
134 Seiten, 22 Bilder, 10 Tabellen.

ISBN 978-3-18-525608-0, ISSN 0178-9546,

€ 52,00/VDI-Mitgliederpreis € 46,80.

Fir die Dokumentation: Automatisierung — Industrie 4.0 — IEC 61131 = SPS — Merkmale —
Abfragesprache — Relationale Algebra — Dienst

In dieser Arbeit wird ein neuartiges Konzept fiir die Kommunikation technischer Merkmale vor
gestellt. Das Konzept erlaubt industriellen Automatisierungssystemen, Informationen Uber techni-
sche Merkmale mittels IEC 61131-konformer Programmierung von Fremdsystemen, beispielswei-
se |T-Systemen der MES-Ebene, abzufragen. Durch die Verfigbarkeit dieser Information kénnen
flexible Produkfionsanlagen deutlich leichter realisiert werden. Grundlage dieser Arbeit ist der
akiuelle Stand von Wissenschaft, Technik und industriell angewandten Normen und Standards.
Im Detail sind dies theorefische Grundlagen zu Merkmalmodellen und Informationssystemen
sowie die praktische Anwendung von Merkmalmodellen, Abfragesprachen, Software-Systemen
im industriellen Umfeld und die Programmierung von Automatisierungssystemen. Ausgehend
davon werden Anforderungen an das zu entwickelnde Konzept und die Implementierung und
Integration abgeleitet. Die Implementierung entsprechender Abfragen in IEC 61131-kompatib-
len Automatisierungssysteme wird erldutert. Die Integration in das IT-Umfeld einer industriellen
Produkfionsanlage wird dabei ebenso betrachtet wie die inferne Softwarearchitektur. Die Arbeit
schlieBt mit Anwendungsbeispielen und einer krifischen Diskussion des Konzeps.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Infernet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Intfernet at
hitp://dnb.ddb.de.

D82 (Diss. RWTH Aachen University, 2017)

© VDI Verlag GmbH - Disseldorf 2017

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789546
ISBN 978-3-18-525608-0

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Vorwort

Diese Arbeit entstand wihrend meiner Zeit als wissenschaftlicher Mitarbeiter des Lehr-
stuhls fiir Prozessleittechnik der RWTH Aachen. Ich bedanke mich bei Herrn Profes-
sor Dr.-Ing. Ulrich Epple dafiir, dass er mir dieses Unterfangen nicht nur ermoglichte,
sondern durch seine Fiihrung des Lehrstuhls auch zu einer angenehmen, lehrreichen,
konstruktiven und schonen Zeit gemacht hat. Ich danke auflerdem Professor Dr.-Ing.
Christian Diedrich fiir die freundliche Ubernahme der Rolle des Zweitgutachters.

Groflen Anteil an dieser Arbeit hat auch das gesamte Team des Lehrstuhls, zu dem ich
tber fiinf Jahre gehoren durfte. Ein herzliches ,Dankeschon” an dieses tolle Team!

David Kampert

III

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

v

Inhak.

am 20,01.2026, 08:53:31. @
m

tar

mit, fr oder In KI-


https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

Kurzfassung Vi
1. Einleitung 1
1.1. Motivation . . . ... ... ... 1
1.1.1. Die wissenschaftliche Perspektive . . .. ... ... ... ...... 2

1.1.2. Die pragmatische Perspektive . . . . . ... ........... ... 3

1.1.3. Die strategische Perspektive . . . . . . ... ... . ... ... .. ... 3

12. ZielsetzungundIdee . . . . ... ... ... ... oL 4
1.3. Aufbauder Arbeit. . . . .. ... 7

2. Grundlagen 10
2.1. Merkmale . ... ... ... 10
2.1.1. Metamodell zur Modellierung von Merkmalen . . . . .. ... ... 10

2.1.2. Dienstbasierte Verwendung von Merkmalen . . . . ... ... ... 14

2.2. Informationssysteme . . .. .. ... ..... .. ... .. ... . ... 19
2.2.1. Grundbegriffe des relationalen Datenbankmodells . . . . . . .. .. 19

2.2.2. Relationale Algebra . ... ... ...... .. ... . ... ... 20

22.3. Relationenkalkul . . ... ... ... ... ... .. . L. 21

2.2.4. Eigenschaften der relationalen Algebra . . ... ... ... ... .. 22

3. Stand der Technik 24
3.1. Merkmal-ModelleinderPraxis . . .. ... .................. 24
31.1. IEC61360 . ... ... e 25

312, eCl@ss . . .. ... e 27

3.2. Abfragesprachen . .. ... ........ ... ... .. . 31
3.2.1. Abfragesprachen fiir relationale Datenbanken . . ... ... .. .. 31

3.2.2. Abfragesprachen fiir graphbasierte Datenbanken . ... ... ... 31

3.2.3. Dominenspezifische Abfragesprachen . .. ... .......... 32

3.3. Software-Systeme im Umfeld der industriellen Produktion . . . . ... .. 32
3.3.1. Manufacturing Execution Systeme . . . . ... ... ......... 34

3.3.2. Datenarchive .. ... .. ... . ... ... . .. .. .. .. ... 35

3.33. Rezeptverwaltung . . ... ............ ... ... ..... 35

3.3.4. Labor-Informations- und Managementsysteme . . . . .. ... ... 36

3.3.5. Condition Monitoring . . . . ... ........ ... ... ... .. 36

3.4. SPS-Programmierung . . . . .. ........ ... ... ... ... 36
3.4.1. Aufbau und Funktionsweise einer SPS . . . ... ... ... ... 36

3.4.2. Programmiersprachen . . . ... .................... 37

3.43. Kommunikation .. ............. ... ... ... ..... 43

\

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

4. Analyse und Anforderungen
4.1. Eignung der Merkmalmodelle . . . . . .....................
4.2. Entwurf der Abfragesprache. . . . ... .. ... ... ... ... ... ..
43. Implementierung . . .. ... ... ... ... ...

5. Loésungskonzept
5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell . . . .

5.1.1.
51.2.

Formale Spezifikation . ... ... ...................
Anwendersicht . . .. ... ... o oL o

5.2. Grundoperationen der Abfragesprache . . ... ... ... .........

52.1.
522.
523.
524.
52.5.

Abdeckung der relationalen Algebra . . . . . ... ... ... ... .
Wertausgabe . . . . .. ... ... L
Boolesche Formeln . . . ... ......................
Vererbungsbeziehungen . . . . . ... ... ... .. ... ...
Aggregationen . . .. ... ... L Lo

5.3. Erweiterte Operationen der Abfragesprache. . . . . . ... ... ... ...

5.3.1.
5.3.2.
5.3.3.
53.4.
53.5.
5.3.6.

Zusammenfiihren von Merkmaltrdgern und Aussagen . . . .. ..
Suche nach Merkmaltragern . . ... ... ..............
Aggregationen . . ... ... ... L L o
Bestimmung des Merkmaltragertyps . ... ... ..........
Vorhandensein eines Merkmals . . . . . ... .............
Verkniipfung von Merkmaltragern . . . . ... ..... .. ... ..

5.4. Schnittstellen und Verhalten der Funktionsbausteine . . . . . ... ... ..

54.1.
54.2.
54.3.

Konzept . . ... ... ... . ...
Funktionsbausteine fiir Abfrageoperationen . ... ...... ...
Funktionsbaustein zur Ausfiihrung von Abfragen . . . . . ... ..

5.5. Systemarchitektur . . . . ... ... oL L oL oL o

5.5.1.
5.5.2.

Positionierung in der Automatisierungspyramide . . . . . . .. ..
Komponenten des Dienstes fiir Merkmalabfragen . . . . .. .. ..

6. Prototypische Implementierung
6.1. Technische Grundlagen. . . .. ... ... ... ... ... ... ......

6.1.1.
6.1.2.
6.1.3.
6.1.4.

Die Laufzeitumgebung ACPLT/OV . . . ... ............
Die Bibliothek ACPLT/FB . . . . .. ... ... ... .........
Das Kommunikationsprotokoll ACPLT/KS . . . ... ... .....
Das ACPLT-Dienstsystem . . . .. ... ................

6.2. Softwarearchitektur . . . . . .. ... ... ... ...

6.2.1.
6.2.2.
6.2.3.
6.2.4.

ArchitekturdesKlienten . . . . . .. ... ... ... ... ....
Architektur des Merkmaldienstes . . . ... ... ..........
Ablauf eines Dienstaufrufs . . ... ... ...............
Administration des Dienstes . . . . ... ... ... .........

6.3. Anwendungsbeispiele . . ... ... ... ... .. ... . .

6.3.1.
6.3.2.

Flexible Programmierung von Werkzeugmaschinen . . . . . . . ..
Uberwachung von Erdélpumpen in einer Erdélraffinerie . . . . . .

7. Diskussion und Ausblick
7.1. Diskussionder Grundidee . . . . . . .. ... ... ... ... ... ...

VI

am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster

48
48
49
51

54
54
54
58
59
59
62
62
62
63
66
66
67
68
69
69
70
71
71
72
74
77
77
79

84
84
84
85
86
86
87
87
89
91
93
94
94
95

98


https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

7.2. Diskussion der Abfragesprache . . . . ... ... ... ... ... ... ... 99
7.3. Diskussionder Integration . . . . .. ... ... ... .. L oL L. 100
74. Ausblick .. ... e 101

A. Spezifikation der Funktionsbausteine 103
B. Verhalten des Bausteins QUERY 115
C. Abkiirzungsverzeichnis 118
Literaturverzeichnis 119
VII

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Kurzfassung

In dieser Arbeit wird ein neuartiges Konzept fiir die Kommunikation technischer Merk-
male vorgestellt. Das Konzept erlaubt industriellen Automatisierungssystemen, Infor-
mationen {iber technische Merkmale mittels IEC 61131-konformer Programmierung von
Fremdsystemen abzufragen. Die Arbeit erldutert die theoretischen Grundlagen, das Ge-
samtkonzept und Aspekte der Integration fiir die industrielle Automatisierung.

Geridte und Systeme im industriellen Umfeld werden vermehrt kommunikationsfa-
hig und mit Netzwerken verbunden. Diese Konnektivitdt wird meist fiir den Zugriff auf
Automatisierungssysteme von aufSen benutzt, aber auch die Automatisierungssysteme
selbst konnen von den dadurch zugénglichen Daten profitieren, indem sie operativ not-
wendige oder nutzenbringende Information durch das Netz von Fremdsystemen abfra-
gen. Beispielsweise kann eine Anlagensteuerung die notwendige Information zur Her-
stellung einer Produktvariante selbst und zum richtigen Zeitpunkt erfragen, ohne aktiv
von auflen mit der Information versorgt werden zu miissen. Solche Abfragen sind nach
heutigem Stand der Technik aber aufwéndig einzurichten, zu warten und nicht flexibel.
Die Vernetzung birgt also grofies Potenzial fiir die Automatisierung, das Verhiltnis von
Aufwand und Nutzen ist aber ungiinstig.

Eine grofie Vereinfachung wire eine Standardisierung der von Automatisierungssy-
stemen ausgehenden Kommunikation. Wahrend in technischer Hinsicht bereits Losun-
gen existieren, fehlt es in semantischer Hinsicht an Standards. Die Bedeutung von Infor-
mation aus einem Fremdsystem, beispielsweise Information iiber ein Produktmerkmal,
muss vorab bekannt sein, was mit steigender Anzahl vernetzter Systeme schwieriger
wird. Weil ein grofier Teil der Kommunikationsinhalte, die fiir ein Automatisierungssy-
stem operativ nutzbar sind, technische Merkmale betrifft, sind diese der Ausgangspunkt
fiir das in dieser Arbeit vorgestellte Konzept.

Heute sind umfangreiche Merkmaldefinitionen durch Normen und Standards verfiig-
bar (z.B. IEC 61360 und eCl@ss). In der Wissenschaft existiert auflerdem eine klare Vor-
stellung davon, wie das Prinzip der Modellierung durch Merkmale grundsétzlich funk-
tioniert. Fiir die operative Nutzung dieser Daten und Modelle in der Automatisierung
gibt es aber kein Konzept.

Grundlage dieser Arbeit ist der aktuelle Stand von Wissenschaft, Technik und indu-
striell angewandten Normen und Standards. Dieser wird in den ersten Kapiteln der Ar-
beit in Hinblick auf das Gesamtkonzept vorgestellt und erlautert. Im Detail sind dies
theoretische Grundlagen zu Merkmalmodellen und Informationssystemen sowie die
praktische Anwendung von Merkmalmodellen, Abfragesprachen, Software-Systemen
im industriellen Umfeld und in die Programmierung von Automatisierungssystemen.
Ausgehend davon werden Anforderungen an das zu entwickelnde Konzept und die
Implementierung und Integration abgeleitet.

Der erste Schritt zur Losung ist die Definition einer Abfragesprache fiir technische
Merkmale, die sich auf ein vorhandenes allgemeines Metamodell fiir Merkmale be-
zieht. Die Abfragesprache hat die relationale Algebra als formale Basis. Die Operationen

VIII

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Kurzfassung

der Sprache bestehen aus Grundoperationen, die durch theoretische Uberlegungen und
technische Umsetzung motiviert sind sowie aus erweiterten Operationen, die durch die
praktische Anwendung motiviert sind und auf den Grundoperationen aufbauen.

Anschlieflend wird die Integration entsprechender Abfragen in IEC 61131-kompatible
Automatisierungssysteme erlautert. Die Operationen werden als Typen von Funktions-
bausteinen spezifiziert, so dass Abfragen von Merkmalinformation durch Funktionsbau-
steine programmiert werden konnen. Schnittstellen und Ausfiithrungssemantik werden
spezifiziert.

Letztlich werden der Entwurf und die Integration eines Servers zur Verarbeitung die-
ser Abfragen diskutiert. Die Integration in das IT-Umfeld einer industriellen Produkti-
onsanlage wird dabei ebenso betrachtet wie Grundziige der internen Softwarearchitek-
tur. Die Arbeit schliefSt mit Anwendungsbeispielen und einer kritischen Diskussion des
Konzepts.

IX

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Inhak.

am 20,01.2026, 08:53:31. @
m

tar

mit, fr oder In KI-


https://doi.org/10.51202/9783186256089

1. Einleitung

1.1. Motivation

Durch die Vernetzung von Automatisierungssystemen industrieller Produktionsanlagen
mit IT-Systemen und dem Internet wird es in naher Zukunft grole Veranderungen in der
Industrie, der Wirtschaft und der Gesellschaft geben [1, 77]. Durch die Verfiigbarkeit von
Information werden vorhandene Systeme ihre Aufgaben besser erfiillen konnen und es
werden vollkommen neuartige technische Losungen und Geschiftsmodelle entstehen.
Die Systeme zur Organisation und Steuerung der Produktion sind dabei Mittel- und
Ausgangpunkt der Veranderungen. Diese Arbeit beschiftigt sich mit den neuen Mog-
lichkeiten fiir die Automatisierungstechnik. Genauer gesagt wird eine Technologie ein-
gefiihrt, die es speicherprogrammierbaren Steuerungen erlaubt, mittels der Vernetzung
auf Daten technischer Merkmale zuzugreifen. Durch diese neu verfiigbare Informations-
quelle kénnen viele Automatisierungsaufgaben besser erfiillt werden und es entstehen
auch génzlich neue Anwendungsmoglichkeiten.

Speicherprogrammierbare Steuerungen, abgektirzt SPS, sind Systeme fiir die pro-
grammierbare Automatisierung von technischen Anlagen, beispielsweise industriellen
Produktionsanlagen. Die Zielsetzung fiir Entwickler und Anwender einer SPS war und
ist es, dass mit dem System Vorgénge der realen Welt gemessen, gesteuert und geregelt
werden kénnen — moglichst effektiv, prazise, umfangreich, kostengiinstig und aufwand-
sarm. Dem Programmierer einer SPS stehen dafiir die notwendigen Mittel zur Verfii-
gung, d.h. die technische Anbindung der Feldgerite und, getrennt davon, die Werk-
zeuge zur Implementierung und Ausfithrung von Berechnungen und Prozeduren. Fiir
Mess-, Regel- und Steueraufgaben sind diese Mittel geeignet. Zur Ausnutzung der Vor-
teile einer vernetzten Infrastruktur ist das jedoch nicht ausreichend. Das ist ein Nachteil,
denn es befindet sich in vernetzten Systemen im Umfeld industrieller Produktionsanla-
gen viel Information, die prinzipiell fiir eine bessere und flexiblere Funktion einer SPS
genutzt werden konnte: Informationen zu Merkmalen von Produktionsplanung, Auftra-
gen, Produkten, Rohstoffen, Gerédten der Anlage, Kosten oder Logistik sind nur einige
Beispiele. Trotz heute oder zukiinftig vorhandener Vernetzung ist diese Information fiir
eine SPS kaum erreichbar, denn ein Programmiermittel zum gezielten Suchen und Er-
fragen von Information gibt es nicht. Fiir den urspriinglichen Einsatzzweck von SPS
zum Messen, Steuern und Regeln muss keine Information gesucht werden, daher gibt
es hierzu kein nativ vorhandenes Konzept. Als Losung bieten einige Softwareherstel-
ler spezielle Bibliotheken an, mit deren Hilfe Information aus SQL-Datenbanken oder
Excel-Dateien abgefragt bzw. herausgesucht werden kann. Dies sind aber jeweils tech-
nische Speziallosungen; die logische Abfrage einer Information ist dann untrennbar mit
der Technologie und Strukturierung der Datenquelle verbunden. Ein selbstandiges Kon-
zept, das die technische Kommunikation von der logischen Informationsabfrage und
-verwendung trennt, gibt es nicht. Das sind Ausgangspunkt und Motivation dieser Ar-

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1. Einleitung

beit. Ziel ist die Spezifikation einer allgemeinen Abfragesprache fiir Merkmalinformati-
on, die von einer SPS genutzt werden kann.
Diese Arbeit kann aus drei Perspektiven betrachtet werden.

1.1.1. Die wissenschaftliche Perspektive

Dieser Arbeit liegt die These zugrunde, dass es Grundprinzipien zur Strukturierung von
Information gibt. Im hier betrachteten Anwendungsumfeld der industriellen Produkti-
on gibt es zahlreiche Modelle, die Aspekte von Produktionsanlagen, Geraten, Produk-
ten, Produktionsablaufen, Produktionsplanen usw. abbilden. Diese Modelle liegen heute
zunehmend in IT-Systemen vor und besitzen oft auch ein dokumentiertes Meta-Modell.
Die Modelle vermitteln vier Arten von Information:

¢ Merkmalinformation beschreibt charakteristische Eigenschaften von Objekten, die
fiir das besitzende Objekt als Ganzes gelten und mit einfachen Werten belegt wer-
den konnen. Datenblatter vermitteln hauptsachlich Merkmalinformation.

e Strukturinformation erklart, aus welchen Objekten das modellierte Gesamtobjekt
besteht und wie diese Objekte zueinander in Beziehung stehen. Ein Ré&I-Fliefibild
vermittelt hauptséchlich Strukturinformation.

* Zeitbezogene Information beschreibt die unterschiedlichen Zusténde, in denen ein
Objekt war, (in Zukunft) sein soll oder sein kann. Das kann durch explizite Be-
schreibung der Zustidnde (z.B. bei der Modellierung eines Produktlebenszyklus)
oder durch die Beschreibung der Dynamik (z.B. Differenzialgleichungen) gesche-
hen.

¢ Bildhafte Information dient der Nachbildung der Sinneswahrnehmung des model-
lierten Gegenstands, typischerweise der optischen Erscheinung. 3D-CAD-Modelle
vermitteln bildhafte Information.

In den meisten gebrauchlichen Modellen werden diese Arten von Information mitein-
ander vermischt und die Modelle konnen aufeinander aufbauen. Merkmalinformation
ist in beinahe allen Modellen vorhanden, allein schon, um den modellierten Gegenstand
und ggf. dessen Bestandteile anhand von Merkmalen wie ,Name” zuordnen zu konnen.
Der Zugriff auf Merkmalinformation ist daher fiir besonders viele Modellarten relevant.

Von wissenschaftlicher Seite wurde das grofie Potenzial, das mit der Beherrschung
von Merkmalinformation einhergeht, identifiziert (s. z.B. [29, 34, 63, 67]). Ein Metamo-
dell fiir Merkmale bzw. eine einheitliche Sicht auf Modelle mit Merkmalinformation
wurde von Mertens verdffentlicht [54]. Die Frage danach, wie dieses Modell operativ
— beispielsweise von Automatisierungssystemen — genutzt werden kann, ist aber bisher
ohne Antwort. In vielen Féllen wird Merkmalinformation nicht lokal vorliegen, sondern
von Fremdsystemen abgefragt werden miissen. In dieser Arbeit wird daher systematisch
und ausgehend vom Stand von Wissenschaft und Technik ein Konzept fiir die Abfrage
dieser Information spezifiziert, das auf das allgemeine Modell fiir Merkmale anwendbar
und die Anwendung in der Automatisierungstechnik zugeschnitten ist. Es vervollstan-
digt so das vorhandene Metamodell aus funktionaler und operativer Sicht der Automa-
tion.

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1.1. Motivation

1.1.2. Die pragmatische Perspektive

Durch die Vernetzung industrieller Produktionssysteme wird die Menge verfiigbarer In-
formation zunehmend grofer. Grundsatzlich bietet diese Verfiigbarkeit von Informati-
on das Potenzial, den Anlagenbetrieb und die Produktionsprozesse selbst zu verbessern
bzw. sogar neuartige Prozesse zu ermoglichen. Voraussetzung dafiir ist aber, dass die
Information nicht nur verfiigbar ist, sondern die Informationsmenge und die Abwick-
lung der Kommunikation auch beherrschbar sind. Die Grofie und Dynamik der Net-
ze erschweren das Auffinden der jeweils gesuchten Information. Das ist besonders fiir
Automatisierungssysteme eine Herausforderung, weil sie {iber vergleichsweise gerin-
ge Hardwareressourcen verfiigen und nicht zu beliebigen Zeitpunkten zwecks Anpas-
sung an Verdnderungen neu programmiert werden kénnen. Folgendes Praxisbeispiel
illustriert dieses Problem:

In einer Raffinerie soll der Arbeitszustand von Erdélpumpen durch die steuernde SPS
tiberwacht werden. Dafiir werden spezielle Funktionsbausteine in der SPS verwendet,
die die Betriebsparameter, Zustinde und Kenndaten der Pumpen als Eingénge haben.
Zusitzlich bendtigen die Bausteine aufgrund physikalischer Gesetzméfiigkeiten Infor-
mationen tiber das geférderte Medium, hier also das Erdcl. Die SPS benétigt beispiels-
weise Information dartiber, welche Dichte das Erdol aus der Probe hat, die aus dem
Tank stammt, aus dem derzeit gepumpt wird. Dieses Merkmal ist je nach verwendeter
Erdolsorte verschieden und liegt im Laborinformationssystem vor. Gleichzeitig kennt
das MES notwendige Details zum aktuellen Arbeitsauftrag wie den genutzten Tank.
Die Komplexitit der Datenstrukturen und Netze (Firewalls, Regeln zur Sicherheit etc.)
erschwert die direkte Beschaffung der benoétigten Information, auflerdem fiihren Ver-
anderungen der Informationsquellen durch Migration oder Updates zu erzwungenen
Anpassungen der SPS.

Idealerweise konnte die SPS in dieser Situation die benétigte Information selbst er-
fragen, ohne dass eine Punkt-zu-Punkt-Verbindung zu den Quellsystemen der Informa-
tion erstellt und gewartet werden muss. Dass die SPS selbst die benotigte Informati-
on erfragen kann, ist derzeit ein eher ungewohnlicher Weg zur Losung dieser Art von
Aufgaben, weil tiblicherweise die SPS ,,von auflen” mit der benétigten Information ver-
sorgt wird. Das liegt aber nicht daran, dass die technischen Moglichkeiten fiir die aktive
Datenabfrage fehlen wiirden oder dass der Weg grundsitzlich organisatorisch kompli-
zierter wire. Es gibt schlicht kein effektiven Konzept. Eine sehr dhnliche Idee ist unter
der Bezeichnung , Enterprise Information Integration” ist im Bereich der IT-Systeme be-
reits seit Anfang der 1990er Jahre bekannt [35], wo der Anwendungsbereich aber bei
grofien Datenbanken und komplexen Datenstrukturen liegt. Somit gibt es fiir die tech-
nische Umsetzung in groSem Mafstab bereits Beispiele, aus Sicht der Automatisierung
fehlt aber eine Losung, die sich auf die Abbildung von Merkmalen konzentriert und die
auf die doméanenspezifischen Anforderungen zugeschnitten ist. Diese Arbeit liefert das
Konzept fiir eine solche Losung.

1.1.3. Die strategische Perspektive

Fiir die eingangs des Kapitels erwdhnten Veranderungen in der Industrie, die z.T. begon-
nen haben und noch in Zukunft erwartet werden, spielt die Automatisierungstechnik
eine zentrale Rolle. Umso erstaunlicher ist, dass in vielen Vorschlidgen, wie zukiinfti-

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1. Einleitung

ge Automatisierung ,intelligenter” und ,flexibler” gemacht werden kann, die eigent-
lichen Automatisierungssysteme, die reale Prozesse messen, steuern und regeln, sich
iiberhaupt nicht verandern. Die Anderungen beziehen sich stattdessen auf Software-
Systeme im Umfeld der Automatisierungssysteme, die mehr und besser als zuvor Da-
ten sammeln und auswerten, um damit dann die Automatisierungssysteme zu parame-
trieren, konfigurieren oder programmieren. Automatisierungssysteme sind somit keine
aktiven Komponenten in der vernetzten virtuellen Welt. Es ist daher moglich, dass die
Automatisierungstechnik als Disziplin von den Ergebnissen der ,Industrie 4.0, dem
,Industrial Internet” und von , Cyber-Physical Production Systems” trotz ihrer zentra-
len Rolle nur wenig profitiert. Die Motivation dieser Arbeit aus strategischer Perspek-
tive ist daher zu zeigen, wie Automatisierungssysteme auf einfache und effektive Art
von der Vernetzung mit IT-Systemen profitieren konnen und sich dadurch neue Anwen-
dungsmoglichkeiten eroffnen. Es entsteht eine neue Art von Softwaresystem, das (an-
ders als vorhandene Systeme) keine neue Information erzeugt, sondern nur vorhandene
Information in einer Art organisiert, die fiir die Automatisierungstechnik einen direkten
Nutzen erzeugt.

1.2. Zielsetzung und Idee

Ziel der Arbeit ist die Spezifikation einer allgemeinen Abfragesprache fiir Merkmalin-
formation, die von einer SPS operativ genutzt werden kann. Dieses Ziel geht mit der
Betrachtung einer Reihe von Nebenbedingungen einher, um die tatséchliche Realisier-
barkeit und Einsetzbarkeit des Konzepts zu gewahrleisten. Die gesuchte Losung muss
in das technische Umfeld der industriellen Produktion passen, d.h. mit vorhandenen
Software-Systemen integrierbar sein und grundsétzlich in einer SPS verwendbar. Au-
Berdem sollte die Losung innerhalb der SPS kein neu- und andersartiger Fremdkorper
sein, damit sie leicht erlernbar und nachvollziehbar ist. Die Einhaltung von Standards
und die Orientierung an vorhandenen Programmierkonzepten sind daher unverzicht-
bar. Weiterhin sollte fiir einen Anwender klar sein, in welchen Féllen die Abfragesprache
eingesetzt werden kann und wo ihre Grenzen liegen. Die Entwicklung neuer Theorie im
Bereich der Informationssysteme oder neuer Datenbanktechnologie sind dagegen nicht
Ziel der Arbeit.

Der Idee dieser Arbeit gehen einige Grundiiberlegungen zur Kommunikation zwi-
schen Automatisierungs- und IT-Systemen voraus. Fiir das allgemeine Ziel, einer SPS
Merkmalinformation zur Verfiigung zu stellen, gibt es mehrere denkbare Losungen (s.
Abbildung 1.1). Eine naheliegende Moglichkeit, gezeigt bei (1), ist dass die externen Sy-
steme die jeweils benotigten Daten in die SPS schreiben. Aus technischer Sicht ist das
moglich, weil entsprechende Datenschnittstellen wie OPC DA /UA oft verfiigbar sind.
Aus logischer Sicht funktioniert diese Losung jedoch hédufig nicht, weil die Informations-
quelle wissen miisste, welche SPS welche Information benétigt. Im Beispiel der Pumpen-
tiberwachung miisste also das Laborinformationssystem wissen, aus welchem Tank das
von einer Pumpe geforderte Rohol stammt. Diese Information ist im Laborinformations-
system nicht vorhanden. Selbst wenn das der Fall wire, ist dieser Losungsweg organi-
satorisch schwierig: Wenn sich etwas an der Anlage oder der SPS dndert, so dass andere
Informationen benétigt werden als zuvor, miisste die Informationsquelle angepasst wer-
den, obwohl sie von der urspriinglichen Anderung eigentlich nicht betroffen ist. Anders-

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1.2. Zielsetzung und Idee

herum betrachtet muss bei einer Anderung an der Informationsquelle die spezielle Ab-
hangigkeit zur SPS berticksichtigt werden. Solche Abhéngigkeiten fithren zu erhohtem
Arbeitsaufwand, Abstimmungsbedarf, Verzogerungen und Inkonsistenzen. Letztlich ist
Losung (D) daher nicht ideal.

Das fithrt zu Lésung (2), in der die SPS selbst bei den externen Systemen Information
abfragt. Weil IT-Systeme normalerweise nicht darauf ausgerichtet sind, dass Daten von
einer SPS aus abgefragt werden, bieten sie im Regelfall auch keine speziellen Schnitt-
stellen dafiir an. Die SPS muss sich daher nach den angebotenen Schnittstellen richten,
was technisch z.T. durch spezielle Bibliotheken auf mehr oder weniger umstandliche
Art moglich ist (im Bild verdeutlicht durch die unterschiedlichen Befehle get und rg
zur individuellen Datenabfrage). Auch hier ist aber wieder der organisatorische Aspekt
schwierig. IT-Systeme haben meist kiirzere Lebenszyklen als Automatisierungssysteme
und dndern sich daher wihrend des Betriebs der SPS, die ggf. wegen der laufenden Pro-
duktion auch nicht neu programmiert werden kann [52]. Insgesamt bestehen bei Losung
(@ also immer noch erhebliche technische und organisatorische Probleme.

In Losung (3) wird die technische Abhéngigkeit durch ein zusatzliches Software-
System aufgelost, das als eine Art Broker zwischen SPS und Datenquellen vermittelt.
Dieses System implementiert die auf der jeweiligen Seite vorhandenen Schnittstellen
und entkoppelt IT-Systeme und Automatisierungssysteme voneinander. Bei einer ge-
schickten Implementierung konnen Verdnderungen in einem beteiligten System im Vor-
aus eingeplant und gleitende Uberginge geschaffen werden. Es bleibt einzig das Pro-
blem, dass das neu eingefiihrte System wissen muss, welche Information von welcher
SPS benotigt wird. Wiinschenswert ware, wenn das Broker-System nur die rein tech-
nische ,Ubersetzung” von Abfragen durchfiihren miisste, ohne dass hier konfiguriert
werden muss, wer welche Information benétigt. Das fiihrt letztendlich zu Losung @,
in der der vermittelnde Broker fiir die Automatisierungssysteme eine Schnittstelle an-
bietet, an der Daten abgefragt werden konnen. Die Formulierung der Abfrage geschieht
in der SPS und sofern andere Daten benotigt werden als zuvor, muss auch nur dort die
Abfrage geandert werden. Das vermittelnde System in der Mitte ist eine rein techni-
sche Briicke und die IT- und Automatisierungssysteme sind logisch so weit wie moglich
entkoppelt. Bei technischen Anderungen muss nur die ,Briicke” angepasst werden, bei
einer Anderung des Informationsbedarfs einer SPS nur genau diese. Technische Kom-
munikation und logische Informationsabfrage sind genauso getrennt, wie es auch bei
der Signalanbindung fiir Feldgerdte und der spateren Informationsverarbeitung durch
Programmlogik getan wird.

Konzeptionell ist die letzte diskutierte Losung also zu favorisieren und auch in techni-
scher Hinsicht sind die notwendigen Voraussetzungen bereits erfiillbar. Dadurch, dass
ein neues Software-System in einer frei wahlbaren Technologie implementiert wird,
kann sich die Wahl hierfiir nach den benétigten Kommunikationsschnittstellen richten.
Die kommunizierte Merkmalinformation ist auch inhaltlich einfach genug, so dass vor-
erst nicht mit technischen Problemen bei der Datentibertragung zu rechnen ist. Aus der
Literatur liegt auch ein allgemeines Modell von Merkmalinformation vor [29, 54], so
dass es eine einheitliche und dokumentierte Sicht auf Merkmalinformation gibt. Es fehlt
aber noch an den Mitteln, die die allgemeine Abfrage von Merkmalinformation aus einer
SPS erlauben und an der ,Briickensoftware” zu den merkmalverwaltenden Systemen.
Randbedingungen sind, dass Beides in das technische Umfeld passen muss und dass
die Formulierung von ausreichend komplexen Abfragen moglich ist — beispielsweise die

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1. Einleitung

IT-System

IT-System IT-System IT-System
set (a) set (b)
sel®)set (s)| |set (V) set (r)

IT-System IT-Systeime

AT-System AT-Systerhe
sps sps
get (a) rq(b)
sps sps I sPs
get (x) rql(y)

O

IT-System

)

IT-System

IT-System

IT-System

IT-Systeme

IT-Systeme
et(a) rqg(b)
———pert
get (s)_ rq
) )
AT-Systeme m AT-Systeme /\S:\
| — -/
SPS SPS
read (a)
1 read (b)
( (
| — | —_
SPS SPS SPS SPS
read (x) read (s)
read(y) read(t)

Abbildung 1.1.: Vier Méglichkeiten einer Architektur, in der Automatisierungssysteme Infor-

mationen aus IT-Systemen operativ nutzen.

Inhak.

[ am 20,01.2026, 08:53:31. @
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1.3. Aufbau der Arbeit

Abfrage der Dichte des Rohols aus dem Tank, aus dem eine bestimmte Pumpe derzeit
Rohol fordert. Diese Arbeit beschreibt genau diese noch fehlenden Teile des Konzepts.

Abbildung 1.2 illustriert die Grundidee aus praktischer Sicht anhand eines Beispiels.
Zu sehen sind eine Datenquelle mit Merkmalinformation, eine SPS mit einem Programm
aus Funktionsbausteinen und ein drittes System, das die SPS an eine oder mehrere Da-
tenquellen anbindet und Abfragen von Merkmalinformation ausfiihrt. Der Aufbau des
Programms aus Funktionsbausteinen wird auch spéter in dieser Arbeit weiter verfolgt
und begriindet, ist hier aber hauptséchlich aus Griinden der Darstellung hilfreich. Der
Anwender kann aus vorhandenen Elementen wie den Bausteinen ,Suche” und , Istwert”
eine Abfrage zusammenstellen und dann gezielt (mit dem Baustein , Abfragen”) aus-
fithren lassen. Konkret wird aus DatenquelleX derjenige Merkmaltrager mit WertZ fiir
MerkmalA gesucht. Von diesem Merkmaltrager wird dann auf das EreignisE hin der
Istwert von MerkmalB erfragt. Dass die Abfrage tatsdchlich von einem externen System
ausgefiihrt wird, ist fiir den Anwender nicht relevant und unsichtbar. Das Ergebnis der
Abfrage kann als normale Variable weiterverwendet werden, hier dargestellt durch eine
Signallinie hin zu einem leeren Funktionsbaustein. Der Aufbau komplexer geschach-
telter Abfragen und die Einbindung mehrerer Datenquellen sind ebenfalls moglich. Im
Prinzip handelt es sich um eine mit Mitteln der SPS formulierte Datenabfrage dhnlich
wie eine SQL-Query im PC-Bereich, aber ohne Annahmen tiber die technische Speiche-
rung der Daten. Stattdessen liegt nur die Annahme zugrunde, dass die Abfrage Merk-
malinformation betrifft. Die Losung ist daher allgemein immer dann anwendbar, wenn
Merkmalinformation erfragt wird.

1.3. Aufbau der Arbeit

Die in Abschnitt 1.2 geschilderte Idee und Zielsetzung wirft eine ganze Reihe von Fragen
auf, z.B.:

¢ Welche Modelle zur Abbildung von Merkmalinformation gibt es in der Wissen-
schaft?

Welche Modelle zur Abbildung von Merkmalinformation gibt es in der Normung
und der industriellen Praxis?

In welchen Software-Systemen im Bereich industrieller Produktion liegt verwend-
bare Merkmalinformation vor?

Welche Moglichkeiten bietet ein Automatisierungssystem zur Formulierung und
Verarbeitung von Abfragen von Merkmalinformation?

* Auf welchen normativen Grundlagen fiir die SPS-Programmierung kann aufge-
baut werden?

* Wie kann eine Abfragesprache systematisch hergeleitet werden?

Welche Abfragen sind mit dieser Sprache moglich und gibt es Einschrankungen?

* Wie wird eine Abfrage verarbeitet?

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1. Einleitung

DatenquelleX

Merkmalinformation in spezieller Technologie und Format

Datenanbindung
und
Abfragebearbeitung

Ausfiihrung der allgemeinen Abfrage in
spezieller Technologie

SPS

technisch neutrale Merkmalabfrage

[

A
|
Suche Istwert Abfragen
DatenquelleX
MerkmalA

WertZ

MerkmalB

EreignisE

Abbildung 1.2.: Idee der Arbeit anhand eines Beispiels.

* Wie sollte ein System zur Verarbeitung von Abfragen aufgebaut und mit vorhan-
denen Systemen integriert werden?

Diese Fragen werden in den folgenden Kapiteln Schritt fiir Schritt beantwortet.

Abbildung 1.3 zeigt den Aufbau dieser Arbeit in Form eines V-Modells. Im folgenden
Kapitel 2 werden die theoretischen Grundlagen behandelt, auf denen spéter eine Lo-
sung aufgebaut wird. Die wesentlichen Grundlagen sind die Modellierung von Merk-
malen und die Theorie von Informationssystemen. In Kapitel 3 wird dann auf derzeitig
benutzte Technologien im hier adressierten Anwendungsgebiet industrielle Automati-
sierung eingegangen. Die gebrauchlichsten Merkmalmodelle und Softwaresysteme so-
wie Grundlagen der Programmierung von SPS werden erldutert. Kapitel 4 analysiert
anschliefend, wo im aktuellen Stand der Technik der Bedarf an neuen Konzepten und
Losungen zur Erreichung der Zielsetzung besteht und wie die Grundlagen aus Kapitel
2 angewendet werden konnen. Anforderungen an ein Losungskonzept werden formu-
liert, so dass dann in Kapitel 5 eine konzeptuelle Losung als Antwort auf diese Anfor-
derungen hergeleitet werden kann. Dies sind der Kern und Hauptbeitrag der Arbeit.
Ein implementierter Prototyp wird in Kapitel 6 dokumentiert. Kapitel 7 diskutiert den
Beitrag dieser Arbeit kritisch.

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

1.3. Aufbau der Arbeit

Praxis

Theorie

Stand der Technik

$d
95“?»

Ergebnis der Arbeit

Prototyp e

Lésungs-
konzept

Grundlagen

am 20,01.2026, 08:53:31. @
m

Abbildung 1.3.: Aufbau der Arbeit in Form des V-Modells.

Inhak.

tar

mit, fr oder In KI-


https://doi.org/10.51202/9783186256089

2. Grundlagen

2.1. Merkmale

Merkmale sind klassifizierte Eigenschaften eines Systems, deren jeweilige Auspragung
einen einfachen Wert annimmt [32].

Merkmale sind ein grundlegendes Mittel zur Beschreibung von Systemen und Objek-
ten, das jeder Mensch intuitiv anwendet. In dieser Arbeit steht jedoch die Verarbeitung
von Merkmalen durch technische Systeme im Mittelpunkt, so dass Merkmale als Mittel
zur Modellierung betrachtet werden, das zur automatisierten Verwendung einer exak-
ten Beschreibung bedarf.

Wenn technische Systeme modellhaft beschrieben werden und diese Modelle durch
(zumeist andere) technische Systeme verarbeitet werden, sind Merkmale praktisch im-
mer ein Bestandteil dieser Modelle. Man denke allein nur daran, dass die Identifikati-
on des modellierten Objekts in den allermeisten Féllen durch Merkmale wie ,Name”
oder ,Identifikationsnummer” geschieht. Diese Tatsache hat zwei Konsequenzen: Er-
stens werden Merkmale als gewissermaflen ,natiirliche” Bestandteile von Modellen be-
trachtet, die nicht weiter erklart sind. Die einfache Benennung eines Merkmals und eines
Wertes (,,Prozessorkerne: 4“) bedarf meist auch keiner weiteren Erklarung — allerdings
nur dann, wenn das Modell in einem vorab bekannten Kontext verwendet wird. Ande-
renfalls, insbesondere bei der Interoperation unterschiedlicher Systeme, ist diese Infor-
mation unzureichend. Die zweite Konsequenz ist, dass Merkmale in Modellen aller An-
wendungsdoménen vorkommen und oft auch das einzige gemeinsame Modellierungs-
prinzip sind. Beispielsweise sind ein technischer Plan einer Produktionsanlage und die
Darstellung der Anlage als Kostenstelle vollkommen unterschiedliche Modelle, die aber
durch das Merkmal ,Name” derselben Anlage einander zugeordnet werden konnen.
Die Verkniipfung unterschiedlicher Modelle tiber gemeinsame Merkmale bietet daher
enormes Potenzial fiir die automatisierte Verwendung von Modellen. Dieses Potenzial
lasst sich aber nur dann ausschopfen, wenn bei der Verkntipfung der Modelle dasselbe
Metamodell zur Modellierung von Merkmalen zugrundegelegt wird.

2.1.1. Metamodell zur Modellierung von Merkmalen

In diesem Abschnitt wird das Metamodell zur Modellierung von Merkmalen zusam-
mengefasst. Im Folgenden wird dabei abkiirzend vom ,Merkmalmodell” gesprochen,
obwohl es sich eigentlich um Modellierung auf der Modell- und auf der Metamodelle-
bene handelt. Der Aufbau des Merkmalmodells ist der Arbeit von Mertens [54] entnom-
men, in der es ausfiihrlich motiviert und erldutert wird. Die Terminologie orientiert sich
dagegen an [29].

