
Fortschritt-Berichte VDI

Dipl.-Inf. David Kampert,
Stuttgart

Nr. 1256

Mess-,
Steuerungs- und
Regelungstechnik

Reihe 8

Operative Verwendung
merkmalbasierter
Information in der
Automatisierung

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Operative Verwendung merkmalbasierter Information in der

Automatisierung

Von der Fakultät für Georessourcen und Materialtechnik der

Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von Dipl.-Inf.

David Kampert

aus Diepholz

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple

 Univ.-Prof. Dr.-Ing. Christian Diedrich

Tag der mündlichen Prüfung: 06. März 2017

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Fortschritt-Berichte VDI

Operative Verwendung
merkmalbasierter
Information in der
Automatisierung

Dipl .-Inf. David Kampert,
Stuttgart

Mess-, Steuerungs-
und Regelungstechnik

Nr. 1256

Reihe 8

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

Lehrstuhl für
Prozessleittechnik
der RWTH Aachen

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

D82 (Diss. RWTH Aachen University, 2017)

© VDI Verlag GmbH · Düsseldorf 2017
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten.
Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9546
ISBN 978-3-18-525608-0

Kampert, David
Operative Verwendung merkmalbasierter Information in der
Automatisierung
Fortschr.-Ber. VDI Reihe 8 Nr. 1256. Düsseldorf: VDI Verlag 2017.
 134 Seiten, 22 Bilder, 10 Tabellen.
ISBN 978-3-18-525608-0, ISSN 0178-9546,
¤ 52,00/VDI-Mitgliederpreis ¤ 46,80.
Für die Dokumentation: Automatisierung – Industrie 4.0 – IEC 61131 – SPS – Merkmale –
Abfragesprache – Relationale Algebra – Dienst

In dieser Arbeit wird ein neuartiges Konzept für die Kommunikation technischer Merkmale vor-
gestellt. Das Konzept erlaubt industriellen Automatisierungssystemen, Informationen über techni-
sche Merkmale mittels IEC 61131-konformer Programmierung von Fremdsystemen, beispielswei-
se IT-Systemen der MES-Ebene, abzufragen. Durch die Verfügbarkeit dieser Information können
flexible Produktionsanlagen deutlich leichter realisiert werden. Grundlage dieser Arbeit ist der
aktuelle Stand von Wissenschaft, Technik und industriell angewandten Normen und Standards.
Im Detail sind dies theoretische Grundlagen zu Merkmalmodellen und Informationssystemen
sowie die praktische Anwendung von Merkmalmodellen, Abfragesprachen, Software-Systemen
im industriellen Umfeld und die Programmierung von Automatisierungssystemen. Ausgehend
davon werden Anforderungen an das zu entwickelnde Konzept und die Implementierung und
Integration abgeleitet. Die Implementierung entsprechender Abfragen in IEC 61131-kompatib-
len Automatisierungssysteme wird erläutert. Die Integration in das IT-Umfeld einer industriellen
Produktionsanlage wird dabei ebenso betrachtet wie die interne Softwarearchitektur. Die Arbeit
schließt mit Anwendungsbeispielen und einer kritischen Diskussion des Konzepts.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek
(German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
http://dnb.ddb.de.

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Vorwort

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter des Lehr-
stuhls für Prozessleittechnik der RWTH Aachen. Ich bedanke mich bei Herrn Profes-
sor Dr.-Ing. Ulrich Epple dafür, dass er mir dieses Unterfangen nicht nur ermöglichte,
sondern durch seine Führung des Lehrstuhls auch zu einer angenehmen, lehrreichen,
konstruktiven und schönen Zeit gemacht hat. Ich danke außerdem Professor Dr.-Ing.
Christian Diedrich für die freundliche Übernahme der Rolle des Zweitgutachters.

Großen Anteil an dieser Arbeit hat auch das gesamte Team des Lehrstuhls, zu dem ich
über fünf Jahre gehören durfte. Ein herzliches „Dankeschön“ an dieses tolle Team!

David Kampert

III

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

IV

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

Kurzfassung VIII

1. Einleitung 1
1.1. Motivation . 1

1.1.1. Die wissenschaftliche Perspektive 2
1.1.2. Die pragmatische Perspektive . 3
1.1.3. Die strategische Perspektive . 3

1.2. Zielsetzung und Idee . 4
1.3. Aufbau der Arbeit . 7

2. Grundlagen 10
2.1. Merkmale . 10

2.1.1. Metamodell zur Modellierung von Merkmalen 10
2.1.2. Dienstbasierte Verwendung von Merkmalen 14

2.2. Informationssysteme . 19
2.2.1. Grundbegriffe des relationalen Datenbankmodells 19
2.2.2. Relationale Algebra . 20
2.2.3. Relationenkalkül . 21
2.2.4. Eigenschaften der relationalen Algebra 22

3. Stand der Technik 24
3.1. Merkmal-Modelle in der Praxis . 24

3.1.1. IEC 61360 . 25
3.1.2. eCl@ss . 27

3.2. Abfragesprachen . 31
3.2.1. Abfragesprachen für relationale Datenbanken 31
3.2.2. Abfragesprachen für graphbasierte Datenbanken 31
3.2.3. Domänenspezifische Abfragesprachen 32

3.3. Software-Systeme im Umfeld der industriellen Produktion 32
3.3.1. Manufacturing Execution Systeme 34
3.3.2. Datenarchive . 35
3.3.3. Rezeptverwaltung . 35
3.3.4. Labor-Informations- und Managementsysteme 36
3.3.5. Condition Monitoring . 36

3.4. SPS-Programmierung . 36
3.4.1. Aufbau und Funktionsweise einer SPS 36
3.4.2. Programmiersprachen . 37
3.4.3. Kommunikation . 43

V

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

4. Analyse und Anforderungen 48
4.1. Eignung der Merkmalmodelle . 48
4.2. Entwurf der Abfragesprache . 49
4.3. Implementierung . 51

5. Lösungskonzept 54
5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell 54

5.1.1. Formale Spezifikation . 54
5.1.2. Anwendersicht . 58

5.2. Grundoperationen der Abfragesprache . 59
5.2.1. Abdeckung der relationalen Algebra 59
5.2.2. Wertausgabe . 62
5.2.3. Boolesche Formeln . 62
5.2.4. Vererbungsbeziehungen . 62
5.2.5. Aggregationen . 63

5.3. Erweiterte Operationen der Abfragesprache 66
5.3.1. Zusammenführen von Merkmalträgern und Aussagen 66
5.3.2. Suche nach Merkmalträgern . 67
5.3.3. Aggregationen . 68
5.3.4. Bestimmung des Merkmalträgertyps 69
5.3.5. Vorhandensein eines Merkmals . 69
5.3.6. Verknüpfung von Merkmalträgern 70

5.4. Schnittstellen und Verhalten der Funktionsbausteine 71
5.4.1. Konzept . 71
5.4.2. Funktionsbausteine für Abfrageoperationen 72
5.4.3. Funktionsbaustein zur Ausführung von Abfragen 74

5.5. Systemarchitektur . 77
5.5.1. Positionierung in der Automatisierungspyramide 77
5.5.2. Komponenten des Dienstes für Merkmalabfragen 79

6. Prototypische Implementierung 84
6.1. Technische Grundlagen . 84

6.1.1. Die Laufzeitumgebung ACPLT/OV 84
6.1.2. Die Bibliothek ACPLT/FB . 85
6.1.3. Das Kommunikationsprotokoll ACPLT/KS 86
6.1.4. Das ACPLT-Dienstsystem . 86

6.2. Softwarearchitektur . 87
6.2.1. Architektur des Klienten . 87
6.2.2. Architektur des Merkmaldienstes 89
6.2.3. Ablauf eines Dienstaufrufs . 91
6.2.4. Administration des Dienstes . 93

6.3. Anwendungsbeispiele . 94
6.3.1. Flexible Programmierung von Werkzeugmaschinen 94
6.3.2. Überwachung von Erdölpumpen in einer Erdölraffinerie 95

7. Diskussion und Ausblick 98
7.1. Diskussion der Grundidee . 98

VI

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Inhaltsverzeichnis

7.2. Diskussion der Abfragesprache . 99
7.3. Diskussion der Integration . 100
7.4. Ausblick . 101

A. Spezifikation der Funktionsbausteine 103

B. Verhalten des Bausteins QUERY 115

C. Abkürzungsverzeichnis 118

Literaturverzeichnis 119

VII

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Kurzfassung

In dieser Arbeit wird ein neuartiges Konzept für die Kommunikation technischer Merk-
male vorgestellt. Das Konzept erlaubt industriellen Automatisierungssystemen, Infor-
mationen über technische Merkmale mittels IEC 61131-konformer Programmierung von
Fremdsystemen abzufragen. Die Arbeit erläutert die theoretischen Grundlagen, das Ge-
samtkonzept und Aspekte der Integration für die industrielle Automatisierung.

Geräte und Systeme im industriellen Umfeld werden vermehrt kommunikationsfä-
hig und mit Netzwerken verbunden. Diese Konnektivität wird meist für den Zugriff auf
Automatisierungssysteme von außen benutzt, aber auch die Automatisierungssysteme
selbst können von den dadurch zugänglichen Daten profitieren, indem sie operativ not-
wendige oder nutzenbringende Information durch das Netz von Fremdsystemen abfra-
gen. Beispielsweise kann eine Anlagensteuerung die notwendige Information zur Her-
stellung einer Produktvariante selbst und zum richtigen Zeitpunkt erfragen, ohne aktiv
von außen mit der Information versorgt werden zu müssen. Solche Abfragen sind nach
heutigem Stand der Technik aber aufwändig einzurichten, zu warten und nicht flexibel.
Die Vernetzung birgt also großes Potenzial für die Automatisierung, das Verhältnis von
Aufwand und Nutzen ist aber ungünstig.

Eine große Vereinfachung wäre eine Standardisierung der von Automatisierungssy-
stemen ausgehenden Kommunikation. Während in technischer Hinsicht bereits Lösun-
gen existieren, fehlt es in semantischer Hinsicht an Standards. Die Bedeutung von Infor-
mation aus einem Fremdsystem, beispielsweise Information über ein Produktmerkmal,
muss vorab bekannt sein, was mit steigender Anzahl vernetzter Systeme schwieriger
wird. Weil ein großer Teil der Kommunikationsinhalte, die für ein Automatisierungssy-
stem operativ nutzbar sind, technische Merkmale betrifft, sind diese der Ausgangspunkt
für das in dieser Arbeit vorgestellte Konzept.

Heute sind umfangreiche Merkmaldefinitionen durch Normen und Standards verfüg-
bar (z.B. IEC 61360 und eCl@ss). In der Wissenschaft existiert außerdem eine klare Vor-
stellung davon, wie das Prinzip der Modellierung durch Merkmale grundsätzlich funk-
tioniert. Für die operative Nutzung dieser Daten und Modelle in der Automatisierung
gibt es aber kein Konzept.

Grundlage dieser Arbeit ist der aktuelle Stand von Wissenschaft, Technik und indu-
striell angewandten Normen und Standards. Dieser wird in den ersten Kapiteln der Ar-
beit in Hinblick auf das Gesamtkonzept vorgestellt und erläutert. Im Detail sind dies
theoretische Grundlagen zu Merkmalmodellen und Informationssystemen sowie die
praktische Anwendung von Merkmalmodellen, Abfragesprachen, Software-Systemen
im industriellen Umfeld und in die Programmierung von Automatisierungssystemen.
Ausgehend davon werden Anforderungen an das zu entwickelnde Konzept und die
Implementierung und Integration abgeleitet.

Der erste Schritt zur Lösung ist die Definition einer Abfragesprache für technische
Merkmale, die sich auf ein vorhandenes allgemeines Metamodell für Merkmale be-
zieht. Die Abfragesprache hat die relationale Algebra als formale Basis. Die Operationen

VIII

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Kurzfassung

der Sprache bestehen aus Grundoperationen, die durch theoretische Überlegungen und
technische Umsetzung motiviert sind sowie aus erweiterten Operationen, die durch die
praktische Anwendung motiviert sind und auf den Grundoperationen aufbauen.

Anschließend wird die Integration entsprechender Abfragen in IEC 61131-kompatible
Automatisierungssysteme erläutert. Die Operationen werden als Typen von Funktions-
bausteinen spezifiziert, so dass Abfragen von Merkmalinformation durch Funktionsbau-
steine programmiert werden können. Schnittstellen und Ausführungssemantik werden
spezifiziert.

Letztlich werden der Entwurf und die Integration eines Servers zur Verarbeitung die-
ser Abfragen diskutiert. Die Integration in das IT-Umfeld einer industriellen Produkti-
onsanlage wird dabei ebenso betrachtet wie Grundzüge der internen Softwarearchitek-
tur. Die Arbeit schließt mit Anwendungsbeispielen und einer kritischen Diskussion des
Konzepts.

IX

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

X

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1. Einleitung

1.1. Motivation

Durch die Vernetzung von Automatisierungssystemen industrieller Produktionsanlagen
mit IT-Systemen und dem Internet wird es in naher Zukunft große Veränderungen in der
Industrie, der Wirtschaft und der Gesellschaft geben [1, 77]. Durch die Verfügbarkeit von
Information werden vorhandene Systeme ihre Aufgaben besser erfüllen können und es
werden vollkommen neuartige technische Lösungen und Geschäftsmodelle entstehen.
Die Systeme zur Organisation und Steuerung der Produktion sind dabei Mittel- und
Ausgangpunkt der Veränderungen. Diese Arbeit beschäftigt sich mit den neuen Mög-
lichkeiten für die Automatisierungstechnik. Genauer gesagt wird eine Technologie ein-
geführt, die es speicherprogrammierbaren Steuerungen erlaubt, mittels der Vernetzung
auf Daten technischer Merkmale zuzugreifen. Durch diese neu verfügbare Informations-
quelle können viele Automatisierungsaufgaben besser erfüllt werden und es entstehen
auch gänzlich neue Anwendungsmöglichkeiten.

Speicherprogrammierbare Steuerungen, abgekürzt SPS, sind Systeme für die pro-
grammierbare Automatisierung von technischen Anlagen, beispielsweise industriellen
Produktionsanlagen. Die Zielsetzung für Entwickler und Anwender einer SPS war und
ist es, dass mit dem System Vorgänge der realen Welt gemessen, gesteuert und geregelt
werden können – möglichst effektiv, präzise, umfangreich, kostengünstig und aufwand-
sarm. Dem Programmierer einer SPS stehen dafür die notwendigen Mittel zur Verfü-
gung, d.h. die technische Anbindung der Feldgeräte und, getrennt davon, die Werk-
zeuge zur Implementierung und Ausführung von Berechnungen und Prozeduren. Für
Mess-, Regel- und Steueraufgaben sind diese Mittel geeignet. Zur Ausnutzung der Vor-
teile einer vernetzten Infrastruktur ist das jedoch nicht ausreichend. Das ist ein Nachteil,
denn es befindet sich in vernetzten Systemen im Umfeld industrieller Produktionsanla-
gen viel Information, die prinzipiell für eine bessere und flexiblere Funktion einer SPS
genutzt werden könnte: Informationen zu Merkmalen von Produktionsplanung, Aufträ-
gen, Produkten, Rohstoffen, Geräten der Anlage, Kosten oder Logistik sind nur einige
Beispiele. Trotz heute oder zukünftig vorhandener Vernetzung ist diese Information für
eine SPS kaum erreichbar, denn ein Programmiermittel zum gezielten Suchen und Er-
fragen von Information gibt es nicht. Für den ursprünglichen Einsatzzweck von SPS
zum Messen, Steuern und Regeln muss keine Information gesucht werden, daher gibt
es hierzu kein nativ vorhandenes Konzept. Als Lösung bieten einige Softwareherstel-
ler spezielle Bibliotheken an, mit deren Hilfe Information aus SQL-Datenbanken oder
Excel-Dateien abgefragt bzw. herausgesucht werden kann. Dies sind aber jeweils tech-
nische Speziallösungen; die logische Abfrage einer Information ist dann untrennbar mit
der Technologie und Strukturierung der Datenquelle verbunden. Ein selbständiges Kon-
zept, das die technische Kommunikation von der logischen Informationsabfrage und
-verwendung trennt, gibt es nicht. Das sind Ausgangspunkt und Motivation dieser Ar-

1

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1. Einleitung

beit. Ziel ist die Spezifikation einer allgemeinen Abfragesprache für Merkmalinformati-
on, die von einer SPS genutzt werden kann.

Diese Arbeit kann aus drei Perspektiven betrachtet werden.

1.1.1. Die wissenschaftliche Perspektive

Dieser Arbeit liegt die These zugrunde, dass es Grundprinzipien zur Strukturierung von
Information gibt. Im hier betrachteten Anwendungsumfeld der industriellen Produkti-
on gibt es zahlreiche Modelle, die Aspekte von Produktionsanlagen, Geräten, Produk-
ten, Produktionsabläufen, Produktionsplänen usw. abbilden. Diese Modelle liegen heute
zunehmend in IT-Systemen vor und besitzen oft auch ein dokumentiertes Meta-Modell.
Die Modelle vermitteln vier Arten von Information:

• Merkmalinformation beschreibt charakteristische Eigenschaften von Objekten, die
für das besitzende Objekt als Ganzes gelten und mit einfachen Werten belegt wer-
den können. Datenblätter vermitteln hauptsächlich Merkmalinformation.

• Strukturinformation erklärt, aus welchen Objekten das modellierte Gesamtobjekt
besteht und wie diese Objekte zueinander in Beziehung stehen. Ein R&I-Fließbild
vermittelt hauptsächlich Strukturinformation.

• Zeitbezogene Information beschreibt die unterschiedlichen Zustände, in denen ein
Objekt war, (in Zukunft) sein soll oder sein kann. Das kann durch explizite Be-
schreibung der Zustände (z.B. bei der Modellierung eines Produktlebenszyklus)
oder durch die Beschreibung der Dynamik (z.B. Differenzialgleichungen) gesche-
hen.

• Bildhafte Information dient der Nachbildung der Sinneswahrnehmung des model-
lierten Gegenstands, typischerweise der optischen Erscheinung. 3D-CAD-Modelle
vermitteln bildhafte Information.

In den meisten gebräuchlichen Modellen werden diese Arten von Information mitein-
ander vermischt und die Modelle können aufeinander aufbauen. Merkmalinformation
ist in beinahe allen Modellen vorhanden, allein schon, um den modellierten Gegenstand
und ggf. dessen Bestandteile anhand von Merkmalen wie „Name“ zuordnen zu können.
Der Zugriff auf Merkmalinformation ist daher für besonders viele Modellarten relevant.

Von wissenschaftlicher Seite wurde das große Potenzial, das mit der Beherrschung
von Merkmalinformation einhergeht, identifiziert (s. z.B. [29, 34, 63, 67]). Ein Metamo-
dell für Merkmale bzw. eine einheitliche Sicht auf Modelle mit Merkmalinformation
wurde von Mertens veröffentlicht [54]. Die Frage danach, wie dieses Modell operativ
– beispielsweise von Automatisierungssystemen – genutzt werden kann, ist aber bisher
ohne Antwort. In vielen Fällen wird Merkmalinformation nicht lokal vorliegen, sondern
von Fremdsystemen abgefragt werden müssen. In dieser Arbeit wird daher systematisch
und ausgehend vom Stand von Wissenschaft und Technik ein Konzept für die Abfrage
dieser Information spezifiziert, das auf das allgemeine Modell für Merkmale anwendbar
und die Anwendung in der Automatisierungstechnik zugeschnitten ist. Es vervollstän-
digt so das vorhandene Metamodell aus funktionaler und operativer Sicht der Automa-
tion.

2

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1.1. Motivation

1.1.2. Die pragmatische Perspektive

Durch die Vernetzung industrieller Produktionssysteme wird die Menge verfügbarer In-
formation zunehmend größer. Grundsätzlich bietet diese Verfügbarkeit von Informati-
on das Potenzial, den Anlagenbetrieb und die Produktionsprozesse selbst zu verbessern
bzw. sogar neuartige Prozesse zu ermöglichen. Voraussetzung dafür ist aber, dass die
Information nicht nur verfügbar ist, sondern die Informationsmenge und die Abwick-
lung der Kommunikation auch beherrschbar sind. Die Größe und Dynamik der Net-
ze erschweren das Auffinden der jeweils gesuchten Information. Das ist besonders für
Automatisierungssysteme eine Herausforderung, weil sie über vergleichsweise gerin-
ge Hardwareressourcen verfügen und nicht zu beliebigen Zeitpunkten zwecks Anpas-
sung an Veränderungen neu programmiert werden können. Folgendes Praxisbeispiel
illustriert dieses Problem:

In einer Raffinerie soll der Arbeitszustand von Erdölpumpen durch die steuernde SPS
überwacht werden. Dafür werden spezielle Funktionsbausteine in der SPS verwendet,
die die Betriebsparameter, Zustände und Kenndaten der Pumpen als Eingänge haben.
Zusätzlich benötigen die Bausteine aufgrund physikalischer Gesetzmäßigkeiten Infor-
mationen über das geförderte Medium, hier also das Erdöl. Die SPS benötigt beispiels-
weise Information darüber, welche Dichte das Erdöl aus der Probe hat, die aus dem
Tank stammt, aus dem derzeit gepumpt wird. Dieses Merkmal ist je nach verwendeter
Erdölsorte verschieden und liegt im Laborinformationssystem vor. Gleichzeitig kennt
das MES notwendige Details zum aktuellen Arbeitsauftrag wie den genutzten Tank.
Die Komplexität der Datenstrukturen und Netze (Firewalls, Regeln zur Sicherheit etc.)
erschwert die direkte Beschaffung der benötigten Information, außerdem führen Ver-
änderungen der Informationsquellen durch Migration oder Updates zu erzwungenen
Anpassungen der SPS.

Idealerweise könnte die SPS in dieser Situation die benötigte Information selbst er-
fragen, ohne dass eine Punkt-zu-Punkt-Verbindung zu den Quellsystemen der Informa-
tion erstellt und gewartet werden muss. Dass die SPS selbst die benötigte Informati-
on erfragen kann, ist derzeit ein eher ungewöhnlicher Weg zur Lösung dieser Art von
Aufgaben, weil üblicherweise die SPS „von außen“ mit der benötigten Information ver-
sorgt wird. Das liegt aber nicht daran, dass die technischen Möglichkeiten für die aktive
Datenabfrage fehlen würden oder dass der Weg grundsätzlich organisatorisch kompli-
zierter wäre. Es gibt schlicht kein effektiven Konzept. Eine sehr ähnliche Idee ist unter
der Bezeichnung „Enterprise Information Integration“ ist im Bereich der IT-Systeme be-
reits seit Anfang der 1990er Jahre bekannt [35], wo der Anwendungsbereich aber bei
großen Datenbanken und komplexen Datenstrukturen liegt. Somit gibt es für die tech-
nische Umsetzung in großem Maßstab bereits Beispiele, aus Sicht der Automatisierung
fehlt aber eine Lösung, die sich auf die Abbildung von Merkmalen konzentriert und die
auf die domänenspezifischen Anforderungen zugeschnitten ist. Diese Arbeit liefert das
Konzept für eine solche Lösung.

1.1.3. Die strategische Perspektive

Für die eingangs des Kapitels erwähnten Veränderungen in der Industrie, die z.T. begon-
nen haben und noch in Zukunft erwartet werden, spielt die Automatisierungstechnik
eine zentrale Rolle. Umso erstaunlicher ist, dass in vielen Vorschlägen, wie zukünfti-

3

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1. Einleitung

ge Automatisierung „intelligenter“ und „flexibler“ gemacht werden kann, die eigent-
lichen Automatisierungssysteme, die reale Prozesse messen, steuern und regeln, sich
überhaupt nicht verändern. Die Änderungen beziehen sich stattdessen auf Software-
Systeme im Umfeld der Automatisierungssysteme, die mehr und besser als zuvor Da-
ten sammeln und auswerten, um damit dann die Automatisierungssysteme zu parame-
trieren, konfigurieren oder programmieren. Automatisierungssysteme sind somit keine
aktiven Komponenten in der vernetzten virtuellen Welt. Es ist daher möglich, dass die
Automatisierungstechnik als Disziplin von den Ergebnissen der „Industrie 4.0“, dem
„Industrial Internet“ und von „Cyber-Physical Production Systems“ trotz ihrer zentra-
len Rolle nur wenig profitiert. Die Motivation dieser Arbeit aus strategischer Perspek-
tive ist daher zu zeigen, wie Automatisierungssysteme auf einfache und effektive Art
von der Vernetzung mit IT-Systemen profitieren können und sich dadurch neue Anwen-
dungsmöglichkeiten eröffnen. Es entsteht eine neue Art von Softwaresystem, das (an-
ders als vorhandene Systeme) keine neue Information erzeugt, sondern nur vorhandene
Information in einer Art organisiert, die für die Automatisierungstechnik einen direkten
Nutzen erzeugt.

1.2. Zielsetzung und Idee

Ziel der Arbeit ist die Spezifikation einer allgemeinen Abfragesprache für Merkmalin-
formation, die von einer SPS operativ genutzt werden kann. Dieses Ziel geht mit der
Betrachtung einer Reihe von Nebenbedingungen einher, um die tatsächliche Realisier-
barkeit und Einsetzbarkeit des Konzepts zu gewährleisten. Die gesuchte Lösung muss
in das technische Umfeld der industriellen Produktion passen, d.h. mit vorhandenen
Software-Systemen integrierbar sein und grundsätzlich in einer SPS verwendbar. Au-
ßerdem sollte die Lösung innerhalb der SPS kein neu- und andersartiger Fremdkörper
sein, damit sie leicht erlernbar und nachvollziehbar ist. Die Einhaltung von Standards
und die Orientierung an vorhandenen Programmierkonzepten sind daher unverzicht-
bar. Weiterhin sollte für einen Anwender klar sein, in welchen Fällen die Abfragesprache
eingesetzt werden kann und wo ihre Grenzen liegen. Die Entwicklung neuer Theorie im
Bereich der Informationssysteme oder neuer Datenbanktechnologie sind dagegen nicht
Ziel der Arbeit.

Der Idee dieser Arbeit gehen einige Grundüberlegungen zur Kommunikation zwi-
schen Automatisierungs- und IT-Systemen voraus. Für das allgemeine Ziel, einer SPS
Merkmalinformation zur Verfügung zu stellen, gibt es mehrere denkbare Lösungen (s.
Abbildung 1.1). Eine naheliegende Möglichkeit, gezeigt bei 1©, ist dass die externen Sy-
steme die jeweils benötigten Daten in die SPS schreiben. Aus technischer Sicht ist das
möglich, weil entsprechende Datenschnittstellen wie OPC DA/UA oft verfügbar sind.
Aus logischer Sicht funktioniert diese Lösung jedoch häufig nicht, weil die Informations-
quelle wissen müsste, welche SPS welche Information benötigt. Im Beispiel der Pumpen-
überwachung müsste also das Laborinformationssystem wissen, aus welchem Tank das
von einer Pumpe geförderte Rohöl stammt. Diese Information ist im Laborinformations-
system nicht vorhanden. Selbst wenn das der Fall wäre, ist dieser Lösungsweg organi-
satorisch schwierig: Wenn sich etwas an der Anlage oder der SPS ändert, so dass andere
Informationen benötigt werden als zuvor, müsste die Informationsquelle angepasst wer-
den, obwohl sie von der ursprünglichen Änderung eigentlich nicht betroffen ist. Anders-

4

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1.2. Zielsetzung und Idee

herum betrachtet muss bei einer Änderung an der Informationsquelle die spezielle Ab-
hängigkeit zur SPS berücksichtigt werden. Solche Abhängigkeiten führen zu erhöhtem
Arbeitsaufwand, Abstimmungsbedarf, Verzögerungen und Inkonsistenzen. Letztlich ist
Lösung 1© daher nicht ideal.

Das führt zu Lösung 2©, in der die SPS selbst bei den externen Systemen Information
abfragt. Weil IT-Systeme normalerweise nicht darauf ausgerichtet sind, dass Daten von
einer SPS aus abgefragt werden, bieten sie im Regelfall auch keine speziellen Schnitt-
stellen dafür an. Die SPS muss sich daher nach den angebotenen Schnittstellen richten,
was technisch z.T. durch spezielle Bibliotheken auf mehr oder weniger umständliche
Art möglich ist (im Bild verdeutlicht durch die unterschiedlichen Befehle get und rq
zur individuellen Datenabfrage). Auch hier ist aber wieder der organisatorische Aspekt
schwierig. IT-Systeme haben meist kürzere Lebenszyklen als Automatisierungssysteme
und ändern sich daher während des Betriebs der SPS, die ggf. wegen der laufenden Pro-
duktion auch nicht neu programmiert werden kann [52]. Insgesamt bestehen bei Lösung
2© also immer noch erhebliche technische und organisatorische Probleme.

In Lösung 3© wird die technische Abhängigkeit durch ein zusätzliches Software-
System aufgelöst, das als eine Art Broker zwischen SPS und Datenquellen vermittelt.
Dieses System implementiert die auf der jeweiligen Seite vorhandenen Schnittstellen
und entkoppelt IT-Systeme und Automatisierungssysteme voneinander. Bei einer ge-
schickten Implementierung können Veränderungen in einem beteiligten System im Vor-
aus eingeplant und gleitende Übergänge geschaffen werden. Es bleibt einzig das Pro-
blem, dass das neu eingeführte System wissen muss, welche Information von welcher
SPS benötigt wird. Wünschenswert wäre, wenn das Broker-System nur die rein tech-
nische „Übersetzung“ von Abfragen durchführen müsste, ohne dass hier konfiguriert
werden muss, wer welche Information benötigt. Das führt letztendlich zu Lösung 4©,
in der der vermittelnde Broker für die Automatisierungssysteme eine Schnittstelle an-
bietet, an der Daten abgefragt werden können. Die Formulierung der Abfrage geschieht
in der SPS und sofern andere Daten benötigt werden als zuvor, muss auch nur dort die
Abfrage geändert werden. Das vermittelnde System in der Mitte ist eine rein techni-
sche Brücke und die IT- und Automatisierungssysteme sind logisch so weit wie möglich
entkoppelt. Bei technischen Änderungen muss nur die „Brücke“ angepasst werden, bei
einer Änderung des Informationsbedarfs einer SPS nur genau diese. Technische Kom-
munikation und logische Informationsabfrage sind genauso getrennt, wie es auch bei
der Signalanbindung für Feldgeräte und der späteren Informationsverarbeitung durch
Programmlogik getan wird.

Konzeptionell ist die letzte diskutierte Lösung also zu favorisieren und auch in techni-
scher Hinsicht sind die notwendigen Voraussetzungen bereits erfüllbar. Dadurch, dass
ein neues Software-System in einer frei wählbaren Technologie implementiert wird,
kann sich die Wahl hierfür nach den benötigten Kommunikationsschnittstellen richten.
Die kommunizierte Merkmalinformation ist auch inhaltlich einfach genug, so dass vor-
erst nicht mit technischen Problemen bei der Datenübertragung zu rechnen ist. Aus der
Literatur liegt auch ein allgemeines Modell von Merkmalinformation vor [29, 54], so
dass es eine einheitliche und dokumentierte Sicht auf Merkmalinformation gibt. Es fehlt
aber noch an den Mitteln, die die allgemeine Abfrage von Merkmalinformation aus einer
SPS erlauben und an der „Brückensoftware“ zu den merkmalverwaltenden Systemen.
Randbedingungen sind, dass Beides in das technische Umfeld passen muss und dass
die Formulierung von ausreichend komplexen Abfragen möglich ist – beispielsweise die

5

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1. Einleitung

get(x) rq(y)

get(a) rq(b)

get(s) rq(t)

get(a) get(x) get(s)
rq(b) rq(y) rq(t)

get(∙) rq(∙)

read(x) read(y)

read(a) read(b)

read(s) read(t)

set(a) set(x) set(s)
set(b) set(y) set(t)

Abbildung 1.1.: Vier Möglichkeiten einer Architektur, in der Automatisierungssysteme Infor-

mationen aus IT-Systemen operativ nutzen.

6

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1.3. Aufbau der Arbeit

Abfrage der Dichte des Rohöls aus dem Tank, aus dem eine bestimmte Pumpe derzeit
Rohöl fördert. Diese Arbeit beschreibt genau diese noch fehlenden Teile des Konzepts.

Abbildung 1.2 illustriert die Grundidee aus praktischer Sicht anhand eines Beispiels.
Zu sehen sind eine Datenquelle mit Merkmalinformation, eine SPS mit einem Programm
aus Funktionsbausteinen und ein drittes System, das die SPS an eine oder mehrere Da-
tenquellen anbindet und Abfragen von Merkmalinformation ausführt. Der Aufbau des
Programms aus Funktionsbausteinen wird auch später in dieser Arbeit weiter verfolgt
und begründet, ist hier aber hauptsächlich aus Gründen der Darstellung hilfreich. Der
Anwender kann aus vorhandenen Elementen wie den Bausteinen „Suche“ und „Istwert“
eine Abfrage zusammenstellen und dann gezielt (mit dem Baustein „Abfragen“) aus-
führen lassen. Konkret wird aus DatenquelleX derjenige Merkmalträger mit WertZ für
MerkmalA gesucht. Von diesem Merkmalträger wird dann auf das EreignisE hin der
Istwert von MerkmalB erfragt. Dass die Abfrage tatsächlich von einem externen System
ausgeführt wird, ist für den Anwender nicht relevant und unsichtbar. Das Ergebnis der
Abfrage kann als normale Variable weiterverwendet werden, hier dargestellt durch eine
Signallinie hin zu einem leeren Funktionsbaustein. Der Aufbau komplexer geschach-
telter Abfragen und die Einbindung mehrerer Datenquellen sind ebenfalls möglich. Im
Prinzip handelt es sich um eine mit Mitteln der SPS formulierte Datenabfrage ähnlich
wie eine SQL-Query im PC-Bereich, aber ohne Annahmen über die technische Speiche-
rung der Daten. Stattdessen liegt nur die Annahme zugrunde, dass die Abfrage Merk-
malinformation betrifft. Die Lösung ist daher allgemein immer dann anwendbar, wenn
Merkmalinformation erfragt wird.

1.3. Aufbau der Arbeit

Die in Abschnitt 1.2 geschilderte Idee und Zielsetzung wirft eine ganze Reihe von Fragen
auf, z.B.:

• Welche Modelle zur Abbildung von Merkmalinformation gibt es in der Wissen-
schaft?

• Welche Modelle zur Abbildung von Merkmalinformation gibt es in der Normung
und der industriellen Praxis?

• In welchen Software-Systemen im Bereich industrieller Produktion liegt verwend-
bare Merkmalinformation vor?

• Welche Möglichkeiten bietet ein Automatisierungssystem zur Formulierung und
Verarbeitung von Abfragen von Merkmalinformation?

• Auf welchen normativen Grundlagen für die SPS-Programmierung kann aufge-
baut werden?

• Wie kann eine Abfragesprache systematisch hergeleitet werden?

• Welche Abfragen sind mit dieser Sprache möglich und gibt es Einschränkungen?

• Wie wird eine Abfrage verarbeitet?

7

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1. Einleitung

Abbildung 1.2.: Idee der Arbeit anhand eines Beispiels.

• Wie sollte ein System zur Verarbeitung von Abfragen aufgebaut und mit vorhan-
denen Systemen integriert werden?

Diese Fragen werden in den folgenden Kapiteln Schritt für Schritt beantwortet.
Abbildung 1.3 zeigt den Aufbau dieser Arbeit in Form eines V-Modells. Im folgenden

Kapitel 2 werden die theoretischen Grundlagen behandelt, auf denen später eine Lö-
sung aufgebaut wird. Die wesentlichen Grundlagen sind die Modellierung von Merk-
malen und die Theorie von Informationssystemen. In Kapitel 3 wird dann auf derzeitig
benutzte Technologien im hier adressierten Anwendungsgebiet industrielle Automati-
sierung eingegangen. Die gebräuchlichsten Merkmalmodelle und Softwaresysteme so-
wie Grundlagen der Programmierung von SPS werden erläutert. Kapitel 4 analysiert
anschließend, wo im aktuellen Stand der Technik der Bedarf an neuen Konzepten und
Lösungen zur Erreichung der Zielsetzung besteht und wie die Grundlagen aus Kapitel
2 angewendet werden können. Anforderungen an ein Lösungskonzept werden formu-
liert, so dass dann in Kapitel 5 eine konzeptuelle Lösung als Antwort auf diese Anfor-
derungen hergeleitet werden kann. Dies sind der Kern und Hauptbeitrag der Arbeit.
Ein implementierter Prototyp wird in Kapitel 6 dokumentiert. Kapitel 7 diskutiert den
Beitrag dieser Arbeit kritisch.

8

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

1.3. Aufbau der Arbeit

Abbildung 1.3.: Aufbau der Arbeit in Form des V-Modells.

9

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

2.1. Merkmale

Merkmale sind klassifizierte Eigenschaften eines Systems, deren jeweilige Ausprägung
einen einfachen Wert annimmt [32].

Merkmale sind ein grundlegendes Mittel zur Beschreibung von Systemen und Objek-
ten, das jeder Mensch intuitiv anwendet. In dieser Arbeit steht jedoch die Verarbeitung
von Merkmalen durch technische Systeme im Mittelpunkt, so dass Merkmale als Mittel
zur Modellierung betrachtet werden, das zur automatisierten Verwendung einer exak-
ten Beschreibung bedarf.

Wenn technische Systeme modellhaft beschrieben werden und diese Modelle durch
(zumeist andere) technische Systeme verarbeitet werden, sind Merkmale praktisch im-
mer ein Bestandteil dieser Modelle. Man denke allein nur daran, dass die Identifikati-
on des modellierten Objekts in den allermeisten Fällen durch Merkmale wie „Name“
oder „Identifikationsnummer“ geschieht. Diese Tatsache hat zwei Konsequenzen: Er-
stens werden Merkmale als gewissermaßen „natürliche“ Bestandteile von Modellen be-
trachtet, die nicht weiter erklärt sind. Die einfache Benennung eines Merkmals und eines
Wertes („Prozessorkerne: 4“) bedarf meist auch keiner weiteren Erklärung – allerdings
nur dann, wenn das Modell in einem vorab bekannten Kontext verwendet wird. Ande-
renfalls, insbesondere bei der Interoperation unterschiedlicher Systeme, ist diese Infor-
mation unzureichend. Die zweite Konsequenz ist, dass Merkmale in Modellen aller An-
wendungsdomänen vorkommen und oft auch das einzige gemeinsame Modellierungs-
prinzip sind. Beispielsweise sind ein technischer Plan einer Produktionsanlage und die
Darstellung der Anlage als Kostenstelle vollkommen unterschiedliche Modelle, die aber
durch das Merkmal „Name“ derselben Anlage einander zugeordnet werden können.
Die Verknüpfung unterschiedlicher Modelle über gemeinsame Merkmale bietet daher
enormes Potenzial für die automatisierte Verwendung von Modellen. Dieses Potenzial
lässt sich aber nur dann ausschöpfen, wenn bei der Verknüpfung der Modelle dasselbe
Metamodell zur Modellierung von Merkmalen zugrundegelegt wird.

2.1.1. Metamodell zur Modellierung von Merkmalen

In diesem Abschnitt wird das Metamodell zur Modellierung von Merkmalen zusam-
mengefasst. Im Folgenden wird dabei abkürzend vom „Merkmalmodell“ gesprochen,
obwohl es sich eigentlich um Modellierung auf der Modell- und auf der Metamodelle-
bene handelt. Der Aufbau des Merkmalmodells ist der Arbeit von Mertens [54] entnom-
men, in der es ausführlich motiviert und erläutert wird. Die Terminologie orientiert sich
dagegen an [29].

10

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.1. Merkmale

Merkmalträger

Das Merkmalmodell wird zur Modellierung individueller Gegenstände der physischen
Welt oder der Informationswelt verwendet. Zu diesen Gegenständen können beliebige
weitere Modelle existieren. Über Existenz und Art dieser anderen Modelle, und auch
über den modellierten Gegenstand, werden durch das Merkmalmodell keine weiteren
allgemeingültigen Aussagen gemacht. Über den Gegenstand ist nur bekannt, dass er
Träger von Merkmalen ist, woraus sich die Bezeichnung „Merkmalträger“ ableitet. Diese
Bezeichnung ist in jedem Fall zutreffend.

