Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz (,reviewed paper”).

doi.org/10.37544/1436-4980-2023-01-02-69

TITELTHEMA - FACHAUFSATZ

Empirischer Methodenvergleich zur Steigerung der Prognosequalitat

Bottom-Up Lastprognose
Im Iindustniellen Kontext

L. Baur, C. Kaymakci, A. Sauer

In Zeiten volatiler und steigender Energiepreise gewinnt die
Lastprognose als Entscheidungsgrundlage zunehmend an
Bedeutung. Die fortschreitende Digitalisierung erlaubt zudem
ein detailliertes Aufzeichnen von Verbrauchsdaten auf mehre-
ren Abstraktionsebenen. In diesem Beitrag werden zwei Ansat-
ze, die eine Messzahlertopologie in die Prognose integrieren,
mit dem Standardansatz auf Hauptzahlerebene verglichen. Die
Ergebnisse auf den Unternehmensdaten motivieren fiir einen
flaichendeckenden Einsatz.
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1 Einleitung

Der zunehmende und zuletzt sprunghafte Anstieg der durch-
schnittlichen Preise auf den Energiemirkten und die steigende
Volatilitdt des Energieangebots durch den hoheren Anteil an
erneuerbaren Energien im Energiesystem sind fiir die meisten
produzierenden Unternehmen in Deutschland eine grofle Heraus-
forderung [1] Dabei bieten industrielle Verbraucher enormes
Potenzial mittels industrieller Nachfrageflexibilitit Schwankun-
gen auszugleichen und zur Netzstabilitit beizutragen [2]. Zusitz-
lich konnen durch die Flexibilisierung der Produktionsprozesse
der Eigenverbrauch optimiert, Stunden mit negativen Preisen
ausgenutzt und das Ziel der klimaneutralen Produktion erreicht
werden [3].

Die grundsitzlichen Ziele fiir mehr Energieflexibilitit in der
produzierenden Industrie sind die Reduktion von Lastspitzen, die
Optimierung des Verbrauchs von eigenerzeugter Energie, die
Bereitstellung von Energieflexibilitit auf den jeweiligen Markten
inklusive der flexiblen Energiebeschaffung auf den Spotmirkten
[4, 5]

Fir die optimale, dynamische Planung und den Betrieb von
industriellen Energieversorgungssystemen kommen hiufig Last-
prognosen zum Einsatz, die anhand von historischen Energie-
daten Vorhersagen iiber den =zukiinftigen Energieverbrauch
treffen konnen. Diese Prognosen koénnen wiederum fiir eine
effektivere Planung des Energieverbrauchs und die Umsetzung
der oben genannten Ziele genutzt werden [6]. Sowohl in der wis-
senschaftlichen Literatur als auch in der Praxis werden meistens
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Bottom-up load forecasting
in the industrial context

Increasingly volatile and rising energy prices make load fore-
casting increasingly important as a basis for decision-making.
Moreover, the advancing digitalization allows a detailed recor-
ding of consumption data on several abstraction levels. This
paper compares two approaches that integrate a metering
topology into load forecasting with the standard approach at
the main meter level. The results on enterprise data motivate
widespread deployment.

die Verbrauche am Hauptzihler auf Werksebene genutzt, da dies
dem Standard in der Kommunikation mit dem Energieversorger
entspricht [7].

Nichtsdestotrotz werden mit dem Aufkommen der Digitalisie-
rung und der zunehmenden Vernetzung von Maschinen- und
Stromdaten mittels hochauflosenden Energiezihlern (Smart
Meter) auf verschiedenen Ebenen feingranulare Daten erfasst.
Ein Potenzial zu Prognoseverbesserung liegt in der Integration
und Modellierung verschiedener Lastverbrauchsquellen auf
unterschiedlichen Aggregationsebenen zur Berechnung der soge-
nannten Bottom-Up-Prognose, als Forschungsteilgebiet des Hie-
rarchical Load Forecastings (HLF).