10

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.1. Merkmale

Merkmaltrager

Das Merkmalmodell wird zur Modellierung individueller Gegenstinde der physischen
Welt oder der Informationswelt verwendet. Zu diesen Gegenstinden konnen beliebige
weitere Modelle existieren. Uber Existenz und Art dieser anderen Modelle, und auch
uiber den modellierten Gegenstand, werden durch das Merkmalmodell keine weiteren
allgemeingiiltigen Aussagen gemacht. Uber den Gegenstand ist nur bekannt, dass er
Trager von Merkmalen ist, woraus sich die Bezeichnung ,Merkmaltrager” ableitet. Diese
Bezeichnung ist in jedem Fall zutreffend.

Der eigentliche Merkmaltréger ist der modellierte Gegenstand selbst, nicht etwa das
Modell des Gegenstands. Er selbst ist Besitzer der Merkmale, unabhingig davon, ob
es ein merkmalbasiertes Modell des Merkmaltrédgers gibt oder nicht. Beispielsweise hat
ein Produkt stets Herstellungskosten, auch wenn diese im Einzelfall nicht immer erfasst
werden. Welche Merkmale einem Merkmaltrager zugeschrieben werden ist aber eine
Designentscheidung in der Modellierung und héngt wesentlich von der Modellverwen-
dung ab. Allein am Merkmaltrédger ist das Vorhandensein eines Merkmals daher nicht
erkennbar. Das Merkmal erhélt dadurch eine vermittelnde Rolle zwischen Merkmaltra-
ger und seinem Modell: Es wird in der Modellierung definiert, die Auspragung ist aber
Eigenschaft der modellierten Gegenstands.

Die Unterscheidung zwischen dem realen Merkmaltrager und dessen modellhafter
Abbildung kann im Einzelfall ein wichtiger Aspekt sein. Das gilt insbesondere dann,
wenn es keine eins-zu-eins Abbildung zwischen realem Merkmaltrager und dessen Mo-
dell gibt. Daher wird an dieser Stelle explizit darauf hingewiesen, dass dieser Unter-
schied existiert. Zur sprachlichen Vereinfachung wird in dieser Arbeit aber dort, wo es
unmissverstandlich ist, abkiirzend der Begriff ,Merkmaltrager” auch fiir das einzelne
Modell des Merkmaltragers verwendet. Beispielsweise beinhaltet eine Inventardaten-
bank eigentlich Modelle der inventarisierten Merkmaltréger, es ist aber im Allgemeinen
unproblematisch und einfacher, wenn auch sprachlich ungenau, von den enthaltenen
Merkmaltrégern zu sprechen.

Auspragung von Merkmalen

Sofern einem Merkmaltrager ein Merkmal zugeordnet wird, kann dessen Auspragung
durch Betrachtung des Merkmaltragers direkt oder indirekt bestimmt werden. Der in-
direkte Schluss auf ein Merkmal kann erforderlich sein, wenn es fiir das Merkmal keine
anwendbaren Messmethoden gibt oder auch wenn die Auspriagung nur in der Informa-
tionswelt existiert und tiberhaupt nicht physisch présent ist. Beispielsweise ist der finan-
zielle Wert eines Gegenstands nicht direkt am Gegenstand messbar, trotzdem wiirde der
Gegenstand als Besitzer des Merkmals betrachtet.

Die Auspragung eines Merkmals kann im Verlauf des Lebenszyklus eines Merkmal-
tragers variieren. Viele Eigenschaften eines Merkmaltragers, die im Sinne des Merk-
malmodells als Merkmale gelten, konnen deshalb auch als Zustande des Merkmaltra-
gers angesehen werden. Entscheidend ist hier die Verwendung des merkmalbasierten
Modells: Sofern wahrend des Zeitraums, in dem das Modell angewendet wird, die Aus-
pragung als stabil angesehen werden kann, kann eine Eigenschaft als Merkmal verwen-
det werden. Zum Beispiel ist die Fiillmenge eines Transportbehilters allgemein kein
Merkmal des Behalters, weil sie sich wahrend des Lebenszyklus eines Transportbehal-

11

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

ters dndert. Aus Sicht einer Logistiksoftware wird aber unter Umstanden nur ein Zeit-
abschnitt betrachtet, in dem die Fiillmenge konstant ist. Im Modell der Logistiksoftware
kann der Behilter daher das Merkmal , Fiillmenge” besitzen.

Auspragungsaussagen

Wenn anhand des Merkmalmodells ein Merkmaltrager modelliert wird, dann sollen nor-
malerweise auch Informationen {iber die Auspragungen der Merkmale im Modell hin-
terlegt werden. Diese Information tiber Auspragungen darf aber nicht mit den tatséch-
lichen Auspragungen verwechselt werden, die ja nur am Merkmaltrédger selbst messbar
sind. Daher sind im Modell nur Aussagen iiber Auspragungen vorhanden, sogenannte
»~Auspragungsaussagen”. Auspragungsaussagen setzen ein Merkmal in eine bestimmte
Beziehung zu einem Wert, gegebenenfalls nattirlich mit Angabe einer Mafleinheit. Zum
Beispiel kann eine Auspragungsaussage sein, dass ein Wert x der gemessene Wert des
Merkmals ist, der simulierte Wert, der optimale Wert oder der geforderte Wert. Wenn ei-
ne Ausprdgungsaussage einem bestimmten Merkmaltrédger zugeordnet wird, dann be-
zieht sich die Aussage auf das entsprechende Merkmal von genau diesem Merkmaltré-
ger und lasst keine Schliisse auf irgendwelche anderen Merkmaltrager zu.

Metamodellebene

Eine fundamentale Annahme des Merkmalmodells ist, dass es eine Metamodellebene
gibt, durch die eine Vergleichbarkeit zwischen mehreren merkmalbasierten Modellen
erst hergestellt wird. Diese Metamodelle existieren fiir Merkmaltréger, Merkmale und
Auspragungsaussagen. Im Fall von Merkmaltrdgern wird das Metamodell als , Merk-
maltragertyp” bezeichnet. Der Merkmaltragertyp definiert die Merkmale, die ein Merk-
maltrager dieses Typs besitzt. Sind beispielsweise zwei Produkte Merkmaltrager vom
selben Merkmaltragertyp, dann ist damit klar, dass an beiden Produkten gleiche Merk-
male messbar sind, was eine Grundvoraussetzung fiir den Vergleich der Produkte ist. Ei-
ne weitere Voraussetzung ist, dass bei der Messung der Auspragung dasselbe Messver-
fahren angewendet wird. Dies wird dadurch abgesichert, dass Merkmale ebenfalls je-
weils einen Typ, genannt ,allgemeines Merkmal”, besitzen. Das allgemeine Merkmal
hat eine im Merkmaltragertyp eindeutige Bezeichnung und definiert das Messverfahren,
das zur Bestimmung der Auspriagung angewendet wird. Der Merkmaltragertyp ver-
weist also auf eine Liste von allgemeinen Merkmalen, wodurch klar ist, welche Merkma-
le an einem Merkmaltrdger vorhanden sind und wie ihre Auspragung bestimmt wird.
Ahnlich verhilt es sich mit Auspragungsaussagen. Eine Ausprigungsaussage bezieht
sich stets auf eine Aussageart, die die Semantik der einzelnen Aussage definiert. Auch
hier ist der Vergleich zweier Aussagen nur moglich, wenn die Semantik beider Aussa-
gen gleich ist oder zumindest deren Beziehung klar definiert ist. Beispielsweise kann
eine Aussage eine Anforderung an eine Auspragung sein und eine andere Aussage eine
Zusicherung fiir dasselbe Merkmal. Ob die Anforderung durch die Zusicherung erfiillt
wird, kann aber nur entschieden werden, wenn die Anforderung die Art Zusicherung
auch explizit akzeptiert. Zum Beispiel kann die Einbeziehung von Garantieleistungen in
eine Zusicherung ein wichtiges Kriterium fiir die Erfiillung einer Anforderung sein.

Es ist auch auf der Ebene von Merkmaltragertypen moglich, Auspragungsaussagen
zu treffen. Diese beziehen sich dann nicht auf ein konkretes Merkmal eines Merkmal-

12

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.1. Merkmale

tragers, sondern betreffen grundséatzlich alle Merkmaltrager dieses Merkmaltragertyps.
Beispielsweise werden in Katalogen Produkte immer auf der Typ-Ebene beschrieben,
trotzdem werden dort konkrete Angaben {iber die Merkmale der einzelnen Produkte
gemacht, die diesem Typ entsprechen. Der Herausgeber des Katalogs sichert in dem Fall
zu, dass jeder einzelne Merkmaltréger die im Katalog genannten Eigenschaften hat.

Die bis hierhin beschriebenen Grundbegriffe werden in Abbildung 2.1 dargestellt. Ei-
ne explizite Modellierung von Merkmalen auf der Modellebene wurde darin ausgelas-
sen, weil es implizit durch Merkmaltrdgertyp (Existenz) und Auspragungsaussage (zu-
geordnete Werte) beschrieben wird.

1 1 '
; Merkmaltragertyp k? Allgemeines Merkmal (—l Aussageart !
§ N 1.% ? 1 N * 1 T N 1 i
: Auspragungsaussage ;

3 Modellebene * * ‘

i Modell des 3

' . Auspragungsaussage |

: Merkmaltragers > * pragung & :

: * * :
v ! il

Abbildung 2.1.: Beziehung der Grundbegriffe des Merkmalmodells, dargestellt in der Nota-
tion eines UML-Klassendiagramms.

Merkmalart und Merkmalprototyp

Grundsitztlich sind die bisher eingefiihrten Grundbegriffe ausreichend, um Merkmal-
trager zu modellieren. Allerdings miisste dann fiir jeden Merkmaltragertyp jedes allge-
meine Merkmal einzeln vollstindig definiert werden. Zum Beispiel haben viele Merk-
maltrager ,Hohe” und , Breite” als Merkmale und es wére unsinnig, fiir jeden Merk-
maltragertyp diese allgemeinen Merkmale erneut zu definieren. Daher beziehen sich
allgemeine Merkmale auf Merkmalarten. Eine Merkmalart hat, anders als das allgemei-
ne Merkmal, keinen Bezug zu einem bestimmten Merkmaltragertyp und beinhaltet da-
her auch keine genaue Vorschrift zur konkreten Messung der Auspragung. Trotzdem
konnen durch eine Merkmalart bereits viele allgemeingiiltige Aussagen getroffen wer-

13

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

den, die dann fiir jedes zugeordnete allgemeine Merkmal gelten. Beispielsweise konnen
Randbedingungen fiir Messverfahren vorgegeben werden.

Merkmalarten beziehen sich wiederum auf genau einen Merkmalprototyp. Der Merk-
malprototyp hat tiberhaupt keinen Sachbezug, sondern legt nur fest, welche Art von
Grofie eine Merkmalart ist. Die Merkmalarten ,Hohe” und , Breite” haben also den ge-
meinsamen Merkmalprototyp , Lénge” im Sinne einer raumlichen Distanz.

Verebungsmechanismen

Vererbung im Sinne der Objektorientierung bezeichnet, allgemein ausgedriickt, die Bil-
dung einer hierarchischen Ordnung zwischen Objekten, in der sich die Eigenschaften ei-
nes hierarchisch tibergeordneten Objekts in allen direkt untergeordneten Objekten wie-
derfinden, das heifit an sie ,verebt” werden. Vererbte Eigenschaften werden ebenfalls
weitervererbt. Vererbung wird im Merkmalmodell fiir Merkmalarten und Merkmaltra-
gertypen angewendet. Prinzipiell ldsst er sich auch fiir Aussagearten verwenden (wie in
[54] beschrieben), zur Vereinfachung des Modells wird hier aber darauf verzichtet.

In beiden genannten Fallen werden siamtliche Informationen, die iiber den abstrak-
teren (das heifit in der Vererbungshierarchie hoheren) Merkmaltrégertyp beziehungs-
weise Merkmalart vorhanden sind, vererbt. Konkret sind das die allgemeinen Merkma-
le eines Merkmaltragertyps und die getroffenen Aussagen tiber eine Merkmalart. Im
Vergleich zur Vererbung, wie sie in objektorientieren Programmiersprachen verwendet
wird, gibt es jedoch einen wichtigen Unterschied: Viele Programmiersprachen erlauben
das sogenannte ,,Uberschreiben” von vererbten Eigenschaften, so dass beispielsweise ei-
ne vererbte Funktion unter derselben Bezeichnung inhaltlich anders implementiert wird.
Dieser Mechanismus des Uberschreibens ist im Merkmalmodell nicht vorhanden. Ver-
erbte Information steht unveranderlich fest.

Die Vererbungshierarchie fiir Merkmaltragertypen ist nicht immer eine Monohierar-
chie. Viele Merkmaltréger vereinen Merkmale aus mehreren Merkmaltragertypen, was
sich auf der Metamodellebene durch mehrfaches Erben eines Merkmaltrdgertyps von
anderen Merkmaltrégertypen ausdriicken ldsst. Beispielsweise kann ein Gerétetyp meh-
rere andere Gerédtetypen integrieren und deshalb auch deren allgemeine Merkmale er-
ben. Weil jedes der vererbten allgemeinen Merkmale eine eigene, unabhingige und un-
veranderliche Definition besitzt, fiihrt die Mehrfachvererbung fiir Merkmaltragertypen
zu keinerlei Konflikten. Abbildung 2.2 zeigt die Metaebene des Merkmalmodells mit
Merkmalart, Merkmalprototyp und Vererbungsbeziehungen.

2.1.2. Dienstbasierte Verwendung von Merkmalen

Eine wichtige Verwendung des Merkmalmodells liegt im Informationsaustausch zwi-
schen technischen Systemen. Daher ist neben dem Merkmalmodell auch die Kommuni-
kation iiber Merkmale ein Aspekt, zu dem es Vereinbarungen iiber Systemgrenzen hin-
weg geben muss. Ein wichtiges Grundkonzept fiir den Informationsaustausch zwischen
vernetzten Systemen ist der Dienst. In der Automatisierungstechnik werden Dienste als
wichtige zukiinftige Basistechnologie angesehen (s. z.B. [25]).

Das Kernmodell von Diensten ist in Abbildung 2.3 vereinfacht dargestellt. Es ist der
DIN SPEC 40912 [24] entnommen.

14

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.1. Merkmale

Merkmalprototyp

Merkmalart E I

g~

Merkmaltragertyp " Allgemeines Merkmal Aussageart

T T

Abbildung 2.2.: Um Vererbungsbeziehungen erweiterte Metaebene des Merkmalmodells,
dargestellt in der Notation eines UML-Klassendiagramms.

Grundsitzlich ist ein Dienst ein Organisationsschema durch das Leistungsbedarfe
und Leistungen (i.S.v. Dienstleistungen) zusammengefiihrt werden (Definition entspre-
chend [60]). Die Leistung wird von einem Dienstleister auf Anforderung eines Benut-
zers hin erbracht. Der eigentliche Dienst ist eine Sicht des Benutzers auf die Art der
Leistungserbringung und daher ein gedankliches Konstrukt ohne eine bestimmte phy-
sische Représentation.

Dem Benutzer von Diensten sind beliebige Diensttypen bekannt. Durch den Dienst-
typ kennt der Benutzer die Semantik eines konkreten Dienstes. Die Verwendung von
Diensten geschieht durch diskrete Dienstaufrufe und Ergebnisse der Aufrufe werden
gegebenenfalls als diskrete Ereignisse (wie zum Beispiel Nachrichten) an den Benut-
zer zuriickgegeben. Zu jedem Dienst gehort eine Menge von Operationen, die beim
Dienstaufruf angegeben werden. Die Ausfithrung dieser Operationen ist Aufgabe des
Dienstleisters, der fiir den Benutzer gegebenenfalls verborgen ist. Die Operationen miis-
sen jedoch folgende Eigenschaften aufweisen:

¢ Sie sind einzeln aufrufbar.

¢ Thre Funktionalitét ist jeweils einzeln definiert.

¢ Sie gehoren exklusiv zu einem Dienst.

* Sie werden atomar ausgefiihrt.

e Sie arbeiten alle mit derselben Menge von Objekten.

¢ Dienstaufrufe eines Benutzers werden in der Reihenfolge des Eintreffens bearbei-
tet.

Zusitzlich zum allgemein festgelegten Diensttyp kennt der Benutzer Zusicherungen
tiber die Qualitdtsmerkmale zu jedem ihm bekannten Dienst. Der Dienstleister garan-
tiert die Einhaltung dieser Zusicherungen.

15

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

* .. .
. arantiert . ’
> Diensttyp € realisiert g Dienstleister
v ¢
Zusicherung der . .
o & —< Dienst Operation
Qualitdtsmerkmale

*T *I\ 1.*%

Dienstaufruf

Benutzer

Abbildung 2.3.: Kernmodell ,Dienst” als UML-Klassendiagramm (vereinfacht).

Wesentliches Kennzeichen eines Dienstes ist, dass Dienstleister und Benutzer durch
den Dienst voneinander getrennt sind. Dadurch werden zwei wichtige Eigenschaften
erzeugt: Die Kapselung des Dienstleisters und die lose Kopplung zwischen Benutzer
und Dienstleister. Fiir die Verwendung zum Zugriff auf technische Merkmale sind die-
se Eigenschaften deshalb wichtig, weil die Lebenszyklen von Benutzer und Dienstlei-
ster vollkommen unabhéngig sind. Sowohl ein Automatisierungssystem als Benutzer als
auch ein Softwaresystem als Dienstleister konnen tiber Jahre, eventuell sogar tiber Jahr-
zehnte hinweg betrieben werden und innerhalb dieser Zeit mit vielen unterschiedlichen
Dienstleistern beziehungsweise Benutzern interagieren. Die lose Kopplung aneinander
und die Kapselung der inneren Implementierung sind daher wichtige Voraussetzungen
fiir einen unabhéngigen und wartungsarmen Betrieb.

Bezogen auf die Kommunikation technischer Merkmale, und unter Anwendung des
in Abschnitt 2.1.1 eingefithrten Merkmalmodells, soll dieses Dienstmodell nun konkre-
tisiert werden. Der Dienstleister ist in diesem Fall ein System, das den Zugriff auf Merk-
malinformation erlaubt. Benutzer sind technische Systeme oder Menschen, die diese In-
formation lesen, schreiben oder verdndern mochten. Damit sind der Diensttyp und die
notwendigen Operationen grundsétzlich festgelegt: Der Diensttyp muss in jedem Fall
das Merkmalmodell referenzieren, damit die Begriffe und Begriffsbeziehungen fiir die
Dienstverwendung festgelegt sind. Mit diesen Begriffen konnen dann die ausgetausch-
ten Informationen benannt werden. Die Operationen, die der Dienstleister implemen-
tiert, betreffen Daten entsprechend des Merkmalmodells. Sie konnen aber je nach An-
wendungsfall und Fahigkeiten des Dienstleisters mehr oder weniger umfangreich aus-
fallen. Dies wird im folgenden Abschnitt genauer behandelt.

Die Qualitatsmerkmale eines Dienstes spielen in dieser Betrachtung eine untergeord-
nete Rolle. Thr Umfang und Inhalt hangt nicht nur vom Dienstleister ab, sondern auch
von den Anforderungen, die Benutzer stellen (z.B. Verfiigbarkeit und Reaktionszeit).
Annahmen dartiber sollen an dieser Stelle jedoch nicht vorweggenommen werden.

16

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.1. Merkmale

Klassifikation von Diensten fiir Merkmalsysteme

Das Merkmalmodell beschreibt — wie in diesem Kapitel eingangs erwédhnt — ein systema-
tisches Vorgehen bei der Modellierung auf der Modell- und Metamodellebene. Die allge-
meine Dienstleistung, die damit verkniipft werden kann, ist daher das Erstellen, Veran-
dern und Auslesen von Modellen, die mit dem Merkmalmodell konform sind. Ein tech-
nisches System, wie beispielsweise ein Server, das diese Dienstleistung implementiert,
wird im Folgenden als , Merkmalsystem” bezeichnet. In der Softwaretechnik kommen
die genannten Grundoperationen fiir die Verwaltung von Daten héufig vor. Sie werden
oft abkiirzend mit den Buchstaben c (create), r (read), u (update) und d (delete) bezeich-
net. Die Operation zum Lesen kann dabei spezifisch fiir ein Objekt ausgefiihrt werden
oder alle Objekte einer hierarchischen Ebene, zum Beispiel alle Aussagen tiber ein Merk-
mal, zurtickgeben. Grundsitzlich kann ein Dienstleister alle diese Operationen fiir jedes
Objekt in einem Merkmalmodell anbieten und wird, sofern die Objektbeziehungen be-
rticksichtigt werden, in sich konsistente Merkmalmodelle zusichern kénnen. Ziel in der
Verwendung des Merkmalmodells ist aber nicht nur die interne Konsistenz, sondern
auch Konsistenz mit anderen merkmalverwaltenden Systemen. Wird beispielsweise ein
Produkt in einer Datenbank durch Aussagen tiber ein Merkmal x charakterisiert, dann
muss zur Vergleichbarkeit mit anderen Produkten, die ebenfalls tiber das Merkmal x ver-
fiigen, dieses Merkmal als allgemeines Merkmal an einer dritten (unabhingigen) Stelle
definiert sein. Selbstverstiandlich darf sich diese Definition auch nicht &ndern und muss
referenzierbar sein. Fiir die systemiibergreifende Konsistenz von Modellen sind einige
Operationen, wie das Verdndern oder Loschen eines allgemeinen Merkmals, daher pro-
blematisch. Allgemein ist die Frage, welche Operationen in welchen Arten von merk-
malverwaltenden Systemen verfiigbar sein miissen beziehungsweise dtirfen, eine Frage
des jeweiligen Zwecks des Systems. Fiir den Benutzer bildet das ein sinnvolles Kriterium
zur Klassifikation von Dienstleistern, beispielsweise solchen, die allgemeine Merkmale
definieren, solchen, die Merkmaltragertypen verwalten und solchen, die Informationen
tiber konkrete Merkmaltrager anbieten.

Eine dementsprechende Klassifikation von Dienstleistern wurde in [48] und [49] vor-
gestellt. Es werden fiinf Gruppen von Dienstleistern (M1, ..., M5) unterschieden:

® MI: Nur Lesezugriff
— Lesen aller Modelle und Modellinhalte

- Navigation zwischen Modellen

® M2: Operativer Betrieb in der Automatisierungstechnik

— Wie M1, zusitzlich Aktualisierung von Aussagewerten
¢ M3: Modellierung von Merkmaltragern

— Wie M2, zusitzlich:

- Erstellen, Verandern und Loschen von Merkmaltragern

— Erstellen, Verdndern und Loschen von Auspragungsaussagen
¢ M4: Modellierung von Merkmaltragertypen

— Erstellen von Merkmaltrégertypen

17

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

¢ M5: Normung und Standardisierung

- Erstellen von Merkmalarten, Aussagearten und Merkmalprototypen

Die verfligbaren Operationen werden in Tabelle 2.1 aufgelistet. Fiir den operativen Be-
trieb von Automatisierungssystemen sind solche Merkmalsysteme von Interesse, die zu
den Gruppen M1 und M2 gehoren. Beispielsweise konnen in einer Produktionsanla-
ge die Produkt- oder Gerdtedaten wéhrend der laufenden Produktion ausgelesen wer-
den, oder es konnen solche Daten, die erst wiahrend der Produktion bekannt werden, in
das System eingetragen werden, zum Beispiel zur Dokumentation des Produktlebenszy-
klus’. Die tibrigen Gruppen ermoglichen Vorgéange zur Modellierung und Metamodel-
lierung, die im operativen Betrieb eines Automatisierungssystems bereits abgeschlossen
sind.

Tabelle 2.1.: Je Zelle sind die verfligbaren Operationen fiir den Zugriff auf Merkmalmodelle
aufgelistet. M1 bis M5 bezieht sich auf die Liste auf Seite 17. c: Create/Erstellen, r: Read/Le-
sen, u: Update/Verandern, d: Delete/L&schen.

[ Modellelement\ Gruppe | M1 | M2 [ M3 [ M4 [ M5 |
Merkmalprototyp -/t/-/-| -/x/-/- | -/x/-/- | -/v/-/- | c/t/-/-
Merkmalart -/t/-/- | -/x/-/- | -/t/-/- | -/t/-/- | c/t/-/-
Aussageart -/x/-/-| -/ /)| /) e/ -
Merkmaltragertyp -/r/-/-| -/t/-/- | -/x/-/- | c/x/-/- | -/-/-/-
Merkmaltrager -/t/-/-|-/t/-/- | c/r/u/d | c/r/u/d | -/-/-/-
Allgemeines Merkmal -/t/-/-| -/x/-/- | -/t/u/- | c/v/u/- | -/-/-/-
Auspragungsaussage -/t/-/-| -/v/-/- | ¢/r/u/d | c/r/u/d | -/-/-/-
Aussagewert -/x/-/-|-/t/u/-| c/x/u/- | ¢/v/u/-| -/-/-/-

Hoherwertige Dienste

Die aufgefiihrten Dienste ermoglichen gemeinsam den vollstindigen Zugriff zum Le-
sen und Manipulieren der Information in einem Merkmalsystem. Ob diese Moglichkei-
ten auch in praktischer Hinsicht ausreichen, hangt vom Anwendungsfall ab. Nehmen
wir beispielsweise an, dass ein Benutzer Merkmaltrager mit bestimmten Eigenschaf-
ten innerhalb eines Merkmalsystems sucht — beispielsweise ein Produkt, fiir das ge-
wisse Mindestanforderungen an bestimmte Merkmale gelten. Der Benutzer kann nun
alle im Merkmalsystem hinterlegten Merkmaltréger abrufen und auf Ubereinstimmung
mit den Anforderungen priifen. Diese Vorgehensweise ist aber aus mehreren Griinden
nachteilig. Erstens tritt dieser Anwendungsfall vermutlich bei vielen Benutzern auf und
es ist daher effizienter die Implementierung des entsprechenden Algorithmus einmalig
im Merkmalsystem zu hinterlegen. Zweites ist die Kommunikationslast fiir Merkmal-
system, Benutzer und Kommunikationsmedium hoher, wenn die Suche klientenseitig
erfolgt. Drittens skaliert der Aufwand zur Ausfithrung des Algorithmus mit der Menge
zu durchsuchender Daten. Informationsverarbeitende Systeme, die als Benutzer auftre-
ten, konnen mit diesem Aufwand tiberfordert sein, weil ihre Rechenkapazitit in keinem
Zusammenhang mit der Informationsmenge im benutzten Merkmalsystem steht — im

18

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Gegensatz dazu kann das Merkmalsystem mit der Datenmenge skaliert werden. Letzt-
endlich ist die Implementierung hoherwertiger Dienste auf Seite des Merkmalsystems in
den meisten Féllen die bessere Alternative, so dass neben den genannten Basisdiensten
auch hoherwertige Dienste vom Merkmalsystem angeboten werden sollten. In Kapitel 5
werden solche Dienste definiert.

2.2. Informationssysteme

In diesem Abschnitt werden Grundlagen der Theorie von Informationssystemen erldu-
tert, genauer gesagt die Theorie relationaler Datenbanken. Diese Theorie ist eine um-
fangreiche, michtige, verbreitete und anerkannte formale fiir Datenbanken und Abfra-
gesprachen. Es gibt drei Griinde, diese formale Grundlage innerhalb dieser Arbeit zu
betrachten: Erstens schafft die formale Darstellung Klarheit. Zweitens lassen sich Er-
kenntnisse aus der vorhandenen Theorie tibertragen. Drittens basieren viele vorhandene
Informationssysteme an dieser Theorie, so dass eine Integration des in dieser Arbeit er-
stellten Konzepts vereinfacht wird. Es ist jedoch kein erklirtes Ziel dieser Arbeit, dass ei-
ne technische Umsetzung des Konzepts speziell fiir relationale Datenbanken angestrebt
wird.

Im folgenden Abschnitt werden die Grundbegriffe des relationalen Datenmodells ein-
gefiihrt. Die Inhalte beschranken sich dabei auf die innerhalb dieser Arbeit relevanten
Aspekte. Fiir eine vollstindige Einfiihrung wird auf entsprechende Fachliteratur wie
beispielsweise [11] verwiesen.

2.2.1. Grundbegriffe des relationalen Datenbankmodells

Das relationale Datenbankmodell wurde bereits 1970 von Codd eingefiihrt [9]. Grund-
legendes Element ist die Relation. Eine Relation ist eine Tabelle, in der zeilenweise Da-
tensitze eingetragen sind, das heifit je Zeile ein Datensatz. Eine Zeile wird dabei in der
Terminologie relationaler Datenbanken Tupel genannt. Die Spalten der Tabelle werden
als Attribute bezeichnet und beinhalten je Tupel entweder einen oder keinen Wert. Jedes
Attribut einer Relation ist eindeutig benannt. Damit Tupel innerhalb einer Datenbank
eindeutig identifiziert werden konnen, hat jede Relation einen eindeutigen Namen und
alle Tupel einer Relation sind paarweise mindestens durch den Wert eines bestimmten
Attributs (oder einer Attributkombination) verschieden. Dadurch kann in jeder Relation
ein sogenannter Primérschliissel bestimmt werden, das heifit ein oder mehrere Attribute,
durch deren Werte jedes Tupel eindeutig bestimmt werden kann.

Die Werte von Attributen konnen im allgemeinen Fall eine Zahl, eine Zeichenkette
oder ein boolescher Wahrheitswert sein, jedoch wird der mégliche Wertebereich in vielen
Anwendungen entsprechend der Semantik des Attributs eingeschrankt, beispielsweise
so, dass fiir das Attribut ,Datum” auch tatséchlich nur ein Datum als Wert eingetragen
werden kann.

Zur einheitlichen Darstellung von Relationen werden sogenannte Relationsschemas
verwendet. Diese beinhalten eine Menge von Attributnamen und die jeweils giiltigen
Wertebereiche. Beispielweise kann

BESTELLUNG = {Nummer : N, Kundennr : N, Produkt : ©*, Menge : R* }

19

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

als Relationsschema fiir eine Datenbank mit Bestellungen verwendet werden (X* sei
hier die Menge aller Zeichenketten). Fiir umfangreichere Datenbanken werden grafische
Sprachen wie Entity-Relationship-Diagramme [8] zur Definition von Relationsschemas
verwendet. In dieser Arbeit wird das aber nicht notwendig sein.

2.2.2. Relationale Algebra

Grundlage von heute {iblichen Abfragesprachen wie z.B. SQL ist die relationale Algebra,
die an dieser Stelle nur knapp und informell eingefiihrt werden soll. Fiir eine prazisere
und formale Definition wird auf entsprechende Fachliteratur wie [72] verwiesen.

Die relationale Algebra ist eine formale Sprache, die durch Operatoren Elemente des
relationalen Datenbankmodells, d.h. Mengen von Tupeln, miteinander verkniipft. Die
Ergebnisse solcher Operationen sind erneut Tupelmengen. Die Liste von Operatoren
der relationalen Algebra ist nicht endlich, auch wenn Codd urspriinglich acht Opera-
tionen definiert hatte [10]. Je nach Zielsetzung konnen zusétzliche Operationen definiert
werden. Relationale Datenbanken unterstiitzen jedoch in den meisten Féllen nur Grun-
doperationen und zusitzliche spezielle Operationen abseits der Algebra.

Die relationale Algebra ist fiir Informationssysteme in theoretischer und praktischer
Hinsicht von grofler Bedeutung. Durch die zugrunde liegenden Formalismen lassen sich
weitreichende Aussagen tiber das relationale Datenmodell treffen, beispielsweise tiber
die Berechenbarkeit von Datenabfragen. Aus praktischer Sicht bilden die Operationen
der relationalen Algebra eine Grundmenge von Funktionen, aus der eine Abfragespra-
che gebildet werden kann. Die folgenden Abschnitte stellen einige typische praktisch
vorkommende Operationen informell vor. Dies ist keine Beschreibung der vollstandi-
gen urspriinglichen relationalen Algebra, sondern eine praktisch motivierte Auswahl.

Auswahl Die Operation ,,Auswahl” gibt nur die Tupel einer Relation R zuriick, fiir die
ein Pradikat P erfiillt ist. Das tibliche Formelzeichen fiir Auswahl ist o. Somit ist

op(R)

die Schreibweise fiir die Auswahl-Operation. Das Pradikat P ist ein Boolescher Aus-
druck der sich auf ein oder mehrere Attributwerte der Tupel in R bezieht. Beispielsweise
wiirde

OBESTELLUNG.Produkt—xy23 ( Bestellungen)

alle Bestellungen des Produkts XY23 zuriickgeben (Bestellungen entspricht dem Schema
BESTELLUNG).

Projektion Die Projektion reduziert eine Relation R auf bestimmte Attribute ay, ..., a,
und gibt eine Relation zurtick, die nur 4y, ..., 4, enthélt. Die Schreibweise ist

7tay, ...an(R).

Soll beispielsweise in der oben genannten Auswahl aller Bestellungen des Produkts
XY23 nur die Kundennummer ausgegeben werden, dann kann das durch den Ausdruck

TCKundennummer (‘TBESTELLUNG.Pmdukt:XYB(Bes tellungen) )

geschehen.

20

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Kartesisches Produkt und Vereinigung Das kartesische Produkt entspricht der gleich-
namigen Operation der Mengenlehre. Das heifst aus zwei Relationen Ry und R, wird
eine neue Relation erstellt, in der jede mogliche Kombination von Tupeln aus R; und R,
jeweils ein neues Tupel bildet. Dies wird durch

Ri1 X Ry

notiert.
Die Vereinigung ist eine Operation, die als Folge von kartesischem Produkt und Aus-
wahl ausgedriickt werden kann. Sie kann daher als

R] Xp Ry := Up(Rl X Rz)

definiert werden, wobei > das Symbol fiir die Vereinigungsoperation ist und P ein zu
erfiillendes Pradikat. Das Pradikat entscheidet dartiber, welche Paare von Tupeln gebil-
det werden. Die Operationen 0 und x sind fiir P = true identisch. In der Praxis wird i<
oft zum Zusammenfiihren von zwei Relationen verwendet. Nehmen wir beispielsweise
an, dass ein Relationsschema KUNDE mit den Attributen Name und Kundennummer
existiert, und dass Kunden dem Schema KUNDE entspricht, dann kann durch

Kunden bgyNDE.Kundennr.—BESTELLUNG. Kundennr. Bestellungen

eine Relation mit allen Bestellungen inklusive Kundennamen gebildet werden.

Differenz Die Differenz R\ R, zweier Relation R; und R; enthilt genau die Tupel aus
R;, die nicht in R, vorhanden sind. Somit kann die Operation zum Entfernen von Du-
plikaten aus zwei Relationen verwendet werden. Voraussetzung ist, dass die Relationen
demselben Schema entsprechen.

Umbenennung Durch die Umbenennung pp,,(R) wird eine Relation erzeugt, in der
das Attribut 4 in b umbenannt ist. Somit lassen sich Mengenoperationen wie die Diffe-
renzbildung mithilfe von Umbenennungen auch dann durchfiihren, wenn die involvier-
ten Relationen nicht demselben Schema entsprechen.

2.2.3. Relationenkalkiil

Der Relationenkalkiil ist eine Form der Formulierung von Abfragen an relationale Da-
tenbanken, bei der das Ergebnis der Abfrage durch freie Variablen deklariert wird. Dazu
werden Mengenoperationen und Pradikatenlogik verwendet. Anders als bei der relatio-
nalen Algebra bestehen Ausdriicke des Relationenkalkiils also nicht aus einer Vorschrift
zur Berechnung des Ergebnisses, sondern es werden nur die Eigenschaften des Ergeb-
nisses definiert.

Es gibt zwei wesentliche Formen des Relationenkalkiils: Den sogenannten Tupel-
Kalkiil [10] und den Wertebereichs-Kalkiil [50]. In beiden Fillen wird eine Anfrage als
Menge von Variablenbelegungen angegeben, fiir die ein Pradikat erfiillt ist. Der Unter-
schied ist, dass diese Variablen im Tupel-Kalkiil Tupel als Werte besitzen, wahrend sie

21

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2. Grundlagen

im Wertebereich-Kalkiil Attributwerten entsprechen. Soll beispielsweise abgefragt wer-
den, fiir welche Kunden eine Bestellung des Produkts XY23 vorliegt, dann wiirde das
im Tupel-Kalkiil durch den Ausdruck

{k|3b : (b.Kundennr = k.Kundennr A b.Produkt = XY23)},
k € Kunden,b € Bestellungen,

formuliert werden. Im Wertebereich-Kalkiil lieflen sich stattdessen Name und Kunden-
nummer als Werte (nicht als ein Tupel) durch den Ausdruck

{n,kNr|3kNr3p : (Kunden(n,kNr)) A (Bestellungen(bNr,kNr, p,m) A p = XY23)}

deklarieren (die Wertebereiche der Variablen sind mit denen der jeweiligen Attribute
identisch).

2.2.4. Eigenschaften der relationalen Algebra

Aufgrund der formalen Basis ist es moglich, grundsétzliche theoretische Eigenschaften
relationaler Datenbanken zu zeigen. Dadurch ergeben sich weitreichende Konsequenzen
fiir den Entwurf und die Verwendung von Informationssystemen und Abfragesprachen.

Die Ergebnisse von Operationen der relationalen Algebra sind ebenfalls Relationen
und damit selbst wieder von Operationen verwendbar. Sie besitzt daher die theoretische
Eigenschaft der Abgeschlossenheit. In der praktischen Anwendung kénnen Operatio-
nen daher beliebig geschachtelt werden, ohne dass dabei Restriktionen beachtet werden
missen. Das tragt zu einer einfachen Anwendung bei und erhoht die Verwendungs-
moglichkeiten.

Es lasst sich formal zeigen, dass bestimmte Mengen von Operationen der relationalen
Algebra ,relational vollstindig” sind [10]. Das bedeutet, dass sich durch die Operatio-
nen einer relational vollstiandigen Menge und durch deren Verkniipfung jeder Ausdruck
der relationalen Algebra nachbilden ldsst. Die oben beschriebenen Operationen sind ein
Beispiel fiir eine relational vollstaindige Menge von Operationen. Die Eigenschaft der re-
lationalen Vollstandigkeit dient als ein Indikator fiir die Ausdruckstérke einer Abfrage-
sprache. Ist die Sprache relational vollstandig, dann ist die Ausdruckstarke mindestens
dquivalent zur relationalen Algebra.

Andererseits ist durch die relationale Vollstandigkeit nicht garantiert, dass sich jede
Abfrage, die moglicherweise von Interesse wire, auch formulieren ldsst. Ein bekanntes
Beispiel dafiir ist das Fehlen einer transitiven Hiille. Wenn zum Beispiel ein Lebenszy-
klus in einer Relation so dokumentiert wird, dass jedes Tupel einem einzelnen Teilpro-
zess des Lebenszyklus entspricht und jeweils auf den nachfolgenden Teilprozess ver-
weist, dann kann durch relationale Algebra keine Abfrage formuliert werden, die alle
Teilprozesse der Reihe nach auflistet. In einem solchen Fall miisste eine Datenbank zu-
satzliche Operationen anbieten, die nicht mit Mitteln der relationalen Algebra ausge-
driickt werden konnen.

Eine weitere praktisch wichtige Einschrankung ist das Fehlen von aggregierenden
Operationen. Zum Beispiel kann mit Mitteln der relationalen Algebra zwar festgestellt
werden, welche Tupel einer Relation eine Bedingung erfiillen, aber nicht wie viele. Das
Aufsummieren von Werten mehrerer Tupel ist ebenfalls nicht méglich. Das ist bei Daten-
abfragen in der Praxis eine recht starke Einschrankung, wenn man bedenkt, dass solche

22

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Aufgaben in vielen Féllen anfallen und dass die einzige Alternative ist, alle Tupel abzu-
fragen und dann die Aggregation beim Abfragenden selbst durchzufiihren. Dieses Vor-
gehen belastet die Kommunikation und den Klienten. Aus diesem Grund bieten Abfra-
gesprachen wie SQL {tiblicherweise auch Aggregationsoperationen an und beschranken
sich nicht auf die reine relationale Algebra.

Eine wichtige, formal beweisbare Eigenschaft ist, dass relationale Algebra und die un-
terschiedlichen Formen des Relationenkalkiils gleich méachtig sind [11]. Das bedeutet,
dass es fiir jede Formel in relationaler Algebra einen entsprechenden Ausdruck des Re-
lationenkalkiils gibt und umgekehrt. Je nach Anwendungsgebiet kann also die eine oder
die andere Darstellungsform verwendet werden, ohne dass dadurch Einschrankungen
entstehen.

23

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

3.1. Merkmal-Modelle in der Praxis

Im Umfeld industrieller Automation sind heute zahlreiche Normen und Standards vor-
handen, die eine einheitliche, maschinell lesbare Verwendung von Merkmalen zum Ziel
haben. Der Hauptanwendungsbereich liegt in der elektronisch abgewickelten Beschaf-
fung, beispielsweise in der automatisierten Abwicklung von Bestellprozessen fiir Ge-
rate. Die Normen und Standards behandeln meist die Meta-Metaebene, das heifit die
grundsitzliche Art der Abbildung von Merkmalinformation, wahrend die Metaebe-
ne, das heifst die Festlegung von allgemeinen Merkmalen von Merkmaltrégertypen, in
Klassifikations- und Katalogsystemen behandelt wird. Die Abbildung einzelner Merk-
maltrager wird weit weniger hédufig adressiert. Heeg [32] und Mertens [54] haben in
ihren Arbeiten diverse Quellen ausfiihrlich behandelt und zahlen insgesamt 18 Normen
und Standards, die das Thema ,,Merkmale” direkt adressieren, die jedoch auch zum
grofien Teil aufeinander aufbauen bzw. zwischenzeitlich harmonisiert wurden. Dadurch
hat sich die IEC 61360 [37], die mit weiteren Normenreihen wie ISO 10303 [42], ISO
13584 [43] und DIN 4002 [23] abgestimmt ist, als wichtige Grundlagennorm der Meta-
Metaebene etabliert.