Der eigentliche Merkmalträger ist der modellierte Gegenstand selbst, nicht etwa das
Modell des Gegenstands. Er selbst ist Besitzer der Merkmale, unabhängig davon, ob
es ein merkmalbasiertes Modell des Merkmalträgers gibt oder nicht. Beispielsweise hat
ein Produkt stets Herstellungskosten, auch wenn diese im Einzelfall nicht immer erfasst
werden. Welche Merkmale einem Merkmalträger zugeschrieben werden ist aber eine
Designentscheidung in der Modellierung und hängt wesentlich von der Modellverwen-
dung ab. Allein am Merkmalträger ist das Vorhandensein eines Merkmals daher nicht
erkennbar. Das Merkmal erhält dadurch eine vermittelnde Rolle zwischen Merkmalträ-
ger und seinem Modell: Es wird in der Modellierung definiert, die Ausprägung ist aber
Eigenschaft der modellierten Gegenstands.

Die Unterscheidung zwischen dem realen Merkmalträger und dessen modellhafter
Abbildung kann im Einzelfall ein wichtiger Aspekt sein. Das gilt insbesondere dann,
wenn es keine eins-zu-eins Abbildung zwischen realem Merkmalträger und dessen Mo-
dell gibt. Daher wird an dieser Stelle explizit darauf hingewiesen, dass dieser Unter-
schied existiert. Zur sprachlichen Vereinfachung wird in dieser Arbeit aber dort, wo es
unmissverständlich ist, abkürzend der Begriff „Merkmalträger“ auch für das einzelne
Modell des Merkmalträgers verwendet. Beispielsweise beinhaltet eine Inventardaten-
bank eigentlich Modelle der inventarisierten Merkmalträger, es ist aber im Allgemeinen
unproblematisch und einfacher, wenn auch sprachlich ungenau, von den enthaltenen
Merkmalträgern zu sprechen.

Ausprägung von Merkmalen

Sofern einem Merkmalträger ein Merkmal zugeordnet wird, kann dessen Ausprägung
durch Betrachtung des Merkmalträgers direkt oder indirekt bestimmt werden. Der in-
direkte Schluss auf ein Merkmal kann erforderlich sein, wenn es für das Merkmal keine
anwendbaren Messmethoden gibt oder auch wenn die Ausprägung nur in der Informa-
tionswelt existiert und überhaupt nicht physisch präsent ist. Beispielsweise ist der finan-
zielle Wert eines Gegenstands nicht direkt am Gegenstand messbar, trotzdem würde der
Gegenstand als Besitzer des Merkmals betrachtet.

Die Ausprägung eines Merkmals kann im Verlauf des Lebenszyklus eines Merkmal-
trägers variieren. Viele Eigenschaften eines Merkmalträgers, die im Sinne des Merk-
malmodells als Merkmale gelten, können deshalb auch als Zustände des Merkmalträ-
gers angesehen werden. Entscheidend ist hier die Verwendung des merkmalbasierten
Modells: Sofern während des Zeitraums, in dem das Modell angewendet wird, die Aus-
prägung als stabil angesehen werden kann, kann eine Eigenschaft als Merkmal verwen-
det werden. Zum Beispiel ist die Füllmenge eines Transportbehälters allgemein kein
Merkmal des Behälters, weil sie sich während des Lebenszyklus eines Transportbehäl-

11

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

ters ändert. Aus Sicht einer Logistiksoftware wird aber unter Umständen nur ein Zeit-
abschnitt betrachtet, in dem die Füllmenge konstant ist. Im Modell der Logistiksoftware
kann der Behälter daher das Merkmal „Füllmenge“ besitzen.

Ausprägungsaussagen

Wenn anhand des Merkmalmodells ein Merkmalträger modelliert wird, dann sollen nor-
malerweise auch Informationen über die Ausprägungen der Merkmale im Modell hin-
terlegt werden. Diese Information über Ausprägungen darf aber nicht mit den tatsäch-
lichen Ausprägungen verwechselt werden, die ja nur am Merkmalträger selbst messbar
sind. Daher sind im Modell nur Aussagen über Ausprägungen vorhanden, sogenannte
„Ausprägungsaussagen“. Ausprägungsaussagen setzen ein Merkmal in eine bestimmte
Beziehung zu einem Wert, gegebenenfalls natürlich mit Angabe einer Maßeinheit. Zum
Beispiel kann eine Ausprägungsaussage sein, dass ein Wert x der gemessene Wert des
Merkmals ist, der simulierte Wert, der optimale Wert oder der geforderte Wert. Wenn ei-
ne Ausprägungsaussage einem bestimmten Merkmalträger zugeordnet wird, dann be-
zieht sich die Aussage auf das entsprechende Merkmal von genau diesem Merkmalträ-
ger und lässt keine Schlüsse auf irgendwelche anderen Merkmalträger zu.

Metamodellebene

Eine fundamentale Annahme des Merkmalmodells ist, dass es eine Metamodellebene
gibt, durch die eine Vergleichbarkeit zwischen mehreren merkmalbasierten Modellen
erst hergestellt wird. Diese Metamodelle existieren für Merkmalträger, Merkmale und
Ausprägungsaussagen. Im Fall von Merkmalträgern wird das Metamodell als „Merk-
malträgertyp“ bezeichnet. Der Merkmalträgertyp definiert die Merkmale, die ein Merk-
malträger dieses Typs besitzt. Sind beispielsweise zwei Produkte Merkmalträger vom
selben Merkmalträgertyp, dann ist damit klar, dass an beiden Produkten gleiche Merk-
male messbar sind, was eine Grundvoraussetzung für den Vergleich der Produkte ist. Ei-
ne weitere Voraussetzung ist, dass bei der Messung der Ausprägung dasselbe Messver-
fahren angewendet wird. Dies wird dadurch abgesichert, dass Merkmale ebenfalls je-
weils einen Typ, genannt „allgemeines Merkmal“, besitzen. Das allgemeine Merkmal
hat eine im Merkmalträgertyp eindeutige Bezeichnung und definiert das Messverfahren,
das zur Bestimmung der Ausprägung angewendet wird. Der Merkmalträgertyp ver-
weist also auf eine Liste von allgemeinen Merkmalen, wodurch klar ist, welche Merkma-
le an einem Merkmalträger vorhanden sind und wie ihre Ausprägung bestimmt wird.
Ähnlich verhält es sich mit Ausprägungsaussagen. Eine Ausprägungsaussage bezieht
sich stets auf eine Aussageart, die die Semantik der einzelnen Aussage definiert. Auch
hier ist der Vergleich zweier Aussagen nur möglich, wenn die Semantik beider Aussa-
gen gleich ist oder zumindest deren Beziehung klar definiert ist. Beispielsweise kann
eine Aussage eine Anforderung an eine Ausprägung sein und eine andere Aussage eine
Zusicherung für dasselbe Merkmal. Ob die Anforderung durch die Zusicherung erfüllt
wird, kann aber nur entschieden werden, wenn die Anforderung die Art Zusicherung
auch explizit akzeptiert. Zum Beispiel kann die Einbeziehung von Garantieleistungen in
eine Zusicherung ein wichtiges Kriterium für die Erfüllung einer Anforderung sein.

Es ist auch auf der Ebene von Merkmalträgertypen möglich, Ausprägungsaussagen
zu treffen. Diese beziehen sich dann nicht auf ein konkretes Merkmal eines Merkmal-

12

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.1. Merkmale

trägers, sondern betreffen grundsätzlich alle Merkmalträger dieses Merkmalträgertyps.
Beispielsweise werden in Katalogen Produkte immer auf der Typ-Ebene beschrieben,
trotzdem werden dort konkrete Angaben über die Merkmale der einzelnen Produkte
gemacht, die diesem Typ entsprechen. Der Herausgeber des Katalogs sichert in dem Fall
zu, dass jeder einzelne Merkmalträger die im Katalog genannten Eigenschaften hat.

Die bis hierhin beschriebenen Grundbegriffe werden in Abbildung 2.1 dargestellt. Ei-
ne explizite Modellierung von Merkmalen auf der Modellebene wurde darin ausgelas-
sen, weil es implizit durch Merkmalträgertyp (Existenz) und Ausprägungsaussage (zu-
geordnete Werte) beschrieben wird.

Abbildung 2.1.: Beziehung der Grundbegriffe des Merkmalmodells, dargestellt in der Nota-

tion eines UML-Klassendiagramms.

Merkmalart und Merkmalprototyp

Grundsätztlich sind die bisher eingeführten Grundbegriffe ausreichend, um Merkmal-
träger zu modellieren. Allerdings müsste dann für jeden Merkmalträgertyp jedes allge-
meine Merkmal einzeln vollständig definiert werden. Zum Beispiel haben viele Merk-
malträger „Höhe“ und „Breite“ als Merkmale und es wäre unsinnig, für jeden Merk-
malträgertyp diese allgemeinen Merkmale erneut zu definieren. Daher beziehen sich
allgemeine Merkmale auf Merkmalarten. Eine Merkmalart hat, anders als das allgemei-
ne Merkmal, keinen Bezug zu einem bestimmten Merkmalträgertyp und beinhaltet da-
her auch keine genaue Vorschrift zur konkreten Messung der Ausprägung. Trotzdem
können durch eine Merkmalart bereits viele allgemeingültige Aussagen getroffen wer-

13

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

den, die dann für jedes zugeordnete allgemeine Merkmal gelten. Beispielsweise können
Randbedingungen für Messverfahren vorgegeben werden.

Merkmalarten beziehen sich wiederum auf genau einen Merkmalprototyp. Der Merk-
malprototyp hat überhaupt keinen Sachbezug, sondern legt nur fest, welche Art von
Größe eine Merkmalart ist. Die Merkmalarten „Höhe“ und „Breite“ haben also den ge-
meinsamen Merkmalprototyp „Länge“ im Sinne einer räumlichen Distanz.

Verebungsmechanismen

Vererbung im Sinne der Objektorientierung bezeichnet, allgemein ausgedrückt, die Bil-
dung einer hierarchischen Ordnung zwischen Objekten, in der sich die Eigenschaften ei-
nes hierarchisch übergeordneten Objekts in allen direkt untergeordneten Objekten wie-
derfinden, das heißt an sie „verebt“ werden. Vererbte Eigenschaften werden ebenfalls
weitervererbt. Vererbung wird im Merkmalmodell für Merkmalarten und Merkmalträ-
gertypen angewendet. Prinzipiell lässt er sich auch für Aussagearten verwenden (wie in
[54] beschrieben), zur Vereinfachung des Modells wird hier aber darauf verzichtet.

In beiden genannten Fällen werden sämtliche Informationen, die über den abstrak-
teren (das heißt in der Vererbungshierarchie höheren) Merkmalträgertyp beziehungs-
weise Merkmalart vorhanden sind, vererbt. Konkret sind das die allgemeinen Merkma-
le eines Merkmalträgertyps und die getroffenen Aussagen über eine Merkmalart. Im
Vergleich zur Vererbung, wie sie in objektorientieren Programmiersprachen verwendet
wird, gibt es jedoch einen wichtigen Unterschied: Viele Programmiersprachen erlauben
das sogenannte „Überschreiben“ von vererbten Eigenschaften, so dass beispielsweise ei-
ne vererbte Funktion unter derselben Bezeichnung inhaltlich anders implementiert wird.
Dieser Mechanismus des Überschreibens ist im Merkmalmodell nicht vorhanden. Ver-
erbte Information steht unveränderlich fest.

Die Vererbungshierarchie für Merkmalträgertypen ist nicht immer eine Monohierar-
chie. Viele Merkmalträger vereinen Merkmale aus mehreren Merkmalträgertypen, was
sich auf der Metamodellebene durch mehrfaches Erben eines Merkmalträgertyps von
anderen Merkmalträgertypen ausdrücken lässt. Beispielsweise kann ein Gerätetyp meh-
rere andere Gerätetypen integrieren und deshalb auch deren allgemeine Merkmale er-
ben. Weil jedes der vererbten allgemeinen Merkmale eine eigene, unabhängige und un-
veränderliche Definition besitzt, führt die Mehrfachvererbung für Merkmalträgertypen
zu keinerlei Konflikten. Abbildung 2.2 zeigt die Metaebene des Merkmalmodells mit
Merkmalart, Merkmalprototyp und Vererbungsbeziehungen.

2.1.2. Dienstbasierte Verwendung von Merkmalen

Eine wichtige Verwendung des Merkmalmodells liegt im Informationsaustausch zwi-
schen technischen Systemen. Daher ist neben dem Merkmalmodell auch die Kommuni-
kation über Merkmale ein Aspekt, zu dem es Vereinbarungen über Systemgrenzen hin-
weg geben muss. Ein wichtiges Grundkonzept für den Informationsaustausch zwischen
vernetzten Systemen ist der Dienst. In der Automatisierungstechnik werden Dienste als
wichtige zukünftige Basistechnologie angesehen (s. z.B. [25]).

Das Kernmodell von Diensten ist in Abbildung 2.3 vereinfacht dargestellt. Es ist der
DIN SPEC 40912 [24] entnommen.

14

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.1. Merkmale

Abbildung 2.2.: Um Vererbungsbeziehungen erweiterte Metaebene des Merkmalmodells,

dargestellt in der Notation eines UML-Klassendiagramms.

Grundsätzlich ist ein Dienst ein Organisationsschema durch das Leistungsbedarfe
und Leistungen (i.S.v. Dienstleistungen) zusammengeführt werden (Definition entspre-
chend [60]). Die Leistung wird von einem Dienstleister auf Anforderung eines Benut-
zers hin erbracht. Der eigentliche Dienst ist eine Sicht des Benutzers auf die Art der
Leistungserbringung und daher ein gedankliches Konstrukt ohne eine bestimmte phy-
sische Repräsentation.

Dem Benutzer von Diensten sind beliebige Diensttypen bekannt. Durch den Dienst-
typ kennt der Benutzer die Semantik eines konkreten Dienstes. Die Verwendung von
Diensten geschieht durch diskrete Dienstaufrufe und Ergebnisse der Aufrufe werden
gegebenenfalls als diskrete Ereignisse (wie zum Beispiel Nachrichten) an den Benut-
zer zurückgegeben. Zu jedem Dienst gehört eine Menge von Operationen, die beim
Dienstaufruf angegeben werden. Die Ausführung dieser Operationen ist Aufgabe des
Dienstleisters, der für den Benutzer gegebenenfalls verborgen ist. Die Operationen müs-
sen jedoch folgende Eigenschaften aufweisen:

• Sie sind einzeln aufrufbar.

• Ihre Funktionalität ist jeweils einzeln definiert.

• Sie gehören exklusiv zu einem Dienst.

• Sie werden atomar ausgeführt.

• Sie arbeiten alle mit derselben Menge von Objekten.

• Dienstaufrufe eines Benutzers werden in der Reihenfolge des Eintreffens bearbei-
tet.

Zusätzlich zum allgemein festgelegten Diensttyp kennt der Benutzer Zusicherungen
über die Qualitätsmerkmale zu jedem ihm bekannten Dienst. Der Dienstleister garan-
tiert die Einhaltung dieser Zusicherungen.

15

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

Abbildung 2.3.: Kernmodell „Dienst“ als UML-Klassendiagramm (vereinfacht).

Wesentliches Kennzeichen eines Dienstes ist, dass Dienstleister und Benutzer durch
den Dienst voneinander getrennt sind. Dadurch werden zwei wichtige Eigenschaften
erzeugt: Die Kapselung des Dienstleisters und die lose Kopplung zwischen Benutzer
und Dienstleister. Für die Verwendung zum Zugriff auf technische Merkmale sind die-
se Eigenschaften deshalb wichtig, weil die Lebenszyklen von Benutzer und Dienstlei-
ster vollkommen unabhängig sind. Sowohl ein Automatisierungssystem als Benutzer als
auch ein Softwaresystem als Dienstleister können über Jahre, eventuell sogar über Jahr-
zehnte hinweg betrieben werden und innerhalb dieser Zeit mit vielen unterschiedlichen
Dienstleistern beziehungsweise Benutzern interagieren. Die lose Kopplung aneinander
und die Kapselung der inneren Implementierung sind daher wichtige Voraussetzungen
für einen unabhängigen und wartungsarmen Betrieb.

Bezogen auf die Kommunikation technischer Merkmale, und unter Anwendung des
in Abschnitt 2.1.1 eingeführten Merkmalmodells, soll dieses Dienstmodell nun konkre-
tisiert werden. Der Dienstleister ist in diesem Fall ein System, das den Zugriff auf Merk-
malinformation erlaubt. Benutzer sind technische Systeme oder Menschen, die diese In-
formation lesen, schreiben oder verändern möchten. Damit sind der Diensttyp und die
notwendigen Operationen grundsätzlich festgelegt: Der Diensttyp muss in jedem Fall
das Merkmalmodell referenzieren, damit die Begriffe und Begriffsbeziehungen für die
Dienstverwendung festgelegt sind. Mit diesen Begriffen können dann die ausgetausch-
ten Informationen benannt werden. Die Operationen, die der Dienstleister implemen-
tiert, betreffen Daten entsprechend des Merkmalmodells. Sie können aber je nach An-
wendungsfall und Fähigkeiten des Dienstleisters mehr oder weniger umfangreich aus-
fallen. Dies wird im folgenden Abschnitt genauer behandelt.

Die Qualitätsmerkmale eines Dienstes spielen in dieser Betrachtung eine untergeord-
nete Rolle. Ihr Umfang und Inhalt hängt nicht nur vom Dienstleister ab, sondern auch
von den Anforderungen, die Benutzer stellen (z.B. Verfügbarkeit und Reaktionszeit).
Annahmen darüber sollen an dieser Stelle jedoch nicht vorweggenommen werden.

16

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.1. Merkmale

Klassifikation von Diensten für Merkmalsysteme

Das Merkmalmodell beschreibt – wie in diesem Kapitel eingangs erwähnt – ein systema-
tisches Vorgehen bei der Modellierung auf der Modell- und Metamodellebene. Die allge-
meine Dienstleistung, die damit verknüpft werden kann, ist daher das Erstellen, Verän-
dern und Auslesen von Modellen, die mit dem Merkmalmodell konform sind. Ein tech-
nisches System, wie beispielsweise ein Server, das diese Dienstleistung implementiert,
wird im Folgenden als „Merkmalsystem“ bezeichnet. In der Softwaretechnik kommen
die genannten Grundoperationen für die Verwaltung von Daten häufig vor. Sie werden
oft abkürzend mit den Buchstaben c (create), r (read), u (update) und d (delete) bezeich-
net. Die Operation zum Lesen kann dabei spezifisch für ein Objekt ausgeführt werden
oder alle Objekte einer hierarchischen Ebene, zum Beispiel alle Aussagen über ein Merk-
mal, zurückgeben. Grundsätzlich kann ein Dienstleister alle diese Operationen für jedes
Objekt in einem Merkmalmodell anbieten und wird, sofern die Objektbeziehungen be-
rücksichtigt werden, in sich konsistente Merkmalmodelle zusichern können. Ziel in der
Verwendung des Merkmalmodells ist aber nicht nur die interne Konsistenz, sondern
auch Konsistenz mit anderen merkmalverwaltenden Systemen. Wird beispielsweise ein
Produkt in einer Datenbank durch Aussagen über ein Merkmal x charakterisiert, dann
muss zur Vergleichbarkeit mit anderen Produkten, die ebenfalls über das Merkmal x ver-
fügen, dieses Merkmal als allgemeines Merkmal an einer dritten (unabhängigen) Stelle
definiert sein. Selbstverständlich darf sich diese Definition auch nicht ändern und muss
referenzierbar sein. Für die systemübergreifende Konsistenz von Modellen sind einige
Operationen, wie das Verändern oder Löschen eines allgemeinen Merkmals, daher pro-
blematisch. Allgemein ist die Frage, welche Operationen in welchen Arten von merk-
malverwaltenden Systemen verfügbar sein müssen beziehungsweise dürfen, eine Frage
des jeweiligen Zwecks des Systems. Für den Benutzer bildet das ein sinnvolles Kriterium
zur Klassifikation von Dienstleistern, beispielsweise solchen, die allgemeine Merkmale
definieren, solchen, die Merkmalträgertypen verwalten und solchen, die Informationen
über konkrete Merkmalträger anbieten.

Eine dementsprechende Klassifikation von Dienstleistern wurde in [48] und [49] vor-
gestellt. Es werden fünf Gruppen von Dienstleistern (M1, ..., M5) unterschieden:

• M1: Nur Lesezugriff

– Lesen aller Modelle und Modellinhalte

– Navigation zwischen Modellen

• M2: Operativer Betrieb in der Automatisierungstechnik

– Wie M1, zusätzlich Aktualisierung von Aussagewerten

• M3: Modellierung von Merkmalträgern

– Wie M2, zusätzlich:

– Erstellen, Verändern und Löschen von Merkmalträgern

– Erstellen, Verändern und Löschen von Ausprägungsaussagen

• M4: Modellierung von Merkmalträgertypen

– Erstellen von Merkmalträgertypen

17

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

• M5: Normung und Standardisierung

– Erstellen von Merkmalarten, Aussagearten und Merkmalprototypen

Die verfügbaren Operationen werden in Tabelle 2.1 aufgelistet. Für den operativen Be-
trieb von Automatisierungssystemen sind solche Merkmalsysteme von Interesse, die zu
den Gruppen M1 und M2 gehören. Beispielsweise können in einer Produktionsanla-
ge die Produkt- oder Gerätedaten während der laufenden Produktion ausgelesen wer-
den, oder es können solche Daten, die erst während der Produktion bekannt werden, in
das System eingetragen werden, zum Beispiel zur Dokumentation des Produktlebenszy-
klus‘. Die übrigen Gruppen ermöglichen Vorgänge zur Modellierung und Metamodel-
lierung, die im operativen Betrieb eines Automatisierungssystems bereits abgeschlossen
sind.

Tabelle 2.1.: Je Zelle sind die verfügbaren Operationen für den Zugriff auf Merkmalmodelle

aufgelistet. M1 bis M5 bezieht sich auf die Liste auf Seite 17. c: Create/Erstellen, r: Read/Le-

sen, u: Update/Verändern, d: Delete/Löschen.

Modellelement \ Gruppe M1 M2 M3 M4 M5
Merkmalprototyp -/r/-/- -/r/-/- -/r/-/- -/r/-/- c/r/-/-
Merkmalart -/r/-/- -/r/-/- -/r/-/- -/r/-/- c/r/-/-
Aussageart -/r/-/- -/r/-/- -/r/-/- -/r/-/- c/r/-/-
Merkmalträgertyp -/r/-/- -/r/-/- -/r/-/- c/r/-/- -/-/-/-
Merkmalträger -/r/-/- -/r/-/- c/r/u/d c/r/u/d -/-/-/-
Allgemeines Merkmal -/r/-/- -/r/-/- -/r/u/- c/r/u/- -/-/-/-
Ausprägungsaussage -/r/-/- -/r/-/- c/r/u/d c/r/u/d -/-/-/-
Aussagewert -/r/-/- -/r/u/- c/r/u/- c/r/u/- -/-/-/-

Höherwertige Dienste

Die aufgeführten Dienste ermöglichen gemeinsam den vollständigen Zugriff zum Le-
sen und Manipulieren der Information in einem Merkmalsystem. Ob diese Möglichkei-
ten auch in praktischer Hinsicht ausreichen, hängt vom Anwendungsfall ab. Nehmen
wir beispielsweise an, dass ein Benutzer Merkmalträger mit bestimmten Eigenschaf-
ten innerhalb eines Merkmalsystems sucht – beispielsweise ein Produkt, für das ge-
wisse Mindestanforderungen an bestimmte Merkmale gelten. Der Benutzer kann nun
alle im Merkmalsystem hinterlegten Merkmalträger abrufen und auf Übereinstimmung
mit den Anforderungen prüfen. Diese Vorgehensweise ist aber aus mehreren Gründen
nachteilig. Erstens tritt dieser Anwendungsfall vermutlich bei vielen Benutzern auf und
es ist daher effizienter die Implementierung des entsprechenden Algorithmus einmalig
im Merkmalsystem zu hinterlegen. Zweites ist die Kommunikationslast für Merkmal-
system, Benutzer und Kommunikationsmedium höher, wenn die Suche klientenseitig
erfolgt. Drittens skaliert der Aufwand zur Ausführung des Algorithmus mit der Menge
zu durchsuchender Daten. Informationsverarbeitende Systeme, die als Benutzer auftre-
ten, können mit diesem Aufwand überfordert sein, weil ihre Rechenkapazität in keinem
Zusammenhang mit der Informationsmenge im benutzten Merkmalsystem steht – im

18

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Gegensatz dazu kann das Merkmalsystem mit der Datenmenge skaliert werden. Letzt-
endlich ist die Implementierung höherwertiger Dienste auf Seite des Merkmalsystems in
den meisten Fällen die bessere Alternative, so dass neben den genannten Basisdiensten
auch höherwertige Dienste vom Merkmalsystem angeboten werden sollten. In Kapitel 5
werden solche Dienste definiert.

2.2. Informationssysteme

In diesem Abschnitt werden Grundlagen der Theorie von Informationssystemen erläu-
tert, genauer gesagt die Theorie relationaler Datenbanken. Diese Theorie ist eine um-
fangreiche, mächtige, verbreitete und anerkannte formale für Datenbanken und Abfra-
gesprachen. Es gibt drei Gründe, diese formale Grundlage innerhalb dieser Arbeit zu
betrachten: Erstens schafft die formale Darstellung Klarheit. Zweitens lassen sich Er-
kenntnisse aus der vorhandenen Theorie übertragen. Drittens basieren viele vorhandene
Informationssysteme an dieser Theorie, so dass eine Integration des in dieser Arbeit er-
stellten Konzepts vereinfacht wird. Es ist jedoch kein erklärtes Ziel dieser Arbeit, dass ei-
ne technische Umsetzung des Konzepts speziell für relationale Datenbanken angestrebt
wird.

Im folgenden Abschnitt werden die Grundbegriffe des relationalen Datenmodells ein-
geführt. Die Inhalte beschränken sich dabei auf die innerhalb dieser Arbeit relevanten
Aspekte. Für eine vollständige Einführung wird auf entsprechende Fachliteratur wie
beispielsweise [11] verwiesen.

2.2.1. Grundbegriffe des relationalen Datenbankmodells

Das relationale Datenbankmodell wurde bereits 1970 von Codd eingeführt [9]. Grund-
legendes Element ist die Relation. Eine Relation ist eine Tabelle, in der zeilenweise Da-
tensätze eingetragen sind, das heißt je Zeile ein Datensatz. Eine Zeile wird dabei in der
Terminologie relationaler Datenbanken Tupel genannt. Die Spalten der Tabelle werden
als Attribute bezeichnet und beinhalten je Tupel entweder einen oder keinen Wert. Jedes
Attribut einer Relation ist eindeutig benannt. Damit Tupel innerhalb einer Datenbank
eindeutig identifiziert werden können, hat jede Relation einen eindeutigen Namen und
alle Tupel einer Relation sind paarweise mindestens durch den Wert eines bestimmten
Attributs (oder einer Attributkombination) verschieden. Dadurch kann in jeder Relation
ein sogenannter Primärschlüssel bestimmt werden, das heißt ein oder mehrere Attribute,
durch deren Werte jedes Tupel eindeutig bestimmt werden kann.

Die Werte von Attributen können im allgemeinen Fall eine Zahl, eine Zeichenkette
oder ein boolescher Wahrheitswert sein, jedoch wird der mögliche Wertebereich in vielen
Anwendungen entsprechend der Semantik des Attributs eingeschränkt, beispielsweise
so, dass für das Attribut „Datum“ auch tatsächlich nur ein Datum als Wert eingetragen
werden kann.

Zur einheitlichen Darstellung von Relationen werden sogenannte Relationsschemas
verwendet. Diese beinhalten eine Menge von Attributnamen und die jeweils gültigen
Wertebereiche. Beispielweise kann

BESTELLUNG =
{

Nummer : N, Kundennr : N, Produkt : Σ∗, Menge : R+
}

19

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

als Relationsschema für eine Datenbank mit Bestellungen verwendet werden (Σ∗ sei
hier die Menge aller Zeichenketten). Für umfangreichere Datenbanken werden grafische
Sprachen wie Entity-Relationship-Diagramme [8] zur Definition von Relationsschemas
verwendet. In dieser Arbeit wird das aber nicht notwendig sein.

2.2.2. Relationale Algebra

Grundlage von heute üblichen Abfragesprachen wie z.B. SQL ist die relationale Algebra,
die an dieser Stelle nur knapp und informell eingeführt werden soll. Für eine präzisere
und formale Definition wird auf entsprechende Fachliteratur wie [72] verwiesen.

Die relationale Algebra ist eine formale Sprache, die durch Operatoren Elemente des
relationalen Datenbankmodells, d.h. Mengen von Tupeln, miteinander verknüpft. Die
Ergebnisse solcher Operationen sind erneut Tupelmengen. Die Liste von Operatoren
der relationalen Algebra ist nicht endlich, auch wenn Codd ursprünglich acht Opera-
tionen definiert hatte [10]. Je nach Zielsetzung können zusätzliche Operationen definiert
werden. Relationale Datenbanken unterstützen jedoch in den meisten Fällen nur Grun-
doperationen und zusätzliche spezielle Operationen abseits der Algebra.

Die relationale Algebra ist für Informationssysteme in theoretischer und praktischer
Hinsicht von großer Bedeutung. Durch die zugrunde liegenden Formalismen lassen sich
weitreichende Aussagen über das relationale Datenmodell treffen, beispielsweise über
die Berechenbarkeit von Datenabfragen. Aus praktischer Sicht bilden die Operationen
der relationalen Algebra eine Grundmenge von Funktionen, aus der eine Abfragespra-
che gebildet werden kann. Die folgenden Abschnitte stellen einige typische praktisch
vorkommende Operationen informell vor. Dies ist keine Beschreibung der vollständi-
gen ursprünglichen relationalen Algebra, sondern eine praktisch motivierte Auswahl.

Auswahl Die Operation „Auswahl“ gibt nur die Tupel einer Relation R zurück, für die
ein Prädikat P erfüllt ist. Das übliche Formelzeichen für Auswahl ist σ. Somit ist

σP(R)

die Schreibweise für die Auswahl-Operation. Das Prädikat P ist ein Boolescher Aus-
druck der sich auf ein oder mehrere Attributwerte der Tupel in R bezieht. Beispielsweise
würde

σBESTELLUNG.Produkt=XY23(Bestellungen)

alle Bestellungen des Produkts XY23 zurückgeben (Bestellungen entspricht dem Schema
BESTELLUNG).

Projektion Die Projektion reduziert eine Relation R auf bestimmte Attribute a1, ..., an
und gibt eine Relation zurück, die nur a1, ..., an enthält. Die Schreibweise ist

πa1, ...an(R).

Soll beispielsweise in der oben genannten Auswahl aller Bestellungen des Produkts
XY23 nur die Kundennummer ausgegeben werden, dann kann das durch den Ausdruck

πKundennummer(σBESTELLUNG.Produkt=XY23(Bestellungen))

geschehen.

20

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Kartesisches Produkt und Vereinigung Das kartesische Produkt entspricht der gleich-
namigen Operation der Mengenlehre. Das heißt aus zwei Relationen R1 und R2 wird
eine neue Relation erstellt, in der jede mögliche Kombination von Tupeln aus R1 und R2
jeweils ein neues Tupel bildet. Dies wird durch

R1 × R2

notiert.
Die Vereinigung ist eine Operation, die als Folge von kartesischem Produkt und Aus-

wahl ausgedrückt werden kann. Sie kann daher als

R1 ��P R2 := σP(R1 × R2)

definiert werden, wobei �� das Symbol für die Vereinigungsoperation ist und P ein zu
erfüllendes Prädikat. Das Prädikat entscheidet darüber, welche Paare von Tupeln gebil-
det werden. Die Operationen �� und × sind für P ≡ true identisch. In der Praxis wird ��
oft zum Zusammenführen von zwei Relationen verwendet. Nehmen wir beispielsweise
an, dass ein Relationsschema KUNDE mit den Attributen Name und Kundennummer
existiert, und dass Kunden dem Schema KUNDE entspricht, dann kann durch

Kunden ��KUNDE.Kundennr.=BESTELLUNG.Kundennr. Bestellungen

eine Relation mit allen Bestellungen inklusive Kundennamen gebildet werden.

Differenz Die Differenz R1\R2 zweier Relation R1 und R2 enthält genau die Tupel aus
R1, die nicht in R2 vorhanden sind. Somit kann die Operation zum Entfernen von Du-
plikaten aus zwei Relationen verwendet werden. Voraussetzung ist, dass die Relationen
demselben Schema entsprechen.

Umbenennung Durch die Umbenennung ρb/a(R) wird eine Relation erzeugt, in der
das Attribut a in b umbenannt ist. Somit lassen sich Mengenoperationen wie die Diffe-
renzbildung mithilfe von Umbenennungen auch dann durchführen, wenn die involvier-
ten Relationen nicht demselben Schema entsprechen.

2.2.3. Relationenkalkül

Der Relationenkalkül ist eine Form der Formulierung von Abfragen an relationale Da-
tenbanken, bei der das Ergebnis der Abfrage durch freie Variablen deklariert wird. Dazu
werden Mengenoperationen und Prädikatenlogik verwendet. Anders als bei der relatio-
nalen Algebra bestehen Ausdrücke des Relationenkalküls also nicht aus einer Vorschrift
zur Berechnung des Ergebnisses, sondern es werden nur die Eigenschaften des Ergeb-
nisses definiert.

Es gibt zwei wesentliche Formen des Relationenkalküls: Den sogenannten Tupel-
Kalkül [10] und den Wertebereichs-Kalkül [50]. In beiden Fällen wird eine Anfrage als
Menge von Variablenbelegungen angegeben, für die ein Prädikat erfüllt ist. Der Unter-
schied ist, dass diese Variablen im Tupel-Kalkül Tupel als Werte besitzen, während sie

21

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2. Grundlagen

im Wertebereich-Kalkül Attributwerten entsprechen. Soll beispielsweise abgefragt wer-
den, für welche Kunden eine Bestellung des Produkts XY23 vorliegt, dann würde das
im Tupel-Kalkül durch den Ausdruck

{k|∃b : (b.Kundennr = k.Kundennr ∧ b.Produkt = XY23)} ,
k ∈ Kunden, b ∈ Bestellungen,

formuliert werden. Im Wertebereich-Kalkül ließen sich stattdessen Name und Kunden-
nummer als Werte (nicht als ein Tupel) durch den Ausdruck

{n, kNr|∃kNr∃p : (Kunden(n, kNr)) ∧ (Bestellungen(bNr, kNr, p, m) ∧ p = XY23)}
deklarieren (die Wertebereiche der Variablen sind mit denen der jeweiligen Attribute
identisch).

2.2.4. Eigenschaften der relationalen Algebra

Aufgrund der formalen Basis ist es möglich, grundsätzliche theoretische Eigenschaften
relationaler Datenbanken zu zeigen. Dadurch ergeben sich weitreichende Konsequenzen
für den Entwurf und die Verwendung von Informationssystemen und Abfragesprachen.

Die Ergebnisse von Operationen der relationalen Algebra sind ebenfalls Relationen
und damit selbst wieder von Operationen verwendbar. Sie besitzt daher die theoretische
Eigenschaft der Abgeschlossenheit. In der praktischen Anwendung können Operatio-
nen daher beliebig geschachtelt werden, ohne dass dabei Restriktionen beachtet werden
müssen. Das trägt zu einer einfachen Anwendung bei und erhöht die Verwendungs-
möglichkeiten.

Es lässt sich formal zeigen, dass bestimmte Mengen von Operationen der relationalen
Algebra „relational vollständig“ sind [10]. Das bedeutet, dass sich durch die Operatio-
nen einer relational vollständigen Menge und durch deren Verknüpfung jeder Ausdruck
der relationalen Algebra nachbilden lässt. Die oben beschriebenen Operationen sind ein
Beispiel für eine relational vollständige Menge von Operationen. Die Eigenschaft der re-
lationalen Vollständigkeit dient als ein Indikator für die Ausdruckstärke einer Abfrage-
sprache. Ist die Sprache relational vollständig, dann ist die Ausdruckstärke mindestens
äquivalent zur relationalen Algebra.

Andererseits ist durch die relationale Vollständigkeit nicht garantiert, dass sich jede
Abfrage, die möglicherweise von Interesse wäre, auch formulieren lässt. Ein bekanntes
Beispiel dafür ist das Fehlen einer transitiven Hülle. Wenn zum Beispiel ein Lebenszy-
klus in einer Relation so dokumentiert wird, dass jedes Tupel einem einzelnen Teilpro-
zess des Lebenszyklus entspricht und jeweils auf den nachfolgenden Teilprozess ver-
weist, dann kann durch relationale Algebra keine Abfrage formuliert werden, die alle
Teilprozesse der Reihe nach auflistet. In einem solchen Fall müsste eine Datenbank zu-
sätzliche Operationen anbieten, die nicht mit Mitteln der relationalen Algebra ausge-
drückt werden können.

Eine weitere praktisch wichtige Einschränkung ist das Fehlen von aggregierenden
Operationen. Zum Beispiel kann mit Mitteln der relationalen Algebra zwar festgestellt
werden, welche Tupel einer Relation eine Bedingung erfüllen, aber nicht wie viele. Das
Aufsummieren von Werten mehrerer Tupel ist ebenfalls nicht möglich. Das ist bei Daten-
abfragen in der Praxis eine recht starke Einschränkung, wenn man bedenkt, dass solche

22

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

2.2. Informationssysteme

Aufgaben in vielen Fällen anfallen und dass die einzige Alternative ist, alle Tupel abzu-
fragen und dann die Aggregation beim Abfragenden selbst durchzuführen. Dieses Vor-
gehen belastet die Kommunikation und den Klienten. Aus diesem Grund bieten Abfra-
gesprachen wie SQL üblicherweise auch Aggregationsoperationen an und beschränken
sich nicht auf die reine relationale Algebra.

Eine wichtige, formal beweisbare Eigenschaft ist, dass relationale Algebra und die un-
terschiedlichen Formen des Relationenkalküls gleich mächtig sind [11]. Das bedeutet,
dass es für jede Formel in relationaler Algebra einen entsprechenden Ausdruck des Re-
lationenkalküls gibt und umgekehrt. Je nach Anwendungsgebiet kann also die eine oder
die andere Darstellungsform verwendet werden, ohne dass dadurch Einschränkungen
entstehen.

23

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

3.1. Merkmal-Modelle in der Praxis

Im Umfeld industrieller Automation sind heute zahlreiche Normen und Standards vor-
handen, die eine einheitliche, maschinell lesbare Verwendung von Merkmalen zum Ziel
haben. Der Hauptanwendungsbereich liegt in der elektronisch abgewickelten Beschaf-
fung, beispielsweise in der automatisierten Abwicklung von Bestellprozessen für Ge-
räte. Die Normen und Standards behandeln meist die Meta-Metaebene, das heißt die
grundsätzliche Art der Abbildung von Merkmalinformation, während die Metaebe-
ne, das heißt die Festlegung von allgemeinen Merkmalen von Merkmalträgertypen, in
Klassifikations- und Katalogsystemen behandelt wird. Die Abbildung einzelner Merk-
malträger wird weit weniger häufig adressiert. Heeg [32] und Mertens [54] haben in
ihren Arbeiten diverse Quellen ausführlich behandelt und zählen insgesamt 18 Normen
und Standards, die das Thema „Merkmale“ direkt adressieren, die jedoch auch zum
großen Teil aufeinander aufbauen bzw. zwischenzeitlich harmonisiert wurden. Dadurch
hat sich die IEC 61360 [37], die mit weiteren Normenreihen wie ISO 10303 [42], ISO
13584 [43] und DIN 4002 [23] abgestimmt ist, als wichtige Grundlagennorm der Meta-
Metaebene etabliert.

