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Abstract

The automatic creation of optimal concepts for mechanical structures in
the computer-aided design process has become an important area of re-
search. Continuum topology optimization methods determine the distri-
bution of material within a pre-defined design space and, thus, not only
the shape, but also the fundamental geometric layout of a structure. For
this task, the majority of the existing, numerical optimization methods
requires mathematical gradient information. However, when addressing
optimization problems that involve highly non-linear or black-box simu-
lations, it can be difficult to obtain satisfactory results or gradient infor-
mation at all. In order to provide design concepts also for these types of
problems, this thesis presents a generic topology optimization approach.
The novel method realizes a self-contained learning component that uti-
lizes physical simulation data to generate a search direction. Based on
a continuous problem formulation, every design variable is improved it-
eratively by a learned update-signal. The individual update-signals are
computed from local state features and substitute sensitivities of the de-
sign variables. Evolutionary optimization or supervised learning adapt the
model parameters for determination of the update-signals to the chosen
optimization goal. In empirical studies, the novel method reproduces ref-
erence structures with minimum compliance. When applied to a practical
problem from the challenging domain of vehicle crashworthiness optimiza-
tion, specifically the minimization of intrusion, it provides superior design
concepts when compared to a frequently applied heuristic method. The
results confirm that the proposed method is capable to yield innovative
solutions to so far unsolved topology optimization problems.
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Zusammenfassung

Die automatische Erstellung von optimalen Entwurfskonzepten fiir mech-
anische Strukturen im rechnergestiitzten Entwicklungsprozess ist ein
wichtiger Forschungszweig. Methoden der Topologieoptimierung bestim-
men die Materialverteilung in einem vordefinierten Entwurfsraum und da-
her nicht nur die Form, sondern auch die grundséatzliche geometrische Aus-
gestaltung einer Struktur. Die Mehrheit der verfiigharen numerischen Op-
timierungsmethoden benotigen hierfiir mathematische Gradienteninforma-
tion. Betrachtet man jedoch Optimierungsprobleme, die stark nichtlineare
oder Blackbox-Simulationen beinhalten, kann es schwierig sein, zufrieden-
stellende Ergebnisse oder iiberhaupt Gradienteninformation zu erhalten.
Um auch fiir solche Probleme Entwurfskonzepte zu finden, wird in dieser
Dissertation ein generischer Topologieoptimierungsansatz prasentiert. Die
neue Methode realisiert eine eigenstandige Lernkomponente, welche in
der Lage ist, aus physikalischen Simulationsdaten eine Suchrichtung zu
erstellen. Basierend auf einer kontinuierlichen Formulierung des Prob-
lems wird jede Entwurfsvariable durch ein gelerntes Updatesignal iterativ
verbessert. Die individuellen Updatesignale berechnen sich aus lokalen Zu-
standsmerkmalen und ersetzen die Sensitivitiaten der Entwurfsvariablen.
Evolutionare Optimierung oder iiberwachte Lernverfahren passen die Mod-
ellparameter zur Bestimmung der Updatesignale an das gewéhlte Opti-
mierungsziel an. In empirischen Studien reproduziert die neue Meth-
ode Referenzstrukturen mit minimaler Nachgiebigkeit. Bei der Anwen-
dung auf ein Problem aus dem anspruchsvollen Gebiet der Optimierung
des Fahrzeug-Unfallverhaltens, speziell der Minimierung der Eindringtiefe,
liefert sie tiberlegene Entwurfsvorschldge im Vergleich mit einer héufig
verwendeten heuristischen Methode. Die Ergebnisse bestétigen, dass die
vorgeschlagene Methode in der Lage ist, innovative LoSungen fiir bisher
ungeloste Topologieoptimierungsprobleme zu erzeugen.
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1 Introduction

Human engineers or designers usually judge their designs with respect to
numerous practical and sometimes subjective criteria with the goal of find-
ing a high quality solution that considers all necessary restrictions. They
typically change design parameters in an iterative and intuitive process.
In contrast to this, methods of design optimization aim at finding the best
design parameters in order to maximize or minimize an objective perfor-
mance or cost function, typically subject to a number of constraints.

Modern product-development processes use computational design and
engineering tools for digital conceptualization and simulation. The eco-
nomical advantages include a reduction of the number of costly prototypes
and an overall acceleration of the development processes. Tools, such as fi-
nite element analysis for the prediction of structural performance measures
have made computer-aided engineering methods a standard in the automo-
tive and other industries. Increasing computing power results in the abil-
ity to perform more accurate simulations of complicated physical systems.
This, in combination with competitive pressure, leads to an increased de-
mand for systematic design optimization that replaces experience-based
engineering practices.

Many engineering problems can be addressed as optimization tasks, for
example tuning vehicle shape parameters to minimize the aerodynamic
drag, or the thickness of metal sheets in the vehicle body to reduce weight.
The advantage of design optimization methods over more intuitive strate-
gies is that they improve solutions for predefined objectives and constraints
in a formalized way. Since optimal solutions can rarely be found analyt-
ically, optimization requires the choice of an appropriate numerical algo-
rithm for the iterative search of an optimum. Its computerised imple-
mentation facilitates to tune many design parameters automatically, even
without detailed knowledge about the considered problem.

Evolutionary algorithms from the domain of computational intelligence
are useful, global search methods that are frequently applied to practi-
cal design optimization tasks. They mimic biological evolution and im-
prove solutions by random variations that are selected whenever they are
favourable. This stochastic component enables the application of evolu-
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tionary algorithms to a large variety of problem classes. Their universal-
ity is of particular interest for complex problems with strongly non-linear
characteristics for which a specialized optimization approach is unavail-
able or unable to provide satisfactory results. Also problems that involve
black-box simulations, in which only input and output are known but not
the details of the analysis, can be addressed, since no assumptions on the
problem are required.

Optimization methods have an especially high potential for quality en-
hancement when applied early in a product design process. Topology Opti-
mization addresses the task of finding a conceptual design for a mechanical
structure. The subject of such optimization is the basic layout and geo-
metric connectivity of the structure, i.e. to find the optimum distribution
of material and void domains within a predefined design space. Naturally,
this is one of the first steps in the design process and provides remarkable
potential for finding innovative and efficient concepts in an automatized
fashion. The last decade has seen a tremendous rise in the number of
publications in the field of topology optimization. This trend is reflected
and enforced by an increasing application of topology optimization algo-
rithms within industries that target lightweight designs, for instance civil,
automotive or aerospace industries.

Conventional topology optimization methods rely on a deep theoretical
understanding of the considered problem and a corresponding mathemat-
ical formulation. This knowledge makes it possible to devise algorithms
that iteratively update the design parameters towards improvement. The
update is based on the mathematical sensitivities of the optimization tar-
get with respect to the parameters. Hence, conventional topology opti-
mization algorithms are so-called gradient-based algorithms. When us-
ing mathematical gradients, it is computationally cheap to determine a
search direction towards a local optimum, resulting in efficient, yet spe-
cialized optimization procedures. However, practical design optimization
problems are often highly complex and/or rely on black-box simulations.
Consequently, explicit mathematical formulations are not available, and
alternative, more comprehensive optimization methods are required. As
mentioned above, evolutionary algorithms are suitable for such problems.
However, the general applicability of evolutionary algorithms comes with
relatively large computational cost, even when the number of parameters
is reduced significantly. In the case of topology optimization, the inher-
ently very high number of design parameters limits the direct applicability
of evolutionary algorithms.

Therefore, this thesis explores a novel, generic concept for topology op-
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timization. The project consists in using methods of computational in-
telligence for creating an algorithm that devises its own search direction
independently from pre-defined mathematical gradients. In the words of
Robert Le Ricolais!, “The art of structure is where to put the holes”. In
conventional topology optimization algorithms, the knowledge causing the
formation of voids and material domains is contained in the mathemati-
cal formulation. This implies that the crucial information is determined
prior to the optimization. Any intelligent, generic topology optimization
method has to autonomously discover or at least adequately substitute
this knowledge.

Intuitive understanding of this task and inspiration for the aspired re-
search direction is gained by the observation of biological processes, such
as the growth of trees or the remodelling process in human bones. These
biological processes have lead to nature-inspired topology optimization
methods that are based on simple rules; for instance weakening of ma-
terial in locations with low stress and stiffening of material in locations
with high stress. Such basic rules result in efficient structural designs and
have emerged in biological evolution without previous knowledge of the
task and environment. Typically, the nature-inspired methods use local,
structural state information, an aspect that is also inherent to rigorously
mathematical methods. This leads to the present project’s goal of estab-
lishing generic criteria for performing topology optimization.

Following the biological inspiration, a computational model of evolution
or learning should be able to devise heuristic update-signals that indicate
how to improve the design parameters. The proposed model is required
to - in a systematic way - harness structural state information, which is
obtained from the simulation. Essentially, such a method eliminates the
necessity of a predefined mathematical model that is limited to only a
single problem. This approach raises a number of methodological ques-
tions, most pressing of all how the update-signal is to be devised: Which
mathematical models should be used? How should the model parame-
ters be modified so that the model can accommodate the aforementioned,
pertinent information? And what should be the physical input features?

Computational concepts for nature-inspired problem-solving methods
are candidates for addressing these questions. They can be found in the do-
main of Computational Intelligence, for instance, evolutionary algorithms
for optimization, or artificial neural networks for learning tasks. Learning
methods, such as artificial neural network models are capable to perform

IFrench-American engineer and philosopher, 1894-1977
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difficult prediction and pattern recognition tasks. The applications include
identifying and classifying objects in images for a vast number of problems,
decision-making tasks for instance in games, as well as contributions to
autonomous driving. In the considered context of topology optimization,
artificial neural networks and statistical models will be utilized to process
the structural state information and provide the required update-signals.
Instead of addressing the topology optimization problem directly, evolu-
tionary algorithms are very adequate for optimization parameters of these
update strategies.

Figure 1.1 illustrates the different topology optimization approaches and
the research focus of this thesis. The central contribution of this thesis is
the proposal of a novel methodology for generic topology optimization.

Figure 1.2 shows an overview of the structure of the thesis. Subsequent
to this introduction, the work is divided into the following chapters:

Chapter 2 provides the fundamentals on topology optimization and
evolutionary computation that are scientific prerequisites for the proposed,
novel methods. The description of topology optimization approaches fo-
cuses a the general, density-based formulation that provides a foundation
for the proposed generic method. Furthermore, evolutionary computation
methods are relevant for the introduced learning component. The section
emphasizes evolution strategies, which are most suited for the targeted
real-valued parameter optimizations.

Chapter 3 continues with an overview and categorization of approaches
for representing structures for topology optimization with evolutionary
computation. For the application of evolutionary algorithms, an essen-
tial issue is how to represent the structure, since the computational cost
increases with the number of design parameters. The chapter introduces
three different categories: grid, geometric and indirect representations.
These categories are used to comprehensively classify the approaches from
literature. Furthermore, the breakdown enables to outline assets and lim-
itations of the different representation types. The chapter closes with a
discussion on the relation to gradient-based algorithms and existing as well
as potential applications.

Chapter 4 is the backbone of this thesis, since it introduces the method-
ological novelties for generic topology optimization. The initial, general
explanation introduces a model that determines update-signals based on
simulation data. The proposed algorithm performs topology optimization
and, each iteration, improves the design parameters of the structure ac-
cording to the model outputs. Subsequently, the chapter presents two
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Figure 1.1: Classification of the research focus of this thesis in between knowl-
edge and data-driven approaches. Gradient-based approaches require a theoret-
ical understanding of the considered problem. They are efficient, yet problem-
specific. In contrast, stochastic methods, such as evolutionary algorithms, are
general, but require high computational efforts. The proposed, generic concept
aims at a balance by using simulation data in combination with a computational
intelligence method that uniquely adapts the algorithm to the problem.

computational learning procedures. The first approach is based on direct
optimization of model parameters with an evolution strategy. Here, the
parameters of an artificial, neural network or a piecewise-constant function
are optimized. The second approach is to determine the model parameters
by a supervised learning method based on finite difference sampling.
Chapter 5 presents a comprehensive assessment of generic topology
optimization. The empirical evaluation utilizes a minimum compliance
problem that is used as reference. An important aspect of the conducted
experiments is the consideration of two different model inputs. Both input
types are based on simulation data, but differ in the availability of the local
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Topology Optimization of Application
Crashworthiness Objectives (Chap. 6)

Figure 1.2: Graphical overview of the main components of the thesis.

strain energy density. For most proposed learning methods, the reference
structure can be reproduced, even without inclusion of the local strain
energy density. Among other things, the various studies also address the
effects of model complexity, mesh-dependency and numerical noise. The
findings are discussed and lead to recommendations for possible use cases
of the methods.

Chapter 6 presents a step towards application. The considered ex-
ample application is the domain of passive safety in vehicle crashworthi-
ness. Crashworthiness topology optimization is an emerging and challeng-
ing task in the vehicle design process. Its implementation in industry
has the potential to improve the efficiency of components that undergo
extreme loads in crash scenarios. The non-linear physics of crash events
yield multi-modal, disconnected and noisy objective functions, which re-
strict the applicability of the standard topology optimization algorithms.
The proposed generic method is applied to optimize two typical objective
functions: maximizing energy absorption and minimizing intrusion. It is
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compared to an alternative, heuristic method that is applied in indus-
try. The findings support that the proposed method enables the topology
optimization of a new class of problems.

Chapter 7 concludes the thesis by summarizing the main contributions
and outlining interesting directions for further research.
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2 Fundamentals

This chapter provides background on the addressed topology optimization
problem and an overview of state-of-the-art optimization methods. Sec-
tion 2.1 introduces topology optimization of continuum structures, by pre-
senting a general problem formulation, background literature on the field,
and an overview of current methods. Section 2.2 elaborates density-based
topology optimization methods which are applied throughout this work.
The minimum compliance problem is presented as a common test case with
examples of optimizations. In contrast to the specialized, gradient-based
topology optimization algorithms, Sec. 2.3 introduces the field of evolu-
tionary computation, which provides more general stochastic optimization
methods. The chapter is finalized with a summary in Sec. 2.4.

2.1 Background: Topology Optimization of
Continuum Structures

In the field of structural optimization, sizing optimization, shape opti-
mization and topology optimization can be differentiated [30]. The three
types of structural optimization are illustrated in Fig. 2.1. Sizing opti-
mization refers to optimization of design parameters on a fixed domain
that represent, for instance, thicknesses of metal sheets or members in a
truss structure. In shape optimization, the design variables describe the
form and location of the boundary of a structure. Sizing and shape opti-
mization are commonly applied relatively late in the design process, when
a large part of the design is already fixed and optimization is applied as a
final tuning step.

Topology optimization can be differentiated into continuum and dis-
crete approaches. Discrete topology optimization tackles the problem of
determining which of a discrete set of members ought to be present in a
design, e.g., trusses in a truss structure. In contrast, continuum topol-
ogy optimization calculates the distribution of material within a given
design space, resulting in a geometrical layout defined by the shape of
void and material regions. In practice, continuum topology optimization
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is addressed in discretized form by considering the absence or presence
of material within grid elements inside a given design space. This the-
sis, will exclusively consider continuum topology optimization, although
the presented approaches that are discussed hereafter are transferable to
other problems, such as truss topology optimization. A fundamental in-
troduction to continuum topology optimization can be found in recent
reviews by Deaton and Grandhi [52], or Sigmund and Maute [171], or in
the monograph by Bendsge and Sigmund [30].

2.1.1 General Problem Formulation

The general topology optimization problem can be stated as [171]!:
min F(u(p),p)

s.t.: Go(p) = /p(x)dV -V <0
Q
Gi(u(p),p) <0, 1=1,...,L
p(x)=0o0rl, ¥xecQ ,

(2.1)

where the density variable p describes the material distribution at point x
in the design space (or design domain) Q, F(p,u(p)) is the objective func-
tion, u(p) is the state vector, and Gy and G are optimization constraints
with the target volume Vj.

In topology optimization, the term “structure” refers to a design space.
Since the boundaries of the optimized structure are unknown a-priori, only
the region available for the design of the structure is defined. For each
point x in €2, the density can either be zero, representing void, or one,
representing material, respectively. The density has to be found such that
the objective function F(p,u(p)) is minimized, which quantifies a perfor-
mance measure of the structural response. Figure 2.2 illustrates a design
space ) with boundary tractions and supports. The state vector u(p) is
defined implicitly in the problem-dependent state equation (additionally
to (2.1)) and is obtained by a structural analysis. The minimization is
subject to a volume constraint Go(p). This constraint restricts the total

!Note that, in contrast to Sigmund and Maute [171], we do not assume that the
objective function can be computed as integral over a local function, as, e.g., in the
compliance case, since this is not true for the intrusion minimization addressed in
Sec. 6.3.
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Figure 2.1: Illustration of the three fields within structural optimization [30].
From left to right: size (a), shape (b) and topology (c) optimization.

amount of material Within the design space, which is defined by the differ-
ence of the volume V' (p fQ p(x)dV occupied by material and the target
volume Vj. Practlcally, any topology optimization can be subject to con-
straints G;(p,u(p)) that define additional limits on structural properties,
for example displacements or stresses.

2.1.2 Early Topology Optimization

One of the first works related to topology optimization has been published
by Michell in the beginning of the 20th century, who studied the econom-
ical limits of material in frame structures and provided the foundation
for optimal reference solutions to some topology optimization problems
[118]. Today’s (numerical) topology optimization emerged from the field
of structural shape optimization in the 1980s. In this field, the surface of
the structural design is parameterized, yet the topology e.g., the number
and locations of holes, is fixed, and the introduction of new holes is not
easily possible. Overall, shape optimization methods were not suited well
for introducing topological changes in the structural optimization process.
This problem marked starting point for modern topology optimization:
the homogenization method, presented in a seminal paper by Bendsge
and Kikuchi [29]. This method addresses topology optimization as a ma-
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Microstructure

Boundary tractions\ ‘

Design space Q2

Boundary supports

o,

A design point Cell-structure

Figure 2.2: General topology optimization problem addressed by the homog-
enization approach. The material distribution is defined by a microstructure
formed by rotatable unit cells with variably sized square holes. As an example
for boundary conditions the image shows tractions and supports.

terial distribution problem and considers each design point as consisting
of a microstructure defined by geometric parameters of a unit cell. The
name “homogenization method” stems from the process of homogenizing
the material properties of the microstructures to obtain the corresponding
material properties of the macrostructure.

The initial problem addressed by the homogenization method was com-
pliance minimization of linearly elastic structures. An illustration of a
topology optimization problem addressed by the homogenization approach
is depicted in Fig. 2.2. In the figure, the unit cell of the microstructure
is defined by the rotation angle and the size of a square void region. At
the maximum size of the void square, a purely void cell is defined. Its
minimum describes a filled material cell. For a design space discretized
into finite elements, each element is considered as a microstructure.

Succeeding the homogenization method was the density approach, in-
troduced by Bendsge in 1989 [28], as well as similar approaches by Zhou
and Rozvany [217] and Meljnek [120]. The density-based approach, ac-
counts for the fact that the microstructure used in the homogenization
approach can be modelled by a material with interpolated properties. The
microstructure gets replaced by a porous material, for which a continuous
density variable specifies the amount of material at the design point. Ma-
terial properties are continuously interpolated between void and solid, as
illustrated in Fig. 2.3(a). The material interpolation scheme proposed
by Bendsge is based on a power-law approach that penalizes intermedi-
ate values of the density with an exponent p [28]. This is shown in Fig.
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Figure 2.3: General design space of a topology optimization problem addressed
by the density approach, where the material distribution is defined by a continu-
ous density variable (a). The SIMP power-law approach to penalize the material
properties for intermediate densities (b).

2.3(b). Concretely, the Young’s modulus Fy of the material is reduced for
intermediate density values, rendering their use inefficient. This popular
approach is know as Solid Isotropic Material with Penalization (SIMP).
SIMP has been validated as microstructurally-based model for composite
materials for certain values of the penalization [27].

In the 1990s, efficient optimization methods, such as optimality criteria
methods [26], the method of moving asymptotes [184, 185], and regulariza-
tion methods to deal with mesh-dependency [166, 167] in order to achieve
numerical stability and existence of solutions in the discretized problem,
were established for topology optimization. For linear problems, where
gradients are known the mathematical programming methods are able to
address also multi-disciplinary problems, combining multiple constraints
on compliances, displacements and frequencies [214]

With the advance of numerical methods and increasing computational
abilities, the number of topology optimization applications besides the
standard topology optimization problem of minimizing compliance? rose.
Other early applications were, for instance, heat conduction maximization,
stress constraints, eigenvalue maximization, buckling, material microstruc-
ture design, and compliant mechanisms. An overview of early topology
optimization applications can be found in Soto [174]. A later review by
Fredericson focuses on application to vehicle body structures [67].

2The compliance is the reciprocal value of the stiffness.
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2.1.3 Topology Optimization Approaches

Meanwhile, Bendsge and Sigmund [30] (2004) chronicle comprehensively
the development of topology optimization. In the last decade, the field
has seen a tremendous development as well as a significant increase in
publications. New approaches of optimizing and representing the topology
optimization problem have emerged [52, 171]. Approaches can be charac-
terized by the design parameterization, the optimization respectively the
update procedure and the regularization method. While a detailed history
of topology optimization is not the focus of the present study, considering
recent trends in the development of these methods seems useful for gaug-
ing the problem from various perspectives. Because topology optimization
approaches break up into several subcategories, a brief overview is neces-
sary to illustrate the scientific periphery of the method we propose here.
The most common category of topology optimization methods is that
of the density-based methods [30], which are described in detail in Sec. 2.2.

The second major field of topology optimization methods, Level Set
Methods (LSM), originates from representations used in shape optimiza-
tion. In LSM [4, 197], the boundary between material and void region is
defined by the contours of a level set function. The level set function is
typically defined by a combination of (often radial) basis functions. This
implicit parameterization of the boundary provides a crisp and smooth in-
terface between void and material region. It facilitates the introduction or
disappearance of new holes relative to spline-based shape representations.

A recent review [193] classifies LSM according to their parameterization
of the level set function, the geometry mapping, the structural model,
the type of update information, and the procedure used. Depending
on the LSM variant, shape variations, shape sensitivities, or parameter
sensitivities are used in conjunction with mathematical programming
methods or heuristic update schemes. A problem that arose for the
original LSM approach is that new holes could not be introduced easily
in the topology of the structure. Based on the ideas first presented
in the so-called bubble method [60], topological derivative methods
provide approaches to determine the best point in the structure for the
introduction of an infinitesimal small hole and thus, topological changes
[3, 36].

Evolutionary Structural Optimization (ESO) approaches directly tackle
the discrete topology optimization problem [91]. ESO is similar to
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density-based methods in that it parameterizes each element of the dis-
cretized design space; however, no relaxation is applied and the variables
are treated as binary. The optimization is started from a design space
completely filled with material, and the optimization is performed by
iteratively removing material elements from the structure, using heuristic
update schemes based on a “Sensitivity Number”. In an early study,
Xie and Steven based the sensitivity number on intuition or heuristic
criteria, such as the elemental stress [213]. Meanwhile, state-of-the-art
approaches, such as Bi-directional Evolutionary Structural Optimization
(BESO), also allow for a re-admission of the material in the elements,
while the sensitivity number is based on gradient information [91]. It has
to be stressed that the BESO methods are not inspired by Darwinian
evolution and have no direct relation to the approaches of evolutionary
computation, which we will discuss in Sec. 2.3 and Chap. 3. More
precisely, the BESO algorithms do not employ competing and selection
properties and thus are not evolutionary algorithms. Therefore, it has
been proposed to re-name BESO in Sequential Element Rejections and
Admissions (SERA) [145].

Finally, global search algorithms and appropriate representations for
topology optimization have also been proposed. These approaches are
discussed separately: Section 2.3 introduces the field of evolutionary
computation in general and Chapter 3 presents a comprehensive overview
and categorization of known representations.

Density-based, LSM, and BESO/SERA are specialized gradient-based
methods for topology optimization and represent the most common ap-
proaches in the literature. Due to their similarity in terms of gradient-
usage all methods provide formulations that could be used as foundation
for the method proposed in this thesis. Density-methods provide an excel-
lent balance between efficient and general optimization capabilities, math-
ematical rigorousness, and intuitive accessibility, and, therefore, will be
used as framework throughout the thesis. The next section continues with
a detailed introduction to the density-based SIMP approach.
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2.2 Density-based Topology Optimization

2.2.1 Problem Formulation

The density-based method is the most common approach for topology opti-
mization that evolved from the homogenization approach. Today, density-
based topology optimization tackles a vast number of different applications
[52]. The method also achieved wide circulation due to the proliferation
of commercial topology optimization software in several key industries.
Efficient optimization and regularization approaches for a wide scope of
problems are the result of over two decades of research in the field. Other
advantages of density-based methods are the - relative to some level set
approaches - traceable (yet rigorous) mathematical formulations and the
availability of educational resources such as the famous 99- or 88-lines
topology optimization codes [5, 168]. Due to these inherent qualities that
make the method useful for solving topology optimization for a wide range
of problems this thesis follows this approach.

Generally speaking, density-based methods provide a maximum of de-
sign freedom within the finite element discretization of the design space,
since each element is assigned a variable. The division of the design domain
in finite elements yields a discretized formulation of (2.1) [171]:

min F(p, u(p))

s.t.: Go(p) =V(p) — Vo <0, (2.2)
Gi(p,u(p)) <0,1=1,...,L,
pi=0orl ¢=1,...,N |

where p is the vector of design variables and

N
Vi(p) = Z Vipi
i=1

is the volume of the structure, where v; is the elemental volume.
Density-based methods relax the discrete problem of which elements
should contain void and which elements should contain material into a
continuous problem. This enables optimization with gradient-based math-
ematical programming methods. Concretely, problem (2.2) is relaxed by
assigning a continuous “density” variable (or several in case of multi-
material problems) p; € [pmin, 1] to each element of the design space. A
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minimum value of the density ppi, is usually introduced to avoid numeri-
cal problems that otherwise might occur in finite element solvers, such as
close-to-singular matrices. Intermediate densities, however, are undesired
in the final solution. Normally, a discrete (zero-one) design is required for
manufacturing or further processing. In order to achieve this, the interme-
diate densities are penalized using a material interpolation scheme. The
most frequently used material interpolation scheme applies a power-law
approach [27, 28]:

Ei(pi) = p{ Eo , (2.3)

with the penalization exponent p, the base material property Fp, and the
interpolated material property FE;, see Fig. 2.3b. This is the so-called
“SIMP” approach, as introduced in Sec. 2.1.2. Frequently, E, refers to
the Young’s modulus (or elastic modulus) of the material, such as in the
important case of the minimum compliance problem that we will consider
as a reference case for experiments. However, also other properties can be
interpolated.
Using SIMP, problem (2.2) can be formulated as:

min F(p, u(p))

st.: Go(p) =V(p) — VW <0,
Gi(p,u(p)) <0,1=1,...,L,
0<pmin<p;<l,1=1,...,N ,

(2.4)

where 2.3 effects structural properties such as the stiffness matrix. An
example for this is presented for the minimum compliance problem in Sec.
2.2.2.

Since the design variables are continuous in this formulation, gradient
information can be used to address the topology optimization problem.
Mathematically rigorous terms for the partial derivative of the objective
function, with respect to a density variable, are referred to as “sensitiv-
ity”. A typical topology optimization problem has a high number of design
variables, but a relatively low number of constraints. Therefore, the formu-
lation of sensitivities is usually addressed by an adjoint analysis [1, 6, 30].
Compared to direct sensitivity analysis, which requires one analysis per
variable, the adjoint method reduces the number of analyses to one per
constraint and objective. An example of adjoint analysis is presented in
App. A.1.

With sensitivity information on objective function and constraints,
problem (2.4) can be solved by mathematical programming methods.
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State-of-the-art is the Method of Moving Asymptotes, devised by Svanberg
[184], or its more recent version the Global Convergent Method of Moving
Asymptotes [185]. Many problems can also be solved efficiently by using
Optimality Criteria (OC) update methods. OC methods are heuristic up-
date schemes, which increase or decrease the density depending on an opti-
mality criterion, which can be derived from the Karush-Kuhn-Tucker con-
ditions [99, 105]. Although the implementation is problem-dependent and
conceptually not suited to handle additional constraints, the OC method
is a computationally effective method. It is described in detail in Sec. 4.2.

2.2.2 The Minimum Compliance Problem

The first problem addressed by the topology optimization community was
the minimum compliance problem in linear elastics. It refers to minimiz-
ing the energy absorbed by the structure when a load is applied, which
is equivalent to maximizing the stiffness of a structure. Due to its large
proliferation in industrial application, its simplicity, and the availability of
reference examples, it is still the most prominent problem in the literature
for the evaluation of new topology optimization methods. Chapter 5 in-
cludes tests on a minimum compliance reference for evaluating the method
proposed in this thesis.
In its finite element form the compliance problem can be stated as:

mgn c(u(p)) = u’l (2.5)
st.: K(p)u =1, (2.6)
Vie) _ (2.7)

Zililvi
0<pmin§pi§1>i:17"'aN7 (28)

where 1 is the global load vector, K is the global stiffness matrix, and (2.6)
is the linear static governing equation. The classic compliance problem
considers no constraints except for the volume constraint (2.7) and the
limits of the density (2.8). The desired ratio of material to void within the
design space is the target volume fraction f. The finite element analysis
refers to a matrix inversion to obtain the state vector u. The matrix K(p)
is constructed by superposing elemental stiffness matrices K;(p;), in which
the Young’s modulus is replaced according to the SIMP interpolation (2.3).
Therefore, the structure properties and, thus, the stiffness matrix is a
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function of the density:

N
K(p) = ZKi(pi) :
i=1
Since volume is the only constraint in this case, the problem formulated
in (2.5)-(2.8) can be solved efficiently an OC-update method.

