Fortschritt-Berichte VDI

Reihe 10

Informatik/ Dipl.-Inf. Jan Werrmann,

Kommunikation Stuttgart

Nr. 849 AIRS - Advanced Onto-

logy-based Information
Retrieval System

https://doi.org/10.51202/9783186849106

216.73.216.60, am 23.01.2026, 23:34:49. ©
m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

AIRS — Advanced Ontology-based
Information Retrieval System

Dissertation
zur Erlangung des akademischen Grades

DOKTOR RER. NAT.

der Fakultat fir
Mathematik und Informatik
der FernUniversitat
in Hagen

von
Jan Werrmann
geb. in Borna

Hagen 2016

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

216.73.216.60, am 23.01.2026, 23:34:49. ©
m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Fortschritt-Berichte VDI

| Reihe 10

Informatik/ Dipl.-Inf. Jan Werrmann,
Kommunikation Stuttgart

[NF. 849 | AIRS - Advanced Ontfo-

logy-based Information
Retrieval System

vDI verlag

https://doi.org/10.51202/9783186849106

Werrmann, Jan

AIRS - Advanced Ontology-based Information Retrieval System
Fortschr-Ber. VDI Reihe 10 Nr. 849. Disseldorf: VDI Verlag 2016.
174 Seiten, 49 Bilder, 5 Tabellen.

ISBN 978-3-18-384910-9, ISSN 0178-0627,

€ 62,00/VDI-Mitgliederpreis € 55,80.

Keywords: Information Retrieval — Ontology Development — Knowledge Representation —
Advanced Search Technologies — Heferogeneous Document Landscapes

Obtaining the right information at the right fime is one of the main challenges for modem
sociefies. This holds especially for companies that must handle complex business processes that
require case dependent information. Unfortunately, case dependent and relevant information is
often widespread over different document systems. Users must interact with various applications
and search for semantically related (and helpful) documents without any, or with only litile,
support by the disparate refrieval systems. In this work, a system called Advanced onfology-
based Information Retrieval System [AIRS) is infroduced that includes methods of state-ofthe-art
enferprise search technology and combines them with an ontology called AIRS Knowledge
Base (AIRSKBJ. ARS is deeply integrated with advanced information refrieval technologies to
make search processes in large heterogeneous document landscapes more effective and
increase the quality of search results.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
deftaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German Natfional Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Infernet at

http://dnb.ddb.de.

© VDI Verlag GmbH - Disseldorf 2016

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopie], der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 01789627
ISBN 978-3-18-384910-9

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Acknowledgments

The following work was developed during my employment at the Global Service & Parts
(GSP) department of Daimler AG. Daimler started a research project for the optimization
of workshop literature access and I am thankful that Daimler gave me the opportunity to
participate in it.

I came in touch with Professor Bernd J. Krdmer from FernUniversitdt in Hagen who
later became my supervisor. I would like to thank Professor Kramer very much for his
support from the start of my research project until the end in all facets. He encouraged
me to add a collective intelligence approach into my research project.

I also would like to thank Professor Gerhard Heyer from Universitit Leipzig where I
received my degree in computer science. He was the supervisor of my diploma thesis and
through him I came in touch with Daimler. At Daimler, I would like to thank all my
colleagues who supported this work.

Very special thanks to my family who supported me in writing my thesis. Especially to
my wife Natalie Werrmann and to my parents Dr. Angela Werrmann and Udo Werrmann
who gave me the motivation and strength. Last but not least, I want to thank all my
friends for just giving me time to finish my thesis.

111

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

v

For my grandfather Johannes Ludwig.

Thank you for your math lessons when I was a lazy child . ..

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Contents

Abstract

Zusammenfassung

1

Introduction

1.1 Challenges for Information Retrieval in Heterogeneous Domains
1.2 Research Questions and Methods
1.3 About This Work

Ontologies in Computer Science

2.1 Concept Formation
2.2 Approaches of Ontology Engineering
2.3 Structuring and Using Ontologies

AIRS Knowledge Base

3.1 Application Context
3.2 Conceptualization o
3.3 Theory and Inference Rules
3.4 Summary of AIRSKB Development

Ontology-based Retrieval Across Heterogeneous Document Landscapes

4.1 Concepts of a Heterogeneous Document Landscape
4.2 Advanced Ontology-based Information Retrieval System (AIRS)
4.3 Conceptual Architecture of AIRS

Indexing and Retrieval for Advanced Ontology-based Information Retrieval
5.1 Indexing Workflow o oo
5.2 General Retrieval and Feedback Workflow
5.3 Related Documents for a Single Search Result
5.4 Document Search Using Suggest Cluster Algorithm
5.5 Update Suggest Clusters for Suggest Cluster Algorithm

Sharing Knowledge through AIRS

6.1 Collecting Feedback with the Statistics Component
6.2 Getting Relevance Judgments
6.3 Summary

Architecture and Functionality of a Prototype Implementation
7.1 Properties Management Using a Taxonomic Structure
7.2 AIRS Index & Search Framework

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

Vii

-

15

17
17
19
21

24
26
28
41
50

52
55
60
61

63
64
71
76
7
81

84
86
89
90

91
93
97

https://doi.org/10.51202/9783186849106

Contents

7.3 AIRSKB Framework
7.4 AIRS Include Sources — Indexing Framework
7.5 Retrieval and Suggest Algorithms
7.6 Implementation Strategy and Prototype Features

8 Field Tests and Evaluation
8.1 Automotive Workshop Processes
8.2 AIRS Prototype User Interface
8.3 Experimental Setup of AIRS Prototype Field Tests
8.4 Performing Field Tests Using the AIRS Prototype
85 Results of Field Tests
9 Conclusion and Future Research
9.1 Summary
9.2 Research Opportunities
A Appendix
A.1 Questionnaire 1
A.2 Questionnaire 2
A3 User Tasks oo
Glossary
Index
Bibliography
VI

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

115
115
116
123
124
127

135
135
138

141
141
145
148

151
156
158

https://doi.org/10.51202/9783186849106

Abstract

Obtaining the right information at the right time is one of the main challenges for modern
societies. This holds especially for companies that must handle complex business processes.
These business processes require case dependent information. But relevant information is
often widespread over different document systems. Enterprise search is a field of research
that focuses on the challenges of information access. Unfortunately, a deep integration of
knowledge networks as well as relationships between index documents is not sufficiently
supported by enterprise search systems. Often, good retrieval results depend on these rela-
tionships, because the documents of the systems correlate somehow to each other regarding
a special business case.

This presents a heterogeneous information system and document landscape to the em-
ployees who must find the right piece of information they need from different retrieval
systems. In the end, an employee must interact with various desktop applications and
search for semantically related (and helpful) documents without any, or with only little,
support by the disparate retrieval systems.

The main motivation for this work can be summarized in the following research questions:

1. Can a single systems view be provided for all of the case-related documents kept in
different retrieval systems?

2. Can seamless and guided access across these disparate and disconnected retrieval
systems be designed?

3. Can the quality of retrieval results and the effectiveness of the retrieval process be
improved by exploiting user feedback?

4. Can a technical solution be developed that is accepted by users in the field?

To address these research questions, enterprise search technologies were combined with
knowledge representation techniques based on ontologies and user feedback processing.
For this approach, a system called Advanced ontology-based Information Retrieval System
(AIRS) was developed. It includes methods of state-of-the-art enterprise search technology
and combines them with an ontology called AIRS Knowledge Base (AIRSKB). AIRSKB
provides an overarching knowledge structure modeling documents, document sources and
explicit or deduced relationships between them. This knowledge structure now represents a
homogeneous and coherent search space. It is deeply integrated with advanced information
retrieval technologies to make search processes in large heterogeneous document landscapes
more effective and increase the quality of search results. AIRSKB also serves to capture
the collective intelligence of knowledge producers and knowledge users, i.e., employees. To
demonstrate the feasibility of the approach and evaluate its innovative capabilities and
its usability, a prototype system, called AIRS Prototype, was designed, implemented, and
tested in a domain of maintenance, service and repair of cars in car workshops. These field
tests included:

VII

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Abstract

1. A comparison of current workshop retrieval systems with AIRS Prototype and
2. system tests along predefined domain-specific test scenarios.

The field tests were carried out with workshop employees exhibiting many years of
professional experience in workshop services. They showed that the new ontology-based
retrieval is superior to the existing retrieval technology and that the collective feedback
of workshop experts enables the automatic and valid reconstruction of hidden document
relationships.

VIII

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Zusammenfassung

Die richtigen Informationen zum richtigen Zeitpunkt zu bekommen ist eine der grofiten
Herausforderungen moderner Gesellschaften. Das gilt speziell fiir Firmen, die mit komple-
xen Prozessen hantieren miissen. Diese Prozesse verlangen Fall-abhéngige Informationen
fiir spezielle Arbeitsschritte. Allerdings sind die Informationen oft {iber verschiedene Do-
kumentensysteme verteilt. Enterprise Search ist ein Forschungsgebiet, das sich auf die
Herausforderung des Informationszugangs spezialisiert hat. Leider wird die tiefe Integra-
tion von Wissensnetzwerken oder Relationen zwischen Indexdokumenten von Enterprise
Search-Systemen nur ungeniigend unterstiitzt. Oft hangen gute Suchergebnisse von diesen
Relationen ab, weil Dokumente der Systeme im Bezug zu einem Anwendungsfall mitein-
ander in Verbindung stehen.

Insgesamt gesehen stellt sich fiir Mitarbeiter von Firmen oft eine heterogene System- und
Dokumentenlandschaft dar, in der nach erforderlichen Informationen in verschiedenen Sy-
stemen recherchiert werden muss. Das Resultat ist, dass der Mitarbeiter mit verschiedenen
Applikationen hantieren und nach semantisch verbundenen (und hilfreichen) Dokumenten
ohne oder mit wenig Unterstiitzung der unterschiedlichen Recherchesysteme suchen muss.

Die hauptséichliche Motivation fiir diese Arbeit kann in den folgenden Forschungsfragen
zusammengefasst werden:

1. Kann eine einheitliche Sicht auf fallrelevante Dokumente der verschiedenen Recher-
chesysteme hergestellt werden?

2. Kann ein nahtloser Zugriff auf diese ungleichen und nicht verbundenen Recherchesy-
steme bereitgestellt werden?

3. Wie kann die Qualitét der Rechercheergebnisse und die Wirksamkeit der Recherche-
systeme durch die Verwendung des Feedbacks von Systemnutzern verbessert werden?

4. Kann eine prototypische Losung entwickelt werden, die Akzeptanz bei den System-
nutzern findet?

Um diese Forschungsfragen zu beantworten, wurden Enterprise-Suchtechnologien mit
Techniken der Wissensreprisentation (basierend auf Ontologien) und automatischer
Feedback-Verarbeitung verbunden. Fiir den Ansatz wurde das System Advanced ontology-
based Information Retrieval System (AIRS) entwickelt, das Methoden von Enterprise-
Suchtechnologien nach aktuellem Stand der Technik verwendet und mit einer Ontologie,
AIRS Knowledge Base (AIRSKB), verbindet. AIRSKB stellt eine ibergreifende Wissens-
struktur dar, welche Dokumente, Quellen sowie feste und adaptive Relationen zwischen
den Dokumenten und Quellen beinhaltet. Dadurch fungiert die Wissensstruktur als homo-
gener und kohédrenter Suchraum. Sie ist tief integriert in erweiterte Information-Retrieval-
Technologien um Suchprozesse in grofien heterogenen Dokumentenlandschaften effektiver
zu gestalten und die Qualitat der Suchergebnisse zu verbessern. AIRSKB dient auch dazu,

IX

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Zusammenfassung

die kollektive Intelligenz der Wissensproduzenten und Wissensnutzer, d.h. der Mitarbeiter
zu erfassen. Um die Durchfithrbarkeit des Ansatzes zu demonstrieren und seine Innova-
tionskraft und Benutzerfreundlichkeit zu bewerten, wurde ein Prototyp, AIRS-Prototype,
entwickelt und in der komplexen Business-Doméne von Service, Wartung und Reparatur
von Fahrzeugen in Kfz-Werkstétten verprobt. Diese Feldtests beinhalteten:

1. Einen Vergleich der Dokumentenrecherche in aktuell existierenden Werkstattrecher-
chesystemen mit der Dokumentenrecherche von AIRS-Prototype und

2. Systemtests, basierend auf vordefinierten doménenspezifischen Test-Szenarien.

Die Feldtests wurden mit Werkstattmitarbeitern durchgefithrt, die jeweils iiber
langjahrige Berufserfahrung im Werkstattumfeld verfigten. Die Tests zeigten, dass der
ontologiebasierte Suchansatz bessere Ergebnisse erzielt als die existierenden Recherchesy-
steme. Ebenfalls zeigte sich, dass kollektives Feedback der Werkstattexperten es ermoglicht,
versteckte Dokumentenbeziehungen automatisch und valide zu rekonstruieren.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

Obtaining the right information at the right time is one of the main challenges for modern
societies, especially for companies that must handle complex business processes. To exe-
cute a particular business process, employees must perform different tasks. For example,
support agents of a company that provides customer software support must perform tasks
that require searching for remedies for software problems. Customers report error mes-
sages of the application and agents search for remedies that match the error messages in
corresponding retrieval systems. This makes finding relevant information one of the most
important challenges in solving complex business processes. Other processes that include
tasks of finding relevant information are similar. Almost every company has to face the
challenge of information search. Examples are:

e Maintenance, service and repair of cars in workshops. Imagine a case where a
customer’s car needs a service in a workshop, after an accident, for example. Further-
more, let the task of the case be clear: some parts of the customer’s car are broken.
In a simplified workshop process description, an employee needs to open a new ser-
vice case in the workshop’s management system. Therefore, the workshop employee
needs to categorize the given case with the help of a standardized symptom taxon-
omy: the employee selects some case-describing symptom taxonomy nodes. After the
case is opened, the workshop employee now needs replacement parts for a car repair.
Furthermore, the employee needs a repair instruction to find information about the
installation of the replacement parts. After a workshop employee has repaired the
car, work units of a work unit catalog must be selected for the customer’s invoice.
To summarize, all of the replacement parts, the case-describing symptoms, the work
units and the repair instruction were used in the car repair process. Work units come
from a work unit catalog and case-describing symptoms are categorized in a symp-
tom taxonomy tree. Furthermore, replacement parts are available in the electronic
replacement parts catalog. Instead, repair instructions are stored and accessible via
the workshop information system, etc.

Workshop employees need to find necessary information hidden in different docu-
ment systems to deal with the entire workshop process. This information is mostly
contained in isolated retrieval systems that mainly act independently of each other
(see [93]). The data stored in these retrieval systems are semantically related to
each other. Most of these relationships are not available as computer readable links
between documents; rather, the workshop employees have to search for references to
information in other retrieval systems and follow them by accessing different systems
one by one. The workshop employees have to search for pieces of information in
each of these retrieval systems. Additionally, long-term running systems are used for
these critical business cases. These systems often do not provide the possibilities of
modern information retrieval.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

The example shows that workshop employees need to easily access information that
is widespread across different and mostly isolated retrieval systems. Therefore, the
users must handle various desktop applications on their devices. Furthermore, they
need to access information that is related to both the given task and documents that
have already been identified as useful to solve tasks that are similar to the given
task. This means that the employees should benefit from other employees who have
already solved similar business cases. Companies have to face these challenges to
provide solutions to their employees, supporting them in solving complex business
processes.

e Intranet search. Intranets as introduced in [18] or [11] are “private, internal net-
works” based upon They are “restricted to organizational participants only”.

Intranets provide employees the “ability to access a wide variety of information
sources”. These sources are accessible via an access-restricted website. Compa-
nies often use portal technology for this approach to make the sources accessible via
the company’s Intranet pages. Product examples for portal servers include the IBM
WebSphere!, SAP NetWeaver? or Red Hat JBoss Portal®. In contrast to ordinary
web pages, portals are “tailored according to the users’ need” (see [3]). Therefore,
portals provide a well-known and stable technology for the integration of information
in web pages.

The contents of the sources are diverse. As explained in [52], they offer access
to publications (Level 1), provide a platform for cooperation (Level 2) and serve
as an application platform (Level 3). A higher level means more complexity in
requirements. Furthermore, the included information sources are used for different
business processes.

The contents of Intranets can also be categorized along application areas (functional
blocks). The application areas of Intranets are also diverse: “News & Content”,
“Collaboration €& Communication”, “Employee profiles & Networking”, “General
Processes € Applications” and “Special Processes & Applications” (see [64]). All
application areas require overarching functions. A search across all contents of the
functional blocks is such a requirement. This makes the search across all services and
information sources a key benefit of Intranets. An Intranet search differs from an
ordinary web search in the case that employees need to search for information that
helps them to solve a particular business task. Additionally, users look for services
and applications rather than simply information about a topic. Therefore, companies
need to solve the challenge of representing different information types in a search en-
gine. Furthermore, companies must implement the possibility of suggesting relevant
information and services regarding the information need of a user.

For example, let there be a case where an employee must set up a telephone conference
call for a meeting. For this approach, the employee needs to ascertain how to apply
for a telephone conference number that meeting members can dial. He also needs
information about how to set up an online presentation and how to prepare his
hardware for this approach. The employee can now search in the company’s Intranet

!See http://www.ibm.com/software/websphere, last visited Sept. 18, 2016.
28ee http://scn.sap.com/community /netweaver, last visited Sept. 18, 2016.
3See http://www.jboss.org/products/portal /overview, last visited Sept. 18, 2016.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

for all of the necessary information and services. Companies often use state-of-the-art
enterprise search technologies to establish a search across all information resources.
The employees can subsequently use all of the search features provided by the search
technology. For example, a similar search based upon the content of a search result
page, suggestion of search terms, spelling correction, faceted search along a category,
ete. If different departments of the company are responsible for telephone conference
number management, online presentations and hardware, the users must search for
every piece of information again. The reason is that departments often publish
information about the services that they provide on their own Intranet page. This
means that the search for necessary information in Intranets is a complicated task,
especially when employees need to find semantically-related information for a given
task of a business process. This raises the possibility that the users do not find
the right piece of information and thus the search process becomes costly. One
solution is to manually link semantically-related information of Intranet pages beyond
the borders of departments’ responsibilities. However, this must be undertaken for
all business processes. Furthermore, the links must be updated due to constantly
changing processes and rapidly changing information sources, which is a very costly
process. Additionally, the users should benefit from other users who have already
collected information and services that were necessary to solve similar business cases.
This cannot be performed by manual linking.

e Search for academic literature. The search for academic literature is the ba-
sis for scientific research activities. The current solutions are usually based upon
state-of-the-art search technologies. Examples include Google Scholar?, Pub Med?,
Web of Science® or Scopus” (see [23]). Because academic literature is a special do-
main, searching for academic literature differs from an ordinary web search because
it mostly depends on users’ special research interests. This means that most of the
users are interested in literature about a special scientific research area or a com-
bination of research areas. This applies to both scientists from departments of an
educational domain and employees from a research & development department of a
company.

Companies as well as public facilities provide their employees access to a wide field of
publication databases. The databases share the common feature of free text search
within the search activity. Furthermore, the databases themselves provide special
domain-specific search features to their users.

For example, the main features of Google Scholar are searching for publication time
ranges, patents and citations, citation export and a special search result page adapted
to domain interests (file access, author information, “cited by” information or similar
article search). As another example, Springer Link® provides a special faceted nav-
igation of search results by using the categories “Content Type”, “Discipline” and
“Subdiscipline”.

4See https://scholar.google.de, last visited Sept. 18, 2016.

5See http://www.ncbi.nlm.nih.gov/pubmed, last visited Sept. 18, 2016.
6See http://wokinfo.com, last visited Sept. 18, 2016.

"See http://www.scopus.com, last visited Sept. 18, 2016.

8See http://link.springer.com, last visited Sept. 18, 2016.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

Researchers are particularly interested in literature about a very special research
field. Because the search only depends on free text search and categorization, it
is not easy to find the right publications among the jungle of academic literature.
Therefore, state-of-the-art search technologies (like Google Scholar) provide a simi-
lar search based upon the content of a publication. A semantic search based upon
the concepts of the publications’ content usually only exists in a simplified form.
Accordingly, many research approaches try to increase the quality of natural text
retrieval by using concepts (not only for academic literature search); for example,
through different approaches of semantic query expansion (see [90], [61], [35], [36],
[42], [55] or [24]). Many of these approaches increase the retrieval quality, although
they do not match the main requirements of academic literature search. One main
requirement is to find publications that are semantically related to each other in the
context of a special research interest. Research interests may be diverse, whereby a
researcher might be interested in publications about a topic or sub-topic. He might
also be interested in articles of similar topics or publications about different topics.
New research areas are often developed by a combination of different topics. There-
fore, the research interest is a context of search and all of the publications that match
the context are related to each other. This relationship between publications may
be based upon their text content, which is accessible through similar search queries,
although this is not necessarily the case. This makes academic literature search a
difficult task. Additionally, researchers should benefit from other researchers with
similar research interests and similar search contexts who have already collected pub-
lications of a particular research interest. This can be derived indirectly from the
references at the end of a publication, although this only applies to the given publica-
tion. Furthermore, this represents an immutable list of references. Another possible
solution consists of an expansion of private search contexts to a public knowledge
network of search contexts over system borders as suggested in POSUKO (see [37])
that is developed as part of eleed®.

A further challenge is the diversity of literature databases. This provides a hetero-
geneous literature database landscape to the users. The result is that users can only
find publications if they search in the right database. This means that researchers
must handle different literature databases. Furthermore, every database brings its
own search methods. To summarize, another requirement is to provide a homoge-
neous access structure for a literature search that can suggest publications of similar
research interests.

A possible solution is to develop software tools that provide a search function con-
nected to various literature databases. Current reference management software tools
like JabRef!® or Citavil! often include connectivity to foreign literature databases.
However, they provide a single point of database access rather than a homogeneous
search infrastructure to the users.

The challenge is to develop solutions that break down the barrier of information
search that is restricted through the limitations described above: information search

9Eleed is an open-access web journal, see https://eleed.campussource.de/, last visited Sept. 18, 2016.
108ee http://www.jabref.org, last visited Sept. 18, 2016.
HSee http://www.citavi.com, last visited Sept. 18, 2016.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

across different publication databases, establishing relationships between publica-
tions that allow dynamic modeling of research interests by a set of related publica-
tions and the access of such a model of a research interest.

e Service requests in Call Centers. Support and marketing has changed from the
1980s to present. Call Centers have evolved from telephone marketing to complex
process workflow platforms in the field of customer service (see [29], [15]). They are
often the first customer contact for a product or service of a company. Therefore,
Call Centers are centralized service points for customer support and they provide a
single point of customer contact. Today, most processes are inbound (the customer
calls) and the tasks that the agents must handle are different, including information
requests (hotline, product information), customer services (product support, ticket
services) or emergency calls (car breakdown services). The customers dial a number
and enter into contact with a support agent of a Center. Different systems are used
in Call Centers to connect the user call to a specific customer service process. These
processes require task-specific access to different information sources of the company.
The information contained in the sources is subsequently used to solve the customer
request. Additionally, the agents need to answer the users’ questions very quickly.
Often, the customers describe a problem or service request in natural language and
the agents need to find the right piece of information in the retrieval systems of the
companies. This means that an agent must search in different systems by using the
customers’ descriptions. CRM!? software systems are often used in Call Centers to

manage the whole customer process and research.

Many questions of clients are similar. The Call Center agents need to perform similar
searches in the retrieval systems. One approach is to extend the current solutions
with new search functions that deal with similar client requests and heterogeneous
data landscapes (see [46], for example). However, they should also benefit from so-
lutions of similar service requests. Key requirements include access to a wide field
of information sources through a homogeneous access structure and an informa-
tion search solution where Call Center agents can benefit from known solutions of
previously-solved tasks.

e Access project documentation. A strong body of documentation and many sta-
tus reports are usually produced during projects. For different business tasks, this
project documentation must be searched for the right piece of information. For exam-
ple, project managers need to prepare management reports and software developers
need to search for requirements and specifications. Most of the project documenta-
tion is stored in project shares, Microsoft SharePoint!® directories, project Intranet
pages, special software development tools (like JIRA' or Confluence!®) or other soft-
ware tools like Alfresco’®. The search for documents takes place at various points,
including the operation system’s search across directories and document contents,

12Customer Relationship Management, see [39] for an introduction in the topic of customer relationship
management.

138ee https://products.office.com/de-de/SharePoint /collaboration, last visited Sept. 18, 2016.

14Gee https://de.atlassian.com/software/jira, last visited Sept. 18, 2016.

153ee https://de.atlassian.com/software/confluence, last visited Sept. 18, 2016.

163ee https://www.alfresco.com, last visited Sept. 18, 2016.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

a Microsoft SharePoint search or by using search functions of software development
tools. The weakness is that project members must search for pieces of information in
each of the project documentation storage databases again. Often, they need to per-
form different searches for related information because related documents are not ac-
cessible by default in the search. State-of-the-art software development tools provide
features to easily link related documentation, although these links must be placed
manually in the corresponding documents. One challenge is to optimize the access
to project documentation for project members via a homogeneous access structure.
Furthermore, the retrieval for project documentation should include the suggestion
of documents based upon relationships between documents. These relationships be-
tween documents may be based upon their content, although this is not necessarily
the case. This makes the search for related documents of documents difficult. Cur-
rent retrieval systems often provide features to search for similar documents, albeit
only based upon their retrieval algorithms.

e Processing service tickets in product support. Product support is a difficult
task, given that users have specific issues with the use of an application and need sup-
port to solve their problem. Often, business applications provide a support channel
directly in the application, producing a service ticket in the product support chain.
The employee who works on the ticket often derives a user description of unusual
application behavior in natural language. Sometimes the ticket comes with an error
code produced by the application. The employees now need to search across the soft-
ware documentation to produce solutions that help the users. Therefore, the support
agents need help in searching for remedies to similar problems. They should benefit
from previous searches of support agent colleagues who have already solved similar
problems. Similar cases mean similar searches and this means similar remedies.

These examples are simply a selection of business cases that require case-dependent
information searches across heterogeneous data sources. Other examples are similar; for
instance, brokers must overlook various systems looking for similar information about
courses. Employees of sales departments need to search for products and services in var-
ious data sources. Employees of human resources department need to search for skills of
employees and candidates for employment to assemble project teams. Employees of travel
agencies must search for travel offers in different systems to provide individualized travel
deals to their clients. By looking at the examples described above, the main disadvantages
of the current solutions are:

1. Users must perform recurrent searches in disparate databases and document manage-
ment systems using different retrieval systems. This is similar for all of the examples
described above. Users of an Intranet search must perform different searches to col-
lect all of the necessary information. Employees of a workshop need to search in
different systems for all of the information that they need for a car service or repair
processes.

2. Documents can only be found if users include the respective retrieval system in their
search. One example is the academic literature search, because the publications are
distributed across many publication databases.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1.1 Challenges for Information Retrieval in Heterogeneous Domains

3. The search for semantically-related documents that may contain useful information
is not supported by the retrieval systems. For example, software engineers need to
search for software requirements that they need to implement, while employees need
to search for semantically-related information (workshop literature search, Intranet
search).

4. Users cannot benefit from successful searches of other users with similar information
needs because search contexts are not maintained. This is similar for all of the
examples described above, especially for a workshop literature search, Intranet search
or scientific literature search.

This raises the possibility of errors, is costly and increases the time span that the users
need for the business process. To summarize, business processes require case-dependent
information. The information is necessary for tasks of processes as well as supporting the
interaction with the customer. Companies produce various documents, database entries
and other storage containers to maintain this information. Unfortunately, this information
is often widespread across different systems. Therefore, companies use document retrieval
systems as well as database technologies to make this information accessible. The main
challenge is to enable retrieval systems to increase the effectiveness of the customer service
processes and increase the prediction quality for service requests.

1.1 Challenges for Information Retrieval in
Heterogeneous Domains

Companies often use long-term running systems for their critical business cases because
modernization of a system landscape is very expensive and well-known systems and tech-
nologies are stable (“never change a running system”). Database systems serve as an error-
prone yet mature technology for storage and retrieval of structured data. Their strengths
lie in representing relational data models and performing complex join operations on data
records. Moreover, they are also used for document retrieval. Unfortunately, databases
are not optimized for the search in unstructured text resources.

In contrast to database systems, enterprise search systems are optimized for retrieval in
text resources. Their strengths lie in a natural language-dependent search using complex
retrieval and ranking algorithms. However, they are neither designed for join operations
on data records nor for the representation of relationships and data models.

A technology is necessary that includes the strength of database technology in informa-
tion retrieval technologies. The following main research challenges must be solved:

e Information access is a challenge for companies with a heterogeneous process, doc-
ument and data landscape. One reason is that data stored in file systems, databases,
Internet, Intranet, content management systems, knowledge bases and document in-
formation systems is constantly growing. Most of these data comprise unstructured
text. Enterprise search systems face this challenge by establishing a cooperation-wide
or process-dependent search across multiple data sources. These search technologies
are now increasingly used to establish cooperation-wide information access or en-
hance the quality of software products.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

Additionally, business intelligence reporting tools use state-of-the-art search tech-
nologies to combine and present aspects of the data to generate a new view on
unknown or hidden information. For this purpose, Big Data analysis often serves as
a pre-process that consumes the data from the different sources and prepares it for
information exploration or indexing tasks (see [10] or [57] for more information about
Big Data). This Big Data analysis often combines the power of distributed data stor-
age based upon the concept of GFS (Google File System as described in [27]), Apache
Hadoop’s HDF'S (see [5] or [97]), with algorithms based upon MapReduce (see [16]).
During the parallel processed MapReduce steps, text mining technologies are often
used to analyze unstructured text!” and data mining technologies are used to harvest
unstructured raw data. The result is either an indexed text corpus for search engines
or structured data used to generate reports by using business intelligence reporting
tools.

In the case of using a search engine index, several challenges need to be solved by
firms besides the choice of the right search technology, which are also important
for this work because they are relevant for a successful system development. These
challenges include:

— Information targeting. Identifying information pieces in the original sys-
tems that can serve as search targets for the retrieval (index documents of the
information retrieval systems).

— Information gathering. Handling information from various data sources to
support an overall information search. The definition of a generic and overall
valid data model is particularly important.

— Information transfer. Dealing with information extraction processes to read
and analyze the data from the various data sources.

— Information relevance. Calculating the relevance of search results.

— Information suggestion. Suggesting information that could be relevant for
the business task, even without a user-triggered search.

— Information routing. Choosing the right set of business case-relevant infor-
mation for indexing.

— Information quality. As explained in [49], information quality describes sev-
eral requirements that have to be considered by developers of information sys-
tems: “ensure consistency”, “avoid redundancy”, “control access” and “strive
for relevance for the recipients of information”.

These challenges are difficult to perform because they often require the knowledge of
data scientists in combination with domain experts who perform the business cases.

e Information search is the challenge of finding relevant information in a collection
of text data. The technology of information retrieval as explained in basic literature
by Manning, Raghavan and Schiitze (see [62]), van Rijsbergen (see [87]), Stock (see

7Text mining technologies can be used for various text processing tasks, such as automated language
detection, part of speech tagging, spelling correction, named-entity recognition and co-occurrence-based
text analysis. In summary, these computer-based methods are necessary for the semantic analysis of
text resources and automated or semi-automated text structuring (see [41]).

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1.1 Challenges for Information Retrieval in Heterogeneous Domains

[79]) and Singhal (see [74]) provide the concepts and functions used by various search
engines based upon vector space retrieval in combination with Boolean retrieval.

Information retrieval technologies are the basis of search engines and enterprise search
solutions. Search engines are software products that provide an information search in
heterogeneous and domain-specific unstructured data sources. Apache Solr — which
was built on top of Apache Lucene — is an example of an open source software that
provides such retrieval algorithms (see [63] and [75]). Lucidworks developed an enter-
prise search server product based upon the open source solution Solr (Lucidworks En-
terprise Search'®). Other companies also provide enterprise search products, although
most of them are closed source. Examples of these products include HPE IDOL by
Hewlett Packard Enterprise!®, Oracle Secure Enterprise Search?’, Coveo Intelligent
Search Platform?!, Search Solutions by Swiftyp?? and Google Search Appliance®.
Enterprise search comes with a wide range of features that enable knowledge-driven
retrieval (see [86]): federated search (simultaneous search on multiple sources), inte-
grated search (indexing and searching of data from foreign sources), concept search
(extending index documents with related terms), faceted search (clustering of search
results), semantic indexing (relationships between index words are kept in an exter-
nal database, whereby the system can automatically offer alternatives to the search
results), as well as other features that extend the content of a document or query.
Additionally, enterprise search products often include technologies that extend the
natural language-based vector space retrieval:

— Lightweight ontologies (taxonomies, synonym sets) are used to improve the
quality of natural language search technologies.

Similarity search is used to find documents similar to a result document.

Automatic spelling correction of search terms helps to increase the search qual-
ity.
— Search term suggestions support the user in formulating the retrieval request.

All such approaches somehow result in an extension of index documents or search
queries. Unfortunately, semantic knowledge about document relationships cannot be
used or updated dynamically.

e Information linking describes the challenge of using semantic relationships between
data records. Information retrieval systems are easily accessible by end users because
they can formulate their search queries in natural language. Moreover, it is also
possible for advanced users to formulate a more complex search query by Boolean
linking of search terms, a weighted field search or wildcard search. Accordingly,
systems can be developed to support both end users in general search environments
as well as expert users dealing with business tasks in expert systems. Additionally,

183ee https://lucidworks.com/solutions/use-case-enterprise-search/, last visited Sept. 18, 2016.

98ee http://www8.hp.com/us/en/software-solutions/information-data-analytics-idol, last visited Sept.
18, 2016.

208ee www.oracle.com/technetwork /search/oses/overview/, last visited Sept. 18, 2016.

21See http://www.coveo.com/en/platform, last visited Sept. 18, 2016.

228ee https://swiftype.com, last visited Sept. 18, 2016.

2See https://www.google.de/work/search/products/gsa.html, last visited Sept. 18, 2016.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

Information Retrieval Systems can be used in various environments owing to their
technological diversity (IBM Watson technology serves as an example?!).

Besides the retrieval of documents, critical business processes often need to combine
the knowledge of documents from different sources. Therefore, the linkage of infor-
mation across system borders is necessary for successful information access. This
is a challenge for both the technology used as well as the business architects who
support and develop the retrieval systems. Search technologies have their strength
in finding information quickly. However, they are weak in the search for information
stored in complex and adaptive knowledge networks, as well as representing them in
a business model.

Other technology approaches concentrate on linking and merging information (or
documents) from different resources. Firms often use these approaches to represent
knowledge of business critical processes; for example, they combine information from
different sources by establishing a product taxonomy. Several technologies can be
used to enable data discovery and link documents semantically across system borders.
For example:

— Enriching documents manually with link information to other documents.
— Setting up databases that hold document linkage information.

— Building universal ordering criteria associated with the documents (a product
taxonomy, for example).

— Placing web services on top of a service-oriented architecture based upon the
concept of service-oriented computing (see [69]) can be used to combine the
information of various systems into a distributed information system.

— Setting up federated database architecture to combine data from different
sources.

— Using semantic web technologies for annotating entities in documents.

— Integrating information in other systems (like indexing in an information re-
trieval system).

— Enabling data normalization (standardizing document authoring processes
based upon terminology databases and a controlled vocabulary).
As stated in [86], enterprise search engines “...must be able to regard the entire busi-
ness environment as a source and should not be bound by a certain product repository or
platform”. Many different sources (databases, intranet, email, etc.) should be included in
the enterprise search index to face the requirements of a business task.

In [38], Hawking names five scenarios of enterprise search (“external visitor to enter-
prise website”, “ Intranet search”, “internal multi-source search”, “searching for other than
documents”, “task-integrated corporate memory search” and “forensic search”). Internal
multi-core search describes the challenge of finding, ranking and accessing data of differ-
ent sources and formats. For example, a project manager who needs information about a

24Tor details about IBM Watson visit http://www.ibm.com/smarterplanet/us/en/ibmwatson, last visited
Sept. 18, 2016.

10

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1.1 Challenges for Information Retrieval in Heterogeneous Domains

running project must search in different sources, including the Intranet, file shares, Pow-
erPoints, emails, project reports, etc.

This challenge can be extended with the objective of finding data from a wide range of
sources that is necessary to solve a special and well-defined business task. For example, the
aforementioned project manager must prepare a management report about the project’s
current status. Therefore, he needs to search for all of the information about the project.

Additionally, seven open research problems in the field of enterprise search are named
in [38], including “effective ranking across heterogeneous collections characteristic of en-
terprises”. This addresses the retrieval across heterogeneous document types and retrieval
systems. The documents differ in their types and content, which causes challenges in
document result ranking and result presentation.

An enterprise search faces the challenge of obtaining the right information at the right
time for the right process. This includes all of the semantic knowledge that can be found
in internal sources and that helps to solve a given problem (or task). Therefore, cur-
rent information retrieval systems (especially an enterprise search) must face the given
limitations:

e A search across heterogeneous document types requires different retrieval strategies
and result presentation.

e Retrieval is only based upon search technologies or database retrieval (joins across
tables of relational databases). The links between documents have only limited
influence on the case-dependent retrieval (besides the PageRank algorithm, see [68]
for more information about PageRank algorithm). Furthermore, these links are not
semantic relationships.

e Relationships between the documents cannot be represented in an index of search
results (information retrieval systems are not designed for this approach).

e The automatic collected feedback of the users is not collected and processed for an
automatic optimization of the retrieval algorithm. This means that previous search
results and user interactions are not analyzed by the systems. The hypothesis is
that this automatic collected user feedback (Precision-Recall-based?) can be used
to improve the retrieval system’s quality. A possible solution to this challenge is
recommendation techniques provided by collaborative filtering approaches (see [81]
or [22]). Nonetheless, they do not provide adaptive relationships between different
kinds of documents nor pathways of related information in a network of documents.

To summarize, an enterprise search based upon information retrieval technologies serves
as a basis for an intelligent information search of future business cases. Unfortunately,
enterprise search systems are not optimized for knowledge access based upon the linkage
of documents. Furthermore, information from the search will not be re-used in future
research.

25TFor example, see [73] and [83] for more information about evaluation and measurement in information
retrieval.

11

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

1.2 Research Questions and Methods

The disadvantages of current technologies facing the research challenges (information ac-
cess, information search and information linking) are that they require data manipulation
steps and are complicated to use with existing search technologies. In addition, many of
these approaches are static in information linking: they do not enable weighed or adaptive
knowledge networks of document linkage.

The need for a simplification of search for business relevant information causes the need
for a research activity, whereby the main research questions can be formulated as follows:

1. Can a single systems view be provided for all of the case-related documents kept in
different retrieval systems?

2. Can seamless and guided access across these disparate and disconnected retrieval
systems be designed?

3. Can the quality of retrieval results and the effectiveness of the retrieval process be
improved by exploiting user feedback?

4. Can a technical solution be developed that is accepted by users in the field?

The findings should answer the question of how a knowledge network can be deeply
integrated in information retrieval technologies to support both heterogeneous document
landscapes in large company domains as well as collective intelligence interaction between
knowledge producers and knowledge users®S.

To find answers to these research questions, it is necessary to develop a system that
enables a single systems view on disparate retrieval systems. Furthermore, this system
should be able to process users’ feedback to increase the quality of future searches. A
prototype implementation of the system must be evaluated in real situations to obtain
information about the acceptance of the system.

This means that a search across all types of documents must be established and a ho-
mogeneous access structure for the heterogeneous document landscape must be developed.
Enterprise search engines provide state-of-the-art search technology. Information linking
describes the challenge of establishing semantic relationships between data records. These
semantic relationships are used to retrieve a homogeneous access structure from the het-
erogeneous document landscape. A homogeneous access structure provides a semantic
knowledge network to the users. This can be achieved by various methods and technolo-
gies of information linking, as named in Section 1.1. In order to make the structure of
the knowledge network accessible and shareable, it should be represented by an ontol-
ogy (regardless which method or language is used to describe concepts of the ontology).
The ontology itself is a model of the heterogeneous documents landscape and enables
cross-document relationships. The document relationships can be used later to include
the knowledge of users’ feedback to raise the quality of document retrieval. This ontol-
ogy again can be accessed through a knowledge representation framework. Examples of
these frameworks include Ontopia®” (Topic Maps) or Apache Jena? (OWL). The following

26In the current work, the two roles of knowledge producers and knowledge users are represented through
the authors of the documents as well as through the employees who use the documents.

27See http://www.ontopia.net, last visited Aug. 18, 2016.

28Gee http://jena.apache.org, last visited Aug. 18, 2016.

12

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1.2 Research Questions and Methods

steps include the elements of retrieval for documents and knowledge representation. They
are suggested in this work, with the hypothesis that they provide a workflow of modern
knowledge network-based information retrieval.

1. Design an overarching generic model that represents all documents, sources and re-
lationships in a given business or organizational context. This model should support
adaptive document relationships to reflect user feedback.

2. Build ontological individuals that represent the original documents and their sources
in a uniform way to abstract irrelevant diversities. This is necessary to model the
structure of a heterogeneous document landscape.

3. Analyze the source data and construct index documents for a state-of-the-art retrieval
system. The indexing process is necessary to prepare the documents for searching.

4. Link each index document to the corresponding ontological individual. This is nec-
essary to synchronize the index documents with the corresponding ontological indi-
viduals.

5. Map hard-coded document links to document relationships represented in the on-
tology. This is necessary to represent real existing document relationships in the
ontology because they can be used in the retrieval to search for related documents.

6. Develop an evolutionary process for analyzing user behavior and use the correspond-
ing feedback to adapt document relationships over time. Documents that have been
used in the same business case are related to each other. These relationships can
be represented in the ontology as relationships between the ontological representa-
tions of the documents. Furthermore, these relationships between the ontological
individuals can be used later to search for related documents.

These suggested steps should enable developing retrieval algorithms beyond state-of-
the-art natural language text retrieval due to a combination of an ontological model of
documents with a corresponding index document structure in the retrieval process. Algo-
rithms can be combined with technologies from the field of knowledge representation to
include document relationship information in the entire retrieval process. The approach
of combining knowledge representation through ontologies with enterprise search technol-
ogy and feedback processing was chosen to answer the research questions. Therefore, this
approach served as the basis for the research presented in this work. Companies can use
this approach as a blueprint and apply it to their processes and documents landscapes.
This work relies on existing technologies for knowledge representation through ontologies
and state-of-the-art search technologies. The main scientific contributions of this thesis
include:

e Combining multiple technologies to enable overall documents search: a system
called Advanced ontology-based Information Retrieval System (AIRS) was devel-
oped, which includes methods of state-of-the-art enterprise search technology and
combines them with an ontology called AIRS Knowledge Base (AIRSKB). AIRSKB
models the heterogeneous document landscape and was developed to enable an intel-
ligent overall retrieval and adaptive document relationships. The search algorithms

13

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

use document relationships, which are updated by an automated user feedback anal-
ysis. This work explains the concept, basic architecture and the indexing, retrieval
and feedback workflows of AIRS.

e Design of an ontology that models the entire document landscape, provides a holistic
search space and serves as a blueprint for ontologies that enable an overall docu-
ment search in a heterogeneous document landscape. AIRSKB acts as a homoge-
neous access structure for a heterogeneous document landscape. This work explains
AIRSKB'’s application context, conceptualization, theory and inference rules as well
as its usage in the context of AIRS.

e Development of collective retrieval strategies and feedback analysis algorithms. For
example, a search approach called Suggest Cluster Algorithm was developed during
the research activities and is suggested in this work. This algorithm updates a
knowledge network of document relationships by analyzing user feedback.

e Empirical study testing the effectiveness and quality of an ontology-based retrieval
system and evaluating its usability and acceptance. The evaluation showed that a
work environment based upon AIRS helps to optimize processes, while reducing the
time that an employee needs to search for business case-relevant documents.

Furthermore, this work describes an exemplary implementation of AIRS developed dur-
ing the research: AIRS Prototype. The AIRS Prototype was used to validate the methods
and benefits for the workshop business cases by performing field tests. The hypotheses
underlying these goals of these field tests were as follows:

e The workshop employees perceive the search for relevant documents using AIRS
Prototype as helpful and easy to use.

e A system based upon the AIRS Prototype helps to optimize the entire workshop
process by reducing the time that a workshop employee needs to search for business
case-relevant documents.

To achieve this, the field tests include two main aspects: a “before—after” comparison of
existing workshop retrieval systems with the AIRS Prototype and system tests regarding
domain-specific test scenarios. The field tests were carried out in five workshops. Work-
shop employees with many years of professional experiences tested the system in their roles
as domain experts. All workshop employees provided very valuable feedback, highlight-
ing that a system based upon the AIRS retrieval principle could increase the workshop
processes. The field tests showed that overall retrieval in a heterogeneous document land-
scape best supports the workshop’s business cases and that collective intelligence feedback
enables the automatic building of valid document relationships.

