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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Kosteneffiziente sensorgestützte Montage mit Robotern 

Montagemanipulator  
für die THT-Bestückung

M. Polikarpov, Y. Mehmood, D. Boiar, J. Deuse

Z U S A M M E N FA S S U N G  In diesem Beitrag wird die 
 Anwendung des parallelkinematischen Manipulators Hexagli-
de in der THT-Bestückung untersucht. Kostengünstige optische 
und taktile Sensoren ermöglichen präzises Referenzieren und 
 Einstecken von Bauteilen. Eine kraft- und bildgeregelte heuris-
tische Steuerungsstrategie sowie Reinforcement Learning 
 wurden erprobt und die Tauglichkeit des Hexaglide für die 
 Bestückung wurde experimentell gezeigt.

Cost-efficient sensor-assisted robotic  
assembly – Assembly manipulator  
for PCB assembly

A B ST R A C T  In this article, the Hexaglide manipulator,  
a parallel robot, is used for automating Printed Circuit Boards 
(PCB) assembly of through-hole components. Low-cost optical 
and tactile sensors facilitate accurate component referencing 
and part insertion. A heuristic algorithm based on image-ba-
sed visual servoing and force control as well as Reinforcement 
Learning are demonstrated. Experimental results validate the 
effectiveness of Hexaglide for PCB assembly automation.

1 Einleitung

Leiterplatten sind ein wesentlicher Bestandteil von elektroni-
schen Produkten. Elektronische Bauelemente werden bei der 
 Bestückung entsprechend einem definierten Muster auf der 
 Leiterplatte platziert und stoffschlüssig befestigt. Neben den mehr 
verbreiteten Methoden der Oberflächenmontage (engl. Surface 
Mount Technology, SMT) findet die Durchsteckmontage (engl. 
Through Hole Technology, THT) Anwendung in anspruchsvollen 
Produkten [1]. Die Durchsteckmontage wird in der Herstellung 
der Leistungselektronik aufgrund hoher Verbindungsfestigkeit 
und thermischer Beständigkeit eingesetzt [2, 3]. THT-Bauteile 
besitzen im Allgemeinen zwei oder mehr Anschlussdrähte, die in 
entsprechende Löcher auf der Leiterplatte eingesteckt werden. 
Dabei müssen die Bauteile am richtigen Ort beschädigungsfrei 
montiert werden, auch wenn ihre Anschlussdrähte (Pins) für 
 Biegung empfindlich sind und die Fügetoleranzen nur wenige 
Zehntelmillimeter betragen. Aufgrund dieser Eigenschaften der 
Bestückungsaufgabe ist die THT-Montage ein zeitintensiver, nicht 
immer wirtschaftlich zu automatisierender, Prozess und kann 
zwischen 40 % und 70 % der gesamten Produktionszeit in der 
Elektronikfertigung beanspruchen [1, 4].

In der Forschung werden unterschiedliche Ansätze verfolgt, 
um die THT-Bestückung mithilfe von Robotern zu automatisie-
ren. Roboterbasierte Systeme weisen im Allgemeinen eine höhere 
Flexibilität auf als spezialisierte Bestückungsautomaten und kön-
nen bei Bedarf auch in anderen Produktionsaufgaben eingesetzt 
werden. Das Fügen ist eine der zentralen Herausforderungen für 
die robotergestützte THT-Bestückung. In der Regel besitzen 
marktübliche Leichtbauroboter nicht die erforderliche Absolutge-
nauigkeit, um mit engen Fügetoleranzen und ohne zusätzliche 

Kalibrierung umgehen zu können. Entweder muss das Roboter-
system und die Fördertechnik dafür mit 3D-Kameras präzise 
 vermessen werden [5] oder der Roboter muss mit Kameras [6–8] 
oder einem Kraftmomentensensor [7] ausgestattet werden. Damit 
wird der Roboter in die Lage versetzt, anhand der Sensorsignale 
und geeigneter Suchstrategien die Löcher in der Leiterplatte 
durch Antasten zu finden. In [9] wurde eine Methode zur daten-
getriebenen Optimierung von kraftgeregelten Suchstrategien 
 vorgestellt, um die Suchzeit zu verkürzen. Der Ansatz des bestär-
kenden Lernens (engl. Reinforcement Learning, RL) in der THT-
Bestückung anhand von Kraft- und Bilddaten wurde von Bartyzel 
et al. [10] untersucht.

Obwohl unterschiedliche Ansätze vielversprechende Erfolgs-
quoten bei der sensorgestützten roboterbasierten THT-Bestü-
ckung erzielen, sind diese auf teure Hardware, auf große (Trai-
nings-) Datenmengen oder auf sehr beschränke Anwendungsfälle 
zurückzuführen. In diesem Beitrag wird ein neuer kostengünsti-
ger Hexaglide-Manipulator vorgestellt, der hohe Bewegungspräzi-
sion für Einsteckvorgänge aufweist (Abschnitt 2). Im Abschnitt 3 
werden zwei untersuchte Kategorien von Steuerungsansätzen 
 erläutert. Darauffolgend werden die Erkenntnisse aus den experi-
mentellen Untersuchungen mit dem Hexaglide im Abschnitt 4 
 betrachtet und abschließend wird das Gesamtergebnis im 
 Abschnitt 5 diskutiert.

