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Kurzfassung

Prozeduren nehmen in der Automatisierung einen immer grofieren Stellenwert ein. Proze-
duren zum Start eines Motors werden ebenso wie Abldufe zur Steuerung von Geschéftspro-
zessen seit vielen Jahren betrachtet und in doménenspezifischen Sprachen beschrieben.
Viele dieser doménenspezifischen Sprachen sind in der Praxis erprobt. Sie &hneln sich,
besitzen jedoch keine gemeinsame Syntax und Semantik. Dies ist vor allem den unter-
schiedlichen Anforderungen der Doménen geschuldet. Wihrend die Steuerungsprozedur
einer Maschine formal definiert sein muss, damit die Steuerung sie eindeutig ausfithren
kann, liegt der Fokus einer Instandhaltungsprozedur auf einer Darstellung, die durch den
menschlichen Akteur einfach verstanden und umgesetzt werden kann. Im Gegensatz zu
Maschinen kénnen Menschen auch informale Aufrufe interpretieren. Die bestehenden Pro-
zedurbeschreibungssprachen werden in einer umfassenden Analyse betrachtet.

Die Vielfalt der doménenspezifischen Sprachen hat kein Problem dargestellt, solange die
beschriebenen Prozeduren unabhingig voneinander betrachtet werden. Heutzutage wird
allerdings unter den Schlagworten ,horizontale Integration“ und ,vertikale Integration“
eine ganzheitliche Betrachtung von Prozeduren angestrebt. Sowohl die horizontale als auch
die vertikale Integration sind essentielle Bestandteile im Zukunftsprojekt Industrie 4.0.
Zum einen sollen hierbei die Prozeduren zwischen den einzelnen Doménen ausgetauscht
werden konnen, ohne dass jede Doméne die Sprachen der anderen Doménen verstehen
muss. Zum anderen ist ein Zugriff auf die Informationen iiber den Prozedurzustand und
die Beeinflussung von Prozeduren iiber die Ebenen der Automatisierungspyramide hinweg
von Noéten.

In dieser Arbeit wird ein Referenzmodell zur Prozedurbeschreibung erarbeitet, das den
gemeinsamen Kern der doménenspezifischen Sprachen beschreibt: Sie bestehen aus zwei
Typen von Elementen, einer dieser Typen wirkt aktiv auf die Umgebung ein, der andere
Typ reagiert auf Anderungen der Umgebung. Des Weiteren gibt es gemeinsame Konstruk-
te zur Modellierung von Hierarchien, Alternativverzweigungen und Nebenldufigkeiten. Die
Interaktion mit der Umgebung ist einer der Hauptunterschiede zwischen den doménenspe-
zifischen Sprachen. Damit auch in dieser Hinsicht ein universelles Modell erzeugt werden
kann, muss die Interaktion mit der Umgebung iiber Dienstaufrufe und Zustandsabfragen
erfolgen. Dies deckt das Setzen und Abfragen von Variablen, aber auch die informale Uber-
mittlung eines Arbeitsauftrags des Chefs an seinen Mitarbeiter ab. Somit ist sichergestellt,
dass das Prozedurmodell auf alle Komplexititsgrade angewendet werden kann. Das Re-
ferenzmodell ist unabhéngig von einer konkreten Visualisierung. Dies bietet den Vorteil,
dass jeder Nutzer der Prozedurbeschreibung eine fiir ihn personlich optimierte Darstellung
auswahlen kann, ohne dass eine Modifikation der Prozedurbeschreibung ist. Auch eine
Kopplung mit Assistenzsystemen ist moglich.

Neben der Beschreibung der Prozedur wird ein Konzept benétigt, das die einheitliche und
eindeutige Ausfithrung der Prozedur zulasst. Dies beinhaltet die operative Ausfithrung der
Schrittkette im Regelfall, aber auch ein eindeutig definiertes Verhalten im Fehlerfall. Nur
auf diese Weise ist eine Ubertragbarkeit der Prozedur zwischen verschiedenen Systemen

XI
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gewahrleistet.

Die Verwendung von Dienstaufrufen stellt ein Werkzeug zur Erhohung der Flexibilitdt
einer Prozedurbeschreibung dar. Die Abkehr von fest projektierten Signalverbindungen
bewirkt, dass eine Zuordnung von benotigten Ausfithrungseinheiten erst zur Laufzeit er-
folgen kann. Hier werden die kognitiven Fahigkeiten des Menschen ausgenutzt, die es ihm
ermoglichen situationsbedingte Entscheidungen zu treffen. Ein Rollenkonzept unterstiitzt
die flexible Zuordnung. Auf diese Weise kann der Entwickler der Prozedur in den Rol-
len Anforderungen an die Ausfiihrungseinheiten definieren. Basierend auf den Rollen ist es
realisierbar zur Laufzeit eine Zuordnung zu konkreten Ausfithrungseinheiten vorzunehmen.

XII
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Abstract

Procedures assume an increasingly important role within current automation technology.
Procedures for starting an engine as well as sequences for controlling business processes
have been examined and subsequently described in domain-specific languages for many
years now. Many of these domain-specific languages are tried and tested in practice. Al-
though the languages are fairly similar, they do not share a common syntax and semantics.
This fact can be explained by the different requirements of the individual domains. While
the control procedures of a machine must be formally described in order that the control
system can execute them unequivocally. The focus of a maintenance procedure is firmly
placed on a representation that can be easily understood and implemented by a human
being. In contrast to machines, human beings can also interpret informal requests. The
existing procedure description languages will be considered in a comprehensive analysis.

The variety of the domain-specific languages has never presented a problem as long as
the described procedures were considered independently from each other. Nowadays, how-
ever, a holistic approach towards procedures is pursued under the headings of “horizontal
integration” and “vertical integration”. Both, the horizontal- and the vertical integration
are essential components of the future-oriented project “Industrie 4.0”. On the one hand,
it is envisaged that procedures can be exchanged between individual domains without the
necessity that each domain can understand the language of the other domain. On the
other hand, it is required that information regarding a procedure’s state can be accessed,
and that procedures can be influenced by the different levels of the automation pyramid.

In this work, a reference model for procedure descriptions is developed that describes the
common core of the different domain-specific languages. Basically, the languages consist
of two types of elements. One of these element types actively influences the environment,
while the other type reacts to changes in the environment. Additionally, there are shared
constructs for the modelling of hierarchies, alternative branches and concurrencies. The
interaction with the environment is one of the central differences between the domain-
specific languages. In order to also create a universal model in this respect, the interaction
with the environment can only be realized via service requests and status inquiries. This
covers the setting and querying of variables as well as the informal submission of a task
by the department head to his employees. This ensures that the procedure model can be
applied to all levels of complexity. Moreover, the procedure model is independent of a
concrete visualization. It is advantageous that each user of the procedure description can
thus select a personally optimized representation without the need of having to modify the
actual procedure description. A coupling with assistance systems is also possible.

Along with the description of the procedure, a concept that facilitates a consistent and
unambiguous execution of the procedure is required. This includes the operative execution
of the step chain during normal operations, but also a clearly-defined behavior in case
of faults. This is the only way in which the portability of procedures between different
systems can be ensured.

The use of service invocations can be understood as a tool to increase the flexibility of
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the procedure descriptions. The renunciation of pre-configured signal connections has the
effect that the allocation of the required execution units cannot occur until runtime. In
this context, the cognitive abilities of human beings that enable us to make situation-based
decisions can be fully exploited. The flexible allocation is additionally supported by a roles
concept. By this means, the developer of a procedure can define the requirements of an
execution unit in roles. Based on these roles, an allocation of the concrete execution units
can be performed at runtime.
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1. Einleitung

1.1. Motivation

Die systematische Steuerung von verfahrenstechnischen Produktionsprozessen tritt seit
dem Beginn der Industrialisierung in den Vordergrund. In der vorindustriellen Gesellschaft
wurde das Wissen tiber handwerkliche Prozesse innerhalb der Manufakturen im Vergleich
zu heute ausschlielich miindlich weitergegeben. Seit der Erfindung der Dampfmaschine
im 18. Jahrhundert wird das Gewerk der Mess-, Steuerungs- und Regelungstechnik (MSR)
benotigt [140]. Fir den Betrieb der Dampfmaschine wurden z. B. eine Schwimmerregelung
fir den Wasserstand und ein Zentrifugalregulator fiir den Dampfdruck entworfen [200].
Die MSR hat im Laufe ihrer Geschichte viele technologische Entwicklungen aus anderen
Bereichen (z.B. Transistoren, Laser, integrierte Schaltkreise usw.) adaptiert. Aber auch
gedankliche Konzepte, beispielsweise die Petrinetze oder die Objektorientierung, sind be-
reitwillig aufgegriffen worden. Der Einfluss der Informationstechnik begriindete den Wandel
von der klassischen MSR zur Prozessleittechnik (PLT) [140]. In Abbildung 1.1 sind typische
Funktionen dargestellt, die neben der MSR zur PLT zéhlen.

Entwicklungs-
ingenieur

Anlagenfahrer

Messen

.

Steuern” Regeln

U

Disponent Handwerker

Abbildung 1.1.: Funktionen und menschliche Rollen in der Prozessleittechnik (angelehnt an
[112, 149])

Viele der Funktionen, die in Abbildung 1.1 dargestellt sind, basieren auf Ablaufen. Die
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Bedeutung der Ablaufbeschreibung wird in Zukunft weiter zunehmen. So ist das Schaffen
von

LStandards fir eine die Automatisierungsebene tbergreifende Prozedur- und
Funktionsbeschreibung“ [91, S. 45].

eine der Handlungsempfehlungen im Zukunftsprojekt Industrie 4.0. Beispielsweise wird in
der Produktionsplanung die zeitliche Abfolge von Chargenprozessen festgelegt, Reparatur-
anleitungen erklaren schrittweise die durchzufithrenden Tétigkeiten oder in einer Steuerung
sind Sequenzen zum Anfahren einer Anlage hinterlegt. Die Automatisierung solcher Steue-
rungsabliufe bietet verschiedene Vorteile, z. B. eine hohere Sicherheit und Zuverlassigkeit
durch Vermeidung menschlicher Fehler, die Verbesserung von An- und Abfahrprozessen,
eine bessere Wissenskonservierung und eine gesteigerte Effektivitat der Anlagenfahrer [81].
Die Vollautomatisierung ist jedoch finanziell nicht zu realisieren, da Produktionsanlagen in
der Prozessindustrie haufig einmalige und nur einmal errichtete Systeme sind [59]. Gerade
in Ausnahme- und Fehlersituationen sind automatische Ablaufe nicht implementiert, so
dass der Mensch eingreifen muss. Durch eine Reduzierung des Implementierungsaufwands
automatisierter Steuerungsabliaufe wird es moglich sein, eine grofere Anzahl zu automa-
tisieren. Aufgrund immer komplexerer Anlagen und der Entfremdung des Anlagenfahrers
vom Prozess (z. B. aufgrund von Remote Operation [9]) wird dies immer schwieriger [181].
Des Weiteren wird die Automatisierungslésung auf mehreren verteilten Automatisierungs-
systemen implementiert [44]. Der Ansatz der ,Automatisierung der Automatisierung® (vgl.
z.B. [16, 146]) versucht moglichst viele menschliche Tétigkeiten im Umfeld der PLT zu
automatisieren. Dennoch bleibt festzuhalten, dass auch in der Zukunft der Mensch eine
entscheidende Rolle bei der Steuerung von Prozessen spielen wird [91] (vgl. Abbildung 1.1).
Abbildung 1.2 zeigt den Lebenszyklus einer Anlage.

Studie durchfiihrbare Anlage

enehmigte Anlage

Vorplanung

ausschreibbare Anlage Ausfihrungs-

Basisplanung
re Anlage

errichtba

Anlagen- Inbetrieb-

errichtun

funktionsféhige Anlage

unbendtigte
Anlage

Anlagé

Abbildung 1.2.: Lebenszyklus einer verfahrenstechnischen Anlage (angelehnt an [99, 149])

Die Entwicklung von Automatisierungsfunktionen, d.h. die Erzeugung von Software im
Steuerungssystem, findet hauptsichlich in den in Abbildung 1.2 grau hinterlegten Pha-
sen der Vorplanung, der Basisplanung, der Ausfiihrungsplanung und des Reengineerings
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statt. Wihrend der Entwicklung der Software werden aufgrund des Termindrucks héufig
Adhoc-Losungen implementiert. Diese fithren haufig zu Unzufriedenheit bei den Betrei-
bern, falls Anderungen bei der Inbetriebnahme oder wihrend des Betriebs notwendig sind
[161]. Adhoc-Losungen lassen sich durch eine strukturierte Planung der Planungsprozesse
weitestgehend vermeiden. Stattdessen soll ein durchgéngiges Engineering etabliert werden,
welches neben der vertikalen und der horizontalen Integration eines der wesentlichen Ele-
mente von Industrie 4.0 ist [126]. Hinsichtlich der Steuerungsablaufe ist hier eine automa-
tische Ubernahme der Sequenzen aus der verfahrenstechnischen Planung zu nennen, die in
der automatisierungstechnischen Planung weiter spezifiziert werden. Auch die Implemen-
tierung der Abldufe im Steuerungssystem soll aus der Planung ohne manuelle Téatigkeiten
erstellt werden.

Eine Losung hierfiir ist das modellbasierte Engineering (vgl. z. B. [4, 51, 59, 186]). Das
modellbasierte Engineering behebt Schwiichen der konventionellen Softwareentwicklung.
Dort ist z. B. die Qualitit der Software mafigeblich vom Entwickler abhiangig. Durch die
nichtformalisierte textuelle Formulierung sind die Anforderungen nicht eineindeutig spezifi-
ziert, die Anzahl der Fehler steigt mit der Komplexitiat und die Implementierung ist hiufig
die einzige Dokumentation [156]. Eine modellgetriebene Entwicklung bietet demnach ei-
ne Maoglichkeit der Verkiirzung und der besseren Verkniipfung der Entwicklungsphasen.
Neben den Modellen zur Entwicklung der Automatisierungsfunktionen sind Modelle zur
Kommunikation und zum Datenaustausch notwendig [16]. Andere Konzepte zur Verkiir-
zung der Planungszeiten und damit eine schnellere Time-to-Market sind Package Units und
modulare Anlagen. Hier besteht weiterhin ein hoher Forschungsbedarf, damit die nahtlose
Integration in die Gesamtanlage funktioniert [133-135]. Die Unabhéngigkeit von Beschrei-
bungsaspekten ist z. B. eine Anforderung modularer Anlagen [134].

Neben dem Streben zu einem hoheren Automatisierungsgrad ist eine flexible Reaktion
auf sich andernde Umgebungsbedingungen ein Ziel innerhalb der PLT. Unter Flexibilitat
wird hier die Moglichkeit verstanden Funktionen wihrend des Lebenszyklus der Anlage zu
erginzen, zu modifizieren oder zu loschen. Diese Funktionen brauchen nicht bereits wah-
rend der Planungsphase entwickelt zu werden [51]. Aus Anlagensicht kann dies durch die
bereits erwihnten modularen Anlagen oder Mehrproduktanlagen realisiert werden. Aber
auch flexiblere Steuerungssysteme sind notwendig. Hier besteht erhebliches Verbesserungs-
potential bei der Verkniipfung der leittechnischen Funktionen [71] (vgl. Abbildung 1.1).
Beispielsweise verhindert eine statische Produktionsplanung schnelle Reaktionen auf An-
derungen. Eine dynamische Produktion bedingt durch unvorhergesehene Bestelleingénge
wird durch die Steuerungssysteme nicht ausreichend unterstiitzt [13]. Produkte missen
iiber ihren gesamten Lebenszyklus tiberwacht und nachverfolgt werden. Die Produktions-
schritte miissen zunehmend nicht nur in qualifizierungspflichtigen Prozessen dokumentiert
werden [87, 121]. In der Industrie 4.0-Initiative ist die Verflechtung von technischen Pro-
zessen mit Geschaftsprozessen ein wesentliches Ziel [91, 154]. Schwankungen in den Prei-
sen von Hilfs- und Rohstoffen machen kurzfristige Logistikvorginge notwendig [74]. Die
leittechnischen Funktionen miissen demnach interagieren, damit eine flexible Produktion
ermoglicht wird. Dem stehen jedoch unterschiedliche Systeme [159], verschiedene Quellen
zur Ermittlung des Bedarfs [161], mangelnder Zugriff auf Produkt- und Materialpreise [74]
und ein fehlendes gemeinsames Begriffsverstandnis [57] gegeniiber.

Zusammenfassend bedeutet dies, dass Automatisierungsfunktionen zum einen einfacher
geplant werden und zum anderen stérker mit anderen Funktionen vernetzt sein miissen. In
[52] wird dies durch die zwei Herausforderungen ,Virtualisierung der Infrastruktur® und
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Funktionsadaption zur Laufzeit” beschrieben. Hierzu reicht die Definition von Schnittstel-
len und Kommunikationskanalen nicht aus. Vielmehr ist ein gemeinsames Begriffsverstand-
nis notwendig [57, 126], sowohl zwischen den verschiedenen Gewerken im Planungsprozess
als auch zwischen den unterschiedlichen Sichten auf die Automatisierungsfunktionen. Auf
diese Weise sind eine Verkiirzung der Planungs- und Bauzeit durch einen Datenaustausch
zwischen verschiedenen Gewerken, eine einfachere Datengewinnung fiir Wartungs- und Mo-
dernisierungsmafnahmen und eine automatische Ubernahme individueller Kundenwiinsche

moglich [126].

1.2. Zielsetzung

In dieser Arbeit werden drei Ziele verfolgt, eine Analyse bestehender Prozedurbeschrei-
bungssprachen, die Erstellung eines Referenzmodells zur Prozedurbeschreibung und die
beispielhafte Anwendung des Referenzmodells.

Umfassende Analyse bestehender Prozedurbeschreibungssprachen

Das erste Ziel dieser Arbeit besteht im Erstellen einer Ubersicht iiber die bestehenden Pro-
zedurbeschreibungssprachen. Diese Ubersicht ist eine notwendige Basis fiir die Ermittlung
des gemeinsamen Kerns der Beschreibungssprachen. Darauf aufbauend kann auch eine Ent-
scheidung getroffen werden, welche Sprachen in einer konkreten Automatisierungsaufgabe
verwendet werden konnen.

Definition eines Meta-Modells zur Prozedurbeschreibung

Hauptziel dieser Arbeit ist die Herleitung eines allgemeinen Referenzmodells zur Prozedur-
beschreibung. Durch das Referenzmodell sollen zwei wesentliche Punkte adressiert werden,
die in diesem Kapitel als verbesserungswiirdig identifiziert wurden: Ein vereinfachter Ent-
wurfsprozess von Steuerungsablaufen und das Schaffen eines gemeinsamen Verstandnisses
des Begriffs Prozedur® in den verschiedenen Gewerken im Umfeld der PLT. Mit dem
Referenzmodell soll die gemeinsame Grundsemantik bestehender Prozedurbeschreibungs-
sprachen abgebildet werden. Es muss eine Abstraktionsschicht bilden, die die kompakte
Beschreibung der Prozeduren ermdglicht, ohne auf Sprachdokumentationen im Umfang
mehrerer hundert Seiten zuriickgreifen zu miissen. Das Referenzmodell soll explizit keine
neue Prozedurbeschreibungssprache sein. Des Weiteren muss sich das Referenzmodell von
der Modellierung von kontinuierlichen Regelungen und Funktionsbausteinen klar abgren-
zen. Auch die Kommunikationstechnik zwischen Steuerung und Anlage sowie die Model-
lierung der Anlage sollen nicht behandelt werden.

Durch die Verwendung einer Service-oriented Architecture (SOA) zur Kommunikation
zwischen Steuerung und Anlage und zwischen verschiedenen Steuerungssystemen soll ei-
ne Virtualisierung der Infrastruktur und eine Funktionsadaption zur Laufzeit ermoglicht
werden. Durch die Idee der Dienstaufrufe werden (quasi-)kontinuierliche Steuerungsfunk-
tionen von auflen durch die Prozeduren steuerbar sein. Die Prozedur wird somit durch
die Dienstaufrufe von der Realisierung der Funktionen getrennt werden. Des Weiteren soll
die Interaktion zwischen menschlichen und maschinellen Akteuren im Produktionskontext
erfasst, modelliert und gesteuert werden.
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Untersuchung zur Anwendbarkeit des Meta-Modells

Das dritte Ziel besteht im Aufzeigen der Vorteile des entwickelten Referenzmodells. Dies
soll an ausgewéhlten Beispielprozeduren geschehen, die einen Bogen von einer simplen
Startprozedur eines Motors bis hin zu Prozeduren mit menschlicher Interaktion spannen.
Auch der Entwurfsprozess einer Prozedur wird hierbei betrachtet werden.

1.3. Gliederung

Zu Beginn der Arbeit werden in Kapitel 2 grundlegende Begriffsdefinitionen vorgenom-
men. Hier wird ein besonderer Fokus auf das kybernetische Grundprinzip gelegt. Auf diese
Weise wird eine saubere Trennung zwischen Prozess, Prozedur und Ausfithrungseinheit
vorgenommen. Ebenfalls wird die Verteilung der Automatisierungsfunktionen auf die Ebe-
nen der Automatisierungspyramide erlautert. Den Abschluss der Begriffswelt bildet die
Einfithrung von Modellen als Prozedurbeschreibungsmittel.

In Kapitel 3 sind zunéchst die grundlegenden Konzepte erldutert, die in Prozedurbe-
schreibungssprachen enthalten sind. Im Anschluss werden verschiedene Beschreibungsspra-
chen fir Prozeduren fir technische Prozesse und Geschéftsprozesse betrachtet. Hierbei wird
ein Mapping der Sprachen auf die Sprachelemente vorgenommen. Abschlieend werden die
Vorteile der Sprachen fiir ihre jeweilige Doméne erfasst und die Probleme im Zusammen-
wirken zusammengefasst.

Die in der Motivation genannten Herausforderungen werden in Kapitel 4 in Anforderun-
gen an ein Referenzmodell zur Prozedurbeschreibung umgewandelt. Aufbauend auf den
Anforderungen und der Analyse in Kapitel 3 wird dieses Referenzmodell anschliefend als
Meta-Modell entwickelt. Die Darstellungsformen durch ein meta-modellbasiertes Visuali-
sierungssystem und als XML-Struktur runden die Modellvorstellung ab. Kapitel 5 enthalt
zwei Anwendungsbeispiele, die Steuerprozedur der Pumpe einer LKW-Abfiillung und eine
Ventil-Wartungsprozedur.

Das erstellte Referenzmodell wird in Kapitel 6 zusammengefasst sowie anhand der An-
forderungen und der umgesetzten Beispiele kritisch diskutiert. Ein Ausblick tiber weitere
Forschungsaktivititen bildet den Schluss der Arbeit.
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2. Definitionen und grundlegende
Begriffswelt

Die Begriffe Prozess, Prozessleitsystem, Kommunikation und Modellierung werden in vie-
len verschiedenen Literaturquellen verwendet und in all ihren Facetten beleuchtet. Dieses
Kapitel dient nicht der detaillierten Darstellung der Literatur zu diesem Thema, sondern
als Grundlage eines einheitlichen Begriffsverstandnisses fiir den Rahmen der vorliegenden
Arbeit.

2.1. Prozess
In Kapitel 1.1, S. 1, ist die Bedeutung von Prozessen fiir die industrielle Produktion dar-
gestellt worden. Ein Prozess ist definiert als ein

,Satz von in Wechselbeziehung oder Wechselwirkung stehenden Tdtigkeiten, der
Fingaben in Ergebnisse umwandelt® [82, S. 27].

Die Prozessdefinition gilt allgemein fiir alle Arten von Prozessen. Der Prozessbegriff wird
in verschiedenen Spezialisierungen verwendet (vgl. Abbildung 2.1).

Prozess

[ ]

Technischer Geschafts-
Prozess prozess
[ ] %
Kontinuierlicher Diskreter .
Prozess Prozess Arbeitsprozess
[ |
Stiickfertigung Chargenprozess

Abbildung 2.1.: Prozesstypen (nach [130])

Eine dieser Spezialisierungen ist der technische Prozess, welcher im Umfeld der Leittech-
nik von besonderem Interesse ist. Ein technischer Prozess umfasst die
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2.2. Das kybernetische Grundprinzip

»Gesamtheit der Vorgange in einer technischen Anlage® [34, S. 33],
mit anderen Worten, ein technischer Prozess ist eine

, Gesamtheit von aufeinander einwirkenden Vorgingen in einem System, durch
die Materie, Energie oder Information umgeformt, transportiert oder gespei-

chert wird“ [54, S. 877].

Technische Prozesse werden weiterhin in kontinuierliche und diskrete Prozesse unterteilt,
wobei sich diskrete Prozesse in Stiickfertigung und Chargenprozesse gliedern lassen. Fiir die
Unterschiede zwischen den Spezialisierungen von technischen Prozessen sei auf [110, 137]
verwiesen. Des Weiteren werden Prozesse ausgefiihrt, die den Zustand einer technischen
Einrichtung dndern. Ein Beispiel hierzu ist ein Reinigungsprozess [81].

Neben den technischen Prozessen sind die Geschéftsprozesse eine weitere Spezialisierung
von Prozessen. Ein Geschéftsprozess legt die Rahmenbedingungen fiir technische Prozesse
fest und ist

Leine zielgerichtete, zeitlich-logische Abfolge von Aufgaben, die arbeitsteilig
von mehreren Organisationen oder Organisationseinheiten unter Nutzung von
Informations- und Kommunikationstechnologien ausgefihrt werden konnen“

[68, S. 36].
Arbeitsprozesse sind

,Geschiftsprozesse auf Mikroebene, die von Arbeitspersonen geplant, vollzogen,
koordiniert und optimiert werden® [145, S. 460].

In der produzierenden Industrie werden alle Prozesse entweder mit dem Ziel der Wert-
schopfung ausgefithrt oder dienen zur Vorbereitung eines wertschopfenden Prozesses. An-
zumerken ist, dass sich Wertschopfung nicht ausschlielich auf die Erzeugung eines ver-
kaufsfahigen Produkts beschrankt. Auch Dokumente, Modelle und andere Artefakte zur
Nutzung innerhalb eines Unternchmens stellen einen Wert dar [154]. Wertschopfende Pro-
zesse werden vom Menschen initiiert und miissen kontrolliert werden®. Die Kontrolle eines
Prozesses wird im folgenden Unterkapitel behandelt.

2.2. Das kybernetische Grundprinzip

Wesentlich fiir das Verstandnis dieser Arbeit ist das kybernetische Grundprinzip der Tren-
nung von Steuerndem und Gesteuertem. Kybernetik ist die

,Wissenschaft von der Steuerung, d.h. der zielgerichteten Beeinflussung von
Systemen [90].
Ein System ist im Internationalen Elektronischen Wérterbuch definiert als

, Menge miteinander in Beziehung stehender Elemente, die in einem bestimm-
ten Zusammenhang als Ganzes gesehen und als von ihrer Umgebung abgegrenzt
betrachtet werden® [34, S. 17].

Tm Gegensatz hierzu stehen natiirliche Prozesse. Natiirliche Prozesse haben eine intrinsische Steuerung,
die nicht beeinflusst werden kann und daher im Rahmen dieser Arbeit nicht behandelt wird.
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2. Definitionen und grundlegende Begriffswelt

Wird das kybernetische Prinzip auf die produzierende Industrie iibertragen, lauft ein
Produktionsprozess im Produktionssystem, das aus dem Produktsystem, dem Anlagen-
system und dem Steuerungssystem besteht. Das Steuerungssystem wirkt auf das Anla-
gensystem und dieses wiederum auf das Produktsystem. Uber die Riickwirkungen erhilt
das Steuerungssystem Informationen tiber den Prozess, die es verwerten kann (vgl. Abbil-
dung 2.2).

wirkt auf wirkt auf
. Produkt- Anlagen- Steuerungs-
Produktions- system system system
prozess 18uft in | T | T
wirkt riick auf wirkt rick auf
Produktionssystem

Abbildung 2.2.: Aufbau des Produktionssystems (nach [130])

Dieses Zusammenspiel zwischen Produktsystem, Anlagensystem und Steuerungssystem
wird im Folgenden beschrieben.

2.2.1. Produktsystem
Ein Produkt ist

Letwas, was (aus bestimmten Stoffen hergestellt) das Ergebnis menschlicher
Arbeit ist” [43].

Ein Produkt kann als System betrachtet werden. Ein Produktsystem ist definiert als ein

»[mjaterielles oder immaterielles Objekt, das entsteht, um auf einem Markt zur
Betrachtung oder zur Wahl, zum Kauf, zur Benutzung, zum Verbrauch oder zum
Verzehr angeboten wird und geeignet ist, damit Wiinsche oder Bediirfnisse zu

befriedigen® [46, S. 381].

Produktsysteme koénnen demnach sowohl physische als auch gedankliche Gegensténde
sein. Die Unterscheidung der verschiedenen Produkttypen ist nicht Bestandteil dieser Ar-
beit. Wichtig an dieser Stelle ist, dass ein Produkt bestimmte Eigenschaften besitzen muss,
damit der wertschopfende Prozess erfolgreich abgelaufen ist. Der Markt in der Definition
aus [46] kann sich auch ausschlieflich innerhalb des produzierenden Unternehmens befin-
den, wenn Produkte intern genutzt werden.

2.2.2. Anlagensystem

Ein technischer Prozess kann nach der Definition aus [34] nicht ohne eine zugehorige tech-
nische Anlage ausgefiithrt werden. Eine technische Anlage umfasst die
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, Gesamtheit der technischen Einrichtungen und Vorrichtungen zur Bewdltigung
einer festgelegten technischen Aufgabe® [34, S. 33].

Zur Ausfithrung des Prozesses sind Objekte aus der physischen Welt notwendig, da erst
eine technische Anlage dem Produktsystem eine definierte Umgebung bietet, in der sich
das Produktsystem befinden kann [38].

Im Rahmen dieser Arbeit wird der Begriff Anlagensystem verallgemeinert und auf ge-
nerelle Ausfithrungseinheiten erweitert. Eine Ausfithrungseinheit ist ein System, welches
einen inneren Aufbau und einen Lebenszyklus besitzt. Eine Ausfithrungseinheit hat ein
funktionales und kapazitives Leistungsvermogen. Sie steht mit anderen Objekten in einem
Zusammenhang. Sowohl Menschen als auch Maschinen kénnen Ausfithrungseinheiten sein
[154].

Ausfithrungseinheiten konnen ein internes Steuerungssystem besitzen?. Sie kénnen un-
terschiedliche Rollen einnehmen. Eine Rolle ist

wein Element, das auf der einen Seite eine Realisierungseinheit in einem Mo-
dellsystem (Rollensystem) vertritt und auf der anderen Seite die Anforderungen
an eine Realisierungseinheit spezifiziert® [38, S. 40].

Eine Rolle ist demnach im Kontext der Ausfiihrungseinheiten eine Spezifikation von An-
forderungen, die in einem bestimmten Produktionskontext durch die Ausfithrungseinheit
erfiillt werden muss. Eine Rolle kann sowohl durch maschinelle als auch durch menschliche
Ausfihrungseinheiten ausgefiillt werden [154].

Unterschiede zwischen maschinellen und menschlichen Ausfiihrungseinheiten

Maschinelle Ausfithrungseinheiten kénnen lediglich die bei ihrer Entwicklung vorgesehe-
nen Aktionen ausfihren [154]. Sie kénnen rekonfiguriert werden, aber nicht flexibel auf
neue Herausforderungen reagieren [169]. Menschliche Ausfiihrungseinheiten hingegen ha-
ben zusétzlich die Méglichkeit auf unbekannte Situationen zu reagieren. Sie kénnen also
basierend auf ihrem Wissen und ihren Erfahrungen eigenstdndige Entscheidungen treffen
[154]. Dies ist ein wichtiges Kriterium der Umsetzungsstrategie Industrie 4.0, die besagt,
dass auch zukiinftige hochautomatisierte Produktionsumgebungen immer Menschen be-
diirfen [125, 169]. Dort wird der Mensch als

,Dirigent im Wertschopfungsnetzwerk® [125, S. 48]

bezeichnet. Menschliche Ausfithrungseinheiten sind von Natur aus sowohl flexibel als auch
rekonfigurierbar [169)].

Ausfithrungseinheiten miissen aufgerufen werden, damit sie Aktionen ausfithren. Bei ma-
schinellen Ausfithrungseinheiten muss der initiale Aufruf von extern kommen. AnschlieSend
kann jedoch eine Ausfithrungseinheit weitere Aufrufe an andere Ausfithrungseinheiten schi-
cken. Menschliche Ausfithrungseinheiten kénnen sich im Gegensatz dazu selber initial auf-
rufen. Tritt beispielsweise ein Brand auf, startet ein Mensch selbststandig die Prozedur
wFeuer 16schen® [154].

2?Dies ist kein Widerspruch zu Abbildung 2.2, die Trennung zwischen Steuerndem und Gesteuertem ist
bei internen Steuerungssystemen nur zu erkennen, wenn der interne Aufbau der Ausfiihrungseinheit
analysiert wird. Das System Ausfithrungseinheit wird dann in die Systeme interne Steuerungseinheit
und Unter-Ausfithrungseinheit aufgeteilt.
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Technische Agenten sind eine Mischung aus beiden Ausfithrungseinheitstypen. Unter
einem technischen Agenten wird

weine abgrenzbare (Hardware- oder/und Software-) Einheit mit definierten Zie-

len“ [174, S. 3]

verstanden, die durch Reaktion auf ihre Umgebung in Zusammenarbeit mit anderen Agen-
ten ein vorgegebenes Ziel erreicht. Agenten stellen demnach maschinelle Systeme dar, die
flexibel Entscheidungen treffen kénnen [174]. Auf technische Agenten wird im Rahmen
dieser Arbeit nicht weiter eingegangen. Fiir zusétzliche Informationen hierzu sei auf [196]
verwiesen.

2.2.3. Steuerungssystem

Analog zu den Ausfiihrungseinheiten kénnen sowohl Menschen als auch Maschinen Steue-
rungssysteme sein. Ein maschinelles Steuerungssystem ist ein

,Rechner- und Kommunikationssystem, in welchem ein Informationsprozess
abliuft (Umformung, Verarbeitung und Transport von Information)“ [100,
S. 6].

Neben den Informationsprozessen, die in [100] genannt werden, ist auch die Speicherung
von Informationen Aufgabe eines Steuerungssystems. Bei den klassischen maschinellen
Steuerungssystemen wird zwischen Speicherprogrammierbarer Steuerung (SPS) und Pro-
zessleitsystem (PLS) unterschieden.

Speicherprogrammierbare Steuerungen

Eine SPS, auf Englisch PLC, ist ein Computer in robuster Bauweise, der auf einem ex-
ternen Programmiergerdt in einer speziellen Programmiersprache nach der IEC 61131-3
[22] programmiert wird. In der Prozesstechnik werden sie meist in Kombination mit einem
PLS verwendet. Typisch fiir eine SPS ist die zyklische Abarbeitung der Programme. In
jedem Zyklus werden die Eingénge der SPS zunéchst in das Prozessabbild eingelesen. An-
schlieflend arbeiten die programmierten Steuerungsfunktionen auf dem Prozessabbild und
schreiben die Ergebnisse ebenfalls in Variablen des Prozessabbilds. Im néchsten Schritt
werden die Ausgénge der SPS entsprechend gesetzt [105].

Prozessleitsysteme

In der Prozesstechnik werden heutzutage tiblicherweise verteilte PLS, auf Englisch Process
Control System (PCS), verwendet (vgl. Abbildung 2.3).

Ein PLS interagiert iber Feldgeréite mit dem zu steuernden Prozess. Ein Feldgerét kann
entweder ein Sensor oder ein Aktor sein. Feldgerite stellen die Schnittstelle zwischen Anla-
gensystem und Steuerungssystem dar. Feldgerite sind mit einer Prozessnahen Komponente
(PNK) verbunden. Die Verbindung ist entweder direkt, iiber eine Remote Input/Output
(RIO) oder tiber weitere Sub-PNK realisiert [104]. Neben mindestens einer PNK besteht
ein PLS aus mindestens einer Anzeige-/Bedienkomponente (ABK). Die ABK wird auch
als Operator Station (OS) oder als Human-Machine-Interface (HMI) bezeichnet. Durch
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Laborinformations- Proriea?izdnit_e&rgor- Lagerautomatisie-
Betriebsleitsystem und Management- Managementsystem rung und Material-
system (LIMS) g(PIMS) Y flusssteuerung
! 1 1 l
I T I T Betriebsbus
Anzeige-/ Anzeige-/ : .
Bedienkomponente " Bedienkomponente Englneenng
(ABK) (ABK) omponente

l 1 1 Systembus
I I |

Prozessnahe an Prozessnahe
Komponente (PNK) Komponente (PNK)
Feldbus
i:;)rief)snr:ﬂ:: Remote I/0 | | Konventionel- Feldgerat mit
(suf,’_pNK) (RIO) les Feldgerat Feldbus

Abbildung 2.3.: Aufbau eines Leitsystems (nach [104, 164])

eine ABK wird der Anlagenfahrer tiber den Prozesszustand informiert und kann Hand-
eingriffe in den Prozess vornehmen. Die ABK und die PNK sind iiber den Systembus
miteinander verbunden, der haufig redundant ausgefithrt wird und echtzeitfahig ist. Auf
einer PNK werden die Steuerungsfunktionen ausgefithrt. Es ist tiblich, dass auch SPS als
PNK verwendet werden. Konfiguriert werden die PNK iiber eine Engineering-Komponente
(oder auch Engineering Station (ES) genannt). Neben den echtzeitfdhigen Komponenten
gibt es weitere, nicht-echtzeitf&hige Systeme, die iiber den Betriebsbus angebunden sind.
Hier sind z. B. das Betriebsleitsystem, das Labor-Informations- und Managementsystem
(LIMS), das Prozessdaten-Informations- und Managementsystem (PIMS) und das Lager-

und Materialfluss-Steuerungssystem zu nennen [164].

Der Mensch als Steuerungssystem

Nicht nur Automaten kdnnen als Steuerungssystem verwendet werden, auch Menschen kon-
nen steuern. [154]. Beispielsweise empféngt ein Arbeiter Anweisungen von seinem Chef. In
diesem Fall wirkt das Steuerungssystem ,,Chef* auf die Ausfithrungseinheit ,, Arbeiter” ein.
Im direkten Produktionsumfeld greifen die Anlagenfahrer tiber die ABK in die Prozes-
steuerung ein [100]. Auch in zukiinftigen Industrie 4.0-Umgebungen steht der Mensch als
Steuerungssystem im Fokus [125].

2.3. Steuerungsfunktionen
Eine Steuerungsfunktion ist ein

LVorgang in einem System, bei dem eine oder mehrere variable Grofien als
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Eingangsgrofsen andere variable Grifien als Ausgangsgrofien aufgrund der dem
System eigenen Gesetzmafigkeiten beeinflussen [34, S. 125].

Steuerungsfunktionen werden in zwei Klassen aufgeteilt, zeitkontinuierliche und zeitdis-
krete Steuerungsfunktionen [100]:

e Zeitkontinuierliche Steuerungsfunktionen fithren FlieBprozesse, deren Ein- und Aus-
gangsgrofen kontinuierlich sind. Dies kénnen Regelungen mit einem geschlossenem
Wirkungskreis (z. B. ein Proportional-Integral-Differential (PID)-Regler) oder Steue-
rungen mit einer offenen Wirkungskette (z. B. ein Kennfeld) sein. Kennzeichnend fiir
zeitkontinuierliche Steuerfunktionsklassen ist die auf der Vorgabe eines Fithrungssig-
nals basierende kontinuierliche Erzeugung eines Stellsignals. Bei einem geschlossenen
Wirkungskreis geht zusétzlich der Anlagenzustand in die Berechnung des Stellsignals
mit ein [100].

o Zeitdiskrete Steuerungsfunktionen reagieren auf diskrete Ereignisse. Dies kénnen bi-
nére Variablen (z. B. Behalter ist voll) [100], aber auch Vergleiche mit analogen Varia-
blen (z.B. Durchfluss grofier als 51/min) sein [106]. Hierbei wird zwischen Verkniip-
fungssteuerungen und Ablaufsteuerungen unterschieden. Verkniipfungssteuerungen
verbinden die Eingangssignale mit booleschen Funktionen [100] oder Funktionsbau-
steinen [106] zur Berechnung der Ausgangssignale.

2.3.1. Die Prozedur als Steuerungsfunktion

In der vorliegenden Arbeit liegt der Fokus auf der zeitdiskreten Steuerung von Prozessen
durch Ablaufsteuerungen. Die Ablaufsteuerung ist als

,Steuerung mit schrittweisem Ablauf, bei der der Ubergang von einem Schritt
auf den folgenden programmgemdf entsprechend den vorgegebenen Ubergangs-
bedingungen erfolgt® [34, S. 150]

definiert. Zwischen den Schritten einer Ablaufsteuerung befinden sich Transitionen, die
die Weiterschaltung von einem Vorgénger- zu einem Nachfolgeschritt kontrollieren [100].
Solche Ablaufsteuerungen sind nicht nur fir diskrete Prozesse oder Batchprozesse von
Bedeutung, sondern auch fiir kontinuierliche Prozesse [88].

Die Abfolge von Schritten und Transitionen, die der Ablaufsteuerung zu Grunde liegt,
wird als Prozedur bezeichnet. Der Begriff | Prozedur® stammt vom lateinischen Wort | pro-
cedere”, auf Deutsch ,vonstattengehen“, ab. Die Definition, wie sie im Duden zu finden
ist, ist fiir die Beschreibung der Abfolge von Schritten und Transitionen nicht zielfithrend.
Es ist unzureichend, eine Prozedur als

,Verfahren, (schwierige, unangenehme) Behandlungsweise® [41, S. 814]

zu definieren, auch wenn implizit angedeutet wird, dass etwas mit einem Objekt (in diesem
Fall mit einer Person) durchgefiithrt wird.
In der Informatik ist eine Prozedur eine

Lin sich abgeschlossene Befehlsfolge mit meist eigenem lokalen Datenbereich,
die an beliebigen Stellen eines 1tibergeordneten Programms, des Haupt- oder
Oberprogramms, wiederholt aufgerufen und ausgefihrt werden kann® [64, S. 74].
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Ein Blick in die englische Literatur fithrt zu folgender Definition des Prozedurbegriffs:

wprocedure [...] the action that you must take to do sth/.] in the usual or correct
way® [189, S. 490].

Von dieser Definition ausgehend ist im technischen Umfeld eine Prozedur eine

,specification of a sequence of actions or activities with a defined beginning and
end that is intended to accomplish a specific objective® [81, S. 16].

Eine Prozedur ist demnach eine Menge von auszufithrenden Aktionen, die durch Bedin-
gungen voneinander getrennt sind. Es gibt verschiedene Grundmuster von Prozeduren, z. B.
lineare Ketten mit Anfang und Ende, zyklische Ketten oder Abldufe mit Verzweigungen.
Des Weiteren ist festzuhalten, dass die Definition des Geschiftsprozess starke Ahnlichkeit
zur Prozedurdefinition hat. Mit anderen Worten, der Begriff ,,Geschéftsprozess® bezeichnet
sowohl den Vorgang selber als auch die Steuerung des Vorgangs [154].

Je nach Steuerungssystem bzw. Anlagensystem (Mensch oder Maschine) werden unter-
schiedliche Anforderungen an die Flexibilitdt und den Spezifikationsgrad einer Prozedur
gestellt (vgl. Abbildung 2.4).

Steuerungssystem Ausfihrungseinheit
Fest Fest
spezifizierte spezifizierte
Prozedur A > Funktion
+B
Maschine Maschine
Fest . AiC Fest N
spezifizierte Flexibilitat * spezifizierte Wissen
Prozedur Adaptivitat > Funktion Erfahrung
A+B+C+D
Mensch Mensch
Legende:
A: Feste Abfolge formal definierter C:  Flexible Abfolge formal definierter
Funktionsaufrufe Funktionsaufrufe
B: Feste Abfolge informal definierter ~ D: Flexible Abfolge informal definierter
Funktionsaufrufe Funktionsaufrufe

Abbildung 2.4.: Mensch und Maschine als Steuerungssystem und Ausfiihrungseinheit

Wie bereits erwahnt besitzen maschinelle Ausfiihrungseinheiten eine Menge fest spezifi-
zierter Funktionen. Diese Funktionen sind rollenspezifisch und werden bei jedem Aufruf in
genau der gleichen Weise ausgefithrt. Menschliche Ausfithrungseinheiten haben ebenfalls
solche fest spezifizierten Funktionen, konnen aber aufgrund ihres Wissens und ihrer Erfah-
rung jederzeit neue, unspezifizierte Funktionen entwickeln (rechte Seite in Abbildung 2.4).
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In einem maschinellen Steuerungssystem sind fest spezifizierte Prozeduren gespeichert. Die-
se konnen auf Umgebungssituationen reagieren, alle Reaktionen miissen jedoch beim Design
der Steuerung implementiert werden. Menschliche Steuerungssysteme kénnen sich zusétz-
lich flexibel auf neue, unbekannte Situationen einstellen (linke Seite in Abbildung 2.4)
[154].