One finding of this work is the answer to the question of how a knowledge network can
be deeply integrated in information retrieval technologies to support both heterogeneous
document landscapes in large business domains as well as the collective intelligence in-
teraction between knowledge producers and knowledge users. AIRS showed that such a
deep integration must be performed by including an ontology that represents the hetero-
geneous document landscape. Moreover, the ontology should be used during the retrieval
for representing document relationships as well as searching for related documents. AIRS

14

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1.3 About This Work

and AIRSKB provide a frame for modeling a heterogeneous document landscape and a
feedback processing methodology to improve the retrieval quality.

1.3 About This Work

Parts of the research findings have already been presented in articles and discussed at
conferences. This work enriches these findings with a description of a prototype imple-
mentation. The theoretical findings are updated in this work to reflect the current state
of research. In addition, workshop experts with many years of technical experience have
evaluated the prototype implementation of the new system in different workshops. This
work includes parts of the following publications by the author of this work:

e Modellieren im Kontext: Ontologie-basiertes Information Retrieval (in
German). This technical report (see [93]) focuses on the theoretical background
of information retrieval and knowledge representation through ontologies. It intro-
duces the principle of the Application Context and its role in ontology engineering.
Moreover, the principle of the Advanced Ontology-based Retrieval System (AIRS)
was presented and equations for the navigation of ontology networks were given.

e Harvesting Domain-Specific Data Resources for Enhanced After-Sales In-
telligence in the Car Industry. This article was published in the conference
proceedings from the COLLIN 2011 conference (see [95]). It includes an explanation
of the principle of AIRS and knowledge representation through ontologies. Further-
more, a case study is presented where the workshop document landscape and systems
were examined to derive valid statements about the linking potential between various
documents of different retrieval systems.

e An Advanced Approach to User-based and System-centered Evaluation
for the Improvement of Business-oriented Document Retrieval Systems.
This paper was first presented and discussed at the SDPS 2012 Berlin conference
and it was later published through the conference documentation (see [94]). The
content of the paper describes the challenges of developing the AIRS system and
introduces the principles of internal and external evaluation. The outcome was that
an iterative process called internal evaluation helps to improve the retrieval quality
and an external evaluation should be conducted to obtain good statements about
the retrieval system’s quality. The external evaluation should also be conducted
over time during the system’s operating time to obtain information about the re-
trieval system’s acceptance and goodness. Moreover, current information retrieval
system evaluation methodologies were discussed and a suggestion for the evaluation
of business-triggered retrieval systems was provided.

e Workshop Process Optimization Based on the Collective Intelligence of
Workshop Employees Involved in After-Sales Intelligence of Mercedes-
Benz Cars. This article was published in the International Journal of Cooperative
Information Systems in 2013 and explains how the collective intelligence of workshop
employees can be used to improve the system’s quality by using updates on the
document relationships stored in the AIRS ontology ([96]). In this publication, the
AIRS ontology was first introduced as the AIRS Knowledge Base (AIRSKB).

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

1 Introduction

The work is structured as follows. Chapter 2 presents exemplary research findings in
the field of defining the concept ontology (Section 2.1), approaches of ontology engineering
(Section 2.2), structuring of ontologies and their usage in different contexts (Section 2.3).
Chapter 3 introduces AIRSKB as an adaptive document network and explains the role
of the Application Context (Section 3.1), the Conceptualization (Section 3.2) and the
importance of Inference Rules (Section 3.3). The chapter concludes with a summary of
AIRSKB development steps in Section 3.4.

Chapter 4 starts with a definition of the concept “Heterogeneous Document, Landscape”.
Section 4.1 subsequently explains and defines the concepts of a heterogeneous document
landscape that exists in different domains and compares these concepts with AIRSKB
elements. Furthermore, Section 4.2 introduces the concept of the Advanced Ontology-
based Information Retrieval System (AIRS) and Section 4.3 provides an overview of the
basic system architecture.

Chapter 5 explains how the document indexing as well as the retrieval work in detail
and provides an introduction to the Suggest Cluster Algorithm. Therefore, Section 5.1
introduces the indexing of documents and Section 5.2 introduces the general retrieval and
feedback workflow of AIRS. The Related Documents Search (see Section 5.3) and the
Suggest Cluster Algorithm are subsequently explained (see Section 5.4 and Section 5.5).
The role of collective intelligence in AIRS’ feedback processing and knowledge network
adaption is explained in detail in Chapter 6. Section 6.1 explains how the feedback of
employees can be collected through feedback processing. Section 6.2 suggests methods to
calculate the relevance of automatic collected feedback. The chapter concludes with a brief
summary of AIRS and collective intelligence in Section 6.3.

Chapter 7 focuses on the AIRS Prototype, which is a prototype implementation of AIRS.
AIRS Prototype is implemented as a rich web application that uses various frameworks for
retrieval and knowledge representation. During AIRS Prototype development, a number of
frameworks and components were implemented that take the lead of special activities. Sec-
tion 7.1 presents a solution for properties management that was also developed. In Section
7.2, the AIRS Index & Search Framework component is presented, which is responsible
for the document retrieval core. In Section 7.3, the AIRSKB Framework component is
introduced, which is responsible for all knowledge network operations. Section 7.4 intro-
duces the component that takes care of the inclusion of new document sources in AIRS
(AIRS Include Sources). Section 7.5 introduces retrieval and feedback-processing algo-
rithms of AIRS. Section 7.6 concludes the chapter with an explanation of the prototype
environment. As stated before, the AIRS Prototype was evaluated in the workshops by
using real-world use cases and workshop employees as technical workshop experts (system
users). Chapter 8 proceeds in detail regarding the evaluation process. First, Section 8.1
introduces the domain of the field test. Subsequently, Section 8.2 introduces the AIRS
Prototype user interface. Section 8.3 presents the experimental setup of the user tests and
Section 8.4 explains how the tests were performed. The field test results are discussed
in Section 8.5. Connected to this chapter are Appendices A.1, A.2 and A.3, which show
examples of surveys and a user test description used in the field test. Appendices A.1
and A.2 present two surveys conducted during the field tests to derive a “before-after”
comparison of workshop document retrieval with and without using the AIRS Prototype.
Appendix A.3 shows workshop case scenarios used in the field tests.

Chapter 9 concludes with a summary of AIRS research (see Section 9.1) and provides
an outlook of possible future research activities in the field of AIRS (see Section 9.2).

16

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2 Ontologies in Computer Science

Ontologies have become key elements in computer science, being widely used to represent
different kinds of knowledge. For example, they are used to:

e build a vocabulary to describe a particular domain;
e make intended meanings of terms explicit; or

o define constraints for a modeled domain.

The use of ontologies depends on the underlying application scenario, which describes a
design goal for ontology development. In [93], several design goals are named. For example,
possible design goals for the development of an ontology are:

e Defining a world of entities and relationships between them to derive a model of
domain knowledge. An example is the top-level ontology OpenCyc!

e Establishing a lexicographic knowledge base that can be used for text analysis. For
example, WordNet serves as a lexical database of English language?.

The objectives are to derive a clear and shareable picture of a particular domain and make
this picture accessible by computers. In order to clarify the term ontology and engineering
processes of ontologies, this chapter starts with exemplary research findings in the field of
ontological knowledge representation and engineering approaches. Furthermore, it presents
scientific findings about the structuring and usage of ontologies in different contexts.

2.1 Concept Formation

An ontology is at least a knowledge base that helps to store, use and even re-use information
about things in a given domain. These “things” can be representations of both physical
objects like cars or non-physical entities like accidents. Both are concepts that represent
elements of a domain. Finding all concepts of a domain is an elementary task for knowledge
base development. After the set of all concepts that describe a domain is defined, the
knowledge that comes in this concept set is by an ordering criterion. This ordering criterion
comprises semantic relationships, which relate the concepts to each other. In this sense,
a taxonomic hierarchy can be established as a top-level criterion to order concepts from
the most generic to the most specific. This taxonomy hierarchy subsequently serves as
a categorization of concepts. For example, a taxonomic relationship can be established
between the two concepts company and car producer with the company as a root node and

!See [26] and http://www.opencyc.org, last visited Sept. 18, 2016.
28ee http://wordnet.princeton.edu, last visited Sept. 18, 2016.

17

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2 Ontologies in Computer Science

the car producer as a leaf node. This means that the concept of company is more generic
than the concept of car producer, although generic means different things. On the one
hand, one concept is more generic than another if the set of extensional interpretations
describing the concept includes more single entities®. For example, a car producer produces
and sells cars, whereas a company manufactures products, provides services and performs
any other business. The products can be cars, as well as other things. Again, business
is a more general description than selling cars. Therefore, the set of entities (extensional
interpretations) that belong to the concept of a car producer is much smaller than the set
of entities that belong to the concept of a company (including car producers). Accordingly,
the car producer concept includes entities like Daimler AG and BMW AG but not Apple
Inc. By contrast, the company concept includes all three entities. On the other hand, a
concept is more generic than another one if at least the intentional setting contains fewer
attributes than the more specific one.

For example, the company concept can be described through the following set of at-
tributes: {is-company and do-business}. By contrast, the set of attributes that describes
the car producer concept contains an additional attribute that makes the concept more
specific: {is-company, do-business and produce-cars}. The most specific concepts are com-
parable due to the same set of attributes. They should be identified as ontological indi-
viduals in the ontology since these individuals are the current instances of the modeled
domain knowledge. All other concepts should be modeled as ontological classes. Follow-
ing the example of the company and car producer concepts above, Daimler AG should
be modeled as an ontological individual of the ontological class car producer. Ontological
classes inherit attributes (intentional settings) along the hierarchy from the most generic
to the most specific concepts. Therefore, ontological individuals are also instances of the
most generic ontological class as well as the more generic classes along the same hierarchy.
In addition, all ontological individuals that belong to the same ontological class have the
same set off attributes but can differ in their attribute values. Ontology design is a diffi-
cult engineering process, especially in the differentiation between ontological classes and
individuals (see [67]).

Other semantic relationships should also be placed in the ontology, besides the taxonomic
categorization. An example of this is a has-a relationship that links cars to accidents. This
relationship brings sense into the knowledge network, which contains the concepts of cars
and accidents (as long as the relationship has-a is clearly defined).

In the field of knowledge representation, a clear view of an ontology is necessary to enable
applications to work with this domain knowledge. Unfortunately, the general description of
what an ontology is can be interpreted in various ways. However, knowledge representation
using ontologies is a wide field of research initiated a long time ago. The term ontology
comes from the Greek language and means science of being. More than 2, 000 years after the
philosophical research in the field of ontologies began, Gruber answered the question in [30]
concerning what an ontology for modern knowledge representation should be. He named
an ontology as the “explicit specification of a conceptualization”. A conceptualization is an
abstract and simplified view of a domain that is described through a set of objects and a
set of relationships between these objects.

In their work [33], Guarino and Giarette discuss the topics of ontology and knowledge

3 Further information about the extensional and intentional description of concepts and semantic rela-
tionships can be found in [80], [76] and [50].

18

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2.2 Approaches of Ontology Engineering

representation in detail. They stated that the meaning of the word ontology tends to re-
main a little vague from their perspective. To underline this statement, they summarize
and analyze different interpretations of the term ontology. Accordingly, an ontology can
mean a “philosophy discipline”, an “informal conceptual system”, a “formal semantic ac-
count”, a “representation of a conceptual system via a logical theory”, a “vocabulary used
by a logical theory”, a “(meta-level) specification of a logical theory” and (as described in
[30]) a “specification of a conceptualization”. Guarino and Giarette stated that the first
interpretation differs from the other ones since it describes a philosophical discipline. By
contrast, they argued that the others have more a technical meaning of the word ontology.
Furthermore, they name the term “conceptualization to denote a semantic structure that
reflects a particular conceptual system ... and ontological theory to denote a logical theory
intended to express ontological knowledge”. Moreover, “conceptualizations ... are the se-
mantical counterparts of ontological theories”. By doing so, they try to clarify the technical
interpretation of the term ontology. They claimed that Gruber’s definition of an ontology
does not match the criteria and that the definition needed to be modified to reflect that
“an ontology is only a partial account of a conceptualization”. They finally provided their
own definition of a technical ontology that fits their interpretation: an ontology in one
sense is “a logical theory which gives an explicit, partial account of a conceptualization”
and in another sense it is a “synonym of conceptualization”. In [32], Guarino suggests the
following definition: “an ontology is a logical theory that constrains the intended models
of a logical language”. To summarize, various definitions of the term ontology exist in
literature, which can differ from each other.

The representation of domain knowledge through concepts and relation-
ships is the core statement of almost every definition. The concept of
Knowledge Representation in Context presented in [93] extends this core statement
and names three elementary components of an ontology: an Application Context in
combination with Conceptualization and Inference Rules. Following this, a matching
definition of the term ontology for this work is:

An ontology is a knowledge base that is described by an application context and defined
through a conceptualization in combination with inference rules.

2.2 Approaches of Ontology Engineering

Ontology engineering is a difficult task. Different approaches of methodologies building
ontologies are introduced in the literature. In [85], Uschuld and King discuss a methodol-
ogy for building ontologies. They explain that ontology development includes the stages of
“identifying the purpose”, “building the ontology (capture, coding and integration)”, “eval-
uation” and “documentation”. Identifying the purpose is close to the Application Context
due to the importance of questions regarding “... why the ontology is being built and what
its intended uses are”. Moreover, for their ontology development, Uschuld and King focus
on Gruber’s definition of ontology.

In [56], Lépez summarizes methodologies for building ontologies and compares them
with the IEEE Standard 1074-1995 for software development. Furthermore, he explains the
criteria for analyzing the different methodologies. For example, one criterion is the choice

19

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2 Ontologies in Computer Science

of a strategy for building the ontology, which can be application-dependent, application-
semidependent or application-independent.

In 2001, Noy and McGuinness wrote in [67] about their experiences in ontology engineer-
ing. The authors suggested the seven steps “determine the domain and scope”; “consider
reusing existing ontologies”, “enumerate important terms in the ontology”, “define classes
and the class hierarchy”, “define properties of classes”, “define the facetls of the properties”
and finally “create instances”. Furthermore, they discuss the reason why someone should
develop an ontology. They explained that the main reasons are sharing, re-use of domain
knowledge and making domain assumptions explicit. Ontologies are developed to separate
domain knowledge from operational knowledge as well as analyzing the domain knowledge.

According to Hosapple and Soshi, five approaches (“Inspiration”, “Induction”, “De-
duction”, “Synthesis” and “Collaboration”) of ontology-design are necessary to build an
ontology (see [44]). Additionally, in 2007, Braun, Schmidt and Walter named five steps of
ontology engineering using a collaborative approach: “emergence of ideas”, “consolidation
in communities”, “formalization” and “aziomatization” (see [7]). In 2001, Staab et al.
stated that ontologies are the appropriate answer to the question of how to build some
kind of organizational memory for IT-supported knowledge management solutions in en-
terprises (see [77]). They introduced a meta-process for ontology engineering that includes
two steps. The first step is the feasibility study phase, which comprises project-setting
activities like identifying the problem. The second step is the ontology development itself,
which is again divided into four tasks: ontology kickoff, refinement, evaluation and main-
tenance. An ontology kickoff task focuses on early development steps that concentrate on
typical questions for the goal, domain and scope or usage scenarios. Therefore, the output
is an ontology requirements specification that should guide the ontology engineer in further
development steps. In the refinement phase, “a mature and application-oriented ontology”
should be built upon the base of the ontology requirements specification built in the on-
tology kickoff phase. In the evaluation phase, the ontology will be — inter alia — tested and
analyzed through beta tests. The maintenance phase concentrates on the life cycle of the
ontology. The authors argue that an ontology has to be “maintained frequently like other
parts of software”. The authors depict that the three phases of refinement, evaluation and
maintenance should form an iterative process during the ontology life-cycle.

Later in 2002, Gruninger and Lee presented their findings about the use of ontologies
and ontology engineering (see [31]). They stated that ontology engineering “considers
the entire ontology life cycle”, which again comprises “design, evaluation, validation, re-
vision and deployment”. Furthermore, they identified two kinds of extremes in ontology
design: small lightweight ontologies, which were built to share and merge knowledge; and
heavyweight formal ontology, which were mostly built and developed by “consortia and
standards organizations”. Fernandez-Lopez and Gémez-Pérez stated in 2002 that no com-
pletely mature proposal for building ontologies exists (see [25]). The authors introduced
methodologies for building ontologies from three different groups and compared them with
the IEEE 1074-1995 standard for software development that comprises the following steps:
project management phase, software development-oriented processes, (pre-development pro-
cesses, development processes, post-development processes) and integral processes. The
three groups of methodologies for building ontologies were:

1. methodologies for building ontologies from scratch or reusing them without trans-
forming them: Cyc, Uschold and King, Griininger and Fox, KACTUS, METHON-

20

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2.3 Structuring and Using Ontologies

TOLOGY, SENSUS.

2. A methodology for re-engineering ontologies that comprises the three steps: reverse
engineering, restructuring and forward engineering.

3. Methodologies for cooperative construction of ontologies: CO4 and (K A)%.

The authors found that none of the methodologies for building ontologies completely
match the IEEE process, “since there are some ... techniques that are missing in all these
methodologies”. Pinto and Martins provided an overview of ontology building in 2004 (see
[71]). They describe the development life-cycle of ontologies that comprises specification,
conceptualization, formalization, implementation and maintenance. Additionally, knowl-
edge acquisition, evaluation and documentation should be the activities that accompany
the whole development of life cycles. The authors also describe and analyze methodologies
to build ontologies from scratch (TOVE, ENTERPRISE and METHONTOLOGY). They
came to the conclusion that ontology building remains “more a craft than an engineering
task”.

2.3 Structuring and Using Ontologies

The objective of almost every ontology-based knowledge engineering process is a storage
structure that holds the ontological elements. Such a storage structure can be informal,
such as natural language text files or described by a database schema. The Web Ontology
Working Group of the W3C developed a knowledge structure that was based upon RD-
F/RDFS to store and share ontological knowledge. Therefore, in 2004, the W3C gave a
recommendation for the Web Ontology Language (OWL) (see various web-articles at [12]).
Before that, Horrocks, Patel-Schneider and van Harmelen wrote an article about the rise of
OWL in 2003 (see [45]). In the same year, Bouquet et al. presented their work in [6], where
the authors extended the OWL language (called C-OWL) to allow the representation of
contextual ontologies. Contextual ontologies are again “local (... not shared) models that
encode a party’s view of a domain”.

Ontologies can be categorized along different attributes. Therefore, many researchers
focus on the usage and importance of ontologies for different areas. For example, the dif-
ferences of database schema evolution and ontology evolution were discussed by Noy and
Klein in an article in 2004 (see [66]). Furthermore, the authors summarized the evolution
of ontology research in the field of computer science. They stated that the research in-
terests started with “defining what a formal ontology is” and subsequently the researcher
focused on representation languages for ontologies. Later on, the research shifted to the
“vision of widespread and reuse of ontologies”. After this, the development of content on-
tologies (like OpenCyc) emerged as the most important research field. Having developed
a large set of ontologies, researchers focus on the topics of merging ontologies. Finally,
the authors state that evolution and versioning of ontologies are current research interests
in the field of ontology research. Benjamins et al. discuss in [4] knowledge management
through ontologies. They introduce a methodology of annotating HTML pages with on-
tological facts to enable retrieval across a large community of similar domain knowledge.
They argue that this kind of knowledge management is based upon ontologies that can
be specifically used in companies. Furthermore, they distinguish between two types of

21

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2 Ontologies in Computer Science

knowledge management systems: “wvertical and horizontal systems”. Vertical knowledge
management systems are “often developed inside a company and are highly situation spe-
cific”. By contrast, horizontal knowledge management systems can be “applied to a variety
of business situations”.

In [9], Chandrasekaran, Josephson and Benjamins write about ontologies and the role
that they play in information systems and AI. They explain that ontologies belong to
the content theory about “sorts of objects, properties of objects, and relations between
objects that are possible in a specified domain of knowledge”. In their work, the authors
focus on the different aspects of understanding ontologies and the conceptualization by
natural language terms and relationships. Representation vocabularies are sets of terms
that describe facts of the given domain, while the body of knowledge is a collection of facts
about the domain. Moreover, they explain different usages of ontologies — for instance
— that are used in information retrieval systems, explaining that Internet search engines
“need domain ontologies to organize information and direct the search processes”.

When the semantic web emerged in 2000, ontologies were named as knowledge structures
that could help to bring an understandable order and reasoning to a semantic machine in
the chaos of the growing world wide web. Researchers focus on semantic web technologies
and the use of ontologies in this field. For example, in 2001, Maedche and Staab presented
their findings about learning ontologies and their use for the semantic web in [59]. They
argued that the success of the semantic web depends — for example — on ontologies and
the requirement for their fast and easy engineering. Ontology learning itself “facilitates
the construction of ontologies by an ontology engineer”. They presented their ontology en-
gineering workbench OntoEdit that helps to create ontologies for the semantic web, which
should include the import of existing ontologies. Modeling and information extraction of
existing source documents (web pages that help to build ontological knowledge). These
documents can be structured (databases), semi-structured (schema-information) or free
text. Moreover, the authors consider a process of ontology learning that combines knowl-
edge acquisition with machine learning. For the authors, an ontology comprises a number
of sets of concepts, relations, lexical entries and links between these entries. Other authors
postulated similar ontology elements over the years. For example, in 2006, Sure, Ehring
and Studer (see [82]) argued that an ontology should include a lexicon that is a terminolog-
ical mapping of the domain, concepts, semantic relations and rule-based links between the
concepts. Maedche et al. (see [59]) explained the relations between concepts are divided
into a set of taxonomy relations, a set of non-taxonomy relations between concepts and
relations that relate concepts and relations to their lexical entries. Finally, a set of axioms
“that describe additional constraints of the ontology” should belong to an ontology.

In 2001, Wache et al. characterize in their article (see [91]) the three main architec-
ture approaches: “single ontology approaches, multiple ontology approaches, and hybrid
approaches”. While single ontology approaches use a global ontology to describe all of the
information sources, multiple ontology approaches describe every information source via
its own ontology (local ontology). Hybrid ontology approaches, instead, establish a global
shared vocabulary over the local ontology to make the local ontologies comparable.

Maedche and Staab stated in 2002 that there is a need for measuring similarity between
ontologies. This need is founded on the requirements of extending, adapting or compar-
ing ontologies with other existing ontologies. Therefore, they focus their research on the
measurement of similarity between ontologies (see [60]). They introduce methods for mea-
suring the similarity between two different ontological levels: the lexical and the conceptual

22

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2.3 Structuring and Using Ontologies

level. At the lexical level, a measure based upon the Levenshtein’s edit distance (see [54]
for more information about Levenshtein distance) is used to calculate the string similarity
of lexical entries of the two ontologies. At the conceptual level, concepts (hierarchical
ranges) and relations (domains and ranges) of the two ontologies were compared. Fur-
thermore, the authors performed an evaluation study at an ontology engineering seminar.
They wanted to determine the quality of their measures and “get an intuition about how
similar ontologies of the same domain that have been modeled by different persons”. They
let the users first build a taxonomy with a given top level structure. Second, they build a
taxonomy (including relations) with a given set of concept-describing terms. Third, they
build relations over a given taxonomy. According to the authors’ results, it was interpreted
that lexical entries referring to concept “have a considerably higher agreement” than ones
referring to relations. Furthermore, they state that users who have to model a taxonomy
“tend to agree or disagree on taxonomies irrespective of the amount of material being prede-
fined”. Additionally, they ascertained that users “found it easy to use a predefined lexicon
but extremely difficult to continue modeling given a predefined taxonomy”. The authors’
summary about their measures is that they can be applied in different application fields
to measure the similarity between two given ontologies. The use of Levenshtein distance
seems to be a valid model for comparing the taxonomic lexical entries of two concepts.
This is important for ontologies that represent domain-specific snippets of the world that
can be described through natural language. However, the approach can also be used for
ontologies that describe similar sets of objects (documents and sources). Measuring the
similarity of documents is important due to the task of updating document information:
documents can change over time and can be added or deleted. The measurement presented
in [60] can be used to compare attributes values of given documents.

The research in the field of ontologies remains ongoing and has become increasingly
relevant in different fields of computer science. However, not all of it holds relevance for
the given research work. For example, Roman et al. describe in their article (see [72]) a web
service modeling ontology (WSMO) that provides a formal language for describing relevant
aspects of web services “in order to facilitate the automatization of discovering, combining,
and invoking electronic services over the Web”. Wang et al. presented in 2004 their work
on context modeling and their reasoning was using OWL in [92]. Ontologies for enterprise
knowledge management are discussed by Meadche et al. in [58]. The authors present their
research on enterprise knowledge management architecture to “support multiple ontologies”
and “manage ontology evolution”. In 2006, Noy et al. introduced a framework for ontology
evolution in collaborative environments (see [65]). They analyze and categorize “different
scenarios for ontology maintenance and evolution”, develop a solution in a “single unified
framework” and implement the solution as a set of plugins for the Protégé* software.
In 2007, Ding et al. provided an overview of findings in the field of using ontologies in
the semantic web and semantic web languages such as RDF/RDFS, DAML+OIL and
OWL (see [20]). Accordingly, the semantic web language is relevant for knowledge storing,
including for this work. Furthermore, the authors discuss different web ontology tools:
ontology editors (Protégé, SWOOP), ontology repositories (like DAML Ontology Library
or Swoogle) and ontology language processors for reasoning (like FaCT++, Racer and
Pellet).

4Protégé is an open source editor for modeling ontologies and available at http://protege.stanford.edu,
last visited Sept. 18, 2016.

23

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

The concept of Knowledge Representation in Context introduces the Application Context
as a frame that helps to understand a domain as well as the need for a knowledge base
containing domain information. The domain of solving complex business tasks and the
requirement to access documents that help to solve the tasks result in a need for such a
knowledge base. This knowledge base comes in the form of an ontology.

This chapter describes an ontology that was developed to represent documents, storage
containers of documents, attributes of documents, restrictions of document validations
and relationships between documents. This ontology is called AIRS Knowledge Base
(AIRSKB) and contains ontological elements (classes, individuals and relationships) to
model an adaptive knowledge network of documents. In this chapter, the Conceptualiza-
tion of AIRSKB is explained and Inference Rules as a frame for navigation through the
ontology are introduced.

As stated above, AIRSKB is an ontology that combines a model of documents, sources of
documents and document restrictions of document validations with the users’ understand-
ings of related information. Related information means different kinds of relationships
between documents between the documents and their relationship strange can change over
time depending on a rating of relevance. AIRSKB is an adaptive knowledge network that
was developed during the research phase of this work. By its nature, AIRSKB is an on-
tology with classes, individuals and weighted relations between the individuals (see [30],
[9] and [34] for a detailed introduction to ontologies). According to the characterization
of ontologies presented in [91], AIRSKB is based upon a single ontology approach be-
cause each of the sources is modeled through use of the same domain-specific ontology.
To reach this, an approximated and general valid model across documents, sources and
document relationships was developed. This model can be used to represent any kinds
of new document sources as long as the sources fit a set of restrictions of the ontological
model: the source must contain documents, documents comprise segments and segment
values and documents can be related to each other. Moreover, AIRSKB is not a global
ontology; rather, it is highly domain-specifically built for approaches that need document
representations.

The development of AIRSKB followed an application-dependent strategy (see
[56]) due to the process of abstraction of documents and sources and their use
for given business dependent retrieval. It was built by using the concept of
Knowledge Representation in Context, which is presented in [93] and [95]. It comprises
three parts of ontology development:

e Application Context provides an answer to the following questions: why is an ontol-
ogy necessary, how should it look like and for what should it be made?!

!The ontology kickoff task, presented in [77], is similar to the Application Context ontology-engineering
phase where the scope of an ontology is identified.

24

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

e Conceptualization is a complex model that comprises classes, individuals and
weighted semantic relations between the individuals.

e Inference Rules are necessary to navigate through the ontology.

While developing AIRSKB, the current understanding of what an ontology for this work
is and the approaches discussed in literature served as frame for the ontology engineering
steps. Therefore, existing approaches (see previous section) were adapted to the following
design steps:

1. Initial activities. Focusing on the questions that the Application Context defines.
This helps to understand the domain and the need for an ontology (see Section 3.1).

2. Performing conceptualization. The step defines classes and relationships (see Section
3.2).

3. Defining inference rules. The theoretical frame for the knowledge acquisition (see
Section 3.3) means defining the mathematical background. Axioms and equations
enable ontological reasoning.

4. Performing indexing. This step involves the process of the ontological individuals
that match the frame of the conceptualization (the real-world entities that belong to
the ontology). This is presented in Section 5.1.

5. Ontology representation. Defining an ontology representation framework or language
that can be used to share the ontology among applications and people. This also
involves the technology concerning how the ontology can be used in applications.

6. Performing application usage and ontology evaluation. This step comprises the usage
of the ontology in an explicit application environment. This can be seen as a second
evaluation step, which guarantees that the ontology is at least usable. Developing
and testing a prototype solution that uses the ontology is similar to this step (see
Chapter 8).

The engineering approach presented in [59] (see previous section) differs from the ap-
proach that was used to build AIRSKB due to the different application contexts: AIRSKB
is an ontology that describes a world of documents rather than describing the world of
concepts based upon the content of documents. However, the engineering processes differ
(AIRSKB’s construction does not necessarily contain knowledge acquisition algorithms like
text-mining technologies to identify concepts and semantic relations?), although the un-
derstanding of ontological elements is similar: AIRSKB comprises concepts and relations
between these concepts and the Inference Rules build constraints that include axiomatic
knowledge about the domain.

2Except advanced usages of AIRSKB’s architecture like the Suggest Cluster Algorithm, as described in
Section 5.4.

25

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

3.1 Application Context

Because an ontology is mostly designed for a specific scenario, understanding the Appli-
cation Context should be the starting point for every ontology-engineering process. Just
because there are different types of design goals (ontology as world of entities, ontology
as lexicographic knowledge base and ontology as modeling paradigm, see [93] and [95]),
several ontologies may differ in terms of both semantics and structure. Following this,
an Application Context is a use-case-triggered engineering paradigm that has an impact
on both the conceptualization as well as the theoretical and mathematical background.
However, what is the best way to deal with it? The quintessence of understanding the
Application Context is a clear view of the domain, the Conceptualization and the need for
Inference Rules later in the ontology development process. The question is: how can work
steps be defined for the design of an ontology and what must be considered? Following
these findings, facing the Application Context means to exploring the underlying domain
and answering a catalog of questions (see [93]):

a) Is there finally a use case for an ontology? The main focus here is the question of
“why”. Regarding the use case, is there really a need for an ontology? If yes, what
are the key benefits of using an ontology?

b) Is it possible to generate or define relations between ontological concepts? Relation-
ships are necessary for every ontology. They are the glue that holds together the
concepts. Moreover, relations bring sense and semantic knowledge into an ontology.
To summarize: without relations, an ontology seems quite useless for many scenar-
ios. Therefore, it is very important to have a clear understanding about the essence
and the possibility of finding or defining relations early in the ontology engineering
process.

o
~

How to perform the conceptualization? At least, the domain needs to be modeled:
it must be clear which kinds of concepts and relations take part and how they can
be mapped to a specific syntax of an ontology language or any other kind of storage.
One question is: which kinds of concepts and relations are good representations for
both the domain and the underlying use case? The main focus here is the underlying
use cases’ impact on the conceptualization.

2

Are there additional influences? A conceptualization should paint a clear picture of
the world to be modeled. Often additional influences like conditional relationships
between concepts are necessary to paint such a clear and believable picture of the
domain. It is necessary to validate the concepts and relations to existing real-world
use cases to locate conditions. Therefore, the demand of conditional relationships
can be formulated. The task is to bring these conditions into the ontology (if they
exist).

With respect to a top-down analysis of use cases in the domain of business case triggered
document search, these general questions were adapted as follows:

a) Why use an ontology for retrieval of documents? For the use case of overall retrieval,
it is necessary to define pathways across system boarders. Additionally, a struc-
ture is necessary that can represent, adapt and learn knowledge about document
relationships. An ontology as knowledge structure can guarantee all of this.

26

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.1 Application Context

b) How is it possible to realize relationships between documents of different document
locations? Documents stored in different locations (for example, isolated retrieval
systems) are not connected to each other. Unfortunately, an overall view of all
documents and all of the relationships between them is mandatory for various use
cases. By harvesting the domain, two ways were found to set or indicate relationships
between documents (also across system borders): relations can be defined by editorial
processes as well as approximated by harvesting the use cases where documents of
several document systems were used together.

¢) How to perform the conceptualization of documents and different document locations?
In the case of a different document sources and business case triggered search, doc-
uments and even the locations where they appear (sources) can be seen as central
concepts. The next section discusses AIRSKB’s conceptualization in detail.

d) What are existing conditions for document relationships? The question is: what is a
condition of a relation at all and where does it come from? For AIRSKB, this can be
answered by Example 1 that explains the concepts of different document locations
and processes of car workshop processes. It depicts a relationship between a repair
instruction and a set of replacement parts necessary for the car repair under the
condition of a special car model. Documents are concepts that can be related to
each other. Again, conditions should also be modeled as concepts and they must be
linked to the documents to which they belong. Accordingly, a conditional relationship
between documents exists, if at least all related documents belong to the same set of
conditions. Chapter 4.1 explains the concepts of AIRSKB more in detail.

To summarize, the Application Context provides a clear view of the conceptualization
and it can be seen as some kind of legitimization for later ontology development processes.
Moreover, it depicts the role of the ontology in a component landscape. For an approach
of business case triggered document search, this means that the ontology helps to build a
semantic knowledge network. Accordingly, connections can be realized between different
document locations. A general definition of a document can be established to enable an
overall view of documents. This overall view is subsequently used for document retrieval
across system borders. Somehow, a concept is an idea of what a document is should
be defined in the conceptualization. The Application Context also helps to identify these
relations between documents. Furthermore, it helps to understand that those relationships
also can arise from editorial processes or by evaluating old use cases. It also helps to
understand how conditions in document relationships can appear and whether they have
an influence on the relationships. The next step of AIRSKB engineering process is the
Conceptualization itself and later the definition of Inference Rules where best context-
sensitive pathways are defined for the overall document retrieval.

27

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

By looking at repair instructions and replacement parts, it is clear that these kinds
of documents can only be used for a special car model type or a limited group of
similar car model types. This means that a workshop employee only needs those
repair instructions and replacement parts that fit both the current service task and
the customer’s car type.

Example 1: Understanding a conditional relationship that exists in car workshop processes
between different kinds of documents.

3.2 Conceptualization

Conceptualization comprises ontology engineering where concepts and relationships of a
given domain are identified and modeled for a particular use case defined by the Applica-
tion Context. This section describes the Conceptualization of AIRSKB in detail. Section
3.3 subsequently introduces the corresponding formal definitions of the same AIRSKB ele-
ments. The following notation is valid for all elements of AIRSKB and helps to distinguish
between ontological elements (classes and individuals) and the objects that they represent:

DOCUMENT (written in small capitals) means both an ontological class or an ontological
individual of the class DOCUMENT. For example: a class is meant by formulations
like “ ...the class DOCUMENT ...”7, “ ...of class DOCUMENT” or “...of concept
DocuMENT”. Typical elements include: D for class Document or S for class Source.
Instead, an ontological individual of the class DOCUMENT is meant by formulations

like ¢ ...a DOCUMENT ...” or “...a DOCUMENT has”. Several ontological individ-
uals are meant by formulations like “ ... DOCUMENTS of ...” or “ ...concepts of
DocuMENT”. Typical elements include: d, dy, ds, ..., d,.

A document (written in lowercase) means the object that is represented by the ontological
individual DOCUMENT (see definition of document in Section 4.1).

The same statements apply also to the other elements of AIRSKB (source versus
SOURCE, for example). Therefore, typical elements for SOURCE individuals include: s,
S1, S2, -+ -, Sp. By harvesting both use cases and a retrieval system landscape, the follow-
ing findings about a domain of document search were made (see [93]):

e The contents of each document location (isolated retrieval systems, for example) are
documents.

e These documents are attributed or segmented.

e Documents of the same document locations are attributed or segmented in a similar
way.

e Documents can be related to other documents (multiple documents were used to-
gether in a single case, for example).

e Relations can be restricted by validity conditions (conditional relationships).

28

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

e These conditions correlate with the information needs of the users.

This means that concepts for documents and document locations must be modeled.
These documents are attributed or segmented and can have multiple validity conditions.
Relations providing information about related documents should also be represented in
the ontology. These relationships build a network of related documents and it should
be possible to navigate through this network from any document to all of the related
documents. In this sense, pathways must be described and mathematical formulas for
pathway calculations must be established (see Section 3.3). Therefore, ontological elements
for all these requirements are necessary.

Replacement part information of an electronic parts catalog, case describing symptoms
of a symptom taxonomy, work units of a work unit catalog and the repair instruction
documents are elements that are used together in a car repair process by a workshop
employee. Each of them is a single element of information. In AIRSKB, these elements
are represented through concepts called DOCUMENTS.

Example 2: Understanding the concept DOCUMENT by example of a car workshop process.

Documents, Sources and Document-Attributes

The concept DOCUMENT is the core entity of AIRSKB and represents a unit of semantically
grouped data where the groups comprise different attributes or segments. A group again
serves as information literal that is used to solve a particular problem of a business case.
Real world examples for the concept DOCUMENT are repair instruction documents, Intranet
pages, emails, technical reports or a requirements document.

As written in Example 2, work units come from a work unit catalog and case-describing
symptoms are categorized in a symptom taxonomy tree. Furthermore, replacement
parts are available in the electronic replacement parts catalog. Instead, repair instruc-
tions are stored and accessible via the workshop information system, etc. Each of these
systems is modeled through a SOURCE concept.

Example 3: Understanding the concept SOURCE by example of a car workshop process.

29

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

/ O\

B subClassOf A
0 ; ."

SOURCE-RELATION

is-saurce-related-to(u a 0}

v 2]
CONTEXT-ATTRIBUTE || DOCUMENT-ATTRIBUTE ATTRIBUTE-RELATION W
- >

* 5 is-attribute-related-to(», 2)
» * > document-of(,)

context-of-source(®, o)

N ,/

Figure 3.1: AIRSKB class hierarchy and visual representation of typical elements.

DOCUMENT-RELATION

is-related-to(7,)
is-linked-to(»,)

30

80, am 23.01.2028, 23:34:49. © Lrheberrechtlich geschutzter Inhalt k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

document-of(dy,s1)
SOURCE s

S

DOCUMENT dy DOCUMENT dj

DOCUMENT d3 DOCUMENT d3

{

1) L SOURCE s3 2)

~
context-attribute-of-document(acy,dj)

document-attribute-of-source(a,s1)
CONTEXT-ATTRIBUTE acl

- ’
. X context-of-source(cy,s1)/
vy ;
/ ,
DOCUMENT-ATTRIBUTE a1 A ! // CONTEXT c1

DOCUMENT-ATTRIBUTE a» ’

TR
S
R
’ N ']
S /
, 7
, , .
/
’ 7
, ,

<
, CONTEXT-ATTRIBUTE aCz

document-attribute-of-document(az,d;) 3) L context-attribute-of-context(acy,c1) /

Figure 3.2: DOCUMENTS (Box 1) related to “their” SOURCES (Box 2). Box 3 shows
DOCUMENT-ATTRIBUTES, DOCUMENTS and SOURCES. All DOCUMENT-ATTRIBUTES that
a DOCUMENT can have are linked to the SOURCE. Only the DOCUMENT-ATTRIBUTES
that a document has are linked to a DOCUMENT. Box 4 shows CONTEXTS, CONTEXT-
ATTRIBUTES, DOCUMENTS and SOURCES. CONTEXTS are linked to SOURCES. CONTEXT-
ATTRIBUTE (values of the contexts) are linked to the DOCUMENTS.

31

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

Example 2 describes the idea of the concept DOCUMENT in detail by means of a work-
shop use case. In other words, a DOCUMENT concept represents a single element of an
information set that is used somehow in processes. Figure 3.2, Box 1 visualizes the idea of
DOCUMENT concepts as small balls. A SOURCE concept stands for the document location
(an isolated retrieval system, for example), where similar DOCUMENT entities come from.
Example 3 describes the concept SOURCE.

Figure 3.1 shows the class hierarchy of AIRSKB and depicts individuals that belong
to the classes in the speech bubbles. In the Figure, the two main classes OBJECT and
RELATION describe the two distinct entity sets that are part of AIRSKB, namely the ob-
jects and semantic relationships between them. OBJECT is the super class of the classes
DOCUMENT, SOURCE, ATTRIBUTE and CONTEXT. Entities that belong to the class Doc-
UMENT represent single information carrier that are used in processes (for example, PDF
documents containing repair instructions).

The SOURCE class contains all of the representations of document locations. For exam-
ple, isolated retrieval systems that contain documents are represented through SOURCE
entities. CONTEXT is the class that represents a validity condition imposed upon the docu-
ment of a document location. For instance: one entity or individual of the class CONTEXT
can be the representation of product types. This means that documents of an isolated
retrieval system can be valid for special product types only. ATTRIBUTE is the super
class of all attributes. DOCUMENT-ATTRIBUTE is more specific than ATTRIBUTE because
it represents a segmentation a document has as. By contrast, CONTEXT-ATTRIBUTE de-
scribes a special validity condition that belongs to a document. The class RELATION is the
super class of all relations that are part of the AIRSKB ontology. DOCUMENT-RELATION
represents all relationships that can appear between DOCUMENT individuals: is-related-to
and is-linked-to relationships. Additionally, the class SOURCE-RELATION represents all re-
lationships between SOURCES: is-source-related-to and is-source-linked-to. Furthermore,
the ATTRIBUTE-RELATION class represents all of the is-attribute-related-to relationships
between DOCUMENT-ATTRIBUTES of AIRSKB. By contrast, the SYSTEM-RELATION class
represents all of the relationships that build the structure of the document network. Ex-
amples are the document-of relationships that link the DOCUMENTS to “their” SOURCES.
Table 3.1 provides an overview of all relationships of AIRSKB. As stated above and illus-
trated in Figure 3.2 (Box 2), DOCUMENTS are related to the SOURCE to which they belong
via a document-of relationship. This type of relationship depicts occurrence of documents
in document locations. Both the concept name and the concept id are properties of the
symptom node.

Replacement parts are described through a set of attributes; for example, a replace-
ment part has a name, a description, a size and a price. All these attributes (“name”,
“description”, “size” and “price”) are modeled as DOCUMENT-ATTRIBUTES. Another
kind of DOCUMENT-ATTRIBUTE interpretations are segments of a technical informa-
tion document that contain different information. For example, these documents have
different text segments for “complaint”, “remedy” and “symptoms”. Each of these
segments is represented via a DOCUMENT-ATTRIBUTE in AIRSKB.

Example 4: Understanding the concept DOCUMENT-ATTRIBUTE by example.

32

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

The concept of a DOCUMENT-ATTRIBUTE represents an attribute or a segment of a
document. Because DOCUMENTS of the same SOURCE comprise similar attributes or seg-
ments, DOCUMENT-ATTRIBUTES also belong to SOURCES: if a DOCUMENT-ATTRIBUTE
belongs to a SOURCE, the DOCUMENT of this SOURCE comprises the segmentation or
attribution that is represented through the DOCUMENT-ATTRIBUTE. Since an attribute
or segment of the “real”-world document is a key-value pair, a segment can be empty
or the attributes have a null value. Accordingly, only real-world document segments or
attributes with no null values are relevant for AIRSKB. DOCUMENT-ATTRIBUTES only
provide information about not-null-value segments or attributes of a document. In this
sense, DOCUMENT-ATTRIBUTES belong to SOURCES via a document-attribute-of-source
relation and through a document-attribute-of-document relationship with DOCUMENTS.
Figure 3.2, Box 3 shows DOCUMENT-ATTRIBUTES and their relationships. Example 4
describes the concept of DOCUMENT-ATTRIBUTE.

Contexts and Context-Attributes

Validity of documents can be limited by several conditions. These conditions are con-
straints for the usage of documents in a given use case. Example 5 describes in detail what
such a document condition is. Following this, the concept CONTEXT is a representation for
a group of similar validity conditions and a condition itself is represented through use of
the concept CONTEXT-ATTRIBUTE. The relationship context-attribute-of-context binds
a condition (CONTEXT-ATTRIBUTE) to the group to which it belongs (CONTEXT). As
shown in Figure 3.2 (Box 4), CONTEXTS can be linked to SOURCE concepts and CONTEXT-
ATTRIBUTES can be linked to DOCUMENT concepts, if the CONTEXT-ATTRIBUTE’S CON-
TEXT is linked to the DOCUMENT’S SOURCE. This means that CONTEXTS provide in-
formation about possible DOCUMENT validity conditions (CONTEXT-ATTRIBUTES) for
all SOURCES to which the CONTEXT is linked. The link between CONTEXTS and
SOURCES is described by via the context-of-source relation and the link between CONTEXT-
ATTRIBUTES and DOCUMENTS is modeled with the context-attribute-of-document rela-
tionship.

