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Nomenklatur IX 

Nomenklatur 

Indizes 

x, y, z  Bezug zum globalen Koordinatensystem 

1, 2, 3  Bezug zum Schicht-/Faserkoordinatensystem 

,   Bezug zum physikalischen Schicht-/Faserkoordinatensystem 

I, II, II  Indizierung der Hauptspannungstrajektorien 

k  Indizierung über die Anzahl der Schichten 

+,-  Zug-/Druckrichtung 

A  Auf die „Action Plane“ bzw. Wirkebene bezogen 

n,t  Bezug zum Kraftflusskoordinatensystem nach KELLY 

   

Abkürzungen 

Al  Aluminium 

CFK  Kohlenstofffaserverstärkter Kunststoff 

HM  High Modulus 

HT  High Tension 

CLT  Klassische Laminattheorie 

Fb  Faserbruch 

FEM  Finite-Elemente-Methode 

FVK  Faserverbundkunststoffe 

GFK  Glasfaserverstärkter Kunststoff 

HM  High Modulus 

HST  Hauptspannungstrajektorien 

HT  High Tension 

MSV  Mehrschichtverbund 

OoA  Out of Autoclave 

RTM  Resin Transfer Moulding 

St  Stahl 

SMC  Sheet Molding Compound 

BMC  Bulk Molding Compound 

GMT  Glass Mat Thermoplastic Mold 

VARI  Vacuum Assisted Resin Infusion 

SCRIMP  Seeman Composites Resin Infusion Molding Process 

Ti  Titan 

VBO  Vacuum Bag Only 
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X Nomenklatur 

WWFE  World Wide Failure Exercise 

Zfb  Zwischenfaserbruch 

Fbl  Flugzeugbaulaminat 

Kvb  Kreuzverbund 

   