Die Auswirkungen (Pfeile in Abbildung 2.4), die diese Eigenschaften der
Ausfithrungseinheits- und Steuerungssystemtypen auf die Prozeduren haben, sind in Ta-
belle 2.1 erléutert.

Tabelle 2.1.: Interaktionsmoglichkeiten zwischen Steuerungssystem und Ausfithrungseinheit

Ausfithrungseinheit

Maschine

Mensch

Steuerungssystem

Ein maschinelles Steuerungs-
system  enthalt in  seiner
fest spezifizierten Prozedur

Ein maschinelles Steuerungs-
system enthélt in seiner fest
spezifizierten Prozedur forma-

Maschine formale Funktionsaufrufe, le und informale Funktionsauf-
die die maschinelle Ausfith- rufe, die die menschliche Aus-
rungseinheit verstehen und fithrungseinheit verstehen und

Mensch

interpretieren kann.

Ein menschliches Steuerungs-
system kann in seinen fest spe-
zifizierten oder flexiblen Pro-
zeduren formale Funktionsauf-
rufe an die maschinelle Aus-

interpretieren kann.

Ein menschliches Steuerungs-
system kann in seinen fest spe-
zifizierten oder flexiblen Pro-
zeduren formale oder infor-
male Funktionsaufrufe an die

menschliche  Ausfiihrungsein-
heit versenden.

fiihrungseinheit versenden, die
dort interpretiert werden.

2.4. Funktionaler Leitsystemaufbau

Da es in einem Steuerungssystem verschiedene gleichzeitig ausgefithrte Steuerungsfunktio-
nen geben kann, miissen die Steuerungsfunktionen gegliedert und priorisiert werden. Ein
solches gerichtetes Ordnungsschema wird als Hierarchie bezeichnet [38]. Bei einem PLS hat
sich eine hierarchische Ebenenstruktur mit finf Ebenen durchgesetzt (vgl. Abbildung 2.5)
[27, 100, 163]. Dieser Aufbau wird als Automatisierungspyramide (AP) bezeichnet.

e Die Ebene 0 ist das Aktionsfeld, d. h., diese Ebene enthélt den technischen Prozess,
der auf der technischen Anlage ausgefithrt wird [27, 100]. Sie gehort nicht direkt zum
Leitsystem und wird daher in [163] auch nicht als Ebene gezahlt.

e Ebene 1 ist die erste Ebene, die zum Leitsystem zéhlt. Sie wird auch als Feldebene
bezeichnet und enthélt alle Funktionen, die zum Bereich Messen, Stellen und Regeln
gehoren. Auch Verriegelungen und Schutzfunktionen gehoren in diese Ebene [100].
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Ebene 4
Unterneh-
mensplanung und Logistik
- Ebene 3
Betriebs-
management
Ebene 2

Prozessleit-
Ebene kontinu-
Batch- ierliche

prozesse | \ Prozesse

diskrete
Prozesse | Epene 1

Feld-
Ebene

M 1

Produktionsprozess | | Produktionsprozess |

Ebene 0

Abbildung 2.5.: Funktionale Hierarchie eines Leitsystems (nach [27, 163])

e In Ebene 2 ist die Prozessfiihrung lokalisiert. Sie wird daher auch als Prozessleitebe-
ne bezeichnet. Neben der Prozessfithrung gehéren auch die Prozessiiberwachung, die
Storungsbehandlung und die Prozeduren zum An- und Abfahren des Prozesses zur
Ebene 2 [100]. Die Ebenen 1 und 2 sind echtzeitfahig, d.h., ihre Funktionen reagie-
ren innerhalb einer vorgegebenen Zeit auf ein Ereignis. Des Weiteren werden viele
Komponenten redundant ausgefithrt, damit die Verfugbarkeit erhoht wird. In [27]
werden die Ebenen 1 und 2 noch in die zu steuernden Prozesstypen Batchprozess,
kontinuierlicher Prozess und diskreter Prozess aufgeteilt. Die Ebene 2 wird in [163]
als Anlagenebene bezeichnet, beinhaltet aber die selben Funktionen.

e Ebene 3 umfasst die Betriebsablaufplanung sowie die Auswertung der Prozessergeb-
nisse [27] und verkniipft die Geschéftsziele mit der Produktion [74]. Hier werden die
produktionsrelevanten Geschéftsprozesse gesteuert [144]. Sie wird auch als Manu-
facturing Execution System (MES)-Ebene bezeichnet und in die Produktions- und
Betriebsleitebene unterteilt. Typische Aufgaben sind die Datenerfassung und -analyse
iiber die Produktion, tiber die Erstellung und Anpassung der lokalen Produktions-
planung, tiber Transport und Lagerung der Materialien oder die Kostenoptimierung
eines Betriebskomplexes [27].

e Ebene 4, die Enterprise Resource Planning (ERP)-Ebene, enthélt die Unternechmens-
fithrung. Hier werden Kostenanalysen und Auswertungen durchgefiihrt, welche die
Unternehmensstrategie beeinflussen [100]. Dies betrifft z. B. die optimale Planung
der Rohstoff- und Ersatzteilbestédnde, die Erfassung der Rohstoff- und Energiever-
bréuche, die Weitergabe von Personaleinsatzzeiten an die Personalabteilung oder die
Erfassung von Qualitatsriickmeldungen von Kunden [27].

In klassischen PLS haben sich die Ebenen durch ihre Zeitskalen unterschieden. Wahrend
in Ebene 1 Sekunden, Millisekunden und manchmal sogar Mikrosekunden als Zeithorizont
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bendotigt worden ist, sind Eingriffe durch Ebene 2 im Minuten- bis Stundenbereich erfolgt.
Aktionen der Ebene 3 haben sich in Tagen, Wochen und Monaten ausgewirkt. Strategie-
entscheidungen in Ebene 4 sind in den néchsten Monaten und Jahren relevant geworden
[100]. Die heute iiblichen direkten Zugriffe aus den hoheren Ebenen auf die niedrigeren
Ebenen der AP machen diese Zeitskalenunterscheidung jedoch obsolet [144].

Zwei der wesentlichen Vorteile des Ebenenmodells sind die Verdichtung von einer Viel-
zahl von Einzelinformationen von niedrigen zu hohen Ebenen sowie die Ableitung von
Informationen fiir die niedrigen Ebenen durch die Vorgaben der hoheren Ebenen [163].
Das Ebenenmodell hat sich daher in den letzten zwanzig Jahren bewdhrt. Dennoch wird
unter dem Stichwort ,vertikale Integration® an der Struktur gertittelt [144]. Sensoren, die
bisher in der 4...20mA-Technik® ausgefithrt wurden, werden zunehmend von Sensoren
mit digitaler Signaliibertragung tiber einen Feldbus (vgl. Abbildung 2.3) verdrangt [71].
Sie besitzen interne Diagnosefunktionen und konnen iiber den Feldbus parametriert wer-
den. Funktionen aus hoheren Ebenen werden weiter unten implementiert [71] und sind
daher nicht mehr nur einer Ebene zuzuordnen [144]. Des Weiteren fiihrt eine permanent
erforderliche Planungsbereitschaft dazu, dass MES-Systeme direkt auf Automatisierungs-
systeme der Feldebene zugreifen. Beide Punkte sind aufgrund der Weiterentwicklungen in
der Informationstechnik moglich, erfordern aber eine Vielzahl von Schnittstellen. Zudem
kann mit vielen Insellsungen, die fiir die einzelnen Anwendungsfélle implementiert werden,
kein globales Optimum erzielt werden [144]. Allerdings hat diese Aufweichung der Auto-
matisierungspyramide Grenzen [74]. Anforderungen beziiglich Echtzeit und funktionaler
Sicherheit machen eine Verlagerung bestimmter Funktionen in hohere Ebenen schwierig
bis unmoglich [182].

2.5. Kommunikation

Zur Informationsiibertragung innerhalb eines PLS stehen eine Reihe von Methoden und
Technologien zur Verfiigung. Eine detaillierte Beschreibung der Kommunikationsmethoden
wiirde den Rahmen der Arbeit sprengen, daher sei auf [48] fiir eine tiefere Erlduterung ver-
wiesen. Aus diesem Grund wird hier nur die dienstbasierte Kommunikation als Moglichkeit
der ebenentibergreifenden Integration [128] vorgestellt.

2.5.1. Dienstbasierte Kommunikation
Ein Dienst beinhaltet

L, Funktionen, die einem Benutzer von einer Organisation angeboten werden“
/38, S. 50].

Dienste kénnen durch Menschen und durch Maschinen angeboten werden. Diese Definition
ist generisch und kann sowohl auf technische als auch auf nicht-technische Systeme iiber-
tragen werden [38]. Abbildung 2.6 zeigt das Referenzmodell fiir ein Dienstsystem in der
Prozessautomatisierung.

Die Kernidee des Diensts besteht in dem Abrufen von Funktionalitdt von einer ande-
ren Stelle [18]. Dienste miissen nicht initialisiert werden, sie sind permanent verfiigbar

3Die 4. ..20 mA-Technik iibermittelt analoge Daten mittels eines Stromsignals, siehe [107].
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Uberpriifung zur Suche

des geeigneten Diensttyps . - beschreibt
Diensttyp Diensttyp
beschreibung
Uberpriifung zur T konkretisiert
Suche des geeig- Dienst- beschreibt
neten Diensts beschreibung implementiert
Funktionalitat M Dienst
stellt bereit
Entitat zum Stimmen einem Vertrag zu Entitat zur
Aufrufen Bereitstellung
lbesitzt besitztl
Nachricht t h
Dienstaufrufer achrichtenaustause Dienstanbieter

Abbildung 2.6.: Referenzmodell fiir ein Dienstsystem in der Prozessautomatisierung (nach
[196])

[101]. Dabei ist das Wissen, wie eine Funktionalitat realisiert wird, fiir den Dienstaufrufer
nicht interessant [184]. Die Implementierung des Diensts verbleibt daher beim Dienstan-
bieter. Dieser stellt iiber eine Schnittstelle einen gekapselten Zugang bereit, tiber den der
Dienstaufrufer die bendtigten Daten an den Dienstanbieter senden kann. Ein Vertrag zwi-
schen Dienstanbieter und -aufrufer beinhaltet die genaue Beschreibung der Dienstfunktio-
nalitdt und der benétigten Daten sowie die garantierten nichtfunktionalen Eigenschaften
[143]. Einen Uberblick iiber verfiighare Dienste ist durch einen speziellen Verzeichnisdienst
gegeben [101]. Ein Dienst realisiert einen Diensttypen. Im Diensttyp sind die Semantik, die
Funktionen (z. B. Ein- und Ausgabe, Art der Funktionsaufrufe), das Umfeld des Dienstes
und nichtfunktionale Qualitédtsmerkmale enthalten [38].

Dienste erméglichen den Wechsel von fest projektierten Kommunikationsbeziehungen
kontextloser Daten zu einer losen Verbindung von Steuerungssystemen [18]. Anstelle von
Signalen, die ausschlieflich im Engineering der Steuerung festgelegt werden [198], erfolgt
die Kommunikation hier durch diskrete Nachrichten [38]. Durch die Interpretation von
Produktionsschritten als Dienste wird aus der klassischen prozedurorientierten Ablauf-
steuerung die Orchestrierung einer Sequenz von Diensten [18]. Jeder Dienst besitzt einen
eindeutigen Namen, der durch den Menschen interpretiert werden kann. Auf diese Weise ist
eine eindeutige Identifikation des Diensts bei gleichzeitiger Lesbarkeit des Prozedurablaufs
durch den Menschen gesichert [184].

Ein Dienst ist generell nicht an eine Kommunikationsinfrastruktur gebunden [38]. Den-
noch ist die Festlegung auf eine bestimmte Infrastruktur notwendig, damit Nachrichten
zwischen den beteiligten Dienstanbietern und -nutzern versendet werden kénnen. Verschie-
dene Publikationen sehen Open Platform Communications Unified Architecture (OPC UA)
als zukiinftige Plattform, in der ein Dienstsystem in der industriellen Produktion imple-

17

- [ ‘am 20.01.2026, 08:45:57. @ Urheberrachtiich geschlitzter Inhatt.
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

2. Definitionen und grundlegende Begriffswelt

mentiert werden kann (z. B. [17, 144]).

2.6. Prozedurbeschreibungsmittel

Ein Prozess ist ein einmaliger Vorgang, der in der physischen Welt zu einem definierten
Zeitpunkt an einem definitiven Ort stattfindet [154]. Ein Prozess kann nicht riickgingig
gemacht werden. Nachdem der Prozess beendet worden ist, sind nur die Auswirkungen des
Prozesses noch zu beobachten. Die Auswirkung eines Prozesses kann durch einen weiteren
Prozess riickgingig gemacht werden. Diese Eigenschaften des Prozesses konnen auch auf
Prozeduren tibertragen werden. Da nach Beendigung eines Prozesses nur die Auswirkungen
sichtbar sind, miissen Prozesse iiberwacht werden. Die Ergebnisse der Uberwachung werden
in einer Prozessdokumentation festgehalten [38].

Fir den Prozess, die Prozedur und die Dokumentation sind Beschreibungen notwendig
(vgl. Abbildung 2.7). Anhand der Prozessbeschreibung werden eine Prozedurbeschreibung
und eine Beschreibung der Prozessiiberwachung erzeugt. Basierend auf der Prozedurbe-
schreibung wird die Prozedur im Steuerungssystem ausgefithrt und der Prozess auf diese
Weise gesteuert. Die Prozedurbeschreibung ist demnach ein zentrales Dokument, welches
bendtigt wird, damit Prozesse reproduzierbar und kontrolliert ausgefithrt werden kénnen.

Prozedur- ist Vorgabe fiir : Prozedur-
beschreibung . ausfihrung
ist Grundlage flr ' steuert
Prozess-
0z€ss 1 Prozess

beschreibung

ist Grundlage fur liefert Daten

Beschreibung | it vorgabe fiir

Prozess-
der Prozess- : .
lberwachung lberwachung
Beschreibung ; operative Ausfiihrung

Abbildung 2.7.: Die Wesensart eines Prozesses (nach [38, 154])
Jede Form der Beschreibung benotigt ein Beschreibungsmittel, in dem die Beschreibung
niedergelegt ist.

, Beschreibungsmittel definieren eine Menge von Zeichen, Symbolen und Re-
geln, die zur Modellierung eines Systems innerhalb eines bestimmten Kontexts
zugelassen sind“ [115, S. 11].

Beschreibungsmittel konnen formal, semiformal und informell sein [157]. Die Wahl des rich-
tigen Beschreibungsmittels ist essentiell fiir die erfolgreiche Abstraktion des realen Systems
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[115]. Neben formalen Sprachen, die aus Wortern und Grammatik-Regeln bestehen, konnen
Prozesse und Prozeduren durch Modelle beschrieben werden.

2.6.1. Formale Sprachen

Kommunikation erfolgt, damit Menschen Informationen zu anderen Menschen iibertragen
konnen. Menschen verwenden jeden Tag eine natiirliche Sprache, damit sie mit anderen
Menschen kommunizieren koénnen. Ebenso verarbeiten Computer sprachliche Eingaben.
Diese miissen in einer formalen Sprache formuliert sein. Natiirliche Sprachen enthalten
unvollstandige, vage oder falsche Konstrukte, die zwar von Menschen verstanden werden
kénnen, nicht aber von Computern [15].

Eine Sprache ist als eine

,Menge von Wartern iiber einem Alphabet X [10, S. 24]
definiert. Ein Alphabet ist hierbei eine beliebige

wendliche, nichtleere Menge X [...]. Die Elemente eines Alphabets werden Buch-
staben genannt“ [10, S. 15].

Ein Wort iiber einem Alphabet 3
List eine endliche (eventuell leere) Folge von Buchstaben aus ¥ [10, S. 16].

Worter im Sinne dieser Definition sind nicht nur die Elemente, die umgangssprachlich als
Worter bezeichnet werden. Auch Sétze, Aussagen, Diagramme, Terme, Modelle usw. sind
Worter einer Sprache. Die Definitionen aus [10] gelten sowohl fiir natiirliche als auch fiir
formale Sprachen. Formale Sprachen sind

Lktnstlich entworfene Sprachen, die mit formalen Mitteln exakt zu beschreiben
sind“ [79, S. 33].

Formale Sprachen bestehen in der Regel aus abzihlbar unendlich vielen Wortern. Es wird
daher eine endliche Menge an Bildungsregeln, die sogenannte Syntax, fiir die Definition
formaler Sprachen benotigt [79]. Die Syntax einer Sprache teilt die Menge aller Worter, die
iiber einem Alphabet gebildet werden kénnen, in zwei Teilmengen auf. Diese Teilmengen
sind disjunkt, die eine Menge entspricht der Sprache, die andere dem Komplement der
Sprache [192]. Erst durch eine Syntax werden aus Informationen Daten, die interpretiert
und verstanden werden konnen [73].

Die Syntax alleine reicht nicht aus, damit eine formale Sprache als Kommunikationsmit-
tel genutzt werden kann. Es ist ein Riickgriff auf die Semantik notwendig, die die Bedeutung
der Worter festlegt [79]. Mittels der Semantik werden syntaktisch korrekte Worter einer
Sprache auf eine semantische Doméne bezogen. Semantische Abbildungen werden haufig
induktiv definiert [192]. Ferner muss die Formulierung einer Semantik mit groBer Acht-
samkeit erfolgen, da der Mensch dazu neigt, fiir ihn offensichtliche Punkte wegzulassen
[73].

Neben textbasierten Sprachen existieren visuelle Sprachen. Eine visuelle Sprache besteht
aus einer Menge von grafischen Elementen. Visuelle Sprachen nutzen die Eigenschaften des
Menschen aus, der visuelle Informationen effektiver als textuelle Informationen aufnehmen
und verarbeiten kann [192]. Des Weiteren vermuten die Nutzer von visuellen Sprachen,
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dass diese einfacher als textuelle Sprachen zur Programmierung genutzt werden kénnen
und so ein produktiveres Arbeiten ermoglichen. Dabei gilt jedoch, dass visuelle Sprachen
denselben Regeln gentigen miissen wie textuelle Sprachen, damit sie von Computern verar-
beitet werden kénnen. Insbesondere hat eine gut gestaltete grafische Beschreibungssprache
eine wohldefinierte und beschriankte Anzahl von Elementen, gute Abstraktionsmoglichkei-
ten und eine feste Basis in ihrer Syntax und Semantik und ist pragmatisch anwendbar
[87].

Beschreibungssprachen werden insbesondere zur Modellierung verwendet. In diesem Zu-
sammenhang werden sie als Modellierungssprache bezeichnet [192].

2.6.2. Modelle
Ein Modell ist ein

,Gegenstand, der es erlaubt Aussagen tiber einen anderen, modellierten Gegen-
stand zu treffen® [38, S. 7).

Modelle geben einen Ausschnitt aus der Realitit wieder. Ein Modell ist nach [131, 162]
durch die drei Eigenschaften Abbildungsmerkmal, Verkiirzungsmerkmal und pragmatisches
Merkmal charakterisiert:

e Die Eigenschaft Abbildungsmerkmal unterstreicht, dass ein Modell immer eine Ab-
bildung eines natiirlichen oder kiinstlichen Systems ist. Modelle kénnen auch andere
Modelle reprisentieren.

e Modelle geben im Allgemeinen nur eine Teilmenge der Eigenschaften des modellierten
Systems wieder, sie verkiirzen demnach.

e Modelle folgen einem pragmatischen Ansatz, sie sind fiir eine bestimmte Zeit, einen
bestimmten Empfanger und fiir einen bestimmten Zweck vorgesehen.

Héaufig werden Modelle mit mathematischen Modellen gleichgesetzt, die als formale
Grundlage fiir Simulationen dienen [14]. In dieser Arbeit sind unter dem Begriff , Modell“
jedoch Modellsysteme gemeint. Ein Modellsystem ist ein

»Modell, das selbst als System strukturiert ist und das versucht den inneren
Aufbau eines betrachteten Systems so gut nachzubilden, dass im gewinschten
Kontext und mit der geforderten Genauigkeit die dufleren Eigenschaften des
Modellsystems mit denen des betrachteten Systems tibereinstimmen [49, S. 86].

Ebenfalls von Bedeutung fiir die Modellierung sind die Festlegungen der Modellinteraktion
[16]. Solche Modellsysteme konnen sowohl zur Analyse bestehender als auch zur Erstellung
neuer Systeme genutzt werden [49]. Sie dienen der Verstédndnisbildung, dem Datenaus-
tausch und der Datenhaltung [109)].

Ein Modellsystem kann ein Referenzmodell sein. Ein Referenzmodell ist eine doméanen-
spezifische Beschreibung. Die Beschreibung ist in sich schliissig, allerdings kann es auch
andere Varianten des Modells geben. Ebenso sind Gegenbeispiele moglich, auf die das Re-
ferenzmodell nicht angewendet werden kann. Ein Referenzmodell wird in der Fachwelt als
beste der existierenden Modellvarianten angesehen. Kernmodelle sind spezielle Referenz-
modelle. Sie sind universell giiltige, doménenunabhéngige Beschreibungen von Systemen.
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Sie treffen Aussagen iiber das System, die ,ewig“ giiltig sind. Wird eine Aussage zu einem
Kernmodell weggelassen, ist das Modell nicht mehr giiltig [196].

Der Aufbau von Modellen wird durch Meta-Modelle definiert. Abbildung 2.8 zeigt die
verschiedenen Ebenen der Modellierung. In einem Meta-Modell sind die Elemente, aus
denen die abgeleiteten Modelle bestehen, sowie die Regeln zur Verwendung der Elemente
enthalten. Die Beziehung zwischen dem Modell in der Typebene und dem modellierten
Objekt in der Instanzebene muss nicht zwangsldufig im Meta-Modell enthalten sein. In
Modellen sind nur die Elemente des Meta-Modells enthalten und sie miissen dessen Regeln
geniigen, damit das Modell gegentiber dem Meta-Modell valide ist [38]. Diese Aufteilung ist
wiederholbar, so dass eine Meta-Meta-Modell-Ebene entsteht, die wiederum den Aufbau
von Meta-Modellen beschreibt.

M3-Ebene:
Meta-Meta-
Modell-Ebene

M2-Ebene:
Meta-
Modell-Ebene

M1-Ebene:
Typ-/
Modell-Ebene

Modell von

\ MO-Ebene:

X Gogenstand der Instanz-Ebene
Modellierung

Abbildung 2.8.: Ebenen der Meta-Modellierung (nach [116])

Modelle werden im Umfeld der Automatisierungstechnik hiufig verwendet. Bei der Pro-
grammierung lassen sich Fehler nicht vermeiden, die durch aufwéndige Tests gefunden und
anschlieffend behoben werden miissen. Daher werden Modelle erzeugt und verifiziert, die an
verschiedene Situationen angepasst und folglich wiederverwendet werden konnen. Dieses
Vorgehen ist unter dem Schlagwort ,, Konfigurieren statt programmieren bekannt [144]. Es
werden zwei verschiedene Vorgehensweisen unterschieden, modellgetriebene Codegenerie-
rung und Modelle im Zielsystem:

e Bei der modellgetriebenen Codegenerierung werden die Modelle im Engineering-
Prozess verwendet. Nach dem Engineering wird der Programmcode (z.B. fir eine
SPS) erzeugt und dieser kompiliert [183, 192].

e Im zweiten Fall sind die Modelle als erkundbare Struktur im Zielsystem vorhanden.
Auch die Meta-Modelle sind in diesem Fall im Zielsystem vorhanden [51, 109, 185].
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Die Verwendung von Modellen im Zielsystem hat mehrere Vorteile gegeniiber der modell-
getriebenen Codegenerierung. Zunéchst ist die Anbindung von PNK an die héheren Ebe-
nen der Automatisierungspyramide (siehe Abbildung 2.5, S. 15) einfacher. Die Anbindung
kann durch abstrakte Modellverbindungen anstatt mit fest parametrierten Datenleitungen
durchgefithrt werden [109]. Auf diese Weise werden die Steuerungen flexibler und mis-
sen daher seltener angepasst werden. Dies reduziert die Haufigkeit von Fehlern und die
Anfalligkeit fiir schadhafte Manipulationen durch Angreifer. Ein weiterer Vorteil ist die
Zuordnung gewonnener Daten zu Modellen. Hierdurch erhalten die Daten eine Semantik
und kénnen daher bei einem Funktionalitdtswechsel einfacher an die neuen Steuerungspro-
gramme angepasst werden [185]. Der Nachteil besteht in der notwendigen Modifikation der
PNK, damit sie mit Modellen arbeiten kénnen. Aufgrund der langen Laufzeit von Prozess-
leitsystemen in der Prozessindustrie sind daher zwingend Uberlegungen erforderlich, auf
welche Weise die Modelle in existierende Systeme eingebracht werden kénnen.

Modellierung mit Merkmalen

In vielen Fallen ist kein vollstandiges Modell eines Systems erforderlich, sondern es sind
lediglich bestimmte Eigenschaften des Systems relevant [50]. Aus diesem Grund werden
den Systemen Merkmale zugeordnet:

,Merkmale sind ausgewdhlte Eigenschaften, die zur Klassen-, Begriffsbildung
und Begriffsabgrenzung dienen. Merkmale sind eigene Objekte oder kinnen
durch Objekte reprasentiert werden. [112, S. 11].

Merkmale sind demnach Eigenschaften, die ein System unter einem gewissen Betrach-
tungswinkel von anderen Systemen unterscheidbar machen. Sie ermoglichen eine seman-
tisch lose Kopplung zwischen zwei Systemen. Ferner sind Merkmale nicht fest von Zustéan-
den abgegrenzt. Je nach Betrachtungswinkel kann eine Eigenschaft als Zustand oder als
Merkmal angesehen werden. Merkmale miissen jedoch im Gegensatz zu Zustianden wéh-
rend des Betrachtungszeitraums konstant bleiben, damit die Unterscheidung anhand des
Merkmals maoglich ist [50].

In [112] ist ein Merkmalmodell entwickelt worden, welches in Abbildung 2.9 dargestellt
ist. Die grau hinterlegten Elemente sind Bestandteile auf der Meta-Modell-Ebene [92].

Ein realer Merkmaltriager ist eine Entitat, die auflerhalb der Modellgrenze liegt. Diese
kann durch mehrere Merkmaltriger beschrieben werden. Diese Merkmaltréger haben intern
keine Beschreibung der inneren Funktionalitdt, diese wird durch den Merkmaltragertyp
vorgegeben. Der Merkmaltrigertyp enthélt somit alle Merkmale, die zur Beschreibung eines
Merkmaltrigers benotigt werden. Der Merkmaltyp definiert sachneutral die Bedeutung des
Merkmals [112].

Der Wert eines Merkmals wird auch Auspriagung des Merkmals genannt. Basierend auf
den Merkmalen, die den Merkmaltrédgern zugeordnet wurden, kénnen Aussagen iiber die
Merkmale getroffen werden. Aussagen konnen entweder Merkmaltrdgern oder Merkmal-
triagertypen zugeordnet werden und durch ihren Aussagentyp klassifiziert werden. So kon-
nen gegenstindliche Aussagen (z.B. Messung, Simulation, Berechnung, Schatzung) oder
nicht-gegenstandliche Aussagen (z.B. Zusicherung, Anforderung, Festlegung oder Annah-
me) getroffen werden [112].

Das Merkmalmodell ermoglicht zunéchst die Erstellung von Rollen, die abstrakt Anfor-
derungen und Zusicherungen unabhingig vom konkreten Objekt festlegen. Somit liegt eine
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Klassifikation
Merkmaltyp
Vererbung
allgemeiner
Merkmale 1
Abstraktion
wird (Sachbezug)
N beschrie- N
ben
" durch
Merkmaltragertyp [{@—— Merkmal
* 0..1 1
Abstraktion bezieht sich Klassifikation
(ist vom Typ) Zuordnung immer auf
«  (exklusiv) N N
i Abstraktion|
Merkmaltrager " Merkmalaussage [~ Aussagentyp
- 1
A 01
Ty Modellgrenze
realer
Merkmaltrager

Abbildung 2.9.: Merkmalmodell (nach [92, 112])

Beschreibung unabhéngig vom konkreten zu modellierenden System, dem Merkmaltriger,

vor. Erst bei der Zuweisung des Merkmaltrigers wird der Wert des Merkmals zugeordnet
[112].

23

[ am 20,01.2026, 08:45:57. @
m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

3. Analyse von
Prozedurbeschreibungssprachen

Die verschiedenen Typen von Steuerungssystemen und Ausfihrungseinheiten (vgl. Kapi-
tel 2.3.1, S. 12) haben zu einer Vielzahl von Sprachen zur Prozedurbeschreibung gefiihrt.
Zudem sind durch die Weiterentwicklung der Technik fortlaufend neue Konzepte in die Pro-
zedurbeschreibungssprachen eingeflossen. Diese Prozedurbeschreibungssprachen sind be-
reits an verschiedensten Stellen untersucht, verglichen und bewertet worden. Im folgenden
Kapitel steht die Analyse hinsichtlich der Elemente einer Prozedurbeschreibungssprache
nach Kapitel 3.1, S. 24, im Vordergrund. Die hier vorgestellten Ergebnisse basieren auf
eigenen Analysen, die zu Teilen bereits in ,Ein Referenzmodell zur Prozedurbeschreibung
- Eine Basis fiir Industrie 4.0 [152] verdffentlicht worden sind.

Die vorgestellten Prozedurbeschreibungssprachen sind grafische! doménenspezifische
Sprachen (vgl. [84]). Durch sie wird das Verhalten einer Steuerung spezifiziert. Teilwei-
se werden sie ebenfalls zur Implementierung verwendet. Die Spezifikation der Prozedur
ist abstrahiert von der Implementierung bzw. der technischen Realisierung [6]. Die Proze-
durbeschreibungssprachen sind kontrollfluss- und objektorientierte Modellierungssprachen
[131], die den Wechsel von aktiven Zustanden beim Eintreten bestimmter Ereignisse be-
schreiben [113].

Grafische Prozedurbeschreibungssprachen sind Graphen. Ein Graph ist definiert als

sein Tupel G = (V, E,X) von einer Menge V' von Knoten, einer Menge % von
Gewichten mit VNYX =0, [und] einer Menge E CV x ¥ X V von gewichteten
Kanten® [141, S. 29].

Bipartite Graphen sind Spezialfille von allgemeinen Graphen, deren Knoten sich so in zwei
Gruppen einteilen lassen, dass jede Kante immer von einem Element aus einer Gruppe zu
einem Element aus der jeweils anderen Gruppe fithrt [8].

Neben der Eigenschaft, dass Prozedurbeschreibungen Graphen sind, gibt es grundlegende
Konzepte, die sich trotz des unterschiedlichen Anwendungszwecks in allen Sprachen finden
lassen. Diese Konzepte werden im folgenden Abschnitt vorgestellt.

3.1. Elemente einer Prozedurbeschreibungssprache

In einer Prozedurbeschreibungssprache miissen Aussagen zu verschiedenen Konzepten ge-
troffen werden. In Abbildung 3.1 sind generische Konzepte dargestellt, die eine Proze-
dur charakterisieren, namlich: das Aufbaumodell, das Hierarchie- und Vernetzungsmodell,
das Abstraktions- und Zuordnungsmodell, das Aktions- und Aktivitdtenmodell sowie das

! Ausgenommen ist nur die Business Process Execution Language, die keine grafische Repriisentation be-
sitzt. Sequential Function Charts besitzen neben der grafischen ebenfalls eine textuelle Reprasentation.
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Ausfithrungssteuerungsmodell. Diese Konzepte sind in jeder Prozedurbeschreibungsspra-
che vorhanden, lassen sich jedoch nicht immer explizit wiederfinden. Gerade wahrend der
Ausfithrung einer Prozedur sind sie oft verborgen.

Aufbaumodell

yysem—— . Elemente der e

straktions- un: - ierarchie- un

Zuordnungsmodell | Prozec_iur | Vernetzungsmodell |
beschreibung

Ausfihrungssteuerungs-
modell

Aktions- und
Aktivitatenmodell

Konzeptionelle Vernetzung

Abbildung 3.1.: Elemente einer Prozedurbeschreibungssprache (nach [130])

3.1.1. Aufbaumodell

Das Aufbaumodell beschreibt die grundlegenden Elemente, die eine Prozedurbeschrei-
bungssprache beinhaltet. Beispiele fir diese Elemente sind Schritte, Transitionen oder
Zustande. Sie werden im Aufbaumodell, welches die Grundlage fiir alle weiteren Modelle
bildet, in einen begrifflichen Zusammenhang gesetzt. Die Elemente bilden einen wesentli-
chen Teil der Knotenmenge der Graphdarstellung einer Prozedur. Nicht Bestandteil des
Aufbaumodells sind die Verbindungsmoglichkeiten zwischen den Elementen oder die Art
und Weise der Interaktion mit der Umgebung.

3.1.2. Hierarchie- und Vernetzungsmodell

Wie bereits erklart, werden die Elemente des Aufbaumodells durch Kanten zu einem Gra-
phen verbunden. Neben dem einfachsten Grundmuster einer Ablaufstruktur, einer linea-
ren, terminierenden Kette, gibt es auch komplexere Ablaufstrukturen. Beispiele hierfiir
sind Verzweigungen, Makroschritte und Unterketten. Muster und Regeln zur Gestaltung
all dieser vernetzten Ablaufstrukturen werden im Hierarchie- und Vernetzungsmodell be-
schrieben. Insbesondere beschreibt das Konzept, welche Alternative bei mehreren erfiillten
Transitionsbedingungen einer Alternativverzweigung ausgewéahlt wird oder wie nebenlidu-
fige Ablaufketten beschrieben werden. Das Hierarchie- und Vernetzungsmodell beschreibt
zudem den Aufbau verschiedener Ebenen. Dies beinhaltet zum einen den Aufruf von Un-
terprozeduren, zum anderen Makroschritte. Das Ausfiihrungssteuerungsmodell beinhaltet
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Aussagen tiber die Interaktion zwischen aufrufender und aufgerufener Prozedur, diese sind
nicht Bestandteil des Hierarchie- und Vernetzungsmodells.

3.1.3. Abstraktions- und Zuordnungsmodell

Das Abstraktions- und Zuordnungsmodell beschreibt den Entwurfsprozess einer Proze-
durbeschreibung. Zunéchst betrifft dies den Spezifikationsgrad der Prozedurbeschreibung.
In vielen Féllen wird die Prozedur bis hin zu einem vollstandig spezifizierten Setzen von
Variablen wahrend der Ausfithrung der Prozedur spezifiziert. In anderen Fallen legt die
Prozedurbeschreibung lediglich die Anforderungen fest, welche die Ausfithrungseinheit er-
fiillen muss. Mit anderen Worten, es muss determiniert sein, wie die Prozedurbeschreibung
mit Rollen (vgl. Kapitel 2.2.2, S. 8) umgeht. Da Zuordnungen zwischen Rolle und Ausfiih-
rungseinheit teilweise erst wahrend der Prozedurausfithrung getroffen werden, miissen im
Abstraktions- und Zuordnungmodell strukturell konsistente Transformationen beschrieben
sein.

Ebenso ist ein Konzept zur Entwicklung von Prozedurklassen im Abstraktions- und
Zuordnungsmodell enthalten. Bei Funktionsbausteinen hat sich ein Typ-Instanzenkonzept
durchgesetzt (vgl. [47]). Die Funktionsbausteintypen werden vom Steuerungssystemherstel-
ler implementiert. Wéahrend des Entwurfsprozess konnen Instanzen der Klassen verschaltet
werden. Prozedurbeschreibungen hingegen sind nur in bestimmten Fallen wiederverwend-
bar. Fir viele Anwender ist ein Typ-Instanzenkonzept vom Arbeitsaufwand her in der
Regel nicht attraktiv. Sie verwenden stattdessen haufig Entwurfsmuster. Allerdings bringt
die Verwendung eines Typ-Instanzenkonzepts Vorteile, beispielsweise bei der Erstellung
von Batch-Rezepten oder der Ubertragung einer Prozedur auf mehrere parallele Anlagen-
straflen. Aus diesem Grund ist es sinnvoll, die Verwendung durch ein einfach anwendbares
Konzept zu unterstiitzen.

3.1.4. Aktions- und Aktivitatenmodell

Eine Prozedur kann iiber Aktionen und Aktivitdten auf die Umgebung einwirken. Damit
Informationen vom Steuerungssystem zum Empfinger gelangen, sind Kommunikationsbe-
ziehungen erforderlich. Im Aktions- und Aktivitdtenmodell sind diese Interaktionen der
Prozedur mit der Umgebung festgelegt. Eine Aktion ist ein technologisch zeitloser Vor-
gang, wahrend eine Aktivitat eine Dauer besitzt [47]. Ein Beispiel fiir eine Aktion ist das
Setzen einer Variablen, die Berechnung einer mathematischen Formel ist hingegen eine
Aktivitat. Der Aufruf eines Dienstes ist eine Aktion, falls das Steuerungssystem nicht auf
eine Antwort wartet, anderenfalls ist der Aufruf eine Aktivitat.

Die Interaktion kann beispielsweise verbal, durch Signale oder durch Dienstaufrufe aus-
gefithrt werden. Ausnahmslos muss eine formale Beschreibung der Aktionsaufrufe vor dem
Start einer Interaktion definiert werden, damit sich die Steuerungssysteme untereinander
ebenso wie Steuerungssysteme und Ausfithrungseinheiten verstehen kénnen. Bei menschli-
chen Kommunikationspartnern muss zumindest die eindeutige Interpretierbarkeit der Ak-
tionsaufrufe sichergestellt sein.
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3.1.5. Ausfiihrungssteuerungsmodell

Das Ausfiihrungssteuerungsmodell enthélt die Beschreibung der operativen Ausfithrung ei-
ner Prozedur. Dies umfasst die Abarbeitung der Prozedur im Regelfall. Konkret sind hier
dementsprechend Regeln festgehalten, welche vorgeben, in welcher Reihenfolge die entspre-
chenden Elemente des Aufbaumodells bearbeitet und wie die Aktionen und Aktivitédten
des Aktions- und Aktivitdtenmodells ausgefithrt werden. Ebenso enthélt das Ausfithrungs-
steuerungsmodell die Eingriffsmoglichkeiten durch externe maschinelle und menschliche
Steuerungssysteme. Hier sind auch standardisierte Muster zur Ausnahmebehandlung als
Zustandsmaschine hinterlegt, d. h., es liegt eine Beschreibung der Reaktionen der Prozedur
auf Abweichungen vom Regelfall vor.

3.2. Auswahl der Prozedurbeschreibungssprachen

Insgesamt sind vierzehn Sprachen fiir die Analyse ausgewéhlt worden. Die Auswahl basiert
auf [103, 151]. Viele der hier vorgestellten Sprachen sind durch die International Elec-
trotechnical Commission (IEC), durch die International Organization for Standardization
(ISO) oder durch die Object Modeling Group (OMG) standardisiert. Bei den Sprachen der
OMG wird die Systems Modeling Language (SysML) nicht explizit betrachtet, da die Er-
weiterungen der SysML fast ausschlieflich strukturelle Diagramme betreffen, welche stati-
sche Beziehungen modellieren. Eine Ausnahme liegt beim Aktivitatsdiagramm vor, welches
in Kapitel 3.4.1, S. 54, erlautert wird [4]. Eine Betrachtung von Anwendungsdiagrammen
und Sequenzdiagrammen im Rahmen der Verhaltensdiagramme der Unified Modeling Lan-
guage (UML) ist nicht erforderlich, da dort der prozedurale Ablauf nicht im Vordergrund
der Modellierung steht [11]. In [81] wird ein Konzept zum Entwurf von Ablaufsteuerun-
gen von Konti-Anlagen aufgezeigt, jedoch keine eigene Beschreibungssprache definiert. Die
formalisierte Prozessbeschreibung [176] kann als Grundlage fiir den prozeduralen Steue-
rungsentwurf dienen. In [172] ist gezeigt, dass aus formalisierten Prozessbeschreibungen
automatisch Sequential Function Charts (SFC) erzeugt werden kénnen. Da die formali-
sierte Prozessbeschreibung vorwiegend zur Beschreibung von Prozessen genutzt wird, wird
sie nicht als Prozedurbeschreibungssprache betrachtet.

Jede einzelne der ausgewdhlten Sprachen wird zunéchst hinsichtlich der allgemeinen
Idee und des Einsatzzwecks vorgestellt und im Anschluss erfolgt die Ermittlung der fiinf
Elemente einer Prozedurbeschreibungssprache nach Kapitel 3.1, S. 24, in der jeweiligen
Beschreibungssprache. Anzumerken ist, dass sich die Prozedurbeschreibungssprachen in
zwei Gruppen einteilen lassen [152]: Zunachst werden Prozedurbeschreibungssprachen zur
Steuerung von technischen Prozessen vorgestellt, anschlieend solche, die Geschéftsprozesse
steuern.

3.3. Prozedurbeschreibungssprachen zur Steuerung von
technischen Prozessen
Der Fokus bei Prozedurbeschreibungssprachen zur Steuerung von technischen Prozessen

liegt in der Interaktion von maschinellen Steuerungssystemen mit maschinellen Anlagen-
systemen. Es folgt die Vorstellung von neun Sprachen, Endliche Automaten (EA), Grafcet,

27

- am 20,01.2026, 08:45:57. @ Inhah.
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

3. Analyse von Prozedurbeschreibungssprachen

Grafchart, Procedural Function Charts (PFC), Petrinetze (PN), PLC Statecharts, SFC,
Sequential State Charts (SSC) und Zustandsdiagramme, auf Englisch Statecharts (SC).
Diese Sprachen sind aufeinander basierend entwickelt worden. Abbildung 3.2 gibt einen
Uberblick iiber die Abhéngigkeiten der einzelnen Sprachen.

1940 Endliche Automaten
1950 /

1960 Petrinetze

1970 l,

1980 Grafcet

N\ \ Statecharts

19% Grafchart SFC
2000 PFC \
2010 SSGC PLC Statecharts

Abbildung 3.2.: Historie der Prozedurbeschreibungssprachen fiir technische Prozesse (basie-
rend auf [196])

Zwischen SC-basierten Sprachen und PN-basierten Sprachen besteht ein grundlegender
Unterschied in der Modellierung. Bei SC-basierten Sprachen ist der aktuelle Zustand der
Prozedur durch das einzige aktive Element festgelegt. Bei PN-basierten Sprachen ist hinge-
gen die Verteilung der Marken auf die Stellen fiir die Definition des Zustands der Prozedur
relevant [6].

Im Folgenden werden die einzelnen Sprachen analysiert. Dabei werden ausgehend von
den EA zunéchst die PN-basierten Sprachen eingefiihrt, gefolgt von den SC-basierten Spra-
chen. Zum Schluss erfolgt die Betrachtung von SSC als Kombination beider Sprachfamilien.

3.3.1. Endliche Automaten

Endliche Automaten (EA) sind ein Beschreibungsmittel der Informatik aus den 1940er und
1950er Jahren [78]. Etymologisch stammt die Bezeichnung ,Automat“ vom griechischen
Wort avtouatoo (automatos, iibersetzt: von selbst geschehend) ab. In Abbildung 3.3 ist
ein Beispiel fiir einen EA abgebildet, welches in den folgenden Absétzen erlautert wird.

Es existieren viele verschiedene Auspragungen der EA. Der Hauptunterschied der Aus-
pragungen liegt in der Anbindung an die Umgebung [175]. EA sind ein geeignetes Mittel zur
transparenten Beschreibung von Ablaufen in der Automatisierungstechnik [62]. Sie bilden
daher direkt oder indirekt die Grundlage fiir alle weiteren Prozedurbeschreibungssprachen
in diesem Abschnitt.

Aufbaumodell Zunichst werden EA in Deterministische Endliche Automaten (DEA) und
Nichtdeterministische Endliche Automaten (NEA) unterteilt. Ein DEA ist definiert als ein
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Ubergangs- €---"" Anfangsizustand. o
funktion / :
T <_..~Endzy|stand..__>
“ :
cmd_open / open Z

opened

fully_closed / cmd_open A A fully_closed
Aktion
opening K RN
v
cmdfcl;)\se / close: fullyfo/eened cmd_close

fully_opened / ‘
opened
Zustand Bedingung

Abbildung 3.3.: Elemente eines endlichen Automaten (links ein Mealy-Automat, rechts ein
Moore-Automat, nach [196])
Tupel (Q, X, 4, qo, F'). Hier ist

e ()= {ql, R q‘Q|} eine endliche? Menge von Zustinden,

e Y eine Menge von Eingangssymbolen (ein Alphabet nach Kapitel 2.6.1, S. 19),

e §:Q — Q dic Ubergangsfunktion zwischen den Zusténden,

qo € @ der Startzustand und
e F C () die Menge der Endzusténde [78].

Ein Zustand ist als Startzustand ausgezeichnet. Es kann beliebig viele Endzustiande geben
[175]. Der Unterschied zwischen DEA und NEA besteht in der Ubergangsfunktion. Bei
einem DEA gibt § einen einzelnen Zustand, bei einem NEA eine Menge von Zustianden
zurtick. Allerdings ldsst sich zeigen, dass sich jeder NEA durch einen dquivalenten DEA
ausdriicken lasst, so dass im Folgenden nur noch der DEA betrachtet wird [78].