2 Hexaglide-Manipulator

Der im Forschungsprojekt „SmartAssembly“ entstandene Pro-
totyp „Hexaglide“ (Bild 1) ist ein Manipulatorsystem, das die 
 Positionierung der zu bestückenden Leiterplatte relativ zum Bau-
teil übernimmt. Das THT-Bauteil wird durch eine beliebige geeig-
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nete Vorrichtung oder durch einen Leichtbauroboter unbeweglich 
gehalten. Damit kann die erforderliche Präzision der Relativ -
bewegung zwischen der Leiterplatte und dem Bauteil unabhängig 
von Leichtbaurobotermodellen reproduzierbar erreicht werden. 
Das unterscheidet sich von den in der Literatur beschriebenen 
Ansätzen [5, 8–11] und Anwendungsfällen in der Elektronik -
fertigung, in denen Leichtbauroboter die gesamte Fügebewegung 
ausführen und die Leiterplatte bei der Montage auf einem För-
derband statisch positioniert ist [12–14]. Im Folgenden werden 
Systembestandteile des entwickelten Hexaglide und maßgebliche 
Designentscheidungen im Einzelnen beschrieben.

2.1 Mechanischer Aufbau und kinematische Grundlagen

Der Hexaglide besitzt sechs – in der vorliegenden Ausführung 
senkrechte – lineare Achsen, deren Bewegung durch die Rotation 
angetriebener Gewindespindeln erzeugt wird. Auf jeder der Ge-
windespindeln befinden sich Spindelwinkel, die über Kugelgelen-
ke mit den entsprechenden Stangen verbunden sind. Kugelgelenke 
auf den oberen Enden der Stangen tragen die Plattform (End -
effektor) für die Aufnahme von Leiterplatten. Zur Sicherstellung 
der fixierten Orientierung der Spindelwinkel während der Vor-
schubbewegungen sind senkrechte Gleitschienen vorgesehen. Die 
Achsenbeschränkungen sind durch taktile Endschalter realisiert. 
Jede der linearen Vorschubachsen wird durch einen separaten 
Schrittmotor mithilfe einer Steuereinheit angetrieben. Der 
 beschriebene Aufbau weist alle drei translatorische und drei rota-
torische Freiheitsgrade auf. Damit kann der Hexaglide zwei Rota-
tionen mehr als die bei der THT-Bestückung häufig eingesetzten 
SCARA-Roboter ausführen, sodass auch deutlich verkippte Bau-
teile montiert werden können (vgl. [6]). Darüber hinaus kann 
 eine bewusste Verkippung bei der Montage von speziellen Bau -
teilen mit einer großen Anzahl der Pins zielführend sein.

Die Hexaglide-Kinematik gehört zur Klasse der geschlossenen 
kinematischen Ketten. Diese zeichnen sich durch einfache Minia-
turisierung, hohe Struktursteifigkeit und hohe Genauigkeit aus 
[15, 16]. Die Gleichungen aus [17] beschreiben in der allgemei-
nen Form die Vorwärts- und die Rückwärtskinematik des Hexa-
glide und wurden für die notwendigen Umrechnungen zwischen 
Zielposen und Motorbefehlen eingesetzt. Im Gegensatz zu den 
mehr verbreiteten, offenen kinematischen Ketten (zum Beispiel 
6- oder 7-Achs-Knickarmroboter) können die Motorbefehle für 
gewünschte Zielposen des Hexaglide analytisch, ohne numerische 
Verfahren bestimmt werden, was für schnelle Berechnungszeiten 
sorgt. Bei günstiger Maschinengestaltung können Singularitäten 
und Sprünge in den Gelenkstellungen des Hexaglide vermieden 
werden. 

2.2 Optische und taktile Sensoren

Bei der Steuerung der Bestückung von Leiterplatten müssen 
Bauteile mit Genauigkeiten im Submillimeterbereich manipuliert 
werden, um die Pins in die Löcher einzustecken, da die typischen 
Spiele zwischen dem Loch und Pin 0,1–0,5 mm betragen. Aber 
noch vor dem Einstecken muss die relative räumliche Koordinate 
des THT-Bauteils zum Bezugskoordinatensystem der Leiterplatte 
ermittelt werden. Um beide Voraussetzungen kostengünstig und 
vorzugsweise mit gleichen Sensoren zu erfüllen, wurden im dar-
gestellten Hexaglide-System zwei Kameras mit justierbaren Halte-
rungen auf der Plattform verbaut, Bild 2. Die Kameras funktio-
nieren zusammen als eine Stereokamera, um aus einzelnen 
2D-Bildern notwendige 3D-Informationen zu gewinnen. Die Ein-
baulage der Kameras über der Leiterplatte muss so gewählt wer-
den, dass die gesamte Leiterplatte in beiden Kameras sichtbar ist.

Für das im Abschnitt 3.1 beschriebenes Referenzieren des 
 Manipulators zum vorgehaltenen THT-Bauteil ist ein homogener 
Hintergrund ohne glänzende Reflektionen erforderlich, damit die 
Pins eindeutig und klar durch die Kameras erkannt werden 
 können. Zur Hervorhebung der reflektierenden Oberflächen der 
Pins wird ein horizontal angeordneter LED-Streifen mit einem 
längenbezogenen Lichtstrom von 1000–4000 lm/m verwendet.