Im Bereich der Klassifikations- und Katalogsysteme zeichnet sich, zumindest für
die Industrie im deutschsprachigen Raum, eine ähnliche Konsolidierung ab. Welt-
weit wurden mehrere Klassifikationssysteme entwickelt und mit Listen von (allgemei-
nen) Merkmalen und Merkmalträgertypen gefüllt. Besonders bedeutende und große
Klassifikations- und Katalogsysteme sind UNSPSC, eCl@ss und RosettaNet. Diese Syste-
me haben alle das erklärte Ziel, den elektronischen Austausch von Produktdaten durch
standardisierte Merkmale zu erleichtern. Sie wurden aber jeweils von unterschiedli-
chen Interessengruppen ins Leben gerufen und sind daher in unterschiedlichen Anwen-
dungsgebieten gebräuchlich. In einer Studie aus dem Jahr 2005 wird das auch in Hin-
blick auf die Inhalte der Katalogsysteme bestätigt, denn alle dort betrachteten Systeme
(UNSPSC, eCl@ss, RosettaNet und eOTD) sind in Bezug auf die Klassen von standardi-
sierten Merkmalträgertypen sehr unausgeglichen besetzt [33]. Welcher Standard für die
Industrie in Deutschland zum aktuellen Zeitpunkt den höchsten Stellenwert hat, lässt
sich durch belastbare Fakten schwer direkt belegen. Allerdings bescheinigt eine Studie
aus dem Jahr 2002 eCl@ass mit 32.4% den größten Anteil unter den genutzten Klassifika-
tionsstandards in der Elektroindustrie und -großhandel [61]. Am zweihäufigsten wurde
der ETIM-Standard genutzt (18.9%). Seitdem wurde eCl@ss mit ETIM sowie proficl@ss
und Prolist harmonisiert und soll mit der IEC 61987 [38] harmonisiert werden [31], so
dass eCl@ss vermutlich noch immer vorherrschend und mit anderen bedeutenden Stan-
dards kompatibel ist. Das Datenmodell von eCl@ass basiert auf der IEC 61360. Für die
Abbildung in Dateien sind jedoch unterschiedliche Dateiformate im Gebrauch. Geräte-
hersteller bieten beispielsweise oft über ihre Webseiten eCl@ss-konforme Kataloge im

24

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Format „BMEcat“ an.
Ein weiteres wichtiges Anwendungsgebiet von technischen Merkmalen ist das En-

gineering automatisierter Systeme. Hier werden Merkmale insbesondere für die Be-
schreibung von einzelnen Geräten, beispielsweise Sensoren und Aktoren, verwendet,
um deren Konfiguration zu vereinfachen. Besonders bedeutend ist die „Electronic Devi-
ce Description Language“ (EDDL) [41], durch die standardisierte Gerätebeschreibungen
ermöglicht werden. Diese Beschreibungssprache umfasst neben Merkmalen noch viele
weitere Aspekte von Geräten. Die Modellierung von Merkmalen selbst steht dabei im
Hintergrund und fällt daher verhältnismäßig einfach aus. Von wissenschaftlicher Seite
wurde das Potenzial einer konsequenten Verwendung von standardisierten Merkmalen
für Anwendungen im Engineering identifiziert (s. z. B. [63, 67]), die Abläufe sind hier je-
doch komplex und Anwendungsmöglichkeiten zahlreich. Die Konsolidierung und Zu-
sammenführung von Modellen ist daher weniger fortgeschritten als im Anwendungs-
bereich e-Commerce.

Für die praktische Anwendung von Merkmalmodellen ist die Ausgangslage insge-
samt gut: Es gibt heute auf der Metameta- und auch auf der Metaebene anerkannte
Normen bzw. Standards im allgemeineren Sinne, die als Grundlage zur Modellierung
von Merkmalen dienen und umfangreiche Kataloge von Merkmalträgertypen und all-
gemeinen Merkmalen zur Verfügung stellen (eCl@ass enthält nach eigenen Angaben
aktuell 40800 Merkmalträgertypen [26]). Trotz dieser Situation und des großen Potenzi-
als zur Vereinfachung von Geschäftsabläufen, Engineering und Anlagenbetrieb werden
automatisch verarbeitbare Merkmalmodelle jedoch weit weniger häufig genutzt, als es
sinnvoll und möglich wäre [31]. Insofern bedeutet die organisatorische und technische
Unterstützung der genannten Standards längst noch nicht, dass damit alle elektronisch
gespeicherten Merkmalinformationen zugreifbar und integriert sind. Eine breitere Un-
terstützung von standardisierten Formaten kann aber zukünftig erwartet werden, wes-
halb die aktuell aussichtsreichsten Kandidaten IEC 61360 und eCl@ass in den folgenden
Abschnitten genauer betrachtet werden.

3.1.1. IEC 61360

Die Norm bzw. Normenreihe IEC 61360 trägt den deutschen Titel „Genormte Datenele-
menttypen mit Klassifikationsschema für elektrische Bauteile“. Im ersten Teil der Norm
wird ein grundlegendes Metameta-Modell für merkmalbasierte Modellierung festge-
legt, das dann im zweiten Teil auf das sogenannte EXPRESS-Datenmodell aus ISO 10303
[42] projiziert wird. Dadurch wird Kompatibilität mit der ISO 13584 [43] erreicht, die
ebenfalls EXPRESS verwendet. Im vierten Teil der Norm werden schließlich typische
Merkmale elektrischer Bauteile definiert, die auch online im „Common Data Dictiona-
ry“ eingesehen werden können [36]. An dieser Stelle ist aber hauptsächlich das im ersten
Teil der Norm definierte Merkmalmodell von Interesse.

Datenelementtypen

Der „Datenelementtyp“ ist ein zentraler Begriff der IEC 61360. Er wird definiert als
„Informationseinheit, deren Identifikation, Beschreibung und Wertdarstellung festgelegt
sind“ [19]. Sinngemäß entsprechend der Verwendung des Begriffs handelt es sich bei ei-
nem Datenelementtyp um ein allgemeines Merkmal entsprechend der Terminologie aus

25

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

Abschnitt 2.1. Dem Datenelementtyp können zwar wie einem speziellen Merkmal Wer-
te zugeordnet werden, wegen des Anwendungsbereichs der Norm für Katalogsysteme
wird das aber als Aussage über alle Merkmalträger eines Typs verstanden.

Ein Datenelementtyp wird durch Attribute definiert, die sich auf „Identifikation, Be-
schreibung, Werte von Datenelementtypen und Beziehungen zwischen Datenelement-
typen“ beziehen [19]. Die Norm listet insgesamt 25 solcher Attribute auf, die aber nicht
alle obligatorisch sind. Einige davon haben einen direkten Bezug zu Elementen aus dem
Merkmalmodell entsprechend Abschnitt 2.1, andere sind eher speziell für die IEC 61360.
Hier sind natürlich die erstgenannten Attribute von Interesse.

Eine gewisse Menge von Attributen wird in der Norm als „identifizierende Attribute“
bezeichnet. Dies sind, vollständig aufgelistet, Kennung, Versionsnummer, Änderungs-
nummer, bevorzugter Name, Synonym, Kurzbezeichnung, bevorzugtes Formelzeichen
und Synonym des Formelzeichens. Tatsächlich zur Identifikation eines Datenelement-
typs notwendig ist aber nur die Kennung, die auch bei wesentlichen Änderungen wie
Änderung der Definition neu vergeben wird. Bei Änderungen, die für die Verwen-
dung des Datenelementtyps weniger schwerwiegend sind, wie Änderung des Formel-
zeichens, werden neue Versionsnummern oder Änderungsnummern vergeben. Insge-
samt ist durch die Kombination aus Kennung, Versionsnummer und Änderungsnum-
mer also eine eindeutige Identifikation eines bestimmten Datenelementtyps in einem
bestimmten Zustand möglich. Die einzige Ausnahme bilden Kennungen, die mit dem
Zeichen „X“ beginnen, weil diese nicht zentral vergeben werden und für lokal gebrauch-
te Datenelementtypen zur Verfügung stehen, z.B. für innerbetriebliche Zwecke.

Durch „semantische Attribute“ wird die Bedeutung eines Datenelementtyps erklärt.
Das beinhaltet eine textuelle Definition, aber auch die Möglichkeit Formeln und Bilder
einzuschließen.

„Wertattribute“ ordnen einem Datenelementtyp Werte zu. Der Begriff „Wert“ wird
in der Norm nicht näher spezifiziert, entsprechend seiner Verwendung schließt er aber
auch komplexe Werte ein, die sich aus mehreren Einzelwerten zusammensetzen (bei-
spielsweise Vektoren). Weil Datenelementtypen allgemeinen Merkmalen entsprechen,
kann durch Wertattribute nicht nur ein einzelner Wert, sondern eine Menge möglicher
Werte hinterlegt werden. Mit dem Wert einher gehen Informationen zu dessen tech-
nischer und logischer Interpretation wie Datentyp, Codierung und Maßeinheit. Eine
nennenswerte Variante des komplexen Wertes ist der „Niveauwert“, der für reelle und
ganzzahlige Werte den Mindestwert, Nennwert, typischen Wert und Höchstwert in ei-
nem vierstelligen Vektor angibt. Mertens schreibt dazu [54]: „Hier versucht die Norm,
in Ergänzung zur reinen Merkmalausprägung noch einen Teil der Semantik dieser Aus-
prägung explizit abzubilden.“ Entsprechend dem Modell aus Abschnitt 2.1 handelt es
sich in dem Fall also um Ausprägungsaussagen, nicht nur um Werte. Ebenfalls erwäh-
nenswert ist, dass entsprechend der Norm Wertattribute eine weitergehende Bedeutung
für die Klassifikation des modellierten Objekts haben können (in dem Sinne, dass be-
stimmte Werte die Zugehörigkeit zu einer bestimmten Klasse bedingen), und dass es
Abhängigkeiten zwischen Werten verschiedener Datenelementtypen geben kann.

Eine Zuordnung von Datenelementtypen zu Klassen von Datenelementtypen ist
durch „relationale Attribute“ gegeben. Diese verweisen auf genau eine Klasse. Gege-
benenfalls werden durch relationale Attribute auch wertmäßige Abhängigkeiten zu an-
deren Datenelementtypen ausgedrückt.

26

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Klassen von Datenelementtypen

Die Spezifikation von Klassen von Datenelementtypen wird von der IEC 61360 deutlich
weniger genau behandelt als die der Datenelementtypen selbst. Im Wesentlichen wird
nur ausgesagt, dass durch die Bildung von Klassen die Handhabung größerer Mengen
von Datenelementtypen vereinfacht werden soll. Dazu können baumförmige Hierarchi-
en von Klassen gebildet werden, die sich auf quantitative und nicht-quantitative (z.B.
Materialarten oder Bauformen) Datenelementtypen beziehen. Zu beiden Fällen gibt die
Norm „Hauptklassen“ vor, von denen sich weitere Klassen ableiten lassen. Wie die Spe-
zifikation einer Klasse genau aussieht, wird aber nicht beschrieben.

Bauteilklassen

Wegen des Anwendungsbereichs der IEC 61360 wird dort die Spezifikation von Klas-
sen elektrischer Bauteile festgelegt, prinzipiell können die Merkmalträger aber auch
andere Objekte sein. Den Bauteilklassen werden Datenelementtypen zugeordnet. Zur
Strukturierung wird eine baumförmige Hierarchie von Bauteilklassen verwendet, in der
ein Vererbungsmechanismus für die Datenelementtypen von Klassen gilt, d.h. Daten-
elementtypen einer Klasse sind auch in hierarchisch untergeordneten Klassen enthalten.
Die Kriterien zur Identifikation von Klassen werden nicht fest vorgegeben.

Bauteilklassen werden, wie Datenelementtypen, durch Attribute spezifiziert. In die-
sem Fall sind das identifizierende und semantische Attribute, die in Bedeutung und Ver-
wendung den entsprechenden Attributen für Datenelementtypen sehr ähnlich sind. Be-
merkenswerterweise werden die Datenelementtypen, die einer Bauteilklasse zugeord-
net werden, nicht durch Attribute festgelegt. Überhaupt wird der Mechanismus dieser
Zuordnung nicht explizit beschrieben. Die Darstellung in Diagrammen in Texten der
Norm legt aber nahe, dass die Zuordnung eindeutig ist und dass anhand einer gegebe-
nen Bauteilklasse die zugeordneten Datenelementtypen erkennbar sind.

Jede Bauteilklasse besitzt mindestens einen „klassifizierenden Datenelementtyp“. Die-
ser Datenelementtyp unterscheidet die Bauteilklasse von ihrer hierarchisch übergeord-
neten Klasse, entweder durch eine Einschränkung der möglichen Werte, oder dadurch,
dass der Datenelementtyp in der übergeordneten Klasse nicht vorkommt.

3.1.2. eCl@ss

eCl@ss ist ein Klassifikations- und Katalogsystem zur Unterstützung der technischen
Materialwirtschaft in der chemischen Industrie, mit dessen Entwicklung 1997 begonnen
wurde [27]. Das primäre Ziel von Klassifikations- und Katalogsystemen ist die Definition
von Klassen von Merkmalträgern und von deren Merkmalen, so dass diese Merkmalträ-
ger (z.B. Geräte) in standardisiert aufgebauten Katalogen beschrieben werden können.
Eine Festlegung der Art und Weise, wie die einzelnen Merkmalträger beschrieben wer-
den, ist dagegen kein Primärziel, weshalb eCl@ss in dieser Hinsicht flexibel ist und bei-
spielsweise auf die Strukturen der IEC 61360 abgebildet werden kann.

27

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

Hintergrund

Zunächst war eCl@ss ein Projekt von acht Chemieunternehmen, die Beschaffung, La-
gerung, Reparatur, Dokumentation und Endverwertung von Geräten und Ersatzteilen
unterstützen und vereinfachen wollten [27]. Im Jahre 2000 wurde dann der eCl@ss e.V.
gegründet, der das Projekt weiter betrieb und ausbaute und nach eigenen Angaben im
Jahr 2012 bereits ca. 120 Organisationen als Mitglieder zählte [26]. Durch die Koopera-
tion mit anderen Katalogsystemen wurde das Anwendungsspektrum von eCl@ss auch
auf Bereiche über die chemische Industrie hinaus erweitert. Aus Sicht der Prozessin-
dustrie ist insbesondere die 2013 vorgenommene Eingliederung von Prolist bemerkens-
wert. Prolist bietet wie eCl@ss eine Klassifikation von Geräten, Listen ihrer Merkmale
und dokumentierte Prozesse für deren Erstellung und Verwendung. Besondere Bedeu-
tung hat Prolist, weil es durch die NAMUR-Empfehlung 100 [58] breiten Rückhalt der
Anwender von Automatisierungstechnik in der Prozessindustrie hat.

Es werden regelmäßig neue Versionen von eCl@ss veröffentlicht; aktuell ist Version
9.0. Die Versionen unterscheiden sich einerseits in den enthaltenen Merkmalträgern, an-
dererseits auch in dem verwendeten Metamodell in Bezug auf die Modellierung von
Merkmalen (z.B. wird in Version 8.0 gegenüber 7.1 kein Formelzeichen mehr angege-
ben). Die Beschreibung bezieht sich hier auf Version 9.0.

Praxis

Die Geschäftsprozesse, in denen eCl@ss in der Prozessindustrie eingesetzt werden soll,
werden in [31] beschrieben. Bild 3.1 gibt diese Prozesse schematisch wieder.

Der erste Schritt ist die Planung einer Produktionsanlage durch den Anlagenbetrei-
ber oder einen beauftragten Dienstleister. Dieser spezifiziert Anforderungen an Geräte
bzw. allgemein an das benötigte Material und schickt eine entsprechende Anfrage an
Hersteller oder Lieferanten. Diese antworten darauf ggf. mit passenden Angeboten, so
dass eine Bestellung und letztendlich auch Lieferung und Montage erfolgen können. Die
Daten des gelieferten Materials werden in die Dokumentation der Anlage übernommen.

Später im Lebenszyklus der Anlage kann dann die Notwendigkeit entstehen, ein Ge-
rät oder sonstiges Bauteil auszutauschen oder die Anlage zu erweitern. In diesem Fall
wird seitens des Betreibers erneut das benötigte Material spezifiziert, wobei die vorhan-
dene Dokumentation ein hilfreicher Ausgangspunkt ist. Zusätzlich zu den Anforderun-
gen können so auch Informationen über das bisher eingesetzte Material an Hersteller
oder Lieferant übermittelt werden. Dieser kann erneut ein Angebot formulieren und
letztendlich, nach erfolgreicher Lieferung und Einbau, wird die bestehende Dokumen-
tation aktualisiert.

Der geschilderte Ablauf kann auf unterschiedliche Art realisiert werden. Sogar ein
manuelles Vorgehen ohne die Unterstützung durch elektronische Datenverarbeitung ist
möglich. Typischerweise sind heute aber auf Seite des Anlagenbetreibers und auf Seite
von Herstellern und Lieferanten entsprechende IT-Systeme vorhanden, so dass die Ge-
schäftsprozesse innerhalb derselben Firma weitgehend automatisiert und effizient sind
[31]. Der Datenaustausch zwischen den Firmen ist aber nur wenig automatisiert und
von außen eingetroffene Daten müssen häufig manuell integriert werden. An dieser
Stelle setzt eCl@ss an. Einerseits wird durch die standardisierte Klassifikation und die
standardisierten Listen von Merkmalen eine Automatisierung dieser Prozesse logisch

28

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.1. Merkmal-Modelle in der Praxis

Abbildung 3.1.: Schemetische Darstellung der Geschäftsprozesse im Anwendungsbereich

von eCl@ss nach [31].

möglich. Andererseits besteht durch die Abbildbarkeit auf Datenstrukturen (etwa der
IEC 61360) die Möglichkeit der standardisierten technischen Repräsentation, z.B. durch
XML-Dateien.

In Tabelle 3.1 wird gezeigt, welche Gewerke zu welchem Zeitpunkt eCl@ss einsetzen
können. Diese Darstellung stellt die Anwendungsbereiche im Sinne der Zielsetzung von
eCl@ss dar. Darüber hinaus ist aber auch eine Verwendung im Engineering der Anlage
und in deren Betrieb möglich und erwünscht. In der NE 100 [58], deren Anwendungs-
ziele kongruent mit eCl@ss sind, heißt es dazu: „Die NE 100 ermöglicht darüber hinaus,
Gerätedaten als Merkmalleisten in Prozessleitsystemen oder Feldgeräten zu speichern.“
In [2] wird auch auf die gewinnbringende Verwendung von eCl@ass Daten bei Kombi-
nation mit Mitteln der Prozessbeschreibung wie dem Phasenmodell der Produktion [3]
hingewiesen.

Struktur

Die Klassifikation in eCl@ss geschieht durch eine vierstufige Hierarchie. Jede Hierarchie-
ebene hat eine eindeutige Kennnummer („kodierter Name“), die mit der Nummer der
übergeordneten Ebene beginnt, so dass beispielsweise alle Einträge unterhalb des Sach-
gebiets „Maschine, Apparat“ mit der Nummer 36 beginnen. Der Aufbau der Hierarchie
wird in Tabelle 3.2 gezeigt. Die Bildung einer Klasse und deren Zuordnung zu einer
übergeordneten Klasse der Hierarchie geschieht durch die Betrachtung technischer und
kaufmännischer Aspekte [27].

29

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

Tabelle 3.1.: Anwendungsfälle von eCl@ss nach Lebenszyklusphasen einer Anlage und be-

teiligten Partnern nach [31].

Beteiligte Partner
Lebenszyklusphase Planer Betreiber/

Einkauf
Hersteller/
Vertrieb

Betreiber/
Instand-
haltung

Hersteller/
After Sales
Service

Planung: Anfrage
und Angebot

• •

Planung:
Bestellung

• • •

Planung:
Abschluss und
Inbetriebnahme

• •

After Sales
Service

• •

Instandhaltung:
Ersatzteilanfrage

• •

Instandhaltung:
Ersatzteilbestellung

• • •

Planung:
Erweiterung

• •

Tabelle 3.2.: Die vier Klassifikationsebenen von eCl@ss mit je einem Beispiel.

Ebene Name der Ebene Bsp. kodierter Name Bsp. bevorzugter Name
1 Sachgebiet 36-00-00-00 Maschine, Apparat
2 Hauptgruppe 36-41-00-00 Pumpe
3 Gruppe 36-41-01-00 Kreiselpumpe
4 Untergruppe 36-41-01-08 Kreiselpumpe mit Wellendichtung

Jede Untergruppe beinhaltet eine sogenannte „Merkmalleiste“, die praktisch eine
Menge von allgemeinen Merkmalen ist. Dabei unterscheidet eCl@ss zwischen „Basis-
merkmalleisten“ und „Standardmerkmalleisten“. Die Basismerkmalleiste ist stets gleich
und enthält daher nur allgemeine Merkmale, die immer anwendbar sind wie „Herstel-
lername“ und „Artikelbezeichnung“. Sie wird dann verwendet, wenn entweder noch
keine klassenspezifischen Merkmale festgelegt wurden oder wenn das nicht notwendig
ist. Standardmerkmalleisten sind dagegen klassenspezifisch zusammengestellte allge-
meine Merkmale.

Jedes Merkmal in einer Merkmalleiste wird durch einen eindeutigen Code identifi-
ziert. Die Spezifikation von allgemeinen Merkmalen ist ebenfalls in eCl@ss enthalten
und wird durch die Attribute „Abk.“, „Datenformat“, „Einheit“, „Definition“ und „Wer-
te“ durchgeführt. Unter dem Attribut „Werte“ kann eine Liste von erlaubten Ausprä-
gungen für ein Merkmal angegeben werden, wobei es hier auch vordefinierte und re-
ferenzierbare Ausprägungen gibt. Beispielsweise sind mögliche Bauformen von Kupp-
lungen als Ausprägungen definiert. Als mögliche Datenformate ist die folgende Li-

30

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.2. Abfragesprachen

ste vorgegeben: Boolean, String, String Translatable, Integer Count, Integer Measure,
Integer Currency, Real Count, Real Measure, Real Currency, Rational, Rational Measure,
Time, Timestamp, Date, Url.

3.2. Abfragesprachen

Für die Abfragen an Informationssysteme gibt es unterschiedliche Typen von Abfrage-
sprachen. Diese richten sich nach der Struktur der für Abfragen verfügbaren Informati-
on, den Fähigkeiten des Informationssystems und der Anforderungen der Klienten. Im
einfachsten Fall gibt es nur Operationen zum gezielten Auslesen von Information und
ggf. auch zur Erstellung und Veränderung von Informationsobjekten. Im Bereich der
Automatisierungstechnik gibt es einige Kommunikationsprotokolle entsprechend die-
sem Schema, beispielsweise OPC UA oder ACPLT/KS. Komplexe Informationssysteme
wie Datenbanken unterstützen dagegen komplexere Abfragesprachen, z.B. auf Basis re-
lationaler Algebra (siehe Abschnitt 2.2.2).

3.2.1. Abfragesprachen für relationale Datenbanken

Die theoretische Grundlage der Abfragesprachen für relationale Datenbanken ist die re-
lationale Algebra. Eine frühe Umsetzung als praktisch anwendbare Abfragesprache war
die Sprache SEQUEL [7], die später in SQL (oft interpretiert als Abkürzung für „Struc-
tured Query Language“) umbenannt wurde. SQL gilt heute als die Standardsprache für
relationale Datenbanken [11] und ist normiert [45]. Unterschiedliche Implementierun-
gen enthalten trotzdem oft zusätzliche Operationen, so dass auch von SQL-Dialekten
gesprochen wird.

SQL implementiert viele der Operationen der relationalen Algebra direkt als einzelne
Operation und ist relational vollständig. Die Sprache ist textbasiert, beispielsweise ist der
Ausdruck „SELECT X FROM Y WHERE z“ ein häufiges Konstrukt, durch das aus der
Relation Y die Attribute X derjenigen Tupel zurückgegeben werden, für die Bedingung
z gilt. Es handelt sich also um die Verkettung einer Selektions- und Projektionsoperation.
Komplexe Ausdrücke können durch Klammerung gebildet werden.

Wie in Abschnitt 2.2.2 diskutiert, deckt die relationale Algebra einige praktisch benö-
tigte Anwendungsfälle nicht ab. SQL beinhaltet daher weitere Operationen, die diese
Lücken größtenteils ausfüllen. Beispielsweise sind Aggregationsoperationen wie OR-
DER BY oder COUNT verfügbar.

3.2.2. Abfragesprachen für graphbasierte Datenbanken

Neben den vorherrschenden relationalen Datenbanken gibt es heute eine weitere ver-
breitete Art von Datenbanken, nämlich graphbasierte Datenbanken. In ihnen werden
Daten nicht durch Tabellen, sondern durch ein Netz von Knoten und Kanten im Sinne
eines gerichteten Graphs aus der Mathematik bzw. Informatik verwaltet. An die Knoten
und Kanten können Attribute und Werte angehängt werden; außerdem sind die Kanten
typisiert. Üblicherweise repräsentieren die Knoten modellierte Objekte (entsprechend
wie Tupel im relationalen Modell) und die Kanten Beziehungen zwischen den Objekten.
Anders als bei relationalen Datenbanken hat sich kein Standard für Abfragesprachen

31

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

herausgebildet. Die vorhandenen Sprachen haben lediglich die Graphentheorie als ge-
meinsame Grundlage.

Abhängig von der Struktur der Daten ist die Geschwindigkeit in der Verarbeitung
von Abfragen teilweise deutlich größer als bei relationalen Datenbanken [76]. Diese Be-
obachtung trifft insbesondere dann zu, wenn die interne Verknüpfung von Daten durch
Kanten des Graphen genutzt werden kann. Andererseits arbeiten relationale Datenban-
ken auf großen, homogen strukturierten Datensätzen prinzipbedingt effizienter.

3.2.3. Domänenspezifische Abfragesprachen

SQL sowie die unterschiedlichen Sprachen für graphbasierte Datenbanken sind als all-
gemeine Abfragesprache konzipiert. Es gibt daher keine Annahmen über die Semantik
der abgefragten Daten. Die Konstruktion von speziellen Abfragesprachen mit gewis-
sen Annahmen über die Semantik ist in der Literatur und Praxis eine Ausnahme, einige
Beispiele sind jedoch vorhanden. Üblicherweise wird dabei die relationale Algebra als
Grundlage verwendet, um spezielle Operatoren mit spezieller Semantik zu definieren.
Beispielsweise existiert eine genormte Erweiterung von SQL, die den Umgang mit spe-
ziellen Daten wie Bildern oder Text vereinfachen soll [44]. Eine formale Abfragesprache
für Dokumentinhalte wird von Mhlanga et al. vorgeschlagen [56]. Sparr präsentiert eine
Abfragesprache für relationale Datenbanken mit Erweiterungen speziell für den Anwen-
dungsbereich CAD [68]. Allgemein gibt es im Anwendungsbereich der Automatisierung
aber eine viel stärkere Tendenz hin zu standardisierten Dateiformaten für den Informati-
onsaustausch, während spezielle Abfragesprachen kaum diskutiert werden. Vor diesem
Hintergrund ist es sehr interessant zu sehen, dass Barth und Fay die Abfragesprache
LINQ, eine SQL-ähnliche Abfragesprache innerhalb der Programmiersprache C# , zur
Abfrage von Information aus Engineering-Dateien vorschlagen [5]. Die Autoren stel-
len zwar keine spezielle Abfragesprache für Engineering-Daten vor, betonen aber die
möglichen Vereinfachungen und Geschwindigkeitszuwächse bei Verwendung gezielter
Abfragen gegenüber der üblichen Verarbeitung gesamter Dateien.

3.3. Software-Systeme im Umfeld der industriellen
Produktion

In der industriellen Produktion werden zahlreiche Software-Systeme verwendet, die In-
formationen über technische Merkmale nutzen und verwalten. Dieser Abschnitt gibt
einen Überblick über die wichtigsten dieser Systeme. Ziel ist es, solche Systeme zu iden-
tifizieren, in denen Information zu Merkmalen vorliegt, die für ein Automatisierungssy-
stem operativ nutzbar ist. Die technische Realisierung dieser Systeme ist dabei nachran-
gig.

Generell gibt es im Umfeld der industriellen Produktion keine einheitliche Standard-
software. Stattdessen sind der Umfang und die Art der einzelnen Software von Betrieb
zu Betrieb unterschiedlich. Selbst wenn das gleiche Software-System in der gleichen
Version in zwei Betrieben verwendet wird, dann ist die individuelle Konfiguration, bei-
spielsweise durch die Installation von zusätzlichen Erweiterungen, praktisch immer ver-
schieden. Insofern wäre es unsinning, an dieser Stelle Aussagen über konkrete Software-

32

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.3. Software-Systeme im Umfeld der industriellen Produktion

Systeme zu treffen.
Eine weit verbreitete Sicht auf die produktionsrelevanten Software- und Automati-

sierungssysteme ist die Einteilung in Ebenen, die jeweils einem Aufgabenbereich ent-
sprechen („Automatisierungspyramide“, siehe Abbildung 5.6, Seite 78). Dieses Modell
umfasst zumindest die Prozessleitebene (unten), die Produktionsleitebene und die Un-
ternehmensleitebene (oben) [70]. Zwischen Prozessleitebene und Produktionsleitebene
wird z.T. auch eine „Betriebsleitebene“ genannte Zwischenebene aufgezählt und je nach
Autor und Zielsetzung kann die Ebene der Feldgeräte und auch der Prozess selbst als
Ebene enthalten sein.

Die Beziehung zwischen den Ebenen der Automatisierungspyramide sah ursprüng-
lich so aus, dass von oben nach unten Vorgaben für die Produktion gemacht werden und
von unten nach oben Daten aus der Produktion weitergereicht und verdichtet werden
[70]. Durch die Möglichkeiten netzwerkbasierter Kommunikation, in der nicht nur fest
konfigurierte Punkt-zu-Punkt Kommunikation möglich ist, und durch darauf aufbau-
ende Diensttechnologien, zeichnet sich aber schon seit einigen Jahren eine Flexibilisie-
rung der Informationsflüsse ab (siehe z.B. [51], [65]). Daher behält die Zuteilung eines
Software-Systems zu einer der Ebenen anhand seiner Aufgabe zwar ihre Gültigkeit, die
Zuteilung begrenzt aber nicht die möglichen Informationsflüsse. Im Kontext dieser Ar-
beit bedeutet das, dass für die Relevanz eines Software-Systems nicht die hierarchische
Einordnung, sondern dessen Aufgabe und damit die genutzte Information entscheidend
sind.

Die Aufgaben der Software-Systeme setzen sich aus einigen Kernaufgaben zu-
sammen, die in der industriellen Produktion grundsätzlich anfallen. In der ANSI-
Norm ISA-95 bzw. deren Pendant IEC 62264 [39] mit dem Titel „Integration von
Unternehmensführungs- und Leitsystemen“ wird ein wesentlicher Teil dieser Aufgaben
ausführlich aufgelistet und erläutert. Eine Auswahl daraus ist (im Wortlaut der Norm
[39]):

• Unternehmensleitebene

– „Erfassung und Pflege des Rohstoff- und Ersatzteilverbrauchs sowie des ver-
fügbaren Bestands und Bereitstellung von Daten für den Einkauf von Roh-
stoffen und Ersatzteilen;“

– „Erfassung und Pflege aller Waren in Bestandsdateien für Prozess und Pro-
duktion;“

– „Erfassung und Pflege von Aufzeichnungen über die Nutzung der Maschi-
nen und Ausrüstungen und der Laufzeithistorie, die für die vorbeugende und
vorausschauende Instandhaltungsplanung erforderlich sind;“

– „Planung einer optimalen vorbeugenden Instandhaltung und Erneuerung der
Ausrüstung in Verbindung mit dem grundlegenden Produktionsplan für die
Anlage;“

– „Bestimmung der optimalen Bestände von Rohstoffen, Energien, Ersatzteilen
und Waren im Prozess an jedem Lagerort [...];“

• Produktionsleitebene

33

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

– „Erfassung und Pflege von Daten über Produktion, Bestand, Personal, Roh-
stoffe, Produktqualität, Ersatzteile und Energieverbrauch im Betriebskom-
plex;“

– „Datenerfassung und Offline-Datenanalyse gemäß Vorgabe durch
Engineering-Funktionen; dies kann eine statistische Qualitätsanalyse und
zugehörige Steuerungsfunktionen einschließen;“

– „Verwaltung der Instandhaltung der Produktionsausrüstung;“

– „Verwaltung der Labor- und Qualitätsprüfungen an Materialien;“

– „Verwaltung von Transport und Lagerung der Materialien; [...]“

Neben diesen Aufgaben werden zahlreiche weitere genannt, die aber keine Informa-
tion enthalten, die für ein Automatisierungssystem in der Produktion sinnvoll nutzbar
wäre (beispielsweise Personalplanung).

Kommerzielle Software-Systeme zur Bewältigung der genannten Aufgaben sind ver-
fügbar, allerdings besteht nicht immer eine eins-zu-eins Beziehung zwischen Aufgabe
und Software-System. Oft ist es möglich, mit einem System mehrere Aufgaben abzu-
decken. Außerdem ist das Ziel der ISA-95 lediglich die Aufgaben, Vorgänge und Be-
griffe der Software-Systeme festzulegen. Die Implementierung der technischen Schnitt-
stellen und der Datenrepräsentation wird nicht spezifiziert und ist daher aus Sicht der
Norm zunächst proprietär. Dadurch klärt die Norm zwar, welche Information in einem
Software-System vorliegt, aber nicht, wie darauf zugegriffen werden kann. Für die Ver-
einfachung und Vereinheitlichung der Integration von ISA-95-konformer Software gibt
es daher separate Ansätze. Die Organisation MESA (Manufacturing Enterprise Solutions
Association) hat mit der „Business To Manufacturing Markup Language (B2MML)“ ein
XML-Datenformat veröffentlicht, das den Austausch von Information entsprechend den
ISA-95-Informationsmodellen ermöglicht [53]. Weiterhin existiert eine Spezifikation der
OPC Foundation für die Abbildung der ISA-95-Modelle im Kommunikationsstandard
OPC UA [15, 59]. Beide Ansätze zeigen, dass die Modelle der ISA-95 große Bedeutung
haben und dass zumindest seitens der Softwareanwender starkes Interesse an einer Ver-
einfachung der Datenanbindung vorliegt. Letztendlich liegt es aber bei den Software-
herstellern, diese Standards zu unterstützen. Aktuell gibt es daher in der Praxis keine
einheitlichen Datenschnittstellen der Software-Systeme.

Die folgenden Abschnitte geben einen Überblick über die wichtigsten und am weite-
sten verbreiteten Arten von Software-Systemen im Umfeld der industriellen Produktion.

3.3.1. Manufacturing Execution Systeme

Manufacturing Execution Systeme (MES) umfassen oft mehrere der genannten Aufga-
ben in der Produktions- und Betriebsleitebene. Im Arbeitsblatt 94 der NAMUR [57] wird
dazu festgestellt, dass „MES“ oft auch als Bezeichnung der Betriebsleitebene verwendet
wird, obwohl MES-Softwarepakete nicht die gesamte Funktionalität der Betriebsleitebe-
ne abdecken. Daher „ist der Term MES mit Vorsicht zu benutzen bzw. in seiner jeweils
gedachten Funktionalität zu spezifizieren.“ [57] Auch die VDI-Richtlinie 5600 zum The-
ma MES [74] enthält keine abgeschlossene Beschreibung der Aufgaben, es werden aber
in Übereinstimmung mit dem Arbeitsblatt der NAMUR die folgenden Aufgaben ge-
nannt:

34

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.3. Software-Systeme im Umfeld der industriellen Produktion

• Produktionsfeinplanung

• Materialflusssteuerung

• Qualitätsmanagement

• Bestandsführung

• Produktionsdokumentation

Durch die Erfüllung dieser Aufgaben sind in MES viele und nützliche Informationen
zu Merkmalen vorhanden. Beispiele sind: Belegungszustände von Produktionsressour-
cen, Merkmale von Produktionsaufträgen, Materialbestände und -lagerorte, statistische
Werte zur Produktqualität und zur Produktionsmenge. Diese Information kann in der
operativen Automatisierungstechnik genutzt werden, um die Produktqualität zu ver-
bessern, Produktionskosten zu senken und Produktionsmengen zu erhöhen.

3.3.2. Datenarchive

Die Archivierung von Daten aus der Produktion kann auch als Teilfunktion eines MES
vorliegen; praktisch kommt hierfür aber oft ein eigenständiges System zum Einsatz.
Hauptziele dieser Systeme sind das sichere und langfristige Speichern von Umfangrei-
chen Daten, die zumeist direkt, d.h. mittels Sensoren, in der Produktion erhoben werden.
Dies kann der Erfüllung rechtlicher Rahmenbedingungen dienen, z.B. in der Pharmazie-
und Lebensmittelproduktion, ist aber auch eine Grundlage zur allgemeinen Qualitäts-
überwachung und Fehlerdiagnose. Bedeutung erhalten Datenarchive auch durch die
Möglichkeit der automatisierten Analyse der Daten, die entweder unter Einbeziehung
von Wissen über den Prozess und die Produktionsanlage geschehen kann, oder ohne
dieses Wissen mit Verfahren des „Data Mining“ [66]. Nützliche Merkmalinformation in
Datenarchiven betrifft insbesondere historische Messwerte und Messwerte, aggregierte
Informationen und Information die von Systemen stammt, zu denen es keine direkte
Kommunikationsverbindung gibt.

3.3.3. Rezeptverwaltung

Die Aufgabe und Funktion von Systemen zur Rezeptverwaltung wird in der Normenrei-
he DIN EN 61512 „Chargenorientierte Fahrweise“ [14], der deutschen Version der ANSI
ISA 88, festgelegt. Entsprechend handelt es sich dabei um ein Software-System, das in
der Prozessindustrie bei chargenweiser Produktion Anwendung findet.

In einem System zur Rezeptverwaltung werden Produktionsrezepte auf vier Abstrak-
tionsebenen verwaltet. In der Norm umfasst die Rezeptverwaltung das grundsätzlichen
Verfahrensrezept, das unabhängig von der Anlagenausrüstung ist, das Werksrezept, das
Grundrezept und schließlich das Steuerrezept, das spezifisch für eine bestimmte Anlage
und eine bestimmte Charge aus dem Grundrezept erstellt wird. Neben der eigentlichen
Prozedur werden in den Rezepten Stoff- und Produktionsparameter festgelegt. Sie um-
fassen die notwendigen Grundstoffe des Prozesses (Prozesseinsatz) in Menge und Art,
die durch den Prozess erzeugten Stoffe und Energien (Prozessausstoß) und Prozesspa-
rameter wie Sollwerte und Vergleichswerte zu messbaren Größen des Prozesses. Außer-
dem können in Rezepten Anforderungen an die Produktionseinrichtung wie zulässige

35

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

Werkstoffe hinterlegt werden. Somit sind neben der Prozedur auch operativ relevante
Merkmale in Systemen zur Rezeptverwaltung vorhanden.

3.3.4. Labor-Informations- und Managementsysteme

Labor-Informations- und Management-Systeme, abgekürzt LIMS, haben den Hauptein-
satzzweck, in Laboren ermittelte Daten zu speichern und zu analysieren. Im Kontext der
industriellen Produktion betreffen diese Daten meist die Ausgangstoffe, Zwischenpro-
dukte oder Endprodukte des Produktionsprozesses. Daher sind in einem LIMS Informa-
tionen zu Merkmalen vorhanden, die nicht durch Messung im Prozess ermittelt werden
können, die den Prozess aber direkt betreffen.

3.3.5. Condition Monitoring

Unter „Condition Monitoring“ wird hier die „Zustandsüberwachung und -diagnostik
von Maschinen auf der Basis von Parametern wie Schwingungen, Temperatur, Durch-
flussraten, Verunreinigung, Leistung und Drehzahlen, die typischerweise in Zusammen-
hang mit Funktion, Zustand und Qualitätskriterien stehen“ [20], verstanden. Entspre-
chende Software-Systeme beziehen die notwendigen Daten einerseits aus statischen Ma-
schinendaten und andererseits aus Messungen des Produktionsprozesses oder der Ma-
schinen. Ziel ist die frühzeitige Erkennung von Fehlern und Defekten sowie die Unter-
stützung von Wartungsaufgaben. Condition Monitoring-Systeme verwalten daher Infor-
mationen zu Merkmalen, die die Anlagenausrüstung und nicht den Produktionsprozess
betreffen.

3.4. SPS-Programmierung

In der verfahrenstechnischen Industrie bilden Prozessleitsysteme den Kern der heute
üblichen Automatisierungslösungen und innerhalb dieser werden meist speicherpro-
grammierbare Steuerungen (SPS) für die operative Ausführung der Mess- Steuer- und
Regelaufgaben verwendet [71]. Die genaue Abgrenzung von SPS und Prozessleitsystem
ist aber schwierig: Durch die Integration der SPS in das Prozessleitsystem verwischt die
Unterscheidung zwischen dem Leitsystem und der SPS zunehmend [71]; außerdem wer-
den SPS auf sehr unterschiedlichen Hardwaresystemen implementiert. An dieser Stelle
wird daher nicht genauer auf die begriffliche Abgrenzung von SPS oder deren techni-
sche Realisierung eingegangen. Wichtiger ist hier, wie eine SPS programmiert wird und
wie die Programme ausgeführt werden, d.h. die funktionale Sicht auf Engineering und
Laufzeitverhalten. SPS-Hersteller wenden dazu in praktisch allen Fällen die Normenrei-
he IEC 61131 (bzw. DIN EN 61131 [18]) an. Aus sprachlichen Gründen werden hier die
Begriffe der DIN EN 61131 verwendet.