Hierarchie- und Vernetzungsmodell Neben einer endlichen Menge diskreter Zustande
besteht ein DEA aus moglichen Ubergingen zwischen den Zusténden. Die Uberginge sind
durch die Ubergangsfunktion § : Q@ — @ definiert. Auch ein Ubergang zum aktuellen
Zustand zuriick ist ein Ubergang, der in 6 enthalten sein muss.

Klassische EA unterstiitzen keine Hierarchien [175], d.h., alle Zustdnde miissen mit ih-
ren Verbindungen dargestellt werden. Somit ist weder eine Zusammenfassung noch eine
Verfeinerung von Zustédnden moglich. Nebenlaufigkeit wird in den EA ebenfalls nicht un-
terstiitzt3.

2Daher die Bezeichnung ,, Endlicher Automat*.
3Einen Ansatz zur Erweiterung der EA zeigt [42], die detaillierte Darstellung wiirde jedoch den Rahmen
dieser Zusammenstellung sprengen.
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In [62] ist die Moglichkeit der Synchronisation mehrerer Automaten zur Modellie-
rung von Nebenlaufigkeiten erlautert. Das Fehlen von Hierarchien und Nebenlaufig-
keiten im Beschreibungsmittel fithrt jedoch zu einer Zustandsexplosion [72]. Zwei EA
sind orthogonal zueinander, wenn sie unterschiedliche Aspekte eines Systems beschrei-
ben, die keine Schnittmenge haben. Da EA keine Hierarchien kennen, werden die Zu-
stdnde kombiniert. Seien z. B. E; und E, zwei orthogonale EA mit den Zustianden
G1sq12, - Qim DZW. @21,G22, .., G2,- Die Summe der Zustédnde der beiden Automa-
ten ist demnach m + n. Der kombinierte Automat besitzt jedoch m * n Zusténde [72],
namlich q11q2,1, - - q1,192.0; @12G2,15 - - - 1,2G2,0, Q1,mG2,1 - - - §1,mG2,n- Ein kombinierter Auto-
mat wird daher auch als Produktautomat bezeichnet [78].

Abstraktions- und Zuordnungsmodell EA haben kein Abstraktions- und Zuordnungs-
modell [152]. Sie werden im Allgemeinen wegen ihrer formalen Beschreibung fir die Veri-
fikation von Steuerungsspezifikationen eingesetzt [175]. Fir die meisten praktischen An-
wendungsfille sind die entstehenden Automaten zu komplex, daher ist eine Wartung bei
Anderungen und Fehlern nur schwer méglich. Zudem werden EA von heutigen IEC 61131-
3-kompatiblen Steuerungssystemen [23] nicht unterstiitzt, auch wenn automatische Trans-
formationen in Strukturierten Text (ST) moglich sind [62].

Aktions- und Aktivitdtenmodell Klassische EA nach 78] haben keine Moglichkeit, Ak-
tionen oder Aktivititen auszufithren. Sie reagieren nur durch die Ubergangsfunktion in
Abhéngigkeit des aktuellen Zustands auf die Eingangssymbole. Die Bedingungen der Zu-
standstibergidnge miissen also aus der Menge ¥ stammen. Solche EA stellen Akzeptoren
fir eine formale Sprache dar [56].

Erst die Erweiterungen nach Mealy [108] und Moore [114] fithren durch die Definition
eines Ausgabealphabets ein einfaches Aktionsmodell ein. Solche EA werden als Transdukto-
ren bezeichnet [56]. Fiur Aktionen wird die Automatendefinition um eine Ausgabefunktion
A Q x X =Y erweitert, wobei Y die Menge der Ausginge ist [6]. Das Setzen von Aus-
gangsgroBen kann auf zwei verschiedene Weisen geschehen (vgl. Abbildung 3.3). Bei einem
Mealy-Automat werden die Ausgangsgrofien wihrend des Zustandsiibergangs geschrieben,
in einem Moore-Automat bei der Aktivierung des Zustands. Beide Typen lassen sich inein-
ander umformen [196]. Die Syntax der Aktionen ist durch die Ausgabefunktion festgelegt
[56].

Ausfiihrungssteuerungsmodell Auch das Ausfithrungssteuerungsmodell der DEA? ist
sehr simpel konstruiert. Bei der Aktivierung eines Automaten wird der Startzustand akti-
viert. Ein angelegtes Eingabewort wird Zeichen fiir Zeichen ausgewertet und entsprechend
der Ubergangsfunktion wird der Zustand gedindert. Die Ubergangsfunktion nimmt den Zu-
stand als Ausgangswert, der beim jeweiligen Zeichen aktiv ist und nicht den, der beim
Anlegen des Worts aktiv war. Der DEA terminiert, wenn er einen Endzustand erreicht hat
[78].

Trifft ein DEA auf ein Zeichen, fiir das im aktuellen Zustand keine Ubergangsfunktion
existiert, ist der Automat in einem undefinierten Zustand. Daher miissen Eingaben, die der
DEA ignorieren soll, explizit modelliert werden. Zudem kann es zu nicht erreichbaren Zu-
stinden kommen, wenn keine Ubergangsfunktion in einen Zustand hineinfiihrt. Der DEA

4NEA lassen sich, wie bereits erwéiihnt, in einen DEA umformen und werden daher hier nicht betrachtet.

30

- [ am 20,01.2026, 08:45:57. @ Inhah.
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

3.3. Prozedurbeschreibungssprachen zur Steuerung von technischen Prozessen

kann verklemmen, wenn aus einem Zustand, der kein Endzustand ist, keine Ubergangs-
funktion hinausfiihrt [78].

3.3.2. Petrinetze

Petrinetze (PN) sind in den 1960er Jahren zur Modellierung allgemeiner dynamischer
Strukturen entwickelt worden [175]. Wesentliche Arbeiten zu Petrinetzen sind durch Abel
(1] und Schnieder [147] durchgefiihrt worden. PN bilden eine mathematische Sprache zur
Systemmodellierung [165] und bauen auf den EA auf [196]. Der grundlegende Unterschied
zwischen EA und PN liegt in der Zustandsdefinition. Ein EA befindet sich immer in genau
einem Zustand, wihrend bei einem PN der Zustand durch die Markenverteilung in allen
Stellen definiert ist. Die mathematischen Grundlagen erméglichen eine tiefgehende Analyse
der erstellten Modelle [165]. In Abbildung 3.4 ist ein Beispiel fiir ein PN dargestellt.

Stelle. . Sommeranfang

es ist L es ist
Frihling Sommer

Frihlingsanfang Herbstanfang
es ist es ist .
Winter — Herbst Transition

L
Marke : Winteranfang<- - - - - . . . Ereignis

Abbildung 3.4.: Elemente eines Petrinetzes (nach [142])

Aufbaumodell Es wird eine ganze Klasse von Modellen als PN bezeichnet, eine Ubersicht
gibt z. B. [62]. Gemein ist all diesen PN-Varianten, dass sie aus Stellen, Transitionen und
Kanten bestehen. Exemplarisch werden an dieser Stelle zwei verschiedene Definitionen
vorgestellt:

Definition 1 Ein PN ist nach [141] definiert als ein 4-Tupel (P, T,F,B). Hierbei ist
e P= {pl., o 7])‘17‘} eine endliche, angeordnete Menge von Stellen,

o T = {tl, e t\Tl} eine endliche, angeordnete Menge von Transitionen,
e F eine |P| x |T'|-Matrix tiber N und
e B eine |P| x |T'|-Matrix tiber N.

Bei PN ¢ilt PNT = 0.
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Definition 2 Ein PN nach [1] ist definiert als ein 6-Tupel (S, T, F, K, W, M,). Hierbei
ist

o S = {31., BT p‘} eine endliche, nichtleere Menge von Stellen,

o ' = {tl, e t\TI} eine endliche, nichtleere Menge von Transitionen,

o FFC SxTUT x S eine nichtleere Kantenmenge,

e K : 5 — N die Abbildung, die die Marken-Kapazitéit einer Stelle definiert,
e IV : F — N die Abbildung, die den Kanten ihr Gewicht zuordnet und

e My : S — N die Anfangsmarkierung.

Die Menge SUT stellt graphentheoretisch die Knotenmenge des Graphen dar, wobei auch
hier SNT = 0 gilt.

Die beiden Definitionen unterscheiden sich durch die Einftihrung der Marken in Definiti-
on 2. Die Marken bilden die Grundlage fiir die dynamischen Effekte eines PN, daher wird
Definition 2 zur weiteren Analyse verwendet.

Hierarchie- und Vernetzungsmodell Stellen und Transitionen miissen alternierend mit-
einander verkniipft sein, d. h., ein PN ist ein bipartiter Graph. In Definition 1 enthélt die
Matrix IF die Verbindungen zwischen Stellen und Transitionen, die Matrix B die Verbindun-
gen zwischen Transitionen und Stellen. Die Eintrdge in F und B geben die Kantengewichte
an [141]. In Definition 2 sind die Kanten in der Menge F' enthalten. Die Kantengewichte
werden durch die Abbildung W induziert [1]. Des Weiteren ist es notwendig, den Vorbereich
und den Nachbereich eines Knotens zu definieren. Sei x € SUT. Dann ist

- oz = {y| (y,x) € F'} der Vorbereich und
- xe = {y| (x,y) € F'} der Nachbereich

des Knoten z [116].

PN konnen in Teilnetze zerlegt werden. Allerdings sind nicht alle Eigenschaften des Ge-
samtnetzes aus den Teilnetzen ableitbar. Eine hierarchische Gliederung ist bei klassischen
PN nicht moglich [98]. PN sind fiir die Modellierung nebenléufiger Prozeduren geeignet. Es
konnen mehrere Stellen aktiv sein und das Schalten von Transitionen ist unabhédngig von
dem Status anderer Stellen. Die unabhéngige Schaltbarkeit zweier Transitionen hat die
Bedingung, dass die beiden Transitionen keine gemeinsamen Stellen in ihrem Vor- bzw.
Nachbereich haben. Fiir eine bessere Ubersichtlichkeit sind Elemente zum Eréffnen und
zur Synchronisation der Parallelitit eingefiihrt worden.

Abstraktions- und Zuordnungsmodell PN stellen lediglich eine abstrakte mathemati-
sche Basis dar. Erst durch Hinzufiigen einer Semantik entstehen problemspezifische Losun-
gen. Dies wird als Interpretation bezeichnet. Steuerungstechnisch interpretierbare Petrinet-
ze (SIPN) sind die fir die Prozedurmodellierung wichtige Interpretation der PN. Hierbei
entsprechen die Stellen Prozesseingriffen tiber Stellglieder. Die Transitionen reagieren auf
Sensorwerte [98].
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Aktions- und Aktivitatenmodell Die SIPN erméglichen es, dass neben der Schaltbarkeit
auch externe Gegebenheiten das Schalten von Transitionen beeinflussen kénnen. Zudem
verandern die Stellen die Ausgangssignale des SIPN. Hierzu werden zwei Funktionen g (t)
und ¢p(p) definiert. Die Funktion ¢p(t) wird als Schaltausdruck der Transition ¢ € 7" und
die Funktion ¢p(p) als Ausgabe der Stelle p € S bezeichnet. In Abbildung 3.5 ist ein
Beispiel fiir SIPN abgebildet, welches die Eingénge 1,25 und x3 sowie die Ausgiange v
und ¥, besitzt.

Yi =X, y2=1
Ps Ps
— L |t
XX Xg X, X+
p2 p4
Y|=O Yo=X3

Abbildung 3.5.: Beispiel fiir ein SIPN (nach [98])

Das SIPN in Abbildung 3.5 besitzt die Schaltausdriicke

t T1X2X3
qr | t2 | = Ty
ts Ty
und die Ausgaben
P1 (y1 =71, = —)
wl 72| = (Y1 =0,92=—)
P3 (y1:—,y2:1)
P4 (y1 = Y2 = L%)

Ausfiihrungssteuerungsmodell Neben den Kapazititen der Stellen und der Anfangs-
markierung sind die Flussregeln fiir die Marken Grundlage fiir dynamische Vorgénge. Die
Marken, auch Token genannt, sind zu Beginn auf die Stellen verteilt. Ausgehend von dieser
Anfangsverteilung M schalten die Transitionen [116]. Dieses Schalten wird auch als Feu-
ern bezeichnet [141]. Damit eine Transition ¢ € T feuern kann, missen zwei Schaltregeln
erfiillt sein [116]:

- M(s) > W(s,t)Vs € ot und
- M(s) < K(s) — W(s,t)Vs € te.

Voraussetzung ist demnach, dass so viele Marken im Vorbereich der Transition sind, dass
die Kantengewichte erfiillt werden kénnen. Zudem muss im Nachbereich der Transition
geniigend Kapazitét fiir die weitergegebenen Marken vorhanden sein [116].

33

- ‘am 20.01.2026, 08:45:57. @ Urheberrachtiich geschlitzter Inhatt.
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

3. Analyse von Prozedurbeschreibungssprachen

Ein PN hat kein globales Scheduling. Es gibt keine aktiven Schritte. Transitionen kon-
nen jederzeit reagieren, wenn die Schaltregeln erfiillt sind. Der Zustand eines PN ist durch
seine aktuelle Markierung gegeben [196]. Soll ein PN eine Zustandsmaschine darstellen,
miissen alle Stellenkapazitaten und Kantengewichte den Wert Eins haben [142]. Bei be-
stimmten Konstruktionen ist es moglich, dass PN verklemmen, d. h., es kann keine weitere
Transition schalten. Durch mathematische Analysen ldsst sich jedoch feststellen, dass ein
PN verklemmungsfrei ist.

3.3.3. Grafcet

Grafcet? ist eine Spezifikationssprache, die in den 1970er Jahren in Frankreich als Weiter-
entwicklung der PN entworfen worden ist [158]. Eine Erganzung der PN um ein Konzept
fiir die Einbettung in die Umgebung sowie um ein Hierarchiekonzept ist erfolgt, so dass
sie SIPN éhneln [6, 158]. Grafcet ist in der IEC 60484 definiert. Ein Beispiel fir einen
Grafcet-Plan ist in Abbildung 3.6 abgebildet.

. .
Eingangsvariable
Schritt |- - - | > 1 >
” Ausgangsvariable
1 T EIN und Obere Position
b
2 Schnell [Richtungs-
A abwarts | wechsel
Wirkungslinie
T () -+ N&herung Ende
A
3 Langsam [Richtungs-
abwaérts | wechsel
(3)->1 Untere Position Y
Transition - |~ * Aktion
4 Aufwarts
Transitions-
(4) Obere Position <~ - - bedingung
Struktur Wirkungsteil

Abbildung 3.6.: Elemente eines Grafcet (nach [21])

Aufbaumodell Jeder Grafcet-Plan besteht zunéchst aus zwei Teilen, der Struktur und
dem Wirkungsteil (graue Rechtecke in Abbildung 3.6). Im Strukturteil sind die Entwick-
lungen zwischen verschiedenen Situationen durch Schritte, Transitionen und Wirkungs-
linien dargestellt. Es konnen ein oder mehrere Schritte als Anfangsschritt ausgezeichnet

5Die Bezeichung ,,Grafcet® ist eigentlich ein Akronym und steht fiir ,GRAphe Fonctionnel de Commande
Etapes/Transitions“
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werden. Ein Schritt ohne vorangehende Transition ist ein Quellschritt und muss zwangs-
laufig Anfangsschritt sein. Schlussschritte hingegen sind optional. Der Wirkungsteil stellt
die Beziehung zwischen den Ein- und Ausgangsvariablen und dem Strukturteil her. Tran-
sitionsbedingungen verarbeiten die aktuellen Eingéinge, wahrend Aktionen die Ausgangs-
variablen setzen [21].

Hierarchie- und Vernetzungsmodell Die Schritte und Transitionen werden iiber Wirk-
bezichungen verbunden [156]. Schritte und Transitionen sind alternierend verkniipft, so
dass ein Grafcet-Plan ein bipartiter Graph ist. Alle Transitionen, von denen ein Schritt
erreicht werden kann, bilden den Vorbereich des Schritts und alle Transitionen, aus denen
ein Schritt verlassen werden kann, den Nachbereich eines Schritts [158]. Auf diese Weise
erfolgt die Erzeugung von Ablaufketten mit Start und Ende sowie die von geschlossenen
Ablaufketten [21].

Eine Strukturierung wird durch Einschlieungen oder durch Makroschritte vorgenom-
men. Eine EinschlieBung stellt eine Méglichkeit dar, einen eigenstindig entworfenen Graf-
cet als Ganzes in einen anderen Grafcet einzubinden. Ein Makroschritt hingegen ist ein
Platzhalter fiir einen bestimmten Ausschnitt eines Grafcets [158]. Zwangssteuernde Befehle
steuern Einschliefungen und haben immer Vorrang vor den normalen Ablaufregeln [21].
Ein Grafcet-Plan kann sowohl Parallel- als auch Alternativverzweigungen enthalten [158].
Eine Alternative zu Parallelverzweigungen ist die Modellierung nebenléufiger Strukturen
durch mehr als einen Initialzustand [6]. Die Alternativverzweigung wird als Ablaufauswahl
bezeichnet und kann als Sonderfall das Uberspringen von Schritten oder einen Riickfiihr-
sprung modellieren [21].

In vielen Grafcet-Plinen sind Elemente wie Makroschritte, zwangssteuernde Befehle,
einschlieBende Schritte oder zeitabhéngige Bedingungen nicht enthalten [158]. Daher wird
Anféngern geraten, auf diese Elemente zu verzichten [21].

Abstraktions- und Zuordnungsmodell Grafcet hat kein eigenes Abstraktions- und Zu-
ordnungsmodell. Grafcet ist als Spezifikationssprache entwickelt worden, deren Implemen-
tation ein SFC sein kann [21]. Diese Transformation ldsst sich sowohl auf Modell-Ebene
als auch auf Meta-Modell-Ebene automatisiert durchfithren [158]. Des Weiteren kénnen
einmal spezifizierte Grafcets durch Einschliefungen wiederverwendet werden.

Aktions- und Aktivitaitenmodell In einem Grafcet sind zwei Arten von Aktionen ent-
halten, diese sind kontinuierlich wirkende und gespeichert wirkende Aktionen. Eine konti-
nuierlich wirkende Aktion setzt den Wert einer Ausgangsvariable auf wahr, wenn der zuge-
horige Schritt aktiv und die Zuweisungsbedingung erfiillt ist. Ansonsten wird der Wert der
Ausgangsvariable auf falsch gesetzt, wenn keine andere Aktion den Wert auf wahr setzt.
Im Gegensatz zu kontinuierlich wirkenden Variablen bleibt das Ergebnis einer gespeichert
wirkenden Aktion so lange bestehen, bis eine andere Aktion den Wert wieder dndert [21].

Transitionsbedingungen sind boolesche Ausdriicke, die sich aus den Eingangsvariablen,
internen Variablen und internen Ereignissen zusammensetzen. Bei den Eingangsvariablen
werden neben dem Wert einer bindren Variable auch Anderungen von bindren Werten
unterstiitzt. Es wird zwischen einer positiven Flanke (der Eingang x wechselt von falsch
auf wahr, T x) und einer negativen Flanke (der Eingang = wechselt von wahr auf falsch,
Jz) unterschieden. In Transitionsbedingungen koénnen auch Aussagen integriert sein, z. B.
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Vergleiche von numerischen Werten. Als interne Ereignisse werden eine Schrittaktivierung,
eine Schrittdeaktivierung oder das Auslosen einer Transition genannt [21].

Ausfiihrungssteuerungsmodell Die Anfangssituation wird durch die Anfangszustinde
festgelegt. Eine Anderung des Zustands ergibt sich durch das Feuern von Transitionen. Ei-
ne Transition feuert, wenn die Transition freigegeben und die Transitionsbedingung wahr
ist. Eine Transition ist freigegeben, wenn alle Schritte vor der Transition aktiv sind. Es
konnen mehrere Transitionen gleichzeitig feuern. Feuert eine Transition, werden alle vor-
angegangenen Schritte deaktiviert und alle folgenden Schritte aktiviert. Wird ein Schritt
gleichzeitig durch eine Transition deaktiviert und durch eine andere aktiviert, bleibt er
aktiv.

In einem Grafcet konnen transiente und nichttransiente Ablaufe auftreten. Bei einem
transienten Ablauf wird ein Schritt aktiviert und direkt wieder deaktiviert, da eine sei-
ner ausgehenden Transitionen ebenfalls feuert. Dies fithrt dazu, dass in diesem Schritt
nur Zuordnungen in gespeichert wirkenden Aktionen ausgefiihrt werden, Zuweisungen in
kontinuierlich wirkenden Aktionen jedoch nicht.

Konflikte kénnen nur bei gespeichert wirkenden Aktionen vorkommen, bei kontinuier-
lich wirkenden Aktionen ist im Konfliktfall das Signal wahr [158]. Die Verhinderung der
Konfliktfille ist Aufgabe des Entwicklers [21].

3.3.4. Procedural Function Charts

PFC werden in der IEC 61512-2° [36] als Ableitung der SFC zur Beschreibung von Steue-
rungsprozeduren fir Batch-Prozesse definiert [175]. Sie sind eng mit den Modellen zur
Strukturierung von Batch-Prozessen (Prozessmodell) und Batch-Anlagen (Physisches Mo-
dell) aus [35] verkntipft [67]. Prozeduren sind neben dem Rezeptkopf, Stoff- und Produk-
tionsdaten sowie Anforderungen an die Einrichtung Bestandteil eines Rezepts [35]. Die
wesentlichen Elemente eines PFC sind in Abbildung 3.7 dargestellt.

Aufbaumodell Die Logik der Prozedur wird in einem PFC durch eine Reihe von Sym-
bolen dargestellt. Die Rezept-Prozedurelemente entsprechen den Schritten eines Grafcets.
PFC miissen im Gegensatz zu SFC mindestens einen Anfangs- und mindestens einen End-
punkt haben. Ein Schritt kann speichernd und nicht-speichernd sein [37]. Belegungssymbo-
le dienen der Zuordnung von Betriebsmitteln (oder Apparaten) zu den einzelnen Rezept-
Prozedurelementen. Uber Element-Synchronisationen sind zwei Rezept-Prozedurelemente
verkniipft, die synchron ausgefiihrt werden sollen. Diese Synchronisation kann einen Mate-
rialtransport beinhalten. Zwischen zwei Rezept-Prozedurelementen befindet sich eine Tran-
sition, die in explizite und implizite Transitionen differenziert wird [36].

Hierarchie- und Vernetzungsmodell Die Rezept-Prozedurelemente sind iiber Transitio-
nen miteinander verbunden. PFC erméglichen nur Ablaufe mit Anfang und Ende, zyklische
Abléaufe sind nicht erlaubt. Neben linearen Ketten sind Ablauf-Selektionen und parallele
Abléufe in der Sprache enthalten. Ablauf-Selektionen miissen explizite Transitionen haben,

5Die IEC 61512 basiert auf der ISA 88, die von der International Society of Automation (ISA) veréffent-
licht wurde.
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Abbildung 3.7.: Basiselemente eines PFC (nach [63])

da ansonsten keine Selektion moglich ist. Parallele Ablaufe miissen vor dem Endpunkt zu
einem Pfad zusammengefiithrt werden [36].

PFC koénnen hierarchisch strukturiert werden. Die Rezept-Prozedurelemente umfassen
vier verschiedene Ebenen: die Prozedur, die Teilprozedur, die Operation und die techni-
sche Funktion (vgl. Abbildung 3.7). Prozeduren beschreiben die Steuerung einer vollstén-
digen Verarbeitungsfunktion, z. B. die Herstellung einer Charge. Teil-Prozeduren steuern
eine Produktionssequenz, die auf genau einer Teilanlage ablauft. Operationen kontrollieren
Prozesse, die den Zustand von Stoffen verdndern. Funktionen greifen direkt auf die Einrich-
tungssteuerung (vgl. Aktions- und Aktivitdtenmodell) zu. Jedes Rezept-Prozedurelement
mit Ausnahme einer Funktion kann aus Rezept-Prozedurelementen der tieferen Ebene zu-
sammengesetzt werden [35].

Abstraktions- und Zuordnungsmodell Das Abstraktions- und Zuordnungsmodell ergibt
sich durch das Rezeptmodell aus [35]. Das Rezeptmodell umfasst vier Rezepttypen, Verfah-
rensrezepte, Werksrezepte, Grundrezepte und Steuerrezepte. Beschreibungsmittel fir alle
vier Rezepttypen sind PFC. Verfahrens- und Werkrezepte stellen das prinzipielle Vorgehen
in den Vordergrund, wiahrend Grund- und Steuerrezepte sich auf die tatsdchlichen Be-
triebsmittel beziehen. Verfahrensrezepte werden auf Unternehmensebene entwickelt und
enthalten die abstrakten Steuerungsschritte, die fiir den Prozess zur Erzeugung des ge-
wiinschten Produkts notwendig sind. Werksrezepte enthalten zuséitzlich Informationen aus
dem lokalen Kontext des Produktionsorts, z. B. Sprachinformationen oder rechtliche Rah-
menbedingungen. Erst mit dem Grundrezept wird der Bezug zu den Einrichtungen der
Anlage hergestellt. Das Steuerrezept ist eine Kopie des Grundrezepts, das zusétzliche Infor-
mationen fiir eine bestimmte Charge enthalt [35]. Des Weiteren motiviert die IEC 61512-3
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eine Bibliothek fiir wesentliche Ablaufereignisse [37].

Aktions- und Aktivitatenmodell Steuerrezepte konnen nur in Kombination mit der Ein-
richtungssteuerung einen Prozess steuern. Diese Einrichtungssteuerung umfasst die Ebe-
nen 1 und 2 eines PLS (vgl. Kapitel 2.4, S. 14) und ist nicht Teil des Rezeptmodells.
Die Verkniipfung zwischen dem Steuerrezept und dem PLS wird durch Einrichtungs-
Prozedurelemente hergestellt. Diese Verkniipfungen werden als Belegungssymbole bezeich-
net. Dies geschieht tiber Verweise im Steuerrezept [35], die in der IEC 61512-2 definiert
sind.

Die Aktionen in einem speichernden Schritt bleiben bis zur Uberschreibung in einem an-
deren Schritt aktiv. Aktionen in nicht-speichernden Schritten sind nur dann aktiv, wenn der
jeweilige Schritt aktiv ist [37]. Explizite Transitionen besitzen eine Transitionsbedingung,
implizite Transitionen nicht. Es ist keine Sprache festgelegt, in der Transitionsbedingungen
beschrieben werden sollen [36].

Ausfiihrungssteuerungsmodell Ein PFC wird durch den zugehérigen Zustandsautoma-
ten” (vgl. Abbildung 3.8) gestartet.

Dies fithrt dazu, dass der auf den Anfangspunkt folgende Schritt aktiviert wird [36]. Das
Weiterschalten erfolgt mittels Transitionen, wobei implizite Transitionen direkt feuern, so-
bald der vorherige Schritt beendet ist. Explizite Transitionen fordern den vorherige Schritt
auf, sich zu beenden, sobald ihre Transitionsbedingung wahr ist. Sind in einer Ablauf-
Selektion mehrere Transitionsbedingungen wahr, erfolgt die Auswertung der Transitionen
von links nach rechts [36]. Im Allgemeinen sind die Schritte im PFC jedoch selbstbeendend
und schalten durch implizite Transitionen weiter [175]. Die Ausfithrung eines PFC kann
durch andere PFC beeinflusst werden, wenn diese tiber Synchronisationen verkniipft sind
[36].

Der Zustandsautomat (vgl. Abbildung 3.8) realisiert ebenfalls die Ausnahmebehandlung
wihrend der Prozedurausfiihrung. Hierbei sind vier unterschiedliche Reaktionen der steu-
ernden Prozedur auf ein unerwartetes Ereignis moglich: Unterbrechen, Anhalten, Stoppen
und Abbrechen [35]. Die vier Reaktionen werden nach dem Grad des Ereignisses ausge-
wéhlt. Nach einer Unterbrechung der Prozedurausfiihrung kann die Prozedur an derselben
Stelle wieder fortgesetzt werden. Anhalten bedeutet, dass die Ausfithrung der Prozedur
nicht ohne zuséatzliche Aktionen moglich ist. Eine gestoppte Prozedur fithrt den Prozess in
einen sicheren Zustand. Anschliefend ist ein expliziter Neustart erforderlich. Ein Abbruch
bringt den Prozess schnellstmoglich in einen sicheren Zustand und nimmt dabei Schiden
an der Anlage in Kauf [62]. Allerdings ist in der IEC 61512-1 nicht definiert, wie sich
unterlagerte Ebenen verhalten miissen, wenn eine hohere Ebene in eine Ausnahme lauft

[137).

3.3.5. Grafchart

Neben dem SFC ist auch Grafchart eine auf Grafcet basierende Programmiersprache. Graf-
chart ist eine Ergidnzung von Grafcet um Programmierhochsprachen und Objektorientie-
rung. Des Weiteren flieflen verschiedene Konzepte der Petrinetze ein. Die Entwicklung von

“Die Grafik basiert auf der Zustandsiibergangsmatix in [35] und ist an die Version im Draft 2c vom
Januar 2014 angelehnt.
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Abbildung 3.8.: Zustands-Ubergangsdiagramm fiir beispielhafte Zustinde von Prozedur-
Elementen (nach [35])

Grafchart hat zwei Ziele verfolgt, zum einen das Aufzeigen der Entwicklung einer objekt-
orientierten grafischen Programmiersprache ausgehend von einer grafischen Spezifikations-
sprache, zum anderen sollte die bestehenden Analysemethoden fiir PN weiter anwendbar
sein [89]. Es gibt zwei Implementierungen von Grafchart, eine in der Programmiersprache
G2, eine in der Programmiersprache Java [165].

Grafchart wird zur Steuerung von Batch-Prozessen verwendet [88]. Aber auch in der
Fertigungsautomation findet Grafchart in universitiren Anwendungen Verwendung [136,
165]. In Abbildung 3.9 sind die typischen Elemente von Grafchart aufgefiihrt.

Aufbaumodell Ein Grafchart besteht analog zu Grafcet und SFC primér aus Schritten
und Transitionen. Die Schritte repréisentieren Zustinde, die Transitionen die Anderung von
Zusténden. Ein Schritt in Grafchart hat drei Attribute, z, t und s. Das Attribut x gibt an,
ob der Schritt aktiv ist oder nicht. Die Attribute s und ¢ beinhalten die Information, wie
lange der Schritt aktiv ist, s beinhaltet die Dauer in Sekunden, ¢ die Dauer in SPS-Zyklen.
Anfangs- und Endschritte sind ausgezeichnete Schritte. Aus Griinden der Ubersichtlichkeit
kénnen Verbindungspunkte eingefiigt werden [5]. Transitionen dienen als Verbindungsob-
jekte zwischen Schritten. Hierbei existieren spezielle Exception-Transitionen, die das Ver-
lassen eines Makroschritts oder einer Prozedur im Fehlerfall darstellen. Des Weiteren gibt
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Abbildung 3.9.: Elemente von Grafchart (nach [88])

es in Grafchart Variablen [165].

Hierarchie- und Vernetzungsmodell Schritte und Transitionen sind in Grafchart alter-
nierend verkniipft. Grafchart unterstiitzt alternative und parallele Pfade. Jede Parallel-
verzweigung erzeugt zwei parallele Zweige und eine Vereinigung fithrt die Pfade wieder
zusammen. Sind mehr als zwei parallele Pfade notwendig, miissen mehrere Verzweigungen
bzw. Zusammenfihrungen hintereinander geschaltet werden [165].

Grafchart unterstiitzt Makroschritte und Prozeduren als Hierarchieelemente. Makro-
schritte fassen, wie in Grafcet, mehrere Schritte zu einem Element zusammen und erhéhen
die Ubersichtlichkeit. Prozeduren kénnen zusitzlich Parameter iibergeben bekommen und
Riickgabewerte liefern. Hierbei wird zwischen Call-by-reference und Call-by-value® unter-
schieden [165]. Prozeduren kénnen durch Prozedurschritte und Prozessschritte aufgerufen
werden. Wahrend bei einem Prozedurschritt die Ausfithrung der aufgerufenen Prozedur im
selben Thread erfolgt, erzeugt ein Prozessschritt einen neuen Thread [88].

Abstraktions- und Zuordnungsmodell Prozeduren in Grafchart lassen sich wiederver-
wenden. Auf diese Weise kann die Erzeugung von doppeltem Code vermieden werden.
Durch die Parameter sind Prozeduren auch flexibel an verschiedene Rahmenbedingungen
anpassbar. Ihr interner Aufbau bleibt allerdings starr. Denkbar sind jedoch Alternativpfa-
de, die tiber einen Parameter steuerbar sind [165].

Aktions- und Aktivitatenmodell Aktionen sind Schritten zugeordnet und im Unterar-
beitsbereich eines Schritts enthalten [88]. In der urspriinglichen Version sind Aktionen in

8Zur Erkliung von Call-by-value und Call-by-reference siche z. B. [127].
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den Regeln der Programmiersprache G2 definiert [5]. Transitionen besitzen eine Wéchter-
bedingung, die aus booleschen Ausdriicken oder Ereignissen zusammengesetzt sein kann
[165].

Aktionen in Grafchart besitzen ein Préfix, welches die Ausfithrung der Aktion kontrol-
liert. In Tabelle 3.1 ist eine Ubersicht der méglichen Prifixe gegeben [165].

Tabelle 3.1.: Liste der méglichen Grafchart-Préfixe [165]

Prifix  Beschreibung

Die Aktion wird ausgefiihrt, wenn der Schritt aktiviert wird.

Die Aktion wird ausgefiihrt, wenn der Schritt deaktiviert wird.

Die Aktion wird zyklisch ausgefiihrt, solange der Schritt aktiv ist.

Die Variable ist mit dem Zustand des Schritts assoziiert, d. h., sie ist wahr,
wenn der Schritt aktiv ist und ansonsten falsch.

Die Aktion wird ausgefiihrt, wenn der Schritt abgebrochen wird.
Prozedurparameter (Call-by-value)

Prozedurparameter (Call-by-reference)

T< 2T xwnm

Neben den klassischen Aktionen bietet Grafchart auch den Aufruf von Diensten an. Auf
diese Weise kann Grafchart auch in eine SOA integriert werden. Realisiert wird dies durch
die Einbindung von Device Profiles for Web Services (DPWS) in Grafchart [136, 167].
Ferner ist auch eine OPC UA-Anbindung bereits in Grafchart implementiert [166].

Ausfiihrungssteuerungsmodell Ein Grafchart wird wie ein SFC zyklisch ausgefiihrt. Ein
Ausfithrungsmodell, welches in jedem Zyklus die folgenden Operationen ausfiihrt [122]
steuert die Ausfiihrung eines Grafcharts.

1. Die digitalen und analogen Eingéinge werden gelesen.
2. Aktivierte Transitionen mit wahrer Bedingung werden als feuerbar markiert.

3. Bei Konflikten wird die Markierung bei Transitionen mit niedrigerer Prioritit wieder
entfernt. Exception-Transitionen haben gegeniiber normalen Transitionen Prioritat.
4. Die feuerbaren Transitionen feuern, wiahrend sie zwei Operationen ausfithren:

a) Schritte vor der Transition werden deaktiviert. Dabei werden insbesondere Ak-
tionen mit Préfix X ausgefithrt. Die Deaktivierung eines Schritts deaktiviert alle
nachfolgenden Transitionen [5].

b) Schritte nach der Transition werden aktiviert. Dabei werden insbesondere Ak-
tionen mit Prafix S ausgefithrt. Die Aktivierung eines Schritts aktiviert alle
nachfolgenden Transitionen [5].

5. Fiir jeden Schritt werden drei Operationen ausgefiihrt:
a) Die Attribute ¢ und s des Schritts werden aktualisiert.

b) Aktionen mit dem Préfix P werden ausgefithrt, wenn der Schritt aktiv ist und
im vorherigen Zyklus aktiv war.
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¢) Variablen, die mit Aktionen mit dem Prafix N verkniipft sind, werden geéndert,
wenn sich der Zustand des Schritts seit dem letzten Zyklus verdndert hat.

6. Der Grafchart pausiert bis zum néichsten Zyklus.

Durch dieses Vorgehen ist ein vollstandig deterministisches Ausfiihrungsverhalten moglich.
Die Auswertereihenfolge der Transitionen ist irrelevant und bei mehreren wahren Bedin-
gungen einer Alternativverzweigung werden auch mehrere Zweige aktiviert [122]. Dies hat
sich im Gegensatz zu fritheren Versionen von Grafchart verdndert. Dort ist in diesem Fall
nichtdeterministisch eine Wahl getroffen worden. In Grafchart ist zudem die Ausfiihrung
aller Aktionen mit Prafix S und X garantiert, da Schritte nicht durchschalten kénnen [5].

Makroschritte und durch Prozedur-Schritte aufgerufene Prozeduren laufen bis zu ihrem
Endschritt durch, bevor die aufrufende Kette weiterschalten kann. Wie bereits beschrieben,
haben Exception-Transitionen jedoch gegeniiber normalen Transitionen Prioritdt und kon-
nen nur an Makroschritten und Prozeduren angebunden sein. Feuert eine solche Exception-
Transition wahrend der Ausfiihrung eines Makroschritts bzw. einer Prozedur, wird der Ma-
kroschritt bzw. die Prozedur abgebrochen und die Ausfithrungssteuerung fithrt Aktionen
mit Priafix A aus. Bei einer erneuten Aktivierung des Makroschritts bzw. der Prozedur
startet die interne Logik wieder an der Stelle, an der der Abbruch erfolgt ist [137].

Der Aufruf einer Prozedur durch einen Prozessschritt fithrt zur Erzeugung einer zweiten
Ausfiihrungssteuerung. Dies hat zur Konsequenz, dass die Ausfiihrung der aufgerufenen
Prozedur unabhéngig von der aufrufenden Prozedur erfolgt. Abhédngigkeiten zwischen den
Prozeduren miissen explizit durch Aktionen und Transitionsbedingungen projektiert sein
[137].

3.3.6. Sequential Function Charts

SFC sind als eine mogliche Implementierung von Grafcet in der IEC 61131-3 [23] defi-
niert. Sie sind eine weit verbreitete Darstellung der kausalen Struktur von Prozeduren in
Steuerungssystemen [175]. Auch die IEC 61499-1 [26] nennt SFC als geeignetes Mittel zur
Beschreibung von Prozeduren. SFC lassen sich als Graph und als Zustandsiibergangsma-
trix darstellen [133]. Neben der urspriinglichen Anwendung als Programmiersprache stellen
SFC eine Alternative zu Grafcet als Spezifikationssprache® dar. Es wird eine identische gra-
fische Représentation fiir Engineering und Laufzeit genutzt [3]. In Abbildung 3.10 sind die
wesentlichen Elemente eines SFC abgebildet.

Aufbaumodell In einem SKFC stellt der Schritt eine definierte Situation der Steuerung
dar. Ein Schritt hat einen Schrittmerker zur Unterscheidung der Aktivitét/Inaktivitiat und
hilt seine aktive Zeit als Variable zugriffsbereit vor. Transitionen sind Ubergéinge zwischen
den Schritten [23]. In der IEC 61131-3 ist kein Endschritt definiert [196].

Hierarchie- und Vernetzungsmodell SFC sind in sogenannten Programm-Organisa-
tionseinheiten (POE) enthalten [62]. In einem SFC werden ausgehend vom Initialschritt
Transitionen und Schritte alternierend verkniipft, d. h., ein SFC ist ein bipartiter Graph.
Durch eine Alternativverzweigung ist die Auswahl zwischen mehreren Ketten moglich. Die

9Die Spezifikation ist eine Beschreibung des Verhaltens einer Steuerung, withrend sich die Implementie-
rung auf eine konkrete Programmiersprache und auf eine spezifische Hardware bezieht [6].
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Abbildung 3.10.: Elemente eines SFC (nach [116])

Festlegung der Prioritdt der Transitionen kann hierbei auf drei Arten erfolgen, durch Vor-
rang von links nach rechts, durch Nummerierung und durch gegenseitigen Ausschluss. Der
Kettensprung und die Kettenschleife sind Sonderfille der Auswahlverzweigung. Simultan-
ketten sind mit einer Parallelverzweigung ebenfalls moglich [23]. Die Parallelverzweigung
verbindet eine Transition mit mindestens zwei Schritten, die entsprechende Zusammenfiih-
rung verbindet mindestens zwei Schritte mit einer Transition [116].

Als Hierarchiemodell bietet sich die Moglichkeit des Aufrufs anderer SFC an [23]. Dies
ist jedoch fehleranfillig. Die SFC koénnen sich gegenseitig verklemmen, wenn jeder SFC
auf eine Schrittdnderung des jeweils anderen wartet [24]. Zudem ist dieser Aufruf in der
IEC 61131-3 nicht vollstiandig spezifiziert. So ist das Verhalten des aufrufenden SFC nicht
eindeutig beschrieben, wenn der aufgerufene SFC deaktiviert wird [156]. Deshalb ist diese
Méglichkeit auch explizit im Beiblatt 1 zur IEC 61131-3'° [24] als nicht empfohlen gekenn-
zeichnet. Eine andere Moglichkeit besteht in der Integration von SFC in Funktionsbaustei-
ne. Dies erhoht zum einen die Wartbarkeit, zum anderen lassen sich die Funktionsbausteine
wiederverwenden [24].

Abstraktions- und Zuordnungsmodell Im Beiblatt 1 ist ein Top-Down-Entwurfsprozess
und eine Bottom-Up-Implementierung als Paradigma fiir die Erstellung von SFC vorge-

0Das Beiblatt bezieht sich auf die Vorgéingerversion von [23]. Diese weicht nach [156] nur unwesentlich
im Bereich der SFC von der aktuellen Version ab.
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schlagen. Nach der Festlegung der Gesamtfunktionalitdt und der &ufleren Schnittstelle wird
die Funktionalitdt in immer kleinere Elemente unterteilt, bis entweder das Element in einer
Bibliothek vorhanden ist oder durch die Sprachen der IEC 61131-3 algorithmisch ausge-
driickt werden kann. Diese atomaren funktionalen Einheiten werden implementiert bzw.
instantiiert und anschlieBend verschaltet [24]. Es ist unter bestimmten Rahmenbedingun-
gen moglich, SFC in einen Funktionsbaustein in Funktionsbaustein-Sprache (FBS) umzu-
wandeln [191]. Eine Abstraktion der Funktionsbausteine ist mit dem Typ-Instanz-Konzept
moglich.

Die Richtlinie ISA TR 106 [81] schlagt ein Vorgehen zum Engineering einer Prozedur vor.
Hierbei formuliert der Entwickler Anforderungen an die Steuerungsprozedur basierend auf
einem Prozessmodell, aus denen er im nachsten Schritt zusammen mit dem Anlagenmodell
ein Implementierungsmodell erzeugt. In diesem Implementierungsmodell ist anders als in
der IEC 61512 [35] ein direkter Zugriff auf die Einzelsteuerebene enthalten.

Aktions- und Aktivitatenmodell Aktionen kénnen in SFC in zwei Weisen auftreten,
namlich zum einen als boolesche Variablen, zum anderen konnen sie in den anderen Pro-
grammiersprachen der IEC 61131-3 definiert sein. Hierzu zdhlen Anweisungen in Anwei-
sungsliste (AWL) oder ST, Strompfade in Kontaktplan (KOP), Netzwerke in FBS oder
insbesondere andere SFC. Jede Aktion besitzt ein Aktionsbestimmungszeichen, das fiir
das Ausfihrungsmodell wichtig ist (vgl. Tabelle 3.2). Aktionen lassen sich zu Aktionsblo-
cken zusammenfassen, die den Schritten zugewiesen sind [23].

Transitionen besitzen eine Transitionsbedingung. Eine Transitionsbedingung kann als
boolescher Ausdruck in ST formuliert sein, es konnen aber auch der Ausgang eines KOP
bzw. eines FBS genutzt werden. Zudem ist es moglich, Konstrukte in ST oder AWL zu
verwenden [23].

Ausfiihrungssteuerungsmodell Die Ausfithrung eines SFC erfolgt innerhalb der POE.
Sobald die POE initialisiert ist, wird auch der Initialschritt aktiviert. Der Schrittwechsel
erfolgt durch das Schalten von Transitionen. Eine Transition schaltet, wenn die Transition
freigegeben ist, d. h., wenn alle vorausgehenden Schritte aktiv sind und die Transitionsbe-
dingung wahr ist [23]. Die Regel der PN, dass die Schritte nach der Transition gentigend
Platz fiir Marken haben miissen, existiert bei SFC nicht [6]. Wenn eine Transition feuert,
werden die vorherigen Schritte deaktiviert und die nachfolgenden Schritte aktiviert. Der
Schaltvorgang soll idealerweise keine Zeit in Anspruch nehmen, in der Praxis ist er aber von
der SPS abhangig [23]. Die Ausfithrungssteuerung der Aktionen erfolgt durch einen inter-
nen Funktionsbaustein. Dieser interpretiert die zugehérigen Aktionsbestimmungszeichen
der Aktionen und sorgt fiir die entsprechende Ausfithrung [23].

