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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Ein Prozessmodell für Betrieb, Wartung und Weiterentwicklung von KI in CPPS-Umgebungen

AIM4M: MLOps strukturiert  
im Produktionsumfeld

L. Rauh, M. Süner, D. Schel

Z U S A M M E N FA S S U N G  Der produktive Einsatz von KI  
in der Industrie scheitert oft nicht an der Modellentwicklung, 
 sondern am stabilen Betrieb im Produktionsumfeld. AI Asset 
Management for Manufacturing (AIM4M) ist ein Prozessmodell 
für den KI-Lebenszyklus in cyber-physischen Produktionssyste-
men (CPPS) mit Fokus auf die Operationalisierung. Es ergänzt 
dazu den Ansatz von Machine Learning Operations (MLOps) 
aus der IT um CPPS-spezifische Feinheiten – als praxisnaher 
Orientierungsrahmen.

AIM4M: Structured MLOps  
for Manufacturing AI

A B ST R A C T  Implementing AI in manufacturing does not 
 necessarily fail because of model creation but is often due to  
a lack of reliable operation within production environments.  
AI Asset Management for Manufacturing (AIM4M) is a process 
model for the AI lifecycle in cyber-physical production systems 
(CPPS) with a focus on operationalization. It supplements the 
Machine Learning Operations (MLOps) approach from IT with 
CPPS-specific characteristics – as a practical orientation frame-
work.

1 Einleitung

Künstliche Intelligenz (KI) gilt als ein zentraler Baustein für 
die digitale Transformation in der industriellen Fertigung [1]. 
 Ihre Potenziale in der Anwendung (etwa die frühzeitige Fehler  -
erkennung, adaptive Prozessregelung oder prädiktive Instand -
haltung) sind weitreichend und gut erforscht [1, 2]. Dennoch 
zeigt die Realität in den Produktionshallen, dass viele KI-Projekte 
nicht über eine erfolgreiche Prototypenphase hinauskommen oder 
nach kurzer Zeit im Betrieb scheitern [3]. Die Ursachen liegen 
selten in der Qualität der Algorithmen, sondern vielmehr im 
 fehlenden strukturierten Vorgehen bei der Operationalisierung – 
also beim Übergang von der Idee zur stabil betriebenen und 
wartbaren KI-Lösung im realen Produktionsumfeld. Die Heraus-
forderung steigt weiter, wenn diese Lösungen innerhalb von 
 cyber-physischen Produktionssystemen (CPPS) laufen, also in 
Systemen mit engen Echtzeitanforderungen, hohem Integrations-
grad und anspruchsvollen Sicherheits- und Qualitätsanforderun-
gen [4].

Um diese Herausforderungen zu adressieren, etabliert sich zu-
nehmend das ursprünglich aus der IT kommende Konzept der 
Machine Learning Operations (MLOps). MLOps verspricht, den 
Lebenszyklus von KI-Lösungen ganzheitlich zu betrachten, von 
der Datenbereitstellung über Modelltraining bis hin zu Betrieb, 
Überwachung und kontinuierlicher Verbesserung [5]. Gerade im 
industriellen Kontext wird der jedoch Begriff oft uneinheitlich 
verwendet oder auf Teilbereiche reduziert. Häufig fehlt das ganz-
heitliche Verständnis, wie ein vollständiger KI-Lebenszyklus im 
Zusammenspiel mit technischen Systemen, Qualitätssicherung, 

 regulatorischen Anforderungen und operativer Verantwortung 
aussehen sollte.

Hier setzt das Prozessmodell AIM4M (AI Asset Management 
for Manufacturing) an, als ein strukturierter Orientierungsrah-
men für den Einsatz von MLOps im Kontext von CPPS [6]. Es 
adressiert explizit die Anforderungen, die beim praktischen Be-
trieb, der Weiterentwicklung (Update-Phase im Betrieb) und dem 
Rückbau von KI-Lösungen entstehen, also jenen Phasen, die im 
klassischen KI-Projekt oft nicht systematisch mitgedacht werden.

2 Stand der Technik und  
 Herausforderungen beim KI-Betrieb

Um ein tragfähiges Prozessmodell für den Lebenszyklus von 
KI-Anwendungen in der industriellen Produktion zu entwickeln, 
müssen zunächst die zentralen Rahmenbedingungen und beste-
henden Herausforderungen verstanden werden. In den folgenden 
Abschnitten werden dazu drei zentrale Themenbereiche betrach-
tet:
1. Die Rolle von CPPS für die Industrie-4.0-Initiative  

 (Kapitel 2.1),
2. die Struktur typischer KI-Lebenszyklen mit MLOps  

(Kapitel 2.2) und
3. die regulatorischen Anforderungen an den KI-Einsatz im 

 Kontext der Produktion (Kapitel 2.3).
Die daraus abgeleiteten Anforderungen werden in Kapitel 2.4 zu-
sammengefasst und bilden die Grundlage für die anschließende 
Analyse bestehender Prozessmodelle und die Entwicklung des 
AIM4M-Modells. 
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2.1 Cyber-physische Systeme in der Fertigung 

CPPS stellen die industrielle Ausprägung cyber-physischer 
Systeme (CPS) dar, bei denen physische Prozesse eng mit digita-
len, vernetzten IT-Komponenten gekoppelt sind [7]. In der Ferti-
gung ermöglichen sie den Echtzeitaustausch großer Datenmengen 
zwischen Maschinen, Robotern, Sensoren und IT-Systemen wie 
Datenbanken oder Softwarelösungen [8]. Diese Integration eröff-
net fortschrittliche Analyse- und Steuerungsfunktionen zur Stei-
gerung von Effizienz, Flexibilität und Reaktionsgeschwindigkeit 
in Produktionsumgebungen.