The structural performance profits from the introduction of smaller and
smaller holes, so that the optimum structure would have an infinite num-
ber of infinitesimal small holes. In the case of the discretized topology
optimization problem, the finer the mesh resolution the smaller the sizes
of the optimal structural members become. This causes a problem known
as mesh-dependency. The underlying reason is that the topology opti-
mization problem (2.1) is ill-posed, as it “lacks existence of solutions in
its general continuum setting” ([30], p. 30). Additionally, numerical in-
stabilities such as chequerboard patterns can occur in the solutions [56].
Regularization methods impose a minimum length scale of the structural
members and alleviate numerical instabilities [167, 169]. A heuristic, but
frequently applied method is filtering of sensitivities [166]. In this method,
which is derived from image processing, the sensitivity of an element is av-
eraged based on the sensitivities of neighbouring elements.

The computational flow of a density-based topology optimization algo-
rithm can be illustrated as in Fig. 2.4. The algorithm starts with an initial
solution, usually a homogeneous distribution of material over all elements
in the design space i.e. p; = f, Vi =1,..., N. This initial structure is ana-
lyzed by solving the state equation via a finite element analysis, providing
the structural state and thereby the objective function value. In the next
step, sensitivity information is computed. Sensitivity information enables
us to modify the design by using the chosen update and regularization
methods. This loop is then repeated until the optimization has converged.

By way of illustration, the following two classical plane stress design
problems are based on a two-dimensional, rectangular design space. Ex-
ample one is the design of a cantilever beam. Figure 2.5(a) depicts the
design space and boundary conditions. It is supported in both coordinate
dimensions along the left design space boundary. A load is applied in the
centre of the right design space boundary. The target volume fraction is
set to f = 0.4. The design space is meshed with N = 45 x 28 = 1,260
square shell elements. Example two is a MBB® beam that is supported

3Messerschmitt-Bokow-Blohm
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Start: Initial Design

— Structural Analysis
Sensitivities \

Optimization Step

Update Design

— Convergence?
+Yes

Figure 2.4: Computational flow for density-based topology optimization.

vertically along the left design space boundary to enforce symmetry. It
is also supported in the right bottom corner in both coordinate direc-
tions, as depicted in Fig. 2.5(b). The load is applied in the upper left
corner of the design space, i.e. the centre of the beam. The volume frac-
tion is set to f = 0.5. The design space is meshed with a resolution of
N =150 x 50 = 7,500 square shell elements. In both cases, the load vector
has a unity component at the load node, and is otherwise zero.

Solving the problem formulated in (2.5)-(2.8) with the OC-update and
sensitivity filtering results in the optimized structures* depicted in Fig.
2.5(c) and (d). A comprehensive description of a Matlab implementation
of this topology optimization algorithm, including educational code, is
available in the excellent paper by Sigmund [168] (see also the more recent,
extended and optimized version [5]).

Since the method is based on gradient information, it provides a way
to find locally optimal solutions. For a large number of applications this
works very effectively. For instance, in a typical density-based topology
optimization, such as the presented one, often only a few dozens of itera-
tions are required, even for problems with tens or hundreds of thousands

4Sensitivities and parameter settings correspond to those used for the reference test
case in Sec. 5.1.
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(a) (b)

(c) (d)

Figure 2.5: Examples for topology optimization: Design space for a cantilever
beam (a) and solution for 45 x 28 mesh (c); Design space for a MBB beam (b)
and solution for 150 x 50 mesh (d).

variables. Even though the search methods are local, satisfying solutions
for many problems can be found. In practice, engineers use topology opti-
mization early on in the design process to produce initial, conceptual de-
signs which provide a starting point for the next design step. At this stage
of the design process, the mathematical global optimum is of secondary
interest. Usually, the solution of the topology optimization undergoes sub-
sequent post-processing steps, such as manual modification and/or shape
or sizing optimizations. For industrial users, it is therefore often sufficient
to provide a rough topological layout as a starting point for further work.

However, a necessary requirement for the application of the algorithms
presented here is gradient information. When derivatives are not avail-
able, the established algorithms cannot easily be applied. Additionally,
other characteristics of objective functions, such as non-linearity, rugged-
ness, multi-modality or noise, can reduce the success of gradient-based
algorithms. Stochastic search algorithms from the field of Evolutionary
Computation are independent of gradients and therefore appear suitable
to provide a work-around for this deficiency. This field and its search
algorithms are introduced in the next section.
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2.3 Evolutionary Computation

Compared to non-gradient approaches, gradient-based topology optimiza-
tion methods are significantly more efficient with respect to function eval-
uations [170]. However, the most obvious restriction is the necessity of a
gradient. In practical design optimization problems, explicit mathematical
modelling can be difficult due to problem complexity or black-box simu-
lations. Also, the determination of numerical gradients can be rendered
infeasible by numerical noise or a high number of variables. Furthermore,
for problems with severe non-linearities that result in highly multi-modal,
rugged, or discontinuous search spaces, a gradient-based search is likely to
yield non-satisfying results®.

This chapter describes the field of Evolutionary Computation (EC)
[19, 59] as an alternative. This field encompasses a large variety of
derivative-free search algorithms with stochastic component that can be
applied to general optimization problems. It is thus also suitable for ad-
dressing the shortcomings of conventional topology optimization methods.
The biological foundation of EC is the theory of evolution based on nat-
ural selection [47] that revolutionized the understanding of biological life.
It reveals biological life as an ongoing adaptation process of species for
survival. Accordingly, the history of organic life can be understood in
terms of physical processes of adaptation, which are reproduction, vari-
ation and selection. In the nineteen sixties, this inspired a number of
computational approaches to mimic the evolutionary processes. When-
ever these mechanisms are at work, an evolutionary process is inevitable.
Thus, by conceptually implementing these mechanisms in a computer pro-
gram, evolution can be simulated and utilized as a model for addressing
technical problems or for improving human understanding of the gradual,
adaptation processes that shape the development of life (e.g., [49]).

The field of Evolutionary Computation, as the intersection of evolu-
tionary biology and computer science, started developing in the 1960s.
Initially, three main types of Evolutionary Algorithms (EA) could be dis-
tinguished: Evolution Strategies, Genetic Algorithms, and Evolutionary
Programming. Here, the abbreviations EC and EA roughly stand for the
whole research field and for the related algorithms, respectively, although
there is certainly some overlap between the two terms.

Evolution Strategies were first developed for real-valued parameter opti-

5An example is the area of crashworthiness topology optimization, for which strong
assumptions for model simplifications have to be made, in order to perform opti-
mization, see Sec. 6.1 for details.
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mization of a wing shape [139]. This very practical inspiration contributes
to explain why evolutionary strategies today are applied to many design
optimization tasks. Genetic Algorithms were inspired by knowledge gath-
ered on the genetic code [84]. Solutions are encoded in genes that are
represented by an array of discrete values. New solutions are created by
recombination, a method that is inspired by the genetic crossover occurring
in biological life during sexual reproduction. Evolutionary Programming
[64] is based on the idea of evolving functions or programs that yield a
certain output when executed.

Nowadays, EC forms a large lively field of research and boundaries be-
tween the three groups of algorithms are blurred. Operators and algo-
rithms have been unified in a common framework, e.g. [20]. In the con-
text of optimization, evolutionary algorithms are a class of derivative-free
search algorithms [143], well suited for noisy, multi-modal, disconnected,
non-separable, dynamic or black-box problems, that often occur in real-
world engineering design optimization. Due to their robustness and gen-
erality they are a good choice for problems where specialized methods do
fail or do not exist in the first place. These advantageous properties, how-
ever, come at high computational cost, since no optimization method can
be general and effective at the same time(a fact known as no-free-lunch
theorem [208]).

The concept of a typical evolutionary algorithm is illustrated in Fig. 2.6.
In the field of EC, usually biologically-inspired terminology is applied, i.e.
a set of solutions is referred to as a population of individuals. A starting
point for the optimization is a population consisting of one or several
individuals. Initially, these individuals are evaluated to determine their
objective value or the “fitness”. A new “offspring” population is created
by variation operators that mimic natural, generational processes such as
random mutation and sexual recombination. Based on the fitness of the
individuals, a selection operator chooses a subset of individuals as the
parent population for the next generation. The evolutionary optimization
loop is stopped, when a predefined criterion is reached, for instance, the
change of the fitness drops below a threshold or a maximum of evaluations
is reached.

EAs are relatively robust and general. They have the potential to iden-
tify global optima and do not require gradient information. They can
also address problems with strong non-linearities or black-box simulations,
while having the disadvantage of considerably higher computational de-
mands. On the plus side, EAs only require implicit assumptions about the
objective function, e.g., the choice of representation and variational op-
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Figure 2.6: The working principle of an evolutionary algorithm.

erators. This universality is an important advantage over gradient-based
methods. Throughout this thesis, EAs are not proposed as direct competi-
tors to gradient-based approaches. Rather they are considered as an alter-
native for especially difficult problems, in which gradient-based methods
do not provide satisfactory results. We focus now on the field of Evolution
Strategies, which are applied later on in this work.

2.3.1 Evolution Strategies

One specialization of evolutionary algorithms are Evolution Strategies
(ES). This area of studies is based on the seminal work done by Rechen-
berg and Schwefel who optimized the shape of a wing in a wind-tunnel
experiment [139, 140, 158]. Initial, gradient-based variation of the shape
parameters yielded trivial flat solutions. Only when a stochastic compo-
nent was introduced, did the optimization succeed. Throughout the study,
the parameters describing the shape were modified by random numbers ob-
tained from a normal distribution. In case the performance of the structure
improved, the changes were accepted. The algorithm was later classified
as the first approach towards an ES.

Background and introductions on ES can be found in the literature
[21, 31, 146, 159]. Unbiased, deterministic selection, a parameterization of
the mutation operator, and the fact that individuals consist of design vari-
ables and strategy parameters are characteristic for ES. The recombination
operator creates new offspring individuals from the existing solutions. It
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either applies intermediate or discrete (dominant) recombination of prop-
erties, yet is considered to play a minor role in typical ES. Variation of the
individuals is mainly performed by the mutation operator, which provides
random numbers from normal distributions to modify design and strategy
parameters and predominantly determines the search.

An ES is defined by the number of parent individuals y, the number of
offspring individuals A, the number of parent individuals for the creation of
a new offspring individual ¢ and the lifetime &, i.e. the number of iterations
an individuals can stay in the population. In the most cases, the lifetime is
either infinite or one, resulting in a more simplified notation: If the novel
parents are chosen exclusively from the offspring population, i.e. (u/0, \)-
ES, it is a “comma” strategy; if they are chosen from parent and offspring
populations, i.e. (u/o+ A)-ES it is a “plus”or “elitist” strategy. In ES, the
parents for recombination are usually selected in a deterministic way.

Furthermore, an ES is defined by the variation operator and its finite
set of parameters. Since in ES these parameters can be subject to change
during the optimization, they are also denoted as endogenous strategy
parameters.

Favourable properties of the mutation operator are the ability to reach
any point in the search space, unbiasedness, and the possibility of param-
eterization. These desirable properties foster mutation based on a multi-
variate, normal distribution, i.e., the vector of design variables 8 € R®,
encoded by an individual is mutated by®:

0%+ =9 4 2 2~ N(0,C) ,

where k is the generation (i.e., iteration) of the optimization, z is a random

vector drawn from the multivariate normal distribution N (0, C) with co-

variance matrix C € R®*®. Since in a typical ES, the design variables are

real-valued, ES are especially applicable for continuous optimization prob-

lems as occurring frequently in real-world engineering design optimization.
In ES, this allows for three main possibilities for the mutation:

e A single global step size is used: N (0,C) ~ 02N (0,1g), i.e. there
is one strategy parameter. Here, Ig is the identity matrix.

6The evolutionary optimization and the topology optimization are addressed further
in Chap. 4, where both are combined in a nested scheme. In order to consistently
distinguish between both optimization loops, a different notation than the one de-
scribed in the extant EC literature is introduced. In the context of topology opti-
mization, the design variables are denoted as p;, ¢ =1 ... N, while in context of the
evolutionary optimization, the © design variables are denoted as 6;, i =1 ... ©.
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e For each dimension of the search space a separate step size is used. In
this case, C is a diagonal matrix consisting of the standard deviations
a%, 0%, e ,U%, i.e. there are © strategy parameters.

e The full covariance matrix is used, hence there can be correlated
mutations. This results in total in ©(O + 1)/2 strategy parameters.

The strategy parameter o is called the “step size” or “mutation strength”.

The ideal strategy parameters not only depend on the objective func-
tion, but for most problems also change during the optimization. In early
research on ES, investigations by Rechenberg with the (1 4 1)-ES on the
sphere and corridor test functions, provided the insight that the ideal prob-
ability of successful mutations should be 0.2, which lead to the 1/5th-rule
[140]. According to the 1/5th-rule, the step size is decreased when less
than one-fifth of the mutations is successful, and increased if more than
one fifth is successful and remains unchanged otherwise.

However, the 1/5th-rule is only optimal in the special case of a single
global step size in a (1 + 1)-ES,. This leads to the idea of self-adapting
strategy parameters that can be considered a standard concept in ES [31].
In a self-adaptation ES, an individual consists not only of the design vari-
ables, but also of strategy parameters. In a standard self-adaptation ES,
the recombination operator is applied first, combining g parents to a new
offspring individual. Typically, discrete recombination is used for design
parameters and intermediate recombination is recommended for strategy
parameters [31].

Hence, step size or, in the more general case, the elements of the covari-
ance matrix are themselves subject to selection. Implicitly, by selecting
the best individuals, on average also suitable mutation parameters are se-
lected, so that the strategy parameters of individuals adapt to the local
search space. For instance, let us consider the case of diagonal elements
of the covariance matrix. Then, a vector of strategy parameters o per
individual is obtained, which means that there is one strategy parame-
ter per design variable. The mutation of each component is performed
multiplicatively according to:

a§k+1) — g'i(k) - exp(zo) - exp(z;), 20 ~ ToN(0,1), z; ~ TN(0,1) ,

1

where 7 = -~ and 7 = are recommended learning parameters.
0 /20 p

However, with self-adaptation, it is still possible to select individuals
that have performed a large step, although the step size is small or vice
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versa. Also, the large number of strategy parameters, especially for cor-
related mutations when the full covariance matrix is considered, requires
a high number of evaluations until adequate adaptation is reached. Re-
ducing the impractically high number of evaluations makes it necessary to
maximize the benefit from successful mutations. This issue leads to the
concept of the Covariance Matrix Adaptation Evolutionary Strategy.

2.3.2 Covariance-Matrix Adaptation Evolutionary
Strategy

With increasing number of strategy parameters, the self-adaptation of the
diagonal elements or even rotation angles of the covariance matrix re-
quires an increasing learning effort that deteriorates the efficiency of the
algorithms. Therefore, most modern ES try to systematically estimate a
distribution from which favourable solutions can be drawn. With this re-
spect, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[78] is considered as state-of-the-art [21]. The CMA-ES adapts the co-
variance matrix of the multivariate normal distribution, from which new
solutions are drawn, based on successful mutations, hence a model of the
underlying fitness landscape is learned. By this means, the effect of ran-
domness is reduced, therefore, the CMA-ES is also referred to as a “de-
randomized” evolution strategy. In this section, a conceptual description
is provided based on the CMA-ES by Hansen [76]. For a detailed, formal
description the reader is referred to the original sources.

In the CMA-ES the new offspring population is created based on sam-
pling a multi-variate normal distribution:

g+ L Ar <m<k>, (0<k>>2 C(k))

where m € R® is the mean value of the search distribution. It is based on
the weighted, ranked intermediate recombination of the p best individuals.

The covariance matrix is adapted iteratively, based on the following
main concepts:

e The matrix is estimated based on the previously selected steps, hence
it estimates the distribution of successful mutations (in contrast to
estimating the distribution of the population or the distribution of
mutations).

e For small population sizes an acceptable estimate of the covariance
matrix cannot be obtained from one iteration. Hence, for the update
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of the covariance matrix, information from the previous iterations is
taken into account, subject to exponential smoothing.

e Information from a cumulation of several successive steps of the op-
timization that forms an evolutionary path, is included. Exponential
smoothing of the evolutionary path is applied and it is used as an
additional term in the update of the covariance matrix. This en-
ables learning about correlations between steps, for instance about
directional information contained in the signs of the mutations that
would be lost otherwise.

Additionally, the global step size is controlled by a method denoted as
cumulative path length control. Similar to the covariance matrix update it
is based on consecutive iterations i.e. the evolutionary path. For adapting
the step size, the length of the evolutionary path is evaluated with respect
to the expected path length under random selection. In case the path
length is longer than expected, i.e. selection biases towards larger steps,
the step size is increased, otherwise it is decreased.

Favourable properties of the CMA-ES involve several invariances with
respect to the objective function, for instance invariance towards order-
preserving and angle-preserving transformations as well as scaling and
unbiasedness of the variation. Only initial solution and initial global step
size need to be chosen, and an almost parameter-free ES results, that
shows good to superior performance on a large number of test functions
and has been applied to a large number of applications [21, 76-79, 141].

Compared to other EAs, an advantage of the CMA-ES is the relatively
low number of function evaluations that is required in order to obtain
decent optimization results. Since the evaluation is usually the most com-
putationally expensive step in a real-world optimization, this renders the
CMA-ES an effective method and facilitates the application in industrial
contexts, where often only a few hundreds or thousands of evaluations are
feasible [21]. Several extensions of the CMA-ES have been proposed; for
instance, local restarts [7, 8] as well as the Active-CMA-ES that also ac-
tively uses the individuals with lowest fitness in the covariance adaptation
step [95].

2.4 Summary

Within this chapter, the necessary background on literature and funda-
mental theory in the fields of topology optimization and evolutionary
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computation is described. At first, the general continuum topology op-
timization problem is introduced as a material distribution problem, in
conjunction with its typical solution methods. Special emphasis is placed
on the density-based formulation as a very efficient and general approach.
Yet, as other standard methods, it depends on derivative information,
which is unavailable for many real-world and especially black-box prob-
lems. Evolutionary computation provides a viable alternative approach
because it features general-purpose optimization algorithms that have been
well established in scholarship and practice. Within this field, evolution-
ary strategies are particularly relevant for the innovative optimization ap-
proach proposed later on. However, one of the most important aspects
when performing topology optimization with an evolutionary computation
approach is the representation of the structure, which is why the follow-
ing chapter includes a comprehensive review as well as a categorization of
existing representations.
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3 Structure Representations
for Evolutionary
Computation

About a decade ago, Kicinger et al. provided an overview on Evolutionary
Computation (EC) and structural design, including approaches for contin-
uum topology optimization [101]. Since then, a large variety of specialized
methods has been developed. However, researchers in structural design
are often not aware of the available EC methods, while researchers from
the EC community are often unfamiliar with the topology optimization
problem. Bridging this gap helps to broaden the range of available op-
timization approaches and as a result the range of problems that can be
addressed. This chapter contributes to the discourse by categorizing and
by summarizing existing representations for EC approaches. We define
three fundamental classes of representation with different advantages and
drawbacks.

Section 3.1 discusses the subject of the representation problem and the
different classes of representations. In the next step, the different rep-
resentations are described, starting with the Grid Representation in Sec.
3.2, followed by the Geometric Representation in Sec. 3.3, and finally the
Indirect Representation in Sec. 3.4. The different representations as well
as assets and challenges of EC for topology optimization are summarized
in Sec. 3.5. Parts of this chapter are based on [11].

3.1 Representing the Structure

Initial EC approaches in the area of continuum topology optimization arose
briefly after the introduction of the homogenization method. One of the
first applications was the optimization of the compliance problem using a
genetic algorithm. Thereby, every element of the discretized design space
is represented by a variable [42, 147]. Today, the literature comprises
numerous evolutionary methods with varying representations. In view of
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the high computational demand of EC methods, an especially important
aspect of any application of an evolutionary optimization algorithm is the
parameterization of the problem. In the following paragraphs, we briefly
describe the concept of geno- and phenotype for representing solutions and
relate it to topology optimization.

In biology, the genotype refers to parts or the complete genetic code
of a cell or organism. The phenotype refers to the actual expression of
the genotype as the living individual (e.g. a finch) or a characteristic (e.g.
beak) that is exposed to the environment. Although the phenotype is what
is exposed, indirectly its encoding genotype is subject to natural selection
[48]. Similar to the biological inspiration, in the field of EC, the phenotype
is the solution in the context of the original problem that is subject to
fitness evaluation. It is described by its genotype, to which variational
operators are applied. Hence, the actual optimization is performed on
the level of genotypes. Eiben and Smith [59] define “representation” (or
encoding) as “mapping from the phenotypes onto a set of genotypes”.

Important representations are binary encodings used in genetic algo-
rithms; for instance, when a continuous number is represented as a binary
number. A more natural encoding is that of a binary encoding for decision
problems such as the Travelling Salesperson Problem. Another natural en-
coding are real-valued design variables in evolution strategies; for instance,
for the purpose of engineering form optimization problems.

The representation not only determines the dimensionality of the search
space, but also influences the probability of the identification of improved
solutions and consequently the progress rate of the optimization. Often,
a well chosen representation can reduce the complexity of the original
problem. Representations themselves can be complex, for instance, by
involving developmental steps with a small number of parameters that en-
code most versatile phenotypic variation (see for instance [49]). Hence,
depending on the representation, the optimizer has to deal with different
search spaces. A well-chosen representation facilitates beneficial changes
obtained from search operators. This is related to the topic of evolvability
in the field of EC, which captures the ability of a representation to effi-
ciently improve solutions [12, 50, 88]. Most important, the representation
should be able to include the optimal phenotypes, or, at least, close to
optimal versions.

EAs are global search algorithms and have a chance to locate the global
optimum. With respect to topology optimization, they are able to provide
a solution directly applicable to the discrete problem in (2.2). Since the
evaluation of the structure requires a finite element analysis, the structure
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is discretized into a finite element mesh. Following this argumentation,
the phenotype in structural optimization is formed by a grid of finite ele-
ments that is subject to evaluation. However, searches based on a direct
bit-wise representation of the elements are not efficient for fine grid resolu-
tions, since the number of possible solutions increases exponentially with
the number of elements. More elaborate representations reduce the num-
ber of design variables, but they naturally also reduce the set of possible
solutions. In conclusion, the application of an appropriate representation
for topology optimization with EAs is an important first step, which fun-
damentally influences the computational feasibility.

This chapter proposes three concepts of representations, which are used
in the field of EC: Grid, Geometric and Indirect Representation. Fig-
ure 3.1 shows an overview of the proposed representation classes. These
classes allow for a categorization and discussion of the existing representa-
tions, which are used in conjunction with EC, for structures in continuum
topology optimization.

3.2 Grid Representation

A representation can be classified as “Grid Representation”, if the geno-
type encodes properties of fixed locations in a grid that discretizes the
design space. Typically, the number of search variables is identical or pro-
portional to the number of grid cells. A maximum of design flexibility is
realized, when a variable is assigned to each cell of a finite element mesh
discretization of the design space.

3.2.1 Bit-Array Encoding

The most straightforward form of the Grid Representation is the bit-array
encoding. The genotype encodes a binary variable for each grid cell, rep-
resenting either void or material. This is illustrated in Fig. 3.2. In the
most common case, each variable of the grid cell corresponds to material
in one finite element of the analysis model.

An early work that optimizes a bit-array representation by using a ge-
netic algorithm, minimizes the weight of a cantilever plate, subject to
displacement and stress constraints [147]. This approach requires a con-
nectivity analysis: material elements that do not share an edge with at
least one neighbouring material element or that are not directly or indi-
rectly connected to the boundary conditions are switched to void. The
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Figure 3.2: Example of a Grid Representation with bit-array of a connected
structure (top). Each element is represented as one binary variable, which en-
ables a maximum of design variability. This however includes undesirable solu-
tions, for instance unconnected structures (bottom).
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bit-array representation has been extended for the application to slightly
more finely discretized solutions by introducing a hierarchical design do-
main subdivision [42]: After optimizing based on a coarse finite element
representation, the design space is subdivided to refine the optimized so-
lution and the optimization is continued with several populations.

Plenty of different domain-specific optimization approaches have been
proposed since then, based on genetic algorithms [22, 43, 103, 196, 203,
205], artificial immune system algorithms [37, 111], particle swarm opti-
mization [110, 112] or modified binary differential evolution [211]. Multi-
objective genetic algorithms combined with local search operators have
been applied [161, 162], as well.

Some approaches combine EC with state or gradient information. In
[164] a simulated annealing is combined with information on the elemental
stress. In [107] the solutions are recombined based on the stress contours
of the design in order to guide the optimization. Furthermore, an ant-
colony optimization algorithm is modified to include gradient information
by biasing the pheromone concentration based on elemental sensitivity
information. The algorithm is applied e.g. to compliance minimization
[100] and compliant mechanism design [102]. Using the results of gradient-
based methods for population initialization, a multi-objective topology
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optimization method is proposed in [113, 114].

Although technically based on a bit-array representation, the so-called
Evolutionary Structural Optimization (ESO) approaches [89, 213] do not
include any concept of population, random variation or selection and thus
do not classify as evolutionary algorithm as discussed in Sec. 2.1.3.

3.2.2 Real-Valued Array Encoding

When operating directly on the mesh, gradient-based algorithms [30] apply
a continuous variable to each mesh element, due to the necessity of gradual
changes. This is rarely done in the existing EC approaches, most likely
since genetic algorithms are able to directly address the discrete problem.

An exception is the work of Madeira et al. in which each element of the
mesh is assigned a real-valued cost variable [115]. Each element is defined
as node in a graph, connected by edges between neighbouring elements.
Still, the representation involves one variable per element in the mesh,
hence, it classifies as a Grid Representation. The problem of finding the
optimum structure for a volume constraint is transformed to the task of
finding the optimum subtree, including the correct number of vertices with
the lowest cost. An advantage of the method is that the subtree finding
process only generates connected structures and crossover and mutation
to the cost variables with a genetic algorithm is straightforward.

3.3 Geometric Representation

A representation can be classified as “Geometric Representation”, if the
genotype encodes properties of a set of movable shape primitives that
define the geometry of the structure. Properties of the shape primitives
are for instance position, shape and thickness. When decoding, a geometry
mapping is applied to obtain the phenotypic finite element mesh. The
search space dimensionality as well as the potential structural complexity
depend on the number of primitives, but both are independent of the
number of finite elements used in the structural analysis.

3.3.1 Voronoi-cells

Motivated by the idea of overcoming the direct coupling of the finite ele-
ment mesh and the number of variables, Schoenauer described a geometry
for a topology optimization by Voronoi cells [155]. The genotype encodes
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a set of coordinates for the Voronoi sites. Voronoi sites divide the de-
sign space into polyhedral-shaped subsets, termed Voronoi cells, in which
each point of the subset is assigned to the nearest Voronoi site. Every
Voronoi site is assigned a binary variable, i.e. “material”’or “void”. This
approach is capable to represent the geometry of any structure formed by
polyhedral subsets, and to map it to the underlying structural model. The
illustrations in Fig. 3.3 depict the Voronoi representation and a structural
mapping. The evaluation has been conducted using genetic algorithms
and evolutionary strategies [155]. The idea was picked up and applied by
several researchers [53, 54, 72, 73].

ol || N
HEEEEEN

Figure 3.3: Example for (a) geometric form defined by a Voronoi representa-
tion of the structure and (b) the corresponding structural design, as in [72].

3.3.2 Material-Mask Overlay

Schoenauer also proposed a representation based on optimizing the posi-
tion and shape of geometric forms [155]. The work considers rectangular
holes in the design space, which is otherwise filled with material. The ap-
proach can be considered as an early version of the material-mask overlay
strategy proposed in [94, 129, 150, 151], where a set of circles is optimized.
For each circle/mask, the Cartesian coordinates of its centre and radius,
and its material state are encoded as variables. A user-defined number
of masks is mapped to the structure by assigning material or void to the
elements of a hexagonal element mesh based on the mask material state.
The material state is a binary variable. Elements whose centres lie within
the radius of a mask are turned into material or void elements respectively.
If masks overlap, the topmost mask decides whether an element in the in-
tersection is filled with material or void. Thereby, the number of masks is
an important parameter, which decides on the search space dimensionality
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and implicitly on the structural complexity that can be represented. Opti-
mization is performed with a multi-objective particle swarm optimization.
An adaptive variant has been proposed, in which the number of masks
is adapted during the optimization, by removing redundant masks [152].
Furthermore, only negative i.e. void masks are applied so that material is
by default put in all regions of the design space without masks. Figure
3.4 shows an illustration of the concept. Parallel, mutation-only search is
applied. Other geometric masks such as elliptic or rectangular ones may
be used as well, although circular masks seem to be more efficient[153].
The efficiency of the method can be further increased by using gradient
information [154].

Figure 3.4: Representation with Material mask overlay strategy, each mask
(circle) defines a location where material is removed from the design space that
is otherwise filled with material elements [150].

3.3.3 Graph Representation

In contrast to having independent components, several researchers have
explored the idea of representing the phenotype as a graph. In these cases,
the genotype encodes positions of nodes and characteristics of the edges
such as form or thickness. Examples for this are graphs in which edges
represent beam elements or spline curves that are connected through the
nodes.

Bézier Curves

Tai and Chee connected locations, where the structure interacts with
boundary conditions such as loads and supports, by Bézier curves [187].
Each element of the mesh through which the curve passes, is assigned ma-
terial and thus forms the skeleton of the structure. The complexity of the
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represented structure is determined by the number of control points. An
additional thickness parameter defines the thickness of the connection, by
adding layers of elements around the skeleton. Thus, the structure is de-
fined by the location of the control points and the thickness values along
the curves. A genetic algorithm and a constraint handling evolutionary
algorithm have been applied for optimization [187, 188].

Wang and Tai encoded the Bézier curves in a graph, in which the vertices
are the end- and control points and by applying a graph specific crossover
[204]. Figure 3.5 shows an example of the Bézier curves representing a
structure and the according graph. Several extensions have been proposed
[186, 198, 200], for instance distinguishing between active and inactive
curves that can change their state during the optimization [198], so that
only active curves contribute to the structure. Furthermore, a hybrid
genetic algorithm with local search for a multi-objective optimization has
been proposed recently [201]. By a different research group [160, 163], a
structure is defined more simply by connected piece-wise linear segments
with different length and orientations.

Element number, control point@ .

Element number, boundary A
Thickness A\

(a) (b)

Figure 3.5: Graph representation that encodes control point locations and
thickness values (a) that define Bézier curves surrounded by material in the
design space (b) [204].