Die Ausfithrung von SFC erfolgt entweder nach dem Maximal-Progress-Vorgehen oder
nach dem Lock-Step-Vorgehen. Bei dem Maximal-Progress-Vorgehen feuern zunéchst alle
Transitionen, bis ein stabiler Zustand erreicht ist. Anschliefend werden die Aktionen der
dann aktiven Schritte ausgefithrt. Beim Lock-Step-Vorgehen feuern nur die Transitionen,
die im selben Zyklus aktiviert worden sind [62]. Zudem unterscheiden sich Realisierungen
von SFC in der Reihenfolge der Aktionsausfithrung und Transitionsauswertung. Je nach-
dem, ob zuerst Transitionen ausgewertet oder Aktionen ausgefithrt werden, kann das Re-
sultat ein anderes sein. Auch die Reihenfolge der Aktionsausfithrung in einem Schritt kann
zu Konflikten fithren [6]. Die meisten kommerziellen Realisierungen der SFC verwenden
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Tabelle 3.2.: Liste der méglichen Aktionsbestimmungszeichen eines SFC (nach [23, 62])

Nummer Zeichen Beschreibung

1 Kein Nicht gespeichert. Die zugehorige Aktion wird ausgefiihrt,
wihrend der Schritt aktiv ist.

2 N Nicht gespeichert. Die zugehorige Aktion wird ausgefiihrt,
wéhrend der Schritt aktiv ist.

3 R Vorrangiges Riicksetzen. Die zugehoérige Aktion wird nicht
mehr ausgefiihrt.

4 S Setzen (gespeichert). Die zugehorige Aktion wird ausge-
fiihrt, bis sie riickgesetzt wird.

5 L Zeitbegrenzt. Die zugehorige Aktion wird ausgefiihrt, bis

entweder die Zeitspanne abgelaufen ist oder der Schritt de-
aktiviert wird.

6 D Zeitverzogert. Die zugehorige Aktion wird nach Ablauf der
Zeitspanne ausgefithrt, bis der Schritt deaktiviert wird.

7 P Impuls (Flanke). Die zugehorige Aktion wird bei der Ak-
tivierung und bei der Deaktivierung des Schritts einmal
ausgefiihrt.

8 SD Gespeichert und zeitverzogert. Die zugehorige Aktion wird
nach Ablauf der Zeitspanne ausgefiihrt, bis sie riickgesetzt
wird.

9 DS Verzogert und gespeichert. Die zugehorige Aktion wird
nach Ablauf der Zeitspanne ausgefithrt, bis sie riickgesetzt
wird, es sei denn, der Schritt wird vor Ablauf der Zeitspan-
ne deaktiviert.

10 SL Gespeichert und zeitbegrenzt. Die zugehorige Aktion wird
ausgefithrt, bis die Zeitspanne abgelaufen ist.

11 P1 Puls (steigende Flanke). Die zugehorige Aktion wird bei
der Aktivierung des Schritts einmal ausgefiihrt.

12 PO Puls (fallende Flanke). Die zugehorige Aktion wird bei der

Deaktivierung des Schritts einmal ausgefiihrt.

das Lock-Step-Vorgehen in Kombination mit der Auswertung der Transitionsbedingungen
vor der Aktionsausfihrung [196].

Wéhrend der Ausfithrung eines SFC stoppt bei einem Fehler normalerweise der Pro-
grammfluss. Anschliefend wird entweder der Fehler automatisch korrigiert, falsche Varia-
blenwerte durch ihren Default-Wert ersetzt oder auf eine manuelle Korrektur des Fehlers
gewartet. AnschlieBend setzt sich der Ablauf an einer geeigneten Stelle fort [24].

Das Ausfihrungssteuerungsmodell der SFC schlieit explizit die Erstellung unsicherer
bzw. verklemmender Ablaufketten nicht aus [23]. Dieses Verhalten kann bei der Verwen-
dung von geschachtelten Simultanverzweigungen oder bei einem Mischen von Simultan-
und Alternativverzweigungen auftreten [24]. In diesem Fall kann sich die Anzahl aktiver
Schritte unkontrolliert vermehren [6].
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3.3.7. Zustandsdiagramme

Zustandsdiagramme, auf Englisch Statecharts (SC), sind eine Erweiterung von EA, die zur
Modellierung reaktiver Systeme entwickelt worden sind [72]. Sie basieren auf der Idee, dass
Systeme zu jeder Zeit einen definierten Zustand haben. Systeme besitzen unterschiedliche
Zusténde und reagieren in jedem dieser unterschiedliche Zustéinde in einer anderen Art
und Weise [93]. Der Wechsel von einem Zustand zu einem anderen Zustand erfolgt durch
externe und interne Ereignisse. Zusammengefasst ist das Verhalten reaktiver Systeme durch
die Menge der Sequenzen von Eingangs- und Ausgangsereignissen, Bedingungen, Aktionen
und zeitlichen Rahmenbedingungen bestimmt [72]. In Abbildung 3.11 ist ein Beispiel fiir
einen SC dargestellt.

Guard Transition Startpunkt Zustand
- = —~ > N

Sz RN AN S NI

"
Superzustand ;/ :
J b .

A .
B . b
entry S .
exitb,T entry V W
througout x c ' E
~ A , entry U
' fix '
3 F '
— ’ . a | ! J
Bedingung Aktion Unterzustand Orthogonaler Zustand

Abbildung 3.11.: Beispiel fiir einen SC (nach [72])

SC gehoren zu den Verhaltensmodellen innerhalb der UML/SysML. Es ist eine modell-
basierte Generation von Quellcode méglich, wodurch eine grofie Akzeptanz bei Software-
Entwicklern entsteht [4].

Aufbaumodell Ein SC besteht aus Zustinden und Zustandsiibergingen [72]. Jeder Zu-
stand hat einen Namen und beschreibt eine statische oder dynamische Situation [93]. Zu-
standsiiberginge haben ein zugeordnetes Ereignis und kénnen optional Bedingungen besit-
zen [72]. Es gibt ausgezeichnete Start- und Endzustdnde, deren Verwendung zwingend ist.
Ein Terminator ist ein spezieller Endzustand, der einen Abbruch des eigentlichen Ablaufs
kennzeichnet [196].

Hierarchie- und Vernetzungsmodell Generell verbinden bei SC dhnlich wie bei EA Zu-
standstiberginge die Zustédnde. Zur Verhinderung der Zustandsexplosion, die bei den EA
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auftritt, besitzen SC ein Hierarchiemodell [72]. Hierzu werden sogenannte Superzustande
verwendet, die ihrerseits Unterzustdnde und interne Zustandsiibergénge zwischen den Un-
terzustanden haben [11]. Zustandsiiberginge konnen, wie in Abbildung 3.12 gezeigt, an
einem Superzustand oder an einem Unterzustand in einem Superzustand beginnen bzw.
enden [72]. Der zweite Fall wird auch als Inter-Level-Ubergang bezeichnet [6].

( N (- N
SZ1 .'—\ SzZ2 .'—\
C C
/ /
C3 3 i ra \
A B A B
Ty feor g Jemev
throuéout X ¢ throuéout X ¢
f f
i F
N AN J

Abbildung 3.12.: Zustandsiibergénge in einem SC, links beginnend an einem Superzustand,
rechts in einem Superzustand

Innerhalb eines Superzustands kénnen auch parallele Zustandsautomaten notiert sein. In
Abbildung 3.11 sind zwei parallele SC als Komponenten dargestellt, die durch die gepunk-
tete Linie getrennt sind. Jede Komponente arbeitet unabhéngig voneinander. Falls eine
Synchronisation notwendig ist, wird diese durch gemeinsame Zustandsiibergénge erzwun-
gen [72]. Alternativverzweigungen sind durch Kreuzungen oder Entscheidungen modelliert.
Kreuzungen beschreiben statische und Entscheidungen dynamische Verzweigungen [93].

Abstraktions- und Zuordnungsmodell Die OMG bietet einen ganzheitlichen Ansatz
zur modellgetriebenen Entwicklung, der auch als modellgetriebene Architektur bezeichnet
wird. Die UML bzw. die SysML stellt mit ihren verschiedenen Meta-Modellen die Mo-
dellierungssprachen bereit. Dies bedeutet, dass eine Kombination der Meta-Modelle den
Entwurfsprozess vom Engineering erster Ideen bis hin zu ausfithrbaren Modellen begleitet.
Hierzu stehen eine Reihe von Modelltransformationen zur Verfiigung. In der UML konnen
zudem Profile definiert werden, die eine doménenspezifische Sprache festlegen. Eine durch-
géngige Verwendung der Objektorientierung in der UML erméglicht die Verwendung von
Konzepten wie Klasse und Instanz bzw. Vererbung. Die einzelnen Diagramme der UML
sind nur unterschiedliche Sichten auf das gleiche Gesamtmodell [4]. SC im Speziellen finden
in allen Planungsphasen Verwendung [80].

Aktions- und Aktivitaitenmodell SC sind eine Erweiterung von EA und kombinieren die

Ideen von Moore und Mealy (vgl. Kapitel 3.3.1, S. 28). Demnach ist es moglich Aktionen
sowohl in einem Zustand als auch bei einem Zustandsiibergang auszufiihren. Unter einer
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Aktion wird in diesem Kontext ein instantanes Ereignis, das idealisiert keine Zeit zur
Ausfiihrung bendtigt, verstanden. Neben Aktionen kénnen in Schritten auch Aktivitdten
enthalten sein. Aktivitdten haben eine zeitliche Dauer. Ihr Start bzw. ihre Beendigung
erfolgt durch Aktionen. Ein Attribut der Aktivitat gibt an, ob die Aktivitdt zum aktuellen
Zeitpunkt gestartet ist [72].

Ein Zustandstibergang kann aus finf Teilen bestehen: dem Quellzustand, dem Ereig-
nistrigger, der tiberwachten Bedingung, dem Effekt und dem Zielzustand. Eine Transiti-
on beginnt immer an einem Quellzustand und endet im Zielzustand. Der Ereignistrigger
kennzeichnet das Ereignis, welches den Zustandsiibergang einleitet. Trifft das Ereignis ein,
wird die iiberwachte Bedingung, ein boolescher Ausdruck, ausgewertet. Die tiberwachte
Bedingung ist demnach die Erlaubnis zum Feuern der Transition. Wihrend des Zustands-
iibergangs konnen Aktionen, die sogenannten Effekte, ausgefithrt werden [11].

Als Ereignis wird hier

die Spezifikation eines signifikanten Vorkommens, das sich zeitlich und rdaum-
lich zuordnen lasst [, verstanden]. Im Kontext von Zustandsautomaten ist ein
Ereignis ein Stimulus, der eine Zustandsinderung auslosen kann® [11, S. 336].

Ein solches Ereignis kann sowohl innerhalb eines SC als auch extern ausgelost werden [11].
Es sind vier verschiedene Ereignisse in der UML definiert: Signale, Aufrufe, Abliufe von
Zeitspannen und Zustandsianderungen. Des Weiteren finden generische Ereignisse Verwen-
dung, die auf alle vier Ereignistypen reagieren. Signale ermoglichen die Modellierung eines
asynchronen Nachrichtenaustauschs. Ein Aufruf kennzeichnet den Eingang einer Anfrage
zur Ausfithrung einer Operation. Ablaufe von Zeitspannen beschreiben ein zeitliches Ereig-
nis. Ein Zustandsiibergang entsteht, sobald ein boolescher Ausdruck von falsch nach wahr
wechselt [93].

Ausfiihrungssteuerungsmodell In einem SC darf in jeder Komponente nur ein Zustand
aktiv sein. In jeder Komponente wird zunédchst der Startpunkt getriggert, der den Startzu-
stand aktiviert. Die Transition zwischen Startpunkt und Startzustand darf keinen Guard
und kein Event besitzen. In diesem Zustand bleibt die Komponente, bis ein Zustandsiiber-
gang feuert. Hierzu muss ein Ereignis empfangen werden. Dabei gilt es zu beachten, dass
die Bedingung eines Zustandsiibergangs nur ausgewertet wird, wenn Guard true ist [93].

Der Ubergang zu einem Superzustand kann zum Superzustand oder zu einem Unterzu-
stand erfolgen. Im ersten Fall wird der Anfangs-Unterzustand des Superzustands aktiviert
[72]. Des Weiteren ist es moglich, dass der letzte aktive Zustand wieder aktiviert wird,
wenn ein Historian-Verbinder existiert [80]. Zur Vereinfachung kénnen Verbindungspunk-
te fir bedingte und selektive Eingénge verwendet werden [72]. Solange ein Unterzustand
aktiv ist, ist auch der Superzustand aktiv [116].

Beginnt ein Zustandstibergang an einem Superzustand, kann jeder der Unterzustande des
Superzustands iiber den Ubergang verlassen werden. Beginnt er jedoch an einem Unterzu-
stand, kann nur genau dieser Unterzustand verlassen werden. Bezogen auf Abbildung 3.12
bedeutet dies, dass der SC SZ 1 im Zustand F' durch ein Ereignis ¢ in den Zustand C
wechselt, der SC SZ 2 weiter in F bleibt [72]. Wird ein Superzustand verlassen, werden
auch alle enthaltenen Unterzustinde deaktiviert [116].

Die Ausfithrung von Aktionen erfolgt sowohl beim Betreten als auch beim Verlassen eines
Zustands. Dies wird durch die Worte entry bzw. exit gekennzeichnet. Die Steuerung einer
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Aktivitdt = kann durch die Aktionen start(x) und stop(z) erfolgen. Soll eine Aktivitéit so
lange laufen, wie der Zustand aktiv ist, ldsst sich dies abkiirzend mit dem Wort throughout
(in der UML mit do bezeichnet) kennzeichnen [72]. Ereignisse kénnen auch Aktionen trig-
gern, ohne dass ein Zustandswechsel durchgefiihrt wird. Dies ist eine Verallgemeinerung
von entry, do und exit [93].

Das Fehlen einer Ubergangsbedingung fiir ein bestimmtes Ereignis fithrt nicht zu einem
undefinierten Zustand wie bei den EA, sondern zu einem Verharren im derzeitigen Zustand,
bis ein neues Ereignis eintritt [11]. Ereignisse konnen jedoch verzogert werden, d.h., sie
werden bis zur Verwendung gespeichert [93].

3.3.8. PLC Statecharts

PLC Statecharts (PLC SC) erweitern die SC um eine Ausfithrungssemantik, die in einer
SPS verwendet werden kann. Hierzu wird auf die Verwendung von Ereignissen verzich-
tet. Die Kommunikation lduft stattdessen tiber Signale ab. Die Vergabe von Prioritéten
an die Transitionen erzielt ein deterministisches Ablaufverhalten [62]. Es wird zwischen
mehrzyklischen und zyklusinternen PLC SC unterschieden. PLC SC sind formal zu analy-
sieren und unter dem Namen PLC-Modeling Language (pleML) als UML-Profil definiert.
In Abbildung 3.13 ist die Ahnlichkeit zu SC zu sehen (vgl. Abbildung 3.11). Die weiteren
Erlauterungen in diesem Kapitel basieren auf [192].
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B Transition
e g N
abort State 1 N State 4

ENTRY /en_10 | {ayea) JENTRY / en_4()

@00/ do_1() DO/ do_4() Ausnahme
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EXIT /ex_2() e)/ee

.
Region Sae s Lwes| <<InCycle>> J1
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Abbildung 3.13.: Beispiel fiir ein PLC SC (nach [192])

Aufbaumodell PLC SC unterscheiden zwischen zyklusinternen und mehrzyklischen Zu-
standen. Mehrzyklische Zustinde entsprechen den Zustanden der SC (weiff in Abbil-
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dung 3.13 dargestellt). Zyklusinterne Zustande (grau in Abbildung 3.13 dargestellt) be-
sitzen ein Attribut, das die Anzahl der DO-Aufrufe in einem Zyklus beschriankt. Deter-
ministische Transitionen sind von den Transitionen aus den SC abgeleitet und erweitern
diese um eine Prioritdtsangabe. Initialzustand, Auswahlzustand, Gabelungszustand und
Kreuzungsknoten werden als Pseudozustand modelliert.

Hierarchie- und Vernetzungsmodell Analog zu einem SC sind in einem PLC SC Zustén-
de durch Ubergénge, die sogenannten Transitionen, verbunden. Unterbrechungstransitio-
nen, die an zusammengesetzte oder an orthogonale Zustédnde angebunden werden, erganzen
die PLC SC. Sie kénnen nur dann an einfache Schritte angebunden sein, wenn diese eine
DO-Aktivitdt haben, die unterbrochen werden soll.

Das Hierarchie- und Vernetzungsmodell wird gegentiber dem der SC wie folgt einge-
schrankt: Zusammengesetzte Zustdnde besitzen keine Aktionen oder Aktivititen. Hier er-
folgt eine Zuordnung zu den in dem zusammengesetzten Zustand enthaltenen Zusténden.
Des Weiteren ist exakt ein Initialzustand erforderlich, wenn ein zusammengesetzter Zu-
stand durch eine Transition erreichbar ist. Verlassen werden muss ein zusammengesetzter
Zustand tiber eine deterministische Transition, die durch ein Beendigungsereignis feuert.

Orthogonale Zustéinde besitzen ebenfalls keine Aktionen oder Aktivitdten. Sie diirfen
nur deterministische Regionen beinhalten. Deterministische Regionen beriicksichtigen die
iiblicherweise nicht-parallele Ausfithrung von SPS-Programmen und erméglichen eine de-
terministische Serialisierung der parallelen Ablaufe durch Angabe von Prioritdten. Ein
orthogonaler Zustand wird tiber eine Transition verlassen. Hierzu miissen alle determinis-
tischen Regionen einen Endzustand haben.

Eine weitere Rahmenbedingung der PLC SC besteht darin, dass zyklusinterne PLC SC
nur aus zyklusinternen Zustinden bestehen diirfen. Das bedeutet, sobald ein PLC SC einen
mehrzyklischen Zustand enthélt, ist auch der PLC SC mehrzyklisch.

Abstraktions- und Zuordnungsmodell Grofie Teile des Abstraktions- und Zuordnungs-
modells der pleML befassen sich mit Klassendiagrammen zur Modellierung der statischen
Software-Strukturen und sind daher fir diese Arbeit nicht relevant. Ablaufdiagramme kén-
nen auf IEC 61131-3-kompatible Strukturen abgebildet werden. In Abbildung 3.14 ist dieser
Ablauf der automatischen SPS-Codegenerierung basierend auf PLC SC dargestellt. PLC
SC unterstiitzen zudem rollenbasierte Sichten auf das Modell. Dies hilft verschiedenen
Nutzergruppen, nur die Bereiche eines PLC SC zu sehen, die fiir sie von Interesse sind.
Tiefergehende Informationen tiber die Transformation sind auch [193] zu entnehmen.

Aktions- und Aktivitatenmodell Eine Aktion im PLC SC entspricht der Aktion im SFC,
so dass hier eine Kompatibilitit existiert. Aktivitaten haben einen booleschen Eingangspa-
rameter zum Initialisieren und einen Ausgangsparameter, der anzeigt, dass die Aktivitat
abgelaufen ist. In der IEC 61131-3 sind keine Ereignisse vorgesehen. Daher sind in den
PLC SC verschiedene Mechanismen enthalten, wie die Ereignisse in einer SPS emuliert
werden kénnen (vgl. Tabelle 3.3).

Ausfiihrungssteuerungsmodell Das Ausfithrungssteuerungsmodell von PLC SC ist in
[192] nicht enthalten, so dass die Darstellung in [194] als Grundlage fir die Erliauterung
an dieser Stelle gewahlt wird. Die Ausfithrung ist in den SPS-Zyklus (vgl. Kapitel 2.2.3,
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Abbildung 3.14.: Schema fir die Codegenerierung aus PLC SC (nach [192])

S. 10) eingebunden. Die Ausfithrungslogik ist in der Sprache UPPAAL definiert und formal
itberpriift. Es findet eine Unterscheidung zwischen mehrzyklischen und zyklusinternen Zu-
stédnden statt. Wird ein mehrzyklischer Zustand betreten, werden zunédchst die Aktionen im
ENTRY-Bereich ausgefiihrt. Anschlielend erfolgt in jedem Zyklus die einmalige Ausfiih-
rung der DO-Aktivitiaten und die Uberpriifung der Transitionsbedingungen in absteigen-
der Prioritat. Feuert eine Transition, ist der Zyklus beendet. Unterbrechungstransitionen
bewirken hingegen keinen Zykluswechsel. Zyklusinterne Zusténde zeigen ein d&hnliches Ver-
halten, der maximale Aufruf der DO-Aktivitaten ist jedoch beschrénkt. Wird diese Anzahl
iiberschritten, liegt ein Fehler vor.

3.3.9. Sequential State Charts

SSC sind eine Kombination aus SFC und SC, die die Vorteile der beiden Sprachen (z. B.
die Lauffahigkeit in einer SPS von SFC und die Verwendung von Aktionsaufrufen in SC)
kombiniert. Zur Vereinfachung der Sprache sind Konzepte wie z. B. nebenlaufige Schritt-
ketten oder Aktionsaufrufe in Transitionen nicht zugelassen. Des Weiteren enthalten SSC
die Moglichkeit der dienstbasierten Kommunikation, die Modellierung der Prozeduren er-
folgt in einem Ausfiihrungsrahmen. Auch wenn SSC als Modell fiir allgemeine Prozeduren
vorgestellt werden, ist ihre Einsatzfihigkeit auf die Steuerung technischer Prozesse be-
schrankt. SSC sind in [196, 197] eingefithrt worden. Aus diesen Quellen stammt auch die
folgende Zusammenfassung.

Aufbaumodell Ein SSC ist aus Schritten und Transitionen zusammengesetzt. Ein SSC
sollte einen Startschritt besitzen und kann mehrere Endschritte haben. Alle Elemente
eines SSC sind in einen Ausfiihrungsrahmen integriert. Innerhalb des Ausfithrungsrahmens
kénnen auch weitere Funktionsbausteine verwendet werden.
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Tabelle 3.3.: Emulierung von Ereignissen in einer SPS

FEreignis Ersetzung

Change-Event Es wird nicht der absolute Wert ausgewertet, sondern der
Ubergang zwischen zwei Werten. Hier kann beispielsweise
der RTRIG-Baustein aus der VDI/VDE 3696 [180] Ver-
wendung finden.

Completion-Event  Aktivitaten erhalten einen booleschen Ausgang, der wahr
wird, wenn die Aktivitit beendet ist. Dieser Wert kann in
einer Transition abgefragt werden.

Time-Event Da der Zeitpunkt ¢y der Aktivierung eines Schritts gespei-
chert ist, kann das Ereignis ,nach ¢ = 10s* in einen Ver-
gleich t — tp > 10 s umgewandelt werden. Zu beachten ist,
dass es aufgrund der zyklischen Abarbeitung einer SPS
nicht sinnvoll ist, einen Vergleich von Zeiten auf Gleich-
heit durchzufithren. Ein Beispiel ist die Abfrage t = 0,5
bei einer Zykluszeit von t; = 0,2 s.

Hierarchie- und Vernetzungsmodell Die Verbindung von Schritten und Transitionen
erfolgt alternierend. Die Verbindung zweier Schritte tiber implizite Transitionen, die gra-
fisch nicht dargestellt werden, ist jedoch auch moéglich. SSC bieten die Méglichkeit, Un-
terprozeduren zu definieren. Eine solche Unterprozedur kann als eine eigene Prozedur mit
einem eigenen Ausfithrungsrahmen definiert sein. Die Unterprozedur kann zudem in ei-
nem Ausfiihrungsrahmen innerhalb des Ausfiihrungsrahmens der Hauptprozedur enthalten
sein. Eine Unterprozedur startet entweder durch Setzen der Variable EN oder durch einen
Dienstaufruf (wenn die Prozedur im Ausfithrungsrahmen der Hauptprozedur enthalten ist).

Wird der aufrufende Schritt der Hauptprozedur verlassen, stoppt die Ausfithrung der
Unterprozedur und diese bleibt im aktuellen Schritt stehen. Beim néchsten Aufruf startet
die Unterprozedur an dieser Stelle. Die Hauptprozedur kann die Unterprozedur durch ein
Kommando zuriicksetzen. Falls die Unterprozedur nicht beendet werden darf, muss die
ausgehende Transition des aufrufenden Schritts explizit den Endschritt der Unterprozedur
abfragen.

Die Definition von Alternativverzweigungen ist moglich. In einer Alternativverzweigung
konnen die ausgehenden Transitionen mit einer Prioritét versehen sein. Sind bei der Aus-
fiihrung der beschriebenen Prozedur mehrere Transitionsbedingungen erfiillt, feuert die
Transition mit der hochsten Prioritdt. Ist keine Prioritdt angegeben, feuert die am weites-
ten links gezeichnete Transition.

Nebenldufige Prozeduren sind in SSC innerhalb eines Ausfithrungsrahmens nicht mog-
lich. Die einzige Méglichkeit Funktionen nebenléufig auszufithren ist der zeitgleiche Aufruf
mehrerer Unterketten. Die Synchronisation muss explizit in den Transitionsbedingungen
modelliert sein.

Abstraktions- und Zuordnungsmodell Ein wichtiger Aspekt bei der Entwicklung der
SSC stellt der einfache Entwurfsprozess dar. Hier ist ein Whitebox-Ansatz ausgewéhlt wor-
den [199], d.h., jeder Ausfithrungsrahmen entspricht einem Funktionsbausteindiagramm
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Transitionsbedingung Anfangsschritt Aktion Ausgang
EN . . . < |ouT1
. v '
| INIT M
. Entry: FBD1
. OUT1=0;
v
B == TRUE
= S1
:—LDEDIi Do: SSC2 ouT2
CALL FBD1; E E %
CALL SSC2;
—T
S2
Entry:
IN1 ./Pump.EN=START; ouT3|
[‘\ .
= T2
. ,' S3
. . Entry: .
OUT2=1'5; .
Eingang Schritt "Transition Kontinuierliche Funktion

Abbildung 3.15.: Beispiel fiir einen SSC (nach [197])

nach der IEC 61131-3 [23]. Die interne Struktur des SSC kann sowohl im Engineering als
auch zur Laufzeit erkundbar sein. Es ist jedoch auch moglich, den inneren Aufbau eines
SSC zu verbergen. Auf diese Weise kann ein SSC als gekapseltes Modul verwendet werden.

Aktions- und Aktivitatenmodell Die Schritte eines SSC konnen Aktionen beinhalten.
Eine Aktion kann hierbei

e das Setzen einer Ausgangsvariable des Ausfithrungsrahmens,

e das Setzen des Eingangs eines Funktionsbausteins innerhalb des eigenen Ausfiih-
rungsrahmens oder

e der Aufruf eines lokalen Funktionsbausteins sein.

Es werden drei Ausfithrungszeitpunkte unterschieden. Zum einen ist eine einmalige Aus-
fithrung von Aktionen bei der Aktivierung (entry) oder beim Verlassen des Schritts (ezit)
moglich. Zum anderen kénnen Aktionen zyklisch (do) ausgefithrt werden, wahrend der
Schritt aktiv ist. Die Ausfithrung von Aktivitdten wird nicht direkt unterstiitzt.

Ausfiithrungssteuerungsmodell Das Ausfithrungssteuerungsmodell der SSC ist im Aus-
fiihrungsrahmen enthalten. Der Ausfithrungsrahmen kann als Funktionsbaustein verwen-
det werden. Er hat mindestens einen Eingang EN und zwei Ausginge ActualState und
terminated. Uber den Eingang EN lisst sich der Ausfithrungsrahmen mit Hilfe verschiede-
ner Kommandos der SSC in seinem Verhalten steuern. Der Ausgang ActualState gibt den
momentan aktiven Schritt der Hauptkette nach auflen weiter. Der Ausgang terminated
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indiziert, dass die Prozedur in einen Endschritt gelaufen ist. In einem Ausfiihrungsrah-
men eines SSC kénnen auch kontinuierliche Steuerungsfunktionen enthalten sein, die z. B.
Berechnungen beinhalten kénnen.

Wenn ein SSC aktiv ist, erfolgt in jedem Zyklus ein fester Ablauf. Zunichst werden
die Eingéinge gelesen und anschlieend die interne Logik an den Eingingen ausgewertet.
Nun liegt der Fokus auf dem aktiven Schritt. Wird der Schritt zum ersten Mal ausge-
fithrt, werden alle Aktionen unter entry sequenziell ausgefithrt. Anschlieflend erfolgt die
Auswertung der ausgehenden Transitionen. Feuert eine Transition, werden die Aktionen
unter ezit sequenziell ausgefithrt, der ndchste Schritt aktiviert und dessen Aktionen un-
ter entry ausgefiihrt. Feuert keine Transition, werden die Aktionen unter do ausgefiihrt.
Unabhéngig von der Prozedur fithrt die Ausfithrungssteuerung am Ende eines Zyklus die
kontinuierlichen Steuerungsfunktionen aus.

3.4. Prozedurbeschreibungssprachen zur Steuerung von
Geschaftsprozessen

Wihrend die Steuerung technischer Prozesse essentiell fiir den Erfolg der Prozesse ist, sind
Geschaftsprozesse lange Zeit implizit gesteuert worden. Erst seit Anfang der 1990er Jah-
re erfolgt eine systemische Aufzeichnung und Optimierung von Geschéftsprozessen [102].
Die Dokumentation der Geschéftsprozesse ist Basis fiir viele Zertifizierungen eines Unter-
nehmens bzw. seiner Mitarbeiter. Hier sind z. B. das OMG Certified Expert in Business
Process Management (OCEB)-Programm [190] oder die Zertifizierung nach ISO 9001 [33]
zu nennen. Ursachen fiir den immer stérkeren Zwang zum Geschéftsprozessmanagement
liegen in den immer komplexer werdenden Abldufen, die unternehmenstibergreifend sind
und in die fortlaufend neue Informationstechnik integriert werden [173]. Es wird zwischen
der fachlichen Modellierung und der technischen Modellierung von Geschéftsprozessen un-
terschieden. Bei der fachlichen Modellierung ist das erzeugte Modell nur mit Hilfe des
Menschen interpretierbar, da die Modelle semiformal, nattirlichsprachig oder unvollstian-
dig sind. Bei der technischen Modellierung entstehen durch Computer ausfithrbare Modelle
[101].

Im Folgenden wird der Begriff ,,Prozedur” verwendet, wenn der Steuerungsaspekt ei-
nes Geschéftsprozess gemeint ist. Als Modellierungssprachen werden Aktivitdtsdiagramme
(AD), BPEL, Business Process Modeling Notation (BPMN), Koordination, Kooperation
und Kommunikation (K3) und Ereignisgesteuerte Prozessketten (EPK) in dieser Reihen-
folge vorgestellt. In der IEC 62264'! wird keine Modellierungssprache definiert. Vielmehr
werden die Datenfliissse innerhalb und zwischen den Systemen der Ebenen 3 und 4 in den
Teilen 1 und 3 [27, 29] sowie die Inhalte des Austauschs in den Teilen 2 und 4 [28, 30]
spezifiziert.

3.4.1. Aktivitatsdiagramme

AD sind einer der Diagrammtypen in der UML, die es erlauben das Verhalten eines dyna-
mischen Systems zu beschreiben [11]. AD basieren auf Flussdiagrammen aus den 1960er

"Die IEC 62264 basiert auf der ISA 95.
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Jahren [4] und sind semantisch &hnlich zu Interaktionsdiagrammen. Wahrend Interakti-
onsdiagramme auf den Austausch von Nachrichten zwischen Objekten spezialisiert sind,
liegt der Blickwinkel bei den AD auf der Modellierung der sequentiellen und nebenldu-
figen Schritte in der Ablaufbeschreibung [11]. Das hier vorgestellte Meta-Modell bezieht
sich auf die UML 2-Version, in der das Konzept vollstandig tiberarbeitet worden ist [93].
Im SysML-Profil werden AD im Vergleich zur UML Kontrolloperatoren hinzugefiigt, die
ein Eingreifen in den Ablauf von auen ohne eingehenden Kontrollfluss ermoglichen [4]. In
Abbildung 3.16 ist ein Beispiel fir ein AD dargestellt.

Initialisierung

Kunde s Verkauf Lager
Produkt . Fluss
anfordern -
Bestellung L .
empfangen R
L -
abrufen
Bestellung o .
Aktion
<
Lieferung Rechnung
empfangen stellen
Gabelung
v,
Rechnung :
bezahlen
7
Schwimmbahn Vervollstéandigung Vereinigung

Abbildung 3.16.: Beispiel fir ein AD (nach [11])

Aufbaumodell AD bestehen aus Aktionen, Aktivitdtsknoten, Fliissen und Objektwerten
[11]. Aktionen sind atomare Elemente, die sich nicht weiter zerlegen lassen bzw. deren
Zerlegung fir das Modell uninteressant ist [93]. Aktivitdtsknoten lassen sich weiter in
ausfiihrbare Knoten, Objektknoten und Kontrollknoten unterteilen. Zu den ausfithrbaren
Knoten zihlen die Elemente mit ausfiihrbaren Téatigkeiten. Objektknoten dienen als Da-
tenspeicher. Kontrollknoten strukturieren und steuern den Ablauf des AD. Fliisse konnen
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Kontrollfliisse oder Objektfliisse sein [93]. Des Weiteren sind in einem AD Initialisierungen
(Startknoten) und Vervollstandigungen (Endknoten) enthalten. Jedes AD muss mindestens
eine Initialisierung beinhalten. Vervollstandigungen sind optional [11]. Es wird zwischen
Flussende und Aktivitdtsende unterschieden. Ein Flussende terminiert ausschlielich den
betreffenden Fluss, wihrend ein Aktivitatsende alle Kontrollfliisse beendet [93].

Hierarchie- und Vernetzungsmodell Die Aktionen sind tiber Fliisse miteinander verbun-
den. Aktivitatsknoten stellen Gruppierungen von Aktionen oder weiteren Aktivitatsknoten
dar und erméglichen daher den Aufbau einer hierarchischen Struktur. Die Aktionen und
Aktivitdten konnen in Schwimmbahnen enthalten sein (vgl. Abbildung 3.16). Schwimm-
bahnen dienen ausschlieBlich der Ubersichtlichkeit und haben keine weitere Funktion als
die optische Gliederung [11].

In einem AD kénnen alternative und nebenldufige Pfade definiert werden. Verzweigun-
gen, die einen eingehenden und mindestens zwei ausgehende Flisse haben, 6ffnen alterna-
tive Pfade. An den ausgehenden Fliissen sind boolesche Variablen notiert, die vollstindig
und iiberdeckungsfrei sein miissen. Am Ende der alternativen Pfade folgt eine Zusammen-
fithrung. Gabelungen erdffnen nebenlaufige Pfade und Vereinigungen fithren sie wieder
zusammen. Dies schlieBt echte Nebenldufigkeit und verzahnte sequentielle Ablaufe ein [11].

Abstraktions- und Zuordnungsmodell AD lassen sich in allen Phasen der Software-
entwicklung nutzen [93]. Nach [11] werden im Entwurfsprozess von AD zunéichst alle
Schwimmbahnen auf einer geeigneten Ebene definiert. In diese Schwimmbahnen platziert
der Entwickler die Aktionen, die er tiber Fliisse miteinander verbindet. Hierbei sollen zu-
nachst sequentielle Ablaufe, anschliefend alternative Pfade und zuletzt die Nebenldufig-
keiten erzeugt werden. Héaufig verwendete Gruppen von Aktionen sollen zu Aktivitédten
kombiniert werden. Es bietet sich an Aktivitdten in einer Bibliothek abzulegen, so dass
diese Aktivitaten wiederverwendbar sind [4]. Eine automatische Codegenerierung ist mog-
lich [11].

Aktions- und Aktivitatenmodell Es ist keine einheitliche Syntax fiir Aktionen festgelegt.
Aktionen konnen jedoch fest mit anderen Objekten im selben UML-Modell verkniipft sein.
Fliisse haben keine Ubergangsbedingung [11]. Sofern es sich um Objektfliisse handelt, kann
das Objekt mit seinem Zustand beschrieben werden. Aktionen kénnen Vor- und Nachbe-
dingungen haben, die einen Zustand vor bzw. nach der Ausfithrung der Aktion beschreiben
[93].

Ausfiihrungssteuerungsmodell Das Ausfithrungssteuerungsmodell der AD basiert ahn-
lich wie das der PN auf Token. Diese sind in der grafischen Darstellung allerdings nicht
sichtbar. Startknoten erzeugen jeweils ein Token, das dem jeweiligen Kontrollfluss folgt.
Erreicht es eine Aktion, wird diese ausgefithrt [4]. Die Aktionen in einem AD haben idea-
lisiert keine zeitliche Dauer. Das Token aktiviert das nachste Element im Fluss, sobald die
vorherige Aktion oder Aktivitat ausgefithrt worden ist [11]. Gabelungen vermehren und
Vereinigungen verringern die Anzahl der Token. Das Token wandert solange, bis es auf
einen Endknoten trifft [4]. Dieser Ablauf kann durch Abbriiche beeinflusst werden. Hierzu
ist die Definition von Unterbrechungsbereichen notwendig [93].
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3.4.2. Business Process Execution Language

Die BPEL ist eine Modellierungssprache zur Beschreibung und Ausfithrung von Prozedu-
ren zur Steuerung von Geschéftsprozessen [101]. Sie basiert auf der XML und auf Web-
Diensten [132]. Hauptziele bei der Entwicklung der BPEL sind die Flexibilitat und die
Wartbarkeit der erzeugten Modelle gewesen [188]. In der Version 1.0, auch als BPEL for
Web Services (BPEL4WS) bezeichnet, hat die Modellierung vollstéandig automatisierter
Prozeduren im Vordergrund gestanden. Erst in der zweiten Version (durch die Organiza-
tion for the Advancement of Structured Information Standards (OASIS) als Web Service
BPEL (WS-BPEL) standardisiert) ist die Interaktion mit menschlichen Akteuren integriert
worden [101]. WS-BPEL nutzt verschiedene Spezifikationen aus der XML. Die Web Service
Description Language (WSDL)-Nachrichten und die XML Schema Definition (XSD) stellen
das Datenmodell bereit, wihrend XPath und Extensible Stylesheet Language Transforma-
tion (XSLT) Datenmanipulationen unterstiitzen [132].

Aufbaumodell Der Aufbau eines BPEL-Modells ist im Prozesskompositionsmodell be-
schrieben [188]. Ein BPEL-Modell besteht demnach aus einer Prozedur (im BPEL als Pro-
zess bezeichnet), der den XML-Namensraum (vgl. Kapitel 4.3.2, S. 84) festlegt. Die Pro-
zedurbeschreibung enthélt zundchst die in WSDL formulierten Schnittstellen. Die Schnitt-
stellenbeschreibung umfasst sowohl die Schnittstelle zum Modell selber als auch die Schnitt-
stellen zu den aufzurufenden Diensten. Die Verkniipfung zwischen BPEL- und WSDL-Datei
erfolgt durch sogenannte Partner-Links. Globale Variablen kénnen ebenfalls in der Proze-
durbeschreibung definiert sein [101]. Die eigentliche Prozedur wird mit Hilfe von Aktivita-
ten modelliert, wobei zwei Klassen differenziert werden, Basisaktivitdten und strukturierte
Aktivitaten. Basisaktivitdten beschreiben die elementaren Steuerungsschritte, die nicht
weiter zerlegbar sind [132].

Hierarchie- und Vernetzungsmodell In der BPEL sind nur Kontrollfliisse explizit mo-
delliert, der Datenfluss erfolgt iiber die globalen Variablen. Sequenzen sind die einfachste
Vernetzungsart in der BPEL. Die Anordnung der Aktivitdten in der XML-Datei gibt die
Reihenfolge der Ausfiihrung vor. Alternativverzweigungen sind durch Wenn-Dann-Blocke
modelliert. Flussaktivititen kapseln parallel auszufithrende Objekte. Des Weiteren sind
Schleifen wie in anderen Programmiersprachen moglich [101].

Abstraktions- und Zuordnungsmodell Mit der Hilfe von der BPEL lassen sich abstrakte
und ausfithrbare Prozeduren modellieren [132]. Beide Typen werden mit Geschéftsprozess-
Modellierungswerkzeugen entworfen. In abstrakten Prozeduren sind wesentliche Details
zur Ausfiihrung weggelassen. Sie dienen als Ausgangspunkt fiir ausfithrbare Prozeduren,
aber auch als Dokumentation oder zum Know-How-Schutz [101]. Ausfihrbare Prozeduren
konnen in der BPEL-Engine ausgefiihrt werden.

BPEL basiert auf einer typbasierten Entwicklung der Modelle. Die Dienste werden zu-
nachst auf Typebene implementiert und kénnen anschlieBend auch dort orchestriert werden
[132].

Aktions- und Aktivititenmodell Die Interaktion mit der Umgebung erfolgt nachrich-
tenbasiert. Aufrufobjekte starten die Dienste. Empfangsobjekte und Antwortobjekte emp-
fangen die entsprechenden Antworten und reagieren auf diese. Die Anbindung zwischen
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Prozedurmodell und Diensten kann sowohl statisch als auch dynamisch sein. Statische
Verkniipfungen kénnen bei der Modellierung oder beim Deployment angelegt werden. Fiir
eine dynamische Allokation stehen Repositorys oder externe Datenquellen zur Verfiigung
[101].

Innerhalb einer BPEL-Prozedur werden Variablen durch Manipulationsobjekte verén-
dert. Als Variablentypen kénnen WSDL-Nachrichten, einfache bzw. komplexe XSD-Typen
oder XSD-Elemente verwendet werden. In Sequenzen sind keine Ubergangsbedingungen
notwendig. Bei Alternativverzweigungen werden die Bedingungen standardméafig in XPath
formuliert [101].

Ausfiihrungssteuerungsmodell Bei der Ausfithrung eines BPEL-Modell in einer BPEL-
Engine wird eine neue Instanz des Modells erzeugt (vgl. Abbildung 3.17).

Fehlerbehandlung
auf Prozessebene

Abbildung 3.17.: Lebenszyklus einer BPEL-Instanz (nach [188])

AnschlieBend wird der Kontrollfluss gestartet und, falls kein Fehler auftritt, die Antwort
gesendet [188]. Innerhalb der Ausfithrung ist sowohl ein synchrones als auch ein asynchrones
Verhalten modellierbar. Je nach verwendetem Empfangsobjekt halt dieses den Kontroll-
fluss an, bis eine Antwort eingeht oder wartet im Hintergrund auf die eingehende Antwort,
wéhrend schon die nachsten Dienste aufgerufen werden. Ist eine Flussaktivitat im Kontroll-
fluss vorhanden, schaltet diese erst zum néchsten Objekt, wenn alle Pfade abgearbeitet sind
[101].

Es wird zwischen fachlichen und technischen Fehlern unterschieden. Ein fachlicher Fehler
ist beispielsweise eine falsche Eingabe, die das WSDL-Dokument behandeln muss. Ein
technischer Fehler ist z. B. ein Timeout und muss in der BPEL-Spezifikation abgefangen
werden [101]. Auf technische Fehler kann sowohl durch explizite Abbriiche im Kontrollfluss
als auch durch einen Fehlerbehandlungsmechanismus auf Prozedurebene reagiert werden
(vgl. Abbildung 3.17) [188].

3.4.3. Business Process Model and Notation

Die BPMN ist eine meta-modellbasierte Sprache zur formalen Beschreibung von Ge-
schéftsprozessen. Die aktuelle Version 2.0 wird von der OMG gepflegt und ist in der
ISO/IEC 19510 [83] standardisiert [101]. In der Definition sind nicht nur die Notation,
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sondern auch die grafische Syntax und genaue Verkniipfungsregeln festlegt. Somit ist die
BPMN eine grafische Modellierungssprache [60]. Die BPMN bietet somit eine standardi-
sierte Moglichkeit der Beschreibung von Prozeduren zur Steuerung von Geschéftsprozessen.
Ein zweiter Vorteil ist die direkte Ausfithrbarkeit der Modelle, die seit der Version 2.0 ge-
geben ist [66]. Die BPMN kann zum Entwurf neuer Prozeduren, als Ausgangspunkt fir die
Prozessverbesserung und fiir die Dokumentation bestehender Prozeduren genutzt werden
[83]. In Abbildung 3.18 ist ein Beispiel fir ein BPMN-Modell gezeigt.

Paralleles Gateway
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Rezept
aussuchen

Ordentliches Gewinschtes
Hunder "
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B A Hi
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Salat
gewinscht?

Sequenzfluss

Assoziation Anmerkung
Abbildung 3.18.: Beispiel fiir ein BPMN-Modell (nach [66])

Aufbaumodell In der ISO/IEC 19510 sind eine Vielzahl verschiedener Elemente aufge-
fiihrt. Zur Komplexititsreduktion wird eine Einteilung in Basiselemente und erweiterte
Konzepte vorgenommen [195]. Die Basiselemente decken bereits eine Vielzahl von zu mo-
dellierenden Prozeduren ab, wahrend die erweiterten Konzepte fiir Spezialfille definiert
sind [60]. Untersuchungen zur Verwendung der Elemente zeigen, dass in den allermeisten
Féllen nur die Basisobjekte verwendet werden [201], so dass sich die weitere Beschreibung
auf die Basiselemente beschrénkt.