CPPS gelten damit als zentrale technologische Grundlage für 
die Realisierung von Industrie-4.0-Visionen. Durch die fort -
laufende Entwicklung hin zu hochgradig vernetzten, datengetrie -
benen Systemen spielen sie eine Schlüsselrolle bei der Gestaltung 
nachhaltiger und anpassungsfähiger Produktionsprozesse. Die 
 Integration von KI beziehungsweise von Verfahren des maschi-
nellen Lernens (ML) verstärken diesen Trend, da diese Technolo-
gien eine schnelle Analyse großer Datenmengen erlauben und so 
prädiktive Fähigkeiten sowie autonome Entscheidungsfindung in 
der Produktion ermöglichen [4].

Aufgrund dieser CPPS-Spezifika müssen Lebenszyklusmodelle 
für KI im MLOps-Ansatz neben softwareseitigen Komponenten 
(etwa Datenpipelines und Versionierung) auch den operativen 
Betrieb im produktionsnahen Hardwarekontext berücksichtigen. 
Doch während aktuelle Ansätze zunehmend Aspekte wie Monito-
ring und Deployment adressieren [9], bleibt die methodische Ein-
bindung solcher physischen Produktionsumgebungen, vor allem 
unter Echtzeitanforderungen, bislang in etablierten Lebenszyklus-
modellen weitgehend unbeachtet [10].

2.2 KI-Lebenszyklus in MLOps und Industrie 4.0 

Mit der zunehmenden Relevanz von KI-Systemen in der 
 industriellen Produktion wächst auch der Bedarf, deren gesamten 
Lebenszyklus systematisch zu gestalten. Die Basis des typischen 
KI-Lebenszyklus umfasst mehrere iterative Phasen, die durch 
Feedback-Schleifen miteinander verbunden sind: von der Daten-
vorbereitung und Modellierung über die Evaluierung und Inte-
gration bis hin zum operativen Einsatz und zur Weiterentwick-
lung [5, 11]. Bekannte Ansätze wie CRISP-ML(Q) gehen dabei 
über klassische Modelle hinaus, indem sie Qualitätssicherung (in 
Form von Prüfpunkten zur Qualitätssicherung) und Feedback-
Mechanismen explizit integrieren [12]. Sie bieten damit wichtige 
Impulse für eine praxisgerechte Gestaltung des KI-Lebenszyklus 
in der Industrie, bilden aber die besonderen Anforderungen von 
CPPS nicht vollständig ab.

Im industriellen Kontext treten besondere Herausforderungen 
auf. Anders als bei rein digitalen Produkten muss KI in Produkti-
onssystemen dauerhaft unter variablen Bedingungen performant 
und sicher sowie nachvollziehbar arbeiten. Daraus ergibt sich die 
Notwendigkeit eines stabilen Feedback- und Monitoring-Mecha-
nismus, der nicht nur die Performance überwacht, sondern auch 
Veränderungen in Daten oder Prozessen erkennt und Nutzer-
Feedback aus der Anwendung direkt integriert [9].

Ein weiterer zentraler Aspekt ist die Rollenverteilung im 
 Lebenszyklus. Industrieorientierte Ansätze heben hervor, dass der 
Erfolg von KI-Projekten nicht allein von KI-Experten abhängt, 
sondern ein Zusammenspiel mit mehreren Rollen aus der Domä-
ne erfordert, wie Datenwissenschaftlern, Stakeholdern und Daten- 

und Softwareingenieuren [5, 11]. Dabei werden in [13] weitere 
Tätigkeiten der MLOps-Domäne beschrieben, die die Notwendig-
keit von Hardware- und Infrastrukturexperten sowie Qualitätsin-
genieuren implizieren. Eine explizite Erwähnung und Definition 
dieser notwendigen Rollen im KI-Lebenszyklus fehlt jedoch in 
gängigen Prozessmodellen. 

2.3 Regulatorische Anforderungen  
 an KI-Anwendungen in der Produktion

Der Einsatz von KI in der Produktion bringt nicht nur techni-
sche, sondern auch regulatorische Herausforderungen mit sich. 
Mit dem EU-AI-Act rücken zunehmend Anforderungen in den 
Fokus, die auf Transparenz, Nachvollziehbarkeit und Dokumenta-
tion im KI-Lebenszyklus abzielen [14]. Dies betrifft etwa sicher-
heitsrelevante Anwendungen, in denen die Entscheidungsfindung 
der KI erklärbar und kontrollierbar bleiben muss.

Ein Konzept, das zur strukturierten Umsetzung dieser Anfor-
derungen beitragen kann, ist die Verwendung von “AI-Cards”, wie 
in [15] definiert. Diese standardisierten Artefakte erfassen zen-
trale Informationen zu Datenquellen, Modellverhalten, Anwen-
dungsgrenzen und Risiken und unterstützen dadurch sowohl die 
interne Qualitätssicherung als auch die externe Kommunikation 
mit regulatorischen Stellen. Besonders in komplexen Produkti-
onsumgebungen wie CPPS tragen solche Ansätze dazu bei, den 
verantwortungsvollen KI-Betrieb zu gewährleisten.

2.4 Zusammenfassung der Anforderungen 

In den Ausführungen oben wurden zentrale Anforderungen 
und Perspektiven herausgearbeitet, die ein praxisnahes Prozess-
modell für KI-Anwendungen in der Produktion im CPPS-Kontext 
berücksichtigen muss. Cyber-physische Produktionssysteme stel-
len hohe technische System-Anforderungen, wie etwa an Echt-
zeitfähigkeit und Integration in hardwarenahe Infrastrukturen 
(Kapitel 2.1). Gleichzeitig erfordert der KI-Lebenszyklus in der 
industriellen Praxis eine strukturierte Iteration mit Monitoring, 
Feedback und klar definierten Rollen (Kapitel 2.2). Hinzu kom-
men regulatorische Vorgaben, die Transparenz und dokumentier-
te Nachvollziehbarkeit über alle Phasen hinweg einfordern (Kapi-
tel 2.3).

