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Nichts beflügelt die Wissenschaft so wie der Schwatz mit Kollegen auf dem Flur.
Arno Penzias (*1933), amerik. Physiker.
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ST Strukturierter Text
SysML Systems Modeling Language

UML Unified Modeling Language
URI Uniform Resource Identifier

WS-BPEL Web Service BPEL
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Akronyme

WSDL Web Service Description Language

XML Extensible Markup Language
XSD Extensible Markup Language (XML) Schema Defini-

tion
XSLT Extensible Stylesheet Language Transformation
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Kurzfassung
Prozeduren nehmen in der Automatisierung einen immer größeren Stellenwert ein. Proze-
duren zum Start eines Motors werden ebenso wie Abläufe zur Steuerung von Geschäftspro-
zessen seit vielen Jahren betrachtet und in domänenspezifischen Sprachen beschrieben.
Viele dieser domänenspezifischen Sprachen sind in der Praxis erprobt. Sie ähneln sich,
besitzen jedoch keine gemeinsame Syntax und Semantik. Dies ist vor allem den unter-
schiedlichen Anforderungen der Domänen geschuldet. Während die Steuerungsprozedur
einer Maschine formal definiert sein muss, damit die Steuerung sie eindeutig ausführen
kann, liegt der Fokus einer Instandhaltungsprozedur auf einer Darstellung, die durch den
menschlichen Akteur einfach verstanden und umgesetzt werden kann. Im Gegensatz zu
Maschinen können Menschen auch informale Aufrufe interpretieren. Die bestehenden Pro-
zedurbeschreibungssprachen werden in einer umfassenden Analyse betrachtet.

Die Vielfalt der domänenspezifischen Sprachen hat kein Problem dargestellt, solange die
beschriebenen Prozeduren unabhängig voneinander betrachtet werden. Heutzutage wird
allerdings unter den Schlagworten „horizontale Integration“ und „vertikale Integration“
eine ganzheitliche Betrachtung von Prozeduren angestrebt. Sowohl die horizontale als auch
die vertikale Integration sind essentielle Bestandteile im Zukunftsprojekt Industrie 4.0.
Zum einen sollen hierbei die Prozeduren zwischen den einzelnen Domänen ausgetauscht
werden können, ohne dass jede Domäne die Sprachen der anderen Domänen verstehen
muss. Zum anderen ist ein Zugriff auf die Informationen über den Prozedurzustand und
die Beeinflussung von Prozeduren über die Ebenen der Automatisierungspyramide hinweg
von Nöten.

In dieser Arbeit wird ein Referenzmodell zur Prozedurbeschreibung erarbeitet, das den
gemeinsamen Kern der domänenspezifischen Sprachen beschreibt: Sie bestehen aus zwei
Typen von Elementen, einer dieser Typen wirkt aktiv auf die Umgebung ein, der andere
Typ reagiert auf Änderungen der Umgebung. Des Weiteren gibt es gemeinsame Konstruk-
te zur Modellierung von Hierarchien, Alternativverzweigungen und Nebenläufigkeiten. Die
Interaktion mit der Umgebung ist einer der Hauptunterschiede zwischen den domänenspe-
zifischen Sprachen. Damit auch in dieser Hinsicht ein universelles Modell erzeugt werden
kann, muss die Interaktion mit der Umgebung über Dienstaufrufe und Zustandsabfragen
erfolgen. Dies deckt das Setzen und Abfragen von Variablen, aber auch die informale Über-
mittlung eines Arbeitsauftrags des Chefs an seinen Mitarbeiter ab. Somit ist sichergestellt,
dass das Prozedurmodell auf alle Komplexitätsgrade angewendet werden kann. Das Re-
ferenzmodell ist unabhängig von einer konkreten Visualisierung. Dies bietet den Vorteil,
dass jeder Nutzer der Prozedurbeschreibung eine für ihn persönlich optimierte Darstellung
auswählen kann, ohne dass eine Modifikation der Prozedurbeschreibung ist. Auch eine
Kopplung mit Assistenzsystemen ist möglich.

Neben der Beschreibung der Prozedur wird ein Konzept benötigt, das die einheitliche und
eindeutige Ausführung der Prozedur zulässt. Dies beinhaltet die operative Ausführung der
Schrittkette im Regelfall, aber auch ein eindeutig definiertes Verhalten im Fehlerfall. Nur
auf diese Weise ist eine Übertragbarkeit der Prozedur zwischen verschiedenen Systemen
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Kurzfassung

gewährleistet.
Die Verwendung von Dienstaufrufen stellt ein Werkzeug zur Erhöhung der Flexibilität

einer Prozedurbeschreibung dar. Die Abkehr von fest projektierten Signalverbindungen
bewirkt, dass eine Zuordnung von benötigten Ausführungseinheiten erst zur Laufzeit er-
folgen kann. Hier werden die kognitiven Fähigkeiten des Menschen ausgenutzt, die es ihm
ermöglichen situationsbedingte Entscheidungen zu treffen. Ein Rollenkonzept unterstützt
die flexible Zuordnung. Auf diese Weise kann der Entwickler der Prozedur in den Rol-
len Anforderungen an die Ausführungseinheiten definieren. Basierend auf den Rollen ist es
realisierbar zur Laufzeit eine Zuordnung zu konkreten Ausführungseinheiten vorzunehmen.
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Abstract
Procedures assume an increasingly important role within current automation technology.
Procedures for starting an engine as well as sequences for controlling business processes
have been examined and subsequently described in domain-specific languages for many
years now. Many of these domain-specific languages are tried and tested in practice. Al-
though the languages are fairly similar, they do not share a common syntax and semantics.
This fact can be explained by the different requirements of the individual domains. While
the control procedures of a machine must be formally described in order that the control
system can execute them unequivocally. The focus of a maintenance procedure is firmly
placed on a representation that can be easily understood and implemented by a human
being. In contrast to machines, human beings can also interpret informal requests. The
existing procedure description languages will be considered in a comprehensive analysis.

The variety of the domain-specific languages has never presented a problem as long as
the described procedures were considered independently from each other. Nowadays, how-
ever, a holistic approach towards procedures is pursued under the headings of “horizontal
integration” and “vertical integration”. Both, the horizontal- and the vertical integration
are essential components of the future-oriented project “Industrie 4.0”. On the one hand,
it is envisaged that procedures can be exchanged between individual domains without the
necessity that each domain can understand the language of the other domain. On the
other hand, it is required that information regarding a procedure’s state can be accessed,
and that procedures can be influenced by the different levels of the automation pyramid.

In this work, a reference model for procedure descriptions is developed that describes the
common core of the different domain-specific languages. Basically, the languages consist
of two types of elements. One of these element types actively influences the environment,
while the other type reacts to changes in the environment. Additionally, there are shared
constructs for the modelling of hierarchies, alternative branches and concurrencies. The
interaction with the environment is one of the central differences between the domain-
specific languages. In order to also create a universal model in this respect, the interaction
with the environment can only be realized via service requests and status inquiries. This
covers the setting and querying of variables as well as the informal submission of a task
by the department head to his employees. This ensures that the procedure model can be
applied to all levels of complexity. Moreover, the procedure model is independent of a
concrete visualization. It is advantageous that each user of the procedure description can
thus select a personally optimized representation without the need of having to modify the
actual procedure description. A coupling with assistance systems is also possible.

Along with the description of the procedure, a concept that facilitates a consistent and
unambiguous execution of the procedure is required. This includes the operative execution
of the step chain during normal operations, but also a clearly-defined behavior in case
of faults. This is the only way in which the portability of procedures between different
systems can be ensured.

The use of service invocations can be understood as a tool to increase the flexibility of
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Abstract

the procedure descriptions. The renunciation of pre-configured signal connections has the
effect that the allocation of the required execution units cannot occur until runtime. In
this context, the cognitive abilities of human beings that enable us to make situation-based
decisions can be fully exploited. The flexible allocation is additionally supported by a roles
concept. By this means, the developer of a procedure can define the requirements of an
execution unit in roles. Based on these roles, an allocation of the concrete execution units
can be performed at runtime.
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1. Einleitung

1.1. Motivation
Die systematische Steuerung von verfahrenstechnischen Produktionsprozessen tritt seit
dem Beginn der Industrialisierung in den Vordergrund. In der vorindustriellen Gesellschaft
wurde das Wissen über handwerkliche Prozesse innerhalb der Manufakturen im Vergleich
zu heute ausschließlich mündlich weitergegeben. Seit der Erfindung der Dampfmaschine
im 18. Jahrhundert wird das Gewerk der Mess-, Steuerungs- und Regelungstechnik (MSR)
benötigt [140]. Für den Betrieb der Dampfmaschine wurden z. B. eine Schwimmerregelung
für den Wasserstand und ein Zentrifugalregulator für den Dampfdruck entworfen [200].
Die MSR hat im Laufe ihrer Geschichte viele technologische Entwicklungen aus anderen
Bereichen (z. B. Transistoren, Laser, integrierte Schaltkreise usw.) adaptiert. Aber auch
gedankliche Konzepte, beispielsweise die Petrinetze oder die Objektorientierung, sind be-
reitwillig aufgegriffen worden. Der Einfluss der Informationstechnik begründete den Wandel
von der klassischen MSR zur Prozessleittechnik (PLT) [140]. In Abbildung 1.1 sind typische
Funktionen dargestellt, die neben der MSR zur PLT zählen.

Messen

Steuern Regeln

Qualitäts-
prüfung

Logistik

Produktions-
planung

Stillegung

Reengineering

Wartung und
Reparatur

Installation

Entwicklung
und Planung

Melden und
Alarmieren

Bedienen und
Beobachten

Anlagenfahrer Entwicklungs-
ingenieur

HandwerkerDisponent

Abbildung 1.1.: Funktionen und menschliche Rollen in der Prozessleittechnik (angelehnt an
[112, 149])

Viele der Funktionen, die in Abbildung 1.1 dargestellt sind, basieren auf Abläufen. Die

1
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1. Einleitung

Bedeutung der Ablaufbeschreibung wird in Zukunft weiter zunehmen. So ist das Schaffen
von

„Standards für eine die Automatisierungsebene übergreifende Prozedur- und
Funktionsbeschreibung“ [91, S. 45].

eine der Handlungsempfehlungen im Zukunftsprojekt Industrie 4.0. Beispielsweise wird in
der Produktionsplanung die zeitliche Abfolge von Chargenprozessen festgelegt, Reparatur-
anleitungen erklären schrittweise die durchzuführenden Tätigkeiten oder in einer Steuerung
sind Sequenzen zum Anfahren einer Anlage hinterlegt. Die Automatisierung solcher Steue-
rungsabläufe bietet verschiedene Vorteile, z. B. eine höhere Sicherheit und Zuverlässigkeit
durch Vermeidung menschlicher Fehler, die Verbesserung von An- und Abfahrprozessen,
eine bessere Wissenskonservierung und eine gesteigerte Effektivität der Anlagenfahrer [81].
Die Vollautomatisierung ist jedoch finanziell nicht zu realisieren, da Produktionsanlagen in
der Prozessindustrie häufig einmalige und nur einmal errichtete Systeme sind [59]. Gerade
in Ausnahme- und Fehlersituationen sind automatische Abläufe nicht implementiert, so
dass der Mensch eingreifen muss. Durch eine Reduzierung des Implementierungsaufwands
automatisierter Steuerungsabläufe wird es möglich sein, eine größere Anzahl zu automa-
tisieren. Aufgrund immer komplexerer Anlagen und der Entfremdung des Anlagenfahrers
vom Prozess (z. B. aufgrund von Remote Operation [9]) wird dies immer schwieriger [181].
Des Weiteren wird die Automatisierungslösung auf mehreren verteilten Automatisierungs-
systemen implementiert [44]. Der Ansatz der „Automatisierung der Automatisierung“ (vgl.
z. B. [16, 146]) versucht möglichst viele menschliche Tätigkeiten im Umfeld der PLT zu
automatisieren. Dennoch bleibt festzuhalten, dass auch in der Zukunft der Mensch eine
entscheidende Rolle bei der Steuerung von Prozessen spielen wird [91] (vgl. Abbildung 1.1).

Abbildung 1.2 zeigt den Lebenszyklus einer Anlage.

Studie Vorplanung

Basisplanung
Ausführungs-

planung

Anlagen-
errichtung

Inbetrieb-
nahme

Betrieb

Wartung

Demontage

durchführbare Anlage

ausschreibbare Anlage

funktionsfähige Anlage

unbenötigte
Anlage

Reengineering

produktionsfähige

Anlage

defekte Anlage

modernisierte

Anlage

Abbildung 1.2.: Lebenszyklus einer verfahrenstechnischen Anlage (angelehnt an [99, 149])

Die Entwicklung von Automatisierungsfunktionen, d. h. die Erzeugung von Software im
Steuerungssystem, findet hauptsächlich in den in Abbildung 1.2 grau hinterlegten Pha-
sen der Vorplanung, der Basisplanung, der Ausführungsplanung und des Reengineerings
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1.1. Motivation

statt. Während der Entwicklung der Software werden aufgrund des Termindrucks häufig
Adhoc-Lösungen implementiert. Diese führen häufig zu Unzufriedenheit bei den Betrei-
bern, falls Änderungen bei der Inbetriebnahme oder während des Betriebs notwendig sind
[161]. Adhoc-Lösungen lassen sich durch eine strukturierte Planung der Planungsprozesse
weitestgehend vermeiden. Stattdessen soll ein durchgängiges Engineering etabliert werden,
welches neben der vertikalen und der horizontalen Integration eines der wesentlichen Ele-
mente von Industrie 4.0 ist [126]. Hinsichtlich der Steuerungsabläufe ist hier eine automa-
tische Übernahme der Sequenzen aus der verfahrenstechnischen Planung zu nennen, die in
der automatisierungstechnischen Planung weiter spezifiziert werden. Auch die Implemen-
tierung der Abläufe im Steuerungssystem soll aus der Planung ohne manuelle Tätigkeiten
erstellt werden.

Eine Lösung hierfür ist das modellbasierte Engineering (vgl. z. B. [4, 51, 59, 186]). Das
modellbasierte Engineering behebt Schwächen der konventionellen Softwareentwicklung.
Dort ist z. B. die Qualität der Software maßgeblich vom Entwickler abhängig. Durch die
nichtformalisierte textuelle Formulierung sind die Anforderungen nicht eineindeutig spezifi-
ziert, die Anzahl der Fehler steigt mit der Komplexität und die Implementierung ist häufig
die einzige Dokumentation [156]. Eine modellgetriebene Entwicklung bietet demnach ei-
ne Möglichkeit der Verkürzung und der besseren Verknüpfung der Entwicklungsphasen.
Neben den Modellen zur Entwicklung der Automatisierungsfunktionen sind Modelle zur
Kommunikation und zum Datenaustausch notwendig [16]. Andere Konzepte zur Verkür-
zung der Planungszeiten und damit eine schnellere Time-to-Market sind Package Units und
modulare Anlagen. Hier besteht weiterhin ein hoher Forschungsbedarf, damit die nahtlose
Integration in die Gesamtanlage funktioniert [133–135]. Die Unabhängigkeit von Beschrei-
bungsaspekten ist z. B. eine Anforderung modularer Anlagen [134].

Neben dem Streben zu einem höheren Automatisierungsgrad ist eine flexible Reaktion
auf sich ändernde Umgebungsbedingungen ein Ziel innerhalb der PLT. Unter Flexibilität
wird hier die Möglichkeit verstanden Funktionen während des Lebenszyklus der Anlage zu
ergänzen, zu modifizieren oder zu löschen. Diese Funktionen brauchen nicht bereits wäh-
rend der Planungsphase entwickelt zu werden [51]. Aus Anlagensicht kann dies durch die
bereits erwähnten modularen Anlagen oder Mehrproduktanlagen realisiert werden. Aber
auch flexiblere Steuerungssysteme sind notwendig. Hier besteht erhebliches Verbesserungs-
potential bei der Verknüpfung der leittechnischen Funktionen [71] (vgl. Abbildung 1.1).
Beispielsweise verhindert eine statische Produktionsplanung schnelle Reaktionen auf Än-
derungen. Eine dynamische Produktion bedingt durch unvorhergesehene Bestelleingänge
wird durch die Steuerungssysteme nicht ausreichend unterstützt [13]. Produkte müssen
über ihren gesamten Lebenszyklus überwacht und nachverfolgt werden. Die Produktions-
schritte müssen zunehmend nicht nur in qualifizierungspflichtigen Prozessen dokumentiert
werden [87, 121]. In der Industrie 4.0-Initiative ist die Verflechtung von technischen Pro-
zessen mit Geschäftsprozessen ein wesentliches Ziel [91, 154]. Schwankungen in den Prei-
sen von Hilfs- und Rohstoffen machen kurzfristige Logistikvorgänge notwendig [74]. Die
leittechnischen Funktionen müssen demnach interagieren, damit eine flexible Produktion
ermöglicht wird. Dem stehen jedoch unterschiedliche Systeme [159], verschiedene Quellen
zur Ermittlung des Bedarfs [161], mangelnder Zugriff auf Produkt- und Materialpreise [74]
und ein fehlendes gemeinsames Begriffsverständnis [57] gegenüber.

Zusammenfassend bedeutet dies, dass Automatisierungsfunktionen zum einen einfacher
geplant werden und zum anderen stärker mit anderen Funktionen vernetzt sein müssen. In
[52] wird dies durch die zwei Herausforderungen „Virtualisierung der Infrastruktur“ und
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1. Einleitung

„Funktionsadaption zur Laufzeit“ beschrieben. Hierzu reicht die Definition von Schnittstel-
len und Kommunikationskanälen nicht aus. Vielmehr ist ein gemeinsames Begriffsverständ-
nis notwendig [57, 126], sowohl zwischen den verschiedenen Gewerken im Planungsprozess
als auch zwischen den unterschiedlichen Sichten auf die Automatisierungsfunktionen. Auf
diese Weise sind eine Verkürzung der Planungs- und Bauzeit durch einen Datenaustausch
zwischen verschiedenen Gewerken, eine einfachere Datengewinnung für Wartungs- und Mo-
dernisierungsmaßnahmen und eine automatische Übernahme individueller Kundenwünsche
möglich [126].

1.2. Zielsetzung
In dieser Arbeit werden drei Ziele verfolgt, eine Analyse bestehender Prozedurbeschrei-
bungssprachen, die Erstellung eines Referenzmodells zur Prozedurbeschreibung und die
beispielhafte Anwendung des Referenzmodells.

Umfassende Analyse bestehender Prozedurbeschreibungssprachen

Das erste Ziel dieser Arbeit besteht im Erstellen einer Übersicht über die bestehenden Pro-
zedurbeschreibungssprachen. Diese Übersicht ist eine notwendige Basis für die Ermittlung
des gemeinsamen Kerns der Beschreibungssprachen. Darauf aufbauend kann auch eine Ent-
scheidung getroffen werden, welche Sprachen in einer konkreten Automatisierungsaufgabe
verwendet werden können.

Definition eines Meta-Modells zur Prozedurbeschreibung

Hauptziel dieser Arbeit ist die Herleitung eines allgemeinen Referenzmodells zur Prozedur-
beschreibung. Durch das Referenzmodell sollen zwei wesentliche Punkte adressiert werden,
die in diesem Kapitel als verbesserungswürdig identifiziert wurden: Ein vereinfachter Ent-
wurfsprozess von Steuerungsabläufen und das Schaffen eines gemeinsamen Verständnisses
des Begriffs „Prozedur“ in den verschiedenen Gewerken im Umfeld der PLT. Mit dem
Referenzmodell soll die gemeinsame Grundsemantik bestehender Prozedurbeschreibungs-
sprachen abgebildet werden. Es muss eine Abstraktionsschicht bilden, die die kompakte
Beschreibung der Prozeduren ermöglicht, ohne auf Sprachdokumentationen im Umfang
mehrerer hundert Seiten zurückgreifen zu müssen. Das Referenzmodell soll explizit keine
neue Prozedurbeschreibungssprache sein. Des Weiteren muss sich das Referenzmodell von
der Modellierung von kontinuierlichen Regelungen und Funktionsbausteinen klar abgren-
zen. Auch die Kommunikationstechnik zwischen Steuerung und Anlage sowie die Model-
lierung der Anlage sollen nicht behandelt werden.

Durch die Verwendung einer Service-oriented Architecture (SOA) zur Kommunikation
zwischen Steuerung und Anlage und zwischen verschiedenen Steuerungssystemen soll ei-
ne Virtualisierung der Infrastruktur und eine Funktionsadaption zur Laufzeit ermöglicht
werden. Durch die Idee der Dienstaufrufe werden (quasi-)kontinuierliche Steuerungsfunk-
tionen von außen durch die Prozeduren steuerbar sein. Die Prozedur wird somit durch
die Dienstaufrufe von der Realisierung der Funktionen getrennt werden. Des Weiteren soll
die Interaktion zwischen menschlichen und maschinellen Akteuren im Produktionskontext
erfasst, modelliert und gesteuert werden.
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Untersuchung zur Anwendbarkeit des Meta-Modells

Das dritte Ziel besteht im Aufzeigen der Vorteile des entwickelten Referenzmodells. Dies
soll an ausgewählten Beispielprozeduren geschehen, die einen Bogen von einer simplen
Startprozedur eines Motors bis hin zu Prozeduren mit menschlicher Interaktion spannen.
Auch der Entwurfsprozess einer Prozedur wird hierbei betrachtet werden.

1.3. Gliederung
Zu Beginn der Arbeit werden in Kapitel 2 grundlegende Begriffsdefinitionen vorgenom-
men. Hier wird ein besonderer Fokus auf das kybernetische Grundprinzip gelegt. Auf diese
Weise wird eine saubere Trennung zwischen Prozess, Prozedur und Ausführungseinheit
vorgenommen. Ebenfalls wird die Verteilung der Automatisierungsfunktionen auf die Ebe-
nen der Automatisierungspyramide erläutert. Den Abschluss der Begriffswelt bildet die
Einführung von Modellen als Prozedurbeschreibungsmittel.

In Kapitel 3 sind zunächst die grundlegenden Konzepte erläutert, die in Prozedurbe-
schreibungssprachen enthalten sind. Im Anschluss werden verschiedene Beschreibungsspra-
chen für Prozeduren für technische Prozesse und Geschäftsprozesse betrachtet. Hierbei wird
ein Mapping der Sprachen auf die Sprachelemente vorgenommen. Abschließend werden die
Vorteile der Sprachen für ihre jeweilige Domäne erfasst und die Probleme im Zusammen-
wirken zusammengefasst.

Die in der Motivation genannten Herausforderungen werden in Kapitel 4 in Anforderun-
gen an ein Referenzmodell zur Prozedurbeschreibung umgewandelt. Aufbauend auf den
Anforderungen und der Analyse in Kapitel 3 wird dieses Referenzmodell anschließend als
Meta-Modell entwickelt. Die Darstellungsformen durch ein meta-modellbasiertes Visuali-
sierungssystem und als XML-Struktur runden die Modellvorstellung ab. Kapitel 5 enthält
zwei Anwendungsbeispiele, die Steuerprozedur der Pumpe einer LKW-Abfüllung und eine
Ventil-Wartungsprozedur.

Das erstellte Referenzmodell wird in Kapitel 6 zusammengefasst sowie anhand der An-
forderungen und der umgesetzten Beispiele kritisch diskutiert. Ein Ausblick über weitere
Forschungsaktivitäten bildet den Schluss der Arbeit.
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2. Definitionen und grundlegende
Begriffswelt

Die Begriffe Prozess, Prozessleitsystem, Kommunikation und Modellierung werden in vie-
len verschiedenen Literaturquellen verwendet und in all ihren Facetten beleuchtet. Dieses
Kapitel dient nicht der detaillierten Darstellung der Literatur zu diesem Thema, sondern
als Grundlage eines einheitlichen Begriffsverständnisses für den Rahmen der vorliegenden
Arbeit.

2.1. Prozess
In Kapitel 1.1, S. 1, ist die Bedeutung von Prozessen für die industrielle Produktion dar-
gestellt worden. Ein Prozess ist definiert als ein

„Satz von in Wechselbeziehung oder Wechselwirkung stehenden Tätigkeiten, der
Eingaben in Ergebnisse umwandelt“ [82, S. 27].

Die Prozessdefinition gilt allgemein für alle Arten von Prozessen. Der Prozessbegriff wird
in verschiedenen Spezialisierungen verwendet (vgl. Abbildung 2.1).

Technischer
Prozess

Kontinuierlicher
Prozess

Diskreter
Prozess

Stückfertigung Chargenprozess

Prozess

Geschäfts-
prozess

Arbeitsprozess

Abbildung 2.1.: Prozesstypen (nach [130])

Eine dieser Spezialisierungen ist der technische Prozess, welcher im Umfeld der Leittech-
nik von besonderem Interesse ist. Ein technischer Prozess umfasst die
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2.2. Das kybernetische Grundprinzip

„Gesamtheit der Vorgänge in einer technischen Anlage“ [34, S. 33],

mit anderen Worten, ein technischer Prozess ist eine

„Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch
die Materie, Energie oder Information umgeformt, transportiert oder gespei-
chert wird“ [54, S. 877].

Technische Prozesse werden weiterhin in kontinuierliche und diskrete Prozesse unterteilt,
wobei sich diskrete Prozesse in Stückfertigung und Chargenprozesse gliedern lassen. Für die
Unterschiede zwischen den Spezialisierungen von technischen Prozessen sei auf [110, 137]
verwiesen. Des Weiteren werden Prozesse ausgeführt, die den Zustand einer technischen
Einrichtung ändern. Ein Beispiel hierzu ist ein Reinigungsprozess [81].

Neben den technischen Prozessen sind die Geschäftsprozesse eine weitere Spezialisierung
von Prozessen. Ein Geschäftsprozess legt die Rahmenbedingungen für technische Prozesse
fest und ist

„eine zielgerichtete, zeitlich-logische Abfolge von Aufgaben, die arbeitsteilig
von mehreren Organisationen oder Organisationseinheiten unter Nutzung von
Informations- und Kommunikationstechnologien ausgeführt werden können“
[68, S. 36].

Arbeitsprozesse sind

„Geschäftsprozesse auf Mikroebene, die von Arbeitspersonen geplant, vollzogen,
koordiniert und optimiert werden“ [145, S. 460].

In der produzierenden Industrie werden alle Prozesse entweder mit dem Ziel der Wert-
schöpfung ausgeführt oder dienen zur Vorbereitung eines wertschöpfenden Prozesses. An-
zumerken ist, dass sich Wertschöpfung nicht ausschließlich auf die Erzeugung eines ver-
kaufsfähigen Produkts beschränkt. Auch Dokumente, Modelle und andere Artefakte zur
Nutzung innerhalb eines Unternehmens stellen einen Wert dar [154]. Wertschöpfende Pro-
zesse werden vom Menschen initiiert und müssen kontrolliert werden1. Die Kontrolle eines
Prozesses wird im folgenden Unterkapitel behandelt.

2.2. Das kybernetische Grundprinzip
Wesentlich für das Verständnis dieser Arbeit ist das kybernetische Grundprinzip der Tren-
nung von Steuerndem und Gesteuertem. Kybernetik ist die

„Wissenschaft von der Steuerung, d.h. der zielgerichteten Beeinflussung von
Systemen“ [90].

Ein System ist im Internationalen Elektronischen Wörterbuch definiert als

„Menge miteinander in Beziehung stehender Elemente, die in einem bestimm-
ten Zusammenhang als Ganzes gesehen und als von ihrer Umgebung abgegrenzt
betrachtet werden“ [34, S. 17].

1Im Gegensatz hierzu stehen natürliche Prozesse. Natürliche Prozesse haben eine intrinsische Steuerung,
die nicht beeinflusst werden kann und daher im Rahmen dieser Arbeit nicht behandelt wird.
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2. Definitionen und grundlegende Begriffswelt

Wird das kybernetische Prinzip auf die produzierende Industrie übertragen, läuft ein
Produktionsprozess im Produktionssystem, das aus dem Produktsystem, dem Anlagen-
system und dem Steuerungssystem besteht. Das Steuerungssystem wirkt auf das Anla-
gensystem und dieses wiederum auf das Produktsystem. Über die Rückwirkungen erhält
das Steuerungssystem Informationen über den Prozess, die es verwerten kann (vgl. Abbil-
dung 2.2).

Produktionssystem

Steuerungs-
system

Produkt-
system

Anlagen-
system

wirkt rück auf

wirkt auf wirkt auf

Produktions-
prozess läuft in

wirkt rück auf

Abbildung 2.2.: Aufbau des Produktionssystems (nach [130])

Dieses Zusammenspiel zwischen Produktsystem, Anlagensystem und Steuerungssystem
wird im Folgenden beschrieben.

2.2.1. Produktsystem
Ein Produkt ist

„etwas, was (aus bestimmten Stoffen hergestellt) das Ergebnis menschlicher
Arbeit ist” [43].

Ein Produkt kann als System betrachtet werden. Ein Produktsystem ist definiert als ein

„[m]aterielles oder immaterielles Objekt, das entsteht, um auf einem Markt zur
Betrachtung oder zur Wahl, zum Kauf, zur Benutzung, zum Verbrauch oder zum
Verzehr angeboten wird und geeignet ist, damit Wünsche oder Bedürfnisse zu
befriedigen“ [46, S. 381].

Produktsysteme können demnach sowohl physische als auch gedankliche Gegenstände
sein. Die Unterscheidung der verschiedenen Produkttypen ist nicht Bestandteil dieser Ar-
beit. Wichtig an dieser Stelle ist, dass ein Produkt bestimmte Eigenschaften besitzen muss,
damit der wertschöpfende Prozess erfolgreich abgelaufen ist. Der Markt in der Definition
aus [46] kann sich auch ausschließlich innerhalb des produzierenden Unternehmens befin-
den, wenn Produkte intern genutzt werden.

2.2.2. Anlagensystem
Ein technischer Prozess kann nach der Definition aus [34] nicht ohne eine zugehörige tech-
nische Anlage ausgeführt werden. Eine technische Anlage umfasst die
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2.2. Das kybernetische Grundprinzip

„Gesamtheit der technischen Einrichtungen und Vorrichtungen zur Bewältigung
einer festgelegten technischen Aufgabe“ [34, S. 33].

Zur Ausführung des Prozesses sind Objekte aus der physischen Welt notwendig, da erst
eine technische Anlage dem Produktsystem eine definierte Umgebung bietet, in der sich
das Produktsystem befinden kann [38].

Im Rahmen dieser Arbeit wird der Begriff Anlagensystem verallgemeinert und auf ge-
nerelle Ausführungseinheiten erweitert. Eine Ausführungseinheit ist ein System, welches
einen inneren Aufbau und einen Lebenszyklus besitzt. Eine Ausführungseinheit hat ein
funktionales und kapazitives Leistungsvermögen. Sie steht mit anderen Objekten in einem
Zusammenhang. Sowohl Menschen als auch Maschinen können Ausführungseinheiten sein
[154].

Ausführungseinheiten können ein internes Steuerungssystem besitzen2. Sie können un-
terschiedliche Rollen einnehmen. Eine Rolle ist

„ein Element, das auf der einen Seite eine Realisierungseinheit in einem Mo-
dellsystem (Rollensystem) vertritt und auf der anderen Seite die Anforderungen
an eine Realisierungseinheit spezifiziert“ [38, S. 40].

Eine Rolle ist demnach im Kontext der Ausführungseinheiten eine Spezifikation von An-
forderungen, die in einem bestimmten Produktionskontext durch die Ausführungseinheit
erfüllt werden muss. Eine Rolle kann sowohl durch maschinelle als auch durch menschliche
Ausführungseinheiten ausgefüllt werden [154].

Unterschiede zwischen maschinellen und menschlichen Ausführungseinheiten

Maschinelle Ausführungseinheiten können lediglich die bei ihrer Entwicklung vorgesehe-
nen Aktionen ausführen [154]. Sie können rekonfiguriert werden, aber nicht flexibel auf
neue Herausforderungen reagieren [169]. Menschliche Ausführungseinheiten hingegen ha-
ben zusätzlich die Möglichkeit auf unbekannte Situationen zu reagieren. Sie können also
basierend auf ihrem Wissen und ihren Erfahrungen eigenständige Entscheidungen treffen
[154]. Dies ist ein wichtiges Kriterium der Umsetzungsstrategie Industrie 4.0, die besagt,
dass auch zukünftige hochautomatisierte Produktionsumgebungen immer Menschen be-
dürfen [125, 169]. Dort wird der Mensch als

„Dirigent im Wertschöpfungsnetzwerk“ [125, S. 48]

bezeichnet. Menschliche Ausführungseinheiten sind von Natur aus sowohl flexibel als auch
rekonfigurierbar [169].

Ausführungseinheiten müssen aufgerufen werden, damit sie Aktionen ausführen. Bei ma-
schinellen Ausführungseinheiten muss der initiale Aufruf von extern kommen. Anschließend
kann jedoch eine Ausführungseinheit weitere Aufrufe an andere Ausführungseinheiten schi-
cken. Menschliche Ausführungseinheiten können sich im Gegensatz dazu selber initial auf-
rufen. Tritt beispielsweise ein Brand auf, startet ein Mensch selbstständig die Prozedur
„Feuer löschen“ [154].

2Dies ist kein Widerspruch zu Abbildung 2.2, die Trennung zwischen Steuerndem und Gesteuertem ist
bei internen Steuerungssystemen nur zu erkennen, wenn der interne Aufbau der Ausführungseinheit
analysiert wird. Das System Ausführungseinheit wird dann in die Systeme interne Steuerungseinheit
und Unter-Ausführungseinheit aufgeteilt.
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2. Definitionen und grundlegende Begriffswelt

Technische Agenten sind eine Mischung aus beiden Ausführungseinheitstypen. Unter
einem technischen Agenten wird

„eine abgrenzbare (Hardware- oder/und Software-) Einheit mit definierten Zie-
len“ [174, S. 3]

verstanden, die durch Reaktion auf ihre Umgebung in Zusammenarbeit mit anderen Agen-
ten ein vorgegebenes Ziel erreicht. Agenten stellen demnach maschinelle Systeme dar, die
flexibel Entscheidungen treffen können [174]. Auf technische Agenten wird im Rahmen
dieser Arbeit nicht weiter eingegangen. Für zusätzliche Informationen hierzu sei auf [196]
verwiesen.

2.2.3. Steuerungssystem
Analog zu den Ausführungseinheiten können sowohl Menschen als auch Maschinen Steue-
rungssysteme sein. Ein maschinelles Steuerungssystem ist ein

„Rechner- und Kommunikationssystem, in welchem ein Informationsprozess
abläuft (Umformung, Verarbeitung und Transport von Information)“ [100,
S. 6].

Neben den Informationsprozessen, die in [100] genannt werden, ist auch die Speicherung
von Informationen Aufgabe eines Steuerungssystems. Bei den klassischen maschinellen
Steuerungssystemen wird zwischen Speicherprogrammierbarer Steuerung (SPS) und Pro-
zessleitsystem (PLS) unterschieden.

Speicherprogrammierbare Steuerungen

Eine SPS, auf Englisch PLC, ist ein Computer in robuster Bauweise, der auf einem ex-
ternen Programmiergerät in einer speziellen Programmiersprache nach der IEC 61131-3
[22] programmiert wird. In der Prozesstechnik werden sie meist in Kombination mit einem
PLS verwendet. Typisch für eine SPS ist die zyklische Abarbeitung der Programme. In
jedem Zyklus werden die Eingänge der SPS zunächst in das Prozessabbild eingelesen. An-
schließend arbeiten die programmierten Steuerungsfunktionen auf dem Prozessabbild und
schreiben die Ergebnisse ebenfalls in Variablen des Prozessabbilds. Im nächsten Schritt
werden die Ausgänge der SPS entsprechend gesetzt [105].

Prozessleitsysteme

In der Prozesstechnik werden heutzutage üblicherweise verteilte PLS, auf Englisch Process
Control System (PCS), verwendet (vgl. Abbildung 2.3).

Ein PLS interagiert über Feldgeräte mit dem zu steuernden Prozess. Ein Feldgerät kann
entweder ein Sensor oder ein Aktor sein. Feldgeräte stellen die Schnittstelle zwischen Anla-
gensystem und Steuerungssystem dar. Feldgeräte sind mit einer Prozessnahen Komponente
(PNK) verbunden. Die Verbindung ist entweder direkt, über eine Remote Input/Output
(RIO) oder über weitere Sub-PNK realisiert [104]. Neben mindestens einer PNK besteht
ein PLS aus mindestens einer Anzeige-/Bedienkomponente (ABK). Die ABK wird auch
als Operator Station (OS) oder als Human-Machine-Interface (HMI) bezeichnet. Durch
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2.3. Steuerungsfunktionen

Betriebsbus

Systembus

Feldbus

Prozessnahe
Komponente ( )PNK

Prozessnahe
Komponente ( )PNK

Anzeige-/
Bedienkomponente

( )ABK

Anzeige-/
Bedienkomponente

( )ABK

...

...

Prozessnahe
Komponente
(Sub- )PNK

Remote I/O
( )RIO

Feldgerät mit
Feldbus

Konventionel-
les Feldgerät

Engineering-
Komponente

Betriebsleitsystem
Laborinformations-
und Management-

system (LIMS)

Prozessdateninfor-
mations- und

Managementsystem
(PIMS)

Lagerautomatisie-
rung und Material-

flusssteuerung

Abbildung 2.3.: Aufbau eines Leitsystems (nach [104, 164])

eine ABK wird der Anlagenfahrer über den Prozesszustand informiert und kann Hand-
eingriffe in den Prozess vornehmen. Die ABK und die PNK sind über den Systembus
miteinander verbunden, der häufig redundant ausgeführt wird und echtzeitfähig ist. Auf
einer PNK werden die Steuerungsfunktionen ausgeführt. Es ist üblich, dass auch SPS als
PNK verwendet werden. Konfiguriert werden die PNK über eine Engineering-Komponente
(oder auch Engineering Station (ES) genannt). Neben den echtzeitfähigen Komponenten
gibt es weitere, nicht-echtzeitfähige Systeme, die über den Betriebsbus angebunden sind.
Hier sind z. B. das Betriebsleitsystem, das Labor-Informations- und Managementsystem
(LIMS), das Prozessdaten-Informations- und Managementsystem (PIMS) und das Lager-
und Materialfluss-Steuerungssystem zu nennen [164].

Der Mensch als Steuerungssystem

Nicht nur Automaten können als Steuerungssystem verwendet werden, auch Menschen kön-
nen steuern. [154]. Beispielsweise empfängt ein Arbeiter Anweisungen von seinem Chef. In
diesem Fall wirkt das Steuerungssystem „Chef“ auf die Ausführungseinheit „Arbeiter“ ein.
Im direkten Produktionsumfeld greifen die Anlagenfahrer über die ABK in die Prozes-
steuerung ein [100]. Auch in zukünftigen Industrie 4.0-Umgebungen steht der Mensch als
Steuerungssystem im Fokus [125].

2.3. Steuerungsfunktionen
Eine Steuerungsfunktion ist ein

„Vorgang in einem System, bei dem eine oder mehrere variable Größen als
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2. Definitionen und grundlegende Begriffswelt

Eingangsgrößen andere variable Größen als Ausgangsgrößen aufgrund der dem
System eigenen Gesetzmäßigkeiten beeinflussen“ [34, S. 125].

Steuerungsfunktionen werden in zwei Klassen aufgeteilt, zeitkontinuierliche und zeitdis-
krete Steuerungsfunktionen [100]:

• Zeitkontinuierliche Steuerungsfunktionen führen Fließprozesse, deren Ein- und Aus-
gangsgrößen kontinuierlich sind. Dies können Regelungen mit einem geschlossenem
Wirkungskreis (z. B. ein Proportional-Integral-Differential (PID)-Regler) oder Steue-
rungen mit einer offenen Wirkungskette (z. B. ein Kennfeld) sein. Kennzeichnend für
zeitkontinuierliche Steuerfunktionsklassen ist die auf der Vorgabe eines Führungssig-
nals basierende kontinuierliche Erzeugung eines Stellsignals. Bei einem geschlossenen
Wirkungskreis geht zusätzlich der Anlagenzustand in die Berechnung des Stellsignals
mit ein [100].

• Zeitdiskrete Steuerungsfunktionen reagieren auf diskrete Ereignisse. Dies können bi-
näre Variablen (z. B. Behälter ist voll) [100], aber auch Vergleiche mit analogen Varia-
blen (z. B. Durchfluss größer als 5 l/min) sein [106]. Hierbei wird zwischen Verknüp-
fungssteuerungen und Ablaufsteuerungen unterschieden. Verknüpfungssteuerungen
verbinden die Eingangssignale mit booleschen Funktionen [100] oder Funktionsbau-
steinen [106] zur Berechnung der Ausgangssignale.

2.3.1. Die Prozedur als Steuerungsfunktion
In der vorliegenden Arbeit liegt der Fokus auf der zeitdiskreten Steuerung von Prozessen
durch Ablaufsteuerungen. Die Ablaufsteuerung ist als

„Steuerung mit schrittweisem Ablauf, bei der der Übergang von einem Schritt
auf den folgenden programmgemäß entsprechend den vorgegebenen Übergangs-
bedingungen erfolgt“ [34, S. 150]

definiert. Zwischen den Schritten einer Ablaufsteuerung befinden sich Transitionen, die
die Weiterschaltung von einem Vorgänger- zu einem Nachfolgeschritt kontrollieren [100].
Solche Ablaufsteuerungen sind nicht nur für diskrete Prozesse oder Batchprozesse von
Bedeutung, sondern auch für kontinuierliche Prozesse [88].

Die Abfolge von Schritten und Transitionen, die der Ablaufsteuerung zu Grunde liegt,
wird als Prozedur bezeichnet. Der Begriff „Prozedur“ stammt vom lateinischen Wort „pro-
cedere“, auf Deutsch „vonstattengehen“, ab. Die Definition, wie sie im Duden zu finden
ist, ist für die Beschreibung der Abfolge von Schritten und Transitionen nicht zielführend.
Es ist unzureichend, eine Prozedur als

„Verfahren, (schwierige, unangenehme) Behandlungsweise“ [41, S. 814]

zu definieren, auch wenn implizit angedeutet wird, dass etwas mit einem Objekt (in diesem
Fall mit einer Person) durchgeführt wird.

In der Informatik ist eine Prozedur eine

„in sich abgeschlossene Befehlsfolge mit meist eigenem lokalen Datenbereich,
die an beliebigen Stellen eines übergeordneten Programms, des Haupt- oder
Oberprogramms, wiederholt aufgerufen und ausgeführt werden kann“ [64, S. 74].
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2.3. Steuerungsfunktionen

Ein Blick in die englische Literatur führt zu folgender Definition des Prozedurbegriffs:

„procedure [...] the action that you must take to do sth[.] in the usual or correct
way“ [189, S. 490].

Von dieser Definition ausgehend ist im technischen Umfeld eine Prozedur eine

„specification of a sequence of actions or activities with a defined beginning and
end that is intended to accomplish a specific objective“ [81, S. 16].

Eine Prozedur ist demnach eine Menge von auszuführenden Aktionen, die durch Bedin-
gungen voneinander getrennt sind. Es gibt verschiedene Grundmuster von Prozeduren, z. B.
lineare Ketten mit Anfang und Ende, zyklische Ketten oder Abläufe mit Verzweigungen.
Des Weiteren ist festzuhalten, dass die Definition des Geschäftsprozess starke Ähnlichkeit
zur Prozedurdefinition hat. Mit anderen Worten, der Begriff „Geschäftsprozess“ bezeichnet
sowohl den Vorgang selber als auch die Steuerung des Vorgangs [154].

Je nach Steuerungssystem bzw. Anlagensystem (Mensch oder Maschine) werden unter-
schiedliche Anforderungen an die Flexibilität und den Spezifikationsgrad einer Prozedur
gestellt (vgl. Abbildung 2.4).

Steuerungssystem Ausführungseinheit

Maschine

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur

Mensch

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur

Fest
spezifizierte

Prozedur
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Fest
spezifizierte
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Legende:
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Funktionsaufrufe
B: Feste Abfolge informal definierter

Funktionsaufrufe

C: Flexible Abfolge formal definierter
Funktionsaufrufe

D: Flexible Abfolge informal definierter
Funktionsaufrufe

Abbildung 2.4.: Mensch und Maschine als Steuerungssystem und Ausführungseinheit

Wie bereits erwähnt besitzen maschinelle Ausführungseinheiten eine Menge fest spezifi-
zierter Funktionen. Diese Funktionen sind rollenspezifisch und werden bei jedem Aufruf in
genau der gleichen Weise ausgeführt. Menschliche Ausführungseinheiten haben ebenfalls
solche fest spezifizierten Funktionen, können aber aufgrund ihres Wissens und ihrer Erfah-
rung jederzeit neue, unspezifizierte Funktionen entwickeln (rechte Seite in Abbildung 2.4).
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In einem maschinellen Steuerungssystem sind fest spezifizierte Prozeduren gespeichert. Die-
se können auf Umgebungssituationen reagieren, alle Reaktionen müssen jedoch beim Design
der Steuerung implementiert werden. Menschliche Steuerungssysteme können sich zusätz-
lich flexibel auf neue, unbekannte Situationen einstellen (linke Seite in Abbildung 2.4)
[154].

