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Empirischer Methodenvergleich zur Steigerung der Prognosequalität

Bottom-Up Lastprognose  
im industriellen Kontext

L. Baur, C. Kaymakci, A. Sauer

In Zeiten volatiler und steigender Energiepreise gewinnt die 
Lastprognose als Entscheidungsgrundlage zunehmend an 
 Bedeutung. Die fortschreitende Digitalisierung erlaubt zudem 
ein detailliertes Aufzeichnen von Verbrauchsdaten auf mehre-
ren Abstraktionsebenen. In diesem Beitrag werden zwei Ansät-
ze, die eine Messzählertopologie in die Prognose integrieren, 
mit dem Standardansatz auf Hauptzählerebene verglichen. Die 
Ergebnisse auf den Unternehmensdaten motivieren für einen 
flächendeckenden Einsatz.

Bottom-up load forecasting  
in the industrial context

Increasingly volatile and rising energy prices make load fore-
casting increasingly important as a basis for decision-making. 
Moreover, the advancing digitalization allows a detailed recor-
ding of consumption data on several abstraction levels. This 
paper compares two approaches that integrate a metering 
 topology into load forecasting with the standard approach at 
the main meter level. The results on enterprise data motivate 
widespread deployment.

1 Einleitung

Der zunehmende und zuletzt sprunghafte Anstieg der durch-
schnittlichen Preise auf den Energiemärkten und die steigende 
Volatilität des Energieangebots durch den höheren Anteil an 
 erneuerbaren Energien im Energiesystem sind für die meisten 
produzierenden Unternehmen in Deutschland eine große Heraus-
forderung [1]. Dabei bieten industrielle Verbraucher enormes 
 Potenzial mittels industrieller Nachfrageflexibilität Schwankun-
gen auszugleichen und zur Netzstabilität beizutragen [2]. Zusätz-
lich können durch die Flexibilisierung der Produktionsprozesse 
der Eigenverbrauch optimiert, Stunden mit negativen Preisen 
ausgenutzt und das Ziel der klimaneutralen Produktion erreicht 
werden [3]. 

Die grundsätzlichen Ziele für mehr Energieflexibilität in der 
produzierenden Industrie sind die Reduktion von Lastspitzen, die 
Optimierung des Verbrauchs von eigenerzeugter Energie, die 
 Bereitstellung von Energieflexibilität auf den jeweiligen Märkten 
inklusive der flexiblen Energiebeschaffung auf den Spotmärkten 
[4, 5].

Für die optimale, dynamische Planung und den Betrieb von 
industriellen Energieversorgungssystemen kommen häufig Last-
prognosen zum Einsatz, die anhand von historischen Energie -
daten Vorhersagen über den zukünftigen Energieverbrauch 
 treffen können. Diese Prognosen können wiederum für eine 
 effektivere Planung des Energieverbrauchs und die Umsetzung 
der oben genannten Ziele genutzt werden [6]. Sowohl in der wis-
senschaftlichen Literatur als auch in der Praxis werden meistens 

die Verbräuche am Hauptzähler auf Werksebene genutzt, da dies 
dem Standard in der Kommunikation mit dem Energieversorger 
entspricht [7].

Nichtsdestotrotz werden mit dem Aufkommen der Digitalisie-
rung und der zunehmenden Vernetzung von Maschinen- und 
Stromdaten mittels hochauflösenden Energiezählern (Smart 
 Meter) auf verschiedenen Ebenen feingranulare Daten erfasst. 
Ein Potenzial zu Prognoseverbesserung liegt in der Integration 
und Modellierung verschiedener Lastverbrauchsquellen auf 
 unterschiedlichen Aggregationsebenen zur Berechnung der soge-
nannten Bottom-Up-Prognose, als Forschungsteilgebiet des Hie-
rarchical Load Forecastings (HLF). 