Bild 1. Montagesystem bestehend aus dem Hexaglide und einem 
 Leichtbauroboter: 1 – Spindelwinkel, 2 – Gewindespindel, 3 – Gleitschiene, 
4 – Endschalter, 5 – Stange mit Kugelgelenken, 6 – Plattform.  
Foto: IPS, SFA GmbH & Co KG 

Bild 2. Plattform für die Aufnahme von Leiterplatten. 1 – Kameras,  
2 – Halterung, 3 – Leiterplatte, 4 – THT-Bauteil, 5 – Greifer, 6 – Dehn -
messstreifen, 7 – LED, 8 – Hintergrund. Foto: IPS, SFA GmbH & Co KG
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Der Hexaglide greift zusätzlich auf Kraftmessungen zurück, 
um den Fortschritt der Montage zu überwachen (Abschnitt 3.2). 
Zur Messung von eventuellen Kontaktkräften zwischen dem Bau-
teil und der Leiterplatte besitzt der Hexaglide vier Dehnmess-
streifen mit jeweils einem Messbereich von 7,8 N, die unter den 
Ecken der Versuchsleiterplatte positioniert sind. Der Messbereich 
wurde mit einem großen Sicherheitsfaktor dimensioniert, um 
während des Forschungsprojekts eventuelle starke Kollisionen mit 
dem haltenden Leichtbauroboter standzuhalten. Die Kraftauf -
lösung von circa 0,01 N erwies sich als ausreichend für die 
 Erkennung wesentlicher Zustände während der Lochsuche und 
des Einfügens.

2.3 Software und Vernetzung

Als Framework zur Kommunikation und Steuerung der 
 gesamten Aktoren und Sensoren des Manipulators wird ROS 
 Melodic verwendet und auf einem Laborrechner mit Ubun-
tu 18.04 ausgeführt. Alle Skripte für den Empfang von Sensor -
daten, ihre anschließende Verarbeitung und die Ausgabe von 
 Motorbefehlen wurden in Python 3.6 implementiert. Die Daten 
von den Kraftsensoren und von den Motor-Encodern werden 
über eine USB-Schnittstelle empfangen. Die beiden Intel RealSen-
se Kameras werden auch per USB an den Rechner angeschlossen.

In einer vorausgehenden Publikation [18] wurden die grund-
sätzlichen Funktionsbestandteile bereits in Tiefe behandelt. Es 
handelte sich um ein System, in dem ein Leichtbauroboter  
die Bauteile relativ zu einer fest montierten Leiterplatte bewegte. 
Die Datenverarbeitung und die Steuerung lassen sich ohne 
 signifikante Anpassungen auf den Hexaglide-Manipulator transfe-
rieren, da die Kameratechnik gleichgeblieben ist und die Bewe-
gungsbefehle stets in kartesischen Koordinaten bestimmt wurden. 
Damit ist die Logik der Steuerung größtenteils von der verwen-
deten Roboterkinematik unabhängig und zwischen verschiedenen 
Robotersystemen übertragbar.

Im nächsten Abschnitt werden die für die Steuerung des Hexa-
glide ausgearbeiteten Algorithmen und Methoden der sensor -

gestützten Montage erläutert, um besseres Verständnis der experi-
mentellen Untersuchungen zu ermöglichen.

3 Steuerungsalgorithmen

Analog zum Ablauf der THT-Bestückung, wie diese von Men-
schen ausgeführt wird, kann auch der Ablauf der robotergestütz-
ten THT-Bestückung mithilfe von MTM-Grundbewegungen Hin-
langen – Greifen – Bringen – Fügen – Loslassen [19] analysiert 
werden. Das Hinlangen zu einer Bereitstellungsvorrichtung oder 
zu einem Behälter sowie das Greifen der THT-Bauteile kann auf 
viele unterschiedliche Weisen unabhängig vom Hexaglide erfol-
gen, wobei die konkrete Form der Bauteilbereitstellung stark 
 variieren kann. Je nach betrachtetem Produktionsszenario und 
-umfeld können Kondensatoren, Widerstände, Relais und Trans-
formatoren in geordneten Magazinen oder Trays bereitgestellt 
werden oder im schwierigsten Fall als komplett ungeordnetes 
Schüttgut vorliegen. Der im Fokus des Beitrags stehende Hexagli-
de-Manipulator erfordert, dass ein Leichtbauroboter oder eine 
beliebige sonstige Zuführungsvorrichtung in der Lage ist, die 
Bauteile im Greifer so zu präsentieren, dass die Pins senkrecht 
orientiert sind. Wenn das erfolgt ist, übernimmt der Hexaglide 
das Bringen und das Fügen des THT-Bauteils, indem die Leiter-
platte bewegt wird. Bild 3 veranschaulicht den Bewegungsablauf 
des Hexaglide und die erforderlichen Schritte der Steuerung.

3.1 Referenzieren des Manipulators zum Bauteil

Als Erstes muss die relative Position und Orientierung des 
Bauteils zur Leiterplatte bestimmt werden. Als wesentliches und 
einfach zu detektierendes Merkmal eines THT-Bauteils können 
die Spitzen der Pins verwendet werden. Wie in [18] gezeigt 
 wurde, reichen für die Lokalisierung der Pin-Spitzen klassische 
Methoden der Bildverarbeitung aus. Mithilfe von zwei 2D-Bild-
aufnahmen, in denen Pin-Spitzen detektiert wurden, können bei 
bekannten extrinsischen Parametern des Kamerasystems 3D-
 Koordinaten und die Orientierung der Bauteile im Greifer ermit-
telt werden. In der ersten Iteration wird der Referenz-Pin festge-