Die Auswirkungen (Pfeile in Abbildung 2.4), die diese Eigenschaften der
Ausführungseinheits- und Steuerungssystemtypen auf die Prozeduren haben, sind in Ta-
belle 2.1 erläutert.

Tabelle 2.1.: Interaktionsmöglichkeiten zwischen Steuerungssystem und Ausführungseinheit
Ausführungseinheit

Maschine Mensch

St
eu

er
un

gs
sy

st
em Maschine

Ein maschinelles Steuerungs-
system enthält in seiner
fest spezifizierten Prozedur
formale Funktionsaufrufe,
die die maschinelle Ausfüh-
rungseinheit verstehen und
interpretieren kann.

Ein maschinelles Steuerungs-
system enthält in seiner fest
spezifizierten Prozedur forma-
le und informale Funktionsauf-
rufe, die die menschliche Aus-
führungseinheit verstehen und
interpretieren kann.

Mensch

Ein menschliches Steuerungs-
system kann in seinen fest spe-
zifizierten oder flexiblen Pro-
zeduren formale Funktionsauf-
rufe an die maschinelle Aus-
führungseinheit versenden, die
dort interpretiert werden.

Ein menschliches Steuerungs-
system kann in seinen fest spe-
zifizierten oder flexiblen Pro-
zeduren formale oder infor-
male Funktionsaufrufe an die
menschliche Ausführungsein-
heit versenden.

2.4. Funktionaler Leitsystemaufbau
Da es in einem Steuerungssystem verschiedene gleichzeitig ausgeführte Steuerungsfunktio-
nen geben kann, müssen die Steuerungsfunktionen gegliedert und priorisiert werden. Ein
solches gerichtetes Ordnungsschema wird als Hierarchie bezeichnet [38]. Bei einem PLS hat
sich eine hierarchische Ebenenstruktur mit fünf Ebenen durchgesetzt (vgl. Abbildung 2.5)
[27, 100, 163]. Dieser Aufbau wird als Automatisierungspyramide (AP) bezeichnet.

• Die Ebene 0 ist das Aktionsfeld, d. h., diese Ebene enthält den technischen Prozess,
der auf der technischen Anlage ausgeführt wird [27, 100]. Sie gehört nicht direkt zum
Leitsystem und wird daher in [163] auch nicht als Ebene gezählt.

• Ebene 1 ist die erste Ebene, die zum Leitsystem zählt. Sie wird auch als Feldebene
bezeichnet und enthält alle Funktionen, die zum Bereich Messen, Stellen und Regeln
gehören. Auch Verriegelungen und Schutzfunktionen gehören in diese Ebene [100].
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Unterneh-
mensplanung und Logistik
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Batch-
prozesse

kontinu-
ierliche

Prozesse

diskrete
Prozesse

Ebene 4

Ebene 3

Ebene 2

Ebene 1

Ebene 0

Feld-
Ebene

Prozessleit-
Ebene

MES-
Ebene

ERP-
Ebene

Produktionsprozess Produktionsprozess

Abbildung 2.5.: Funktionale Hierarchie eines Leitsystems (nach [27, 163])

• In Ebene 2 ist die Prozessführung lokalisiert. Sie wird daher auch als Prozessleitebe-
ne bezeichnet. Neben der Prozessführung gehören auch die Prozessüberwachung, die
Störungsbehandlung und die Prozeduren zum An- und Abfahren des Prozesses zur
Ebene 2 [100]. Die Ebenen 1 und 2 sind echtzeitfähig, d. h., ihre Funktionen reagie-
ren innerhalb einer vorgegebenen Zeit auf ein Ereignis. Des Weiteren werden viele
Komponenten redundant ausgeführt, damit die Verfügbarkeit erhöht wird. In [27]
werden die Ebenen 1 und 2 noch in die zu steuernden Prozesstypen Batchprozess,
kontinuierlicher Prozess und diskreter Prozess aufgeteilt. Die Ebene 2 wird in [163]
als Anlagenebene bezeichnet, beinhaltet aber die selben Funktionen.

• Ebene 3 umfasst die Betriebsablaufplanung sowie die Auswertung der Prozessergeb-
nisse [27] und verknüpft die Geschäftsziele mit der Produktion [74]. Hier werden die
produktionsrelevanten Geschäftsprozesse gesteuert [144]. Sie wird auch als Manu-
facturing Execution System (MES)-Ebene bezeichnet und in die Produktions- und
Betriebsleitebene unterteilt. Typische Aufgaben sind die Datenerfassung und -analyse
über die Produktion, über die Erstellung und Anpassung der lokalen Produktions-
planung, über Transport und Lagerung der Materialien oder die Kostenoptimierung
eines Betriebskomplexes [27].

• Ebene 4, die Enterprise Resource Planning (ERP)-Ebene, enthält die Unternehmens-
führung. Hier werden Kostenanalysen und Auswertungen durchgeführt, welche die
Unternehmensstrategie beeinflussen [100]. Dies betrifft z. B. die optimale Planung
der Rohstoff- und Ersatzteilbestände, die Erfassung der Rohstoff- und Energiever-
bräuche, die Weitergabe von Personaleinsatzzeiten an die Personalabteilung oder die
Erfassung von Qualitätsrückmeldungen von Kunden [27].

In klassischen PLS haben sich die Ebenen durch ihre Zeitskalen unterschieden. Während
in Ebene 1 Sekunden, Millisekunden und manchmal sogar Mikrosekunden als Zeithorizont
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benötigt worden ist, sind Eingriffe durch Ebene 2 im Minuten- bis Stundenbereich erfolgt.
Aktionen der Ebene 3 haben sich in Tagen, Wochen und Monaten ausgewirkt. Strategie-
entscheidungen in Ebene 4 sind in den nächsten Monaten und Jahren relevant geworden
[100]. Die heute üblichen direkten Zugriffe aus den höheren Ebenen auf die niedrigeren
Ebenen der AP machen diese Zeitskalenunterscheidung jedoch obsolet [144].

Zwei der wesentlichen Vorteile des Ebenenmodells sind die Verdichtung von einer Viel-
zahl von Einzelinformationen von niedrigen zu hohen Ebenen sowie die Ableitung von
Informationen für die niedrigen Ebenen durch die Vorgaben der höheren Ebenen [163].
Das Ebenenmodell hat sich daher in den letzten zwanzig Jahren bewährt. Dennoch wird
unter dem Stichwort „vertikale Integration“ an der Struktur gerüttelt [144]. Sensoren, die
bisher in der 4 . . . 20 mA-Technik3 ausgeführt wurden, werden zunehmend von Sensoren
mit digitaler Signalübertragung über einen Feldbus (vgl. Abbildung 2.3) verdrängt [71].
Sie besitzen interne Diagnosefunktionen und können über den Feldbus parametriert wer-
den. Funktionen aus höheren Ebenen werden weiter unten implementiert [71] und sind
daher nicht mehr nur einer Ebene zuzuordnen [144]. Des Weiteren führt eine permanent
erforderliche Planungsbereitschaft dazu, dass MES-Systeme direkt auf Automatisierungs-
systeme der Feldebene zugreifen. Beide Punkte sind aufgrund der Weiterentwicklungen in
der Informationstechnik möglich, erfordern aber eine Vielzahl von Schnittstellen. Zudem
kann mit vielen Insellösungen, die für die einzelnen Anwendungsfälle implementiert werden,
kein globales Optimum erzielt werden [144]. Allerdings hat diese Aufweichung der Auto-
matisierungspyramide Grenzen [74]. Anforderungen bezüglich Echtzeit und funktionaler
Sicherheit machen eine Verlagerung bestimmter Funktionen in höhere Ebenen schwierig
bis unmöglich [182].

2.5. Kommunikation
Zur Informationsübertragung innerhalb eines PLS stehen eine Reihe von Methoden und
Technologien zur Verfügung. Eine detaillierte Beschreibung der Kommunikationsmethoden
würde den Rahmen der Arbeit sprengen, daher sei auf [48] für eine tiefere Erläuterung ver-
wiesen. Aus diesem Grund wird hier nur die dienstbasierte Kommunikation als Möglichkeit
der ebenenübergreifenden Integration [128] vorgestellt.

2.5.1. Dienstbasierte Kommunikation
Ein Dienst beinhaltet

„Funktionen, die einem Benutzer von einer Organisation angeboten werden“
[38, S. 50].

Dienste können durch Menschen und durch Maschinen angeboten werden. Diese Definition
ist generisch und kann sowohl auf technische als auch auf nicht-technische Systeme über-
tragen werden [38]. Abbildung 2.6 zeigt das Referenzmodell für ein Dienstsystem in der
Prozessautomatisierung.

Die Kernidee des Diensts besteht in dem Abrufen von Funktionalität von einer ande-
ren Stelle [18]. Dienste müssen nicht initialisiert werden, sie sind permanent verfügbar

3Die 4 . . . 20 mA-Technik übermittelt analoge Daten mittels eines Stromsignals, siehe [107].
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Diensttyp

Dienst-
beschreibung

DienstFunktionalität

Entität zum
Aufrufen

Entität zur
Bereitstellung

Dienstaufrufer Dienstanbieter

Überprüfung zur Suche
des geeigneten Diensttyps

konkretisiert

führt aus

stellt bereit

besitztbesitzt

Stimmen einem Vertrag zu

Nachrichtenaustausch

implementiert

beschreibt

beschreibt

Überprüfung zur
Suche des geeig-
neten Diensts

Diensttyp-
beschreibung

Abbildung 2.6.: Referenzmodell für ein Dienstsystem in der Prozessautomatisierung (nach
[196])

[101]. Dabei ist das Wissen, wie eine Funktionalität realisiert wird, für den Dienstaufrufer
nicht interessant [184]. Die Implementierung des Diensts verbleibt daher beim Dienstan-
bieter. Dieser stellt über eine Schnittstelle einen gekapselten Zugang bereit, über den der
Dienstaufrufer die benötigten Daten an den Dienstanbieter senden kann. Ein Vertrag zwi-
schen Dienstanbieter und -aufrufer beinhaltet die genaue Beschreibung der Dienstfunktio-
nalität und der benötigten Daten sowie die garantierten nichtfunktionalen Eigenschaften
[143]. Einen Überblick über verfügbare Dienste ist durch einen speziellen Verzeichnisdienst
gegeben [101]. Ein Dienst realisiert einen Diensttypen. Im Diensttyp sind die Semantik, die
Funktionen (z. B. Ein- und Ausgabe, Art der Funktionsaufrufe), das Umfeld des Dienstes
und nichtfunktionale Qualitätsmerkmale enthalten [38].

Dienste ermöglichen den Wechsel von fest projektierten Kommunikationsbeziehungen
kontextloser Daten zu einer losen Verbindung von Steuerungssystemen [18]. Anstelle von
Signalen, die ausschließlich im Engineering der Steuerung festgelegt werden [198], erfolgt
die Kommunikation hier durch diskrete Nachrichten [38]. Durch die Interpretation von
Produktionsschritten als Dienste wird aus der klassischen prozedurorientierten Ablauf-
steuerung die Orchestrierung einer Sequenz von Diensten [18]. Jeder Dienst besitzt einen
eindeutigen Namen, der durch den Menschen interpretiert werden kann. Auf diese Weise ist
eine eindeutige Identifikation des Diensts bei gleichzeitiger Lesbarkeit des Prozedurablaufs
durch den Menschen gesichert [184].

Ein Dienst ist generell nicht an eine Kommunikationsinfrastruktur gebunden [38]. Den-
noch ist die Festlegung auf eine bestimmte Infrastruktur notwendig, damit Nachrichten
zwischen den beteiligten Dienstanbietern und -nutzern versendet werden können. Verschie-
dene Publikationen sehen Open Platform Communications Unified Architecture (OPC UA)
als zukünftige Plattform, in der ein Dienstsystem in der industriellen Produktion imple-
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mentiert werden kann (z. B. [17, 144]).

2.6. Prozedurbeschreibungsmittel
Ein Prozess ist ein einmaliger Vorgang, der in der physischen Welt zu einem definierten
Zeitpunkt an einem definitiven Ort stattfindet [154]. Ein Prozess kann nicht rückgängig
gemacht werden. Nachdem der Prozess beendet worden ist, sind nur die Auswirkungen des
Prozesses noch zu beobachten. Die Auswirkung eines Prozesses kann durch einen weiteren
Prozess rückgängig gemacht werden. Diese Eigenschaften des Prozesses können auch auf
Prozeduren übertragen werden. Da nach Beendigung eines Prozesses nur die Auswirkungen
sichtbar sind, müssen Prozesse überwacht werden. Die Ergebnisse der Überwachung werden
in einer Prozessdokumentation festgehalten [38].

Für den Prozess, die Prozedur und die Dokumentation sind Beschreibungen notwendig
(vgl. Abbildung 2.7). Anhand der Prozessbeschreibung werden eine Prozedurbeschreibung
und eine Beschreibung der Prozessüberwachung erzeugt. Basierend auf der Prozedurbe-
schreibung wird die Prozedur im Steuerungssystem ausgeführt und der Prozess auf diese
Weise gesteuert. Die Prozedurbeschreibung ist demnach ein zentrales Dokument, welches
benötigt wird, damit Prozesse reproduzierbar und kontrolliert ausgeführt werden können.

Prozess-
beschreibung

Prozedur-
ausführung

Prozedur-
beschreibung

Prozess

Beschreibung operative Ausführung

ist Grundlage für

ist Vorgabe für

steuert

Beschreibung
der Prozess-
überwachung

Prozess-
überwachung

ist Vorgabe für

ist Grundlage für liefert Daten

Abbildung 2.7.: Die Wesensart eines Prozesses (nach [38, 154])

Jede Form der Beschreibung benötigt ein Beschreibungsmittel, in dem die Beschreibung
niedergelegt ist.

„Beschreibungsmittel definieren eine Menge von Zeichen, Symbolen und Re-
geln, die zur Modellierung eines Systems innerhalb eines bestimmten Kontexts
zugelassen sind“ [115, S. 11].

Beschreibungsmittel können formal, semiformal und informell sein [157]. Die Wahl des rich-
tigen Beschreibungsmittels ist essentiell für die erfolgreiche Abstraktion des realen Systems
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[115]. Neben formalen Sprachen, die aus Wörtern und Grammatik-Regeln bestehen, können
Prozesse und Prozeduren durch Modelle beschrieben werden.

2.6.1. Formale Sprachen
Kommunikation erfolgt, damit Menschen Informationen zu anderen Menschen übertragen
können. Menschen verwenden jeden Tag eine natürliche Sprache, damit sie mit anderen
Menschen kommunizieren können. Ebenso verarbeiten Computer sprachliche Eingaben.
Diese müssen in einer formalen Sprache formuliert sein. Natürliche Sprachen enthalten
unvollständige, vage oder falsche Konstrukte, die zwar von Menschen verstanden werden
können, nicht aber von Computern [15].

Eine Sprache ist als eine

„Menge von Wörtern über einem Alphabet Σ“ [10, S. 24]

definiert. Ein Alphabet ist hierbei eine beliebige

„endliche, nichtleere Menge Σ [...]. Die Elemente eines Alphabets werden Buch-
staben genannt“ [10, S. 15].

Ein Wort über einem Alphabet Σ

„ist eine endliche (eventuell leere) Folge von Buchstaben aus Σ“ [10, S. 16].

Wörter im Sinne dieser Definition sind nicht nur die Elemente, die umgangssprachlich als
Wörter bezeichnet werden. Auch Sätze, Aussagen, Diagramme, Terme, Modelle usw. sind
Wörter einer Sprache. Die Definitionen aus [10] gelten sowohl für natürliche als auch für
formale Sprachen. Formale Sprachen sind

„künstlich entworfene Sprachen, die mit formalen Mitteln exakt zu beschreiben
sind“ [79, S. 33].

Formale Sprachen bestehen in der Regel aus abzählbar unendlich vielen Wörtern. Es wird
daher eine endliche Menge an Bildungsregeln, die sogenannte Syntax, für die Definition
formaler Sprachen benötigt [79]. Die Syntax einer Sprache teilt die Menge aller Wörter, die
über einem Alphabet gebildet werden können, in zwei Teilmengen auf. Diese Teilmengen
sind disjunkt, die eine Menge entspricht der Sprache, die andere dem Komplement der
Sprache [192]. Erst durch eine Syntax werden aus Informationen Daten, die interpretiert
und verstanden werden können [73].

Die Syntax alleine reicht nicht aus, damit eine formale Sprache als Kommunikationsmit-
tel genutzt werden kann. Es ist ein Rückgriff auf die Semantik notwendig, die die Bedeutung
der Wörter festlegt [79]. Mittels der Semantik werden syntaktisch korrekte Wörter einer
Sprache auf eine semantische Domäne bezogen. Semantische Abbildungen werden häufig
induktiv definiert [192]. Ferner muss die Formulierung einer Semantik mit großer Acht-
samkeit erfolgen, da der Mensch dazu neigt, für ihn offensichtliche Punkte wegzulassen
[73].

Neben textbasierten Sprachen existieren visuelle Sprachen. Eine visuelle Sprache besteht
aus einer Menge von grafischen Elementen. Visuelle Sprachen nutzen die Eigenschaften des
Menschen aus, der visuelle Informationen effektiver als textuelle Informationen aufnehmen
und verarbeiten kann [192]. Des Weiteren vermuten die Nutzer von visuellen Sprachen,

19

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


2. Definitionen und grundlegende Begriffswelt

dass diese einfacher als textuelle Sprachen zur Programmierung genutzt werden können
und so ein produktiveres Arbeiten ermöglichen. Dabei gilt jedoch, dass visuelle Sprachen
denselben Regeln genügen müssen wie textuelle Sprachen, damit sie von Computern verar-
beitet werden können. Insbesondere hat eine gut gestaltete grafische Beschreibungssprache
eine wohldefinierte und beschränkte Anzahl von Elementen, gute Abstraktionsmöglichkei-
ten und eine feste Basis in ihrer Syntax und Semantik und ist pragmatisch anwendbar
[87].

Beschreibungssprachen werden insbesondere zur Modellierung verwendet. In diesem Zu-
sammenhang werden sie als Modellierungssprache bezeichnet [192].

2.6.2. Modelle
Ein Modell ist ein

„Gegenstand, der es erlaubt Aussagen über einen anderen, modellierten Gegen-
stand zu treffen“ [38, S. 7].

Modelle geben einen Ausschnitt aus der Realität wieder. Ein Modell ist nach [131, 162]
durch die drei Eigenschaften Abbildungsmerkmal, Verkürzungsmerkmal und pragmatisches
Merkmal charakterisiert:

• Die Eigenschaft Abbildungsmerkmal unterstreicht, dass ein Modell immer eine Ab-
bildung eines natürlichen oder künstlichen Systems ist. Modelle können auch andere
Modelle repräsentieren.

• Modelle geben im Allgemeinen nur eine Teilmenge der Eigenschaften des modellierten
Systems wieder, sie verkürzen demnach.

• Modelle folgen einem pragmatischen Ansatz, sie sind für eine bestimmte Zeit, einen
bestimmten Empfänger und für einen bestimmten Zweck vorgesehen.

Häufig werden Modelle mit mathematischen Modellen gleichgesetzt, die als formale
Grundlage für Simulationen dienen [14]. In dieser Arbeit sind unter dem Begriff „Modell“
jedoch Modellsysteme gemeint. Ein Modellsystem ist ein

„Modell, das selbst als System strukturiert ist und das versucht den inneren
Aufbau eines betrachteten Systems so gut nachzubilden, dass im gewünschten
Kontext und mit der geforderten Genauigkeit die äußeren Eigenschaften des
Modellsystems mit denen des betrachteten Systems übereinstimmen“ [49, S. 86].

Ebenfalls von Bedeutung für die Modellierung sind die Festlegungen der Modellinteraktion
[16]. Solche Modellsysteme können sowohl zur Analyse bestehender als auch zur Erstellung
neuer Systeme genutzt werden [49]. Sie dienen der Verständnisbildung, dem Datenaus-
tausch und der Datenhaltung [109].

Ein Modellsystem kann ein Referenzmodell sein. Ein Referenzmodell ist eine domänen-
spezifische Beschreibung. Die Beschreibung ist in sich schlüssig, allerdings kann es auch
andere Varianten des Modells geben. Ebenso sind Gegenbeispiele möglich, auf die das Re-
ferenzmodell nicht angewendet werden kann. Ein Referenzmodell wird in der Fachwelt als
beste der existierenden Modellvarianten angesehen. Kernmodelle sind spezielle Referenz-
modelle. Sie sind universell gültige, domänenunabhängige Beschreibungen von Systemen.
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Sie treffen Aussagen über das System, die „ewig“ gültig sind. Wird eine Aussage zu einem
Kernmodell weggelassen, ist das Modell nicht mehr gültig [196].

Der Aufbau von Modellen wird durch Meta-Modelle definiert. Abbildung 2.8 zeigt die
verschiedenen Ebenen der Modellierung. In einem Meta-Modell sind die Elemente, aus
denen die abgeleiteten Modelle bestehen, sowie die Regeln zur Verwendung der Elemente
enthalten. Die Beziehung zwischen dem Modell in der Typebene und dem modellierten
Objekt in der Instanzebene muss nicht zwangsläufig im Meta-Modell enthalten sein. In
Modellen sind nur die Elemente des Meta-Modells enthalten und sie müssen dessen Regeln
genügen, damit das Modell gegenüber dem Meta-Modell valide ist [38]. Diese Aufteilung ist
wiederholbar, so dass eine Meta-Meta-Modell-Ebene entsteht, die wiederum den Aufbau
von Meta-Modellen beschreibt.

Modell von

Modell von

Modell von

Gegenstand der
Modellierung

M3-Ebene:
Meta-Meta-
Modell-Ebene

M2-Ebene:
Meta-
Modell-Ebene

M1-Ebene:
Typ-/
Modell-Ebene

M0-Ebene:
Instanz-Ebene

Abbildung 2.8.: Ebenen der Meta-Modellierung (nach [116])

Modelle werden im Umfeld der Automatisierungstechnik häufig verwendet. Bei der Pro-
grammierung lassen sich Fehler nicht vermeiden, die durch aufwändige Tests gefunden und
anschließend behoben werden müssen. Daher werden Modelle erzeugt und verifiziert, die an
verschiedene Situationen angepasst und folglich wiederverwendet werden können. Dieses
Vorgehen ist unter dem Schlagwort „Konfigurieren statt programmieren“ bekannt [144]. Es
werden zwei verschiedene Vorgehensweisen unterschieden, modellgetriebene Codegenerie-
rung und Modelle im Zielsystem:

• Bei der modellgetriebenen Codegenerierung werden die Modelle im Engineering-
Prozess verwendet. Nach dem Engineering wird der Programmcode (z. B. für eine
SPS) erzeugt und dieser kompiliert [183, 192].

• Im zweiten Fall sind die Modelle als erkundbare Struktur im Zielsystem vorhanden.
Auch die Meta-Modelle sind in diesem Fall im Zielsystem vorhanden [51, 109, 185].
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2. Definitionen und grundlegende Begriffswelt

Die Verwendung von Modellen im Zielsystem hat mehrere Vorteile gegenüber der modell-
getriebenen Codegenerierung. Zunächst ist die Anbindung von PNK an die höheren Ebe-
nen der Automatisierungspyramide (siehe Abbildung 2.5, S. 15) einfacher. Die Anbindung
kann durch abstrakte Modellverbindungen anstatt mit fest parametrierten Datenleitungen
durchgeführt werden [109]. Auf diese Weise werden die Steuerungen flexibler und müs-
sen daher seltener angepasst werden. Dies reduziert die Häufigkeit von Fehlern und die
Anfälligkeit für schadhafte Manipulationen durch Angreifer. Ein weiterer Vorteil ist die
Zuordnung gewonnener Daten zu Modellen. Hierdurch erhalten die Daten eine Semantik
und können daher bei einem Funktionalitätswechsel einfacher an die neuen Steuerungspro-
gramme angepasst werden [185]. Der Nachteil besteht in der notwendigen Modifikation der
PNK, damit sie mit Modellen arbeiten können. Aufgrund der langen Laufzeit von Prozess-
leitsystemen in der Prozessindustrie sind daher zwingend Überlegungen erforderlich, auf
welche Weise die Modelle in existierende Systeme eingebracht werden können.

Modellierung mit Merkmalen

In vielen Fällen ist kein vollständiges Modell eines Systems erforderlich, sondern es sind
lediglich bestimmte Eigenschaften des Systems relevant [50]. Aus diesem Grund werden
den Systemen Merkmale zugeordnet:

„Merkmale sind ausgewählte Eigenschaften, die zur Klassen-, Begriffsbildung
und Begriffsabgrenzung dienen. Merkmale sind eigene Objekte oder können
durch Objekte repräsentiert werden.“ [112, S. 11].

Merkmale sind demnach Eigenschaften, die ein System unter einem gewissen Betrach-
tungswinkel von anderen Systemen unterscheidbar machen. Sie ermöglichen eine seman-
tisch lose Kopplung zwischen zwei Systemen. Ferner sind Merkmale nicht fest von Zustän-
den abgegrenzt. Je nach Betrachtungswinkel kann eine Eigenschaft als Zustand oder als
Merkmal angesehen werden. Merkmale müssen jedoch im Gegensatz zu Zuständen wäh-
rend des Betrachtungszeitraums konstant bleiben, damit die Unterscheidung anhand des
Merkmals möglich ist [50].

In [112] ist ein Merkmalmodell entwickelt worden, welches in Abbildung 2.9 dargestellt
ist. Die grau hinterlegten Elemente sind Bestandteile auf der Meta-Modell-Ebene [92].

Ein realer Merkmalträger ist eine Entität, die außerhalb der Modellgrenze liegt. Diese
kann durch mehrere Merkmalträger beschrieben werden. Diese Merkmalträger haben intern
keine Beschreibung der inneren Funktionalität, diese wird durch den Merkmalträgertyp
vorgegeben. Der Merkmalträgertyp enthält somit alle Merkmale, die zur Beschreibung eines
Merkmalträgers benötigt werden. Der Merkmaltyp definiert sachneutral die Bedeutung des
Merkmals [112].

Der Wert eines Merkmals wird auch Ausprägung des Merkmals genannt. Basierend auf
den Merkmalen, die den Merkmalträgern zugeordnet wurden, können Aussagen über die
Merkmale getroffen werden. Aussagen können entweder Merkmalträgern oder Merkmal-
trägertypen zugeordnet werden und durch ihren Aussagentyp klassifiziert werden. So kön-
nen gegenständliche Aussagen (z. B. Messung, Simulation, Berechnung, Schätzung) oder
nicht-gegenständliche Aussagen (z. B. Zusicherung, Anforderung, Festlegung oder Annah-
me) getroffen werden [112].

Das Merkmalmodell ermöglicht zunächst die Erstellung von Rollen, die abstrakt Anfor-
derungen und Zusicherungen unabhängig vom konkreten Objekt festlegen. Somit liegt eine
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2.6. Prozedurbeschreibungsmittel

Merkmalträger Merkmalaussage

Merkmaltyp

Aussagentyp

MerkmalMerkmalträgertyp

1

Vererbung
allgemeiner
Merkmale

1

*

wird
beschrie-
ben
durch

0..1

1

bezieht sich
immer auf

realer
Merkmalträger

Abstraktion
(ist vom Typ)

Abstraktion
(Sachbezug)

Abstraktion

Zuordnung
(exklusiv)

Klassifikation

Klassifikation

Modellgrenze

*

*

*

*

*

*0..1

*

*

1

*

*

*

Abbildung 2.9.: Merkmalmodell (nach [92, 112])

Beschreibung unabhängig vom konkreten zu modellierenden System, dem Merkmalträger,
vor. Erst bei der Zuweisung des Merkmalträgers wird der Wert des Merkmals zugeordnet
[112].
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3. Analyse von
Prozedurbeschreibungssprachen

Die verschiedenen Typen von Steuerungssystemen und Ausführungseinheiten (vgl. Kapi-
tel 2.3.1, S. 12) haben zu einer Vielzahl von Sprachen zur Prozedurbeschreibung geführt.
Zudem sind durch die Weiterentwicklung der Technik fortlaufend neue Konzepte in die Pro-
zedurbeschreibungssprachen eingeflossen. Diese Prozedurbeschreibungssprachen sind be-
reits an verschiedensten Stellen untersucht, verglichen und bewertet worden. Im folgenden
Kapitel steht die Analyse hinsichtlich der Elemente einer Prozedurbeschreibungssprache
nach Kapitel 3.1, S. 24, im Vordergrund. Die hier vorgestellten Ergebnisse basieren auf
eigenen Analysen, die zu Teilen bereits in „Ein Referenzmodell zur Prozedurbeschreibung
- Eine Basis für Industrie 4.0“ [152] veröffentlicht worden sind.

Die vorgestellten Prozedurbeschreibungssprachen sind grafische1 domänenspezifische
Sprachen (vgl. [84]). Durch sie wird das Verhalten einer Steuerung spezifiziert. Teilwei-
se werden sie ebenfalls zur Implementierung verwendet. Die Spezifikation der Prozedur
ist abstrahiert von der Implementierung bzw. der technischen Realisierung [6]. Die Proze-
durbeschreibungssprachen sind kontrollfluss- und objektorientierte Modellierungssprachen
[131], die den Wechsel von aktiven Zuständen beim Eintreten bestimmter Ereignisse be-
schreiben [113].

Grafische Prozedurbeschreibungssprachen sind Graphen. Ein Graph ist definiert als

„ein Tupel G = (V, E, Σ) von einer Menge V von Knoten, einer Menge Σ von
Gewichten mit V ∩ Σ = ∅, [und] einer Menge E ⊆ V × Σ × V von gewichteten
Kanten“ [141, S. 29].

Bipartite Graphen sind Spezialfälle von allgemeinen Graphen, deren Knoten sich so in zwei
Gruppen einteilen lassen, dass jede Kante immer von einem Element aus einer Gruppe zu
einem Element aus der jeweils anderen Gruppe führt [8].

Neben der Eigenschaft, dass Prozedurbeschreibungen Graphen sind, gibt es grundlegende
Konzepte, die sich trotz des unterschiedlichen Anwendungszwecks in allen Sprachen finden
lassen. Diese Konzepte werden im folgenden Abschnitt vorgestellt.

3.1. Elemente einer Prozedurbeschreibungssprache
In einer Prozedurbeschreibungssprache müssen Aussagen zu verschiedenen Konzepten ge-
troffen werden. In Abbildung 3.1 sind generische Konzepte dargestellt, die eine Proze-
dur charakterisieren, nämlich: das Aufbaumodell, das Hierarchie- und Vernetzungsmodell,
das Abstraktions- und Zuordnungsmodell, das Aktions- und Aktivitätenmodell sowie das

1Ausgenommen ist nur die Business Process Execution Language, die keine grafische Repräsentation be-
sitzt. Sequential Function Charts besitzen neben der grafischen ebenfalls eine textuelle Repräsentation.
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3.1. Elemente einer Prozedurbeschreibungssprache

Ausführungssteuerungsmodell. Diese Konzepte sind in jeder Prozedurbeschreibungsspra-
che vorhanden, lassen sich jedoch nicht immer explizit wiederfinden. Gerade während der
Ausführung einer Prozedur sind sie oft verborgen.

Aufbaumodell

Ausführungssteuerungs-
modell

Aktions- und
Aktivitätenmodell

Hierarchie- und
Vernetzungsmodell

Abstraktions- und
Zuordnungsmodell

Konzeptionelle Vernetzung

Elemente der

Prozedur-

beschreibung

Abbildung 3.1.: Elemente einer Prozedurbeschreibungssprache (nach [130])

3.1.1. Aufbaumodell
Das Aufbaumodell beschreibt die grundlegenden Elemente, die eine Prozedurbeschrei-
bungssprache beinhaltet. Beispiele für diese Elemente sind Schritte, Transitionen oder
Zustände. Sie werden im Aufbaumodell, welches die Grundlage für alle weiteren Modelle
bildet, in einen begrifflichen Zusammenhang gesetzt. Die Elemente bilden einen wesentli-
chen Teil der Knotenmenge der Graphdarstellung einer Prozedur. Nicht Bestandteil des
Aufbaumodells sind die Verbindungsmöglichkeiten zwischen den Elementen oder die Art
und Weise der Interaktion mit der Umgebung.

3.1.2. Hierarchie- und Vernetzungsmodell
Wie bereits erklärt, werden die Elemente des Aufbaumodells durch Kanten zu einem Gra-
phen verbunden. Neben dem einfachsten Grundmuster einer Ablaufstruktur, einer linea-
ren, terminierenden Kette, gibt es auch komplexere Ablaufstrukturen. Beispiele hierfür
sind Verzweigungen, Makroschritte und Unterketten. Muster und Regeln zur Gestaltung
all dieser vernetzten Ablaufstrukturen werden im Hierarchie- und Vernetzungsmodell be-
schrieben. Insbesondere beschreibt das Konzept, welche Alternative bei mehreren erfüllten
Transitionsbedingungen einer Alternativverzweigung ausgewählt wird oder wie nebenläu-
fige Ablaufketten beschrieben werden. Das Hierarchie- und Vernetzungsmodell beschreibt
zudem den Aufbau verschiedener Ebenen. Dies beinhaltet zum einen den Aufruf von Un-
terprozeduren, zum anderen Makroschritte. Das Ausführungssteuerungsmodell beinhaltet
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3. Analyse von Prozedurbeschreibungssprachen

Aussagen über die Interaktion zwischen aufrufender und aufgerufener Prozedur, diese sind
nicht Bestandteil des Hierarchie- und Vernetzungsmodells.

3.1.3. Abstraktions- und Zuordnungsmodell
Das Abstraktions- und Zuordnungsmodell beschreibt den Entwurfsprozess einer Proze-
durbeschreibung. Zunächst betrifft dies den Spezifikationsgrad der Prozedurbeschreibung.
In vielen Fällen wird die Prozedur bis hin zu einem vollständig spezifizierten Setzen von
Variablen während der Ausführung der Prozedur spezifiziert. In anderen Fällen legt die
Prozedurbeschreibung lediglich die Anforderungen fest, welche die Ausführungseinheit er-
füllen muss. Mit anderen Worten, es muss determiniert sein, wie die Prozedurbeschreibung
mit Rollen (vgl. Kapitel 2.2.2, S. 8) umgeht. Da Zuordnungen zwischen Rolle und Ausfüh-
rungseinheit teilweise erst während der Prozedurausführung getroffen werden, müssen im
Abstraktions- und Zuordnungmodell strukturell konsistente Transformationen beschrieben
sein.

Ebenso ist ein Konzept zur Entwicklung von Prozedurklassen im Abstraktions- und
Zuordnungsmodell enthalten. Bei Funktionsbausteinen hat sich ein Typ-Instanzenkonzept
durchgesetzt (vgl. [47]). Die Funktionsbausteintypen werden vom Steuerungssystemherstel-
ler implementiert. Während des Entwurfsprozess können Instanzen der Klassen verschaltet
werden. Prozedurbeschreibungen hingegen sind nur in bestimmten Fällen wiederverwend-
bar. Für viele Anwender ist ein Typ-Instanzenkonzept vom Arbeitsaufwand her in der
Regel nicht attraktiv. Sie verwenden stattdessen häufig Entwurfsmuster. Allerdings bringt
die Verwendung eines Typ-Instanzenkonzepts Vorteile, beispielsweise bei der Erstellung
von Batch-Rezepten oder der Übertragung einer Prozedur auf mehrere parallele Anlagen-
straßen. Aus diesem Grund ist es sinnvoll, die Verwendung durch ein einfach anwendbares
Konzept zu unterstützen.

3.1.4. Aktions- und Aktivitätenmodell
Eine Prozedur kann über Aktionen und Aktivitäten auf die Umgebung einwirken. Damit
Informationen vom Steuerungssystem zum Empfänger gelangen, sind Kommunikationsbe-
ziehungen erforderlich. Im Aktions- und Aktivitätenmodell sind diese Interaktionen der
Prozedur mit der Umgebung festgelegt. Eine Aktion ist ein technologisch zeitloser Vor-
gang, während eine Aktivität eine Dauer besitzt [47]. Ein Beispiel für eine Aktion ist das
Setzen einer Variablen, die Berechnung einer mathematischen Formel ist hingegen eine
Aktivität. Der Aufruf eines Dienstes ist eine Aktion, falls das Steuerungssystem nicht auf
eine Antwort wartet, anderenfalls ist der Aufruf eine Aktivität.

Die Interaktion kann beispielsweise verbal, durch Signale oder durch Dienstaufrufe aus-
geführt werden. Ausnahmslos muss eine formale Beschreibung der Aktionsaufrufe vor dem
Start einer Interaktion definiert werden, damit sich die Steuerungssysteme untereinander
ebenso wie Steuerungssysteme und Ausführungseinheiten verstehen können. Bei menschli-
chen Kommunikationspartnern muss zumindest die eindeutige Interpretierbarkeit der Ak-
tionsaufrufe sichergestellt sein.
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3.2. Auswahl der Prozedurbeschreibungssprachen

3.1.5. Ausführungssteuerungsmodell
Das Ausführungssteuerungsmodell enthält die Beschreibung der operativen Ausführung ei-
ner Prozedur. Dies umfasst die Abarbeitung der Prozedur im Regelfall. Konkret sind hier
dementsprechend Regeln festgehalten, welche vorgeben, in welcher Reihenfolge die entspre-
chenden Elemente des Aufbaumodells bearbeitet und wie die Aktionen und Aktivitäten
des Aktions- und Aktivitätenmodells ausgeführt werden. Ebenso enthält das Ausführungs-
steuerungsmodell die Eingriffsmöglichkeiten durch externe maschinelle und menschliche
Steuerungssysteme. Hier sind auch standardisierte Muster zur Ausnahmebehandlung als
Zustandsmaschine hinterlegt, d. h., es liegt eine Beschreibung der Reaktionen der Prozedur
auf Abweichungen vom Regelfall vor.

3.2. Auswahl der Prozedurbeschreibungssprachen
Insgesamt sind vierzehn Sprachen für die Analyse ausgewählt worden. Die Auswahl basiert
auf [103, 151]. Viele der hier vorgestellten Sprachen sind durch die International Elec-
trotechnical Commission (IEC), durch die International Organization for Standardization
(ISO) oder durch die Object Modeling Group (OMG) standardisiert. Bei den Sprachen der
OMG wird die Systems Modeling Language (SysML) nicht explizit betrachtet, da die Er-
weiterungen der SysML fast ausschließlich strukturelle Diagramme betreffen, welche stati-
sche Beziehungen modellieren. Eine Ausnahme liegt beim Aktivitätsdiagramm vor, welches
in Kapitel 3.4.1, S. 54, erläutert wird [4]. Eine Betrachtung von Anwendungsdiagrammen
und Sequenzdiagrammen im Rahmen der Verhaltensdiagramme der Unified Modeling Lan-
guage (UML) ist nicht erforderlich, da dort der prozedurale Ablauf nicht im Vordergrund
der Modellierung steht [11]. In [81] wird ein Konzept zum Entwurf von Ablaufsteuerun-
gen von Konti-Anlagen aufgezeigt, jedoch keine eigene Beschreibungssprache definiert. Die
formalisierte Prozessbeschreibung [176] kann als Grundlage für den prozeduralen Steue-
rungsentwurf dienen. In [172] ist gezeigt, dass aus formalisierten Prozessbeschreibungen
automatisch Sequential Function Charts (SFC) erzeugt werden können. Da die formali-
sierte Prozessbeschreibung vorwiegend zur Beschreibung von Prozessen genutzt wird, wird
sie nicht als Prozedurbeschreibungssprache betrachtet.

Jede einzelne der ausgewählten Sprachen wird zunächst hinsichtlich der allgemeinen
Idee und des Einsatzzwecks vorgestellt und im Anschluss erfolgt die Ermittlung der fünf
Elemente einer Prozedurbeschreibungssprache nach Kapitel 3.1, S. 24, in der jeweiligen
Beschreibungssprache. Anzumerken ist, dass sich die Prozedurbeschreibungssprachen in
zwei Gruppen einteilen lassen [152]: Zunächst werden Prozedurbeschreibungssprachen zur
Steuerung von technischen Prozessen vorgestellt, anschließend solche, die Geschäftsprozesse
steuern.

3.3. Prozedurbeschreibungssprachen zur Steuerung von
technischen Prozessen

Der Fokus bei Prozedurbeschreibungssprachen zur Steuerung von technischen Prozessen
liegt in der Interaktion von maschinellen Steuerungssystemen mit maschinellen Anlagen-
systemen. Es folgt die Vorstellung von neun Sprachen, Endliche Automaten (EA), Grafcet,
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3. Analyse von Prozedurbeschreibungssprachen

Grafchart, Procedural Function Charts (PFC), Petrinetze (PN), PLC Statecharts, SFC,
Sequential State Charts (SSC) und Zustandsdiagramme, auf Englisch Statecharts (SC).
Diese Sprachen sind aufeinander basierend entwickelt worden. Abbildung 3.2 gibt einen
Überblick über die Abhängigkeiten der einzelnen Sprachen.

1940

1950

1960

1970

1980

1990

2000

2010

Endliche Automaten

PLC Statecharts
SSC

SFCGrafchart

PFC

Grafcet

Petrinetze

Statecharts

Abbildung 3.2.: Historie der Prozedurbeschreibungssprachen für technische Prozesse (basie-
rend auf [196])

Zwischen SC-basierten Sprachen und PN-basierten Sprachen besteht ein grundlegender
Unterschied in der Modellierung. Bei SC-basierten Sprachen ist der aktuelle Zustand der
Prozedur durch das einzige aktive Element festgelegt. Bei PN-basierten Sprachen ist hinge-
gen die Verteilung der Marken auf die Stellen für die Definition des Zustands der Prozedur
relevant [6].

Im Folgenden werden die einzelnen Sprachen analysiert. Dabei werden ausgehend von
den EA zunächst die PN-basierten Sprachen eingeführt, gefolgt von den SC-basierten Spra-
chen. Zum Schluss erfolgt die Betrachtung von SSC als Kombination beider Sprachfamilien.

3.3.1. Endliche Automaten
Endliche Automaten (EA) sind ein Beschreibungsmittel der Informatik aus den 1940er und
1950er Jahren [78]. Etymologisch stammt die Bezeichnung „Automat“ vom griechischen
Wort αυτoματoσ (automatos, übersetzt: von selbst geschehend) ab. In Abbildung 3.3 ist
ein Beispiel für einen EA abgebildet, welches in den folgenden Absätzen erläutert wird.

Es existieren viele verschiedene Ausprägungen der EA. Der Hauptunterschied der Aus-
prägungen liegt in der Anbindung an die Umgebung [175]. EA sind ein geeignetes Mittel zur
transparenten Beschreibung von Abläufen in der Automatisierungstechnik [62]. Sie bilden
daher direkt oder indirekt die Grundlage für alle weiteren Prozedurbeschreibungssprachen
in diesem Abschnitt.

Aufbaumodell Zunächst werden EA in Deterministische Endliche Automaten (DEA) und
Nichtdeterministische Endliche Automaten (NEA) unterteilt. Ein DEA ist definiert als ein
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3.3. Prozedurbeschreibungssprachen zur Steuerung von technischen Prozessen

closed

opening closing

opened

closed
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open
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closing
close

cmd_open / open fully_closed /

cmd_close / closefully_opened /

cmd_open fully_closed

cmd_closefully_opened

Anfangszustand

Zustand

Aktion

Bedingung
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Abbildung 3.3.: Elemente eines endlichen Automaten (links ein Mealy-Automat, rechts ein
Moore-Automat, nach [196])

Tupel (Q, Σ, δ, q0, F ). Hier ist

• Q =
{
q1, . . . , q|Q|

}
eine endliche2 Menge von Zuständen,

• Σ eine Menge von Eingangssymbolen (ein Alphabet nach Kapitel 2.6.1, S. 19),

• δ : Q → Q die Übergangsfunktion zwischen den Zuständen,

• q0 ∈ Q der Startzustand und

• F ⊆ Q die Menge der Endzustände [78].

Ein Zustand ist als Startzustand ausgezeichnet. Es kann beliebig viele Endzustände geben
[175]. Der Unterschied zwischen DEA und NEA besteht in der Übergangsfunktion. Bei
einem DEA gibt δ einen einzelnen Zustand, bei einem NEA eine Menge von Zuständen
zurück. Allerdings lässt sich zeigen, dass sich jeder NEA durch einen äquivalenten DEA
ausdrücken lässt, so dass im Folgenden nur noch der DEA betrachtet wird [78].