Diese technischen, methodischen und regulatorischen Aspekte 
bilden die Grundlage für die in Kapitel 3.1 folgende Analyse 
 bestehender Prozessmodelle. Ziel ist es, zu prüfen, inwiefern vor-
handene Ansätze diesen Anforderungen gerecht werden und wo 
Lücken bestehen, die eine Weiterentwicklung notwendig machen.

3 Ein strukturierter Prozessrahmen  
 für KI in der Produktion

Um den komplexen Anforderungen an den KI-Lebenszyklus 
im Kontext von CPPS gerecht zu werden, braucht es ein struktu-
riertes, anwendungsnahes Vorgehen. Der folgende Abschnitt in 
Kapitel 3.1 analysiert, inwiefern bestehende Prozessmodelle 
 diesen Anforderungen genügen und bildet damit die Grundlage 
für die Entwicklung eines eigenen, industrieorientierten Ansatzes 
(Kapitel 3.2), der auf die Anforderungen und Grundlagen von 
Kapitel 2 aufbaut. Abschließend wird in Kapitel 3.3 die sich erge-
bende Praxisbedeutung des eigenen AIM4M-Prozessmodells dis-
kutiert.
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3.1 Analyse bestehender Prozessmodelle 

Zahlreiche Veröffentlichungen der letzten Jahre widmen sich 
dem Lebenszyklus von KI-Systemen, sowohl im Kontext allgemei-
ner KI-Prozesse als auch mit Bezug zu MLOps. Ziel ist, zu unter-
suchen, inwieweit bestehende Prozessmodelle den zuvor beschrie-
benen Anforderungen an den industriellen KI-Betrieb, vor allem 
im Umfeld von CPPS, gerecht werden.

Hierfür wurde eine strukturierte Analyse bestehender Modelle 
aus Forschung und Praxis durchgeführt. Ausgangspunkt bildete 
eine systematische Literaturanalyse gemäß Prisma-Methode, die 
im Januar 2025 durchgeführt wurde. Dazu wurden die Daten -
banken „Web of Science“ und „Scopus “durchsucht, basierend auf 
 einem Suchstring, mit drei Komponenten durch ein „AND“ ver-
knüpft. Je Komponente waren dabei mehrere Alternativen durch 
ein „OR“ verknüpft, um flexibel bei der konkreten Wortwahl zu 
bleiben. Der Suchstring sollte gewährleisten, dass nur Publikatio-
nen gefunden werden, welche sich im weiteren Sinne mit einem 
Prozessmodell zum Thema MLOps im Kontext von CPPS be-
schäftigen. Die Suche führte zu insgesamt 243 Paper-Ergebnissen. 
Diese wurden anschließend mit der Prisma-Methode zu 11 rele-
vanten Ansätzen beziehungsweise Prozessmodellen reduziert 
 [5, 10, 12, 16–24], die ein vollständiges Lebenszyklusmodell 
adressieren. Diese Modelle wurden auf Basis vorab definierter 
Bewertungskriterien verglichen, die aus den vorangegangenen 
Kontextkapiteln (Kapitel 2.1 bis Kapitel 2.3) abgeleitet wurden. 
Die Kriterien umfassen sieben zentrale Dimensionen von MLOps 
und Industrie 4.0, die in der Tabelle zusammengefasst dargestellt 
werden.

Anhand dieser Kriterien (K1-K7) wurden die 11 ausgewähl-
ten Prozessmodelle in einer Vergleichsmatrix gegenübergestellt 
(Bild 1). 

Dabei wurde die Abdeckung der sieben definierten Bewer-
tungskriterien qualitativ mit „Harvey Balls“ auf einer dreistufigen 
Skala dargestellt: vollständig erfüllt (voller Ball, Wert 100 %), 
teilweise erfüllt (halber Ball, Wert 50 %) und nicht erfüllt (leerer 
Ball, Wert 0 %). Der Erfüllungs- beziehungsweise Überdeckungs-
grad bezieht sich vor allem auf die qualitative Bewertung des Kri-
teriums, unter anderem, ob jeweils entsprechende Anforderungen 
berücksichtigt wurden oder in den Prozessmodellen über Key-
words erkenntlich sind. Zusätzlich wurde je Prozessmodell ein 

Durchschnittswert berechnet, der den prozentualen Erfüllungs-
grad über alle Kriterien hinweg angibt. Das Ergebnis zeigt, dass 
im Schnitt nur etwa die Hälfte der Kriterien erfüllt wird, mit Ein-
zelwerten zwischen 21 % und 64 %.

Die Auswertung zeigt die Unterschiede der Prozessmodelle in 
Detailtiefe (zum Beispiel Rollen und systematisches Vorgehen), 
Struktur und Anwendungsfokus. Während die meisten Prozess-
modelle zentrale Evaluationsaspekte, wie das umfassende Lebens-
zyklusmanagement oder Governance- und Qualitäts-Anforderun-
gen, gut abdecken, fehlt häufig die Anwendung systematischer 
Konzepte für Rollen und Verantwortlichkeiten sowie detailliertes 
Engineering. Aspekte wie regulatorische Anforderungen und be-
sonders die CPS/CPPS-Integration werden am seltensten und 
meist nur am Rande adressiert.