3.4.1. Aufbau und Funktionsweise einer SPS

Gemäß IEC 61131 kann eine SPS in die in Bild 3.2 gezeigten funktionalen Einheiten un-
terteilt werden. Neben der funktionalen Unterteilung der Einheiten werden auch die in-
ternen und externen Schnittstellen gezeigt, über die Information (bzw. Energie im Falle

36

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

der Stromversorgung) übertragen wird. Von Interesse sind hier insbesondere die Signal-
verarbeitungsfunktionen. Diese werden im dritten Teil der Norm [21] genauer erläutert.
Die einzelnen Signalverarbeitungsfunktionen werden als „Ressourcen“ bezeichnet. Zu
ihnen gehören ggf. Schnittstellen zum Bediener, Sensoren und Aktoren. Die Funktiona-
lität einer Ressource ist in einem Programm oder mehreren Programmen implementiert.
Die Ausführung dieser Programme geschieht durch „Tasks“, die ebenfalls Teil der Res-
source sind. Die Daten, mit denen ein Programm arbeitet, werden in Variablen innerhalb
der Programme abgelegt. Auf diese Variablen können andere Programme nicht zugrei-
fen. Darüber hinaus gibt es einen globalen Speicherbereich, in dem Variablen verwaltet
werden, die von unterschiedlichen Ressourcen und Programmen aus erreichbar sein sol-
len.

Tasks besitzen je eine Liste von Programmen, die nacheinander bei Eintreten eines de-
finierten Ereignisses ausgeführt werden. Dieses Ereignis ist häufig periodisch und durch
einen internen Zeitgeber ausgelöst, es kann aber auch spontan eintreten wie z.B. die Än-
derung eines Sensorwerts. In welcher Reihenfolge die Programme von einer Task aufge-
rufen werden, wird durch die Norm nicht definiert. Entsprechend wird dies in der Praxis
zwischen unterschiedlichen SPSen nicht einheitlich gehandhabt und kann zu Laufzeit-
unterschieden für dieselbe Ressource auf unterschiedlichen Systemen führen. Üblicher-
weise kann die Ausführungsreihenfolge aber vom Programmierer einer SPS angepasst
werden.

Auf Ebene der Ressource kann die Ausführung gestartet und gestoppt werden. Nach
dem Start werden die Variablen innerhalb einer Ressource initialisiert und alle enthalte-
nen Tasks gestartet. Beim Stoppen werden entsprechend die Tasks angehalten.

3.4.2. Programmiersprachen

Programme werden typischerweise in einer der fünf Programmiersprachen der IEC bzw.
DIN EN 61131-3 geschrieben. Diese sind (deutsch/englisch): Anweisungsliste/Instruc-
tion List (AWL/IL), Strukturierter Text/Structured Text (ST/ST), Kontaktplan/Ladder
Diagram (KOP/LD), Funktionsbausteinsprache/Function Block Diagram (FBS/FBD)
und Ablaufsprache/Sequential Function Charts (AS/SFC). Neben der Norm selbst exi-
stiert der technische Bericht IEC TR 61131-8, „Guidelines for the application and imple-
mentation of programming languages“ [40], in dem weitere Details zur Implementie-
rung der Sprachen erläutert werden.

Neben den Sprachen der IEC 61131 gibt es oft die Möglichkeit, Programme zu impor-
tieren, die in einer anderen Sprache wie C oder C++ geschrieben wurden. Dies ist aber
eher als Speziallösung für besondere Anwendungsfälle zu sehen und entspricht nicht
dem normalen Vorgehen für die Programmierung einer SPS.

AWL und ST sind textuelle Programmiersprachen, in denen Befehle zeilenweise ge-
schrieben und ausgeführt werden. Die Sprachen AS, KOP und FBS sind graphische
Programmiersprachen und unterscheiden sich daher schon durch ihre Repräsentation
deutlich von AWL und ST (wobei es für AS auch die Möglichkeit der textuellen Pro-
grammierung gibt). Die folgenden Abschnitte geben einen kurzen Überblick über die
Programmiersprachen. Anschließend wird auf die Sprache FBS im Detail eingegangen.

37

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

Abbildung 3.2.: Funktionale Grundstruktur einer SPS nach DIN EN 61131 [18].

38

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

Anweisungsliste und Strukturierter Text

AWL ist syntaktisch einfach aufgebaut: Eine Zeile beginnt mit einer Sprungmarke, da-
hinter stehen ein Operator bzw. eine Funktion, gefolgt von den Operanden. Die Opera-
toren und Funktionen sind verhältnismäßig maschinennah und einfach, beispielsweise
sind LD (lade Bit), AND (logisches ∧) und JMPCN (bedingter Sprung) typische Befeh-
le. AWL wird häufig als gemeinsame Zwischensprache zwischen den anderen Program-
miersprachen verwendet [47]. ST bietet vergleichsweise komplexere Sprachelemente wie
FOR- und WHILE-Schleifen und ist daher mit höheren Programmiersprachen wie Pas-
cal vergleichbar. Hauptvorteil von ST gegenüber AWL ist daher die bessere Kompaktheit
und Einfachheit der Programme, während die Programme andererseits weniger effizient
sein können und der Programmierer weniger Details unter eigener Kontrolle hat [47].

Ablaufsprache

AS ist eine Sprache zur Programmierung von Abläufen durch diskrete Zustände. Bei-
spielsweise könnte die Steuerung für ein Gerät, das die möglichen Zustände „ein“ und
„aus“ besitzt, grundsätzlich durch diese beiden Zustände – in der Terminologie von AS
„Schritte“ genannt – programmiert werden. Bei der Ausführung des Programms wer-
den diese Schritte nacheinander aktiviert. Zwischen den Schritten gibt es Transitionen,
die durch Bedingungen überwachen, wann ein Schritt beendet wird und dessen Nach-
folger aktiviert wird. Diese Bedingungen werden durch Boolesche Algebra formuliert
und nehmen auf Variablen der SPS Bezug. Innerhalb der Schritte können Aktionen aus-
geführt werden, die ihrerseits selbst IEC 61131-3 -Programme sind, und es können Varia-
blen beschrieben werden. Für die Ausführung ist es notwendig, dass genau ein Schritt
als Anfangsschritt markiert ist und dass es entweder mindestens einen Endschritt gibt,
oder dass die Transitionen eine Rückwärtsschleife bilden. In diesem Fall hat der Ablauf
kein spezifiziertes Ende.

Kontaktplan und Funktionsbausteinsprache

KOP und FBS haben ihren Ursprung in der Nachbildung von elektrischen Schaltungen
und erlauben daher die Programmierung durch Erstellung eines Netzwerks von Ele-
menten (KOP) bzw. Funktionsbausteinen (FBS). Jedes Element und jeder Funktionsbau-
stein besitzt (Signal-) Eingänge und Ausgänge, deren funktionale Beziehung das Ele-
ment bzw. der Baustein herstellt. Im Fall von KOP entsprechen die Signale meist Boo-
leschen Werten, während bei FBS alle Arten primitiver Datentypen verwendet werden
können. FBS hat sich daher als universell einsetzbare Sprache etabliert [47].

Ausgänge werden paarweise durch Signallinien mit Eingängen verknüpft, so dass ein
Netzwerk von Elementen bzw. Funktionsbausteinen entsteht. Der Wert eines Signals
wird dann entlang der Signallinie von einem Ausgang zum Eingang „transportiert“.
Die Verknüpfung von Ein- und Ausgängen mit Variablen der SPS ist ebenfalls möglich.

In Bild 3.3 wird ein einfaches Beispiel für ein FBS-Programm gezeigt. Es berechnet
Z = 3 · X ·Y + 1, wobei X, Y und Z für das Programm lesbare bzw. schreibbare Variablen
sind. Zu jedem Baustein wird ein lokal eindeutiger Bezeichner (z.B. „add1“) und dessen
Typ („ADD“) angegeben. Die Eingänge eines Bausteins befinden sich entsprechend der
Norm auf der linken Seite und die Ausgänge auf der rechten und sie besitzen jeweils

39

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

einen eindeutigen Bezeichner innerhalb des Bausteins. Eine exakte Vorgabe über das
Aussehen der Bausteine oder des Diagramms wird in der IEC 61131 aber nicht gemacht.
Einige wichtige Bausteintypen werden in der VDI/VDE-Richtlinie 3696 [73] definiert,
indem dort Typ, Eingänge, Ausgänge und Funktionalität definiert sind. Die Bausteine in
Bild 3.3 sind dieser Richtlinie entnommen.

3

1

Abbildung 3.3.: Beispiel für ein Funktionsbausteinnetzwerk, das Z = 3 · X · Y + 1
berechnet.

Eigenschaften der IEC 61131-3 Programmiersprachen

Weil innerhalb einer SPS auch zeitgleich unterschiedliche Sprachen verwendet werden
können, ist eine Kombination möglich und oft auch praktisch sinnvoll. Einfache Funk-
tionen lassen sich mit AWL und KOP realisieren, komplexere Funktionen mit ST und
FBS. Für übergeordnete Abläufe, die diese Funktionen nutzen, bietet sich AS an.

Für die Auswahl einer Sprache zur Lösung eines (Teil-)Problems sind Größe und Art
des Problems einerseits und Eigenschaften der Programmiersprache andererseits ent-
scheidend. Neben dem offensichtlichen Unterschied der graphischen oder textuellen
Repräsentation eines Programms gibt es auch Unterschiede im zugrunde liegenden Pro-
grammierparadigma. Hier ist insbesondere die Unterscheidung zwischen imperativen
und deklarativen Sprachen sinnvoll.

Bei imperativen Sprachen werden dem Rechner nacheinander Befehle gegeben, die
in dieser Reihenfolge ausgeführt werden. Praktisch können die Befehle vom Compiler
oder Prozessor anders sortiert werden, das geschieht aber immer ohne Beeinträchtigung
der Semantik. Imperative Sprachen entsprechen daher einer prozeduralen Denkweise,
in der der zeitliche Ablauf der Ausführung von Bedeutung ist. Beispielsweise kann

X‘ = 3 · X; Y‘ = X‘ · Y;

zu einem anderen Ergebnis führen als

Y‘ = X‘ · Y; X‘ = 3 · X;

40

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

weil einmal auf den „neuen“ Wert (3 · X) von X‘ zugegriffen wird und einmal auf den
„alten“, initialen Wert. AWL, ST und AS sind imperative Sprachen. Sie eignen sich dann,
wenn eine Aufgabe in zeitdiskreten Schritten bzw. durch Definition von diskreten Zu-
ständen gelöst wird.

Im Vergleich dazu werden bei einer deklarativen Programmiersprache die genannten
Befehle als zeitlich unabhängige Deklaration der Abhängigkeiten zwischen den Varia-
blen interpretiert. Entsprechend wären die oben genannten Befehlsfolgen äquivalent,
weil sie sich in beiden Fällen zu

Y‘ = 3 · X · Y

vereinfachen lassen. Deklarative Programmiersprachen sind daher dann besonders ge-
eignet, wenn zeitinvariante Beziehungen zwischen Variablen bestehen, beispielsweise
für Regler oder Simulationen. Ein Programm kann dann als Modellierung dieser Bezie-
hungen betrachtet werden. Deklarative Sprachen sind KOP und FBS.

Praktisch werden auch Programme in deklarativen Programmiersprachen von einem
Prozessor ausgeführt, der in zeitdiskreten Schritten arbeitet. Sofern diese Zeitschritte
klein genug sind, kann ein Programmierer aber von einem „quasi-kontinuierlichen“ Ab-
lauf ausgehen. Üblicherweise lässt sich die Größe dieser Zeitschritte auch vom Anwen-
der festlegen. Bei FBS besteht zusätzlich auch die Möglichkeit, Funktionsbausteine ge-
zielt einzeln aufzurufen. Beispielsweise kann das durch einen Funktionsaufruf in einem
ST-Programm geschehen. In dem Fall wird die Berechnungsfunktion des Bausteins ein-
malig aufgerufen und dessen Ausgänge werden aktualisiert. FBS kann daher auch für
zeitdiskrete Probleme verwendet werden, was je nach Anwendungsgebiet (z.B. in der
diskreten Fertigung) mehr oder weniger üblich ist.

Tabelle 3.3 gibt einen Überblick über die Eigenschaften der Programmiersprachen der
IEC 61131-3.

Tabelle 3.3.: Programmiersprachen der IEC 61131-3 und deren Eigenschaften.

Repräsentation Paradigma Anwendung
Sprache graphisch textuell imperativ deklarativ kontinuierlich zeitdiskret
AWL • • •
ST • • •
AS • • •
KOP • • •
FBS • • • (•)

Spezifikation von Funktionsbausteintypen

Gemäß der IEC 61131-3 werden Funktionsbausteintypen durch bestimmte Schlüssel-
worte der Sprache ST deklariert. Diese Typen werden dann in Funktionsbausteinnetzen
ggf. mehrfach als Funktionsbausteine instanziiert. Jeder einzelne Funktionsbaustein be-
sitzt einen eigenen eindeutigen Namen und arbeitet mit einem eigenen Satz Ein- und
Ausgabevariablen. Der ausgeführte Algorithmus ist aber für alle Bausteine eines Typs
identisch. Der ST-Code in Codelisting 3.1 deklariert beispielhaft den Funktionsbaustein-
typ ADD.

41

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

FUNCTION_BLOCK ADD
VAR_INPUT

(* Eingaenge des Bauste ins *)
U1 : REAL := 0 . 0 ;
U2 : REAL := 0 . 0 ;

END_VAR
VAR_OUTPUT

(* Ausgaenge des Bauste ins *)
V : REAL := 0 . 0 ;

END_VAR
VAR_IN_OUT

(* Als Eingang und Ausgang verwendbar *)
END_VAR
VAR

(* I n t e r n e Variablen *)
END_VAR

(* Algorithmus *)
V := U1 + U2 ;

END_FUNCTION_BLOCK
Listing 3.1: ST-Quellcode den Funktionsbausteintyps ADD.

Ausführungssemantik von FBS

Prinzipiell ist FBS eine deklarative Programmiersprache und in der Theorie ist die
Semantik eines Funktionsbausteinnetzwerks durch eine eindeutige Funktion definiert.
Diese Funktion kann durch Verknüpfung der Funktionsbausteine entsprechend der Si-
gnallinien gebildet werden. Im Beispiel aus Bild 3.3 ist diese Funktion

Z = f (X, Y) = ADD(MUL(Y, MUL(X, 3)), 1).

Praktisch werden Programme einer SPS aber von einem Mikroprozessor ausgeführt, der
in diskreten Zeitschritten arbeitet und dem imperativen Paradigma folgt. Daher gibt es
praktisch natürlich eine Ausführungsreihenfolge für das Netzwerk und diese Reihenfol-
ge hat Auswirkungen auf die Semantik.

Die Ausführungssemantik von FBS wird in der IEC 61131-3 nicht im Detail festge-
legt, sondern es werden nur einige grundsätzliche Regeln definiert. Dazu gehört bei-
spielsweise, dass ein Funktionsbaustein erst ausgewertet werden darf, wenn die Zu-
stände aller Eingänge feststehen. Entsprechend darf die Auswertung des Funktionsbau-
stein(netzwerks) erst abgeschlossen werden, wenn die Zustände aller Ausgänge ermit-
telt wurden. Die Definition der Ausführungsreihenfolge muss durch den Programmie-
rer geschehen, indem die in Abschnitt 3.4.1 beschriebenen Tasks festgelegt werden. Dazu
werden die Frequenz der Ausführung und die Priorität einer Task angegeben; anschlie-
ßend können Funktionsbausteine den Tasks zugewiesen werden. So kann die Ausfüh-
rungsreihenfolge für Bausteine in unterschiedlichen Tasks festgelegt werden. Die Defi-

42

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

nition der Reihenfolge innerhalb einer Task soll entsprechend der Norm durch „herstel-
lerspezifische Mittel“ geschehen. Praktisch werden dazu meist Tasklisten verwendet.

Eine alternative Methode der Ausführungskontrolle ist die ereignisgesteuerte Aus-
führung, die in der Normenreihe IEC 61499 bzw. DIN EN 61499 [22] festgelegt wird.
Darin erzeugt die Ausführung eines Bausteins ein Ereignis, durch das die Ausführung
anderer Funktionsbausteine ausgelöst werden kann. Dadurch ist es möglich, Bausteine
„nur bei Bedarf“ auszuführen. Durch die zyklische Generierung von Ereignissen kann
das zyklische Ausführungsmodell der IEC 61131-3 nachgebildet werden. Letztlich muss
aber auch hier der Benutzer die Reihenfolge indirekt durch die Festlegung der Ereignisse
definieren.

3.4.3. Kommunikation

Eine SPS besitzt mehrere Datenschnittstellen: Zum gesteuerten Prozess, zum Bediener,
für die Programmierung und zu anderen Systemen (siehe Bild 3.2). Im Kontext dieser
Arbeit ist die Schnittstelle zu anderen Systemen interessant, weil hier ein generischer,
d.h. nicht zweckmäßig vorbestimmter Datenaustausch des SPS-Programms stattfindet.
Die Möglichkeiten der Kommunikation von System zu System hängen in erster Linie
vom Hersteller einer SPS ab. Es gibt aber auch standardisierte bzw. genormte und damit
offen dokumentierte Kommunikationsschnittstellen und -protokolle.

OPC UA

OPC Unified Architecture (OPC UA) ist ein Kommunikationsstandard für die industri-
elle Anwendung. Er wurde vom Konsortium OPC Foundation erarbeitet und von der
IEC als Norm veröffentlicht [15]. Die darin beschriebene Technologie besteht aus einem
Client-Server-Modell, in dem der Klient Dienste des Servers aufrufen, Daten abfragen
und manipulieren kann. Der Standard umfasst daher nicht nur das Kommunikations-
protokoll, sondern auch das Datenmodell des Servers. OPC UA wird für die zukünftige
industrielle Kommunikation eine große Bedeutung beigemessen [75].

Der Hauptanwendungsfall von OPC UA für eine SPS wird zwar darin gesehen, dass
die SPS als Server auftritt. Die SPS kann aber auch die Rolle des Klienten einnehmen
und selbst Daten von anderen Systemen abfragen. Es wurden daher auch IEC 61131-3
-kompatible Funktionsbausteine von der OPC Foundation veröffentlicht [62]. Die Bau-
steine sind speziell auf die Verwendung des OPC UA-Protokolls und -Datenmodells
ausgerichtet und lassen sich nicht auf andere Kommunikationstechnologien übertragen.

IEC 61131-5

In der Norm IEC 61131-5 bzw. DIN EN 61131-5 [17] wird auf die Schnittstelle zu an-
deren Systemen aus einer allgemeineren Sicht und ohne Annahmen über das konkrete
Kommunikationssystem eingegangen. Wegen des breiteren Anwendungsbereichs wird
an dieser Stelle auf die Norm genauer eingegangen.

Der Anwendungsbereich der Norm umfasst die SPS selbst und deren Schnittstellen,
aber nicht die Kommunikationspartner. Wenn eine SPS die Rolle eines Klienten ein-
nimmt, beispielsweise bei einer Datenabfrage, wird deshalb davon ausgegangen, dass

43

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

sich der Server als Kommunikationspartner ebenfalls wie eine SPS verhält. Sonst würde
sein Verhalten außerhalb des Anwendungsbereichs der Norm liegen.

In der DIN EN 61131-5 wird eine Liste von Kommunikationsfunktionen definiert. Dies
sind: Gerätestatus lesen, Datenlesen, Steuern, Synchronisation zwischen Anwendun-
gen, Melden, Programmausführung und E/A-Steuerung, Transfer des Anwendungs-
programms, Verbindungsmanagement. Im Kontext dieser Arbeit ist die Funktion „Da-
tenlesen“ relevant. Für diese Funktion kann eine SPS sowohl als Server als auch als Kli-
ent auftreten.

In der Norm wird für das Datenlesen zwischen zwei Anwendungsfällen unterschie-
den: Das Datenlesen als Datenanforderung und das Datenlesen als Datenbereitstellung.
Im ersten Fall bestimmt die lesende SPS, wann Daten angefordert werden. Die SPS sen-
det dann eine Datenabfrage an das betreffende Fremdgerät und erhält zu einem späte-
ren, nicht kontrollierbaren Zeitpunkt eine Antwort. Im zweiten Fall wird der Kommu-
nikationspartner so programmiert, dass er die geforderten Daten selbst beim Auftreten
eines bestimmten Ereignisses oder unter bestimmten Bedingungen absendet. Insofern
ist der zweite Fall, auch wenn er in der Norm als Fall von „Datenlesen“ bezeichnet wird,
eher ein konfiguriertes Datenschreiben.

Für die praktische Implementierung der Kommunikationsfunktionen werden in der
Norm Funktionsbausteine spezifiziert. Es werden die Schnittstellen und das Verhalten
der Bausteine angegeben. Hier ist insbesondere der Funktionsbaustein READ interes-
sant, weil durch ihn das Datenlesen als Datenabfrage realisiert wird.

Schnittstellen des Funktionsbausteins READ

Der Zweck des Bausteins READ ist es, den Wert bzw. die Werte von einer oder meh-
reren Variablen abzufragen, die beim Kommunikationspartner gespeichert sind. Dazu
besitzt der Baustein einen „ID“ genannten Eingang, dessen Wert einen Kommunikati-
onskanal identifiziert. In der Terminologie der IEC 61131-5 hat dieser Eingang daher
den Datentyp COMM_CHANNEL. Seitens der Norm wird nicht weiter spezifiziert, wie
der Kommunikationskanal technisch implementiert ist. Es wird nur vorausgesetzt, dass
durch den Wert von ID genau ein Kommunikationskanal zu genau einem Kommunika-
tionspartner identifiziert wird und dass dieser Kommunikationskanal zur Übertragung
diskreter Nachrichten geeignet ist. Über weitere technologieabhängige Aspekte, die im
praktischen Einzelfall relevant sein können (beispielsweise Datendurchsatzrate, Latenz,
Sicherheit, Verlässlichkeit), wird keine Aussage getroffen.

Neben dem Eingang ID hat der READ-Baustein die Eingänge VAR_1,...,VAR_N
(N≥1). Durch diese Eingänge wird jeweils eine Variable identifiziert. In vielen Fällen
passiert das durch die Angabe eines Variablenpfads. Der Datentyp dieser Eingänge ist
entsprechend STRING oder VAR_ADDR (ein spezieller Datentyp zur Adressierung von
Variblen). Grundsätzlich muss es dem Kommunikationspartner aber nur möglich sein,
anhand der Werte von VAR_1,...,VAR_N Variablen zu identifizieren.

Schließlich besitzt der READ-Baustein noch den Eingang „REQ“ vom Datentyp
BOOL, durch den bei einer steigenden Flanke das Lesen des Wertes ausgelöst wird. Nach
erfolgreichem Lesen wird für einen Taktzyklus der BOOL-Ausgang „NDR“ (new data
received) auf den Wert true gesetzt. Für den Fall eines Fehlers zeigen die Ausgänge ER-
ROR (BOOL) und STATUS (INT) an, dass ein Fehler aufgetreten ist und um welche Art
von Fehler es sich handelt. Beispielsweise bedeutet der Wert 0 „kein Fehler“, der Wert

44

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

6 „Empfänger nicht bereit“ und der Wert 1 „Fehler in unterer Kommunikationsschicht“.
Herstellerspezifische Werte für den Status sind ebenfalls möglich.

Die empfangenen Werte werden in den Variablen RD_1,..., RD_N gespeichert. Die-
se Variablen sind als VAR_IN_OUT deklariert, damit sie von dem Programm, das die
Daten verwendet auch beschreibbar sind. Der Datentyp ist ANY. Die vollständige Spe-
zifikation der Variablen des Bausteins READ entsprechend DIN EN 61131-5 [17] wird in
Codelisting 3.2 gezeigt.

VAR_INPUT
REQ : BOOL R_EDGE ; (* Datenlesen *)
ID : COMM_CHANNEL; (* Kommunikationskanal *)
VAR_1 : STRING ; (* Werte der Bezeichner der angeforderten *)

: (* Variablen erweiterbar, *)
VAR_N : STRING ; (* Typ VAR_ADDR auch moeglich *)

END_VAR

VAR_OUTPUT
NDR : BOOL; (* Neue Anwenderdaten empfangen *)
ERROR : BOOL; (* Neuer Status nicht 0 empfangen *)
STATUS : INT ; (* Zuletzt festgestellter Status *)

END_VAR

VAR_IN_OUT
RD_1 : ANY; (* Empfangene Anwenderdaten, *)

: (* erweiterbar und von *)
RD_N : ANY; (* beliebigem Datentyp *)

END_VAR
Listing 3.2: ST-Quellcode zur Spezifikation der Variablen des Funktionsbausteins READ.

Verhalten des Funktionsbausteins READ

Das Laufzeitverhalten des READ-Bausteins wird in der DIN EN 61131-5 durch einen Zu-
standsautomaten spezifiziert. Abbildung 3.4 zeigt diese Logik informell als Diagramm
in Ablaufsprache (Sequential Function Chart). Nach der Initialisierung befindet sich ein
READ-Baustein zunächst im Leerlauf, bis am Eingang REQ eine steigende Flanke an-
liegt. Dann wird – auf nicht näher spezifizierte Art – eine Leseanfrage an den Kommu-
nikationspartner geschickt, der durch COMM_CHANNEL identifiziert wird. Das Ziel
dieser Anfrage ist durch die Werte von VAR_1 bis VAR_N gegeben. Nach Erhalt einer
Antwort wird der Inhalt der Antwort überprüft. Das betrifft insbesondere die Datenty-
pen der Daten in der Antwort, die zu RD_1 bis RD_N kompatibel sein müssen. Nach
erfolgreicher Prüfung werden die Daten in RD_1 bis RD_N geschrieben und der Funkti-
onsbaustein geht zurück in den Leerlaufzustand.

Bei Ausführung des Ablaufs ist an zwei Stellen die Behandlung von Fehlern vorgese-
hen. Erstens kann die Kommunikation mit dem Kommunikationspartner fehlschlagen,
was am Kommunikationskanal liegen kann oder daran, dass der Kommunikationspart-
ner die Leseoperation nicht ausführen kann. Zweitens können die erhaltenen Daten feh-

45

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3. Stand der Technik

lerhaft sein, z.B. falsche Datentypen enthalten oder unvollständige Daten. Die Prüfrouti-
nen hierfür werden durch die Norm aber nicht definiert. In beiden Fehlerfällen wird der
Fehler durch den Ausgang ERROR für einen Taktzyklus angezeigt und der Wert von
Status dem Fehler entsprechend gesetzt. Der Baustein geht zurück in den Leerlaufzu-
stand.

46

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

3.4. SPS-Programmierung

Abbildung 3.4.: Ablauflogik des Funktionsbausteins READ entsprechend DIN EN 61131-5

[17], dargestellt in Ablaufsprache (Sequential Function Chart).

47

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

In Abschnitt 1.3 wurden wichtige Leitfragen dieser Arbeit gestellt. Mithilfe der Grund-
lagen aus Kapitel 2 und dem Wissen über den Stand der Technik aus Kapitel 3 werden
diese Fragen nun beantwortet. Daraus werden Anforderungen an eine Lösung abgelei-
tet.

4.1. Eignung der Merkmalmodelle

Aus wissenschaftlicher Sicht ist die Frage danach, wie technische Merkmale modelliert
werden, fast ausschließlich im Hinblick auf die technische Abbildung und Verwendung
der Merkmale untersucht worden. Es gibt viele Arbeiten, die beispielsweise vorhande-
ne Katalogsysteme analysieren oder die die Möglichkeiten spezieller Technologien zur
Informationsrepräsentation (z.B. Ontologien) zeigen und untersuchen. Das in Abschnitt
2.1 beschriebene (Meta-) Modell für die Modellierung von Merkmalen ist eines der we-
nigen, evtl. sogar das einzige in der Literatur vorhandene Modell, das explizit nur die
Klärung der Modellierung von Merkmalen zum Ziel hat. Es beantwortet gerade nicht
die Frage, welche Merkmale es gibt und wie sie in Geschäfts- und technischen Prozessen
verwendet werden, wohl aber welche Information für ein vollständiges Modell verfüg-
bar sein muss. Für den Anwender wird durch dieses Modell klar, auf welche Struktur
sich die Abfrage einer Merkmalinformation bezieht. Das Merkmalmodell aus Abschnitt
2.1 ist somit das semantische Ziel der zu definierenden Abfragesprache.

Anforderung 1: Der Abfragesprache muss ausschließlich das in Abschnitt 2.1 definierte
Merkmalmodell für die Semantik von Abfragen zugrunde liegen.

Aus praktischer Sicht ist die Frage nach tatsächlich im industriellen Umfeld genutz-
ten Datenmodellen wichtiger als die Modelle aus der Literatur. Schließlich ist die beste
Abfragesprache nutzlos, wenn sie nicht auf Daten zugreifen kann. Daher wurden in Ab-
schnitt 3.1 die praktisch vorhandenen und genutzten Modelle erläutert. Dabei ergibt
sich ein gemischtes Bild. Positiv ist, dass bereits seit vielen Jahren technische Merkmale
systematisch definiert und verwaltet werden und dass Katalogsysteme auf diese Merk-
male Bezug nehmen. Beispiele dafür sind eCl@ss und UNSPSC. Viele Organisationen
haben ihre Spezifikationen auch untereinander ausgetauscht und abgeglichen, so dass
umfangreiche und einheitliche Kataloge entstanden sind.

Positiv ist ebenfalls, dass es für die technische Speicherung und den Austausch von
Merkmalen Normen gibt und dass diese Normen in den letzen Jahren zum großen Teil
miteinander harmonisiert wurden. Dadurch hat die IEC 61360 eine wichtige zentrale
Bedeutung erhalten.

Der negative Aspekt der aktuellen Situation ist, dass diese vorhandenen Normen und
Standards für die Abwicklung von Geschäftsprozessen zwischen Unternehmen konzi-

48

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4.2. Entwurf der Abfragesprache

piert sind. Für andere Anwendungsfälle, in denen Informationen über Merkmale Ge-
genstand der Kommunikation sind, werden die Standards nicht angewendet. Zum Teil
ist das auch logisch nicht möglich, z.B. weil eCl@ss für die Beschreibung von Produktty-
pen konzipiert ist und nicht für die Modellierung einzelner Produkte (d.h. es behandelt
nur Merkmalträgertypen). Insgesamt bedeutet das, dass standardisierte Datenformate
für Merkmale eine mögliche Datenquelle sind, die aber nicht in jedem Fall vorhanden,
nutzbar und ausreichend sind.

Im industriellen Umfeld gibt es zahlreiche Software-Systeme, die prinzipiell für ei-
ne SPS in der Produktion nützliche Information zu Merkmalen enthalten. Die wichtig-
sten davon wurden in Abschnitt 3.3 beschrieben. Durch Normen wie die ISA-95 gibt
es auch klare Vorstellungen darüber, welche Informationen von diesen Systemen ver-
waltet werden. Mögliche Lösungen für offene Datenschnittstellen sind durch B2MML
und ein ISA-95 -konformes OPC UA -Profil vorhanden, nach aktuellem Stand wird aber
keine Standard-Datenschnittstelle von Softwareherstellern durchgängig unterstützt. Der
Zugriff auf die umfangreiche Information über technische Merkmale, die in den Model-
len der ISA-95 vorhanden sind, ist daher im Allgemeinen nicht auf Ebene der Modelle
möglich. Stattdessen muss auf die darunter liegenden Informationssysteme zugegriffen
werden, d.h. üblicherweise relationale Datenbanken oder konventionelle Dateisysteme.
Für speziellere Datenrepräsentationen wie XML, eCl@ss, B2MML oder OPC UA müs-
sen entsprechende Adapter implementiert werden. Die zu definierende Abfragesprache
bildet dabei keine Ausnahme.

Anforderung 2: Die Abfragesprache muss den Zugriff auf Informationen ermöglichen,
die in üblichen Informationssystemen gespeichert sind. Dazu gehören
insbesondere Dateisysteme und relationale Datenbanken.

4.2. Entwurf der Abfragesprache

Wegen der unterschiedlichen möglichen Datenquellen muss sich die Abfragesprache
nach dem Anwender und nicht nach dem Datenanbieter richten. Entsprechend Anforde-
rung 1 ist die logische Sicht des Anwenders auf Merkmale klar. Über das Vorgehen zum
Erlangen von Information wird dadurch aber noch keine Aussage gemacht. Gerade we-
gen der heterogenen Kommunikationspartner ist es für den Anwender wünschenswert,
wenn er keine Details über die Kommunikation mit dem jeweiligen merkmalverwalten-
den System haben muss. Andersherum betrachtet gewährleistet diese Abschirmung des
Anwenders den notwendigen Freiheitsgrad für Veränderungen der Datenquellen ohne
Rückwirkungen. Die Abfrage von Information sollte daher als Benutzung eines Dienstes
im Sinne von Abschnitt 2.1.2 bzw. DIN SPEC 40912 [24] funktionieren.

Anforderung 3: Die Verwendung der Abfragesprache muss der Verwendung eines
Dienstes zur Abfrage von Merkmalinformation entsprechen.

Wichtig an Anforderung 3 ist, dass die Verwendung der Abfragesprache der Verwen-
dung eines Dienstes nur entspricht. Wie genau der Dienstleister arbeitet, wo er realisiert
wird und unter wessen Kontrolle er sich befindet, wird nicht festgelegt. Entsprechend

49

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

Anforderung 2 können ganz unterschiedliche Datenquellen genutzt werden und es ist
durchaus möglich, dass die gefragte Information aus einer lokalen Datei stammt, über
die der Anwender selbst volle Kontrolle hat.

Entsprechend Anforderung 1 soll der Dienst Anfragen betreffend das Merkmalmodell
aus Abschnitt 2.1 verarbeiten können. Abschnitt 2.1.2 gibt einen Überblick über die zu
realisierenden Basisoperationen für merkmalverwaltende Systeme. Darüber hinaus wer-
den aber auch zusätzliche Operationen benötigt, die komplexere Abfragen zulassen.
Wie am Ende von Abschnitt 2.1.2 beschrieben, ist es praktisch oft nicht ausreichend,
wenn nur die Basisoperationen realisiert werden. Stattdessen müssen auch komplexe
Abfragen möglich sein, in denen Informationen bedingt abgefragt werden oder Abfra-
gen durch Verknüpfung hierarchisch aufgebaut werden können.

Anforderung 4: Die Abfragesprache muss die Formulierung komplexer Abfragen er-
möglichen, so dass Informationen bedingt abgefragt werden können
und hierarchisch aufgebaute Abfragen möglich sind.

Anforderung 4 ist absichtlich offen in Bezug auf die tatsächlich zu implementieren-
den Operationen gehalten, weil in dieser Arbeit keine vollständige und abschließende
Auflistung der Operationen erfolgen soll. Komplexe Operationen, die in bestimmten
Anwendungsfällen häufig auftreten, sollten als neue Operatoren formulierbar sein, um
die Anwendung zu vereinfachen. Hier soll nur eine Grundmenge von Operationen for-
muliert werden, die für möglichst viele Anwendungsfälle ausreicht.

Zur eindeutigen Spezifikation der Abfragesprache wird eine formale Grundlage be-
nötigt. Dadurch kann zugesichert werden, dass eine konkrete Abfrage eine eindeutige
Semantik hat. Wäre das nicht der Fall, dann könnte das Ergebnis einer Abfrage vom
Speicherort der Information abhängen, weil ggf. unterschiedliche Implementierungen
verwendet werden – z.B. ein Algorithmus für das Durchsuchen einer Datei und ein an-
derer Algorithmus für die Abfrage an einer Datenbank. Daher gilt Anforderung 5:

Anforderung 5: Der Spezifikation der Abfragesprache muss eine formale Sprache mit
klar definierter Semantik zugrunde liegen.

Außerdem sollte die Sprache in möglichst vielen Anwendungsfällen tatsächlich nutz-
bar sein. Die Zahl der Anwendungsfälle ist aber nicht begrenzt, deshalb kann von prak-
tischer Seite die Abdeckung der Fälle nicht geprüft werde. Es ist daher hilfreich, wenn
klare Aussagen über grundsätzlich mögliche, d.h formulierbare, und nicht mögliche Ab-
fragen gemacht werden können.

Anforderung 6: Die Ausdruckstärke der Sprache muss dokumentiert sein.

In Abschnitt 2.2 wurden das relationale Datenbankmodell und die damit verbundene
relationale Algebra vorgestellt. Das relationale Datenbankmodell hat eine formale Basis
und es ist eine umfangreiche Theorie vorhanden. Die relationale Algebra ist abgeschlos-
sen und lässt dadurch auch komplexe hierarchische Abfragen zu. Das bedeutet anderer-
seits, dass komplexe Abfragen in atomare Basisoperationen zerlegt werden können, was
die Implementierung vereinfacht und strukturiert. Außerdem kann durch Verwendung
relationaler Algebra klare Aussagen über Möglichkeiten und Grenzen der Abfragespra-

50

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4.3. Implementierung

che getroffen werden, beispielsweise durch das Zeigen relationaler Vollständigkeit.
In der Praxis werden heute auch häufig graphbasierte Datenbanken und Abfragespra-

chen angetroffen (siehe Abschnitt 3.2). Diese besitzen ebenfalls eine gut erforschte for-
male Grundlage, können Ihre praktischen Vorteile aber nur in Anwendungen mit sehr
stark strukturierten Daten ausspielen, was im Fall des hier verwendeten Merkmalm-
odells nicht gegeben ist. Insgesamt ist daher das relationale Datenbankmodell eine sinn-
volle Grundlage für die Formulierung des Datenmodells und der Datenabfragen.

Zur Wahl des relationalen Datenbankmodells muss angemerkt werden, dass das re-
lationale Datenbankmodell nur für die formale Spezifikation der Abfragesprache ver-
wendet werden soll. Ob die Daten tatsächlich in einer relationalen Datenbank abgelegt
sind, ist davon vollkommen unabhängig. Außerdem ist das zugrunde gelegte relationa-
le Informationsmodell für Merkmale für den Benutzer der Abfragesprache nicht direkt
sichtbar. Es ist nur eine Hilfe bei der Erstellung der Sprache, durch die die Anwendbar-
keit der Abfragesprache zugesichert wird.

4.3. Implementierung

Wie in Abschnitt 3.4 beschrieben, ist die IEC 61131 (bzw. DIN EN 61131 [18]) der domi-
nierende Standard für die Programmierung von SPS. Wenn die Abfragesprache von ei-
ner SPS aus nutzbar sein soll, ist die Konformität mit diesem Standard daher der einzige
sinnvolle Weg. Wie beschrieben gibt es laut der Norm fünf Programmiersprachen, von
denen sich FBS als eine universell einsetzbare Sprache etabliert hat. FBS ist auch deswe-
gen besonders unter den Programmiersprachen, weil sie gleichermaßen in Problemstel-
lungen mit einer kontinuierlichen und einer zeitdiskreten Berechnung der Lösung ein-
gesetzt werden kann. Hilfreich ist auch, dass FBS eine graphische Programmiersprache
ist, die leichter zugänglich ist als eine textuelle Sprache mit eigener Syntax. Insgesamt
verspricht die Implementierung von Funktionsbausteinen entsprechend der IEC 61131-
3 in der Form, dass mit den Funktionsbausteinen Abfragen formuliert werden können,
die höchstmögliche Akzeptenz und Anwendbarkeit.

Anforderung 7: Abfragen müssen durch IEC 61131-3 -konforme Funktionsbausteine
formulierbar und ausführbar sein.

Wie die interne Logik der Funktionsbausteine implementiert ist, wird durch Anforde-
rung 7 nicht ausgesagt.

Die Implementierung als FBS bringt eine inhärente Eigenschaft mit sich: Abfragen
werden deklarativ formuliert, denn FBS ist eine deklarative Programmiersprache. Der
Anwender der Sprache muss also nicht das prozedurale Vorgehen zur Berechnung des
Ergebnisses einer Abfrage formulieren, sondern muss nur die Eigenschaften dieses Er-
gebnisses formulieren. Wenn z.B. ein Merkmalträger mit einer bestimmten Aussage über
ein Merkmal gesucht wird, dann muss der Anwender nur diese Aussage angeben und
nicht die Suchprozedur. Das ist offensichtlich komfortabler und entspricht auch dem
Paradigma anderer Datenabfragesprachen wie SQL.