By looking at Example 2, various documents are used in the car repair. However, these
documents only apply to the customer’s vehicle. For another vehicle with a similar
damage, the workshop employee needs other kinds of documents. As stated in Example
1, replacement parts fit only one car type or a limited set of similar car types. These
document constraints are validity conditions. Following this, “car type” is a generic
term for special kinds of validity conditions (class of particular validity conditions)
and special kinds of car models are particular validity conditions. In AIRSKB, special
classes of validity conditions are modeled as CONTEXT concepts and particular validity
conditions are represented through CONTEXT-ATTRIBUTE concepts.

Example 5: Understanding the concepts CONTEXT and CONTEXT-ATTRIBUTES by example.

33

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

System-Relations

These kinds of relationships represent the structure of the heterogeneous document land-
scape. They relate DOCUMENT individuals to “their” SOURCE individuals or CONTEXT-
ATTRIBUTE individuals to “their” CONTEXT individuals. Examples are document-of,
context-attribute-of-context or document-attribute-of-document. For example, Box 2 of
Figure 3.3 shows a visualization of a document-of relationships between DOCUMENT d1
and SOURCES sl. Boxes 3 and 4 show different kinds of SYSTEM-RELATIONS: document-
attribute-of-source, document-attribute-of-document, context-attribute-of-source, context-
attribute-of-document and context-attribute-of-context.

Document-Relations, Source-Relations and Attribute-Relations

Example 2 describes how documents of various sources can be part of the same car repair
case. In general, all these documents are (somehow) related to each other. More specifi-
cally, Example 2 depicts a relationship between replacement parts and a repair instruction
for the parts installation. This seems to be a case-independent relationship. Moreover,
between symptom nodes of a symptom taxonomy exist as a hyponymy relationship. These
kinds of relationships are modeled in AIRSKB within is-related-to for adaptive relations
and is-linked-to for constant relationships (assuming that nodes of a symptom taxonomy
are modeled as documents). The following restrictions apply to DOCUMENT-RELATIONS
represented in AIRSKB:

1. DOCUMENT-RELATIONS are homogeneous relations across the set of all Docu-
MENTS.

2. DOCUMENT-RELATIONS are symmetric. — Relations between DOCUMENTS of
AIRSKB are non-directional because AIRSKB is a simplified model of document
relationships. The relations represent only the information that documents are re-
lated to each other. This information is not directed.

3. DOCUMENT-RELATIONS are strict (irreflexive). A relationship of relevance between
the same document constitutes a tautology. Representing this information in the
ontology as a DOCUMENT-RELATION between DOCUMENTS causes cycles in paths
and thereby infinite loops when calculating pathways.

4. Only one DOCUMENT-RELATION between the same two DOCUMENTS can exist (see
Section 3.3). The reason is because AIRSKB only represents the information that
documents are related to each other.

Additionally, Section 3.3 explains AIRSKB relationships more in detail. Figure 3.3
shows a visualization of DOCUMENTS, SOURCES and relationships between them. Box 1
shows a group of related DOCUMENTS and Figure 3.3, Box 3 demonstrates what a hy-
ponymy relationship between DOCUMENTS of a SOURCE can look alike. Relationships
between SOURCES cannot exist without at least one relationship between two DocCU-
MENTS of both SOURCES; see Figure 3.3, Box 2. SOURCE relationships can be adaptive
(is-source-related-to) or constant (is-source-linked-to). In turn, this makes a SOURCE re-
lationship an indicator for DOCUMENT relationships. Additionally, the same restrictions
for DOCUMENT relations also apply to SOURCE relationships.

34

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

L. DOCUMENT-ATTRIBUTE a1
» ‘\. »
. \ DOCUMENT d3
' . i
! \. r DOCUMENT d3) S
\ . /' DOCUMENT-ATTRIBUTE a3
I/
DOCUMENT d, is-attribute-related-to(aj,az)
is-linked-to(d1,d3) document-attribute-of-document(az,d3)
is-related-to(d;,d3) 1 2
J . J
4 N
SOURCE s1
’—\\.

"
.y

is-related-to(d;,dq)

DOCUMENT d3 /

SOURCE S»
3 is-source-related-to(s3,s1) 4
o J - J

Figure 3.3: DOCUMENTS can be related to each other via is-related-to or is-linked-to relation
(Box 1). DOCUMENT-ATTRIBUTES can be related to other DOCUMENT-ATTRIBUTES (Box
2). A hyponymy relation between DOCUMENTS of the same SOURCE can be modeled using
AIRSKB, as shown in Box 3. SOURCES are related to each other if at least one relationship
between two DOCUMENTS of both SOURCES exists (Box 4).

35

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

DOCUMENT-ATTRIBUTES can be related to other DOCUMENT-ATTRIBUTES within the
adaptive is-attribute-related-to relationships that describe how DOCUMENTS can be re-
lated to each other (via an attribute or a segment). Figure 3.3, Box 3 displays such a
relation. Relationships between attributes or segments of different documents are repre-
sented through the ATTRIBUTE-RELATIONS is-attribute-related-to. These relationships
can exist between two DOCUMENT-ATTRIBUTE individuals.

Pathways Through the Document Network

AIRSKB’s pathways follow the path definition of graph theory. This means that
AIRSKB can be interpreted as a kind of undirected graph with DOCUMENTS as nodes
and DOCUMENT-RELATIONS as edges. The graph is undirected because DOCUMENT-
RELATIONS are symmetric. A pathway is subsequently a trail of distinct DOCUMENTS
(nodes in the graph theory), where any two consecutive DOCUMENTS are part of a
DOCUMENT-RELATION (edges in the graph theory). Section 3.3 explains AIRSKB path-
ways more in detail for all elements of AIRSKB. In general, DOCUMENT pathways rep-
resented in AIRSKB comprise a set of n DOCUMENTS and a set of n — 1 DOCUMENT-
RELATIONS between the n DOCUMENTS:

1. One DOCUMENT (as start node) is a defined as a start point of the pathway and
another one is the defined end point (as end node). Start DOCUMENTS and end
DocUuMENTS are different. This means that DOCUMENT pathways are cycle-free.

2. Edges between DOCUMENTS are represented by DOCUMENT-RELATIONS. The start
DoCUMENT as well the end DOCUMENT are both part of only one DOCUMENT-
RELATION of the DOCUMENT-RELATIONS set. The start point DOCUMENT as well
as the end point DOCUMENT are part of the same DOCUMENT-RELATION if both
are the only ones in the DOCUMENT set (a path of only two DOCUMENTS). All other
DOCUMENTS of the DOCUMENT set are part of exact two DOCUMENT-RELATIONS
of the DOCUMENT-RELATIONS set.

As mentioned in Example 2, a workshop employee needs to select some case describing
symptom nodes to open a new service case in the workshop’s management system.
While selecting the symptoms with the aid of AIRSKB, useful replacement part as-
sumptions can be made. This is because an information need can be “carried” through
a heterogeneous document landscape. Now let the information need be the search for
the symptom nodes in the symptom taxonomy. Furthermore, let the symptom nodes
found be related to some technical information documents of the technical informa-
tion and problem-solving system. If at least these technical information documents
are related to some replacement parts of the electronic parts catalog, the employee’s
information need can be carried from one source to another and a replacement parts
assumption can be made, even during the service case opening.

Example 6: Understanding hidden knowledge and pathways by example.

36

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

(&

4 N\ 4
SOURCE s3
document-of(dj,s3) \
DOCUMENT d1
DOCUMENT dp
SOURCE s1 SOURCE s1
J J
4 ™\
SOURCES? _ ______ SOURCESy ________
"~ SOURCE s3 "~ SOURCE s3

3 “ '3 s‘

' '

: rel(sz,s3) ; rel(dy,da)

h h
1 1
' R Sor T 4
! rel(s1,s2) ! DOCUMENT dp "+,
H / \ DOCUMENT dy
5 5 rel(dp,d3)
\ \ y

v \ .

\ \

\ \

\ rel(s1,s2) A rel(s,s3) \

' _ pathway(s1,53) ' DOCUMENT d3 |

\\ \\
N N
\\ \\
\ ’ \
- rel(dy,dz) A rel(dz,d3)
SOURCE s1 3 SOURCE s1

J

-

— pathway(d;,d3)

Figure 3.4: AIRSKB pathways: how to find related DOCUMENTS of a target SOURCE for

J/

a given DOCUMENT. Task: find all DOCUMENTS of the given SOURCE s; that are related

target DOCUMENTS.

216.73.216.60, am 23.01.2026, 23:34:49. ©
m mit, fr oder in Ki-Syster

to the given DOCUMENT d; (Box 1). First step (Box 2): get the SOURCE of the given
DOCUMENT dj, using the document-of relationship: SOURCE s3. Second step (Box 3): find
the best SOURCE pathway from SOURCE s; to target SOURCE s; (pathway over SOURCE s3).
Third step (Box 4): follow the best SOURCE pathway at DOCUMENT level (if exists) to the

37

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

rel(s1,52) — pathway(si,s2)

SOURCE s1 SOURCE s1

-
>~ _SOURCE s
CONTEXT-ATTRIBUTE acy S
S - 3 - -
o DOCUMENT d y
DOCUMENT dj = '

rel(ds,d1) — pathway(ds,d1)
rel(d,d1) — pathway(d,d1)

1) (N 2/

4 N 4 M

context-of-source(c1,S>)
relc.(s1,52) — pathwayc,(s1,52)

context-attribute-of-context(acy,cy)

context-attribute-of-document(acy,d;) relac.(d2,d1) — pathway,c,(dz,d1)

context-attribute-of-document(acy,dj)

3 4

AN J AN J

Figure 3.5: Task: find all DOCUMENTS of the given SOURCE s; that are related to the given
DOCUMENT d; regarding a given CONTEXT-ATTRIBUTE ac; (Box 1). First step (Box 2):
find related DOCUMENTS of the given DOCUMENT d; (see Figure 3.4). Second step (Box
3): Validate the source pathways found whether they match CONTEXT c; and the resulting
document pathways whether they match the given CONTEXT-ATTRIBUTE ac;. Result (Box
4): Only pathways are valid, where the DOCUMENTS fit the given CONTEXT-ATTRIBUTE

acy.

38

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.2 Conceptualization

A relation between two DOCUMENTS — whether it is an is-related-to or an is-linked-to
relation — is the shortest possible pathway. In general, pathways describe ways to swing
from one DOCUMENT to another, using relations as lianas. The same pathway definition
and pathway conditions for DOCUMENT pathways also appear for SOURCE pathways. The
only difference is that possible relations for DOCUMENT pathways are is-related-to and
is-linked-to relations and is-source-related-to as well as is-source-linked-to for SOURCE
pathways. For AIRSKB, finding new — previously unknown — knowledge means detecting
relationships (or pathways) between DOCUMENTS that are apparently hidden on first look.
Following this, one possible use case can be the question for related DOCUMENTS of a given
SOURCE regarding an also given DOCUMENT (of another SOURCE). Example 6 shows
such a use case in the workshop process. Establishing pathways in the ontology (at the
DOCUMENT or SOURCE level) means defining a framework for the knowledge network.
Inference Rules are used to describe the best pathways through the ontology to make
predictions about the relevance of DOCUMENT relationships.

Figure 3.4 describes in detail how related DOCUMENTS of a SOURCE can be found by
following pathways: in the first step (Box 2), the SOURCE of the given DOCUMENT should
be found via the document-of relationship. With the help of next step (Box 3), the SOURCE
pathways must be found from the DOCUMENT’s SOURCE to the target SOURCE. The next
step (Box 4) is to follow DOCUMENT relationships starting at the given DOCUMENT to
DOCUMENTS from the target SOURCE. Finding SOURCE pathways to the target SOURCE
first significantly reduces the calculation effort. Finally, one can rate the DOCUMENT
pathways to find the best related DOCUMENTS (see Section 3.3).

Figure 3.5 provides an insight into context-sensitives pathways. Therefore, only Doc-
UMENTS appear in the pathway’s DOCUMENT set that belong to a given CONTEXT-
ATTRIBUTE or a set of CONTEXT-ATTRIBUTES. Figure 3.5 depicts in (Box 3) where
the DOCUMENT pathways found are reduced to those that match the given CONTEXT-
ATTRIBUTE.

To sum it up, AIRSKB comprises various concepts that represent documents and source
locations. These concepts are summarized in Table 3.2, where the concept name and
the concept scope are described. Furthermore, all AIRSKB relations are summarized in
Table 3.1, including with the relation’s name and scope. These kinds of relationships were
designed to fill AIRSKB up with life and regarding the application context, to support
various use cases like the relevance learning capability or the definition of context-sensitive
pathways.

39

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

Table 3.1: AIRSKB's relationships. System-Relations of AIRSKB represent the structure of a
document landscape. Document-Relations and Source-Relations instead represent the linkage
between the elements of the document landscape.

Relation Name | Type Description
document-of System- A relationship between a DOCUMENT and a SOURCE.
Relation One can say that a DOCUMENT is contained in a
SOURCE.
document- System- A relation between a DOCUMENT-ATTRIBUTE and a
attribute-of- Relation SOURCE. Information about a segment or an attribute
source that a document of a source can have.
document- System- A relation between a DOCUMENT-ATTRIBUTE and a
attribute-of- Relation DOCUMENT. Information about a segment or an at-
document tribute that a given document really has.
context-of-source | System- Relationship between a CONTEXT and a SOURCE. The
Relation relationship gives information about possible validity
conditions (CONTEXT-ATTRIBUTES) for documents of
the source.
context-attribute- | System- Relation between a CONTEXT-ATTRIBUTE
of-document Relation and a DOCUMENT. In addition to the
context-attribute-of-source relationship, this stands
for a wvalidity condition a given document of
the source really has. The relation implies a
context-attribute-of-context relationship between
the CONTEXT-ATTRIBUTE and a CONTEXT. The
same CONTEXT subsequently has a context-of-source
relationship with the given DOCUMENT’s SOURCE.
context-attribute- | System- Relation between a CONTEXT-ATTRIBUTE and a
of-context Relation CONTEXT
is-related-to Document- | Relationship between two DOCUMENTS whose inten-
Relation sity may change over the time.
is-linked-to Document- | Another type of a DOCUMENT relationship. The differ-
Relation ence from is-related-to is that these kinds of relation-
ships have constant weights.
is-source-related- | Source- A relationship between two SOURCES whose intensity
to Relation may also change over time.
is-source-linked-to | Source- A constant relationship between two SOURCES.
Relation
is-attribute- Attribute- | A relationship between two DOCUMENT-ATTRIBUTES
related-to Relation of two DOCUMENTS.
40

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
m

mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.3 Theory and Inference Rules

Table 3.2: AIRSKB's concepts.

Concept Name Description

DOCUMENT A representation of a single information element known as
a document used in a case-triggered process. Such an in-
formation element comprises segments or attributes. Ex-
amples of information elements are replacement parts or
repair instructions used in a car repair process. An at-
tribute of a replacement part — for example — is the part
number.

SOURCE A model of a document location (retrieval systems, for
example) containing the documents. SOURCES contain a
“group” of similar documents.

DOCUMENT-ATTRIBUTE | A representation of a document’s segment or attribute.
CONTEXT-ATTRIBUTE Model for a validity condition of a document. A validity
condition exists if an information element is valid for only
one or at least a limited group of use-cases. Examples are
replacement parts that are “valid” for a special car type
only.

CONTEXT A group of similar validity conditions represented through
CONTEXT-ATTRIBUTES. For example, “car type” is the
name a group that includes all possible car types.

3.3 Theory and Inference Rules

The objective of Inference Rules is to define mathematical calculations for pathways
through use of the ontological model. The ontological model comprises concepts and rela-
tionships defined in the conceptualization of ontology development. Therefore, Inference
Rules work on weighted relations between documents of AIRSKB ([96]). This means that
a computable basis and a formal definition of AIRSKB’s elements are necessary.

The following section starts with a mathematical definition of the concepts and relation-
ships of AIRSKB as presented in the previous section through of the use of graph theory.
After this, these definitions are extended to represent context-sensitive relationships be-
tween concepts of AIRSKB. The section concludes with the mathematical definition of best
context-sensitives pathways between documents of sources. These definitions can be used
later to calculate best context-sensitive pathways between a document and documents of a
given source in a particular use case. A particular use case can be a path-finding function
of a knowledge network search framework based upon AIRSKB. This search framework
can include calculation algorithms for the best pathways and correlating documents. Fur-
thermore, it could optimize the relation weights between DOCUMENTS of AIRSKB auto-
matically®. Moreover, new relations between DOCUMENT individuals can be created for
the retrieval process. AIRSKB relationships between DOCUMENTS and the DOCUMENTS’
SOURCES focus on three different kinds of entity relationships:

3Collective intelligence approaches can be used to establish adaptive DOCUMENT relationships. An
example is the use of automated feedback processing, which has a direct influence on the weight of
DOCUMENT relationships (see Section 6).

41

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

1. Static relationships - Kinds of relationships that do not change over time and rep-
resent constant relationships between documents and sources defined by domain ex-
perts or by system-indicated links.

2. Adaptive relationships - Kinds of relationships that change over time and represent
user-generated knowledge about relationships between documents and documents’
sources. These relations are the core of the AIRSKB’s knowledge network.

3. System-generated relationships - Kinds of relationships that represent system-
generated links between AIRSKB elements that cannot change. These relationships
include all SYSTEM-RELATIONS. Examples are the relationships “document-of”,
“document-attribute-of-document” and “context-of-source”.

Documents, Sources, Contexts and Attributes

At the bottom, AIRSKB follows the Graph definition. This means that AIRSKB is an
ordered pair of nodes and edges*. For AIRSKB, nodes are objects O and edges are relations
R.

AIRSKB = (O, R) (3.1)

O is a set that contains all entities of AIRSKB: SOURCES, DOCUMENTS, DOCUMENT-
ATTRIBUTES and CONTEXTS:

O=SUDUAUC (3.2)

The elements of O are defined as follows: let S be a set of n SOURCE entities,

S ={s1,82,...,8.} (3.3)
D be a set of m DOCUMENT entities,

D ={dy,ds,...,dn} (3.4)
C be a set of | CONTEXT entities,

C=Aa,c,...,qa} (3.5)

A be a set of j + k ATTRIBUTE entities, Ap be a set of j DOCUMENT-ATTRIBUTE
entities and A¢ be a set of & CONTEXT-ATTRIBUTE entities, with

Ap ={a1,a9,...,a;} (3.6)
Ac = {acy, acy, . .. ack} (3.7)
A:ADUACaHdADﬁACZQ (38)

The AIRSKB elements sets are pairwise disjoint:

4A graph is a pair of disjoint sets G = (V, E), with E C [V]? (see [19]).

42

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.3 Theory and Inference Rules

VM;, M; € {S,D,A,C}i#j: M;NM; =0 (3.9)

A relation is a pair of elements of O. Let R be a set of all relations represented through
AIRSKB, with:

R C {{o0;,0;}]1 <, <n,i#j,00; € O} (3.10)

R contains all kinds of relations of AIRSKB: SOURCE-RELATIONS, DOCUMENT-
RELATIONS, ATTRIBUTE-RELATIONS and SYSTEM-RELATIONS.

R= RSOL‘RCE—RELA‘HON U RDOCUMENT—RELA‘HON) RATTRIBU'1'E—R,ELA'1*10N U RSYSTEM—RELATION (3-11)

The relations of AIRSKB are used to model the structure of the ontology and rep-
resent relationships between DOCUMENTS and SOURCES. Structure of the ontology is
represented trough system-generated relationships Rsysrev-Reramion like document-of or
context-attribute-of-context. Rpocument-Rearion ad Rsource-ReLation T€present static or
adaptive relationships between DOCUMENTS and SOURCES.

Document, Document-Attribute and Source Relations
Let document-of € Rsysren-ReLarion b€ & system-generated relationship between a Docu-
MENT d and a SOURCE s.

document-of (d, s) (3.12)

Every DOCUMENT d belongs to exactly one SOURCE s:

Vd € D3ls € S : document-of (d, s) (3.13)

As explained in previous section, DOCUMENT-ATTRIBUTES represent the attribution
(or segmentation) of documents of a source. A SOURCE belongs to a super-set of all
DOCUMENT-ATTRIBUTES that a DOCUMENT of this SOURCE can have. By contrast, a
DOCUMENT is only related to the DOCUMENT-ATTRIBUTES that appear in the document.
In this sense, let document-attribute-of-source € Rsysrem-ReLation D€ a system-generated
relationship between a DOCUMENT-ATTRIBUTE a and a SOURCE s.

document-attribute-of-source (a, s) (3.14)
Accordingly, let document-attribute-of-document € Rgysrey-ReLation @180 be a system-
generated relationship between a DOCUMENT-ATTRIBUTE a and a DOCUMENT d.

document-attribute-of-document (a, d) (3.15)

To summarize, a document-attribute-of-source relationship between a
DOCUMENT-ATTRIBUTE a and a SOURCE s is an indicator for a possible
document-attribute-of-document relationship between the same DOCUMENT-ATTRIBUTE
a and a DOCUMENT d:

43

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

document-attribute-of-source (a,s) — 3d € D : document-of (d, s) A

document-attribute-of-document (a, d) (3.16)

Additionally, a DOCUMENT-ATTRIBUTE a has a document-attribute-of-source
relationship with exactly one SOURCE s. DocuMENTS that have a
document-attribute-of-document relationship with the same DOCUMENT-ATTRIBUTE a
must also belong to the same SOURCE s:

document-attribute-of-source (a, i)
A document-attribute-of-source (a, ;) — s = s

(3.17)

document-attribute-of-document (a, di)
A document-attribute-of-document (a, d;) — (3.18)
document-of (dy, s) A document-of (d;, s) A dy, # d; V di, = dj

Context and Context-Attribute Relations

As stated before in previous section, CONTEXT-ATTRIBUTES are ontological el-
ements representing specific validity conditions that a document has. Let
context-attribute-of-context € Rgysrev-ReLation b€ & system-generated relationship between
a CONTEXT-ATTRIBUTE ca and a CONTEXT c:

context-attribute-of-context (ac, c) (3.19)

Since more than one type of devices can exist, many CONTEXT-ATTRIBUTES can belong
to the same CONTEXT. However, each CONTEXT-ATTRIBUTE ac belongs to exactly one
CONTEXT c:

Vac € Ac Jlc € C : context-attribute-of-context (ac, ¢) (3.20)

CONTEXTS belong to SOURCES and provide information about possible validity condi-
tions that the documents of the source can have. Instead, a CONTEXT-ATTRIBUTE is a
representation of a specific validity condition that a document of this source already has.
A DOCUMENT is called context-sensitive regarding the CONTEXT-ATTRIBUTE ac. Since a
document can be valid for more than one validity condition, aDOCUMENT can be related
to more than one CONTEXT-ATTRIBUTE. Let CONTEXTS belong to SOURCES through
the system-generated relationship context-of-source € RsysrpvReraron and let context-
attributes belong to DOCUMENTS, including via a system-generated relationship called
context-attribute-of-document € RsysrevReLarion:

context-of-source (¢, s) (3.21)

context-attribute-of-document (ac, d) (3.22)

If a CONTEXT-ATTRIBUTE ac belongs to a DOCUMENT d, the CONTEXT c¢ that belongs
to the CONTEXT-ATTRIBUTE ac must also have a relationship with SOURCE s. The
SOURCE s again must have a document-of relationship with the DOCUMENT d:

44

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.3 Theory and Inference Rules

context-attribute-of-document (ac,d) — context-attribute-of-context (ac,)
A context-of-source (¢, s) A (3.23)
document-of (d, s)

Document and Source Relationships

As stated above, the most important relationships for AIRSKB are adaptive relationships
as well as static relationships between DOCUMENTS and SOURCES. These relationships
can help to find related documents across system. They can also be used to make hidden
knowledge of document relationships visible in the context of document search. A formal
definition for these kinds of relations is necessary to define a mathematical basis for related
documents as well as the best pathways through the ontology.

There are two types of relationships that take part in Rpocusest-Revation: is-related-to
and is-linked-to. Additionally, there are also two types of relationships that take part in
Rsource-Reuation: is-source-related-to and is-source-linked-to. The first two relationships
are DOCUMENT relationships, whereas by contrast the others are SOURCE relationships.

Let Risrelated-to © Rpocument-Reration be the set of all is-related-to relationships between
two DOCUMENTS. Furthermore, let is-related-to € Rig elated-to b€ an adaptive relationship
between two DOCUMENTS d,, and d,, with d, # d:

is-related-to (dp, dy) (3.24)

Let hasWeight be a function that maps is-related-to relations to value called weight:

hasWeight : Ris—rclatcd—to — {-17‘01 <z< 17 HS R}7

is-related-to (d,, d;) — weight (3.25)

Only is-related-to relationships of a significance threshold > 0.1 are represented into
ATRSKB. Let Rigiinked-to © Rpocument-Reration D€ the set of all is-linked-to relationships be-

tween two DOCUMENTS. Furthermore, let is-linked-to € Ri jinked-to be a static relationship
between two DOCUMENTS d,, and d,, with d, # d:

is-linked-to (d,, dy) (3.26)

Let hasWeight be a function that maps is-linked-to relations to a relation weight of 1:

hasWeight : Riglinked-to — {1}, is-linked-to (d,, dy) — 1 (3.27)

1 means that a confirmed and constant relation between DOCUMENT d, and Doc-
UMENT d, exists. HasWeight (is-linked-to (d,, d;)) = 1 is semantically similar to
hasWeight (is-related-to (d,, dy)) = 1 but these kinds of relations will never change over
time. Only one kind of relation can exist between two DOCUMENTS at the same time:
either is-related-to or is-linked-to:

is-related-to (d,, d;) @ is-linked-to (d,, d,) (3.28)

45

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

Let Rissoucerelated-to & RSource-Reration be the set of all is-source-related-to relationships
between two SOURCES. Furthermore, let is-source-related-to € Rig.souce-related-to D€ an adap-
tive relationship between two SOURCES s, and s,, with s, # s,

is-source-related-to (s, sq) (3.29)

Let hasWeight be a function that maps is-source-related-to relations to a specific weight:

hasWeight : Ris souce-related-to —> {2]0.1 <2 < 1,z € R},

is-source-related-to (d,, d,) — weight (3.30)

Only is-source-related-to relationships of a significance threshold > 0.1 are rep-
resented in AIRSKB. Additionally, let Rissourcelinked-to € Source-Rerarion be the
set of all is-source-linked-to relationships between two SOURCES. Furthermore, let
is-source-linked-to € Rig source-linked-to D€ @ static relationship between two SOURCES s,

and sq, with s, # s4:

is-source-linked-to (s, s,) (3.31)

Let hasWeight be a function that maps is-linked-to relations to a relation weight of 1:

hasWeight : Ris source-linked-to — {1}, is-source-linked-to (s, sq) — 1 (3.32)

SOURCES s, and s, are related to each other via is-source-related-to relation if at least
one is-related-to relationship between two DOCUMENTS of both SOURCES exists, but no
is-linked-to relationship between the DOCUMENTS. For s, # sq:

is-source-related-to (s, s4) —
3d; € D : document-of (d;, s,) A 3d; € D : document-of (d;, s4)
Nis-related-to (d;, d;) A (3.33)
#d, € D : document-of (ds, Sp) A #d, € D : document-of (d,, Sq)
A is-linked-to (ds, d;)

SOURCES s, and s, are related to each other via is-source-linked-to relation if at least one
is-linked-to relationship between two DOCUMENTS of both SOURCES exists, with s, # s,:

is-source-linked-to (s,, s4) —
3d, € D : document-of (d,, s,) A 3d, € D : document-of (d,, s,) (3.34)
A is-linked-to (d,, dg)

Let is-attribute-related-to C Rarrriure-ReLation D€ the set of all is-attribute-related-to
relationships between two DOCUMENT-ATTRIBUTES. Furthermore, let
is-attribute-related-to € Rarrrmure-Reraton D€ an adaptive relationship between two
DOCUMENT-ATTRIBUTES a,, and a,, with a, # ag:

is-attribute-related-to (ay, aq) (3.35)

46

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.3 Theory and Inference Rules

Masking Relations

As written before, a weight of 1 for an is-related-to relationship is semantically similar to
a weight of 1 for an is-linked-to relation. Therefore, it is not necessary for the pathway
calculation to know whether is-related-to or is-linked-to or a mixture of the two relations
took part in the pathway. Masked relations are primarily used for the pathway calculation.
They are designed to hide the information concerning whether the relation that took
part in a pathway is an is-related-to or an is-linked-to relation. Relation rel also masks
relationships between SOURCES: is-source-related-to or is-source-linked-to. Therefore, a
masking relation takes all of the properties of the relation that it masks. Including the
value of the hasWeight function. Accordingly, let rel (o,,0,) be a masking relationship
between two DOCUMENTS o, and o4 or two SOURCES o,, and o4, with:

is-related-to (0p, 04) , rel masks is-related-to.

is-linked-to (0p, 04) , rel masks is-linked-to.

(3.36)

rel (0p,04) =
p: Oq : .
is-source-related-to (0,,04), rel masks is-source-related-to.

is-source-linked-to (0, 04), rel masks is-source-linked-to.

Let Ryask be the set of all masking relations, for every rel (0p,04) € Riask @ relation of
R must exist, which is masked by rel (0, 04):

| Rinask| = |R| A Vrel (0p,04) € Rmask Jlis-related-to (0p, 04) € Risrelated-to
@ Flis-linked-t0 (0p, 0) € Rigtinked-to @ Tlis-source-related-to (0,, 04) € Ris source-reltated-to
@ Flis-source-linked-to (0p, 04) € Ris source-linked-to
(3.37)
A weight of a masked relation is also calculated through the hasWeight function. Riqx
is the set of all masking relations, whereby the hasWeight function maps rel relations to
the results of the hasWeight function from the masked relations:

hasWeight : Ry — {2[0.1 <2 < 1,2 € R},

hasWeight (is-linked-to (0p, 04)), rel masks is-linked-to
hasWeight (is-related-to (0, 04)), rel masks is-related-to

rel (0,, 04) — . .)))
hasWeight (is-source-linked-to (0, 04)), rel masks is-source-linked-to
hasWeight (is-source-related-to (op, 04)), rel masks is-source-related-to

(3.38)

Context-Sensitive Relations

A relation at DOCUMENT level is context-sensitive regarding a CONTEXT-ATTRIBUTE ac
or a set of CONTEXT-ATTRIBUTES Acy C Ag, if both DOCUMENT o0, and DOCUMENT o,
have a context-attribute-of-document relationship with a CONTEXT-ATTRIBUTE ac or all
CONTEXT-ATTRIBUTES of A¢:

rel (0p,04) 4, — rel(0p,00) A

Vac € Acy : context-attribute-of-document (ac, 0,) A (3.39)
Vac € Acy : context-attribute-of-document (ac, o,)

47

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

Additionally, a relation at the SOURCE level is context-sensitive regarding a CONTEXT ¢
or a set of CONTEXTS C. C C, if both SOURCE 0, and SOURCE o, have a context-of-source
relationship with a CONTEXT c or all CONTEXTS of C.:

rel (0p,00)c, — rel(0p,00) A
Ve € C : context-of-source (¢, 0p) A (3.40)
Ve € Oy : context-of-source (¢, 04)

Context-Sensitive Pathways

A pathway is a valid concatenation of DOCUMENTS or SOURCES individuals of AIRSKB.
More specifically, a pathway is a set of relations, where one can “follow” DOCUMENT
relationships or SOURCE relationships in a way whereby one DOCUMENT or SOURCE (07)
is defined as the starting point of the pathway and another DOCUMENT or SOURCE (o0,,)
is the end point of the pathway. Both DOCUMENTS or SOURCES appear only once in the
pathway (no cycles are allowed) and all other DOCUMENTS (or SOURCES) appear twice
in the pathway. Ultimately, a pathway is a relation between two DOCUMENTS or two
SOURCES (07 and o,,), with

pathway (01,0,) := rel(o1,09) orel (02, 03)
o...orel(0,_1,0)

(3.41)

Therefore, the path definition follows the graph theory: a path is a trail of distinct
nodes. For ATRSKB, this means that a path is a sequence w = (01,09, ..., 0,) of n nodes,
with:

1.OTCDoOtCS

2. R* C Rsource-Reranion ® BY € Rpocumnt-Reration

3. O C D — R C Rpocummxt-Revation (in the case of a DOCUMENT pathway)
4. OT C S — R C Rsourcs-Rerariox (in the case of a SOURCE pathway)

5. Yo, ofw :0; € {01,09,...,0,} =OF

6. V{0, 0i41} C O : Jlrel (04,0i41) E RT,1<i<n-—1

T i#j—=0#0;,1<i,j<n

Like relations, pathways can also be context-sensitive. This means that all rela-
tions of the pathway belong to the same CONTEXT-ATTRIBUTE ca or set of CONTEXT-
ATTRIBUTES Ay and all relations of the pathway at SOURCE level belong to the same
CONTEXT c or set of CONTEXTS C'

pathway (01,0,) 4, = rel(01,02),,, orel(os,03)

Acy+
o...orel (0,1, on)AC+ (3.42)
pathway (o1, 0,)c, = rel(oy, OQ)C+ orel (09, 03)C+ (3.43)
o...orel (0,1, o,,,)c+ ’
48
216.73.216.60, am 23.01.2026, 23:34:49. © Urheberrechtiich geschUtzter Inhatt .

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.3 Theory and Inference Rules

Since pathways are cycle-free concatenations of relations, multiple possible pathways
between DOCUMENT 0; and DOCUMENT o, can exist. The same applies to SOURCE
pathways. Accordingly, let Pyathway(or,0,) D€ the set of all pathways from DOCUMENT o, to
DOCUMENT o0,, or SOURCE 0; to SOURCE 0,:

Prathway(or,0,) = {pathway (01,0,) | Vrel (0,,0,) € pathway (01, 0,) : (3.44)
rel (0p,04) € Rinask and oy, 04 € D or 0,04 € S} ’

Weight of Pathways

Mapping a pathway to a weight is calculated by a function called weight with all of the
relation’s weights:

weight (pathway (01,0n)) := hasWeight (rel (01,09))
o hasWeight (rel (02,03)) (3.45)
o...ohasWeight (rel (0n—1,0n))

The AIRSKB Framework suggests four implementations of the weight function:

n—1
weight (pathway (01, 04)) :=] hasWeight (rel (Oky Ok+1)) (3.46)
k=1

baseline

S~ hasWeight (rel (0K, Ok+1))

weight (pathway (01,04)) et : (3.47)
arithmetic mean n

n—1
weight (pathway (o1, on)) . := 7|][hasWeight (rel (o, 0k+1)> (3.48)

geometric mean k1

n
WPlght (pathwav (01 ’ On))harmonic mean = n—1__ 1 (349)
k=1

hasWeight (rel(ok,okJrl))

Best Context-Sensitive Pathways

Best pathways are the basis for advanced retrieval algorithms in the case that DOCUMENT
relationships bring semantic and previously-hidden knowledge of retrieval processes. Best
pathways mean semantically valid DOCUMENT connections. In this case, the information
need of the retrieval system’s user can be carried from one DOCUMENT to another beyond
(or additional to) the system’s relevance calculation algorithm. In AIRSKB, the best
pathways are those with the highest weight.

max({x\x = weight (pathway (dv,dy)),
¥ pathway (01, 00) € Poathway(or,o0) })

pathway (01, 0n)p e

(3.50)

Finding the best context-sensitive pathways is one task for applications using AIRSKB:

49

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3 AIRS Knowledge Base

pathway (0170n) best ‘= max ({T\T = welght(pathway ol,on)) (3.51)
R
v pathway (017 O")Ac+ (S Ppathway(ol,tm)})
pathway (01,01),, oy = max({alz = weight(pathway (01, 0,)). (3.52)

v pathway (01 ; On)cJr € Ppathway(ol,on)})

Often it is necessary to know which DOCUMENTS of SOURCE s are relevant for the
current information need represented by DOCUMENT o01:

pathway (01, §), . := {Pathway (01, 0,). |document-of (o,,, s)} (3.53)

In AIRS, best context-sensitive pathways for document search are defined as follows:

pathway (o1, S)AC best := {pathway (ol,on)Ac best [document-of (o,)} (3.54)
+ +

3.4 Summary of AIRSKB Development

In summary, necessary steps towards the ontology design of AIRSKB development have
been provided in this chapter. These steps include:

1. Initial activities. Focusing on the questions that the Application Context defines.
This helped to understand the domain and the need for an ontology (see Section 3.1).
Elements of the ontology have been defined (see definition for documents, sources,
relationships, conditional relationships, pathways and context-sensitive pathways of
Section 3.2 and Section 3.3). This is necessary for a common understanding of the
domain. Additionally, a case study was performed to examine how the documents
of the workshop document systems match the findings of the application context
description. Furthermore, it was checked whether the systems correlate in a semantic
way. After these initial activities, the picture of the ontology that needs to be built
was very clear. This enormously helped to perform the conceptualization because
concepts and attributes and requirements of the ontology were well known in advance.

2. Performing conceptualization. The step comprises defining classes and relationships
(see Section 3.2). The ontology can be used for retrieval across document landscapes.
AIRSKB includes concepts for documents, sources, relationships between the docu-
ment and attributes that can be used to describe validity conditions of documents.
The class model of the AIRSKB was built and attributes of the individuals were
described whereby the individuals match the previously defined classes.

3. Defining inference rules. The theoretical frame for the knowledge acquisition (see

Section 3.3) means defining the mathematical background. Axioms and equations
ensure ontological reasoning. For AIRS, this is presented in Section 5.1.

50

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

3.4 Summary of AIRSKB Development

4. Ontology representation. Defining an ontology representation framework or language
that can be used to share the ontology among applications and people. This also
involves the technology concerning how the ontology can be used in applications.

It is quite difficult to find an optimal implementation for AIRSKB because knowledge
representation through ontologies is a wide field of research ([96]). Various technologies
for representing and querying ontologies exist, which are specialized for certain application
areas. Ontology concepts differ in their formalism, expressivity and domain range. As
stated in [96], examples of ontology concepts and languages are RDF/RDFS®, OWLE,
Topic Maps (see [70]), even NoSQL databases (see [8] and [53]), among many others. Some
examples of ontology frameworks are: Ontopia’ for Topic Maps, Apache Jena® for OWL
and also NoSQL databases like the graph database Neo4j®. Moreover, it is possible to build
one’s own ontology-triggered storage model and querying framework by using XML format
taxonomy, standardized technologies like relational databases or even document-oriented
databases like MongoDB!, or Apache CouchDB!!. The next chapter provides an insight
into the concept of ontology-based information retrieval, which uses the AIRSKB ontology.

5See http://www.w3.org/standards/techs/rdf, last visited Sept. 18, 2016.
6See http://www.w3.org/standards/techs/owl, last visited Sept. 18, 2016.
"See http://www.ontopia.net, last visited Sept. 18, 2016.

8See http://jena.apache.org, last visited Sept. 18, 2016.

9See http://neodj.org, last visited Sept. 18, 2016.

10See http://www.mongodb.org, last visited Sept. 18, 2016.

HSee http://couchdb.apache.org, last visited Sept. 18, 2016.

51

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across
Heterogeneous Document
Landscapes

In [95], a case study examining three workshop document systems of an after-sales domain
of a car workshop is presented. These document systems were: the workshop help-system,
the symptom taxonomy and a subset of an electronic parts catalog. The findings suggest
that these systems correlate in a semantic way, whereby technical information and problem-
solving system documents contain symptom descriptions and can contain replacement parts
information. According to this, semantic relationships between the information elements
were identified (see [95]):

e Symptom nodes are organized in a taxonomy tree. Accordingly, a taxonomic hy-
ponymy exists between the taxonomy concepts from the superordinate term to the
specific term.

e Technical information and problem-solving system documents contain sections that
explicitly name replacement parts.

e Technical information and problem-solving system documents include labeled fields
with symptom information. This information relates to symptom nodes of the symp-
tom taxonomy.

Furthermore, an ontology was built based upon both real-world workshop systems and
documents. Figure 4.1 displays a small section of the newly-built ontology. The dots repre-
sent DOCUMENT concepts and the lines between the dots represent is-related-to relations.
All other elements of AIRSKB were not included in the picture (SOURCES, DOCUMENT-
ATTRIBUTES, etc.). The goal was to expose the potential of semantic relationships between
uniform interpretations of information elements (DOCUMENTS) without the limitations of
any system borders. Figure 4.1, Area A shows the structure of the symptom taxonomy.
The root node of the taxonomy is located somewhere in the middle of the figure. All
other nodes have been automatically arranged whereby they can be displayed well. Figure
4.1, Area B shows the links between the technical problem-solving documents and Area
C shows the links between the technical problem-solving documents and the replacement
parts. Following this, one can also recognize a structure that comprises three different
levels that cross system borders (nodes from Area A are connected to nodes from Area
B that are again connected to nodes from Area C). This is even more evident in Figure
4.2: Area A shows the symptom taxonomy, Area B depicts the documents of the technical
problem solving system and Area C again shows replacement parts. By following these
levels, one can establish a semantic link between symptom nodes and replacement parts
that is not given in the original landscape.

52

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Figure 4.1: The after-sales symptom taxonomy extracted from the AIRSKB ontology. Figure
adapted from [95].

53

80, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across Heterogeneous Document Landscapes

Figure 4.2: Is-related-to relationships between DOCUMENTS of three SOURCES extracted
from AIRSKB. Figure adapted from [95].

54

80, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4.1 Concepts of a Heterogeneous Document Landscape

AIRSKB is an ontology that was designed to represent different kinds of documents,
sources and relationships between them. In domains of solving complex business tasks as
described above, these documents and the sources where they appear form a heterogeneous
landscape. Concepts of a heterogeneous document landscape must be identified and de-
scribed to verify whether they can be represented through ontological elements of AIRSKB.
For this purpose, a definition of the concept “Heterogeneous Document Landscape” itself
is necessary:

A Heterogeneous Document Landscape is domain where documents that can appear
in different source locations (databases, isolated retrieval systems, file systems and
others) are used to solve particular problems.

Through use of this definition, the concepts, relationships and restrictions of the het-
erogeneous document can be compared with existing ontological elements of the AIRSKB.
This section describes the concepts of a heterogeneous landscape documents through the
use of sample documents. Furthermore, this section introduces advanced ontology-based
information retrieval where the AIRSKB is used to implement advanced document search
technologies. This advanced technology extends ordinary vector space retrieval with the
document knowledge network provided by AIRSKB. Therefore, new search approach and
retrieval strategies can be developed. A system architecture called Advanced Ontology-
based Information Retrieval System (AIRS) was developed during the research and is
introduced in this section.

4.1 Concepts of a Heterogeneous Document Landscape

Employees often need information stored in different locations to solve complex business
tasks. Examples of these tasks include the service and repair of cars in workshops, Intranet
searches, service requests in call centers or service tickets in product support (see Chapter
1). All information that is contained in different locations such as retrieval systems form
a network, representing the knowledge that is part of a company. However, this network
also includes hidden knowledge that exists in a potential semantical linkage. Example 7
explains the concept of hidden knowledge in further detail.

55

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across Heterogeneous Document Landscapes

Let there be a service case in a car workshop: a customer brings a car to the workshop
with a specific service request. The receptionist asks the customer for the service
request’s reason. The customer subsequently reports about unusual car behavior; for
example, a rattling noise coming from the left rear wheel. This noise describes a
symptom that appears while driving. One data source in the after-sales domain can
be a standardized symptom taxonomy where symptoms of unusual car behavior are
described. The workshop help documents are correlated to these symptoms. These
workshop help documents can contain information about replacement parts that are
necessary for a car repair. Altogether, simply by recognizing the customer’s unusual
car behavior and mapping it to the symptom taxonomy, possible replacement parts
for a car repair can be found.

Example 7: Hidden knowledge in heterogeneous document landscape.

/ Source: A Source: B Source: C \

O O % ° e
® @ G

User's information need

J

Figure 4.3: An employee needs to deal with various information fragments hidden in different
retrieval systems (Source A-Z). These document retrieval systems act independently of each
other, whereby the employee needs to carry the information search manually from one retrieval

system to another. The figure was first shown in [93].

56

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4.1 Concepts of a Heterogeneous Document Landscape

Figure 4.3 shows a part of the heterogeneous landscape, which comprises different infor-
mation systems. It also shows how an information need of a user can be carried from one
system to another.

- | Page 10/9 Find { LY

Oil level warning lamp comes on, or text "Oil level below min" in instrument cluster.