Die Analyse macht deutlich: Es fehlt ein Prozessmodell, das die 
Stärken bestehender Ansätze, wie rollenbasiertes Vorgehen zum 
Engineering, kontinuierliche Feedback-Zyklen und standardisierte 
Qualitätsmethoden mit den besonderen Bedingungen der indus-
triellen Praxis, insbesondere im Umfeld cyber-physischer Syste-
me, ganzheitlich adressiert. Bestehende Ansätze liefern wichtige 
Impulse, doch kein Ansatz vereint alle zentralen Anforderungen 
in einer durchgängigen, praxisnahen Struktur. Diese Erkenntnis 

Bild 1 Bewertung der analysierten Prozessmodelle für Machine Learning 
Operations (MLOps), anhand der Evaluationskriterien (aus der Tabelle). 
Grafik: Fraunhofer IPA

Tabelle. Bewertungskriterien, abgeleitet aus zentralen MLOps-Anforderungen für CPPS.

Kategorie

Systematisches Lebenszyklus-Engineering

Domänen-spezifische Anpassung

Regulatorische Anforderungen

Dimensionen des Kriteriums

(K1) Verantwortlichkeiten und Akteure: Die relevanten Rollen und Verantwortlichkeiten sind für jeden Prozessschritt 
aufgeführt.

(K2) Systematisches Engineering: Die Prozessschritte sind detailliert definiert und beschrieben, anstatt nur ein  
allgemeines oder generisches Modell darzustellen.

(K3) Umfassendes Lebenszyklusmanagement (LZM): Der Prozess bildet die gesamte Lebensdauer einer  
KI-Anwendung ab, von der ersten Idee bis zur Außerbetriebnahme.

(K4) CPS/CPPS und Industrie 4.0 Kontext: Der Prozess integriert Spezifika aus dem CPPS-Kontext, zum Beispiel  
inkludiert die Integration und Systemtests mit Hardware-Komponenten.(K5) Live-Modellaktualisierungen: Der  
Prozess ermöglicht eine kontinuierliche Optimierung mit Modelliterationen während der Betriebsphase.

(K6) Einhaltung gesetzlicher Vorschriften: Anforderungen (Sicherheit, Erklärbarkeit usw.) sind adressiert und  
werden über den gesamten Lebenszyklus hinweg verortet.

(K7) Governance und Qualitätsbewertung: Herausforderungen sind adressiert und es werden entsprechenden  
Anforderungen kontinuierlich aufgenommen und evaluiert.
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bildet die Grundlage für die Entwicklung des eigenen Prozess -
modells AIM4M, das im Kapitel 3.2 vorgestellt wird.

3.2 Das AIM4M-Prozessmodell 
3.2.1 Überblick 

Auf Basis der in Kapitel 2 identifizierten Anforderungen und 
Analyseergebnisse (Kapitel 3.1) wurde mit AIM4M (AI Asset 
Management for Manufacturing) ein Prozessmodell entwickelt, 
das den vollständigen Lebenszyklus von KI-Anwendungen in 
 industriellen Produktionssystemen strukturiert abbildet. Die Ent-
wicklung erfolgte iterativ und wurde kontinuierlich durch Erfah-
rungen aus Industrieprojekten flankiert, um ein betriebstaugliches 
und anschlussfähiges Vorgehensmodell abzuleiten. Der Fokus lag 
auf der praxisnahen Umsetzung im Kontext von CPPS, mit be-
sonderem Augenmerk auf die Betriebsphase, Qualitätssicherung 
und regulatorische Nachvollziehbarkeit. Details zur Entwick-
lungsmethodik sind in [6] dargestellt. Die vorliegende Arbeit 
 erweitert diese Fassung insbesondere um eine zweistufige Visuali-
sierung und Evaluierungsergebnisse der Studie (Kapitel 3.3).“

Dazu ist das Prozessmodell in vier Hauptphasen unterteilt, die 
den gesamten KI-Lebenszyklus umfassen: „Ideation”, „Develop-
ment”, „Operation” und „Retirement“, die sich grundsätzlich an 
den typischen Phasen eines Produktlebenszyklus orientieren. Jede 
Phase besteht aus mehreren Stufen (römische Nummerierung). 
Diese Struktur erlaubt es, KI-Projekte systematisch und hier -
archisch strukturiert zu steuern: von der Anforderungsanalyse 
und Ideenfindung bis zur kontrollierten Stilllegung. Bild 2 bietet 
eine kompakte Übersicht über das Prozessmodell und zeigt Pha-
sen, Stufen sowie deren Verlauf und mögliche Rückkopplungen 
(Strukturansicht). 

Die Stufen sind farblich an ihre übergeordnete Phase gekop-
pelt und machen somit Abhängigkeiten sofort erkennbar: orange 
sind Stufen mit explorativen Tätigkeiten (wie Ideenfindung und 
konzeptionelles Design), blau sind Stufen mit Entwicklungstätig-
keiten (zu Daten, Modell, Anwendung), grün sind Stufen mit 
 Tätigkeiten rund um Betrieb und Monitoring, grau sind Geneh-
migungsstufen (Qualitätskritische Entscheidungen) und schwarz 

ist die finale Stufe der Außerbetriebnahme. Die Abbildung zeigt 
vor allem die logische Abfolge im Lebenszyklus. Pfeile im Modell 
geben die Richtung der Bearbeitung an: durchgezogene Linien 
stehen für sequenzielle Abläufe, während gestrichelte Linien itera-
tive Zyklen und Rückkopplungspunkte verdeutlichen. Umfang 
und Dauer einzelner Stufen können erheblich variieren. Maßgeb-
lich ist dabei etwa die Erfahrung des Unternehmens in der 
 KI-Entwicklung und die Verfügbarkeit technischer Hilfsmittel. So 
kann die Stufe „Operation Onboarding“ in einem Großunterneh-
men lediglich bedeuten, eine neue KI-Anwendung in eine beste-
hende Plattform einzubinden, während ein Unternehmen ohne 
etablierte Infrastruktur dafür mehrere Monate für Planung und 
Bereitstellung einer betriebsfertigen Gesamtlösung einplanen 
muss. Eine ausführliche Beschreibung der Phasen folgt im nächs-
ten Kapitel.