Bit-Array and Skeleton

Balamurugan et al. combined a Geometric Representation with a bit-array
representation in a two phase approach [23]. In the first phase a bit-
array encoding is applied and optimized by a two-stage adaptive genetic
algorithm. They used a criterion for skeleton convergence as stopping
criterion for the first phase. Originating from image processing “skele-
tonization” refers to the extraction of a thin skeleton structure from the
bit-array solution. Connectivity and extent of the structure are preserved.
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In the second phase the Geometric Representation is constructed from the
optimized skeleton. Horizontally connected elements are aggregated to a
rectangle with height of one element. The geometric variables are the left
and right boundary elements of the rectangles. Rectangles are nodes in a
graph and edges are defined from the connections of the converged skele-
ton to make the application of that graph specific cross-overs possible. A
genetic algorithm is then used for optimization.

Complex Shaped Beam Elements

Sauter applied complex shaped beam elements as basic geometric units in a
topology optimization [148, 149]. Start and end locations of the beams are
the nodes of the graph and parameters corresponding to the edges define
shape and thickness. He proposed straight, variable-thickness, and curved
variable-thickness beams, realized by a cubic thickness distribution around
a centre line, respectively. Furthermore, Sauter introduced specialized
operators such as splitting and merging of beams. Due to the capability
of this representation to change the displacement path via shape changes
along the centre line, it is especially suited for the design of compliant
mechanism and is applied to the design of an adaptive car seat concept.

Constructive Solid Geometry

Ahmed et al. propose a constructive solid geometry approach [2]. They
combine primitives to obtain more complex geometries by using solid mod-
elling operators such as the union operator. Two nodes and a thickness
parameter define the rectangular beam primitives. A skeleton topology
- i.e., the edges of the graph - are obtained by Delaunay triangulation.
The coordinates of all nodes, other than fixed support and load nodes, are
optimized and the triangulated mesh edges are decoded into a structure
with rectangular beams with the corresponding thickness. For overlapping
bars the constructive solid modelling union operator is applied in such a
way that the complete area covered by the bars forms the structure. Fig-
ure 3.6 illustrates this idea. It is possible to meet a volume constraint by
scaling the beam thickness values and a genetic algorithm is used for the
optimization.
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Figure 3.6: Representation by constructive solid geometry as in [2]: (a) nodes
and triangulation, (b) beam shapes along edges.

3.3.4 Level Set Methods

In classical Level Set Methods [193], which were introduced in Sec. 2.1.3,
the shape of the boundary between void and material is defined by the
contours of a level set function. Usually, gradient-based optimization is
best suited to address the large number of basis functions that compose
the level set, but genetic algorithms have been used, as well [51]. Although
the level set approach is not explicitly formulated, the Geometric Repre-
sentations presented in Sec. 3.3.1, 3.3.2, 3.3.3 and 3.3.3, work on a similar
principle. Some level set approaches are explicitly based on a smaller num-
ber of basis functions and can be optimized with evolutionary algorithms
[71, 74]. Hybrid evolutionary strategies have been proposed to optimize a
level set function based on beam-shaped geometric basis function [34, 35].

3.4 Indirect Representation

In Grid and Geometric Representations, a fixed descriptive model is used
to directly describe the structure. In contrast to these cases, a represen-
tation can be classified as an “Indirect Representation”, if the genotype
encodes properties of a variable, generative model that implicitly defines
material locations or a geometry. The rules or development processes that
create the structure, are often inspired by onto- or morphogenesis processes
in nature and mimic various aspects at different levels of abstraction.

3.4.1 Lindenmayer System

The grammar-based Lindenmayer system (L-system) is a model for em-
bryonic cellular division of organisms. It was originally developed for
modelling branched topology in plants. A planar graph is termed map
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L system and defined as a finite set of regions, separated by edges that
are connected at vertices. Biologically, the edges represent the cell bound-
aries. It has been used to evolve a family of three-dimensional table-like
structures [85, 86]. Although no explicit reference is made to topology op-
timization and the structure is evaluated without a finite element analysis,
this is effectively an early example for addressing a topology optimization
problem with an Indirect (generative) Representation.

A more recent approach explicitly applies a map L-system to topology
optimization [104, 138]. The model features cell division in two cells with-
out the vanishing of cells. A first phase of the division applies markers to
all edges. In a second phase, matching markers are connected, realizing the
cell divisions. The two phases are repeated several times. Each division
stage is followed by a dynamic stage until a force equilibrium is reached.
Only the equilibrium result is used for the structural optimization. The
development of a topology in a cellular division process is illustrated in
Fig. 3.7. Additionally, a property that controls the thickness of the edges
is introduced. The rules of the cellular division encoded in the genotype
are optimized by a genetic algorithm.

The method has first been applied to aircraft structural design [104]
followed by validation on a compliance cantilever [138]. The latter showed
that the approach provides close to optimal solutions and that the number
of evaluations is significantly lower compared to some grid-based [22, 205]
and a Voronoi approach [73]. Further applications followed: aeroelas-
tic topology optimization of flapping wing venation [176], simultaneous
topology optimization of membrane wings and their compliant flapping
mechanisms [177] and an extension for sub-system placement [119].

Figure 3.7: Starting point and the first three developmental steps of the cellular
division process, shown at equilibrium [138].
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3.4.2 Gene Regulatory Network

Steiner et.al. applied a biologically inspired cellular model for the evolu-
tionary development of structures [33, 181, 182]. It features cell division
and physical interaction of the cells, such as adhesion and repellence. The
genotype encodes a simple form of a Gene Regulatory Network, which
consists of a gene with a regulatory and a structural unit. The state of the
regulatory unit is based on the cell type and the environment. It influences
the structural unit, which determines the type of the cell and eventually
controls a cell division. Steiner et al. also implemented a more complex cell
model based on the same network structure, but with a higher number of
units and including additional physical forces for adherence and repulsion
and chemical gradients used for chemotaxis [183]. The chemical gradient
causes an additional force that is acting on the cells, and can, also, be read
by the regulatory units for gene activation.

The growing process and mapping to a three-dimensional structure is
illustrated in Fig. 3.8. The development process is started from a single or
few cells. Based on the encoded rules, the cells repeatedly divide and spe-
cialize in material and void cells and at the end of the development process,
when the calculation area is filled, void cells are removed and material cells
are mapped to the structure. An evolutionary multi-objective algorithm
minimizes weight and inner stress [182] or bi-linear energy [183] within
the elements of a three dimensional structure. The results show that the
model is able to devise complex lightweight structures, especially in regions
of the Pareto front of very low weight, in which classical gradient-based
algorithms failed to find solutions.

3.4.3 Compositional Pattern Producing Network

A state-of-the-art method in the field of generative encoding is the
Compositional Pattern Producing Network (CPPN) [179] as a model
for a developmental process, often optimized by Neuro Evolution for
Augmenting Topologies (NEAT), and hence called CPPN-NEAT. Tt is
important to note that topology in this context refers to the topology of
a neural network model. A CPPN is a model for embryonic development;
more precisely it implements the specialization of a cell based on its po-
sition. The nodes encode various mathematical activation functions, that
process the input coordinates of the cell. Using, for instance, Gaussian
or periodic functions, desirable features, such as symmetry or repetition,
can be realized. NEAT evolves a neural network model by starting from
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Figure 3.8: Cellular growth model based on motile polarized cells and voxeliza-
tion, from Steiner et.al. [183].

a simple network and increasing its complexity.

Recently, CPPN-NEAT has been applied to topology optimization.
Cheney et al. use the Cartesian and polar coordinates of the design space
mesh as inputs to a CPPN [45]. The output of the network determines
the material type and a multi-material structure is obtained. They define
the objective function as the ability of the structure to match a frequency
profile. Figure 3.9 depicts the representation with CPPN.

Evins et al. encode on the one hand the presence and absence of material
and on the other hand the type of the material in two CPPN nets [62].
As inputs they use coordinates, as well and apply the method to optimize
the ratio of generated energy to total cost of a photovoltaic collector.

3.5 Discussion

The previous sections introduced an overview and categorization of the
existing representations that can be used for the problem of continuum
topology optimization of mechanical structures with EC. Three categories
of representations have been identified: Grid, Geometric and Indirect Rep-
resentations. This section addresses the task of discussing the three classes
and outlines the corresponding assets and challenges.

Grid Representation: A Grid Representation is relatively easy to
realize, since it does not require the implementation of geometric bound-
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Figure 3.9: Example for CPPN representation, adapted from [45]. Cartesian
and polar coordinates of the design space elements serve as input to a CPPN-
NEAT model. The nodal activation functions are optimized and include for
instance sine, Gaussian or sigmoidal functions. For each element the output of
the network specifies the material within the corresponding element.

aries. The most common and simple mapping utilizes the computational
grid of a finite element analysis model. This simplicity results in a reduced
scalability, since the resolution of the discretization directly influences the
number of variables. Therefore, Grid Representations are prohibitively ex-
pensive for fine grids, for which the search space dimensionality is higher
and a lot of irrelevant solutions might be generated. Hence, variational
operators have to be designed carefully, in order to reduce the amount of
infeasible candidates; for instance, solutions that show numerical instabil-
ities or a lack of connectedness. Yet, within the practical limit regarding
the number of elements, it is always possible to represent the optimum
phenotype can. In genotype-space the full design freedom is maintained
and no assumptions on the solutions are implied. Thus, Grid Representa-
tions might have the highest potential for small-sized problems, for which
little or no previous knowledge is available.

Geometric Representation: A Geometric Representation provides
direct control over the potential complexity of a structural design, as it
allows to choose the number of shape primitives. It decouples the mesh
resolution from the dimensionality of the genotype by limiting the num-
ber of components within the structure. Prior knowledge about proper-
ties of good solutions is required; therefore, each Geometric Representa-
tion is most likely suited for a limited set of objective functions. Suit-
able shape primitives are good compromises between design flexibility and
search space dimensionality and have the highest potential for this method.
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Furthermore, Geometric Representations that facilitate the manufactur-
ing of optimized structures from pre-defined components are beneficial
for application. However, compared to Grid Representations, Geometric
Representations involve a higher implementation effort, since they require
a geometry mapping from the genotype to the finite element mesh. In
conclusion, Geometric Representations might be most feasible for evolv-
ing structures with limited number of features, when valid assumptions
regarding the choice of the shape primitives are available.

Indirect Representation: Optimizing a generative model might
enable the exploitation of the potential of evolutionary computation, by
creating and re-using problem-specific design patterns to evolve creative
solutions. In comparison to Grid or Geometric Representations, few
optimization variables can encode many structural details. However,
finding and implementing a suitable Indirect Representation can be a
challenging task and the simulation might be computationally expensive.
Furthermore, it might not be clear, which phenotypes are in fact repre-
sented. Currently, the published literature on Indirect Representations is
the least of the three categories and more research is required to determine
which approaches are suitable for which kind of problems. For instance,
indirect encoding using CPPN-NEAT in Sec. 3.4.3 was applied to compli-
cated real-world examples, yet not evaluated on a standard compliance
reference. Hence, it is not clear how accurate the optimum phenotype
of a reference problem can be represented. Therefore, considering both
sides, reference and application, might be an academically and practically
rewarding direction, as indicated by the applications of the cellar division
representation in Sec. 3.4.1.

So far, there has been little research interaction between the approaches
from the field of evolutionary computation and the gradient-based topol-
ogy optimization methods introduced in Chap. 2. Based on the work of Wu
et al. [211] (which is an example of a Grid Representation), Sigmund [170]
criticizes that non-gradient topology optimization methods can only be
applied to problems with tiny mesh sizes, due to the exponentially grow-
ing computational cost. Advantages, claimed by Wu, include that the
result does not contain intermediate density elements and that a global
search is performed. Both claims are refuted as somewhat irrelevant, since
finding a discrete solution for the global optimum on a tiny mesh is easily
contested by finding a more precise solution with a more efficient gradient-
based method on a fine mesh. A structural boundary that still contains
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a thin layer of intermediate densities is usually present in density-based
methods. However, this can be easily accounted for e.g. by applying a
simple threshold to the intermediate densities of the result or by using
more elaborated projection methods [169]. This leads to the conclusion
that for typical topology optimization problems, for which gradient infor-
mation is available, it is preferable to use it and non-gradient methods are
not necessary.

With Geometric and Indirect Representations, there are interesting al-
ternatives to Grid Representations, for which the number of parameters
is decoupled from the number of mesh elements. These reduce the search
space dimensionality by making assumptions about the solutions, such as
geometric building blocks or the implicit generative process. However,
these assumptions might compromise the ability to provide practically ac-
ceptable solutions, due to a restriction on possible phenotypes.

Yet, EAs and corresponding representations can also be applied to prob-
lems involving black-box simulations and are of advantage when applied
to objective functions that involve non-linear characteristics such as dis-
connectedness, multi-modality, ruggedness, or noisiness.

In general, the application of methods from the field of computational
intelligence was often met with scepticism. However, nowadays computa-
tional intelligence methods have been established for many applications.
Examples for this development include EAs in the field of optimization or
neural networks in the domain of statistical modelling, respectively ma-
chine intelligence. For the community researching in topology optimization
this is yet a step to be taken.

Independently of the representation, most EC approaches for topol-
ogy optimization are tested on objective functions of linear elastic prob-
lems. A majority thereof addresses various formulations of compli-
ance objective functions subject to weight constraints or vice versa
[2,22,23, 34,42, 51,94, 103, 110-112, 115, 129, 138, 152, 153, 155, 183, 187,
196, 205, 211], sometimes also formulated by means of displacement con-
straints [72, 73, 205]. Some authors have addressed compliant mechanisms
[94, 148-153, 187, 199], inner stress [182], eigenvalue [115], stress and dis-
placements under uncertainty [200] or target matching [186, 198, 201, 203]
problems. Although the analytical sensitivities are known for these prob-
lems, they can serve as important references to evaluate the performance
of an evolutionary optimization approach. (Therefore, the novel method
proposed in this thesis is evaluated on the compliance problem in Chap. 5).
Due to the efficiency and reliability of gradient-based methods, it seems
unwise to claim superiority over gradient-based methods in these scenar-
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ios; yet, it is still important to evaluate the optimality of the obtained
structures and the number of evaluations.

Therefore, rather than in competition to gradient-based methods, in
this work, EC approaches are seen as an alternative for especially difficult
problems. However, this awareness demands that evolutionary approaches
show their usefulness also in the face of more complex problems that are
not commonly addressed by gradient-based methods. EC approaches for
topology have been applied to a number of such problems: Topology opti-
mization of piezo-electric sensor /actuator pairs for torsional vibration con-
trol [202], artificial magnetic meta materials [43], path generating compli-
ant mechanisms [160, 162, 186, 188], compliant mechanism for the design
of an adaptive car seat concept prototype [149], electrical motors subject
to electromagnetic simulations [53, 54|, flapping wing venation subject
to aeroelastic analysis [176], simultaneous topology optimization of mem-
brane wings and their compliant flapping mechanisms [177], photovoltaic
collectors [62] and the design of random frequency profile structures [45].

In general, the application of derivative-free methods promises the high-
est impact when derivative information is “unavailable, unreliable or im-
practical to obtain”[143]. Practical engineering design optimization prob-
lems that are often involve black-box simulations are especially interesting.
Although some examples have been presented, it is generally difficult to
find literature that highlights unsolved problems, for which the stochastic
topology optimization might be best suited - perhaps due to the nature of
the publication process. Nevertheless, the following paragraphs complete
the discussion by suggesting a few domains that could potentially benefit
from the application of EC methods for topology optimization.

Interesting directions include problems that are challenging due to
anisotropic materials (e.g. composites), coupled physics simulations (e.g.
thermo-mechanical or fluid-structure), and simulations of manufacturing
processes (e.g. metal-sheet forming or stamping processes); especially,
when the simulations have to be addressed by explicit finite element
solvers. In general, the inclusion of the manufacturing simulations or post-
processing steps in the topology optimization design process might prove
a valuable target for EC topology optimization methods. Guirguis et al.
have done a first step by considering manufacturing and assembly cost of
multi-component sheet metal structures in an one-stage approach [71].

Another important topic is crashworthiness topology optimization,
which is introduced in Chap. 6 and which is the application focus of
this thesis. Due to the strong non-linearities and transient nature of
the models, analytical sensitivity information cannot be easily obtained
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[66, 128]. Due to the simulation noise and the cost of the simulation,
finite-differencing approaches are difficult to realize or infeasible, as well.
Therefore, specialized heuristic methods are developed, which will be dis-
cussed in Sec. 6.1. However, these heuristics are not generic. Hence, they
are prone to fail when outside of their specific use case. An example thereof
it the engine hood topology optimization in [75], where actual head-injury
criteria are addressed in a succeeding shape optimization, because it is
not possible to explicitly address them in the topology optimization. Fur-
thermore, EC method could be an alternative to existing heuristics for
objective functions found in impact mechanics problems (with even more
extreme dynamics and non-linearities than in a crash), e.g. in [69].

3.6 Summary of Contribution

This chapter provides a comprehensive review of representations that exist
in the literature of evolutionary computation in the context of topology
optimization. For the first time, the continuum topology optimization
problem is discussed from the perspective of EC representations. Three
categories, Grid, Geometric, and Indirect Representations are defined and
the existing approaches are classified accordingly. This is followed by a
holistic and critical discussion of the approaches, by outlining strengths
and weaknesses, especially in comparison to gradient-based approaches.
Although the majority of approaches in the explored literature applies
Grid Representations, it is shown that interesting alternatives do exist,
especially, in the field of indirect representations, which are only rarely re-
searched at the moment. The presented review of the literature concludes
with current and potential future fields of application and offers interesting
directions for further research.
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4 Topology Optimization by
Predicting Sensitivities

As discussed in the previous chapter, evolutionary computation approaches
for topology optimization come with the need of an appropriate lower-
dimensional representation of the design space, since assigning a vari-
able to each element is infeasible for anything but small-scaled problems.
Furthermore, almost none of the existing evolutionary computation ap-
proaches make direct use of the detailed simulation data that contains
valuable gradient information. These facts necessitate a novel topology
optimization approach that is proposed in this chapter. It is introduced
in Sec. 4.1. Its unique feature is a self-contained learning component that
provides a generic search direction for improvement of the structure that
systematically exploits structural state information. The approach utilizes
a density-based formulation, but avoids a direct evolutionary optimization
of a parameterized structure. The enclosing topology optimization al-
gorithm is described in Sec. 4.2. The learning concept is either based on
evolutionary optimization, proposed in Sec. 4.3 or supervised learning, pro-
posed in Sec. 4.4. The hierarchy of the learning and modelling approaches
presented in this chapter is shown in Fig. 4.1. Parts of this chapter are
based on [9, 10, 14].

4.1 Generic Update-Signal Model

4.1.1 Introduction

A general evolutionary algorithm may perform well on the average of a
large set of optimization problems, yet a method that incorporates do-
main knowledge usually has better performance when a specific type of
problem is considered. Thus, it makes sense to tailor an evolutionary al-
gorithm to a topology optimization problem by specific operators or by
combining it with heuristics in order to increase its efficiency. Usually, the
combination performs better than either of its components [59]. In fact, a
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Overall generic topology optimization concept (Sec. 4.1-4.2)
| Local State Features (Sec. 4.1.3)
— Enclosing Topology Optimization (Sec. 4.2)

Learning Concept: Explicit Evolutionary Learning (Sec. 4.3)

| — Model: Artificial Neural Network (Sec. 4.3.1)
— Model: Piecewise-Constant (Sec. 4.3.2)

Learning Concept: Sampling and Supervised Learning (Sec. 4.4)

I— Model: Support Vector Regression (Sec. 4.4.3)
—— Model: Linear Regression (Sec. 4.4.3)

Figure 4.1: Overview of the structure of Chap. 4. The chapter introduces a
generic topology optimization concept with different learning and modelling
approaches.

number of hybrid approaches have been published that use sensitivity or
stress related information to improve the performance of a global search
for a topology optimization solution. For instance, Woon et al. used a mu-
tation operator that used sensitivity contours to introduce cavities [209].
Others used elemental strain energy densities or stresses to bias the varia-
tion of the elements favourably [39, 44, 97, 100, 103, 107, 210]. Inversely,
the generalization of an efficient, specialized method is also possible, i.e.
to widen its applicability to be more general by reducing the amount of
problem knowledge.

In this context, we dismiss the assumption that mathematical or numer-
ical gradients are available. Concretely, the idea of the proposed method
is to utilize a learning process that enables application of a classical topol-
ogy optimization method even in cases, in which gradients are unavail-
able. Hence, the problem is changed from finding the optimum structure
to finding the optimum search direction. Figure 4.2 illustrates this idea by
depicting the flow of a conventional gradient-based topology optimization
algorithm compared to that of a generic topology optimization algorithm.

In the classical approach in Fig. 4.2(a), experts predefine mathemati-
cal expressions for sensitivities! prior to the execution of the optimization.
The sensitivities depend on the problem and are rigorously derived depend-

n topology optimization, typically, the partial derivative of a function with respect
to a design variable is referred to as “sensitivity”, compare Sec. 2.2.
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ing on objective function and constraints. The state information, that is
required for sensitivity computation at the given design point is obtained
from one or several structural analyses. The resulting method works for a
specific problem only. For any modifications, other corresponding deriva-
tive formulations need to be found externally to the optimization process.
One one hand, the advantage of this process is that an accurate search di-
rection is provided. On the other hand, the problem here is obviously that
the capability to find a solution depends on extrinsic expert knowledge.

In contrast, the proposed, novel approach in Fig. 4.2(b) aims instead at
providing a generic model for the sensitivity in case no expert knowledge
is available. The model is generated as an intrinsic part of the optimiza-
tion process. For the purpose of defining a search direction, state data is
systematically mapped onto an heuristic substitute for a sensitivity for-
mulation. This substitute model may provide an approximation of the
gradient, yet it may also apply any other function that achieves improve-
ment of the structure. Therefore, throughout this work it is generally
designated as “update-signal model”. Two possibilities for obtaining the
update-signals are presented later in this chapter and are indicated in the
figure: evolutionary optimization and supervised learning.

It should be clear that the generic optimization performs similarly to
the gradient-based one, in case the update-signal model accurately predicts
the correct sensitivities; therefore, the proposed approach can be termed
“Topology Optimization by Predicting Sensitivities” (TOPS). Such an ap-
proach has not been implemented yet in the known literature.

4.1.2 Replacing Sensitivities

Due to their high efficiency and generality, density-based methods are one
of the most commonly applied topology optimization approaches in both
industry and academia. The majority of topology optimization problems
can be formulated as the general, discretized optimization problem with
volume constraint from (2.4). For reading convenience it is repeated here:

min F(p, u(p))
s.t.: Go(p) = V(p) — Vo <0, (4.1)
0< pmin <pi <1,i=1,...,N ,

where the design variables p;, ¢ = 1,...,N are the material densities within
finite element i and material parameters are interpolated based on the
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SIMP scheme in (2.3). Since the approach introduced in this chapter
focuses solely on an objective function with volume constraint, the ad-
ditional constraints are dropped; yet, the following considerations could
also be applied to additional constraints. Associated with problem (4.1)
is a structural analysis (typically a finite element analysis) that yields the
structural state u.

The efficiency of density-based methods with gradients comes from the
fact that the sensitivities of all variables with respect to the objective
function and constraints can be obtained by at most one finite element
analysis per objective and constraint. This methodology is very efficient
in topology optimization, where the number of variables can reach up to
millions and the number of constraints is usually moderate. One has to
note that it is usually necessary to conduct an additional adjoint analysis
for every constraint plus the objective function [1, 6, 30, 68]. Examples for
adjoint analysis for compliance and displacement minimizations are given
in App. A.1.

To address problem (4.1) with gradient-based methods, the partial
derivative, or sensitivity, of F' with respect to the variable p; is required.
In the context of this work, emphasize has to be put on the global state
vector u, which is required to compute the objective value. Beyond that,
gradient-based approaches also utilize this state vector to compute the
sensitivities of the objective function, with respect to the design variables.

When topology optimization problems are analyzed based on adjoint
sensitivity analysis [1, 6, 30, 68], the mathematical sensitivity formulation
can be expressed based on the state u and, depending on the problem,
adjoint states vi, va, ... :

OF(p) _ 9F(p)

o, = ;s (p,u, vy, vy ....) ,

In density-based topology optimization all variables represent the same
structural property, i.e. the material density within an element of the de-
sign space. The benefit of this precondition is that the sensitivity expres-
sion can be localized in common cases the such as compliance minimization,
minimizing heat conduction resistance, or compliant mechanism synthesis
[30]. When a closed mathematical expression for the localized sensitiv-
ity is found, this implies that only local state information is required, to
compute the sensitivity of variable i i.e.

OF(p) _ OF(p)
Opi dpi

(pa u;, Vi, Vo, ) ) (42)
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with u;, vi,,ve, being the localized versions of the states. The index
denotes state information that is associated with element ¢ and the cor-
responding nodes in the mesh. The localization effect is caused by the
partial derivative of structural characteristics. For instance, the derivative
of the stiffness matrix is only non-zero for the components influenced by
the element that corresponds to the variable. Accordingly, when dealing
with structural optimization, the local elemental state(s) contains valu-
able information on how beneficial with respect to the objective function
or constraints, it is to increase or decrease a design variable. It is impor-
tant to realize that the local state information implicitly contains global
information from the structural analysis, since it depends on the design:
u; = u; (p)

Hence, a mapping that updates the design variables, i.e. redistributes
material within the structure, can be defined based on the localized states.
For one objective function without additional constraints as in (4.1), the
sensitivities (4.2) can be used to update the solution:

updategy _pn :

T
W . w [ [OFP(p) F® (p) F® (p)
o —p 3 v i
1 pi pN

in which the mapping update is an optimization step, which provides a
new vector of design variables p*t1) based on the gradient, and k is the
iteration number.

In a generic optimization, the goal is to perform a comparable optimiza-
tion step, based on update-signals that substitute the sensitivities:

. T
updategy py : p* — pHD ([Séﬁ) ng) gj\),] ) , (4.3)

where Sp is a model with parameters @ € R®, that provides the update-
signals Sg; for all elements.

Under the auspices of this approach, it makes sense to begin by target-
ing an update-signal model that predicts sensitivities. Ideally, one would
use the same localized state vectors that are required by the sensitivities,
contained in independent variables for the model input:

_OF(p)
dpi .

By processing the corresponding local simulation data, a single model can
provide update-signals for all variables.

Se = Se (p,u;,v1,,va,,...) (4.4)
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For the determination of the update-signal model Sec. 4.3 and Sec. 4.4
will consider evolutionary optimization and supervised learning methods,
respectively. The learning tasks are limited to determine @ model param-
eters instead of N density values, where it is possible to chose the model
so that ©® < N. The generic TOPS method with the novel learning com-
ponent has the following conceptual advantages compared to conventional
EC approaches from Chap. 3:

e The update-signal model is taking the place of gradients. Hence,
the task is to determine a model for the search direction, which
makes it possible and consequent to utilize well-established topology
optimization techniques. This in turn enables the application of
gradient-based algorithms, even when no mathematical gradient on
the design variables is available. Existing optimizers, regularization
methods, and interpolation schemes for topology optimization can
be utilized out of the box.

e TOPS maintains the full design flexibility, since each element of the
finite element mesh of the design space is assigned an individual de-
sign variable. Since the update-signal model is decoupled from the
design space mesh, it does not need to change with a higher mesh
resolution. Moreover, it does not reduce the search space dimension-
ality of the design space by making assumptions about the solutions
that jeopardize the ability of expressing the optimal structure.

e The method makes systematic use of state information that is ob-
tained from the simulation data of structural analyses. Since the
state is the source for obtaining gradients, it can provide search direc-
tions for updates of the structure. When available, this information
should not be neglected in favour of a purely stochastic search. Also,
previous analytical or semi-analytical knowledge can be utilized. In
theory, once a sufficiently accurate and general update-signal model
is found, the efficiency of a gradient-based search is approached.

4.1.3 Local State Features

The concept of modelling characteristics of the optimization problem is
not new and, for instance, used in surrogate-assisted optimization for en-
gineering [65, 96]: response surface methods generally [123], in the context
of structural optimization [156], or as well in estimation of distribution ap-
proaches [80, 106]. However, these approaches directly model the objective
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function, or the distribution of favourable solutions in the space of design
variables. Yet, in (4.4), a different approach is expressed by the depen-
dency on the structural state(s). This approach expresses the exploitation
of localized state information, associated with variables as model inputs.
These inputs lead to modelling a search direction in the space defined by
the localized state features, in contrast to modelling the objective func-
tion. This difference is essential, since the high number of variables in
topology optimization renders the learning of distributions or surrogates
of the objective function practically infeasible.

Besides the mathematical perspective on sensitivity, the idea of a generic
update-signal is motivated by gradient-like, biologically-inspired (but non
EC) approaches in the literature. State information is sometimes used in
an intuitive way instead of computing rigorous mathematical sensitivities.
Heuristics are gained from human intuition, experiments and/or biological
motivation. These approaches utilize state information for heuristically
conducting topology optimization very similar to gradient-based topology
optimization,

An early representative of these methods is the so-called “soft kill op-
tion”, inspired by the natural growth processes in trees, devised by Baum-
gartner and Mattheck [25, 116]. The topology optimization is performed
similar to density methods: Based on the elemental stress, the Young’s
modulus of the material in the element is reduced, slowly weakening the
unnecessary elements in the mesh and reinforcing the more stressed parts.
This yields structures similar to those of minimum compliance optimiza-
tion results. Similarly, early ESO/SERA approaches, (see Sec. 2.1.3),
were mainly based on intuitively defined heuristic criteria, e.g. they used
the elemental stress as rejection criterion to remove whole material ele-
ments from the design space [212, 213]. Tovar [190, 191] showed that the
bone-remodelling process in human trabecular structures can be modelled
by a topology optimization process that achieves a uniform distribution
of the strain energy density throughout the structure. Bone material is
accumulated where the strain energy is large and reduced where strain
energy is low. The process of bone-remodelling in a fixed tissue region is
modelled as a Hybrid Cellular Automaton (HCA), in which each cell holds
a continuous state that represents the amount of material in the element.
Each cell updates its state based on the local strain energy densities, in-
cluding those of neighbouring cells. Patel applied the HCA algorithm as
an heuristic topology optimization method in the field of crashworthiness
problems [131, 132]. The method achieves an optimized result by using
elemental internal energy densities occurring during the crash event (hence
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state information) for the update of the cells.