Bild 3. Steuerungsablauf der intelligenten THT-Bestückung. Grafik: IPS
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legt und zum Schnittpunkt der Hauptachsen der Kameras ge-
bracht. Weiter wird dieser Punkt abgekürzt als optischer 
 Ursprung bezeichnet. Dieser Punkt ist optimal für die nachfol-
genden Messungen, da in diesem Punkt die Auflösung beider 
 Kameras gleich ist. Hier wird das Bauteil auf nicht akzeptable 
Verformungen geprüft, indem der Pin-Abstand vermessen und 
mit dem Vorgabewert verglichen wird. Anhand erneuter Pin-Spit-
zen-Lokalisierung wird der vorliegende Orientierungswinkel 
 berechnet und das Bauteil wird automatisch entsprechend dem 
Layout der Leiterplatte ausgerichtet. Um den Referenzierungsvor-
gang robust gegenüber Ungenauigkeiten in den Kameraparame-
tern oder äußeren Einflüssen zu machen, wird abschließend eine 
optische Korrektur der Abweichungen vorgenommen. Ähnlich 
zur ersten Iteration fährt die Plattform derart, dass sich der Refe-
renz-Pin im optischen Ursprung befindet. Aus dieser Position 
wird die Anfahrbewegung ausgeführt, die letztendlich die Pins zu 
den richtigen Löchern bringt.

3.2 Einsteckalgorithmen

Bei der robotergestützten Montage von elektronischen Bau-
gruppen gibt es eine Reihe von Einflüssen auf die Produktivität. 
Ein besonders fehleranfälliger Schritt ist dabei die unmittelbare 
Einsteckbewegung. Ein robotisches Bestückungssystem muss in 
diesem Schritt zahlreiche, durch verschiedene Faktoren hervorge-
rufene Ungenauigkeiten überwinden:
• Mensch: Umgang mit der Maschine, Eingaben;
•  Maschine: Verschleiß, Antrieb, Greifer;
•  Milieu: Lichteinflüsse, Vibrationen, Staub;
•  Messung: Kalibrierung, Auflösung;
•  Methode: Bauteilzufuhr, Steuerung;
•  Material: Leiterplatte, Bauteile.
Aus diesem Grund müssen die eingesetzten Einsteckalgorithmen 
ein hohes Maß an Robustheit gegenüber den Störeinflüssen auf-
weisen. Im Folgenden werden zwei unterschiedliche Herange-
hensweisen an diese Aufgabe geschildert: eine Heuristik und 
Reinforcement Learning.

3.2.1 Heuristische Methode

Im ersten Schritt wird die optische Regelung mithilfe der Pin-
Lokalisierung durch Erkennung und spaltenweise Zählung von 
hell reflektierenden Pixeln vorgenommen [18]. Dafür greift der 
entwickelte Algorithmus auf Kamerabildausschnitte, die um das 
vorgegebene Referenz-Loch zentriert sind. Durch die Analyse der 
spaltenweisen Anzahl von hellen Pixeln kann die horizontale 
 Abweichung des Referenz-Pins ermittelt und durch den Hexaglide 
korrigiert werden (s. Zentrierung im Bild 3). Erreicht die Abwei-
chung einen zulässigen Toleranzbereich, fährt der Hexaglide in 
Schritten von 0,5 mm nach oben, um das Bauteil einzustecken. 
Falls signifikante Kontaktkraft von mehr als 2,5 N auftritt, wird 
in einem spiralförmigen Muster (diskrete Schritte von 0,5 mm, 
rechteckig, von innen nach außen, maximaler Radius 1 mm) in 
der Leiterplattenebene verfahren, bis die Kraft unter 1 N abfällt. 
Dieser signifikante Kraftabfall deutet auf eine Verbesserung des 
Montagezustands, das heißt die Löcher wurden durch die kon-
taktbehaftete Suche gefunden. Ab diesem Moment kann mit der 
weiteren senkrechten Einsteckbewegung fortgefahren werden. Im 
Fall einer komplett erfolglosen Spiralsuche wird die optische 
 Zentrierung des Referenz-Pins wiederholt vorgenommen und die 

Einsteckbewegung wird wieder eingeleitet. Auf Grundlage von 
Versuchen mit verschiedenen Elektronikbauteilen wurden 7 N als 
obere zulässige Kontaktkraft zwischen Pins und Leiterplatte fest-
gesetzt, da ab dieser Kraft die Pins tendenziell plastisch verfor-
men und knicken. Eine erfolgreiche Einsteckbewegung wird ab 
einer Einstecktiefe von mehr als 2 mm aufgezeichnet. Die 
 genannten Parameter wurden empirisch während der Entwick-
lung ermittelt, können aber je nach Anforderungen in Konfigura-
tionsdateien angepasst werden.

3.2.2 Reinforcement Learning

Reinforcement Learning (RL) ist eine grundlegend unter-
schiedliche Methode, die ohne menschliches Zutun die Hand-
lungsstrategie erlernt. Dabei wird in den aktuellen Ansätzen aus 
der Forschung dafür in der Regel ein Black-Box-Modell wie neu-
ronales Netz durch die Trainingserfahrungen angepasst, um für 
eine Beobachtung die zielführendste Aktion auszuwählen. Mathe-
matisch ausgedrückt, wird das Ziel verfolgt, die Summe der 
 Belohnungen über die Zeit zu maximieren. Der Algorithmus 
(Agent) lernt die Handlungsstrategie durch die Interaktion mit 
der Umgebung in mehreren Versuchen (Episoden), wobei die 
ersten Episoden anhand eines zufällig initialisierten Modells 
 ausgeführt werden. [20]