[Topic-Number G118.40-P-004196 |
Version 1
Construction Group Document Abstract
Last Modification Date segment 1
Validation
—
Change Reason Segment 2
Block Reason _—

Complaint: /

Oil level warning lamp comes on, or text "Oil level below min” in instrument cluster.

Cause:

Oil level below min. or oil sensor defective. Fault code P1178 Engingl quality implausible Fault code P1179 Engine
oil level implausible, engine oil level OK

Remedy:

Install new oil sensor N(
sequence number greal

different bolt lengths. Observe sequence number on white sticker. Only use oil sensor with
than 10700000.

ye
[Symptoms

[Power generation / Engine lubrication/oil cocling / Engine lubrication/oil cooling indicator lamp / Engine oil level
ndicator lamp / Lights up

[Power generation / Engine lubrication/oil cooling / Engine lubrication/oil cooling function / Oil level 100 low

Figure 4.4: Example repair instruction document as shown in [96]. The original document
is shown in the background, black covered areas (“Segment 1", “Segment 2", “Segment 3")
mark the segments used to build the document abstract.

The information need must be carried from one system to another to find business case-
relevant documentation. For this approach, the idea of what a document is in the context
of search must be clear. An overall definition is necessary concerning what a document
is, because a document can be many things: a node of a symptom-taxonomy, a service
manual, a replacement part description or a complex diagnosis tree.

Werrmann considers in [96] a document as a single piece of information an employee

uses for a business case, an object or piece of information that could have attributes
and is connected to only one retrieval system.

57

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across Heterogeneous Document Landscapes

Furthermore, all of the segments of a document that are relevant for the retrieval must
be identified. This means identifying all elements of a document that users want to search
for. Therefore, an abstracted version of a document is necessary that contains all of the
relevant segments of a document. A segment itself is a defined part of a document that
contains certain information.

Therefore, it is necessary to build an abstracted form of each document stored in the
original retrieval systems. This is necessary due to the variability of documents in the
different document locations.

Data Analyzer =

File Plugins Help Taxonomy Editor Properties Editor

] symptom_treexml £3 =l

Engine ol level cannot be called up in display (¢ 21| "5y oNOMYINFO | TAXONOMY SEARCH | CONCEPT: Lights up
Oil sensor message (en)

4 Engine lubrication/oil cooling indicator lamp (en) T T e
tor lamp (en) - g
Lights up (en) A
lamp (en) @]
Tights up (en)
4 Ol cooler temperature indicator lamp (#
Lights up (en) concept id: 4361
4 Engine cooling (en)
4 Cooling system function (en) A
Vapor bubbles (en)
description: 7

4 Cooling system indicator lamp (en) <)
Tluminates yellow (en)
Tlluminates red (en)

4 Engine fan (en)
Malfunction (en)

Runs permanently (en)
Noise (en)
Nonfunctional (en)

4 Engine management (en)

synonyms:

4 Engine start/stop (en) oo
Does not start (en) svetli (sh) A%
< i » -

Figure 4.5: Example symptom tree node document. The original system to manage the
symptom tree is shown in the background. Black covered areas mark the taxonomy node
“Lights up” and the elements that are interpreted as properties (“concept name” and “concept
id").

Figure 4.4 shows a PDF document that contains a complaint-based and symptom-based
repair instruction for a special car model, which is used in workshop processes for the
service. It demonstrates the idea of how to make abstracted versions of original documents.
As stated above, the abstracted version must include all business case-relevant information

58

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4.1 Concepts of a Heterogeneous Document Landscape

that is necessary for the search. Additionally, the document abstract should include all
attributes that offer linkage potentials. Figure 4.5 depicts a node from the symptom
taxonomy. The symptom taxonomy is used in reception processes of car workshops for
the categorization of customer service requests. It shows kinds of information elements,
namely the “segments” (black-bordered rectangles). The segments are now properties or
attributes.

Documents are stored in different retrieval systems or other kinds of data storage sys-
tems. For example, Figure 4.3 shows different data storage systems (Source A-Z). The
Storage systems serve as sources for different kinds of documents. Therefore, a source is
also a concept of a heterogeneous document landscape that needs to be defined:

Source stands for a document location, a container of documents with similar attributes
(databases, isolated retrieval systems, file systems, for example).

Figure 4.3 also shows that a link between documents can exist. These links can be hard-
coded links as shown in Segment 3 of Figure 4.5, where a repair instruction document
names a set of symptoms from a symptom taxonomy (shown in Figure 4.4)'. However,
they can also be assumptions of relevance according a particular business case:

A relationship between documents or sources is a semantic linkage between these docu-
ments or sources. Computer accessible links between documents or sources indicate
semantic relationships between them.

A relationship between two documents for a specific business case may be restricted.
A restriction comes in the form of validity conditions for documents. For example, two
documents are only related to each other if both belong to the same set of attributes. The
same applies to sources. Such a restricted relationship between two documents or sources
is a conditional relationship:

A conditional relationship is a semantic relationship between documents or sources
that is restricted by a set of validity conditions.

Figure 4.3 shows a pathway from documents of “Source: X” to documents of “Source: Z”.
Pathways and context-sensitive pathways through the heterogeneous document landscape
are defined as follows:

Pathway is a pairwise semantic linkage of documents or sources (relationships), where
one document (or source) is the defined start point and another is the defined end
point. This outlines a connected graph without loops where nodes are documents
(or sources) and edges are relationships.

A context-sensitive pathway is a pathway where the semantic linkages between the
documents or sources are conditional relationships.

All of these concepts of a heterogeneous document landscape can be represented through
elements of AIRSKB. Table 4.1 shows a comparison of AIRSKB classes, individuals and
relations with concepts of the heterogeneous document landscape.

!This implies that symptom taxonomy nodes are interpreted as documents.

59

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across Heterogeneous Document Landscapes

Table 4.1: Correlation between AIRSKB elements and concepts of heterogeneous document
landscape.

AIRSKB class, individual or rela- | Concept of heterogeneous document
tion landscape

DOCUMENT document, document abstract
SOURCE source
DOCUMENT-ATTRIBUTE segment, property
CONTEXT-ATTRIBUTE validity condition

CONTEXT validity conditions type

rel (0,, 04) relationship

rel (0p,09) 4, conditional relationship
pathway (o1, 0y,) pathway

pathway (o1, 0,,) Aoy context-sensitive pathway

4.2 Advanced Ontology-based Information Retrieval
System (AIRS)

Advanced ontology-based Information Retrieval System (AIRS) is an approach to extend
search technologies with ontological knowledge to support the business case triggered re-
trieval in heterogeneous document landscapes. The special aspect is that this ontological
knowledge is not used to optimize the text retrieval itself by trying to close the gap between
syntax and semantic of understanding natural language?. Rather, the ontological knowl-
edge is used to look at the text itself in the upper context: whole documents rather than
terms or text fragments are interpreted as concepts that can be related to each other. The
idea is that this approach enables the access to heterogeneous document landscapes and
implements a network view that allows making statements about adaptive document re-
lationships. These adaptive document relationships can be used to improve the document
retrieval.

By its nature, AIRS describes a document retrieval system that includes the knowledge
about a document landscape in the form of an ontology in the retrieval process. For this
purpose, AIRS includes the information stored in different retrieval systems in a search
index and combines the retrieval with the capability of an ontology network that models the
heterogeneous document world. The AIRSKB ontology is used for the retrieval itself as well
as the representation of domain-specific knowledge. This knowledge can also be updated
over time through the use of AIRS. This means that AIRS deals with users, domains,
feedback and document landscape knowledge. This new knowledge is subsequently re-used
in AIRS’ retrieval. For this approach, AIRSKB provides the possibility of including the
system users’ feedback in the retrieval process to optimize the search for case-relevant
documents.

AIRS combines the search functionality of a state-of-the-art information retrieval system
with AIRSKB through use of a component based architecture that includes a search index,
databases and interfaces to various document landscapes. AIRS can be implemented as a

2As stated in Chapter 1, enterprise search technologies include features (using taxonomies or synonym
sets) to improve the quality of natural language search. These features focus on the extension of text
with conceptual knowledge about the underlying domain.

60

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4.3 Conceptual Architecture of AIRS

Rich Internet Application that uses a standard Internet browser and a search engine-like
web page as a user interface.

Chapter 5 explains document indexing processes and search as well as feedback process-
ing of AIRS in further detail. Furthermore, Chapter 7 presents an exemplary implementa-
tion of AIRS that can serve as blueprint for the development of systems. The next section
introduces the basic system architecture of AIRS and its corresponding components.

4.3 Conceptual Architecture of AIRS

During the development of the AIRS architecture, many aspects had to be considered,
including the gold standard of information representation and retrieval as well as the
further development of the after-sales systems. The first version of AIRS’ architecture was
presented in [93] and [95]. In this early architecture version, the primary focus lay in ETL
processes®, the knowledge representation technologies and the retrieval components. The
final version of AIRS’ architecture was presented in [96] and showed that the main focus of
the architecture shifted to retrieval approaches that include the feedback of system users
in the retrieval process.

Figure 4.6 provides a brief overview of the AIRS backend architecture at the server
side. The two main components of AIRS are the Indexing Component and the
Core Component. The Indexing Component manages the Indexing Workflow that com-
prises all ETL processes that are necessary to load the data from each retrieval system into
the Information Retrieval System (IRS) index of AIRS. In addition to the ETL process,
part of the Indexing Workflow is a task responsible for AIRSKB, namely the ontology-
populating task. After ontology engineering, the Indexing Component translates each
document abstract into its ontology entity representation and stores it as an individual
in AIRSKB. For this task, it is necessary to generate good document abstracts for every
allocated document of each source of the heterogeneous document landscape.

The Core Component is responsible for the Retrieval and Feedback Workflow. For the
retrieval, the Core Component uses all data stored in the IRS index and AIRSKB to gener-
ate retrieval strategies for a business process triggered-document search and manages the
search task. AIRS also includes an automated evaluation, which is used for a bootstrapping
adaption of the retrieval process.

As the Core Component is involved in the entire search task, it is part of the eval-
uation workflow. Moreover, it manages the communication with end users and foreign
data interfaces. The Indexing Component and the Core Component use three specialized
components in AIRS for the Indexing Workflow and an extended bootstrapping retrieval:

e The IRS Component brings the search functionality of a state-of-the-art information
retrieval system into AIRS and it manages the Search Index.

e The Ontology Component is responsible for the Ontology Storage and is used to
generate retrieval strategies and find document relationships.

3Extract-Transform-Load processes are responsible for data extraction from sources, data transportation
to a special processing unit, data transformation and cleaning processes and data loading into a target
system (see [88]).

61

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

4 Ontology-based Retrieval Across Heterogeneous Document Landscapes

e The Statistics Component is used for the automated feedback processing. It controls
the Statistics DB.

The Core Component manages the interaction between the Ontology Component and
IRS Component during the retrieval, as well as the interaction between Statistics Compo-
nent and Ontology Component during the feedback processing.

(

~

[

(

AIRS backend AIRS data
2 management
E Statistics
5 @ _ -g component o
= § T |8 e \ e =
© c] - toti
iR é = Ontology Stalgthlcs
E ® mponen — 0
s § - component) ?t_l/
S8 S lel o V| 1 storage.
T = € < IRS - 9 —
2 3Lz component Search
2 e/ \)| | I
ce - V|| (L ncex]
-2 Indexing component
£)

~

\

ETL pipeline

o
© 0

Heterogeneous document landscape

0‘0

62

Figure 4.6: AIRS architecture as shown in [96].

216.73.216.60, am 23.01.2026, 23:34:49. ©
m

mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced
Ontology-based Information Retrieval

Natural language-based retrieval systems are the gold standard for modern information
search. IRS enable a reliable and fast search across large sets of documents. These docu-
ments may contain structured, semi-structured or unstructured text data. To enable fast
search for information, an index of the document’s content must be built first. Accordingly,
search technologies based upon information retrieval comprises two workflows that act in-
dependently to each other (both workflows contain highly language dependent processing
steps, which must be implement for each language again):

e Indexing of documents is the final step necessary to build an index that is used later
for the retrieval. Therefore, the content of the documents is analyzed and transformed
to extract information used to build corresponding index documents. The indexing
process is highly complex and contains different text processing algorithm. For exam-
ple, elementary steps of indexing documents for a Boolean or vector space retrieval
are (see [62]): collecting documents to be indexed, tokenize text of documents (list
of terms), undertake linguistic pre-processing of tokenized text (stemming of terms,
for example), create inverted index of terms that comprises a dictionary, posting lists
(documents where the terms appear) and additional information for result ranking
(term frequency and inverse document frequency). Furthermore, index terms can be
annotated with additional information like a set of synonym terms. In case of vec-
tor space model!, indexed documents are represented through n-dimensional vectors,
where n is the number of index terms. Enterprise search technologies often contain
complex workflow engines that support indexing documents of different types and
languages.

e Natural language-based document retrieval uses the information of the previously-
built index for the retrieval function. It contains two elementary functions: a retrieval
model and a ranking function. The retrieval model is mostly based upon a combina-
tion of vector space retrieval in combination with Boolean retrieval and special search
operators. Through use of this retrieval model, all of the documents are identified
that match the criteria of the search query. In the case of vector space retrieval,
queries as well as documents are represented through term vectors. The relevance of
documents (according to a query) is calculated by measuring the similarity between
the vectors. A ranking function try to rank the relevant documents based upon a
retrieval model and a set of different criteria (term frequency and inverse document
frequency or PageRank).

Different approaches try to increase the process of indexing by analyzing the contents
of the documents; for example, through Latent Semantic Analysis approaches (see [17] or

!See [84] for more information about research in the field of vector space models.

63

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

[43]). However, an IRS index is a static collection of indexed data. All of the information
that users want to search for must be indexed in advance. Additionally, if documents
are updated, they must be indexed again and the index must be updated. The result is
that search technology based on information retrieval is not designed for information that
rapidly changes. A relationship of documents is a kind of rapidly-changing information.
Therefore, AIRS includes an ontology (AIRSKB) in its search approach. AIRSKB repre-
sents the document relationships that can rapidly change and the index of AIRS contains
information that is necessary for the search. The indexing process of AIRS differs from
ordinary indexing approaches of search technologies in the way in which documents must
be indexed in the AIRS index and corresponding ontological individuals of AIRSKB must
be built.

Two main workflows can be determined at AIRS’ server side: Indexing Workflow and
Retrieval and Feedback Workflow. As usual in IRS, these two workflows act indepen-
dently of each other. This section starts with an introduction to Indexing Workflow of
AIRS, where the indexing of different document types is introduced. Furthermore, the
Retrieval and Feedback Workflow is introduced in this section.

5.1 Indexing Workflow

In [96], Indexing Workflow is described as part of the system initialization. It is the kind of
workflow, where all documents of the heterogeneous document landscape are loaded into
the IRS index and where AIRSKB is populated with ontological individuals. Furthermore,
its first implementation is performed between the system development and the system’s
regular operating time. Later on, it should be undertaken in a repetitive manner to update
the index because documents can change over time. Additionally, the document authors
can provide new documents and other documents can be marked as no longer being valid.
The current challenge is to keep both the AIRS index and AIRSKB up-to-date. More
specifically, it is important to synchronize the state of AIRS’ index documents with the
state of the corresponding AIRSKB individuals and the original documents stored in the
document’s source location (of the heterogeneous document landscape).

As stated in Section 4.2, AIRS works with document abstracts that have been built from
the original documents. These Document Abstracts contain the necessary information
for the retrieval. The document abstracts are subsequently transformed to AIRS index
documents.

Index document fields of state-of-the-art retrieval systems?. The keys are the field names
and the values are stored in the corresponding fields. An information retrieval index differs
from relational database tables especially in the way in which information retrieval system
indexes can be seen as a one-dimensional search index. A search index at least looks like
just one table of a relational database. This causes some challenges in building an index
for retrieval.

In [96], the challenge is stated as it could be very difficult to transform multi-dimensional
data into a one-dimensional search index without losing any necessary information or data
restrictions. In a few cases of multi-dimensional or otherwise complex data, it is even

2Apache Solr can be seen as an example as an information retrieval system that uses a configuration
file for index description. In solrconfig.xml, fields and field values that are used for the retrieval are
described (for details visit https://wiki.apache.org/solr/SolrConfigXml, last visited Sept. 18, 2016.).

64

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.1 Indexing Workflow

impossible. Therefore, by looking at the underlying business case, only data with search
capability and linkage potential should be extracted. For example, regarding a relational
database as source, not every field of a database table contains business case-relevance
information. It is not necessary to make a model that is a full semantic copy of the original
document. In addition, the source information must be stored in the index document and
documents of the same source need to be built in an equal way.

On the other hand, all of the segments of the original document that are necessary
for the retrieval must be translated into Document Abstracts. The Document Abstracts
are subsequently transformed into index document fields. The Index Workflow causes a
process that requires decisions regarding which information of the original documents is
necessary for the retrieval and which can be neglected. This decision can be made by
domain experts or data scientists®.

1. Identify relevant information
fragments in taxonomy (typically
nodes) and interpret them as
documents

2. Build document

3. Transform document abstracts abstracts from
to index documents and keep source nodes using
information in special index field source node properties

document source field1 field 2 [Property 2] [Property 1]

doc 1 X val. prop. 1 val. prU

AIRS Index

Figure 5.1: Keeping taxonomy node information in a search index using document abstracts.

Given that AIRS also includes an ontology in the retrieval process including all of the
documents of the heterogeneous document landscape, AIRSKB must be populated with
document individuals. Unlike AIRS index documents, AIRSKB DOCUMENT individuals
do not contain the value information of the document abstract key-value pairs. More
specifically, it is not necessary because the values are simply used for the vector-space
retrieval offered by the underlying search technology. By contrast, the keys are used to
implement a link between AIRS index documents and AIRSKB DOCUMENT individuals.

3See [13] for more information about the job profile data scientist.

65

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

For instance, in the case of a car workshop domain, repair instruction documents com-
prise segments that contain different information (see Figure 4.4). One such a segment
is “complaint”, which contains information about unusual behavior of a car, resulting in
an error. Data scientists should decide whether a segment is necessary for the retrieval
in terms of the underlying business case. Segment “complaint” contains such informa-
tion because the workshop employee should be able to search for the complaint to find
the corresponding remedy (“remedy” is also a segment of repair instruction documents).
Therefore, the segment “complaint” must be later transformed in an index field. The
AIRSKB instead represents the repair instruction document and its segments. Therefore,
AIRSKB includes information about the ontological individual that has a segment called
“complaint”. This information is represented by a DOCUMENT-ATTRIBUTE that belongs
to the “repair instruction” DOCUMENT (see Section 3.2).

To summarize, all document abstracts need to be placed in the AIRS index as index docu-
ments and as AIRSKB individuals in the AIRSKB ontology. Moreover, the key-value pairs
must be transformed in fields and field values of the corresponding AIRS index documents.
Additionally, the keys must be implemented as DOCUMENT-ATTRIBUTE individuals and
correlated to the corresponding DOCUMENT individuals of AIRSKB. The following figures
depict how this transformation can be carried out during the Indexing Workflow.

(=

. Use same document abstracts as built for indexing
2. Place document abstracts as ontological individuals AIRSKB
in AIRSKB: nodes as Document individuals (2.1) and
node properties as Document-Attribute
Source: X individuals (2.2)
3. Relate Document, Document-Attributes
and Source X to each other
4. Establish is-related-to relation
between all the Document
individuals from the taxonomy
{model of taxonomy e
hierarchy) 2.2 .-
2.2',,-"

-

Figure 5.2: Transformation of taxonomy node information into corresponding AIRSKB indi-
viduals.

Figure 5.1 illustrates how a document abstract made from a taxonomy node can be
loaded into an IRS index (Step 1). A taxonomy node typically is included in a taxonomic
hierarchy and contains multiple attributes. One such example is the lexicographic taxon-
omy, which contains a hierarchical order of symptoms and symptom places of car defects.
Of course, each symptom or symptom place has a name, an identification number and

66

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.1 Indexing Workflow

synonym descriptions in multiple languages. All of these attributes are taxonomy node
properties represented through key-value pairs. A Document Aabstract subsequently con-
tains selected properties and values (Step 2). The Document Abstract will be placed in
the AIRS index as shown in Figure 5.1: a source field is placed in the index that contains
the taxonomy name as source information. Multiple index fields are implemented, which
represent the properties and contain the properties information (Step 3). Later on, these
fields can be used for the retrieval across all of the stored taxonomy nodes. Again, the
taxonomic hierarchy is not placed in the AIRS index because all relationship information
is represented through the AIRSKB ontology. As stated before, the Document Abstracts
need to be modeled as DOCUMENT individuals in the AIRSKB ontology.

Figure 5.2 depicts how a document abstract (Step 1) can be transformed in an AIRSKB
DOCUMENT individual (Step 2.1) and AIRSKB DOCUMENT-ATTRIBUTE individuals:
properties are modeled as DOCUMENT-ATTRIBUTES (Step 2.2) that are linked to the
DoCUMENT individual (Step 3). DOCUMENT individuals (stands for the taxonomy nodes)
are related to each other like the original taxonomy nodes (Step 4). Each AIRS index
document and each AIRSKB individual have a special attribute called AIRSKB_ID. The
unique AIRSKB_ID number ensures the identification of each AIRS index document and
AIRSKB individual: an AIRS index document and an AIRSKB individual that have the
same AIRSKB_ID belong to the same original document. The taxonomic hierarchy is
modeled as relationships between DOCUMENT individuals: after all taxonomy nodes are
modeled as DOCUMENT individuals, relationships between all of the DOCUMENT individ-
uals are added to the AIRSKB ontology (Step 4 of Figure 5.2).

1. Identify search relevant segements of
documents and build document abstracts
2. Include document abstracts in index
(segments into separate fields) and
keep source information

Source: Y

2
2 2
document source | field1 field2 = [field3 | |fieldd |
doc 1 X val. prop. 1 val. prop. 2
doc 2 Y o val. seg. 1 val.seg.2 val seg. 3
doc 3 Y > val. seg. 1 val. seg. 3
AIRS Index

Figure 5.3: Keeping documents (PDF, HTML, WORD, et cetera) in a search index using
document abstraction; figure first shown in [96].

67

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

Figure 5.3 depicts how documents that have a structure based upon segments can be
placed in a search index. Examples of such documents include repair instructions (as
explained in Section 4.2 and shown in Figure 4.4), replacement parts as well as other types
of documents such as web pages. The important aspect is that similar documents must
belong to the same source. A source again can be a retrieval system (like a replacement
parts catalog) or a well-defined container of similar documents (for example, an internet
domain). Documents of the same source comprise a super-set of segments. A segment
of a document comprises a key-value pair (like the properties discussed in the taxonomy
transformation example above). Figure 5.3 shows two documents of “Source Y”. The left
document comprises three segments (“Segment 17, “Segment 2” and “Segment 3”), while
the right comprises two segments: “Segment 1”7 and “Segment 3”. The document abstract
indicates which of the segments are necessary for the retrieval and must be placed in the
index (Step 1). In Figure 5.3, all of the segments of the left document have been chosen and
placed in the index document “doc 2” (Step 2). The processed segment values are placed
in corresponding fields (“field 3”7, “field 4” and “field 5”). During the retrieval, each field
can be addressed separately to enable retrieval features like faceted search. Additionally,
these fields can be used to search only in a special field for document values. For example,
one can search for documents that belong to a given replacement part number in the index
documents’ field “replacement part number”. The source information needs to be added
to each of the index documents, as shown in the figure (see index field “source”).

. Use same document abstracts as built for indexing

. Place document abstracts as ontological
individuals in AIRSKB: documents as Document
individuals (2.1), segments as Document-Attribute
individuals (2.2)

3. Relate Document, Document-Attributes, and

Source Y to each other
4. Establish relationships between Document
individuals (if already known)

M=

AIRSKB

Figure 5.4: Transformation of documents (PDF, HTML, WORD, et cetera) into corresponding
AIRSKB individuals.

Figure 5.4 shows how documents that comprise segments can be modeled as ontolog-
ical elements and placed in AIRSKB as described before. The AIRSKB individuals are

68

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.1 Indexing Workflow

built the same way as explained in the taxonomy example above: a DOCUMENT individ-
ual is placed in the ATRSKB ontology for each document abstract that is transformed in
an AIRS index document (Steps 1 - 2.1). AIRS index fields are placed as DOCUMENT-
ATTRIBUTES in AIRSKB (Step 2.2) and they are linked the to the DOCUMENT where
they appear through use of a document-attribute-of-document relation. The Docu-
MENTS and DOCUMENT-ATTRIBUTES subsequently need to be linked to the corresponding
SOURCE of AIRSKB (Step 3) through use of the SYSTEM-RELATIONS document-of and
document-attribute-of-source. In Step 4, relationships between the DOCUMENT individuals
can be established (not shown in the figure). Documents that comprise segments are often
based upon PDF, HTML, CSV or any other semi-structured format. These documents
are difficult to transform in AIRS index documents and AIRSKB individuals because the
structure is often unclear and segments are not easy to identify. As previously mentioned,
this is a difficult task that needs the knowledge of domain experts or data scientists.

1. Extract search relevant information table 3 |
from database objects -
using 5QL statements —] 1
and interpret them Source' Z m — \
as document |
abstracts (each — 1| }
row as a document R — 1
abstract)
Include docurment
abstracts into AIRS
Index (each row of
database extract
in a separate index field) 2 2 2
and keep source information AIRS Index

document source = field1 | field2 field3 | field4 = field5 || field4 | field5

i

doc 1 X val. prop. 1 val. prop. 2

doc 2 Y val.seg. 1 val.seg.2 val seg.3

doc 3 Y val. seg. 1 val. seg. 3

doc 4 Z 5 value 2.1 \value 2.2
doc § Z 3 value 3.2

Figure 5.5: Keeping search relevant information of database objects in a search index using
document abstracts.

Often information is stored in databases and a document is built dynamically after
requesting it. Figure 5.5 shows how a database SQL query can be used to build documents
that are dynamically stored in a database schema (Step 1). The database response forms
the Document Abstract, which is later used to include the document information in the
AIRS index. All of the rows of the response containing necessary information for the
retrieval later in AIRS’ retrieval workflow can be selected to build index fields (Step 2). In
the case a value exists, they can be included as field values (Step 2).

Figure 5.6 shows the process to add AIRSKB individuals to the AIRSKB ontology from
document abstracts built from a database. The same database query is used to identify
documents in the database schema. As stated above, the result of a SQL query belongs
to a document abstract (Step 1) and should be modeled as an AIRSKB DOCUMENT

69

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

individual (Step 2.1). Column names are the DOCUMENT-ATTRIBUTES that were added
to the ATIRSKB ontology (Step 2.2). Later they are linked to the corresponding SOURCE
individual (Step 3). In the case of values of the column in the corresponding row not being
null, the DOCUMENT-ATTRIBUTES are linked to the DOCUMENT where they appear (also
Step 3). In Figure 5.6, two DOCUMENTS are included in the AIRSKB ontology. One of
them is linked to two DOCUMENT-ATTRIBUTES and the other is linked to only one of
DOCUMENT-ATTRIBUTES (because the corresponding value of “column 17 is null). To
summarize, a DOCUMENT of the SOURCE individual representing “Source: Z” can have
two DOCUMENT-ATTRIBUTES representing “column 1” and “column 27.

Figure 5.7 shows how a relationship can be established between documents that are kept
in the index and represented in the AIRSKB. As stated before, AIRSKB can be used for
the task of establishing relationships between documents even across system borders. A
link between the two documents “doc 1”7 and “doc 2” is not represented in the AIRS index
(because they have to change dynamically). Therefore, a relation between to documents
is represented through a DOCUMENT relationship in AIRSKB (Step 1). This relationship
can even be carried to index field level: a relationship between DOCUMENT-ATTRIBUTES
in AIRSKB (Step 2). If two DOCUMENTS are related to each other, this also applies to
“their” SOURCES (Step 3).

=

. Use same document abstracts as built for indexing

2. Place document abstracts as ontological AIRSKB
individuals in AIRSKB: each row of extract
as Document individual (2.1), every column of
each row as Document-Attribute individual (2.2)

3. Relate Document, Document-Attributes, and
Source Z to each other

4. Establish relationships between Document

individuals (if already known)

'd ™y -
! = = value 2.1 .
pN vy

Figure 5.6: Transformation of search relevant database objects information into corresponding
AIRSKB individuals.

For this work, only relationships are carried in the AIRSKB during the
Indexing Workflow that already exist in the original retrieval systems. These links between
documents were subsequently placed in the AIRSKB ontology as DOCUMENT relationships.
Nonetheless, these kinds of existing relations remain very rare in the original documents.

70

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.2 General Retrieval and Feedback Workflow

Section 6 describes a kind of relationship between DOCUMENTS that is established during
the retrieval and bases automated feedback processing.

Nonetheless, how can new, previously-unknown relationships between documents be es-
tablished during the Indexing Workflow? Relations can be found or approximated through
an algorithmic calculation to measure the similarity of text fragments, for example. An-
other kind of relation between documents can be established via text mining algorithms
to find corporate language entities. For example, by using an entity-recognition algorithm,
replacement parts number can be found in the free text of repair instructions. Later on, the
repair instruction document can be automatically linked to the replacement parts found
in the free text.

Challenge: Establish a relationship between two documents of isolated retrieval systems (Source X and
Source Y)

Precondition: The two documents (doc 1 and doc 2) have been indexed before (included in AIRS Index) and
corresponding ontological individuals were included into AIRSKB

1. Establish an is-related-to relationship between the two Decument individuals of AIRSKB

2. Establish is-attribute-related-to relationships between the Document-Attribute individuals from the two
documents (if possible or necessary)

3. Establish an is-source-related-to relationship between the two Source individuals

AIRS Index
e
~ doct
doc 2
doc 3
doc 4
doc 5

field2 field3 field 4

| | field 4 field 5
val. prop. 1 val. prop. 2

val.seg. 1 val . seg. 2 val seg. 3
val. seg. 1 val. seg. 3

value 2.1 value 2.2
value 3.2

Figure 5.7: Establish relationships between two indexed documents using AIRSKB relation-
ships; figure first shown in [96].

5.2 General Retrieval and Feedback Workflow

The Core Component of AIRS takes control of the Retrieval and Feedback Workflow. It
defines the retrieval strategy for each search process and business case with the support
of the Ontology Component. The Core Component coordinates the interaction between
the Ontology Component and the IRS Component to deliver good sets of answers to

71

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

the user. The user types in a search query and the AIRS client-side application build a
search instance object around it and send this object to the AIRS server where the Core
Component takes control over it.

Figure 5.8 shows how multiple AIRS client applications communicate with the AIRS
backend server application with the help of a search instance object. Therefore, each
search instance object has a unique identifier to enable the specific interaction of each
AIRS client application with the AIRS server.

At backend servers-side again, several retrieval algorithms process the user’s query and
combine the capability of both ordinary document retrieval as well as ontology-based docu-
ment network retrieval. After collecting all relevant information and documents, the AIRS
backend server extends the search instance object with multiple search result objects and
a feedback objects. A search result object again is a container for search results that be-
long to the same kind of information: documents that are grouped by sources or a set
of related documents based upon the Suggest Cluster Algorithm (see Section 5.4). Each
search result object contains:

e a relevance-sorted set of answers AIRS responds to according to the user’s informa-
tion requirement,

e metadata like the total number of found answers,
e the number of answers the user gets,

e a search result explanation and more.

By contrast, the feedback object is used to collect feedback to identify previously-
unknown knowledge about document relationships and include this knowledge in the
AIRSKB ontology. The Statistics Component takes care of this process and the
feedback object collects all of the necessary information:

e query time stamp,

e ranked list of answers,

e the original user query,

e the system-modified query, and

e search metadata (properties like user context information, search language, etc.).

The feedback process starts at the AIRS backend server side, where the Core Component
sends the search instance object back to the AIRS client where the query came from. At
the client side, the search result is visualized according to the answer type. After the user
closes the business task, it is important to collect user feedback data such as all documents
that the user included in the business case?. The client’s Statistics Component adds all
this information to the search instance object and sends it back to the server. Thereafter

4The user adds all relevant documents that are necessary to solve the business task to a container (like
a cart in various web shops).

72

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.2 General Retrieval and Feedback Workflow

Frontend
AIRS Client
' —— AIRS Clien
AIRS Client component]
Statistics Statistics
component component
‘
instance instance instance
Backend N - »
o ! ‘,"
=
o &
AIRS 5 8
© g
S
(&]

Figure 5.8: Client-server interaction with the help of the search instance object that is used
for both the retrieval for documents as well as for automated feedback procession. The figure
is adapted from the version shown in [94].

at the server side, the Statistics Component interacts with the Ontology Component to
ascertain whether new document relationships or updated weights of relationships flow
back into the ATIRSKB ontology. Because AIRSKB is used to generate retrieval strategies
and find document relationships during the retrieval process, the feedback of the users is
collected and processed automatically and flows back into the retrieval process for future
searches. Section 6 explores the feedback process in further detail and explains how this
feedback information is associated with the collective intelligence of users and document
authors. Section 5.5 instead explains how the AIRS feedback-processing infrastructure is
used to generate Suggest Clusters that are used in the “Suggest Cluster Algorithm” (see
Section 5.4).

After the user specifies the context-dependent parameters and types in the information
need description in the form of a natural language query, AIRS starts the search for every
kind of information that supports the user in solving the business task. Therefore, AIRS
includes different algorithms for the information seeking process and combines the capa-
bility of its three main components that are used for the retrieval. Figure 5.9 shows the
search graph of AIRS and the interaction between the three components: Core Component,
IRS Component and Ontology Component. At least these components support two inde-
pendent search algorithms that are involved in the information gathering process. Both
algorithms need a query processing: the IRS Component at the backend servers side val-
idates the user’s query regarding spelling errors and combines possible spelling correc-

73

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

tions with suggestions for similar search terms (these functions only exist in dependence
from the underlying information retrieval system). In Figure 5.9, the first three steps
show the query preparation for one of the two different retrieval algorithms. Figure 5.9
Cluster A shows the extended information retrieval algorithm Suggest Cluster Algorithm.
The Suggest Cluster Algorithm uses AIRS’ infrastructure to combine knowledge from prior
searches and automated user feedback to search for related documents. This kind of search
for related documents is extended retrieval: the search results are based upon the feedback
of the users. Section 5.4 presents the “Suggest Cluster Algorithm”. In addition, Figure
5.9 Cluster B presents the steps towards an extended document search based upon state-
of-the-art retrieval technology. However, AIRS’ retrieval workflow for “Document Search”
(see Cluster B of Figure 5.9) is much more complex than ordinary document retrieval.
First of all, it extends the document retrieval in a way that it offers result clusters to the
user. These result clusters were built automatically by the clustering of search results re-
garding attribute values. Ontology Component delivers the SOURCE information stored in
the AIRSKB ontology and AIRS divides the search into multiple sub-searches, one for each
SOURCE. The search result documents are again grouped by “their” SOURCES. To achieve
this, AIRS enriches the search query automated for each source stored in the AIRS index
with special attributes to match its retrieval characteristics (see Figure 5.9 Cluster B, Step
B.1). Such characteristics are search properties like validity conditions, as described above
(CONTEXT-ATTRIBUTES). By looking at Figure 5.9 Cluster B, Step B.1 of the algorithm
is processed through the Ontology Component: AIRS searches for all different SOURCES
that are contained in AIRS. This is necessary because documents of different sources may
need different retrieval strategies. These retrieval strategies address special index fields as
well as sets of context dependencies (CONTEXT-ATTRIBUTES). Once a SOURCE is identi-
fied, the AIRS properties management searches in the AIRS properties files for information
about special search characteristics that are necessary to search for documents of the given
source. The Ontology Component builds a list of all SOURCES found in AIRSKB (Docu-
ment Search Algorithm, Step B.2). Core Component iterates through this list (Step B.3)
and makes a single search for each source (Step B.5) after it adapts the query with special
characteristics, as previously described (Step B.4).

Finally, the IRS Component is used for document search (Step B.5) and each result is
included in the result set (Steps 4-5). This means that this kind of retrieval supports
many result classes and it is only content driven. Following this, it is very easy to include
new sources in the AIRS document retrieval: only the index documents, the AIRSKB
individuals and the special search characteristics in the AIRS properties file are necessary.
Based upon the knowledge network capability of the AIRS document retrieval, it is also
possible to search for related documents for each search result. Section 5.3 proceeds in
further detail in a related-document search regarding a single document.

74

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.2 General Retrieval and Feedback Workflow

Core Component
Step 1 Build Query Object

IRS Component f

Step 2 Expand Query Object
Ontology Component . .
With Context-Dependencies

Step 3

Validate Query Object
(Spell-checking, Suggestions)

Suggest Cluster Search

Step AL(Search for Suggest A
Documents

Step A.2
P Check Suggest Document Search
Document List
lLisx is NOT empty
Step A3

Build Query for Suggest
Cluster Document Search

List is
Step B.1 . L e B
Find List of
Empty Step A4 (Tqirch for Suggest .
Available SOURCES
Cluster Document
(AIRS Document Types)

tep A
Step A5 Check Suggest Cluster Step B.2 Check Result
Document Result List
Result is NOT Empty \List is NOT Empty

RS et Related Documents
for Suggest Cluster

Step B.3 ' Take First Source
Element from List

Document Result

] List is still
Step AT Bl Query to Search Step B.4 Add Source NOT Empty
for Related Documents List is Information to Query

Result is Empty

Empty

Step A.8
Search for Related 5tep B.5 [[search Source’s Documents
Documents in Index
Document Search Algorithm
Suggest Cluster Algorithm /

Step 4 Check Result List

Result List is
Result List NOT Empty

is Empt;
Step 4 4 4d "Found Nothing" Py
Step 4.1 Add to Result Page

to Result Page
\ /

Step 5 print Result Page

é

Figure 5.9: AIRS retrieval graph regarding a user search and the interaction between
Core Component, Ontology Component and IRS Component. Cluster A shows the “Suggest
Cluster Algorithm” and B shows the extended “"Document Search Algorithm” of AIRS.

75

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

5.3 Related Documents for a Single Search Result

AIRS’ retrieval capability offers both an extended document retrieval algorithm as shown
in Figure 5.9 and the possibility to find related documents regarding a single document.
Figure 5.10 depicts two functions of Ontology Component, which are used for this task:
the search for direct related documents and the search for related documents for a target
source. A single search result serves as the starting point: the search instance object (Fig-
ure 5.10, Step 1) contains the user’s query (free text, concatenation of terms tatptc ... ty)
and a ranked list of result documents (doc b, doc ¢). For instance, a user could now be
interested in documents that are related to one of the result documents (for more infor-
mation about the results topic). Accordingly, the user clicks on a single result document
(doc ¢, for example) and can trigger a new search for directly related documents. The
system’s response is a new search instance object that contains a set of related documents
ranked by relationships strength (Figure 5.10, Step 2). The special aspect is that neither
the client application nor the user knows where the result list comes from: AIRS routes
queries automatically to the components that can answer the requests (free text search to
IRS Component and related document requests to Ontology Component). Every answer
looks the same for the client application.

The search for directly related documents addresses all of the knowledge that exists in
a virtual way but knowledge that cannot be adapted easily in current retrieval system
indexes. By means of virtual knowledge, the meaning of the knowledge networks that
includes information about documents relationships of all users is addressed. For example,
an employee of a car workshop has many years of experience in the workshop processes and
knows exactly what kinds of workshop documents are necessary for a given use case. In
other words, if a workshop employee knows what kind of maintenance a car of a customer
needs, the employee might know which kinds of replacement parts and which kinds of
repair instruction documents are necessary for this maintenance. This kind of knowledge is
private and isolated from other colleagues. It is also not represented in the current retrieval
systems. One can interpret the sum of all of the knowledge of a single workshop employee
as a private knowledge network about workshop document relationships. The totality
of knowledge networks of all workshop employees can be seen as a collective knowledge
network of document relationships. Unfortunately, this knowledge is not represented in
the current retrieval system. The collective intelligence of workshop employees is discussed
more in detail in Section 6. Because the direct related documents are also derived from
feedback, the user gains part of the collective knowledge network.

Figure 5.10, Step 2 shows the findRelatedDocuments function of the
Ontology Component, which consumes an AIRS document (“doc ¢”) and searches
in AIRSKB for direct related DOCUMENTS. This function searches for all context-
sensitive relations rel (05, 04),,, ~of a given DOCUMENT o, in the AIRSKB (see Section
3.3). AIRS uses the related documents to build a search result object. For this approach,
relation weights are used for result ranking rather than the IRS retrieval algorithm. As
shown in Section 3.2 as well as in Section 3.3, AIRS can be used to navigate through the
knowledge network and find related documents of a given target SOURCE regarding an
also given DOCUMENT. The user can now select a search result document and choose
a target source that the user is interested in and start a search for related documents®.

°For example, a user can be interested in searching for repair instructions regarding a replacement part.

76

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.4 Document Search Using Suggest Cluster Algorithm

Figure 5.10, Step 3 now shows the findRelatedDocumentsOfSource function of the
Ontology Component, which is responsible for this task. For this purpose, the pathway
equations presented in Section 3.3 and in Section 3.3 are used to build the ranked-result
set of documents. Accordingly, best context-sensitive pathways pathway (o1, s)AmheSt are
calculated for the given DOCUMENT o0; and also given SOURCE s. Section 6 shows how
new relations between AIRSKB documents can be established.

AIRSgntology._companent(findRelatedDocumentstiSource(doc b, source z)) = <doc g=

Query tAtBtC ...ty
Result doc b (1)
documents |doc ¢ (2)
= (rank) 0
Document |doc b

Document [doc ¢ = 1
arget
source z
:esult doc a (1) source
oCUments lgoc g (2) Result

(rank) documents |doc g (1)

(rank)

\’_d_ﬁx

AIRSOHWW.F%O,HWHMI(fER_elatenDncuments[J(}_c_CJ) = <doca ++, docd +>

—_—

AIRSKB

doc a source ¥

doc b source y field p val.
doc ¢ SOUrCE figld p val.
doc d source x

dog f SOUMCR T field p val.
doc g source z field p val

Figure 5.10: Finding related documents regarding a single result document. The starting point
is a ranked result list that the AIRS application offers the user (Step 1). A user can select a
single document and trigger a new search for related documents (Step 2) or related documents
of a given target source (Step 3).

5.4 Document Search Using Suggest Cluster Algorithm

AIRS combines state-of-the-art document retrieval with knowledge network technologies
offered by an ontology. Section 5.2 explained how the retrieval of AIRS works and Figure
5.9 depicts the algorithmic structure of the search concerning how the IRS Component and
Ontology Component work together under the control of the Core Component. By looking
at the “Documents Search” algorithm (Figure 5.9, Cluster B), AIRS’ document retrieval
offers result sets grouped by the documents’ sources. These documents set are built dy-
namically with the help of source information stored in the AIRSKB ontology. Section 5.3
explains how the users can search for related documents regarding a single search result

7

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

by using the power of document relationship knowledge stored in AIRSKB. However, the
infrastructure of AIRS can also be used for new kinds of retrieval technologies that com-
prise a deeper integration of the ontological knowledge into the document retrieval. The
algorithm shown in Graph 5.9, Cluster A is an example of an advanced usage of the AIRS
infrastructure. It provides the Suggest Cluster Algorithm. The Suggest Cluster Algorithm
extends the ordinary search with document sets (the so-called Suggest Clusters), which are
linked to concept sets (set of so-called Suggests). A concept can be a description of a real-
world activity, like “repairing something” or an entity like “car”. The real-world activity
is again represented through a set of terms that describe the activity. This term set can
comprise synonyms (like “fixing” or “repairing” for activity “repairing something”) or other
semantic relationships that make sense for the given domain to build concepts. A concept
is interpreted as a Suggest document. A Suggest Cluster is subsequently a combination of
concepts. This combination subsequently builds a more specific concept. For example, the
concept for the activity “repairing something” in combination with the concept of “car”
builds the concept of “repairing cars”. The idea behind this is that Suggest Cluster “re-
pairing cars” can be described through different term combinations like “repairing vehicle”,
“fixing car” and others.

As stated above, the Suggest Cluster Algorithm uses the AIRS and AIRSKB infrastruc-
ture. In this sense, Suggest can be interpreted as a virtual system that holds all of the
concepts. A document of this virtual system comprises a set of terms that describes the
concept. Suggest Cluster can also be interpreted as virtual system that holds more specific
concepts described through Suggest documents: a Suggest Cluster document is a concate-
nation of Suggest documents. For AIRSKB, this means that that both Suggest Cluster
and Suggest serve as SOURCE individuals:

{suggest_cluster, suggest} C S (5.1)

Suggest Cluster and Suggest documents are interpreted in AIRSKB as DOCUMENT indi-
viduals. In general, Suggest Clusters are knowledge hot spots that bring together groups of
concepts with a group of workshop documents. The special aspect is that this connection
between concepts and documents is not based upon typical search technology. Rather, it
based upon knowledge mapping between concepts and documents through using relevance
feedback.