Von theoretischer Seite her ist das deklarative Paradigma von FBS unproblematisch.
Wie in Abschnitt 3.2 festgestellt wurde, ist der Relationenkalkül ebenfalls deklarativ und
gegenüber relationaler Algebra gleich mächtig. Wenn die Semantik eines Funktionsbau-

51

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4. Analyse und Anforderungen

steins im Relationenkalkül formuliert ist, kann sie also auch in relationale Algebra über-
setzt werden. Für die Implementierung der internen Logik des Funktionsbausteins, die
ggf. in einer imperativen Programmiersprache geschieht, ist diese Darstellung dann ge-
eigneter und leichter umsetzbar.

In Abschnitt 3.4.3 wurden Möglichkeiten gezeigt, um mit Mitteln der IEC 61131 Da-
tenabfragen zu realisieren. Eine generische Möglichkeit ohne die Bindung an eine be-
stimmte Kommunikationstechnologie ist durch die IEC 61131-5 [17] gegeben. Dort ist
der Bausteintyp READ spezifiziert, der gerade für Datenabfragen von Fremdsystemen
bestimmt ist. Eine Abfrage in der zu definierenden Abfragesprache unterscheidet sich im
Wesentlichen darin von der Funktion des READ-Bausteins, dass der genaue Speicherort
der gefragten Information für den Anwender unbekannt ist (und nicht als Variablenpfad
bekannt). Aufgrund der bestehenden Ähnlichkeit der Aufgabenstellung gilt:

Anforderung 8: Ausführungslogik und Schnittstellen des Bausteins zur Ausführung
einer Abfrage müssen so weit wie möglich mit dem READ-Baustein
der IEC 61131-5 übereinstimmen.

Wie in Abschnitt 3.4.2 diskutiert wurde, ist das Verhalten eines Funktionsbausteinnetz-
werks von der Ausführungsreihenfolge der Bausteine abhängig. Hier bedeutet das, dass
das Ergebnis einer Abfrage beeinflusst werden kann. Dieser Einfluss muss für den An-
wender klar nachvollziehbar sein.

Anforderung 9: Die Bedeutung der Ausführungsreihenfolge von Funktionsbausteinen
der Abfragesprache muss dokumentiert und leicht nachvollziehbar sein.

Aus Anforderung 3, laut der eine Anwenderschnittstelle entsprechend einem Dienst ver-
langt wird, ergibt sich eine weitere Anforderung für die Implementierung. Bei einem
Dienst liegt die Arbeitslast beim Dienstleister, während der Klient in der Zeit zwischen
dem Aufruf einer Operation und dem Ende der Ausführung bzw. Erhalt des Resultats
selbst keine Arbeitslast trägt. Darüber hinaus ist es für den Klienten meist auch uner-
heblich, welcher Arbeitsaufwand durch die Ausführung einer Operation hervorgerufen
wird. Gerade im Anwendungsbereich einer SPS ist das eine besonders vorteilhafte Ei-
genschaft eines Dienstes, weil hier oft Echtzeitbedingungen eingehalten werden müs-
sen. Wenn die SPS selbst eine deutlich höhere oder stark schwankende Arbeitslast für
die Ausführung von Abfragen zu tragen hat, kann das zum Ausschlusskriterium für die
Anwendung der Abfragesprache werden. Aus diesem Grund wurde in Abschnitt 2.1.2
darauf hingewiesen, dass der Dienstleister möglichst auch komplexere Operationen auf
Merkmaldaten zur Verfügung stellen sollte. Allgemein muss daher Anforderung 10 er-
füllt werden:

Anforderung 10: Die Ausführung einer Abfrage darf den Betrieb des abfragenden Sy-
stems nicht beeinflussen.

Mögliche Aufwände zum Erstellen der Abfrage und Verarbeitung des Ergebnisses
werden durch Anforderung 10 jedoch nicht berücksichtigt. Außerdem ist es möglich,

52

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

4.3. Implementierung

dass durch eine zu lange Zeitdauer bis zum Erhalt des Ergebnisses die Funktionalität
beeinflusst wird. Auch hierüber wird durch Anforderung 10 keine Aussage gemacht.

SPS-basierte Automatisierungssysteme werden oft über sehr lange Zeiträume (Jahre
oder sogar Jahrzehnte) betrieben. In diesen Zeiträumen sind Veränderungen der um-
gebenden IT-Infrastruktur sehr wahrscheinlich und auch merkmalverwaltende Systeme
können betroffen sein. In vielen Anwendungsfällen der Automatisierungstechnik ist es
aber nur mit erheblichem Aufwand oder auch überhaupt nicht möglich, den Betrieb zu
unterbrechen. Das bedeutet, dass es trotz Veränderungen der IT-Infrastruktur (d.h. der
Datenanbindung) möglich sein muss, die Abfragen von Merkmalinformation durchge-
hend zu verwenden. Daraus folgt:

Anforderung 11: Die Implementierung muss Änderungen der Konfiguration der Daten-
anbindung von merkmalverwaltenden Systemen ohne Unterbrechung
des Betriebs unterstützen.

Für einen möglichst hohen Nutzwert ist es wünschenswert, wenn Information aus vie-

len und unterschiedlichen Datenquellen abgerufen werden kann. Die Erweiterbarkeit in
Hinblick auf verwendbare Datenquellen muss daher in der Implementierung besondere
Beachtung finden.

Anforderung 12: Die Implementierung muss die Anbindung zusätzlicher Datenquellen
in einfacher und dokumentierter Art unterstützen.

53

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

In diesem Kapitel wird die Abfragesprache für Merkmalinformation definiert und eine
Systemarchitektur festgelegt. Der Aufbau dieses Kapitels und die Zusammenhänge zu
den vorausgegangenen Kapiteln werden in Abbildung 5.1 gezeigt. In Abschnitt 5.1 wird
dazu das Merkmalmodell aus Abschnitt 2.1 auf das relationale Datenbankmodell über-
tragen. Dadurch gibt es eine formale Grundlage für die Strukturen, aus denen Daten
abgefragt werden.

Im darauf folgenden Abschnitt 5.2 wird eine Menge von Grundoperationen für das
formalisierte Merkmalmodell definiert. Der Hauptzweck dieser Grundoperationen ist
es, eine Grundlage für speziellere und komplexere Operationen zu bilden, die aus den
Grundoperationen zusammengesetzt werden können. Daher sind die Grundoperatio-
nen nicht durch praktische Anwendungsszenarien motiviert, sondern so gestaltet, dass
sie den Aufbau möglichst vieler und mächtiger zusammengesetzter Operationen zulas-
sen. So muss später nur eine möglichst kleine Anzahl von Operationen auf unterster
Ebene implementiert werden, ohne dass die Anwendbarkeit darunter leidet.

In Abschnitt 5.3 werden dann die Operationen definiert, die aus praktischer Sicht nut-
zenbringend sind.

Die Verwendung der zuvor definierten Operationen in Funktionsbausteinen (entspre-
chend Anforderung 7 und 8) wird in Abschnitt 5.4 beschrieben. Damit sind Syntax und
Semantik der Abfragesprache definiert.

Die Ausführung der Funktionsbausteine ist mit gewissen Voraussetzungen an das
technische Umfeld verknüpft (s. Anforderung 3, 10 und 11). Deshalb wird in Abschnitt
5.5 eine Systemarchitektur entsprechend den gestellten Anforderungen beschrieben.

5.1. Abbildung des Merkmalmodells im relationalen
Datenbankmodell

5.1.1. Formale Spezifikation

Die Abbildung auf das relationale Datenbankmodell wird durch die Definition von
Relationsschemas durchgeführt. Jedes operativ nutzbare Element des Merkmalmodells
entsprechend Abschnitt 2.1 entspricht einem Relationsschema. Für die Attribute dieser
Schemas gibt es drei semantische Kategorien:

• Das Attribut Id identifiziert ein Tupel innerhalb seines Anwendungsbereichs (z.B.
Betrieb oder Standort) eindeutig und ist daher ein Primärschlüssel (mit Ausnahme
des Merkmalträgers, s.u.). Zur Herstellung der Eindeutigkeit kann ein Bezeichner
der höheren Ebene, z.B. des Datenbanksystems oder eine URL, vorangestellt wer-
den. Der Wert von Id wird innerhalb eines Ausdrucks der Abfragesprache nicht
als Zeichenkette, sondern wie das identifizierte Tupel selbst behandelt.

54

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell

Abbildung 5.1.: Aufbau von Kapitel 5.

55

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

• Die Attribute Wert, Relation und Einheit vermitteln Zusatzinformation über den
Wert, mit dem ein Merkmal durch eine Aussage assoziiert wird.

• Alle übrigen Attribute bilden die Relationen zwischen den Elementen des Modells
ab und dienen zur Navigation zwischen Tupeln mittels Id-Attributen.

An dieser Stelle werden nur die zur operativen Verwendung notwendigen Attribute de-
finiert. Es kann zwar davon ausgegangen werden, dass Elemente wie Merkmale und
Merkmalträgertypen natürlichsprachliche Namen und Definitionen besitzen und dass
in vielen Fällen noch weitere Information verfügbar ist. Diese ist aber meist nicht ope-
rativ nutzbar, der Name würde beispielsweise von der lokalen Sprache abhängen oder
kann ambivalent sein. Außerdem soll hier die Anwendbarkeit nicht durch zu starke An-
nahmen über verfügbare Information begrenzt werden.

Die Definitionen von Merkmalträgertyp und Merkmalträger sehen es hier nicht vor,
dass entsprechende Tupel selbst auf Aussagen verweisen. Stattdessen werden die Rela-
tionsschemas so definiert, dass Aussagen auf die Merkmalträgertypen bzw. Merkmal-
träger verweisen, auf die sie sich beziehen. Für die hier ausschlaggebende theoretische
Sicht ist auch nicht relevant, in welche Richtung Verweise existieren, weil Aussagen und
das betroffene Aussageziel durch die Vereinigungsoperation �� zusammengeführt wer-
den können. In einer Implementierung kann mit beliebigen einseitigen oder doppelten
Verweisen gearbeitet werden.

Die folgenden Absätze definieren Relationsschemas zur Repräsentation des Merk-
malmodells. Zur Verdeutlichung werden die Relationsschemas durch ein tiefgestelltes
S gekennzeichnet.

Merkmalträgertyp

MTTS =
{

Id : Σ∗, AllgMerkmale : {Σ∗}n, Supertypen : {Σ∗}m, Aussagen : {Σ∗}k
}

Id: Zeichenkette, identifiziert den Merkmalträgertyp eindeutig.

AllgMerkmale: 0 < n-stelliger Vektor von Zeichenketten, in dem jeder Eintrag
durch einen Wert AMS.Id auf ein allgemeines Merkmal verweist, das dem Merkmal-
trägertyp zugeordnet wird. Alle Einträge des Vektors sind paarweise verschieden.
[Bemerkung: Zur Vereinfachung wird angenommen, dass der Wertebereichstyp „Vektor
von Zeichenketten“ verfügbar ist. Er ließe sich sonst durch eine Hilfskonstruktion
nachbilden.]

Supertypen: 0 ≤ m-stelliger Vektor von Zeichenketten, in dem jeder Eintrag durch
einen Wert MTTS.Id auf einen Merkmalträgertyp verweist, von dem geerbt wird. Die
Einträge sind paarweise verschieden. Die induzierte Vererbungsstruktur zwischen
Merkmalträgertypen ist hierarchisch, also insbesondere kreisfrei.

Aussagen: 0 ≤ k-stelliger Vektor von Zeichenketten, in dem jeder Eintrag auf
durch einen Wert ASS.Id auf eine Aussage verweist, die für jeden Merkmalträger
des Merkmalträgertyps gilt.

56

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell

Allgemeines Merkmal

AMS = {Id : Σ∗, Merkmalart : Σ∗}
Id: Zeichenkette, identifiziert das allgemeine Merkmal eindeutig.

Merkmalart: Zeichenkette mit Wert MAS.Id, verweist auf die zugehörige Merkma-
lart.

Merkmalart
MAS = {Id : Σ∗, Supertyp : Σ∗}

Id: Zeichenkette, identifiziert die Merkmalart eindeutig.

Supertyp: Zeichenkette mit Wert MAS.Id, identifiziert eine andere Merkmalart
oder einen Merkmalprototyp, von dem geerbt wird. Die induzierte Vererbungsstruktur
zwischen Merkmalarten ist kreisfrei.

Merkmalprotyp
MPS = {Id : Σ∗}

Id: Zeichenkette, identifiziert den Merkmalprototyp eindeutig.

Aussageart
AAS = {Id : Σ∗}

Id: Zeichenkette, identifiziert die Aussageart eindeutig.

Merkmalträger
MTS = {Id : Σ∗, Merkmalträgertyp : Σ∗}

Id: Zeichenkette, identifiziert den Merkmalträger eindeutig.

Merkmalträgertyp: Zeichenkette mit Wert MTTS.Id, verweist auf den zugehörigen
Merkmalträgertyp.

Aussage

ASS = {Id : Σ∗, Merkmalträger : Σ∗, AllgMerkmal : Σ∗, Aussageart : Σ∗,
Relation : {=,<,≤,>,≥,≈} , Einheit : Σ∗, Wert : X}

Id: Zeichenkette, identifiziert die Aussage eindeutig.

57

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Merkmalträger: Zeichenkette mit Wert MTS.Id oder MTTS.Id, die den Merkmal-
träger oder Merkmalträgertyp identifiziert, auf den sich die Aussage bezieht.

AllgMerkmal: Zeichenkette mit Wert AMS.Id, die das allgemeine Merkmal identi-
fiziert, über das eine Aussage getroffen wird. [Bemerkung 1: Wenn die Aussage einen
Merkmalträger betrifft, dann identifiziert AllgMerkmal ein spezielles Merkmal des
Merkmalträgers. Trotzdem wird als Kennung die eines allgemeinen Merkmals ver-
wendet, weil durch die Kombination mit Merkmalträger klar wird, dass ein spezielles
Merkmal gemeint ist, ohne dass hierfür neue Kennungen eingeführt werden müssen.
Bemerkung 2: Das allgemeine Merkmal muss dem Merkmalträgertyp bzw. dem Merk-
malträgertyp des Merkmalträgers zugeordnet sein.]

Aussageart: Zeichenkette mit Wert AAS.Id, die die Aussageart identifiziert, die die
Semantik der Aussage definiert.

Relation: Bestimmt, wie das Merkmal, über das eine Aussage getroffen wird, zu
einem Wert in Relation gesetzt wird.

Wert: Maschinell verarbeitbarer Wert, zu dem das Merkmal, über das eine Aussa-
ge getroffen wird, in Relation gesetzt wird. [Bemerkung: X entspricht der Menge aller
Werte des Datentyps „ANY“ der IEC 61131.]

Einheit: Zeichenkette, durch die die Einheit von Wert definiert wird (z.B. als SI-Einheit).

5.1.2. Anwendersicht

Für den Anwender, der letztendlich Funktionsbausteine zur Abfrage von Information
verwenden möchte, ist das Denken in Relationsschemas umständlich und erscheint un-
passend. Die in Abschnitt 2.1 gewählte Darstellung in Form von Klassendiagrammen
ist im Vergleich anschaulicher und besser geeignet, um das Grundmodell zu verstehen.
Es muss aber auch berücksichtigt werden, dass ein Anwender eine Lösung für ein kon-
kretes Problem sucht und daher eher an dem Aussehen konkreter Daten interessiert ist,
d.h. der „Instanzebene“, als am Grundkonzept der Modellierung auf der Klassenebene.
Eine einfache und effektive Hilfestellung ist deshalb das Aufführen von Beispielen für
Merkmaldaten in Form von Tabellen.

In Tabelle 5.1 und den darauf folgenden Tabellen werden Beispieldaten für jedes Rela-
tionsschema gezeigt. Zu den Merkmalträgern A0815 und A0816, beide vom Typ „Krei-
selpumpe mit Wellendichtung“ entsprechend eCl@ss 9.0, werden Aussagen über die
maximale Förderhöhe und Förderstrom gemacht. Aussagen und Merkmalträger werden
der Übersichtlichkeit halber direkt in einer Tabelle zusammengeführt. Die Definitionen
der allgemeinen Merkmale und Merkmalarten sind durch eCl@ss gegeben. Merkmal-
prototypen als „Supertypen“ von Merkmalarten sind in eCl@ss nicht vorhanden, daher
wird auf die ISO 80000 [16] verwiesen. Die in der ISO 80000 referenzierten Größen ent-
sprechen den jeweils in eCl@ss verwendeten Einheiten. Für die Aussageart wird die
interne Konvention verwendet, dass „Z01“ eine Zusicherung des Herstellers ist, z.B. aus
einem Datenblatt. Die Beispieldaten können dazu verwendet werden, um die korrekte

58

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

Funktion der Pumpen A0815 und A0816 zu überprüfen.

Tabelle 5.1.: Beispieldaten entsprechend einer Kombination der Relationsschemas MTS und

ASS.

Merkmalträger ��MTS.Id=ASS.Merkmalträger Aussage
Id Merkmalträgertyp AllgMerkmal Aussageart Relation Einheit Wert
A0815 ecl@ss9.0/36-41-

01-08
ecl@ss9.0/-
0173-1#02-
BAJ123#006

Z01 ≥ m 127.0

A0815 ecl@ss9.0/36-41-
01-08

ecl@ss9.0/-
0173-1#02-
BAI023#003

Z01 ≥ m3/h 110.0

A0816 ecl@ss9.0/36-41-
01-08

ecl@ss9.0/-
0173-1#02-
BAJ123#006

Z01 ≥ m 105.0

A0816 ecl@ss9.0/36-41-
01-08

ecl@ss9.0/-
0173-1#02-
BAI023#003

Z01 ≥ m3/h 122.0

5.2. Grundoperationen der Abfragesprache

Zunächst sollen Grundoperationen festgelegt werden, durch die später auch komplexere
Operationen definiert werden können. Dazu werden die Grundoperationen so gewählt,
dass sie per Konstruktion relational vollständig sind. So kann von Beginn an zugesi-
chert werden, dass zur Abdeckung der Ausdrucksstärke der relationalen Algebra keine
weiteren Operationen benötigt werden.

5.2.1. Abdeckung der relationalen Algebra

Die hier verwendeten Grundoperationen sind Projektion, Selektion, Kreuzprodukt, Ver-
einigung, Differenz und Umbenennung. Gegenüber den ursprünglichen acht Operatio-
nen der relationalen Algebra fehlen bei dieser Auswahl die Operationen Division, Re-
striktion, Schnittmenge und Vereinigung, d.h. zum Zeigen der relationalen Vollständig-
keit müssen die fehlenden vier Operationen auf die ausgewählten sechs Grundopera-
tionen zurückgeführt werden. Für die Division und die Restriktion wurde das bereits
von Codd bei der Definition der Operationen gezeigt [10]. Die Schnittmengenoperation
∩ kann auf die Differenzoperation zurückgeführt werden, weil für die Menge X und Y
gilt X ∩Y = X \ {X \Y}. Die Vereinigungsoperation kann durch das Kreuzprodukt und
die Selektion gebildet werden (s. Seite 21). Somit ist die genannte Menge von Grundope-
rationen relational vollständig.

Die Operationen können nun mit Einschränkung auf die Relationsschemas aus Ab-
schnitt 5.1 definiert werden, weil sie ohnehin nur in diesem Kontext verwendet werden.
Bei dieser Gelegenheit wird auch die Notation als Funktionen eingeführt, die einfacher

59

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Tabelle 5.2.: Beispieldaten entsprechend dem Schema MTTS (mit zusätzlicher Bemerkung).

Merkmalträgertypen
Id AllgMerkmale Supertypen Bemerkung
ecl@ss9.0/36-41-
01-08

ecl@ss9.0/-
0173-1#02-
BAJ123#006;
ecl@ss9.0/-
0173-1#02-
BAI023#003

ecl@ss9.0/36-41-
01

Kreiselpumpe mit Wellendichtung

ecl@ss9.0/36-41-
01

ecl@ss9.0/36-41 Kreiselpumpe

Tabelle 5.3.: Beispieldaten entsprechend dem Schema AMS (mit zusätzlicher Bemerkung).

Allgemeine Merkmale
Id Merkmalart Bemerkung
ecl@ss9.0/0173-
1#02-BAJ123#006

ecl@ss9.0/02-
BAJ123

Max. Förderhöhe

ecl@ss9.0/0173-
1#02-BAI023#003

ecl@ss9.0/02-
BAI023

Max. Förderstrom

Tabelle 5.4.: Beispieldaten entsprechend dem Schema MAS (mit zusätzlicher Bemerkung).

Merkmalarten
Id Supertyp Bemerkung
ecl@ss9.0/02-
BAJ123

ISO80000-3-
1.1

Max. Förderhöhe

ecl@ss9.0/02-
BAI023

ISO80000-4-30 Max. Förderstrom

Tabelle 5.5.: Beispieldaten entsprechend

dem Schema MPS (mit zusätzlicher

Bemerkung).

Merkmalprototypen
Id Bemerkung
ISO80000-3-1.1 Länge
ISO80000-4-30 Volumenstrom

Tabelle 5.6.: Beispieldaten entsprechend

dem Schema AAS (mit zusätzlicher

Bemerkung).

Aussagearten
Id Bemerkung
Z01 Zusicherung des Herstellers

60

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

lesbar ist. Diese Funktionen werden dann im Kapitel 5.4 von den Funktionsbausteinen
verwendet.

Es sei A die Menge aller Attribute aus Abschnitt 5.1, die in den Relationsschemas
verwendet werden, T die Menge aller Tupel entsprechend der hier verwendeten Relati-
onsschemas, BF die Menge aller booleschen Formeln und P das Symbol für die Potenz-
menge. Es gelte
{} �= T ⊂ T, {} �= U ⊂ T, {} �= A ⊂ A, t ∈ T, a, ã ∈ A und b ∈ BF. Dann sind die
Grundoperationen definiert durch:

Projektion

reduce : P(T)×P(A) → P(T)

reduce(T, A) = πA(T)

Selektion

choose : P(T)× BF → P(T)

choose(T, b) = σb(T)

Kreuzprodukt

combine : P(T)×P(T) → P(T)

combine(T, U) = T × U

Vereinigung

union : P(T)×P(T) → P(T)

union(T, U) = T ∪ U

Differenz

remove : P(T)×P(T) → P(T)

remove(T, U) = T \ U

Umbenennung

rename : P(T)× A × A → P(T)

rename(T, a, ã) = ρã/a(T)

61

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

5.2.2. Wertausgabe

Diese so festgelegten Operationen sind noch nicht operativ nutzbar. Ein Grund dafür ist,
dass alle Funktionen in eine Menge von Tupeln abbilden. Der Anwender der Abfrage-
sprache möchte und kann aber nicht mit Tupeln als Antworten auf Abfragen arbeiten,
sondern mit Werten der Menge X, die von den IEC 61131-3 -Programmiersprachen wei-
terverarbeitet werden können. Dafür wird zusätzlich die Funktion value für die Rückga-
be eines Wertes bzw. mehrerer Werte benötigt.

value : P(T)× A → Xn

value(T, a) = t1.a, ..., tn.a, T = {t1, ..., tn}

5.2.3. Boolesche Formeln

Letztlich ist noch die Verwendung boolescher Formeln BF zu klären, die in der Selekti-
on verwendet werden. Die Programmiersprachen der IEC 61131 verwenden boolesche
Ausdrücke, so dass hier kein neues Konzept eingeführt werden muss und auf die vor-
handene Syntax zurückgegriffen werden kann. Die in den Formeln verwendeten Va-
riablen sind in diesem Fall aber keine Variablen der SPS, sondern Attributwerte. Wenn
aus den Aussagen T beispielsweise diejenigen herausgesucht werden sollen, für die das
Attribut Aussageart den Wert „Zusicherung“ hat und Relation „≥“ ist, kann dazu die
Funktion

choose(T, Aussageart = Zusicherung ∧ Relation =≥)

verwendet werden.

5.2.4. Vererbungsbeziehungen

Eine der bekannten Grenzen der relationalen Algebra ist das Fehlen einer transitiven
Hülle. Im Anwendungskontext der Schemas aus Abschnitt 5.1 macht sich das durch
zwei Einschränkungen bemerkbar:

1. Mit den bisher definierten Grundoperationen können die „Supertypen“ eines
Merkmalträgertyps nicht iteriert werden. Z.B. könnte die Frage „Ist dieser Merk-
malträger vom Typ Produkt?“ nicht beantwortet werden, weil die vollständige Ver-
erbungshierarchie nicht durchsucht oder aufgelistet werden kann. Das gilt prinzi-
piell auch für die Vererbungsrichtung „nach unten“.

2. Analog dazu ist es nicht möglich, die übergeordneten (oder untergeordneten)
Merkmalarten einer Merkmalart aufzulisten oder zu durchsuchen. Das kann dann
erforderlich sein, wenn entschieden werden soll, ob ein Gegenstand mit unbekann-
tem Merkmalträgertyp aufgrund seines Gesamtgewichts von einer Maschine, z.B.
einem Transportsystem, verarbeitet werden kann. In dem Fall ist das konkrete all-
gemeine Merkmal, das geprüft werden muss, unbekannt, weil das Gesamtgewicht
bei jedem Merkmalträgertyp unterschiedlich definiert ist. Es ist aber bekannt, dass
es von „Gesamtgewicht“ abgeleitet sein muss.

62

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

Zur Überwindung dieser Einschränkungen wird die rekursive Funktion typeO f für
Merkmalarten (MAS) und Merkmalträgertypen (MTTS) definiert, die eine gesamte Ver-
erbungshierarchie zurückgibt. Die Funktion deckt nur den Anwendungsfall der Hierar-
chie „nach oben“ ab, weil es für den Fall „nach unten“ keine praktisch sinnvolle Moti-
vation gibt.

typeO f : P(T)×P(T) → P(T)

typeO f (T, U) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋃
u∈U choose(T, Id = u.Supertyp)
∪ typeO f (T, value(u, Supertyp)), alle u entsprechen MAS

⋃
u∈U choose(T,

∨
i Id = u.Supertypeni⋃

typeO f (T, value(T, Supertypen)i), alle u entsprechen MTTS

{}, sonst

5.2.5. Aggregationen

Eine weitere wesentliche Einschränkung der relationalen Algebra ist, dass sie keine Ope-
rationen zur Aggregation von Werten enthält. Wenn beispielsweise der Merkmalträger
gefunden werden soll, bei dem ein bestimmtes Merkmal die maximale Ausprägung un-
ter allen Merkmalträgern hat, etwa die Bestellung mit der höchsten Priorität, dann müs-
sen mit den bisher definierten Funktionen alle Merkmalträger abgerufen und überprüft
werden. Auch wenn das kein direkter Konflikt mit Anforderung 10 ist, nach der die Aus-
führung der Abfrage keinen Einfluss auf den Betrieb der SPS haben soll, so widerspricht
es trotzdem der Intention dieser Anforderung. Schließlich wächst der Aufwand mit der
Menge an Daten, die durchsucht werden müssen, und diese Menge ist der SPS vorab
nicht bekannt. Insofern ist es sinnvoll, die vorhandenen Funktionen um Möglichkeiten
zur Aggregation von Zahlenwerten zu erweitern.

Bei der Aggregation von Werten gibt es zwei unterschiedliche Wege der Aggregati-
on: Die Aggregation über mehrere Merkmalträger hinweg (z.B. Finden des schwersten,
größten oder ältesten Merkmalträgers) und die Aggregation von Werten innerhalb des-
selben Merkmalträgers (z.B. Bildung von Differenzen zwischen oberem und unterem
Grenzwert, Berechnung zusammengesetzter Merkmale wie Dichte, ...). Für diese Fälle
werden zwei Funktionen definiert: aggrAll und aggrEach. Wünschenswert ist, dass die
Funktionen schachtelbar sind, damit beispielsweise bei gegebener Dichte und Volumen
für jeden Merkmalträger derjenige mit der höchsten Masse gefunden werden kann. Da-
für muss zunächst die Darstellung eines Ergebnisses durch das Relationsschema

ES = {Id : Σ∗, Wert : X}
definiert werden. Die Verwendung eines eigenen Schemas für Ergebnisse hat einen ein-
fachen Hintergrund: So ist es möglich, Ergebnisse einer Berechnung als Argument einer
anderen Funktion zu verwenden. Die Geschlossenheit der Funktionen wird also nicht
aufgebrochen. Für die Id, die ein Ergebnis trägt, wird die Id des Merkmalträgers ver-
wendet, der dieses Ergebnis erzeugt hat. Durch die Benennung des Attributs Wert, die
bei ASS und ES gleich ist, braucht in der Funktion aggrAll nicht zwischen Aussage und
Ergebnis als Argument unterschieden zu werden.

63

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Sei nun E die Menge aller Ergebnisse entsprechend dem Schema ES, MT die Men-
ge aller Merkmalträger entsprechend dem Schema MTS und AS die Menge aller
Aussagen entsprechend ASS. � sei das Symbol für einen Operator aus der Menge
{+,−, ∗, /, max, min, #}. Dann kann die Funktion aggrAll durch eine Fallunterschei-
dung von � definiert werden. Im Fall der Operatoren +,−, ∗, / werden die Wert-
Attribute der an die Funktion übergebenen Tupel durch den entsprechenden Operator
(den Wert von �) verknüpft. Für max und min wird das Maximum bzw. Minimum der
Wert-Attribute gesucht. Der Operator # zählt die übergebenen Tupel. Es gilt also:

aggrAll : P(E ∪ AS)× {+,−, ∗, /, max, min} → E

aggrAll(T,�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e|e ∈ E ∧ e.Wert = t∗1 � ... � t∗n ∧ e.Id = t1.Id},
wenn � ∈ {+,−, ∗, /}

{e|e ∈ E ∧ e.Wert = �{t.Wert|t ∈ T}
∧e.Id = {t.Id|t.Wert = e.Wert}}, wenn � ∈ {max, min}

{e|e ∈ E ∧ e.Wert = |T| ∧ e.Id = t1.Id}, wenn � ∈ {#}

mit T∗ = {t∗1, ..., t∗n} = {t1.Wert, ..., tn.Wert} ⊂ {E ∪ AS}.

Mit der Funktion aggrEach werden beliebige Attribute innerhalb eines Tupels mittels der
Operatoren +,−, ∗, / verknüpft. Wenn mehrere Tupel an die Funktion übergeben wer-
den, geschieht das für jedes Tupel. Wenn mehrere Operatoren übergeben werden, ge-
schieht die Anwendung in der übergebenen Reihenfolge (d.h. die Priorisierung „Punkt
vor Strich“ existiert nicht).

aggrEach : P(T)× An × {+,−, ∗, /}n−1 → P(E)

aggrEach(T, (a1, ..., an), (�1, ...,�n−1)) =

{e|e ∈ E ∧ e.Wert = ti.a1 �1 ... �n−1 ti.an ∧ e.Id = ti.Id ∧ i ∈ {1, ..., |T|}}

n ∈ {1, 2, ...}, T = {t1, ..., tk} ⊂ T,�i ∈ {+,−, ∗, /}

Die Anwendung der Funktion zur Aggregation selbst ist verhältnismäßig einfach, kann
aber je nach Aufgabenstellung in einem komplizierten Kontext geschehen. Als kurzes
Beispiel zur Illustration soll der oben genannte Fall realisiert werden, in dem der Merk-
malträger mit der größten Masse gesucht wird. Gegeben sind Aussagen über die Istwer-
te von Dichte und Volumen zu jedem Merkmalträger in MT ⊂ MT in jeweils derselben
Einheit.

Im ersten Schritt werden die Aussagen aus AS ⊂ AS ausgewählt, die Merkmalträger
aus MT betreffen. Dazu werden die Merkmalträger und Aussagen durch die Funktionen

64

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.2. Grundoperationen der Abfragesprache

choose und combine passend zusammengeführt. Weil sowohl Aussagen als auch Merk-
malträger das Attribut Id besitzen, wird dieses zur Vermeidung einer Namenskollision
für die Aussagen in Id2 umbenannt. Die neue Menge von Tupeln aus Merkmalträgern
und Aussagen ist dann MT∗.

MT∗ = choose(combine(MT, rename(AS, Id, Id2)), Id = Merkmalträger))

Im nächsten Schritt werden die Tupel MT∗
Dichte und MT∗

Volumen ausgewählt, die Informa-
tionen zu den genauen Istwerten der Dichte bzw. des Volumens beinhalten.

MT∗
Dichte =

choose(MT∗, AllgMerkmal = Dichte ∧ Aussageart = Istwert ∧ Relation = =)

MT∗
Volumen =

choose(MT∗, AllgMerkmal = Volumen ∧ Aussageart = Istwert ∧ Relation = =)

Anschließend werden einige Attribute umbenannt, um danach die Tupel ohne Namens-
kollision zusammenführen zu können.

M̃T∗
Volumen = rename(rename(MT∗

Volumen, Id, Id2), Wert, Volumentwert)

M̃T∗
Dichte = rename(MT∗

Dichte, Wert, Dichtewert)

Die Tupel werden nun über die gemeinsame Id verknüpft.

MT∗
VolumenDichte = choose(combine(M̃T∗

Dichte, M̃T∗
Volumen), Id = Id2)

Anschließend folgt die Berechnung der Massen je Tupel.

ErgebnisseMasse = aggrEach(MT∗
VolumenDichte, (Volumenwert, Dichtewert), (∗))

Daraus kann schließlich das Maximum ermittelt und der Wert mittels value ausgegeben
werden.

MaxMasse = aggrAll(ErgebnisseMasse, max)

x = value(Wert, MaxMasse)

Das Beispiel lässt erkennen, dass komplexe Abfragen durch die definierten Funktionen
möglich sind, dass diese aber auch kleinteilig und umständlich sein können. Im folgen-
den Abschnitt werden deshalb spezielle Operationen für in der Praxis häufig auftretende
Aufgaben definiert.

65

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

5.3. Erweiterte Operationen der Abfragesprache

Aufbauend auf den zuvor definierten Grundoperationen werden nun erweiterte Opera-
tionen definiert. Die Auswahl ist durch praktische Anwendungsbeispiele motiviert. Für
die Definition wird nur auf die vorhandenen Grundoperationen und andere Operatio-
nen dieses Abschnitts zurückgegriffen. Die hier genannten erweiterten Operationen sind
nur als Beispiele zu verstehen und können durch weitere Operationen ergänzt werden.

5.3.1. Zusammenführen von Merkmalträgern und Aussagen

Beschreibung

Es ist häufig notwendig, Merkmalträger und Aussagen, die diese betreffen, zusammen-
zuführen. In Tabelle 5.1 (Seite 59) ist ein einfaches Beispiel dazu zu sehen. Zusätzlich
können auch Aussagen existieren, die den Merkmalträgertyp zum Ziel haben und da-
durch indirekt für einzelne Merkmalträger gelten. Als Vereinfachung für das Zusam-
menführen der Information wird dafür eine eigene Operation definiert.

Anwendungsbeispiel

Zu einer Auswahl von Merkmalträgern sollen alle relevanten Aussagen gesucht werden.

Definition

joinStatements : P(T)×P(MT) → P(T)

joinStatements(T, MT) = union({directStatementIn f ormation},
{indirectStatementIn f ormation})

Zur Berechnung müssen die direkten Aussagen über den Merkmalträger und die
indirekten Aussagen, die durch den Merkmalträgertyp gemacht werden, ermittelt
werden. Dabei gilt:

T ⊂ T, MT ⊂ MT, MTT sei die Teilmenge von T entsprechend MTTS und AS
sei die Teilmenge von T entsprechend ASS,

{directStatementIn f ormation} =

reduce({rawDirectStatementIn f ormation}, {Id, Merkmalträgertyp,
AllgMerkmal, Aussageart, Relation, Einheit, Wert}),

{rawDirectStatementIn f ormation} =

choose(combine(MT, rename(AS, Id, Id2)), Id = Merkmalträger),

66

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.3. Erweiterte Operationen der Abfragesprache

{indirectStatementIn f ormation} =

({rawIndirectStatementIn f ormation}, {Id, Merkmalträgertyp,
AllgMerkmal, Aussageart, Relation, Einheit, Wert}),

{rawIndirectStatementIn f ormation} =

(combine({propertyCarrierWithAllSupertypes},
rename(AS, Id, Id2)), supertypeId = Merkmalträger),

{propertyCarrierWithAllSupertypes} =

reduce(choose(combine(MT, rename(join(MTT, typeO f (T, MTT)), Id, supertypeId)),
supertypeId = Merkmalträgertyp), {Id, supertypeId, Merkmalträgertyp}).

5.3.2. Suche nach Merkmalträgern

Beschreibung

Die Operation ermöglicht das Suchen nach Merkmalträgern mit bestimmten Eigenschaf-
ten. Als gesuchte Eigenschaften können der Merkmalträgertyp mtt, die Aussageart aa
einer Aussage über den Merkmalträger, die Relation rel der Aussage, das betreffende
Merkmal mm, der Aussagewert we und Einheit eh wahlweise eingesetzt werden. Dabei
dürfen einzelne Variablen unbelegt bleiben und werden in dem Fall ignoriert. Durch-
sucht wird die Menge T von Daten.

Anwendungsbeispiel

Suche alle Merkmalträger vom Typ „Bestellung“ aus den Daten T, bei denen das Merk-
mal Auftragsnummer mit dem Wert „x“ übereinstimmt.

Definition

whichones : P(T)×P(MT)× T × T × T × {=,<,≤,>,≥}× X × Σ∗ → P(T)

whichones(T, MT, mtt, aa, mm, rel, we, eh) =

choose(joinStatements(T, MT), Merkmalträgertyp ∗
= mtt ∧ Aussageart ∗

= aa

∧ AllgMerkmal ∗
= mm ∧ Relation ∗

= rel ∧ Wert ∗
= we ∧ Einheit ∗

= eh)

Mit (b ∗
= b̃) ⇔ (b = b̃) , wenn b �= ε ∧ b̃ �= ε, true sonst.

b, b̃ ∈ BF, ε als Symbol für eine nicht belegte Variable.

67

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

5.3.3. Aggregationen

Beschreibung

In Abschnitt 5.2 wurden bereits die Operationen aggrEach und aggrAll zur Durchfüh-
rung von Aggregationen definiert. Aus praktischer Sicht ist es sinnvoll diese Operatio-
nen so zu erweitern, dass als Parameter auch Merkmalträger und Merkmalträgertypen
(zusammen mit Aussagen über diese) übergeben werden können. Die Aggregation wird
dann auf bestimmte Aussagen über die übergebenen Merkmalträger(typen) angewen-
det, so dass diese Aussagen nicht durch eine vorherige Operation gesucht werden müs-
sen. Dadurch wird die Anwendung in vielen Fällen erheblich vereinfacht. Die erweiter-
ten Operationen erhalten die Namen aggrEach′ und aggrAll′.

Anwendungsbeispiel aggrEach′

Für eine Untermenge von Merkmalträgern aus einem Datensatz soll die Masse anhand
von Aussagen über Dichte und Volumen ermittelt werden (vgl. Beispiel auf Seite 64).

Definition von aggrEach′

aggrEach′ : P(T)×P(MT)× An × {+,−, ∗, /}n−1 × T × T × T × T × T × T → P(E)

aggrEach′(T, MT, (a1, ..., an), (�1, ...,�n−1), mtt, aa, mm, rel, we, eh) ={
aggrEach(T, (a1, ..., an), (�1, ...,�n−1))), wenn MT = {}
aggrEach(whichones(T, MT, mtt, aa, mm, rel, we, eh), (a1, ..., an), (�1, ...,�n−1)),

sonst
n ∈ {1, 2, ...},�i ∈ {+,−, ∗, /}

Anwendungsbeispiel aggrAll′

Für eine Untermenge von Merkmalträgern aus einem Datensatz soll derjenige mit dem
größten Ist-Wert der Masse herausgesucht werden (vgl. Beispiel auf Seite 64).

Definition aggrAll′

aggrAll′ : P(T)× {+,−, ∗, /, max, min} ×P(MT)× T × T × T × T × T × T → E

aggrAll′(T, MT,�, mtt, aa, mm, rel, we, eh) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aggrAll(T,�), wenn MT = {}
aggrAll(reduce(whichones(

T, MT, mtt, aa, mm, rel, we, eh),
{ Id, Wert}),�), sonst

68

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.3. Erweiterte Operationen der Abfragesprache

5.3.4. Bestimmung des Merkmalträgertyps

Beschreibung

Die Bestimmung des Merkmalträgertyps eines Merkmalträgers kann direkt durch das
Abfragen des entsprechenden Attributs geschehen. Wenn die Fragestellung aber lautet,
ob ein Merkmalträger m aus T entweder von einem bestimmten Typ typ ist, oder von
einem Typ, der von diesem Typ erbt, kann die Funktion iso f type verwendet werden.