Hierarchie- und Vernetzungsmodell Neben einer endlichen Menge diskreter Zustände
besteht ein DEA aus möglichen Übergängen zwischen den Zuständen. Die Übergänge sind
durch die Übergangsfunktion δ : Q → Q definiert. Auch ein Übergang zum aktuellen
Zustand zurück ist ein Übergang, der in δ enthalten sein muss.

Klassische EA unterstützen keine Hierarchien [175], d. h., alle Zustände müssen mit ih-
ren Verbindungen dargestellt werden. Somit ist weder eine Zusammenfassung noch eine
Verfeinerung von Zuständen möglich. Nebenläufigkeit wird in den EA ebenfalls nicht un-
terstützt3.

2Daher die Bezeichnung „Endlicher Automat“.
3Einen Ansatz zur Erweiterung der EA zeigt [42], die detaillierte Darstellung würde jedoch den Rahmen

dieser Zusammenstellung sprengen.
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In [62] ist die Möglichkeit der Synchronisation mehrerer Automaten zur Modellie-
rung von Nebenläufigkeiten erläutert. Das Fehlen von Hierarchien und Nebenläufig-
keiten im Beschreibungsmittel führt jedoch zu einer Zustandsexplosion [72]. Zwei EA
sind orthogonal zueinander, wenn sie unterschiedliche Aspekte eines Systems beschrei-
ben, die keine Schnittmenge haben. Da EA keine Hierarchien kennen, werden die Zu-
stände kombiniert. Seien z. B. E1 und E2 zwei orthogonale EA mit den Zuständen
q1,1, q1,2, . . . , q1,m bzw. q2,1, q2,2, . . . , q2,n. Die Summe der Zustände der beiden Automa-
ten ist demnach m + n. Der kombinierte Automat besitzt jedoch m ∗ n Zustände [72],
nämlich q1,1q2,1, . . . q1,1q2,n, q1,2q2,1, . . . q1,2q2,n, q1,mq2,1 . . . q1,mq2,n. Ein kombinierter Auto-
mat wird daher auch als Produktautomat bezeichnet [78].

Abstraktions- und Zuordnungsmodell EA haben kein Abstraktions- und Zuordnungs-
modell [152]. Sie werden im Allgemeinen wegen ihrer formalen Beschreibung für die Veri-
fikation von Steuerungsspezifikationen eingesetzt [175]. Für die meisten praktischen An-
wendungsfälle sind die entstehenden Automaten zu komplex, daher ist eine Wartung bei
Änderungen und Fehlern nur schwer möglich. Zudem werden EA von heutigen IEC 61131-
3-kompatiblen Steuerungssystemen [23] nicht unterstützt, auch wenn automatische Trans-
formationen in Strukturierten Text (ST) möglich sind [62].

Aktions- und Aktivitätenmodell Klassische EA nach [78] haben keine Möglichkeit, Ak-
tionen oder Aktivitäten auszuführen. Sie reagieren nur durch die Übergangsfunktion in
Abhängigkeit des aktuellen Zustands auf die Eingangssymbole. Die Bedingungen der Zu-
standsübergänge müssen also aus der Menge Σ stammen. Solche EA stellen Akzeptoren
für eine formale Sprache dar [56].

Erst die Erweiterungen nach Mealy [108] und Moore [114] führen durch die Definition
eines Ausgabealphabets ein einfaches Aktionsmodell ein. Solche EA werden als Transdukto-
ren bezeichnet [56]. Für Aktionen wird die Automatendefinition um eine Ausgabefunktion
λ : Q × Σ → Y erweitert, wobei Y die Menge der Ausgänge ist [6]. Das Setzen von Aus-
gangsgrößen kann auf zwei verschiedene Weisen geschehen (vgl. Abbildung 3.3). Bei einem
Mealy-Automat werden die Ausgangsgrößen während des Zustandsübergangs geschrieben,
in einem Moore-Automat bei der Aktivierung des Zustands. Beide Typen lassen sich inein-
ander umformen [196]. Die Syntax der Aktionen ist durch die Ausgabefunktion festgelegt
[56].

Ausführungssteuerungsmodell Auch das Ausführungssteuerungsmodell der DEA4 ist
sehr simpel konstruiert. Bei der Aktivierung eines Automaten wird der Startzustand akti-
viert. Ein angelegtes Eingabewort wird Zeichen für Zeichen ausgewertet und entsprechend
der Übergangsfunktion wird der Zustand geändert. Die Übergangsfunktion nimmt den Zu-
stand als Ausgangswert, der beim jeweiligen Zeichen aktiv ist und nicht den, der beim
Anlegen des Worts aktiv war. Der DEA terminiert, wenn er einen Endzustand erreicht hat
[78].

Trifft ein DEA auf ein Zeichen, für das im aktuellen Zustand keine Übergangsfunktion
existiert, ist der Automat in einem undefinierten Zustand. Daher müssen Eingaben, die der
DEA ignorieren soll, explizit modelliert werden. Zudem kann es zu nicht erreichbaren Zu-
ständen kommen, wenn keine Übergangsfunktion in einen Zustand hineinführt. Der DEA

4NEA lassen sich, wie bereits erwähnt, in einen DEA umformen und werden daher hier nicht betrachtet.
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kann verklemmen, wenn aus einem Zustand, der kein Endzustand ist, keine Übergangs-
funktion hinausführt [78].

3.3.2. Petrinetze
Petrinetze (PN) sind in den 1960er Jahren zur Modellierung allgemeiner dynamischer
Strukturen entwickelt worden [175]. Wesentliche Arbeiten zu Petrinetzen sind durch Abel
[1] und Schnieder [147] durchgeführt worden. PN bilden eine mathematische Sprache zur
Systemmodellierung [165] und bauen auf den EA auf [196]. Der grundlegende Unterschied
zwischen EA und PN liegt in der Zustandsdefinition. Ein EA befindet sich immer in genau
einem Zustand, während bei einem PN der Zustand durch die Markenverteilung in allen
Stellen definiert ist. Die mathematischen Grundlagen ermöglichen eine tiefgehende Analyse
der erstellten Modelle [165]. In Abbildung 3.4 ist ein Beispiel für ein PN dargestellt.

es ist
Herbst

es ist
Frühling

es ist
Sommer

es ist
Winter

Sommeranfang

Winteranfang

HerbstanfangFrühlingsanfang

Stelle

Transition

Marke

Ereignis

Abbildung 3.4.: Elemente eines Petrinetzes (nach [142])

Aufbaumodell Es wird eine ganze Klasse von Modellen als PN bezeichnet, eine Übersicht
gibt z. B. [62]. Gemein ist all diesen PN-Varianten, dass sie aus Stellen, Transitionen und
Kanten bestehen. Exemplarisch werden an dieser Stelle zwei verschiedene Definitionen
vorgestellt:

Definition 1 Ein PN ist nach [141] definiert als ein 4-Tupel (P, T,F,B). Hierbei ist

• P =
{
p1, . . . , p|P |

}
eine endliche, angeordnete Menge von Stellen,

• T =
{
t1, . . . , t|T |

}
eine endliche, angeordnete Menge von Transitionen,

• F eine |P | × |T |-Matrix über N und

• B eine |P | × |T |-Matrix über N.

Bei PN gilt P ∩ T = ∅.
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Definition 2 Ein PN nach [1] ist definiert als ein 6-Tupel (S, T, F, K, W, M0). Hierbei
ist

• S =
{
s1, . . . , s|P |

}
eine endliche, nichtleere Menge von Stellen,

• T =
{
t1, . . . , t|T |

}
eine endliche, nichtleere Menge von Transitionen,

• F ⊆ S × T ∪ T × S eine nichtleere Kantenmenge,

• K : S → N die Abbildung, die die Marken-Kapazität einer Stelle definiert,

• W : F → N die Abbildung, die den Kanten ihr Gewicht zuordnet und

• M0 : S → N die Anfangsmarkierung.

Die Menge S ∪ T stellt graphentheoretisch die Knotenmenge des Graphen dar, wobei auch
hier S ∩ T = ∅ gilt.

Die beiden Definitionen unterscheiden sich durch die Einführung der Marken in Definiti-
on 2. Die Marken bilden die Grundlage für die dynamischen Effekte eines PN, daher wird
Definition 2 zur weiteren Analyse verwendet.

Hierarchie- und Vernetzungsmodell Stellen und Transitionen müssen alternierend mit-
einander verknüpft sein, d. h., ein PN ist ein bipartiter Graph. In Definition 1 enthält die
Matrix F die Verbindungen zwischen Stellen und Transitionen, die Matrix B die Verbindun-
gen zwischen Transitionen und Stellen. Die Einträge in F und B geben die Kantengewichte
an [141]. In Definition 2 sind die Kanten in der Menge F enthalten. Die Kantengewichte
werden durch die Abbildung W induziert [1]. Des Weiteren ist es notwendig, den Vorbereich
und den Nachbereich eines Knotens zu definieren. Sei x ∈ S ∪ T . Dann ist

- •x = {y| (y, x) ∈ F} der Vorbereich und

- x• = {y| (x, y) ∈ F} der Nachbereich

des Knoten x [116].
PN können in Teilnetze zerlegt werden. Allerdings sind nicht alle Eigenschaften des Ge-

samtnetzes aus den Teilnetzen ableitbar. Eine hierarchische Gliederung ist bei klassischen
PN nicht möglich [98]. PN sind für die Modellierung nebenläufiger Prozeduren geeignet. Es
können mehrere Stellen aktiv sein und das Schalten von Transitionen ist unabhängig von
dem Status anderer Stellen. Die unabhängige Schaltbarkeit zweier Transitionen hat die
Bedingung, dass die beiden Transitionen keine gemeinsamen Stellen in ihrem Vor- bzw.
Nachbereich haben. Für eine bessere Übersichtlichkeit sind Elemente zum Eröffnen und
zur Synchronisation der Parallelität eingeführt worden.

Abstraktions- und Zuordnungsmodell PN stellen lediglich eine abstrakte mathemati-
sche Basis dar. Erst durch Hinzufügen einer Semantik entstehen problemspezifische Lösun-
gen. Dies wird als Interpretation bezeichnet. Steuerungstechnisch interpretierbare Petrinet-
ze (SIPN) sind die für die Prozedurmodellierung wichtige Interpretation der PN. Hierbei
entsprechen die Stellen Prozesseingriffen über Stellglieder. Die Transitionen reagieren auf
Sensorwerte [98].
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Aktions- und Aktivitätenmodell Die SIPN ermöglichen es, dass neben der Schaltbarkeit
auch externe Gegebenheiten das Schalten von Transitionen beeinflussen können. Zudem
verändern die Stellen die Ausgangssignale des SIPN. Hierzu werden zwei Funktionen qT (t)
und qP (p) definiert. Die Funktion qT (t) wird als Schaltausdruck der Transition t ∈ T und
die Funktion qP (p) als Ausgabe der Stelle p ∈ S bezeichnet. In Abbildung 3.5 ist ein
Beispiel für SIPN abgebildet, welches die Eingänge x1, x2 und x3 sowie die Ausgänge y1
und y2 besitzt.

p1

p4p2

p3

t1 t2 t3

y =01 y =x2 3

y =12y =x1 1

x x x1 2 3 x1x4

Abbildung 3.5.: Beispiel für ein SIPN (nach [98])

Das SIPN in Abbildung 3.5 besitzt die Schaltausdrücke

qT

⎛
⎜⎝

t1
t2
t3

⎞
⎟⎠ =

⎛
⎜⎝

x1x2x3
x4
x1

⎞
⎟⎠

und die Ausgaben

qP

⎛
⎜⎜⎜⎝

p1
p2
p3
p4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(y1 = x1, y2 = −)
(y1 = 0, y2 = −)
(y1 = −, y2 = 1)
(y1 = −, y2 = x3)

⎞
⎟⎟⎟⎠ .

Ausführungssteuerungsmodell Neben den Kapazitäten der Stellen und der Anfangs-
markierung sind die Flussregeln für die Marken Grundlage für dynamische Vorgänge. Die
Marken, auch Token genannt, sind zu Beginn auf die Stellen verteilt. Ausgehend von dieser
Anfangsverteilung M0 schalten die Transitionen [116]. Dieses Schalten wird auch als Feu-
ern bezeichnet [141]. Damit eine Transition t ∈ T feuern kann, müssen zwei Schaltregeln
erfüllt sein [116]:

- M(s) ≥ W (s, t)∀s ∈ •t und

- M(s) ≤ K(s) − W (s, t)∀s ∈ t•.

Voraussetzung ist demnach, dass so viele Marken im Vorbereich der Transition sind, dass
die Kantengewichte erfüllt werden können. Zudem muss im Nachbereich der Transition
genügend Kapazität für die weitergegebenen Marken vorhanden sein [116].
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Ein PN hat kein globales Scheduling. Es gibt keine aktiven Schritte. Transitionen kön-
nen jederzeit reagieren, wenn die Schaltregeln erfüllt sind. Der Zustand eines PN ist durch
seine aktuelle Markierung gegeben [196]. Soll ein PN eine Zustandsmaschine darstellen,
müssen alle Stellenkapazitäten und Kantengewichte den Wert Eins haben [142]. Bei be-
stimmten Konstruktionen ist es möglich, dass PN verklemmen, d. h., es kann keine weitere
Transition schalten. Durch mathematische Analysen lässt sich jedoch feststellen, dass ein
PN verklemmungsfrei ist.

3.3.3. Grafcet
Grafcet5 ist eine Spezifikationssprache, die in den 1970er Jahren in Frankreich als Weiter-
entwicklung der PN entworfen worden ist [158]. Eine Ergänzung der PN um ein Konzept
für die Einbettung in die Umgebung sowie um ein Hierarchiekonzept ist erfolgt, so dass
sie SIPN ähneln [6, 158]. Grafcet ist in der IEC 60484 definiert. Ein Beispiel für einen
Grafcet-Plan ist in Abbildung 3.6 abgebildet.

Struktur Wirkungsteil

2

3

4

1

(1)

(4)

(3)

(2)

Schnell
abwärts

Richtungs-
wechsel

Langsam
abwärts

Richtungs-
wechsel

Aufwärts

EIN und Obere Position

Obere Position

Untere Position

Näherung Ende

Schritt

Wirkungslinie

Transition

Eingangsvariable

Ausgangsvariable

Transitions-

bedingung

Aktion

Abbildung 3.6.: Elemente eines Grafcet (nach [21])

Aufbaumodell Jeder Grafcet-Plan besteht zunächst aus zwei Teilen, der Struktur und
dem Wirkungsteil (graue Rechtecke in Abbildung 3.6). Im Strukturteil sind die Entwick-
lungen zwischen verschiedenen Situationen durch Schritte, Transitionen und Wirkungs-
linien dargestellt. Es können ein oder mehrere Schritte als Anfangsschritt ausgezeichnet

5Die Bezeichung „Grafcet“ ist eigentlich ein Akronym und steht für „GRAphe Fonctionnel de Commande
Etapes/Transitions“
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werden. Ein Schritt ohne vorangehende Transition ist ein Quellschritt und muss zwangs-
läufig Anfangsschritt sein. Schlussschritte hingegen sind optional. Der Wirkungsteil stellt
die Beziehung zwischen den Ein- und Ausgangsvariablen und dem Strukturteil her. Tran-
sitionsbedingungen verarbeiten die aktuellen Eingänge, während Aktionen die Ausgangs-
variablen setzen [21].

Hierarchie- und Vernetzungsmodell Die Schritte und Transitionen werden über Wirk-
beziehungen verbunden [156]. Schritte und Transitionen sind alternierend verknüpft, so
dass ein Grafcet-Plan ein bipartiter Graph ist. Alle Transitionen, von denen ein Schritt
erreicht werden kann, bilden den Vorbereich des Schritts und alle Transitionen, aus denen
ein Schritt verlassen werden kann, den Nachbereich eines Schritts [158]. Auf diese Weise
erfolgt die Erzeugung von Ablaufketten mit Start und Ende sowie die von geschlossenen
Ablaufketten [21].

Eine Strukturierung wird durch Einschließungen oder durch Makroschritte vorgenom-
men. Eine Einschließung stellt eine Möglichkeit dar, einen eigenständig entworfenen Graf-
cet als Ganzes in einen anderen Grafcet einzubinden. Ein Makroschritt hingegen ist ein
Platzhalter für einen bestimmten Ausschnitt eines Grafcets [158]. Zwangssteuernde Befehle
steuern Einschließungen und haben immer Vorrang vor den normalen Ablaufregeln [21].
Ein Grafcet-Plan kann sowohl Parallel- als auch Alternativverzweigungen enthalten [158].
Eine Alternative zu Parallelverzweigungen ist die Modellierung nebenläufiger Strukturen
durch mehr als einen Initialzustand [6]. Die Alternativverzweigung wird als Ablaufauswahl
bezeichnet und kann als Sonderfall das Überspringen von Schritten oder einen Rückführ-
sprung modellieren [21].

In vielen Grafcet-Plänen sind Elemente wie Makroschritte, zwangssteuernde Befehle,
einschließende Schritte oder zeitabhängige Bedingungen nicht enthalten [158]. Daher wird
Anfängern geraten, auf diese Elemente zu verzichten [21].

Abstraktions- und Zuordnungsmodell Grafcet hat kein eigenes Abstraktions- und Zu-
ordnungsmodell. Grafcet ist als Spezifikationssprache entwickelt worden, deren Implemen-
tation ein SFC sein kann [21]. Diese Transformation lässt sich sowohl auf Modell-Ebene
als auch auf Meta-Modell-Ebene automatisiert durchführen [158]. Des Weiteren können
einmal spezifizierte Grafcets durch Einschließungen wiederverwendet werden.

Aktions- und Aktivitätenmodell In einem Grafcet sind zwei Arten von Aktionen ent-
halten, diese sind kontinuierlich wirkende und gespeichert wirkende Aktionen. Eine konti-
nuierlich wirkende Aktion setzt den Wert einer Ausgangsvariable auf wahr, wenn der zuge-
hörige Schritt aktiv und die Zuweisungsbedingung erfüllt ist. Ansonsten wird der Wert der
Ausgangsvariable auf falsch gesetzt, wenn keine andere Aktion den Wert auf wahr setzt.
Im Gegensatz zu kontinuierlich wirkenden Variablen bleibt das Ergebnis einer gespeichert
wirkenden Aktion so lange bestehen, bis eine andere Aktion den Wert wieder ändert [21].

Transitionsbedingungen sind boolesche Ausdrücke, die sich aus den Eingangsvariablen,
internen Variablen und internen Ereignissen zusammensetzen. Bei den Eingangsvariablen
werden neben dem Wert einer binären Variable auch Änderungen von binären Werten
unterstützt. Es wird zwischen einer positiven Flanke (der Eingang x wechselt von falsch
auf wahr, ↑ x) und einer negativen Flanke (der Eingang x wechselt von wahr auf falsch,
↓x) unterschieden. In Transitionsbedingungen können auch Aussagen integriert sein, z. B.
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Vergleiche von numerischen Werten. Als interne Ereignisse werden eine Schrittaktivierung,
eine Schrittdeaktivierung oder das Auslösen einer Transition genannt [21].

Ausführungssteuerungsmodell Die Anfangssituation wird durch die Anfangszustände
festgelegt. Eine Änderung des Zustands ergibt sich durch das Feuern von Transitionen. Ei-
ne Transition feuert, wenn die Transition freigegeben und die Transitionsbedingung wahr
ist. Eine Transition ist freigegeben, wenn alle Schritte vor der Transition aktiv sind. Es
können mehrere Transitionen gleichzeitig feuern. Feuert eine Transition, werden alle vor-
angegangenen Schritte deaktiviert und alle folgenden Schritte aktiviert. Wird ein Schritt
gleichzeitig durch eine Transition deaktiviert und durch eine andere aktiviert, bleibt er
aktiv.

In einem Grafcet können transiente und nichttransiente Abläufe auftreten. Bei einem
transienten Ablauf wird ein Schritt aktiviert und direkt wieder deaktiviert, da eine sei-
ner ausgehenden Transitionen ebenfalls feuert. Dies führt dazu, dass in diesem Schritt
nur Zuordnungen in gespeichert wirkenden Aktionen ausgeführt werden, Zuweisungen in
kontinuierlich wirkenden Aktionen jedoch nicht.

Konflikte können nur bei gespeichert wirkenden Aktionen vorkommen, bei kontinuier-
lich wirkenden Aktionen ist im Konfliktfall das Signal wahr [158]. Die Verhinderung der
Konfliktfälle ist Aufgabe des Entwicklers [21].

3.3.4. Procedural Function Charts
PFC werden in der IEC 61512-26 [36] als Ableitung der SFC zur Beschreibung von Steue-
rungsprozeduren für Batch-Prozesse definiert [175]. Sie sind eng mit den Modellen zur
Strukturierung von Batch-Prozessen (Prozessmodell) und Batch-Anlagen (Physisches Mo-
dell) aus [35] verknüpft [67]. Prozeduren sind neben dem Rezeptkopf, Stoff- und Produk-
tionsdaten sowie Anforderungen an die Einrichtung Bestandteil eines Rezepts [35]. Die
wesentlichen Elemente eines PFC sind in Abbildung 3.7 dargestellt.

Aufbaumodell Die Logik der Prozedur wird in einem PFC durch eine Reihe von Sym-
bolen dargestellt. Die Rezept-Prozedurelemente entsprechen den Schritten eines Grafcets.
PFC müssen im Gegensatz zu SFC mindestens einen Anfangs- und mindestens einen End-
punkt haben. Ein Schritt kann speichernd und nicht-speichernd sein [37]. Belegungssymbo-
le dienen der Zuordnung von Betriebsmitteln (oder Apparaten) zu den einzelnen Rezept-
Prozedurelementen. Über Element-Synchronisationen sind zwei Rezept-Prozedurelemente
verknüpft, die synchron ausgeführt werden sollen. Diese Synchronisation kann einen Mate-
rialtransport beinhalten. Zwischen zwei Rezept-Prozedurelementen befindet sich eine Tran-
sition, die in explizite und implizite Transitionen differenziert wird [36].

Hierarchie- und Vernetzungsmodell Die Rezept-Prozedurelemente sind über Transitio-
nen miteinander verbunden. PFC ermöglichen nur Abläufe mit Anfang und Ende, zyklische
Abläufe sind nicht erlaubt. Neben linearen Ketten sind Ablauf-Selektionen und parallele
Abläufe in der Sprache enthalten. Ablauf-Selektionen müssen explizite Transitionen haben,

6Die IEC 61512 basiert auf der ISA 88, die von der International Society of Automation (ISA) veröffent-
licht wurde.
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Indikation
für
Rezeptebene

Prozedur Teil-Prozedur Operation Funktion

Apparate-ZuweisungAnfang / Ende - Symbol
der Prozedur

TAxyz

Synchronisation von
Prozedurelementen

DosA S01 TempS01

Abbildung 3.7.: Basiselemente eines PFC (nach [63])

da ansonsten keine Selektion möglich ist. Parallele Abläufe müssen vor dem Endpunkt zu
einem Pfad zusammengeführt werden [36].

PFC können hierarchisch strukturiert werden. Die Rezept-Prozedurelemente umfassen
vier verschiedene Ebenen: die Prozedur, die Teilprozedur, die Operation und die techni-
sche Funktion (vgl. Abbildung 3.7). Prozeduren beschreiben die Steuerung einer vollstän-
digen Verarbeitungsfunktion, z. B. die Herstellung einer Charge. Teil-Prozeduren steuern
eine Produktionssequenz, die auf genau einer Teilanlage abläuft. Operationen kontrollieren
Prozesse, die den Zustand von Stoffen verändern. Funktionen greifen direkt auf die Einrich-
tungssteuerung (vgl. Aktions- und Aktivitätenmodell) zu. Jedes Rezept-Prozedurelement
mit Ausnahme einer Funktion kann aus Rezept-Prozedurelementen der tieferen Ebene zu-
sammengesetzt werden [35].

Abstraktions- und Zuordnungsmodell Das Abstraktions- und Zuordnungsmodell ergibt
sich durch das Rezeptmodell aus [35]. Das Rezeptmodell umfasst vier Rezepttypen, Verfah-
rensrezepte, Werksrezepte, Grundrezepte und Steuerrezepte. Beschreibungsmittel für alle
vier Rezepttypen sind PFC. Verfahrens- und Werkrezepte stellen das prinzipielle Vorgehen
in den Vordergrund, während Grund- und Steuerrezepte sich auf die tatsächlichen Be-
triebsmittel beziehen. Verfahrensrezepte werden auf Unternehmensebene entwickelt und
enthalten die abstrakten Steuerungsschritte, die für den Prozess zur Erzeugung des ge-
wünschten Produkts notwendig sind. Werksrezepte enthalten zusätzlich Informationen aus
dem lokalen Kontext des Produktionsorts, z. B. Sprachinformationen oder rechtliche Rah-
menbedingungen. Erst mit dem Grundrezept wird der Bezug zu den Einrichtungen der
Anlage hergestellt. Das Steuerrezept ist eine Kopie des Grundrezepts, das zusätzliche Infor-
mationen für eine bestimmte Charge enthält [35]. Des Weiteren motiviert die IEC 61512-3
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eine Bibliothek für wesentliche Ablaufereignisse [37].

Aktions- und Aktivitätenmodell Steuerrezepte können nur in Kombination mit der Ein-
richtungssteuerung einen Prozess steuern. Diese Einrichtungssteuerung umfasst die Ebe-
nen 1 und 2 eines PLS (vgl. Kapitel 2.4, S. 14) und ist nicht Teil des Rezeptmodells.
Die Verknüpfung zwischen dem Steuerrezept und dem PLS wird durch Einrichtungs-
Prozedurelemente hergestellt. Diese Verknüpfungen werden als Belegungssymbole bezeich-
net. Dies geschieht über Verweise im Steuerrezept [35], die in der IEC 61512-2 definiert
sind.

Die Aktionen in einem speichernden Schritt bleiben bis zur Überschreibung in einem an-
deren Schritt aktiv. Aktionen in nicht-speichernden Schritten sind nur dann aktiv, wenn der
jeweilige Schritt aktiv ist [37]. Explizite Transitionen besitzen eine Transitionsbedingung,
implizite Transitionen nicht. Es ist keine Sprache festgelegt, in der Transitionsbedingungen
beschrieben werden sollen [36].

Ausführungssteuerungsmodell Ein PFC wird durch den zugehörigen Zustandsautoma-
ten7 (vgl. Abbildung 3.8) gestartet.

Dies führt dazu, dass der auf den Anfangspunkt folgende Schritt aktiviert wird [36]. Das
Weiterschalten erfolgt mittels Transitionen, wobei implizite Transitionen direkt feuern, so-
bald der vorherige Schritt beendet ist. Explizite Transitionen fordern den vorherige Schritt
auf, sich zu beenden, sobald ihre Transitionsbedingung wahr ist. Sind in einer Ablauf-
Selektion mehrere Transitionsbedingungen wahr, erfolgt die Auswertung der Transitionen
von links nach rechts [36]. Im Allgemeinen sind die Schritte im PFC jedoch selbstbeendend
und schalten durch implizite Transitionen weiter [175]. Die Ausführung eines PFC kann
durch andere PFC beeinflusst werden, wenn diese über Synchronisationen verknüpft sind
[36].

Der Zustandsautomat (vgl. Abbildung 3.8) realisiert ebenfalls die Ausnahmebehandlung
während der Prozedurausführung. Hierbei sind vier unterschiedliche Reaktionen der steu-
ernden Prozedur auf ein unerwartetes Ereignis möglich: Unterbrechen, Anhalten, Stoppen
und Abbrechen [35]. Die vier Reaktionen werden nach dem Grad des Ereignisses ausge-
wählt. Nach einer Unterbrechung der Prozedurausführung kann die Prozedur an derselben
Stelle wieder fortgesetzt werden. Anhalten bedeutet, dass die Ausführung der Prozedur
nicht ohne zusätzliche Aktionen möglich ist. Eine gestoppte Prozedur führt den Prozess in
einen sicheren Zustand. Anschließend ist ein expliziter Neustart erforderlich. Ein Abbruch
bringt den Prozess schnellstmöglich in einen sicheren Zustand und nimmt dabei Schäden
an der Anlage in Kauf [62]. Allerdings ist in der IEC 61512-1 nicht definiert, wie sich
unterlagerte Ebenen verhalten müssen, wenn eine höhere Ebene in eine Ausnahme läuft
[137].

3.3.5. Grafchart
Neben dem SFC ist auch Grafchart eine auf Grafcet basierende Programmiersprache. Graf-
chart ist eine Ergänzung von Grafcet um Programmierhochsprachen und Objektorientie-
rung. Des Weiteren fließen verschiedene Konzepte der Petrinetze ein. Die Entwicklung von

7Die Grafik basiert auf der Zustandsübergangsmatix in [35] und ist an die Version im Draft 2c vom
Januar 2014 angelehnt.
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Abbildung 3.8.: Zustands-Übergangsdiagramm für beispielhafte Zustände von Prozedur-
Elementen (nach [35])

Grafchart hat zwei Ziele verfolgt, zum einen das Aufzeigen der Entwicklung einer objekt-
orientierten grafischen Programmiersprache ausgehend von einer grafischen Spezifikations-
sprache, zum anderen sollte die bestehenden Analysemethoden für PN weiter anwendbar
sein [89]. Es gibt zwei Implementierungen von Grafchart, eine in der Programmiersprache
G2, eine in der Programmiersprache Java [165].

Grafchart wird zur Steuerung von Batch-Prozessen verwendet [88]. Aber auch in der
Fertigungsautomation findet Grafchart in universitären Anwendungen Verwendung [136,
165]. In Abbildung 3.9 sind die typischen Elemente von Grafchart aufgeführt.

Aufbaumodell Ein Grafchart besteht analog zu Grafcet und SFC primär aus Schritten
und Transitionen. Die Schritte repräsentieren Zustände, die Transitionen die Änderung von
Zuständen. Ein Schritt in Grafchart hat drei Attribute, x, t und s. Das Attribut x gibt an,
ob der Schritt aktiv ist oder nicht. Die Attribute s und t beinhalten die Information, wie
lange der Schritt aktiv ist, s beinhaltet die Dauer in Sekunden, t die Dauer in SPS-Zyklen.
Anfangs- und Endschritte sind ausgezeichnete Schritte. Aus Gründen der Übersichtlichkeit
können Verbindungspunkte eingefügt werden [5]. Transitionen dienen als Verbindungsob-
jekte zwischen Schritten. Hierbei existieren spezielle Exception-Transitionen, die das Ver-
lassen eines Makroschritts oder einer Prozedur im Fehlerfall darstellen. Des Weiteren gibt
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Abbildung 3.9.: Elemente von Grafchart (nach [88])

es in Grafchart Variablen [165].

Hierarchie- und Vernetzungsmodell Schritte und Transitionen sind in Grafchart alter-
nierend verknüpft. Grafchart unterstützt alternative und parallele Pfade. Jede Parallel-
verzweigung erzeugt zwei parallele Zweige und eine Vereinigung führt die Pfade wieder
zusammen. Sind mehr als zwei parallele Pfade notwendig, müssen mehrere Verzweigungen
bzw. Zusammenführungen hintereinander geschaltet werden [165].

Grafchart unterstützt Makroschritte und Prozeduren als Hierarchieelemente. Makro-
schritte fassen, wie in Grafcet, mehrere Schritte zu einem Element zusammen und erhöhen
die Übersichtlichkeit. Prozeduren können zusätzlich Parameter übergeben bekommen und
Rückgabewerte liefern. Hierbei wird zwischen Call-by-reference und Call-by-value8 unter-
schieden [165]. Prozeduren können durch Prozedurschritte und Prozessschritte aufgerufen
werden. Während bei einem Prozedurschritt die Ausführung der aufgerufenen Prozedur im
selben Thread erfolgt, erzeugt ein Prozessschritt einen neuen Thread [88].

Abstraktions- und Zuordnungsmodell Prozeduren in Grafchart lassen sich wiederver-
wenden. Auf diese Weise kann die Erzeugung von doppeltem Code vermieden werden.
Durch die Parameter sind Prozeduren auch flexibel an verschiedene Rahmenbedingungen
anpassbar. Ihr interner Aufbau bleibt allerdings starr. Denkbar sind jedoch Alternativpfa-
de, die über einen Parameter steuerbar sind [165].

Aktions- und Aktivitätenmodell Aktionen sind Schritten zugeordnet und im Unterar-
beitsbereich eines Schritts enthalten [88]. In der ursprünglichen Version sind Aktionen in

8Zur Erkläung von Call-by-value und Call-by-reference siehe z. B. [127].
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den Regeln der Programmiersprache G2 definiert [5]. Transitionen besitzen eine Wächter-
bedingung, die aus booleschen Ausdrücken oder Ereignissen zusammengesetzt sein kann
[165].

Aktionen in Grafchart besitzen ein Präfix, welches die Ausführung der Aktion kontrol-
liert. In Tabelle 3.1 ist eine Übersicht der möglichen Präfixe gegeben [165].

Tabelle 3.1.: Liste der möglichen Grafchart-Präfixe [165]
Präfix Beschreibung
S Die Aktion wird ausgeführt, wenn der Schritt aktiviert wird.
X Die Aktion wird ausgeführt, wenn der Schritt deaktiviert wird.
P Die Aktion wird zyklisch ausgeführt, solange der Schritt aktiv ist.
N Die Variable ist mit dem Zustand des Schritts assoziiert, d. h., sie ist wahr,

wenn der Schritt aktiv ist und ansonsten falsch.
A Die Aktion wird ausgeführt, wenn der Schritt abgebrochen wird.
V Prozedurparameter (Call-by-value)
R Prozedurparameter (Call-by-reference)

Neben den klassischen Aktionen bietet Grafchart auch den Aufruf von Diensten an. Auf
diese Weise kann Grafchart auch in eine SOA integriert werden. Realisiert wird dies durch
die Einbindung von Device Profiles for Web Services (DPWS) in Grafchart [136, 167].
Ferner ist auch eine OPC UA-Anbindung bereits in Grafchart implementiert [166].

Ausführungssteuerungsmodell Ein Grafchart wird wie ein SFC zyklisch ausgeführt. Ein
Ausführungsmodell, welches in jedem Zyklus die folgenden Operationen ausführt [122],
steuert die Ausführung eines Grafcharts.

1. Die digitalen und analogen Eingänge werden gelesen.

2. Aktivierte Transitionen mit wahrer Bedingung werden als feuerbar markiert.

3. Bei Konflikten wird die Markierung bei Transitionen mit niedrigerer Priorität wieder
entfernt. Exception-Transitionen haben gegenüber normalen Transitionen Priorität.

4. Die feuerbaren Transitionen feuern, während sie zwei Operationen ausführen:
a) Schritte vor der Transition werden deaktiviert. Dabei werden insbesondere Ak-

tionen mit Präfix X ausgeführt. Die Deaktivierung eines Schritts deaktiviert alle
nachfolgenden Transitionen [5].

b) Schritte nach der Transition werden aktiviert. Dabei werden insbesondere Ak-
tionen mit Präfix S ausgeführt. Die Aktivierung eines Schritts aktiviert alle
nachfolgenden Transitionen [5].

5. Für jeden Schritt werden drei Operationen ausgeführt:
a) Die Attribute t und s des Schritts werden aktualisiert.
b) Aktionen mit dem Präfix P werden ausgeführt, wenn der Schritt aktiv ist und

im vorherigen Zyklus aktiv war.
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c) Variablen, die mit Aktionen mit dem Präfix N verknüpft sind, werden geändert,
wenn sich der Zustand des Schritts seit dem letzten Zyklus verändert hat.

6. Der Grafchart pausiert bis zum nächsten Zyklus.

Durch dieses Vorgehen ist ein vollständig deterministisches Ausführungsverhalten möglich.
Die Auswertereihenfolge der Transitionen ist irrelevant und bei mehreren wahren Bedin-
gungen einer Alternativverzweigung werden auch mehrere Zweige aktiviert [122]. Dies hat
sich im Gegensatz zu früheren Versionen von Grafchart verändert. Dort ist in diesem Fall
nichtdeterministisch eine Wahl getroffen worden. In Grafchart ist zudem die Ausführung
aller Aktionen mit Präfix S und X garantiert, da Schritte nicht durchschalten können [5].

Makroschritte und durch Prozedur-Schritte aufgerufene Prozeduren laufen bis zu ihrem
Endschritt durch, bevor die aufrufende Kette weiterschalten kann. Wie bereits beschrieben,
haben Exception-Transitionen jedoch gegenüber normalen Transitionen Priorität und kön-
nen nur an Makroschritten und Prozeduren angebunden sein. Feuert eine solche Exception-
Transition während der Ausführung eines Makroschritts bzw. einer Prozedur, wird der Ma-
kroschritt bzw. die Prozedur abgebrochen und die Ausführungssteuerung führt Aktionen
mit Präfix A aus. Bei einer erneuten Aktivierung des Makroschritts bzw. der Prozedur
startet die interne Logik wieder an der Stelle, an der der Abbruch erfolgt ist [137].

Der Aufruf einer Prozedur durch einen Prozessschritt führt zur Erzeugung einer zweiten
Ausführungssteuerung. Dies hat zur Konsequenz, dass die Ausführung der aufgerufenen
Prozedur unabhängig von der aufrufenden Prozedur erfolgt. Abhängigkeiten zwischen den
Prozeduren müssen explizit durch Aktionen und Transitionsbedingungen projektiert sein
[137].

3.3.6. Sequential Function Charts
SFC sind als eine mögliche Implementierung von Grafcet in der IEC 61131-3 [23] defi-
niert. Sie sind eine weit verbreitete Darstellung der kausalen Struktur von Prozeduren in
Steuerungssystemen [175]. Auch die IEC 61499-1 [26] nennt SFC als geeignetes Mittel zur
Beschreibung von Prozeduren. SFC lassen sich als Graph und als Zustandsübergangsma-
trix darstellen [133]. Neben der ursprünglichen Anwendung als Programmiersprache stellen
SFC eine Alternative zu Grafcet als Spezifikationssprache9 dar. Es wird eine identische gra-
fische Repräsentation für Engineering und Laufzeit genutzt [3]. In Abbildung 3.10 sind die
wesentlichen Elemente eines SFC abgebildet.

Aufbaumodell In einem SFC stellt der Schritt eine definierte Situation der Steuerung
dar. Ein Schritt hat einen Schrittmerker zur Unterscheidung der Aktivität/Inaktivität und
hält seine aktive Zeit als Variable zugriffsbereit vor. Transitionen sind Übergänge zwischen
den Schritten [23]. In der IEC 61131-3 ist kein Endschritt definiert [196].

Hierarchie- und Vernetzungsmodell SFC sind in sogenannten Programm-Organisa-
tionseinheiten (POE) enthalten [62]. In einem SFC werden ausgehend vom Initialschritt
Transitionen und Schritte alternierend verknüpft, d. h., ein SFC ist ein bipartiter Graph.
Durch eine Alternativverzweigung ist die Auswahl zwischen mehreren Ketten möglich. Die

9Die Spezifikation ist eine Beschreibung des Verhaltens einer Steuerung, während sich die Implementie-
rung auf eine konkrete Programmiersprache und auf eine spezifische Hardware bezieht [6].
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Abbildung 3.10.: Elemente eines SFC (nach [116])

Festlegung der Priorität der Transitionen kann hierbei auf drei Arten erfolgen, durch Vor-
rang von links nach rechts, durch Nummerierung und durch gegenseitigen Ausschluss. Der
Kettensprung und die Kettenschleife sind Sonderfälle der Auswahlverzweigung. Simultan-
ketten sind mit einer Parallelverzweigung ebenfalls möglich [23]. Die Parallelverzweigung
verbindet eine Transition mit mindestens zwei Schritten, die entsprechende Zusammenfüh-
rung verbindet mindestens zwei Schritte mit einer Transition [116].

Als Hierarchiemodell bietet sich die Möglichkeit des Aufrufs anderer SFC an [23]. Dies
ist jedoch fehleranfällig. Die SFC können sich gegenseitig verklemmen, wenn jeder SFC
auf eine Schrittänderung des jeweils anderen wartet [24]. Zudem ist dieser Aufruf in der
IEC 61131-3 nicht vollständig spezifiziert. So ist das Verhalten des aufrufenden SFC nicht
eindeutig beschrieben, wenn der aufgerufene SFC deaktiviert wird [156]. Deshalb ist diese
Möglichkeit auch explizit im Beiblatt 1 zur IEC 61131-310 [24] als nicht empfohlen gekenn-
zeichnet. Eine andere Möglichkeit besteht in der Integration von SFC in Funktionsbaustei-
ne. Dies erhöht zum einen die Wartbarkeit, zum anderen lassen sich die Funktionsbausteine
wiederverwenden [24].

Abstraktions- und Zuordnungsmodell Im Beiblatt 1 ist ein Top-Down-Entwurfsprozess
und eine Bottom-Up-Implementierung als Paradigma für die Erstellung von SFC vorge-

10Das Beiblatt bezieht sich auf die Vorgängerversion von [23]. Diese weicht nach [156] nur unwesentlich
im Bereich der SFC von der aktuellen Version ab.
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schlagen. Nach der Festlegung der Gesamtfunktionalität und der äußeren Schnittstelle wird
die Funktionalität in immer kleinere Elemente unterteilt, bis entweder das Element in einer
Bibliothek vorhanden ist oder durch die Sprachen der IEC 61131-3 algorithmisch ausge-
drückt werden kann. Diese atomaren funktionalen Einheiten werden implementiert bzw.
instantiiert und anschließend verschaltet [24]. Es ist unter bestimmten Rahmenbedingun-
gen möglich, SFC in einen Funktionsbaustein in Funktionsbaustein-Sprache (FBS) umzu-
wandeln [191]. Eine Abstraktion der Funktionsbausteine ist mit dem Typ-Instanz-Konzept
möglich.

Die Richtlinie ISA TR 106 [81] schlägt ein Vorgehen zum Engineering einer Prozedur vor.
Hierbei formuliert der Entwickler Anforderungen an die Steuerungsprozedur basierend auf
einem Prozessmodell, aus denen er im nächsten Schritt zusammen mit dem Anlagenmodell
ein Implementierungsmodell erzeugt. In diesem Implementierungsmodell ist anders als in
der IEC 61512 [35] ein direkter Zugriff auf die Einzelsteuerebene enthalten.

Aktions- und Aktivitätenmodell Aktionen können in SFC in zwei Weisen auftreten,
nämlich zum einen als boolesche Variablen, zum anderen können sie in den anderen Pro-
grammiersprachen der IEC 61131-3 definiert sein. Hierzu zählen Anweisungen in Anwei-
sungsliste (AWL) oder ST, Strompfade in Kontaktplan (KOP), Netzwerke in FBS oder
insbesondere andere SFC. Jede Aktion besitzt ein Aktionsbestimmungszeichen, das für
das Ausführungsmodell wichtig ist (vgl. Tabelle 3.2). Aktionen lassen sich zu Aktionsblö-
cken zusammenfassen, die den Schritten zugewiesen sind [23].

Transitionen besitzen eine Transitionsbedingung. Eine Transitionsbedingung kann als
boolescher Ausdruck in ST formuliert sein, es können aber auch der Ausgang eines KOP
bzw. eines FBS genutzt werden. Zudem ist es möglich, Konstrukte in ST oder AWL zu
verwenden [23].

Ausführungssteuerungsmodell Die Ausführung eines SFC erfolgt innerhalb der POE.
Sobald die POE initialisiert ist, wird auch der Initialschritt aktiviert. Der Schrittwechsel
erfolgt durch das Schalten von Transitionen. Eine Transition schaltet, wenn die Transition
freigegeben ist, d. h., wenn alle vorausgehenden Schritte aktiv sind und die Transitionsbe-
dingung wahr ist [23]. Die Regel der PN, dass die Schritte nach der Transition genügend
Platz für Marken haben müssen, existiert bei SFC nicht [6]. Wenn eine Transition feuert,
werden die vorherigen Schritte deaktiviert und die nachfolgenden Schritte aktiviert. Der
Schaltvorgang soll idealerweise keine Zeit in Anspruch nehmen, in der Praxis ist er aber von
der SPS abhängig [23]. Die Ausführungssteuerung der Aktionen erfolgt durch einen inter-
nen Funktionsbaustein. Dieser interpretiert die zugehörigen Aktionsbestimmungszeichen
der Aktionen und sorgt für die entsprechende Ausführung [23].