Für die Anwendung von RL muss als Erstes definiert werden, 
welche Beobachtungen (States) aus der Umgebung für den Algo-
rithmus relevant sind. Beim Einstecken der THT-Bauteile mit Ro-
botern kann in Anlehnung an die menschliche Wahrnehmung auf 
Bild-, Positions- und Kraftdaten zurückgegriffen werden, Bild 4. 
Um die Dynamik des Einsteckvorgangs zu berücksichtigen, wer-
den Bilder aus dem aktuellen und aus dem vorigen Zeitschritt in 
die neuronalen Netze eingespeist. Im Gegensatz zu den Bildaus-
schnitten, die bei der heuristischen Methode Einsatz finden, soll 
das RL-Modell anhand der Aufnahmen des ganzen Bauteils über 
nächste Handlungen entscheiden. Dadurch soll erforscht werden, 
ob ein Black-Box-Modell in der Lage ist, deutlich komplexere 
Bilddaten als bei der Heuristik zu interpretieren. Dafür werden 
mit einer dritten, extern montierten Kamera Bilder mit einer 
Größe von 256x256 Pixel aufgenommen, zentriert um das Bau-
teil. Da auch diese vergleichsweise kleinen Bilder mit drei Farbka-
nälen eine sehr hohe Dimensionalität haben (196 608 Zahlen pro 
Bild), ist es sinnvoll, die Bilddaten auf einen Vektor zielführender 
Merkmale zu reduzieren. Dafür sind Methoden des Transfer 
Learning geeignet [21]. In unserem System wird auf jedem Bild 
ein auf ImageNet-Datensatz [22] vortrainiertes Faltungsnetz Res-
Net50 [23] angewendet. Das ermöglicht eine Reduktion der ge-
samten multimodalen Beobachtung auf lediglich 136 Merkmale. 
Diese komprimierte Beobachtung wird nachfolgend in drei Stufen 
durch vollvernetzte Neuronenschichten auf sechs Ausgabeneuro-
nen zusammengeführt. Diese entsprechen den Aktionen, die der 
Algorithmus mit dem Hexaglide ausführen kann (jeweils 0,5 mm 
translatorische Schritte in sechs möglichen Richtungen). Um die 
Trainingsdauer zu reduzieren und die generelle Machbarkeit 
schneller zu untersuchen, wurde auf Rotationen als mögliche Ak-
tionen verzichtet.

Um zwischen günstigen und ungünstigen Handlungen zu un-
terscheiden, wird eine Belohnungsfunktion benötigt, die dem Al-
gorithmus entsprechend Plus- oder Minuspunkte vergibt. Wäh-
rend der Anlaufversuche konnte eine zusammengesetzte Beloh-
nungsfunktion entworfen werden, die die Kontaktkraft (rf), die 
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Einstecktiefe (rd), die Bewegungsdauer (rt), die Überschreitung 
der sinnvollen Arbeitsraumgrenzen (rw) sowie das finale Erfolgs-
signal (rs) in jedem Zeitschritt berücksichtigt:

r = rf + rd + rt + rw + rs

Kontaktkräfte unter 2 N werden in der Belohnungsfunktion nicht 
berücksichtigt. Übersteigt die Kontaktkraft 2 N, wird jeder über-
flüssige 1 N mit –5 Punkten bestraft, damit zu große Kraftein-
wirkung auf die Pins vermieden wird:

 

Wenn die Einstecktiefe steigt, bekommt der Algorithmus 20 
Punkte, und wird mit –20 bestraft, wenn die Plattform vom Bau-
teil wegfährt, damit der Algorithmus motiviert ist, das Bauteil in 
die Leiterplatte einzustecken:

 
  

Jeder Zeitschritt wird mit –10 Punkten bestraft, um schnellere 
Bestückung zu erzielen:

rt = –10

Die Überschreitung der Arbeitsraumgrenzen von ±2 mm vom 
Startpunkt in der horizontalen Ebene führt zur Beendigung der 
Episode mit einer Bestrafung von –150 Punkten:

rw = –150, falls max (|x|, |y|) > 2 mm, sonst 0

Eine Episode, die zum erfolgreichen Einstecken des Bauteils in 
die Löcher geführt hat, wird im letzten Zeitschritt mit von 
500 Punkten belohnt. Eine Episode wird abgebrochen, falls die 
Kontaktkraft 7 N übersteigt oder die Dauer der Episode 20 dis-
krete Zeitschritte erreicht.

Mit dem definierten Beobachtungsraum, Handlungsraum und 
Belohnungsfunktion liegen alle Voraussetzungen für das Training 
eines RL-Modells vor. Programmtechnisch wurde die Trainings-
umgebung und die anwendungsspezifische Datenvorverarbeitung 
mithilfe vom Python-Paket „gym“ [24] hinterlegt. Die Lernalgo-
rithmen wurden in der Implementierung aus dem Paket „sta-
ble_baselines3“ [25] importiert.

4 Experimentelle Untersuchungen

Die Tauglichkeit des Hexaglide und verschiedener Steuerungs-
methoden wird in umfassenden Versuchsreihen überprüft und 
analysiert. Sowohl die heuristische Methode als auch RL-Modelle 
greifen auf Bewegungsfähigkeiten des Hexaglide zurück, sodass 
die benutzte Hardware für beide Steuerungsmethoden in allen 
Versuchen gleich ist.

4.1 Heuristische Methode

Während der Tests wurde festgestellt, dass die Heuristik einen 
vielversprechenden Ansatz darstellt, sodass der Umfang der ge-
planten Experimente entsprechend breit gewählt wurde. Für die 
Validierung der Methode wurden acht Bauteile an jeweils fünf 
Zielpositionen auf einer Lochrasterplatte für jeweils zehn Mal ge-
testet (insgesamt 400 Versuche). Die relevanten Bauteildaten so-
wie die Zielpositionen sind dem Bild 5 zu entnehmen.