Die Strukturansicht dient als erster Überblick über die hierar-
chische Struktur von Phasen und Stufen, um als Orientierungs-
rahmen die technischen, organisatorischen und regulatorischen 
Aspekte systematisch miteinander zu verbinden. Somit ist diese 
Darstellung als Einstiegspunkt in ein umfassendes KI-Lebens -
zyklusmanagement und zur Kommunikation auf höherer Flug-
ebene gedacht, zum Beispiel mit Entscheidungsträgern.

3.2.2 Die Lebenszyklusphasen 

Nachdem Bild 2 den Gesamtzusammenhang des AIM4M-Pro-
zessmodells als Strukturansicht visualisiert hat, richtet sich der 
Fokus nun auf die einzelnen der vier Hauptphasen und dazugehö-
rigen Stufen dieses Lebenszyklus. Diese Phasen spiegeln typische 
Projektverläufe bei KI-Anwendungen wider und strukturieren 
den Lebenszyklus in einer klar nachvollziehbaren Form, von der 
ersten Idee bis hin zur Außerbetriebnahme. Es folgt je Phase eine 
kurze Beschreibung:
• Phase I: Ideation Phase 

Ziel der Ideation Phase (Stufen I bis III) ist die Initialisierung 
und Validierung eines Use Cases. Dazu gehört zunächst die 
Analyse des Problems, das durch dieKI gelöst werden soll. An-
schließend werden technische und regulatorische Anforderun-
gen abgeleitet. Die Use-Case-Idee wird schrittweise konkreti-
siert, auf Geschäftsnutzen, Stakeholder-Ziele und (technische) 
Machbarkeit überprüft und freigegeben. Die Entscheidung zur 
Weiterverfolgung der Idee und Freigabe entsprechender 
 Ressourcen zur Entwicklung erfolgt am Ende der Phase über 
einen ersten Qualitätsprüfpunkt (QA-Gate).

• Phase II: Development Phase 
Die zweite Phase (Stufen IV bis VII) überführt den KI-Proto-
typen in eine einsatzfähige Lösung. Dazu gehören sämtliche 
Entwicklungsaufgaben – von Datenbeschaffung und -aufberei-
tung über Modelltraining bis hin zu systematischen Experi-
menten - um für das in der vorangegangenen Phase definierte 
KI-Problem einen geeigneten Modellkandidaten zu finden. 
 Eine lückenlose Dokumentation und der Einsatz automatisier-
ter Pipelines sind dabei essenziell. Sobald ein Modellkandidat 
vorliegt, wird er in eine Anwendung integriert: Das Spektrum 
reicht von einer schlanken Programmierschnittstelle, über die 
andere Systeme auf das Modell zugreifen, bis zur Entwicklung 
kompletter Benutzeroberflächen oder sogar einer Smartphone-
App. Danach folgt das Onboarding, bei dem die Anwendung in 
bestehende Delivery- und Monitoring-Plattformen eingebun-
den und für die Produktfreigabe vorbereitet wird. Diese Ab-

Bild 2 Strukturansicht des AIM4M (AI Asset Management for Manu -
facturing)-Prozessmodell als Übersicht über die vier Hauptphasen und  
elf  Stufen. Die römischen Ziffern geben die Nummer der Stufe an.  
Grafik: Fraunhofer IPA
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nahme schließt die Entwicklungsphase ab und bestätigt, dass 
Datenpipelines, Modellversionen und Anwendungen reprodu-
zierbar dokumentiert, automatisiert getestet und freigegeben 
sind.

• Phase III: Operation Phase 
Die Operation Phase (Stufen VIII bis X) umfasst den laufen-
den Betrieb der KI-Anwendung und stellt deren Stabilität 
 sicher durch kontinuierliche Optimierung, Überwachung und 
eventuelle Deployment-Zyklen. Im Mittelpunkt stehen ein 
 lückenloses Monitoring von Anwendung und Infrastruktur, die 
fortlaufende Performance-Bewertung sowie die systematische 
Einbindung von Nutzerfeedback. Auf dieser Grundlage werden 
erforderliche Anpassungen an Daten, Modellen oder Infra-
struktur gezielt geplant, dokumentiert und kontinuierlich 
 evaluiert. Sämtliche Updates, ob an Modell, Datenpipeline oder 
Software, durchlaufen einen klar definierten Freigabeschritt, 
sodass nur geprüfte Änderungen in die Produktionsumgebung 
gelangen und der reibungslose Betrieb dauerhaft gewährleistet 
bleibt.

• Phase IV: Retirement Phase 
Wird ein KI-System abgelöst oder der zugehörige Use Case 
eingestellt, zum Beispiel weil definierte Anforderungen über 
Zeit verletzt und nicht mehr durch Updates behoben werden 
können, deckt AIM4M auch den strukturierten Rückbau oder 
die Außerbetriebnahme und damit verbundene Aktivitäten ab 
(Stufe XI). Dabei wird die KI-Anwendung deaktiviert, Daten 

entweder archiviert oder gelöscht (je nach Vorgaben aus der 
Anforderungsdefinition, entsprechend des Anwendungskon-
text) und eine abschließende Evaluierung zur Wissenssiche-
rung durchgeführt. Der dokumentierte Abschluss hilft, 
 Erfahrungen für zukünftige Projekte nutzbar zu machen.

