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Kurzfassung 
Unbemannte autonome Kleinfluggeräte gewinnen in den letzten Jahren 
zunehmend an Bedeutung, da durch Beobachtungen aus der Luft sowohl 
große Areale überwacht werden können als auch Detailansichten aus 
verschiedenen Perspektiven ermöglicht werden. Die Miniaturisierung der 
Sensoren und Aktuatoren erlaubt, leichte Fluggeräte mit niedrigem 
Energiebedarf zu erstellen. Durch diese Sensoren wird, sofern deren Taktrate 
und Präzision ausreichen, um die Bewegung des Fluggerätes zu erfassen und 
zu regeln, der autonome Flug – z. B. entlang eines vorgegebenen Pfades – 
ermöglicht. GPS (Global Positioning System), ein in der Robotik häufig 
eingesetztes System, liefert die horizontale absolute Position, allerdings ohne 
zusätzliche Infrastruktur nur mit Genauigkeiten im unteren Meterbereich und 
die auf ein fiktives Rotationsellipsoid bezogene Höhe auf etwa 10 m genau. 
Mit der Wiederholungsrate von ca. 1/s ist GPS für eine dynamische 
Bewegungsregelung nicht ausreichend schnell. Deshalb werden andere 
Sensoren hinzugezogen. Ein Inertialsensor (IMU) erfasst schnelle 
Bewegungen sehr gut und ist für eine Kurzzeitregelung geeignet. Da dieser 
Sensor Beschleunigungen misst, werden Strecken über zweifache Integration 
ermittelt. Dies ergibt allerdings schon nach kurzer Zeit, bedingt durch einen 
sich veränderten Gleichanteil im Messwert, quadratisch anwachsende Fehler, 
die durch weitere Sensoren kompensiert werden müssen. Dazu eignen sich 
u. a. Kameras, die klein und leichtgewichtig sind und unter Nutzung der 
visuellen Odometrie zur Verbesserung der Bewegungserfassung führen. 
Zudem kann mit Stereokameras sehr genau die Höhe des Fluggerätes über 
dem darunterliegenden Terrain bestimmt werden. Die Daten der drei Sensoren 
(GPS, IMU und Kameras) werden an ein vorhandenes Flugsystem über ein 
Kalmanfilter fusioniert. 
 
Die vorliegende Dissertation befasst sich mit der visuellen 3D-Odometrie, um 
die Position – damit auch die Höhe über Boden – und die momentane 
Geschwindigkeit eines unbemannten Fluggerätes (UAS, Unmanned Areal 
System) zu bestimmen. Als Fluggerät wird in dieser Arbeit ein Blimp (Luftschiff 
ohne Gerüst) der FernUniversität in Hagen verwendet.  
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Bild 1: Blimp der FernUniversität in Hagen 

Die besonderen Anforderungen sind gegeben durch die geringe Nutzlast, die 
eingeschränkte Energieverfügbarkeit bei einem Kleinluftschiff und die 
Echtzeitbildverarbeitung. Um permanente zeitaufwendige Nachkalibrierungen 
zu vermeiden, kommt eine rigide Stereokamera mit kleiner Basisbreite und 
geringer Masse zum Einsatz.  

 

Bild 2: Eingesetzte Stereokamera „Bumblebee“ der Firma Point Grey 

Zur Bestimmung des Abstandes zu einer Szene nehmen zwei Kameras diese 
Szene gleichzeitig auf. Über Bildregistrierungsmethoden wird die Position 
eines identischen Szenenausschnitts in beiden Aufnahmen bestimmt und über 
Triangulation der Abstand zur Szene ermittelt. Für die Bewegungsbestimmung 
werden in zwei nacheinander mit einer Kamera aufgenommenen Bildern 
identische Szenenausschnitte gesucht. Mit der bekannten Höhe lassen sich 
die Verschiebung der Kamera und damit die Position des Fluggerätes 
berechnen. Da die Zeiten der Kameraaufnahmen bekannt sind, kann daraus 
die Geschwindigkeit des Fluggerätes bestimmt werden. Für die Orientierung 
der Kameras, die ebenfalls in die Berechnung eingeht, werden Winkeldaten 
aus der IMU herangezogen.  
Durch die für große Abstände sehr geringe Basisbreite der Stereokamera von 
24 cm ist das Sichtfeld der eingesetzten Kameras ein Kompromiss zwischen 
maximal auflösbarer Höhe und maximal erfassbarer Geschwindigkeit. Deshalb 
werden Verfahren der Bildregistrierung untersucht, die durch 
Subpixelgenauigkeit eine höhere Auflösung ermöglichen. Hierzu zählen 
Gradientenverfahren, die ohnehin zunächst nur für Subpixelabstände definiert 

Basisbreite: 24 cm
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sind, oder flächenbasierte Verfahren. Zwei Verfahren, die Gradientenmethode 
nach Lucas & Kanade und ein flächenbasiertes Verfahren, die 
Kreuzkorrelation, werden auf Tauglichkeit mit realen Aufnahmen geprüft. 
Wichtige Eigenschaften sind hierbei die maximal erfassbare Translation, die 
Genauigkeit, die Empfindlichkeit auf Rotationen und der Einfluss von 
Belichtungsunterschieden.  
Eingehend wird die Subpixelgenauigkeit, u. a. hier mit nachrichtentechnischen 
Methoden, evaluiert. Zur Subpixelbestimmung im Zusammenhang mit der 
Kreuzkorrelation wird eine Funktion – hier 'inverse Parabel' genannt – 
eingeführt. Ziel ist es, eine Subpixelgenauigkeit kleiner als 0.3 px zu erreichen. 
Mit realen Abbildungen werden die gewählten Verfahren auf ihre 
Genauigkeiten bezüglich der erfassten Bewegungen überprüft. 
Die Echtzeitverarbeitung stellt in diesem Zusammenhang eine besondere 
Herausforderung dar. Deshalb werden mehrere Maßnahmen vorgestellt, die 
die Verarbeitung der großen Mengen an Daten vereinfachen, ohne an 
erforderlicher Präzision zu verlieren. Dazu zählen Gaußfilter mit 
Ganzzahlwerten und Divisor in Zweierpotenz, Reduzierung der 
Bilinearkoeffizienten für die Rektifizierung auf wenige Bit Genauigkeit, 
Einschränken der Gebiete für die Korrespondenzanalyse durch Ausschnitte 
und Bildverkleinerungen.  
Die Parallelisierbarkeit der Algorithmen und deren Einsatz in verschiedene 
Hardwareplattformen werden erläutert. 
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