Im Bereich der Klassifikations- und Katalogsysteme zeichnet sich, zumindest fiir
die Industrie im deutschsprachigen Raum, eine dhnliche Konsolidierung ab. Welt-
weit wurden mehrere Klassifikationssysteme entwickelt und mit Listen von (allgemei-
nen) Merkmalen und Merkmaltragertypen gefiillt. Besonders bedeutende und grofle
Klassifikations- und Katalogsysteme sind UNSPSC, eCl@ss und RosettaNet. Diese Syste-
me haben alle das erklarte Ziel, den elektronischen Austausch von Produktdaten durch
standardisierte Merkmale zu erleichtern. Sie wurden aber jeweils von unterschiedli-
chen Interessengruppen ins Leben gerufen und sind daher in unterschiedlichen Anwen-
dungsgebieten gebrauchlich. In einer Studie aus dem Jahr 2005 wird das auch in Hin-
blick auf die Inhalte der Katalogsysteme bestitigt, denn alle dort betrachteten Systeme
(UNSPSC, eCl@ss, RosettaNet und eOTD) sind in Bezug auf die Klassen von standardi-
sierten Merkmaltragertypen sehr unausgeglichen besetzt [33]. Welcher Standard fiir die
Industrie in Deutschland zum aktuellen Zeitpunkt den hochsten Stellenwert hat, lasst
sich durch belastbare Fakten schwer direkt belegen. Allerdings bescheinigt eine Studie
aus dem Jahr 2002 eCl@ass mit 32.4% den grofiten Anteil unter den genutzten Klassifika-
tionsstandards in der Elektroindustrie und -grolhandel [61]. Am zweih&dufigsten wurde
der ETIM-Standard genutzt (18.9%). Seitdem wurde eCl@ss mit ETIM sowie proficl@ss
und Prolist harmonisiert und soll mit der IEC 61987 [38] harmonisiert werden [31], so
dass eCl@ss vermutlich noch immer vorherrschend und mit anderen bedeutenden Stan-
dards kompatibel ist. Das Datenmodell von eCl@ass basiert auf der IEC 61360. Fiir die
Abbildung in Dateien sind jedoch unterschiedliche Dateiformate im Gebrauch. Geréte-
hersteller bieten beispielsweise oft tiber ihre Webseiten eCl@ss-konforme Kataloge im

24

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Format ,,BMEcat” an.

Ein weiteres wichtiges Anwendungsgebiet von technischen Merkmalen ist das En-
gineering automatisierter Systeme. Hier werden Merkmale insbesondere fiir die Be-
schreibung von einzelnen Geraten, beispielsweise Sensoren und Aktoren, verwendet,
um deren Konfiguration zu vereinfachen. Besonders bedeutend ist die , Electronic Devi-
ce Description Language” (EDDL) [41], durch die standardisierte Geradtebeschreibungen
ermoglicht werden. Diese Beschreibungssprache umfasst neben Merkmalen noch viele
weitere Aspekte von Geraten. Die Modellierung von Merkmalen selbst steht dabei im
Hintergrund und fallt daher verhéltnismé&fig einfach aus. Von wissenschaftlicher Seite
wurde das Potenzial einer konsequenten Verwendung von standardisierten Merkmalen
fir Anwendungen im Engineering identifiziert (s. z. B. [63, 67]), die Abldufe sind hier je-
doch komplex und Anwendungsmoglichkeiten zahlreich. Die Konsolidierung und Zu-
sammenfiithrung von Modellen ist daher weniger fortgeschritten als im Anwendungs-
bereich e-Commerce.

Fiir die praktische Anwendung von Merkmalmodellen ist die Ausgangslage insge-
samt gut: Es gibt heute auf der Metameta- und auch auf der Metaebene anerkannte
Normen bzw. Standards im allgemeineren Sinne, die als Grundlage zur Modellierung
von Merkmalen dienen und umfangreiche Kataloge von Merkmaltragertypen und all-
gemeinen Merkmalen zur Verfiigung stellen (eCl@ass enthilt nach eigenen Angaben
aktuell 40800 Merkmaltrégertypen [26]). Trotz dieser Situation und des grofien Potenzi-
als zur Vereinfachung von Geschéftsabldufen, Engineering und Anlagenbetrieb werden
automatisch verarbeitbare Merkmalmodelle jedoch weit weniger hédufig genutzt, als es
sinnvoll und moglich wire [31]. Insofern bedeutet die organisatorische und technische
Unterstiitzung der genannten Standards ldngst noch nicht, dass damit alle elektronisch
gespeicherten Merkmalinformationen zugreifbar und integriert sind. Eine breitere Un-
terstiitzung von standardisierten Formaten kann aber zukiinftig erwartet werden, wes-
halb die aktuell aussichtsreichsten Kandidaten IEC 61360 und eCl@ass in den folgenden
Abschnitten genauer betrachtet werden.

3.1.1. IEC 61360

Die Norm bzw. Normenreihe IEC 61360 tragt den deutschen Titel ,, Genormte Datenele-
menttypen mit Klassifikationsschema fiir elektrische Bauteile”. Im ersten Teil der Norm
wird ein grundlegendes Metameta-Modell fiir merkmalbasierte Modellierung festge-
legt, das dann im zweiten Teil auf das sogenannte EXPRESS-Datenmodell aus ISO 10303
[42] projiziert wird. Dadurch wird Kompatibilitdt mit der ISO 13584 [43] erreicht, die
ebenfalls EXPRESS verwendet. Im vierten Teil der Norm werden schliefllich typische
Merkmale elektrischer Bauteile definiert, die auch online im ,,Common Data Dictiona-
ry” eingesehen werden konnen [36]. An dieser Stelle ist aber hauptsichlich das im ersten
Teil der Norm definierte Merkmalmodell von Interesse.

Datenelementtypen

Der , Datenelementtyp” ist ein zentraler Begriff der IEC 61360. Er wird definiert als
,Informationseinheit, deren Identifikation, Beschreibung und Wertdarstellung festgelegt
sind” [19]. Sinngemaf entsprechend der Verwendung des Begriffs handelt es sich bei ei-
nem Datenelementtyp um ein allgemeines Merkmal entsprechend der Terminologie aus

25

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

Abschnitt 2.1. Dem Datenelementtyp kénnen zwar wie einem speziellen Merkmal Wer-
te zugeordnet werden, wegen des Anwendungsbereichs der Norm fiir Katalogsysteme
wird das aber als Aussage iiber alle Merkmaltrédger eines Typs verstanden.

Ein Datenelementtyp wird durch Attribute definiert, die sich auf ,Identifikation, Be-
schreibung, Werte von Datenelementtypen und Beziehungen zwischen Datenelement-
typen” beziehen [19]. Die Norm listet insgesamt 25 solcher Attribute auf, die aber nicht
alle obligatorisch sind. Einige davon haben einen direkten Bezug zu Elementen aus dem
Merkmalmodell entsprechend Abschnitt 2.1, andere sind eher speziell fiir die IEC 61360.
Hier sind nattirlich die erstgenannten Attribute von Interesse.

Eine gewisse Menge von Attributen wird in der Norm als ,identifizierende Attribute”
bezeichnet. Dies sind, vollstindig aufgelistet, Kennung, Versionsnummer, Anderungs—
nummer, bevorzugter Name, Synonym, Kurzbezeichnung, bevorzugtes Formelzeichen
und Synonym des Formelzeichens. Tatsachlich zur Identifikation eines Datenelement-
typs notwendig ist aber nur die Kennung, die auch bei wesentlichen Anderungen wie
Anderung der Definition neu vergeben wird. Bei Anderungen die fiir die Verwen-
dung des Datenelementtyps weniger schwerwiegend sind, wie Anderung des Formel-
zeichens, werden neue Versionsnummern oder Anderungsnummern vergeben. Insge-
samt ist durch die Kombination aus Kennung, Versionsnummer und Anderungsnum-
mer also eine eindeutige Identifikation eines bestimmten Datenelementtyps in einem
bestimmten Zustand moglich. Die einzige Ausnahme bilden Kennungen, die mit dem
Zeichen ,, X” beginnen, weil diese nicht zentral vergeben werden und fiir lokal gebrauch-
te Datenelementtypen zur Verfiigung stehen, z.B. fiir innerbetriebliche Zwecke.

Durch ,semantische Attribute” wird die Bedeutung eines Datenelementtyps erklért.
Das beinhaltet eine textuelle Definition, aber auch die Moglichkeit Formeln und Bilder
einzuschliefien.

,Wertattribute” ordnen einem Datenelementtyp Werte zu. Der Begriff ,Wert” wird
in der Norm nicht néher spezifiziert, entsprechend seiner Verwendung schliefst er aber
auch komplexe Werte ein, die sich aus mehreren Einzelwerten zusammensetzen (bei-
spielsweise Vektoren). Weil Datenelementtypen allgemeinen Merkmalen entsprechen,
kann durch Wertattribute nicht nur ein einzelner Wert, sondern eine Menge méglicher
Werte hinterlegt werden. Mit dem Wert einher gehen Informationen zu dessen tech-
nischer und logischer Interpretation wie Datentyp, Codierung und Mafieinheit. Eine
nennenswerte Variante des komplexen Wertes ist der ,Niveauwert”, der fiir reelle und
ganzzahlige Werte den Mindestwert, Nennwert, typischen Wert und Hochstwert in ei-
nem vierstelligen Vektor angibt. Mertens schreibt dazu [54]: ,Hier versucht die Norm,
in Ergédnzung zur reinen Merkmalauspragung noch einen Teil der Semantik dieser Aus-
pragung explizit abzubilden.” Entsprechend dem Modell aus Abschnitt 2.1 handelt es
sich in dem Fall also um Auspragungsaussagen, nicht nur um Werte. Ebenfalls erw&h-
nenswert ist, dass entsprechend der Norm Wertattribute eine weitergehende Bedeutung
fiir die Klassifikation des modellierten Objekts haben konnen (in dem Sinne, dass be-
stimmte Werte die Zugehorigkeit zu einer bestimmten Klasse bedingen), und dass es
Abhéngigkeiten zwischen Werten verschiedener Datenelementtypen geben kann.

Eine Zuordnung von Datenelementtypen zu Klassen von Datenelementtypen ist
durch ,relationale Attribute” gegeben. Diese verweisen auf genau eine Klasse. Gege-
benenfalls werden durch relationale Attribute auch wertméfiige Abhéangigkeiten zu an-
deren Datenelementtypen ausgedriickt.

26

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Klassen von Datenelementtypen

Die Spezifikation von Klassen von Datenelementtypen wird von der IEC 61360 deutlich
weniger genau behandelt als die der Datenelementtypen selbst. Im Wesentlichen wird
nur ausgesagt, dass durch die Bildung von Klassen die Handhabung grofierer Mengen
von Datenelementtypen vereinfacht werden soll. Dazu konnen baumférmige Hierarchi-
en von Klassen gebildet werden, die sich auf quantitative und nicht-quantitative (z.B.
Materialarten oder Bauformen) Datenelementtypen beziehen. Zu beiden Fillen gibt die
Norm , Hauptklassen” vor, von denen sich weitere Klassen ableiten lassen. Wie die Spe-
zifikation einer Klasse genau aussieht, wird aber nicht beschrieben.

Bauteilklassen

Wegen des Anwendungsbereichs der IEC 61360 wird dort die Spezifikation von Klas-
sen elektrischer Bauteile festgelegt, prinzipiell konnen die Merkmaltrdger aber auch
andere Objekte sein. Den Bauteilklassen werden Datenelementtypen zugeordnet. Zur
Strukturierung wird eine baumférmige Hierarchie von Bauteilklassen verwendet, in der
ein Vererbungsmechanismus fiir die Datenelementtypen von Klassen gilt, d.h. Daten-
elementtypen einer Klasse sind auch in hierarchisch untergeordneten Klassen enthalten.
Die Kriterien zur Identifikation von Klassen werden nicht fest vorgegeben.

Bauteilklassen werden, wie Datenelementtypen, durch Attribute spezifiziert. In die-
sem Fall sind das identifizierende und semantische Attribute, die in Bedeutung und Ver-
wendung den entsprechenden Attributen fiir Datenelementtypen sehr dhnlich sind. Be-
merkenswerterweise werden die Datenelementtypen, die einer Bauteilklasse zugeord-
net werden, nicht durch Attribute festgelegt. Uberhaupt wird der Mechanismus dieser
Zuordnung nicht explizit beschrieben. Die Darstellung in Diagrammen in Texten der
Norm legt aber nahe, dass die Zuordnung eindeutig ist und dass anhand einer gegebe-
nen Bauteilklasse die zugeordneten Datenelementtypen erkennbar sind.

Jede Bauteilklasse besitzt mindestens einen , klassifizierenden Datenelementtyp”. Die-
ser Datenelementtyp unterscheidet die Bauteilklasse von ihrer hierarchisch iibergeord-
neten Klasse, entweder durch eine Einschrankung der moglichen Werte, oder dadurch,
dass der Datenelementtyp in der iibergeordneten Klasse nicht vorkommt.

3.1.2. eCl@ss

eCl@ss ist ein Klassifikations- und Katalogsystem zur Unterstiitzung der technischen
Materialwirtschaft in der chemischen Industrie, mit dessen Entwicklung 1997 begonnen
wurde [27]. Das primére Ziel von Klassifikations- und Katalogsystemen ist die Definition
von Klassen von Merkmaltrdgern und von deren Merkmalen, so dass diese Merkmaltra-
ger (z.B. Gerite) in standardisiert aufgebauten Katalogen beschrieben werden kénnen.
Eine Festlegung der Art und Weise, wie die einzelnen Merkmaltrager beschrieben wer-
den, ist dagegen kein Primérziel, weshalb eCl@ss in dieser Hinsicht flexibel ist und bei-
spielsweise auf die Strukturen der IEC 61360 abgebildet werden kann.

27

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

Hintergrund

Zuniéchst war eCl@ss ein Projekt von acht Chemieunternehmen, die Beschaffung, La-
gerung, Reparatur, Dokumentation und Endverwertung von Geriten und Ersatzteilen
unterstiitzen und vereinfachen wollten [27]. Im Jahre 2000 wurde dann der eCl@ss e.V.
gegriindet, der das Projekt weiter betrieb und ausbaute und nach eigenen Angaben im
Jahr 2012 bereits ca. 120 Organisationen als Mitglieder zahlte [26]. Durch die Koopera-
tion mit anderen Katalogsystemen wurde das Anwendungsspektrum von eCl@ss auch
auf Bereiche tiber die chemische Industrie hinaus erweitert. Aus Sicht der Prozessin-
dustrie ist insbesondere die 2013 vorgenommene Eingliederung von Prolist bemerkens-
wert. Prolist bietet wie eCl@ss eine Klassifikation von Geriten, Listen ihrer Merkmale
und dokumentierte Prozesse fiir deren Erstellung und Verwendung. Besondere Bedeu-
tung hat Prolist, weil es durch die NAMUR-Empfehlung 100 [58] breiten Riickhalt der
Anwender von Automatisierungstechnik in der Prozessindustrie hat.

Es werden regelméflig neue Versionen von eCl@ss veroffentlicht; aktuell ist Version
9.0. Die Versionen unterscheiden sich einerseits in den enthaltenen Merkmaltragern, an-
dererseits auch in dem verwendeten Metamodell in Bezug auf die Modellierung von
Merkmalen (z.B. wird in Version 8.0 gegentiber 7.1 kein Formelzeichen mehr angege-
ben). Die Beschreibung bezieht sich hier auf Version 9.0.

Praxis

Die Geschiftsprozesse, in denen eCl@ss in der Prozessindustrie eingesetzt werden soll,
werden in [31] beschrieben. Bild 3.1 gibt diese Prozesse schematisch wieder.

Der erste Schritt ist die Planung einer Produktionsanlage durch den Anlagenbetrei-
ber oder einen beauftragten Dienstleister. Dieser spezifiziert Anforderungen an Geréte
bzw. allgemein an das benétigte Material und schickt eine entsprechende Anfrage an
Hersteller oder Lieferanten. Diese antworten darauf ggf. mit passenden Angeboten, so
dass eine Bestellung und letztendlich auch Lieferung und Montage erfolgen konnen. Die
Daten des gelieferten Materials werden in die Dokumentation der Anlage tibernommen.

Spéter im Lebenszyklus der Anlage kann dann die Notwendigkeit entstehen, ein Ge-
rat oder sonstiges Bauteil auszutauschen oder die Anlage zu erweitern. In diesem Fall
wird seitens des Betreibers erneut das benétigte Material spezifiziert, wobei die vorhan-
dene Dokumentation ein hilfreicher Ausgangspunkt ist. Zusitzlich zu den Anforderun-
gen konnen so auch Informationen tiber das bisher eingesetzte Material an Hersteller
oder Lieferant tibermittelt werden. Dieser kann erneut ein Angebot formulieren und
letztendlich, nach erfolgreicher Lieferung und Einbau, wird die bestehende Dokumen-
tation aktualisiert.

Der geschilderte Ablauf kann auf unterschiedliche Art realisiert werden. Sogar ein
manuelles Vorgehen ohne die Unterstiitzung durch elektronische Datenverarbeitung ist
moglich. Typischerweise sind heute aber auf Seite des Anlagenbetreibers und auf Seite
von Herstellern und Lieferanten entsprechende IT-Systeme vorhanden, so dass die Ge-
schiftsprozesse innerhalb derselben Firma weitgehend automatisiert und effizient sind
[31]. Der Datenaustausch zwischen den Firmen ist aber nur wenig automatisiert und
von auflen eingetroffene Daten miissen hdufig manuell integriert werden. An dieser
Stelle setzt eCl@ss an. Einerseits wird durch die standardisierte Klassifikation und die
standardisierten Listen von Merkmalen eine Automatisierung dieser Prozesse logisch

28

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Lieferung Montage
R Material & R Material &
Planung, Bau und Anderung

Material- g von Anlagen Funktions- und ‘o 5
spezifikation Materialspezifikatio g
[T~
5
c Beschaffung Anlagenplanung 2
T 9 JTIE)
-8 © c 0
L o S w
' £ s
I = S a=
Beschaffung Instandhaltung 3 e
&2
Material- /. Material- A *Vrg,
g . g . r— c
spezifikation Betrieb und Instandhaltung spezifikation z =

Material & von Anlagen Material &

/| Dokumentation / /| Dokumentation
Lieferung Einbau

Abbildung 3.1.: Schemetische Darstellung der Geschéftsprozesse im Anwendungsbereich
von eCl@ss nach [31].

moglich. Andererseits besteht durch die Abbildbarkeit auf Datenstrukturen (etwa der
IEC 61360) die Moglichkeit der standardisierten technischen Reprasentation, z.B. durch
XML-Dateien.

In Tabelle 3.1 wird gezeigt, welche Gewerke zu welchem Zeitpunkt eCl@ss einsetzen
konnen. Diese Darstellung stellt die Anwendungsbereiche im Sinne der Zielsetzung von
eCl@ss dar. Dartiber hinaus ist aber auch eine Verwendung im Engineering der Anlage
und in deren Betrieb moglich und erwtiinscht. In der NE 100 [58], deren Anwendungs-
ziele kongruent mit eCl@ss sind, heifit es dazu: ,, Die NE 100 ermoglicht dartiber hinaus,
Geridtedaten als Merkmalleisten in Prozessleitsystemen oder Feldgerédten zu speichern.”
In [2] wird auch auf die gewinnbringende Verwendung von eCl@ass Daten bei Kombi-
nation mit Mitteln der Prozessbeschreibung wie dem Phasenmodell der Produktion [3]
hingewiesen.

Struktur

Die Klassifikation in eCl@ss geschieht durch eine vierstufige Hierarchie. Jede Hierarchie-
ebene hat eine eindeutige Kennnummer (, kodierter Name”), die mit der Nummer der
tibergeordneten Ebene beginnt, so dass beispielsweise alle Eintrdge unterhalb des Sach-
gebiets ,Maschine, Apparat” mit der Nummer 36 beginnen. Der Aufbau der Hierarchie
wird in Tabelle 3.2 gezeigt. Die Bildung einer Klasse und deren Zuordnung zu einer
iibergeordneten Klasse der Hierarchie geschieht durch die Betrachtung technischer und
kaufménnischer Aspekte [27].

29

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

Tabelle 3.1.: Anwendungsfalle von eCl@ss nach Lebenszyklusphasen einer Anlage und be-
teiligten Partnern nach [31].
Beteiligte Partner

Lebenszyklusphase| Planer Betreiber/ | Hersteller/ | Betreiber/ | Hersteller/

Einkauf Vertrieb Instand- After Sales
haltung Service

Planung: Anfrage . .

und Angebot

Planung;: ° . .

Bestellung

Planung;: ° .

Abschluss und

Inbetriebnahme

After Sales ° °

Service

Instandhaltung: . .

Ersatzteilanfrage

Instandhaltung: . . .

Ersatzteilbestellung

Planung: ° °

Erweiterung

Tabelle 3.2.: Die vier Klassifikationsebenen von eCl@ss mit je einem Beispiel.
[ Ebene [ Name der Ebene | Bsp. kodierter Name [ Bsp. bevorzugter Name

1 Sachgebiet 36-00-00-00 Maschine, Apparat

2 Hauptgruppe 36-41-00-00 Pumpe

3 Gruppe 36-41-01-00 Kreiselpumpe

4 Untergruppe 36-41-01-08 Kreiselpumpe mit Wellendichtung

Jede Untergruppe beinhaltet eine sogenannte ,Merkmalleiste”, die praktisch eine
Menge von allgemeinen Merkmalen ist. Dabei unterscheidet eCl@ss zwischen ,Basis-
merkmalleisten” und , Standardmerkmalleisten”. Die Basismerkmalleiste ist stets gleich
und enthilt daher nur allgemeine Merkmale, die immer anwendbar sind wie , Herstel-
lername” und , Artikelbezeichnung”. Sie wird dann verwendet, wenn entweder noch
keine klassenspezifischen Merkmale festgelegt wurden oder wenn das nicht notwendig
ist. Standardmerkmalleisten sind dagegen klassenspezifisch zusammengestellte allge-
meine Merkmale.

Jedes Merkmal in einer Merkmalleiste wird durch einen eindeutigen Code identifi-
ziert. Die Spezifikation von allgemeinen Merkmalen ist ebenfalls in eCl@ss enthalten
und wird durch die Attribute ,,Abk.”, ,,Datenformat”, , Einheit”, , Definition” und , Wer-
te” durchgefiihrt. Unter dem Attribut ,,Werte” kann eine Liste von erlaubten Auspra-
gungen fiir ein Merkmal angegeben werden, wobei es hier auch vordefinierte und re-
ferenzierbare Auspriagungen gibt. Beispielsweise sind mogliche Bauformen von Kupp-
lungen als Auspragungen definiert. Als mogliche Datenformate ist die folgende Li-

30

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.2. Abfragesprachen

ste vorgegeben: Boolean, String, String Translatable, Integer Count, Integer Measure,
Integer Currency, Real Count, Real Measure, Real Currency, Rational, Rational Measure,
Time, Timestamp, Date, Url.

3.2. Abfragesprachen

Fiir die Abfragen an Informationssysteme gibt es unterschiedliche Typen von Abfrage-
sprachen. Diese richten sich nach der Struktur der fiir Abfragen verfiigbaren Informati-
on, den Fahigkeiten des Informationssystems und der Anforderungen der Klienten. Im
einfachsten Fall gibt es nur Operationen zum gezielten Auslesen von Information und
ggf. auch zur Erstellung und Verdnderung von Informationsobjekten. Im Bereich der
Automatisierungstechnik gibt es einige Kommunikationsprotokolle entsprechend die-
sem Schema, beispielsweise OPC UA oder ACPLT/KS. Komplexe Informationssysteme
wie Datenbanken unterstiitzen dagegen komplexere Abfragesprachen, z.B. auf Basis re-
lationaler Algebra (siehe Abschnitt 2.2.2).

3.2.1. Abfragesprachen fiir relationale Datenbanken

Die theoretische Grundlage der Abfragesprachen fiir relationale Datenbanken ist die re-
lationale Algebra. Eine frithe Umsetzung als praktisch anwendbare Abfragesprache war
die Sprache SEQUEL [7], die spater in SQL (oft interpretiert als Abkiirzung fiir ,Struc-
tured Query Language”) umbenannt wurde. SQL gilt heute als die Standardsprache fiir
relationale Datenbanken [11] und ist normiert [45]. Unterschiedliche Implementierun-
gen enthalten trotzdem oft zusatzliche Operationen, so dass auch von SQL-Dialekten
gesprochen wird.

SQL implementiert viele der Operationen der relationalen Algebra direkt als einzelne
Operation und ist relational vollstandig. Die Sprache ist textbasiert, beispielsweise ist der
Ausdruck ,SELECT X FROM Y WHERE z“ ein haufiges Konstrukt, durch das aus der
Relation Y die Attribute X derjenigen Tupel zuriickgegeben werden, fiir die Bedingung
z gilt. Es handelt sich also um die Verkettung einer Selektions- und Projektionsoperation.
Komplexe Ausdriicke konnen durch Klammerung gebildet werden.

Wie in Abschnitt 2.2.2 diskutiert, deckt die relationale Algebra einige praktisch beno-
tigte Anwendungsfélle nicht ab. SQL beinhaltet daher weitere Operationen, die diese
Liicken grofitenteils ausfiillen. Beispielsweise sind Aggregationsoperationen wie OR-
DER BY oder COUNT verfiigbar.

3.2.2. Abfragesprachen fiir graphbasierte Datenbanken

Neben den vorherrschenden relationalen Datenbanken gibt es heute eine weitere ver-
breitete Art von Datenbanken, ndmlich graphbasierte Datenbanken. In ihnen werden
Daten nicht durch Tabellen, sondern durch ein Netz von Knoten und Kanten im Sinne
eines gerichteten Graphs aus der Mathematik bzw. Informatik verwaltet. An die Knoten
und Kanten kénnen Attribute und Werte angehangt werden; aulerdem sind die Kanten
typisiert. Ublicherweise reprasentieren die Knoten modellierte Objekte (entsprechend
wie Tupel im relationalen Modell) und die Kanten Beziehungen zwischen den Objekten.
Anders als bei relationalen Datenbanken hat sich kein Standard fiir Abfragesprachen

31

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

herausgebildet. Die vorhandenen Sprachen haben lediglich die Graphentheorie als ge-
meinsame Grundlage.

Abhiéngig von der Struktur der Daten ist die Geschwindigkeit in der Verarbeitung
von Abfragen teilweise deutlich groSer als bei relationalen Datenbanken [76]. Diese Be-
obachtung trifft insbesondere dann zu, wenn die interne Verkniipfung von Daten durch
Kanten des Graphen genutzt werden kann. Andererseits arbeiten relationale Datenban-
ken auf grolen, homogen strukturierten Datensétzen prinzipbedingt effizienter.

3.2.3. Doménenspezifische Abfragesprachen

SQL sowie die unterschiedlichen Sprachen fiir graphbasierte Datenbanken sind als all-
gemeine Abfragesprache konzipiert. Es gibt daher keine Annahmen tiber die Semantik
der abgefragten Daten. Die Konstruktion von speziellen Abfragesprachen mit gewis-
sen Annahmen tiber die Semantik ist in der Literatur und Praxis eine Ausnahme, einige
Beispiele sind jedoch vorhanden. Ublicherweise wird dabei die relationale Algebra als
Grundlage verwendet, um spezielle Operatoren mit spezieller Semantik zu definieren.
Beispielsweise existiert eine genormte Erweiterung von SQL, die den Umgang mit spe-
ziellen Daten wie Bildern oder Text vereinfachen soll [44]. Eine formale Abfragesprache
fiir Dokumentinhalte wird von Mhlanga et al. vorgeschlagen [56]. Sparr présentiert eine
Abfragesprache fiir relationale Datenbanken mit Erweiterungen speziell fiir den Anwen-
dungsbereich CAD [68]. Allgemein gibt es im Anwendungsbereich der Automatisierung
aber eine viel starkere Tendenz hin zu standardisierten Dateiformaten fiir den Informati-
onsaustausch, wahrend spezielle Abfragesprachen kaum diskutiert werden. Vor diesem
Hintergrund ist es sehr interessant zu sehen, dass Barth und Fay die Abfragesprache
LINQ, eine SQL-dhnliche Abfragesprache innerhalb der Programmiersprache C# , zur
Abfrage von Information aus Engineering-Dateien vorschlagen [5]. Die Autoren stel-
len zwar keine spezielle Abfragesprache fiir Engineering-Daten vor, betonen aber die
moglichen Vereinfachungen und Geschwindigkeitszuwachse bei Verwendung gezielter
Abfragen gegentiber der tiblichen Verarbeitung gesamter Dateien.

3.3. Software-Systeme im Umfeld der industriellen
Produktion

In der industriellen Produktion werden zahlreiche Software-Systeme verwendet, die In-
formationen tiber technische Merkmale nutzen und verwalten. Dieser Abschnitt gibt
einen Uberblick iiber die wichtigsten dieser Systeme. Ziel ist es, solche Systeme zu iden-
tifizieren, in denen Information zu Merkmalen vorliegt, die fiir ein Automatisierungssy-
stem operativ nutzbar ist. Die technische Realisierung dieser Systeme ist dabei nachran-
gig.

Generell gibt es im Umfeld der industriellen Produktion keine einheitliche Standard-
software. Stattdessen sind der Umfang und die Art der einzelnen Software von Betrieb
zu Betrieb unterschiedlich. Selbst wenn das gleiche Software-System in der gleichen
Version in zwei Betrieben verwendet wird, dann ist die individuelle Konfiguration, bei-
spielsweise durch die Installation von zusitzlichen Erweiterungen, praktisch immer ver-
schieden. Insofern wére es unsinning, an dieser Stelle Aussagen tiber konkrete Software-

32

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.3. Software-Systeme im Umfeld der industriellen Produktion

Systeme zu treffen.

Eine weit verbreitete Sicht auf die produktionsrelevanten Software- und Automati-
sierungssysteme ist die Einteilung in Ebenen, die jeweils einem Aufgabenbereich ent-
sprechen (,Automatisierungspyramide”, siehe Abbildung 5.6, Seite 78). Dieses Modell
umfasst zumindest die Prozessleitebene (unten), die Produktionsleitebene und die Un-
ternehmensleitebene (oben) [70]. Zwischen Prozessleitebene und Produktionsleitebene
wird z.T. auch eine , Betriebsleitebene” genannte Zwischenebene aufgezahlt und je nach
Autor und Zielsetzung kann die Ebene der Feldgerdte und auch der Prozess selbst als
Ebene enthalten sein.

Die Beziehung zwischen den Ebenen der Automatisierungspyramide sah urspriing-
lich so aus, dass von oben nach unten Vorgaben fiir die Produktion gemacht werden und
von unten nach oben Daten aus der Produktion weitergereicht und verdichtet werden
[70]. Durch die Moglichkeiten netzwerkbasierter Kommunikation, in der nicht nur fest
konfigurierte Punkt-zu-Punkt Kommunikation moglich ist, und durch darauf aufbau-
ende Diensttechnologien, zeichnet sich aber schon seit einigen Jahren eine Flexibilisie-
rung der Informationsfliisse ab (siehe z.B. [51], [65]). Daher behélt die Zuteilung eines
Software-Systems zu einer der Ebenen anhand seiner Aufgabe zwar ihre Giiltigkeit, die
Zuteilung begrenzt aber nicht die moglichen Informationsfliisse. Im Kontext dieser Ar-
beit bedeutet das, dass fiir die Relevanz eines Software-Systems nicht die hierarchische
Einordnung, sondern dessen Aufgabe und damit die genutzte Information entscheidend
sind.

Die Aufgaben der Software-Systeme setzen sich aus einigen Kernaufgaben zu-
sammen, die in der industriellen Produktion grundsitzlich anfallen. In der ANSI-
Norm ISA-95 bzw. deren Pendant IEC 62264 [39] mit dem Titel ,Integration von
Unternehmensfithrungs- und Leitsystemen” wird ein wesentlicher Teil dieser Aufgaben
ausfiihrlich aufgelistet und erldutert. Eine Auswahl daraus ist (im Wortlaut der Norm
[39]):

¢ Unternehmensleitebene

- ,Erfassung und Pflege des Rohstoff- und Ersatzteilverbrauchs sowie des ver-
fligbaren Bestands und Bereitstellung von Daten fiir den Einkauf von Roh-
stoffen und Ersatzteilen;”

- ,Erfassung und Pflege aller Waren in Bestandsdateien fiir Prozess und Pro-
duktion;”

- ,Erfassung und Pflege von Aufzeichnungen iiber die Nutzung der Maschi-
nen und Ausriistungen und der Laufzeithistorie, die fiir die vorbeugende und
vorausschauende Instandhaltungsplanung erforderlich sind;”

- ,Planung einer optimalen vorbeugenden Instandhaltung und Erneuerung der
Ausriistung in Verbindung mit dem grundlegenden Produktionsplan fiir die
Anlage;”

- ,Bestimmung der optimalen Bestinde von Rohstoffen, Energien, Ersatzteilen
und Waren im Prozess an jedem Lagerort [...];”

¢ Produktionsleitebene

33

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

- ,Erfassung und Pflege von Daten tiber Produktion, Bestand, Personal, Roh-
stoffe, Produktqualitdt, Ersatzteile und Energieverbrauch im Betriebskom-
plex;”

- ,Datenerfassung und Offline-Datenanalyse gemidfs Vorgabe durch
Engineering-Funktionen; dies kann eine statistische Qualitdtsanalyse und
zugehorige Steuerungsfunktionen einschliefSen;”

- ,Verwaltung der Instandhaltung der Produktionsausriistung;”
- ,Verwaltung der Labor- und Qualitatspriifungen an Materialien;”

- ,Verwaltung von Transport und Lagerung der Materialien; [...]”

Neben diesen Aufgaben werden zahlreiche weitere genannt, die aber keine Informa-
tion enthalten, die fiir ein Automatisierungssystem in der Produktion sinnvoll nutzbar
wire (beispielsweise Personalplanung).

Kommerzielle Software-Systeme zur Bewéltigung der genannten Aufgaben sind ver-
fiigbar, allerdings besteht nicht immer eine eins-zu-eins Beziehung zwischen Aufgabe
und Software-System. Oft ist es moglich, mit einem System mehrere Aufgaben abzu-
decken. Auflerdem ist das Ziel der ISA-95 lediglich die Aufgaben, Vorginge und Be-
griffe der Software-Systeme festzulegen. Die Implementierung der technischen Schnitt-
stellen und der Datenreprasentation wird nicht spezifiziert und ist daher aus Sicht der
Norm zunéchst proprietar. Dadurch klédrt die Norm zwar, welche Information in einem
Software-System vorliegt, aber nicht, wie darauf zugegriffen werden kann. Fiir die Ver-
einfachung und Vereinheitlichung der Integration von ISA-95-konformer Software gibt
es daher separate Ansitze. Die Organisation MESA (Manufacturing Enterprise Solutions
Association) hat mit der ,,Business To Manufacturing Markup Language (B2MML)” ein
XML-Datenformat veroffentlicht, das den Austausch von Information entsprechend den
ISA-95-Informationsmodellen ermoglicht [53]. Weiterhin existiert eine Spezifikation der
OPC Foundation fiir die Abbildung der ISA-95-Modelle im Kommunikationsstandard
OPC UA [15, 59]. Beide Ansitze zeigen, dass die Modelle der ISA-95 grofle Bedeutung
haben und dass zumindest seitens der Softwareanwender starkes Interesse an einer Ver-
einfachung der Datenanbindung vorliegt. Letztendlich liegt es aber bei den Software-
herstellern, diese Standards zu unterstiitzen. Aktuell gibt es daher in der Praxis keine
einheitlichen Datenschnittstellen der Software-Systeme.

Die folgenden Abschnitte geben einen Uberblick tiber die wichtigsten und am weite-
sten verbreiteten Arten von Software-Systemen im Umfeld der industriellen Produktion.

3.3.1. Manufacturing Execution Systeme

Manufacturing Execution Systeme (MES) umfassen oft mehrere der genannten Aufga-
ben in der Produktions- und Betriebsleitebene. Im Arbeitsblatt 94 der NAMUR [57] wird
dazu festgestellt, dass ,MES” oft auch als Bezeichnung der Betriebsleitebene verwendet
wird, obwohl MES-Softwarepakete nicht die gesamte Funktionalitidt der Betriebsleitebe-
ne abdecken. Daher ,ist der Term MES mit Vorsicht zu benutzen bzw. in seiner jeweils
gedachten Funktionalitit zu spezifizieren.” [57] Auch die VDI-Richtlinie 5600 zum The-
ma MES [74] enthilt keine abgeschlossene Beschreibung der Aufgaben, es werden aber
in Ubereinstimmung mit dem Arbeitsblatt der NAMUR die folgenden Aufgaben ge-
nannt:

34

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.3. Software-Systeme im Umfeld der industriellen Produktion

* Produktionsfeinplanung
* Materialflusssteuerung
¢ Qualitdtsmanagement

¢ Bestandsfithrung

¢ Produktionsdokumentation

Durch die Erfiillung dieser Aufgaben sind in MES viele und niitzliche Informationen
zu Merkmalen vorhanden. Beispiele sind: Belegungszustinde von Produktionsressour-
cen, Merkmale von Produktionsauftragen, Materialbestande und -lagerorte, statistische
Werte zur Produktqualitit und zur Produktionsmenge. Diese Information kann in der
operativen Automatisierungstechnik genutzt werden, um die Produktqualitit zu ver-
bessern, Produktionskosten zu senken und Produktionsmengen zu erhéhen.

3.3.2. Datenarchive

Die Archivierung von Daten aus der Produktion kann auch als Teilfunktion eines MES
vorliegen; praktisch kommt hierfiir aber oft ein eigenstandiges System zum Einsatz.
Hauptziele dieser Systeme sind das sichere und langfristige Speichern von Umfangrei-
chen Daten, die zumeist direkt, d.h. mittels Sensoren, in der Produktion erhoben werden.
Dies kann der Erfiillung rechtlicher Rahmenbedingungen dienen, z.B. in der Pharmazie-
und Lebensmittelproduktion, ist aber auch eine Grundlage zur allgemeinen Qualitéts-
iiberwachung und Fehlerdiagnose. Bedeutung erhalten Datenarchive auch durch die
Moglichkeit der automatisierten Analyse der Daten, die entweder unter Einbeziehung
von Wissen tiber den Prozess und die Produktionsanlage geschehen kann, oder ohne
dieses Wissen mit Verfahren des , Data Mining” [66]. Niitzliche Merkmalinformation in
Datenarchiven betrifft insbesondere historische Messwerte und Messwerte, aggregierte
Informationen und Information die von Systemen stammt, zu denen es keine direkte
Kommunikationsverbindung gibt.

3.3.3. Rezeptverwaltung

Die Aufgabe und Funktion von Systemen zur Rezeptverwaltung wird in der Normenrei-
he DIN EN 61512 ,,Chargenorientierte Fahrweise” [14], der deutschen Version der ANSI
ISA 88, festgelegt. Entsprechend handelt es sich dabei um ein Software-System, das in
der Prozessindustrie bei chargenweiser Produktion Anwendung findet.

In einem System zur Rezeptverwaltung werden Produktionsrezepte auf vier Abstrak-
tionsebenen verwaltet. In der Norm umfasst die Rezeptverwaltung das grundsatzlichen
Verfahrensrezept, das unabhéingig von der Anlagenausrtistung ist, das Werksrezept, das
Grundrezept und schliefilich das Steuerrezept, das spezifisch fiir eine bestimmte Anlage
und eine bestimmte Charge aus dem Grundrezept erstellt wird. Neben der eigentlichen
Prozedur werden in den Rezepten Stoff- und Produktionsparameter festgelegt. Sie um-
fassen die notwendigen Grundstoffe des Prozesses (Prozesseinsatz) in Menge und Art,
die durch den Prozess erzeugten Stoffe und Energien (Prozessausstofl) und Prozesspa-
rameter wie Sollwerte und Vergleichswerte zu messbaren Grofien des Prozesses. Aufier-
dem koénnen in Rezepten Anforderungen an die Produktionseinrichtung wie zuldssige

35

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

Werkstoffe hinterlegt werden. Somit sind neben der Prozedur auch operativ relevante
Merkmale in Systemen zur Rezeptverwaltung vorhanden.

3.3.4. Labor-Informations- und Managementsysteme

Labor-Informations- und Management-Systeme, abgekiirzt LIMS, haben den Hauptein-
satzzweck, in Laboren ermittelte Daten zu speichern und zu analysieren. Im Kontext der
industriellen Produktion betreffen diese Daten meist die Ausgangstoffe, Zwischenpro-
dukte oder Endprodukte des Produktionsprozesses. Daher sind in einem LIMS Informa-
tionen zu Merkmalen vorhanden, die nicht durch Messung im Prozess ermittelt werden
konnen, die den Prozess aber direkt betreffen.

3.3.5. Condition Monitoring

Unter ,Condition Monitoring” wird hier die ,,Zustandsiiberwachung und -diagnostik
von Maschinen auf der Basis von Parametern wie Schwingungen, Temperatur, Durch-
flussraten, Verunreinigung, Leistung und Drehzahlen, die typischerweise in Zusammen-
hang mit Funktion, Zustand und Qualitétskriterien stehen” [20], verstanden. Entspre-
chende Software-Systeme beziehen die notwendigen Daten einerseits aus statischen Ma-
schinendaten und andererseits aus Messungen des Produktionsprozesses oder der Ma-
schinen. Ziel ist die friihzeitige Erkennung von Fehlern und Defekten sowie die Unter-
stiitzung von Wartungsaufgaben. Condition Monitoring-Systeme verwalten daher Infor-
mationen zu Merkmalen, die die Anlagenausriistung und nicht den Produktionsprozess
betreffen.

3.4. SPS-Programmierung

In der verfahrenstechnischen Industrie bilden Prozessleitsysteme den Kern der heute
iiblichen Automatisierungslésungen und innerhalb dieser werden meist speicherpro-
grammierbare Steuerungen (SPS) fiir die operative Ausfiihrung der Mess- Steuer- und
Regelaufgaben verwendet [71]. Die genaue Abgrenzung von SPS und Prozessleitsystem
ist aber schwierig: Durch die Integration der SPS in das Prozessleitsystem verwischt die
Unterscheidung zwischen dem Leitsystem und der SPS zunehmend [71]; auflerdem wer-
den SPS auf sehr unterschiedlichen Hardwaresystemen implementiert. An dieser Stelle
wird daher nicht genauer auf die begriffliche Abgrenzung von SPS oder deren techni-
sche Realisierung eingegangen. Wichtiger ist hier, wie eine SPS programmiert wird und
wie die Programme ausgefiihrt werden, d.h. die funktionale Sicht auf Engineering und
Laufzeitverhalten. SPS-Hersteller wenden dazu in praktisch allen Fallen die Normenrei-
he IEC 61131 (bzw. DIN EN 61131 [18]) an. Aus sprachlichen Griinden werden hier die
Begriffe der DIN EN 61131 verwendet.

3.4.1. Aufbau und Funktionsweise einer SPS

Gemaif IEC 61131 kann eine SPS in die in Bild 3.2 gezeigten funktionalen Einheiten un-
terteilt werden. Neben der funktionalen Unterteilung der Einheiten werden auch die in-
ternen und externen Schnittstellen gezeigt, tiber die Information (bzw. Energie im Falle

36

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

der Stromversorgung) iibertragen wird. Von Interesse sind hier insbesondere die Signal-
verarbeitungsfunktionen. Diese werden im dritten Teil der Norm [21] genauer erldutert.
Die einzelnen Signalverarbeitungsfunktionen werden als ,Ressourcen” bezeichnet. Zu
ihnen gehoren ggf. Schnittstellen zum Bediener, Sensoren und Aktoren. Die Funktiona-
litat einer Ressource ist in einem Programm oder mehreren Programmen implementiert.
Die Ausfiihrung dieser Programme geschieht durch ,Tasks”, die ebenfalls Teil der Res-
source sind. Die Daten, mit denen ein Programm arbeitet, werden in Variablen innerhalb
der Programme abgelegt. Auf diese Variablen kénnen andere Programme nicht zugrei-
fen. Dartiber hinaus gibt es einen globalen Speicherbereich, in dem Variablen verwaltet
werden, die von unterschiedlichen Ressourcen und Programmen aus erreichbar sein sol-
len.