Die Basisobjekte lassen sich in fiinf Kategorien'? einteilen, Flussobjekte, Verbindungs-
objekte, Daten, Schwimmbahnen und Artefakte [83]. Zu den Flussobjekten zdahlen Akti-
vitédten, Ereignisse und Gateways. Ereignisse lassen sich in Startereignis, Zwischenereignis
und Endereignis spezifizieren. Als Verbindungselemente werden Sequenzfliisse, Nachrich-
tenfliisse und Assoziationen verwendet. Datenobjekte beschreiben die Daten, die in den
Aktivitaten benétigt werden. Schwimmbahnen werden in Pools und Bahnen unterteilt.
Artefakte sind Gruppen und Anmerkungen [60].

2

Hierarchie- und Vernetzungsmodell Die drei Verbindungsobjekttypen des Aufbaumo-
dells stellen die Verbindung zwischen den Flussobjekten her. Der Sequenzfluss ist hierbei

2Tn (83, 195] stellen Daten eine eigene Kategorie dar, in [60] werden sie zu den Artefakten geziihlt.
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die Basis fiir die zeitliche Abfolge der Aktivitaten. Nachrichtenfliisse definieren einen Kom-
munikationskanal fiir verschiedene Prozessbeteiligte. Artefakte werden iiber Assoziationen
an die Flussobjekte angebunden [60].

Neben dieser Moglichkeit zur Definition linearer Ablidufe konnen mit Hilfe von Gate-
ways komplexere Ablaufe modelliert werden. Gateways werden sowohl fiir die Aufteilung
als auch fir die Zusammenfithrung verschiedener Ablaufpfade verwendet [83]. In den Ba-
sisobjekten sind drei Gatewaytypen enthalten, datenbasierte exklusive Gateways, parallele
Gateways und datenbasierte inklusive Gateways. Datenbasierte exklusive Gateways be-
schreiben Entscheidungen, von denen jeweils genau eine getroffen werden muss. Parallele
Gateways eroffnen bzw. schliefflen nebenldufige Pfade. Datenbasierte inklusive Gateways
beschreiben Entscheidungen, von denen jeweils mindestens eine getroffen werden muss
[66].

Hierarchien konnen durch Teilprozesse aufgebaut werden, Schleifen ermdéglichen eine
einfache Notation wiederholender Aktivitaten [101]. Ein Teilprozess stellt hierbei einen
eigenen, vollstindigen Ablauf dar. Eine organisatorische Aufteilung kann mit Pools und
Lanes durchgefiihrt werden. Lanes konnen verschachtelt sein. So kann z. B. eine Abteilung
eine Lane darstellen und die Mitarbeiter der Abteilung jeweils eine eigene Unter-Lane. Eine
Aktivitat muss genau einer Lane zugeordnet sein, wenn Lanes definiert sind. Ein Pool steht
fiir eine iibergeordnete Instanz, die die Steuerung des Ablaufs koordiniert [66].

Abstraktions- und Zuordnungsmodell Die BPMN ermoglicht die Modellierung abstrak-
ter und ausfihrbarer Prozeduren [83]. BPMN unterstiitzt die Definition von globalen Teil-
prozeduren. Sie konnen durch die Oberprozedur mehrfach aufgerufen werden. Globale Teil-
prozeduren unterscheiden sich durch ihre Wiederverwendbarkeit von gewohnlichen Teilpro-
zeduren zur Erstellung einer hierarchischen Struktur. Wihrend gew6hnliche Teilprozeduren
automatisch Zugriff auf die Datenobjekte des Oberprozesses haben, muss die Zuordnung
der Daten bei globalen Teilprozeduren explizit erfolgen [66].

Aktions- und Aktivitatenmodell Aktivitiaten beschreiben Vorginge, in denen Arbeit
verrichtet wird [101]. Die Ausfiihrung erfolgt durch Automaten oder durch Menschen. Jede
Aktivitat besitzt einen Zustand, der durch die Ausfithrungssteuerung verwaltet wird. Des
Weiteren enthélt ein Attribut die Anzahl der Token, die zur Ausfithrung der Aktivitat
benétigt werden [83].

Zwischenereignisse dienen dem Anhalten des Sequenzflusses an bestimmten Stellen. Ein
Weiterschalten ist erst dann moglich, wenn das Zwischenereignis eingetreten ist. Zudem
konnen Abbruchereignisse an Aktivitidten angefiigt sein. Ein Eintreten des Ereignisses,
wihrend die Aktivitat aktiv ist, bricht die Aktivitat ab. Auch explizite Fehlerereignisse
werden an Aktivititen angefigt [66].

Ausfiihrungssteuerungsmodell Die BPMN-Engine startet eine BPMN-Prozedur, sobald
eines ihrer Startereignisse eintritt. Dazu wird eine Instanz der Prozedur angelegt. Die
Austfithrung der Aktivitdten wird durch Token gesteuert. Die Ausfithrung einer Aktivitét
erfolgt, sobald gentigend Token anliegen. Nach der Ausfihrung schalten die Token wei-
ter und die Aktivitat wird deaktiviert [83]. Bei einem datenbasierten exklusiven Gateway
schaltet das Token auf den Pfad, dessen Bedingung erfiillt ist. Der Ersteller des Modells
muss darauf achten, dass die Bedingungen sich gegenseitig ausschliefien. Eine Verklemmung
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lasst sich durch die Auszeichnung eines Pfads als Standard-Pfad vermeiden. Parallele oder
datenbasiert inklusive Gateways konnen Token erzeugen oder vernichten [66]. Eine Proze-
durausfithrung ist beendet, wenn es keine Token mehr gibt und keine Aktivitdt mehr aktiv
ist [83].

3.4.4. Koordination, Kooperation und Kommunikation

K3 ist eine Modellierungssprache, die Ende der 1990er Jahre als Erweiterung der AD ent-
wickelt worden ist [95]. Der Fokus der Entwicklung hat auf der Modellierung von schwach
strukturierten Ablaufen gelegen. In Abbildung 3.19 sind die wichtigsten Notationselemente
von K3 dargestellt.

Aktivitat : [: ::| : e o
. . Optionale Aktivitat

Entscheidung und

i

Blob
- Zusammenfiihrung

Schwachstelle : E ] : [Vin_ Wax]

Ausgeschlossene

|:::> : : Aktivitat

I

Auswahl-Blob
Werkzeug
Verzweigung und
Synchronisation :
Aggregierte Aktivitat -
g9reg : &
Information . . [ .o -
® : Do © 1 ParallelBiob
Anfangspunkt 1 Meraion T
endpurie - [ Jm{ ] Z ﬁ
I_f___'__ﬁ> : Synchrone : :
nformationsfluss = zysammenarbeit ©  Ausgeschlossene -  Sequenz-Blob
Kontrollfluss : Information :
Grundelemente . Verkniipfungs- . Auspriagungen . Elemente zur
elemente * von Aktivitaten - zeitlichen

und Informationen Ablaufabstaktion

Abbildung 3.19.: Elemente eines K3-Graphen (nach [131])

Aufbaumodell K3 basiert auf den AD und verwendet daher die dort definierten Elemente
Aktivitat, Anfangs- und Endpunkt (vgl. Kapitel 3.4.1, S. 54) [95]. Diese Elemente kénnen
durch die sogenannten Satellitenelemente Information, Schwachstelle und Werkzeug weiter
spezifiziert werden [131].
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Hierarchie- und Vernetzungsmodell Ausgehend vom Anfangspunkt sind die Aktivité-
ten iiber Kontrollfliisse bis zum Endpunkt verbunden. Eventuell vorhandene Satellitenele-
mente sind tiber Informationsfliisse mit den zugehorigen Aktivitaten verbunden. Der Kon-
trollfluss ldsst sich in mehrere Alternativen aufteilen, wobei die Iteration ein Spezialfall
der Entscheidung ist [95]. Schwimmbahnen teilen das Modell in verschiedene Organisati-
onseinheiten auf [65]. Innerhalb einer Organisationseinheit sind nebenléufige Prozeduren
durch Verzweigungen und Synchronisationen modelliert, eine organisationsiibergreifende
Darstellung nebenléufiger Vorginge wird tiber die synchrone Zusammenarbeit ermoglicht
[95].

Aggregierte Aktivitaten stellen eine Moglichkeit der Einfithrung einer Hierarchie in K3
dar. Eine solche aggregierte Aktivitdt fasst als Makroschritt mehrere Aktivitdten zusam-
men [131]. Binary Large Objects (Blobs) unterstiitzen die Moglichkeit, schwach struktu-
rierte Ablaufe zu modellieren. In einem konventionellem Blob sind Aktivitaten enthalten,
deren Ausfiihrungsreihenfolge nicht ersichtlich ist. Ein Auswahl-Blob gibt an, wie viele Ak-
tivitdten mindestens ausgefiithrt werden missen und wie viele maximal ausgefithrt werden
diirfen. In einem Sequenz-Blob miissen alle Aktivitaten in beliebiger Reihenfolge nachein-
ander ausgefiihrt werden, in einem Parallel-Blob darf die Ausfiihrung zeitgleich stattfinden
[131].

Abstraktions- und Zuordnungsmodell Im Entwurfsprozess mit K3 werden zwei Dimen-
sionen des Entwicklungsstands berticksichtigt, die Generalitatsebene und die Detailebene.
Je genereller ein entworfenes Modell ist, desto mehr Systeme kann es beschreiben. In ei-
nem detaillierteren Modell sind detailliertere Informationen enthalten. Beispielsweise sind
mehr Attributen Werte zugewiesen oder Aktivitdten sind durch aggregierte Aktivitdten
bzw. Blobs ersetzt worden [45]

Aktions- und Aktivititenmodell Ahnlich wie bei den EPK erfolgt die Interaktion mit
der Umgebung tiber Informationsobjekte. Diese werden durch die Aktivitdten benétigt,
bearbeitet oder erzeugt [65].

Ausfiihrungssteuerungsmodell Die Ausfithrung eines K3-Modells erfolgt analog zu den
AD. Ausgenommen hiervon ist die Ausfithrung von Blobs. Hier hat der Entwickler die
Ausfithrungsreihenfolge im Prozedurdesign nicht festgelegt. Stattdessen soll der Ausfiih-
rer der Prozedur diese zur Laufzeit bestimmen. Zudem kénnen bei der Ausfithrung eines
K3-Modells optionale und ausgeschlossene Aktivitdten auftreten. Optionale Aktivitdten
konnen situationsbedingt ausgefiihrt werden, wahrend die Ausfithrung ausgeschlossener
Aktivitaten verboten ist [131].

3.4.5. Ereignisgesteuerte Prozessketten

EPK sind ein prozessorientierter Ansatz zur grafischen Beschreibung und Modellierung von
Geschéftsprozessen. Sie sind hauptsichlich im deutschsprachigen Raum verbreitet [131]. Sie
stellen einen kontrollflussorientierten Ansatz dar, der die Méangel der bestehenden daten-
flussorientierten Ansétze beheben soll. Der Fokus ist dabei sowohl auf die Analyse von
Prozedurketten als auch auf die Modellierung der Beziehungen zwischen Datenobjekten
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gelegt worden [94]. EPK werden insbesondere in der Architektur integrierter Informati-
onssysteme (ARIS) zur Geschéftsprozessmodellierung verwendet [160]. In Abbildung 3.20
wird ein Beispiel fiir eine EPK dargestellt.

Ereignistyp 1

Funktionstyp 1

Ereignisiyp
- Und-Verkniipfung
v y

Ereignistyp 2 Ereignistyp 3

4
/R
Loy

A

[ Funktionstyp 3 ] [ Funktionstyp 4 J
| Ereignistyp 5 | . | Ereignistyp 6 |

Entweder-Oder-Verkniipfung

<

) 4
A

Funktionstyp *

Ereignistyp 7

Abbildung 3.20.: Beispiel fiir eine EPK (nach [94])

Aufbaumodell Eine EPK besteht aus drei Konstrukten: dem Informationsobjekt, der
Funktion und dem Ereignis. Informationsobjekte sind semantisch beschriebene Sachver-
halte, die Mengen realer oder abstrakter Daten beschreiben. Funktionen sind aktive Kom-
ponenten, die eine Beschreibung eines Vorgangs darstellen. Sie sind semantische Regeln,
die die Uberfithrung von Eingangszustinden in definierte Ausgangszustinde spezifizieren.
Ereignisse sind passive Komponenten, die den Ablauf im Informationssystem beeinflus-
sen, wenn ein definierter Zustand eingetreten ist [94]. Funktionen sind zeitverbrauchende
Vorgange, wahrend sich Ereignisse auf einen konkreten Zeitpunkt beziehen [160].

Hierarchie- und Vernetzungsmodell In einer EPK l9sen Ereignistypen die Funktionsty-
pen aus. Funktionstypen erzeugen wéhrend ihrer Ausfithrung neue Ereignistypen [94]. Da-
her sind Funktions- und Ereignistypen alternierend verbunden [131], wobei jede EPK mit
einem Ereignis beginnt und endet [160]. Des Weiteren unterstiitzen EPK drei verschiede-
ne Verkniipfungsoperatoren: konjunktive, disjunktive und adjunktive Verkniipfungen (vegl.
Abbildung 3.20).
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e Bei einer konjunktiven Verkniipfung zweier Aussagen miissen beide Aussagen wahr
sein, damit die verkniipfte Aussage wahr ist.

e Bei einer disjunktiven Verkniipfung zweier Aussagen muss genau eine Aussage wahr
sein, damit die verkniipfte Aussage wahr ist.

e Bei einer adjunktiven Verkniipfung zweier Aussagen muss mindestens eine Aussage
wahr sein, damit die verkntipfte Aussage wahr ist.

Die Verkniipfungen konnen sich auf Ereignistypen oder auf Funktionstypen beziehen [94].
Nach einem Ereignistyp darf jedoch keine disjunktive oder adjunktive Verkniipfung ver-
wendet werden [160].

Hierarchische Strukturen kénnen durch strukturbildende Objekte erzeugt werden. Zu-
meist werden Hierarchien jedoch durch das tiberlagerte ARIS-System erzeugt und die ein-
zelnen EPK haben keine Hierarchie [160].

Abstraktions- und Zuordnungsmodell In einer EPK sind zwei Ebenen vorgesehen: die
Abstraktionsebene und die Auspragungsebene. In der Aktionsebene werden Ereignis- und
Funktionstypen definiert, die eine Sammlung verschiedener Auspragungen von Ereignissen
und Funktionen darstellen [94].

Aktions- und Aktivitatenmodell Die Interaktion mir der Umgebung erfolgt tiber die
Informationsobjekte. Die Funktions- und Ereignistypen sind tiber eine n : m-Beziehung
mit Informationsobjekten verbunden [94].

Ausfiihrungssteuerungsmodell Die EPK enthilt keine eigenstandige Beschreibung ihrer
Ausfithrung. Dies erfolgt z. B. in Systemen wie ARIS [160]. Solche Systeme miissen bei der
Ausfithrung einer EPK Abhéngigkeiten zwischen der EPK, den Datenmodellen und den
Funktionsstrukturen berticksichtigen. Funktionen kénnen Daten anfordern, ihnen kénnen
Daten durch Nachrichten geschickt werden oder Ereignisse stellen selbst Informationsob-
jekte dar [94].

3.5. Vergleich der analysierten Sprachen

Die Analyse der Sprachen in den Kapiteln 3.3 und 3.4 zeigt viele Gemeinsamkeiten zwischen
den Prozedurbeschreibungssprachen, stellt aber auch Unterschiede dar. Die Ergebnisse
sind in den Tabellen in Anhang A, S. 105, zusammengefasst. Im Folgenden werden die
analysierten Sprachen bezogen auf die Elemente einer Prozedurbeschreibungssprache nach
Kapitel 3.1, S. 24, verglichen.

Aufbaumodell

Alle Sprachen bestehen aus zwei Basiselementtypen. Der erste Basiselementtyp beschreibt
die Beharrungspunkte wahrend eines Ablaufs und wird als Schritt, Zustand, Knoten oder
Stelle bezeichnet. Der zweite Basiselementtyp, Transition oder Ubergangsbedingung ge-
nannt, steuert den Sequenzfluss und damit die Aktivierung der Beharrungspunkte. Des
Weiteren sind Anfangs- und Endpunkte spezielle Beharrungspunkte einer Prozedur.

64

- [ am 20,01.2026, 08:45:57. @ Inhah.
tersagt, m ‘mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186254085

3.5. Vergleich der analysierten Sprachen

Ein wichtiges Kriterium bei der Definition des Aufbaumodells ist eine moglichst geringe
Zahl von Basiselementtypen. Beispielsweise ist bei der BPMN die Anzahl der verschiedenen
Elementtypen zu hoch, so dass die Komplexitat problematisch ist [131].

Hierarchie- und Vernetzungsmodell

Zur Erzeugung einer konkreten Prozedur werden in allen Sprachen Instanzen der Basisele-
menttypen festgelegt. Die Instanzen werden tiber Kanten miteinander verschaltet, so dass
eine Ablaufbeschreibung vorliegt. In den meisten Sprachen sind nur Kanten von einem
Basiselementtyp zum jeweils anderen erlaubt.

Mithilfe der Prozedurbeschreibungssprachen lassen sich nicht nur lineare Abldufe darstel-
len. Alternativverzweigungen ermoglichen die Modellierung von Entscheidungssituationen.
Nebenlaufige Pfade bzw. orthogonale Automaten definieren zeitgleich ablaufende Proze-
duren. Die technische Umsetzung von Nebenldufigkeit ist jedoch problematisch. Sowohl
Menschen als auch maschinelle Steuerungen, die typischerweise einen Prozessorkern be-
sitzen, kénnen nur eine Sache zur selben Zeit steuern. Daher miissen die nebenldufigen
Prozeduren serialisiert werden. Zudem fithren Spriinge aus einer Parallelverzweigung her-
aus und in eine Parallelverzweigung hinein zu unsicheren bzw. verklemmenden SFC [6].
Bei SC sollen Ereignisse innerhalb eines SC vermieden werden, die in orthogonalen Kom-
ponenten erkannt werden miissen. Diese konnen zu ungewollten Endlosschleifen fithren
[72].

Da Prozeduren héaufig aus vielen einzelnen Instanzen bestehen, ist es aus Griinden der
Ubersichtlichkeit moglich Hierarchieebenen einzufiigen. Diese werden beispielsweise als Ma-
kroschritte oder Schwimmbahnen bezeichnet. Kritisch sind Hierarchieebenen jedoch, wenn
die Abhéngigkeiten zwischen den Ebenen nicht eindeutig spezifiziert sind. Beispielsweise
fiithren die Definitionsliicken bei den SFC zu einem implementationsspezifischen Verhalten
und einer fehlenden Ubertragbarkeit der Prozeduren auf andere Systeme [157].

Abstraktions- und Zuordnungsmodell

In den meisten Sprachen wird der Entwurfsprozess nicht durch ein Abstraktions- und
Zuordnungsmodell unterstiitzt. Zu erwahnende Konzepte sind hier die Wiederverwendung
von Grafcets als EinschlieSung, die Modellierung abstrakter Prozeduren in BPMN und das
Rezeptmodell der IEC 61512.

AuBerdem koénnen verschiedene Sprachen unter bestimmten Rahmenbedingungen inein-
ander Uberfiihrt werden, so dass die Spezifikation und die Implementierung in unterschied-
lichen Sprachen erfolgen kann. Beispielsweise zeigt [158] die Uberfiihrung von Grafcet nach
SFC. In BPMN wird eine Untermenge von Konstrukten spezifiziert, die mit BPEL kom-
patibel ist (83, 101]. EPK lassen sich in BPMN transformieren [131].

Aktions- und Aktivitatenmodell

Jede Prozedurbeschreibungssprache definiert ihre Interaktionsmaéglichkeiten mit der Um-
gebung. In der Interaktionsmoglichkeit der Prozedur mit ihrer Umgebung unterscheiden
sich die Beschreibungssprachen mafigeblich. Von der natiirlichsprachlichen Beschreibung
in EPK bis hin zur Beschreibung mit Programmiersprachen in SFC, von dem Setzen ein-
zelner Signale in SIPN bis hin zu Dienstaufrufen in Grafchart kann die Interaktion auf
verschiedenste Weisen erfolgen. Ein Grund hierfiir ist im Unterschied zwischen Mensch
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und Maschine hinsichtlich der Interpretationsfihigkeit informaler Aufrufe begriindet. Ein
weiterer Aspekt stellt der fortschreitende Einfluss der Informationstechnik dar, der bei-
spielsweise die Nutzung eines Dienstsystems erst moglich macht.

Ausfiihrungssteuerungsmodell

Die Prozedurbeschreibung ist eng mit Regeln zur operativen Ausfithrung der beschriebenen
Prozeduren verkniipft. Daher enthélt jede Prozedurbeschreibungssprache ein Konzept zur
Ausfithrung der Prozedur. Dieses Konzept ist jedoch nicht immer vollstédndig spezifiziert.
Teilweise hangt die Ausfithrung sogar von der Implementierung der Sprache (z. B. bei SFC)
ab [6]. Ein weiteres Beispiel hierfiir ist das dynamische Verhalten von Grafcet, welches
nicht eindeutig definiert ist, mit anderen Worten, es liegt kein eindeutiges Modell vor, dass
unabhéngig von der Implementierung durch Rechner interpretiert werden kann [158].
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Die Analyse von vierzehn Prozedurbeschreibungssprachen hat gezeigt, dass diese Spra-
chen alle einen gemeinsamen Kern haben. In diesem Kapitel wird ein Referenzmodell zur
Prozedurbeschreibung entwickelt, das genau diesen gemeinsamen Kern abbildet. Dieses
Referenzmodell, welches ein Meta-Modell (M2-Ebene) nach Kapitel 2.6.2, S. 20, ist, wird
die grundlegenden Konzepte zusammenfassen, die in den Struktur- und Laufzeitinformatio-
nen der doméanenspezifischen Sprachen enthalten sind. Die auf Basis des Referenzmodells
erstellten Prozedurbeschreibungen sind Modelle (M1-Ebene). Im Folgenden werden zu-
néchst die an ein solches Referenzmodell gestellten Anforderungen erhoben. Im Anschluss
wird das Referenzmodell basierend auf den Elementen einer Prozedurbeschreibung (vgl.
Kapitel 3.1, S. 24) unter Berticksichtigung der Anforderungen beschrieben. Das Referenz-
modell besitzt zwei Darstellungsformen, eine grafische Notation und eine Darstellung als
XML-Datei, die anschliefend erlidutert werden. Vor der Beschreibung der prototypischen
Implementierung erfolgt die Formulierung der Anforderungen an die Ausfiihrungseinheiten
und an die Kommunikation, die sich durch das Referenzmodell ergeben.

4.1. Anforderungen an das Referenzmodell

Die Anforderungen an das Referenzmodell konnen zunéchst in funktionale und nichtfunk-
tionale Anforderungen' unterteilt werden [59]. Das Abdecken des gemeinsamen Kerns der
in Kapitel 3, S. 24, vorgestellten Beschreibungssprachen ist eine funktionale Anforderung,
die an das Referenzmodell gestellt wird. Das Referenzmodell hat den Anspruch, jede Pro-
zedur beschreiben zu kénnen. Es muss insbesondere einen Weg aufzeigen die unterschied-
lichen Interaktionsmoglichkeiten der Prozedur mit ihrer Umgebung in einem Modell zu
beschreiben. Auch eine durchgéngige Darstellung von Hierarchien und Nebenlaufigkeiten
ist notwendig. Des Weiteren muss eindeutig feststehen, wie eine beschriebene Prozedur
ausgefiihrt wird. Dies bezieht insbesondere das Verhalten der Prozedur im Fehlerfall mit
ein.

Daneben existieren verschiedene nichtfunktionale Anforderungen, die die Anwendung
des Referenzmodells vereinfachen. Da verschiedene Rollen (Modellierer, Programmierer
und Anwender) mit einer Prozedurbeschreibung arbeiten miissen, ist eine einfache und in-
tuitive Handhabung des Modells wichtig. Auf diese Weise ist eine Nachvollziehbarkeit der
spezifizierten Ablaufe moglich [62]. Zudem muss sich ein Prozedurmodell in doménenspe-
zifische Sprachen iiberfithren lassen, mit denen die Konfiguration, die Parametrierung und
die Programmierung von Automatisierungslosungen durchgefithrt werden [182]. Das Refe-
renzmodell liefert demnach einen Beitrag zur Vereinfachung des Entwurfsprozesses einer
Prozedur.

'Details zum Unterschied zwischen funktionalen und nichtfunktionalen Anforderungen kénnen z. B. [97]
entnommen werden.
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Auch die vertikale Integration, d.h. die ebeneniibergreifende Kommunikation innerhalb
der Automatisierungspyramide, muss durch das Referenzmodell unterstiitzt werden. Auf-
grund der hohen Komplexitét ebeneniibergreifender Prozedurmodelle ist eine Hierarchi-
sierung unabdingbar [182]. Eine Kapselung der Informationen der Ausfithrungseinheiten
in unterschiedliche Zustande ist eine Moglichkeit die Komplexitét der unteren Ebenen der
Automatisierungspyramide vor den oberen Ebenen zu verbergen. Diese zustandsbasier-
te Prozessfilhrung entspricht den Uberlegungen des Arbeitskreises ,Modulare Anlagen®
der Interessengemeinschaft Automatisierungstechnik der Prozessindustrie (NAMUR) zur
Steuerung modularer Prozessanlagen [134]. Die Kapselung ermoglicht zudem einen mog-
lichst einfachen Einblick aus der ERP-Ebene in die aktuelle Produktion, wie in [69] ge-
fordert. Ziel ist es die Verkniipfung der Produktionsprozesse mit den Lieferanten und den
Kunden durch ein solches Referenzmodell zu erleichtern [69, 150]. Ein weiterer Vorteil ist
die Wiederverwertung der erzeugten Losungen, so dass die Fehleranfilligkeit im Entwurf
und der Aufwand bei einer erneuten Nutzung sinken [59].

Das Referenzmodell muss sich in eine Industrie 4.0-Landschaft [125] einbinden lassen und
sich dabei insbesondere in das Referenzarchitekturmodell Industrie 4.0 (RAMI) eingliedern
[2]. Des Weiteren soll das Referenzmodell in der Lage sein, mit Industrie 4.0-Komponenten
[53] zu interagieren. Eine der Anforderungen, die Cyber-Physical Systems (CPS) an die Au-
tomatisierungslosung stellen, sind Anderungsmaoglichkeiten der Anwendungsfunktionen im
operativen Betrieb [182]. Dies beinhaltet insbesondere eine Erweiterung des Funktionsum-
fangs [131], die Verteilung von Funktionen in verteilten Systemen sowie die Adaption und
Rekonfiguration operativer Fithrungsfunktionen [52]. Somit muss auch das Referenzmodell
diesen Anforderungen an die Flexibilitdt gentigen.

Prozedurmodelle sollen mit Hilfe des Referenzmodells einfach erstellt, eindeutig inter-
pretiert und wéihrend der Ausfithrung leicht verstanden werden konnen [152]. Allerdings
wird in dieser Arbeit keine arbeitswissenschaftliche Analyse durchgefiihrt, wie sie z. B. in
(131] ausgefihrt wird.

Andere nichtfunktionale Anforderungen, die an eine Automatisierungslosung gestellt
werden, liegen auflerhalb des Referenzmodells. Die Sicherstellung des Determininismus
und der Echtzeitfahigkeit der Kommunikation (vgl. [182]) zwischen Steuerung und Aus-
fithrungseinheit ist Aufgabe des verwendeten Kommunikationsmittels, welches nicht durch
das Referenzmodell festgelegt wird. Dies gilt ebenso fiir den Schutz vor unberechtigten
Zugriffen. Die Erfilllung der funktionalen Sicherheit (vgl. [182]) ist ebenso die Aufgabe der
Ausfiihrungseinheiten wie das Ablehnen von Belegungsmafinahmen, die im aktuellen Zu-
stand nicht erlaubt sind (vgl. [184]). Beides wird daher im Referenzmodell nicht behandelt.
Ein Anderungsmanagement und eine Verifikation (vgl. [62]) der erstellten Prozedurmodelle
ist hingegen Aufgabe der Modellierungswerkzeuge, die in der taglichen Praxis das Erstel-
len der Prozedurmodelle ermdéglichen. Die Ausfithrungsumgebung muss die Anwendung
des Referenzmodells in der Ausfiihrungsphase durch Anlagenfahrer mit unterschiedlicher
Qualifikation und durch Nutzergruppen mit unterschiedlichen Rechten (vgl. [182]) unter-
stiitzen.

4.2. Modellbeschreibung

Auch das hier vorgestellte Referenzmodell muss den Elementen einer Prozedurbeschrei-
bungssprache (vgl. Kapitel 3.1, S. 24) Rechnung tragen. Daher werden die Elemente des
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4.2. Modellbeschreibung

Referenzmodells in den folgenden Abschnitten vorgestellt und ihr Zusammenwirken mit
den anderen Modellelementen erlautert. Die Modellbeschreibung basiert auf eigenen Ar-
beiten, die zu Teilen bereits in [130] und [152] verdffentlicht sind.

4.2.1. Aufbaumodell

Das Referenzmodell beinhaltet die Basiselemente Ausfithrungsrahmen
(ExecutionFrame), Schritt (Step) und Transition (Transition), die in Abbildung 4.1
dargestellt sind.

Step ExecutionFrame Transition
+ isActive: Boolean = false + parameter]]: String + name: String
+ name: String [——<+ inRequest: String [<>———————]+ enabled: Boolean
+ timeActive: Integer 0.. 1|+ curstep: String 1 0.* |+ abort: Boolean
+ restart: Integer
? 1 1
1
InitialStep
ElementaryStep
0.
FinalStep
<3 + abort: Boolean

Abbildung 4.1.: Aufbaumodell des Referenzmodells in UML-Notation

Eine Prozedurbeschreibung stellt einen ExecutionFrame zur Verfiigung, der einen ei-
genen Namensraum definiert. Dem Ausfithrungsrahmen konnen Parameter im Attribut
parameter iibergeben werden, die die Prozedurbeschreibung flexibel macht, beispielsweise
hinsichtlich zu produzierender Mengen. Des Weiteren speichert ein Attribut inRequest den
zuletzt eingegangenen Befehl. Das Attribut curStep enthdlt den zum aktuellen Zeitpunkt
aktiven Schritt. Die beiden letztgenannten Attribute sind nur wihrend der operativen Aus-
fiihrung der Prozedur interessant.

Ein Schritt ist hierbei in Anlehnung an die Definition in [34] ein Beharrungszustand der
Prozedur. Die Klasse Step besitzt einen Namen name, der Auskunft tiber die Funktion
des Schritts geben kann. Ein Step kann aktiv oder inaktiv sein. Dies ist in einem Attribut
isActive gespeichert. Weiterhin ist die Zeitspanne der Aktivitat eines Schrittes von Inte-
resse. Diese ist in der Variablen timeActive hinterlegt. Die Angabe timeActive wird in der
Einheit ms angegeben. Die Attribute isActive und timeActive sind ebenfalls nur wahrend
der operativen Ausfithrung der Prozedur von Interesse.

Die Klasse Elementarschritt (ElementaryStep) ist von der Klasse Step abgeleitet. Der
Anfangsschritt (InitialStep) und der Endschritt (FinalStep) erben wiederum von der
Klasse ElementaryStep. Unterhalb eines Ausfithrungsrahmens existiert genau ein Start-
schritt. Daraus folgt, dass in einem Prozedurmodell mindestens ein Schritt enthalten sein
muss. Die Anzahl der Endschritte ist nicht vorgegeben, sondern anwendungsfallabhéingig.
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Zyklische Prozeduren miissen keinen Endschritt haben, wihrend terminierende Prozeduren
einen oder mehrere Endschritte haben. Das Attribut abort der Klasse FinalStep wird fiir
die Ausfithrungssteuerung (vel. Kapitel 4.2.5, S. 78) benotigt.

In Anlehnung an [34] ist eine Transition ein Ubergangselement, das den Wechsel zwischen
zwei Schritten steuert. Die Klasse Transition besitzt ebenfalls einen Namen Name, das
Attribut enabled gibt an, ob die Transition ausgewertet wird. Die Attribute abort und
restart der Klasse Transition werden fir die Ausfithrungssteuerung (vgl. Kapitel 4.2.5,
S. 78) benotigt. Die Transitionen sind ebenfalls unter dem Ausfithrungsrahmen angeordnet.
Die Menge der Transitionen kann leer sein, wenn der Startschritt der einzige Schritt der
Prozedur ist.

4.2.2. Hierarchie- und Vernetzungsmodell

Innerhalb des Ausfithrungsrahmens werden Schritte und Transitionen alternierend durch
Kanten miteinander verkniipft (vgl. Abbildung 4.2). Eine Transition hat genau einen
Vorganger- und genau einen Folgeschritt (vgl. die Assoziationen preStep und sucStep in
Abbildung 4.2). Alle Kanten haben Kantengewicht Eins, so dass eine Prozedurbeschrei-
bung ein ungewichteter Graph ist. Da eine Kante immer einen Schritt und eine Transition
verbindet, folgt zudem, dass der Graph bipartit ist.

ExecutionFrame

— <
! 1
0.* 0.
Step -a preStep Transition
! 0.
< sucStep
1 0.

Abbildung 4.2.: Vernetzungsmodell des Referenzmodells in UML-Notation

Die Basiselemente des Aufbaumodells zusammen mit den Kanten des Hierarchie- und
Vernetzungsmodells sind ausreichend zur Definition linearer terminierender und linearer zy-
klischer Prozeduren. Auch Alternativverzweigungen kénnen mit diesen Elementen model-
liert werden, da ein Schritt mehrere eingehende und ausgehende Transitionen haben kann.
Daher muss es kein separates Element fiir Alternativverzweigungen und -vereinigungen
geben. Bei einer Alternativverzweigung kénnen mehrere Transitionsbedingungen gleich-
zeitig wahr werden. Deshalb ist ein deterministisches Entscheidungskriterium notwendig.
Das Referenzmodell fordert den gegenseitigen Ausschluss der Transitionsbedingungen, da
sich die grafische Priorisierung und die explizite Angabe der Prioritdt (welches weitere
Méglichkeiten bei den in Kapitel 3, S. 24, betrachteten Sprachen sind) darauf abbilden?
lassen.

2Die Abbildung ist in Anhang C.2, S. 121, dargestellt.
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4.2. Modellbeschreibung

Allerdings werden derart erzeugte Prozeduren schnell sehr uniibersichtlich. Daher ist
es notwendig, dass das Referenzmodell den Aufbau von Hierarchien unterstiitzt. Dies er-
folgt mit Hilfe der Klasse Makroschritt (MacroStep), die in Abbildung 4.3 dargestellt ist.
Ein Makroschritt ist eine logische Gruppierung von Schritten, Transitionen und Kanten.
Er nutzt denselben Adressraum wie der umgebende Schritt. Da Makroschritte spezielle
Schritte sind, kann ein Makroschritt sowohl Vorgénger- als auch Folgeschritt einer Tran-
sition sein. In einem Makroschritt muss genau ein Anfangs- und genau ein Endschritt
vorhanden sein. Des Weiteren ist es moglich, innerhalb einer Prozedur andere Prozeduren
aufzurufen. Diese haben einen eigenen Ausfithrungsrahmen und einen eigenen Adressraum.
Sie sind somit im Gegensatz zu Makroschritten unabhéngig von der aufrufenden Prozedur.

MacroStep ExecutionFrame
[ | .
—
1
1 < f 1 1
FinalStep 2.1 1.0 o
1 Step o Transition
~a sucStep
<t preStep

Abbildung 4.3.: Makroschritt des Referenzmodells in UML-Notation

Die Modellierung nebenlaufiger Vorgénge ist, wie bereits im Vergleich der analysierten
Sprachen (vgl. Kapitel 3.5, S. 64) beschrieben, problematisch, da auf diese Weise Ver-
klemmungen und Unsicherheiten entstehen kénnen. Einige Ansitze (vgl. z. B. [196]) gehen
daher dazu tiber, solche nebenlaufigen Ablaufe zu verbieten. Fiir das Referenzmodell sind
die nebenlaufigen Abldufe allerdings zwingend erforderlich, da diese in den meisten Spra-
chen enthalten und gerade bei Prozeduren zur Steuerung von Geschéftsprozessen auch
essentiell sind. Im Referenzmodell sind zwei Méglichkeiten zur Modellierung vorgesehen,
die Verwendung eines P-Makroschritts (PMacroStep) und der parallele Aufruf mehrerer
unabhéangiger Prozeduren:

e Ein P-Makroschritt wird verwendet, damit die Nebenldufigkeit gekapselt wird (vgl.
Abbildung 4.4).

Auf diese Weise ist zunichst sichergestellt, dass die aufrufende Prozedur zu jeder
Zeit in einem definierten Schritt ist. Wie ,normale* Makroschritte auch, besitzt ein
P-Makroschritt einen Anfangs- und einen Endschritt. Der Anfangsschritt wird iiber
eine Verzweigung (Fork) mit mindestens zwei Schritten verbunden. Die Verbindung
zwischen Anfangsschritt und Verzweigung erfolgt iiber die Assoziation inFork, die-
jenige zwischen der Verzweigung und den nachfolgenden Schritten tiber die Assozia-
tion outFork. Die nebenldufigen Pfade werden tiber eine Zusammenfithrung (Join)
mit dem Endschritt des P-Makroschritts zusammengefithrt. Die Verbindung zwischen
den letzten Schritten der jeweiligen nebenldufigen Pfade und der Zusammenfithrung
erfolgt tiber die Assoziation in.Join, diejenige zwischen der Zusammenfithrung und
dem Endschritt tiber die Assoziation outJoin. Verzweigung und Zusammenfithrung
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Fork <€ inFork InitialStep
0.1 ] 7
0.1 ‘
outFork B>
- = Hocoser MacroStep
2. f
-a inJoin 2.+
! 1
Joln outdoin B> FinalStep
0.1 1 ;

Abbildung 4.4.: P-Makroschritt des Referenzmodells in UML-Notation

sind damit ebenso wie eine Transition Ubergangselemente. Weil eine Transition genau
einen Vorgéngerschritt und genau einen Nachfolgeschritt besitzen muss, konnen sie
jedoch nicht von der Klasse Transition erben. Da ein P-Makroschritt ausschliefilich
iber den Anfangsschritt betreten und iiber den Endschritt verlassen werden kann,
wird eine Verklemmung oder eine Unsicherheit vermieden®. In Abbildung 4.5 ist ein
Beispiel mit zwei nebenldufigen Pfaden skizziert, wie die entsprechenden Instanzen
und Assoziationen in einem P-Makroschritt verwendet werden.

e Werden mehrere Prozeduren parallel aufgerufen, laufen diese unabhéngig voneinan-
der ab. Sollte eine Synchronisation zwischen den Prozeduren oder zwischen aufgerufe-
nen Prozeduren und aufrufender Prozedur gewollt sein, muss diese explizit projektiert
werden.

3Dies gilt nur in Hinblick auf den von PN und SFC bekannten Verlust bzw. das Entstehen von Marken.
Durch ungiinstigen Aufruf von Aktionen kann in einem Schritt eine Aktion gestartet werden, die darin
resultiert, dass eine Transition nicht mehr feuern kann.
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Macrolnitial:
InitialStep

l inFork

MacroFork: Fork

outFork T T outFork
L2 L2
Stepi-1: Step2-1:
ElementaryStep ElementaryStep
l preStep l preStep

T1: Transition

l sucStep

Step1-2:
ElementaryStep

T2: Transition

l sucStep

Step2-2:
ElementaryStep
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Abbildung 4.5.:
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4.2.3. Aktions- und Aktivitatenmodell

Im Aktions- und Aktivitdtenmodell ist die Anbindung der Prozedur an die Umgebung
beschrieben. Dies betrifft sowohl die Einwirkung der Prozedur auf andere Steuerungen
und Ausfithrungseinheiten als auch die Wirkung der Umgebung auf die Prozedur. Die in
Kapitel 3, S. 24, untersuchten Beschreibungssprachen benutzen dazu meist Signale. Dies
steht im Widerspruch zu der flexiblen Integration in eine Industrie 4.0-Umgebung (vgl.
Kapitel 4.1, S. 67).

Einwirkung der Prozedur auf die Umgebung

Zur Einwirkung der Prozedur auf die Umgebung nutzt das Referenzmodell die Klasse
Aktion (Action). Aktionen sind immer einem Elementarschritt zugeordnet, eine Zuord-
nung zu einem Makroschritt ist nicht moglich. Action ist eine abstrakte Klasse, von der
die Klassen Dienstaufruf (ServiceCall) (vgl. Kapitel 2.5.1, S. 16) und Prozeduraufruf
(ProcedureCall) erben (siche Abbildung 4.6). Ein Dienstaufruf kann z.B. das Setzen
einer Variablen initiieren, aber auch eine miindliche Anordnung eines Chefs an seinen Mit-
arbeiter sein. Dienstaufrufe sind immer zielgebunden, ein Multicast oder ein Broadcast
sind nicht vorgesehen. Ein Prozeduraufruf sendet einen Befehl an eine Prozedur. Konkret
bedeutet dies, dass die Attribute inRequest und parameter des Ausfithrungsrahmens einer
Prozedur gesetzt werden. Diese kénnen anschliefend von der Empfangerprozedur oder von
der zugehorigen Ausfithrungssteuerung interpretiert werden.

Nicht Teil des Modells

ServiceCall Service

address: String call =}
serviceName: Sting [
operation: String
parameterf): String

T+t

ElementaryStep Action ' H

ProcedureCall ExecutionFrame
+ address: String call B + String
+ parameter(: String [ 7|+ inRequest: String
+ request: String + ourStep: String

Abbildung 4.6.: Aktionsmodell des Referenzmodells in UML-Notation

Bei einem Dienstaufruf werden die Adresse address des Dienstanbieters, der aufgerufe-
ne Dienstname serviceName, die konkrete Operation operation sowie optionale Parameter
parameter benotigt. Jeder Dienstaufruf ist genau einem elementaren Schritt zugeordnet, al-
lerdings kann ein Dienst (Service) mehrfach aufgerufen werden. Die Dienste werden durch
die Ausfithrungseinheiten angeboten, an die dadurch bestimmte Anforderungen gestellt
werden (vgl. Kapitel 4.4, S. 85). Die Prozedur steuert demnach die Ausfithrungseinheiten
nur noch durch die Dienstaufrufe an. Der Namensraum legt hierbei den Ausgangspunkt
der Adressierung der Ausfithrungseinheiten fest. Dieses Konzept gliedert sich in das kyber-
netische Grundprinzip (vgl. Kapitel 2.2, S. 7) ein, da auf diese Weise eine ideale Trennung
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zwischen Steuerndem und Gesteuertem vorliegt. Die Steuerung durch Dienstaufrufe wird
auch als Dienstorchestrierung bezeichnet.

Dienstaufrufe sind Aktionen und somit technologisch zeitlose Vorgénge. Die Ausfiihrung
des Dienstes ist allerdings eine Aktivitéit, die eine bestimmte Dauer hat. Da Dienstaufru-
fe nicht auf einen Riickgabewert warten, ist diese Dauer fiir die Prozedur nicht relevant.
Falls die Fertigstellung des Dienstes durch die Prozedur iiberwacht werden soll, muss ei-
ne explizite Zustandsabfrage des Dienstanbieters in einer Transitionsbedingung erfolgen.
Dies ist ratsam, da Ausfithrungseinheiten Dienstanfragen auch ablehnen kénnen (vgl. [47]).
Das Referenzmodell ist unabhéangig von der zugrunde liegenden Kommunikationsplattform
und des Dienstsystems. Zur Nutzung des Modells muss jedoch ein Kommunikationssystem
ausgewdhlt werden. Weiter macht ein solches dienstaufrufbasiertes Aktionsmodell die De-
finition einer einheitlichen Aufrufnotation der Dienste notwendig (vgl. z. B. [47, 77, 184]).

Wie bereits erwahnt, kénnen neben Dienstaufrufen auch Prozeduraufrufe als Aktion
verwendet werden. Beim Aufrufen einer Prozedur muss neben dem zu tibergebenden Be-
fehl request die Adresse address des Ausfiihrungsrahmens der Prozedur bekannt sein. Hier
besteht ebenfalls optional die Moglichkeit Parameter parameter zu definieren.

Einwirkung der Umgebung auf die Prozedur

Die Transition ist das Element, welches den Wechsel des aktiven Schritts in Reaktion
auf den Umgebungszustand steuert. Der Ubergang ist durch eine Ubergangsbedingung
(Condition) beschrieben, die der Transition zugeordnet wird. Der Ubergang erfolgt unter
der Nebenbedingung, dass die Transition freigegeben ist. Eine Ubergangsbedingung besteht
aus logischen Termen (LogicalTerm), wie in Abbildung 4.7 dargestellt ist.