Mit dieser Gliederung in vier Hauptphasen spannt AIM4M den 
Bogen von der ersten Idee bis zur Außerbetriebnahme. Jede Phase 
verfolgt ein klar definiertes Ziel, endet mit einem geprüften 
Übergabeschritt und schafft so Transparenz und Wiederholbar-
keit, auch im Sinne der Nachvollziehbarkeit und Verantwortlich-
keiten, wie sie etwa der EU-AI-Act fordert. 

3.2.3 Modellergebnis und -verfeinerungen

Aufbauend auf der Strukturansicht (Bild 2) und der im vorhe-
rigen Kapitel vorgestellten Phasengliederung zeigt dieses Kapitel 
das AIM4M-Prozessmodell in seiner vollständigen Detailansicht, 
visualisiert in Bild 3. 

Im Vergleich zu bestehenden Prozessmodellen wurden bei der 
Entwicklung des AIM4M mehrere zielgerichtete Verfeinerungen 
und Erweiterungen vorgenommen, auf Basis der dargestellten 
Anforderungen aus Anwendungskontext und Regulatorik:
1. Hardware-Perspektive für CPPS: 

AIM4M berücksichtigt die starke Kopplung von KI-Anwen-
dungen an produktionsnahe Hardware, wie sie für CPPS 
 typisch ist. Besonders bei Test und Integration des KI-Modells, 

Bild 3 Detaillierte Darstellung des AIM4M-Prozessmodells (Detailansicht), als Verfeinerung der Strukturansicht. Grafik: Fraunhofer IPA
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bei Update-Prozessen und Monitoring werden die technischen 
Rahmenbedingungen (wie Echtzeitverarbeitung, Steuerungs-
systeme) miteinbezogen. Relevante Tätigkeiten erstrecken sich 
aber über den gesamten Lebenszyklus (siehe Magenta-Markie-
rungen an den Schritten im Prozessmodell), zum Beispiel die 
Berücksichtigung der Hardware-Anforderungen in I, oder Hy-
brid Testing in VI.

2. Betonte Betriebsphase mit vollständigem Regelkreis: 
Während viele Lebenszyklus-Modelle die Entwicklung betonen, 
stellt AIM4M auch die Betriebsphase detailliert dar. Diese um-
fasst neben dem Monitoring die kontinuierliche Re-Evaluation, 
Optimierung sowie geregelte Updateprozesse zur Sicherung 
der Qualität und Konformität zu anfangs definierten Anforde-
rungen.

3. Regulatorik und Nachvollziehbarkeit als feste Bestandteile: 
Der Einsatz der AI-Cards (siehe Anforderungen in Kapitel 2.3) 
als standardisierter Dokumentationsartefakte ermöglicht einen 
strukturierten Umgang mit regulatorischen Anforderungen. So 
wird Nachvollziehbarkeit im Betrieb methodisch verankert.

4. Rollenbasierte Strukturierung: 
Das Modell definiert die notwendigen Rollen entlang des Le-
benszyklus (zum Beispiel Stakeholder, KI-Entwickler, Soft-
ware-Ingenieur) und ordnet ihnen konkrete Aufgaben und 
Schnittstellen zu. Somit entstehen klare Verantwortlichkeiten, 
auch über Team- oder Abteilungsgrenzen hinweg. Durch die 
Spezialisierung eines generischen MLOps-Rahmens für den 
 industriellen Einsatz in der Fertigung erweitert AIM4M die in 
der Literatur bekannten Rollenmodelle für KI-Lebenszyklen 
(siehe [5, 11]) um vier zusätzliche, in Magenta markierte 
 Rollen (wie in Kapitel 2.2 eingeführt): der Qualitätssicherung, 
dem Hardware-, Infrastruktur- und Service-Ingenieur.

5. Stufenbasierter Aufbau für Wiederverwendung und Skalierung: 
Durch die Aufteilung in Phasen, Stages (Stufen) und Prozess-
schritte (Steps) können Use Cases in verschiedenen Reifegra-
den durchlaufen oder modular angepasst werden. Dies erlaubt 
eine schrittweise Skalierung und Wiederverwendbarkeit. Damit 
ist das Prozessmodell nicht nur relevant für Unternehmen, die 
schon mehrere KI-Anwendungen entwickelt und entsprechen-
des Knowhow aufgebaut haben, sondern besonders auch für 
Unternehmen, welche erst am Anfang einer solchen Initiative 
stehen.

Die zielgerichteten Erweiterungen zeigt die Detailansicht (Bild 3) 
und behält dabei die vertraute Farblogik bei: Orange kennzeich-
net die experimentellen Stufen (I–II), blau die Entwicklungs -
stufen (IV, V, und IX), grün die Betriebsstufen (VI, VIII), grau 
die formalen Genehmigungsschritte (III, VII, X) und schwarz die 
Außerbetriebnahme (XI). Jede (römisch nummerierte) Stufe ist 
als Kasten mit Titel, arabisch nummerierten Schritten und den 
dafür verantwortlichen Rollen dargestellt (links „L” = Lead, rechts 
„C” = Contributor). Die Rollenkürzel erläutert die Legende am 
unteren Rand (etwa KiE = KI-Entwickler).

Insgesamt veranschaulicht die Detailansicht (Bild 3), wie das 
AIM4M-Prozessmodel neben der groben Strukturansicht des KI-
Lebenszyklus (Bild 2) auch einen klar abgestimmten Arbeitsplan 
bietet. Dieser verortet definierte Verantwortlichkeiten, Qualitäts-
prüfpunkte mit Dokumentationslogik und nachvollziehbare Arte-
fakte und orientiert sich konsequent an der Farb- und Phasen -
logik der Strukturansicht.