Variablen 

Symbol  Bedeutung Einheit 

  Kraftflussvektor N/mm² 

  Faserorientierungsvektor eines Clusters ° 

  Hauptspannungstrajektorie - 

  Einheitsvektor - 

  Faserorientierungsvektor - 

  Positionsvektor - 

[A]  Scheiben- und Membransteifigkeitsmatrix - 

[B]  Koppelsteifigkeitsmatrix - 

[D]  Platten- oder Biegesteifigkeitsmatrix - 

[HST]C  Beanspruchungsmatrix eines Clusters - 

[HST]C,e,MAT  Normierte Beanspruchungsmatrix eines Clusters im Ma-

terialachsensystem 

- 

[HST]e  Normierte Beanspruchungsmatrix eines Clusters  

[Mat]  Materialmatrix - 

[Mat]norm  Normierte Materialmatrix - 

[P]  Projektionsmatrix  - 

[Q]  Steifigkeitsmatrix - 

[S]  Nachgiebigkeitsmatrix - 

[T]  Transformationsmatrix - 

{M}  Momentenvektor - 

{N}  Normalkraftvektor - 

{ε}  Dehnungsvektor - 

{κ}  Krümmungs-/Drillungsvektor - 

{σ}  Spannungsvektor - 

bel  Beanspruchungswert eines Elements - 

bp  Nutzereingabewert für die Grenzspannung  - 

E  Elastizitätsmodul N/mm² 

eps  Größe des Suchradius für Datenpunkte - 

F  Kraft N 
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Nomenklatur XI 

fE,Zfp  Spannungszustandswert nach PUCK - 

fel  Faserüberdeckungswert eines Elements - 

fel,erw  Erweiterter Faserüberdeckungswert eines Elements - 

fel,sp  Skalierter Überdeckungswert - 

fFb  Faserbruchkriterium nach PUCK - 

fi  Frobeniusnorm der Projektionsmatrix - 

G  Schubmodul N/mm² 

IK  Isotropiekriterium - 

k  Anzahl an Clusterzentren - 

l  Länge mm 

la  Anzahl an Lastfällen - 

lg  Anzahl an Lagen - 

M  Moment Nmm 

MinPts  Mindestanzahl an Datenpunkte im Suchradius eines 

Kernpunkts 

- 

mσf  Vergrößerungsfaktor - 

Mτ,n  Konvergenzkriterium des Mod. CAIO-Algorithmus N/mm² 

N  Normalkraft N 

ne  Anzahl an Elementen - 

nel,min  Mindestanzahl an Elementen für ein Cluster - 

nf  Anzahl an Faserorientierungen - 

P  Punkt in Dickenrichtung - 

p  Inklinationsparameter  - 

pn  Einstellparameter für den Faserüberdeckungswert - 

Q  Einzelsteifigkeit N/mm² 

R  Fertigkeitswert N/mm² 

s(i,k)  Similaritätsmaß - 

Srel  Relative Steifigkeit - 

T  Torsionsmoment Nmm 

t  Dicke mm 

Vt  Toleranz beim Isotropiekriterium - 

wori  Gewichtung der Fasorientierungsdifferenz zweier Da-

tenpunkte 

- 

wpos  Gewichtung der Positionsdifferenz zweier Datenpkt. - 

α  Faserwinkel mit Bezug zur globalen x-Achse ° 

αCL  Winkeltoleranz für geometriebasierten Clusteralgorith. ° 
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XII Nomenklatur 

αT  Toleranzwinkel beim Vereinen von HST ° 

β  Winkel zwischen zwei HST ° 

βKf  Auslenkung eines Kraftflussvektors nach KELLY ° 

γ  Scherung - 

δ  Abweichungswinkel von idealer Faserausrichtung ° 

ΔM  Feuchtigkeitsaufnahme - 

Δp  Positionsdifferenz zwischen zwei Datenpunkten mm 

Δpnorm  Normierte Positionsdifferenz zwischen zwei Punkten - 

ΔT  Temperaturdifferenz °C 

Δα  Differenz zwischen Clusterorientierung und Faserorient. ° 

Δαnorm  Normierte Winkeldifferenz zwischen zwei Faservekt. - 

ε  Dehnungen  - 

η  Winkel zwischen den Hauptachsen der Spannungs- und 

Orientierungsellipse 

° 

θfp  Neigungswinkel der Bruchkurve für Matrixversagen im 

Bruchmodus C nach PUCK 

° 

θI, θII  Betrag der ersten und zweiten Hauptorientierung - 

κ  Krümmung/Drillung - 

σ  Normalspannungen N/mm² 

σbp  Grenzspannung für das Löschen betragsmäßig kleiner 

Hauptspannungstrajektorien 

N/mm² 

σm  Spannungsmittelwert N/mm² 

σmax  Maximalspannung N/mm² 

τ  Schubspannungen N/mm² 

υ  Querkontraktionszahl - 

φ  Hauptspannungswinkel im Spannungskreis nach MOHR ° 

ϕ  Erzwungene Rotation ° 

 

Koordinatensysteme 

x,y,z  Laminatkoordinatensystem 

xe,ye,ze  Elementkoordinatensystem 

1,2,3  Schichtkoordinatensystem/Faserkoordinatensystem 

,   Physikalisches Schichtkoordinatensystem 

n,q  Lokales Koordinatensystem des Kraftflussvektors nach KELLY 

E1,E2  Materialachsensystem 
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Zusammenfassung XIII 

Zusammenfassung 

Endlosfaserverstärkte Faserverbundwerkstoffe sind aufgrund ihres Leichtbaupotentials in 

den Fokus von Produktentwicklern aus unterschiedlichen Industriezweigen gerückt. Hohe 

Steifigkeits- und Festigkeitswerte bei vergleichsweise geringer Dichte versprechen beson-

ders leichte und damit letztendlich energieeffiziente Produkte. Doch diese herausragenden 

mechanischen und physikalischen Eigenschaften können nur dann auf das spätere Bauteil 

übertragen werden, wenn dieses beanspruchungsgerecht ausgelegt wird.  

Für die Auslegung endlosfaserverstärkter Faserverbundstrukturen stehen dem Produktent-

wickler derzeit unterschiedliche Methoden und Hilfsmittel zur Verfügung, die grob in klas-

sische Auslegungshilfen und rechnerunterstützte Methoden unterschieden werden können.  

Diese Hilfsmittel und Methoden sind eine wichtige Hilfestellung für den Produktentwickler 

während der Auslegung, sie haben jedoch einige Nachteile, die trotz korrekter Anwendung 

dazu führen können, dass das Leichtbaupotential nicht ausreichend ausgeschöpft wird. 