Dieser Beitrag untersucht das Potenzial zur Verbesserung der 
Prognosegüte mittels Bottom-Up-Ansatz. Dazu wird die Model-
lierung auf aggregierten Energieverbrauchsdaten dem Bottom-
Up-Ansatz und einem kombinierten Modell gegenübergestellt. Es 
wird untersucht, ob sich der Prognosefehler unter Einbezug der 
Topologie verringern lässt und welchen Trainingsmehraufwand 
damit verbunden ist. Es soll die Tauglichkeit der Ansätze mit Re-
aldaten von produzierenden Unternehmen analysiert werden. Als 
Einstieg wird die Bottom-Up-Prognose thematisch in das HLF-
Framework eingebettet, dessen Vor- und Nachteile genannt sowie 
der Stand der Technik wiedergegeben (Kapitel 2), bevor in Kapi-
tel 3 und 4 ein Vergleichsaufbau vorgestellt und auf Lastgangs -
daten dreier deutscher Unternehmen aus dem Mittelstand evalu-
iert wird. Der letzte Abschnitt rundet den Beitrag mit der Diskus-
sion der Ergebnisse und einem Ausblick thematisch ab. 
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1.1 Hierarchical Load Forecasting (HLF)

HLF zielt darauf ab, die Prognosen auf unterschiedlichen Ebe-
nen zu modellieren [8, 9]. Es kann so beispielsweise, neben der 
Modellierung des Hauptzählers eines Unternehmens, die Topolo-
gie der Untermesszähler zur Prognosenberechnung von einzelnen 
Werken, Hallen, Teilabschnitten, Maschinengruppen oder ener-
gieintensiven Einzelmaschinen genutzt werden [10]. 

In diesem Kontext besteht eine Topologie aus einem Haupt-
messzähler und einer bestimmten Menge an Untermesszählern, 
die wiederum disjunkte Bereiche abbilden. Die Anzahl an Ebenen 
mit Untermesszählern ist dabei nicht auf eine Stufe begrenzt. Das 
heißt, Untermesszähler können auch Zähler von Untermesszäh-
lern auf einer höheren Ebene sein. Die Summe der elektrischen 
Lastgänge, der niedrigeren Ebene muss dabei stets mit der höhe-
ren Ebene übereinstimmen. Ist dies nicht der Fall, beispielsweise 
verursacht durch Bezugsverluste oder nicht gemessene Teilab-
schnitte in der Produktion, kann die Topologie durch Einfügen 
von (virtuellen) Residualzähler modelliert werden, die genau die 
Energiedifferenz ausgleicht. Eine beispielhafte Topologie ist in 
Bild 1 dargestellt.

HLF unterscheidet zwischen drei Prognoseszenarien. Bei der 
Top-Down-Prognose werden Prognosen auf höheren Leveln be-
rechnet, indem zuerst eine Prognose für den Hauptzähler erstellt 
wird, und die Lastverläufe der Unterzähler durch ein anteiliges 
Aufteilen der Hauptprognose entsteht. Bei der Bottom-Up-Prog-
nose wird die Prognose des Hauptzählers durch die Aggregation 
von Prognosen von Untermesszählern höheren Levels bestimmt. 
Werden sowohl Prognosen für Messzähler höherer und niedrige-
rer Level aus Messzählern von dazwischenliegenden Leveln be-
rechnet, spricht man von Middle-Out-Prognosen [8]. Für die 
Modellierung des Hauptzählerlastgangs werden Prognosen am 
Knoten der Topologie benötigt. Die Summation der Bottom-Up-
Prognose approximiert diesen Knoten ebenfalls.

1.2 Bottom-Up-Prognose:  
 Chancen und Herausforderungen

Die Integration der Messzähler-Topologie zur Prognose des 
Hauptzählerlastverlaufs bietet gegenüber der üblichen Hauptzäh-
ler-Modellierung entscheidende Vorteile. Die Trennung in meh-
rere Modelle erlaubt es, dass jedes mit anderen Features trainiert 
werden kann, sodass beispielsweise unterschiedliche Untermess-
zählermodelle spezifische Wettervariablen oder Produktionspla-
nungsdaten erhalten, angepasst an örtliche oder logistische Berei-
che. Zudem können diese Modelle besser an die spezifischen Las-
ten angepasst werden [11, 12]. Im Unternehmenskontext weisen 
die Unternehmensbereiche, zusammengefasst durch je einen Zäh-
ler, typischerweise unterschiedliche Variablenabhängigkeiten auf. 
Im Falle eines Untermesszählers für ein Lagergebäude und ein 
weiterer für eine Halle mit Schmelzöfen sind folgende Abhängig-
keiten denkbar: Während der Lagerhallen-Lastverlauf keine Wet-
terabhängigkeiten unterliegt, hängt der Lastbedarf für Schmelzö-
fen stark von Wetterverlauf, Außentemperatur und Jahreszeit ab.