3.3 Von der Theorie zur Blaupause:  
 Erste Einblicke aus der Praxis

Das AIM4M-Prozessmodell stellt einen praxisnahen Orientie-
rungsrahmen bereit, der MLOps-Prinzipien auf die besonderen 
Bedingungen im Kontext von CPPS überträgt. Ein zentrales Ziel 
bei dessen Entwicklung war nicht nur ein theoretisch fundiertes 
Prozessmodell, sondern auch eine konkrete Orientierungshilfe für 
die Praxis zu schaffen. Dafür wurde das Prozessmodell so gestal-
tet, dass es vielseitig anwendbar (zum Beispiel für Anbieter sowie 
Anwender von KI-Lösungen), leicht vermittelbar (für unter-
schiedlichste Reifegrade an KI-Erfahrungen bei Unternehmen) 
und auf unterschiedliche KI-Use-Cases übertragbar ist (von klas-
sischer KI, über KI-Bildverarbeitung und Sprachmodelle). 

Um die Praxistauglichkeit des Prozessmodells schrittweise zu 
beleuchten, werden momentan zwei Ansätze verfolgt: Zum einen 
kommt AIM4M bereits in ersten Pilot-Beratungsprojekten bei 
Kunden zum Einsatz; zum anderen läuft parallel eine qualitative 
Studie, die auch ohne unmittelbare Anwendung des Prozess -
modells zeitnah erste Praxiseindrücke liefert. Bisher wurde das 
Prozessmodell mit 16 Industrie-Expertinnen und -Experten 
 diskutiert und zeigt so einen ersten Realitätsabgleich sowie Nut-
zenpotenziale auf. Im Folgenden wird eine Auswahl der bisheri-
gen Ergebnisse vorgestellt.

3.3.1 Studienaufbau

Die Studie liefert eine erste Einschätzung, wie praktikabel und 
vollständig AIM4M aus Anwendersicht im industriellen Kontext 
ist. Dafür wurden (im Zeitraum April bis Mai 2025) 16 Exper-
tinnen und Experten aus 16 deutschsprachigen Unternehmen 
 befragt. Die Stichprobe deckt zentrale Rollen des Prozessmodells 
ab: von strategischer Ebene (Stakeholder) bis in ausführende Rol-
len (KI-Entwickler, Qualitätsprüfer etc.). 

Die Datenerhebung erfolgte durch strukturierte Einzelinter-
views (circa 60 Minuten) mit teilweise offenen und teilweise 
 geschlossenen Fragen zur Ist-Situation, dem Prozessmodell und 
Chancen für eine unterstützende Softwarelösung. Im Interview 
wurde das AIM4M-Prozessmodell in den zwei Detailebenen 
(Bild 2 und Bild 3) vorgestellt und diskutiert. Bei geschlossenen 
Fragen wurde dabei eine Likert-skalierte Skala mit den Antwort-
möglichkeiten „trifft nicht zu“, „trifft eher nicht zu“, „neutral“, 
„trifft eher zu“ und „trifft voll zu“ genutzt.

3.3.2 Einblicke in die Ergebnisse

Einen Einblick in die Ergebnisse und Rückmeldungen aus der 
Studie mit 16 Teilnehmenden zur Verständlichkeit und Vollstän-
digkeit von AIM4M gibt die Darstellung in Bild 4. 

Bei den Bewertungen (links) sind neben der Likert-skalierten 
Skala auch Zwischenschritte von 3,5 beziehungsweise 4,5 angege-
ben. Diese resultieren daraus, dass einige Teilnehmenden ihre Be-
wertung als Mittelwert zweier Blickwinkel angaben, zum Beispiel 
bei Rollenwahrnehmung im eigenen Unternehmen einerseits und 
des allgemeinen Verständnisses des im Prozessmodell definierten 
Rollenbilds andererseits.

Die Rückmeldungen zeigen ein eindeutiges Bild: Konzeptionell 
überzeugt das Modell, insbesondere durch die klare Struktur und 
Lebenszyklusorientierung. Bereits der Ersteindruck des AIM4M-
 Prozessmodells wurde durchweg positiv bewertet: Alle Teilneh-
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menden stuften die Strukturansicht (Bild 2) zur Übersicht als 
gut bis sehr gut verständlich ein (siehe „Ersteindruck“, links). 
 Zudem konnten sich fast alle Teilnehmenden unmittelbar im Le-
benszyklus verorten, obwohl die konkrete Zuordnung zu Rollen 
im Überblick noch nicht explizit dargestellt ist. Mit der nachge-
schalteten Detailansicht (Bild 3) gelang die Rollenzuordnung 
vollständig (siehe „Zustimmung“, rechts). Gleichzeitig wurde 
mehrfach betont, dass in der Praxis eine Person oft mehrere der 
definierten Rollen gleichzeitig übernimmt. Dieses Spannungsfeld 
zwischen idealtypischem Rollenmodell und realer Ressourcenlage 
zieht sich durch viele Rückmeldungen.

Was die Vollständigkeit des Prozessmodells zum Arbeits -
umfang der Rollen betrifft, fühlten sich nahezu alle Befragten in 
ihrem Arbeitsalltag vom Modell gut abgedeckt. Die Einschätzun-
gen reichten überwiegend von „trifft zu“ bis „trifft voll zu“ (siehe. 
„Arbeitsumfang“). Nur in Einzelfällen wurde geringer positiv 
geurteilt, weil Rollen in der Praxis zusammenfallen und sich 
 damit der Arbeitsumfang verteilt oder einzelne unternehmens-
spezifische Arbeitsinhalte nicht explizit verortet sind. Insgesamt 
wird das Modell jedoch als realitätsnah wahrgenommen.