In jedem Versuch wurde die Anzahl der benötigten Zeitschrit-
te und das Endergebnis (Erfolg oder Misserfolg) aufgezeichnet. 
Tabelle 1 fasst die Erfolgsquote (Q) und die durchschnittliche 
Anzahl der Zeitschritte (ØT) pro Bauteil und Zielposition zu-
sammen. Im Durchschnitt dauerte ein Einsteckversuch 9,9 Zeit-
schritte, insgesamt waren 383 aus 400 Versuchen erfolgreich 
(Q = 95,8 %). Die Bauteile A, D und G wurden in allen 50 damit 
durchgeführten Versuchen erfolgreich platziert.

Trotz der hohen Erfolgsquote lassen sich mehrere Fehlerquel-
len beobachten. Die meisten Fehler wurden dadurch verursacht, 
dass die optisch nicht kontrollierten, hinteren Pins nicht einge-
steckt wurden, obwohl der Referenz-Pin richtig zentriert wurde. 

Bild 4. Architektur der Datenverarbeitung für RL. Grafik: IPS
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Das kann dadurch erklärt werden, dass die hier untersuchte Heu-
ristik im Vergleich zur früheren Veröffentlichung [18] keine Ro-
tationsschritte beinhaltet, um Vergleichbarkeit mit den später un-
tersuchten RL-Methoden zu ermöglichen. Die optische Referen-
zierung kann aufgrund weniger eindeutigen Spitzen von Pins mit 
einem höheren Durchmesser bis zu circa 2° Winkelfehler aufwei-
sen, was im Suchvorgang berücksichtigt werden soll. Aufgrund 
von manueller Positionierung der Bauteile im Robotergreifer wa-

ren Verkippungen von ebenfalls circa 2° möglich. Sonstige Miss-
erfolge der Heuristik hatten falsche erstmalige Eingaben der Ziel-
pixel in den Bildern oder das Verrutschen der Bauteile im Robot-
ergreifer als Ursache.

Anhand der Daten über die Einsteckdauer (Bild 6) lässt sich 
erkennen, dass die Heuristik tendenziell mehr Zeit in den Positio-
nen braucht, die ungleich weit von den Kameras entfernt sind 
(TY und GG). Die Bauteilbeschaffenheit hat eine gewisse Auswir-
kung auf die Zeitschritte, was sich in der größeren Streuung für 
die Bauteile B, E, F und H wiederspiegelt. Das Bauteil B hat im 
Gegensatz zum Bauteil A mit ähnlichem Pin-Durchmesser sehr 
flache, stumpfe Spitzen. Zum einen verbessern schräg abgeschnit-
tene Beinchen die Genauigkeit der optischen Detektion der Pin-
Spitzen, zum anderen erhöhen sie die Erfolgswahrscheinlichkeit 
der Spiralsuche, da die Spitze in mehr Positionen über dem Loch 
ohne Kontaktkräfte eingefügt werden kann. Die Bauteile E bezie-
hungsweise F haben jeweils 9 beziehungsweise 8 Pins, was die 
Wahrscheinlichkeit von Kontaktkräften erhöht, wenn mindestens 
ein Pin leicht verbogen ist. Beim Bauteil H handelt es sich um ei-
ne Sonderform mit fünf dicken und stumpfen Beinchen und ver-
eint somit die nachteiligen Eigenschaften der Bauteile B, E und F.

Insgesamt zeigte die heuristische Methode vielversprechende 
Ergebnisse für Bauteile mit unterschiedlichen Eigenschaften und 
unterschiedliche Einsteckpositionen.

4.2 Reinforcement Learning

Lernalgorithmen DQN [26] und PPO [27] wurden zum Ver-
gleich für das Training angewendet. DQN wurde mit einer Lern-
rate von 0,001 und einer Batchgröße von 16 trainiert. PPO wur-
de mit Lernrate von 0,0002, einer Schrittanzahl von 128 und ei-
nem Entropiekoeffizienten von 0,001 optimiert. Die Optimierung 
der Modellgewichte erfolgte in beiden Fällen mit Adam-Optimie-
rer. Beide Modelle wurden für 10 000 Zeitschritte in der realen 
Umgebung trainiert, was der Trainingsdauer von zwei Arbeitswo-
chen entspricht, da die Bauteile bei Verformung entweder korri-
giert oder ersetzt werden müssen. Als Versuchsbauteil wurde eine 
Diode mit zwei Pins und 0,2 mm Fügespiel auf der entsprechen-
den Leiterplatte verwendet. Während des Trainings wurden Fort-
schrittskurven ermittelt, die die zeitliche Entwicklung der durch-
schnittlichen Episodenlänge und der durchschnittlichen Beloh-
nung darstellen, Bild 7.

Anhand der Trainingsverläufe lässt sich festhalten, dass PPO in 
der Lage war, im Vergleich zu DQN kürzere Versuche zu erzielen 
(Bild 7 links), was durch erfolgreiches Einstecken oder durch 

Bild 5. Testbauteile und -leiterplatte für die Validierung der heuristischen 
Methode. Foto: IPS

Tabelle 1. Versuchsergebnisse mit der Heuristik.