Tasks besitzen je eine Liste von Programmen, die nacheinander bei Eintreten eines de-
finierten Ereignisses ausgefiihrt werden. Dieses Ereignis ist hdufig periodisch und durch
einen internen Zeitgeber ausgeldst, es kann aber auch spontan eintreten wie z.B. die An-
derung eines Sensorwerts. In welcher Reihenfolge die Programme von einer Task aufge-
rufen werden, wird durch die Norm nicht definiert. Entsprechend wird dies in der Praxis
zwischen unterschiedlichen SPSen nicht einheitlich gehandhabt und kann zu Laufzeit-
unterschieden fiir dieselbe Ressource auf unterschiedlichen Systemen fiihren. Ublicher-
weise kann die Ausfiihrungsreihenfolge aber vom Programmierer einer SPS angepasst
werden.

Auf Ebene der Ressource kann die Ausfiihrung gestartet und gestoppt werden. Nach
dem Start werden die Variablen innerhalb einer Ressource initialisiert und alle enthalte-
nen Tasks gestartet. Beim Stoppen werden entsprechend die Tasks angehalten.

3.4.2. Programmiersprachen

Programme werden typischerweise in einer der fiinf Programmiersprachen der IEC bzw.
DIN EN 61131-3 geschrieben. Diese sind (deutsch/englisch): Anweisungsliste/Instruc-
tion List (AWL/IL), Strukturierter Text/Structured Text (ST/ST), Kontaktplan/Ladder
Diagram (KOP/LD), Funktionsbausteinsprache/Function Block Diagram (FBS/FBD)
und Ablaufsprache/Sequential Function Charts (AS/SFC). Neben der Norm selbst exi-
stiert der technische Bericht IEC TR 61131-8, ,Guidelines for the application and imple-
mentation of programming languages” [40], in dem weitere Details zur Implementie-
rung der Sprachen erldutert werden.

Neben den Sprachen der IEC 61131 gibt es oft die Moglichkeit, Programme zu impor-
tieren, die in einer anderen Sprache wie C oder C++ geschrieben wurden. Dies ist aber
eher als Speziallosung fiir besondere Anwendungsfille zu sehen und entspricht nicht
dem normalen Vorgehen fiir die Programmierung einer SPS.

AWL und ST sind textuelle Programmiersprachen, in denen Befehle zeilenweise ge-
schrieben und ausgefiihrt werden. Die Sprachen AS, KOP und FBS sind graphische
Programmiersprachen und unterscheiden sich daher schon durch ihre Reprasentation
deutlich von AWL und ST (wobei es fiir AS auch die Moglichkeit der textuellen Pro-
grammierung gibt). Die folgenden Abschnitte geben einen kurzen Uberblick iiber die
Programmiersprachen. Anschlieffend wird auf die Sprache FBS im Detail eingegangen.

37

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

Andere Systeme

Funktionen der
Mensch- —P> Bediener
Maschine-

Kommunikations- Schnittstelle

funktionen

Programmier- Anwendungs-

und‘ programmierer
Testfunktionen

Signalverarbeitungs-

funktionen | Funktion des
Betriebssystems
= Funition Funktion des
sorgung der Strom-
Anwendungs-
Anwendungs-
versorgung l— —»! i
programm- programm

speichers

verarbeitung

> Funktion des

Datenspeichers

Funktionen und Schnittstellen fur Aktoren und
Sensoren

/\ /\

Maschine/Prozess

Abbildung 3.2.: Funktionale Grundstruktur einer SPS nach DIN EN 61131 [18].

38

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

Anweisungsliste und Strukturierter Text

AWL ist syntaktisch einfach aufgebaut: Eine Zeile beginnt mit einer Sprungmarke, da-
hinter stehen ein Operator bzw. eine Funktion, gefolgt von den Operanden. Die Opera-
toren und Funktionen sind verhaltnisméfig maschinennah und einfach, beispielsweise
sind LD (lade Bit), AND (logisches A) und JMPCN (bedingter Sprung) typische Befeh-
le. AWL wird haufig als gemeinsame Zwischensprache zwischen den anderen Program-
miersprachen verwendet [47]. ST bietet vergleichsweise komplexere Sprachelemente wie
FOR- und WHILE-Schleifen und ist daher mit hoheren Programmiersprachen wie Pas-
cal vergleichbar. Hauptvorteil von ST gegentiiber AWL ist daher die bessere Kompaktheit
und Einfachheit der Programme, wahrend die Programme andererseits weniger effizient
sein konnen und der Programmierer weniger Details unter eigener Kontrolle hat [47].

Ablaufsprache

AS ist eine Sprache zur Programmierung von Abldufen durch diskrete Zustande. Bei-
spielsweise konnte die Steuerung fiir ein Gerit, das die moglichen Zustande ,ein” und
,aus” besitzt, grundsatzlich durch diese beiden Zustidnde - in der Terminologie von AS
,Schritte” genannt — programmiert werden. Bei der Ausfithrung des Programms wer-
den diese Schritte nacheinander aktiviert. Zwischen den Schritten gibt es Transitionen,
die durch Bedingungen tiberwachen, wann ein Schritt beendet wird und dessen Nach-
folger aktiviert wird. Diese Bedingungen werden durch Boolesche Algebra formuliert
und nehmen auf Variablen der SPS Bezug. Innerhalb der Schritte konnen Aktionen aus-
gefiihrt werden, die ihrerseits selbst IEC 61131-3 -Programme sind, und es konnen Varia-
blen beschrieben werden. Fiir die Ausfithrung ist es notwendig, dass genau ein Schritt
als Anfangsschritt markiert ist und dass es entweder mindestens einen Endschritt gibt,
oder dass die Transitionen eine Riickwértsschleife bilden. In diesem Fall hat der Ablauf
kein spezifiziertes Ende.

Kontaktplan und Funktionsbausteinsprache

KOP und FBS haben ihren Ursprung in der Nachbildung von elektrischen Schaltungen
und erlauben daher die Programmierung durch Erstellung eines Netzwerks von Ele-
menten (KOP) bzw. Funktionsbausteinen (FBS). Jedes Element und jeder Funktionsbau-
stein besitzt (Signal-) Eingdnge und Ausginge, deren funktionale Beziehung das Ele-
ment bzw. der Baustein herstellt. Im Fall von KOP entsprechen die Signale meist Boo-
leschen Werten, wihrend bei FBS alle Arten primitiver Datentypen verwendet werden
konnen. FBS hat sich daher als universell einsetzbare Sprache etabliert [47].

Ausginge werden paarweise durch Signallinien mit Eingangen verkniipft, so dass ein
Netzwerk von Elementen bzw. Funktionsbausteinen entsteht. Der Wert eines Signals
wird dann entlang der Signallinie von einem Ausgang zum Eingang ,transportiert”.
Die Verkniipfung von Ein- und Ausgéangen mit Variablen der SPS ist ebenfalls moglich.

In Bild 3.3 wird ein einfaches Beispiel fiir ein FBS-Programm gezeigt. Es berechnet
Z =3-X-Y+1,wobei X, Y und Z fiir das Programm lesbare bzw. schreibbare Variablen
sind. Zu jedem Baustein wird ein lokal eindeutiger Bezeichner (z.B. ,add1”) und dessen
Typ (,ADD”) angegeben. Die Eingénge eines Bausteins befinden sich entsprechend der
Norm auf der linken Seite und die Ausgénge auf der rechten und sie besitzen jeweils

39

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

einen eindeutigen Bezeichner innerhalb des Bausteins. Eine exakte Vorgabe tiber das
Aussehen der Bausteine oder des Diagramms wird in der IEC 61131 aber nicht gemacht.
Einige wichtige Bausteintypen werden in der VDI/VDE-Richtlinie 3696 [73] definiert,
indem dort Typ, Eingidnge, Ausgénge und Funktionalitit definiert sind. Die Bausteine in
Bild 3.3 sind dieser Richtlinie entnommen.

mul2
MUL
Y v addL
Y2 ADD 5
1 v
1 2

Abbildung 3.3.: Beispiel fir ein Funktionsbausteinnetzwerk, das Z = 3-X-Y +1
berechnet.

Eigenschaften der IEC 61131-3 Programmiersprachen

Weil innerhalb einer SPS auch zeitgleich unterschiedliche Sprachen verwendet werden
konnen, ist eine Kombination moglich und oft auch praktisch sinnvoll. Einfache Funk-
tionen lassen sich mit AWL und KOP realisieren, komplexere Funktionen mit ST und
FBS. Fiir iibergeordnete Abldufe, die diese Funktionen nutzen, bietet sich AS an.

Fiir die Auswahl einer Sprache zur Losung eines (Teil-)Problems sind Grofle und Art
des Problems einerseits und Eigenschaften der Programmiersprache andererseits ent-
scheidend. Neben dem offensichtlichen Unterschied der graphischen oder textuellen
Représentation eines Programms gibt es auch Unterschiede im zugrunde liegenden Pro-
grammierparadigma. Hier ist insbesondere die Unterscheidung zwischen imperativen
und deklarativen Sprachen sinnvoll.

Bei imperativen Sprachen werden dem Rechner nacheinander Befehle gegeben, die
in dieser Reihenfolge ausgefiihrt werden. Praktisch konnen die Befehle vom Compiler
oder Prozessor anders sortiert werden, das geschieht aber immer ohne Beeintrachtigung
der Semantik. Imperative Sprachen entsprechen daher einer prozeduralen Denkweise,
in der der zeitliche Ablauf der Ausfiihrung von Bedeutung ist. Beispielsweise kann

X'=3-XY=X"-Y;
zu einem anderen Ergebnis fiihren als
Y=X-YV,X=3-X;

40

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

weil einmal auf den ,neuen” Wert (3 - X) von X zugegriffen wird und einmal auf den
»alten”, initialen Wert. AWL, ST und AS sind imperative Sprachen. Sie eignen sich dann,
wenn eine Aufgabe in zeitdiskreten Schritten bzw. durch Definition von diskreten Zu-
standen gelost wird.

Im Vergleich dazu werden bei einer deklarativen Programmiersprache die genannten
Befehle als zeitlich unabhingige Deklaration der Abhéngigkeiten zwischen den Varia-
blen interpretiert. Entsprechend wéren die oben genannten Befehlsfolgen dquivalent,
weil sie sich in beiden Féllen zu

Y =3-X-Y

vereinfachen lassen. Deklarative Programmiersprachen sind daher dann besonders ge-
eignet, wenn zeitinvariante Beziehungen zwischen Variablen bestehen, beispielsweise
fiir Regler oder Simulationen. Ein Programm kann dann als Modellierung dieser Bezie-
hungen betrachtet werden. Deklarative Sprachen sind KOP und FBS.

Praktisch werden auch Programme in deklarativen Programmiersprachen von einem
Prozessor ausgefiihrt, der in zeitdiskreten Schritten arbeitet. Sofern diese Zeitschritte
klein genug sind, kann ein Programmierer aber von einem ,quasi-kontinuierlichen” Ab-
lauf ausgehen. Ublicherweise lasst sich die Grole dieser Zeitschritte auch vom Anwen-
der festlegen. Bei FBS besteht zusétzlich auch die Moglichkeit, Funktionsbausteine ge-
zielt einzeln aufzurufen. Beispielsweise kann das durch einen Funktionsaufruf in einem
ST-Programm geschehen. In dem Fall wird die Berechnungsfunktion des Bausteins ein-
malig aufgerufen und dessen Ausginge werden aktualisiert. FBS kann daher auch fiir
zeitdiskrete Probleme verwendet werden, was je nach Anwendungsgebiet (z.B. in der
diskreten Fertigung) mehr oder weniger tiblich ist.

Tabelle 3.3 gibt einen Uberblick {iber die Eigenschaften der Programmiersprachen der
IEC 61131-3.

Tabelle 3.3.: Programmiersprachen der IEC 61131-3 und deren Eigenschaften.

Représentation Paradigma Anwendung
Sprache | graphisch | textuell imperativ | deklarativ | kontinuierlich[ zeitdiskret
AWL . . .
ST B . °
AS . . °
KOP ° . .
FBS . . ° (o)

Spezifikation von Funktionsbausteintypen

Gemif3 der IEC 61131-3 werden Funktionsbausteintypen durch bestimmte Schliissel-
worte der Sprache ST deklariert. Diese Typen werden dann in Funktionsbausteinnetzen
ggf. mehrfach als Funktionsbausteine instanziiert. Jeder einzelne Funktionsbaustein be-
sitzt einen eigenen eindeutigen Namen und arbeitet mit einem eigenen Satz Ein- und
Ausgabevariablen. Der ausgefiihrte Algorithmus ist aber fiir alle Bausteine eines Typs
identisch. Der ST-Code in Codelisting 3.1 deklariert beispielhaft den Funktionsbaustein-
typ ADD.

41

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

FUNCTION_BLOCK ADD
VAR_INPUT
(+ Eingaenge des Bausteins x)
Ul : REAL := 0.0;
U2 : REAL := 0.0;
END_VAR
VAR OUTPUT
(+ Ausgaenge des Bausteins x)
V : REAL := 0.0;
END_VAR
VAR_IN_OUT
(» Als Eingang und Ausgang verwendbar =)
END_VAR
VAR
(+ Interne Variablen =)
END_VAR

(+ Algorithmus =)
V := Ul + U2;

END_FUNCTION_BLOCK
Listing 3.1: ST-Quellcode den Funktionsbausteintyps ADD.

Ausfiihrungssemantik von FBS

Prinzipiell ist FBS eine deklarative Programmiersprache und in der Theorie ist die
Semantik eines Funktionsbausteinnetzwerks durch eine eindeutige Funktion definiert.
Diese Funktion kann durch Verkniipfung der Funktionsbausteine entsprechend der Si-
gnallinien gebildet werden. Im Beispiel aus Bild 3.3 ist diese Funktion

Z = f(X,Y) = ADD(MUL(Y, MUL(X,3)),1).

Praktisch werden Programme einer SPS aber von einem Mikroprozessor ausgefiihrt, der
in diskreten Zeitschritten arbeitet und dem imperativen Paradigma folgt. Daher gibt es
praktisch nattirlich eine Ausfiihrungsreihenfolge fiir das Netzwerk und diese Reihenfol-
ge hat Auswirkungen auf die Semantik.

Die Ausfithrungssemantik von FBS wird in der IEC 61131-3 nicht im Detail festge-
legt, sondern es werden nur einige grundsitzliche Regeln definiert. Dazu gehort bei-
spielsweise, dass ein Funktionsbaustein erst ausgewertet werden darf, wenn die Zu-
stande aller Eingange feststehen. Entsprechend darf die Auswertung des Funktionsbau-
stein(netzwerks) erst abgeschlossen werden, wenn die Zustdnde aller Ausgédnge ermit-
telt wurden. Die Definition der Ausfithrungsreihenfolge muss durch den Programmie-
rer geschehen, indem die in Abschnitt 3.4.1 beschriebenen Tasks festgelegt werden. Dazu
werden die Frequenz der Ausfithrung und die Prioritét einer Task angegeben; anschlie-
Bend kénnen Funktionsbausteine den Tasks zugewiesen werden. So kann die Ausfiih-
rungsreihenfolge fiir Bausteine in unterschiedlichen Tasks festgelegt werden. Die Defi-

42

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

nition der Reihenfolge innerhalb einer Task soll entsprechend der Norm durch ,herstel-
lerspezifische Mittel” geschehen. Praktisch werden dazu meist Tasklisten verwendet.

Eine alternative Methode der Ausfiihrungskontrolle ist die ereignisgesteuerte Aus-
fithrung, die in der Normenreihe IEC 61499 bzw. DIN EN 61499 [22] festgelegt wird.
Darin erzeugt die Ausfiihrung eines Bausteins ein Ereignis, durch das die Ausfithrung
anderer Funktionsbausteine ausgeltst werden kann. Dadurch ist es moglich, Bausteine
,nur bei Bedarf” auszufiihren. Durch die zyklische Generierung von Ereignissen kann
das zyklische Ausfithrungsmodell der IEC 61131-3 nachgebildet werden. Letztlich muss
aber auch hier der Benutzer die Reihenfolge indirekt durch die Festlegung der Ereignisse
definieren.

3.4.3. Kommunikation

Eine SPS besitzt mehrere Datenschnittstellen: Zum gesteuerten Prozess, zum Bediener,
fiir die Programmierung und zu anderen Systemen (siehe Bild 3.2). Im Kontext dieser
Arbeit ist die Schnittstelle zu anderen Systemen interessant, weil hier ein generischer,
d.h. nicht zweckméfsig vorbestimmter Datenaustausch des SPS-Programms stattfindet.
Die Moglichkeiten der Kommunikation von System zu System héangen in erster Linie
vom Hersteller einer SPS ab. Es gibt aber auch standardisierte bzw. genormte und damit
offen dokumentierte Kommunikationsschnittstellen und -protokolle.

OPC UA

OPC Unified Architecture (OPC UA) ist ein Kommunikationsstandard fiir die industri-
elle Anwendung. Er wurde vom Konsortium OPC Foundation erarbeitet und von der
IEC als Norm veroffentlicht [15]. Die darin beschriebene Technologie besteht aus einem
Client-Server-Modell, in dem der Klient Dienste des Servers aufrufen, Daten abfragen
und manipulieren kann. Der Standard umfasst daher nicht nur das Kommunikations-
protokoll, sondern auch das Datenmodell des Servers. OPC UA wird fiir die zukiinftige
industrielle Kommunikation eine grofle Bedeutung beigemessen [75].

Der Hauptanwendungsfall von OPC UA fiir eine SPS wird zwar darin gesehen, dass
die SPS als Server auftritt. Die SPS kann aber auch die Rolle des Klienten einnehmen
und selbst Daten von anderen Systemen abfragen. Es wurden daher auch IEC 61131-3
-kompatible Funktionsbausteine von der OPC Foundation veroffentlicht [62]. Die Bau-
steine sind speziell auf die Verwendung des OPC UA-Protokolls und -Datenmodells
ausgerichtet und lassen sich nicht auf andere Kommunikationstechnologien tibertragen.

IEC 61131-5

In der Norm IEC 61131-5 bzw. DIN EN 61131-5 [17] wird auf die Schnittstelle zu an-
deren Systemen aus einer allgemeineren Sicht und ohne Annahmen tiber das konkrete
Kommunikationssystem eingegangen. Wegen des breiteren Anwendungsbereichs wird
an dieser Stelle auf die Norm genauer eingegangen.

Der Anwendungsbereich der Norm umfasst die SPS selbst und deren Schnittstellen,
aber nicht die Kommunikationspartner. Wenn eine SPS die Rolle eines Klienten ein-
nimmt, beispielsweise bei einer Datenabfrage, wird deshalb davon ausgegangen, dass

43

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

sich der Server als Kommunikationspartner ebenfalls wie eine SPS verhilt. Sonst wiirde
sein Verhalten auflerhalb des Anwendungsbereichs der Norm liegen.

In der DIN EN 61131-5 wird eine Liste von Kommunikationsfunktionen definiert. Dies
sind: Gerdtestatus lesen, Datenlesen, Steuern, Synchronisation zwischen Anwendun-
gen, Melden, Programmausfiihrung und E/A-Steuerung, Transfer des Anwendungs-
programms, Verbindungsmanagement. Im Kontext dieser Arbeit ist die Funktion ,Da-
tenlesen” relevant. Fiir diese Funktion kann eine SPS sowohl als Server als auch als Kli-
ent auftreten.

In der Norm wird fiir das Datenlesen zwischen zwei Anwendungsféllen unterschie-
den: Das Datenlesen als Datenanforderung und das Datenlesen als Datenbereitstellung.
Im ersten Fall bestimmt die lesende SPS, wann Daten angefordert werden. Die SPS sen-
det dann eine Datenabfrage an das betreffende Fremdgerat und erhélt zu einem spite-
ren, nicht kontrollierbaren Zeitpunkt eine Antwort. Im zweiten Fall wird der Kommu-
nikationspartner so programmiert, dass er die geforderten Daten selbst beim Auftreten
eines bestimmten Ereignisses oder unter bestimmten Bedingungen absendet. Insofern
ist der zweite Fall, auch wenn er in der Norm als Fall von , Datenlesen” bezeichnet wird,
eher ein konfiguriertes Datenschreiben.

Fiir die praktische Implementierung der Kommunikationsfunktionen werden in der
Norm Funktionsbausteine spezifiziert. Es werden die Schnittstellen und das Verhalten
der Bausteine angegeben. Hier ist insbesondere der Funktionsbaustein READ interes-
sant, weil durch ihn das Datenlesen als Datenabfrage realisiert wird.

Schnittstellen des Funktionsbausteins READ

Der Zweck des Bausteins READ ist es, den Wert bzw. die Werte von einer oder meh-
reren Variablen abzufragen, die beim Kommunikationspartner gespeichert sind. Dazu
besitzt der Baustein einen ,ID” genannten Eingang, dessen Wert einen Kommunikati-
onskanal identifiziert. In der Terminologie der IEC 61131-5 hat dieser Eingang daher
den Datentyp COMM_CHANNEL. Seitens der Norm wird nicht weiter spezifiziert, wie
der Kommunikationskanal technisch implementiert ist. Es wird nur vorausgesetzt, dass
durch den Wert von ID genau ein Kommunikationskanal zu genau einem Kommunika-
tionspartner identifiziert wird und dass dieser Kommunikationskanal zur Ubertragung
diskreter Nachrichten geeignet ist. Uber weitere technologieabhingige Aspekte, die im
praktischen Einzelfall relevant sein konnen (beispielsweise Datendurchsatzrate, Latenz,
Sicherheit, Verlasslichkeit), wird keine Aussage getroffen.

Neben dem Eingang ID hat der READ-Baustein die Eingdnge VAR_1,..,VAR_N
(N>1). Durch diese Eingdnge wird jeweils eine Variable identifiziert. In vielen Fallen
passiert das durch die Angabe eines Variablenpfads. Der Datentyp dieser Eingange ist
entsprechend STRING oder VAR_ADDR (ein spezieller Datentyp zur Adressierung von
Variblen). Grundsitzlich muss es dem Kommunikationspartner aber nur moglich sein,
anhand der Werte von VAR_1,..., VAR_N Variablen zu identifizieren.

Schliefflich besitzt der READ-Baustein noch den Eingang ,REQ” vom Datentyp
BOOL, durch den bei einer steigenden Flanke das Lesen des Wertes ausgelost wird. Nach
erfolgreichem Lesen wird fiir einen Taktzyklus der BOOL-Ausgang ,NDR” (new data
received) auf den Wert true gesetzt. Fiir den Fall eines Fehlers zeigen die Ausgédnge ER-
ROR (BOOL) und STATUS (INT) an, dass ein Fehler aufgetreten ist und um welche Art
von Fehler es sich handelt. Beispielsweise bedeutet der Wert 0 , kein Fehler”, der Wert

44

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

6 ,Empfanger nicht bereit” und der Wert 1 ,Fehler in unterer Kommunikationsschicht”.
Herstellerspezifische Werte fiir den Status sind ebenfalls moglich.

Die empfangenen Werte werden in den Variablen RD_1,..., RD_N gespeichert. Die-
se Variablen sind als VAR_IN_OUT deklariert, damit sie von dem Programm, das die
Daten verwendet auch beschreibbar sind. Der Datentyp ist ANY. Die vollstindige Spe-
zifikation der Variablen des Bausteins READ entsprechend DIN EN 61131-5 [17] wird in
Codelisting 3.2 gezeigt.

VAR_INPUT
REQ : BOOL R_EDGE; (* Datenlesen *)
ID : COMML.CHANNEL; (* Kommunikationskanal *)
VAR_1 : STRING; (* Werte der Bezeichner der angeforderten *)
: (* Variablen erweiterbar, *)
VAR N : STRING; (* Typ VAR_ADDR auch moeglich *)
END VAR
VAR OUTPUT
NDR : BOOL; (* Neue Anwenderdaten empfangen *)
ERROR : BOOL; (* Neuer Status nicht 0 empfangen *)
STATUS: INT; (* Zuletzt festgestellter Status *)
END VAR
VAR _IN_OUT
RD_1 . ANY; (* Empfangene Anwenderdaten, *)
: (* erweiterbar und von *)
RD_N 1 ANY; (* beliebigem Datentyp *)
END_VAR

Listing 3.2: ST-Quellcode zur Spezifikation der Variablen des Funktionsbausteins READ.

Verhalten des Funktionsbausteins READ

Das Laufzeitverhalten des READ-Bausteins wird in der DIN EN 61131-5 durch einen Zu-
standsautomaten spezifiziert. Abbildung 3.4 zeigt diese Logik informell als Diagramm
in Ablaufsprache (Sequential Function Chart). Nach der Initialisierung befindet sich ein
READ-Baustein zunéchst im Leerlauf, bis am Eingang REQ eine steigende Flanke an-
liegt. Dann wird — auf nicht niher spezifizierte Art — eine Leseanfrage an den Kommu-
nikationspartner geschickt, der durch COMM_CHANNEL identifiziert wird. Das Ziel
dieser Anfrage ist durch die Werte von VAR_1 bis VAR_N gegeben. Nach Erhalt einer
Antwort wird der Inhalt der Antwort tiberpriift. Das betrifft insbesondere die Datenty-
pen der Daten in der Antwort, die zu RD_1 bis RD_N kompatibel sein miissen. Nach
erfolgreicher Priifung werden die Daten in RD_1 bis RD_N geschrieben und der Funkti-
onsbaustein geht zuriick in den Leerlaufzustand.

Bei Ausfiihrung des Ablaufs ist an zwei Stellen die Behandlung von Fehlern vorgese-
hen. Erstens kann die Kommunikation mit dem Kommunikationspartner fehlschlagen,
was am Kommunikationskanal liegen kann oder daran, dass der Kommunikationspart-
ner die Leseoperation nicht ausfiihren kann. Zweitens konnen die erhaltenen Daten feh-

45

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3. Stand der Technik

lerhaft sein, z.B. falsche Datentypen enthalten oder unvollstindige Daten. Die Priifrouti-
nen hierfiir werden durch die Norm aber nicht definiert. In beiden Fehlerfallen wird der
Fehler durch den Ausgang ERROR fiir einen Taktzyklus angezeigt und der Wert von
Status dem Fehler entsprechend gesetzt. Der Baustein geht zurtick in den Leerlaufzu-
stand.

46

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

f( Initialisierung \

NDR :=0;
ERROR :=0;
STATUS :=0;
RD_1 := null;

RD_N := null;
: Initialisierung beendet

Leerlauf

NDR :=0;
ERROR :=0;

steigende Flanke an REQ

Warten

sende Anfrage

STATUS :=-1;

Keine positive Antwort erhalten

positive Antwort erhalten

Prifen

priife Antwort

(Kommunikationsfehler oder Fehler
bei Kommunikationspartner)

positiv

Daten erhalten

NDR:=1;
RD_1 := neue Daten;

RD_N := neue Daten;
; true (ohne Bedingung)

Priifung negativ|

Fehler

ERROR :=1;
STATUS := Fehlercode;

true (ohne Bedingung)

Abbildung 3.4.: Ablauflogik des Funktionsbausteins READ entsprechend DIN EN 61131-5
[17], dargestellt in Ablaufsprache (Sequential Function Chart).

47

am 20,01.2026, 08:53:31. @ Inhak.
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

In Abschnitt 1.3 wurden wichtige Leitfragen dieser Arbeit gestellt. Mithilfe der Grund-
lagen aus Kapitel 2 und dem Wissen iiber den Stand der Technik aus Kapitel 3 werden
diese Fragen nun beantwortet. Daraus werden Anforderungen an eine Losung abgelei-
tet.

4.1. Eignung der Merkmalmodelle

Aus wissenschaftlicher Sicht ist die Frage danach, wie technische Merkmale modelliert
werden, fast ausschliefSlich im Hinblick auf die technische Abbildung und Verwendung
der Merkmale untersucht worden. Es gibt viele Arbeiten, die beispielsweise vorhande-
ne Katalogsysteme analysieren oder die die Moglichkeiten spezieller Technologien zur
Informationsreprasentation (z.B. Ontologien) zeigen und untersuchen. Das in Abschnitt
2.1 beschriebene (Meta-) Modell fiir die Modellierung von Merkmalen ist eines der we-
nigen, evtl. sogar das einzige in der Literatur vorhandene Modell, das explizit nur die
Klarung der Modellierung von Merkmalen zum Ziel hat. Es beantwortet gerade nicht
die Frage, welche Merkmale es gibt und wie sie in Geschifts- und technischen Prozessen
verwendet werden, wohl aber welche Information fiir ein vollstandiges Modell verfiig-
bar sein muss. Fiir den Anwender wird durch dieses Modell klar, auf welche Struktur
sich die Abfrage einer Merkmalinformation bezieht. Das Merkmalmodell aus Abschnitt
2.1 ist somit das semantische Ziel der zu definierenden Abfragesprache.

Anforderung 1:  Der Abfragesprache muss ausschliefSlich das in Abschnitt 2.1 definierte
Merkmalmodell fiir die Semantik von Abfragen zugrunde liegen.

Aus praktischer Sicht ist die Frage nach tatsdchlich im industriellen Umfeld genutz-
ten Datenmodellen wichtiger als die Modelle aus der Literatur. Schliefilich ist die beste
Abfragesprache nutzlos, wenn sie nicht auf Daten zugreifen kann. Daher wurden in Ab-
schnitt 3.1 die praktisch vorhandenen und genutzten Modelle erldutert. Dabei ergibt
sich ein gemischtes Bild. Positiv ist, dass bereits seit vielen Jahren technische Merkmale
systematisch definiert und verwaltet werden und dass Katalogsysteme auf diese Merk-
male Bezug nehmen. Beispiele dafiir sind eCl@ss und UNSPSC. Viele Organisationen
haben ihre Spezifikationen auch untereinander ausgetauscht und abgeglichen, so dass
umfangreiche und einheitliche Kataloge entstanden sind.

Positiv ist ebenfalls, dass es fiir die technische Speicherung und den Austausch von
Merkmalen Normen gibt und dass diese Normen in den letzen Jahren zum groflen Teil
miteinander harmonisiert wurden. Dadurch hat die IEC 61360 eine wichtige zentrale
Bedeutung erhalten.

Der negative Aspekt der aktuellen Situation ist, dass diese vorhandenen Normen und
Standards fiir die Abwicklung von Geschéftsprozessen zwischen Unternehmen konzi-

48

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4.2. Entwurf der Abfragesprache

piert sind. Fiir andere Anwendungsfille, in denen Informationen tiber Merkmale Ge-
genstand der Kommunikation sind, werden die Standards nicht angewendet. Zum Teil
ist das auch logisch nicht moglich, z.B. weil eCl@ss fiir die Beschreibung von Produktty-
pen konzipiert ist und nicht fiir die Modellierung einzelner Produkte (d.h. es behandelt
nur Merkmaltrédgertypen). Insgesamt bedeutet das, dass standardisierte Datenformate
fiir Merkmale eine mogliche Datenquelle sind, die aber nicht in jedem Fall vorhanden,
nutzbar und ausreichend sind.

Im industriellen Umfeld gibt es zahlreiche Software-Systeme, die prinzipiell fiir ei-
ne SPS in der Produktion niitzliche Information zu Merkmalen enthalten. Die wichtig-
sten davon wurden in Abschnitt 3.3 beschrieben. Durch Normen wie die ISA-95 gibt
es auch klare Vorstellungen dariiber, welche Informationen von diesen Systemen ver-
waltet werden. Mogliche Losungen fiir offene Datenschnittstellen sind durch B2MML
und ein ISA-95 -konformes OPC UA -Profil vorhanden, nach aktuellem Stand wird aber
keine Standard-Datenschnittstelle von Softwareherstellern durchgiangig unterstiitzt. Der
Zugriff auf die umfangreiche Information tiber technische Merkmale, die in den Model-
len der ISA-95 vorhanden sind, ist daher im Allgemeinen nicht auf Ebene der Modelle
moglich. Stattdessen muss auf die darunter liegenden Informationssysteme zugegriffen
werden, d.h. {iblicherweise relationale Datenbanken oder konventionelle Dateisysteme.
Fiir speziellere Datenreprésentationen wie XML, eCl@ss, B2MML oder OPC UA miis-
sen entsprechende Adapter implementiert werden. Die zu definierende Abfragesprache
bildet dabei keine Ausnahme.

Anforderung 2:  Die Abfragesprache muss den Zugriff auf Informationen ermoglichen,
die in iiblichen Informationssystemen gespeichert sind. Dazu gehoren
insbesondere Dateisysteme und relationale Datenbanken.

4.2. Entwurf der Abfragesprache

Wegen der unterschiedlichen moglichen Datenquellen muss sich die Abfragesprache
nach dem Anwender und nicht nach dem Datenanbieter richten. Entsprechend Anforde-
rung 1 ist die logische Sicht des Anwenders auf Merkmale klar. Uber das Vorgehen zum
Erlangen von Information wird dadurch aber noch keine Aussage gemacht. Gerade we-
gen der heterogenen Kommunikationspartner ist es fiir den Anwender wiinschenswert,
wenn er keine Details tiber die Kommunikation mit dem jeweiligen merkmalverwalten-
den System haben muss. Andersherum betrachtet gewéhrleistet diese Abschirmung des
Anwenders den notwendigen Freiheitsgrad fiir Veranderungen der Datenquellen ohne
Riickwirkungen. Die Abfrage von Information sollte daher als Benutzung eines Dienstes
im Sinne von Abschnitt 2.1.2 bzw. DIN SPEC 40912 [24] funktionieren.

Anforderung 3:  Die Verwendung der Abfragesprache muss der Verwendung eines
Dienstes zur Abfrage von Merkmalinformation entsprechen.

Wichtig an Anforderung 3 ist, dass die Verwendung der Abfragesprache der Verwen-

dung eines Dienstes nur entspricht. Wie genau der Dienstleister arbeitet, wo er realisiert
wird und unter wessen Kontrolle er sich befindet, wird nicht festgelegt. Entsprechend

49

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

Anforderung 2 konnen ganz unterschiedliche Datenquellen genutzt werden und es ist
durchaus moglich, dass die gefragte Information aus einer lokalen Datei stammt, tiber
die der Anwender selbst volle Kontrolle hat.

Entsprechend Anforderung 1 soll der Dienst Anfragen betreffend das Merkmalmodell
aus Abschnitt 2.1 verarbeiten kénnen. Abschnitt 2.1.2 gibt einen Uberblick iiber die zu
realisierenden Basisoperationen fiir merkmalverwaltende Systeme. Dartiber hinaus wer-
den aber auch zusitzliche Operationen benotigt, die komplexere Abfragen zulassen.
Wie am Ende von Abschnitt 2.1.2 beschrieben, ist es praktisch oft nicht ausreichend,
wenn nur die Basisoperationen realisiert werden. Stattdessen miissen auch komplexe
Abfragen moglich sein, in denen Informationen bedingt abgefragt werden oder Abfra-
gen durch Verkniipfung hierarchisch aufgebaut werden kénnen.

Anforderung 4:  Die Abfragesprache muss die Formulierung komplexer Abfragen er-
maoglichen, so dass Informationen bedingt abgefragt werden konnen
und hierarchisch aufgebaute Abfragen moglich sind.

Anforderung 4 ist absichtlich offen in Bezug auf die tatsdchlich zu implementieren-
den Operationen gehalten, weil in dieser Arbeit keine vollstindige und abschliefSende
Auflistung der Operationen erfolgen soll. Komplexe Operationen, die in bestimmten
Anwendungsfillen hadufig auftreten, sollten als neue Operatoren formulierbar sein, um
die Anwendung zu vereinfachen. Hier soll nur eine Grundmenge von Operationen for-
muliert werden, die fiir moglichst viele Anwendungsfille ausreicht.

Zur eindeutigen Spezifikation der Abfragesprache wird eine formale Grundlage be-
notigt. Dadurch kann zugesichert werden, dass eine konkrete Abfrage eine eindeutige
Semantik hat. Ware das nicht der Fall, dann konnte das Ergebnis einer Abfrage vom
Speicherort der Information abhdngen, weil ggf. unterschiedliche Implementierungen
verwendet werden — z.B. ein Algorithmus fiir das Durchsuchen einer Datei und ein an-
derer Algorithmus fiir die Abfrage an einer Datenbank. Daher gilt Anforderung 5:

Anforderung 5:  Der Spezifikation der Abfragesprache muss eine formale Sprache mit
klar definierter Semantik zugrunde liegen.

Aufierdem sollte die Sprache in moglichst vielen Anwendungsféllen tatséchlich nutz-
bar sein. Die Zahl der Anwendungsfille ist aber nicht begrenzt, deshalb kann von prak-
tischer Seite die Abdeckung der Félle nicht gepriift werde. Es ist daher hilfreich, wenn
klare Aussagen {iber grundsatzlich mogliche, d.h formulierbare, und nicht mogliche Ab-
fragen gemacht werden kénnen.

Anforderung 6: Die Ausdruckstirke der Sprache muss dokumentiert sein.

In Abschnitt 2.2 wurden das relationale Datenbankmodell und die damit verbundene
relationale Algebra vorgestellt. Das relationale Datenbankmodell hat eine formale Basis
und es ist eine umfangreiche Theorie vorhanden. Die relationale Algebra ist abgeschlos-
sen und ldsst dadurch auch komplexe hierarchische Abfragen zu. Das bedeutet anderer-
seits, dass komplexe Abfragen in atomare Basisoperationen zerlegt werden kénnen, was
die Implementierung vereinfacht und strukturiert. Aufferdem kann durch Verwendung
relationaler Algebra klare Aussagen tiber Moglichkeiten und Grenzen der Abfragespra-

50

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4.3. Implementierung

che getroffen werden, beispielsweise durch das Zeigen relationaler Vollstandigkeit.

In der Praxis werden heute auch hiufig graphbasierte Datenbanken und Abfragespra-
chen angetroffen (siehe Abschnitt 3.2). Diese besitzen ebenfalls eine gut erforschte for-
male Grundlage, konnen Thre praktischen Vorteile aber nur in Anwendungen mit sehr
stark strukturierten Daten ausspielen, was im Fall des hier verwendeten Merkmalm-
odells nicht gegeben ist. Insgesamt ist daher das relationale Datenbankmodell eine sinn-
volle Grundlage fiir die Formulierung des Datenmodells und der Datenabfragen.

Zur Wahl des relationalen Datenbankmodells muss angemerkt werden, dass das re-
lationale Datenbankmodell nur fiir die formale Spezifikation der Abfragesprache ver-
wendet werden soll. Ob die Daten tatsdchlich in einer relationalen Datenbank abgelegt
sind, ist davon vollkommen unabhingig. Auierdem ist das zugrunde gelegte relationa-
le Informationsmodell fiir Merkmale fiir den Benutzer der Abfragesprache nicht direkt
sichtbar. Es ist nur eine Hilfe bei der Erstellung der Sprache, durch die die Anwendbar-
keit der Abfragesprache zugesichert wird.

4.3. Implementierung

Wie in Abschnitt 3.4 beschrieben, ist die IEC 61131 (bzw. DIN EN 61131 [18]) der domi-
nierende Standard fiir die Programmierung von SPS. Wenn die Abfragesprache von ei-
ner SPS aus nutzbar sein soll, ist die Konformitat mit diesem Standard daher der einzige
sinnvolle Weg. Wie beschrieben gibt es laut der Norm fiinf Programmiersprachen, von
denen sich FBS als eine universell einsetzbare Sprache etabliert hat. FBS ist auch deswe-
gen besonders unter den Programmiersprachen, weil sie gleichermafien in Problemstel-
lungen mit einer kontinuierlichen und einer zeitdiskreten Berechnung der Losung ein-
gesetzt werden kann. Hilfreich ist auch, dass FBS eine graphische Programmiersprache
ist, die leichter zugénglich ist als eine textuelle Sprache mit eigener Syntax. Insgesamt
verspricht die Implementierung von Funktionsbausteinen entsprechend der IEC 61131-
3 in der Form, dass mit den Funktionsbausteinen Abfragen formuliert werden konnen,
die hochstmogliche Akzeptenz und Anwendbarkeit.

Anforderung 7:  Abfragen miissen durch IEC 61131-3 -konforme Funktionsbausteine
formulierbar und ausfiihrbar sein.

Wie die interne Logik der Funktionsbausteine implementiert ist, wird durch Anforde-
rung 7 nicht ausgesagt.

Die Implementierung als FBS bringt eine inhdrente Eigenschaft mit sich: Abfragen
werden deklarativ formuliert, denn FBS ist eine deklarative Programmiersprache. Der
Anwender der Sprache muss also nicht das prozedurale Vorgehen zur Berechnung des
Ergebnisses einer Abfrage formulieren, sondern muss nur die Eigenschaften dieses Er-
gebnisses formulieren. Wenn z.B. ein Merkmaltrager mit einer bestimmten Aussage tiber
ein Merkmal gesucht wird, dann muss der Anwender nur diese Aussage angeben und
nicht die Suchprozedur. Das ist offensichtlich komfortabler und entspricht auch dem
Paradigma anderer Datenabfragesprachen wie SQL.

Von theoretischer Seite her ist das deklarative Paradigma von FBS unproblematisch.
Wie in Abschnitt 3.2 festgestellt wurde, ist der Relationenkalkiil ebenfalls deklarativ und
gegentiber relationaler Algebra gleich méchtig. Wenn die Semantik eines Funktionsbau-

51

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

steins im Relationenkalkiil formuliert ist, kann sie also auch in relationale Algebra tiber-
setzt werden. Fiir die Implementierung der internen Logik des Funktionsbausteins, die
ggf. in einer imperativen Programmiersprache geschieht, ist diese Darstellung dann ge-
eigneter und leichter umsetzbar.

In Abschnitt 3.4.3 wurden Moglichkeiten gezeigt, um mit Mitteln der IEC 61131 Da-
tenabfragen zu realisieren. Eine generische Moglichkeit ohne die Bindung an eine be-
stimmte Kommunikationstechnologie ist durch die IEC 61131-5 [17] gegeben. Dort ist
der Bausteintyp READ spezifiziert, der gerade fiir Datenabfragen von Fremdsystemen
bestimmt ist. Eine Abfrage in der zu definierenden Abfragesprache unterscheidet sich im
Wesentlichen darin von der Funktion des READ-Bausteins, dass der genaue Speicherort
der gefragten Information fiir den Anwender unbekannt ist (und nicht als Variablenpfad
bekannt). Aufgrund der bestehenden Ahnlichkeit der Aufgabenstellung gilt:

Anforderung 8:  Ausfiihrungslogik und Schnittstellen des Bausteins zur Ausfiihrung
einer Abfrage miissen so weit wie moglich mit dem READ-Baustein
der IEC 61131-5 iibereinstimmen.