Anwendungsbeispiel

In einem automatischen Lagersystem ist der exakte Typ der eingelagerten Gegenstände
nicht relevant. Es muss aber grundsätzlich zwischen unterschiedlichen Klassen unter-
schieden werden.

Definition

iso f type : P(T)× MT × T → T

iso f type(T, m, typ) = choose(typeO f (T, value(m, Merkmalträgertyp)), Id = typ)

5.3.5. Vorhandensein eines Merkmals

Beschreibung

Die Operation bestimmt, ob es für den Merkmalträger m Aussagen über ein Merkmal
der Merkmalart art gibt oder über eine Merkmal von einer Merkmalart, die von art erbt.
Falls dies der Fall ist, wird die Menge der zutreffenden Merkmalarten zurückgegeben,
sonst die leere Menge.

Anwendungsbeispiel

Die Weiterverarbeitung eines hängt davon ab, ob Informationen über bestimmte Quali-
tätsmerkmale vorhanden sind.

Definition

hasaproperty : P(T)× MT × T → T

Die Funktion wird in mehreren Schritten definiert:

hasaproperty(T, m, art) = chose({AllGenericProperties}, Id = art)

Mit AllGenericProperties als Menge aller allgemeinen Merkmale, über die es direkt oder
indirekt Aussagen gibt:

{AllGenericProperties} = typeo f (T, {GenericProperties})

69

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

GenericProperites ist die Menge der von durch Aussagen betroffenen allgemeinen Merk-
malen:

{GenericProperties} = chose(T, value(T, Id) = value({Properties}, Merkmalart))

{Properties} = chose(T, value(joinStatements(T, m), AllgMerkmal) = Id)

5.3.6. Verknüpfung von Merkmalträgern

Beschreibung

Die Operation gibt aus zwei Mengen von Merkmalträgern diejenigen zurück, die in aus-
gewählten Attributen übereinstimmen bzw. bei denen die Aussagewerte in einer be-
stimmten Relation stehen. Ob die Attribute in der gewählten Relation stehen müssen,
wird durch Boolesche Wahrheitswerte für jedes Attribut vorgegeben.

Anwendungsbeispiel

Posten einer Bestellung werden mit vorhandenen Lagerbeständen abgeglichen.

Definition

matching :
P(T)×P(MT)×P(MT)×B×B×B×B×B×B×{=,<,≤,>,≥, {}} → P(MT)

matching(T, MT1, MT2, bId, bMerkmalträgertyp,

bAllgMerkmal , bAussageart, bRelation, bEinheit, relWert)

= reduce(choose(joinStatements(T, {MT1, MT2}), b∗), {Id, Merkmalträgertyp})

mit

b∗ = (Id = Id2 ∨ ¬bId)
∧(Merkmalträgertyp = Merkmalträgertyp2 ∨ ¬bMerkmalträgertyp)
∧(AllgMerkmal = AllgMerkmal2 ∨ ¬bAllgMerkmal)
∧(Aussageart = Aussageart2 ∨ ¬bAussageart)
∧(Relation = Relation2 ∨ ¬bRelation)
∧(Einheit = Einheit2 ∨ ¬bEinheit)

∧(Wert
∗

relWert Wert2)

mit Wert
∗

relWert Wert2 = Wert relWert Wert2, wenn relWert ∈ {=,<,≤,>,≥},
true sonst.

70

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

5.4. Schnittstellen und Verhalten der Funktionsbausteine

In diesem Kapitel werden aus den Operationen, die in den Abschnitten 5.2 und 5.3 defi-
niert wurden, Funktionsbausteine abgeleitet. Dazu gehört die Spezifikation der Schnitt-
stellen der Bausteine gemäß IEC 61131-3 und die Spezifikation der SPS-seitigen Ausfüh-
rung einer Abfrage. Nicht dazu gehört die Spezifikation der Algorithmen, die die zuvor
definierten Operationen implementieren. Gemäß Anforderung 3 soll die Ausführung
einer Abfrage der Verwendung eines Dienstes entsprechen, daher liegen diese Algorith-
men außerhalb der Zuständigkeit der SPS und sind technisch davon abhängig, wie die
Merkmalinformation gespeichert wird.

5.4.1. Konzept

In den vorigen Kapiteln wurde durch einige Beispiele gezeigt, dass die Operationen der
Abfragesprache sich ineinander schachteln lassen, um so komplexe Abfragen aufzubau-
en. Solche komplexen Abfragen sollten, genau wie einfache Abfragen aus einer einzigen
Operation, seitens der SPS als eine einzige Abfrage behandelt werden. Die Interpretation
und Ausführung solcher komplexer Abfragen obliegt dann ganz dem (Fremd-)System,
das als Dienstleister zur Ausführung der Abfragen auftritt. Auf diese Art wird die SPS
in ihrer Funktion nicht dadurch beeinflusst, wie komplex die Ausführung einer Abfrage
ist (siehe Anforderung 10).

Damit besteht die Bearbeitung einer Abfrage seitens der SPS aus zwei Phasen, näm-
lich der Generierung einer Abfrage als geschachtelter Ausdruck und anschließend die
eigentliche Durchführung der Abfrage. Die Generierung ist deshalb eine eigene Pha-
se, weil die Abfrage durch Variablen veränderliche Inhalte enthalten kann. Zum Auf-
bau von Ausdrücken werden die zuvor definierten Operationen verwendet: Wenn es
zu jeder Operationen einen entsprechenden Funktionsbausteintyp gibt, dann bildet der
Funktionsbaustein lediglich eine Zeichenkette, die den konkret zu realisierenden Auf-
ruf als Text wiedergibt. Diese Zeichenkette wird als Wert in den Ausgang des Funkti-
onsbausteins geschrieben und kann als Argument für einen anderen Funktionsbaustein
verwendet werden. Ein Beispiel dazu zeigt Abbildung 5.2. Darin wird eine Operation
durch eine geschachtelte Abfrage aus value, typeO f und choose aufgebaut, die prüft,
ob ein Merkmalträger vom Merkmalträgertyp ProduktZ ist und die ggf. diesen Typ zu-
rückgibt. Die Bausteintypen sind für das Beispiel willkürlich festgelegt. Wir nehmen im
Beispiel an, dass der Wert von MerkmalträgerX einen Merkmalträger anhand seiner Id
identifiziert und dass der Wert von DatenbankY eine Datenbank (oder auch mehrere
Datenbanken) identifiziert. Am Ausgang jedes Funktionsbausteins ist die Zeichenket-
te angegeben, die durch den Baustein aufgebaut wurde. Letztendlich wird der Varia-
ble qXisTypeZ die Abfrage als Wert zugewiesen. Eine äquivalente Abfrage könnte auch
durch eine andere Reihenfolge der Bausteine erreicht werden. qXisTypeZ beinhaltet am
Ende die ausformulierte gesamte Abfrage, die an dieser Stelle aber noch nicht ausgeführt
ist. Alternativ könnte eine entsprechende Zeichenkette auch durch vorhandene String-
Operationen aufgebaut werden. Ein Anwender kann die Funktionsbausteine oder die
Repräsentation als Zeichenkette verwenden, ohne dass ihm die jeweils andere Methode
bekannt sein muss.

Nach dem Aufbau einer Abfrage wird die Abfrage durch einen eigenen Funktions-
baustein durchgeführt. Dazu benötigt ein Baustein mindestens drei Eingänge: Einen für

71

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

“Merkmalträgertyp”

“Id=ProduktZ”

Abbildung 5.2.: Beispiel für den Aufbau einer Abfrage aus Funktionsbausteinen.

die zuvor aufgebaute Abfrage, einen Eingang, an dem durch eine steigende Flanke das
Signal zur Ausführung der Abfrage gegeben wird, und letztlich einen Eingang, an dem
das gefragte Attribut angegeben wird. Das Attribut ist notwendig, weil die Ergebnis-
se von Abfragen Tupel sind, die von einer SPS nicht direkt verarbeitet werden können.
Praktisch wird also die Ausführung der Operation value zum Abschluss der Abfrage
erzwungen, damit das Ergebnis in einen verarbeitbaren Wertebereich fällt.

In Abbildung 5.3 wird die Ausführung einer Abfrage durch einen Funktionsbaustein
beispielhaft gezeigt. Der Bausteintyp query, der die Abfrage ausführt, ist willkürlich für
das Beispiel gewählt und soll hier nur zur Illustration des Konzepts dienen; er wird spä-
ter genau spezifiziert. Der Baustein hat einen Ausgang, der das Ergebnis einer Abfrage
liefert, und einen Ausgang, der das Eintreffen eines neuen Ergebnisses für die Dauer
eines Zyklus anzeigt. Die Abfrage qXisTypeZ, die zuvor durch die Funktionsbausteine
in Abbildung 5.2 gebildet wurde, wird im Beispiel bei steigender Flanke am Eingang
exc ausgeführt und das Attribut Id der resultierenden Tupel abgefragt. Wenn durch eine
Abfrage neue Daten erhalten wurden und das Ergebnis nicht leer ist, wird die Variable
XisTypeZ auf true gesetzt, sonst auf f alse.

Für die genaue Spezifikation der Funktionsbausteine entsprechend diesem Konzept
werden in den nächsten Abschnitten die Bausteintypen beschrieben. Der wesentliche
Punkt dabei ist die Unterscheidung zwischen Funktionsbausteinen zur Formulierung
und zur Durchführung von Abfragen.

5.4.2. Funktionsbausteine für Abfrageoperationen

In den Abschnitten 5.2 und 5.3 wurden die Abfrageoperationen definiert, die nun durch
Funktionsbausteine für den Anwender verfügbar gemacht werden sollen. Bei der Defi-
nition der Operationen wurden jeweils eine Definitionsmenge und Zielmenge angege-
ben. Dadurch lassen sich die Schnittstellen der Bausteine direkt herleiten. Die Mengen,
mit denen die Definitions- und Zielmengen beschrieben wurden, also beispielsweise die

72

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

“Id”

Abbildung 5.3.: Beispiel für die Ausführung einer Abfrage und Verarbeitung des Ereignisses

durch Funktionsbausteine.

Menge aller Tupel oder die Menge aller Merkmalträger, sind natürlich keine bekannten
Variablentypen innerhalb einer SPS. Das ist an dieser Stelle aber keine zwingende Vor-
aussetzung, weil die Funktionsbausteine keine Daten innerhalb der SPS austauschen,
sondern nur zum Aufbau von Abfragen dienen. Die Schnittstellen der Bausteine arbei-
ten daher immer mit dem Datentyp STRING, während davon ausgegangen wird, dass
durch die Strings Daten vom korrekten Datentyp der Operation identifiziert werden.
In Abbildung 5.2 liegt beispielsweise am Eingang b des Bausteins c1 vom Typ choose
der String „Id=ProduktZ“ an, der eine boolesche Formel beinhaltet. In der Definition
von choose wurde dementsprechend der Typ BF für die Menge der booleschen Formeln
festgelegt. Das bedingt natürlich, dass sich der Wert des Strings, der am Eingang b an-
liegt, als korrekte boolesche Formel interpretieren lässt. Die Interpretation wird dann
von demjenigen System durchgeführt, das die Abfrage als Dienstleister auswertet. Sei-
tens der SPS ist die Verwendung des Datentyps STRING daher ausreichend, während
der Dienstleister jeden Bestandteil einer Abfrage überprüfen muss. Innerhalb der SPS
kann beim Aufbau einer Abfrage kein technischer Fehler auftreten, sondern es können
nur ggf. nicht interpretierbare Abfragen aufgebaut werden.

Operativ verhalten sich die Bausteine so, dass bei jeder zyklischen Ausführung aus
den Werten der Bausteineingänge ein einzelner String aufgebaut wird, der einen ent-
sprechenden Aufruf der Operation textuell wiedergibt. Im Wesentlichen handelt es sich
also um eine Konkatenation von Strings. Für einen Anwender ist dabei lediglich zu be-
achten, dass die Bausteine in der richtigen Reihenfolge ausgeführt werden, d.h. wenn
ein Ausgang eines Bausteins b1 mit dem Eingang eines Bausteins b2 verbunden ist, dann
muss b1 vor b2 ausgeführt werden. Anderenfalls kann der Aufbau einer syntaktisch und
semantisch korrekten Abfrage nicht sichergestellt werden. Diese Bedingung ist aus An-
wendersicht gut nachvollziehbar, wenn der Aufbau einer Abfrage wie eine Reihenschal-
tung von Filtern betrachtet wird, durch die schrittweise aus einer Informationsmenge die
gesuchte Information herausgefiltert wird. Mit dieser Sichtweise wird auch klar, dass die

73

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Verwendung von Rückwärtsschleifen nicht erlaubt ist. Die prototypische Implementie-
rung (Kapitel 6) geht hier noch einen Schritt weiter: Bei der Ausführung von Abfragen
werden die betreffenden Funktionsbausteine automatisch in der richtigen Reihenfolge
ausgeführt und auf Rückwärtsschleifen überprüft. Dies ist jedoch nur aufgrund der im
Prototyp gewählten Basistechnologie möglich und kann nicht für den allgemeinen Fall
vorausgesetzt werden.

Die Art, in der der String für Abfragen aufgebaut wird, kann systemspezifisch an-
gepasst werden. Wenn die Ressourcen des Laufzeitsystems stark begrenzt sind oder es
mutmaßlich sehr viele und komplexe Abfragen im System geben wird, sind ggf. Ver-
einfachungen sinnvoll. Die Bezeichner von Operationen können statt ausgeschriebener
Namen beispielsweise durch Kürzel ersetzt werden. Außerdem kann mit geschicktem
Einsatz von Zeigern in der Implementierung das mehrfache Kopieren von Strings um-
gangen werden. Diese Optionen hängen aber stark vom jeweils eingesetzten Laufzeitsy-
stem ab und lassen sich deshalb nicht allgemein festlegen.

Durch die Definition der Operationen, die Konvention zur Benutzung des Datentyps
STRING und das einfache Verhalten ist die Spezifikation der Funktionsbausteintypen
trivial. An dieser Stelle werden die Bausteintypen deshalb nur informell aufgelistet (s.
Abbildung 5.4), wobei die Funktionsbausteine AGGREACH und AGGRALL die Ope-
rationen aggrEach′ und aggrAll′ implementieren. Die formelle Spezifikation der Imple-
mentierung befindet sich in Anhang A.

5.4.3. Funktionsbaustein zur Ausführung von Abfragen

Gemäß Anforderung 8 soll sich der Baustein zur Ausführung von Abfragen eng am Bau-
stein READ der IEC 61131-5 orientieren. Schnittstellen und Funktion dieses Bausteins
wurden in Abschnitt 3.4.3 vorgestellt. Der Bausteintyp wird nun so angepasst, dass er
sich zur Ausführung von Abfragen eignet. Dieser neue Bausteintyp erhält die Bezeich-
nung QUERY.

Schnittstellen des Funktionsbausteins QUERY

Der READ-Baustein besitzt einen Eingang für das Signal zur Ausführung (REQ), einen
Eingang zur Identifikation des Kommunikationskanals (ID) und ggf. mehrere Eingänge
zur Identifikation der zu lesenden Daten (VAR_X). Im QUERY-Baustein wird in jedem
Fall ebenfalls der Eingang REQ zur gesteuerten Ausführung von Abfragen benötigt. Au-
ßerdem muss er statt der abzufragenden Variablen VAR_X einen STRING-Eingang für
die auszuführende Abfrage Q besitzen. Die Angabe eines Kommunikationskanals ist
dagegen unnötig, wenn angenommen wird, dass immer derselbe Dienstleister zur Aus-
führung von Abfragen verwendet wird. Dieser kann dann durch eine globale Variable
identifiziert werden und braucht nicht für jede Instanz des QUERY-Bausteins wiederholt
zu werden.

Um das Ergebnis einer Abfrage weiterverarbeiten zu können, muss aus dem Tupel,
das das Ergebnis der Abfrage ist, ein konkreter Wert ausgewählt werden. Dieser Wert
muss in einem von der SPS verarbeitbaren Datentyp darstellbar sein. Typischerweise
wird es sich bei dem gefragten Wert um den Wert einer Aussage über ein Merkmal han-
deln, aber allgemein muss die Möglichkeit bestehen, ein beliebiges Attribut zu identifi-
zieren. Dazu erhält der QUERY-Baustein den Eingang VAR vom Typ STRING, durch den

74

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.4. Schnittstellen und Verhalten der Funktionsbausteine

Abbildung 5.4.: Bibliothek der Funktionsbausteine für Abfrageoperationen.

75

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

das Attribut identifiziert wird. Die Benennung VAR (statt beispielsweise ATTR) stimmt
zwar nicht mit der Terminologie des genutzten relationalen Modells überein, hier wird
aber der Übereinstimmung mit dem READ-Baustein Vorrang gegeben.

Für den Fall, dass der Wert einer spezifischen Aussage über ein bestimmtes Merk-
mal eines Merkmalträgers oder eines Merkmalträgertyps erfragt werden soll, enthält
der Baustein die Eingänge PROP, ST, REL und UN. Durch diese Eingänge können das
betreffende Merkmal, die Aussageart, die Relation und die Einheit angegeben werden.
Dadurch ermöglicht der QUERY-Baustein auch den direkten Zugriff auf Werte von Aus-
sagen, ohne dass vorgelagerte Funktionsbausteine wie JOINSTMT verwendet werden
müssen. Voraussetzung für diese Funktion ist natürlich, dass das Ergebnis der Abfra-
ge am Eingang Q entweder Merkmalträger oder Merkmalträgertypen beinhaltet, damit
diese nach den angegebenen Aussagen durchsucht werden können. Andere Tupel, die
keine Merkmalträger oder Merkmalträgertypen bezeichnen, werden ignoriert. Die Ver-
wendung des Eingangs PROP hat Priorität vor dem Eingang VAL: Wenn beide belegt
sind, wird nach einer „passenden“ Aussage gesucht anstatt das durch VAL angegebene
Attribut der Tupel auszugeben.

Die Ausgänge des Funktionsbausteins QUERY sind identisch mit einem READ-
Baustein, der einen Datenausgang besitzt. Das bedeutet insbesondere, dass der RD-
Ausgang eine beschreibbare Variable vom Typ ANY ist. Abbildung 5.5 zeigt den Funk-
tionsbausteintyp. Die Spezifikation des Bausteins befindet sich in Anhang A.

Abbildung 5.5.: Funktionsbausteintyp QUERY.

Verhalten des Funktionsbausteins QUERY

Für das Verhalten des Bausteins wird das Verhalten des Funktionsbausteintyps READ
übernommen. Es entspricht dem in Abbildung 3.4 (Seite 47) gezeigten Ablauf mit an-

76

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

gepassten Variablennamen. Betrachtet man von außen her die Funktion von READ und
QUERY, dann ist ein praktisch identisches Verhalten auch naheliegend: In beiden Fällen
wird an einen Dienstleister eine Zeichenkette übergeben, die Daten identifiziert. Die Zei-
chenkette wird vom Dienstleister interpretiert und er schickt eine Antwort auf die Ab-
frage zurück, so dass die Antwort zu einem späteren Zeitpunkt am Funktionsbaustein
zur Verfügung steht. Unterschiede betreffen nur den Inhalt von Abfrage und Antwort.

Wegen der weitgehenden Übereinstimmung und den nur unwesentlichen Unterschie-
den wird die Ausführungslogik des Funktionsbausteins an dieser Stelle nicht erneut er-
läutert. Eine Spezifikation befindet sich in Anhang B.

5.5. Systemarchitektur

5.5.1. Positionierung in der Automatisierungspyramide

Die vorgeschlagene Lösung besteht aus zwei technisch getrennten Komponenten:
Den Funktionsbausteinen zur Formulierung und Ausführung von Abfragen und dem
Dienstleister, der die Abfragen interpretiert und die gesuchte Information aus unter-
schiedlichen Datenquellen zusammenstellt. Für die Funktionsbausteine ist klar, dass sie
innerhalb einer SPS, die typischerweise zu einem (Prozess-) Leitsystem gehört, ausge-
führt werden. Innerhalb der Automatisierungspyramide befindet sich diese technische
Komponente somit auf der Prozessleitebene.

Der Dienstleister, im Folgenden der Einfachheit halber als „Merkmaldienst“ bezeich-
net, kann dagegen viel freier positioniert werden. Für den Merkmaldienst muss zuge-
sichert sein, dass der QUERY-Funktionsbaustein Daten mit ihm austauschen kann und
dass der Datenzugriff auf die diversen Quellen von Merkmalinformation möglich ist.
Außerdem müssen natürlich die notwendigen Ressourcen an Speicher und Rechen-
zeit vorhanden sein. Es ergeben sich daraus drei mögliche Szenarien: Der Merkmal-
dienst kann direkt in der SPS bzw. im selben Hardwaresystem implementiert sein, er
kann in einem nahen PC-System wie einer Operator Station implementiert sein, oder er
kann als selbständiger Server in der Produktionsleitebene implementiert sein. Jede die-
ser Möglichkeiten kann in speziellen Anwendungsfällen die optimale Lösung sein, in
den meisten Fällen ist jedoch die Implementierung als eigenständiger Server die beste
Variante. Erstens wird so der normale Betrieb von Operator Station und SPS ganz si-
cher nicht durch die Verwendung zusätzlicher Ressourcen beeinflusst (s. Anforderung
10), während bei einem selbständigen Server die Ressourcen frei skalierbar sind. Zwei-
tens muss der Merkmaldienst mit unterschiedlichen Datenquellen arbeiten und entspre-
chend unterschiedliche Datenschnittstellen implementieren. Die Datenquellen befinden
sich überwiegend in der Produktionsleitebene. Ein Merkmaldienst als Server in der Pro-
duktionsleitebene kann also direkt mit diesen Datenquellen kommunizieren und muss
nicht zwischen zwei Ebenen überbrücken, die ggf. unterschiedliche Teilnetze betrei-
ben. Die Kommunikation mit den Funktionsbausteinen ist dagegen inhaltlich einfach
– es müssen nur Strings und einfache Werte übertragen werden, was auch zwischen
Prozessleit- und Produktionsleitebene mit etablierten Protokollen wie OPC DA/UA
oder ACPLT/KS problemlos funktioniert. Aus diesen Gründen wird hier davon aus-
gegangen, dass der Merkmaldienst als selbständiger Server implementiert wird.

77

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Abbildung 5.6.: Einordnung des Dienstes für Merkmalabfragen in der Automatisierungspy-

ramide.

78

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

5.5.2. Komponenten des Dienstes für Merkmalabfragen

In Abbildung 5.6 ist der Merkmaldienst nur als graues Kästchen dargestellt, das mit
anderen Systemen kommuniziert. In diesem Abschnitt wird der Merkmaldienst nun ge-
nauer spezifiziert. Das geschieht auf dem Abstraktionsniveau von Softwarekomponen-
ten; genauere Details auf dem Niveau von Klassen werden der individuellen Implemen-
tierung überlassen. Einen Überblick in Form eines UML-Komponentendiagramms zeigt
Abbildung 5.7.

Entsprechend dem Konzept eines Dienstes ist es für den Dienstnutzer grundsätzlich
irrelevant, wie der Dienst intern implementiert ist. Für eine detaillierte Spezifikation
müssten auch viele Details des Anwendungsszenarios berücksichtigt werden, beispiels-
weise

• die genutzten Kommunikationsnetze,

• die genutzten Kommunikationsprotokolle,

• die Technologie der Datenquellen,

• das Datenmodell der Datenquellen,

• die für den Merkmaldienst verfügbare Hard- und Software,

• die für die Implementierung genutzte Technologie.

Die dadurch entstehende kombinatorische Vielfalt wird hier dadurch beantwortet, dass
einige Komponenten je nach Anwendungsfall auswechselbar sind und dass für fest vor-
handene Komponenten nur die Funktionalität beschrieben wird, nicht durch welche
Datenstrukturen und Algorithmen diese Funktionalität geschaffen wird. Beim Merk-
maldienst kann folglich zwischen drei Hauptbestandteilen unterschieden werden. Die
Kernkomponenten bilden das Rückgrat der Anwendung und sind unverändert in je-
der Installation vorhanden. Plug-Ins sind Komponenten, die je nach Anwendungsfall in
einer einzelnen Installation vorhanden sein können. Für unterschiedliche Datenquellen
werden unterschiedliche Plug-Ins verwendet. Diese können die externen Quellen entwe-
der dynamisch anbinden oder deren Inhalt einmalig in ein internes Datenmodell laden.
Den dritten Hauptbestandteil bilden Konfigurationsdateien, in denen Installationsspezi-
fika konfiguriert werden – beispielsweise Adressen von Datenservern oder Dateinamen.
Die Konfigurationsdateien können zur Laufzeit des Systems verändert werden.

Kernkomponenten

Zentrale und wichtigste Komponente des Merkmaldienstes ist die Komponente „Core-
Server“ (der Name, wie auch die übrigen Komponentennamen, wurde als illustratives
Beispiel entsprechend üblichen Benamungskonventionen der Softwareentwicklung ge-
wählt). CoreServer stellt ein intern verwendetes Datenmodell bereit und implementiert
die Operationen der Abfragesprache entsprechend Kapitel 5.2 und 5.3 auf diesem Da-
tenmodell.

Datenabfragen erreichen CoreServer als String, der zunächst geparst werden muss,
um die auszuführenden Operationen zu dekodieren. Bei der Ausführung der Opera-
tionen müssen dann zwei Fälle unterschieden werden: Die Daten, auf denen die Ab-
frage ausgeführt wird, liegen entweder im internen Datenmodell vor oder in einem

79

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

Abbildung 5.7.: Komponenten des Dienstes für Merkmalabfragen als UML-Komponenten-

diagramm.

80

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

externen Datenspeicher wie einer Datenbank. Dementsprechend kann CoreServer die
Abfrage selbst ausführen oder delegiert sie an eine Plug-In -Komponente, die den ex-
ternen Datenspeicher anbindet. Die Implementierung der Abfrageoperationen in Co-
reServer kann also durch spezialisierte Implementierungen der einzelnen Plug-Ins er-
setzt werden. Für die Implementierung der Abfragen ist die parallelisierte Datenverar-
beitung durch Threads möglich und kann zur Beschleunigung der Verarbeitung beitra-
gen. Entsprechend der Grundidee eines Dienstes ist das erlaubt, sofern die Abfragen
eines Dienstnutzers nicht in falscher Reihenfolge bearbeitet werden (s. Abschnitt 2.1.2,
S. 15). Wenn also beispielsweise ein Nutzer A Daten aus einer langsamen Datenquel-
le abfragt und unmittelbar danach ein anderer Benutzer B Daten aus einer schnellen
Datenquelle abfragt, dann würde B nicht von A blockiert. Aus technischer Sicht wäre
es natürlich auch möglich, dass Abfragen desselben Benutzers im Sinne einer Bearbei-
tung „so schnell wie möglich“ ohne Rücksicht auf die Reihenfolge bearbeitet werden
könnten. Das Problem daran wäre aber, dass der Benutzer dann in einigen Fällen die
Abfragen innerhalb der SPS synchronisieren müsste. Beispielsweise könnte in einem
SPS-Programm erst die aktuelle Auftragsnummer und dann ein Merkmal dieses Auf-
trags abgefragt werden. Wenn der SPS-Programmierer sich nun nicht darauf verlassen
kann, dass die aktuelle Auftragsnummer vor der Abfrage des Merkmals bekannt ist,
müsste ein entsprechender Mechanismus zur Absicherung implementiert werden. Sol-
che Implementierungen sind in einer SPS umständlich und damit auch fehleranfällig.
Eine Abweichung vom Grundprinzip der reihenfolgegemäßen Abarbeitung pro Benut-
zer ist daher nicht gestattet. Sofern die Voraussetzung dafür, dass Benutzer (d.h. einzel-
ne SPS) eindeutig identifiziert werden können, nicht erfüllt ist, müssen alle Abfragen in
Reihenfolge des Eintreffens bearbeitet werden.

Das Datenmodell in CoreServer ist eine Abbildung der Relationenschemas aus Ab-
schnitt 5.1 und entspricht damit auch dem logischen Modell aus Abschnitt 2.1.1. Dies
kann beispielsweise in objektorientieren Sprachen so realisiert werden, dass Relationen-
schemas als Klassen implementiert werden und Tupel durch deren Instanzen abgebildet
werden, für die es einen zentralen Index gibt. Für große Datenmengen bietet sich hier
auch die sogenannte objektrelationale Abbildung an, eine Technologie, mit der objekt-
orientierte Datenmodelle physisch in Datenbanken gespeichert werden (z.B. Hibernate
für Java oder NHibernate für .NET).

Die Kommunikation mit der SPS wird durch die Komponente „CommFromPLC“
realisiert. Sie kann beispielsweise durch einen OPC UA oder ACPLT/KS Server reali-
siert werden, der die Abfrage-Strings annimmt und Antworten zurück an die SPS sen-
det. Die spezielle Kommunikationstechnologie ist im einzelnen Einsatzfall mit großer
Wahrscheinlichkeit fest vorgegeben, so dass CoreServer und CommFromPLC über ei-
ne Schnittstelle fest miteinander verbunden sind. Bei einer konkreten Implementierung
kann auch davon ausgegangen werden, dass vorhandene Bibliotheken der jeweiligen
Kommunikationstechnologie genutzt werden können, so dass die wesentliche Funktio-
nalität von CommFromPLC nur darin besteht, diese Kommunikationsbibliotheken für
den hier auftretenden Anwendungskontext zu kapseln.

Dritte Kernkomponente ist ConfigMgt. Die Aufgabe von CfgMgt ist, sämtliche Konfi-
gurationsinformation des Merkmaldienstes zu verwalten und bei Bedarf zu verändern.
Dazu kann der Anwender die Konfigurationsdaten in Textdateien ablegen. Es gibt eine
Hauptdatei, hier „MainCfg“ genannt, die immer notwendige Informationen beinhaltet.
Beispielsweise sind die Konfigurationsinformationen für CoreServer und CommFrom-

81

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5. Lösungskonzept

PLC in der Datei MainCfg abgelegt. In der Datei sind außerdem Verweise auf weitere Da-
teien gespeichert, in denen Daten für die Plug-In-Komponenten gespeichert sind. Diese
Verteilung von Information auf unterschiedliche Dateien unterstützt die Flexibilität der
Anwendung und damit eine flexible Datenanbindung der SPS entsprechend Anforde-
rung 11. Auf diese Art sind Konfigurationsdaten für die einzelnen Datenquellen unab-
hängig voneinander und können ohne Wechselwirkung verändert werden. Außerdem
kann jedes Plug-In sein jeweils sinnvollstes Datenformat verwenden. Nachdem Kon-
figurationsdaten verändert wurden, teilt der Anwender ConfigMgt mit, dass die Konfi-
guration aktualisiert werden muss. Die veränderten Dateien können dann leicht erkannt
werden und es werden nur die betroffenen Komponenten aktualisiert. Die Schnittstel-
le zum Anwender kann beispielsweise eine einfache Kommandozeilenschnittstelle sein,
wie auch bei der Administration von Web-Servern üblich. Die Komponenten innerhalb
der Merkmaldienstes besitzen jeweils ein Interface für das Einspeisen von Konfigurati-
onsinformation (in Abbildung 5.7 jeweils links eingezeichnet).

Plug-In -Komponenten

Plug-In -Komponenten können anwendungsfallspezifisch in das System integriert wer-
den. Aktuelle Softwaretechnologien unterstützen auch das Nachladen von Bibliotheken,
so dass Plug-Ins auch noch zur Laufzeit hinzugefügt (oder entfernt) werden können (s.
Anforderung 11). Die Plug-Ins werden in zwei Arten unterteilt; im Komponentendia-
gramm sind sie daher in zwei Zeilen dargestellt.

Die mit „CommToSrcX“ bezeichneten Plug-Ins (oben dargestellt) realisieren die rei-
ne Datenverbindung zu den verwendeten Datenquellen. Beispielsweise kann es ein sol-
ches Plug-In für XML-dateibasierte Quellen geben, eines für SQL-Datenbanken usw. Die
Plug-Ins können dabei aufeinander aufbauen, so dass ein Plug-In eine speziellere Form
des Datenzugriffs realisiert als ein anderes. In diesem Fall sind es zwar getrennte Kom-
ponenten, die jedoch eine Abhängigkeit besitzen.

Die zweite Art von Plug-Ins bildet das Datenmodell der Datenquelle auf die intern
benutzten Abfrageoperationen und das interne Datenmodell ab. Dabei kann zwischen
einer aktiven und einer passiven Abbildung unterschieden werden. Bei der passiven
Abbildung wird die Datenquelle einmalig von der Komponente eingelesen und im Da-
tenmodell von CoreServer abgelegt. Abfragen werden dann von CoreServer selbst auf
den Daten durchgeführt. Über ConfigMgt kann der passiven Plug-In-Komponente mit-
geteilt werden, dass bei einer Aktualisierung die Daten neu eingelesen werden müssen.
Diese Art von Plug-In eignet sich für kleine, dateibasierte Datenquellen.

Aktive Plug-Ins führen Abfragen dagegen selbst aus bzw. übersetzen Abfragen so,
dass die Datenquelle sie ausführt. Entsprechend eignet sich diese Art Plug-In zur An-
bindung von Datenbanken. Wie oben beschrieben, muss CoreServer für jede (Teil-) Ab-
frage entscheiden, ob die Abfrage auf dem internen Datenmodell ausgeführt wird oder
an ein aktives Plug-In delegiert werden kann. Dies kann danach entschieden werden,
ob die Daten von einem aktiven oder passiven Plug-In zur Verfügung gestellt werden.
Entsprechend besitzen aktive und passive Plug-Ins auch unterschiedliche Schnittstellen.

Die „CommToSrcX“ und „Active/PassiveMdlMapX“ -Plug-Ins können je nach Bedarf
miteinander kombiniert werden, weil inhaltlich unterschiedlich aufgebaute Modelle in
technisch gleichen Datenquellen abgelegt sein können. Für die Anbindung von SQL-
Datenbanken wird beispielsweise nur ein Plug-In benötigt, auf das dann mehrere aktive

82

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

5.5. Systemarchitektur

Plug-Ins zur Modellabbildung aufbauen können. Diese Abhängigkeiten müssen dem
Anwender bewusst sein und er muss die jeweils notwendigen Plug-Ins laden.

83

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Zur Validierung des in Kapitel 5 beschriebenen Konzepts wurde eine prototypische Im-
plementierung entwickelt. In diesem Kapitel werden die wichtigsten technischen Aspek-
te dieser Implementierung erläutert. Der folgende Abschnitt befasst sich mit den genutz-
ten technischen Grundlagen. Ziel ist dabei nur, ein ausreichendes Verständnis der Tech-
nologien zu vermitteln, so dass die Funktionsweise des Prototypen und dessen Umfang
nachvollzogen werden können. Für tiefergehende Details wird auf die jeweils angezeig-
te Literatur verwiesen.

Der Abschnitt 6.2 beschreibt wichtige Eigenschaften der Architektur der Implementie-
rung. Auch hier werden nicht alle Details erläutert, sondern nur solche Aspekte, die für
das Funktionieren des Gesamtsystems in Hinblick auf die Anforderungen relevant sind
(siehe Kapitel 4). Abschließend wird die Verwendung des Prototypen in Anwendungs-
beispielen illustriert.

6.1. Technische Grundlagen

6.1.1. Die Laufzeitumgebung ACPLT/OV

ACPLT/OV ist eine Laufzeitumgebung für Automatisierungssysteme [55]. Die Bezeich-
nung „ACPLT/OV“ setzt sich zusammen aus einer Abkürzung für den Lehrstuhl für
Prozessleittechnik der RWTH Aachen (Aachener Prozessleittechnik) und der Abkür-
zung für „Objektverwaltung“. Entsprechend wurde das System an dem genannten Lehr-
stuhl entwickelt und die Verfügbarkeit von Objektorientierung in der Laufzeitumge-
bung ist eine der herausragenden technischen Eigenschaften.

Basis von ACPLT/OV ist die Programmiersprache C bzw. das normierte ANSI C [4].
Dadurch kann das System auf vielen einfachen Hardwaresystemen verwendet werden,
für die nur C-Compiler existieren. Durch die Basisbibliotheken von ACPLT/OV wird
das Programmieren entsprechend dem Paradigma der Objektorientierung ermöglicht.
Zum Konzept von ACPLT/OV gehört daher ein Metamodell, das die Struktur der ob-
jektorientierten Modelle vorgibt. Beispielsweise sieht das Metamodell eine baumförmi-
ge Organisation der Objekte zur Laufzeit vor, in der jedes Objekt eine lokal (d.h. unter
seinen Geschwistern) eindeutigen Namen hat. Das Konzept der Vererbung ist ebenfalls
verfügbar.

Praktisch geschieht die Definition von Klassen und Beziehungen zwischen Instanzen
der Klassen durch eigene Beschreibungsdateien, weil C hierfür keine nativen Sprachmit-
tel hat. Durch spezielle Tools der Laufzeitumgebung wird dann aus den Beschreibungs-
dateien C-Code generiert, innerhalb dessen die spezifizierten Methoden der Klassen im-
plementiert werden. Durch spezielle Datenstrukturen sind dabei auch Informationen
über die Klassen und Instanzen zur Laufzeit verfügbar, so dass die Objektmodelle zur
Laufzeit erkannt und verändert werden können.

84

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.1. Technische Grundlagen

ACPLT/OV bietet einige spezifische Eigenschaften aufgrund der Zielsetzung als Ba-
sissystem für die Automatisierung. Dazu gehört auch, dass die Ausführung von Pro-
grammen analog zur Arbeitsweise einer SPS möglich ist. Das Prinzip der zyklischen
Ausführung von Funktionen, beispielsweise von Funktionsbausteinen, ist daher im
System fest verankert. Dies wird von den im Folgenden beschriebenen Bibliotheken
ACPLT/FB und ACPLT/KS genutzt. Durch ACPLT/OV kann jedoch keine vollständige
SPS implementiert werden – beispielsweise wird das Prinzip der globalen oder lokalen
Sichtbarkeit von Variablen nicht unterstützt (vgl. Abschnitt 3.4.1) und Echtzeitfähigkeit
ist nicht nativ vorhanden. Der Unterschied in der Programmierung für eine SPS und
der Programmierung für ACPLT/OV ist für die hier beschriebene Implementierung des
Prototyps größtenteils nicht relevant. Dort, wo es Unterschiede gibt, wird darauf ent-
sprechend hingewiesen werden.

6.1.2. Die Bibliothek ACPLT/FB

ACPLT/FB steht für das ACPLT „Funktionsbausteinsystem“, eine Bibliothek für
ACPLT/OV zur Implementierung von Funktionsbausteinen [28, 69]. Durch die verfüg-
bare Objektorientierung können Klassen dritter Bibliotheken von der Klasse „function-
block“ aus ACPLT/FB erben. Dadurch sind viele der Konzepte von Funktionsbaustei-
nen im Sinne der IEC 61131-3 [21] in der erbenden Klasse verfügbar, so dass auf einfache
Art neue Funktionsbausteintypen implementiert werden können. Beispielsweise kön-
nen Variablen der neuen Klassen durch spezielle Flags als Ein- oder Ausgänge von Funk-
tionsbausteinen deklariert werden. ACPLT/FB stellt dann die für das Engineering von
Signallinien zwischen Funktionsbausteinen notwendigen Funktionen bereit und sorgt
während der Ausführung für den Signaltransport.

Durch die Möglichkeit von ACPLT/OV, Funktionen zyklisch aufzurufen, bietet
ACPLT/FB sogenannte Tasklisten für die zyklische Ausführung von Funktionsbaustei-
nen an. Jeder Funktionsbaustein kann, muss aber nicht in eine Taskliste eingehängt wer-
den. Im zweiten Fall wird der Funktionsbaustein entweder durch einen anderen Mecha-
nismus oder überhaupt nicht ausgeführt. Jede Taskliste enthält eine Menge von Funkti-
onsbausteinen in fester Reihenfolge, die in dieser Reihenfolge zyklisch ausgeführt wer-
den. Die Taktung der Ausführung wird pro Taskliste festgelegt. Tasklisten entsprechen
dem in der IEC 61131-3 beschriebenen Konzept „Task“ (vgl. Abschnitt 3.4.1). Die Aus-
führungszeit jedes Funktionsbausteins wird während jeder Ausführung gemessen und
mit einer oberen Schranke verglichen. Weil Echtzeitfähigkeit nicht zwangsläufig vorhan-
den ist – das System wird nicht zwangsläufig mit einem Echtzeitbetriebssystem ausge-
führt – werden Funktionsbausteine während der Ausführung nicht unterbrochen. Statt-
dessen wird bei Überschreitung einer Zeitschranke eine Warnung ausgegeben.