Ziel

MP

TG

TY

GY

GG

Bauteil

A

Q

10/10

10/10

10/10

10/10

10/10

ØT

5,9

6,2

8,0

6,6

13,4

B

Q

10/10

9/10

9/10

8/10

10/10

ØT

7,7

6,3

9,5

26,1

10,6

C

Q

9/10

9/10

10/10

10/10

9/10

ØT

12,4

10,4

8,6

5,8

9,3

D

Q

10/10

10/10

10/10

10/10

10/10

ØT

10,0

15,6

9,3

6,8

8,8

E

Q

8/10

10/10

10/10

9/10

10/10

ØT

14,6

8,3

7,3

15,2

13,2

F

Q

10/10

10/10

10/10

9/10

7/10

ØT

8,4

6,8

15,7

10,7

17,0

G

Q

10/10

10/10

10/10

10/10

10/10

ØT

6,7

5,7

8,7

6,0

6,5

H

Q

9/10

10/10

9/10

10/10

9/10

ØT

9,3

7,3

15,1

6,6

9,4
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sehr schnelles Erreichen von maximal zulässigen Kontaktkräften 
möglich ist. PPO war bereits nach 2000 Schritten im Durch-
schnitt schneller als DQN und hat in den letzten 4000 Zeitschrit-
ten mit Fluktuationen ca. acht Schritte pro Episode gebraucht, 
während DQN über zwölf Schritte benötigte. Die durchschnittli-
che Belohnung (Bild 7 rechts) war bei PPO nach 1500 Schritten 
konsistent besser als bei DQN. Abgesehen von großen Schwan-
kungen konnte PPO nach 6000 Zeitschritten positive summierte 
Belohnungen pro Episode bekommen und erzielte im Maximum 
eine laufende durchschnittliche Belohnung von 150 Punkten.

Obwohl PPO im Vergleich zu DQN positivere Ergebnisse er-
zielt, sind die gesamten Erfolgsquoten der beiden Algorithmen 
niedrig (Tabelle 2). Im Vergleich zu einer rein zufälligen Bewe-
gungsstrategie sind diese Ergebnisse nichtsdestotrotz mehr als 
100 Mal besser. Dies wurde in einer vereinfachten geometrischen 
Simulation ermittelt, indem der Bewegungsraum und die Leiter-
platte entsprechend der tatsächlich ausgeführten Schrittweite von 
0,5 mm diskretisiert wurde. In 1 Millionen stochastischen Simu-
lationsabläufen wurde jede Bewegung zufällig aus den sechs ver-
fügbaren Aktion ausgewählt, mit gleichen Terminierungsbedin-
gungen als für PPO und DQN. Der Anteil der erfolgreichen Be-

Bild 6. Boxplot-Diagramme der benötigten Zeitschritte in Abhängigkeit vom Ziel (links) und Bauteil (rechts). Grafik: IPS 

Tabelle 2. Versuchsergebnisse mit RL und Vergleich mit zufälliger Bewegungsstrategie.

Algorithmus

PPO

DQN

Anzahl Episoden

1062

773

Anzahl Erfolge

176

45

Erfolgsquote

16,6%

5,8%

Verhältnis zum Zufall

436,8

152,6

Bild 7. Trainingskurven von DQN und PPO. Grafik: IPS
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wegungstrajektorien konvergierte gegen 0,038 %, sodass die RL-
Ergebnisse in Verhältnis zu dieser Größe gesetzt werden können.

Zur Interpretation des Modellverhaltens kann ein zweifakto-
rielles Histogramm benutzt werden, das die Verteilung von Episo-
den anhand ihrer Dauer und kumulierter Belohnungen abbildet , 
Bild 8. Am Histogramm für das PPO-Training wird deutlich, dass 
es drei wesentliche Cluster von Episoden gibt. In vielen Episoden 
wird die maximale Anzahl von Zeitschritten (20) erreicht, was 
bei einer Bestrafung jedes Zeitschritts mit –10 am Episodenende 
einer kumulierten Belohnung von circa –200 entspricht, falls kei-
ne hohen Kontaktkräfte ausgeübt wurden und das Bauteil über-
haupt in Richtung der Leiterplatte bewegt wurde. Das zweite 
Cluster hat die höchste Konzentration bei den Episoden mit einer 
Dauer von 3–4 Zeitschritten und Belohnung von etwa –50. Diese 
Gruppe stellt Versuche dar, bei denen das Bauteil direkt gegen die 
Leiterplatte gefahren wurde, sodass aufgrund von hohen Kräften 
schnell abgebrochen werden musste. Der „Schweif“ dieses Clus-
ters repräsentiert Episoden, die entweder wegen dem Überschrei-
ten der sinnvollen Arbeitsraumgrenzen oder wegen der hohen 
Kontaktkraft scheiterten. Klar getrennt von den ersten beiden 
Clustern sind Episoden mit mehr als 400 Punkten kumulierter 
Belohnung. Dieser hohe Wert kann dank der Belohnungsfunktion 
nur aufgrund von einer finalen Erfolgsbelohnung von 500 vor-
kommen. Vom Grundsatz her sind die Cluster von DQN-Episo-
den ähnlich, allerdings lässt sich hier eine extrem hohe Konzen-
tration bei Episodendauern von 20 Schritten und –200 Beloh-
nung feststellen. Das korreliert mit subjektiver Beobachtung wäh-
rend des Trainings, dass DQN vorwiegend zufällige Bewegungen 
ausgeführt und Berührungen mit der Leiterplatte vermieden hat.

Die Untersuchung von RL hat zu keinen befriedigenden Er-
gebnissen hinsichtlich praktischer Anwendbarkeit geführt, da das 
Training sehr zeitintensiv ist und kein zuverlässiges Steuerungs-
modell liefert. Von der Übertragbarkeit des Modells auf andere 
Bauteile kann nach aktuellem Stand nicht ausgegangen werden.