Die Ausführung von SFC erfolgt entweder nach dem Maximal-Progress-Vorgehen oder
nach dem Lock-Step-Vorgehen. Bei dem Maximal-Progress-Vorgehen feuern zunächst alle
Transitionen, bis ein stabiler Zustand erreicht ist. Anschließend werden die Aktionen der
dann aktiven Schritte ausgeführt. Beim Lock-Step-Vorgehen feuern nur die Transitionen,
die im selben Zyklus aktiviert worden sind [62]. Zudem unterscheiden sich Realisierungen
von SFC in der Reihenfolge der Aktionsausführung und Transitionsauswertung. Je nach-
dem, ob zuerst Transitionen ausgewertet oder Aktionen ausgeführt werden, kann das Re-
sultat ein anderes sein. Auch die Reihenfolge der Aktionsausführung in einem Schritt kann
zu Konflikten führen [6]. Die meisten kommerziellen Realisierungen der SFC verwenden
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Tabelle 3.2.: Liste der möglichen Aktionsbestimmungszeichen eines SFC (nach [23, 62])
Nummer Zeichen Beschreibung

1 Kein Nicht gespeichert. Die zugehörige Aktion wird ausgeführt,
während der Schritt aktiv ist.

2 N Nicht gespeichert. Die zugehörige Aktion wird ausgeführt,
während der Schritt aktiv ist.

3 R Vorrangiges Rücksetzen. Die zugehörige Aktion wird nicht
mehr ausgeführt.

4 S Setzen (gespeichert). Die zugehörige Aktion wird ausge-
führt, bis sie rückgesetzt wird.

5 L Zeitbegrenzt. Die zugehörige Aktion wird ausgeführt, bis
entweder die Zeitspanne abgelaufen ist oder der Schritt de-
aktiviert wird.

6 D Zeitverzögert. Die zugehörige Aktion wird nach Ablauf der
Zeitspanne ausgeführt, bis der Schritt deaktiviert wird.

7 P Impuls (Flanke). Die zugehörige Aktion wird bei der Ak-
tivierung und bei der Deaktivierung des Schritts einmal
ausgeführt.

8 SD Gespeichert und zeitverzögert. Die zugehörige Aktion wird
nach Ablauf der Zeitspanne ausgeführt, bis sie rückgesetzt
wird.

9 DS Verzögert und gespeichert. Die zugehörige Aktion wird
nach Ablauf der Zeitspanne ausgeführt, bis sie rückgesetzt
wird, es sei denn, der Schritt wird vor Ablauf der Zeitspan-
ne deaktiviert.

10 SL Gespeichert und zeitbegrenzt. Die zugehörige Aktion wird
ausgeführt, bis die Zeitspanne abgelaufen ist.

11 P1 Puls (steigende Flanke). Die zugehörige Aktion wird bei
der Aktivierung des Schritts einmal ausgeführt.

12 P0 Puls (fallende Flanke). Die zugehörige Aktion wird bei der
Deaktivierung des Schritts einmal ausgeführt.

das Lock-Step-Vorgehen in Kombination mit der Auswertung der Transitionsbedingungen
vor der Aktionsausführung [196].

Während der Ausführung eines SFC stoppt bei einem Fehler normalerweise der Pro-
grammfluss. Anschließend wird entweder der Fehler automatisch korrigiert, falsche Varia-
blenwerte durch ihren Default-Wert ersetzt oder auf eine manuelle Korrektur des Fehlers
gewartet. Anschließend setzt sich der Ablauf an einer geeigneten Stelle fort [24].

Das Ausführungssteuerungsmodell der SFC schließt explizit die Erstellung unsicherer
bzw. verklemmender Ablaufketten nicht aus [23]. Dieses Verhalten kann bei der Verwen-
dung von geschachtelten Simultanverzweigungen oder bei einem Mischen von Simultan-
und Alternativverzweigungen auftreten [24]. In diesem Fall kann sich die Anzahl aktiver
Schritte unkontrolliert vermehren [6].
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3. Analyse von Prozedurbeschreibungssprachen

3.3.7. Zustandsdiagramme
Zustandsdiagramme, auf Englisch Statecharts (SC), sind eine Erweiterung von EA, die zur
Modellierung reaktiver Systeme entwickelt worden sind [72]. Sie basieren auf der Idee, dass
Systeme zu jeder Zeit einen definierten Zustand haben. Systeme besitzen unterschiedliche
Zustände und reagieren in jedem dieser unterschiedliche Zustände in einer anderen Art
und Weise [93]. Der Wechsel von einem Zustand zu einem anderen Zustand erfolgt durch
externe und interne Ereignisse. Zusammengefasst ist das Verhalten reaktiver Systeme durch
die Menge der Sequenzen von Eingangs- und Ausgangsereignissen, Bedingungen, Aktionen
und zeitlichen Rahmenbedingungen bestimmt [72]. In Abbildung 3.11 ist ein Beispiel für
einen SC dargestellt.

A
entry S
exit b,T
througout x

a

C

F

B
entry V

c/W

D

b

E
entry U

SZ

f[x]

Superzustand

Startpunkt

Unterzustand
Bedingung

Aktion

Guard Transition Zustand

Orthogonaler Zustand

Abbildung 3.11.: Beispiel für einen SC (nach [72])

SC gehören zu den Verhaltensmodellen innerhalb der UML/SysML. Es ist eine modell-
basierte Generation von Quellcode möglich, wodurch eine große Akzeptanz bei Software-
Entwicklern entsteht [4].

Aufbaumodell Ein SC besteht aus Zuständen und Zustandsübergängen [72]. Jeder Zu-
stand hat einen Namen und beschreibt eine statische oder dynamische Situation [93]. Zu-
standsübergänge haben ein zugeordnetes Ereignis und können optional Bedingungen besit-
zen [72]. Es gibt ausgezeichnete Start- und Endzustände, deren Verwendung zwingend ist.
Ein Terminator ist ein spezieller Endzustand, der einen Abbruch des eigentlichen Ablaufs
kennzeichnet [196].

Hierarchie- und Vernetzungsmodell Generell verbinden bei SC ähnlich wie bei EA Zu-
standsübergänge die Zustände. Zur Verhinderung der Zustandsexplosion, die bei den EA
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auftritt, besitzen SC ein Hierarchiemodell [72]. Hierzu werden sogenannte Superzustände
verwendet, die ihrerseits Unterzustände und interne Zustandsübergänge zwischen den Un-
terzuständen haben [11]. Zustandsübergänge können, wie in Abbildung 3.12 gezeigt, an
einem Superzustand oder an einem Unterzustand in einem Superzustand beginnen bzw.
enden [72]. Der zweite Fall wird auch als Inter-Level-Übergang bezeichnet [6].

A
entry S
exit b,T
througout x

a

C

F

B
entry V

c

SZ 1

A
entry S
exit b,T
througout x

a

C

F

B
entry V

c

SZ 2

f f

Abbildung 3.12.: Zustandsübergänge in einem SC, links beginnend an einem Superzustand,
rechts in einem Superzustand

Innerhalb eines Superzustands können auch parallele Zustandsautomaten notiert sein. In
Abbildung 3.11 sind zwei parallele SC als Komponenten dargestellt, die durch die gepunk-
tete Linie getrennt sind. Jede Komponente arbeitet unabhängig voneinander. Falls eine
Synchronisation notwendig ist, wird diese durch gemeinsame Zustandsübergänge erzwun-
gen [72]. Alternativverzweigungen sind durch Kreuzungen oder Entscheidungen modelliert.
Kreuzungen beschreiben statische und Entscheidungen dynamische Verzweigungen [93].

Abstraktions- und Zuordnungsmodell Die OMG bietet einen ganzheitlichen Ansatz
zur modellgetriebenen Entwicklung, der auch als modellgetriebene Architektur bezeichnet
wird. Die UML bzw. die SysML stellt mit ihren verschiedenen Meta-Modellen die Mo-
dellierungssprachen bereit. Dies bedeutet, dass eine Kombination der Meta-Modelle den
Entwurfsprozess vom Engineering erster Ideen bis hin zu ausführbaren Modellen begleitet.
Hierzu stehen eine Reihe von Modelltransformationen zur Verfügung. In der UML können
zudem Profile definiert werden, die eine domänenspezifische Sprache festlegen. Eine durch-
gängige Verwendung der Objektorientierung in der UML ermöglicht die Verwendung von
Konzepten wie Klasse und Instanz bzw. Vererbung. Die einzelnen Diagramme der UML
sind nur unterschiedliche Sichten auf das gleiche Gesamtmodell [4]. SC im Speziellen finden
in allen Planungsphasen Verwendung [80].

Aktions- und Aktivitätenmodell SC sind eine Erweiterung von EA und kombinieren die
Ideen von Moore und Mealy (vgl. Kapitel 3.3.1, S. 28). Demnach ist es möglich Aktionen
sowohl in einem Zustand als auch bei einem Zustandsübergang auszuführen. Unter einer
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3. Analyse von Prozedurbeschreibungssprachen

Aktion wird in diesem Kontext ein instantanes Ereignis, das idealisiert keine Zeit zur
Ausführung benötigt, verstanden. Neben Aktionen können in Schritten auch Aktivitäten
enthalten sein. Aktivitäten haben eine zeitliche Dauer. Ihr Start bzw. ihre Beendigung
erfolgt durch Aktionen. Ein Attribut der Aktivität gibt an, ob die Aktivität zum aktuellen
Zeitpunkt gestartet ist [72].

Ein Zustandsübergang kann aus fünf Teilen bestehen: dem Quellzustand, dem Ereig-
nistrigger, der überwachten Bedingung, dem Effekt und dem Zielzustand. Eine Transiti-
on beginnt immer an einem Quellzustand und endet im Zielzustand. Der Ereignistrigger
kennzeichnet das Ereignis, welches den Zustandsübergang einleitet. Trifft das Ereignis ein,
wird die überwachte Bedingung, ein boolescher Ausdruck, ausgewertet. Die überwachte
Bedingung ist demnach die Erlaubnis zum Feuern der Transition. Während des Zustands-
übergangs können Aktionen, die sogenannten Effekte, ausgeführt werden [11].

Als Ereignis wird hier

„die Spezifikation eines signifikanten Vorkommens, das sich zeitlich und räum-
lich zuordnen lässt [, verstanden]. Im Kontext von Zustandsautomaten ist ein
Ereignis ein Stimulus, der eine Zustandsänderung auslösen kann“ [11, S. 336].

Ein solches Ereignis kann sowohl innerhalb eines SC als auch extern ausgelöst werden [11].
Es sind vier verschiedene Ereignisse in der UML definiert: Signale, Aufrufe, Abläufe von
Zeitspannen und Zustandsänderungen. Des Weiteren finden generische Ereignisse Verwen-
dung, die auf alle vier Ereignistypen reagieren. Signale ermöglichen die Modellierung eines
asynchronen Nachrichtenaustauschs. Ein Aufruf kennzeichnet den Eingang einer Anfrage
zur Ausführung einer Operation. Abläufe von Zeitspannen beschreiben ein zeitliches Ereig-
nis. Ein Zustandsübergang entsteht, sobald ein boolescher Ausdruck von falsch nach wahr
wechselt [93].

Ausführungssteuerungsmodell In einem SC darf in jeder Komponente nur ein Zustand
aktiv sein. In jeder Komponente wird zunächst der Startpunkt getriggert, der den Startzu-
stand aktiviert. Die Transition zwischen Startpunkt und Startzustand darf keinen Guard
und kein Event besitzen. In diesem Zustand bleibt die Komponente, bis ein Zustandsüber-
gang feuert. Hierzu muss ein Ereignis empfangen werden. Dabei gilt es zu beachten, dass
die Bedingung eines Zustandsübergangs nur ausgewertet wird, wenn Guard true ist [93].

Der Übergang zu einem Superzustand kann zum Superzustand oder zu einem Unterzu-
stand erfolgen. Im ersten Fall wird der Anfangs-Unterzustand des Superzustands aktiviert
[72]. Des Weiteren ist es möglich, dass der letzte aktive Zustand wieder aktiviert wird,
wenn ein Historian-Verbinder existiert [80]. Zur Vereinfachung können Verbindungspunk-
te für bedingte und selektive Eingänge verwendet werden [72]. Solange ein Unterzustand
aktiv ist, ist auch der Superzustand aktiv [116].

Beginnt ein Zustandsübergang an einem Superzustand, kann jeder der Unterzustände des
Superzustands über den Übergang verlassen werden. Beginnt er jedoch an einem Unterzu-
stand, kann nur genau dieser Unterzustand verlassen werden. Bezogen auf Abbildung 3.12
bedeutet dies, dass der SC SZ 1 im Zustand F durch ein Ereignis c in den Zustand C
wechselt, der SC SZ 2 weiter in F bleibt [72]. Wird ein Superzustand verlassen, werden
auch alle enthaltenen Unterzustände deaktiviert [116].

Die Ausführung von Aktionen erfolgt sowohl beim Betreten als auch beim Verlassen eines
Zustands. Dies wird durch die Worte entry bzw. exit gekennzeichnet. Die Steuerung einer
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Aktivität x kann durch die Aktionen start(x) und stop(x) erfolgen. Soll eine Aktivität so
lange laufen, wie der Zustand aktiv ist, lässt sich dies abkürzend mit dem Wort throughout
(in der UML mit do bezeichnet) kennzeichnen [72]. Ereignisse können auch Aktionen trig-
gern, ohne dass ein Zustandswechsel durchgeführt wird. Dies ist eine Verallgemeinerung
von entry, do und exit [93].

Das Fehlen einer Übergangsbedingung für ein bestimmtes Ereignis führt nicht zu einem
undefinierten Zustand wie bei den EA, sondern zu einem Verharren im derzeitigen Zustand,
bis ein neues Ereignis eintritt [11]. Ereignisse können jedoch verzögert werden, d. h., sie
werden bis zur Verwendung gespeichert [93].

3.3.8. PLC Statecharts
PLC Statecharts (PLC SC) erweitern die SC um eine Ausführungssemantik, die in einer
SPS verwendet werden kann. Hierzu wird auf die Verwendung von Ereignissen verzich-
tet. Die Kommunikation läuft stattdessen über Signale ab. Die Vergabe von Prioritäten
an die Transitionen erzielt ein deterministisches Ablaufverhalten [62]. Es wird zwischen
mehrzyklischen und zyklusinternen PLC SC unterschieden. PLC SC sind formal zu analy-
sieren und unter dem Namen PLC-Modeling Language (plcML) als UML-Profil definiert.
In Abbildung 3.13 ist die Ähnlichkeit zu SC zu sehen (vgl. Abbildung 3.11). Die weiteren
Erläuterungen in diesem Kapitel basieren auf [192].

State 4
ENTRY / en_4()
DO / do_4()
EXIT / ex_4()

State 1
ENTRY / en_1()
DO / do_1()
EXIT / ex_1()

2

[a]/aa()

[b]/bb()

1

[c]/cc()

abort

State 2
ENTRY / en_2()
DO / do_2()
EXIT / ex_2()

<<InCycle>>
State 6

ENTRY / en_6()
DO / do_6()
EXIT / ex_6()

State 3

State 5

CompositeState1

[d]/dd()

2

1

[e]/ee()

[f]/ff()Region0

Region1

2

1

[i]/ii()

[g]/gg()

[h]/hh()

x
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Transition
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zyklusinterner Zustandorthogonaler Zustand

zusammengesetzter

Zustand

determinis-

tische

Region

1

2

Abbildung 3.13.: Beispiel für ein PLC SC (nach [192])

Aufbaumodell PLC SC unterscheiden zwischen zyklusinternen und mehrzyklischen Zu-
ständen. Mehrzyklische Zustände entsprechen den Zuständen der SC (weiß in Abbil-
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dung 3.13 dargestellt). Zyklusinterne Zustände (grau in Abbildung 3.13 dargestellt) be-
sitzen ein Attribut, das die Anzahl der DO-Aufrufe in einem Zyklus beschränkt. Deter-
ministische Transitionen sind von den Transitionen aus den SC abgeleitet und erweitern
diese um eine Prioritätsangabe. Initialzustand, Auswahlzustand, Gabelungszustand und
Kreuzungsknoten werden als Pseudozustand modelliert.

Hierarchie- und Vernetzungsmodell Analog zu einem SC sind in einem PLC SC Zustän-
de durch Übergänge, die sogenannten Transitionen, verbunden. Unterbrechungstransitio-
nen, die an zusammengesetzte oder an orthogonale Zustände angebunden werden, ergänzen
die PLC SC. Sie können nur dann an einfache Schritte angebunden sein, wenn diese eine
DO-Aktivität haben, die unterbrochen werden soll.

Das Hierarchie- und Vernetzungsmodell wird gegenüber dem der SC wie folgt einge-
schränkt: Zusammengesetzte Zustände besitzen keine Aktionen oder Aktivitäten. Hier er-
folgt eine Zuordnung zu den in dem zusammengesetzten Zustand enthaltenen Zuständen.
Des Weiteren ist exakt ein Initialzustand erforderlich, wenn ein zusammengesetzter Zu-
stand durch eine Transition erreichbar ist. Verlassen werden muss ein zusammengesetzter
Zustand über eine deterministische Transition, die durch ein Beendigungsereignis feuert.

Orthogonale Zustände besitzen ebenfalls keine Aktionen oder Aktivitäten. Sie dürfen
nur deterministische Regionen beinhalten. Deterministische Regionen berücksichtigen die
üblicherweise nicht-parallele Ausführung von SPS-Programmen und ermöglichen eine de-
terministische Serialisierung der parallelen Abläufe durch Angabe von Prioritäten. Ein
orthogonaler Zustand wird über eine Transition verlassen. Hierzu müssen alle determinis-
tischen Regionen einen Endzustand haben.

Eine weitere Rahmenbedingung der PLC SC besteht darin, dass zyklusinterne PLC SC
nur aus zyklusinternen Zuständen bestehen dürfen. Das bedeutet, sobald ein PLC SC einen
mehrzyklischen Zustand enthält, ist auch der PLC SC mehrzyklisch.

Abstraktions- und Zuordnungsmodell Große Teile des Abstraktions- und Zuordnungs-
modells der plcML befassen sich mit Klassendiagrammen zur Modellierung der statischen
Software-Strukturen und sind daher für diese Arbeit nicht relevant. Ablaufdiagramme kön-
nen auf IEC 61131-3-kompatible Strukturen abgebildet werden. In Abbildung 3.14 ist dieser
Ablauf der automatischen SPS-Codegenerierung basierend auf PLC SC dargestellt. PLC
SC unterstützen zudem rollenbasierte Sichten auf das Modell. Dies hilft verschiedenen
Nutzergruppen, nur die Bereiche eines PLC SC zu sehen, die für sie von Interesse sind.
Tiefergehende Informationen über die Transformation sind auch [193] zu entnehmen.

Aktions- und Aktivitätenmodell Eine Aktion im PLC SC entspricht der Aktion im SFC,
so dass hier eine Kompatibilität existiert. Aktivitäten haben einen booleschen Eingangspa-
rameter zum Initialisieren und einen Ausgangsparameter, der anzeigt, dass die Aktivität
abgelaufen ist. In der IEC 61131-3 sind keine Ereignisse vorgesehen. Daher sind in den
PLC SC verschiedene Mechanismen enthalten, wie die Ereignisse in einer SPS emuliert
werden können (vgl. Tabelle 3.3).

Ausführungssteuerungsmodell Das Ausführungssteuerungsmodell von PLC SC ist in
[192] nicht enthalten, so dass die Darstellung in [194] als Grundlage für die Erläuterung
an dieser Stelle gewählt wird. Die Ausführung ist in den SPS-Zyklus (vgl. Kapitel 2.2.3,
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Vom Anwender erstelltes Zustandsdiagramm (konkrete Syntax)

Syntaxprüfung Elementbezogene Fehlermeldungen

Modelltransformationen Zustandsdiagramm in abstrakter Syntax

Generierung der Datenstrukturen
für die Ausführungsmaschine

Generierung von Aktionen für die
Ausführungsmaschine

Parametrierung der
Ausführungsmaschine

Ablauffähige Zustands-
maschine in IEC 61131-3

IEC 61131-3 Ausführungsmaschine
für plcML Zustandsdiagramme

Syntaxfehler=0

Syntaxfehler>0

Abbildung 3.14.: Schema für die Codegenerierung aus PLC SC (nach [192])

S. 10) eingebunden. Die Ausführungslogik ist in der Sprache UPPAAL definiert und formal
überprüft. Es findet eine Unterscheidung zwischen mehrzyklischen und zyklusinternen Zu-
ständen statt. Wird ein mehrzyklischer Zustand betreten, werden zunächst die Aktionen im
ENTRY-Bereich ausgeführt. Anschließend erfolgt in jedem Zyklus die einmalige Ausfüh-
rung der DO-Aktivitäten und die Überprüfung der Transitionsbedingungen in absteigen-
der Priorität. Feuert eine Transition, ist der Zyklus beendet. Unterbrechungstransitionen
bewirken hingegen keinen Zykluswechsel. Zyklusinterne Zustände zeigen ein ähnliches Ver-
halten, der maximale Aufruf der DO-Aktivitäten ist jedoch beschränkt. Wird diese Anzahl
überschritten, liegt ein Fehler vor.

3.3.9. Sequential State Charts
SSC sind eine Kombination aus SFC und SC, die die Vorteile der beiden Sprachen (z. B.
die Lauffähigkeit in einer SPS von SFC und die Verwendung von Aktionsaufrufen in SC)
kombiniert. Zur Vereinfachung der Sprache sind Konzepte wie z. B. nebenläufige Schritt-
ketten oder Aktionsaufrufe in Transitionen nicht zugelassen. Des Weiteren enthalten SSC
die Möglichkeit der dienstbasierten Kommunikation, die Modellierung der Prozeduren er-
folgt in einem Ausführungsrahmen. Auch wenn SSC als Modell für allgemeine Prozeduren
vorgestellt werden, ist ihre Einsatzfähigkeit auf die Steuerung technischer Prozesse be-
schränkt. SSC sind in [196, 197] eingeführt worden. Aus diesen Quellen stammt auch die
folgende Zusammenfassung.

Aufbaumodell Ein SSC ist aus Schritten und Transitionen zusammengesetzt. Ein SSC
sollte einen Startschritt besitzen und kann mehrere Endschritte haben. Alle Elemente
eines SSC sind in einen Ausführungsrahmen integriert. Innerhalb des Ausführungsrahmens
können auch weitere Funktionsbausteine verwendet werden.
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Tabelle 3.3.: Emulierung von Ereignissen in einer SPS
Ereignis Ersetzung
Change-Event Es wird nicht der absolute Wert ausgewertet, sondern der

Übergang zwischen zwei Werten. Hier kann beispielsweise
der RTRIG-Baustein aus der VDI/VDE 3696 [180] Ver-
wendung finden.

Completion-Event Aktivitäten erhalten einen booleschen Ausgang, der wahr
wird, wenn die Aktivität beendet ist. Dieser Wert kann in
einer Transition abgefragt werden.

Time-Event Da der Zeitpunkt t0 der Aktivierung eines Schritts gespei-
chert ist, kann das Ereignis „nach t = 10 s“ in einen Ver-
gleich t − t0 > 10 s umgewandelt werden. Zu beachten ist,
dass es aufgrund der zyklischen Abarbeitung einer SPS
nicht sinnvoll ist, einen Vergleich von Zeiten auf Gleich-
heit durchzuführen. Ein Beispiel ist die Abfrage t = 0,5 s
bei einer Zykluszeit von tZ = 0,2 s.

Hierarchie- und Vernetzungsmodell Die Verbindung von Schritten und Transitionen
erfolgt alternierend. Die Verbindung zweier Schritte über implizite Transitionen, die gra-
fisch nicht dargestellt werden, ist jedoch auch möglich. SSC bieten die Möglichkeit, Un-
terprozeduren zu definieren. Eine solche Unterprozedur kann als eine eigene Prozedur mit
einem eigenen Ausführungsrahmen definiert sein. Die Unterprozedur kann zudem in ei-
nem Ausführungsrahmen innerhalb des Ausführungsrahmens der Hauptprozedur enthalten
sein. Eine Unterprozedur startet entweder durch Setzen der Variable EN oder durch einen
Dienstaufruf (wenn die Prozedur im Ausführungsrahmen der Hauptprozedur enthalten ist).

Wird der aufrufende Schritt der Hauptprozedur verlassen, stoppt die Ausführung der
Unterprozedur und diese bleibt im aktuellen Schritt stehen. Beim nächsten Aufruf startet
die Unterprozedur an dieser Stelle. Die Hauptprozedur kann die Unterprozedur durch ein
Kommando zurücksetzen. Falls die Unterprozedur nicht beendet werden darf, muss die
ausgehende Transition des aufrufenden Schritts explizit den Endschritt der Unterprozedur
abfragen.

Die Definition von Alternativverzweigungen ist möglich. In einer Alternativverzweigung
können die ausgehenden Transitionen mit einer Priorität versehen sein. Sind bei der Aus-
führung der beschriebenen Prozedur mehrere Transitionsbedingungen erfüllt, feuert die
Transition mit der höchsten Priorität. Ist keine Priorität angegeben, feuert die am weites-
ten links gezeichnete Transition.

Nebenläufige Prozeduren sind in SSC innerhalb eines Ausführungsrahmens nicht mög-
lich. Die einzige Möglichkeit Funktionen nebenläufig auszuführen ist der zeitgleiche Aufruf
mehrerer Unterketten. Die Synchronisation muss explizit in den Transitionsbedingungen
modelliert sein.

Abstraktions- und Zuordnungsmodell Ein wichtiger Aspekt bei der Entwicklung der
SSC stellt der einfache Entwurfsprozess dar. Hier ist ein Whitebox-Ansatz ausgewählt wor-
den [199], d. h., jeder Ausführungsrahmen entspricht einem Funktionsbausteindiagramm
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S1

TRUE

T1

INIT

OUT1
EN

IN1

OUT2

Entry:
OUT1=0;

Do:
CALL FBD1;

CALL SSC2;

S2
Entry:
./Pump. = ;EN START

T2

S3
Entry:

OUT2=1.5;

FBD1

SSC2

Pump

OUT3

Kontinuierliche FunktionTransition

AusgangAktionTransitionsbedingung Anfangsschritt

SchrittEingang

Abbildung 3.15.: Beispiel für einen SSC (nach [197])

nach der IEC 61131-3 [23]. Die interne Struktur des SSC kann sowohl im Engineering als
auch zur Laufzeit erkundbar sein. Es ist jedoch auch möglich, den inneren Aufbau eines
SSC zu verbergen. Auf diese Weise kann ein SSC als gekapseltes Modul verwendet werden.

Aktions- und Aktivitätenmodell Die Schritte eines SSC können Aktionen beinhalten.
Eine Aktion kann hierbei

• das Setzen einer Ausgangsvariable des Ausführungsrahmens,

• das Setzen des Eingangs eines Funktionsbausteins innerhalb des eigenen Ausfüh-
rungsrahmens oder

• der Aufruf eines lokalen Funktionsbausteins sein.

Es werden drei Ausführungszeitpunkte unterschieden. Zum einen ist eine einmalige Aus-
führung von Aktionen bei der Aktivierung (entry) oder beim Verlassen des Schritts (exit)
möglich. Zum anderen können Aktionen zyklisch (do) ausgeführt werden, während der
Schritt aktiv ist. Die Ausführung von Aktivitäten wird nicht direkt unterstützt.

Ausführungssteuerungsmodell Das Ausführungssteuerungsmodell der SSC ist im Aus-
führungsrahmen enthalten. Der Ausführungsrahmen kann als Funktionsbaustein verwen-
det werden. Er hat mindestens einen Eingang EN und zwei Ausgänge ActualState und
terminated. Über den Eingang EN lässt sich der Ausführungsrahmen mit Hilfe verschiede-
ner Kommandos der SSC in seinem Verhalten steuern. Der Ausgang ActualState gibt den
momentan aktiven Schritt der Hauptkette nach außen weiter. Der Ausgang terminated
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indiziert, dass die Prozedur in einen Endschritt gelaufen ist. In einem Ausführungsrah-
men eines SSC können auch kontinuierliche Steuerungsfunktionen enthalten sein, die z. B.
Berechnungen beinhalten können.

Wenn ein SSC aktiv ist, erfolgt in jedem Zyklus ein fester Ablauf. Zunächst werden
die Eingänge gelesen und anschließend die interne Logik an den Eingängen ausgewertet.
Nun liegt der Fokus auf dem aktiven Schritt. Wird der Schritt zum ersten Mal ausge-
führt, werden alle Aktionen unter entry sequenziell ausgeführt. Anschließend erfolgt die
Auswertung der ausgehenden Transitionen. Feuert eine Transition, werden die Aktionen
unter exit sequenziell ausgeführt, der nächste Schritt aktiviert und dessen Aktionen un-
ter entry ausgeführt. Feuert keine Transition, werden die Aktionen unter do ausgeführt.
Unabhängig von der Prozedur führt die Ausführungssteuerung am Ende eines Zyklus die
kontinuierlichen Steuerungsfunktionen aus.

3.4. Prozedurbeschreibungssprachen zur Steuerung von
Geschäftsprozessen

Während die Steuerung technischer Prozesse essentiell für den Erfolg der Prozesse ist, sind
Geschäftsprozesse lange Zeit implizit gesteuert worden. Erst seit Anfang der 1990er Jah-
re erfolgt eine systemische Aufzeichnung und Optimierung von Geschäftsprozessen [102].
Die Dokumentation der Geschäftsprozesse ist Basis für viele Zertifizierungen eines Unter-
nehmens bzw. seiner Mitarbeiter. Hier sind z. B. das OMG Certified Expert in Business
Process Management (OCEB)-Programm [190] oder die Zertifizierung nach ISO 9001 [33]
zu nennen. Ursachen für den immer stärkeren Zwang zum Geschäftsprozessmanagement
liegen in den immer komplexer werdenden Abläufen, die unternehmensübergreifend sind
und in die fortlaufend neue Informationstechnik integriert werden [173]. Es wird zwischen
der fachlichen Modellierung und der technischen Modellierung von Geschäftsprozessen un-
terschieden. Bei der fachlichen Modellierung ist das erzeugte Modell nur mit Hilfe des
Menschen interpretierbar, da die Modelle semiformal, natürlichsprachig oder unvollstän-
dig sind. Bei der technischen Modellierung entstehen durch Computer ausführbare Modelle
[101].

Im Folgenden wird der Begriff „Prozedur“ verwendet, wenn der Steuerungsaspekt ei-
nes Geschäftsprozess gemeint ist. Als Modellierungssprachen werden Aktivitätsdiagramme
(AD), BPEL, Business Process Modeling Notation (BPMN), Koordination, Kooperation
und Kommunikation (K3) und Ereignisgesteuerte Prozessketten (EPK) in dieser Reihen-
folge vorgestellt. In der IEC 6226411 wird keine Modellierungssprache definiert. Vielmehr
werden die Datenflüsse innerhalb und zwischen den Systemen der Ebenen 3 und 4 in den
Teilen 1 und 3 [27, 29] sowie die Inhalte des Austauschs in den Teilen 2 und 4 [28, 30]
spezifiziert.

3.4.1. Aktivitätsdiagramme
AD sind einer der Diagrammtypen in der UML, die es erlauben das Verhalten eines dyna-
mischen Systems zu beschreiben [11]. AD basieren auf Flussdiagrammen aus den 1960er

11Die IEC 62264 basiert auf der ISA 95.
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3.4. Prozedurbeschreibungssprachen zur Steuerung von Geschäftsprozessen

Jahren [4] und sind semantisch ähnlich zu Interaktionsdiagrammen. Während Interakti-
onsdiagramme auf den Austausch von Nachrichten zwischen Objekten spezialisiert sind,
liegt der Blickwinkel bei den AD auf der Modellierung der sequentiellen und nebenläu-
figen Schritte in der Ablaufbeschreibung [11]. Das hier vorgestellte Meta-Modell bezieht
sich auf die UML 2-Version, in der das Konzept vollständig überarbeitet worden ist [93].
Im SysML-Profil werden AD im Vergleich zur UML Kontrolloperatoren hinzugefügt, die
ein Eingreifen in den Ablauf von außen ohne eingehenden Kontrollfluss ermöglichen [4]. In
Abbildung 3.16 ist ein Beispiel für ein AD dargestellt.

Kunde Verkauf Lager

Material
abrufen

Rechnung
stellen

Produkt
anfordern

Lieferung
empfangen

Bestellung
empfangen

Bestellung
schließen

Rechnung
bezahlen

Bestellung
versenden

Schwimmbahn

Aktion

Gabelung

Vereinigung

Initialisierung

Vervollständigung

Fluss

Abbildung 3.16.: Beispiel für ein AD (nach [11])

Aufbaumodell AD bestehen aus Aktionen, Aktivitätsknoten, Flüssen und Objektwerten
[11]. Aktionen sind atomare Elemente, die sich nicht weiter zerlegen lassen bzw. deren
Zerlegung für das Modell uninteressant ist [93]. Aktivitätsknoten lassen sich weiter in
ausführbare Knoten, Objektknoten und Kontrollknoten unterteilen. Zu den ausführbaren
Knoten zählen die Elemente mit ausführbaren Tätigkeiten. Objektknoten dienen als Da-
tenspeicher. Kontrollknoten strukturieren und steuern den Ablauf des AD. Flüsse können
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Kontrollflüsse oder Objektflüsse sein [93]. Des Weiteren sind in einem AD Initialisierungen
(Startknoten) und Vervollständigungen (Endknoten) enthalten. Jedes AD muss mindestens
eine Initialisierung beinhalten. Vervollständigungen sind optional [11]. Es wird zwischen
Flussende und Aktivitätsende unterschieden. Ein Flussende terminiert ausschließlich den
betreffenden Fluss, während ein Aktivitätsende alle Kontrollflüsse beendet [93].

Hierarchie- und Vernetzungsmodell Die Aktionen sind über Flüsse miteinander verbun-
den. Aktivitätsknoten stellen Gruppierungen von Aktionen oder weiteren Aktivitätsknoten
dar und ermöglichen daher den Aufbau einer hierarchischen Struktur. Die Aktionen und
Aktivitäten können in Schwimmbahnen enthalten sein (vgl. Abbildung 3.16). Schwimm-
bahnen dienen ausschließlich der Übersichtlichkeit und haben keine weitere Funktion als
die optische Gliederung [11].

In einem AD können alternative und nebenläufige Pfade definiert werden. Verzweigun-
gen, die einen eingehenden und mindestens zwei ausgehende Flüsse haben, öffnen alterna-
tive Pfade. An den ausgehenden Flüssen sind boolesche Variablen notiert, die vollständig
und überdeckungsfrei sein müssen. Am Ende der alternativen Pfade folgt eine Zusammen-
führung. Gabelungen eröffnen nebenläufige Pfade und Vereinigungen führen sie wieder
zusammen. Dies schließt echte Nebenläufigkeit und verzahnte sequentielle Abläufe ein [11].

Abstraktions- und Zuordnungsmodell AD lassen sich in allen Phasen der Software-
entwicklung nutzen [93]. Nach [11] werden im Entwurfsprozess von AD zunächst alle
Schwimmbahnen auf einer geeigneten Ebene definiert. In diese Schwimmbahnen platziert
der Entwickler die Aktionen, die er über Flüsse miteinander verbindet. Hierbei sollen zu-
nächst sequentielle Abläufe, anschließend alternative Pfade und zuletzt die Nebenläufig-
keiten erzeugt werden. Häufig verwendete Gruppen von Aktionen sollen zu Aktivitäten
kombiniert werden. Es bietet sich an Aktivitäten in einer Bibliothek abzulegen, so dass
diese Aktivitäten wiederverwendbar sind [4]. Eine automatische Codegenerierung ist mög-
lich [11].

Aktions- und Aktivitätenmodell Es ist keine einheitliche Syntax für Aktionen festgelegt.
Aktionen können jedoch fest mit anderen Objekten im selben UML-Modell verknüpft sein.
Flüsse haben keine Übergangsbedingung [11]. Sofern es sich um Objektflüsse handelt, kann
das Objekt mit seinem Zustand beschrieben werden. Aktionen können Vor- und Nachbe-
dingungen haben, die einen Zustand vor bzw. nach der Ausführung der Aktion beschreiben
[93].

Ausführungssteuerungsmodell Das Ausführungssteuerungsmodell der AD basiert ähn-
lich wie das der PN auf Token. Diese sind in der grafischen Darstellung allerdings nicht
sichtbar. Startknoten erzeugen jeweils ein Token, das dem jeweiligen Kontrollfluss folgt.
Erreicht es eine Aktion, wird diese ausgeführt [4]. Die Aktionen in einem AD haben idea-
lisiert keine zeitliche Dauer. Das Token aktiviert das nächste Element im Fluss, sobald die
vorherige Aktion oder Aktivität ausgeführt worden ist [11]. Gabelungen vermehren und
Vereinigungen verringern die Anzahl der Token. Das Token wandert solange, bis es auf
einen Endknoten trifft [4]. Dieser Ablauf kann durch Abbrüche beeinflusst werden. Hierzu
ist die Definition von Unterbrechungsbereichen notwendig [93].
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3.4.2. Business Process Execution Language
Die BPEL ist eine Modellierungssprache zur Beschreibung und Ausführung von Prozedu-
ren zur Steuerung von Geschäftsprozessen [101]. Sie basiert auf der XML und auf Web-
Diensten [132]. Hauptziele bei der Entwicklung der BPEL sind die Flexibilität und die
Wartbarkeit der erzeugten Modelle gewesen [188]. In der Version 1.0, auch als BPEL for
Web Services (BPEL4WS) bezeichnet, hat die Modellierung vollständig automatisierter
Prozeduren im Vordergrund gestanden. Erst in der zweiten Version (durch die Organiza-
tion for the Advancement of Structured Information Standards (OASIS) als Web Service
BPEL (WS-BPEL) standardisiert) ist die Interaktion mit menschlichen Akteuren integriert
worden [101]. WS-BPEL nutzt verschiedene Spezifikationen aus der XML. Die Web Service
Description Language (WSDL)-Nachrichten und die XML Schema Definition (XSD) stellen
das Datenmodell bereit, während XPath und Extensible Stylesheet Language Transforma-
tion (XSLT) Datenmanipulationen unterstützen [132].

Aufbaumodell Der Aufbau eines BPEL-Modells ist im Prozesskompositionsmodell be-
schrieben [188]. Ein BPEL-Modell besteht demnach aus einer Prozedur (im BPEL als Pro-
zess bezeichnet), der den XML-Namensraum (vgl. Kapitel 4.3.2, S. 84) festlegt. Die Pro-
zedurbeschreibung enthält zunächst die in WSDL formulierten Schnittstellen. Die Schnitt-
stellenbeschreibung umfasst sowohl die Schnittstelle zum Modell selber als auch die Schnitt-
stellen zu den aufzurufenden Diensten. Die Verknüpfung zwischen BPEL- und WSDL-Datei
erfolgt durch sogenannte Partner-Links. Globale Variablen können ebenfalls in der Proze-
durbeschreibung definiert sein [101]. Die eigentliche Prozedur wird mit Hilfe von Aktivitä-
ten modelliert, wobei zwei Klassen differenziert werden, Basisaktivitäten und strukturierte
Aktivitäten. Basisaktivitäten beschreiben die elementaren Steuerungsschritte, die nicht
weiter zerlegbar sind [132].

Hierarchie- und Vernetzungsmodell In der BPEL sind nur Kontrollflüsse explizit mo-
delliert, der Datenfluss erfolgt über die globalen Variablen. Sequenzen sind die einfachste
Vernetzungsart in der BPEL. Die Anordnung der Aktivitäten in der XML-Datei gibt die
Reihenfolge der Ausführung vor. Alternativverzweigungen sind durch Wenn-Dann-Blöcke
modelliert. Flussaktivitäten kapseln parallel auszuführende Objekte. Des Weiteren sind
Schleifen wie in anderen Programmiersprachen möglich [101].

Abstraktions- und Zuordnungsmodell Mit der Hilfe von der BPEL lassen sich abstrakte
und ausführbare Prozeduren modellieren [132]. Beide Typen werden mit Geschäftsprozess-
Modellierungswerkzeugen entworfen. In abstrakten Prozeduren sind wesentliche Details
zur Ausführung weggelassen. Sie dienen als Ausgangspunkt für ausführbare Prozeduren,
aber auch als Dokumentation oder zum Know-How-Schutz [101]. Ausführbare Prozeduren
können in der BPEL-Engine ausgeführt werden.

BPEL basiert auf einer typbasierten Entwicklung der Modelle. Die Dienste werden zu-
nächst auf Typebene implementiert und können anschließend auch dort orchestriert werden
[132].

Aktions- und Aktivitätenmodell Die Interaktion mit der Umgebung erfolgt nachrich-
tenbasiert. Aufrufobjekte starten die Dienste. Empfangsobjekte und Antwortobjekte emp-
fangen die entsprechenden Antworten und reagieren auf diese. Die Anbindung zwischen
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Prozedurmodell und Diensten kann sowohl statisch als auch dynamisch sein. Statische
Verknüpfungen können bei der Modellierung oder beim Deployment angelegt werden. Für
eine dynamische Allokation stehen Repositorys oder externe Datenquellen zur Verfügung
[101].

Innerhalb einer BPEL-Prozedur werden Variablen durch Manipulationsobjekte verän-
dert. Als Variablentypen können WSDL-Nachrichten, einfache bzw. komplexe XSD-Typen
oder XSD-Elemente verwendet werden. In Sequenzen sind keine Übergangsbedingungen
notwendig. Bei Alternativverzweigungen werden die Bedingungen standardmäßig in XPath
formuliert [101].

Ausführungssteuerungsmodell Bei der Ausführung eines BPEL-Modell in einer BPEL-
Engine wird eine neue Instanz des Modells erzeugt (vgl. Abbildung 3.17).

Instanz erzeugen

Fehlerbehandlung
auf Prozessebene

Kontrollfluss

Antwort Abbruch

Abbildung 3.17.: Lebenszyklus einer BPEL-Instanz (nach [188])

Anschließend wird der Kontrollfluss gestartet und, falls kein Fehler auftritt, die Antwort
gesendet [188]. Innerhalb der Ausführung ist sowohl ein synchrones als auch ein asynchrones
Verhalten modellierbar. Je nach verwendetem Empfangsobjekt hält dieses den Kontroll-
fluss an, bis eine Antwort eingeht oder wartet im Hintergrund auf die eingehende Antwort,
während schon die nächsten Dienste aufgerufen werden. Ist eine Flussaktivität im Kontroll-
fluss vorhanden, schaltet diese erst zum nächsten Objekt, wenn alle Pfade abgearbeitet sind
[101].

Es wird zwischen fachlichen und technischen Fehlern unterschieden. Ein fachlicher Fehler
ist beispielsweise eine falsche Eingabe, die das WSDL-Dokument behandeln muss. Ein
technischer Fehler ist z. B. ein Timeout und muss in der BPEL-Spezifikation abgefangen
werden [101]. Auf technische Fehler kann sowohl durch explizite Abbrüche im Kontrollfluss
als auch durch einen Fehlerbehandlungsmechanismus auf Prozedurebene reagiert werden
(vgl. Abbildung 3.17) [188].

3.4.3. Business Process Model and Notation
Die BPMN ist eine meta-modellbasierte Sprache zur formalen Beschreibung von Ge-
schäftsprozessen. Die aktuelle Version 2.0 wird von der OMG gepflegt und ist in der
ISO/IEC 19510 [83] standardisiert [101]. In der Definition sind nicht nur die Notation,
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3.4. Prozedurbeschreibungssprachen zur Steuerung von Geschäftsprozessen

sondern auch die grafische Syntax und genaue Verknüpfungsregeln festlegt. Somit ist die
BPMN eine grafische Modellierungssprache [60]. Die BPMN bietet somit eine standardi-
sierte Möglichkeit der Beschreibung von Prozeduren zur Steuerung von Geschäftsprozessen.
Ein zweiter Vorteil ist die direkte Ausführbarkeit der Modelle, die seit der Version 2.0 ge-
geben ist [66]. Die BPMN kann zum Entwurf neuer Prozeduren, als Ausgangspunkt für die
Prozessverbesserung und für die Dokumentation bestehender Prozeduren genutzt werden
[83]. In Abbildung 3.18 ist ein Beispiel für ein BPMN-Modell gezeigt.

Rezept
aussuchen

Steak
braten

Pasta
kochen

Mahlzeit
verzehren

Salat
anrichten

Hunger
festgestellt [3 Minuten

Etwas
Ordentliches
gewünscht?

Gewünschtes
Gericht

Ja

Nein

Pasta

Steak

Salat
gewünscht?

[10 Minuten

[10 Minuten

[15 Minuten

Ja

Nein

[20 Minuten
Hunger
gestillt

Paralleles Gateway Exklusives Gateway

Anmerkung

Sequenzfluss

Assoziation

Ereignis

Aktivität

Abbildung 3.18.: Beispiel für ein BPMN-Modell (nach [66])

Aufbaumodell In der ISO/IEC 19510 sind eine Vielzahl verschiedener Elemente aufge-
führt. Zur Komplexitätsreduktion wird eine Einteilung in Basiselemente und erweiterte
Konzepte vorgenommen [195]. Die Basiselemente decken bereits eine Vielzahl von zu mo-
dellierenden Prozeduren ab, während die erweiterten Konzepte für Spezialfälle definiert
sind [60]. Untersuchungen zur Verwendung der Elemente zeigen, dass in den allermeisten
Fällen nur die Basisobjekte verwendet werden [201], so dass sich die weitere Beschreibung
auf die Basiselemente beschränkt.