[
BooleanValue TimeCompare
+ value: int
0.1 0.1
! Vv
Transition Condition l> LogicalTerm
[<>——+ curvalue: Boolean = faise | "+ relValue: Boolean = false
1 1|+ listofOperator(): String + inverted: Boolean = false
< +_index: Integer = 1
1
0.1 o.:
RequestReceived StateCheck
+ value: String + address: String

+ value: String

Nicht Teil des Modells
check

check

ExecutionFrame

ExecutionUnit

inRequest: String

Abbildung 4.7.: Transitionsbedingungen des Referenzmodells in UML-Notation

Jeder logische Term liefert einen Riickgabewert retValue an die Bedingung zuriick. Die
Riickgabewerte der einzelnen Bedingungen sind iiber die in der Liste listOfOperator ent-
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haltenen booleschen Operatoren verkniipft und bilden so den Riickgabewert curValue der
Ubergangsbedingung. Das Attribut inverted eines LogicalTerms gibt an, ob der Riickga-
bewert invertiert werden soll. Die Zuordnung zwischen den logischen Termen und der Liste
listOfOperator erfolgt iber das Attribut index. Die logischen Terme mit dem Index 1 und
dem Index 2 sind durch den Operator im ersten Eintrag der Liste verkniipft usw.

Von der abstrakten Klasse LogicalTerm sind die Klassen boolescher
Wert  (BooleanValue), Zeitvergleich (TimeCompare), Befehl eingegangen
(RequestReceived) und Zustandsiiberpriifung (StateCheck) abgeleitet (vgl. Ab-
bildung 4.7):

e Ein boolescher Wert gibt immer den Riickgabewert wahr zurtick. Dieser wird zur
Modellierung selbstterminierender Schritte bendtigt, bei denen der Schrittwechsel
ohne zugehorige Bedingung erfolgt.

e Mit Hilfe des Zeitvergleichs wird das Attribut timeActive des Schritts vor der Transi-
tion mit dem in value (Angabe in ms) gespeicherten Wert verglichen. Ist der Schritt
linger aktiv als die Vorgabe in der Transition, liefert der Zeitvergleich wahr an die
Ubergangsbedingung zuriick.

e Die Klasse RequestReceived tiberpriift das Attribut inRequest des iiberlagerten
Ausfiihrungsrahmens. Stimmt dieser mit dem Wert des Attributs value iiberein, wird
retValue auf wahr gesetzt. Dies ist auch moglich, wenn die Abfrage innerhalb eines
Makroschritts erfolgt.

e Eine Zustandsiiberpriifung kann den aktuellen Zustand einer Ausfiithrungseinheit ab-
fragen. Stimmt die Abfrage des Attributwerts an der Adresse address mit dem in
value gespeicherten Wert tiberein, wird der retValue der Zustandsiiberpriifung auf
wahr gesetzt.

Die Klassen Verzweigung (Fork) und Zusammenfihrung (Join) (vgl. Abbildung 4.4)
sind spezielle Ubergangsbedingungen. Bei den beiden Klassen wird das Weiterschalten
nicht durch Transitionsbedingungen gesteuert. Vielmehr schaltet die Verzweigung direkt,
wenn der Schritt ,Macrolnit® aktiviert worden ist. Die Zusammenfithrung aktiviert den
Schritt ,,MacroFinal“, sobald alle Vorgiangerschritte aktiv sind.

4.2.4. Abstraktions- und Zuordnungsmodell

Das Abstraktions- und Zuordnungsmodell beschreibt Konzepte, die wéihrend des Ent-
wurfsprozesses einer Prozedur niitzlich sind. Die Analyse der Sprachen in Kapitel 3, S. 24,
hat gezeigt, dass der Entwurfsprozess anders als derjenige in der Funktionsbausteintech-
nik ablauft. Gemeinsam haben beide Entwurfsprozesse eine funktionale und organisato-
rische Trennung in Entwicklung, Engineering und Laufzeit. Funktionsbausteinnetze wer-
den nach dem Typ-Instanz-Konzept erzeugt. Prozeduren hingegen werden zu Beginn des
Engineering-Prozesses abstrakt definiert und immer weiter konkretisiert. Der finale Kon-
kretisierungsgrad ist abhéngig von dem verwendeten Steuerungssystem (vgl. Kapitel 2.2.3,
S. 10). Mit anderen Worten, das Abstraktions- und Zuordnungsmodell legt auch die Mog-
lichkeiten der Flexibilitét fest. Im Referenzmodell sind zwei Moglichkeiten zur Erhohung
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der Flexibilitdt vorgesehen, die Verwendung von Rollen einerseits sowie typbezogene Pro-
zedurbeschreibungen andererseits.

Anstelle eines Dienstaufrufs an eine konkrete Ausfithrungseinheit (ExecutionUnit)
kann im Referenzmodell der Aufruf durch eine Rolle (Role) abstrahiert werden (vgl. Ab-
bildung 4.8).

. N
. N
. N
‘ ServiceCall >
addresses addresses
StatementType Role < fulfills E; ionUnit
0.. 0..
0 Q-
e 1.
Requirement ﬂ _ refers & Property
0.* 1

Abbildung 4.8.: Verwendung von Rollen im Referenzmodell

Rollen sind ein bewédhrtes Konzept zur Abstraktion zwischen Funktionalitdt und tech-
nischer Realisierung? bzw. zwischen einem Menschen und der Aufgabe, die er zu erfiillen
hat (vgl. z.B. [40, 49, 57, 112]). Die Umsetzung des Rollenkonzepts kann durch ein Merk-
malsystem erfolgen (vgl. Kapitel 2.6.2, S. 22). In der Rolle werden Aussagen (Statement)
vom Typ Anforderung (Requirement)’ der Prozedur iiber die Ausfiihrungseinheiten be-
schrieben. Diese kénnen im Laufe des Entwurfsprozesses weiter spezifiziert oder durch eine
konkrete Ausfithrungseinheit ersetzt werden. Des Weiteren ist es moglich die Zuweisung
erst wahrend der Ausfithrung der Prozedur vorzunehmen. Dies gewéhrleistet die geforder-
te Flexibilitdt des Referenzmodells. Das Zusammenspiel zwischen Merkmalen (Property)
und Anforderungen wahrend der Entwicklung einer Automatisierungslosung wird in [57]
als eine Moglichkeit der Vereinfachung des Entwurfsprozesses gesehen. In [59] wird die
Bedeutung von Merkmalen fiir den Entwurfsprozess ebenfalls betont.

Im Regelfall werden Prozeduren zur Steuerung einer konkreten Ausfiihrungseinheit ent-
worfen, da gerade im Umfeld der chemischen Industrie Anlagen haufig Einzellosungen
sind. Dies wird als singuldre Prozedurfestlegung bezeichnet (Abbildung 4.9 links). Eine ty-
pbezogene Prozedurbeschreibung ist dann sinnvoll, wenn die Prozedur mehrfach in leicht

4Das Prinzip der Rollen ist aus dem Rohrleitungs- und Instumentrierungsdiagramm (R&I) bekannt. Die
grafischen Symbole des R&I sind lediglich Platzhalter fiir die technische Realisierung [40].

°Nach [12] sind z. B. Materialanforderungen, Equipment-Informationen, Asset-Informationen und Perso-
nalinformationen zu berticksichtigen.
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verinderter Form verwendet werden soll. Dies ist z. B. bei Package Units oder bei modula-
ren Anlagen der Fall (Abbildung 4.9 rechts). Ein weiterer Anwendungsfall ist die Nutzung
einer Prozedur in mehreren parallelen Fertigungsstraflen.

ntanz dor
Ausflihrungseinheit Ausflihrungseinheit beschreibung

A p . i
Bezug Instanziierung ; Systemzuordnung

Singulére Prozedur-
beschreibung
N
Instanziierung

Instanz der <Bezug Insta;lrz()szp)e%zljfrl?che
Ausflihrungseinheit beschreibung
~

Instanziierung

Ausgefiihrte
Prozedur

Ausgefiihrte
Prozedur

Abbildung 4.9.: Singulare (links) und typbezogene (rechts) Prozedurfestlegung

In diesem Fall ist die Prozedur schon fiir den generischen Ausfiihrungseinheitstypen zu
entwerfen. Die Instanzbildung der Ausfiihrungseinheitstypen entspricht der kundenspezi-
fischen Konfiguration der Typen. Analog dazu wird der Prozedurtyp instanziiert und auf
die kundenspezifische Konfiguration angepasst. Hinsichtlich der Wiederverwendbarkeit und
dem Nutzen von Prozedurbibliotheken bietet dieses Vorgehen einen Vorteil.

4.2.5. Ausfiihrungssteuerungsmodell

Bei der Ausfiihrung einer Prozedur muss sowohl der Regelablauf als auch die Reaktion
auf Fehler berticksichtigt werden (vgl. z.B. [137, 171]). Das Referenzmodell besitzt cinen
Zustandsautomaten, der die Prozedur im vollautomatischen Regelablauf und im Fehlerzu-
stand steuert (vgl. Abbildung 4.10).

ExecutionFrame

- StateMachine
+ parameter(]: String <

+ inRequest: String 1 1|+ inRequest: String
+ curStep: String +__curState: String = Idle

Abbildung 4.10.: Ausfithrungssteuerungsmodell des Referenzmodells in UML-Notation

Der Zustandsautomat ist in Abbildung 4.11 dargestellt.

Eine Prozedur kann inaktiv (Inactive) oder aktiv (Active) sein. Der Transitionsiiber-
gang ist zeitlos. Auf diese Weise ist sichergestellt, dass zu jeder Zeit in einer aktiven
Prozedur genau ein Schritt aktiv ist. Die grobe Klassifikation in aktiv und inaktiv ldsst
sich ferner in sechs Zusténde verfeinern: Ruhend (Idle), Abgebrochen (Aborted), Lau-
fend (Running), Schritt haltend (Step Hold), Abbrechend (Aborting) und Neustartend
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Restart completed

Inactive Active

Step Hold

Aborted

Reset Unlock

o ) Start s ron

Idle g Running
|
Completed Restart n
[ Aborting j [Restart #nj
Abort
completed | [

Abbildung 4.11.: Zustandsautomat einer Prozedur

(Restart n). Es kann mehrere Restart-Zustiande geben. Dies ist durch das ,n“ in Abbil-
dung 4.11 angedeutet.

Idle

Wird eine Prozedur geladen, ist sie zunéchst inaktiv und befindet sich im Zustand Idle. In
einer inaktiven Prozedur ist kein Schritt aktiv und daher sind alle Transitionen ebenfalls
nicht freigeschaltet. Sobald an die Prozedur der Befehl Start gesendet wird, wird die
Prozedur aktiviert und wechselt in den Zustand Running.

Running

Im Zustand Running beginnt der Ablauf der Prozedur im Normalfall:

1.
2.

Der Anfangsschritt wird aktiviert.

Anschliefend wird die Variable timeActive auf Null gesetzt und fortlaufend aktuali-
siert. Zudem werden alle in diesem Schritt definierten Aktionen einmalig ausgefiihrt.

. Nach der Aktionsausfiihrung® werden alle Transitionen mit abort = false und

restart = 0, die an diesen Schritt anschlieBen, freigeschaltet und die Ubergangs-
bedingungen ausgewertet”.

. Ist ein Riickgabewert ciner Ubergangsbedingung wahr, feuert die entsprechende Tran-

sition. Da die Transitionsbedingungen einander ausschliefen miissen, kann maximal
eine Transition feuern.

5Im Falle einer SPS-Steuerung erfolgt dieser Schritt im niichsten Zyklus.
"Ist eine Transition nicht freigeschaltet, so wird die Bedingung nicht ausgewertet und die Bedingung

liefert falsch als Riickgabewert.
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5. Wenn eine Transition feuert, wird der Folgeschritt aktiviert und der Vorgéngerschritt
deaktiviert. Somit sind auch die Transitionen nach dem Vorgangerschritt nicht mehr
freigeschaltet.

6. Der Folgeschritt kann ein elementarer Schritt, ein gewohnlicher Makroschritt, ein
paralleler Makroschritt oder ein Endschritt sein.

a) Bei einem elementaren Schritt setzt der Ablauf mit Punkt 2 fort.

b) Die Aktivierung eines innenliegenden Anfangsschritts erfolgt, wenn ein Makro-
schritt aktiviert wird. Die Ausfithrung innerhalb des Makroschritts erfolgt ab
Punkt 1. Die Transition nach dem Makroschritt wird erst freigeschaltet, wenn
der Makroschritt seinen Endschritt erreicht hat. Der Ablauf setzt dann mit
Punkt 3 fort. Ein Deaktivieren eines Makroschritts fiihrt auch zur Deaktivie-
rung des Endschritts innerhalb des Makroschritts.

¢) Die Ausfiihrung eines parallelen Makroschritts erfolgt analog zu der eines ge-
wohnlichen Makroschritts. Zu beachten ist, dass die Ausfithrungsreihenfolge der
nebenliufigen Pfade vor der Ausfithrung festgelegt worden sein muss.

d) Ein Endschritt sendet implizit den Befehl Completed an den Zustandsautoma-
ten. Dieser Befehl bewirkt, dass die Prozedur inaktiv wird und in den Zustand
Idle wechselt.

Der Vorgang der Aktionsausfiihrung und des Weiterschaltens wird demnach solange
wiederholt, bis ein Endschritt erreicht ist. Im Falle einer SPS als Steuerungssystem sei
festgehalten, dass in einem Zyklus maximal eine Transition feuern kann. Fiihrt ein Mensch
die Prozedur aus, so kann er einen Schrittwechsel nur dann vollziehen, wenn er merkt, dass
eine Transitionsbedingung wahr geworden ist. Die Geschwindigkeit der Ausfithrung der
Prozedur hangt demnach mafigeblich von den kognitiven Féhigkeiten des Menschen sowie
der grafischen Aufbereitung der Bedingungen ab.

Neben des Regelablaufs (fett gedruckte Linien in Abbildung 4.11) kénnen auch Eingriffe
in den Prozedurablauf vorgenommen werden. Beispiele hierfiir sind

e Fehlermeldungen durch Ausfithrungseinheiten oder das Kommunikationssystem,
e Befehle durch iiberlagerte Fithrungsebenen,
e Zustandsdnderungen aufgerufener Prozeduren,

e Zeitiiberschreitungen der auszufithrenden Dienste, z. B. durch Rohstoffmangel oder
Krankheitsmeldung der entsprechenden Person, oder

e menschliche Eingriffe, z. B. durch Anlagenfahrer.

Die Analyse in Kapitel 3, S. 24, hat gezeigt, dass vielfach ungeklart ist, wie andere
Hierarchieebenen auf Fehler in einer Prozedur reagieren miissen. Fiir ein deterministisches
Ausfiihrungsverhalten ist dies jedoch unabdingbar. Daher wird im Folgenden explizit das
Verhalten von Makroschritten in den jeweiligen Zustédnden beschrieben. Aufgerufene Pro-
zeduren sowie iiberlagerte Steuerungen sind in ihrer Ausfithrung unabhéngig von der be-
trachteten Hauptprozedur. Daher miissen Beeinflussungen explizit tiber Aktionen in den
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Abbruch- und Neustartprozeduren oder durch Zustandsabfragen in den betreffenden Pro-
zeduren modelliert werden.

Manuelle Eingriffe miissen in den Transitionsbedingungen projektiert sein. Diese konnen
z. B. iiber eine grafische Nutzeroberfliche an den Auftragseingang des Ausfithrungsrahmens
geschickt werden. Hierzu z&hlt beispielsweise auch die halbautomatische Ausfithrung einer
Prozedur. Die Eingriffe konnen je nach ihrer Schwere unterschiedliche Auswirkungen auf
den Prozedurablauf haben. Die niedrigste Stufe eines Eingriffs ist das Halten. Auf die-
ser Stufe sind keine weiteren Vorkehrungen zum Fortsetzen des gesteuerten Prozesses zu
treffen. Ein Neustart bewirkt die Ausfithrung von Aktionen, die zur Sicherung und Sta-
bilisierung des Prozesses flihren, so dass er an einer definierten Stelle fortgesetzt werden
kann. Ein Abbruch fithrt den Prozess in einen sicheren Zustand.

Step Hold

Der Zustand Schritt halten (Step Hold) wird durch den Befehl Lock an den Zustands-
automaten erreicht. In diesem Zustand sind alle Transitionen gesperrt, d. h., der aktuelle
Schritt wird so lange gehalten, bis ein Befehl Unlock eingeht. Dieser Befehl bewirkt einen
Wechsel in den Zustand Running.

Ein (gewohnlicher oder paralleler) Makroschritt besitzt denselben Ausfihrungsrahmen
wie die ausfithrende Prozedur. Daher liegt derselbe Zustandsautomat zugrunde, d. h., auch
innerhalb eines Makroschritts wird der aktuelle Schritt gehalten. Bei der Reaktivierung
wird die Ausfithrung des Makroschritts an der gehaltenen Stelle fortgesetzt.

Restart

Fiir einen Neustart (Restart) miissen in der Prozedur entsprechende Logiken enthalten
sein. Diese werden durch entsprechend ausgezeichnete Transitionen (vgl. das Attribut rest-
art in Abbildung 4.6, S. 74) aktiviert, wenn ein Befehl Restart n empfangen wird. Da un-
terschiedliche Riicksprungpunkte moglich sind, kénnen auch mehrere Neustart-Prozeduren
durchgefithrt werden. Diese werden durch den Parameter n des Befehls restart ausge-
wéhlt. Am Ende eines Neustarts muss explizit der Befehl Restart completed gesendet
werden, der dazu fiihrt, dass der Zustand Step Hold eingenommen wird. Innerhalb eines
Makroschritts konnen keine Neustart-Ablaufe enthalten sein. Es ist jedoch moglich inner-
halb der Hauptprozedur eine Neustart-Transition an den Makroschritt anzubringen. Diese
beendet den Makroschritt instantan, sobald sie ausgelost wird.

Aborting

Fir einen Abbruch miissen ebenfalls in der Prozedur entsprechende Logiken enthalten
sein, die im Zustand Abbrechend (Aborting) ausgefiihrt werden. Die Aktivierung erfolgt
durch entsprechend ausgezeichnete Transitionen (vgl. das Attribut abort in Abbildung 4.6,
S. 74), wenn ein Befehl Abort empfangen wird. Bei einem Abbruch wird eine terminierende
Kette aktiviert. Der Endschritt der terminierenden Kette sendet einen impliziten Befehl
Abort completed an den Zustandsautomaten. Dieser bewirkt einen Ubergang in den Zu-
stand Aborted. Da ein Makroschritt maximal einen Endschritt haben darf, kann sich
kein Abbruch innerhalb eines Makroschritts befinden. Es ist jedoch moglich, innerhalb der
Hauptprozedur eine Abbruch-Transition an den Makroschritt anzubringen. Diese beendet
den Makroschritt instantan, sobald die Abbruch-Transition ausgelost wird.
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Aborted

Der Wechsel in den Zustand Abgebrochen (Aborted) deaktiviert die Prozedur. Vor der
Reaktivierung der Prozedur muss ein expliziter Befehl Reset von einer externen Quelle an
die Prozedur gesendet werden. Dieser Befehl andert den Zustand zu Idle. Der Zustand
Aborted kann somit als Fehlerspeicher und der Befehl Reset als Quittierung interpretiert
werden.

Zur Verringerung der visuellen Komplexitét sei der Hinweis gegeben, dass die Neustart-
und Abbruch-Prozedurschritte in Makroschritten oder in eigenen Prozeduren gekapselt und
nur dort eingefiigt werden sollen, wo es notwendig ist. Ein zweiter Hinweis gilt der erneuten
Aktionsausfiihrung, wenn eine Neustart-Kette wieder zu dem Schritt zuriickgefithrt wird,
von dem der Neustart ausgefiihrt worden ist.

4.3. Darstellungsformen des Referenzmodells

Im bisherigen Verlauf dieses Kapitels ist das Referenzmodell als UML-Klassendiagramm
betrachtet worden. Der Ubersichtlichkeit halber sind lediglich Ausschnitte préisentiert wor-
den, das vollstdndige Diagramm ist in Abbildung 6.1, S. 101 abgebildet. Die Darstellung
als Klassendiagramm ist jedoch zu komplex fiir die tégliche Anwendung. Daher sind alter-
native Darstellungsformen notwendig.

4.3.1. Visualisierung

Die grafische Darstellung des Referenzmodells ist bisher noch nicht behandelt worden.
Hierbei sind zwei Sichten auf das Modell wichtig, ndmlich die des Entwicklers und die des
Nutzers der Prozedur.

Entwicklungsprozesse in der Prozessautomation zeichnen sich durch eng verzahnte Ab-
laufe aus, bei denen verschiedene Gewerke parallel arbeiten [58]. Ziel ist es die Gewerke-
integration und -durchgéngigkeit zu erhéhen [179]. Ein Blick ausschlieflich auf das Gewerk
LHZAutomatisierungstechnik® zeigt bereits, dass auf den verschiedenen Ebenen der Automa-
tisierungspyramide (vgl. Kapitel 2.4, S. 14) Menschen mit unterschiedlichen Fahigkeiten
arbeiten [151].

Mit Hilfe eines meta-modellbasierten Visualisierungssystems (vgl. z. B. [86]) konnen meh-
rere Visualisierungsformen fiir das Referenzmodell entwickelt werden (vgl. Abbildung 4.12).
Die Elemente im Referenzmodell bilden den gemeinsamen Kern der verschiedenen Proze-
durbeschreibungssprachen aus Kapitel 3, S. 24, so dass es moglich ist fiir jedes Element
seine Visualisierung in der jeweiligen grafischen Notation zu entwerfen.

In einem Visualisierungsmodell (VisualizationModel) sind zunéchst einmal Grafik-
Bibliotheken (LibraryOfGraphicalElements) enthalten. Diese Grafikbibliotheken be-
stehen wiederum aus Grafikelementen (GraphicalElement). Innerhalb einer Bibliothek
muss jedes der zwolf Elemente (ProcedureElement) aus dem Referenzmodell (Schritt,
Anfangsschritt, Endschritt, Makroschritt, P-Makroschritt, Transition, Kante, Aktion, Be-
dingung, Verzweigung, Zusammenfiihrung, Ausfithrungsrahmen) durch maximal® eines die-
ser Grafikelemente représentiert werden. Abbildung 4.12 zeigt, dass das Referenzmodell mit

8Das Referenzmodell muss nicht vollstindig durch das Visualisierungsmodell abgedeckt sein. Soll z. B.
keine Nebenldufigkeit verwendet werden, wird kein Visualisierungselement fiir einen P-Makroschritt
bendtigt.
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Abbildung 4.12.: Zusammenhang zwischen Referenzmodell und Visualisierung auf Meta-

Modell-Ebene

mehreren Grafik-Bibliotheken eines Visualisierungsmodells verkniipft werden kann. Auf
diese Weise ist es méglich fiir jede notwendige Prozedurbeschreibungssprache® eine eige-
ne Grafik-Bibliothek zu erstellen. Der Entwicklungsingenieur kann sich die entsprechende
Grafik-Bibliothek laden und in seiner gewohnten grafischen Umgebung planen (vgl. Abbil-
dung 4.13). Greift ein anderer Entwickler auf die Prozedur zu, kann er eben diese Daten
ohne jegliche Transformation nutzen. Er muss lediglich eine andere Grafik-Bibliothek ver-

wenden.
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Abbildung 4.13.: Beispiel fiir die Instanzbildung, links im Modellsystem, rechts die Darstellung
nach der IEC 61131-3

In Abbildung 4.13 ist die Anwendung der meta-modellbasierten Visualisierung beispiel-
haft an einem Schritt in SFC-Notation gezeigt. Wie in Abbildung 4.12 dargestellt, kénnen

9Innerhalb eines Projekts wird typischerweise nur eine Teilmenge der Sprachen aus Kapitel 3, S. 24,

verwendet.
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einem Prozedurelement Grafikelemente zur Darstellung zugeordnet werden. Die Festlegung
auf eine Bibliothek (hier SFC) bewirkt, dass es zum Prozedurelement Step genau ein Gra-
fikelement ,,SFCStepVis® gibt. Dieses besitzt eine Darstellung, wie in der IEC 61131-3
angegeben. Das Grafikobjekt besitzt einen Parameter, den Schrittnamen, der identisch
mit dem Namen des zugehorigen Schrittes ist. Wahrend des Entwurfsprozesses, d.h. der
Erzeugung eines Prozedurmodells, wird das Prozedurelement Schritt mehrfach instanziiert.
Zu jeder Instanz eines Schritts wird ebenfalls eine Instanz des zugehorigen Visualisierungs-
objekts angelegt.

Auch fir die operative Nutzung einer Prozedur ist es moglich Bibliotheken zu erstellen.
Verschiedene Nutzergruppen (z.B. Handwerker, Anlagenfahrer oder ungelernte Kréfte)
stellen aufgrund ihrer unterschiedlichen Fahigkeiten andere Anforderung an die Darstel-
lung der Prozeduren, die sie als Anleitung fiir ihre Arbeit nutzen [138]. Anlagenfahrer sind
beispielsweise nicht mit formalen Beschreibungsmitteln vertraut [158]. Es ist also notwen-
dig die Prozedur derart aufzubereiten, dass der Nutzer ihren aktuellen Zustand einfach
iiberblicken kann und somit auch einen Uberblick iiber die néichsten Schritte erhélt. Sollte
die Prozedur zu komplex sein, bietet sich die Nutzung eines prozedurbasierten Assistenz-
systems an (vgl. Kapitel 5.3.1, S. 99).

4.3.2. XML-Darstellung

Zum elektronischen Austausch von Inhalten zwischen verschiedenen Systemen setzt sich
zunehmend XML durch. XML ist eine semantisch orientierte Auszeichnungssprache, die in
[117] spezifiziert ist. Sie zeichnet sich durch die Moglichkeit aus durch die Definition von
XSD-Dateien die Struktur und die Semantik von XML-Dateien formal festzulegen und
zu verifizieren. Auflerdem kénnen mithilfe von XSLT XML-Dateien von einem Schema
in ein anderes Schema transformiert werden [177]. Somit ist es moglich fir verschiedene
Anwendungsfillle eigene Schemata anzulegen. Beispiele hierfiir sind das Modell einer PLT-
Stelle [155], das funktionale Anlagenmodell PandIX [55] oder das Abbild der IEC 61131-3
in PLCopen [139].

In der Automatisierungstechnik miissen die Schemata Anforderungen geniigen, die in
[178] aufgefithrt werden. Diese Auflistung von Anforderungen ist in [61] aufgegriffen und
erginzt worden, so dass sie fiir den Anwendungsfall des Austauschs und der Dokumen-
tation von Prozeduren zutreffend sind. Es muss ein eindeutiger Namensraum zur Iden-
tifikation der Elemente vorliegen. Weiter ist ein modulares Konzept erforderlich, das es
wihrend des Entwurfsprozesses erlaubt Teilprozeduren auszutauschen. Die so erzeugten
Teilprozeduren miissen erweitert und wiederverwendet werden kénnen. Die Erstellung von
Prozedurbibliotheken kann auf Basis der XML-Dateien erfolgen. Notwendig ist auch ein
Konzept zur Speicherung von Versions- und Erstellerinformationen. Die Moglichkeit des
Einfiigens nichtstandardisierter Elemente ermdglicht es projektspezifische Informationen
in die auszutauschenden Prozeduren aufzunehmen.

Es ist sinnvoll die XML-Darstellung des Referenzmodells auf bereits bestehenden Sche-
mata aufzubauen. Auf diese Weise lassen sich bestehende Konzepte nutzen, die bereits
die Anforderungen erfiillen. Zur Auswahl stehen BatchML, Computer Aided Engineering
Exchange (CAEX), Web Ontology Language (OWL), OPC UA, PLCopen und SysML, die
im Folgenden auf Basis von [61] kurz vorgestellt werden:

e BatchML [119] ist ein Format, mit dem nach der IEC 61512 erstellte Rezepte unab-
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héngig von konkreten Anlagen beschrieben werden kénnen. Neben der Modellierung
der Prozedur kénnen Versionsinformationen im Rezeptkopf verwaltet werden.

e Mithilfe von CAEX, das in [31] spezifiziert ist, konnen hierarchisch strukturierte
Systeme beschrieben werden. CAEX unterstiitzt die Definition von Rollen ebenso
wie die Modellierung konkreter Systeme. CAEX wird auch durch AutomationML
[32] genutzt.

e OWL ist eine Sprache zur Modellierung von Ontologien, d.h. der Darstellung einer
Menge von Begriffen, die Beziehungen zueinander haben. Sie ist in [118] spezifiziert.
Mithilfe der Sprache kénnen deskriptive Aussagen tiber die Ontologien getroffen wer-
den.

e OPC UA beschreibt nicht nur eine Méglichkeit der Kommunikation, es enthélt auch
ein Informationsmodell. OPC UA ist in [20] beschrieben und wird als eines der Ba-
sismodelle fiir Industrie 4.0 angesehen [124].

e Die Programmiersprachen der IEC 61131-3 lassen sich durch PLCopen XML [139]
beschreiben. An dieser Stelle ist insbesondere die Moglichkeit interessant, SFC mit-
samt ihrer POE und den verwendeten Aktionen auszutauschen.

e Auch zu den Modellierungssprachen der SysML gibt es ein XML-Format [123].

Basierend auf der Analyse von Vor- und Nachteilen der sechs XML-Formate ist in [61]
die Wahl auf CAEX als Modellierungsformat fiir neutrale Prozedurbeschreibungen gefal-
len. Die Unterstiitzung hierarchischer Systeme und des Rollenkonzepts sind ebenso wie
die Moglichkeit zur Versionierung und die Unterstiitzung nichtstandardisierter Daten we-
sentliche Griinde fiir die Entscheidung. BatchML, PLCopen und SysML sind sehr eng mit
den dahinterliegenden Datenmodellen verkniipft, so dass eine Erweiterung dieser Sprachen
um die Konzepte des Referenzmodells sehr aufwendig ist. Beispiele hierfiir sind die Ver-
wendung von Diensten und die Integration von Menschen als Ausfithrungseinheit. Zudem
wirkt die Kopplung vom Modell mit seiner grafischen Reprisentanz in PLCopen gegen die
Unabhéangigkeit des Referenzmodells von seiner Visualisierung (vgl. Kapitel 4.3.1, S. 82).
Das Informationsmodell von OPC UA ist ein zu méchtiges Werkzeug fiir die Modellierung
des vorgestellten Referenzmodells. Es ist jedoch moglich CAEX-Dateien automatisiert in
OPC UA-Modelle zu transformieren [75]. In OWL ist die Verwendung nichtstandardisier-
ter Elemente verboten. Die in [61] entwickelte XML-Darstellung ist fir diese Arbeit leicht
modifiziert worden und in Anhang D, S. 125, abgedruckt. Die Darstellung wurde sowohl
gegen das CAEX-Schema als auch mit dem CAEX-Checker (vgl. [168]) validiert.

4.4. Anforderungen an das Kommunikationssystem und
an die Ausfiihrungseinheiten
Auch wenn das verwendete Kommunikationssystem und die Ausfiihrungseinheiten nicht

mit dem Referenzmodell modelliert werden, ist es zwingend notwendig, dass sie Anforde-
rungen des Referenzmodells erfiillen.
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Das Kommunikationssystem muss grundsitzlich in der Lage sein Nachrichten sowohl
zwischen Steuerungssystemen als auch zwischen Steuerungssystem und Ausfithrungsein-
heiten auszutauschen. Rein signalbasierte Kommunikationssysteme wie die 4...20mA-
Technik oder die 0/24 V-Technik kénnen daher nicht eingesetzt werden. Die Ubertragung
muss bidirektional sein. Des Weiteren muss geniigend Bandbreite fiir die zu iibertragen-
den Nachrichten zur Verfiigung stehen. Hierzu ist die Bereitstellung von Quality of Service
(QoS)-Informationen'® notwendig. Diese miissen ebenfalls Daten iiber die Ubertragungs-
rate beinhalten. Insbesondere sind Informationen tiber den Determinismus und die Echt-
zeitfahigkeit des Kommunikationssystems wichtig. Innerhalb des Kommunikationssystems
muss ein Adresssystem dafiir sorgen, dass die Nachrichtenempfénger ausgewahlt werden
konnen. Eine Riickmeldung von Ubertragungsfehlern erlaubt der Prozedur, gezielt auf diese
Fehler zu reagieren. In einer Industrie 4.0-Umgebung ist zudem der Schutz vor unerlaubten
Eingriffen in das Kommunikationssystem wichtig. Der Empfanger muss darauf vertrauen
konnen, dass die Nachrichten tatséchlich von der Einheit gesendet worden sind, die als
Absender angegeben ist. Die vorgestellten Anforderungen sind fiir maschinelle Kommuni-
kationsarten aufgestellt worden, gelten jedoch ebenfalls fiir die Kommunikation zwischen
Mensch und Maschine sowie fiir die zwischenmenschliche Kommunikation. Jedoch spielt
zwischen Menschen auch die Kommunikation tiber Gesten, Sprache und informalen Text
eine entscheidende Rolle. Diese Kommunikationsformen sind den gleichen Anforderungen
durch das Referenzmodell unterworfen.

Ausfiihrungseinheiten werden im Referenzmodell iiber Dienstaufrufe angesprochen. Sie
miussen daher in der Lage sein Dienstaufrufe anzunehmen und die entsprechenden Funk-
tionen auszufithren, d. h., sie benotigen eine Eingangsschnittstelle (vgl. z. B. [52]). Zwangs-
laufig ergibt sich hieraus die Anforderung, dass Ausfithrungseinheiten aktiv kommunika-~
tionsfihig!" sein miissen. Des Weiteren miissen sie eindeutig adressierbar sein (z. B. iiber
eine Uniform Resource Identifier (URI)!?). Sie sind also individuell bekannt. Nach [120]
miissen Ausfithrungseinheiten daher die CP-Klassifikation CP33, CP34, CP43 oder CP44
haben. Zur Unterstiitzung des Entwurfsprozesses der Prozedur miissen Ausfithrungsein-
heiten einen Dienstkatalog, auf Englisch Service-Repository, besitzen (vgl. z. B. [77, 143]).
Ebenso miissen bei menschlichen Ausfithrungseinheiten die Féhigkeiten bekannt sein.

Die fiir das Rollenkonzept notwendigen Informationen werden durch ein Merkmalsystem
bereitgestellt. Hierbei ist es sinnvoll auf bestehende Merkmaldatenbanken (beispielsweise
eCl@ss oder die IEC 61360 [25]) zurtickzugreifen (vgl. [57]). Zusitzlich wird durch eine
merkmalbasierte Dienstbeschreibung der Konfigurationsaufwand fiir ein zweites System
eingespart. Ein Dienstinterface ermoglicht den Zugriff auf die Merkmaldaten (vgl. [57, 92]).
Das Merkmalsystem und das Dienstsystem benétigen eine Umgebung zur Speicherung der
Daten. Dies kann beispielsweise iiber eine Middleware-Plattform (vgl. z. B. [111]) oder
eine Industrie 4.0-kompatible Verwaltungsschale (vgl. [19, 53]) geschehen. Ebenfalls bietet
die Kombination aus OPC UA und Field Device Integration (FDI) eine Moglichkeit der
dienstbasierten Erkundung einer Ausfihrungseinheit [19].

YOFiir weitere Informationen zum Thema QoS siche z. B. [111].

"Die Rollen Dienstanbieter und Dienstnutzer sind unabhingig von der Kommunikationsrichtung [128].
Mit anderen Worten, sowohl Ausfithrungseinheiten als auch Steuerungssysteme miissen Daten senden
und empfangen kénnen.

12URI sind im RFC 3986 [7] definiert und unterstiitzen explizit die Adressierung von Menschen.
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4.5. Prototypische Implementierung

Fiir das in Kapitel 4, S. 67, vorgestellte Referenzmodell ist eine prototypische Implemen-
tierung in einem maschinellen Steuerungssystem vorgenommen worden. Als Basissystem
ist ACPLT/0V ausgewéhlt worden. ACPLT/QV ist ein Objektverwaltungssystem fiir die Pro-
zessautomation, welches in [113] vorgestellt wird. Es wird als Open-Source-Projekt!? kon-
tinuierlich weiterentwickelt. Ziel dieser Entwicklung ist das SchlieBen der Liicke zwischen
akademischer Forschung und prototypischen Implementierungen. Fine aktuelle Beschrei-
bung der Funktionalitiat kann [185] entnommen werden.

Neben der Auswahl des Basissystems sind Festlegungen beziiglich des Kommunikati-
onssystems und der Ausfithrungseinheiten notwendig (vgl. Kapitel 4.4, S. 85). ACPLT/KS
ist das fur diese Implementierung ausgewéahlte Kommunikationssystem. Der konzeptio-
nelle Aufbau von ACPLT/KS ist in [3] dargestellt. ACPLT/KS stellt eine Kommunikations-
moglichkeit und ein Adressierungsschema zur Verfiigung, die vom Referenzmodell genutzt
werden kann. Die prototypische Implementierung berticksichtigt die Themenfelder QoS,
Schutz vor unerlaubten Eingriffen und Echtzeitfdhigkeit nicht. Ein Schutz vor unerlaubten
Eingriffen kann beispielsweise mittels OPC UA erfolgen. Dies ist unter Einbeziehung des
Open-Source-Projekts open62541' ebenfalls mit ACPLT/0V méglich. Verschiedene Biblio-
theken, die KS-Schnittstelle ksapi, das Funktionsbausteinsystem £b, das Merkmalsystem
PropertyManagementSystem, das Nachrichtensystem MessageSys und das Dienstaufruf-
system ServiceClient helfen bei der Implementierung des Referenzmodells.

Mit Hilfe von ACPLT/0V ist die Implementierung der Klassen des Referenzmodells mog-
lich. In Abbildung 6.1, S. 101, sind diese Klassen mit ihren Attributen vollstédndig darge-
stellt. Diese Klassen sind in einer eigenen Bibliothek innerhalb von ACPLT/QV implemen-
tiert. Des Weiteren enthélt die Bibliothek Assoziationen, die die Verkniipfung zwischen
Schritten und Transitionen, Schritten und Aktionen usw. ermoglichen. Die Implementie-
rung nutzt die Klasse SetVar aus der Bibliothek ksapi zum Aufruf einer Prozedur sowie
die die Klasse GetVar aus derselben Bibliothek fiir Zustandsabfragen. Dienstaufrufe wer-
den iiber die Schnittstelle der Bibliothek ServiceClient erzeugt und durch die Bibliothek
MessageSys an den Dienstanbieter geschickt.

Zur Erstellung einer Prozedurbeschreibung koénnen die benétigten Klassen instanziiert
und tiber die Assoziationen miteinander verbunden werden. Neben der Modellierung durch
Instanzbildung innerhalb von ACPLT/O0V ist auch die Modellierung in XML (vgl. Kapi-
tel 4.3.2, S. 84) moglich. Eine XSLT iibersetzt die XML-Datei anschliefend in ein proprie-
tares Format [61], das ACPLT/0V einlesen kann. Die Implementierung in ACPLT/0V bietet
den Vorteil, dass die Prozedurbeschreibung im selben System modelliert und ausgefiihrt
wird. Somit kénnen die Vorteile der Erkundbarkeit von Modellen im Zielsystem (vgl. Ka-
pitel 2.6.2, S. 20) ausgenutzt werden.

3Siche https://github.com/acplt/rte, Stand 27.01.2016.
4Siche https://github.com/open62541, Stand 27.01.2016.
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In diesem Kapitel wird zunéchst aufbauend auf der Erlduterung in [130] erklart, auf welche
Weise eine Prozedur mit Hilfe des in Kapitel 4, S. 67, beschriebenen Referenzmodells er-
stellt werden kann. Anschliefend zeigen zwei Beispiele die Anwendung des Referenzmodells
zur Modellierung konkreter Prozeduren auf. Diese Beispiele sind eine einfache Pumpenan-
steuerung und eine Wartungsprozedur fir ein Ventil.

5.1. Entwurfsprozess einer Prozedur

Der Entwurf von Prozeduren ist in den Erstellungsprozess der Automatisierungslosung ein-
gegliedert. An diesem Erstellungsprozess sind verschiedene Kontraktoren beteiligt [57]. In
[155] sind beispielsweise die finf Gewerke verfahrenstechnische Planung, Gerateauswahl,
Elektroplanung, PLT-Engineering und PLS-Engineering mit Zugriff auf die Konfiguration
einer PLT-Stelle genannt. Wiinschenswert ist ein umfassendes Modell des Entwurfsprozes-
ses, das alle beteiligten Gewerke zusammenfithrt. Ein solches Weltmodell ist aber in der
Praxis nicht umsetzbar. Stattdessen wird bisher die Entwicklung kleinerer Datenmodelle,
die nur einen Teilbereich des Entwurfsprozesses abdecken, als zielfithrend angesehen [39].
Das in dieser Arbeit vorgestellte Referenzmodell stellt einen solchen Beitrag dar. Es soll
helfen, eine automatisierte Ubertragung der Prozeduren zwischen den Gewerken zu ermog-
lichen. Es existiert jedoch kein einheitliches Vorgehen zur Erstellung von Prozeduren. Mit
anderen Worten heifit dies, dass die konzeptionelle Vernetzung (vgl. Abbildung 3.1, S. 25)
spezifisch fiir jeden Einzelfall ist. Dennoch ist es moglich einen Einsatz des Referenzmo-
dells als Hilfe zur Modellierung von Prozeduren darzustellen. Zwar ist dieses spezifische
Beispiel nicht auf alle denkbaren Félle eins zu eins tibertragbar, es verdeutlicht aber den
prinzipiellen Vorgang, wie mit Hilfe des Referenzmodells Prozeduren modelliert werden
konnen.

Die Komplexitéat der zu planenden Prozedur ist mafigeblich fiir den Planungsvorgang. So
kann beispielsweise eine einzelne Person eine Motorsteuerung entwerfen. Durch die geringe
Anzahl an Schritten muss sich die einzelne Person keine Gedanken iiber Hierarchieebenen
zur Gliederung machen. Eine Prozedur fiir den Anfahrvorgang einer chemischen Grof3-
anlage hingegen muss zunéchst sowohl beziiglich einer hierarchischen Steuerungsstruktur
als auch hinsichtlich der personellen Ausfithrung der Planungsschritte gegliedert werden.
Die Erstellung der hierarchischen Steuerungsstruktur ist auf zwei Arten moglich, mit dem
Top-Down-Ansatz oder dem Bottom-Up-Ansatz.

Beide Ansétze basieren auf einem hierarchischen Strukturierungsmodell der Ausfiih-
rungseinheiten. Beispiele hierfiir sind die Anlagenhierarchie einer Batchanlage nach
IEC 61512 [35], die Anlagenhierarchie einer Fertigungsanlage [148] oder die Abteilungs-
struktur in einem Unternehmen, die in Abbildung 5.1 dargestellt sind.

Startpunkt beim Top-Down-Ansatz ist die hochste Ebene der Ausfiihrungseinheitsstruk-
tur. Dieser hochsten Ebene ist eine Prozedur zugeordnet, die das Zusammenwirken der ein-
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Abbildung 5.1.: Beispiele fiir hierarchische Strukturen von Ausfiihrungseinheitstypen

zelnen Elemente der zweithochsten Ebene steuert. Im Referenzmodell konnen die Elemente
der zweithochsten Ebene Dienste anbieten, die durch die Prozedur orchestriert werden. Die-
ses Vorgehen wird iterativ angewendet, bis die niedrigste Ebene erreicht ist, die direkten
Zugriff auf die Einzelsteuereinheiten hat. Ein Beispiel hierfiir ist eine Anfahrprozedur fiir
eine Anlage, bei der zunéchst die Reihenfolge des Anfahrens der unterschiedlichen Teilanla-
gen bestimmt wird. Erst im weiteren Verlauf des Entwurfsprozesses erfolgt die Bestimmung
der konkreten Aktoren, die zum Anfahren der Teilanlage benotigt werden.

Der Bottom-Up-Ansatz verwendet die umgekehrte Vorgehensweise. Hier ist der Aus-
gangspunkt des Prozedurentwurfs das Erzeugen von Prozeduren, welche Elemente der un-
tersten Schicht der Hierarchie der Ausfithrungseinheiten ansteuern. Diese werden sukzessiv
von den Prozeduren zur Steuerung der hoheren Ebenen aufgegriffen und tiber Dienste auf-
gerufen.

Beide Wege fithren zu einer Prozedur, die zur Steuerung des gewiinschten Prozesses
auf die Ausfihrungseinheiten einwirken kann. Durch die Verwendung von Diensten ist die
Aufteilung der Verantwortung fiir die Gesamtprozedur an mehrere Prozedurplaner moglich,
wie in [76] beschrieben wird. Notwendige Voraussetzung ist eine exakte Definition der
Dienstbeschreibungen, welche die Schnittstelle zwischen den verschiedenen Teilprozeduren
bilden.

Die entworfene Prozedur muss vom Steuerungssystem interpretiert und ausgefiihrt wer-
den konnen, d.h., die Prozedur muss der Syntax und der Semantik (vgl. Kapitel 2.6.1,
S. 19) des Zielsystems entsprechen. Ein menschliches Steuerungssystem muss kognitiv da-
zu in der Lage sein die Ablaufe zu verstehen. Diese Herausforderung wird in Kapitel 5.3,
S. 97, thematisiert. Zunachst liegt der Fokus jedoch auf maschinellen Steuerungssystemen.
Die Betrachtung maschineller Steuerungssysteme zeigt, dass derzeit eine Transformation
der Prozedurbeschreibung vom hier vorgestellten Referenzmodell tiber doménenspezifische
Engineering-Modelle in die Implementierungssprachen der Steuerung notwendig ist [152].
Eine solche Umwandlung kann durch Modelltransformationen und modellgetriebene Code-
generierung (vgl. Kapitel 2.6.2, S. 20) weitgehend automatisiert erfolgen. Hierzu sind vier
Implementierungsschritte notwendig [130, 152]:
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1. Die Priifung der Prozedurbeschreibung auf Ubereinstimmung mit dem Meta-Modell
stellt sicher, dass die nachfolgenden Transformationsschritte ohne formalen Fehler
ablaufen konnen.