Den Vorteilen gegenüber ist der Trainingsaufwand für mehre-
re Modelle signifikant höherer als der für einen einzelnen. Au-
ßerdem ist bei der Anschaffung, Installation, Wartung und Daten-
speicherung der zusätzlich benötigten Submeter mit höheren 
Kosten zu rechnen. Hinzu kommt, dass stochastische Einflüsse 
auf Hauptzählerebene durch Aggregation gedämpft werden [13], 
was sich mit dem Portfolio-Effekt erklären lässt [14]. Da jedes 
Modell nur eine Approximation der Realität darstellt, treten bei 
jeder Instanz Modellierungsfehler auf. Es ist unklar, ob sich bei 
der Vielzahl der Modelle im Falle von Bottom-Up-Prognosefehler 
bei Aggregieren aufsummieren. 

Tabelle 1 fasst die Chancen und Herausforderungen noch ein-
mal übersichtlich zusammen. 

2 Stand der Technik

Dieses Kapitel gibt einen kurzen Überblick über den Einsatz-
horizont hierarchischer Lastprognosen, mit einem Fokus auf Bot-
tom-Up-Methoden. 

Einen wesentlichen Beitrag zur Forschung von hierarchischen 
Methoden wurde durch die Global Energy Forecasting Competi-
tions 2012 und 2017 geleistet, in denen von mehreren Hundert 
Teilnehmern HLF-Algorithmen zur Lastprognose entwickelt 
wurden [5, 6]. 

Zheng et al. [15] verbessern die kurzfristige Lastprognose für 
Haushalte mithilfe eines Bottom-up-Ansatzes, indem Vorhersagen 
niedriger Granularität (Geräte-, Raum-, Haushaltsebene) inte-
griert werden. 

In [16] wird mittels eines Bottom-Up-Ansatzes die Verteilung 
von elektrischen Lasten des Hochspannungsbereichs aus Progno-
sen auf Substationen mit Mittelspannung prognostiziert. 

In ihrer Dissertation [17] stellt Walther eine Architektur vor, 
die es erlaubt, historische Informationen und Informationen über 

Bild 1. Hauptmesszähler mit zwei Kindern S1 und S2 sowie einem virtuellen 
Residual-Zähler Sr. Grafik: Fraunhofer IPA

Tabelle 1. Chancen und Risiken. 

Chancen

- Individuelle Einbindung von Features möglich

- Zusammenfassen von Messzähler derselben      

    Domäne zur besseren Prognose möglich

Herausforderungen

- Höherer Trainingsaufwand und Datenaustausch

- Aggregation von Prognosefehler möglich

- Höheres Investment für Untermesszähler-  Installation

- Zunehmende Verringerung des Portfolio-Effekts
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den Prognosehorizont in den Modellierungsprozess zu integrie-
ren. Hier führt die hierarchische Struktur zu einer Verbesserung 
der Prognose. 

Zhao et al. [18] erweitern den HLF-Ansatz um probabilistische 
Prognosen, also die Berechnung von Vorhersagen als Lastinter-
vallen statt Kurve, und erhalten durch Integration einer Topolo-
gie ein Verfahren mit höherer Vorhersagegenauigkeit. 

3 Methode

In diesem Abschnitt wird das methodische Vorgehen für den 
systematischen Vergleich der Prognoseverfahren beschrieben. Das 
Ziel der hier betrachteten Prognose ist die Vorhersage des elek-
trischen Lastgangs für den folgenden Tag auf Hauptzähler-Ebene. 

Im Falle von Bottom-Up wird die Prognose aus der Summe 
von Untermesszähler-Prognosen berechnet. Für die Wahl der 
Untermesszähler gibt es mehrere Möglichkeiten. Es kann je eine 
Prognose für die direkten Untermesszähler des Hauptmesszählers 
berechnet werden, oder je eine Prognose der Untermesszähler 
dieser Untermesszähler und so weiter. Ebenfalls ist eine Misch-
form denkbar, indem nur einzelne Unterzähler weiter aufgeteilt 
werden, andere jedoch keine Verfeinerung erfahren. Das Finden 
dieser Zähler-Teilmenge bildet den ersten Schritt, dem die Daten-
integration, die Modellierung und die Evaluation folgt. Bild 2 
zeigt das methodische Vorgehen im Überblick, das im Folgenden 
im Detail beschrieben wird.