Die Basisobjekte lassen sich in fünf Kategorien12 einteilen, Flussobjekte, Verbindungs-
objekte, Daten, Schwimmbahnen und Artefakte [83]. Zu den Flussobjekten zählen Akti-
vitäten, Ereignisse und Gateways. Ereignisse lassen sich in Startereignis, Zwischenereignis
und Endereignis spezifizieren. Als Verbindungselemente werden Sequenzflüsse, Nachrich-
tenflüsse und Assoziationen verwendet. Datenobjekte beschreiben die Daten, die in den
Aktivitäten benötigt werden. Schwimmbahnen werden in Pools und Bahnen unterteilt.
Artefakte sind Gruppen und Anmerkungen [60].

Hierarchie- und Vernetzungsmodell Die drei Verbindungsobjekttypen des Aufbaumo-
dells stellen die Verbindung zwischen den Flussobjekten her. Der Sequenzfluss ist hierbei

12In [83, 195] stellen Daten eine eigene Kategorie dar, in [60] werden sie zu den Artefakten gezählt.
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3. Analyse von Prozedurbeschreibungssprachen

die Basis für die zeitliche Abfolge der Aktivitäten. Nachrichtenflüsse definieren einen Kom-
munikationskanal für verschiedene Prozessbeteiligte. Artefakte werden über Assoziationen
an die Flussobjekte angebunden [60].

Neben dieser Möglichkeit zur Definition linearer Abläufe können mit Hilfe von Gate-
ways komplexere Abläufe modelliert werden. Gateways werden sowohl für die Aufteilung
als auch für die Zusammenführung verschiedener Ablaufpfade verwendet [83]. In den Ba-
sisobjekten sind drei Gatewaytypen enthalten, datenbasierte exklusive Gateways, parallele
Gateways und datenbasierte inklusive Gateways. Datenbasierte exklusive Gateways be-
schreiben Entscheidungen, von denen jeweils genau eine getroffen werden muss. Parallele
Gateways eröffnen bzw. schließen nebenläufige Pfade. Datenbasierte inklusive Gateways
beschreiben Entscheidungen, von denen jeweils mindestens eine getroffen werden muss
[66].

Hierarchien können durch Teilprozesse aufgebaut werden, Schleifen ermöglichen eine
einfache Notation wiederholender Aktivitäten [101]. Ein Teilprozess stellt hierbei einen
eigenen, vollständigen Ablauf dar. Eine organisatorische Aufteilung kann mit Pools und
Lanes durchgeführt werden. Lanes können verschachtelt sein. So kann z. B. eine Abteilung
eine Lane darstellen und die Mitarbeiter der Abteilung jeweils eine eigene Unter-Lane. Eine
Aktivität muss genau einer Lane zugeordnet sein, wenn Lanes definiert sind. Ein Pool steht
für eine übergeordnete Instanz, die die Steuerung des Ablaufs koordiniert [66].

Abstraktions- und Zuordnungsmodell Die BPMN ermöglicht die Modellierung abstrak-
ter und ausführbarer Prozeduren [83]. BPMN unterstützt die Definition von globalen Teil-
prozeduren. Sie können durch die Oberprozedur mehrfach aufgerufen werden. Globale Teil-
prozeduren unterscheiden sich durch ihre Wiederverwendbarkeit von gewöhnlichen Teilpro-
zeduren zur Erstellung einer hierarchischen Struktur. Während gewöhnliche Teilprozeduren
automatisch Zugriff auf die Datenobjekte des Oberprozesses haben, muss die Zuordnung
der Daten bei globalen Teilprozeduren explizit erfolgen [66].

Aktions- und Aktivitätenmodell Aktivitäten beschreiben Vorgänge, in denen Arbeit
verrichtet wird [101]. Die Ausführung erfolgt durch Automaten oder durch Menschen. Jede
Aktivität besitzt einen Zustand, der durch die Ausführungssteuerung verwaltet wird. Des
Weiteren enthält ein Attribut die Anzahl der Token, die zur Ausführung der Aktivität
benötigt werden [83].

Zwischenereignisse dienen dem Anhalten des Sequenzflusses an bestimmten Stellen. Ein
Weiterschalten ist erst dann möglich, wenn das Zwischenereignis eingetreten ist. Zudem
können Abbruchereignisse an Aktivitäten angefügt sein. Ein Eintreten des Ereignisses,
während die Aktivität aktiv ist, bricht die Aktivität ab. Auch explizite Fehlerereignisse
werden an Aktivitäten angefügt [66].

Ausführungssteuerungsmodell Die BPMN-Engine startet eine BPMN-Prozedur, sobald
eines ihrer Startereignisse eintritt. Dazu wird eine Instanz der Prozedur angelegt. Die
Ausführung der Aktivitäten wird durch Token gesteuert. Die Ausführung einer Aktivität
erfolgt, sobald genügend Token anliegen. Nach der Ausführung schalten die Token wei-
ter und die Aktivität wird deaktiviert [83]. Bei einem datenbasierten exklusiven Gateway
schaltet das Token auf den Pfad, dessen Bedingung erfüllt ist. Der Ersteller des Modells
muss darauf achten, dass die Bedingungen sich gegenseitig ausschließen. Eine Verklemmung
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lässt sich durch die Auszeichnung eines Pfads als Standard-Pfad vermeiden. Parallele oder
datenbasiert inklusive Gateways können Token erzeugen oder vernichten [66]. Eine Proze-
durausführung ist beendet, wenn es keine Token mehr gibt und keine Aktivität mehr aktiv
ist [83].

3.4.4. Koordination, Kooperation und Kommunikation
K3 ist eine Modellierungssprache, die Ende der 1990er Jahre als Erweiterung der AD ent-
wickelt worden ist [95]. Der Fokus der Entwicklung hat auf der Modellierung von schwach
strukturierten Abläufen gelegen. In Abbildung 3.19 sind die wichtigsten Notationselemente
von K3 dargestellt.

Grundelemente Elemente zur

zeitlichen

Ablaufabstaktion

Ausprägungen

von Aktivitäten

und Informationen

Verknüpfungs-

elemente

!

Information

Informationsfluss

Schwachstelle

Werkzeug

Aktivität

Anfangspunkt

Endpunkt

Kontrollfluss

Entscheidung und
Zusammenführung

Verzweigung und
Synchronisation

Iteration

Synchrone
Zusammenarbeit

Optionale Aktivität

Ausgeschlossene
Aktivität

Aggregierte Aktivität

Optionale Information

Ausgeschlossene
Information

[Min, Max]

Blob

Auswahl-Blob

Sequenz-Blob

Parallel-Blob

Abbildung 3.19.: Elemente eines K3-Graphen (nach [131])

Aufbaumodell K3 basiert auf den AD und verwendet daher die dort definierten Elemente
Aktivität, Anfangs- und Endpunkt (vgl. Kapitel 3.4.1, S. 54) [95]. Diese Elemente können
durch die sogenannten Satellitenelemente Information, Schwachstelle und Werkzeug weiter
spezifiziert werden [131].
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Hierarchie- und Vernetzungsmodell Ausgehend vom Anfangspunkt sind die Aktivitä-
ten über Kontrollflüsse bis zum Endpunkt verbunden. Eventuell vorhandene Satellitenele-
mente sind über Informationsflüsse mit den zugehörigen Aktivitäten verbunden. Der Kon-
trollfluss lässt sich in mehrere Alternativen aufteilen, wobei die Iteration ein Spezialfall
der Entscheidung ist [95]. Schwimmbahnen teilen das Modell in verschiedene Organisati-
onseinheiten auf [65]. Innerhalb einer Organisationseinheit sind nebenläufige Prozeduren
durch Verzweigungen und Synchronisationen modelliert, eine organisationsübergreifende
Darstellung nebenläufiger Vorgänge wird über die synchrone Zusammenarbeit ermöglicht
[95].

Aggregierte Aktivitäten stellen eine Möglichkeit der Einführung einer Hierarchie in K3
dar. Eine solche aggregierte Aktivität fasst als Makroschritt mehrere Aktivitäten zusam-
men [131]. Binary Large Objects (Blobs) unterstützen die Möglichkeit, schwach struktu-
rierte Abläufe zu modellieren. In einem konventionellem Blob sind Aktivitäten enthalten,
deren Ausführungsreihenfolge nicht ersichtlich ist. Ein Auswahl-Blob gibt an, wie viele Ak-
tivitäten mindestens ausgeführt werden müssen und wie viele maximal ausgeführt werden
dürfen. In einem Sequenz-Blob müssen alle Aktivitäten in beliebiger Reihenfolge nachein-
ander ausgeführt werden, in einem Parallel-Blob darf die Ausführung zeitgleich stattfinden
[131].

Abstraktions- und Zuordnungsmodell Im Entwurfsprozess mit K3 werden zwei Dimen-
sionen des Entwicklungsstands berücksichtigt, die Generalitätsebene und die Detailebene.
Je genereller ein entworfenes Modell ist, desto mehr Systeme kann es beschreiben. In ei-
nem detaillierteren Modell sind detailliertere Informationen enthalten. Beispielsweise sind
mehr Attributen Werte zugewiesen oder Aktivitäten sind durch aggregierte Aktivitäten
bzw. Blobs ersetzt worden [45]

Aktions- und Aktivitätenmodell Ähnlich wie bei den EPK erfolgt die Interaktion mit
der Umgebung über Informationsobjekte. Diese werden durch die Aktivitäten benötigt,
bearbeitet oder erzeugt [65].

Ausführungssteuerungsmodell Die Ausführung eines K3-Modells erfolgt analog zu den
AD. Ausgenommen hiervon ist die Ausführung von Blobs. Hier hat der Entwickler die
Ausführungsreihenfolge im Prozedurdesign nicht festgelegt. Stattdessen soll der Ausfüh-
rer der Prozedur diese zur Laufzeit bestimmen. Zudem können bei der Ausführung eines
K3-Modells optionale und ausgeschlossene Aktivitäten auftreten. Optionale Aktivitäten
können situationsbedingt ausgeführt werden, während die Ausführung ausgeschlossener
Aktivitäten verboten ist [131].

3.4.5. Ereignisgesteuerte Prozessketten
EPK sind ein prozessorientierter Ansatz zur grafischen Beschreibung und Modellierung von
Geschäftsprozessen. Sie sind hauptsächlich im deutschsprachigen Raum verbreitet [131]. Sie
stellen einen kontrollflussorientierten Ansatz dar, der die Mängel der bestehenden daten-
flussorientierten Ansätze beheben soll. Der Fokus ist dabei sowohl auf die Analyse von
Prozedurketten als auch auf die Modellierung der Beziehungen zwischen Datenobjekten
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gelegt worden [94]. EPK werden insbesondere in der Architektur integrierter Informati-
onssysteme (ARIS) zur Geschäftsprozessmodellierung verwendet [160]. In Abbildung 3.20
wird ein Beispiel für eine EPK dargestellt.

Ereignistyp 7

Ereignistyp 6Ereignistyp 5Ereignistyp 4

Ereignistyp 1

Funktionstyp 5

Funktionstyp 2

Ereignistyp 3Ereignistyp 2

Funktionstyp 1

Funktionstyp 4Funktionstyp 3

Ereignistyp

Funktionstyp

Und-Verknüpfung

Entweder-Oder-Verknüpfung

Abbildung 3.20.: Beispiel für eine EPK (nach [94])

Aufbaumodell Eine EPK besteht aus drei Konstrukten: dem Informationsobjekt, der
Funktion und dem Ereignis. Informationsobjekte sind semantisch beschriebene Sachver-
halte, die Mengen realer oder abstrakter Daten beschreiben. Funktionen sind aktive Kom-
ponenten, die eine Beschreibung eines Vorgangs darstellen. Sie sind semantische Regeln,
die die Überführung von Eingangszuständen in definierte Ausgangszustände spezifizieren.
Ereignisse sind passive Komponenten, die den Ablauf im Informationssystem beeinflus-
sen, wenn ein definierter Zustand eingetreten ist [94]. Funktionen sind zeitverbrauchende
Vorgänge, während sich Ereignisse auf einen konkreten Zeitpunkt beziehen [160].

Hierarchie- und Vernetzungsmodell In einer EPK lösen Ereignistypen die Funktionsty-
pen aus. Funktionstypen erzeugen während ihrer Ausführung neue Ereignistypen [94]. Da-
her sind Funktions- und Ereignistypen alternierend verbunden [131], wobei jede EPK mit
einem Ereignis beginnt und endet [160]. Des Weiteren unterstützen EPK drei verschiede-
ne Verknüpfungsoperatoren: konjunktive, disjunktive und adjunktive Verknüpfungen (vgl.
Abbildung 3.20).
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• Bei einer konjunktiven Verknüpfung zweier Aussagen müssen beide Aussagen wahr
sein, damit die verknüpfte Aussage wahr ist.

• Bei einer disjunktiven Verknüpfung zweier Aussagen muss genau eine Aussage wahr
sein, damit die verknüpfte Aussage wahr ist.

• Bei einer adjunktiven Verknüpfung zweier Aussagen muss mindestens eine Aussage
wahr sein, damit die verknüpfte Aussage wahr ist.

Die Verknüpfungen können sich auf Ereignistypen oder auf Funktionstypen beziehen [94].
Nach einem Ereignistyp darf jedoch keine disjunktive oder adjunktive Verknüpfung ver-
wendet werden [160].

Hierarchische Strukturen können durch strukturbildende Objekte erzeugt werden. Zu-
meist werden Hierarchien jedoch durch das überlagerte ARIS-System erzeugt und die ein-
zelnen EPK haben keine Hierarchie [160].

Abstraktions- und Zuordnungsmodell In einer EPK sind zwei Ebenen vorgesehen: die
Abstraktionsebene und die Ausprägungsebene. In der Aktionsebene werden Ereignis- und
Funktionstypen definiert, die eine Sammlung verschiedener Ausprägungen von Ereignissen
und Funktionen darstellen [94].

Aktions- und Aktivitätenmodell Die Interaktion mir der Umgebung erfolgt über die
Informationsobjekte. Die Funktions- und Ereignistypen sind über eine n : m-Beziehung
mit Informationsobjekten verbunden [94].

Ausführungssteuerungsmodell Die EPK enthält keine eigenständige Beschreibung ihrer
Ausführung. Dies erfolgt z. B. in Systemen wie ARIS [160]. Solche Systeme müssen bei der
Ausführung einer EPK Abhängigkeiten zwischen der EPK, den Datenmodellen und den
Funktionsstrukturen berücksichtigen. Funktionen können Daten anfordern, ihnen können
Daten durch Nachrichten geschickt werden oder Ereignisse stellen selbst Informationsob-
jekte dar [94].

3.5. Vergleich der analysierten Sprachen
Die Analyse der Sprachen in den Kapiteln 3.3 und 3.4 zeigt viele Gemeinsamkeiten zwischen
den Prozedurbeschreibungssprachen, stellt aber auch Unterschiede dar. Die Ergebnisse
sind in den Tabellen in Anhang A, S. 105, zusammengefasst. Im Folgenden werden die
analysierten Sprachen bezogen auf die Elemente einer Prozedurbeschreibungssprache nach
Kapitel 3.1, S. 24, verglichen.

Aufbaumodell

Alle Sprachen bestehen aus zwei Basiselementtypen. Der erste Basiselementtyp beschreibt
die Beharrungspunkte während eines Ablaufs und wird als Schritt, Zustand, Knoten oder
Stelle bezeichnet. Der zweite Basiselementtyp, Transition oder Übergangsbedingung ge-
nannt, steuert den Sequenzfluss und damit die Aktivierung der Beharrungspunkte. Des
Weiteren sind Anfangs- und Endpunkte spezielle Beharrungspunkte einer Prozedur.
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Ein wichtiges Kriterium bei der Definition des Aufbaumodells ist eine möglichst geringe
Zahl von Basiselementtypen. Beispielsweise ist bei der BPMN die Anzahl der verschiedenen
Elementtypen zu hoch, so dass die Komplexität problematisch ist [131].

Hierarchie- und Vernetzungsmodell

Zur Erzeugung einer konkreten Prozedur werden in allen Sprachen Instanzen der Basisele-
menttypen festgelegt. Die Instanzen werden über Kanten miteinander verschaltet, so dass
eine Ablaufbeschreibung vorliegt. In den meisten Sprachen sind nur Kanten von einem
Basiselementtyp zum jeweils anderen erlaubt.

Mithilfe der Prozedurbeschreibungssprachen lassen sich nicht nur lineare Abläufe darstel-
len. Alternativverzweigungen ermöglichen die Modellierung von Entscheidungssituationen.
Nebenläufige Pfade bzw. orthogonale Automaten definieren zeitgleich ablaufende Proze-
duren. Die technische Umsetzung von Nebenläufigkeit ist jedoch problematisch. Sowohl
Menschen als auch maschinelle Steuerungen, die typischerweise einen Prozessorkern be-
sitzen, können nur eine Sache zur selben Zeit steuern. Daher müssen die nebenläufigen
Prozeduren serialisiert werden. Zudem führen Sprünge aus einer Parallelverzweigung her-
aus und in eine Parallelverzweigung hinein zu unsicheren bzw. verklemmenden SFC [6].
Bei SC sollen Ereignisse innerhalb eines SC vermieden werden, die in orthogonalen Kom-
ponenten erkannt werden müssen. Diese können zu ungewollten Endlosschleifen führen
[72].

Da Prozeduren häufig aus vielen einzelnen Instanzen bestehen, ist es aus Gründen der
Übersichtlichkeit möglich Hierarchieebenen einzufügen. Diese werden beispielsweise als Ma-
kroschritte oder Schwimmbahnen bezeichnet. Kritisch sind Hierarchieebenen jedoch, wenn
die Abhängigkeiten zwischen den Ebenen nicht eindeutig spezifiziert sind. Beispielsweise
führen die Definitionslücken bei den SFC zu einem implementationsspezifischen Verhalten
und einer fehlenden Übertragbarkeit der Prozeduren auf andere Systeme [157].

Abstraktions- und Zuordnungsmodell

In den meisten Sprachen wird der Entwurfsprozess nicht durch ein Abstraktions- und
Zuordnungsmodell unterstützt. Zu erwähnende Konzepte sind hier die Wiederverwendung
von Grafcets als Einschließung, die Modellierung abstrakter Prozeduren in BPMN und das
Rezeptmodell der IEC 61512.

Außerdem können verschiedene Sprachen unter bestimmten Rahmenbedingungen inein-
ander überführt werden, so dass die Spezifikation und die Implementierung in unterschied-
lichen Sprachen erfolgen kann. Beispielsweise zeigt [158] die Überführung von Grafcet nach
SFC. In BPMN wird eine Untermenge von Konstrukten spezifiziert, die mit BPEL kom-
patibel ist [83, 101]. EPK lassen sich in BPMN transformieren [131].

Aktions- und Aktivitätenmodell

Jede Prozedurbeschreibungssprache definiert ihre Interaktionsmöglichkeiten mit der Um-
gebung. In der Interaktionsmöglichkeit der Prozedur mit ihrer Umgebung unterscheiden
sich die Beschreibungssprachen maßgeblich. Von der natürlichsprachlichen Beschreibung
in EPK bis hin zur Beschreibung mit Programmiersprachen in SFC, von dem Setzen ein-
zelner Signale in SIPN bis hin zu Dienstaufrufen in Grafchart kann die Interaktion auf
verschiedenste Weisen erfolgen. Ein Grund hierfür ist im Unterschied zwischen Mensch
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und Maschine hinsichtlich der Interpretationsfähigkeit informaler Aufrufe begründet. Ein
weiterer Aspekt stellt der fortschreitende Einfluss der Informationstechnik dar, der bei-
spielsweise die Nutzung eines Dienstsystems erst möglich macht.

Ausführungssteuerungsmodell

Die Prozedurbeschreibung ist eng mit Regeln zur operativen Ausführung der beschriebenen
Prozeduren verknüpft. Daher enthält jede Prozedurbeschreibungssprache ein Konzept zur
Ausführung der Prozedur. Dieses Konzept ist jedoch nicht immer vollständig spezifiziert.
Teilweise hängt die Ausführung sogar von der Implementierung der Sprache (z. B. bei SFC)
ab [6]. Ein weiteres Beispiel hierfür ist das dynamische Verhalten von Grafcet, welches
nicht eindeutig definiert ist, mit anderen Worten, es liegt kein eindeutiges Modell vor, dass
unabhängig von der Implementierung durch Rechner interpretiert werden kann [158].
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4. Referenzmodell
Die Analyse von vierzehn Prozedurbeschreibungssprachen hat gezeigt, dass diese Spra-
chen alle einen gemeinsamen Kern haben. In diesem Kapitel wird ein Referenzmodell zur
Prozedurbeschreibung entwickelt, das genau diesen gemeinsamen Kern abbildet. Dieses
Referenzmodell, welches ein Meta-Modell (M2-Ebene) nach Kapitel 2.6.2, S. 20, ist, wird
die grundlegenden Konzepte zusammenfassen, die in den Struktur- und Laufzeitinformatio-
nen der domänenspezifischen Sprachen enthalten sind. Die auf Basis des Referenzmodells
erstellten Prozedurbeschreibungen sind Modelle (M1-Ebene). Im Folgenden werden zu-
nächst die an ein solches Referenzmodell gestellten Anforderungen erhoben. Im Anschluss
wird das Referenzmodell basierend auf den Elementen einer Prozedurbeschreibung (vgl.
Kapitel 3.1, S. 24) unter Berücksichtigung der Anforderungen beschrieben. Das Referenz-
modell besitzt zwei Darstellungsformen, eine grafische Notation und eine Darstellung als
XML-Datei, die anschließend erläutert werden. Vor der Beschreibung der prototypischen
Implementierung erfolgt die Formulierung der Anforderungen an die Ausführungseinheiten
und an die Kommunikation, die sich durch das Referenzmodell ergeben.

4.1. Anforderungen an das Referenzmodell
Die Anforderungen an das Referenzmodell können zunächst in funktionale und nichtfunk-
tionale Anforderungen1 unterteilt werden [59]. Das Abdecken des gemeinsamen Kerns der
in Kapitel 3, S. 24, vorgestellten Beschreibungssprachen ist eine funktionale Anforderung,
die an das Referenzmodell gestellt wird. Das Referenzmodell hat den Anspruch, jede Pro-
zedur beschreiben zu können. Es muss insbesondere einen Weg aufzeigen die unterschied-
lichen Interaktionsmöglichkeiten der Prozedur mit ihrer Umgebung in einem Modell zu
beschreiben. Auch eine durchgängige Darstellung von Hierarchien und Nebenläufigkeiten
ist notwendig. Des Weiteren muss eindeutig feststehen, wie eine beschriebene Prozedur
ausgeführt wird. Dies bezieht insbesondere das Verhalten der Prozedur im Fehlerfall mit
ein.

Daneben existieren verschiedene nichtfunktionale Anforderungen, die die Anwendung
des Referenzmodells vereinfachen. Da verschiedene Rollen (Modellierer, Programmierer
und Anwender) mit einer Prozedurbeschreibung arbeiten müssen, ist eine einfache und in-
tuitive Handhabung des Modells wichtig. Auf diese Weise ist eine Nachvollziehbarkeit der
spezifizierten Abläufe möglich [62]. Zudem muss sich ein Prozedurmodell in domänenspe-
zifische Sprachen überführen lassen, mit denen die Konfiguration, die Parametrierung und
die Programmierung von Automatisierungslösungen durchgeführt werden [182]. Das Refe-
renzmodell liefert demnach einen Beitrag zur Vereinfachung des Entwurfsprozesses einer
Prozedur.

1Details zum Unterschied zwischen funktionalen und nichtfunktionalen Anforderungen können z. B. [97]
entnommen werden.
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4. Referenzmodell

Auch die vertikale Integration, d. h. die ebenenübergreifende Kommunikation innerhalb
der Automatisierungspyramide, muss durch das Referenzmodell unterstützt werden. Auf-
grund der hohen Komplexität ebenenübergreifender Prozedurmodelle ist eine Hierarchi-
sierung unabdingbar [182]. Eine Kapselung der Informationen der Ausführungseinheiten
in unterschiedliche Zustände ist eine Möglichkeit die Komplexität der unteren Ebenen der
Automatisierungspyramide vor den oberen Ebenen zu verbergen. Diese zustandsbasier-
te Prozessführung entspricht den Überlegungen des Arbeitskreises „Modulare Anlagen“
der Interessengemeinschaft Automatisierungstechnik der Prozessindustrie (NAMUR) zur
Steuerung modularer Prozessanlagen [134]. Die Kapselung ermöglicht zudem einen mög-
lichst einfachen Einblick aus der ERP-Ebene in die aktuelle Produktion, wie in [69] ge-
fordert. Ziel ist es die Verknüpfung der Produktionsprozesse mit den Lieferanten und den
Kunden durch ein solches Referenzmodell zu erleichtern [69, 150]. Ein weiterer Vorteil ist
die Wiederverwertung der erzeugten Lösungen, so dass die Fehleranfälligkeit im Entwurf
und der Aufwand bei einer erneuten Nutzung sinken [59].

Das Referenzmodell muss sich in eine Industrie 4.0-Landschaft [125] einbinden lassen und
sich dabei insbesondere in das Referenzarchitekturmodell Industrie 4.0 (RAMI) eingliedern
[2]. Des Weiteren soll das Referenzmodell in der Lage sein, mit Industrie 4.0-Komponenten
[53] zu interagieren. Eine der Anforderungen, die Cyber-Physical Systems (CPS) an die Au-
tomatisierungslösung stellen, sind Änderungsmöglichkeiten der Anwendungsfunktionen im
operativen Betrieb [182]. Dies beinhaltet insbesondere eine Erweiterung des Funktionsum-
fangs [131], die Verteilung von Funktionen in verteilten Systemen sowie die Adaption und
Rekonfiguration operativer Führungsfunktionen [52]. Somit muss auch das Referenzmodell
diesen Anforderungen an die Flexibilität genügen.

Prozedurmodelle sollen mit Hilfe des Referenzmodells einfach erstellt, eindeutig inter-
pretiert und während der Ausführung leicht verstanden werden können [152]. Allerdings
wird in dieser Arbeit keine arbeitswissenschaftliche Analyse durchgeführt, wie sie z. B. in
[131] ausgeführt wird.

Andere nichtfunktionale Anforderungen, die an eine Automatisierungslösung gestellt
werden, liegen außerhalb des Referenzmodells. Die Sicherstellung des Determininismus
und der Echtzeitfähigkeit der Kommunikation (vgl. [182]) zwischen Steuerung und Aus-
führungseinheit ist Aufgabe des verwendeten Kommunikationsmittels, welches nicht durch
das Referenzmodell festgelegt wird. Dies gilt ebenso für den Schutz vor unberechtigten
Zugriffen. Die Erfüllung der funktionalen Sicherheit (vgl. [182]) ist ebenso die Aufgabe der
Ausführungseinheiten wie das Ablehnen von Belegungsmaßnahmen, die im aktuellen Zu-
stand nicht erlaubt sind (vgl. [184]). Beides wird daher im Referenzmodell nicht behandelt.
Ein Änderungsmanagement und eine Verifikation (vgl. [62]) der erstellten Prozedurmodelle
ist hingegen Aufgabe der Modellierungswerkzeuge, die in der täglichen Praxis das Erstel-
len der Prozedurmodelle ermöglichen. Die Ausführungsumgebung muss die Anwendung
des Referenzmodells in der Ausführungsphase durch Anlagenfahrer mit unterschiedlicher
Qualifikation und durch Nutzergruppen mit unterschiedlichen Rechten (vgl. [182]) unter-
stützen.

4.2. Modellbeschreibung
Auch das hier vorgestellte Referenzmodell muss den Elementen einer Prozedurbeschrei-
bungssprache (vgl. Kapitel 3.1, S. 24) Rechnung tragen. Daher werden die Elemente des
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4.2. Modellbeschreibung

Referenzmodells in den folgenden Abschnitten vorgestellt und ihr Zusammenwirken mit
den anderen Modellelementen erläutert. Die Modellbeschreibung basiert auf eigenen Ar-
beiten, die zu Teilen bereits in [130] und [152] veröffentlicht sind.

4.2.1. Aufbaumodell
Das Referenzmodell beinhaltet die Basiselemente Ausführungsrahmen
(ExecutionFrame), Schritt (Step) und Transition (Transition), die in Abbildung 4.1
dargestellt sind.

Step

+ isActive:  Boolean = false

+ name:  String

+ timeActive:  Integer

ExecutionFrame

+ parameter[]:  String

+ inRequest:  String

+ curStep:  String

ElementaryStep

Transition

+ name:  String

+ enabled:  Boolean

+ abort:  Boolean

+ restart:  Integer

InitialStep

FinalStep

+ abort:  Boolean

0..*

1

1

1

0..*10..* 1

Abbildung 4.1.: Aufbaumodell des Referenzmodells in UML-Notation

Eine Prozedurbeschreibung stellt einen ExecutionFrame zur Verfügung, der einen ei-
genen Namensraum definiert. Dem Ausführungsrahmen können Parameter im Attribut
parameter übergeben werden, die die Prozedurbeschreibung flexibel macht, beispielsweise
hinsichtlich zu produzierender Mengen. Des Weiteren speichert ein Attribut inRequest den
zuletzt eingegangenen Befehl. Das Attribut curStep enthält den zum aktuellen Zeitpunkt
aktiven Schritt. Die beiden letztgenannten Attribute sind nur während der operativen Aus-
führung der Prozedur interessant.

Ein Schritt ist hierbei in Anlehnung an die Definition in [34] ein Beharrungszustand der
Prozedur. Die Klasse Step besitzt einen Namen name, der Auskunft über die Funktion
des Schritts geben kann. Ein Step kann aktiv oder inaktiv sein. Dies ist in einem Attribut
isActive gespeichert. Weiterhin ist die Zeitspanne der Aktivität eines Schrittes von Inte-
resse. Diese ist in der Variablen timeActive hinterlegt. Die Angabe timeActive wird in der
Einheit ms angegeben. Die Attribute isActive und timeActive sind ebenfalls nur während
der operativen Ausführung der Prozedur von Interesse.

Die Klasse Elementarschritt (ElementaryStep) ist von der Klasse Step abgeleitet. Der
Anfangsschritt (InitialStep) und der Endschritt (FinalStep) erben wiederum von der
Klasse ElementaryStep. Unterhalb eines Ausführungsrahmens existiert genau ein Start-
schritt. Daraus folgt, dass in einem Prozedurmodell mindestens ein Schritt enthalten sein
muss. Die Anzahl der Endschritte ist nicht vorgegeben, sondern anwendungsfallabhängig.
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4. Referenzmodell

Zyklische Prozeduren müssen keinen Endschritt haben, während terminierende Prozeduren
einen oder mehrere Endschritte haben. Das Attribut abort der Klasse FinalStep wird für
die Ausführungssteuerung (vgl. Kapitel 4.2.5, S. 78) benötigt.

In Anlehnung an [34] ist eine Transition ein Übergangselement, das den Wechsel zwischen
zwei Schritten steuert. Die Klasse Transition besitzt ebenfalls einen Namen Name, das
Attribut enabled gibt an, ob die Transition ausgewertet wird. Die Attribute abort und
restart der Klasse Transition werden für die Ausführungssteuerung (vgl. Kapitel 4.2.5,
S. 78) benötigt. Die Transitionen sind ebenfalls unter dem Ausführungsrahmen angeordnet.
Die Menge der Transitionen kann leer sein, wenn der Startschritt der einzige Schritt der
Prozedur ist.

4.2.2. Hierarchie- und Vernetzungsmodell
Innerhalb des Ausführungsrahmens werden Schritte und Transitionen alternierend durch
Kanten miteinander verknüpft (vgl. Abbildung 4.2). Eine Transition hat genau einen
Vorgänger- und genau einen Folgeschritt (vgl. die Assoziationen preStep und sucStep in
Abbildung 4.2). Alle Kanten haben Kantengewicht Eins, so dass eine Prozedurbeschrei-
bung ein ungewichteter Graph ist. Da eine Kante immer einen Schritt und eine Transition
verbindet, folgt zudem, dass der Graph bipartit ist.

Step
Transition

ExecutionFrame

0..*

preStep

1

0..*

sucStep

1

0..*

1

0..*

1

Abbildung 4.2.: Vernetzungsmodell des Referenzmodells in UML-Notation

Die Basiselemente des Aufbaumodells zusammen mit den Kanten des Hierarchie- und
Vernetzungsmodells sind ausreichend zur Definition linearer terminierender und linearer zy-
klischer Prozeduren. Auch Alternativverzweigungen können mit diesen Elementen model-
liert werden, da ein Schritt mehrere eingehende und ausgehende Transitionen haben kann.
Daher muss es kein separates Element für Alternativverzweigungen und -vereinigungen
geben. Bei einer Alternativverzweigung können mehrere Transitionsbedingungen gleich-
zeitig wahr werden. Deshalb ist ein deterministisches Entscheidungskriterium notwendig.
Das Referenzmodell fordert den gegenseitigen Ausschluss der Transitionsbedingungen, da
sich die grafische Priorisierung und die explizite Angabe der Priorität (welches weitere
Möglichkeiten bei den in Kapitel 3, S. 24, betrachteten Sprachen sind) darauf abbilden2

lassen.
2Die Abbildung ist in Anhang C.2, S. 121, dargestellt.
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4.2. Modellbeschreibung

Allerdings werden derart erzeugte Prozeduren schnell sehr unübersichtlich. Daher ist
es notwendig, dass das Referenzmodell den Aufbau von Hierarchien unterstützt. Dies er-
folgt mit Hilfe der Klasse Makroschritt (MacroStep), die in Abbildung 4.3 dargestellt ist.
Ein Makroschritt ist eine logische Gruppierung von Schritten, Transitionen und Kanten.
Er nutzt denselben Adressraum wie der umgebende Schritt. Da Makroschritte spezielle
Schritte sind, kann ein Makroschritt sowohl Vorgänger- als auch Folgeschritt einer Tran-
sition sein. In einem Makroschritt muss genau ein Anfangs- und genau ein Endschritt
vorhanden sein. Des Weiteren ist es möglich, innerhalb einer Prozedur andere Prozeduren
aufzurufen. Diese haben einen eigenen Ausführungsrahmen und einen eigenen Adressraum.
Sie sind somit im Gegensatz zu Makroschritten unabhängig von der aufrufenden Prozedur.

Step
Transition

MacroStep ExecutionFrame

InitialStep

FinalStep

0..*

preStep

1

0..*

sucStep

1

1

1

1 1

1..*

1

2..*

1

0..*

1

0..*

1

Abbildung 4.3.: Makroschritt des Referenzmodells in UML-Notation

Die Modellierung nebenläufiger Vorgänge ist, wie bereits im Vergleich der analysierten
Sprachen (vgl. Kapitel 3.5, S. 64) beschrieben, problematisch, da auf diese Weise Ver-
klemmungen und Unsicherheiten entstehen können. Einige Ansätze (vgl. z. B. [196]) gehen
daher dazu über, solche nebenläufigen Abläufe zu verbieten. Für das Referenzmodell sind
die nebenläufigen Abläufe allerdings zwingend erforderlich, da diese in den meisten Spra-
chen enthalten und gerade bei Prozeduren zur Steuerung von Geschäftsprozessen auch
essentiell sind. Im Referenzmodell sind zwei Möglichkeiten zur Modellierung vorgesehen,
die Verwendung eines P-Makroschritts (PMacroStep) und der parallele Aufruf mehrerer
unabhängiger Prozeduren:

• Ein P-Makroschritt wird verwendet, damit die Nebenläufigkeit gekapselt wird (vgl.
Abbildung 4.4).
Auf diese Weise ist zunächst sichergestellt, dass die aufrufende Prozedur zu jeder
Zeit in einem definierten Schritt ist. Wie „normale“ Makroschritte auch, besitzt ein
P-Makroschritt einen Anfangs- und einen Endschritt. Der Anfangsschritt wird über
eine Verzweigung (Fork) mit mindestens zwei Schritten verbunden. Die Verbindung
zwischen Anfangsschritt und Verzweigung erfolgt über die Assoziation inFork, die-
jenige zwischen der Verzweigung und den nachfolgenden Schritten über die Assozia-
tion outFork. Die nebenläufigen Pfade werden über eine Zusammenführung (Join)
mit dem Endschritt des P-Makroschritts zusammengeführt. Die Verbindung zwischen
den letzten Schritten der jeweiligen nebenläufigen Pfade und der Zusammenführung
erfolgt über die Assoziation inJoin, diejenige zwischen der Zusammenführung und
dem Endschritt über die Assoziation outJoin. Verzweigung und Zusammenführung
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Join

Fork InitialStep

Step

FinalStep

PMacroStep

MacroStep

2..*inJoin

1

0..1

outFork

2..*

1

inFork

0..1

0..1

outJoin

1 1

2..*

1

1

1

1

1

1

Abbildung 4.4.: P-Makroschritt des Referenzmodells in UML-Notation

sind damit ebenso wie eine Transition Übergangselemente. Weil eine Transition genau
einen Vorgängerschritt und genau einen Nachfolgeschritt besitzen muss, können sie
jedoch nicht von der Klasse Transition erben. Da ein P-Makroschritt ausschließlich
über den Anfangsschritt betreten und über den Endschritt verlassen werden kann,
wird eine Verklemmung oder eine Unsicherheit vermieden3. In Abbildung 4.5 ist ein
Beispiel mit zwei nebenläufigen Pfaden skizziert, wie die entsprechenden Instanzen
und Assoziationen in einem P-Makroschritt verwendet werden.

• Werden mehrere Prozeduren parallel aufgerufen, laufen diese unabhängig voneinan-
der ab. Sollte eine Synchronisation zwischen den Prozeduren oder zwischen aufgerufe-
nen Prozeduren und aufrufender Prozedur gewollt sein, muss diese explizit projektiert
werden.

3Dies gilt nur in Hinblick auf den von PN und SFC bekannten Verlust bzw. das Entstehen von Marken.
Durch ungünstigen Aufruf von Aktionen kann in einem Schritt eine Aktion gestartet werden, die darin
resultiert, dass eine Transition nicht mehr feuern kann.
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MacroInitial:
InitialStep

MacroFork: Fork

Step1-1:
ElementaryStep

Step2-1:
ElementaryStep

T1: Transition

Step1-2:
ElementaryStep

MacroJoin: Join

MacroFinal:
FinalStep

Step2-2:
ElementaryStep

T2: Transition

preStep

sucStepsucStep

preStep

outJoin

inJoin inJoin

outForkoutFork

inFork

Abbildung 4.5.: Beispiel für einen P-Makroschritt

73

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


4. Referenzmodell

4.2.3. Aktions- und Aktivitätenmodell
Im Aktions- und Aktivitätenmodell ist die Anbindung der Prozedur an die Umgebung
beschrieben. Dies betrifft sowohl die Einwirkung der Prozedur auf andere Steuerungen
und Ausführungseinheiten als auch die Wirkung der Umgebung auf die Prozedur. Die in
Kapitel 3, S. 24, untersuchten Beschreibungssprachen benutzen dazu meist Signale. Dies
steht im Widerspruch zu der flexiblen Integration in eine Industrie 4.0-Umgebung (vgl.
Kapitel 4.1, S. 67).

Einwirkung der Prozedur auf die Umgebung

Zur Einwirkung der Prozedur auf die Umgebung nutzt das Referenzmodell die Klasse
Aktion (Action). Aktionen sind immer einem Elementarschritt zugeordnet, eine Zuord-
nung zu einem Makroschritt ist nicht möglich. Action ist eine abstrakte Klasse, von der
die Klassen Dienstaufruf (ServiceCall) (vgl. Kapitel 2.5.1, S. 16) und Prozeduraufruf
(ProcedureCall) erben (siehe Abbildung 4.6). Ein Dienstaufruf kann z. B. das Setzen
einer Variablen initiieren, aber auch eine mündliche Anordnung eines Chefs an seinen Mit-
arbeiter sein. Dienstaufrufe sind immer zielgebunden, ein Multicast oder ein Broadcast
sind nicht vorgesehen. Ein Prozeduraufruf sendet einen Befehl an eine Prozedur. Konkret
bedeutet dies, dass die Attribute inRequest und parameter des Ausführungsrahmens einer
Prozedur gesetzt werden. Diese können anschließend von der Empfängerprozedur oder von
der zugehörigen Ausführungssteuerung interpretiert werden.

Action
ElementaryStep

ServiceCall

+ address:  String

+ serviceName:  String

+ operation:  String

+ parameter[]:  String

ProcedureCall

+ address:  String

+ parameter[]:  String

+ request:  String

ExecutionFrame

+ parameter[]:  String

+ inRequest:  String

+ curStep:  String

Service

Nicht Teil des Modells

*1

0..*

call

1

0..*

call

1

Abbildung 4.6.: Aktionsmodell des Referenzmodells in UML-Notation

Bei einem Dienstaufruf werden die Adresse address des Dienstanbieters, der aufgerufe-
ne Dienstname serviceName, die konkrete Operation operation sowie optionale Parameter
parameter benötigt. Jeder Dienstaufruf ist genau einem elementaren Schritt zugeordnet, al-
lerdings kann ein Dienst (Service) mehrfach aufgerufen werden. Die Dienste werden durch
die Ausführungseinheiten angeboten, an die dadurch bestimmte Anforderungen gestellt
werden (vgl. Kapitel 4.4, S. 85). Die Prozedur steuert demnach die Ausführungseinheiten
nur noch durch die Dienstaufrufe an. Der Namensraum legt hierbei den Ausgangspunkt
der Adressierung der Ausführungseinheiten fest. Dieses Konzept gliedert sich in das kyber-
netische Grundprinzip (vgl. Kapitel 2.2, S. 7) ein, da auf diese Weise eine ideale Trennung
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zwischen Steuerndem und Gesteuertem vorliegt. Die Steuerung durch Dienstaufrufe wird
auch als Dienstorchestrierung bezeichnet.

Dienstaufrufe sind Aktionen und somit technologisch zeitlose Vorgänge. Die Ausführung
des Dienstes ist allerdings eine Aktivität, die eine bestimmte Dauer hat. Da Dienstaufru-
fe nicht auf einen Rückgabewert warten, ist diese Dauer für die Prozedur nicht relevant.
Falls die Fertigstellung des Dienstes durch die Prozedur überwacht werden soll, muss ei-
ne explizite Zustandsabfrage des Dienstanbieters in einer Transitionsbedingung erfolgen.
Dies ist ratsam, da Ausführungseinheiten Dienstanfragen auch ablehnen können (vgl. [47]).
Das Referenzmodell ist unabhängig von der zugrunde liegenden Kommunikationsplattform
und des Dienstsystems. Zur Nutzung des Modells muss jedoch ein Kommunikationssystem
ausgewählt werden. Weiter macht ein solches dienstaufrufbasiertes Aktionsmodell die De-
finition einer einheitlichen Aufrufnotation der Dienste notwendig (vgl. z. B. [47, 77, 184]).

Wie bereits erwähnt, können neben Dienstaufrufen auch Prozeduraufrufe als Aktion
verwendet werden. Beim Aufrufen einer Prozedur muss neben dem zu übergebenden Be-
fehl request die Adresse address des Ausführungsrahmens der Prozedur bekannt sein. Hier
besteht ebenfalls optional die Möglichkeit Parameter parameter zu definieren.

Einwirkung der Umgebung auf die Prozedur

Die Transition ist das Element, welches den Wechsel des aktiven Schritts in Reaktion
auf den Umgebungszustand steuert. Der Übergang ist durch eine Übergangsbedingung
(Condition) beschrieben, die der Transition zugeordnet wird. Der Übergang erfolgt unter
der Nebenbedingung, dass die Transition freigegeben ist. Eine Übergangsbedingung besteht
aus logischen Termen (LogicalTerm), wie in Abbildung 4.7 dargestellt ist.

Transition Condition

+ curValue:  Boolean = false

+ listOfOperator[]:  String

BooleanValue

LogicalTerm

+ retValue:  Boolean = false

+ inverted:  Boolean = false

+ index:  Integer = 1

RequestReceived

+ value:  String

StateCheck

+ address:  String

+ value:  String

TimeCompare

+ value:  int

ExecutionUnit

ExecutionFrame

+ inRequest:  String

Nicht Teil des Modells

0..1

1

0..1

1

check

check

0..1

1

0..*

1

11

Abbildung 4.7.: Transitionsbedingungen des Referenzmodells in UML-Notation

Jeder logische Term liefert einen Rückgabewert retValue an die Bedingung zurück. Die
Rückgabewerte der einzelnen Bedingungen sind über die in der Liste listOfOperator ent-
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4. Referenzmodell

haltenen booleschen Operatoren verknüpft und bilden so den Rückgabewert curValue der
Übergangsbedingung. Das Attribut inverted eines LogicalTerms gibt an, ob der Rückga-
bewert invertiert werden soll. Die Zuordnung zwischen den logischen Termen und der Liste
listOfOperator erfolgt über das Attribut index. Die logischen Terme mit dem Index 1 und
dem Index 2 sind durch den Operator im ersten Eintrag der Liste verknüpft usw.