These heuristic approaches have a great similarity to the classical,
gradient-based density approaches. For instance, as stated by Sigmund
[171] only a few lines of code need to be changed to turn the density-based
topology optimization code [168] into a cellular automaton algorithm. In
both cases elements or cells can develop into material or void. Hence,
the classical mathematically rigorous approaches as well as the mentioned
gradient-like, heuristic approaches fall into the category of Fig. 4.2(a),
since the rule for material redistribution is defined by a user prior to the
optimization. In both cases, the resulting concept is only applicable for
the optimization of a certain objective function.

The target of the generic approach proposed in Fig. 4.2(b) is to exploit
localized state information systematically and to obtain an update-signal
suitable for the optimization objective. This should be achieved without
need of the human expertise of devising a predefined heuristic or sensi-
tivity analysis. Hence, the state information serves as input features in
an autonomous model learning process. Since in (4.2) localized state in-
formation is assumed, we therefore term the inputs of the update-signal
model Local State Features (LSF).

Then, with a generalized LSF vector s; € R”, we can express the update-
signal model as:

Sei = So (p,uz‘,V11;V2m~-) = 5o (SZ) ’

where J is the number of LSF. Note that the feature vector just as the
states depends on the current design: s; = s;(p).

The actual LSFs in the components of s; that are applied depend on the
problem. Depending on the objective function and the type of analysis,
different LSF may be available. A trivial LSF is the amount of material
density in an element p; i.e. the design variable associated with the ele-
ment. When the governing equation is solved by a (displacement-based)
finite element solver, the state vector is the vector of nodal displacements
u. The most basic LSF are naturally the components of the elemental
displacement vector u;.

As an example, Fig. 4.3 presents the state of a two-dimensional, square
finite element, which is defined by four nodes. The element is shown in
undeformed and a deformed state. The deformed state is the result of
applying a load and performing the finite element analysis. The state
is “local” with respect to the element considered. For the displayed, two-
dimensional square element ¢, an eight-dimensional local displacement vec-
tor u; = [u;1, . .. ,Uig]T forms the basic LSFs.
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Figure 4.3: Local state features: Example for displacements of element nodes
when a finite element analysis is performed.

A simple scenario, in which this information is utilized is the mini-
mum compliance problem. Here, the local, elemental strain energy den-
sity, which depends on the local displacements, indicates whether material
should be added or removed in the corresponding spot. When this re-
lation is implemented as an iterative rule, a compliance minimization is
performed.

Figure 4.4 illustrates LSFs of a two-dimensional cantilever structure
subject to a load (as considered in the fundamentals, Sec. 2.5). Different
(normalized) features are highlighted. Elements are colour coded with
the first and second component of the local displacement vector and the
elemental strain energy. It can be seen that the displacements of the first
node contain less structured information, compared to the elemental strain
energy.

Computing elemental energies, strains, or stresses, highlights that it is
possible to post-process basic LSF, such as nodal displacements, to ob-
tain stronger features, which represent more concise information. This
processing also provides an opportunity to incorporate optional expert
knowledge. Intuitive, heuristic, semi-analytical or analytical information
on the sensitivities can be included, depending on the problem. For any
learning process that aims to map the LSF onto update-signals, the in-
formation contained in the LSFs is of critical importance. On the one
hand, for weak LSF, which contain little or very abstract sensitivity in-
formation, the learning task can be challenging. On the other hand, with
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0 u;2 5 SED/i
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Figure 4.4: Example for: (a) Material distribution of cantilever structure sub-
ject to static load in the design space (note that white area contains minimum
density material); Resulting Local State Features: (b) horizontal displacement
of first element node uj;, (c) vertical displacement of first element node wjs,,
(d) elemental strain energy SEDj. The stroke indicates that the LSFs are nor-
malized over the design space to zero mean and standard deviation one, hence,
unitless values.

(b)

(c)

increasing quality of LSFs, the learning task is simplified and the usage of
mathematical sensitivities is approximated.

Since the discussed LSF are continuous (physical displacements, densi-
ties), the task is to map a continuous input parameter space to a continu-
ous output parameter, hence a regression model is required. Two machine
learning methods for implementing the update-signal model are proposed
in Sec. 4.3 and 4.4. Before that, optimizer and regularization methods, as
well as the computational flow of TOPS are described in the next section.

4.2 Enclosing Topology Optimization

So far, it has not been stated how the update-signal is concretely used. In
the TOPS approach, the concept of the generic update-signal is enclosed
in techniques from density-based topology optimization.

An efficient scheme to obtain the components pEkH) of an updated so-
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(k+1)

lution p; is the Optimality Criteria (OC) update [30]:

max(pPmi (k)
pmlrn pi
if p* BY < max(pmin, p* — m),

2

—m)

£k+1) =4 min(1, PP 4 m) (4.5)

i

if min(1, p{* +m) < p{"' BY,

pgk)B;’ else ,
in which k is iteration number, m is a move limit, and 7 is a damping
parameter. These are stability parameters that control the amount of
change that occurs during any one iteration of the topology optimization.
A recommended value for the damping parameter is n = 0.5.

In the proposed generic approach, the OC-input

B = max(0, — Sp(s;))/A

depends on a filtered version of the update-signal §g (s;) and a Lagrange
multiplier A. The formulation assures that B > 0 holds. The update-signal
is treated exactly as mathematically derived optimality criteria would be.
The smaller the error

of

|8Pi
the more the optimization is expected to yield the results of a gradient-
based optimization.

The OC-update is an intuitive, heuristic scheme that increases the den-
sity in elements with low sensitivities and decreases the density in elements
with high sensitivity (assuming minimization). It does so, while maintain-
ing the volume constraint by adjusting the Lagrange multiplier A with a
bi-sectioning algorithm. The OC-update is the concrete implementation
of the update mapping in (4.3) that is used throughout this work.

The hat indicates the filtered version of the update-signal, according to
a sensitivity filtering approach [167]. Concretely, the update-signal of an
element is modified according to:

— Se(si)l

N

. 1 .

So(si) = ——=x—=—>_ Hijp;iSo(s;) (4.6)
Pi Zj:l Hij j=1
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and

)

ﬁ. J— Tmin — dlSt(ZJ) dlSt(ZaJ) < Tmin
K 0 otherwise

where dist(4,7) is the centre to centre distance of elements i and j. Es-
sentially, the update-signal of an element is replaced by the weighted av-
erage of the update-signals of its neighbours, the elements within radius
min > 0. The filtering is a method that imposes a minimum length scale
on the resulting structures and helps to avoid numerical instabilities as
discussed in Sec. 2.2.2.

These essential components, optimizer and filter, are chosen as in state-
of-the-art density-based topology optimization algorithms [5], but they are
adapted to be used in the TOPS approach. Although the OC optimizer
and filtering of sensitivities are well established and efficient techniques
that are suitable for numerous problems, these components can be ex-
changed, for example in order to address a problem with extra constraints
as in (2.4) with mathematical programming methods.

The computational flow of this basic TOPS variant can be seen in Fig.
4.5(a). According to the flow, the topology optimization is started with
the evaluation of the initial solution. Then, a first training of the update-
signal model is performed. In the subsequent step, the trained model
provides the update-signal. The signal is filtered according to (4.6) and
a new structure is obtained by applying the OC-update in (4.5). The
new structure is evaluated and it is checked whether a stopping criterion
is fulfilled. If this is not the case a new model is trained for the new
structure.

The next section modifies the algorithm to conduct the training only
when it is actually necessary.

4.2.1 Improvement Threshold

This section introduces an improvement threshold as extension to the basic
TOPS variant, which was presented in the preceding section. The target
is to reduce the duration and total number of model learning events, since
training of the model necessarily involves expensive function evaluations.
The idea behind this is to reduce the learning of the model to cases, when
it is actually necessary in order to achieve improvement of the structure.
This will be implemented by adding a check of the actual progress and a
consequent branch into the computation scheme.

In the basic TOPS approach in Fig. 4.5(a), the design is updated and
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Figure 4.5: Computational Flow of TOPS (a) and TOPS with improvement
threshold (b).

accepted without further restrictions when the training is completed. A
new model is learned every iteration. This neglects potential generaliza-
tion of the model. The update-signal model may be reused for several
subsequent updates of the design without re-training.

The difficulty here lies in determining the point at which a model is suf-
ficiently accurate to stop the training or, respectively, skip it completely.
This problem is resolved by an improvement threshold, i.e. a minimum
progress that has to be achieved by the structural update. The corre-
sponding, modified computational flow of TOPS is shown in Fig. 4.5(b).
The modification of TOPS is visible by the possibility to reject designs in
a “Check Design Improvement”-step and using the rejection as trigger for
the training.

Under the assumption of minimization, the progress of the topology
optimization can be quantified by the relative design improvement AF,
with

AF = ‘ (F(k) - F(’f“)) /F(’“)‘ , (4.7)
where k is the iteration number, F(®) is the value of the objective function
and we assume F*) > F(* 41 The optimization is stopped when the
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design improvement becomes smaller than a defined threshold: AF <
AF‘min~

A simple stopping criteria for training of the model parameters is to
reach a fixed number of function evaluations. This is also motivated by the
fact that in industrial applications often a budget of allowed evaluations
exists. The computational flow of the improvement threshold augmenta-
tion is shown in Fig. 4.6. It corresponds to a detailed description of the
check design improvement step in Fig. 4.5(b).

We define a number of evaluations M, after which the design improve-
ment (4.7) is checked. Further, we limit the evaluations during one topol-
ogy optimization iteration by M™?2*. Following the flow in Fig. 4.5(b),
the training is started in the first iteration and runs for M evaluations.
After M evaluations it is interrupted, the design is updated and the de-
sign improvement is checked against the threshold. The relative design
improvement AF is measured as defined in (4.7). A counter variable
Miier = 0 is initialized.

1. If AF >= AF,: The design is improved sufficiently and thus
the model training is completed for this iteration. The design is
accepted, the topology optimization continues and Mite, is set to
zero. In the next iteration, the model is reused for the update of the
design. Otherwise: M., is increased by M and it is continued at
2.

2. If Mier < M™2*: The model training is continued for another
M evaluations. After training is completed the updated design is
checked again by 1. Otherwise: The overall optimization process is

Design obtained from
current optimized model

<——— AF > AFmin —_— Miter < Mmax P )
Accept Design, Yes no yes Reject Design,
Continue - Continue Learning

Topology

=2 Check Design Improvement
Optimization

e Stop Optimization

Figure 4.6: The “Check Design Improvement” Step of TOPS with Improve-
ment Threshold.
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stopped and the design is rejected. The preceding design is the final
result of the optimization.

This scheme is motivated by the fact that the required effort for model
learning is unknown. In step 1, a fixed number of the evaluations is per-
formed to train the model. The algorithm updates the design iteratively,
and, in case of failure, the training step is continued, so that only the min-
imum amount of evaluations for acceptance are required. However, when
the design is not improving, this can either be caused by its convergence
or by insufficient quality of the update-signal model. Therefore, a limit
on the maximum amount of evaluations is provided. Furthermore, it may
happen that weak predictions still result in a marginal improvement of the
design. In order to avoid this case AF,;, > 0 is specified, enforcing a min-
imum improvement threshold of the structure and, implicitly, a minimum
for the quality of the model?.

Assuming that the design is not yet converged and M and M™?* are set
sufficiently large, this scheme trains the model until it eventually achieves
the specified improvement AFy,;,. It avoids an early-stopping behaviour
that might be caused by low quality models that would occur when AF <
AFin. Furthermore, the number of evaluations can be reduced, since the
model is reused as long as the structure is improving.

4.3 Explicit Evolutionary Learning

Significantly, none of the existing EC approaches for topology optimization
exploits the potential of LSFs. This is not too surprising, if we consider
that these are naturally black-box approaches, which are characterized by
their universality. Domain-specific knowledge is more commonly incorpo-
rated by designing adequate representations or variational operators for
a problem. Only in recent works [45, 62] described in Sec. 3.4.3, coordi-
nate information is utilized. The structure is represented by a mapping
of the local coordinates, such as Cartesian or polar coordinates to a bi-
nary value describing presence or absence of material at that location. Yet
coordinates are not state information; on the contrary, they are indepen-
dent of the structural analysis, and, therefore, independent of the current
structure.

2An adaptive improvement threshold that aims at reducing the sensitivity of the op-
timization to the choice of parameters, may be used, as well. This was applied in
a publication of the author [15], however, for the sake of brevity, results are not
included in this work.
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In the proposed TOPS method, evolutionary optimization can be ap-
plied to tune the parameters of the update-signal model, resulting in an
indirect and adaptive representation. The effect of the model on the struc-
ture can be observed by its application to modify the structural design.
Model parameters, which result in an adequate update-signal, will achieve
(until convergence) an improvement of the structure. These parameters
can be optimized explicitly by an evolutionary search algorithm using the
objective value of the structure as optimization target. Fig. 4.7 illustrates
the optimization idea of a population of models that determine an update
of the structure.

Algorithms that combine a global search with a local search are often
called memetic algorithms [124]. Conventionally, a local search is applied
to enhance the global search. However, the proposed method instead uses
the global optimizer in order to provide a direction in a local search. From
the EC perspective this is an implicit representation. It is implicit because
a mapping from the state of the structure to an update of the design, i.e.
a rule for the changing of the design is represented and optimized.

Consequently, the model parameters are directly encoded sequentially as
optimization variables. In order to devise a suitable update-signal model,
Se(s;) the parameters 8 are optimized by the evolutionary optimization,
i.e. the objective value of the design after the update step is minimized.
Formally, the objective value of a candidate @ is evaluated by emulating
an update of the design:

meinF(p(kH)(O)) : (4.8)

This emulation includes the computation of the update-signals for all de-
sign variables, the filtering and the OC-update to obtain p*+1) and com-
putation of the objective value of the new resulting design vector F’ (p(k+1))
by a structural analysis.

Expression (4.4) suggests that the model targets to predict sensitivi-
ties of the design variables, which should in many cases lead to improve-
ment of the structure. However, when objective functions are significantly
non-linear, it might be difficult to obtain satisfying results with gradient-
descent. If the linearity assumption or the gradient are incorrect, the
structure will not improve as expected. In this case, a model that is
learned by evolutionary optimization will serve as an indirect representa-
tion that provides a rule for updating the design. Hence, even when the
most accurate gradient does not improve the structure, the evolutionary
optimization might still be able to provide an alternative direction that
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Figure 4.7: The optimization process of updating the structure based on local
state features and model.

improves it anyway.

In the following, two concrete update-signal models are presented. The
first model is based on the machine learning technique of neuro-evolution
and the second one is a piecewise-constant model based on the idea of a
state based representation.

4.3.1 Neural Network Approximation Model

Artificial neural network approximation models are biologically-inspired
statistical models from the field of computational intelligence. For back-
ground information, the reader is referred to standard literature [32].

In the field of computational intelligence, Neuro-Evolution(NE) is the
combination of evolutionary algorithms with neural networks [215] and
is an active area of research. An overview on NE can be found in [63].
It considers the application of evolutionary algorithms to devise efficient
neural networks for various tasks in a reinforcement learning-like optimiza-
tion process. Neuro-evolution has been applied, for instance, to controller
design for pole-balancing [82, 93, 178], controller design for wing shape
adaptation with concurrent sensor and actuator evolution [172], controllers
for multi-legged robots [192], classification tasks [40], and computer games
[142, 180]. Instead of manually improving the neural network model, NE
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explores networks by evolutionary optimization. Besides from practical
application this may also be used to mimic and improve understanding of
evolution of biological neural systems.

Since the ideal configuration is unknown, more elaborate approaches
apply changes of the network topology or activation functions. Therefore,
such modifications are difficult to perform, whether manually or by us-
ing standard gradient-based learning approaches. In approaches such as
Neuro-Evolution by Augmenting Topologies [178], the complete network
architecture is evolved, starting from a single neuron. In the simplest case
of NE (which is considered here), only the parameters within a fixed neural
network are optimized.

Since the goal is to provide a generic topology optimization method a
fairly general model should be chosen. As a first approach a fully connected
feed-forward Multi-Layer Perceptron (MLP) model with one hidden layer
is used. It is intended that by choosing such a standard feed-forward MLP
as approximation model no previous knowledge on the considered topology
problem is included, yet assuming a sufficient number of hidden neurons
it may model continuous and smooth non-linear functions. Furthermore,
the implementation and parameter optimization are straight forward, and
the relative simplicity of the model preserves a traceable complexity in the
resulting TOPS approach.

Mathematically, a MLP with a single hidden layer is described as:

Se(si) = go(03 - gn(0] -sy)) (4.9)

with the weights 81 connecting input neurons with hidden neurons and the
weights @5 connecting the hidden neurons with the single output neuron,
with 87 = [#] 81]. The activation function is designated gy, for the hidden
neurons and g, for the output neuron, respectively. Each neuron also has
an additional bias as input. For H hidden neurons and J LSFs, the number
of weights is © = (J+2) - H+1. It is important to distinguish between the
topology of the neural network model and the topology of the design. Since
the neurons and connections within the network are fixed, the topology of
the network does not change. Throughout this work, the term “topology”
only refers to the topology of the design (i.e., the mechanical structure),
which is to be optimized. An illustration of the MLP processing the LSF
for an element is depicted in Fig. 4.8. It shows how, for each element in
the design space, the LSFs are used as input to the network model. The
model is processing the features and provides the update signal for the
element.
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Figure 4.8: A feed-forward Multi-Layer-Perceptron with one hidden layer as
update-signal model, processing Local State Features as input. A single model
provides update-signals for all elements in the design space.

The generic topology optimization approach with neuro-evolution is re-
ferred to as NE-TOPS3. Results using NE-TOPS on a reference problem
are presented in Sec. 5.2.

The proposed MLP model is a smooth function in the space of LSFs.
However, it is possible that a high number of hidden units is required
for adequate modelling of a non-linear function. The potentially high
number of variables increases the computational cost of the evolution-
ary search. Therefore, rather than using a universal regression model, a
different model, motivated from the perspective of a lower dimensional
representation, is proposed in the next section.

4.3.2 Piecewise-Constant Model

In this section, another modelling approach is introduced that is motivated
by the perspective of a lower dimensional representation of the structure,
based on its state. It exploits the assumption that when elements with
similar state are changed, they also have a similar effect on the objective
function.

If (4.2) holds, then elements that have the same local state, also have

3In this thesis, several TOPS variants are proposed. For consistency of the naming
convention, the variant is indicated by a prefix. This terminology deviates slightly
from that used in publications. In [14, 15] the approach is referred to as Neuro-
Evolutionary Topology Optimization (NETO).
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the same sensitivity value. Accordingly, all elements having the same LSF
vector have the same value of the update-signal, since Sg(s;) = Se(s;) if
s; = s;. For the modelling approach in this section we additionally assume
that several elements with similar LSFs can be assigned the identical sen-
sitivity, i.e., when they are neighbours in LSF space. Formally, the model
assumes S;(s;) = 5;(s;) if some distance measure dist(s;,s;) is small.

Each element i relates to a point in LSF space by its LSF vector s; € R”,
with the number of LSFs J. This results in an unlabelled data set of LSF
space samples V = {s1, ..., sy} which is illustrated in Fig. 4.9(a) and
(b) for a two-dimensional LSF space.

This enables a state based representation by grouping elements that
are assumed to have similar influence on the objective function, for in-
stance elements that are close to each other in LSF space. By choosing
a user-defined number of characteristic LSF vectors, a lower dimensional
representation based on the structural state is defined, without geometric
assumptions. Then, elements that have similar LSF can be represented by
individual optimization variables.

Concretely, a simple form of vector quantization is applied: The data
set )V is mapped to a finite set of indices, based on P prototype elements.
The LSF vectors ¢; € V, 1 € {1,..., P} of the prototypes define clusters in
LSF space. A mapping ¥ can be defined that maps each sample in data
set V to an index, as

Uy 1,y i 8 = G = argle{n}.iﬂp}(diSt(si’ c))
with the Euclidean distance metric dist(s;,c;). The expression argmin
returns the value of [ that minimizes the distance. Thus, each sample in
V is assigned to a cluster with index (; = ¥(s;).

This relates to a subdivision of the LSF space in Voronoi cells. In
contrast to existing work [155] the Voronoi cells are defined in LSF space
and not within the Cartesian coordinates of the design space. An example
for the resulting clusters in LSF space and the corresponding elements
in the design space is shown in Fig. 4.9(b) and (c), respectively. With
random prototypes, each point in LSF space is assigned to one cluster of
LSF points, highlighted by different colours in the figure. The elements
represented by the clusters of LSF vectors are be mapped back to the
design space, where they are not necessarily connected.

The number of prototypes can be chosen by the user, depending on the
desired precision of the quantization. In the limit case P — N, in which
the number of prototypes approaches the total number of elements, each
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Figure 4.9: Example for: (a) Density distribution of cantilever structure sub-
ject to static load, (b) corresponding points in a two-dimensional LSF space,
where s;1, s;2 are normalized elemental strain energy and density, respectively,
with clusters by choosing 4 prototype elements, and (c) resulting groups of ele-
ments in the design space.

element becomes a prototype. An advantage is that the number of clus-
ters is decoupled from the number of elements in the finite element mesh,
thus preferably P << N. This is important since the search space dimen-
sionality is critical in terms of performance and cost of an evolutionary
search.

The prototypes represent the structure depending on its state. By as-
signing an individual optimization variable to each prototype, a vector
0 = [0, ...0p]7 € RY of search variables for the evolutionary optimization
is obtained. The resulting update-signal can be stated as:

So(s:) = Ow(s;) (4.10)

Since the proposed representation of the structure is based on the state,
which is a function of the material distribution, i.e. u = u(p), any change
in the structure will result in a change of the state. The new state leads to
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different cluster assignments of the elements and eventually it is necessary
to determine new prototypes that account for the change and reduce the
quantization error. Therefore, it makes sense to only change the structure
gradually, as it is done in the TOPS by the OC-update.

Specifically, an update-signal is assigned to each element prototype and
its cluster of elements, resulting in a piecewise-constant function in LSF
space. When this function is mapped back to the design space, it can
be used to determine the increase or decrease of the density in the corre-
sponding elements. An example illustrating the idea is shown in Fig. 4.10.

Since the update-signal model is composed of local zero-order models we
designate the approach Topology Optimization by Predicting Sensitivities
with Piecewise Constant Model (PCM-TOPS). Results on a reference
problem are presented in Sec. 5.2.

When using PCM-TOPS, the first prototypes are determined and the
elements are assigned to the respective cluster, in the initial learning step
of the TOPS flow in Fig. 4.5. For every new training event, new proto-
types are determined based on the changed structural state. By defining
new prototypes, the representation is adapted to the changed material
distribution within the design space. The adaptation decreases the quan-
tization error, induced by the clustering. This facilitates a low number of
prototypes and a feasible dimensionality for the evolutionary search.

Each time a retraining of the model is initiated, the prototypes are
randomly chosen. Ideally, elements with the same sensitivity should be
clustered. Accordingly, prototypes should be chosen so that elements with
similar sensitivity are grouped together. However, the actual sensitivity is
unknown and hence the ideal clusters as well. A random choice has the
advantage that areas in LSF space with high density on average contribute
more centre points, such that the groups of elements are of roughly equal
size. Also, a random choice increases the variability of the representation,
any good set of prototypes will be reused, while an unsuitable choice will
be replaced quickly. Furthermore, the random choice is algorithmically
consistent with the supervised approach introduced in the next section
Sec. 4.4.

The PCM approach helps to understand the interesting transition from
a state-based representation of the structure to a sensitivity prediction.
In this case, modelling the sensitivities corresponds directly to a represen-
tation of groups of elements. As long as an active volume constraint is
considered, any optimization of the densities will necessarily optimize the
change of the elements, since for each elemental density that is reduced at
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least one other needs to be increased. In consequence, an improvement of
the structure can be typically expected when the optimization yields an
accurate sensitivity model.

4.3.3 Optimization with CMA-ES

A standard, state-of-the-art evolutionary optimizer is applied to tune the
parameters of the update-signal model as in (4.9) or (4.10). The weights
of the neural network model in Sec. 4.3.1 are continuous as well as the
parameters of the piecewise-constant model in Sec. 4.3.2. Therefore, it
makes sense to apply an evolutionary strategy for optimization.

In the considered scenario of evolving weights of a neural network, the
evolutionary optimization has similarities to a reinforcement learning ap-
proach of a controller. For the reinforcement tasks related to explicit policy
learning methods, CMA-ES has shown to be a well-performing and robust
optimizer. In direct policy learning, parameters of a function are searched
explicitly. The goal is to maximize the reward and agent obtains for its
actions that it takes depending on its state. Few comparisons can be found
in the literature, however, it was demonstrated on the pole-balancing task
that the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
[76, 78] achieves very good results and is additionally more robust when
compared to policy gradient methods [81].

As introduced in Sec. 2.3.1, CMA-ES is one of the best currently ex-
isting optimization methods for real-valued problems. It is a version of
evolution strategies that utilizes the information collected by mutations in
the previous iterations to estimate a covariance matrix for the mutation
operator. This approach is especially useful for industrial optimization
problems since it is able to find improved solutions with a relatively low
number of evaluations [21]. Therefore, CMA-ES is also expected to per-
form well in case of the neural network and the PCM.

In fact, when applied to the optimization of directly encoded artifi-
cial neural network models, the CMA-ES has shown to be a competitive
approach for the task of neuro-evolution with fixed network topologies
[70, 82, 93, 106]. CMA-ES optimization of fixed network topology con-
trollers outperforms several topology evolving methods and developmen-
tal neuro-evolutionary approaches often perform even below random walk
approaches [70, 82, 93]. Fine-tuning the approaches according to specific
results may conceivably produce more sophisticated topology-evolving and
developmental approaches. For general tasks, it is more efficient to use a
general purpose optimizer, such as CMA-ES, which is very efficient on a
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large number of multi-modal test functions [77]. Below, we apply CMA-ES
for addressing problem (4.8).

4.3.4 Computational Flow

For NE/PCM-TOPS, two optimization loops can be distinguished. The
outer loop is the actual topology optimization as described in Sec. 4.2.
For tuning of the update-signal model, an inner loop with the CMA-ES
optimization of the update-signal is started. The objective (respectively
fitness) of a model is defined as the objective (4.8) of the structure after
the material distribution update. Fitness, then, is computed by emulating
a single topology optimization update step, consisting of filtering and OC-
update as described in Sec. 4.2.

The computational flow of the described NE/PCM-TOPS algorithm is
depicted in Fig. 4.11. Tt extends Fig. 4.6(b) by specifying the internal loop
for the model learning step. In this step, the evolutionary optimization

Initial Design a.nd quel
Start Struct. Analysis Candidates @
¢ %E| §
£
» Start/Continue Computation of 2|2
Evolution Update-Signals 2 |
‘-’; o
A =
Computation of 2 s
——>» p . Filtering and OC = =
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: v g |2
£ ° |5
k= - New Design and |8 g
3 1 esing el 00 Struct. Analysis EO %og
=i + | "
S| &b \/ el
& 8 New Design and 2
R S 8 : Model Selection o
) - Struct. Analysis 3
|t ' !
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Figure 4.11: The computational flow for TOPS with explicit evolutionary tun-
ing of the update-signal model with CMA-ES.
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takes place.

During the evolution, as expressed by (4.8), the more the objective func-
tion of the new design is improved, the better the update-signals substitute
the sensitivities and, thus, the better the model parameters are. The best
models are selected as parents and a new set of model candidates is pro-
vided by the variational operators of the CMA-ES optimizer. This inner
loop is run until a convergence criterion, or a maximum number of function
evaluations, is reached. The optimized update-signal model is used in the
outer topology optimization loop to perform a persistent design update,
potentially for several iterations. When the learning step is reached again,
the evolution is conducted based on the changed set of LSFs. As described
in Sec. 4.2.1, an improvement threshold restricts the activation or continu-
ation of evolutionary optimization runs. Only when the previously trained
model is incapable to improve the structure, is the CMA-ES run again.

4.4 Sampling and Supervised Learning

As introduced in Chap. 2.2, the density-based topology optimization meth-
ods are classically utilizing analytical sensitivity information to perform a
gradient descent to a local optimum. The previous section investigates the
approach of replacing these sensitivities by a heuristic update-signal ob-
tained from explicit evolutionary parameter optimization. An alternative
approach is to sample the sensitivity by finite differences.

Under a finite differentiation approach, an estimate of the gradient is
obtained by disturbing variables by a finite value under the assumption of
local linearity. A classical naive, finite differentiation approach will how-
ever, at least require additional IV evaluations for each design point. For
small problems, such a naive, finite differentiation can be more efficient
than an optimization with evolutionary algorithms. This case has been
pointedly observed by Sigmund [170] with respect to the work of Wu and
Tseng [211]. Albeit they considered a small mesh, the proposed modi-
fied, binary differential evolution with grid-based representation required
more finite element evaluations than a finite differencing approach. For an
EC approach with grid-based representation, this is problematic, since its
application is limited to small mesh sizes anyway. In industrial topology
optimization applications, however, the number of design variables can
reach tens of thousands up to millions. The computational cost associ-
ated with the high number of finite element analyses renders naive, finite
differentiation approaches infeasible.
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It should be noted, again, that for NE-TOPS and PCM-TOPS ap-
proaches, as presented in the previous section, the number of variables
in the evolutionary optimization is decoupled from the mesh resolution.
Yet, treating the learning of the update-signal as black-box parameter op-
timization will tentatively result in high computational cost. Also, there
is no guarantee that the update-signals will be related to the sensitivity,
as any signals that improve the structure will be selected by the CMA-ES.
Still, the more the model represents the actual sensitivity, the more the
results will resemble those of a gradient-based optimization, providing a
clearly understandable theoretical explanation for the structural improve-
ment. Hence, when assuming that sensitivity information can be obtained
from finite differentiation, this opens a way to replace evolutionary opti-
mization by a more efficient machine learning approach.