Graph 5.9, Cluster A shows how the Suggest Cluster Algorithm works in general and
depicts the necessary steps in processing a user query towards the search result. The
first steps (Steps 1 - 3) are necessary for processing the user’s query to prepare it for
later retrieval steps. The Core Component and IRS Component take care of these steps.
The Suggest Cluster Algorithm itself starts with a search for Suggest documents (Step
A.1) with the prepared query by using the IRS Component (Step A.1). If Suggest doc-
uments were found, a new request for a corresponding Suggest Cluster is prepared by
Core Component (Steps A.2 - A.3). The query for the Suggest Cluster document com-
prises a concatenation of previously-found Suggest documents. The IRS Component sub-
sequently takes care of the search for the Suggest Cluster document in the AIRS index (Step
A.4). TIf a Suggest Cluster document has been found (Step A.5), the Ontology Component
searches for related DOCUMENTS for theSuggest Cluster DOCUMENT found in the AIRSKB
(Step A.6). If related DOCUMENTS exist, the Core Component builds a query to retrieve
the corresponding document information from the AIRS index (Step A.7), because only

78

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.4 Document Search Using Suggest Cluster Algorithm

the AIRS index holds content information of document (in contrast to the AIRSKB ontol-
ogy). Once the documents were found in the AIRS index (Step A.8), they are displayed
to the user as a search result (Steps 4 - 5).

AIRSgntoi0gy_component(is-related-tofdoc sc)) = <doc b +++, doc a ++>

docs Query tAtBtC - tN
doc s+1 = suggest
) Source [documents

Result

docsc suggest cluster doc s-1, doc 5+1 i ggz : EH

doc se+1 suggest _cluster doc 5, ..., doc s¢n (rank)

doca source x fiald p val.

doc b source y field p val. AIRS(suggest_docu mentstq]}

= <doc b, doc a>

Figure 5.11: Searching for related documents using the Suggest Cluster Algorithm. First, the
search term of a user's query is mapped against the Suggest documents (Step 1) using vector-
space retrieval technologies offered by the IRS Component (Step 2). The Suggest document is
represented by a set of terms in the AIRS index. For example, {tp,tx,...,tz} is the term set
for Suggest document “doc s+1". The set of found Suggest documents is now used to build
a new query to find the corresponding Suggest Cluster document (Step 3). The final step is a
search for related documents in the Ontology Component regarding the found Suggest Cluster
document (Step 4).

Figure 5.11 depicts how the Suggest Cluster Algorithm works in detail. The first step
after the user types in the query is to map these queries to the index documents repre-
senting the concepts. These concept documents are called Suggest documents (the source
information stored in the index is “suggest”). Each concept is represented through such
an index document and for a concept description a set of terms is stored in a special index
field (see documents “doc s-1”, “doc s” and “doc s+1” of Figure 5.11, for example). This is
shown in Steps 1 and 2 of Figure 5.11, where the query terms are mapped against terms of
the concept using state-of-the-art vector-space retrieval offered by the underlying retrieval
system (encapsulated through the IRS Component). Once the query was mapped to the
AIRS index, the result set containing Suggest documents is used to build a new query,
which is a conjugation of suggest-id components. This new query is now mapped against

79

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

the AIRS index to find the corresponding Suggest Cluster document (see Step 3 of Figure
5.11). Suggest Cluster documents in detail are special index documents that have index
fields containing a set of concept ids. Moreover, each Suggest Cluster index document has
a unique set of concept ids, whereby each Suggest document is a representation of only
one concept cluster. A concept cluster again can represent a thing, an activity or a process
description in the real world.

As stated above, Suggest documents are concepts that stand for an object represent-
ing a thing, an activity or a process in the real world. By looking at the workshop
process, these things are concrete task-describing elements. For example, if a cus-
tomer’s car needs service because the front window is broken, whereby a replacement
is necessary. The German word for front window is “Frontscheibe”, although “Wind-
schutzscheibe” is also a similar translation. These two words are synonyms. Together,
they stand for the concept of the object front window. The set of terms {Frontscheibe,
Windschutzscheibe} build the corresponding Suggest document. Considering that the
front window must be replaced, another concept becomes part of the case description,
namely the part replacement activity. To “replace something” can be translated as
“ersetzen” in German. Additionally, the German words “tauschen” and “wechseln”
are synonyms for “ersetzen”. This means that the set {ersetzen, tauschen, wechseln}
stands for the activity of “replacing something”. This activity concept is also stored in
the AIRS index as a Suggest document. The workshop employee now types the string
“Windschutzscheibe aufgrund Riss ersetzen” (German for “Replace front window due
to crack”) in the search bar and the AIRS’ IRS Component maps the query against the
AIRS index. Because the terms of the query map both the Suggest document of “front
window” (SD1) as well as the Suggest document of the activity “replace something”
(SD2), the two Suggest documents appear in the result set. This result set now is used
by the Core Component to build a new query to search for a Suggest Cluster document
that matches the set of Suggest documents found. Given that Suggest documents are
assigned to unique sets of Suggest document identifiers, the necessary Suggest Cluster
document (SCD1) must belong to the Suggest document set {SD1,SD2}. The re-
sulting query is “SD1 AND SD2”. Once the Suggest Cluster document is found, the
Core Component triggers a search in the Ontology Component for documents that
are related to the Suggest Cluster document found: findRelatedDocuments(SCD1). If
documents that are related to the Suggest Cluster document exist in AIRSKB, AIRS
builds the result set containing these documents, using the weights of the relationships
(equal weights cause equal ranks in the result set). In this sense, even documents that
could not be necessarily determined by the underlying search engine algorithm can be
found through the user’s query.

Example 8: Example for the Suggest Cluster Algorithm.

Example 8 explains such a concept cluster reference to real world activities. If such a
Suggest Cluster document was found in the AIRS index, the Ontology Component searches
for the Suggest Cluster document representation in AIRSKB to find the DOCUMENTS
related to the Suggest Cluster DOCUMENT. As Figure 5.11 Step 4 depicts, the weight of the
relationships is used to build and rank the result set containing these related DOCUMENTS.

80

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.5 Update Suggest Clusters for Suggest Cluster Algorithm

After AIRS enriches the related DOCUMENTS with content information, this result set is
submitted to the user as a search result.

5.5 Update Suggest Clusters for Suggest Cluster
Algorithm

In the previous section, Suggest documents were introduced as AIRS’ containers for con-
cepts that represent objects, activities or processes of the real world. Furthermore, these
concepts are described through a set of terms. These term sets can be interpreted as syn-
onym clusters in the sense of a specific domain, namely the after-sales automotive market.
The domain is a basic condition for describing concepts through terms, because terms
are often ambiguous. A clear domain reduces this effect due to a clear vocabulary: some
meanings of ambiguous terms often make no sense in a specific domain. An example is the
German word “Bank”, which actually has several meanings, including financial institution
or bench. If the specific domain is about financial transactions, the word “bench” does not
work as an interpretation for “Bank”.

Returning to the Suggest documents, one question remains open: what seems to be a
good natural language source for such a concept describing synonym sets? Good sources
for such natural language resources are technical domain specific thesauri, taxonomies
or even natural language databases used for controlled vocabulary processes. Addition-
ally, text mining technologies can be used to build these natural language resources. In
this sense, calculating co-occurrences of a higher order over a domain-specific text re-
source can produce sets of related words®. Even free accessible text resources can be
used to build sets of synonyms. For example, the sub-project of the Wikimedia foun-
dation Wiktionary” can be used to build concepts for objects, activities or processes.
For AIRS, various natural language resources (in-house and external) were used to build
the Suggest documents. All together AIRS contains more than 7,000 unique Suggest
documents. As explained in the previous Section 5.4, each Suggest Cluster document
fits exactly one combination of Suggest documents. For example, a set containing only
three Suggest documents (SD1, SD2 and SD3) causes seven possible Suggest Cluster
documents: SCD1{SD1}, SCD2{SD2}, SCD3{SD3}, SCD4{SD1,SD2}, SCD5{SD1,SD3},
SCD6{SD2,SD3} and SCD7{SD1,SD2,SD3}.

Following this, the count of all possible Suggest Cluster documents for a Suggest docu-
ment set is described through the power set of all of the Suggest documents without the
empty set: P (Suggest documents) \ §). It seemingly can be concluded that an index must
at least contain 2/Sugeest documents| _ 1 Quogest Cluster documents. For AIRS, this means
that the index must contain 2790 — 1 different Suggest Cluster documents, which is an
unreachable number. Fortunately, only a very few combinations of Suggest documents
semantically make sense. An easy solution is that only Suggest Cluster documents flow
in the AIRS index if the combination of Suggest documents was used in real-life situa-
tions. Therefore, the system investigates the relevant feedback object of a given workshop
maintenance or car repair use case.

Figure 5.12 displays how dynamically adding Suggest Cluster documents regarding a

6See [41] for more information about co-occurrences of a higher order.
"See http://en.wiktionary.org, last visited Sept. 18, 2016.

81

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval

feedback object works in detail. Steps 1 and 2 work the same way as the first two steps in
Figure 5.11, albeit with the difference that the feedback object can contain multiple queries.
Many queries are present because a user can conduct even more than one search for a
document in a case. Altogether, a feedback object contains all of the documents that were
included in the case solution (the feedback documents shown in the search instance object
table of Figure 5.12) and all of the queries made to reach that solution. This means that
Suggest Cluster documents are updated or new ones are established in AIRSKB for each
query of the feedback object. Figure 5.12 shows this process only for a query q.

3

AIRSntoingy_componentlupdateweights(doc sc, <doc b ++, doca +>))

T —

-
AIRSKB

AIRS|ps_component(suggest_cluster(doc s-1 AND doc s+1))

i <>
AIRS({addpocumentidoc s¢)) a—

1
AIRSns component(suggesti@)) = <doc s-1, doc s+1> |+
document source terms suggest_cluster field p . field q
doc 5-1 suggest th th EA, -\ tmy
Q: talg... LN docs suggest Inton - lp
Queries |qUitDtE.. t M doc 5+1 suggest B.ty..tz
q2:tGEH.-- t L
doc s¢ suggest_cluster doc 5-1, doc 5+1
Feedback |docb
documents |doc a docsct! suggest_cluster docs, ..., doc 5tn
Feedback
documents :x: I"' doc a Source x field p val.
weights doc b source y field p val,

Figure 5.12: Updating Suggest Cluster documents of AIRSKB regarding feedback information.
After feedback information is collected by the AIRS application, each query of the feedback is
used to find the relevant Suggest documents (Step 1). The found Suggest documents (“doc
s-1" and “doc s+1") are subsequently used to search for the corresponding Suggest Cluster
document (Step 2). In the example, “doc sc” is the Suggest Cluster document found, be-
cause it is the index document that matches the query (“doc s-1 AND doc s+1"). Once no
Suggest Cluster document exists, a new one that fits the Suggest documents is built and adds
to the AIRS index as well as AIRSKB (Step 2.1). In this case, a new Suggest Cluster document
representing the combination of the two Suggest documents (“doc s-1" and “doc s+1") is
established in AIRS. Whether a new Suggest Cluster document has been built or an existing
one has been found, the Ontology Component is used to update existing relationships between
the DOCUMENTS of the feedback object or update existing relationships in AIRSKB (Step 3).

After a query q was mapped against the AIRS index (see Step 1), Step 2 is used to identify
the correlating Suggest Cluster document. In the case that no Suggest Cluster document

82

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

5.5 Update Suggest Clusters for Suggest Cluster Algorithm

exists, a new one needs to be established in the AIRS index as well as AIRSKB (see Step
2.1). The Suggest Cluster document as well as the feedback documents are used to either
update existing relationships between the Suggest Cluster DOCUMENT and the feedback
DocUMENTS of AIRSKB (with the help of the relevant feedback documents’ judgments) or
establish new relationships in AIRSKB, using baseline weights for new relationships. This
is shown in Step 3 of Figure 5.12, where the Ontology Component updateWeights is used
for this task. Again, this needs to be performed for each query of the feedback object. The
result of this is that multiple Suggest Cluster DOCUMENTS of AIRSKB link to the same
set of DOCUMENTS (“doc a” and “doc b” in the Figure 5.12). Theoretically, various sets of
concepts link to the same use case solution represented through a set of documents. In the
case a Suggest Cluster DOCUMENT (correlated to a user query across a set of SUGGEST
documents) links to another solution (feedback documents), AIRS recognizes this and
updates the weights of the relations between the one Suggest Cluster DOCUMENT and all
of the feedback DOCUMENT of AIRSKB. Existing weights between the Suggest Cluster
DocuMENT and other DOCUMENTS of AIRSKB that were not included in the feedback
object are reduced. Those weights of DOCUMENT relationships where the documents were
included in the feedback, are increased and new included DOCUMENT relationships become
baseline default values. The idea behind this is that similar Suggest document sets means
similar use cases, although there is not only one solution for the use case. The collective
intelligence of workshop employees also means that a dynamic knowledge base that can
adapt itself to new findings is necessary. Even experts can fail in finding case solutions
and other experts can find better solutions. The hypothesis is that the best solution —
like in Darwin’s evolution theory — prevails over time. The more workshop experts that
match a Suggest Cluster document with a query and use the right documents in the case
solution, the more relevant that these documents appear to the document cluster. This is
measurable through changing document relationships over time where the right documents
appear in higher ranked positions in the search result.

The only question left is when the update process of the Suggest Cluster document
should be performed. For instance, it can be undertaken every time following a search or
it can be conducted later, provided that the feedback objects are stored in a database for
a subsequent analysis.

83

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6 Sharing Knowledge through AIRS

This section presents and extends the findings of [96], discussing the AIRS system in
connection with collective intelligence. In [2], collective intelligence is defined as — among
other things — “intelligence that is extracted out from the collective set of interactions and
contributions made by your users”. Moreover, AIRS is a system that processes implicit
intelligence and acts as a recommendation engine (see also [2]). Furthermore, the processed
implicit intelligence is presented and persisted through an ontology, namely AIRSKB. As
stated above, AIRSKB is a model that stands for the heterogeneous document landscape.
One can interpret this model as a large network that holds knowledge concerning how
documents across disparate sources are related to each other.

Authors of Documents AIRS Users

Document Relationships

Figure 6.1: AIRS and collective intelligence as shown in [96].

In Section 3.1, the Application Context was named as one of the important elements of
the ontology engineering process. This Application Context had a major influence on the
ontology design and was one reason for an ontology model that is an abstracted network
of document relationships without containing data, because the goal was to include the
collective intelligence of users into the retrieval process in an easy way. Each AIRS user

84

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

has an own idea of document relationships. More specifically, they know which documents
are helpful for a case solution. The challenge is to merge both the users’ knowledge and
AIRSKB'’s knowledge network. Figure 6.1 shows the goal of ATRSKB’s design. The authors
of documents gather all knowledge that can support the users in their case. Without
AIRS, the users work with this knowledge, but they have no influence on the retrieval
due to system limitations. The design of AIRSKB gives the possibility to collect the
knowledge of users to optimize the retrieval algorithm. Figure 6.2 illustrates how the
collective intelligence gathering process works in detail. An author creates a document,
(Step 1) and correlates it to another document, (Step 2). Later on, this document is
published in its retrieval system and is available to the users. AIRS takes this document
and includes all necessary information about the document into its IRS index and AIRSKB
(Step 3). If the user uses AIRS rather than the isolated retrieval system for the case, the
user can find the document (Step 4) and includes it in the case solution (Step 5). If the
user includes a second document in the case (Step 6), AIRS recognizes that there is a
relationship between the two documents (Step 7) because both documents were necessary
to solve the task. AIRS includes this information in its AIRSKB by building a new relation
between the two documents (Step 8). The new document relation is available for future
searches.

Author of Documents AIRS User
—
ks o
1 : ||
@

AIRSKB

Document Relationships

Figure 6.2: AIRS and collective intelligence in detail as shown in [96].

For this approach, three things must be considered: why is it necessary to collect feed-
back, how feedback can be collected and what is relevant to be collected. Therefore, the
next section discusses in detail why feedback should be collected and how it can be col-
lected through the Statistics Component. Furthermore, this chapter explains what relevant
feedback is and how the relevance judgments from users can be approximated.

85

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6 Sharing Knowledge through AIRS

6.1 Collecting Feedback with the Statistics Component

Collecting feedback is a task of the Statistics Component. With feedback processing, entity
relationships between the AIRSKB individuals can be updated or the AIRS’ system quality
can be measured. In [94], the evaluation of information retrieval systems is introduced as
a process that “requires finding a computable measure”. Accordingly, this measure is “a
generalization of many users’ individual understandings of relevant information the system
retrieves according to the information need each user defined before”. The outcome of this
is that in the case of business-oriented retrieval, tasks (like those that can be found in the
workshops) differ from other search tasks like an ordinary web search. The reason for this
is that users perceive search results as instructions rather than recommendations. The
focus here is on the business case itself and the straightforward process to solve it.

If the feedback is used to update AIRSKB, there exist two possible ways for the system
to update AIRSKB’s relationships. Just in time, meaning right after a user has finished the
use case or after a specified time period. In this case, the feedback is stored for later analysis
in the AIRS’ statistics database. Additionally, collecting the feedback first and analyzing
it later can be undertaken in a repetitive manner. Following this, a relation aging process
can be implemented. Relation aging follows the principle of watering flowers: if flowers are
watered, they are healthy and they will grow. Not watering the flowers makes them die
very slowly. Darkening the window will let them die even faster. Having recognized that
the flowers are dying because they are dry, watering lets them be healthy and grow again.

“Using relations” means including documents that are related to each other in the busi-
ness case. Relations that are used often are “healthy”, whereby they become more relevant
for similar business cases (their weights are increased). Relations that are not used (or
seldom used) are not “healthy” and lose relevance for a business case and their weights
decrease over time. Not using relations in a given use case — even if the related documents
have been suggested — is the same as darkening the window: the relation weights are re-
duced faster. To summarize, the feedback can be collected to support one of the following
cases:

e Enabling relation-aging over time,

e Updating document relationships for both related documents search and
Suggest Cluster search, as well as

e Getting information about the acceptance and goodness of AIRS.

However, all three of the cases need feedback information. Following this, several aspects
need to be collected through the feedback process. Section 5.2 names elements of the
feedback object and Section 6.2 describes how relevance judgments can be processed by
an application.

The feedback needs to be collected on the client side. Feedback information is trans-
ported through the search instance object, as described in Section 5.2. For this task, the
system can collect user-click stream data as well as search metadata. Responsible for
collecting this information is the AIRS client’s Statistics Component. After the feedback
has beenn sent back to the AIRS server, the Statistics Component at the backend side
analyzes the feedback and stores it in the AIRS statistics databases. Figure 6.3 shows the
data schema of one of the databases responsible for storing the feedback: the feedback

86

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6.1 Collecting Feedback with the Statistics Component

table is used to correlate the feedback to a given use case performed with the AIRS client
application. A use case itself was the process a workshop employee went through to process
the maintenance, service or repairs request. As depicted in Figure 5.9, AIRS extends the
user’s query with context dependencies that are necessary for the retrieval. Additionally,
AIRS splits the search into multiple sub-searches: one for each source that is contained in
AIRSKB. The table feedback_contexts now links existing CONTEXT-ATTRIBUTES to the
feedback stored in the feedback table. All of the CONTEXT-ATTRIBUTES, CONTEXTS,
DOCUMENTS and SOURCES that exist in the AIRS environment are also stored in the
Statistics Database of AIRS to link given feedback information to the documents.

Following the retrieval of the algorithm in AIRS (AIRS splits each search into different
sub searches), the source_query table (Figure 6.3) contains information for each of the sub-
searches undertaken by the AIRS retrieval algorithm. Search result information like the
number of documents found or the current presented document results in a range for each of
the sub-searches, which are stored in the document_result table (Figure 6.3). Documents of
this range that were presented to the user are stored as entries in the presented_documents
table (Figure 6.3). These documents are the search results embedded in a search result web
page container. As stated before, obtaining relevance feedback from the users is a difficult
process. Section 6.2 explains how this task can be performed by AIRS. AIRS collects all the
all of the user feedback and stores it in the AIRS statistics database to the same feedback
object of the search to which it belongs. This can be achieved after a user has finished the
business task or while AIRS is analyzing the ongoing business task (recognizing all used
documents). Therefore, AIRS observes the user’s behavior while the user interacts with
the result set. Regardless of whether the entire business case or only a single interaction
of a user with a result document is analyzed, the feedback is processed by AIRS in the
same way. Accordingly, if a user now clicks and views a document at the client’s side,
an AIRS feedback information is performed and stored in the AIRS statistics database
as an entry in the document_actions table (Figure 6.3). Therefore, the feedback object
in the feedback table is identified, the correlated source query entry in the source_query
table and the correlated document result as an entry in the document_result table (Figure
6.3). If the user-selected document now is contained in the selected_documents table, a
new document action is included in the document_action table (Figure 6.3). Otherwise, a
new selected document is included in the selected_documents (Figure 6.3) table first. In
this sense, a document action is everything that a user can do with result document. The
user can:

e include the result document in the business case solution,

e delete a result document from the business case solution,

e simply view a result,

e start related-document navigation from a result document (the related document will

be included as a new selected document in the AIRS statistics database) and many
more.

87

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6 Sharing Knowledge through AIRS

selection_origins
sources id INT(11)
id VARCHAR(150)

selected_document INT(11) (FK)

F— feedback
1 |is_valid TINYINT(1) 1 il
___r ! L document_origin VARCHAR(150) (FK) feedback_id VARCHAR(150)
add_at_timestamp DATETIME 1..* |start_action_at DATETIME

update_at_timestamp DATETIME:

|

|

} selection_origin_type VARCHAR(50)

| description VARCHAR(500) i e i
|

|

Il

document_rank INT(11)

time_stamp DATETIME

|
-] user_name VARCHAR(150)
|
|
|
|
|
|
|
|
|
|

- 0.1] weight DOUBLE T ‘
. | . I 1
documents | distance_x INT(11) | |
id VARCHAR(150) | other_origin VARCHAR(150) | |
0.1 1 T [
source VARCHAR(L50) (FK) [—=——+————————~ 4 1. L i
is_valid TINYINT(1) | o i o]
add_at_timestamp DATETIME | _ 1 __ | [| -
d i DATETIME ! | } | ! source_query
It t_ti ¢
update_at_timestamp | } | } I id INT(11)
description VARCHAR(500) | Lo | |
1 T } | | | | 1 target_source VARCHAR(150) (FK)
| .
| FTTTm } e == S feedback_id VARCHAR(150) (FK)
___ 4‘ 77777777777777777 S | } user_query VARCHAR(500)
| 1.4 ! search_language VARCHAR(5)
N feedback_contexts | system_query VARCHAR(1500)
1.7 id INT(11) | T
|

document_actions

feedback_id VARCHAR(150) (FK)
id INT(11)

presented_documents

context_attribute VARCHAR(150) (FK)

selected_document INT(11) (FK)

|

1 1

| | id INT(11)
} e document_result INT(11) (FK)
document_id VARCHAR(150) (FK)
document_rank INT(11)

start_action_at DATETIME
action_component_name VARCHAR(250)
action VARCHAR(50) (FK)

view_time BIGINT(20)

1

L \

distance_x INT(11) context_attributes . 4T E
source_x VARCHAR(150) (FK) id VARCHAR(150) - |
1. context VARCHAR(150) (FK) document_result

fffffff 1 —=—is_valid TINYINT(1)

source_query_id INT(11) (FK)

|
|
|
|
|
|
|
|
|
} id INT(11)
|
|
|
|
|
|
|
|
|

contexts } i add_at_timestamp DATETIME
id VARCHAR(150) } I update_at_timestamp DATETIME number_of_found_docs BIGINT(20)
is_valid TINYINT(1) 1| } description VARCHAR(500) start_at INT(11)

N Pk result_set_size INT(11)
add_at_timestamp DATETIME } I - T
update_at_timestamp DATETIME | 1. 1 1 1 | "1 ,,,,,,, |
description VARCHAR(500) 4 } selected_documents

| |id INT(11)
selection_states 1 - e Gocument_result INTLD) (FK

selection_state VARCHAR(50) | — — — — —

document_id VARCHAR(150) (FK)
selection_state VARCHAR(50) (FK)

Figure 6.3: AIRS statistics database schema. Every feedback object is correlated to an
entry in the feedback table. Additionally, the context of the search is stored in the table
feedback_contexts. The schema contains a table for search result documentation (source_query,
document_result, presented_documents and selected_documents) as well as for tracing the
user interaction (selection_state, document_actions and selection_origins). All index entities
are stored in tables and linked to the feedback (tables sources, documents, contexts and
context_attributes).

88

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6.2 Getting Relevance Judgments

All of these actions are stored as document actions and can be later used to approximate
document relevance regarding a solved business case. These actions can also be used to
update approximate relationships between documents. The data stored in the Statistics
database can now also be analyzed through standard business intelligence reporting tools
like Apache BIRT! as an example of an open source solution or any other product to
calculate the acceptance and goodness (see [94]) of the AIRS retrieval system over time.

Therefore, getting result relevance judgments by the users is a task that is necessary
to understand the systems acceptance, goodness and quality. The principles of goodness
and acceptance were developed during the development of AIRS and first presented and
discussed at the SDPS 2012 Berlin Conference. To measure the quality of a system or
update document relationships (as used in AIRS), it is necessary to obtain relevance judg-
ments about search results from the user. Since [94] explores the topic of how to obtain
relevance judgments in further detail, the next section is a slightly modified extract from
this publication.

6.2 Getting Relevance Judgments

This section is an adapted version of Section Getting Relevance Judgments first presented
in [94]. Getting feedback from the user is a complex matter. For a good evaluation, it
seems very important to obtain objective relevance judgments for every answer in the result
set. Unfortunately, this is a major problem. A decision concerning whether an answer is
relevant is always a subjective assessment made by a person. Good relevance judgments
are obtained when a group of users does not know that they are judging.

In [94], relevance judgments strictly depend on the visualization of the results presented
to the user. For example, by using a document list, one can put a document is relevant
button next to each document. Regardless, this is ambiguous: the user could also think
that he has to rate the quality of the document rather than the document’s relevance. A
solution is to approximate the document’s relevance by making assumptions. For example:

e a document does not seem relevant if the user does not care for it (a brief summary
of the document is shown for each result, whereby the user can choose whether he
wants to see it in detail),

e a document seems relevant to the user if the user clicks on the document link,

e a document seems even more relevant to the user the longer time the user spends
viewing it (how long does it take until the user closes the window after the user
clicked on the document link),

e a document seems less relevant to the user the shorter time the user spends viewing
it, and

e a document definitely seem relevant to the user if he downloads it (documents are
also associated with their PDF-file version).

!See http://www.eclipse.org/birt, last visited Sept. 18, 2016.

89

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

6 Sharing Knowledge through AIRS

By doing so, there is one open question left, namely how to ascertain whether the search
result leads the user to the business task goal. The answer is not easy and always seems to
be: examine the business task. Fortunately, it is possible to approximate this by answering
questions like:

e What does the user do right after the result viewing (search again or close the business
task)?

e Was there a support request (submitted by the user) linked to the user’s business
task (user cannot satisfy business task)?

e Does the business task solution belong to the AIRS answers?

e Does the user use the system for the business task?

For AIRS, the feedback documents were chosen under the given assumptions by har-
vesting the business case. These documents are subsequently included in a feedback pro-
cessing chain. For example, Algorithm 4 uses the feedback documents to update the
Suggest Cluster documents of ATRSKB (see Section 7.5).

6.3 Summary

A user needs to solve a given case. Accordingly, the user searches for documents and
includes all relevant documents in the case solution. AIRS helps the user to collect these
case-relevant documents. Users who need to solve similar cases must do the same. Each
user performs the same search for relevant documents again. This means that for similar
cases many sets of documents exist, which have been collected by many users. One can
assume that the intersection of all sets of collected documents provides all of the docu-
ments that are necessary for the resolution of the case. The result is an adaptive network
of document relationships that bases on system usage. How can this knowledge about
these document relationships be collected to increase the quality of retrieval processes for
future searches? The Statistics Component helps to collect user feedback, which is an
approximation of the relevance of documents of a given case. This feedback is later used to
improve the entire retrieval process of AIRS. For example, DOCUMENT relationships are
updated in AIRSKB. These relationships are used in the Suggest Cluster Algorithm and
for Related Documents Search. This means that the collective intelligence of many AIRS
users help to improve retrieval processes and solve complex business cases over time.

90

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a
Prototype Implementation

The following section introduces the AIRS Prototype as an exemplary implementation
for a software solution based upon AIRS. This exemplary implementation includes the
architecture of components as well as suggestions for algorithms based upon the previously-
explained Retrieval and Feedback Workflow of AIRS. The AIRS Prototype software is a
complex module-based application landscape based upon Java technologies that comprises
five main modules:

e Properties Management — A backend software module that coordinates all properties
requirements of all of the AIRS modules.

e AIRS Index Search — A backend module that encapsulates the functionality of an
underlying retrieval system.

e AIRSKB — A module that serves as a wrapper for underlying knowledge representa-
tion frameworks.

e AIRS Include Sources — A framework based upon concurrent programming, using
the producer/consumer principle for the indexing process.

e AIRS Prototype — The core web-application that includes the backend and frontend
modules.

AIRS Prototype is not related to any after-sales system architecture or style guide.
It is simply an exemplary implementation for the AIRS architecture as presented in the
previous Section 4.3. In addition, the AIRS Prototype is used for gold-standard technology
presentations as well as for user tests within the help of workshop employees as presented in
Section 8. Later on, the AIRS Prototype application can serve as a template for enterprise
implementations of the AIRS principle. The AIRS Prototype backend components are
implemented in Java. Therefore, the components are published as Java libraries with API
documentations. These libraries combine various frameworks presented in this section
(AIRS Index & Search Framework, for example). The AIRS Prototype web application
is based upon the Web Toolkit provided by Google and released as open source!. Both
the frontend and backend are implemented in plain Java. GWT later compiles the Java
code for the frontend to JavaScript code, which can be run at the client side in a standard
browser. Server side backend components run the Java byte code in a Java VM and include
the methods and algorithms of the AIRS backend frameworks. Both frontend and backend
codes are compiled to a Java servlet web application that can be run through a Java
servlet container such as Apache Tomcat?. As stated above, the AIRS Prototype software

LGWT (formally known as Google Web Toolkit) can be found at http://www.gwtproject.org, last visited
Sept. 18, 2016.
2 Apache Tomcat can be found at http://tomcat.apache.org, last visited Sept. 18, 2016.

91

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

landscape includes various software products used in the AIRS framework. Examples are:

o MySQL databases — Use for statistics and evaluations in the Statistics Component.

e Apache Solr — An open source search server on top of Apache Lucene serves as an
AIRS’ search component and is used by the AIRS Index & Search Framework in the
IRS Component.

e Apache Tomcat — An open source Java servlet container serves as the application
server that provides the AIRS Prototype web application to a standard Internet
browser.

o GWT - A software framework for the development of dynamic web applications
provided by Google that is used for the development of the AIRS Prototype web
application.

e MongoDB — A NoSQL database that is used as storage backend for the AIRSKB via
an AIRSKB Framework wrapper in the Ontology Component.

e Ontopia — A Topic-Maps framework for DML? as well as DQL* operations. In the
AIRS Prototype, an AIRSKB Framework wrapper is used for DQL operations using
the TOLOG query language. As storage backend, Ontopia provides MySQL backend
and XTM (XML-based file) storage for Topic-Maps. The AIRSKB wrapper has an
implementation for both of them.

o Neodj — Is a NoSQL database. More specifically, Neo4j is a graph database used via
an AIRSKB wrapper as storage backend for the AIRSKB concepts and relations. The
wrapper again provides an adapter for the CYPHER language for DQL operations
against a Neo4j data storage.

e Apache Jena — A JAVA-based framework for RDF/RDFS, OWL and the SPARQL
language. The AIRSKB Framework also includes a wrapper for OWL storage of the
AIRSKB and queries against the storage by using SPARQL. For the OWL storage,
the wrapper supports both the XML-based file format OWL as well as the MySQL
backend provided by Apache Jena.

The AIRS Prototype framework implementation follows the AIRS backend architecture
as suggested in Figure 4.6, although it was slightly modified as shown in Figure 7.1. For
instance, no foreign date interfaces were used in the AIRS Prototype. At the server side,
the main component responsible for the communication between the frontend and backend
is the Core Component. As described in Section 7.5, the Core Component includes the
highest abstraction layer for methods necessary to access the AIRS document retrieval
functions.

At lower levels, the methods become more specific and go deeper into separate parts
of the AIRS backend architecture and components. The Core Component itself is the
control component responsible for the task of coordinating and routing functions to lower-
level components. Thereby, the Core Component routes specific tasks to the three main

3Data Manipulation Language.
“Data Query Language.

92

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.1 Properties Management Using a Taxonomic Structure

components. They are responsible for the retrieval and feedback tasks: the IRS Compo-
nent is responsible for the document retrieval, the Ontology Component is responsible for
the AIRSKB retrieval and the Statistics Component is responsible for evaluation and the
coordination of DML operations of the application life-cycle. These kinds of operations
are executed by the IRS Component for index updates and the Ontology Component for
AIRSKB updates. The IRS Component includes the AIRS Index & Search Framework,
which is responsible for all IRS operations, while the Ontology Component includes the
AIRSKB Framework, which is responsible for all AIRSKB operations. The following sec-
tions describe the modules in detail.

([) (AIRS Prototype backend) (ARRS Prototype)
2 data management

[

o 2

= o=\ -

s ()| & Statistics)

S 2= component

2 [[] 48 o

< e .

o ol gl (Ontology component | . MySQL

%’ o §_ g AIRSKB Database
< s ® ~_ X

o o g é % E Framework J N

o ol |l | MongoDB

= 212 |lal (RS component)

o Qle || pon data storage

3 o= |= AIRS Index &)

=~ 5—5 Search Framework I_

o __nrn/) Lucene

g:) Indexing component \h'ld_ex/

<_(AIRS Include Sources Framework

7/
=

. J

Figure 7.1: AIRS Prototype architecture overview.

|\ J

7.1 Properties Management Using a Taxonomic Structure

Properties management is a difficult matter, especially in software development processes.
Program logic should be separated from configuration: code lines that contain parame-
ters are evidence of a poor programming style. Since the AIRS software landscape con-
tains multiple wrapper modules, many parameters are necessary to configure the under-
lying framework. Therefore, the development of a framework for properties management
was a logical decision for the help of configuration parameter management. Accordingly,
the research for the AIRS Prototype application started with the development of the
Properties Management component.

The AIRS program landscape is implemented in Java. With the Properties class®, the

®See Java 7 documentation at http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html, last
visited Sept. 18, 2016.

93

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

Java library includes a mechanism that can be used to set properties outside the program
code in a separate text file: the so-called Java properties file. Therefore, Java’s own
properties management is based upon a simple key-value storage mechanism where both
key and value are strings. Additionally, the Java Properties class provides a method to
store these key-value pairs in a well-defined XML properties file rather than simply a text
file. Inside the Java program code, a method of the properties class can be called that
consumes the key and returns the value stored in the properties file (as long as the entire
properties file was loaded before). Unfortunately, configuration properties are not always
as easy as simple key-value pairs. Often, they are much more complex. Programmers
avoid this limitation through simple programming tricks. For example, if a list of property
parameters is necessary, the value of the key-value pair is often formatted to include the
list elements in just one string, separated by defined symbols. Later in the program code,
this value string is split into a list along these symbols.

AIRS Prototype includes different wrappers for foreign libraries. This means that many
complex configuration parameters exist. For example, the Apache Solr’s configuration file
contains multiple and complex parameters. Many of them could also be set in the program
code®. Apache Solr itself is an open source enterprise search server used as the underlying
information retrieval system under the AIRS Search Index wrapper. A more complex
properties management was necessary for the AIRS program landscape environment. The
following requirements were defined for a properties management:

1. Properties should be arranged in a logical hierarchical order: a taxonomic structure.
This is necessary to match various properties levels given by the heterogeneous library
landscape as well as through the module-based AIRS architecture.

2. Properties should be Java objects that are accessible by a name attribute and en-
capsulate a value container.

3. Value containers should have a type attribute. The type again provides information
about the value container’s content: a simple value or a list of values.

4. A value must have a value type attribute. It needs to encapsulate the value itself
and it can be restricted through a value restriction type attribute. Additionally, if
the value container holds a list of values, each value needs a key attribute to identify
it.

5. A value restriction type should be a simple value range restriction or a set of valid
values from which the value needs to be selected.

6. Even complex Java objects should be stored as properties values.
7. Property files need to be both humanly readable and machine processable.

To match this requirements catalog, a storage model was developed that was based upon
a taxonomic structure. Standard XML was used as the file format.

6See Apache Solr documentation at http://wiki.apache.org/solr/SolrConfigXml, last visited Sept. 18,
2016.

94

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

=
SO0 D U W

A N R R R R R R R R R N o e e e e e el
AN FOOXISTTERXIR,OOXR TSR EWRN RO OO W —

7.1 Properties Management Using a Taxonomic Structure

<?xml version="1.0" encoding="UTF—-8"7>
<properties_file name="properties.xml”>
<description>This is the description of the properties file.</description>
<value_ranges>
<range RANGE_ID="range_type_1” RESTRICTION_TYPE="STRING_RANGE”>
<val>VALUE 1</val>
<val>VALUE 2</val>
< /range>
<range RANGE_ID="range_type_2” RESTRICTION_TYPE="MAX_INTEGER”>
<maxVal>3</maxVal>
</range>
< /value_ranges>
<properties>
<property name="nodel”>
<description>This is a description of a property.</description>
<children>
<property name="nodel.nodell” is_property="true”>
<value VALUE_TYPE="SINGLE_VALUE">
<val RANGE_IDRE range_type_1” TYPE="STRING”>VALUE 2</val>
</value>
<children>
<property name= lell.nodelll” is_property="true”>
<value VALU INGLE_VALUE”>
<val RANGE_IDREF="range_type_2” TYPE="INTEGER">1</val>
</value>
< /property>
</children>
< /property>
<property nam

is_property="true”>

LIST”>

*E="STRING”>String Value 1</val>
"DOUBLE”>1.23</val>

37 TYPE="BOOLEAN">true</val>

<val key
</value>
< /property>
< /children>
< /property>
<property name="node2
<value VALUE_TYPE
<val TYPE="URI">/home/airs/synonyms.txt</val>
</value>
< /property>
< /properties>
< /properties_file>

Listing 7.1: An example of AIRS properties file "properties.xml”.

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.

tersagt, m mit, fr oder in Ki-Syster

95

https://doi.org/10.51202/9783186849106

=
SO ND U AW N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

7 Architecture and Functionality of a Prototype Implementation

Subsequently, functional requirements were defined from the perspective of the program-

mers to enable a properties API call as easy as for the original Java Properties class:

1. A programmer should be able to load, change, validate and store property files using
the Java API bridge.

2. After the programmer loads the properties file, he should be able to load a property
value using a Java API method call via the property name or via a combination of
property name with a value key in the case of selecting a list element. The method
itself returns the property’s value. The return value’s type is the corresponding Java

datatype, which matches the type defined in the properties file.

* ### STEP 0 — load properties file ### *
PROPERTIES properties = new PROPERTIES();
properties.loadFromXML(”properties.xml”);

* ### STEP 1 — load a property ### *
Double double_value = (Double) properties.getPropertyValue("nodel.nodel2”, "KEY27);

% 444 Step 2 — load a list of property values ##4 *
VALUE_CONTAINER value_container = properties.getProperty ValueContainer("nodel.node12”);
List<PROPERTY_VALUE> property_value_list = (List<KPROPERTY_VALUE>) value_container.getPropertyValue();
* iterate over all property values
for(PROPERTY_VALUE property_value : property_value_list) {
if(property_value.getKey().equals("KEY3")) {
boolean boolean_value = (Boolean) property_value.getValue();

* ### STEP 3 — build a new SINGLE_ELEMENT property string value ### *
* define an integer upper border value restriction *
PROPERTY_VALUE_RANGE_RESTRICTION restriction = new PROPERTY_VALUE_RANGE_RESTRICTION(
TYPE.INTEGER, “range_type_3”);

* set a minimum value
restriction.addMinInteger(4);
* set a property value

PROPERTY_VALUE property_value = new PROPERTY _VALUE(restriction);
property_value.setValue(2); /+ causes an exception =
property_value.setValue(5); /+ you are doing it right

* set a value container and add property value *
value_container = new VALUE_CONTAINER();
value_container.add Value(property_value);

* build property and set value container to property #
PROPERTY property = new PROPERTY ("nodel.nodel3”);
property.setProperty ValueContainer(value_container);

« add property to properties (the method adds the property automatically to the right position at the properties file) *
properties.addProperty (property);

* ### STEP 3 — update properties file ### *
properties.store ToXML();

Listing 7.2: An example how to use the properties library over an API call.

Listing 7.1 shows a simple example of a properties file. The properties.xml file contains
five properties sorted in a taxonomic order. Property node! (Line 16) is the only one that
is not bound to a property value. This kind of property exists only for the taxonomic
structure, whereas the other ones have the attribute is_property. The properties file also

96

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.2 AIRS Index & Search Framework

contains two kinds of value restrictions: a string range restriction (Lines 5 - 8) and a
maximum integer value range restriction (Lines 9 - 11). The string range restriction defines
a valid set of strings for a property value and the maximum integer restriction defines an
upper barrier for possible integer values for an integer property value. The range restriction
can be bound later to property values, as shown in Line 19 as well as Line 24.

The property names follow the taxonomic structure, using dots as a separator. Following
the hyponymy relationship, the property with the name nodel.node1! (Line 17) is a child
property of the property node! (Line 14). A property itself can encapsulate both property
value (Lines 18 - 20) and children properties (Lines 21 - 27). A property value encapsulates
a single value (Line 18) or a list of values (Line 30). Values have a type (Line 40, for
example) and — in the case of a list — a key (Line 31, for example). After developing the
properties file, a Java library was developed.

Listing 7.2 shows a snippet of the Java code that demonstrates the usage of the prop-
erties of the API library. A properties file can be loaded easily via a LOADFROMXML()
method, which consumes the properties file location as a string value (Lines 1 - 3). After
the XML is loaded, the properties library builds a taxonomic tree and stores it in the local
machine’s memory as a PROPERTIES object. Properties are translated into correspond-
ing Java objects, which are easily accessible by the property’s name and an optional key
(Line 6). The code snippet in Lines 9 - 16 demonstrates how a list of property values
can be accessed via the property API. A simple integer property value with a lower value
border of four is created and shown in Lines 20 - 36. First, a restriction is implemented:
an integer restriction with the id range_type_3 (Lines 20 - 21). After this, the minimum
integer value is defined (Line 23). According to this, a new property bound to this restric-
tion (Line 25) can only be associated with integer values greater than four, otherwise an
exception will be raised (Line 26). Later on, a value container provides the wrapper for
the created single value property (Lines 29 - 30). Subsequently, a new property can be
created, as shown in Line 32 and the value container can be bound to the property (Line
33). The ADDPROPERTY() method of the PROPERTIES class ensures that the property
is placed in the right position in the property taxonomy (Line 36). The STORETOXML()
method stores the PROPERTIES object back into the properties file. This kind of prop-
erties management makes the development of AIRS significantly easier. For example, if a
properties file is loaded into a PROPERTIES object, this object can easily be distributed
to various components and frameworks. In addition to the properties library, an unpub-
lished Eclipse” plugin was developed to create and manipulate AIRS properties over an
easy-to-use WYSIWYG? editor. Using this editor and the properties of the API library,
325 parameters (property values) were easily managed during the AIRS software landscape
development.

7.2 AIRS Index & Search Framework

The AIRS Index & Search framework is a backend Java application that provides an ab-
straction layer across an underlying information retrieval system. It approximates the
IRS’s own index structure and index objects to an AIRS-conform index document, the

"Eclipse is an open source IDE especially for software development. More information can be found at
http://www.eclipse.org, last visited Sept. 18, 2016.
8What You See Is What You Get.

97

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

so-called AIRS documents. Additionally, it provides Java methods to add an AIRS index
document to the IRS index methods as a wrapper across the IRS own search function.
This AIRS search function consumes a search_instance object (as shown in Algorithm 1,
see Section 7.5) and returns a search result for each source contained in the IRS index. As
shown in Figure 7.2, the AIRS Index & Search Framework (Box A) comprises two layers:
the AIRS Index & Search Layer and the IRS Wrapper Layer.