Dieser Beitrag untersucht das Potenzial zur Verbesserung der
Prognosegiite mittels Bottom-Up-Ansatz. Dazu wird die Model-
lierung auf aggregierten Energieverbrauchsdaten dem Bottom-
Up-Ansatz und einem kombinierten Modell gegeniibergestellt. Es
wird untersucht, ob sich der Prognosefehler unter Einbezug der
Topologie verringern ldsst und welchen Trainingsmehraufwand
damit verbunden ist. Es soll die Tauglichkeit der Ansitze mit Re-
aldaten von produzierenden Unternehmen analysiert werden. Als
Einstieg wird die Bottom-Up-Prognose thematisch in das HLF-
Framework eingebettet, dessen Vor- und Nachteile genannt sowie
der Stand der Technik wiedergegeben (Kapitel 2), bevor in Kapi-
tel 3 und 4 ein Vergleichsaufbau vorgestellt und auf Lastgangs-
daten dreier deutscher Unternehmen aus dem Mittelstand evalu-
iert wird. Der letzte Abschnitt rundet den Beitrag mit der Diskus-
sion der Ergebnisse und einem Ausblick thematisch ab.
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Level O

Level 1

Level 2

Bild 1. Hauptmesszéhler mit zwei Kindern S, und S, sowie einem virtuellen
Residual-Zahler S.. Grafik: Fraunhofer IPA

1.1 Hierarchical Load Forecasting (HLF)

HLF zielt darauf ab, die Prognosen auf unterschiedlichen Ebe-
nen zu modellieren [8, 9]. Es kann so beispielsweise, neben der
Modellierung des Hauptzihlers eines Unternehmens, die Topolo-
gie der Untermesszihler zur Prognosenberechnung von einzelnen
Werken, Hallen, Teilabschnitten, Maschinengruppen oder ener-
gieintensiven Einzelmaschinen genutzt werden [10].

In diesem Kontext besteht eine Topologie aus einem Haupt-
messzédhler und einer bestimmten Menge an Untermesszihlern,
die wiederum disjunkte Bereiche abbilden. Die Anzahl an Ebenen
mit Untermesszihlern ist dabei nicht auf eine Stufe begrenzt. Das
heiflt, Untermesszihler konnen auch Zihler von Untermesszih-
lern auf einer hoheren Ebene sein. Die Summe der elektrischen
Lastginge, der niedrigeren Ebene muss dabei stets mit der hohe-
ren Ebene tibereinstimmen. Ist dies nicht der Fall, beispielsweise
verursacht durch Bezugsverluste oder nicht gemessene Teilab-
schnitte in der Produktion, kann die Topologie durch Einfiigen
von (virtuellen) Residualzihler modelliert werden, die genau die
Energiedifferenz ausgleicht. Eine beispielhafte Topologie ist in
Bild 1 dargestellt.

HLF unterscheidet zwischen drei Prognoseszenarien. Bei der
Top-Down-Prognose werden Prognosen auf hoheren Leveln be-
rechnet, indem zuerst eine Prognose fiir den Hauptzihler erstellt
wird, und die Lastverldufe der Unterzdhler durch ein anteiliges
Aufteilen der Hauptprognose entsteht. Bei der Bottom-Up-Prog-
nose wird die Prognose des Hauptzihlers durch die Aggregation
von Prognosen von Untermesszihlern hoheren Levels bestimmt.
Werden sowohl Prognosen fiir Messzédhler hoherer und niedrige-
rer Level aus Messzdhlern von dazwischenliegenden Leveln be-
rechnet, spricht man von Middle-Out-Prognosen [8]. Fiir die
Modellierung des Hauptzihlerlastgangs werden Prognosen am
Knoten der Topologie benétigt. Die Summation der Bottom-Up-
Prognose approximiert diesen Knoten ebenfalls.

Tabelle 1. Chancen und Risiken.

1.2 Bottom-Up-Prognose:
Chancen und Herausforderungen

Die Integration der Messzihler-Topologie zur Prognose des
Hauptzihlerlastverlaufs bietet gegeniiber der tiblichen Hauptzih-
ler-Modellierung entscheidende Vorteile. Die Trennung in meh-
rere Modelle erlaubt es, dass jedes mit anderen Features trainiert
werden kann, sodass beispielsweise unterschiedliche Untermess-
zihlermodelle spezifische Wettervariablen oder Produktionspla-
nungsdaten erhalten, angepasst an ortliche oder logistische Berei-
che. Zudem konnen diese Modelle besser an die spezifischen Las-
ten angepasst werden [11, 12]. ITm Unternehmenskontext weisen
die Unternehmensbereiche, zusammengefasst durch je einen Zih-
ler, typischerweise unterschiedliche Variablenabhingigkeiten auf.
Im Falle eines Untermesszihlers fiir ein Lagergebiude und ein
weiterer fiir eine Halle mit Schmelzofen sind folgende Abhingig-
keiten denkbar: Wihrend der Lagerhallen-Lastverlauf keine Wet-
terabhingigkeiten unterliegt, hingt der Lastbedarf fiir Schmelzo-
fen stark von Wetterverlauf, Auflentemperatur und Jahreszeit ab.