3.1 Messtopologie Analyse

Typischerweise werden Messzähler an organisatorisch-logi-
schen Verteilerstellen (etwa Hallen, Hallenabschnitte, Transfor-
mationsstationen oder Maschinen(gruppen) mit hohem Ver-
brauch) angebracht, da deren Nutzen so maximiert und der 
Energiefluss möglichst transparent wird. Zu Beginn wird die Zu-
sammensetzung und Charakteristiken der Messzählertopologie 
untersucht, um eine Gruppierung der Untermesszähler zu extra-
hieren, die in die Modellierung miteinbezogen werden sollen. 

Dazu wird im ersten Schritt ein Level festgelegt, auf dem 
Messzähler einbezogen werden, beispielsweise, falls verfügbar, 
Zählerdaten auf Transformator-, Werks-, Hallen-, Maschinen-
gruppen- oder Einzelmaschinenebene. Die Wahl des Levels ist 
von der Tiefe und Granularität der Topologie abhängig und kann 
als Metaparameter aufgefasst werden, das experimentell und 
 iterativ gefunden werden kann. Alternativ können, sofern die 
Granularität in einzelnen Zweigen signifikant voneinander 

 abweicht, Zähler unterschiedlicher Level zusammengefasst wer-
den. Ein Zusammenfassen ist zu empfehlen, wenn die Messzeit-
reihen einzelner Unterzähler ähnliche Lastgänge aufzeigen oder 
nicht signifikant zur gesamten Last beitragen. Als ein Maß der 
Ähnlichkeit dient das errechnete Standardlastprofil und verwand-
te Distanzmetriken. Ein Beispiel zur Zusammenfassung findet 
sich in Bild 3, in dem Gruppen mit gleichem Verbrauchsmuster 
(hier: Maschinen mit gleicher Aufgabe und Verwaltungstrakte 
ähnlicher Arbeitsweisen) oder marginalen Beträgen (hier: Ver-
braucher mit geringen Einflüssen oder Grundrauschen) zusam-
mengefasst werden.

Nach Abschluss der Analyse liegt eine Liste an Untermesszäh-
lergruppen vor, die zur weiteren Datenaufbereitung verwendet 
wird.

3.2 Datenintegration

Ziel der Datenintegration ist es, einen Datensatz für die 
 anschließende Modellierung der zusammengefassten Topologie 
zu erzeugen. Dazu werden alle Messzählerdatenreihen geladen 
und, falls erforderlich, mittels zeitlichen Angleichens (resam-
pling) oder Interpolation auf eine gemeinsame äquidistante Abta-
strate gebracht. Anschließend werden die Datenreihen für jede 
Gruppe aggregiert und es entsteht für jede Gruppe (siehe 
Bild 3b) eine Zeitreihe. Zusätzlich wird eine Residualzeitreihe 
berechnet, die sich aus der Differenz der Hauptzählerzeitreihe 
mit der Summe aller Gruppendatenreihen bildet. Nach dem Hin-
zufügen von weiteren Features wie beispielsweise Wetter- und 
Kalenderinformationen werden die Zeitreihen für die Modellie-
rung in Trainings- und Testdaten aufgeteilt.

3.3 Modellierung und Evaluation

Für einen systematischen Methodenvergleich werden drei Sze-
narien modelliert und validiert. Diese werden im Folgenden vor-
gestellt. Bild 4 zeigt sie schematisch.

In Szenario I wird als Referenz die Prognose nur auf Grund -
lage des Hauptmesszählers modelliert. Dazu wird im klassischen 
Sinne eine Prognose des Gesamtlastgangs berechnet. Dies ent-
spricht der Sicht des Netzbetreibers ohne Einbezug der Messzäh-
lertopologie. 

In Szenario II wird zu jedem der Untermesszählergruppen 
 eine Prognose erstellt. Anschließend wird die Zielprognose auf 
Hauptzählerlevel durch Aggregation der einzelnen Prognosen der 
Untermesszähler berechnet. 

Bild 2. Methodisches Vorgehen des Modellvergleichs. Grafik: Fraunhofer IPA
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In Szenario III wird nur ein Modell trainiert, das – analog 
zum ersten Fall – ebenfalls direkt die Hauptzählerprognose 
 berechnet. Das Modell erhält die jedoch zusätzlich die Mess -
reihen von Szenario II. Nach der Wahl einer geeigneten Metrik 
werden die Modelle der drei Szenarien mit den Trainingsdaten 
trainiert und auf den Testdaten evaluiert. 