Concretely, it is possible to train a regression model based on sampling
the sensitivity of a subset of the variables. This data is obtained from
finite differentiation, combined with the LSF's associated with each design
variable. Thus, the problem of generic topology optimization can be con-
sidered as a supervised regression learning task, which is a standard prob-
lem in the field of machine learning. In contrast to unsupervised learning,
supervised learning requires a set of training examples with known output
values. The sensitivity-sampling approach will be expounded in the next
section.

4.4.1 Sensitivity Estimation by Finite-Difference
Sampling

A finite difference (FD) is a small perturbation added to a design variable
in order to observe the change of the objective function (e.g. [55, 65, 175]).
A one sided forward finite difference is defined as:

AF;,  F(p+Ap;) —F(p) OF

~

1Aapill € 9pi

(4.11)
where Ap;, = [Apa ... Apgj... ApiN]T is the perturbation vector, con-

sisting of zeros, except for the i-th element, where it contains the finite
difference step length e.

[0 iy
A"”{e if i = j
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The accuracy of the estimate can be increased by using a two sided per-
turbation, i.e. central finite differentiation:
AF;, _ Flp+Ap)—Flp—Ap;) OF

= ~ — . 4.12
Tap,] 2 o (4.12)

Accordingly, N function evaluations are required for a forward finite
differentiation approach, and 2N function evaluations for a central finite
differentiation approach, to obtain sensitivity information for all design
variables. The problem of approximating the gradient of an N-dimensional
function can be formulated in general as a linear regression problem, i.e.
fitting a hyper plane to the function, requiring N + 1 sample points.

The “Learning of Model” step in the general TOPS approach as in Fig.
4.5 can be implemented by the use of finite differentiation. Conventionally,
the required number of finite element analyses per iteration, when using
gradient-estimation via finite differentiation is at least N + 1. Yet, when
applying the idea of the update-signal model from Sec. 4.1.3, it is not
necessary to perform finite differentiation for all N variables to obtain
update-signals for all variables.

An update-signal model that reflects the actual sensitivities of the de-
sign variables, can be obtained by sampling a subset of the elemental
sensitivities. A training sample is obtained by approximating the sensitiv-
ity by finite differentiation in (4.11) or (4.12) for a single design variable 1.

AF
Ap
variables, a set of samples consisting of the LSFs of an element and its
estimated sensitivity is collected:

This yields a sensitivity sample (s;, ) If this is repeated for T' design

{(Sl7y1)7 (SQ,yQ)v R (STayT)} )
ith y, = 5
with y; = Ay

The set of training samples is used to train a regression model with a
supervised approach. This update-signal model can predict the sensitivi-
ties of other design variables based on the LSF. Figure 4.12 illustrates this
idea.

Since the computational cost for training a model and predicting sensi-
tivities for the remaining design variables is assumed to be much smaller
than that for performing finite element analysis simulations for all of the
remaining variables, this is a more efficient approach than estimating the
gradient by pure finite differentiation.
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Figure 4.12: The idea of TOPS with sensitivity-sampling: For a subset of the
elements in the design space, the sensitivity is found using a FD technique.
Based on these samples, the update signal model is trained and used to predict
sensitivities for the remaining majority of elements in the design space.

Compared to the tuning of the model with evolutionary optimization,
the advantage is a reduction of the computational cost for training the
model, since the sensitivity target function is modelled explicitly. Once
again, it is important to emphasize that the usage of features associ-
ated with the design variables differentiates the approach from typical
surrogate-assisted optimization (e.g. [65]), estimation of distribution algo-
rithms, such as CMA-ES, or generally derivative-free methods. For TOPS,
not a model for the objective function is learned but a model of the lo-
cal sensitivities of the variables, based on the LSFs. This provides an
alternative to computing finite differences for all design variables.

Since the design is changing continuously during the optimization, it is
possible that samples obtained from earlier iterations do not contribute
to the prediction, or even contradict information gathered from the more
current designs. Thus, it is advisable to use only samples obtained from a
number of previously sampled designs.
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4.4.2 Aggregated Sensitivity-Sampling

In the previous section, it was proposed to determine the update-signal
model by learning from the explicit sampling of the design variables’ sen-
sitivities. Although more efficient than tuning of the model parameters by
evolutionary optimization, the approach relies on the assumption that the
sensitivity of a variable can be estimated sufficiently precise by finite dif-
ferentiation techniques. Yet, it is possible that this assumption is not true
for industrial optimization problems, especially those involving black-box
simulations. An example is the case of crashworthiness topology opti-
mization, which is the application considered in Chap. 6. The reason is
that crashworthiness simulations involve significant amounts of numerical
noise.

Theoretically, the sensitivity is estimated correctly for ¢ — 0. Prac-
tically, it is limited by the accuracy of the considered function, i.e. the
underlying simulation. The accuracy of the simulation result is limited at
least by the mesh resolution that is still feasible in terms of required com-
putational time. Hence, the effect of modifying a single element is hard
to measure accurately, and any attempt usually contains numerical noise
in the sensitivity estimation. This problem is alleviated when the variable
is varied with a larger finite difference step, up to the complete variable
bounds; however, in this case, the linearity assumption might be violated,
causing again an imprecise estimation of the sensitivity.

In order to alleviate the problem of numerical noise, the TOPS algorithm
can be extended by further exploiting the assumption on the relation be-
tween the LSFs and the sensitivity, as it was done for the PCM in Sec.
4.3.2. Again, we additionally assume that elements with similar LSFs
also have a similar sensitivity, where similarity is measured by a distance
measure in LSF space.

Then, it is possible to perform a concurrent finite difference step, i.e.
a simultaneous perturbation [175] for several variables, which have simi-
lar LSFs. The aggregated change in the objective function can then be
mapped to an average sensitivity of the involved elements. Concretely,
instead of estimating the sensitivity of p; by a finite difference step as in
(4.11), the sensitivity can be estimated by an aggregated sampling step.
For this purpose we introduce the aggregated finite difference vector

€j€gi
0j¢6

where G; is a set that contains the indices for the Ng elements, which are

(Ap;)* = [Ap1j Apaj - Dpnj)T, Apiy =
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closest to element ¢ in LSF space. With the Euclidean distance in LSF
space we can calculate the length |[(Ap,;)*8"|| = v/Nge.
Based on this finite difference, the approximation of the partial deriva-
tive can be found as:
(AR F(p+ (Ap;)*&") — F(p) _ OF

l(Ap;)ee| VNge T op
In this way, a sensitivity sample (s;, (AF;)*88"/ ||(Ap,)?88"||) is obtained,
where §; is the average of all LSF vectors belonging to the elements in
G;. If we assume that the local linearity assumption for F' is true, then
(AF;)?88" increases with Ng, i.e. the changes of the objective function for
perturbation along one axis AF; are summed up. However, an additional
error is introduced by the distance of the LSF samples of G; in LSF space.

The new parameter Ng needs to be specified by the user. Case Ng =1
is the original supervised approach from section 4.4.1. In case Ng > 1,
aggregated sensitivities are used. This can be designated as Topology
Optimization by Predicting Aggregated Sensitivities (TOPAS). For larger
values of Ng more elements will be aggregated and the sensitivity estimate
will become less precise, since the elements will have larger and larger
distances in feature space. Yet, for larger Ng, also the effect of the noise
of the objective function will decrease, relatively to a FD step as in (4.11).

Using aggregated sampling, the structure is changed more than for sim-
ple forward differentiation. The overall response of the structure is more
clear compared to changing a single element, but can still be related to
certain values of the LSF vector. An intuitive example is to imagine that
all elements that have a similar strain energy density are slightly increased
in the material density. Intuitively speaking, instead of doing a finite dif-
ference step for an element with a certain energy, an aggregated finite
difference step is done for all elements with the same amount of energy
and each element is assumed to contribute equally to the change in the
objective function. This is very similar to the idea of clusters in LSF space
as illustrated in Fig. 4.9, with the difference that the group for the aggre-
gated sampling are simply the Ng closest element neighbours to element
i.

Compared to increasing the finite difference step by factor Ng, the ag-
gregated finite differentiation reduces the Euclidean distance to the current
design point by factor /Ng. Thus, the assumption is made that linearity
is true close to the design point in the sense of Euclidean distance (i.e.
changing in several dimensions in parallel), rather than for a larger change
along one dimension.
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As argued, the aggregated sampling scheme can be beneficial for noisy
objective functions. If we assume that the objective function is subject to
additive noise:

F=F+z,

with a random number z ~ N(0, 0%) from a normal distribution with
standard deviation og. It holds:

AF, _ Flp+Ap) - Flp) _Flp+Ap)—F(p)
€ € € € ’

with 2/ ~ N (0, 20%). Using the aggregated sampling, we obtain

(AF)s  F(p+(Ap;)*) — F(p)

1(Ap,)e=]| — VNge
_ Flo+(Ap)**) — Flp)  _#
VNge VNge

such that the noise is reduced with increasing group size Ng.

4.4.3 Sensitivity Regression Model

A regression model maps a vector of input variables/features to a contin-
uous output variable. Regression models are a class of statistical learn-
ing models, typically obtained by data-driven supervised machine learning
methods. Theoretical background can be found in the literature, e.g. [32].
In this thesis, the supervised TOPS approach is applied in conjunction
with linear regression and Support Vector Regression (SVR) [173, 194].

Linear regression models are used as a basic model in which the learning
process and the result is rather easily traceable. It identifies linear relations
between the features and the target. The linear regression model is defined
as:

So(s) = O + Ors1 + . + 075, — 0T m , (4.13)

with the model parameters @ and the J-dimensional feature vector s. The
generic topology optimization approach with linear regression model is
referred to as LIN-TOPS.

The support vector learning method is a standard tool of machine learn-
ing as it has shown excellent performance in many regression and classi-
fication tasks and is easy to use. In contrast to linear regression, SVR
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is suitable to model non-linearities (for instance when no expert LSF are
available). The SVR model [194] can be stated as:

1%
Sg(s) = Zeﬂ% (Sl,S) ) s

v=1

where s; are the V' support vectors and k (s1,s) is the kernel function, rep-
resenting a dot product of a transformation of the input vector in a higher
dimensional feature space. The generic topology optimization approach
with SVR is referred to as SVR-TOPS.

The detailed description of the models is provided in App. A.2. In the
context of this thesis, the number of training samples is relatively low
so that over-fitting can be a problem and regularization methods are of
importance and also briefly described.

4.4.4 Computational Flow

Based on the idea described in the preceding sections, the computational
flow for the TOPS algorithm using supervised learning is proposed. Figure
4.13 shows the computational flow of TOPS with sensitivity-sampling, in
which the “Learning of Model” step is elaborated.

Initially, we assume no training samples are available. After the initial
analysis, the following steps are iterated:

1. A random indices subset of the design variables of size M < N, for
which the sensitivity will be sampled, is chosen. No design variable
is selected more than once for the current design.

2. The sensitivity with respect to the objective function and the current
design is estimated separately for the set of chosen design variables
by performing finite difference steps.

3. The sampled sensitivities and the corresponding features are stored.

4. The parameters of a new update-signal model are trained with a
learning algorithm, based on the stored samples.

5. The update-signal model predicts sensitivities for all design variables
which were not sampled by finite differentiation in step 1.

6. The predicted sensitivities are filtered and the OC-update is applied.

- 216.73.216.60, am 23.01.2026, 23:58:43.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186468208

82

4 Topology Optimization by Predicting Sensitivities

Initial Design and

Ste.trt Structural Analysis
Start/ Continue _>Choose Elements to
—» —_—
Sampling Sample
Computation of Conduct Finite
Update-Signals Differencing
v
g Filtering and OC Add to Training
9 Database
]
g _qg New Design and | Train Regression
g o« Structural Analysis Model
S| B +
3t 3 Learning of Model
%’, < Check Design
~ Improvement
*End

Figure 4.13: The computational flow for TOPS based on supervised learning
of regression models with finite difference sampling of sensitivities.

7. The quality of the new design candidate is assessed by a finite ele-
ment analysis.

The improvement threshold as described in Sec. 4.2.1 is checked. If
the design improvement is larger than the improvement threshold,
the design candidate becomes the current design and the algorithm
continues in step 5. Otherwise the design candidate is rejected and
either the optimization is stopped, or additional samples are taken
for the current design, i.e. the algorithm continues in step 1.

4.5 Summary of Contribution

This chapter presents a novel, generic topology optimization approach:
Topology Optimization by Predicting Sensitivities (TOPS). TOPS in-
cludes a learning component, which enables the algorithm to adapt to the
considered topology optimization objective function. This learning com-

216.73.216.60, am 23.01.2026, 23:58:43.
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186468208

4.5 Summary of Contribution 83

ponent generates a model that determines the redistribution of material
throughout the design space. Unlike conventional optimization approaches
that are based on surrogate modelling, our unique approach introduces a
systematic exploitation of simulation data: Local State Features (LSF)
are the independent model inputs. The LSFs are obtained from struc-
tural analysis. They are specific with respect to each finite element as
well as to the corresponding variables. As a result, the TOPS approach
is more widely applicable than regular gradient-based methods, as it does
not require pre-defined sensitivity formulations. It can also address prob-
lems for which no or very limited physical /mathematical understanding is
available, for instance, black-box simulations.

The first model-learning method proposed for TOPS is explicit evolu-
tionary learning. Since the number of model parameters is decoupled from
the number of finite elements, a high dimensional mesh representation can
be maintained. This is an advantage compared to typical approaches from
the field of evolutionary computation, which require a coarse grid or a
simplified representation. Furthermore, the proposed piecewise-constant
model reveals an interesting connection between sensitivity prediction and
a state-based representation. The second learning approach carved out in
this chapter is supervised learning. Using supervised learning techniques,
the model can be learned from finite differences. Potentially, it enables
a significant decrease of computational cost, compared to a naive, finite
differentiation approach, since only a subset of variables needs to be sam-
pled.

The following chapter critically evaluates the generic topology optimiza-
tion method with its various learning approaches. The goal is to show the
conditions under which each of the approaches are able to reproduces a
reference structure and to identify scenarios for application.
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5 Studies on the Minimum
Compliance Problem

This chapter evaluates the proposed generic topology optimization method
and presents comprehensive results. Primarily, Topology Optimization by
Predicting Sensitivities demonstrates its feasibility by reproduction of a
known reference solution in empirical studies. The addressed reference for
the experiments is compliance minimization, which is a standard topology
optimization problem. From a research perspective, it serves as refer-
ence for testing novel methods. Secondly, the comparison of the different
learning variants in various settings, yields valuable insights on important
working principles and parameters. These findings will help to address
more challenging applications, for instance in the subsequent chapter.

At first, the minimum compliance cantilever reference problem and the
Local State Features of this linear elastic static problem are presented in
Sec. 5.1. The remaining part of the chapter is composed of the experi-
mental sections. Section 5.2 presents the results of update-signal learning
based on explicit evolutionary optimization. It is followed by the results
of the supervised update-signal learning in Sec. 5.3. The chapter is con-
cluded with an overall discussion of the results in Sec. 5.4. Parts of this
chapter are based on [9, 10, 14].

5.1 Reference Problem

As any new topology optimization algorithm, the TOPS approach requires
validation on a reference problem. A standard topology optimization prob-
lem is linear elastic compliance minimization, for which well-known refer-
ence solutions and analytical sensitivity information are available (see Sec.
2.2.2). Hence, the learning target is known a-priori. An additional asset
of this problem is moderate computational cost of the linear static state
equation. It can be solved very efficiently when using existing solver im-
plementations, a fact that enables statistical investigations at least for
moderate mesh sizes.
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The two-dimensional cantilever beam is one of the standard test prob-
lems agreed on in the topology optimization community. Accordingly, a
solution for comparison is obtained easily and we chose it as reference for
our studies. Design space and boundary conditions are shown in Sec. 2.2.2
in Fig. 5.1. The parameters for the test case are given in Tab. 5.1 unless
otherwise specified. The load [ is the non-zero component of the load vec-
tor [ at the index of the centre node along the right edge of the design
space. The symbols 7y, and m have been introduced in Sec. 4.2, AFuin
in Sec. 4.2.1 and all others in Sec. 2.2, respectively

In the common formulation of the minimum compliance problem in
(2.5), there are no additional constraints besides the volume constraint.
Hence, for solving the problem with a standard gradient-based optimiza-
tion, mainly a sensitivity formulation of the compliance c is required. The
derivation of the adjoint sensitivities can be found in the literature (for
instance [30]) or in App. A.1. It is possible to express the sensitivities of
the compliance

(u(p) = u”1
based on the localized state information as:

2D O () = K (5.1)
where u; is the elemental, nodal displacement vector, K; is the elemental
stiffness matrix, p is the SIMP penalization and p; is the density. Since a
regular mesh is considered, K; = K is constant and the sensitivities de-
pend only on the local displacement vector and the density. The elemental
stiffness matrix Ky is given in App. A.3. A homogenous distribution of
material (p; = f,i=1,...,N) is used as initial design guess. The result-
ing design when optimizing with analytical sensitivities (5.1), optimality

Figure 5.1: Minimum compliance cantilever reference problem: design space
(left) and reference solution (right).

- 216.73.216.60, am 23.01.2026, 23:58:43.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186468208

86 5 Studies on the Minimum Compliance Problem

Table 5.1: Parameter settings for the plane stress minimum compliance can-
tilever reference problem.

Setting Symbol | Value

Number of elements N 45 x 28 = 1260
Element size - Imm x 1lmm
Load l 1IN

Target volume fraction | f 0.4

Young’s modulus E 1 N/mm?
Poisson’s ratio v 0.3
Penalization p 3

Filter radius T'min 2.0mm

Move limit m 0.2

Minimum improvement | AFi, 0.001

criteria update, and filtering of sensitivities, as proposed in Andreassen et.
al. [5] is shown in Fig. 5.1.

For testing of the generic topology optimization, it is assumed that
analytical sensitivities are unknown and a reference solution is obtained
by gradient estimation using forward finite differentiation (as in (4.11)) for
all design variables. The optimization stops after 21 iterations when AF' <
AFpin = 0.001. The resulting solution corresponds almost exactly to the
structure obtained by analytical sensitivities in Fig. 5.1. The obtained
reference objective value is cef = 54.45Nmm and the required number of
evaluations is M. = 26,481. These values and the corresponding structure
form a baseline for comparisons in Sec. 5.2 and Sec. 5.3.

5.1.1 Linear Static LSF

Evaluation of the structure requires solving the linear static state equation
(2.6) . Most experiments in this chapter consider two different LSF vectors
that are obtained from this solution and represent different amounts of
previous knowledge. The two LSF vectors are introduced in the following.

LSF Vector I s! € R represents a test case, in which expert knowledge,
such as e.g. intuition or (semi-)analytical information, provides at least one
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strong feature for the problem. The components of s} are defined as:

Ui fOI‘jZl,Z,...,&
sii=¢ pi forj=09, ,
SED; for j=10=J,

with the elemental density p;, nodal displacement components u;; and the
strain energy density SED; as LSFs.

Biologically-inspired or intuition-based topology optimization algo-
rithms that utilize the strain energy usually achieve acceptable results
when applied to the optimization of minimum compliance structures. This
is stressed by Sigmund et.al. in [171]: “Therefore, simple schemes that add
material where strain energy densities are high and subtract material where
they are low will always work fine.”. The reason for this is that the strain
energy density is proportional to the compliance sensitivity. In order to
illustrate this, Figure 5.2 shows the sensitivity versus some LSFs obtained
from analysing the initial structure of the reference test case. The linear
relation of strain energy density and sensitivity is confirmed in the plot,
while the relation is clearly non-linear for the nodal displacement LSFs.

Therefore, the elemental strain energy density can be considered as a
very valuable LSF for the reference problem. It can be constructed from
the basic features according to:

SEDl = pfu;rKoui/vi 5

with unit elemental volume v; = 1. This LSF represents human expertise
about the problem, as it contains direct knowledge on element formula-
tion and the material constants. It also contains implicit assumptions by
selecting this feature over other physical information on the element, like
e.g. strains or stresses.

However, in the test scenario, the TOPS approach does not have the
a-priori information whether to remove or to add material when the strain
energy density is high. Furthermore, the information on the elemental
strain energy density is mixed with that of the other LSFs. A successful
learning will nevertheless use it to improve the structure. Still, the learning
task with LSF Vector I consists mainly of identifying the simple linear
relation and serves as a basic validation of the approach.

For a more challenging learning task the strain energy density is omitted
and only the basic LSFs as introduced in section 4.1.3 are used. The
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Figure 5.2: The relation of several LSFs of s! and corresponding elemental
sensitivity shown for all elements of the initial structure. The sensitivity can
take several values for a nodal displacement component 511,2 = u;1,2, yet it is
clearly related to the strain energy density sl;, = SED; by a linear function.

components of LSF Vector II s} € RY are given as:

SH—{ u;; for j=12,...,8,

U\ p; forj=J"=09.

Without the strain energy density LSF, this choice of features does not
include additional previous knowledge about the problem at hand and
is generally available when a (displacement-based) finite element solver is
applied for analysing the design. Assuming constant p and Kg the informa-
tion on the energy is contained implicitly in s!!, however the learning task
is significantly harder: In order to exactly obtain the information where
to add and remove material, the non-linear, multi-variate polynomial in
the basic LSFs from (5.1) has to be modelled. The difficulty can also be
seen intuitively from the non-linear relation between LSF and sensitivity
for the displacement features as shown in Fig. 5.2.

Before any learning is performed, all LSF vector components are nor-
malized to zero mean and unit standard deviation.

5.2 NE/PCM-TOPS Experiments

In this section, several experiments on the minimum compliance reference
cantilever problem are conducted to empirically evaluate the generic topol-
ogy optimization approaches based on evolutionary optimization proposed
in Sec. 4.3:
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e Neuro-evolutionary Topology Optimization by Predicting Sensitivi-
ties (NE-TOPS),

e Piecewise-Constant Model Topology Optimization by Predicting
Sensitivities (PCM-TOPS).

Both approaches are conducted using LSF Vector I and LSF Vector IT with
different model complexities. The number of prototypes P for PCM-TOPS
is set to match the corresponding number of parameters of the network
model for NE-TOPS, such that the CMA-ES is faced with the same search
dimensionality ©. The number of inputs to the network depends on the
LSF Vector: O is different for LSF Vector I and II, since J' > JY. The
parameter settings are specified in Tab. 5.2 and it is indicated if different
values are chosen depending on the different LSF vectors. For each run,
the CMA-ES population size is chosen based on the recommendations by
Hansen and Ostermeier [78].

The initial model parameters are drawn from a uniform random distri-
bution in [—0.3, 0.3] for the neural network weights and biases 61 2 and
in [—1, 0] for the PCM prototype update-signals fy. For some parameter
configurations the model may be infeasible, because it renders a design
update impossible with the OC-update (for example when outputs for
all elements are identical). In such cases a very high objective value is
assigned.

The methods are implemented in Matlab [189] and use the available
code for the CMA-ES by Hansen'. For OC-update, filtering of sensitivi-
ties and FE solver, public code is used [5]. Each experiment was run for 30
different random seeds. As can be expected for algorithms with stochastic
components, there is variance in the resulting solutions. Evaluation takes

Thttps://www.lri.fr/~hansen/cmaes_inmatlab.html#matlab

Table 5.2: Parameter settings for NE/PCM-TOPS experiments.

Setting Symbol Value

Number of hidden neurons H 1,2,5,10,15,30

Number of prototypes PO(=0M) | 13,25,61,121,181,361
PID (=) | 12,23,56,111, 166, 331

Evaluations per learning step M 2000

Max. evaluations per iteration | M™** 4000

Initial global step size o =0 0.3
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this into account, e.g. by showing structures for best, mean and worst runs.
Unless otherwise specified, if a structure or curve is shown or if it is indi-
cated as “mean” this corresponds to the run that resulted in the solution
with the compliance closest to the mean compliance of the solutions of the
30 trials. Quantitative results for all experiments are collected in App. B.
For the conclusions drawn, statistical t-tests are performed based on the
5% significance level. In the following, the results for both LSF vectors
are presented separately with a subsequent combined discussion.

5.2.1 Results LSF Vector 1

In this section, results for LSF Vector I are described. An overview of
the results in terms of compliance and evaluations is shown in Fig. 5.3.
In terms of compliance, the two approaches show an opposing trend. For
NE-TOPS the lowest mean compliance is obtained for lowest model com-
plexities (one and two hidden neurons), while for PCM-TOPS the lowest
mean compliance is obtained for the highest model complexity (361 pro-
totypes). In terms of evaluations there is an increasing trend for both
approaches. The results are further studied for the model complexities
with lowest mean compliance.

For these model complexities, there is no statistical difference in terms
of compliance between PCM- and NE-TOPS, yet in terms of evaluations
NE-TOPS is much more economical (on average in total 1.85 - 10* opposed
to 3.36 - 10 evaluations). Figure 5.4 shows the objective values versus the
total number of function evaluations. NE-TOPS reaches a solution that
outperforms the reference? after roughly 6,000 evaluations. The update-
signal model is reused in some of the iterations. This shows up as vertical
descents in the plot, since no new evaluations are required for learning. In
this case, only singular evaluations are necessary to validate this improve-
ment. This a clear advantage compared to learning a new update-signal

2Intuitively, it is expected that the best possible update-signals cannot outperform the
reference obtained by finite differencing gradient, since naively it is expected that
the update signal would take the same values in the best case. However, the evo-
lutionary optimization can exploit random changes that modify the result towards
a more discrete solution, thus reducing the amount of remaining intermediate (and
penalized) densities compared to the reference. If the reference structure is post-
processed to a zero-one structure, by applying a simple threshold to the densities
that maintains the volume fraction, its compliance decreases from = 54.45Nmm to
47.13Nmm. When the same procedure is applied to the best NE-TOPS structure
its compliance decreases from 51.18Nmm to 46.93Nmm, which is only marginally
lower.
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Figure 5.4: The compliance of the mean and best run versus the number of
function evaluations for NE/PCM-TOPS on LSF Vector I.

model every iteration.

This confirms, that the update-signal trained in one iteration for one
specific structure can be generalized to improve the structure in the next
or several following updates. Figure 5.5 shows the evaluations for learning,
and the phases of re-usage of the model for the best run. For NE-TOPS,
learning is occurring rarely and the model is reused for a long period (it-
erations without evaluations). In the last iterations, as the structure con-
verges, the learning effort increases, as it becomes harder to find a model
that improves the structure. In the last iteration, the maximum number
of possible evaluations are utilized and unable to find an update-signal
that improves the structure. For PCM-TOPS the update-signal model is
only reused once and stopping occurs earlier, yet the same behaviour of
increasing evaluations towards the end is observed.

The optimized structures are shown in Fig. 5.6. On average, the result-
ing structures show good visual similarity to the reference structure.

Figure 5.7 shows the empirical correlation coefficient between the update
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Figure 5.5: The number of function evaluations for NE/PCM-TOPS learning
steps, over the iterations of the topology optimization.
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Figure 5.6: Optimized structures obtained for LSF Vector I with © = 361,
from left to right: worst run, mean run and best run.

signals and the analytical sensitivities versus the number of iterations.
Pearson’s correlations coefficient is a measure for the linear correlation
between two quantities, where 1 indicates a perfectly linear relation and
0 indicates no linear correlation. More information and its definition is
given in App. A.4. The results show that the correlation is always positive
for both learning approaches. However, NE-TOPS achieves a much higher
and also more flat correlation than PCM-TOPS. Hence, the prediction by
NE-TOPS are more linearly related to the actual sensitivity.

The results show that it is possible to obtain the reference structure for
both evolutionary learning approaches, although the method is most eco-
nomic for a simple model with NE-TOPS. The results are obtained without
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Figure 5.7: Empirical correlation coefficients for update-signals with sensitivi-
ties for NE/PCM-TOPS and LSF Vector I.

retraining a new update-signal model every iteration. This demonstrates
that in some iterations, the update-signal model is generalized to a new
design and instantly performing well. For LSF Vector I, TOPS with evolu-
tionary optimization is capable of successfully substituting the analytical
sensitivities by recognizing how to use the information contained in the
feature vector.

5.2.2 Results LSF Vector 11

This section describes the results for LSF Vector II, where the strain en-
ergy density is not included as LSF. An overview of the results in terms of
compliance and evaluations is shown in Fig. 5.8. While for PCM-TOPS
there is a steady trend of decreasing compliance, for NE-TOPS no statis-
tical significant change in compliance is observed between 10, 15 and 30
hidden neurons. The evaluations increase and then start to stagnate for
higher number of model parameters. For both approaches the lowest mean
compliance is obtained for the highest model complexities (30 hidden neu-
rons and 331 prototypes). The results are further studied for these model
complexities that resulted in the lowest mean compliance.

On average, NE-TOPS stops after 4.4 - 10* evaluations, while for PCM-
TOPS, the number of evaluations is notably lower with 3.6-10* evalua-
tions. Although it requires less evaluations, PCM-TOPS results in signifi-
cantly lower mean compliance. Figure 5.9 shows the compliance objective
versus the number of function evaluations. Again generalizations of the
update-signal model show up as steep descents in some iterations, in which
the update signal model can be reused.
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Figure 5.9: The compliance of the mean and best run versus the number of
function evaluations for NE/PCM-TOPS on LSF Vector II.

For the best run the evaluations used for update-signal model learning
are shown in Fig. 5.10. NE-TOPS reuses the update-signal model in
several of the iterations, PCM-TOPS in one iteration.

The resulting structures are shown in Fig. 5.11. The reference structure
is reproduced by PCM-TOPS, but for NE-TOPS even the best structure
lacks the connections of the reference cantilever and only the simple two
beam cantilever is obtained.