Den Vorteilen gegeniiber ist der Trainingsaufwand fiir mehre-
re Modelle signifikant hoherer als der fiir einen einzelnen. Au-
ferdem ist bei der Anschaffung, Installation, Wartung und Daten-
speicherung der zusitzlich bendtigten Submeter mit hoéheren
Kosten zu rechnen. Hinzu kommt, dass stochastische Einfliisse
auf Hauptzihlerebene durch Aggregation gedampft werden [13],
was sich mit dem Portfolio-Effekt erkliren lisst [14]. Da jedes
Modell nur eine Approximation der Realitdt darstellt, treten bei
jeder Instanz Modellierungsfehler auf. Es ist unklar, ob sich bei
der Vielzahl der Modelle im Falle von Bottom-Up-Prognosefehler
bei Aggregieren aufsummieren.

Tabelle 1 fasst die Chancen und Herausforderungen noch ein-
mal iibersichtlich zusammen.

2 Stand derTechnik

Dieses Kapitel gibt einen kurzen Uberblick iiber den Einsatz-
horizont hierarchischer Lastprognosen, mit einem Fokus auf Bot-
tom-Up-Methoden.

Einen wesentlichen Beitrag zur Forschung von hierarchischen
Methoden wurde durch die Global Energy Forecasting Competi-
tions 2012 und 2017 geleistet, in denen von mehreren Hundert
Teilnehmern HLF-Algorithmen zur Lastprognose entwickelt
wurden [5, 6].

Zheng et al. [15] verbessern die kurzfristige Lastprognose fiir
Haushalte mithilfe eines Bottom-up-Ansatzes, indem Vorhersagen
niedriger Granularitit (Geréte—, Raum-, Haushaltsebene) inte-
griert werden.

In [16] wird mittels eines Bottom-Up-Ansatzes die Verteilung
von elektrischen Lasten des Hochspannungsbereichs aus Progno-
sen auf Substationen mit Mittelspannung prognostiziert.

In ihrer Dissertation [17] stellt Walther eine Architektur vor,
die es erlaubt, historische Informationen und Informationen iiber

e —

- Individuelle Einbindung von Features moglich
- Zusammenfassen von Messzahler derselben
Domane zur besseren Prognose mdéglich
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- HohererTrainingsaufwand und Datenaustausch

- Aggregation von Prognosefehler moglich

- Hoheres Investment fir Untermesszahler-Installation
- Zunehmende Verringerung des Portfolio-Effekts
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Bild 2. Methodisches Vorgehen des Modellvergleichs. Grafik: Fraunhofer IPA

den Prognosehorizont in den Modellierungsprozess zu integrie-
ren. Hier fiihrt die hierarchische Struktur zu einer Verbesserung
der Prognose.

Zhao et al. 18] erweitern den HLF-Ansatz um probabilistische
Prognosen, also die Berechnung von Vorhersagen als Lastinter-
vallen statt Kurve, und erhalten durch Integration einer Topolo-
gie ein Verfahren mit hoherer Vorhersagegenauigkeit.

3 Methode

In diesem Abschnitt wird das methodische Vorgehen fiir den
systematischen Vergleich der Prognoseverfahren beschrieben. Das
Ziel der hier betrachteten Prognose ist die Vorhersage des elek-
trischen Lastgangs fiir den folgenden Tag auf Hauptzihler-Ebene.

Im Falle von Bottom-Up wird die Prognose aus der Summe
von Untermesszihler-Prognosen berechnet. Fiir die Wahl der
Untermesszihler gibt es mehrere Mdoglichkeiten. Es kann je eine
Prognose fiir die direkten Untermesszihler des Hauptmesszihlers
berechnet werden, oder je eine Prognose der Untermesszdhler
dieser Untermesszidhler und so weiter. Ebenfalls ist eine Misch-
form denkbar, indem nur einzelne Unterzihler weiter aufgeteilt
werden, andere jedoch keine Verfeinerung erfahren. Das Finden
dieser Zihler-Teilmenge bildet den ersten Schritt, dem die Daten-
integration, die Modellierung und die Evaluation folgt. Bild 2
zeigt das methodische Vorgehen im Uberblick, das im Folgenden
im Detail beschrieben wird.