The AIRS Index & Search Layer provide state-of-the-art information retrieval system
functions for document indexing (including document deletion and update) and document
search. The difference between ordinary index and search frameworks and libraries like
Apache Lucene is that the AIRS Index & Search Layer does not have any implementation
of information retrieval algorithms. It simply serves as an API and defines objects and
methods that consume document objects for indexing as well as search instance objects
for a document search. The return value of the search method is also the same search
instance object enriched with search result documents that match the user’s query. The
IRS Wrapper Layer again maps the methods of the AIRS Index & Search Layer to meth-
ods of an existing information-like retrieval library. By doing so, each underlying index
and search framework must be implemented to match the AIRS Index & Search Layer to
methods that the underlying framework provides. The IRS Wrapper Layer serves as a
container for both such a wrapper and container-managing components. Box B of Fig-
ure 7.2 shows the Apache Solr Wrapper used to encapsulate Apache Solr. The wrapper
comprises three different layers: a connector to the foreign framework (AIRS to Apache
Solr Connector), the foreign framework itself (Apache Solr Framework) and the underlying
storage container that is used by the foreign framework (Apache Lucene Index).

AIRS Index & Search Framework A (" Apache Solr Wrapper B
[AIRS Index & Search Layer] (AIRS to Apache Soir Connector |
IRS Wrapper Layer (Backend Connectors) [Apacho SorFramevork]

P\pache Solr Wrapper] []

Figure 7.2: AIRS Index & Search Framework.

7.3 AIRSKB Framework

Like the AIRS Search Index framework, the AIRSKB Framework (Figure 7.3) is a back-
end Java application that serves as the wrapper for a knowledge-representation framework.
Anyway, it comprises three different layers rather than two. From a top-down perspective,
the wrappers serve as a Functional Layer, Concept Layer and Backend Layer (Box A of
Figure 7.3). The Functional Layer is the top layer, providing advanced AIRSKB features
like the methods that search for the best context-sensitive pathways through the ontol-
ogy. It works with methods provided by the next level layer — the Concept Layer — where

98

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.4 AIRS Include Sources — Indexing Framework

ontology DML and DQL methods are implemented. Examples of such DML methods
are ADDDOCUMENT(), ADDSOURCE() or ADDRELATION() as well as the corresponding
deleting and update methods. The two top layer wrapper functions are the only ones
that are accessible through the AIRSKB interface from foreign applications. Like in the
AIRS Index & Search Framework (Section 7.2), a wrapper is necessary for existing under-
lying ontology storage framework. This is necessary because the AIRSKB Framework also
has no implementation of knowledge representations storage and search functions. The
Storage Layer provides such wrapper functionality. It serves as the backend connector as
well as the wrapper container for existing underlying storage and ontology search engines
like Apache Jena. Box B of Figure 7.3 introduces the MongoDB Wrapper of the AIRS
Prototype.

(AIRSKB Framework A\ (MongoDBWrapper B)
[Functional Layer]

AIRS to MongoDB Connector
[Concept Layer]

MongoDB Framework
Storage Layer (Backend Connectors)

A
[MongoDB Wrapper] [Neo4j Wrapper] [Ontopia Wrapper] o
PXDaChe Jena Wrappei [™] MongoDB Database
ij

Figure 7.3: AIRSKB Framework.

7.4 AIRS Include Sources — Indexing Framework

The AIRS Includes Sources Framework is the ETL layer that helps to import the infor-
mation of the original document retrieval systems into the AIRS software landscape. The
AIRS Includes Sources Framework (Figure 7.4) is responsible for the DML operations be-
tween the AIRS search index and the AIRSKB, especially during the indexing process.
It translates the individual documents of each source retrieval system to the AIRS docu-
ments. Additionally, the same AIRS documents are placed as ontological individuals in the
AIRSKB and the framework’s methods establish relationships between these concepts if
real-world relationships between the documents exist. Similar to the AIRSKB Framework
and the AIRS Index & Search Framework, the AIRS Includes Sources Framework pro-
vides a wrapper architecture: a wrapper must be implemented for each source whose
documents need to by placed into the AIRS index and the AIRSKB. For example, Box B
of Figure 7.4 shows the Source A Producer that serves as wrapper for the indexing process
of documents from source A. It consumes documents of a connected source A (via a storage
connector for the given retrieval system) and prepares them for indexing. In addition to
the wrapper architecture, the AIRS Includes Sources Framework provides a process con-

99

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

trol flow component based upon the producer—consumer principle to manage the indexing
process, even for large data sets like databases with millions of data entities. Therefore,
the framework uses AIRS document units that are processed during the workflow. This
works as follows:

1. Place an empty synchronized AIRS document list of a defined size in the middle.

2. Let a producer component write unique AIRS documents to the end of the AIRS
documents list as long as the list is not full, whereas it waits if the list is full.

3. Let a consumer take the first AIRS document out of the list and write it into the
AIRS index as well as the AIRSKB until the list is empty, whereas it waits if the list
is empty.

4. Let the producer push a stop marker document through the pipeline and let the
consumer stop if it processes the stop marker document.

r ‘ (e ™
AIRS Include Sources Framework A Source A Producer B
[Index Process Management Layer]

AIRS Document)(~ _ |[AIRS Document Producers) AIRS Document Builder
7
Consumer @ (Source A Producer)
AR 5 [Source B Producer] S ADi t Abstract
Framework g ource A Documen racter
8 [Source C Producer]
AIRS Index S
& Search 14 (Source X Producer J Source A Storage Adapter
Framework < () (JDBC, XML, CSV, ...)
L JAN VA J‘ L)

Figure 7.4: AIRS Includes Sources Framework.

7.5 Retrieval and Suggest Algorithms

In Section 4.3, three main AIRS backend components that are responsible for the docu-
ment retrieval as well as the system feedback processing were named: TRS Component,
Ontology Component and Statistics Component. Section 5.2 subsequently explains the
retrieval and feedback processing in detail. The AIRS Prototype environment implements
multiple algorithms to ensure the interaction between these components that are involved
in retrieval as well as in AIRSKB knowledge expansion. It also provides a cascade of access
functions to leave responsibilities for core functions in the components. For example, top-
level functions are implemented in the Core Component. Such a function is the high-level
search function that is implemented in the Core Component and encapsulates access to
underlying components. Therefore, the search function is responsible for the communi-
cation between the user (via the frontend implementation) and the document retrieval of

100

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.5 Retrieval and Suggest Algorithms

ATRS: it consumes the user’s query as well as some search metadata (language, context,
dependencies) and processes this search request in its implementation. It combines the
functions of IRS Component and Ontology Component to derive result documents that
best match the user’s request. IRS Component is designed to encapsulates core IR ca-
pability of an underlying information retrieval system like Apache Solr’, HPE IDOL! or
Elasticsearch!! and others. Instead, Ontology Component encapsulates the functionality
of standard knowledge representation and access frameworks, as named in Section 3.4. To
ensure this abstraction, a common understanding of core objects is necessary. Section 4.2
named these common objects as “documents” and “sources”. Four exemplary algorithms
of AIRS’ Core Component are presented in this section:

e Context-sensitive document search across all sources of the heterogeneous document
landscape (including Suggest Cluster Algorithm, see Algorithm 1, Figure 5.9 and
Section 5.4).

e Search algorithm for documents of a given source that are related to a given document
across a document pathway (see Algorithm 2, Figure 5.9 and Section 5.3). The
algorithm contains the context-sensitive search for related documents in the ontology,
as presented in Figure 3.5.

e AIRS Prototype implementation of updating AIRSKB relationships using system
automated feedback information in the form of used documents regarding a finished
case (see Algorithm 3).

e AIRS Prototype implementation of updating or establishing Suggest Cluster docu-
ments for Suggest Cluster algorithm (see Algorithm 4 and Section 5.5).

As stated before, the algorithms use lower-level functions of other AIRS compo-
nents. An example of a lower-level function call can be found in Line 6 of Algo-
rithm 1 for context-sensitive document search (implemented in Core Component): on-
tology_component.GETSOURCES(void). The GETSOURCES() method is implemented in
the Ontology Component and manages a high level access to the AIRSKB Framework
(Functional Layer). In the next deeper level, the middleware implementation of the
ATRSKB Framework (Concept Layer) guarantees a homogeneous access structure to the
lowest level component of AIRSKB Framework (Storage Layer). This Storage Layer of
AIRSKB Framework is the lowest level component that provides implementations to ac-
cess different knowledge representation frameworks across a special wrapper that maps
the AIRSKB’s concepts and relations to the storage structures defined by the underlying
frameworks. The outcome is a simple list of existing sources that needs to be requested
at the top level. At the lowest level, knowledge storage structures hold the AIRSKB el-
ements. Examples for these structures are OWL files, NoSQL databases and even XML
files of a custom format. The middleware transports and translates the top-level request
to the lower-level components and routes the response back to the top-level component.

98ee http://lucene.apache.org/solr/, last visited Sept. 18, 2016.

108ee http://www8.hp.com/us/en/software-solutions/information-data-analytics-idol, last visited Sept.
18, 2016.

HGee https://www.elastic.co/products/elasticsearch, last visited Sept. 18, 2016.

101

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

Algorithm 1 shows how AIRS Prototype performs a context-sensitive search across differ-
ent sources. The SEARCH() function of the algorithm is based upon the search approach
presented in Figure 5.9: Document Search in combination with Suggest Cluster Algorithm.

Algorithm 1 High-level access to Document Search Algorithm and Suggest Cluster Al-
gorithm.

1: > The search function of AIRS’ Core Component takes a search instance object that
2: > contains the user’s search query as well as search properties. The return value is the
3: > same search instance object enriched with a set of search results.

4: function SEARCH(search_instance)

5: > Call Ontology Component to get a list of all available SOURCES.
6: SOURCES < ontology_component.GETSOURCES(void)
7 > Iterate over the SOURCE except the Suggest Cluster SOURCE.
8: for all SOURCE of SOURCES \ Suggest Cluster SOURCE do
9: > Add context-dependencies and SOURCE information to query.
10: Query < ADDCONTEXTATTRIBUTESTOQUERY (void)
11: Query + ADDSOURCEINFORMATIONTOQUERY (SOURCE)
12: > Call IRS Component to find documents for the given SOURCE
13: > and keep search result
14: SearchResult < irs_component.SEARCH(Query)
15: > SearchResult consists of SUGGEST documents.
16: > Entry point for Suggest Cluster Algorithm.
17: if SOURCE ! = Suggest SOURCE then
18: > Add search result to the end of the search instance’s search result list.
19: search_instance + ADDSEARCHRESULT(search_result)
20: else
21: > Build query for SUGGEST CLUSTER document search with the help of
22: > the found SUGGEST documents.
23: Query <« irs_.component.BUILDSUGGESTCLUSTERQUERY (SearchResult)
24: Query < ADDSOURCEINFORMATIONTOQUERY (Suggest Cluster SOURCE)
25: > Call IRS Component to find Suggest Cluster document (if exists).
26: Suggest Cluster document <— irs_component.SEARCH(Query)
27: if Suggest Cluster document is not null then
28: > Call Ontology Component to search for DOCUMENTS in AIRSKB that
29: > are related to Suggest Cluster document.
30: DOCUMENTS < ontology_component. FINDRELDoOCS(document)
31: > Call IRS Component to derive content information
32: > for related DOCUMENTS
33: Documents < irs_component.GET(DOCUMENTS)
34: > Add documents as search result to search instance object
35: search_instance + ADDSEARCHRESULT(Documents)
36: end if
37: end if
38: end for
39: return search_instance > Submit search instance object containing search results.

40: end function

102

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.5 Retrieval and Suggest Algorithms

The algorithm works whereby after a user submits the query, AIRS Prototype automat-
ically builds a search instance object, which serves as a starting point for the SEARCH()
function. This search instance object is the same as described in Section 5.2. During a
user request, the search instance serves as container for search properties like user query,
number of hits to return, search language and context dependencies.

On the other hand, Section 5.2 details the core content of the search instance response
object. The first step of the Document Search Algorithm comprises a search for all avail-
able SOURCES of AIRSKB (Lines 5 - 8). Thereafter, a loop across all available SOURCES
aside from the Suggest Cluster SOURCE is executed (Line 8). The next step comprises a
search query expansion with context-dependencies and SOURCE information to match the
right IRS index documents that belong to the current source (Lines 10 - 11). The search
for documents of current source itself is performed in Line 14. The SearchResult object
contains all information retrieved from the system, as a a ranked document result list that
matches the query and search metadata. If the current source is not the Suggest source,
the search result for each source is placed into the search instance (Line 19). By contrast,
if the current source actually is the Suggest source, the Suggest Cluster Algorithm is per-
formed (Lines 21-35), whereby a new search query for a unique Suggest Cluster document
is built. Therefore, the query is adapted to match only a Suggest Cluster document (Lines
23 - 24). For example, function BUILDSUGGESTCLUSTERQUERY() (Line 23) is a call for
lower-level processing steps of IRS Component and the implementation depends on the un-
derlying retrieval system wrapper (IRS Wrapper Layer, see Section 7.2). For instance, in
Apache Lucene, this can be carried out by a query expansion with a conjunction of search
terms. Therefore, previously-found Suggest documents serve as search terms: Query <
Suggest Document; AND Suggest Documents AND ... AND SuggestDocument,,. Af-
ter the query has been adapted, a new search for the Suggest Cluster document is per-
formed (Lines 26). If such a Suggest Cluster document exists, the Ontology Component is
called to obtain all DOCUMENTS that are direct related to the Suggest Cluster Doc-
UMENT found (Line 30). The function FINDRELDOCS() of Ontology Component is a
high-level access to the AIRKB through use of the corresponding Functional Layer func-
tions of AIRSKB Framework. Depending on which knowledge framework is used for
the AIRSKB storage, Storage Layer of AIRSKB Framework translates the high-level re-
quest for related DOCUMENTS in the appropriate knowledge storage query language. The
Ontology Component submits a list of DOCUMENTS based upon context-sensitive relations
of AIRSKB. In detail, this triggers a search in the AIRSKB Framework for all context-
sensitive relations rel (0, 0,) Ags? where o, is the Suggest Cluster DOCUMENT and o, is the
related DOCUMENT. These related DOCUMENTS and weights of the relationships are used
to build a search result later. Previously, the contents of the DOCUMENTS are delivered
by the IRS Component (Line 33). The search result (Line 35) is subsequently passed to
the application, which has called the SEARCH() function (Line 39).

Algorithm 2 depicts the search for DOCUMENTS of a given SOURCE that are re-
lated to an also given DOCUMENT. Therefore, the algorithm requests a collection of
context-sensitive pathways of the given DOCUMENT to DOCUMENTS of the given SOURCE.
Ontology Component provides the high-level access function FINDPATHWAYS() for this
task (Line 6). This function calls AIRSKB Framework that again contains algorithms
to calculate best context-sensitive pathways pathway (0178)Ac+best from DOCUMENT o

to DOCUMENTS of SOURCE s (see Section 3.3). The algorithms of AIRSKB Framework

103

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

operate as described in Figure 3.5:

104

Search for all SOURCES contained in AIRSKB. As stated above, tasks that inter-
act with AIRKB’s current knowledge storage require implementing access for the
query language used by the knowledge storage. As described in Section 7.3, a wrap-
per architecture is used to grantees this. For example: SPARQL is used in an
Apache Jena Wrapper to retrieve the SOURCES. The SPARQL query subsequently
looks like “SELECT ?source WHERE { ?source type:Source ‘Source’ }”.

Locate the SOURCE of the given DOCUMENT and search for the best pathways at
SOURCE level to the target SOURCE to obtain a clue about possible existing Docu-
MENT pathways. This is necessary because it reduces the steps of finding DOCUMENT
pathways enormously: the algorithm follows only DOCUMENT relationships that have
a corresponding SOURCE relationship and where the SOURCE relationship is part of
a previously found SOURCE pathway. Finding existing SOURCE pathways can actu-
ally be calculated very quickly, because usually only a few different SOURCES exist.
AIRSKB also contains far fewer SOURCES than DOCUMENTS. Therefore, ordinary
graph search algorithms like breadth-first search or depth-first search can be imple-
mented. In the case of AIRS Prototype, an algorithm based upon the breadth-first
search algorithm was used to find pathways between two given SOURCES.

The next step comprises finding best DOCUMENT pathways from the given Docu-
MENT to DOCUMENTS of the also given SOURCE. As written in the previous step,
the algorithm follows only those DOCUMENT relationships whose SOURCES also have
a corresponding relationship. This makes the algorithm of finding pathways cheaper
because in the case of using an algorithm based upon breadth-first search, only those
DoOCUMENTS of the same depth that belong to the “right” SOURCE are investigated
in the next step. Another possibility to reduce the number of DOCUMENTS for the
next processing step is to follow only DOCUMENT relationships of a defined minimum
weight. Additionally, one can also follow only those DOCUMENTS that are connected
to each other by a context-sensitive relationship rel (0,, 04) Aot (see Section 3.3) to re-
duce the DOCUMENT candidates for the next step. Single DOCUMENTS do not have
many relationships with other DOCUMENTS. Therefore, this can be undertaken in
the next processing step after the pathways have been found. AIRS Prototype con-
tains an algorithm that bases on breadth-first search in combination of DOCUMENT
candidate reduction using valid SOURCE pathways.

Once DOCUMENT pathways have been found, the last step comprises two tasks: re-
duction of invalid pathways that does not match the context-sensitive pathway defini-
tion as described in Section 3.3 (if that has not already been done in the previous step)
and ranking of pathways by their weights. Different functions can be used to calculate
the weights of DOCUMENT pathways. For example, Section 3.3 suggests four different
functions: weight (pathway (01, 0n) weight (pathway (01,0n))

) . .)
baseline arithmetic mean

and weight (pathway (01,0n)) All

geometric mean harmonic mean
four functions have been implemented in the Function Layer of AIRSKB Framework.

The function to use can be selected via properties file.

weight (pathway (01,0n))

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.5 Retrieval and Suggest Algorithms

Additionally, not all found pathways are returned: if too many existing pathways
have been found, only the best ones are returned (the maximum number of pathways
to return can be defined via properties file). All other steps are processed in the
Ontology Component. By looking at Algorithm 2, a loop across all found pathways is
processed (Line 7) and a search result object is built in the loop that serves as container
for result documents (Line 8). After the target DOCUMENT is extracted from the path-
way (Line 10), IRS Component is called to retrieve document content information from
AIRS index (Line 12). The document and the weight of the pathway are added to the
built search result object (Lines 13 - 18). The weight is later used in the client application
for result ranking. The current loop ends after the search result object is added to the
search instance object (Line 19). Finally, the search instance object is submitted to the
client application if all pathways have been processed the same way.

Algorithm 2 Find DOCUMENTS of a given SOURCE that are related to an also given
DOCUMENT.
1: > The high-level function of AIRS’ Core Component takes a DOCUMENT as well as a
SOURCE
2: > and returns a search instance object containing a ranked document result list.
3: function FINDRELATEDDOCUMENTSOFSOURCEX (document, source)

4: > Call Ontology Component to get is a ranked list of context-sensitive pathways
5: > from the given document to documents of the given source.

6: Pathways < ontology_component. FINDPATHWAYS(document, source)
7 for all Pathway of Pathways do > For each found pathway.
8: new object SearchResult > Search result container.
9: > Get target DOCUMENT of current pathway

10: DOCUMENT ¢ Pathway.GETTARGETDOCUMENT(void)

11: > Call IRS Component to content of DOCUMENT.

12: document < irs_component. GETDOCUMENT(DOCUMENT)

13: > Place result document in search result.

14: SearchResult + ADDDOCUMENT(DOCUMENT)

15: > Use pathway weight for result document ranking.

16: weight < Pathway.GETWEIGHT (void)

17: SearchResult < ADDWEIGHT(weight)

18: > Add search result to search instance object

19: search_instance <~ ADDSEARCHRESULT(SearchResult)

20: end for

21: return search_instance > Contains a set of ranked result documents.

22: end function

On the other hand, Algorithm 3 shows a function that updates AIRSKB relationships
through using feedback information. This can happen immediately after the user has
finished the business case or after a defined time span. If the function is not called
right after the business case, the feedback must be stored in the Statistics DB of the
Statistics Component. Once the feedback data has been stored, it can be processed later.
In both cases, the AIRS’ Core Component calls the function PROCESSCARTFEEDBACK()
that consumes a list of documents that were somehow included in the case by the user (see
Example 2). The idea behind the algorithm is as follows: the documents that have been

105

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

used in the same business case are somehow related to each other because they were used
in the same context. These relationships between the documents represent knowledge that
is modeled in ATRSKB.

Algorithm 3 Update AIRSKB relationships using system feedback.

1: > The function processes feedback after the end of a use case, it consumes a list of
2: > documents that were used somehow in the workshop case.

3: function PROCESSCARTFEEDBACK (documents)

4: > Elements that buffer AIRSKB relations that needs to be updated.

5: new object New Relations
6: new object RelationstolncreaseW eight
7 new object RelationstoDecreaseW eight
8: > For each document that that played a role in a use-case:
9: for all documentFrom of documents do
10: > Call Ontology Component to get a list of all context-sensitive relations of the
11: > given document.
12: Relations < ontology_component.GETRELATIONS(documentF'rom)
13: > First step: check if new relations need to be established in the AIRSKB.
14: for all documentTo of documents \ {documentFrom} do
15: if (documentFrom,documentTo) ¢ Relations then
16: > A new relation needs to be established in the AIRSKB
17: new object Relation
18: Relation <~ ADDDOCUMENTS(document From, documentT o)
19: > Place new relation in the buffer element.
20: if NewRelations not contains Relation then
21: NewRelations < ADD(Relation)
22: end if
23: end if
24: end for
25: > Second step: check if weights of existing relations need to be updated.
26: > Idea: inspect EACH relation of the current feedback document whether
27: > another feedback document is involved. If so, then increase the relation’s
28: > weight, decrease it otherwise.
29: for all Relation of Relations do
30: used <+ false
31: for all documentTo of documents \ {documentFrom} do
32: if documentTo part-of Relation then
33: used < true
34: break
35: end if
36: end for
37 if used = true then > Other feedback document is involved.
38: if RelationstolncreaseWeight not contains Relation then
39: RelationstoIncreaseW eight < ADD(Relation)
40: end if
106

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.5 Retrieval and Suggest Algorithms

Algorithm 3 Update AIRSKB relationships using system feedback — Part Two.

41: else > Other feedback document is NOT involved.
42: if RelationstoDecreaseW eight not contains Relation then

43: RelationstoDecreaseW eight <— ADD(Relation)

44: end if

45: end if

46: end for

4T7: end for

48: > Third step: update relations of AIRSKB.

49: > Call Ontology Component to add new relations of AIRSKB
50: ontology_component. ADDRELATIONS(N ew Relations)

51: > Call Ontology Component to update relations of AIRSKB
52: for all Relation of RelationstolncreaseW eight do

53: Relation < INCREASEWEIGHT (void)

54: ontology_component.UPDATERELATION(Relation)

55: end for

56: for all Relation of RelationstoDecreaseWeight do

57: Relation < DECREASEWEIGHT (void)

58: ontology_component.UPDATERELATION(Relation)

59: end for

60: end function

Therefore, the algorithm checks whether all of the given documents are related to each
other. If two documents are used together in the same business case, the strength of the
relationship between them grows. By contrast, if only one document of two related docu-
ments are used in the same business case, the strength of the relationship between them
shrinks. The algorithm now operates as follows: temporary lists of document relationships
are built to buffer those that need to be established or updated in AIRSKB (Lines 5 - 7).
Subsequently, a loop across all feedback documents is performed (Line 9). In the loop, the
Core Component is called to derive all of the relationships of the current document (Line
12). These relationships are processed in later steps of the algorithm. First, the algorithm
investigates the document set if new relations need to be established in the AIRSKB. For
this purpose, the Core Component checks whether the current document already has a
relationship with all other feedback documents represented in the ATRSKB (Lines 14 -
25). For relationships that are not already represented through the AIRSKB, a new one
is built and placed in the buffer (Lines 17 - 22). Second, the relationships of the current
document are investigated. Idea: inspect each relation of the current feedback document
whether another feedback document is involved (Lines 29 - 47). This means that both
documents have been used in the business case. If yes, the relation’s weight is increased,
otherwise it is reduced. The relations are stored in the corresponding buffer (Lines 37 -
45). Third, the relationships that are stored in the buffers are synchronized with those
represented in the AIRSKB (Lines 50 - 59). New relations are placed in the AIRSKB (Line
50), used relationships are updated with increased weights (Lines 53 - 54) and not used
relationships are updated with reduced weights (Lines 57 - 58). Weights are increased by
a certain percentage (up to a maximum of 1) and are also reduced by a certain percent-
age (up to a minimum of 0.1, see Section 3.3). The following equations are performed

107

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

in the function INCREASEWEIGHT() (Line 53) and DECREASEWEIGHT() (Line 57) of the
Core Component.

weight

weight < weight + * increase_tn_percent (7.1)

weight

weight < weight — x decrease_in_percent (7.2)

The parameters increase_in_percent and decrease_in_percent can be set by a properties
file.

Algorithm 4 presents the function that is used in the AIRS Prototype to update an
existing or establish a new Suggest Cluster document in the AIRSKB.

Algorithm 4 Build or update SUGGEST CLUSTER document from system feedback.

1: > The function consumes a feedback object (contains meta data like the user’s search
2: > query) and a set of feedback documents used in a case. The function uses this

3: > information in order to update or build new Suggest Cluster documents.

4: function PROCESSCARTFEEDBACK(feedback, documents)

> First step: find Suggest documents from AIRS

(@2

6: > index that match the user’s query.
7: Query < GETUSERQUERYFROMFEEDBACK(feedback)
8: Query < ADDSOURCEINFORMATIONTOQUERY (Suggest SOURCE)
9: SearchResult < irs_component.SEARCH(Query)
10: > Second step: find Suggest Cluster document using found Suggest documents.
11: Query < irs_component.BUILDSUGGESTCLUSTERQUERY (Search Result)
12: Query < ADDSOURCEINFORMATIONTOQUERY (Suggest Cluster SOURCE)
13: > Call IRS Component to find Suggest Cluster document (if exists).
14: Suggest Cluster document < irs_component.SEARCH(Query)
15: if document is null then > No Suggest Cluster exists, build new one.
16: new object Suggest Cluster document
17: > Add all found Suggest documents to Suggest Cluster document.
18: Suggest Cluster document <~ ADDSUGGESTDOCUMENTS(SearchResult)
19: > add new Suggest Cluster document to AIRS index and AIRSKB
20: irs_component. ADDDOCUMENT(Suggest Cluster document)
21: ontology_component. ADDDOCUMENT(Suggest Cluster document)
22: end if
23: > Third step: find context-sensitive relations of Suggest Cluster document
24: Relations < ontology_component.GETRELATIONS(Suggest Cluster document)
25: > Forth step: Increase or decrease context-sensitive relations weights
26: for all Relation of Relations do
27: used < false
28: for all documentTo of documents do
29: if documentTo part-of Relation then
30: used < true
31: break
32: end if
33: end for
108

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.5 Retrieval and Suggest Algorithms

Algorithm 4 Build or update SUGGEST CLUSTER document from system feedback — Part
Two.

34: if used = true then

35: Relation < INCREASEWEIGHT(void)

36: ontology_component.UPDATERELATION(Relation)
37: else

38: Relation <— DECREASEWEIGHT(void)

39: ontology_component.UPDATERELATION(Relation)
40: end if

41: end for

42: > Fifth step: Check for every feedback document if a relation to
43: > the Suggest Cluster

44: > document exists, build new one if necessary.

45: for all documentTo of documents do

46: used <+ false

47: for all Relation of Relations do

48: if documentTo part-of Relation then

49: used < true

50: break

51: end if

52: end for

53: if used = false then > Add new context-sensitive relation
54: new object NewRelation

55: > Add Suggest Cluster document to feedback document relationship
56: NewRelation <~ ADDDOCUMENTS(document, documentT'o)

57: ontology_component. ADDRELATION(Relation)

58: end if

59: end for
60: end function

The function PROCESSCARTFEEDBACK () consumes the same set of feedback documents
like the function of Algorithm 3. Additionally, the function consumes a feedback object that
comprises metadata like the user’s query. In general, the algorithm bases on the approach
described in Section 5.5. Like the function of Algorithm 3, the function call can happen
immediately after the user has finished the business case or after a defined time span. The
first part of the algorithm comprises the search for a Suggest documents that matches the
user’s query (Lines 7 - 9). For this approach, a query is built through use of the user’s
original query (Line 7). The search for the Suggest Cluster document that matches the
previously-found Suggest documents is performed in the next step of the function (Lines
11 - 14). If the Suggest Cluster document does not exist (Line 15), a new one is built
and the Suggest documents are added to it (Line 18). The newly-built Suggest Cluster
document is subsequently added to both the AIRSKB (Line 21) and the AIRS index (Line
20). Part three of the algorithm checks whether the Suggest Clusters documents already
have relationships with the feedback documents (Lines 26 - 41). The idea behind this is
that if the Suggest Cluster document has relationships with DOCUMENTS represented in
AIRSKB and the given feedback documents are part of these DOCUMENTS, the weights of

109

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

the relationships with the given feedback documents are increased. If the Suggest Cluster
document still exists, all context-sensitive relationships of the Suggest Cluster document
are investigated in terms of whether the feedback documents are part of the relationships.
In the case they are, the weights of the corresponding relationships are increased (Lines 35
- 36), whereas otherwise they are reduced (Lines 38 - 39). Of course, no relationships exist
in the case of a new Suggest Cluster document was built. Accordingly, new relationships
between the feedback documents and the Suggest Cluster document are established in
AIRSKB (Lines 45 - 60).

7.6 Implementation Strategy and Prototype Features

The cornerstone of the AIRS Prototype implementation phase covered a few prototypes
that were created during early research. The so-called functional prototypes showed some
skills of state-of-the-art technology in combination with a small part of the requirements
catalog: a modern retrieval component across one document system or an application to
reflect the document landscape as an ontological model.

Later, the AIRS Prototype grew by using these functional prototypes. The research
project was divided in four different phases:

1. Describing the theoretical background and clarifying the research focus in detail
were the main activities of the first phase. Accordingly, the concept of AIRS and
the ontology engineering process was designed. In [93], insights and results of this
research phase are given.

2. Phase two started with a case study where part of the domain was investigated
to disclose the document linkage potential (see [95]). Technologies for the Ontol-
ogy Component as well as for the IRS Component have been evaluated. Beside
these activities, AIRS Prototype architecture design and first implementation ac-
tivities were started. Additionally, students face in their theses the opportunity
of harvesting document sources and ontology-representation technology evaluation
regarding AIRSKB’s design patterns. The rest of this phase focuses on the imple-
mentation of the AIRS Prototype, especially the AIRS Includes Sources Framework,
the AIRS Index & Search Framework and the AIRSKB Framework.

3. In the third phase, the development of AIRS shifted to retrieval optimization based
upon an adaptive knowledge network. Therefore, the feedback-processing chain was
implemented in the AIRS Prototype system and an evaluation process for informa-
tion retrieval system development was developed (see [94]). Additionally, advanced
retrieval technologies have been developed that combine both a state-of-the-art in-
formation search with feedback processing (see [96] and Section 5.2). The AIRS
Prototype implementation has also been finished in this phase. The last activities of
this step comprised internal evaluation steps.

4. The last phase of system development comprises evaluation steps that were performed
in an external evaluation system test as presented in Chapter 8.

The AIRS Prototype is a Java web application that uses information from the IRS index
and AIRSKB within the help of the AIRS search index and AIRSKB Framework module.

110

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.6 Implementation Strategy and Prototype Features

The Ontology Component and the IRS Component are implemented as wrappers across
the ATRSKB Framework and across the AIRS Index Search Framework (in the AIRS Pro-
totype backend component).

The AIRS Prototype architecture is based upon the design presented in Section 4.3.
The only differences are that foreign data interfaces and advanced services do not exist!2.
As stated before, AIRS comes as a Java servlet web application. This means that AIRS
comprises a backend as well as of a frontend implementation. The backend implementation
uses the AIRS framework components.

AlRS Prototype

» Opuons

Bremsschee AND KG: 42 e ¥

- Informationsart fike

e 42 Bremsen - Hydraulik und Mechanik

:l Funktionsuntergruppe fitern

1 Teile-Information: F-42-030 1 WIS Dokument: BA42

jo) Titel: VORDERRADBREMSE Titel: Bremsscheiben, Brem
Gruppe: 42 D Konstruktionsgruppe: C-Klasse
Untergruppe; 030 Annehdrehmomente (BA), Bre

Mechanik (42), Betrieb.

2 Telle-Information: F-42-045

£ Titel: HINTERRADBREMSE 2 WIS Dokument: AR42
Gruppe: 42 Titel: Perforation der Brems
Uniergruppe: 045 D Konstruktonsgruppe: C-Klasse
und Reparaturarbeiten (AR), B

Mechanik (42.

BUsd@Ed Gejlhx

Figure 7.5: The search result documents are grouped by the sources where they originally
appear. The figure shows the search results for the query “Bremsscheibe AND KG:42" grouped
by their sources. For example, replacement parts information of the electronic parts catalog is
shown on the left (In German “Teile-Information-Suche")

The AIRS Prototype can be installed on a typical server by using the listed sub compo-
nents: Apache Tomcat servlet container to host the AIRS Prototype application, Apache
webserver to host construction paintings as well as advanced static AIRS dependent web
services, MySQL database server to host the statistics components, MongoDB database
server for the AIRSKB (as long as MongoDB is used as AIRSKB’s storage backend) and

2The main focus of AIRS Prototype application was to perform end-user tests within a simulation en-
vironment. Therefore, interfaces for foreign date services were out of the scope since they were not
necessary for the tests.

111

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

Apache Solr embedded index to host the IRS index for document retrieval (as long as
Apache Solr is used as underlying information retrieval system). Because the AIRS Pro-
totype is implemented in Java and many of the AIRS foreign software components are
operating-system independent, the entire AIRS Prototype can be used in any operating-
system environment the foreign software components and a Java VM exist for.

AlRS Prototype

> Opuons
e © W

PART.Bremsscheibe e 3

Gruppe
Unterqruppe; 030

2 Telle-Information: F-42-045
p Titel: HINTERRADBREMSE

Gruppe; 42

uniergruppe; 045

BoodEad @ejlnx

Figure 7.6: Faceted search: a user can filter a document result list through use of a drop-down
menu that provides source dependent sub categories.

The AIRS Prototype was tested on both the Windows environment and the Linux en-
vironment. Like for the server installation, the AIRS Prototype can also be installed on
a virtual machine that can be used as a stand-alone application on a single machine for
testing purposes. Furthermore, product presentations can be easily undertaken with a
portable single-machine AIRS Prototype installation. This is a necessary requirement be-
cause AIRS was a research project with the goal of presenting the current status and the
possibility of new technologies. In this kind of installation, the same components used for
the normal server installation were used. The open source virtualization solution Oracle
Virtualbox and an Ubuntu 10.02 LTS operation system were used to host the AIRS appli-
cation. All other necessary foreign software solutions listed above were installed in Ubuntu.
Subsequently, the AIRS Prototype components were deployed on the system (the AIRS
index and AIRSKB). Finally, all of the AIRS Prototype dependent software components
were configured to start up at system booting time. The result is a ready-to-use AIRS

112

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7.6 Implementation Strategy and Prototype Features

Prototype environment. Due to the local network capabilities of the Oracle Virtualbox,
the AIRS Prototype application can be used after the system boot in two of several ways:
in the virtual machine environment by using a standard Internet browser that is installed
in the Ubuntu operating system and by using the host system’s browser. Accordingly, the
AIRS Prototype application can be used in a simple way: the first step is to boot the
virtual machine (and keep it in the background) and the next step is the use of a standard
Internet browser to run the AIRS Prototype application.

AIRS Pprototype
RonsraRTon gD BL S
1. C asse/GLK Kiasse (204)
2. Prit und Repar sdurardeten (AR)
3. Dremsen - Hydraulk und Mechank (42)
4. Betriebstremse (30) Q
-
Ty
1
'
30
wa
*w

BUodE@aEd @ejlnx

Figure 7.7: A selected search result document.

AIRS’ reference implementation offers state-of-the-art retrieval features to the user. Ex-
amples of this are the features spelling correction, providing search term suggestions and
highlighting of special search characters. These features are not present in the current
workshop documents systems. The result documents are grouped by the sources where
they originally appear. In the AIRS Prototype, this is implemented through use of result
container as shown in Figure 7.5. As long as each source provides document restriction
and a category system, the AIRS Prototype provides a faceted search as shown in Figure
7.6. Therefore, the search result can be filtered along special AIRS index fields. A user
can select a sub category by selecting an entry of the dynamically built drop-down menu.
A detailed search result view opens by clicking on a document from the result set. The
detailed document view is shown in a separate window with a sidebar where the user can
see related documents or search for related documents information (see Figure 7.7).

113

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

7 Architecture and Functionality of a Prototype Implementation

Figure 7.8 shows the cart component of the AIRS Prototype that is used to simulate
the handing-over point of workshop documents that are used in the workshop processes.
AIRS Prototype is a system that was built for the retrieval algorithm evaluation of AIRS in
the German after-sales market. Therefore, the AIRS Prototype contains only documents
in German language. The outcome is that the AIRS Prototype functions like spelling
correction and document search works also only for German languages. In future research,
this approach should be extended for more languages (see Section 9.2).

A|RS Prototype

k-4 @

Anfrage (2014-12-21 16:37:03)

Bremsscheibe wechsein

Kontext der Recherche

=

C (204)
Dokumente
£ Teile-Information HINTERRADBREMSE e
£ wis Dokument AR42.10-P-0250CMG: Bremsscheibe, -sattel und -idowze
der Hinterradbremse aus-, enbaven e

BuodEaEd @ejlnx

Figure 7.8: A user can add search result documents to a cart, which is used to simulate the
handing-over point of document search to the downstream processes.

114

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

A successful system evaluation requires field tests performed by end users. In best cases,
these end users are domain experts. This chapter starts with an explanation of documents
and systems that are used in processes of car workshops. Later, this chapter explains
how the AIRS Prototype’s user interface supports the business cases in the workshops.
Furthermore, the experimental setup of the field test is explained and an overview is
provided concerning the field test results.

8.1 Automotive Workshop Processes

One of the main tasks of after sales departments of car manufacturers is the support
of workshops in maintenance, service and diagnosis of cars (see [96]). Therefore, they
provide software products and process solutions for various workshop processes. These
are either used in the reception process (customers bring their cars for maintenance or
service requests) or during the mechanics” work with the customers’ cars. Examples of
corresponding software products are (see [96]):

e diagnosis data systems in which error code-specific and symptom-based checks are
managed for vehicle diagnosis processes,

e workshop information systems in which workshop literature is managed to support
vehicle maintenance, repairs and diagnosis,

e workshop help-systems in which documents are managed that provide information
about current remedial measures for technical complaints,

e taxonomies for the standardized recording of symptom locations and symptoms in
vehicles used by customers,

e clectronic catalogs for replacement parts, and

systems that contain information about work units and flat rates.

A customer’s maintenance, service or repair request is one case that the workshop em-
ployee must address. Since modern cars have become more complex, the diagnosis and
repair of modern cars is also becoming increasingly complex. This makes the service task
more complicated and workshop employees need support in solving it.

Part of the support comprises the information stored in the document systems. From the
workshop employees’ perspective, documents from various retrieval systems help them to
solve the current task. All these documents are structured and attributed in different ways.
For example, the segments and attributes of a document that contain replacement parts
differ from a document that contains information about a repair instruction. The outcome

115

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

is a heterogeneous document landscape where different kinds of documents are accessible
through different retrieval systems. Unfortunately, these retrieval systems are restricted to
the type of documents that they contain. In general, links between documents of different
information sources are not in the scope of these systems. Links between documents of
different retrieval systems must be established manually in authoring processes that can be
achieved through link-out and link-in services between the retrieval systems!. Such links
between documents exist, albeit not between all documents that they need to. Because
this is a complicated step in the up-stream data processes, it raises the possibility of errors
and causes additional costs for the departments.
The hypothesis is that the workshop processes can be significantly improved if:

e workshop employees need to use only one retrieval system that includes all docu-
ments, independently of their source.

e links between documents from different information sources can be established auto-
matically.

e links between documents are dynamic and not only static. They should be relation-
ships with variable weights.

e relationships between the documents can be used to gain or update existing knowl-
edge about the relevance of document relationships.

Therefore, the challenge is to break down the information barrier of the heterogeneous
document landscape and use the possibilities of an adaptive document knowledge network.
An overall retrieval system should help to reduce costs as well as optimize the information
access that is necessary for the workshop processes. Therefore, the domain of workshop
processes served as frame for the AIRS Prototype user tests.

8.2 AIRS Prototype User Interface

A selection of data from different workshop systems of a car manufacturer was included
in the AIRS data storage via the Indexing Workflow of AIRS (see Section 5.1). Together
with the indexed data of the workshop systems, different search functions of the AIRS
Prototype can be used to simulate workshop process flow. Such simulations were used for
the AIRS Prototype tests. Using the AIRS Prototype application is as simple as the usage
of a state-of-the-art free text search engine: a search bar is given to the user where he can
input a free text query. Figure 8.1 shows the AIRS Prototype application. One can see
the results of a search for “Bremsscheibe” (German for “brake disk”). A box with search
results is shown for each document location where the documents came from. Area A of
Figure 8.1 marks the search result box for documents from the electronic parts catalog.
When a user now selects a search result by clicking on it, the document is presented to the
user in a separate window as shown in Figure 8.2. In this example, Area A marks the result
document representation and Area B shows the sidebar containing related information.

'For this work, a link between documents is a computer-accessible connection between these documents.
However, a link also indicates a kind of a semantic relationship between the documents based upon
their content (see Section 4.2).

116

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.2 AIRS Prototype User Interface

AIRS Prototype

» Options
% @
Bremsscheibe e ¥
(e)
ECU fittern C F - FAHRGESTELL (2) D
Fehlercode filtern 4 42 - BREMSANLAGE (2) ¢
; Untergruppe fiitern c
1 Diagnose-Dokument: : 5090 @ ESP_E1
© Titel: High temperature 1 Teile-Information: F-42-030
Stevergerit: ESP_E1 O Titel: VORDERRADBREMSE
Fehlercode: 5090 Gruppe: 42
Untergruppe: 030
2 Diagnose-Dokument: : 509300 @ ESP212
Jo) Titol: High temperature 2 Teile-Information: F-42-045
Stevemerii: ESE212 © Titel: HINTERRADBREMSE
Fehlercode: 509300 = Guppe: 42
Untergruppe: 045
3 Diagnose-Dokument: : 490000 @ ESP212
© Titel: High temperature
Stevergerét: ESP212
Fehlercode: 490000
~ ~
. J
 Informationsart fitern ¢ Konstruktionsgruppe filtem s
42 Bremsen - Hydraulik und Mechanik (11) C
1 ASRA: 42-2881
Funktionsuntergruppe filtern s ESIT o

Figure 8.1: AIRS Prototype: search for “Bremsscheibe” (German for “brake disk"). Area A
depicts a source-dependent search result box.

The related documents presented in the sidebar are grouped according to their sources
and ranked by using the relevance weights. Figure 8.2 Area B, for example, shows two doc-
uments of the source wis that are related to the given result document “Hinterachse”. As
long as the source wis contains part replacement instructions, the relationship between the
parts information “Hinterachse” and the related documents means that there is a descrip-
tion in the instruction about how the part has to be replaced. This document relationship
weight is dynamically adapted to its current usage during the workshop workflow by the
workshop employees.

As stated in Section 3.3, AIRSKB knows two different kinds of relationships beside
system-generated relationships: static document relationships (is-linked-to) and adaptive
document relationships (is-related-to). Those that have a weight are adaptive relationships
and those that have a static weight are static relationships. Static document relationships
are grouped in the sidebar under the “punctuation mark” category. A user can add a single
document result in the cart that is provided by AIRS Prototype (Figure 7.8) by clicking
the cart symbol in the right corner below the sidebar (Figure 8.2, Area B).

117

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

‘ AIRS Prototype

Teile-Information 0
H
HINTERRADBREMSE
J asra
\) wis
IAggregat F - FAHRGESTELL
Gruppe 42 - BREMSANLAGE ﬂ, Bremsscheibe, -sattel
Untergruppe 045 - HINTERRADBREMSE und -kitze der
Hinterradbremse aus-,
Teile einbauen
Nummer Beschreibung
0004209455 ENTLVENTIL %ma oMG:
1 TTEL E_ Bremsscheibe, -sattel
[A0054202520 BREMSBELAG und -kidtze der
2044230281 BREMSSATTEL Qs
A1244210571 SECHSKANTSCHR. tips
A2044234198 BREMSSATTEL
A2044230912 BREMSSCHEIBE e
\ J\ *)

Figure 8.2: AIRS Prototype showing parts information “HINTERRADBREMSE" (German for
“rear wheel brakes”). Area A marks the search result document and Area B shows related
documents (ranked by the relationship weight) from different sources in a sidebar.