Die Implementierung der Ausführungslogik eines Funktionsbausteintyps geschieht
in genau einer Funktion pro Funktionsbausteintyp, genannt „typemethod“. Innerhalb
der typemethod werden üblicherweise die Eingänge eines einzelnen Funktionsbausteins
gelesen, Berechnungen ausgeführt und dann die Ausgänge des Funktionsbausteins be-
schrieben. Die typemethod wird durch die jeweilige Taskliste des Funktionsbausteins
aufgerufen, kann aber auch explizit z.B. von anderen Funktionsbausteinen aufgerufen
werden.

85

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

6.1.3. Das Kommunikationsprotokoll ACPLT/KS

ACPLT/KS bezeichnet einerseits ein Kommunikationsprotokoll auf Ebene 5 und 6 des
ISO/OSI-Referenzmodells [46], ist aber gleichzeitig auch der Name verschiedener Im-
plementierungen des Protokolls. KS steht für „Kommunikationssystem“. Technische Ba-
sis von ACPLT/KS sind die Standards TCP/IP [12, 13] und ONC/RPC [64]. Anwen-
dungsgebiet von ACPLT/KS ist die industrielle Automatisierung, beispielsweise Pro-
zessleitsysteme und Softwaresysteme im Umfeld der industriellen Produktion (siehe
Abschnitt 3.3).

Das Protokoll setzt strukturierte Informationen in Form von Objekten und deren Ei-
genschaften (Variablen und Objektbeziehungen) voraus, wie sie beispielsweise in einem
ACPLT/OV-System gefunden werden. Für den Zugriff auf die Information werden Ba-
sisoperationen bereitgestellt, durch die Objekte und deren Eigenschaften erstellt und
verändert werden können. Die in einem Server verfügbaren Objekte können vollständig
durch das Protokoll abgefragt werden, so dass die gesamte Information im Server oh-
ne Vorwissen für einen Klienten erkennbar ist. Implementierungen von ACPLT/KS gibt
es für das ACPLT/OV Laufzeitsystem, für zahlreiche Prozessleitsysteme, Datenarchive
und als Bibliotheken in C++ und Java.

6.1.4. Das ACPLT-Dienstsystem

Das Dienstsystem ermöglicht die Nutzung von Diensten (s. Abschnitt 2.1.2) mit den
ACPLT-Technologien. Es besteht aus Bibliotheken zur Bereitstellung und Nutzung von
Diensten. Im Kontext der prototypischen Implementierung sind die technische Basis
und die Ausführungslogik des Dienstsystems von Interesse und werden hier kurz be-
schrieben.

Das Dienstsystem funktioniert auf Basis von nachrichtenbasierter Kommunikation
zwischen Dienstanbieter und -nutzer. Intern wird dazu ein Nachrichtenformat ver-
wendet, das einen Header-Bereich für administrative Informationen (sendender Server,
sendende Komponente im Server, empfangender Server, ...) und einen Body-Bereich
für den Nachrichteninhalt vorsieht [30]. Die Nachrichten können beispielsweise über
ACPLT/KS verschickt werden, es ist aber auch möglich die Nachrichten direkt über
TCP, ohne erneute Kapselung in ein Protokoll der Anwendungsschicht, zu verschicken.
Das Dienstsystem nutzt ein spezielles Nachrichtenformat, in dem zusätzlich zu den vor-
handenen Header-Informationen auch der gerufene Dienst, die gerufene Operation und
Parameter der Operation angegeben werden. Außerdem enthält jede Nachricht eine für
den Absender eindeutige Id, so dass bei der Beantwortung eines Dienstaufrufs auf diese
Id Bezug genommen werden kann.

Der Ablauf eines Dienstaufrufs beginnt mit dem Erstellen einer entsprechenden Nach-
richt beim Dienstnutzer. Die Nachricht wird an den anbietenden Server verschickt. Dort
können Nachrichten entweder durch eine untere Protokollschicht wie ACPLT/KS di-
rekt an die anbietende Komponente innerhalb des Servers weitergeleitet werden, oder
es gibt eine zentrale Komponente, bei der alle Dienstanbieter im Server registriert sind.
Im zweiten Fall „entpackt“ die zentrale Verwaltungskomponente die Aufrufparameter
und ruft direkt die angefragte Operation auf. Innerhalb des Dienstsystems sind beide
Varianten implementiert. Der Aufruf der Operation kann nun als synchroner Aufruf
erfolgen, in dem die Operation vollständig ausgeführt wird und direkt nach der Fertig-

86

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

stellung eine Antwortnachricht zurückgeschickt wird (sofern eine Antwort erforderlich
ist). Alternativ dazu kann die Operation die Ausführungskontrolle zurückgeben und
die verantwortliche Komponente kann zu einem späteren Zeitpunkt über das Zurück-
senden einer Antwortnachricht entscheiden. Das ist insbesondere bei Operationen mit
langer Ausführungsdauer oder der Durchführung von Aktionen in der physischen Welt
sinnvoll. Die Antwortnachricht hat wie die Aufrufnachricht ein spezielles Format und
enthält eine Referenz auf die ursprüngliche Aufrufnachricht.

Innerhalb von ACPLT/OV gibt es eine spezielle Bibliothek, die den Dienstnutzer
bei der Durchführung von Aufrufen unterstützt. Die Bibliothek baut Nachrichten für
Dienstaufrufe auf und versendet sie, außerdem wird das Eintreffen von Antwortnach-
richten überwacht und diese werden der aufrufenden Komponente zugeteilt.

6.2. Softwarearchitektur

6.2.1. Architektur des Klienten

In Abbildung 6.1 wird die grundlegende Architektur des Klienten in Form eines UML-
Klassendiagramms gezeigt. Die erstellte Bibliothek für Funktionsbausteine trägt den
Namen „PropertyInfos“. Die Bibliothek baut auf der in Abschnitt 6.1 beschriebenen Bi-
bliothek ACPLT/FB auf und verwendet die ebenfalls in 6.1 beschriebene Bibliothek zur
Durchführung von Dienstaufrufen. Die unten im Diagramm gezeigten Klassen Service-
Client_API und CallReply stammen aus dieser Bibliothek, die oben dargestellt Klasse
functionblock aus ACPLT/FB.

Die Funktionalität der Funktionsbausteine ist mit Ausnahme des Bausteins QUERY
gleich und wird nur durch die unterschiedlichen Eingänge spezifisch. Diejenigen Bau-
steine, aus denen Operationen zusammengesetzt werden, sind stellvertretend auf der
rechten Seite in Abbildung 6.1 durch die Klassen REDUCE, CHOOSE und COMBINE
dargestellt. Die Klassen der weiteren Funktionsbausteintypen aus Abbildung 5.4 (Sei-
te 75) wurden aus Platzgünden ausgelassen. Im Diagramm werden Ein- und Ausgänge
von Funktionsbausteinen durch nach innen bzw. außen gerichtete Pfeile dargestellt (als
sinnvolle Ergänzung der üblichen UML-Notation für Klassendiagramme). Die Ein- und
Ausgänge in der Implementierung entsprechen Abbildung 6.1. Die Ausführungslogik
dieser Bausteine liest die Eingänge des Bausteins und schreibt die auszuführende Ope-
ration auf den Ausgang RES. Wenn beispielsweise an den Eingängen eines COMBINE-
Bausteins die Werte „d1“ und „d2“ anliegen, würde das Ergebnis „COMBINE(d1,d2)“
auf den Ausgang RES geschrieben. Die Ausführungslogik ist jeweils in der typemethod
implementiert. Alle rechts abgebildeten Funktionsbausteine erben von der abstrakten
Klasse opBase. Dadurch können Instanzen dieser Funktionsbausteine im ACPLT/OV-
Systems zur Laufzeit als ein Bausteintyp erkannt werden. Außerdem kann der Ausgang
RES vererbt werden. Als Hinweis auf die spezielle Funktion von opBase ist der Name
der Klasse nicht in Großbuchstaben geschrieben.

Der Funktionsbaustein QUERY bildet den Kern der Bibliothek. Er baut Abfragen auf,
sendet sie an den ausführenden Dienst und verarbeitet die Antworten. Die notwendigen
Konfigurationsinformationen, beispielsweise die IP-Adresse des Dienstes, werden von
einer Instanz der Klasse config gelesen. Diese Instanz wird beim Laden der Bibliothek
einmalig angelegt und mit Daten aus der Konfigurationsdatei des Servers beschrieben,

87

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Abbildung 6.1.: Grundlegende Architektur der Klientenbibliothek (grau hinterlegt), darge-

stellt in der Notation eines UML-Klassendiagramms mit Pfeilen für Ein-/Ausgangssignale von

Funktionsbausteinen.

88

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

sie kann aber auch später zur Laufzeit des Systems noch verändert werden. Jede Instanz
von QUERY kennt dieselbe Instanz von config und nutzt die Konfigurationsdaten bei
der Ausführung von Abfragen.

QUERY verwendet die Programmierschnittstelle ServiceClient_API zur Ausführung
Dienstaufrufen. ServiceClient_API bietet Funktionen zur Erstellung und Ausführung
von Dienstaufrufen, außerdem wird der Ausführungsstatus eines Aufrufs überwacht
und ggf. ein Objekt vom Typ CallReply erzeugt, das der QUERY-Instanz zur Verfügung
gestellt wird. Der genaue Ablauf wird in Abschnitt 6.2.3 erklärt, eine Spezifikation des
Bausteins ist in Anhang A und B.

6.2.2. Architektur des Merkmaldienstes

Die Einteilung der Systemkomponenten des Merkmaldienstes wurde bereits in Ab-
schnitt 5.5.2 vorgenommen (siehe auch Abbildung 5.7, Seite 80). An dieser Stelle soll
nun die Architektur auf Klassenebene erläutert werden. Es wird aber nicht auf alle Klas-
sen in allen Details eingegangen; stattdessen beschränken sich die Ausführungen auf
die Anbindung von Plug-Ins und die Verwendung des internen Datenmodells. Die An-
bindung der SPS und die Verwaltung von Konfigurationsdaten werden hier bewusst
ausgelassen, weil sie für das Gesamtkonzept keine große Bedeutung haben und Details
zur Implementierung keine neuen Einsichten brächten. Das gesamte Design ist stark von
Anforderung 12 aus Kapitel 4 (Seite 53) geprägt, die nach einer einfachen Erweiterbar-
keit für zusätzliche Datenquellen verlangt.

Ein Ausschnitt der Architektur des Merkmaldienstes wird in Abbildung 6.2 gezeigt.
Entsprechend der Aufteilung der Komponenten aus Abschnitt 5.5.2 gibt es vier Pakete.
In der Implementierung des Prototyps werden die Pakete durch Java-Packages realisiert.
Das in Kapitel 2.1 eingeführte und in Kapitel 5 verwendete Metamodell für Merkmale ist
im Paket model durch Java-Klassen modelliert. Diese Klassen dienen der Speicherung
von Merkmaldaten, die aus statischen Informationsquellen, beispielsweise Dateien, ge-
laden wurden. Diese Klassen sind nicht nach außen sichtbar. Jede Instanz einer dieser
Klassen ist einer Instanz von DataSource zugeordnet, die im System die jeweilige Da-
tenquelle repräsentiert.

Für unterschiedliche Datenquellen lassen sich passende Plug-Ins implementieren. Bei-
spielhaft sind in Abbildung 6.2 die Plug-Ins XmlFileConnector und BmeCatMapper
dargestellt, die sich im Paket plugins befinden. XmlFileConnector ist für den techni-
schen Datenzugriff auf XML-Dateien verantwortlich, während BmeCatMapper das Da-
tenmodell des BMEcat-Formats auf das interne Datenmodell aus dem Paket model ab-
bildet. BMEcat ist ein XML-basiertes Datenformat für Katalogdaten, das beispielsweise
für den Austausch von eCl@ss-konformen Produktbeschreibungen verwendet werden
kann. BmeCatMapper kann mit Hilfe von XmlFileConnector diese Dateien einlesen und
erstellt ein entsprechendes DataSource-Objekt mit den enthaltenen Modellen. Analog
dazu können auch andere dateibasierte Datenquellen verwendet werden. Entscheidend
ist, dass das jeweilige Plug-In zur Datenquelle die Merkmaldaten korrekt auf das inter-
ne Datenmodell abbildet. Der Aufwand für diese Abbildung ist überschaubar groß – im
Fall von BmeCatMapper handelt es sich um ca. 200 Zeilen Java-Code.

Für die einheitliche Implementierung von Plug-Ins enthält das Paket plugin einige
Interfaces, deren Implementierung für Plugins obligatorisch ist. Beispielsweise imple-

89

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Abbildung 6.2.: Ausschnitt der Architektur des Merkmaldienstes mit Fokus auf Plug-Ins und

das Datenmodell. Darstellung als vereinfachtes UML-Klassendiagramm.

90

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

mentiert XmlFileConnector das Interface IStaticConnector und BmeCatMapper imple-
mentiert IPassiveMdlMap. IStaticConnector definiert Methoden zur Übergabe von Kon-
figurationsdaten und zum Laden von Daten. IPassiveMdlMap definiert ebenfalls eine
Methode zur Übergabe von Konfigurationsdaten (die aus den Konfigurationsdateien
des Systems stammen), außerdem enthält IPassiveMdlMap Methoden für die Daten-
abbildung in das interne Datenmodell und für das Neuladen von Daten. Durch die Ver-
wendung dieser Interfaces kann das System beim Start und im Betrieb uniform auf alle
verwendeten Plug-Ins zugreifen und ihnen ihre spezifischen Konfigurationsinformatio-
nen übergeben.

Das Paket plugin enthält zwei weitere Interfaces: IQueryConnector und IActiveMdl-
Map. Diese Interfaces sind zur Anbindung von Datenquellen gedacht, die dynamisch
sind und die daher jede Abfrage selbst ausführen, anstatt sie auf dem internen Daten-
modell ausführen zu lassen. Solche Datenquellen können Datenbanken oder OPC UA
-Server sein. IActiveMdlMap enthält deshalb Methoden entsprechend den Grundopera-
tionen aus Abschnitt 5.2, die für die jeweilige Datenquelle „übersetzt“ werden müssen.
Die technische Ausführung der Abfrage, z.B. einer SQL-Query, wird dann durch eine
IQueryConnector-Klasse durchgeführt.

Eine besondere Implementierung von IQueryConnector und IActiveMdlMap ist die
Klasse InternalDataQueryConnector. Sie führt die Abfragen auf dem internen Daten-
modell aus dem Paket model aus. Aus der Sicht von CoreServer, der zentralen Klasse
für die Ausführung von Abfragen, ist das Verhalten daher wie das einer IActiveMdl-
Map. Das bedeutet, dass die Ausführung von Abfragen aus Sicht von CoreServer immer
gleich abläuft, unabhängig davon, ob die Abfrage auf dem internen oder einem exter-
nen Datenmodell ausgeführt wird. Der ggf. stark unterschiedliche Zeitbedarf ist dabei
unkritisch, weil jede Abfrage ohnehin in einem eigenen Thread durchgeführt wird. Der
genaue Ablauf eines Dienstaufrufs wird im folgenden Abschnitt 6.2.3 erläutert.

6.2.3. Ablauf eines Dienstaufrufs

Zur Verdeutlichung der Ablaufdynamik wird in diesem Abschnitt die Bearbeitung eines
Dienstaufrufs im Klienten und im Server des Merkmaldienstes beschrieben. In Abbil-
dung 6.3 wird der Ablauf als UML-Sequenzdiagramm gezeigt.

Ausgangspunkt des hier dargestellten Dienstaufrufs ist die Situation, dass im Klienten
eine gültige Abfrage erstellt und mit einem QUERY-Baustein verbunden wurde. Der
QUERY-Baustein ist im Zustand „Leerlauf“ (siehe Abbildung 3.4, Seite 47). Gleichzeitig
ist der Merkmaldienst erreichbar und in der Lage die Abfrage zu beantworten.

Sobald am QUERY-Baustein der Wert am Eingang RES von false auf true wechselt,
wird die Ausführung der Abfrage angestoßen. Der erste Schritt dazu ist die Aktualisie-
rung des Eingangs Q. Entsprechend Anforderung 9 aus Kapitel 4 (Seite 52) muss die
Bedeutung der Ausführungsreihenfolge der Bausteine einer Abfrage dokumentiert und
leicht nachvollziehbar sein. Dieser Anforderung wurde in der Implementierung so be-
gegnet, dass grundsätzlich vor der Ausführung einer Abfrage alle zur Abfrage gehören-
den Bausteine der Bausteinbibliothek, d.h. alle von opBase erbenden Instanzen, aktuali-
siert werden. Der Baustein QUERY prüft daher, was für ein Baustein mit dem Eingang
Q verbunden ist und traversiert das Bausteinnetzwerk rückwärts solange, bis entweder
kein verbundener Baustein mehr gefunden wird oder ein verbundener Baustein nicht

91

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

A
bb

ild
un

g
6.

3.
:A

b
la

u
f

e
in

e
s

A
u

fr
u

fs
d

e
s

M
e

rk
m

a
ld

ie
n

s
te

s,
d

a
rg

e
s
te

llt
a

ls
U

M
L

-S
e

q
u

e
n

z
d

ia
g
ra

m
m

.

92

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.2. Softwarearchitektur

von opBase erbt. In Abbildung 6.3 wird das durch die Rekursion bei der Ausführung
des opBase-Bausteins gezeigt. Dann werden alle so gefundenen Bausteine der Abfrage
durch Ausführung der typemethod in der richtigen Reihenfolge aktualisiert, so dass an-
schließend der Q-Eingang des QUERY-Bausteins aktuell ist. Dieses Vorgehen hat zwei
entscheidende Vorteile: Erstens braucht der Benutzer sich nicht um die Ausführungsrei-
henfolge der Bausteine zu kümmern, weil sie von den Bausteinen selbst bestimmt wird.
Zweitens können so Fehler im Aufbau einer Abfrage, beispielsweise Zyklen, vor der
Ausführung festgestellt werden.

Nach der Aktualisierung des Bausteins QUERY erstellt dieser eine Dienstaufrufnach-
richt und verwendet dann ServiceClient_API zur Durchführung des Dienstaufrufs. Er
geht dann in den Zustand „Warten“ über. ServiceClient_API erstellt eine Nachricht für
das unterlagerte nachrichtenbasierte Kommunikationssystem und versendet diese zu
einem späteren Zeitpunkt. Genauer gesagt wird die Nachricht natürlich vom Kommu-
nikationssystem selbst verschickt, dies wurde aber zur Vereinfachung im Sequenzdia-
gramm ausgelassen. Die Netzwerkadresse des Dienstes wird dabei aus der aktuellen
Konfiguration des Systems, hinterlegt in der Instanz von config (siehe Abbildung 6.1),
gelesen. Sie kann daher auch im laufenden Betrieb noch angepasst werden, falls es Än-
derungen im Netzwerk gibt.

Auf Seite des Merkmaldienstes wird die Nachricht von der Klasse PlcConnector entge-
gengenommen und geprüft. Anschließend wird ein neuer Thread vom Typ CallHandler
erstellt, der für die Ausführung der Abfrage verantwortlich ist. Auf diese Art können
mehrere unterschiedlich schnelle Abfragen parallel ohne gegenseitige Behinderung aus-
geführt werden. Die CallHandler-Instanz lässt die Abfrage von CoreServer ausführen,
der wiederum je nach benötigten Daten die Abfrage an die zuständige Instanz von IAc-
tiveMdlMap weiterleitet. Nach vollständiger Ausführung der Abfrage sendet der Call-
Handler eine Antwortnachricht an den Klienten und der Thread des CallHandlers wird
beendet.

Auf Seite des Klienten wird die Nachricht von ServiceClient_API entgegengenommen
und ein CallReply-Objekt erstellt. Der QUERY-Baustein prüft zyklisch, ob eine Antwort
eingetroffen ist, indem der Wert eines Zeigers geprüft wird. Per Konvention mit Service-
Client_API zeigt dieser Zeiger auf das neu erstellte CallReply-Objekt, sobald es erstellt
wurde. Nach Erhalt der Antwort wird diese vom QUERY-Baustein überprüft (Zustand
„Prüfen“ in 3.4) und nach erfolgreicher Prüfung werden die Ausgänge NDR und RD ge-
setzt. Der Baustein geht für einen Zyklus in den Zustand „Daten erhalten“ und dann zu-
rück in „Leerlauf“. Aus Benutzersicht entspricht das Verhalten somit dem des Bausteins
READ der DIN EN 61131-5. Außerdem läuft die Abfrage asynchron ab und beeinflusst
den Betrieb des Klienten nur durch Erstellen des Dienstaufrufs und Bearbeitung der
Antwort, nicht aber durch die inhaltliche Komplexität der Abfrage (vgl. Anforderung 8
und 10, Seite 52).

6.2.4. Administration des Dienstes

Entsprechend Anforderung 11 (siehe Seite 53) sollen Änderungen der Datenanbindung
zur Laufzeit unterstützt werden, beispielsweise für den Fall, dass sich die IP-Adresse
einer der Datenquellen ändert. In Abschnitt 5.5.2 wird diese Möglichkeit durch Konfi-
gurationsdateien vorgesehen, die für jedes Plug-In einzeln und spezifisch sind. In der

93

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Implementierung des Prototyps wurde diese Idee weitergeführt und die notwendigen
technischen Vorkehrungen getroffen.

Im einfachsten Fall muss für das Hinzufügen von Datenquellen zur Laufzeit kein
Plug-In nachgeladen werden, weil die neue Datenquelle ein bereits bekanntes Format
besitzt. Das Hinzufügen besteht dann nur aus dem Anlegen einer Konfigurationsdatei
für die Datenquelle und dem Instanziieren der entsprechenden Objekte im System. Vom
Benutzer kann das über die Konsole der Anwendung angestoßen werden. Falls zusätz-
liche Plug-Ins benötigt werden, müssen diese zunächst geladen werden. Dazu sind die
jeweils benötigten Plug-Ins in den Konfigurationsdateien angegeben und es gibt ein spe-
zielles Verzeichnis im Dateisystem, in dem die Implementierung der Plug-Ins (in Form
von .jar-Dateien oder .class-Dateien) erwartet wird. Technisch wird das Nachladen von
Bibliotheken zur Laufzeit von Java nativ unterstützt. Seitens der Implementierung funk-
tioniert das Nachladen durch die Interfaces im Paket plugin. Die Anwendung stützt sich
bei der Verwendung der Plug-Ins allein auf diese Interfaces, d.h. sie müssen nur seitens
des Plug-Ins richtig implementiert werden.

Für das Ändern und Entfernen von Datenquellen sehen die Interfaces im Paket plu-
gin jeweils Methoden vor, durch die das jeweilige Plugin die notwendigen Änderungen
durchführen kann. Vor der Durchführung von Änderungen überprüft CoreServer, ob
derzeit Abfragen auf den betroffenen Datenquellen durchgeführt werden und stellt si-
cher, dass die Änderungen zwischen zwei Abfragen vorgenommen werden.

6.3. Anwendungsbeispiele

Der Anwendungsbereich der hier beschriebenen Technologie wird durch den Einsatz
von Funktionsbausteinen in SPS-basierten Steuerungen und die logische Verwendung
von Merkmalinformation definiert. Dadurch ergibt sich ein Spektrum von Anwendun-
gen, das praktisch den gesamten Einsatzbereich von SPS-basierten Steuerungen umfasst.
In diesem Abschnitt werden einige Anwendungsszenarien herausgegriffen, die inner-
halb von Forschungsprojekten des Lehrstuhls für Prozessleittechnik behandelt wurden.
Anhand dieser Beispiele wird gezeigt, wie die Technologie im Sinne der jeweils verfolg-
ten Ziele unterstützend eingesetzt werden kann.

6.3.1. Flexible Programmierung von Werkzeugmaschinen

In einer Forschungskooperation mit dem Werkzeugmaschinenlabor der RWTH Aachen
war das Ziel, die Programmierung von Werkzeugmaschinen zu vereinfachen und zu
beschleunigen. Besonders bei Routineaufgaben in der Programmierung wie dem Wech-
sel eines Werkzeugs entsteht ein hoher Programmieraufwand, der durch die Wiederver-
wendung und geschickte Kombination von einzelnen Programmabschnitten deutlich re-
duziert werden kann [6]. Der in diesem Forschungsprojekt verfolgte Ansatz ermöglicht
die automatische Generierung von Steuerungscode, der nach der Generierung jedoch
spezifisch für eine Maschine in einer bestimmten Konfiguration ist.

Durch die in dieser Arbeit eingeführte Technologie lässt sich die Flexibilisierung von
Programmen noch weiter vorantreiben, so dass sie ohne Veränderung auch mit unter-
schiedlichen Maschinen- und Werkzeugkonfigurationen funktionieren, sofern Änderun-
gen nur Werkstück- oder Werkzeugmerkmale betreffen. Damit wird der Aufwand zur

94

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.3. Anwendungsbeispiele

Maschinenprogrammierung weiter verringert, weil eine Neuprogrammierung seltener
nötig ist. Beispielsweise müssen für die Programmierung eines Werkzeugwechsels viele
Eigenschaften des eingesetzten Werkzeugs berücksichtigt werden, etwa dessen geome-
trische Merkmale und die maschinenseitig benötigte Werkzeugaufnahme. Anstatt die-
se Eigenschaften manuell zu übertragen, können sie durch die in Kapitel 5 definierten
Funktionsbausteine zur Programmlaufzeit abgefragt werden. Dadurch entfällt der Auf-
wand beim Übertragen der Merkmalinformation (und potenzielle Fehler), außerdem
braucht das Programm nicht erneut auf die SPS geladen zu werden.

Für ein konkretes Beispiel soll angenommen werden, dass ein Werkstück gefräst wer-
den soll und dass dazu unterschiedliche Fräser mit unterschiedlichen Merkmalen, z.B.
die Art der Werkzeugaufnahme, zur Verfügung stehen. Der Bediener bzw. Program-
mierer der Werkzeugmaschine trifft diese Entscheidung. Anstatt die Information zur
Werkzeugaufnahme manuell einzutragen (über ein HMI oder direkt im Programmcode),
kann die Information vom Programm selbst erfragt werden, indem auf einen eCl@ss-
konformen Katalog mit Informationen zu Fräsern zurückgegriffen wird. Die Implemen-
tierung wird in Abbildung 6.4 gezeigt. Der gesamte Satz von Werkzeugdaten ist unter
der Kennung „Werkz.-Katalog“ hinterlegt und abfragbar. Der linke Baustein erfragt nun
denjenigen Schaftfräser (eCl@ss 21-18-06-01), bei dem das Merkmal Artikelbezeichnung
(eCl@ss 0173-1#02-AAP805#002) mit dem Inhalt der SPS-Variable „Fraeser“ überein-
stimmt. Die Variable wird beispielsweise durch das HMI der Maschine gesetzt. Zu die-
sem Fräser wird der maschinenseitige Aufnahmetyp (eCl@ss 0173-1#02-BAA763#008)
abgefragt, den der Hersteller zusichert, und in die SPS-Variable „AufnTyp“ geschrieben.
Die gesamte Abfrage wird durch das Setzen der Variable „StartWWechsel“ ausgeführt.

Ein erheblicher Teil der benötigten Information über Merkmale von Werkzeugen (und
ggf. auch Werkstücken) kann auf die beschriebene Art automatisiert im Betrieb erfragt
werden. Führt man sich nun vor Augen, dass eCl@ss 9.1 bereits 84 Merkmale für Schaft-
fräser definiert, wird klar, dass diese Art der Programmierung erheblich zur flexiblen
Verwendung von Programmen mit geringem manuellen Aufwand im Betrieb beiträgt.

6.3.2. Überwachung von Erdölpumpen in einer Erdölraffinerie

Zu Beginn dieser Arbeit wurde in Abschnitt 1.1.2 ein Anwendungsszenario geschildert,
in dem für die Überwachung von Erdölpumpen die Dichte des geförderten Erdöls be-
nötigt wird. An dieser Stelle wird nun die SPS-seitige Lösung dieser Aufgabenstellung
mithilfe der prototypischen Implementierung gezeigt.

Bei der Lösung der Aufgabe wird davon ausgegangen, dass Merkmalinformation aus
dem Laborinformations- und Managementsystem (LIMS) und dem Manfacturing Exe-
cution System (MES) durch den Merkmaldienst verfügbar sind. Diese Datenquellen kön-
nen entsprechend durch die Kennungen „LIMS“ und „MES“ beim Merkmaldienst iden-
tifiziert werden. Ferner ist bekannt, welche Merkmalträger und Merkmale innerhalb die-
ser Datensysteme verfügbar sind. Für dieses Beispiel werden zur Identifizierung von
Merkmalträgern und Merkmalen sinngemäße Namen benutzt. In der Praxis würden da-
zu vermutlich eher standardisierte Bezeichner verwendet (siehe Abschnitt 3.1).

Die Abfrage der Dichte des Erdöls besteht logisch gesehen aus zwei Abfrageteilen,
weil zunächst der Quelltank aus dem MES und dann die Dichte des Öls in diesem Tank
aus dem LIMS erfragt wird. Aus Sicht der SPS wird das in einer Abfrage zusammen-

95

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6. Prototypische Implementierung

Abbildung 6.4.: Beispielsanwendung der Funktionsbausteinbibliothek. Es wird zunächst der

Datensatz zu einem bestimmten Schaftfräser abgefragt und dann daraus die Zusicherung

zum maschinenseitigen Aufnahmetyp (codiert in eCl@ss-Kennungen).

gefasst, die dann vom Merkmaldienst in zwei Schritten ausgeführt wird. Die Imple-
mentierung dazu wird in Abbildung 6.5 gezeigt. Im Beispiel sei die betroffene Pumpe
N7509 und es wird angenommen, dass im MES Produktionsaufträge als Merkmalträger
mit Angaben über die verwendeten Ressourcen und den Auftragsstatus als Merkmale
vorliegen. Die Funktionsbausteine „Auftraege“ und „AuftrAkt“ finden dann den Auf-
trag für N7509, der momentan in Bearbeitung ist. Zu beachten ist, dass das Ergebnis
dieser Operationen bereits den Merkmalträger mit den Aussagen über ihn zusammen-
führt. Deswegen kann der folgende Baustein „QuellInfo“ direkt die Aussage über die
Quellressource („QuellRess“) zu diesem Auftrag finden. Der „Quelle“ benannte Funkti-
onsbaustein ist dann für die Auswahl des Aussagewerts zuständig, so dass die Kennung
des Quelltanks das Ergebnis der Operation VALUE ist.

Die Bausteine im unteren Teil von Abbildung 6.5 bilden den Abfrageteil, der an das
LIMS gerichtet ist. Es wird angenommen, dass im LIMS Merkmalträger vom Typ „Pro-
be“ verfügbar sind, und dass diese Merkmalträger ein Merkmal „Entnahmestelle“ be-
sitzen. Entsprechend findet der Baustein „Tankproben“ diejenigen Proben, die aus dem
aktuellen Tank entnommen wurden. Unter all diesen Proben wird dann durch einen
AGGRALL-Baustein diejenige mit dem aktuellsten Datum herausgesucht. Der Funkti-
onsbaustein „QDichte“ erfragt letztendlich die in dieser Probe gemessene Dichte.

Die gesamte Abfrage wird dann ausgeführt, wenn durch den Wechsel der Variable
„PumpeEin“ auf true das Einschalten der Pumpe signalisiert wird. PumpeEin ist der
einzige Eingang dieses Diagramms mit variablem Wert, so dass die gesamte, verhältnis-
mäßig komplexe Abfrage sich nach außen relativ einfach darstellt.

96

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

6.3. Anwendungsbeispiele

Abbildung 6.5.: Beispielsanwendung der Funktionsbausteinbibliothek. Es wird zunächst der

Quelltank des aktuellen Pumpauftrags aus dem MES abgefragt (oben), dann die Dichte des

Erdöls darin aus dem LIMS (unten).

97

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

7.1. Diskussion der Grundidee

Ein wesentlicher Beitrag dieser Arbeit ist die Idee, überhaupt eine Abfragesprache für
technische Merkmale zu spezifizieren und zu implementieren. Diese Idee ist natürlich
eine Grundvoraussetzung. Hier sind jedoch sowohl die Problemstellung als auch die Lö-
sung verhältnismäßig weit vom aktuellen Stand der Technik entfernt. Es gibt bisher nur
wenige Beispiele, in denen Abfragesprachen speziell für bestimmte Anwendungsgebiete
definiert wurden (z.B. [44, 56, 68]) und keine für die Abfrage von Merkmalinformation.
Folglich muss schon die Grundidee kritisch hinterfragt werden.

Die wichtigste Voraussetzung für die Sinnhaftigkeit der vorgeschlagenen Lösung ist,
dass die Kommunikation von Automatisierungssystemen, d.h. hier insbesondere (Soft-)
SPSen, zunimmt. Wenn eine SPS nicht an ein Netzwerk angeschlossen ist, oder wenn die
SPS oder das Netzwerk nicht für die Kommunikation konfiguriert sind, dann lässt sich
diese Lösung nicht umsetzen. Die Verfügbarkeit von netzbasierter Kommunikation ist
aber auch die Grundidee der Themen „Industrie 4.0“ und „Industrial Internet“ [1]. Aus
dem Grund ist die Wahrscheinlichkeit der zukünftig (noch) höheren Verfügbarkeit von
Kommunikationsfähigkeiten äußerst hoch und wird in Fachkreisen auch nicht in Frage
gestellt.

Eine größer werdende Menge an kommunikationsfähigen Teilnehmern eines Netz-
werks bedeutet fast immer auch eine Vergrößerung der Informationsmenge im Netz. Die
einzige Ausnahme davon wäre, wenn die Netzteilnehmer zunehmend weniger oder gar
keine Information bereitstellen würden, was aber ein äußerst unwahrscheinliches und
widersprüchliches Szenario wäre. Insgesamt ist die Annahme, dass SPSen in Zukunft
durch Vernetzung mehr Information zur Verfügung haben werden, realistisch. Techni-
sche Lösungen für den Informationszugriff existieren (z.B. [62]).

Die größere Verfügbarkeit von Information wirft die Frage auf, ob der Aufwand zur
Nutzung der Information vertretbar gering oder überhaupt zu bewältigen sein wird. In
dieser Arbeit wird die These vertreten, dass eine Nutzung der Vernetzung zumindest
erhebliche neue Probleme mit sich bringen wird, so dass bald ein Bedarf an neuen Lö-
sungskonzepten besteht. Diese These wird durch drei Beobachtungen gestützt:

• Heute übliche Punkt-zu-Punkt-Verbindungen in einem Netz werden jeweils als
Einzelfall angelegt und gewartet.

• Die Anzahl möglicher Punkt-zu-Punkt-Verbindungen in einem Netz wächst qua-
dratisch mit der Anzahl der Teilnehmer.

• Die Informationsverfügbarkeit führt zu neuen Ideen zur Informationsnutzung, die
wiederum neue Information erzeugen können und neue Nutzungsmöglichkeiten
eröffnen.

98

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

7.2. Diskussion der Abfragesprache

Daher wird die Korrektheit der These als realistisch eingestuft. Für die Verringerung
der zu erwartenden Aufwände gibt es mehrere denkbare Möglichkeiten, beispielswei-
se könnte auch versucht werden, die Verwaltung von Punkt-zu-Punkt-Verbindungen zu
automatisieren. Die hier vertretene Lösung, den Informationszugriff über einen zentra-
len Dienst zu realisieren, ist daher nur eine Möglichkeit. Für diese Möglichkeit spricht in
erster Linie die Erfahrung aus dem Internet, in dem sich beispielsweise Domain Name
Server und Suchmaschinen als zentrale Zugriffspunkte für verteilte Information etabliert
haben.

Die nächste wichtige Frage ist, warum der Informationsaustausch auf Basis von Merk-
malen geschehen soll. Ein wichtiges Argument dafür ist, dass ein zentraler Dienst zur
Informationsabfrage nur dann funktionieren kann, wenn es Konventionen über die Se-
mantik der Daten gibt. Wenn die Semantik je nach ursprünglicher Informationsquelle
grundverschieden ist, kann der Dienstnutzer nicht mehr von dieser Informationsquelle
abstrahieren und ein wesentlicher Vorteil des Dienstes wird verloren. Dies ist ein wichti-
ger Unterschied zu Suchmaschinen im Internet, bei denen es keine Zusicherungen über
die Semantik der gefundenen Information gibt. Für den hier diskutierten Dienst stellt
sich also die Frage nach der semantischen Basis. Technische Merkmale sind eine beson-
ders einfache und weit anwendbare semantische Basis und es „erscheint [...] möglich,
mit standardisierten Merkmalmodellen einen Interoperationsgrad zu erreichen, der für
viele Anforderungen ausreichend ist“ [29]. Die Wahl von Merkmalen als Basis lässt sich
also nicht durch harte Fakten begründen, ist aber in Anbetracht des Anwendungsbe-
reichs eine sinnvolle Wahl.

Die Spezifikation einer Abfragesprache ist dann eine direkte Konsequenz aus mög-
lichen Anwendungsszenarien. Die Möglichkeit der Abfrage eines bestimmten Aussa-
gewerts über einen bekannten Merkmalträger ist in vielen Anwendungen nicht ausrei-
chend. Stattdessen wird oft eine Information gesucht, für die sehr spezielle und komple-
xe Bedingungen gelten (wie im Beispiel in Abschnitt 6.3). Die Verwendung einer voll-
ständigen Abfragesprache anstelle einfacher Leseoperationen ist daher eine praktische
Notwendigkeit.

Insgesamt beruht die Argumentation, warum eine Lösung dieser Art sinnvoll und so-
gar notwendig ist, auf plausiblen und wahrscheinlichen Annahmen. Ein Kritikpunkt ist
jedoch, dass Entwicklungen vorweggenommen werden und letztlich ein Problem gelöst
wird, das heute noch nicht in einer relevanten Größe existiert. Beim tatsächlichen Auftre-
ten des Problems können bereits andere Technologien und Standards verfügbar sein, die
in dieser Lösung nicht berücksichtigt sind. Letztlich erscheint es dennoch wahrschein-
lich, dass Grundideen dieser Arbeit verwendet werden können.

7.2. Diskussion der Abfragesprache

Durch die Verwendung relationaler Algebra als Grundlage besteht eine gesicherte, an-
erkannte und der Anwendung gerechte Basis. Die fehlende Funktionalität der relationa-
len Algebra wurde passend ergänzt. Von der theoretischen Seite ist die Abfragesprache
somit gut begründet. In ähnlichen Arbeiten zur Erstellung spezieller Abfragesprachen
wurde ebenfalls dieser Weg bestritten (z.B. [56, 68]).

Eine andere Frage ist der tatsächliche praktische Nutzen. Das hier vollzogene Vorge-
hen ist systematisch: Die relevanten technischen Grundlagen im industriellen Umfeld

99

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

wurden betrachtet und daraus Anforderungen abgeleitet, die von der Lösung erfüllt
werden. Es verbleibt aber der Kritikpunkt, dass die Abfragesprache mehr durch Tech-
nik und Theorie als durch empirisch nachgewiesenen Nutzen motiviert ist: In Abschnitt
5.3 wurden Operationen der Abfragesprachen unter Nennung von praktischen Beispie-
len definiert. Ob diese Anwendungsfälle realistisch sind, ob der Einsatz der Abfragen
einen praktischen Gewinn darstellt und ob es nicht unerfüllbare Nebenbedingungen
gibt, wurde nicht analysiert. Das ist natürlich dadurch zu erklären, dass es derzeit keine
vergleichbare Technologie und Erfahrungen damit gibt. Letztlich ist die praktische An-
wendbarkeit der Abfragesprache aber nur eine begründete Vermutung, deren Beweis
noch ausbleibt. Dieser Kritikpunkt wiegt weniger schwer, weil die zukünftige Spezifika-
tion zusätzlicher Operationen nicht ausgeschlossen ist und sogar erwartet wird.