3.1 Messtopologie Analyse

Typischerweise werden Messzihler an organisatorisch-logi-
schen Verteilerstellen (etwa Hallen, Hallenabschnitte, Transfor-
mationsstationen oder Maschinen(gruppen) mit hohem Ver-
brauch) angebracht, da deren Nutzen so maximiert und der
Energiefluss moglichst transparent wird. Zu Beginn wird die Zu-
sammensetzung und Charakteristiken der Messzahlertopologie
untersucht, um eine Gruppierung der Untermesszdhler zu extra-
hieren, die in die Modellierung miteinbezogen werden sollen.

Dazu wird im ersten Schritt ein Level festgelegt, auf dem
Messzihler einbezogen werden, beispielsweise, falls verfiigbar,
Zihlerdaten auf Transformator-, Werks-, Hallen-, Maschinen-
gruppen- oder Einzelmaschinenebene. Die Wahl des Levels ist
von der Tiefe und Granularitit der Topologie abhingig und kann
als Metaparameter aufgefasst werden, das experimentell und
iterativ gefunden werden kann. Alternativ konnen, sofern die
Granularitit in einzelnen Zweigen signifikant voneinander
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Modellierung

eSzenario |
eSzenario Il
eSzenario lll

abweicht, Zihler unterschiedlicher Level zusammengefasst wer-
den. Ein Zusammenfassen ist zu empfehlen, wenn die Messzeit-
reihen einzelner Unterzihler dhnliche Lastginge aufzeigen oder
nicht signifikant zur gesamten Last beitragen. Als ein Mafl der
Ahnlichkeit dient das errechnete Standardlastprofil und verwand-
te Distanzmetriken. Ein Beispiel zur Zusammenfassung findet
sich in Bild 3, in dem Gruppen mit gleichem Verbrauchsmuster
(hier: Maschinen mit gleicher Aufgabe und Verwaltungstrakte
dhnlicher Arbeitsweisen) oder marginalen Betrigen (hier: Ver-
braucher mit geringen Einfliissen oder Grundrauschen) zusam-
mengefasst werden.

Nach Abschluss der Analyse liegt eine Liste an Untermesszih-
lergruppen vor, die zur weiteren Datenaufbereitung verwendet
wird.

3.2 Datenintegration

Ziel der Datenintegration ist es, einen Datensatz fir die
anschliefende Modellierung der zusammengefassten Topologie
zu erzeugen. Dazu werden alle Messzihlerdatenreihen geladen
und, falls erforderlich, mittels zeitlichen Angleichens (resam-
pling) oder Interpolation auf eine gemeinsame dquidistante Abta-
strate gebracht. AnschliefRend werden die Datenreihen fiir jede
Gruppe aggregiert und es entsteht fiir jede Gruppe (siehe
Bild 3b) eine Zeitreihe. Zusitzlich wird eine Residualzeitreihe
berechnet, die sich aus der Differenz der Hauptzihlerzeitreihe
mit der Summe aller Gruppendatenreihen bildet. Nach dem Hin-
zufiigen von weiteren Features wie beispielsweise Wetter- und
Kalenderinformationen werden die Zeitreihen fiir die Modellie-
rung in Trainings- und Testdaten aufgeteilt.

3.3 Modellierung und Evaluation

Fiir einen systematischen Methodenvergleich werden drei Sze-
narien modelliert und validiert. Diese werden im Folgenden vor-
gestellt. Bild 4 zeigt sie schematisch.

In Szenario I wird als Referenz die Prognose nur auf Grund-
lage des Hauptmesszihlers modelliert. Dazu wird im klassischen
Sinne eine Prognose des Gesamtlastgangs berechnet. Dies ent-
spricht der Sicht des Netzbetreibers ohne Einbezug der Messzih-
lertopologie.

In Szenario II wird zu jedem der Untermesszihlergruppen
eine Prognose erstellt. Anschliefend wird die Zielprognose auf
Hauptzihlerlevel durch Aggregation der einzelnen Prognosen der
Untermesszihler berechnet.
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Bild 3. Gruppieren einerTopologie mit drei Leveln. Grafik: Fraunhofer IPA

Tabelle 2. Charakterisierung der Unternehmen.