Weniger eindeutig fiel das Urteil zur praktischen Umsetzbar-
keit im eigenen Unternehmen aus (siehe „Umsetzbarkeit“). Wäh-
rend einige Teilnehmende die direkte Umsetzung von Vorgaben 
aus dem Prozessmodell in ihrem Unternehmen mit „gut machbar“ 
(Bewertung 4–5) einschätzten, weil Rollenklarheit, Budget und 
Tool-Landschaft bereits weitgehend vorhanden seien, stuften an-
dere die Umsetzung nur als „teilweise machbar“ ein. Sie verwie-
sen vor allem auf fehlende Fachkräfte, mangelndes strategisches 
Commitment, unscharfe Rollengrenzen und knappe Ressourcen, 
die eine Eins-zu-eins-Umsetzung derzeit im Mittelstandsumfeld 
erschweren. Das Prozessmodell kann aber selbst in solchen Situa-
tionen dank seiner klaren Strukturansicht helfen, die Grundprin-
zipien von systematischem KI-Lebenszyklusmanagement zu erfas-
sen und als Blaupause die Weiterentwicklung anzustoßen. Man 
kann also sagen: Das Prozessmodell ist praxistauglich, sofern die 
Organisation die notwendige Reife mitbringt, um es zu tragen.

Besonders hohe Zustimmung erhielt die integrierte Dokumen-
tationslogik in Form der AI-Cards, die als Steckbriefe sämtliche 
Informationen zu Use Cases, Daten, Modellen und Deployments 
bündeln und damit Compliance sowie Nachvollziehbarkeit ver-
bessern (siehe „Dokumentation“). Teilnehmende aus Qualitäts- 

und Regulatorikrollen hoben dieses Vorgehen als zentralen Mehr-
wert hervor, auch wenn endgültige rechtliche Vorgaben, wie etwa 
aus dem EU-AI-Act, derzeit noch nicht feststehen. Daraus folgt, 
dass die konkreten regulatorischen Anforderungen im Prozess-
modell (etwa in den Anforderungslisten im Schritt „Requirements 
Analysis“) fortlaufend an den aktuellen Stand von Normen und 
Gesetzen angepasst werden müssen. AIM4M liefert dazu den 
strukturellen Rahmen.

Auch aus den offen-gestellten Fragen im Interview lässt sich 
zusammenfassend ableiten, dass ein klar strukturiertes Prozess-
modell für KI-Anwendungen, wie AIM4M, erhebliches Potenzial 
bietet: Ob Digitalisierungsberater oder Experte für Daten, Prozes-
se und Regulatorik, die Probleme sind deckungsgleich. Ein pra-
xisnahes, rollenbasiertes Prozessmodell für KI im CPPS-Kontext 
mit integrierter Dokumentation adressiert exakt jene Lücken, die 
heute Zeit, Geld und Vertrauen kosten. Es schafft Transparenz 
über Rollen, verankert regulatorische Prüfpunkte mit Quality 
 Gates und verortet Dokumentationspflichten. Damit erleichtert es 
die Zusammenarbeit in interdisziplinären Teams und verbessert 
die Compliance. Das wird von allen Befragten als klarer Mehr-
wert bewertet. Verbesserungswürdig sind vor allem die pragmati-
sche Anpassung an knappe Ressourcen in der Praxis (Rollen in 
Personalunion) sowie eine Verzahnung mit bestehenden Soft-
warelösungen, damit sich der Modellablauf im Alltag tatsächlich 
„leben“ lässt.

4 Fazit und Ausblick

AIM4M ist ein praxisnahes Prozessmodell, das den gesamten 
Lebenszyklus von KI-Anwendungen im Kontext der industriellen 
Produktion abbildet, von der ersten Idee über Entwicklung und 
Betrieb bis zur strukturierten Stilllegung. Im Zentrum steht die 
Operationalisierung, die häufig als methodische Lücke für KI im 
Produktionsumfeld identifiziert wird. Um diese Hürde zu über-
winden, verknüpft das AIM4M-Prozessmodell MLOps-Prinzipien 
mit CPPS-spezifischen Rollen, Aktivitäten und Compliance-Arte-
fakten (zum Beispiel AI-Cards) in einer anwendungsorientierten 
Struktur. Durch die hierarchische Gliederung in Phasen, Stufen 
und Schritte eignet sich AIM4M nicht nur für Einzelprojekte, 
sondern auch als organisationsweiter Orientierungsrahmen. Erste 
Praxiserfahrungen und Expertenrückmeldungen zeigen, dass das 

Bild 4 Übersicht zu Bewertungen (Likert-skaliert, mit Punkten nach Zustimmung) und Frage der Rollen-Zuordnung aus der Evaluierung der Interviews. 
 Grafik: Fraunhofer IPA

https://doi.org/10.37544/1436-4980-2025-09-26 - am 17.01.2026, 10:43:31. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.37544/1436-4980-2025-09-26
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


665

   P R O D U K T I O N S M A N A G E M E N T

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 9

Modell Verständnis schafft, Rollen schärft und die Wiederver-
wendbarkeit von Lösungen fördert.

Zukünftig kann von AIM4M als Basis für die Harmonisierung 
von unternehmensinternen Prozessen mit Standardvorgehen des 
EU-AI-Act Gebrauch gemacht werden, etwa als Vorlage für digi-
tale Dokumentations-Templates oder automatisierte QA-Gates. 
Anhand in der Studie gewonnenen Erkenntnisse soll zudem der 
Aspekt einer Tool-Unterstützung gezielt weiterentwickelt werden, 
damit Unternehmen praxisgerechte Unterstützung erhalten und 
eine Überführung von AIM4M aus der Prozessebene in den ge-
lebten Alltag ermöglicht wird. 
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