Von der abstrakten Klasse LogicalTerm sind die Klassen boolescher
Wert (BooleanValue), Zeitvergleich (TimeCompare), Befehl eingegangen
(RequestReceived) und Zustandsüberprüfung (StateCheck) abgeleitet (vgl. Ab-
bildung 4.7):

• Ein boolescher Wert gibt immer den Rückgabewert wahr zurück. Dieser wird zur
Modellierung selbstterminierender Schritte benötigt, bei denen der Schrittwechsel
ohne zugehörige Bedingung erfolgt.

• Mit Hilfe des Zeitvergleichs wird das Attribut timeActive des Schritts vor der Transi-
tion mit dem in value (Angabe in ms) gespeicherten Wert verglichen. Ist der Schritt
länger aktiv als die Vorgabe in der Transition, liefert der Zeitvergleich wahr an die
Übergangsbedingung zurück.

• Die Klasse RequestReceived überprüft das Attribut inRequest des überlagerten
Ausführungsrahmens. Stimmt dieser mit dem Wert des Attributs value überein, wird
retValue auf wahr gesetzt. Dies ist auch möglich, wenn die Abfrage innerhalb eines
Makroschritts erfolgt.

• Eine Zustandsüberprüfung kann den aktuellen Zustand einer Ausführungseinheit ab-
fragen. Stimmt die Abfrage des Attributwerts an der Adresse address mit dem in
value gespeicherten Wert überein, wird der retValue der Zustandsüberprüfung auf
wahr gesetzt.

Die Klassen Verzweigung (Fork) und Zusammenführung (Join) (vgl. Abbildung 4.4)
sind spezielle Übergangsbedingungen. Bei den beiden Klassen wird das Weiterschalten
nicht durch Transitionsbedingungen gesteuert. Vielmehr schaltet die Verzweigung direkt,
wenn der Schritt „MacroInit“ aktiviert worden ist. Die Zusammenführung aktiviert den
Schritt „MacroFinal“, sobald alle Vorgängerschritte aktiv sind.

4.2.4. Abstraktions- und Zuordnungsmodell
Das Abstraktions- und Zuordnungsmodell beschreibt Konzepte, die während des Ent-
wurfsprozesses einer Prozedur nützlich sind. Die Analyse der Sprachen in Kapitel 3, S. 24,
hat gezeigt, dass der Entwurfsprozess anders als derjenige in der Funktionsbausteintech-
nik abläuft. Gemeinsam haben beide Entwurfsprozesse eine funktionale und organisato-
rische Trennung in Entwicklung, Engineering und Laufzeit. Funktionsbausteinnetze wer-
den nach dem Typ-Instanz-Konzept erzeugt. Prozeduren hingegen werden zu Beginn des
Engineering-Prozesses abstrakt definiert und immer weiter konkretisiert. Der finale Kon-
kretisierungsgrad ist abhängig von dem verwendeten Steuerungssystem (vgl. Kapitel 2.2.3,
S. 10). Mit anderen Worten, das Abstraktions- und Zuordnungsmodell legt auch die Mög-
lichkeiten der Flexibilität fest. Im Referenzmodell sind zwei Möglichkeiten zur Erhöhung
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der Flexibilität vorgesehen, die Verwendung von Rollen einerseits sowie typbezogene Pro-
zedurbeschreibungen andererseits.

Anstelle eines Dienstaufrufs an eine konkrete Ausführungseinheit (ExecutionUnit)
kann im Referenzmodell der Aufruf durch eine Rolle (Role) abstrahiert werden (vgl. Ab-
bildung 4.8).

ServiceCall

Role ExecutionUnit

Statement PropertyRequirement

StatementType

{xor}

addressesaddresses

0..*

fulfills

0..*

0..*

refers

1

1..*

1

1..*

1

Abbildung 4.8.: Verwendung von Rollen im Referenzmodell

Rollen sind ein bewährtes Konzept zur Abstraktion zwischen Funktionalität und tech-
nischer Realisierung4 bzw. zwischen einem Menschen und der Aufgabe, die er zu erfüllen
hat (vgl. z. B. [40, 49, 57, 112]). Die Umsetzung des Rollenkonzepts kann durch ein Merk-
malsystem erfolgen (vgl. Kapitel 2.6.2, S. 22). In der Rolle werden Aussagen (Statement)
vom Typ Anforderung (Requirement)5 der Prozedur über die Ausführungseinheiten be-
schrieben. Diese können im Laufe des Entwurfsprozesses weiter spezifiziert oder durch eine
konkrete Ausführungseinheit ersetzt werden. Des Weiteren ist es möglich die Zuweisung
erst während der Ausführung der Prozedur vorzunehmen. Dies gewährleistet die geforder-
te Flexibilität des Referenzmodells. Das Zusammenspiel zwischen Merkmalen (Property)
und Anforderungen während der Entwicklung einer Automatisierungslösung wird in [57]
als eine Möglichkeit der Vereinfachung des Entwurfsprozesses gesehen. In [59] wird die
Bedeutung von Merkmalen für den Entwurfsprozess ebenfalls betont.

Im Regelfall werden Prozeduren zur Steuerung einer konkreten Ausführungseinheit ent-
worfen, da gerade im Umfeld der chemischen Industrie Anlagen häufig Einzellösungen
sind. Dies wird als singuläre Prozedurfestlegung bezeichnet (Abbildung 4.9 links). Eine ty-
pbezogene Prozedurbeschreibung ist dann sinnvoll, wenn die Prozedur mehrfach in leicht

4Das Prinzip der Rollen ist aus dem Rohrleitungs- und Instumentrierungsdiagramm (R&I) bekannt. Die
grafischen Symbole des R&I sind lediglich Platzhalter für die technische Realisierung [40].

5Nach [12] sind z. B. Materialanforderungen, Equipment-Informationen, Asset-Informationen und Perso-
nalinformationen zu berücksichtigen.
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veränderter Form verwendet werden soll. Dies ist z. B. bei Package Units oder bei modula-
ren Anlagen der Fall (Abbildung 4.9 rechts). Ein weiterer Anwendungsfall ist die Nutzung
einer Prozedur in mehreren parallelen Fertigungsstraßen.

Typspezifische
Prozedur-

beschreibung

Instanzspezifische
Prozedur-

beschreibung

Singuläre Prozedur-
beschreibung

Instanz der
Ausführungseinheit

Instanz der
Ausführungseinheit

Typ der
Ausführungseinheit

Ausgeführte
Prozedur

Instanziierung

Instanziierung Systemzuordnung

Ausgeführte
Prozedur

Instanziierung

Bezug

Bezug

Bezug

Abbildung 4.9.: Singuläre (links) und typbezogene (rechts) Prozedurfestlegung

In diesem Fall ist die Prozedur schon für den generischen Ausführungseinheitstypen zu
entwerfen. Die Instanzbildung der Ausführungseinheitstypen entspricht der kundenspezi-
fischen Konfiguration der Typen. Analog dazu wird der Prozedurtyp instanziiert und auf
die kundenspezifische Konfiguration angepasst. Hinsichtlich der Wiederverwendbarkeit und
dem Nutzen von Prozedurbibliotheken bietet dieses Vorgehen einen Vorteil.

4.2.5. Ausführungssteuerungsmodell
Bei der Ausführung einer Prozedur muss sowohl der Regelablauf als auch die Reaktion
auf Fehler berücksichtigt werden (vgl. z. B. [137, 171]). Das Referenzmodell besitzt einen
Zustandsautomaten, der die Prozedur im vollautomatischen Regelablauf und im Fehlerzu-
stand steuert (vgl. Abbildung 4.10).

ExecutionFrame

+ parameter[]:  String

+ inRequest:  String

+ curStep:  String

StateMachine

+ inRequest:  String

+ curState:  String = Idle
11

Abbildung 4.10.: Ausführungssteuerungsmodell des Referenzmodells in UML-Notation

Der Zustandsautomat ist in Abbildung 4.11 dargestellt.
Eine Prozedur kann inaktiv (Inactive) oder aktiv (Active) sein. Der Transitionsüber-

gang ist zeitlos. Auf diese Weise ist sichergestellt, dass zu jeder Zeit in einer aktiven
Prozedur genau ein Schritt aktiv ist. Die grobe Klassifikation in aktiv und inaktiv lässt
sich ferner in sechs Zustände verfeinern: Ruhend (Idle), Abgebrochen (Aborted), Lau-
fend (Running), Schritt haltend (Step Hold), Abbrechend (Aborting) und Neustartend
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Active

Aborting

Running

Step Hold

Idle

Aborted

Restart #n

Inactive

Reset

Abort

completed

Restart completed

Restart n

LockUnlock

Abort

Completed

Start

Abbildung 4.11.: Zustandsautomat einer Prozedur

(Restart n). Es kann mehrere Restart-Zustände geben. Dies ist durch das „n“ in Abbil-
dung 4.11 angedeutet.

Idle

Wird eine Prozedur geladen, ist sie zunächst inaktiv und befindet sich im Zustand Idle. In
einer inaktiven Prozedur ist kein Schritt aktiv und daher sind alle Transitionen ebenfalls
nicht freigeschaltet. Sobald an die Prozedur der Befehl Start gesendet wird, wird die
Prozedur aktiviert und wechselt in den Zustand Running.

Running

Im Zustand Running beginnt der Ablauf der Prozedur im Normalfall:

1. Der Anfangsschritt wird aktiviert.

2. Anschließend wird die Variable timeActive auf Null gesetzt und fortlaufend aktuali-
siert. Zudem werden alle in diesem Schritt definierten Aktionen einmalig ausgeführt.

3. Nach der Aktionsausführung6 werden alle Transitionen mit abort = false und
restart = 0, die an diesen Schritt anschließen, freigeschaltet und die Übergangs-
bedingungen ausgewertet7.

4. Ist ein Rückgabewert einer Übergangsbedingung wahr, feuert die entsprechende Tran-
sition. Da die Transitionsbedingungen einander ausschließen müssen, kann maximal
eine Transition feuern.

6Im Falle einer SPS-Steuerung erfolgt dieser Schritt im nächsten Zyklus.
7Ist eine Transition nicht freigeschaltet, so wird die Bedingung nicht ausgewertet und die Bedingung

liefert falsch als Rückgabewert.
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5. Wenn eine Transition feuert, wird der Folgeschritt aktiviert und der Vorgängerschritt
deaktiviert. Somit sind auch die Transitionen nach dem Vorgängerschritt nicht mehr
freigeschaltet.

6. Der Folgeschritt kann ein elementarer Schritt, ein gewöhnlicher Makroschritt, ein
paralleler Makroschritt oder ein Endschritt sein.

a) Bei einem elementaren Schritt setzt der Ablauf mit Punkt 2 fort.
b) Die Aktivierung eines innenliegenden Anfangsschritts erfolgt, wenn ein Makro-

schritt aktiviert wird. Die Ausführung innerhalb des Makroschritts erfolgt ab
Punkt 1. Die Transition nach dem Makroschritt wird erst freigeschaltet, wenn
der Makroschritt seinen Endschritt erreicht hat. Der Ablauf setzt dann mit
Punkt 3 fort. Ein Deaktivieren eines Makroschritts führt auch zur Deaktivie-
rung des Endschritts innerhalb des Makroschritts.

c) Die Ausführung eines parallelen Makroschritts erfolgt analog zu der eines ge-
wöhnlichen Makroschritts. Zu beachten ist, dass die Ausführungsreihenfolge der
nebenläufigen Pfade vor der Ausführung festgelegt worden sein muss.

d) Ein Endschritt sendet implizit den Befehl Completed an den Zustandsautoma-
ten. Dieser Befehl bewirkt, dass die Prozedur inaktiv wird und in den Zustand
Idle wechselt.

Der Vorgang der Aktionsausführung und des Weiterschaltens wird demnach solange
wiederholt, bis ein Endschritt erreicht ist. Im Falle einer SPS als Steuerungssystem sei
festgehalten, dass in einem Zyklus maximal eine Transition feuern kann. Führt ein Mensch
die Prozedur aus, so kann er einen Schrittwechsel nur dann vollziehen, wenn er merkt, dass
eine Transitionsbedingung wahr geworden ist. Die Geschwindigkeit der Ausführung der
Prozedur hängt demnach maßgeblich von den kognitiven Fähigkeiten des Menschen sowie
der grafischen Aufbereitung der Bedingungen ab.

Neben des Regelablaufs (fett gedruckte Linien in Abbildung 4.11) können auch Eingriffe
in den Prozedurablauf vorgenommen werden. Beispiele hierfür sind

• Fehlermeldungen durch Ausführungseinheiten oder das Kommunikationssystem,

• Befehle durch überlagerte Führungsebenen,

• Zustandsänderungen aufgerufener Prozeduren,

• Zeitüberschreitungen der auszuführenden Dienste, z. B. durch Rohstoffmangel oder
Krankheitsmeldung der entsprechenden Person, oder

• menschliche Eingriffe, z. B. durch Anlagenfahrer.

Die Analyse in Kapitel 3, S. 24, hat gezeigt, dass vielfach ungeklärt ist, wie andere
Hierarchieebenen auf Fehler in einer Prozedur reagieren müssen. Für ein deterministisches
Ausführungsverhalten ist dies jedoch unabdingbar. Daher wird im Folgenden explizit das
Verhalten von Makroschritten in den jeweiligen Zuständen beschrieben. Aufgerufene Pro-
zeduren sowie überlagerte Steuerungen sind in ihrer Ausführung unabhängig von der be-
trachteten Hauptprozedur. Daher müssen Beeinflussungen explizit über Aktionen in den
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Abbruch- und Neustartprozeduren oder durch Zustandsabfragen in den betreffenden Pro-
zeduren modelliert werden.

Manuelle Eingriffe müssen in den Transitionsbedingungen projektiert sein. Diese können
z. B. über eine grafische Nutzeroberfläche an den Auftragseingang des Ausführungsrahmens
geschickt werden. Hierzu zählt beispielsweise auch die halbautomatische Ausführung einer
Prozedur. Die Eingriffe können je nach ihrer Schwere unterschiedliche Auswirkungen auf
den Prozedurablauf haben. Die niedrigste Stufe eines Eingriffs ist das Halten. Auf die-
ser Stufe sind keine weiteren Vorkehrungen zum Fortsetzen des gesteuerten Prozesses zu
treffen. Ein Neustart bewirkt die Ausführung von Aktionen, die zur Sicherung und Sta-
bilisierung des Prozesses führen, so dass er an einer definierten Stelle fortgesetzt werden
kann. Ein Abbruch führt den Prozess in einen sicheren Zustand.

Step Hold

Der Zustand Schritt halten (Step Hold) wird durch den Befehl Lock an den Zustands-
automaten erreicht. In diesem Zustand sind alle Transitionen gesperrt, d. h., der aktuelle
Schritt wird so lange gehalten, bis ein Befehl Unlock eingeht. Dieser Befehl bewirkt einen
Wechsel in den Zustand Running.

Ein (gewöhnlicher oder paralleler) Makroschritt besitzt denselben Ausführungsrahmen
wie die ausführende Prozedur. Daher liegt derselbe Zustandsautomat zugrunde, d. h., auch
innerhalb eines Makroschritts wird der aktuelle Schritt gehalten. Bei der Reaktivierung
wird die Ausführung des Makroschritts an der gehaltenen Stelle fortgesetzt.

Restart

Für einen Neustart (Restart) müssen in der Prozedur entsprechende Logiken enthalten
sein. Diese werden durch entsprechend ausgezeichnete Transitionen (vgl. das Attribut rest-
art in Abbildung 4.6, S. 74) aktiviert, wenn ein Befehl Restart n empfangen wird. Da un-
terschiedliche Rücksprungpunkte möglich sind, können auch mehrere Neustart-Prozeduren
durchgeführt werden. Diese werden durch den Parameter n des Befehls restart ausge-
wählt. Am Ende eines Neustarts muss explizit der Befehl Restart completed gesendet
werden, der dazu führt, dass der Zustand Step Hold eingenommen wird. Innerhalb eines
Makroschritts können keine Neustart-Abläufe enthalten sein. Es ist jedoch möglich inner-
halb der Hauptprozedur eine Neustart-Transition an den Makroschritt anzubringen. Diese
beendet den Makroschritt instantan, sobald sie ausgelöst wird.

Aborting

Für einen Abbruch müssen ebenfalls in der Prozedur entsprechende Logiken enthalten
sein, die im Zustand Abbrechend (Aborting) ausgeführt werden. Die Aktivierung erfolgt
durch entsprechend ausgezeichnete Transitionen (vgl. das Attribut abort in Abbildung 4.6,
S. 74), wenn ein Befehl Abort empfangen wird. Bei einem Abbruch wird eine terminierende
Kette aktiviert. Der Endschritt der terminierenden Kette sendet einen impliziten Befehl
Abort completed an den Zustandsautomaten. Dieser bewirkt einen Übergang in den Zu-
stand Aborted. Da ein Makroschritt maximal einen Endschritt haben darf, kann sich
kein Abbruch innerhalb eines Makroschritts befinden. Es ist jedoch möglich, innerhalb der
Hauptprozedur eine Abbruch-Transition an den Makroschritt anzubringen. Diese beendet
den Makroschritt instantan, sobald die Abbruch-Transition ausgelöst wird.
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Aborted

Der Wechsel in den Zustand Abgebrochen (Aborted) deaktiviert die Prozedur. Vor der
Reaktivierung der Prozedur muss ein expliziter Befehl Reset von einer externen Quelle an
die Prozedur gesendet werden. Dieser Befehl ändert den Zustand zu Idle. Der Zustand
Aborted kann somit als Fehlerspeicher und der Befehl Reset als Quittierung interpretiert
werden.

Zur Verringerung der visuellen Komplexität sei der Hinweis gegeben, dass die Neustart-
und Abbruch-Prozedurschritte in Makroschritten oder in eigenen Prozeduren gekapselt und
nur dort eingefügt werden sollen, wo es notwendig ist. Ein zweiter Hinweis gilt der erneuten
Aktionsausführung, wenn eine Neustart-Kette wieder zu dem Schritt zurückgeführt wird,
von dem der Neustart ausgeführt worden ist.

4.3. Darstellungsformen des Referenzmodells
Im bisherigen Verlauf dieses Kapitels ist das Referenzmodell als UML-Klassendiagramm
betrachtet worden. Der Übersichtlichkeit halber sind lediglich Ausschnitte präsentiert wor-
den, das vollständige Diagramm ist in Abbildung 6.1, S. 101 abgebildet. Die Darstellung
als Klassendiagramm ist jedoch zu komplex für die tägliche Anwendung. Daher sind alter-
native Darstellungsformen notwendig.

4.3.1. Visualisierung
Die grafische Darstellung des Referenzmodells ist bisher noch nicht behandelt worden.
Hierbei sind zwei Sichten auf das Modell wichtig, nämlich die des Entwicklers und die des
Nutzers der Prozedur.

Entwicklungsprozesse in der Prozessautomation zeichnen sich durch eng verzahnte Ab-
läufe aus, bei denen verschiedene Gewerke parallel arbeiten [58]. Ziel ist es die Gewerke-
integration und -durchgängigkeit zu erhöhen [179]. Ein Blick ausschließlich auf das Gewerk
„Automatisierungstechnik“ zeigt bereits, dass auf den verschiedenen Ebenen der Automa-
tisierungspyramide (vgl. Kapitel 2.4, S. 14) Menschen mit unterschiedlichen Fähigkeiten
arbeiten [151].

Mit Hilfe eines meta-modellbasierten Visualisierungssystems (vgl. z. B. [86]) können meh-
rere Visualisierungsformen für das Referenzmodell entwickelt werden (vgl. Abbildung 4.12).
Die Elemente im Referenzmodell bilden den gemeinsamen Kern der verschiedenen Proze-
durbeschreibungssprachen aus Kapitel 3, S. 24, so dass es möglich ist für jedes Element
seine Visualisierung in der jeweiligen grafischen Notation zu entwerfen.

In einem Visualisierungsmodell (VisualizationModel) sind zunächst einmal Grafik-
Bibliotheken (LibraryOfGraphicalElements) enthalten. Diese Grafikbibliotheken be-
stehen wiederum aus Grafikelementen (GraphicalElement). Innerhalb einer Bibliothek
muss jedes der zwölf Elemente (ProcedureElement) aus dem Referenzmodell (Schritt,
Anfangsschritt, Endschritt, Makroschritt, P-Makroschritt, Transition, Kante, Aktion, Be-
dingung, Verzweigung, Zusammenführung, Ausführungsrahmen) durch maximal8 eines die-
ser Grafikelemente repräsentiert werden. Abbildung 4.12 zeigt, dass das Referenzmodell mit

8Das Referenzmodell muss nicht vollständig durch das Visualisierungsmodell abgedeckt sein. Soll z. B.
keine Nebenläufigkeit verwendet werden, wird kein Visualisierungselement für einen P-Makroschritt
benötigt.
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4.3. Darstellungsformen des Referenzmodells

Procedure
DescriptionModel

VisualizationModel

ProcedureElement GraphicalElement
depiction

rule

1..*12

0..*1

1

LibraryOfGraphical
Elements

1

11..*

supports

0..*1

Abbildung 4.12.: Zusammenhang zwischen Referenzmodell und Visualisierung auf Meta-
Modell-Ebene

mehreren Grafik-Bibliotheken eines Visualisierungsmodells verknüpft werden kann. Auf
diese Weise ist es möglich für jede notwendige Prozedurbeschreibungssprache9 eine eige-
ne Grafik-Bibliothek zu erstellen. Der Entwicklungsingenieur kann sich die entsprechende
Grafik-Bibliothek laden und in seiner gewohnten grafischen Umgebung planen (vgl. Abbil-
dung 4.13). Greift ein anderer Entwickler auf die Prozedur zu, kann er eben diese Daten
ohne jegliche Transformation nutzen. Er muss lediglich eine andere Grafik-Bibliothek ver-
wenden.

ProcedureElement GraphicalElement
0..11

= true
= 2500
= S1

S1: Step

+ is_active
+ time_active
+ name

SFCStepVis

+ name = Step.name : string

VS1: SFCStepVis

+ name = S1depiction

11

|

+------+

| name |

+------+

|

|

+------+

|  S1  |

+------+

|

: booelan
: integer
: string

Step

+ is_active
+ time_active
+ name

M
e

ta
-M

o
d

e
ll-

E
b

e
n

e
M

o
d

e
ll-

E
b

e
n

e

Modellsystem Darstellung

depiction
rule

Abbildung 4.13.: Beispiel für die Instanzbildung, links im Modellsystem, rechts die Darstellung
nach der IEC 61131-3

In Abbildung 4.13 ist die Anwendung der meta-modellbasierten Visualisierung beispiel-
haft an einem Schritt in SFC-Notation gezeigt. Wie in Abbildung 4.12 dargestellt, können

9Innerhalb eines Projekts wird typischerweise nur eine Teilmenge der Sprachen aus Kapitel 3, S. 24,
verwendet.

83

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


4. Referenzmodell

einem Prozedurelement Grafikelemente zur Darstellung zugeordnet werden. Die Festlegung
auf eine Bibliothek (hier SFC) bewirkt, dass es zum Prozedurelement Step genau ein Gra-
fikelement „SFCStepVis“ gibt. Dieses besitzt eine Darstellung, wie in der IEC 61131-3
angegeben. Das Grafikobjekt besitzt einen Parameter, den Schrittnamen, der identisch
mit dem Namen des zugehörigen Schrittes ist. Während des Entwurfsprozesses, d. h. der
Erzeugung eines Prozedurmodells, wird das Prozedurelement Schritt mehrfach instanziiert.
Zu jeder Instanz eines Schritts wird ebenfalls eine Instanz des zugehörigen Visualisierungs-
objekts angelegt.

Auch für die operative Nutzung einer Prozedur ist es möglich Bibliotheken zu erstellen.
Verschiedene Nutzergruppen (z. B. Handwerker, Anlagenfahrer oder ungelernte Kräfte)
stellen aufgrund ihrer unterschiedlichen Fähigkeiten andere Anforderung an die Darstel-
lung der Prozeduren, die sie als Anleitung für ihre Arbeit nutzen [138]. Anlagenfahrer sind
beispielsweise nicht mit formalen Beschreibungsmitteln vertraut [158]. Es ist also notwen-
dig die Prozedur derart aufzubereiten, dass der Nutzer ihren aktuellen Zustand einfach
überblicken kann und somit auch einen Überblick über die nächsten Schritte erhält. Sollte
die Prozedur zu komplex sein, bietet sich die Nutzung eines prozedurbasierten Assistenz-
systems an (vgl. Kapitel 5.3.1, S. 99).

4.3.2. XML-Darstellung
Zum elektronischen Austausch von Inhalten zwischen verschiedenen Systemen setzt sich
zunehmend XML durch. XML ist eine semantisch orientierte Auszeichnungssprache, die in
[117] spezifiziert ist. Sie zeichnet sich durch die Möglichkeit aus durch die Definition von
XSD-Dateien die Struktur und die Semantik von XML-Dateien formal festzulegen und
zu verifizieren. Außerdem können mithilfe von XSLT XML-Dateien von einem Schema
in ein anderes Schema transformiert werden [177]. Somit ist es möglich für verschiedene
Anwendungsfälle eigene Schemata anzulegen. Beispiele hierfür sind das Modell einer PLT-
Stelle [155], das funktionale Anlagenmodell PandIX [55] oder das Abbild der IEC 61131-3
in PLCopen [139].

In der Automatisierungstechnik müssen die Schemata Anforderungen genügen, die in
[178] aufgeführt werden. Diese Auflistung von Anforderungen ist in [61] aufgegriffen und
ergänzt worden, so dass sie für den Anwendungsfall des Austauschs und der Dokumen-
tation von Prozeduren zutreffend sind. Es muss ein eindeutiger Namensraum zur Iden-
tifikation der Elemente vorliegen. Weiter ist ein modulares Konzept erforderlich, das es
während des Entwurfsprozesses erlaubt Teilprozeduren auszutauschen. Die so erzeugten
Teilprozeduren müssen erweitert und wiederverwendet werden können. Die Erstellung von
Prozedurbibliotheken kann auf Basis der XML-Dateien erfolgen. Notwendig ist auch ein
Konzept zur Speicherung von Versions- und Erstellerinformationen. Die Möglichkeit des
Einfügens nichtstandardisierter Elemente ermöglicht es projektspezifische Informationen
in die auszutauschenden Prozeduren aufzunehmen.

Es ist sinnvoll die XML-Darstellung des Referenzmodells auf bereits bestehenden Sche-
mata aufzubauen. Auf diese Weise lassen sich bestehende Konzepte nutzen, die bereits
die Anforderungen erfüllen. Zur Auswahl stehen BatchML, Computer Aided Engineering
Exchange (CAEX), Web Ontology Language (OWL), OPC UA, PLCopen und SysML, die
im Folgenden auf Basis von [61] kurz vorgestellt werden:

• BatchML [119] ist ein Format, mit dem nach der IEC 61512 erstellte Rezepte unab-

84

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


4.4. Anforderungen an das Kommunikationssystem und an die Ausführungseinheiten

hängig von konkreten Anlagen beschrieben werden können. Neben der Modellierung
der Prozedur können Versionsinformationen im Rezeptkopf verwaltet werden.

• Mithilfe von CAEX, das in [31] spezifiziert ist, können hierarchisch strukturierte
Systeme beschrieben werden. CAEX unterstützt die Definition von Rollen ebenso
wie die Modellierung konkreter Systeme. CAEX wird auch durch AutomationML
[32] genutzt.

• OWL ist eine Sprache zur Modellierung von Ontologien, d. h. der Darstellung einer
Menge von Begriffen, die Beziehungen zueinander haben. Sie ist in [118] spezifiziert.
Mithilfe der Sprache können deskriptive Aussagen über die Ontologien getroffen wer-
den.

• OPC UA beschreibt nicht nur eine Möglichkeit der Kommunikation, es enthält auch
ein Informationsmodell. OPC UA ist in [20] beschrieben und wird als eines der Ba-
sismodelle für Industrie 4.0 angesehen [124].

• Die Programmiersprachen der IEC 61131-3 lassen sich durch PLCopen XML [139]
beschreiben. An dieser Stelle ist insbesondere die Möglichkeit interessant, SFC mit-
samt ihrer POE und den verwendeten Aktionen auszutauschen.

• Auch zu den Modellierungssprachen der SysML gibt es ein XML-Format [123].

Basierend auf der Analyse von Vor- und Nachteilen der sechs XML-Formate ist in [61]
die Wahl auf CAEX als Modellierungsformat für neutrale Prozedurbeschreibungen gefal-
len. Die Unterstützung hierarchischer Systeme und des Rollenkonzepts sind ebenso wie
die Möglichkeit zur Versionierung und die Unterstützung nichtstandardisierter Daten we-
sentliche Gründe für die Entscheidung. BatchML, PLCopen und SysML sind sehr eng mit
den dahinterliegenden Datenmodellen verknüpft, so dass eine Erweiterung dieser Sprachen
um die Konzepte des Referenzmodells sehr aufwendig ist. Beispiele hierfür sind die Ver-
wendung von Diensten und die Integration von Menschen als Ausführungseinheit. Zudem
wirkt die Kopplung vom Modell mit seiner grafischen Repräsentanz in PLCopen gegen die
Unabhängigkeit des Referenzmodells von seiner Visualisierung (vgl. Kapitel 4.3.1, S. 82).
Das Informationsmodell von OPC UA ist ein zu mächtiges Werkzeug für die Modellierung
des vorgestellten Referenzmodells. Es ist jedoch möglich CAEX-Dateien automatisiert in
OPC UA-Modelle zu transformieren [75]. In OWL ist die Verwendung nichtstandardisier-
ter Elemente verboten. Die in [61] entwickelte XML-Darstellung ist für diese Arbeit leicht
modifiziert worden und in Anhang D, S. 125, abgedruckt. Die Darstellung wurde sowohl
gegen das CAEX-Schema als auch mit dem CAEX-Checker (vgl. [168]) validiert.

4.4. Anforderungen an das Kommunikationssystem und
an die Ausführungseinheiten

Auch wenn das verwendete Kommunikationssystem und die Ausführungseinheiten nicht
mit dem Referenzmodell modelliert werden, ist es zwingend notwendig, dass sie Anforde-
rungen des Referenzmodells erfüllen.
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4. Referenzmodell

Das Kommunikationssystem muss grundsätzlich in der Lage sein Nachrichten sowohl
zwischen Steuerungssystemen als auch zwischen Steuerungssystem und Ausführungsein-
heiten auszutauschen. Rein signalbasierte Kommunikationssysteme wie die 4 . . . 20 mA-
Technik oder die 0/24 V-Technik können daher nicht eingesetzt werden. Die Übertragung
muss bidirektional sein. Des Weiteren muss genügend Bandbreite für die zu übertragen-
den Nachrichten zur Verfügung stehen. Hierzu ist die Bereitstellung von Quality of Service
(QoS)-Informationen10 notwendig. Diese müssen ebenfalls Daten über die Übertragungs-
rate beinhalten. Insbesondere sind Informationen über den Determinismus und die Echt-
zeitfähigkeit des Kommunikationssystems wichtig. Innerhalb des Kommunikationssystems
muss ein Adresssystem dafür sorgen, dass die Nachrichtenempfänger ausgewählt werden
können. Eine Rückmeldung von Übertragungsfehlern erlaubt der Prozedur, gezielt auf diese
Fehler zu reagieren. In einer Industrie 4.0-Umgebung ist zudem der Schutz vor unerlaubten
Eingriffen in das Kommunikationssystem wichtig. Der Empfänger muss darauf vertrauen
können, dass die Nachrichten tatsächlich von der Einheit gesendet worden sind, die als
Absender angegeben ist. Die vorgestellten Anforderungen sind für maschinelle Kommuni-
kationsarten aufgestellt worden, gelten jedoch ebenfalls für die Kommunikation zwischen
Mensch und Maschine sowie für die zwischenmenschliche Kommunikation. Jedoch spielt
zwischen Menschen auch die Kommunikation über Gesten, Sprache und informalen Text
eine entscheidende Rolle. Diese Kommunikationsformen sind den gleichen Anforderungen
durch das Referenzmodell unterworfen.

Ausführungseinheiten werden im Referenzmodell über Dienstaufrufe angesprochen. Sie
müssen daher in der Lage sein Dienstaufrufe anzunehmen und die entsprechenden Funk-
tionen auszuführen, d. h., sie benötigen eine Eingangsschnittstelle (vgl. z. B. [52]). Zwangs-
läufig ergibt sich hieraus die Anforderung, dass Ausführungseinheiten aktiv kommunika-
tionsfähig11 sein müssen. Des Weiteren müssen sie eindeutig adressierbar sein (z. B. über
eine Uniform Resource Identifier (URI)12). Sie sind also individuell bekannt. Nach [120]
müssen Ausführungseinheiten daher die CP-Klassifikation CP33, CP34, CP43 oder CP44
haben. Zur Unterstützung des Entwurfsprozesses der Prozedur müssen Ausführungsein-
heiten einen Dienstkatalog, auf Englisch Service-Repository, besitzen (vgl. z. B. [77, 143]).
Ebenso müssen bei menschlichen Ausführungseinheiten die Fähigkeiten bekannt sein.

Die für das Rollenkonzept notwendigen Informationen werden durch ein Merkmalsystem
bereitgestellt. Hierbei ist es sinnvoll auf bestehende Merkmaldatenbanken (beispielsweise
eCl@ss oder die IEC 61360 [25]) zurückzugreifen (vgl. [57]). Zusätzlich wird durch eine
merkmalbasierte Dienstbeschreibung der Konfigurationsaufwand für ein zweites System
eingespart. Ein Dienstinterface ermöglicht den Zugriff auf die Merkmaldaten (vgl. [57, 92]).
Das Merkmalsystem und das Dienstsystem benötigen eine Umgebung zur Speicherung der
Daten. Dies kann beispielsweise über eine Middleware-Plattform (vgl. z. B. [111]) oder
eine Industrie 4.0-kompatible Verwaltungsschale (vgl. [19, 53]) geschehen. Ebenfalls bietet
die Kombination aus OPC UA und Field Device Integration (FDI) eine Möglichkeit der
dienstbasierten Erkundung einer Ausführungseinheit [19].

10Für weitere Informationen zum Thema QoS siehe z. B. [111].
11Die Rollen Dienstanbieter und Dienstnutzer sind unabhängig von der Kommunikationsrichtung [128].

Mit anderen Worten, sowohl Ausführungseinheiten als auch Steuerungssysteme müssen Daten senden
und empfangen können.

12URI sind im RFC 3986 [7] definiert und unterstützen explizit die Adressierung von Menschen.
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4.5. Prototypische Implementierung

4.5. Prototypische Implementierung
Für das in Kapitel 4, S. 67, vorgestellte Referenzmodell ist eine prototypische Implemen-
tierung in einem maschinellen Steuerungssystem vorgenommen worden. Als Basissystem
ist ACPLT/OV ausgewählt worden. ACPLT/OV ist ein Objektverwaltungssystem für die Pro-
zessautomation, welches in [113] vorgestellt wird. Es wird als Open-Source-Projekt13 kon-
tinuierlich weiterentwickelt. Ziel dieser Entwicklung ist das Schließen der Lücke zwischen
akademischer Forschung und prototypischen Implementierungen. Eine aktuelle Beschrei-
bung der Funktionalität kann [185] entnommen werden.

Neben der Auswahl des Basissystems sind Festlegungen bezüglich des Kommunikati-
onssystems und der Ausführungseinheiten notwendig (vgl. Kapitel 4.4, S. 85). ACPLT/KS
ist das für diese Implementierung ausgewählte Kommunikationssystem. Der konzeptio-
nelle Aufbau von ACPLT/KS ist in [3] dargestellt. ACPLT/KS stellt eine Kommunikations-
möglichkeit und ein Adressierungsschema zur Verfügung, die vom Referenzmodell genutzt
werden kann. Die prototypische Implementierung berücksichtigt die Themenfelder QoS,
Schutz vor unerlaubten Eingriffen und Echtzeitfähigkeit nicht. Ein Schutz vor unerlaubten
Eingriffen kann beispielsweise mittels OPC UA erfolgen. Dies ist unter Einbeziehung des
Open-Source-Projekts open6254114 ebenfalls mit ACPLT/OV möglich. Verschiedene Biblio-
theken, die KS-Schnittstelle ksapi, das Funktionsbausteinsystem fb, das Merkmalsystem
PropertyManagementSystem, das Nachrichtensystem MessageSys und das Dienstaufruf-
system ServiceClient helfen bei der Implementierung des Referenzmodells.

Mit Hilfe von ACPLT/OV ist die Implementierung der Klassen des Referenzmodells mög-
lich. In Abbildung 6.1, S. 101, sind diese Klassen mit ihren Attributen vollständig darge-
stellt. Diese Klassen sind in einer eigenen Bibliothek innerhalb von ACPLT/OV implemen-
tiert. Des Weiteren enthält die Bibliothek Assoziationen, die die Verknüpfung zwischen
Schritten und Transitionen, Schritten und Aktionen usw. ermöglichen. Die Implementie-
rung nutzt die Klasse SetVar aus der Bibliothek ksapi zum Aufruf einer Prozedur sowie
die die Klasse GetVar aus derselben Bibliothek für Zustandsabfragen. Dienstaufrufe wer-
den über die Schnittstelle der Bibliothek ServiceClient erzeugt und durch die Bibliothek
MessageSys an den Dienstanbieter geschickt.

Zur Erstellung einer Prozedurbeschreibung können die benötigten Klassen instanziiert
und über die Assoziationen miteinander verbunden werden. Neben der Modellierung durch
Instanzbildung innerhalb von ACPLT/OV ist auch die Modellierung in XML (vgl. Kapi-
tel 4.3.2, S. 84) möglich. Eine XSLT übersetzt die XML-Datei anschließend in ein proprie-
täres Format [61], das ACPLT/OV einlesen kann. Die Implementierung in ACPLT/OV bietet
den Vorteil, dass die Prozedurbeschreibung im selben System modelliert und ausgeführt
wird. Somit können die Vorteile der Erkundbarkeit von Modellen im Zielsystem (vgl. Ka-
pitel 2.6.2, S. 20) ausgenutzt werden.

13Siehe https://github.com/acplt/rte, Stand 27.01.2016.
14Siehe https://github.com/open62541, Stand 27.01.2016.
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5. Anwendung des Referenzmodells
In diesem Kapitel wird zunächst aufbauend auf der Erläuterung in [130] erklärt, auf welche
Weise eine Prozedur mit Hilfe des in Kapitel 4, S. 67, beschriebenen Referenzmodells er-
stellt werden kann. Anschließend zeigen zwei Beispiele die Anwendung des Referenzmodells
zur Modellierung konkreter Prozeduren auf. Diese Beispiele sind eine einfache Pumpenan-
steuerung und eine Wartungsprozedur für ein Ventil.

5.1. Entwurfsprozess einer Prozedur
Der Entwurf von Prozeduren ist in den Erstellungsprozess der Automatisierungslösung ein-
gegliedert. An diesem Erstellungsprozess sind verschiedene Kontraktoren beteiligt [57]. In
[155] sind beispielsweise die fünf Gewerke verfahrenstechnische Planung, Geräteauswahl,
Elektroplanung, PLT-Engineering und PLS-Engineering mit Zugriff auf die Konfiguration
einer PLT-Stelle genannt. Wünschenswert ist ein umfassendes Modell des Entwurfsprozes-
ses, das alle beteiligten Gewerke zusammenführt. Ein solches Weltmodell ist aber in der
Praxis nicht umsetzbar. Stattdessen wird bisher die Entwicklung kleinerer Datenmodelle,
die nur einen Teilbereich des Entwurfsprozesses abdecken, als zielführend angesehen [39].
Das in dieser Arbeit vorgestellte Referenzmodell stellt einen solchen Beitrag dar. Es soll
helfen, eine automatisierte Übertragung der Prozeduren zwischen den Gewerken zu ermög-
lichen. Es existiert jedoch kein einheitliches Vorgehen zur Erstellung von Prozeduren. Mit
anderen Worten heißt dies, dass die konzeptionelle Vernetzung (vgl. Abbildung 3.1, S. 25)
spezifisch für jeden Einzelfall ist. Dennoch ist es möglich einen Einsatz des Referenzmo-
dells als Hilfe zur Modellierung von Prozeduren darzustellen. Zwar ist dieses spezifische
Beispiel nicht auf alle denkbaren Fälle eins zu eins übertragbar, es verdeutlicht aber den
prinzipiellen Vorgang, wie mit Hilfe des Referenzmodells Prozeduren modelliert werden
können.

Die Komplexität der zu planenden Prozedur ist maßgeblich für den Planungsvorgang. So
kann beispielsweise eine einzelne Person eine Motorsteuerung entwerfen. Durch die geringe
Anzahl an Schritten muss sich die einzelne Person keine Gedanken über Hierarchieebenen
zur Gliederung machen. Eine Prozedur für den Anfahrvorgang einer chemischen Groß-
anlage hingegen muss zunächst sowohl bezüglich einer hierarchischen Steuerungsstruktur
als auch hinsichtlich der personellen Ausführung der Planungsschritte gegliedert werden.
Die Erstellung der hierarchischen Steuerungsstruktur ist auf zwei Arten möglich, mit dem
Top-Down-Ansatz oder dem Bottom-Up-Ansatz.

Beide Ansätze basieren auf einem hierarchischen Strukturierungsmodell der Ausfüh-
rungseinheiten. Beispiele hierfür sind die Anlagenhierarchie einer Batchanlage nach
IEC 61512 [35], die Anlagenhierarchie einer Fertigungsanlage [148] oder die Abteilungs-
struktur in einem Unternehmen, die in Abbildung 5.1 dargestellt sind.

Startpunkt beim Top-Down-Ansatz ist die höchste Ebene der Ausführungseinheitsstruk-
tur. Dieser höchsten Ebene ist eine Prozedur zugeordnet, die das Zusammenwirken der ein-
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5.1. Entwurfsprozess einer Prozedur
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Abbildung 5.1.: Beispiele für hierarchische Strukturen von Ausführungseinheitstypen

zelnen Elemente der zweithöchsten Ebene steuert. Im Referenzmodell können die Elemente
der zweithöchsten Ebene Dienste anbieten, die durch die Prozedur orchestriert werden. Die-
ses Vorgehen wird iterativ angewendet, bis die niedrigste Ebene erreicht ist, die direkten
Zugriff auf die Einzelsteuereinheiten hat. Ein Beispiel hierfür ist eine Anfahrprozedur für
eine Anlage, bei der zunächst die Reihenfolge des Anfahrens der unterschiedlichen Teilanla-
gen bestimmt wird. Erst im weiteren Verlauf des Entwurfsprozesses erfolgt die Bestimmung
der konkreten Aktoren, die zum Anfahren der Teilanlage benötigt werden.

Der Bottom-Up-Ansatz verwendet die umgekehrte Vorgehensweise. Hier ist der Aus-
gangspunkt des Prozedurentwurfs das Erzeugen von Prozeduren, welche Elemente der un-
tersten Schicht der Hierarchie der Ausführungseinheiten ansteuern. Diese werden sukzessiv
von den Prozeduren zur Steuerung der höheren Ebenen aufgegriffen und über Dienste auf-
gerufen.

Beide Wege führen zu einer Prozedur, die zur Steuerung des gewünschten Prozesses
auf die Ausführungseinheiten einwirken kann. Durch die Verwendung von Diensten ist die
Aufteilung der Verantwortung für die Gesamtprozedur an mehrere Prozedurplaner möglich,
wie in [76] beschrieben wird. Notwendige Voraussetzung ist eine exakte Definition der
Dienstbeschreibungen, welche die Schnittstelle zwischen den verschiedenen Teilprozeduren
bilden.

Die entworfene Prozedur muss vom Steuerungssystem interpretiert und ausgeführt wer-
den können, d. h., die Prozedur muss der Syntax und der Semantik (vgl. Kapitel 2.6.1,
S. 19) des Zielsystems entsprechen. Ein menschliches Steuerungssystem muss kognitiv da-
zu in der Lage sein die Abläufe zu verstehen. Diese Herausforderung wird in Kapitel 5.3,
S. 97, thematisiert. Zunächst liegt der Fokus jedoch auf maschinellen Steuerungssystemen.
Die Betrachtung maschineller Steuerungssysteme zeigt, dass derzeit eine Transformation
der Prozedurbeschreibung vom hier vorgestellten Referenzmodell über domänenspezifische
Engineering-Modelle in die Implementierungssprachen der Steuerung notwendig ist [152].
Eine solche Umwandlung kann durch Modelltransformationen und modellgetriebene Code-
generierung (vgl. Kapitel 2.6.2, S. 20) weitgehend automatisiert erfolgen. Hierzu sind vier
Implementierungsschritte notwendig [130, 152]:
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5. Anwendung des Referenzmodells

1. Die Prüfung der Prozedurbeschreibung auf Übereinstimmung mit dem Meta-Modell
stellt sicher, dass die nachfolgenden Transformationsschritte ohne formalen Fehler
ablaufen können.