Metallverarbeitung,

A : 03/2021 DS2022 08/2022
Gehausebau
Ventialtor-/Lufterrader-

B0 OrTHTENEcer 09/2020 03/2022 08/2022
Herstellung

G Pré'.zisionsteiIe/AutomobiI— 09/2020 03/2022 08/2022
zulieferer

In Szenario III wird nur ein Modell trainiert, das — analog
zum ersten Fall - ebenfalls direkt die Hauptzdhlerprognose
berechnet. Das Modell erhilt die jedoch zusitzlich die Mess-
reihen von Szenario II. Nach der Wahl einer geeigneten Metrik
werden die Modelle der drei Szenarien mit den Trainingsdaten
trainiert und auf den Testdaten evaluiert.

4 Validierung

4.1 Unternehmensbeschreibung und Parameter

Die in Kapitel 3 vorgeschlagene Methodik wurde mit Daten
von drei deutschen Unternehmen (KMU) aus dem produzieren-
den Gewerbe evaluiert. Eine Beschreibung der Unternehmen
sowie deren Topologie und Gruppierung lasst sich der Tabelle 2
entnehmen.

Zur Validierung der Methode wurden in der Literatur etab-
lierte Modelle verwendet: Lineare Regression und Lasso-Regres-
sion, Random Forest, Decision Tree Regressor, Mutlilayer Per-
ceptron und Support Vector Regressor [19]. Zum Trainieren und
Finden des jeweils besten Modells pro Modellklasse wurde das
Hyperparametertuning mittels Grid Search und 5-Fold Cross
Validation [20] durchgefithrt. Der Mean Absolute Error (MAE)
wurde als Evaluationsmetrik gewihlt, da er gut interpretierbar
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Zusammengefasste

Gewerbe
| von | bis | von | _bis | |5 | min | max [ _#zanier | Gruppiert nacn

Hallen, PV-Anlage,

Last (kW)

Messzahler-Topologie

15 min 134 -149 340 146
Prozessschritt
15 min 241 0 569 1+9 Werk, Hallen,
Maschinengruppe
15 min 6436 0 11779 1+3 Hallen

und im Kontext der Lastprognoseforschung weit verbreitet ist
[21]. Fur die zwei Vektoren Referenz-Testdaten y und Prognose
y ist diese wie folgt definiert:

o 1 o
MAE (7,9) = - ZZ4lyi = 9il.

Die beliebte relative Metrik MAPE [21] konnte nicht berechnet
werden, da einzelne Referenzwerte null sind, was eine Division
unméglich macht. Als Features wurden neben Kalenderinforma-
tionen und Wetterdaten Lasten mit Zeitriickstand (lags [22]) des
Vortrags und der Vorwoche angefiigt.

4.2 Ergebnisse

Die Ergebnisse der Experimente in den drei im vorangegange-
nen Kapitel beschriebenen Unternehmen sind Tabelle 3 zu ent-
nehmen: Jeweils in griin hervorgehoben sind jene Szenarien, die
fiir das jeweilige Modell je Unternehmen den geringsten Fehler
aufwiesen. Zusitzlich fett markiert sind die Modelle, die iiber alle
Szenarien hinweg fiir jedes Unternehmen das beste Ergebnis
lieferten. Die schlechtesten Werte pro Unternehmen sind unter-
strichen.
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Tabelle 3. Prognosefehler (MAE) in kW flir jedes Modell, und Trainingszeiten in Stunden fiir jedes der drei Unternehmen.

Unternehmen A Unternehmen B Unternehmen C
33,7 32,3 50,0 51,2 48,3

LR 34,7 ’ ; ; : ; 1390,1 1404,8 1374,9
Lasso 30,3 277 271 49,9 50,5 48,1 1339,2 1362,2 1329,3
Random Forest 24,0 23,3 23,2 379 35,1 39,7 1045,5 9741 974,4
Decision Tree 28,7 24,3 273 39,3 36,3 41,7 1099,3 1000,6 1065,0
MLP 34,5 34,6 34,1 66,4 672 55,7/ 12476 1214,6 1161,1
SVR 28,5 26,2 25,9 48,8 48,5 43,2 m_@ 1568,0 1223,2
Trainingszeit 0:21h 4:52h 0:27h 00:49h 15:23h 1:33h 0:34h 1:54h 0:42h

(a) Szenario |

(b) Szenario Il

(c) Szenario llI

Bild 4. Schematische Darstellung der untersuchten Szenarien (Hauptmeter in schwarz, Submeter blau, Modelle rot, Aggregator griin, Prognose gelb).