5 Diskussion und Ausblick

Um die Ressourceneffizienz der Elektronikfertiger im Bereich 
der THT-Bestückung zu steigern, müssen technische Lösungen 
entwickelt werden, die gezielt die erforderliche Leistung anbieten. 
Dies kann durch die auf den Anwendungsfall zugeschnittene Sen-
sorik und Hardware erfolgen, sodass die technologischen Investi-
tionen optimal genutzt werden. Am Beispiel des vorgestellten He-
xaglide-Manipulators wird verdeutlicht, dass marktübliche Kame-
ratechnik eine ausreichende Auflösung besitzt, um THT-Bauteile 
erfolgreich zu detektieren und zur Leiterplatte zu referenzieren. 
Darüber hinaus zeigten die experimentellen Untersuchungen, dass 
die senkrechte Komponente der Kontaktkraft als eines der Signale 
für die Steuerung des Einsteckvorgangs genügt und mit kosten-
günstigen Sensoren erfasst werden kann.

Im diskutierten Anwendungsfall der Leiterplattenbestückung 
versetzen robuste Bildverarbeitungsalgorithmen den Hexaglide in 
die Lage, mit Bauteilen in geringeren Ordnungszuständen umzu-
gehen, wodurch die Anforderungen an die Bauteilbereitstellung 
sinken. Im aktuellen Entwicklungsstand der Bildverarbeitung sol-
len die Bauteile im Greifer lediglich nicht verkippt sein; mecha-
nisch ist der Hexaglide aber bereits in der Lage, die Positionier-
plattform zu neigen. Zur Steuerung der unmittelbaren Einsteck-
bewegung können verschiedene Methoden herangezogen werden 
– in diesem Beitrag wurde eine heuristische Methode und zwei 
RL-Methoden untersucht. Die Heuristik erzielt 95,8 % Erfolgs-
quote, während RL nach 10 000 Trainingszeitschritten mit 
16,6 % deutlich schlechter abschneidet. Allerdings ist das bessere 
RL-Modell PPO mehr als 400-fach erfolgreicher als eine Strate-
gie, die jeden Bewegungsschritt zufällig auswählt. Das deutet auf 
Vorhandensein gewisser Lernfähigkeit des Algorithmus. Die Trai-
ningsdauer und der manuelle Betreuungsaufwand der RL-Model-
le kann reduziert werden, indem Bauteile zwischen Episoden au-
tomatisch ausgetauscht werden. Dafür muss das System mit fle-
xibler und zuverlässiger Zuführungstechnik für THT-Bauteile 
ausgestattet sein, sodass jeglicher menschliche Eingriff während 

Bild 8. Histogramme zur Analyse von RL-Trainingsepisoden. PPO (links) und DQN (rechts). Grafik: IPS
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des Trainings entfällt. Alternativ kann RL in Simulation trainiert 
werden. Um die Übertragbarkeit in die Realität zu gewährleisten, 
muss die Simulation physikalische Wechselwirkungen zwischen 
Leiterplatte, Beleuchtung, Bauteil und Robotergreifer realitätstreu 
abbilden.

Eine hervorzuhebende Eigenschaft und Unterschied der RL- 
Methode von der heuristischen Methode ist die Notwendigkeit 
eines Trainings, um das Modell an die Aufgabe anzupassen. Zu-
sätzlich sind RL-Algorithmen nicht komplett frei von Parametern, 
deren Einstellung das Lernergebnis stark beeinflussen kann und 
viel Aufwand für die Bewertung benötigt. Die Bedeutung der Hy-
perparameter für RL (zum Beispiel Batchgröße, Lernrate, Explo-
rationsrate) ist für einen industriellen Anwender in der Regel 
nicht direkt bekannt und die optimale Parameterempfehlung 
kann je nach Aufgabenkomplexität stark variieren. Die Parameter 
der heuristischen Methode wie die Schrittweite, die Reihenfolge 
der Suchbewegungen oder die Pixeltoleranz der Pin-Zentrierung 
haben direkte und nachvollziehbare Effekte auf das Einstecken 
und können somit kurzzyklisch durch Anlagenbetreuende ange-
passt und optimiert werden.

Aus Hardwaresicht besitzt ein Hexaglide als geschlossene kine-
matische Kette eine hohe Steifigkeit und Genauigkeit. Diese un-
terscheiden diesen Manipulator von vielen marktüblichen Knick-
armrobotern. Obwohl für das Greifen und Bringen der Bauteile 
zum Hexaglide ein anderer Roboter benötigt wird, muss dieser 
keine hohe Genauigkeit aufweisen, weil der Hexaglide die hohe 
Bewegungspräzision mitbringt. Die Integration von Kameras und 
Kraftsensoren mit dem Leichtbauroboter ist nicht mehr erforder-
lich. Lediglich der Austausch von einfachen Statusmeldungen zur 
Kommunikation zwischen zwei Robotern muss vorhanden sein.

Neben der THT-Bestückung können Hexaglides als universelle 
Manipulatoren mit sechs Freiheitsgraden für andere Zwecke ein-
gesetzt werden. Besonders vorteilhaft bei dieser Kinematik sind 
hohe Steifigkeit, geringe zu bewegende Massen und Robustheit 
gegen Unstetigkeit und Sprüngen in den Gelenkstellungen.

Zukünftig sind weitere Verbesserungen in der Auslegung des 
Hexaglides und der Steuerungsalgorithmen denkbar. Darüber hi-
naus besteht Entwicklungsbedarf an einfachen Vereinzelungs- 
und Bereitstellungsvorrichtungen für THT-Bauteile, um die Not-
wendigkeit eines separaten Leichtbauroboters in dem Montage -
system zu eliminieren.
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