2. Die allgemeine Prozedurbeschreibung kann (z. B. durch eine XSLT) in eine domänen-
spezifische Sprache transformiert werden. Ein Beispiel hierfür ist eine Transformation
aus der XML-Darstellung in Kapitel 4.3.2, S. 84, nach PLCopen [139].

3. Nach der Prüfung der im Zielsystem vorhandenen Systemstrukturen erfolgt die hän-
dische oder teilautomatische Zuordnung der Ausführungseinheiten zu den Signalen
im Zielsystem.

4. Eine modellgetriebene Codegenerierung erzeugt den Programmcode für das Zielsys-
tem.

Dieses Vorgehen ist ohne Modifikation der bestehenden maschinellen Steuerungssysteme
möglich. Prozedurplaner können folglich den Umgang mit dem vorgestellten Referenzmo-
dell ohne Investitionen in neue Steuerungssysteme trainieren. Dies erhöht die Akzeptanz
des Referenzmodells bei den Anwendern. Zudem vereinfacht sich der Aufwand zur Veri-
fikation und zur Validierung des Steuerungscodes (vgl. z. B. [62, 96]). Statt des systems-
pezifischen Programmcodes muss lediglich die allgemeine Prozedurbeschreibung und das
Mapping der Dienste auf die Signale geprüft werden. Eine Hilfe beim Mapping der Dienste
auf die Signale im bestehenden Steuerungssystem ist ein Modell der PLT-Stellen nach der
NE 150 [129], wie Abbildung 5.2 zeigt.

</>
XML

Allgemeine
Prozedurbeschreibung

Prozessleitsystem

</>
XML

Dienst-
aufruf

PLT-
Stellen-
name

Kapitel 4.3.2 NE 150

Zuordnung

Abbildung 5.2.: Nutzung der NE 150 zur Zuordnung von Diensten und Signalen

Das Meta-Modell der PLT-Stelle enthält die Beziehung zwischen PLT-Stellenname und
dem zugeordneten Signal. Die PLT-Stellen können in eine XML-Datei exportiert werden
[155]. Anschließend ist die Zuordnung zwischen Dienstaufrufen und Signalen auf dieser
Grundlage möglich und eine PLCopen-kompatible Datei kann erstellt und in das PLS
geladen werden.

5.1.1. Flexible Strukturen
Wie bereits in Kapitel 2.6.2, S. 20, erläutert, ist die Verwendung von Modellen im Ziel-
system der modellgetriebenen Codegenerierung vorzuziehen. Eine flexible Anpassung der
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5.1. Entwurfsprozess einer Prozedur

Prozeduren durch Anlagenfahrer, die beispielsweise im Zukunftsprojekt Industrie 4.0 [91]
vorgesehen ist, macht bei ausschließlicher Verwendung der modellgetriebenen Codegene-
rierung die Ausführung aller vier Implementierungsschritte notwendig. Insbesondere ist
die Zuordnung der Ausführungseinheiten zu den Signalen im Zielsystem zu komplex, zu
zeitaufwendig und damit zu teuer für den Anlagenfahrer, so dass ein Prozedurplaner hin-
zugezogen werden sollte.

Zusammenfassend ist die Implementierung eines Dienstsystems in die Zielsysteme un-
abdingbar [130]. Dies beginnt auf der Ebene 1 der Automatisierungspyramide (vgl. Kapi-
tel 2.4, S. 14). Hier findet die „Übersetzung“ zwischen dienstbasierter und signalbasierter
Kommunikation statt, die in Abbildung 5.3 demonstriert ist.

In3

In4

In2

In1

Out3

Out4

Out2

Out1

WSSR

CO

AufrufSenden

Zustands-

erkennung

InterneLogik

Nachrichten-

verarbeitung

Abbildung 5.3.: Erweiterung einer Einzelsteuerung um ein Dienstinterface (basierend auf [51])

Dazu ist eine Erweiterung der Steuerungssysteme um vier IEC 61131-3 -Blöcke erfor-
derlich, von denen drei in [51] erwähnt werden:

• Der Funktionsblocktyp CO empfängt die Dienstaufrufe der Prozedur als Nachricht.

• Der Funktionsblocktyp Nachrichtenverarbeitung interpretiert die eingehenden
Nachrichten und beeinflusst entsprechend die InterneLogik der Einzelsteuerung.

• Der Funktionsblocktyp AufrufSenden steuert in Abhängigkeit des Zustands der
internen Logik das Absenden von Dienstaufrufen über den Ausgang SR.

Neben den in [51] erwähnten Blöcken ist ein Funktionsbausteintyp Zustandserkennung
notwendig. Während der Block AufrufSenden zu diskreten Zeitpunkten Dienstaufrufe
absendet, ermittelt der Block Zustandserkennung fortlaufend den aktuellen Status der
Einzelsteuerungseinheit aus den Eingangssignalen. Der ermittelte Zustand WS kann in
den Transitionsbedingungen der aufrufenden Prozedur abgefragt werden.

Aufbauend auf die um eine Dienstschnittstelle erweiterten Einzelsteuerungen in der Ebe-
ne 1 können nun Prozeduren in den höheren Ebenen der Automatisierungspyramide auf die

91

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


5. Anwendung des Referenzmodells

bereitgestellten Dienste zugreifen. Die Dienstaufrufe lassen sich zur Laufzeit der Prozedur
umkonfigurieren. Somit ist eine flexible Anpassung der Prozedur durch den Anlagenfahrer
an aktuelle Gegebenheiten möglich. Denkbar ist auch die Implementierung einer Daten-
bank für Teilprozeduren, die durch die Anlagenfahrer zur Laufzeit konfiguriert und in einer
an die Situation angepassten Reihenfolge gestartet werden. Die erforderlichen Vorbedin-
gungen können in der Transition nach dem Initialschritt der Prozedur hinterlegt sein. Der
Anlagenfahrer fungiert so als menschliches Steuerungssystem (vgl. Kapitel 5.3, S. 97). Ein
Konzept zur Suche der passenden Dienste kann [109] entnommen werden.

Dieses Vorgehen hat zwei positive Nebeneffekte. Erstens können modulare Anlagen und
Package Units einfach in eine Anlage integriert werden und zweitens wird eine Verlagerung
von Intelligenz auf Feldgeräte gefördert. Die Funktionssicherheit der Anlage wird nicht
beeinträchtigt:

• Die Steuerung modularer Anlagen (vgl. z. B. [133, 135]) kann analog zu den Einzel-
steuereinheiten um die vier IEC 61131-3 -Blöcke ergänzt werden. Aus diese Weise
wird eine Abstraktion von den herstellerspezifischen Ausführungen der Steuerung
geschaffen.

• Die Implementierung der Einzelsteuerung auf Feldgeräten führt zu einer besseren
Verteilung der Last im gesamten Automatisierungssystem [57]. Bezogen auf das Re-
ferenzmodell lässt sich eine bessere Wiederverwendbarkeit der Prozeduren sicherstel-
len, wenn statt Messgrößen Zustandsinformationen mit Semantik (z. B. „Behälter ist
halb voll“ statt L1.PV = 25 cm) übertragen werden. Dies kann durch die Definition
von Merkmalen mit einer Beschreibung erfolgen. Die konkreten Messwerte werden
nicht benötigt, da keine kontinuierliche Regelung in einer Prozedur durchgeführt
wird.

• In [51] werden drei Ebenen der funktionalen Integrität eingeführt, Addon-Funktionen,
Basis-Funktionen und sicherheitsrelevante (Safety-) Funktionen. Diese sind in Abbil-
dung 5.4 dargestellt.

FIL 2

FIL 0

FIL 1

Safety-Funktionen

Basis-Funktionen

Addon-Funktionen

(sehr hoch verfügbar)

(hoch verfügbar)

(mittel verfügbar)

Wächter-
Funktion

Abbildung 5.4.: Ebenen der funktionalen Integrität (nach [51])
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5.2. Steuerungsprozedur einer Pumpe

Die sicherheitsrelevanten Funktionen (z. B. Verriegelungen) werden in den Einzel-
steuerungen wie gewohnt implementiert. Somit wird auf eine bewährte Technik zu-
rückgegriffen. Das hier vorgestellte Referenzmodell kann für Funktionen in den Ebe-
nen FIL 1 und FIL 2 genutzt werden. Das ServiceInterface der Ebene FIL 0 kann
gleichzeitig als Wächter-Funktion alle Zugriffe abblocken, welche die funktionale Si-
cherheit bedrohen.

5.2. Steuerungsprozedur einer Pumpe
Das erste Beispiel zeigt anhand einer einfachen Steuerungsprozedur einer Pumpe die prinzi-
pielle Anwendung des Referenzmodells. Die Pumpe befindet sich in einer LKW-Abfüllung,
bei der ein LKW über die Pumpe und ein Ventil aus einem Tank befüllt wird (vgl. Abbil-
dung 5.5).

LI
L01

YO
Y01

NO
N01

Tank1

LKW1Ventil1 Pumpe1

Abbildung 5.5.: Schematische Darstellung einer LKW-Abfüllstation

In Abbildung 5.5 sind vier verschiedene Teilsysteme zu erkennen, Tank1, Ventil1, Pum-
pe1 und LKW1. Im Beispiel wird die Steuerung des Teilsystems Pumpe1 betrachtet1. Pum-
pe1 ist eine Ausführungseinheit, die die PLT-Stelle N01 beinhaltet. Die Einzelsteuerung
von N01 ist analog zu Abbildung 5.3 erweitert worden und in Abbildung 5.6 abgebildet.

Gegenüber den konventionellen Funktionsbausteinen sind die Bausteine StringCompa-
re und Switch ergänzt worden. Der Baustein StringCompare liefert eine boolesche Eins
als Ausgang, wenn die beiden Texte des Eingangs übereinstimmen. Der Baustein Switch
gibt den ersten Text als Ausgang weiter, wenn die boolesche Eingangsvariable Null ist.
Andernfalls wird der zweite Text ausgegeben. Neben der Einzelsteuerung von N01 müs-
sen auch die andern Teilsysteme in der Steuerungsprozedur von Pumpe1 berücksichtigt
werden. Die weiteren Teilsysteme bieten die folgenden Zustandsmeldungen an:

• Tank1 : TankVoll, TankLeer,

• Ventil1 : Auf, Zu und

1Das Öffnen und Schließen des Ventils im Normalbetrieb wird der Übersichtlichkeit halber außen vor
gelassen werden.
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Y01.cbOpen

N01.cbOn

N01.On

WS

CO

S
R

StringCompare
"Start"

StringCompare
"Aus"

Verriegelungs-
logik

Einschalt-
überprüfung

Switch"PumpeAus"

"PumpeLäuft"

OR

Abbildung 5.6.: Einzelsteuerung der Pumpe N01

• LKW1 : LKWPositioniert, LKWVoll.

Eine überlagerte Steuerung (vgl. Kapitel 2.4, S. 14) kann die Befehle „Start“ und „Aus-
schalten“ an die Steuerung der Abfülleinheit übergeben. Mit diesen Informationen ist es
möglich eine Abfüllprozedur wie folgt textuell zu formulieren: Nach dem Starten der Ab-
füllanlage wird die Pumpe gestartet, sobald der LKW positioniert ist. Wenn der LKW
befüllt ist, stoppt sie wieder. Als mögliche Fehlerfälle während des Laufens der Pumpe
sind das Leerlaufen des Tanks, das Schließen des Ventils oder das Entfernen des LKWs
bekannt.

Dieser informell beschriebene Ablauf lässt sich mit Hilfe des in Kapitel 4, S. 67, vor-
gestellten Referenzmodells formalisiert darstellen. In Abbildung 5.7 ist ein Instanzmodell
dargestellt, das diesen Ablauf modelliert.

Es sind insgesamt acht Instanzen des Aufbaumodells angelegt worden, vier Transitio-
nen (S1S2, S2S1, S2S4 und S1S3 ), ein Anfangsschritt (S1 ), ein elementarer Schritt
(S2 ) und zwei Endschritte (S3 und S4 ). Mit den Schritten sind insgesamt vier Instanzen
(A1 bis A4 ) des Typs Dienstaufruf über Assoziationen verbunden. Die Instanzen der
Dienstaufrufe sind wegen der Übersichtlichkeit in Abbildung 5.8 abgebildet.

Jede Transition ist mit genau einer Bedingung (C1 bis C4 ) verbunden. Die Transitions-
bedingungen, die in Abbildung 5.7 verwendet werden, sind in Abbildung 5.9 dargestellt.

Eine Transitionsbedingung besteht aus ein oder mehreren logischen Termen. Die Bedin-
gungen C1 und C2 ermitteln jeweils den Zustand des Teilsystems LKW1 (SC1, SC2
und SC3 ). Die Bedingung C3 prüft, ob die Pumpensteuerung den Befehl Ausschalten
erhalten hat (RR1 ). C4 ist eine zusammengesetzte Bedingung, die aus drei mit Oder
verknüpften Zustandsabfragen (SC4 bis SC6 ) besteht.

Die Steuerung kann von außen über einen Befehl Start eingeschaltet werden. Dieser ak-
tiviert den Schritt S1 und der Dienstaufruf A1 wird ausgeführt. Dies stellt sicher, dass
die Pumpe abgeschaltet ist. Sobald ein nicht voller LKW LKW1 in der Abfüllanlage posi-
tioniert ist, feuert die Transition S1S2, die den Schritt S2 aktiviert. Nun läuft die Pumpe
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S1:InitialStep

name = PumpeAus
abort  = false

S2:ElementaryStep

name = PumpeAn
abort  = false

S1S2:Transition

name = S1S2
abort  = false

S2S1:Transition

name = S2S1
abort  = false

S3:FinalStep

name = Aus
abort = false

S1S3:Transition

name = S2S3
abort  = false

S4:FinalStep

name = Abbruch
abort = true

S2S4:Transition

name = S2S4
abort  = true

A1

C2

C1

A2

C4

A3

C3

A4

Abbildung 5.7.: Steuerungsprozedur für die Pumpe der LKW-Abfüllstation

A1:ServiceCall

address = Pumpe1
serviceName = SteuerePumpe
operation = Stop

A2:ServiceCall

address = Pumpe1
serviceName = SteuerePumpe
operation = Start

A3:ServiceCall

address = Pumpe1
serviceName = SteuerePumpe
operation = Stop

A4:ServiceCall

address = Ventil1
serviceName = SteuereVentil
operation = Schließe

Abbildung 5.8.: Verwendete Aktionen in Abbildung 5.7

so lange, bis der LKW LKW1 voll ist. Dies führt zum Feuern der Transition S2S1 und die
Pumpe schaltet ab (Schritt S1 ). Eine erneute Aktivierung der Pumpe kann erst erfolgen,
wenn erneut ein nicht voller LKW positioniert wird. Die Abfüllanlage kann mit dem Befehl
Ausschalten über S1S3 nur ausgeschaltet werden, wenn kein Abfüllvorgang stattfindet. Ist
die Pumpe eingeschaltet, führt ein Leerlaufen des Tanks Tank1, ein Entfernen des LKWs
LKW1 oder ein Schließen des Ventils Ventil1 zum Auslösen der Abbruchtransition S2S4.
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C1:Condition

listOfOperators = {AND}

C2:Condition

listOfOperators = {}

C3:Condition

listOfOperators = {}

C4:Condition

listOfOperators = {OR, OR}

SC2:StateCheck

address = LKW1
value = LKWVoll
inverted = true
index = 2

SC3:StateCheck

address = LKW1
value = LKWVoll
inverted = false
index = 1

RR1:RequestReceived

value = Ausschalten
inverted = false
index = 1

SC4:StateCheck

address = LKW1
value = LKWPositioniert
inverted = true
index = 1

SC5:StateCheck

address = Tank1
value = TankLeer
inverted = false
index = 2

SC6:StateCheck

address = Ventil1
value = Zu
inverted = false
index = 3

SC1:StateCheck

address = LKW1
value = LKWPositioniert
inverted = false
index = 1

Abbildung 5.9.: Verwendete Transitionsbedingungen und logische Terme in Abbildung 5.7
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5.3. Integration von Menschen in die Prozedurausführung

5.2.1. Verwendung von Rollen
In Kapitel 4.2.4, S. 76, ist die Verwendung von Rollen in der Prozedurbeschreibung als
Möglichkeit der Erhöhung der Flexibiliät bereits beschrieben. An dieser Stelle verdeutlicht
die Anwendung auf das beschriebene Beispiel den Vorteil. In Abbildung 5.9 ist erkennbar,
dass sich die Zustandsüberprüfungen auf einen konkreten LKW, nämlich LKW1, beziehen.
Falls ein anderer LKW befüllt werden soll, muss die Prozedur bearbeitet werden.

Der erste Schritt zur Flexibilisierung der Prozedur besteht in der Verwendung von Para-
metern. Statt der Verwendung der konkreten Bezeichnung LKW1 lässt sich ein Parameter
im Ausführungsrahmen definieren, der als Adresse in den Zustandsabfragen SC1, SC2
und SC3 verwendet werden kann. Bei jedem eintreffenden LKW wird der Wert des Para-
meters entsprechend geändert.

Dies führt zu einer Flexibilität der Prozedur, erhöht aber den manuellen Aufwand. So
muss beispielsweise für jeden LKW überprüft werden, ob er die benötigten Zustände für
die Prozedur bereithält. Mit Hilfe von Rollen lässt sich die Zuordnung automatisieren. In
der Zustandsabfrage wird eine Rolle referenziert, die die Rückmeldung der Zustände LK-
WPositioniert und LKWVoll als Anforderung beinhaltet. Abbildung 5.10 zeigt beispielhaft
die Verwendung von Rollen in der Zustandsabfrage SC3. Da das Merkmal P1 die Anfor-
derung R1 erfüllt, kann die Ausführungseinheit LKWxy die Rolle LKW ausfüllen und
somit durch SC3 angesprochen werden.

SC3:StateCheck

address = <<LKW>>
value = LKWVoll
inverted = false

LKW:Role

R1:Requirement

value = has_LKWVoll

LKWxy:ExecutionUnit

P1:Property

value = has_LKWVoll
erfüllt

kann
einnehmen

Abbildung 5.10.: Beispiel für die Zuordnung von Ausführungseinheiten zu einer Rolle in einer
Prozedurbeschreibung

5.3. Integration von Menschen in die Prozedurausführung
Wie bereits in Abbildung 2.4, S. 13, erläutert, können Menschen sowohl als Steuerungs-
system als auch als Ausführungseinheit an einer Prozedurausführung beteiligt sein. Ein
Beispiel hierfür ist die Reparatur eines Regelventils. Bei diesem Ventil sei die Membran
des Stellorgans gerissen, so dass der notwendige Druck zum Einstellen der Ventilpositi-
on nicht mehr aufgebracht werden kann. Dies führe dazu, dass der Prozess zwar weiter
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betrieben werden kann, er sich aber nicht mehr im Produktionsoptimum befindet. In Ab-
bildung 5.11 ist ein UML-Sequenzdiagramm abgebildet, das die notwendigen Schritte zur
Reparatur in ihrer zeitlichen Abfolge darstellt. Aus Gründen der Übersichtlichkeit sind die
zugehörigen Klassenmodelle der Prozeduren in Anhang B, S. 114, abgebildet.

Anlagenfahrer Wartungstechniker Einkäufer Produktionsplaner Logistiker

FehlerSuchen(FIC21)

AnfrageBetreten(TA2)

ErlaubnisErteilt()

TAVerlassen()

Bestelle(FIC21, Membran)

Vorbereiten(FIC21)

WareGeliefert(FIC21)

LiefereAus(Memban, TA2)

BestätigeLieferung(FIC21, TA2)

AnfrageReparatur(FIC21)

ReparaturErlauben(FIC21)

ReperaturErfolgt(FIC21)

ReperaturErfolgt(FIC21)

Abbildung 5.11.: Sequenzdiagramm zur Darstellung der zeitlichen Abfolge von Dienstaufrufen
während einer Ventilwartung

Auslöser des Wartungsvorgangs ist die Feststellung eines zu niedrigen Durchflusses an
der Durchflussregelung FIC21. Der Anlagenfahrer versucht zunächst z. B. mit Hilfe ande-
rer Messgrößen, einen defekten Sensor als Fehlerursache auszuschließen. Ist dies nicht der
Fall, veranlasst er, dass der Wartungstechniker das Ventil überprüft. Mit anderen Worten,
er sendet über sein HMI den Befehl Start sowie den Parameter FIC21 an die Prozedur
ÜberprüfeRegelventil des Wartungstechnikers. Der Wartungstechniker wählt die für die
Diagnose notwendigen Werkzeuge aus und meldet sich beim Anlagenfahrer zum Betreten
der Teilanlage an, sobald er vor Ort ist. Der Anlagenfahrer prüft, ob im aktuellen Betriebs-
zustand der Anlage ein Betreten gefahrlos möglich ist und erteilt dann die Erlaubnis. Der
Wartungstechniker sucht anschließend die Fehlerursache und bestellt nach Verlassen der
Anlage das notwendige Ersatzteil. Gleichzeitig informiert er den Produktionsplaner über
die Wartung, die dieser in seinen Produktionsplan einplanen muss. Nach der Bestellung des
Ersatzteils unterrichtet der Einkäufer den Produktionsplaner über den geplanten Liefer-
termin zur groben Einplanung der Wartung. Sobald die Lieferung tatsächlich eingetroffen
ist, informiert der Produktionsplaner den Logistiker und den Wartungstechniker über den
genauen Zeitpunkt der Wartungsmaßnahme. Vor der Reparatur gibt der Anlagenfahrer die
Anlage zur Reparatur frei.
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5.3. Integration von Menschen in die Prozedurausführung

Anhand des Beispiels wird deutlich, welche Entscheidungen die fünf Akteure Anlagen-
fahrer, Wartungstechniker, Einkäufer, Produktionsplaner und Logistiker zu treffen haben.
Die Funktionen der Akteure sind auf die drei unteren Ebenen der Automatisierungspy-
ramide verteilt. Jeder Akteur besitzt seine eigenen Prozeduren, die in Anhang B, S. 114,
dargestellt sind. Diese sind, wie durch das Sequenzdiagramm deutlich wird, durch Quer-
abhängigkeiten miteinander verbunden.

Der Produktionsplaner beispielsweise nutzt eine Prozedur zur Modifikation seines Pro-
duktionsplans, der wiederum eine Prozedur ist. Der Anlagenfahrer nutzt die Rezepte zur
Steuerung des Produktionsprozess. Der Wartungstechniker kann Prozeduren als Anleitung
des Reparaturprozesses verwenden. Des Weiteren stehen die Prozeduren, die die Arbeits-
abläufe der Akteure steuern, in einem engen Zusammenhang. Es muss demnach zum einen
eine Schnittstelle zwischen den Systemen existieren, zum anderen müssen die Steuerungs-
systeme eine einheitliche Syntax und Semantik unterstützen. Auf diese Weise ist eine engere
Koordination des komplexen Reparaturprozesses möglich. Das in dieser Arbeit vorgestellte
Referenzmodell ermöglicht die Bildung einer Brücke zwischen den verschiedenen Prozedu-
ren. In der täglichen Anwendung muss der Fokus auf der Gestaltung des HMI liegen (vgl.
[169]). Die Schnittstelle zwischen Mensch und Steuerung kann hierbei durch ein Assistenz-
system erfolgen.

5.3.1. Assistenzsysteme
Zur Reduktion der Komplexität der zu erledigenden Vorgänge und zur Verdeutlichung
der nächsten Steuerungsschritte können Assistenzsysteme eingesetzt werden [170]. Dem
Assistenzsystem stehen drei Informationsquellen zur Verfügung, die Vorgabe des Prozess-
ziels, die Zustandsinformationen der Anlage und die Informationen, die vom Operator
eingegeben worden sind [70]. Des Weiteren sind Modelle und Methoden hinterlegt, aus
denen Entscheidungshilfen abgeleitet werden können [153]. Mit Hilfe dieser Informationen
schlägt ein Assistenzsystem die Brücke zwischen Wünschen, Zielen, Fähigkeiten und Wis-
sen eines Menschens und den Funktionen eines interaktiven maschinellen Systems [187].
Assistenzsysteme können jedoch nicht nur während des operativen Betriebs einer Anlage
unterstützend tätig sein, auch der Entwurfsprozess kann assistiert werden [85].

Eine Integration des hier vorgestellten Referenzmodells in Assistenzsysteme ist möglich,
wie in [153] gezeigt ist. Sobald das Assistenzsystem eine unterstützungsbedürftige Situa-
tion erkennt, sucht es in einer Prozedurdatenbank nach einer aufgezeichneten Prozedur.
Diese Dokumentation einer Prozedurausführung gibt dem Anlagenfahrer Hinweise, wie ein
ähnliches, schon einmal aufgetretenes Problem gelöst worden ist. Der Anlagenfahrer in-
terpretiert diese Information und versucht die richtigen Schlüsse zu ziehen. Gefüllt weird
solch eine Prozedurdatenbank entweder manuell oder mittels der Methode des Fallbasierten
Schließens [153].

Im Beispiel der Ventilreparatur sind verschiedene Einsatzmöglichkeiten gegeben. So kann
ein Assistenzsystem dem Anlagenfahrer helfen, die Ursache für die Prozessstörung zu er-
mitteln. Dem Wartungstechniker können die Reparaturschritte interaktiv auf einem indus-
triellen Tablet visualisiert werden. Der Produktionsplaner erhält z. B. Vorschläge für eine
optimale Anordnung der verschiedenen Rezepte.
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6. Zusammenfassung und Diskussion

6.1. Zusammenfassung
Diese Arbeit befasst sich mit einem Referenzmodell zur Beschreibung allgemeiner Proze-
duren. In Kapitel 4, S. 67, ist dieses Referenzmodell basierend auf den Elementen einer
Prozedurbeschreibungssprache (vgl. Kapitel 3.1, S. 24) beschrieben. Zum Aufbaumodell
gehören die Elemente Ausführungsrahmen (ExecutionFrame), Transition (Transition)
und Schritt (Step), wobei vom Schritt die Klassen Elementarschritt (ElementaryStep),
Anfangsschritt (InitialStep) und Endschritt (FinalStep) abgeleitet sind. Im Hierarchie-
und Vernetzungsmodell sind Verknüpfungsregeln zur Erzeugung von linearen Ketten sowie
zur Alternativ- und Parallelverzweigung aufgestellt worden. Zudem ermöglicht die Klasse
Makroschritt (MacroStep) die Bildung von Hierarchien. Das Aktions- und Aktivitäten-
modell legt die Interaktionsmöglichkeiten mit der Umgebung fest. Zum einen werden die
Klassen Dienstaufruf (ServiceCall) und Prozeduraufruf (ProcedureCall) als Aktionen
definiert, zum anderen kann sich die Transitionsbedingung aus logischen Termen zusam-
mensetzen. Das Abstraktions- und Zuordnungsmodell beschreibt die Möglichkeiten, den
Entwurfsprozess der Prozedur zu vereinfachen, während das Ausführungssteuerungsmo-
dell die Ausführung der Prozedurbeschreibung determiniert.

Bei der Vorstellung des Referenzmodells in Kapitel 4, S. 67, sind der Übersichtlichkeit
wegen lediglich Ausschnitte aus der UML-Darstellung des Referenzmodells dargestellt wor-
den. In Abbildung 6.1 ist das vollständige Klassendiagramm abgebildet. Neben der Model-
lierung des eigentlichen Referenzmodells (graues Rechteck) sind auch das Zusammenwirken
des Referenzmodells mit einem Visualisierungsmodell (oberhalb des grauen Kastens) und
die Verwendung von Rollen, Merkmalen und Ausführungseinheiten (unterhalb des grauen
Kastens) abgebildet.

Mithilfe dieses Referenzmodells können verschiedene Typen von Prozeduren abgebildet
werden. In Kapitel 5, S. 88, ist gezeigt worden, dass es möglich ist, sowohl die Steuerproze-
dur einer Pumpe als auch die Wartungsprozedur eines Ventils zu beschreiben. Diese beiden
Beispiele zeigen aufgrund ihrer stark unterschiedlichen Komplexität die Allgemeingültigkeit
des Modells. Dadurch wird deutlich, dass das Modell auf allen Ebenen der Automatisie-
rungspyramide eingesetzt werden kann. Ebenso wird die Integration von Menschen sowohl
auf Steuerungs- als auch auf Ausführungsseite unterstützt.
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6. Zusammenfassung und Diskussion

6.2. Diskussion
Basis für die Erstellung des Referenzmodells ist die Analyse bestehender Prozedurbeschrei-
bungssprachen. Durch die Analyse ist der gemeinsame Kern ermittelt worden, der den
Prozedurbeschreibungssprachen zugrunde liegt. Das Referenzmodell deckt diesen gemein-
samen Kern ab. Mithilfe des Referenzmodells können lineare Prozeduren bestehend aus
Schritten und Transitionen modelliert werden. Des Weiteren werden auch Makroschritte,
Alternativverzweigungen und nebenläufige Prozeduren unterstützt. In Anhang C, S. 119,
sind einige Beispiele dargestellt, bei denen die Vermutung naheliegt, dass sie durch das
Referenzmodell nicht abgedeckt werden. Die Beispiele zeigen jedoch, dass dies nicht der
Fall ist und geben gleichzeitig eine Empfehlung für die Modellierung ab.

Das Modell besticht durch seine Einfachheit, d.h., ein Vorteil besteht darin, dass durch
wenige Modellelemente Abläufe beschrieben werden können. Die Einfachheit des Refe-
renzmodells basiert hauptsächlich auf der konsequenten Anwendung der Prinzipien der
Kybernetik. In der Prozedurbeschreibung werden nur die Dienstaufrufe und Zustandsab-
fragen modelliert, d. h., die Ausführungseinheiten verbergen die Art und Weise, wie sie die
aufgerufenen Funktionen ausführen, vor der Prozedur. Auf diese Weise kann die Komplexi-
tät von der Prozedur auf die Ausführungseinheiten verlagert werden. Wichtig ist an dieser
Stelle der Hinweis, dass eine Ausführungseinheit wiederum eine Steuerung besitzen kann,
die die Unter-Ausführungseinheiten kontrolliert. Diese strikte Trennung zwischen Aufruf
einer Funktion und ihrer Ausführung vereinfacht die Beschreibung einer Prozedur deutlich.

Die Verwendung von Dienstaufrufen vereinheitlicht den Aufruf verschiedener Funkti-
onstypen. Ein Dienstaufruf kann beispielsweise das Setzen einer Variablen, das Starten
eines Batch-Prozesses oder eine Anordnung an einen Mitarbeiter sein. Die verschiedenen
Typen können ohne Weiteres gemeinsam in einer Prozedur verwendet werden. Die Verwen-
dung dieser einheitlichen Schnittstelle zwischen Steuerungssystem und Ausführungseinhei-
ten fördert eine bessere Wartung und eine Erhöhung der Erweiterbarkeit der Prozedur.
Des Weiteren ist die Übermittlung von formalisierten und nicht-formalisierten Aufrufen an
unterschiedliche Empfängertypen (vgl. Abbildung 2.4, S. 13) in derselben Weise möglich.
Die Kommunikation durch Dienste findet immer zwischen genau zwei Kommunikations-
partnern statt, dem Dienstaufrufer (hier die Prozedur im Steuerungssystem) und dem
Dienstanbieter (hier die Ausführungseinheit). Dies minimiert die Belastung der im Kom-
munikationssystem eingebundenen Teilnehmer, da jeder Teilnehmer nur die Nachrichten
verarbeiten muss, die auch wirklich an ihn gerichtet sind. Das Konzept der Dienstauf-
rufe ermöglicht zudem die Einbindung externer Dienstanbieter. Da die Art und Weise,
wie der Dienst ausgeführt wird, nicht an den Dienstaufrufer weitergegeben wird, ist ein
Know-How-Schutz für den Dienstanbieter gewährleistet.

Dienstaufrufe sind neben dem Rollenkonzept die grundlegende Basis für flexible Pro-
zeduren. Durch die Dienstaufrufe werden feste, bereits im Planungsprozess der Prozedur
definierte Signalverbindungen vermieden. Dies steht nicht im Widerspruch zu der bestehen-
den konventionellen Verdrahtung von Sensoren und Aktoren in bestehenden chemischen
Anlagen. In Kapitel 5.1.1, S. 90, ist gezeigt, wie eine konventionelle Einzelsteuerung in ein
dienstbasiertes System eingebunden werden kann. Es ist möglich Dienstaufrufe während
des Entwurfsprozesses abstrakt mit Bezug zu einer Rolle zu definieren. Die Zuordnung
einer konkreten Ausführungseinheit erfolgt entweder im weiteren Verlauf des Entwurfspro-
zesses oder erst zur Laufzeit. Die Entscheidung zur Laufzeit bietet den Vorteil, dass ei-
ne situationsbewusste Optimierung der Prozedurausführung erfolgen kann, beispielsweise
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6.2. Diskussion

nach den Kriterien Auslastung, Energieeffizienz oder Verfügbarkeit. Ein Merkmalsystem
unterstützt die Zuordnung von konkreten Ausführungseinheiten zu abstrakten Rollen. Die
Ausführungseinheiten werden durch Merkmale beschrieben, die den Anforderungen der
Rolle genügen müssen.

Die Prozedurbeschreibung kann als Grundlage der Prozedurausführung genutzt werden.
Die Steuerung der Ausführung sowohl im Normalfall als auch im Fehlerfall übernimmt der
Zustandsautomat der Prozedur. Die Zustände des Zustandsautomats sind fest definiert.
Bezüglich der Übergänge zwischen den Zuständen kann es jedoch im konkreten Anwen-
dungsfall Abweichungen geben. Ein Beispiel hierfür ist die Entscheidung, ob eine gehaltene
Prozedur abbrechen muss oder neu starten darf. Diese Entscheidung kann nicht generisch
getroffen werden. Der Standardfall sieht an dieser Stelle vor, dass alle (demnach auch die
Abbruch- und Restart-Transitionen) Transitionen gesperrt sind.

Der Zustandsautomat sorgt für ein deterministisches Ausführungsverhalten der Pro-
zedur. Insbesondere ist die Reihenfolge der Aktionsaufrufe in einem Schritt festgelegt,
nicht jedoch die Abfolge der durch die Aktionsaufrufe initiierten Aktivitäten der Aus-
führungseinheiten. Nicht nur die Reihenfolge der Aktivitätsausführung, sondern auch der
Start einer Aktivität in einer Ausführungseinheit ist nicht gesichert. Ausführungseinheiten
können Dienstanfragen eigenständig akzeptieren oder verwerfen, beispielsweise wenn ihr
Belegungsautomat (vgl. [184]) die Ausführung nicht zulässt. Insbesondere in dezentralen
Systemen ist daher eine explizite Abfrage sinnvoll, ob eine Aktivität auch tatsächlich schon
gestartet ist. Der Verzicht auf zwingende Antworten beim Dienstaufruf vermeidet aufwen-
dige Konsistenzsicherungs- und Synchronisationsfunktionen. Zudem wird ein Blockieren
der Prozedurausführung vermieden, wenn asynchrone Dienstaufrufe ohne Antworten ver-
wendet werden.

Die Ausführung einer Prozedur kann ereignisgetrieben oder getaktet erfolgen. Die Ent-
scheidung für eine der beiden Varianten hängt maßgeblich vom Steuerungssystem ab, das
die Prozedur ausführt. Eine SPS auf Basis der IEC 61131-3 führt ihr Programm zyklisch
aus, d. h., die Transitionsbedingungen werden getaktet ausgewertet. Menschen hingegen
können sowohl getaktet als auch ereignisgetrieben arbeiten. Es ist einerseits vorstellbar,
dass sie nach einer festen Zeitvorgabe überprüfen, ob sie die nächsten Schritte einleiten.
Andererseits kann ein Mensch auch erst durch das Eintreten eines Ereignisses wieder an die
Prozedur erinnert werden, die er ausführen soll. Die Ausführung der Prozedur erfolgt nach
der Lock-Step-Semantik. Es kann maximal ein Schrittwechsel in einem Zyklus erfolgen.

Die Kooperation des Referenzmodells mit bestehenden Ausführungseinheiten lässt sich
durch die Einführung von zusätzlichen Blöcken ohne großen Aufwand durchführen. Sollten
diese Modifikationen unerwünscht sein, kann mithilfe existierender Standards wie NE 150
und PLCopen eine automatische Transformation des generischen Prozedurmodells in steue-
rungsspezifischen Programmcode erfolgen. Alle Vorteile kann das Referenzmodell erst aus-
spielen, wenn es in einem Dienstsystem ausgeführt wird. Dieser Punkt ist insbesondere
interessant, wenn Industrie 4.0-kompatible Umgebungen im industriellen Umfeld etabliert
sind. Im RAMI ist eine Prozedurbeschreibung ein Asset, das seinen eigenen Lebenszyklus
hat. Die Prozedurbeschreibung kann auf alle Hierarchieebenen des RAMI oberhalb des
Produkts zugreifen. Sie ist entweder in der Geschäftsschicht oder in der Funktionsschicht
definiert.

Vor der praktischen Nutzung des Referenzmodells sind einige projektspezifische Festle-
gungen zu treffen. Zunächst erfolgt die Auswahl des Kommunikationssystems. Es ist eine
Abbildung der Dienstaufrufe auf technologische Funktionen des Kommunikationssystems
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6. Zusammenfassung und Diskussion

notwendig. Sobald ein generisches Format zum Aufruf von Diensten in einer Industrie 4.0-
Umgebung definiert ist, kann dieser Schritt entfallen. Der zweite Schritt besteht in der
Festlegung der Flexibilität bei der Prozedurausführung. Je höher die Flexibilität ist, desto
stärker muss das ausführende Steuerungssystem zur Laufzeit rekonfigurierbar sein. Falls
das Rollenkonzept verwendet werden soll, muss ein Merkmalsystem in das Laufzeitsystem
integriert werden. Das Merkmalsystem überprüft die Erfüllung der spezifizierten Anforde-
rungen der Prozedur an die Ausführungseinheiten.

Der Austausch der Prozeduren zwischen den verschiedenen Planungssystemen und dem
Steuerungssystem erfolgt mittels XML-Dateien. Für das vorgestellte Referenzmodell ist ei-
ne Darstellung nach dem CAEX-Schema vorgenommen worden. Eine automatische Trans-
formation der CAEX-Darstellung in das OPC UA-Informationsmodell ist möglich. Das
Referenzmodell ist jedoch prinzipiell unabhängig von einem konkreten Austauschformat.
Durch die Erzeugung von XML-Dateien, in denen nur ein Bezug auf Rollen und nicht auf
konkrete Ausführungseinheiten genommen wird, ist die Erstellung einer Datenbank mit
wiederverwendbaren Prozeduren möglich. Auf diese Weise leistet das Referenzmodell ne-
ben der Durchgängigkeit über den Lebenszyklus der Prozedur einen weiteren Beitrag zur
Reduzierung des Aufwands bei der Erstellung von Prozeduren.
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A. Zusammenfassung der Analyse
In diesem Kapitel sind die Resultate der Analyse aus Kapitel 3, S. 24, in Tabellenform
dargestellt. Jede Tabelle fasst dabei die Aspekte aller betrachteten Sprachen zu einem der
Elemente aus Kapitel 3.1, S. 24, zusammen.