Figure 5.12 shows the empirical linear correlation coefficient between
the update signals and the analytical sensitivities versus the number of
iterations (More information and the coefficient’s definition are given in
App. A.4). At least a weak correlation in all iterations is observed. In
the later iterations NE-TOPS achieves a higher correlation than PCM-
TOPS. This demonstrates that PCM-TOPS achieves the reference result,
although it is not clearly modelling the actual sensitivities, but instead
alternative update-signals to improve the structure. Nevertheless this leads
to structures that more closely represent the reference than NE-TOPS.
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Figure 5.10: The number of function evaluations for NE/PCM-TOPS learning
steps, over the iterations of the topology optimization.
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Figure 5.11: Optimized structures obtained for NE-TOPS (top row) and PCM-
TOPS (bottom row) for LSF Vector II with © = 331, from left to right: worst
run, mean run and best run.

5.2.3 NE/PCM-TOPS Results Discussion

A large difference in the performance of the different modelling approaches
with the two LSF vectors can be observed.

NE-TOPS with LSF Vector I performs better compared to LSF Vec-
tor II. This can be seen by lower compliance values that are obtained,
lower variance of the resulting designs, and a reproduction of the reference
structure. Importantly, these better results are obtained with a much lower
amount of function evaluations. The superiority is founded in the usage
of the strain energy density as a LSF. As discussed in Sec. 5.1, the strain
energy density of an element is proportional to the analytical sensitivity.
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Figure 5.12: Empirical correlation coefficients for update-signal with sensitiv-
ities and LSF Vector II.

Thus, the learning task for the neural network is simple, since basically a
linear relation needs to be realized. This is easily possible by choosing the
weight parameters accordingly, such that the output mainly reflects the
strain energy density LSF, therefore, an improvement is expected for its
usage.

This indicates that the NE-TOPS approach offers the possibility to se-
lect the appropriate LSFs. From Fig. 5.3, it can be seen that the mean
compliance is even slightly better than that of the reference. It is achieved
not by close modelling of the sensitivities, but by optimizing the update-
signals such that the number of elements with intermediate densities is
reduced. The improvement itself is not relevant, since the same concept
structure is obtained. However, it reminds us that due to the generic na-
ture of the approach, it would be possible to include a post-processing step
that generates a discrete solution directly into the evaluation step.

PCM-TOPS requires a much higher number of model parameters than
NE-TOPS for LSF Vector 1. This lies in the nature of the PCM modelling
approach that distributes prototypes within the 10-dimensional LSF space
and has no means of preferring a specific LSF. Hence, the prototypes are
distributed sparsely and it is unlikely that the prototypes are distributed
along the dimension of the strain energy density, which renders the achiev-
able linear relation a question of chance. When the sparseness is reduced,
by reducing the number of LSFs or by increasing the number of proto-
types, PCM-TOPS can improve in competitiveness. Figure 5.13 shows
the significant reduction in compliance and evaluations, when a reduced
LSF Vector I with only density and strain energy density is applied for the
case of P = 13. Hence, PCM-TOPS might benefit substantially from a
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Figure 5.13: Comparison of the resulting compliance (left) and the required
evaluations (right) of PCM-TOPS with P = 13 for LSF Vector I and a reduced
LSF Vector I. In the latter, only density and strain energy density are present,
without nodal displacements. For the small number of prototypes, PCM-TOPS
can profit significantly from a reduced LSF space dimensionality and a much
lower compliance is obtained along with lower computational cost.

systematic feature selection or dimensionality reduction technique. As al-
ternative the number of prototypes can be increased to improve the result,
yet more evaluations are required (see Fig. 5.5).

However, the strain energy density is not of fundamental importance for
PCM-TOPS. The approach improves for LSF Vector IT compared to LSF
Vector I. The higher the number of prototypes, and the lower the number
of LSFs, the more the quantization error can be reduced. Therefore, the
reference can be obtained reliably for PCM-TOPS with LSF Vector II. This
is not the case for the neural network model, albeit its compliance values
are almost as good as the reference. These are obtained by fine-tuning
the densities towards a more discrete solution, yet it fails to reproduce the
components of the reference structure, which is the desired target. For NE-
TOPS the lack of the strain energy density in LSF Vector II implies a more
challenging learning task, that can be seen by higher solution variances and
the higher number of required function evaluations.

The results for LSF Vector II are especially interesting from the general-
ization point of view. Since a strong feature like the strain energy density
might not be available for other objective functions, it is important that it
is possible to generically substitute the non-linear relation of basic features
and the analytical sensitivity.

The results suggest that the optimization of a small neural network to
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select from one of the LSFs is computationally more efficient compared to
the PCM. PCM-TOPS is a better choice when the relation of the LSF's to
the sensitivity is non-linear. It does not depend as much on the choice of
LSFs, under the assumption of a sufficiently high number of prototypes.

Figures 5.7 and 5.12 show that the learned update-signals correlate
weakly and moderately with the sensitivities. Apparently, also update-
signals with weak correlation can improve the structure. In these cases,
the model should rather be considered as an indirect structure represen-
tation for EC than a sensitivity model.

By reproduction of the reference structure as well as the reference ob-
jective values, the generic approach is shown to be feasible, even when
the utilized LSF's contain the sensitivity information only implicitly. The
results demonstrate that in all experiments the re-usage of the update-
signal models reduces the number of evaluations, since the model is not
re-trained in every iteration, and the optimization does only require the
limit of evaluations M™®* towards the end of the optimization.

However, both approaches require a large number of evaluations, and
from a practical perspective a further reduction would be desirable. One
possibility is the explicit learning of the sensitivity function by finite dif-
ference sampling. This is the focus of the next section.

5.3 SVR/LIN-TOPS Experiments

Several experiments are conducted to perform an empiric validation of the
generic topology optimization approach based on supervised learning. The
experiments consider the approaches introduced in Sec. 4.4, namely:

e Linear Regression Topology Optimization by Predicting Sensitivities
(LIN-TOPS),

e Support Vector Regression Topology Optimization by Predicting
Sensitivities (SVR-TOPS),

e Support Vector Regression Topology Optimization by Predicting Ag-
gregated Sensitivities (SVR-TOPAS).

LIN-TOPS and SVR-TOPS are evaluated for both LSF vectors intro-
duced in Sec. 5.1.1. Computational cost in terms of structure evaluations
are lower compared to the explicit evolutionary learning. This facilitates
additional experiments considering various other LSF vectors, a mesh-
dependency study, and a modified objective function subject to noise. For
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Table 5.3: Parameter settings for LIN/SVR-TOPS experiments.

Setting ‘ Symbol ‘ Value
FD step size € 0.01
Number of remembered learning events | - 8
Evaluations per learning step M 100
Max. evaluations per iteration Mmax 500

the latter, SVR-TOPAS is evaluated, since it achieves a very good repro-
duction of the reference and does not require additional features. The
parameter specifications of the experiments are given in Tab. 5.3.

The linear regression is considered in order to test the hypothesis of
linear relations between LSF and the sensitivity. Naturally, the linear re-
gression model (4.13) cannot model the sensitivity (5.1) well when only
LSF Vector II is considered. However, it can represent a multivariate poly-
nomial in LSF Vector II with higher degree when additional features are
constructed by multiplication of the appropriate components. We desig-
nate sjiz sl gl ag the LSF vectors that additionally contain all
possible 2nd, 3rd and 4th order terms in the components of LSF Vector II.
The high number of features resulting from these constructions in combina-
tion with relatively little available training data renders the regularization
of the linear regression especially important. As described in App. A.2,
over-fitting is avoided by the quadratic regularization term added to the
ordinary least squares problem of linear regression. The regularization
parameter is found by a line search on a cross validation data set.

Besides the linear regression, the support vector regression as a state-of-
the-art non-linear predictor is applied (see Sec. 4.4.3). Hus et al.§ recom-
mendations for the SVR are followed, i.e. the RBF kernel is used and the
important parameters are found by a grid search on a subset of the training
samples [87]. The SVR is intrinsically able to model non-linear relations.
Therefore, it is not applied in combination with constructed higher order
features, but instead with other potential features like elemental stresses
or strains.

For all experiments, forward finite differences are used. Samples of the
last eight designs, which have been sampled, are remembered, older sam-
ples are neglected for training. All experiments were run for 30 different
random seeds, in order to account for the stochastic nature of the sampling
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choice. Quantitative results for all experiments are collected in App. B.
Conclusions are based on statistical t-test that are performed based on the
5% significance level.

The implementation is the same as described in Sec. 5.2, using the LIB-
SVM? [41] software library for the SVR. See also the reference for the
specific formulation of the e-SVR optimization problem that is solved.

The next subsections briefly describe the results for the two predictors
using the two LSF vectors in Sec. 5.3.1 and 5.3.2, followed by an interme-
diate discussion in Sec. 5.3.3. An overview of the results is given in Fig.
5.14. Then, experiments with varying mesh-sizes, alternative LSF, and
experiments with aggregated sampling are presented in Sec. 5.3.4 to 5.3.6,
respectively.

5.3.1 Results LSF Vector 1

From Fig. 5.14, we see that using LSF Vector I, which includes the strain
energy density, yields low compliance values at low evaluation cost. The
designs resulting from LIN-TOPS and SVR-TOPS with LSF Vector I are
depicted in Fig. 5.15. From visual comparison it can be seen that the
baseline structure is reproduced closely.

This is also reflected in the compliance values. The lowest compliance
in the whole study is achieved when using LSF Vector I combination with
linear regression. The linear regression directly enables a sensitivity model
proportional to the strain energy density and even achieves a lower compli-
ance than the reference. The optimized compliance of the support vector
regression is slightly higher than the reference, but this is not visible in
the resulting structure.

For both models, training requires few evaluations, since the linear re-
lation between strain energy density and sensitivity can be learned easily
from few sample points. On average, about 5.8% of the reference eval-
uations M,.¢ are required. Figure 5.16 shows that the retraining occurs
sparsely, and only utilizes the minimum amount of samples except for the
final iteration.

5.3.2 Results LSF Vector 11

Using LSF Vector II, a non-linear relation between LSF and sensitivity
has to be modelled that can hardly be approximated by a linear regression

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
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(a) LIN-TOPS, sl.

2> 20 2O

(b) SVR-TOPS, sl.

Figure 5.15: Optimized structures obtained for LIN-TOPS and SVR-TOPS for
LSF Vector I; from left to right: worst run, mean run and best run.
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Figure 5.16: The number function evaluations of LIN/SVR-TOPS required for
learning, over the iterations of the topology optimization for LSF Vector I.

model. This can be concluded from the compliance value obtained, which
is higher than that of the reference structure. It can also be concluded from
the resulting structures in the top row of Fig. 5.17 that involve variance
and lacks one or several of the connections of the reference structure. Even
this result is only achieved with a relatively high number of evaluations
for learning (about 10,000), due to the fact that the linear model can only
achieve rough local representations of the sensitivity. It needs frequent
retraining as can be seen in Fig. 5.18, exploiting the range in between a
minimum of 100 and the maximum of 500 evaluations.

The advantage of the SVR in this scenario is its ability to learn the
required non-linear relation between the LSFs and the sensitivity. This
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Figure 5.17: Optimized structures obtained for LIN-TOPS and SVR-TOPS for
LSF Vector II from left to right: worst run, mean run and best run.

results in the accurate reproduction of the reference structure, shown in the
bottom line of Fig. 5.17. Although retraining occurs not as frequent as for
the linear regression, about roughly 6,000 evaluations are required, which
reflects the more challenging learning task. Still, this is only about 23% of
the reference approach evaluations M,.¢ based on pure finite differentiation.

For linear regression, a trend of reducing compliance is observed when
using higher order variants of LSF Vector II. Adding second, third and
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Figure 5.18: The number function evaluations of LIN/SVR-TOPS required for
learning, over the iterations of the topology optimization for LSF Vector II.

forth order terms of the components of LSF Vector II not only improves
the compliance but also reduces the required number of function evalua-
tions. The resulting structures are shown in Fig. 5.17 in the three central
rows. The higher the order of LSF Vector II components, the better also
the visual resemblance between the optimized design and the reference. On
average, the reference structure is reproduced for s} and s;"*". This is
also confirmed by the fact that there is no statistically significant difference
between these runs and SVR-TOPS with LSF Vector II. The advantage
of using higher order LSF can be explained by the analytical formula-
tion of the sensitivity (5.1) which is a multi-variate polynomial. Thus,
the construction of higher order LSF for the linear regression results in a
multi-variate polynomial model in the components of LSF Vector II. With
increasing feature order, the model is more and more able to approximate
the sensitivity function. This improves the result and reduces the learning
effort.

Compared to the reference, only 6% of the function evaluations are
required when using s?‘“”‘. This is the lowest number of evaluations for
the linear regression predictor that is achieved in the study with LSF
Vector II.

5.3.3 Intermediate LIN/SVR-TOPS Results
Discussion

In most experiments, optimized designs similar to the reference design
are obtained, while the number of finite element solver runs is reduced
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drastically, compared to naive finite differentiation gradient estimation.
The solution quality and the number of required samples depend on the
prediction quality. Recommendations for the choice of update-signal model
and features can be drawn based on the conducted experiments.

Results can be interpreted when considering the analytic formulation
of the sensitivities given in (5.1). As for the results of NE/PCM-TOPS
in Sec. 5.2, considering the strain energy density has a high impact on
the results. Its usage results in significantly low compliance for the linear
regression as well as a strong reduction of evaluations for the SVR.

When considering the results of SVR-TOPS in terms of compliance,
both feature sets perform similar. This is also reflected in the visual re-
semblance of the optimized designs to the reference. Although the strain
energy density contains much more information on the sensitivity, the
same information is also contained implicitly in LSF Vector I. The SVR
can model the non-linear function, however profits from a significantly
lower learning effort in case the strain energy density is available a-priori.

For LSF Vector II, SVR-TOPS yields a solution very similar to the
reference, with 77% less function evaluations compared to the baseline,
since it is able to learn the suitable non-linear relation. The roughly 6,000
FEA simulation in this case seem still to be a high computational cost.
However, since the sensitivity function is the same for all elements, it
is intuitive to expect that the absolute number of samples required for
learning will not rise with an increased mesh size, a hypothesis that is
validated in the next section.

The linear regression cannot model the non-linear relation well, unless
higher order LSF are constructed. The linear regression potentially re-
quires less samples for learning, depending on how well the sensitivity
function can be modelled by a polynomial. In fact there is no statistical
difference between the number of evaluations required for LSF vectors s!
or s?‘*“‘. Together with SVR-TOPS on LSF Vector I, these runs are the
overall cheapest, reducing the number of evaluations to about 6% of the
reference.

With both predictors, it is possible to obtain good results. SVR pro-
duces good results for both LSF vectors while linear regression relies on
feature construction. However, SVR comes with the drawback of a higher
computational cost for training compared to linear regression. The lowest
compliance is achieved for linear regression with LSF Vector I. The small-
est amount of samples is required in case of the Linear Regression with
si . The SVR optimization result is robust to feature choice, however it
requires different amount of samples. This leads to the question: Which
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impact do other LSF vectors have? This is studied in Sec. 5.3.5.

The results suggest that in general it is advisable to use a non-linear
predictor like SVR and to include all LSF that might be relevant. If expert
knowledge or intuition on the type of non-linearity is available, this can
be useful to chose or construct additional LSF, like higher order versions.
In this case, a linear regression can be more efficient than SVR.

5.3.4 Mesh-Independency Study

The experiments in the previous section demonstrate that the number of
evaluations can be notably reduced compared to a naive finite differenti-
ation approach. This capability becomes even more important when the
number of design variables in the reference design space is increased.

We rerun SVR-TOPS with LSF Vector II for different mesh sizes: N €
{32 x 20 = 640,64 x 40 = 2,560,96 x 60 = 5,760,128 x 80 = 10,240}.
Figure 5.19 shows the best structure of the experiments. The reference
cantilever structure is reproduced in all cases.

More interestingly, the average number of evaluations is stagnating in-
dependently of the mesh size, as is visible in Fig. 5.20. For N = 1,260,
SVR-TOPS requires 23% of M,e¢. For a mesh size of N = 10,240 (when we
assume the same number of iterations for the naive finite differentiation
approach), the fraction required by SVR-TOPS reduces to roughly 2%.
We can conclude that the number of evaluations is mesh-independent for

2> 25 20

(a) N =640 (b) N =1,260 (c) N =2,560
(d) N =5,760 (e) N =10,240

Figure 5.19: Best optimized structures of SVR-TOPS with LSF Vector II for
different mesh sizes.
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Figure 5.20: Required evaluations of SVR-TOPS with LSF Vector II for dif-
ferent mesh sizes. The dashed line shows the evaluations required by the run
that resulted in the best structure.

SVR-TOPS in this setting.

A problem that arises with larger mesh sizes is that the random choice
of sensitivity samples can be increasingly unrepresentative of the actual
distribution. Possibly, this causes some runs to stop early. These have to
be considered as failures, yet they enter the statistics in Fig. 5.20 with only
few evaluations, especially for higher mesh sizes. Therefore, the evaluation
numbers of the best runs are added to the plot (dashed line). This confirms
that for the best optimized structures a significant increase in evaluations
is mot necessary when increasing the mesh size. In the future, techniques
are required that choose the most appropriate samples in a deterministic
way, for instance based on confidence measures.

Another observation is that the obtained structures themselves achieve
mesh-independency, at least for the considered reference structure. As dis-
cussed in Sec. 2.2.2 a finer mesh enables to represent a finer structure with
more details, causing mesh dependence of the optimum structure. The
mesh-independency of the designs is achieved by the included filtering of
sensitivities approach [166, 169], see (4.6). The filter radius is constant
for all mesh sizes and, hence, the same minimum length scale is defined.
This principle achieves mesh-independency for general boundary condi-
tions. Hence, assuming the sensitivity prediction is adequately precise,
we can expect the mesh-independency also for different load and support
conditions and even other objective functions. Note also the comment on
generality of the results in Sec. refsec:compoveraldiscussion.
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5.3.5 Alternative LSF

With the LSF Vector I and LSF Vector II two extreme cases were con-
sidered. LSF Vector I represents the case of almost analytical sensitivity
information within the LSF vector. LSF Vector II represents minimum
previous knowledge, since the nodal displacements are the most basic data
obtained from a finite element simulation. In application of TOPS, the
user needs to select LSFs using available expertise. Problems, for which
only displacement information is available might be rare, as well as prob-
lems, for which a LSF correlates strongly with the sensitivity. Thus far,
only the nodal displacement, the strain energy density and the density
are used in the LSF vectors. In this section, the idea of using alternative
physical variables and coordinate information as LSF is explored using
SVR-TOPS.

Physical variables like strain and stress are interesting to evaluate as
LSF, since they do not simply relate proportional to the sensitivity (like
the strain energy density) but still contain more elaborate information
about the state of elements than the displacement. Accordingly, it is
expected that including stresses and strains contributes positively to the
learning task when added to LSF Vector I.

Although independent of the state and therefore not strictly LSF, fur-
ther interesting model inputs are the Cartesian coordinates of an element,
as they have been used by [45, 62]. When used alone, the coordinates
imply that sensitivity is learned only related to the position of the ele-
ment in the mesh. Coordinate information can validate that the state
information is actually of higher use for the sensitivity prediction. It can
potentially serve as additional information. As additional LSFs, the aver-
age displacements in both coordinate directions of the elemental nodes are
considered. Similar to the strain energy density, stresses or strains, these
LSF's implicitly process the information on the displacements.

The following LSF Vectors are considered:

11 11
K3 (]

S S

s!! sl
III €i1 v 051 A% VI ~
S, = y 8 = ) 8 = L1 y 80 = U1 )
€2 02 =
T2 U2
€12 0412
S£H SIVII .
VII _ VIII _ — IX _ 1i
S»L‘ — 14 ) Si - Uy ) Si - . )
T2
T24 U2

with the Cartesian elemental coordinates x1;, x2;, the elemental strains
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[Eil €;2 67;12]T = €= BLLL', the elemental stresses [O'il ;2 0'7;12}T = ETE and
the average nodal displacements @; = 0.25(ui1 + i3 + wis + wir), 42 =
0.25(u2 + ui4 + uig + uig). The matrices B and E are required to obtain
the stresses and strains from the displacements are given in Appendix A.3.

The number of evaluations and the achieved compliance values are
shown in Fig. 5.21 and the optimized structures are shown in Fig. 5.22.
In the majority of cases, except for LSF Vector IX the reference structure
is obtained closely and compliance values change very little or not signifi-
cantly compared to LSF Vector II. However, the number of evaluations is
reduced for LSF Vectors I11, IV, VIT and VIII. In these cases, adding physi-
cal variables such as strains and stresses contributes positively by reducing
the effort of the learning task, as they represent processed displacements
that are directly related to the strain energy density of the element.

LSF Vector V, VI, show that coordinates and averaged displacements
do not reduce the number of evaluations but can even increase the number
significantly (LSF Vector VI).

When only coordinates are used as model inputs (LSF Vector I1X), it is
possible to obtain a useful structure, however the boundaries are blurred.
In this case, the model learns a separate update-signal value for each ele-
ment of the structure independent of the state. This results in the highest
computational cost and objective value of this study.

For the SVR-TOPS, the results indicate that adding meaningful LSFs
can reduce the computational cost for learning. Accordingly physical vari-
ables about the state of the element can serve as useful additional in-
formation. Otherwise, assuming the LSFs ultimately represent the same
information, longer LSF vectors will not necessarily lead to an improve-
ment of the objective or to a reduction of learning effort, but can actually
demand more samples for learning.

5.3.6 Experiments with Aggregated Sampling

The idea behind the aggregated sampling approach is proposed in Sec.
4.4.2. Tt enables the optimization of noisy objective functions that render
finite differentiation inaccurate. For empirical evaluation, SVR-TOPAS is
run for different group sizes Ng in order to empirically study the effect of
this parameter on the optimization. At first, it is applied to the reference
problem as in Sec. 5.1. The more challenging learning task with LSF
Vector II is considered.

Secondly, the experiments explore the effects of imposing noise on the
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Figure 5.22: Optimized structures of SVR-TOPS with alternative LSF vectors,
including vectors I and II for completeness.

objective function. In this scenario the compliance objective function ¢(p)
is replaced by an objective function ¢(p) which is subject to numerical
noise:
é(p) = c(p) + 2, with z ~ N(0,0%) ,

with a normally distributed random variable z with zero mean and
variance 0% added to the compliance. The experiment is run for
Ng = 1,2,5,10,20,30,40,50,75,100 and noise is added with O’% =
0,0.0025,0.005,0.01,0.02,0.03. The resulting structures and the relation
between noise and optimized compliance for different group sizes is shown
in Fig. 5.23 and Fig. 5.24, respectively.

The case of no noise and Ng = 1 corresponds to SVR-TOPS and exactly
the same result as in 5.3.2. is obtained. Generally, it can be seen that
with an increasing value of Ng the average optimized objective value is
increasing. This trend of increasing compliance is expected, since the data
and consequently the sensitivity model become less precise. However, even
for large group sizes such as Ng = 50 (corresponding to about 4% of the
elements) still a reasonable structure is obtained that shows the structural
features of the reference.
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Figure 5.23: Resulting structures from SVR-TOPAS for increasing values of
the group size parameter Ng (from top to bottom) and increasing noise (from
left to right). The aggregated sampling enables to obtain the reference even
when the objective function in subject to noise.
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Figure 5.24: The variance of the noise versus the mean compliance of the op-
timized structures obtained from running SVR-TOPAS for several group sizes
Ng. The right plot is zoomed in on the y-axis. For low variance a low group
size yields best results, as noise is increasing, higher group sizes are superior.

It is notable that the SVR-TOPS approach without aggregation reacts
very sensitive to the noise and even for the lowest tested noise level no
converged result is obtained. For each 0% > 0, there is a value of Ng that
achieves a trade-off between the errors introduced by the noise and groups
sampling. Table 5.4 shows the group size that results in the lowest mean
compliance for the given noise variance. For relatively high levels of noise
the optimization fails to find a meaningful structure for small values of
Ng.

The results are in accordance with the theoretic discussion in Sec. 4.4.2.
In the tested example, the influence of the error introduced by averaging
over elements, which are close in LSF space, is lower than the benefit from
reducing the noise. This demonstrates empirically that the aggregated
sensitivity with Ng > 1 can achieve a more robust optimization against
normally distributed random noise in the objective function.

216.73.216.60, am 23.01.2026, 23:58:43.
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186468208

116 5 Studies on the Minimum Compliance Problem

5.4 Overall Discussion

The proposed generic optimization techniques are able to reproduce the
reference structure, however they vary in the accuracy and computational
cost associated with learning and as such have different potential use cases.
An important result is that the reference structure can still be reproduced
even from LSF Vector II, i.e. when the strain energy density is excluded.
Table 5.5 provides an overview of the different modelling approaches and
the main findings.

For LSF Vector I, NE-TOPS requires notably fewer evaluations than
PCM-TOPS when the model complexity is chosen adequately. PCM-
TOPS has difficulties when the prototypes are only distributed sparsely
in LSF space. For LSF Vector II, interestingly, NE-TOPS achieves higher
model correlation to the sensitivity than PCM-TOPS, but in contrast to
PCM-TOPS the designs do not reproduce the reference. Thus, in the
case of LSF Vector II, the ability to represent the structure for evolution-
ary optimization seems to be more relevant than an accurate sensitivity
prediction.

Albeit the CMA-ES is an efficient optimizer, the number of evaluations
for the evolutionary learning approaches is high compared to the super-
vised approach. For LSF Vector II, the update-signal model is rarely
reused and, furthermore, many model parameters are required to obtain
a suitable model at all. On the reference example with moderate mesh
size, the computational cost can even be higher than for a naive finite dif-
ferentiation approach (i.e. higher than M), although this would change
for larger mesh sizes. The parameters M and M™** imply lower limits on
the required numbers of evaluations and provide a possibility of tuning the
algorithm for higher efficiency. For the sake of comparability of the exper-
iments in Sec. 5.2, these parameters were chosen identical for LSF Vectors
I and II. For the relative simple learning task for NE-TOPS with LSF
Vector I and a network model with few parameters, it would be possible
to notably reduce the number of evaluations by reducing M and M™.

Table 5.4: Group size parameter for SVR-TOPAS that results in the lowest
compliance for a given noise value.

Noise variance 0'12[7 ‘ 0.0025 0.005 0.01 0.02 0.03
Best group size Ng | 5 20 20 20 50
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However, for cases that require a high model complexity, a reduction of
M and M™?* would lead to deterioration, as it reduces the chances of the
CMA-ES to find adequate model parameters.

LIN-TOPS can be very efficient for LSF choice, but depends on the
construction of adequate additional LSFs. Most reliable is SVR-TOPS: it
is robust to the choice of the LSFs and it is able to reproduce the reference
structure accurately. Deficiencies in the LSF's are simply compensated by
additional sensitivity samples. Even for the more difficult test case, it is
being drastically more efficient than a naive finite differentiation approach,
a fact that is especially important when the mesh size increases.

The supervised learning approach yields more accurate results due to
the explicit sampling of the sensitivity function. Additionally, it requires a
lower number of evaluations and moderate levels of numerical noise can be
tackled by aggregated sampling. Thus, when sufficiently precise sensitivity
estimates by finite differences are possible, the supervised approach should
be preferred. The situation is different in case of objective functions that
are non-smooth or involve severe multi-modality: When no precise finite
difference samples can be obtained or a gradient descent is unsuccessful,
the evolutionary learning is a more robust and possibly the only working
option.

The results in this chapter are based on a single compliance reference test
case and leave a necessity to briefly comment on possible generalization of
the results when changing the objective function. Within the domain of
compliance minimization, the underlying sensitivity function (5.1) is not
changing with the boundary conditions, i.e. loads and support. Hence, in
this cases the learning task of the model remains unchanged. Therefore,
qualitatively similar results in terms of compliance, evaluations and visual
reproduction of baseline structures can be expected when changing the
load case and supports. This also has been observed in experiments not
documented here, but for instance some alternative results with a different
configuration can be seen in [14] (although the algorithm has been set-up
slightly differently). Certainly, future work should validate this by addi-
tional experiments. When changing the objective function, and especially
when consideration of more challenging, non-linear problems, the transfer
of conclusions is maybe possible, but certainly more risky, implying an
even bigger need for more experiments in future research. Nevertheless,
Table 5.5 provides rather abstract conclusions that are expected to keep
some meaning for general use cases, at least to choose the most promis-
ing approach. The next chapter applies PCM-TOPS in the domain of
crashworthiness, supporting the general applicability of the approach on a
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fundamental level.

A potential idea when considering a model is to reuse it in other problem
instances that target the same objective function, but for instance different
load cases. Intuitively, this should be possible when the formulation of
the analytical sensitivity is unchanged. However, at least the presented
experiments indicate that this hypothesis has to be rejected. In Fig. 5.5
and 5.16 it can be seen that even for the simple case of strain energy
density as a LSF, the model does require re-learning several times during
the optimization. Certainly, if it is assumed that the learning task consists
in general of identifying a LSF as sensitivity information, this can be done
in a simple trial and error set-up, and would possibly provide an interesting
LSF selection method in context of the presented approach. However, in
more general cases, such as LSF Vector II, the learning of a non-linear
relation is expected and the retraining becomes even more important as
can be seen in Fig. 5.10 and 5.18. Here, it can be seen, that a model
that performs well in more than local region of LSF space is not obtained.
Then, the target of a more global model is a serious challenge that probably
requires a more complex model and even higher learning effort.

Generally, an approach may fail, deteriorate or at least rise noticeable
in computational cost when the relation of LSF to the sensitivity cannot
be modelled well, such as in the case of the LIN-TOPS or NE-TOPS with
LSF Vector II. Partially, this can be compensated by frequent retraining,
but the preferred solution is to gather additional LSF that contain miss-
ing or more explicit sensitivity information. This may be preferably done
by a basic or improved analytic modelling of the problem to identify (ad-
joint) state information that can be used as LSF. It is likely that these
features, if once shown to be useful for a certain objective function, could
be generalized to different boundary conditions.

5.5 Summary of Contribution

This chapter presents evaluations of the proposed generic topology op-
timization approach: Topology Optimization by Predicting Sensitivities
(TOPS). We motivate a minimum compliance reference problem and chose
exemplary Local State Feature vectors. Evolutionary and supervised ap-
proaches for learning the update-signal models are considered. Statistical
evaluations for all approaches provide a foundation for comparisons and
discussions.