7.3. Diskussion der Integration

Die beschriebene Integration der Technologie stützt sich auf existierende Normen und
Standards. Eine Untersuchung der in Unternehmen heute vorhandenen Technologien
hat jedoch nicht stattgefunden. Beispielsweise fehlt der Beweis dafür, dass die in Kapitel
3.3 beschriebenen Software-Systeme tatsächlich geeignete Datenschnittstellen anbieten.
In dieser Hinsicht stützt sich die Arbeit auf die Annahme, dass real verwendete Techno-
logien nicht „zu weit“ von diesen Normen und Standards entfernt sind.

In Abschnitt 3.1 wurde diskutiert, welche Merkmalmodelle und Katalogsysteme heu-
te verfügbar sind. Die Verfügbarkeit von systematischen und großen Merkmaldefinitio-
nen ist daher nicht fraglich. Ob diese Merkmaldefinitionen in der industriellen Praxis
tatsächlich Anwendung finden ist damit aber noch nicht gesagt. Für die Integration der
hier vorgeschlagenen Technologie ist der Einsatz einheitlicher Merkmaldefinitionen aber
eine zwingende Voraussetzung und macht bei Nichterfüllung einen erfolgreichen Ein-
satz unmöglich. Das ist aber nicht nur ein Problem dieser konkreten Technologie und
wird ohnehin eine zukünftige Herausforderung der Automatisierungstechnik sein.

In der prototypischen Implementierung wurden Daten im BMEcat-Format integriert.
Diese Integration war ohne Probleme durchführbar, was jedoch kein Beweis dafür ist,
dass auch andere existierende Datenformate und Informationssysteme problemlos an-
gebunden werden können. Die universelle Gültigkeit des in Kapitel 2.1 vorgestellten
Merkmalmodells wird vorausgesetzt und ist eine kritische Vorbedingung für das Funk-
tionieren der hier beschriebenen Technologie. Neben dieser Frage der grundsätzlichen
Abbildbarkeit von existierenden Datenformaten spielt in der Praxis natürlich auch die
Schnelligkeit der Datenverarbeitung eine Rolle, denn jede Abfrage muss innerhalb eines
gewissen Zeitfensters beantwortet werden (selbst wenn es keine harten Echtzeitbedin-
gungen gibt). Dieses Problem wird von dieser Arbeit absichtlich nicht behandelt, weil es
als Problem der Implementierung im Einzelfall gesehen wird und weil Fragestellungen
dieser Art in den fachlichen Bereich der Informatik und der Softwaretechnik fallen, wo
sie bereits behandelt werden.

Die Implementierung von Abfragen durch Funktionsbausteine hat zwei wesentliche
Gründe: Erstes werden in der IEC 61131-5 ebenfalls Funktionsbausteine für Kommuni-
kationsaufgaben verwendet und diese Spezifikation kann teilweise übernommen wer-
den. Zweitens sind Funktionsbausteine genau wie Abfragesprachen eine deklarative
Programmiersprache, so dass diese Paradigmen gut zusammenpassen. Letztlich wäre

100

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

7.4. Ausblick

es aber alternativ möglich, Abfragen wie bei Abfragesprachen wie SQL textuell zu im-
plementieren und ggf. nur die Ausführung durch einen QUERY-Funktionsbaustein vor-
zunehmen. Eine Untersuchung, welche der Vorgehensweisen komfortabler und damit
auch besser akzeptiert wäre, hat in dieser Arbeit nicht stattgefunden.

7.4. Ausblick

Für die erfolgreiche Integration und Anwendung des Konzepts werden noch einige Ar-
beiten notwendig sein. Dies sind im Einzelnen:

• Existierende, genormte bzw. standardisierte Merkmale und Schnittstellen müssen
angewendet werden. Es ist heute nicht das Problem, dass solche Standards nicht
vorhanden wären, sondern dass sie noch nicht breit eingesetzt werden und dass
die Anwendung in Details oft nicht einheitlich ist. Solche kleinen Unterschiede
waren bisher wegen der mehr manuellen und lokalen Datenverarbeitung ggf. nicht
relevant, würden aber als Probleme auftreten. Der positive Aspekt daran ist, dass
solche Inkonsistenzen schneller als bisher erkannt würden und durch den Nutzen
auch eine Motivation zur Vereinheitlichung besteht.

• Die von einzelnen Systemen veröffentlichte Merkmalinformation muss definiert
und verwaltet werden. Letztlich kann die Verfügbarkeit von Information auch zu
einem Problem werden, wenn sich andere Systeme auf die bestehende Verfügbar-
keit verlassen und ggf. sogar weitere Information daraus folgern. Daher müssen
organisatorische Strukturen eingeführt werden, durch die die Rechte zur Veröf-
fentlichung und zum Informationszugriff verwaltet und technisch durchgesetzt
werden. Wenn durch die hier vorgestellte Technologie auch schreibende Zugriffe
ermöglicht werden sollen, sind entsprechend strengere Maßnahmen notwendig.

• Die vorhandenen Kommunikationsnetze müssen auf ihre Eignung hin überprüft
und evtl. angepasst werden. Dies betrifft beispielsweise die Verbindung einer
großen Anzahl von Endgeräten, Gewährleistung einer ausreichend schnellen An-
bindung des Dienstes für Merkmalabfragen und das Ermöglichen der Kommuni-
kation über Subnetze hinweg (z.B. durch entsprechende Konfiguration von Fire-
walls).

• Der Merkmaldienst muss für den Betrieb in der industriellen Praxis implementiert
werden. Im Rahmen dieser Arbeit wurde eine prototypische Implementierung er-
stellt, deren Zweck jedoch allein das Aufzeigen der Umsetzbarkeit des Konzepts
ist. Für den Praxisbetrieb spielen die Skalierbarkeit des Dienstes, die Zusicherung
einer Dienstqualität und die Verfügbarkeit der notwendigen Plug-Ins zur Daten-
anbindung eine wichtige Rolle. Diese Aspekte machen die Implementierung eines
praxisgerechten Merkmaldienstes zu einer umfangreichen Aufgabe, für die der
Prototyp und die Pläne zur Systemarchitektur nur einige Grundlagen sind. Hier
kann ggf. auf vorhandene Technologien aus den Gebieten „Enterprise Information
Integration“ und „Data Warehouses“ zurückgegriffen werden.

• Der letzte (aber entscheidende) Schritt ist natürlich die Entwicklung von Anwen-
dungen, die die Technologie nutzen. Experten rechnen damit, dass durch die Mög-

101

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

7. Diskussion und Ausblick

lichkeiten der Vernetzung industrieller Produktionsanlagen zunächst nur quan-
titative Verbesserungen erzielt werden, beispielsweise bessere Produktqualitäten,
geringere Kosten und mehr Produktvarianten. Erst darauf folgt die Entwicklung
neuer Geschäftsmodelle, die ohne Vernetzung nicht möglich gewesen wären [77].
Mit der hier vorgestellten Technologie wird es sich ähnlich verhalten. Zu den heute
offensichtlichen Einsatzmöglichkeiten werden zusätzliche, heute noch unbekannte
Anwendungen hinzukommen. Die Nutzung der Technologie wird selbst zur Ent-
wicklung dieser Anwendungen beitragen.

102

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

Die folgenden Zeilen spezifizieren die in dieser Arbeit definierten Funktionsbausteine
in Form einer Modelldatei für das OV-Laufzeitsystem.

/**

PropertyInfos.ovm

This Library provides function blocks for building and
executing queries on property data.

In order to work, a respective property service needs to be
running and the following parameters need to be configured
in the server’s config file:

PropertyService-IP=<IP-Address>
PropertyService-Port=<Port number>
PropertyService-Retry-Connect=<Max. number of connection

attempts>

*/
#include "ov.ovm"
#include "fb.ovm"
#include "ServiceClient.ovm"

LIBRARY PropertyInfos
VERSION = "V0.1 (23-Oct-2015)";
AUTHOR = "David Kampert";
COMMENT = "Library for request of property information from

remote systems.";

/**
The Query block. Executes the queries.

*/
CLASS QUERY : CLASS fb/functionblock

IS_INSTANTIABLE;
VARIABLES

REQ : BOOL HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Reqest. The query is executed if
the value of this imput changes to true."
INITIALVALUE = FALSE;

Q : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Query. Input port of the query."
INITIALVALUE = "";

VAL : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. Input port to identify

103

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

the value from the query result that will
be written to RD." INITIALVALUE = "";

PROP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. If the value of PROP
is not empty, the query will return the
value of a specific statement on this
property, provided that Q represents a set
of property carriers or property carrier
types. The statement is specified by the
inputs ST, REL, VAL and UN." INITIALVALUE =
"";

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The type of the
queried statement on PROP." INITIALVALUE =
"";

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type of
the queried statement on PROP."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit of the queried
statement on PROP." INITIALVALUE = "";

NDR : BOOL HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "New Data Received. Flag that
indicates the advent of a result. Is reset
after one cycle." INITIALVALUE = FALSE;

ERROR : BOOL HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Error. Indicates of any error
occured during execution of the query.
False, if no error occured." INITIALVALUE =
FALSE;

STATUS : INT HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Status. Output of the error code
according to IEC 61131-5, if any error
occured. 0, if no error occured."
INITIALVALUE = 0;

RES : ANY HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Result.";

state : INT FLAGS = "n" COMMENT = "Internal
state of execution." INITIALVALUE = 0;

pReply : C_TYPE <OV_INSTPTR> COMMENT = "
Pointer to an expexted call answer.";

try : INT FLAGS = "n" COMMENT = "Number of
cennection attempts." INITIALVALUE = 0;

END_VARIABLES;
OPERATIONS

constructor : C_FUNCTION <OV_FNC_CONSTRUCTOR>;
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

104

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

CLASS OpBase : CLASS fb/functionblock
VARIABLES

RES : STRING HAS_GET_ACCESSOR FLAGS = "o"
COMMENT = "Result. The operation result."
INITIALVALUE = "";

END_VARIABLES;
END_CLASS;

/**
The Reduce block. Will reduce the provided data to the

provided attributes. Useful to ’cut off’
unnecessary information.

*/
CLASS REDUCE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attributes. The attributes to
reduce to, i.e. ’what will be left’."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Value block. Gets the value of a spcified

attribute.

*/
CLASS VALUE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attribute. The result is the
value of this attribute’." INITIALVALUE =
"";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

105

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

/**
The Choose block. Will reduce the provided data to

those elements that fulfil the provided condition,
e.g. a minimum age.

*/
CLASS CHOOSE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

COND : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Condition. The condition must
evaluate to a Boolean value, but may
contain arithmetic computations and String
comparisons ($== for equals, $!= for not
equals). Variables may be referred to by
the syntax <type>:<attribute>, e.g.
STATEMENT:VALUE." INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Combine block. The result is the carthesian

product of the inputs, i.e. all possible
combinations of the elements in DATA1 and DATA2.

*/
CLASS COMBINE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA1 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Union block. The result is the union of the

elements in DATA1 and DATA2. The elements have to
possess the same attributes.

*/

106

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

CLASS UNION : CLASS PropertyInfos/OpBase
IS_INSTANTIABLE;
VARIABLES

DATA1 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Remove block. Removes the elements in DATA2 from

DATA1, i.e. RES = DATA1 - DATA2.

*/
CLASS REMOVE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA1 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

DATA2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Rename block. Renames attributes.

*/
CLASS RENAME : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

OLD : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Old name of the attribute."
INITIALVALUE = "";

NEW : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "New name of the attribute."
INITIALVALUE = "";

END_VARIABLES;

107

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

/**
The TypeOf block. Gets the types of the provided

elements, i.e. the property carrier types or
property types. Both kinds of elements may be
provided.

*/
CLASS TYPEOF : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

SUB : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Subordinate. The types of these
objects are returned." INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Aggregate All block. Aggregates the values of

statements or results of other operations by a
given operation.

*/
CLASS AGGRALL : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to.
Must either be statements or results of
other operations." INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that the aggregation is applied to. If
this input is empty, the concents of DATA
will be used. If this input is not empty,
the aggregation will only be applied to the
statements on entities in ENT that match
the citeria defined by the other inputs."
INITIALVALUE = "";

OP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Operation. The operation to

108

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

apply. Supported: +,-,*,/,MAX,MIN,NUM."
INITIALVALUE = "";

TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type in ENT
to match." INITIALVALUE = "";

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";

PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property in ENT to
match." INITIALVALUE = "";

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";

VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value into match."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Aggregate Each block. Aggregates the values of the

provided attributes in each provided element by a
given operation.

*/
CLASS AGGREACH : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that the aggregation is applied to. If
this input is empty, the concents of DATA
will be used. If this input is not empty,
the aggregation will only be applied to the
statements on entities in ENT that match
the citeria defined by the other inputs."
INITIALVALUE = "";

ATTR : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Attributes. Comma-separated list
of attribute names. The operation will be

109

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

applied to the attributes in the provided
order." INITIALVALUE = "";

OP : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Operation. The operation to
apply. Supported: +,-,*,/,MAX,MIN,NUM."
INITIALVALUE = "";

TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type in ENT
to match." INITIALVALUE = "";

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";

PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property to match
." INITIALVALUE = "";

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";

VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value to match."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Join Statements block. Joins entities (property

carriers or property carrier types) with all
statements from DATA that affect them. The result
is a list that has as many entries as relevant
statements, where each entry contains information
from the property carrier (type) and the statement.

*/
CLASS JOINSTMT : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) that should be joined with the respective
statements." INITIALVALUE = "";

END_VARIABLES;

110

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

/**
The Has A Property block. Returns those entities (

property carriers or property carrier types) that
possess a given property.

*/
CLASS HASAPROP : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) are searched for a property."
INITIALVALUE = "";

PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property to search."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Is Of Type block. Returns those entities (property

carriers or property carrier types) that are of a
given property carrier type.

*/
CLASS ISOFTYPE : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to check for a type. Any data that does
not describe property carriers or property
carriert types within this set will be
ignored." INITIALVALUE = "";

TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type to

111

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

search." INITIALVALUE = "";
END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**
The Whichones block. Returns those entities (property

carriers or property carrier types) for which a
statement exists, that matches given criteria.

*/
CLASS WHICHONES : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to check for the criteria. Any data that
does not describe property carriers or
property carriert types within this set
will be ignored." INITIALVALUE = "";

TYPE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "The property carrier type to
match." INITIALVALUE = "";

ST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Statement Type. The statement
type to match." INITIALVALUE = "";

PROP: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Property. The property to match
." INITIALVALUE = "";

REL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. The relation type to
match." INITIALVALUE = "";

VAL: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Value. The value to match."
INITIALVALUE = "";

UN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Unit. The unit to match."
INITIALVALUE = "";

END_VARIABLES;
OPERATIONS

typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;
END_OPERATIONS;

END_CLASS;

/**

112

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

The Matching block. Returns those property carriers
from ENT1 and ENT2 for which anoter entity in ENT2
(rep. ENT1) exists that matches in the indicated
criteria.

*/
CLASS MATCHING : CLASS PropertyInfos/OpBase

IS_INSTANTIABLE;
VARIABLES

DATA : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Data to apply the operation to."
INITIALVALUE = "";

ENT1 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to compare with entities from ENT2."
INITIALVALUE = "";

ENT2 : STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Entities. The set of entities (
property carriers or property carrier types
) to compare with entities from ENT2."
INITIALVALUE = "";

MID: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Id. Indicates if the id
should be matched (TRUE of FALSE)."
INITIALVALUE = "";

MTY: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Type. Indicates if the
property carrier type should be matched (
TRUE of FALSE)." INITIALVALUE = "";

MPR: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Property. Indicates if the
property type should be matched (TRUE of
FALSE)." INITIALVALUE = "";

MST: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Statement. Indicates if
the statement type should be matched (TRUE
of FALSE)." INITIALVALUE = "";

MRE: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Relation. Indicates if the
statement relation should be matched (TRUE
of FALSE)." INITIALVALUE = "";

MUN: STRING HAS_SET_ACCESSOR FLAGS = "i"
COMMENT = "Match Unit. Indicates if the
statement unit should be matched (TRUE of
FALSE)." INITIALVALUE = "";

REL : STRING HAS_GET_ACCESSOR FLAGS = "i"
COMMENT = "Relation. That the statement
values should be in (=,!=,<,<=,>,>=)."
INITIALVALUE = "";

END_VARIABLES;

113

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

A. Spezifikation der Funktionsbausteine

OPERATIONS
typemethod : C_FUNCTION <FB_FNC_TYPEMETHOD>;

END_OPERATIONS;
END_CLASS;

/**
Only for internal configuration management.

*/
CLASS Config : CLASS ov/object

IS_INSTANTIABLE;
VARIABLES

ServiceIP : STRING COMMENT = "IP address of
the service’s server." INITIALVALUE = "";

ServicePort : STRING COMMENT = "Port on the
service’s server." INITIALVALUE = "";

RetryConnect : INT COMMENT = "Number of
connection attempts. Connection fails after
failing the specified number is reached."
INITIALVALUE = 1;

END_VARIABLES;
OPERATIONS
END_OPERATIONS;

END_CLASS;
END_LIBRARY;

114

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

B. Verhalten des Bausteins QUERY

Die folgende C-Funktion enthält die Ausführungslogik des Bausteins QUERY. Unter-
funktionen sind aufgrund des Umfangs nicht abgedruckt.

/*
Main function of function block QUERY.

*/
OV_DLLFNCEXPORT void PropertyInfos_QUERY_typemethod(

OV_INSTPTR_fb_functionblock pfb,
OV_TIME *pltc

) {
OV_INSTPTR_PropertyInfos_QUERY pinst = Ov_StaticPtrCast(

PropertyInfos_QUERY, pfb);
OV_INSTPTR_PropertyInfos_Config pConfig;
OV_INT_VEC blockStack = {0, NULL};
OV_RESULT result = OV_ERR_OK;

switch (pinst->v_state){
case STATE_IDLE:

pinst->v_NDR = FALSE;
pinst->v_ERROR = FALSE;
return;

case STATE_REQ:
pinst->v_REQ = FALSE;

// Update the inputs. Triggers a backwards search that
will update all connected blocks of type OpBase.

Ov_SetDynamicVectorLength(&blockStack, 0, INT);
result = updateQueryInput(&blockStack, pinst, NULL);
Ov_SetDynamicVectorLength(&blockStack, 0, INT);

// Check the inputs.
if (result != OV_ERR_OK || !checkInputs(pinst)

){
pinst->v_state = STATE_ERROR;
pinst->v_ERROR = TRUE;
pinst->v_STATUS =

IEC_STATUS_INPUT_ERROR;
return;

}

// Do the call.
pinst->v_pReply = NULL;

115

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

B. Verhalten des Bausteins QUERY

if (!executeRequest(pinst, (
OV_INSTPTR_ServiceClient_CallReply*)&pinst->
v_pReply, getTmpDomain(pinst))){

pinst->v_state = STATE_ERROR;
pinst->v_ERROR = TRUE;
pinst->v_STATUS = IEC_STATUS_NO_COMM;
return;

}

// Reset the output.
ov_string_setvalue(&pinst->v_RES.value.valueunion.

val_string, NULL);
// Now wait.
pinst->v_state = STATE_WAITING;
pinst->v_STATUS = IEC_STATUS_BUSY;
return;

case STATE_WAITING:
pinst->v_try++;
if (pinst->v_pReply == NULL){

pConfig = (OV_INSTPTR_PropertyInfos_Config)
ov_path_getobjectpointer(CONFIGPATH, 0);

if (pinst->v_try > pConfig->v_RetryConnect){
// Max attempts reached.
pinst->v_state = STATE_ERROR;
pinst->v_STATUS = IEC_STATUS_NO_COMM;

}
break;

}
// We have an answer if this line is reached.
result = OV_ERR_GENERIC;
result = handleReply(pinst);
if (!Ov_OK(result)){

pinst->v_state = STATE_ERROR;
pinst->v_STATUS = IEC_STATUS_DATA_ERROR;
break;

}
pinst->v_state = STATE_NEWDATA;
pinst->v_STATUS = IEC_STATUS_OK;
break;

case STATE_NEWDATA:
pinst->v_NDR = TRUE;
pinst->v_state = STATE_IDLE;
pinst->v_try = 0;
deleteTmpDomain(pinst);
break;

case STATE_ERROR:
pinst->v_ERROR = TRUE;

116

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

pinst->v_state = STATE_IDLE;
pinst->v_try = 0;
deleteTmpDomain(pinst);
break;

}
return;

}

117

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

C. Abkürzungsverzeichnis

ACPLT Aachener Prozessleittechnik
AS Ablaufsprache
AT Automatisierungstechnik
AWL Anweisungsliste
CAD Computer Aided Design
FB Funktionsbaustein (Eigenname einer Bibliothek)
FBS Funktionsbausteinsprache
IT Informationstechnologie
KOP Kontaktplan
KS Kommunikationssystem (Kommunikationsprotokoll

und Eigenname einer Bibliothek)
LIMS Labor-Informations und Management-System
MES Manufacturing Execution System
OPC DA Object Linking and Embedding for Process Control

Data Access (Eigenname)
OPC UA Object Linking and Embedding for Process Control

Unified Architecture (Eigenname)
OV Objektverwaltung (Eigenname eines Laufzeitsystems)
PC Personal Computer
R&I~ Rohrleitungs- und Instrumenten~
SPS Speicherprogrammierbare Steuerung
SQL Structured Query Language
ST Strukturierter Text
UML Unified Modeling Language

118

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[1] acatech – Deutsche Akademie der Technikwissenschaften (2013). Umsetzungsemp-
fehlungen für das Zukunftsprojekt Industrie 4.0.

[2] Ahrens, W. (2010). Eine Gegenüberstellung von VDI/VDE 3682, PROLIST, eCl@ss.
atp – Automatisierungstechnische Praxis 9/2010, 32–45.

[3] Ahrens, W. und M. Polke (1994). Prozeßleittechnik, Chapter 2, S. 21–90. Oldenbourg
Verlag.

[4] American National Standards Institute (2011, Mai). ANSI/INCITS/ISO/IEC
9899:2011: Information technology - Programming language - C.

[5] Barth, M. und A. Fay (2010, Nov). Efficient use of data exchange formats in engi-
neering projects by means of language integrated queries – Engineers LINQ to XML.
In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, S. 1335–
1340.

[6] Brecher, C., W. Herfs, D. Behnen und J. Flender (2015). Planungsunterstützte Pro-
grammierung von Steuerungssystemen. In Automation 2015: Benefits of Change - the
Future of Automation, S. 1055–1066. VDI-Verlag.

[7] Chamberlin, D. D. und R. F. Boyce (1974). SEQUEL: A Structured English Query
Language. In Proceedings of 1974 ACM-SIGMOD Workshop on Data Description, Access
and Control, Ann Arbor, Michigan, May 1-3, 1974, 2 Volumes, S. 249–264.

[8] Chen, P. (1976). The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9–36.

[9] Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Commun.
ACM 13(6), 377–387.

[10] Codd, E. F. (1972). Relational Completeness of Data Base Sublanguages. In: R.
Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987, San
Jose, California.

[11] Connolly, T., C. Begg und A. Strachan (2002). Datenbanksysteme. Addison-Wesley.

[12] Defense Advanced Research Projects Agency (1981a, September). RFC 791: In-
ternet Protocol. URL https://tools.ietf.org/html/rfc791, (besucht am
09.12.2015).

[13] Defense Advanced Research Projects Agency (1981b, September). RFC 793: Trans-
mission Control Protocol. URL https://tools.ietf.org/html/rfc793, (be-
sucht am 09.12.2015).

119

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[14] Deutsches Institut für Normung. DIN EN 61512: Chargenorientierte Fahrweise (alle
Teile).

[15] Deutsches Institut für Normung. DIN EN 62541: OPC Unified Architecture (alle
Teile).

[16] Deutsches Institut für Normung. DIN EN ISO 80000: Größen und Einheiten (alle
Teile).

[17] Deutsches Institut für Normung (2001, November). DIN EN 61131-5:2001: Spei-
cherprogrammierbare Steuerungen – Teil 5: Kommunikation.

[18] Deutsches Institut für Normung (2004, März). DIN EN 61131: Speicherprogram-
mierbare Steuerungen (alle Teile).

[19] Deutsches Institut für Normung (2004, Dezember). DIN EN 61360-1: Genormte
Datenelementtypen mit Klassifikationsschema für elektrische Bauteile – Teil 1: Defi-
nitionen.

[20] Deutsches Institut für Normung (2011, September). DIN ISO 17356:2011: Zustands-
überwachung und -diagnostik von Maschinen – Allgemeine Anleitungen.

[21] Deutsches Institut für Normung (2014a, Juni). DIN EN 61131-3:2014: Speicherpro-
grammierbare Steuerungen – Teil 3: Programmiersprachen.

[22] Deutsches Institut für Normung (2014b, September). DIN EN 61499: Funktionsbau-
steine für industrielle Leitsysteme (alle Teile).

[23] Deutsches Institut für Normung. DIN 4002: Merkmale und Geltungsbereiche zum
Produktdatenaustausch (alle Teile).

[24] Deutsches Institut für Normung (2014). DIN SPEC 40912: Kernmodelle - Beschreibung
und Beispiele. Beuth Verlag.

[25] Diedrich, C., M. Meyer, L. Evertz und W. Schäfer (2014). Dienste in der Automatisie-
rungstechnik - Automatisierungsgeräte werden I40-Komponenten. atp edition 12/2014.

[26] eCl@ss e.V. URL http://www.eclass.de, (besucht am 09.12.2015).

[27] Eibl, M., D. Westphal, P. Zgorzelski, U. Kaptein und H.-J. Rudolf (2000). eCl@ss –
ein Werkzeug zur Unterstützung der Prozesse im eCommerce, der Materialwirtschaft
und der Anlagendokumentation, bezogen auf das PLT-Gewerk. atp – Automatisie-
rungstechnische Praxis 10/2000.

[28] Enste, U. (2001). Generische Entwurfsmuster in der Funktionsbausteintechnik und deren
Anwendung in der operativen Prozeßführung. VDI Verlag GmbH.

[29] Epple, U. (2011). Merkmale als Grundlage der Interoperabilität technischer Syste-
me. at – Automatisierungstechnik 59, 440–450.

[30] Evertz, L. und U. Epple (2013). Laying a Basis for Service Systems in Process Con-
trol. In ETFA 2013: IEEE 18th International Conference on Emerging Technologies and Fac-
tory Automation, Piscataway, NJ. IEEE.

120

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[31] George, J. (2014). Der Prolist-Workflow im eClass-Umfeld. atp edition 1-2/2014.

[32] Heeg, M. (2005). Ein Beitrag zur Modellierung von Merkmalen im Umfeld der Prozesslei-
ttechnik. VDI Verlag GmbH.

[33] Hepp, M., J. Leukel und V. Schmitz (2005). A quantitative analysis of eCl@ss, UN-
SPSC, eOTD, and RNTD content, coverage, and maintenance. In ICEBE 2005: IEEE
International Conference on e-Business Engineering, S. 572–581.

[34] Höme, S., J. Grützner, T. Hadlich, C. Diedrich, D. Schnäpp, S. Arndt und E. Schnie-
der (2015). Semantic Industry: Herausforderungen auf dem Weg zur rechnergestütz-
ten Informationsverarbeitung der Industrie 4.0. at Automatisierungstechnik 2, 74 – 86.

[35] Hsu, C., G. Babin, W. Cheung, L. Rattner und L. Yee (1992). Metadatabase Modeling
for Enterprise Information Integration. Journal of Systems Integration 2, 5–39.

[36] International Electrotechnical Commission. IEC 61360 – Common Data
Dictionary. URL http://std.iec.ch/iec61360, (besucht am 09.12.2015).
http://std.iec.ch/iec61360.

[37] International Electrotechnical Commission. IEC 61360: Standard data element types
with associated classification (alle Teile).

[38] International Electrotechnical Commission. IEC 61987: Industrielle Leittechnik –
Datenstrukturen und -elemente in Katalogen der Prozessleittechnik (alle Teile).

[39] International Electrotechnical Commission. IEC 62264: Integration von
Unternehmensführungs- und Leitsystemen (alle Teile).

[40] International Electrotechnical Commission (2003, September). IEC TR 61131-8: Pro-
grammable controllers – Part 8: Guidelines for the application and implementation of
programming languages.

[41] International Electrotechnical Commission (2011, September). IEC 61804-3 Ed. 2.0:
Function blocks (FB) for process control - Part 3: Electronic Device Description Lan-
guage (EDDL.

[42] International Organization for Standardization. ISO 10303: Industrielle Automati-
sierungssysteme und Integration - Produktdatendarstellung und -austausch (alle Tei-
le).

[43] International Organization for Standardization. ISO 13584: Industrielle Automati-
sierungssysteme und Integration - Teilebibliothek (alle Teile).

[44] International Organization for Standardization, International Electrotechnical Com-
mission (2007). ISO/IEC 13249: Information technology - Database languages - SQL
multimedia and application packages (alle Teile).

[45] International Organization for Standardization, International Electrotechnical Com-
mission (2011). ISO/IEC 9075:Information technology - Database languages - SQL
(alle Teile).

121

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[46] International Telecommunication Union (1994, Juli). ITU-T X.200: Information tech-
nology – Open Systems Interconnection – Basic Reference Model: The basic model.

[47] John, K.-H. und M. Tiegelkamp (2000). SPS-Programmierung mit IEC 61131-3. Sprin-
ger.

[48] Kampert, D. und U. Epple (2013a). A Service Interface for Exchange of Property
Information. In IECON 2013 : 39th annual conference of the IEEE Industrial Electronics
Society, Piscataway, NJ, S. 6920–6925. IEEE.

[49] Kampert, D. und U. Epple (2013b). Dienste für den operativen Zugriff auf Merk-
malinformation in der Automatisierung - Spezifikation - Integration - Anwendung. In
Automation 2013 : 14. Branchentreff der Mess- und Automatisierungstechnik, Volume 2209
of VDI-Berichte, Düsseldorf, S. 61–64. VDI-Verl.

[50] Lacroix, M. und A. Pirotte (1977). Domain-Oriented Relational Languages. In Pro-
ceedings of the Third International Conference on Very Large Data Bases, October 6-8, 1977,
Tokyo, Japan., S. 370–378.

[51] Leitao, P., J. Mendes und A. Colombo (2008, Sept). Decision support system in
a service-oriented control architecture for industrial automation. In Emerging Tech-
nologies and Factory Automation, 2008. ETFA 2008. IEEE International Conference on, S.
1228–1235.

[52] Li, F., G. Bayrak, K. Kernschmidt und B. Vogel-Heuser (2012). Specification of the
Requirements to Support Information Technology-Cycles in the Machine and Plant
Manufacturing Industry. In 14th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM’12), S. 1077–1082.

[53] Manufacturing Enterprise Solutions Association (MESA) (2013). Business To Ma-
nufacturing Markup Language Release Notes Version 6.0. Technical report, Manu-
facturing Enterprise Solutions Association (MESA). URL http://www.mesa.org,
(besucht am 09.12.2015).

[54] Mertens, M. (2012). Verwaltung und Verarbeitung merkmalbasierter Informationen: vom
Metamodell zur technoligischen Realisierung. VDI Verlag GmbH.

[55] Meyer, D. (2002). Objektverwaltungskonzept für die operative Prozessleittechnik. VDI
Verlag GmbH.

[56] Mhlanga, F., J. Wang, T. Shiau und P. Ng (1992, Jun). A query algebra for office
documents. In Systems Integration, 1992. ICSI ’92., Proceedings of the Second International
Conference on, S. 458–467.

[57] NAMUR: Interessengemeinschaft Automatisierungstechnik der Prozessindustrie
(2003, Februar). NA 94: MES: Funktionen und Lösungsbeispiele der Betriebsleitebene.

[58] NAMUR: Interessengemeinschaft Automatisierungstechnik der Prozessindustrie
(2010, Juni). NE 100, Version 3.2: Nutzung von Merkmalleisten im PLT-Engineering-
Workflow.

122

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[59] OPC Foundation (2013). OPC Unified Architecture for ISA-95 Common Object Mo-
del Companion Specification Release 1.00. Technical report, OPC Foundation. URL
http://www.opcfoundation.org, (besucht am 09.12.2015).

[60] Organization for the Advancement of Structured Information Standards (2006, Ok-
tober). OASIS soa-rm: Reference Model for Service Oriented Architecture 1.0.

[61] Otto, B., H. Beckmann, O. Kelkar und S. Müller (2002). E-Business-Standards:
Verbreitung und Akzeptanz. Technical report, Fraunhofer-Institut für Arbeitswirt-
schaft und Organisation. URL http://publica.fraunhofer.de/documents/
N-9942.html, (besucht am 09.12.2015).

[62] PLCopen und OPC Foundation (2014). OPC-UA Client FUNCTION BLOCKS for
IEC61131-3. Technical report, PLCopen und OPC Foundation. URL http://www.
plcopen.org, (besucht am 09.12.2015).

[63] Prinz, J., A. Lüder, N. Suchold und R. Drath (2011). Beschreibung mechatronischer
Objekte durch Merkmale. atp edition 7-8/2011.

[64] Robert Thurlow (2009, Mai). RFC 5531: RPC: Remote Procedure Call Protocol Speci-
fication Version 2. URL https://tools.ietf.org/html/rfc5531, (besucht am
09.12.2015).

[65] Schlütter, M., U.Epple und T. Edelmann (2009). On service-orientation as a new ap-
proach for automation environments. In ARGESIM Report no. 35: Proceedings MATH-
MOD 09 Vienna - Full Papers CD Volume.

[66] Schuppert, A. und R. Perne (2005). Data Mining mit Prozessdaten. at - Automatisie-
rungstechnik 53, 342–349.

[67] Sokolov, S. und C. Diedrich (2013). Stammdaten im Engineering. at - Automatisie-
rungstechnik 6, 427 – 435.

[68] Sparr, T. (1982, June). A Language for a Scientific and Engineering Database System.
In Design Automation, 1982. 19th Conference on, S. 865–871.

[69] Sten Grüner and David Kampert and Ulrich Epple (2012, März). A Model-Based
Implementation of Function Block Diagram. In Tagungsband Modellbasierte Entwick-
lung eingebetteter Systeme, München, S. 81–90. fortiss GmbH.

[70] Steusloff, H. (1994). Prozeßleittechnik, Chapter 8, S. 535–569. Oldenbourg Verlag.

[71] Tauchnitz, T., E. Grötsch, U. Kuhn, D. Wichmann und E. Linzenkirchner (1997).
Handbuch der Prozeßautomatisierung, Chapter Methoden, Geräte und Systeme zur Pro-
zeßführung, S. 15–148. Oldenbourg Verlag.

[72] Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems. Computer
Science Press.

[73] Verein Deutscher Ingenieure (1995, Oktober). VDI/VDE 3696: Herstellerneutrale
Konfigurierung von Prozeßleitsystemen – Blatt 2: Standard-Funktionsbausteine.

123

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Literaturverzeichnis

[74] Verein Deutscher Ingenieure (2006, August). VDI Richtlinie 5600: Manufacturing
Execution Systems.

[75] Verein Deutscher Ingenieure e.V. und Zentralverband Elektrotechnik und Elek-
tronikindustrie (2015). Referenzarchitekturmodell Industrie 4.0 (RAMI4.0). Techni-
cal report, Verein Deutscher Ingenieure e.V. und Zentralverband Elektrotechnik und
Elektronikindustrie. URL http://www.zvei.org/Downloads/Automation/
Statusreport-Referenzmodelle-2015-v10.pdf, (besucht am 09.12.2015).

[76] Vicknair, C., M. Macias, Z. Zhao, X. Nan, Y. Chen und D. Wilkins (2010). A Compa-
rison of a Graph Database and a Relational Database: A Data Provenance Perspective.
In Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10, S. 42:1–42:6.

[77] World Economic Forum (2015). Industrial Internet of Things: Unleashing the Poten-
tial of Connected Products and Services. URL http://www3.weforum.org/docs/
WEFUSA_IndustrialInternet_Report2015.pdf, (besucht am 09.12.2015).

124

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

Die Reihen der Fortschritt-Berichte VDI:
1 Konstruktionstechnik/Maschinenelemente

2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen

5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik

7 Strömungstechnik
8 Mess-, Steuerungs- und Regelungstechnik

9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation

11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik

13 Fördertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik

15 Umwelttechnik
16 Technik und Wirtschaft

17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik

19 Wärmetechnik/Kältetechnik
20 Rechnerunterstützte Verfahren (CAD, CAM, CAE CAQ, CIM . . .)

21 Elektrotechnik
22 Mensch-Maschine-Systeme

23 Technische Gebäudeausrüstung

ISBN 978-3-18-525608-0

https://doi.org/10.51202/9783186256089 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:53:31. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186256089

	Cover
	1. Einleitung
	1.1. Motivation
	1.1.1. Die wissenschaftliche Perspektive
	1.1.2. Die pragmatische Perspektive
	1.1.3. Die strategische Perspektive

	1.2. Zielsetzung und Idee
	1.3. Aufbau der Arbeit

	2. Grundlagen
	2.1. Merkmale
	2.1.1. Metamodell zur Modellierung von Merkmalen
	2.1.2. Dienstbasierte Verwendung von Merkmalen

	2.2. Informationssysteme
	2.2.1. Grundbegriffe des relationalen Datenbankmodells
	2.2.2. Relationale Algebra
	2.2.3. Relationenkalkül
	2.2.4. Eigenschaften der relationalen Algebra

	3. Stand der Technik
	3.1. Merkmal-Modelle in der Praxis
	3.1.1. IEC 61360
	3.1.2. eCl@ss

	3.2. Abfragesprachen
	3.2.1. Abfragesprachen für relationale Datenbanken
	3.2.2. Abfragesprachen für graphbasierte Datenbanken
	3.2.3. Domänenspezifische Abfragesprachen

	3.3. Software-Systeme im Umfeld der industriellen Produktion
	3.3.1. Manufacturing Execution Systeme
	3.3.2. Datenarchive
	3.3.3. Rezeptverwaltung
	3.3.4. Labor-Informations- und Managementsysteme
	3.3.5. Condition Monitoring

	3.4. SPS-Programmierung
	3.4.1. Aufbau und Funktionsweise einer SPS
	3.4.2. Programmiersprachen
	3.4.3. Kommunikation

	4. Analyse und Anforderungen
	4.1. Eignung der Merkmalmodelle
	4.2. Entwurf der Abfragesprache
	4.3. Implementierung

	5. Lösungskonzept
	5.1. Abbildung des Merkmalmodells im relationalen Datenbankmodell
	5.1.1. Formale Spezifikation
	5.1.2. Anwendersicht

	5.2. Grundoperationen der Abfragesprache
	5.2.1. Abdeckung der relationalen Algebra
	5.2.2. Wertausgabe
	5.2.3. Boolesche Formeln
	5.2.4. Vererbungsbeziehungen
	5.2.5. Aggregationen

	5.3. Erweiterte Operationen der Abfragesprache
	5.3.1. Zusammenführen von Merkmalträgern und Aussagen
	5.3.2. Suche nach Merkmalträgern
	5.3.3. Aggregationen
	5.3.4. Bestimmung des Merkmalträgertyps
	5.3.5. Vorhandensein eines Merkmals
	5.3.6. Verknüpfung von Merkmalträgern

	5.4. Schnittstellen und Verhalten der Funktionsbausteine
	5.4.1. Konzept
	5.4.2. Funktionsbausteine für Abfrageoperationen
	5.4.3. Funktionsbaustein zur Ausführung von Abfragen

	5.5. Systemarchitektur
	5.5.1. Positionierung in der Automatisierungspyramide
	5.5.2. Komponenten des Dienstes für Merkmalabfragen

	6. Prototypische Implementierung
	6.1. Technische Grundlagen
	6.1.1. Die Laufzeitumgebung ACPLT/OV
	6.1.2. Die Bibliothek ACPLT/FB
	6.1.3. Das Kommunikationsprotokoll ACPLT/KS
	6.1.4. Das ACPLT-Dienstsystem

	6.2. Softwarearchitektur
	6.2.1. Architektur des Klienten
	6.2.2. Architektur des Merkmaldienstes
	6.2.3. Ablauf eines Dienstaufrufs
	6.2.4. Administration des Dienstes

	6.3. Anwendungsbeispiele
	6.3.1. Flexible Programmierung vonWerkzeugmaschinen
	6.3.2. Überwachung von Erdölpumpen in einer Erdölraffinerie

	7. Diskussion und Ausblick
	7.1. Diskussion der Grundidee
	7.2. Diskussion der Abfragesprache
	7.3. Diskussion der Integration
	7.4. Ausblick

	A. Spezifikation der Funktionsbausteine
	B. Verhalten des Bausteins QUERY
	C. Abkürzungsverzeichnis
	Literaturverzeichnis