A.1. Aufbaumodell

Tabelle A.1.: Zusammenfassung der Aufbaumodelle
Graph-Elemente

Sprache Knoten Kanten Sonstiges
AD Aktionen, Aktivitäts-

knoten und Objekt-
werte

Flüsse Startknoten verpflich-
tend, Endknoten mög-
lich

BPEL Aktivitäten, globa-
le Variablen und
Schnittstellen

— —

BPMN Flussobjekte, Daten,
Swimlanes und Arte-
fakte

Verbindungsobjekte Start- und Endereig-
nisse

EA Eine endliche Menge
von Zuständen

Zustandsübergänge Mindestens ein Start-
knoten verpflichtend,
Endknoten möglich

EPK Informationsobjekte,
Funktionen und
Ereignisse

Kontrollflüsse —

Grafcet Schritte und Transi-
tionen

Wirkungslinien Trennung in Struktur-
und Wirkungsteil,
mindestens ein Start-
schritt, Endschritte
sind optional

Grafchart Schritte und Transi-
tionen

Wirklinien Mindestens ein Start-
schritt, Endschritte
sind optional

K3 Elemente aus den
AD und Satelliten-
Elemente

Kontrollflüsse Anfangspunkt und
mindestens ein End-
punkt erforderlich

. . . Weiter auf der nächsten Seite . . .
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A. Zusammenfassung der Analyse

Tabelle A.1.: Zusammenfassung der Aufbaumodelle
Graph-Elemente

Sprache Knoten Kanten Sonstiges
PFC Rezept-Prozedurele-

mente und explizite
Transitionen

Implizite Transitionen
und Wirklinien

Element-Synchronisa-
tionen, mindestens ein
Start- und mindestens
ein Endknoten

PLC SC Zyklusinterne und
mehrzyklische Zu-
stände

Deterministische
Transitionen mit
Priorität

Zusammenfassung
von Initialzustand,
Auswahlzustand, Ga-
belungszustand und
Kreuzungsknoten als
Pseudozustand

PN Stellen und Transitio-
nen, Stellen besitzen
Kapazitäten

Kanten haben Ge-
wichte

Anfangsmarkierung
legt initialen Zustand
fest

SC Zustände Zustandsübergänge Anfangs- und End-
knoten zwingend er-
forderlich

SFC Schritte und Transi-
tionen

Steuerungsfluss Initialschritt zwin-
gend, aber kein
Endschritt definiert

SSC Schritte und Transi-
tionen

Verbindungen Initialschritt ratsam,
mehrere Endschritte
möglich

A.2. Hierarchie- und Vernetzungsmodell

Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle
Sprache Vernetzungsregeln Hierarchieelemente Nebenläufigkeit

AD Aktionen werden
durch Kontrollflüsse
miteinander verbun-
den

Aktivitätsknoten
gruppieren Aktio-
nen, Schwimmbahnen
dienen der Übersicht-
lichkeit

Nebenläufige Pfade
möglich, können echt
nebenläufig oder
sequentiell verzahnt
ausgeführt werden

BPEL — Strukturierte Aktivi-
täten fassen Basisakti-
vitäten zusammen

Durch Flussaktivitä-
ten

. . . Weiter auf der nächsten Seite . . .
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A.2. Hierarchie- und Vernetzungsmodell

Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle
Sprache Vernetzungsregeln Hierarchieelemente Nebenläufigkeit
BPMN Sequenzfluss legt zeit-

liche Reihenfolge der
Aktivitäten fest

Teilprozesse und
Schleifen, Pools und
Lanes zur organisato-
rischen Unterteilung

Parallele Gateways
und datenbasiert
inklusive Gateways

EA Zustände werden
durch Übergänge
verbunden

Keine Hierarchie mög-
lich

Nur durch mehrere or-
thogonale EA model-
lierbar

EPK Ereignisse und Funk-
tionen alternierend
verbunden, Ereignis
ist immer Start und
Ende

Über strukturbildende
Objekte

Konjunktive und ad-
junktive Verknüpfun-
gen

Grafcet Schritte und Tran-
sitionen werden im
Strukturteil alternie-
rend verbunden

Einschließungen und
Makroschritte, von
Verwendung wird
Anfängern abgeraten

Durch Parallel-
verzweigung oder
mehrere Startschritte

Grafchart Schritte und Transi-
tionen werden alter-
nierend verbunden

Makroschritte und
Prozeduren, Proze-
duren unterstützen
Parameter und Aus-
führung in einem
separaten Thread

Parallele Verzweigung
unterstützt zwei ne-
benläufige Zweige,
kann hintereinander
geschaltet werden

K3 Aktivitäten werden
durch Kontrollflüsse
verbunden

Aggregierte Aktivitä-
ten fassen Aktivitäten
mit spezifizierter Rei-
henfolge zusammen,
Blobs sind Aktivitä-
ten ohne spezifizierte
Reihenfolge

Verzweigungen und
synchrone Zusammen-
arbeit

PFC Rezept-Prozedur-
elemente werden
entweder durch im-
plizite Transitionen
verbunden oder mit-
tels Wirklinien mit
expliziten Transitio-
nen verknüpft, keine
Zyklen erlaubt

Durch Prozedurebe-
nen der IEC 61512
auf vier Ebenen
beschränkt

Durch Parallelver-
zweigung

. . . Weiter auf der nächsten Seite . . .
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A. Zusammenfassung der Analyse

Tabelle A.2.: Zusammenfassung der Hierarchie- und Vernetzungsmodelle
Sprache Vernetzungsregeln Hierarchieelemente Nebenläufigkeit
PLC SC Die Zustände werden

durch die Zustands-
übergänge verbunden,
zusätzlich können
Unterbrechungstran-
sitionen verwendet
werden

Gegenüber SC dürfen
Super-Zustände keine
eigenen Aktionen ha-
ben und müssen einen
definierten Startpunkt
haben

Gegenüber SC muss
jede orthogonale Regi-
on einen Endzustand
haben

PN Stellen und Transitio-
nen müssen alternie-
rend verknüpft werden

Keine Hierarchie mög-
lich

Gleichzeitig mehre-
re aktive Schritte
und unabhängige
Schaltbarkeit der
Transitionen

SC Die Zustände werden
durch die Zustands-
übergänge verbunden

Super-Zustände mit
Unter-Zuständen,
Zustandsübergänge
sowohl von Unter-
Zuständen als auch
von Super-Zuständen
aus möglich

Orthogonale Zu-
stände sind spezielle
Super-Zustände, Syn-
chronisation durch
gemeinsame Über-
gangsbedingungen

SFC Schritte und Transi-
tionen werden über
den Steuerungsfluss in
der POE verknüpft

Aufruf anderer SFC,
wird nicht empfohlen,
Integration in Funkti-
onsbausteine

Durch Simultanketten

SSC Schritte und Transi-
tionen werden über
Verbindungen im Aus-
führungsrahmen ver-
knüpft

Unterprozeduren mit
eigenem Ausführungs-
rahmen und innerhalb
eines Ausführungsrah-
mens möglich

Nur durch Aufruf
mehrerer Unterproze-
duren

A.3. Abstraktions- und Zuordnungsmodell

Tabelle A.3.: Zusammenfassung der Abstraktions- und Zuordnungsmodelle
Sprache Typkonzept Sonstiges

AD Bibliothek mit Aktivitätsknoten
vorgesehen

Top-Down-Entwurfsprozess emp-
fohlen

BPEL Abstrakte und ausführbare Pro-
zeduren, Dienste können sowohl
auf Typebene als auch auf In-
stanzebene orchestriert werden

—

. . . Weiter auf der nächsten Seite . . .
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A.4. Aktions- und Aktivitätenmodell

Tabelle A.3.: Zusammenfassung der Abstraktions- und Zuordnungsmodelle
Sprache Typkonzept Sonstiges
BPMN Abstrakte und ausführbare Pro-

zeduren, globale Teilprozeduren
können mehrfach aufgerufen wer-
den

—

EA Kein Typkonzept vorhanden —
EPK Abstraktionsebene mit Typen

und Ausprägungsebene
—

Grafcet Wiederverwendung von Grafcets
als Einschließung

—

Grafchart Prozeduren können durch Para-
meter angepasst werden

—

K3 Kein Typkonzept vorhanden —
PFC Bibliothek für wesentliche Ab-

laufereignisse
Abstraktionsschichten über Re-
zeptmodell der IEC 61512

PLC SC Kein Typkonzept vorhanden Automatische SPS-
Codegenerierung möglich

PN Kein Typkonzept vorhanden Interpretationen legen die seman-
tische Bedeutung von Stellen und
Transitionen fest

SC Kein Typkonzept vorhanden SC sind eine Sicht auf das UML-
Gesamtmodell

SFC Top-Down-Entwurfsprozess und
Bottom-Up-Implementierung
empfohlen

SSC Typkonzept analog zu Funktions-
bausteinen

Zunächst Vorgabe der Ein- und
Ausgänge, anschließend Proze-
durentwurf ratsam

A.4. Aktions- und Aktivitätenmodell

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitätenmodelle
Sprache Aktion Aktionsausführung Übergangsbedingung

AD Keine einheitliche
Syntax festgelget

Bei der Aktivierung
eines Schritts, Aktio-
nen können Vor- und
Nachbedingung haben

Keine einheitliche
Syntax festgelget

. . . Weiter auf der nächsten Seite . . .
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A. Zusammenfassung der Analyse

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitätenmodelle
Sprache Aktion Aktionsausführung Übergangsbedingung

BPEL Nachrichtenbasierte
Dienstaufrufe, Mani-
pulation der Variablen

Dienste durch Aufruf-
objekte gestartet

Bei Alternativverzwei-
gungen in Xpath an-
gegeben

BPMN Aktivitäten haben kei-
ne feste Syntax, wer-
den durch Menschen
oder Automaten ause-
führt

Bei der Aktivierung
eines Schritts

Zwischenereignisse,
wenn gewartet werden
soll

EA Nur in Erweiterungen
nach Moore und Mea-
ly (Transduktoren)
möglich

Je nach Typ bei Zu-
stand oder bei Zu-
standsübergang

Durch Eingabesymbo-
le formuliert

EPK Interaktion mit der
Umgebung über Infor-
mationsobjekte

Bei der Aktivierung
eines Schritts

Keine Syntax für Be-
dingungen festgelegt

Grafcet Kontinuierlich wir-
kende und gespeichert
wirkende Aktionen im
Wirkungsteil

Bei der Aktivierung
eines Schritts

Boolesche Ausdrücke,
die aus Variablen und
internen Ereignissen
zusammengesetzt sind

Grafchart Aktionen sind Aufru-
fe in G2 oder Java,
es werden Dienstauf-
rufe unterstützt

Durch Präfix gesteu-
ert, in Unterarbeitsbe-
reich eines Schritts an-
geordnet

Wächterbedingung
aus booleschen Aus-
drücken und Ereignis-
sen

K3 Interaktion mit der
Umgebung über Infor-
mationsobjekte

Bei der Aktivierung
eines Schritts

Keine Syntax für Be-
dingungen festgelegt

PFC Einrichtungssteuerung
wird aufgerufen, ist
selber nicht Bestand-
teil der Sprache

Aktionsaufrufe in
Schritten und Transi-
tionen möglich

Keine Sprache für Be-
dingungen festgelegt,
implizite Transitionen
haben keine Bedin-
gung

PLC SC Aktionen entspre-
chen denen im SFC,
Aktivitäten haben
Initialisierungs-
Eingang und Beendet-
Ausgang

Emulation von Ereig-
nissen in einer SPS

Wie bei SC

. . . Weiter auf der nächsten Seite . . .
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A.5. Ausführungssteuerungsmodell

Tabelle A.4.: Zusammenfassung der Aktions- und Aktivitätenmodelle
Sprache Aktion Aktionsausführung Übergangsbedingung

PN In der Interpretation
SIPN durch die Funk-
tion qP möglich

In SIPN im Schritt In der Interpretation
SIPN durch die Funk-
tion qT möglich

SC Unterschied zwischen
Aktionen und Ak-
tivitäten, Aktionen
sind zeitlos, Aktivi-
täten haben Dauer,
Aktionen starten bzw.
stoppen Aktivitäten

Aktionen können in
einem Zustand und
während eines Über-
gangs ausgeführt wer-
den

Zustandsübergänge
haben einen Ereig-
nistrigger und eine
überwachte Bedin-
gung

SFC Aktionen in Pro-
grammiersprache der
IEC 61131-3

Durch Aktionsbestim-
mungszeichen gesteu-
ert, in Aktionsblock
eines Schritts ange-
ordnet

Bedingung in Pro-
grammiersprache der
IEC 61131-3

SSC Setzen von Ausgangs-
variablen, Setzen
eines Eingangs lokaler
Funktionsbausteine
oder Start lokaler
Funktionsbausteine
möglich

Beim Betreten/Ver-
lassen eines Schritts
oder zyklisch, wäh-
rend der Schritt aktiv
ist

Durch Erstellen eines
Funktionsbaustein-
netzwerks

A.5. Ausführungssteuerungsmodell

Tabelle A.5.: Zusammenfassung der Ausführungssteuerungsmodelle
Sprache Ausführungsmodell Verhalten im Fehlerfall und bei

Konflikten
AD Token-basiertes Ausführungsmo-

dell
Definition von Abbrüchen für Un-
terbrechungsbereiche möglich

BPEL Synchrone und asynchrone Aus-
führung. Aktivitäten werden der
Reihe nach ausgeführt

Unterscheidung zwischen fachli-
chen und technischen Fehlern,
technische Fehler können durch
explizite Abbrüche und Fehler-
behandlungsmechanismen behan-
delt werden

. . . Weiter auf der nächsten Seite . . .
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A. Zusammenfassung der Analyse

Tabelle A.5.: Zusammenfassung der Ausführungssteuerungsmodelle
Sprache Ausführungsmodell Verhalten im Fehlerfall und bei

Konflikten
BPMN Token-basiertes Ausführungsmo-

dell
Ersteller muss Verklemmung ver-
meiden, Standard-Pfade sind ge-
eignetes Hilfsmittel

EA Weiterschaltung durch aktuellen
Zustand und Eingabesymbol fest-
gelegt

Undefiniertes Verhalten im Feh-
lerfall

EPK Keine Beschreibung der Ausfüh-
rung

Kombination mit ARIS zur Aus-
führung notwendig

Grafcet Transitionen feuern, wenn alle
Schritte vor der Transition aktiv
sind und die Bedingung wahr ist,
es können mehrere Transitionen
gleichzeitig feuern

Verhinderung von Konflikten ist
Aufgabe des Entwicklers

Grafchart Zyklisches Ausführungsmodell,
kein Durchschalten möglich

Bei Konflikten in einer Alter-
nativverzweigung werden mehre-
re Pfade aktiviert, Makroschrit-
te und Prozeduren haben Ab-
bruchtransition, interner Zustand
wird dann gespeichert und beim
nächsten Aufruf dort fortgesetzt

K3 Analog zu AD, Ausführungsrei-
henfolge von Aktivitäten in Blobs
wird zur Laufzeit festgelegt

Optionale und verbotene Aktivi-
täten

PFC Ausführung durch Zustandsauto-
maten gesteuert, selbstbeendende
Schritte bei impliziten Transitio-
nen, Synchronisationen beeinflus-
sen Abläufe

Ausnahmebehandlung durch Zu-
standsautomaten

PLC SC Formale Ausführungslogik in UP-
PAAL

Fehlerbehandlung durch ausfüh-
rende SPS

PN Weiterschaltung, sobald im Vor-
bereich einer Transition genügend
Marken liegen und im Nachbe-
reich der Transtion Platz für die
Aufnahme der Marken ist

Eine Verklemmung ist möglich
und kann nicht automatisch be-
hoben werden

. . . Weiter auf der nächsten Seite . . .
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A.5. Ausführungssteuerungsmodell

Tabelle A.5.: Zusammenfassung der Ausführungssteuerungsmodelle
Sprache Ausführungsmodell Verhalten im Fehlerfall und bei

Konflikten
SC Zustandsübergänge feuern, wenn

sowohl die Bedingung wahr ist als
auch das Ereignis getriggert wur-
de, Aktionen können bei Betreten
und Verlassen eines Schritts aus-
geführt werden, es kann nur ein
Zustand aktiv sein

Tritt ein Ereignis ein, das im ak-
tuellen Zustand nicht modelliert
ist, so verharrt das System im Zu-
stand

SFC Transitionen feuern, wenn alle
Schritte vor der Transition aktiv
sind und die Bedingung wahr ist,
Aktionsausführung durch inter-
nen Funktionsbaustein gesteuert,
Maximal-Progress-Vorgehen oder
Lock-Step-Vorgehen möglich, erst
Transitionsauswertung, dann Ak-
tionsausführung oder umgekehrt

Unsichere und verklemmende Ab-
läufe möglich, bei Fehlern wird
Ablauf gestoppt und es sind meh-
rere Korrekturverfahren möglich

SSC Formale Ausführungslogik in UP-
PAAL

Keine Fehlerbehandlung im Mo-
dell vorgesehen
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B. Prozeduren der Akteure bei einer
Ventilwartung

Im Folgenden werden die Prozeduren der Akteure vorgestellt, die im Beispiel der Ventil-
reparatur (vgl. Kapitel 5.3, S. 97) miteinander agieren.

Zunächst wird die Prozedur des Logistikers in Abbildung B.1 gezeigt. Sobald dieser die
Aufforderung zum Ausliefern erhalten hat (RR1 ), gibt er sich selber die Aufforderung,
das gewünschte Ersatzteil an den gewünschten Ort zu liefern (A1 ). Sobald das Ersatzteil
am Bestimmungsort ist (RR2 ), informiert er den Wartungstechniker (A2 ).

Bereitschaft:
InitialStep

Bestätigen:
Step

Ausliefern:
Step

T3:Transition

T2:Transition

T1:Transition

RR1:RequestReceived

value = LiefereAus
inverted = false

RR2:RequestReceived

value = Ausgeliefert
inverted = false

BV1:BooleanValue

inverted = false

A1:ServiceCall

address = ./
serviceName = Transport
operation = Liefere(%Item, %Ort)

A2:ServiceCall

address = ../WT
serviceName = Bestätige
operation = Geliefert(%Item, %Ort)

Abbildung B.1.: Detaillierte Prozedur des Logistikers

Der Produktionsplaner (vgl. Abbildung B.2) weicht von seiner Standard-Planung ab,
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wenn er die Aufforderung zum Vorbereiten einer Wartungsmaßnahme erhält (RR1 ). An-
hand des prognostizierten Liefertermins plant er die Maßnahme in die Produktion ein (A1 )
und informiert den Logistiker über die Warenlieferung (A2 ), sobald das Ersatzteil einge-
troffen ist (RR2 ). Nach erfolgreicher Durchführung der Wartungsmaßnahme (RR3 ) geht
er wiederum zur Standardplanung über.

Standard-
Planung:
InitialStep

Termin-
Senden: Step

Einplanen:
Step

T3:Transition

T2:Transition

T1:Transition

RR1:RequestReceived

value = Vorbereiten
inverted = false

RR2:RequestReceived

value = WareGeliefert
inverted = false

A1:ServiceCall

address = ./
serviceName = Einplanen
operation = Wartung(%Anlage, %Zeit)

A2:ServiceCall

address = ../Logistik
serviceName = Sende
operation = LiefereAus(%Item, %Zeit)

RR3:RequestReceived

value = ReparaturErfolgt
inverted = false

Abbildung B.2.: Detaillierte Prozedur des Produktionsplaners

Der Einkäufer (vgl. Abbildung B.3) startet seine Tätigkeit, sobald er die Aufforderung
zu einer Bestellung erhält (RR1 ). Anschließend ermittelt er einen Lieferanten (A1 ) und
bestellt dort das Ersatzteil (A2 ). Der Lieferant teilt dem Einkäufer einen Liefertermin
mit (RR3 ), den dieser an den Produktionsplaner weiterleitet (A3 ). Sobald das Ersatzteil
geliefert ist (RR4 ), bestätigt der Einkäufer dies dem Produktionsplaner (A4 ).
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B. Prozeduren der Akteure bei einer Ventilwartung

Bereitschaft:
InitialStep

Bestellung
schicken: Step

Lieferant
suchen: Step

T3:Transition

T2:Transition

T1:Transition

RR1:RequestReceived

value = Bestelle
inverted = false

RR2:RequestReceived

value = LieferantGefunden
inverted = false

A1:ServiceCall

address = ./
serviceName = Suchen
operation = Lieferant(%Ersatzteil)

A2:ServiceCall

address = ../../LieferantXY
serviceName = Bestellung
operation = Bestelle(%Ersatzteil)

RR3:RequestReceived

value = LieferterminErhalten
inverted = false

Lieferung
melden: Step

Termin
schicken: Step

T4:Transition

RR4:RequestReceived

value = WareGeliefert
inverted = false

A3:ServiceCall

address = ../PP
serviceName = Wartung
operation = Vorbereiten(%Anlage, %Zeit)

A4:ServiceCall

address = ../PP
serviceName = Bestätigen
operation = WareGeliefert(%Item)

T5:Transition

BV1:BooleanValue

inverted = false

Abbildung B.3.: Detaillierte Prozedur des Einkäufers

116

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


Der Anlagenfahrer hat in seiner Prozedur, die in Abbildung B.4 abgebildet ist, drei
Alternativen, wenn er den Prozess beobachtet (BeobachteProzess). Er kann

• eine Fehlersuche beauftragen, wenn der Durchfluss in der Teilanlage TA2 zu niedrig
ist (SC1 ),

• das Betreten der Anlage freigeben, wenn er dazu aufgefordert wird (RR3 ) und

• den Prozess in einen Zustand fahren, der die Reparatur ermöglicht (RR1 ).

Die einzelnen Abläufe zur Durchführung der drei Alternativen sind der Übersichtlichkeit
halber in Makroschritten gekapselt.

Beobachte
Prozess:
InitialStep

T5:Transition

RR3:RequestReceived

value = AnfrageBetreten
inverted = false

T6:Transition

RR4:RequestReceived

value = TAVerlassen
inverted = false

Freigabe:
MacroStep

T3:Transition

RR1:RequestReceived

value = AnfrageReparatur
inverted = false

T4:Transition

RR2:RequestReceived

value = ReparaturErfolgt
inverted = false

Reparatur-
modus:

MacroStep

T1:Transition

T2:Transition

Fehlersuche
beauftragen:
MacroStep

SC1:StateCheck

address = ../TA2
value = DurchflussNiedrig
inverted = false

BV1:BooleanValue

inverted = false

Abbildung B.4.: Prozedur des Anlagenfahrers mit Makroschritten
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B. Prozeduren der Akteure bei einer Ventilwartung

Auch der Wartungstechniker hat in seiner Prozedur, die in Abbildung B.5 abgebildet
ist, drei Alternativen. Er kann

• eine Fehlersuche durchführen (Fehlersuche), wenn er dazu beauftragt wird (RR1 ),

• eine Bestellung (Bestellung) ausführen (RR2 ) und

• eine Reparatur (Reparatur) durchführen (RR3 ).

Bereitschaft:
InitialStep

T5:Transition

RR3:RequestReceived

value = ErsatzteilOrdern
inverted = false

T6:Transition

Bestellung:
MacroStep

T3:Transition

RR2:RequestReceived

value = Geliefert
inverted = false

T4:Transition

Reparatur:
MacroStep

T1:Transition

T2:Transition

Fehlersuche:
MacroStep

BV1:BooleanValue

inverted = false

RR1:RequestReceived

value = FehlerSuchen
inverted = false

BV3:BooleanValue

inverted = false

BV2:BooleanValue

inverted = false

Abbildung B.5.: Prozedur des Wartungstechnikers mit Makroschritten
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C. Kompabilität zu bestehenden
Beschreibungssprachen

C.1. Umschreibung der Aktionsbestimmungszeichen
Die folgende Tabelle beschreibt die Umsetzung der Aktionsbestimmungszeichen eines SFCs
mithilfe des Referenzmodells. Zu beachten ist, dass Aktionen im Referenzmodell die Aus-
führungseinheiten triggern. Eine Aktion nach der IEC 61131-3 kann jedoch eine zeitliche
Dauer haben und ist nach der Begriffswelt des Referenzmodells eine Aktivität. Daher wird
in der rechten Spalte der Tabelle von Start- und Stop-Aktionen gesprochen, die die jeweilige
Aktivität steuern.

Tabelle C.1.: Umschreibung der Aktionsbestimmungszeichen
Zeichen Beschreibung Modellierung mit Referenzmodell
Kein Nicht gespeichert. Die zugehörige

Aktion wird ausgeführt, während
der Schritt aktiv ist.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung der
Stop-Aktion zu allen Folgeschrit-
ten.

N Nicht gespeichert. Die zugehörige
Aktion wird ausgeführt, während
der Schritt aktiv ist.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung der
Stop-Aktion zu allen Folgeschrit-
ten.

R Vorrangiges Rücksetzen. Die zu-
gehörige Aktion wird nicht mehr
ausgeführt.

Zuordnung der Stop-Aktion zu ei-
nem Schritt.

S Setzen (gespeichert). Die zugehö-
rige Aktion wird ausgeführt, bis
sie rückgesetzt wird.

Zuordnung der Start-Aktion zu
einem Schritt, Standardfall im
Referenzmodell.

L Zeitbegrenzt. Die zugehörige Ak-
tion wird ausgeführt, bis entweder
die Zeitspanne abgelaufen ist oder
der Schritt deaktiviert wird.

Zuordnung der Start-Aktion zu
einem Schritt und Zuordnung ei-
ner expliziten Stop-Aktion zu al-
len Folgeschritten. Einfügen ei-
nes zusätzlichen Schrittes, der
über eine Transition mit Zeit-
überwachung erreicht wird. Zu-
ordnung der Stop-Aktion zu die-
sem Schritt.

. . . Weiter auf der nächsten Seite . . .
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C. Kompabilität zu bestehenden Beschreibungssprachen

Tabelle C.1.: Umschreibung der Aktionsbestimmungszeichen
Zeichen Beschreibung Modellierung mit Referenzmodell
D Zeitverzögert. Die zugehörige Ak-

tion wird nach Ablauf der Zeit-
spanne ausgeführt, bis der Schritt
deaktiviert wird.

Einfügen eines zusätzlichen
Schrittes, der über eine Tran-
sition mit Zeitüberwachung
erreicht wird. Zuordnung der
Start-Aktion zu diesem Schritt.
Zuordnung der Stop-Aktion zu
allen Folgeschritten.

P Impuls (Flanke). Die zugehörige
Aktion wird bei der Aktivierung
und bei der Deaktivierung des
Schritts einmal ausgeführt.

Zusätzliche Zuordnung der Start-
Aktion zu allen Folgeschritten.

SD Gespeichert und zeitverzögert.
Die zugehörige Aktion wird nach
Ablauf der Zeitspanne ausge-
führt, bis sie rückgesetzt wird.

Einfügen eines zusätzlichen
Schrittes, der über eine Tran-
sition mit Zeitüberwachung
erreicht wird. Zuordnung der
Start-Aktion zu diesem Schritt.

DS Verzögert und gespeichert. Die
zugehörige Aktion wird nach Ab-
lauf der Zeitspanne ausgeführt,
bis sie rückgesetzt wird, es sei
denn, der Schritt wird vor Ablauf
der Zeitspanne deaktiviert.

Einfügen eines zusätzlichen
Schrittes, der über eine Tran-
sition mit Zeitüberwachung
erreicht wird. Zuordnung der
Start-Aktion zu diesem Schritt.

SL Gespeichert und zeitbegrenzt. Die
zugehörige Aktion wird ausge-
führt, bis die Zeitspanne abgelau-
fen ist.

Zuordnung der Start-Aktion zu
einem Schritt. Einfügen eines zu-
sätzlichen Schrittes, der über eine
Transition mit Zeitüberwachung
erreicht wird. Zuordnung der ent-
sprechenden Stop-Aktion zu die-
sem Schritt. Direkte Rückkehr
zum ursprünglichen Schritt

P1 Puls (steigende Flanke). Die zu-
gehörige Aktion wird bei der Ak-
tivierung des Schritts einmal aus-
geführt.

Zuordnung der Start-Aktion zu
einem Schritt.

P0 Puls (fallende Flanke). Die zuge-
hörige Aktion wird bei der Deak-
tivierung des Schritts einmal aus-
geführt.

Zuordnung der Start-Aktion zu
allen Folgeschritten.
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C.2. Priorität der Alternativverzweigungen

C.2. Priorität der Alternativverzweigungen
Im Referenzmodell wird ausschließlich die Verwendung von sich gegenseitig ausschließenden
Transitionsbedingungen unterstützt (vgl. Kapitel 4.2.2, S. 70). In manchen Beschreibungs-
sprachen sind jedoch auch andere Möglichkeiten zur Priorisierung möglich, die Auswertung
von links nach rechts oder die explizite Vergabe von Prioritäten. Im Folgenden wird der
Fall der Auswertung von links nach rechts betrachtet, der in Abbildung C.1 dargestellt ist.
Der Fall der expliziten Vergabe von Prioritäten muss nicht gesondert betrachtet werden,
da hierbei immer eine grafische Anordnung von links nach rechts möglich ist und wiederum
der erste Fall betrachtet werden kann.

Schritt A

Schritt A1 Schritt A2 Schritt A3

A CB

Abbildung C.1.: Priorisierung der Alternativverzweigung von links nach rechts

Wird der Ausschnitt aus einer Prozedur in Abbildung C.1 mit dem Referenzmodell
modelliert, ergeben sich die Instanzen in Abbildung C.2.

A:Step

A1:Step A2:Step A3:Step

AA1:Transition AA2:Transition AA3:TransitionA C A B∧¬ ∧¬B A∧¬

Abbildung C.2.: Modellierung der Alternativverweigung im Referenzmodell

Die entsprechenden Transitionsbedingungen A-C sind in Abbildung C.2 der Übersicht-
lichkeit wegen als logischer Ausdruck und nicht als zusammengesetzte Condition darge-
stellt. Es ist offensichtlich, dass nur die Transition AA1 schalten kann, wenn A wahr ist
und AA3 nur schalten kann, wenn A und B falsch sind. AA2 kann nur schalten, wenn A
falsch ist und schaltet ebenfalls, wenn C wahr ist.
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C. Kompabilität zu bestehenden Beschreibungssprachen

C.3. Modellierung von Do und Exit
Aktionen können im Referenzmodell ausschließlich bei der Aktivierung eines Schrittes aus-
geführt werden. Verschiedene Sprachen, beispielsweise SC und SSC, unterstützen jedoch
auch die Aktionsausführung beim Verlassen eines Schritts (Abbildung C.3 links) und die
zyklische Ausführung von Aktionen, solange ein Schritt aktiv ist (Abbildung C.4 links). Die
Aktionsausführung beim Verlassen eines Schritts lässt sich durch die Zuordnung der Ak-
tion zu den Folgeschritten des zu verlassenden Schritts modellieren (Abbildung C.3 mittig).
Ist die Reihenfolge zwischen der Ausführung der Aktionen beim Verlassen des alten und
beim Betreten des neuen Schritts wichtig, muss ein zusätzlicher Schritt eingefügt werden
(Abbildung C.3 rechts).

A

exit/
Act1

B

entry/
Act2

A

Act2

A

A:Step

AB:Transition

B:Step
Act1

A

A:Step

AA1:Transition

A1:Step Act1

Act2

B1:BooleanValueA1B:Transition

B:Step

Abbildung C.3.: Modellierung von Aktionsaufrufen beim Verlassen eines Schritts

A:Step A1:Step

AA1:Transition

A1A:Transition

startAct1

B1:BooleanValue

A

do:
Act1

T1:TimeCompare

value=t1

Abbildung C.4.: Modellierung wiederkehrender Aktivitäten

Zur Modellierung von Do-Aktivitäten muss die Start-Aktion der Aktivität zu einem
zusätzlichen Schritt hinzugefügt werden (Abbildung C.4 links). Dieser zusätzliche Schritt
wird durch die Zeitvergleich-Transition und die Schleife zyklisch aufgerufen, solange nicht
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C.4. Verarbeitung von Messwerten und Setzen von Stellgrößen

eine andere Transition des Schritts A feuert. Durch Anpassung der Zeit t1 von T1 kann
die Frequenz der Aufrufe eingestellt werden.

C.4. Verarbeitung von Messwerten und Setzen von
Stellgrößen

Die Abfrage von Messwerten ist im Referenzmodell nicht vorgesehen. Daher muss in den
Ausführungseinheiten eine Diskretisierung der Messwerte zu Zuständen vorgenommen wer-
den. Die Diskretisierung erfolgt so, dass alle von der steuernden Prozedur verwendeten
Zustandsabfragen durchgeführt werden können. In Abbildung C.5 ist eine Diskretisierung
beispielhaft dargestellt. In diesem Beispiel wird der Behälter in drei Bereiche eingeteilt, viel,
normal und wenig Inhalt. Hierzu sind zwei Größen x1 und x2 festgelegt, die die Bereiche
abgrenzen. Die Größen x1 und x2 müssen nicht im Zusammenhang mit den Grenzwerten
des Behälters stehen.

LI
L01

wenig

normal

viel

S+

S-
S+

S-

x1

x2

Abbildung C.5.: Diskretisierung eines Behälterfüllstands

Die Realisierung der Diskretisierung als Funktionsbausteinnetzwerk erfolgt mithilfe von
Vergleichsoperatoren, logischen Operatoren und Schaltern, wie in Abbildung C.6 darge-
stellt. Je nach aktuellem Messwert wird eines der Eingangssignale act1 bis act3 des Bau-
steins 3Switch wahr und der entsprechende Wert val1 bis val3 auf den Ausgang out gelegt,
der an den Zustandsausgang WS (vgl. Kapitel 5.1.1, S. 90) weitergegeben wird.

Abbildung C.7 zeigt am Beispiel eines Stellventils die dienstbasierte Ansteuerung ei-
ner Funktion. Das Ventil bietet den Dienst Ansteuerung mit den Operationen OPEN und
CLOSE an. Die Operation OPEN benötigt die Öffnung des Ventils in Prozent als Parame-
ter. Die Operation mit optionalem Parameter wird als Nachricht an die Einzelsteuerung
übergeben. In einem ersten Schritt zerlegt der Baustein Split die Nachricht in die Opera-
tion cmd und, falls vorhanden, den Parameter val. Der Baustein CMP überprüft, ob die
Operation OPEN aufgerufen wurde. In diesem Fall wird eine Eins ausgegeben und der Bau-
stein Switch schaltet auf den Eingang val2, der den Öffnungsgrad beinhaltet. Andernfalls
gibt CMP eine Null aus.
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C. Kompabilität zu bestehenden Beschreibungssprachen

L01.PV

WS

>=

<=

>

<

&

x1

x1

x2

x2

wenig

normal

viel val1

act1

act3

val3

act2

val2
out

3Switch

Abbildung C.6.: Funktionsbausteinnetzwerk zur Diskretisierung eines Behälterfüllstands

Y01.SP

CO

Open,SP=x% bzw. Close

Y01.Open
Split cmd

val
in

CMPstr

val
out

Open

Switch

out

act

val1

val2

0

Abbildung C.7.: Funktionsbausteinnetzwerk zur Ansteuerung eines Stellventils
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D. XML-Repräsentation des
Referenzmodells

<?xml version=" 1 .0 " encoding="UTF−8" ?>
<CAEXFile
xmlns :x s i=" h t tp : //www. w3 . org /2001/XMLSchema−i n s t anc e "
xsi :noNamespaceSchemaLocation=" . \ CAEX_ClassModel . xsd "
xmlns : i e c61360=" h t tp : // std . i e c . ch/cdd/ iec61360 "
xmlns :xs=" h t tp : //www. w3 . org /2001/XMLSchema"
SchemaVersion=" 2 .15 " FileName=" ProcedureModel . xml ">

<Version>V1 . 0 . 0 (2016)</Version>
<Copyright>(C) 2016 Andreas S c h u e l l e r</Copyright>
<!−− Def in ing the i n t e r f a c e s o f the procedure e lements−−>
<InterfaceClassLib Name=" ProcedureBaseICL ">

<InterfaceClass Name=" Procedure In t e r f a c e " />
<!−− I n t e r f a c e s o f a s t ep −−>
<InterfaceClass Name=" StepIn " RefBaseClassPath=" ProcedureBaseICL/

Procedure In t e r f a c e " />
<InterfaceClass Name=" StepOut " RefBaseClassPath=" ProcedureBaseICL/

Procedure In t e r f a c e " />
<!−− I n t e r f a c e s o f a t r a n s i t i o n −−>
<InterfaceClass Name=" Trans i t i on In " RefBaseClassPath="

ProcedureBaseICL/ Procedure In t e r f a c e " />
<InterfaceClass Name=" Transit ionOut " RefBaseClassPath="

ProcedureBaseICL/ Procedure In t e r f a c e " />
</InterfaceClassLib>
<!−− Def in ing a r o l e c l a s s f o r the s t a t e machine−−>
<RoleClassLib Name=" ProcedureBaseRCL ">

<RoleClass Name=" StateMachine ">
<Attribute Name=" inRequest " AttributeDataType=" x s : s t r i n g ">

<Constraint Name=" RequestType ">
<NominalScaledType>

<RequiredValue>Star t</RequiredValue>
<RequiredValue>Restart</RequiredValue>
<RequiredValue>Lock</RequiredValue>
<RequiredValue>Unlock</RequiredValue>
<RequiredValue>Abort</RequiredValue>
<RequiredValue>Reset</RequiredValue>

</NominalScaledType>
</Constraint>

</Attribute>
<Attribute Name=" curState " AttributeDataType=" x s : s t r i n g " />

</RoleClass>
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D. XML-Repräsentation des Referenzmodells

</RoleClassLib>
<!−− Def in ing the procedure e lements−−>
<SystemUnitClassLib Name=" ProcedureBaseSUCL ">

<!−− Basic Elements −−>
<SystemUnitClass Name=" ProcedureElement " />
<SystemUnitClass Name=" ExecutionFrame " RefBaseClassPath="

ProcedureBaseSUCL/ ProcedureElement ">
<Attribute Name=" parameter " AttributeDataType=" xs:anyType " />
<Attribute Name=" inRequest " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" curStep " AttributeDataType=" x s : s t r i n g " />
<InternalElement Name=" I n i t i a l S t e p " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ I n i t i a l S t e p " />
<InternalElement Name=" StateMachine ">

<RoleRequirements RefBaseRoleClassPath=" ProcedureBaseRCL/
StateMachine " />

</InternalElement>
</SystemUnitClass>
<SystemUnitClass Name=" Step " RefBaseClassPath=" ProcedureBaseSUCL/

ProcedureElement ">
<Attribute Name=" act ivat ionTime " AttributeDataType=" xs : t ime " />
<Attribute Name=" i s A c t i v e " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name="name" AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" t imeActive " AttributeDataType=" x s : i n t e g e r " Unit

=" iec61360:UAA899 " />
</SystemUnitClass>
<SystemUnitClass Name=" Trans i t i on " RefBaseClassPath="

ProcedureBaseSUCL/ ProcedureElement ">
<Attribute Name="name" AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" enabled " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name=" abort " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name=" r e s t a r t " AttributeDataType=" x s : i n t e g e r ">

<DefaultValue>0</DefaultValue>
</Attribute>
<ExternalInterface Name=" I1 " RefBaseClassPath=" ProcedureBaseICL/

Trans i t i on In " />
<ExternalInterface Name="O1" RefBaseClassPath=" ProcedureBaseICL/

Transit ionOut " />
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion " />
</SystemUnitClass>
<SystemUnitClass Name=" ElementaryStep " RefBaseClassPath="

ProcedureBaseSUCL/ Step " />
<SystemUnitClass Name=" I n i t i a l S t e p " RefBaseClassPath="

ProcedureBaseSUCL/ ElementaryStep ">
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<ExternalInterface Name="O1" RefBaseClassPath=" ProcedureBaseICL/
StepOut " />

</SystemUnitClass>
<SystemUnitClass Name=" Fina lStep " RefBaseClassPath="

ProcedureBaseSUCL/ ElementaryStep ">
<Attribute Name=" abort " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<ExternalInterface Name=" I1 " RefBaseClassPath=" ProcedureBaseICL/

StepIn " />
</SystemUnitClass>
<!−− Hierarchy Elements−−>
<SystemUnitClass Name=" MacroStep " RefBaseClassPath="

ProcedureBaseSUCL/ Step ">
<InternalElement Name=" Mac ro In i t i a l " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ I n i t i a l S t e p " />
<InternalElement Name=" MacroFinal " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Fina lStep " />
</SystemUnitClass>
<SystemUnitClass Name=" PMacroStep " RefBaseClassPath="

ProcedureBaseSUCL/MacroStep ">
<InternalElement Name=" Fork " RefBaseSystemUnitPath="

ProcedureBaseSUCL/Fork " />
<InternalElement Name=" Join " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Join " />
<InternalLink Name=" IL1 " RefPartnerSideA=" Macro In i t i a l :O1 "

RefPartnerSideB=" Fork : I1 " />
<InternalLink Name=" IL2 " RefPartnerSideA=" Join:O1 "

RefPartnerSideB=" MacroFina l : I1 " />
</SystemUnitClass>
<SystemUnitClass Name=" Fork " RefBaseClassPath=" ProcedureBaseSUCL/

ProcedureElement ">
<ExternalInterface Name=" I1 " RefBaseClassPath=" ProcedureBaseICL/

Trans i t i on In " />
<ExternalInterface Name="O1" RefBaseClassPath=" ProcedureBaseICL/

Transit ionOut " />
<ExternalInterface Name="O2" RefBaseClassPath=" ProcedureBaseICL/

Transit ionOut " />
</SystemUnitClass>
<SystemUnitClass Name=" Join " RefBaseClassPath=" ProcedureBaseSUCL/

ProcedureElement ">
<ExternalInterface Name=" I1 " RefBaseClassPath=" ProcedureBaseICL/

Trans i t i on In " />
<ExternalInterface Name=" I2 " RefBaseClassPath=" ProcedureBaseICL/

Trans i t i on In " />
<ExternalInterface Name="O1" RefBaseClassPath=" ProcedureBaseICL/

Transit ionOut " />
</SystemUnitClass>
<!−−Action and cond i t i on e lements−−>
<SystemUnitClass Name=" Action " RefBaseClassPath=" ProcedureBaseSUCL

127

https://doi.org/10.51202/9783186254085 - Generiert durch IP 216.73.216.36, am 20.01.2026, 08:45:57. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186254085


D. XML-Repräsentation des Referenzmodells

/ ProcedureElement " />
<SystemUnitClass Name=" S e r v i c e C a l l " RefBaseClassPath="

ProcedureBaseSUCL/ Action ">
<Attribute Name=" adre s s " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" serviceName " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" opera t i on " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" parameter " AttributeDataType=" xs:anyType " />

</SystemUnitClass>
<SystemUnitClass Name=" ProcedureCal l " RefBaseClassPath="

ProcedureBaseSUCL/ Action ">
<Attribute Name=" adre s s " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" reque s t " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" parameter " AttributeDataType=" xs:anyType " />

</SystemUnitClass>
<SystemUnitClass Name=" Condit ion " RefBaseClassPath="

ProcedureBaseSUCL/ ProcedureElement ">
<Attribute Name=" curValue " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name=" l i s tO fOpera to r " AttributeDataType=" xs:anyType " /

>
</SystemUnitClass>
<SystemUnitClass Name=" LogicalTerm " RefBaseClassPath="

ProcedureBaseSUCL/ ProcedureElement ">
<Attribute Name=" inve r t ed " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name=" retValue " AttributeDataType=" xs :boo l ean ">

<DefaultValue>f a l s e</DefaultValue>
</Attribute>
<Attribute Name=" index " AttributeDataType=" x s : i n t e g e r ">

<DefaultValue>1</DefaultValue>
</Attribute>

</SystemUnitClass>
<SystemUnitClass Name=" RequestReceived " RefBaseClassPath="

ProcedureBaseSUCL/ LogicalTerm ">
<Attribute Name=" value " AttributeDataType=" x s : s t r i n g " />

</SystemUnitClass>
<SystemUnitClass Name=" BooleanValue " RefBaseClassPath="

ProcedureBaseSUCL/ LogicalTerm " />
<SystemUnitClass Name=" StateCheck " RefBaseClassPath="

ProcedureBaseSUCL/ LogicalTerm ">
<Attribute Name=" adre s s " AttributeDataType=" x s : s t r i n g " />
<Attribute Name=" value " AttributeDataType=" x s : s t r i n g " />

</SystemUnitClass>
<SystemUnitClass Name=" TimeCompare " RefBaseClassPath="

ProcedureBaseSUCL/ LogicalTerm ">
<Attribute Name=" value " AttributeDataType=" x s : i n t e g e r " Unit="

iec61360:UAA899 " />
</SystemUnitClass>
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</SystemUnitClassLib>
<SystemUnitClassLib Name=" ProcedureStateMachine ">

<SystemUnitClass Name=" DefaultStateMachine ">
<Attribute Name=" inRequest " />
<Attribute Name=" curState " />
<!−− S t a t e s o f the s t a t e machine −−>
<InternalElement Name=" Aborted " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ ElementaryStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
</InternalElement>
<InternalElement Name=" I d l e " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ ElementaryStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name=" I2 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
</InternalElement>
<InternalElement Name=" Running " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ ElementaryStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name=" I2 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
<ExternalInterface Name="O2" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
<ExternalInterface Name="O3" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
<ExternalInterface Name="O4" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
</InternalElement>
<InternalElement Name=" Aborting " RefBaseSystemUnitPath="

ProcedureBaseSUCL/MacroStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
</InternalElement>
<InternalElement Name=" Restart " RefBaseSystemUnitPath="

ProcedureBaseSUCL/MacroStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
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D. XML-Repräsentation des Referenzmodells

</InternalElement>
<InternalElement Name=" StepHold " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ ElementaryStep ">
<ExternalInterface Name=" I1 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name=" I2 " RefBaseClassPath="

ProcedureBaseICL/ StepIn " />
<ExternalInterface Name="O1" RefBaseClassPath="

ProcedureBaseICL/StepOut " />
</InternalElement>
<!−− Trans i t i ons o f the s t a t e machine−−>
<InternalElement Name="T1" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>I d l e to Running</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Star t</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T2" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Running to I d l e</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Completed</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T3" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Running to Step Hold</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Lock</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
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<InternalElement Name="T4" RefBaseSystemUnitPath="
ProcedureBaseSUCL/ Trans i t i on ">

<Description>Step Hold to Running</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Unlock</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T5" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Running to Restart</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Restart</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T6" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Restart to Step Hold</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Restart completed</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T7" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Running to Aborting</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Abort</Value>
</Attribute>

</InternalElement>
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D. XML-Repräsentation des Referenzmodells

</InternalElement>
</InternalElement>
<InternalElement Name="T8" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Aborting to Aborted</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Abort completed</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<InternalElement Name="T9" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Trans i t i on ">
<Description>Aborted to I d l e</Description>
<InternalElement Name=" Condit ion " RefBaseSystemUnitPath="

ProcedureBaseSUCL/ Condit ion ">
<InternalElement Name="RR" RefBaseSystemUnitPath="

ProcedureBaseSUCL/ RequestReceived ">
<Attribute Name=" value ">

<Value>Restart</Value>
</Attribute>

</InternalElement>
</InternalElement>

</InternalElement>
<!−− Supported Role−−>
<SupportedRoleClass RefRoleClassPath=" ProcedureBaseRCL/

StateMachine " />
<!−− Links between s t a t e s and t r a n s i t i o n s−−>
<InternalLink Name=" T1in " RefPartnerSideA=" Id l e :O1 "

RefPartnerSideB=" T1:I1 " />
<InternalLink Name=" T1out " RefPartnerSideA=" T1:O1 "

RefPartnerSideB=" Running:I1 " />
<InternalLink Name=" T2in " RefPartnerSideA=" Running:O1 "

RefPartnerSideB=" T2:I1 " />
<InternalLink Name=" T2out " RefPartnerSideA=" T2:O1 "

RefPartnerSideB=" I d l e : I 1 " />
<InternalLink Name=" T3in " RefPartnerSideA=" Running:O2 "

RefPartnerSideB=" T3:I1 " />
<InternalLink Name=" T3out " RefPartnerSideA=" T3:O1 "

RefPartnerSideB=" StepHold : I1 " />
<InternalLink Name=" T4in " RefPartnerSideA=" StepHold:O1 "

RefPartnerSideB=" T4:I1 " />
<InternalLink Name=" T4out " RefPartnerSideA=" T4:O1 "

RefPartnerSideB=" Running:I2 " />
<InternalLink Name=" T5in " RefPartnerSideA=" Running:O3 "

RefPartnerSideB=" T5:I1 " />
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<InternalLink Name=" T5out " RefPartnerSideA=" T5:O1 "
RefPartnerSideB=" R e s t a r t : I 1 " />

<InternalLink Name=" T6in " RefPartnerSideA=" Restart :O1 "
RefPartnerSideB=" T6:I1 " />

<InternalLink Name=" T6out " RefPartnerSideA=" T6:O1 "
RefPartnerSideB=" StepHold : I2 " />

<InternalLink Name=" T7in " RefPartnerSideA=" Running:O4 "
RefPartnerSideB=" T7:I1 " />

<InternalLink Name=" T7out " RefPartnerSideA=" T7:O1 "
RefPartnerSideB=" Abort ing : I1 " />

<InternalLink Name=" T8in " RefPartnerSideA=" Aborting:O1 "
RefPartnerSideB=" T8:I1 " />

<InternalLink Name=" T8out " RefPartnerSideA=" T8:O1 "
RefPartnerSideB=" Aborted: I1 " />

<InternalLink Name=" T9in " RefPartnerSideA=" Aborted:O1 "
RefPartnerSideB=" T9:I1 " />

<InternalLink Name=" T9out " RefPartnerSideA=" T8:O1 "
RefPartnerSideB=" I d l e : I 2 " />

</SystemUnitClass>
</SystemUnitClassLib>

</CAEXFile>
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