All TOPS variants are able to reproduce the reference design without
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pre-defined gradient. By comparing different feature vectors, it is shown
that this is even possible without explicit knowledge about the strain en-
ergy density. These findings highlight the feasibility of the learning com-
ponent as part of the topology optimization.

Evolutionary learning of a piecewise-constant model is more capable of
efficiently modelling the required non-linear relations, compared to evo-
lutionary learning of the artificial neural network. The latter is suitable
to easily chose from several input features. The supervised learning ap-
proaches, especially support vector regression, show superior characteris-
tics in terms of reliability, accuracy and computational cost compared to
evolutionary learning. The number of evaluations required by the method
is drastically lower than for naive finite differentiation, especially when
the mesh size is increasing. This is obtained under the assumption that
accurate finite-difference samples are possible. However, the method can
also handle small amounts of numerical noise by an aggregated sampling
approach.

We conclude that TOPS with supervised learning is the preferred
method for single-modal and smooth objective functions. TOPS with evo-
lutionary learning can be applied when sensitivity samples are imprecise
or gradient-descent is failing. With the target of crashworthiness topology
optimization, we apply it to such a problem in the next chapter.
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6 Topology Optimization of
Crashworthiness Objectives

Within the automotive industry, the task of designing optimal components
for crash scenarios is of high practical relevance in the vehicle design pro-
cess. Therefore, and due to the difficulties it poses to existing topology
optimization approaches, it is chosen as a first domain of application of
the proposed generic approach.

This chapter is structured as follows: Section 6.1 briefly describes the ap-
proaches for crashworthiness topology optimization from the literature on
a conceptual level. Section 6.2 presents the application of PCM-TOPS to a
problem of energy absorption maximization. The considered example is a
clamped beam subject to a transversal bending crash load. Subsequently,
the same algorithm is addressed to optimize the thickness distribution of
a 3-dimensional thin-walled frame structure in Sec. 6.3. The objective
function is changed to the target of minimizing intrusion to demonstrate
the adaptivity of the learning concept. Comparisons to a state-of-the-art
uniform energy heuristic are presented. Parts of this chapter are based on
[10, 13].

6.1 State-of-the-art

Besides many requirements such as driving dynamics, structural stat-
ics and dynamics, NVH (noise vibration harshness) or acoustics, pas-
sive crashworthiness safety is an important part of the virtual multi-
disciplinary vehicle design process in today’s automotive industry [57].
Crash requirements are defined by programs such as Euro NCAP! in Eu-
rope, US-NCAP in the US and comparable programs around the world.
Typically, the fulfilment of these requirements is measured by a safety
ranking as an important indicator for vehicle safety and thus automakers
aim at designing new vehicles to perform well in the defined tests.

INCAP: New Car Assessment Program
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Due to the expense of real prototype testing especially in crashworthi-
ness scenarios, numerical simulations provide a possibility for significant
cost reduction. However, modelling comes with challenges as it has to take
into account physical non-linearities, for instance large deformations, ma-
terial subject to non-elastic strain, up to failure, or multiple contacts. This
results in complex and computationally expensive simulation models. Yet,
with increasing simulation capabilities, crashworthiness simulations have
become an important step of the virtual vehicle design process. In paral-
lel, there is significant pressure to shorten product cycles and the necessity
of reducing fuel consumption. This increases the desire to find the most
efficient lightweight vehicle components for crashworthiness. Thus, the
interest in optimization is increasing.

In sizing or shape design optimization problems a limited number of
optimization parameters can be addressed with global search algorithms
[57]. However, the field of crashworthiness topology optimization is still
relatively young and an active area of research. Challenges include the
high dimensionality inherent to topology optimization and the complex-
ity of crash simulations that involve model non-linearities, non-smooth
structural responses or even bifurcations. As a result, objective func-
tions that formalize engineering targets usually contain numerical noise
and considerable non-linearities. Typical targets in crashworthiness opti-
mization of vehicles are for instance high energy absorbing components,
acceleration measures such as the head-injury criterion, smoothness of the
force-displacement curve and low/high stiffness of special parts, depending
on the vehicle component and crash scenario that are considered [157].

Existing gradient-based methods are only applicable for considerably
simplified problems and as a consequence, heuristic approaches for
crashworthiness topology optimization have been developed. These will
be discussed on the next pages showing that these rely on arguable
assumptions and are only applicable to specific use cases and design
criteria.

Early research on topology optimization for crashworthiness was con-
ducted in the late nineties by Mayer et al. for maximizing crash energy ab-
sorption based on a homogenization approach of a piecewise linear elastic-
plastic material model [117]. In their work, optimality criteria are derived
based on an objective function that weights the strain energies at specified
times.

This idea of a simplified problem with a rigorous mathematical model is
reflected in the ground structure approach by Pedersen [134-137]. In the
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ground structure approach, the design space consists of a frame/ground
structure of beam elements. A simplified crash behaviour is modelled, for
instance involving large and plastic deformations. Gradient-based opti-
mization can be performed based on rigorously derived sensitivities. The
thickness and/or presence of the beams is optimized for compliance sub-
ject to path dependent response [136], desired energy absorption history
[134] or desired acceleration history [137]. However, the method is lim-
ited to significantly simplified formulations that facilitate the derivation
of analytic sensitivities.

A heuristic alternative is the graph based topology optimization ap-
proach. It originates from the idea of combining shape optimization with
topological changes as presented in the bubble method by Eschenauer et
al. [60]. In the bubble method, the position of a small hole or “bubble”
is determined by a characteristic function. The bubble introduces a topo-
logical change and a consequent shape optimization of the bubble and
other variable boundaries is performed. This is done in a loop until a
maximum number of bubbles is introduced. The bubble method has been
applied to crashworthiness structures using analytic expressions for hole
positioning considering maximization or minimization of stiffness [157]. It
also inspired topological derivative methods that are used for instance for
hole nucleation or reintroduction of solid material in the level set methods
[3, 125].

The idea of a graph-based topology optimization is one of the possible
representations in the field of Evolutionary Computation as introduced in
Sec. 3.3. Independently of EC, a graph-based approach for crashworthi-
ness topology optimization was proposed by Olschinka and Schumacher
[126] and considerably advanced by Ortmann and Schumacher [128] for
extrusion structures. Similar to the bubble method, topological changes
and size optimizations are performed iteratively. However, in the existing
graph-based methods applied to crashworthiness, the topological changes
are based on heuristic rules from engineering crash experts: for instance
“Support Fast Deforming Walls”, or “Balance Energy Density” [128]. Af-
ter each modification of a topology a subsequent shape optimization is
performed. Since the shape optimization uses global search, it can ac-
count for the actual objective. Yet, the heuristic rules for topological
changes are specifically tailored to the problem. By the application of
several rules in parallel and by selection of the best performing one, a step
into the direction of evolutionary optimization of the topology has been
done [127].

Another approach is crashworthiness topology optimization using
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Equivalent Static Loads (ESL). ESL methods replace crash loads by one
or several computationally cheaper static load cases. The models subject
to linear static loads can be addressed with standard gradient-based topol-
ogy optimization methods. The approaches can be differentiated mostly
by how the ESLs are found. Static loads can simply be applied in the
regions where the impacts occur [46]. Cavazzuti et al. [38] linearised a
frontal crash by substituting inertial forces by equivalent static loads for
automotive chassis design. Volz devised ESLs based on physical models
considering stroke-energy relation and consequently forces occurring in the
crash [195]. The ESLs are designed for different stages that reflect the dy-
namic nature of the crash. It is applied to topology optimization in the
early concept phase of car body design. ESLs can also be determined by
multiplication of the stiffness matrix of a linear model with the displace-
ments occurring in the non-linear crash analysis for each of the time steps
[98, 130]. The static load cases are combined in a multi-load case topology
optimization. Repeatedly, the optimized structure is analyzed utilizing the
non-linear analysis and a new set of static loads is obtained. This process
is iterated until convergence. It is expected that good results can be ob-
tained mostly for moderately non-linear problems. Some first applications
for topology optimization are given in [206, 207, 216]. It is not clear in
ESL methods, how much the optimization of the ESLs corresponds to the
optimization of the actual objective function defined by the non-linear,
dynamic load.

Tovar proposed a Hybrid Cellular Automata (HCA) algorithm as a
model for the remodelling process in human bones [190] (compare also
Sec. 4.1.3). A cellular automaton consists of cells arranged on a regular
grid. Iteratively, cells are updated based on the state of neighbouring cells.
In the HCA approach, the states of the cell are energy density and material
density. A control-based rule is applied that targets uniform distribution
of energies throughout the structure and updates the material distribution
accordingly. Although it does not optimize an objective function in the
mathematical sense, HCA can be utilized as a method for topology opti-
mization. It leads to useful structures from an engineering perspective for
instance minimizing compliance [190, 191]. The working principle assumes
that an optimum structure distributes the load uniformly throughout the
structure. This is similar to the concept of fully stressed designs [133].

A further development by Patel [131, 132] demonstrated the usefulness
of HCA when applied to engineering design optimization of crashworthi-
ness structures. The assumption of the uniform distribution of internal
energy densities from elastic and plastic strains can result in structures
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with preferable crash characteristics. HCA has also been applied to cost
and mass (topometry) optimization of sheet metal structures [121, 122].
A mathematically quite similar topology optimization approach for crash-
worthiness has also been developed in parallel by Forsberg et al. [66].

Huang et al. proposed the BESO (or SERA) approach to maximize en-
ergy absorption of a structure [90, 91]. It is based on internal energies as
well. For BESO, simplified analysis is performed to obtain a “Sensitivity
Number” that is applied in the optimization of a structure for maximiza-
tion of energy absorption. The sensitivity number is determined as the
internal energy density and elements are removed from the design space
that is initially completely filled with material (see the introduction of
BESO in Sec. 2.1.3).

In recent developments, a HCA compliant mechanism approach for con-
trolled energy absorption behaviour is applied to optimization of progres-
sively folding thin-walled structures [24, 108, 165]. Since the uniformity
assumption is similar for compliance and crashworthiness cases, it can be
used for concurrent multi-disciplinary optimization of crashworthiness and
stiffness load cases. This was demonstrated by case studies of the author
by means of a Scaled Energy Weighting HCA approach [16-18]. HCA has
been based on regular cubical design space discretizations. However, re-
alistic behaviour of vehicle components is often much better represented
by thin-walled structures. In crash events, thin-walled structures show a
significant amount of buckling, and form local, plastic hinges. As conse-
quence, energy is in fact not uniformly distributed. To account for this,
a HCA based on macro cells that each includes a set of finite elements
has been proposed [58, 92]. Energy can be distributed uniformly over the
macro cells, while it can be non-uniform within a single macro cell. Gen-
erally, the HCA is limited by the assumption that the uniformity of the
field variable leads to an optimal design.

The field of crashworthiness topology optimization is still young and more
research is needed to validate existing and new methods to ultimately
determine suitable methods for different industrial problems. Especially,
comprehensive and conclusive comparisons are still missing. Currently ex-
isting heuristics are based on problem simplifications and/or assumptions
on the optimum solution and do not provide flexibility on the choice of
the objective function. However, this underlines the necessity of study-
ing generic approaches, which enable a clear and conscious choice of the
objective function. In the following two sections, TOPS is applied to two
crashworthiness topology optimization problems. To facilitate a classifica-
tion of results we compare to a baseline obtained by HCA. HCA is efficient
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and available as commercial tool that is already in use in the automotive
industry. Also, HCA is conceptually similar to TOPS in the sense that it is
a density-based topology optimization approach as well, however without
the ability to adapt to the objective function.

6.2 Maximum Energy Absorption Beam

6.2.1 Beam Model and Optimization Set-up

A typical target from crashworthiness topology optimization is the maxi-
mization of energy absorption, for instance, in preventing transfer of en-
ergy to passengers or sensitive vehicle components in a crash. Also, in
bagatelle crashs, directing energy absorption towards specialized compo-
nents potentially enables an economically efficient replacement in order to
reduce insurance cost.

The simulation of a rectangular aluminium beam subject to transversal
bending crash caused by a cylindrical rigid pole is considered as test case.
A schematic drawing is depicted in Fig. 6.1. A simplified 2-dimensional
problem is considered, hence out of plane displacements are constraint to
zero. Symmetry of the model is exploited by the definition of appropriate
boundary conditions along the central axis, in order to reduce simula-
tion time. One half of the symmetric beam forms the design space and
is meshed with 5mm edge length cubic elements, which enable the mod-
elling of the contact. The finite element computations are carried out with
the commercial explicit solver LS-DYNA [109]. The LS-DYNA simulation
model is of moderate size and can be computed within 15-30 seconds on
one CPU of the available computing resources. This enables experimen-
tation and rudimentary statistical evaluation. The specifications of the
model are shown in Tab. 6.1. The aluminium material is modelled by
a piecewise linear elastic-plastic behaviour with a material interpolation
scheme according to [131]. Details of this model are provided in App. C.

For this type of problem, analytical sensitivities are not available, thus
standard gradient-based topology optimization methods cannot be applied
and it is justified to apply the devised generic TOPS method. Similar prob-
lems have been addressed by [35, 91, 131]. Although an academic test case,
the dynamic simulation features important characteristics that occur in
real-world crashworthiness problems, for instance large and plastic defor-
mations and contacts. Compared to the linear static compliance problem
the optimization task increases significantly in complexity and, hence, the
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Figure 6.1: Clamped beam subject to rigid, cylindrical pole crash.

transfer of TOPS to this problem is a major step in the direction of appli-
cation of the method. We perform a comparison to a reference structure
obtained by the HCA algorithm [131] that is available in the commercial
implementation LS-TaSC [144].

We define the optimization problem as maximization of the energy ab-
sorbed by elastic and plastic deformation of the design space at the final
simulation time step:

N
mgx Eaps(p) = ; IED;(t = tena)v;
s.t.:r(t,p) =0, (6.1)
Vip)/Vo = f,

0< pmn <pi<1,i=1,...,N,
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with the overall energy absorption of the design space E.ps(p), the internal
energy density of an element IED; (¢ = tenq) and the simulation time ¢. The
crash simulation is expressed by the residual error r(¢, p) of the dynamic
finite element analysis.

As for the compliance problem, it is necessary to chose the LSF that
are used in the optimization. Due to the time-dependency, possible state
information exists at each time step at which the governing equation sys-
tem is solved. Practically, a subset of the discrete time histories of the
LSFs can be sampled, but even then a large number of features can be
obtained?.

Since the objective function is energy absorption, it makes sense to con-
sider the energy absorbed in a finite element as LSF: concretely, the el-
emental internal energy density IED;. The internal energy is defined as
the energy absorbed under elastic and plastic deformation, i.e. the integral
under the stress-strain curve. If the strain is assumed as an independent
variable, the internal energy density increases and decreases with the den-
sity. Thus, the internal energy density can be motivated as a valuable
LSF. To further reduce the number of features, its maximum over all time
steps is used, instead of using its value at several specific time steps. Fur-
thermore, the update-signal model should be able to differentiate between
low and high density elements, therefore the density is also used as LSF.

2Let us consider an element defined by eight nodes with three degrees of freedom each.
Then, each element has 8 x 3 = 24 displacement LSFs. Sampling the time history
every 0.1ms results in 480 basic LSF for the beam simulation.

Table 6.1: Specifications for clamped beam model subject to pole crash.

Symbol | Value
Pole z-velocity - 40m/s
Number of elements N 80 x 40 = 3,200
Termination time tend 2.0ms
Young’s modulus Ey 70,000MPa
Volumetric mass density ) 2.7-107%/mm?
Poisson’s ratio v 0.33
Yield stress Oy0 241MPa
Tangent modulus Eyo 70MPa
Static/Dynamic friction coefficient | - 0.2
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This results in the two-dimensional LSF vector:

S — Pi
! max; IED;(¢)

Due to time and resource constraints, not all TOPS variants could be
applied and thoroughly evaluated. Initial experiments with SVR-TOPS
and SVR-TOPAS showed only limited potential. Consequently, the level
of numerical noise has to be considered higher than what can be han-
dled by the aggregated sampling approach, for the given crash simulation.
The effect of numerical noise is especially disturbing when small finite
differences are applied to the design. Therefore, sensitivity estimation is
unreliable. Furthermore, the significant non-linearities can lead to an early
convergence to local optima. These circumstances suggest the choice of
TOPS with explicit evolutionary optimization of the model parameters.
It has a change to overcome local optima and it is not directly effected by
the noise. PCM-TOPS reproduces the compliance reference more reliably
and efficient than NE-TOPS, when the relation of the LSF to the sensi-
tivity is non-linear (Sec. 5.2.2). Since we expect substantial non-linearity,
PCM-TOPS is chosen as modelling approach. As discussed in Sec. 5.2.3,
it works especially well for a low dimensional LSF space. (Compare also
the overview in Sec. 5.4.)

Table 6.2: Specifications of PCM-TOPS for beam crash energy absorption.

Symbol | Value
Evaluations per learning step | M 250
Max. evaluations per iteration | M™®* 750
Number of prototypes P 30
Improvement threshold AF i 0.001
Target volume fraction f 0.4
Penalization ,q 3
Filter radius Tmin 8mm
Number of offspring A 14
Number of parents I 7
Minimum density Pmin 0.05
Move limit m 0.1
Initial global step size o (F=0) 0.3
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Table 6.2 shows the optimization specifications, where the symbols
Pmin, [, p were introduced in Sec. 2.2, A, p, in Sec. 2.3.1, Ty, m in Sec.
4.2, AFppi, in Sec. 4.2.1, P in Sec. 4.3.2 and ¢ in App. C respectively, and
o= is the initial step size of the CMA-ES. Important parameters are the
numbers for the allowed evaluations M and M™?2*, which were introduced
in Sec. 4.2.1. Enabling more evaluations increases the chances of the CMA-
ES to find better model parameters. Over the course of the optimization
this will lead to more successful updates and, ultimately, to a better result.
However, the practical choice of M and M™?* is a trade-off that considers
simulation time and computational resources. The dimensionality of the
evolutionary search is identical to the number of prototypes P. Therefore,
on one hand, very large values should be avoided. On the other hand, too
few prototypes will limit the ability to represent the structure and reduce
the possible design complexity. Thirty prototypes are chosen as a trade-
off. The CMA-ES population sizes are set to the default values according
to the recommendations for real-world applications [78]. In order to avoid
numerical problems elements with p; = pnin are removed from the mesh.

For the model optimization, the Python implementation of the CMA-
ES by Hansen? is used [76]. A LS-DYNA topology optimization interface
was developed to couple the optimization algorithm to the commercial
solver [13]. Tt provides functionality such as parsing and writing of input
decks, parameterization of material models, and reading of output files to
access simulation results, including LSF. The optimization was run for 15
different random seeds. The results are discussed in the next subsection.

6.2.2 Optimization Results

Figure 6.2 shows the objective value versus iteration and the required eval-
uations. It can be seen that in fact a similar behaviour as for the minimum
compliance problem in Sec. 5.2 is obtained. By design of the algorithm,
a monotonic increase of the objective function is achieved over iterations.
The vertical ascents when plotting the objective versus evaluations show
that the update-signal model can be reused several consecutive iterations
during the optimization. This is observed for the mean, but especially for
the best run, leading to fast convergence in terms of evaluations. On aver-
age 6,077 evaluations are required until convergence, yet to reach a state
from which the objective hardly changes requires roughly half of these
evaluations.

Shttps://www.lri.fr/~hansen/cmaes_inmatlab.html#python
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Figure 6.2: Energy absorption versus the number of iterations respectively,
evaluations for beam crash energy maximization with TOPS-PCM.

Figure 6.3 shows the resulting optimized structure of the best run in
comparison to the baseline obtained from HCA. The results realize differ-
ent concepts to achieve the energy absorbing behaviour. The best PCM-
TOPS structure shows additional beams and also a different thickness
distribution.

The distribution of internal energies at the final time step for both struc-
tures are shown in Fig. 6.4. Both structures show areas of high and low
energy densities, yet the HCA structure shows less peaks of very high
energy densities, which can be expected as its underlying target is uni-
formness of energy densities.

According to (6.1), we quantify the performance by energy absorption.
In this experiment, the HCA result, which is obtained after 100 evalua-
tions achieves a higher energy absorption of 2.93kNm. The best structure
of TOPS-PCM achieves 2.54kNm and on average 2.21kNm. This confirms
that HCA is an adequate heuristic for the considered problem, when en-
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Figure 6.3: Optimized structure for beam crash energy maximization, the den-
sity is colour-coded.
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Figure 6.4: Optimized structure for beam crash energy maximization, the in-
ternal energy density of the final time step is colour-coded in Nmm/mm?.

ergy absorption is the target of the optimization. Yet, the PCM-TOPS
results are obtained without the previous knowledge on the benefit of en-
ergy uniformness, a fact that is compensated by computational efforts.
Another potentially beneficial aspect of PCM-TOPS is that several alter-
native structures with varying degrees of complexity are obtained shown in
Fig. 6.5 that provide different energy absorption concepts that can be stud-
ied by experts. The large number of solutions with high energy absorption
are most likely caused by multi-modality of the problem, underlining an
effect of the various problem non-linearities.

To evaluate the relation of the LSFs and the update-signals, the empir-
ical correlation coefficient is shown in Fig. 6.6 (More information and the
coefficient’s definition are given in App. A.4). For the density LSF, there
is a trend of increasing correlation. This is intuitive, as in the early iter-
ations the elements have similar densities that cannot have a large effect
on the update-signal. As the structure converges, elements with a higher
density are more often increased or kept, while the opposite happens for
elements with low densities. A high internal energy density LSF favours
an increase of the elemental densities yet the update-signals are far from
modelling a linear relation. Plots of the actual update-signal model are
shown in App. C in Fig. C.2.
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Figure 6.6: The empirical correlation coefficient between update-signals and
LSFs plotted over the iterations for the beam structure optimization. The LSFs
are weakly to moderately and sometimes highly correlated to the update-signals.
Since the optimization problem is formulated as maximization, a high positive
correlation coefficient implies that for a large LSF value the density is rather
increased than decreased.

We further study the best run to illustrate the working principle of
the method. Fig. 6.7 shows the colour-coded update-signals mapped onto
the beam structure for different iterations, where positive values are cut,
since they cannot be handled by the OC-update. It shows regions in blue
where the density is to be reduced, and elements in red where the density
should be increased. Intermediate values can result in both depending on
the distribution of update-signal values over the complete design space.
Elements with the same colour form one cluster in LSF space, although
some colour values are closely nearby and cannot be distinguished visually.
Interesting topological patterns can be observed, especially in the first
iteration. The update-signal model optimization quickly identifies rough
areas where material is removed, which around iteration 13 provides a
basis structure that is then slowly refined. Elements belonging to one
cluster are often distributed over the complete structure, some clusters
appear to be distributed noisily over the structure. The sometimes strong
pixelization of the clusters towards the end of the optimization indicates
that a smoothing of the LSFs over iterations might be useful. Smoothing
methods are already in use for example in the stabilization method in
BESO [90] or the element memory in HCA [131].

Overall, the results show that the proposed generic TOPS method can be
transferred from the minimum compliance problem directly to a problem
of crashworthiness. In this case, HCA provides a higher energy absorption
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Figure 6.7: The optimized update-signals colour-coded onto the beam struc-
ture for different iterations, where blue is a signal for reduction and red for
increase of the density, respectively.

than TOPS and the result confirms the benefit of the energy uniformness
assumption at least for the given objective function. However, TOPS
performs qualitatively similar and provides meaningful structures without
the previous knowledge of targeting energy uniformness throughout the
structure.
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6.3 Minimum Intrusion Frame

6.3.1 Frame Model and Optimization Set-up

In this section, we consider a simulation model with higher relevance in
practice that is inspired by a side pole Euro NCAP crash test [61]. The side
pole impact is a dangerous crash scenario, in which the vehicle is moving
laterally into a pole-like structure with high risk of injuries of the passen-
gers due to intrusion of the pole and vehicle body components towards the
cabin. Structural components that are involved in this scenario are the
side sill, the door and the a/b-pillars. For a favourable passive safety the
life cell within the cabin should be intruded as least as possible. Figure
6.8 illustrates the problem of intrusion in the side pole crash scenario.

In the side pole impact as well as in many other crash scenarios, it is
desired to absorb energy within special components or areas of the vehicle
and protect other components or areas from deformation. From the per-
spective of optimization, in these scenarios, minimal or at least constraint
displacements are desired in order to achieve stiff behaviour at selected lo-
cations. This implies a change of the objective function from maximizing
an energy absorption measure to minimizing a measure of intrusion.

We consider a simulation model of a 3-dimensional aluminium frame

T
.

(=

Intrusion

Figure 6.8: Illustration of intrusion during a side pole impact.
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supported at both ends that is crashed with a rigid cylindrical pole, as
shown in Fig. 6.9. The whole frame is the design space and is discretized
with plane stress shell finite elements with edge length of 4mm. The
thin-walled model is able to capture the buckling behaviour of typical
vehicle components that undergo large deformations. In this case, the
elemental density design variables refer to elemental thickness. A material
interpolation scheme as in (C.1) is not necessary, since every density value
corresponds to a physically realizable thickness. Specifications for the
LS-DYNA simulation model are shown in Tab. 6.3. Detailed material
parameters for the piecewise linear elastic-plastic material model are given
in App. C.

Figure 6.9: The model of frame subject to the crash with a rigid pole.

Table 6.3: Specifications for clamped frame subject to rigid pole crash.

Symbol | Value
Pole initial z-velocity - 30km/h
Pole kinetic energy - 3.5kJ
Number of elements N 15 x 100 x 4 = 6,000
Termination time tend 40.0ms
Young’s modulus Ey 70,000MPa
Volumetric mass density 2 2.7-107%/mm?3
Poisson’s ratio v 0.33
Yield stress Oy0 180MPa
Static/Dynamic friction coefficient | - 0.2
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¥

(a) Frame and pole. (b) Highlighting node set Gi.

o

(¢) Deformed initial structure.

Figure 6.10: The finite element model of the frame subject to the impact of a
rigid pole.

Figure 6.10(a) shows the LS-DYNA frame model, Fig. 6.10(b) shows
(in red) the area where the displacement of the nodes should be minimized
and Fig. 6.10(c) shows the deformation of the initial (uniform thickness)
frame at the end of the simulation.

We formulate the optimization problem as:

. 1 .
minT, (p) = 7o 3 (min ()2
€G]

s.t.:r(t, p) =0, (6.2)
Vi(p)/Vo = [,
pmingpigl,izl,...,N’

with time step ¢, nodal displacement w,;(t) towards the interior and the
intrusion measure? Ig, (p). Figure 6.10(b) highlights the area in which the
node indices belong to set G;. The intrusion is quantified by the squared

4The intrusion measure in (6.2) quantifies deformation of the absorbing component
towards an conceivable inside, and is, therefore, slightly differently defined from Fig.

- 216.73.216.60, am 23.01.2026, 23:58:43.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186468208

6.3 Minimum Intrusion Frame 139

maximum of the displacement of the nodes within a rectangular area at
the centre of the bottom side of the frame, consisting of 196 nodes. Here,
we explicitly target intrusion at a defined location, which is not identical
to the location of the impact. The state equation is represented by the
residual of the dynamic finite element analysis r(t, p). The design variables
p; scales the thickness of the elements, which can be between 1mm and
10mm.

An important part of the state of an element is reflected by the amount
of elastic and plastic deformation. We chose the maximum of the internal
energy density IED;(¢) absorbed by an element as LSF, resulting in the
LSF vector:

s; = ( rpIiaXt(IEDi(t)) >

For the considered problem, sensitivities are not available, hence
gradient-based approaches cannot be applied. This fact justifies the usage
of TOPS for the considered problem. Table 6.4 shows the optimization
specifications, where the symbols puin, f, p were introduced in Sec. 2.2,
A, 1, in Sec. 2.3.1, ryin, m in Sec. 4.2, AF;y, in Sec. 4.2.1, P in Sec. 4.3.2
and ¢ in App. C respectively, and o(*=9) is the initial step size of the CMA-
ES. Important parameters are the numbers for the allowed evaluations M
and M™?* which were introduced in Sec. 4.2.1. For learning method and
parameter choices, similar considerations as for the previous experiment
in Sec. 6.2.1 are applicable. In this experiment, we use the maximum
of evaluations in each iteration to obtain the best possible update-signal
model with this computational budget. The optimization is run for nine
different random seeds.

Results from the previous section (and the literature, e.g. [16, 17]), show
that HCA is an efficient heuristic to maximize for instance energy absorp-
tion or energy uniformness. Yet it is more often seen as a general heuristic
for crashworthiness optimization and due to the lack of a dedicated method
for the optimization problem in (6.2), it can happen that industrial users
fall back to existing methods such as HCA. However, the considered prob-
lem relates to cabin safety, for which little intrusion as possible is targeted
at defined parts of a structure. This raises the question whether the HCA
heuristic is still applicable as it does not adapt to the changed problem.
Hence, HCA is applied as baseline for comparisons.

Hence, the specific objective function cannot be addressed easily by the

6.8, where the intrusion is illustrated from the contact point of the the vehicle body
towards the inside.
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state-of-the-art approaches, due to their specialized nature. Therefore, the
generic topology optimization approach provides a unique optimization
approach. The results are described in the next section based on the same
implementation as described in Sec. 6.2.1.

6.3.2 Optimization Results

Figure 6.11 shows the objective value of all runs versus iterations, re-
spectively evaluations. Again, a monotonic improvement of the objective
function is achieved over iterations. The best run performs slightly better
than average, it performs a few more iterations before the stopping crite-
rion is fulfilled. In most iterations, the update-signal model is retrained,
indicating that the PCM serves rather as adaptive representation than
as a sensitivity model. However, it is reused at least once for every run.
The best run shows an almost ideal behaviour: the first update-signal
model that is trained is able to reduce the objective from 44.26 to 33.19
which is about 74% of the overall improvement. This intermediate result
is achieved at the cost of 600 evaluations only.

The best optimized thickness distribution obtained by TOPS-PCM is
shown in Fig. 6.12(a). The areas along the top edges of the frame are
increased in thickness, especially close to the supports. The lower side of
the frame is driven to the minimum thickness. Near the impact edges the

Table 6.4: Specifications of PCM-TOPS for frame intrusion minimization.