Wie in Abschnitt 3.4.2 diskutiert wurde, ist das Verhalten eines Funktionsbausteinnetz-
werks von der Ausfiihrungsreihenfolge der Bausteine abhingig. Hier bedeutet das, dass
das Ergebnis einer Abfrage beeinflusst werden kann. Dieser Einfluss muss fiir den An-
wender klar nachvollziehbar sein.

Anforderung 9:  Die Bedeutung der Ausfiihrungsreihenfolge von Funktionsbausteinen
der Abfragesprache muss dokumentiert und leicht nachvollziehbar sein.

Aus Anforderung 3, laut der eine Anwenderschnittstelle entsprechend einem Dienst ver-
langt wird, ergibt sich eine weitere Anforderung fiir die Implementierung. Bei einem
Dienst liegt die Arbeitslast beim Dienstleister, wahrend der Klient in der Zeit zwischen
dem Aufruf einer Operation und dem Ende der Ausfithrung bzw. Erhalt des Resultats
selbst keine Arbeitslast tragt. Dartiber hinaus ist es fiir den Klienten meist auch uner-
heblich, welcher Arbeitsaufwand durch die Ausfiihrung einer Operation hervorgerufen
wird. Gerade im Anwendungsbereich einer SPS ist das eine besonders vorteilhafte Ei-
genschaft eines Dienstes, weil hier oft Echtzeitbedingungen eingehalten werden miis-
sen. Wenn die SPS selbst eine deutlich hohere oder stark schwankende Arbeitslast fiir
die Ausfithrung von Abfragen zu tragen hat, kann das zum Ausschlusskriterium fiir die
Anwendung der Abfragesprache werden. Aus diesem Grund wurde in Abschnitt 2.1.2
darauf hingewiesen, dass der Dienstleister moglichst auch komplexere Operationen auf
Merkmaldaten zur Verfiigung stellen sollte. Allgemein muss daher Anforderung 10 er-
fuillt werden:

Anforderung 10:  Die Ausfiihrung einer Abfrage darf den Betrieb des abfragenden Sy-
stems nicht beeinflussen.

Mogliche Aufwinde zum Erstellen der Abfrage und Verarbeitung des Ergebnisses
werden durch Anforderung 10 jedoch nicht berticksichtigt. Aufierdem ist es moglich,

52

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

4.3. Implementierung

dass durch eine zu lange Zeitdauer bis zum Erhalt des Ergebnisses die Funktionalitat
beeinflusst wird. Auch hieriiber wird durch Anforderung 10 keine Aussage gemacht.

SPS-basierte Automatisierungssysteme werden oft iiber sehr lange Zeitraume (Jahre
oder sogar Jahrzehnte) betrieben. In diesen Zeitraumen sind Verdnderungen der um-
gebenden IT-Infrastruktur sehr wahrscheinlich und auch merkmalverwaltende Systeme
konnen betroffen sein. In vielen Anwendungsfillen der Automatisierungstechnik ist es
aber nur mit erheblichem Aufwand oder auch {iberhaupt nicht moglich, den Betrieb zu
unterbrechen. Das bedeutet, dass es trotz Veranderungen der IT-Infrastruktur (d.h. der
Datenanbindung) moglich sein muss, die Abfragen von Merkmalinformation durchge-
hend zu verwenden. Daraus folgt:

Anforderung 11:  Die Implementierung muss Anderungen der Konfiguration der Daten-
anbindung von merkmalverwaltenden Systemen ohne Unterbrechung
des Betriebs unterstiitzen.

Fiir einen moglichst hohen Nutzwert ist es wiinschenswert, wenn Information aus vie-

len und unterschiedlichen Datenquellen abgerufen werden kann. Die Erweiterbarkeit in
Hinblick auf verwendbare Datenquellen muss daher in der Implementierung besondere

Beachtung finden.

Anforderung 12:  Die Implementierung muss die Anbindung zusitzlicher Datenquellen
in einfacher und dokumentierter Art unterstiitzen.

53

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

In diesem Kapitel wird die Abfragesprache fiir Merkmalinformation definiert und eine
Systemarchitektur festgelegt. Der Aufbau dieses Kapitels und die Zusammenhinge zu
den vorausgegangenen Kapiteln werden in Abbildung 5.1 gezeigt. In Abschnitt 5.1 wird
dazu das Merkmalmodell aus Abschnitt 2.1 auf das relationale Datenbankmodell iiber-
tragen. Dadurch gibt es eine formale Grundlage fiir die Strukturen, aus denen Daten
abgefragt werden.

Im darauf folgenden Abschnitt 5.2 wird eine Menge von Grundoperationen fiir das
formalisierte Merkmalmodell definiert. Der Hauptzweck dieser Grundoperationen ist
es, eine Grundlage fiir speziellere und komplexere Operationen zu bilden, die aus den
Grundoperationen zusammengesetzt werden konnen. Daher sind die Grundoperatio-
nen nicht durch praktische Anwendungsszenarien motiviert, sondern so gestaltet, dass
sie den Aufbau moglichst vieler und méachtiger zusammengesetzter Operationen zulas-
sen. So muss spater nur eine moglichst kleine Anzahl von Operationen auf unterster
Ebene implementiert werden, ohne dass die Anwendbarkeit darunter leidet.

In Abschnitt 5.3 werden dann die Operationen definiert, die aus praktischer Sicht nut-
zenbringend sind.

Die Verwendung der zuvor definierten Operationen in Funktionsbausteinen (entspre-
chend Anforderung 7 und 8) wird in Abschnitt 5.4 beschrieben. Damit sind Syntax und
Semantik der Abfragesprache definiert.

Die Ausfiihrung der Funktionsbausteine ist mit gewissen Voraussetzungen an das
technische Umfeld verkniipft (s. Anforderung 3, 10 und 11). Deshalb wird in Abschnitt
5.5 eine Systemarchitektur entsprechend den gestellten Anforderungen beschrieben.

5.1. Abbildung des Merkmalmodells im relationalen
Datenbankmodell

5.1.1. Formale Spezifikation

Die Abbildung auf das relationale Datenbankmodell wird durch die Definition von
Relationsschemas durchgefiihrt. Jedes operativ nutzbare Element des Merkmalmodells
entsprechend Abschnitt 2.1 entspricht einem Relationsschema. Fiir die Attribute dieser
Schemas gibt es drei semantische Kategorien:

* Das Attribut Id identifiziert ein Tupel innerhalb seines Anwendungsbereichs (z.B.
Betrieb oder Standort) eindeutig und ist daher ein Primérschliissel (mit Ausnahme
des Merkmaltrigers, s.u.). Zur Herstellung der Eindeutigkeit kann ein Bezeichner
der hoheren Ebene, z.B. des Datenbanksystems oder eine URL, vorangestellt wer-
den. Der Wert von Id wird innerhalb eines Ausdrucks der Abfragesprache nicht
als Zeichenkette, sondern wie das identifizierte Tupel selbst behandelt.

54

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell

? Grundlagen (2)

Analyse: Merkmal-
modelle (4.1)

Definieren des
Merkmalmodells als
Relationenschema

Formale Anwendungsdoméne

der Operationen

Grundlagen: Informa-
tionssysteme (2.2)

O—>

Definieren der
Grundoperationen der
Abfragesprache

Analyse: Abfrage-

¢ Grundoperationen (formal)

sprache (4.2)

O——

Definieren erweiterter
Operationen der
Abfragesprache

Stand der Technik: SPS (3.3)

vollstandige Operationen (formal)

O——

Analyse: Implementier-
ung (4.3)

Spezifizieren der
Funktionsbausteine

Stand der Technik: Merkmale (3.1)

IEC 61131-konforme
Funktionsbausteine

Stand der Technik:
Software-

Spezifizieren der
Systemarchitektur

Systeme in der ind. Produktion (3.2) (5 vollstandiges

Systemkonzept

Abbildung 5.1.: Aufbau von Kapitel 5.

am 20,01.2026, 08:53:31. @ Inhak.
m

mit, fir oder in Ki-Syster

55


https://doi.org/10.51202/9783186256089

5. Losungskonzept

e Die Attribute Wert, Relation und Einheit vermitteln Zusatzinformation tiber den
Wert, mit dem ein Merkmal durch eine Aussage assoziiert wird.

¢ Alle tibrigen Attribute bilden die Relationen zwischen den Elementen des Modells
ab und dienen zur Navigation zwischen Tupeln mittels Id-Attributen.

An dieser Stelle werden nur die zur operativen Verwendung notwendigen Attribute de-
finiert. Es kann zwar davon ausgegangen werden, dass Elemente wie Merkmale und
Merkmaltrdgertypen nattirlichsprachliche Namen und Definitionen besitzen und dass
in vielen Fillen noch weitere Information verfiigbar ist. Diese ist aber meist nicht ope-
rativ nutzbar, der Name wiirde beispielsweise von der lokalen Sprache abhéngen oder
kann ambivalent sein. Auflerdem soll hier die Anwendbarkeit nicht durch zu starke An-
nahmen tiber verfiigbare Information begrenzt werden.

Die Definitionen von Merkmaltragertyp und Merkmaltrager sehen es hier nicht vor,
dass entsprechende Tupel selbst auf Aussagen verweisen. Stattdessen werden die Rela-
tionsschemas so definiert, dass Aussagen auf die Merkmaltragertypen bzw. Merkmal-
trager verweisen, auf die sie sich beziehen. Fiir die hier ausschlaggebende theoretische
Sicht ist auch nicht relevant, in welche Richtung Verweise existieren, weil Aussagen und
das betroffene Aussageziel durch die Vereinigungsoperation 1 zusammengefiihrt wer-
den konnen. In einer Implementierung kann mit beliebigen einseitigen oder doppelten
Verweisen gearbeitet werden.

Die folgenden Absitze definieren Relationsschemas zur Représentation des Merk-
malmodells. Zur Verdeutlichung werden die Relationsschemas durch ein tiefgestelltes
S gekennzeichnet.

Merkmaltragertyp
MTTs = {Id : X%, AllgMerkmale : {£*}", Supertypen : {£*}", Aussagen : {Z*}k}
Id: Zeichenkette, identifiziert den Merkmaltragertyp eindeutig.

AllgMerkmale: 0 < n-stelliger Vektor von Zeichenketten, in dem jeder Eintrag
durch einen Wert AMs.Id auf ein allgemeines Merkmal verweist, das dem Merkmal-
tragertyp zugeordnet wird. Alle Eintrdge des Vektors sind paarweise verschieden.
[Bemerkung: Zur Vereinfachung wird angenommen, dass der Wertebereichstyp , Vektor
von Zeichenketten” verfiigbar ist. Er lieSe sich sonst durch eine Hilfskonstruktion
nachbilden.]

Supertypen: 0 < m-stelliger Vektor von Zeichenketten, in dem jeder Eintrag durch
einen Wert MTTs.Id auf einen Merkmaltragertyp verweist, von dem geerbt wird. Die
Eintrdge sind paarweise verschieden. Die induzierte Vererbungsstruktur zwischen
Merkmaltragertypen ist hierarchisch, also insbesondere kreisfrei.

Aussagen: 0 < k-stelliger Vektor von Zeichenketten, in dem jeder Eintrag auf

durch einen Wert ASg.Id auf eine Aussage verweist, die fiir jeden Merkmaltrdger
des Merkmaltrédgertyps gilt.

56

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell

Allgemeines Merkmal
AMg = {Id : ¥*, Merkmalart : ¥*}
Id: Zeichenkette, identifiziert das allgemeine Merkmal eindeutig.

Merkmalart: Zeichenkette mit Wert MAg.Id, verweist auf die zugehorige Merkma-
lart.

Merkmalart
MAg = {Id : X%, Supertyp : ¥}
Id: Zeichenkette, identifiziert die Merkmalart eindeutig.

Supertyp: Zeichenkette mit Wert MAg.Id, identifiziert eine andere Merkmalart
oder einen Merkmalprototyp, von dem geerbt wird. Die induzierte Vererbungsstruktur
zwischen Merkmalarten ist kreisfrei.

Merkmalprotyp
MPg = {Id : £*}

Id: Zeichenkette, identifiziert den Merkmalprototyp eindeutig.

Aussageart
AAg ={Id: ¥}

Id: Zeichenkette, identifiziert die Aussageart eindeutig.

Merkmaltrager
MTs = {Id : ¥, Merkmaltriigertyp : £*}

Id: Zeichenkette, identifiziert den Merkmaltréger eindeutig.

Merkmaltrigertyp: Zeichenkette mit Wert MTTs.Id, verweist auf den zugehorigen
Merkmaltragertyp.

Aussage

ASg = {Id : ¥*, Merkmaltriiger : ¥*, AllgMerkmal : £¥, Aussageart : ¥%,
Relation : {=,<,<,>,>,~}, Einheit : £*, Wert : X}

Id: Zeichenkette, identifiziert die Aussage eindeutig.

57

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Merkmaltriger: Zeichenkette mit Wert MTs.Id oder MTTs.Id, die den Merkmal-
trager oder Merkmaltrégertyp identifiziert, auf den sich die Aussage bezieht.

AllgMerkmal: Zeichenkette mit Wert AMg.Id, die das allgemeine Merkmal identi-
fiziert, tiber das eine Aussage getroffen wird. [Bemerkung 1: Wenn die Aussage einen
Merkmaltrdger betrifft, dann identifiziert AllgMerkmal ein spezielles Merkmal des
Merkmaltragers. Trotzdem wird als Kennung die eines allgemeinen Merkmals ver-
wendet, weil durch die Kombination mit Merkmaltriger klar wird, dass ein spezielles
Merkmal gemeint ist, ohne dass hierfiir neue Kennungen eingefiihrt werden miissen.
Bemerkung 2: Das allgemeine Merkmal muss dem Merkmaltragertyp bzw. dem Merk-
maltragertyp des Merkmaltragers zugeordnet sein.]

Aussageart: Zeichenkette mit Wert AAg.Id, die die Aussageart identifiziert, die die
Semantik der Aussage definiert.

Relation: Bestimmt, wie das Merkmal, tiber das eine Aussage getroffen wird, zu
einem Wert in Relation gesetzt wird.

Wert: Maschinell verarbeitbarer Wert, zu dem das Merkmal, iiber das eine Aussa-
ge getroffen wird, in Relation gesetzt wird. [Bemerkung: X entspricht der Menge aller
Werte des Datentyps ,,ANY” der IEC 61131.]

Einheit: Zeichenkette, durch die die Einheit von Wert definiert wird (z.B. als SI-Einheit).

5.1.2. Anwendersicht

Fiir den Anwender, der letztendlich Funktionsbausteine zur Abfrage von Information
verwenden mochte, ist das Denken in Relationsschemas umstiandlich und erscheint un-
passend. Die in Abschnitt 2.1 gewédhlte Darstellung in Form von Klassendiagrammen
ist im Vergleich anschaulicher und besser geeignet, um das Grundmodell zu verstehen.
Es muss aber auch berticksichtigt werden, dass ein Anwender eine Losung fiir ein kon-
kretes Problem sucht und daher eher an dem Aussehen konkreter Daten interessiert ist,
d.h. der ,Instanzebene”, als am Grundkonzept der Modellierung auf der Klassenebene.
Eine einfache und effektive Hilfestellung ist deshalb das Auffithren von Beispielen fiir
Merkmaldaten in Form von Tabellen.

In Tabelle 5.1 und den darauf folgenden Tabellen werden Beispieldaten fiir jedes Rela-
tionsschema gezeigt. Zu den Merkmaltrdgern A0815 und A0816, beide vom Typ , Krei-
selpumpe mit Wellendichtung” entsprechend eCl@ss 9.0, werden Aussagen {iiber die
maximale Férderhohe und Forderstrom gemacht. Aussagen und Merkmaltrédger werden
der Ubersichtlichkeit halber direkt in einer Tabelle zusammengefiihrt. Die Definitionen
der allgemeinen Merkmale und Merkmalarten sind durch eCl@ss gegeben. Merkmal-
prototypen als ,Supertypen” von Merkmalarten sind in eCl@ss nicht vorhanden, daher
wird auf die ISO 80000 [16] verwiesen. Die in der ISO 80000 referenzierten Grofien ent-
sprechen den jeweils in eCl@ss verwendeten Einheiten. Fiir die Aussageart wird die
interne Konvention verwendet, dass ,Z01” eine Zusicherung des Herstellers ist, z.B. aus
einem Datenblatt. Die Beispieldaten kénnen dazu verwendet werden, um die korrekte

58

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

Funktion der Pumpen A0815 und A0816 zu iiberpriifen.

Tabelle 5.1.: Beispieldaten entsprechend einer Kombination der Relationsschemas MTs und
ASs.

Merkmaltféger >XIMTs.Id=ASs .Merkmaltriiger Aussage
Id Merkmaltrigertyp| AllgMerkmal | Aussageart | Relation | Einheit | Wert
A0815 | ecl@ss9.0/36-41- ecl@ss9.0/- Z01 > m 127.0
01-08 0173-1#02-
BAJ123#006
A0815 | ecl@ss9.0/36-41- ecl@ss9.0/- Z01 > m3/h 110.0
01-08 0173-1#02-
BAI023#003
A0816 | ecl@ss9.0/36-41- | ecl@ss9.0/- Z01 > m 105.0
01-08 0173-1#02-
BAJ123#006
A0816 | ecl@ss9.0/36-41- ecl@ss9.0/- Z01 > m3/h 122.0
01-08 0173-1#02-
BAI023#003

5.2. Grundoperationen der Abfragesprache

Zunichst sollen Grundoperationen festgelegt werden, durch die spater auch komplexere
Operationen definiert werden kénnen. Dazu werden die Grundoperationen so gewdhlt,
dass sie per Konstruktion relational vollstandig sind. So kann von Beginn an zugesi-
chert werden, dass zur Abdeckung der Ausdrucksstiarke der relationalen Algebra keine
weiteren Operationen benottigt werden.

5.2.1. Abdeckung der relationalen Algebra

Die hier verwendeten Grundoperationen sind Projektion, Selektion, Kreuzprodukt, Ver-
einigung, Differenz und Umbenennung. Gegentiber den urspriinglichen acht Operatio-
nen der relationalen Algebra fehlen bei dieser Auswahl die Operationen Division, Re-
striktion, Schnittmenge und Vereinigung, d.h. zum Zeigen der relationalen Vollstandig-
keit miissen die fehlenden vier Operationen auf die ausgewahlten sechs Grundopera-
tionen zuriickgefiihrt werden. Fiir die Division und die Restriktion wurde das bereits
von Codd bei der Definition der Operationen gezeigt [10]. Die Schnittmengenoperation
N kann auf die Differenzoperation zurtickgefiihrt werden, weil fiir die Menge X und Y
gilt XNY = X\ {X\ Y}. Die Vereinigungsoperation kann durch das Kreuzprodukt und
die Selektion gebildet werden (s. Seite 21). Somit ist die genannte Menge von Grundope-
rationen relational vollstandig.

Die Operationen kénnen nun mit Einschrankung auf die Relationsschemas aus Ab-
schnitt 5.1 definiert werden, weil sie ohnehin nur in diesem Kontext verwendet werden.
Bei dieser Gelegenheit wird auch die Notation als Funktionen eingefiihrt, die einfacher

59

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Tabelle 5.2.: Beispieldaten entsprechend dem Schema MTTs (mit zusétzlicher Bemerkung).

Merkmaltragertypen

Id AllgMerkmale| Supertypen Bemerkung
ecl@ss9.0/36-41- | ecl@ss9.0/- ecl@ss9.0/36-41- | Kreiselpumpe mit Wellendichtung
01-08 0173-1#02- 01

BAJ123#006;

ecl@ss9.0/-

0173-1#02-

BAI023#003

ecl@ss9.0/36-41-
01

ecl@ss9.0/36-41

Kreiselpumpe

Tabelle 5.3.: Beispieldaten entsprechend dem Schema A Mg (mit zuséatzlicher Bemerkung).

Allgemeine Merkmale

Id Merkmalart | Bemerkung
ecl@ss9.0/0173- ecl@ss9.0/02- | Max. Forderhohe
1#02-BAJ123#006 | BAJ123

ecl@ss9.0/0173- ecl@ss9.0/02- | Max. Forderstrom
1#02-BAI023#003 | BAI023

Tabelle 5.4.: Beispieldaten entsprechend dem Schema M Ag (mit zusétzlicher Bemerkung).

Merkmalarten
Id Supertyp Bemerkung
ecl@ss9.0/02- 1SO80000-3- Max. Férderhohe
BAJ123 1.1
ecl@ss9.0/02- 1SO80000-4-30 | Max. Forderstrom
BAI023

Tabelle 5.5.: Beispieldaten entsprechend

. - Tabelle 5.6.: Beispieldaten entsprechend
dem Schema MPs (mit zusatzlicher dem Schema AAg (mit zusatzlicher
Bemerkung).

Bemerkung).
Merkmalprototypen
Aussagearten
Id Bemerkung Id [ Bemerkun
15080000-3-1.1 Lange Z01 Zisiihelrlur% des Herstellers
15O080000-4-30 | Volumenstrom &

60

am 20,01.2026, 08:53:31. @
m

Inhak.

mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

lesbar ist. Diese Funktionen werden dann im Kapitel 5.4 von den Funktionsbausteinen
verwendet.

Es sei A die Menge aller Attribute aus Abschnitt 5.1, die in den Relationsschemas
verwendet werden, T die Menge aller Tupel entsprechend der hier verwendeten Relati-
onsschemas, BIF die Menge aller booleschen Formeln und ‘B das Symbol fiir die Potenz-
menge. Es gelte
3#FTCT,{} #UCT,{} # A CA,t € T,a,d € Aundb € BF. Dann sind die
Grundoperationen definiert durch:

Projektion
reduce : B(T) x P(A) — B(T)
reduce(T, A) = 7w4(T)
Selektion
choose : R(T) x BF — B(T)
choose(T,b) = oy(T)
Kreuzprodukt
combine : P(T) x P(T) — B(T)
combine(T,U) =T x U
Vereinigung
union : P(T) x P(T) — P(T)
union(T,U) =TUU
Differenz
remove : P(T) x P(T) — P(T)
remove(T,U) = T\ U
Umbenennung

rename : PB(T) x A x A — B(T)

rename(T,a,d) = pz,,(T)

61

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

5.2.2. Wertausgabe

Diese so festgelegten Operationen sind noch nicht operativ nutzbar. Ein Grund dafiir ist,
dass alle Funktionen in eine Menge von Tupeln abbilden. Der Anwender der Abfrage-
sprache mochte und kann aber nicht mit Tupeln als Antworten auf Abfragen arbeiten,
sondern mit Werten der Menge X, die von den IEC 61131-3 -Programmiersprachen wei-
terverarbeitet werden konnen. Dafiir wird zusétzlich die Funktion value fiir die Riickga-
be eines Wertes bzw. mehrerer Werte benotigt.

value : P(T) x A — X"

value(T,a) = t1.4, ..., ty.a, T={t, . th}

5.2.3. Boolesche Formeln

Letztlich ist noch die Verwendung boolescher Formeln BF zu klaren, die in der Selekti-
on verwendet werden. Die Programmiersprachen der IEC 61131 verwenden boolesche
Ausdriicke, so dass hier kein neues Konzept eingefiihrt werden muss und auf die vor-
handene Syntax zuriickgegriffen werden kann. Die in den Formeln verwendeten Va-
riablen sind in diesem Fall aber keine Variablen der SPS, sondern Attributwerte. Wenn
aus den Aussagen T beispielsweise diejenigen herausgesucht werden sollen, fiir die das
Attribut Aussageart den Wert , Zusicherung” hat und Relation ,>* ist, kann dazu die
Funktion

choose(T, Aussageart = Zusicherung A Relation =>)

verwendet werden.

5.2.4. Vererbungsbeziehungen

Eine der bekannten Grenzen der relationalen Algebra ist das Fehlen einer transitiven
Hiille. Im Anwendungskontext der Schemas aus Abschnitt 5.1 macht sich das durch
zwei Einschrankungen bemerkbar:

1. Mit den bisher definierten Grundoperationen koénnen die ,Supertypen” eines
Merkmaltragertyps nicht iteriert werden. Z.B. konnte die Frage ,Ist dieser Merk-
maltrager vom Typ Produkt?” nicht beantwortet werden, weil die vollstandige Ver-
erbungshierarchie nicht durchsucht oder aufgelistet werden kann. Das gilt prinzi-
piell auch fiir die Vererbungsrichtung ,nach unten”.

2. Analog dazu ist es nicht moglich, die tibergeordneten (oder untergeordneten)
Merkmalarten einer Merkmalart aufzulisten oder zu durchsuchen. Das kann dann
erforderlich sein, wenn entschieden werden soll, ob ein Gegenstand mit unbekann-
tem Merkmaltrédgertyp aufgrund seines Gesamtgewichts von einer Maschine, z.B.
einem Transportsystem, verarbeitet werden kann. In dem Fall ist das konkrete all-
gemeine Merkmal, das gepriift werden muss, unbekannt, weil das Gesamtgewicht
bei jedem Merkmaltragertyp unterschiedlich definiert ist. Es ist aber bekannt, dass
es von ,Gesamtgewicht” abgeleitet sein muss.

62

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

Zur Uberwindung dieser Einschrankungen wird die rekursive Funktion typeOf fiir
Merkmalarten (M As) und Merkmaltragertypen (MTTs) definiert, die eine gesamte Ver-
erbungshierarchie zuriickgibt. Die Funktion deckt nur den Anwendungsfall der Hierar-
chie ,nach oben” ab, weil es fiir den Fall ,nach unten” keine praktisch sinnvolle Moti-
vation gibt.
typeOf : P(T) x P(T) — P(T)

Uueu choose(T, Id = u.Supertyp)

U typeOf (T, value(u, Supertyp)), alle u entsprechen MAg

typeOf (T, U) = < Uy, ey choose(T, \; Id = u.Supertypen;
U typeOf (T, value(T, Supertypen);), alle u entsprechen MTTs

{}, sonst

5.2.5. Aggregationen

Eine weitere wesentliche Einschrankung der relationalen Algebra ist, dass sie keine Ope-
rationen zur Aggregation von Werten enthilt. Wenn beispielsweise der Merkmaltrager
gefunden werden soll, bei dem ein bestimmtes Merkmal die maximale Auspragung un-
ter allen Merkmaltrégern hat, etwa die Bestellung mit der hochsten Prioritdt, dann miis-
sen mit den bisher definierten Funktionen alle Merkmaltrager abgerufen und tiberpriift
werden. Auch wenn das kein direkter Konflikt mit Anforderung 10 ist, nach der die Aus-
fiihrung der Abfrage keinen Einfluss auf den Betrieb der SPS haben soll, so widerspricht
es trotzdem der Intention dieser Anforderung. Schlieflich wéchst der Aufwand mit der
Menge an Daten, die durchsucht werden miissen, und diese Menge ist der SPS vorab
nicht bekannt. Insofern ist es sinnvoll, die vorhandenen Funktionen um Moglichkeiten
zur Aggregation von Zahlenwerten zu erweitern.

Bei der Aggregation von Werten gibt es zwei unterschiedliche Wege der Aggregati-
on: Die Aggregation tiber mehrere Merkmaltréger hinweg (z.B. Finden des schwersten,
grofiten oder dltesten Merkmaltrégers) und die Aggregation von Werten innerhalb des-
selben Merkmaltrégers (z.B. Bildung von Differenzen zwischen oberem und unterem
Grenzwert, Berechnung zusammengesetzter Merkmale wie Dichte, ...). Fiir diese Fille
werden zwei Funktionen definiert: aggr All und aggrEach. Wiinschenswert ist, dass die
Funktionen schachtelbar sind, damit beispielsweise bei gegebener Dichte und Volumen
fiir jeden Merkmaltrager derjenige mit der hochsten Masse gefunden werden kann. Da-
fiir muss zunéchst die Darstellung eines Ergebnisses durch das Relationsschema

Es = {Id : ¥*, Wert : X}

definiert werden. Die Verwendung eines eigenen Schemas fiir Ergebnisse hat einen ein-
fachen Hintergrund: So ist es moglich, Ergebnisse einer Berechnung als Argument einer
anderen Funktion zu verwenden. Die Geschlossenheit der Funktionen wird also nicht
aufgebrochen. Fiir die Id, die ein Ergebnis tragt, wird die Id des Merkmaltragers ver-
wendet, der dieses Ergebnis erzeugt hat. Durch die Benennung des Attributs Wert, die
bei ASg und E; gleich ist, braucht in der Funktion aggrAll nicht zwischen Aussage und
Ergebnis als Argument unterschieden zu werden.

63

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Sei nun E die Menge aller Ergebnisse entsprechend dem Schema Eg, MT die Men-
ge aller Merkmaltrager entsprechend dem Schema MTs und AS die Menge aller
Aussagen entsprechend ASg. ©® sei das Symbol fiir einen Operator aus der Menge
{+,—, %, /, max, min,#}. Dann kann die Funktion aggrAll durch eine Fallunterschei-
dung von © definiert werden. Im Fall der Operatoren +, —, %,/ werden die Wert-
Attribute der an die Funktion {ibergebenen Tupel durch den entsprechenden Operator
(den Wert von ©) verkniipft. Fiir max und min wird das Maximum bzw. Minimum der
Wert-Attribute gesucht. Der Operator # z4hlt die tibergebenen Tupel. Es gilt also:

aggrAll : P(EU AS) x {+,—, *, /,max,min} — E

{elec EAeWert =1 0O .0t Aeld = t1.1d},
wenn ® € {+,—,%,/}

aggrAll(T,®) = < {ele € EAe.Wert = ©{t.Wert|t € T}
Neld = {t.Id|t.Wert = e.Wert}}, wenn @ € {max, min}

{ele e ENeWert = |T| ANeld = t;.1d}, wenn © € {#}

mit T" = {#], ..., 15} = {H1.Wert, ..., t,. Wert} C {EU AS}.

Mit der Funktion aggrEach werden beliebige Attribute innerhalb eines Tupels mittels der
Operatoren +, —, *, / verkniipft. Wenn mehrere Tupel an die Funktion {ibergeben wer-
den, geschieht das fiir jedes Tupel. Wenn mehrere Operatoren tibergeben werden, ge-
schieht die Anwendung in der {ibergebenen Reihenfolge (d.h. die Priorisierung , Punkt
vor Strich” existiert nicht).

aggrEach : PB(T) x A" x {+,—, %, /1"t = B(E)

aggrEach(T, (a1, ..., an), (®1, ..., Op_1)) =
{6‘@ € E NeWert = tiag ®O1 ... Op_1 tiap ANedd = t;. Id Ni € {1,..., ‘T|}}

ne{l,2,.},T={t,..4} CT,o; €{+, —, %/}

Die Anwendung der Funktion zur Aggregation selbst ist verhaltnisméagig einfach, kann
aber je nach Aufgabenstellung in einem komplizierten Kontext geschehen. Als kurzes
Beispiel zur Illustration soll der oben genannte Fall realisiert werden, in dem der Merk-
maltrager mit der groiten Masse gesucht wird. Gegeben sind Aussagen tiber die Istwer-
te von Dichte und Volumen zu jedem Merkmaltrager in MT C MT in jeweils derselben
Einheit.

Im ersten Schritt werden die Aussagen aus AS C AS ausgewdhlt, die Merkmaltrager
aus MT betreffen. Dazu werden die Merkmaltrdger und Aussagen durch die Funktionen

64

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

choose und combine passend zusammengefiihrt. Weil sowohl Aussagen als auch Merk-
maltrager das Attribut Id besitzen, wird dieses zur Vermeidung einer Namenskollision
fiir die Aussagen in Id2 umbenannt. Die neue Menge von Tupeln aus Merkmaltragern
und Aussagen ist dann MT*.

MT* = choose(combine(MT, rename(AS, Id, 1d2)), Id = Merkmaltriiger))

Im néchsten Schritt werden die Tupel MT}), ;,,, und MT; - ausgewdhlt, die Informa-

tionen zu den genauen Istwerten der Dichte bzw. des Volumens beinhalten.
MTBicht@ =
choose(MT*, AllgMerkmal = Dichte A Aussageart = Istwert A Relation = =)
MT\,;olumen =
choose(MT*, AllgMerkmal = Volumen A Aussageart = Istwert A Relation = =)

Anschliefsend werden einige Attribute umbenannt, um danach die Tupel ohne Namens-
kollision zusammenfiihren zu konnen.

MT Votumen = rename(rename(MT,pmens 14, 1d2), Wert, Volumentwert)

MT bicpe = rename(MT}y, ., Wert, Dichtewert)

Die Tupel werden nun iiber die gemeinsame Id verkniipft.

MT\;olutrzenDichte = Choose(combine(MT*Dichter MT*Volumen)l Id = Id2)

Anschliefsend folgt die Berechnung der Massen je Tupel.

ErgebnisseMasse = aggrEach(MTy,1menDichter (Volumenwert, Dichtewert), (x))

Daraus kann schliefSlich das Maximum ermittelt und der Wert mittels value ausgegeben
werden.

MaxMasse = aggrAll(ErgebnisseMasse, max)
x = value(Wert, MaxMasse)
Das Beispiel ldsst erkennen, dass komplexe Abfragen durch die definierten Funktionen
moglich sind, dass diese aber auch kleinteilig und umsténdlich sein konnen. Im folgen-

den Abschnitt werden deshalb spezielle Operationen fiir in der Praxis haufig auftretende
Aufgaben definiert.

65

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

5.3. Erweiterte Operationen der Abfragesprache

Aufbauend auf den zuvor definierten Grundoperationen werden nun erweiterte Opera-
tionen definiert. Die Auswahl ist durch praktische Anwendungsbeispiele motiviert. Fiir
die Definition wird nur auf die vorhandenen Grundoperationen und andere Operatio-
nen dieses Abschnitts zuriickgegriffen. Die hier genannten erweiterten Operationen sind
nur als Beispiele zu verstehen und kénnen durch weitere Operationen erganzt werden.

5.3.1. Zusammenfiithren von Merkmaltragern und Aussagen
Beschreibung

Es ist hdufig notwendig, Merkmaltrager und Aussagen, die diese betreffen, zusammen-
zufiihren. In Tabelle 5.1 (Seite 59) ist ein einfaches Beispiel dazu zu sehen. Zusatzlich
konnen auch Aussagen existieren, die den Merkmaltragertyp zum Ziel haben und da-
durch indirekt fiir einzelne Merkmaltrager gelten. Als Vereinfachung fiir das Zusam-
menfiihren der Information wird dafiir eine eigene Operation definiert.

Anwendungsbeispiel

Zu einer Auswahl von Merkmaltrdgern sollen alle relevanten Aussagen gesucht werden.

Definition

joinStatements : P(T) x P(MT) — B(T)

joinStatements(T, MT) = union({directStatementIn formation},
{indirectStatementIn formation})

Zur Berechnung miissen die direkten Aussagen iiber den Merkmaltrager und die
indirekten Aussagen, die durch den Merkmaltrigertyp gemacht werden, ermittelt
werden. Dabei gilt:

T Cc T, MT C MT, MTT sei die Teilmenge von T entsprechend MTTs und AS
sei die Teilmenge von T entsprechend ASg,

{directStatementIn formation} =
reduce({rawDirectStatementInformation}, {1d, Merkmaltrigertyp,
AllgMerkmal, Aussageart, Relation, Einheit, Wert}),

{rawDirectStatementIn formation} =
choose(combine(MT, rename(AS, Id, [d2)), Id = Merkmaltriiger),

66

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.3. Erweiterte Operationen der Abfragesprache

{indirectStatementIn formation} =
({rawIndirectStatementIn formation}, {Id, Merkmaltrigertyp,
AllgMerkmal, Aussageart, Relation, Einheit, Wert}),

{rawlIndirectStatementIn formation} =
(combine({propertyCarrierWithAllSupertypes},
rename(AS, Id, 1d2)), supertypeld = Merkmaltriiger),

{propertyCarrierWithAllSupertypes} =
reduce(choose(combine(MT, rename(join(MTT, typeOf (T, MTT)), Id, supertypeld)),
supertypeld = Merkmaltriigertyp), {1d, supertypeld, Merkmaltriigertyp}).

5.3.2. Suche nach Merkmaltragern
Beschreibung

Die Operation erméglicht das Suchen nach Merkmaltragern mit bestimmten Eigenschaf-
ten. Als gesuchte Eigenschaften konnen der Merkmaltrdgertyp mtt, die Aussageart aa
einer Aussage {iber den Merkmaltrager, die Relation rel der Aussage, das betreffende
Merkmal mm, der Aussagewert we und Einheit eh wahlweise eingesetzt werden. Dabei
diirfen einzelne Variablen unbelegt bleiben und werden in dem Fall ignoriert. Durch-
sucht wird die Menge T von Daten.

Anwendungsbeispiel

Suche alle Merkmaltrager vom Typ ,Bestellung” aus den Daten T, bei denen das Merk-
mal Auftragsnummer mit dem Wert ,x“ {ibereinstimmt.

Definition

whichones : P(T) x PIMT) x Tx T x T x {=,<,<,>, >} x X x ZF — P(T)

whichones(T, MT, mtt, aa, mm, rel, we, eh) =
choose(joinStatements(T, MT), Merkmaltriigertyp = mtt A Aussageart = aa
A AllgMerkmal = mm A Relation = rel A Wert = we A Einheit = eh)

Mit (b = b) < (b=Db) ,wennb # e A b # ¢, true sonst.

b,b € BF, ¢ als Symbol fiir eine nicht belegte Variable.

67

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

5.3.3. Aggregationen
Beschreibung

In Abschnitt 5.2 wurden bereits die Operationen aggrEach und aggrAll zur Durchfiih-
rung von Aggregationen definiert. Aus praktischer Sicht ist es sinnvoll diese Operatio-
nen so zu erweitern, dass als Parameter auch Merkmaltrdager und Merkmaltragertypen
(zusammen mit Aussagen tiber diese) tibergeben werden kénnen. Die Aggregation wird
dann auf bestimmte Aussagen tiber die tibergebenen Merkmaltrager(typen) angewen-
det, so dass diese Aussagen nicht durch eine vorherige Operation gesucht werden miis-
sen. Dadurch wird die Anwendung in vielen Féllen erheblich vereinfacht. Die erweiter-
ten Operationen erhalten die Namen aggrEach’ und aggrAll'.

Anwendungsbeispiel aggrEach’

Fiir eine Untermenge von Merkmaltragern aus einem Datensatz soll die Masse anhand
von Aussagen tiber Dichte und Volumen ermittelt werden (vgl. Beispiel auf Seite 64).

Definition von aggrEach’

aggrEach’ : P(T) x P(MT) x A" x {+, —, %, /1" I XxTxTxTx T x T x T — B(E)

uggrEach/(T, MT, (ay, ..., an), (®1, ..., On_1), mtt, aa, mm,rel, we, eh) =
{uggrEach(T, (a1, 1), (O1, ., On-1))), wenn MT = {}
aggrEach(whichones(T, MT, mtt, aa, mm, rel, we, eh), (a1, ..., an), (®1, ..., On-1)),
sonst
ne{l,2.},0€{+ —x*/}

Anwendungsbeispiel aggrAll'

Fiir eine Untermenge von Merkmaltragern aus einem Datensatz soll derjenige mit dem
groften Ist-Wert der Masse herausgesucht werden (vgl. Beispiel auf Seite 64).

Definition aggrAll’

aggrAll' :B(T) x {+,—,, /,max,min} x PIMT) x TXxTXxTXxTxTxT — E

aggrAll(T, ®), wenn MT = {}
aggrAll(reduce(whichones(
T, MT, mtt, aa, mm,rel, we, eh),
{ Id, Wert}),®), sonst

aggrAll'(T, MT, ®, mtt, aa, mm, rel, we, eh) =

68

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.3. Erweiterte Operationen der Abfragesprache

5.3.4. Bestimmung des Merkmaltragertyps
Beschreibung

Die Bestimmung des Merkmaltragertyps eines Merkmaltragers kann direkt durch das
Abfragen des entsprechenden Attributs geschehen. Wenn die Fragestellung aber lautet,
ob ein Merkmaltrdger m aus T entweder von einem bestimmten Typ typ ist, oder von
einem Typ, der von diesem Typ erbt, kann die Funktion isoftype verwendet werden.

Anwendungsbeispiel
In einem automatischen Lagersystem ist der exakte Typ der eingelagerten Gegenstande
nicht relevant. Es muss aber grundsitzlich zwischen unterschiedlichen Klassen unter-
schieden werden.
Definition

isoftype : P(T) x MT x T — T

isoftype(T, m, typ) = choose(typeOf (T, value(m, Merkmaltrigertyp)), Id = typ)

5.3.5. Vorhandensein eines Merkmals
Beschreibung
Die Operation bestimmt, ob es fiir den Merkmaltrager m Aussagen tiber ein Merkmal
der Merkmalart art gibt oder tiber eine Merkmal von einer Merkmalart, die von art erbt.
Falls dies der Fall ist, wird die Menge der zutreffenden Merkmalarten zuriickgegeben,
sonst die leere Menge.
Anwendungsbeispiel
Die Weiterverarbeitung eines hdangt davon ab, ob Informationen tiber bestimmte Quali-
tatsmerkmale vorhanden sind.
Definition

hasaproperty : B(T) x MT x T — T
Die Funktion wird in mehreren Schritten definiert:

hasaproperty(T, m,art) = chose({ AllGenericProperties}, Id = art)

Mit AllGenericProperties als Menge aller allgemeinen Merkmale, {iber die es direkt oder
indirekt Aussagen gibt:

{AllGenericProperties} = typeof(T,{GenericProperties})

69

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

GenericProperites ist die Menge der von durch Aussagen betroffenen allgemeinen Merk-
malen:

{GenericProperties} = chose(T,value(T, Id) = value({Properties}, Merkmalart))

{Properties} = chose(T,value(joinStatements(T,m), AllgMerkmal) = Id)

5.3.6. Verkniipfung von Merkmaltragern
Beschreibung

Die Operation gibt aus zwei Mengen von Merkmaltragern diejenigen zurtick, die in aus-
gewihlten Attributen {ibereinstimmen bzw. bei denen die Aussagewerte in einer be-
stimmten Relation stehen. Ob die Attribute in der gewé&hlten Relation stehen miissen,
wird durch Boolesche Wahrheitswerte fiir jedes Attribut vorgegeben.