2. Die allgemeine Prozedurbeschreibung kann (z. B. durch eine XSLT) in eine doménen-
spezifische Sprache transformiert werden. Ein Beispiel hierfiir ist eine Transformation
aus der XML-Darstellung in Kapitel 4.3.2, S. 84, nach PLCopen [139].

3. Nach der Priifung der im Zielsystem vorhandenen Systemstrukturen erfolgt die hén-
dische oder teilautomatische Zuordnung der Ausfithrungseinheiten zu den Signalen
im Zielsystem.

4. Eine modellgetriebene Codegenerierung erzeugt den Programmcode fiir das Zielsys-
tem.

Dieses Vorgehen ist ohne Modifikation der bestehenden maschinellen Steuerungssysteme
moglich. Prozedurplaner konnen folglich den Umgang mit dem vorgestellten Referenzmo-
dell ohne Investitionen in neue Steuerungssysteme trainieren. Dies erhoht die Akzeptanz
des Referenzmodells bei den Anwendern. Zudem vereinfacht sich der Aufwand zur Veri-
fikation und zur Validierung des Steuerungscodes (vgl. z.B. [62, 96]). Statt des systems-
pezifischen Programmcodes muss lediglich die allgemeine Prozedurbeschreibung und das
Mapping der Dienste auf die Signale gepriift werden. Eine Hilfe beim Mapping der Dienste
auf die Signale im bestehenden Steuerungssystem ist ein Modell der PLT-Stellen nach der
NE 150 [129], wie Abbildung 5.2 zeigt.

Zuordnung

Allgemeine

Prozedurbeschreibung Prozessleitsystem

PLT-
Stellen-

Dienst-
aufruf

Kapitel 4.3.2

Abbildung 5.2.: Nutzung der NE 150 zur Zuordnung von Diensten und Signalen

Das Meta-Modell der PLT-Stelle enthélt die Beziechung zwischen PLT-Stellenname und
dem zugeordneten Signal. Die PLT-Stellen konnen in eine XML-Datei exportiert werden
(155]. AnschlieBend ist die Zuordnung zwischen Dienstaufrufen und Signalen auf dieser
Grundlage moglich und eine PLCopen-kompatible Datei kann erstellt und in das PLS
geladen werden.

5.1.1. Flexible Strukturen

Wie bereits in Kapitel 2.6.2, S. 20, erldutert, ist die Verwendung von Modellen im Ziel-
system der modellgetriebenen Codegenerierung vorzuziehen. Eine flexible Anpassung der
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Prozeduren durch Anlagenfahrer, die beispielsweise im Zukunftsprojekt Industrie 4.0 [91]
vorgesehen ist, macht bei ausschlieBlicher Verwendung der modellgetriebenen Codegene-
rierung die Ausfithrung aller vier Implementierungsschritte notwendig. Insbesondere ist
die Zuordnung der Ausfithrungseinheiten zu den Signalen im Zielsystem zu komplex, zu
zeitaufwendig und damit zu teuer fiir den Anlagenfahrer, so dass ein Prozedurplaner hin-
zugezogen werden sollte.

Zusammenfassend ist die Implementierung eines Dienstsystems in die Zielsysteme un-
abdingbar [130]. Dies beginnt auf der Ebene 1 der Automatisierungspyramide (vgl. Kapi-
tel 2.4, S. 14). Hier findet die ,,Ubersetzung® zwischen dienstbasierter und signalbasierter
Kommunikation statt, die in Abbildung 5.3 demonstriert ist.

N
CcO
Nachrichten-

verarbeitung
I

In1 Outt
In2 . Out2
InterneLogik
In3 ternelog Out3
In4 ) Out4
L Zustands-
erkennung
AufrufSenden

SR

Abbildung 5.3.: Erweiterung einer Einzelsteuerung um ein Dienstinterface (basierend auf [51])

Dazu ist eine Erweiterung der Steuerungssysteme um vier IEC 61131-3 -Blocke erfor-
derlich, von denen drei in [51] erwédhnt werden:

e Der Funktionsblocktyp CO empfiangt die Dienstaufrufe der Prozedur als Nachricht.

e Der Funktionsblocktyp Nachrichtenverarbeitung interpretiert die eingehenden
Nachrichten und beeinflusst entsprechend die InterneLogik der Einzelsteuerung.

e Der Funktionsblocktyp AufrufSenden steuert in Abhangigkeit des Zustands der
internen Logik das Absenden von Dienstaufrufen tiber den Ausgang SR.

Neben den in [51] erwiahnten Blocken ist ein Funktionsbausteintyp Zustandserkennung
notwendig. Wéhrend der Block AufrufSenden zu diskreten Zeitpunkten Dienstaufrufe
absendet, ermittelt der Block Zustandserkennung fortlaufend den aktuellen Status der
Einzelsteuerungseinheit aus den Eingangssignalen. Der ermittelte Zustand WS kann in
den Transitionsbedingungen der aufrufenden Prozedur abgefragt werden.

Aufbauend auf die um eine Dienstschnittstelle erweiterten Einzelsteuerungen in der Ebe-
ne 1 konnen nun Prozeduren in den hoheren Ebenen der Automatisierungspyramide auf die
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bereitgestellten Dienste zugreifen. Die Dienstaufrufe lassen sich zur Laufzeit der Prozedur
umkonfigurieren. Somit ist eine flexible Anpassung der Prozedur durch den Anlagenfahrer
an aktuelle Gegebenheiten moglich. Denkbar ist auch die Implementierung einer Daten-
bank fir Teilprozeduren, die durch die Anlagenfahrer zur Laufzeit konfiguriert und in einer
an die Situation angepassten Reihenfolge gestartet werden. Die erforderlichen Vorbedin-
gungen konnen in der Transition nach dem Initialschritt der Prozedur hinterlegt sein. Der
Anlagenfahrer fungiert so als menschliches Steuerungssystem (vgl. Kapitel 5.3, S. 97). Ein
Konzept zur Suche der passenden Dienste kann [109] entnommen werden.

Dieses Vorgehen hat zwei positive Nebeneffekte. Erstens konnen modulare Anlagen und
Package Units einfach in eine Anlage integriert werden und zweitens wird eine Verlagerung
von Intelligenz auf Feldgerite gefordert. Die Funktionssicherheit der Anlage wird nicht
beeintrachtigt:

e Die Steuerung modularer Anlagen (vgl. z. B. [133, 135]) kann analog zu den Einzel-
steuereinheiten um die vier IEC 61131-3 -Blocke ergénzt werden. Aus diese Weise
wird eine Abstraktion von den herstellerspezifischen Ausfithrungen der Steuerung
geschaffen.

e Die Implementierung der Einzelsteuerung auf Feldgeriaten fithrt zu einer besseren
Verteilung der Last im gesamten Automatisierungssystem [57]. Bezogen auf das Re-
ferenzmodell lésst sich eine bessere Wiederverwendbarkeit der Prozeduren sicherstel-
len, wenn statt MessgroBen Zustandsinformationen mit Semantik (z. B. ,Behélter ist
halb voll* statt L1.PV = 25cm) tbertragen werden. Dies kann durch die Definition
von Merkmalen mit einer Beschreibung erfolgen. Die konkreten Messwerte werden
nicht benotigt, da keine kontinuierliche Regelung in einer Prozedur durchgefiihrt
wird.

e In [51] werden drei Ebenen der funktionalen Integritét eingefiihrt, Addon-Funktionen,
Basis-Funktionen und sicherheitsrelevante (Safety-) Funktionen. Diese sind in Abbil-
dung 5.4 dargestellt.

Addon-Funktionen

FIL2
(mittel verfligbar)
Basis-Funktionen
FIL 1 A
(hoch verfligbar) —\ ~
Wéchter-
\ Funktion

Safety-Funktionen
FILO o
(sehr hoch verflgbar) —\

Abbildung 5.4.: Ebenen der funktionalen Integritat (nach [51])
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Die sicherheitsrelevanten Funktionen (z.B. Verriegelungen) werden in den Einzel-
steuerungen wie gewohnt implementiert. Somit wird auf eine bewéhrte Technik zu-
riickgegriffen. Das hier vorgestellte Referenzmodell kann fiir Funktionen in den Ebe-
nen FIL 1 und FIL 2 genutzt werden. Das Servicelnterface der Ebene FIL 0 kann
gleichzeitig als Wichter-Funktion alle Zugriffe abblocken, welche die funktionale Si-
cherheit bedrohen.

5.2. Steuerungsprozedur einer Pumpe

Das erste Beispiel zeigt anhand einer einfachen Steuerungsprozedur einer Pumpe die prinzi-
pielle Anwendung des Referenzmodells. Die Pumpe befindet sich in einer LKW-Abfiillung,
bei der ein LKW tiber die Pumpe und ein Ventil aus einem Tank beftllt wird (vgl. Abbil-
dung 5.5).

Abbildung 5.5.: Schematische Darstellung einer LKW-Abfiillstation

In Abbildung 5.5 sind vier verschiedene Teilsysteme zu erkennen, Tank1, Ventill, Pum-
pel und LKW1. Im Beispiel wird die Steuerung des Teilsystems Pumpel betrachtet!. Pum-
pel ist eine Ausfithrungseinheit, die die PLT-Stelle NO1 beinhaltet. Die Einzelsteuerung
von NO1 ist analog zu Abbildung 5.3 erweitert worden und in Abbildung 5.6 abgebildet.

Gegeniiber den konventionellen Funktionsbausteinen sind die Bausteine StringCompa-
re und Switch ergidnzt worden. Der Baustein StringCompare liefert eine boolesche Eins
als Ausgang, wenn die beiden Texte des Eingangs iibereinstimmen. Der Baustein Switch
gibt den ersten Text als Ausgang weiter, wenn die boolesche Eingangsvariable Null ist.
Andernfalls wird der zweite Text ausgegeben. Neben der Einzelsteuerung von NO1 miis-
sen auch die andern Teilsysteme in der Steuerungsprozedur von Pumpel berticksichtigt
werden. Die weiteren Teilsysteme bieten die folgenden Zustandsmeldungen an:

e Tankl: TankVoll, TankLeer,
o Ventill: Auf, Zu und

Das Offnen und SchlieBen des Ventils im Normalbetrieb wird der Ubersichtlichkeit halber aufien vor
gelassen werden.
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N
o)
L .

“Start” StringCompare

Verriegelungs-
NO1.cbOn logik

'YO1.cbOpen

"PumpeAus"
"PumpeLauft"

Abbildung 5.6.: Einzelsteuerung der Pumpe NO1

o LKW1: LKWPositioniert, LKW Voll.

Eine tiberlagerte Steuerung (vgl. Kapitel 2.4, S. 14) kann die Befehle ,Start“ und ,,Aus-
schalten® an die Steuerung der Abfiilleinheit tibergeben. Mit diesen Informationen ist es
moglich eine Abfiillprozedur wie folgt textuell zu formulieren: Nach dem Starten der Ab-
fiillanlage wird die Pumpe gestartet, sobald der LKW positioniert ist. Wenn der LKW
befiillt ist, stoppt sie wieder. Als mogliche Fehlerfille wiahrend des Laufens der Pumpe
sind das Leerlaufen des Tanks, das Schlielen des Ventils oder das Entfernen des LKWs
bekannt.

Dieser informell beschriebene Ablauf ldsst sich mit Hilfe des in Kapitel 4, S. 67, vor-
gestellten Referenzmodells formalisiert darstellen. In Abbildung 5.7 ist ein Instanzmodell
dargestellt, das diesen Ablauf modelliert.

Es sind insgesamt acht Instanzen des Aufbaumodells angelegt worden, vier Transitio-
nen (S152, S251, 5254 und S1S3), ein Anfangsschritt (S1), ein elementarer Schritt
(S2) und zwei Endschritte (S8 und S4 ). Mit den Schritten sind insgesamt vier Instanzen
(A1 bis A4) des Typs Dienstaufruf tiber Assoziationen verbunden. Die Instanzen der
Dienstaufrufe sind wegen der Ubersichtlichkeit in Abbildung 5.8 abgebildet.

Jede Transition ist mit genau einer Bedingung (C1 bis C4) verbunden. Die Transitions-
bedingungen, die in Abbildung 5.7 verwendet werden, sind in Abbildung 5.9 dargestellt.

Eine Transitionsbedingung besteht aus ein oder mehreren logischen Termen. Die Bedin-
gungen C1 und C2 ermitteln jeweils den Zustand des Teilsystems LKW1 (SC1, SC2
und SC3). Die Bedingung C3 priift, ob die Pumpensteuerung den Befehl Ausschalten
erhalten hat (RR1). C4 ist eine zusammengesetzte Bedingung, die aus drei mit Oder
verkniipften Zustandsabfragen (SC4 bis SC6) besteht.

Die Steuerung kann von auflen iiber einen Befehl Start eingeschaltet werden. Dieser ak-
tiviert den Schritt S1 und der Dienstaufruf A1 wird ausgefithrt. Dies stellt sicher, dass
die Pumpe abgeschaltet ist. Sobald ein nicht voller LKW LKW1 in der Abfillanlage posi-
tioniert ist, feuert die Transition S1.52, die den Schritt S2 aktiviert. Nun lduft die Pumpe
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5.2. Steuerungsprozedur einer Pumpe

S2S1:Transition S2S4:Transition
name = S2S1 name = S2S4
abort = false abort = true

StinitialStep S4FinalStep
name = PumpeAus Al name = Abbruch
abort = false abort = true
[ 1

S1S2:Transition S1S3:Transition
name = S1S2 c1 name = S2S3
abort = false abort = false
S2:ElementaryStep S3:FinalStep
name = PumpeAn A2 name = Aus
abort = false abort = false

ﬁ

Abbildung 5.7.: Steuerungsprozedur fiir die Pumpe der LKW-Abfiillstation

A1:ServiceCall A2:ServiceCall
address = Pumpe1 address = Pumpe1
serviceName = SteuerePumpe serviceName = SteuerePumpe
operation = Stop operation = Start
A3:ServiceCall A4:ServiceCall
address = Pumpe address = Ventilt
serviceName = SteuerePumpe serviceName = SteuereVentil
operation = Stop operation = SchlieBe

Abbildung 5.8.: Verwendete Aktionen in Abbildung 5.7

so lange, bis der LKW LKW1 voll ist. Dies fithrt zum Feuern der Transition S2S1 und die
Pumpe schaltet ab (Schritt S1). Eine erneute Aktivierung der Pumpe kann erst erfolgen,
wenn erneut ein nicht voller LKW positioniert wird. Die Abfiillanlage kann mit dem Befehl
Ausschalten tiber $1.53 nur ausgeschaltet werden, wenn kein Abfiillvorgang stattfindet. Ist
die Pumpe eingeschaltet, fithrt ein Leerlaufen des Tanks Tank1, ein Entfernen des LKWs
LKW1 oder ein SchlieBen des Ventils Ventill zum Auslésen der Abbruchtransition S2S54.
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SC1:StateCheck
address - LKW1

alue = LKWPositioniert
inverted = false

C1:Condition noex =1

listOfOperators = {AND]

SC2:StateCheck

address = LKW1

alue = LKWVoll
inverted = true
index = 2

SC3:StateCheck

C2:Condition ddross - LKW1
alue = LKWVoll
listOfOperators = {} inverted = false
index = 1
C3:Condition RR1:RequestReceived
alue = Ausschalten
listOfOperators = {} rvortod - e
index = 1
C4:Condition
listOfOperators = (OR, OR}

SC4:StateCheck SC5:StateCheck SC6:StateCheck
address = LKW1 address = Tank1 address = Ventill
value = LKWPositioniert value = TankLeer value = Zu

inverted = false inverted = false
index = 2 index = 3

Abbildung 5.9.: Verwendete Transitionsbedingungen und logische Terme in Abbildung 5.7
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5.3. Integration von Menschen in die Prozedurausfiihrung

5.2.1. Verwendung von Rollen

In Kapitel 4.2.4, S. 76, ist die Verwendung von Rollen in der Prozedurbeschreibung als
Moglichkeit der Erhéhung der Flexibilidt bereits beschrieben. An dieser Stelle verdeutlicht
die Anwendung auf das beschriebene Beispiel den Vorteil. In Abbildung 5.9 ist erkennbar,
dass sich die Zustandsiiberpriifungen auf einen konkreten LKW, ndmlich LKW1, beziehen.
Falls ein anderer LKW befiillt werden soll, muss die Prozedur bearbeitet werden.

Der erste Schritt zur Flexibilisierung der Prozedur besteht in der Verwendung von Para-
metern. Statt der Verwendung der konkreten Bezeichnung LKW1 lésst sich ein Parameter
im Ausfithrungsrahmen definieren, der als Adresse in den Zustandsabfragen SC1, SC2
und SC3 verwendet werden kann. Bei jedem eintreffenden LKW wird der Wert des Para-
meters entsprechend gedndert.

Dies fithrt zu einer Flexibilitdt der Prozedur, erhoht aber den manuellen Aufwand. So
muss beispielsweise fiir jeden LKW iiberpriift werden, ob er die bendtigten Zustiande fiir
die Prozedur bereithélt. Mit Hilfe von Rollen lédsst sich die Zuordnung automatisieren. In
der Zustandsabfrage wird eine Rolle referenziert, die die Riickmeldung der Zusténde LK-
WPositioniert und LKWVoll als Anforderung beinhaltet. Abbildung 5.10 zeigt beispielhaft
die Verwendung von Rollen in der Zustandsabfrage SC3. Da das Merkmal P1 die Anfor-
derung R1 erfillt, kann die Ausfithrungseinheit LK Wzy die Rolle LKW ausfiillen und
somit durch SC8 angesprochen werden.

SC3:StateCheck

address = <<LKW>>
value = LKWVoll
inverted = false

LKW:Role LKWxy:ExecutionUnit
m
einnehmen

R1:Requirement P1:Property
fiil
value = has_LKWVoll erfll value = has_LKWVoll

Abbildung 5.10.: Beispiel fiir die Zuordnung von Ausfiihrungseinheiten zu einer Rolle in einer
Prozedurbeschreibung

5.3. Integration von Menschen in die Prozedurausfiihrung

Wie bereits in Abbildung 2.4, S. 13, erlautert, konnen Menschen sowohl als Steuerungs-
system als auch als Ausfihrungseinheit an einer Prozedurausfithrung beteiligt sein. Ein
Beispiel hierfiir ist die Reparatur eines Regelventils. Bei diesem Ventil sei die Membran
des Stellorgans gerissen, so dass der notwendige Druck zum Einstellen der Ventilpositi-
on nicht mehr aufgebracht werden kann. Dies fiihre dazu, dass der Prozess zwar weiter
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5. Anwendung des Referenzmodells

betrieben werden kann, er sich aber nicht mehr im Produktionsoptimum befindet. In Ab-
bildung 5.11 ist ein UML-Sequenzdiagramm abgebildet, das die notwendigen Schritte zur
Reparatur in ihrer zeitlichen Abfolge darstellt. Aus Griinden der Ubersichtlichkeit sind die
zugehorigen Klassenmodelle der Prozeduren in Anhang B, S. 114, abgebildet.

X i X X X

Anlagenfahrer Wartungstechniker Einkaufer Produktionsplaner Logistiker
! 1 1 i 1
| | | | |
o
FehlerSuchen(FIC21)
>

AnfrageBetreten(TA2)

ErlaubnisErteilt)
>

TAVerlassen()

1
1
I
1
1
I
1
1
I
1
1
D 1
1

1
1
I
1
1
I
1
1
I
1
1
1
1
-

Bestelle(FIC21, Membran) |
>

Vorbereiten(FIC21)

WareGeliefert(FIC21)

LiefereAus(Memban, TA?) _ |
>

BestitigeL ieferung(FIC21, TA2)

A

| o AnfrageReparatur(FIC21)
<

ReparaturErlauben(FIC21) .
>

| ReperaturErfolgt(FIC21)
<

ReperaturErfolgt(FIC21)
>

-—--1

Abbildung 5.11.: Sequenzdiagramm zur Darstellung der zeitlichen Abfolge von Dienstaufrufen
wahrend einer Ventilwartung

Ausloser des Wartungsvorgangs ist die Feststellung eines zu niedrigen Durchflusses an
der Durchflussregelung FIC21. Der Anlagenfahrer versucht zunachst z. B. mit Hilfe ande-
rer Messgrofen, einen defekten Sensor als Fehlerursache auszuschlieSen. Ist dies nicht der
Fall, veranlasst er, dass der Wartungstechniker das Ventil iberpriift. Mit anderen Worten,
er sendet iiber sein HMI den Befehl Start sowie den Parameter FIC21 an die Prozedur
UberpriifeRegelventil des Wartungstechnikers. Der Wartungstechniker wihlt die fiir die
Diagnose notwendigen Werkzeuge aus und meldet sich beim Anlagenfahrer zum Betreten
der Teilanlage an, sobald er vor Ort ist. Der Anlagenfahrer priift, ob im aktuellen Betriebs-
zustand der Anlage ein Betreten gefahrlos moglich ist und erteilt dann die Erlaubnis. Der
Wartungstechniker sucht anschliefend die Fehlerursache und bestellt nach Verlassen der
Anlage das notwendige Ersatzteil. Gleichzeitig informiert er den Produktionsplaner {iber
die Wartung, die dieser in seinen Produktionsplan einplanen muss. Nach der Bestellung des
Ersatzteils unterrichtet der Eink&ufer den Produktionsplaner iiber den geplanten Liefer-
termin zur groben Einplanung der Wartung. Sobald die Lieferung tatséchlich eingetroffen
ist, informiert der Produktionsplaner den Logistiker und den Wartungstechniker iiber den
genauen Zeitpunkt der Wartungsmafinahme. Vor der Reparatur gibt der Anlagenfahrer die
Anlage zur Reparatur frei.
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5.3. Integration von Menschen in die Prozedurausfiihrung

Anhand des Beispiels wird deutlich, welche Entscheidungen die fiinf Akteure Anlagen-
fahrer, Wartungstechniker, Einkéufer, Produktionsplaner und Logistiker zu treffen haben.
Die Funktionen der Akteure sind auf die drei unteren Ebenen der Automatisierungspy-
ramide verteilt. Jeder Akteur besitzt seine eigenen Prozeduren, die in Anhang B, S. 114,
dargestellt sind. Diese sind, wie durch das Sequenzdiagramm deutlich wird, durch Quer-
abhéingigkeiten miteinander verbunden.

Der Produktionsplaner beispielsweise nutzt eine Prozedur zur Modifikation seines Pro-
duktionsplans, der wiederum eine Prozedur ist. Der Anlagenfahrer nutzt die Rezepte zur
Steuerung des Produktionsprozess. Der Wartungstechniker kann Prozeduren als Anleitung
des Reparaturprozesses verwenden. Des Weiteren stehen die Prozeduren, die die Arbeits-
abliufe der Akteure steuern, in einem engen Zusammenhang. Es muss demnach zum einen
eine Schnittstelle zwischen den Systemen existieren, zum anderen miissen die Steuerungs-
systeme eine einheitliche Syntax und Semantik unterstiitzen. Auf diese Weise ist eine engere
Koordination des komplexen Reparaturprozesses moglich. Das in dieser Arbeit vorgestellte
Referenzmodell ermoglicht die Bildung einer Briicke zwischen den verschiedenen Prozedu-
ren. In der téglichen Anwendung muss der Fokus auf der Gestaltung des HMI liegen (vgl.
(169]). Die Schnittstelle zwischen Mensch und Steuerung kann hierbei durch ein Assistenz-
system erfolgen.

5.3.1. Assistenzsysteme

Zur Reduktion der Komplexitéit der zu erledigenden Vorgénge und zur Verdeutlichung
der néchsten Steuerungsschritte kénnen Assistenzsysteme eingesetzt werden [170]. Dem
Assistenzsystem stehen drei Informationsquellen zur Verfiigung, die Vorgabe des Prozess-
ziels, die Zustandsinformationen der Anlage und die Informationen, die vom Operator
eingegeben worden sind [70]. Des Weiteren sind Modelle und Methoden hinterlegt, aus
denen Entscheidungshilfen abgeleitet werden kénnen [153]. Mit Hilfe dieser Informationen
schldgt ein Assistenzsystem die Briicke zwischen Wiinschen, Zielen, Féhigkeiten und Wis-
sen eines Menschens und den Funktionen eines interaktiven maschinellen Systems [187].
Assistenzsysteme konnen jedoch nicht nur wihrend des operativen Betriebs einer Anlage
unterstiitzend tatig sein, auch der Entwurfsprozess kann assistiert werden [85].

Eine Integration des hier vorgestellten Referenzmodells in Assistenzsysteme ist moglich,
wie in [153] gezeigt ist. Sobald das Assistenzsystem eine unterstiitzungsbediirftige Situa-
tion erkennt, sucht es in einer Prozedurdatenbank nach einer aufgezeichneten Prozedur.
Diese Dokumentation einer Prozedurausfithrung gibt dem Anlagenfahrer Hinweise, wie ein
dhnliches, schon einmal aufgetretenes Problem gelost worden ist. Der Anlagenfahrer in-
terpretiert diese Information und versucht die richtigen Schliisse zu ziehen. Gefiillt weird
solch eine Prozedurdatenbank entweder manuell oder mittels der Methode des Fallbasierten
Schlieflens [153].

Im Beispiel der Ventilreparatur sind verschiedene Einsatzmoglichkeiten gegeben. So kann
ein Assistenzsystem dem Anlagenfahrer helfen, die Ursache fiir die Prozessstorung zu er-
mitteln. Dem Wartungstechniker kénnen die Reparaturschritte interaktiv auf einem indus-
triellen Tablet visualisiert werden. Der Produktionsplaner erhélt z. B. Vorschlige fiir eine
optimale Anordnung der verschiedenen Rezepte.
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6. Zusammenfassung und Diskussion

6.1. Zusammenfassung

Diese Arbeit befasst sich mit einem Referenzmodell zur Beschreibung allgemeiner Proze-
duren. In Kapitel 4, S. 67, ist dieses Referenzmodell basierend auf den Elementen einer
Prozedurbeschreibungssprache (vgl. Kapitel 3.1, S. 24) beschrieben. Zum Aufbaumodell
gehoren die Elemente Ausfithrungsrahmen (ExecutionFrame), Transition (Transition)
und Schritt (Step), wobei vom Schritt die Klassen Elementarschritt (ElementaryStep),
Anfangsschritt (InitialStep) und Endschritt (FinalStep) abgeleitet sind. Im Hierarchie-
und Vernetzungsmodell sind Verkniipfungsregeln zur Erzeugung von linearen Ketten sowie
zur Alternativ- und Parallelverzweigung aufgestellt worden. Zudem ermoglicht die Klasse
Makroschritt (MacroStep) die Bildung von Hierarchien. Das Aktions- und Aktivitaten-
modell legt die Interaktionsmoglichkeiten mit der Umgebung fest. Zum einen werden die
Klassen Dienstaufruf (ServiceCall) und Prozeduraufruf (ProcedureCall) als Aktionen
definiert, zum anderen kann sich die Transitionsbedingung aus logischen Termen zusam-
mensetzen. Das Abstraktions- und Zuordnungsmodell beschreibt die Moglichkeiten, den
Entwurfsprozess der Prozedur zu vereinfachen, wiahrend das Ausfithrungssteuerungsmo-
dell die Ausfithrung der Prozedurbeschreibung determiniert.

Bei der Vorstellung des Referenzmodells in Kapitel 4, S. 67, sind der Ubersichtlichkeit
wegen lediglich Ausschnitte aus der UML-Darstellung des Referenzmodells dargestellt wor-
den. In Abbildung 6.1 ist das vollstédndige Klassendiagramm abgebildet. Neben der Model-
lierung des eigentlichen Referenzmodells (graues Rechteck) sind auch das Zusammenwirken
des Referenzmodells mit einem Visualisierungsmodell (oberhalb des grauen Kastens) und
die Verwendung von Rollen, Merkmalen und Ausfiihrungseinheiten (unterhalb des grauen
Kastens) abgebildet.

Mithilfe dieses Referenzmodells kénnen verschiedene Typen von Prozeduren abgebildet
werden. In Kapitel 5, S. 88, ist gezeigt worden, dass es moglich ist, sowohl die Steuerproze-
dur einer Pumpe als auch die Wartungsprozedur eines Ventils zu beschreiben. Diese beiden
Beispiele zeigen aufgrund ihrer stark unterschiedlichen Komplexitét die Allgemeingiiltigkeit
des Modells. Dadurch wird deutlich, dass das Modell auf allen Ebenen der Automatisie-
rungspyramide eingesetzt werden kann. Ebenso wird die Integration von Menschen sowohl
auf Steuerungs- als auch auf Ausfithrungsseite unterstiitzt.
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6. Zusammenfassung und Diskussion

6.2. Diskussion

Basis fiir die Erstellung des Referenzmodells ist die Analyse bestehender Prozedurbeschrei-
bungssprachen. Durch die Analyse ist der gemeinsame Kern ermittelt worden, der den
Prozedurbeschreibungssprachen zugrunde liegt. Das Referenzmodell deckt diesen gemein-
samen Kern ab. Mithilfe des Referenzmodells kénnen lineare Prozeduren bestehend aus
Schritten und Transitionen modelliert werden. Des Weiteren werden auch Makroschritte,
Alternativverzweigungen und nebenlédufige Prozeduren unterstiitzt. In Anhang C, S. 119,
sind einige Beispiele dargestellt, bei denen die Vermutung naheliegt, dass sie durch das
Referenzmodell nicht abgedeckt werden. Die Beispiele zeigen jedoch, dass dies nicht der
Fall ist und geben gleichzeitig eine Empfehlung fiir die Modellierung ab.

Das Modell besticht durch seine Einfachheit, d.h., ein Vorteil besteht darin, dass durch
wenige Modellelemente Abldufe beschrieben werden konnen. Die Einfachheit des Refe-
renzmodells basiert hauptsiachlich auf der konsequenten Anwendung der Prinzipien der
Kybernetik. In der Prozedurbeschreibung werden nur die Dienstaufrufe und Zustandsab-
fragen modelliert, d. h., die Ausfiihrungseinheiten verbergen die Art und Weise, wie sie die
aufgerufenen Funktionen ausfiithren, vor der Prozedur. Auf diese Weise kann die Komplexi-
tdt von der Prozedur auf die Ausfiihrungseinheiten verlagert werden. Wichtig ist an dieser
Stelle der Hinweis, dass eine Ausfithrungseinheit wiederum eine Steuerung besitzen kann,
die die Unter-Ausfithrungseinheiten kontrolliert. Diese strikte Trennung zwischen Aufruf
einer Funktion und ihrer Ausfithrung vereinfacht die Beschreibung einer Prozedur deutlich.

Die Verwendung von Dienstaufrufen vereinheitlicht den Aufruf verschiedener Funkti-
onstypen. Ein Dienstaufruf kann beispielsweise das Setzen einer Variablen, das Starten
eines Batch-Prozesses oder eine Anordnung an einen Mitarbeiter sein. Die verschiedenen
Typen konnen ohne Weiteres gemeinsam in einer Prozedur verwendet werden. Die Verwen-
dung dieser einheitlichen Schnittstelle zwischen Steuerungssystem und Ausfithrungseinhei-
ten fordert eine bessere Wartung und eine Erhéhung der Erweiterbarkeit der Prozedur.
Des Weiteren ist die Ubermittlung von formalisierten und nicht-formalisierten Aufrufen an
unterschiedliche Empfangertypen (vgl. Abbildung 2.4, S. 13) in derselben Weise maoglich.
Die Kommunikation durch Dienste findet immer zwischen genau zwei Kommunikations-
partnern statt, dem Dienstaufrufer (hier die Prozedur im Steuerungssystem) und dem
Dienstanbieter (hier die Ausfithrungseinheit). Dies minimiert die Belastung der im Kom-
munikationssystem eingebundenen Teilnehmer, da jeder Teilnehmer nur die Nachrichten
verarbeiten muss, die auch wirklich an ihn gerichtet sind. Das Konzept der Dienstauf-
rufe erméglicht zudem die Einbindung externer Dienstanbieter. Da die Art und Weise,
wie der Dienst ausgefithrt wird, nicht an den Dienstaufrufer weitergegeben wird, ist ein
Know-How-Schutz fiir den Dienstanbieter gewéhrleistet.

Dienstaufrufe sind neben dem Rollenkonzept die grundlegende Basis fir flexible Pro-
zeduren. Durch die Dienstaufrufe werden feste, bereits im Planungsprozess der Prozedur
definierte Signalverbindungen vermieden. Dies steht nicht im Widerspruch zu der bestehen-
den konventionellen Verdrahtung von Sensoren und Aktoren in bestehenden chemischen
Anlagen. In Kapitel 5.1.1, S. 90, ist gezeigt, wie eine konventionelle Einzelsteuerung in ein
dienstbasiertes System eingebunden werden kann. Es ist moglich Dienstaufrufe wéahrend
des Entwurfsprozesses abstrakt mit Bezug zu einer Rolle zu definieren. Die Zuordnung
einer konkreten Ausfiihrungseinheit erfolgt entweder im weiteren Verlauf des Entwurfspro-
zesses oder erst zur Laufzeit. Die Entscheidung zur Laufzeit bietet den Vorteil, dass ei-
ne situationsbewusste Optimierung der Prozedurausfithrung erfolgen kann, beispielsweise
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6.2. Diskussion

nach den Kriterien Auslastung, Energieeffizienz oder Verfiigbarkeit. Ein Merkmalsystem
unterstiitzt die Zuordnung von konkreten Ausfiihrungseinheiten zu abstrakten Rollen. Die
Ausfithrungseinheiten werden durch Merkmale beschrieben, die den Anforderungen der
Rolle gentigen miissen.

Die Prozedurbeschreibung kann als Grundlage der Prozedurausfithrung genutzt werden.
Die Steuerung der Ausfithrung sowohl im Normalfall als auch im Fehlerfall iibernimmt der
Zustandsautomat der Prozedur. Die Zustédnde des Zustandsautomats sind fest definiert.
Beziiglich der Ubergéinge zwischen den Zustinden kann es jedoch im konkreten Anwen-
dungsfall Abweichungen geben. Ein Beispiel hierfiir ist die Entscheidung, ob eine gehaltene
Prozedur abbrechen muss oder neu starten darf. Diese Entscheidung kann nicht generisch
getroffen werden. Der Standardfall sieht an dieser Stelle vor, dass alle (demnach auch die
Abbruch- und Restart-Transitionen) Transitionen gesperrt sind.

Der Zustandsautomat sorgt fiir ein deterministisches Ausfithrungsverhalten der Pro-
zedur. Insbesondere ist die Reihenfolge der Aktionsaufrufe in einem Schritt festgelegt,
nicht jedoch die Abfolge der durch die Aktionsaufrufe initiierten Aktivitaten der Aus-
fiihrungseinheiten. Nicht nur die Reihenfolge der Aktivitéitsausfithrung, sondern auch der
Start einer Aktivitat in einer Ausfithrungseinheit ist nicht gesichert. Ausfithrungseinheiten
konnen Dienstanfragen eigenstéindig akzeptieren oder verwerfen, beispielsweise wenn ihr
Belegungsautomat (vgl. [184]) die Ausfihrung nicht zulésst. Insbesondere in dezentralen
Systemen ist daher eine explizite Abfrage sinnvoll, ob eine Aktivitdt auch tatsiachlich schon
gestartet ist. Der Verzicht auf zwingende Antworten beim Dienstaufruf vermeidet aufwen-
dige Konsistenzsicherungs- und Synchronisationsfunktionen. Zudem wird ein Blockieren
der Prozedurausfithrung vermieden, wenn asynchrone Dienstaufrufe ohne Antworten ver-
wendet werden.

Die Ausfithrung einer Prozedur kann ereignisgetrieben oder getaktet erfolgen. Die Ent-
scheidung fiir eine der beiden Varianten hangt mafigeblich vom Steuerungssystem ab, das
die Prozedur ausfiihrt. Eine SPS auf Basis der IEC 61131-3 fiihrt ihr Programm zyklisch
aus, d.h., die Transitionsbedingungen werden getaktet ausgewertet. Menschen hingegen
kénnen sowohl getaktet als auch ereignisgetrieben arbeiten. Es ist einerseits vorstellbar,
dass sie nach einer festen Zeitvorgabe tiberpriifen, ob sie die nichsten Schritte einleiten.
Andererseits kann ein Mensch auch erst durch das Eintreten eines Ereignisses wieder an die
Prozedur erinnert werden, die er ausfithren soll. Die Ausfithrung der Prozedur erfolgt nach
der Lock-Step-Semantik. Es kann maximal ein Schrittwechsel in einem Zyklus erfolgen.

Die Kooperation des Referenzmodells mit bestehenden Ausfithrungseinheiten lésst sich
durch die Einfiihrung von zusétzlichen Blocken ohne grofien Aufwand durchfithren. Sollten
diese Modifikationen unerwtinscht sein, kann mithilfe existierender Standards wie NE 150
und PLCopen eine automatische Transformation des generischen Prozedurmodells in steue-
rungsspezifischen Programmecode erfolgen. Alle Vorteile kann das Referenzmodell erst aus-
spielen, wenn es in einem Dienstsystem ausgefithrt wird. Dieser Punkt ist insbesondere
interessant, wenn Industrie 4.0-kompatible Umgebungen im industriellen Umfeld etabliert
sind. Im RAMI ist eine Prozedurbeschreibung ein Asset, das seinen eigenen Lebenszyklus
hat. Die Prozedurbeschreibung kann auf alle Hierarchieebenen des RAMI oberhalb des
Produkts zugreifen. Sie ist entweder in der Geschéftsschicht oder in der Funktionsschicht
definiert.

Vor der praktischen Nutzung des Referenzmodells sind einige projektspezifische Festle-
gungen zu treffen. Zunéchst erfolgt die Auswahl des Kommunikationssystems. Es ist eine
Abbildung der Dienstaufrufe auf technologische Funktionen des Kommunikationssystems
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6. Zusammenfassung und Diskussion

notwendig. Sobald ein generisches Format zum Aufruf von Diensten in einer Industrie 4.0-
Umgebung definiert ist, kann dieser Schritt entfallen. Der zweite Schritt besteht in der
Festlegung der Flexibilitiat bei der Prozedurausfithrung. Je hoher die Flexibilitat ist, desto
stiarker muss das ausfithrende Steuerungssystem zur Laufzeit rekonfigurierbar sein. Falls
das Rollenkonzept verwendet werden soll, muss ein Merkmalsystem in das Laufzeitsystem
integriert werden. Das Merkmalsystem iiberpriift die Erfilllung der spezifizierten Anforde-
rungen der Prozedur an die Ausfiihrungseinheiten.

Der Austausch der Prozeduren zwischen den verschiedenen Planungssystemen und dem
Steuerungssystem erfolgt mittels XML-Dateien. Fiir das vorgestellte Referenzmodell ist ei-
ne Darstellung nach dem CAEX-Schema vorgenommen worden. Eine automatische Trans-
formation der CAEX-Darstellung in das OPC UA-Informationsmodell ist moglich. Das
Referenzmodell ist jedoch prinzipiell unabhéangig von einem konkreten Austauschformat.
Durch die Erzeugung von XML-Dateien, in denen nur ein Bezug auf Rollen und nicht auf
konkrete Ausfithrungseinheiten genommen wird, ist die Erstellung einer Datenbank mit
wiederverwendbaren Prozeduren moglich. Auf diese Weise leistet das Referenzmodell ne-
ben der Durchgiangigkeit tiber den Lebenszyklus der Prozedur einen weiteren Beitrag zur
Reduzierung des Aufwands bei der Erstellung von Prozeduren.
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A. Zusammenfassung der Analyse

In diesem Kapitel sind die Resultate der Analyse aus Kapitel 3, S. 24, in Tabellenform
dargestellt. Jede Tabelle fasst dabei die Aspekte aller betrachteten Sprachen zu einem der

Elemente aus Kapitel 3.1, S. 24, zusammen.