Symbol | Value
Evaluations per learning step M 600
Max. evaluations per iteration | M™a* 600
Number of prototypes P 15
Improvement threshold AFin 0.001
Target volume fraction f 0.2
Filter radius Tmin 6.0mm
Number of offspring A 12
Number of parents 7 6
Minimum density Pmin 0.10
Move limit m 0.1
Initial global step size o (F=0) 0.3
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Figure 6.11: Intrusion versus the number of iterations (top), respectively eval-
uations (bottom) for frame intrusion minimization with TOPS-PCM, shown for
the best and the mean run.

structure is as well reinforced. Interestingly, the full thickness is not uti-
lized. On average, a total of roughly 4,400 evaluations during ten iterations
is required.

The HCA baseline algorithm was stopped after 200 iterations (and 200
evaluations accordingly) when the algorithm specific mass redistribution
convergence criterion was clearly oscillating periodically. The low number
of evaluations is an advantage of the HCA method. A different thickness
distribution than for PCM-TOPS is obtained, compare Fig. 6.12(b).

The deformations of the PCM-TOPS structure and the HCA baseline
structure are shown in Fig. 6.13 and 6.14. Figure 6.13 shows the deforma-
tions of both structures from a frontal perspective. For the HCA design,
the overall response is stiffer and the complete frame is in a bending mode.
Accordingly, the frame itself is only slightly deformed at the impact loca-
tion. However, the bottom side of the frame is intruding significantly at
the location of the nodes that are subject to the objective function in (6.2).
The PCM-TOPS structure shows a rather compliant behaviour at the im-
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Figure 6.12: Optimized frame thickness distribution subject to intrusion min-
imization by PCM-TOPS (a) and by HCA (b), colour-coded by the elemental
thickness in mm.

pact location caused by a folding of the vertical walls. The impactor
is pushing the upper wall into the interior of the frame. However, the
lower wall and the associated nodes are hardly moving in the (hypotheti-
cal) interior of the vehicle. With respect to the optimization formulation,
PCM-TOPS achieves a lower intrusion measure and, hence, a better opti-
mization result than HCA. Rotating the model towards the contemplator,
yields the second perspective in Fig. 6.14. Here, the relevant intrusion
is even more clearly visible. Furthermore, the smoothness of the result-
ing deformations might be interesting as well. From a safety perspective
the PCM-TOPS result is favourable, since the sharp edges of the baseline
result could bear potential risk for injuries.

Figure 6.15 shows the average z-displacement of the node set @, (t) =
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Figure 6.14: Deformation at 6ms, 10ms, and 40ms (final simulation time step)
of the optimized frames subject to intrusion minimization by PCM-TOPS and
by HCA, seen from the side, colour-coded by the displacement in z-direction in
mm.
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Figure 6.15: The average z-displacement u.(t) of the intruding node set Gi
during the crash, of the frame subject to intrusion minimization for the initial
and the optimized designs by PCM-TOPS and HCA. For PCM-TOPS, the mean
of the runs is plotted with bars indicating the standard deviation.

55 > icg, Uzi(t). The result from PCM-TOPS has significantly lower av-
erage displacement for most simulation time steps, compared to the initial
uniform thickness structure and the HCA structure.

In order to improve our understanding of the PCM-TOPS, we study the
evolved update-signal models in more detail. The empirical correlation co-
efficient between the update-signals and the LSF's is shown in Fig. 6.16 for
the best run (More information and the coefficient’s definition are given
in App. A.4. For the density, there is an unsteady but weak to moderate
anti-correlation. This can be interpreted intuitively as the tendency to
more often increase the density of elements that have a higher density.
Thus, those have higher (in absolute terms) update-signals. For the inter-
nal energy density, there is only a very weak anti-correlation, except for the
first four iterations, where the anti-correlation is slightly stronger with a
value around -0.4. Hence, in these first iterations, where the update-signal
model is reused (compare Fig. 6.11), the internal energy density LSF pro-
vides a good estimate where to add and remove material. Later on, the
correlation tends towards 0, as a new model is trained every iteration,
and the update-signal model takes the form of an indirect representation.
In this phase, the internal energy density is not as useful for modelling
the sensitivity of the intrusion objective function in (6.2) as it is at the
beginning. Yet, this can be compensated by the evolutionary search.

To examine the working principle, the optimized update-signals are
mapped to the structure for the different iterations, see Fig. 6.17. Again,
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Figure 6.16: The empirical correlation coefficient between update-signals and
LSF's plotted over the iterations for the frame structure optimization. A very
weak to weak anti-correlation between LSFs and update-signals is observed.
Since a minimization is considered, a perfect anti-correlation of —1 would imply
that the higher the value of the LSF the larger the change of the density and
vice versa.

each colour corresponds to one cluster in LSF space. Here, we consider
one of the runs where the update-signal model is reused several times
during the iterations. The clusters refer to relatively complex topological
patterns in the design space that are often disconnected and distributed
globally over the design space. Some of the patterns are reappearing
in several iterations. The resulting optimized thickness distribution in
Fig. 6.12(a) can be recognized in the update-signals along the upper
side/edges of the frame where the update-signal suggest to add material in
early and late iterations, and removal or relative little change of material
in iterations 3 to 5. In this run, in iteration 2, the update-signal model of
the first iteration is reused. Note how this results in similarities to the
preceding iteration in colours and element clusters. Although the update-
signal model is the same, the changed LSF's result in a change of closest
prototypes and, hence, the update-signals change. Similarly, in iterations
4 and 5 the model from iteration 3 is reused, resulting in similar, yet subtly
changed update-signals. This is followed by iterations where a retraining of
the PCM model is performed, resulting in highly different update-signals.

In conclusion, the application of the update-signals in PCM-TOPS
achieve a better optimization result compared to the HCA. The base-
line algorithm HCA cannot adapt its fundamental assumption of a uni-
form energy distribution to the given objective function. This leads to
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an overly stiff structure, which is a suboptimal result for the optimization
target. The generic component of PCM-TOPS is a conceptual advantage
compared to the specialized heuristic. The optimized thickness distribu-
tion results in a folding of the frame that avoids the undesired intrusion.
This demonstrates on a first application-oriented problem that the generic
method proposed in this thesis in fact clears the way to novel optimization
problems in the domain of crashworthiness.
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Figure 6.17: The optimized update-signals colour-coded onto the frame struc-

ture for different iterations, where blue is a signal for reduction and red for
increase of the thickness, respectively.
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6.4 Summary of Contribution

This chapter demonstrates the applicability and usefulness of the pro-
posed generic approach for non-linear crashworthiness topology optimiza-
tion. Topology Optimization by Predicting Sensitivities with Piecewise-
Constant Model (PCM-TOPS) is applied to two crash problems and com-
pared to baselines obtained by HCA. The first experiment on maximizing
energy absorption of a two-dimensional beam considers a typical HCA use
case. Although the baseline maintains a higher performance in terms of
energy absorption in this set-up, PCM-TOPS nevertheless results in a set
of meaningful and interesting design concepts with high energy absorption
capabilities. This is achieved without the previous assumption on uniform
energy distribution in the optimized structure. In the second problem,
an intrusion measure of a frame structure subject to crash is minimized.
Although no additional assumptions are is introduced, PCM-TOPS gen-
eralizes to this different objective function and obtains a well-performing
optimization result. The optimized structure shows a different deforma-
tion behaviour and clearly outperforms the baseline. This emphasizes the
advantage of the proposed generic method. Concluding, the chapter shows
that the generic topology optimization approach can be transferred and
successfully applied to the challenging domain of crashworthiness topology
optimization. From a more general perspective, this demonstrates that the
method is able to address the optimization of novel, so far unchallenged
topology optimization problem.
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7 Conclusions

7.1 Main Results

This thesis proposes topology optimization based on integration of learn-
ing concepts from the field of computational intelligence. Inspiration came
from the field of artificial, evolutionary development in which fascinating
biological models for the growth of structures have been studied. Some
of these models focused on evolving cellular behaviours that result in
optimized structures [182, 183]. Interestingly, also classical topology
optimization algorithms show aspects of a developmental process, due to
their pronounced similarity to cellular automata. However, computational
steps of these topology optimization algorithms are performed based on
a mathematical perspective, instead of a biological motivation. In this
sense, we can recognize similarity between the usage of mathematical
gradients for topology optimization and a developmental process that is
influenced by environmental information. This similarity clarifies that
the task of a biologically-inspired structural growth is strongly related
to modelling the gradient of the objective function. Assuming a suitable
learning process, we receive a generic topology optimization method
that is more general than classical approaches. This novel optimization
method is the main research contribution of this thesis. The individual
steps are summarized in the following paragraphs.

An eminent difficulty for general, stochastic optimization of continuum
topology optimization problems resides in the design freedom naturally
reflected by an accordingly high dimensionality of the search space. Evo-
lutionary computation literature provides plenty of different solution repre-
sentations that more or less address this challenge. For the first time since
the latest survey about a decade ago [101], this thesis collects and struc-
tures the approaches found in the literature. A categorization into three
classes is proposed: grid, geometric and indirect representations. While
grid representations are limited to small problems, geometric representa-
tions can provide a balance between design complexity and search space
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dimensionality. The potential to represent a large variety of topological
designs is identified for indirect representations, although they are rarely
studied in relation to topology optimization. The presented overview helps
to realize that there are almost no concepts for the usage of additional
simulation data in the evolutionary computation literature. This striking
absence was one of the motivations for deriving a novel approach that is
able to systematically utilize this usually neglected information.

In general, the fields of topology optimization and evolutionary compu-
tation have different conceptions of how much problem-specific knowledge
is available. For classical topology optimization, typically in-depth, physi-
cal understanding and mathematically formulated derivatives are a prereq-
uisite. In contrast, the optimization progress of evolutionary algorithms
is guided by objective function values, i.e. it is intrinsically data-driven.
This thesis proposes a novel, generic method that enables a combination
of data- and knowledge-driven aspects. The data-driven aspect is realized
by a learning component that harvests structural simulation data. This
data implicitly contains information on gradients and can, if available, be
refined by expert knowledge. In the developed method, the available sim-
ulation data is captured by the concept of Local State Features (LSF).
Structural updates during the optimization are performed by a learned
model that provides a search direction depending on the LSFs.

Evolutionary algorithms can be utilized for the optimization of the cor-
responding model parameters, since the model complexity is independent
of the high number of structural design variables. The optimized model
then, provides update-signals that improve the structure. Since the sen-
sitivity of the objective function with respect to the design variables is
identified as the primary learning goal, the method is termed Topology
Optimization by Predicting Sensitivities (TOPS). This clear goal makes
it possible to address the problem, as well, with a supervised learning ap-
proach that is based on finite difference sampling. A primary contribution
of the presented work is the elaboration of the learning methods, which
lead to the following modelling approaches:

o A feed-forward artificial neural network processing LSFs where
weights and biases are tuned by CMA-ES (NE-TOPS).

e A piecewise-constant model that is based grouping elements with
similar LSFs around prototypes (PCM-TOPS). For all elements as-
signed to one prototype, a constant update-signal is assumed and
tuned by CMA-ES.
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e Supervised learning based on linear or support vector regression

(LIN/SVR-TOPS).

Empirical studies on the minimum compliance problem demonstrate
the feasibility of the approaches by reproduction of a reference structure.
As can be expected, the results depend to a large part on the choice of
LSFs and, hence, the selected amount of previous knowledge. Depend-
ing on the relation of the LSFs to the design variables’ sensitivities, the
effort for learning may be reduced, until in an extreme case no learning
is required and TOPS reduces to a standard gradient-based method. Al-
though the approach is different from classical evolutionary algorithms, it
is interesting to realize that optimizing the proposed piecewise-constant
model is equivalent to optimizing an adaptive state-based representation
that groups elements with similar LSFs. This establishes a direct link be-
tween performing a gradient-based search and a stochastic one, in which
the latter uses an adaptive, indirect representation.

In the minimum compliance problem, for which finite difference sam-
pling is possible, training a supervised regression model for the update-
signals is more accurate and computationally cheaper in terms of evalua-
tions compared to the evolutionary approach. Support vector regression
has shown to be a reliable predictor, which is able to adequately replace
the sensitivities for various combinations of LSFs. However, for the su-
pervised learning of the update-signal model the applicability is limited to
objective functions with smooth responses, due to the necessity of finite
difference samples. In other cases, in which the sensitivity information
in the LSF's is very implicit, or gradient-based optimization steps do not
suit to improve the design, TOPS can succeed with the methods of vari-
ation and selection in one of the two evolutionary learning approaches.
Evolutionary optimization does not need to follow the gradient explicitly
and can provide any update-signals that improve the structure. However,
evolutionary optimization requires a high amount of function evaluations,
currently reducing its applicability to problems with small to medium-
sized simulation models. For the reference case, a piecewise-constant ap-
proximation is superior to a smooth neural network approximation when
the relation between LSFs and sensitivities is non-linear. When the task
is mainly selection of a LSF, a simple neural network is more appropri-
ate. The presented comprehensive evaluation demonstrates the feasibility
of TOPS and identifies assets and limitations of the various, developed
learning methods.

In order to demonstrate practical usefulness, PCM-TOPS was trans-
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ferred to the domain of crashworthiness topology optimization, where
sensitivity information is usually not available. Crashworthiness topol-
ogy optimization is especially interesting due to its relevance for the
vehicle design process in the automotive industry. In comparison with a
domain-specific heuristic baseline, TOPS achieves interesting structural
concepts with qualitatively similar performance when considering energy
absorption maximization. The adaptability of TOPS is highlighted with a
thin-walled frame example, for which an intrusion measure is minimized.
The result is a superior solution with a distinct deformation behaviour
compared to the baseline. In particular, the intrusion problem represents
a category of practical optimization problems, for which optimization is
basically not realizable without the proposed method. General methods
cannot handle the number of design variables, and specialized methods
are impeded by the problem complexity. This step towards application
demonstrates the ability of TOPS to address challenging topology
optimization problems for which otherwise no suitable method exists.

Hence, the main result of this thesis is a method for addressing complex
conceptual design problems, for which classical methods are not feasible.
Methods of computational intelligence, respectively statistical modelling,
are utilized for topology optimization that is able to adapt to the con-
sidered problem. A model is implemented by supervised or evolutionary
learning that provides updates for improving the design. This generic
search direction renders the derivation of mathematical sensitivities un-
necessary, which so far requires human experts. Although many direc-
tions for refinement remain and overall more comparisons of methods are
required, the learning process is shown to be successful. The applicability
is demonstrated on a practical problem from the domain of crashworthi-
ness, where promising results are obtained. The empirical evidence shows
the usefulness of the approach for instance for the automotive industry,
where generic topology optimization may lead to more creative and effi-
cient design solutions in the future.

7.2 Future Directions

There are large commonalities between the utilized, density-based, and
other approaches to the topology optimization problem. The majority of
the established methods relies on mathematical derivatives. Although the
formulations take different forms, it has been observed by Sigmund and
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Maute [171] that the sensitivity information is essentially the same in dif-
ferent approaches. For instance, the “Sensitivity Number” used in discrete
BESO approaches corresponds to the sensitivity from density-based meth-
ods. Topological derivative methods use precise, analytic information on
introducing an infinitesimal small hole in the structure. However, prac-
tically, a finite element is removed from a mesh, which is not infinitely
small and, hence, the sensitivity relates to that of the foregoing methods.
Also, for level set methods, sensitivities on the boundary of the level set
function can be related to the sensitivity of the density-based methods
on the structural boundary. Hence, the underlying learning goal of the
generic approach is fairly independent of the density-based problem for-
mulation and transferable to the mentioned approaches. Concretely, the
update-signals generated by the model could be used, for instance, to re-
move and admit complete elements, increase or decrease the thickness of
cross sections or substitute surface sensitivities of a level set function.

Another important aspect for future research are techniques to select
LSFs. So far, it is assumed that LSFs are selected by the user, either
based on intuition or based on a simplified analysis. However, especially
for problems with time-dependent simulations, there can be numerous can-
didate LSFs and intuition might be limited, hence, an automatized choice
would be favourable. This could be addressed by feature selection or di-
mensionality reduction techniques. The latter is mainly interesting for
reducing computational cost of evolutionary learning, since fewer LSFs
imply a reduction of search space dimensionality. It also seems promising
to investigate the determination of elements for sensitivity-sampling by
suitable design of experiments methods, instead of random schemes. For
the proposed piecewise-constant model a systematic clustering method
for the determination of element prototypes has potential to improve the
method, as well.

The research direction that possibly promises the highest impact on the
real-world design process is the continued application of TOPS to realistic
use cases. Crashworthiness topology optimization is the distinguished ex-
ample in this thesis, providing a starting point for future work. However,
the considered crash problems were merely examples of what could be ad-
dressed. Today, many crash application challenges remain, for instance ex-
truded vehicle body components or energy-absorbing, progressively-folding
tubes. Since every application has its pitfalls and peculiarities, it is reason-
able to dedicate further research to a specific domain. For this domain,
specialized LSFs could be identified based on simplified models, for in-
stance, based on Equivalent Static Load models as in [35].
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A.1 Adjoint Sensitivities

As an example for adjoint sensitivity analysis, let us consider the minimum

compliance problem:

min ¢(p) =1Tu
p

st K(p)u =1,

Vie)/Vo =1,
O<pmin§pi§17 i:17"'7N7

with stiffness matrix K, displacement field u and load vector 1.

The sensitivity dc(p)/0dp; can be derived by adding the equilibrium

equation as zero function [30]:
e(p) =1"u - v (K(p)u-1) ,
with an arbitrary but fixed vector v. Derivation yields:

dc 1T

K 1
= u—|—lTau—vT 0 u K@u_ 9
Ip; dpi Ip; Opi dpi  Opi
Since the load is independent of the design, i.e. 0‘1 = 0, we rearrange:
Oc _qr ou _VTaKu V'K Ou
8pi 3/)1- 8pi 3/%
0K Ju
T T T
= I" —v'K .
v 3Piu - ( ) Ip;
From this we have
Jc 70K
=-v u ,
Ipi Op;

when v satisfies the adjoint equation

"-v'K=0,
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which is the case for v. = u. Therefore, in case of the compliance problem
no additional computations are required for the adjoint state.

Usually solving the adjoint equation requires additional computations,
as we can see when we consider a different objective function. Let us
consider minimization of displacement u; of an arbitrary target node t
instead of the compliance:

min u;(p) = IJ'u
P
st.: K(p)u =1,

Vip)/Vo = T,
0< pmn <pi<1l,i=1,...,N .

Then, the displacement u; of the target node ¢ can be determined with
a virtual load vector 1; that is unity at index ¢ and zero otherwise.

For the sensitivity analysis, we follow an analogous derivation as for
the compliance sensitivities. The sensitivity of the target displacement
component with respect to a design variable ¢ is obtained by adding the
zero function:

u =1Ta— vt (Ku-1) |

with the arbitrary but fixed vector vT and differentiation:

17 K 1
8“t:8tu+1?8“—vT 0 u+K8u_8
dpi  Opi Op; Op; dpi  Opi

K

:ltTﬁu_VTa u—VTKau
dp; Op; Ip;
0K Ju

=—vT o u -+ (l;F — VTK) o

When the vector v solves the adjoint equation we obtain:
3ut - 7VT 3K u

opi P opi

Here, the adjoint equation is:
l;r —-vIK=0.

As it has the form of an equilibrium equation, it can be intuitively under-
stood as applying an adjoint (dummy) load vector 1¥ to the design space,
that yields the adjoint state v. Hence, unless the point of the load 1 is
identical to the target node ¢, v # u and solving the adjoint equation
requires an additional finite element computation.
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A.2 Sensitivity Regression Models

A.2.1 Linear Regression

At first a basic linear regression model is considered. Linear regression
is commonly used in engineering, often as response surface surrogates, its
parameters express linear relations of the features to the target. Linear
models are intuitive to understand and computationally fast to train. By
using higher order variants of the original features also multivariate poly-
nomial models are captured by linear regression models.

A linear regression model is defined as in (4.13):

1
So(s) =0y + 0151+ ... + 057 =0 M ,
with the model parameters @ and the J-dimensional feature vector s. The
model parameters are determined by minimizing the cost function

Cost =1/(2T) Z (Se(st) "‘)‘2932‘ , (A1)
t=1

with a set of T training samples (s;,y;) and a regularization parameter
A. The second term is a typical regularization term, that is included to
avoid over-fitting the training data, since for A = 0 the problem is ill-
posed. The specific choice of regularization is termed ridge regression
[83], and ensures flatness of the function by penalizing large values of the
model parameters, such that overall variance and especially the influence
of unnecessary input features is reduced. The values for 6 are found by
solving the least squares problem posed by minimization of (A.1). A good
value for the regularization parameter can be found by a line search using
cross-validation.

A.2.2 Support Vector Regression

For prediction, Support Vector Machines keep a subset of the training
samples as support vectors and apply the so-called kernel trick to transform
the input features space to a higher dimensional space.

The concept of support vectors can be used for regression tasks, i.e.
Support Vector Regression (SVR) [173, 194]:

L

Se(s) = 291/% (s1,8) + 0o ,

=1
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where s; are the L support vectors and k (s1,8) is the kernel function, rep-
resenting a dot product of a transformation of the input vector in a higher
dimensional feature space. Only the dot product is relevant, such that
the transformation does not need to be known explicitly. It is sufficient
to show that a kernel is admissible, i.e. it exists a transformation that
the kernel can be represented as a dot product in the feature space. An
admissible kernel, that is commonly seen as a good choice, is the Radial-
Basis-Function (RBF) kernel, with k(s,s’) = exp~Is=s'I” The size of
the RBF is controlled by . In contrast to linear kernels, the RBF kernel
maps the input vector to a higher dimensional feature space and therefore
can handle the case of non-linear relations between input and target. The
support vectors are a subset of the data samples, that need to be stored
and are required for prediction.
The target of e-SVR [194] is a prediction error smaller than e:

T
min | 51w +CS2(6 + ) (A2)

sty —(wys)) —b<e+§,
<W75z>+b_yz§€+§:,

é’ng >0 )
where w are the coefficients of a linear function, and (- , -) is the dot
product and (w,w) = ||w]||?, and &, £* are slack variables introduced to

soften the constraints. The constant C' determines the trade-off between
precision and tolerating prediction errors larger than e, thus it has a very
similar regularization function as 1/A for linear regression in (A.1). The
smaller C' the fewer support vectors will be required to keep the error
sufficiently low, this means a more sparse solution is found.

Problem (A.2) can be formulated as a quadratic optimization problem
that can be solved by constructing a Lagrangian function and introducing
dual variables for the constraints. As solver, existing quadratic program-
ming packages can be applied. The found function is the flattest function
approximating the target within the error bound (in feature space). It is
easy to obtain accurate results with the SVR, when following the recom-
mendations of Hsu et al. [87]. Concretely, it is necessary to follow the steps
of scaling, using the RBF kernel, finding the sensitive parameters C' and
~ by a grid-search on a cross validation data set, and final re-training. A
disadvantage is the relatively high computational cost for training of the
SVR, however in the considered use case it is small compared to the cost
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of gathering the training samples.

A.3 Compliance Topology Optimization

The elemental stiffness matrix used for the compliance reference problem
in Sec. 5.1 from [5, 168] is:

1_ v l_v _1_ v _1_ 3v

A S A O

S A I N U S U

E IS O A G 2 G
Ki=———- § 8 L 6 8 8 2 8
I=v?) | —2t1z 5% 6 5T
ALY PP 1% (F 0
SRS S A A
10 CEo3 ATV FE
8 8 17 12 8 8 1712

1, v _1_v v 1_ 3v

B WO U A G P G

88 {712 8§ 8 4712

v _1_sw 1, v 1_v

PR VAR S A D S 1

U A U A A S

A A S G A

S A I R U S
I G S G

8 8 6 8§ 8 276

The strain displacement matrix B and the matrix for plane stress E are
given as

-0.5 0 0.5 0 0.5 0 —-0.5 0
B= 0 -0.5 0 -0.5 0 0.5 0 0.5
-05 —-0.5 —-0.5 0.5 0.5 0.5 0.5 —-0.5

and
1 v 0
E= E v 1 0 ,
(1—v?)
0 0 (1-v)/2
respectively.

A.4 Correlation Coefficient

The correlation coefficient, or Pearson’s correlation coefficient, is a measure
for the linear correlation between to random variables X and Y. The
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coefficient is defined as:

where cov(X,Y) is the covariance of X and Y. The coefficient rxy is 1
for a total linear correlation, it is —1 for a total linear anti-correlation and
0 for no linear correlation. When dealing with two samples distributions
for the variables we compute the empirical coefficients according to:

Yo (@i — 3) (i — §) ,
\/Zz (T — ) \/ZL (v~

where x;, y; are the samples and Z, y are the sample means. More details
can be found in standard maths handbooks.
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B Compliance Studies Results

This section of the appendix collects result from the experiments on the
minimum compliance problem in Chap. 5.

In order to retrace the variations of the resulting structures when using
evolutionary tuning of update-signals, the resulting structures are shown.
Figures B.1 and B.2 show the structures from running NE/PCM-TOPS
with LSF Vector 1. Figures B.3 and B.4 show the structures from run-
ning NE/PCM-TOPS with LSF Vector II. We see that NE-TOPS has a
low variance for LSF Vector I and reproduces the reference structure reli-
ably. For LSF Vector II variance in the structural designs increases, with
a high proportion of structures with only two beams. Additional experi-
ments that are not reported in this thesis, showed that the reference can
be reproduced by reducing the move limit (m = 0.02) and increasing the
allowed evaluations (e.g. M = 2,000, M™* = 10,000) for model optimiza-
tion. This requires significantly higher computational cost, compare also
[14]. PCM-TOPS, however, is able to reproduce structures similar to the
reference structure for the setup with LSF Vector I as well as for LSF
Vector II.

The quantitative results of all experiments on the compliance problem
are presented as well. Values considered are those for the compliance, i.e.
its lowest cpin, mean ¢ and maximum value cyax, as well as the total num-
ber of evaluations required by the optimization, i.e. the its lowest Mot min,
mean Mo and maximum Mot max values. The standard deviations are
indicated as well. Table B.1 shows the absolute values, Tab. B.2 shows
the values relative to the according values of the finite differencing refer-
ence result, which is cief = 54.45Nmm and M,os = 26,481 for most cases
with exception of the mesh-dependency study with SVR-TOPS. There,
for simplicity, the same reference compliance value is used (since mesh
dependency is expected), and the reference number of evaluations is esti-
mated as Myt = (Ng X Ny + 1) x 21, where N, and N, are the number
of elements in horizontal and vertical directions, and 21 is the number of
iterations required by the reference on the 45 x 28 mesh.
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Figure B.1: The optimized structures resulting of running NE-TOPS with two
hidden neurons for 30 different random seeds on the minimum compliance can-
tilever problem, for LSF Vector I. Structures very similar to the reference are
obtained in the majority of cases.
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Figure B.2: The optimized structures resulting of running PCM-TOPS with
361 prototypes for 30 different random seeds on the minimum compliance can-
tilever problem, for LSF Vector I. Structures similar to the reference are obtained
in the majority of cases.
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Figure B.3: The optimized structures resulting of running NE-TOPS with 30
hidden neurons for 30 different random seeds on the minimum compliance can-
tilever problem, for LSF Vector II. The MLP cannot be optimized sufficiently
within the experiments to reproduce the reference structure.
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Figure B.4: The optimized structures resulting of running PCM-TOPS with
331 prototypes for 30 different random seeds on the minimum compliance can-
tilever problem, for LSF Vector II. Structures similar to the reference are ob-
tained in the majority of cases.
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C Crashworthiness

This section contains:
e Details of the material model that was used in the crash simulations,

e plots of the update-signal models that resulted from the optimization
of the crashworthiness objective functions.

In the crash experiments, a piecewise linear stress-strain relation is as-
sumed. Figure C.1(a) shows the non-linear material model used for the
beam crash case, for several values of density and penalization. Yield
stress and tangent modulus are interpolated based on SIMP as proposed
in [131]:

05 = Pio,

Ei = prOa (C 1)
Oyi = pgayOa ’
En; = p?Eno

with penalization constants p,q, volumetric mass density o', yield stress
oy and hardening modulus Ey,.

For the frame structure, a crash simulation with a piecewise linear model
with more pieces is used, to account for the much higher deformations. It
is shown in Fig. C.1(b). The material parameters are shown in Tab. C.1.
Since for the frame crash, the density variable represents a thickness, it is
not necessary to penalize intermediate densities with SIMP as any value
can be represented physically.

Figure C.2 shows the PCM update-signal model for the best run for some
of the iterations of the energy maximization beam. Obviously, the opti-
mized update-signal is not related linearly to the LSF's, a fact that justifies
the usage of the non-linear PCM model. Also, there are visually signifi-
cant changes between the iterations, showing that the re-optimization of
the update-signal model leads to different update-signals. Often different
update-signal values are possible for the same LSF value, indicating that
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a second dimension of the LSF vector is necessary as well. Similar ob-
servations can be made as well for the mean run of the intrusion frame
minimization shown in Fig. C.3.

Clamped Beam

—300

< —p=1,p=1

s --p=0.5, p=1

» 200 p=0.5, p=3

%]

o

g 100

=

© -

“9 0 z L L L I}
© 0 0.005 0.01 0.015 0.02

effective strain

(a) Piecewise linear material model used for elastic-plastic de-
formations of aluminum material model used in the beam crash
case, shown for different elemental densities and penalizations.

Frame
©
o
=200
1]
%]
o
% 100
(]
=
©
g 0 L L L I}
5] 0 0.1 0.2 0.3 0.4

effective strain

(b) The strain-stress curve of the piecewise linear material model
used for elastic-plastic deformations of the aluminum frame model
based on the parameters in Tab. C.1.

Figure C.1: Stress-strain curves for the non-linear material models used in the
crash simulations.
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Table C.1: Material constants of the elastic-plastic material model of the frame
problem in Sec. 6.3.

Effective plastic strain | Effective yield stress [MPal]
0.01 190.0
0.02 197.0
0.05 211.5
0.10 225.8
0.15 233.6
0.20 238.5
0.40 248.5
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