Anwendungsbeispiel

Posten einer Bestellung werden mit vorhandenen Lagerbestianden abgeglichen.
Definition

matching :
P(T) x P(MT) x P(MT) x BXxBxBxBxBxBx{=<,<,>,>,{}} - B(MT)

matChing(Tr MTy, MT,, by, bM@rkmaltrﬁgertypr

bAllgMerkmal/ bAussagemf/ bRelution/ bEinheitr rdWe‘/t)
= reduce(choose(joinStatements(T, { MTy, MT»}),b*), {Id, Merkmaltriigertyp})

mit

b* = (Id = Id2 V —byy)
N(Merkmaltrigertyp = Merkmaltrigertyp2 NV =buterkmaltrigertyp)
N(AllgMerkmal = AllgMerkmal2 N =b oigMerkmat )
N(Aussageart = Aussageart2 V b Aussageart
A(Relation = Relation2 \/ =breiation)
NA(Einheit = Einheit2 N —bgiupeit)
A(

*
Wert relyers Wert2)
*
mit Wert relyes Wert2 = Wert relyey Wert2, wenn relye € {=, <, <,>,>1,

true sonst.

70

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

5.4. Schnittstellen und Verhalten der Funktionsbausteine

In diesem Kapitel werden aus den Operationen, die in den Abschnitten 5.2 und 5.3 defi-
niert wurden, Funktionsbausteine abgeleitet. Dazu gehort die Spezifikation der Schnitt-
stellen der Bausteine gemafs IEC 61131-3 und die Spezifikation der SPS-seitigen Ausfiih-
rung einer Abfrage. Nicht dazu gehort die Spezifikation der Algorithmen, die die zuvor
definierten Operationen implementieren. Gemaf3 Anforderung 3 soll die Ausfithrung
einer Abfrage der Verwendung eines Dienstes entsprechen, daher liegen diese Algorith-
men auflerhalb der Zustdndigkeit der SPS und sind technisch davon abhéngig, wie die
Merkmalinformation gespeichert wird.

5.4.1. Konzept

In den vorigen Kapiteln wurde durch einige Beispiele gezeigt, dass die Operationen der
Abfragesprache sich ineinander schachteln lassen, um so komplexe Abfragen aufzubau-
en. Solche komplexen Abfragen sollten, genau wie einfache Abfragen aus einer einzigen
Operation, seitens der SPS als eine einzige Abfrage behandelt werden. Die Interpretation
und Ausfiihrung solcher komplexer Abfragen obliegt dann ganz dem (Fremd-)System,
das als Dienstleister zur Ausfithrung der Abfragen auftritt. Auf diese Art wird die SPS
in ihrer Funktion nicht dadurch beeinflusst, wie komplex die Ausfiihrung einer Abfrage
ist (sieche Anforderung 10).

Damit besteht die Bearbeitung einer Abfrage seitens der SPS aus zwei Phasen, nam-
lich der Generierung einer Abfrage als geschachtelter Ausdruck und anschlieSend die
eigentliche Durchfithrung der Abfrage. Die Generierung ist deshalb eine eigene Pha-
se, weil die Abfrage durch Variablen veranderliche Inhalte enthalten kann. Zum Auf-
bau von Ausdriicken werden die zuvor definierten Operationen verwendet: Wenn es
zu jeder Operationen einen entsprechenden Funktionsbausteintyp gibt, dann bildet der
Funktionsbaustein lediglich eine Zeichenkette, die den konkret zu realisierenden Auf-
ruf als Text wiedergibt. Diese Zeichenkette wird als Wert in den Ausgang des Funkti-
onsbausteins geschrieben und kann als Argument fiir einen anderen Funktionsbaustein
verwendet werden. Ein Beispiel dazu zeigt Abbildung 5.2. Darin wird eine Operation
durch eine geschachtelte Abfrage aus value, typeOf und choose aufgebaut, die priift,
ob ein Merkmaltrdger vom Merkmaltragertyp ProduktZ ist und die ggf. diesen Typ zu-
riickgibt. Die Bausteintypen sind fiir das Beispiel willkiirlich festgelegt. Wir nehmen im
Beispiel an, dass der Wert von MerkmaltragerX einen Merkmaltrager anhand seiner Id
identifiziert und dass der Wert von DatenbankY eine Datenbank (oder auch mehrere
Datenbanken) identifiziert. Am Ausgang jedes Funktionsbausteins ist die Zeichenket-
te angegeben, die durch den Baustein aufgebaut wurde. Letztendlich wird der Varia-
ble qXisTypeZ die Abfrage als Wert zugewiesen. Eine dquivalente Abfrage konnte auch
durch eine andere Reihenfolge der Bausteine erreicht werden. qXisTypeZ beinhaltet am
Ende die ausformulierte gesamte Abfrage, die an dieser Stelle aber noch nicht ausgefiihrt
ist. Alternativ konnte eine entsprechende Zeichenkette auch durch vorhandene String-
Operationen aufgebaut werden. Ein Anwender kann die Funktionsbausteine oder die
Représentation als Zeichenkette verwenden, ohne dass ihm die jeweils andere Methode
bekannt sein muss.

Nach dem Aufbau einer Abfrage wird die Abfrage durch einen eigenen Funktions-
baustein durchgefiihrt. Dazu benétigt ein Baustein mindestens drei Eingénge: Einen fiir

71

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

typeOf(Datenbanky, value(MerkmaltragerX,
“Merkmaltragertyp”))

value(MerkmaltragerX, “Merkmaltragertyp”)

vl
MerkmaltragerX value
XisTypeZ
T v g Yp!
“Merkmaltrigertyp” a

DatenbankY

“Id= 7

choose(typeOf(Datenbanky, value(MerkmaltragerX,
“Merkmaltragertyp”)), “Id=ProduktZ”)

Abbildung 5.2.: Beispiel fir den Aufbau einer Abfrage aus Funktionsbausteinen.

die zuvor aufgebaute Abfrage, einen Eingang, an dem durch eine steigende Flanke das
Signal zur Ausfiihrung der Abfrage gegeben wird, und letztlich einen Eingang, an dem
das gefragte Attribut angegeben wird. Das Attribut ist notwendig, weil die Ergebnis-
se von Abfragen Tupel sind, die von einer SPS nicht direkt verarbeitet werden konnen.
Praktisch wird also die Ausfithrung der Operation value zum Abschluss der Abfrage
erzwungen, damit das Ergebnis in einen verarbeitbaren Wertebereich fallt.

In Abbildung 5.3 wird die Ausfiihrung einer Abfrage durch einen Funktionsbaustein
beispielhaft gezeigt. Der Bausteintyp query, der die Abfrage ausfiihrt, ist willkiirlich fiir
das Beispiel gewahlt und soll hier nur zur [llustration des Konzepts dienen; er wird spé-
ter genau spezifiziert. Der Baustein hat einen Ausgang, der das Ergebnis einer Abfrage
liefert, und einen Ausgang, der das Eintreffen eines neuen Ergebnisses fiir die Dauer
eines Zyklus anzeigt. Die Abfrage qXisTypeZ, die zuvor durch die Funktionsbausteine
in Abbildung 5.2 gebildet wurde, wird im Beispiel bei steigender Flanke am Eingang
exc ausgefiihrt und das Attribut Id der resultierenden Tupel abgefragt. Wenn durch eine
Abfrage neue Daten erhalten wurden und das Ergebnis nicht leer ist, wird die Variable
XisTypeZ auf true gesetzt, sonst auf false.

Fiir die genaue Spezifikation der Funktionsbausteine entsprechend diesem Konzept
werden in den néchsten Abschnitten die Bausteintypen beschrieben. Der wesentliche
Punkt dabei ist die Unterscheidung zwischen Funktionsbausteinen zur Formulierung
und zur Durchfiithrung von Abfragen.

5.4.2. Funktionsbausteine flir Abfrageoperationen

In den Abschnitten 5.2 und 5.3 wurden die Abfrageoperationen definiert, die nun durch
Funktionsbausteine fiir den Anwender verfiigbar gemacht werden sollen. Bei der Defi-
nition der Operationen wurden jeweils eine Definitionsmenge und Zielmenge angege-
ben. Dadurch lassen sich die Schnittstellen der Bausteine direkt herleiten. Die Mengen,
mit denen die Definitions- und Zielmengen beschrieben wurden, also beispielsweise die

72

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

leer oder Id des Merkmaltrdgertyps

newData

gXisTypeZ XisTypeZ

“Id”

neue Daten nach Abfrage

Abbildung 5.3.: Beispiel flr die Ausflihrung einer Abfrage und Verarbeitung des Ereignisses
durch Funktionsbausteine.

Menge aller Tupel oder die Menge aller Merkmaltréger, sind natiirlich keine bekannten
Variablentypen innerhalb einer SPS. Das ist an dieser Stelle aber keine zwingende Vor-
aussetzung, weil die Funktionsbausteine keine Daten innerhalb der SPS austauschen,
sondern nur zum Aufbau von Abfragen dienen. Die Schnittstellen der Bausteine arbei-
ten daher immer mit dem Datentyp STRING, wihrend davon ausgegangen wird, dass
durch die Strings Daten vom korrekten Datentyp der Operation identifiziert werden.
In Abbildung 5.2 liegt beispielsweise am Eingang b des Bausteins c1 vom Typ choose
der String ,Id=ProduktZ” an, der eine boolesche Formel beinhaltet. In der Definition
von choose wurde dementsprechend der Typ BT fiir die Menge der booleschen Formeln
festgelegt. Das bedingt natiirlich, dass sich der Wert des Strings, der am Eingang b an-
liegt, als korrekte boolesche Formel interpretieren ldsst. Die Interpretation wird dann
von demjenigen System durchgefiihrt, das die Abfrage als Dienstleister auswertet. Sei-
tens der SPS ist die Verwendung des Datentyps STRING daher ausreichend, wahrend
der Dienstleister jeden Bestandteil einer Abfrage iiberpriifen muss. Innerhalb der SPS
kann beim Aufbau einer Abfrage kein technischer Fehler auftreten, sondern es kénnen
nur ggf. nicht interpretierbare Abfragen aufgebaut werden.

Operativ verhalten sich die Bausteine so, dass bei jeder zyklischen Ausfiithrung aus
den Werten der Bausteineingidnge ein einzelner String aufgebaut wird, der einen ent-
sprechenden Aufruf der Operation textuell wiedergibt. Im Wesentlichen handelt es sich
also um eine Konkatenation von Strings. Fiir einen Anwender ist dabei lediglich zu be-
achten, dass die Bausteine in der richtigen Reihenfolge ausgefiihrt werden, d.h. wenn
ein Ausgang eines Bausteins bl mit dem Eingang eines Bausteins b2 verbunden ist, dann
muss bl vor b2 ausgefiihrt werden. Anderenfalls kann der Aufbau einer syntaktisch und
semantisch korrekten Abfrage nicht sichergestellt werden. Diese Bedingung ist aus An-
wendersicht gut nachvollziehbar, wenn der Aufbau einer Abfrage wie eine Reihenschal-
tung von Filtern betrachtet wird, durch die schrittweise aus einer Informationsmenge die
gesuchte Information herausgefiltert wird. Mit dieser Sichtweise wird auch klar, dass die

73

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Verwendung von Riickwértsschleifen nicht erlaubt ist. Die prototypische Implementie-
rung (Kapitel 6) geht hier noch einen Schritt weiter: Bei der Ausfithrung von Abfragen
werden die betreffenden Funktionsbausteine automatisch in der richtigen Reihenfolge
ausgefiihrt und auf Riickwirtsschleifen tiberpriift. Dies ist jedoch nur aufgrund der im
Prototyp gewahlten Basistechnologie moglich und kann nicht fiir den allgemeinen Fall
vorausgesetzt werden.

Die Art, in der der String fiir Abfragen aufgebaut wird, kann systemspezifisch an-
gepasst werden. Wenn die Ressourcen des Laufzeitsystems stark begrenzt sind oder es
mutmaflich sehr viele und komplexe Abfragen im System geben wird, sind ggf. Ver-
einfachungen sinnvoll. Die Bezeichner von Operationen konnen statt ausgeschriebener
Namen beispielsweise durch Kiirzel ersetzt werden. Aufierdem kann mit geschicktem
Einsatz von Zeigern in der Implementierung das mehrfache Kopieren von Strings um-
gangen werden. Diese Optionen hingen aber stark vom jeweils eingesetzten Laufzeitsy-
stem ab und lassen sich deshalb nicht allgemein festlegen.

Durch die Definition der Operationen, die Konvention zur Benutzung des Datentyps
STRING und das einfache Verhalten ist die Spezifikation der Funktionsbausteintypen
trivial. An dieser Stelle werden die Bausteintypen deshalb nur informell aufgelistet (s.
Abbildung 5.4), wobei die Funktionsbausteine AGGREACH und AGGRALL die Ope-
rationen aggrEach’ und aggrAll’ implementieren. Die formelle Spezifikation der Imple-
mentierung befindet sich in Anhang A.

5.4.3. Funktionsbaustein zur Ausfiihrung von Abfragen

Gemif Anforderung 8 soll sich der Baustein zur Ausfithrung von Abfragen eng am Bau-
stein READ der IEC 61131-5 orientieren. Schnittstellen und Funktion dieses Bausteins
wurden in Abschnitt 3.4.3 vorgestellt. Der Bausteintyp wird nun so angepasst, dass er
sich zur Ausfithrung von Abfragen eignet. Dieser neue Bausteintyp erhalt die Bezeich-
nung QUERY.

Schnittstellen des Funktionsbausteins QUERY

Der READ-Baustein besitzt einen Eingang fiir das Signal zur Ausfithrung (REQ), einen
Eingang zur Identifikation des Kommunikationskanals (ID) und ggf. mehrere Eingénge
zur Identifikation der zu lesenden Daten (VAR_X). Im QUERY-Baustein wird in jedem
Fall ebenfalls der Eingang REQ zur gesteuerten Ausfiihrung von Abfragen benétigt. Au-
Berdem muss er statt der abzufragenden Variablen VAR_X einen STRING-Eingang fiir
die auszufithrende Abfrage Q besitzen. Die Angabe eines Kommunikationskanals ist
dagegen unnotig, wenn angenommen wird, dass immer derselbe Dienstleister zur Aus-
fithrung von Abfragen verwendet wird. Dieser kann dann durch eine globale Variable
identifiziert werden und braucht nicht fiir jede Instanz des QUERY-Bausteins wiederholt
zu werden.

Um das Ergebnis einer Abfrage weiterverarbeiten zu konnen, muss aus dem Tupel,
das das Ergebnis der Abfrage ist, ein konkreter Wert ausgewahlt werden. Dieser Wert
muss in einem von der SPS verarbeitbaren Datentyp darstellbar sein. Typischerweise
wird es sich bei dem gefragten Wert um den Wert einer Aussage tiber ein Merkmal han-
deln, aber allgemein muss die Moglichkeit bestehen, ein beliebiges Attribut zu identifi-
zieren. Dazu erhiélt der QUERY-Baustein den Eingang VAR vom Typ STRING, durch den

74

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

L,

REDUCE CHOOSE COMBINE UNION
DATA DATA DATAL DATAL
EEATTR RESCH EECOND RESCA EEDATAZ RESCH EEDATAZ RESCH
REMOVE RENAME VALUE TYPEOF
DATA1 DATA DATA DATA
EDATAZ RESCH oo RESCH EATTR VALCH ESUB RESCA
NEW
ISOFTYPE JOINSTMT HASAPROP
DATA DATA DATA
ey RESCH ent RESCA Lo RESCO
TYPE PROP
WHICHONES MATCHING AGGRALL AGGREACH
DATA DATA
ENT1 Resco ENT RES -]

ENT2
MID
MTY

Abbildung 5.4.: Bibliothek der Funktionsbausteine fir Abfrageoperationen.

am 20,01.2026, 08:53:31. @
m

Inhak.

mit, fir oder in Ki-Syster

75


https://doi.org/10.51202/9783186256089

5. Losungskonzept

das Attribut identifiziert wird. Die Benennung VAR (statt beispielsweise ATTR) stimmt
zwar nicht mit der Terminologie des genutzten relationalen Modells tiberein, hier wird
aber der Ubereinstimmung mit dem READ-Baustein Vorrang gegeben.

Fiir den Fall, dass der Wert einer spezifischen Aussage tiber ein bestimmtes Merk-
mal eines Merkmaltrégers oder eines Merkmaltragertyps erfragt werden soll, enthalt
der Baustein die Eingdnge PROP, ST, REL und UN. Durch diese Eingidnge konnen das
betreffende Merkmal, die Aussageart, die Relation und die Einheit angegeben werden.
Dadurch ermoglicht der QUERY-Baustein auch den direkten Zugriff auf Werte von Aus-
sagen, ohne dass vorgelagerte Funktionsbausteine wie JOINSTMT verwendet werden
miissen. Voraussetzung fiir diese Funktion ist natiirlich, dass das Ergebnis der Abfra-
ge am Eingang Q entweder Merkmaltréger oder Merkmaltrégertypen beinhaltet, damit
diese nach den angegebenen Aussagen durchsucht werden konnen. Andere Tupel, die
keine Merkmaltréger oder Merkmaltragertypen bezeichnen, werden ignoriert. Die Ver-
wendung des Eingangs PROP hat Prioritit vor dem Eingang VAL: Wenn beide belegt
sind, wird nach einer ,passenden” Aussage gesucht anstatt das durch VAL angegebene
Attribut der Tupel auszugeben.

Die Ausginge des Funktionsbausteins QUERY sind identisch mit einem READ-
Baustein, der einen Datenausgang besitzt. Das bedeutet insbesondere, dass der RD-
Ausgang eine beschreibbare Variable vom Typ ANY ist. Abbildung 5.5 zeigt den Funk-
tionsbausteintyp. Die Spezifikation des Bausteins befindet sich in Anhang A.

Abbildung 5.5.: Funktionsbausteintyp QUERY.

Verhalten des Funktionsbausteins QUERY

Fiir das Verhalten des Bausteins wird das Verhalten des Funktionsbausteintyps READ
tibernommen. Es entspricht dem in Abbildung 3.4 (Seite 47) gezeigten Ablauf mit an-

76

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

gepassten Variablennamen. Betrachtet man von auflen her die Funktion von READ und
QUERY, dann ist ein praktisch identisches Verhalten auch naheliegend: In beiden Fallen
wird an einen Dienstleister eine Zeichenkette iibergeben, die Daten identifiziert. Die Zei-
chenkette wird vom Dienstleister interpretiert und er schickt eine Antwort auf die Ab-
frage zurtick, so dass die Antwort zu einem spéteren Zeitpunkt am Funktionsbaustein
zur Verfligung steht. Unterschiede betreffen nur den Inhalt von Abfrage und Antwort.

Wegen der weitgehenden Ubereinstimmung und den nur unwesentlichen Unterschie-
den wird die Ausfiihrungslogik des Funktionsbausteins an dieser Stelle nicht erneut er-
lautert. Eine Spezifikation befindet sich in Anhang B.

5.5. Systemarchitektur

5.5.1. Positionierung in der Automatisierungspyramide

Die vorgeschlagene Losung besteht aus zwei technisch getrennten Komponenten:
Den Funktionsbausteinen zur Formulierung und Ausfiihrung von Abfragen und dem
Dienstleister, der die Abfragen interpretiert und die gesuchte Information aus unter-
schiedlichen Datenquellen zusammenstellt. Fiir die Funktionsbausteine ist klar, dass sie
innerhalb einer SPS, die typischerweise zu einem (Prozess-) Leitsystem gehort, ausge-
fiihrt werden. Innerhalb der Automatisierungspyramide befindet sich diese technische
Komponente somit auf der Prozessleitebene.

Der Dienstleister, im Folgenden der Einfachheit halber als ,Merkmaldienst” bezeich-
net, kann dagegen viel freier positioniert werden. Fiir den Merkmaldienst muss zuge-
sichert sein, dass der QUERY-Funktionsbaustein Daten mit ihm austauschen kann und
dass der Datenzugriff auf die diversen Quellen von Merkmalinformation moglich ist.
Aufserdem muiissen natiirlich die notwendigen Ressourcen an Speicher und Rechen-
zeit vorhanden sein. Es ergeben sich daraus drei mogliche Szenarien: Der Merkmal-
dienst kann direkt in der SPS bzw. im selben Hardwaresystem implementiert sein, er
kann in einem nahen PC-System wie einer Operator Station implementiert sein, oder er
kann als selbstiandiger Server in der Produktionsleitebene implementiert sein. Jede die-
ser Moglichkeiten kann in speziellen Anwendungsféllen die optimale Losung sein, in
den meisten Féllen ist jedoch die Implementierung als eigenstdndiger Server die beste
Variante. Erstens wird so der normale Betrieb von Operator Station und SPS ganz si-
cher nicht durch die Verwendung zusatzlicher Ressourcen beeinflusst (s. Anforderung
10), wahrend bei einem selbstindigen Server die Ressourcen frei skalierbar sind. Zwei-
tens muss der Merkmaldienst mit unterschiedlichen Datenquellen arbeiten und entspre-
chend unterschiedliche Datenschnittstellen implementieren. Die Datenquellen befinden
sich tiberwiegend in der Produktionsleitebene. Ein Merkmaldienst als Server in der Pro-
duktionsleitebene kann also direkt mit diesen Datenquellen kommunizieren und muss
nicht zwischen zwei Ebenen tiberbriicken, die ggf. unterschiedliche Teilnetze betrei-
ben. Die Kommunikation mit den Funktionsbausteinen ist dagegen inhaltlich einfach
— es miissen nur Strings und einfache Werte {ibertragen werden, was auch zwischen
Prozessleit- und Produktionsleitebene mit etablierten Protokollen wie OPC DA/UA
oder ACPLT/KS problemlos funktioniert. Aus diesen Griinden wird hier davon aus-
gegangen, dass der Merkmaldienst als selbstandiger Server implementiert wird.

77

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Unternehmensleitebene
ERP

B2MML, OPC UA,
proprietare Impl.

Produktionsleitebene MES | ﬁé AN
| Asset-Mgt | u Lims |
| OPC DA/UA, ACPLT/KS, ...

t’ N\
Prozessleitebene /I e Operator Station \
/ AN analoge Signale, HART,

1]
v Feldbusse, ...
Feldebene =! =!
Sensor | Aktor |
Funktionsblocke Dienstleister zur Ausfihrung von Abfragen
entsprechend Kap. 5.4 an verschiedenen Datenquellen

Abbildung 5.6.: Einordnung des Dienstes fiir Merkmalabfragen in der Automatisierungspy-
ramide.

78

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

5.5.2. Komponenten des Dienstes fiir Merkmalabfragen

In Abbildung 5.6 ist der Merkmaldienst nur als graues Kéastchen dargestellt, das mit
anderen Systemen kommuniziert. In diesem Abschnitt wird der Merkmaldienst nun ge-
nauer spezifiziert. Das geschieht auf dem Abstraktionsniveau von Softwarekomponen-
ten; genauere Details auf dem Niveau von Klassen werden der individuellen Implemen-
tierung tiberlassen. Einen Uberblick in Form eines UML-Komponentendiagramms zeigt
Abbildung 5.7.

Entsprechend dem Konzept eines Dienstes ist es fiir den Dienstnutzer grundsétzlich
irrelevant, wie der Dienst intern implementiert ist. Fiir eine detaillierte Spezifikation
miissten auch viele Details des Anwendungsszenarios berticksichtigt werden, beispiels-
weise

¢ die genutzten Kommunikationsnetze,

e die genutzten Kommunikationsprotokolle,

¢ die Technologie der Datenquellen,

¢ das Datenmodell der Datenquellen,

¢ die fiir den Merkmaldienst verfiigbare Hard- und Software,

¢ die fiir die Implementierung genutzte Technologie.

Die dadurch entstehende kombinatorische Vielfalt wird hier dadurch beantwortet, dass
einige Komponenten je nach Anwendungsfall auswechselbar sind und dass fiir fest vor-
handene Komponenten nur die Funktionalitdt beschrieben wird, nicht durch welche
Datenstrukturen und Algorithmen diese Funktionalitiat geschaffen wird. Beim Merk-
maldienst kann folglich zwischen drei Hauptbestandteilen unterschieden werden. Die
Kernkomponenten bilden das Riickgrat der Anwendung und sind unverandert in je-
der Installation vorhanden. Plug-Ins sind Komponenten, die je nach Anwendungsfall in
einer einzelnen Installation vorhanden sein konnen. Fiir unterschiedliche Datenquellen
werden unterschiedliche Plug-Ins verwendet. Diese konnen die externen Quellen entwe-
der dynamisch anbinden oder deren Inhalt einmalig in ein internes Datenmodell laden.
Den dritten Hauptbestandteil bilden Konfigurationsdateien, in denen Installationsspezi-
fika konfiguriert werden — beispielsweise Adressen von Datenservern oder Dateinamen.
Die Konfigurationsdateien konnen zur Laufzeit des Systems verandert werden.

Kernkomponenten

Zentrale und wichtigste Komponente des Merkmaldienstes ist die Komponente , Core-
Server” (der Name, wie auch die tibrigen Komponentennamen, wurde als illustratives
Beispiel entsprechend tiblichen Benamungskonventionen der Softwareentwicklung ge-
wihlt). CoreServer stellt ein intern verwendetes Datenmodell bereit und implementiert
die Operationen der Abfragesprache entsprechend Kapitel 5.2 und 5.3 auf diesem Da-
tenmodell.

Datenabfragen erreichen CoreServer als String, der zunéchst geparst werden muss,
um die auszufiihrenden Operationen zu dekodieren. Bei der Ausfiihrung der Opera-
tionen miissen dann zwei Fille unterschieden werden: Die Daten, auf denen die Ab-
frage ausgefiihrt wird, liegen entweder im internen Datenmodell vor oder in einem

79

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

Plug-Ins

CommToSrc2 CommToSrc3

1

1

ConfigMgt

> 4 CoreServer

l- MainCfg -I

] I

Vv Vv
CommCfgl ModelMap

Cfgl CommFromPLC

CommCfg2 gllf;;ielMap
Konfigurationsdateien Kernkomponenten

Abbildung 5.7.: Komponenten des Dienstes fir Merkmalabfragen als UML-Komponenten-
diagramm.

80

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

externen Datenspeicher wie einer Datenbank. Dementsprechend kann CoreServer die
Abfrage selbst ausfiihren oder delegiert sie an eine Plug-In -Komponente, die den ex-
ternen Datenspeicher anbindet. Die Implementierung der Abfrageoperationen in Co-
reServer kann also durch spezialisierte Implementierungen der einzelnen Plug-Ins er-
setzt werden. Fiir die Implementierung der Abfragen ist die parallelisierte Datenverar-
beitung durch Threads moglich und kann zur Beschleunigung der Verarbeitung beitra-
gen. Entsprechend der Grundidee eines Dienstes ist das erlaubt, sofern die Abfragen
eines Dienstnutzers nicht in falscher Reihenfolge bearbeitet werden (s. Abschnitt 2.1.2,
S. 15). Wenn also beispielsweise ein Nutzer A Daten aus einer langsamen Datenquel-
le abfragt und unmittelbar danach ein anderer Benutzer B Daten aus einer schnellen
Datenquelle abfragt, dann wiirde B nicht von A blockiert. Aus technischer Sicht wire
es nattirlich auch moglich, dass Abfragen desselben Benutzers im Sinne einer Bearbei-
tung ,s0 schnell wie moglich” ohne Riicksicht auf die Reihenfolge bearbeitet werden
konnten. Das Problem daran wire aber, dass der Benutzer dann in einigen Féllen die
Abfragen innerhalb der SPS synchronisieren miisste. Beispielsweise konnte in einem
SPS-Programm erst die aktuelle Auftragsnummer und dann ein Merkmal dieses Auf-
trags abgefragt werden. Wenn der SPS-Programmierer sich nun nicht darauf verlassen
kann, dass die aktuelle Auftragsnummer vor der Abfrage des Merkmals bekannt ist,
miisste ein entsprechender Mechanismus zur Absicherung implementiert werden. Sol-
che Implementierungen sind in einer SPS umstandlich und damit auch fehleranfallig.
Eine Abweichung vom Grundprinzip der reihenfolgegemaflen Abarbeitung pro Benut-
zer ist daher nicht gestattet. Sofern die Voraussetzung dafiir, dass Benutzer (d.h. einzel-
ne SPS) eindeutig identifiziert werden konnen, nicht erfiillt ist, miissen alle Abfragen in
Reihenfolge des Eintreffens bearbeitet werden.

Das Datenmodell in CoreServer ist eine Abbildung der Relationenschemas aus Ab-
schnitt 5.1 und entspricht damit auch dem logischen Modell aus Abschnitt 2.1.1. Dies
kann beispielsweise in objektorientieren Sprachen so realisiert werden, dass Relationen-
schemas als Klassen implementiert werden und Tupel durch deren Instanzen abgebildet
werden, fiir die es einen zentralen Index gibt. Fiir grofle Datenmengen bietet sich hier
auch die sogenannte objektrelationale Abbildung an, eine Technologie, mit der objekt-
orientierte Datenmodelle physisch in Datenbanken gespeichert werden (z.B. Hibernate
fiir Java oder NHibernate fiir .NET).

Die Kommunikation mit der SPS wird durch die Komponente ,CommFromPLC"
realisiert. Sie kann beispielsweise durch einen OPC UA oder ACPLT/KS Server reali-
siert werden, der die Abfrage-Strings annimmt und Antworten zuriick an die SPS sen-
det. Die spezielle Kommunikationstechnologie ist im einzelnen Einsatzfall mit grofier
Wahrscheinlichkeit fest vorgegeben, so dass CoreServer und CommFromPLC tiber ei-
ne Schnittstelle fest miteinander verbunden sind. Bei einer konkreten Implementierung
kann auch davon ausgegangen werden, dass vorhandene Bibliotheken der jeweiligen
Kommunikationstechnologie genutzt werden konnen, so dass die wesentliche Funktio-
nalitit von CommFromPLC nur darin besteht, diese Kommunikationsbibliotheken fiir
den hier auftretenden Anwendungskontext zu kapseln.

Dritte Kernkomponente ist ConfigMgt. Die Aufgabe von CfgMgt ist, simtliche Konfi-
gurationsinformation des Merkmaldienstes zu verwalten und bei Bedarf zu verandern.
Dazu kann der Anwender die Konfigurationsdaten in Textdateien ablegen. Es gibt eine
Hauptdatei, hier ,MainCfg” genannt, die immer notwendige Informationen beinhaltet.
Beispielsweise sind die Konfigurationsinformationen fiir CoreServer und CommFrom-

81

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5. Losungskonzept

PLC in der Datei MainCfg abgelegt. In der Datei sind auflerdem Verweise auf weitere Da-
teien gespeichert, in denen Daten fiir die Plug-In-Komponenten gespeichert sind. Diese
Verteilung von Information auf unterschiedliche Dateien unterstiitzt die Flexibilitat der
Anwendung und damit eine flexible Datenanbindung der SPS entsprechend Anforde-
rung 11. Auf diese Art sind Konfigurationsdaten fiir die einzelnen Datenquellen unab-
hingig voneinander und kénnen ohne Wechselwirkung verandert werden. Auflerdem
kann jedes Plug-In sein jeweils sinnvollstes Datenformat verwenden. Nachdem Kon-
figurationsdaten verdndert wurden, teilt der Anwender ConfigMgt mit, dass die Konfi-
guration aktualisiert werden muss. Die verdnderten Dateien konnen dann leicht erkannt
werden und es werden nur die betroffenen Komponenten aktualisiert. Die Schnittstel-
le zum Anwender kann beispielsweise eine einfache Kommandozeilenschnittstelle sein,
wie auch bei der Administration von Web-Servern tiblich. Die Komponenten innerhalb
der Merkmaldienstes besitzen jeweils ein Interface fiir das Einspeisen von Konfigurati-
onsinformation (in Abbildung 5.7 jeweils links eingezeichnet).

Plug-In -Komponenten

Plug-In -Komponenten kénnen anwendungsfallspezifisch in das System integriert wer-
den. Aktuelle Softwaretechnologien unterstiitzen auch das Nachladen von Bibliotheken,
so dass Plug-Ins auch noch zur Laufzeit hinzugefiigt (oder entfernt) werden konnen (s.
Anforderung 11). Die Plug-Ins werden in zwei Arten unterteilt; im Komponentendia-
gramm sind sie daher in zwei Zeilen dargestellt.

Die mit ,CommToSrcX” bezeichneten Plug-Ins (oben dargestellt) realisieren die rei-
ne Datenverbindung zu den verwendeten Datenquellen. Beispielsweise kann es ein sol-
ches Plug-In fiir XML-dateibasierte Quellen geben, eines fiir SQL-Datenbanken usw. Die
Plug-Ins kénnen dabei aufeinander aufbauen, so dass ein Plug-In eine speziellere Form
des Datenzugriffs realisiert als ein anderes. In diesem Fall sind es zwar getrennte Kom-
ponenten, die jedoch eine Abhéngigkeit besitzen.

Die zweite Art von Plug-Ins bildet das Datenmodell der Datenquelle auf die intern
benutzten Abfrageoperationen und das interne Datenmodell ab. Dabei kann zwischen
einer aktiven und einer passiven Abbildung unterschieden werden. Bei der passiven
Abbildung wird die Datenquelle einmalig von der Komponente eingelesen und im Da-
tenmodell von CoreServer abgelegt. Abfragen werden dann von CoreServer selbst auf
den Daten durchgefiihrt. Uber ConfigMgt kann der passiven Plug-In-Komponente mit-
geteilt werden, dass bei einer Aktualisierung die Daten neu eingelesen werden miissen.
Diese Art von Plug-In eignet sich fiir kleine, dateibasierte Datenquellen.

Aktive Plug-Ins fiihren Abfragen dagegen selbst aus bzw. tibersetzen Abfragen so,
dass die Datenquelle sie ausfiihrt. Entsprechend eignet sich diese Art Plug-In zur An-
bindung von Datenbanken. Wie oben beschrieben, muss CoreServer fiir jede (Teil-) Ab-
frage entscheiden, ob die Abfrage auf dem internen Datenmodell ausgefiihrt wird oder
an ein aktives Plug-In delegiert werden kann. Dies kann danach entschieden werden,
ob die Daten von einem aktiven oder passiven Plug-In zur Verfiigung gestellt werden.
Entsprechend besitzen aktive und passive Plug-Ins auch unterschiedliche Schnittstellen.

Die ,CommToSrcX” und ,, Active/PassiveMdIMapX“ -Plug-Ins konnen je nach Bedarf
miteinander kombiniert werden, weil inhaltlich unterschiedlich aufgebaute Modelle in
technisch gleichen Datenquellen abgelegt sein konnen. Fiir die Anbindung von SQL-
Datenbanken wird beispielsweise nur ein Plug-In benétigt, auf das dann mehrere aktive

82

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

Plug-Ins zur Modellabbildung aufbauen konnen. Diese Abhingigkeiten miissen dem
Anwender bewusst sein und er muss die jeweils notwendigen Plug-Ins laden.

83

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Zur Validierung des in Kapitel 5 beschriebenen Konzepts wurde eine prototypische Im-
plementierung entwickelt. In diesem Kapitel werden die wichtigsten technischen Aspek-
te dieser Implementierung erldutert. Der folgende Abschnitt befasst sich mit den genutz-
ten technischen Grundlagen. Ziel ist dabei nur, ein ausreichendes Verstandnis der Tech-
nologien zu vermitteln, so dass die Funktionsweise des Prototypen und dessen Umfang
nachvollzogen werden konnen. Fiir tiefergehende Details wird auf die jeweils angezeig-
te Literatur verwiesen.

Der Abschnitt 6.2 beschreibt wichtige Eigenschaften der Architektur der Implementie-
rung. Auch hier werden nicht alle Details erldutert, sondern nur solche Aspekte, die fiir
das Funktionieren des Gesamtsystems in Hinblick auf die Anforderungen relevant sind
(siehe Kapitel 4). Abschliefsend wird die Verwendung des Prototypen in Anwendungs-
beispielen illustriert.

6.1. Technische Grundlagen

6.1.1. Die Laufzeitumgebung ACPLT/OV

ACPLT/OV ist eine Laufzeitumgebung fiir Automatisierungssysteme [55]. Die Bezeich-
nung ,,ACPLT/OV” setzt sich zusammen aus einer Abkiirzung fiir den Lehrstuhl fiir
Prozessleittechnik der RWTH Aachen (Aachener Prozessleittechnik) und der Abkiir-
zung fiir ,Objektverwaltung”. Entsprechend wurde das System an dem genannten Lehr-
stuhl entwickelt und die Verfiigbarkeit von Objektorientierung in der Laufzeitumge-
bung ist eine der herausragenden technischen Eigenschaften.

Basis von ACPLT/OV ist die Programmiersprache C bzw. das normierte ANSI C [4].
Dadurch kann das System auf vielen einfachen Hardwaresystemen verwendet werden,
fir die nur C-Compiler existieren. Durch die Basisbibliotheken von ACPLT/OV wird
das Programmieren entsprechend dem Paradigma der Objektorientierung ermoglicht.
Zum Konzept von ACPLT/OV gehort daher ein Metamodell, das die Struktur der ob-
jektorientierten Modelle vorgibt. Beispielsweise sieht das Metamodell eine baumférmi-
ge Organisation der Objekte zur Laufzeit vor, in der jedes Objekt eine lokal (d.h. unter
seinen Geschwistern) eindeutigen Namen hat. Das Konzept der Vererbung ist ebenfalls
verfiigbar.

Praktisch geschieht die Definition von Klassen und Beziehungen zwischen Instanzen
der Klassen durch eigene Beschreibungsdateien, weil C hierfiir keine nativen Sprachmit-
tel hat. Durch spezielle Tools der Laufzeitumgebung wird dann aus den Beschreibungs-
dateien C-Code generiert, innerhalb dessen die spezifizierten Methoden der Klassen im-
plementiert werden. Durch spezielle Datenstrukturen sind dabei auch Informationen
tiber die Klassen und Instanzen zur Laufzeit verfiigbar, so dass die Objektmodelle zur
Laufzeit erkannt und verandert werden kénnen.

84

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6.1. Technische Grundlagen

ACPLT/OV bietet einige spezifische Eigenschaften aufgrund der Zielsetzung als Ba-
sissystem fiir die Automatisierung. Dazu gehort auch, dass die Ausfithrung von Pro-
grammen analog zur Arbeitsweise einer SPS moglich ist. Das Prinzip der zyklischen
Ausfithrung von Funktionen, beispielsweise von Funktionsbausteinen, ist daher im
System fest verankert. Dies wird von den im Folgenden beschriebenen Bibliotheken
ACPLT/FB und ACPLT/KS genutzt. Durch ACPLT/OV kann jedoch keine vollstandige
SPS implementiert werden — beispielsweise wird das Prinzip der globalen oder lokalen
Sichtbarkeit von Variablen nicht unterstiitzt (vgl. Abschnitt 3.4.1) und Echtzeitfahigkeit
ist nicht nativ vorhanden. Der Unterschied in der Programmierung fiir eine SPS und
der Programmierung fiir ACPLT/OV ist fiir die hier beschriebene Implementierung des
Prototyps grofitenteils nicht relevant. Dort, wo es Unterschiede gibt, wird darauf ent-
sprechend hingewiesen werden.

6.1.2. Die Bibliothek ACPLT/FB

ACPLT/FB steht ftir das ACPLT ,Funktionsbausteinsystem”, eine Bibliothek fiir
ACPLT/OV zur Implementierung von Funktionsbausteinen [28, 69]. Durch die verfiig-
bare Objektorientierung konnen Klassen dritter Bibliotheken von der Klasse , function-
block” aus ACPLT/FB erben. Dadurch sind viele der Konzepte von Funktionsbaustei-
nen im Sinne der IEC 61131-3 [21] in der erbenden Klasse verfiigbar, so dass auf einfache
Art neue Funktionsbausteintypen implementiert werden koénnen. Beispielsweise kon-
nen Variablen der neuen Klassen durch spezielle Flags als Ein- oder Ausgénge von Funk-
tionsbausteinen deklariert werden. ACPLT/FB stellt dann die fiir das Engineering von
Signallinien zwischen Funktionsbausteinen notwendigen Funktionen bereit und sorgt
wihrend der Ausfithrung fiir den Signaltransport.

Durch die Moglichkeit von ACPLT/OV, Funktionen zyklisch aufzurufen, bietet
ACPLT/FB sogenannte Tasklisten fiir die zyklische Ausfiihrung von Funktionsbaustei-
nen an. Jeder Funktionsbaustein kann, muss aber nicht in eine Taskliste eingehéngt wer-
den. Im zweiten Fall wird der Funktionsbaustein entweder durch einen anderen Mecha-
nismus oder tiberhaupt nicht ausgefiihrt. Jede Taskliste enthilt eine Menge von Funkti-
onsbausteinen in fester Reihenfolge, die in dieser Reihenfolge zyklisch ausgefiihrt wer-
den. Die Taktung der Ausfithrung wird pro Taskliste festgelegt. Tasklisten entsprechen
dem in der IEC 61131-3 beschriebenen Konzept , Task” (vgl. Abschnitt 3.4.1). Die Aus-
fiihrungszeit jedes Funktionsbausteins wird wéhrend jeder Ausfiihrung gemessen und
mit einer oberen Schranke verglichen. Weil Echtzeitfdhigkeit nicht zwangslaufig vorhan-
den ist — das System wird nicht zwangsldufig mit einem Echtzeitbetriebssystem ausge-
fiihrt — werden Funktionsbausteine wahrend der Ausfiihrung nicht unterbrochen. Statt-
dessen wird bei Uberschreitung einer Zeitschranke eine Warnung ausgegeben.

Die Implementierung der Ausfiihrungslogik eines Funktionsbausteintyps geschieht
in genau einer Funktion pro Funktionsbausteintyp, genannt ,typemethod”. Innerhalb
der typemethod werden tiblicherweise die Eingédnge eines einzelnen Funktionsbausteins
gelesen, Berechnungen ausgefiihrt und dann die Ausgénge des Funktionsbausteins be-
schrieben. Die typemethod wird durch die jeweilige Taskliste des Funktionsbausteins
aufgerufen, kann aber auch explizit z.B. von anderen Funktionsbausteinen aufgerufen
werden.

85

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

6.1.3. Das Kommunikationsprotokoll ACPLT/KS

ACPLT/KS bezeichnet einerseits ein Kommunikationsprotokoll auf Ebene 5 und 6 des
ISO/OSI-Referenzmodells [46], ist aber gleichzeitig auch der Name verschiedener Im-
plementierungen des Protokolls. KS steht fiir , Kommunikationssystem®. Technische Ba-
sis von ACPLT/KS sind die Standards TCP/IP [12, 13] und ONC/RPC [64]. Anwen-
dungsgebiet von ACPLT/KS ist die industrielle Automatisierung, beispielsweise Pro-
zessleitsysteme und Softwaresysteme im Umfeld der industriellen Produktion (siehe
Abschnitt 3.3).