Ausgehend vom Stand der Technik bei der Auslegung von endlosfaserverstärkten Faser-

verbundstrukturen wird daher ein neuer simulationsbasierter Auslegungsansatz vorgestellt, 

der sich in vier Stufen gliedert. In der ersten Stufe (I) werden auf Basis einer modifizierten 

CAIO-Optimierung die Hauptspannungstrajektorien berechnet, die aufgrund der einzelnen 

Lastfälle in der Struktur auftreten. Diese Hauptspannungstrajektorien werden im Anschluss 

über zwei neu entwickelte Algorithmen so weit reduziert, sodass nur noch strukturrelevante 

Trajektorien im generierten Datensatz verbleiben (II). Am Ende dieser zweiten Stufe ist 

bekannt, welche Faserorientierungen an welcher Stelle des Bauteils berücksichtigt werden 

müssen, um eine beanspruchungsgerechte Auslegung ermöglichen zu können. Zwar wäre 

es damit theoretisch möglich erste Laminatentwürfe manuell abzuleiten, in der praktischen 

Anwendung stellt sich dies jedoch als zweitaufwändige und schwierige Aufgabe heraus. 

Deshalb wird ein neuer Clusteralgorithmus vorgestellt, der es erlaubt auf Basis der berech-

neten Faserorientierungen die ungefähren Lagengeometrien und -faserorientierungen zu 

berechnen (III). Die erhaltenen Cluster können anschließend in einem manuellen Prozess an 

das anvisierte Fertigungsverfahren angepasst werden, wobei ein neuer Faserüberdeckungs-

wert bei dieser Aufgabe unterstützt. Im letzten Schritt des Ansatzes (IV) werden abschlie-

ßend die Dicken der einzelnen Lagen und deren Laminierreihenfolge über einen Evolutio-

nären Algorithmus ermittelt, womit das Laminat vollständig definiert ist. 

Am Ende der Arbeit wird der neue Auslegungsansatz für die Auslegung zweier unter-

schiedlicher Bauteile angewendet und gezeigt, dass damit Produktentwickler in einem 

strukturierten Auslegungsprozess zu einem Laminataufbau mit sehr guten mechanischen 

Eigenschaften geführt werden. 
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XIV Abstract 

Abstract 

Endless fiber reinforced composite structures have become an interesting material for prod-

uct developers in very different industries, due to their enormous lightweight potential. 

High stiffness and strength value at low density promise light and, consequently, energy 

efficient products. However, these extraordinary mechanical and physical properties can 

only be transferred to the final part if a load adapted design is chosen.  

For the design of endless fiber reinforced composite structures various different design 

methods and aids are available, which can be roughly be distinguished in classical design 

aids and computational methods. These design aids and methods are vital for product de-

velopers during the design stage, but there are disadvantages that can lead to an insufficient 

exploitation of the lightweight potential, even if the methods are used correctly.  

Based on the actual state of the art in the design of endless fiber reinforced composite struc-

tures, a new computational design approach with four different stages will be introduced 

within this work. In the first stage (I), the relevant mean stress trajectories from the differ-

ent load cases are computed using a modified CAIO-optimization. In the following, these 

mean stress trajectories are reduced with algorithms so that only mean stress with structural 

relevance remain in the dataset (II). At the end of the second stage, it is known which fiber 

orientations are needed in the different areas to allow a load adapted laminate design. Even 

though at this stage it is already possible to define a first principal solution for a load 

adapted laminate manually, it turns out to be a challenging and time-consuming task. For 

this reason, a new cluster algorithm to compute the areas and fiber orientations of possible 

layers is introduced. Afterward, only the resulting clusters are adapted manually regarding 

the intended manufacturing process. To support this adaption process, a new fiber superpo-

sition value is developed. In the final stage of the design approach, the thicknesses as well 

as the stacking order of the previously defined layers are computed with an evolutionary 

algorithm. After this final step, the laminate and its design parameters are fully defined. 

In the end of this work, the new approach is used for the design of two different parts and it 

is shown that product developers are assisted in a structured design process from the first 

geometry to the final laminate with good mechanical properties even for complex geome-

tries and load cases. 
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