4 Validierung
4.1 Unternehmensbeschreibung und Parameter

Die in Kapitel 3 vorgeschlagene Methodik wurde mit Daten 
von drei deutschen Unternehmen (KMU) aus dem produzieren-
den Gewerbe evaluiert. Eine Beschreibung der Unternehmen 
 sowie deren Topologie und Gruppierung lässt sich der Tabelle 2 
entnehmen.

Zur Validierung der Methode wurden in der Literatur etab-
lierte Modelle verwendet: Lineare Regression und Lasso-Regres-
sion, Random Forest, Decision Tree Regressor, Mutlilayer Per-
ceptron und Support Vector Regressor [19]. Zum Trainieren und 
Finden des jeweils besten Modells pro Modellklasse wurde das 
Hyperparametertuning mittels Grid Search und 5-Fold Cross 
 Validation [20] durchgeführt. Der Mean Absolute Error (MAE) 
wurde als Evaluationsmetrik gewählt, da er gut interpretierbar 

und im Kontext der Lastprognoseforschung weit verbreitet ist 
[21]. Für die zwei Vektoren Referenz-Testdaten y und Prognose 
ŷ ist diese wie folgt definiert:

 

Die beliebte relative Metrik MAPE [21] konnte nicht berechnet 
werden, da einzelne Referenzwerte null sind, was eine Division 
unmöglich macht. Als Features wurden neben Kalenderinforma-
tionen und Wetterdaten Lasten mit Zeitrückstand (lags [22]) des 
Vortrags und der Vorwoche angefügt. 

4.2 Ergebnisse

Die Ergebnisse der Experimente in den drei im vorangegange-
nen Kapitel beschriebenen Unternehmen sind Tabelle 3 zu ent-
nehmen: Jeweils in grün hervorgehoben sind jene Szenarien, die 
für das jeweilige Modell je Unternehmen den geringsten Fehler 
aufwiesen. Zusätzlich fett markiert sind die Modelle, die über alle 
Szenarien hinweg für jedes Unternehmen das beste Ergebnis 
 lieferten. Die schlechtesten Werte pro Unternehmen sind unter-
strichen.

Tabelle 2. Charakterisierung der Unternehmen.

A

B

C

Gewerbe

Metallverarbeitung,  

Gehäusebau

Ventialtor-/Lüfterräder- 

Herstellung

Präzisionsteile/Automobil-

zulieferer

Datenzeiträume

Training

von

03/2021

09/2020

09/2020

bis

03/2022

03/2022

03/2022

Test

von bis

08/2022

08/2022

08/2022

zeitl.  
Auflösung

15 min

15 min

15 min

Last (kW)

 ø

134

241

6436

min

-149

0

0

max

340

569

11779

Zusammengefasste  
Messzähler-Topologie

# Zähler

1 + 6

1 + 9

1 + 3

Gruppiert nach

Hallen, PV-Anlage, 

 Prozessschritt

Werk, Hallen, 

 Maschinengruppe

Hallen

Bild 3. Gruppieren einer Topologie mit drei Leveln. Grafik: Fraunhofer IPA 
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Szenario I (ohne Einbezug der Topologie) lieferte in allen 18 
Durchgängen (drei Unternehmen, sechs Modelle) einen höheren 
Prognosefehler als das jeweils bessere Modell der Szenarien 2 
oder 3 (mit Einbezug der Topologie). In zwölf von 18 Fällen für 
Szenario II und in 16 von 18 Fällen für Szenario III lieferte Sze-
nario I eine schlechtere Prognose. Die Fehlerreduktion des jeweils 
besten Modells aus Szenario II und III gegenüber dem besten 
Modell aus Szenario I beträgt bei A 3,2 %, bei B 7,3 % und bei C 
6,8 %.

In allen drei Unternehmen konnte der insgesamt beste Wert 
mit dem Modell Random Forest erreicht werden, davon einmal in 
Szenario II und zweimal in Szenario III.

Die Trainingszeiten liegen zwischen 21 Minuten und 923 
 Minuten, abhängig von Trainingsdatensatzgröße, Unternehmen 
und Anzahl einbezogener Untermesszähler. In allen Unternehmen 
war die Trainingszeit für Szenario I am kürzesten und Szenario 
II am längsten. Dies lässt sich durch die Datensatzgröße und die 
Anzahl der zu trainierenden Modelle erklären. Die Trainings -
zeiten von Szenarien III liegen für Unternehmen A um Faktor 
1,3 für B um 1,9 beziehungsweise für C um 1,2 über denen von 
Szenario I. 