Grafik: Fraunhofer IPA

Szenario 1 (ohne Einbezug der Topologie) lieferte in allen 18
Durchgingen (drei Unternehmen, sechs Modelle) einen hoheren
Prognosefehler als das jeweils bessere Modell der Szenarien 2
oder 3 (mit Einbezug der Topologie). In zwolf von 18 Fillen fiir
Szenario Il und in 16 von 18 Fillen fiir Szenario III lieferte Sze-
nario I eine schlechtere Prognose. Die Fehlerreduktion des jeweils
besten Modells aus Szenario II und III gegeniiber dem besten
Modell aus Szenario I betrégt bei A 3,2 %, bei B 7,3 % und bei C
6,8 %.

In allen drei Unternehmen konnte der insgesamt beste Wert
mit dem Modell Random Forest erreicht werden, davon einmal in
Szenario II und zweimal in Szenario III.

Die Trainingszeiten liegen zwischen 21 Minuten und 923
Minuten, abhingig von Trainingsdatensatzgrofle, Unternehmen
und Anzahl einbezogener Untermesszihler. In allen Unternehmen
war die Trainingszeit fiir Szenario I am kiirzesten und Szenario
IT am langsten. Dies lasst sich durch die Datensatzgrofle und die
Anzahl der zu trainierenden Modelle erkliren. Die Trainings-
zeiten von Szenarien III liegen fiir Unternehmen A um Faktor
1,3 fir B um 1,9 beziehungsweise fiir C um 1,2 iiber denen von
Szenario L.

5 Zusammenfassung und Ausblick

Die Lastprognose ist eine zentrale Komponente der unterneh-
mensstrategischen Planung und Entscheidungsfindung. Durch die
Reduktion des Prognosefehlers und die damit verbundene nach-
haltige Verringerung von Fehlentscheidungen entsteht ein Wett-
bewerbsvorteil fiir Unternehmen.

Eine Moglichkeit der Lastprognoseverbesserung ist das Inte-
grieren von Daten einer Messzédhlertopologie, wie es in den
Methoden des Hierarchical Load Forecasting und damit insbe-
sondere bei Bottom-Up-Prognosen Einsatz findet.
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In diesem Beitrag wurde der Hauptzihlerprognoseansatz
(Szenario T) mit zwei Ansitzen mit Integration zusitzlicher
Messzahlerreihen verglichen. Dazu wurden zusitzlich ein ein-
facher Bottom-Up-Ansatz (Szenario II) und ein weiteres Modell
implementiert, das — im Gegensatz zu Szenario II - lediglich eine
Prognose berechnet, als Input aber ebenfalls die historischen
Messzihlerdaten erhilt (Szenario IIT). Validiert wurde das Vor-
gehen auf realen Verbrauchsdaten dreier mittelstdndischer indus-
trieller Unternehmen.

Basierend auf den gemessenen Ergebnissen ldsst sich festhal-
ten, dass sich das Einbeziehen der Messzihlertopologie in allen
18 Fillen gelohnt hat. In 12 beziehungsweise 16 von 18 Fillen
war der Fehler geringer durch Einsatz der Architektur aus Szena-
rien II beziehungsweise III gegeniiber der Hauptzihlermodellie-
rung. Es konnte eine durchschnittliche Fehlerreduktion zwischen
3,2 % und 7,3 % gegeniiber der Szenario [-Modellierung bei den
drei Unternehmen gemessen werden. Mit Ausnahme von fiinf der
18 Fille war es ausreichend, das Modell aus Szenario III gegen-
iiber dem Multi-Modell-Aufbau (Szenario II), das deutlich hohe-
ren Trainingsauswand voraussetzt, zu verwenden. Die Trainings-
zeiten von Szenario I und III unterscheiden sich um Faktor 1,2
bis 1,9, die Trainingszeiten von Szenario II skalieren in etwa
linear in der Anzahl der verwendeten Unterzihler.

Die Arbeiten mit den Daten der Unternehmen haben weitere
Fragen aufgeworfen, die es lohnt, in weitergehenden Arbeiten zu
untersuchen. Es ist unklar, wie viele Unterzihler zur Modellie-
rung herangezogen werden sollen und wie die Wahl der Zihler-
zusammenfassung aus Abschnitt 3 sich auf den Prognosefehler
auswirken. Zudem konnte eine statistische Analyse der Progno-
sen im Falle der Bottom-Up-Prognose interessante Erkenntnisse
fiir die Unternehmen liefern, welche Unterzihler einen positiven
beziehungsweise negativen Beitrag zur Prognosefehlerreduktion
liefern.
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