Das Protokoll setzt strukturierte Informationen in Form von Objekten und deren Ei-
genschaften (Variablen und Objektbeziehungen) voraus, wie sie beispielsweise in einem
ACPLT/OV-System gefunden werden. Fiir den Zugriff auf die Information werden Ba-
sisoperationen bereitgestellt, durch die Objekte und deren Eigenschaften erstellt und
verdndert werden konnen. Die in einem Server verfiigbaren Objekte konnen vollstandig
durch das Protokoll abgefragt werden, so dass die gesamte Information im Server oh-
ne Vorwissen fiir einen Klienten erkennbar ist. Implementierungen von ACPLT/KS gibt
es fiir das ACPLT/OV Laufzeitsystem, fiir zahlreiche Prozessleitsysteme, Datenarchive
und als Bibliotheken in C++ und Java.

6.1.4. Das ACPLT-Dienstsystem

Das Dienstsystem ermdoglicht die Nutzung von Diensten (s. Abschnitt 2.1.2) mit den
ACPLT-Technologien. Es besteht aus Bibliotheken zur Bereitstellung und Nutzung von
Diensten. Im Kontext der prototypischen Implementierung sind die technische Basis
und die Ausfiihrungslogik des Dienstsystems von Interesse und werden hier kurz be-
schrieben.

Das Dienstsystem funktioniert auf Basis von nachrichtenbasierter Kommunikation
zwischen Dienstanbieter und -nutzer. Intern wird dazu ein Nachrichtenformat ver-
wendet, das einen Header-Bereich fiir administrative Informationen (sendender Server,
sendende Komponente im Server, empfangender Server, ...) und einen Body-Bereich
fiir den Nachrichteninhalt vorsieht [30]. Die Nachrichten konnen beispielsweise tiber
ACPLT/KS verschickt werden, es ist aber auch moglich die Nachrichten direkt tiber
TCP, ohne erneute Kapselung in ein Protokoll der Anwendungsschicht, zu verschicken.
Das Dienstsystem nutzt ein spezielles Nachrichtenformat, in dem zusétzlich zu den vor-
handenen Header-Informationen auch der gerufene Dienst, die gerufene Operation und
Parameter der Operation angegeben werden. AufSerdem enthélt jede Nachricht eine fiir
den Absender eindeutige Id, so dass bei der Beantwortung eines Dienstaufrufs auf diese
Id Bezug genommen werden kann.

Der Ablauf eines Dienstaufrufs beginnt mit dem Erstellen einer entsprechenden Nach-
richt beim Dienstnutzer. Die Nachricht wird an den anbietenden Server verschickt. Dort
konnen Nachrichten entweder durch eine untere Protokollschicht wie ACPLT/KS di-
rekt an die anbietende Komponente innerhalb des Servers weitergeleitet werden, oder
es gibt eine zentrale Komponente, bei der alle Dienstanbieter im Server registriert sind.
Im zweiten Fall ,entpackt” die zentrale Verwaltungskomponente die Aufrufparameter
und ruft direkt die angefragte Operation auf. Innerhalb des Dienstsystems sind beide
Varianten implementiert. Der Aufruf der Operation kann nun als synchroner Aufruf
erfolgen, in dem die Operation vollstandig ausgefiihrt wird und direkt nach der Fertig-

86

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

stellung eine Antwortnachricht zurtickgeschickt wird (sofern eine Antwort erforderlich
ist). Alternativ dazu kann die Operation die Ausfithrungskontrolle zurtickgeben und
die verantwortliche Komponente kann zu einem spéteren Zeitpunkt tiber das Zurtick-
senden einer Antwortnachricht entscheiden. Das ist insbesondere bei Operationen mit
langer Ausfiihrungsdauer oder der Durchfiihrung von Aktionen in der physischen Welt
sinnvoll. Die Antwortnachricht hat wie die Aufrufnachricht ein spezielles Format und
enthilt eine Referenz auf die urspriingliche Aufrufnachricht.

Innerhalb von ACPLT/OV gibt es eine spezielle Bibliothek, die den Dienstnutzer
bei der Durchfithrung von Aufrufen unterstiitzt. Die Bibliothek baut Nachrichten fiir
Dienstaufrufe auf und versendet sie, auflerdem wird das Eintreffen von Antwortnach-
richten tiberwacht und diese werden der aufrufenden Komponente zugeteilt.

6.2. Softwarearchitektur

6.2.1. Architektur des Klienten

In Abbildung 6.1 wird die grundlegende Architektur des Klienten in Form eines UML-
Klassendiagramms gezeigt. Die erstellte Bibliothek fiir Funktionsbausteine tragt den
Namen ,PropertyInfos”. Die Bibliothek baut auf der in Abschnitt 6.1 beschriebenen Bi-
bliothek ACPLT/FB auf und verwendet die ebenfalls in 6.1 beschriebene Bibliothek zur
Durchfiihrung von Dienstaufrufen. Die unten im Diagramm gezeigten Klassen Service-
Client_API und CallReply stammen aus dieser Bibliothek, die oben dargestellt Klasse
functionblock aus ACPLT/FB.

Die Funktionalitdt der Funktionsbausteine ist mit Ausnahme des Bausteins QUERY
gleich und wird nur durch die unterschiedlichen Eingange spezifisch. Diejenigen Bau-
steine, aus denen Operationen zusammengesetzt werden, sind stellvertretend auf der
rechten Seite in Abbildung 6.1 durch die Klassen REDUCE, CHOOSE und COMBINE
dargestellt. Die Klassen der weiteren Funktionsbausteintypen aus Abbildung 5.4 (Sei-
te 75) wurden aus Platzgiinden ausgelassen. Im Diagramm werden Ein- und Ausgénge
von Funktionsbausteinen durch nach innen bzw. aufien gerichtete Pfeile dargestellt (als
sinnvolle Erganzung der tiblichen UML-Notation fiir Klassendiagramme). Die Ein- und
Ausginge in der Implementierung entsprechen Abbildung 6.1. Die Ausfithrungslogik
dieser Bausteine liest die Eingdnge des Bausteins und schreibt die auszufiihrende Ope-
ration auf den Ausgang RES. Wenn beispielsweise an den Eingéngen eines COMBINE-
Bausteins die Werte ,,d1” und ,d2” anliegen, wiirde das Ergebnis ,COMBINE(d1,d2)”
auf den Ausgang RES geschrieben. Die Ausfiihrungslogik ist jeweils in der typemethod
implementiert. Alle rechts abgebildeten Funktionsbausteine erben von der abstrakten
Klasse opBase. Dadurch konnen Instanzen dieser Funktionsbausteine im ACPLT/OV-
Systems zur Laufzeit als ein Bausteintyp erkannt werden. AufSerdem kann der Ausgang
RES vererbt werden. Als Hinweis auf die spezielle Funktion von opBase ist der Name
der Klasse nicht in GrofSbuchstaben geschrieben.

Der Funktionsbaustein QUERY bildet den Kern der Bibliothek. Er baut Abfragen auf,
sendet sie an den ausfiihrenden Dienst und verarbeitet die Antworten. Die notwendigen
Konfigurationsinformationen, beispielsweise die IP-Adresse des Dienstes, werden von
einer Instanz der Klasse config gelesen. Diese Instanz wird beim Laden der Bibliothek
einmalig angelegt und mit Daten aus der Konfigurationsdatei des Servers beschrieben,

87

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

functionblock
{abstract} l
REDUCE
typemethod() ->DATA:String
4 —>ATTR:String
typemethod()
{redefines typemethod}
QUERY opBase
{abstract} | CHOOSE
~>REQ: Boolean €RES:String > DATA:String
>Q: String - COND:String
—>VAL: String

<NDR: Boolean
<ERROR: Boolean

&STATUS: Integer Q_

typemethod()
{redefines typemethod}

< RES: String
-state: Integer 1
-try: Integer COMBINE
config > DATAL:String
typemethod() > DATA2:String
{redefines typemethod} +serviceIP:String
: typemethod()
] {redefines typemethod}
1
! -
<<use>>, :
. 3
[
1
: 0.1
| CallReply
v
ServiceClient_API
)
|
| <<create>>

Abbildung 6.1.: Grundlegende Architektur der Klientenbibliothek (grau hinterlegt), darge-
stellt in der Notation eines UML-Klassendiagramms mit Pfeilen fur Ein-/Ausgangssignale von
Funktionsbausteinen.

88

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

sie kann aber auch spéter zur Laufzeit des Systems noch verandert werden. Jede Instanz
von QUERY kennt dieselbe Instanz von config und nutzt die Konfigurationsdaten bei
der Ausfiihrung von Abfragen.

QUERY verwendet die Programmierschnittstelle ServiceClient_API zur Ausfiihrung
Dienstaufrufen. ServiceClient_API bietet Funktionen zur Erstellung und Ausfithrung
von Dienstaufrufen, aufierdem wird der Ausfithrungsstatus eines Aufrufs tiberwacht
und ggf. ein Objekt vom Typ CallReply erzeugt, das der QUERY-Instanz zur Verfiigung
gestellt wird. Der genaue Ablauf wird in Abschnitt 6.2.3 erkldrt, eine Spezifikation des
Bausteins ist in Anhang A und B.

6.2.2. Architektur des Merkmaldienstes

Die Einteilung der Systemkomponenten des Merkmaldienstes wurde bereits in Ab-
schnitt 5.5.2 vorgenommen (siehe auch Abbildung 5.7, Seite 80). An dieser Stelle soll
nun die Architektur auf Klassenebene erlautert werden. Es wird aber nicht auf alle Klas-
sen in allen Details eingegangen; stattdessen beschranken sich die Ausfiihrungen auf
die Anbindung von Plug-Ins und die Verwendung des internen Datenmodells. Die An-
bindung der SPS und die Verwaltung von Konfigurationsdaten werden hier bewusst
ausgelassen, weil sie fiir das Gesamtkonzept keine grofie Bedeutung haben und Details
zur Implementierung keine neuen Einsichten brachten. Das gesamte Design ist stark von
Anforderung 12 aus Kapitel 4 (Seite 53) gepragt, die nach einer einfachen Erweiterbar-
keit fiir zusatzliche Datenquellen verlangt.

Ein Ausschnitt der Architektur des Merkmaldienstes wird in Abbildung 6.2 gezeigt.
Entsprechend der Aufteilung der Komponenten aus Abschnitt 5.5.2 gibt es vier Pakete.
In der Implementierung des Prototyps werden die Pakete durch Java-Packages realisiert.
Das in Kapitel 2.1 eingefiihrte und in Kapitel 5 verwendete Metamodell fiir Merkmale ist
im Paket model durch Java-Klassen modelliert. Diese Klassen dienen der Speicherung
von Merkmaldaten, die aus statischen Informationsquellen, beispielsweise Dateien, ge-
laden wurden. Diese Klassen sind nicht nach auflen sichtbar. Jede Instanz einer dieser
Klassen ist einer Instanz von DataSource zugeordnet, die im System die jeweilige Da-
tenquelle reprasentiert.

Fiir unterschiedliche Datenquellen lassen sich passende Plug-Ins implementieren. Bei-
spielhaft sind in Abbildung 6.2 die Plug-Ins XmlFileConnector und BmeCatMapper
dargestellt, die sich im Paket plugins befinden. XmlFileConnector ist fiir den techni-
schen Datenzugriff auf XML-Dateien verantwortlich, widhrend BmeCatMapper das Da-
tenmodell des BMEcat-Formats auf das interne Datenmodell aus dem Paket model ab-
bildet. BMEcat ist ein XML-basiertes Datenformat fiir Katalogdaten, das beispielsweise
fiir den Austausch von eCl@ss-konformen Produktbeschreibungen verwendet werden
kann. BmeCatMapper kann mit Hilfe von XmlFileConnector diese Dateien einlesen und
erstellt ein entsprechendes DataSource-Objekt mit den enthaltenen Modellen. Analog
dazu kénnen auch andere dateibasierte Datenquellen verwendet werden. Entscheidend
ist, dass das jeweilige Plug-In zur Datenquelle die Merkmaldaten korrekt auf das inter-
ne Datenmodell abbildet. Der Aufwand fiir diese Abbildung ist {iberschaubar groff —im
Fall von BmeCatMapper handelt es sich um ca. 200 Zeilen Java-Code.

Fiir die einheitliche Implementierung von Plug-Ins enthélt das Paket plugin einige
Interfaces, deren Implementierung fiir Plugins obligatorisch ist. Beispielsweise imple-

89

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

<<interface>>
IStaticConnector

<<interface>>

IPassiceMdIMap

<<interface>>
IQueryConnector

<<interface>>

IActiveMdIMap

JAN

JAN

1 1
1 1
1 1
package : :
plugin 1 !
1 1
| |
1 1

XmlFileConnector BmeCatMapper

AN
i
! \\ N N
package Il \ ~ S<create>>
i \
plugins b N S
1 \ A N
, <<create>> '\ N
] N <
\
1 "2 o M\
DataSource GenericProerty PropertyCarrier

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[}
N |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*

1 * *
package
model

1
<<use>> InternalData-
CoreServer f========---> _ [~ ----
QueryConnector

package
core

Abbildung 6.2.: Ausschnitt der Architektur des Merkmaldienstes mit Fokus auf Plug-Ins und
das Datenmodell. Darstellung als vereinfachtes UML-Klassendiagramm.

90

[ am 20,01.2026, 08:53:31. @
m mit, fir oder in Ki-Syster

Inhak.



https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

mentiert XmlFileConnector das Interface IStaticConnector und BmeCatMapper imple-
mentiert [PassiveMdIMap. IStaticConnector definiert Methoden zur Ubergabe von Kon-
figurationsdaten und zum Laden von Daten. [PassiveMdIMap definiert ebenfalls eine
Methode zur Ubergabe von Konfigurationsdaten (die aus den Konfigurationsdateien
des Systems stammen), aufSerdem enthilt IPassiveMdIMap Methoden fiir die Daten-
abbildung in das interne Datenmodell und fiir das Neuladen von Daten. Durch die Ver-
wendung dieser Interfaces kann das System beim Start und im Betrieb uniform auf alle
verwendeten Plug-Ins zugreifen und ihnen ihre spezifischen Konfigurationsinformatio-
nen tibergeben.

Das Paket plugin enthélt zwei weitere Interfaces: IQueryConnector und IActiveMdl-
Map. Diese Interfaces sind zur Anbindung von Datenquellen gedacht, die dynamisch
sind und die daher jede Abfrage selbst ausfiihren, anstatt sie auf dem internen Daten-
modell ausfithren zu lassen. Solche Datenquellen konnen Datenbanken oder OPC UA
-Server sein. IActiveMdIMap enthilt deshalb Methoden entsprechend den Grundopera-
tionen aus Abschnitt 5.2, die fiir die jeweilige Datenquelle , iibersetzt” werden miissen.
Die technische Ausfiihrung der Abfrage, z.B. einer SQL-Query, wird dann durch eine
IQueryConnector-Klasse durchgefiihrt.

Eine besondere Implementierung von IQueryConnector und IActiveMdIMap ist die
Klasse InternalDataQueryConnector. Sie fithrt die Abfragen auf dem internen Daten-
modell aus dem Paket model aus. Aus der Sicht von CoreServer, der zentralen Klasse
fur die Ausfiihrung von Abfragen, ist das Verhalten daher wie das einer IActiveMdl-
Map. Das bedeutet, dass die Ausfiihrung von Abfragen aus Sicht von CoreServer immer
gleich ablduft, unabhangig davon, ob die Abfrage auf dem internen oder einem exter-
nen Datenmodell ausgefiihrt wird. Der ggf. stark unterschiedliche Zeitbedarf ist dabei
unkritisch, weil jede Abfrage ohnehin in einem eigenen Thread durchgefiihrt wird. Der
genaue Ablauf eines Dienstaufrufs wird im folgenden Abschnitt 6.2.3 erldutert.

6.2.3. Ablauf eines Dienstaufrufs

Zur Verdeutlichung der Ablaufdynamik wird in diesem Abschnitt die Bearbeitung eines
Dienstaufrufs im Klienten und im Server des Merkmaldienstes beschrieben. In Abbil-
dung 6.3 wird der Ablauf als UML-Sequenzdiagramm gezeigt.

Ausgangspunkt des hier dargestellten Dienstaufrufs ist die Situation, dass im Klienten
eine giiltige Abfrage erstellt und mit einem QUERY-Baustein verbunden wurde. Der
QUERY-Baustein ist im Zustand , Leerlauf” (siehe Abbildung 3.4, Seite 47). Gleichzeitig
ist der Merkmaldienst erreichbar und in der Lage die Abfrage zu beantworten.

Sobald am QUERY-Baustein der Wert am Eingang RES von false auf true wechselt,
wird die Ausfithrung der Abfrage angestofien. Der erste Schritt dazu ist die Aktualisie-
rung des Eingangs Q. Entsprechend Anforderung 9 aus Kapitel 4 (Seite 52) muss die
Bedeutung der Ausfithrungsreihenfolge der Bausteine einer Abfrage dokumentiert und
leicht nachvollziehbar sein. Dieser Anforderung wurde in der Implementierung so be-
gegnet, dass grundsétzlich vor der Ausfithrung einer Abfrage alle zur Abfrage gehoren-
den Bausteine der Bausteinbibliothek, d.h. alle von opBase erbenden Instanzen, aktuali-
siert werden. Der Baustein QUERY priift daher, was fiir ein Baustein mit dem Eingang
Q verbunden ist und traversiert das Bausteinnetzwerk riickwirts solange, bis entweder
kein verbundener Baustein mehr gefunden wird oder ein verbundener Baustein nicht

91

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

X

deN|pN
-9AIY|:

Aldayjed:

Alday|led mau

‘wwelbelpzuanbag-AN Se Jjjolsebiep ‘salsuaiplewsia)\ Sap SiniNy sauld jnejqy "¢ 9 Bunpliqqy

_NHrSz”szm&

[1NN=zA/dayd]

>
-mm=> 98essa|\puUas ' '
EMIRENC] 1 1 ,
aInaxa < m m 1
m J9|pueH|led: " m “ 11NN=A|dayd]
m Ja|puey|ed >>wc._|_ e :
m i oBessajNpuas | "
301AI95] (e }Fofmsm&w _mv
m m m RETEEGEN
m m m C(esie)=03y] |
JaAIDSRIOD: 103123UU07d|d: _n._Mu_w,”_M_m_.u AY3IND: asegdo:

sualg

U3l

92

Inhak.

tar

am 20,01.2026, 08:53:31. @

mit, fr oder In KI-

m

ter



https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

von opBase erbt. In Abbildung 6.3 wird das durch die Rekursion bei der Ausfiihrung
des opBase-Bausteins gezeigt. Dann werden alle so gefundenen Bausteine der Abfrage
durch Ausfiihrung der typemethod in der richtigen Reihenfolge aktualisiert, so dass an-
schlieffend der Q-Eingang des QUERY-Bausteins aktuell ist. Dieses Vorgehen hat zwei
entscheidende Vorteile: Erstens braucht der Benutzer sich nicht um die Ausfiihrungsrei-
henfolge der Bausteine zu kiimmern, weil sie von den Bausteinen selbst bestimmt wird.
Zweitens konnen so Fehler im Aufbau einer Abfrage, beispielsweise Zyklen, vor der
Ausfiihrung festgestellt werden.

Nach der Aktualisierung des Bausteins QUERY erstellt dieser eine Dienstaufrufnach-
richt und verwendet dann ServiceClient_API zur Durchfiithrung des Dienstaufrufs. Er
geht dann in den Zustand ,,Warten” tiber. ServiceClient_API erstellt eine Nachricht fiir
das unterlagerte nachrichtenbasierte Kommunikationssystem und versendet diese zu
einem spéteren Zeitpunkt. Genauer gesagt wird die Nachricht nattirlich vom Kommu-
nikationssystem selbst verschickt, dies wurde aber zur Vereinfachung im Sequenzdia-
gramm ausgelassen. Die Netzwerkadresse des Dienstes wird dabei aus der aktuellen
Konfiguration des Systems, hinterlegt in der Instanz von config (siehe Abbildung 6.1),
gelesen. Sie kann daher auch im laufenden Betrieb noch angepasst werden, falls es An-
derungen im Netzwerk gibt.

Auf Seite des Merkmaldienstes wird die Nachricht von der Klasse PlcConnector entge-
gengenommen und gepriift. Anschlieflend wird ein neuer Thread vom Typ CallHandler
erstellt, der fiir die Ausfithrung der Abfrage verantwortlich ist. Auf diese Art konnen
mehrere unterschiedlich schnelle Abfragen parallel ohne gegenseitige Behinderung aus-
gefithrt werden. Die CallHandler-Instanz ldsst die Abfrage von CoreServer ausfiihren,
der wiederum je nach benétigten Daten die Abfrage an die zustandige Instanz von IAc-
tiveMdIMap weiterleitet. Nach vollstandiger Ausfiithrung der Abfrage sendet der Call-
Handler eine Antwortnachricht an den Klienten und der Thread des CallHandlers wird
beendet.

Aulf Seite des Klienten wird die Nachricht von ServiceClient_API entgegengenommen
und ein CallReply-Objekt erstellt. Der QUERY-Baustein priift zyklisch, ob eine Antwort
eingetroffen ist, indem der Wert eines Zeigers gepriift wird. Per Konvention mit Service-
Client_API zeigt dieser Zeiger auf das neu erstellte CallReply-Objekt, sobald es erstellt
wurde. Nach Erhalt der Antwort wird diese vom QUERY-Baustein tiberpriift (Zustand
,Priifen” in 3.4) und nach erfolgreicher Priifung werden die Ausgédnge NDR und RD ge-
setzt. Der Baustein geht fiir einen Zyklus in den Zustand , Daten erhalten” und dann zu-
riick in , Leerlauf”. Aus Benutzersicht entspricht das Verhalten somit dem des Bausteins
READ der DIN EN 61131-5. Auflerdem lauft die Abfrage asynchron ab und beeinflusst
den Betrieb des Klienten nur durch Erstellen des Dienstaufrufs und Bearbeitung der
Antwort, nicht aber durch die inhaltliche Komplexitat der Abfrage (vgl. Anforderung 8
und 10, Seite 52).

6.2.4. Administration des Dienstes

Entsprechend Anforderung 11 (siehe Seite 53) sollen Anderungen der Datenanbindung
zur Laufzeit unterstiitzt werden, beispielsweise fiir den Fall, dass sich die IP-Adresse
einer der Datenquellen dndert. In Abschnitt 5.5.2 wird diese Moglichkeit durch Konfi-
gurationsdateien vorgesehen, die fiir jedes Plug-In einzeln und spezifisch sind. In der

93

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Implementierung des Prototyps wurde diese Idee weitergefiihrt und die notwendigen
technischen Vorkehrungen getroffen.

Im einfachsten Fall muss fiir das Hinzufiigen von Datenquellen zur Laufzeit kein
Plug-In nachgeladen werden, weil die neue Datenquelle ein bereits bekanntes Format
besitzt. Das Hinzuftigen besteht dann nur aus dem Anlegen einer Konfigurationsdatei
fiir die Datenquelle und dem Instanziieren der entsprechenden Objekte im System. Vom
Benutzer kann das tiber die Konsole der Anwendung angestofSen werden. Falls zusatz-
liche Plug-Ins benétigt werden, miissen diese zunéchst geladen werden. Dazu sind die
jeweils benétigten Plug-Ins in den Konfigurationsdateien angegeben und es gibt ein spe-
zielles Verzeichnis im Dateisystem, in dem die Implementierung der Plug-Ins (in Form
von jar-Dateien oder .class-Dateien) erwartet wird. Technisch wird das Nachladen von
Bibliotheken zur Laufzeit von Java nativ unterstiitzt. Seitens der Implementierung funk-
tioniert das Nachladen durch die Interfaces im Paket plugin. Die Anwendung stiitzt sich
bei der Verwendung der Plug-Ins allein auf diese Interfaces, d.h. sie miissen nur seitens
des Plug-Ins richtig implementiert werden.

Fiir das Andern und Entfernen von Datenquellen sehen die Interfaces im Paket plu-
gin jeweils Methoden vor, durch die das jeweilige Plugin die notwendigen Anderungen
durchfiihren kann. Vor der Durchfiihrung von Anderungen tiberpriift CoreServer, ob
derzeit Abfragen auf den betroffenen Datenquellen durchgefiihrt werden und stellt si-
cher, dass die Anderungen zwischen zwei Abfragen vorgenommen werden.

6.3. Anwendungsbeispiele

Der Anwendungsbereich der hier beschriebenen Technologie wird durch den Einsatz
von Funktionsbausteinen in SPS-basierten Steuerungen und die logische Verwendung
von Merkmalinformation definiert. Dadurch ergibt sich ein Spektrum von Anwendun-
gen, das praktisch den gesamten Einsatzbereich von SPS-basierten Steuerungen umfasst.
In diesem Abschnitt werden einige Anwendungsszenarien herausgegriffen, die inner-
halb von Forschungsprojekten des Lehrstuhls fiir Prozessleittechnik behandelt wurden.
Anhand dieser Beispiele wird gezeigt, wie die Technologie im Sinne der jeweils verfolg-
ten Ziele unterstiitzend eingesetzt werden kann.

6.3.1. Flexible Programmierung von Werkzeugmaschinen

In einer Forschungskooperation mit dem Werkzeugmaschinenlabor der RWTH Aachen
war das Ziel, die Programmierung von Werkzeugmaschinen zu vereinfachen und zu
beschleunigen. Besonders bei Routineaufgaben in der Programmierung wie dem Wech-
sel eines Werkzeugs entsteht ein hoher Programmieraufwand, der durch die Wiederver-
wendung und geschickte Kombination von einzelnen Programmabschnitten deutlich re-
duziert werden kann [6]. Der in diesem Forschungsprojekt verfolgte Ansatz ermoglicht
die automatische Generierung von Steuerungscode, der nach der Generierung jedoch
spezifisch fiir eine Maschine in einer bestimmten Konfiguration ist.

Durch die in dieser Arbeit eingefiihrte Technologie lasst sich die Flexibilisierung von
Programmen noch weiter vorantreiben, so dass sie ohne Verdnderung auch mit unter-
schiedlichen Maschinen- und Werkzeugkonfigurationen funktionieren, sofern Anderun-
gen nur Werksttick- oder Werkzeugmerkmale betreffen. Damit wird der Aufwand zur

94

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6.3. Anwendungsbeispiele

Maschinenprogrammierung weiter verringert, weil eine Neuprogrammierung seltener
notig ist. Beispielsweise miissen fiir die Programmierung eines Werkzeugwechsels viele
Eigenschaften des eingesetzten Werkzeugs beriicksichtigt werden, etwa dessen geome-
trische Merkmale und die maschinenseitig benétigte Werkzeugaufnahme. Anstatt die-
se Eigenschaften manuell zu tibertragen, konnen sie durch die in Kapitel 5 definierten
Funktionsbausteine zur Programmlaufzeit abgefragt werden. Dadurch entféllt der Auf-
wand beim Ubertragen der Merkmalinformation (und potenzielle Fehler), aufierdem
braucht das Programm nicht erneut auf die SPS geladen zu werden.

Fiir ein konkretes Beispiel soll angenommen werden, dass ein Werkstiick gefrast wer-
den soll und dass dazu unterschiedliche Friaser mit unterschiedlichen Merkmalen, z.B.
die Art der Werkzeugaufnahme, zur Verfiigung stehen. Der Bediener bzw. Program-
mierer der Werkzeugmaschine trifft diese Entscheidung. Anstatt die Information zur
Werkzeugaufnahme manuell einzutragen (iiber ein HMI oder direkt im Programmcode),
kann die Information vom Programm selbst erfragt werden, indem auf einen eCl@ss-
konformen Katalog mit Informationen zu Frasern zurtickgegriffen wird. Die Implemen-
tierung wird in Abbildung 6.4 gezeigt. Der gesamte Satz von Werkzeugdaten ist unter
der Kennung ,,Werkz.-Katalog” hinterlegt und abfragbar. Der linke Baustein erfragt nun
denjenigen Schaftfraser (eCl@ss 21-18-06-01), bei dem das Merkmal Artikelbezeichnung
(eCl@ss 0173-1#02-AAP805#002) mit dem Inhalt der SPS-Variable , Fraeser” {iberein-
stimmt. Die Variable wird beispielsweise durch das HMI der Maschine gesetzt. Zu die-
sem Fraser wird der maschinenseitige Aufnahmetyp (eCl@ss 0173-1#02-BAA763#008)
abgefragt, den der Hersteller zusichert, und in die SPS-Variable ,,AufnTyp” geschrieben.
Die gesamte Abfrage wird durch das Setzen der Variable ,StartWWechsel” ausgefiihrt.

Ein erheblicher Teil der benétigten Information tiber Merkmale von Werkzeugen (und
gef. auch Werkstiicken) kann auf die beschriebene Art automatisiert im Betrieb erfragt
werden. Fiithrt man sich nun vor Augen, dass eCl@ss 9.1 bereits 84 Merkmale fiir Schaft-
fraser definiert, wird klar, dass diese Art der Programmierung erheblich zur flexiblen
Verwendung von Programmen mit geringem manuellen Aufwand im Betrieb beitragt.

6.3.2. Uberwachung von Erdélpumpen in einer Erdélraffinerie

Zu Beginn dieser Arbeit wurde in Abschnitt 1.1.2 ein Anwendungsszenario geschildert,
in dem fiir die Uberwachung von Erdolpumpen die Dichte des geférderten Erdols be-
notigt wird. An dieser Stelle wird nun die SPS-seitige Losung dieser Aufgabenstellung
mithilfe der prototypischen Implementierung gezeigt.

Bei der Losung der Aufgabe wird davon ausgegangen, dass Merkmalinformation aus
dem Laborinformations- und Managementsystem (LIMS) und dem Manfacturing Exe-
cution System (MES) durch den Merkmaldienst verfiigbar sind. Diese Datenquellen kon-
nen entsprechend durch die Kennungen , LIMS” und ,MES” beim Merkmaldienst iden-
tifiziert werden. Ferner ist bekannt, welche Merkmaltrager und Merkmale innerhalb die-
ser Datensysteme verfiigbar sind. Fiir dieses Beispiel werden zur Identifizierung von
Merkmaltragern und Merkmalen sinngeméfie Namen benutzt. In der Praxis wiirden da-
zu vermutlich eher standardisierte Bezeichner verwendet (siehe Abschnitt 3.1).

Die Abfrage der Dichte des Erdols besteht logisch gesehen aus zwei Abfrageteilen,
weil zunichst der Quelltank aus dem MES und dann die Dichte des Ols in diesem Tank
aus dem LIMS erfragt wird. Aus Sicht der SPS wird das in einer Abfrage zusammen-

95

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Sta rtWWechsell

Fraeser

“Werkz.-Katalog”| QAufnahme ONeu
“21-18-06-01"

QFehler

Tst”

QStatus

“0173-1#02-AAP805#002”
Fraeser
AufnTyp

“0173-1402-BAA763#008"

“Zusicherung”

Abbildung 6.4.: Beispielsanwendung der Funktionsbausteinbibliothek. Es wird zun&chst der
Datensatz zu einem bestimmten Schaftfraser abgefragt und dann daraus die Zusicherung
zum maschinenseitigen Aufnahmetyp (codiert in eCl@ss-Kennungen).

gefasst, die dann vom Merkmaldienst in zwei Schritten ausgefiihrt wird. Die Imple-
mentierung dazu wird in Abbildung 6.5 gezeigt. Im Beispiel sei die betroffene Pumpe
N7509 und es wird angenommen, dass im MES Produktionsauftrége als Merkmaltrager
mit Angaben tiber die verwendeten Ressourcen und den Auftragsstatus als Merkmale
vorliegen. Die Funktionsbausteine , Auftraege” und , AuftrAkt” finden dann den Auf-
trag fiir N7509, der momentan in Bearbeitung ist. Zu beachten ist, dass das Ergebnis
dieser Operationen bereits den Merkmaltrédger mit den Aussagen tiber ihn zusammen-
fithrt. Deswegen kann der folgende Baustein ,Quellinfo” direkt die Aussage tiber die
Quellressource (,QuellRess”) zu diesem Auftrag finden. Der ,Quelle” benannte Funkti-
onsbaustein ist dann fiir die Auswahl des Aussagewerts zustandig, so dass die Kennung
des Quelltanks das Ergebnis der Operation VALUE ist.

Die Bausteine im unteren Teil von Abbildung 6.5 bilden den Abfrageteil, der an das
LIMS gerichtet ist. Es wird angenommen, dass im LIMS Merkmaltrdger vom Typ ,Pro-
be” verfiigbar sind, und dass diese Merkmaltrager ein Merkmal , Entnahmestelle” be-
sitzen. Entsprechend findet der Baustein , Tankproben” diejenigen Proben, die aus dem
aktuellen Tank entnommen wurden. Unter all diesen Proben wird dann durch einen
AGGRALL-Baustein diejenige mit dem aktuellsten Datum herausgesucht. Der Funkti-
onsbaustein , QDichte” erfragt letztendlich die in dieser Probe gemessene Dichte.

Die gesamte Abfrage wird dann ausgefiihrt, wenn durch den Wechsel der Variable
,PumpeEin” auf true das Einschalten der Pumpe signalisiert wird. PumpeFin ist der
einzige Eingang dieses Diagramms mit variablem Wert, so dass die gesamte, verhiltnis-
méfig komplexe Abfrage sich nach auflen relativ einfach darstellt.

96

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

6.3. Anwendungsbeispiele

"MES”

“Auftrag”
“geplant”
“Ressource”

“N7509”

“Status”

Tist”

“inBearb”

Auftraege

AuftrAkt

“QuellRess”

“Wert”

Quellinfo

Quelle

PumpeEin

Tankproben

TIMS”

“Probe”

WHICHONES

NeusteProbe

AGGRALL
DATA

DATA
ENT RES

Tot” TYPE
s TYPE
[“Entnahmestelle”] ST
PROP
“MAX” REL
“Entnahmezeit”
VAL
“Dichte” UN
“gemessen”

1

QDichte QNeu

QFehler

QStatus

Erdoeldichte

Abbildung 6.5.: Beispielsanwendung der Funktionsbausteinbibliothek. Es wird zuné&chst der
Quelltank des aktuellen Pumpauftrags aus dem MES abgefragt (oben), dann die Dichte des
Erddls darin aus dem LIMS (unten).

[ am 20,01.2026, 08:53:31. @
m

97

Inhak.

mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

7.1. Diskussion der Grundidee

Ein wesentlicher Beitrag dieser Arbeit ist die Idee, tiberhaupt eine Abfragesprache fiir
technische Merkmale zu spezifizieren und zu implementieren. Diese Idee ist natiirlich
eine Grundvoraussetzung. Hier sind jedoch sowohl die Problemstellung als auch die Lo-
sung verhaltnisméaBlig weit vom aktuellen Stand der Technik entfernt. Es gibt bisher nur
wenige Beispiele, in denen Abfragesprachen speziell fiir bestimmte Anwendungsgebiete
definiert wurden (z.B. [44, 56, 68]) und keine fiir die Abfrage von Merkmalinformation.
Folglich muss schon die Grundidee kritisch hinterfragt werden.

Die wichtigste Voraussetzung fiir die Sinnhaftigkeit der vorgeschlagenen Losung ist,
dass die Kommunikation von Automatisierungssystemen, d.h. hier insbesondere (Soft-)
SPSen, zunimmt. Wenn eine SPS nicht an ein Netzwerk angeschlossen ist, oder wenn die
SPS oder das Netzwerk nicht fiir die Kommunikation konfiguriert sind, dann ldsst sich
diese Losung nicht umsetzen. Die Verfiigbarkeit von netzbasierter Kommunikation ist
aber auch die Grundidee der Themen ,Industrie 4.0“ und , Industrial Internet” [1]. Aus
dem Grund ist die Wahrscheinlichkeit der zukiinftig (noch) htheren Verfiigbarkeit von
Kommunikationsfidhigkeiten duflerst hoch und wird in Fachkreisen auch nicht in Frage
gestellt.

Eine groer werdende Menge an kommunikationsfahigen Teilnehmern eines Netz-
werks bedeutet fast immer auch eine Vergrolerung der Informationsmenge im Netz. Die
einzige Ausnahme davon wére, wenn die Netzteilnehmer zunehmend weniger oder gar
keine Information bereitstellen wiirden, was aber ein dufSerst unwahrscheinliches und
widerspriichliches Szenario wire. Insgesamt ist die Annahme, dass SPSen in Zukunft
durch Vernetzung mehr Information zur Verfiigung haben werden, realistisch. Techni-
sche Losungen fiir den Informationszugriff existieren (z.B. [62]).

Die groflere Verfiigbarkeit von Information wirft die Frage auf, ob der Aufwand zur
Nutzung der Information vertretbar gering oder tiberhaupt zu bewiltigen sein wird. In
dieser Arbeit wird die These vertreten, dass eine Nutzung der Vernetzung zumindest
erhebliche neue Probleme mit sich bringen wird, so dass bald ein Bedarf an neuen L6-
sungskonzepten besteht. Diese These wird durch drei Beobachtungen gestiitzt:

¢ Heute tibliche Punkt-zu-Punkt-Verbindungen in einem Netz werden jeweils als
Einzelfall angelegt und gewartet.

¢ Die Anzahl moglicher Punkt-zu-Punkt-Verbindungen in einem Netz wéchst qua-
dratisch mit der Anzahl der Teilnehmer.

¢ Die Informationsverfiigbarkeit fithrt zu neuen Ideen zur Informationsnutzung, die
wiederum neue Information erzeugen konnen und neue Nutzungsmoglichkeiten
eroffnen.

98

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

7.2. Diskussion der Abfragesprache

Daher wird die Korrektheit der These als realistisch eingestuft. Fiir die Verringerung
der zu erwartenden Aufwinde gibt es mehrere denkbare Moglichkeiten, beispielswei-
se konnte auch versucht werden, die Verwaltung von Punkt-zu-Punkt-Verbindungen zu
automatisieren. Die hier vertretene Losung, den Informationszugriff {iber einen zentra-
len Dienst zu realisieren, ist daher nur eine Moglichkeit. Fiir diese Moglichkeit spricht in
erster Linie die Erfahrung aus dem Internet, in dem sich beispielsweise Domain Name
Server und Suchmaschinen als zentrale Zugriffspunkte fiir verteilte Information etabliert
haben.

Die néchste wichtige Frage ist, warum der Informationsaustausch auf Basis von Merk-
malen geschehen soll. Ein wichtiges Argument dafiir ist, dass ein zentraler Dienst zur
Informationsabfrage nur dann funktionieren kann, wenn es Konventionen tiber die Se-
mantik der Daten gibt. Wenn die Semantik je nach urspriinglicher Informationsquelle
grundverschieden ist, kann der Dienstnutzer nicht mehr von dieser Informationsquelle
abstrahieren und ein wesentlicher Vorteil des Dienstes wird verloren. Dies ist ein wichti-
ger Unterschied zu Suchmaschinen im Internet, bei denen es keine Zusicherungen tiber
die Semantik der gefundenen Information gibt. Fiir den hier diskutierten Dienst stellt
sich also die Frage nach der semantischen Basis. Technische Merkmale sind eine beson-
ders einfache und weit anwendbare semantische Basis und es ,erscheint [...] moglich,
mit standardisierten Merkmalmodellen einen Interoperationsgrad zu erreichen, der fiir
viele Anforderungen ausreichend ist” [29]. Die Wahl von Merkmalen als Basis lasst sich
also nicht durch harte Fakten begriinden, ist aber in Anbetracht des Anwendungsbe-
reichs eine sinnvolle Wahl.

Die Spezifikation einer Abfragesprache ist dann eine direkte Konsequenz aus mog-
lichen Anwendungsszenarien. Die Moglichkeit der Abfrage eines bestimmten Aussa-
gewerts tiber einen bekannten Merkmaltréiger ist in vielen Anwendungen nicht ausrei-
chend. Stattdessen wird oft eine Information gesucht, fiir die sehr spezielle und komple-
xe Bedingungen gelten (wie im Beispiel in Abschnitt 6.3). Die Verwendung einer voll-
stindigen Abfragesprache anstelle einfacher Leseoperationen ist daher eine praktische
Notwendigkeit.

Insgesamt beruht die Argumentation, warum eine Losung dieser Art sinnvoll und so-
gar notwendig ist, auf plausiblen und wahrscheinlichen Annahmen. Ein Kritikpunkt ist
jedoch, dass Entwicklungen vorweggenommen werden und letztlich ein Problem gelost
wird, das heute noch nicht in einer relevanten GrofSe existiert. Beim tatsdchlichen Auftre-
ten des Problems konnen bereits andere Technologien und Standards verfiigbar sein, die
in dieser Losung nicht berticksichtigt sind. Letztlich erscheint es dennoch wahrschein-
lich, dass Grundideen dieser Arbeit verwendet werden konnen.

7.2. Diskussion der Abfragesprache

Durch die Verwendung relationaler Algebra als Grundlage besteht eine gesicherte, an-
erkannte und der Anwendung gerechte Basis. Die fehlende Funktionalitdt der relationa-
len Algebra wurde passend erganzt. Von der theoretischen Seite ist die Abfragesprache
somit gut begriindet. In dhnlichen Arbeiten zur Erstellung spezieller Abfragesprachen
wurde ebenfalls dieser Weg bestritten (z.B. [56, 68]).

Eine andere Frage ist der tatsdchliche praktische Nutzen. Das hier vollzogene Vorge-
hen ist systematisch: Die relevanten technischen Grundlagen im industriellen Umfeld

99

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

wurden betrachtet und daraus Anforderungen abgeleitet, die von der Losung erfiillt
werden. Es verbleibt aber der Kritikpunkt, dass die Abfragesprache mehr durch Tech-
nik und Theorie als durch empirisch nachgewiesenen Nutzen motiviert ist: In Abschnitt
5.3 wurden Operationen der Abfragesprachen unter Nennung von praktischen Beispie-
len definiert. Ob diese Anwendungsfélle realistisch sind, ob der Einsatz der Abfragen
einen praktischen Gewinn darstellt und ob es nicht unerfiillbare Nebenbedingungen
gibt, wurde nicht analysiert. Das ist nattirlich dadurch zu erkldren, dass es derzeit keine
vergleichbare Technologie und Erfahrungen damit gibt. Letztlich ist die praktische An-
wendbarkeit der Abfragesprache aber nur eine begriindete Vermutung, deren Beweis
noch ausbleibt. Dieser Kritikpunkt wiegt weniger schwer, weil die zuk{inftige Spezifika-
tion zusatzlicher Operationen nicht ausgeschlossen ist und sogar erwartet wird.

