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Zusammenfassung XIII

Zusammenfassung

Endlosfaserverstirkte Faserverbundwerkstoffe sind aufgrund ihres Leichtbaupotentials in
den Fokus von Produktentwicklern aus unterschiedlichen Industriezweigen geriickt. Hohe
Steifigkeits- und Festigkeitswerte bei vergleichsweise geringer Dichte versprechen beson-
ders leichte und damit letztendlich energieeffiziente Produkte. Doch diese herausragenden
mechanischen und physikalischen Eigenschaften konnen nur dann auf das spéitere Bauteil

iibertragen werden, wenn dieses beanspruchungsgerecht ausgelegt wird.

Fiir die Auslegung endlosfaserverstirkter Faserverbundstrukturen stehen dem Produktent-
wickler derzeit unterschiedliche Methoden und Hilfsmittel zur Verfiigung, die grob in klas-
sische Auslegungshilfen und rechnerunterstiitzte Methoden unterschieden werden kdnnen.
Diese Hilfsmittel und Methoden sind eine wichtige Hilfestellung fiir den Produktentwickler
wihrend der Auslegung, sie haben jedoch einige Nachteile, die trotz korrekter Anwendung

dazu fithren konnen, dass das Leichtbaupotential nicht ausreichend ausgeschopft wird.

Ausgehend vom Stand der Technik bei der Auslegung von endlosfaserverstiarkten Faser-
verbundstrukturen wird daher ein neuer simulationsbasierter Auslegungsansatz vorgestellt,
der sich in vier Stufen gliedert. In der ersten Stufe (I) werden auf Basis einer modifizierten
CAIO-Optimierung die Hauptspannungstrajektorien berechnet, die aufgrund der einzelnen
Lastfalle in der Struktur auftreten. Diese Hauptspannungstrajektorien werden im Anschluss
iiber zwei neu entwickelte Algorithmen so weit reduziert, sodass nur noch strukturrelevante
Trajektorien im generierten Datensatz verbleiben (II). Am Ende dieser zweiten Stufe ist
bekannt, welche Faserorientierungen an welcher Stelle des Bauteils beriicksichtigt werden
miissen, um eine beanspruchungsgerechte Auslegung ermdglichen zu kénnen. Zwar wire
es damit theoretisch moglich erste Laminatentwiirfe manuell abzuleiten, in der praktischen
Anwendung stellt sich dies jedoch als zweitaufwindige und schwierige Aufgabe heraus.
Deshalb wird ein neuer Clusteralgorithmus vorgestellt, der es erlaubt auf Basis der berech-
neten Faserorientierungen die ungefdhren Lagengeometrien und -faserorientierungen zu
berechnen (III). Die erhaltenen Cluster konnen anschliefend in einem manuellen Prozess an
das anvisierte Fertigungsverfahren angepasst werden, wobei ein neuer Faseriiberdeckungs-
wert bei dieser Aufgabe unterstiitzt. Im letzten Schritt des Ansatzes (IV) werden abschlie-
Bend die Dicken der einzelnen Lagen und deren Laminierreihenfolge iiber einen Evolutio-

niren Algorithmus ermittelt, womit das Laminat vollstdndig definiert ist.

Am Ende der Arbeit wird der neue Auslegungsansatz fiir die Auslegung zweier unter-
schiedlicher Bauteile angewendet und gezeigt, dass damit Produktentwickler in einem
strukturierten Auslegungsprozess zu einem Laminataufbau mit sehr guten mechanischen

Eigenschaften gefiihrt werden.
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XIV Abstract

Abstract

Endless fiber reinforced composite structures have become an interesting material for prod-
uct developers in very different industries, due to their enormous lightweight potential.
High stiffness and strength value at low density promise light and, consequently, energy
efficient products. However, these extraordinary mechanical and physical properties can

only be transferred to the final part if a load adapted design is chosen.

For the design of endless fiber reinforced composite structures various different design
methods and aids are available, which can be roughly be distinguished in classical design
aids and computational methods. These design aids and methods are vital for product de-
velopers during the design stage, but there are disadvantages that can lead to an insufficient

exploitation of the lightweight potential, even if the methods are used correctly.

Based on the actual state of the art in the design of endless fiber reinforced composite struc-
tures, a new computational design approach with four different stages will be introduced
within this work. In the first stage (I), the relevant mean stress trajectories from the differ-
ent load cases are computed using a modified CAIO-optimization. In the following, these
mean stress trajectories are reduced with algorithms so that only mean stress with structural
relevance remain in the dataset (II). At the end of the second stage, it is known which fiber
orientations are needed in the different areas to allow a load adapted laminate design. Even
though at this stage it is already possible to define a first principal solution for a load
adapted laminate manually, it turns out to be a challenging and time-consuming task. For
this reason, a new cluster algorithm to compute the areas and fiber orientations of possible
layers is introduced. Afterward, only the resulting clusters are adapted manually regarding
the intended manufacturing process. To support this adaption process, a new fiber superpo-
sition value is developed. In the final stage of the design approach, the thicknesses as well
as the stacking order of the previously defined layers are computed with an evolutionary

algorithm. After this final step, the laminate and its design parameters are fully defined.

In the end of this work, the new approach is used for the design of two different parts and it
is shown that product developers are assisted in a structured design process from the first
geometry to the final laminate with good mechanical properties even for complex geome-

tries and load cases.
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