As explained in Section 7.6, AIRS Prototype provides advanced free text search features
to the user. Figure 8.3 shows such a feature for searching only in the symptom taxonomy
source (“source: symptom”) to find information about standardized car fault describing
symptoms. This is a helpful feature, especially for the car reception process in which
the receptionist opens a new case in the workshop system. Therefore, the user needs to
map the customer’s complaint to these standardized symptoms. In Figure 8.3, a search
for “Vorderachse klappert” (German for “Front axle rattles”) is shown. This complaint
is subsequently mapped to the standardized symptom taxonomy and all nodes are shown
that match this mapping (search string).

If a user ascertains that “knocking” rather than “rattles” is the right complaint de-
scription, the user can select the leaf of the taxonomy (which actually represents a result
document). This opens the result container as shown in Figure 8.5. The result representa-
tion of the symptom node “knocking” shows extended information like the node hierarchy,
the node’s validity state and the taxonomy version. Important is this result representation
especially for advanced retrieval capability of AIRS Prototype because the symptom node

118

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.2 AIRS Prototype User Interface

itself can be a starting point for a new retrieval step. This new retrieval based upon the
AIRS’ knowledge network components is available to the user through use of the sidebar.
On the one hand, the user can select documents from the sidebar that are related to the
given symptom node and on the other, the user can search actively for related documents.
This feature lies behind the magic wand symbol. As shown in Figure 8.4, the user can
select a target source to find documents that are somehow related to the given symptom.
The only constraint is that the related documents must be from the selected target source.

A|RS Prototype

» Options
' '\c_% (8 w
® : U ee
class:symptom AND Vorderachse klappert @ @

& Vorderachse =
B Vorderachse undicht

£ Hydrolager Olaustritt
£ Fettaustritt iber Nabe

& Vorderachse Gerausch
9O Klopfen

9 knacken
O Kappern

O poltern

o quietschen

RoogPda@ @E]Le“*.//,

Figure 8.3: A user can search for symptoms that appear in a customer’s car. Shown is a search
in the symptom taxonomy “class: symptom” for “Vorderachse klappert” (German for “Front
axle rattles”). The result container subsequently shows a symptom tree with document results
as leaves.

The search for related documents is implemented in the AIRS Prototype as explained in
Algorithm 2 of Section 7.5. This feature is bases on AIRSKB methods that are presented
in Section 3.2 and Section 3.3: finding the best contest-sensitive pathways between a
document to documents of an also given source. Figure 8.5 shows the result of such a
source. After selecting the target source, the AIRS Prototype searches in AIRSKB parts

119

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

information for documents that are somehow related to a given symptom. The test users
can use all features of AIRS Prototype that are presented in this section.

AIRS Prototype

Symptom: klopfen

[Symptom-Text
Symptom-Id
Status
Symptom-Pfad

klopfen

4664

default

Fahrwerk / Fahrgestell /

Q@ [Zeelquelle sefektieren_

Zielquelle selektieren
diagnosis_data

Achse / Vorderachse / Symptom
Vorderachse Gerdusch wis
Symptom-Pfad 7/1185/4583/4592/ s
(IDs) 4664 g;r)rsi')r code
Giiltigkeiten PKW, Supersportwagen,
Maybach
Symptombaum- 149f
Version

P EAEO Gt

Figure 8.4: After selecting the leaf node “klopfen” (German for “knocking”) from the symptom
taxonomy tree, the user can start a search for related documents through use of the sidebar.

In Section 5.4, the Suggest Cluster Algorithm was named as an example of extended
retrieval that can be established by using the AIRS infrastructure. A user simply needs
to match a Suggest Cluster with a query and all related documents are shown to him that
other users include in the same kind of business case. Figure 8.6 now shows how the result
of the Suggest Cluster Algorithm is presented to the user. In the figure, Area A frames
the result box where ranked documents are listed that belong to the Suggest Cluster that
matches the user’s query “Bremsscheibe wechseln” (German for “replace brake disks”).

120

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.2 AIRS Prototype User Interface

A'RS Prototype

Symptom: klopfen

Symptom-Text klopfen
Symptom-Id 4664 o fpartsinfo e B
Status default
Symptom-Pfad Fahrwerk / Fahrgestell / Teile-Information
Achse / Vorderachse / E’ ACHSSCHENKEL UND
Vorderachse Gerausch QUERLENKER SMATIC
Symptom-Pfad 7/1185/4583/4592/
(IDs) 4664 % Teile-Information
iiltiakei ACHSSCHENKEL UND
Giiltigkeiten 'F\’AI;\;\gaS(o:LrJ]persponwagem OUSRLENKERT -
Symptombaum- 149f
Version Teile-Information
FEDERBEIN UND
'E' FEDERBEINBEFESTIGUNG
VORN

Booddal @Lett®

Figure 8.5: The related documents (if they exist) are presented in the sidebar.

121

216.73.216.60, am 23.01.2026, 23:34:49. ©

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

AIRS Prototype ‘
» Options
e @
Bremsscheibe wechseln \ ° -3
(o = 7
Voot Dormee
ASRA: 42-2851 Eidis .
Titel: der aus-, fitern s
U n. B. emeuern (Laufrader abmontiert)
Konstruktionsgruppe: 42 1 Diagnose-Dokument: : 5090 @ ESP_E1
ASRA Nummer: 2851 g Titel: High temperature
Steuergerat: ESP_E1
WIS Dokument: AR42.10-P-0250CMG D
Titel: Bremsscheibe, -sattel und -kidize der
i Hinterradbremse aus-, einbauen 2 Diagnose-Dokument: : 509300 @ ESP212
Konstruktionsgruppe: C-Klasse/GLK-Klasse (204), Prif- und Q Titel: High temperature
Reparaturarbeiten (AR), Bremsen - Hydraulik und Mechanik Steuergerat: ESP212
(42... Fehlercode: 509300
Teile-Information: F-42-045 3 Diagnose-Dokument: : 490000 @ ESP212
i Titel: HINTERRADBREMSE 9 Titel: High temperature
Gruppe: 42 Steuergerat: ESP212
Untergruppe: 045 Fehlercode: 490000
A -
Anzahl vorgeschlagener Dokumente: 9 Alle 577 Ergebnisse an!
Teile-Information-Suche WIS-Suche
F - FAHRGESTELL (2) 4 Informationsart filtern 4
42 - BREMSANLAGE (2) s 42 Bremsen - Hydraulik und Mechanik (11) 4
Untergruppe filtern E Funktionsuntergruppe filter +

Figure 8.6: AIRS Prototype showing suggested documents for the search string “Bremsscheibe
wechseln” (German for “replace brake disks”) that match the corresponding Suggest Cluster.
Area A shows the suggested documents presented in a special result container.

122

80, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.3 Experimental Setup of AIRS Prototype Field Tests

8.3 Experimental Setup of AIRS Prototype Field Tests

As described in Section 6, AIRSKB was designed to include collective intelligence of em-
ployees into the retrieval process. With the aid of the automatic inclusion of new docu-
ment relationships into the AIRS retrieval system, the AIRS Prototype is able to collect
the knowledge of workshop employees and combine it with the knowledge of workshop
authors. A document relationship network is the resulting data structure. Since AIRSKB
is not a static knowledge structure, it changes slowly due to the ongoing evolutionary pro-
cess. By only including new relationships with AIRSKB and even by doing so carefully
(adding new relations if at least a critical number of workshop employees used them), the
number of relations in AIRSKB will grow uncontrollably. The resulting AIRSKB is simply
a super-set of knowledge from many automotive experts and not a network that includes
the collective intelligence of users. Evolution also means survival of the fittest. AIRS Pro-
totype’s algorithms meet this challenge by including a concept of aging in AIRSKB and use
a ranking mechanism for the document relationships. Relation aging has a direct influence
on the relation’s weights. AIRS Prototype adapts this principle and updates the document
relationships at the end of each business case. Given that the AIRS Prototype application
simulates the workshop processes of a document search, the document handing-over point
marks the end of the business case. In detail, this means that submitting AIRS Prototype’s
cart causes an update process of AIRSKB. The update principles are:

e less usage of a relation over time decreases the relation’s weight,

e usage of a document without including its related documents to the business case
solution decreases the weights of the unused document relations and

e frequent usage of a relation increases its weight.

A still open question about ranking is how to deal with lower ranked related documents.
One can cut the related document list according to a too low relation weight. However,
even lower weighted relations could be important to less frequent business cases. For the
field tests, lower ranked document relations were included in the document representation
to examine whether these relations have an impact on the retrieval process. Additionally,
upper and lower borders for relation weights were defined for AIRSKB relations. By
following this, the lowest possible relation weight is 0.1 and the highest possible relation
weight is 1.0. This means if a relationship between two documents is ever established, the
relationship between the documents will still exist even if it is very weak (lower border)
and a relationship between documents cannot be more “relevant” to the user than 100
percent (upper border).

One of the field tests’ goals was to monitor the evolutionary process of AIRSKB’s doc-
ument relationships through the AIRS prototype field test. Accordingly, a decision was
made to prepare well-defined test cases to obtain comparable results. In each test case, a
task was described that can also happen in real life. One of the test cases was: The brake
disk of a rear wheel brake must be replaced. Find all documents you need for the business
case. These tasks were defined together with domain-specific experts.

Furthermore, two scenarios should be compared in the field tests: the search for related
documents using the existing isolated retrieval systems and the same task using the AIRS
Prototype. Therefore, surveys were conducted about the search using the isolated retrieval
systems and the AIRS Prototype search.

123

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

8.4 Performing Field Tests Using the AIRS Prototype

Field tests are difficult to perform because they depend on subjective user opinions about
the system that is tested. In [14], Davis postulated the technology acceptance model
(TAM) for this approach and extended it later to TAM2 (together with Venkatesh, see
[89]). According to the model, the acceptance and usage of a technology depends largely
on the ease of use and added value of technology. Both depend strongly on subjective
user opinions. AIRS Prototype field tests were inspired by this approach. Accordingly,
“before-after” surveys were performed to derive statements about the system’s ease of use.
System tests based upon use case scenarios were performed and document relations were
observed over time to obtain information about usefulness of the system.

AIRS’ search capability was verified by means of a sample application and field tests
with employees of workshops. The goal of these user tests was:

e The workshop employees perceive quick and easy search for relevant documents using
AIRS Prototype as helpful and easy to use.

e A system based upon the AIRS Prototype helps to optimize the entire workshop
process by reducing the time a workshop employee needs to search for business case
relevant documents.

The workshop employees now need to search for all of the documents they need for
a given case that itself is mostly a maintenance or service request for a given customer
car. The workshop retrieval systems contain these documents. They were developed
to support the maintenance and service processes that appear in the workshops. The
workshop employees need to use these workshop retrieval systems every day. AIRS was
developed to support the same kind of workshop employee’s work routine. Additionally,
it could improve the workshop processes significantly. Therefore, AIRS must be proven in
the real workshop situations from the same kind of people who perform the maintenance
and services processes day by day.

Because the workshop employees are domain experts for their processes, testing the AIRS
Prototype means performing an expert test and obtain highly valid statements concern-
ing how the tested system acts in the workshop domain. Finally, the test must contain a
comparison between the current workshop systems and the AIRS Prototype regarding doc-
ument retrieval. This comparison should involve various aspects like the retrieval quality,
the retrieval performance and a statement about how good the tested system satisfies the
user’s information need. The test must depict maintenance and support cases that could
also appear in real life workshop situations. Accordingly, the user tests should involve two
main aspects:

e A “before-after” comparison of the workshop retrieval systems with the AIRS Pro-
totype and

e the AIRS Prototype system tests regarding domain-specific test scenarios.
The “before-after” comparison was undertaken by using two surveys. The first survey

was performed even before the AIRS Prototype system was tested and the survey contains
questions about the current workshop retrieval systems. The second survey was performed

124

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.4 Performing Field Tests Using the AIRS Prototype

after the AIRS Prototype tests. It contains questions about the usage of the AIRS Pro-
totype. AIRS Prototype tests were performed by using two maintenance scenarios. Both
scenarios cause a documents search for different kinds of workshop documents.

A user test session at a workshop was subsequently performed as follows: after making
an appointment, the workshop was visited for one day. The first agenda point after a
“welcome” session and an explanation of the visit’s reason comprises a brief introduction
to the topic. Later, the workshop employees who joined the test were asked to answer the
questions from the first survey to obtain information about the workshop retrieval systems
that the employees are currently using to solve their business tasks. A selection of questions
from the first survey that the workshop employees were asked to complete is presented in
Appendix A.1. As stated above, the idea behind the first questionnaire was to gain an
idea of what the workshop employees think about the current retrieval systems without
being influenced by the AIRS Prototype. Therefore, questions like “Which of the workshop
systems do you know and use for your daily work? Please mark the boxes how often you
use the system.”, “How quick do you find the information you want?” or “You talk to the
customer and you want to search for a workshop help document that matches the problem
the customer has with the car. How long does it take to search for the document? Please
select.” were asked. Another aspect of the first survey was to ascertain something about
the workshop employees’ careers. These questions have been used to appraise and classify
the workshop employee’s answers about the workshop retrieval systems. Examples for
these kinds of questions were “How long have you been working in the workshop?” or “In
which workshop sector are you working? Please choose between service reception and car
service. Accordingly, it was possible to obtain more information about the target user
groups. In this sense, one can divide the users of the workshop systems into four different
groups:

1. A newbie is someone who has recently started working in a workshop (still in or
recently finished training). The current workshop systems are new to the employee.
The user might securely deal with new technologies.

2. An expert is someone who knows every aspect of the work and who has a lot of
experience in dealing with the workshop systems.

3. A senior expert is someone who is very experienced in doing the job. Therefore,
the employee has the capability to teach other employees in dealing with the current
workshop processes.

4. An old hand is a person who has worked in workshops for a very long time. The
employee knows everything about workshop processes and learned to work with many
generations of the workshop system.

Additionally, the workshop employees were asked to characterize themselves to ascertain
which group they match. The question was asked indirectly to obtain the best results for
a self-characterization: “What do you think, how would your colleagues characterize your
work status?”. The target group that produces highly valid answers should be experts and
senior experts. They already know the current generation workshop systems (and their
limitations) best. Additionally, they are very adept in dealing with new search technologies
they are already know from private web search, for instance. After the workshop employees

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

completed the first survey, a brief introduction to the topic of AIRS was provided, along
with an introduction to the usage of AIRS Prototype. The workshop employees came
in touch with AIRS Prototype software during a guided “hands-on” session. The work-
shop employees subsequently had time to become more familiar with the AIRS Prototype
software.

In the next step, a document containing the user tests was given to the employees, who
were asked to read it carefully. Appendix A.3 shows a part of this document containing two
tests scenarios used for the user tests. The document also explains the functions of AIRS
to ensure that the workshop employees can answer open questions in using the system by
themselves?. Following a brief question and answer session about the user tests (to clarify
open questions), the workshop employees were asked to perform the tests by themselves.
The first test case is about a typical maintenance request regarding a specific car model:
the brake discs of the rear wheel need to be replaced. The objective of the test was to
find all of the documents that are necessary to solve the task of brake disc replacement.
The second case was about a technical complaint regarding a specific car model: the front
window of a given car model is broken and needs to be replaced. The workshop employees
were asked again to find all of the necessary documents to solve the given business task.
After the workshop employees completed the user tests, they were asked to completed
the second survey (Appendix A.2). In this second questionnaire, the users were asked
about the document retrieval using the AIRS Prototypes. Similar questions to those in
the first questionnaire were asked. For example, the following question was asked: “You
talk to the customer and you want to search for workshop help documents that matches the
problem the customer has with the car. How long does it take to search for the document
by using the AIRS Prototype? Please select.”. This is the corresponding question to
“You talk to the customer and you want to search for a workshop help document that
matches the problem the customer has with the car. How long does it take to search for
the document? Please select.” from the first survey (see Appendix A.1). This approach
allowed conducting a “before-after” comparison. The second survey subsequently concludes
with an assessment of the workshop employee regarding the research of AIRS and whether
it should be continued.

Another part of the two surveys comprises three case descriptions of maintenance situa-
tions that can appear in the workshops. For example, the workshop employees were asked
to assess how long it would take to find all necessary documents by using the isolated
retrieval systems in the first questionnaire. A similar question was asked in the second
questionnaire after the users had completed the tests. This similar question was how long
it would take to find all necessary documents by using the AIRS Prototype rather than
the isolated retrieval systems. All of the three questions were:

1. You read a technical information document and you want to find a replacement
instruction document that is not linked in the technical information document but
that is necessary for the case. Please mark how long it would take to find it.

2. You are in a reception situation and a customer brings a car for a maintenance
request. You want search for a technical information document that matches the
customer’s car and the complaint. Please mark how long it would take to find it.

2However, it has emerged that this brief description does not contain sufficient information to answer
all open questions of the workshop employees during the user tests. Therefore, fundamental questions
about the system have been answered during the tests.

126

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.5 Results of Field Tests

3. A vehicle that had an accident is delivered to the workshop. You need to search for
all necessary documents that help to repair the car. Please mark how long it would
take to find them.

In the first survey the users answered these questions without knowing that they had
to answer the questions later in the second survey again regarding the AIRS Prototype
system. The user tests concluded when the workshop employees finished the second survey.

8.5 Results of Field Tests

Five workshops were visited during the tests and more than ten workshop employees took
part of the user tests (including two after sales experts of headquarter department who have
been employed in workshops before with many years of experience in workshop processes).
All of them had many years of professional experience in the domain of workshop processes
as shown in Figure 8.7 (a).

12

=
o] o

Professional experience
()]

M Years
4 O Receptionist
O Mechanic
2
0
Average
(@) The average of professional experience of the (b) The role of the workshop employees

workshop employees

Figure 8.7: The usage of workshop system during the daily work of the workshop employees
who took part of the user tests and the role the workshop employees have in the workshops.

The workshop employees spread across two different groups as depicted in Figure 8.7
(b). Most of them are mechanics who work directly with the customers’ cars in the car
maintenance, service and repair process. They had only rarely customer contact. By
contrast, the smaller group comprises receptionists who are responsible for the car reception
process where the customers bring their cars for a service, maintenance or repair requests.
The workshop employees were asked how often during their daily work they enter into
touch with the workshop systems. Of course, the usage of a workshop system depends on
the role of the workshop employee.

127

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

100%
90%
& 80%
a
S 70%
g 60% often
-
ES 50% sometimes
; Oold hand
o 40% Mrarely
5 .
f 30% M never senior expert
o
S 20% H expert
10% .
M newbie
0%
GSP-Systeme
(a) How often the workshop employees use the (b) The mean of the self-characterizations of the
workshop systems during the daily work (the workshop employees

average of named systems).

Figure 8.8: Professional experience of the workshop employees who took part of the user tests
and the mean of self-characterizations of the workshop employees.

In the surveys, the workshop systems were named directly and Figure 8.8 (a) shows the
mean of the given answers. The evaluation showed that most of the systems were used
very frequently during the daily work. This means that an optimization of the systems
should improve the processes in a significant way. Figure 8.8 (b) shows the mean of the
self-characterizations the workshop employees were asked for during the first survey.

Table 8.1: Documents used in the brake disc replacement task. Documents that describe
work units are d,asra, dyasra @aNd dyesrq. Document d, ;s contains replacement instructions,
document d, ;s contains repair instructions and document d,,,; contains parts information.

Field Test n | Field Test n + 1 | Field Test n + 2 | Field Test n + 3
dlasra + - + -
dyasra + + +
dgasra + - + +
dlwis 4+ +
dltips - - + -
dyps + +

The result is that most of the workshop employees see themselves as an “expert” or
a “senior expert”. This correlates with the workshop employees’ years of professional
experiences and means that they are domain experts in their work areas and that they
will produce highly relevant answers during the field tests. A “newbie”, for example, is
currently in the studying and learning phase and does not have many experiences with the
current workshop systems. This kind of user group possibly cannot see or identify process

128

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.5 Results of Field Tests

optimization effects due to the missing experience. By contrast, an “old hand” is perhaps
not open-minded to innovations because he sees the current systems running and possibly
implicates this as the most important system feature.

Table 8.2: Related documents of parts information rear wheel brakes d,,; and their relation
weights over time. The character ‘+' marks a new relation that has been established after the
use case, ' V' marks a relation whose weight has been increased since the last usage, "\," marks
a relation whose weight has been reduced since the last usage and ‘—' marks a relation whose
weight has not changed since the last usage.

hasWeight hasWeight (hasWeight hasWeight (

rel (dp, dq))f rel (dp,dy))in+1 rel (d, dg))tn,+2 rel (dp, dy))thrS
rel(d,pis dyasra) 0.324 N\, 0.324 — 0.438 & 0.285 \,
rel(d, i, dyasra) 0.324 N\, 0.211 N\ 0.285 N 0.185 N\,
rel(d,pis dyasra) 0.324 N\, 0.324 — 0.438 & 0.592 7
rel(d, pi, d,wis) 0.5 — 0.5 — 0.675 N 0911 7
rel(d,pi, d, tips) - - 0.5 + 0.324 N\,

In Section 8.4, the workshop employees were asked to work with the system and perform
two different test scenarios: a brake disc replacement and a front window replacement.
Before performing the tests, the users needed to enter into contact with the AIRS Prototype
system. All test persons had no problems in using the AIRS Prototype software. Most
of them only need rare assistance in using the system. This can be explained due to
the simple search concept of AIRS that is at the deepest level (without AIRSKB-based
features) similar to many free text search applications the workshop employees are familiar
with: web search, free text search in a mail client program and many more. In other words,
the employees understood the concept of search quickly and they were very interested in
using the system. The test persons had clear expectations of the AIRS Prototype search.
For example, they stated the possibility to search with synonyms and abbreviations is
an important feature. Due to this expectation, the workshop employees gave very good
and valuable feedback about the system. As stated before, one of the test tasks was to
find all documents that are necessary for a brake disk replacement. An example of such
a document is the brake disk replacement part document itself, which can be originally
found in the isolated retrieval system of the electronic parts catalog. In contrast to the
AIRS Prototype’s free text search, the electronic parts catalog is based upon taxonomic-
guided retrieval, presenting lists of parts information (and pictures) as search results at
the taxonomic leave-node-level. The component brake disk, for example, can be found in
the electronic parts catalog under the taxonomic node rear wheel brakes. AIRS again turns
the principle around and the user can search for the part information brake disk directly.
Later on, the taxonomic feature can be used as data filter criteria. Figure 8.2 of Section
8.2 shows the parts information list that contains the brake disk replacement part. In the
figure, Area A frames the parts information, which is also shown as the search result in the
electronic parts catalog®. In Area B of Figure 8.2 (Section 8.2), documents that are related
to the rear wheel brakes can be seen. They are grouped by source and sorted by relation

30f course, the retrieval of the original electronic parts catalog contains much more data filter criteria
to ensure retrieval hits that match exactly the customer’s car. Following the AIRS principle, all these
filter criteria can be modeled as contexts and context-attributes.

129

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

weights. For instance, two documents from the source “wis” (which actually contains
replacement instructions for parts) are shown that are related to the parts information
rear wheel brakes. During the retrieval for documents, the users were able to select result
documents from both: the search result list and the related documents box.

Ofast Ofast
O normal Onormal
M slow M slow
100%
(a) Using the isolated retrieval systems (b) Using AIRS Prototype

Figure 8.9: Result of user survey about how fast it is to find business case relevant documents.

In Table 8.1, the usage of documents in the field test for the brake disk replacement task
is given. For example, in field test n + 1 the user chose only document d,qs-q. Given that
AIRSKB contains a relation-aging concept, which distinguishes between usage and non
usage of a document-relation, the documents that were used (or not used) in a field test
have a direct influence on the document relation weights.

Oeasy Oeasy
) 44%
Ouncomplicated O uncomplicated
B complicated M complicated
(a) Using the isolated retrieval systems (b) Using AIRS Prototype

Figure 8.10: Result of user survey about how easy it is to find business case relevant documents.

Table 8.2 shows the document relations of the part information rear wheel brakes
(d,pi) and how they changed from field test ¢, to field test t,43. In Table 8.2,
hasWeight (rel (d,pi, d))L is the weight of the relation rel(d,,;, d). Time stamp t, means
the time directly after field test number x.

After the field test n+3, document d, ;s shows a strong relationship with the parts infor-
mation rear wheel brakes. Because document d, ;s contains the replacement instruction for

130

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.5 Results of Field Tests

the part brake disk, the AIRS Prototype has “learned” a valid document relationship. In
future searches, AIRS presents the replacement instruction d, ;s as the top-related docu-
ment to the part information rear wheel brakes. It must be noted that AIRS has “learned”
this relationship from the workshop employees’ collective intelligence. In addition, the
workshop employees were asked about their search experience with the AIRS Prototype
compared to the isolated retrieval systems.

Oa few seconds Oa few seconds
Oa few minutes Oa few minutes
Hupto 10 Hupto 10
minutes 89% minutes
M more than 10 M more than 10
minutes minutes
(a) Using the isolated retrieval systems (b) Using the AIRS Prototype

Figure 8.11: Result of user survey about how easy it is to find business case relevant documents.

Figure 8.9 (a) shows the mean of the workshop employee’s opinions about the velocity
of finding documents using the isolated retrieval systems. As shown 8.9 (b), the users say
that the AIRS retrieval for documents is much faster than current retrieval for workshop
documents: each of the workshop employees assesses the AIRS search algorithm as fast.
Additionally, most of the users perceive the search as “uncomplicated” and a lot of them
as “easy” (see Figure 8.10 (b)).

Oa few seconds Oa few seconds
Oa few minutes Oa few minutes
Hupto 10 Hup to 10
minutes minutes
M more than 10 B more than 10
minutes minutes
(a) Using the isolated retrieval systems (b) Using AIRS Prototype

Figure 8.12: Result of user survey about how easy it is to find business case relevant documents.
By contrast, the group of workshop employees who assessed the current retrieval as

“easy” is much smaller: users find AIRS is an easy way to search for business case relevant
documents, compared to the current retrieval system landscape. Moreover, the group

131

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

who categorizes the search as “complicated” has the same size (see Figure 8.10 (b)). One
can interpret this in the following way: the users perceive the technology behind the
AIRS Prototype as a necessary development, considering the currently isolated retrieval
systems. Figure 8.11 shows the comparison of the question how long it would take to find a
replacement instruction document that is not linked in the technical information document
but that is necessary for the case. Most of the workshop employees marked “a few seconds”
for the AIRS Prototype. This seems a realistic estimation because AIRS searches in all
sources concurrently. The users stated that it is very easy to perform many searches by
simply typing in a new query. Figure 8.12 shows the results for the search for technical
information documents during the reception process. The result implies an interesting
point: in contrast to a search using the isolated retrieval systems, a retrieval system based
upon AIRS search technology can be used in real time. This means that a receptionist
can perform the search while talking to the customer. Using the current retrieval systems,
this seems impossible because the workshop employees assess that it would take up to 10
minutes and potentially even longer.

O a few seconds Oa few seconds
Oa few minutes Oa few minutes
Hupto 10 Hupto 10
minutes minutes
M more than 10 M more than 10
minutes minutes
(a) Using the isolated retrieval systems (b) Using the AIRS Prototype

Figure 8.13: Result of user survey about how easy it is to find business case relevant documents.

Figure 8.13 presents the results for the last of the three case descriptions: the time to
find all documents that are necessary to repair a car that had an accident. This seems the
most, complex scenario for the AIRS Prototype because many things of a crashed car must
be repaired. This includes many documents of different workshop systems. The workshop
employees made an interesting statement in the user tests by answering this question. For
the current retrieval systems, they mostly choose “more than 10 minutes”, which seems
to be a realistic estimation. Surprisingly, most of the workshop employees found that
with the AIRS Prototype this task should take “a few minutes” or even “a few seconds”.
The question is how realistic this estimation is. A closer look into AIRS can confirm this
estimation because “a few minutes” can mean that “the AIRS Prototype is so fast that
I can search for many documents at once and I can find all necessary documents in just
a few minutes”. Even “a few seconds” makes sense because a user can match a Suggest
Cluster with a query. This means that a set of all necessary documents is still suggested
and the user can find all of the documents with just one query.

The Suggest Cluster Algorithm was also evaluated during the field tests. The two
domain-specific tests scenarios were used to analyze lists of suggested documents produced

132

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8.5 Results of Field Tests

by the Suggest Cluster Algorithm over time. In a specific test scenario, a user performs
a search for case relevant documents. For each query that results in a case solution, the
Suggest Cluster Algorithm identifies (or establishes) a Suggest Cluster document. Subse-
quently, all documents used in the case are automatically linked to this Suggest Cluster
document. Still existing relationships between the Suggest Cluster document and doc-
uments that have been used in the case are reweighted instead. The idea is that users
perform similar searches when they have to solve the similar tasks. This means that the
probability is high that the users “find” the same Suggest Cluster documents with their
queries. The list of suggested documents that is related to the Suggest Cluster document
can change over time. It should be optimized by using the collective intelligence of the
system users. The evaluation comprised the following investigations:

e The list of suggested documents for a Suggest Cluster document changes over time
through use of the Suggest Cluster Algorithm (users match Suggest Cluster docu-
ments with their queries, new documents are added to the set of suggested documents
and relationships between these documents and the Suggest Cluster document are
updated). Therefore, the list of suggested documents belonging to a Suggest Cluster
document was examined during the evaluation.

e The list of suggested documents is updated automatically by the Suggest Cluster
Algorithm, based upon the professional expertise of the users. A document of the
list of suggested documents containing information that is not relevant for the given
case should be ranked down. The weight of the relationship from the “irrelevant”
DOCUMENT to the Suggest Cluster DOCUMENT is reduced. A document that con-
tains information that is not necessary for the case was examined in the field tests,
whether it is automatically moved down in the list of suggested documents.

The results of the first test case of the field tests have been analyzed. Accordingly, a
Suggest Cluster document was identified, which was often “matched” by user queries for
the given case. The corresponding list of suggested documents was analyzed over time.
Additionally, the list of these documents was “infected” with a document that contains
information that is not relevant for the given case. This document should be moved down
automatically in the list, when users “find” the corresponding Suggest Cluster document
with their queries in future cases. Figure 8.14 shows the ranked list of suggested documents
for a corresponding Suggest Cluster document over the time of five field tests. This list was
produced by the Suggest Cluster Algorithm. The users “find” the corresponding Suggest
Cluster document with their queries in field tests n, n + 2 and n + 3. Based upon the
documents they added to the case solution, the list of suggested documents was updated
through using the Suggest Cluster Algorithm. Document d_3_asra was injected manually
into the list of suggested documents It contains information that is not necessary for the
case solution. According to the hypothesis, the document d_3_asra should be moved down
in the list of suggested documents. As shown in Figure 8.14, it was actually moved down
to the last position of the list until the end of field test n. It was moved down to the last
place of the list because no user included the document in the case solution. This means
that the Suggest Cluster Algorithm works as expected. The following was observed during
the tests:

e The users do not “find” the Suggest Cluster document in each field test.

133

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

8 Field Tests and Evaluation

e The list of suggested document has been re-ranked when the users “find” the Suggest
Cluster document with their queries.

e The “infected” document moved down to the last position of the list over time.

d_2_wis d_2_wis d_1_asra d_1_asra d_1_asra
(g |
1 7 J Lo
d_1_asra d_1_asra d_2_asra d_2_asra d_2_asra
2 ——=0 = 2 &
d_2_asra d_2_asra d_3_asra d_3_asra d_3_asra

’ 7 > /dE d'?m' d%’is

d_3_asra d_3_asra |_1_tips |_1_wis 1.\
D B8 3 F—10

-
(=
(V]
£
3
o
[=]
"_; d_4_asra |_4_asra d_2_wis d_1_pi d_1_pi
g s E 3 P
::: d_3_wis d_3_wis. d_3_wis d_1_tips d_1_tips
g6 B 3 = 3 5
g d_1_pi d_1_pi d_1_pi d_2_wis d_2_wis
57 J P P P J
~ d_4_asra d_3_wis d_3_wis
ge 5
d_4_asra d_4_asra
9 3 3
n n+1 n+2 n+3 n+4

Field Test Number

Figure 8.14: Development of suggested documents list produced by the Suggest Cluster Al-
gorithm over time.

The test results can be interpreted as follows: The Suggest Cluster Algorithm works as
expected and enables the inclusion of system users’ retrieval activity back in the retrieval
process since suggested documents are updated automatically. The Suggest Cluster Algo-
rithm helps to use the collective intelligence of systems users to optimize the retrieval for
case relevant documents.

Users actually “find” Suggest Cluster documents with their queries for similar tasks.
Regarding the underlying business cases, Suggest documents should be optimized to pro-
duce Suggest Cluster documents that exactly match the underlying domain. Addition-
ally, Suggest Cluster documents should also be build by domain experts first to optimize
the automated feedback processing. For an extended evaluation approach, a quantitative
evaluation of the Suggest Cluster Algorithm should be performed to retrieve advanced
knowledge about the behavior of Suggest Cluster documents over time.

134

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9 Conclusion and Future Research

This chapter concludes the AIRS research results and gives an outlook on possible further
research activities and how they could be performed.

9.1 Summary

AIRS is a system that offers an intelligent and adaptive retrieval across a heterogeneous
document landscape. AIRS provides a workflow of modern knowledge network-based in-
formation retrieval. This was achieved by applying the following steps in the development
of AIRS:

1. Design an overarching generic model that represents all documents, sources and
relationships in a given business or organizational context. AIRSKB serves as a
model for the heterogeneous document landscape.

2. Build ontological individuals that represent the original documents and their sources
in a uniform way to abstract irrelevant diversities. Document Abstracts were built
during the Indexing Workflow of AIRS. They have been represented by ontological
individuals in AIRSKB.

3. Analyze the source data and construct index documents for a state-of-the-art retrieval
system. The built Document Abstracts include all of the information that is necessary
for the retrieval. They served as a reference for corresponding index documents.

4. Link each index document to the corresponding ontological individual. This was
achieved in the Indexing Workflow of AIRS.

5. Map hard-coded document links to document relationships represented in the on-
tology. During the Indexing Workflow, existing links between documents have been
represented by DOCUMENT-RELATIONS between the DOCUMENT representations of
the original documents.

6. Develop an evolutionary process for analyzing user behavior and use the correspond-
ing feedback to adapt document relationships over time. The Retrieval & Feedback
Workflow of AIRS includes different algorithms that include user feedback to improve
the retrieval quality (for example, the Suggest Cluster Algorithm).

AIRS combines the collective intelligence of the retrieval system users with the document
authors’ knowledge. It used both a state-of-the-art search technology and an ontology
that contains a document representation of the heterogeneous document landscape, the
AIRSKB. The retrieval algorithm of the AIRS uses both for the documents search in the
AIRS index and the AIRSKB. The AIRS index is used to implement a state-of-the-art

135

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9 Conclusion and Future Research

vector space retrieval across the document landscape and AIRSKB is used to find related
documents regarding a search result document or the define retrieval strategies. The
infrastructure of AIRS again can be used to implement extended retrieval algorithms like
the Suggest Cluster Algorithm.

AIRS showed what kinds of systems, algorithms and technologies should be used to
optimize the access to documents. More specifically, the principle of document abstrac-
tion and combining search technologies with a heterogeneous document landscape model
represented through an ontology was developed to ensure this document access. The users
can easily access documents of the heterogeneous document landscape simply by using an
AIRS-based system. AIRS is a suggested system that can be used in different domains
where expert knowledge is necessary to solve complex business tasks. Therefore, firms
can implement a retrieval system based upon AIRS to optimize critical business processes.
This was shown through field tests using experts as users and the AIRS Prototype as the
tested system in the domain of workshop processes and car maintenance. The field tests
were performed in workshops and workshop employees serve as test users. The AIRS Pro-
totype application is the reference implementation of the AIRS architecture suggestion.
It provides a Rich Internet Application that contains all of the functions of AIRS. This
prototype was used to perform user tests with real expert user groups and real life test
situations. The user tests of the AIRS Prototype showed that the AIRS system is highly
accepted by expert users.

A scientific finding of this work is the answer to the question how a knowledge network
can be included in document retrieval in heterogeneous document landscapes representing
a special domain. The AIRS principle again showed how such a deep integration must
be performed and which kinds of retrieval algorithms can be performed on top of the
knowledge network. The main questions can be answered:

1. Can a single systems view be provided for all of the case-related documents kept in
different retrieval systems? — With AIRS it is possible to establish a homogeneous
access structure across the heterogeneous system landscape.

2. Can a seamless access across this disparate and disconnected retrieval systems be
designed? — Combining state-of-the-art search technology with knowledge represen-
tation approaches serves as the base for advanced document retrieval. The ontological
model of the document landscape enables overall document relationships that can be
used for both document retrieval and document linkage information.

3. Can the quality of retrieval results and the effectiveness of the retrieval process be
improved by exploiting user feedback? — The combination of search technologies with
document landscape knowledge provides by the AIRSKB enables the development of
new kinds of search algorithms. An example is the Suggest Cluster Algorithm that
includes the collective intelligence of system users in a new retrieval approach.

4. Can a technical solution be developed that is accepted by users in the field? -
The AIRS Prototype serves as example implementation for the AIRS principle. The
prototype application was successfully evaluated in real world workshop situation.

AIRS combines the functionality of state-of-the art search technology with an ontology
in that way that index documents of an index are also modeled in an ontology. This

136

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9.1 Summary

ensures that complex relationships between documents can be established. These rela-
tionships can change over time (index documents of information retrieval systems are not
designed for this approach). Furthermore, the relationships allow implementing new kinds
of retrieval algorithms based upon both vector space retrieval of modern search engines
and knowledge representation through ontologies. The Suggest Cluster Algorithm that is
introduced in this work provides such an algorithm. It matches the user’s query against
a cluster of concepts with the help of the IRS Component of AIRS. Subsequently, the
cluster (Suggest Cluster document) found is located in the ATRSKB ontology and the
Ontology Component searches in the ontology for all related documents of the cluster.
The related documents found subsequently serve as the search result. Additionally, the
relationships between the Suggest Cluster document and the related documents are up-
dated over time. User feedback is collected automatically by AIRS and the relationships
are updated with the help of this feedback. Accordingly, the knowledge of the AIRS users
flows back in the system and the retrieval of future searches is optimized. This work in-
troduces this approach of optimizing document retrieval based upon collective intelligence
of system users.

AIRSKB is the ontology that is used to represent the heterogeneous document landscape
of the isolated retrieval systems. This work introduces the principles of ontology design
that comprise defining the application context, performing conceptualization and defining
inference rules. Additionally, this work suggests the following steps of ontology engineering
for an ontology that is used to represent document landscapes:

1. Initial activities. Focusing on the questions the application context defines. The
application context provides a set of questions that help to understand the domain
and the need for an ontology. Additionally, elements of the ontology are defined
in this step. This is necessary for a common understanding of the domain. After
these initial activities, the picture of the ontology that needs to be built was very
clear. This enormously helps to perform the conceptualization because concepts and
attributes and requirements of the ontology were well known before.

2. Performing conceptualization. The step comprises defining classes and relation-
ships. The ontology that is used for retrieval in heterogeneous document landscapes
(AIRSKB) includes concepts for documents, sources, relationships between the doc-
ument and attributes that can be used to describe validity conditions of documents.
The class model of the AIRSKB was built and attributes of the individuals were
described whereby the individuals match the previously-defined classes.

3. Defining inference rules. The theoretical frame for the knowledge acquisition means
defining the mathematical background. Axioms and equations ensure ontological
reasoning.

4. Ontology representation. Defining an ontology representation framework or language
that can be used to share the ontology among applications and people. This also
involves the technology how the ontology can be used in applications.

137

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9 Conclusion and Future Research

9.2 Research Opportunities

AIRS provides a new kind of retrieval based upon a deep integration of an ontological
model in the search workflow. This model enables advanced retrieval algorithms such as the
Suggest Cluster Algorithm (see Section 5.4). This has opened a few new research interests.
Examples are questions that address the possibility of establishing new kinds of retrieval
strategies on top of the AIRS infrastructure beside the Suggest Cluster Algorithm. Other
future research should focus on methods for calculating the cheapest document pathways in
the adaptive relationship environment of AIRSKB. Especially the speed and complexity of
pathway calculation is an interesting field of research. For example, path finding algorithm
of AIRS Prototype bases on breadth-first search in combination of DOCUMENT candidate
reduction using valid SOURCE pathways (see explanation for Algorithm 1 of Section 7.5).
Additionally, four measures have been suggested in this work that can be used for pathway
calculation (see Section 3.3). Therefore, further research should focus on the evaluation
of existing or development new path finding algorithms in the context of AIRS. Existing
graph search algorithm as named in [51] can serve as basis. This basis must subsequently
be extended to deal with conditional relationships. Furthermore, extended functions for
calculation the pathways’ weights should be evaluated or developed in further research
activities. These functions must subsequently calculate the weights of the pathways to
find the most relevant documents of a target source for a given document.

The AIRS Prototype is the reference implementation of AIRS. It has been evaluated
in the domain of workshop processes for vehicle maintenance. The field tests have been
carried out with workshop employees exhibiting many years of professional experience in
workshop services. They showed that the new ontology-based retrieval is superior to the ex-
isting retrieval technology and that the collective feedback of workshop experts enables the
automatic and valid reconstruction of hidden document relationships. The AIRS research
provides new methods and technologies of document retrieval across a heterogeneous and
very large document landscape of a special domain. The possibility of document linkage
even across system borders, an easy and at the same time powerful retrieval, offered new
ways of development of new products for the workshop processes. A product based upon
the AIRS Prototype should be developed including the following steps:

1. An extended phase in a partner workshop to identify requirements and parameters
for an application implementation.

2. Development of scenarios for an application implementation (including use case and
risk analysis).

3. A further qualitative and quantitative evaluation helps to calculate the business case
relevance.

The application development frame should be a project that must include the following
four points:

1. a use case analysis,
2. an effort and risk analysis,

3. for a production system implementation and integration setup, and

138

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9.2 Research Opportunities

4. application implementation itself.

These points can be performed as project milestones. Figure 9.1 illustrates these points
as a time line and explains the main condition and the result of every mile stone.

2T Y I O3 Y I 3 R DI b 5 Iy)) VI b) D)))

Yse case Effort and Preparations for Implementation
analysis risk analysis implementation and Integration
is done is done and integration it finished
is finished
Condition: Condition: Condition: Condition:
Extended prototype Use case analysis Effort and risk analysis = Implementation and
evaluation is in progress | is available is available integration are planned
(detailed usability and
use cases tests Result: Result: Result:
performed in workshops | Statements about Statements about Go!
over one or more application safety, costs, human
month) stability and resources are known.
interoperability Decision about
Result: requirements the application
Exact requirements are known integretion in
for the next existing
development environments
steps are known is made.

Figure 9.1: Milestones for possible future development of a software solution based upon AIRS
Prototype.

The question is how the AIRS principle can be used in other business domains for
information access. For example, the medical domain produces case depended scenarios
that need exact information for different processes. Furthermore, the literature existing in
this domain provides a heterogeneous document landscape too. Different approaches focus
on the topic of retrieval for literature in medicine and biology (for example, see [1], [40],
[21], [78] and [48]). Therefore, further research approaches should focus on the evaluation
of AIRS based software products in different domains. For example, users of booking
systems! as used in tourism industry must search for offers in many sources.

AIRS is designed to work language independent: the ontology approach using AIRSKB
as knowledge network for document relationships can include multiple-language docu-
ments. The retrieval algorithms work fine for many languages as long as the underlying
search technology supports the languages. The AIRS Prototype was developed to evaluate
the AIRS algorithms in a German language speaking workshop environment. The combi-
nation of German language search and collective knowledge retrieval worked fine (Section
8.5). Further research should focus on evaluating AIRS for multiple languages. One in-
teresting question is how the Suggest Cluster Algorithm can be extended with multiple
language concepts and how Suggest Cluster documents differ for various languages.

Other possible research questions focus on the usage of AIRSKB in different domains
and application scenarios:

!See [28] and [47] for more information about booking systems and challenges in tourism industry.

139

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

9 Conclusion and Future Research

140

e How do relationships between documents change over time when AIRSKB is used in

different domains? AIRSKB provides an adaptive knowledge network of documents,
which represents the knowledge about document relationships of domain experts.
Different domains mean different knowledge networks of document relationships. A
possible solution is that each domain uses its own AIRSKB “instance”.

How can relationships between documents of AIRSKB be transferred to new doc-
uments, which are similar to documents that already exist in AIRS Index and
AIRSKB? For example, replacement parts of a car are related to installation instruc-
tion documents for a special car model. The question is whether these relationships
can be transferred to similar replacement parts and similar installation instruction
documents when a new car model is released?

How to implement an update process for DOCUMENTS of AIRSKB? The question
is how AIRS Index documents and AIRSKB representations change if the original
documents change; for example, if an attribute is omitted in a new document version.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

A Appendix

The appendix shows two examples of the questionnaires the workshop employees were
asked to fill out. The last part of the appendix presents a document containing the two
test cases the workshop employees had to solve during the user tests.