7.3. Diskussion der Integration

Die beschriebene Integration der Technologie stiitzt sich auf existierende Normen und
Standards. Eine Untersuchung der in Unternehmen heute vorhandenen Technologien
hat jedoch nicht stattgefunden. Beispielsweise fehlt der Beweis dafiir, dass die in Kapitel
3.3 beschriebenen Software-Systeme tatsdchlich geeignete Datenschnittstellen anbieten.
In dieser Hinsicht stiitzt sich die Arbeit auf die Annahme, dass real verwendete Techno-
logien nicht ,,zu weit” von diesen Normen und Standards entfernt sind.

In Abschnitt 3.1 wurde diskutiert, welche Merkmalmodelle und Katalogsysteme heu-
te verfiigbar sind. Die Verfiigbarkeit von systematischen und groflen Merkmaldefinitio-
nen ist daher nicht fraglich. Ob diese Merkmaldefinitionen in der industriellen Praxis
tatsachlich Anwendung finden ist damit aber noch nicht gesagt. Fiir die Integration der
hier vorgeschlagenen Technologie ist der Einsatz einheitlicher Merkmaldefinitionen aber
eine zwingende Voraussetzung und macht bei Nichterfiillung einen erfolgreichen Ein-
satz unmoglich. Das ist aber nicht nur ein Problem dieser konkreten Technologie und
wird ohnehin eine zukiinftige Herausforderung der Automatisierungstechnik sein.

In der prototypischen Implementierung wurden Daten im BMEcat-Format integriert.
Diese Integration war ohne Probleme durchfiihrbar, was jedoch kein Beweis dafiir ist,
dass auch andere existierende Datenformate und Informationssysteme problemlos an-
gebunden werden konnen. Die universelle Giiltigkeit des in Kapitel 2.1 vorgestellten
Merkmalmodells wird vorausgesetzt und ist eine kritische Vorbedingung fiir das Funk-
tionieren der hier beschriebenen Technologie. Neben dieser Frage der grundsétzlichen
Abbildbarkeit von existierenden Datenformaten spielt in der Praxis natiirlich auch die
Schnelligkeit der Datenverarbeitung eine Rolle, denn jede Abfrage muss innerhalb eines
gewissen Zeitfensters beantwortet werden (selbst wenn es keine harten Echtzeitbedin-
gungen gibt). Dieses Problem wird von dieser Arbeit absichtlich nicht behandelt, weil es
als Problem der Implementierung im Einzelfall gesehen wird und weil Fragestellungen
dieser Art in den fachlichen Bereich der Informatik und der Softwaretechnik fallen, wo
sie bereits behandelt werden.

Die Implementierung von Abfragen durch Funktionsbausteine hat zwei wesentliche
Griinde: Erstes werden in der IEC 61131-5 ebenfalls Funktionsbausteine fiir Kommuni-
kationsaufgaben verwendet und diese Spezifikation kann teilweise {ibernommen wer-
den. Zweitens sind Funktionsbausteine genau wie Abfragesprachen eine deklarative
Programmiersprache, so dass diese Paradigmen gut zusammenpassen. Letztlich ware

100

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

7.4. Ausblick

es aber alternativ moglich, Abfragen wie bei Abfragesprachen wie SQL textuell zu im-
plementieren und ggf. nur die Ausfithrung durch einen QUERY-Funktionsbaustein vor-
zunehmen. Eine Untersuchung, welche der Vorgehensweisen komfortabler und damit
auch besser akzeptiert wére, hat in dieser Arbeit nicht stattgefunden.

7.4.

Ausblick

Fiir die erfolgreiche Integration und Anwendung des Konzepts werden noch einige Ar-
beiten notwendig sein. Dies sind im Einzelnen:

Existierende, genormte bzw. standardisierte Merkmale und Schnittstellen miissen
angewendet werden. Es ist heute nicht das Problem, dass solche Standards nicht
vorhanden wiéren, sondern dass sie noch nicht breit eingesetzt werden und dass
die Anwendung in Details oft nicht einheitlich ist. Solche kleinen Unterschiede
waren bisher wegen der mehr manuellen und lokalen Datenverarbeitung ggf. nicht
relevant, wiirden aber als Probleme auftreten. Der positive Aspekt daran ist, dass
solche Inkonsistenzen schneller als bisher erkannt wiirden und durch den Nutzen
auch eine Motivation zur Vereinheitlichung besteht.

Die von einzelnen Systemen veroffentlichte Merkmalinformation muss definiert
und verwaltet werden. Letztlich kann die Verfiigbarkeit von Information auch zu
einem Problem werden, wenn sich andere Systeme auf die bestehende Verfiigbar-
keit verlassen und ggf. sogar weitere Information daraus folgern. Daher miissen
organisatorische Strukturen eingefiihrt werden, durch die die Rechte zur Verof-
fentlichung und zum Informationszugriff verwaltet und technisch durchgesetzt
werden. Wenn durch die hier vorgestellte Technologie auch schreibende Zugriffe
ermoglicht werden sollen, sind entsprechend strengere Mafinahmen notwendig.

Die vorhandenen Kommunikationsnetze miissen auf ihre Eignung hin tiberpriift
und evtl. angepasst werden. Dies betrifft beispielsweise die Verbindung einer
groflen Anzahl von Endgeriten, Gewdéhrleistung einer ausreichend schnellen An-
bindung des Dienstes fiir Merkmalabfragen und das Ermoglichen der Kommuni-
kation tiber Subnetze hinweg (z.B. durch entsprechende Konfiguration von Fire-
walls).

Der Merkmaldienst muss fiir den Betrieb in der industriellen Praxis implementiert
werden. Im Rahmen dieser Arbeit wurde eine prototypische Implementierung er-
stellt, deren Zweck jedoch allein das Aufzeigen der Umsetzbarkeit des Konzepts
ist. Fiir den Praxisbetrieb spielen die Skalierbarkeit des Dienstes, die Zusicherung
einer Dienstqualitdt und die Verftigbarkeit der notwendigen Plug-Ins zur Daten-
anbindung eine wichtige Rolle. Diese Aspekte machen die Implementierung eines
praxisgerechten Merkmaldienstes zu einer umfangreichen Aufgabe, fiir die der
Prototyp und die Plidne zur Systemarchitektur nur einige Grundlagen sind. Hier
kann ggf. auf vorhandene Technologien aus den Gebieten , Enterprise Information
Integration” und ,,Data Warehouses” zurtickgegriffen werden.

Der letzte (aber entscheidende) Schritt ist nattirlich die Entwicklung von Anwen-
dungen, die die Technologie nutzen. Experten rechnen damit, dass durch die Mog-

101

am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

102

lichkeiten der Vernetzung industrieller Produktionsanlagen zunéchst nur quan-
titative Verbesserungen erzielt werden, beispielsweise bessere Produktqualitdten,
geringere Kosten und mehr Produktvarianten. Erst darauf folgt die Entwicklung
neuer Geschiftsmodelle, die ohne Vernetzung nicht moglich gewesen wiren [77].
Mit der hier vorgestellten Technologie wird es sich dhnlich verhalten. Zu den heute
offensichtlichen Einsatzmoglichkeiten werden zusétzliche, heute noch unbekannte
Anwendungen hinzukommen. Die Nutzung der Technologie wird selbst zur Ent-
wicklung dieser Anwendungen beitragen.

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

Die folgenden Zeilen spezifizieren die in dieser Arbeit definierten Funktionsbausteine
in Form einer Modelldatei fiir das OV-Laufzeitsystem.

/[ xx

PropertyInfos.ovm

This Library provides function blocks for building and
executing queries on property data.

In order to work, a respective property service needs to be
running and the following parameters need to be configured
in the server’s config file:

PropertyService-IP=<IP-Address>

PropertyService-Port=<Port number>

PropertyService-Retry-Connect=<Max. number of connection
attempts>

*/

#include "ov.ovm"
#include "fb.ovm"
#include "ServiceClient.ovm"

LIBRARY PropertyInfos

VERSION = "V0.1l (23-Oct-2015)";
AUTHOR = "David Kampert";
COMMENT = "Library for request of property information from

remote systems.";

/ *x
The Query block. Executes the queries.
x/
CLASS QUERY : CLASS fb/functionblock
IS_INSTANTIABLE;

VARIABLES

REQ : BOOL HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Regest. The query is executed if
the value of this imput changes to true."
INITIALVALUE = FALSE;

Q : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Query. Input port of the query."

INITIALVALUE = "";

VAL : STRING HAS_SET_ACCESSOR FLAGS = "i"

COMMENT = "Value. Input port to identify
103

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

the value from the query result that will
be written to RD." INITIALVALUE = "";

PROP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. If the value of PROP
is not empty, the query will return the
value of a specific statement on this
property, provided that Q represents a set
of property carriers or property carrier
types. The statement is specified by the
inputs ST, REL, VAL and UN." INITIALVALUE =

"

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The type of the
queried statement on PROP." INITIALVALUE =

nn .,
’

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type of
the queried statement on PROP."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit of the queried
statement on PROP." INITIALVALUE = "";

NDR : BOOL HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "New Data Received. Flag that
indicates the advent of a result. Is reset
after one cycle." INITIALVALUE = FALSE;

ERROR : BOOL HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Error. Indicates of any error
occured during execution of the query.
False, if no error occured." INITIALVALUE =

FALSE;
STATUS : INT HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Status. Output of the error code

according to IEC 61131-5, if any error
occured. 0, if no error occured."
INITIALVALUE = 0;

RES : ANY HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Result.";
state : INT FLAGS = "n" COMMENT = "Internal

state of execution." INITIALVALUE = 0;
pReply : C_TYPE <OV_INSTPTR> COMMENT = "
Pointer to an expexted call answer.";
try : INT FLAGS = "n" COMMENT = "Number of
cennection attempts." INITIALVALUE = 0;
END_VARIABLES;

OPERATIONS
constructor : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

104

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

CLASS OpBase : CLASS fb/functionblock

VARIABLES
RES : STRING HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Result. The operation result."
INITIALVALUE = "";
END_VARIABLES;
END_CLASS;
/ *x
The Reduce block. Will reduce the provided data to the
provided attributes. Useful to ’'cut off’
unnecessary information.
*/

CLASS REDUCE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attributes. The attributes to
reduce to, i.e. 'what will be left’."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

/ *x
The Value block. Gets the value of a spcified
attribute.
x/
CLASS VALUE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attribute. The result is the
value of this attribute’." INITIALVALUE =

nn .,
’

END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

105

[ am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

/ *x
The Choose block. Will reduce the provided data to
those elements that fulfil the provided condition,
e.g. a minimum age.
*/

CLASS CHOOSE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
COND : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Condition. The condition must
evaluate to a Boolean value, but may
contain arithmetic computations and String
comparisons ($== for equals, $!= for not
equals). Variables may be referred to by
the syntax <type>:<attribute>, e.g.
STATEMENT:VALUE." INITIALVALUE = "";
END_VARIABLES;

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/[ xx
The Combine block. The result is the carthesian
product of the inputs, i.e. all possible
combinations of the elements in DATAl and DATA2.
*/

CLASS COMBINE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES
DATAl : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/ *x
The Union block. The result is the union of the
elements in DATAl and DATA2. The elements have to
possess the same attributes.
x/

106

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

CLASS UNION : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATAl : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

/ *x
The Remove block. Removes the elements in DATA2 from
DATAl, i.e. RES = DATAl - DATA2.
x/
CLASS REMOVE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES
DATAl : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/ **
The Rename block. Renames attributes.
x/

CLASS RENAME : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"

COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

OLD : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Old name of the attribute."
INITIALVALUE = "";

NEW : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "New name of the attribute."
INITIALVALUE = "";

END_VARIABLES;

107

[ am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/[ **

The TypeOf block. Gets the types of the provided
elements, i.e. the property carrier types or
property types. Both kinds of elements may be
provided.

*/

CLASS TYPEOF : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
SUB : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Subordinate. The types of these
objects are returned." INITIALVALUE = "";
END_VARIABLES;

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/ *x
The Aggregate All block. Aggregates the values of
statements or results of other operations by a
given operation.
*/

CLASS AGGRALL : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to.
Must either be statements or results of
other operations." INITIALVALUE = "";
ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that the aggregation is applied to. If
this input is empty, the concents of DATA
will be used. If this input is not empty,
the aggregation will only be applied to the
statements on entities in ENT that match
the citeria defined by the other inputs."
INITIALVALUE = "";
OP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Operation. The operation to

108

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

apply. Supported: +,-,%*,/,MAX,MIN,NUM."
INITIALVALUE = "";

TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type in ENT

to match." INITIALVALUE = "";

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";

PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property in ENT to

match." INITIALVALUE = "";

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";

VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value into match."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;

The Aggregate Each block. Aggregates the values of the
provided attributes in each provided element by a
given operation.

CLASS AGGREACH

CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"

COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that the aggregation is applied to. If
this input is empty, the concents of DATA
will be used. If this input is not empty,
the aggregation will only be applied to the

statements on entities in ENT that match
the citeria defined by the other inputs."
INITIALVALUE = "";

ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attributes. Comma-separated list

of attribute names. The operation will be

109

[ am 20,01.2026, 08:53:31. @ Inhak.
m

mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

applied to the attributes in the provided
order." INITIALVALUE = "";

OP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Operation. The operation to
apply. Supported: +,-,%*,/,MAX,MIN,NUM."
INITIALVALUE = "";
TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type in ENT
to match." INITIALVALUE = "";
ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";
PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property to match
." INITIALVALUE = "";
REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";
VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value to match."
INITIALVALUE = "";
UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/[ xx

The Join Statements block. Joins entities (property
carriers or property carrier types) with all
statements from DATA that affect them. The result
is a list that has as many entries as relevant
statements, where each entry contains information
from the property carrier (type) and the statement.

*/
CLASS JOINSTMT : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that should be joined with the respective
statements." INITIALVALUE = "";
END_VARIABLES;

110

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

/ *x
The Has A Property block. Returns those entities (
property carriers or property carrier types) that
possess a given property.
*/
CLASS HASAPROP : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) are searched for a property."
INITIALVALUE = "";
PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property to search."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/ *x
The Is Of Type block. Returns those entities (property
carriers or property carrier types) that are of a
given property carrier type.
*/

CLASS ISOFTYPE : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to check for a type. Any data that does
not describe property carriers or property
carriert types within this set will be
ignored." INITIALVALUE = "";
TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type to

111

[ am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

search." INITIALVALUE = "";
END_VARIABLES;

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/[ xx
The Whichones block. Returns those entities (property
carriers or property carrier types) for which a
statement exists, that matches given criteria.
x/

CLASS WHICHONES : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;

VARIABLES
DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";
ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to check for the criteria. Any data that
does not describe property carriers or
property carriert types within this set
will be ignored." INITIALVALUE = "";
TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type to
match." INITIALVALUE = "";
ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";
PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property to match
." INITIALVALUE = "";
REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";
VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value to match."
INITIALVALUE = "";
UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";
END_VARIABLES;
OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;

/ *x

112

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

The Matching block. Returns those property carriers
from ENT1 and ENT2 for which anoter entity in ENT2
(rep. ENT1l) exists that matches in the indicated
criteria.

*/
CLASS MATCHING : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;

VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."

INITIALVALUE = "";

ENT1 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to compare with entities from ENT2."
INITIALVALUE = "";

ENT2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to compare with entities from ENT2."
INITIALVALUE = "";

MID: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Id. Indicates if the id
should be matched (TRUE of FALSE)."
INITIALVALUE = "";

MTY: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Type. Indicates if the
property carrier type should be matched (
TRUE of FALSE)." INITIALVALUE = "";

MPR: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Property. Indicates if the

property type should be matched (TRUE of
FALSE) ." INITIALVALUE = "";

MST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Statement. Indicates if
the statement type should be matched (TRUE
of FALSE)." INITIALVALUE = "";

MRE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Relation. Indicates if the

statement relation should be matched (TRUE
of FALSE)." INITIALVALUE = "";

MUN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Unit. Indicates if the
statement unit should be matched (TRUE of
FALSE) ." INITIALVALUE = "";

REL : STRING HAS_GET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. That the statement
values should be in (=,!=,<,<=,>,>=)."
INITIALVALUE = "";

END_VARIABLES;

113

[ am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;
END_CLASS;
/[ **
Only for internal configuration management.
*/

CLASS Config : CLASS ov/object
IS_INSTANTIABLE;
VARIABLES

ServiceIP : STRING COMMENT = "IP address of
the service’s server." INITIALVALUE = "";
ServicePort : STRING COMMENT = "Port on the
service’s server." INITIALVALUE = "";
RetryConnect : INT COMMENT = "Number of
connection attempts. Connection fails after
failing the specified number is reached."
INITIALVALUE = 1;
END_VARIABLES;
OPERATIONS
END_OPERATIONS;
END_CLASS;
END_LIBRARY;

114

[ am 20,01.2026, 08:53:31. @ Inhak.
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

B. Verhalten des Bausteins QUERY

Die folgende C-Funktion enthilt die Ausfithrungslogik des Bausteins QUERY. Unter-
funktionen sind aufgrund des Umfangs nicht abgedruckt.

/*
Main function of function block QUERY.
*/
OV_DLLFNCEXPORT void PropertyInfos_QUERY_typemethod (

OV_INSTPTR_fb_functionblock pfb,
OV_TIME xpltc

OV_INSTPTR_PropertyInfos_QUERY pinst = Ov_StaticPtrCast (
PropertyInfos_QUERY, pfb);

OV_INSTPTR_PropertyInfos_Config pConfig;

OV_INT_VEC blockStack = {0, NULL};

OV_RESULT result = OV_ERR_OK;

switch (pinst->v_state) {
case STATE_IDLE:
pinst->v_NDR = FALSE;
pinst->v_ERROR = FALSE;
return;

case STATE_REQ:
pinst->v_REQ = FALSE;

// Update the inputs. Triggers a backwards search that
will update all connected blocks of type OpBase.

Ov_SetDynamicVectorLength (&blockStack, 0, INT);

result = updateQueryInput (&¢blockStack, pinst, NULL);

Ov_SetDynamicVectorLength (&blockStack, 0, INT);

// Check the inputs.
if (result != OV_ERR_OK || !checkInputs (pinst)
) {
pinst->v_state = STATE_ERROR;
pinst->v_ERROR = TRUE;
pinst->v_STATUS =
IEC_STATUS_INPUT_ERROR;
return;

// Do the call.
pinst->v_pReply = NULL;

115

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

B. Verhalten des Bausteins QUERY

if (!executeRequest (pinst, (
OV_INSTPTR_ServiceClient_CallReplyx) &pinst—>
v_pReply, getTmpDomain (pinst))) {
pinst->v_state = STATE_ERROR;
pinst->v_ERROR = TRUE;
pinst->v_STATUS = IEC_STATUS_NO_COMM;
return;

// Reset the output.

ov_string_setvalue (&pinst->v_RES.value.valueunion.
val_string, NULL);

// Now wait.

pinst->v_state = STATE_WAITING;

pinst->v_STATUS = IEC_STATUS_BUSY;

return;

case STATE_WAITING:
pinst->v_try++;
if (pinst->v_pReply == NULL) {
pConfig = (OV_INSTPTR_PropertyInfos_Config)
ov_path_getobjectpointer (CONFIGPATH, O0);
if (pinst->v_try > pConfig->v_RetryConnect) {
// Max attempts reached.
pinst->v_state = STATE_ERROR;
pinst->v_STATUS = IEC_STATUS_NO_COMM;
}
break;
}
// We have an answer if this line is reached.
result = OV_ERR_GENERIC;
result = handleReply (pinst);
if (!Ov_OK(result)) {
pinst->v_state = STATE_ERROR;
pinst->v_STATUS = IEC_STATUS_DATA_ERROR;
break;
}
pinst->v_state = STATE_NEWDATA;
pinst->v_STATUS = IEC_STATUS_OK;
break;

case STATE_NEWDATA:
pinst->v_NDR = TRUE;
pinst->v_state = STATE_IDLE;
pinst->v_try = 0;
deleteTmpDomain (pinst) ;
break;

case STATE_ERROR:
pinst->v_ERROR = TRUE;

116

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

pinst->v_state = STATE_IDLE;
pinst->v_try = 0;
deleteTmpDomain (pinst) ;
break;

return;

117

[ am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

C. Abklrzungsverzeichnis

ACPLT
AS

AT
AWL
CAD
FB

FBS

IT
KOP
KS

LIMS
MES
OPC DA

OPC UA

oV
PC
R&I~
SPS
SQL
ST
UML

118

Aachener Prozessleittechnik

Ablaufsprache

Automatisierungstechnik

Anweisungsliste

Computer Aided Design

Funktionsbaustein (Eigenname einer Bibliothek)
Funktionsbausteinsprache
Informationstechnologie

Kontaktplan

Kommunikationssystem (Kommunikationsprotokoll
und Eigenname einer Bibliothek)
Labor-Informations und Management-System
Manufacturing Execution System

Object Linking and Embedding for Process Control
Data Access (Eigenname)

Object Linking and Embedding for Process Control
Unified Architecture (Eigenname)
Objektverwaltung (Eigenname eines Laufzeitsystems)
Personal Computer

Rohrleitungs- und Instrumenten~
Speicherprogrammierbare Steuerung

Structured Query Language

Strukturierter Text

Unified Modeling Language

am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[1] acatech — Deutsche Akademie der Technikwissenschaften (2013). Umsetzungsemp-
fehlungen fiir das Zukunftsprojekt Industrie 4.0.

[2] Ahrens, W. (2010). Eine Gegeniiberstellung von VDI/VDE 3682, PROLIST, eCl@ss.
atp — Automatisierungstechnische Praxis 9/2010, 32—45.

[3] Ahrens, W. und M. Polke (1994). Prozefleittechnik, Chapter 2, S. 21-90. Oldenbourg
Verlag.

[4] American National Standards Institute (2011, Mai). ANSI/INCITS/ISO/IEC
9899:2011: Information technology - Programming language - C.

[5] Barth, M. und A. Fay (2010, Nov). Efficient use of data exchange formats in engi-
neering projects by means of language integrated queries — Engineers LINQ to XML.
In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, S. 1335—
1340.

[6] Brecher, C., W. Herfs, D. Behnen und J. Flender (2015). Planungsunterstiitzte Pro-
grammierung von Steuerungssystemen. In Automation 2015: Benefits of Change - the
Future of Automation, S. 1055-1066. VDI-Verlag.

[7] Chamberlin, D. D. und R. F. Boyce (1974). SEQUEL: A Structured English Query
Language. In Proceedings of 1974 ACM-SIGMOD Workshop on Data Description, Access
and Control, Ann Arbor, Michigan, May 1-3, 1974, 2 Volumes, S. 249-264.

[8] Chen, P. (1976). The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9-36.

[9] Codd, E.F. (1970). A Relational Model of Data for Large Shared Data Banks. Commun.
ACM 13(6), 377-387.

[10] Codd, E. F. (1972). Relational Completeness of Data Base Sublanguages. In: R.
Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM Research Report R 987, San
Jose, California.

[11] Connolly, T., C. Begg und A. Strachan (2002). Datenbanksysteme. Addison-Wesley.

[12] Defense Advanced Research Projects Agency (1981a, September). RFC 791: In-
ternet Protocol. URL https://tools.ietf.org/html/rfc791, (besucht am
09.12.2015).

[13] Defense Advanced Research Projects Agency (1981b, September). RFC 793: Trans-
mission Control Protocol. URL https://tools.ietf.org/html/rfc793, (be-
sucht am 09.12.2015).

119

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[14] Deutsches Institut fiir Normung. DIN EN 61512: Chargenorientierte Fahrweise (alle
Teile).

[15] Deutsches Institut fiir Normung. DIN EN 62541: OPC Unified Architecture (alle
Teile).

[16] Deutsches Institut fiir Normung. DIN EN ISO 80000: Grofien und Einheiten (alle
Teile).

[17] Deutsches Institut fiir Normung (2001, November). DIN EN 61131-5:2001: Spei-
cherprogrammierbare Steuerungen — Teil 5: Kommunikation.

[18] Deutsches Institut fiir Normung (2004, Mérz). DIN EN 61131: Speicherprogram-
mierbare Steuerungen (alle Teile).

[19] Deutsches Institut fiir Normung (2004, Dezember). DIN EN 61360-1: Genormte
Datenelementtypen mit Klassifikationsschema fiir elektrische Bauteile — Teil 1: Defi-
nitionen.

[20] Deutsches Institut fiir Normung (2011, September). DIN ISO 17356:2011: Zustands-
tiberwachung und -diagnostik von Maschinen — Allgemeine Anleitungen.

[21] Deutsches Institut fiir Normung (2014a, Juni). DIN EN 61131-3:2014: Speicherpro-
grammierbare Steuerungen — Teil 3: Programmiersprachen.

[22] Deutsches Institut fiir Normung (2014b, September). DIN EN 61499: Funktionsbau-
steine fiir industrielle Leitsysteme (alle Teile).

[23] Deutsches Institut fiir Normung. DIN 4002: Merkmale und Geltungsbereiche zum
Produktdatenaustausch (alle Teile).

[24] Deutsches Institut fiir Normung (2014). DIN SPEC 40912: Kernmodelle - Beschreibung
und Beispiele. Beuth Verlag.

[25] Diedrich, C., M. Meyer, L. Evertz und W. Schifer (2014). Dienste in der Automatisie-
rungstechnik - Automatisierungsgerate werden 140-Komponenten. atp edition 12/2014.

[26] eCl@ss e.V. URL http://www.eclass.de, (besucht am 09.12.2015).

[27] Eibl, M., D. Westphal, P. Zgorzelski, U. Kaptein und H.-J. Rudolf (2000). eCl@ss -
ein Werkzeug zur Unterstiitzung der Prozesse im eCommerce, der Materialwirtschaft
und der Anlagendokumentation, bezogen auf das PLT-Gewerk. atp — Automatisie-
rungstechnische Praxis 10/2000.

[28] Enste, U. (2001). Generische Entwurfsmuster in der Funktionsbausteintechnik und deren
Anwendung in der operativen Prozefifithrung. VDI Verlag GmbH.

[29] Epple, U. (2011). Merkmale als Grundlage der Interoperabilitit technischer Syste-
me. at — Automatisierungstechnik 59, 440-450.

[30] Evertz, L. und U. Epple (2013). Laying a Basis for Service Systems in Process Con-
trol. In ETFA 2013: IEEE 18th International Conference on Emerging Technologies and Fac-
tory Automation, Piscataway, NJ. IEEE.

120

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[31] George, J. (2014). Der Prolist-Workflow im eClass-Umfeld. atp edition 1-2/2014.

[32] Heeg, M. (2005). Ein Beitrag zur Modellierung von Merkmalen im Umfeld der Prozesslei-
ttechnik. VDI Verlag GmbH.

[33] Hepp, M., J. Leukel und V. Schmitz (2005). A quantitative analysis of eCl@ss, UN-
SPSC, eOTD, and RNTD content, coverage, and maintenance. In ICEBE 2005: IEEE
International Conference on e-Business Engineering, S. 572-581.

[34] Home, S., J. Griitzner, T. Hadlich, C. Diedrich, D. Schnépp, S. Arndt und E. Schnie-
der (2015). Semantic Industry: Herausforderungen auf dem Weg zur rechnergesttitz-
ten Informationsverarbeitung der Industrie 4.0. at Automatisierungstechnik 2, 74 — 86.

[35] Hsu, C., G. Babin, W. Cheung, L. Rattner und L. Yee (1992). Metadatabase Modeling
for Enterprise Information Integration. Journal of Systems Integration 2, 5-39.

[36] International Electrotechnical Commission. IEC 61360 — Common Data
Dictionary. ~ URL http://std.iec.ch/iec61360, (besucht am 09.12.2015).
http:/ /std.iec.ch/iec61360.

[37] International Electrotechnical Commission. IEC 61360: Standard data element types
with associated classification (alle Teile).

[38] International Electrotechnical Commission. IEC 61987: Industrielle Leittechnik —
Datenstrukturen und -elemente in Katalogen der Prozessleittechnik (alle Teile).

[39] International Electrotechnical Commission. IEC 62264: Integration von
Unternehmensfiihrungs- und Leitsystemen (alle Teile).

[40] International Electrotechnical Commission (2003, September). IEC TR 61131-8: Pro-
grammable controllers — Part 8: Guidelines for the application and implementation of
programming languages.

[41] International Electrotechnical Commission (2011, September). IEC 61804-3 Ed. 2.0:
Function blocks (FB) for process control - Part 3: Electronic Device Description Lan-
guage (EDDL.

[42] International Organization for Standardization. ISO 10303: Industrielle Automati-
sierungssysteme und Integration - Produktdatendarstellung und -austausch (alle Tei-
le).

[43] International Organization for Standardization. ISO 13584: Industrielle Automati-
sierungssysteme und Integration - Teilebibliothek (alle Teile).

[44] International Organization for Standardization, International Electrotechnical Com-
mission (2007). ISO/IEC 13249: Information technology - Database languages - SQL
multimedia and application packages (alle Teile).

[45] International Organization for Standardization, International Electrotechnical Com-
mission (2011). ISO/IEC 9075:Information technology - Database languages - SQL
(alle Teile).

121

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[46] International Telecommunication Union (1994, Juli). ITU-T X.200: Information tech-
nology — Open Systems Interconnection — Basic Reference Model: The basic model.

[47] John, K.-H. und M. Tiegelkamp (2000). SPS-Programmierung mit IEC 61131-3. Sprin-
ger.

[48] Kampert, D. und U. Epple (2013a). A Service Interface for Exchange of Property
Information. In IECON 2013 : 39th annual conference of the IEEE Industrial Electronics
Society, Piscataway, NJ, S. 6920-6925. IEEE.

[49] Kampert, D. und U. Epple (2013b). Dienste fiir den operativen Zugriff auf Merk-
malinformation in der Automatisierung - Spezifikation - Integration - Anwendung. In
Automation 2013 : 14. Branchentreff der Mess- und Automatisierungstechnik, Volume 2209
of VDI-Berichte, Diisseldorf, S. 61-64. VDI-Verl.

[50] Lacroix, M. und A. Pirotte (1977). Domain-Oriented Relational Languages. In Pro-
ceedings of the Third International Conference on Very Large Data Bases, October 6-8, 1977,
Tokyo, Japan., S. 370-378.

[51] Leitao, P, J. Mendes und A. Colombo (2008, Sept). Decision support system in
a service-oriented control architecture for industrial automation. In Emerging Tech-
nologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on, S.
1228-1235.

[52] Li, E, G. Bayrak, K. Kernschmidt und B. Vogel-Heuser (2012). Specification of the
Requirements to Support Information Technology-Cycles in the Machine and Plant
Manufacturing Industry. In 14th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM'12), S. 1077-1082.

[53] Manufacturing Enterprise Solutions Association (MESA) (2013). Business To Ma-
nufacturing Markup Language Release Notes Version 6.0. Technical report, Manu-
facturing Enterprise Solutions Association (MESA). URL http://www.mesa.org,
(besucht am 09.12.2015).

[54] Mertens, M. (2012). Verwaltung und Verarbeitung merkmalbasierter Informationen: vom
Metamodell zur technoligischen Realisierung. VDI Verlag GmbH.

[55] Meyer, D. (2002). Objektverwaltungskonzept fiir die operative Prozessleittechnik. VDI
Verlag GmbH.

[56] Mhlanga, F.,, J]. Wang, T. Shiau und P. Ng (1992, Jun). A query algebra for office
documents. In Systems Integration, 1992. ICSI '92., Proceedings of the Second International
Conference on, S. 458-467.

[57] NAMUR: Interessengemeinschaft Automatisierungstechnik der Prozessindustrie
(2003, Februar). NA 94: MES: Funktionen und Losungsbeispiele der Betriebsleitebene.

[58] NAMUR: Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

(2010, Juni). NE 100, Version 3.2: Nutzung von Merkmalleisten im PLT-Engineering-
Workflow.

122

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[59] OPC Foundation (2013). OPC Unified Architecture for ISA-95 Common Object Mo-
del Companion Specification Release 1.00. Technical report, OPC Foundation. URL
http://www.opcfoundation.org, (besucht am 09.12.2015).

[60] Organization for the Advancement of Structured Information Standards (2006, Ok-
tober). OASIS soa-rm: Reference Model for Service Oriented Architecture 1.0.

[61] Otto, B., H. Beckmann, O. Kelkar und S. Miiller (2002). E-Business-Standards:
Verbreitung und Akzeptanz. Technical report, Fraunhofer-Institut fiir Arbeitswirt-
schaft und Organisation. URL http://publica.fraunhofer.de/documents/
N-9942.html, (besucht am 09.12.2015).

[62] PLCopen und OPC Foundation (2014). OPC-UA Client FUNCTION BLOCKS for
IEC61131-3. Technical report, PLCopen und OPC Foundation. URL http://www.
plcopen.org, (besucht am 09.12.2015).

[63] Prinz, ]., A. Lider, N. Suchold und R. Drath (2011). Beschreibung mechatronischer
Objekte durch Merkmale. atp edition 7-8/2011.

[64] Robert Thurlow (2009, Mai). RFC 5531: RPC: Remote Procedure Call Protocol Speci-
fication Version 2. URL https://tools.ietf.org/html/rfc5531, (besucht am
09.12.2015).

[65] Schliitter, M., U.Epple und T. Edelmann (2009). On service-orientation as a new ap-
proach for automation environments. In ARGESIM Report no. 35: Proceedings MATH-
MOD 09 Vienna - Full Papers CD Volume.

[66] Schuppert, A. und R. Perne (2005). Data Mining mit Prozessdaten. at - Automatisie-
rungstechnik 53, 342-349.

[67] Sokolov, S. und C. Diedrich (2013). Stammdaten im Engineering. at - Automatisie-
rungstechnik 6, 427 — 435.

[68] Sparr, T. (1982, June). A Language for a Scientific and Engineering Database System.
In Design Automation, 1982. 19th Conference on, S. 865-871.

[69] Sten Griiner and David Kampert and Ulrich Epple (2012, Marz). A Model-Based
Implementation of Function Block Diagram. In Tagungsband Modellbasierte Entwick-
lung eingebetteter Systeme, Miinchen, S. 81-90. fortiss GmbH.

[70] Steusloff, H. (1994). ProzefSleittechnik, Chapter 8, S. 535-569. Oldenbourg Verlag.

[71] Tauchnitz, T., E. Grotsch, U. Kuhn, D. Wichmann und E. Linzenkirchner (1997).
Handbuch der Prozefiautomatisierung, Chapter Methoden, Geréte und Systeme zur Pro-
zef3fithrung, S. 15-148. Oldenbourg Verlag.

[72] Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems. Computer
Science Press.

[73] Verein Deutscher Ingenieure (1995, Oktober). VDI/VDE 3696: Herstellerneutrale
Konfigurierung von Prozefileitsystemen — Blatt 2: Standard-Funktionsbausteine.

123

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[74] Verein Deutscher Ingenieure (2006, August). VDI Richtlinie 5600: Manufacturing
Execution Systems.

[75] Verein Deutscher Ingenieure e.V. und Zentralverband Elektrotechnik und Elek-
tronikindustrie (2015). Referenzarchitekturmodell Industrie 4.0 (RAMI4.0). Techni-
cal report, Verein Deutscher Ingenieure e.V. und Zentralverband Elektrotechnik und
Elektronikindustrie. URL http://www.zvei.org/Downloads/Automation/
Statusreport-Referenzmodelle-2015-v10.pdf, (besucht am 09.12.2015).

[76] Vicknair, C., M. Macias, Z. Zhao, X. Nan, Y. Chen und D. Wilkins (2010). A Compa-
rison of a Graph Database and a Relational Database: A Data Provenance Perspective.
In Proceedings of the 48th Annual Southeast Regional Conference, ACM SE "10, S. 42:1-42:6.

[77] World Economic Forum (2015). Industrial Internet of Things: Unleashing the Poten-
tial of Connected Products and Services. URL http://www3.weforum.org/docs/
WEFUSA_IndustrialInternet_Report2015.pdf, (besucht am 09.12.2015).

124

am 20,01.2026, 08:53:31. @ Inhak.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186256089

HEE VDI nachrichten

Fachliteratur und mehr -
jetzt bequem online recher-
chieren & bestellen unter:
www.vdi-nachrichten.com/
Der-Shop-im-Ueberblick

= |

[+

=

'ahr_nuglmmurg fur
935 2. Jahrhundsrt
Automobilteg hnjy

VOI-Berichta 1653

Taglich aktualisiert:
Neuerscheinungen
VDI-Schriftenreihen

Fortsehei=s
schritt-Berichte VUI-'

&L
o
él hch“"'a”ﬂ(h}
neg

Fa
o A

oy

rrrrrrr

vpIi nachrichten

Online-Buchshop fir Ingenieure

BUCH |

Im Buchshop von vdi-nachrichten.com finden Ingenieure
und Techniker ein speziell auf sie zugeschnittenes, um-
fassendes Literaturangebot.

Mit der komfortablen Schnellsuche werden Sie in den
VDI-Schriftenreihen und im Verzeichnis lieferbarer
Bicher unter 1.000.000 Titeln garantiert flindig.

Im Buchshop stehen fiir Sie bereit:

VDI-Berichte und die Reihe Kunststofftechnik:

Berichte nationaler und internationaler technischer
Fachtagungen der VDI-Fachgliederungen

Fortschritt-Berichte VDI:

Dissertationen, Habilitationen und Forschungsberichte
aus samtlichen ingenieurwissenschaftlichen Fachrich-
tungen

Newsletter ,Neuerscheinungen”:

Kostenfreie Infos zu aktuellen Titeln der VDI-Schriften-
reihen bequem per E-Mail

Autoren-Service:

Umfassende Betreuung bei der Veroffentlichung Ihrer
Arbeit in der Reihe Fortschritt-Berichte VDI

Buch- und Medien-Service:

Beschaffung aller am Markt verfligbaren Zeitschriften,
Zeitungen, Fortsetzungsreihen, Handblcher, Technische
Regelwerke, elektronische Medien und vieles mehr —
einzeln oder im Abo und mit weltweitem Lieferservice

BUCHSHOP www.vdi-nachrichten.com/Der-Shop-im-Ueberblick

Inhak.

am 20,01.2026, 08:53:31. @
m

tersagt, mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
T Stromungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik

20 Rechnerunterstutzte Verfahren (CAD, CAM, CAE CAQ, CIM ...

21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-525608-0

am 20,01.2026, 08:53:31. @ Inhak.

tersagt, m mit, fir oder in Ki-Syster


https://doi.org/10.51202/9783186256089

	Cover
	1.  Einleitung
	1.1.  Motivation
	1.1.1.  Die wissenschaftliche Perspektive
	1.1.2.  Die pragmatische Perspektive
	1.1.3.  Die strategische Perspektive

	1.2.  Zielsetzung und Idee
	1.3.  Aufbau der Arbeit

	2.  Grundlagen
	2.1.  Merkmale
	2.1.1.  Metamodell zur Modellierung von Merkmalen
	2.1.2.  Dienstbasierte Verwendung von Merkmalen

	2.2.  Informationssysteme
	2.2.1.  Grundbegriffe des relationalen Datenbankmodells
	2.2.2.  Relationale Algebra
	2.2.3.  Relationenkalkül
	2.2.4.  Eigenschaften der relationalen Algebra


	3.  Stand der Technik
	3.1.  Merkmal-Modelle in der Praxis
	3.1.1.  IEC 61360
	3.1.2.  eCl@ss

	3.2.  Abfragesprachen
	3.2.1.  Abfragesprachen für relationale Datenbanken
	3.2.2.  Abfragesprachen für graphbasierte Datenbanken
	3.2.3.  Domänenspezifische Abfragesprachen

	3.3.  Software-Systeme im Umfeld der industriellen Produktion
	3.3.1.  Manufacturing Execution Systeme
	3.3.2.  Datenarchive
	3.3.3.  Rezeptverwaltung
	3.3.4.  Labor-Informations- und Managementsysteme
	3.3.5.  Condition Monitoring

	3.4.  SPS-Programmierung
	3.4.1.  Aufbau und Funktionsweise einer SPS
	3.4.2.  Programmiersprachen
	3.4.3.  Kommunikation


	4.  Analyse und Anforderungen
	4.1.  Eignung der Merkmalmodelle
	4.2.  Entwurf der Abfragesprache
	4.3.  Implementierung

	5.  Lösungskonzept
	5.1.  Abbildung des Merkmalmodells im relationalen Datenbankmodell
	5.1.1.  Formale Spezifikation
	5.1.2.  Anwendersicht

	5.2.  Grundoperationen der Abfragesprache
	5.2.1.  Abdeckung der relationalen Algebra
	5.2.2.  Wertausgabe
	5.2.3.  Boolesche Formeln
	5.2.4.  Vererbungsbeziehungen
	5.2.5.  Aggregationen

	5.3.  Erweiterte Operationen der Abfragesprache
	5.3.1.  Zusammenführen von Merkmalträgern und Aussagen
	5.3.2.  Suche nach Merkmalträgern
	5.3.3.  Aggregationen
	5.3.4.  Bestimmung des Merkmalträgertyps
	5.3.5.  Vorhandensein eines Merkmals
	5.3.6.  Verknüpfung von Merkmalträgern

	5.4.  Schnittstellen und Verhalten der Funktionsbausteine
	5.4.1.  Konzept
	5.4.2.  Funktionsbausteine für Abfrageoperationen
	5.4.3.  Funktionsbaustein zur Ausführung von Abfragen

	5.5.  Systemarchitektur
	5.5.1.  Positionierung in der Automatisierungspyramide
	5.5.2.  Komponenten des Dienstes für Merkmalabfragen


	6.  Prototypische Implementierung
	6.1.  Technische Grundlagen
	6.1.1.  Die Laufzeitumgebung ACPLT/OV
	6.1.2.  Die Bibliothek ACPLT/FB
	6.1.3.  Das Kommunikationsprotokoll ACPLT/KS
	6.1.4.  Das ACPLT-Dienstsystem

	6.2.  Softwarearchitektur
	6.2.1.  Architektur des Klienten
	6.2.2.  Architektur des Merkmaldienstes
	6.2.3.  Ablauf eines Dienstaufrufs
	6.2.4.  Administration des Dienstes

	6.3.  Anwendungsbeispiele
	6.3.1.  Flexible Programmierung vonWerkzeugmaschinen
	6.3.2.  Überwachung von Erdölpumpen in einer Erdölraffinerie


	7.  Diskussion und Ausblick
	7.1.  Diskussion der Grundidee
	7.2.  Diskussion der Abfragesprache
	7.3.  Diskussion der Integration
	7.4.  Ausblick

	A.  Spezifikation der Funktionsbausteine
	B.  Verhalten des Bausteins QUERY
	C.  Abkürzungsverzeichnis
	Literaturverzeichnis