5 Zusammenfassung und Ausblick 

Die Lastprognose ist eine zentrale Komponente der unterneh-
mensstrategischen Planung und Entscheidungsfindung. Durch die 
Reduktion des Prognosefehlers und die damit verbundene nach-
haltige Verringerung von Fehlentscheidungen entsteht ein Wett-
bewerbsvorteil für Unternehmen.

Eine Möglichkeit der Lastprognoseverbesserung ist das Inte-
grieren von Daten einer Messzählertopologie, wie es in den 
 Methoden des Hierarchical Load Forecasting und damit insbe-
sondere bei Bottom-Up-Prognosen Einsatz findet. 

In diesem Beitrag wurde der Hauptzählerprognoseansatz 
(Szenario I) mit zwei Ansätzen mit Integration zusätzlicher 
Messzählerreihen verglichen. Dazu wurden zusätzlich ein ein -
facher Bottom-Up-Ansatz (Szenario II) und ein weiteres Modell 
implementiert, das – im Gegensatz zu Szenario II – lediglich eine 
Prognose berechnet, als Input aber ebenfalls die historischen 
Messzählerdaten erhält (Szenario III). Validiert wurde das Vor-
gehen auf realen Verbrauchsdaten dreier mittelständischer indus-
trieller Unternehmen.

Basierend auf den gemessenen Ergebnissen lässt sich festhal-
ten, dass sich das Einbeziehen der Messzählertopologie in allen 
18 Fällen gelohnt hat. In 12 beziehungsweise 16 von 18 Fällen 
war der Fehler geringer durch Einsatz der Architektur aus Szena-
rien II beziehungsweise III gegenüber der Hauptzählermodellie-
rung. Es konnte eine durchschnittliche Fehlerreduktion zwischen 
3,2 % und 7,3 % gegenüber der Szenario I-Modellierung bei den 
drei Unternehmen gemessen werden. Mit Ausnahme von fünf der 
18 Fälle war es ausreichend, das Modell aus Szenario III gegen-
über dem Multi-Modell-Aufbau (Szenario II), das deutlich höhe-
ren Trainingsauswand voraussetzt, zu verwenden. Die Trainings-
zeiten von Szenario I und III unterscheiden sich um Faktor 1,2 
bis 1,9, die Trainingszeiten von Szenario II skalieren in etwa 
 linear in der Anzahl der verwendeten Unterzähler.

Die Arbeiten mit den Daten der Unternehmen haben weitere 
Fragen aufgeworfen, die es lohnt, in weitergehenden Arbeiten zu 
untersuchen. Es ist unklar, wie viele Unterzähler zur Modellie-
rung herangezogen werden sollen und wie die Wahl der Zähler-
zusammenfassung aus Abschnitt 3 sich auf den Prognosefehler 
auswirken. Zudem könnte eine statistische Analyse der Progno-
sen im Falle der Bottom-Up-Prognose interessante Erkenntnisse 
für die Unternehmen liefern, welche Unterzähler einen positiven 
beziehungsweise negativen Beitrag zur Prognosefehlerreduktion 
liefern.

Tabelle 3. Prognosefehler (MAE) in kW für jedes Modell, und Trainingszeiten in Stunden für jedes der drei Unternehmen. 

LR

Lasso

Random Forest

Decision Tree

MLP

SVR

Trainingszeit

Unternehmen A

Szenario I

34,7

30,3

24,0

28,7

34,5

28,5

0:21h

Szenario II

33,7

27,7

23,3

24,3

34,6

26,2

4:52h

Szenario III

32,3

27,1

23,2

27,3

34,1

25,9

0:27h

Unternehmen B

Szenario I

50,0

49,9

37,9

39,3

66,4

48,8

00:49h

Szenario II

51,2

50,5

35,1

36,3

67,2

48,5

15:23h

Szenario III

48,3

48,1

39,7

41,7

55,7

43,2

1:33h

Unternehmen C

Szenario I

1390,1

1339,2

1045,5

1099,3

1247,6

1786,3

0:34h

Szenario II

1404,8

1362,2

974,1

1000,6

1214,6

1568,0

1:54h

Szenario III

1374,9

1329,3

974,4

1065,0

1161,1

1223,2

0:42h

Bild 4. Schematische Darstellung der untersuchten Szenarien (Hauptmeter in schwarz, Submeter blau, Modelle rot, Aggregator grün, Prognose gelb).  
Grafik: Fraunhofer IPA
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