A.1. Aufbaumodell

Tabelle A.1.: Zusammenfassung der Aufbaumodelle

Graph-Elemente

Sprache Knoten Kanten Sonstiges
AD Aktionen, Aktivitats- Fliisse Startknoten verpflich-
knoten und Objekt- tend, Endknoten mog-
werte lich
BPEL Aktivitdten,  globa-
le  Variablen und
Schnittstellen
BPMN  Flussobjekte, Daten, Verbindungsobjekte Start- und Endereig-
Swimlanes und Arte- nisse
fakte
EA Eine endliche Menge Zustandstberginge Mindestens ein Start-
von Zustinden knoten verpflichtend,
Endknoten moglich
EPK Informationsobjekte,  Kontrollfliisse —
Funktionen und
Ereignisse
Grafcet  Schritte und Transi- Wirkungslinien Trennung in Struktur-
tionen und Wirkungsteil,
mindestens ein Start-
schritt,  Endschritte
sind optional
Grafchart Schritte und Transi- Wirklinien Mindestens ein Start-
tionen schritt,  Endschritte
sind optional
K3 Elemente aus den Kontrollfliisse Anfangspunkt und
AD und Satelliten- mindestens ein End-

Elemente

punkt erforderlich

... Weiter auf der nachsten Seite ...
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A. Zusammenfassung der Analyse

Tabelle A.1.: Zusammenfassung der Aufbaumodelle

Graph-Elemente

Sprache Knoten Kanten Sonstiges
PFC Rezept-Prozedurele- Implizite Transitionen Element-Synchronisa-
mente und explizite und Wirklinien tionen, mindestens ein
Transitionen Start- und mindestens
ein Endknoten
PLC SC  Zyklusinterne und  Deterministische Zusammenfassung
mehrzyklische Zu- Transitionen mit  von Initialzustand,
stande Prioritéit Auswahlzustand, Ga-
belungszustand — und
Kreuzungsknoten als
Pseudozustand
PN Stellen und Transitio- Kanten haben Ge- Anfangsmarkierung
nen, Stellen besitzen wichte legt initialen Zustand
Kapazititen fest
SC  Zusténde Zustandsiiberginge Anfangs- und End-
knoten zwingend er-
forderlich
SFC Schritte und Transi- Steuerungsfluss Initialschritt Zwin-
tionen gend, aber kein
Endschritt definiert
SSC  Schritte und Transi- Verbindungen Initialschritt ratsam,
tionen mehrere  Endschritte
moglich
A.2. Hierarchie- und Vernetzungsmodell
Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle
Sprache Vernetzungsregeln Hierarchieelemente Nebenldufigkeit
AD Aktionen werden  Aktivitatsknoten Nebenlaufige — Pfade
durch  Kontrollfliisse gruppieren Aktio- moglich, kénnen echt
miteinander verbun- mnen, Schwimmbahnen nebenldufig oder
den dienen der Ubersicht- sequentiell — verzahnt
lichkeit ausgefiihrt werden
BPEL — Strukturierte Aktivi- Durch Flussaktivita-
téaten fassen Basisakti- ten

vitaten zusammen
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A.2. Hierarchie- und Vernetzungsmodell

Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle

Sprache Vernetzungsregeln Hierarchieelemente Nebenlaufigkeit
BPMN  Sequenzfluss legt zeit- Teilprozesse und Parallele  Gateways
liche Reihenfolge der Schleifen, Pools und und datenbasiert
Aktivitaten fest Lanes zur organisato- inklusive Gateways
rischen Unterteilung
EA  Zustande werden Keine Hierarchie még- Nur durch mehrere or-
durch Ubergénge lich thogonale EA model-
verbunden lierbar
EPK Ereignisse und Funk- Uber strukturbildende Konjunktive und ad-
tionen  alternierend Objekte junktive Verkniipfun-
verbunden,  Ereignis gen
ist immer Start und
Ende
Grafcet Schritte und Tran- EinschlieBungen und Durch Parallel-
sitionen werden im Makroschritte, von verzweigung oder
Strukturteil alternie- Verwendung wird mehrere Startschritte
rend verbunden Anfingern abgeraten
Grafchart Schritte und Transi- Makroschritte und Parallele Verzweigung
tionen werden alter- Prozeduren, Proze- unterstiitzt zwei ne-
nierend verbunden duren unterstiitzen benlaufige Zweige,
Parameter und Aus- kann hintereinander
fihrung in  einem geschaltet werden
separaten Thread
K3 Aktivititen — werden Aggregierte Aktivitd- Verzweigungen — und
durch  Kontrollfliisse ten fassen Aktivitaten synchrone Zusammen-
verbunden mit spezifizierter Rei- arbeit
henfolge  zusammen,
Blobs sind Aktivité-
ten ohne spezifizierte
Reihenfolge
PFC Rezept-Prozedur- Durch  Prozedurebe- Durch Parallelver-
elemente werden nen der IEC 61512 zweigung
entweder durch im- auf  vier  Ebenen
plizite  Transitionen beschriankt
verbunden oder mit-
tels  Wirklinien mit
expliziten  Transitio-
nen verkniipft, keine
Zyklen erlaubt
... Weiter auf der nichsten Seite ...
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A. Zusammenfassung der Analyse

Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle

Sprache Vernetzungsregeln Hierarchieelemente Nebenlaufigkeit
PLC SC Die Zustdnde werden Gegeniiber SC diirfen Gegeniiber SC muss
durch die Zustands- Super-Zustiande keine jede orthogonale Regi-
iibergdnge verbunden, eigenen Aktionen ha- on einen Endzustand
zusitzlich konnen ben und miissen einen haben
Unterbrechungstran-  definierten Startpunkt
sitionen verwendet haben
werden
PN Stellen und Transitio- Keine Hierarchie mog- Gleichzeitig — mehre-
nen miissen alternie- lich re aktive  Schritte
rend verkntipft werden und unabhéngige
Schaltbarkeit der
Transitionen
SC Die Zustdnde werden Super-Zustdnde mit Orthogonale Zu-
durch die Zustands- Unter-Zustanden, stande sind spezielle
iibergange verbunden  Zustandsiiberginge Super-Zustinde, Syn-
sowohl von Unter- chronisation durch
Zustdnden als auch gemeinsame Uber-
von Super-Zustanden gangsbedingungen
aus moglich
SFC Schritte und Transi- Aufruf anderer SFC, Durch Simultanketten
tionen werden {ber wird nicht empfohlen,
den Steuerungsfluss in  Integration in Funkti-
der POE verkniipft onsbausteine
SSC  Schritte und Transi- Unterprozeduren mit Nur durch  Aufruf

tionen werden {iber
Verbindungen im Aus-
fithrungsrahmen  ver-
kniipft

eigenem Ausfiihrungs-
rahmen und innerhalb
eines Ausfithrungsrah-
mens moglich

mehrerer Unterproze-
duren

A.3. Abstraktions- und Zuordnungsmodell

Tabelle A.3.: Zusammenfassung der Abstraktions- und Zuordnungsmodelle

Sprache

Typkonzept

Sonstiges

AD

BPEL

Bibliothek mit Aktivitdtsknoten

vorgesehen

Abstrakte und ausfithrbare Pro-

fohlen

zeduren, Dienste konnen sowohl
auf Typebene als auch auf In-
stanzebene orchestriert werden

Top-Down-Entwurfsprozess emp-
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A.4. Aktions- und Aktivitatenmodell

Tabelle A.3.: Zusammenfassung der Abstraktions- und Zuordnungsmodelle

Sprache Typkonzept Sonstiges
BPMN  Abstrakte und ausfithrbare Pro- —
zeduren, globale Teilprozeduren
konnen mehrfach aufgerufen wer-
den
EA  Kein Typkonzept vorhanden —
EPK Abstraktionsebene mit Typen —
und Auspragungsebene
Grafcet Wiederverwendung von Grafcets
als EinschlieBung
Grafchart Prozeduren koénnen durch Para- —
meter angepasst werden
K3 Kein Typkonzept vorhanden —
PFC Bibliothek fiir wesentliche Ab- Abstraktionsschichten tiber Re-
laufereignisse zeptmodell der IEC 61512
PLC SC Kein Typkonzept vorhanden Automatische SPS-
Codegenerierung moglich
PN Kein Typkonzept vorhanden Interpretationen legen die seman-
tische Bedeutung von Stellen und
Transitionen fest
SC  Kein Typkonzept vorhanden SC sind eine Sicht auf das UML-
Gesamtmodell
SFC Top-Down-Entwurfsprozess und
Bottom-Up-Implementierung
empfohlen
SSC  Typkonzept analog zu Funktions- Zunéchst Vorgabe der Ein- und

bausteinen

Ausginge, anschliefend Proze-
durentwurf ratsam

A.4. Aktions- und Aktivitatenmodell

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitdtenmodelle

Sprache Aktion

AD Keine einheitliche
Syntax festgelget

Aktionsausfiihrung Ubergangsbedingung

Keine cinheitliche
Syntax festgelget

Bei der Aktivierung
eines Schritts, Aktio-
nen koénnen Vor- und
Nachbedingung haben

... Weiter auf der nichsten Seite ...
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A. Zusammenfassung der Analyse

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitatenmodelle

Sprache Aktion Aktionsausfithrung Ubergangsbedingung
BPEL Nachrichtenbasierte Dienste durch Aufruf- Bei Alternativverzwei-
Dienstaufrufe, Mani- objekte gestartet gungen in Xpath an-
pulation der Variablen gegeben
BPMN  Aktivitdten haben kei- Bei der Aktivierung Zwischenereignisse,
ne feste Syntax, wer- eines Schritts wenn gewartet werden
den durch Menschen soll
oder Automaten ause-
fithrt
EA Nur in Erweiterungen Je nach Typ bei Zu- Durch Eingabesymbo-
nach Moore und Mea- stand oder bei Zu- le formuliert
ly  (Transduktoren) standsiibergang
moglich
EPK Interaktion mit der Bei der Aktivierung Keine Syntax fiir Be-
Umgebung iiber Infor- eines Schritts dingungen festgelegt
mationsobjekte
Grafcet Kontinuierlich  wir- Bei der Aktivierung Boolesche Ausdriicke,
kende und gespeichert eines Schritts die aus Variablen und
wirkende Aktionen im internen  Ereignissen
Wirkungsteil zusammengesetzt sind
Grafchart Aktionen sind Aufru- Durch Prafix gesteu- Wichterbedingung
fe in G2 oder Java, ert,in Unterarbeitsbe- aus booleschen Aus-
es werden Dienstauf- reich eines Schritts an-  driicken und Ereignis-
rufe unterstiitzt geordnet sen
K3 Interaktion mit der Bei der Aktivierung Keine Syntax fiir Be-
Umgebung iiber Infor- eines Schritts dingungen festgelegt
mationsobjekte
PFC Einrichtungssteuerung Aktionsaufrufe in Keine Sprache fiir Be-
wird aufgerufen, ist Schritten und Transi- dingungen festgelegt,
selber nicht Bestand- tionen moglich implizite Transitionen
teil der Sprache haben keine Bedin-
gung
PLC SC  Aktionen entspre- Emulation von Ereig- Wie bei SC
chen denen im SFC, nissen in einer SPS
Aktivitdten haben
Initialisierungs-

FEingang und Beendet-
Ausgang
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A.5. Ausfiihrungssteuerungsmodell

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitatenmodelle

Sprache

Aktion

Aktionsausfithrung

Ubergangsbedingung

PN

SC

SFC

SSC

In der Interpretation
SIPN durch die Funk-
tion ¢gp moglich

Unterschied zwischen

Aktionen und Ak-
tivititen,  Aktionen
sind zeitlos, Aktivi-

tdten haben Dauer,
Aktionen starten bzw.
stoppen Aktivitaten

Aktionen in  Pro-
grammiersprache der
1EC 61131-3

Setzen von Ausgangs-
variablen, Setzen
eines Eingangs lokaler
Funktionsbausteine
oder Start lokaler
Funktionsbausteine
moglich

In SIPN im Schritt

Aktionen konnen in
einem Zustand und
wahrend eines Uber-
gangs ausgefiihrt wer-
den

Durch Aktionsbestim-
mungszeichen gesteu-
ert, in Aktionsblock
eines Schritts ange-
ordnet

Beim  Betreten/Ver-
lassen eines Schritts
oder zyklisch, wah-
rend der Schritt aktiv
ist

In der Interpretation
SIPN durch die Funk-
tion gr moglich
Zustandstibergange
haben einen Ereig-
nistrigger und eine
iiberwachte Bedin-
gung

Bedingung in Pro-
grammiersprache der
IEC 61131-3

Durch Erstellen eines
Funktionsbaustein-
netzwerks

A.5. Ausfiihrungssteuerungsmodell

Tabelle A.5.: Zusammenfassung der Ausfiihrungssteuerungsmodelle

Sprache

Ausfithrungsmodell

Verhalten im Fehlerfall und bei

Konflikten

AD Token-basiertes Ausfithrungsmo-

BPEL Synchrone und asynchrone Aus-
fithrung. Aktivitdten werden der

dell

Reihe nach ausgefiihrt

Definition von Abbriichen fiir Un-

terbrechungsbereiche maéglich

Unterscheidung zwischen fachli-
chen und technischen Fehlern,

technische Fehler konnen durch
explizite Abbriiche und Fehler-
behandlungsmechanismen behan-

delt werden

.. Weiter auf der nichsten Seite ...
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A. Zusammenfassung der Analyse

Tabelle A.5.: Zusammenfassung der Ausfiihrungssteuerungsmodelle

Sprache  Ausfithrungsmodell Verhalten im Fehlerfall und bei
Konflikten
BPMN  Token-basiertes Ausfithrungsmo- Ersteller muss Verklemmung ver-

EA

EPK

Grafcet

Grafchart

K3

PFC

PLC SC

PN

dell

Weiterschaltung durch aktuellen
Zustand und Eingabesymbol fest-
gelegt

Keine Beschreibung der Ausfiih-
rung

Transitionen feuern, wenn alle
Schritte vor der Transition aktiv
sind und die Bedingung wahr ist,
es konnen mehrere Transitionen
gleichzeitig feuern

Zyklisches  Ausfiihrungsmodell,
kein Durchschalten méglich

Analog zu AD, Ausfithrungsrei-
henfolge von Aktivitaten in Blobs
wird zur Laufzeit festgelegt
Ausfithrung durch Zustandsauto-
maten gesteuert, selbstbeendende
Schritte bei impliziten Transitio-
nen, Synchronisationen beeinflus-
sen Ablaufe

Formale Ausfithrungslogik in UP-
PAAL

Weiterschaltung, sobald im Vor-
bereich einer Transition geniigend
Marken liegen und im Nachbe-
reich der Transtion Platz fiir die
Aufnahme der Marken ist

meiden, Standard-Pfade sind ge-
eignetes Hilfsmittel
Undefiniertes Verhalten im Feh-
lerfall

Kombination mit ARIS zur Aus-
fithrung notwendig

Verhinderung von Konflikten ist
Aufgabe des Entwicklers

Bei Konflikten in einer Alter-
nativverzweigung werden mehre-
re Pfade aktiviert, Makroschrit-
te und Prozeduren haben Ab-
bruchtransition, interner Zustand
wird dann gespeichert und beim
néchsten Aufruf dort fortgesetzt

Optionale und verbotene Aktivi-
taten

Ausnahmebehandlung durch Zu-
standsautomaten

Fehlerbehandlung durch ausfiih-
rende SPS

Eine Verklemmung ist moglich
und kann nicht automatisch be-
hoben werden
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A.5. Ausfiihrungssteuerungsmodell

Tabelle A.5.: Zusammenfassung der Ausfiihrungssteuerungsmodelle

Sprache  Ausfithrungsmodell Verhalten im Fehlerfall und bei
Konflikten
SC Zustandsiibergange feuern, wenn Tritt ein Ereignis ein, das im ak-

SFC

SSC

sowohl die Bedingung wahr ist als
auch das Ereignis getriggert wur-
de, Aktionen konnen bei Betreten
und Verlassen eines Schritts aus-
gefithrt werden, es kann nur ein
Zustand aktiv sein

Transitionen feuern, wenn alle
Schritte vor der Transition aktiv
sind und die Bedingung wahr ist,
Aktionsausfithrung durch inter-
nen Funktionsbaustein gesteuert,
Maximal-Progress-Vorgehen oder
Lock-Step-Vorgehen moglich, erst
Transitionsauswertung, dann Ak-
tionsausfiihrung oder umgekehrt
Formale Ausfithrungslogik in UP-

PAAL

tuellen Zustand nicht modelliert
ist, so verharrt das System im Zu-
stand

Unsichere und verklemmende Ab-
laufe moglich, bei Fehlern wird
Ablauf gestoppt und es sind meh-
rere Korrekturverfahren maoglich

Keine Fehlerbehandlung im Mo-
dell vorgesehen

[ am 20,01.2026, 08:45:57. @
m

‘mit, flir oder in Ki-Syster

113


https://doi.org/10.51202/9783186254085

B. Prozeduren der Akteure bei einer
Ventilwartung

Im Folgenden werden die Prozeduren der Akteure vorgestellt, die im Beispiel der Ventil-
reparatur (vgl. Kapitel 5.3, S. 97) miteinander agieren.

Zunéchst wird die Prozedur des Logistikers in Abbildung B.1 gezeigt. Sobald dieser die
Aufforderung zum Ausliefern erhalten hat (RR1), gibt er sich selber die Aufforderung,
das gewitnschte Ersatzteil an den gewitinschten Ort zu liefern (A1). Sobald das Ersatzteil
am Bestimmungsort ist (RR2), informiert er den Wartungstechniker (A2).

3

Bereitschaft:
InitialStep

}

T1:Transition

RR1:RequestReceived

value = LiefereAus
inverted = false

l A1l:ServiceCall
Ausliefern: address = ./
Step serviceName = Transport
l operation = Liefere(%ltem, %Ort)

RR2:RequestReceived

T2:Transition value = Ausgeliefert

inverted = false

l A2:ServiceCall
Bestétigen: address = ../WT
Step serviceName = Bestétige
l operation = Geliefert(%ltem, %Ort)

BV1:BooleanValue

T3:Transition

]

inverted = false

Abbildung B.1.: Detaillierte Prozedur des Logistikers

Der Produktionsplaner (vgl. Abbildung B.2) weicht von seiner Standard-Planung ab,
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wenn er die Aufforderung zum Vorbereiten einer WartungsmafBnahme erhalt (RR1). An-
hand des prognostizierten Liefertermins plant er die Mafinahme in die Produktion ein (A1)
und informiert den Logistiker tiber die Warenlieferung (A2), sobald das Ersatzteil einge-
troffen ist (RR2). Nach erfolgreicher Durchfithrung der Wartungsmafinahme (RR8) geht
er wiederum zur Standardplanung iiber.

3

Standard-
Planung:
InitialStep

|

T1:Transition

RR1:RequestReceived

value = Vorbereiten
inverted = false

l A1:ServiceCall
Einplanen: address = ./
Step serviceName = Einplanen
l operation = Wartung(%Anlage, %Zeit)

RR2:RequestReceived

T2:Transition value = WareGeliefert

inverted = false

l A2:ServiceCall
Termin- address = ../Logistik
Senden: Step serviceName = Sende
l operation = LiefereAus(%ltem, %Zeit)

RR3:RequestReceived

T3:Transition

R

value = ReparaturErfolgt
inverted = false

Abbildung B.2.: Detaillierte Prozedur des Produktionsplaners

Der Einkaufer (vgl. Abbildung B.3) startet seine Tatigkeit, sobald er die Aufforderung
zu einer Bestellung erhélt (RR1). AnschlieBend ermittelt er einen Lieferanten (A1) und
bestellt dort das Ersatzteil (A2). Der Lieferant teilt dem Einkéufer einen Liefertermin
mit (RR3), den dieser an den Produktionsplaner weiterleitet (A 3). Sobald das Ersatzteil
geliefert ist (RR4 ), bestatigt der Einkaufer dies dem Produktionsplaner (A4).
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]

Bereitschaft:
InitialStep

|

RR1:RequestReceived

T1:Transition

|

value = Bestelle
inverted = false

Lieferant

A1:ServiceCall

suchen: Step

)

address = ./
serviceName = Suchen
operation = Lieferant(%Ersatzteil)

RR2:RequestReceived

T2:Transition

|

value = LieferantGefunden
inverted = false

Bestellung

A2:ServiceCall

schicken: Step|

|

address = ../../LieferantXY
serviceName = Bestellung
operation = Bestelle(%Ersatzteil)

RR3:RequestReceived

T3:Transition

|

value = LieferterminErhalten
inverted = false

Termin

A3:ServiceCall

schicken: Step

=

address = ../PP
serviceName = Wartung
operation = Vorbereiten(%Anlage, %Zeit)

RR4:RequestReceived

T4:Transition

!

value = WareGeliefert
inverted = false

Lieferung

A4:ServiceCall

melden: Step

!

address = ../PP
serviceName = Bestatigen
operation = WareGeliefert(%ltem)

BV1:BooleanValue

T5:Transition

inverted = false

Abbildung B.3.: Detaillierte Prozedur des Einkaufers
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Der Anlagenfahrer hat in seiner Prozedur, die in Abbildung B.4 abgebildet ist, drei
Alternativen, wenn er den Prozess beobachtet (BeobachteProzess). Er kann

e cine Fehlersuche beauftragen, wenn der Durchfluss in der Teilanlage TA2 zu niedrig

ist (SC1)

e das Betreten der Anlage freigeben, wenn er dazu aufgefordert wird (RR&) und

e den Prozess in einen Zustand fahren, der die Reparatur ermoglicht (RR1).

Die einzelnen Abliufe zur Durchfiihrung der drei Alternativen sind der Ubersichtlichkeit
halber in Makroschritten gekapselt.

A 4

SC1:StateCheck

address = ../TA2

T1:Transition

|

value = DurchflussNiedrig
inverted = false

Beobachte

Prozess:
InitialStep

A

A A

Fehlersuche
beauftragen:
MacroStep

|

T2:Transition [

BV1:BooleanValue

inverted = false

RR1:RequestReceived

T3:Transition

value = AnfrageReparatur

-

inverted = false

Reparatur-
modus:

MacroStep

!

RR2:RequestReceived

T4:Transition [

I

value = ReparaturErfolgt

inverted = false

A

T5:Transition

RR3:RequestReceived

value = AnfrageBetreten
inverted = false

-

Freigabe:
MacroStep

!

T6:Transition [

RR4:RequestReceived

value = TAVerlassen
inverted = false

[

Abbildung B.4.: Prozedur des Anlagenfahrers mit Makroschritten
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B. Prozeduren der Akteure bei einer Ventilwartung

Auch der Wartungstechniker hat in seiner Prozedur, die in Abbildung B.5 abgebildet
ist, drei Alternativen. Er kann

e cine Fehlersuche durchfiihren (Fehlersuche), wenn er dazu beauftragt wird (RR1),

e cine Bestellung (Bestellung) ausfithren (RR2) und

e cine Reparatur (Reparatur) durchfihren (RR3).

RR1:RequestReceived

T1:Transition

value = FehlerSuchen
inverted = false

}

InitialStep

Bereitschaft:

A A

Fehlersuche:
MacroStep

A

!

T2:Transition [

BV1:BooleanValue

inverted = false

RR2:RequestReceived

T3:Transition

|

[ |value = Geliefert

inverted = false

Reparatur:
MacroStep

!

BV2:BooleanValue

T4:Transition [

I

inverted = false

A 4

T5:Transition

|

Bestellung:
MacroStep

!

RR3:RequestReceived

value = ErsatzteilOrdern
inverted = false

BV3:BooleanValue

T6:Transition [

[

inverted = false

Abbildung B.5.: Prozedur des Wartungstechnikers mit Makroschritten

118

am 20,01.2026, 08:45:57. @
m

‘mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186254085

C. Kompabilitat zu bestehenden
Beschreibungssprachen

C.1. Umschreibung der Aktionsbestimmungszeichen

Die folgende Tabelle beschreibt die Umsetzung der Aktionsbestimmungszeichen eines SFCs
mithilfe des Referenzmodells. Zu beachten ist, dass Aktionen im Referenzmodell die Aus-
fithrungseinheiten triggern. Eine Aktion nach der IEC 61131-3 kann jedoch eine zeitliche
Dauer haben und ist nach der Begriffswelt des Referenzmodells eine Aktivitdt. Daher wird
in der rechten Spalte der Tabelle von Start- und Stop-Aktionen gesprochen, die die jeweilige
Aktivitat steuern.

Tabelle C.1.: Umschreibung der Aktionsbestimmungszeichen

Zeichen

Beschreibung

Modellierung mit Referenzmodell

Kein

Nicht gespeichert. Die zugehorige
Aktion wird ausgefiihrt, wéhrend
der Schritt aktiv ist.

Nicht gespeichert. Die zugehorige
Aktion wird ausgefiihrt, wéhrend
der Schritt aktiv ist.

Vorrangiges Riicksetzen. Die zu-
gehorige Aktion wird nicht mehr
ausgefiithrt.

Setzen (gespeichert). Die zugeho-
rige Aktion wird ausgefithrt, bis
sie riickgesetzt wird.
Zeitbegrenzt. Die zugehorige Ak-
tion wird ausgefiihrt, bis entweder
die Zeitspanne abgelaufen ist oder
der Schritt deaktiviert wird.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung der
Stop-Aktion zu allen Folgeschrit-
ten.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung der
Stop-Aktion zu allen Folgeschrit-
ten.

Zuordnung der Stop-Aktion zu ei-
nem Schritt.

Zuordnung der Start-Aktion zu
einem Schritt, Standardfall im
Referenzmodell.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung ei-
ner expliziten Stop-Aktion zu al-
len Folgeschritten. Einfiigen ei-
nes zusatzlichen Schrittes, der
iiber eine Transition mit Zeit-
iiberwachung erreicht wird. Zu-
ordnung der Stop-Aktion zu die-
sem Schritt.

.. Weiter auf der nachsten Seite ...
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Tabelle C.1.: Umschreibung der Aktionsbestimmungszeichen

Zeichen Beschreibung Modellierung mit Referenzmodell
D Zeitverzogert. Die zugehorige Ak-  Einfligen  eines  zusétzlichen
tion wird nach Ablauf der Zeit- Schrittes, der tuber eine Tran-
spanne ausgefiihrt, bis der Schritt sition — mit  Zeitiiberwachung
deaktiviert wird. erreicht wird. Zuordnung der
Start-Aktion zu diesem Schritt.
Zuordnung der Stop-Aktion zu

allen Folgeschritten.

P Impuls (Flanke). Die zugehorige Zusatzliche Zuordnung der Start-
Aktion wird bei der Aktivierung Aktion zu allen Folgeschritten.
und bei der Deaktivierung des
Schritts einmal ausgefiihrt.

SD Gespeichert und  zeitverzogert. FEinfiigen  eines  zusétzlichen
Die zugehorige Aktion wird nach Schrittes, der iiber eine Tran-
Ablauf der Zeitspanne ausge- sition mit  Zeitiiberwachung
fithrt, bis sie riickgesetzt wird. erreicht wird. Zuordnung der

Start-Aktion zu diesem Schritt.

DS Verzogert und gespeichert. Die Einfiigen  eines  zusdtzlichen
zugehorige Aktion wird nach Ab-  Schrittes, der tber eine Tran-
lauf der Zeitspanne ausgefithrt, sition —mit  Zeitiiberwachung
bis sie riickgesetzt wird, es sei erreicht wird. Zuordnung der
denn, der Schritt wird vor Ablauf Start-Aktion zu diesem Schritt.
der Zeitspanne deaktiviert.

SL Gespeichert und zeitbegrenzt. Die  Zuordnung der Start-Aktion zu
zugehorige Aktion wird ausge- einem Schritt. Einfiigen eines zu-
fithrt, bis die Zeitspanne abgelau-  sétzlichen Schrittes, der iiber eine
fen ist. Transition mit Zeittiberwachung

erreicht wird. Zuordnung der ent-
sprechenden Stop-Aktion zu die-
sem Schritt. Direkte Riickkehr
zum ursprunglichen Schritt

P1 Puls (steigende Flanke). Die zu- Zuordnung der Start-Aktion zu
gehorige Aktion wird bei der Ak-  einem Schritt.
tivierung des Schritts einmal aus-
geftihrt.

PO Puls (fallende Flanke). Die zuge- Zuordnung der Start-Aktion zu

horige Aktion wird bei der Deak-
tivierung des Schritts einmal aus-
gefiihrt.

allen Folgeschritten.
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C.2. Prioritdt der Alternativverzweigungen

C.2. Prioritdat der Alternativverzweigungen

Im Referenzmodell wird ausschliellich die Verwendung von sich gegenseitig ausschlieBenden
Transitionsbedingungen unterstiitzt (vgl. Kapitel 4.2.2, S. 70). In manchen Beschreibungs-
sprachen sind jedoch auch andere Moglichkeiten zur Priorisierung moglich, die Auswertung
von links nach rechts oder die explizite Vergabe von Prioritdten. Im Folgenden wird der
Fall der Auswertung von links nach rechts betrachtet, der in Abbildung C.1 dargestellt ist.
Der Fall der expliziten Vergabe von Prioritdten muss nicht gesondert betrachtet werden,
da hierbei immer eine grafische Anordnung von links nach rechts méglich ist und wiederum
der erste Fall betrachtet werden kann.

Schritt A
|
+ A + B + C
Schritt A1 Schritt A2 Schritt A3

Abbildung C.1.: Priorisierung der Alternativverzweigung von links nach rechts

Wird der Ausschnitt aus einer Prozedur in Abbildung C.1 mit dem Referenzmodell
modelliert, ergeben sich die Instanzen in Abbildung C.2.

A:Step

AA1 :Transition AA2:Transition AA3:Transition

} ! |

A1:Step A2:Step A3:Step

Abbildung C.2.: Modellierung der Alternativverweigung im Referenzmodell

Die entsprechenden Transitionsbedingungen A-C sind in Abbildung C.2 der Ubersicht-
lichkeit wegen als logischer Ausdruck und nicht als zusammengesetzte Condition darge-
stellt. Es ist offensichtlich, dass nur die Transition AAI schalten kann, wenn A wahr ist
und AA3 nur schalten kann, wenn A und B falsch sind. AA2 kann nur schalten, wenn A
falsch ist und schaltet ebenfalls, wenn C wahr ist.
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C. Kompabilitit zu bestehenden Beschreibungssprachen

C.3. Modellierung von Do und Exit

Aktionen kénnen im Referenzmodell ausschlieflich bei der Aktivierung eines Schrittes aus-
gefithrt werden. Verschiedene Sprachen, beispielsweise SC und SSC, unterstiitzen jedoch
auch die Aktionsausfithrung beim Verlassen eines Schritts (Abbildung C.3 links) und die
zyklische Ausfiihrung von Aktionen, solange ein Schritt aktiv ist (Abbildung C.4 links). Die
Aktionsausfiihrung beim Verlassen eines Schritts lasst sich durch die Zuordnung der Ak-
tion zu den Folgeschritten des zu verlassenden Schritts modellieren (Abbildung C.3 mittig).
Ist die Reihenfolge zwischen der Ausfiihrung der Aktionen beim Verlassen des alten und
beim Betreten des neuen Schritts wichtig, muss ein zusétzlicher Schritt eingefiigt werden
(Abbildung C.3 rechts).

A:Step

{

AB:Transition
J

B:Step

A1B:Transition

B1:BooleanValue
BiStep

Act1
Act2

1

Abbildung C.3.: Modellierung von Aktionsaufrufen beim Verlassen eines Schritts

A1 A:Transition—llB1 :BooleanValue

do:

A:Step A1:Step startAct1

Actl

T1:TimeCompare
value=t1

AA1:Transition

Abbildung C.4.: Modellierung wiederkehrender Aktivitaten
Zur Modellierung von Do-Aktivitdten muss die Start-Aktion der Aktivitat zu einem

zusitzlichen Schritt hinzugefiigt werden (Abbildung C.4 links). Dieser zusitzliche Schritt
wird durch die Zeitvergleich-Transition und die Schleife zyklisch aufgerufen, solange nicht
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C.4. Verarbeitung von Messwerten und Setzen von Stellgréfen

eine andere Transition des Schritts A feuert. Durch Anpassung der Zeit ¢t/ von T1 kann
die Frequenz der Aufrufe eingestellt werden.

C.4. Verarbeitung von Messwerten und Setzen von
StellgroBen

Die Abfrage von Messwerten ist im Referenzmodell nicht vorgesehen. Daher muss in den
Ausfiihrungseinheiten eine Diskretisierung der Messwerte zu Zustianden vorgenommen wer-
den. Die Diskretisierung erfolgt so, dass alle von der steuernden Prozedur verwendeten
Zustandsabfragen durchgefiihrt werden kénnen. In Abbildung C.5 ist eine Diskretisierung
beispielhaft dargestellt. In diesem Beispiel wird der Behélter in drei Bereiche eingeteilt, viel,
normal und wenig Inhalt. Hierzu sind zwei Grofien x; und x5 festgelegt, die die Bereiche
abgrenzen. Die Grolen x; und xo miissen nicht im Zusammenhang mit den Grenzwerten
des Behilters stehen.

S+
viel
X1
normal
X2
5 wenig

Abbildung C.5.: Diskretisierung eines Behalterfiillstands

Die Realisierung der Diskretisierung als Funktionsbausteinnetzwerk erfolgt mithilfe von
Vergleichsoperatoren, logischen Operatoren und Schaltern, wie in Abbildung C.6 darge-
stellt. Je nach aktuellem Messwert wird eines der Eingangssignale act! bis act3 des Bau-
steins 3Switch wahr und der entsprechende Wert vall bis val3 auf den Ausgang out gelegt,
der an den Zustandsausgang WS (vgl. Kapitel 5.1.1, S. 90) weitergegeben wird.

Abbildung C.7 zeigt am Beispiel eines Stellventils die dienstbasierte Ansteuerung ei-
ner Funktion. Das Ventil bietet den Dienst Ansteuerung mit den Operationen OPEN und
CLOSE an. Die Operation OPEN benétigt die Offnung des Ventils in Prozent als Parame-
ter. Die Operation mit optionalem Parameter wird als Nachricht an die Einzelsteuerung
iibergeben. In einem ersten Schritt zerlegt der Baustein Split die Nachricht in die Opera-
tion emd und, falls vorhanden, den Parameter val. Der Baustein CMP iiberpriift, ob die
Operation OPEN aufgerufen wurde. In diesem Fall wird eine Eins ausgegeben und der Bau-
stein Switch schaltet auf den Eingang val2, der den Offnungsgrad beinhaltet. Andernfalls
gibt CMP eine Null aus.
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em b
! 3Switch
actt
LO1.PV
x—_= viel  val1
1
& act2 out
S normal — val2
X2 act3
wenig —{ val3
<=
X1
[ws]

V

Abbildung C.6.: Funktionsbausteinnetzwerk zur Diskretisierung eines Behalterfillstands

Open,SP=x% bzw. Close

CO

-

str CMP
Open—{val out
Split omd Y01.0Open

Y01.SP
val

act Switch

0—valt out
val2

Abbildung C.7.: Funktionsbausteinnetzwerk zur Ansteuerung eines Stellventils
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D. XML-Reprasentation des
Referenzmodells

<?xml version="1.0" encoding="UTF-8"7>
<CAEXFile
xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance"
xsi:noNamespaceSchemaLocation=".\ CAEX_ClassModel . xsd"
xmlns:iec61360="http://std.iec.ch/cdd/iec61360"
xmlns:xs="http://www.w3.org /2001 /XMLSchema"
SchemaVersion="2.15" FileName="ProcedureModel.xml">
<Version>V1.0.0 (2016)</Version>
<Copyright>(C) 2016 Andreas Schueller</Copyright>
<!— Defining the interfaces of the procedure elements—>
<InterfaceClassLib Name="ProcedureBaseICL ">
<InterfaceClass Name="Procedurelnterface" />
<!— Interfaces of a step —>
<InterfaceClass Name="StepIn" RefBaseClassPath="ProcedureBaselCL/
Procedurelnterface" />
<InterfaceClass Name="StepOut' RefBaseClassPath="ProcedureBaseICL/
Procedurelnterface" />
<!— Interfaces of a transition —>
<InterfaceClass Name="TransitionIln" RefBaseClassPath="
ProcedureBaseICL/Procedurelnterface" />
<InterfaceClass Name="TransitionOut" RefBaseClassPath="
ProcedureBaseICL/Procedurelnterface" />
</InterfaceClassLib>
<!— Defining a role class for the state machine—>
<RoleClassLib Name="ProcedureBaseRCL ">
<RoleClass Name="StateMachine ">
<Attribute Name="inRequest" AttributeDataType="xs:string">
<Constraint Name="RequestType">
<NominalScaledType>
<RequiredValue>Start</RequiredValue>
<RequiredValue>Restart</RequiredValue>
<RequiredValue>Lock</RequiredValue>
<RequiredValue>Unlock</RequiredValue>
<RequiredValue>Abort</RequiredValue>
<RequiredValue>Reset</RequiredValue>

</NominalScaledType>
</Constraint>
</Attribute>
<Attribute Name="curState" AttributeDataType="xs:string"/>
</RoleClass>
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D. XML-Repriésentation des Referenzmodells

</RoleClassLib>

<!— Defining the procedure elements—>

<SystemUnitClassLib Name="ProcedureBaseSUCL ">
<!— Basic Elements —>

<SystemUnitClass Name="ProcedureElement"' />
<SystemUnitClass Name="ExecutionFrame" RefBaseClassPath="
ProcedureBaseSUCL /ProcedureElement ">
<Attribute Name="parameter" AttributeDataType="xs:anyType" />
<Attribute Name="inRequest"' AttributeDataType="xs:string"/>
<Attribute Name='"curStep" AttributeDataType="xs:string"/>
<InternalElement Name="InitialStep" RefBaseSystemUnitPath="
ProcedureBaseSUCL/InitialStep " />
<InternalElement Name="StateMachine">
<RoleRequirements RefBaseRoleClassPath="ProcedureBaseRCL/
StateMachine" />
</InternalElement>
</SystemUnitClass>
<SystemUnitClass Name="Step" RefBaseClassPath="ProcedureBaseSUCL/
ProcedureElement ">
<Attribute Name="activationTime" AttributeDataType="xs:time" />
<Attribute Name="isActive" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="name' AttributeDataType="xs:string"/>
<Attribute Name="timeActive" AttributeDataType="xs:integer" Unit
="1ec61360:UAA899" />
</SystemUnitClass>
<SystemUnitClass Name="Transition" RefBaseClassPath="
ProcedureBaseSUCL /ProcedureElement ">
<Attribute Name="name' AttributeDataType="xs:string"/>
<Attribute Name="enabled" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="abort" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="restart" AttributeDataType="xs:integer ">
<DefaultValue>0</DefaultValue>
</Attribute>
<Externallnterface Name="I11" RefBaseClassPath="ProcedureBaselCL/
TransitionIn' />
<ExternalIlnterface Name="0O1" RefBaseClassPath="ProcedureBaseICL/
TransitionOut' />
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition" />
</SystemUnitClass>
<SystemUnitClass Name="ElementaryStep" RefBaseClassPath="
ProcedureBaseSUCL /Step " />
<SystemUnitClass Name="InitialStep" RefBaseClassPath="
ProcedureBaseSUCL /ElementaryStep ">
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<Externallnterface Name="O1" RefBaseClassPath="ProcedureBaseICL/
StepOut" />
</SystemUnitClass>
<SystemUnitClass Name="FinalStep" RefBaseClassPath="
ProcedureBaseSUCL /ElementaryStep ">
<Attribute Name="abort" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>

</Attribute>
<Externallnterface Name="I1" RefBaseClassPath="ProcedureBaseICL/
StepIn" />
</SystemUnitClass>
<!— Hierarchy Elements—>

<SystemUnitClass Name="MacroStep" RefBaseClassPath="
ProcedureBaseSUCL/Step ">
<InternalElement Name="Macrolnitial" RefBaseSystemUnitPath="
ProcedureBaseSUCL /InitialStep" />
<InternalElement Name="MacroFinal" RefBaseSystemUnitPath="
ProcedureBaseSUCL/FinalStep" />
</SystemUnitClass>
<SystemUnitClass Name="PMacroStep" RefBaseClassPath="
ProcedureBaseSUCL /MacroStep ">
<InternalElement Name="Fork" RefBaseSystemUnitPath="
ProcedureBaseSUCL /Fork" />
<InternalElement Name="Join" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Join" />
<InternalLink Name="IL1" RefPartnerSideA="Macrolnitial:O1"
RefPartnerSideB="Fork:I1" />
<InternalLink Name="IL2" RefPartnerSideA="Join:01"
RefPartnerSideB="MacroFinal:11" />
</SystemUnitClass>
<SystemUnitClass Name="Fork" RefBaseClassPath="ProcedureBaseSUCL/
ProcedureElement ">
<Externallnterface Name="I1" RefBaseClassPath="ProcedureBaseICL/
TransitionIn'/>
<Externallnterface Name="0O1" RefBaseClassPath="ProcedureBaselCL/
TransitionOut " />
<ExternalIlnterface Name="02" RefBaseClassPath="ProcedureBaseICL/
TransitionOut' />
</SystemUnitClass>
<SystemUnitClass Name="Join" RefBaseClassPath="ProcedureBaseSUCL/
ProcedureElement ">
<Externallnterface Name="I1" RefBaseClassPath="ProcedureBaseICL/
TransitionIn'/>
<Externallnterface Name="I12" RefBaseClassPath="ProcedureBaseICL/
TransitionIn' />
<Externallnterface Name="O1" RefBaseClassPath="ProcedureBaseICL/
TransitionOut' />
</SystemUnitClass>
<!—Action and condition elements—>
<SystemUnitClass Name="Action" RefBaseClassPath="ProcedureBaseSUCL
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/ProcedurcElement " />
<SystemUnitClass Name="ServiceCall" RefBaseClassPath="
ProcedureBaseSUCL /Action ">
<Attribute Name="adress"' AttributeDataType="xs:string"/>
<Attribute Name="serviceName" AttributeDataType="xs:string"/>
<Attribute Name="operation" AttributeDataType="xs:string"/>
<Attribute Name="parameter" AttributeDataType="xs:anyType" />
</SystemUnitClass>
<SystemUnitClass Name="ProcedureCall" RefBaseClassPath="
ProcedureBaseSUCL/Action ">
<Attribute Name="adress" AttributeDataType="xs:string"/>
<Attribute Name="request" AttributeDataType="xs:string"/>
<Attribute Name="parameter" AttributeDataType="xs:anyType" />
</SystemUnitClass>
<SystemUnitClass Name="Condition" RefBaseClassPath="
ProcedureBaseSUCL /ProcedureElement ">
<Attribute Name='"curValue" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="listOfOperator" AttributeDataType="xs:anyType"/
>
</SystemUnitClass>
<SystemUnitClass Name="LogicalTerm" RefBaseClassPath="
ProcedureBaseSUCL /ProcedureElement ">
<Attribute Name="inverted" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="retValue" AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="index" AttributeDataType="xs:integer">
<DefaultValue>1</DefaultValue>
</Attribute>
</SystemUnitClass>
<SystemUnitClass Name="RequestReceived" RefBaseClassPath="
ProcedureBaseSUCL /LogicalTerm ">
<Attribute Name="value" AttributeDataType="xs:string"/>
</SystemUnitClass>
<SystemUnitClass Name="BooleanValue" RefBaseClassPath="
ProcedureBaseSUCL /LogicalTerm" />
<SystemUnitClass Name="StateCheck" RefBaseClassPath="
ProcedureBaseSUCL /LogicalTerm ">
<Attribute Name="adress' AttributeDataType="xs:string"/>
<Attribute Name="value" AttributeDataType="xs:string"/>
</SystemUnitClass>
<SystemUnitClass Name="TimeCompare" RefBaseClassPath="
ProcedureBaseSUCL /LogicalTerm ">
<Attribute Name="value" AttributeDataType="xs:integer" Unit="
iec61360:UAAB99" />
</SystemUnitClass>
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</SystemUnitClassLib>
<SystemUnitClassLib Name="ProcedureStateMachine ">
<SystemUnitClass Name="DefaultStateMachine ">
<Attribute Name="inRequest'/>
<Attribute Name='curState" />
<!— States of the state machine —>
<InternalElement Name="Aborted" RefBaseSystemUnitPath="
ProcedureBaseSUCL /ElementaryStep ">
<Externallnterface Name="I1" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="0O1" RefBaseClassPath="
ProcedureBaseICL /StepOut' />
</InternalElement>
<InternalElement Name="Idle" RefBaseSystemUnitPath="
ProcedureBaseSUCL /ElementaryStep ">
<Externallnterface Name="I11" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="I2" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="Ol" RefBaseClassPath="
ProcedureBaseICL /StepOut" />
</InternalElement>
<InternalElement Name="Running"' RefBaseSystemUnitPath="
ProcedureBaseSUCL /ElementaryStep ">
<Externallnterface Name="I1" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="I12" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="O1" RefBaseClassPath="
ProcedureBaselCL /StepOut" />
<Externallnterface Name="02" RefBaseClassPath="
ProcedureBaseICL /StepOut' />
<Externallnterface Name="03" RefBaseClassPath="
ProcedureBaseICL /StepOut" />
<Externallnterface Name="04" RefBaseClassPath="
ProcedureBaseICL /StepOut" />
</InternalElement>
<InternalElement Name="Aborting" RefBaseSystemUnitPath="
ProcedureBaseSUCL /MacroStep ">
<Externallnterface Name="I1" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="Ol1" RefBaseClassPath="
ProcedureBaseICL /StepOut' />
</InternalElement>
<InternalElement Name="Restart"' RefBaseSystemUnitPath="
ProcedureBaseSUCL /MacroStep ">
<Externallnterface Name="I1" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="O1" RefBaseClassPath="
ProcedureBaseICL /StepOut" />
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</InternalElement>
<InternalElement Name="StepHold" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ElementaryStep ">
<Externallnterface Name="I1" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="I12" RefBaseClassPath="
ProcedureBaseICL/StepIn" />
<Externallnterface Name="Ol" RefBaseClassPath="
ProcedureBaseICL /StepOut" />
</InternalElement>
<!— Transitions of the state machine—>
<InternalElement Name="T1" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Idle to Running</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value'>
<Value>Start</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T2" RefBaseSystemUnitPath="
ProcedureBaseSUCL / Transition ">
<Description>Running to Idle</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value">
<Value>Completed</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T3" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Running to Step Hold</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value">

<Value>Lock</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
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<InternalElement Name="T4" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Step Hold to Running</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL/RequestReceived ">
<Attribute Name="value"'>
<Value>Unlock</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T5" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Transition ">
<Description>Running to Restart</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL /Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value"'>
<Value>Restart</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T6" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Restart to Step Hold</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value'>
<Value>Restart completed</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T7" RefBaseSystemUnitPath="
ProcedureBaseSUCL / Transition ">
<Description>Running to Aborting</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL /Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value">
<Value>Abort</Value>
</Attribute>
</InternalElement>
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</InternalElement>
</InternalElement>
<InternalElement Name="T8" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Aborting to Aborted</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL /RequestReceived ">
<Attribute Name="value">
<Value>Abort completed</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<InternalElement Name="T9" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Transition ">
<Description>Aborted to Idle</Description>
<InternalElement Name="Condition" RefBaseSystemUnitPath="
ProcedureBaseSUCL/Condition ">
<InternalElement Name="RR" RefBaseSystemUnitPath="
ProcedureBaseSUCL/RequestReceived ">
<Attribute Name="value"'>
<Value>Restart</Value>
</Attribute>
</InternalElement>
</InternalElement>
</InternalElement>
<!— Supported Role—>
<SupportedRoleClass RefRoleClassPath="ProcedureBaseRCL/
StateMachine" />
<!— Links between states and transitions—>
<InternalLink Name="T1lin" RefPartnerSideA="Idle:O1"
RefPartnerSideB="T1:11" />
<InternalLink Name="Tlout" RefPartnerSideA="T1:01"
RefPartnerSideB="Running:11" />
<InternalLink Name="T2in" RefPartnerSideA="Running:01"
RefPartnerSideB="T2:11" />
<InternalLink Name="T2out" RefPartnerSideA="T2:01"
RefPartnerSideB="Idle:I11" />
<InternalLink Name="T3in" RefPartnerSideA="Running:02"
RefPartnerSideB="T3:11" />
<InternalLink Name="T3out" RefPartnerSideA="T3:01"
RefPartnerSideB="StepHold:I1" />
<InternalLink Name="T4in" RefPartnerSideA="StepHold:O1"
RefPartnerSideB="T4:I1" />
<InternalLink Name="T4out" RefPartnerSideA="T4:01"
RefPartnerSideB="Running:12" />
<InternalLink Name='"T5in" RefPartnerSideA="Running:03"
RefPartnerSideB="T5:11" />
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<InternalLink Name="T5out" RefPartnerSideA="T5:01"
RefPartnerSideB="Restart:11" />

<InternalLink Name='"T6in" RefPartnerSideA="Restart:O1"
RefPartnerSideB="T6:11" />

<InternalLink Name="T6out" RefPartnerSideA="T6:01"
RefPartnerSideB="StepHold:I2" />

<InternalLink Name="T7in" RefPartnerSideA="Running:04"
RefPartnerSideB="T7:11" />

<InternalLink Name="T7out" RefPartnerSideA="T7:01"
RefPartnerSideB="Aborting:11" />

<InternalLink Name="T8in" RefPartnerSideA="Aborting:01"
RefPartnerSideB="T8:I1" />

<InternalLink Name='"T8out" RefPartnerSideA="T8:01"
RefPartnerSideB="Aborted:11" />

<InternalLink Name="T9in" RefPartnerSideA="Aborted:01"
RefPartnerSideB="T9:11" />

<InternalLink Name="TO9out" RefPartnerSideA="T8:01"
RefPartnerSideB="1Idle:12" />

</SystemUnitClass>
</SystemUnitClassLib>
</CAEXFile>
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