A.1 Questionnaire 1
Appendix A.1 shows an excerpt of a completed questionnaire. This questionnaire starts

with a short introduction into the topic and it continues with closed questions (multiple
choice) and open questions (free text fields) about the current document search.

141

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

X11

FRAGE 5: Was denken Sie, wie schatzen lhre Kollegen Sie ein?

Bitte kreuzen Sie an.

>
» Bitte nur ein Kreuz.

Ein ,alter Hase", der alles weif3, sich mit allem auskennt und alles
schon gesehen hat.

Jemand, der schon lang dabei ist. Ihn fragt man, wenn man ein
Problem hat.

Ein Fachmann, der sich in seinem Gebiet gut auskennt.

O O X O

Ein Neuling, der noch nicht lang dabei ist.

FRAGE 6: Wie viele Schritte und wie viele verschiedene Werkstatt-Systeme
benétigen Sie, um die geschilderten Aufgaben zu erledigen?

»> Bitte wahlen Sie die Anzahl der Schritte und die Anzahl der
werkstatt-systeme aus.

Beispiel 1: Ich 6ffne Programm X und suche nach Dokument Y.

— 2 Schritte
— 1 Werkstatt-System

Beispiel 2: Ich frage Kollege X. Offne danach Programm Y und
Suche nach Dokument Z.

— 3 Schritte
— 1 Werkstatt-System

Beispiel 3: Ich 6ffne Programm A und suche nach Information X.
Danach 6ffne ich Programm B und benutze Information X fiir die
Suche nach Dokument Z.

— 4 Schritte
— 2 Werkstatt-Systeme

Fragebogen iiber Werkstattsysteme
Seite 5 von 8

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

X11

1. Sie wollen herausfinden, ob es zu einer in einem TIPS-Dokument

beschriebenen Abhilfe eine Reparaturanleitung gibt, wenn keine WIS-
Referenz vorhanden ist.

B

Schritt(e)

=

Werkstatt-System(e)

2. Sie nehmen das Fahrzeug eines Kunden an. Wahrend Sie mit dem
Kunden sprechen, wollen Sie gleich nachschauen, ob fiir das
geschilderte Problem ein TIPS-Dokument existiert.

5 Schritt(e)

1 Werkstatt-System(e)

3. Ein Unfallfahrzeug wird in Thre Werkstatt angeliefert. Sowohl
elektronische als auch mechanische Probleme sind zu beheben. Sie
wollen alle Dokumente zusammenstellen, die Sie fiir den Vorgang
benétigen.

>5 Schritt(e)

2 Werkstatt-System(e)

FRAGE 8: Schétzen Sie die Zeit, die Sie bendtigen, um die Aufgaben aus Frage 7 zu
erledigen.

> Bitte kreuzen Sie an.
» Bitte nur ein Kreuz je Frage.

1. Sie wollen herausfinden, ob es zu einer in einem TIPS-Dokument
beschriebenen Abhilfe eine Reparaturanleitung gibt, wenn keine WIS-
Referenz vorhanden ist.

[] einige Sekunden

& einige Minuten

] bis zu zehn Minuten

Fragebogen liber Werkstattsysteme
Seite 6 von 8

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

[J mehr als zehn Minuten

2. Sie nehmen das Fahrzeug eines Kunden an. Wahrend Sie mit dem
Kunden sprechen, wollen Sie gleich nachschauen, ob fiir das
geschilderte Problem ein TIPS-Dokument existiert.

D einige Sekunden

X einige Minuten

D bis zu zehn Minuten
O

mehr als zehn Minuten

3. Ein Unfallfahrzeug wird in lhre Werkstatt angeliefert. Sowohl
elektronische als auch mechanische Probleme sind zu beheben. Sie
wollen alle Dokumente zusammenstellen, die Sie fiir den Vorgang
benoétigen.

[] einige Sekunden

J einige Minuten

[] bis zu zehn Minuten

X' mehr als zehn Minuten

FRAGE 9: Treffen folgende Aussagen lhrer Meinung nach zu?

» Bitte kreuzen Sie an.
» Bitte nur ein Kreuz je Frage.

1. Es wiirde bei der taglichen Arbeit in der Werkstatt helfen, wenn man wiisste, was
Kollegen aus anderen Werkstétten bei bestimmten Service-Problemen gemacht
haben.

Fragebogen iiber Werkstattsysteme
Seite 7 von 8

X11

216.73.216.60, am 23.01.2026, 23:34:49. ©
m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

A.2 Questionnaire 2

A.2 Questionnaire 2
Appendix A.2 shows an excerpt of a completed questionnaire. This questionnaire was

presented after the field tests. It contains similar questions as the first questionnaire,
asking specifically about the AIRS Prototype.

145

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

X11

Wenn man etwas sucht, findet man es schon
[J nichtso gut irgendwann. Aber alle wichtigen Informationen sind nicht
immer dabei.
Ich bin nicht zufrieden mit der Suche. Wichtige Dokumente
[] schlecht o o

fehlen in den Suchergebnissen.

] unentschlossen Ich weifé nicht...

FRAGE 2: Was werden Sie ihren Kollegen iiber AIRS erzdhlen?

» Bitte kreuzen Sie eine der Méglichkeiten an.

Ich finde den AIRS-Prototype super.

Der AIRS-Prototype ist hilfreich.

Der AIRS-Prototype ist schon okay.

O O X O

Der AIRS-Prototpye ist der falsche Ansatz.

FRAGE 3: Schatzen Sie die Zeit, die Sie benétigen, um die Aufgaben mit Hilfe des
AIRS-Prototype zu erledigen.

» Bitte kreuzen Sie an.
» Bitte nur ein Kreuz je Frage.

1. Sie wollen herausfinden, ob es zu einer in einem TIPS-Dokument
beschriebenen Abhilfe eine Reparaturanleitung gibt, wenn keine WIS-
Referenz vorhanden ist.

& einige Sekunden
D einige Minuten

[] bis zu zehn Minuten

Fragebogen iiber die AIRS Prototype Web-Applikation.
eite 3 von 5

216.73.216.60, am 23.01.2026, 23:34:49. ©
m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

2.

[1 mehr als zehn Minuten

Sie nehmen das Fahrzeug eines Kunden an. Wéahrend Sie mit dem
Kunden sprechen, wollen Sie gleich nachschauen, ob fiir das
geschilderte Problem ein TIPS-Dokument existiert.

& einige Sekunden

O einige Minuten

D bis zu zehn Minuten
O

mehr als zehn Minuten

. Ein Unfallfahrzeug wird in Ihre Werkstatt angeliefert. Sowohl
elektronische als auch mechanische Probleme sind zu beheben. Sie
wollen alle Dokumente zusammenstellen, die Sie fiir den Vorgang
benoétigen.

[] einige Sekunden
X einige Minuten
[1 bis zu zehn Minuten

[mehr als zehn Minuten

FRAGE 4: Treffen folgende Aussagen Ihrer Meinung nach zu?

» Bitte kreuzen Sie an.
» Bitte nur ein Kreuz je Frage.

Es wiirde bei der taglichen Arbeit in der Werkstatt helfen, wenn man wiisste, was

Kollegen aus anderen Werkstétten bei bestimmten Service-Problemen gemacht

haben.

Fragebogen iiber die AIRS Prototype Web-Applikation.
Seite 4 von 5

X11

216.73.216.60, am 23.01.2026, 23:34:49. Inhak.
m

°
mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

A Appendix

A.3 User Tasks

Appendix A.3 shows an excerpt of a document containing the two test cases the users
needed to solve.

148

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

FALL 1:

Aufgabe:

Bei einem Kundenfahrzeug vom Typ ,C 320 CDI“ sollen an der Hinterachse
sowohl die Bremsscheiben als auch die Bremsklotze gewechselt werden.

1. Stellen Sie bitte mit Hilfe des AIRS Prototypen alle Dokumente fiir
einen Service-Vorgang zusammen, die Sie finden (WIS-
Dokumente, TIPS-Dokumente, Teile-Information, ASRA-
Dokumente, Symptome, Fehler-Codes und Diagnose-Daten).

2. Fiigen Sie dazu bitte die Dokumente dem Vorgang hinzu
(Warenkorb).

3. SchlieBen Sie bitte den Vorgang ab, indem Sie den Warenkorb als
PDF downloaden und die PDF auf dem Windows Desktop ablegen.

Hinweise zu »> Die Konstruktionsgruppe 42 ,Bremsanlage“ ist fir die Suche

Fall 1:

Notizen:

relevant

Die Konstruktionsgruppe 40 ,Réder* ist ebenfalls relevant
Bremsscheiben tauschen

Laufrader miissen abmontiert werden

v VYV

AIRS Testfille
Seite 5 von 6

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

FALL 2:

Bei einem Kundenfahrzeug vom Typ ,,C 320 CDI“ ist die Frontscheibe

gerissen, sie muss getauscht werden.

Aufgabe:

Hinweise zu
Fall 2:

Notizen:

1.

Stellen Sie bitte mit Hilfe des AIRS Prototypen alle Dokumente fiir
einen Service-Vorgang zusammen, die Sie finden (WIS-
Dokumente, TIPS-Dokumente, Teile-Information, ASRA-
Dokumente, Symptome, Fehler-Codes und Diagnose-Daten).
Fiigen Sie dazu bitte die Dokumente dem Vorgang hinzu
(Warenkorb).

SchlieBen Sie bitte den Vorgang ab, indem Sie den Warenkorb als
PDF downloaden und die PDF auf dem Windows Desktop ablegen.

AIRS Testfalle
Seite 6 von 6

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.
m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Glossary

Adaptive Relationships AIRSKB relationships defined by Inference Rules that include
SYSTEM-RELATIONS and DOCUMENT-RELATIONS with changing weights between
0.1 and 1.

AIRS Advanced Ontology-based Information Retrieval System is a system that combines
the functionality of state-of-the-art search technology with ontological knowledge to
enable retrieval in Heterogeneous Document Landscapes. The architecture of AIRS
includes three main components (IRS Component, Ontology Component, Statistics
Component), which are managed by the Core Component.

AIRS Backend The server component of AIRS.
AIRS Client The user interface of AIRS.

AIRS Include Source Framework A framework suggested by the AIRS Prototype imple-
mentation and used in the Indexing Component to encapsulate the Indexing Work-
flow of AIRS. It uses the AIRSKB Framework and the AIRS Index & Search Frame-
work for this approach.

AIRS Index & Search Framework A framework suggested by the AIRS Prototype im-
plementation and used in the IRS Component to encapsulate the functions of the
underlying retrieval system solution.

AIRS Prototype A Rich Internet Application that serves as a reference implementation
for AIRS based upon the AIRS’ architecture suggestion. The AIRS Prototype was
used during the field tests for the evaluation of methods and algorithm of AIRS.

AIRSKB AIRS Knowledge Base is an ontology that represents the concepts of a Hetero-
geneous Document Landscape. It defines an adaptive knowledge network used by
AIRS to enable adaptive document relationships in retrieval processes.

AIRSKB Framework A framework suggested by the AIRS Prototype implementation and
used in the Ontology Component to encapsulate the functions of the underlying
knowledge representation technology.

Application Context First step of ontology development based upon Knowledge Repre-
sentation in Context. Describes the usage of a list of questions to clarify fundamental
points, including why is an ontology necessary, what it should look like, and for what
it should be made for.

Attribute-Relation Element of AIRSKB (written as: ATTRIBUTE-RELATION). Repre-
sents relations between attributes or segments of document concepts of the Hetero-
geneous Document Landscape.

151

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Glossary

Best Context-Sensitive-Pathways Class of AIRSKB Pathways defined by Inference Rules
that represent the best-r ranked Pathways of Conditional Relationships of the Het-
erogeneous Document Landscape.

Conceptualization Second step of ontology development based upon Knowledge Repre-
sentation in Context. Involves the implementation of a complex ontological model
of classes, individuals and semantic relationships between the individuals.

Conditional Relationship Concept of the Heterogeneous Document Landscape. Repre-
sents a relationship between documents that is restricted via a set of Validity Con-
ditions.

Context Element of ATRSKB (written as: CONTEXT). Represents a class of Validity
Conditions of a Heterogeneous Document Landscape. Belongs to a SOURCE via
context-of-source relationship and to a CONTEXT-ATTRIBUTE via context-attribute-
of-context relationship.

Context-Attribute Element of ATRSKB (written as: CONTEXT-ATTRIBUTE). Repre-
sents a Validity Condition of a Heterogeneous Document Landscape. Belongs to a
CONTEXT via a context-attribute-of-context relationship and a DOCUMENT via a
context-attribute-of-document relationship.

context-attribute-of-context Element of AIRSKB. A SYSTEM-RELATION between a
CONTEXT-ATTRIBUTE and a CONTEXT.

context-attribute-of-document Element of AIRSKB. A SYSTEM-RELATION between a
CONTEXT-ATTRIBUTE and a DOCUMENT.

context-of-source Element of AIRSKB). A SYSTEM-RELATION between a CONTEXT and
a SOURCE.

Context-Sensitive Relations Class of AIRSKB relationships defined by Inference Rules
that represent Conditional Relationships of the Heterogeneous Document Landscape.

Context-Sensitive-Pathways Class of AIRSKB Pathways defined by Inference Rules that
represent Pathways of Conditional Relationships of the Heterogeneous Document
Landscape.

Core Component The main component of the AIRS architecture that controls the Re-
trieval & Feedback Workflow and manages the interaction between the Core Com-
ponent, the Ontology Component and the Statistics Component.

Document Concept of the Heterogeneous Document Landscape. Represents a single piece
of information used to solve a particular task. It could have attributes or segments
and is connected to only one retrieval system or source location. The concept Docu-
ment is also represented in the AIRSKB through the ontological element DOCUMENT
(written in small capitals).

Document Abstract Concept of the Heterogeneous Document Landscape. A part of a
Document defined by a subset of attributes or segments of the Document containing
information that is necessary for the retrieval.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Glossary

Document Location Concept of the Heterogeneous Document Landscape. , see Source

Document Search Algorithm An algorithm of the Retrieval & Feedback Workflow of
AIRS that enriches ordinary natural language vector space retrieval with search
functionality for related documents regarding a single search result by using the
AIRSKB.

Document-Attribute Element of AIRSKB (written as: DOCUMENT-ATTRIBUTE). Rep-
resents an attribute or segment of a Document of the Heterogeneous Document Land-
scape. Belongs to a DOCUMENT via a document-attribute-of-document relationship
and a SOURCE via a document-attribute-of-source relationship. Means both an on-
tological class or ontological individual of class DOCUMENT-ATTRIBUTE.

document-attribute-of-document Element of AIRSKB. A SYSTEM-RELATION between
a DOCUMENT-ATTRIBUTE and a DOCUMENT. Represents attributes or segments
that a particular Document of the Heterogeneous Document Landscape already has.

document-attribute-of-source Element of AIRSKB. A SYSTEM-RELATION between a
DOCUMENT-ATTRIBUTE and a SOURCE. Represents attributes or segments that
Documents of the Source of the Heterogeneous Document Landscape can have.

document-of Element of AIRSKB. A SYSTEM-RELATION between a DOCUMENT and a
SOURCE. Represents the connection between Document concepts and Source con-
cepts of the Heterogeneous Document Landscape.

Document-Relation Element of AIRSKB (written as: DOCUMENT-RELATION). Rep-
resents relationships between Document concepts of the Heterogeneous Document
Landscape. The Inference Rules differentiate between Adaptive Relationships and
Static Relationships.

Heterogeneous Document Landscape A domain where documents that can appear in
different source locations (databases, isolated retrieval systems, file systems and oth-
ers) are used to solve particular problems.

Indexing Workflow The workflow of AIRS to include Documents of the Heterogeneous
Document Landscape in the AIRS Index as well as representing the Documents as
ontological individuals in the AIRSKB.

Inference Rules Last step of ontology development based upon Knowledge Representation
in Context. A mathematical model that serves as a frame for navigation through the
ontology.

IRS Component The component of AIRS that encapsulates the functionality of an un-
derlying retrieval system. For example, enterprise search solutions can serve as an
underlying retrieval system.

is-attribute-related-to Element of AIRSKB. An ATTRIBUTE-RELATION between two
DOCUMENT-ATTRIBUTES. Represents a relationship between two attributes or seg-
ments of Documents of the Heterogeneous Document Landscape.

153

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Glossary

is-linked-to Element of AIRSKB. A DOCUMENT-RELATION between two DOCUMENTS
of type Static Relationships. Represents an immutable relationship between two
documents of the Heterogeneous Document Landscape.

is-related-to Element of AIRSKB. A DOCUMENT-RELATION between two DOCUMENTS
of type Adaptive Relationships. Represents an adaptive relationship between two
documents of the Heterogeneous Document Landscape.

is-source-linked-to Element of AIRSKB. A SOURCE-RELATION between two SOURCES
of type Static Relationships. Represents an immutable relationship between two
documents of the Heterogeneous Document, Landscape. Indicates the existence of at
least one is-linked-to relationship between two DOCUMENTS of both SOURCES.

is-source-related-to Element of AIRSKB. A SOURCE-RELATION between two SOURCES
of type Adaptive Relationships. Represents an immutable relationship between two
documents of the Heterogeneous Document, Landscape. Indicates the existence of at
least one is-related-to relationship between two DOCUMENTS of both SOURCES.

Knowledge Representation in Context Methodology of ontology development based
upon the engineering steps of Application Context, Conceptualization and Inference
Rules.

Masking Relations Type of AIRSKB relationships defined by Inference Rules that group
Adaptive Relationships and Static Relationships is-related-to and is-linked-to as well
as is-source-related-to and is-source-linked-to.

Ontology A knowledge base described by an Application Context and defined through a
Conceptualization in combination with Inference Rules.

Ontology Component A component of the AIRS architecture used in the Index Workflow
and the Retrieval & Feedback Workflow. It serves as access structure to the AIRSKB
and provides functions for path finding and path calculation.

Pathways Concept of the Heterogeneous Document Landscape. Represents a path
through the Heterogeneous Document landscape defined through a concatenation
of Relationships.

Relationship Concept of the Heterogeneous Document Landscape. Represents a relation-
ship between two documents.

Retrieval & Feedback Workflow The document search workflow of AIRS that includes
the Document Search Algorithm and the Suggest Cluster Algorithm. The workflow
is controlled by the Core Component.

Search Instance Object The transport object for user queries as well as search results
during the Retrieval & Feedback Workflow of AIRS. The object is transmitted be-
tween the AIRS Client and AIRS Backend.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Glossary

Source Concept of the Heterogeneous Document Landscape. Sources are document loca-
tions. They represent a containers of documents with similar attributes or segments,
including databases, isolated retrieval systems, file systems or other locations. The
concept Source is also represented in the AIRSKB through the ontological element
SOURCE (written in small capitals).

Static Relationships AIRSKB relationships defined by Inference Rules that include
SYSTEM-RELATIONS and DOCUMENT-RELATIONS with constant weights.

Statistics Component A component of the AIRS architecture used in the Retrieval &
Feedback Workflow. It encapsulates the feedback processing functions of AIRS.

Suggest Cluster Algorithm Retrieval algorithm of the Retrieval & Feedback Workflow
that uses the AIRS infrastructure to enable the retrieval for related documents based
upon concept cluster.

Suggest Cluster Document A conjunction of Suggest documents used in the Suggest
Cluster Algorithm. Represents an activity in the real world that can be described
through different combinations of synonym terms.

Suggest Document Representation of a concept through a set of semantically-related
terms used in the Suggest Cluster Algorithm.

System-generated Relationships AIRSKB relationships defined by Inference Rules that
include all SYSTEM-RELATIONS.

System-Relation Element of AIRSKB (written as: SYSTEM-RELATION). Represent a
relations between DOCUMENTS, SOURCES, ATTRIBUTES, CONTEXTS, CONTEXT-
ATTRIBUTES or DOCUMENT-ATTRIBUTES. These kinds of relationships represent
the structure of the Heterogeneous Document Landscape and are categorized as
System-generated Relationships through the Inference Rules.

Validity Condition Concept of the Heterogeneous Document Landscape. Represents a
restriction of the use of Documents for a particular business task.

155

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Index

Adaptive relationships, 42, 45-46, see also Relationships
AIRS, 13-15, 55, 60-62
Core Component, 61-62, 74, 92-93, 100-108
IRS Component, 61-62, 71-81, 93, 100-108
Ontology Component, 61-62, 71-81, 100-108
Statistics Component, 61-62, 72, 85-89, 93
AIRS Prototype, 13-15, 91-93
algorithms, 100-110
components, 97-100
implementation, 110-114
user interface, 116-120
AIRSKB, 13-15, 24-25
Concepts, 28-33, 41, 42-43, 57-59
Relationships, 29, 33-36, 40, 43-48, 59
Automotive workshop processes, 1, 28, 29, 32, 33, 36, 56, 57, 80, 115-116

Collective intelligence, 84—85, 90, 123, 132-135, 137
Concepts, see AIRSKB
Core Component, see AIRS

Documents search, see Retrieval Algorithm

Enterprise Search, 10-11, see also Information search
ETL, 61, 99
Evaluation, 89, 124, see also Information Retrieval Systems

Heterogeneous Document Landscape, 55, 59

Indexing, 63-66
database records, 69-70
documents, 67-69
relationships, 70-71
taxonomies, 6667
Information
access, 7
linking, 9
search, 8, see also Information Retrieval
Information Retrieval, 8, 63, see also Indexing, Documents search, Information Retrieval
Systems
Information Retrieval Systems, 8, 9, 86, see also Enterprise Search
evaluation, 86

156

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

INDEX

IRS Component, see AIRS

Knowledge Base, see Ontology
Knowledge Representation in Context, 24
Application Context, 26-27
Conceptualization, 28-39
Inference Rules, 41-50

NoSQL databases, 51, 92, 101

Ontology
definition, 17-19
engineering, 19-21, 25, see also Knowledge Representation in Context
structuring and using, 21-24

Ontology Component, see AIRS

OWL, 13, 51, 92, 101

Pathways, 36-39, 48-50, 59, 98, 103-105

Related Documents Search, see Retrieval Algorithm
Relationships, see AIRSKB
Retrieval Algorithm
Documents search, 71-74, 100-103, 116
Related Documents Search, 7677, 101, 103-105, 119
Suggest Cluster Algorithm, 74, 77—83, 101-103, 120, 132-134

Searching, see Retrieval Algorithm

Static relationships, 42, 45-46, see also Relationships

Statistics Component, see AIRS

Suggest Cluster Algorithm, see Retrieval Algorithm
System-generated relationships, 42, 43-45, see also Relationships

Text Mining, 8, 71, 81
Topic Maps, 13, 51, 92

Workflows of AIRS, see Indexing, Documents search
Wrapper, 92, 97-99

157

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[1]

[2

3

[4]

5

[6]

[7]

8

[10]

(1]

[12]

[13]

158

J. M. Abasolo and M. Gomez. MELISA: An Ontology-based Agent for Information
Retrieval in Medicine. In Proceedings of the first international workshop on the se-
mantic web (SemWeb2000), pages 73-82, 2000.

S. Alag. Collective Intelligence in Action. Manning Publications, 2008.

H. Benbya, G. Passiante, and N. A. Belbaly. Corporate Portal: a Tool for Knowledge
Management Synchronization. International Journal of Information Management,
24(3):201-220, 2004.

V. R. Benjamins, D. Fensel, and A. G. Perez. Knowledge Management Through
Ontologies. In Proc. Practical Aspects of Knowledge Management, pages 5.1-5.12,
1998.

D. Borthakur. The Hadoop Distributed File System: Architecture and Design. The
Apache Software Foundation, 2007.

P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidst.
C-OWL: Contextualizing Ontologies. In D. Fensel, K. P. Sycara, and J. Mylopoulos,
editors, International Semantic Web Conference, volume 2870 of Lecture Notes in
Computer Science, pages 164-179. Springer, 2003.

S. Braun, A. Schmidt, and A. Walter. Ontology Maturing: a Collaborative Web 2.0
Approach to Ontology Engineering. In Proceedings of the WWW Workshop on Social
and Collaborative Construction of Structured Knowledge, volume 273, Banff, Canada,
2007.

R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4):12-27,
2010.

B. Chandrasekaran, J. Josephson, and R. Benjamins. What Are Ontologies and Why
Do We Need Them? IEEE Intelligent Systems, 14(1):Page 20-26, 1999.

H. Chen, R. H. L. Chiang, and V. C. Storey. Business Intelligence and Analytics:
From Big Data to Big Impact. MIS Quarterly, 36(4):1165-1188, 2012.

C. W. Choo, B. Detlor, and D. Turnbull. The Intranet as Infrastructure for Knowledge
Work. In Web Work, pages 71-100. Springer, 2000.

D. Connolly and S. Hawke. OWL Web Ontology Language: Errata. http://www.w3.
org/2001/sw/WebOnt/errata, 2004. [Online; accessed 18-09-2016].

T. H. Davenport and D. J. Patil. Data Scientist: The Sexiest Job of the 21st Century.
Harvard Business Review, 90:70-76, 2012.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

22]

(23]

(24]

[25]

[26]

[27]

(28]

F. D. Davis. A Technology Acceptance Model for Empirically Testing new End-User
Information Systems: Theory and Results. PhD thesis, Massachusetts Institute of
Technology, 1985.

R. de Zoeten and J. Rohmann. Call Center. In Handbuch FElectronic Business, pages
383-414. Springer, 2002.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
Commun ACM, 51:107-113, 2008.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by Latent Semantic Analysis. Journal of the American Society for information
science, 41(6):391, 1990.

B. Detlor. The Corporate Portal as Information Infrastructure: Towards a Framework
for Portal Design. International Journal of Information Management, 20(2):91-101,
2000.

R. Diestel. Graphentheorie (in German), volume 2. Springer Berlin, Heildelberg, New
York, 1996.

L. Ding, P. Kolari, Z. Ding, and S. Avancha. Using Ontologies in the Semantic Web:
A survey. Ontologies, pages 79-113, 2007.

G. Stuart Doig and F. Simpson. Efficient Literature Searching: a Core Skill for the
Practice of Evidence-based Medicine. Intensive Care Med, 29:2119-2127, 2003.

M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative Filtering Recommender
Systems. Foundations and Trends in Human-Computer Interaction, 4(2):81-173, 2011.

M. E. Falagas, E. L. Pitsouni, G. A. Malietzis, and G. Pappas. Comparison of PubMed,
Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. The FASEB
journal, 22(2):338-342, 2008.

M. Farhoodi, M. Mahmoudi, A.M.Z. Bidoki, A. Yari, and M. Azadnia. Query Ex-
pansion Using Persian Ontology Derived from Wikipedia. World Applied Sciences
Journal, 7(4):410-417, 2009.

M. Ferndndez-Loépez and A. Gémez-Pérez. Overview and Analysis of Methodologies
for Building Ontologies. The Knowledge Engineering Review, 17(2):129-156, 2002.

D. H. Fischer. Ein Lehrbeispiel fur eine Ontologie: OpenCyc (in German). Information
Wissenschaft und Prazis, 55(3):139-142, 2004.

S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. SIGOPS Oper.
Syst. Rev., 37(5):29-43, 2003.

R. Goecke, T. Eberhard, and J. Roth. Neue Wege zur Navigation durch die Datenflut
der Reiseangebote—auf der Suche nach neuer Beratungsqualitét im digitalen Zeitalter
(in German). Arbeitsbericht der Fakultdt fir Tourismus, Fachhochschule Minchen,
2010.

159

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

160

I. Gordelik. Vom Aschenputtel in die Unternehmensspitze - Der Aufstieg des profes-
sionellen Call Center-Managements (in German). In Handbuch Kundenmanagement,
pages 773-787. Springer, 2008.

T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199-220, 1993.

M. Gruninger and J. Lee. ONTOLOGY. Communications of the ACM, 45(2):39,
2002.

N. Guarino. Understanding, Building and Using Ontologies. Int. Journal Human-
Computer Studies, 45(2/3), 1997.

N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards a Termino-
logical Clarification. In N. Mars, editor, Towards Very Large Knowledge Bases, pages
25-32. Amsterdam: 10S Press, 1995.

N. Guarino, D. Oberle, and S. Staab. What is an Ontology? In S. Staab and R. Studer,
editors, Handbook on Ontologies, International Handbooks on Information Systems,
pages 1-17. Springer Berlin Heidelberg, 2009.

Y. Guo, H. Harkema, and R. J. Gaizauskas. Sheffield University and the TREC 2004
Genomics Track: Query Expansion Using Synonymous Terms. In E. M. Voorhees
and L. P. Buckland, editors, Proceedings of the Thirteenth Text REtrieval Confer-
ence, TREC 2004, Gaithersburg, Maryland, USA, November 16-19, 2004, volume
Special Publication 500-261. National Institute of Standards and Technology (NIST),
2004. http://trec.nist.gov/pubs/trecl13/papers/usheffield.geo.pdf [Online;
accessed 18-September-2016].

I. Gurevych. Anwendungen des semantischen Wissens iiber Konzepte im Informa-
tion Retrieval (in German). Technical report, Natural Language Processing Gruppe,
EML Research gGmbH, 2004. http://atlas.tk.informatik.tu-darmstadt.de/
Publications/2005/knowledge05.pdf [Online; accessed 18-September-2016].

J. M. Haake, M. Roos, and T. Schiimmer. POSUKO: POrtable SUchKOntexte zur
Vernetzung von Bibliotheken, Verlagen und Wissenschaftlern [Poster] (in German),
2014. https://opusé.kobv.de/opus4-bib-info/frontdoor/index/index/docId/
1563 [Online; accessed 18-September-2016].

D. Hawking. Challenges in Enterprise Search. In Proceedings of the 15th Australasian
Database Conference, volume 27, pages 15-24. Australian Computer Society, Inc.,
2004.

S. Helmke and W. Dangelmaier. Marktspiegel Customer Relationship Management:
Anbieter von CRM-Software im Vergleich. Springer-Verlag, 2013.

W. R. Hersh and D. Hickam. Information Retrieval in Medicine: the SAPHIRE
Experience. Journal of the American Society for Information Science (1986-1998),
46(10):743, 1995.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

[52]

[53]

[54]

[55]

G. Heyer, U. Quasthoff, and T. Wittig. Text Mining: Wissensrohstoff Text (in Ger-
man). W3L GmbH, ISBN 978-3-937137-30-8, 2006.

O. Hoeber, X. D. Yang, and Y. Yao. Conceptual Query Expansion. In P. S. Szczepa-
niak, J. Kacprzyk, and A. Niewiadomski, editors, Advances in Web Intelligence, vol-
ume 3528 of Lecture Notes in Computer Science, pages 190-196. Springer Berlin Hei-
delberg, 2005.

T. Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 50-57. ACM, 1999.

C. W. Holsapple and K. D. Joshi. A Collaborative Approach to ONTOLOGY DE-
SIGN. Commun. ACM, 45(2):42-47, 2002.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(1):7-26, 2003.

H. Huber. Selbstlernende Suche (in German). Informatik-Spektrum, 28(3):189-192,
2005.

B. Humm and O. Juwig. Semantische Beratung im Tourismus-Sektor (in German).
In Corporate Semantic Web, pages 101-110. Springer, 2015.

L. J. Jensen, J. Saric, and P. Bork. Literature Mining for the Biologist: From In-
formation Retrieval to Biological Discovery. Nature Reviews Genetics, (9):119-129,
2006.

M. Klebl and B. J. Kramer. Distributed Repositories for Educational Content. eleed,
7(1), 2010. https://eleed.campussource.de/archive/7/2771/index_html [On-
line; accessed 18-September-2016].

M. Klettke, M. Bietz, I. Bruder, A. Heuer, D. Priebe, G. Neumann, M. Becker,
J. Bedersdorfer, H. Uszkoreit, A. Maedche, S. Staab, and R. Studer. GETESS -
Ontologien, objektrelationale Datenbanken und Textanalyse als Bausteine einer Se-
mantischen Suchmaschine. (in German). Datenbank-Spektrum, 1:14-24, 2001.

S. O. Krumke and H. Noltemeier. Graphentheoretische Konzepte und Algorithmen (in
German). Springer, 2009.

M. Lapp. Intranet-Internes Internet (in German). In Neue Markte, neue Medien,
neue Methoden-Roadmap zur agilen Organisation, pages 145-168. Springer, 1998.

N. Leavitt. Will NoSQL Databases Live Up to Their Promise?. IEEE Computer,
43(2):12-14, 2010.

V. Levenshtein. Binary Codes Capable of Correcting Deletions and Insertions and
Reversals. Soviet Physics Doklady, 10(8):707-710, 1966.

Z. Liu and W. W. Chu. Knowledge-based Query Expansion to Support Scenario-
specific Retrieval of Medical Free Text. Information Retrieval, 10(2):173-202, 2007.

161

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[56]

[57]

[58]

[59]

[60]

[61]

[62]

(63]

[64]

(65]

[66]

(67]

[68]

(69]

162

M. Mariano Fernandez Lopez. Overview of Methodologies for Building Ontologies. In
Proceedings of the IJCAI-99 Workshop on Ontologies and Problem Solving Methods
(KRR5) Stockholm, Sweden, August 2, pages 4-1-4-13, 1999.

S. Madden. From Databases to Big Data. IEEE Internet Computing, 16(3):4-6, 2012.

A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Ontologies for Enterprise
Knowledge Management. IEEE Intelligent Systems, 18(2):26-33, 2003.

A. Maedche and S. Staab. Learning Ontologies for the Semantic Web. In Semantic
Web 2001 (at WWW10), May 1, 2001, Hongkong, China, 2001. http://www.aifb.
kit.edu/web/Inproceedings488 [Online; accessed 18-September-2016].

A. Maedche and S. Staab. Measuring Similarity Between Ontologies. In A. Gomez-
Pérez and V. R. Benjamins, editors, EKAW, Lecture Notes in Computer Science,
pages 251-263. Springer, 2002.

R. Mandala, T. Tokunaga, and H. Tanaka. Combining Multiple Evidence from Dif-
ferent Types of Thesaurus for Query Expansion. In SIGIR, pages 191-197. ACM,
1999.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK, 2008.

M. McCandless, E. Hatcher, and O. Gospodneti¢. Lucene in Action. Manning Publi-
cations, 2005.

S. Meier, D. Liitolf, and S. Schillerwein. Anwendungsbereiche eines Intranets (in
German). In Herausforderung Intranet, pages 55-118. Springer, 2015.

N. Noy, A. Chugh, W. Liu, and M. Musen. A Framework for Ontology Evolution in
Environments. The Semantic Web-ISWC' 2006, pages 544-558, 2006.

N. F. Noy and M. Klein. Ontology Evolution: Not the Same as Schema Evolution.
Knowledge and Information Systems, 6(4):428-440, July 2004.

N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating
Your First Ontology. Technical report, Stanford Knowledge Systems Laboratory and
Stanford Medical Informatics, 2001.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. 1999.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krémer.
05462 Service-Oriented Computing: A Research Roadmap. In F. Cubera, B. J.
Kramer, and M. P. Papazoglou, editors, Service Oriented Computing (SOC), num-
ber 05462 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006. Interna-
tionales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,
Germany. http://drops.dagstuhl.de/volltexte/2006/524/ [Online; accessed 18-
September-2016].

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[70]

(7]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

(82]

(83]

(84]

(85]

S. Pepper. The TAO of Topic Maps: Finding the Way in the Age of Infoglut, 2000.

H. S. Pinto and J. P. Martins. Ontologies: How can They be Built? Knowledge and
Information Systems, 6:441-464, 2004.

D. Roman, U. Keller, H. Lausen, J. De Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied Ontology,
1(1):77-106, 2005.

T. Saracevic. Evaluation of Evaluation in Information Retrieval. In E. A. Fox, P. In-
gwersen, and R. Fidel, editors, SIGIR, pages 138-146. ACM Press, 1995.

A. Singhal. Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 24(4):35-43, 2001.

D. Smiley and E. Pugh. Solr 1.4 Enterprise Search Server. Packt Publishing, 2009.

S. Staab. Wissensmanagement mit Ontologien und Metadaten (in German). Infor-
matik Spektrum, 25(3):194-209, 2002.

S. Staab, R. Studer, H.-P. Schnurr, and Y. Sure. Knowledge Processes and Ontologies.
IEEE Intelligent Systems, 16(1):26-34, 2001.

R. Steinbrook. Searching for the Right Search - Reaching the Medical Literature. New
England Journal of Medicine, 354(1):4-7, 2006. PMID: 16394296.

W. G. Stock. Information Retrieval: Informationen suchen und finden. (in German).
Einfithrung in die Informationswissenschaft. Oldenbourg, Miinchen, 2007.

W. G. Stock. Begriffe und semantische Relationen in der Wissensreprésentation (in
German). Information - Wissenschaft und Prazis, 60(8):403-420, 2009.

X. Su and T. M. Khoshgoftaar. A Survey of Collaborative Filtering Techniques.
Advances in artificial intelligence, 2009:4, 2009.

Y. Sure, M. Ehrig, and R. Studer. Automatische Wissensintegration mit Ontolo-
gien (in German). In K. Hinkelmann U. Reimer, editor, Workshop Modellierung fuer
Wissensmanagement auf der Modellierung 2006, Innsbruck, AT, Mérz 2006.

J. Thom and F. Scholer. A Comparison of Evaluation Measures Given How Users
Perform on Search Tasks. In ADCS2007 Twelfth Australasian Document Computing
Symposium. RMIT University, School of Computer Science and Information Technol-
ogy, 2007.

P. D. Turney and P. Pantel. From Frequency to Meaning: Vector Space Models of
Semantics. Journal of Artificial Intelligence Research, 37(1):141-188, 2010.

M. Uschold and M. King. Towards a Methodology for Building Ontologies. In Work-
shop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with
1JCAI-95, Montreal, Canada, 1995.

163

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Bibliography

[86]

(87]

(8]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

164

A. van der Lans. Enterprise Search and Retrieval (ESR): The Binding Factor. In
P. Baan, editor, Enterprise Information Management, Management for Professionals,
pages 175-211. Springer, 2005.

C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979. http:
//www.dcs.gla.ac.uk/Keith/Preface.html [Online; accessed 18-September-2016].

P. Vassiliadis. A Survey of Extract-Transform-Load Technology. IJDWM, 5(3):1-27,
2009.

V. Venkatesh and F. D. Davis. A Theoretical Extension of the Technology Acceptance
Model: Four Longitudinal Field Studies. Management Science, 46(2):186-204, 2000.

E. M. Voorhees. Query Expansion Using Lexical-Semantic Relations. In W. Bruce
Croft and C. J. van Rijsbergen, editors, SIGIR, pages 61-69. ACM/Springer, 1994.

H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and
S. Hiibner. Ontology-Based Integration of Information - A Survey of Existing Ap-
proaches. In IJCAI-01 workshop: ontologies and information sharing, pages 108-117,
2001.

X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology Based Context Modeling
and Reasoning using OWL. In Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops, 2004., pages 18-22. IEEE,
2004.

J. Werrmann. Modellierung im Kontext: Ontologie-basiertes Information Retrieval
(in German). Technical report, Department of Mathematics and Computer Science,
FernUniversitéit in Hagen, 2011. http://deposit.fernuni-hagen.de/2769/ [Online;
accessed 18-September-2016).

J. Werrmann. An Advanced Approach to User-based and System-centered Evaluation
for the Improvement of Business-oriented Document Retrieval Systems. In SDPS 2012
Berlin Conference. Society for Design and Process Science, 2012.

J. Werrmann. Harvesting Domain-Specific Data Resources for Enhanced After-Sales
Intelligence in Car Industry. In J. Altmann, U. Baumol, and B. J. Krdmer, editors,
Advances in Collective Intelligence 2011, volume 113 of Advances in Intelligent and
Soft Computing, pages 145-167. Springer Berlin / Heidelberg, 2012.

J. Werrmann. Workshop Process Optimization Based on the Collective Intelli-
gence of Workshop Employees Involved in After-Sales Intelligence of Mercedes-Benz
Cars. International Journal of Cooperative Information Systems, 22(03):1340005,
2013. http://www.worldscientific.com/doi/pdf/10.1142/50218843013400054
[Online; accessed 18-September-2016).

T. White. Hadoop: The Definitive Guide. O’Reilly, third edition edition, May 2012.

216.73.216.80, am 23.01.2026, 23:34:49. © Urheberrechtlich geschutzter Inhaf k.
tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

HEE VDI nachrichten

Fachliteratur und mehr -
jetzt bequem online recher-
chieren & bestellen unter:
www.vdi-nachrichten.com/
Der-Shop-im-Ueberblick

e]

Fahrzgy,

ghanzent
das 2 ekl

ert

VDi-Berichte 1653

Taglich aktualisiert:
Neuerscheinungen
VDI-Schriftenreihen

b

ortseheise -
«chifitt-Berichte VUI'

vpi nachrichten

Online-Buchshop fir Ingenieure

BUCH |

Im Buchshop von vdi-nachrichten.com finden Ingenieure
und Techniker ein speziell auf sie zugeschnittenes, um-
fassendes Literaturangebot.

Mit der komfortablen Schnellsuche werden Sie in den
VDI-Schriftenreihen und im Verzeichnis lieferbarer
Bicher unter 1.000.000 Titeln garantiert fliindig.

Im Buchshop stehen fiir Sie bereit:

VDI-Berichte und die Reihe Kunststofftechnik:

Berichte nationaler und internationaler technischer
Fachtagungen der VDI-Fachgliederungen

Fortschritt-Berichte VDI:

Dissertationen, Habilitationen und Forschungsberichte
aus samtlichen ingenieurwissenschaftlichen Fachrich-
tungen

Newsletter ,,Neuerscheinungen”:

Kostenfreie Infos zu aktuellen Titeln der VDI-Schriften-
reihen bequem per E-Mail

Autoren-Service:

Umfassende Betreuung bei der Veroffentlichung Ihrer
Arbeit in der Reihe Fortschritt-Berichte VDI

Buch- und Medien-Service:

Beschaffung aller am Markt verfligbaren Zeitschriften,
Zeitungen, Fortsetzungsreihen, Handblcher, Technische
Regelwerke, elektronische Medien und vieles mehr —
einzeln oder im Abo und mit weltweitem Lieferservice

BUCHSHOP www.vdi-nachrichten.com/Der-Shop-im-Ueberblick

216.73.216.60, am 23.01.2026, 23:34:49. ©
m

tersagt, mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
7 Strémungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik
20 Rechnerunterstiitzte Verfahren (CAD, CAM, CAE CAQ, CIM ..)
21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-384910-9

216.73.216.60, am 23.01.2026, 23:34:49. © Inhak.

tersagt, m mit, fr oder in Ki-Syster

https://doi.org/10.51202/9783186849106

	Cover
	1 Introduction
	1.1 Challenges for Information Retrieval in Heterogeneous Domains
	1.2 Research Questions and Methods
	1.3 About This Work

	2 Ontologies in Computer Science
	2.1 Concept Formation
	2.2 Approaches of Ontology Engineering
	2.3 Structuring and Using Ontologies

	3 AIRS Knowledge Base
	3.1 Application Context
	3.2 Conceptualization
	3.3 Theory and Inference Rules
	3.4 Summary of AIRSKB Development

	4 Ontology-based Retrieval Across Heterogeneous Document Landscapes
	4.1 Concepts of a Heterogeneous Document Landscape
	4.2 Advanced Ontology-based Information Retrieval System (AIRS)
	4.3 Conceptual Architecture of AIRS

	5 Indexing and Retrieval for Advanced Ontology-based Information Retrieval
	5.1 Indexing Workflow
	5.2 General Retrieval and Feedback Workflow
	5.3 Related Documents for a Single Search Result
	5.4 Document Search Using Suggest Cluster Algorithm
	5.5 Update Suggest Clusters for Suggest Cluster Algorithm

	6 Sharing Knowledge through AIRS
	6.1 Collecting Feedback with the Statistics Component
	6.2 Getting Relevance Judgments
	6.3 Summary

	7 Architecture and Functionality of a Prototype Implementation
	7.1 Properties Management Using a Taxonomic Structure
	7.2 AIRS Index & Search Framework
	7.3 AIRSKB Framework
	7.4 AIRS Include Sources – Indexing Framework
	7.5 Retrieval and Suggest Algorithms
	7.6 Implementation Strategy and Prototype Features

	8 Field Tests and Evaluation
	8.1 Automotive Workshop Processes
	8.2 AIRS Prototype User Interface
	8.3 Experimental Setup of AIRS Prototype Field Tests
	8.4 Performing Field Tests Using the AIRS Prototype
	8.5 Results of Field Tests

	9 Conclusion and Future Research
	9.1 Summary
	9.2 Research Opportunities

	A Appendix
	A.1 Questionnaire 1
	A.2 Questionnaire 2
	A.3 User Tasks

	Glossary
	Index
	Bibliography

